]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
sysfs/sysfs_read: Count active_disks and failed_disks
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE | \
85 MPB_ATTRIB_BBM)
86
87 /* Define attributes that are unused but not harmful */
88 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
89
90 #define MPB_SECTOR_CNT 2210
91 #define IMSM_RESERVED_SECTORS 4096
92 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
93 #define SECT_PER_MB_SHIFT 11
94 #define MAX_SECTOR_SIZE 4096
95
96 /* Disk configuration info. */
97 #define IMSM_MAX_DEVICES 255
98 struct imsm_disk {
99 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
100 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
101 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
102 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
103 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
104 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
105 #define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
106 __u32 status; /* 0xF0 - 0xF3 */
107 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
108 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
109 #define IMSM_DISK_FILLERS 3
110 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
111 };
112
113 /* map selector for map managment
114 */
115 #define MAP_0 0
116 #define MAP_1 1
117 #define MAP_X -1
118
119 /* RAID map configuration infos. */
120 struct imsm_map {
121 __u32 pba_of_lba0_lo; /* start address of partition */
122 __u32 blocks_per_member_lo;/* blocks per member */
123 __u32 num_data_stripes_lo; /* number of data stripes */
124 __u16 blocks_per_strip;
125 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
126 #define IMSM_T_STATE_NORMAL 0
127 #define IMSM_T_STATE_UNINITIALIZED 1
128 #define IMSM_T_STATE_DEGRADED 2
129 #define IMSM_T_STATE_FAILED 3
130 __u8 raid_level;
131 #define IMSM_T_RAID0 0
132 #define IMSM_T_RAID1 1
133 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
134 __u8 num_members; /* number of member disks */
135 __u8 num_domains; /* number of parity domains */
136 __u8 failed_disk_num; /* valid only when state is degraded */
137 __u8 ddf;
138 __u32 pba_of_lba0_hi;
139 __u32 blocks_per_member_hi;
140 __u32 num_data_stripes_hi;
141 __u32 filler[4]; /* expansion area */
142 #define IMSM_ORD_REBUILD (1 << 24)
143 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
144 * top byte contains some flags
145 */
146 } __attribute__ ((packed));
147
148 struct imsm_vol {
149 __u32 curr_migr_unit;
150 __u32 checkpoint_id; /* id to access curr_migr_unit */
151 __u8 migr_state; /* Normal or Migrating */
152 #define MIGR_INIT 0
153 #define MIGR_REBUILD 1
154 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
155 #define MIGR_GEN_MIGR 3
156 #define MIGR_STATE_CHANGE 4
157 #define MIGR_REPAIR 5
158 __u8 migr_type; /* Initializing, Rebuilding, ... */
159 #define RAIDVOL_CLEAN 0
160 #define RAIDVOL_DIRTY 1
161 #define RAIDVOL_DSRECORD_VALID 2
162 __u8 dirty;
163 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
164 __u16 verify_errors; /* number of mismatches */
165 __u16 bad_blocks; /* number of bad blocks during verify */
166 __u32 filler[4];
167 struct imsm_map map[1];
168 /* here comes another one if migr_state */
169 } __attribute__ ((packed));
170
171 struct imsm_dev {
172 __u8 volume[MAX_RAID_SERIAL_LEN];
173 __u32 size_low;
174 __u32 size_high;
175 #define DEV_BOOTABLE __cpu_to_le32(0x01)
176 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
177 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
178 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
179 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
180 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
181 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
182 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
183 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
184 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
185 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
186 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
187 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
188 __u32 status; /* Persistent RaidDev status */
189 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
190 __u8 migr_priority;
191 __u8 num_sub_vols;
192 __u8 tid;
193 __u8 cng_master_disk;
194 __u16 cache_policy;
195 __u8 cng_state;
196 __u8 cng_sub_state;
197 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
198
199 /* NVM_EN */
200 __u8 nv_cache_mode;
201 __u8 nv_cache_flags;
202
203 /* Unique Volume Id of the NvCache Volume associated with this volume */
204 __u32 nvc_vol_orig_family_num;
205 __u16 nvc_vol_raid_dev_num;
206
207 #define RWH_OFF 0
208 #define RWH_DISTRIBUTED 1
209 #define RWH_JOURNALING_DRIVE 2
210 __u8 rwh_policy; /* Raid Write Hole Policy */
211 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
212 __u8 filler1;
213
214 #define IMSM_DEV_FILLERS 3
215 __u32 filler[IMSM_DEV_FILLERS];
216 struct imsm_vol vol;
217 } __attribute__ ((packed));
218
219 struct imsm_super {
220 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
221 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
222 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
223 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
224 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
225 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
226 __u32 attributes; /* 0x34 - 0x37 */
227 __u8 num_disks; /* 0x38 Number of configured disks */
228 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
229 __u8 error_log_pos; /* 0x3A */
230 __u8 fill[1]; /* 0x3B */
231 __u32 cache_size; /* 0x3c - 0x40 in mb */
232 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
233 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
234 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
235 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
236 * volume IDs for raid_dev created in this array
237 * (starts at 1)
238 */
239 __u16 filler1; /* 0x4E - 0x4F */
240 #define IMSM_FILLERS 34
241 __u32 filler[IMSM_FILLERS]; /* 0x50 - 0xD7 RAID_MPB_FILLERS */
242 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
243 /* here comes imsm_dev[num_raid_devs] */
244 /* here comes BBM logs */
245 } __attribute__ ((packed));
246
247 #define BBM_LOG_MAX_ENTRIES 254
248 #define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
249 #define BBM_LOG_SIGNATURE 0xabadb10c
250
251 struct bbm_log_block_addr {
252 __u16 w1;
253 __u32 dw1;
254 } __attribute__ ((__packed__));
255
256 struct bbm_log_entry {
257 __u8 marked_count; /* Number of blocks marked - 1 */
258 __u8 disk_ordinal; /* Disk entry within the imsm_super */
259 struct bbm_log_block_addr defective_block_start;
260 } __attribute__ ((__packed__));
261
262 struct bbm_log {
263 __u32 signature; /* 0xABADB10C */
264 __u32 entry_count;
265 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
266 } __attribute__ ((__packed__));
267
268 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
269
270 #define BLOCKS_PER_KB (1024/512)
271
272 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
273
274 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
275
276 #define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
277 #define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
278 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
279 */
280
281 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
282 * be recovered using srcMap */
283 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
284 * already been migrated and must
285 * be recovered from checkpoint area */
286
287 #define PPL_ENTRY_SPACE (128 * 1024) /* Size of the PPL, without the header */
288
289 struct migr_record {
290 __u32 rec_status; /* Status used to determine how to restart
291 * migration in case it aborts
292 * in some fashion */
293 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
294 __u32 family_num; /* Family number of MPB
295 * containing the RaidDev
296 * that is migrating */
297 __u32 ascending_migr; /* True if migrating in increasing
298 * order of lbas */
299 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
300 __u32 dest_depth_per_unit; /* Num member blocks each destMap
301 * member disk
302 * advances per unit-of-operation */
303 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
304 __u32 dest_1st_member_lba; /* First member lba on first
305 * stripe of destination */
306 __u32 num_migr_units; /* Total num migration units-of-op */
307 __u32 post_migr_vol_cap; /* Size of volume after
308 * migration completes */
309 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
310 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
311 * migration ckpt record was read from
312 * (for recovered migrations) */
313 } __attribute__ ((__packed__));
314
315 struct md_list {
316 /* usage marker:
317 * 1: load metadata
318 * 2: metadata does not match
319 * 4: already checked
320 */
321 int used;
322 char *devname;
323 int found;
324 int container;
325 dev_t st_rdev;
326 struct md_list *next;
327 };
328
329 #define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
330
331 static __u8 migr_type(struct imsm_dev *dev)
332 {
333 if (dev->vol.migr_type == MIGR_VERIFY &&
334 dev->status & DEV_VERIFY_AND_FIX)
335 return MIGR_REPAIR;
336 else
337 return dev->vol.migr_type;
338 }
339
340 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
341 {
342 /* for compatibility with older oroms convert MIGR_REPAIR, into
343 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
344 */
345 if (migr_type == MIGR_REPAIR) {
346 dev->vol.migr_type = MIGR_VERIFY;
347 dev->status |= DEV_VERIFY_AND_FIX;
348 } else {
349 dev->vol.migr_type = migr_type;
350 dev->status &= ~DEV_VERIFY_AND_FIX;
351 }
352 }
353
354 static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
355 {
356 return ROUND_UP(bytes, sector_size) / sector_size;
357 }
358
359 static unsigned int mpb_sectors(struct imsm_super *mpb,
360 unsigned int sector_size)
361 {
362 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
363 }
364
365 struct intel_dev {
366 struct imsm_dev *dev;
367 struct intel_dev *next;
368 unsigned index;
369 };
370
371 struct intel_hba {
372 enum sys_dev_type type;
373 char *path;
374 char *pci_id;
375 struct intel_hba *next;
376 };
377
378 enum action {
379 DISK_REMOVE = 1,
380 DISK_ADD
381 };
382 /* internal representation of IMSM metadata */
383 struct intel_super {
384 union {
385 void *buf; /* O_DIRECT buffer for reading/writing metadata */
386 struct imsm_super *anchor; /* immovable parameters */
387 };
388 union {
389 void *migr_rec_buf; /* buffer for I/O operations */
390 struct migr_record *migr_rec; /* migration record */
391 };
392 int clean_migration_record_by_mdmon; /* when reshape is switched to next
393 array, it indicates that mdmon is allowed to clean migration
394 record */
395 size_t len; /* size of the 'buf' allocation */
396 size_t extra_space; /* extra space in 'buf' that is not used yet */
397 void *next_buf; /* for realloc'ing buf from the manager */
398 size_t next_len;
399 int updates_pending; /* count of pending updates for mdmon */
400 int current_vol; /* index of raid device undergoing creation */
401 unsigned long long create_offset; /* common start for 'current_vol' */
402 __u32 random; /* random data for seeding new family numbers */
403 struct intel_dev *devlist;
404 unsigned int sector_size; /* sector size of used member drives */
405 struct dl {
406 struct dl *next;
407 int index;
408 __u8 serial[MAX_RAID_SERIAL_LEN];
409 int major, minor;
410 char *devname;
411 struct imsm_disk disk;
412 int fd;
413 int extent_cnt;
414 struct extent *e; /* for determining freespace @ create */
415 int raiddisk; /* slot to fill in autolayout */
416 enum action action;
417 } *disks, *current_disk;
418 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
419 active */
420 struct dl *missing; /* disks removed while we weren't looking */
421 struct bbm_log *bbm_log;
422 struct intel_hba *hba; /* device path of the raid controller for this metadata */
423 const struct imsm_orom *orom; /* platform firmware support */
424 struct intel_super *next; /* (temp) list for disambiguating family_num */
425 struct md_bb bb; /* memory for get_bad_blocks call */
426 };
427
428 struct intel_disk {
429 struct imsm_disk disk;
430 #define IMSM_UNKNOWN_OWNER (-1)
431 int owner;
432 struct intel_disk *next;
433 };
434
435 struct extent {
436 unsigned long long start, size;
437 };
438
439 /* definitions of reshape process types */
440 enum imsm_reshape_type {
441 CH_TAKEOVER,
442 CH_MIGRATION,
443 CH_ARRAY_SIZE,
444 };
445
446 /* definition of messages passed to imsm_process_update */
447 enum imsm_update_type {
448 update_activate_spare,
449 update_create_array,
450 update_kill_array,
451 update_rename_array,
452 update_add_remove_disk,
453 update_reshape_container_disks,
454 update_reshape_migration,
455 update_takeover,
456 update_general_migration_checkpoint,
457 update_size_change,
458 update_prealloc_badblocks_mem,
459 update_rwh_policy,
460 };
461
462 struct imsm_update_activate_spare {
463 enum imsm_update_type type;
464 struct dl *dl;
465 int slot;
466 int array;
467 struct imsm_update_activate_spare *next;
468 };
469
470 struct geo_params {
471 char devnm[32];
472 char *dev_name;
473 unsigned long long size;
474 int level;
475 int layout;
476 int chunksize;
477 int raid_disks;
478 };
479
480 enum takeover_direction {
481 R10_TO_R0,
482 R0_TO_R10
483 };
484 struct imsm_update_takeover {
485 enum imsm_update_type type;
486 int subarray;
487 enum takeover_direction direction;
488 };
489
490 struct imsm_update_reshape {
491 enum imsm_update_type type;
492 int old_raid_disks;
493 int new_raid_disks;
494
495 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
496 };
497
498 struct imsm_update_reshape_migration {
499 enum imsm_update_type type;
500 int old_raid_disks;
501 int new_raid_disks;
502 /* fields for array migration changes
503 */
504 int subdev;
505 int new_level;
506 int new_layout;
507 int new_chunksize;
508
509 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
510 };
511
512 struct imsm_update_size_change {
513 enum imsm_update_type type;
514 int subdev;
515 long long new_size;
516 };
517
518 struct imsm_update_general_migration_checkpoint {
519 enum imsm_update_type type;
520 __u32 curr_migr_unit;
521 };
522
523 struct disk_info {
524 __u8 serial[MAX_RAID_SERIAL_LEN];
525 };
526
527 struct imsm_update_create_array {
528 enum imsm_update_type type;
529 int dev_idx;
530 struct imsm_dev dev;
531 };
532
533 struct imsm_update_kill_array {
534 enum imsm_update_type type;
535 int dev_idx;
536 };
537
538 struct imsm_update_rename_array {
539 enum imsm_update_type type;
540 __u8 name[MAX_RAID_SERIAL_LEN];
541 int dev_idx;
542 };
543
544 struct imsm_update_add_remove_disk {
545 enum imsm_update_type type;
546 };
547
548 struct imsm_update_prealloc_bb_mem {
549 enum imsm_update_type type;
550 };
551
552 struct imsm_update_rwh_policy {
553 enum imsm_update_type type;
554 int new_policy;
555 int dev_idx;
556 };
557
558 static const char *_sys_dev_type[] = {
559 [SYS_DEV_UNKNOWN] = "Unknown",
560 [SYS_DEV_SAS] = "SAS",
561 [SYS_DEV_SATA] = "SATA",
562 [SYS_DEV_NVME] = "NVMe",
563 [SYS_DEV_VMD] = "VMD"
564 };
565
566 const char *get_sys_dev_type(enum sys_dev_type type)
567 {
568 if (type >= SYS_DEV_MAX)
569 type = SYS_DEV_UNKNOWN;
570
571 return _sys_dev_type[type];
572 }
573
574 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
575 {
576 struct intel_hba *result = xmalloc(sizeof(*result));
577
578 result->type = device->type;
579 result->path = xstrdup(device->path);
580 result->next = NULL;
581 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
582 result->pci_id++;
583
584 return result;
585 }
586
587 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
588 {
589 struct intel_hba *result;
590
591 for (result = hba; result; result = result->next) {
592 if (result->type == device->type && strcmp(result->path, device->path) == 0)
593 break;
594 }
595 return result;
596 }
597
598 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
599 {
600 struct intel_hba *hba;
601
602 /* check if disk attached to Intel HBA */
603 hba = find_intel_hba(super->hba, device);
604 if (hba != NULL)
605 return 1;
606 /* Check if HBA is already attached to super */
607 if (super->hba == NULL) {
608 super->hba = alloc_intel_hba(device);
609 return 1;
610 }
611
612 hba = super->hba;
613 /* Intel metadata allows for all disks attached to the same type HBA.
614 * Do not support HBA types mixing
615 */
616 if (device->type != hba->type)
617 return 2;
618
619 /* Multiple same type HBAs can be used if they share the same OROM */
620 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
621
622 if (device_orom != super->orom)
623 return 2;
624
625 while (hba->next)
626 hba = hba->next;
627
628 hba->next = alloc_intel_hba(device);
629 return 1;
630 }
631
632 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
633 {
634 struct sys_dev *list, *elem;
635 char *disk_path;
636
637 if ((list = find_intel_devices()) == NULL)
638 return 0;
639
640 if (fd < 0)
641 disk_path = (char *) devname;
642 else
643 disk_path = diskfd_to_devpath(fd);
644
645 if (!disk_path)
646 return 0;
647
648 for (elem = list; elem; elem = elem->next)
649 if (path_attached_to_hba(disk_path, elem->path))
650 return elem;
651
652 if (disk_path != devname)
653 free(disk_path);
654
655 return NULL;
656 }
657
658 static int find_intel_hba_capability(int fd, struct intel_super *super,
659 char *devname);
660
661 static struct supertype *match_metadata_desc_imsm(char *arg)
662 {
663 struct supertype *st;
664
665 if (strcmp(arg, "imsm") != 0 &&
666 strcmp(arg, "default") != 0
667 )
668 return NULL;
669
670 st = xcalloc(1, sizeof(*st));
671 st->ss = &super_imsm;
672 st->max_devs = IMSM_MAX_DEVICES;
673 st->minor_version = 0;
674 st->sb = NULL;
675 return st;
676 }
677
678 static __u8 *get_imsm_version(struct imsm_super *mpb)
679 {
680 return &mpb->sig[MPB_SIG_LEN];
681 }
682
683 /* retrieve a disk directly from the anchor when the anchor is known to be
684 * up-to-date, currently only at load time
685 */
686 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
687 {
688 if (index >= mpb->num_disks)
689 return NULL;
690 return &mpb->disk[index];
691 }
692
693 /* retrieve the disk description based on a index of the disk
694 * in the sub-array
695 */
696 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
697 {
698 struct dl *d;
699
700 for (d = super->disks; d; d = d->next)
701 if (d->index == index)
702 return d;
703
704 return NULL;
705 }
706 /* retrieve a disk from the parsed metadata */
707 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
708 {
709 struct dl *dl;
710
711 dl = get_imsm_dl_disk(super, index);
712 if (dl)
713 return &dl->disk;
714
715 return NULL;
716 }
717
718 /* generate a checksum directly from the anchor when the anchor is known to be
719 * up-to-date, currently only at load or write_super after coalescing
720 */
721 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
722 {
723 __u32 end = mpb->mpb_size / sizeof(end);
724 __u32 *p = (__u32 *) mpb;
725 __u32 sum = 0;
726
727 while (end--) {
728 sum += __le32_to_cpu(*p);
729 p++;
730 }
731
732 return sum - __le32_to_cpu(mpb->check_sum);
733 }
734
735 static size_t sizeof_imsm_map(struct imsm_map *map)
736 {
737 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
738 }
739
740 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
741 {
742 /* A device can have 2 maps if it is in the middle of a migration.
743 * If second_map is:
744 * MAP_0 - we return the first map
745 * MAP_1 - we return the second map if it exists, else NULL
746 * MAP_X - we return the second map if it exists, else the first
747 */
748 struct imsm_map *map = &dev->vol.map[0];
749 struct imsm_map *map2 = NULL;
750
751 if (dev->vol.migr_state)
752 map2 = (void *)map + sizeof_imsm_map(map);
753
754 switch (second_map) {
755 case MAP_0:
756 break;
757 case MAP_1:
758 map = map2;
759 break;
760 case MAP_X:
761 if (map2)
762 map = map2;
763 break;
764 default:
765 map = NULL;
766 }
767 return map;
768
769 }
770
771 /* return the size of the device.
772 * migr_state increases the returned size if map[0] were to be duplicated
773 */
774 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
775 {
776 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
777 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
778
779 /* migrating means an additional map */
780 if (dev->vol.migr_state)
781 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
782 else if (migr_state)
783 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
784
785 return size;
786 }
787
788 /* retrieve disk serial number list from a metadata update */
789 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
790 {
791 void *u = update;
792 struct disk_info *inf;
793
794 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
795 sizeof_imsm_dev(&update->dev, 0);
796
797 return inf;
798 }
799
800 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
801 {
802 int offset;
803 int i;
804 void *_mpb = mpb;
805
806 if (index >= mpb->num_raid_devs)
807 return NULL;
808
809 /* devices start after all disks */
810 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
811
812 for (i = 0; i <= index; i++)
813 if (i == index)
814 return _mpb + offset;
815 else
816 offset += sizeof_imsm_dev(_mpb + offset, 0);
817
818 return NULL;
819 }
820
821 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
822 {
823 struct intel_dev *dv;
824
825 if (index >= super->anchor->num_raid_devs)
826 return NULL;
827 for (dv = super->devlist; dv; dv = dv->next)
828 if (dv->index == index)
829 return dv->dev;
830 return NULL;
831 }
832
833 static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
834 *addr)
835 {
836 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
837 __le16_to_cpu(addr->w1));
838 }
839
840 static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
841 {
842 struct bbm_log_block_addr addr;
843
844 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
845 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
846 return addr;
847 }
848
849 /* get size of the bbm log */
850 static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
851 {
852 if (!log || log->entry_count == 0)
853 return 0;
854
855 return sizeof(log->signature) +
856 sizeof(log->entry_count) +
857 log->entry_count * sizeof(struct bbm_log_entry);
858 }
859
860 /* check if bad block is not partially stored in bbm log */
861 static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
862 long long sector, const int length, __u32 *pos)
863 {
864 __u32 i;
865
866 for (i = *pos; i < log->entry_count; i++) {
867 struct bbm_log_entry *entry = &log->marked_block_entries[i];
868 unsigned long long bb_start;
869 unsigned long long bb_end;
870
871 bb_start = __le48_to_cpu(&entry->defective_block_start);
872 bb_end = bb_start + (entry->marked_count + 1);
873
874 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
875 (bb_end <= sector + length)) {
876 *pos = i;
877 return 1;
878 }
879 }
880 return 0;
881 }
882
883 /* record new bad block in bbm log */
884 static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
885 long long sector, int length)
886 {
887 int new_bb = 0;
888 __u32 pos = 0;
889 struct bbm_log_entry *entry = NULL;
890
891 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
892 struct bbm_log_entry *e = &log->marked_block_entries[pos];
893
894 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
895 (__le48_to_cpu(&e->defective_block_start) == sector)) {
896 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
897 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
898 pos = pos + 1;
899 continue;
900 }
901 entry = e;
902 break;
903 }
904
905 if (entry) {
906 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
907 BBM_LOG_MAX_LBA_ENTRY_VAL;
908 entry->defective_block_start = __cpu_to_le48(sector);
909 entry->marked_count = cnt - 1;
910 if (cnt == length)
911 return 1;
912 sector += cnt;
913 length -= cnt;
914 }
915
916 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
917 BBM_LOG_MAX_LBA_ENTRY_VAL;
918 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
919 return 0;
920
921 while (length > 0) {
922 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
923 BBM_LOG_MAX_LBA_ENTRY_VAL;
924 struct bbm_log_entry *entry =
925 &log->marked_block_entries[log->entry_count];
926
927 entry->defective_block_start = __cpu_to_le48(sector);
928 entry->marked_count = cnt - 1;
929 entry->disk_ordinal = idx;
930
931 sector += cnt;
932 length -= cnt;
933
934 log->entry_count++;
935 }
936
937 return new_bb;
938 }
939
940 /* clear all bad blocks for given disk */
941 static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
942 {
943 __u32 i = 0;
944
945 while (i < log->entry_count) {
946 struct bbm_log_entry *entries = log->marked_block_entries;
947
948 if (entries[i].disk_ordinal == idx) {
949 if (i < log->entry_count - 1)
950 entries[i] = entries[log->entry_count - 1];
951 log->entry_count--;
952 } else {
953 i++;
954 }
955 }
956 }
957
958 /* clear given bad block */
959 static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
960 long long sector, const int length) {
961 __u32 i = 0;
962
963 while (i < log->entry_count) {
964 struct bbm_log_entry *entries = log->marked_block_entries;
965
966 if ((entries[i].disk_ordinal == idx) &&
967 (__le48_to_cpu(&entries[i].defective_block_start) ==
968 sector) && (entries[i].marked_count + 1 == length)) {
969 if (i < log->entry_count - 1)
970 entries[i] = entries[log->entry_count - 1];
971 log->entry_count--;
972 break;
973 }
974 i++;
975 }
976
977 return 1;
978 }
979
980 /* allocate and load BBM log from metadata */
981 static int load_bbm_log(struct intel_super *super)
982 {
983 struct imsm_super *mpb = super->anchor;
984 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
985
986 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
987 if (!super->bbm_log)
988 return 1;
989
990 if (bbm_log_size) {
991 struct bbm_log *log = (void *)mpb +
992 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
993
994 __u32 entry_count;
995
996 if (bbm_log_size < sizeof(log->signature) +
997 sizeof(log->entry_count))
998 return 2;
999
1000 entry_count = __le32_to_cpu(log->entry_count);
1001 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1002 (entry_count > BBM_LOG_MAX_ENTRIES))
1003 return 3;
1004
1005 if (bbm_log_size !=
1006 sizeof(log->signature) + sizeof(log->entry_count) +
1007 entry_count * sizeof(struct bbm_log_entry))
1008 return 4;
1009
1010 memcpy(super->bbm_log, log, bbm_log_size);
1011 } else {
1012 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1013 super->bbm_log->entry_count = 0;
1014 }
1015
1016 return 0;
1017 }
1018
1019 /* checks if bad block is within volume boundaries */
1020 static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1021 const unsigned long long start_sector,
1022 const unsigned long long size)
1023 {
1024 unsigned long long bb_start;
1025 unsigned long long bb_end;
1026
1027 bb_start = __le48_to_cpu(&entry->defective_block_start);
1028 bb_end = bb_start + (entry->marked_count + 1);
1029
1030 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1031 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1032 return 1;
1033
1034 return 0;
1035 }
1036
1037 /* get list of bad blocks on a drive for a volume */
1038 static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1039 const unsigned long long start_sector,
1040 const unsigned long long size,
1041 struct md_bb *bbs)
1042 {
1043 __u32 count = 0;
1044 __u32 i;
1045
1046 for (i = 0; i < log->entry_count; i++) {
1047 const struct bbm_log_entry *ent =
1048 &log->marked_block_entries[i];
1049 struct md_bb_entry *bb;
1050
1051 if ((ent->disk_ordinal == idx) &&
1052 is_bad_block_in_volume(ent, start_sector, size)) {
1053
1054 if (!bbs->entries) {
1055 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1056 sizeof(*bb));
1057 if (!bbs->entries)
1058 break;
1059 }
1060
1061 bb = &bbs->entries[count++];
1062 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1063 bb->length = ent->marked_count + 1;
1064 }
1065 }
1066 bbs->count = count;
1067 }
1068
1069 /*
1070 * for second_map:
1071 * == MAP_0 get first map
1072 * == MAP_1 get second map
1073 * == MAP_X than get map according to the current migr_state
1074 */
1075 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1076 int slot,
1077 int second_map)
1078 {
1079 struct imsm_map *map;
1080
1081 map = get_imsm_map(dev, second_map);
1082
1083 /* top byte identifies disk under rebuild */
1084 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1085 }
1086
1087 #define ord_to_idx(ord) (((ord) << 8) >> 8)
1088 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
1089 {
1090 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
1091
1092 return ord_to_idx(ord);
1093 }
1094
1095 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1096 {
1097 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1098 }
1099
1100 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
1101 {
1102 int slot;
1103 __u32 ord;
1104
1105 for (slot = 0; slot < map->num_members; slot++) {
1106 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1107 if (ord_to_idx(ord) == idx)
1108 return slot;
1109 }
1110
1111 return -1;
1112 }
1113
1114 static int get_imsm_raid_level(struct imsm_map *map)
1115 {
1116 if (map->raid_level == 1) {
1117 if (map->num_members == 2)
1118 return 1;
1119 else
1120 return 10;
1121 }
1122
1123 return map->raid_level;
1124 }
1125
1126 static int cmp_extent(const void *av, const void *bv)
1127 {
1128 const struct extent *a = av;
1129 const struct extent *b = bv;
1130 if (a->start < b->start)
1131 return -1;
1132 if (a->start > b->start)
1133 return 1;
1134 return 0;
1135 }
1136
1137 static int count_memberships(struct dl *dl, struct intel_super *super)
1138 {
1139 int memberships = 0;
1140 int i;
1141
1142 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1143 struct imsm_dev *dev = get_imsm_dev(super, i);
1144 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1145
1146 if (get_imsm_disk_slot(map, dl->index) >= 0)
1147 memberships++;
1148 }
1149
1150 return memberships;
1151 }
1152
1153 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1154
1155 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
1156 {
1157 if (lo == 0 || hi == 0)
1158 return 1;
1159 *lo = __le32_to_cpu((unsigned)n);
1160 *hi = __le32_to_cpu((unsigned)(n >> 32));
1161 return 0;
1162 }
1163
1164 static unsigned long long join_u32(__u32 lo, __u32 hi)
1165 {
1166 return (unsigned long long)__le32_to_cpu(lo) |
1167 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1168 }
1169
1170 static unsigned long long total_blocks(struct imsm_disk *disk)
1171 {
1172 if (disk == NULL)
1173 return 0;
1174 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1175 }
1176
1177 static unsigned long long pba_of_lba0(struct imsm_map *map)
1178 {
1179 if (map == NULL)
1180 return 0;
1181 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1182 }
1183
1184 static unsigned long long blocks_per_member(struct imsm_map *map)
1185 {
1186 if (map == NULL)
1187 return 0;
1188 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1189 }
1190
1191 static unsigned long long num_data_stripes(struct imsm_map *map)
1192 {
1193 if (map == NULL)
1194 return 0;
1195 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1196 }
1197
1198 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1199 {
1200 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1201 }
1202
1203 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1204 {
1205 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1206 }
1207
1208 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1209 {
1210 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1211 }
1212
1213 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1214 {
1215 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1216 }
1217
1218 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
1219 {
1220 /* find a list of used extents on the given physical device */
1221 struct extent *rv, *e;
1222 int i;
1223 int memberships = count_memberships(dl, super);
1224 __u32 reservation;
1225
1226 /* trim the reserved area for spares, so they can join any array
1227 * regardless of whether the OROM has assigned sectors from the
1228 * IMSM_RESERVED_SECTORS region
1229 */
1230 if (dl->index == -1)
1231 reservation = imsm_min_reserved_sectors(super);
1232 else
1233 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1234
1235 rv = xcalloc(sizeof(struct extent), (memberships + 1));
1236 e = rv;
1237
1238 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1239 struct imsm_dev *dev = get_imsm_dev(super, i);
1240 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1241
1242 if (get_imsm_disk_slot(map, dl->index) >= 0) {
1243 e->start = pba_of_lba0(map);
1244 e->size = blocks_per_member(map);
1245 e++;
1246 }
1247 }
1248 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1249
1250 /* determine the start of the metadata
1251 * when no raid devices are defined use the default
1252 * ...otherwise allow the metadata to truncate the value
1253 * as is the case with older versions of imsm
1254 */
1255 if (memberships) {
1256 struct extent *last = &rv[memberships - 1];
1257 unsigned long long remainder;
1258
1259 remainder = total_blocks(&dl->disk) - (last->start + last->size);
1260 /* round down to 1k block to satisfy precision of the kernel
1261 * 'size' interface
1262 */
1263 remainder &= ~1UL;
1264 /* make sure remainder is still sane */
1265 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
1266 remainder = ROUND_UP(super->len, 512) >> 9;
1267 if (reservation > remainder)
1268 reservation = remainder;
1269 }
1270 e->start = total_blocks(&dl->disk) - reservation;
1271 e->size = 0;
1272 return rv;
1273 }
1274
1275 /* try to determine how much space is reserved for metadata from
1276 * the last get_extents() entry, otherwise fallback to the
1277 * default
1278 */
1279 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1280 {
1281 struct extent *e;
1282 int i;
1283 __u32 rv;
1284
1285 /* for spares just return a minimal reservation which will grow
1286 * once the spare is picked up by an array
1287 */
1288 if (dl->index == -1)
1289 return MPB_SECTOR_CNT;
1290
1291 e = get_extents(super, dl);
1292 if (!e)
1293 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1294
1295 /* scroll to last entry */
1296 for (i = 0; e[i].size; i++)
1297 continue;
1298
1299 rv = total_blocks(&dl->disk) - e[i].start;
1300
1301 free(e);
1302
1303 return rv;
1304 }
1305
1306 static int is_spare(struct imsm_disk *disk)
1307 {
1308 return (disk->status & SPARE_DISK) == SPARE_DISK;
1309 }
1310
1311 static int is_configured(struct imsm_disk *disk)
1312 {
1313 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1314 }
1315
1316 static int is_failed(struct imsm_disk *disk)
1317 {
1318 return (disk->status & FAILED_DISK) == FAILED_DISK;
1319 }
1320
1321 static int is_journal(struct imsm_disk *disk)
1322 {
1323 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1324 }
1325
1326 /* round array size down to closest MB and ensure it splits evenly
1327 * between members
1328 */
1329 static unsigned long long round_size_to_mb(unsigned long long size, unsigned int
1330 disk_count)
1331 {
1332 size /= disk_count;
1333 size = (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1334 size *= disk_count;
1335
1336 return size;
1337 }
1338
1339 /* try to determine how much space is reserved for metadata from
1340 * the last get_extents() entry on the smallest active disk,
1341 * otherwise fallback to the default
1342 */
1343 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1344 {
1345 struct extent *e;
1346 int i;
1347 unsigned long long min_active;
1348 __u32 remainder;
1349 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1350 struct dl *dl, *dl_min = NULL;
1351
1352 if (!super)
1353 return rv;
1354
1355 min_active = 0;
1356 for (dl = super->disks; dl; dl = dl->next) {
1357 if (dl->index < 0)
1358 continue;
1359 unsigned long long blocks = total_blocks(&dl->disk);
1360 if (blocks < min_active || min_active == 0) {
1361 dl_min = dl;
1362 min_active = blocks;
1363 }
1364 }
1365 if (!dl_min)
1366 return rv;
1367
1368 /* find last lba used by subarrays on the smallest active disk */
1369 e = get_extents(super, dl_min);
1370 if (!e)
1371 return rv;
1372 for (i = 0; e[i].size; i++)
1373 continue;
1374
1375 remainder = min_active - e[i].start;
1376 free(e);
1377
1378 /* to give priority to recovery we should not require full
1379 IMSM_RESERVED_SECTORS from the spare */
1380 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1381
1382 /* if real reservation is smaller use that value */
1383 return (remainder < rv) ? remainder : rv;
1384 }
1385
1386 /* Return minimum size of a spare that can be used in this array*/
1387 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1388 {
1389 struct intel_super *super = st->sb;
1390 struct dl *dl;
1391 struct extent *e;
1392 int i;
1393 unsigned long long rv = 0;
1394
1395 if (!super)
1396 return rv;
1397 /* find first active disk in array */
1398 dl = super->disks;
1399 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1400 dl = dl->next;
1401 if (!dl)
1402 return rv;
1403 /* find last lba used by subarrays */
1404 e = get_extents(super, dl);
1405 if (!e)
1406 return rv;
1407 for (i = 0; e[i].size; i++)
1408 continue;
1409 if (i > 0)
1410 rv = e[i-1].start + e[i-1].size;
1411 free(e);
1412
1413 /* add the amount of space needed for metadata */
1414 rv = rv + imsm_min_reserved_sectors(super);
1415
1416 return rv * 512;
1417 }
1418
1419 static int is_gen_migration(struct imsm_dev *dev);
1420
1421 #define IMSM_4K_DIV 8
1422
1423 static __u64 blocks_per_migr_unit(struct intel_super *super,
1424 struct imsm_dev *dev);
1425
1426 static void print_imsm_dev(struct intel_super *super,
1427 struct imsm_dev *dev,
1428 char *uuid,
1429 int disk_idx)
1430 {
1431 __u64 sz;
1432 int slot, i;
1433 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1434 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1435 __u32 ord;
1436
1437 printf("\n");
1438 printf("[%.16s]:\n", dev->volume);
1439 printf(" UUID : %s\n", uuid);
1440 printf(" RAID Level : %d", get_imsm_raid_level(map));
1441 if (map2)
1442 printf(" <-- %d", get_imsm_raid_level(map2));
1443 printf("\n");
1444 printf(" Members : %d", map->num_members);
1445 if (map2)
1446 printf(" <-- %d", map2->num_members);
1447 printf("\n");
1448 printf(" Slots : [");
1449 for (i = 0; i < map->num_members; i++) {
1450 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1451 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1452 }
1453 printf("]");
1454 if (map2) {
1455 printf(" <-- [");
1456 for (i = 0; i < map2->num_members; i++) {
1457 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1458 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1459 }
1460 printf("]");
1461 }
1462 printf("\n");
1463 printf(" Failed disk : ");
1464 if (map->failed_disk_num == 0xff)
1465 printf("none");
1466 else
1467 printf("%i", map->failed_disk_num);
1468 printf("\n");
1469 slot = get_imsm_disk_slot(map, disk_idx);
1470 if (slot >= 0) {
1471 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1472 printf(" This Slot : %d%s\n", slot,
1473 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1474 } else
1475 printf(" This Slot : ?\n");
1476 sz = __le32_to_cpu(dev->size_high);
1477 sz <<= 32;
1478 sz += __le32_to_cpu(dev->size_low);
1479 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1480 human_size(sz * 512));
1481 sz = blocks_per_member(map);
1482 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1483 human_size(sz * 512));
1484 printf(" Sector Offset : %llu\n",
1485 pba_of_lba0(map));
1486 printf(" Num Stripes : %llu\n",
1487 num_data_stripes(map));
1488 printf(" Chunk Size : %u KiB",
1489 __le16_to_cpu(map->blocks_per_strip) / 2);
1490 if (map2)
1491 printf(" <-- %u KiB",
1492 __le16_to_cpu(map2->blocks_per_strip) / 2);
1493 printf("\n");
1494 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1495 printf(" Migrate State : ");
1496 if (dev->vol.migr_state) {
1497 if (migr_type(dev) == MIGR_INIT)
1498 printf("initialize\n");
1499 else if (migr_type(dev) == MIGR_REBUILD)
1500 printf("rebuild\n");
1501 else if (migr_type(dev) == MIGR_VERIFY)
1502 printf("check\n");
1503 else if (migr_type(dev) == MIGR_GEN_MIGR)
1504 printf("general migration\n");
1505 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1506 printf("state change\n");
1507 else if (migr_type(dev) == MIGR_REPAIR)
1508 printf("repair\n");
1509 else
1510 printf("<unknown:%d>\n", migr_type(dev));
1511 } else
1512 printf("idle\n");
1513 printf(" Map State : %s", map_state_str[map->map_state]);
1514 if (dev->vol.migr_state) {
1515 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1516
1517 printf(" <-- %s", map_state_str[map->map_state]);
1518 printf("\n Checkpoint : %u ",
1519 __le32_to_cpu(dev->vol.curr_migr_unit));
1520 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
1521 printf("(N/A)");
1522 else
1523 printf("(%llu)", (unsigned long long)
1524 blocks_per_migr_unit(super, dev));
1525 }
1526 printf("\n");
1527 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1528 "dirty" : "clean");
1529 printf(" RWH Policy : ");
1530 if (dev->rwh_policy == RWH_OFF)
1531 printf("off\n");
1532 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1533 printf("PPL distributed\n");
1534 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1535 printf("PPL journaling drive\n");
1536 else
1537 printf("<unknown:%d>\n", dev->rwh_policy);
1538 }
1539
1540 static void print_imsm_disk(struct imsm_disk *disk,
1541 int index,
1542 __u32 reserved,
1543 unsigned int sector_size) {
1544 char str[MAX_RAID_SERIAL_LEN + 1];
1545 __u64 sz;
1546
1547 if (index < -1 || !disk)
1548 return;
1549
1550 printf("\n");
1551 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1552 if (index >= 0)
1553 printf(" Disk%02d Serial : %s\n", index, str);
1554 else
1555 printf(" Disk Serial : %s\n", str);
1556 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1557 is_configured(disk) ? " active" : "",
1558 is_failed(disk) ? " failed" : "",
1559 is_journal(disk) ? " journal" : "");
1560 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1561 sz = total_blocks(disk) - reserved;
1562 printf(" Usable Size : %llu%s\n",
1563 (unsigned long long)sz * 512 / sector_size,
1564 human_size(sz * 512));
1565 }
1566
1567 void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1568 {
1569 struct migr_record *migr_rec = super->migr_rec;
1570
1571 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
1572 migr_rec->ckpt_area_pba /= IMSM_4K_DIV;
1573 migr_rec->dest_1st_member_lba /= IMSM_4K_DIV;
1574 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1575 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1576 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1577 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
1578 }
1579
1580 void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1581 {
1582 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1583 }
1584
1585 void convert_to_4k(struct intel_super *super)
1586 {
1587 struct imsm_super *mpb = super->anchor;
1588 struct imsm_disk *disk;
1589 int i;
1590 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1591
1592 for (i = 0; i < mpb->num_disks ; i++) {
1593 disk = __get_imsm_disk(mpb, i);
1594 /* disk */
1595 convert_to_4k_imsm_disk(disk);
1596 }
1597 for (i = 0; i < mpb->num_raid_devs; i++) {
1598 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1599 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1600 /* dev */
1601 split_ull((join_u32(dev->size_low, dev->size_high)/IMSM_4K_DIV),
1602 &dev->size_low, &dev->size_high);
1603 dev->vol.curr_migr_unit /= IMSM_4K_DIV;
1604
1605 /* map0 */
1606 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1607 map->blocks_per_strip /= IMSM_4K_DIV;
1608 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1609
1610 if (dev->vol.migr_state) {
1611 /* map1 */
1612 map = get_imsm_map(dev, MAP_1);
1613 set_blocks_per_member(map,
1614 blocks_per_member(map)/IMSM_4K_DIV);
1615 map->blocks_per_strip /= IMSM_4K_DIV;
1616 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1617 }
1618 }
1619 if (bbm_log_size) {
1620 struct bbm_log *log = (void *)mpb +
1621 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1622 __u32 i;
1623
1624 for (i = 0; i < log->entry_count; i++) {
1625 struct bbm_log_entry *entry =
1626 &log->marked_block_entries[i];
1627
1628 __u8 count = entry->marked_count + 1;
1629 unsigned long long sector =
1630 __le48_to_cpu(&entry->defective_block_start);
1631
1632 entry->defective_block_start =
1633 __cpu_to_le48(sector/IMSM_4K_DIV);
1634 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
1635 }
1636 }
1637
1638 mpb->check_sum = __gen_imsm_checksum(mpb);
1639 }
1640
1641 void examine_migr_rec_imsm(struct intel_super *super)
1642 {
1643 struct migr_record *migr_rec = super->migr_rec;
1644 struct imsm_super *mpb = super->anchor;
1645 int i;
1646
1647 for (i = 0; i < mpb->num_raid_devs; i++) {
1648 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1649 struct imsm_map *map;
1650 int slot = -1;
1651
1652 if (is_gen_migration(dev) == 0)
1653 continue;
1654
1655 printf("\nMigration Record Information:");
1656
1657 /* first map under migration */
1658 map = get_imsm_map(dev, MAP_0);
1659 if (map)
1660 slot = get_imsm_disk_slot(map, super->disks->index);
1661 if (map == NULL || slot > 1 || slot < 0) {
1662 printf(" Empty\n ");
1663 printf("Examine one of first two disks in array\n");
1664 break;
1665 }
1666 printf("\n Status : ");
1667 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1668 printf("Normal\n");
1669 else
1670 printf("Contains Data\n");
1671 printf(" Current Unit : %u\n",
1672 __le32_to_cpu(migr_rec->curr_migr_unit));
1673 printf(" Family : %u\n",
1674 __le32_to_cpu(migr_rec->family_num));
1675 printf(" Ascending : %u\n",
1676 __le32_to_cpu(migr_rec->ascending_migr));
1677 printf(" Blocks Per Unit : %u\n",
1678 __le32_to_cpu(migr_rec->blocks_per_unit));
1679 printf(" Dest. Depth Per Unit : %u\n",
1680 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1681 printf(" Checkpoint Area pba : %u\n",
1682 __le32_to_cpu(migr_rec->ckpt_area_pba));
1683 printf(" First member lba : %u\n",
1684 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1685 printf(" Total Number of Units : %u\n",
1686 __le32_to_cpu(migr_rec->num_migr_units));
1687 printf(" Size of volume : %u\n",
1688 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1689 printf(" Expansion space for LBA64 : %u\n",
1690 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1691 printf(" Record was read from : %u\n",
1692 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1693
1694 break;
1695 }
1696 }
1697
1698 void convert_from_4k_imsm_migr_rec(struct intel_super *super)
1699 {
1700 struct migr_record *migr_rec = super->migr_rec;
1701
1702 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
1703 migr_rec->ckpt_area_pba *= IMSM_4K_DIV;
1704 migr_rec->dest_1st_member_lba *= IMSM_4K_DIV;
1705 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
1706 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1707 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
1708 &migr_rec->post_migr_vol_cap,
1709 &migr_rec->post_migr_vol_cap_hi);
1710 }
1711
1712 void convert_from_4k(struct intel_super *super)
1713 {
1714 struct imsm_super *mpb = super->anchor;
1715 struct imsm_disk *disk;
1716 int i;
1717 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1718
1719 for (i = 0; i < mpb->num_disks ; i++) {
1720 disk = __get_imsm_disk(mpb, i);
1721 /* disk */
1722 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
1723 }
1724
1725 for (i = 0; i < mpb->num_raid_devs; i++) {
1726 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1727 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1728 /* dev */
1729 split_ull((join_u32(dev->size_low, dev->size_high)*IMSM_4K_DIV),
1730 &dev->size_low, &dev->size_high);
1731 dev->vol.curr_migr_unit *= IMSM_4K_DIV;
1732
1733 /* map0 */
1734 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
1735 map->blocks_per_strip *= IMSM_4K_DIV;
1736 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1737
1738 if (dev->vol.migr_state) {
1739 /* map1 */
1740 map = get_imsm_map(dev, MAP_1);
1741 set_blocks_per_member(map,
1742 blocks_per_member(map)*IMSM_4K_DIV);
1743 map->blocks_per_strip *= IMSM_4K_DIV;
1744 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1745 }
1746 }
1747 if (bbm_log_size) {
1748 struct bbm_log *log = (void *)mpb +
1749 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1750 __u32 i;
1751
1752 for (i = 0; i < log->entry_count; i++) {
1753 struct bbm_log_entry *entry =
1754 &log->marked_block_entries[i];
1755
1756 __u8 count = entry->marked_count + 1;
1757 unsigned long long sector =
1758 __le48_to_cpu(&entry->defective_block_start);
1759
1760 entry->defective_block_start =
1761 __cpu_to_le48(sector*IMSM_4K_DIV);
1762 entry->marked_count = count*IMSM_4K_DIV - 1;
1763 }
1764 }
1765
1766 mpb->check_sum = __gen_imsm_checksum(mpb);
1767 }
1768
1769 /*******************************************************************************
1770 * function: imsm_check_attributes
1771 * Description: Function checks if features represented by attributes flags
1772 * are supported by mdadm.
1773 * Parameters:
1774 * attributes - Attributes read from metadata
1775 * Returns:
1776 * 0 - passed attributes contains unsupported features flags
1777 * 1 - all features are supported
1778 ******************************************************************************/
1779 static int imsm_check_attributes(__u32 attributes)
1780 {
1781 int ret_val = 1;
1782 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1783
1784 not_supported &= ~MPB_ATTRIB_IGNORED;
1785
1786 not_supported &= attributes;
1787 if (not_supported) {
1788 pr_err("(IMSM): Unsupported attributes : %x\n",
1789 (unsigned)__le32_to_cpu(not_supported));
1790 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1791 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1792 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1793 }
1794 if (not_supported & MPB_ATTRIB_2TB) {
1795 dprintf("\t\tMPB_ATTRIB_2TB\n");
1796 not_supported ^= MPB_ATTRIB_2TB;
1797 }
1798 if (not_supported & MPB_ATTRIB_RAID0) {
1799 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1800 not_supported ^= MPB_ATTRIB_RAID0;
1801 }
1802 if (not_supported & MPB_ATTRIB_RAID1) {
1803 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1804 not_supported ^= MPB_ATTRIB_RAID1;
1805 }
1806 if (not_supported & MPB_ATTRIB_RAID10) {
1807 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1808 not_supported ^= MPB_ATTRIB_RAID10;
1809 }
1810 if (not_supported & MPB_ATTRIB_RAID1E) {
1811 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1812 not_supported ^= MPB_ATTRIB_RAID1E;
1813 }
1814 if (not_supported & MPB_ATTRIB_RAID5) {
1815 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1816 not_supported ^= MPB_ATTRIB_RAID5;
1817 }
1818 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1819 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1820 not_supported ^= MPB_ATTRIB_RAIDCNG;
1821 }
1822 if (not_supported & MPB_ATTRIB_BBM) {
1823 dprintf("\t\tMPB_ATTRIB_BBM\n");
1824 not_supported ^= MPB_ATTRIB_BBM;
1825 }
1826 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1827 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1828 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1829 }
1830 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1831 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1832 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1833 }
1834 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1835 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1836 not_supported ^= MPB_ATTRIB_2TB_DISK;
1837 }
1838 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1839 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1840 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1841 }
1842 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1843 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1844 not_supported ^= MPB_ATTRIB_NEVER_USE;
1845 }
1846
1847 if (not_supported)
1848 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
1849
1850 ret_val = 0;
1851 }
1852
1853 return ret_val;
1854 }
1855
1856 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1857
1858 static void examine_super_imsm(struct supertype *st, char *homehost)
1859 {
1860 struct intel_super *super = st->sb;
1861 struct imsm_super *mpb = super->anchor;
1862 char str[MAX_SIGNATURE_LENGTH];
1863 int i;
1864 struct mdinfo info;
1865 char nbuf[64];
1866 __u32 sum;
1867 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1868 struct dl *dl;
1869
1870 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
1871 str[MPB_SIG_LEN-1] = '\0';
1872 printf(" Magic : %s\n", str);
1873 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1874 printf(" Version : %s\n", get_imsm_version(mpb));
1875 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1876 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1877 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1878 printf(" Attributes : ");
1879 if (imsm_check_attributes(mpb->attributes))
1880 printf("All supported\n");
1881 else
1882 printf("not supported\n");
1883 getinfo_super_imsm(st, &info, NULL);
1884 fname_from_uuid(st, &info, nbuf, ':');
1885 printf(" UUID : %s\n", nbuf + 5);
1886 sum = __le32_to_cpu(mpb->check_sum);
1887 printf(" Checksum : %08x %s\n", sum,
1888 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1889 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
1890 printf(" Disks : %d\n", mpb->num_disks);
1891 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1892 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
1893 super->disks->index, reserved, super->sector_size);
1894 if (get_imsm_bbm_log_size(super->bbm_log)) {
1895 struct bbm_log *log = super->bbm_log;
1896
1897 printf("\n");
1898 printf("Bad Block Management Log:\n");
1899 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1900 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1901 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1902 }
1903 for (i = 0; i < mpb->num_raid_devs; i++) {
1904 struct mdinfo info;
1905 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1906
1907 super->current_vol = i;
1908 getinfo_super_imsm(st, &info, NULL);
1909 fname_from_uuid(st, &info, nbuf, ':');
1910 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1911 }
1912 for (i = 0; i < mpb->num_disks; i++) {
1913 if (i == super->disks->index)
1914 continue;
1915 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
1916 super->sector_size);
1917 }
1918
1919 for (dl = super->disks; dl; dl = dl->next)
1920 if (dl->index == -1)
1921 print_imsm_disk(&dl->disk, -1, reserved,
1922 super->sector_size);
1923
1924 examine_migr_rec_imsm(super);
1925 }
1926
1927 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1928 {
1929 /* We just write a generic IMSM ARRAY entry */
1930 struct mdinfo info;
1931 char nbuf[64];
1932 struct intel_super *super = st->sb;
1933
1934 if (!super->anchor->num_raid_devs) {
1935 printf("ARRAY metadata=imsm\n");
1936 return;
1937 }
1938
1939 getinfo_super_imsm(st, &info, NULL);
1940 fname_from_uuid(st, &info, nbuf, ':');
1941 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1942 }
1943
1944 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1945 {
1946 /* We just write a generic IMSM ARRAY entry */
1947 struct mdinfo info;
1948 char nbuf[64];
1949 char nbuf1[64];
1950 struct intel_super *super = st->sb;
1951 int i;
1952
1953 if (!super->anchor->num_raid_devs)
1954 return;
1955
1956 getinfo_super_imsm(st, &info, NULL);
1957 fname_from_uuid(st, &info, nbuf, ':');
1958 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1959 struct imsm_dev *dev = get_imsm_dev(super, i);
1960
1961 super->current_vol = i;
1962 getinfo_super_imsm(st, &info, NULL);
1963 fname_from_uuid(st, &info, nbuf1, ':');
1964 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1965 dev->volume, nbuf + 5, i, nbuf1 + 5);
1966 }
1967 }
1968
1969 static void export_examine_super_imsm(struct supertype *st)
1970 {
1971 struct intel_super *super = st->sb;
1972 struct imsm_super *mpb = super->anchor;
1973 struct mdinfo info;
1974 char nbuf[64];
1975
1976 getinfo_super_imsm(st, &info, NULL);
1977 fname_from_uuid(st, &info, nbuf, ':');
1978 printf("MD_METADATA=imsm\n");
1979 printf("MD_LEVEL=container\n");
1980 printf("MD_UUID=%s\n", nbuf+5);
1981 printf("MD_DEVICES=%u\n", mpb->num_disks);
1982 }
1983
1984 static int copy_metadata_imsm(struct supertype *st, int from, int to)
1985 {
1986 /* The second last sector of the device contains
1987 * the "struct imsm_super" metadata.
1988 * This contains mpb_size which is the size in bytes of the
1989 * extended metadata. This is located immediately before
1990 * the imsm_super.
1991 * We want to read all that, plus the last sector which
1992 * may contain a migration record, and write it all
1993 * to the target.
1994 */
1995 void *buf;
1996 unsigned long long dsize, offset;
1997 int sectors;
1998 struct imsm_super *sb;
1999 struct intel_super *super = st->sb;
2000 unsigned int sector_size = super->sector_size;
2001 unsigned int written = 0;
2002
2003 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE) != 0)
2004 return 1;
2005
2006 if (!get_dev_size(from, NULL, &dsize))
2007 goto err;
2008
2009 if (lseek64(from, dsize-(2*sector_size), 0) < 0)
2010 goto err;
2011 if ((unsigned int)read(from, buf, sector_size) != sector_size)
2012 goto err;
2013 sb = buf;
2014 if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
2015 goto err;
2016
2017 sectors = mpb_sectors(sb, sector_size) + 2;
2018 offset = dsize - sectors * sector_size;
2019 if (lseek64(from, offset, 0) < 0 ||
2020 lseek64(to, offset, 0) < 0)
2021 goto err;
2022 while (written < sectors * sector_size) {
2023 int n = sectors*sector_size - written;
2024 if (n > 4096)
2025 n = 4096;
2026 if (read(from, buf, n) != n)
2027 goto err;
2028 if (write(to, buf, n) != n)
2029 goto err;
2030 written += n;
2031 }
2032 free(buf);
2033 return 0;
2034 err:
2035 free(buf);
2036 return 1;
2037 }
2038
2039 static void detail_super_imsm(struct supertype *st, char *homehost)
2040 {
2041 struct mdinfo info;
2042 char nbuf[64];
2043
2044 getinfo_super_imsm(st, &info, NULL);
2045 fname_from_uuid(st, &info, nbuf, ':');
2046 printf("\n UUID : %s\n", nbuf + 5);
2047 }
2048
2049 static void brief_detail_super_imsm(struct supertype *st)
2050 {
2051 struct mdinfo info;
2052 char nbuf[64];
2053 getinfo_super_imsm(st, &info, NULL);
2054 fname_from_uuid(st, &info, nbuf, ':');
2055 printf(" UUID=%s", nbuf + 5);
2056 }
2057
2058 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
2059 static void fd2devname(int fd, char *name);
2060
2061 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
2062 {
2063 /* dump an unsorted list of devices attached to AHCI Intel storage
2064 * controller, as well as non-connected ports
2065 */
2066 int hba_len = strlen(hba_path) + 1;
2067 struct dirent *ent;
2068 DIR *dir;
2069 char *path = NULL;
2070 int err = 0;
2071 unsigned long port_mask = (1 << port_count) - 1;
2072
2073 if (port_count > (int)sizeof(port_mask) * 8) {
2074 if (verbose > 0)
2075 pr_err("port_count %d out of range\n", port_count);
2076 return 2;
2077 }
2078
2079 /* scroll through /sys/dev/block looking for devices attached to
2080 * this hba
2081 */
2082 dir = opendir("/sys/dev/block");
2083 if (!dir)
2084 return 1;
2085
2086 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2087 int fd;
2088 char model[64];
2089 char vendor[64];
2090 char buf[1024];
2091 int major, minor;
2092 char *device;
2093 char *c;
2094 int port;
2095 int type;
2096
2097 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2098 continue;
2099 path = devt_to_devpath(makedev(major, minor));
2100 if (!path)
2101 continue;
2102 if (!path_attached_to_hba(path, hba_path)) {
2103 free(path);
2104 path = NULL;
2105 continue;
2106 }
2107
2108 /* retrieve the scsi device type */
2109 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
2110 if (verbose > 0)
2111 pr_err("failed to allocate 'device'\n");
2112 err = 2;
2113 break;
2114 }
2115 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
2116 if (load_sys(device, buf, sizeof(buf)) != 0) {
2117 if (verbose > 0)
2118 pr_err("failed to read device type for %s\n",
2119 path);
2120 err = 2;
2121 free(device);
2122 break;
2123 }
2124 type = strtoul(buf, NULL, 10);
2125
2126 /* if it's not a disk print the vendor and model */
2127 if (!(type == 0 || type == 7 || type == 14)) {
2128 vendor[0] = '\0';
2129 model[0] = '\0';
2130 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
2131 if (load_sys(device, buf, sizeof(buf)) == 0) {
2132 strncpy(vendor, buf, sizeof(vendor));
2133 vendor[sizeof(vendor) - 1] = '\0';
2134 c = (char *) &vendor[sizeof(vendor) - 1];
2135 while (isspace(*c) || *c == '\0')
2136 *c-- = '\0';
2137
2138 }
2139 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
2140 if (load_sys(device, buf, sizeof(buf)) == 0) {
2141 strncpy(model, buf, sizeof(model));
2142 model[sizeof(model) - 1] = '\0';
2143 c = (char *) &model[sizeof(model) - 1];
2144 while (isspace(*c) || *c == '\0')
2145 *c-- = '\0';
2146 }
2147
2148 if (vendor[0] && model[0])
2149 sprintf(buf, "%.64s %.64s", vendor, model);
2150 else
2151 switch (type) { /* numbers from hald/linux/device.c */
2152 case 1: sprintf(buf, "tape"); break;
2153 case 2: sprintf(buf, "printer"); break;
2154 case 3: sprintf(buf, "processor"); break;
2155 case 4:
2156 case 5: sprintf(buf, "cdrom"); break;
2157 case 6: sprintf(buf, "scanner"); break;
2158 case 8: sprintf(buf, "media_changer"); break;
2159 case 9: sprintf(buf, "comm"); break;
2160 case 12: sprintf(buf, "raid"); break;
2161 default: sprintf(buf, "unknown");
2162 }
2163 } else
2164 buf[0] = '\0';
2165 free(device);
2166
2167 /* chop device path to 'host%d' and calculate the port number */
2168 c = strchr(&path[hba_len], '/');
2169 if (!c) {
2170 if (verbose > 0)
2171 pr_err("%s - invalid path name\n", path + hba_len);
2172 err = 2;
2173 break;
2174 }
2175 *c = '\0';
2176 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2177 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
2178 port -= host_base;
2179 else {
2180 if (verbose > 0) {
2181 *c = '/'; /* repair the full string */
2182 pr_err("failed to determine port number for %s\n",
2183 path);
2184 }
2185 err = 2;
2186 break;
2187 }
2188
2189 /* mark this port as used */
2190 port_mask &= ~(1 << port);
2191
2192 /* print out the device information */
2193 if (buf[0]) {
2194 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2195 continue;
2196 }
2197
2198 fd = dev_open(ent->d_name, O_RDONLY);
2199 if (fd < 0)
2200 printf(" Port%d : - disk info unavailable -\n", port);
2201 else {
2202 fd2devname(fd, buf);
2203 printf(" Port%d : %s", port, buf);
2204 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
2205 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
2206 else
2207 printf(" ()\n");
2208 close(fd);
2209 }
2210 free(path);
2211 path = NULL;
2212 }
2213 if (path)
2214 free(path);
2215 if (dir)
2216 closedir(dir);
2217 if (err == 0) {
2218 int i;
2219
2220 for (i = 0; i < port_count; i++)
2221 if (port_mask & (1 << i))
2222 printf(" Port%d : - no device attached -\n", i);
2223 }
2224
2225 return err;
2226 }
2227
2228 static int print_vmd_attached_devs(struct sys_dev *hba)
2229 {
2230 struct dirent *ent;
2231 DIR *dir;
2232 char path[292];
2233 char link[256];
2234 char *c, *rp;
2235
2236 if (hba->type != SYS_DEV_VMD)
2237 return 1;
2238
2239 /* scroll through /sys/dev/block looking for devices attached to
2240 * this hba
2241 */
2242 dir = opendir("/sys/bus/pci/drivers/nvme");
2243 if (!dir)
2244 return 1;
2245
2246 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2247 int n;
2248
2249 /* is 'ent' a device? check that the 'subsystem' link exists and
2250 * that its target matches 'bus'
2251 */
2252 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
2253 ent->d_name);
2254 n = readlink(path, link, sizeof(link));
2255 if (n < 0 || n >= (int)sizeof(link))
2256 continue;
2257 link[n] = '\0';
2258 c = strrchr(link, '/');
2259 if (!c)
2260 continue;
2261 if (strncmp("pci", c+1, strlen("pci")) != 0)
2262 continue;
2263
2264 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
2265
2266 rp = realpath(path, NULL);
2267 if (!rp)
2268 continue;
2269
2270 if (path_attached_to_hba(rp, hba->path)) {
2271 printf(" NVMe under VMD : %s\n", rp);
2272 }
2273 free(rp);
2274 }
2275
2276 closedir(dir);
2277 return 0;
2278 }
2279
2280 static void print_found_intel_controllers(struct sys_dev *elem)
2281 {
2282 for (; elem; elem = elem->next) {
2283 pr_err("found Intel(R) ");
2284 if (elem->type == SYS_DEV_SATA)
2285 fprintf(stderr, "SATA ");
2286 else if (elem->type == SYS_DEV_SAS)
2287 fprintf(stderr, "SAS ");
2288 else if (elem->type == SYS_DEV_NVME)
2289 fprintf(stderr, "NVMe ");
2290
2291 if (elem->type == SYS_DEV_VMD)
2292 fprintf(stderr, "VMD domain");
2293 else
2294 fprintf(stderr, "RAID controller");
2295
2296 if (elem->pci_id)
2297 fprintf(stderr, " at %s", elem->pci_id);
2298 fprintf(stderr, ".\n");
2299 }
2300 fflush(stderr);
2301 }
2302
2303 static int ahci_get_port_count(const char *hba_path, int *port_count)
2304 {
2305 struct dirent *ent;
2306 DIR *dir;
2307 int host_base = -1;
2308
2309 *port_count = 0;
2310 if ((dir = opendir(hba_path)) == NULL)
2311 return -1;
2312
2313 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2314 int host;
2315
2316 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2317 ((sscanf(ent->d_name, "host%d", &host) != 1)))
2318 continue;
2319 if (*port_count == 0)
2320 host_base = host;
2321 else if (host < host_base)
2322 host_base = host;
2323
2324 if (host + 1 > *port_count + host_base)
2325 *port_count = host + 1 - host_base;
2326 }
2327 closedir(dir);
2328 return host_base;
2329 }
2330
2331 static void print_imsm_capability(const struct imsm_orom *orom)
2332 {
2333 printf(" Platform : Intel(R) ");
2334 if (orom->capabilities == 0 && orom->driver_features == 0)
2335 printf("Matrix Storage Manager\n");
2336 else
2337 printf("Rapid Storage Technology%s\n",
2338 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2339 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2340 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2341 orom->minor_ver, orom->hotfix_ver, orom->build);
2342 printf(" RAID Levels :%s%s%s%s%s\n",
2343 imsm_orom_has_raid0(orom) ? " raid0" : "",
2344 imsm_orom_has_raid1(orom) ? " raid1" : "",
2345 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2346 imsm_orom_has_raid10(orom) ? " raid10" : "",
2347 imsm_orom_has_raid5(orom) ? " raid5" : "");
2348 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2349 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2350 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2351 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2352 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2353 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2354 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2355 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2356 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2357 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2358 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2359 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2360 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2361 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2362 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2363 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2364 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
2365 printf(" 2TB volumes :%s supported\n",
2366 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2367 printf(" 2TB disks :%s supported\n",
2368 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
2369 printf(" Max Disks : %d\n", orom->tds);
2370 printf(" Max Volumes : %d per array, %d per %s\n",
2371 orom->vpa, orom->vphba,
2372 imsm_orom_is_nvme(orom) ? "platform" : "controller");
2373 return;
2374 }
2375
2376 static void print_imsm_capability_export(const struct imsm_orom *orom)
2377 {
2378 printf("MD_FIRMWARE_TYPE=imsm\n");
2379 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2380 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2381 orom->hotfix_ver, orom->build);
2382 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2383 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2384 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2385 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2386 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2387 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2388 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2389 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2390 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2391 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2392 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2393 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2394 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2395 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2396 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2397 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2398 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2399 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2400 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2401 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2402 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2403 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2404 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2405 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2406 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2407 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2408 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2409 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2410 }
2411
2412 static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
2413 {
2414 /* There are two components to imsm platform support, the ahci SATA
2415 * controller and the option-rom. To find the SATA controller we
2416 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2417 * controller with the Intel vendor id is present. This approach
2418 * allows mdadm to leverage the kernel's ahci detection logic, with the
2419 * caveat that if ahci.ko is not loaded mdadm will not be able to
2420 * detect platform raid capabilities. The option-rom resides in a
2421 * platform "Adapter ROM". We scan for its signature to retrieve the
2422 * platform capabilities. If raid support is disabled in the BIOS the
2423 * option-rom capability structure will not be available.
2424 */
2425 struct sys_dev *list, *hba;
2426 int host_base = 0;
2427 int port_count = 0;
2428 int result=1;
2429
2430 if (enumerate_only) {
2431 if (check_env("IMSM_NO_PLATFORM"))
2432 return 0;
2433 list = find_intel_devices();
2434 if (!list)
2435 return 2;
2436 for (hba = list; hba; hba = hba->next) {
2437 if (find_imsm_capability(hba)) {
2438 result = 0;
2439 break;
2440 }
2441 else
2442 result = 2;
2443 }
2444 return result;
2445 }
2446
2447 list = find_intel_devices();
2448 if (!list) {
2449 if (verbose > 0)
2450 pr_err("no active Intel(R) RAID controller found.\n");
2451 return 2;
2452 } else if (verbose > 0)
2453 print_found_intel_controllers(list);
2454
2455 for (hba = list; hba; hba = hba->next) {
2456 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
2457 continue;
2458 if (!find_imsm_capability(hba)) {
2459 char buf[PATH_MAX];
2460 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
2461 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2462 get_sys_dev_type(hba->type));
2463 continue;
2464 }
2465 result = 0;
2466 }
2467
2468 if (controller_path && result == 1) {
2469 pr_err("no active Intel(R) RAID controller found under %s\n",
2470 controller_path);
2471 return result;
2472 }
2473
2474 const struct orom_entry *entry;
2475
2476 for (entry = orom_entries; entry; entry = entry->next) {
2477 if (entry->type == SYS_DEV_VMD) {
2478 print_imsm_capability(&entry->orom);
2479 printf(" 3rd party NVMe :%s supported\n",
2480 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
2481 for (hba = list; hba; hba = hba->next) {
2482 if (hba->type == SYS_DEV_VMD) {
2483 char buf[PATH_MAX];
2484 printf(" I/O Controller : %s (%s)\n",
2485 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
2486 if (print_vmd_attached_devs(hba)) {
2487 if (verbose > 0)
2488 pr_err("failed to get devices attached to VMD domain.\n");
2489 result |= 2;
2490 }
2491 }
2492 }
2493 printf("\n");
2494 continue;
2495 }
2496
2497 print_imsm_capability(&entry->orom);
2498 if (entry->type == SYS_DEV_NVME) {
2499 for (hba = list; hba; hba = hba->next) {
2500 if (hba->type == SYS_DEV_NVME)
2501 printf(" NVMe Device : %s\n", hba->path);
2502 }
2503 printf("\n");
2504 continue;
2505 }
2506
2507 struct devid_list *devid;
2508 for (devid = entry->devid_list; devid; devid = devid->next) {
2509 hba = device_by_id(devid->devid);
2510 if (!hba)
2511 continue;
2512
2513 printf(" I/O Controller : %s (%s)\n",
2514 hba->path, get_sys_dev_type(hba->type));
2515 if (hba->type == SYS_DEV_SATA) {
2516 host_base = ahci_get_port_count(hba->path, &port_count);
2517 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2518 if (verbose > 0)
2519 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
2520 result |= 2;
2521 }
2522 }
2523 }
2524 printf("\n");
2525 }
2526
2527 return result;
2528 }
2529
2530 static int export_detail_platform_imsm(int verbose, char *controller_path)
2531 {
2532 struct sys_dev *list, *hba;
2533 int result=1;
2534
2535 list = find_intel_devices();
2536 if (!list) {
2537 if (verbose > 0)
2538 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2539 result = 2;
2540 return result;
2541 }
2542
2543 for (hba = list; hba; hba = hba->next) {
2544 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2545 continue;
2546 if (!find_imsm_capability(hba) && verbose > 0) {
2547 char buf[PATH_MAX];
2548 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2549 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2550 }
2551 else
2552 result = 0;
2553 }
2554
2555 const struct orom_entry *entry;
2556
2557 for (entry = orom_entries; entry; entry = entry->next) {
2558 if (entry->type == SYS_DEV_VMD) {
2559 for (hba = list; hba; hba = hba->next)
2560 print_imsm_capability_export(&entry->orom);
2561 continue;
2562 }
2563 print_imsm_capability_export(&entry->orom);
2564 }
2565
2566 return result;
2567 }
2568
2569 static int match_home_imsm(struct supertype *st, char *homehost)
2570 {
2571 /* the imsm metadata format does not specify any host
2572 * identification information. We return -1 since we can never
2573 * confirm nor deny whether a given array is "meant" for this
2574 * host. We rely on compare_super and the 'family_num' fields to
2575 * exclude member disks that do not belong, and we rely on
2576 * mdadm.conf to specify the arrays that should be assembled.
2577 * Auto-assembly may still pick up "foreign" arrays.
2578 */
2579
2580 return -1;
2581 }
2582
2583 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2584 {
2585 /* The uuid returned here is used for:
2586 * uuid to put into bitmap file (Create, Grow)
2587 * uuid for backup header when saving critical section (Grow)
2588 * comparing uuids when re-adding a device into an array
2589 * In these cases the uuid required is that of the data-array,
2590 * not the device-set.
2591 * uuid to recognise same set when adding a missing device back
2592 * to an array. This is a uuid for the device-set.
2593 *
2594 * For each of these we can make do with a truncated
2595 * or hashed uuid rather than the original, as long as
2596 * everyone agrees.
2597 * In each case the uuid required is that of the data-array,
2598 * not the device-set.
2599 */
2600 /* imsm does not track uuid's so we synthesis one using sha1 on
2601 * - The signature (Which is constant for all imsm array, but no matter)
2602 * - the orig_family_num of the container
2603 * - the index number of the volume
2604 * - the 'serial' number of the volume.
2605 * Hopefully these are all constant.
2606 */
2607 struct intel_super *super = st->sb;
2608
2609 char buf[20];
2610 struct sha1_ctx ctx;
2611 struct imsm_dev *dev = NULL;
2612 __u32 family_num;
2613
2614 /* some mdadm versions failed to set ->orig_family_num, in which
2615 * case fall back to ->family_num. orig_family_num will be
2616 * fixed up with the first metadata update.
2617 */
2618 family_num = super->anchor->orig_family_num;
2619 if (family_num == 0)
2620 family_num = super->anchor->family_num;
2621 sha1_init_ctx(&ctx);
2622 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
2623 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
2624 if (super->current_vol >= 0)
2625 dev = get_imsm_dev(super, super->current_vol);
2626 if (dev) {
2627 __u32 vol = super->current_vol;
2628 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2629 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2630 }
2631 sha1_finish_ctx(&ctx, buf);
2632 memcpy(uuid, buf, 4*4);
2633 }
2634
2635 #if 0
2636 static void
2637 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
2638 {
2639 __u8 *v = get_imsm_version(mpb);
2640 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2641 char major[] = { 0, 0, 0 };
2642 char minor[] = { 0 ,0, 0 };
2643 char patch[] = { 0, 0, 0 };
2644 char *ver_parse[] = { major, minor, patch };
2645 int i, j;
2646
2647 i = j = 0;
2648 while (*v != '\0' && v < end) {
2649 if (*v != '.' && j < 2)
2650 ver_parse[i][j++] = *v;
2651 else {
2652 i++;
2653 j = 0;
2654 }
2655 v++;
2656 }
2657
2658 *m = strtol(minor, NULL, 0);
2659 *p = strtol(patch, NULL, 0);
2660 }
2661 #endif
2662
2663 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2664 {
2665 /* migr_strip_size when repairing or initializing parity */
2666 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2667 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2668
2669 switch (get_imsm_raid_level(map)) {
2670 case 5:
2671 case 10:
2672 return chunk;
2673 default:
2674 return 128*1024 >> 9;
2675 }
2676 }
2677
2678 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2679 {
2680 /* migr_strip_size when rebuilding a degraded disk, no idea why
2681 * this is different than migr_strip_size_resync(), but it's good
2682 * to be compatible
2683 */
2684 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2685 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2686
2687 switch (get_imsm_raid_level(map)) {
2688 case 1:
2689 case 10:
2690 if (map->num_members % map->num_domains == 0)
2691 return 128*1024 >> 9;
2692 else
2693 return chunk;
2694 case 5:
2695 return max((__u32) 64*1024 >> 9, chunk);
2696 default:
2697 return 128*1024 >> 9;
2698 }
2699 }
2700
2701 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2702 {
2703 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2704 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2705 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2706 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2707
2708 return max((__u32) 1, hi_chunk / lo_chunk);
2709 }
2710
2711 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2712 {
2713 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2714 int level = get_imsm_raid_level(lo);
2715
2716 if (level == 1 || level == 10) {
2717 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2718
2719 return hi->num_domains;
2720 } else
2721 return num_stripes_per_unit_resync(dev);
2722 }
2723
2724 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
2725 {
2726 /* named 'imsm_' because raid0, raid1 and raid10
2727 * counter-intuitively have the same number of data disks
2728 */
2729 struct imsm_map *map = get_imsm_map(dev, second_map);
2730
2731 switch (get_imsm_raid_level(map)) {
2732 case 0:
2733 return map->num_members;
2734 break;
2735 case 1:
2736 case 10:
2737 return map->num_members/2;
2738 case 5:
2739 return map->num_members - 1;
2740 default:
2741 dprintf("unsupported raid level\n");
2742 return 0;
2743 }
2744 }
2745
2746 static __u32 parity_segment_depth(struct imsm_dev *dev)
2747 {
2748 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2749 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2750
2751 switch(get_imsm_raid_level(map)) {
2752 case 1:
2753 case 10:
2754 return chunk * map->num_domains;
2755 case 5:
2756 return chunk * map->num_members;
2757 default:
2758 return chunk;
2759 }
2760 }
2761
2762 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2763 {
2764 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2765 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2766 __u32 strip = block / chunk;
2767
2768 switch (get_imsm_raid_level(map)) {
2769 case 1:
2770 case 10: {
2771 __u32 vol_strip = (strip * map->num_domains) + 1;
2772 __u32 vol_stripe = vol_strip / map->num_members;
2773
2774 return vol_stripe * chunk + block % chunk;
2775 } case 5: {
2776 __u32 stripe = strip / (map->num_members - 1);
2777
2778 return stripe * chunk + block % chunk;
2779 }
2780 default:
2781 return 0;
2782 }
2783 }
2784
2785 static __u64 blocks_per_migr_unit(struct intel_super *super,
2786 struct imsm_dev *dev)
2787 {
2788 /* calculate the conversion factor between per member 'blocks'
2789 * (md/{resync,rebuild}_start) and imsm migration units, return
2790 * 0 for the 'not migrating' and 'unsupported migration' cases
2791 */
2792 if (!dev->vol.migr_state)
2793 return 0;
2794
2795 switch (migr_type(dev)) {
2796 case MIGR_GEN_MIGR: {
2797 struct migr_record *migr_rec = super->migr_rec;
2798 return __le32_to_cpu(migr_rec->blocks_per_unit);
2799 }
2800 case MIGR_VERIFY:
2801 case MIGR_REPAIR:
2802 case MIGR_INIT: {
2803 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2804 __u32 stripes_per_unit;
2805 __u32 blocks_per_unit;
2806 __u32 parity_depth;
2807 __u32 migr_chunk;
2808 __u32 block_map;
2809 __u32 block_rel;
2810 __u32 segment;
2811 __u32 stripe;
2812 __u8 disks;
2813
2814 /* yes, this is really the translation of migr_units to
2815 * per-member blocks in the 'resync' case
2816 */
2817 stripes_per_unit = num_stripes_per_unit_resync(dev);
2818 migr_chunk = migr_strip_blocks_resync(dev);
2819 disks = imsm_num_data_members(dev, MAP_0);
2820 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2821 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2822 segment = blocks_per_unit / stripe;
2823 block_rel = blocks_per_unit - segment * stripe;
2824 parity_depth = parity_segment_depth(dev);
2825 block_map = map_migr_block(dev, block_rel);
2826 return block_map + parity_depth * segment;
2827 }
2828 case MIGR_REBUILD: {
2829 __u32 stripes_per_unit;
2830 __u32 migr_chunk;
2831
2832 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2833 migr_chunk = migr_strip_blocks_rebuild(dev);
2834 return migr_chunk * stripes_per_unit;
2835 }
2836 case MIGR_STATE_CHANGE:
2837 default:
2838 return 0;
2839 }
2840 }
2841
2842 static int imsm_level_to_layout(int level)
2843 {
2844 switch (level) {
2845 case 0:
2846 case 1:
2847 return 0;
2848 case 5:
2849 case 6:
2850 return ALGORITHM_LEFT_ASYMMETRIC;
2851 case 10:
2852 return 0x102;
2853 }
2854 return UnSet;
2855 }
2856
2857 /*******************************************************************************
2858 * Function: read_imsm_migr_rec
2859 * Description: Function reads imsm migration record from last sector of disk
2860 * Parameters:
2861 * fd : disk descriptor
2862 * super : metadata info
2863 * Returns:
2864 * 0 : success,
2865 * -1 : fail
2866 ******************************************************************************/
2867 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2868 {
2869 int ret_val = -1;
2870 unsigned int sector_size = super->sector_size;
2871 unsigned long long dsize;
2872
2873 get_dev_size(fd, NULL, &dsize);
2874 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
2875 SEEK_SET) < 0) {
2876 pr_err("Cannot seek to anchor block: %s\n",
2877 strerror(errno));
2878 goto out;
2879 }
2880 if ((unsigned int)read(fd, super->migr_rec_buf,
2881 MIGR_REC_BUF_SECTORS*sector_size) !=
2882 MIGR_REC_BUF_SECTORS*sector_size) {
2883 pr_err("Cannot read migr record block: %s\n",
2884 strerror(errno));
2885 goto out;
2886 }
2887 ret_val = 0;
2888 if (sector_size == 4096)
2889 convert_from_4k_imsm_migr_rec(super);
2890
2891 out:
2892 return ret_val;
2893 }
2894
2895 static struct imsm_dev *imsm_get_device_during_migration(
2896 struct intel_super *super)
2897 {
2898
2899 struct intel_dev *dv;
2900
2901 for (dv = super->devlist; dv; dv = dv->next) {
2902 if (is_gen_migration(dv->dev))
2903 return dv->dev;
2904 }
2905 return NULL;
2906 }
2907
2908 /*******************************************************************************
2909 * Function: load_imsm_migr_rec
2910 * Description: Function reads imsm migration record (it is stored at the last
2911 * sector of disk)
2912 * Parameters:
2913 * super : imsm internal array info
2914 * info : general array info
2915 * Returns:
2916 * 0 : success
2917 * -1 : fail
2918 * -2 : no migration in progress
2919 ******************************************************************************/
2920 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2921 {
2922 struct mdinfo *sd;
2923 struct dl *dl;
2924 char nm[30];
2925 int retval = -1;
2926 int fd = -1;
2927 struct imsm_dev *dev;
2928 struct imsm_map *map;
2929 int slot = -1;
2930
2931 /* find map under migration */
2932 dev = imsm_get_device_during_migration(super);
2933 /* nothing to load,no migration in progress?
2934 */
2935 if (dev == NULL)
2936 return -2;
2937
2938 if (info) {
2939 for (sd = info->devs ; sd ; sd = sd->next) {
2940 /* read only from one of the first two slots */
2941 if ((sd->disk.raid_disk < 0) ||
2942 (sd->disk.raid_disk > 1))
2943 continue;
2944
2945 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2946 fd = dev_open(nm, O_RDONLY);
2947 if (fd >= 0)
2948 break;
2949 }
2950 }
2951 if (fd < 0) {
2952 map = get_imsm_map(dev, MAP_0);
2953 for (dl = super->disks; dl; dl = dl->next) {
2954 /* skip spare and failed disks
2955 */
2956 if (dl->index < 0)
2957 continue;
2958 /* read only from one of the first two slots */
2959 if (map)
2960 slot = get_imsm_disk_slot(map, dl->index);
2961 if (map == NULL || slot > 1 || slot < 0)
2962 continue;
2963 sprintf(nm, "%d:%d", dl->major, dl->minor);
2964 fd = dev_open(nm, O_RDONLY);
2965 if (fd >= 0)
2966 break;
2967 }
2968 }
2969 if (fd < 0)
2970 goto out;
2971 retval = read_imsm_migr_rec(fd, super);
2972
2973 out:
2974 if (fd >= 0)
2975 close(fd);
2976 return retval;
2977 }
2978
2979 /*******************************************************************************
2980 * function: imsm_create_metadata_checkpoint_update
2981 * Description: It creates update for checkpoint change.
2982 * Parameters:
2983 * super : imsm internal array info
2984 * u : pointer to prepared update
2985 * Returns:
2986 * Uptate length.
2987 * If length is equal to 0, input pointer u contains no update
2988 ******************************************************************************/
2989 static int imsm_create_metadata_checkpoint_update(
2990 struct intel_super *super,
2991 struct imsm_update_general_migration_checkpoint **u)
2992 {
2993
2994 int update_memory_size = 0;
2995
2996 dprintf("(enter)\n");
2997
2998 if (u == NULL)
2999 return 0;
3000 *u = NULL;
3001
3002 /* size of all update data without anchor */
3003 update_memory_size =
3004 sizeof(struct imsm_update_general_migration_checkpoint);
3005
3006 *u = xcalloc(1, update_memory_size);
3007 if (*u == NULL) {
3008 dprintf("error: cannot get memory\n");
3009 return 0;
3010 }
3011 (*u)->type = update_general_migration_checkpoint;
3012 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
3013 dprintf("prepared for %u\n", (*u)->curr_migr_unit);
3014
3015 return update_memory_size;
3016 }
3017
3018 static void imsm_update_metadata_locally(struct supertype *st,
3019 void *buf, int len);
3020
3021 /*******************************************************************************
3022 * Function: write_imsm_migr_rec
3023 * Description: Function writes imsm migration record
3024 * (at the last sector of disk)
3025 * Parameters:
3026 * super : imsm internal array info
3027 * Returns:
3028 * 0 : success
3029 * -1 : if fail
3030 ******************************************************************************/
3031 static int write_imsm_migr_rec(struct supertype *st)
3032 {
3033 struct intel_super *super = st->sb;
3034 unsigned int sector_size = super->sector_size;
3035 unsigned long long dsize;
3036 char nm[30];
3037 int fd = -1;
3038 int retval = -1;
3039 struct dl *sd;
3040 int len;
3041 struct imsm_update_general_migration_checkpoint *u;
3042 struct imsm_dev *dev;
3043 struct imsm_map *map;
3044
3045 /* find map under migration */
3046 dev = imsm_get_device_during_migration(super);
3047 /* if no migration, write buffer anyway to clear migr_record
3048 * on disk based on first available device
3049 */
3050 if (dev == NULL)
3051 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3052 super->current_vol);
3053
3054 map = get_imsm_map(dev, MAP_0);
3055
3056 if (sector_size == 4096)
3057 convert_to_4k_imsm_migr_rec(super);
3058 for (sd = super->disks ; sd ; sd = sd->next) {
3059 int slot = -1;
3060
3061 /* skip failed and spare devices */
3062 if (sd->index < 0)
3063 continue;
3064 /* write to 2 first slots only */
3065 if (map)
3066 slot = get_imsm_disk_slot(map, sd->index);
3067 if (map == NULL || slot > 1 || slot < 0)
3068 continue;
3069
3070 sprintf(nm, "%d:%d", sd->major, sd->minor);
3071 fd = dev_open(nm, O_RDWR);
3072 if (fd < 0)
3073 continue;
3074 get_dev_size(fd, NULL, &dsize);
3075 if (lseek64(fd, dsize - (MIGR_REC_SECTOR_POSITION*sector_size),
3076 SEEK_SET) < 0) {
3077 pr_err("Cannot seek to anchor block: %s\n",
3078 strerror(errno));
3079 goto out;
3080 }
3081 if ((unsigned int)write(fd, super->migr_rec_buf,
3082 MIGR_REC_BUF_SECTORS*sector_size) !=
3083 MIGR_REC_BUF_SECTORS*sector_size) {
3084 pr_err("Cannot write migr record block: %s\n",
3085 strerror(errno));
3086 goto out;
3087 }
3088 close(fd);
3089 fd = -1;
3090 }
3091 if (sector_size == 4096)
3092 convert_from_4k_imsm_migr_rec(super);
3093 /* update checkpoint information in metadata */
3094 len = imsm_create_metadata_checkpoint_update(super, &u);
3095 if (len <= 0) {
3096 dprintf("imsm: Cannot prepare update\n");
3097 goto out;
3098 }
3099 /* update metadata locally */
3100 imsm_update_metadata_locally(st, u, len);
3101 /* and possibly remotely */
3102 if (st->update_tail) {
3103 append_metadata_update(st, u, len);
3104 /* during reshape we do all work inside metadata handler
3105 * manage_reshape(), so metadata update has to be triggered
3106 * insida it
3107 */
3108 flush_metadata_updates(st);
3109 st->update_tail = &st->updates;
3110 } else
3111 free(u);
3112
3113 retval = 0;
3114 out:
3115 if (fd >= 0)
3116 close(fd);
3117 return retval;
3118 }
3119
3120 /* spare/missing disks activations are not allowe when
3121 * array/container performs reshape operation, because
3122 * all arrays in container works on the same disks set
3123 */
3124 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3125 {
3126 int rv = 0;
3127 struct intel_dev *i_dev;
3128 struct imsm_dev *dev;
3129
3130 /* check whole container
3131 */
3132 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3133 dev = i_dev->dev;
3134 if (is_gen_migration(dev)) {
3135 /* No repair during any migration in container
3136 */
3137 rv = 1;
3138 break;
3139 }
3140 }
3141 return rv;
3142 }
3143 static unsigned long long imsm_component_size_aligment_check(int level,
3144 int chunk_size,
3145 unsigned int sector_size,
3146 unsigned long long component_size)
3147 {
3148 unsigned int component_size_alligment;
3149
3150 /* check component size aligment
3151 */
3152 component_size_alligment = component_size % (chunk_size/sector_size);
3153
3154 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alligment = %u\n",
3155 level, chunk_size, component_size,
3156 component_size_alligment);
3157
3158 if (component_size_alligment && (level != 1) && (level != UnSet)) {
3159 dprintf("imsm: reported component size alligned from %llu ",
3160 component_size);
3161 component_size -= component_size_alligment;
3162 dprintf_cont("to %llu (%i).\n",
3163 component_size, component_size_alligment);
3164 }
3165
3166 return component_size;
3167 }
3168
3169 static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3170 {
3171 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3172 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3173
3174 return pba_of_lba0(map) +
3175 (num_data_stripes(map) * map->blocks_per_strip);
3176 }
3177
3178 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
3179 {
3180 struct intel_super *super = st->sb;
3181 struct migr_record *migr_rec = super->migr_rec;
3182 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
3183 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3184 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
3185 struct imsm_map *map_to_analyse = map;
3186 struct dl *dl;
3187 int map_disks = info->array.raid_disks;
3188
3189 memset(info, 0, sizeof(*info));
3190 if (prev_map)
3191 map_to_analyse = prev_map;
3192
3193 dl = super->current_disk;
3194
3195 info->container_member = super->current_vol;
3196 info->array.raid_disks = map->num_members;
3197 info->array.level = get_imsm_raid_level(map_to_analyse);
3198 info->array.layout = imsm_level_to_layout(info->array.level);
3199 info->array.md_minor = -1;
3200 info->array.ctime = 0;
3201 info->array.utime = 0;
3202 info->array.chunk_size =
3203 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
3204 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
3205 info->custom_array_size = __le32_to_cpu(dev->size_high);
3206 info->custom_array_size <<= 32;
3207 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3208 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3209
3210 if (is_gen_migration(dev)) {
3211 info->reshape_active = 1;
3212 info->new_level = get_imsm_raid_level(map);
3213 info->new_layout = imsm_level_to_layout(info->new_level);
3214 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3215 info->delta_disks = map->num_members - prev_map->num_members;
3216 if (info->delta_disks) {
3217 /* this needs to be applied to every array
3218 * in the container.
3219 */
3220 info->reshape_active = CONTAINER_RESHAPE;
3221 }
3222 /* We shape information that we give to md might have to be
3223 * modify to cope with md's requirement for reshaping arrays.
3224 * For example, when reshaping a RAID0, md requires it to be
3225 * presented as a degraded RAID4.
3226 * Also if a RAID0 is migrating to a RAID5 we need to specify
3227 * the array as already being RAID5, but the 'before' layout
3228 * is a RAID4-like layout.
3229 */
3230 switch (info->array.level) {
3231 case 0:
3232 switch(info->new_level) {
3233 case 0:
3234 /* conversion is happening as RAID4 */
3235 info->array.level = 4;
3236 info->array.raid_disks += 1;
3237 break;
3238 case 5:
3239 /* conversion is happening as RAID5 */
3240 info->array.level = 5;
3241 info->array.layout = ALGORITHM_PARITY_N;
3242 info->delta_disks -= 1;
3243 break;
3244 default:
3245 /* FIXME error message */
3246 info->array.level = UnSet;
3247 break;
3248 }
3249 break;
3250 }
3251 } else {
3252 info->new_level = UnSet;
3253 info->new_layout = UnSet;
3254 info->new_chunk = info->array.chunk_size;
3255 info->delta_disks = 0;
3256 }
3257
3258 if (dl) {
3259 info->disk.major = dl->major;
3260 info->disk.minor = dl->minor;
3261 info->disk.number = dl->index;
3262 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3263 dl->index);
3264 }
3265
3266 info->data_offset = pba_of_lba0(map_to_analyse);
3267
3268 if (info->array.level == 5) {
3269 info->component_size = num_data_stripes(map_to_analyse) *
3270 map_to_analyse->blocks_per_strip;
3271 } else {
3272 info->component_size = blocks_per_member(map_to_analyse);
3273 }
3274
3275 info->component_size = imsm_component_size_aligment_check(
3276 info->array.level,
3277 info->array.chunk_size,
3278 super->sector_size,
3279 info->component_size);
3280 info->bb.supported = 1;
3281
3282 memset(info->uuid, 0, sizeof(info->uuid));
3283 info->recovery_start = MaxSector;
3284
3285 if (info->array.level == 5 && dev->rwh_policy == RWH_DISTRIBUTED) {
3286 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3287 info->ppl_sector = get_ppl_sector(super, super->current_vol);
3288 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE) >> 9;
3289 } else if (info->array.level <= 0) {
3290 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3291 } else {
3292 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3293 }
3294
3295 info->reshape_progress = 0;
3296 info->resync_start = MaxSector;
3297 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
3298 !(info->array.state & 1)) &&
3299 imsm_reshape_blocks_arrays_changes(super) == 0) {
3300 info->resync_start = 0;
3301 }
3302 if (dev->vol.migr_state) {
3303 switch (migr_type(dev)) {
3304 case MIGR_REPAIR:
3305 case MIGR_INIT: {
3306 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3307 dev);
3308 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
3309
3310 info->resync_start = blocks_per_unit * units;
3311 break;
3312 }
3313 case MIGR_GEN_MIGR: {
3314 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3315 dev);
3316 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
3317 unsigned long long array_blocks;
3318 int used_disks;
3319
3320 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3321 (units <
3322 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
3323 (super->migr_rec->rec_status ==
3324 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3325 units++;
3326
3327 info->reshape_progress = blocks_per_unit * units;
3328
3329 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
3330 (unsigned long long)units,
3331 (unsigned long long)blocks_per_unit,
3332 info->reshape_progress);
3333
3334 used_disks = imsm_num_data_members(dev, MAP_1);
3335 if (used_disks > 0) {
3336 array_blocks = blocks_per_member(map) *
3337 used_disks;
3338 info->custom_array_size =
3339 round_size_to_mb(array_blocks,
3340 used_disks);
3341
3342 }
3343 }
3344 case MIGR_VERIFY:
3345 /* we could emulate the checkpointing of
3346 * 'sync_action=check' migrations, but for now
3347 * we just immediately complete them
3348 */
3349 case MIGR_REBUILD:
3350 /* this is handled by container_content_imsm() */
3351 case MIGR_STATE_CHANGE:
3352 /* FIXME handle other migrations */
3353 default:
3354 /* we are not dirty, so... */
3355 info->resync_start = MaxSector;
3356 }
3357 }
3358
3359 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3360 info->name[MAX_RAID_SERIAL_LEN] = 0;
3361
3362 info->array.major_version = -1;
3363 info->array.minor_version = -2;
3364 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
3365 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
3366 uuid_from_super_imsm(st, info->uuid);
3367
3368 if (dmap) {
3369 int i, j;
3370 for (i=0; i<map_disks; i++) {
3371 dmap[i] = 0;
3372 if (i < info->array.raid_disks) {
3373 struct imsm_disk *dsk;
3374 j = get_imsm_disk_idx(dev, i, MAP_X);
3375 dsk = get_imsm_disk(super, j);
3376 if (dsk && (dsk->status & CONFIGURED_DISK))
3377 dmap[i] = 1;
3378 }
3379 }
3380 }
3381 }
3382
3383 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3384 int failed, int look_in_map);
3385
3386 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3387 int look_in_map);
3388
3389 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3390 {
3391 if (is_gen_migration(dev)) {
3392 int failed;
3393 __u8 map_state;
3394 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3395
3396 failed = imsm_count_failed(super, dev, MAP_1);
3397 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3398 if (map2->map_state != map_state) {
3399 map2->map_state = map_state;
3400 super->updates_pending++;
3401 }
3402 }
3403 }
3404
3405 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3406 {
3407 struct dl *d;
3408
3409 for (d = super->missing; d; d = d->next)
3410 if (d->index == index)
3411 return &d->disk;
3412 return NULL;
3413 }
3414
3415 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
3416 {
3417 struct intel_super *super = st->sb;
3418 struct imsm_disk *disk;
3419 int map_disks = info->array.raid_disks;
3420 int max_enough = -1;
3421 int i;
3422 struct imsm_super *mpb;
3423
3424 if (super->current_vol >= 0) {
3425 getinfo_super_imsm_volume(st, info, map);
3426 return;
3427 }
3428 memset(info, 0, sizeof(*info));
3429
3430 /* Set raid_disks to zero so that Assemble will always pull in valid
3431 * spares
3432 */
3433 info->array.raid_disks = 0;
3434 info->array.level = LEVEL_CONTAINER;
3435 info->array.layout = 0;
3436 info->array.md_minor = -1;
3437 info->array.ctime = 0; /* N/A for imsm */
3438 info->array.utime = 0;
3439 info->array.chunk_size = 0;
3440
3441 info->disk.major = 0;
3442 info->disk.minor = 0;
3443 info->disk.raid_disk = -1;
3444 info->reshape_active = 0;
3445 info->array.major_version = -1;
3446 info->array.minor_version = -2;
3447 strcpy(info->text_version, "imsm");
3448 info->safe_mode_delay = 0;
3449 info->disk.number = -1;
3450 info->disk.state = 0;
3451 info->name[0] = 0;
3452 info->recovery_start = MaxSector;
3453 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3454 info->bb.supported = 1;
3455
3456 /* do we have the all the insync disks that we expect? */
3457 mpb = super->anchor;
3458 info->events = __le32_to_cpu(mpb->generation_num);
3459
3460 for (i = 0; i < mpb->num_raid_devs; i++) {
3461 struct imsm_dev *dev = get_imsm_dev(super, i);
3462 int failed, enough, j, missing = 0;
3463 struct imsm_map *map;
3464 __u8 state;
3465
3466 failed = imsm_count_failed(super, dev, MAP_0);
3467 state = imsm_check_degraded(super, dev, failed, MAP_0);
3468 map = get_imsm_map(dev, MAP_0);
3469
3470 /* any newly missing disks?
3471 * (catches single-degraded vs double-degraded)
3472 */
3473 for (j = 0; j < map->num_members; j++) {
3474 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
3475 __u32 idx = ord_to_idx(ord);
3476
3477 if (!(ord & IMSM_ORD_REBUILD) &&
3478 get_imsm_missing(super, idx)) {
3479 missing = 1;
3480 break;
3481 }
3482 }
3483
3484 if (state == IMSM_T_STATE_FAILED)
3485 enough = -1;
3486 else if (state == IMSM_T_STATE_DEGRADED &&
3487 (state != map->map_state || missing))
3488 enough = 0;
3489 else /* we're normal, or already degraded */
3490 enough = 1;
3491 if (is_gen_migration(dev) && missing) {
3492 /* during general migration we need all disks
3493 * that process is running on.
3494 * No new missing disk is allowed.
3495 */
3496 max_enough = -1;
3497 enough = -1;
3498 /* no more checks necessary
3499 */
3500 break;
3501 }
3502 /* in the missing/failed disk case check to see
3503 * if at least one array is runnable
3504 */
3505 max_enough = max(max_enough, enough);
3506 }
3507 dprintf("enough: %d\n", max_enough);
3508 info->container_enough = max_enough;
3509
3510 if (super->disks) {
3511 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3512
3513 disk = &super->disks->disk;
3514 info->data_offset = total_blocks(&super->disks->disk) - reserved;
3515 info->component_size = reserved;
3516 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
3517 /* we don't change info->disk.raid_disk here because
3518 * this state will be finalized in mdmon after we have
3519 * found the 'most fresh' version of the metadata
3520 */
3521 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3522 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3523 0 : (1 << MD_DISK_SYNC);
3524 }
3525
3526 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3527 * ->compare_super may have updated the 'num_raid_devs' field for spares
3528 */
3529 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
3530 uuid_from_super_imsm(st, info->uuid);
3531 else
3532 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
3533
3534 /* I don't know how to compute 'map' on imsm, so use safe default */
3535 if (map) {
3536 int i;
3537 for (i = 0; i < map_disks; i++)
3538 map[i] = 1;
3539 }
3540
3541 }
3542
3543 /* allocates memory and fills disk in mdinfo structure
3544 * for each disk in array */
3545 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3546 {
3547 struct mdinfo *mddev;
3548 struct intel_super *super = st->sb;
3549 struct imsm_disk *disk;
3550 int count = 0;
3551 struct dl *dl;
3552 if (!super || !super->disks)
3553 return NULL;
3554 dl = super->disks;
3555 mddev = xcalloc(1, sizeof(*mddev));
3556 while (dl) {
3557 struct mdinfo *tmp;
3558 disk = &dl->disk;
3559 tmp = xcalloc(1, sizeof(*tmp));
3560 if (mddev->devs)
3561 tmp->next = mddev->devs;
3562 mddev->devs = tmp;
3563 tmp->disk.number = count++;
3564 tmp->disk.major = dl->major;
3565 tmp->disk.minor = dl->minor;
3566 tmp->disk.state = is_configured(disk) ?
3567 (1 << MD_DISK_ACTIVE) : 0;
3568 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3569 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3570 tmp->disk.raid_disk = -1;
3571 dl = dl->next;
3572 }
3573 return mddev;
3574 }
3575
3576 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3577 char *update, char *devname, int verbose,
3578 int uuid_set, char *homehost)
3579 {
3580 /* For 'assemble' and 'force' we need to return non-zero if any
3581 * change was made. For others, the return value is ignored.
3582 * Update options are:
3583 * force-one : This device looks a bit old but needs to be included,
3584 * update age info appropriately.
3585 * assemble: clear any 'faulty' flag to allow this device to
3586 * be assembled.
3587 * force-array: Array is degraded but being forced, mark it clean
3588 * if that will be needed to assemble it.
3589 *
3590 * newdev: not used ????
3591 * grow: Array has gained a new device - this is currently for
3592 * linear only
3593 * resync: mark as dirty so a resync will happen.
3594 * name: update the name - preserving the homehost
3595 * uuid: Change the uuid of the array to match watch is given
3596 *
3597 * Following are not relevant for this imsm:
3598 * sparc2.2 : update from old dodgey metadata
3599 * super-minor: change the preferred_minor number
3600 * summaries: update redundant counters.
3601 * homehost: update the recorded homehost
3602 * _reshape_progress: record new reshape_progress position.
3603 */
3604 int rv = 1;
3605 struct intel_super *super = st->sb;
3606 struct imsm_super *mpb;
3607
3608 /* we can only update container info */
3609 if (!super || super->current_vol >= 0 || !super->anchor)
3610 return 1;
3611
3612 mpb = super->anchor;
3613
3614 if (strcmp(update, "uuid") == 0) {
3615 /* We take this to mean that the family_num should be updated.
3616 * However that is much smaller than the uuid so we cannot really
3617 * allow an explicit uuid to be given. And it is hard to reliably
3618 * know if one was.
3619 * So if !uuid_set we know the current uuid is random and just used
3620 * the first 'int' and copy it to the other 3 positions.
3621 * Otherwise we require the 4 'int's to be the same as would be the
3622 * case if we are using a random uuid. So an explicit uuid will be
3623 * accepted as long as all for ints are the same... which shouldn't hurt
3624 */
3625 if (!uuid_set) {
3626 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
3627 rv = 0;
3628 } else {
3629 if (info->uuid[0] != info->uuid[1] ||
3630 info->uuid[1] != info->uuid[2] ||
3631 info->uuid[2] != info->uuid[3])
3632 rv = -1;
3633 else
3634 rv = 0;
3635 }
3636 if (rv == 0)
3637 mpb->orig_family_num = info->uuid[0];
3638 } else if (strcmp(update, "assemble") == 0)
3639 rv = 0;
3640 else
3641 rv = -1;
3642
3643 /* successful update? recompute checksum */
3644 if (rv == 0)
3645 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
3646
3647 return rv;
3648 }
3649
3650 static size_t disks_to_mpb_size(int disks)
3651 {
3652 size_t size;
3653
3654 size = sizeof(struct imsm_super);
3655 size += (disks - 1) * sizeof(struct imsm_disk);
3656 size += 2 * sizeof(struct imsm_dev);
3657 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3658 size += (4 - 2) * sizeof(struct imsm_map);
3659 /* 4 possible disk_ord_tbl's */
3660 size += 4 * (disks - 1) * sizeof(__u32);
3661 /* maximum bbm log */
3662 size += sizeof(struct bbm_log);
3663
3664 return size;
3665 }
3666
3667 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3668 unsigned long long data_offset)
3669 {
3670 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3671 return 0;
3672
3673 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
3674 }
3675
3676 static void free_devlist(struct intel_super *super)
3677 {
3678 struct intel_dev *dv;
3679
3680 while (super->devlist) {
3681 dv = super->devlist->next;
3682 free(super->devlist->dev);
3683 free(super->devlist);
3684 super->devlist = dv;
3685 }
3686 }
3687
3688 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3689 {
3690 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3691 }
3692
3693 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3694 {
3695 /*
3696 * return:
3697 * 0 same, or first was empty, and second was copied
3698 * 1 second had wrong number
3699 * 2 wrong uuid
3700 * 3 wrong other info
3701 */
3702 struct intel_super *first = st->sb;
3703 struct intel_super *sec = tst->sb;
3704
3705 if (!first) {
3706 st->sb = tst->sb;
3707 tst->sb = NULL;
3708 return 0;
3709 }
3710 /* in platform dependent environment test if the disks
3711 * use the same Intel hba
3712 * If not on Intel hba at all, allow anything.
3713 */
3714 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3715 if (first->hba->type != sec->hba->type) {
3716 fprintf(stderr,
3717 "HBAs of devices do not match %s != %s\n",
3718 get_sys_dev_type(first->hba->type),
3719 get_sys_dev_type(sec->hba->type));
3720 return 3;
3721 }
3722 if (first->orom != sec->orom) {
3723 fprintf(stderr,
3724 "HBAs of devices do not match %s != %s\n",
3725 first->hba->pci_id, sec->hba->pci_id);
3726 return 3;
3727 }
3728 }
3729
3730 /* if an anchor does not have num_raid_devs set then it is a free
3731 * floating spare
3732 */
3733 if (first->anchor->num_raid_devs > 0 &&
3734 sec->anchor->num_raid_devs > 0) {
3735 /* Determine if these disks might ever have been
3736 * related. Further disambiguation can only take place
3737 * in load_super_imsm_all
3738 */
3739 __u32 first_family = first->anchor->orig_family_num;
3740 __u32 sec_family = sec->anchor->orig_family_num;
3741
3742 if (memcmp(first->anchor->sig, sec->anchor->sig,
3743 MAX_SIGNATURE_LENGTH) != 0)
3744 return 3;
3745
3746 if (first_family == 0)
3747 first_family = first->anchor->family_num;
3748 if (sec_family == 0)
3749 sec_family = sec->anchor->family_num;
3750
3751 if (first_family != sec_family)
3752 return 3;
3753
3754 }
3755
3756 /* if 'first' is a spare promote it to a populated mpb with sec's
3757 * family number
3758 */
3759 if (first->anchor->num_raid_devs == 0 &&
3760 sec->anchor->num_raid_devs > 0) {
3761 int i;
3762 struct intel_dev *dv;
3763 struct imsm_dev *dev;
3764
3765 /* we need to copy raid device info from sec if an allocation
3766 * fails here we don't associate the spare
3767 */
3768 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3769 dv = xmalloc(sizeof(*dv));
3770 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3771 dv->dev = dev;
3772 dv->index = i;
3773 dv->next = first->devlist;
3774 first->devlist = dv;
3775 }
3776 if (i < sec->anchor->num_raid_devs) {
3777 /* allocation failure */
3778 free_devlist(first);
3779 pr_err("imsm: failed to associate spare\n");
3780 return 3;
3781 }
3782 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3783 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3784 first->anchor->family_num = sec->anchor->family_num;
3785 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3786 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3787 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3788 }
3789
3790 return 0;
3791 }
3792
3793 static void fd2devname(int fd, char *name)
3794 {
3795 struct stat st;
3796 char path[256];
3797 char dname[PATH_MAX];
3798 char *nm;
3799 int rv;
3800
3801 name[0] = '\0';
3802 if (fstat(fd, &st) != 0)
3803 return;
3804 sprintf(path, "/sys/dev/block/%d:%d",
3805 major(st.st_rdev), minor(st.st_rdev));
3806
3807 rv = readlink(path, dname, sizeof(dname)-1);
3808 if (rv <= 0)
3809 return;
3810
3811 dname[rv] = '\0';
3812 nm = strrchr(dname, '/');
3813 if (nm) {
3814 nm++;
3815 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3816 }
3817 }
3818
3819 static int nvme_get_serial(int fd, void *buf, size_t buf_len)
3820 {
3821 char path[60];
3822 char *name = fd2kname(fd);
3823
3824 if (!name)
3825 return 1;
3826
3827 if (strncmp(name, "nvme", 4) != 0)
3828 return 1;
3829
3830 snprintf(path, sizeof(path) - 1, "/sys/block/%s/device/serial", name);
3831
3832 return load_sys(path, buf, buf_len);
3833 }
3834
3835 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3836
3837 static int imsm_read_serial(int fd, char *devname,
3838 __u8 serial[MAX_RAID_SERIAL_LEN])
3839 {
3840 char buf[50];
3841 int rv;
3842 int len;
3843 char *dest;
3844 char *src;
3845 unsigned int i;
3846
3847 memset(buf, 0, sizeof(buf));
3848
3849 rv = nvme_get_serial(fd, buf, sizeof(buf));
3850
3851 if (rv)
3852 rv = scsi_get_serial(fd, buf, sizeof(buf));
3853
3854 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3855 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3856 fd2devname(fd, (char *) serial);
3857 return 0;
3858 }
3859
3860 if (rv != 0) {
3861 if (devname)
3862 pr_err("Failed to retrieve serial for %s\n",
3863 devname);
3864 return rv;
3865 }
3866
3867 /* trim all whitespace and non-printable characters and convert
3868 * ':' to ';'
3869 */
3870 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
3871 src = &buf[i];
3872 if (*src > 0x20) {
3873 /* ':' is reserved for use in placeholder serial
3874 * numbers for missing disks
3875 */
3876 if (*src == ':')
3877 *dest++ = ';';
3878 else
3879 *dest++ = *src;
3880 }
3881 }
3882 len = dest - buf;
3883 dest = buf;
3884
3885 /* truncate leading characters */
3886 if (len > MAX_RAID_SERIAL_LEN) {
3887 dest += len - MAX_RAID_SERIAL_LEN;
3888 len = MAX_RAID_SERIAL_LEN;
3889 }
3890
3891 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3892 memcpy(serial, dest, len);
3893
3894 return 0;
3895 }
3896
3897 static int serialcmp(__u8 *s1, __u8 *s2)
3898 {
3899 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3900 }
3901
3902 static void serialcpy(__u8 *dest, __u8 *src)
3903 {
3904 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3905 }
3906
3907 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3908 {
3909 struct dl *dl;
3910
3911 for (dl = super->disks; dl; dl = dl->next)
3912 if (serialcmp(dl->serial, serial) == 0)
3913 break;
3914
3915 return dl;
3916 }
3917
3918 static struct imsm_disk *
3919 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3920 {
3921 int i;
3922
3923 for (i = 0; i < mpb->num_disks; i++) {
3924 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3925
3926 if (serialcmp(disk->serial, serial) == 0) {
3927 if (idx)
3928 *idx = i;
3929 return disk;
3930 }
3931 }
3932
3933 return NULL;
3934 }
3935
3936 static int
3937 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3938 {
3939 struct imsm_disk *disk;
3940 struct dl *dl;
3941 struct stat stb;
3942 int rv;
3943 char name[40];
3944 __u8 serial[MAX_RAID_SERIAL_LEN];
3945
3946 rv = imsm_read_serial(fd, devname, serial);
3947
3948 if (rv != 0)
3949 return 2;
3950
3951 dl = xcalloc(1, sizeof(*dl));
3952
3953 fstat(fd, &stb);
3954 dl->major = major(stb.st_rdev);
3955 dl->minor = minor(stb.st_rdev);
3956 dl->next = super->disks;
3957 dl->fd = keep_fd ? fd : -1;
3958 assert(super->disks == NULL);
3959 super->disks = dl;
3960 serialcpy(dl->serial, serial);
3961 dl->index = -2;
3962 dl->e = NULL;
3963 fd2devname(fd, name);
3964 if (devname)
3965 dl->devname = xstrdup(devname);
3966 else
3967 dl->devname = xstrdup(name);
3968
3969 /* look up this disk's index in the current anchor */
3970 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3971 if (disk) {
3972 dl->disk = *disk;
3973 /* only set index on disks that are a member of a
3974 * populated contianer, i.e. one with raid_devs
3975 */
3976 if (is_failed(&dl->disk))
3977 dl->index = -2;
3978 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
3979 dl->index = -1;
3980 }
3981
3982 return 0;
3983 }
3984
3985 /* When migrating map0 contains the 'destination' state while map1
3986 * contains the current state. When not migrating map0 contains the
3987 * current state. This routine assumes that map[0].map_state is set to
3988 * the current array state before being called.
3989 *
3990 * Migration is indicated by one of the following states
3991 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3992 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3993 * map1state=unitialized)
3994 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3995 * map1state=normal)
3996 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3997 * map1state=degraded)
3998 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3999 * map1state=normal)
4000 */
4001 static void migrate(struct imsm_dev *dev, struct intel_super *super,
4002 __u8 to_state, int migr_type)
4003 {
4004 struct imsm_map *dest;
4005 struct imsm_map *src = get_imsm_map(dev, MAP_0);
4006
4007 dev->vol.migr_state = 1;
4008 set_migr_type(dev, migr_type);
4009 dev->vol.curr_migr_unit = 0;
4010 dest = get_imsm_map(dev, MAP_1);
4011
4012 /* duplicate and then set the target end state in map[0] */
4013 memcpy(dest, src, sizeof_imsm_map(src));
4014 if (migr_type == MIGR_REBUILD || migr_type == MIGR_GEN_MIGR) {
4015 __u32 ord;
4016 int i;
4017
4018 for (i = 0; i < src->num_members; i++) {
4019 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4020 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4021 }
4022 }
4023
4024 if (migr_type == MIGR_GEN_MIGR)
4025 /* Clear migration record */
4026 memset(super->migr_rec, 0, sizeof(struct migr_record));
4027
4028 src->map_state = to_state;
4029 }
4030
4031 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4032 __u8 map_state)
4033 {
4034 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4035 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4036 MAP_0 : MAP_1);
4037 int i, j;
4038
4039 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4040 * completed in the last migration.
4041 *
4042 * FIXME add support for raid-level-migration
4043 */
4044 if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
4045 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
4046 /* when final map state is other than expected
4047 * merge maps (not for migration)
4048 */
4049 int failed;
4050
4051 for (i = 0; i < prev->num_members; i++)
4052 for (j = 0; j < map->num_members; j++)
4053 /* during online capacity expansion
4054 * disks position can be changed
4055 * if takeover is used
4056 */
4057 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4058 ord_to_idx(prev->disk_ord_tbl[i])) {
4059 map->disk_ord_tbl[j] |=
4060 prev->disk_ord_tbl[i];
4061 break;
4062 }
4063 failed = imsm_count_failed(super, dev, MAP_0);
4064 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4065 }
4066
4067 dev->vol.migr_state = 0;
4068 set_migr_type(dev, 0);
4069 dev->vol.curr_migr_unit = 0;
4070 map->map_state = map_state;
4071 }
4072
4073 static int parse_raid_devices(struct intel_super *super)
4074 {
4075 int i;
4076 struct imsm_dev *dev_new;
4077 size_t len, len_migr;
4078 size_t max_len = 0;
4079 size_t space_needed = 0;
4080 struct imsm_super *mpb = super->anchor;
4081
4082 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4083 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4084 struct intel_dev *dv;
4085
4086 len = sizeof_imsm_dev(dev_iter, 0);
4087 len_migr = sizeof_imsm_dev(dev_iter, 1);
4088 if (len_migr > len)
4089 space_needed += len_migr - len;
4090
4091 dv = xmalloc(sizeof(*dv));
4092 if (max_len < len_migr)
4093 max_len = len_migr;
4094 if (max_len > len_migr)
4095 space_needed += max_len - len_migr;
4096 dev_new = xmalloc(max_len);
4097 imsm_copy_dev(dev_new, dev_iter);
4098 dv->dev = dev_new;
4099 dv->index = i;
4100 dv->next = super->devlist;
4101 super->devlist = dv;
4102 }
4103
4104 /* ensure that super->buf is large enough when all raid devices
4105 * are migrating
4106 */
4107 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4108 void *buf;
4109
4110 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4111 super->sector_size);
4112 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4113 return 1;
4114
4115 memcpy(buf, super->buf, super->len);
4116 memset(buf + super->len, 0, len - super->len);
4117 free(super->buf);
4118 super->buf = buf;
4119 super->len = len;
4120 }
4121
4122 super->extra_space += space_needed;
4123
4124 return 0;
4125 }
4126
4127 /*******************************************************************************
4128 * Function: check_mpb_migr_compatibility
4129 * Description: Function checks for unsupported migration features:
4130 * - migration optimization area (pba_of_lba0)
4131 * - descending reshape (ascending_migr)
4132 * Parameters:
4133 * super : imsm metadata information
4134 * Returns:
4135 * 0 : migration is compatible
4136 * -1 : migration is not compatible
4137 ******************************************************************************/
4138 int check_mpb_migr_compatibility(struct intel_super *super)
4139 {
4140 struct imsm_map *map0, *map1;
4141 struct migr_record *migr_rec = super->migr_rec;
4142 int i;
4143
4144 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4145 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4146
4147 if (dev_iter &&
4148 dev_iter->vol.migr_state == 1 &&
4149 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4150 /* This device is migrating */
4151 map0 = get_imsm_map(dev_iter, MAP_0);
4152 map1 = get_imsm_map(dev_iter, MAP_1);
4153 if (pba_of_lba0(map0) != pba_of_lba0(map1))
4154 /* migration optimization area was used */
4155 return -1;
4156 if (migr_rec->ascending_migr == 0
4157 && migr_rec->dest_depth_per_unit > 0)
4158 /* descending reshape not supported yet */
4159 return -1;
4160 }
4161 }
4162 return 0;
4163 }
4164
4165 static void __free_imsm(struct intel_super *super, int free_disks);
4166
4167 /* load_imsm_mpb - read matrix metadata
4168 * allocates super->mpb to be freed by free_imsm
4169 */
4170 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4171 {
4172 unsigned long long dsize;
4173 unsigned long long sectors;
4174 unsigned int sector_size = super->sector_size;
4175 struct stat;
4176 struct imsm_super *anchor;
4177 __u32 check_sum;
4178
4179 get_dev_size(fd, NULL, &dsize);
4180 if (dsize < 2*sector_size) {
4181 if (devname)
4182 pr_err("%s: device to small for imsm\n",
4183 devname);
4184 return 1;
4185 }
4186
4187 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
4188 if (devname)
4189 pr_err("Cannot seek to anchor block on %s: %s\n",
4190 devname, strerror(errno));
4191 return 1;
4192 }
4193
4194 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
4195 if (devname)
4196 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
4197 return 1;
4198 }
4199 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
4200 if (devname)
4201 pr_err("Cannot read anchor block on %s: %s\n",
4202 devname, strerror(errno));
4203 free(anchor);
4204 return 1;
4205 }
4206
4207 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
4208 if (devname)
4209 pr_err("no IMSM anchor on %s\n", devname);
4210 free(anchor);
4211 return 2;
4212 }
4213
4214 __free_imsm(super, 0);
4215 /* reload capability and hba */
4216
4217 /* capability and hba must be updated with new super allocation */
4218 find_intel_hba_capability(fd, super, devname);
4219 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4220 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
4221 if (devname)
4222 pr_err("unable to allocate %zu byte mpb buffer\n",
4223 super->len);
4224 free(anchor);
4225 return 2;
4226 }
4227 memcpy(super->buf, anchor, sector_size);
4228
4229 sectors = mpb_sectors(anchor, sector_size) - 1;
4230 free(anchor);
4231
4232 if (posix_memalign(&super->migr_rec_buf, sector_size,
4233 MIGR_REC_BUF_SECTORS*sector_size) != 0) {
4234 pr_err("could not allocate migr_rec buffer\n");
4235 free(super->buf);
4236 return 2;
4237 }
4238 super->clean_migration_record_by_mdmon = 0;
4239
4240 if (!sectors) {
4241 check_sum = __gen_imsm_checksum(super->anchor);
4242 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4243 if (devname)
4244 pr_err("IMSM checksum %x != %x on %s\n",
4245 check_sum,
4246 __le32_to_cpu(super->anchor->check_sum),
4247 devname);
4248 return 2;
4249 }
4250
4251 return 0;
4252 }
4253
4254 /* read the extended mpb */
4255 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
4256 if (devname)
4257 pr_err("Cannot seek to extended mpb on %s: %s\n",
4258 devname, strerror(errno));
4259 return 1;
4260 }
4261
4262 if ((unsigned int)read(fd, super->buf + sector_size,
4263 super->len - sector_size) != super->len - sector_size) {
4264 if (devname)
4265 pr_err("Cannot read extended mpb on %s: %s\n",
4266 devname, strerror(errno));
4267 return 2;
4268 }
4269
4270 check_sum = __gen_imsm_checksum(super->anchor);
4271 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4272 if (devname)
4273 pr_err("IMSM checksum %x != %x on %s\n",
4274 check_sum, __le32_to_cpu(super->anchor->check_sum),
4275 devname);
4276 return 3;
4277 }
4278
4279 return 0;
4280 }
4281
4282 static int read_imsm_migr_rec(int fd, struct intel_super *super);
4283
4284 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4285 static void clear_hi(struct intel_super *super)
4286 {
4287 struct imsm_super *mpb = super->anchor;
4288 int i, n;
4289 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4290 return;
4291 for (i = 0; i < mpb->num_disks; ++i) {
4292 struct imsm_disk *disk = &mpb->disk[i];
4293 disk->total_blocks_hi = 0;
4294 }
4295 for (i = 0; i < mpb->num_raid_devs; ++i) {
4296 struct imsm_dev *dev = get_imsm_dev(super, i);
4297 if (!dev)
4298 return;
4299 for (n = 0; n < 2; ++n) {
4300 struct imsm_map *map = get_imsm_map(dev, n);
4301 if (!map)
4302 continue;
4303 map->pba_of_lba0_hi = 0;
4304 map->blocks_per_member_hi = 0;
4305 map->num_data_stripes_hi = 0;
4306 }
4307 }
4308 }
4309
4310 static int
4311 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4312 {
4313 int err;
4314
4315 err = load_imsm_mpb(fd, super, devname);
4316 if (err)
4317 return err;
4318 if (super->sector_size == 4096)
4319 convert_from_4k(super);
4320 err = load_imsm_disk(fd, super, devname, keep_fd);
4321 if (err)
4322 return err;
4323 err = parse_raid_devices(super);
4324 if (err)
4325 return err;
4326 err = load_bbm_log(super);
4327 clear_hi(super);
4328 return err;
4329 }
4330
4331 static void __free_imsm_disk(struct dl *d)
4332 {
4333 if (d->fd >= 0)
4334 close(d->fd);
4335 if (d->devname)
4336 free(d->devname);
4337 if (d->e)
4338 free(d->e);
4339 free(d);
4340
4341 }
4342
4343 static void free_imsm_disks(struct intel_super *super)
4344 {
4345 struct dl *d;
4346
4347 while (super->disks) {
4348 d = super->disks;
4349 super->disks = d->next;
4350 __free_imsm_disk(d);
4351 }
4352 while (super->disk_mgmt_list) {
4353 d = super->disk_mgmt_list;
4354 super->disk_mgmt_list = d->next;
4355 __free_imsm_disk(d);
4356 }
4357 while (super->missing) {
4358 d = super->missing;
4359 super->missing = d->next;
4360 __free_imsm_disk(d);
4361 }
4362
4363 }
4364
4365 /* free all the pieces hanging off of a super pointer */
4366 static void __free_imsm(struct intel_super *super, int free_disks)
4367 {
4368 struct intel_hba *elem, *next;
4369
4370 if (super->buf) {
4371 free(super->buf);
4372 super->buf = NULL;
4373 }
4374 /* unlink capability description */
4375 super->orom = NULL;
4376 if (super->migr_rec_buf) {
4377 free(super->migr_rec_buf);
4378 super->migr_rec_buf = NULL;
4379 }
4380 if (free_disks)
4381 free_imsm_disks(super);
4382 free_devlist(super);
4383 elem = super->hba;
4384 while (elem) {
4385 if (elem->path)
4386 free((void *)elem->path);
4387 next = elem->next;
4388 free(elem);
4389 elem = next;
4390 }
4391 if (super->bbm_log)
4392 free(super->bbm_log);
4393 super->hba = NULL;
4394 }
4395
4396 static void free_imsm(struct intel_super *super)
4397 {
4398 __free_imsm(super, 1);
4399 free(super->bb.entries);
4400 free(super);
4401 }
4402
4403 static void free_super_imsm(struct supertype *st)
4404 {
4405 struct intel_super *super = st->sb;
4406
4407 if (!super)
4408 return;
4409
4410 free_imsm(super);
4411 st->sb = NULL;
4412 }
4413
4414 static struct intel_super *alloc_super(void)
4415 {
4416 struct intel_super *super = xcalloc(1, sizeof(*super));
4417
4418 super->current_vol = -1;
4419 super->create_offset = ~((unsigned long long) 0);
4420
4421 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4422 sizeof(struct md_bb_entry));
4423 if (!super->bb.entries) {
4424 free(super);
4425 return NULL;
4426 }
4427
4428 return super;
4429 }
4430
4431 /*
4432 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4433 */
4434 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
4435 {
4436 struct sys_dev *hba_name;
4437 int rv = 0;
4438
4439 if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
4440 super->orom = NULL;
4441 super->hba = NULL;
4442 return 0;
4443 }
4444 hba_name = find_disk_attached_hba(fd, NULL);
4445 if (!hba_name) {
4446 if (devname)
4447 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4448 devname);
4449 return 1;
4450 }
4451 rv = attach_hba_to_super(super, hba_name);
4452 if (rv == 2) {
4453 if (devname) {
4454 struct intel_hba *hba = super->hba;
4455
4456 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4457 " but the container is assigned to Intel(R) %s %s (",
4458 devname,
4459 get_sys_dev_type(hba_name->type),
4460 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
4461 hba_name->pci_id ? : "Err!",
4462 get_sys_dev_type(super->hba->type),
4463 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
4464
4465 while (hba) {
4466 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4467 if (hba->next)
4468 fprintf(stderr, ", ");
4469 hba = hba->next;
4470 }
4471 fprintf(stderr, ").\n"
4472 " Mixing devices attached to different %s is not allowed.\n",
4473 hba_name->type == SYS_DEV_VMD ? "VMD domains" : "controllers");
4474 }
4475 return 2;
4476 }
4477 super->orom = find_imsm_capability(hba_name);
4478 if (!super->orom)
4479 return 3;
4480
4481 return 0;
4482 }
4483
4484 /* find_missing - helper routine for load_super_imsm_all that identifies
4485 * disks that have disappeared from the system. This routine relies on
4486 * the mpb being uptodate, which it is at load time.
4487 */
4488 static int find_missing(struct intel_super *super)
4489 {
4490 int i;
4491 struct imsm_super *mpb = super->anchor;
4492 struct dl *dl;
4493 struct imsm_disk *disk;
4494
4495 for (i = 0; i < mpb->num_disks; i++) {
4496 disk = __get_imsm_disk(mpb, i);
4497 dl = serial_to_dl(disk->serial, super);
4498 if (dl)
4499 continue;
4500
4501 dl = xmalloc(sizeof(*dl));
4502 dl->major = 0;
4503 dl->minor = 0;
4504 dl->fd = -1;
4505 dl->devname = xstrdup("missing");
4506 dl->index = i;
4507 serialcpy(dl->serial, disk->serial);
4508 dl->disk = *disk;
4509 dl->e = NULL;
4510 dl->next = super->missing;
4511 super->missing = dl;
4512 }
4513
4514 return 0;
4515 }
4516
4517 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4518 {
4519 struct intel_disk *idisk = disk_list;
4520
4521 while (idisk) {
4522 if (serialcmp(idisk->disk.serial, serial) == 0)
4523 break;
4524 idisk = idisk->next;
4525 }
4526
4527 return idisk;
4528 }
4529
4530 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4531 struct intel_super *super,
4532 struct intel_disk **disk_list)
4533 {
4534 struct imsm_disk *d = &super->disks->disk;
4535 struct imsm_super *mpb = super->anchor;
4536 int i, j;
4537
4538 for (i = 0; i < tbl_size; i++) {
4539 struct imsm_super *tbl_mpb = table[i]->anchor;
4540 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4541
4542 if (tbl_mpb->family_num == mpb->family_num) {
4543 if (tbl_mpb->check_sum == mpb->check_sum) {
4544 dprintf("mpb from %d:%d matches %d:%d\n",
4545 super->disks->major,
4546 super->disks->minor,
4547 table[i]->disks->major,
4548 table[i]->disks->minor);
4549 break;
4550 }
4551
4552 if (((is_configured(d) && !is_configured(tbl_d)) ||
4553 is_configured(d) == is_configured(tbl_d)) &&
4554 tbl_mpb->generation_num < mpb->generation_num) {
4555 /* current version of the mpb is a
4556 * better candidate than the one in
4557 * super_table, but copy over "cross
4558 * generational" status
4559 */
4560 struct intel_disk *idisk;
4561
4562 dprintf("mpb from %d:%d replaces %d:%d\n",
4563 super->disks->major,
4564 super->disks->minor,
4565 table[i]->disks->major,
4566 table[i]->disks->minor);
4567
4568 idisk = disk_list_get(tbl_d->serial, *disk_list);
4569 if (idisk && is_failed(&idisk->disk))
4570 tbl_d->status |= FAILED_DISK;
4571 break;
4572 } else {
4573 struct intel_disk *idisk;
4574 struct imsm_disk *disk;
4575
4576 /* tbl_mpb is more up to date, but copy
4577 * over cross generational status before
4578 * returning
4579 */
4580 disk = __serial_to_disk(d->serial, mpb, NULL);
4581 if (disk && is_failed(disk))
4582 d->status |= FAILED_DISK;
4583
4584 idisk = disk_list_get(d->serial, *disk_list);
4585 if (idisk) {
4586 idisk->owner = i;
4587 if (disk && is_configured(disk))
4588 idisk->disk.status |= CONFIGURED_DISK;
4589 }
4590
4591 dprintf("mpb from %d:%d prefer %d:%d\n",
4592 super->disks->major,
4593 super->disks->minor,
4594 table[i]->disks->major,
4595 table[i]->disks->minor);
4596
4597 return tbl_size;
4598 }
4599 }
4600 }
4601
4602 if (i >= tbl_size)
4603 table[tbl_size++] = super;
4604 else
4605 table[i] = super;
4606
4607 /* update/extend the merged list of imsm_disk records */
4608 for (j = 0; j < mpb->num_disks; j++) {
4609 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4610 struct intel_disk *idisk;
4611
4612 idisk = disk_list_get(disk->serial, *disk_list);
4613 if (idisk) {
4614 idisk->disk.status |= disk->status;
4615 if (is_configured(&idisk->disk) ||
4616 is_failed(&idisk->disk))
4617 idisk->disk.status &= ~(SPARE_DISK);
4618 } else {
4619 idisk = xcalloc(1, sizeof(*idisk));
4620 idisk->owner = IMSM_UNKNOWN_OWNER;
4621 idisk->disk = *disk;
4622 idisk->next = *disk_list;
4623 *disk_list = idisk;
4624 }
4625
4626 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4627 idisk->owner = i;
4628 }
4629
4630 return tbl_size;
4631 }
4632
4633 static struct intel_super *
4634 validate_members(struct intel_super *super, struct intel_disk *disk_list,
4635 const int owner)
4636 {
4637 struct imsm_super *mpb = super->anchor;
4638 int ok_count = 0;
4639 int i;
4640
4641 for (i = 0; i < mpb->num_disks; i++) {
4642 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4643 struct intel_disk *idisk;
4644
4645 idisk = disk_list_get(disk->serial, disk_list);
4646 if (idisk) {
4647 if (idisk->owner == owner ||
4648 idisk->owner == IMSM_UNKNOWN_OWNER)
4649 ok_count++;
4650 else
4651 dprintf("'%.16s' owner %d != %d\n",
4652 disk->serial, idisk->owner,
4653 owner);
4654 } else {
4655 dprintf("unknown disk %x [%d]: %.16s\n",
4656 __le32_to_cpu(mpb->family_num), i,
4657 disk->serial);
4658 break;
4659 }
4660 }
4661
4662 if (ok_count == mpb->num_disks)
4663 return super;
4664 return NULL;
4665 }
4666
4667 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4668 {
4669 struct intel_super *s;
4670
4671 for (s = super_list; s; s = s->next) {
4672 if (family_num != s->anchor->family_num)
4673 continue;
4674 pr_err("Conflict, offlining family %#x on '%s'\n",
4675 __le32_to_cpu(family_num), s->disks->devname);
4676 }
4677 }
4678
4679 static struct intel_super *
4680 imsm_thunderdome(struct intel_super **super_list, int len)
4681 {
4682 struct intel_super *super_table[len];
4683 struct intel_disk *disk_list = NULL;
4684 struct intel_super *champion, *spare;
4685 struct intel_super *s, **del;
4686 int tbl_size = 0;
4687 int conflict;
4688 int i;
4689
4690 memset(super_table, 0, sizeof(super_table));
4691 for (s = *super_list; s; s = s->next)
4692 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4693
4694 for (i = 0; i < tbl_size; i++) {
4695 struct imsm_disk *d;
4696 struct intel_disk *idisk;
4697 struct imsm_super *mpb = super_table[i]->anchor;
4698
4699 s = super_table[i];
4700 d = &s->disks->disk;
4701
4702 /* 'd' must appear in merged disk list for its
4703 * configuration to be valid
4704 */
4705 idisk = disk_list_get(d->serial, disk_list);
4706 if (idisk && idisk->owner == i)
4707 s = validate_members(s, disk_list, i);
4708 else
4709 s = NULL;
4710
4711 if (!s)
4712 dprintf("marking family: %#x from %d:%d offline\n",
4713 mpb->family_num,
4714 super_table[i]->disks->major,
4715 super_table[i]->disks->minor);
4716 super_table[i] = s;
4717 }
4718
4719 /* This is where the mdadm implementation differs from the Windows
4720 * driver which has no strict concept of a container. We can only
4721 * assemble one family from a container, so when returning a prodigal
4722 * array member to this system the code will not be able to disambiguate
4723 * the container contents that should be assembled ("foreign" versus
4724 * "local"). It requires user intervention to set the orig_family_num
4725 * to a new value to establish a new container. The Windows driver in
4726 * this situation fixes up the volume name in place and manages the
4727 * foreign array as an independent entity.
4728 */
4729 s = NULL;
4730 spare = NULL;
4731 conflict = 0;
4732 for (i = 0; i < tbl_size; i++) {
4733 struct intel_super *tbl_ent = super_table[i];
4734 int is_spare = 0;
4735
4736 if (!tbl_ent)
4737 continue;
4738
4739 if (tbl_ent->anchor->num_raid_devs == 0) {
4740 spare = tbl_ent;
4741 is_spare = 1;
4742 }
4743
4744 if (s && !is_spare) {
4745 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4746 conflict++;
4747 } else if (!s && !is_spare)
4748 s = tbl_ent;
4749 }
4750
4751 if (!s)
4752 s = spare;
4753 if (!s) {
4754 champion = NULL;
4755 goto out;
4756 }
4757 champion = s;
4758
4759 if (conflict)
4760 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
4761 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4762
4763 /* collect all dl's onto 'champion', and update them to
4764 * champion's version of the status
4765 */
4766 for (s = *super_list; s; s = s->next) {
4767 struct imsm_super *mpb = champion->anchor;
4768 struct dl *dl = s->disks;
4769
4770 if (s == champion)
4771 continue;
4772
4773 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4774
4775 for (i = 0; i < mpb->num_disks; i++) {
4776 struct imsm_disk *disk;
4777
4778 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4779 if (disk) {
4780 dl->disk = *disk;
4781 /* only set index on disks that are a member of
4782 * a populated contianer, i.e. one with
4783 * raid_devs
4784 */
4785 if (is_failed(&dl->disk))
4786 dl->index = -2;
4787 else if (is_spare(&dl->disk))
4788 dl->index = -1;
4789 break;
4790 }
4791 }
4792
4793 if (i >= mpb->num_disks) {
4794 struct intel_disk *idisk;
4795
4796 idisk = disk_list_get(dl->serial, disk_list);
4797 if (idisk && is_spare(&idisk->disk) &&
4798 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4799 dl->index = -1;
4800 else {
4801 dl->index = -2;
4802 continue;
4803 }
4804 }
4805
4806 dl->next = champion->disks;
4807 champion->disks = dl;
4808 s->disks = NULL;
4809 }
4810
4811 /* delete 'champion' from super_list */
4812 for (del = super_list; *del; ) {
4813 if (*del == champion) {
4814 *del = (*del)->next;
4815 break;
4816 } else
4817 del = &(*del)->next;
4818 }
4819 champion->next = NULL;
4820
4821 out:
4822 while (disk_list) {
4823 struct intel_disk *idisk = disk_list;
4824
4825 disk_list = disk_list->next;
4826 free(idisk);
4827 }
4828
4829 return champion;
4830 }
4831
4832 static int
4833 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4834 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4835 int major, int minor, int keep_fd);
4836 static int
4837 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4838 int *max, int keep_fd);
4839
4840 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4841 char *devname, struct md_list *devlist,
4842 int keep_fd)
4843 {
4844 struct intel_super *super_list = NULL;
4845 struct intel_super *super = NULL;
4846 int err = 0;
4847 int i = 0;
4848
4849 if (fd >= 0)
4850 /* 'fd' is an opened container */
4851 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4852 else
4853 /* get super block from devlist devices */
4854 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4855 if (err)
4856 goto error;
4857 /* all mpbs enter, maybe one leaves */
4858 super = imsm_thunderdome(&super_list, i);
4859 if (!super) {
4860 err = 1;
4861 goto error;
4862 }
4863
4864 if (find_missing(super) != 0) {
4865 free_imsm(super);
4866 err = 2;
4867 goto error;
4868 }
4869
4870 /* load migration record */
4871 err = load_imsm_migr_rec(super, NULL);
4872 if (err == -1) {
4873 /* migration is in progress,
4874 * but migr_rec cannot be loaded,
4875 */
4876 err = 4;
4877 goto error;
4878 }
4879
4880 /* Check migration compatibility */
4881 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
4882 pr_err("Unsupported migration detected");
4883 if (devname)
4884 fprintf(stderr, " on %s\n", devname);
4885 else
4886 fprintf(stderr, " (IMSM).\n");
4887
4888 err = 5;
4889 goto error;
4890 }
4891
4892 err = 0;
4893
4894 error:
4895 while (super_list) {
4896 struct intel_super *s = super_list;
4897
4898 super_list = super_list->next;
4899 free_imsm(s);
4900 }
4901
4902 if (err)
4903 return err;
4904
4905 *sbp = super;
4906 if (fd >= 0)
4907 strcpy(st->container_devnm, fd2devnm(fd));
4908 else
4909 st->container_devnm[0] = 0;
4910 if (err == 0 && st->ss == NULL) {
4911 st->ss = &super_imsm;
4912 st->minor_version = 0;
4913 st->max_devs = IMSM_MAX_DEVICES;
4914 }
4915 return 0;
4916 }
4917
4918 static int
4919 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4920 int *max, int keep_fd)
4921 {
4922 struct md_list *tmpdev;
4923 int err = 0;
4924 int i = 0;
4925
4926 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4927 if (tmpdev->used != 1)
4928 continue;
4929 if (tmpdev->container == 1) {
4930 int lmax = 0;
4931 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4932 if (fd < 0) {
4933 pr_err("cannot open device %s: %s\n",
4934 tmpdev->devname, strerror(errno));
4935 err = 8;
4936 goto error;
4937 }
4938 err = get_sra_super_block(fd, super_list,
4939 tmpdev->devname, &lmax,
4940 keep_fd);
4941 i += lmax;
4942 close(fd);
4943 if (err) {
4944 err = 7;
4945 goto error;
4946 }
4947 } else {
4948 int major = major(tmpdev->st_rdev);
4949 int minor = minor(tmpdev->st_rdev);
4950 err = get_super_block(super_list,
4951 NULL,
4952 tmpdev->devname,
4953 major, minor,
4954 keep_fd);
4955 i++;
4956 if (err) {
4957 err = 6;
4958 goto error;
4959 }
4960 }
4961 }
4962 error:
4963 *max = i;
4964 return err;
4965 }
4966
4967 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4968 int major, int minor, int keep_fd)
4969 {
4970 struct intel_super *s;
4971 char nm[32];
4972 int dfd = -1;
4973 int err = 0;
4974 int retry;
4975
4976 s = alloc_super();
4977 if (!s) {
4978 err = 1;
4979 goto error;
4980 }
4981
4982 sprintf(nm, "%d:%d", major, minor);
4983 dfd = dev_open(nm, O_RDWR);
4984 if (dfd < 0) {
4985 err = 2;
4986 goto error;
4987 }
4988
4989 get_dev_sector_size(dfd, NULL, &s->sector_size);
4990 find_intel_hba_capability(dfd, s, devname);
4991 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4992
4993 /* retry the load if we might have raced against mdmon */
4994 if (err == 3 && devnm && mdmon_running(devnm))
4995 for (retry = 0; retry < 3; retry++) {
4996 usleep(3000);
4997 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4998 if (err != 3)
4999 break;
5000 }
5001 error:
5002 if (!err) {
5003 s->next = *super_list;
5004 *super_list = s;
5005 } else {
5006 if (s)
5007 free_imsm(s);
5008 if (dfd >= 0)
5009 close(dfd);
5010 }
5011 if (dfd >= 0 && !keep_fd)
5012 close(dfd);
5013 return err;
5014
5015 }
5016
5017 static int
5018 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5019 {
5020 struct mdinfo *sra;
5021 char *devnm;
5022 struct mdinfo *sd;
5023 int err = 0;
5024 int i = 0;
5025 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
5026 if (!sra)
5027 return 1;
5028
5029 if (sra->array.major_version != -1 ||
5030 sra->array.minor_version != -2 ||
5031 strcmp(sra->text_version, "imsm") != 0) {
5032 err = 1;
5033 goto error;
5034 }
5035 /* load all mpbs */
5036 devnm = fd2devnm(fd);
5037 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
5038 if (get_super_block(super_list, devnm, devname,
5039 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5040 err = 7;
5041 goto error;
5042 }
5043 }
5044 error:
5045 sysfs_free(sra);
5046 *max = i;
5047 return err;
5048 }
5049
5050 static int load_container_imsm(struct supertype *st, int fd, char *devname)
5051 {
5052 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
5053 }
5054
5055 static int load_super_imsm(struct supertype *st, int fd, char *devname)
5056 {
5057 struct intel_super *super;
5058 int rv;
5059 int retry;
5060
5061 if (test_partition(fd))
5062 /* IMSM not allowed on partitions */
5063 return 1;
5064
5065 free_super_imsm(st);
5066
5067 super = alloc_super();
5068 get_dev_sector_size(fd, NULL, &super->sector_size);
5069 if (!super)
5070 return 1;
5071 /* Load hba and capabilities if they exist.
5072 * But do not preclude loading metadata in case capabilities or hba are
5073 * non-compliant and ignore_hw_compat is set.
5074 */
5075 rv = find_intel_hba_capability(fd, super, devname);
5076 /* no orom/efi or non-intel hba of the disk */
5077 if (rv != 0 && st->ignore_hw_compat == 0) {
5078 if (devname)
5079 pr_err("No OROM/EFI properties for %s\n", devname);
5080 free_imsm(super);
5081 return 2;
5082 }
5083 rv = load_and_parse_mpb(fd, super, devname, 0);
5084
5085 /* retry the load if we might have raced against mdmon */
5086 if (rv == 3) {
5087 struct mdstat_ent *mdstat = NULL;
5088 char *name = fd2kname(fd);
5089
5090 if (name)
5091 mdstat = mdstat_by_component(name);
5092
5093 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5094 for (retry = 0; retry < 3; retry++) {
5095 usleep(3000);
5096 rv = load_and_parse_mpb(fd, super, devname, 0);
5097 if (rv != 3)
5098 break;
5099 }
5100 }
5101
5102 free_mdstat(mdstat);
5103 }
5104
5105 if (rv) {
5106 if (devname)
5107 pr_err("Failed to load all information sections on %s\n", devname);
5108 free_imsm(super);
5109 return rv;
5110 }
5111
5112 st->sb = super;
5113 if (st->ss == NULL) {
5114 st->ss = &super_imsm;
5115 st->minor_version = 0;
5116 st->max_devs = IMSM_MAX_DEVICES;
5117 }
5118
5119 /* load migration record */
5120 if (load_imsm_migr_rec(super, NULL) == 0) {
5121 /* Check for unsupported migration features */
5122 if (check_mpb_migr_compatibility(super) != 0) {
5123 pr_err("Unsupported migration detected");
5124 if (devname)
5125 fprintf(stderr, " on %s\n", devname);
5126 else
5127 fprintf(stderr, " (IMSM).\n");
5128 return 3;
5129 }
5130 }
5131
5132 return 0;
5133 }
5134
5135 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5136 {
5137 if (info->level == 1)
5138 return 128;
5139 return info->chunk_size >> 9;
5140 }
5141
5142 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5143 unsigned long long size)
5144 {
5145 if (info->level == 1)
5146 return size * 2;
5147 else
5148 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
5149 }
5150
5151 static void imsm_update_version_info(struct intel_super *super)
5152 {
5153 /* update the version and attributes */
5154 struct imsm_super *mpb = super->anchor;
5155 char *version;
5156 struct imsm_dev *dev;
5157 struct imsm_map *map;
5158 int i;
5159
5160 for (i = 0; i < mpb->num_raid_devs; i++) {
5161 dev = get_imsm_dev(super, i);
5162 map = get_imsm_map(dev, MAP_0);
5163 if (__le32_to_cpu(dev->size_high) > 0)
5164 mpb->attributes |= MPB_ATTRIB_2TB;
5165
5166 /* FIXME detect when an array spans a port multiplier */
5167 #if 0
5168 mpb->attributes |= MPB_ATTRIB_PM;
5169 #endif
5170
5171 if (mpb->num_raid_devs > 1 ||
5172 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5173 version = MPB_VERSION_ATTRIBS;
5174 switch (get_imsm_raid_level(map)) {
5175 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5176 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5177 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5178 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5179 }
5180 } else {
5181 if (map->num_members >= 5)
5182 version = MPB_VERSION_5OR6_DISK_ARRAY;
5183 else if (dev->status == DEV_CLONE_N_GO)
5184 version = MPB_VERSION_CNG;
5185 else if (get_imsm_raid_level(map) == 5)
5186 version = MPB_VERSION_RAID5;
5187 else if (map->num_members >= 3)
5188 version = MPB_VERSION_3OR4_DISK_ARRAY;
5189 else if (get_imsm_raid_level(map) == 1)
5190 version = MPB_VERSION_RAID1;
5191 else
5192 version = MPB_VERSION_RAID0;
5193 }
5194 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5195 }
5196 }
5197
5198 static int check_name(struct intel_super *super, char *name, int quiet)
5199 {
5200 struct imsm_super *mpb = super->anchor;
5201 char *reason = NULL;
5202 int i;
5203
5204 if (strlen(name) > MAX_RAID_SERIAL_LEN)
5205 reason = "must be 16 characters or less";
5206
5207 for (i = 0; i < mpb->num_raid_devs; i++) {
5208 struct imsm_dev *dev = get_imsm_dev(super, i);
5209
5210 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5211 reason = "already exists";
5212 break;
5213 }
5214 }
5215
5216 if (reason && !quiet)
5217 pr_err("imsm volume name %s\n", reason);
5218
5219 return !reason;
5220 }
5221
5222 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5223 struct shape *s, char *name,
5224 char *homehost, int *uuid,
5225 long long data_offset)
5226 {
5227 /* We are creating a volume inside a pre-existing container.
5228 * so st->sb is already set.
5229 */
5230 struct intel_super *super = st->sb;
5231 unsigned int sector_size = super->sector_size;
5232 struct imsm_super *mpb = super->anchor;
5233 struct intel_dev *dv;
5234 struct imsm_dev *dev;
5235 struct imsm_vol *vol;
5236 struct imsm_map *map;
5237 int idx = mpb->num_raid_devs;
5238 int i;
5239 unsigned long long array_blocks;
5240 size_t size_old, size_new;
5241 unsigned long long num_data_stripes;
5242 unsigned int data_disks;
5243 unsigned long long size_per_member;
5244
5245 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
5246 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
5247 return 0;
5248 }
5249
5250 /* ensure the mpb is large enough for the new data */
5251 size_old = __le32_to_cpu(mpb->mpb_size);
5252 size_new = disks_to_mpb_size(info->nr_disks);
5253 if (size_new > size_old) {
5254 void *mpb_new;
5255 size_t size_round = ROUND_UP(size_new, sector_size);
5256
5257 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
5258 pr_err("could not allocate new mpb\n");
5259 return 0;
5260 }
5261 if (posix_memalign(&super->migr_rec_buf, sector_size,
5262 MIGR_REC_BUF_SECTORS*sector_size) != 0) {
5263 pr_err("could not allocate migr_rec buffer\n");
5264 free(super->buf);
5265 free(super);
5266 free(mpb_new);
5267 return 0;
5268 }
5269 memcpy(mpb_new, mpb, size_old);
5270 free(mpb);
5271 mpb = mpb_new;
5272 super->anchor = mpb_new;
5273 mpb->mpb_size = __cpu_to_le32(size_new);
5274 memset(mpb_new + size_old, 0, size_round - size_old);
5275 super->len = size_round;
5276 }
5277 super->current_vol = idx;
5278
5279 /* handle 'failed_disks' by either:
5280 * a) create dummy disk entries in the table if this the first
5281 * volume in the array. We add them here as this is the only
5282 * opportunity to add them. add_to_super_imsm_volume()
5283 * handles the non-failed disks and continues incrementing
5284 * mpb->num_disks.
5285 * b) validate that 'failed_disks' matches the current number
5286 * of missing disks if the container is populated
5287 */
5288 if (super->current_vol == 0) {
5289 mpb->num_disks = 0;
5290 for (i = 0; i < info->failed_disks; i++) {
5291 struct imsm_disk *disk;
5292
5293 mpb->num_disks++;
5294 disk = __get_imsm_disk(mpb, i);
5295 disk->status = CONFIGURED_DISK | FAILED_DISK;
5296 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5297 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5298 "missing:%d", (__u8)i);
5299 }
5300 find_missing(super);
5301 } else {
5302 int missing = 0;
5303 struct dl *d;
5304
5305 for (d = super->missing; d; d = d->next)
5306 missing++;
5307 if (info->failed_disks > missing) {
5308 pr_err("unable to add 'missing' disk to container\n");
5309 return 0;
5310 }
5311 }
5312
5313 if (!check_name(super, name, 0))
5314 return 0;
5315 dv = xmalloc(sizeof(*dv));
5316 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
5317 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
5318 array_blocks = calc_array_size(info->level, info->raid_disks,
5319 info->layout, info->chunk_size,
5320 s->size * BLOCKS_PER_KB);
5321 data_disks = get_data_disks(info->level, info->layout,
5322 info->raid_disks);
5323 array_blocks = round_size_to_mb(array_blocks, data_disks);
5324 size_per_member = array_blocks / data_disks;
5325
5326 dev->size_low = __cpu_to_le32((__u32) array_blocks);
5327 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
5328 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
5329 vol = &dev->vol;
5330 vol->migr_state = 0;
5331 set_migr_type(dev, MIGR_INIT);
5332 vol->dirty = !info->state;
5333 vol->curr_migr_unit = 0;
5334 map = get_imsm_map(dev, MAP_0);
5335 set_pba_of_lba0(map, super->create_offset);
5336 set_blocks_per_member(map, info_to_blocks_per_member(info,
5337 size_per_member /
5338 BLOCKS_PER_KB));
5339 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
5340 map->failed_disk_num = ~0;
5341 if (info->level > 0)
5342 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5343 : IMSM_T_STATE_UNINITIALIZED);
5344 else
5345 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5346 IMSM_T_STATE_NORMAL;
5347 map->ddf = 1;
5348
5349 if (info->level == 1 && info->raid_disks > 2) {
5350 free(dev);
5351 free(dv);
5352 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
5353 return 0;
5354 }
5355
5356 map->raid_level = info->level;
5357 if (info->level == 10) {
5358 map->raid_level = 1;
5359 map->num_domains = info->raid_disks / 2;
5360 } else if (info->level == 1)
5361 map->num_domains = info->raid_disks;
5362 else
5363 map->num_domains = 1;
5364
5365 /* info->size is only int so use the 'size' parameter instead */
5366 num_data_stripes = size_per_member / info_to_blocks_per_strip(info);
5367 num_data_stripes /= map->num_domains;
5368 set_num_data_stripes(map, num_data_stripes);
5369
5370 map->num_members = info->raid_disks;
5371 for (i = 0; i < map->num_members; i++) {
5372 /* initialized in add_to_super */
5373 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
5374 }
5375 mpb->num_raid_devs++;
5376 mpb->num_raid_devs_created++;
5377 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
5378
5379 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
5380 dev->rwh_policy = RWH_OFF;
5381 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
5382 dev->rwh_policy = RWH_DISTRIBUTED;
5383 } else {
5384 free(dev);
5385 free(dv);
5386 pr_err("imsm does not support consistency policy %s\n",
5387 map_num(consistency_policies, s->consistency_policy));
5388 return 0;
5389 }
5390
5391 dv->dev = dev;
5392 dv->index = super->current_vol;
5393 dv->next = super->devlist;
5394 super->devlist = dv;
5395
5396 imsm_update_version_info(super);
5397
5398 return 1;
5399 }
5400
5401 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5402 struct shape *s, char *name,
5403 char *homehost, int *uuid,
5404 unsigned long long data_offset)
5405 {
5406 /* This is primarily called by Create when creating a new array.
5407 * We will then get add_to_super called for each component, and then
5408 * write_init_super called to write it out to each device.
5409 * For IMSM, Create can create on fresh devices or on a pre-existing
5410 * array.
5411 * To create on a pre-existing array a different method will be called.
5412 * This one is just for fresh drives.
5413 */
5414 struct intel_super *super;
5415 struct imsm_super *mpb;
5416 size_t mpb_size;
5417 char *version;
5418
5419 if (data_offset != INVALID_SECTORS) {
5420 pr_err("data-offset not supported by imsm\n");
5421 return 0;
5422 }
5423
5424 if (st->sb)
5425 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
5426 data_offset);
5427
5428 if (info)
5429 mpb_size = disks_to_mpb_size(info->nr_disks);
5430 else
5431 mpb_size = MAX_SECTOR_SIZE;
5432
5433 super = alloc_super();
5434 if (super &&
5435 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
5436 free_imsm(super);
5437 super = NULL;
5438 }
5439 if (!super) {
5440 pr_err("could not allocate superblock\n");
5441 return 0;
5442 }
5443 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5444 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
5445 pr_err("could not allocate migr_rec buffer\n");
5446 free(super->buf);
5447 free_imsm(super);
5448 return 0;
5449 }
5450 memset(super->buf, 0, mpb_size);
5451 mpb = super->buf;
5452 mpb->mpb_size = __cpu_to_le32(mpb_size);
5453 st->sb = super;
5454
5455 if (info == NULL) {
5456 /* zeroing superblock */
5457 return 0;
5458 }
5459
5460 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5461
5462 version = (char *) mpb->sig;
5463 strcpy(version, MPB_SIGNATURE);
5464 version += strlen(MPB_SIGNATURE);
5465 strcpy(version, MPB_VERSION_RAID0);
5466
5467 return 1;
5468 }
5469
5470 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
5471 int fd, char *devname)
5472 {
5473 struct intel_super *super = st->sb;
5474 struct imsm_super *mpb = super->anchor;
5475 struct imsm_disk *_disk;
5476 struct imsm_dev *dev;
5477 struct imsm_map *map;
5478 struct dl *dl, *df;
5479 int slot;
5480
5481 dev = get_imsm_dev(super, super->current_vol);
5482 map = get_imsm_map(dev, MAP_0);
5483
5484 if (! (dk->state & (1<<MD_DISK_SYNC))) {
5485 pr_err("%s: Cannot add spare devices to IMSM volume\n",
5486 devname);
5487 return 1;
5488 }
5489
5490 if (fd == -1) {
5491 /* we're doing autolayout so grab the pre-marked (in
5492 * validate_geometry) raid_disk
5493 */
5494 for (dl = super->disks; dl; dl = dl->next)
5495 if (dl->raiddisk == dk->raid_disk)
5496 break;
5497 } else {
5498 for (dl = super->disks; dl ; dl = dl->next)
5499 if (dl->major == dk->major &&
5500 dl->minor == dk->minor)
5501 break;
5502 }
5503
5504 if (!dl) {
5505 pr_err("%s is not a member of the same container\n", devname);
5506 return 1;
5507 }
5508
5509 /* add a pristine spare to the metadata */
5510 if (dl->index < 0) {
5511 dl->index = super->anchor->num_disks;
5512 super->anchor->num_disks++;
5513 }
5514 /* Check the device has not already been added */
5515 slot = get_imsm_disk_slot(map, dl->index);
5516 if (slot >= 0 &&
5517 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
5518 pr_err("%s has been included in this array twice\n",
5519 devname);
5520 return 1;
5521 }
5522 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
5523 dl->disk.status = CONFIGURED_DISK;
5524
5525 /* update size of 'missing' disks to be at least as large as the
5526 * largest acitve member (we only have dummy missing disks when
5527 * creating the first volume)
5528 */
5529 if (super->current_vol == 0) {
5530 for (df = super->missing; df; df = df->next) {
5531 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5532 set_total_blocks(&df->disk, total_blocks(&dl->disk));
5533 _disk = __get_imsm_disk(mpb, df->index);
5534 *_disk = df->disk;
5535 }
5536 }
5537
5538 /* refresh unset/failed slots to point to valid 'missing' entries */
5539 for (df = super->missing; df; df = df->next)
5540 for (slot = 0; slot < mpb->num_disks; slot++) {
5541 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5542
5543 if ((ord & IMSM_ORD_REBUILD) == 0)
5544 continue;
5545 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
5546 if (is_gen_migration(dev)) {
5547 struct imsm_map *map2 = get_imsm_map(dev,
5548 MAP_1);
5549 int slot2 = get_imsm_disk_slot(map2, df->index);
5550 if (slot2 < map2->num_members && slot2 >= 0) {
5551 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
5552 slot2,
5553 MAP_1);
5554 if ((unsigned)df->index ==
5555 ord_to_idx(ord2))
5556 set_imsm_ord_tbl_ent(map2,
5557 slot2,
5558 df->index |
5559 IMSM_ORD_REBUILD);
5560 }
5561 }
5562 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5563 break;
5564 }
5565
5566 /* if we are creating the first raid device update the family number */
5567 if (super->current_vol == 0) {
5568 __u32 sum;
5569 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
5570
5571 _disk = __get_imsm_disk(mpb, dl->index);
5572 if (!_dev || !_disk) {
5573 pr_err("BUG mpb setup error\n");
5574 return 1;
5575 }
5576 *_dev = *dev;
5577 *_disk = dl->disk;
5578 sum = random32();
5579 sum += __gen_imsm_checksum(mpb);
5580 mpb->family_num = __cpu_to_le32(sum);
5581 mpb->orig_family_num = mpb->family_num;
5582 }
5583 super->current_disk = dl;
5584 return 0;
5585 }
5586
5587 /* mark_spare()
5588 * Function marks disk as spare and restores disk serial
5589 * in case it was previously marked as failed by takeover operation
5590 * reruns:
5591 * -1 : critical error
5592 * 0 : disk is marked as spare but serial is not set
5593 * 1 : success
5594 */
5595 int mark_spare(struct dl *disk)
5596 {
5597 __u8 serial[MAX_RAID_SERIAL_LEN];
5598 int ret_val = -1;
5599
5600 if (!disk)
5601 return ret_val;
5602
5603 ret_val = 0;
5604 if (!imsm_read_serial(disk->fd, NULL, serial)) {
5605 /* Restore disk serial number, because takeover marks disk
5606 * as failed and adds to serial ':0' before it becomes
5607 * a spare disk.
5608 */
5609 serialcpy(disk->serial, serial);
5610 serialcpy(disk->disk.serial, serial);
5611 ret_val = 1;
5612 }
5613 disk->disk.status = SPARE_DISK;
5614 disk->index = -1;
5615
5616 return ret_val;
5617 }
5618
5619 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
5620 int fd, char *devname,
5621 unsigned long long data_offset)
5622 {
5623 struct intel_super *super = st->sb;
5624 struct dl *dd;
5625 unsigned long long size;
5626 unsigned int member_sector_size;
5627 __u32 id;
5628 int rv;
5629 struct stat stb;
5630
5631 /* If we are on an RAID enabled platform check that the disk is
5632 * attached to the raid controller.
5633 * We do not need to test disks attachment for container based additions,
5634 * they shall be already tested when container was created/assembled.
5635 */
5636 rv = find_intel_hba_capability(fd, super, devname);
5637 /* no orom/efi or non-intel hba of the disk */
5638 if (rv != 0) {
5639 dprintf("capability: %p fd: %d ret: %d\n",
5640 super->orom, fd, rv);
5641 return 1;
5642 }
5643
5644 if (super->current_vol >= 0)
5645 return add_to_super_imsm_volume(st, dk, fd, devname);
5646
5647 fstat(fd, &stb);
5648 dd = xcalloc(sizeof(*dd), 1);
5649 dd->major = major(stb.st_rdev);
5650 dd->minor = minor(stb.st_rdev);
5651 dd->devname = devname ? xstrdup(devname) : NULL;
5652 dd->fd = fd;
5653 dd->e = NULL;
5654 dd->action = DISK_ADD;
5655 rv = imsm_read_serial(fd, devname, dd->serial);
5656 if (rv) {
5657 pr_err("failed to retrieve scsi serial, aborting\n");
5658 if (dd->devname)
5659 free(dd->devname);
5660 free(dd);
5661 abort();
5662 }
5663 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
5664 (super->hba->type == SYS_DEV_VMD))) {
5665 int i;
5666 char *devpath = diskfd_to_devpath(fd);
5667 char controller_path[PATH_MAX];
5668
5669 if (!devpath) {
5670 pr_err("failed to get devpath, aborting\n");
5671 if (dd->devname)
5672 free(dd->devname);
5673 free(dd);
5674 return 1;
5675 }
5676
5677 snprintf(controller_path, PATH_MAX-1, "%s/device", devpath);
5678 free(devpath);
5679
5680 if (devpath_to_vendor(controller_path) == 0x8086) {
5681 /*
5682 * If Intel's NVMe drive has serial ended with
5683 * "-A","-B","-1" or "-2" it means that this is "x8"
5684 * device (double drive on single PCIe card).
5685 * User should be warned about potential data loss.
5686 */
5687 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
5688 /* Skip empty character at the end */
5689 if (dd->serial[i] == 0)
5690 continue;
5691
5692 if (((dd->serial[i] == 'A') ||
5693 (dd->serial[i] == 'B') ||
5694 (dd->serial[i] == '1') ||
5695 (dd->serial[i] == '2')) &&
5696 (dd->serial[i-1] == '-'))
5697 pr_err("\tThe action you are about to take may put your data at risk.\n"
5698 "\tPlease note that x8 devices may consist of two separate x4 devices "
5699 "located on a single PCIe port.\n"
5700 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
5701 break;
5702 }
5703 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
5704 !imsm_orom_has_tpv_support(super->orom)) {
5705 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
5706 "\tPlease refer to Intel(R) RSTe user guide.\n");
5707 free(dd->devname);
5708 free(dd);
5709 return 1;
5710 }
5711 }
5712
5713 get_dev_size(fd, NULL, &size);
5714 get_dev_sector_size(fd, NULL, &member_sector_size);
5715
5716 if (super->sector_size == 0) {
5717 /* this a first device, so sector_size is not set yet */
5718 super->sector_size = member_sector_size;
5719 } else if (member_sector_size != super->sector_size) {
5720 pr_err("Mixing between different sector size is forbidden, aborting...\n");
5721 if (dd->devname)
5722 free(dd->devname);
5723 free(dd);
5724 return 1;
5725 }
5726
5727 /* clear migr_rec when adding disk to container */
5728 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*super->sector_size);
5729 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*super->sector_size,
5730 SEEK_SET) >= 0) {
5731 if ((unsigned int)write(fd, super->migr_rec_buf,
5732 MIGR_REC_BUF_SECTORS*super->sector_size) !=
5733 MIGR_REC_BUF_SECTORS*super->sector_size)
5734 perror("Write migr_rec failed");
5735 }
5736
5737 size /= 512;
5738 serialcpy(dd->disk.serial, dd->serial);
5739 set_total_blocks(&dd->disk, size);
5740 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5741 struct imsm_super *mpb = super->anchor;
5742 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5743 }
5744 mark_spare(dd);
5745 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
5746 dd->disk.scsi_id = __cpu_to_le32(id);
5747 else
5748 dd->disk.scsi_id = __cpu_to_le32(0);
5749
5750 if (st->update_tail) {
5751 dd->next = super->disk_mgmt_list;
5752 super->disk_mgmt_list = dd;
5753 } else {
5754 dd->next = super->disks;
5755 super->disks = dd;
5756 super->updates_pending++;
5757 }
5758
5759 return 0;
5760 }
5761
5762 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5763 {
5764 struct intel_super *super = st->sb;
5765 struct dl *dd;
5766
5767 /* remove from super works only in mdmon - for communication
5768 * manager - monitor. Check if communication memory buffer
5769 * is prepared.
5770 */
5771 if (!st->update_tail) {
5772 pr_err("shall be used in mdmon context only\n");
5773 return 1;
5774 }
5775 dd = xcalloc(1, sizeof(*dd));
5776 dd->major = dk->major;
5777 dd->minor = dk->minor;
5778 dd->fd = -1;
5779 mark_spare(dd);
5780 dd->action = DISK_REMOVE;
5781
5782 dd->next = super->disk_mgmt_list;
5783 super->disk_mgmt_list = dd;
5784
5785 return 0;
5786 }
5787
5788 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5789
5790 static union {
5791 char buf[MAX_SECTOR_SIZE];
5792 struct imsm_super anchor;
5793 } spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
5794
5795 /* spare records have their own family number and do not have any defined raid
5796 * devices
5797 */
5798 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5799 {
5800 struct imsm_super *mpb = super->anchor;
5801 struct imsm_super *spare = &spare_record.anchor;
5802 __u32 sum;
5803 struct dl *d;
5804
5805 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5806 spare->generation_num = __cpu_to_le32(1UL);
5807 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5808 spare->num_disks = 1;
5809 spare->num_raid_devs = 0;
5810 spare->cache_size = mpb->cache_size;
5811 spare->pwr_cycle_count = __cpu_to_le32(1);
5812
5813 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5814 MPB_SIGNATURE MPB_VERSION_RAID0);
5815
5816 for (d = super->disks; d; d = d->next) {
5817 if (d->index != -1)
5818 continue;
5819
5820 spare->disk[0] = d->disk;
5821 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5822 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5823
5824 if (super->sector_size == 4096)
5825 convert_to_4k_imsm_disk(&spare->disk[0]);
5826
5827 sum = __gen_imsm_checksum(spare);
5828 spare->family_num = __cpu_to_le32(sum);
5829 spare->orig_family_num = 0;
5830 sum = __gen_imsm_checksum(spare);
5831 spare->check_sum = __cpu_to_le32(sum);
5832
5833 if (store_imsm_mpb(d->fd, spare)) {
5834 pr_err("failed for device %d:%d %s\n",
5835 d->major, d->minor, strerror(errno));
5836 return 1;
5837 }
5838 if (doclose) {
5839 close(d->fd);
5840 d->fd = -1;
5841 }
5842 }
5843
5844 return 0;
5845 }
5846
5847 static int write_super_imsm(struct supertype *st, int doclose)
5848 {
5849 struct intel_super *super = st->sb;
5850 unsigned int sector_size = super->sector_size;
5851 struct imsm_super *mpb = super->anchor;
5852 struct dl *d;
5853 __u32 generation;
5854 __u32 sum;
5855 int spares = 0;
5856 int i;
5857 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5858 int num_disks = 0;
5859 int clear_migration_record = 1;
5860 __u32 bbm_log_size;
5861
5862 /* 'generation' is incremented everytime the metadata is written */
5863 generation = __le32_to_cpu(mpb->generation_num);
5864 generation++;
5865 mpb->generation_num = __cpu_to_le32(generation);
5866
5867 /* fix up cases where previous mdadm releases failed to set
5868 * orig_family_num
5869 */
5870 if (mpb->orig_family_num == 0)
5871 mpb->orig_family_num = mpb->family_num;
5872
5873 for (d = super->disks; d; d = d->next) {
5874 if (d->index == -1)
5875 spares++;
5876 else {
5877 mpb->disk[d->index] = d->disk;
5878 num_disks++;
5879 }
5880 }
5881 for (d = super->missing; d; d = d->next) {
5882 mpb->disk[d->index] = d->disk;
5883 num_disks++;
5884 }
5885 mpb->num_disks = num_disks;
5886 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5887
5888 for (i = 0; i < mpb->num_raid_devs; i++) {
5889 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5890 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5891 if (dev && dev2) {
5892 imsm_copy_dev(dev, dev2);
5893 mpb_size += sizeof_imsm_dev(dev, 0);
5894 }
5895 if (is_gen_migration(dev2))
5896 clear_migration_record = 0;
5897 }
5898
5899 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
5900
5901 if (bbm_log_size) {
5902 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
5903 mpb->attributes |= MPB_ATTRIB_BBM;
5904 } else
5905 mpb->attributes &= ~MPB_ATTRIB_BBM;
5906
5907 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
5908 mpb_size += bbm_log_size;
5909 mpb->mpb_size = __cpu_to_le32(mpb_size);
5910
5911 #ifdef DEBUG
5912 assert(super->len == 0 || mpb_size <= super->len);
5913 #endif
5914
5915 /* recalculate checksum */
5916 sum = __gen_imsm_checksum(mpb);
5917 mpb->check_sum = __cpu_to_le32(sum);
5918
5919 if (super->clean_migration_record_by_mdmon) {
5920 clear_migration_record = 1;
5921 super->clean_migration_record_by_mdmon = 0;
5922 }
5923 if (clear_migration_record)
5924 memset(super->migr_rec_buf, 0,
5925 MIGR_REC_BUF_SECTORS*sector_size);
5926
5927 if (sector_size == 4096)
5928 convert_to_4k(super);
5929
5930 /* write the mpb for disks that compose raid devices */
5931 for (d = super->disks; d ; d = d->next) {
5932 if (d->index < 0 || is_failed(&d->disk))
5933 continue;
5934
5935 if (clear_migration_record) {
5936 unsigned long long dsize;
5937
5938 get_dev_size(d->fd, NULL, &dsize);
5939 if (lseek64(d->fd, dsize - sector_size,
5940 SEEK_SET) >= 0) {
5941 if ((unsigned int)write(d->fd,
5942 super->migr_rec_buf,
5943 MIGR_REC_BUF_SECTORS*sector_size) !=
5944 MIGR_REC_BUF_SECTORS*sector_size)
5945 perror("Write migr_rec failed");
5946 }
5947 }
5948
5949 if (store_imsm_mpb(d->fd, mpb))
5950 fprintf(stderr,
5951 "failed for device %d:%d (fd: %d)%s\n",
5952 d->major, d->minor,
5953 d->fd, strerror(errno));
5954
5955 if (doclose) {
5956 close(d->fd);
5957 d->fd = -1;
5958 }
5959 }
5960
5961 if (spares)
5962 return write_super_imsm_spares(super, doclose);
5963
5964 return 0;
5965 }
5966
5967 static int create_array(struct supertype *st, int dev_idx)
5968 {
5969 size_t len;
5970 struct imsm_update_create_array *u;
5971 struct intel_super *super = st->sb;
5972 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
5973 struct imsm_map *map = get_imsm_map(dev, MAP_0);
5974 struct disk_info *inf;
5975 struct imsm_disk *disk;
5976 int i;
5977
5978 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5979 sizeof(*inf) * map->num_members;
5980 u = xmalloc(len);
5981 u->type = update_create_array;
5982 u->dev_idx = dev_idx;
5983 imsm_copy_dev(&u->dev, dev);
5984 inf = get_disk_info(u);
5985 for (i = 0; i < map->num_members; i++) {
5986 int idx = get_imsm_disk_idx(dev, i, MAP_X);
5987
5988 disk = get_imsm_disk(super, idx);
5989 if (!disk)
5990 disk = get_imsm_missing(super, idx);
5991 serialcpy(inf[i].serial, disk->serial);
5992 }
5993 append_metadata_update(st, u, len);
5994
5995 return 0;
5996 }
5997
5998 static int mgmt_disk(struct supertype *st)
5999 {
6000 struct intel_super *super = st->sb;
6001 size_t len;
6002 struct imsm_update_add_remove_disk *u;
6003
6004 if (!super->disk_mgmt_list)
6005 return 0;
6006
6007 len = sizeof(*u);
6008 u = xmalloc(len);
6009 u->type = update_add_remove_disk;
6010 append_metadata_update(st, u, len);
6011
6012 return 0;
6013 }
6014
6015 __u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6016
6017 static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6018 {
6019 struct intel_super *super = st->sb;
6020 void *buf;
6021 struct ppl_header *ppl_hdr;
6022 int ret;
6023
6024 ret = posix_memalign(&buf, 4096, PPL_HEADER_SIZE);
6025 if (ret) {
6026 pr_err("Failed to allocate PPL header buffer\n");
6027 return ret;
6028 }
6029
6030 memset(buf, 0, PPL_HEADER_SIZE);
6031 ppl_hdr = buf;
6032 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6033 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
6034 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6035
6036 if (lseek64(fd, info->ppl_sector * 512, SEEK_SET) < 0) {
6037 ret = errno;
6038 perror("Failed to seek to PPL header location");
6039 }
6040
6041 if (!ret && write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6042 ret = errno;
6043 perror("Write PPL header failed");
6044 }
6045
6046 if (!ret)
6047 fsync(fd);
6048
6049 free(buf);
6050 return ret;
6051 }
6052
6053 static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6054 struct mdinfo *disk)
6055 {
6056 struct intel_super *super = st->sb;
6057 struct dl *d;
6058 void *buf;
6059 int ret = 0;
6060 struct ppl_header *ppl_hdr;
6061 __u32 crc;
6062 struct imsm_dev *dev;
6063 struct imsm_map *map;
6064 __u32 idx;
6065
6066 if (disk->disk.raid_disk < 0)
6067 return 0;
6068
6069 if (posix_memalign(&buf, 4096, PPL_HEADER_SIZE)) {
6070 pr_err("Failed to allocate PPL header buffer\n");
6071 return -1;
6072 }
6073
6074 dev = get_imsm_dev(super, info->container_member);
6075 map = get_imsm_map(dev, MAP_X);
6076 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_X);
6077 d = get_imsm_dl_disk(super, idx);
6078
6079 if (!d || d->index < 0 || is_failed(&d->disk))
6080 goto out;
6081
6082 if (lseek64(d->fd, info->ppl_sector * 512, SEEK_SET) < 0) {
6083 perror("Failed to seek to PPL header location");
6084 ret = -1;
6085 goto out;
6086 }
6087
6088 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6089 perror("Read PPL header failed");
6090 ret = -1;
6091 goto out;
6092 }
6093
6094 ppl_hdr = buf;
6095
6096 crc = __le32_to_cpu(ppl_hdr->checksum);
6097 ppl_hdr->checksum = 0;
6098
6099 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6100 dprintf("Wrong PPL header checksum on %s\n",
6101 d->devname);
6102 ret = 1;
6103 }
6104
6105 if (!ret && (__le32_to_cpu(ppl_hdr->signature) !=
6106 super->anchor->orig_family_num)) {
6107 dprintf("Wrong PPL header signature on %s\n",
6108 d->devname);
6109 ret = 1;
6110 }
6111
6112 out:
6113 free(buf);
6114
6115 if (ret == 1 && map->map_state == IMSM_T_STATE_UNINITIALIZED)
6116 return st->ss->write_init_ppl(st, info, d->fd);
6117
6118 return ret;
6119 }
6120
6121 static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6122 {
6123 struct intel_super *super = st->sb;
6124 struct dl *d;
6125 int ret = 0;
6126
6127 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6128 info->array.level != 5)
6129 return 0;
6130
6131 for (d = super->disks; d ; d = d->next) {
6132 if (d->index < 0 || is_failed(&d->disk))
6133 continue;
6134
6135 ret = st->ss->write_init_ppl(st, info, d->fd);
6136 if (ret)
6137 break;
6138 }
6139
6140 return ret;
6141 }
6142
6143 static int write_init_super_imsm(struct supertype *st)
6144 {
6145 struct intel_super *super = st->sb;
6146 int current_vol = super->current_vol;
6147 int rv = 0;
6148 struct mdinfo info;
6149
6150 getinfo_super_imsm(st, &info, NULL);
6151
6152 /* we are done with current_vol reset it to point st at the container */
6153 super->current_vol = -1;
6154
6155 if (st->update_tail) {
6156 /* queue the recently created array / added disk
6157 * as a metadata update */
6158
6159 /* determine if we are creating a volume or adding a disk */
6160 if (current_vol < 0) {
6161 /* in the mgmt (add/remove) disk case we are running
6162 * in mdmon context, so don't close fd's
6163 */
6164 rv = mgmt_disk(st);
6165 } else {
6166 rv = write_init_ppl_imsm_all(st, &info);
6167 if (!rv)
6168 rv = create_array(st, current_vol);
6169 }
6170 } else {
6171 struct dl *d;
6172 for (d = super->disks; d; d = d->next)
6173 Kill(d->devname, NULL, 0, -1, 1);
6174 if (current_vol >= 0)
6175 rv = write_init_ppl_imsm_all(st, &info);
6176 if (!rv)
6177 rv = write_super_imsm(st, 1);
6178 }
6179
6180 return rv;
6181 }
6182
6183 static int store_super_imsm(struct supertype *st, int fd)
6184 {
6185 struct intel_super *super = st->sb;
6186 struct imsm_super *mpb = super ? super->anchor : NULL;
6187
6188 if (!mpb)
6189 return 1;
6190
6191 if (super->sector_size == 4096)
6192 convert_to_4k(super);
6193 return store_imsm_mpb(fd, mpb);
6194 }
6195
6196 static int validate_geometry_imsm_container(struct supertype *st, int level,
6197 int layout, int raiddisks, int chunk,
6198 unsigned long long size,
6199 unsigned long long data_offset,
6200 char *dev,
6201 unsigned long long *freesize,
6202 int verbose)
6203 {
6204 int fd;
6205 unsigned long long ldsize;
6206 struct intel_super *super;
6207 int rv = 0;
6208
6209 if (level != LEVEL_CONTAINER)
6210 return 0;
6211 if (!dev)
6212 return 1;
6213
6214 fd = open(dev, O_RDONLY|O_EXCL, 0);
6215 if (fd < 0) {
6216 if (verbose > 0)
6217 pr_err("imsm: Cannot open %s: %s\n",
6218 dev, strerror(errno));
6219 return 0;
6220 }
6221 if (!get_dev_size(fd, dev, &ldsize)) {
6222 close(fd);
6223 return 0;
6224 }
6225
6226 /* capabilities retrieve could be possible
6227 * note that there is no fd for the disks in array.
6228 */
6229 super = alloc_super();
6230 if (!super) {
6231 close(fd);
6232 return 0;
6233 }
6234 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
6235 close(fd);
6236 free_imsm(super);
6237 return 0;
6238 }
6239
6240 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
6241 if (rv != 0) {
6242 #if DEBUG
6243 char str[256];
6244 fd2devname(fd, str);
6245 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
6246 fd, str, super->orom, rv, raiddisks);
6247 #endif
6248 /* no orom/efi or non-intel hba of the disk */
6249 close(fd);
6250 free_imsm(super);
6251 return 0;
6252 }
6253 close(fd);
6254 if (super->orom) {
6255 if (raiddisks > super->orom->tds) {
6256 if (verbose)
6257 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
6258 raiddisks, super->orom->tds);
6259 free_imsm(super);
6260 return 0;
6261 }
6262 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6263 (ldsize >> 9) >> 32 > 0) {
6264 if (verbose)
6265 pr_err("%s exceeds maximum platform supported size\n", dev);
6266 free_imsm(super);
6267 return 0;
6268 }
6269 }
6270
6271 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
6272 free_imsm(super);
6273
6274 return 1;
6275 }
6276
6277 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6278 {
6279 const unsigned long long base_start = e[*idx].start;
6280 unsigned long long end = base_start + e[*idx].size;
6281 int i;
6282
6283 if (base_start == end)
6284 return 0;
6285
6286 *idx = *idx + 1;
6287 for (i = *idx; i < num_extents; i++) {
6288 /* extend overlapping extents */
6289 if (e[i].start >= base_start &&
6290 e[i].start <= end) {
6291 if (e[i].size == 0)
6292 return 0;
6293 if (e[i].start + e[i].size > end)
6294 end = e[i].start + e[i].size;
6295 } else if (e[i].start > end) {
6296 *idx = i;
6297 break;
6298 }
6299 }
6300
6301 return end - base_start;
6302 }
6303
6304 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
6305 {
6306 /* build a composite disk with all known extents and generate a new
6307 * 'maxsize' given the "all disks in an array must share a common start
6308 * offset" constraint
6309 */
6310 struct extent *e = xcalloc(sum_extents, sizeof(*e));
6311 struct dl *dl;
6312 int i, j;
6313 int start_extent;
6314 unsigned long long pos;
6315 unsigned long long start = 0;
6316 unsigned long long maxsize;
6317 unsigned long reserve;
6318
6319 /* coalesce and sort all extents. also, check to see if we need to
6320 * reserve space between member arrays
6321 */
6322 j = 0;
6323 for (dl = super->disks; dl; dl = dl->next) {
6324 if (!dl->e)
6325 continue;
6326 for (i = 0; i < dl->extent_cnt; i++)
6327 e[j++] = dl->e[i];
6328 }
6329 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6330
6331 /* merge extents */
6332 i = 0;
6333 j = 0;
6334 while (i < sum_extents) {
6335 e[j].start = e[i].start;
6336 e[j].size = find_size(e, &i, sum_extents);
6337 j++;
6338 if (e[j-1].size == 0)
6339 break;
6340 }
6341
6342 pos = 0;
6343 maxsize = 0;
6344 start_extent = 0;
6345 i = 0;
6346 do {
6347 unsigned long long esize;
6348
6349 esize = e[i].start - pos;
6350 if (esize >= maxsize) {
6351 maxsize = esize;
6352 start = pos;
6353 start_extent = i;
6354 }
6355 pos = e[i].start + e[i].size;
6356 i++;
6357 } while (e[i-1].size);
6358 free(e);
6359
6360 if (maxsize == 0)
6361 return 0;
6362
6363 /* FIXME assumes volume at offset 0 is the first volume in a
6364 * container
6365 */
6366 if (start_extent > 0)
6367 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6368 else
6369 reserve = 0;
6370
6371 if (maxsize < reserve)
6372 return 0;
6373
6374 super->create_offset = ~((unsigned long long) 0);
6375 if (start + reserve > super->create_offset)
6376 return 0; /* start overflows create_offset */
6377 super->create_offset = start + reserve;
6378
6379 return maxsize - reserve;
6380 }
6381
6382 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6383 {
6384 if (level < 0 || level == 6 || level == 4)
6385 return 0;
6386
6387 /* if we have an orom prevent invalid raid levels */
6388 if (orom)
6389 switch (level) {
6390 case 0: return imsm_orom_has_raid0(orom);
6391 case 1:
6392 if (raiddisks > 2)
6393 return imsm_orom_has_raid1e(orom);
6394 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6395 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6396 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
6397 }
6398 else
6399 return 1; /* not on an Intel RAID platform so anything goes */
6400
6401 return 0;
6402 }
6403
6404 static int
6405 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6406 int dpa, int verbose)
6407 {
6408 struct mdstat_ent *mdstat = mdstat_read(0, 0);
6409 struct mdstat_ent *memb;
6410 int count = 0;
6411 int num = 0;
6412 struct md_list *dv;
6413 int found;
6414
6415 for (memb = mdstat ; memb ; memb = memb->next) {
6416 if (memb->metadata_version &&
6417 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
6418 (strcmp(&memb->metadata_version[9], name) == 0) &&
6419 !is_subarray(memb->metadata_version+9) &&
6420 memb->members) {
6421 struct dev_member *dev = memb->members;
6422 int fd = -1;
6423 while(dev && (fd < 0)) {
6424 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6425 num = sprintf(path, "%s%s", "/dev/", dev->name);
6426 if (num > 0)
6427 fd = open(path, O_RDONLY, 0);
6428 if (num <= 0 || fd < 0) {
6429 pr_vrb("Cannot open %s: %s\n",
6430 dev->name, strerror(errno));
6431 }
6432 free(path);
6433 dev = dev->next;
6434 }
6435 found = 0;
6436 if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
6437 struct mdstat_ent *vol;
6438 for (vol = mdstat ; vol ; vol = vol->next) {
6439 if (vol->active > 0 &&
6440 vol->metadata_version &&
6441 is_container_member(vol, memb->devnm)) {
6442 found++;
6443 count++;
6444 }
6445 }
6446 if (*devlist && (found < dpa)) {
6447 dv = xcalloc(1, sizeof(*dv));
6448 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
6449 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
6450 dv->found = found;
6451 dv->used = 0;
6452 dv->next = *devlist;
6453 *devlist = dv;
6454 }
6455 }
6456 if (fd >= 0)
6457 close(fd);
6458 }
6459 }
6460 free_mdstat(mdstat);
6461 return count;
6462 }
6463
6464 #ifdef DEBUG_LOOP
6465 static struct md_list*
6466 get_loop_devices(void)
6467 {
6468 int i;
6469 struct md_list *devlist = NULL;
6470 struct md_list *dv;
6471
6472 for(i = 0; i < 12; i++) {
6473 dv = xcalloc(1, sizeof(*dv));
6474 dv->devname = xmalloc(40);
6475 sprintf(dv->devname, "/dev/loop%d", i);
6476 dv->next = devlist;
6477 devlist = dv;
6478 }
6479 return devlist;
6480 }
6481 #endif
6482
6483 static struct md_list*
6484 get_devices(const char *hba_path)
6485 {
6486 struct md_list *devlist = NULL;
6487 struct md_list *dv;
6488 struct dirent *ent;
6489 DIR *dir;
6490 int err = 0;
6491
6492 #if DEBUG_LOOP
6493 devlist = get_loop_devices();
6494 return devlist;
6495 #endif
6496 /* scroll through /sys/dev/block looking for devices attached to
6497 * this hba
6498 */
6499 dir = opendir("/sys/dev/block");
6500 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
6501 int fd;
6502 char buf[1024];
6503 int major, minor;
6504 char *path = NULL;
6505 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
6506 continue;
6507 path = devt_to_devpath(makedev(major, minor));
6508 if (!path)
6509 continue;
6510 if (!path_attached_to_hba(path, hba_path)) {
6511 free(path);
6512 path = NULL;
6513 continue;
6514 }
6515 free(path);
6516 path = NULL;
6517 fd = dev_open(ent->d_name, O_RDONLY);
6518 if (fd >= 0) {
6519 fd2devname(fd, buf);
6520 close(fd);
6521 } else {
6522 pr_err("cannot open device: %s\n",
6523 ent->d_name);
6524 continue;
6525 }
6526
6527 dv = xcalloc(1, sizeof(*dv));
6528 dv->devname = xstrdup(buf);
6529 dv->next = devlist;
6530 devlist = dv;
6531 }
6532 if (err) {
6533 while(devlist) {
6534 dv = devlist;
6535 devlist = devlist->next;
6536 free(dv->devname);
6537 free(dv);
6538 }
6539 }
6540 closedir(dir);
6541 return devlist;
6542 }
6543
6544 static int
6545 count_volumes_list(struct md_list *devlist, char *homehost,
6546 int verbose, int *found)
6547 {
6548 struct md_list *tmpdev;
6549 int count = 0;
6550 struct supertype *st;
6551
6552 /* first walk the list of devices to find a consistent set
6553 * that match the criterea, if that is possible.
6554 * We flag the ones we like with 'used'.
6555 */
6556 *found = 0;
6557 st = match_metadata_desc_imsm("imsm");
6558 if (st == NULL) {
6559 pr_vrb("cannot allocate memory for imsm supertype\n");
6560 return 0;
6561 }
6562
6563 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6564 char *devname = tmpdev->devname;
6565 dev_t rdev;
6566 struct supertype *tst;
6567 int dfd;
6568 if (tmpdev->used > 1)
6569 continue;
6570 tst = dup_super(st);
6571 if (tst == NULL) {
6572 pr_vrb("cannot allocate memory for imsm supertype\n");
6573 goto err_1;
6574 }
6575 tmpdev->container = 0;
6576 dfd = dev_open(devname, O_RDONLY|O_EXCL);
6577 if (dfd < 0) {
6578 dprintf("cannot open device %s: %s\n",
6579 devname, strerror(errno));
6580 tmpdev->used = 2;
6581 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
6582 tmpdev->used = 2;
6583 } else if (must_be_container(dfd)) {
6584 struct supertype *cst;
6585 cst = super_by_fd(dfd, NULL);
6586 if (cst == NULL) {
6587 dprintf("cannot recognize container type %s\n",
6588 devname);
6589 tmpdev->used = 2;
6590 } else if (tst->ss != st->ss) {
6591 dprintf("non-imsm container - ignore it: %s\n",
6592 devname);
6593 tmpdev->used = 2;
6594 } else if (!tst->ss->load_container ||
6595 tst->ss->load_container(tst, dfd, NULL))
6596 tmpdev->used = 2;
6597 else {
6598 tmpdev->container = 1;
6599 }
6600 if (cst)
6601 cst->ss->free_super(cst);
6602 } else {
6603 tmpdev->st_rdev = rdev;
6604 if (tst->ss->load_super(tst,dfd, NULL)) {
6605 dprintf("no RAID superblock on %s\n",
6606 devname);
6607 tmpdev->used = 2;
6608 } else if (tst->ss->compare_super == NULL) {
6609 dprintf("Cannot assemble %s metadata on %s\n",
6610 tst->ss->name, devname);
6611 tmpdev->used = 2;
6612 }
6613 }
6614 if (dfd >= 0)
6615 close(dfd);
6616 if (tmpdev->used == 2 || tmpdev->used == 4) {
6617 /* Ignore unrecognised devices during auto-assembly */
6618 goto loop;
6619 }
6620 else {
6621 struct mdinfo info;
6622 tst->ss->getinfo_super(tst, &info, NULL);
6623
6624 if (st->minor_version == -1)
6625 st->minor_version = tst->minor_version;
6626
6627 if (memcmp(info.uuid, uuid_zero,
6628 sizeof(int[4])) == 0) {
6629 /* this is a floating spare. It cannot define
6630 * an array unless there are no more arrays of
6631 * this type to be found. It can be included
6632 * in an array of this type though.
6633 */
6634 tmpdev->used = 3;
6635 goto loop;
6636 }
6637
6638 if (st->ss != tst->ss ||
6639 st->minor_version != tst->minor_version ||
6640 st->ss->compare_super(st, tst) != 0) {
6641 /* Some mismatch. If exactly one array matches this host,
6642 * we can resolve on that one.
6643 * Or, if we are auto assembling, we just ignore the second
6644 * for now.
6645 */
6646 dprintf("superblock on %s doesn't match others - assembly aborted\n",
6647 devname);
6648 goto loop;
6649 }
6650 tmpdev->used = 1;
6651 *found = 1;
6652 dprintf("found: devname: %s\n", devname);
6653 }
6654 loop:
6655 if (tst)
6656 tst->ss->free_super(tst);
6657 }
6658 if (*found != 0) {
6659 int err;
6660 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
6661 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
6662 for (iter = head; iter; iter = iter->next) {
6663 dprintf("content->text_version: %s vol\n",
6664 iter->text_version);
6665 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
6666 /* do not assemble arrays with unsupported
6667 configurations */
6668 dprintf("Cannot activate member %s.\n",
6669 iter->text_version);
6670 } else
6671 count++;
6672 }
6673 sysfs_free(head);
6674
6675 } else {
6676 dprintf("No valid super block on device list: err: %d %p\n",
6677 err, st->sb);
6678 }
6679 } else {
6680 dprintf("no more devices to examine\n");
6681 }
6682
6683 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6684 if (tmpdev->used == 1 && tmpdev->found) {
6685 if (count) {
6686 if (count < tmpdev->found)
6687 count = 0;
6688 else
6689 count -= tmpdev->found;
6690 }
6691 }
6692 if (tmpdev->used == 1)
6693 tmpdev->used = 4;
6694 }
6695 err_1:
6696 if (st)
6697 st->ss->free_super(st);
6698 return count;
6699 }
6700
6701 static int __count_volumes(char *hba_path, int dpa, int verbose,
6702 int cmp_hba_path)
6703 {
6704 struct sys_dev *idev, *intel_devices = find_intel_devices();
6705 int count = 0;
6706 const struct orom_entry *entry;
6707 struct devid_list *dv, *devid_list;
6708
6709 if (!hba_path)
6710 return 0;
6711
6712 for (idev = intel_devices; idev; idev = idev->next) {
6713 if (strstr(idev->path, hba_path))
6714 break;
6715 }
6716
6717 if (!idev || !idev->dev_id)
6718 return 0;
6719
6720 entry = get_orom_entry_by_device_id(idev->dev_id);
6721
6722 if (!entry || !entry->devid_list)
6723 return 0;
6724
6725 devid_list = entry->devid_list;
6726 for (dv = devid_list; dv; dv = dv->next) {
6727 struct md_list *devlist;
6728 struct sys_dev *device = NULL;
6729 char *hpath;
6730 int found = 0;
6731
6732 if (cmp_hba_path)
6733 device = device_by_id_and_path(dv->devid, hba_path);
6734 else
6735 device = device_by_id(dv->devid);
6736
6737 if (device)
6738 hpath = device->path;
6739 else
6740 return 0;
6741
6742 devlist = get_devices(hpath);
6743 /* if no intel devices return zero volumes */
6744 if (devlist == NULL)
6745 return 0;
6746
6747 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
6748 verbose);
6749 dprintf("path: %s active arrays: %d\n", hpath, count);
6750 if (devlist == NULL)
6751 return 0;
6752 do {
6753 found = 0;
6754 count += count_volumes_list(devlist,
6755 NULL,
6756 verbose,
6757 &found);
6758 dprintf("found %d count: %d\n", found, count);
6759 } while (found);
6760
6761 dprintf("path: %s total number of volumes: %d\n", hpath, count);
6762
6763 while (devlist) {
6764 struct md_list *dv = devlist;
6765 devlist = devlist->next;
6766 free(dv->devname);
6767 free(dv);
6768 }
6769 }
6770 return count;
6771 }
6772
6773 static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
6774 {
6775 if (!hba)
6776 return 0;
6777 if (hba->type == SYS_DEV_VMD) {
6778 struct sys_dev *dev;
6779 int count = 0;
6780
6781 for (dev = find_intel_devices(); dev; dev = dev->next) {
6782 if (dev->type == SYS_DEV_VMD)
6783 count += __count_volumes(dev->path, dpa,
6784 verbose, 1);
6785 }
6786 return count;
6787 }
6788 return __count_volumes(hba->path, dpa, verbose, 0);
6789 }
6790
6791 static int imsm_default_chunk(const struct imsm_orom *orom)
6792 {
6793 /* up to 512 if the plaform supports it, otherwise the platform max.
6794 * 128 if no platform detected
6795 */
6796 int fs = max(7, orom ? fls(orom->sss) : 0);
6797
6798 return min(512, (1 << fs));
6799 }
6800
6801 static int
6802 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
6803 int raiddisks, int *chunk, unsigned long long size, int verbose)
6804 {
6805 /* check/set platform and metadata limits/defaults */
6806 if (super->orom && raiddisks > super->orom->dpa) {
6807 pr_vrb("platform supports a maximum of %d disks per array\n",
6808 super->orom->dpa);
6809 return 0;
6810 }
6811
6812 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
6813 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6814 pr_vrb("platform does not support raid%d with %d disk%s\n",
6815 level, raiddisks, raiddisks > 1 ? "s" : "");
6816 return 0;
6817 }
6818
6819 if (*chunk == 0 || *chunk == UnSet)
6820 *chunk = imsm_default_chunk(super->orom);
6821
6822 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
6823 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
6824 return 0;
6825 }
6826
6827 if (layout != imsm_level_to_layout(level)) {
6828 if (level == 5)
6829 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6830 else if (level == 10)
6831 pr_vrb("imsm raid 10 only supports the n2 layout\n");
6832 else
6833 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6834 layout, level);
6835 return 0;
6836 }
6837
6838 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
6839 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
6840 pr_vrb("platform does not support a volume size over 2TB\n");
6841 return 0;
6842 }
6843
6844 return 1;
6845 }
6846
6847 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
6848 * FIX ME add ahci details
6849 */
6850 static int validate_geometry_imsm_volume(struct supertype *st, int level,
6851 int layout, int raiddisks, int *chunk,
6852 unsigned long long size,
6853 unsigned long long data_offset,
6854 char *dev,
6855 unsigned long long *freesize,
6856 int verbose)
6857 {
6858 dev_t rdev;
6859 struct intel_super *super = st->sb;
6860 struct imsm_super *mpb;
6861 struct dl *dl;
6862 unsigned long long pos = 0;
6863 unsigned long long maxsize;
6864 struct extent *e;
6865 int i;
6866
6867 /* We must have the container info already read in. */
6868 if (!super)
6869 return 0;
6870
6871 mpb = super->anchor;
6872
6873 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
6874 pr_err("RAID gemetry validation failed. Cannot proceed with the action(s).\n");
6875 return 0;
6876 }
6877 if (!dev) {
6878 /* General test: make sure there is space for
6879 * 'raiddisks' device extents of size 'size' at a given
6880 * offset
6881 */
6882 unsigned long long minsize = size;
6883 unsigned long long start_offset = MaxSector;
6884 int dcnt = 0;
6885 if (minsize == 0)
6886 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
6887 for (dl = super->disks; dl ; dl = dl->next) {
6888 int found = 0;
6889
6890 pos = 0;
6891 i = 0;
6892 e = get_extents(super, dl);
6893 if (!e) continue;
6894 do {
6895 unsigned long long esize;
6896 esize = e[i].start - pos;
6897 if (esize >= minsize)
6898 found = 1;
6899 if (found && start_offset == MaxSector) {
6900 start_offset = pos;
6901 break;
6902 } else if (found && pos != start_offset) {
6903 found = 0;
6904 break;
6905 }
6906 pos = e[i].start + e[i].size;
6907 i++;
6908 } while (e[i-1].size);
6909 if (found)
6910 dcnt++;
6911 free(e);
6912 }
6913 if (dcnt < raiddisks) {
6914 if (verbose)
6915 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
6916 dcnt, raiddisks);
6917 return 0;
6918 }
6919 return 1;
6920 }
6921
6922 /* This device must be a member of the set */
6923 if (!stat_is_blkdev(dev, &rdev))
6924 return 0;
6925 for (dl = super->disks ; dl ; dl = dl->next) {
6926 if (dl->major == (int)major(rdev) &&
6927 dl->minor == (int)minor(rdev))
6928 break;
6929 }
6930 if (!dl) {
6931 if (verbose)
6932 pr_err("%s is not in the same imsm set\n", dev);
6933 return 0;
6934 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6935 /* If a volume is present then the current creation attempt
6936 * cannot incorporate new spares because the orom may not
6937 * understand this configuration (all member disks must be
6938 * members of each array in the container).
6939 */
6940 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
6941 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6942 return 0;
6943 } else if (super->orom && mpb->num_raid_devs > 0 &&
6944 mpb->num_disks != raiddisks) {
6945 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6946 return 0;
6947 }
6948
6949 /* retrieve the largest free space block */
6950 e = get_extents(super, dl);
6951 maxsize = 0;
6952 i = 0;
6953 if (e) {
6954 do {
6955 unsigned long long esize;
6956
6957 esize = e[i].start - pos;
6958 if (esize >= maxsize)
6959 maxsize = esize;
6960 pos = e[i].start + e[i].size;
6961 i++;
6962 } while (e[i-1].size);
6963 dl->e = e;
6964 dl->extent_cnt = i;
6965 } else {
6966 if (verbose)
6967 pr_err("unable to determine free space for: %s\n",
6968 dev);
6969 return 0;
6970 }
6971 if (maxsize < size) {
6972 if (verbose)
6973 pr_err("%s not enough space (%llu < %llu)\n",
6974 dev, maxsize, size);
6975 return 0;
6976 }
6977
6978 /* count total number of extents for merge */
6979 i = 0;
6980 for (dl = super->disks; dl; dl = dl->next)
6981 if (dl->e)
6982 i += dl->extent_cnt;
6983
6984 maxsize = merge_extents(super, i);
6985
6986 if (!check_env("IMSM_NO_PLATFORM") &&
6987 mpb->num_raid_devs > 0 && size && size != maxsize) {
6988 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
6989 return 0;
6990 }
6991
6992 if (maxsize < size || maxsize == 0) {
6993 if (verbose) {
6994 if (maxsize == 0)
6995 pr_err("no free space left on device. Aborting...\n");
6996 else
6997 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
6998 maxsize, size);
6999 }
7000 return 0;
7001 }
7002
7003 *freesize = maxsize;
7004
7005 if (super->orom) {
7006 int count = count_volumes(super->hba,
7007 super->orom->dpa, verbose);
7008 if (super->orom->vphba <= count) {
7009 pr_vrb("platform does not support more than %d raid volumes.\n",
7010 super->orom->vphba);
7011 return 0;
7012 }
7013 }
7014 return 1;
7015 }
7016
7017 static int imsm_get_free_size(struct supertype *st, int raiddisks,
7018 unsigned long long size, int chunk,
7019 unsigned long long *freesize)
7020 {
7021 struct intel_super *super = st->sb;
7022 struct imsm_super *mpb = super->anchor;
7023 struct dl *dl;
7024 int i;
7025 int extent_cnt;
7026 struct extent *e;
7027 unsigned long long maxsize;
7028 unsigned long long minsize;
7029 int cnt;
7030 int used;
7031
7032 /* find the largest common start free region of the possible disks */
7033 used = 0;
7034 extent_cnt = 0;
7035 cnt = 0;
7036 for (dl = super->disks; dl; dl = dl->next) {
7037 dl->raiddisk = -1;
7038
7039 if (dl->index >= 0)
7040 used++;
7041
7042 /* don't activate new spares if we are orom constrained
7043 * and there is already a volume active in the container
7044 */
7045 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7046 continue;
7047
7048 e = get_extents(super, dl);
7049 if (!e)
7050 continue;
7051 for (i = 1; e[i-1].size; i++)
7052 ;
7053 dl->e = e;
7054 dl->extent_cnt = i;
7055 extent_cnt += i;
7056 cnt++;
7057 }
7058
7059 maxsize = merge_extents(super, extent_cnt);
7060 minsize = size;
7061 if (size == 0)
7062 /* chunk is in K */
7063 minsize = chunk * 2;
7064
7065 if (cnt < raiddisks ||
7066 (super->orom && used && used != raiddisks) ||
7067 maxsize < minsize ||
7068 maxsize == 0) {
7069 pr_err("not enough devices with space to create array.\n");
7070 return 0; /* No enough free spaces large enough */
7071 }
7072
7073 if (size == 0) {
7074 size = maxsize;
7075 if (chunk) {
7076 size /= 2 * chunk;
7077 size *= 2 * chunk;
7078 }
7079 maxsize = size;
7080 }
7081 if (!check_env("IMSM_NO_PLATFORM") &&
7082 mpb->num_raid_devs > 0 && size && size != maxsize) {
7083 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
7084 return 0;
7085 }
7086 cnt = 0;
7087 for (dl = super->disks; dl; dl = dl->next)
7088 if (dl->e)
7089 dl->raiddisk = cnt++;
7090
7091 *freesize = size;
7092
7093 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7094
7095 return 1;
7096 }
7097
7098 static int reserve_space(struct supertype *st, int raiddisks,
7099 unsigned long long size, int chunk,
7100 unsigned long long *freesize)
7101 {
7102 struct intel_super *super = st->sb;
7103 struct dl *dl;
7104 int cnt;
7105 int rv = 0;
7106
7107 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
7108 if (rv) {
7109 cnt = 0;
7110 for (dl = super->disks; dl; dl = dl->next)
7111 if (dl->e)
7112 dl->raiddisk = cnt++;
7113 rv = 1;
7114 }
7115
7116 return rv;
7117 }
7118
7119 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
7120 int raiddisks, int *chunk, unsigned long long size,
7121 unsigned long long data_offset,
7122 char *dev, unsigned long long *freesize,
7123 int consistency_policy, int verbose)
7124 {
7125 int fd, cfd;
7126 struct mdinfo *sra;
7127 int is_member = 0;
7128
7129 /* load capability
7130 * if given unused devices create a container
7131 * if given given devices in a container create a member volume
7132 */
7133 if (level == LEVEL_CONTAINER) {
7134 /* Must be a fresh device to add to a container */
7135 return validate_geometry_imsm_container(st, level, layout,
7136 raiddisks,
7137 *chunk,
7138 size, data_offset,
7139 dev, freesize,
7140 verbose);
7141 }
7142
7143 if (!dev) {
7144 if (st->sb) {
7145 struct intel_super *super = st->sb;
7146 if (!validate_geometry_imsm_orom(st->sb, level, layout,
7147 raiddisks, chunk, size,
7148 verbose))
7149 return 0;
7150 /* we are being asked to automatically layout a
7151 * new volume based on the current contents of
7152 * the container. If the the parameters can be
7153 * satisfied reserve_space will record the disks,
7154 * start offset, and size of the volume to be
7155 * created. add_to_super and getinfo_super
7156 * detect when autolayout is in progress.
7157 */
7158 /* assuming that freesize is always given when array is
7159 created */
7160 if (super->orom && freesize) {
7161 int count;
7162 count = count_volumes(super->hba,
7163 super->orom->dpa, verbose);
7164 if (super->orom->vphba <= count) {
7165 pr_vrb("platform does not support more than %d raid volumes.\n",
7166 super->orom->vphba);
7167 return 0;
7168 }
7169 }
7170 if (freesize)
7171 return reserve_space(st, raiddisks, size,
7172 *chunk, freesize);
7173 }
7174 return 1;
7175 }
7176 if (st->sb) {
7177 /* creating in a given container */
7178 return validate_geometry_imsm_volume(st, level, layout,
7179 raiddisks, chunk, size,
7180 data_offset,
7181 dev, freesize, verbose);
7182 }
7183
7184 /* This device needs to be a device in an 'imsm' container */
7185 fd = open(dev, O_RDONLY|O_EXCL, 0);
7186 if (fd >= 0) {
7187 if (verbose)
7188 pr_err("Cannot create this array on device %s\n",
7189 dev);
7190 close(fd);
7191 return 0;
7192 }
7193 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
7194 if (verbose)
7195 pr_err("Cannot open %s: %s\n",
7196 dev, strerror(errno));
7197 return 0;
7198 }
7199 /* Well, it is in use by someone, maybe an 'imsm' container. */
7200 cfd = open_container(fd);
7201 close(fd);
7202 if (cfd < 0) {
7203 if (verbose)
7204 pr_err("Cannot use %s: It is busy\n",
7205 dev);
7206 return 0;
7207 }
7208 sra = sysfs_read(cfd, NULL, GET_VERSION);
7209 if (sra && sra->array.major_version == -1 &&
7210 strcmp(sra->text_version, "imsm") == 0)
7211 is_member = 1;
7212 sysfs_free(sra);
7213 if (is_member) {
7214 /* This is a member of a imsm container. Load the container
7215 * and try to create a volume
7216 */
7217 struct intel_super *super;
7218
7219 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
7220 st->sb = super;
7221 strcpy(st->container_devnm, fd2devnm(cfd));
7222 close(cfd);
7223 return validate_geometry_imsm_volume(st, level, layout,
7224 raiddisks, chunk,
7225 size, data_offset, dev,
7226 freesize, 1)
7227 ? 1 : -1;
7228 }
7229 }
7230
7231 if (verbose)
7232 pr_err("failed container membership check\n");
7233
7234 close(cfd);
7235 return 0;
7236 }
7237
7238 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
7239 {
7240 struct intel_super *super = st->sb;
7241
7242 if (level && *level == UnSet)
7243 *level = LEVEL_CONTAINER;
7244
7245 if (level && layout && *layout == UnSet)
7246 *layout = imsm_level_to_layout(*level);
7247
7248 if (chunk && (*chunk == UnSet || *chunk == 0))
7249 *chunk = imsm_default_chunk(super->orom);
7250 }
7251
7252 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7253
7254 static int kill_subarray_imsm(struct supertype *st)
7255 {
7256 /* remove the subarray currently referenced by ->current_vol */
7257 __u8 i;
7258 struct intel_dev **dp;
7259 struct intel_super *super = st->sb;
7260 __u8 current_vol = super->current_vol;
7261 struct imsm_super *mpb = super->anchor;
7262
7263 if (super->current_vol < 0)
7264 return 2;
7265 super->current_vol = -1; /* invalidate subarray cursor */
7266
7267 /* block deletions that would change the uuid of active subarrays
7268 *
7269 * FIXME when immutable ids are available, but note that we'll
7270 * also need to fixup the invalidated/active subarray indexes in
7271 * mdstat
7272 */
7273 for (i = 0; i < mpb->num_raid_devs; i++) {
7274 char subarray[4];
7275
7276 if (i < current_vol)
7277 continue;
7278 sprintf(subarray, "%u", i);
7279 if (is_subarray_active(subarray, st->devnm)) {
7280 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7281 current_vol, i);
7282
7283 return 2;
7284 }
7285 }
7286
7287 if (st->update_tail) {
7288 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
7289
7290 u->type = update_kill_array;
7291 u->dev_idx = current_vol;
7292 append_metadata_update(st, u, sizeof(*u));
7293
7294 return 0;
7295 }
7296
7297 for (dp = &super->devlist; *dp;)
7298 if ((*dp)->index == current_vol) {
7299 *dp = (*dp)->next;
7300 } else {
7301 handle_missing(super, (*dp)->dev);
7302 if ((*dp)->index > current_vol)
7303 (*dp)->index--;
7304 dp = &(*dp)->next;
7305 }
7306
7307 /* no more raid devices, all active components are now spares,
7308 * but of course failed are still failed
7309 */
7310 if (--mpb->num_raid_devs == 0) {
7311 struct dl *d;
7312
7313 for (d = super->disks; d; d = d->next)
7314 if (d->index > -2)
7315 mark_spare(d);
7316 }
7317
7318 super->updates_pending++;
7319
7320 return 0;
7321 }
7322
7323 static int update_subarray_imsm(struct supertype *st, char *subarray,
7324 char *update, struct mddev_ident *ident)
7325 {
7326 /* update the subarray currently referenced by ->current_vol */
7327 struct intel_super *super = st->sb;
7328 struct imsm_super *mpb = super->anchor;
7329
7330 if (strcmp(update, "name") == 0) {
7331 char *name = ident->name;
7332 char *ep;
7333 int vol;
7334
7335 if (is_subarray_active(subarray, st->devnm)) {
7336 pr_err("Unable to update name of active subarray\n");
7337 return 2;
7338 }
7339
7340 if (!check_name(super, name, 0))
7341 return 2;
7342
7343 vol = strtoul(subarray, &ep, 10);
7344 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7345 return 2;
7346
7347 if (st->update_tail) {
7348 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
7349
7350 u->type = update_rename_array;
7351 u->dev_idx = vol;
7352 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7353 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
7354 append_metadata_update(st, u, sizeof(*u));
7355 } else {
7356 struct imsm_dev *dev;
7357 int i;
7358
7359 dev = get_imsm_dev(super, vol);
7360 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
7361 dev->volume[MAX_RAID_SERIAL_LEN-1] = '\0';
7362 for (i = 0; i < mpb->num_raid_devs; i++) {
7363 dev = get_imsm_dev(super, i);
7364 handle_missing(super, dev);
7365 }
7366 super->updates_pending++;
7367 }
7368 } else if (strcmp(update, "ppl") == 0 ||
7369 strcmp(update, "no-ppl") == 0) {
7370 int new_policy;
7371 char *ep;
7372 int vol = strtoul(subarray, &ep, 10);
7373
7374 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7375 return 2;
7376
7377 if (strcmp(update, "ppl") == 0)
7378 new_policy = RWH_DISTRIBUTED;
7379 else
7380 new_policy = RWH_OFF;
7381
7382 if (st->update_tail) {
7383 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
7384
7385 u->type = update_rwh_policy;
7386 u->dev_idx = vol;
7387 u->new_policy = new_policy;
7388 append_metadata_update(st, u, sizeof(*u));
7389 } else {
7390 struct imsm_dev *dev;
7391
7392 dev = get_imsm_dev(super, vol);
7393 dev->rwh_policy = new_policy;
7394 super->updates_pending++;
7395 }
7396 } else
7397 return 2;
7398
7399 return 0;
7400 }
7401
7402 static int is_gen_migration(struct imsm_dev *dev)
7403 {
7404 if (dev == NULL)
7405 return 0;
7406
7407 if (!dev->vol.migr_state)
7408 return 0;
7409
7410 if (migr_type(dev) == MIGR_GEN_MIGR)
7411 return 1;
7412
7413 return 0;
7414 }
7415
7416 static int is_rebuilding(struct imsm_dev *dev)
7417 {
7418 struct imsm_map *migr_map;
7419
7420 if (!dev->vol.migr_state)
7421 return 0;
7422
7423 if (migr_type(dev) != MIGR_REBUILD)
7424 return 0;
7425
7426 migr_map = get_imsm_map(dev, MAP_1);
7427
7428 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
7429 return 1;
7430 else
7431 return 0;
7432 }
7433
7434 static int is_initializing(struct imsm_dev *dev)
7435 {
7436 struct imsm_map *migr_map;
7437
7438 if (!dev->vol.migr_state)
7439 return 0;
7440
7441 if (migr_type(dev) != MIGR_INIT)
7442 return 0;
7443
7444 migr_map = get_imsm_map(dev, MAP_1);
7445
7446 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
7447 return 1;
7448
7449 return 0;
7450 }
7451
7452 static void update_recovery_start(struct intel_super *super,
7453 struct imsm_dev *dev,
7454 struct mdinfo *array)
7455 {
7456 struct mdinfo *rebuild = NULL;
7457 struct mdinfo *d;
7458 __u32 units;
7459
7460 if (!is_rebuilding(dev))
7461 return;
7462
7463 /* Find the rebuild target, but punt on the dual rebuild case */
7464 for (d = array->devs; d; d = d->next)
7465 if (d->recovery_start == 0) {
7466 if (rebuild)
7467 return;
7468 rebuild = d;
7469 }
7470
7471 if (!rebuild) {
7472 /* (?) none of the disks are marked with
7473 * IMSM_ORD_REBUILD, so assume they are missing and the
7474 * disk_ord_tbl was not correctly updated
7475 */
7476 dprintf("failed to locate out-of-sync disk\n");
7477 return;
7478 }
7479
7480 units = __le32_to_cpu(dev->vol.curr_migr_unit);
7481 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
7482 }
7483
7484 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
7485
7486 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
7487 {
7488 /* Given a container loaded by load_super_imsm_all,
7489 * extract information about all the arrays into
7490 * an mdinfo tree.
7491 * If 'subarray' is given, just extract info about that array.
7492 *
7493 * For each imsm_dev create an mdinfo, fill it in,
7494 * then look for matching devices in super->disks
7495 * and create appropriate device mdinfo.
7496 */
7497 struct intel_super *super = st->sb;
7498 struct imsm_super *mpb = super->anchor;
7499 struct mdinfo *rest = NULL;
7500 unsigned int i;
7501 int sb_errors = 0;
7502 struct dl *d;
7503 int spare_disks = 0;
7504
7505 /* do not assemble arrays when not all attributes are supported */
7506 if (imsm_check_attributes(mpb->attributes) == 0) {
7507 sb_errors = 1;
7508 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
7509 }
7510
7511 /* count spare devices, not used in maps
7512 */
7513 for (d = super->disks; d; d = d->next)
7514 if (d->index == -1)
7515 spare_disks++;
7516
7517 for (i = 0; i < mpb->num_raid_devs; i++) {
7518 struct imsm_dev *dev;
7519 struct imsm_map *map;
7520 struct imsm_map *map2;
7521 struct mdinfo *this;
7522 int slot;
7523 int chunk;
7524 char *ep;
7525
7526 if (subarray &&
7527 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
7528 continue;
7529
7530 dev = get_imsm_dev(super, i);
7531 map = get_imsm_map(dev, MAP_0);
7532 map2 = get_imsm_map(dev, MAP_1);
7533
7534 /* do not publish arrays that are in the middle of an
7535 * unsupported migration
7536 */
7537 if (dev->vol.migr_state &&
7538 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7539 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
7540 dev->volume);
7541 continue;
7542 }
7543 /* do not publish arrays that are not support by controller's
7544 * OROM/EFI
7545 */
7546
7547 this = xmalloc(sizeof(*this));
7548
7549 super->current_vol = i;
7550 getinfo_super_imsm_volume(st, this, NULL);
7551 this->next = rest;
7552 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
7553 /* mdadm does not support all metadata features- set the bit in all arrays state */
7554 if (!validate_geometry_imsm_orom(super,
7555 get_imsm_raid_level(map), /* RAID level */
7556 imsm_level_to_layout(get_imsm_raid_level(map)),
7557 map->num_members, /* raid disks */
7558 &chunk, join_u32(dev->size_low, dev->size_high),
7559 1 /* verbose */)) {
7560 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
7561 dev->volume);
7562 this->array.state |=
7563 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7564 (1<<MD_SB_BLOCK_VOLUME);
7565 }
7566
7567 /* if array has bad blocks, set suitable bit in all arrays state */
7568 if (sb_errors)
7569 this->array.state |=
7570 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7571 (1<<MD_SB_BLOCK_VOLUME);
7572
7573 for (slot = 0 ; slot < map->num_members; slot++) {
7574 unsigned long long recovery_start;
7575 struct mdinfo *info_d;
7576 struct dl *d;
7577 int idx;
7578 int skip;
7579 __u32 ord;
7580
7581 skip = 0;
7582 idx = get_imsm_disk_idx(dev, slot, MAP_0);
7583 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
7584 for (d = super->disks; d ; d = d->next)
7585 if (d->index == idx)
7586 break;
7587
7588 recovery_start = MaxSector;
7589 if (d == NULL)
7590 skip = 1;
7591 if (d && is_failed(&d->disk))
7592 skip = 1;
7593 if (ord & IMSM_ORD_REBUILD)
7594 recovery_start = 0;
7595
7596 /*
7597 * if we skip some disks the array will be assmebled degraded;
7598 * reset resync start to avoid a dirty-degraded
7599 * situation when performing the intial sync
7600 *
7601 * FIXME handle dirty degraded
7602 */
7603 if ((skip || recovery_start == 0) &&
7604 !(dev->vol.dirty & RAIDVOL_DIRTY))
7605 this->resync_start = MaxSector;
7606 if (skip)
7607 continue;
7608
7609 info_d = xcalloc(1, sizeof(*info_d));
7610 info_d->next = this->devs;
7611 this->devs = info_d;
7612
7613 info_d->disk.number = d->index;
7614 info_d->disk.major = d->major;
7615 info_d->disk.minor = d->minor;
7616 info_d->disk.raid_disk = slot;
7617 info_d->recovery_start = recovery_start;
7618 if (map2) {
7619 if (slot < map2->num_members)
7620 info_d->disk.state = (1 << MD_DISK_ACTIVE);
7621 else
7622 this->array.spare_disks++;
7623 } else {
7624 if (slot < map->num_members)
7625 info_d->disk.state = (1 << MD_DISK_ACTIVE);
7626 else
7627 this->array.spare_disks++;
7628 }
7629 if (info_d->recovery_start == MaxSector)
7630 this->array.working_disks++;
7631
7632 info_d->events = __le32_to_cpu(mpb->generation_num);
7633 info_d->data_offset = pba_of_lba0(map);
7634
7635 if (map->raid_level == 5) {
7636 info_d->component_size =
7637 num_data_stripes(map) *
7638 map->blocks_per_strip;
7639 info_d->ppl_sector = this->ppl_sector;
7640 info_d->ppl_size = this->ppl_size;
7641 } else {
7642 info_d->component_size = blocks_per_member(map);
7643 }
7644 info_d->consistency_policy = this->consistency_policy;
7645
7646 info_d->bb.supported = 1;
7647 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
7648 info_d->data_offset,
7649 info_d->component_size,
7650 &info_d->bb);
7651 }
7652 /* now that the disk list is up-to-date fixup recovery_start */
7653 update_recovery_start(super, dev, this);
7654 this->array.spare_disks += spare_disks;
7655
7656 /* check for reshape */
7657 if (this->reshape_active == 1)
7658 recover_backup_imsm(st, this);
7659 rest = this;
7660 }
7661
7662 return rest;
7663 }
7664
7665 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
7666 int failed, int look_in_map)
7667 {
7668 struct imsm_map *map;
7669
7670 map = get_imsm_map(dev, look_in_map);
7671
7672 if (!failed)
7673 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
7674 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
7675
7676 switch (get_imsm_raid_level(map)) {
7677 case 0:
7678 return IMSM_T_STATE_FAILED;
7679 break;
7680 case 1:
7681 if (failed < map->num_members)
7682 return IMSM_T_STATE_DEGRADED;
7683 else
7684 return IMSM_T_STATE_FAILED;
7685 break;
7686 case 10:
7687 {
7688 /**
7689 * check to see if any mirrors have failed, otherwise we
7690 * are degraded. Even numbered slots are mirrored on
7691 * slot+1
7692 */
7693 int i;
7694 /* gcc -Os complains that this is unused */
7695 int insync = insync;
7696
7697 for (i = 0; i < map->num_members; i++) {
7698 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
7699 int idx = ord_to_idx(ord);
7700 struct imsm_disk *disk;
7701
7702 /* reset the potential in-sync count on even-numbered
7703 * slots. num_copies is always 2 for imsm raid10
7704 */
7705 if ((i & 1) == 0)
7706 insync = 2;
7707
7708 disk = get_imsm_disk(super, idx);
7709 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
7710 insync--;
7711
7712 /* no in-sync disks left in this mirror the
7713 * array has failed
7714 */
7715 if (insync == 0)
7716 return IMSM_T_STATE_FAILED;
7717 }
7718
7719 return IMSM_T_STATE_DEGRADED;
7720 }
7721 case 5:
7722 if (failed < 2)
7723 return IMSM_T_STATE_DEGRADED;
7724 else
7725 return IMSM_T_STATE_FAILED;
7726 break;
7727 default:
7728 break;
7729 }
7730
7731 return map->map_state;
7732 }
7733
7734 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
7735 int look_in_map)
7736 {
7737 int i;
7738 int failed = 0;
7739 struct imsm_disk *disk;
7740 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7741 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
7742 struct imsm_map *map_for_loop;
7743 __u32 ord;
7744 int idx;
7745 int idx_1;
7746
7747 /* at the beginning of migration we set IMSM_ORD_REBUILD on
7748 * disks that are being rebuilt. New failures are recorded to
7749 * map[0]. So we look through all the disks we started with and
7750 * see if any failures are still present, or if any new ones
7751 * have arrived
7752 */
7753 map_for_loop = map;
7754 if (prev && (map->num_members < prev->num_members))
7755 map_for_loop = prev;
7756
7757 for (i = 0; i < map_for_loop->num_members; i++) {
7758 idx_1 = -255;
7759 /* when MAP_X is passed both maps failures are counted
7760 */
7761 if (prev &&
7762 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
7763 i < prev->num_members) {
7764 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
7765 idx_1 = ord_to_idx(ord);
7766
7767 disk = get_imsm_disk(super, idx_1);
7768 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
7769 failed++;
7770 }
7771 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
7772 i < map->num_members) {
7773 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
7774 idx = ord_to_idx(ord);
7775
7776 if (idx != idx_1) {
7777 disk = get_imsm_disk(super, idx);
7778 if (!disk || is_failed(disk) ||
7779 ord & IMSM_ORD_REBUILD)
7780 failed++;
7781 }
7782 }
7783 }
7784
7785 return failed;
7786 }
7787
7788 static int imsm_open_new(struct supertype *c, struct active_array *a,
7789 char *inst)
7790 {
7791 struct intel_super *super = c->sb;
7792 struct imsm_super *mpb = super->anchor;
7793 struct imsm_update_prealloc_bb_mem u;
7794
7795 if (atoi(inst) >= mpb->num_raid_devs) {
7796 pr_err("subarry index %d, out of range\n", atoi(inst));
7797 return -ENODEV;
7798 }
7799
7800 dprintf("imsm: open_new %s\n", inst);
7801 a->info.container_member = atoi(inst);
7802
7803 u.type = update_prealloc_badblocks_mem;
7804 imsm_update_metadata_locally(c, &u, sizeof(u));
7805
7806 return 0;
7807 }
7808
7809 static int is_resyncing(struct imsm_dev *dev)
7810 {
7811 struct imsm_map *migr_map;
7812
7813 if (!dev->vol.migr_state)
7814 return 0;
7815
7816 if (migr_type(dev) == MIGR_INIT ||
7817 migr_type(dev) == MIGR_REPAIR)
7818 return 1;
7819
7820 if (migr_type(dev) == MIGR_GEN_MIGR)
7821 return 0;
7822
7823 migr_map = get_imsm_map(dev, MAP_1);
7824
7825 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
7826 dev->vol.migr_type != MIGR_GEN_MIGR)
7827 return 1;
7828 else
7829 return 0;
7830 }
7831
7832 /* return true if we recorded new information */
7833 static int mark_failure(struct intel_super *super,
7834 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7835 {
7836 __u32 ord;
7837 int slot;
7838 struct imsm_map *map;
7839 char buf[MAX_RAID_SERIAL_LEN+3];
7840 unsigned int len, shift = 0;
7841
7842 /* new failures are always set in map[0] */
7843 map = get_imsm_map(dev, MAP_0);
7844
7845 slot = get_imsm_disk_slot(map, idx);
7846 if (slot < 0)
7847 return 0;
7848
7849 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
7850 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
7851 return 0;
7852
7853 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
7854 buf[MAX_RAID_SERIAL_LEN] = '\000';
7855 strcat(buf, ":0");
7856 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
7857 shift = len - MAX_RAID_SERIAL_LEN + 1;
7858 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
7859
7860 disk->status |= FAILED_DISK;
7861 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
7862 /* mark failures in second map if second map exists and this disk
7863 * in this slot.
7864 * This is valid for migration, initialization and rebuild
7865 */
7866 if (dev->vol.migr_state) {
7867 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
7868 int slot2 = get_imsm_disk_slot(map2, idx);
7869
7870 if (slot2 < map2->num_members && slot2 >= 0)
7871 set_imsm_ord_tbl_ent(map2, slot2,
7872 idx | IMSM_ORD_REBUILD);
7873 }
7874 if (map->failed_disk_num == 0xff)
7875 map->failed_disk_num = slot;
7876
7877 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
7878
7879 return 1;
7880 }
7881
7882 static void mark_missing(struct intel_super *super,
7883 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7884 {
7885 mark_failure(super, dev, disk, idx);
7886
7887 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
7888 return;
7889
7890 disk->scsi_id = __cpu_to_le32(~(__u32)0);
7891 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
7892 }
7893
7894 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
7895 {
7896 struct dl *dl;
7897
7898 if (!super->missing)
7899 return;
7900
7901 /* When orom adds replacement for missing disk it does
7902 * not remove entry of missing disk, but just updates map with
7903 * new added disk. So it is not enough just to test if there is
7904 * any missing disk, we have to look if there are any failed disks
7905 * in map to stop migration */
7906
7907 dprintf("imsm: mark missing\n");
7908 /* end process for initialization and rebuild only
7909 */
7910 if (is_gen_migration(dev) == 0) {
7911 __u8 map_state;
7912 int failed;
7913
7914 failed = imsm_count_failed(super, dev, MAP_0);
7915 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7916
7917 if (failed)
7918 end_migration(dev, super, map_state);
7919 }
7920 for (dl = super->missing; dl; dl = dl->next)
7921 mark_missing(super, dev, &dl->disk, dl->index);
7922 super->updates_pending++;
7923 }
7924
7925 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
7926 long long new_size)
7927 {
7928 int used_disks = imsm_num_data_members(dev, MAP_0);
7929 unsigned long long array_blocks;
7930 struct imsm_map *map;
7931
7932 if (used_disks == 0) {
7933 /* when problems occures
7934 * return current array_blocks value
7935 */
7936 array_blocks = __le32_to_cpu(dev->size_high);
7937 array_blocks = array_blocks << 32;
7938 array_blocks += __le32_to_cpu(dev->size_low);
7939
7940 return array_blocks;
7941 }
7942
7943 /* set array size in metadata
7944 */
7945 if (new_size <= 0) {
7946 /* OLCE size change is caused by added disks
7947 */
7948 map = get_imsm_map(dev, MAP_0);
7949 array_blocks = blocks_per_member(map) * used_disks;
7950 } else {
7951 /* Online Volume Size Change
7952 * Using available free space
7953 */
7954 array_blocks = new_size;
7955 }
7956
7957 array_blocks = round_size_to_mb(array_blocks, used_disks);
7958 dev->size_low = __cpu_to_le32((__u32)array_blocks);
7959 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7960
7961 return array_blocks;
7962 }
7963
7964 static void imsm_set_disk(struct active_array *a, int n, int state);
7965
7966 static void imsm_progress_container_reshape(struct intel_super *super)
7967 {
7968 /* if no device has a migr_state, but some device has a
7969 * different number of members than the previous device, start
7970 * changing the number of devices in this device to match
7971 * previous.
7972 */
7973 struct imsm_super *mpb = super->anchor;
7974 int prev_disks = -1;
7975 int i;
7976 int copy_map_size;
7977
7978 for (i = 0; i < mpb->num_raid_devs; i++) {
7979 struct imsm_dev *dev = get_imsm_dev(super, i);
7980 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7981 struct imsm_map *map2;
7982 int prev_num_members;
7983
7984 if (dev->vol.migr_state)
7985 return;
7986
7987 if (prev_disks == -1)
7988 prev_disks = map->num_members;
7989 if (prev_disks == map->num_members)
7990 continue;
7991
7992 /* OK, this array needs to enter reshape mode.
7993 * i.e it needs a migr_state
7994 */
7995
7996 copy_map_size = sizeof_imsm_map(map);
7997 prev_num_members = map->num_members;
7998 map->num_members = prev_disks;
7999 dev->vol.migr_state = 1;
8000 dev->vol.curr_migr_unit = 0;
8001 set_migr_type(dev, MIGR_GEN_MIGR);
8002 for (i = prev_num_members;
8003 i < map->num_members; i++)
8004 set_imsm_ord_tbl_ent(map, i, i);
8005 map2 = get_imsm_map(dev, MAP_1);
8006 /* Copy the current map */
8007 memcpy(map2, map, copy_map_size);
8008 map2->num_members = prev_num_members;
8009
8010 imsm_set_array_size(dev, -1);
8011 super->clean_migration_record_by_mdmon = 1;
8012 super->updates_pending++;
8013 }
8014 }
8015
8016 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
8017 * states are handled in imsm_set_disk() with one exception, when a
8018 * resync is stopped due to a new failure this routine will set the
8019 * 'degraded' state for the array.
8020 */
8021 static int imsm_set_array_state(struct active_array *a, int consistent)
8022 {
8023 int inst = a->info.container_member;
8024 struct intel_super *super = a->container->sb;
8025 struct imsm_dev *dev = get_imsm_dev(super, inst);
8026 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8027 int failed = imsm_count_failed(super, dev, MAP_0);
8028 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
8029 __u32 blocks_per_unit;
8030
8031 if (dev->vol.migr_state &&
8032 dev->vol.migr_type == MIGR_GEN_MIGR) {
8033 /* array state change is blocked due to reshape action
8034 * We might need to
8035 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8036 * - finish the reshape (if last_checkpoint is big and action != reshape)
8037 * - update curr_migr_unit
8038 */
8039 if (a->curr_action == reshape) {
8040 /* still reshaping, maybe update curr_migr_unit */
8041 goto mark_checkpoint;
8042 } else {
8043 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
8044 /* for some reason we aborted the reshape.
8045 *
8046 * disable automatic metadata rollback
8047 * user action is required to recover process
8048 */
8049 if (0) {
8050 struct imsm_map *map2 =
8051 get_imsm_map(dev, MAP_1);
8052 dev->vol.migr_state = 0;
8053 set_migr_type(dev, 0);
8054 dev->vol.curr_migr_unit = 0;
8055 memcpy(map, map2,
8056 sizeof_imsm_map(map2));
8057 super->updates_pending++;
8058 }
8059 }
8060 if (a->last_checkpoint >= a->info.component_size) {
8061 unsigned long long array_blocks;
8062 int used_disks;
8063 struct mdinfo *mdi;
8064
8065 used_disks = imsm_num_data_members(dev, MAP_0);
8066 if (used_disks > 0) {
8067 array_blocks =
8068 blocks_per_member(map) *
8069 used_disks;
8070 array_blocks =
8071 round_size_to_mb(array_blocks,
8072 used_disks);
8073 a->info.custom_array_size = array_blocks;
8074 /* encourage manager to update array
8075 * size
8076 */
8077
8078 a->check_reshape = 1;
8079 }
8080 /* finalize online capacity expansion/reshape */
8081 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8082 imsm_set_disk(a,
8083 mdi->disk.raid_disk,
8084 mdi->curr_state);
8085
8086 imsm_progress_container_reshape(super);
8087 }
8088 }
8089 }
8090
8091 /* before we activate this array handle any missing disks */
8092 if (consistent == 2)
8093 handle_missing(super, dev);
8094
8095 if (consistent == 2 &&
8096 (!is_resync_complete(&a->info) ||
8097 map_state != IMSM_T_STATE_NORMAL ||
8098 dev->vol.migr_state))
8099 consistent = 0;
8100
8101 if (is_resync_complete(&a->info)) {
8102 /* complete intialization / resync,
8103 * recovery and interrupted recovery is completed in
8104 * ->set_disk
8105 */
8106 if (is_resyncing(dev)) {
8107 dprintf("imsm: mark resync done\n");
8108 end_migration(dev, super, map_state);
8109 super->updates_pending++;
8110 a->last_checkpoint = 0;
8111 }
8112 } else if ((!is_resyncing(dev) && !failed) &&
8113 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
8114 /* mark the start of the init process if nothing is failed */
8115 dprintf("imsm: mark resync start\n");
8116 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8117 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
8118 else
8119 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
8120 super->updates_pending++;
8121 }
8122
8123 mark_checkpoint:
8124 /* skip checkpointing for general migration,
8125 * it is controlled in mdadm
8126 */
8127 if (is_gen_migration(dev))
8128 goto skip_mark_checkpoint;
8129
8130 /* check if we can update curr_migr_unit from resync_start, recovery_start */
8131 blocks_per_unit = blocks_per_migr_unit(super, dev);
8132 if (blocks_per_unit) {
8133 __u32 units32;
8134 __u64 units;
8135
8136 units = a->last_checkpoint / blocks_per_unit;
8137 units32 = units;
8138
8139 /* check that we did not overflow 32-bits, and that
8140 * curr_migr_unit needs updating
8141 */
8142 if (units32 == units &&
8143 units32 != 0 &&
8144 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
8145 dprintf("imsm: mark checkpoint (%u)\n", units32);
8146 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
8147 super->updates_pending++;
8148 }
8149 }
8150
8151 skip_mark_checkpoint:
8152 /* mark dirty / clean */
8153 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8154 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
8155 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
8156 if (consistent) {
8157 dev->vol.dirty = RAIDVOL_CLEAN;
8158 } else {
8159 dev->vol.dirty = RAIDVOL_DIRTY;
8160 if (dev->rwh_policy == RWH_DISTRIBUTED)
8161 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8162 }
8163 super->updates_pending++;
8164 }
8165
8166 return consistent;
8167 }
8168
8169 static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8170 {
8171 int inst = a->info.container_member;
8172 struct intel_super *super = a->container->sb;
8173 struct imsm_dev *dev = get_imsm_dev(super, inst);
8174 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8175
8176 if (slot > map->num_members) {
8177 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8178 slot, map->num_members - 1);
8179 return -1;
8180 }
8181
8182 if (slot < 0)
8183 return -1;
8184
8185 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8186 }
8187
8188 static void imsm_set_disk(struct active_array *a, int n, int state)
8189 {
8190 int inst = a->info.container_member;
8191 struct intel_super *super = a->container->sb;
8192 struct imsm_dev *dev = get_imsm_dev(super, inst);
8193 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8194 struct imsm_disk *disk;
8195 struct mdinfo *mdi;
8196 int recovery_not_finished = 0;
8197 int failed;
8198 int ord;
8199 __u8 map_state;
8200
8201 ord = imsm_disk_slot_to_ord(a, n);
8202 if (ord < 0)
8203 return;
8204
8205 dprintf("imsm: set_disk %d:%x\n", n, state);
8206 disk = get_imsm_disk(super, ord_to_idx(ord));
8207
8208 /* check for new failures */
8209 if (state & DS_FAULTY) {
8210 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
8211 super->updates_pending++;
8212 }
8213
8214 /* check if in_sync */
8215 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
8216 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
8217
8218 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
8219 super->updates_pending++;
8220 }
8221
8222 failed = imsm_count_failed(super, dev, MAP_0);
8223 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
8224
8225 /* check if recovery complete, newly degraded, or failed */
8226 dprintf("imsm: Detected transition to state ");
8227 switch (map_state) {
8228 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8229 dprintf("normal: ");
8230 if (is_rebuilding(dev)) {
8231 dprintf_cont("while rebuilding");
8232 /* check if recovery is really finished */
8233 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8234 if (mdi->recovery_start != MaxSector) {
8235 recovery_not_finished = 1;
8236 break;
8237 }
8238 if (recovery_not_finished) {
8239 dprintf_cont("\n");
8240 dprintf("Rebuild has not finished yet, state not changed");
8241 if (a->last_checkpoint < mdi->recovery_start) {
8242 a->last_checkpoint = mdi->recovery_start;
8243 super->updates_pending++;
8244 }
8245 break;
8246 }
8247 end_migration(dev, super, map_state);
8248 map = get_imsm_map(dev, MAP_0);
8249 map->failed_disk_num = ~0;
8250 super->updates_pending++;
8251 a->last_checkpoint = 0;
8252 break;
8253 }
8254 if (is_gen_migration(dev)) {
8255 dprintf_cont("while general migration");
8256 if (a->last_checkpoint >= a->info.component_size)
8257 end_migration(dev, super, map_state);
8258 else
8259 map->map_state = map_state;
8260 map = get_imsm_map(dev, MAP_0);
8261 map->failed_disk_num = ~0;
8262 super->updates_pending++;
8263 break;
8264 }
8265 break;
8266 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
8267 dprintf_cont("degraded: ");
8268 if (map->map_state != map_state && !dev->vol.migr_state) {
8269 dprintf_cont("mark degraded");
8270 map->map_state = map_state;
8271 super->updates_pending++;
8272 a->last_checkpoint = 0;
8273 break;
8274 }
8275 if (is_rebuilding(dev)) {
8276 dprintf_cont("while rebuilding.");
8277 if (map->map_state != map_state) {
8278 dprintf_cont(" Map state change");
8279 end_migration(dev, super, map_state);
8280 super->updates_pending++;
8281 }
8282 break;
8283 }
8284 if (is_gen_migration(dev)) {
8285 dprintf_cont("while general migration");
8286 if (a->last_checkpoint >= a->info.component_size)
8287 end_migration(dev, super, map_state);
8288 else {
8289 map->map_state = map_state;
8290 manage_second_map(super, dev);
8291 }
8292 super->updates_pending++;
8293 break;
8294 }
8295 if (is_initializing(dev)) {
8296 dprintf_cont("while initialization.");
8297 map->map_state = map_state;
8298 super->updates_pending++;
8299 break;
8300 }
8301 break;
8302 case IMSM_T_STATE_FAILED: /* transition to failed state */
8303 dprintf_cont("failed: ");
8304 if (is_gen_migration(dev)) {
8305 dprintf_cont("while general migration");
8306 map->map_state = map_state;
8307 super->updates_pending++;
8308 break;
8309 }
8310 if (map->map_state != map_state) {
8311 dprintf_cont("mark failed");
8312 end_migration(dev, super, map_state);
8313 super->updates_pending++;
8314 a->last_checkpoint = 0;
8315 break;
8316 }
8317 break;
8318 default:
8319 dprintf_cont("state %i\n", map_state);
8320 }
8321 dprintf_cont("\n");
8322 }
8323
8324 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
8325 {
8326 void *buf = mpb;
8327 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8328 unsigned long long dsize;
8329 unsigned long long sectors;
8330 unsigned int sector_size;
8331
8332 get_dev_sector_size(fd, NULL, &sector_size);
8333 get_dev_size(fd, NULL, &dsize);
8334
8335 if (mpb_size > sector_size) {
8336 /* -1 to account for anchor */
8337 sectors = mpb_sectors(mpb, sector_size) - 1;
8338
8339 /* write the extended mpb to the sectors preceeding the anchor */
8340 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8341 SEEK_SET) < 0)
8342 return 1;
8343
8344 if ((unsigned long long)write(fd, buf + sector_size,
8345 sector_size * sectors) != sector_size * sectors)
8346 return 1;
8347 }
8348
8349 /* first block is stored on second to last sector of the disk */
8350 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
8351 return 1;
8352
8353 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
8354 return 1;
8355
8356 return 0;
8357 }
8358
8359 static void imsm_sync_metadata(struct supertype *container)
8360 {
8361 struct intel_super *super = container->sb;
8362
8363 dprintf("sync metadata: %d\n", super->updates_pending);
8364 if (!super->updates_pending)
8365 return;
8366
8367 write_super_imsm(container, 0);
8368
8369 super->updates_pending = 0;
8370 }
8371
8372 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
8373 {
8374 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
8375 int i = get_imsm_disk_idx(dev, idx, MAP_X);
8376 struct dl *dl;
8377
8378 for (dl = super->disks; dl; dl = dl->next)
8379 if (dl->index == i)
8380 break;
8381
8382 if (dl && is_failed(&dl->disk))
8383 dl = NULL;
8384
8385 if (dl)
8386 dprintf("found %x:%x\n", dl->major, dl->minor);
8387
8388 return dl;
8389 }
8390
8391 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8392 struct active_array *a, int activate_new,
8393 struct mdinfo *additional_test_list)
8394 {
8395 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
8396 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
8397 struct imsm_super *mpb = super->anchor;
8398 struct imsm_map *map;
8399 unsigned long long pos;
8400 struct mdinfo *d;
8401 struct extent *ex;
8402 int i, j;
8403 int found;
8404 __u32 array_start = 0;
8405 __u32 array_end = 0;
8406 struct dl *dl;
8407 struct mdinfo *test_list;
8408
8409 for (dl = super->disks; dl; dl = dl->next) {
8410 /* If in this array, skip */
8411 for (d = a->info.devs ; d ; d = d->next)
8412 if (d->state_fd >= 0 &&
8413 d->disk.major == dl->major &&
8414 d->disk.minor == dl->minor) {
8415 dprintf("%x:%x already in array\n",
8416 dl->major, dl->minor);
8417 break;
8418 }
8419 if (d)
8420 continue;
8421 test_list = additional_test_list;
8422 while (test_list) {
8423 if (test_list->disk.major == dl->major &&
8424 test_list->disk.minor == dl->minor) {
8425 dprintf("%x:%x already in additional test list\n",
8426 dl->major, dl->minor);
8427 break;
8428 }
8429 test_list = test_list->next;
8430 }
8431 if (test_list)
8432 continue;
8433
8434 /* skip in use or failed drives */
8435 if (is_failed(&dl->disk) || idx == dl->index ||
8436 dl->index == -2) {
8437 dprintf("%x:%x status (failed: %d index: %d)\n",
8438 dl->major, dl->minor, is_failed(&dl->disk), idx);
8439 continue;
8440 }
8441
8442 /* skip pure spares when we are looking for partially
8443 * assimilated drives
8444 */
8445 if (dl->index == -1 && !activate_new)
8446 continue;
8447
8448 /* Does this unused device have the requisite free space?
8449 * It needs to be able to cover all member volumes
8450 */
8451 ex = get_extents(super, dl);
8452 if (!ex) {
8453 dprintf("cannot get extents\n");
8454 continue;
8455 }
8456 for (i = 0; i < mpb->num_raid_devs; i++) {
8457 dev = get_imsm_dev(super, i);
8458 map = get_imsm_map(dev, MAP_0);
8459
8460 /* check if this disk is already a member of
8461 * this array
8462 */
8463 if (get_imsm_disk_slot(map, dl->index) >= 0)
8464 continue;
8465
8466 found = 0;
8467 j = 0;
8468 pos = 0;
8469 array_start = pba_of_lba0(map);
8470 array_end = array_start +
8471 blocks_per_member(map) - 1;
8472
8473 do {
8474 /* check that we can start at pba_of_lba0 with
8475 * blocks_per_member of space
8476 */
8477 if (array_start >= pos && array_end < ex[j].start) {
8478 found = 1;
8479 break;
8480 }
8481 pos = ex[j].start + ex[j].size;
8482 j++;
8483 } while (ex[j-1].size);
8484
8485 if (!found)
8486 break;
8487 }
8488
8489 free(ex);
8490 if (i < mpb->num_raid_devs) {
8491 dprintf("%x:%x does not have %u to %u available\n",
8492 dl->major, dl->minor, array_start, array_end);
8493 /* No room */
8494 continue;
8495 }
8496 return dl;
8497 }
8498
8499 return dl;
8500 }
8501
8502 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
8503 {
8504 struct imsm_dev *dev2;
8505 struct imsm_map *map;
8506 struct dl *idisk;
8507 int slot;
8508 int idx;
8509 __u8 state;
8510
8511 dev2 = get_imsm_dev(cont->sb, dev_idx);
8512 if (dev2) {
8513 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
8514 if (state == IMSM_T_STATE_FAILED) {
8515 map = get_imsm_map(dev2, MAP_0);
8516 if (!map)
8517 return 1;
8518 for (slot = 0; slot < map->num_members; slot++) {
8519 /*
8520 * Check if failed disks are deleted from intel
8521 * disk list or are marked to be deleted
8522 */
8523 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
8524 idisk = get_imsm_dl_disk(cont->sb, idx);
8525 /*
8526 * Do not rebuild the array if failed disks
8527 * from failed sub-array are not removed from
8528 * container.
8529 */
8530 if (idisk &&
8531 is_failed(&idisk->disk) &&
8532 (idisk->action != DISK_REMOVE))
8533 return 0;
8534 }
8535 }
8536 }
8537 return 1;
8538 }
8539
8540 static struct mdinfo *imsm_activate_spare(struct active_array *a,
8541 struct metadata_update **updates)
8542 {
8543 /**
8544 * Find a device with unused free space and use it to replace a
8545 * failed/vacant region in an array. We replace failed regions one a
8546 * array at a time. The result is that a new spare disk will be added
8547 * to the first failed array and after the monitor has finished
8548 * propagating failures the remainder will be consumed.
8549 *
8550 * FIXME add a capability for mdmon to request spares from another
8551 * container.
8552 */
8553
8554 struct intel_super *super = a->container->sb;
8555 int inst = a->info.container_member;
8556 struct imsm_dev *dev = get_imsm_dev(super, inst);
8557 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8558 int failed = a->info.array.raid_disks;
8559 struct mdinfo *rv = NULL;
8560 struct mdinfo *d;
8561 struct mdinfo *di;
8562 struct metadata_update *mu;
8563 struct dl *dl;
8564 struct imsm_update_activate_spare *u;
8565 int num_spares = 0;
8566 int i;
8567 int allowed;
8568
8569 for (d = a->info.devs ; d ; d = d->next) {
8570 if ((d->curr_state & DS_FAULTY) &&
8571 d->state_fd >= 0)
8572 /* wait for Removal to happen */
8573 return NULL;
8574 if (d->state_fd >= 0)
8575 failed--;
8576 }
8577
8578 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
8579 inst, failed, a->info.array.raid_disks, a->info.array.level);
8580
8581 if (imsm_reshape_blocks_arrays_changes(super))
8582 return NULL;
8583
8584 /* Cannot activate another spare if rebuild is in progress already
8585 */
8586 if (is_rebuilding(dev)) {
8587 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
8588 return NULL;
8589 }
8590
8591 if (a->info.array.level == 4)
8592 /* No repair for takeovered array
8593 * imsm doesn't support raid4
8594 */
8595 return NULL;
8596
8597 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
8598 IMSM_T_STATE_DEGRADED)
8599 return NULL;
8600
8601 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
8602 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
8603 return NULL;
8604 }
8605
8606 /*
8607 * If there are any failed disks check state of the other volume.
8608 * Block rebuild if the another one is failed until failed disks
8609 * are removed from container.
8610 */
8611 if (failed) {
8612 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
8613 MAX_RAID_SERIAL_LEN, dev->volume);
8614 /* check if states of the other volumes allow for rebuild */
8615 for (i = 0; i < super->anchor->num_raid_devs; i++) {
8616 if (i != inst) {
8617 allowed = imsm_rebuild_allowed(a->container,
8618 i, failed);
8619 if (!allowed)
8620 return NULL;
8621 }
8622 }
8623 }
8624
8625 /* For each slot, if it is not working, find a spare */
8626 for (i = 0; i < a->info.array.raid_disks; i++) {
8627 for (d = a->info.devs ; d ; d = d->next)
8628 if (d->disk.raid_disk == i)
8629 break;
8630 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
8631 if (d && (d->state_fd >= 0))
8632 continue;
8633
8634 /*
8635 * OK, this device needs recovery. Try to re-add the
8636 * previous occupant of this slot, if this fails see if
8637 * we can continue the assimilation of a spare that was
8638 * partially assimilated, finally try to activate a new
8639 * spare.
8640 */
8641 dl = imsm_readd(super, i, a);
8642 if (!dl)
8643 dl = imsm_add_spare(super, i, a, 0, rv);
8644 if (!dl)
8645 dl = imsm_add_spare(super, i, a, 1, rv);
8646 if (!dl)
8647 continue;
8648
8649 /* found a usable disk with enough space */
8650 di = xcalloc(1, sizeof(*di));
8651
8652 /* dl->index will be -1 in the case we are activating a
8653 * pristine spare. imsm_process_update() will create a
8654 * new index in this case. Once a disk is found to be
8655 * failed in all member arrays it is kicked from the
8656 * metadata
8657 */
8658 di->disk.number = dl->index;
8659
8660 /* (ab)use di->devs to store a pointer to the device
8661 * we chose
8662 */
8663 di->devs = (struct mdinfo *) dl;
8664
8665 di->disk.raid_disk = i;
8666 di->disk.major = dl->major;
8667 di->disk.minor = dl->minor;
8668 di->disk.state = 0;
8669 di->recovery_start = 0;
8670 di->data_offset = pba_of_lba0(map);
8671 di->component_size = a->info.component_size;
8672 di->container_member = inst;
8673 di->bb.supported = 1;
8674 if (dev->rwh_policy == RWH_DISTRIBUTED) {
8675 di->consistency_policy = CONSISTENCY_POLICY_PPL;
8676 di->ppl_sector = get_ppl_sector(super, inst);
8677 di->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE) >> 9;
8678 }
8679 super->random = random32();
8680 di->next = rv;
8681 rv = di;
8682 num_spares++;
8683 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
8684 i, di->data_offset);
8685 }
8686
8687 if (!rv)
8688 /* No spares found */
8689 return rv;
8690 /* Now 'rv' has a list of devices to return.
8691 * Create a metadata_update record to update the
8692 * disk_ord_tbl for the array
8693 */
8694 mu = xmalloc(sizeof(*mu));
8695 mu->buf = xcalloc(num_spares,
8696 sizeof(struct imsm_update_activate_spare));
8697 mu->space = NULL;
8698 mu->space_list = NULL;
8699 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
8700 mu->next = *updates;
8701 u = (struct imsm_update_activate_spare *) mu->buf;
8702
8703 for (di = rv ; di ; di = di->next) {
8704 u->type = update_activate_spare;
8705 u->dl = (struct dl *) di->devs;
8706 di->devs = NULL;
8707 u->slot = di->disk.raid_disk;
8708 u->array = inst;
8709 u->next = u + 1;
8710 u++;
8711 }
8712 (u-1)->next = NULL;
8713 *updates = mu;
8714
8715 return rv;
8716 }
8717
8718 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8719 {
8720 struct imsm_dev *dev = get_imsm_dev(super, idx);
8721 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8722 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
8723 struct disk_info *inf = get_disk_info(u);
8724 struct imsm_disk *disk;
8725 int i;
8726 int j;
8727
8728 for (i = 0; i < map->num_members; i++) {
8729 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
8730 for (j = 0; j < new_map->num_members; j++)
8731 if (serialcmp(disk->serial, inf[j].serial) == 0)
8732 return 1;
8733 }
8734
8735 return 0;
8736 }
8737
8738 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
8739 {
8740 struct dl *dl;
8741
8742 for (dl = super->disks; dl; dl = dl->next)
8743 if (dl->major == major && dl->minor == minor)
8744 return dl;
8745 return NULL;
8746 }
8747
8748 static int remove_disk_super(struct intel_super *super, int major, int minor)
8749 {
8750 struct dl *prev;
8751 struct dl *dl;
8752
8753 prev = NULL;
8754 for (dl = super->disks; dl; dl = dl->next) {
8755 if (dl->major == major && dl->minor == minor) {
8756 /* remove */
8757 if (prev)
8758 prev->next = dl->next;
8759 else
8760 super->disks = dl->next;
8761 dl->next = NULL;
8762 __free_imsm_disk(dl);
8763 dprintf("removed %x:%x\n", major, minor);
8764 break;
8765 }
8766 prev = dl;
8767 }
8768 return 0;
8769 }
8770
8771 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
8772
8773 static int add_remove_disk_update(struct intel_super *super)
8774 {
8775 int check_degraded = 0;
8776 struct dl *disk;
8777
8778 /* add/remove some spares to/from the metadata/contrainer */
8779 while (super->disk_mgmt_list) {
8780 struct dl *disk_cfg;
8781
8782 disk_cfg = super->disk_mgmt_list;
8783 super->disk_mgmt_list = disk_cfg->next;
8784 disk_cfg->next = NULL;
8785
8786 if (disk_cfg->action == DISK_ADD) {
8787 disk_cfg->next = super->disks;
8788 super->disks = disk_cfg;
8789 check_degraded = 1;
8790 dprintf("added %x:%x\n",
8791 disk_cfg->major, disk_cfg->minor);
8792 } else if (disk_cfg->action == DISK_REMOVE) {
8793 dprintf("Disk remove action processed: %x.%x\n",
8794 disk_cfg->major, disk_cfg->minor);
8795 disk = get_disk_super(super,
8796 disk_cfg->major,
8797 disk_cfg->minor);
8798 if (disk) {
8799 /* store action status */
8800 disk->action = DISK_REMOVE;
8801 /* remove spare disks only */
8802 if (disk->index == -1) {
8803 remove_disk_super(super,
8804 disk_cfg->major,
8805 disk_cfg->minor);
8806 }
8807 }
8808 /* release allocate disk structure */
8809 __free_imsm_disk(disk_cfg);
8810 }
8811 }
8812 return check_degraded;
8813 }
8814
8815 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
8816 struct intel_super *super,
8817 void ***space_list)
8818 {
8819 struct intel_dev *id;
8820 void **tofree = NULL;
8821 int ret_val = 0;
8822
8823 dprintf("(enter)\n");
8824 if (u->subdev < 0 || u->subdev > 1) {
8825 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8826 return ret_val;
8827 }
8828 if (space_list == NULL || *space_list == NULL) {
8829 dprintf("imsm: Error: Memory is not allocated\n");
8830 return ret_val;
8831 }
8832
8833 for (id = super->devlist ; id; id = id->next) {
8834 if (id->index == (unsigned)u->subdev) {
8835 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8836 struct imsm_map *map;
8837 struct imsm_dev *new_dev =
8838 (struct imsm_dev *)*space_list;
8839 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
8840 int to_state;
8841 struct dl *new_disk;
8842
8843 if (new_dev == NULL)
8844 return ret_val;
8845 *space_list = **space_list;
8846 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
8847 map = get_imsm_map(new_dev, MAP_0);
8848 if (migr_map) {
8849 dprintf("imsm: Error: migration in progress");
8850 return ret_val;
8851 }
8852
8853 to_state = map->map_state;
8854 if ((u->new_level == 5) && (map->raid_level == 0)) {
8855 map->num_members++;
8856 /* this should not happen */
8857 if (u->new_disks[0] < 0) {
8858 map->failed_disk_num =
8859 map->num_members - 1;
8860 to_state = IMSM_T_STATE_DEGRADED;
8861 } else
8862 to_state = IMSM_T_STATE_NORMAL;
8863 }
8864 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
8865 if (u->new_level > -1)
8866 map->raid_level = u->new_level;
8867 migr_map = get_imsm_map(new_dev, MAP_1);
8868 if ((u->new_level == 5) &&
8869 (migr_map->raid_level == 0)) {
8870 int ord = map->num_members - 1;
8871 migr_map->num_members--;
8872 if (u->new_disks[0] < 0)
8873 ord |= IMSM_ORD_REBUILD;
8874 set_imsm_ord_tbl_ent(map,
8875 map->num_members - 1,
8876 ord);
8877 }
8878 id->dev = new_dev;
8879 tofree = (void **)dev;
8880
8881 /* update chunk size
8882 */
8883 if (u->new_chunksize > 0) {
8884 unsigned long long num_data_stripes;
8885 int used_disks =
8886 imsm_num_data_members(dev, MAP_0);
8887
8888 if (used_disks == 0)
8889 return ret_val;
8890
8891 map->blocks_per_strip =
8892 __cpu_to_le16(u->new_chunksize * 2);
8893 num_data_stripes =
8894 (join_u32(dev->size_low, dev->size_high)
8895 / used_disks);
8896 num_data_stripes /= map->blocks_per_strip;
8897 num_data_stripes /= map->num_domains;
8898 set_num_data_stripes(map, num_data_stripes);
8899 }
8900
8901 /* add disk
8902 */
8903 if (u->new_level != 5 || migr_map->raid_level != 0 ||
8904 migr_map->raid_level == map->raid_level)
8905 goto skip_disk_add;
8906
8907 if (u->new_disks[0] >= 0) {
8908 /* use passes spare
8909 */
8910 new_disk = get_disk_super(super,
8911 major(u->new_disks[0]),
8912 minor(u->new_disks[0]));
8913 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
8914 major(u->new_disks[0]),
8915 minor(u->new_disks[0]),
8916 new_disk, new_disk->index);
8917 if (new_disk == NULL)
8918 goto error_disk_add;
8919
8920 new_disk->index = map->num_members - 1;
8921 /* slot to fill in autolayout
8922 */
8923 new_disk->raiddisk = new_disk->index;
8924 new_disk->disk.status |= CONFIGURED_DISK;
8925 new_disk->disk.status &= ~SPARE_DISK;
8926 } else
8927 goto error_disk_add;
8928
8929 skip_disk_add:
8930 *tofree = *space_list;
8931 /* calculate new size
8932 */
8933 imsm_set_array_size(new_dev, -1);
8934
8935 ret_val = 1;
8936 }
8937 }
8938
8939 if (tofree)
8940 *space_list = tofree;
8941 return ret_val;
8942
8943 error_disk_add:
8944 dprintf("Error: imsm: Cannot find disk.\n");
8945 return ret_val;
8946 }
8947
8948 static int apply_size_change_update(struct imsm_update_size_change *u,
8949 struct intel_super *super)
8950 {
8951 struct intel_dev *id;
8952 int ret_val = 0;
8953
8954 dprintf("(enter)\n");
8955 if (u->subdev < 0 || u->subdev > 1) {
8956 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8957 return ret_val;
8958 }
8959
8960 for (id = super->devlist ; id; id = id->next) {
8961 if (id->index == (unsigned)u->subdev) {
8962 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8963 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8964 int used_disks = imsm_num_data_members(dev, MAP_0);
8965 unsigned long long blocks_per_member;
8966 unsigned long long num_data_stripes;
8967
8968 /* calculate new size
8969 */
8970 blocks_per_member = u->new_size / used_disks;
8971 num_data_stripes = blocks_per_member /
8972 map->blocks_per_strip;
8973 num_data_stripes /= map->num_domains;
8974 dprintf("(size: %llu, blocks per member: %llu, num_data_stipes: %llu)\n",
8975 u->new_size, blocks_per_member,
8976 num_data_stripes);
8977 set_blocks_per_member(map, blocks_per_member);
8978 set_num_data_stripes(map, num_data_stripes);
8979 imsm_set_array_size(dev, u->new_size);
8980
8981 ret_val = 1;
8982 break;
8983 }
8984 }
8985
8986 return ret_val;
8987 }
8988
8989 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
8990 struct intel_super *super,
8991 struct active_array *active_array)
8992 {
8993 struct imsm_super *mpb = super->anchor;
8994 struct imsm_dev *dev = get_imsm_dev(super, u->array);
8995 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8996 struct imsm_map *migr_map;
8997 struct active_array *a;
8998 struct imsm_disk *disk;
8999 __u8 to_state;
9000 struct dl *dl;
9001 unsigned int found;
9002 int failed;
9003 int victim;
9004 int i;
9005 int second_map_created = 0;
9006
9007 for (; u; u = u->next) {
9008 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
9009
9010 if (victim < 0)
9011 return 0;
9012
9013 for (dl = super->disks; dl; dl = dl->next)
9014 if (dl == u->dl)
9015 break;
9016
9017 if (!dl) {
9018 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
9019 u->dl->index);
9020 return 0;
9021 }
9022
9023 /* count failures (excluding rebuilds and the victim)
9024 * to determine map[0] state
9025 */
9026 failed = 0;
9027 for (i = 0; i < map->num_members; i++) {
9028 if (i == u->slot)
9029 continue;
9030 disk = get_imsm_disk(super,
9031 get_imsm_disk_idx(dev, i, MAP_X));
9032 if (!disk || is_failed(disk))
9033 failed++;
9034 }
9035
9036 /* adding a pristine spare, assign a new index */
9037 if (dl->index < 0) {
9038 dl->index = super->anchor->num_disks;
9039 super->anchor->num_disks++;
9040 }
9041 disk = &dl->disk;
9042 disk->status |= CONFIGURED_DISK;
9043 disk->status &= ~SPARE_DISK;
9044
9045 /* mark rebuild */
9046 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
9047 if (!second_map_created) {
9048 second_map_created = 1;
9049 map->map_state = IMSM_T_STATE_DEGRADED;
9050 migrate(dev, super, to_state, MIGR_REBUILD);
9051 } else
9052 map->map_state = to_state;
9053 migr_map = get_imsm_map(dev, MAP_1);
9054 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9055 set_imsm_ord_tbl_ent(migr_map, u->slot,
9056 dl->index | IMSM_ORD_REBUILD);
9057
9058 /* update the family_num to mark a new container
9059 * generation, being careful to record the existing
9060 * family_num in orig_family_num to clean up after
9061 * earlier mdadm versions that neglected to set it.
9062 */
9063 if (mpb->orig_family_num == 0)
9064 mpb->orig_family_num = mpb->family_num;
9065 mpb->family_num += super->random;
9066
9067 /* count arrays using the victim in the metadata */
9068 found = 0;
9069 for (a = active_array; a ; a = a->next) {
9070 dev = get_imsm_dev(super, a->info.container_member);
9071 map = get_imsm_map(dev, MAP_0);
9072
9073 if (get_imsm_disk_slot(map, victim) >= 0)
9074 found++;
9075 }
9076
9077 /* delete the victim if it is no longer being
9078 * utilized anywhere
9079 */
9080 if (!found) {
9081 struct dl **dlp;
9082
9083 /* We know that 'manager' isn't touching anything,
9084 * so it is safe to delete
9085 */
9086 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
9087 if ((*dlp)->index == victim)
9088 break;
9089
9090 /* victim may be on the missing list */
9091 if (!*dlp)
9092 for (dlp = &super->missing; *dlp;
9093 dlp = &(*dlp)->next)
9094 if ((*dlp)->index == victim)
9095 break;
9096 imsm_delete(super, dlp, victim);
9097 }
9098 }
9099
9100 return 1;
9101 }
9102
9103 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9104 struct intel_super *super,
9105 void ***space_list)
9106 {
9107 struct dl *new_disk;
9108 struct intel_dev *id;
9109 int i;
9110 int delta_disks = u->new_raid_disks - u->old_raid_disks;
9111 int disk_count = u->old_raid_disks;
9112 void **tofree = NULL;
9113 int devices_to_reshape = 1;
9114 struct imsm_super *mpb = super->anchor;
9115 int ret_val = 0;
9116 unsigned int dev_id;
9117
9118 dprintf("(enter)\n");
9119
9120 /* enable spares to use in array */
9121 for (i = 0; i < delta_disks; i++) {
9122 new_disk = get_disk_super(super,
9123 major(u->new_disks[i]),
9124 minor(u->new_disks[i]));
9125 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
9126 major(u->new_disks[i]), minor(u->new_disks[i]),
9127 new_disk, new_disk->index);
9128 if (new_disk == NULL ||
9129 (new_disk->index >= 0 &&
9130 new_disk->index < u->old_raid_disks))
9131 goto update_reshape_exit;
9132 new_disk->index = disk_count++;
9133 /* slot to fill in autolayout
9134 */
9135 new_disk->raiddisk = new_disk->index;
9136 new_disk->disk.status |=
9137 CONFIGURED_DISK;
9138 new_disk->disk.status &= ~SPARE_DISK;
9139 }
9140
9141 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9142 mpb->num_raid_devs);
9143 /* manage changes in volume
9144 */
9145 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
9146 void **sp = *space_list;
9147 struct imsm_dev *newdev;
9148 struct imsm_map *newmap, *oldmap;
9149
9150 for (id = super->devlist ; id; id = id->next) {
9151 if (id->index == dev_id)
9152 break;
9153 }
9154 if (id == NULL)
9155 break;
9156 if (!sp)
9157 continue;
9158 *space_list = *sp;
9159 newdev = (void*)sp;
9160 /* Copy the dev, but not (all of) the map */
9161 memcpy(newdev, id->dev, sizeof(*newdev));
9162 oldmap = get_imsm_map(id->dev, MAP_0);
9163 newmap = get_imsm_map(newdev, MAP_0);
9164 /* Copy the current map */
9165 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9166 /* update one device only
9167 */
9168 if (devices_to_reshape) {
9169 dprintf("imsm: modifying subdev: %i\n",
9170 id->index);
9171 devices_to_reshape--;
9172 newdev->vol.migr_state = 1;
9173 newdev->vol.curr_migr_unit = 0;
9174 set_migr_type(newdev, MIGR_GEN_MIGR);
9175 newmap->num_members = u->new_raid_disks;
9176 for (i = 0; i < delta_disks; i++) {
9177 set_imsm_ord_tbl_ent(newmap,
9178 u->old_raid_disks + i,
9179 u->old_raid_disks + i);
9180 }
9181 /* New map is correct, now need to save old map
9182 */
9183 newmap = get_imsm_map(newdev, MAP_1);
9184 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9185
9186 imsm_set_array_size(newdev, -1);
9187 }
9188
9189 sp = (void **)id->dev;
9190 id->dev = newdev;
9191 *sp = tofree;
9192 tofree = sp;
9193
9194 /* Clear migration record */
9195 memset(super->migr_rec, 0, sizeof(struct migr_record));
9196 }
9197 if (tofree)
9198 *space_list = tofree;
9199 ret_val = 1;
9200
9201 update_reshape_exit:
9202
9203 return ret_val;
9204 }
9205
9206 static int apply_takeover_update(struct imsm_update_takeover *u,
9207 struct intel_super *super,
9208 void ***space_list)
9209 {
9210 struct imsm_dev *dev = NULL;
9211 struct intel_dev *dv;
9212 struct imsm_dev *dev_new;
9213 struct imsm_map *map;
9214 struct dl *dm, *du;
9215 int i;
9216
9217 for (dv = super->devlist; dv; dv = dv->next)
9218 if (dv->index == (unsigned int)u->subarray) {
9219 dev = dv->dev;
9220 break;
9221 }
9222
9223 if (dev == NULL)
9224 return 0;
9225
9226 map = get_imsm_map(dev, MAP_0);
9227
9228 if (u->direction == R10_TO_R0) {
9229 unsigned long long num_data_stripes;
9230
9231 map->num_domains = 1;
9232 num_data_stripes = blocks_per_member(map);
9233 num_data_stripes /= map->blocks_per_strip;
9234 num_data_stripes /= map->num_domains;
9235 set_num_data_stripes(map, num_data_stripes);
9236
9237 /* Number of failed disks must be half of initial disk number */
9238 if (imsm_count_failed(super, dev, MAP_0) !=
9239 (map->num_members / 2))
9240 return 0;
9241
9242 /* iterate through devices to mark removed disks as spare */
9243 for (dm = super->disks; dm; dm = dm->next) {
9244 if (dm->disk.status & FAILED_DISK) {
9245 int idx = dm->index;
9246 /* update indexes on the disk list */
9247 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9248 the index values will end up being correct.... NB */
9249 for (du = super->disks; du; du = du->next)
9250 if (du->index > idx)
9251 du->index--;
9252 /* mark as spare disk */
9253 mark_spare(dm);
9254 }
9255 }
9256 /* update map */
9257 map->num_members = map->num_members / 2;
9258 map->map_state = IMSM_T_STATE_NORMAL;
9259 map->num_domains = 1;
9260 map->raid_level = 0;
9261 map->failed_disk_num = -1;
9262 }
9263
9264 if (u->direction == R0_TO_R10) {
9265 void **space;
9266 /* update slots in current disk list */
9267 for (dm = super->disks; dm; dm = dm->next) {
9268 if (dm->index >= 0)
9269 dm->index *= 2;
9270 }
9271 /* create new *missing* disks */
9272 for (i = 0; i < map->num_members; i++) {
9273 space = *space_list;
9274 if (!space)
9275 continue;
9276 *space_list = *space;
9277 du = (void *)space;
9278 memcpy(du, super->disks, sizeof(*du));
9279 du->fd = -1;
9280 du->minor = 0;
9281 du->major = 0;
9282 du->index = (i * 2) + 1;
9283 sprintf((char *)du->disk.serial,
9284 " MISSING_%d", du->index);
9285 sprintf((char *)du->serial,
9286 "MISSING_%d", du->index);
9287 du->next = super->missing;
9288 super->missing = du;
9289 }
9290 /* create new dev and map */
9291 space = *space_list;
9292 if (!space)
9293 return 0;
9294 *space_list = *space;
9295 dev_new = (void *)space;
9296 memcpy(dev_new, dev, sizeof(*dev));
9297 /* update new map */
9298 map = get_imsm_map(dev_new, MAP_0);
9299 map->num_members = map->num_members * 2;
9300 map->map_state = IMSM_T_STATE_DEGRADED;
9301 map->num_domains = 2;
9302 map->raid_level = 1;
9303 /* replace dev<->dev_new */
9304 dv->dev = dev_new;
9305 }
9306 /* update disk order table */
9307 for (du = super->disks; du; du = du->next)
9308 if (du->index >= 0)
9309 set_imsm_ord_tbl_ent(map, du->index, du->index);
9310 for (du = super->missing; du; du = du->next)
9311 if (du->index >= 0) {
9312 set_imsm_ord_tbl_ent(map, du->index, du->index);
9313 mark_missing(super, dv->dev, &du->disk, du->index);
9314 }
9315
9316 return 1;
9317 }
9318
9319 static void imsm_process_update(struct supertype *st,
9320 struct metadata_update *update)
9321 {
9322 /**
9323 * crack open the metadata_update envelope to find the update record
9324 * update can be one of:
9325 * update_reshape_container_disks - all the arrays in the container
9326 * are being reshaped to have more devices. We need to mark
9327 * the arrays for general migration and convert selected spares
9328 * into active devices.
9329 * update_activate_spare - a spare device has replaced a failed
9330 * device in an array, update the disk_ord_tbl. If this disk is
9331 * present in all member arrays then also clear the SPARE_DISK
9332 * flag
9333 * update_create_array
9334 * update_kill_array
9335 * update_rename_array
9336 * update_add_remove_disk
9337 */
9338 struct intel_super *super = st->sb;
9339 struct imsm_super *mpb;
9340 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
9341
9342 /* update requires a larger buf but the allocation failed */
9343 if (super->next_len && !super->next_buf) {
9344 super->next_len = 0;
9345 return;
9346 }
9347
9348 if (super->next_buf) {
9349 memcpy(super->next_buf, super->buf, super->len);
9350 free(super->buf);
9351 super->len = super->next_len;
9352 super->buf = super->next_buf;
9353
9354 super->next_len = 0;
9355 super->next_buf = NULL;
9356 }
9357
9358 mpb = super->anchor;
9359
9360 switch (type) {
9361 case update_general_migration_checkpoint: {
9362 struct intel_dev *id;
9363 struct imsm_update_general_migration_checkpoint *u =
9364 (void *)update->buf;
9365
9366 dprintf("called for update_general_migration_checkpoint\n");
9367
9368 /* find device under general migration */
9369 for (id = super->devlist ; id; id = id->next) {
9370 if (is_gen_migration(id->dev)) {
9371 id->dev->vol.curr_migr_unit =
9372 __cpu_to_le32(u->curr_migr_unit);
9373 super->updates_pending++;
9374 }
9375 }
9376 break;
9377 }
9378 case update_takeover: {
9379 struct imsm_update_takeover *u = (void *)update->buf;
9380 if (apply_takeover_update(u, super, &update->space_list)) {
9381 imsm_update_version_info(super);
9382 super->updates_pending++;
9383 }
9384 break;
9385 }
9386
9387 case update_reshape_container_disks: {
9388 struct imsm_update_reshape *u = (void *)update->buf;
9389 if (apply_reshape_container_disks_update(
9390 u, super, &update->space_list))
9391 super->updates_pending++;
9392 break;
9393 }
9394 case update_reshape_migration: {
9395 struct imsm_update_reshape_migration *u = (void *)update->buf;
9396 if (apply_reshape_migration_update(
9397 u, super, &update->space_list))
9398 super->updates_pending++;
9399 break;
9400 }
9401 case update_size_change: {
9402 struct imsm_update_size_change *u = (void *)update->buf;
9403 if (apply_size_change_update(u, super))
9404 super->updates_pending++;
9405 break;
9406 }
9407 case update_activate_spare: {
9408 struct imsm_update_activate_spare *u = (void *) update->buf;
9409 if (apply_update_activate_spare(u, super, st->arrays))
9410 super->updates_pending++;
9411 break;
9412 }
9413 case update_create_array: {
9414 /* someone wants to create a new array, we need to be aware of
9415 * a few races/collisions:
9416 * 1/ 'Create' called by two separate instances of mdadm
9417 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
9418 * devices that have since been assimilated via
9419 * activate_spare.
9420 * In the event this update can not be carried out mdadm will
9421 * (FIX ME) notice that its update did not take hold.
9422 */
9423 struct imsm_update_create_array *u = (void *) update->buf;
9424 struct intel_dev *dv;
9425 struct imsm_dev *dev;
9426 struct imsm_map *map, *new_map;
9427 unsigned long long start, end;
9428 unsigned long long new_start, new_end;
9429 int i;
9430 struct disk_info *inf;
9431 struct dl *dl;
9432
9433 /* handle racing creates: first come first serve */
9434 if (u->dev_idx < mpb->num_raid_devs) {
9435 dprintf("subarray %d already defined\n", u->dev_idx);
9436 goto create_error;
9437 }
9438
9439 /* check update is next in sequence */
9440 if (u->dev_idx != mpb->num_raid_devs) {
9441 dprintf("can not create array %d expected index %d\n",
9442 u->dev_idx, mpb->num_raid_devs);
9443 goto create_error;
9444 }
9445
9446 new_map = get_imsm_map(&u->dev, MAP_0);
9447 new_start = pba_of_lba0(new_map);
9448 new_end = new_start + blocks_per_member(new_map);
9449 inf = get_disk_info(u);
9450
9451 /* handle activate_spare versus create race:
9452 * check to make sure that overlapping arrays do not include
9453 * overalpping disks
9454 */
9455 for (i = 0; i < mpb->num_raid_devs; i++) {
9456 dev = get_imsm_dev(super, i);
9457 map = get_imsm_map(dev, MAP_0);
9458 start = pba_of_lba0(map);
9459 end = start + blocks_per_member(map);
9460 if ((new_start >= start && new_start <= end) ||
9461 (start >= new_start && start <= new_end))
9462 /* overlap */;
9463 else
9464 continue;
9465
9466 if (disks_overlap(super, i, u)) {
9467 dprintf("arrays overlap\n");
9468 goto create_error;
9469 }
9470 }
9471
9472 /* check that prepare update was successful */
9473 if (!update->space) {
9474 dprintf("prepare update failed\n");
9475 goto create_error;
9476 }
9477
9478 /* check that all disks are still active before committing
9479 * changes. FIXME: could we instead handle this by creating a
9480 * degraded array? That's probably not what the user expects,
9481 * so better to drop this update on the floor.
9482 */
9483 for (i = 0; i < new_map->num_members; i++) {
9484 dl = serial_to_dl(inf[i].serial, super);
9485 if (!dl) {
9486 dprintf("disk disappeared\n");
9487 goto create_error;
9488 }
9489 }
9490
9491 super->updates_pending++;
9492
9493 /* convert spares to members and fixup ord_tbl */
9494 for (i = 0; i < new_map->num_members; i++) {
9495 dl = serial_to_dl(inf[i].serial, super);
9496 if (dl->index == -1) {
9497 dl->index = mpb->num_disks;
9498 mpb->num_disks++;
9499 dl->disk.status |= CONFIGURED_DISK;
9500 dl->disk.status &= ~SPARE_DISK;
9501 }
9502 set_imsm_ord_tbl_ent(new_map, i, dl->index);
9503 }
9504
9505 dv = update->space;
9506 dev = dv->dev;
9507 update->space = NULL;
9508 imsm_copy_dev(dev, &u->dev);
9509 dv->index = u->dev_idx;
9510 dv->next = super->devlist;
9511 super->devlist = dv;
9512 mpb->num_raid_devs++;
9513
9514 imsm_update_version_info(super);
9515 break;
9516 create_error:
9517 /* mdmon knows how to release update->space, but not
9518 * ((struct intel_dev *) update->space)->dev
9519 */
9520 if (update->space) {
9521 dv = update->space;
9522 free(dv->dev);
9523 }
9524 break;
9525 }
9526 case update_kill_array: {
9527 struct imsm_update_kill_array *u = (void *) update->buf;
9528 int victim = u->dev_idx;
9529 struct active_array *a;
9530 struct intel_dev **dp;
9531 struct imsm_dev *dev;
9532
9533 /* sanity check that we are not affecting the uuid of
9534 * active arrays, or deleting an active array
9535 *
9536 * FIXME when immutable ids are available, but note that
9537 * we'll also need to fixup the invalidated/active
9538 * subarray indexes in mdstat
9539 */
9540 for (a = st->arrays; a; a = a->next)
9541 if (a->info.container_member >= victim)
9542 break;
9543 /* by definition if mdmon is running at least one array
9544 * is active in the container, so checking
9545 * mpb->num_raid_devs is just extra paranoia
9546 */
9547 dev = get_imsm_dev(super, victim);
9548 if (a || !dev || mpb->num_raid_devs == 1) {
9549 dprintf("failed to delete subarray-%d\n", victim);
9550 break;
9551 }
9552
9553 for (dp = &super->devlist; *dp;)
9554 if ((*dp)->index == (unsigned)super->current_vol) {
9555 *dp = (*dp)->next;
9556 } else {
9557 if ((*dp)->index > (unsigned)victim)
9558 (*dp)->index--;
9559 dp = &(*dp)->next;
9560 }
9561 mpb->num_raid_devs--;
9562 super->updates_pending++;
9563 break;
9564 }
9565 case update_rename_array: {
9566 struct imsm_update_rename_array *u = (void *) update->buf;
9567 char name[MAX_RAID_SERIAL_LEN+1];
9568 int target = u->dev_idx;
9569 struct active_array *a;
9570 struct imsm_dev *dev;
9571
9572 /* sanity check that we are not affecting the uuid of
9573 * an active array
9574 */
9575 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
9576 name[MAX_RAID_SERIAL_LEN] = '\0';
9577 for (a = st->arrays; a; a = a->next)
9578 if (a->info.container_member == target)
9579 break;
9580 dev = get_imsm_dev(super, u->dev_idx);
9581 if (a || !dev || !check_name(super, name, 1)) {
9582 dprintf("failed to rename subarray-%d\n", target);
9583 break;
9584 }
9585
9586 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
9587 super->updates_pending++;
9588 break;
9589 }
9590 case update_add_remove_disk: {
9591 /* we may be able to repair some arrays if disks are
9592 * being added, check the status of add_remove_disk
9593 * if discs has been added.
9594 */
9595 if (add_remove_disk_update(super)) {
9596 struct active_array *a;
9597
9598 super->updates_pending++;
9599 for (a = st->arrays; a; a = a->next)
9600 a->check_degraded = 1;
9601 }
9602 break;
9603 }
9604 case update_prealloc_badblocks_mem:
9605 break;
9606 case update_rwh_policy: {
9607 struct imsm_update_rwh_policy *u = (void *)update->buf;
9608 int target = u->dev_idx;
9609 struct imsm_dev *dev = get_imsm_dev(super, target);
9610 if (!dev) {
9611 dprintf("could not find subarray-%d\n", target);
9612 break;
9613 }
9614
9615 if (dev->rwh_policy != u->new_policy) {
9616 dev->rwh_policy = u->new_policy;
9617 super->updates_pending++;
9618 }
9619 break;
9620 }
9621 default:
9622 pr_err("error: unsuported process update type:(type: %d)\n", type);
9623 }
9624 }
9625
9626 static struct mdinfo *get_spares_for_grow(struct supertype *st);
9627
9628 static int imsm_prepare_update(struct supertype *st,
9629 struct metadata_update *update)
9630 {
9631 /**
9632 * Allocate space to hold new disk entries, raid-device entries or a new
9633 * mpb if necessary. The manager synchronously waits for updates to
9634 * complete in the monitor, so new mpb buffers allocated here can be
9635 * integrated by the monitor thread without worrying about live pointers
9636 * in the manager thread.
9637 */
9638 enum imsm_update_type type;
9639 struct intel_super *super = st->sb;
9640 unsigned int sector_size = super->sector_size;
9641 struct imsm_super *mpb = super->anchor;
9642 size_t buf_len;
9643 size_t len = 0;
9644
9645 if (update->len < (int)sizeof(type))
9646 return 0;
9647
9648 type = *(enum imsm_update_type *) update->buf;
9649
9650 switch (type) {
9651 case update_general_migration_checkpoint:
9652 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
9653 return 0;
9654 dprintf("called for update_general_migration_checkpoint\n");
9655 break;
9656 case update_takeover: {
9657 struct imsm_update_takeover *u = (void *)update->buf;
9658 if (update->len < (int)sizeof(*u))
9659 return 0;
9660 if (u->direction == R0_TO_R10) {
9661 void **tail = (void **)&update->space_list;
9662 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
9663 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9664 int num_members = map->num_members;
9665 void *space;
9666 int size, i;
9667 /* allocate memory for added disks */
9668 for (i = 0; i < num_members; i++) {
9669 size = sizeof(struct dl);
9670 space = xmalloc(size);
9671 *tail = space;
9672 tail = space;
9673 *tail = NULL;
9674 }
9675 /* allocate memory for new device */
9676 size = sizeof_imsm_dev(super->devlist->dev, 0) +
9677 (num_members * sizeof(__u32));
9678 space = xmalloc(size);
9679 *tail = space;
9680 tail = space;
9681 *tail = NULL;
9682 len = disks_to_mpb_size(num_members * 2);
9683 }
9684
9685 break;
9686 }
9687 case update_reshape_container_disks: {
9688 /* Every raid device in the container is about to
9689 * gain some more devices, and we will enter a
9690 * reconfiguration.
9691 * So each 'imsm_map' will be bigger, and the imsm_vol
9692 * will now hold 2 of them.
9693 * Thus we need new 'struct imsm_dev' allocations sized
9694 * as sizeof_imsm_dev but with more devices in both maps.
9695 */
9696 struct imsm_update_reshape *u = (void *)update->buf;
9697 struct intel_dev *dl;
9698 void **space_tail = (void**)&update->space_list;
9699
9700 if (update->len < (int)sizeof(*u))
9701 return 0;
9702
9703 dprintf("for update_reshape\n");
9704
9705 for (dl = super->devlist; dl; dl = dl->next) {
9706 int size = sizeof_imsm_dev(dl->dev, 1);
9707 void *s;
9708 if (u->new_raid_disks > u->old_raid_disks)
9709 size += sizeof(__u32)*2*
9710 (u->new_raid_disks - u->old_raid_disks);
9711 s = xmalloc(size);
9712 *space_tail = s;
9713 space_tail = s;
9714 *space_tail = NULL;
9715 }
9716
9717 len = disks_to_mpb_size(u->new_raid_disks);
9718 dprintf("New anchor length is %llu\n", (unsigned long long)len);
9719 break;
9720 }
9721 case update_reshape_migration: {
9722 /* for migration level 0->5 we need to add disks
9723 * so the same as for container operation we will copy
9724 * device to the bigger location.
9725 * in memory prepared device and new disk area are prepared
9726 * for usage in process update
9727 */
9728 struct imsm_update_reshape_migration *u = (void *)update->buf;
9729 struct intel_dev *id;
9730 void **space_tail = (void **)&update->space_list;
9731 int size;
9732 void *s;
9733 int current_level = -1;
9734
9735 if (update->len < (int)sizeof(*u))
9736 return 0;
9737
9738 dprintf("for update_reshape\n");
9739
9740 /* add space for bigger array in update
9741 */
9742 for (id = super->devlist; id; id = id->next) {
9743 if (id->index == (unsigned)u->subdev) {
9744 size = sizeof_imsm_dev(id->dev, 1);
9745 if (u->new_raid_disks > u->old_raid_disks)
9746 size += sizeof(__u32)*2*
9747 (u->new_raid_disks - u->old_raid_disks);
9748 s = xmalloc(size);
9749 *space_tail = s;
9750 space_tail = s;
9751 *space_tail = NULL;
9752 break;
9753 }
9754 }
9755 if (update->space_list == NULL)
9756 break;
9757
9758 /* add space for disk in update
9759 */
9760 size = sizeof(struct dl);
9761 s = xmalloc(size);
9762 *space_tail = s;
9763 space_tail = s;
9764 *space_tail = NULL;
9765
9766 /* add spare device to update
9767 */
9768 for (id = super->devlist ; id; id = id->next)
9769 if (id->index == (unsigned)u->subdev) {
9770 struct imsm_dev *dev;
9771 struct imsm_map *map;
9772
9773 dev = get_imsm_dev(super, u->subdev);
9774 map = get_imsm_map(dev, MAP_0);
9775 current_level = map->raid_level;
9776 break;
9777 }
9778 if (u->new_level == 5 && u->new_level != current_level) {
9779 struct mdinfo *spares;
9780
9781 spares = get_spares_for_grow(st);
9782 if (spares) {
9783 struct dl *dl;
9784 struct mdinfo *dev;
9785
9786 dev = spares->devs;
9787 if (dev) {
9788 u->new_disks[0] =
9789 makedev(dev->disk.major,
9790 dev->disk.minor);
9791 dl = get_disk_super(super,
9792 dev->disk.major,
9793 dev->disk.minor);
9794 dl->index = u->old_raid_disks;
9795 dev = dev->next;
9796 }
9797 sysfs_free(spares);
9798 }
9799 }
9800 len = disks_to_mpb_size(u->new_raid_disks);
9801 dprintf("New anchor length is %llu\n", (unsigned long long)len);
9802 break;
9803 }
9804 case update_size_change: {
9805 if (update->len < (int)sizeof(struct imsm_update_size_change))
9806 return 0;
9807 break;
9808 }
9809 case update_activate_spare: {
9810 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
9811 return 0;
9812 break;
9813 }
9814 case update_create_array: {
9815 struct imsm_update_create_array *u = (void *) update->buf;
9816 struct intel_dev *dv;
9817 struct imsm_dev *dev = &u->dev;
9818 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9819 struct dl *dl;
9820 struct disk_info *inf;
9821 int i;
9822 int activate = 0;
9823
9824 if (update->len < (int)sizeof(*u))
9825 return 0;
9826
9827 inf = get_disk_info(u);
9828 len = sizeof_imsm_dev(dev, 1);
9829 /* allocate a new super->devlist entry */
9830 dv = xmalloc(sizeof(*dv));
9831 dv->dev = xmalloc(len);
9832 update->space = dv;
9833
9834 /* count how many spares will be converted to members */
9835 for (i = 0; i < map->num_members; i++) {
9836 dl = serial_to_dl(inf[i].serial, super);
9837 if (!dl) {
9838 /* hmm maybe it failed?, nothing we can do about
9839 * it here
9840 */
9841 continue;
9842 }
9843 if (count_memberships(dl, super) == 0)
9844 activate++;
9845 }
9846 len += activate * sizeof(struct imsm_disk);
9847 break;
9848 }
9849 case update_kill_array: {
9850 if (update->len < (int)sizeof(struct imsm_update_kill_array))
9851 return 0;
9852 break;
9853 }
9854 case update_rename_array: {
9855 if (update->len < (int)sizeof(struct imsm_update_rename_array))
9856 return 0;
9857 break;
9858 }
9859 case update_add_remove_disk:
9860 /* no update->len needed */
9861 break;
9862 case update_prealloc_badblocks_mem:
9863 super->extra_space += sizeof(struct bbm_log) -
9864 get_imsm_bbm_log_size(super->bbm_log);
9865 break;
9866 case update_rwh_policy: {
9867 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
9868 return 0;
9869 break;
9870 }
9871 default:
9872 return 0;
9873 }
9874
9875 /* check if we need a larger metadata buffer */
9876 if (super->next_buf)
9877 buf_len = super->next_len;
9878 else
9879 buf_len = super->len;
9880
9881 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
9882 /* ok we need a larger buf than what is currently allocated
9883 * if this allocation fails process_update will notice that
9884 * ->next_len is set and ->next_buf is NULL
9885 */
9886 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
9887 super->extra_space + len, sector_size);
9888 if (super->next_buf)
9889 free(super->next_buf);
9890
9891 super->next_len = buf_len;
9892 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
9893 memset(super->next_buf, 0, buf_len);
9894 else
9895 super->next_buf = NULL;
9896 }
9897 return 1;
9898 }
9899
9900 /* must be called while manager is quiesced */
9901 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
9902 {
9903 struct imsm_super *mpb = super->anchor;
9904 struct dl *iter;
9905 struct imsm_dev *dev;
9906 struct imsm_map *map;
9907 unsigned int i, j, num_members;
9908 __u32 ord;
9909 struct bbm_log *log = super->bbm_log;
9910
9911 dprintf("deleting device[%d] from imsm_super\n", index);
9912
9913 /* shift all indexes down one */
9914 for (iter = super->disks; iter; iter = iter->next)
9915 if (iter->index > (int)index)
9916 iter->index--;
9917 for (iter = super->missing; iter; iter = iter->next)
9918 if (iter->index > (int)index)
9919 iter->index--;
9920
9921 for (i = 0; i < mpb->num_raid_devs; i++) {
9922 dev = get_imsm_dev(super, i);
9923 map = get_imsm_map(dev, MAP_0);
9924 num_members = map->num_members;
9925 for (j = 0; j < num_members; j++) {
9926 /* update ord entries being careful not to propagate
9927 * ord-flags to the first map
9928 */
9929 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
9930
9931 if (ord_to_idx(ord) <= index)
9932 continue;
9933
9934 map = get_imsm_map(dev, MAP_0);
9935 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
9936 map = get_imsm_map(dev, MAP_1);
9937 if (map)
9938 set_imsm_ord_tbl_ent(map, j, ord - 1);
9939 }
9940 }
9941
9942 for (i = 0; i < log->entry_count; i++) {
9943 struct bbm_log_entry *entry = &log->marked_block_entries[i];
9944
9945 if (entry->disk_ordinal <= index)
9946 continue;
9947 entry->disk_ordinal--;
9948 }
9949
9950 mpb->num_disks--;
9951 super->updates_pending++;
9952 if (*dlp) {
9953 struct dl *dl = *dlp;
9954
9955 *dlp = (*dlp)->next;
9956 __free_imsm_disk(dl);
9957 }
9958 }
9959
9960 static void close_targets(int *targets, int new_disks)
9961 {
9962 int i;
9963
9964 if (!targets)
9965 return;
9966
9967 for (i = 0; i < new_disks; i++) {
9968 if (targets[i] >= 0) {
9969 close(targets[i]);
9970 targets[i] = -1;
9971 }
9972 }
9973 }
9974
9975 static int imsm_get_allowed_degradation(int level, int raid_disks,
9976 struct intel_super *super,
9977 struct imsm_dev *dev)
9978 {
9979 switch (level) {
9980 case 1:
9981 case 10:{
9982 int ret_val = 0;
9983 struct imsm_map *map;
9984 int i;
9985
9986 ret_val = raid_disks/2;
9987 /* check map if all disks pairs not failed
9988 * in both maps
9989 */
9990 map = get_imsm_map(dev, MAP_0);
9991 for (i = 0; i < ret_val; i++) {
9992 int degradation = 0;
9993 if (get_imsm_disk(super, i) == NULL)
9994 degradation++;
9995 if (get_imsm_disk(super, i + 1) == NULL)
9996 degradation++;
9997 if (degradation == 2)
9998 return 0;
9999 }
10000 map = get_imsm_map(dev, MAP_1);
10001 /* if there is no second map
10002 * result can be returned
10003 */
10004 if (map == NULL)
10005 return ret_val;
10006 /* check degradation in second map
10007 */
10008 for (i = 0; i < ret_val; i++) {
10009 int degradation = 0;
10010 if (get_imsm_disk(super, i) == NULL)
10011 degradation++;
10012 if (get_imsm_disk(super, i + 1) == NULL)
10013 degradation++;
10014 if (degradation == 2)
10015 return 0;
10016 }
10017 return ret_val;
10018 }
10019 case 5:
10020 return 1;
10021 case 6:
10022 return 2;
10023 default:
10024 return 0;
10025 }
10026 }
10027
10028 /*******************************************************************************
10029 * Function: open_backup_targets
10030 * Description: Function opens file descriptors for all devices given in
10031 * info->devs
10032 * Parameters:
10033 * info : general array info
10034 * raid_disks : number of disks
10035 * raid_fds : table of device's file descriptors
10036 * super : intel super for raid10 degradation check
10037 * dev : intel device for raid10 degradation check
10038 * Returns:
10039 * 0 : success
10040 * -1 : fail
10041 ******************************************************************************/
10042 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
10043 struct intel_super *super, struct imsm_dev *dev)
10044 {
10045 struct mdinfo *sd;
10046 int i;
10047 int opened = 0;
10048
10049 for (i = 0; i < raid_disks; i++)
10050 raid_fds[i] = -1;
10051
10052 for (sd = info->devs ; sd ; sd = sd->next) {
10053 char *dn;
10054
10055 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
10056 dprintf("disk is faulty!!\n");
10057 continue;
10058 }
10059
10060 if (sd->disk.raid_disk >= raid_disks || sd->disk.raid_disk < 0)
10061 continue;
10062
10063 dn = map_dev(sd->disk.major,
10064 sd->disk.minor, 1);
10065 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
10066 if (raid_fds[sd->disk.raid_disk] < 0) {
10067 pr_err("cannot open component\n");
10068 continue;
10069 }
10070 opened++;
10071 }
10072 /* check if maximum array degradation level is not exceeded
10073 */
10074 if ((raid_disks - opened) >
10075 imsm_get_allowed_degradation(info->new_level, raid_disks,
10076 super, dev)) {
10077 pr_err("Not enough disks can be opened.\n");
10078 close_targets(raid_fds, raid_disks);
10079 return -2;
10080 }
10081 return 0;
10082 }
10083
10084 /*******************************************************************************
10085 * Function: validate_container_imsm
10086 * Description: This routine validates container after assemble,
10087 * eg. if devices in container are under the same controller.
10088 *
10089 * Parameters:
10090 * info : linked list with info about devices used in array
10091 * Returns:
10092 * 1 : HBA mismatch
10093 * 0 : Success
10094 ******************************************************************************/
10095 int validate_container_imsm(struct mdinfo *info)
10096 {
10097 if (check_env("IMSM_NO_PLATFORM"))
10098 return 0;
10099
10100 struct sys_dev *idev;
10101 struct sys_dev *hba = NULL;
10102 struct sys_dev *intel_devices = find_intel_devices();
10103 char *dev_path = devt_to_devpath(makedev(info->disk.major,
10104 info->disk.minor));
10105
10106 for (idev = intel_devices; idev; idev = idev->next) {
10107 if (dev_path && strstr(dev_path, idev->path)) {
10108 hba = idev;
10109 break;
10110 }
10111 }
10112 if (dev_path)
10113 free(dev_path);
10114
10115 if (!hba) {
10116 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10117 devid2kname(makedev(info->disk.major, info->disk.minor)));
10118 return 1;
10119 }
10120
10121 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10122 struct mdinfo *dev;
10123
10124 for (dev = info->next; dev; dev = dev->next) {
10125 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
10126
10127 struct sys_dev *hba2 = NULL;
10128 for (idev = intel_devices; idev; idev = idev->next) {
10129 if (dev_path && strstr(dev_path, idev->path)) {
10130 hba2 = idev;
10131 break;
10132 }
10133 }
10134 if (dev_path)
10135 free(dev_path);
10136
10137 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10138 get_orom_by_device_id(hba2->dev_id);
10139
10140 if (hba2 && hba->type != hba2->type) {
10141 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10142 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10143 return 1;
10144 }
10145
10146 if (orom != orom2) {
10147 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10148 " This operation is not supported and can lead to data loss.\n");
10149 return 1;
10150 }
10151
10152 if (!orom) {
10153 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10154 " This operation is not supported and can lead to data loss.\n");
10155 return 1;
10156 }
10157 }
10158
10159 return 0;
10160 }
10161
10162 /*******************************************************************************
10163 * Function: imsm_record_badblock
10164 * Description: This routine stores new bad block record in BBM log
10165 *
10166 * Parameters:
10167 * a : array containing a bad block
10168 * slot : disk number containing a bad block
10169 * sector : bad block sector
10170 * length : bad block sectors range
10171 * Returns:
10172 * 1 : Success
10173 * 0 : Error
10174 ******************************************************************************/
10175 static int imsm_record_badblock(struct active_array *a, int slot,
10176 unsigned long long sector, int length)
10177 {
10178 struct intel_super *super = a->container->sb;
10179 int ord;
10180 int ret;
10181
10182 ord = imsm_disk_slot_to_ord(a, slot);
10183 if (ord < 0)
10184 return 0;
10185
10186 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10187 length);
10188 if (ret)
10189 super->updates_pending++;
10190
10191 return ret;
10192 }
10193 /*******************************************************************************
10194 * Function: imsm_clear_badblock
10195 * Description: This routine clears bad block record from BBM log
10196 *
10197 * Parameters:
10198 * a : array containing a bad block
10199 * slot : disk number containing a bad block
10200 * sector : bad block sector
10201 * length : bad block sectors range
10202 * Returns:
10203 * 1 : Success
10204 * 0 : Error
10205 ******************************************************************************/
10206 static int imsm_clear_badblock(struct active_array *a, int slot,
10207 unsigned long long sector, int length)
10208 {
10209 struct intel_super *super = a->container->sb;
10210 int ord;
10211 int ret;
10212
10213 ord = imsm_disk_slot_to_ord(a, slot);
10214 if (ord < 0)
10215 return 0;
10216
10217 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10218 if (ret)
10219 super->updates_pending++;
10220
10221 return ret;
10222 }
10223 /*******************************************************************************
10224 * Function: imsm_get_badblocks
10225 * Description: This routine get list of bad blocks for an array
10226 *
10227 * Parameters:
10228 * a : array
10229 * slot : disk number
10230 * Returns:
10231 * bb : structure containing bad blocks
10232 * NULL : error
10233 ******************************************************************************/
10234 static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10235 {
10236 int inst = a->info.container_member;
10237 struct intel_super *super = a->container->sb;
10238 struct imsm_dev *dev = get_imsm_dev(super, inst);
10239 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10240 int ord;
10241
10242 ord = imsm_disk_slot_to_ord(a, slot);
10243 if (ord < 0)
10244 return NULL;
10245
10246 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
10247 blocks_per_member(map), &super->bb);
10248
10249 return &super->bb;
10250 }
10251 /*******************************************************************************
10252 * Function: examine_badblocks_imsm
10253 * Description: Prints list of bad blocks on a disk to the standard output
10254 *
10255 * Parameters:
10256 * st : metadata handler
10257 * fd : open file descriptor for device
10258 * devname : device name
10259 * Returns:
10260 * 0 : Success
10261 * 1 : Error
10262 ******************************************************************************/
10263 static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10264 {
10265 struct intel_super *super = st->sb;
10266 struct bbm_log *log = super->bbm_log;
10267 struct dl *d = NULL;
10268 int any = 0;
10269
10270 for (d = super->disks; d ; d = d->next) {
10271 if (strcmp(d->devname, devname) == 0)
10272 break;
10273 }
10274
10275 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10276 pr_err("%s doesn't appear to be part of a raid array\n",
10277 devname);
10278 return 1;
10279 }
10280
10281 if (log != NULL) {
10282 unsigned int i;
10283 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10284
10285 for (i = 0; i < log->entry_count; i++) {
10286 if (entry[i].disk_ordinal == d->index) {
10287 unsigned long long sector = __le48_to_cpu(
10288 &entry[i].defective_block_start);
10289 int cnt = entry[i].marked_count + 1;
10290
10291 if (!any) {
10292 printf("Bad-blocks on %s:\n", devname);
10293 any = 1;
10294 }
10295
10296 printf("%20llu for %d sectors\n", sector, cnt);
10297 }
10298 }
10299 }
10300
10301 if (!any)
10302 printf("No bad-blocks list configured on %s\n", devname);
10303
10304 return 0;
10305 }
10306 /*******************************************************************************
10307 * Function: init_migr_record_imsm
10308 * Description: Function inits imsm migration record
10309 * Parameters:
10310 * super : imsm internal array info
10311 * dev : device under migration
10312 * info : general array info to find the smallest device
10313 * Returns:
10314 * none
10315 ******************************************************************************/
10316 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10317 struct mdinfo *info)
10318 {
10319 struct intel_super *super = st->sb;
10320 struct migr_record *migr_rec = super->migr_rec;
10321 int new_data_disks;
10322 unsigned long long dsize, dev_sectors;
10323 long long unsigned min_dev_sectors = -1LLU;
10324 struct mdinfo *sd;
10325 char nm[30];
10326 int fd;
10327 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10328 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
10329 unsigned long long num_migr_units;
10330 unsigned long long array_blocks;
10331
10332 memset(migr_rec, 0, sizeof(struct migr_record));
10333 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10334
10335 /* only ascending reshape supported now */
10336 migr_rec->ascending_migr = __cpu_to_le32(1);
10337
10338 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10339 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
10340 migr_rec->dest_depth_per_unit *=
10341 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
10342 new_data_disks = imsm_num_data_members(dev, MAP_0);
10343 migr_rec->blocks_per_unit =
10344 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10345 migr_rec->dest_depth_per_unit =
10346 __cpu_to_le32(migr_rec->dest_depth_per_unit);
10347 array_blocks = info->component_size * new_data_disks;
10348 num_migr_units =
10349 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10350
10351 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10352 num_migr_units++;
10353 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
10354
10355 migr_rec->post_migr_vol_cap = dev->size_low;
10356 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10357
10358 /* Find the smallest dev */
10359 for (sd = info->devs ; sd ; sd = sd->next) {
10360 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
10361 fd = dev_open(nm, O_RDONLY);
10362 if (fd < 0)
10363 continue;
10364 get_dev_size(fd, NULL, &dsize);
10365 dev_sectors = dsize / 512;
10366 if (dev_sectors < min_dev_sectors)
10367 min_dev_sectors = dev_sectors;
10368 close(fd);
10369 }
10370 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
10371 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10372
10373 write_imsm_migr_rec(st);
10374
10375 return;
10376 }
10377
10378 /*******************************************************************************
10379 * Function: save_backup_imsm
10380 * Description: Function saves critical data stripes to Migration Copy Area
10381 * and updates the current migration unit status.
10382 * Use restore_stripes() to form a destination stripe,
10383 * and to write it to the Copy Area.
10384 * Parameters:
10385 * st : supertype information
10386 * dev : imsm device that backup is saved for
10387 * info : general array info
10388 * buf : input buffer
10389 * length : length of data to backup (blocks_per_unit)
10390 * Returns:
10391 * 0 : success
10392 *, -1 : fail
10393 ******************************************************************************/
10394 int save_backup_imsm(struct supertype *st,
10395 struct imsm_dev *dev,
10396 struct mdinfo *info,
10397 void *buf,
10398 int length)
10399 {
10400 int rv = -1;
10401 struct intel_super *super = st->sb;
10402 unsigned long long *target_offsets;
10403 int *targets;
10404 int i;
10405 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10406 int new_disks = map_dest->num_members;
10407 int dest_layout = 0;
10408 int dest_chunk;
10409 unsigned long long start;
10410 int data_disks = imsm_num_data_members(dev, MAP_0);
10411
10412 targets = xmalloc(new_disks * sizeof(int));
10413
10414 for (i = 0; i < new_disks; i++)
10415 targets[i] = -1;
10416
10417 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
10418
10419 start = info->reshape_progress * 512;
10420 for (i = 0; i < new_disks; i++) {
10421 target_offsets[i] = (unsigned long long)
10422 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
10423 /* move back copy area adderss, it will be moved forward
10424 * in restore_stripes() using start input variable
10425 */
10426 target_offsets[i] -= start/data_disks;
10427 }
10428
10429 if (open_backup_targets(info, new_disks, targets,
10430 super, dev))
10431 goto abort;
10432
10433 dest_layout = imsm_level_to_layout(map_dest->raid_level);
10434 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
10435
10436 if (restore_stripes(targets, /* list of dest devices */
10437 target_offsets, /* migration record offsets */
10438 new_disks,
10439 dest_chunk,
10440 map_dest->raid_level,
10441 dest_layout,
10442 -1, /* source backup file descriptor */
10443 0, /* input buf offset
10444 * always 0 buf is already offseted */
10445 start,
10446 length,
10447 buf) != 0) {
10448 pr_err("Error restoring stripes\n");
10449 goto abort;
10450 }
10451
10452 rv = 0;
10453
10454 abort:
10455 if (targets) {
10456 close_targets(targets, new_disks);
10457 free(targets);
10458 }
10459 free(target_offsets);
10460
10461 return rv;
10462 }
10463
10464 /*******************************************************************************
10465 * Function: save_checkpoint_imsm
10466 * Description: Function called for current unit status update
10467 * in the migration record. It writes it to disk.
10468 * Parameters:
10469 * super : imsm internal array info
10470 * info : general array info
10471 * Returns:
10472 * 0: success
10473 * 1: failure
10474 * 2: failure, means no valid migration record
10475 * / no general migration in progress /
10476 ******************************************************************************/
10477 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
10478 {
10479 struct intel_super *super = st->sb;
10480 unsigned long long blocks_per_unit;
10481 unsigned long long curr_migr_unit;
10482
10483 if (load_imsm_migr_rec(super, info) != 0) {
10484 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
10485 return 1;
10486 }
10487
10488 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
10489 if (blocks_per_unit == 0) {
10490 dprintf("imsm: no migration in progress.\n");
10491 return 2;
10492 }
10493 curr_migr_unit = info->reshape_progress / blocks_per_unit;
10494 /* check if array is alligned to copy area
10495 * if it is not alligned, add one to current migration unit value
10496 * this can happend on array reshape finish only
10497 */
10498 if (info->reshape_progress % blocks_per_unit)
10499 curr_migr_unit++;
10500
10501 super->migr_rec->curr_migr_unit =
10502 __cpu_to_le32(curr_migr_unit);
10503 super->migr_rec->rec_status = __cpu_to_le32(state);
10504 super->migr_rec->dest_1st_member_lba =
10505 __cpu_to_le32(curr_migr_unit *
10506 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
10507 if (write_imsm_migr_rec(st) < 0) {
10508 dprintf("imsm: Cannot write migration record outside backup area\n");
10509 return 1;
10510 }
10511
10512 return 0;
10513 }
10514
10515 /*******************************************************************************
10516 * Function: recover_backup_imsm
10517 * Description: Function recovers critical data from the Migration Copy Area
10518 * while assembling an array.
10519 * Parameters:
10520 * super : imsm internal array info
10521 * info : general array info
10522 * Returns:
10523 * 0 : success (or there is no data to recover)
10524 * 1 : fail
10525 ******************************************************************************/
10526 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
10527 {
10528 struct intel_super *super = st->sb;
10529 struct migr_record *migr_rec = super->migr_rec;
10530 struct imsm_map *map_dest;
10531 struct intel_dev *id = NULL;
10532 unsigned long long read_offset;
10533 unsigned long long write_offset;
10534 unsigned unit_len;
10535 int *targets = NULL;
10536 int new_disks, i, err;
10537 char *buf = NULL;
10538 int retval = 1;
10539 unsigned int sector_size = super->sector_size;
10540 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
10541 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
10542 char buffer[20];
10543 int skipped_disks = 0;
10544
10545 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
10546 if (err < 1)
10547 return 1;
10548
10549 /* recover data only during assemblation */
10550 if (strncmp(buffer, "inactive", 8) != 0)
10551 return 0;
10552 /* no data to recover */
10553 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
10554 return 0;
10555 if (curr_migr_unit >= num_migr_units)
10556 return 1;
10557
10558 /* find device during reshape */
10559 for (id = super->devlist; id; id = id->next)
10560 if (is_gen_migration(id->dev))
10561 break;
10562 if (id == NULL)
10563 return 1;
10564
10565 map_dest = get_imsm_map(id->dev, MAP_0);
10566 new_disks = map_dest->num_members;
10567
10568 read_offset = (unsigned long long)
10569 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
10570
10571 write_offset = ((unsigned long long)
10572 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
10573 pba_of_lba0(map_dest)) * 512;
10574
10575 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10576 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
10577 goto abort;
10578 targets = xcalloc(new_disks, sizeof(int));
10579
10580 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
10581 pr_err("Cannot open some devices belonging to array.\n");
10582 goto abort;
10583 }
10584
10585 for (i = 0; i < new_disks; i++) {
10586 if (targets[i] < 0) {
10587 skipped_disks++;
10588 continue;
10589 }
10590 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
10591 pr_err("Cannot seek to block: %s\n",
10592 strerror(errno));
10593 skipped_disks++;
10594 continue;
10595 }
10596 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
10597 pr_err("Cannot read copy area block: %s\n",
10598 strerror(errno));
10599 skipped_disks++;
10600 continue;
10601 }
10602 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
10603 pr_err("Cannot seek to block: %s\n",
10604 strerror(errno));
10605 skipped_disks++;
10606 continue;
10607 }
10608 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
10609 pr_err("Cannot restore block: %s\n",
10610 strerror(errno));
10611 skipped_disks++;
10612 continue;
10613 }
10614 }
10615
10616 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
10617 new_disks,
10618 super,
10619 id->dev)) {
10620 pr_err("Cannot restore data from backup. Too many failed disks\n");
10621 goto abort;
10622 }
10623
10624 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
10625 /* ignore error == 2, this can mean end of reshape here
10626 */
10627 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
10628 } else
10629 retval = 0;
10630
10631 abort:
10632 if (targets) {
10633 for (i = 0; i < new_disks; i++)
10634 if (targets[i])
10635 close(targets[i]);
10636 free(targets);
10637 }
10638 free(buf);
10639 return retval;
10640 }
10641
10642 static char disk_by_path[] = "/dev/disk/by-path/";
10643
10644 static const char *imsm_get_disk_controller_domain(const char *path)
10645 {
10646 char disk_path[PATH_MAX];
10647 char *drv=NULL;
10648 struct stat st;
10649
10650 strcpy(disk_path, disk_by_path);
10651 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
10652 if (stat(disk_path, &st) == 0) {
10653 struct sys_dev* hba;
10654 char *path;
10655
10656 path = devt_to_devpath(st.st_rdev);
10657 if (path == NULL)
10658 return "unknown";
10659 hba = find_disk_attached_hba(-1, path);
10660 if (hba && hba->type == SYS_DEV_SAS)
10661 drv = "isci";
10662 else if (hba && hba->type == SYS_DEV_SATA)
10663 drv = "ahci";
10664 else
10665 drv = "unknown";
10666 dprintf("path: %s hba: %s attached: %s\n",
10667 path, (hba) ? hba->path : "NULL", drv);
10668 free(path);
10669 }
10670 return drv;
10671 }
10672
10673 static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
10674 {
10675 static char devnm[32];
10676 char subdev_name[20];
10677 struct mdstat_ent *mdstat;
10678
10679 sprintf(subdev_name, "%d", subdev);
10680 mdstat = mdstat_by_subdev(subdev_name, container);
10681 if (!mdstat)
10682 return NULL;
10683
10684 strcpy(devnm, mdstat->devnm);
10685 free_mdstat(mdstat);
10686 return devnm;
10687 }
10688
10689 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
10690 struct geo_params *geo,
10691 int *old_raid_disks,
10692 int direction)
10693 {
10694 /* currently we only support increasing the number of devices
10695 * for a container. This increases the number of device for each
10696 * member array. They must all be RAID0 or RAID5.
10697 */
10698 int ret_val = 0;
10699 struct mdinfo *info, *member;
10700 int devices_that_can_grow = 0;
10701
10702 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
10703
10704 if (geo->size > 0 ||
10705 geo->level != UnSet ||
10706 geo->layout != UnSet ||
10707 geo->chunksize != 0 ||
10708 geo->raid_disks == UnSet) {
10709 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
10710 return ret_val;
10711 }
10712
10713 if (direction == ROLLBACK_METADATA_CHANGES) {
10714 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
10715 return ret_val;
10716 }
10717
10718 info = container_content_imsm(st, NULL);
10719 for (member = info; member; member = member->next) {
10720 char *result;
10721
10722 dprintf("imsm: checking device_num: %i\n",
10723 member->container_member);
10724
10725 if (geo->raid_disks <= member->array.raid_disks) {
10726 /* we work on container for Online Capacity Expansion
10727 * only so raid_disks has to grow
10728 */
10729 dprintf("imsm: for container operation raid disks increase is required\n");
10730 break;
10731 }
10732
10733 if (info->array.level != 0 && info->array.level != 5) {
10734 /* we cannot use this container with other raid level
10735 */
10736 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
10737 info->array.level);
10738 break;
10739 } else {
10740 /* check for platform support
10741 * for this raid level configuration
10742 */
10743 struct intel_super *super = st->sb;
10744 if (!is_raid_level_supported(super->orom,
10745 member->array.level,
10746 geo->raid_disks)) {
10747 dprintf("platform does not support raid%d with %d disk%s\n",
10748 info->array.level,
10749 geo->raid_disks,
10750 geo->raid_disks > 1 ? "s" : "");
10751 break;
10752 }
10753 /* check if component size is aligned to chunk size
10754 */
10755 if (info->component_size %
10756 (info->array.chunk_size/512)) {
10757 dprintf("Component size is not aligned to chunk size\n");
10758 break;
10759 }
10760 }
10761
10762 if (*old_raid_disks &&
10763 info->array.raid_disks != *old_raid_disks)
10764 break;
10765 *old_raid_disks = info->array.raid_disks;
10766
10767 /* All raid5 and raid0 volumes in container
10768 * have to be ready for Online Capacity Expansion
10769 * so they need to be assembled. We have already
10770 * checked that no recovery etc is happening.
10771 */
10772 result = imsm_find_array_devnm_by_subdev(member->container_member,
10773 st->container_devnm);
10774 if (result == NULL) {
10775 dprintf("imsm: cannot find array\n");
10776 break;
10777 }
10778 devices_that_can_grow++;
10779 }
10780 sysfs_free(info);
10781 if (!member && devices_that_can_grow)
10782 ret_val = 1;
10783
10784 if (ret_val)
10785 dprintf("Container operation allowed\n");
10786 else
10787 dprintf("Error: %i\n", ret_val);
10788
10789 return ret_val;
10790 }
10791
10792 /* Function: get_spares_for_grow
10793 * Description: Allocates memory and creates list of spare devices
10794 * avaliable in container. Checks if spare drive size is acceptable.
10795 * Parameters: Pointer to the supertype structure
10796 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
10797 * NULL if fail
10798 */
10799 static struct mdinfo *get_spares_for_grow(struct supertype *st)
10800 {
10801 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
10802 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
10803 }
10804
10805 /******************************************************************************
10806 * function: imsm_create_metadata_update_for_reshape
10807 * Function creates update for whole IMSM container.
10808 *
10809 ******************************************************************************/
10810 static int imsm_create_metadata_update_for_reshape(
10811 struct supertype *st,
10812 struct geo_params *geo,
10813 int old_raid_disks,
10814 struct imsm_update_reshape **updatep)
10815 {
10816 struct intel_super *super = st->sb;
10817 struct imsm_super *mpb = super->anchor;
10818 int update_memory_size;
10819 struct imsm_update_reshape *u;
10820 struct mdinfo *spares;
10821 int i;
10822 int delta_disks;
10823 struct mdinfo *dev;
10824
10825 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
10826
10827 delta_disks = geo->raid_disks - old_raid_disks;
10828
10829 /* size of all update data without anchor */
10830 update_memory_size = sizeof(struct imsm_update_reshape);
10831
10832 /* now add space for spare disks that we need to add. */
10833 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
10834
10835 u = xcalloc(1, update_memory_size);
10836 u->type = update_reshape_container_disks;
10837 u->old_raid_disks = old_raid_disks;
10838 u->new_raid_disks = geo->raid_disks;
10839
10840 /* now get spare disks list
10841 */
10842 spares = get_spares_for_grow(st);
10843
10844 if (spares == NULL
10845 || delta_disks > spares->array.spare_disks) {
10846 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
10847 i = -1;
10848 goto abort;
10849 }
10850
10851 /* we have got spares
10852 * update disk list in imsm_disk list table in anchor
10853 */
10854 dprintf("imsm: %i spares are available.\n\n",
10855 spares->array.spare_disks);
10856
10857 dev = spares->devs;
10858 for (i = 0; i < delta_disks; i++) {
10859 struct dl *dl;
10860
10861 if (dev == NULL)
10862 break;
10863 u->new_disks[i] = makedev(dev->disk.major,
10864 dev->disk.minor);
10865 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
10866 dl->index = mpb->num_disks;
10867 mpb->num_disks++;
10868 dev = dev->next;
10869 }
10870
10871 abort:
10872 /* free spares
10873 */
10874 sysfs_free(spares);
10875
10876 dprintf("imsm: reshape update preparation :");
10877 if (i == delta_disks) {
10878 dprintf_cont(" OK\n");
10879 *updatep = u;
10880 return update_memory_size;
10881 }
10882 free(u);
10883 dprintf_cont(" Error\n");
10884
10885 return 0;
10886 }
10887
10888 /******************************************************************************
10889 * function: imsm_create_metadata_update_for_size_change()
10890 * Creates update for IMSM array for array size change.
10891 *
10892 ******************************************************************************/
10893 static int imsm_create_metadata_update_for_size_change(
10894 struct supertype *st,
10895 struct geo_params *geo,
10896 struct imsm_update_size_change **updatep)
10897 {
10898 struct intel_super *super = st->sb;
10899 int update_memory_size;
10900 struct imsm_update_size_change *u;
10901
10902 dprintf("(enter) New size = %llu\n", geo->size);
10903
10904 /* size of all update data without anchor */
10905 update_memory_size = sizeof(struct imsm_update_size_change);
10906
10907 u = xcalloc(1, update_memory_size);
10908 u->type = update_size_change;
10909 u->subdev = super->current_vol;
10910 u->new_size = geo->size;
10911
10912 dprintf("imsm: reshape update preparation : OK\n");
10913 *updatep = u;
10914
10915 return update_memory_size;
10916 }
10917
10918 /******************************************************************************
10919 * function: imsm_create_metadata_update_for_migration()
10920 * Creates update for IMSM array.
10921 *
10922 ******************************************************************************/
10923 static int imsm_create_metadata_update_for_migration(
10924 struct supertype *st,
10925 struct geo_params *geo,
10926 struct imsm_update_reshape_migration **updatep)
10927 {
10928 struct intel_super *super = st->sb;
10929 int update_memory_size;
10930 struct imsm_update_reshape_migration *u;
10931 struct imsm_dev *dev;
10932 int previous_level = -1;
10933
10934 dprintf("(enter) New Level = %i\n", geo->level);
10935
10936 /* size of all update data without anchor */
10937 update_memory_size = sizeof(struct imsm_update_reshape_migration);
10938
10939 u = xcalloc(1, update_memory_size);
10940 u->type = update_reshape_migration;
10941 u->subdev = super->current_vol;
10942 u->new_level = geo->level;
10943 u->new_layout = geo->layout;
10944 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
10945 u->new_disks[0] = -1;
10946 u->new_chunksize = -1;
10947
10948 dev = get_imsm_dev(super, u->subdev);
10949 if (dev) {
10950 struct imsm_map *map;
10951
10952 map = get_imsm_map(dev, MAP_0);
10953 if (map) {
10954 int current_chunk_size =
10955 __le16_to_cpu(map->blocks_per_strip) / 2;
10956
10957 if (geo->chunksize != current_chunk_size) {
10958 u->new_chunksize = geo->chunksize / 1024;
10959 dprintf("imsm: chunk size change from %i to %i\n",
10960 current_chunk_size, u->new_chunksize);
10961 }
10962 previous_level = map->raid_level;
10963 }
10964 }
10965 if (geo->level == 5 && previous_level == 0) {
10966 struct mdinfo *spares = NULL;
10967
10968 u->new_raid_disks++;
10969 spares = get_spares_for_grow(st);
10970 if (spares == NULL || spares->array.spare_disks < 1) {
10971 free(u);
10972 sysfs_free(spares);
10973 update_memory_size = 0;
10974 pr_err("cannot get spare device for requested migration\n");
10975 return 0;
10976 }
10977 sysfs_free(spares);
10978 }
10979 dprintf("imsm: reshape update preparation : OK\n");
10980 *updatep = u;
10981
10982 return update_memory_size;
10983 }
10984
10985 static void imsm_update_metadata_locally(struct supertype *st,
10986 void *buf, int len)
10987 {
10988 struct metadata_update mu;
10989
10990 mu.buf = buf;
10991 mu.len = len;
10992 mu.space = NULL;
10993 mu.space_list = NULL;
10994 mu.next = NULL;
10995 if (imsm_prepare_update(st, &mu))
10996 imsm_process_update(st, &mu);
10997
10998 while (mu.space_list) {
10999 void **space = mu.space_list;
11000 mu.space_list = *space;
11001 free(space);
11002 }
11003 }
11004
11005 /***************************************************************************
11006 * Function: imsm_analyze_change
11007 * Description: Function analyze change for single volume
11008 * and validate if transition is supported
11009 * Parameters: Geometry parameters, supertype structure,
11010 * metadata change direction (apply/rollback)
11011 * Returns: Operation type code on success, -1 if fail
11012 ****************************************************************************/
11013 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
11014 struct geo_params *geo,
11015 int direction)
11016 {
11017 struct mdinfo info;
11018 int change = -1;
11019 int check_devs = 0;
11020 int chunk;
11021 /* number of added/removed disks in operation result */
11022 int devNumChange = 0;
11023 /* imsm compatible layout value for array geometry verification */
11024 int imsm_layout = -1;
11025 int data_disks;
11026 struct imsm_dev *dev;
11027 struct intel_super *super;
11028 unsigned long long current_size;
11029 unsigned long long free_size;
11030 unsigned long long max_size;
11031 int rv;
11032
11033 getinfo_super_imsm_volume(st, &info, NULL);
11034 if (geo->level != info.array.level && geo->level >= 0 &&
11035 geo->level != UnSet) {
11036 switch (info.array.level) {
11037 case 0:
11038 if (geo->level == 5) {
11039 change = CH_MIGRATION;
11040 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
11041 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
11042 change = -1;
11043 goto analyse_change_exit;
11044 }
11045 imsm_layout = geo->layout;
11046 check_devs = 1;
11047 devNumChange = 1; /* parity disk added */
11048 } else if (geo->level == 10) {
11049 change = CH_TAKEOVER;
11050 check_devs = 1;
11051 devNumChange = 2; /* two mirrors added */
11052 imsm_layout = 0x102; /* imsm supported layout */
11053 }
11054 break;
11055 case 1:
11056 case 10:
11057 if (geo->level == 0) {
11058 change = CH_TAKEOVER;
11059 check_devs = 1;
11060 devNumChange = -(geo->raid_disks/2);
11061 imsm_layout = 0; /* imsm raid0 layout */
11062 }
11063 break;
11064 }
11065 if (change == -1) {
11066 pr_err("Error. Level Migration from %d to %d not supported!\n",
11067 info.array.level, geo->level);
11068 goto analyse_change_exit;
11069 }
11070 } else
11071 geo->level = info.array.level;
11072
11073 if (geo->layout != info.array.layout &&
11074 (geo->layout != UnSet && geo->layout != -1)) {
11075 change = CH_MIGRATION;
11076 if (info.array.layout == 0 && info.array.level == 5 &&
11077 geo->layout == 5) {
11078 /* reshape 5 -> 4 */
11079 } else if (info.array.layout == 5 && info.array.level == 5 &&
11080 geo->layout == 0) {
11081 /* reshape 4 -> 5 */
11082 geo->layout = 0;
11083 geo->level = 5;
11084 } else {
11085 pr_err("Error. Layout Migration from %d to %d not supported!\n",
11086 info.array.layout, geo->layout);
11087 change = -1;
11088 goto analyse_change_exit;
11089 }
11090 } else {
11091 geo->layout = info.array.layout;
11092 if (imsm_layout == -1)
11093 imsm_layout = info.array.layout;
11094 }
11095
11096 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11097 geo->chunksize != info.array.chunk_size) {
11098 if (info.array.level == 10) {
11099 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11100 change = -1;
11101 goto analyse_change_exit;
11102 } else if (info.component_size % (geo->chunksize/512)) {
11103 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11104 geo->chunksize/1024, info.component_size/2);
11105 change = -1;
11106 goto analyse_change_exit;
11107 }
11108 change = CH_MIGRATION;
11109 } else {
11110 geo->chunksize = info.array.chunk_size;
11111 }
11112
11113 chunk = geo->chunksize / 1024;
11114
11115 super = st->sb;
11116 dev = get_imsm_dev(super, super->current_vol);
11117 data_disks = imsm_num_data_members(dev , MAP_0);
11118 /* compute current size per disk member
11119 */
11120 current_size = info.custom_array_size / data_disks;
11121
11122 if (geo->size > 0 && geo->size != MAX_SIZE) {
11123 /* align component size
11124 */
11125 geo->size = imsm_component_size_aligment_check(
11126 get_imsm_raid_level(dev->vol.map),
11127 chunk * 1024, super->sector_size,
11128 geo->size * 2);
11129 if (geo->size == 0) {
11130 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
11131 current_size);
11132 goto analyse_change_exit;
11133 }
11134 }
11135
11136 if (current_size != geo->size && geo->size > 0) {
11137 if (change != -1) {
11138 pr_err("Error. Size change should be the only one at a time.\n");
11139 change = -1;
11140 goto analyse_change_exit;
11141 }
11142 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
11143 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
11144 super->current_vol, st->devnm);
11145 goto analyse_change_exit;
11146 }
11147 /* check the maximum available size
11148 */
11149 rv = imsm_get_free_size(st, dev->vol.map->num_members,
11150 0, chunk, &free_size);
11151 if (rv == 0)
11152 /* Cannot find maximum available space
11153 */
11154 max_size = 0;
11155 else {
11156 max_size = free_size + current_size;
11157 /* align component size
11158 */
11159 max_size = imsm_component_size_aligment_check(
11160 get_imsm_raid_level(dev->vol.map),
11161 chunk * 1024, super->sector_size,
11162 max_size);
11163 }
11164 if (geo->size == MAX_SIZE) {
11165 /* requested size change to the maximum available size
11166 */
11167 if (max_size == 0) {
11168 pr_err("Error. Cannot find maximum available space.\n");
11169 change = -1;
11170 goto analyse_change_exit;
11171 } else
11172 geo->size = max_size;
11173 }
11174
11175 if (direction == ROLLBACK_METADATA_CHANGES) {
11176 /* accept size for rollback only
11177 */
11178 } else {
11179 /* round size due to metadata compatibility
11180 */
11181 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
11182 << SECT_PER_MB_SHIFT;
11183 dprintf("Prepare update for size change to %llu\n",
11184 geo->size );
11185 if (current_size >= geo->size) {
11186 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
11187 current_size, geo->size);
11188 goto analyse_change_exit;
11189 }
11190 if (max_size && geo->size > max_size) {
11191 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
11192 max_size, geo->size);
11193 goto analyse_change_exit;
11194 }
11195 }
11196 geo->size *= data_disks;
11197 geo->raid_disks = dev->vol.map->num_members;
11198 change = CH_ARRAY_SIZE;
11199 }
11200 if (!validate_geometry_imsm(st,
11201 geo->level,
11202 imsm_layout,
11203 geo->raid_disks + devNumChange,
11204 &chunk,
11205 geo->size, INVALID_SECTORS,
11206 0, 0, info.consistency_policy, 1))
11207 change = -1;
11208
11209 if (check_devs) {
11210 struct intel_super *super = st->sb;
11211 struct imsm_super *mpb = super->anchor;
11212
11213 if (mpb->num_raid_devs > 1) {
11214 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
11215 geo->dev_name);
11216 change = -1;
11217 }
11218 }
11219
11220 analyse_change_exit:
11221 if (direction == ROLLBACK_METADATA_CHANGES &&
11222 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
11223 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
11224 change = -1;
11225 }
11226 return change;
11227 }
11228
11229 int imsm_takeover(struct supertype *st, struct geo_params *geo)
11230 {
11231 struct intel_super *super = st->sb;
11232 struct imsm_update_takeover *u;
11233
11234 u = xmalloc(sizeof(struct imsm_update_takeover));
11235
11236 u->type = update_takeover;
11237 u->subarray = super->current_vol;
11238
11239 /* 10->0 transition */
11240 if (geo->level == 0)
11241 u->direction = R10_TO_R0;
11242
11243 /* 0->10 transition */
11244 if (geo->level == 10)
11245 u->direction = R0_TO_R10;
11246
11247 /* update metadata locally */
11248 imsm_update_metadata_locally(st, u,
11249 sizeof(struct imsm_update_takeover));
11250 /* and possibly remotely */
11251 if (st->update_tail)
11252 append_metadata_update(st, u,
11253 sizeof(struct imsm_update_takeover));
11254 else
11255 free(u);
11256
11257 return 0;
11258 }
11259
11260 static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11261 int level,
11262 int layout, int chunksize, int raid_disks,
11263 int delta_disks, char *backup, char *dev,
11264 int direction, int verbose)
11265 {
11266 int ret_val = 1;
11267 struct geo_params geo;
11268
11269 dprintf("(enter)\n");
11270
11271 memset(&geo, 0, sizeof(struct geo_params));
11272
11273 geo.dev_name = dev;
11274 strcpy(geo.devnm, st->devnm);
11275 geo.size = size;
11276 geo.level = level;
11277 geo.layout = layout;
11278 geo.chunksize = chunksize;
11279 geo.raid_disks = raid_disks;
11280 if (delta_disks != UnSet)
11281 geo.raid_disks += delta_disks;
11282
11283 dprintf("for level : %i\n", geo.level);
11284 dprintf("for raid_disks : %i\n", geo.raid_disks);
11285
11286 if (experimental() == 0)
11287 return ret_val;
11288
11289 if (strcmp(st->container_devnm, st->devnm) == 0) {
11290 /* On container level we can only increase number of devices. */
11291 dprintf("imsm: info: Container operation\n");
11292 int old_raid_disks = 0;
11293
11294 if (imsm_reshape_is_allowed_on_container(
11295 st, &geo, &old_raid_disks, direction)) {
11296 struct imsm_update_reshape *u = NULL;
11297 int len;
11298
11299 len = imsm_create_metadata_update_for_reshape(
11300 st, &geo, old_raid_disks, &u);
11301
11302 if (len <= 0) {
11303 dprintf("imsm: Cannot prepare update\n");
11304 goto exit_imsm_reshape_super;
11305 }
11306
11307 ret_val = 0;
11308 /* update metadata locally */
11309 imsm_update_metadata_locally(st, u, len);
11310 /* and possibly remotely */
11311 if (st->update_tail)
11312 append_metadata_update(st, u, len);
11313 else
11314 free(u);
11315
11316 } else {
11317 pr_err("(imsm) Operation is not allowed on this container\n");
11318 }
11319 } else {
11320 /* On volume level we support following operations
11321 * - takeover: raid10 -> raid0; raid0 -> raid10
11322 * - chunk size migration
11323 * - migration: raid5 -> raid0; raid0 -> raid5
11324 */
11325 struct intel_super *super = st->sb;
11326 struct intel_dev *dev = super->devlist;
11327 int change;
11328 dprintf("imsm: info: Volume operation\n");
11329 /* find requested device */
11330 while (dev) {
11331 char *devnm =
11332 imsm_find_array_devnm_by_subdev(
11333 dev->index, st->container_devnm);
11334 if (devnm && strcmp(devnm, geo.devnm) == 0)
11335 break;
11336 dev = dev->next;
11337 }
11338 if (dev == NULL) {
11339 pr_err("Cannot find %s (%s) subarray\n",
11340 geo.dev_name, geo.devnm);
11341 goto exit_imsm_reshape_super;
11342 }
11343 super->current_vol = dev->index;
11344 change = imsm_analyze_change(st, &geo, direction);
11345 switch (change) {
11346 case CH_TAKEOVER:
11347 ret_val = imsm_takeover(st, &geo);
11348 break;
11349 case CH_MIGRATION: {
11350 struct imsm_update_reshape_migration *u = NULL;
11351 int len =
11352 imsm_create_metadata_update_for_migration(
11353 st, &geo, &u);
11354 if (len < 1) {
11355 dprintf("imsm: Cannot prepare update\n");
11356 break;
11357 }
11358 ret_val = 0;
11359 /* update metadata locally */
11360 imsm_update_metadata_locally(st, u, len);
11361 /* and possibly remotely */
11362 if (st->update_tail)
11363 append_metadata_update(st, u, len);
11364 else
11365 free(u);
11366 }
11367 break;
11368 case CH_ARRAY_SIZE: {
11369 struct imsm_update_size_change *u = NULL;
11370 int len =
11371 imsm_create_metadata_update_for_size_change(
11372 st, &geo, &u);
11373 if (len < 1) {
11374 dprintf("imsm: Cannot prepare update\n");
11375 break;
11376 }
11377 ret_val = 0;
11378 /* update metadata locally */
11379 imsm_update_metadata_locally(st, u, len);
11380 /* and possibly remotely */
11381 if (st->update_tail)
11382 append_metadata_update(st, u, len);
11383 else
11384 free(u);
11385 }
11386 break;
11387 default:
11388 ret_val = 1;
11389 }
11390 }
11391
11392 exit_imsm_reshape_super:
11393 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
11394 return ret_val;
11395 }
11396
11397 #define COMPLETED_OK 0
11398 #define COMPLETED_NONE 1
11399 #define COMPLETED_DELAYED 2
11400
11401 static int read_completed(int fd, unsigned long long *val)
11402 {
11403 int ret;
11404 char buf[50];
11405
11406 ret = sysfs_fd_get_str(fd, buf, 50);
11407 if (ret < 0)
11408 return ret;
11409
11410 ret = COMPLETED_OK;
11411 if (strncmp(buf, "none", 4) == 0) {
11412 ret = COMPLETED_NONE;
11413 } else if (strncmp(buf, "delayed", 7) == 0) {
11414 ret = COMPLETED_DELAYED;
11415 } else {
11416 char *ep;
11417 *val = strtoull(buf, &ep, 0);
11418 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
11419 ret = -1;
11420 }
11421 return ret;
11422 }
11423
11424 /*******************************************************************************
11425 * Function: wait_for_reshape_imsm
11426 * Description: Function writes new sync_max value and waits until
11427 * reshape process reach new position
11428 * Parameters:
11429 * sra : general array info
11430 * ndata : number of disks in new array's layout
11431 * Returns:
11432 * 0 : success,
11433 * 1 : there is no reshape in progress,
11434 * -1 : fail
11435 ******************************************************************************/
11436 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
11437 {
11438 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
11439 int retry = 3;
11440 unsigned long long completed;
11441 /* to_complete : new sync_max position */
11442 unsigned long long to_complete = sra->reshape_progress;
11443 unsigned long long position_to_set = to_complete / ndata;
11444
11445 if (fd < 0) {
11446 dprintf("cannot open reshape_position\n");
11447 return 1;
11448 }
11449
11450 do {
11451 if (sysfs_fd_get_ll(fd, &completed) < 0) {
11452 if (!retry) {
11453 dprintf("cannot read reshape_position (no reshape in progres)\n");
11454 close(fd);
11455 return 1;
11456 }
11457 usleep(30000);
11458 } else
11459 break;
11460 } while (retry--);
11461
11462 if (completed > position_to_set) {
11463 dprintf("wrong next position to set %llu (%llu)\n",
11464 to_complete, position_to_set);
11465 close(fd);
11466 return -1;
11467 }
11468 dprintf("Position set: %llu\n", position_to_set);
11469 if (sysfs_set_num(sra, NULL, "sync_max",
11470 position_to_set) != 0) {
11471 dprintf("cannot set reshape position to %llu\n",
11472 position_to_set);
11473 close(fd);
11474 return -1;
11475 }
11476
11477 do {
11478 int rc;
11479 char action[20];
11480 int timeout = 3000;
11481
11482 sysfs_wait(fd, &timeout);
11483 if (sysfs_get_str(sra, NULL, "sync_action",
11484 action, 20) > 0 &&
11485 strncmp(action, "reshape", 7) != 0) {
11486 if (strncmp(action, "idle", 4) == 0)
11487 break;
11488 close(fd);
11489 return -1;
11490 }
11491
11492 rc = read_completed(fd, &completed);
11493 if (rc < 0) {
11494 dprintf("cannot read reshape_position (in loop)\n");
11495 close(fd);
11496 return 1;
11497 } else if (rc == COMPLETED_NONE)
11498 break;
11499 } while (completed < position_to_set);
11500
11501 close(fd);
11502 return 0;
11503 }
11504
11505 /*******************************************************************************
11506 * Function: check_degradation_change
11507 * Description: Check that array hasn't become failed.
11508 * Parameters:
11509 * info : for sysfs access
11510 * sources : source disks descriptors
11511 * degraded: previous degradation level
11512 * Returns:
11513 * degradation level
11514 ******************************************************************************/
11515 int check_degradation_change(struct mdinfo *info,
11516 int *sources,
11517 int degraded)
11518 {
11519 unsigned long long new_degraded;
11520 int rv;
11521
11522 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
11523 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
11524 /* check each device to ensure it is still working */
11525 struct mdinfo *sd;
11526 new_degraded = 0;
11527 for (sd = info->devs ; sd ; sd = sd->next) {
11528 if (sd->disk.state & (1<<MD_DISK_FAULTY))
11529 continue;
11530 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
11531 char sbuf[100];
11532
11533 if (sysfs_get_str(info,
11534 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
11535 strstr(sbuf, "faulty") ||
11536 strstr(sbuf, "in_sync") == NULL) {
11537 /* this device is dead */
11538 sd->disk.state = (1<<MD_DISK_FAULTY);
11539 if (sd->disk.raid_disk >= 0 &&
11540 sources[sd->disk.raid_disk] >= 0) {
11541 close(sources[
11542 sd->disk.raid_disk]);
11543 sources[sd->disk.raid_disk] =
11544 -1;
11545 }
11546 new_degraded++;
11547 }
11548 }
11549 }
11550 }
11551
11552 return new_degraded;
11553 }
11554
11555 /*******************************************************************************
11556 * Function: imsm_manage_reshape
11557 * Description: Function finds array under reshape and it manages reshape
11558 * process. It creates stripes backups (if required) and sets
11559 * checkpoints.
11560 * Parameters:
11561 * afd : Backup handle (nattive) - not used
11562 * sra : general array info
11563 * reshape : reshape parameters - not used
11564 * st : supertype structure
11565 * blocks : size of critical section [blocks]
11566 * fds : table of source device descriptor
11567 * offsets : start of array (offest per devices)
11568 * dests : not used
11569 * destfd : table of destination device descriptor
11570 * destoffsets : table of destination offsets (per device)
11571 * Returns:
11572 * 1 : success, reshape is done
11573 * 0 : fail
11574 ******************************************************************************/
11575 static int imsm_manage_reshape(
11576 int afd, struct mdinfo *sra, struct reshape *reshape,
11577 struct supertype *st, unsigned long backup_blocks,
11578 int *fds, unsigned long long *offsets,
11579 int dests, int *destfd, unsigned long long *destoffsets)
11580 {
11581 int ret_val = 0;
11582 struct intel_super *super = st->sb;
11583 struct intel_dev *dv;
11584 unsigned int sector_size = super->sector_size;
11585 struct imsm_dev *dev = NULL;
11586 struct imsm_map *map_src;
11587 int migr_vol_qan = 0;
11588 int ndata, odata; /* [bytes] */
11589 int chunk; /* [bytes] */
11590 struct migr_record *migr_rec;
11591 char *buf = NULL;
11592 unsigned int buf_size; /* [bytes] */
11593 unsigned long long max_position; /* array size [bytes] */
11594 unsigned long long next_step; /* [blocks]/[bytes] */
11595 unsigned long long old_data_stripe_length;
11596 unsigned long long start_src; /* [bytes] */
11597 unsigned long long start; /* [bytes] */
11598 unsigned long long start_buf_shift; /* [bytes] */
11599 int degraded = 0;
11600 int source_layout = 0;
11601
11602 if (!sra)
11603 return ret_val;
11604
11605 if (!fds || !offsets)
11606 goto abort;
11607
11608 /* Find volume during the reshape */
11609 for (dv = super->devlist; dv; dv = dv->next) {
11610 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
11611 && dv->dev->vol.migr_state == 1) {
11612 dev = dv->dev;
11613 migr_vol_qan++;
11614 }
11615 }
11616 /* Only one volume can migrate at the same time */
11617 if (migr_vol_qan != 1) {
11618 pr_err("%s", migr_vol_qan ?
11619 "Number of migrating volumes greater than 1\n" :
11620 "There is no volume during migrationg\n");
11621 goto abort;
11622 }
11623
11624 map_src = get_imsm_map(dev, MAP_1);
11625 if (map_src == NULL)
11626 goto abort;
11627
11628 ndata = imsm_num_data_members(dev, MAP_0);
11629 odata = imsm_num_data_members(dev, MAP_1);
11630
11631 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
11632 old_data_stripe_length = odata * chunk;
11633
11634 migr_rec = super->migr_rec;
11635
11636 /* initialize migration record for start condition */
11637 if (sra->reshape_progress == 0)
11638 init_migr_record_imsm(st, dev, sra);
11639 else {
11640 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
11641 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
11642 goto abort;
11643 }
11644 /* Save checkpoint to update migration record for current
11645 * reshape position (in md). It can be farther than current
11646 * reshape position in metadata.
11647 */
11648 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11649 /* ignore error == 2, this can mean end of reshape here
11650 */
11651 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
11652 goto abort;
11653 }
11654 }
11655
11656 /* size for data */
11657 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
11658 /* extend buffer size for parity disk */
11659 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
11660 /* add space for stripe aligment */
11661 buf_size += old_data_stripe_length;
11662 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
11663 dprintf("imsm: Cannot allocate checkpoint buffer\n");
11664 goto abort;
11665 }
11666
11667 max_position = sra->component_size * ndata;
11668 source_layout = imsm_level_to_layout(map_src->raid_level);
11669
11670 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
11671 __le32_to_cpu(migr_rec->num_migr_units)) {
11672 /* current reshape position [blocks] */
11673 unsigned long long current_position =
11674 __le32_to_cpu(migr_rec->blocks_per_unit)
11675 * __le32_to_cpu(migr_rec->curr_migr_unit);
11676 unsigned long long border;
11677
11678 /* Check that array hasn't become failed.
11679 */
11680 degraded = check_degradation_change(sra, fds, degraded);
11681 if (degraded > 1) {
11682 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
11683 goto abort;
11684 }
11685
11686 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
11687
11688 if ((current_position + next_step) > max_position)
11689 next_step = max_position - current_position;
11690
11691 start = current_position * 512;
11692
11693 /* align reading start to old geometry */
11694 start_buf_shift = start % old_data_stripe_length;
11695 start_src = start - start_buf_shift;
11696
11697 border = (start_src / odata) - (start / ndata);
11698 border /= 512;
11699 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
11700 /* save critical stripes to buf
11701 * start - start address of current unit
11702 * to backup [bytes]
11703 * start_src - start address of current unit
11704 * to backup alligned to source array
11705 * [bytes]
11706 */
11707 unsigned long long next_step_filler;
11708 unsigned long long copy_length = next_step * 512;
11709
11710 /* allign copy area length to stripe in old geometry */
11711 next_step_filler = ((copy_length + start_buf_shift)
11712 % old_data_stripe_length);
11713 if (next_step_filler)
11714 next_step_filler = (old_data_stripe_length
11715 - next_step_filler);
11716 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
11717 start, start_src, copy_length,
11718 start_buf_shift, next_step_filler);
11719
11720 if (save_stripes(fds, offsets, map_src->num_members,
11721 chunk, map_src->raid_level,
11722 source_layout, 0, NULL, start_src,
11723 copy_length +
11724 next_step_filler + start_buf_shift,
11725 buf)) {
11726 dprintf("imsm: Cannot save stripes to buffer\n");
11727 goto abort;
11728 }
11729 /* Convert data to destination format and store it
11730 * in backup general migration area
11731 */
11732 if (save_backup_imsm(st, dev, sra,
11733 buf + start_buf_shift, copy_length)) {
11734 dprintf("imsm: Cannot save stripes to target devices\n");
11735 goto abort;
11736 }
11737 if (save_checkpoint_imsm(st, sra,
11738 UNIT_SRC_IN_CP_AREA)) {
11739 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
11740 goto abort;
11741 }
11742 } else {
11743 /* set next step to use whole border area */
11744 border /= next_step;
11745 if (border > 1)
11746 next_step *= border;
11747 }
11748 /* When data backed up, checkpoint stored,
11749 * kick the kernel to reshape unit of data
11750 */
11751 next_step = next_step + sra->reshape_progress;
11752 /* limit next step to array max position */
11753 if (next_step > max_position)
11754 next_step = max_position;
11755 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
11756 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
11757 sra->reshape_progress = next_step;
11758
11759 /* wait until reshape finish */
11760 if (wait_for_reshape_imsm(sra, ndata)) {
11761 dprintf("wait_for_reshape_imsm returned error!\n");
11762 goto abort;
11763 }
11764 if (sigterm)
11765 goto abort;
11766
11767 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11768 /* ignore error == 2, this can mean end of reshape here
11769 */
11770 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
11771 goto abort;
11772 }
11773
11774 }
11775
11776 /* clear migr_rec on disks after successful migration */
11777 struct dl *d;
11778
11779 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*sector_size);
11780 for (d = super->disks; d; d = d->next) {
11781 if (d->index < 0 || is_failed(&d->disk))
11782 continue;
11783 unsigned long long dsize;
11784
11785 get_dev_size(d->fd, NULL, &dsize);
11786 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
11787 SEEK_SET) >= 0) {
11788 if ((unsigned int)write(d->fd, super->migr_rec_buf,
11789 MIGR_REC_BUF_SECTORS*sector_size) !=
11790 MIGR_REC_BUF_SECTORS*sector_size)
11791 perror("Write migr_rec failed");
11792 }
11793 }
11794
11795 /* return '1' if done */
11796 ret_val = 1;
11797 abort:
11798 free(buf);
11799 /* See Grow.c: abort_reshape() for further explanation */
11800 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
11801 sysfs_set_num(sra, NULL, "suspend_hi", 0);
11802 sysfs_set_num(sra, NULL, "suspend_lo", 0);
11803
11804 return ret_val;
11805 }
11806
11807 struct superswitch super_imsm = {
11808 .examine_super = examine_super_imsm,
11809 .brief_examine_super = brief_examine_super_imsm,
11810 .brief_examine_subarrays = brief_examine_subarrays_imsm,
11811 .export_examine_super = export_examine_super_imsm,
11812 .detail_super = detail_super_imsm,
11813 .brief_detail_super = brief_detail_super_imsm,
11814 .write_init_super = write_init_super_imsm,
11815 .validate_geometry = validate_geometry_imsm,
11816 .add_to_super = add_to_super_imsm,
11817 .remove_from_super = remove_from_super_imsm,
11818 .detail_platform = detail_platform_imsm,
11819 .export_detail_platform = export_detail_platform_imsm,
11820 .kill_subarray = kill_subarray_imsm,
11821 .update_subarray = update_subarray_imsm,
11822 .load_container = load_container_imsm,
11823 .default_geometry = default_geometry_imsm,
11824 .get_disk_controller_domain = imsm_get_disk_controller_domain,
11825 .reshape_super = imsm_reshape_super,
11826 .manage_reshape = imsm_manage_reshape,
11827 .recover_backup = recover_backup_imsm,
11828 .copy_metadata = copy_metadata_imsm,
11829 .examine_badblocks = examine_badblocks_imsm,
11830 .match_home = match_home_imsm,
11831 .uuid_from_super= uuid_from_super_imsm,
11832 .getinfo_super = getinfo_super_imsm,
11833 .getinfo_super_disks = getinfo_super_disks_imsm,
11834 .update_super = update_super_imsm,
11835
11836 .avail_size = avail_size_imsm,
11837 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
11838
11839 .compare_super = compare_super_imsm,
11840
11841 .load_super = load_super_imsm,
11842 .init_super = init_super_imsm,
11843 .store_super = store_super_imsm,
11844 .free_super = free_super_imsm,
11845 .match_metadata_desc = match_metadata_desc_imsm,
11846 .container_content = container_content_imsm,
11847 .validate_container = validate_container_imsm,
11848
11849 .write_init_ppl = write_init_ppl_imsm,
11850 .validate_ppl = validate_ppl_imsm,
11851
11852 .external = 1,
11853 .name = "imsm",
11854
11855 /* for mdmon */
11856 .open_new = imsm_open_new,
11857 .set_array_state= imsm_set_array_state,
11858 .set_disk = imsm_set_disk,
11859 .sync_metadata = imsm_sync_metadata,
11860 .activate_spare = imsm_activate_spare,
11861 .process_update = imsm_process_update,
11862 .prepare_update = imsm_prepare_update,
11863 .record_bad_block = imsm_record_badblock,
11864 .clear_bad_block = imsm_clear_badblock,
11865 .get_bad_blocks = imsm_get_badblocks,
11866 };