]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
Monitor: avoid NULL dereference with 0.90 metadata
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54 #define MPB_SECTOR_CNT 418
55 #define IMSM_RESERVED_SECTORS 4096
56 #define SECT_PER_MB_SHIFT 11
57
58 /* Disk configuration info. */
59 #define IMSM_MAX_DEVICES 255
60 struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67 __u32 status; /* 0xF0 - 0xF3 */
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69 #define IMSM_DISK_FILLERS 4
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71 };
72
73 /* RAID map configuration infos. */
74 struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80 #define IMSM_T_STATE_NORMAL 0
81 #define IMSM_T_STATE_UNINITIALIZED 1
82 #define IMSM_T_STATE_DEGRADED 2
83 #define IMSM_T_STATE_FAILED 3
84 __u8 raid_level;
85 #define IMSM_T_RAID0 0
86 #define IMSM_T_RAID1 1
87 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
91 __u8 ddf;
92 __u32 filler[7]; /* expansion area */
93 #define IMSM_ORD_REBUILD (1 << 24)
94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
95 * top byte contains some flags
96 */
97 } __attribute__ ((packed));
98
99 struct imsm_vol {
100 __u32 curr_migr_unit;
101 __u32 checkpoint_id; /* id to access curr_migr_unit */
102 __u8 migr_state; /* Normal or Migrating */
103 #define MIGR_INIT 0
104 #define MIGR_REBUILD 1
105 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106 #define MIGR_GEN_MIGR 3
107 #define MIGR_STATE_CHANGE 4
108 #define MIGR_REPAIR 5
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117 } __attribute__ ((packed));
118
119 struct imsm_dev {
120 __u8 volume[MAX_RAID_SERIAL_LEN];
121 __u32 size_low;
122 __u32 size_high;
123 #define DEV_BOOTABLE __cpu_to_le32(0x01)
124 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
126 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145 #define IMSM_DEV_FILLERS 10
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148 } __attribute__ ((packed));
149
150 struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166 #define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
170 /* here comes BBM logs */
171 } __attribute__ ((packed));
172
173 #define BBM_LOG_MAX_ENTRIES 254
174
175 struct bbm_log_entry {
176 __u64 defective_block_start;
177 #define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181 } __attribute__ ((__packed__));
182
183 struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190 } __attribute__ ((__packed__));
191
192
193 #ifndef MDASSEMBLE
194 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195 #endif
196
197 static __u8 migr_type(struct imsm_dev *dev)
198 {
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204 }
205
206 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207 {
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218 }
219
220 static unsigned int sector_count(__u32 bytes)
221 {
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223 }
224
225 static unsigned int mpb_sectors(struct imsm_super *mpb)
226 {
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
228 }
229
230 struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
233 unsigned index;
234 };
235
236 struct intel_hba {
237 enum sys_dev_type type;
238 char *path;
239 char *pci_id;
240 struct intel_hba *next;
241 };
242
243 enum action {
244 DISK_REMOVE = 1,
245 DISK_ADD
246 };
247 /* internal representation of IMSM metadata */
248 struct intel_super {
249 union {
250 void *buf; /* O_DIRECT buffer for reading/writing metadata */
251 struct imsm_super *anchor; /* immovable parameters */
252 };
253 size_t len; /* size of the 'buf' allocation */
254 void *next_buf; /* for realloc'ing buf from the manager */
255 size_t next_len;
256 int updates_pending; /* count of pending updates for mdmon */
257 int current_vol; /* index of raid device undergoing creation */
258 __u32 create_offset; /* common start for 'current_vol' */
259 __u32 random; /* random data for seeding new family numbers */
260 struct intel_dev *devlist;
261 struct dl {
262 struct dl *next;
263 int index;
264 __u8 serial[MAX_RAID_SERIAL_LEN];
265 int major, minor;
266 char *devname;
267 struct imsm_disk disk;
268 int fd;
269 int extent_cnt;
270 struct extent *e; /* for determining freespace @ create */
271 int raiddisk; /* slot to fill in autolayout */
272 enum action action;
273 } *disks;
274 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
275 active */
276 struct dl *missing; /* disks removed while we weren't looking */
277 struct bbm_log *bbm_log;
278 struct intel_hba *hba; /* device path of the raid controller for this metadata */
279 const struct imsm_orom *orom; /* platform firmware support */
280 struct intel_super *next; /* (temp) list for disambiguating family_num */
281 };
282
283 struct intel_disk {
284 struct imsm_disk disk;
285 #define IMSM_UNKNOWN_OWNER (-1)
286 int owner;
287 struct intel_disk *next;
288 };
289
290 struct extent {
291 unsigned long long start, size;
292 };
293
294 /* definitions of reshape process types */
295 enum imsm_reshape_type {
296 CH_TAKEOVER,
297 CH_MIGRATION,
298 };
299
300 /* definition of messages passed to imsm_process_update */
301 enum imsm_update_type {
302 update_activate_spare,
303 update_create_array,
304 update_kill_array,
305 update_rename_array,
306 update_add_remove_disk,
307 update_reshape_container_disks,
308 update_takeover
309 };
310
311 struct imsm_update_activate_spare {
312 enum imsm_update_type type;
313 struct dl *dl;
314 int slot;
315 int array;
316 struct imsm_update_activate_spare *next;
317 };
318
319 struct geo_params {
320 int dev_id;
321 char *dev_name;
322 long long size;
323 int level;
324 int layout;
325 int chunksize;
326 int raid_disks;
327 };
328
329 enum takeover_direction {
330 R10_TO_R0,
331 R0_TO_R10
332 };
333 struct imsm_update_takeover {
334 enum imsm_update_type type;
335 int subarray;
336 enum takeover_direction direction;
337 };
338
339 struct imsm_update_reshape {
340 enum imsm_update_type type;
341 int old_raid_disks;
342 int new_raid_disks;
343 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
344 };
345
346 struct disk_info {
347 __u8 serial[MAX_RAID_SERIAL_LEN];
348 };
349
350 struct imsm_update_create_array {
351 enum imsm_update_type type;
352 int dev_idx;
353 struct imsm_dev dev;
354 };
355
356 struct imsm_update_kill_array {
357 enum imsm_update_type type;
358 int dev_idx;
359 };
360
361 struct imsm_update_rename_array {
362 enum imsm_update_type type;
363 __u8 name[MAX_RAID_SERIAL_LEN];
364 int dev_idx;
365 };
366
367 struct imsm_update_add_remove_disk {
368 enum imsm_update_type type;
369 };
370
371
372 static const char *_sys_dev_type[] = {
373 [SYS_DEV_UNKNOWN] = "Unknown",
374 [SYS_DEV_SAS] = "SAS",
375 [SYS_DEV_SATA] = "SATA"
376 };
377
378 const char *get_sys_dev_type(enum sys_dev_type type)
379 {
380 if (type >= SYS_DEV_MAX)
381 type = SYS_DEV_UNKNOWN;
382
383 return _sys_dev_type[type];
384 }
385
386 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
387 {
388 struct intel_hba *result = malloc(sizeof(*result));
389 if (result) {
390 result->type = device->type;
391 result->path = strdup(device->path);
392 result->next = NULL;
393 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
394 result->pci_id++;
395 }
396 return result;
397 }
398
399 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
400 {
401 struct intel_hba *result=NULL;
402 for (result = hba; result; result = result->next) {
403 if (result->type == device->type && strcmp(result->path, device->path) == 0)
404 break;
405 }
406 return result;
407 }
408
409 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
410 {
411 struct intel_hba *hba;
412
413 /* check if disk attached to Intel HBA */
414 hba = find_intel_hba(super->hba, device);
415 if (hba != NULL)
416 return 1;
417 /* Check if HBA is already attached to super */
418 if (super->hba == NULL) {
419 super->hba = alloc_intel_hba(device);
420 return 1;
421 }
422
423 hba = super->hba;
424 /* Intel metadata allows for all disks attached to the same type HBA.
425 * Do not sypport odf HBA types mixing
426 */
427 if (device->type != hba->type)
428 return 2;
429
430 while (hba->next)
431 hba = hba->next;
432
433 hba->next = alloc_intel_hba(device);
434 return 1;
435 }
436
437 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
438 {
439 struct sys_dev *list, *elem, *prev;
440 char *disk_path;
441
442 if ((list = find_intel_devices()) == NULL)
443 return 0;
444
445 if (fd < 0)
446 disk_path = (char *) devname;
447 else
448 disk_path = diskfd_to_devpath(fd);
449
450 if (!disk_path) {
451 free_sys_dev(&list);
452 return 0;
453 }
454
455 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
456 if (path_attached_to_hba(disk_path, elem->path)) {
457 if (prev == NULL)
458 list = list->next;
459 else
460 prev->next = elem->next;
461 elem->next = NULL;
462 if (disk_path != devname)
463 free(disk_path);
464 free_sys_dev(&list);
465 return elem;
466 }
467 }
468 if (disk_path != devname)
469 free(disk_path);
470 free_sys_dev(&list);
471
472 return NULL;
473 }
474
475
476 static int find_intel_hba_capability(int fd, struct intel_super *super,
477 char *devname);
478
479 static struct supertype *match_metadata_desc_imsm(char *arg)
480 {
481 struct supertype *st;
482
483 if (strcmp(arg, "imsm") != 0 &&
484 strcmp(arg, "default") != 0
485 )
486 return NULL;
487
488 st = malloc(sizeof(*st));
489 if (!st)
490 return NULL;
491 memset(st, 0, sizeof(*st));
492 st->container_dev = NoMdDev;
493 st->ss = &super_imsm;
494 st->max_devs = IMSM_MAX_DEVICES;
495 st->minor_version = 0;
496 st->sb = NULL;
497 return st;
498 }
499
500 #ifndef MDASSEMBLE
501 static __u8 *get_imsm_version(struct imsm_super *mpb)
502 {
503 return &mpb->sig[MPB_SIG_LEN];
504 }
505 #endif
506
507 /* retrieve a disk directly from the anchor when the anchor is known to be
508 * up-to-date, currently only at load time
509 */
510 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
511 {
512 if (index >= mpb->num_disks)
513 return NULL;
514 return &mpb->disk[index];
515 }
516
517 /* retrieve the disk description based on a index of the disk
518 * in the sub-array
519 */
520 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
521 {
522 struct dl *d;
523
524 for (d = super->disks; d; d = d->next)
525 if (d->index == index)
526 return d;
527
528 return NULL;
529 }
530 /* retrieve a disk from the parsed metadata */
531 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
532 {
533 struct dl *dl;
534
535 dl = get_imsm_dl_disk(super, index);
536 if (dl)
537 return &dl->disk;
538
539 return NULL;
540 }
541
542 /* generate a checksum directly from the anchor when the anchor is known to be
543 * up-to-date, currently only at load or write_super after coalescing
544 */
545 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
546 {
547 __u32 end = mpb->mpb_size / sizeof(end);
548 __u32 *p = (__u32 *) mpb;
549 __u32 sum = 0;
550
551 while (end--) {
552 sum += __le32_to_cpu(*p);
553 p++;
554 }
555
556 return sum - __le32_to_cpu(mpb->check_sum);
557 }
558
559 static size_t sizeof_imsm_map(struct imsm_map *map)
560 {
561 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
562 }
563
564 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
565 {
566 /* A device can have 2 maps if it is in the middle of a migration.
567 * If second_map is:
568 * 0 - we return the first map
569 * 1 - we return the second map if it exists, else NULL
570 * -1 - we return the second map if it exists, else the first
571 */
572 struct imsm_map *map = &dev->vol.map[0];
573
574 if (second_map == 1 && !dev->vol.migr_state)
575 return NULL;
576 else if (second_map == 1 ||
577 (second_map < 0 && dev->vol.migr_state)) {
578 void *ptr = map;
579
580 return ptr + sizeof_imsm_map(map);
581 } else
582 return map;
583
584 }
585
586 /* return the size of the device.
587 * migr_state increases the returned size if map[0] were to be duplicated
588 */
589 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
590 {
591 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
592 sizeof_imsm_map(get_imsm_map(dev, 0));
593
594 /* migrating means an additional map */
595 if (dev->vol.migr_state)
596 size += sizeof_imsm_map(get_imsm_map(dev, 1));
597 else if (migr_state)
598 size += sizeof_imsm_map(get_imsm_map(dev, 0));
599
600 return size;
601 }
602
603 #ifndef MDASSEMBLE
604 /* retrieve disk serial number list from a metadata update */
605 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
606 {
607 void *u = update;
608 struct disk_info *inf;
609
610 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
611 sizeof_imsm_dev(&update->dev, 0);
612
613 return inf;
614 }
615 #endif
616
617 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
618 {
619 int offset;
620 int i;
621 void *_mpb = mpb;
622
623 if (index >= mpb->num_raid_devs)
624 return NULL;
625
626 /* devices start after all disks */
627 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
628
629 for (i = 0; i <= index; i++)
630 if (i == index)
631 return _mpb + offset;
632 else
633 offset += sizeof_imsm_dev(_mpb + offset, 0);
634
635 return NULL;
636 }
637
638 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
639 {
640 struct intel_dev *dv;
641
642 if (index >= super->anchor->num_raid_devs)
643 return NULL;
644 for (dv = super->devlist; dv; dv = dv->next)
645 if (dv->index == index)
646 return dv->dev;
647 return NULL;
648 }
649
650 /*
651 * for second_map:
652 * == 0 get first map
653 * == 1 get second map
654 * == -1 than get map according to the current migr_state
655 */
656 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
657 int slot,
658 int second_map)
659 {
660 struct imsm_map *map;
661
662 map = get_imsm_map(dev, second_map);
663
664 /* top byte identifies disk under rebuild */
665 return __le32_to_cpu(map->disk_ord_tbl[slot]);
666 }
667
668 #define ord_to_idx(ord) (((ord) << 8) >> 8)
669 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
670 {
671 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
672
673 return ord_to_idx(ord);
674 }
675
676 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
677 {
678 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
679 }
680
681 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
682 {
683 int slot;
684 __u32 ord;
685
686 for (slot = 0; slot < map->num_members; slot++) {
687 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
688 if (ord_to_idx(ord) == idx)
689 return slot;
690 }
691
692 return -1;
693 }
694
695 static int get_imsm_raid_level(struct imsm_map *map)
696 {
697 if (map->raid_level == 1) {
698 if (map->num_members == 2)
699 return 1;
700 else
701 return 10;
702 }
703
704 return map->raid_level;
705 }
706
707 static int cmp_extent(const void *av, const void *bv)
708 {
709 const struct extent *a = av;
710 const struct extent *b = bv;
711 if (a->start < b->start)
712 return -1;
713 if (a->start > b->start)
714 return 1;
715 return 0;
716 }
717
718 static int count_memberships(struct dl *dl, struct intel_super *super)
719 {
720 int memberships = 0;
721 int i;
722
723 for (i = 0; i < super->anchor->num_raid_devs; i++) {
724 struct imsm_dev *dev = get_imsm_dev(super, i);
725 struct imsm_map *map = get_imsm_map(dev, 0);
726
727 if (get_imsm_disk_slot(map, dl->index) >= 0)
728 memberships++;
729 }
730
731 return memberships;
732 }
733
734 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
735 {
736 /* find a list of used extents on the given physical device */
737 struct extent *rv, *e;
738 int i;
739 int memberships = count_memberships(dl, super);
740 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
741
742 rv = malloc(sizeof(struct extent) * (memberships + 1));
743 if (!rv)
744 return NULL;
745 e = rv;
746
747 for (i = 0; i < super->anchor->num_raid_devs; i++) {
748 struct imsm_dev *dev = get_imsm_dev(super, i);
749 struct imsm_map *map = get_imsm_map(dev, 0);
750
751 if (get_imsm_disk_slot(map, dl->index) >= 0) {
752 e->start = __le32_to_cpu(map->pba_of_lba0);
753 e->size = __le32_to_cpu(map->blocks_per_member);
754 e++;
755 }
756 }
757 qsort(rv, memberships, sizeof(*rv), cmp_extent);
758
759 /* determine the start of the metadata
760 * when no raid devices are defined use the default
761 * ...otherwise allow the metadata to truncate the value
762 * as is the case with older versions of imsm
763 */
764 if (memberships) {
765 struct extent *last = &rv[memberships - 1];
766 __u32 remainder;
767
768 remainder = __le32_to_cpu(dl->disk.total_blocks) -
769 (last->start + last->size);
770 /* round down to 1k block to satisfy precision of the kernel
771 * 'size' interface
772 */
773 remainder &= ~1UL;
774 /* make sure remainder is still sane */
775 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
776 remainder = ROUND_UP(super->len, 512) >> 9;
777 if (reservation > remainder)
778 reservation = remainder;
779 }
780 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
781 e->size = 0;
782 return rv;
783 }
784
785 /* try to determine how much space is reserved for metadata from
786 * the last get_extents() entry, otherwise fallback to the
787 * default
788 */
789 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
790 {
791 struct extent *e;
792 int i;
793 __u32 rv;
794
795 /* for spares just return a minimal reservation which will grow
796 * once the spare is picked up by an array
797 */
798 if (dl->index == -1)
799 return MPB_SECTOR_CNT;
800
801 e = get_extents(super, dl);
802 if (!e)
803 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
804
805 /* scroll to last entry */
806 for (i = 0; e[i].size; i++)
807 continue;
808
809 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
810
811 free(e);
812
813 return rv;
814 }
815
816 static int is_spare(struct imsm_disk *disk)
817 {
818 return (disk->status & SPARE_DISK) == SPARE_DISK;
819 }
820
821 static int is_configured(struct imsm_disk *disk)
822 {
823 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
824 }
825
826 static int is_failed(struct imsm_disk *disk)
827 {
828 return (disk->status & FAILED_DISK) == FAILED_DISK;
829 }
830
831 /* Return minimum size of a spare that can be used in this array*/
832 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
833 {
834 struct intel_super *super = st->sb;
835 struct dl *dl;
836 struct extent *e;
837 int i;
838 unsigned long long rv = 0;
839
840 if (!super)
841 return rv;
842 /* find first active disk in array */
843 dl = super->disks;
844 while (dl && (is_failed(&dl->disk) || dl->index == -1))
845 dl = dl->next;
846 if (!dl)
847 return rv;
848 /* find last lba used by subarrays */
849 e = get_extents(super, dl);
850 if (!e)
851 return rv;
852 for (i = 0; e[i].size; i++)
853 continue;
854 if (i > 0)
855 rv = e[i-1].start + e[i-1].size;
856 free(e);
857 /* add the amount of space needed for metadata */
858 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
859 return rv * 512;
860 }
861
862 #ifndef MDASSEMBLE
863 static __u64 blocks_per_migr_unit(struct imsm_dev *dev);
864
865 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
866 {
867 __u64 sz;
868 int slot, i;
869 struct imsm_map *map = get_imsm_map(dev, 0);
870 struct imsm_map *map2 = get_imsm_map(dev, 1);
871 __u32 ord;
872
873 printf("\n");
874 printf("[%.16s]:\n", dev->volume);
875 printf(" UUID : %s\n", uuid);
876 printf(" RAID Level : %d", get_imsm_raid_level(map));
877 if (map2)
878 printf(" <-- %d", get_imsm_raid_level(map2));
879 printf("\n");
880 printf(" Members : %d", map->num_members);
881 if (map2)
882 printf(" <-- %d", map2->num_members);
883 printf("\n");
884 printf(" Slots : [");
885 for (i = 0; i < map->num_members; i++) {
886 ord = get_imsm_ord_tbl_ent(dev, i, 0);
887 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
888 }
889 printf("]");
890 if (map2) {
891 printf(" <-- [");
892 for (i = 0; i < map2->num_members; i++) {
893 ord = get_imsm_ord_tbl_ent(dev, i, 1);
894 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
895 }
896 printf("]");
897 }
898 printf("\n");
899 printf(" Failed disk : ");
900 if (map->failed_disk_num == 0xff)
901 printf("none");
902 else
903 printf("%i", map->failed_disk_num);
904 printf("\n");
905 slot = get_imsm_disk_slot(map, disk_idx);
906 if (slot >= 0) {
907 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
908 printf(" This Slot : %d%s\n", slot,
909 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
910 } else
911 printf(" This Slot : ?\n");
912 sz = __le32_to_cpu(dev->size_high);
913 sz <<= 32;
914 sz += __le32_to_cpu(dev->size_low);
915 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
916 human_size(sz * 512));
917 sz = __le32_to_cpu(map->blocks_per_member);
918 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
919 human_size(sz * 512));
920 printf(" Sector Offset : %u\n",
921 __le32_to_cpu(map->pba_of_lba0));
922 printf(" Num Stripes : %u\n",
923 __le32_to_cpu(map->num_data_stripes));
924 printf(" Chunk Size : %u KiB",
925 __le16_to_cpu(map->blocks_per_strip) / 2);
926 if (map2)
927 printf(" <-- %u KiB",
928 __le16_to_cpu(map2->blocks_per_strip) / 2);
929 printf("\n");
930 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
931 printf(" Migrate State : ");
932 if (dev->vol.migr_state) {
933 if (migr_type(dev) == MIGR_INIT)
934 printf("initialize\n");
935 else if (migr_type(dev) == MIGR_REBUILD)
936 printf("rebuild\n");
937 else if (migr_type(dev) == MIGR_VERIFY)
938 printf("check\n");
939 else if (migr_type(dev) == MIGR_GEN_MIGR)
940 printf("general migration\n");
941 else if (migr_type(dev) == MIGR_STATE_CHANGE)
942 printf("state change\n");
943 else if (migr_type(dev) == MIGR_REPAIR)
944 printf("repair\n");
945 else
946 printf("<unknown:%d>\n", migr_type(dev));
947 } else
948 printf("idle\n");
949 printf(" Map State : %s", map_state_str[map->map_state]);
950 if (dev->vol.migr_state) {
951 struct imsm_map *map = get_imsm_map(dev, 1);
952
953 printf(" <-- %s", map_state_str[map->map_state]);
954 printf("\n Checkpoint : %u (%llu)",
955 __le32_to_cpu(dev->vol.curr_migr_unit),
956 (unsigned long long)blocks_per_migr_unit(dev));
957 }
958 printf("\n");
959 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
960 }
961
962 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
963 {
964 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
965 char str[MAX_RAID_SERIAL_LEN + 1];
966 __u64 sz;
967
968 if (index < 0 || !disk)
969 return;
970
971 printf("\n");
972 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
973 printf(" Disk%02d Serial : %s\n", index, str);
974 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
975 is_configured(disk) ? " active" : "",
976 is_failed(disk) ? " failed" : "");
977 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
978 sz = __le32_to_cpu(disk->total_blocks) - reserved;
979 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
980 human_size(sz * 512));
981 }
982
983 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
984
985 static void examine_super_imsm(struct supertype *st, char *homehost)
986 {
987 struct intel_super *super = st->sb;
988 struct imsm_super *mpb = super->anchor;
989 char str[MAX_SIGNATURE_LENGTH];
990 int i;
991 struct mdinfo info;
992 char nbuf[64];
993 __u32 sum;
994 __u32 reserved = imsm_reserved_sectors(super, super->disks);
995 struct dl *dl;
996
997 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
998 printf(" Magic : %s\n", str);
999 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1000 printf(" Version : %s\n", get_imsm_version(mpb));
1001 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1002 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1003 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1004 getinfo_super_imsm(st, &info, NULL);
1005 fname_from_uuid(st, &info, nbuf, ':');
1006 printf(" UUID : %s\n", nbuf + 5);
1007 sum = __le32_to_cpu(mpb->check_sum);
1008 printf(" Checksum : %08x %s\n", sum,
1009 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1010 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1011 printf(" Disks : %d\n", mpb->num_disks);
1012 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1013 print_imsm_disk(mpb, super->disks->index, reserved);
1014 if (super->bbm_log) {
1015 struct bbm_log *log = super->bbm_log;
1016
1017 printf("\n");
1018 printf("Bad Block Management Log:\n");
1019 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1020 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1021 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1022 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1023 printf(" First Spare : %llx\n",
1024 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1025 }
1026 for (i = 0; i < mpb->num_raid_devs; i++) {
1027 struct mdinfo info;
1028 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1029
1030 super->current_vol = i;
1031 getinfo_super_imsm(st, &info, NULL);
1032 fname_from_uuid(st, &info, nbuf, ':');
1033 print_imsm_dev(dev, nbuf + 5, super->disks->index);
1034 }
1035 for (i = 0; i < mpb->num_disks; i++) {
1036 if (i == super->disks->index)
1037 continue;
1038 print_imsm_disk(mpb, i, reserved);
1039 }
1040 for (dl = super->disks ; dl; dl = dl->next) {
1041 struct imsm_disk *disk;
1042 char str[MAX_RAID_SERIAL_LEN + 1];
1043 __u64 sz;
1044
1045 if (dl->index >= 0)
1046 continue;
1047
1048 disk = &dl->disk;
1049 printf("\n");
1050 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1051 printf(" Disk Serial : %s\n", str);
1052 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1053 is_configured(disk) ? " active" : "",
1054 is_failed(disk) ? " failed" : "");
1055 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1056 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1057 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1058 human_size(sz * 512));
1059 }
1060 }
1061
1062 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1063 {
1064 /* We just write a generic IMSM ARRAY entry */
1065 struct mdinfo info;
1066 char nbuf[64];
1067 struct intel_super *super = st->sb;
1068
1069 if (!super->anchor->num_raid_devs) {
1070 printf("ARRAY metadata=imsm\n");
1071 return;
1072 }
1073
1074 getinfo_super_imsm(st, &info, NULL);
1075 fname_from_uuid(st, &info, nbuf, ':');
1076 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1077 }
1078
1079 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1080 {
1081 /* We just write a generic IMSM ARRAY entry */
1082 struct mdinfo info;
1083 char nbuf[64];
1084 char nbuf1[64];
1085 struct intel_super *super = st->sb;
1086 int i;
1087
1088 if (!super->anchor->num_raid_devs)
1089 return;
1090
1091 getinfo_super_imsm(st, &info, NULL);
1092 fname_from_uuid(st, &info, nbuf, ':');
1093 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1094 struct imsm_dev *dev = get_imsm_dev(super, i);
1095
1096 super->current_vol = i;
1097 getinfo_super_imsm(st, &info, NULL);
1098 fname_from_uuid(st, &info, nbuf1, ':');
1099 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1100 dev->volume, nbuf + 5, i, nbuf1 + 5);
1101 }
1102 }
1103
1104 static void export_examine_super_imsm(struct supertype *st)
1105 {
1106 struct intel_super *super = st->sb;
1107 struct imsm_super *mpb = super->anchor;
1108 struct mdinfo info;
1109 char nbuf[64];
1110
1111 getinfo_super_imsm(st, &info, NULL);
1112 fname_from_uuid(st, &info, nbuf, ':');
1113 printf("MD_METADATA=imsm\n");
1114 printf("MD_LEVEL=container\n");
1115 printf("MD_UUID=%s\n", nbuf+5);
1116 printf("MD_DEVICES=%u\n", mpb->num_disks);
1117 }
1118
1119 static void detail_super_imsm(struct supertype *st, char *homehost)
1120 {
1121 struct mdinfo info;
1122 char nbuf[64];
1123
1124 getinfo_super_imsm(st, &info, NULL);
1125 fname_from_uuid(st, &info, nbuf, ':');
1126 printf("\n UUID : %s\n", nbuf + 5);
1127 }
1128
1129 static void brief_detail_super_imsm(struct supertype *st)
1130 {
1131 struct mdinfo info;
1132 char nbuf[64];
1133 getinfo_super_imsm(st, &info, NULL);
1134 fname_from_uuid(st, &info, nbuf, ':');
1135 printf(" UUID=%s", nbuf + 5);
1136 }
1137
1138 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1139 static void fd2devname(int fd, char *name);
1140
1141 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1142 {
1143 /* dump an unsorted list of devices attached to AHCI Intel storage
1144 * controller, as well as non-connected ports
1145 */
1146 int hba_len = strlen(hba_path) + 1;
1147 struct dirent *ent;
1148 DIR *dir;
1149 char *path = NULL;
1150 int err = 0;
1151 unsigned long port_mask = (1 << port_count) - 1;
1152
1153 if (port_count > (int)sizeof(port_mask) * 8) {
1154 if (verbose)
1155 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1156 return 2;
1157 }
1158
1159 /* scroll through /sys/dev/block looking for devices attached to
1160 * this hba
1161 */
1162 dir = opendir("/sys/dev/block");
1163 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1164 int fd;
1165 char model[64];
1166 char vendor[64];
1167 char buf[1024];
1168 int major, minor;
1169 char *device;
1170 char *c;
1171 int port;
1172 int type;
1173
1174 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1175 continue;
1176 path = devt_to_devpath(makedev(major, minor));
1177 if (!path)
1178 continue;
1179 if (!path_attached_to_hba(path, hba_path)) {
1180 free(path);
1181 path = NULL;
1182 continue;
1183 }
1184
1185 /* retrieve the scsi device type */
1186 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1187 if (verbose)
1188 fprintf(stderr, Name ": failed to allocate 'device'\n");
1189 err = 2;
1190 break;
1191 }
1192 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1193 if (load_sys(device, buf) != 0) {
1194 if (verbose)
1195 fprintf(stderr, Name ": failed to read device type for %s\n",
1196 path);
1197 err = 2;
1198 free(device);
1199 break;
1200 }
1201 type = strtoul(buf, NULL, 10);
1202
1203 /* if it's not a disk print the vendor and model */
1204 if (!(type == 0 || type == 7 || type == 14)) {
1205 vendor[0] = '\0';
1206 model[0] = '\0';
1207 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1208 if (load_sys(device, buf) == 0) {
1209 strncpy(vendor, buf, sizeof(vendor));
1210 vendor[sizeof(vendor) - 1] = '\0';
1211 c = (char *) &vendor[sizeof(vendor) - 1];
1212 while (isspace(*c) || *c == '\0')
1213 *c-- = '\0';
1214
1215 }
1216 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1217 if (load_sys(device, buf) == 0) {
1218 strncpy(model, buf, sizeof(model));
1219 model[sizeof(model) - 1] = '\0';
1220 c = (char *) &model[sizeof(model) - 1];
1221 while (isspace(*c) || *c == '\0')
1222 *c-- = '\0';
1223 }
1224
1225 if (vendor[0] && model[0])
1226 sprintf(buf, "%.64s %.64s", vendor, model);
1227 else
1228 switch (type) { /* numbers from hald/linux/device.c */
1229 case 1: sprintf(buf, "tape"); break;
1230 case 2: sprintf(buf, "printer"); break;
1231 case 3: sprintf(buf, "processor"); break;
1232 case 4:
1233 case 5: sprintf(buf, "cdrom"); break;
1234 case 6: sprintf(buf, "scanner"); break;
1235 case 8: sprintf(buf, "media_changer"); break;
1236 case 9: sprintf(buf, "comm"); break;
1237 case 12: sprintf(buf, "raid"); break;
1238 default: sprintf(buf, "unknown");
1239 }
1240 } else
1241 buf[0] = '\0';
1242 free(device);
1243
1244 /* chop device path to 'host%d' and calculate the port number */
1245 c = strchr(&path[hba_len], '/');
1246 if (!c) {
1247 if (verbose)
1248 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1249 err = 2;
1250 break;
1251 }
1252 *c = '\0';
1253 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1254 port -= host_base;
1255 else {
1256 if (verbose) {
1257 *c = '/'; /* repair the full string */
1258 fprintf(stderr, Name ": failed to determine port number for %s\n",
1259 path);
1260 }
1261 err = 2;
1262 break;
1263 }
1264
1265 /* mark this port as used */
1266 port_mask &= ~(1 << port);
1267
1268 /* print out the device information */
1269 if (buf[0]) {
1270 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1271 continue;
1272 }
1273
1274 fd = dev_open(ent->d_name, O_RDONLY);
1275 if (fd < 0)
1276 printf(" Port%d : - disk info unavailable -\n", port);
1277 else {
1278 fd2devname(fd, buf);
1279 printf(" Port%d : %s", port, buf);
1280 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1281 printf(" (%s)\n", buf);
1282 else
1283 printf("()\n");
1284 }
1285 close(fd);
1286 free(path);
1287 path = NULL;
1288 }
1289 if (path)
1290 free(path);
1291 if (dir)
1292 closedir(dir);
1293 if (err == 0) {
1294 int i;
1295
1296 for (i = 0; i < port_count; i++)
1297 if (port_mask & (1 << i))
1298 printf(" Port%d : - no device attached -\n", i);
1299 }
1300
1301 return err;
1302 }
1303
1304
1305
1306 static void print_found_intel_controllers(struct sys_dev *elem)
1307 {
1308 for (; elem; elem = elem->next) {
1309 fprintf(stderr, Name ": found Intel(R) ");
1310 if (elem->type == SYS_DEV_SATA)
1311 fprintf(stderr, "SATA ");
1312 else if (elem->type == SYS_DEV_SAS)
1313 fprintf(stderr, "SAS ");
1314 fprintf(stderr, "RAID controller");
1315 if (elem->pci_id)
1316 fprintf(stderr, " at %s", elem->pci_id);
1317 fprintf(stderr, ".\n");
1318 }
1319 fflush(stderr);
1320 }
1321
1322 static int ahci_get_port_count(const char *hba_path, int *port_count)
1323 {
1324 struct dirent *ent;
1325 DIR *dir;
1326 int host_base = -1;
1327
1328 *port_count = 0;
1329 if ((dir = opendir(hba_path)) == NULL)
1330 return -1;
1331
1332 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1333 int host;
1334
1335 if (sscanf(ent->d_name, "host%d", &host) != 1)
1336 continue;
1337 if (*port_count == 0)
1338 host_base = host;
1339 else if (host < host_base)
1340 host_base = host;
1341
1342 if (host + 1 > *port_count + host_base)
1343 *port_count = host + 1 - host_base;
1344 }
1345 closedir(dir);
1346 return host_base;
1347 }
1348
1349 static void print_imsm_capability(const struct imsm_orom *orom)
1350 {
1351 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1352 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1353 orom->hotfix_ver, orom->build);
1354 printf(" RAID Levels :%s%s%s%s%s\n",
1355 imsm_orom_has_raid0(orom) ? " raid0" : "",
1356 imsm_orom_has_raid1(orom) ? " raid1" : "",
1357 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1358 imsm_orom_has_raid10(orom) ? " raid10" : "",
1359 imsm_orom_has_raid5(orom) ? " raid5" : "");
1360 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1361 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1362 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1363 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1364 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1365 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1366 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1367 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1368 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1369 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1370 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1371 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1372 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1373 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1374 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1375 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1376 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1377 printf(" Max Disks : %d\n", orom->tds);
1378 printf(" Max Volumes : %d\n", orom->vpa);
1379 return;
1380 }
1381
1382 static int detail_platform_imsm(int verbose, int enumerate_only)
1383 {
1384 /* There are two components to imsm platform support, the ahci SATA
1385 * controller and the option-rom. To find the SATA controller we
1386 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1387 * controller with the Intel vendor id is present. This approach
1388 * allows mdadm to leverage the kernel's ahci detection logic, with the
1389 * caveat that if ahci.ko is not loaded mdadm will not be able to
1390 * detect platform raid capabilities. The option-rom resides in a
1391 * platform "Adapter ROM". We scan for its signature to retrieve the
1392 * platform capabilities. If raid support is disabled in the BIOS the
1393 * option-rom capability structure will not be available.
1394 */
1395 const struct imsm_orom *orom;
1396 struct sys_dev *list, *hba;
1397 int host_base = 0;
1398 int port_count = 0;
1399 int result=0;
1400
1401 if (enumerate_only) {
1402 if (check_env("IMSM_NO_PLATFORM"))
1403 return 0;
1404 list = find_intel_devices();
1405 if (!list)
1406 return 2;
1407 for (hba = list; hba; hba = hba->next) {
1408 orom = find_imsm_capability(hba->type);
1409 if (!orom) {
1410 result = 2;
1411 break;
1412 }
1413 }
1414 free_sys_dev(&list);
1415 return result;
1416 }
1417
1418 list = find_intel_devices();
1419 if (!list) {
1420 if (verbose)
1421 fprintf(stderr, Name ": no active Intel(R) RAID "
1422 "controller found.\n");
1423 free_sys_dev(&list);
1424 return 2;
1425 } else if (verbose)
1426 print_found_intel_controllers(list);
1427
1428 for (hba = list; hba; hba = hba->next) {
1429 orom = find_imsm_capability(hba->type);
1430 if (!orom)
1431 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1432 hba->path, get_sys_dev_type(hba->type));
1433 else
1434 print_imsm_capability(orom);
1435 }
1436
1437 for (hba = list; hba; hba = hba->next) {
1438 printf(" I/O Controller : %s (%s)\n",
1439 hba->path, get_sys_dev_type(hba->type));
1440
1441 if (hba->type == SYS_DEV_SATA) {
1442 host_base = ahci_get_port_count(hba->path, &port_count);
1443 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1444 if (verbose)
1445 fprintf(stderr, Name ": failed to enumerate "
1446 "ports on SATA controller at %s.", hba->pci_id);
1447 result |= 2;
1448 }
1449 }
1450 }
1451
1452 free_sys_dev(&list);
1453 return result;
1454 }
1455 #endif
1456
1457 static int match_home_imsm(struct supertype *st, char *homehost)
1458 {
1459 /* the imsm metadata format does not specify any host
1460 * identification information. We return -1 since we can never
1461 * confirm nor deny whether a given array is "meant" for this
1462 * host. We rely on compare_super and the 'family_num' fields to
1463 * exclude member disks that do not belong, and we rely on
1464 * mdadm.conf to specify the arrays that should be assembled.
1465 * Auto-assembly may still pick up "foreign" arrays.
1466 */
1467
1468 return -1;
1469 }
1470
1471 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1472 {
1473 /* The uuid returned here is used for:
1474 * uuid to put into bitmap file (Create, Grow)
1475 * uuid for backup header when saving critical section (Grow)
1476 * comparing uuids when re-adding a device into an array
1477 * In these cases the uuid required is that of the data-array,
1478 * not the device-set.
1479 * uuid to recognise same set when adding a missing device back
1480 * to an array. This is a uuid for the device-set.
1481 *
1482 * For each of these we can make do with a truncated
1483 * or hashed uuid rather than the original, as long as
1484 * everyone agrees.
1485 * In each case the uuid required is that of the data-array,
1486 * not the device-set.
1487 */
1488 /* imsm does not track uuid's so we synthesis one using sha1 on
1489 * - The signature (Which is constant for all imsm array, but no matter)
1490 * - the orig_family_num of the container
1491 * - the index number of the volume
1492 * - the 'serial' number of the volume.
1493 * Hopefully these are all constant.
1494 */
1495 struct intel_super *super = st->sb;
1496
1497 char buf[20];
1498 struct sha1_ctx ctx;
1499 struct imsm_dev *dev = NULL;
1500 __u32 family_num;
1501
1502 /* some mdadm versions failed to set ->orig_family_num, in which
1503 * case fall back to ->family_num. orig_family_num will be
1504 * fixed up with the first metadata update.
1505 */
1506 family_num = super->anchor->orig_family_num;
1507 if (family_num == 0)
1508 family_num = super->anchor->family_num;
1509 sha1_init_ctx(&ctx);
1510 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1511 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1512 if (super->current_vol >= 0)
1513 dev = get_imsm_dev(super, super->current_vol);
1514 if (dev) {
1515 __u32 vol = super->current_vol;
1516 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1517 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1518 }
1519 sha1_finish_ctx(&ctx, buf);
1520 memcpy(uuid, buf, 4*4);
1521 }
1522
1523 #if 0
1524 static void
1525 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1526 {
1527 __u8 *v = get_imsm_version(mpb);
1528 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1529 char major[] = { 0, 0, 0 };
1530 char minor[] = { 0 ,0, 0 };
1531 char patch[] = { 0, 0, 0 };
1532 char *ver_parse[] = { major, minor, patch };
1533 int i, j;
1534
1535 i = j = 0;
1536 while (*v != '\0' && v < end) {
1537 if (*v != '.' && j < 2)
1538 ver_parse[i][j++] = *v;
1539 else {
1540 i++;
1541 j = 0;
1542 }
1543 v++;
1544 }
1545
1546 *m = strtol(minor, NULL, 0);
1547 *p = strtol(patch, NULL, 0);
1548 }
1549 #endif
1550
1551 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1552 {
1553 /* migr_strip_size when repairing or initializing parity */
1554 struct imsm_map *map = get_imsm_map(dev, 0);
1555 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1556
1557 switch (get_imsm_raid_level(map)) {
1558 case 5:
1559 case 10:
1560 return chunk;
1561 default:
1562 return 128*1024 >> 9;
1563 }
1564 }
1565
1566 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1567 {
1568 /* migr_strip_size when rebuilding a degraded disk, no idea why
1569 * this is different than migr_strip_size_resync(), but it's good
1570 * to be compatible
1571 */
1572 struct imsm_map *map = get_imsm_map(dev, 1);
1573 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1574
1575 switch (get_imsm_raid_level(map)) {
1576 case 1:
1577 case 10:
1578 if (map->num_members % map->num_domains == 0)
1579 return 128*1024 >> 9;
1580 else
1581 return chunk;
1582 case 5:
1583 return max((__u32) 64*1024 >> 9, chunk);
1584 default:
1585 return 128*1024 >> 9;
1586 }
1587 }
1588
1589 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1590 {
1591 struct imsm_map *lo = get_imsm_map(dev, 0);
1592 struct imsm_map *hi = get_imsm_map(dev, 1);
1593 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1594 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1595
1596 return max((__u32) 1, hi_chunk / lo_chunk);
1597 }
1598
1599 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1600 {
1601 struct imsm_map *lo = get_imsm_map(dev, 0);
1602 int level = get_imsm_raid_level(lo);
1603
1604 if (level == 1 || level == 10) {
1605 struct imsm_map *hi = get_imsm_map(dev, 1);
1606
1607 return hi->num_domains;
1608 } else
1609 return num_stripes_per_unit_resync(dev);
1610 }
1611
1612 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1613 {
1614 /* named 'imsm_' because raid0, raid1 and raid10
1615 * counter-intuitively have the same number of data disks
1616 */
1617 struct imsm_map *map = get_imsm_map(dev, second_map);
1618
1619 switch (get_imsm_raid_level(map)) {
1620 case 0:
1621 case 1:
1622 case 10:
1623 return map->num_members;
1624 case 5:
1625 return map->num_members - 1;
1626 default:
1627 dprintf("%s: unsupported raid level\n", __func__);
1628 return 0;
1629 }
1630 }
1631
1632 static __u32 parity_segment_depth(struct imsm_dev *dev)
1633 {
1634 struct imsm_map *map = get_imsm_map(dev, 0);
1635 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1636
1637 switch(get_imsm_raid_level(map)) {
1638 case 1:
1639 case 10:
1640 return chunk * map->num_domains;
1641 case 5:
1642 return chunk * map->num_members;
1643 default:
1644 return chunk;
1645 }
1646 }
1647
1648 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1649 {
1650 struct imsm_map *map = get_imsm_map(dev, 1);
1651 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1652 __u32 strip = block / chunk;
1653
1654 switch (get_imsm_raid_level(map)) {
1655 case 1:
1656 case 10: {
1657 __u32 vol_strip = (strip * map->num_domains) + 1;
1658 __u32 vol_stripe = vol_strip / map->num_members;
1659
1660 return vol_stripe * chunk + block % chunk;
1661 } case 5: {
1662 __u32 stripe = strip / (map->num_members - 1);
1663
1664 return stripe * chunk + block % chunk;
1665 }
1666 default:
1667 return 0;
1668 }
1669 }
1670
1671 static __u64 blocks_per_migr_unit(struct imsm_dev *dev)
1672 {
1673 /* calculate the conversion factor between per member 'blocks'
1674 * (md/{resync,rebuild}_start) and imsm migration units, return
1675 * 0 for the 'not migrating' and 'unsupported migration' cases
1676 */
1677 if (!dev->vol.migr_state)
1678 return 0;
1679
1680 switch (migr_type(dev)) {
1681 case MIGR_GEN_MIGR:
1682 case MIGR_VERIFY:
1683 case MIGR_REPAIR:
1684 case MIGR_INIT: {
1685 struct imsm_map *map = get_imsm_map(dev, 0);
1686 __u32 stripes_per_unit;
1687 __u32 blocks_per_unit;
1688 __u32 parity_depth;
1689 __u32 migr_chunk;
1690 __u32 block_map;
1691 __u32 block_rel;
1692 __u32 segment;
1693 __u32 stripe;
1694 __u8 disks;
1695
1696 /* yes, this is really the translation of migr_units to
1697 * per-member blocks in the 'resync' case
1698 */
1699 stripes_per_unit = num_stripes_per_unit_resync(dev);
1700 migr_chunk = migr_strip_blocks_resync(dev);
1701 disks = imsm_num_data_members(dev, 0);
1702 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1703 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1704 segment = blocks_per_unit / stripe;
1705 block_rel = blocks_per_unit - segment * stripe;
1706 parity_depth = parity_segment_depth(dev);
1707 block_map = map_migr_block(dev, block_rel);
1708 return block_map + parity_depth * segment;
1709 }
1710 case MIGR_REBUILD: {
1711 __u32 stripes_per_unit;
1712 __u32 migr_chunk;
1713
1714 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1715 migr_chunk = migr_strip_blocks_rebuild(dev);
1716 return migr_chunk * stripes_per_unit;
1717 }
1718 case MIGR_STATE_CHANGE:
1719 default:
1720 return 0;
1721 }
1722 }
1723
1724 static int imsm_level_to_layout(int level)
1725 {
1726 switch (level) {
1727 case 0:
1728 case 1:
1729 return 0;
1730 case 5:
1731 case 6:
1732 return ALGORITHM_LEFT_ASYMMETRIC;
1733 case 10:
1734 return 0x102;
1735 }
1736 return UnSet;
1737 }
1738
1739 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
1740 {
1741 struct intel_super *super = st->sb;
1742 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1743 struct imsm_map *map = get_imsm_map(dev, 0);
1744 struct imsm_map *prev_map = get_imsm_map(dev, 1);
1745 struct imsm_map *map_to_analyse = map;
1746 struct dl *dl;
1747 char *devname;
1748 unsigned int component_size_alligment;
1749 int map_disks = info->array.raid_disks;
1750
1751 if (prev_map)
1752 map_to_analyse = prev_map;
1753
1754 for (dl = super->disks; dl; dl = dl->next)
1755 if (dl->raiddisk == info->disk.raid_disk)
1756 break;
1757 info->container_member = super->current_vol;
1758 info->array.raid_disks = map_to_analyse->num_members;
1759 info->array.level = get_imsm_raid_level(map_to_analyse);
1760 info->array.layout = imsm_level_to_layout(info->array.level);
1761 info->array.md_minor = -1;
1762 info->array.ctime = 0;
1763 info->array.utime = 0;
1764 info->array.chunk_size =
1765 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
1766 info->array.state = !dev->vol.dirty;
1767 info->custom_array_size = __le32_to_cpu(dev->size_high);
1768 info->custom_array_size <<= 32;
1769 info->custom_array_size |= __le32_to_cpu(dev->size_low);
1770 if (prev_map && map->map_state == prev_map->map_state) {
1771 info->reshape_active = 1;
1772 info->new_level = get_imsm_raid_level(map);
1773 info->new_layout = imsm_level_to_layout(info->new_level);
1774 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
1775 info->delta_disks = map->num_members - prev_map->num_members;
1776 if (info->delta_disks) {
1777 /* this needs to be applied to every array
1778 * in the container.
1779 */
1780 info->reshape_active = 2;
1781 }
1782 /* We shape information that we give to md might have to be
1783 * modify to cope with md's requirement for reshaping arrays.
1784 * For example, when reshaping a RAID0, md requires it to be
1785 * presented as a degraded RAID4.
1786 * Also if a RAID0 is migrating to a RAID5 we need to specify
1787 * the array as already being RAID5, but the 'before' layout
1788 * is a RAID4-like layout.
1789 */
1790 switch (info->array.level) {
1791 case 0:
1792 switch(info->new_level) {
1793 case 0:
1794 /* conversion is happening as RAID4 */
1795 info->array.level = 4;
1796 info->array.raid_disks += 1;
1797 break;
1798 case 5:
1799 /* conversion is happening as RAID5 */
1800 info->array.level = 5;
1801 info->array.layout = ALGORITHM_PARITY_N;
1802 info->array.raid_disks += 1;
1803 info->delta_disks -= 1;
1804 break;
1805 default:
1806 /* FIXME error message */
1807 info->array.level = UnSet;
1808 break;
1809 }
1810 break;
1811 }
1812 } else {
1813 info->new_level = UnSet;
1814 info->new_layout = UnSet;
1815 info->new_chunk = info->array.chunk_size;
1816 info->delta_disks = 0;
1817 }
1818 info->disk.major = 0;
1819 info->disk.minor = 0;
1820 if (dl) {
1821 info->disk.major = dl->major;
1822 info->disk.minor = dl->minor;
1823 }
1824
1825 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
1826 info->component_size =
1827 __le32_to_cpu(map_to_analyse->blocks_per_member);
1828
1829 /* check component size aligment
1830 */
1831 component_size_alligment =
1832 info->component_size % (info->array.chunk_size/512);
1833
1834 if (component_size_alligment &&
1835 (info->array.level != 1) && (info->array.level != UnSet)) {
1836 dprintf("imsm: reported component size alligned from %llu ",
1837 info->component_size);
1838 info->component_size -= component_size_alligment;
1839 dprintf("to %llu (%i).\n",
1840 info->component_size, component_size_alligment);
1841 }
1842
1843 memset(info->uuid, 0, sizeof(info->uuid));
1844 info->recovery_start = MaxSector;
1845
1846 info->reshape_progress = 0;
1847 info->resync_start = MaxSector;
1848 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
1849 dev->vol.dirty) {
1850 info->resync_start = 0;
1851 }
1852 if (dev->vol.migr_state) {
1853 switch (migr_type(dev)) {
1854 case MIGR_REPAIR:
1855 case MIGR_INIT: {
1856 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1857 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1858
1859 info->resync_start = blocks_per_unit * units;
1860 break;
1861 }
1862 case MIGR_GEN_MIGR: {
1863 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1864 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1865 unsigned long long array_blocks;
1866 int used_disks;
1867
1868 info->reshape_progress = blocks_per_unit * units;
1869
1870 /* checkpoint is written per disks unit
1871 * recalculate it to reshape position
1872 */
1873 used_disks = imsm_num_data_members(dev, 0);
1874 info->reshape_progress *= used_disks;
1875 dprintf("IMSM: General Migration checkpoint : %llu "
1876 "(%llu) -> read reshape progress : %llu\n",
1877 units, blocks_per_unit, info->reshape_progress);
1878
1879 used_disks = imsm_num_data_members(dev, 1);
1880 if (used_disks > 0) {
1881 array_blocks = map->blocks_per_member *
1882 used_disks;
1883 /* round array size down to closest MB
1884 */
1885 info->custom_array_size = (array_blocks
1886 >> SECT_PER_MB_SHIFT)
1887 << SECT_PER_MB_SHIFT;
1888 }
1889 }
1890 case MIGR_VERIFY:
1891 /* we could emulate the checkpointing of
1892 * 'sync_action=check' migrations, but for now
1893 * we just immediately complete them
1894 */
1895 case MIGR_REBUILD:
1896 /* this is handled by container_content_imsm() */
1897 case MIGR_STATE_CHANGE:
1898 /* FIXME handle other migrations */
1899 default:
1900 /* we are not dirty, so... */
1901 info->resync_start = MaxSector;
1902 }
1903 }
1904
1905 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1906 info->name[MAX_RAID_SERIAL_LEN] = 0;
1907
1908 info->array.major_version = -1;
1909 info->array.minor_version = -2;
1910 devname = devnum2devname(st->container_dev);
1911 *info->text_version = '\0';
1912 if (devname)
1913 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
1914 free(devname);
1915 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
1916 uuid_from_super_imsm(st, info->uuid);
1917
1918 if (dmap) {
1919 int i, j;
1920 for (i=0; i<map_disks; i++) {
1921 dmap[i] = 0;
1922 if (i < info->array.raid_disks) {
1923 struct imsm_disk *dsk;
1924 j = get_imsm_disk_idx(dev, i, -1);
1925 dsk = get_imsm_disk(super, j);
1926 if (dsk && (dsk->status & CONFIGURED_DISK))
1927 dmap[i] = 1;
1928 }
1929 }
1930 }
1931 }
1932
1933 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
1934 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
1935
1936 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
1937 {
1938 struct dl *d;
1939
1940 for (d = super->missing; d; d = d->next)
1941 if (d->index == index)
1942 return &d->disk;
1943 return NULL;
1944 }
1945
1946 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
1947 {
1948 struct intel_super *super = st->sb;
1949 struct imsm_disk *disk;
1950 int map_disks = info->array.raid_disks;
1951 int max_enough = -1;
1952 int i;
1953 struct imsm_super *mpb;
1954
1955 if (super->current_vol >= 0) {
1956 getinfo_super_imsm_volume(st, info, map);
1957 return;
1958 }
1959
1960 /* Set raid_disks to zero so that Assemble will always pull in valid
1961 * spares
1962 */
1963 info->array.raid_disks = 0;
1964 info->array.level = LEVEL_CONTAINER;
1965 info->array.layout = 0;
1966 info->array.md_minor = -1;
1967 info->array.ctime = 0; /* N/A for imsm */
1968 info->array.utime = 0;
1969 info->array.chunk_size = 0;
1970
1971 info->disk.major = 0;
1972 info->disk.minor = 0;
1973 info->disk.raid_disk = -1;
1974 info->reshape_active = 0;
1975 info->array.major_version = -1;
1976 info->array.minor_version = -2;
1977 strcpy(info->text_version, "imsm");
1978 info->safe_mode_delay = 0;
1979 info->disk.number = -1;
1980 info->disk.state = 0;
1981 info->name[0] = 0;
1982 info->recovery_start = MaxSector;
1983
1984 /* do we have the all the insync disks that we expect? */
1985 mpb = super->anchor;
1986
1987 for (i = 0; i < mpb->num_raid_devs; i++) {
1988 struct imsm_dev *dev = get_imsm_dev(super, i);
1989 int failed, enough, j, missing = 0;
1990 struct imsm_map *map;
1991 __u8 state;
1992
1993 failed = imsm_count_failed(super, dev);
1994 state = imsm_check_degraded(super, dev, failed);
1995 map = get_imsm_map(dev, dev->vol.migr_state);
1996
1997 /* any newly missing disks?
1998 * (catches single-degraded vs double-degraded)
1999 */
2000 for (j = 0; j < map->num_members; j++) {
2001 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
2002 __u32 idx = ord_to_idx(ord);
2003
2004 if (!(ord & IMSM_ORD_REBUILD) &&
2005 get_imsm_missing(super, idx)) {
2006 missing = 1;
2007 break;
2008 }
2009 }
2010
2011 if (state == IMSM_T_STATE_FAILED)
2012 enough = -1;
2013 else if (state == IMSM_T_STATE_DEGRADED &&
2014 (state != map->map_state || missing))
2015 enough = 0;
2016 else /* we're normal, or already degraded */
2017 enough = 1;
2018
2019 /* in the missing/failed disk case check to see
2020 * if at least one array is runnable
2021 */
2022 max_enough = max(max_enough, enough);
2023 }
2024 dprintf("%s: enough: %d\n", __func__, max_enough);
2025 info->container_enough = max_enough;
2026
2027 if (super->disks) {
2028 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2029
2030 disk = &super->disks->disk;
2031 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2032 info->component_size = reserved;
2033 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2034 /* we don't change info->disk.raid_disk here because
2035 * this state will be finalized in mdmon after we have
2036 * found the 'most fresh' version of the metadata
2037 */
2038 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2039 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2040 }
2041
2042 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2043 * ->compare_super may have updated the 'num_raid_devs' field for spares
2044 */
2045 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2046 uuid_from_super_imsm(st, info->uuid);
2047 else
2048 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2049
2050 /* I don't know how to compute 'map' on imsm, so use safe default */
2051 if (map) {
2052 int i;
2053 for (i = 0; i < map_disks; i++)
2054 map[i] = 1;
2055 }
2056
2057 }
2058
2059 /* allocates memory and fills disk in mdinfo structure
2060 * for each disk in array */
2061 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2062 {
2063 struct mdinfo *mddev = NULL;
2064 struct intel_super *super = st->sb;
2065 struct imsm_disk *disk;
2066 int count = 0;
2067 struct dl *dl;
2068 if (!super || !super->disks)
2069 return NULL;
2070 dl = super->disks;
2071 mddev = malloc(sizeof(*mddev));
2072 if (!mddev) {
2073 fprintf(stderr, Name ": Failed to allocate memory.\n");
2074 return NULL;
2075 }
2076 memset(mddev, 0, sizeof(*mddev));
2077 while (dl) {
2078 struct mdinfo *tmp;
2079 disk = &dl->disk;
2080 tmp = malloc(sizeof(*tmp));
2081 if (!tmp) {
2082 fprintf(stderr, Name ": Failed to allocate memory.\n");
2083 if (mddev)
2084 sysfs_free(mddev);
2085 return NULL;
2086 }
2087 memset(tmp, 0, sizeof(*tmp));
2088 if (mddev->devs)
2089 tmp->next = mddev->devs;
2090 mddev->devs = tmp;
2091 tmp->disk.number = count++;
2092 tmp->disk.major = dl->major;
2093 tmp->disk.minor = dl->minor;
2094 tmp->disk.state = is_configured(disk) ?
2095 (1 << MD_DISK_ACTIVE) : 0;
2096 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2097 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2098 tmp->disk.raid_disk = -1;
2099 dl = dl->next;
2100 }
2101 return mddev;
2102 }
2103
2104 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2105 char *update, char *devname, int verbose,
2106 int uuid_set, char *homehost)
2107 {
2108 /* For 'assemble' and 'force' we need to return non-zero if any
2109 * change was made. For others, the return value is ignored.
2110 * Update options are:
2111 * force-one : This device looks a bit old but needs to be included,
2112 * update age info appropriately.
2113 * assemble: clear any 'faulty' flag to allow this device to
2114 * be assembled.
2115 * force-array: Array is degraded but being forced, mark it clean
2116 * if that will be needed to assemble it.
2117 *
2118 * newdev: not used ????
2119 * grow: Array has gained a new device - this is currently for
2120 * linear only
2121 * resync: mark as dirty so a resync will happen.
2122 * name: update the name - preserving the homehost
2123 * uuid: Change the uuid of the array to match watch is given
2124 *
2125 * Following are not relevant for this imsm:
2126 * sparc2.2 : update from old dodgey metadata
2127 * super-minor: change the preferred_minor number
2128 * summaries: update redundant counters.
2129 * homehost: update the recorded homehost
2130 * _reshape_progress: record new reshape_progress position.
2131 */
2132 int rv = 1;
2133 struct intel_super *super = st->sb;
2134 struct imsm_super *mpb;
2135
2136 /* we can only update container info */
2137 if (!super || super->current_vol >= 0 || !super->anchor)
2138 return 1;
2139
2140 mpb = super->anchor;
2141
2142 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2143 rv = -1;
2144 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2145 mpb->orig_family_num = *((__u32 *) info->update_private);
2146 rv = 0;
2147 } else if (strcmp(update, "uuid") == 0) {
2148 __u32 *new_family = malloc(sizeof(*new_family));
2149
2150 /* update orig_family_number with the incoming random
2151 * data, report the new effective uuid, and store the
2152 * new orig_family_num for future updates.
2153 */
2154 if (new_family) {
2155 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2156 uuid_from_super_imsm(st, info->uuid);
2157 *new_family = mpb->orig_family_num;
2158 info->update_private = new_family;
2159 rv = 0;
2160 }
2161 } else if (strcmp(update, "assemble") == 0)
2162 rv = 0;
2163 else
2164 rv = -1;
2165
2166 /* successful update? recompute checksum */
2167 if (rv == 0)
2168 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2169
2170 return rv;
2171 }
2172
2173 static size_t disks_to_mpb_size(int disks)
2174 {
2175 size_t size;
2176
2177 size = sizeof(struct imsm_super);
2178 size += (disks - 1) * sizeof(struct imsm_disk);
2179 size += 2 * sizeof(struct imsm_dev);
2180 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2181 size += (4 - 2) * sizeof(struct imsm_map);
2182 /* 4 possible disk_ord_tbl's */
2183 size += 4 * (disks - 1) * sizeof(__u32);
2184
2185 return size;
2186 }
2187
2188 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2189 {
2190 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2191 return 0;
2192
2193 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2194 }
2195
2196 static void free_devlist(struct intel_super *super)
2197 {
2198 struct intel_dev *dv;
2199
2200 while (super->devlist) {
2201 dv = super->devlist->next;
2202 free(super->devlist->dev);
2203 free(super->devlist);
2204 super->devlist = dv;
2205 }
2206 }
2207
2208 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2209 {
2210 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2211 }
2212
2213 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2214 {
2215 /*
2216 * return:
2217 * 0 same, or first was empty, and second was copied
2218 * 1 second had wrong number
2219 * 2 wrong uuid
2220 * 3 wrong other info
2221 */
2222 struct intel_super *first = st->sb;
2223 struct intel_super *sec = tst->sb;
2224
2225 if (!first) {
2226 st->sb = tst->sb;
2227 tst->sb = NULL;
2228 return 0;
2229 }
2230 /* in platform dependent environment test if the disks
2231 * use the same Intel hba
2232 */
2233 if (!check_env("IMSM_NO_PLATFORM")) {
2234 if (!first->hba || !sec->hba ||
2235 (first->hba->type != sec->hba->type)) {
2236 fprintf(stderr,
2237 "HBAs of devices does not match %s != %s\n",
2238 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2239 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2240 return 3;
2241 }
2242 }
2243
2244 /* if an anchor does not have num_raid_devs set then it is a free
2245 * floating spare
2246 */
2247 if (first->anchor->num_raid_devs > 0 &&
2248 sec->anchor->num_raid_devs > 0) {
2249 /* Determine if these disks might ever have been
2250 * related. Further disambiguation can only take place
2251 * in load_super_imsm_all
2252 */
2253 __u32 first_family = first->anchor->orig_family_num;
2254 __u32 sec_family = sec->anchor->orig_family_num;
2255
2256 if (memcmp(first->anchor->sig, sec->anchor->sig,
2257 MAX_SIGNATURE_LENGTH) != 0)
2258 return 3;
2259
2260 if (first_family == 0)
2261 first_family = first->anchor->family_num;
2262 if (sec_family == 0)
2263 sec_family = sec->anchor->family_num;
2264
2265 if (first_family != sec_family)
2266 return 3;
2267
2268 }
2269
2270
2271 /* if 'first' is a spare promote it to a populated mpb with sec's
2272 * family number
2273 */
2274 if (first->anchor->num_raid_devs == 0 &&
2275 sec->anchor->num_raid_devs > 0) {
2276 int i;
2277 struct intel_dev *dv;
2278 struct imsm_dev *dev;
2279
2280 /* we need to copy raid device info from sec if an allocation
2281 * fails here we don't associate the spare
2282 */
2283 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2284 dv = malloc(sizeof(*dv));
2285 if (!dv)
2286 break;
2287 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2288 if (!dev) {
2289 free(dv);
2290 break;
2291 }
2292 dv->dev = dev;
2293 dv->index = i;
2294 dv->next = first->devlist;
2295 first->devlist = dv;
2296 }
2297 if (i < sec->anchor->num_raid_devs) {
2298 /* allocation failure */
2299 free_devlist(first);
2300 fprintf(stderr, "imsm: failed to associate spare\n");
2301 return 3;
2302 }
2303 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2304 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2305 first->anchor->family_num = sec->anchor->family_num;
2306 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2307 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2308 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2309 }
2310
2311 return 0;
2312 }
2313
2314 static void fd2devname(int fd, char *name)
2315 {
2316 struct stat st;
2317 char path[256];
2318 char dname[PATH_MAX];
2319 char *nm;
2320 int rv;
2321
2322 name[0] = '\0';
2323 if (fstat(fd, &st) != 0)
2324 return;
2325 sprintf(path, "/sys/dev/block/%d:%d",
2326 major(st.st_rdev), minor(st.st_rdev));
2327
2328 rv = readlink(path, dname, sizeof(dname));
2329 if (rv <= 0)
2330 return;
2331
2332 dname[rv] = '\0';
2333 nm = strrchr(dname, '/');
2334 nm++;
2335 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2336 }
2337
2338 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2339
2340 static int imsm_read_serial(int fd, char *devname,
2341 __u8 serial[MAX_RAID_SERIAL_LEN])
2342 {
2343 unsigned char scsi_serial[255];
2344 int rv;
2345 int rsp_len;
2346 int len;
2347 char *dest;
2348 char *src;
2349 char *rsp_buf;
2350 int i;
2351
2352 memset(scsi_serial, 0, sizeof(scsi_serial));
2353
2354 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2355
2356 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2357 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2358 fd2devname(fd, (char *) serial);
2359 return 0;
2360 }
2361
2362 if (rv != 0) {
2363 if (devname)
2364 fprintf(stderr,
2365 Name ": Failed to retrieve serial for %s\n",
2366 devname);
2367 return rv;
2368 }
2369
2370 rsp_len = scsi_serial[3];
2371 if (!rsp_len) {
2372 if (devname)
2373 fprintf(stderr,
2374 Name ": Failed to retrieve serial for %s\n",
2375 devname);
2376 return 2;
2377 }
2378 rsp_buf = (char *) &scsi_serial[4];
2379
2380 /* trim all whitespace and non-printable characters and convert
2381 * ':' to ';'
2382 */
2383 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2384 src = &rsp_buf[i];
2385 if (*src > 0x20) {
2386 /* ':' is reserved for use in placeholder serial
2387 * numbers for missing disks
2388 */
2389 if (*src == ':')
2390 *dest++ = ';';
2391 else
2392 *dest++ = *src;
2393 }
2394 }
2395 len = dest - rsp_buf;
2396 dest = rsp_buf;
2397
2398 /* truncate leading characters */
2399 if (len > MAX_RAID_SERIAL_LEN) {
2400 dest += len - MAX_RAID_SERIAL_LEN;
2401 len = MAX_RAID_SERIAL_LEN;
2402 }
2403
2404 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2405 memcpy(serial, dest, len);
2406
2407 return 0;
2408 }
2409
2410 static int serialcmp(__u8 *s1, __u8 *s2)
2411 {
2412 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2413 }
2414
2415 static void serialcpy(__u8 *dest, __u8 *src)
2416 {
2417 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2418 }
2419
2420 #ifndef MDASSEMBLE
2421 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2422 {
2423 struct dl *dl;
2424
2425 for (dl = super->disks; dl; dl = dl->next)
2426 if (serialcmp(dl->serial, serial) == 0)
2427 break;
2428
2429 return dl;
2430 }
2431 #endif
2432
2433 static struct imsm_disk *
2434 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2435 {
2436 int i;
2437
2438 for (i = 0; i < mpb->num_disks; i++) {
2439 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2440
2441 if (serialcmp(disk->serial, serial) == 0) {
2442 if (idx)
2443 *idx = i;
2444 return disk;
2445 }
2446 }
2447
2448 return NULL;
2449 }
2450
2451 static int
2452 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2453 {
2454 struct imsm_disk *disk;
2455 struct dl *dl;
2456 struct stat stb;
2457 int rv;
2458 char name[40];
2459 __u8 serial[MAX_RAID_SERIAL_LEN];
2460
2461 rv = imsm_read_serial(fd, devname, serial);
2462
2463 if (rv != 0)
2464 return 2;
2465
2466 dl = calloc(1, sizeof(*dl));
2467 if (!dl) {
2468 if (devname)
2469 fprintf(stderr,
2470 Name ": failed to allocate disk buffer for %s\n",
2471 devname);
2472 return 2;
2473 }
2474
2475 fstat(fd, &stb);
2476 dl->major = major(stb.st_rdev);
2477 dl->minor = minor(stb.st_rdev);
2478 dl->next = super->disks;
2479 dl->fd = keep_fd ? fd : -1;
2480 assert(super->disks == NULL);
2481 super->disks = dl;
2482 serialcpy(dl->serial, serial);
2483 dl->index = -2;
2484 dl->e = NULL;
2485 fd2devname(fd, name);
2486 if (devname)
2487 dl->devname = strdup(devname);
2488 else
2489 dl->devname = strdup(name);
2490
2491 /* look up this disk's index in the current anchor */
2492 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2493 if (disk) {
2494 dl->disk = *disk;
2495 /* only set index on disks that are a member of a
2496 * populated contianer, i.e. one with raid_devs
2497 */
2498 if (is_failed(&dl->disk))
2499 dl->index = -2;
2500 else if (is_spare(&dl->disk))
2501 dl->index = -1;
2502 }
2503
2504 return 0;
2505 }
2506
2507 #ifndef MDASSEMBLE
2508 /* When migrating map0 contains the 'destination' state while map1
2509 * contains the current state. When not migrating map0 contains the
2510 * current state. This routine assumes that map[0].map_state is set to
2511 * the current array state before being called.
2512 *
2513 * Migration is indicated by one of the following states
2514 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
2515 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
2516 * map1state=unitialized)
2517 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
2518 * map1state=normal)
2519 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
2520 * map1state=degraded)
2521 */
2522 static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
2523 {
2524 struct imsm_map *dest;
2525 struct imsm_map *src = get_imsm_map(dev, 0);
2526
2527 dev->vol.migr_state = 1;
2528 set_migr_type(dev, migr_type);
2529 dev->vol.curr_migr_unit = 0;
2530 dest = get_imsm_map(dev, 1);
2531
2532 /* duplicate and then set the target end state in map[0] */
2533 memcpy(dest, src, sizeof_imsm_map(src));
2534 if ((migr_type == MIGR_REBUILD) ||
2535 (migr_type == MIGR_GEN_MIGR)) {
2536 __u32 ord;
2537 int i;
2538
2539 for (i = 0; i < src->num_members; i++) {
2540 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2541 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2542 }
2543 }
2544
2545 src->map_state = to_state;
2546 }
2547
2548 static void end_migration(struct imsm_dev *dev, __u8 map_state)
2549 {
2550 struct imsm_map *map = get_imsm_map(dev, 0);
2551 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
2552 int i, j;
2553
2554 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2555 * completed in the last migration.
2556 *
2557 * FIXME add support for raid-level-migration
2558 */
2559 for (i = 0; i < prev->num_members; i++)
2560 for (j = 0; j < map->num_members; j++)
2561 /* during online capacity expansion
2562 * disks position can be changed if takeover is used
2563 */
2564 if (ord_to_idx(map->disk_ord_tbl[j]) ==
2565 ord_to_idx(prev->disk_ord_tbl[i])) {
2566 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
2567 break;
2568 }
2569
2570 dev->vol.migr_state = 0;
2571 dev->vol.migr_type = 0;
2572 dev->vol.curr_migr_unit = 0;
2573 map->map_state = map_state;
2574 }
2575 #endif
2576
2577 static int parse_raid_devices(struct intel_super *super)
2578 {
2579 int i;
2580 struct imsm_dev *dev_new;
2581 size_t len, len_migr;
2582 size_t max_len = 0;
2583 size_t space_needed = 0;
2584 struct imsm_super *mpb = super->anchor;
2585
2586 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2587 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2588 struct intel_dev *dv;
2589
2590 len = sizeof_imsm_dev(dev_iter, 0);
2591 len_migr = sizeof_imsm_dev(dev_iter, 1);
2592 if (len_migr > len)
2593 space_needed += len_migr - len;
2594
2595 dv = malloc(sizeof(*dv));
2596 if (!dv)
2597 return 1;
2598 if (max_len < len_migr)
2599 max_len = len_migr;
2600 if (max_len > len_migr)
2601 space_needed += max_len - len_migr;
2602 dev_new = malloc(max_len);
2603 if (!dev_new) {
2604 free(dv);
2605 return 1;
2606 }
2607 imsm_copy_dev(dev_new, dev_iter);
2608 dv->dev = dev_new;
2609 dv->index = i;
2610 dv->next = super->devlist;
2611 super->devlist = dv;
2612 }
2613
2614 /* ensure that super->buf is large enough when all raid devices
2615 * are migrating
2616 */
2617 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2618 void *buf;
2619
2620 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2621 if (posix_memalign(&buf, 512, len) != 0)
2622 return 1;
2623
2624 memcpy(buf, super->buf, super->len);
2625 memset(buf + super->len, 0, len - super->len);
2626 free(super->buf);
2627 super->buf = buf;
2628 super->len = len;
2629 }
2630
2631 return 0;
2632 }
2633
2634 /* retrieve a pointer to the bbm log which starts after all raid devices */
2635 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2636 {
2637 void *ptr = NULL;
2638
2639 if (__le32_to_cpu(mpb->bbm_log_size)) {
2640 ptr = mpb;
2641 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2642 }
2643
2644 return ptr;
2645 }
2646
2647 static void __free_imsm(struct intel_super *super, int free_disks);
2648
2649 /* load_imsm_mpb - read matrix metadata
2650 * allocates super->mpb to be freed by free_imsm
2651 */
2652 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
2653 {
2654 unsigned long long dsize;
2655 unsigned long long sectors;
2656 struct stat;
2657 struct imsm_super *anchor;
2658 __u32 check_sum;
2659
2660 get_dev_size(fd, NULL, &dsize);
2661 if (dsize < 1024) {
2662 if (devname)
2663 fprintf(stderr,
2664 Name ": %s: device to small for imsm\n",
2665 devname);
2666 return 1;
2667 }
2668
2669 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
2670 if (devname)
2671 fprintf(stderr,
2672 Name ": Cannot seek to anchor block on %s: %s\n",
2673 devname, strerror(errno));
2674 return 1;
2675 }
2676
2677 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
2678 if (devname)
2679 fprintf(stderr,
2680 Name ": Failed to allocate imsm anchor buffer"
2681 " on %s\n", devname);
2682 return 1;
2683 }
2684 if (read(fd, anchor, 512) != 512) {
2685 if (devname)
2686 fprintf(stderr,
2687 Name ": Cannot read anchor block on %s: %s\n",
2688 devname, strerror(errno));
2689 free(anchor);
2690 return 1;
2691 }
2692
2693 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
2694 if (devname)
2695 fprintf(stderr,
2696 Name ": no IMSM anchor on %s\n", devname);
2697 free(anchor);
2698 return 2;
2699 }
2700
2701 __free_imsm(super, 0);
2702 /* reload capability and hba */
2703
2704 /* capability and hba must be updated with new super allocation */
2705 find_intel_hba_capability(fd, super, devname);
2706 super->len = ROUND_UP(anchor->mpb_size, 512);
2707 if (posix_memalign(&super->buf, 512, super->len) != 0) {
2708 if (devname)
2709 fprintf(stderr,
2710 Name ": unable to allocate %zu byte mpb buffer\n",
2711 super->len);
2712 free(anchor);
2713 return 2;
2714 }
2715 memcpy(super->buf, anchor, 512);
2716
2717 sectors = mpb_sectors(anchor) - 1;
2718 free(anchor);
2719 if (!sectors) {
2720 check_sum = __gen_imsm_checksum(super->anchor);
2721 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2722 if (devname)
2723 fprintf(stderr,
2724 Name ": IMSM checksum %x != %x on %s\n",
2725 check_sum,
2726 __le32_to_cpu(super->anchor->check_sum),
2727 devname);
2728 return 2;
2729 }
2730
2731 return 0;
2732 }
2733
2734 /* read the extended mpb */
2735 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
2736 if (devname)
2737 fprintf(stderr,
2738 Name ": Cannot seek to extended mpb on %s: %s\n",
2739 devname, strerror(errno));
2740 return 1;
2741 }
2742
2743 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
2744 if (devname)
2745 fprintf(stderr,
2746 Name ": Cannot read extended mpb on %s: %s\n",
2747 devname, strerror(errno));
2748 return 2;
2749 }
2750
2751 check_sum = __gen_imsm_checksum(super->anchor);
2752 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2753 if (devname)
2754 fprintf(stderr,
2755 Name ": IMSM checksum %x != %x on %s\n",
2756 check_sum, __le32_to_cpu(super->anchor->check_sum),
2757 devname);
2758 return 3;
2759 }
2760
2761 /* FIXME the BBM log is disk specific so we cannot use this global
2762 * buffer for all disks. Ok for now since we only look at the global
2763 * bbm_log_size parameter to gate assembly
2764 */
2765 super->bbm_log = __get_imsm_bbm_log(super->anchor);
2766
2767 return 0;
2768 }
2769
2770 static int
2771 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
2772 {
2773 int err;
2774
2775 err = load_imsm_mpb(fd, super, devname);
2776 if (err)
2777 return err;
2778 err = load_imsm_disk(fd, super, devname, keep_fd);
2779 if (err)
2780 return err;
2781 err = parse_raid_devices(super);
2782
2783 return err;
2784 }
2785
2786 static void __free_imsm_disk(struct dl *d)
2787 {
2788 if (d->fd >= 0)
2789 close(d->fd);
2790 if (d->devname)
2791 free(d->devname);
2792 if (d->e)
2793 free(d->e);
2794 free(d);
2795
2796 }
2797
2798 static void free_imsm_disks(struct intel_super *super)
2799 {
2800 struct dl *d;
2801
2802 while (super->disks) {
2803 d = super->disks;
2804 super->disks = d->next;
2805 __free_imsm_disk(d);
2806 }
2807 while (super->disk_mgmt_list) {
2808 d = super->disk_mgmt_list;
2809 super->disk_mgmt_list = d->next;
2810 __free_imsm_disk(d);
2811 }
2812 while (super->missing) {
2813 d = super->missing;
2814 super->missing = d->next;
2815 __free_imsm_disk(d);
2816 }
2817
2818 }
2819
2820 /* free all the pieces hanging off of a super pointer */
2821 static void __free_imsm(struct intel_super *super, int free_disks)
2822 {
2823 struct intel_hba *elem, *next;
2824
2825 if (super->buf) {
2826 free(super->buf);
2827 super->buf = NULL;
2828 }
2829 /* unlink capability description */
2830 super->orom = NULL;
2831 if (free_disks)
2832 free_imsm_disks(super);
2833 free_devlist(super);
2834 elem = super->hba;
2835 while (elem) {
2836 if (elem->path)
2837 free((void *)elem->path);
2838 next = elem->next;
2839 free(elem);
2840 elem = next;
2841 }
2842 super->hba = NULL;
2843 }
2844
2845 static void free_imsm(struct intel_super *super)
2846 {
2847 __free_imsm(super, 1);
2848 free(super);
2849 }
2850
2851 static void free_super_imsm(struct supertype *st)
2852 {
2853 struct intel_super *super = st->sb;
2854
2855 if (!super)
2856 return;
2857
2858 free_imsm(super);
2859 st->sb = NULL;
2860 }
2861
2862 static struct intel_super *alloc_super(void)
2863 {
2864 struct intel_super *super = malloc(sizeof(*super));
2865
2866 if (super) {
2867 memset(super, 0, sizeof(*super));
2868 super->current_vol = -1;
2869 super->create_offset = ~((__u32 ) 0);
2870 }
2871 return super;
2872 }
2873
2874 /*
2875 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
2876 */
2877 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
2878 {
2879 struct sys_dev *hba_name;
2880 int rv = 0;
2881
2882 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
2883 super->orom = NULL;
2884 super->hba = NULL;
2885 return 0;
2886 }
2887 hba_name = find_disk_attached_hba(fd, NULL);
2888 if (!hba_name) {
2889 if (devname)
2890 fprintf(stderr,
2891 Name ": %s is not attached to Intel(R) RAID controller.\n",
2892 devname);
2893 return 1;
2894 }
2895 rv = attach_hba_to_super(super, hba_name);
2896 if (rv == 2) {
2897 if (devname) {
2898 struct intel_hba *hba = super->hba;
2899
2900 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
2901 "controller (%s),\n"
2902 " but the container is assigned to Intel(R) "
2903 "%s RAID controller (",
2904 devname,
2905 hba_name->path,
2906 hba_name->pci_id ? : "Err!",
2907 get_sys_dev_type(hba_name->type));
2908
2909 while (hba) {
2910 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
2911 if (hba->next)
2912 fprintf(stderr, ", ");
2913 hba = hba->next;
2914 }
2915
2916 fprintf(stderr, ").\n"
2917 " Mixing devices attached to different controllers "
2918 "is not allowed.\n");
2919 }
2920 free_sys_dev(&hba_name);
2921 return 2;
2922 }
2923 super->orom = find_imsm_capability(hba_name->type);
2924 free_sys_dev(&hba_name);
2925 if (!super->orom)
2926 return 3;
2927 return 0;
2928 }
2929
2930 #ifndef MDASSEMBLE
2931 /* find_missing - helper routine for load_super_imsm_all that identifies
2932 * disks that have disappeared from the system. This routine relies on
2933 * the mpb being uptodate, which it is at load time.
2934 */
2935 static int find_missing(struct intel_super *super)
2936 {
2937 int i;
2938 struct imsm_super *mpb = super->anchor;
2939 struct dl *dl;
2940 struct imsm_disk *disk;
2941
2942 for (i = 0; i < mpb->num_disks; i++) {
2943 disk = __get_imsm_disk(mpb, i);
2944 dl = serial_to_dl(disk->serial, super);
2945 if (dl)
2946 continue;
2947
2948 dl = malloc(sizeof(*dl));
2949 if (!dl)
2950 return 1;
2951 dl->major = 0;
2952 dl->minor = 0;
2953 dl->fd = -1;
2954 dl->devname = strdup("missing");
2955 dl->index = i;
2956 serialcpy(dl->serial, disk->serial);
2957 dl->disk = *disk;
2958 dl->e = NULL;
2959 dl->next = super->missing;
2960 super->missing = dl;
2961 }
2962
2963 return 0;
2964 }
2965
2966 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2967 {
2968 struct intel_disk *idisk = disk_list;
2969
2970 while (idisk) {
2971 if (serialcmp(idisk->disk.serial, serial) == 0)
2972 break;
2973 idisk = idisk->next;
2974 }
2975
2976 return idisk;
2977 }
2978
2979 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2980 struct intel_super *super,
2981 struct intel_disk **disk_list)
2982 {
2983 struct imsm_disk *d = &super->disks->disk;
2984 struct imsm_super *mpb = super->anchor;
2985 int i, j;
2986
2987 for (i = 0; i < tbl_size; i++) {
2988 struct imsm_super *tbl_mpb = table[i]->anchor;
2989 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2990
2991 if (tbl_mpb->family_num == mpb->family_num) {
2992 if (tbl_mpb->check_sum == mpb->check_sum) {
2993 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2994 __func__, super->disks->major,
2995 super->disks->minor,
2996 table[i]->disks->major,
2997 table[i]->disks->minor);
2998 break;
2999 }
3000
3001 if (((is_configured(d) && !is_configured(tbl_d)) ||
3002 is_configured(d) == is_configured(tbl_d)) &&
3003 tbl_mpb->generation_num < mpb->generation_num) {
3004 /* current version of the mpb is a
3005 * better candidate than the one in
3006 * super_table, but copy over "cross
3007 * generational" status
3008 */
3009 struct intel_disk *idisk;
3010
3011 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3012 __func__, super->disks->major,
3013 super->disks->minor,
3014 table[i]->disks->major,
3015 table[i]->disks->minor);
3016
3017 idisk = disk_list_get(tbl_d->serial, *disk_list);
3018 if (idisk && is_failed(&idisk->disk))
3019 tbl_d->status |= FAILED_DISK;
3020 break;
3021 } else {
3022 struct intel_disk *idisk;
3023 struct imsm_disk *disk;
3024
3025 /* tbl_mpb is more up to date, but copy
3026 * over cross generational status before
3027 * returning
3028 */
3029 disk = __serial_to_disk(d->serial, mpb, NULL);
3030 if (disk && is_failed(disk))
3031 d->status |= FAILED_DISK;
3032
3033 idisk = disk_list_get(d->serial, *disk_list);
3034 if (idisk) {
3035 idisk->owner = i;
3036 if (disk && is_configured(disk))
3037 idisk->disk.status |= CONFIGURED_DISK;
3038 }
3039
3040 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3041 __func__, super->disks->major,
3042 super->disks->minor,
3043 table[i]->disks->major,
3044 table[i]->disks->minor);
3045
3046 return tbl_size;
3047 }
3048 }
3049 }
3050
3051 if (i >= tbl_size)
3052 table[tbl_size++] = super;
3053 else
3054 table[i] = super;
3055
3056 /* update/extend the merged list of imsm_disk records */
3057 for (j = 0; j < mpb->num_disks; j++) {
3058 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3059 struct intel_disk *idisk;
3060
3061 idisk = disk_list_get(disk->serial, *disk_list);
3062 if (idisk) {
3063 idisk->disk.status |= disk->status;
3064 if (is_configured(&idisk->disk) ||
3065 is_failed(&idisk->disk))
3066 idisk->disk.status &= ~(SPARE_DISK);
3067 } else {
3068 idisk = calloc(1, sizeof(*idisk));
3069 if (!idisk)
3070 return -1;
3071 idisk->owner = IMSM_UNKNOWN_OWNER;
3072 idisk->disk = *disk;
3073 idisk->next = *disk_list;
3074 *disk_list = idisk;
3075 }
3076
3077 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3078 idisk->owner = i;
3079 }
3080
3081 return tbl_size;
3082 }
3083
3084 static struct intel_super *
3085 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3086 const int owner)
3087 {
3088 struct imsm_super *mpb = super->anchor;
3089 int ok_count = 0;
3090 int i;
3091
3092 for (i = 0; i < mpb->num_disks; i++) {
3093 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3094 struct intel_disk *idisk;
3095
3096 idisk = disk_list_get(disk->serial, disk_list);
3097 if (idisk) {
3098 if (idisk->owner == owner ||
3099 idisk->owner == IMSM_UNKNOWN_OWNER)
3100 ok_count++;
3101 else
3102 dprintf("%s: '%.16s' owner %d != %d\n",
3103 __func__, disk->serial, idisk->owner,
3104 owner);
3105 } else {
3106 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3107 __func__, __le32_to_cpu(mpb->family_num), i,
3108 disk->serial);
3109 break;
3110 }
3111 }
3112
3113 if (ok_count == mpb->num_disks)
3114 return super;
3115 return NULL;
3116 }
3117
3118 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3119 {
3120 struct intel_super *s;
3121
3122 for (s = super_list; s; s = s->next) {
3123 if (family_num != s->anchor->family_num)
3124 continue;
3125 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3126 __le32_to_cpu(family_num), s->disks->devname);
3127 }
3128 }
3129
3130 static struct intel_super *
3131 imsm_thunderdome(struct intel_super **super_list, int len)
3132 {
3133 struct intel_super *super_table[len];
3134 struct intel_disk *disk_list = NULL;
3135 struct intel_super *champion, *spare;
3136 struct intel_super *s, **del;
3137 int tbl_size = 0;
3138 int conflict;
3139 int i;
3140
3141 memset(super_table, 0, sizeof(super_table));
3142 for (s = *super_list; s; s = s->next)
3143 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3144
3145 for (i = 0; i < tbl_size; i++) {
3146 struct imsm_disk *d;
3147 struct intel_disk *idisk;
3148 struct imsm_super *mpb = super_table[i]->anchor;
3149
3150 s = super_table[i];
3151 d = &s->disks->disk;
3152
3153 /* 'd' must appear in merged disk list for its
3154 * configuration to be valid
3155 */
3156 idisk = disk_list_get(d->serial, disk_list);
3157 if (idisk && idisk->owner == i)
3158 s = validate_members(s, disk_list, i);
3159 else
3160 s = NULL;
3161
3162 if (!s)
3163 dprintf("%s: marking family: %#x from %d:%d offline\n",
3164 __func__, mpb->family_num,
3165 super_table[i]->disks->major,
3166 super_table[i]->disks->minor);
3167 super_table[i] = s;
3168 }
3169
3170 /* This is where the mdadm implementation differs from the Windows
3171 * driver which has no strict concept of a container. We can only
3172 * assemble one family from a container, so when returning a prodigal
3173 * array member to this system the code will not be able to disambiguate
3174 * the container contents that should be assembled ("foreign" versus
3175 * "local"). It requires user intervention to set the orig_family_num
3176 * to a new value to establish a new container. The Windows driver in
3177 * this situation fixes up the volume name in place and manages the
3178 * foreign array as an independent entity.
3179 */
3180 s = NULL;
3181 spare = NULL;
3182 conflict = 0;
3183 for (i = 0; i < tbl_size; i++) {
3184 struct intel_super *tbl_ent = super_table[i];
3185 int is_spare = 0;
3186
3187 if (!tbl_ent)
3188 continue;
3189
3190 if (tbl_ent->anchor->num_raid_devs == 0) {
3191 spare = tbl_ent;
3192 is_spare = 1;
3193 }
3194
3195 if (s && !is_spare) {
3196 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3197 conflict++;
3198 } else if (!s && !is_spare)
3199 s = tbl_ent;
3200 }
3201
3202 if (!s)
3203 s = spare;
3204 if (!s) {
3205 champion = NULL;
3206 goto out;
3207 }
3208 champion = s;
3209
3210 if (conflict)
3211 fprintf(stderr, "Chose family %#x on '%s', "
3212 "assemble conflicts to new container with '--update=uuid'\n",
3213 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3214
3215 /* collect all dl's onto 'champion', and update them to
3216 * champion's version of the status
3217 */
3218 for (s = *super_list; s; s = s->next) {
3219 struct imsm_super *mpb = champion->anchor;
3220 struct dl *dl = s->disks;
3221
3222 if (s == champion)
3223 continue;
3224
3225 for (i = 0; i < mpb->num_disks; i++) {
3226 struct imsm_disk *disk;
3227
3228 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3229 if (disk) {
3230 dl->disk = *disk;
3231 /* only set index on disks that are a member of
3232 * a populated contianer, i.e. one with
3233 * raid_devs
3234 */
3235 if (is_failed(&dl->disk))
3236 dl->index = -2;
3237 else if (is_spare(&dl->disk))
3238 dl->index = -1;
3239 break;
3240 }
3241 }
3242
3243 if (i >= mpb->num_disks) {
3244 struct intel_disk *idisk;
3245
3246 idisk = disk_list_get(dl->serial, disk_list);
3247 if (idisk && is_spare(&idisk->disk) &&
3248 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3249 dl->index = -1;
3250 else {
3251 dl->index = -2;
3252 continue;
3253 }
3254 }
3255
3256 dl->next = champion->disks;
3257 champion->disks = dl;
3258 s->disks = NULL;
3259 }
3260
3261 /* delete 'champion' from super_list */
3262 for (del = super_list; *del; ) {
3263 if (*del == champion) {
3264 *del = (*del)->next;
3265 break;
3266 } else
3267 del = &(*del)->next;
3268 }
3269 champion->next = NULL;
3270
3271 out:
3272 while (disk_list) {
3273 struct intel_disk *idisk = disk_list;
3274
3275 disk_list = disk_list->next;
3276 free(idisk);
3277 }
3278
3279 return champion;
3280 }
3281
3282 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3283 char *devname)
3284 {
3285 struct mdinfo *sra;
3286 struct intel_super *super_list = NULL;
3287 struct intel_super *super = NULL;
3288 int devnum = fd2devnum(fd);
3289 struct mdinfo *sd;
3290 int retry;
3291 int err = 0;
3292 int i;
3293
3294 /* check if 'fd' an opened container */
3295 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3296 if (!sra)
3297 return 1;
3298
3299 if (sra->array.major_version != -1 ||
3300 sra->array.minor_version != -2 ||
3301 strcmp(sra->text_version, "imsm") != 0) {
3302 err = 1;
3303 goto error;
3304 }
3305 /* load all mpbs */
3306 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3307 struct intel_super *s = alloc_super();
3308 char nm[32];
3309 int dfd;
3310 int rv;
3311
3312 err = 1;
3313 if (!s)
3314 goto error;
3315 s->next = super_list;
3316 super_list = s;
3317
3318 err = 2;
3319 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3320 dfd = dev_open(nm, O_RDWR);
3321 if (dfd < 0)
3322 goto error;
3323
3324 rv = find_intel_hba_capability(dfd, s, devname);
3325 /* no orom/efi or non-intel hba of the disk */
3326 if (rv != 0)
3327 goto error;
3328
3329 err = load_and_parse_mpb(dfd, s, NULL, 1);
3330
3331 /* retry the load if we might have raced against mdmon */
3332 if (err == 3 && mdmon_running(devnum))
3333 for (retry = 0; retry < 3; retry++) {
3334 usleep(3000);
3335 err = load_and_parse_mpb(dfd, s, NULL, 1);
3336 if (err != 3)
3337 break;
3338 }
3339 if (err)
3340 goto error;
3341 }
3342
3343 /* all mpbs enter, maybe one leaves */
3344 super = imsm_thunderdome(&super_list, i);
3345 if (!super) {
3346 err = 1;
3347 goto error;
3348 }
3349
3350 if (find_missing(super) != 0) {
3351 free_imsm(super);
3352 err = 2;
3353 goto error;
3354 }
3355 err = 0;
3356
3357 error:
3358 while (super_list) {
3359 struct intel_super *s = super_list;
3360
3361 super_list = super_list->next;
3362 free_imsm(s);
3363 }
3364 sysfs_free(sra);
3365
3366 if (err)
3367 return err;
3368
3369 *sbp = super;
3370 st->container_dev = devnum;
3371 if (err == 0 && st->ss == NULL) {
3372 st->ss = &super_imsm;
3373 st->minor_version = 0;
3374 st->max_devs = IMSM_MAX_DEVICES;
3375 }
3376 return 0;
3377 }
3378
3379 static int load_container_imsm(struct supertype *st, int fd, char *devname)
3380 {
3381 return load_super_imsm_all(st, fd, &st->sb, devname);
3382 }
3383 #endif
3384
3385 static int load_super_imsm(struct supertype *st, int fd, char *devname)
3386 {
3387 struct intel_super *super;
3388 int rv;
3389
3390 if (test_partition(fd))
3391 /* IMSM not allowed on partitions */
3392 return 1;
3393
3394 free_super_imsm(st);
3395
3396 super = alloc_super();
3397 if (!super) {
3398 fprintf(stderr,
3399 Name ": malloc of %zu failed.\n",
3400 sizeof(*super));
3401 return 1;
3402 }
3403 /* Load hba and capabilities if they exist.
3404 * But do not preclude loading metadata in case capabilities or hba are
3405 * non-compliant and ignore_hw_compat is set.
3406 */
3407 rv = find_intel_hba_capability(fd, super, devname);
3408 /* no orom/efi or non-intel hba of the disk */
3409 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
3410 if (devname)
3411 fprintf(stderr,
3412 Name ": No OROM/EFI properties for %s\n", devname);
3413 free_imsm(super);
3414 return 2;
3415 }
3416 rv = load_and_parse_mpb(fd, super, devname, 0);
3417
3418 if (rv) {
3419 if (devname)
3420 fprintf(stderr,
3421 Name ": Failed to load all information "
3422 "sections on %s\n", devname);
3423 free_imsm(super);
3424 return rv;
3425 }
3426
3427 st->sb = super;
3428 if (st->ss == NULL) {
3429 st->ss = &super_imsm;
3430 st->minor_version = 0;
3431 st->max_devs = IMSM_MAX_DEVICES;
3432 }
3433 return 0;
3434 }
3435
3436 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3437 {
3438 if (info->level == 1)
3439 return 128;
3440 return info->chunk_size >> 9;
3441 }
3442
3443 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
3444 {
3445 __u32 num_stripes;
3446
3447 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
3448 num_stripes /= num_domains;
3449
3450 return num_stripes;
3451 }
3452
3453 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
3454 {
3455 if (info->level == 1)
3456 return info->size * 2;
3457 else
3458 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
3459 }
3460
3461 static void imsm_update_version_info(struct intel_super *super)
3462 {
3463 /* update the version and attributes */
3464 struct imsm_super *mpb = super->anchor;
3465 char *version;
3466 struct imsm_dev *dev;
3467 struct imsm_map *map;
3468 int i;
3469
3470 for (i = 0; i < mpb->num_raid_devs; i++) {
3471 dev = get_imsm_dev(super, i);
3472 map = get_imsm_map(dev, 0);
3473 if (__le32_to_cpu(dev->size_high) > 0)
3474 mpb->attributes |= MPB_ATTRIB_2TB;
3475
3476 /* FIXME detect when an array spans a port multiplier */
3477 #if 0
3478 mpb->attributes |= MPB_ATTRIB_PM;
3479 #endif
3480
3481 if (mpb->num_raid_devs > 1 ||
3482 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
3483 version = MPB_VERSION_ATTRIBS;
3484 switch (get_imsm_raid_level(map)) {
3485 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
3486 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
3487 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
3488 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
3489 }
3490 } else {
3491 if (map->num_members >= 5)
3492 version = MPB_VERSION_5OR6_DISK_ARRAY;
3493 else if (dev->status == DEV_CLONE_N_GO)
3494 version = MPB_VERSION_CNG;
3495 else if (get_imsm_raid_level(map) == 5)
3496 version = MPB_VERSION_RAID5;
3497 else if (map->num_members >= 3)
3498 version = MPB_VERSION_3OR4_DISK_ARRAY;
3499 else if (get_imsm_raid_level(map) == 1)
3500 version = MPB_VERSION_RAID1;
3501 else
3502 version = MPB_VERSION_RAID0;
3503 }
3504 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
3505 }
3506 }
3507
3508 static int check_name(struct intel_super *super, char *name, int quiet)
3509 {
3510 struct imsm_super *mpb = super->anchor;
3511 char *reason = NULL;
3512 int i;
3513
3514 if (strlen(name) > MAX_RAID_SERIAL_LEN)
3515 reason = "must be 16 characters or less";
3516
3517 for (i = 0; i < mpb->num_raid_devs; i++) {
3518 struct imsm_dev *dev = get_imsm_dev(super, i);
3519
3520 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
3521 reason = "already exists";
3522 break;
3523 }
3524 }
3525
3526 if (reason && !quiet)
3527 fprintf(stderr, Name ": imsm volume name %s\n", reason);
3528
3529 return !reason;
3530 }
3531
3532 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
3533 unsigned long long size, char *name,
3534 char *homehost, int *uuid)
3535 {
3536 /* We are creating a volume inside a pre-existing container.
3537 * so st->sb is already set.
3538 */
3539 struct intel_super *super = st->sb;
3540 struct imsm_super *mpb = super->anchor;
3541 struct intel_dev *dv;
3542 struct imsm_dev *dev;
3543 struct imsm_vol *vol;
3544 struct imsm_map *map;
3545 int idx = mpb->num_raid_devs;
3546 int i;
3547 unsigned long long array_blocks;
3548 size_t size_old, size_new;
3549 __u32 num_data_stripes;
3550
3551 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
3552 fprintf(stderr, Name": This imsm-container already has the "
3553 "maximum of %d volumes\n", super->orom->vpa);
3554 return 0;
3555 }
3556
3557 /* ensure the mpb is large enough for the new data */
3558 size_old = __le32_to_cpu(mpb->mpb_size);
3559 size_new = disks_to_mpb_size(info->nr_disks);
3560 if (size_new > size_old) {
3561 void *mpb_new;
3562 size_t size_round = ROUND_UP(size_new, 512);
3563
3564 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
3565 fprintf(stderr, Name": could not allocate new mpb\n");
3566 return 0;
3567 }
3568 memcpy(mpb_new, mpb, size_old);
3569 free(mpb);
3570 mpb = mpb_new;
3571 super->anchor = mpb_new;
3572 mpb->mpb_size = __cpu_to_le32(size_new);
3573 memset(mpb_new + size_old, 0, size_round - size_old);
3574 }
3575 super->current_vol = idx;
3576 /* when creating the first raid device in this container set num_disks
3577 * to zero, i.e. delete this spare and add raid member devices in
3578 * add_to_super_imsm_volume()
3579 */
3580 if (super->current_vol == 0)
3581 mpb->num_disks = 0;
3582
3583 if (!check_name(super, name, 0))
3584 return 0;
3585 dv = malloc(sizeof(*dv));
3586 if (!dv) {
3587 fprintf(stderr, Name ": failed to allocate device list entry\n");
3588 return 0;
3589 }
3590 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
3591 if (!dev) {
3592 free(dv);
3593 fprintf(stderr, Name": could not allocate raid device\n");
3594 return 0;
3595 }
3596
3597 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
3598 if (info->level == 1)
3599 array_blocks = info_to_blocks_per_member(info);
3600 else
3601 array_blocks = calc_array_size(info->level, info->raid_disks,
3602 info->layout, info->chunk_size,
3603 info->size*2);
3604 /* round array size down to closest MB */
3605 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
3606
3607 dev->size_low = __cpu_to_le32((__u32) array_blocks);
3608 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
3609 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
3610 vol = &dev->vol;
3611 vol->migr_state = 0;
3612 set_migr_type(dev, MIGR_INIT);
3613 vol->dirty = 0;
3614 vol->curr_migr_unit = 0;
3615 map = get_imsm_map(dev, 0);
3616 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
3617 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
3618 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
3619 map->failed_disk_num = ~0;
3620 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
3621 IMSM_T_STATE_NORMAL;
3622 map->ddf = 1;
3623
3624 if (info->level == 1 && info->raid_disks > 2) {
3625 free(dev);
3626 free(dv);
3627 fprintf(stderr, Name": imsm does not support more than 2 disks"
3628 "in a raid1 volume\n");
3629 return 0;
3630 }
3631
3632 map->raid_level = info->level;
3633 if (info->level == 10) {
3634 map->raid_level = 1;
3635 map->num_domains = info->raid_disks / 2;
3636 } else if (info->level == 1)
3637 map->num_domains = info->raid_disks;
3638 else
3639 map->num_domains = 1;
3640
3641 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
3642 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
3643
3644 map->num_members = info->raid_disks;
3645 for (i = 0; i < map->num_members; i++) {
3646 /* initialized in add_to_super */
3647 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
3648 }
3649 mpb->num_raid_devs++;
3650
3651 dv->dev = dev;
3652 dv->index = super->current_vol;
3653 dv->next = super->devlist;
3654 super->devlist = dv;
3655
3656 imsm_update_version_info(super);
3657
3658 return 1;
3659 }
3660
3661 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
3662 unsigned long long size, char *name,
3663 char *homehost, int *uuid)
3664 {
3665 /* This is primarily called by Create when creating a new array.
3666 * We will then get add_to_super called for each component, and then
3667 * write_init_super called to write it out to each device.
3668 * For IMSM, Create can create on fresh devices or on a pre-existing
3669 * array.
3670 * To create on a pre-existing array a different method will be called.
3671 * This one is just for fresh drives.
3672 */
3673 struct intel_super *super;
3674 struct imsm_super *mpb;
3675 size_t mpb_size;
3676 char *version;
3677
3678 if (st->sb)
3679 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
3680
3681 if (info)
3682 mpb_size = disks_to_mpb_size(info->nr_disks);
3683 else
3684 mpb_size = 512;
3685
3686 super = alloc_super();
3687 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
3688 free(super);
3689 super = NULL;
3690 }
3691 if (!super) {
3692 fprintf(stderr, Name
3693 ": %s could not allocate superblock\n", __func__);
3694 return 0;
3695 }
3696 memset(super->buf, 0, mpb_size);
3697 mpb = super->buf;
3698 mpb->mpb_size = __cpu_to_le32(mpb_size);
3699 st->sb = super;
3700
3701 if (info == NULL) {
3702 /* zeroing superblock */
3703 return 0;
3704 }
3705
3706 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3707
3708 version = (char *) mpb->sig;
3709 strcpy(version, MPB_SIGNATURE);
3710 version += strlen(MPB_SIGNATURE);
3711 strcpy(version, MPB_VERSION_RAID0);
3712
3713 return 1;
3714 }
3715
3716 #ifndef MDASSEMBLE
3717 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
3718 int fd, char *devname)
3719 {
3720 struct intel_super *super = st->sb;
3721 struct imsm_super *mpb = super->anchor;
3722 struct dl *dl;
3723 struct imsm_dev *dev;
3724 struct imsm_map *map;
3725 int slot;
3726
3727 dev = get_imsm_dev(super, super->current_vol);
3728 map = get_imsm_map(dev, 0);
3729
3730 if (! (dk->state & (1<<MD_DISK_SYNC))) {
3731 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
3732 devname);
3733 return 1;
3734 }
3735
3736 if (fd == -1) {
3737 /* we're doing autolayout so grab the pre-marked (in
3738 * validate_geometry) raid_disk
3739 */
3740 for (dl = super->disks; dl; dl = dl->next)
3741 if (dl->raiddisk == dk->raid_disk)
3742 break;
3743 } else {
3744 for (dl = super->disks; dl ; dl = dl->next)
3745 if (dl->major == dk->major &&
3746 dl->minor == dk->minor)
3747 break;
3748 }
3749
3750 if (!dl) {
3751 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
3752 return 1;
3753 }
3754
3755 /* add a pristine spare to the metadata */
3756 if (dl->index < 0) {
3757 dl->index = super->anchor->num_disks;
3758 super->anchor->num_disks++;
3759 }
3760 /* Check the device has not already been added */
3761 slot = get_imsm_disk_slot(map, dl->index);
3762 if (slot >= 0 &&
3763 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
3764 fprintf(stderr, Name ": %s has been included in this array twice\n",
3765 devname);
3766 return 1;
3767 }
3768 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
3769 dl->disk.status = CONFIGURED_DISK;
3770
3771 /* if we are creating the first raid device update the family number */
3772 if (super->current_vol == 0) {
3773 __u32 sum;
3774 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
3775 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
3776
3777 if (!_dev || !_disk) {
3778 fprintf(stderr, Name ": BUG mpb setup error\n");
3779 return 1;
3780 }
3781 *_dev = *dev;
3782 *_disk = dl->disk;
3783 sum = random32();
3784 sum += __gen_imsm_checksum(mpb);
3785 mpb->family_num = __cpu_to_le32(sum);
3786 mpb->orig_family_num = mpb->family_num;
3787 }
3788
3789 return 0;
3790 }
3791
3792
3793 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
3794 int fd, char *devname)
3795 {
3796 struct intel_super *super = st->sb;
3797 struct dl *dd;
3798 unsigned long long size;
3799 __u32 id;
3800 int rv;
3801 struct stat stb;
3802
3803 /* If we are on an RAID enabled platform check that the disk is
3804 * attached to the raid controller.
3805 * We do not need to test disks attachment for container based additions,
3806 * they shall be already tested when container was created/assembled.
3807 */
3808 rv = find_intel_hba_capability(fd, super, devname);
3809 /* no orom/efi or non-intel hba of the disk */
3810 if (rv != 0) {
3811 dprintf("capability: %p fd: %d ret: %d\n",
3812 super->orom, fd, rv);
3813 return 1;
3814 }
3815
3816 if (super->current_vol >= 0)
3817 return add_to_super_imsm_volume(st, dk, fd, devname);
3818
3819 fstat(fd, &stb);
3820 dd = malloc(sizeof(*dd));
3821 if (!dd) {
3822 fprintf(stderr,
3823 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3824 return 1;
3825 }
3826 memset(dd, 0, sizeof(*dd));
3827 dd->major = major(stb.st_rdev);
3828 dd->minor = minor(stb.st_rdev);
3829 dd->index = -1;
3830 dd->devname = devname ? strdup(devname) : NULL;
3831 dd->fd = fd;
3832 dd->e = NULL;
3833 dd->action = DISK_ADD;
3834 rv = imsm_read_serial(fd, devname, dd->serial);
3835 if (rv) {
3836 fprintf(stderr,
3837 Name ": failed to retrieve scsi serial, aborting\n");
3838 free(dd);
3839 abort();
3840 }
3841
3842 get_dev_size(fd, NULL, &size);
3843 size /= 512;
3844 serialcpy(dd->disk.serial, dd->serial);
3845 dd->disk.total_blocks = __cpu_to_le32(size);
3846 dd->disk.status = SPARE_DISK;
3847 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
3848 dd->disk.scsi_id = __cpu_to_le32(id);
3849 else
3850 dd->disk.scsi_id = __cpu_to_le32(0);
3851
3852 if (st->update_tail) {
3853 dd->next = super->disk_mgmt_list;
3854 super->disk_mgmt_list = dd;
3855 } else {
3856 dd->next = super->disks;
3857 super->disks = dd;
3858 super->updates_pending++;
3859 }
3860
3861 return 0;
3862 }
3863
3864
3865 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
3866 {
3867 struct intel_super *super = st->sb;
3868 struct dl *dd;
3869
3870 /* remove from super works only in mdmon - for communication
3871 * manager - monitor. Check if communication memory buffer
3872 * is prepared.
3873 */
3874 if (!st->update_tail) {
3875 fprintf(stderr,
3876 Name ": %s shall be used in mdmon context only"
3877 "(line %d).\n", __func__, __LINE__);
3878 return 1;
3879 }
3880 dd = malloc(sizeof(*dd));
3881 if (!dd) {
3882 fprintf(stderr,
3883 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3884 return 1;
3885 }
3886 memset(dd, 0, sizeof(*dd));
3887 dd->major = dk->major;
3888 dd->minor = dk->minor;
3889 dd->index = -1;
3890 dd->fd = -1;
3891 dd->disk.status = SPARE_DISK;
3892 dd->action = DISK_REMOVE;
3893
3894 dd->next = super->disk_mgmt_list;
3895 super->disk_mgmt_list = dd;
3896
3897
3898 return 0;
3899 }
3900
3901 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
3902
3903 static union {
3904 char buf[512];
3905 struct imsm_super anchor;
3906 } spare_record __attribute__ ((aligned(512)));
3907
3908 /* spare records have their own family number and do not have any defined raid
3909 * devices
3910 */
3911 static int write_super_imsm_spares(struct intel_super *super, int doclose)
3912 {
3913 struct imsm_super *mpb = super->anchor;
3914 struct imsm_super *spare = &spare_record.anchor;
3915 __u32 sum;
3916 struct dl *d;
3917
3918 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
3919 spare->generation_num = __cpu_to_le32(1UL),
3920 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3921 spare->num_disks = 1,
3922 spare->num_raid_devs = 0,
3923 spare->cache_size = mpb->cache_size,
3924 spare->pwr_cycle_count = __cpu_to_le32(1),
3925
3926 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
3927 MPB_SIGNATURE MPB_VERSION_RAID0);
3928
3929 for (d = super->disks; d; d = d->next) {
3930 if (d->index != -1)
3931 continue;
3932
3933 spare->disk[0] = d->disk;
3934 sum = __gen_imsm_checksum(spare);
3935 spare->family_num = __cpu_to_le32(sum);
3936 spare->orig_family_num = 0;
3937 sum = __gen_imsm_checksum(spare);
3938 spare->check_sum = __cpu_to_le32(sum);
3939
3940 if (store_imsm_mpb(d->fd, spare)) {
3941 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3942 __func__, d->major, d->minor, strerror(errno));
3943 return 1;
3944 }
3945 if (doclose) {
3946 close(d->fd);
3947 d->fd = -1;
3948 }
3949 }
3950
3951 return 0;
3952 }
3953
3954 static int write_super_imsm(struct supertype *st, int doclose)
3955 {
3956 struct intel_super *super = st->sb;
3957 struct imsm_super *mpb = super->anchor;
3958 struct dl *d;
3959 __u32 generation;
3960 __u32 sum;
3961 int spares = 0;
3962 int i;
3963 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
3964 int num_disks = 0;
3965
3966 /* 'generation' is incremented everytime the metadata is written */
3967 generation = __le32_to_cpu(mpb->generation_num);
3968 generation++;
3969 mpb->generation_num = __cpu_to_le32(generation);
3970
3971 /* fix up cases where previous mdadm releases failed to set
3972 * orig_family_num
3973 */
3974 if (mpb->orig_family_num == 0)
3975 mpb->orig_family_num = mpb->family_num;
3976
3977 for (d = super->disks; d; d = d->next) {
3978 if (d->index == -1)
3979 spares++;
3980 else {
3981 mpb->disk[d->index] = d->disk;
3982 num_disks++;
3983 }
3984 }
3985 for (d = super->missing; d; d = d->next) {
3986 mpb->disk[d->index] = d->disk;
3987 num_disks++;
3988 }
3989 mpb->num_disks = num_disks;
3990 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
3991
3992 for (i = 0; i < mpb->num_raid_devs; i++) {
3993 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3994 struct imsm_dev *dev2 = get_imsm_dev(super, i);
3995 if (dev && dev2) {
3996 imsm_copy_dev(dev, dev2);
3997 mpb_size += sizeof_imsm_dev(dev, 0);
3998 }
3999 }
4000 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4001 mpb->mpb_size = __cpu_to_le32(mpb_size);
4002
4003 /* recalculate checksum */
4004 sum = __gen_imsm_checksum(mpb);
4005 mpb->check_sum = __cpu_to_le32(sum);
4006
4007 /* write the mpb for disks that compose raid devices */
4008 for (d = super->disks; d ; d = d->next) {
4009 if (d->index < 0)
4010 continue;
4011 if (store_imsm_mpb(d->fd, mpb))
4012 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4013 __func__, d->major, d->minor, strerror(errno));
4014 if (doclose) {
4015 close(d->fd);
4016 d->fd = -1;
4017 }
4018 }
4019
4020 if (spares)
4021 return write_super_imsm_spares(super, doclose);
4022
4023 return 0;
4024 }
4025
4026
4027 static int create_array(struct supertype *st, int dev_idx)
4028 {
4029 size_t len;
4030 struct imsm_update_create_array *u;
4031 struct intel_super *super = st->sb;
4032 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4033 struct imsm_map *map = get_imsm_map(dev, 0);
4034 struct disk_info *inf;
4035 struct imsm_disk *disk;
4036 int i;
4037
4038 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4039 sizeof(*inf) * map->num_members;
4040 u = malloc(len);
4041 if (!u) {
4042 fprintf(stderr, "%s: failed to allocate update buffer\n",
4043 __func__);
4044 return 1;
4045 }
4046
4047 u->type = update_create_array;
4048 u->dev_idx = dev_idx;
4049 imsm_copy_dev(&u->dev, dev);
4050 inf = get_disk_info(u);
4051 for (i = 0; i < map->num_members; i++) {
4052 int idx = get_imsm_disk_idx(dev, i, -1);
4053
4054 disk = get_imsm_disk(super, idx);
4055 serialcpy(inf[i].serial, disk->serial);
4056 }
4057 append_metadata_update(st, u, len);
4058
4059 return 0;
4060 }
4061
4062 static int mgmt_disk(struct supertype *st)
4063 {
4064 struct intel_super *super = st->sb;
4065 size_t len;
4066 struct imsm_update_add_remove_disk *u;
4067
4068 if (!super->disk_mgmt_list)
4069 return 0;
4070
4071 len = sizeof(*u);
4072 u = malloc(len);
4073 if (!u) {
4074 fprintf(stderr, "%s: failed to allocate update buffer\n",
4075 __func__);
4076 return 1;
4077 }
4078
4079 u->type = update_add_remove_disk;
4080 append_metadata_update(st, u, len);
4081
4082 return 0;
4083 }
4084
4085 static int write_init_super_imsm(struct supertype *st)
4086 {
4087 struct intel_super *super = st->sb;
4088 int current_vol = super->current_vol;
4089
4090 /* we are done with current_vol reset it to point st at the container */
4091 super->current_vol = -1;
4092
4093 if (st->update_tail) {
4094 /* queue the recently created array / added disk
4095 * as a metadata update */
4096 int rv;
4097
4098 /* determine if we are creating a volume or adding a disk */
4099 if (current_vol < 0) {
4100 /* in the mgmt (add/remove) disk case we are running
4101 * in mdmon context, so don't close fd's
4102 */
4103 return mgmt_disk(st);
4104 } else
4105 rv = create_array(st, current_vol);
4106
4107 return rv;
4108 } else {
4109 struct dl *d;
4110 for (d = super->disks; d; d = d->next)
4111 Kill(d->devname, NULL, 0, 1, 1);
4112 return write_super_imsm(st, 1);
4113 }
4114 }
4115 #endif
4116
4117 static int store_super_imsm(struct supertype *st, int fd)
4118 {
4119 struct intel_super *super = st->sb;
4120 struct imsm_super *mpb = super ? super->anchor : NULL;
4121
4122 if (!mpb)
4123 return 1;
4124
4125 #ifndef MDASSEMBLE
4126 return store_imsm_mpb(fd, mpb);
4127 #else
4128 return 1;
4129 #endif
4130 }
4131
4132 static int imsm_bbm_log_size(struct imsm_super *mpb)
4133 {
4134 return __le32_to_cpu(mpb->bbm_log_size);
4135 }
4136
4137 #ifndef MDASSEMBLE
4138 static int validate_geometry_imsm_container(struct supertype *st, int level,
4139 int layout, int raiddisks, int chunk,
4140 unsigned long long size, char *dev,
4141 unsigned long long *freesize,
4142 int verbose)
4143 {
4144 int fd;
4145 unsigned long long ldsize;
4146 struct intel_super *super=NULL;
4147 int rv = 0;
4148
4149 if (level != LEVEL_CONTAINER)
4150 return 0;
4151 if (!dev)
4152 return 1;
4153
4154 fd = open(dev, O_RDONLY|O_EXCL, 0);
4155 if (fd < 0) {
4156 if (verbose)
4157 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4158 dev, strerror(errno));
4159 return 0;
4160 }
4161 if (!get_dev_size(fd, dev, &ldsize)) {
4162 close(fd);
4163 return 0;
4164 }
4165
4166 /* capabilities retrieve could be possible
4167 * note that there is no fd for the disks in array.
4168 */
4169 super = alloc_super();
4170 if (!super) {
4171 fprintf(stderr,
4172 Name ": malloc of %zu failed.\n",
4173 sizeof(*super));
4174 close(fd);
4175 return 0;
4176 }
4177
4178 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
4179 if (rv != 0) {
4180 #if DEBUG
4181 char str[256];
4182 fd2devname(fd, str);
4183 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4184 fd, str, super->orom, rv, raiddisks);
4185 #endif
4186 /* no orom/efi or non-intel hba of the disk */
4187 close(fd);
4188 free_imsm(super);
4189 return 0;
4190 }
4191 close(fd);
4192 if (super->orom && raiddisks > super->orom->tds) {
4193 if (verbose)
4194 fprintf(stderr, Name ": %d exceeds maximum number of"
4195 " platform supported disks: %d\n",
4196 raiddisks, super->orom->tds);
4197
4198 free_imsm(super);
4199 return 0;
4200 }
4201
4202 *freesize = avail_size_imsm(st, ldsize >> 9);
4203 free_imsm(super);
4204
4205 return 1;
4206 }
4207
4208 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4209 {
4210 const unsigned long long base_start = e[*idx].start;
4211 unsigned long long end = base_start + e[*idx].size;
4212 int i;
4213
4214 if (base_start == end)
4215 return 0;
4216
4217 *idx = *idx + 1;
4218 for (i = *idx; i < num_extents; i++) {
4219 /* extend overlapping extents */
4220 if (e[i].start >= base_start &&
4221 e[i].start <= end) {
4222 if (e[i].size == 0)
4223 return 0;
4224 if (e[i].start + e[i].size > end)
4225 end = e[i].start + e[i].size;
4226 } else if (e[i].start > end) {
4227 *idx = i;
4228 break;
4229 }
4230 }
4231
4232 return end - base_start;
4233 }
4234
4235 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4236 {
4237 /* build a composite disk with all known extents and generate a new
4238 * 'maxsize' given the "all disks in an array must share a common start
4239 * offset" constraint
4240 */
4241 struct extent *e = calloc(sum_extents, sizeof(*e));
4242 struct dl *dl;
4243 int i, j;
4244 int start_extent;
4245 unsigned long long pos;
4246 unsigned long long start = 0;
4247 unsigned long long maxsize;
4248 unsigned long reserve;
4249
4250 if (!e)
4251 return 0;
4252
4253 /* coalesce and sort all extents. also, check to see if we need to
4254 * reserve space between member arrays
4255 */
4256 j = 0;
4257 for (dl = super->disks; dl; dl = dl->next) {
4258 if (!dl->e)
4259 continue;
4260 for (i = 0; i < dl->extent_cnt; i++)
4261 e[j++] = dl->e[i];
4262 }
4263 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4264
4265 /* merge extents */
4266 i = 0;
4267 j = 0;
4268 while (i < sum_extents) {
4269 e[j].start = e[i].start;
4270 e[j].size = find_size(e, &i, sum_extents);
4271 j++;
4272 if (e[j-1].size == 0)
4273 break;
4274 }
4275
4276 pos = 0;
4277 maxsize = 0;
4278 start_extent = 0;
4279 i = 0;
4280 do {
4281 unsigned long long esize;
4282
4283 esize = e[i].start - pos;
4284 if (esize >= maxsize) {
4285 maxsize = esize;
4286 start = pos;
4287 start_extent = i;
4288 }
4289 pos = e[i].start + e[i].size;
4290 i++;
4291 } while (e[i-1].size);
4292 free(e);
4293
4294 if (maxsize == 0)
4295 return 0;
4296
4297 /* FIXME assumes volume at offset 0 is the first volume in a
4298 * container
4299 */
4300 if (start_extent > 0)
4301 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
4302 else
4303 reserve = 0;
4304
4305 if (maxsize < reserve)
4306 return 0;
4307
4308 super->create_offset = ~((__u32) 0);
4309 if (start + reserve > super->create_offset)
4310 return 0; /* start overflows create_offset */
4311 super->create_offset = start + reserve;
4312
4313 return maxsize - reserve;
4314 }
4315
4316 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
4317 {
4318 if (level < 0 || level == 6 || level == 4)
4319 return 0;
4320
4321 /* if we have an orom prevent invalid raid levels */
4322 if (orom)
4323 switch (level) {
4324 case 0: return imsm_orom_has_raid0(orom);
4325 case 1:
4326 if (raiddisks > 2)
4327 return imsm_orom_has_raid1e(orom);
4328 return imsm_orom_has_raid1(orom) && raiddisks == 2;
4329 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
4330 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
4331 }
4332 else
4333 return 1; /* not on an Intel RAID platform so anything goes */
4334
4335 return 0;
4336 }
4337
4338
4339 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
4340 /*
4341 * validate volume parameters with OROM/EFI capabilities
4342 */
4343 static int
4344 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
4345 int raiddisks, int *chunk, int verbose)
4346 {
4347 #if DEBUG
4348 verbose = 1;
4349 #endif
4350 /* validate container capabilities */
4351 if (super->orom && raiddisks > super->orom->tds) {
4352 if (verbose)
4353 fprintf(stderr, Name ": %d exceeds maximum number of"
4354 " platform supported disks: %d\n",
4355 raiddisks, super->orom->tds);
4356 return 0;
4357 }
4358
4359 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
4360 if (super->orom && (!is_raid_level_supported(super->orom, level,
4361 raiddisks))) {
4362 pr_vrb(": platform does not support raid%d with %d disk%s\n",
4363 level, raiddisks, raiddisks > 1 ? "s" : "");
4364 return 0;
4365 }
4366 if (super->orom && level != 1) {
4367 if (chunk && (*chunk == 0 || *chunk == UnSet))
4368 *chunk = imsm_orom_default_chunk(super->orom);
4369 else if (chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
4370 pr_vrb(": platform does not support a chunk size of: "
4371 "%d\n", *chunk);
4372 return 0;
4373 }
4374 }
4375 if (layout != imsm_level_to_layout(level)) {
4376 if (level == 5)
4377 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
4378 else if (level == 10)
4379 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
4380 else
4381 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
4382 layout, level);
4383 return 0;
4384 }
4385 return 1;
4386 }
4387
4388 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
4389 * FIX ME add ahci details
4390 */
4391 static int validate_geometry_imsm_volume(struct supertype *st, int level,
4392 int layout, int raiddisks, int *chunk,
4393 unsigned long long size, char *dev,
4394 unsigned long long *freesize,
4395 int verbose)
4396 {
4397 struct stat stb;
4398 struct intel_super *super = st->sb;
4399 struct imsm_super *mpb = super->anchor;
4400 struct dl *dl;
4401 unsigned long long pos = 0;
4402 unsigned long long maxsize;
4403 struct extent *e;
4404 int i;
4405
4406 /* We must have the container info already read in. */
4407 if (!super)
4408 return 0;
4409
4410 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
4411 fprintf(stderr, Name ": RAID gemetry validation failed. "
4412 "Cannot proceed with the action(s).\n");
4413 return 0;
4414 }
4415 if (!dev) {
4416 /* General test: make sure there is space for
4417 * 'raiddisks' device extents of size 'size' at a given
4418 * offset
4419 */
4420 unsigned long long minsize = size;
4421 unsigned long long start_offset = MaxSector;
4422 int dcnt = 0;
4423 if (minsize == 0)
4424 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
4425 for (dl = super->disks; dl ; dl = dl->next) {
4426 int found = 0;
4427
4428 pos = 0;
4429 i = 0;
4430 e = get_extents(super, dl);
4431 if (!e) continue;
4432 do {
4433 unsigned long long esize;
4434 esize = e[i].start - pos;
4435 if (esize >= minsize)
4436 found = 1;
4437 if (found && start_offset == MaxSector) {
4438 start_offset = pos;
4439 break;
4440 } else if (found && pos != start_offset) {
4441 found = 0;
4442 break;
4443 }
4444 pos = e[i].start + e[i].size;
4445 i++;
4446 } while (e[i-1].size);
4447 if (found)
4448 dcnt++;
4449 free(e);
4450 }
4451 if (dcnt < raiddisks) {
4452 if (verbose)
4453 fprintf(stderr, Name ": imsm: Not enough "
4454 "devices with space for this array "
4455 "(%d < %d)\n",
4456 dcnt, raiddisks);
4457 return 0;
4458 }
4459 return 1;
4460 }
4461
4462 /* This device must be a member of the set */
4463 if (stat(dev, &stb) < 0)
4464 return 0;
4465 if ((S_IFMT & stb.st_mode) != S_IFBLK)
4466 return 0;
4467 for (dl = super->disks ; dl ; dl = dl->next) {
4468 if (dl->major == (int)major(stb.st_rdev) &&
4469 dl->minor == (int)minor(stb.st_rdev))
4470 break;
4471 }
4472 if (!dl) {
4473 if (verbose)
4474 fprintf(stderr, Name ": %s is not in the "
4475 "same imsm set\n", dev);
4476 return 0;
4477 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
4478 /* If a volume is present then the current creation attempt
4479 * cannot incorporate new spares because the orom may not
4480 * understand this configuration (all member disks must be
4481 * members of each array in the container).
4482 */
4483 fprintf(stderr, Name ": %s is a spare and a volume"
4484 " is already defined for this container\n", dev);
4485 fprintf(stderr, Name ": The option-rom requires all member"
4486 " disks to be a member of all volumes\n");
4487 return 0;
4488 }
4489
4490 /* retrieve the largest free space block */
4491 e = get_extents(super, dl);
4492 maxsize = 0;
4493 i = 0;
4494 if (e) {
4495 do {
4496 unsigned long long esize;
4497
4498 esize = e[i].start - pos;
4499 if (esize >= maxsize)
4500 maxsize = esize;
4501 pos = e[i].start + e[i].size;
4502 i++;
4503 } while (e[i-1].size);
4504 dl->e = e;
4505 dl->extent_cnt = i;
4506 } else {
4507 if (verbose)
4508 fprintf(stderr, Name ": unable to determine free space for: %s\n",
4509 dev);
4510 return 0;
4511 }
4512 if (maxsize < size) {
4513 if (verbose)
4514 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
4515 dev, maxsize, size);
4516 return 0;
4517 }
4518
4519 /* count total number of extents for merge */
4520 i = 0;
4521 for (dl = super->disks; dl; dl = dl->next)
4522 if (dl->e)
4523 i += dl->extent_cnt;
4524
4525 maxsize = merge_extents(super, i);
4526 if (maxsize < size || maxsize == 0) {
4527 if (verbose)
4528 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
4529 maxsize, size);
4530 return 0;
4531 }
4532
4533 *freesize = maxsize;
4534
4535 return 1;
4536 }
4537
4538 static int reserve_space(struct supertype *st, int raiddisks,
4539 unsigned long long size, int chunk,
4540 unsigned long long *freesize)
4541 {
4542 struct intel_super *super = st->sb;
4543 struct imsm_super *mpb = super->anchor;
4544 struct dl *dl;
4545 int i;
4546 int extent_cnt;
4547 struct extent *e;
4548 unsigned long long maxsize;
4549 unsigned long long minsize;
4550 int cnt;
4551 int used;
4552
4553 /* find the largest common start free region of the possible disks */
4554 used = 0;
4555 extent_cnt = 0;
4556 cnt = 0;
4557 for (dl = super->disks; dl; dl = dl->next) {
4558 dl->raiddisk = -1;
4559
4560 if (dl->index >= 0)
4561 used++;
4562
4563 /* don't activate new spares if we are orom constrained
4564 * and there is already a volume active in the container
4565 */
4566 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
4567 continue;
4568
4569 e = get_extents(super, dl);
4570 if (!e)
4571 continue;
4572 for (i = 1; e[i-1].size; i++)
4573 ;
4574 dl->e = e;
4575 dl->extent_cnt = i;
4576 extent_cnt += i;
4577 cnt++;
4578 }
4579
4580 maxsize = merge_extents(super, extent_cnt);
4581 minsize = size;
4582 if (size == 0)
4583 /* chunk is in K */
4584 minsize = chunk * 2;
4585
4586 if (cnt < raiddisks ||
4587 (super->orom && used && used != raiddisks) ||
4588 maxsize < minsize ||
4589 maxsize == 0) {
4590 fprintf(stderr, Name ": not enough devices with space to create array.\n");
4591 return 0; /* No enough free spaces large enough */
4592 }
4593
4594 if (size == 0) {
4595 size = maxsize;
4596 if (chunk) {
4597 size /= 2 * chunk;
4598 size *= 2 * chunk;
4599 }
4600 }
4601
4602 cnt = 0;
4603 for (dl = super->disks; dl; dl = dl->next)
4604 if (dl->e)
4605 dl->raiddisk = cnt++;
4606
4607 *freesize = size;
4608
4609 return 1;
4610 }
4611
4612 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
4613 int raiddisks, int *chunk, unsigned long long size,
4614 char *dev, unsigned long long *freesize,
4615 int verbose)
4616 {
4617 int fd, cfd;
4618 struct mdinfo *sra;
4619 int is_member = 0;
4620
4621 /* load capability
4622 * if given unused devices create a container
4623 * if given given devices in a container create a member volume
4624 */
4625 if (level == LEVEL_CONTAINER) {
4626 /* Must be a fresh device to add to a container */
4627 return validate_geometry_imsm_container(st, level, layout,
4628 raiddisks,
4629 chunk?*chunk:0, size,
4630 dev, freesize,
4631 verbose);
4632 }
4633
4634 if (!dev) {
4635 if (st->sb && freesize) {
4636 /* we are being asked to automatically layout a
4637 * new volume based on the current contents of
4638 * the container. If the the parameters can be
4639 * satisfied reserve_space will record the disks,
4640 * start offset, and size of the volume to be
4641 * created. add_to_super and getinfo_super
4642 * detect when autolayout is in progress.
4643 */
4644 if (!validate_geometry_imsm_orom(st->sb, level, layout,
4645 raiddisks, chunk,
4646 verbose))
4647 return 0;
4648 return reserve_space(st, raiddisks, size,
4649 chunk?*chunk:0, freesize);
4650 }
4651 return 1;
4652 }
4653 if (st->sb) {
4654 /* creating in a given container */
4655 return validate_geometry_imsm_volume(st, level, layout,
4656 raiddisks, chunk, size,
4657 dev, freesize, verbose);
4658 }
4659
4660 /* This device needs to be a device in an 'imsm' container */
4661 fd = open(dev, O_RDONLY|O_EXCL, 0);
4662 if (fd >= 0) {
4663 if (verbose)
4664 fprintf(stderr,
4665 Name ": Cannot create this array on device %s\n",
4666 dev);
4667 close(fd);
4668 return 0;
4669 }
4670 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
4671 if (verbose)
4672 fprintf(stderr, Name ": Cannot open %s: %s\n",
4673 dev, strerror(errno));
4674 return 0;
4675 }
4676 /* Well, it is in use by someone, maybe an 'imsm' container. */
4677 cfd = open_container(fd);
4678 close(fd);
4679 if (cfd < 0) {
4680 if (verbose)
4681 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
4682 dev);
4683 return 0;
4684 }
4685 sra = sysfs_read(cfd, 0, GET_VERSION);
4686 if (sra && sra->array.major_version == -1 &&
4687 strcmp(sra->text_version, "imsm") == 0)
4688 is_member = 1;
4689 sysfs_free(sra);
4690 if (is_member) {
4691 /* This is a member of a imsm container. Load the container
4692 * and try to create a volume
4693 */
4694 struct intel_super *super;
4695
4696 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
4697 st->sb = super;
4698 st->container_dev = fd2devnum(cfd);
4699 close(cfd);
4700 return validate_geometry_imsm_volume(st, level, layout,
4701 raiddisks, chunk,
4702 size, dev,
4703 freesize, verbose);
4704 }
4705 }
4706
4707 if (verbose)
4708 fprintf(stderr, Name ": failed container membership check\n");
4709
4710 close(cfd);
4711 return 0;
4712 }
4713
4714 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
4715 {
4716 struct intel_super *super = st->sb;
4717
4718 if (level && *level == UnSet)
4719 *level = LEVEL_CONTAINER;
4720
4721 if (level && layout && *layout == UnSet)
4722 *layout = imsm_level_to_layout(*level);
4723
4724 if (chunk && (*chunk == UnSet || *chunk == 0) &&
4725 super && super->orom)
4726 *chunk = imsm_orom_default_chunk(super->orom);
4727 }
4728
4729 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
4730
4731 static int kill_subarray_imsm(struct supertype *st)
4732 {
4733 /* remove the subarray currently referenced by ->current_vol */
4734 __u8 i;
4735 struct intel_dev **dp;
4736 struct intel_super *super = st->sb;
4737 __u8 current_vol = super->current_vol;
4738 struct imsm_super *mpb = super->anchor;
4739
4740 if (super->current_vol < 0)
4741 return 2;
4742 super->current_vol = -1; /* invalidate subarray cursor */
4743
4744 /* block deletions that would change the uuid of active subarrays
4745 *
4746 * FIXME when immutable ids are available, but note that we'll
4747 * also need to fixup the invalidated/active subarray indexes in
4748 * mdstat
4749 */
4750 for (i = 0; i < mpb->num_raid_devs; i++) {
4751 char subarray[4];
4752
4753 if (i < current_vol)
4754 continue;
4755 sprintf(subarray, "%u", i);
4756 if (is_subarray_active(subarray, st->devname)) {
4757 fprintf(stderr,
4758 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
4759 current_vol, i);
4760
4761 return 2;
4762 }
4763 }
4764
4765 if (st->update_tail) {
4766 struct imsm_update_kill_array *u = malloc(sizeof(*u));
4767
4768 if (!u)
4769 return 2;
4770 u->type = update_kill_array;
4771 u->dev_idx = current_vol;
4772 append_metadata_update(st, u, sizeof(*u));
4773
4774 return 0;
4775 }
4776
4777 for (dp = &super->devlist; *dp;)
4778 if ((*dp)->index == current_vol) {
4779 *dp = (*dp)->next;
4780 } else {
4781 handle_missing(super, (*dp)->dev);
4782 if ((*dp)->index > current_vol)
4783 (*dp)->index--;
4784 dp = &(*dp)->next;
4785 }
4786
4787 /* no more raid devices, all active components are now spares,
4788 * but of course failed are still failed
4789 */
4790 if (--mpb->num_raid_devs == 0) {
4791 struct dl *d;
4792
4793 for (d = super->disks; d; d = d->next)
4794 if (d->index > -2) {
4795 d->index = -1;
4796 d->disk.status = SPARE_DISK;
4797 }
4798 }
4799
4800 super->updates_pending++;
4801
4802 return 0;
4803 }
4804
4805 static int update_subarray_imsm(struct supertype *st, char *subarray,
4806 char *update, struct mddev_ident *ident)
4807 {
4808 /* update the subarray currently referenced by ->current_vol */
4809 struct intel_super *super = st->sb;
4810 struct imsm_super *mpb = super->anchor;
4811
4812 if (strcmp(update, "name") == 0) {
4813 char *name = ident->name;
4814 char *ep;
4815 int vol;
4816
4817 if (is_subarray_active(subarray, st->devname)) {
4818 fprintf(stderr,
4819 Name ": Unable to update name of active subarray\n");
4820 return 2;
4821 }
4822
4823 if (!check_name(super, name, 0))
4824 return 2;
4825
4826 vol = strtoul(subarray, &ep, 10);
4827 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
4828 return 2;
4829
4830 if (st->update_tail) {
4831 struct imsm_update_rename_array *u = malloc(sizeof(*u));
4832
4833 if (!u)
4834 return 2;
4835 u->type = update_rename_array;
4836 u->dev_idx = vol;
4837 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
4838 append_metadata_update(st, u, sizeof(*u));
4839 } else {
4840 struct imsm_dev *dev;
4841 int i;
4842
4843 dev = get_imsm_dev(super, vol);
4844 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
4845 for (i = 0; i < mpb->num_raid_devs; i++) {
4846 dev = get_imsm_dev(super, i);
4847 handle_missing(super, dev);
4848 }
4849 super->updates_pending++;
4850 }
4851 } else
4852 return 2;
4853
4854 return 0;
4855 }
4856
4857 static int is_gen_migration(struct imsm_dev *dev)
4858 {
4859 if (!dev->vol.migr_state)
4860 return 0;
4861
4862 if (migr_type(dev) == MIGR_GEN_MIGR)
4863 return 1;
4864
4865 return 0;
4866 }
4867 #endif /* MDASSEMBLE */
4868
4869 static int is_rebuilding(struct imsm_dev *dev)
4870 {
4871 struct imsm_map *migr_map;
4872
4873 if (!dev->vol.migr_state)
4874 return 0;
4875
4876 if (migr_type(dev) != MIGR_REBUILD)
4877 return 0;
4878
4879 migr_map = get_imsm_map(dev, 1);
4880
4881 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
4882 return 1;
4883 else
4884 return 0;
4885 }
4886
4887 static void update_recovery_start(struct imsm_dev *dev, struct mdinfo *array)
4888 {
4889 struct mdinfo *rebuild = NULL;
4890 struct mdinfo *d;
4891 __u32 units;
4892
4893 if (!is_rebuilding(dev))
4894 return;
4895
4896 /* Find the rebuild target, but punt on the dual rebuild case */
4897 for (d = array->devs; d; d = d->next)
4898 if (d->recovery_start == 0) {
4899 if (rebuild)
4900 return;
4901 rebuild = d;
4902 }
4903
4904 if (!rebuild) {
4905 /* (?) none of the disks are marked with
4906 * IMSM_ORD_REBUILD, so assume they are missing and the
4907 * disk_ord_tbl was not correctly updated
4908 */
4909 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
4910 return;
4911 }
4912
4913 units = __le32_to_cpu(dev->vol.curr_migr_unit);
4914 rebuild->recovery_start = units * blocks_per_migr_unit(dev);
4915 }
4916
4917
4918 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
4919 {
4920 /* Given a container loaded by load_super_imsm_all,
4921 * extract information about all the arrays into
4922 * an mdinfo tree.
4923 * If 'subarray' is given, just extract info about that array.
4924 *
4925 * For each imsm_dev create an mdinfo, fill it in,
4926 * then look for matching devices in super->disks
4927 * and create appropriate device mdinfo.
4928 */
4929 struct intel_super *super = st->sb;
4930 struct imsm_super *mpb = super->anchor;
4931 struct mdinfo *rest = NULL;
4932 unsigned int i;
4933 int bbm_errors = 0;
4934 struct dl *d;
4935 int spare_disks = 0;
4936
4937 /* check for bad blocks */
4938 if (imsm_bbm_log_size(super->anchor))
4939 bbm_errors = 1;
4940
4941 /* count spare devices, not used in maps
4942 */
4943 for (d = super->disks; d; d = d->next)
4944 if (d->index == -1)
4945 spare_disks++;
4946
4947 for (i = 0; i < mpb->num_raid_devs; i++) {
4948 struct imsm_dev *dev;
4949 struct imsm_map *map;
4950 struct imsm_map *map2;
4951 struct mdinfo *this;
4952 int slot, chunk;
4953 char *ep;
4954
4955 if (subarray &&
4956 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
4957 continue;
4958
4959 dev = get_imsm_dev(super, i);
4960 map = get_imsm_map(dev, 0);
4961 map2 = get_imsm_map(dev, 1);
4962
4963 /* do not publish arrays that are in the middle of an
4964 * unsupported migration
4965 */
4966 if (dev->vol.migr_state &&
4967 (migr_type(dev) == MIGR_STATE_CHANGE)) {
4968 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
4969 " unsupported migration in progress\n",
4970 dev->volume);
4971 continue;
4972 }
4973 /* do not publish arrays that are not support by controller's
4974 * OROM/EFI
4975 */
4976
4977 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
4978 #ifndef MDASSEMBLE
4979 if (!validate_geometry_imsm_orom(super,
4980 get_imsm_raid_level(map), /* RAID level */
4981 imsm_level_to_layout(get_imsm_raid_level(map)),
4982 map->num_members, /* raid disks */
4983 &chunk,
4984 1 /* verbose */)) {
4985 fprintf(stderr, Name ": RAID gemetry validation failed. "
4986 "Cannot proceed with the action(s).\n");
4987 continue;
4988 }
4989 #endif /* MDASSEMBLE */
4990 this = malloc(sizeof(*this));
4991 if (!this) {
4992 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
4993 sizeof(*this));
4994 break;
4995 }
4996 memset(this, 0, sizeof(*this));
4997 this->next = rest;
4998
4999 super->current_vol = i;
5000 getinfo_super_imsm_volume(st, this, NULL);
5001 for (slot = 0 ; slot < map->num_members; slot++) {
5002 unsigned long long recovery_start;
5003 struct mdinfo *info_d;
5004 struct dl *d;
5005 int idx;
5006 int skip;
5007 __u32 ord;
5008
5009 skip = 0;
5010 idx = get_imsm_disk_idx(dev, slot, 0);
5011 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
5012 for (d = super->disks; d ; d = d->next)
5013 if (d->index == idx)
5014 break;
5015
5016 recovery_start = MaxSector;
5017 if (d == NULL)
5018 skip = 1;
5019 if (d && is_failed(&d->disk))
5020 skip = 1;
5021 if (ord & IMSM_ORD_REBUILD)
5022 recovery_start = 0;
5023
5024 /*
5025 * if we skip some disks the array will be assmebled degraded;
5026 * reset resync start to avoid a dirty-degraded
5027 * situation when performing the intial sync
5028 *
5029 * FIXME handle dirty degraded
5030 */
5031 if ((skip || recovery_start == 0) && !dev->vol.dirty)
5032 this->resync_start = MaxSector;
5033 if (skip)
5034 continue;
5035
5036 info_d = calloc(1, sizeof(*info_d));
5037 if (!info_d) {
5038 fprintf(stderr, Name ": failed to allocate disk"
5039 " for volume %.16s\n", dev->volume);
5040 info_d = this->devs;
5041 while (info_d) {
5042 struct mdinfo *d = info_d->next;
5043
5044 free(info_d);
5045 info_d = d;
5046 }
5047 free(this);
5048 this = rest;
5049 break;
5050 }
5051 info_d->next = this->devs;
5052 this->devs = info_d;
5053
5054 info_d->disk.number = d->index;
5055 info_d->disk.major = d->major;
5056 info_d->disk.minor = d->minor;
5057 info_d->disk.raid_disk = slot;
5058 info_d->recovery_start = recovery_start;
5059 if (map2) {
5060 if (slot < map2->num_members)
5061 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5062 else
5063 this->array.spare_disks++;
5064 } else {
5065 if (slot < map->num_members)
5066 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5067 else
5068 this->array.spare_disks++;
5069 }
5070 if (info_d->recovery_start == MaxSector)
5071 this->array.working_disks++;
5072
5073 info_d->events = __le32_to_cpu(mpb->generation_num);
5074 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5075 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
5076 }
5077 /* now that the disk list is up-to-date fixup recovery_start */
5078 update_recovery_start(dev, this);
5079 this->array.spare_disks += spare_disks;
5080 rest = this;
5081 }
5082
5083 /* if array has bad blocks, set suitable bit in array status */
5084 if (bbm_errors)
5085 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5086
5087 return rest;
5088 }
5089
5090
5091 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
5092 {
5093 struct imsm_map *map = get_imsm_map(dev, 0);
5094
5095 if (!failed)
5096 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5097 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
5098
5099 switch (get_imsm_raid_level(map)) {
5100 case 0:
5101 return IMSM_T_STATE_FAILED;
5102 break;
5103 case 1:
5104 if (failed < map->num_members)
5105 return IMSM_T_STATE_DEGRADED;
5106 else
5107 return IMSM_T_STATE_FAILED;
5108 break;
5109 case 10:
5110 {
5111 /**
5112 * check to see if any mirrors have failed, otherwise we
5113 * are degraded. Even numbered slots are mirrored on
5114 * slot+1
5115 */
5116 int i;
5117 /* gcc -Os complains that this is unused */
5118 int insync = insync;
5119
5120 for (i = 0; i < map->num_members; i++) {
5121 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
5122 int idx = ord_to_idx(ord);
5123 struct imsm_disk *disk;
5124
5125 /* reset the potential in-sync count on even-numbered
5126 * slots. num_copies is always 2 for imsm raid10
5127 */
5128 if ((i & 1) == 0)
5129 insync = 2;
5130
5131 disk = get_imsm_disk(super, idx);
5132 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5133 insync--;
5134
5135 /* no in-sync disks left in this mirror the
5136 * array has failed
5137 */
5138 if (insync == 0)
5139 return IMSM_T_STATE_FAILED;
5140 }
5141
5142 return IMSM_T_STATE_DEGRADED;
5143 }
5144 case 5:
5145 if (failed < 2)
5146 return IMSM_T_STATE_DEGRADED;
5147 else
5148 return IMSM_T_STATE_FAILED;
5149 break;
5150 default:
5151 break;
5152 }
5153
5154 return map->map_state;
5155 }
5156
5157 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
5158 {
5159 int i;
5160 int failed = 0;
5161 struct imsm_disk *disk;
5162 struct imsm_map *map = get_imsm_map(dev, 0);
5163 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5164 __u32 ord;
5165 int idx;
5166
5167 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5168 * disks that are being rebuilt. New failures are recorded to
5169 * map[0]. So we look through all the disks we started with and
5170 * see if any failures are still present, or if any new ones
5171 * have arrived
5172 *
5173 * FIXME add support for online capacity expansion and
5174 * raid-level-migration
5175 */
5176 for (i = 0; i < prev->num_members; i++) {
5177 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5178 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5179 idx = ord_to_idx(ord);
5180
5181 disk = get_imsm_disk(super, idx);
5182 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5183 failed++;
5184 }
5185
5186 return failed;
5187 }
5188
5189 #ifndef MDASSEMBLE
5190 static int imsm_open_new(struct supertype *c, struct active_array *a,
5191 char *inst)
5192 {
5193 struct intel_super *super = c->sb;
5194 struct imsm_super *mpb = super->anchor;
5195
5196 if (atoi(inst) >= mpb->num_raid_devs) {
5197 fprintf(stderr, "%s: subarry index %d, out of range\n",
5198 __func__, atoi(inst));
5199 return -ENODEV;
5200 }
5201
5202 dprintf("imsm: open_new %s\n", inst);
5203 a->info.container_member = atoi(inst);
5204 return 0;
5205 }
5206
5207 static int is_resyncing(struct imsm_dev *dev)
5208 {
5209 struct imsm_map *migr_map;
5210
5211 if (!dev->vol.migr_state)
5212 return 0;
5213
5214 if (migr_type(dev) == MIGR_INIT ||
5215 migr_type(dev) == MIGR_REPAIR)
5216 return 1;
5217
5218 if (migr_type(dev) == MIGR_GEN_MIGR)
5219 return 0;
5220
5221 migr_map = get_imsm_map(dev, 1);
5222
5223 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5224 (dev->vol.migr_type != MIGR_GEN_MIGR))
5225 return 1;
5226 else
5227 return 0;
5228 }
5229
5230 /* return true if we recorded new information */
5231 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5232 {
5233 __u32 ord;
5234 int slot;
5235 struct imsm_map *map;
5236
5237 /* new failures are always set in map[0] */
5238 map = get_imsm_map(dev, 0);
5239
5240 slot = get_imsm_disk_slot(map, idx);
5241 if (slot < 0)
5242 return 0;
5243
5244 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
5245 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
5246 return 0;
5247
5248 disk->status |= FAILED_DISK;
5249 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
5250 if (map->failed_disk_num == 0xff)
5251 map->failed_disk_num = slot;
5252 return 1;
5253 }
5254
5255 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5256 {
5257 mark_failure(dev, disk, idx);
5258
5259 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
5260 return;
5261
5262 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5263 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
5264 }
5265
5266 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
5267 {
5268 __u8 map_state;
5269 struct dl *dl;
5270 int failed;
5271
5272 if (!super->missing)
5273 return;
5274 failed = imsm_count_failed(super, dev);
5275 map_state = imsm_check_degraded(super, dev, failed);
5276
5277 dprintf("imsm: mark missing\n");
5278 end_migration(dev, map_state);
5279 for (dl = super->missing; dl; dl = dl->next)
5280 mark_missing(dev, &dl->disk, dl->index);
5281 super->updates_pending++;
5282 }
5283
5284 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
5285 {
5286 int used_disks = imsm_num_data_members(dev, 0);
5287 unsigned long long array_blocks;
5288 struct imsm_map *map;
5289
5290 if (used_disks == 0) {
5291 /* when problems occures
5292 * return current array_blocks value
5293 */
5294 array_blocks = __le32_to_cpu(dev->size_high);
5295 array_blocks = array_blocks << 32;
5296 array_blocks += __le32_to_cpu(dev->size_low);
5297
5298 return array_blocks;
5299 }
5300
5301 /* set array size in metadata
5302 */
5303 map = get_imsm_map(dev, 0);
5304 array_blocks = map->blocks_per_member * used_disks;
5305
5306 /* round array size down to closest MB
5307 */
5308 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5309 dev->size_low = __cpu_to_le32((__u32)array_blocks);
5310 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
5311
5312 return array_blocks;
5313 }
5314
5315 static void imsm_set_disk(struct active_array *a, int n, int state);
5316
5317 static void imsm_progress_container_reshape(struct intel_super *super)
5318 {
5319 /* if no device has a migr_state, but some device has a
5320 * different number of members than the previous device, start
5321 * changing the number of devices in this device to match
5322 * previous.
5323 */
5324 struct imsm_super *mpb = super->anchor;
5325 int prev_disks = -1;
5326 int i;
5327 int copy_map_size;
5328
5329 for (i = 0; i < mpb->num_raid_devs; i++) {
5330 struct imsm_dev *dev = get_imsm_dev(super, i);
5331 struct imsm_map *map = get_imsm_map(dev, 0);
5332 struct imsm_map *map2;
5333 int prev_num_members;
5334
5335 if (dev->vol.migr_state)
5336 return;
5337
5338 if (prev_disks == -1)
5339 prev_disks = map->num_members;
5340 if (prev_disks == map->num_members)
5341 continue;
5342
5343 /* OK, this array needs to enter reshape mode.
5344 * i.e it needs a migr_state
5345 */
5346
5347 copy_map_size = sizeof_imsm_map(map);
5348 prev_num_members = map->num_members;
5349 map->num_members = prev_disks;
5350 dev->vol.migr_state = 1;
5351 dev->vol.curr_migr_unit = 0;
5352 dev->vol.migr_type = MIGR_GEN_MIGR;
5353 for (i = prev_num_members;
5354 i < map->num_members; i++)
5355 set_imsm_ord_tbl_ent(map, i, i);
5356 map2 = get_imsm_map(dev, 1);
5357 /* Copy the current map */
5358 memcpy(map2, map, copy_map_size);
5359 map2->num_members = prev_num_members;
5360
5361 imsm_set_array_size(dev);
5362 super->updates_pending++;
5363 }
5364 }
5365
5366 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
5367 * states are handled in imsm_set_disk() with one exception, when a
5368 * resync is stopped due to a new failure this routine will set the
5369 * 'degraded' state for the array.
5370 */
5371 static int imsm_set_array_state(struct active_array *a, int consistent)
5372 {
5373 int inst = a->info.container_member;
5374 struct intel_super *super = a->container->sb;
5375 struct imsm_dev *dev = get_imsm_dev(super, inst);
5376 struct imsm_map *map = get_imsm_map(dev, 0);
5377 int failed = imsm_count_failed(super, dev);
5378 __u8 map_state = imsm_check_degraded(super, dev, failed);
5379 __u32 blocks_per_unit;
5380
5381 if (dev->vol.migr_state &&
5382 dev->vol.migr_type == MIGR_GEN_MIGR) {
5383 /* array state change is blocked due to reshape action
5384 * We might need to
5385 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
5386 * - finish the reshape (if last_checkpoint is big and action != reshape)
5387 * - update curr_migr_unit
5388 */
5389 if (a->curr_action == reshape) {
5390 /* still reshaping, maybe update curr_migr_unit */
5391 goto mark_checkpoint;
5392 } else {
5393 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
5394 /* for some reason we aborted the reshape.
5395 * Better clean up
5396 */
5397 struct imsm_map *map2 = get_imsm_map(dev, 1);
5398 dev->vol.migr_state = 0;
5399 dev->vol.migr_type = 0;
5400 dev->vol.curr_migr_unit = 0;
5401 memcpy(map, map2, sizeof_imsm_map(map2));
5402 super->updates_pending++;
5403 }
5404 if (a->last_checkpoint >= a->info.component_size) {
5405 unsigned long long array_blocks;
5406 int used_disks;
5407 struct mdinfo *mdi;
5408
5409 used_disks = imsm_num_data_members(dev, 0);
5410 if (used_disks > 0) {
5411 array_blocks =
5412 map->blocks_per_member *
5413 used_disks;
5414 /* round array size down to closest MB
5415 */
5416 array_blocks = (array_blocks
5417 >> SECT_PER_MB_SHIFT)
5418 << SECT_PER_MB_SHIFT;
5419 a->info.custom_array_size = array_blocks;
5420 /* encourage manager to update array
5421 * size
5422 */
5423
5424 a->check_reshape = 1;
5425 }
5426 /* finalize online capacity expansion/reshape */
5427 for (mdi = a->info.devs; mdi; mdi = mdi->next)
5428 imsm_set_disk(a,
5429 mdi->disk.raid_disk,
5430 mdi->curr_state);
5431
5432 imsm_progress_container_reshape(super);
5433 }
5434 }
5435 }
5436
5437 /* before we activate this array handle any missing disks */
5438 if (consistent == 2)
5439 handle_missing(super, dev);
5440
5441 if (consistent == 2 &&
5442 (!is_resync_complete(&a->info) ||
5443 map_state != IMSM_T_STATE_NORMAL ||
5444 dev->vol.migr_state))
5445 consistent = 0;
5446
5447 if (is_resync_complete(&a->info)) {
5448 /* complete intialization / resync,
5449 * recovery and interrupted recovery is completed in
5450 * ->set_disk
5451 */
5452 if (is_resyncing(dev)) {
5453 dprintf("imsm: mark resync done\n");
5454 end_migration(dev, map_state);
5455 super->updates_pending++;
5456 a->last_checkpoint = 0;
5457 }
5458 } else if (!is_resyncing(dev) && !failed) {
5459 /* mark the start of the init process if nothing is failed */
5460 dprintf("imsm: mark resync start\n");
5461 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
5462 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
5463 else
5464 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
5465 super->updates_pending++;
5466 }
5467
5468 mark_checkpoint:
5469 /* check if we can update curr_migr_unit from resync_start, recovery_start */
5470 blocks_per_unit = blocks_per_migr_unit(dev);
5471 if (blocks_per_unit) {
5472 __u32 units32;
5473 __u64 units;
5474
5475 units = a->last_checkpoint / blocks_per_unit;
5476 units32 = units;
5477
5478 /* check that we did not overflow 32-bits, and that
5479 * curr_migr_unit needs updating
5480 */
5481 if (units32 == units &&
5482 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
5483 dprintf("imsm: mark checkpoint (%u)\n", units32);
5484 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
5485 super->updates_pending++;
5486 }
5487 }
5488
5489 /* mark dirty / clean */
5490 if (dev->vol.dirty != !consistent) {
5491 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
5492 if (consistent)
5493 dev->vol.dirty = 0;
5494 else
5495 dev->vol.dirty = 1;
5496 super->updates_pending++;
5497 }
5498
5499 return consistent;
5500 }
5501
5502 static void imsm_set_disk(struct active_array *a, int n, int state)
5503 {
5504 int inst = a->info.container_member;
5505 struct intel_super *super = a->container->sb;
5506 struct imsm_dev *dev = get_imsm_dev(super, inst);
5507 struct imsm_map *map = get_imsm_map(dev, 0);
5508 struct imsm_disk *disk;
5509 int failed;
5510 __u32 ord;
5511 __u8 map_state;
5512
5513 if (n > map->num_members)
5514 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
5515 n, map->num_members - 1);
5516
5517 if (n < 0)
5518 return;
5519
5520 dprintf("imsm: set_disk %d:%x\n", n, state);
5521
5522 ord = get_imsm_ord_tbl_ent(dev, n, -1);
5523 disk = get_imsm_disk(super, ord_to_idx(ord));
5524
5525 /* check for new failures */
5526 if (state & DS_FAULTY) {
5527 if (mark_failure(dev, disk, ord_to_idx(ord)))
5528 super->updates_pending++;
5529 }
5530
5531 /* check if in_sync */
5532 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
5533 struct imsm_map *migr_map = get_imsm_map(dev, 1);
5534
5535 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
5536 super->updates_pending++;
5537 }
5538
5539 failed = imsm_count_failed(super, dev);
5540 map_state = imsm_check_degraded(super, dev, failed);
5541
5542 /* check if recovery complete, newly degraded, or failed */
5543 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
5544 end_migration(dev, map_state);
5545 map = get_imsm_map(dev, 0);
5546 map->failed_disk_num = ~0;
5547 super->updates_pending++;
5548 a->last_checkpoint = 0;
5549 } else if (map_state == IMSM_T_STATE_DEGRADED &&
5550 map->map_state != map_state &&
5551 !dev->vol.migr_state) {
5552 dprintf("imsm: mark degraded\n");
5553 map->map_state = map_state;
5554 super->updates_pending++;
5555 a->last_checkpoint = 0;
5556 } else if (map_state == IMSM_T_STATE_FAILED &&
5557 map->map_state != map_state) {
5558 dprintf("imsm: mark failed\n");
5559 end_migration(dev, map_state);
5560 super->updates_pending++;
5561 a->last_checkpoint = 0;
5562 } else if (is_gen_migration(dev)) {
5563 dprintf("imsm: Detected General Migration in state: ");
5564 if (map_state == IMSM_T_STATE_NORMAL) {
5565 end_migration(dev, map_state);
5566 map = get_imsm_map(dev, 0);
5567 map->failed_disk_num = ~0;
5568 dprintf("normal\n");
5569 } else {
5570 if (map_state == IMSM_T_STATE_DEGRADED) {
5571 printf("degraded\n");
5572 end_migration(dev, map_state);
5573 } else {
5574 dprintf("failed\n");
5575 }
5576 map->map_state = map_state;
5577 }
5578 super->updates_pending++;
5579 }
5580 }
5581
5582 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
5583 {
5584 void *buf = mpb;
5585 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
5586 unsigned long long dsize;
5587 unsigned long long sectors;
5588
5589 get_dev_size(fd, NULL, &dsize);
5590
5591 if (mpb_size > 512) {
5592 /* -1 to account for anchor */
5593 sectors = mpb_sectors(mpb) - 1;
5594
5595 /* write the extended mpb to the sectors preceeding the anchor */
5596 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
5597 return 1;
5598
5599 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
5600 != 512 * sectors)
5601 return 1;
5602 }
5603
5604 /* first block is stored on second to last sector of the disk */
5605 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
5606 return 1;
5607
5608 if (write(fd, buf, 512) != 512)
5609 return 1;
5610
5611 return 0;
5612 }
5613
5614 static void imsm_sync_metadata(struct supertype *container)
5615 {
5616 struct intel_super *super = container->sb;
5617
5618 dprintf("sync metadata: %d\n", super->updates_pending);
5619 if (!super->updates_pending)
5620 return;
5621
5622 write_super_imsm(container, 0);
5623
5624 super->updates_pending = 0;
5625 }
5626
5627 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
5628 {
5629 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
5630 int i = get_imsm_disk_idx(dev, idx, -1);
5631 struct dl *dl;
5632
5633 for (dl = super->disks; dl; dl = dl->next)
5634 if (dl->index == i)
5635 break;
5636
5637 if (dl && is_failed(&dl->disk))
5638 dl = NULL;
5639
5640 if (dl)
5641 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
5642
5643 return dl;
5644 }
5645
5646 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
5647 struct active_array *a, int activate_new,
5648 struct mdinfo *additional_test_list)
5649 {
5650 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
5651 int idx = get_imsm_disk_idx(dev, slot, -1);
5652 struct imsm_super *mpb = super->anchor;
5653 struct imsm_map *map;
5654 unsigned long long pos;
5655 struct mdinfo *d;
5656 struct extent *ex;
5657 int i, j;
5658 int found;
5659 __u32 array_start = 0;
5660 __u32 array_end = 0;
5661 struct dl *dl;
5662 struct mdinfo *test_list;
5663
5664 for (dl = super->disks; dl; dl = dl->next) {
5665 /* If in this array, skip */
5666 for (d = a->info.devs ; d ; d = d->next)
5667 if (d->state_fd >= 0 &&
5668 d->disk.major == dl->major &&
5669 d->disk.minor == dl->minor) {
5670 dprintf("%x:%x already in array\n",
5671 dl->major, dl->minor);
5672 break;
5673 }
5674 if (d)
5675 continue;
5676 test_list = additional_test_list;
5677 while (test_list) {
5678 if (test_list->disk.major == dl->major &&
5679 test_list->disk.minor == dl->minor) {
5680 dprintf("%x:%x already in additional test list\n",
5681 dl->major, dl->minor);
5682 break;
5683 }
5684 test_list = test_list->next;
5685 }
5686 if (test_list)
5687 continue;
5688
5689 /* skip in use or failed drives */
5690 if (is_failed(&dl->disk) || idx == dl->index ||
5691 dl->index == -2) {
5692 dprintf("%x:%x status (failed: %d index: %d)\n",
5693 dl->major, dl->minor, is_failed(&dl->disk), idx);
5694 continue;
5695 }
5696
5697 /* skip pure spares when we are looking for partially
5698 * assimilated drives
5699 */
5700 if (dl->index == -1 && !activate_new)
5701 continue;
5702
5703 /* Does this unused device have the requisite free space?
5704 * It needs to be able to cover all member volumes
5705 */
5706 ex = get_extents(super, dl);
5707 if (!ex) {
5708 dprintf("cannot get extents\n");
5709 continue;
5710 }
5711 for (i = 0; i < mpb->num_raid_devs; i++) {
5712 dev = get_imsm_dev(super, i);
5713 map = get_imsm_map(dev, 0);
5714
5715 /* check if this disk is already a member of
5716 * this array
5717 */
5718 if (get_imsm_disk_slot(map, dl->index) >= 0)
5719 continue;
5720
5721 found = 0;
5722 j = 0;
5723 pos = 0;
5724 array_start = __le32_to_cpu(map->pba_of_lba0);
5725 array_end = array_start +
5726 __le32_to_cpu(map->blocks_per_member) - 1;
5727
5728 do {
5729 /* check that we can start at pba_of_lba0 with
5730 * blocks_per_member of space
5731 */
5732 if (array_start >= pos && array_end < ex[j].start) {
5733 found = 1;
5734 break;
5735 }
5736 pos = ex[j].start + ex[j].size;
5737 j++;
5738 } while (ex[j-1].size);
5739
5740 if (!found)
5741 break;
5742 }
5743
5744 free(ex);
5745 if (i < mpb->num_raid_devs) {
5746 dprintf("%x:%x does not have %u to %u available\n",
5747 dl->major, dl->minor, array_start, array_end);
5748 /* No room */
5749 continue;
5750 }
5751 return dl;
5752 }
5753
5754 return dl;
5755 }
5756
5757
5758 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
5759 {
5760 struct imsm_dev *dev2;
5761 struct imsm_map *map;
5762 struct dl *idisk;
5763 int slot;
5764 int idx;
5765 __u8 state;
5766
5767 dev2 = get_imsm_dev(cont->sb, dev_idx);
5768 if (dev2) {
5769 state = imsm_check_degraded(cont->sb, dev2, failed);
5770 if (state == IMSM_T_STATE_FAILED) {
5771 map = get_imsm_map(dev2, 0);
5772 if (!map)
5773 return 1;
5774 for (slot = 0; slot < map->num_members; slot++) {
5775 /*
5776 * Check if failed disks are deleted from intel
5777 * disk list or are marked to be deleted
5778 */
5779 idx = get_imsm_disk_idx(dev2, slot, -1);
5780 idisk = get_imsm_dl_disk(cont->sb, idx);
5781 /*
5782 * Do not rebuild the array if failed disks
5783 * from failed sub-array are not removed from
5784 * container.
5785 */
5786 if (idisk &&
5787 is_failed(&idisk->disk) &&
5788 (idisk->action != DISK_REMOVE))
5789 return 0;
5790 }
5791 }
5792 }
5793 return 1;
5794 }
5795
5796 static struct mdinfo *imsm_activate_spare(struct active_array *a,
5797 struct metadata_update **updates)
5798 {
5799 /**
5800 * Find a device with unused free space and use it to replace a
5801 * failed/vacant region in an array. We replace failed regions one a
5802 * array at a time. The result is that a new spare disk will be added
5803 * to the first failed array and after the monitor has finished
5804 * propagating failures the remainder will be consumed.
5805 *
5806 * FIXME add a capability for mdmon to request spares from another
5807 * container.
5808 */
5809
5810 struct intel_super *super = a->container->sb;
5811 int inst = a->info.container_member;
5812 struct imsm_dev *dev = get_imsm_dev(super, inst);
5813 struct imsm_map *map = get_imsm_map(dev, 0);
5814 int failed = a->info.array.raid_disks;
5815 struct mdinfo *rv = NULL;
5816 struct mdinfo *d;
5817 struct mdinfo *di;
5818 struct metadata_update *mu;
5819 struct dl *dl;
5820 struct imsm_update_activate_spare *u;
5821 int num_spares = 0;
5822 int i;
5823 int allowed;
5824
5825 for (d = a->info.devs ; d ; d = d->next) {
5826 if ((d->curr_state & DS_FAULTY) &&
5827 d->state_fd >= 0)
5828 /* wait for Removal to happen */
5829 return NULL;
5830 if (d->state_fd >= 0)
5831 failed--;
5832 }
5833
5834 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
5835 inst, failed, a->info.array.raid_disks, a->info.array.level);
5836
5837 if (dev->vol.migr_state &&
5838 dev->vol.migr_type == MIGR_GEN_MIGR)
5839 /* No repair during migration */
5840 return NULL;
5841
5842 if (a->info.array.level == 4)
5843 /* No repair for takeovered array
5844 * imsm doesn't support raid4
5845 */
5846 return NULL;
5847
5848 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
5849 return NULL;
5850
5851 /*
5852 * If there are any failed disks check state of the other volume.
5853 * Block rebuild if the another one is failed until failed disks
5854 * are removed from container.
5855 */
5856 if (failed) {
5857 dprintf("found failed disks in %s, check if there another"
5858 "failed sub-array.\n",
5859 dev->volume);
5860 /* check if states of the other volumes allow for rebuild */
5861 for (i = 0; i < super->anchor->num_raid_devs; i++) {
5862 if (i != inst) {
5863 allowed = imsm_rebuild_allowed(a->container,
5864 i, failed);
5865 if (!allowed)
5866 return NULL;
5867 }
5868 }
5869 }
5870
5871 /* For each slot, if it is not working, find a spare */
5872 for (i = 0; i < a->info.array.raid_disks; i++) {
5873 for (d = a->info.devs ; d ; d = d->next)
5874 if (d->disk.raid_disk == i)
5875 break;
5876 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
5877 if (d && (d->state_fd >= 0))
5878 continue;
5879
5880 /*
5881 * OK, this device needs recovery. Try to re-add the
5882 * previous occupant of this slot, if this fails see if
5883 * we can continue the assimilation of a spare that was
5884 * partially assimilated, finally try to activate a new
5885 * spare.
5886 */
5887 dl = imsm_readd(super, i, a);
5888 if (!dl)
5889 dl = imsm_add_spare(super, i, a, 0, NULL);
5890 if (!dl)
5891 dl = imsm_add_spare(super, i, a, 1, NULL);
5892 if (!dl)
5893 continue;
5894
5895 /* found a usable disk with enough space */
5896 di = malloc(sizeof(*di));
5897 if (!di)
5898 continue;
5899 memset(di, 0, sizeof(*di));
5900
5901 /* dl->index will be -1 in the case we are activating a
5902 * pristine spare. imsm_process_update() will create a
5903 * new index in this case. Once a disk is found to be
5904 * failed in all member arrays it is kicked from the
5905 * metadata
5906 */
5907 di->disk.number = dl->index;
5908
5909 /* (ab)use di->devs to store a pointer to the device
5910 * we chose
5911 */
5912 di->devs = (struct mdinfo *) dl;
5913
5914 di->disk.raid_disk = i;
5915 di->disk.major = dl->major;
5916 di->disk.minor = dl->minor;
5917 di->disk.state = 0;
5918 di->recovery_start = 0;
5919 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
5920 di->component_size = a->info.component_size;
5921 di->container_member = inst;
5922 super->random = random32();
5923 di->next = rv;
5924 rv = di;
5925 num_spares++;
5926 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
5927 i, di->data_offset);
5928
5929 break;
5930 }
5931
5932 if (!rv)
5933 /* No spares found */
5934 return rv;
5935 /* Now 'rv' has a list of devices to return.
5936 * Create a metadata_update record to update the
5937 * disk_ord_tbl for the array
5938 */
5939 mu = malloc(sizeof(*mu));
5940 if (mu) {
5941 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
5942 if (mu->buf == NULL) {
5943 free(mu);
5944 mu = NULL;
5945 }
5946 }
5947 if (!mu) {
5948 while (rv) {
5949 struct mdinfo *n = rv->next;
5950
5951 free(rv);
5952 rv = n;
5953 }
5954 return NULL;
5955 }
5956
5957 mu->space = NULL;
5958 mu->space_list = NULL;
5959 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
5960 mu->next = *updates;
5961 u = (struct imsm_update_activate_spare *) mu->buf;
5962
5963 for (di = rv ; di ; di = di->next) {
5964 u->type = update_activate_spare;
5965 u->dl = (struct dl *) di->devs;
5966 di->devs = NULL;
5967 u->slot = di->disk.raid_disk;
5968 u->array = inst;
5969 u->next = u + 1;
5970 u++;
5971 }
5972 (u-1)->next = NULL;
5973 *updates = mu;
5974
5975 return rv;
5976 }
5977
5978 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
5979 {
5980 struct imsm_dev *dev = get_imsm_dev(super, idx);
5981 struct imsm_map *map = get_imsm_map(dev, 0);
5982 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
5983 struct disk_info *inf = get_disk_info(u);
5984 struct imsm_disk *disk;
5985 int i;
5986 int j;
5987
5988 for (i = 0; i < map->num_members; i++) {
5989 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
5990 for (j = 0; j < new_map->num_members; j++)
5991 if (serialcmp(disk->serial, inf[j].serial) == 0)
5992 return 1;
5993 }
5994
5995 return 0;
5996 }
5997
5998
5999 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6000 {
6001 struct dl *dl = NULL;
6002 for (dl = super->disks; dl; dl = dl->next)
6003 if ((dl->major == major) && (dl->minor == minor))
6004 return dl;
6005 return NULL;
6006 }
6007
6008 static int remove_disk_super(struct intel_super *super, int major, int minor)
6009 {
6010 struct dl *prev = NULL;
6011 struct dl *dl;
6012
6013 prev = NULL;
6014 for (dl = super->disks; dl; dl = dl->next) {
6015 if ((dl->major == major) && (dl->minor == minor)) {
6016 /* remove */
6017 if (prev)
6018 prev->next = dl->next;
6019 else
6020 super->disks = dl->next;
6021 dl->next = NULL;
6022 __free_imsm_disk(dl);
6023 dprintf("%s: removed %x:%x\n",
6024 __func__, major, minor);
6025 break;
6026 }
6027 prev = dl;
6028 }
6029 return 0;
6030 }
6031
6032 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
6033
6034 static int add_remove_disk_update(struct intel_super *super)
6035 {
6036 int check_degraded = 0;
6037 struct dl *disk = NULL;
6038 /* add/remove some spares to/from the metadata/contrainer */
6039 while (super->disk_mgmt_list) {
6040 struct dl *disk_cfg;
6041
6042 disk_cfg = super->disk_mgmt_list;
6043 super->disk_mgmt_list = disk_cfg->next;
6044 disk_cfg->next = NULL;
6045
6046 if (disk_cfg->action == DISK_ADD) {
6047 disk_cfg->next = super->disks;
6048 super->disks = disk_cfg;
6049 check_degraded = 1;
6050 dprintf("%s: added %x:%x\n",
6051 __func__, disk_cfg->major,
6052 disk_cfg->minor);
6053 } else if (disk_cfg->action == DISK_REMOVE) {
6054 dprintf("Disk remove action processed: %x.%x\n",
6055 disk_cfg->major, disk_cfg->minor);
6056 disk = get_disk_super(super,
6057 disk_cfg->major,
6058 disk_cfg->minor);
6059 if (disk) {
6060 /* store action status */
6061 disk->action = DISK_REMOVE;
6062 /* remove spare disks only */
6063 if (disk->index == -1) {
6064 remove_disk_super(super,
6065 disk_cfg->major,
6066 disk_cfg->minor);
6067 }
6068 }
6069 /* release allocate disk structure */
6070 __free_imsm_disk(disk_cfg);
6071 }
6072 }
6073 return check_degraded;
6074 }
6075
6076 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
6077 struct intel_super *super,
6078 void ***space_list)
6079 {
6080 struct dl *new_disk;
6081 struct intel_dev *id;
6082 int i;
6083 int delta_disks = u->new_raid_disks - u->old_raid_disks;
6084 int disk_count = u->old_raid_disks;
6085 void **tofree = NULL;
6086 int devices_to_reshape = 1;
6087 struct imsm_super *mpb = super->anchor;
6088 int ret_val = 0;
6089 unsigned int dev_id;
6090
6091 dprintf("imsm: apply_reshape_container_disks_update()\n");
6092
6093 /* enable spares to use in array */
6094 for (i = 0; i < delta_disks; i++) {
6095 new_disk = get_disk_super(super,
6096 major(u->new_disks[i]),
6097 minor(u->new_disks[i]));
6098 dprintf("imsm: new disk for reshape is: %i:%i "
6099 "(%p, index = %i)\n",
6100 major(u->new_disks[i]), minor(u->new_disks[i]),
6101 new_disk, new_disk->index);
6102 if ((new_disk == NULL) ||
6103 ((new_disk->index >= 0) &&
6104 (new_disk->index < u->old_raid_disks)))
6105 goto update_reshape_exit;
6106 new_disk->index = disk_count++;
6107 /* slot to fill in autolayout
6108 */
6109 new_disk->raiddisk = new_disk->index;
6110 new_disk->disk.status |=
6111 CONFIGURED_DISK;
6112 new_disk->disk.status &= ~SPARE_DISK;
6113 }
6114
6115 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
6116 mpb->num_raid_devs);
6117 /* manage changes in volume
6118 */
6119 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
6120 void **sp = *space_list;
6121 struct imsm_dev *newdev;
6122 struct imsm_map *newmap, *oldmap;
6123
6124 for (id = super->devlist ; id; id = id->next) {
6125 if (id->index == dev_id)
6126 break;
6127 }
6128 if (id == NULL)
6129 break;
6130 if (!sp)
6131 continue;
6132 *space_list = *sp;
6133 newdev = (void*)sp;
6134 /* Copy the dev, but not (all of) the map */
6135 memcpy(newdev, id->dev, sizeof(*newdev));
6136 oldmap = get_imsm_map(id->dev, 0);
6137 newmap = get_imsm_map(newdev, 0);
6138 /* Copy the current map */
6139 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6140 /* update one device only
6141 */
6142 if (devices_to_reshape) {
6143 dprintf("imsm: modifying subdev: %i\n",
6144 id->index);
6145 devices_to_reshape--;
6146 newdev->vol.migr_state = 1;
6147 newdev->vol.curr_migr_unit = 0;
6148 newdev->vol.migr_type = MIGR_GEN_MIGR;
6149 newmap->num_members = u->new_raid_disks;
6150 for (i = 0; i < delta_disks; i++) {
6151 set_imsm_ord_tbl_ent(newmap,
6152 u->old_raid_disks + i,
6153 u->old_raid_disks + i);
6154 }
6155 /* New map is correct, now need to save old map
6156 */
6157 newmap = get_imsm_map(newdev, 1);
6158 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6159
6160 imsm_set_array_size(newdev);
6161 }
6162
6163 sp = (void **)id->dev;
6164 id->dev = newdev;
6165 *sp = tofree;
6166 tofree = sp;
6167 }
6168 if (tofree)
6169 *space_list = tofree;
6170 ret_val = 1;
6171
6172 update_reshape_exit:
6173
6174 return ret_val;
6175 }
6176
6177 static int apply_takeover_update(struct imsm_update_takeover *u,
6178 struct intel_super *super,
6179 void ***space_list)
6180 {
6181 struct imsm_dev *dev = NULL;
6182 struct intel_dev *dv;
6183 struct imsm_dev *dev_new;
6184 struct imsm_map *map;
6185 struct dl *dm, *du;
6186 int i;
6187
6188 for (dv = super->devlist; dv; dv = dv->next)
6189 if (dv->index == (unsigned int)u->subarray) {
6190 dev = dv->dev;
6191 break;
6192 }
6193
6194 if (dev == NULL)
6195 return 0;
6196
6197 map = get_imsm_map(dev, 0);
6198
6199 if (u->direction == R10_TO_R0) {
6200 /* Number of failed disks must be half of initial disk number */
6201 if (imsm_count_failed(super, dev) != (map->num_members / 2))
6202 return 0;
6203
6204 /* iterate through devices to mark removed disks as spare */
6205 for (dm = super->disks; dm; dm = dm->next) {
6206 if (dm->disk.status & FAILED_DISK) {
6207 int idx = dm->index;
6208 /* update indexes on the disk list */
6209 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
6210 the index values will end up being correct.... NB */
6211 for (du = super->disks; du; du = du->next)
6212 if (du->index > idx)
6213 du->index--;
6214 /* mark as spare disk */
6215 dm->disk.status = SPARE_DISK;
6216 dm->index = -1;
6217 }
6218 }
6219 /* update map */
6220 map->num_members = map->num_members / 2;
6221 map->map_state = IMSM_T_STATE_NORMAL;
6222 map->num_domains = 1;
6223 map->raid_level = 0;
6224 map->failed_disk_num = -1;
6225 }
6226
6227 if (u->direction == R0_TO_R10) {
6228 void **space;
6229 /* update slots in current disk list */
6230 for (dm = super->disks; dm; dm = dm->next) {
6231 if (dm->index >= 0)
6232 dm->index *= 2;
6233 }
6234 /* create new *missing* disks */
6235 for (i = 0; i < map->num_members; i++) {
6236 space = *space_list;
6237 if (!space)
6238 continue;
6239 *space_list = *space;
6240 du = (void *)space;
6241 memcpy(du, super->disks, sizeof(*du));
6242 du->fd = -1;
6243 du->minor = 0;
6244 du->major = 0;
6245 du->index = (i * 2) + 1;
6246 sprintf((char *)du->disk.serial,
6247 " MISSING_%d", du->index);
6248 sprintf((char *)du->serial,
6249 "MISSING_%d", du->index);
6250 du->next = super->missing;
6251 super->missing = du;
6252 }
6253 /* create new dev and map */
6254 space = *space_list;
6255 if (!space)
6256 return 0;
6257 *space_list = *space;
6258 dev_new = (void *)space;
6259 memcpy(dev_new, dev, sizeof(*dev));
6260 /* update new map */
6261 map = get_imsm_map(dev_new, 0);
6262 map->num_members = map->num_members * 2;
6263 map->map_state = IMSM_T_STATE_DEGRADED;
6264 map->num_domains = 2;
6265 map->raid_level = 1;
6266 /* replace dev<->dev_new */
6267 dv->dev = dev_new;
6268 }
6269 /* update disk order table */
6270 for (du = super->disks; du; du = du->next)
6271 if (du->index >= 0)
6272 set_imsm_ord_tbl_ent(map, du->index, du->index);
6273 for (du = super->missing; du; du = du->next)
6274 if (du->index >= 0) {
6275 set_imsm_ord_tbl_ent(map, du->index, du->index);
6276 mark_missing(dev_new, &du->disk, du->index);
6277 }
6278
6279 return 1;
6280 }
6281
6282 static void imsm_process_update(struct supertype *st,
6283 struct metadata_update *update)
6284 {
6285 /**
6286 * crack open the metadata_update envelope to find the update record
6287 * update can be one of:
6288 * update_reshape_container_disks - all the arrays in the container
6289 * are being reshaped to have more devices. We need to mark
6290 * the arrays for general migration and convert selected spares
6291 * into active devices.
6292 * update_activate_spare - a spare device has replaced a failed
6293 * device in an array, update the disk_ord_tbl. If this disk is
6294 * present in all member arrays then also clear the SPARE_DISK
6295 * flag
6296 * update_create_array
6297 * update_kill_array
6298 * update_rename_array
6299 * update_add_remove_disk
6300 */
6301 struct intel_super *super = st->sb;
6302 struct imsm_super *mpb;
6303 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6304
6305 /* update requires a larger buf but the allocation failed */
6306 if (super->next_len && !super->next_buf) {
6307 super->next_len = 0;
6308 return;
6309 }
6310
6311 if (super->next_buf) {
6312 memcpy(super->next_buf, super->buf, super->len);
6313 free(super->buf);
6314 super->len = super->next_len;
6315 super->buf = super->next_buf;
6316
6317 super->next_len = 0;
6318 super->next_buf = NULL;
6319 }
6320
6321 mpb = super->anchor;
6322
6323 switch (type) {
6324 case update_takeover: {
6325 struct imsm_update_takeover *u = (void *)update->buf;
6326 if (apply_takeover_update(u, super, &update->space_list)) {
6327 imsm_update_version_info(super);
6328 super->updates_pending++;
6329 }
6330 break;
6331 }
6332
6333 case update_reshape_container_disks: {
6334 struct imsm_update_reshape *u = (void *)update->buf;
6335 if (apply_reshape_container_disks_update(
6336 u, super, &update->space_list))
6337 super->updates_pending++;
6338 break;
6339 }
6340 case update_activate_spare: {
6341 struct imsm_update_activate_spare *u = (void *) update->buf;
6342 struct imsm_dev *dev = get_imsm_dev(super, u->array);
6343 struct imsm_map *map = get_imsm_map(dev, 0);
6344 struct imsm_map *migr_map;
6345 struct active_array *a;
6346 struct imsm_disk *disk;
6347 __u8 to_state;
6348 struct dl *dl;
6349 unsigned int found;
6350 int failed;
6351 int victim = get_imsm_disk_idx(dev, u->slot, -1);
6352 int i;
6353
6354 for (dl = super->disks; dl; dl = dl->next)
6355 if (dl == u->dl)
6356 break;
6357
6358 if (!dl) {
6359 fprintf(stderr, "error: imsm_activate_spare passed "
6360 "an unknown disk (index: %d)\n",
6361 u->dl->index);
6362 return;
6363 }
6364
6365 super->updates_pending++;
6366
6367 /* count failures (excluding rebuilds and the victim)
6368 * to determine map[0] state
6369 */
6370 failed = 0;
6371 for (i = 0; i < map->num_members; i++) {
6372 if (i == u->slot)
6373 continue;
6374 disk = get_imsm_disk(super,
6375 get_imsm_disk_idx(dev, i, -1));
6376 if (!disk || is_failed(disk))
6377 failed++;
6378 }
6379
6380 /* adding a pristine spare, assign a new index */
6381 if (dl->index < 0) {
6382 dl->index = super->anchor->num_disks;
6383 super->anchor->num_disks++;
6384 }
6385 disk = &dl->disk;
6386 disk->status |= CONFIGURED_DISK;
6387 disk->status &= ~SPARE_DISK;
6388
6389 /* mark rebuild */
6390 to_state = imsm_check_degraded(super, dev, failed);
6391 map->map_state = IMSM_T_STATE_DEGRADED;
6392 migrate(dev, to_state, MIGR_REBUILD);
6393 migr_map = get_imsm_map(dev, 1);
6394 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
6395 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
6396
6397 /* update the family_num to mark a new container
6398 * generation, being careful to record the existing
6399 * family_num in orig_family_num to clean up after
6400 * earlier mdadm versions that neglected to set it.
6401 */
6402 if (mpb->orig_family_num == 0)
6403 mpb->orig_family_num = mpb->family_num;
6404 mpb->family_num += super->random;
6405
6406 /* count arrays using the victim in the metadata */
6407 found = 0;
6408 for (a = st->arrays; a ; a = a->next) {
6409 dev = get_imsm_dev(super, a->info.container_member);
6410 map = get_imsm_map(dev, 0);
6411
6412 if (get_imsm_disk_slot(map, victim) >= 0)
6413 found++;
6414 }
6415
6416 /* delete the victim if it is no longer being
6417 * utilized anywhere
6418 */
6419 if (!found) {
6420 struct dl **dlp;
6421
6422 /* We know that 'manager' isn't touching anything,
6423 * so it is safe to delete
6424 */
6425 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
6426 if ((*dlp)->index == victim)
6427 break;
6428
6429 /* victim may be on the missing list */
6430 if (!*dlp)
6431 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
6432 if ((*dlp)->index == victim)
6433 break;
6434 imsm_delete(super, dlp, victim);
6435 }
6436 break;
6437 }
6438 case update_create_array: {
6439 /* someone wants to create a new array, we need to be aware of
6440 * a few races/collisions:
6441 * 1/ 'Create' called by two separate instances of mdadm
6442 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
6443 * devices that have since been assimilated via
6444 * activate_spare.
6445 * In the event this update can not be carried out mdadm will
6446 * (FIX ME) notice that its update did not take hold.
6447 */
6448 struct imsm_update_create_array *u = (void *) update->buf;
6449 struct intel_dev *dv;
6450 struct imsm_dev *dev;
6451 struct imsm_map *map, *new_map;
6452 unsigned long long start, end;
6453 unsigned long long new_start, new_end;
6454 int i;
6455 struct disk_info *inf;
6456 struct dl *dl;
6457
6458 /* handle racing creates: first come first serve */
6459 if (u->dev_idx < mpb->num_raid_devs) {
6460 dprintf("%s: subarray %d already defined\n",
6461 __func__, u->dev_idx);
6462 goto create_error;
6463 }
6464
6465 /* check update is next in sequence */
6466 if (u->dev_idx != mpb->num_raid_devs) {
6467 dprintf("%s: can not create array %d expected index %d\n",
6468 __func__, u->dev_idx, mpb->num_raid_devs);
6469 goto create_error;
6470 }
6471
6472 new_map = get_imsm_map(&u->dev, 0);
6473 new_start = __le32_to_cpu(new_map->pba_of_lba0);
6474 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
6475 inf = get_disk_info(u);
6476
6477 /* handle activate_spare versus create race:
6478 * check to make sure that overlapping arrays do not include
6479 * overalpping disks
6480 */
6481 for (i = 0; i < mpb->num_raid_devs; i++) {
6482 dev = get_imsm_dev(super, i);
6483 map = get_imsm_map(dev, 0);
6484 start = __le32_to_cpu(map->pba_of_lba0);
6485 end = start + __le32_to_cpu(map->blocks_per_member);
6486 if ((new_start >= start && new_start <= end) ||
6487 (start >= new_start && start <= new_end))
6488 /* overlap */;
6489 else
6490 continue;
6491
6492 if (disks_overlap(super, i, u)) {
6493 dprintf("%s: arrays overlap\n", __func__);
6494 goto create_error;
6495 }
6496 }
6497
6498 /* check that prepare update was successful */
6499 if (!update->space) {
6500 dprintf("%s: prepare update failed\n", __func__);
6501 goto create_error;
6502 }
6503
6504 /* check that all disks are still active before committing
6505 * changes. FIXME: could we instead handle this by creating a
6506 * degraded array? That's probably not what the user expects,
6507 * so better to drop this update on the floor.
6508 */
6509 for (i = 0; i < new_map->num_members; i++) {
6510 dl = serial_to_dl(inf[i].serial, super);
6511 if (!dl) {
6512 dprintf("%s: disk disappeared\n", __func__);
6513 goto create_error;
6514 }
6515 }
6516
6517 super->updates_pending++;
6518
6519 /* convert spares to members and fixup ord_tbl */
6520 for (i = 0; i < new_map->num_members; i++) {
6521 dl = serial_to_dl(inf[i].serial, super);
6522 if (dl->index == -1) {
6523 dl->index = mpb->num_disks;
6524 mpb->num_disks++;
6525 dl->disk.status |= CONFIGURED_DISK;
6526 dl->disk.status &= ~SPARE_DISK;
6527 }
6528 set_imsm_ord_tbl_ent(new_map, i, dl->index);
6529 }
6530
6531 dv = update->space;
6532 dev = dv->dev;
6533 update->space = NULL;
6534 imsm_copy_dev(dev, &u->dev);
6535 dv->index = u->dev_idx;
6536 dv->next = super->devlist;
6537 super->devlist = dv;
6538 mpb->num_raid_devs++;
6539
6540 imsm_update_version_info(super);
6541 break;
6542 create_error:
6543 /* mdmon knows how to release update->space, but not
6544 * ((struct intel_dev *) update->space)->dev
6545 */
6546 if (update->space) {
6547 dv = update->space;
6548 free(dv->dev);
6549 }
6550 break;
6551 }
6552 case update_kill_array: {
6553 struct imsm_update_kill_array *u = (void *) update->buf;
6554 int victim = u->dev_idx;
6555 struct active_array *a;
6556 struct intel_dev **dp;
6557 struct imsm_dev *dev;
6558
6559 /* sanity check that we are not affecting the uuid of
6560 * active arrays, or deleting an active array
6561 *
6562 * FIXME when immutable ids are available, but note that
6563 * we'll also need to fixup the invalidated/active
6564 * subarray indexes in mdstat
6565 */
6566 for (a = st->arrays; a; a = a->next)
6567 if (a->info.container_member >= victim)
6568 break;
6569 /* by definition if mdmon is running at least one array
6570 * is active in the container, so checking
6571 * mpb->num_raid_devs is just extra paranoia
6572 */
6573 dev = get_imsm_dev(super, victim);
6574 if (a || !dev || mpb->num_raid_devs == 1) {
6575 dprintf("failed to delete subarray-%d\n", victim);
6576 break;
6577 }
6578
6579 for (dp = &super->devlist; *dp;)
6580 if ((*dp)->index == (unsigned)super->current_vol) {
6581 *dp = (*dp)->next;
6582 } else {
6583 if ((*dp)->index > (unsigned)victim)
6584 (*dp)->index--;
6585 dp = &(*dp)->next;
6586 }
6587 mpb->num_raid_devs--;
6588 super->updates_pending++;
6589 break;
6590 }
6591 case update_rename_array: {
6592 struct imsm_update_rename_array *u = (void *) update->buf;
6593 char name[MAX_RAID_SERIAL_LEN+1];
6594 int target = u->dev_idx;
6595 struct active_array *a;
6596 struct imsm_dev *dev;
6597
6598 /* sanity check that we are not affecting the uuid of
6599 * an active array
6600 */
6601 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
6602 name[MAX_RAID_SERIAL_LEN] = '\0';
6603 for (a = st->arrays; a; a = a->next)
6604 if (a->info.container_member == target)
6605 break;
6606 dev = get_imsm_dev(super, u->dev_idx);
6607 if (a || !dev || !check_name(super, name, 1)) {
6608 dprintf("failed to rename subarray-%d\n", target);
6609 break;
6610 }
6611
6612 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6613 super->updates_pending++;
6614 break;
6615 }
6616 case update_add_remove_disk: {
6617 /* we may be able to repair some arrays if disks are
6618 * being added, check teh status of add_remove_disk
6619 * if discs has been added.
6620 */
6621 if (add_remove_disk_update(super)) {
6622 struct active_array *a;
6623
6624 super->updates_pending++;
6625 for (a = st->arrays; a; a = a->next)
6626 a->check_degraded = 1;
6627 }
6628 break;
6629 }
6630 default:
6631 fprintf(stderr, "error: unsuported process update type:"
6632 "(type: %d)\n", type);
6633 }
6634 }
6635
6636 static void imsm_prepare_update(struct supertype *st,
6637 struct metadata_update *update)
6638 {
6639 /**
6640 * Allocate space to hold new disk entries, raid-device entries or a new
6641 * mpb if necessary. The manager synchronously waits for updates to
6642 * complete in the monitor, so new mpb buffers allocated here can be
6643 * integrated by the monitor thread without worrying about live pointers
6644 * in the manager thread.
6645 */
6646 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6647 struct intel_super *super = st->sb;
6648 struct imsm_super *mpb = super->anchor;
6649 size_t buf_len;
6650 size_t len = 0;
6651
6652 switch (type) {
6653 case update_takeover: {
6654 struct imsm_update_takeover *u = (void *)update->buf;
6655 if (u->direction == R0_TO_R10) {
6656 void **tail = (void **)&update->space_list;
6657 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
6658 struct imsm_map *map = get_imsm_map(dev, 0);
6659 int num_members = map->num_members;
6660 void *space;
6661 int size, i;
6662 int err = 0;
6663 /* allocate memory for added disks */
6664 for (i = 0; i < num_members; i++) {
6665 size = sizeof(struct dl);
6666 space = malloc(size);
6667 if (!space) {
6668 err++;
6669 break;
6670 }
6671 *tail = space;
6672 tail = space;
6673 *tail = NULL;
6674 }
6675 /* allocate memory for new device */
6676 size = sizeof_imsm_dev(super->devlist->dev, 0) +
6677 (num_members * sizeof(__u32));
6678 space = malloc(size);
6679 if (!space)
6680 err++;
6681 else {
6682 *tail = space;
6683 tail = space;
6684 *tail = NULL;
6685 }
6686 if (!err) {
6687 len = disks_to_mpb_size(num_members * 2);
6688 } else {
6689 /* if allocation didn't success, free buffer */
6690 while (update->space_list) {
6691 void **sp = update->space_list;
6692 update->space_list = *sp;
6693 free(sp);
6694 }
6695 }
6696 }
6697
6698 break;
6699 }
6700 case update_reshape_container_disks: {
6701 /* Every raid device in the container is about to
6702 * gain some more devices, and we will enter a
6703 * reconfiguration.
6704 * So each 'imsm_map' will be bigger, and the imsm_vol
6705 * will now hold 2 of them.
6706 * Thus we need new 'struct imsm_dev' allocations sized
6707 * as sizeof_imsm_dev but with more devices in both maps.
6708 */
6709 struct imsm_update_reshape *u = (void *)update->buf;
6710 struct intel_dev *dl;
6711 void **space_tail = (void**)&update->space_list;
6712
6713 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
6714
6715 for (dl = super->devlist; dl; dl = dl->next) {
6716 int size = sizeof_imsm_dev(dl->dev, 1);
6717 void *s;
6718 if (u->new_raid_disks > u->old_raid_disks)
6719 size += sizeof(__u32)*2*
6720 (u->new_raid_disks - u->old_raid_disks);
6721 s = malloc(size);
6722 if (!s)
6723 break;
6724 *space_tail = s;
6725 space_tail = s;
6726 *space_tail = NULL;
6727 }
6728
6729 len = disks_to_mpb_size(u->new_raid_disks);
6730 dprintf("New anchor length is %llu\n", (unsigned long long)len);
6731 break;
6732 }
6733 case update_create_array: {
6734 struct imsm_update_create_array *u = (void *) update->buf;
6735 struct intel_dev *dv;
6736 struct imsm_dev *dev = &u->dev;
6737 struct imsm_map *map = get_imsm_map(dev, 0);
6738 struct dl *dl;
6739 struct disk_info *inf;
6740 int i;
6741 int activate = 0;
6742
6743 inf = get_disk_info(u);
6744 len = sizeof_imsm_dev(dev, 1);
6745 /* allocate a new super->devlist entry */
6746 dv = malloc(sizeof(*dv));
6747 if (dv) {
6748 dv->dev = malloc(len);
6749 if (dv->dev)
6750 update->space = dv;
6751 else {
6752 free(dv);
6753 update->space = NULL;
6754 }
6755 }
6756
6757 /* count how many spares will be converted to members */
6758 for (i = 0; i < map->num_members; i++) {
6759 dl = serial_to_dl(inf[i].serial, super);
6760 if (!dl) {
6761 /* hmm maybe it failed?, nothing we can do about
6762 * it here
6763 */
6764 continue;
6765 }
6766 if (count_memberships(dl, super) == 0)
6767 activate++;
6768 }
6769 len += activate * sizeof(struct imsm_disk);
6770 break;
6771 default:
6772 break;
6773 }
6774 }
6775
6776 /* check if we need a larger metadata buffer */
6777 if (super->next_buf)
6778 buf_len = super->next_len;
6779 else
6780 buf_len = super->len;
6781
6782 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
6783 /* ok we need a larger buf than what is currently allocated
6784 * if this allocation fails process_update will notice that
6785 * ->next_len is set and ->next_buf is NULL
6786 */
6787 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
6788 if (super->next_buf)
6789 free(super->next_buf);
6790
6791 super->next_len = buf_len;
6792 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
6793 memset(super->next_buf, 0, buf_len);
6794 else
6795 super->next_buf = NULL;
6796 }
6797 }
6798
6799 /* must be called while manager is quiesced */
6800 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
6801 {
6802 struct imsm_super *mpb = super->anchor;
6803 struct dl *iter;
6804 struct imsm_dev *dev;
6805 struct imsm_map *map;
6806 int i, j, num_members;
6807 __u32 ord;
6808
6809 dprintf("%s: deleting device[%d] from imsm_super\n",
6810 __func__, index);
6811
6812 /* shift all indexes down one */
6813 for (iter = super->disks; iter; iter = iter->next)
6814 if (iter->index > (int)index)
6815 iter->index--;
6816 for (iter = super->missing; iter; iter = iter->next)
6817 if (iter->index > (int)index)
6818 iter->index--;
6819
6820 for (i = 0; i < mpb->num_raid_devs; i++) {
6821 dev = get_imsm_dev(super, i);
6822 map = get_imsm_map(dev, 0);
6823 num_members = map->num_members;
6824 for (j = 0; j < num_members; j++) {
6825 /* update ord entries being careful not to propagate
6826 * ord-flags to the first map
6827 */
6828 ord = get_imsm_ord_tbl_ent(dev, j, -1);
6829
6830 if (ord_to_idx(ord) <= index)
6831 continue;
6832
6833 map = get_imsm_map(dev, 0);
6834 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
6835 map = get_imsm_map(dev, 1);
6836 if (map)
6837 set_imsm_ord_tbl_ent(map, j, ord - 1);
6838 }
6839 }
6840
6841 mpb->num_disks--;
6842 super->updates_pending++;
6843 if (*dlp) {
6844 struct dl *dl = *dlp;
6845
6846 *dlp = (*dlp)->next;
6847 __free_imsm_disk(dl);
6848 }
6849 }
6850
6851 static char disk_by_path[] = "/dev/disk/by-path/";
6852
6853 static const char *imsm_get_disk_controller_domain(const char *path)
6854 {
6855 char disk_path[PATH_MAX];
6856 char *drv=NULL;
6857 struct stat st;
6858
6859 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
6860 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
6861 if (stat(disk_path, &st) == 0) {
6862 struct sys_dev* hba;
6863 char *path=NULL;
6864
6865 path = devt_to_devpath(st.st_rdev);
6866 if (path == NULL)
6867 return "unknown";
6868 hba = find_disk_attached_hba(-1, path);
6869 if (hba && hba->type == SYS_DEV_SAS)
6870 drv = "isci";
6871 else if (hba && hba->type == SYS_DEV_SATA)
6872 drv = "ahci";
6873 else
6874 drv = "unknown";
6875 dprintf("path: %s hba: %s attached: %s\n",
6876 path, (hba) ? hba->path : "NULL", drv);
6877 free(path);
6878 if (hba)
6879 free_sys_dev(&hba);
6880 }
6881 return drv;
6882 }
6883
6884 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
6885 {
6886 char subdev_name[20];
6887 struct mdstat_ent *mdstat;
6888
6889 sprintf(subdev_name, "%d", subdev);
6890 mdstat = mdstat_by_subdev(subdev_name, container);
6891 if (!mdstat)
6892 return -1;
6893
6894 *minor = mdstat->devnum;
6895 free_mdstat(mdstat);
6896 return 0;
6897 }
6898
6899 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
6900 struct geo_params *geo,
6901 int *old_raid_disks)
6902 {
6903 /* currently we only support increasing the number of devices
6904 * for a container. This increases the number of device for each
6905 * member array. They must all be RAID0 or RAID5.
6906 */
6907 int ret_val = 0;
6908 struct mdinfo *info, *member;
6909 int devices_that_can_grow = 0;
6910
6911 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
6912 "st->devnum = (%i)\n",
6913 st->devnum);
6914
6915 if (geo->size != -1 ||
6916 geo->level != UnSet ||
6917 geo->layout != UnSet ||
6918 geo->chunksize != 0 ||
6919 geo->raid_disks == UnSet) {
6920 dprintf("imsm: Container operation is allowed for "
6921 "raid disks number change only.\n");
6922 return ret_val;
6923 }
6924
6925 info = container_content_imsm(st, NULL);
6926 for (member = info; member; member = member->next) {
6927 int result;
6928 int minor;
6929
6930 dprintf("imsm: checking device_num: %i\n",
6931 member->container_member);
6932
6933 if (geo->raid_disks <= member->array.raid_disks) {
6934 /* we work on container for Online Capacity Expansion
6935 * only so raid_disks has to grow
6936 */
6937 dprintf("imsm: for container operation raid disks "
6938 "increase is required\n");
6939 break;
6940 }
6941
6942 if ((info->array.level != 0) &&
6943 (info->array.level != 5)) {
6944 /* we cannot use this container with other raid level
6945 */
6946 dprintf("imsm: for container operation wrong"
6947 " raid level (%i) detected\n",
6948 info->array.level);
6949 break;
6950 } else {
6951 /* check for platform support
6952 * for this raid level configuration
6953 */
6954 struct intel_super *super = st->sb;
6955 if (!is_raid_level_supported(super->orom,
6956 member->array.level,
6957 geo->raid_disks)) {
6958 dprintf("platform does not support raid%d with"
6959 " %d disk%s\n",
6960 info->array.level,
6961 geo->raid_disks,
6962 geo->raid_disks > 1 ? "s" : "");
6963 break;
6964 }
6965 /* check if component size is aligned to chunk size
6966 */
6967 if (info->component_size %
6968 (info->array.chunk_size/512)) {
6969 dprintf("Component size is not aligned to "
6970 "chunk size\n");
6971 break;
6972 }
6973 }
6974
6975 if (*old_raid_disks &&
6976 info->array.raid_disks != *old_raid_disks)
6977 break;
6978 *old_raid_disks = info->array.raid_disks;
6979
6980 /* All raid5 and raid0 volumes in container
6981 * have to be ready for Online Capacity Expansion
6982 * so they need to be assembled. We have already
6983 * checked that no recovery etc is happening.
6984 */
6985 result = imsm_find_array_minor_by_subdev(member->container_member,
6986 st->container_dev,
6987 &minor);
6988 if (result < 0) {
6989 dprintf("imsm: cannot find array\n");
6990 break;
6991 }
6992 devices_that_can_grow++;
6993 }
6994 sysfs_free(info);
6995 if (!member && devices_that_can_grow)
6996 ret_val = 1;
6997
6998 if (ret_val)
6999 dprintf("\tContainer operation allowed\n");
7000 else
7001 dprintf("\tError: %i\n", ret_val);
7002
7003 return ret_val;
7004 }
7005
7006 /* Function: get_spares_for_grow
7007 * Description: Allocates memory and creates list of spare devices
7008 * avaliable in container. Checks if spare drive size is acceptable.
7009 * Parameters: Pointer to the supertype structure
7010 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
7011 * NULL if fail
7012 */
7013 static struct mdinfo *get_spares_for_grow(struct supertype *st)
7014 {
7015 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
7016 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
7017 }
7018
7019 /******************************************************************************
7020 * function: imsm_create_metadata_update_for_reshape
7021 * Function creates update for whole IMSM container.
7022 *
7023 ******************************************************************************/
7024 static int imsm_create_metadata_update_for_reshape(
7025 struct supertype *st,
7026 struct geo_params *geo,
7027 int old_raid_disks,
7028 struct imsm_update_reshape **updatep)
7029 {
7030 struct intel_super *super = st->sb;
7031 struct imsm_super *mpb = super->anchor;
7032 int update_memory_size = 0;
7033 struct imsm_update_reshape *u = NULL;
7034 struct mdinfo *spares = NULL;
7035 int i;
7036 int delta_disks = 0;
7037 struct mdinfo *dev;
7038
7039 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
7040 geo->raid_disks);
7041
7042 delta_disks = geo->raid_disks - old_raid_disks;
7043
7044 /* size of all update data without anchor */
7045 update_memory_size = sizeof(struct imsm_update_reshape);
7046
7047 /* now add space for spare disks that we need to add. */
7048 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
7049
7050 u = calloc(1, update_memory_size);
7051 if (u == NULL) {
7052 dprintf("error: "
7053 "cannot get memory for imsm_update_reshape update\n");
7054 return 0;
7055 }
7056 u->type = update_reshape_container_disks;
7057 u->old_raid_disks = old_raid_disks;
7058 u->new_raid_disks = geo->raid_disks;
7059
7060 /* now get spare disks list
7061 */
7062 spares = get_spares_for_grow(st);
7063
7064 if (spares == NULL
7065 || delta_disks > spares->array.spare_disks) {
7066 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
7067 "for %s.\n", geo->dev_name);
7068 goto abort;
7069 }
7070
7071 /* we have got spares
7072 * update disk list in imsm_disk list table in anchor
7073 */
7074 dprintf("imsm: %i spares are available.\n\n",
7075 spares->array.spare_disks);
7076
7077 dev = spares->devs;
7078 for (i = 0; i < delta_disks; i++) {
7079 struct dl *dl;
7080
7081 if (dev == NULL)
7082 break;
7083 u->new_disks[i] = makedev(dev->disk.major,
7084 dev->disk.minor);
7085 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
7086 dl->index = mpb->num_disks;
7087 mpb->num_disks++;
7088 dev = dev->next;
7089 }
7090
7091 abort:
7092 /* free spares
7093 */
7094 sysfs_free(spares);
7095
7096 dprintf("imsm: reshape update preparation :");
7097 if (i == delta_disks) {
7098 dprintf(" OK\n");
7099 *updatep = u;
7100 return update_memory_size;
7101 }
7102 free(u);
7103 dprintf(" Error\n");
7104
7105 return 0;
7106 }
7107
7108 static void imsm_update_metadata_locally(struct supertype *st,
7109 void *buf, int len)
7110 {
7111 struct metadata_update mu;
7112
7113 mu.buf = buf;
7114 mu.len = len;
7115 mu.space = NULL;
7116 mu.space_list = NULL;
7117 mu.next = NULL;
7118 imsm_prepare_update(st, &mu);
7119 imsm_process_update(st, &mu);
7120
7121 while (mu.space_list) {
7122 void **space = mu.space_list;
7123 mu.space_list = *space;
7124 free(space);
7125 }
7126 }
7127
7128 /***************************************************************************
7129 * Function: imsm_analyze_change
7130 * Description: Function analyze change for single volume
7131 * and validate if transition is supported
7132 * Parameters: Geometry parameters, supertype structure
7133 * Returns: Operation type code on success, -1 if fail
7134 ****************************************************************************/
7135 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
7136 struct geo_params *geo)
7137 {
7138 struct mdinfo info;
7139 int change = -1;
7140 int check_devs = 0;
7141 int chunk;
7142
7143 getinfo_super_imsm_volume(st, &info, NULL);
7144
7145 if ((geo->level != info.array.level) &&
7146 (geo->level >= 0) &&
7147 (geo->level != UnSet)) {
7148 switch (info.array.level) {
7149 case 0:
7150 if (geo->level == 5) {
7151 change = CH_MIGRATION;
7152 check_devs = 1;
7153 }
7154 if (geo->level == 10) {
7155 change = CH_TAKEOVER;
7156 check_devs = 1;
7157 }
7158 break;
7159 case 1:
7160 if (geo->level == 0) {
7161 change = CH_TAKEOVER;
7162 check_devs = 1;
7163 }
7164 break;
7165 case 5:
7166 if (geo->level == 0)
7167 change = CH_MIGRATION;
7168 break;
7169 case 10:
7170 if (geo->level == 0) {
7171 change = CH_TAKEOVER;
7172 check_devs = 1;
7173 }
7174 break;
7175 }
7176 if (change == -1) {
7177 fprintf(stderr,
7178 Name " Error. Level Migration from %d to %d "
7179 "not supported!\n",
7180 info.array.level, geo->level);
7181 goto analyse_change_exit;
7182 }
7183 } else
7184 geo->level = info.array.level;
7185
7186 if ((geo->layout != info.array.layout)
7187 && ((geo->layout != UnSet) && (geo->layout != -1))) {
7188 change = CH_MIGRATION;
7189 if ((info.array.layout == 0)
7190 && (info.array.level == 5)
7191 && (geo->layout == 5)) {
7192 /* reshape 5 -> 4 */
7193 } else if ((info.array.layout == 5)
7194 && (info.array.level == 5)
7195 && (geo->layout == 0)) {
7196 /* reshape 4 -> 5 */
7197 geo->layout = 0;
7198 geo->level = 5;
7199 } else {
7200 fprintf(stderr,
7201 Name " Error. Layout Migration from %d to %d "
7202 "not supported!\n",
7203 info.array.layout, geo->layout);
7204 change = -1;
7205 goto analyse_change_exit;
7206 }
7207 } else
7208 geo->layout = info.array.layout;
7209
7210 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
7211 && (geo->chunksize != info.array.chunk_size))
7212 change = CH_MIGRATION;
7213 else
7214 geo->chunksize = info.array.chunk_size;
7215
7216 chunk = geo->chunksize / 1024;
7217 if (!validate_geometry_imsm(st,
7218 geo->level,
7219 geo->layout,
7220 geo->raid_disks,
7221 &chunk,
7222 geo->size,
7223 0, 0, 1))
7224 change = -1;
7225
7226 if (check_devs) {
7227 struct intel_super *super = st->sb;
7228 struct imsm_super *mpb = super->anchor;
7229
7230 if (mpb->num_raid_devs > 1) {
7231 fprintf(stderr,
7232 Name " Error. Cannot perform operation on %s"
7233 "- for this operation it MUST be single "
7234 "array in container\n",
7235 geo->dev_name);
7236 change = -1;
7237 }
7238 }
7239
7240 analyse_change_exit:
7241
7242 return change;
7243 }
7244
7245 int imsm_takeover(struct supertype *st, struct geo_params *geo)
7246 {
7247 struct intel_super *super = st->sb;
7248 struct imsm_update_takeover *u;
7249
7250 u = malloc(sizeof(struct imsm_update_takeover));
7251 if (u == NULL)
7252 return 1;
7253
7254 u->type = update_takeover;
7255 u->subarray = super->current_vol;
7256
7257 /* 10->0 transition */
7258 if (geo->level == 0)
7259 u->direction = R10_TO_R0;
7260
7261 /* 0->10 transition */
7262 if (geo->level == 10)
7263 u->direction = R0_TO_R10;
7264
7265 /* update metadata locally */
7266 imsm_update_metadata_locally(st, u,
7267 sizeof(struct imsm_update_takeover));
7268 /* and possibly remotely */
7269 if (st->update_tail)
7270 append_metadata_update(st, u,
7271 sizeof(struct imsm_update_takeover));
7272 else
7273 free(u);
7274
7275 return 0;
7276 }
7277
7278 static int warn_user_about_risk(void)
7279 {
7280 int rv = 0;
7281
7282 fprintf(stderr,
7283 "\nThis is an experimental feature. Data on the RAID volume(s) "
7284 "can be lost!!!\n\n"
7285 "To continue command execution please make sure that\n"
7286 "the grow process will not be interrupted. Use safe power\n"
7287 "supply to avoid unexpected system reboot. Make sure that\n"
7288 "reshaped container is not assembled automatically during\n"
7289 "system boot.\n"
7290 "If reshape is interrupted, assemble array manually\n"
7291 "using e.g. '-Ac' option and up to date mdadm.conf file.\n"
7292 "Assembly in scan mode is not possible in such case.\n"
7293 "Growing container with boot array is not possible.\n"
7294 "If boot array reshape is interrupted, whole file system\n"
7295 "can be lost.\n\n");
7296 rv = ask("Do you want to continue? ");
7297 fprintf(stderr, "\n");
7298
7299 return rv;
7300 }
7301
7302 static int imsm_reshape_super(struct supertype *st, long long size, int level,
7303 int layout, int chunksize, int raid_disks,
7304 int delta_disks, char *backup, char *dev,
7305 int verbose)
7306 {
7307 int ret_val = 1;
7308 struct geo_params geo;
7309
7310 dprintf("imsm: reshape_super called.\n");
7311
7312 memset(&geo, 0, sizeof(struct geo_params));
7313
7314 geo.dev_name = dev;
7315 geo.dev_id = st->devnum;
7316 geo.size = size;
7317 geo.level = level;
7318 geo.layout = layout;
7319 geo.chunksize = chunksize;
7320 geo.raid_disks = raid_disks;
7321 if (delta_disks != UnSet)
7322 geo.raid_disks += delta_disks;
7323
7324 dprintf("\tfor level : %i\n", geo.level);
7325 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
7326
7327 if (experimental() == 0)
7328 return ret_val;
7329
7330 if (st->container_dev == st->devnum) {
7331 /* On container level we can only increase number of devices. */
7332 dprintf("imsm: info: Container operation\n");
7333 int old_raid_disks = 0;
7334
7335 /* this warning will be removed when imsm checkpointing
7336 * will be implemented, and restoring from check-point
7337 * operation will be transparent for reboot process
7338 */
7339 if (warn_user_about_risk() == 0)
7340 return ret_val;
7341
7342 if (imsm_reshape_is_allowed_on_container(
7343 st, &geo, &old_raid_disks)) {
7344 struct imsm_update_reshape *u = NULL;
7345 int len;
7346
7347 len = imsm_create_metadata_update_for_reshape(
7348 st, &geo, old_raid_disks, &u);
7349
7350 if (len <= 0) {
7351 dprintf("imsm: Cannot prepare update\n");
7352 goto exit_imsm_reshape_super;
7353 }
7354
7355 ret_val = 0;
7356 /* update metadata locally */
7357 imsm_update_metadata_locally(st, u, len);
7358 /* and possibly remotely */
7359 if (st->update_tail)
7360 append_metadata_update(st, u, len);
7361 else
7362 free(u);
7363
7364 } else {
7365 fprintf(stderr, Name ": (imsm) Operation "
7366 "is not allowed on this container\n");
7367 }
7368 } else {
7369 /* On volume level we support following operations
7370 * - takeover: raid10 -> raid0; raid0 -> raid10
7371 * - chunk size migration
7372 * - migration: raid5 -> raid0; raid0 -> raid5
7373 */
7374 struct intel_super *super = st->sb;
7375 struct intel_dev *dev = super->devlist;
7376 int change, devnum;
7377 dprintf("imsm: info: Volume operation\n");
7378 /* find requested device */
7379 while (dev) {
7380 imsm_find_array_minor_by_subdev(dev->index, st->container_dev, &devnum);
7381 if (devnum == geo.dev_id)
7382 break;
7383 dev = dev->next;
7384 }
7385 if (dev == NULL) {
7386 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
7387 geo.dev_name, geo.dev_id);
7388 goto exit_imsm_reshape_super;
7389 }
7390 super->current_vol = dev->index;
7391 change = imsm_analyze_change(st, &geo);
7392 switch (change) {
7393 case CH_TAKEOVER:
7394 ret_val = imsm_takeover(st, &geo);
7395 break;
7396 case CH_MIGRATION:
7397 ret_val = 0;
7398 break;
7399 default:
7400 ret_val = 1;
7401 }
7402 }
7403
7404 exit_imsm_reshape_super:
7405 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
7406 return ret_val;
7407 }
7408
7409 static int imsm_manage_reshape(
7410 int afd, struct mdinfo *sra, struct reshape *reshape,
7411 struct supertype *st, unsigned long stripes,
7412 int *fds, unsigned long long *offsets,
7413 int dests, int *destfd, unsigned long long *destoffsets)
7414 {
7415 /* Just use child_monitor for now */
7416 return child_monitor(
7417 afd, sra, reshape, st, stripes,
7418 fds, offsets, dests, destfd, destoffsets);
7419 }
7420 #endif /* MDASSEMBLE */
7421
7422 struct superswitch super_imsm = {
7423 #ifndef MDASSEMBLE
7424 .examine_super = examine_super_imsm,
7425 .brief_examine_super = brief_examine_super_imsm,
7426 .brief_examine_subarrays = brief_examine_subarrays_imsm,
7427 .export_examine_super = export_examine_super_imsm,
7428 .detail_super = detail_super_imsm,
7429 .brief_detail_super = brief_detail_super_imsm,
7430 .write_init_super = write_init_super_imsm,
7431 .validate_geometry = validate_geometry_imsm,
7432 .add_to_super = add_to_super_imsm,
7433 .remove_from_super = remove_from_super_imsm,
7434 .detail_platform = detail_platform_imsm,
7435 .kill_subarray = kill_subarray_imsm,
7436 .update_subarray = update_subarray_imsm,
7437 .load_container = load_container_imsm,
7438 .default_geometry = default_geometry_imsm,
7439 .get_disk_controller_domain = imsm_get_disk_controller_domain,
7440 .reshape_super = imsm_reshape_super,
7441 .manage_reshape = imsm_manage_reshape,
7442 #endif
7443 .match_home = match_home_imsm,
7444 .uuid_from_super= uuid_from_super_imsm,
7445 .getinfo_super = getinfo_super_imsm,
7446 .getinfo_super_disks = getinfo_super_disks_imsm,
7447 .update_super = update_super_imsm,
7448
7449 .avail_size = avail_size_imsm,
7450 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
7451
7452 .compare_super = compare_super_imsm,
7453
7454 .load_super = load_super_imsm,
7455 .init_super = init_super_imsm,
7456 .store_super = store_super_imsm,
7457 .free_super = free_super_imsm,
7458 .match_metadata_desc = match_metadata_desc_imsm,
7459 .container_content = container_content_imsm,
7460
7461 .external = 1,
7462 .name = "imsm",
7463
7464 #ifndef MDASSEMBLE
7465 /* for mdmon */
7466 .open_new = imsm_open_new,
7467 .set_array_state= imsm_set_array_state,
7468 .set_disk = imsm_set_disk,
7469 .sync_metadata = imsm_sync_metadata,
7470 .activate_spare = imsm_activate_spare,
7471 .process_update = imsm_process_update,
7472 .prepare_update = imsm_prepare_update,
7473 #endif /* MDASSEMBLE */
7474 };