]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
super-intel: Reduce excessive parenthesis abuse
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
106 #define IMSM_DISK_FILLERS 3
107 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
108 };
109
110 /* map selector for map managment
111 */
112 #define MAP_0 0
113 #define MAP_1 1
114 #define MAP_X -1
115
116 /* RAID map configuration infos. */
117 struct imsm_map {
118 __u32 pba_of_lba0_lo; /* start address of partition */
119 __u32 blocks_per_member_lo;/* blocks per member */
120 __u32 num_data_stripes_lo; /* number of data stripes */
121 __u16 blocks_per_strip;
122 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
123 #define IMSM_T_STATE_NORMAL 0
124 #define IMSM_T_STATE_UNINITIALIZED 1
125 #define IMSM_T_STATE_DEGRADED 2
126 #define IMSM_T_STATE_FAILED 3
127 __u8 raid_level;
128 #define IMSM_T_RAID0 0
129 #define IMSM_T_RAID1 1
130 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
131 __u8 num_members; /* number of member disks */
132 __u8 num_domains; /* number of parity domains */
133 __u8 failed_disk_num; /* valid only when state is degraded */
134 __u8 ddf;
135 __u32 pba_of_lba0_hi;
136 __u32 blocks_per_member_hi;
137 __u32 num_data_stripes_hi;
138 __u32 filler[4]; /* expansion area */
139 #define IMSM_ORD_REBUILD (1 << 24)
140 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
141 * top byte contains some flags
142 */
143 } __attribute__ ((packed));
144
145 struct imsm_vol {
146 __u32 curr_migr_unit;
147 __u32 checkpoint_id; /* id to access curr_migr_unit */
148 __u8 migr_state; /* Normal or Migrating */
149 #define MIGR_INIT 0
150 #define MIGR_REBUILD 1
151 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
152 #define MIGR_GEN_MIGR 3
153 #define MIGR_STATE_CHANGE 4
154 #define MIGR_REPAIR 5
155 __u8 migr_type; /* Initializing, Rebuilding, ... */
156 __u8 dirty;
157 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
158 __u16 verify_errors; /* number of mismatches */
159 __u16 bad_blocks; /* number of bad blocks during verify */
160 __u32 filler[4];
161 struct imsm_map map[1];
162 /* here comes another one if migr_state */
163 } __attribute__ ((packed));
164
165 struct imsm_dev {
166 __u8 volume[MAX_RAID_SERIAL_LEN];
167 __u32 size_low;
168 __u32 size_high;
169 #define DEV_BOOTABLE __cpu_to_le32(0x01)
170 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
171 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
172 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
173 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
174 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
175 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
176 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
177 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
178 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
179 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
180 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
181 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
182 __u32 status; /* Persistent RaidDev status */
183 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
184 __u8 migr_priority;
185 __u8 num_sub_vols;
186 __u8 tid;
187 __u8 cng_master_disk;
188 __u16 cache_policy;
189 __u8 cng_state;
190 __u8 cng_sub_state;
191 #define IMSM_DEV_FILLERS 10
192 __u32 filler[IMSM_DEV_FILLERS];
193 struct imsm_vol vol;
194 } __attribute__ ((packed));
195
196 struct imsm_super {
197 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
198 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
199 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
200 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
201 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
202 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
203 __u32 attributes; /* 0x34 - 0x37 */
204 __u8 num_disks; /* 0x38 Number of configured disks */
205 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
206 __u8 error_log_pos; /* 0x3A */
207 __u8 fill[1]; /* 0x3B */
208 __u32 cache_size; /* 0x3c - 0x40 in mb */
209 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
210 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
211 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
212 #define IMSM_FILLERS 35
213 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
214 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
215 /* here comes imsm_dev[num_raid_devs] */
216 /* here comes BBM logs */
217 } __attribute__ ((packed));
218
219 #define BBM_LOG_MAX_ENTRIES 254
220
221 struct bbm_log_entry {
222 __u64 defective_block_start;
223 #define UNREADABLE 0xFFFFFFFF
224 __u32 spare_block_offset;
225 __u16 remapped_marked_count;
226 __u16 disk_ordinal;
227 } __attribute__ ((__packed__));
228
229 struct bbm_log {
230 __u32 signature; /* 0xABADB10C */
231 __u32 entry_count;
232 __u32 reserved_spare_block_count; /* 0 */
233 __u32 reserved; /* 0xFFFF */
234 __u64 first_spare_lba;
235 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
236 } __attribute__ ((__packed__));
237
238 #ifndef MDASSEMBLE
239 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
240 #endif
241
242 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
243
244 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
245
246 #define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
247 #define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
248 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
249 */
250
251 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
252 * be recovered using srcMap */
253 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
254 * already been migrated and must
255 * be recovered from checkpoint area */
256 struct migr_record {
257 __u32 rec_status; /* Status used to determine how to restart
258 * migration in case it aborts
259 * in some fashion */
260 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
261 __u32 family_num; /* Family number of MPB
262 * containing the RaidDev
263 * that is migrating */
264 __u32 ascending_migr; /* True if migrating in increasing
265 * order of lbas */
266 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
267 __u32 dest_depth_per_unit; /* Num member blocks each destMap
268 * member disk
269 * advances per unit-of-operation */
270 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
271 __u32 dest_1st_member_lba; /* First member lba on first
272 * stripe of destination */
273 __u32 num_migr_units; /* Total num migration units-of-op */
274 __u32 post_migr_vol_cap; /* Size of volume after
275 * migration completes */
276 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
277 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
278 * migration ckpt record was read from
279 * (for recovered migrations) */
280 } __attribute__ ((__packed__));
281
282 struct md_list {
283 /* usage marker:
284 * 1: load metadata
285 * 2: metadata does not match
286 * 4: already checked
287 */
288 int used;
289 char *devname;
290 int found;
291 int container;
292 dev_t st_rdev;
293 struct md_list *next;
294 };
295
296 #define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
297
298 static __u8 migr_type(struct imsm_dev *dev)
299 {
300 if (dev->vol.migr_type == MIGR_VERIFY &&
301 dev->status & DEV_VERIFY_AND_FIX)
302 return MIGR_REPAIR;
303 else
304 return dev->vol.migr_type;
305 }
306
307 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
308 {
309 /* for compatibility with older oroms convert MIGR_REPAIR, into
310 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
311 */
312 if (migr_type == MIGR_REPAIR) {
313 dev->vol.migr_type = MIGR_VERIFY;
314 dev->status |= DEV_VERIFY_AND_FIX;
315 } else {
316 dev->vol.migr_type = migr_type;
317 dev->status &= ~DEV_VERIFY_AND_FIX;
318 }
319 }
320
321 static unsigned int sector_count(__u32 bytes)
322 {
323 return ROUND_UP(bytes, 512) / 512;
324 }
325
326 static unsigned int mpb_sectors(struct imsm_super *mpb)
327 {
328 return sector_count(__le32_to_cpu(mpb->mpb_size));
329 }
330
331 struct intel_dev {
332 struct imsm_dev *dev;
333 struct intel_dev *next;
334 unsigned index;
335 };
336
337 struct intel_hba {
338 enum sys_dev_type type;
339 char *path;
340 char *pci_id;
341 struct intel_hba *next;
342 };
343
344 enum action {
345 DISK_REMOVE = 1,
346 DISK_ADD
347 };
348 /* internal representation of IMSM metadata */
349 struct intel_super {
350 union {
351 void *buf; /* O_DIRECT buffer for reading/writing metadata */
352 struct imsm_super *anchor; /* immovable parameters */
353 };
354 union {
355 void *migr_rec_buf; /* buffer for I/O operations */
356 struct migr_record *migr_rec; /* migration record */
357 };
358 int clean_migration_record_by_mdmon; /* when reshape is switched to next
359 array, it indicates that mdmon is allowed to clean migration
360 record */
361 size_t len; /* size of the 'buf' allocation */
362 void *next_buf; /* for realloc'ing buf from the manager */
363 size_t next_len;
364 int updates_pending; /* count of pending updates for mdmon */
365 int current_vol; /* index of raid device undergoing creation */
366 unsigned long long create_offset; /* common start for 'current_vol' */
367 __u32 random; /* random data for seeding new family numbers */
368 struct intel_dev *devlist;
369 struct dl {
370 struct dl *next;
371 int index;
372 __u8 serial[MAX_RAID_SERIAL_LEN];
373 int major, minor;
374 char *devname;
375 struct imsm_disk disk;
376 int fd;
377 int extent_cnt;
378 struct extent *e; /* for determining freespace @ create */
379 int raiddisk; /* slot to fill in autolayout */
380 enum action action;
381 } *disks, *current_disk;
382 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
383 active */
384 struct dl *missing; /* disks removed while we weren't looking */
385 struct bbm_log *bbm_log;
386 struct intel_hba *hba; /* device path of the raid controller for this metadata */
387 const struct imsm_orom *orom; /* platform firmware support */
388 struct intel_super *next; /* (temp) list for disambiguating family_num */
389 };
390
391 struct intel_disk {
392 struct imsm_disk disk;
393 #define IMSM_UNKNOWN_OWNER (-1)
394 int owner;
395 struct intel_disk *next;
396 };
397
398 struct extent {
399 unsigned long long start, size;
400 };
401
402 /* definitions of reshape process types */
403 enum imsm_reshape_type {
404 CH_TAKEOVER,
405 CH_MIGRATION,
406 CH_ARRAY_SIZE,
407 };
408
409 /* definition of messages passed to imsm_process_update */
410 enum imsm_update_type {
411 update_activate_spare,
412 update_create_array,
413 update_kill_array,
414 update_rename_array,
415 update_add_remove_disk,
416 update_reshape_container_disks,
417 update_reshape_migration,
418 update_takeover,
419 update_general_migration_checkpoint,
420 update_size_change,
421 };
422
423 struct imsm_update_activate_spare {
424 enum imsm_update_type type;
425 struct dl *dl;
426 int slot;
427 int array;
428 struct imsm_update_activate_spare *next;
429 };
430
431 struct geo_params {
432 char devnm[32];
433 char *dev_name;
434 unsigned long long size;
435 int level;
436 int layout;
437 int chunksize;
438 int raid_disks;
439 };
440
441 enum takeover_direction {
442 R10_TO_R0,
443 R0_TO_R10
444 };
445 struct imsm_update_takeover {
446 enum imsm_update_type type;
447 int subarray;
448 enum takeover_direction direction;
449 };
450
451 struct imsm_update_reshape {
452 enum imsm_update_type type;
453 int old_raid_disks;
454 int new_raid_disks;
455
456 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
457 };
458
459 struct imsm_update_reshape_migration {
460 enum imsm_update_type type;
461 int old_raid_disks;
462 int new_raid_disks;
463 /* fields for array migration changes
464 */
465 int subdev;
466 int new_level;
467 int new_layout;
468 int new_chunksize;
469
470 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
471 };
472
473 struct imsm_update_size_change {
474 enum imsm_update_type type;
475 int subdev;
476 long long new_size;
477 };
478
479 struct imsm_update_general_migration_checkpoint {
480 enum imsm_update_type type;
481 __u32 curr_migr_unit;
482 };
483
484 struct disk_info {
485 __u8 serial[MAX_RAID_SERIAL_LEN];
486 };
487
488 struct imsm_update_create_array {
489 enum imsm_update_type type;
490 int dev_idx;
491 struct imsm_dev dev;
492 };
493
494 struct imsm_update_kill_array {
495 enum imsm_update_type type;
496 int dev_idx;
497 };
498
499 struct imsm_update_rename_array {
500 enum imsm_update_type type;
501 __u8 name[MAX_RAID_SERIAL_LEN];
502 int dev_idx;
503 };
504
505 struct imsm_update_add_remove_disk {
506 enum imsm_update_type type;
507 };
508
509 static const char *_sys_dev_type[] = {
510 [SYS_DEV_UNKNOWN] = "Unknown",
511 [SYS_DEV_SAS] = "SAS",
512 [SYS_DEV_SATA] = "SATA",
513 [SYS_DEV_NVME] = "NVMe",
514 [SYS_DEV_VMD] = "VMD"
515 };
516
517 const char *get_sys_dev_type(enum sys_dev_type type)
518 {
519 if (type >= SYS_DEV_MAX)
520 type = SYS_DEV_UNKNOWN;
521
522 return _sys_dev_type[type];
523 }
524
525 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
526 {
527 struct intel_hba *result = xmalloc(sizeof(*result));
528
529 result->type = device->type;
530 result->path = xstrdup(device->path);
531 result->next = NULL;
532 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
533 result->pci_id++;
534
535 return result;
536 }
537
538 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
539 {
540 struct intel_hba *result;
541
542 for (result = hba; result; result = result->next) {
543 if (result->type == device->type && strcmp(result->path, device->path) == 0)
544 break;
545 }
546 return result;
547 }
548
549 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
550 {
551 struct intel_hba *hba;
552
553 /* check if disk attached to Intel HBA */
554 hba = find_intel_hba(super->hba, device);
555 if (hba != NULL)
556 return 1;
557 /* Check if HBA is already attached to super */
558 if (super->hba == NULL) {
559 super->hba = alloc_intel_hba(device);
560 return 1;
561 }
562
563 hba = super->hba;
564 /* Intel metadata allows for all disks attached to the same type HBA.
565 * Do not support HBA types mixing
566 */
567 if (device->type != hba->type)
568 return 2;
569
570 /* Always forbid spanning between VMD domains (seen as different controllers by mdadm) */
571 if (device->type == SYS_DEV_VMD && !path_attached_to_hba(device->path, hba->path))
572 return 2;
573
574 /* Multiple same type HBAs can be used if they share the same OROM */
575 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
576
577 if (device_orom != super->orom)
578 return 2;
579
580 while (hba->next)
581 hba = hba->next;
582
583 hba->next = alloc_intel_hba(device);
584 return 1;
585 }
586
587 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
588 {
589 struct sys_dev *list, *elem;
590 char *disk_path;
591
592 if ((list = find_intel_devices()) == NULL)
593 return 0;
594
595 if (fd < 0)
596 disk_path = (char *) devname;
597 else
598 disk_path = diskfd_to_devpath(fd);
599
600 if (!disk_path)
601 return 0;
602
603 for (elem = list; elem; elem = elem->next)
604 if (path_attached_to_hba(disk_path, elem->path))
605 return elem;
606
607 if (disk_path != devname)
608 free(disk_path);
609
610 return NULL;
611 }
612
613 static int find_intel_hba_capability(int fd, struct intel_super *super,
614 char *devname);
615
616 static struct supertype *match_metadata_desc_imsm(char *arg)
617 {
618 struct supertype *st;
619
620 if (strcmp(arg, "imsm") != 0 &&
621 strcmp(arg, "default") != 0
622 )
623 return NULL;
624
625 st = xcalloc(1, sizeof(*st));
626 st->ss = &super_imsm;
627 st->max_devs = IMSM_MAX_DEVICES;
628 st->minor_version = 0;
629 st->sb = NULL;
630 return st;
631 }
632
633 #ifndef MDASSEMBLE
634 static __u8 *get_imsm_version(struct imsm_super *mpb)
635 {
636 return &mpb->sig[MPB_SIG_LEN];
637 }
638 #endif
639
640 /* retrieve a disk directly from the anchor when the anchor is known to be
641 * up-to-date, currently only at load time
642 */
643 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
644 {
645 if (index >= mpb->num_disks)
646 return NULL;
647 return &mpb->disk[index];
648 }
649
650 /* retrieve the disk description based on a index of the disk
651 * in the sub-array
652 */
653 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
654 {
655 struct dl *d;
656
657 for (d = super->disks; d; d = d->next)
658 if (d->index == index)
659 return d;
660
661 return NULL;
662 }
663 /* retrieve a disk from the parsed metadata */
664 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
665 {
666 struct dl *dl;
667
668 dl = get_imsm_dl_disk(super, index);
669 if (dl)
670 return &dl->disk;
671
672 return NULL;
673 }
674
675 /* generate a checksum directly from the anchor when the anchor is known to be
676 * up-to-date, currently only at load or write_super after coalescing
677 */
678 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
679 {
680 __u32 end = mpb->mpb_size / sizeof(end);
681 __u32 *p = (__u32 *) mpb;
682 __u32 sum = 0;
683
684 while (end--) {
685 sum += __le32_to_cpu(*p);
686 p++;
687 }
688
689 return sum - __le32_to_cpu(mpb->check_sum);
690 }
691
692 static size_t sizeof_imsm_map(struct imsm_map *map)
693 {
694 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
695 }
696
697 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
698 {
699 /* A device can have 2 maps if it is in the middle of a migration.
700 * If second_map is:
701 * MAP_0 - we return the first map
702 * MAP_1 - we return the second map if it exists, else NULL
703 * MAP_X - we return the second map if it exists, else the first
704 */
705 struct imsm_map *map = &dev->vol.map[0];
706 struct imsm_map *map2 = NULL;
707
708 if (dev->vol.migr_state)
709 map2 = (void *)map + sizeof_imsm_map(map);
710
711 switch (second_map) {
712 case MAP_0:
713 break;
714 case MAP_1:
715 map = map2;
716 break;
717 case MAP_X:
718 if (map2)
719 map = map2;
720 break;
721 default:
722 map = NULL;
723 }
724 return map;
725
726 }
727
728 /* return the size of the device.
729 * migr_state increases the returned size if map[0] were to be duplicated
730 */
731 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
732 {
733 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
734 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
735
736 /* migrating means an additional map */
737 if (dev->vol.migr_state)
738 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
739 else if (migr_state)
740 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
741
742 return size;
743 }
744
745 #ifndef MDASSEMBLE
746 /* retrieve disk serial number list from a metadata update */
747 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
748 {
749 void *u = update;
750 struct disk_info *inf;
751
752 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
753 sizeof_imsm_dev(&update->dev, 0);
754
755 return inf;
756 }
757 #endif
758
759 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
760 {
761 int offset;
762 int i;
763 void *_mpb = mpb;
764
765 if (index >= mpb->num_raid_devs)
766 return NULL;
767
768 /* devices start after all disks */
769 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
770
771 for (i = 0; i <= index; i++)
772 if (i == index)
773 return _mpb + offset;
774 else
775 offset += sizeof_imsm_dev(_mpb + offset, 0);
776
777 return NULL;
778 }
779
780 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
781 {
782 struct intel_dev *dv;
783
784 if (index >= super->anchor->num_raid_devs)
785 return NULL;
786 for (dv = super->devlist; dv; dv = dv->next)
787 if (dv->index == index)
788 return dv->dev;
789 return NULL;
790 }
791
792 /*
793 * for second_map:
794 * == MAP_0 get first map
795 * == MAP_1 get second map
796 * == MAP_X than get map according to the current migr_state
797 */
798 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
799 int slot,
800 int second_map)
801 {
802 struct imsm_map *map;
803
804 map = get_imsm_map(dev, second_map);
805
806 /* top byte identifies disk under rebuild */
807 return __le32_to_cpu(map->disk_ord_tbl[slot]);
808 }
809
810 #define ord_to_idx(ord) (((ord) << 8) >> 8)
811 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
812 {
813 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
814
815 return ord_to_idx(ord);
816 }
817
818 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
819 {
820 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
821 }
822
823 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
824 {
825 int slot;
826 __u32 ord;
827
828 for (slot = 0; slot < map->num_members; slot++) {
829 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
830 if (ord_to_idx(ord) == idx)
831 return slot;
832 }
833
834 return -1;
835 }
836
837 static int get_imsm_raid_level(struct imsm_map *map)
838 {
839 if (map->raid_level == 1) {
840 if (map->num_members == 2)
841 return 1;
842 else
843 return 10;
844 }
845
846 return map->raid_level;
847 }
848
849 static int cmp_extent(const void *av, const void *bv)
850 {
851 const struct extent *a = av;
852 const struct extent *b = bv;
853 if (a->start < b->start)
854 return -1;
855 if (a->start > b->start)
856 return 1;
857 return 0;
858 }
859
860 static int count_memberships(struct dl *dl, struct intel_super *super)
861 {
862 int memberships = 0;
863 int i;
864
865 for (i = 0; i < super->anchor->num_raid_devs; i++) {
866 struct imsm_dev *dev = get_imsm_dev(super, i);
867 struct imsm_map *map = get_imsm_map(dev, MAP_0);
868
869 if (get_imsm_disk_slot(map, dl->index) >= 0)
870 memberships++;
871 }
872
873 return memberships;
874 }
875
876 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
877
878 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
879 {
880 if (lo == 0 || hi == 0)
881 return 1;
882 *lo = __le32_to_cpu((unsigned)n);
883 *hi = __le32_to_cpu((unsigned)(n >> 32));
884 return 0;
885 }
886
887 static unsigned long long join_u32(__u32 lo, __u32 hi)
888 {
889 return (unsigned long long)__le32_to_cpu(lo) |
890 (((unsigned long long)__le32_to_cpu(hi)) << 32);
891 }
892
893 static unsigned long long total_blocks(struct imsm_disk *disk)
894 {
895 if (disk == NULL)
896 return 0;
897 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
898 }
899
900 static unsigned long long pba_of_lba0(struct imsm_map *map)
901 {
902 if (map == NULL)
903 return 0;
904 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
905 }
906
907 static unsigned long long blocks_per_member(struct imsm_map *map)
908 {
909 if (map == NULL)
910 return 0;
911 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
912 }
913
914 #ifndef MDASSEMBLE
915 static unsigned long long num_data_stripes(struct imsm_map *map)
916 {
917 if (map == NULL)
918 return 0;
919 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
920 }
921
922 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
923 {
924 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
925 }
926 #endif
927
928 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
929 {
930 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
931 }
932
933 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
934 {
935 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
936 }
937
938 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
939 {
940 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
941 }
942
943 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
944 {
945 /* find a list of used extents on the given physical device */
946 struct extent *rv, *e;
947 int i;
948 int memberships = count_memberships(dl, super);
949 __u32 reservation;
950
951 /* trim the reserved area for spares, so they can join any array
952 * regardless of whether the OROM has assigned sectors from the
953 * IMSM_RESERVED_SECTORS region
954 */
955 if (dl->index == -1)
956 reservation = imsm_min_reserved_sectors(super);
957 else
958 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
959
960 rv = xcalloc(sizeof(struct extent), (memberships + 1));
961 e = rv;
962
963 for (i = 0; i < super->anchor->num_raid_devs; i++) {
964 struct imsm_dev *dev = get_imsm_dev(super, i);
965 struct imsm_map *map = get_imsm_map(dev, MAP_0);
966
967 if (get_imsm_disk_slot(map, dl->index) >= 0) {
968 e->start = pba_of_lba0(map);
969 e->size = blocks_per_member(map);
970 e++;
971 }
972 }
973 qsort(rv, memberships, sizeof(*rv), cmp_extent);
974
975 /* determine the start of the metadata
976 * when no raid devices are defined use the default
977 * ...otherwise allow the metadata to truncate the value
978 * as is the case with older versions of imsm
979 */
980 if (memberships) {
981 struct extent *last = &rv[memberships - 1];
982 unsigned long long remainder;
983
984 remainder = total_blocks(&dl->disk) - (last->start + last->size);
985 /* round down to 1k block to satisfy precision of the kernel
986 * 'size' interface
987 */
988 remainder &= ~1UL;
989 /* make sure remainder is still sane */
990 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
991 remainder = ROUND_UP(super->len, 512) >> 9;
992 if (reservation > remainder)
993 reservation = remainder;
994 }
995 e->start = total_blocks(&dl->disk) - reservation;
996 e->size = 0;
997 return rv;
998 }
999
1000 /* try to determine how much space is reserved for metadata from
1001 * the last get_extents() entry, otherwise fallback to the
1002 * default
1003 */
1004 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1005 {
1006 struct extent *e;
1007 int i;
1008 __u32 rv;
1009
1010 /* for spares just return a minimal reservation which will grow
1011 * once the spare is picked up by an array
1012 */
1013 if (dl->index == -1)
1014 return MPB_SECTOR_CNT;
1015
1016 e = get_extents(super, dl);
1017 if (!e)
1018 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1019
1020 /* scroll to last entry */
1021 for (i = 0; e[i].size; i++)
1022 continue;
1023
1024 rv = total_blocks(&dl->disk) - e[i].start;
1025
1026 free(e);
1027
1028 return rv;
1029 }
1030
1031 static int is_spare(struct imsm_disk *disk)
1032 {
1033 return (disk->status & SPARE_DISK) == SPARE_DISK;
1034 }
1035
1036 static int is_configured(struct imsm_disk *disk)
1037 {
1038 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1039 }
1040
1041 static int is_failed(struct imsm_disk *disk)
1042 {
1043 return (disk->status & FAILED_DISK) == FAILED_DISK;
1044 }
1045
1046 /* try to determine how much space is reserved for metadata from
1047 * the last get_extents() entry on the smallest active disk,
1048 * otherwise fallback to the default
1049 */
1050 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1051 {
1052 struct extent *e;
1053 int i;
1054 unsigned long long min_active;
1055 __u32 remainder;
1056 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1057 struct dl *dl, *dl_min = NULL;
1058
1059 if (!super)
1060 return rv;
1061
1062 min_active = 0;
1063 for (dl = super->disks; dl; dl = dl->next) {
1064 if (dl->index < 0)
1065 continue;
1066 unsigned long long blocks = total_blocks(&dl->disk);
1067 if (blocks < min_active || min_active == 0) {
1068 dl_min = dl;
1069 min_active = blocks;
1070 }
1071 }
1072 if (!dl_min)
1073 return rv;
1074
1075 /* find last lba used by subarrays on the smallest active disk */
1076 e = get_extents(super, dl_min);
1077 if (!e)
1078 return rv;
1079 for (i = 0; e[i].size; i++)
1080 continue;
1081
1082 remainder = min_active - e[i].start;
1083 free(e);
1084
1085 /* to give priority to recovery we should not require full
1086 IMSM_RESERVED_SECTORS from the spare */
1087 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1088
1089 /* if real reservation is smaller use that value */
1090 return (remainder < rv) ? remainder : rv;
1091 }
1092
1093 /* Return minimum size of a spare that can be used in this array*/
1094 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1095 {
1096 struct intel_super *super = st->sb;
1097 struct dl *dl;
1098 struct extent *e;
1099 int i;
1100 unsigned long long rv = 0;
1101
1102 if (!super)
1103 return rv;
1104 /* find first active disk in array */
1105 dl = super->disks;
1106 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1107 dl = dl->next;
1108 if (!dl)
1109 return rv;
1110 /* find last lba used by subarrays */
1111 e = get_extents(super, dl);
1112 if (!e)
1113 return rv;
1114 for (i = 0; e[i].size; i++)
1115 continue;
1116 if (i > 0)
1117 rv = e[i-1].start + e[i-1].size;
1118 free(e);
1119
1120 /* add the amount of space needed for metadata */
1121 rv = rv + imsm_min_reserved_sectors(super);
1122
1123 return rv * 512;
1124 }
1125
1126 static int is_gen_migration(struct imsm_dev *dev);
1127
1128 #ifndef MDASSEMBLE
1129 static __u64 blocks_per_migr_unit(struct intel_super *super,
1130 struct imsm_dev *dev);
1131
1132 static void print_imsm_dev(struct intel_super *super,
1133 struct imsm_dev *dev,
1134 char *uuid,
1135 int disk_idx)
1136 {
1137 __u64 sz;
1138 int slot, i;
1139 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1140 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1141 __u32 ord;
1142
1143 printf("\n");
1144 printf("[%.16s]:\n", dev->volume);
1145 printf(" UUID : %s\n", uuid);
1146 printf(" RAID Level : %d", get_imsm_raid_level(map));
1147 if (map2)
1148 printf(" <-- %d", get_imsm_raid_level(map2));
1149 printf("\n");
1150 printf(" Members : %d", map->num_members);
1151 if (map2)
1152 printf(" <-- %d", map2->num_members);
1153 printf("\n");
1154 printf(" Slots : [");
1155 for (i = 0; i < map->num_members; i++) {
1156 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1157 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1158 }
1159 printf("]");
1160 if (map2) {
1161 printf(" <-- [");
1162 for (i = 0; i < map2->num_members; i++) {
1163 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1164 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1165 }
1166 printf("]");
1167 }
1168 printf("\n");
1169 printf(" Failed disk : ");
1170 if (map->failed_disk_num == 0xff)
1171 printf("none");
1172 else
1173 printf("%i", map->failed_disk_num);
1174 printf("\n");
1175 slot = get_imsm_disk_slot(map, disk_idx);
1176 if (slot >= 0) {
1177 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1178 printf(" This Slot : %d%s\n", slot,
1179 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1180 } else
1181 printf(" This Slot : ?\n");
1182 sz = __le32_to_cpu(dev->size_high);
1183 sz <<= 32;
1184 sz += __le32_to_cpu(dev->size_low);
1185 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1186 human_size(sz * 512));
1187 sz = blocks_per_member(map);
1188 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1189 human_size(sz * 512));
1190 printf(" Sector Offset : %llu\n",
1191 pba_of_lba0(map));
1192 printf(" Num Stripes : %llu\n",
1193 num_data_stripes(map));
1194 printf(" Chunk Size : %u KiB",
1195 __le16_to_cpu(map->blocks_per_strip) / 2);
1196 if (map2)
1197 printf(" <-- %u KiB",
1198 __le16_to_cpu(map2->blocks_per_strip) / 2);
1199 printf("\n");
1200 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1201 printf(" Migrate State : ");
1202 if (dev->vol.migr_state) {
1203 if (migr_type(dev) == MIGR_INIT)
1204 printf("initialize\n");
1205 else if (migr_type(dev) == MIGR_REBUILD)
1206 printf("rebuild\n");
1207 else if (migr_type(dev) == MIGR_VERIFY)
1208 printf("check\n");
1209 else if (migr_type(dev) == MIGR_GEN_MIGR)
1210 printf("general migration\n");
1211 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1212 printf("state change\n");
1213 else if (migr_type(dev) == MIGR_REPAIR)
1214 printf("repair\n");
1215 else
1216 printf("<unknown:%d>\n", migr_type(dev));
1217 } else
1218 printf("idle\n");
1219 printf(" Map State : %s", map_state_str[map->map_state]);
1220 if (dev->vol.migr_state) {
1221 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1222
1223 printf(" <-- %s", map_state_str[map->map_state]);
1224 printf("\n Checkpoint : %u ",
1225 __le32_to_cpu(dev->vol.curr_migr_unit));
1226 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
1227 printf("(N/A)");
1228 else
1229 printf("(%llu)", (unsigned long long)
1230 blocks_per_migr_unit(super, dev));
1231 }
1232 printf("\n");
1233 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1234 }
1235
1236 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1237 {
1238 char str[MAX_RAID_SERIAL_LEN + 1];
1239 __u64 sz;
1240
1241 if (index < -1 || !disk)
1242 return;
1243
1244 printf("\n");
1245 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1246 if (index >= 0)
1247 printf(" Disk%02d Serial : %s\n", index, str);
1248 else
1249 printf(" Disk Serial : %s\n", str);
1250 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1251 is_configured(disk) ? " active" : "",
1252 is_failed(disk) ? " failed" : "");
1253 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1254 sz = total_blocks(disk) - reserved;
1255 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1256 human_size(sz * 512));
1257 }
1258
1259 void examine_migr_rec_imsm(struct intel_super *super)
1260 {
1261 struct migr_record *migr_rec = super->migr_rec;
1262 struct imsm_super *mpb = super->anchor;
1263 int i;
1264
1265 for (i = 0; i < mpb->num_raid_devs; i++) {
1266 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1267 struct imsm_map *map;
1268 int slot = -1;
1269
1270 if (is_gen_migration(dev) == 0)
1271 continue;
1272
1273 printf("\nMigration Record Information:");
1274
1275 /* first map under migration */
1276 map = get_imsm_map(dev, MAP_0);
1277 if (map)
1278 slot = get_imsm_disk_slot(map, super->disks->index);
1279 if (map == NULL || slot > 1 || slot < 0) {
1280 printf(" Empty\n ");
1281 printf("Examine one of first two disks in array\n");
1282 break;
1283 }
1284 printf("\n Status : ");
1285 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1286 printf("Normal\n");
1287 else
1288 printf("Contains Data\n");
1289 printf(" Current Unit : %u\n",
1290 __le32_to_cpu(migr_rec->curr_migr_unit));
1291 printf(" Family : %u\n",
1292 __le32_to_cpu(migr_rec->family_num));
1293 printf(" Ascending : %u\n",
1294 __le32_to_cpu(migr_rec->ascending_migr));
1295 printf(" Blocks Per Unit : %u\n",
1296 __le32_to_cpu(migr_rec->blocks_per_unit));
1297 printf(" Dest. Depth Per Unit : %u\n",
1298 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1299 printf(" Checkpoint Area pba : %u\n",
1300 __le32_to_cpu(migr_rec->ckpt_area_pba));
1301 printf(" First member lba : %u\n",
1302 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1303 printf(" Total Number of Units : %u\n",
1304 __le32_to_cpu(migr_rec->num_migr_units));
1305 printf(" Size of volume : %u\n",
1306 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1307 printf(" Expansion space for LBA64 : %u\n",
1308 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1309 printf(" Record was read from : %u\n",
1310 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1311
1312 break;
1313 }
1314 }
1315 #endif /* MDASSEMBLE */
1316 /*******************************************************************************
1317 * function: imsm_check_attributes
1318 * Description: Function checks if features represented by attributes flags
1319 * are supported by mdadm.
1320 * Parameters:
1321 * attributes - Attributes read from metadata
1322 * Returns:
1323 * 0 - passed attributes contains unsupported features flags
1324 * 1 - all features are supported
1325 ******************************************************************************/
1326 static int imsm_check_attributes(__u32 attributes)
1327 {
1328 int ret_val = 1;
1329 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1330
1331 not_supported &= ~MPB_ATTRIB_IGNORED;
1332
1333 not_supported &= attributes;
1334 if (not_supported) {
1335 pr_err("(IMSM): Unsupported attributes : %x\n",
1336 (unsigned)__le32_to_cpu(not_supported));
1337 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1338 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1339 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1340 }
1341 if (not_supported & MPB_ATTRIB_2TB) {
1342 dprintf("\t\tMPB_ATTRIB_2TB\n");
1343 not_supported ^= MPB_ATTRIB_2TB;
1344 }
1345 if (not_supported & MPB_ATTRIB_RAID0) {
1346 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1347 not_supported ^= MPB_ATTRIB_RAID0;
1348 }
1349 if (not_supported & MPB_ATTRIB_RAID1) {
1350 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1351 not_supported ^= MPB_ATTRIB_RAID1;
1352 }
1353 if (not_supported & MPB_ATTRIB_RAID10) {
1354 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1355 not_supported ^= MPB_ATTRIB_RAID10;
1356 }
1357 if (not_supported & MPB_ATTRIB_RAID1E) {
1358 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1359 not_supported ^= MPB_ATTRIB_RAID1E;
1360 }
1361 if (not_supported & MPB_ATTRIB_RAID5) {
1362 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1363 not_supported ^= MPB_ATTRIB_RAID5;
1364 }
1365 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1366 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1367 not_supported ^= MPB_ATTRIB_RAIDCNG;
1368 }
1369 if (not_supported & MPB_ATTRIB_BBM) {
1370 dprintf("\t\tMPB_ATTRIB_BBM\n");
1371 not_supported ^= MPB_ATTRIB_BBM;
1372 }
1373 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1374 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1375 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1376 }
1377 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1378 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1379 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1380 }
1381 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1382 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1383 not_supported ^= MPB_ATTRIB_2TB_DISK;
1384 }
1385 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1386 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1387 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1388 }
1389 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1390 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1391 not_supported ^= MPB_ATTRIB_NEVER_USE;
1392 }
1393
1394 if (not_supported)
1395 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
1396
1397 ret_val = 0;
1398 }
1399
1400 return ret_val;
1401 }
1402
1403 #ifndef MDASSEMBLE
1404 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1405
1406 static void examine_super_imsm(struct supertype *st, char *homehost)
1407 {
1408 struct intel_super *super = st->sb;
1409 struct imsm_super *mpb = super->anchor;
1410 char str[MAX_SIGNATURE_LENGTH];
1411 int i;
1412 struct mdinfo info;
1413 char nbuf[64];
1414 __u32 sum;
1415 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1416 struct dl *dl;
1417
1418 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1419 printf(" Magic : %s\n", str);
1420 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1421 printf(" Version : %s\n", get_imsm_version(mpb));
1422 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1423 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1424 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1425 printf(" Attributes : ");
1426 if (imsm_check_attributes(mpb->attributes))
1427 printf("All supported\n");
1428 else
1429 printf("not supported\n");
1430 getinfo_super_imsm(st, &info, NULL);
1431 fname_from_uuid(st, &info, nbuf, ':');
1432 printf(" UUID : %s\n", nbuf + 5);
1433 sum = __le32_to_cpu(mpb->check_sum);
1434 printf(" Checksum : %08x %s\n", sum,
1435 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1436 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1437 printf(" Disks : %d\n", mpb->num_disks);
1438 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1439 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1440 if (super->bbm_log) {
1441 struct bbm_log *log = super->bbm_log;
1442
1443 printf("\n");
1444 printf("Bad Block Management Log:\n");
1445 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1446 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1447 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1448 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1449 printf(" First Spare : %llx\n",
1450 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1451 }
1452 for (i = 0; i < mpb->num_raid_devs; i++) {
1453 struct mdinfo info;
1454 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1455
1456 super->current_vol = i;
1457 getinfo_super_imsm(st, &info, NULL);
1458 fname_from_uuid(st, &info, nbuf, ':');
1459 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1460 }
1461 for (i = 0; i < mpb->num_disks; i++) {
1462 if (i == super->disks->index)
1463 continue;
1464 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1465 }
1466
1467 for (dl = super->disks; dl; dl = dl->next)
1468 if (dl->index == -1)
1469 print_imsm_disk(&dl->disk, -1, reserved);
1470
1471 examine_migr_rec_imsm(super);
1472 }
1473
1474 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1475 {
1476 /* We just write a generic IMSM ARRAY entry */
1477 struct mdinfo info;
1478 char nbuf[64];
1479 struct intel_super *super = st->sb;
1480
1481 if (!super->anchor->num_raid_devs) {
1482 printf("ARRAY metadata=imsm\n");
1483 return;
1484 }
1485
1486 getinfo_super_imsm(st, &info, NULL);
1487 fname_from_uuid(st, &info, nbuf, ':');
1488 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1489 }
1490
1491 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1492 {
1493 /* We just write a generic IMSM ARRAY entry */
1494 struct mdinfo info;
1495 char nbuf[64];
1496 char nbuf1[64];
1497 struct intel_super *super = st->sb;
1498 int i;
1499
1500 if (!super->anchor->num_raid_devs)
1501 return;
1502
1503 getinfo_super_imsm(st, &info, NULL);
1504 fname_from_uuid(st, &info, nbuf, ':');
1505 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1506 struct imsm_dev *dev = get_imsm_dev(super, i);
1507
1508 super->current_vol = i;
1509 getinfo_super_imsm(st, &info, NULL);
1510 fname_from_uuid(st, &info, nbuf1, ':');
1511 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1512 dev->volume, nbuf + 5, i, nbuf1 + 5);
1513 }
1514 }
1515
1516 static void export_examine_super_imsm(struct supertype *st)
1517 {
1518 struct intel_super *super = st->sb;
1519 struct imsm_super *mpb = super->anchor;
1520 struct mdinfo info;
1521 char nbuf[64];
1522
1523 getinfo_super_imsm(st, &info, NULL);
1524 fname_from_uuid(st, &info, nbuf, ':');
1525 printf("MD_METADATA=imsm\n");
1526 printf("MD_LEVEL=container\n");
1527 printf("MD_UUID=%s\n", nbuf+5);
1528 printf("MD_DEVICES=%u\n", mpb->num_disks);
1529 }
1530
1531 static int copy_metadata_imsm(struct supertype *st, int from, int to)
1532 {
1533 /* The second last 512byte sector of the device contains
1534 * the "struct imsm_super" metadata.
1535 * This contains mpb_size which is the size in bytes of the
1536 * extended metadata. This is located immediately before
1537 * the imsm_super.
1538 * We want to read all that, plus the last sector which
1539 * may contain a migration record, and write it all
1540 * to the target.
1541 */
1542 void *buf;
1543 unsigned long long dsize, offset;
1544 int sectors;
1545 struct imsm_super *sb;
1546 int written = 0;
1547
1548 if (posix_memalign(&buf, 4096, 4096) != 0)
1549 return 1;
1550
1551 if (!get_dev_size(from, NULL, &dsize))
1552 goto err;
1553
1554 if (lseek64(from, dsize-1024, 0) < 0)
1555 goto err;
1556 if (read(from, buf, 512) != 512)
1557 goto err;
1558 sb = buf;
1559 if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
1560 goto err;
1561
1562 sectors = mpb_sectors(sb) + 2;
1563 offset = dsize - sectors * 512;
1564 if (lseek64(from, offset, 0) < 0 ||
1565 lseek64(to, offset, 0) < 0)
1566 goto err;
1567 while (written < sectors * 512) {
1568 int n = sectors*512 - written;
1569 if (n > 4096)
1570 n = 4096;
1571 if (read(from, buf, n) != n)
1572 goto err;
1573 if (write(to, buf, n) != n)
1574 goto err;
1575 written += n;
1576 }
1577 free(buf);
1578 return 0;
1579 err:
1580 free(buf);
1581 return 1;
1582 }
1583
1584 static void detail_super_imsm(struct supertype *st, char *homehost)
1585 {
1586 struct mdinfo info;
1587 char nbuf[64];
1588
1589 getinfo_super_imsm(st, &info, NULL);
1590 fname_from_uuid(st, &info, nbuf, ':');
1591 printf("\n UUID : %s\n", nbuf + 5);
1592 }
1593
1594 static void brief_detail_super_imsm(struct supertype *st)
1595 {
1596 struct mdinfo info;
1597 char nbuf[64];
1598 getinfo_super_imsm(st, &info, NULL);
1599 fname_from_uuid(st, &info, nbuf, ':');
1600 printf(" UUID=%s", nbuf + 5);
1601 }
1602
1603 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1604 static void fd2devname(int fd, char *name);
1605
1606 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1607 {
1608 /* dump an unsorted list of devices attached to AHCI Intel storage
1609 * controller, as well as non-connected ports
1610 */
1611 int hba_len = strlen(hba_path) + 1;
1612 struct dirent *ent;
1613 DIR *dir;
1614 char *path = NULL;
1615 int err = 0;
1616 unsigned long port_mask = (1 << port_count) - 1;
1617
1618 if (port_count > (int)sizeof(port_mask) * 8) {
1619 if (verbose > 0)
1620 pr_err("port_count %d out of range\n", port_count);
1621 return 2;
1622 }
1623
1624 /* scroll through /sys/dev/block looking for devices attached to
1625 * this hba
1626 */
1627 dir = opendir("/sys/dev/block");
1628 if (!dir)
1629 return 1;
1630
1631 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1632 int fd;
1633 char model[64];
1634 char vendor[64];
1635 char buf[1024];
1636 int major, minor;
1637 char *device;
1638 char *c;
1639 int port;
1640 int type;
1641
1642 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1643 continue;
1644 path = devt_to_devpath(makedev(major, minor));
1645 if (!path)
1646 continue;
1647 if (!path_attached_to_hba(path, hba_path)) {
1648 free(path);
1649 path = NULL;
1650 continue;
1651 }
1652
1653 /* retrieve the scsi device type */
1654 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1655 if (verbose > 0)
1656 pr_err("failed to allocate 'device'\n");
1657 err = 2;
1658 break;
1659 }
1660 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1661 if (load_sys(device, buf, sizeof(buf)) != 0) {
1662 if (verbose > 0)
1663 pr_err("failed to read device type for %s\n",
1664 path);
1665 err = 2;
1666 free(device);
1667 break;
1668 }
1669 type = strtoul(buf, NULL, 10);
1670
1671 /* if it's not a disk print the vendor and model */
1672 if (!(type == 0 || type == 7 || type == 14)) {
1673 vendor[0] = '\0';
1674 model[0] = '\0';
1675 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1676 if (load_sys(device, buf, sizeof(buf)) == 0) {
1677 strncpy(vendor, buf, sizeof(vendor));
1678 vendor[sizeof(vendor) - 1] = '\0';
1679 c = (char *) &vendor[sizeof(vendor) - 1];
1680 while (isspace(*c) || *c == '\0')
1681 *c-- = '\0';
1682
1683 }
1684 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1685 if (load_sys(device, buf, sizeof(buf)) == 0) {
1686 strncpy(model, buf, sizeof(model));
1687 model[sizeof(model) - 1] = '\0';
1688 c = (char *) &model[sizeof(model) - 1];
1689 while (isspace(*c) || *c == '\0')
1690 *c-- = '\0';
1691 }
1692
1693 if (vendor[0] && model[0])
1694 sprintf(buf, "%.64s %.64s", vendor, model);
1695 else
1696 switch (type) { /* numbers from hald/linux/device.c */
1697 case 1: sprintf(buf, "tape"); break;
1698 case 2: sprintf(buf, "printer"); break;
1699 case 3: sprintf(buf, "processor"); break;
1700 case 4:
1701 case 5: sprintf(buf, "cdrom"); break;
1702 case 6: sprintf(buf, "scanner"); break;
1703 case 8: sprintf(buf, "media_changer"); break;
1704 case 9: sprintf(buf, "comm"); break;
1705 case 12: sprintf(buf, "raid"); break;
1706 default: sprintf(buf, "unknown");
1707 }
1708 } else
1709 buf[0] = '\0';
1710 free(device);
1711
1712 /* chop device path to 'host%d' and calculate the port number */
1713 c = strchr(&path[hba_len], '/');
1714 if (!c) {
1715 if (verbose > 0)
1716 pr_err("%s - invalid path name\n", path + hba_len);
1717 err = 2;
1718 break;
1719 }
1720 *c = '\0';
1721 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
1722 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
1723 port -= host_base;
1724 else {
1725 if (verbose > 0) {
1726 *c = '/'; /* repair the full string */
1727 pr_err("failed to determine port number for %s\n",
1728 path);
1729 }
1730 err = 2;
1731 break;
1732 }
1733
1734 /* mark this port as used */
1735 port_mask &= ~(1 << port);
1736
1737 /* print out the device information */
1738 if (buf[0]) {
1739 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1740 continue;
1741 }
1742
1743 fd = dev_open(ent->d_name, O_RDONLY);
1744 if (fd < 0)
1745 printf(" Port%d : - disk info unavailable -\n", port);
1746 else {
1747 fd2devname(fd, buf);
1748 printf(" Port%d : %s", port, buf);
1749 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1750 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1751 else
1752 printf(" ()\n");
1753 close(fd);
1754 }
1755 free(path);
1756 path = NULL;
1757 }
1758 if (path)
1759 free(path);
1760 if (dir)
1761 closedir(dir);
1762 if (err == 0) {
1763 int i;
1764
1765 for (i = 0; i < port_count; i++)
1766 if (port_mask & (1 << i))
1767 printf(" Port%d : - no device attached -\n", i);
1768 }
1769
1770 return err;
1771 }
1772
1773 static int print_vmd_attached_devs(struct sys_dev *hba)
1774 {
1775 struct dirent *ent;
1776 DIR *dir;
1777 char path[292];
1778 char link[256];
1779 char *c, *rp;
1780
1781 if (hba->type != SYS_DEV_VMD)
1782 return 1;
1783
1784 /* scroll through /sys/dev/block looking for devices attached to
1785 * this hba
1786 */
1787 dir = opendir("/sys/bus/pci/drivers/nvme");
1788 if (!dir)
1789 return 1;
1790
1791 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1792 int n;
1793
1794 /* is 'ent' a device? check that the 'subsystem' link exists and
1795 * that its target matches 'bus'
1796 */
1797 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
1798 ent->d_name);
1799 n = readlink(path, link, sizeof(link));
1800 if (n < 0 || n >= (int)sizeof(link))
1801 continue;
1802 link[n] = '\0';
1803 c = strrchr(link, '/');
1804 if (!c)
1805 continue;
1806 if (strncmp("pci", c+1, strlen("pci")) != 0)
1807 continue;
1808
1809 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
1810 /* if not a intel NVMe - skip it*/
1811 if (devpath_to_vendor(path) != 0x8086)
1812 continue;
1813
1814 rp = realpath(path, NULL);
1815 if (!rp)
1816 continue;
1817
1818 if (path_attached_to_hba(rp, hba->path)) {
1819 printf(" NVMe under VMD : %s\n", rp);
1820 }
1821 free(rp);
1822 }
1823
1824 closedir(dir);
1825 return 0;
1826 }
1827
1828 static void print_found_intel_controllers(struct sys_dev *elem)
1829 {
1830 for (; elem; elem = elem->next) {
1831 pr_err("found Intel(R) ");
1832 if (elem->type == SYS_DEV_SATA)
1833 fprintf(stderr, "SATA ");
1834 else if (elem->type == SYS_DEV_SAS)
1835 fprintf(stderr, "SAS ");
1836 else if (elem->type == SYS_DEV_NVME)
1837 fprintf(stderr, "NVMe ");
1838
1839 if (elem->type == SYS_DEV_VMD)
1840 fprintf(stderr, "VMD domain");
1841 else
1842 fprintf(stderr, "RAID controller");
1843
1844 if (elem->pci_id)
1845 fprintf(stderr, " at %s", elem->pci_id);
1846 fprintf(stderr, ".\n");
1847 }
1848 fflush(stderr);
1849 }
1850
1851 static int ahci_get_port_count(const char *hba_path, int *port_count)
1852 {
1853 struct dirent *ent;
1854 DIR *dir;
1855 int host_base = -1;
1856
1857 *port_count = 0;
1858 if ((dir = opendir(hba_path)) == NULL)
1859 return -1;
1860
1861 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1862 int host;
1863
1864 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
1865 ((sscanf(ent->d_name, "host%d", &host) != 1)))
1866 continue;
1867 if (*port_count == 0)
1868 host_base = host;
1869 else if (host < host_base)
1870 host_base = host;
1871
1872 if (host + 1 > *port_count + host_base)
1873 *port_count = host + 1 - host_base;
1874 }
1875 closedir(dir);
1876 return host_base;
1877 }
1878
1879 static void print_imsm_capability(const struct imsm_orom *orom)
1880 {
1881 printf(" Platform : Intel(R) ");
1882 if (orom->capabilities == 0 && orom->driver_features == 0)
1883 printf("Matrix Storage Manager\n");
1884 else
1885 printf("Rapid Storage Technology%s\n",
1886 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
1887 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
1888 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
1889 orom->minor_ver, orom->hotfix_ver, orom->build);
1890 printf(" RAID Levels :%s%s%s%s%s\n",
1891 imsm_orom_has_raid0(orom) ? " raid0" : "",
1892 imsm_orom_has_raid1(orom) ? " raid1" : "",
1893 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1894 imsm_orom_has_raid10(orom) ? " raid10" : "",
1895 imsm_orom_has_raid5(orom) ? " raid5" : "");
1896 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1897 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1898 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1899 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1900 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1901 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1902 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1903 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1904 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1905 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1906 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1907 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1908 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1909 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1910 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1911 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1912 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1913 printf(" 2TB volumes :%s supported\n",
1914 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
1915 printf(" 2TB disks :%s supported\n",
1916 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
1917 printf(" Max Disks : %d\n", orom->tds);
1918 printf(" Max Volumes : %d per array, %d per %s\n",
1919 orom->vpa, orom->vphba,
1920 imsm_orom_is_nvme(orom) ? "platform" : "controller");
1921 return;
1922 }
1923
1924 static void print_imsm_capability_export(const struct imsm_orom *orom)
1925 {
1926 printf("MD_FIRMWARE_TYPE=imsm\n");
1927 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
1928 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1929 orom->hotfix_ver, orom->build);
1930 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
1931 imsm_orom_has_raid0(orom) ? "raid0 " : "",
1932 imsm_orom_has_raid1(orom) ? "raid1 " : "",
1933 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
1934 imsm_orom_has_raid5(orom) ? "raid10 " : "",
1935 imsm_orom_has_raid10(orom) ? "raid5 " : "");
1936 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1937 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
1938 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
1939 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
1940 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
1941 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
1942 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
1943 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
1944 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
1945 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
1946 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
1947 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
1948 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
1949 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
1950 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
1951 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
1952 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
1953 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
1954 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
1955 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
1956 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
1957 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
1958 }
1959
1960 static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
1961 {
1962 /* There are two components to imsm platform support, the ahci SATA
1963 * controller and the option-rom. To find the SATA controller we
1964 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1965 * controller with the Intel vendor id is present. This approach
1966 * allows mdadm to leverage the kernel's ahci detection logic, with the
1967 * caveat that if ahci.ko is not loaded mdadm will not be able to
1968 * detect platform raid capabilities. The option-rom resides in a
1969 * platform "Adapter ROM". We scan for its signature to retrieve the
1970 * platform capabilities. If raid support is disabled in the BIOS the
1971 * option-rom capability structure will not be available.
1972 */
1973 struct sys_dev *list, *hba;
1974 int host_base = 0;
1975 int port_count = 0;
1976 int result=1;
1977
1978 if (enumerate_only) {
1979 if (check_env("IMSM_NO_PLATFORM"))
1980 return 0;
1981 list = find_intel_devices();
1982 if (!list)
1983 return 2;
1984 for (hba = list; hba; hba = hba->next) {
1985 if (find_imsm_capability(hba)) {
1986 result = 0;
1987 break;
1988 }
1989 else
1990 result = 2;
1991 }
1992 return result;
1993 }
1994
1995 list = find_intel_devices();
1996 if (!list) {
1997 if (verbose > 0)
1998 pr_err("no active Intel(R) RAID controller found.\n");
1999 return 2;
2000 } else if (verbose > 0)
2001 print_found_intel_controllers(list);
2002
2003 for (hba = list; hba; hba = hba->next) {
2004 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
2005 continue;
2006 if (!find_imsm_capability(hba)) {
2007 char buf[PATH_MAX];
2008 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
2009 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2010 get_sys_dev_type(hba->type));
2011 continue;
2012 }
2013 result = 0;
2014 }
2015
2016 if (controller_path && result == 1) {
2017 pr_err("no active Intel(R) RAID controller found under %s\n",
2018 controller_path);
2019 return result;
2020 }
2021
2022 const struct orom_entry *entry;
2023
2024 for (entry = orom_entries; entry; entry = entry->next) {
2025 if (entry->type == SYS_DEV_VMD) {
2026 for (hba = list; hba; hba = hba->next) {
2027 if (hba->type == SYS_DEV_VMD) {
2028 char buf[PATH_MAX];
2029 print_imsm_capability(&entry->orom);
2030 printf(" I/O Controller : %s (%s)\n",
2031 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
2032 if (print_vmd_attached_devs(hba)) {
2033 if (verbose > 0)
2034 pr_err("failed to get devices attached to VMD domain.\n");
2035 result |= 2;
2036 }
2037 printf("\n");
2038 }
2039 }
2040 continue;
2041 }
2042
2043 print_imsm_capability(&entry->orom);
2044 if (entry->type == SYS_DEV_NVME) {
2045 for (hba = list; hba; hba = hba->next) {
2046 if (hba->type == SYS_DEV_NVME)
2047 printf(" NVMe Device : %s\n", hba->path);
2048 }
2049 printf("\n");
2050 continue;
2051 }
2052
2053 struct devid_list *devid;
2054 for (devid = entry->devid_list; devid; devid = devid->next) {
2055 hba = device_by_id(devid->devid);
2056 if (!hba)
2057 continue;
2058
2059 printf(" I/O Controller : %s (%s)\n",
2060 hba->path, get_sys_dev_type(hba->type));
2061 if (hba->type == SYS_DEV_SATA) {
2062 host_base = ahci_get_port_count(hba->path, &port_count);
2063 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2064 if (verbose > 0)
2065 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
2066 result |= 2;
2067 }
2068 }
2069 }
2070 printf("\n");
2071 }
2072
2073 return result;
2074 }
2075
2076 static int export_detail_platform_imsm(int verbose, char *controller_path)
2077 {
2078 struct sys_dev *list, *hba;
2079 int result=1;
2080
2081 list = find_intel_devices();
2082 if (!list) {
2083 if (verbose > 0)
2084 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2085 result = 2;
2086 return result;
2087 }
2088
2089 for (hba = list; hba; hba = hba->next) {
2090 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2091 continue;
2092 if (!find_imsm_capability(hba) && verbose > 0) {
2093 char buf[PATH_MAX];
2094 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2095 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2096 }
2097 else
2098 result = 0;
2099 }
2100
2101 const struct orom_entry *entry;
2102
2103 for (entry = orom_entries; entry; entry = entry->next) {
2104 if (entry->type == SYS_DEV_VMD) {
2105 for (hba = list; hba; hba = hba->next)
2106 print_imsm_capability_export(&entry->orom);
2107 continue;
2108 }
2109 print_imsm_capability_export(&entry->orom);
2110 }
2111
2112 return result;
2113 }
2114
2115 #endif
2116
2117 static int match_home_imsm(struct supertype *st, char *homehost)
2118 {
2119 /* the imsm metadata format does not specify any host
2120 * identification information. We return -1 since we can never
2121 * confirm nor deny whether a given array is "meant" for this
2122 * host. We rely on compare_super and the 'family_num' fields to
2123 * exclude member disks that do not belong, and we rely on
2124 * mdadm.conf to specify the arrays that should be assembled.
2125 * Auto-assembly may still pick up "foreign" arrays.
2126 */
2127
2128 return -1;
2129 }
2130
2131 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2132 {
2133 /* The uuid returned here is used for:
2134 * uuid to put into bitmap file (Create, Grow)
2135 * uuid for backup header when saving critical section (Grow)
2136 * comparing uuids when re-adding a device into an array
2137 * In these cases the uuid required is that of the data-array,
2138 * not the device-set.
2139 * uuid to recognise same set when adding a missing device back
2140 * to an array. This is a uuid for the device-set.
2141 *
2142 * For each of these we can make do with a truncated
2143 * or hashed uuid rather than the original, as long as
2144 * everyone agrees.
2145 * In each case the uuid required is that of the data-array,
2146 * not the device-set.
2147 */
2148 /* imsm does not track uuid's so we synthesis one using sha1 on
2149 * - The signature (Which is constant for all imsm array, but no matter)
2150 * - the orig_family_num of the container
2151 * - the index number of the volume
2152 * - the 'serial' number of the volume.
2153 * Hopefully these are all constant.
2154 */
2155 struct intel_super *super = st->sb;
2156
2157 char buf[20];
2158 struct sha1_ctx ctx;
2159 struct imsm_dev *dev = NULL;
2160 __u32 family_num;
2161
2162 /* some mdadm versions failed to set ->orig_family_num, in which
2163 * case fall back to ->family_num. orig_family_num will be
2164 * fixed up with the first metadata update.
2165 */
2166 family_num = super->anchor->orig_family_num;
2167 if (family_num == 0)
2168 family_num = super->anchor->family_num;
2169 sha1_init_ctx(&ctx);
2170 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
2171 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
2172 if (super->current_vol >= 0)
2173 dev = get_imsm_dev(super, super->current_vol);
2174 if (dev) {
2175 __u32 vol = super->current_vol;
2176 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2177 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2178 }
2179 sha1_finish_ctx(&ctx, buf);
2180 memcpy(uuid, buf, 4*4);
2181 }
2182
2183 #if 0
2184 static void
2185 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
2186 {
2187 __u8 *v = get_imsm_version(mpb);
2188 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2189 char major[] = { 0, 0, 0 };
2190 char minor[] = { 0 ,0, 0 };
2191 char patch[] = { 0, 0, 0 };
2192 char *ver_parse[] = { major, minor, patch };
2193 int i, j;
2194
2195 i = j = 0;
2196 while (*v != '\0' && v < end) {
2197 if (*v != '.' && j < 2)
2198 ver_parse[i][j++] = *v;
2199 else {
2200 i++;
2201 j = 0;
2202 }
2203 v++;
2204 }
2205
2206 *m = strtol(minor, NULL, 0);
2207 *p = strtol(patch, NULL, 0);
2208 }
2209 #endif
2210
2211 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2212 {
2213 /* migr_strip_size when repairing or initializing parity */
2214 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2215 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2216
2217 switch (get_imsm_raid_level(map)) {
2218 case 5:
2219 case 10:
2220 return chunk;
2221 default:
2222 return 128*1024 >> 9;
2223 }
2224 }
2225
2226 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2227 {
2228 /* migr_strip_size when rebuilding a degraded disk, no idea why
2229 * this is different than migr_strip_size_resync(), but it's good
2230 * to be compatible
2231 */
2232 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2233 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2234
2235 switch (get_imsm_raid_level(map)) {
2236 case 1:
2237 case 10:
2238 if (map->num_members % map->num_domains == 0)
2239 return 128*1024 >> 9;
2240 else
2241 return chunk;
2242 case 5:
2243 return max((__u32) 64*1024 >> 9, chunk);
2244 default:
2245 return 128*1024 >> 9;
2246 }
2247 }
2248
2249 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2250 {
2251 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2252 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2253 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2254 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2255
2256 return max((__u32) 1, hi_chunk / lo_chunk);
2257 }
2258
2259 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2260 {
2261 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2262 int level = get_imsm_raid_level(lo);
2263
2264 if (level == 1 || level == 10) {
2265 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2266
2267 return hi->num_domains;
2268 } else
2269 return num_stripes_per_unit_resync(dev);
2270 }
2271
2272 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
2273 {
2274 /* named 'imsm_' because raid0, raid1 and raid10
2275 * counter-intuitively have the same number of data disks
2276 */
2277 struct imsm_map *map = get_imsm_map(dev, second_map);
2278
2279 switch (get_imsm_raid_level(map)) {
2280 case 0:
2281 return map->num_members;
2282 break;
2283 case 1:
2284 case 10:
2285 return map->num_members/2;
2286 case 5:
2287 return map->num_members - 1;
2288 default:
2289 dprintf("unsupported raid level\n");
2290 return 0;
2291 }
2292 }
2293
2294 static __u32 parity_segment_depth(struct imsm_dev *dev)
2295 {
2296 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2297 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2298
2299 switch(get_imsm_raid_level(map)) {
2300 case 1:
2301 case 10:
2302 return chunk * map->num_domains;
2303 case 5:
2304 return chunk * map->num_members;
2305 default:
2306 return chunk;
2307 }
2308 }
2309
2310 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2311 {
2312 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2313 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2314 __u32 strip = block / chunk;
2315
2316 switch (get_imsm_raid_level(map)) {
2317 case 1:
2318 case 10: {
2319 __u32 vol_strip = (strip * map->num_domains) + 1;
2320 __u32 vol_stripe = vol_strip / map->num_members;
2321
2322 return vol_stripe * chunk + block % chunk;
2323 } case 5: {
2324 __u32 stripe = strip / (map->num_members - 1);
2325
2326 return stripe * chunk + block % chunk;
2327 }
2328 default:
2329 return 0;
2330 }
2331 }
2332
2333 static __u64 blocks_per_migr_unit(struct intel_super *super,
2334 struct imsm_dev *dev)
2335 {
2336 /* calculate the conversion factor between per member 'blocks'
2337 * (md/{resync,rebuild}_start) and imsm migration units, return
2338 * 0 for the 'not migrating' and 'unsupported migration' cases
2339 */
2340 if (!dev->vol.migr_state)
2341 return 0;
2342
2343 switch (migr_type(dev)) {
2344 case MIGR_GEN_MIGR: {
2345 struct migr_record *migr_rec = super->migr_rec;
2346 return __le32_to_cpu(migr_rec->blocks_per_unit);
2347 }
2348 case MIGR_VERIFY:
2349 case MIGR_REPAIR:
2350 case MIGR_INIT: {
2351 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2352 __u32 stripes_per_unit;
2353 __u32 blocks_per_unit;
2354 __u32 parity_depth;
2355 __u32 migr_chunk;
2356 __u32 block_map;
2357 __u32 block_rel;
2358 __u32 segment;
2359 __u32 stripe;
2360 __u8 disks;
2361
2362 /* yes, this is really the translation of migr_units to
2363 * per-member blocks in the 'resync' case
2364 */
2365 stripes_per_unit = num_stripes_per_unit_resync(dev);
2366 migr_chunk = migr_strip_blocks_resync(dev);
2367 disks = imsm_num_data_members(dev, MAP_0);
2368 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2369 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2370 segment = blocks_per_unit / stripe;
2371 block_rel = blocks_per_unit - segment * stripe;
2372 parity_depth = parity_segment_depth(dev);
2373 block_map = map_migr_block(dev, block_rel);
2374 return block_map + parity_depth * segment;
2375 }
2376 case MIGR_REBUILD: {
2377 __u32 stripes_per_unit;
2378 __u32 migr_chunk;
2379
2380 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2381 migr_chunk = migr_strip_blocks_rebuild(dev);
2382 return migr_chunk * stripes_per_unit;
2383 }
2384 case MIGR_STATE_CHANGE:
2385 default:
2386 return 0;
2387 }
2388 }
2389
2390 static int imsm_level_to_layout(int level)
2391 {
2392 switch (level) {
2393 case 0:
2394 case 1:
2395 return 0;
2396 case 5:
2397 case 6:
2398 return ALGORITHM_LEFT_ASYMMETRIC;
2399 case 10:
2400 return 0x102;
2401 }
2402 return UnSet;
2403 }
2404
2405 /*******************************************************************************
2406 * Function: read_imsm_migr_rec
2407 * Description: Function reads imsm migration record from last sector of disk
2408 * Parameters:
2409 * fd : disk descriptor
2410 * super : metadata info
2411 * Returns:
2412 * 0 : success,
2413 * -1 : fail
2414 ******************************************************************************/
2415 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2416 {
2417 int ret_val = -1;
2418 unsigned long long dsize;
2419
2420 get_dev_size(fd, NULL, &dsize);
2421 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2422 pr_err("Cannot seek to anchor block: %s\n",
2423 strerror(errno));
2424 goto out;
2425 }
2426 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2427 MIGR_REC_BUF_SIZE) {
2428 pr_err("Cannot read migr record block: %s\n",
2429 strerror(errno));
2430 goto out;
2431 }
2432 ret_val = 0;
2433
2434 out:
2435 return ret_val;
2436 }
2437
2438 static struct imsm_dev *imsm_get_device_during_migration(
2439 struct intel_super *super)
2440 {
2441
2442 struct intel_dev *dv;
2443
2444 for (dv = super->devlist; dv; dv = dv->next) {
2445 if (is_gen_migration(dv->dev))
2446 return dv->dev;
2447 }
2448 return NULL;
2449 }
2450
2451 /*******************************************************************************
2452 * Function: load_imsm_migr_rec
2453 * Description: Function reads imsm migration record (it is stored at the last
2454 * sector of disk)
2455 * Parameters:
2456 * super : imsm internal array info
2457 * info : general array info
2458 * Returns:
2459 * 0 : success
2460 * -1 : fail
2461 * -2 : no migration in progress
2462 ******************************************************************************/
2463 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2464 {
2465 struct mdinfo *sd;
2466 struct dl *dl;
2467 char nm[30];
2468 int retval = -1;
2469 int fd = -1;
2470 struct imsm_dev *dev;
2471 struct imsm_map *map;
2472 int slot = -1;
2473
2474 /* find map under migration */
2475 dev = imsm_get_device_during_migration(super);
2476 /* nothing to load,no migration in progress?
2477 */
2478 if (dev == NULL)
2479 return -2;
2480 map = get_imsm_map(dev, MAP_0);
2481
2482 if (info) {
2483 for (sd = info->devs ; sd ; sd = sd->next) {
2484 /* skip spare and failed disks
2485 */
2486 if (sd->disk.raid_disk < 0)
2487 continue;
2488 /* read only from one of the first two slots */
2489 if (map)
2490 slot = get_imsm_disk_slot(map,
2491 sd->disk.raid_disk);
2492 if (map == NULL || slot > 1 || slot < 0)
2493 continue;
2494
2495 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2496 fd = dev_open(nm, O_RDONLY);
2497 if (fd >= 0)
2498 break;
2499 }
2500 }
2501 if (fd < 0) {
2502 for (dl = super->disks; dl; dl = dl->next) {
2503 /* skip spare and failed disks
2504 */
2505 if (dl->index < 0)
2506 continue;
2507 /* read only from one of the first two slots */
2508 if (map)
2509 slot = get_imsm_disk_slot(map, dl->index);
2510 if (map == NULL || slot > 1 || slot < 0)
2511 continue;
2512 sprintf(nm, "%d:%d", dl->major, dl->minor);
2513 fd = dev_open(nm, O_RDONLY);
2514 if (fd >= 0)
2515 break;
2516 }
2517 }
2518 if (fd < 0)
2519 goto out;
2520 retval = read_imsm_migr_rec(fd, super);
2521
2522 out:
2523 if (fd >= 0)
2524 close(fd);
2525 return retval;
2526 }
2527
2528 #ifndef MDASSEMBLE
2529 /*******************************************************************************
2530 * function: imsm_create_metadata_checkpoint_update
2531 * Description: It creates update for checkpoint change.
2532 * Parameters:
2533 * super : imsm internal array info
2534 * u : pointer to prepared update
2535 * Returns:
2536 * Uptate length.
2537 * If length is equal to 0, input pointer u contains no update
2538 ******************************************************************************/
2539 static int imsm_create_metadata_checkpoint_update(
2540 struct intel_super *super,
2541 struct imsm_update_general_migration_checkpoint **u)
2542 {
2543
2544 int update_memory_size = 0;
2545
2546 dprintf("(enter)\n");
2547
2548 if (u == NULL)
2549 return 0;
2550 *u = NULL;
2551
2552 /* size of all update data without anchor */
2553 update_memory_size =
2554 sizeof(struct imsm_update_general_migration_checkpoint);
2555
2556 *u = xcalloc(1, update_memory_size);
2557 if (*u == NULL) {
2558 dprintf("error: cannot get memory\n");
2559 return 0;
2560 }
2561 (*u)->type = update_general_migration_checkpoint;
2562 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2563 dprintf("prepared for %u\n", (*u)->curr_migr_unit);
2564
2565 return update_memory_size;
2566 }
2567
2568 static void imsm_update_metadata_locally(struct supertype *st,
2569 void *buf, int len);
2570
2571 /*******************************************************************************
2572 * Function: write_imsm_migr_rec
2573 * Description: Function writes imsm migration record
2574 * (at the last sector of disk)
2575 * Parameters:
2576 * super : imsm internal array info
2577 * Returns:
2578 * 0 : success
2579 * -1 : if fail
2580 ******************************************************************************/
2581 static int write_imsm_migr_rec(struct supertype *st)
2582 {
2583 struct intel_super *super = st->sb;
2584 unsigned long long dsize;
2585 char nm[30];
2586 int fd = -1;
2587 int retval = -1;
2588 struct dl *sd;
2589 int len;
2590 struct imsm_update_general_migration_checkpoint *u;
2591 struct imsm_dev *dev;
2592 struct imsm_map *map;
2593
2594 /* find map under migration */
2595 dev = imsm_get_device_during_migration(super);
2596 /* if no migration, write buffer anyway to clear migr_record
2597 * on disk based on first available device
2598 */
2599 if (dev == NULL)
2600 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2601 super->current_vol);
2602
2603 map = get_imsm_map(dev, MAP_0);
2604
2605 for (sd = super->disks ; sd ; sd = sd->next) {
2606 int slot = -1;
2607
2608 /* skip failed and spare devices */
2609 if (sd->index < 0)
2610 continue;
2611 /* write to 2 first slots only */
2612 if (map)
2613 slot = get_imsm_disk_slot(map, sd->index);
2614 if (map == NULL || slot > 1 || slot < 0)
2615 continue;
2616
2617 sprintf(nm, "%d:%d", sd->major, sd->minor);
2618 fd = dev_open(nm, O_RDWR);
2619 if (fd < 0)
2620 continue;
2621 get_dev_size(fd, NULL, &dsize);
2622 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2623 pr_err("Cannot seek to anchor block: %s\n",
2624 strerror(errno));
2625 goto out;
2626 }
2627 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2628 MIGR_REC_BUF_SIZE) {
2629 pr_err("Cannot write migr record block: %s\n",
2630 strerror(errno));
2631 goto out;
2632 }
2633 close(fd);
2634 fd = -1;
2635 }
2636 /* update checkpoint information in metadata */
2637 len = imsm_create_metadata_checkpoint_update(super, &u);
2638
2639 if (len <= 0) {
2640 dprintf("imsm: Cannot prepare update\n");
2641 goto out;
2642 }
2643 /* update metadata locally */
2644 imsm_update_metadata_locally(st, u, len);
2645 /* and possibly remotely */
2646 if (st->update_tail) {
2647 append_metadata_update(st, u, len);
2648 /* during reshape we do all work inside metadata handler
2649 * manage_reshape(), so metadata update has to be triggered
2650 * insida it
2651 */
2652 flush_metadata_updates(st);
2653 st->update_tail = &st->updates;
2654 } else
2655 free(u);
2656
2657 retval = 0;
2658 out:
2659 if (fd >= 0)
2660 close(fd);
2661 return retval;
2662 }
2663 #endif /* MDASSEMBLE */
2664
2665 /* spare/missing disks activations are not allowe when
2666 * array/container performs reshape operation, because
2667 * all arrays in container works on the same disks set
2668 */
2669 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2670 {
2671 int rv = 0;
2672 struct intel_dev *i_dev;
2673 struct imsm_dev *dev;
2674
2675 /* check whole container
2676 */
2677 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2678 dev = i_dev->dev;
2679 if (is_gen_migration(dev)) {
2680 /* No repair during any migration in container
2681 */
2682 rv = 1;
2683 break;
2684 }
2685 }
2686 return rv;
2687 }
2688 static unsigned long long imsm_component_size_aligment_check(int level,
2689 int chunk_size,
2690 unsigned long long component_size)
2691 {
2692 unsigned int component_size_alligment;
2693
2694 /* check component size aligment
2695 */
2696 component_size_alligment = component_size % (chunk_size/512);
2697
2698 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alligment = %u\n",
2699 level, chunk_size, component_size,
2700 component_size_alligment);
2701
2702 if (component_size_alligment && (level != 1) && (level != UnSet)) {
2703 dprintf("imsm: reported component size alligned from %llu ",
2704 component_size);
2705 component_size -= component_size_alligment;
2706 dprintf_cont("to %llu (%i).\n",
2707 component_size, component_size_alligment);
2708 }
2709
2710 return component_size;
2711 }
2712
2713 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2714 {
2715 struct intel_super *super = st->sb;
2716 struct migr_record *migr_rec = super->migr_rec;
2717 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2718 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2719 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2720 struct imsm_map *map_to_analyse = map;
2721 struct dl *dl;
2722 int map_disks = info->array.raid_disks;
2723
2724 memset(info, 0, sizeof(*info));
2725 if (prev_map)
2726 map_to_analyse = prev_map;
2727
2728 dl = super->current_disk;
2729
2730 info->container_member = super->current_vol;
2731 info->array.raid_disks = map->num_members;
2732 info->array.level = get_imsm_raid_level(map_to_analyse);
2733 info->array.layout = imsm_level_to_layout(info->array.level);
2734 info->array.md_minor = -1;
2735 info->array.ctime = 0;
2736 info->array.utime = 0;
2737 info->array.chunk_size =
2738 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2739 info->array.state = !dev->vol.dirty;
2740 info->custom_array_size = __le32_to_cpu(dev->size_high);
2741 info->custom_array_size <<= 32;
2742 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2743 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2744
2745 if (is_gen_migration(dev)) {
2746 info->reshape_active = 1;
2747 info->new_level = get_imsm_raid_level(map);
2748 info->new_layout = imsm_level_to_layout(info->new_level);
2749 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2750 info->delta_disks = map->num_members - prev_map->num_members;
2751 if (info->delta_disks) {
2752 /* this needs to be applied to every array
2753 * in the container.
2754 */
2755 info->reshape_active = CONTAINER_RESHAPE;
2756 }
2757 /* We shape information that we give to md might have to be
2758 * modify to cope with md's requirement for reshaping arrays.
2759 * For example, when reshaping a RAID0, md requires it to be
2760 * presented as a degraded RAID4.
2761 * Also if a RAID0 is migrating to a RAID5 we need to specify
2762 * the array as already being RAID5, but the 'before' layout
2763 * is a RAID4-like layout.
2764 */
2765 switch (info->array.level) {
2766 case 0:
2767 switch(info->new_level) {
2768 case 0:
2769 /* conversion is happening as RAID4 */
2770 info->array.level = 4;
2771 info->array.raid_disks += 1;
2772 break;
2773 case 5:
2774 /* conversion is happening as RAID5 */
2775 info->array.level = 5;
2776 info->array.layout = ALGORITHM_PARITY_N;
2777 info->delta_disks -= 1;
2778 break;
2779 default:
2780 /* FIXME error message */
2781 info->array.level = UnSet;
2782 break;
2783 }
2784 break;
2785 }
2786 } else {
2787 info->new_level = UnSet;
2788 info->new_layout = UnSet;
2789 info->new_chunk = info->array.chunk_size;
2790 info->delta_disks = 0;
2791 }
2792
2793 if (dl) {
2794 info->disk.major = dl->major;
2795 info->disk.minor = dl->minor;
2796 info->disk.number = dl->index;
2797 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2798 dl->index);
2799 }
2800
2801 info->data_offset = pba_of_lba0(map_to_analyse);
2802 info->component_size = blocks_per_member(map_to_analyse);
2803
2804 info->component_size = imsm_component_size_aligment_check(
2805 info->array.level,
2806 info->array.chunk_size,
2807 info->component_size);
2808
2809 memset(info->uuid, 0, sizeof(info->uuid));
2810 info->recovery_start = MaxSector;
2811
2812 info->reshape_progress = 0;
2813 info->resync_start = MaxSector;
2814 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2815 dev->vol.dirty) &&
2816 imsm_reshape_blocks_arrays_changes(super) == 0) {
2817 info->resync_start = 0;
2818 }
2819 if (dev->vol.migr_state) {
2820 switch (migr_type(dev)) {
2821 case MIGR_REPAIR:
2822 case MIGR_INIT: {
2823 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2824 dev);
2825 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2826
2827 info->resync_start = blocks_per_unit * units;
2828 break;
2829 }
2830 case MIGR_GEN_MIGR: {
2831 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2832 dev);
2833 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2834 unsigned long long array_blocks;
2835 int used_disks;
2836
2837 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2838 (units <
2839 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2840 (super->migr_rec->rec_status ==
2841 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2842 units++;
2843
2844 info->reshape_progress = blocks_per_unit * units;
2845
2846 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
2847 (unsigned long long)units,
2848 (unsigned long long)blocks_per_unit,
2849 info->reshape_progress);
2850
2851 used_disks = imsm_num_data_members(dev, MAP_1);
2852 if (used_disks > 0) {
2853 array_blocks = blocks_per_member(map) *
2854 used_disks;
2855 /* round array size down to closest MB
2856 */
2857 info->custom_array_size = (array_blocks
2858 >> SECT_PER_MB_SHIFT)
2859 << SECT_PER_MB_SHIFT;
2860 }
2861 }
2862 case MIGR_VERIFY:
2863 /* we could emulate the checkpointing of
2864 * 'sync_action=check' migrations, but for now
2865 * we just immediately complete them
2866 */
2867 case MIGR_REBUILD:
2868 /* this is handled by container_content_imsm() */
2869 case MIGR_STATE_CHANGE:
2870 /* FIXME handle other migrations */
2871 default:
2872 /* we are not dirty, so... */
2873 info->resync_start = MaxSector;
2874 }
2875 }
2876
2877 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2878 info->name[MAX_RAID_SERIAL_LEN] = 0;
2879
2880 info->array.major_version = -1;
2881 info->array.minor_version = -2;
2882 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
2883 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2884 uuid_from_super_imsm(st, info->uuid);
2885
2886 if (dmap) {
2887 int i, j;
2888 for (i=0; i<map_disks; i++) {
2889 dmap[i] = 0;
2890 if (i < info->array.raid_disks) {
2891 struct imsm_disk *dsk;
2892 j = get_imsm_disk_idx(dev, i, MAP_X);
2893 dsk = get_imsm_disk(super, j);
2894 if (dsk && (dsk->status & CONFIGURED_DISK))
2895 dmap[i] = 1;
2896 }
2897 }
2898 }
2899 }
2900
2901 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2902 int failed, int look_in_map);
2903
2904 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2905 int look_in_map);
2906
2907 #ifndef MDASSEMBLE
2908 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2909 {
2910 if (is_gen_migration(dev)) {
2911 int failed;
2912 __u8 map_state;
2913 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2914
2915 failed = imsm_count_failed(super, dev, MAP_1);
2916 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2917 if (map2->map_state != map_state) {
2918 map2->map_state = map_state;
2919 super->updates_pending++;
2920 }
2921 }
2922 }
2923 #endif
2924
2925 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2926 {
2927 struct dl *d;
2928
2929 for (d = super->missing; d; d = d->next)
2930 if (d->index == index)
2931 return &d->disk;
2932 return NULL;
2933 }
2934
2935 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2936 {
2937 struct intel_super *super = st->sb;
2938 struct imsm_disk *disk;
2939 int map_disks = info->array.raid_disks;
2940 int max_enough = -1;
2941 int i;
2942 struct imsm_super *mpb;
2943
2944 if (super->current_vol >= 0) {
2945 getinfo_super_imsm_volume(st, info, map);
2946 return;
2947 }
2948 memset(info, 0, sizeof(*info));
2949
2950 /* Set raid_disks to zero so that Assemble will always pull in valid
2951 * spares
2952 */
2953 info->array.raid_disks = 0;
2954 info->array.level = LEVEL_CONTAINER;
2955 info->array.layout = 0;
2956 info->array.md_minor = -1;
2957 info->array.ctime = 0; /* N/A for imsm */
2958 info->array.utime = 0;
2959 info->array.chunk_size = 0;
2960
2961 info->disk.major = 0;
2962 info->disk.minor = 0;
2963 info->disk.raid_disk = -1;
2964 info->reshape_active = 0;
2965 info->array.major_version = -1;
2966 info->array.minor_version = -2;
2967 strcpy(info->text_version, "imsm");
2968 info->safe_mode_delay = 0;
2969 info->disk.number = -1;
2970 info->disk.state = 0;
2971 info->name[0] = 0;
2972 info->recovery_start = MaxSector;
2973 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2974
2975 /* do we have the all the insync disks that we expect? */
2976 mpb = super->anchor;
2977
2978 for (i = 0; i < mpb->num_raid_devs; i++) {
2979 struct imsm_dev *dev = get_imsm_dev(super, i);
2980 int failed, enough, j, missing = 0;
2981 struct imsm_map *map;
2982 __u8 state;
2983
2984 failed = imsm_count_failed(super, dev, MAP_0);
2985 state = imsm_check_degraded(super, dev, failed, MAP_0);
2986 map = get_imsm_map(dev, MAP_0);
2987
2988 /* any newly missing disks?
2989 * (catches single-degraded vs double-degraded)
2990 */
2991 for (j = 0; j < map->num_members; j++) {
2992 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
2993 __u32 idx = ord_to_idx(ord);
2994
2995 if (!(ord & IMSM_ORD_REBUILD) &&
2996 get_imsm_missing(super, idx)) {
2997 missing = 1;
2998 break;
2999 }
3000 }
3001
3002 if (state == IMSM_T_STATE_FAILED)
3003 enough = -1;
3004 else if (state == IMSM_T_STATE_DEGRADED &&
3005 (state != map->map_state || missing))
3006 enough = 0;
3007 else /* we're normal, or already degraded */
3008 enough = 1;
3009 if (is_gen_migration(dev) && missing) {
3010 /* during general migration we need all disks
3011 * that process is running on.
3012 * No new missing disk is allowed.
3013 */
3014 max_enough = -1;
3015 enough = -1;
3016 /* no more checks necessary
3017 */
3018 break;
3019 }
3020 /* in the missing/failed disk case check to see
3021 * if at least one array is runnable
3022 */
3023 max_enough = max(max_enough, enough);
3024 }
3025 dprintf("enough: %d\n", max_enough);
3026 info->container_enough = max_enough;
3027
3028 if (super->disks) {
3029 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3030
3031 disk = &super->disks->disk;
3032 info->data_offset = total_blocks(&super->disks->disk) - reserved;
3033 info->component_size = reserved;
3034 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
3035 /* we don't change info->disk.raid_disk here because
3036 * this state will be finalized in mdmon after we have
3037 * found the 'most fresh' version of the metadata
3038 */
3039 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3040 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3041 }
3042
3043 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3044 * ->compare_super may have updated the 'num_raid_devs' field for spares
3045 */
3046 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
3047 uuid_from_super_imsm(st, info->uuid);
3048 else
3049 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
3050
3051 /* I don't know how to compute 'map' on imsm, so use safe default */
3052 if (map) {
3053 int i;
3054 for (i = 0; i < map_disks; i++)
3055 map[i] = 1;
3056 }
3057
3058 }
3059
3060 /* allocates memory and fills disk in mdinfo structure
3061 * for each disk in array */
3062 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3063 {
3064 struct mdinfo *mddev;
3065 struct intel_super *super = st->sb;
3066 struct imsm_disk *disk;
3067 int count = 0;
3068 struct dl *dl;
3069 if (!super || !super->disks)
3070 return NULL;
3071 dl = super->disks;
3072 mddev = xcalloc(1, sizeof(*mddev));
3073 while (dl) {
3074 struct mdinfo *tmp;
3075 disk = &dl->disk;
3076 tmp = xcalloc(1, sizeof(*tmp));
3077 if (mddev->devs)
3078 tmp->next = mddev->devs;
3079 mddev->devs = tmp;
3080 tmp->disk.number = count++;
3081 tmp->disk.major = dl->major;
3082 tmp->disk.minor = dl->minor;
3083 tmp->disk.state = is_configured(disk) ?
3084 (1 << MD_DISK_ACTIVE) : 0;
3085 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3086 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3087 tmp->disk.raid_disk = -1;
3088 dl = dl->next;
3089 }
3090 return mddev;
3091 }
3092
3093 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3094 char *update, char *devname, int verbose,
3095 int uuid_set, char *homehost)
3096 {
3097 /* For 'assemble' and 'force' we need to return non-zero if any
3098 * change was made. For others, the return value is ignored.
3099 * Update options are:
3100 * force-one : This device looks a bit old but needs to be included,
3101 * update age info appropriately.
3102 * assemble: clear any 'faulty' flag to allow this device to
3103 * be assembled.
3104 * force-array: Array is degraded but being forced, mark it clean
3105 * if that will be needed to assemble it.
3106 *
3107 * newdev: not used ????
3108 * grow: Array has gained a new device - this is currently for
3109 * linear only
3110 * resync: mark as dirty so a resync will happen.
3111 * name: update the name - preserving the homehost
3112 * uuid: Change the uuid of the array to match watch is given
3113 *
3114 * Following are not relevant for this imsm:
3115 * sparc2.2 : update from old dodgey metadata
3116 * super-minor: change the preferred_minor number
3117 * summaries: update redundant counters.
3118 * homehost: update the recorded homehost
3119 * _reshape_progress: record new reshape_progress position.
3120 */
3121 int rv = 1;
3122 struct intel_super *super = st->sb;
3123 struct imsm_super *mpb;
3124
3125 /* we can only update container info */
3126 if (!super || super->current_vol >= 0 || !super->anchor)
3127 return 1;
3128
3129 mpb = super->anchor;
3130
3131 if (strcmp(update, "uuid") == 0) {
3132 /* We take this to mean that the family_num should be updated.
3133 * However that is much smaller than the uuid so we cannot really
3134 * allow an explicit uuid to be given. And it is hard to reliably
3135 * know if one was.
3136 * So if !uuid_set we know the current uuid is random and just used
3137 * the first 'int' and copy it to the other 3 positions.
3138 * Otherwise we require the 4 'int's to be the same as would be the
3139 * case if we are using a random uuid. So an explicit uuid will be
3140 * accepted as long as all for ints are the same... which shouldn't hurt
3141 */
3142 if (!uuid_set) {
3143 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
3144 rv = 0;
3145 } else {
3146 if (info->uuid[0] != info->uuid[1] ||
3147 info->uuid[1] != info->uuid[2] ||
3148 info->uuid[2] != info->uuid[3])
3149 rv = -1;
3150 else
3151 rv = 0;
3152 }
3153 if (rv == 0)
3154 mpb->orig_family_num = info->uuid[0];
3155 } else if (strcmp(update, "assemble") == 0)
3156 rv = 0;
3157 else
3158 rv = -1;
3159
3160 /* successful update? recompute checksum */
3161 if (rv == 0)
3162 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
3163
3164 return rv;
3165 }
3166
3167 static size_t disks_to_mpb_size(int disks)
3168 {
3169 size_t size;
3170
3171 size = sizeof(struct imsm_super);
3172 size += (disks - 1) * sizeof(struct imsm_disk);
3173 size += 2 * sizeof(struct imsm_dev);
3174 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3175 size += (4 - 2) * sizeof(struct imsm_map);
3176 /* 4 possible disk_ord_tbl's */
3177 size += 4 * (disks - 1) * sizeof(__u32);
3178
3179 return size;
3180 }
3181
3182 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3183 unsigned long long data_offset)
3184 {
3185 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3186 return 0;
3187
3188 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
3189 }
3190
3191 static void free_devlist(struct intel_super *super)
3192 {
3193 struct intel_dev *dv;
3194
3195 while (super->devlist) {
3196 dv = super->devlist->next;
3197 free(super->devlist->dev);
3198 free(super->devlist);
3199 super->devlist = dv;
3200 }
3201 }
3202
3203 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3204 {
3205 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3206 }
3207
3208 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3209 {
3210 /*
3211 * return:
3212 * 0 same, or first was empty, and second was copied
3213 * 1 second had wrong number
3214 * 2 wrong uuid
3215 * 3 wrong other info
3216 */
3217 struct intel_super *first = st->sb;
3218 struct intel_super *sec = tst->sb;
3219
3220 if (!first) {
3221 st->sb = tst->sb;
3222 tst->sb = NULL;
3223 return 0;
3224 }
3225 /* in platform dependent environment test if the disks
3226 * use the same Intel hba
3227 * If not on Intel hba at all, allow anything.
3228 */
3229 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3230 if (first->hba->type != sec->hba->type) {
3231 fprintf(stderr,
3232 "HBAs of devices do not match %s != %s\n",
3233 get_sys_dev_type(first->hba->type),
3234 get_sys_dev_type(sec->hba->type));
3235 return 3;
3236 }
3237 if (first->orom != sec->orom) {
3238 fprintf(stderr,
3239 "HBAs of devices do not match %s != %s\n",
3240 first->hba->pci_id, sec->hba->pci_id);
3241 return 3;
3242 }
3243 }
3244
3245 /* if an anchor does not have num_raid_devs set then it is a free
3246 * floating spare
3247 */
3248 if (first->anchor->num_raid_devs > 0 &&
3249 sec->anchor->num_raid_devs > 0) {
3250 /* Determine if these disks might ever have been
3251 * related. Further disambiguation can only take place
3252 * in load_super_imsm_all
3253 */
3254 __u32 first_family = first->anchor->orig_family_num;
3255 __u32 sec_family = sec->anchor->orig_family_num;
3256
3257 if (memcmp(first->anchor->sig, sec->anchor->sig,
3258 MAX_SIGNATURE_LENGTH) != 0)
3259 return 3;
3260
3261 if (first_family == 0)
3262 first_family = first->anchor->family_num;
3263 if (sec_family == 0)
3264 sec_family = sec->anchor->family_num;
3265
3266 if (first_family != sec_family)
3267 return 3;
3268
3269 }
3270
3271 /* if 'first' is a spare promote it to a populated mpb with sec's
3272 * family number
3273 */
3274 if (first->anchor->num_raid_devs == 0 &&
3275 sec->anchor->num_raid_devs > 0) {
3276 int i;
3277 struct intel_dev *dv;
3278 struct imsm_dev *dev;
3279
3280 /* we need to copy raid device info from sec if an allocation
3281 * fails here we don't associate the spare
3282 */
3283 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3284 dv = xmalloc(sizeof(*dv));
3285 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3286 dv->dev = dev;
3287 dv->index = i;
3288 dv->next = first->devlist;
3289 first->devlist = dv;
3290 }
3291 if (i < sec->anchor->num_raid_devs) {
3292 /* allocation failure */
3293 free_devlist(first);
3294 pr_err("imsm: failed to associate spare\n");
3295 return 3;
3296 }
3297 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3298 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3299 first->anchor->family_num = sec->anchor->family_num;
3300 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3301 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3302 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3303 }
3304
3305 return 0;
3306 }
3307
3308 static void fd2devname(int fd, char *name)
3309 {
3310 struct stat st;
3311 char path[256];
3312 char dname[PATH_MAX];
3313 char *nm;
3314 int rv;
3315
3316 name[0] = '\0';
3317 if (fstat(fd, &st) != 0)
3318 return;
3319 sprintf(path, "/sys/dev/block/%d:%d",
3320 major(st.st_rdev), minor(st.st_rdev));
3321
3322 rv = readlink(path, dname, sizeof(dname)-1);
3323 if (rv <= 0)
3324 return;
3325
3326 dname[rv] = '\0';
3327 nm = strrchr(dname, '/');
3328 if (nm) {
3329 nm++;
3330 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3331 }
3332 }
3333
3334 static int nvme_get_serial(int fd, void *buf, size_t buf_len)
3335 {
3336 char path[60];
3337 char *name = fd2kname(fd);
3338
3339 if (!name)
3340 return 1;
3341
3342 if (strncmp(name, "nvme", 4) != 0)
3343 return 1;
3344
3345 snprintf(path, sizeof(path) - 1, "/sys/block/%s/device/serial", name);
3346
3347 return load_sys(path, buf, buf_len);
3348 }
3349
3350 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3351
3352 static int imsm_read_serial(int fd, char *devname,
3353 __u8 serial[MAX_RAID_SERIAL_LEN])
3354 {
3355 char buf[50];
3356 int rv;
3357 int len;
3358 char *dest;
3359 char *src;
3360 unsigned int i;
3361
3362 memset(buf, 0, sizeof(buf));
3363
3364 rv = nvme_get_serial(fd, buf, sizeof(buf));
3365
3366 if (rv)
3367 rv = scsi_get_serial(fd, buf, sizeof(buf));
3368
3369 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3370 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3371 fd2devname(fd, (char *) serial);
3372 return 0;
3373 }
3374
3375 if (rv != 0) {
3376 if (devname)
3377 pr_err("Failed to retrieve serial for %s\n",
3378 devname);
3379 return rv;
3380 }
3381
3382 /* trim all whitespace and non-printable characters and convert
3383 * ':' to ';'
3384 */
3385 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
3386 src = &buf[i];
3387 if (*src > 0x20) {
3388 /* ':' is reserved for use in placeholder serial
3389 * numbers for missing disks
3390 */
3391 if (*src == ':')
3392 *dest++ = ';';
3393 else
3394 *dest++ = *src;
3395 }
3396 }
3397 len = dest - buf;
3398 dest = buf;
3399
3400 /* truncate leading characters */
3401 if (len > MAX_RAID_SERIAL_LEN) {
3402 dest += len - MAX_RAID_SERIAL_LEN;
3403 len = MAX_RAID_SERIAL_LEN;
3404 }
3405
3406 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3407 memcpy(serial, dest, len);
3408
3409 return 0;
3410 }
3411
3412 static int serialcmp(__u8 *s1, __u8 *s2)
3413 {
3414 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3415 }
3416
3417 static void serialcpy(__u8 *dest, __u8 *src)
3418 {
3419 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3420 }
3421
3422 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3423 {
3424 struct dl *dl;
3425
3426 for (dl = super->disks; dl; dl = dl->next)
3427 if (serialcmp(dl->serial, serial) == 0)
3428 break;
3429
3430 return dl;
3431 }
3432
3433 static struct imsm_disk *
3434 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3435 {
3436 int i;
3437
3438 for (i = 0; i < mpb->num_disks; i++) {
3439 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3440
3441 if (serialcmp(disk->serial, serial) == 0) {
3442 if (idx)
3443 *idx = i;
3444 return disk;
3445 }
3446 }
3447
3448 return NULL;
3449 }
3450
3451 static int
3452 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3453 {
3454 struct imsm_disk *disk;
3455 struct dl *dl;
3456 struct stat stb;
3457 int rv;
3458 char name[40];
3459 __u8 serial[MAX_RAID_SERIAL_LEN];
3460
3461 rv = imsm_read_serial(fd, devname, serial);
3462
3463 if (rv != 0)
3464 return 2;
3465
3466 dl = xcalloc(1, sizeof(*dl));
3467
3468 fstat(fd, &stb);
3469 dl->major = major(stb.st_rdev);
3470 dl->minor = minor(stb.st_rdev);
3471 dl->next = super->disks;
3472 dl->fd = keep_fd ? fd : -1;
3473 assert(super->disks == NULL);
3474 super->disks = dl;
3475 serialcpy(dl->serial, serial);
3476 dl->index = -2;
3477 dl->e = NULL;
3478 fd2devname(fd, name);
3479 if (devname)
3480 dl->devname = xstrdup(devname);
3481 else
3482 dl->devname = xstrdup(name);
3483
3484 /* look up this disk's index in the current anchor */
3485 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3486 if (disk) {
3487 dl->disk = *disk;
3488 /* only set index on disks that are a member of a
3489 * populated contianer, i.e. one with raid_devs
3490 */
3491 if (is_failed(&dl->disk))
3492 dl->index = -2;
3493 else if (is_spare(&dl->disk))
3494 dl->index = -1;
3495 }
3496
3497 return 0;
3498 }
3499
3500 #ifndef MDASSEMBLE
3501 /* When migrating map0 contains the 'destination' state while map1
3502 * contains the current state. When not migrating map0 contains the
3503 * current state. This routine assumes that map[0].map_state is set to
3504 * the current array state before being called.
3505 *
3506 * Migration is indicated by one of the following states
3507 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3508 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3509 * map1state=unitialized)
3510 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3511 * map1state=normal)
3512 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3513 * map1state=degraded)
3514 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3515 * map1state=normal)
3516 */
3517 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3518 __u8 to_state, int migr_type)
3519 {
3520 struct imsm_map *dest;
3521 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3522
3523 dev->vol.migr_state = 1;
3524 set_migr_type(dev, migr_type);
3525 dev->vol.curr_migr_unit = 0;
3526 dest = get_imsm_map(dev, MAP_1);
3527
3528 /* duplicate and then set the target end state in map[0] */
3529 memcpy(dest, src, sizeof_imsm_map(src));
3530 if (migr_type == MIGR_REBUILD || migr_type == MIGR_GEN_MIGR) {
3531 __u32 ord;
3532 int i;
3533
3534 for (i = 0; i < src->num_members; i++) {
3535 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3536 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3537 }
3538 }
3539
3540 if (migr_type == MIGR_GEN_MIGR)
3541 /* Clear migration record */
3542 memset(super->migr_rec, 0, sizeof(struct migr_record));
3543
3544 src->map_state = to_state;
3545 }
3546
3547 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3548 __u8 map_state)
3549 {
3550 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3551 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3552 MAP_0 : MAP_1);
3553 int i, j;
3554
3555 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3556 * completed in the last migration.
3557 *
3558 * FIXME add support for raid-level-migration
3559 */
3560 if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
3561 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
3562 /* when final map state is other than expected
3563 * merge maps (not for migration)
3564 */
3565 int failed;
3566
3567 for (i = 0; i < prev->num_members; i++)
3568 for (j = 0; j < map->num_members; j++)
3569 /* during online capacity expansion
3570 * disks position can be changed
3571 * if takeover is used
3572 */
3573 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3574 ord_to_idx(prev->disk_ord_tbl[i])) {
3575 map->disk_ord_tbl[j] |=
3576 prev->disk_ord_tbl[i];
3577 break;
3578 }
3579 failed = imsm_count_failed(super, dev, MAP_0);
3580 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3581 }
3582
3583 dev->vol.migr_state = 0;
3584 set_migr_type(dev, 0);
3585 dev->vol.curr_migr_unit = 0;
3586 map->map_state = map_state;
3587 }
3588 #endif
3589
3590 static int parse_raid_devices(struct intel_super *super)
3591 {
3592 int i;
3593 struct imsm_dev *dev_new;
3594 size_t len, len_migr;
3595 size_t max_len = 0;
3596 size_t space_needed = 0;
3597 struct imsm_super *mpb = super->anchor;
3598
3599 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3600 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3601 struct intel_dev *dv;
3602
3603 len = sizeof_imsm_dev(dev_iter, 0);
3604 len_migr = sizeof_imsm_dev(dev_iter, 1);
3605 if (len_migr > len)
3606 space_needed += len_migr - len;
3607
3608 dv = xmalloc(sizeof(*dv));
3609 if (max_len < len_migr)
3610 max_len = len_migr;
3611 if (max_len > len_migr)
3612 space_needed += max_len - len_migr;
3613 dev_new = xmalloc(max_len);
3614 imsm_copy_dev(dev_new, dev_iter);
3615 dv->dev = dev_new;
3616 dv->index = i;
3617 dv->next = super->devlist;
3618 super->devlist = dv;
3619 }
3620
3621 /* ensure that super->buf is large enough when all raid devices
3622 * are migrating
3623 */
3624 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3625 void *buf;
3626
3627 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3628 if (posix_memalign(&buf, 512, len) != 0)
3629 return 1;
3630
3631 memcpy(buf, super->buf, super->len);
3632 memset(buf + super->len, 0, len - super->len);
3633 free(super->buf);
3634 super->buf = buf;
3635 super->len = len;
3636 }
3637
3638 return 0;
3639 }
3640
3641 /* retrieve a pointer to the bbm log which starts after all raid devices */
3642 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3643 {
3644 void *ptr = NULL;
3645
3646 if (__le32_to_cpu(mpb->bbm_log_size)) {
3647 ptr = mpb;
3648 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3649 }
3650
3651 return ptr;
3652 }
3653
3654 /*******************************************************************************
3655 * Function: check_mpb_migr_compatibility
3656 * Description: Function checks for unsupported migration features:
3657 * - migration optimization area (pba_of_lba0)
3658 * - descending reshape (ascending_migr)
3659 * Parameters:
3660 * super : imsm metadata information
3661 * Returns:
3662 * 0 : migration is compatible
3663 * -1 : migration is not compatible
3664 ******************************************************************************/
3665 int check_mpb_migr_compatibility(struct intel_super *super)
3666 {
3667 struct imsm_map *map0, *map1;
3668 struct migr_record *migr_rec = super->migr_rec;
3669 int i;
3670
3671 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3672 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3673
3674 if (dev_iter &&
3675 dev_iter->vol.migr_state == 1 &&
3676 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3677 /* This device is migrating */
3678 map0 = get_imsm_map(dev_iter, MAP_0);
3679 map1 = get_imsm_map(dev_iter, MAP_1);
3680 if (pba_of_lba0(map0) != pba_of_lba0(map1))
3681 /* migration optimization area was used */
3682 return -1;
3683 if (migr_rec->ascending_migr == 0
3684 && migr_rec->dest_depth_per_unit > 0)
3685 /* descending reshape not supported yet */
3686 return -1;
3687 }
3688 }
3689 return 0;
3690 }
3691
3692 static void __free_imsm(struct intel_super *super, int free_disks);
3693
3694 /* load_imsm_mpb - read matrix metadata
3695 * allocates super->mpb to be freed by free_imsm
3696 */
3697 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3698 {
3699 unsigned long long dsize;
3700 unsigned long long sectors;
3701 struct stat;
3702 struct imsm_super *anchor;
3703 __u32 check_sum;
3704
3705 get_dev_size(fd, NULL, &dsize);
3706 if (dsize < 1024) {
3707 if (devname)
3708 pr_err("%s: device to small for imsm\n",
3709 devname);
3710 return 1;
3711 }
3712
3713 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3714 if (devname)
3715 pr_err("Cannot seek to anchor block on %s: %s\n",
3716 devname, strerror(errno));
3717 return 1;
3718 }
3719
3720 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3721 if (devname)
3722 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
3723 return 1;
3724 }
3725 if (read(fd, anchor, 512) != 512) {
3726 if (devname)
3727 pr_err("Cannot read anchor block on %s: %s\n",
3728 devname, strerror(errno));
3729 free(anchor);
3730 return 1;
3731 }
3732
3733 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3734 if (devname)
3735 pr_err("no IMSM anchor on %s\n", devname);
3736 free(anchor);
3737 return 2;
3738 }
3739
3740 __free_imsm(super, 0);
3741 /* reload capability and hba */
3742
3743 /* capability and hba must be updated with new super allocation */
3744 find_intel_hba_capability(fd, super, devname);
3745 super->len = ROUND_UP(anchor->mpb_size, 512);
3746 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3747 if (devname)
3748 pr_err("unable to allocate %zu byte mpb buffer\n",
3749 super->len);
3750 free(anchor);
3751 return 2;
3752 }
3753 memcpy(super->buf, anchor, 512);
3754
3755 sectors = mpb_sectors(anchor) - 1;
3756 free(anchor);
3757
3758 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
3759 pr_err("could not allocate migr_rec buffer\n");
3760 free(super->buf);
3761 return 2;
3762 }
3763 super->clean_migration_record_by_mdmon = 0;
3764
3765 if (!sectors) {
3766 check_sum = __gen_imsm_checksum(super->anchor);
3767 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3768 if (devname)
3769 pr_err("IMSM checksum %x != %x on %s\n",
3770 check_sum,
3771 __le32_to_cpu(super->anchor->check_sum),
3772 devname);
3773 return 2;
3774 }
3775
3776 return 0;
3777 }
3778
3779 /* read the extended mpb */
3780 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3781 if (devname)
3782 pr_err("Cannot seek to extended mpb on %s: %s\n",
3783 devname, strerror(errno));
3784 return 1;
3785 }
3786
3787 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3788 if (devname)
3789 pr_err("Cannot read extended mpb on %s: %s\n",
3790 devname, strerror(errno));
3791 return 2;
3792 }
3793
3794 check_sum = __gen_imsm_checksum(super->anchor);
3795 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3796 if (devname)
3797 pr_err("IMSM checksum %x != %x on %s\n",
3798 check_sum, __le32_to_cpu(super->anchor->check_sum),
3799 devname);
3800 return 3;
3801 }
3802
3803 /* FIXME the BBM log is disk specific so we cannot use this global
3804 * buffer for all disks. Ok for now since we only look at the global
3805 * bbm_log_size parameter to gate assembly
3806 */
3807 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3808
3809 return 0;
3810 }
3811
3812 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3813
3814 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
3815 static void clear_hi(struct intel_super *super)
3816 {
3817 struct imsm_super *mpb = super->anchor;
3818 int i, n;
3819 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
3820 return;
3821 for (i = 0; i < mpb->num_disks; ++i) {
3822 struct imsm_disk *disk = &mpb->disk[i];
3823 disk->total_blocks_hi = 0;
3824 }
3825 for (i = 0; i < mpb->num_raid_devs; ++i) {
3826 struct imsm_dev *dev = get_imsm_dev(super, i);
3827 if (!dev)
3828 return;
3829 for (n = 0; n < 2; ++n) {
3830 struct imsm_map *map = get_imsm_map(dev, n);
3831 if (!map)
3832 continue;
3833 map->pba_of_lba0_hi = 0;
3834 map->blocks_per_member_hi = 0;
3835 map->num_data_stripes_hi = 0;
3836 }
3837 }
3838 }
3839
3840 static int
3841 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3842 {
3843 int err;
3844
3845 err = load_imsm_mpb(fd, super, devname);
3846 if (err)
3847 return err;
3848 err = load_imsm_disk(fd, super, devname, keep_fd);
3849 if (err)
3850 return err;
3851 err = parse_raid_devices(super);
3852 clear_hi(super);
3853 return err;
3854 }
3855
3856 static void __free_imsm_disk(struct dl *d)
3857 {
3858 if (d->fd >= 0)
3859 close(d->fd);
3860 if (d->devname)
3861 free(d->devname);
3862 if (d->e)
3863 free(d->e);
3864 free(d);
3865
3866 }
3867
3868 static void free_imsm_disks(struct intel_super *super)
3869 {
3870 struct dl *d;
3871
3872 while (super->disks) {
3873 d = super->disks;
3874 super->disks = d->next;
3875 __free_imsm_disk(d);
3876 }
3877 while (super->disk_mgmt_list) {
3878 d = super->disk_mgmt_list;
3879 super->disk_mgmt_list = d->next;
3880 __free_imsm_disk(d);
3881 }
3882 while (super->missing) {
3883 d = super->missing;
3884 super->missing = d->next;
3885 __free_imsm_disk(d);
3886 }
3887
3888 }
3889
3890 /* free all the pieces hanging off of a super pointer */
3891 static void __free_imsm(struct intel_super *super, int free_disks)
3892 {
3893 struct intel_hba *elem, *next;
3894
3895 if (super->buf) {
3896 free(super->buf);
3897 super->buf = NULL;
3898 }
3899 /* unlink capability description */
3900 super->orom = NULL;
3901 if (super->migr_rec_buf) {
3902 free(super->migr_rec_buf);
3903 super->migr_rec_buf = NULL;
3904 }
3905 if (free_disks)
3906 free_imsm_disks(super);
3907 free_devlist(super);
3908 elem = super->hba;
3909 while (elem) {
3910 if (elem->path)
3911 free((void *)elem->path);
3912 next = elem->next;
3913 free(elem);
3914 elem = next;
3915 }
3916 super->hba = NULL;
3917 }
3918
3919 static void free_imsm(struct intel_super *super)
3920 {
3921 __free_imsm(super, 1);
3922 free(super);
3923 }
3924
3925 static void free_super_imsm(struct supertype *st)
3926 {
3927 struct intel_super *super = st->sb;
3928
3929 if (!super)
3930 return;
3931
3932 free_imsm(super);
3933 st->sb = NULL;
3934 }
3935
3936 static struct intel_super *alloc_super(void)
3937 {
3938 struct intel_super *super = xcalloc(1, sizeof(*super));
3939
3940 super->current_vol = -1;
3941 super->create_offset = ~((unsigned long long) 0);
3942 return super;
3943 }
3944
3945 /*
3946 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3947 */
3948 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3949 {
3950 struct sys_dev *hba_name;
3951 int rv = 0;
3952
3953 if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
3954 super->orom = NULL;
3955 super->hba = NULL;
3956 return 0;
3957 }
3958 hba_name = find_disk_attached_hba(fd, NULL);
3959 if (!hba_name) {
3960 if (devname)
3961 pr_err("%s is not attached to Intel(R) RAID controller.\n",
3962 devname);
3963 return 1;
3964 }
3965 rv = attach_hba_to_super(super, hba_name);
3966 if (rv == 2) {
3967 if (devname) {
3968 struct intel_hba *hba = super->hba;
3969
3970 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
3971 " but the container is assigned to Intel(R) %s %s (",
3972 devname,
3973 get_sys_dev_type(hba_name->type),
3974 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
3975 hba_name->pci_id ? : "Err!",
3976 get_sys_dev_type(super->hba->type),
3977 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
3978
3979 while (hba) {
3980 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3981 if (hba->next)
3982 fprintf(stderr, ", ");
3983 hba = hba->next;
3984 }
3985 fprintf(stderr, ").\n"
3986 " Mixing devices attached to different %s is not allowed.\n",
3987 hba_name->type == SYS_DEV_VMD ? "VMD domains" : "controllers");
3988 }
3989 return 2;
3990 }
3991 super->orom = find_imsm_capability(hba_name);
3992 if (!super->orom)
3993 return 3;
3994
3995 return 0;
3996 }
3997
3998 /* find_missing - helper routine for load_super_imsm_all that identifies
3999 * disks that have disappeared from the system. This routine relies on
4000 * the mpb being uptodate, which it is at load time.
4001 */
4002 static int find_missing(struct intel_super *super)
4003 {
4004 int i;
4005 struct imsm_super *mpb = super->anchor;
4006 struct dl *dl;
4007 struct imsm_disk *disk;
4008
4009 for (i = 0; i < mpb->num_disks; i++) {
4010 disk = __get_imsm_disk(mpb, i);
4011 dl = serial_to_dl(disk->serial, super);
4012 if (dl)
4013 continue;
4014
4015 dl = xmalloc(sizeof(*dl));
4016 dl->major = 0;
4017 dl->minor = 0;
4018 dl->fd = -1;
4019 dl->devname = xstrdup("missing");
4020 dl->index = i;
4021 serialcpy(dl->serial, disk->serial);
4022 dl->disk = *disk;
4023 dl->e = NULL;
4024 dl->next = super->missing;
4025 super->missing = dl;
4026 }
4027
4028 return 0;
4029 }
4030
4031 #ifndef MDASSEMBLE
4032 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4033 {
4034 struct intel_disk *idisk = disk_list;
4035
4036 while (idisk) {
4037 if (serialcmp(idisk->disk.serial, serial) == 0)
4038 break;
4039 idisk = idisk->next;
4040 }
4041
4042 return idisk;
4043 }
4044
4045 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4046 struct intel_super *super,
4047 struct intel_disk **disk_list)
4048 {
4049 struct imsm_disk *d = &super->disks->disk;
4050 struct imsm_super *mpb = super->anchor;
4051 int i, j;
4052
4053 for (i = 0; i < tbl_size; i++) {
4054 struct imsm_super *tbl_mpb = table[i]->anchor;
4055 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4056
4057 if (tbl_mpb->family_num == mpb->family_num) {
4058 if (tbl_mpb->check_sum == mpb->check_sum) {
4059 dprintf("mpb from %d:%d matches %d:%d\n",
4060 super->disks->major,
4061 super->disks->minor,
4062 table[i]->disks->major,
4063 table[i]->disks->minor);
4064 break;
4065 }
4066
4067 if (((is_configured(d) && !is_configured(tbl_d)) ||
4068 is_configured(d) == is_configured(tbl_d)) &&
4069 tbl_mpb->generation_num < mpb->generation_num) {
4070 /* current version of the mpb is a
4071 * better candidate than the one in
4072 * super_table, but copy over "cross
4073 * generational" status
4074 */
4075 struct intel_disk *idisk;
4076
4077 dprintf("mpb from %d:%d replaces %d:%d\n",
4078 super->disks->major,
4079 super->disks->minor,
4080 table[i]->disks->major,
4081 table[i]->disks->minor);
4082
4083 idisk = disk_list_get(tbl_d->serial, *disk_list);
4084 if (idisk && is_failed(&idisk->disk))
4085 tbl_d->status |= FAILED_DISK;
4086 break;
4087 } else {
4088 struct intel_disk *idisk;
4089 struct imsm_disk *disk;
4090
4091 /* tbl_mpb is more up to date, but copy
4092 * over cross generational status before
4093 * returning
4094 */
4095 disk = __serial_to_disk(d->serial, mpb, NULL);
4096 if (disk && is_failed(disk))
4097 d->status |= FAILED_DISK;
4098
4099 idisk = disk_list_get(d->serial, *disk_list);
4100 if (idisk) {
4101 idisk->owner = i;
4102 if (disk && is_configured(disk))
4103 idisk->disk.status |= CONFIGURED_DISK;
4104 }
4105
4106 dprintf("mpb from %d:%d prefer %d:%d\n",
4107 super->disks->major,
4108 super->disks->minor,
4109 table[i]->disks->major,
4110 table[i]->disks->minor);
4111
4112 return tbl_size;
4113 }
4114 }
4115 }
4116
4117 if (i >= tbl_size)
4118 table[tbl_size++] = super;
4119 else
4120 table[i] = super;
4121
4122 /* update/extend the merged list of imsm_disk records */
4123 for (j = 0; j < mpb->num_disks; j++) {
4124 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4125 struct intel_disk *idisk;
4126
4127 idisk = disk_list_get(disk->serial, *disk_list);
4128 if (idisk) {
4129 idisk->disk.status |= disk->status;
4130 if (is_configured(&idisk->disk) ||
4131 is_failed(&idisk->disk))
4132 idisk->disk.status &= ~(SPARE_DISK);
4133 } else {
4134 idisk = xcalloc(1, sizeof(*idisk));
4135 idisk->owner = IMSM_UNKNOWN_OWNER;
4136 idisk->disk = *disk;
4137 idisk->next = *disk_list;
4138 *disk_list = idisk;
4139 }
4140
4141 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4142 idisk->owner = i;
4143 }
4144
4145 return tbl_size;
4146 }
4147
4148 static struct intel_super *
4149 validate_members(struct intel_super *super, struct intel_disk *disk_list,
4150 const int owner)
4151 {
4152 struct imsm_super *mpb = super->anchor;
4153 int ok_count = 0;
4154 int i;
4155
4156 for (i = 0; i < mpb->num_disks; i++) {
4157 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4158 struct intel_disk *idisk;
4159
4160 idisk = disk_list_get(disk->serial, disk_list);
4161 if (idisk) {
4162 if (idisk->owner == owner ||
4163 idisk->owner == IMSM_UNKNOWN_OWNER)
4164 ok_count++;
4165 else
4166 dprintf("'%.16s' owner %d != %d\n",
4167 disk->serial, idisk->owner,
4168 owner);
4169 } else {
4170 dprintf("unknown disk %x [%d]: %.16s\n",
4171 __le32_to_cpu(mpb->family_num), i,
4172 disk->serial);
4173 break;
4174 }
4175 }
4176
4177 if (ok_count == mpb->num_disks)
4178 return super;
4179 return NULL;
4180 }
4181
4182 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4183 {
4184 struct intel_super *s;
4185
4186 for (s = super_list; s; s = s->next) {
4187 if (family_num != s->anchor->family_num)
4188 continue;
4189 pr_err("Conflict, offlining family %#x on '%s'\n",
4190 __le32_to_cpu(family_num), s->disks->devname);
4191 }
4192 }
4193
4194 static struct intel_super *
4195 imsm_thunderdome(struct intel_super **super_list, int len)
4196 {
4197 struct intel_super *super_table[len];
4198 struct intel_disk *disk_list = NULL;
4199 struct intel_super *champion, *spare;
4200 struct intel_super *s, **del;
4201 int tbl_size = 0;
4202 int conflict;
4203 int i;
4204
4205 memset(super_table, 0, sizeof(super_table));
4206 for (s = *super_list; s; s = s->next)
4207 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4208
4209 for (i = 0; i < tbl_size; i++) {
4210 struct imsm_disk *d;
4211 struct intel_disk *idisk;
4212 struct imsm_super *mpb = super_table[i]->anchor;
4213
4214 s = super_table[i];
4215 d = &s->disks->disk;
4216
4217 /* 'd' must appear in merged disk list for its
4218 * configuration to be valid
4219 */
4220 idisk = disk_list_get(d->serial, disk_list);
4221 if (idisk && idisk->owner == i)
4222 s = validate_members(s, disk_list, i);
4223 else
4224 s = NULL;
4225
4226 if (!s)
4227 dprintf("marking family: %#x from %d:%d offline\n",
4228 mpb->family_num,
4229 super_table[i]->disks->major,
4230 super_table[i]->disks->minor);
4231 super_table[i] = s;
4232 }
4233
4234 /* This is where the mdadm implementation differs from the Windows
4235 * driver which has no strict concept of a container. We can only
4236 * assemble one family from a container, so when returning a prodigal
4237 * array member to this system the code will not be able to disambiguate
4238 * the container contents that should be assembled ("foreign" versus
4239 * "local"). It requires user intervention to set the orig_family_num
4240 * to a new value to establish a new container. The Windows driver in
4241 * this situation fixes up the volume name in place and manages the
4242 * foreign array as an independent entity.
4243 */
4244 s = NULL;
4245 spare = NULL;
4246 conflict = 0;
4247 for (i = 0; i < tbl_size; i++) {
4248 struct intel_super *tbl_ent = super_table[i];
4249 int is_spare = 0;
4250
4251 if (!tbl_ent)
4252 continue;
4253
4254 if (tbl_ent->anchor->num_raid_devs == 0) {
4255 spare = tbl_ent;
4256 is_spare = 1;
4257 }
4258
4259 if (s && !is_spare) {
4260 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4261 conflict++;
4262 } else if (!s && !is_spare)
4263 s = tbl_ent;
4264 }
4265
4266 if (!s)
4267 s = spare;
4268 if (!s) {
4269 champion = NULL;
4270 goto out;
4271 }
4272 champion = s;
4273
4274 if (conflict)
4275 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
4276 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4277
4278 /* collect all dl's onto 'champion', and update them to
4279 * champion's version of the status
4280 */
4281 for (s = *super_list; s; s = s->next) {
4282 struct imsm_super *mpb = champion->anchor;
4283 struct dl *dl = s->disks;
4284
4285 if (s == champion)
4286 continue;
4287
4288 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4289
4290 for (i = 0; i < mpb->num_disks; i++) {
4291 struct imsm_disk *disk;
4292
4293 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4294 if (disk) {
4295 dl->disk = *disk;
4296 /* only set index on disks that are a member of
4297 * a populated contianer, i.e. one with
4298 * raid_devs
4299 */
4300 if (is_failed(&dl->disk))
4301 dl->index = -2;
4302 else if (is_spare(&dl->disk))
4303 dl->index = -1;
4304 break;
4305 }
4306 }
4307
4308 if (i >= mpb->num_disks) {
4309 struct intel_disk *idisk;
4310
4311 idisk = disk_list_get(dl->serial, disk_list);
4312 if (idisk && is_spare(&idisk->disk) &&
4313 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4314 dl->index = -1;
4315 else {
4316 dl->index = -2;
4317 continue;
4318 }
4319 }
4320
4321 dl->next = champion->disks;
4322 champion->disks = dl;
4323 s->disks = NULL;
4324 }
4325
4326 /* delete 'champion' from super_list */
4327 for (del = super_list; *del; ) {
4328 if (*del == champion) {
4329 *del = (*del)->next;
4330 break;
4331 } else
4332 del = &(*del)->next;
4333 }
4334 champion->next = NULL;
4335
4336 out:
4337 while (disk_list) {
4338 struct intel_disk *idisk = disk_list;
4339
4340 disk_list = disk_list->next;
4341 free(idisk);
4342 }
4343
4344 return champion;
4345 }
4346
4347 static int
4348 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4349 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4350 int major, int minor, int keep_fd);
4351 static int
4352 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4353 int *max, int keep_fd);
4354
4355 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4356 char *devname, struct md_list *devlist,
4357 int keep_fd)
4358 {
4359 struct intel_super *super_list = NULL;
4360 struct intel_super *super = NULL;
4361 int err = 0;
4362 int i = 0;
4363
4364 if (fd >= 0)
4365 /* 'fd' is an opened container */
4366 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4367 else
4368 /* get super block from devlist devices */
4369 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4370 if (err)
4371 goto error;
4372 /* all mpbs enter, maybe one leaves */
4373 super = imsm_thunderdome(&super_list, i);
4374 if (!super) {
4375 err = 1;
4376 goto error;
4377 }
4378
4379 if (find_missing(super) != 0) {
4380 free_imsm(super);
4381 err = 2;
4382 goto error;
4383 }
4384
4385 /* load migration record */
4386 err = load_imsm_migr_rec(super, NULL);
4387 if (err == -1) {
4388 /* migration is in progress,
4389 * but migr_rec cannot be loaded,
4390 */
4391 err = 4;
4392 goto error;
4393 }
4394
4395 /* Check migration compatibility */
4396 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
4397 pr_err("Unsupported migration detected");
4398 if (devname)
4399 fprintf(stderr, " on %s\n", devname);
4400 else
4401 fprintf(stderr, " (IMSM).\n");
4402
4403 err = 5;
4404 goto error;
4405 }
4406
4407 err = 0;
4408
4409 error:
4410 while (super_list) {
4411 struct intel_super *s = super_list;
4412
4413 super_list = super_list->next;
4414 free_imsm(s);
4415 }
4416
4417 if (err)
4418 return err;
4419
4420 *sbp = super;
4421 if (fd >= 0)
4422 strcpy(st->container_devnm, fd2devnm(fd));
4423 else
4424 st->container_devnm[0] = 0;
4425 if (err == 0 && st->ss == NULL) {
4426 st->ss = &super_imsm;
4427 st->minor_version = 0;
4428 st->max_devs = IMSM_MAX_DEVICES;
4429 }
4430 return 0;
4431 }
4432
4433 static int
4434 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4435 int *max, int keep_fd)
4436 {
4437 struct md_list *tmpdev;
4438 int err = 0;
4439 int i = 0;
4440
4441 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4442 if (tmpdev->used != 1)
4443 continue;
4444 if (tmpdev->container == 1) {
4445 int lmax = 0;
4446 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4447 if (fd < 0) {
4448 pr_err("cannot open device %s: %s\n",
4449 tmpdev->devname, strerror(errno));
4450 err = 8;
4451 goto error;
4452 }
4453 err = get_sra_super_block(fd, super_list,
4454 tmpdev->devname, &lmax,
4455 keep_fd);
4456 i += lmax;
4457 close(fd);
4458 if (err) {
4459 err = 7;
4460 goto error;
4461 }
4462 } else {
4463 int major = major(tmpdev->st_rdev);
4464 int minor = minor(tmpdev->st_rdev);
4465 err = get_super_block(super_list,
4466 NULL,
4467 tmpdev->devname,
4468 major, minor,
4469 keep_fd);
4470 i++;
4471 if (err) {
4472 err = 6;
4473 goto error;
4474 }
4475 }
4476 }
4477 error:
4478 *max = i;
4479 return err;
4480 }
4481
4482 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4483 int major, int minor, int keep_fd)
4484 {
4485 struct intel_super *s;
4486 char nm[32];
4487 int dfd = -1;
4488 int err = 0;
4489 int retry;
4490
4491 s = alloc_super();
4492 if (!s) {
4493 err = 1;
4494 goto error;
4495 }
4496
4497 sprintf(nm, "%d:%d", major, minor);
4498 dfd = dev_open(nm, O_RDWR);
4499 if (dfd < 0) {
4500 err = 2;
4501 goto error;
4502 }
4503
4504 find_intel_hba_capability(dfd, s, devname);
4505 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4506
4507 /* retry the load if we might have raced against mdmon */
4508 if (err == 3 && devnm && mdmon_running(devnm))
4509 for (retry = 0; retry < 3; retry++) {
4510 usleep(3000);
4511 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4512 if (err != 3)
4513 break;
4514 }
4515 error:
4516 if (!err) {
4517 s->next = *super_list;
4518 *super_list = s;
4519 } else {
4520 if (s)
4521 free(s);
4522 if (dfd >= 0)
4523 close(dfd);
4524 }
4525 if (dfd >= 0 && !keep_fd)
4526 close(dfd);
4527 return err;
4528
4529 }
4530
4531 static int
4532 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4533 {
4534 struct mdinfo *sra;
4535 char *devnm;
4536 struct mdinfo *sd;
4537 int err = 0;
4538 int i = 0;
4539 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4540 if (!sra)
4541 return 1;
4542
4543 if (sra->array.major_version != -1 ||
4544 sra->array.minor_version != -2 ||
4545 strcmp(sra->text_version, "imsm") != 0) {
4546 err = 1;
4547 goto error;
4548 }
4549 /* load all mpbs */
4550 devnm = fd2devnm(fd);
4551 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4552 if (get_super_block(super_list, devnm, devname,
4553 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4554 err = 7;
4555 goto error;
4556 }
4557 }
4558 error:
4559 sysfs_free(sra);
4560 *max = i;
4561 return err;
4562 }
4563
4564 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4565 {
4566 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
4567 }
4568 #endif
4569
4570 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4571 {
4572 struct intel_super *super;
4573 int rv;
4574 int retry;
4575
4576 if (test_partition(fd))
4577 /* IMSM not allowed on partitions */
4578 return 1;
4579
4580 free_super_imsm(st);
4581
4582 super = alloc_super();
4583 /* Load hba and capabilities if they exist.
4584 * But do not preclude loading metadata in case capabilities or hba are
4585 * non-compliant and ignore_hw_compat is set.
4586 */
4587 rv = find_intel_hba_capability(fd, super, devname);
4588 /* no orom/efi or non-intel hba of the disk */
4589 if (rv != 0 && st->ignore_hw_compat == 0) {
4590 if (devname)
4591 pr_err("No OROM/EFI properties for %s\n", devname);
4592 free_imsm(super);
4593 return 2;
4594 }
4595 rv = load_and_parse_mpb(fd, super, devname, 0);
4596
4597 /* retry the load if we might have raced against mdmon */
4598 if (rv == 3) {
4599 struct mdstat_ent *mdstat = NULL;
4600 char *name = fd2kname(fd);
4601
4602 if (name)
4603 mdstat = mdstat_by_component(name);
4604
4605 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
4606 for (retry = 0; retry < 3; retry++) {
4607 usleep(3000);
4608 rv = load_and_parse_mpb(fd, super, devname, 0);
4609 if (rv != 3)
4610 break;
4611 }
4612 }
4613
4614 free_mdstat(mdstat);
4615 }
4616
4617 if (rv) {
4618 if (devname)
4619 pr_err("Failed to load all information sections on %s\n", devname);
4620 free_imsm(super);
4621 return rv;
4622 }
4623
4624 st->sb = super;
4625 if (st->ss == NULL) {
4626 st->ss = &super_imsm;
4627 st->minor_version = 0;
4628 st->max_devs = IMSM_MAX_DEVICES;
4629 }
4630
4631 /* load migration record */
4632 if (load_imsm_migr_rec(super, NULL) == 0) {
4633 /* Check for unsupported migration features */
4634 if (check_mpb_migr_compatibility(super) != 0) {
4635 pr_err("Unsupported migration detected");
4636 if (devname)
4637 fprintf(stderr, " on %s\n", devname);
4638 else
4639 fprintf(stderr, " (IMSM).\n");
4640 return 3;
4641 }
4642 }
4643
4644 return 0;
4645 }
4646
4647 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4648 {
4649 if (info->level == 1)
4650 return 128;
4651 return info->chunk_size >> 9;
4652 }
4653
4654 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
4655 unsigned long long size)
4656 {
4657 if (info->level == 1)
4658 return size * 2;
4659 else
4660 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4661 }
4662
4663 static void imsm_update_version_info(struct intel_super *super)
4664 {
4665 /* update the version and attributes */
4666 struct imsm_super *mpb = super->anchor;
4667 char *version;
4668 struct imsm_dev *dev;
4669 struct imsm_map *map;
4670 int i;
4671
4672 for (i = 0; i < mpb->num_raid_devs; i++) {
4673 dev = get_imsm_dev(super, i);
4674 map = get_imsm_map(dev, MAP_0);
4675 if (__le32_to_cpu(dev->size_high) > 0)
4676 mpb->attributes |= MPB_ATTRIB_2TB;
4677
4678 /* FIXME detect when an array spans a port multiplier */
4679 #if 0
4680 mpb->attributes |= MPB_ATTRIB_PM;
4681 #endif
4682
4683 if (mpb->num_raid_devs > 1 ||
4684 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4685 version = MPB_VERSION_ATTRIBS;
4686 switch (get_imsm_raid_level(map)) {
4687 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4688 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4689 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4690 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4691 }
4692 } else {
4693 if (map->num_members >= 5)
4694 version = MPB_VERSION_5OR6_DISK_ARRAY;
4695 else if (dev->status == DEV_CLONE_N_GO)
4696 version = MPB_VERSION_CNG;
4697 else if (get_imsm_raid_level(map) == 5)
4698 version = MPB_VERSION_RAID5;
4699 else if (map->num_members >= 3)
4700 version = MPB_VERSION_3OR4_DISK_ARRAY;
4701 else if (get_imsm_raid_level(map) == 1)
4702 version = MPB_VERSION_RAID1;
4703 else
4704 version = MPB_VERSION_RAID0;
4705 }
4706 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4707 }
4708 }
4709
4710 static int check_name(struct intel_super *super, char *name, int quiet)
4711 {
4712 struct imsm_super *mpb = super->anchor;
4713 char *reason = NULL;
4714 int i;
4715
4716 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4717 reason = "must be 16 characters or less";
4718
4719 for (i = 0; i < mpb->num_raid_devs; i++) {
4720 struct imsm_dev *dev = get_imsm_dev(super, i);
4721
4722 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4723 reason = "already exists";
4724 break;
4725 }
4726 }
4727
4728 if (reason && !quiet)
4729 pr_err("imsm volume name %s\n", reason);
4730
4731 return !reason;
4732 }
4733
4734 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4735 unsigned long long size, char *name,
4736 char *homehost, int *uuid,
4737 long long data_offset)
4738 {
4739 /* We are creating a volume inside a pre-existing container.
4740 * so st->sb is already set.
4741 */
4742 struct intel_super *super = st->sb;
4743 struct imsm_super *mpb = super->anchor;
4744 struct intel_dev *dv;
4745 struct imsm_dev *dev;
4746 struct imsm_vol *vol;
4747 struct imsm_map *map;
4748 int idx = mpb->num_raid_devs;
4749 int i;
4750 unsigned long long array_blocks;
4751 size_t size_old, size_new;
4752 unsigned long long num_data_stripes;
4753
4754 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4755 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
4756 return 0;
4757 }
4758
4759 /* ensure the mpb is large enough for the new data */
4760 size_old = __le32_to_cpu(mpb->mpb_size);
4761 size_new = disks_to_mpb_size(info->nr_disks);
4762 if (size_new > size_old) {
4763 void *mpb_new;
4764 size_t size_round = ROUND_UP(size_new, 512);
4765
4766 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4767 pr_err("could not allocate new mpb\n");
4768 return 0;
4769 }
4770 if (posix_memalign(&super->migr_rec_buf, 512,
4771 MIGR_REC_BUF_SIZE) != 0) {
4772 pr_err("could not allocate migr_rec buffer\n");
4773 free(super->buf);
4774 free(super);
4775 free(mpb_new);
4776 return 0;
4777 }
4778 memcpy(mpb_new, mpb, size_old);
4779 free(mpb);
4780 mpb = mpb_new;
4781 super->anchor = mpb_new;
4782 mpb->mpb_size = __cpu_to_le32(size_new);
4783 memset(mpb_new + size_old, 0, size_round - size_old);
4784 }
4785 super->current_vol = idx;
4786
4787 /* handle 'failed_disks' by either:
4788 * a) create dummy disk entries in the table if this the first
4789 * volume in the array. We add them here as this is the only
4790 * opportunity to add them. add_to_super_imsm_volume()
4791 * handles the non-failed disks and continues incrementing
4792 * mpb->num_disks.
4793 * b) validate that 'failed_disks' matches the current number
4794 * of missing disks if the container is populated
4795 */
4796 if (super->current_vol == 0) {
4797 mpb->num_disks = 0;
4798 for (i = 0; i < info->failed_disks; i++) {
4799 struct imsm_disk *disk;
4800
4801 mpb->num_disks++;
4802 disk = __get_imsm_disk(mpb, i);
4803 disk->status = CONFIGURED_DISK | FAILED_DISK;
4804 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4805 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4806 "missing:%d", i);
4807 }
4808 find_missing(super);
4809 } else {
4810 int missing = 0;
4811 struct dl *d;
4812
4813 for (d = super->missing; d; d = d->next)
4814 missing++;
4815 if (info->failed_disks > missing) {
4816 pr_err("unable to add 'missing' disk to container\n");
4817 return 0;
4818 }
4819 }
4820
4821 if (!check_name(super, name, 0))
4822 return 0;
4823 dv = xmalloc(sizeof(*dv));
4824 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4825 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4826 array_blocks = calc_array_size(info->level, info->raid_disks,
4827 info->layout, info->chunk_size,
4828 size * 2);
4829 /* round array size down to closest MB */
4830 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4831
4832 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4833 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4834 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4835 vol = &dev->vol;
4836 vol->migr_state = 0;
4837 set_migr_type(dev, MIGR_INIT);
4838 vol->dirty = !info->state;
4839 vol->curr_migr_unit = 0;
4840 map = get_imsm_map(dev, MAP_0);
4841 set_pba_of_lba0(map, super->create_offset);
4842 set_blocks_per_member(map, info_to_blocks_per_member(info, size));
4843 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4844 map->failed_disk_num = ~0;
4845 if (info->level > 0)
4846 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
4847 : IMSM_T_STATE_UNINITIALIZED);
4848 else
4849 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4850 IMSM_T_STATE_NORMAL;
4851 map->ddf = 1;
4852
4853 if (info->level == 1 && info->raid_disks > 2) {
4854 free(dev);
4855 free(dv);
4856 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
4857 return 0;
4858 }
4859
4860 map->raid_level = info->level;
4861 if (info->level == 10) {
4862 map->raid_level = 1;
4863 map->num_domains = info->raid_disks / 2;
4864 } else if (info->level == 1)
4865 map->num_domains = info->raid_disks;
4866 else
4867 map->num_domains = 1;
4868
4869 /* info->size is only int so use the 'size' parameter instead */
4870 num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
4871 num_data_stripes /= map->num_domains;
4872 set_num_data_stripes(map, num_data_stripes);
4873
4874 map->num_members = info->raid_disks;
4875 for (i = 0; i < map->num_members; i++) {
4876 /* initialized in add_to_super */
4877 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4878 }
4879 mpb->num_raid_devs++;
4880
4881 dv->dev = dev;
4882 dv->index = super->current_vol;
4883 dv->next = super->devlist;
4884 super->devlist = dv;
4885
4886 imsm_update_version_info(super);
4887
4888 return 1;
4889 }
4890
4891 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4892 unsigned long long size, char *name,
4893 char *homehost, int *uuid,
4894 unsigned long long data_offset)
4895 {
4896 /* This is primarily called by Create when creating a new array.
4897 * We will then get add_to_super called for each component, and then
4898 * write_init_super called to write it out to each device.
4899 * For IMSM, Create can create on fresh devices or on a pre-existing
4900 * array.
4901 * To create on a pre-existing array a different method will be called.
4902 * This one is just for fresh drives.
4903 */
4904 struct intel_super *super;
4905 struct imsm_super *mpb;
4906 size_t mpb_size;
4907 char *version;
4908
4909 if (data_offset != INVALID_SECTORS) {
4910 pr_err("data-offset not supported by imsm\n");
4911 return 0;
4912 }
4913
4914 if (st->sb)
4915 return init_super_imsm_volume(st, info, size, name, homehost, uuid,
4916 data_offset);
4917
4918 if (info)
4919 mpb_size = disks_to_mpb_size(info->nr_disks);
4920 else
4921 mpb_size = 512;
4922
4923 super = alloc_super();
4924 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4925 free(super);
4926 super = NULL;
4927 }
4928 if (!super) {
4929 pr_err("could not allocate superblock\n");
4930 return 0;
4931 }
4932 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
4933 pr_err("could not allocate migr_rec buffer\n");
4934 free(super->buf);
4935 free(super);
4936 return 0;
4937 }
4938 memset(super->buf, 0, mpb_size);
4939 mpb = super->buf;
4940 mpb->mpb_size = __cpu_to_le32(mpb_size);
4941 st->sb = super;
4942
4943 if (info == NULL) {
4944 /* zeroing superblock */
4945 return 0;
4946 }
4947
4948 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4949
4950 version = (char *) mpb->sig;
4951 strcpy(version, MPB_SIGNATURE);
4952 version += strlen(MPB_SIGNATURE);
4953 strcpy(version, MPB_VERSION_RAID0);
4954
4955 return 1;
4956 }
4957
4958 #ifndef MDASSEMBLE
4959 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4960 int fd, char *devname)
4961 {
4962 struct intel_super *super = st->sb;
4963 struct imsm_super *mpb = super->anchor;
4964 struct imsm_disk *_disk;
4965 struct imsm_dev *dev;
4966 struct imsm_map *map;
4967 struct dl *dl, *df;
4968 int slot;
4969
4970 dev = get_imsm_dev(super, super->current_vol);
4971 map = get_imsm_map(dev, MAP_0);
4972
4973 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4974 pr_err("%s: Cannot add spare devices to IMSM volume\n",
4975 devname);
4976 return 1;
4977 }
4978
4979 if (fd == -1) {
4980 /* we're doing autolayout so grab the pre-marked (in
4981 * validate_geometry) raid_disk
4982 */
4983 for (dl = super->disks; dl; dl = dl->next)
4984 if (dl->raiddisk == dk->raid_disk)
4985 break;
4986 } else {
4987 for (dl = super->disks; dl ; dl = dl->next)
4988 if (dl->major == dk->major &&
4989 dl->minor == dk->minor)
4990 break;
4991 }
4992
4993 if (!dl) {
4994 pr_err("%s is not a member of the same container\n", devname);
4995 return 1;
4996 }
4997
4998 /* add a pristine spare to the metadata */
4999 if (dl->index < 0) {
5000 dl->index = super->anchor->num_disks;
5001 super->anchor->num_disks++;
5002 }
5003 /* Check the device has not already been added */
5004 slot = get_imsm_disk_slot(map, dl->index);
5005 if (slot >= 0 &&
5006 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
5007 pr_err("%s has been included in this array twice\n",
5008 devname);
5009 return 1;
5010 }
5011 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
5012 dl->disk.status = CONFIGURED_DISK;
5013
5014 /* update size of 'missing' disks to be at least as large as the
5015 * largest acitve member (we only have dummy missing disks when
5016 * creating the first volume)
5017 */
5018 if (super->current_vol == 0) {
5019 for (df = super->missing; df; df = df->next) {
5020 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5021 set_total_blocks(&df->disk, total_blocks(&dl->disk));
5022 _disk = __get_imsm_disk(mpb, df->index);
5023 *_disk = df->disk;
5024 }
5025 }
5026
5027 /* refresh unset/failed slots to point to valid 'missing' entries */
5028 for (df = super->missing; df; df = df->next)
5029 for (slot = 0; slot < mpb->num_disks; slot++) {
5030 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5031
5032 if ((ord & IMSM_ORD_REBUILD) == 0)
5033 continue;
5034 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
5035 if (is_gen_migration(dev)) {
5036 struct imsm_map *map2 = get_imsm_map(dev,
5037 MAP_1);
5038 int slot2 = get_imsm_disk_slot(map2, df->index);
5039 if (slot2 < map2->num_members && slot2 >= 0) {
5040 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
5041 slot2,
5042 MAP_1);
5043 if ((unsigned)df->index ==
5044 ord_to_idx(ord2))
5045 set_imsm_ord_tbl_ent(map2,
5046 slot2,
5047 df->index |
5048 IMSM_ORD_REBUILD);
5049 }
5050 }
5051 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5052 break;
5053 }
5054
5055 /* if we are creating the first raid device update the family number */
5056 if (super->current_vol == 0) {
5057 __u32 sum;
5058 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
5059
5060 _disk = __get_imsm_disk(mpb, dl->index);
5061 if (!_dev || !_disk) {
5062 pr_err("BUG mpb setup error\n");
5063 return 1;
5064 }
5065 *_dev = *dev;
5066 *_disk = dl->disk;
5067 sum = random32();
5068 sum += __gen_imsm_checksum(mpb);
5069 mpb->family_num = __cpu_to_le32(sum);
5070 mpb->orig_family_num = mpb->family_num;
5071 }
5072 super->current_disk = dl;
5073 return 0;
5074 }
5075
5076 /* mark_spare()
5077 * Function marks disk as spare and restores disk serial
5078 * in case it was previously marked as failed by takeover operation
5079 * reruns:
5080 * -1 : critical error
5081 * 0 : disk is marked as spare but serial is not set
5082 * 1 : success
5083 */
5084 int mark_spare(struct dl *disk)
5085 {
5086 __u8 serial[MAX_RAID_SERIAL_LEN];
5087 int ret_val = -1;
5088
5089 if (!disk)
5090 return ret_val;
5091
5092 ret_val = 0;
5093 if (!imsm_read_serial(disk->fd, NULL, serial)) {
5094 /* Restore disk serial number, because takeover marks disk
5095 * as failed and adds to serial ':0' before it becomes
5096 * a spare disk.
5097 */
5098 serialcpy(disk->serial, serial);
5099 serialcpy(disk->disk.serial, serial);
5100 ret_val = 1;
5101 }
5102 disk->disk.status = SPARE_DISK;
5103 disk->index = -1;
5104
5105 return ret_val;
5106 }
5107
5108 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
5109 int fd, char *devname,
5110 unsigned long long data_offset)
5111 {
5112 struct intel_super *super = st->sb;
5113 struct dl *dd;
5114 unsigned long long size;
5115 __u32 id;
5116 int rv;
5117 struct stat stb;
5118
5119 /* If we are on an RAID enabled platform check that the disk is
5120 * attached to the raid controller.
5121 * We do not need to test disks attachment for container based additions,
5122 * they shall be already tested when container was created/assembled.
5123 */
5124 rv = find_intel_hba_capability(fd, super, devname);
5125 /* no orom/efi or non-intel hba of the disk */
5126 if (rv != 0) {
5127 dprintf("capability: %p fd: %d ret: %d\n",
5128 super->orom, fd, rv);
5129 return 1;
5130 }
5131
5132 if (super->current_vol >= 0)
5133 return add_to_super_imsm_volume(st, dk, fd, devname);
5134
5135 fstat(fd, &stb);
5136 dd = xcalloc(sizeof(*dd), 1);
5137 dd->major = major(stb.st_rdev);
5138 dd->minor = minor(stb.st_rdev);
5139 dd->devname = devname ? xstrdup(devname) : NULL;
5140 dd->fd = fd;
5141 dd->e = NULL;
5142 dd->action = DISK_ADD;
5143 rv = imsm_read_serial(fd, devname, dd->serial);
5144 if (rv) {
5145 pr_err("failed to retrieve scsi serial, aborting\n");
5146 free(dd);
5147 abort();
5148 }
5149
5150 get_dev_size(fd, NULL, &size);
5151 /* clear migr_rec when adding disk to container */
5152 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5153 if (lseek64(fd, size - MIGR_REC_POSITION, SEEK_SET) >= 0) {
5154 if (write(fd, super->migr_rec_buf,
5155 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5156 perror("Write migr_rec failed");
5157 }
5158
5159 size /= 512;
5160 serialcpy(dd->disk.serial, dd->serial);
5161 set_total_blocks(&dd->disk, size);
5162 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5163 struct imsm_super *mpb = super->anchor;
5164 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5165 }
5166 mark_spare(dd);
5167 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
5168 dd->disk.scsi_id = __cpu_to_le32(id);
5169 else
5170 dd->disk.scsi_id = __cpu_to_le32(0);
5171
5172 if (st->update_tail) {
5173 dd->next = super->disk_mgmt_list;
5174 super->disk_mgmt_list = dd;
5175 } else {
5176 dd->next = super->disks;
5177 super->disks = dd;
5178 super->updates_pending++;
5179 }
5180
5181 return 0;
5182 }
5183
5184 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5185 {
5186 struct intel_super *super = st->sb;
5187 struct dl *dd;
5188
5189 /* remove from super works only in mdmon - for communication
5190 * manager - monitor. Check if communication memory buffer
5191 * is prepared.
5192 */
5193 if (!st->update_tail) {
5194 pr_err("shall be used in mdmon context only\n");
5195 return 1;
5196 }
5197 dd = xcalloc(1, sizeof(*dd));
5198 dd->major = dk->major;
5199 dd->minor = dk->minor;
5200 dd->fd = -1;
5201 mark_spare(dd);
5202 dd->action = DISK_REMOVE;
5203
5204 dd->next = super->disk_mgmt_list;
5205 super->disk_mgmt_list = dd;
5206
5207 return 0;
5208 }
5209
5210 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5211
5212 static union {
5213 char buf[512];
5214 struct imsm_super anchor;
5215 } spare_record __attribute__ ((aligned(512)));
5216
5217 /* spare records have their own family number and do not have any defined raid
5218 * devices
5219 */
5220 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5221 {
5222 struct imsm_super *mpb = super->anchor;
5223 struct imsm_super *spare = &spare_record.anchor;
5224 __u32 sum;
5225 struct dl *d;
5226
5227 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5228 spare->generation_num = __cpu_to_le32(1UL);
5229 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5230 spare->num_disks = 1;
5231 spare->num_raid_devs = 0;
5232 spare->cache_size = mpb->cache_size;
5233 spare->pwr_cycle_count = __cpu_to_le32(1);
5234
5235 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5236 MPB_SIGNATURE MPB_VERSION_RAID0);
5237
5238 for (d = super->disks; d; d = d->next) {
5239 if (d->index != -1)
5240 continue;
5241
5242 spare->disk[0] = d->disk;
5243 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5244 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5245
5246 sum = __gen_imsm_checksum(spare);
5247 spare->family_num = __cpu_to_le32(sum);
5248 spare->orig_family_num = 0;
5249 sum = __gen_imsm_checksum(spare);
5250 spare->check_sum = __cpu_to_le32(sum);
5251
5252 if (store_imsm_mpb(d->fd, spare)) {
5253 pr_err("failed for device %d:%d %s\n",
5254 d->major, d->minor, strerror(errno));
5255 return 1;
5256 }
5257 if (doclose) {
5258 close(d->fd);
5259 d->fd = -1;
5260 }
5261 }
5262
5263 return 0;
5264 }
5265
5266 static int write_super_imsm(struct supertype *st, int doclose)
5267 {
5268 struct intel_super *super = st->sb;
5269 struct imsm_super *mpb = super->anchor;
5270 struct dl *d;
5271 __u32 generation;
5272 __u32 sum;
5273 int spares = 0;
5274 int i;
5275 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5276 int num_disks = 0;
5277 int clear_migration_record = 1;
5278
5279 /* 'generation' is incremented everytime the metadata is written */
5280 generation = __le32_to_cpu(mpb->generation_num);
5281 generation++;
5282 mpb->generation_num = __cpu_to_le32(generation);
5283
5284 /* fix up cases where previous mdadm releases failed to set
5285 * orig_family_num
5286 */
5287 if (mpb->orig_family_num == 0)
5288 mpb->orig_family_num = mpb->family_num;
5289
5290 for (d = super->disks; d; d = d->next) {
5291 if (d->index == -1)
5292 spares++;
5293 else {
5294 mpb->disk[d->index] = d->disk;
5295 num_disks++;
5296 }
5297 }
5298 for (d = super->missing; d; d = d->next) {
5299 mpb->disk[d->index] = d->disk;
5300 num_disks++;
5301 }
5302 mpb->num_disks = num_disks;
5303 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5304
5305 for (i = 0; i < mpb->num_raid_devs; i++) {
5306 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5307 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5308 if (dev && dev2) {
5309 imsm_copy_dev(dev, dev2);
5310 mpb_size += sizeof_imsm_dev(dev, 0);
5311 }
5312 if (is_gen_migration(dev2))
5313 clear_migration_record = 0;
5314 }
5315 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
5316 mpb->mpb_size = __cpu_to_le32(mpb_size);
5317
5318 /* recalculate checksum */
5319 sum = __gen_imsm_checksum(mpb);
5320 mpb->check_sum = __cpu_to_le32(sum);
5321
5322 if (super->clean_migration_record_by_mdmon) {
5323 clear_migration_record = 1;
5324 super->clean_migration_record_by_mdmon = 0;
5325 }
5326 if (clear_migration_record)
5327 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5328
5329 /* write the mpb for disks that compose raid devices */
5330 for (d = super->disks; d ; d = d->next) {
5331 if (d->index < 0 || is_failed(&d->disk))
5332 continue;
5333
5334 if (clear_migration_record) {
5335 unsigned long long dsize;
5336
5337 get_dev_size(d->fd, NULL, &dsize);
5338 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
5339 if (write(d->fd, super->migr_rec_buf,
5340 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5341 perror("Write migr_rec failed");
5342 }
5343 }
5344
5345 if (store_imsm_mpb(d->fd, mpb))
5346 fprintf(stderr,
5347 "failed for device %d:%d (fd: %d)%s\n",
5348 d->major, d->minor,
5349 d->fd, strerror(errno));
5350
5351 if (doclose) {
5352 close(d->fd);
5353 d->fd = -1;
5354 }
5355 }
5356
5357 if (spares)
5358 return write_super_imsm_spares(super, doclose);
5359
5360 return 0;
5361 }
5362
5363 static int create_array(struct supertype *st, int dev_idx)
5364 {
5365 size_t len;
5366 struct imsm_update_create_array *u;
5367 struct intel_super *super = st->sb;
5368 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
5369 struct imsm_map *map = get_imsm_map(dev, MAP_0);
5370 struct disk_info *inf;
5371 struct imsm_disk *disk;
5372 int i;
5373
5374 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5375 sizeof(*inf) * map->num_members;
5376 u = xmalloc(len);
5377 u->type = update_create_array;
5378 u->dev_idx = dev_idx;
5379 imsm_copy_dev(&u->dev, dev);
5380 inf = get_disk_info(u);
5381 for (i = 0; i < map->num_members; i++) {
5382 int idx = get_imsm_disk_idx(dev, i, MAP_X);
5383
5384 disk = get_imsm_disk(super, idx);
5385 if (!disk)
5386 disk = get_imsm_missing(super, idx);
5387 serialcpy(inf[i].serial, disk->serial);
5388 }
5389 append_metadata_update(st, u, len);
5390
5391 return 0;
5392 }
5393
5394 static int mgmt_disk(struct supertype *st)
5395 {
5396 struct intel_super *super = st->sb;
5397 size_t len;
5398 struct imsm_update_add_remove_disk *u;
5399
5400 if (!super->disk_mgmt_list)
5401 return 0;
5402
5403 len = sizeof(*u);
5404 u = xmalloc(len);
5405 u->type = update_add_remove_disk;
5406 append_metadata_update(st, u, len);
5407
5408 return 0;
5409 }
5410
5411 static int write_init_super_imsm(struct supertype *st)
5412 {
5413 struct intel_super *super = st->sb;
5414 int current_vol = super->current_vol;
5415
5416 /* we are done with current_vol reset it to point st at the container */
5417 super->current_vol = -1;
5418
5419 if (st->update_tail) {
5420 /* queue the recently created array / added disk
5421 * as a metadata update */
5422 int rv;
5423
5424 /* determine if we are creating a volume or adding a disk */
5425 if (current_vol < 0) {
5426 /* in the mgmt (add/remove) disk case we are running
5427 * in mdmon context, so don't close fd's
5428 */
5429 return mgmt_disk(st);
5430 } else
5431 rv = create_array(st, current_vol);
5432
5433 return rv;
5434 } else {
5435 struct dl *d;
5436 for (d = super->disks; d; d = d->next)
5437 Kill(d->devname, NULL, 0, -1, 1);
5438 return write_super_imsm(st, 1);
5439 }
5440 }
5441 #endif
5442
5443 static int store_super_imsm(struct supertype *st, int fd)
5444 {
5445 struct intel_super *super = st->sb;
5446 struct imsm_super *mpb = super ? super->anchor : NULL;
5447
5448 if (!mpb)
5449 return 1;
5450
5451 #ifndef MDASSEMBLE
5452 return store_imsm_mpb(fd, mpb);
5453 #else
5454 return 1;
5455 #endif
5456 }
5457
5458 static int imsm_bbm_log_size(struct imsm_super *mpb)
5459 {
5460 return __le32_to_cpu(mpb->bbm_log_size);
5461 }
5462
5463 #ifndef MDASSEMBLE
5464 static int validate_geometry_imsm_container(struct supertype *st, int level,
5465 int layout, int raiddisks, int chunk,
5466 unsigned long long size,
5467 unsigned long long data_offset,
5468 char *dev,
5469 unsigned long long *freesize,
5470 int verbose)
5471 {
5472 int fd;
5473 unsigned long long ldsize;
5474 struct intel_super *super;
5475 int rv = 0;
5476
5477 if (level != LEVEL_CONTAINER)
5478 return 0;
5479 if (!dev)
5480 return 1;
5481
5482 fd = open(dev, O_RDONLY|O_EXCL, 0);
5483 if (fd < 0) {
5484 if (verbose > 0)
5485 pr_err("imsm: Cannot open %s: %s\n",
5486 dev, strerror(errno));
5487 return 0;
5488 }
5489 if (!get_dev_size(fd, dev, &ldsize)) {
5490 close(fd);
5491 return 0;
5492 }
5493
5494 /* capabilities retrieve could be possible
5495 * note that there is no fd for the disks in array.
5496 */
5497 super = alloc_super();
5498 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
5499 if (rv != 0) {
5500 #if DEBUG
5501 char str[256];
5502 fd2devname(fd, str);
5503 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5504 fd, str, super->orom, rv, raiddisks);
5505 #endif
5506 /* no orom/efi or non-intel hba of the disk */
5507 close(fd);
5508 free_imsm(super);
5509 return 0;
5510 }
5511 close(fd);
5512 if (super->orom) {
5513 if (raiddisks > super->orom->tds) {
5514 if (verbose)
5515 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
5516 raiddisks, super->orom->tds);
5517 free_imsm(super);
5518 return 0;
5519 }
5520 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
5521 (ldsize >> 9) >> 32 > 0) {
5522 if (verbose)
5523 pr_err("%s exceeds maximum platform supported size\n", dev);
5524 free_imsm(super);
5525 return 0;
5526 }
5527 }
5528
5529 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
5530 free_imsm(super);
5531
5532 return 1;
5533 }
5534
5535 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5536 {
5537 const unsigned long long base_start = e[*idx].start;
5538 unsigned long long end = base_start + e[*idx].size;
5539 int i;
5540
5541 if (base_start == end)
5542 return 0;
5543
5544 *idx = *idx + 1;
5545 for (i = *idx; i < num_extents; i++) {
5546 /* extend overlapping extents */
5547 if (e[i].start >= base_start &&
5548 e[i].start <= end) {
5549 if (e[i].size == 0)
5550 return 0;
5551 if (e[i].start + e[i].size > end)
5552 end = e[i].start + e[i].size;
5553 } else if (e[i].start > end) {
5554 *idx = i;
5555 break;
5556 }
5557 }
5558
5559 return end - base_start;
5560 }
5561
5562 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5563 {
5564 /* build a composite disk with all known extents and generate a new
5565 * 'maxsize' given the "all disks in an array must share a common start
5566 * offset" constraint
5567 */
5568 struct extent *e = xcalloc(sum_extents, sizeof(*e));
5569 struct dl *dl;
5570 int i, j;
5571 int start_extent;
5572 unsigned long long pos;
5573 unsigned long long start = 0;
5574 unsigned long long maxsize;
5575 unsigned long reserve;
5576
5577 /* coalesce and sort all extents. also, check to see if we need to
5578 * reserve space between member arrays
5579 */
5580 j = 0;
5581 for (dl = super->disks; dl; dl = dl->next) {
5582 if (!dl->e)
5583 continue;
5584 for (i = 0; i < dl->extent_cnt; i++)
5585 e[j++] = dl->e[i];
5586 }
5587 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5588
5589 /* merge extents */
5590 i = 0;
5591 j = 0;
5592 while (i < sum_extents) {
5593 e[j].start = e[i].start;
5594 e[j].size = find_size(e, &i, sum_extents);
5595 j++;
5596 if (e[j-1].size == 0)
5597 break;
5598 }
5599
5600 pos = 0;
5601 maxsize = 0;
5602 start_extent = 0;
5603 i = 0;
5604 do {
5605 unsigned long long esize;
5606
5607 esize = e[i].start - pos;
5608 if (esize >= maxsize) {
5609 maxsize = esize;
5610 start = pos;
5611 start_extent = i;
5612 }
5613 pos = e[i].start + e[i].size;
5614 i++;
5615 } while (e[i-1].size);
5616 free(e);
5617
5618 if (maxsize == 0)
5619 return 0;
5620
5621 /* FIXME assumes volume at offset 0 is the first volume in a
5622 * container
5623 */
5624 if (start_extent > 0)
5625 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5626 else
5627 reserve = 0;
5628
5629 if (maxsize < reserve)
5630 return 0;
5631
5632 super->create_offset = ~((unsigned long long) 0);
5633 if (start + reserve > super->create_offset)
5634 return 0; /* start overflows create_offset */
5635 super->create_offset = start + reserve;
5636
5637 return maxsize - reserve;
5638 }
5639
5640 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5641 {
5642 if (level < 0 || level == 6 || level == 4)
5643 return 0;
5644
5645 /* if we have an orom prevent invalid raid levels */
5646 if (orom)
5647 switch (level) {
5648 case 0: return imsm_orom_has_raid0(orom);
5649 case 1:
5650 if (raiddisks > 2)
5651 return imsm_orom_has_raid1e(orom);
5652 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5653 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5654 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5655 }
5656 else
5657 return 1; /* not on an Intel RAID platform so anything goes */
5658
5659 return 0;
5660 }
5661
5662 static int
5663 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
5664 int dpa, int verbose)
5665 {
5666 struct mdstat_ent *mdstat = mdstat_read(0, 0);
5667 struct mdstat_ent *memb;
5668 int count = 0;
5669 int num = 0;
5670 struct md_list *dv;
5671 int found;
5672
5673 for (memb = mdstat ; memb ; memb = memb->next) {
5674 if (memb->metadata_version &&
5675 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
5676 (strcmp(&memb->metadata_version[9], name) == 0) &&
5677 !is_subarray(memb->metadata_version+9) &&
5678 memb->members) {
5679 struct dev_member *dev = memb->members;
5680 int fd = -1;
5681 while(dev && (fd < 0)) {
5682 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
5683 num = sprintf(path, "%s%s", "/dev/", dev->name);
5684 if (num > 0)
5685 fd = open(path, O_RDONLY, 0);
5686 if (num <= 0 || fd < 0) {
5687 pr_vrb("Cannot open %s: %s\n",
5688 dev->name, strerror(errno));
5689 }
5690 free(path);
5691 dev = dev->next;
5692 }
5693 found = 0;
5694 if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
5695 struct mdstat_ent *vol;
5696 for (vol = mdstat ; vol ; vol = vol->next) {
5697 if (vol->active > 0 &&
5698 vol->metadata_version &&
5699 is_container_member(vol, memb->devnm)) {
5700 found++;
5701 count++;
5702 }
5703 }
5704 if (*devlist && (found < dpa)) {
5705 dv = xcalloc(1, sizeof(*dv));
5706 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
5707 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
5708 dv->found = found;
5709 dv->used = 0;
5710 dv->next = *devlist;
5711 *devlist = dv;
5712 }
5713 }
5714 if (fd >= 0)
5715 close(fd);
5716 }
5717 }
5718 free_mdstat(mdstat);
5719 return count;
5720 }
5721
5722 #ifdef DEBUG_LOOP
5723 static struct md_list*
5724 get_loop_devices(void)
5725 {
5726 int i;
5727 struct md_list *devlist = NULL;
5728 struct md_list *dv;
5729
5730 for(i = 0; i < 12; i++) {
5731 dv = xcalloc(1, sizeof(*dv));
5732 dv->devname = xmalloc(40);
5733 sprintf(dv->devname, "/dev/loop%d", i);
5734 dv->next = devlist;
5735 devlist = dv;
5736 }
5737 return devlist;
5738 }
5739 #endif
5740
5741 static struct md_list*
5742 get_devices(const char *hba_path)
5743 {
5744 struct md_list *devlist = NULL;
5745 struct md_list *dv;
5746 struct dirent *ent;
5747 DIR *dir;
5748 int err = 0;
5749
5750 #if DEBUG_LOOP
5751 devlist = get_loop_devices();
5752 return devlist;
5753 #endif
5754 /* scroll through /sys/dev/block looking for devices attached to
5755 * this hba
5756 */
5757 dir = opendir("/sys/dev/block");
5758 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
5759 int fd;
5760 char buf[1024];
5761 int major, minor;
5762 char *path = NULL;
5763 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
5764 continue;
5765 path = devt_to_devpath(makedev(major, minor));
5766 if (!path)
5767 continue;
5768 if (!path_attached_to_hba(path, hba_path)) {
5769 free(path);
5770 path = NULL;
5771 continue;
5772 }
5773 free(path);
5774 path = NULL;
5775 fd = dev_open(ent->d_name, O_RDONLY);
5776 if (fd >= 0) {
5777 fd2devname(fd, buf);
5778 close(fd);
5779 } else {
5780 pr_err("cannot open device: %s\n",
5781 ent->d_name);
5782 continue;
5783 }
5784
5785 dv = xcalloc(1, sizeof(*dv));
5786 dv->devname = xstrdup(buf);
5787 dv->next = devlist;
5788 devlist = dv;
5789 }
5790 if (err) {
5791 while(devlist) {
5792 dv = devlist;
5793 devlist = devlist->next;
5794 free(dv->devname);
5795 free(dv);
5796 }
5797 }
5798 closedir(dir);
5799 return devlist;
5800 }
5801
5802 static int
5803 count_volumes_list(struct md_list *devlist, char *homehost,
5804 int verbose, int *found)
5805 {
5806 struct md_list *tmpdev;
5807 int count = 0;
5808 struct supertype *st;
5809
5810 /* first walk the list of devices to find a consistent set
5811 * that match the criterea, if that is possible.
5812 * We flag the ones we like with 'used'.
5813 */
5814 *found = 0;
5815 st = match_metadata_desc_imsm("imsm");
5816 if (st == NULL) {
5817 pr_vrb("cannot allocate memory for imsm supertype\n");
5818 return 0;
5819 }
5820
5821 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5822 char *devname = tmpdev->devname;
5823 struct stat stb;
5824 struct supertype *tst;
5825 int dfd;
5826 if (tmpdev->used > 1)
5827 continue;
5828 tst = dup_super(st);
5829 if (tst == NULL) {
5830 pr_vrb("cannot allocate memory for imsm supertype\n");
5831 goto err_1;
5832 }
5833 tmpdev->container = 0;
5834 dfd = dev_open(devname, O_RDONLY|O_EXCL);
5835 if (dfd < 0) {
5836 dprintf("cannot open device %s: %s\n",
5837 devname, strerror(errno));
5838 tmpdev->used = 2;
5839 } else if (fstat(dfd, &stb)< 0) {
5840 /* Impossible! */
5841 dprintf("fstat failed for %s: %s\n",
5842 devname, strerror(errno));
5843 tmpdev->used = 2;
5844 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
5845 dprintf("%s is not a block device.\n",
5846 devname);
5847 tmpdev->used = 2;
5848 } else if (must_be_container(dfd)) {
5849 struct supertype *cst;
5850 cst = super_by_fd(dfd, NULL);
5851 if (cst == NULL) {
5852 dprintf("cannot recognize container type %s\n",
5853 devname);
5854 tmpdev->used = 2;
5855 } else if (tst->ss != st->ss) {
5856 dprintf("non-imsm container - ignore it: %s\n",
5857 devname);
5858 tmpdev->used = 2;
5859 } else if (!tst->ss->load_container ||
5860 tst->ss->load_container(tst, dfd, NULL))
5861 tmpdev->used = 2;
5862 else {
5863 tmpdev->container = 1;
5864 }
5865 if (cst)
5866 cst->ss->free_super(cst);
5867 } else {
5868 tmpdev->st_rdev = stb.st_rdev;
5869 if (tst->ss->load_super(tst,dfd, NULL)) {
5870 dprintf("no RAID superblock on %s\n",
5871 devname);
5872 tmpdev->used = 2;
5873 } else if (tst->ss->compare_super == NULL) {
5874 dprintf("Cannot assemble %s metadata on %s\n",
5875 tst->ss->name, devname);
5876 tmpdev->used = 2;
5877 }
5878 }
5879 if (dfd >= 0)
5880 close(dfd);
5881 if (tmpdev->used == 2 || tmpdev->used == 4) {
5882 /* Ignore unrecognised devices during auto-assembly */
5883 goto loop;
5884 }
5885 else {
5886 struct mdinfo info;
5887 tst->ss->getinfo_super(tst, &info, NULL);
5888
5889 if (st->minor_version == -1)
5890 st->minor_version = tst->minor_version;
5891
5892 if (memcmp(info.uuid, uuid_zero,
5893 sizeof(int[4])) == 0) {
5894 /* this is a floating spare. It cannot define
5895 * an array unless there are no more arrays of
5896 * this type to be found. It can be included
5897 * in an array of this type though.
5898 */
5899 tmpdev->used = 3;
5900 goto loop;
5901 }
5902
5903 if (st->ss != tst->ss ||
5904 st->minor_version != tst->minor_version ||
5905 st->ss->compare_super(st, tst) != 0) {
5906 /* Some mismatch. If exactly one array matches this host,
5907 * we can resolve on that one.
5908 * Or, if we are auto assembling, we just ignore the second
5909 * for now.
5910 */
5911 dprintf("superblock on %s doesn't match others - assembly aborted\n",
5912 devname);
5913 goto loop;
5914 }
5915 tmpdev->used = 1;
5916 *found = 1;
5917 dprintf("found: devname: %s\n", devname);
5918 }
5919 loop:
5920 if (tst)
5921 tst->ss->free_super(tst);
5922 }
5923 if (*found != 0) {
5924 int err;
5925 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
5926 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
5927 for (iter = head; iter; iter = iter->next) {
5928 dprintf("content->text_version: %s vol\n",
5929 iter->text_version);
5930 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
5931 /* do not assemble arrays with unsupported
5932 configurations */
5933 dprintf("Cannot activate member %s.\n",
5934 iter->text_version);
5935 } else
5936 count++;
5937 }
5938 sysfs_free(head);
5939
5940 } else {
5941 dprintf("No valid super block on device list: err: %d %p\n",
5942 err, st->sb);
5943 }
5944 } else {
5945 dprintf("no more devices to examine\n");
5946 }
5947
5948 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5949 if (tmpdev->used == 1 && tmpdev->found) {
5950 if (count) {
5951 if (count < tmpdev->found)
5952 count = 0;
5953 else
5954 count -= tmpdev->found;
5955 }
5956 }
5957 if (tmpdev->used == 1)
5958 tmpdev->used = 4;
5959 }
5960 err_1:
5961 if (st)
5962 st->ss->free_super(st);
5963 return count;
5964 }
5965
5966 static int
5967 count_volumes(struct intel_hba *hba, int dpa, int verbose)
5968 {
5969 struct sys_dev *idev, *intel_devices = find_intel_devices();
5970 int count = 0;
5971 const struct orom_entry *entry;
5972 struct devid_list *dv, *devid_list;
5973
5974 if (!hba || !hba->path)
5975 return 0;
5976
5977 for (idev = intel_devices; idev; idev = idev->next) {
5978 if (strstr(idev->path, hba->path))
5979 break;
5980 }
5981
5982 if (!idev || !idev->dev_id)
5983 return 0;
5984
5985 entry = get_orom_entry_by_device_id(idev->dev_id);
5986
5987 if (!entry || !entry->devid_list)
5988 return 0;
5989
5990 devid_list = entry->devid_list;
5991 for (dv = devid_list; dv; dv = dv->next) {
5992 struct md_list *devlist;
5993 struct sys_dev *device = device_by_id(dv->devid);
5994 char *hba_path;
5995 int found = 0;
5996
5997 if (device)
5998 hba_path = device->path;
5999 else
6000 return 0;
6001
6002 /* VMD has one orom entry for all domain, but spanning is not allowed.
6003 * VMD arrays should be counted per domain (controller), so skip
6004 * domains that are not the given one.
6005 */
6006 if (hba->type == SYS_DEV_VMD &&
6007 (strncmp(device->path, hba->path, strlen(device->path)) != 0))
6008 continue;
6009
6010 devlist = get_devices(hba_path);
6011 /* if no intel devices return zero volumes */
6012 if (devlist == NULL)
6013 return 0;
6014
6015 count += active_arrays_by_format("imsm", hba_path, &devlist, dpa, verbose);
6016 dprintf("path: %s active arrays: %d\n", hba_path, count);
6017 if (devlist == NULL)
6018 return 0;
6019 do {
6020 found = 0;
6021 count += count_volumes_list(devlist,
6022 NULL,
6023 verbose,
6024 &found);
6025 dprintf("found %d count: %d\n", found, count);
6026 } while (found);
6027
6028 dprintf("path: %s total number of volumes: %d\n", hba_path, count);
6029
6030 while (devlist) {
6031 struct md_list *dv = devlist;
6032 devlist = devlist->next;
6033 free(dv->devname);
6034 free(dv);
6035 }
6036 }
6037 return count;
6038 }
6039
6040 static int imsm_default_chunk(const struct imsm_orom *orom)
6041 {
6042 /* up to 512 if the plaform supports it, otherwise the platform max.
6043 * 128 if no platform detected
6044 */
6045 int fs = max(7, orom ? fls(orom->sss) : 0);
6046
6047 return min(512, (1 << fs));
6048 }
6049
6050 static int
6051 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
6052 int raiddisks, int *chunk, unsigned long long size, int verbose)
6053 {
6054 /* check/set platform and metadata limits/defaults */
6055 if (super->orom && raiddisks > super->orom->dpa) {
6056 pr_vrb("platform supports a maximum of %d disks per array\n",
6057 super->orom->dpa);
6058 return 0;
6059 }
6060
6061 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
6062 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6063 pr_vrb("platform does not support raid%d with %d disk%s\n",
6064 level, raiddisks, raiddisks > 1 ? "s" : "");
6065 return 0;
6066 }
6067
6068 if (*chunk == 0 || *chunk == UnSet)
6069 *chunk = imsm_default_chunk(super->orom);
6070
6071 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
6072 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
6073 return 0;
6074 }
6075
6076 if (layout != imsm_level_to_layout(level)) {
6077 if (level == 5)
6078 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6079 else if (level == 10)
6080 pr_vrb("imsm raid 10 only supports the n2 layout\n");
6081 else
6082 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6083 layout, level);
6084 return 0;
6085 }
6086
6087 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
6088 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
6089 pr_vrb("platform does not support a volume size over 2TB\n");
6090 return 0;
6091 }
6092
6093 return 1;
6094 }
6095
6096 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
6097 * FIX ME add ahci details
6098 */
6099 static int validate_geometry_imsm_volume(struct supertype *st, int level,
6100 int layout, int raiddisks, int *chunk,
6101 unsigned long long size,
6102 unsigned long long data_offset,
6103 char *dev,
6104 unsigned long long *freesize,
6105 int verbose)
6106 {
6107 struct stat stb;
6108 struct intel_super *super = st->sb;
6109 struct imsm_super *mpb;
6110 struct dl *dl;
6111 unsigned long long pos = 0;
6112 unsigned long long maxsize;
6113 struct extent *e;
6114 int i;
6115
6116 /* We must have the container info already read in. */
6117 if (!super)
6118 return 0;
6119
6120 mpb = super->anchor;
6121
6122 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
6123 pr_err("RAID gemetry validation failed. Cannot proceed with the action(s).\n");
6124 return 0;
6125 }
6126 if (!dev) {
6127 /* General test: make sure there is space for
6128 * 'raiddisks' device extents of size 'size' at a given
6129 * offset
6130 */
6131 unsigned long long minsize = size;
6132 unsigned long long start_offset = MaxSector;
6133 int dcnt = 0;
6134 if (minsize == 0)
6135 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
6136 for (dl = super->disks; dl ; dl = dl->next) {
6137 int found = 0;
6138
6139 pos = 0;
6140 i = 0;
6141 e = get_extents(super, dl);
6142 if (!e) continue;
6143 do {
6144 unsigned long long esize;
6145 esize = e[i].start - pos;
6146 if (esize >= minsize)
6147 found = 1;
6148 if (found && start_offset == MaxSector) {
6149 start_offset = pos;
6150 break;
6151 } else if (found && pos != start_offset) {
6152 found = 0;
6153 break;
6154 }
6155 pos = e[i].start + e[i].size;
6156 i++;
6157 } while (e[i-1].size);
6158 if (found)
6159 dcnt++;
6160 free(e);
6161 }
6162 if (dcnt < raiddisks) {
6163 if (verbose)
6164 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
6165 dcnt, raiddisks);
6166 return 0;
6167 }
6168 return 1;
6169 }
6170
6171 /* This device must be a member of the set */
6172 if (stat(dev, &stb) < 0)
6173 return 0;
6174 if ((S_IFMT & stb.st_mode) != S_IFBLK)
6175 return 0;
6176 for (dl = super->disks ; dl ; dl = dl->next) {
6177 if (dl->major == (int)major(stb.st_rdev) &&
6178 dl->minor == (int)minor(stb.st_rdev))
6179 break;
6180 }
6181 if (!dl) {
6182 if (verbose)
6183 pr_err("%s is not in the same imsm set\n", dev);
6184 return 0;
6185 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6186 /* If a volume is present then the current creation attempt
6187 * cannot incorporate new spares because the orom may not
6188 * understand this configuration (all member disks must be
6189 * members of each array in the container).
6190 */
6191 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
6192 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6193 return 0;
6194 } else if (super->orom && mpb->num_raid_devs > 0 &&
6195 mpb->num_disks != raiddisks) {
6196 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6197 return 0;
6198 }
6199
6200 /* retrieve the largest free space block */
6201 e = get_extents(super, dl);
6202 maxsize = 0;
6203 i = 0;
6204 if (e) {
6205 do {
6206 unsigned long long esize;
6207
6208 esize = e[i].start - pos;
6209 if (esize >= maxsize)
6210 maxsize = esize;
6211 pos = e[i].start + e[i].size;
6212 i++;
6213 } while (e[i-1].size);
6214 dl->e = e;
6215 dl->extent_cnt = i;
6216 } else {
6217 if (verbose)
6218 pr_err("unable to determine free space for: %s\n",
6219 dev);
6220 return 0;
6221 }
6222 if (maxsize < size) {
6223 if (verbose)
6224 pr_err("%s not enough space (%llu < %llu)\n",
6225 dev, maxsize, size);
6226 return 0;
6227 }
6228
6229 /* count total number of extents for merge */
6230 i = 0;
6231 for (dl = super->disks; dl; dl = dl->next)
6232 if (dl->e)
6233 i += dl->extent_cnt;
6234
6235 maxsize = merge_extents(super, i);
6236
6237 if (!check_env("IMSM_NO_PLATFORM") &&
6238 mpb->num_raid_devs > 0 && size && size != maxsize) {
6239 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
6240 return 0;
6241 }
6242
6243 if (maxsize < size || maxsize == 0) {
6244 if (verbose) {
6245 if (maxsize == 0)
6246 pr_err("no free space left on device. Aborting...\n");
6247 else
6248 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
6249 maxsize, size);
6250 }
6251 return 0;
6252 }
6253
6254 *freesize = maxsize;
6255
6256 if (super->orom) {
6257 int count = count_volumes(super->hba,
6258 super->orom->dpa, verbose);
6259 if (super->orom->vphba <= count) {
6260 pr_vrb("platform does not support more than %d raid volumes.\n",
6261 super->orom->vphba);
6262 return 0;
6263 }
6264 }
6265 return 1;
6266 }
6267
6268 static int imsm_get_free_size(struct supertype *st, int raiddisks,
6269 unsigned long long size, int chunk,
6270 unsigned long long *freesize)
6271 {
6272 struct intel_super *super = st->sb;
6273 struct imsm_super *mpb = super->anchor;
6274 struct dl *dl;
6275 int i;
6276 int extent_cnt;
6277 struct extent *e;
6278 unsigned long long maxsize;
6279 unsigned long long minsize;
6280 int cnt;
6281 int used;
6282
6283 /* find the largest common start free region of the possible disks */
6284 used = 0;
6285 extent_cnt = 0;
6286 cnt = 0;
6287 for (dl = super->disks; dl; dl = dl->next) {
6288 dl->raiddisk = -1;
6289
6290 if (dl->index >= 0)
6291 used++;
6292
6293 /* don't activate new spares if we are orom constrained
6294 * and there is already a volume active in the container
6295 */
6296 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6297 continue;
6298
6299 e = get_extents(super, dl);
6300 if (!e)
6301 continue;
6302 for (i = 1; e[i-1].size; i++)
6303 ;
6304 dl->e = e;
6305 dl->extent_cnt = i;
6306 extent_cnt += i;
6307 cnt++;
6308 }
6309
6310 maxsize = merge_extents(super, extent_cnt);
6311 minsize = size;
6312 if (size == 0)
6313 /* chunk is in K */
6314 minsize = chunk * 2;
6315
6316 if (cnt < raiddisks ||
6317 (super->orom && used && used != raiddisks) ||
6318 maxsize < minsize ||
6319 maxsize == 0) {
6320 pr_err("not enough devices with space to create array.\n");
6321 return 0; /* No enough free spaces large enough */
6322 }
6323
6324 if (size == 0) {
6325 size = maxsize;
6326 if (chunk) {
6327 size /= 2 * chunk;
6328 size *= 2 * chunk;
6329 }
6330 maxsize = size;
6331 }
6332 if (!check_env("IMSM_NO_PLATFORM") &&
6333 mpb->num_raid_devs > 0 && size && size != maxsize) {
6334 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
6335 return 0;
6336 }
6337 cnt = 0;
6338 for (dl = super->disks; dl; dl = dl->next)
6339 if (dl->e)
6340 dl->raiddisk = cnt++;
6341
6342 *freesize = size;
6343
6344 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
6345
6346 return 1;
6347 }
6348
6349 static int reserve_space(struct supertype *st, int raiddisks,
6350 unsigned long long size, int chunk,
6351 unsigned long long *freesize)
6352 {
6353 struct intel_super *super = st->sb;
6354 struct dl *dl;
6355 int cnt;
6356 int rv = 0;
6357
6358 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
6359 if (rv) {
6360 cnt = 0;
6361 for (dl = super->disks; dl; dl = dl->next)
6362 if (dl->e)
6363 dl->raiddisk = cnt++;
6364 rv = 1;
6365 }
6366
6367 return rv;
6368 }
6369
6370 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
6371 int raiddisks, int *chunk, unsigned long long size,
6372 unsigned long long data_offset,
6373 char *dev, unsigned long long *freesize,
6374 int verbose)
6375 {
6376 int fd, cfd;
6377 struct mdinfo *sra;
6378 int is_member = 0;
6379
6380 /* load capability
6381 * if given unused devices create a container
6382 * if given given devices in a container create a member volume
6383 */
6384 if (level == LEVEL_CONTAINER) {
6385 /* Must be a fresh device to add to a container */
6386 return validate_geometry_imsm_container(st, level, layout,
6387 raiddisks,
6388 *chunk,
6389 size, data_offset,
6390 dev, freesize,
6391 verbose);
6392 }
6393
6394 if (!dev) {
6395 if (st->sb) {
6396 struct intel_super *super = st->sb;
6397 if (!validate_geometry_imsm_orom(st->sb, level, layout,
6398 raiddisks, chunk, size,
6399 verbose))
6400 return 0;
6401 /* we are being asked to automatically layout a
6402 * new volume based on the current contents of
6403 * the container. If the the parameters can be
6404 * satisfied reserve_space will record the disks,
6405 * start offset, and size of the volume to be
6406 * created. add_to_super and getinfo_super
6407 * detect when autolayout is in progress.
6408 */
6409 /* assuming that freesize is always given when array is
6410 created */
6411 if (super->orom && freesize) {
6412 int count;
6413 count = count_volumes(super->hba,
6414 super->orom->dpa, verbose);
6415 if (super->orom->vphba <= count) {
6416 pr_vrb("platform does not support more than %d raid volumes.\n",
6417 super->orom->vphba);
6418 return 0;
6419 }
6420 }
6421 if (freesize)
6422 return reserve_space(st, raiddisks, size,
6423 *chunk, freesize);
6424 }
6425 return 1;
6426 }
6427 if (st->sb) {
6428 /* creating in a given container */
6429 return validate_geometry_imsm_volume(st, level, layout,
6430 raiddisks, chunk, size,
6431 data_offset,
6432 dev, freesize, verbose);
6433 }
6434
6435 /* This device needs to be a device in an 'imsm' container */
6436 fd = open(dev, O_RDONLY|O_EXCL, 0);
6437 if (fd >= 0) {
6438 if (verbose)
6439 pr_err("Cannot create this array on device %s\n",
6440 dev);
6441 close(fd);
6442 return 0;
6443 }
6444 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6445 if (verbose)
6446 pr_err("Cannot open %s: %s\n",
6447 dev, strerror(errno));
6448 return 0;
6449 }
6450 /* Well, it is in use by someone, maybe an 'imsm' container. */
6451 cfd = open_container(fd);
6452 close(fd);
6453 if (cfd < 0) {
6454 if (verbose)
6455 pr_err("Cannot use %s: It is busy\n",
6456 dev);
6457 return 0;
6458 }
6459 sra = sysfs_read(cfd, NULL, GET_VERSION);
6460 if (sra && sra->array.major_version == -1 &&
6461 strcmp(sra->text_version, "imsm") == 0)
6462 is_member = 1;
6463 sysfs_free(sra);
6464 if (is_member) {
6465 /* This is a member of a imsm container. Load the container
6466 * and try to create a volume
6467 */
6468 struct intel_super *super;
6469
6470 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
6471 st->sb = super;
6472 strcpy(st->container_devnm, fd2devnm(cfd));
6473 close(cfd);
6474 return validate_geometry_imsm_volume(st, level, layout,
6475 raiddisks, chunk,
6476 size, data_offset, dev,
6477 freesize, 1)
6478 ? 1 : -1;
6479 }
6480 }
6481
6482 if (verbose)
6483 pr_err("failed container membership check\n");
6484
6485 close(cfd);
6486 return 0;
6487 }
6488
6489 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
6490 {
6491 struct intel_super *super = st->sb;
6492
6493 if (level && *level == UnSet)
6494 *level = LEVEL_CONTAINER;
6495
6496 if (level && layout && *layout == UnSet)
6497 *layout = imsm_level_to_layout(*level);
6498
6499 if (chunk && (*chunk == UnSet || *chunk == 0))
6500 *chunk = imsm_default_chunk(super->orom);
6501 }
6502
6503 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6504
6505 static int kill_subarray_imsm(struct supertype *st)
6506 {
6507 /* remove the subarray currently referenced by ->current_vol */
6508 __u8 i;
6509 struct intel_dev **dp;
6510 struct intel_super *super = st->sb;
6511 __u8 current_vol = super->current_vol;
6512 struct imsm_super *mpb = super->anchor;
6513
6514 if (super->current_vol < 0)
6515 return 2;
6516 super->current_vol = -1; /* invalidate subarray cursor */
6517
6518 /* block deletions that would change the uuid of active subarrays
6519 *
6520 * FIXME when immutable ids are available, but note that we'll
6521 * also need to fixup the invalidated/active subarray indexes in
6522 * mdstat
6523 */
6524 for (i = 0; i < mpb->num_raid_devs; i++) {
6525 char subarray[4];
6526
6527 if (i < current_vol)
6528 continue;
6529 sprintf(subarray, "%u", i);
6530 if (is_subarray_active(subarray, st->devnm)) {
6531 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6532 current_vol, i);
6533
6534 return 2;
6535 }
6536 }
6537
6538 if (st->update_tail) {
6539 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
6540
6541 u->type = update_kill_array;
6542 u->dev_idx = current_vol;
6543 append_metadata_update(st, u, sizeof(*u));
6544
6545 return 0;
6546 }
6547
6548 for (dp = &super->devlist; *dp;)
6549 if ((*dp)->index == current_vol) {
6550 *dp = (*dp)->next;
6551 } else {
6552 handle_missing(super, (*dp)->dev);
6553 if ((*dp)->index > current_vol)
6554 (*dp)->index--;
6555 dp = &(*dp)->next;
6556 }
6557
6558 /* no more raid devices, all active components are now spares,
6559 * but of course failed are still failed
6560 */
6561 if (--mpb->num_raid_devs == 0) {
6562 struct dl *d;
6563
6564 for (d = super->disks; d; d = d->next)
6565 if (d->index > -2)
6566 mark_spare(d);
6567 }
6568
6569 super->updates_pending++;
6570
6571 return 0;
6572 }
6573
6574 static int update_subarray_imsm(struct supertype *st, char *subarray,
6575 char *update, struct mddev_ident *ident)
6576 {
6577 /* update the subarray currently referenced by ->current_vol */
6578 struct intel_super *super = st->sb;
6579 struct imsm_super *mpb = super->anchor;
6580
6581 if (strcmp(update, "name") == 0) {
6582 char *name = ident->name;
6583 char *ep;
6584 int vol;
6585
6586 if (is_subarray_active(subarray, st->devnm)) {
6587 pr_err("Unable to update name of active subarray\n");
6588 return 2;
6589 }
6590
6591 if (!check_name(super, name, 0))
6592 return 2;
6593
6594 vol = strtoul(subarray, &ep, 10);
6595 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
6596 return 2;
6597
6598 if (st->update_tail) {
6599 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
6600
6601 u->type = update_rename_array;
6602 u->dev_idx = vol;
6603 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
6604 append_metadata_update(st, u, sizeof(*u));
6605 } else {
6606 struct imsm_dev *dev;
6607 int i;
6608
6609 dev = get_imsm_dev(super, vol);
6610 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6611 for (i = 0; i < mpb->num_raid_devs; i++) {
6612 dev = get_imsm_dev(super, i);
6613 handle_missing(super, dev);
6614 }
6615 super->updates_pending++;
6616 }
6617 } else
6618 return 2;
6619
6620 return 0;
6621 }
6622 #endif /* MDASSEMBLE */
6623
6624 static int is_gen_migration(struct imsm_dev *dev)
6625 {
6626 if (dev == NULL)
6627 return 0;
6628
6629 if (!dev->vol.migr_state)
6630 return 0;
6631
6632 if (migr_type(dev) == MIGR_GEN_MIGR)
6633 return 1;
6634
6635 return 0;
6636 }
6637
6638 static int is_rebuilding(struct imsm_dev *dev)
6639 {
6640 struct imsm_map *migr_map;
6641
6642 if (!dev->vol.migr_state)
6643 return 0;
6644
6645 if (migr_type(dev) != MIGR_REBUILD)
6646 return 0;
6647
6648 migr_map = get_imsm_map(dev, MAP_1);
6649
6650 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
6651 return 1;
6652 else
6653 return 0;
6654 }
6655
6656 #ifndef MDASSEMBLE
6657 static int is_initializing(struct imsm_dev *dev)
6658 {
6659 struct imsm_map *migr_map;
6660
6661 if (!dev->vol.migr_state)
6662 return 0;
6663
6664 if (migr_type(dev) != MIGR_INIT)
6665 return 0;
6666
6667 migr_map = get_imsm_map(dev, MAP_1);
6668
6669 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
6670 return 1;
6671
6672 return 0;
6673 }
6674 #endif
6675
6676 static void update_recovery_start(struct intel_super *super,
6677 struct imsm_dev *dev,
6678 struct mdinfo *array)
6679 {
6680 struct mdinfo *rebuild = NULL;
6681 struct mdinfo *d;
6682 __u32 units;
6683
6684 if (!is_rebuilding(dev))
6685 return;
6686
6687 /* Find the rebuild target, but punt on the dual rebuild case */
6688 for (d = array->devs; d; d = d->next)
6689 if (d->recovery_start == 0) {
6690 if (rebuild)
6691 return;
6692 rebuild = d;
6693 }
6694
6695 if (!rebuild) {
6696 /* (?) none of the disks are marked with
6697 * IMSM_ORD_REBUILD, so assume they are missing and the
6698 * disk_ord_tbl was not correctly updated
6699 */
6700 dprintf("failed to locate out-of-sync disk\n");
6701 return;
6702 }
6703
6704 units = __le32_to_cpu(dev->vol.curr_migr_unit);
6705 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
6706 }
6707
6708 #ifndef MDASSEMBLE
6709 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
6710 #endif
6711
6712 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
6713 {
6714 /* Given a container loaded by load_super_imsm_all,
6715 * extract information about all the arrays into
6716 * an mdinfo tree.
6717 * If 'subarray' is given, just extract info about that array.
6718 *
6719 * For each imsm_dev create an mdinfo, fill it in,
6720 * then look for matching devices in super->disks
6721 * and create appropriate device mdinfo.
6722 */
6723 struct intel_super *super = st->sb;
6724 struct imsm_super *mpb = super->anchor;
6725 struct mdinfo *rest = NULL;
6726 unsigned int i;
6727 int sb_errors = 0;
6728 struct dl *d;
6729 int spare_disks = 0;
6730
6731 /* do not assemble arrays when not all attributes are supported */
6732 if (imsm_check_attributes(mpb->attributes) == 0) {
6733 sb_errors = 1;
6734 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
6735 }
6736
6737 /* check for bad blocks */
6738 if (imsm_bbm_log_size(super->anchor)) {
6739 pr_err("BBM log found in IMSM metadata.Arrays activation is blocked.\n");
6740 sb_errors = 1;
6741 }
6742
6743 /* count spare devices, not used in maps
6744 */
6745 for (d = super->disks; d; d = d->next)
6746 if (d->index == -1)
6747 spare_disks++;
6748
6749 for (i = 0; i < mpb->num_raid_devs; i++) {
6750 struct imsm_dev *dev;
6751 struct imsm_map *map;
6752 struct imsm_map *map2;
6753 struct mdinfo *this;
6754 int slot;
6755 #ifndef MDASSEMBLE
6756 int chunk;
6757 #endif
6758 char *ep;
6759
6760 if (subarray &&
6761 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
6762 continue;
6763
6764 dev = get_imsm_dev(super, i);
6765 map = get_imsm_map(dev, MAP_0);
6766 map2 = get_imsm_map(dev, MAP_1);
6767
6768 /* do not publish arrays that are in the middle of an
6769 * unsupported migration
6770 */
6771 if (dev->vol.migr_state &&
6772 (migr_type(dev) == MIGR_STATE_CHANGE)) {
6773 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
6774 dev->volume);
6775 continue;
6776 }
6777 /* do not publish arrays that are not support by controller's
6778 * OROM/EFI
6779 */
6780
6781 this = xmalloc(sizeof(*this));
6782
6783 super->current_vol = i;
6784 getinfo_super_imsm_volume(st, this, NULL);
6785 this->next = rest;
6786 #ifndef MDASSEMBLE
6787 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
6788 /* mdadm does not support all metadata features- set the bit in all arrays state */
6789 if (!validate_geometry_imsm_orom(super,
6790 get_imsm_raid_level(map), /* RAID level */
6791 imsm_level_to_layout(get_imsm_raid_level(map)),
6792 map->num_members, /* raid disks */
6793 &chunk, join_u32(dev->size_low, dev->size_high),
6794 1 /* verbose */)) {
6795 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
6796 dev->volume);
6797 this->array.state |=
6798 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6799 (1<<MD_SB_BLOCK_VOLUME);
6800 }
6801 #endif
6802
6803 /* if array has bad blocks, set suitable bit in all arrays state */
6804 if (sb_errors)
6805 this->array.state |=
6806 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6807 (1<<MD_SB_BLOCK_VOLUME);
6808
6809 for (slot = 0 ; slot < map->num_members; slot++) {
6810 unsigned long long recovery_start;
6811 struct mdinfo *info_d;
6812 struct dl *d;
6813 int idx;
6814 int skip;
6815 __u32 ord;
6816
6817 skip = 0;
6818 idx = get_imsm_disk_idx(dev, slot, MAP_0);
6819 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
6820 for (d = super->disks; d ; d = d->next)
6821 if (d->index == idx)
6822 break;
6823
6824 recovery_start = MaxSector;
6825 if (d == NULL)
6826 skip = 1;
6827 if (d && is_failed(&d->disk))
6828 skip = 1;
6829 if (ord & IMSM_ORD_REBUILD)
6830 recovery_start = 0;
6831
6832 /*
6833 * if we skip some disks the array will be assmebled degraded;
6834 * reset resync start to avoid a dirty-degraded
6835 * situation when performing the intial sync
6836 *
6837 * FIXME handle dirty degraded
6838 */
6839 if ((skip || recovery_start == 0) && !dev->vol.dirty)
6840 this->resync_start = MaxSector;
6841 if (skip)
6842 continue;
6843
6844 info_d = xcalloc(1, sizeof(*info_d));
6845 info_d->next = this->devs;
6846 this->devs = info_d;
6847
6848 info_d->disk.number = d->index;
6849 info_d->disk.major = d->major;
6850 info_d->disk.minor = d->minor;
6851 info_d->disk.raid_disk = slot;
6852 info_d->recovery_start = recovery_start;
6853 if (map2) {
6854 if (slot < map2->num_members)
6855 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6856 else
6857 this->array.spare_disks++;
6858 } else {
6859 if (slot < map->num_members)
6860 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6861 else
6862 this->array.spare_disks++;
6863 }
6864 if (info_d->recovery_start == MaxSector)
6865 this->array.working_disks++;
6866
6867 info_d->events = __le32_to_cpu(mpb->generation_num);
6868 info_d->data_offset = pba_of_lba0(map);
6869 info_d->component_size = blocks_per_member(map);
6870 }
6871 /* now that the disk list is up-to-date fixup recovery_start */
6872 update_recovery_start(super, dev, this);
6873 this->array.spare_disks += spare_disks;
6874
6875 #ifndef MDASSEMBLE
6876 /* check for reshape */
6877 if (this->reshape_active == 1)
6878 recover_backup_imsm(st, this);
6879 #endif
6880 rest = this;
6881 }
6882
6883 return rest;
6884 }
6885
6886 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6887 int failed, int look_in_map)
6888 {
6889 struct imsm_map *map;
6890
6891 map = get_imsm_map(dev, look_in_map);
6892
6893 if (!failed)
6894 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6895 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
6896
6897 switch (get_imsm_raid_level(map)) {
6898 case 0:
6899 return IMSM_T_STATE_FAILED;
6900 break;
6901 case 1:
6902 if (failed < map->num_members)
6903 return IMSM_T_STATE_DEGRADED;
6904 else
6905 return IMSM_T_STATE_FAILED;
6906 break;
6907 case 10:
6908 {
6909 /**
6910 * check to see if any mirrors have failed, otherwise we
6911 * are degraded. Even numbered slots are mirrored on
6912 * slot+1
6913 */
6914 int i;
6915 /* gcc -Os complains that this is unused */
6916 int insync = insync;
6917
6918 for (i = 0; i < map->num_members; i++) {
6919 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
6920 int idx = ord_to_idx(ord);
6921 struct imsm_disk *disk;
6922
6923 /* reset the potential in-sync count on even-numbered
6924 * slots. num_copies is always 2 for imsm raid10
6925 */
6926 if ((i & 1) == 0)
6927 insync = 2;
6928
6929 disk = get_imsm_disk(super, idx);
6930 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6931 insync--;
6932
6933 /* no in-sync disks left in this mirror the
6934 * array has failed
6935 */
6936 if (insync == 0)
6937 return IMSM_T_STATE_FAILED;
6938 }
6939
6940 return IMSM_T_STATE_DEGRADED;
6941 }
6942 case 5:
6943 if (failed < 2)
6944 return IMSM_T_STATE_DEGRADED;
6945 else
6946 return IMSM_T_STATE_FAILED;
6947 break;
6948 default:
6949 break;
6950 }
6951
6952 return map->map_state;
6953 }
6954
6955 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6956 int look_in_map)
6957 {
6958 int i;
6959 int failed = 0;
6960 struct imsm_disk *disk;
6961 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6962 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
6963 struct imsm_map *map_for_loop;
6964 __u32 ord;
6965 int idx;
6966 int idx_1;
6967
6968 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6969 * disks that are being rebuilt. New failures are recorded to
6970 * map[0]. So we look through all the disks we started with and
6971 * see if any failures are still present, or if any new ones
6972 * have arrived
6973 */
6974 map_for_loop = map;
6975 if (prev && (map->num_members < prev->num_members))
6976 map_for_loop = prev;
6977
6978 for (i = 0; i < map_for_loop->num_members; i++) {
6979 idx_1 = -255;
6980 /* when MAP_X is passed both maps failures are counted
6981 */
6982 if (prev &&
6983 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
6984 i < prev->num_members) {
6985 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6986 idx_1 = ord_to_idx(ord);
6987
6988 disk = get_imsm_disk(super, idx_1);
6989 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6990 failed++;
6991 }
6992 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
6993 i < map->num_members) {
6994 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6995 idx = ord_to_idx(ord);
6996
6997 if (idx != idx_1) {
6998 disk = get_imsm_disk(super, idx);
6999 if (!disk || is_failed(disk) ||
7000 ord & IMSM_ORD_REBUILD)
7001 failed++;
7002 }
7003 }
7004 }
7005
7006 return failed;
7007 }
7008
7009 #ifndef MDASSEMBLE
7010 static int imsm_open_new(struct supertype *c, struct active_array *a,
7011 char *inst)
7012 {
7013 struct intel_super *super = c->sb;
7014 struct imsm_super *mpb = super->anchor;
7015
7016 if (atoi(inst) >= mpb->num_raid_devs) {
7017 pr_err("subarry index %d, out of range\n", atoi(inst));
7018 return -ENODEV;
7019 }
7020
7021 dprintf("imsm: open_new %s\n", inst);
7022 a->info.container_member = atoi(inst);
7023 return 0;
7024 }
7025
7026 static int is_resyncing(struct imsm_dev *dev)
7027 {
7028 struct imsm_map *migr_map;
7029
7030 if (!dev->vol.migr_state)
7031 return 0;
7032
7033 if (migr_type(dev) == MIGR_INIT ||
7034 migr_type(dev) == MIGR_REPAIR)
7035 return 1;
7036
7037 if (migr_type(dev) == MIGR_GEN_MIGR)
7038 return 0;
7039
7040 migr_map = get_imsm_map(dev, MAP_1);
7041
7042 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
7043 dev->vol.migr_type != MIGR_GEN_MIGR)
7044 return 1;
7045 else
7046 return 0;
7047 }
7048
7049 /* return true if we recorded new information */
7050 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7051 {
7052 __u32 ord;
7053 int slot;
7054 struct imsm_map *map;
7055 char buf[MAX_RAID_SERIAL_LEN+3];
7056 unsigned int len, shift = 0;
7057
7058 /* new failures are always set in map[0] */
7059 map = get_imsm_map(dev, MAP_0);
7060
7061 slot = get_imsm_disk_slot(map, idx);
7062 if (slot < 0)
7063 return 0;
7064
7065 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
7066 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
7067 return 0;
7068
7069 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
7070 buf[MAX_RAID_SERIAL_LEN] = '\000';
7071 strcat(buf, ":0");
7072 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
7073 shift = len - MAX_RAID_SERIAL_LEN + 1;
7074 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
7075
7076 disk->status |= FAILED_DISK;
7077 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
7078 /* mark failures in second map if second map exists and this disk
7079 * in this slot.
7080 * This is valid for migration, initialization and rebuild
7081 */
7082 if (dev->vol.migr_state) {
7083 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
7084 int slot2 = get_imsm_disk_slot(map2, idx);
7085
7086 if (slot2 < map2->num_members && slot2 >= 0)
7087 set_imsm_ord_tbl_ent(map2, slot2,
7088 idx | IMSM_ORD_REBUILD);
7089 }
7090 if (map->failed_disk_num == 0xff)
7091 map->failed_disk_num = slot;
7092 return 1;
7093 }
7094
7095 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7096 {
7097 mark_failure(dev, disk, idx);
7098
7099 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
7100 return;
7101
7102 disk->scsi_id = __cpu_to_le32(~(__u32)0);
7103 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
7104 }
7105
7106 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
7107 {
7108 struct dl *dl;
7109
7110 if (!super->missing)
7111 return;
7112
7113 /* When orom adds replacement for missing disk it does
7114 * not remove entry of missing disk, but just updates map with
7115 * new added disk. So it is not enough just to test if there is
7116 * any missing disk, we have to look if there are any failed disks
7117 * in map to stop migration */
7118
7119 dprintf("imsm: mark missing\n");
7120 /* end process for initialization and rebuild only
7121 */
7122 if (is_gen_migration(dev) == 0) {
7123 __u8 map_state;
7124 int failed;
7125
7126 failed = imsm_count_failed(super, dev, MAP_0);
7127 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7128
7129 if (failed)
7130 end_migration(dev, super, map_state);
7131 }
7132 for (dl = super->missing; dl; dl = dl->next)
7133 mark_missing(dev, &dl->disk, dl->index);
7134 super->updates_pending++;
7135 }
7136
7137 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
7138 long long new_size)
7139 {
7140 int used_disks = imsm_num_data_members(dev, MAP_0);
7141 unsigned long long array_blocks;
7142 struct imsm_map *map;
7143
7144 if (used_disks == 0) {
7145 /* when problems occures
7146 * return current array_blocks value
7147 */
7148 array_blocks = __le32_to_cpu(dev->size_high);
7149 array_blocks = array_blocks << 32;
7150 array_blocks += __le32_to_cpu(dev->size_low);
7151
7152 return array_blocks;
7153 }
7154
7155 /* set array size in metadata
7156 */
7157 if (new_size <= 0) {
7158 /* OLCE size change is caused by added disks
7159 */
7160 map = get_imsm_map(dev, MAP_0);
7161 array_blocks = blocks_per_member(map) * used_disks;
7162 } else {
7163 /* Online Volume Size Change
7164 * Using available free space
7165 */
7166 array_blocks = new_size;
7167 }
7168
7169 /* round array size down to closest MB
7170 */
7171 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
7172 dev->size_low = __cpu_to_le32((__u32)array_blocks);
7173 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7174
7175 return array_blocks;
7176 }
7177
7178 static void imsm_set_disk(struct active_array *a, int n, int state);
7179
7180 static void imsm_progress_container_reshape(struct intel_super *super)
7181 {
7182 /* if no device has a migr_state, but some device has a
7183 * different number of members than the previous device, start
7184 * changing the number of devices in this device to match
7185 * previous.
7186 */
7187 struct imsm_super *mpb = super->anchor;
7188 int prev_disks = -1;
7189 int i;
7190 int copy_map_size;
7191
7192 for (i = 0; i < mpb->num_raid_devs; i++) {
7193 struct imsm_dev *dev = get_imsm_dev(super, i);
7194 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7195 struct imsm_map *map2;
7196 int prev_num_members;
7197
7198 if (dev->vol.migr_state)
7199 return;
7200
7201 if (prev_disks == -1)
7202 prev_disks = map->num_members;
7203 if (prev_disks == map->num_members)
7204 continue;
7205
7206 /* OK, this array needs to enter reshape mode.
7207 * i.e it needs a migr_state
7208 */
7209
7210 copy_map_size = sizeof_imsm_map(map);
7211 prev_num_members = map->num_members;
7212 map->num_members = prev_disks;
7213 dev->vol.migr_state = 1;
7214 dev->vol.curr_migr_unit = 0;
7215 set_migr_type(dev, MIGR_GEN_MIGR);
7216 for (i = prev_num_members;
7217 i < map->num_members; i++)
7218 set_imsm_ord_tbl_ent(map, i, i);
7219 map2 = get_imsm_map(dev, MAP_1);
7220 /* Copy the current map */
7221 memcpy(map2, map, copy_map_size);
7222 map2->num_members = prev_num_members;
7223
7224 imsm_set_array_size(dev, -1);
7225 super->clean_migration_record_by_mdmon = 1;
7226 super->updates_pending++;
7227 }
7228 }
7229
7230 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
7231 * states are handled in imsm_set_disk() with one exception, when a
7232 * resync is stopped due to a new failure this routine will set the
7233 * 'degraded' state for the array.
7234 */
7235 static int imsm_set_array_state(struct active_array *a, int consistent)
7236 {
7237 int inst = a->info.container_member;
7238 struct intel_super *super = a->container->sb;
7239 struct imsm_dev *dev = get_imsm_dev(super, inst);
7240 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7241 int failed = imsm_count_failed(super, dev, MAP_0);
7242 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7243 __u32 blocks_per_unit;
7244
7245 if (dev->vol.migr_state &&
7246 dev->vol.migr_type == MIGR_GEN_MIGR) {
7247 /* array state change is blocked due to reshape action
7248 * We might need to
7249 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7250 * - finish the reshape (if last_checkpoint is big and action != reshape)
7251 * - update curr_migr_unit
7252 */
7253 if (a->curr_action == reshape) {
7254 /* still reshaping, maybe update curr_migr_unit */
7255 goto mark_checkpoint;
7256 } else {
7257 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7258 /* for some reason we aborted the reshape.
7259 *
7260 * disable automatic metadata rollback
7261 * user action is required to recover process
7262 */
7263 if (0) {
7264 struct imsm_map *map2 =
7265 get_imsm_map(dev, MAP_1);
7266 dev->vol.migr_state = 0;
7267 set_migr_type(dev, 0);
7268 dev->vol.curr_migr_unit = 0;
7269 memcpy(map, map2,
7270 sizeof_imsm_map(map2));
7271 super->updates_pending++;
7272 }
7273 }
7274 if (a->last_checkpoint >= a->info.component_size) {
7275 unsigned long long array_blocks;
7276 int used_disks;
7277 struct mdinfo *mdi;
7278
7279 used_disks = imsm_num_data_members(dev, MAP_0);
7280 if (used_disks > 0) {
7281 array_blocks =
7282 blocks_per_member(map) *
7283 used_disks;
7284 /* round array size down to closest MB
7285 */
7286 array_blocks = (array_blocks
7287 >> SECT_PER_MB_SHIFT)
7288 << SECT_PER_MB_SHIFT;
7289 a->info.custom_array_size = array_blocks;
7290 /* encourage manager to update array
7291 * size
7292 */
7293
7294 a->check_reshape = 1;
7295 }
7296 /* finalize online capacity expansion/reshape */
7297 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7298 imsm_set_disk(a,
7299 mdi->disk.raid_disk,
7300 mdi->curr_state);
7301
7302 imsm_progress_container_reshape(super);
7303 }
7304 }
7305 }
7306
7307 /* before we activate this array handle any missing disks */
7308 if (consistent == 2)
7309 handle_missing(super, dev);
7310
7311 if (consistent == 2 &&
7312 (!is_resync_complete(&a->info) ||
7313 map_state != IMSM_T_STATE_NORMAL ||
7314 dev->vol.migr_state))
7315 consistent = 0;
7316
7317 if (is_resync_complete(&a->info)) {
7318 /* complete intialization / resync,
7319 * recovery and interrupted recovery is completed in
7320 * ->set_disk
7321 */
7322 if (is_resyncing(dev)) {
7323 dprintf("imsm: mark resync done\n");
7324 end_migration(dev, super, map_state);
7325 super->updates_pending++;
7326 a->last_checkpoint = 0;
7327 }
7328 } else if ((!is_resyncing(dev) && !failed) &&
7329 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
7330 /* mark the start of the init process if nothing is failed */
7331 dprintf("imsm: mark resync start\n");
7332 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
7333 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
7334 else
7335 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
7336 super->updates_pending++;
7337 }
7338
7339 mark_checkpoint:
7340 /* skip checkpointing for general migration,
7341 * it is controlled in mdadm
7342 */
7343 if (is_gen_migration(dev))
7344 goto skip_mark_checkpoint;
7345
7346 /* check if we can update curr_migr_unit from resync_start, recovery_start */
7347 blocks_per_unit = blocks_per_migr_unit(super, dev);
7348 if (blocks_per_unit) {
7349 __u32 units32;
7350 __u64 units;
7351
7352 units = a->last_checkpoint / blocks_per_unit;
7353 units32 = units;
7354
7355 /* check that we did not overflow 32-bits, and that
7356 * curr_migr_unit needs updating
7357 */
7358 if (units32 == units &&
7359 units32 != 0 &&
7360 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7361 dprintf("imsm: mark checkpoint (%u)\n", units32);
7362 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7363 super->updates_pending++;
7364 }
7365 }
7366
7367 skip_mark_checkpoint:
7368 /* mark dirty / clean */
7369 if (dev->vol.dirty != !consistent) {
7370 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
7371 if (consistent)
7372 dev->vol.dirty = 0;
7373 else
7374 dev->vol.dirty = 1;
7375 super->updates_pending++;
7376 }
7377
7378 return consistent;
7379 }
7380
7381 static void imsm_set_disk(struct active_array *a, int n, int state)
7382 {
7383 int inst = a->info.container_member;
7384 struct intel_super *super = a->container->sb;
7385 struct imsm_dev *dev = get_imsm_dev(super, inst);
7386 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7387 struct imsm_disk *disk;
7388 struct mdinfo *mdi;
7389 int recovery_not_finished = 0;
7390 int failed;
7391 __u32 ord;
7392 __u8 map_state;
7393
7394 if (n > map->num_members)
7395 pr_err("imsm: set_disk %d out of range 0..%d\n",
7396 n, map->num_members - 1);
7397
7398 if (n < 0)
7399 return;
7400
7401 dprintf("imsm: set_disk %d:%x\n", n, state);
7402
7403 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
7404 disk = get_imsm_disk(super, ord_to_idx(ord));
7405
7406 /* check for new failures */
7407 if (state & DS_FAULTY) {
7408 if (mark_failure(dev, disk, ord_to_idx(ord)))
7409 super->updates_pending++;
7410 }
7411
7412 /* check if in_sync */
7413 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
7414 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7415
7416 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
7417 super->updates_pending++;
7418 }
7419
7420 failed = imsm_count_failed(super, dev, MAP_0);
7421 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7422
7423 /* check if recovery complete, newly degraded, or failed */
7424 dprintf("imsm: Detected transition to state ");
7425 switch (map_state) {
7426 case IMSM_T_STATE_NORMAL: /* transition to normal state */
7427 dprintf("normal: ");
7428 if (is_rebuilding(dev)) {
7429 dprintf_cont("while rebuilding");
7430 /* check if recovery is really finished */
7431 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
7432 if (mdi->recovery_start != MaxSector) {
7433 recovery_not_finished = 1;
7434 break;
7435 }
7436 if (recovery_not_finished) {
7437 dprintf_cont("\n");
7438 dprintf("Rebuild has not finished yet, state not changed");
7439 if (a->last_checkpoint < mdi->recovery_start) {
7440 a->last_checkpoint = mdi->recovery_start;
7441 super->updates_pending++;
7442 }
7443 break;
7444 }
7445 end_migration(dev, super, map_state);
7446 map = get_imsm_map(dev, MAP_0);
7447 map->failed_disk_num = ~0;
7448 super->updates_pending++;
7449 a->last_checkpoint = 0;
7450 break;
7451 }
7452 if (is_gen_migration(dev)) {
7453 dprintf_cont("while general migration");
7454 if (a->last_checkpoint >= a->info.component_size)
7455 end_migration(dev, super, map_state);
7456 else
7457 map->map_state = map_state;
7458 map = get_imsm_map(dev, MAP_0);
7459 map->failed_disk_num = ~0;
7460 super->updates_pending++;
7461 break;
7462 }
7463 break;
7464 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
7465 dprintf_cont("degraded: ");
7466 if (map->map_state != map_state && !dev->vol.migr_state) {
7467 dprintf_cont("mark degraded");
7468 map->map_state = map_state;
7469 super->updates_pending++;
7470 a->last_checkpoint = 0;
7471 break;
7472 }
7473 if (is_rebuilding(dev)) {
7474 dprintf_cont("while rebuilding.");
7475 if (map->map_state != map_state) {
7476 dprintf_cont(" Map state change");
7477 end_migration(dev, super, map_state);
7478 super->updates_pending++;
7479 }
7480 break;
7481 }
7482 if (is_gen_migration(dev)) {
7483 dprintf_cont("while general migration");
7484 if (a->last_checkpoint >= a->info.component_size)
7485 end_migration(dev, super, map_state);
7486 else {
7487 map->map_state = map_state;
7488 manage_second_map(super, dev);
7489 }
7490 super->updates_pending++;
7491 break;
7492 }
7493 if (is_initializing(dev)) {
7494 dprintf_cont("while initialization.");
7495 map->map_state = map_state;
7496 super->updates_pending++;
7497 break;
7498 }
7499 break;
7500 case IMSM_T_STATE_FAILED: /* transition to failed state */
7501 dprintf_cont("failed: ");
7502 if (is_gen_migration(dev)) {
7503 dprintf_cont("while general migration");
7504 map->map_state = map_state;
7505 super->updates_pending++;
7506 break;
7507 }
7508 if (map->map_state != map_state) {
7509 dprintf_cont("mark failed");
7510 end_migration(dev, super, map_state);
7511 super->updates_pending++;
7512 a->last_checkpoint = 0;
7513 break;
7514 }
7515 break;
7516 default:
7517 dprintf_cont("state %i\n", map_state);
7518 }
7519 dprintf_cont("\n");
7520 }
7521
7522 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
7523 {
7524 void *buf = mpb;
7525 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7526 unsigned long long dsize;
7527 unsigned long long sectors;
7528
7529 get_dev_size(fd, NULL, &dsize);
7530
7531 if (mpb_size > 512) {
7532 /* -1 to account for anchor */
7533 sectors = mpb_sectors(mpb) - 1;
7534
7535 /* write the extended mpb to the sectors preceeding the anchor */
7536 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
7537 return 1;
7538
7539 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
7540 != 512 * sectors)
7541 return 1;
7542 }
7543
7544 /* first block is stored on second to last sector of the disk */
7545 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
7546 return 1;
7547
7548 if (write(fd, buf, 512) != 512)
7549 return 1;
7550
7551 return 0;
7552 }
7553
7554 static void imsm_sync_metadata(struct supertype *container)
7555 {
7556 struct intel_super *super = container->sb;
7557
7558 dprintf("sync metadata: %d\n", super->updates_pending);
7559 if (!super->updates_pending)
7560 return;
7561
7562 write_super_imsm(container, 0);
7563
7564 super->updates_pending = 0;
7565 }
7566
7567 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
7568 {
7569 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7570 int i = get_imsm_disk_idx(dev, idx, MAP_X);
7571 struct dl *dl;
7572
7573 for (dl = super->disks; dl; dl = dl->next)
7574 if (dl->index == i)
7575 break;
7576
7577 if (dl && is_failed(&dl->disk))
7578 dl = NULL;
7579
7580 if (dl)
7581 dprintf("found %x:%x\n", dl->major, dl->minor);
7582
7583 return dl;
7584 }
7585
7586 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
7587 struct active_array *a, int activate_new,
7588 struct mdinfo *additional_test_list)
7589 {
7590 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7591 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
7592 struct imsm_super *mpb = super->anchor;
7593 struct imsm_map *map;
7594 unsigned long long pos;
7595 struct mdinfo *d;
7596 struct extent *ex;
7597 int i, j;
7598 int found;
7599 __u32 array_start = 0;
7600 __u32 array_end = 0;
7601 struct dl *dl;
7602 struct mdinfo *test_list;
7603
7604 for (dl = super->disks; dl; dl = dl->next) {
7605 /* If in this array, skip */
7606 for (d = a->info.devs ; d ; d = d->next)
7607 if (d->state_fd >= 0 &&
7608 d->disk.major == dl->major &&
7609 d->disk.minor == dl->minor) {
7610 dprintf("%x:%x already in array\n",
7611 dl->major, dl->minor);
7612 break;
7613 }
7614 if (d)
7615 continue;
7616 test_list = additional_test_list;
7617 while (test_list) {
7618 if (test_list->disk.major == dl->major &&
7619 test_list->disk.minor == dl->minor) {
7620 dprintf("%x:%x already in additional test list\n",
7621 dl->major, dl->minor);
7622 break;
7623 }
7624 test_list = test_list->next;
7625 }
7626 if (test_list)
7627 continue;
7628
7629 /* skip in use or failed drives */
7630 if (is_failed(&dl->disk) || idx == dl->index ||
7631 dl->index == -2) {
7632 dprintf("%x:%x status (failed: %d index: %d)\n",
7633 dl->major, dl->minor, is_failed(&dl->disk), idx);
7634 continue;
7635 }
7636
7637 /* skip pure spares when we are looking for partially
7638 * assimilated drives
7639 */
7640 if (dl->index == -1 && !activate_new)
7641 continue;
7642
7643 /* Does this unused device have the requisite free space?
7644 * It needs to be able to cover all member volumes
7645 */
7646 ex = get_extents(super, dl);
7647 if (!ex) {
7648 dprintf("cannot get extents\n");
7649 continue;
7650 }
7651 for (i = 0; i < mpb->num_raid_devs; i++) {
7652 dev = get_imsm_dev(super, i);
7653 map = get_imsm_map(dev, MAP_0);
7654
7655 /* check if this disk is already a member of
7656 * this array
7657 */
7658 if (get_imsm_disk_slot(map, dl->index) >= 0)
7659 continue;
7660
7661 found = 0;
7662 j = 0;
7663 pos = 0;
7664 array_start = pba_of_lba0(map);
7665 array_end = array_start +
7666 blocks_per_member(map) - 1;
7667
7668 do {
7669 /* check that we can start at pba_of_lba0 with
7670 * blocks_per_member of space
7671 */
7672 if (array_start >= pos && array_end < ex[j].start) {
7673 found = 1;
7674 break;
7675 }
7676 pos = ex[j].start + ex[j].size;
7677 j++;
7678 } while (ex[j-1].size);
7679
7680 if (!found)
7681 break;
7682 }
7683
7684 free(ex);
7685 if (i < mpb->num_raid_devs) {
7686 dprintf("%x:%x does not have %u to %u available\n",
7687 dl->major, dl->minor, array_start, array_end);
7688 /* No room */
7689 continue;
7690 }
7691 return dl;
7692 }
7693
7694 return dl;
7695 }
7696
7697 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
7698 {
7699 struct imsm_dev *dev2;
7700 struct imsm_map *map;
7701 struct dl *idisk;
7702 int slot;
7703 int idx;
7704 __u8 state;
7705
7706 dev2 = get_imsm_dev(cont->sb, dev_idx);
7707 if (dev2) {
7708 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
7709 if (state == IMSM_T_STATE_FAILED) {
7710 map = get_imsm_map(dev2, MAP_0);
7711 if (!map)
7712 return 1;
7713 for (slot = 0; slot < map->num_members; slot++) {
7714 /*
7715 * Check if failed disks are deleted from intel
7716 * disk list or are marked to be deleted
7717 */
7718 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
7719 idisk = get_imsm_dl_disk(cont->sb, idx);
7720 /*
7721 * Do not rebuild the array if failed disks
7722 * from failed sub-array are not removed from
7723 * container.
7724 */
7725 if (idisk &&
7726 is_failed(&idisk->disk) &&
7727 (idisk->action != DISK_REMOVE))
7728 return 0;
7729 }
7730 }
7731 }
7732 return 1;
7733 }
7734
7735 static struct mdinfo *imsm_activate_spare(struct active_array *a,
7736 struct metadata_update **updates)
7737 {
7738 /**
7739 * Find a device with unused free space and use it to replace a
7740 * failed/vacant region in an array. We replace failed regions one a
7741 * array at a time. The result is that a new spare disk will be added
7742 * to the first failed array and after the monitor has finished
7743 * propagating failures the remainder will be consumed.
7744 *
7745 * FIXME add a capability for mdmon to request spares from another
7746 * container.
7747 */
7748
7749 struct intel_super *super = a->container->sb;
7750 int inst = a->info.container_member;
7751 struct imsm_dev *dev = get_imsm_dev(super, inst);
7752 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7753 int failed = a->info.array.raid_disks;
7754 struct mdinfo *rv = NULL;
7755 struct mdinfo *d;
7756 struct mdinfo *di;
7757 struct metadata_update *mu;
7758 struct dl *dl;
7759 struct imsm_update_activate_spare *u;
7760 int num_spares = 0;
7761 int i;
7762 int allowed;
7763
7764 for (d = a->info.devs ; d ; d = d->next) {
7765 if ((d->curr_state & DS_FAULTY) &&
7766 d->state_fd >= 0)
7767 /* wait for Removal to happen */
7768 return NULL;
7769 if (d->state_fd >= 0)
7770 failed--;
7771 }
7772
7773 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
7774 inst, failed, a->info.array.raid_disks, a->info.array.level);
7775
7776 if (imsm_reshape_blocks_arrays_changes(super))
7777 return NULL;
7778
7779 /* Cannot activate another spare if rebuild is in progress already
7780 */
7781 if (is_rebuilding(dev)) {
7782 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
7783 return NULL;
7784 }
7785
7786 if (a->info.array.level == 4)
7787 /* No repair for takeovered array
7788 * imsm doesn't support raid4
7789 */
7790 return NULL;
7791
7792 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
7793 IMSM_T_STATE_DEGRADED)
7794 return NULL;
7795
7796 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
7797 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
7798 return NULL;
7799 }
7800
7801 /*
7802 * If there are any failed disks check state of the other volume.
7803 * Block rebuild if the another one is failed until failed disks
7804 * are removed from container.
7805 */
7806 if (failed) {
7807 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
7808 MAX_RAID_SERIAL_LEN, dev->volume);
7809 /* check if states of the other volumes allow for rebuild */
7810 for (i = 0; i < super->anchor->num_raid_devs; i++) {
7811 if (i != inst) {
7812 allowed = imsm_rebuild_allowed(a->container,
7813 i, failed);
7814 if (!allowed)
7815 return NULL;
7816 }
7817 }
7818 }
7819
7820 /* For each slot, if it is not working, find a spare */
7821 for (i = 0; i < a->info.array.raid_disks; i++) {
7822 for (d = a->info.devs ; d ; d = d->next)
7823 if (d->disk.raid_disk == i)
7824 break;
7825 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
7826 if (d && (d->state_fd >= 0))
7827 continue;
7828
7829 /*
7830 * OK, this device needs recovery. Try to re-add the
7831 * previous occupant of this slot, if this fails see if
7832 * we can continue the assimilation of a spare that was
7833 * partially assimilated, finally try to activate a new
7834 * spare.
7835 */
7836 dl = imsm_readd(super, i, a);
7837 if (!dl)
7838 dl = imsm_add_spare(super, i, a, 0, rv);
7839 if (!dl)
7840 dl = imsm_add_spare(super, i, a, 1, rv);
7841 if (!dl)
7842 continue;
7843
7844 /* found a usable disk with enough space */
7845 di = xcalloc(1, sizeof(*di));
7846
7847 /* dl->index will be -1 in the case we are activating a
7848 * pristine spare. imsm_process_update() will create a
7849 * new index in this case. Once a disk is found to be
7850 * failed in all member arrays it is kicked from the
7851 * metadata
7852 */
7853 di->disk.number = dl->index;
7854
7855 /* (ab)use di->devs to store a pointer to the device
7856 * we chose
7857 */
7858 di->devs = (struct mdinfo *) dl;
7859
7860 di->disk.raid_disk = i;
7861 di->disk.major = dl->major;
7862 di->disk.minor = dl->minor;
7863 di->disk.state = 0;
7864 di->recovery_start = 0;
7865 di->data_offset = pba_of_lba0(map);
7866 di->component_size = a->info.component_size;
7867 di->container_member = inst;
7868 super->random = random32();
7869 di->next = rv;
7870 rv = di;
7871 num_spares++;
7872 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7873 i, di->data_offset);
7874 }
7875
7876 if (!rv)
7877 /* No spares found */
7878 return rv;
7879 /* Now 'rv' has a list of devices to return.
7880 * Create a metadata_update record to update the
7881 * disk_ord_tbl for the array
7882 */
7883 mu = xmalloc(sizeof(*mu));
7884 mu->buf = xcalloc(num_spares,
7885 sizeof(struct imsm_update_activate_spare));
7886 mu->space = NULL;
7887 mu->space_list = NULL;
7888 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7889 mu->next = *updates;
7890 u = (struct imsm_update_activate_spare *) mu->buf;
7891
7892 for (di = rv ; di ; di = di->next) {
7893 u->type = update_activate_spare;
7894 u->dl = (struct dl *) di->devs;
7895 di->devs = NULL;
7896 u->slot = di->disk.raid_disk;
7897 u->array = inst;
7898 u->next = u + 1;
7899 u++;
7900 }
7901 (u-1)->next = NULL;
7902 *updates = mu;
7903
7904 return rv;
7905 }
7906
7907 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
7908 {
7909 struct imsm_dev *dev = get_imsm_dev(super, idx);
7910 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7911 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
7912 struct disk_info *inf = get_disk_info(u);
7913 struct imsm_disk *disk;
7914 int i;
7915 int j;
7916
7917 for (i = 0; i < map->num_members; i++) {
7918 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
7919 for (j = 0; j < new_map->num_members; j++)
7920 if (serialcmp(disk->serial, inf[j].serial) == 0)
7921 return 1;
7922 }
7923
7924 return 0;
7925 }
7926
7927 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7928 {
7929 struct dl *dl;
7930
7931 for (dl = super->disks; dl; dl = dl->next)
7932 if (dl->major == major && dl->minor == minor)
7933 return dl;
7934 return NULL;
7935 }
7936
7937 static int remove_disk_super(struct intel_super *super, int major, int minor)
7938 {
7939 struct dl *prev;
7940 struct dl *dl;
7941
7942 prev = NULL;
7943 for (dl = super->disks; dl; dl = dl->next) {
7944 if (dl->major == major && dl->minor == minor) {
7945 /* remove */
7946 if (prev)
7947 prev->next = dl->next;
7948 else
7949 super->disks = dl->next;
7950 dl->next = NULL;
7951 __free_imsm_disk(dl);
7952 dprintf("removed %x:%x\n", major, minor);
7953 break;
7954 }
7955 prev = dl;
7956 }
7957 return 0;
7958 }
7959
7960 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
7961
7962 static int add_remove_disk_update(struct intel_super *super)
7963 {
7964 int check_degraded = 0;
7965 struct dl *disk;
7966
7967 /* add/remove some spares to/from the metadata/contrainer */
7968 while (super->disk_mgmt_list) {
7969 struct dl *disk_cfg;
7970
7971 disk_cfg = super->disk_mgmt_list;
7972 super->disk_mgmt_list = disk_cfg->next;
7973 disk_cfg->next = NULL;
7974
7975 if (disk_cfg->action == DISK_ADD) {
7976 disk_cfg->next = super->disks;
7977 super->disks = disk_cfg;
7978 check_degraded = 1;
7979 dprintf("added %x:%x\n",
7980 disk_cfg->major, disk_cfg->minor);
7981 } else if (disk_cfg->action == DISK_REMOVE) {
7982 dprintf("Disk remove action processed: %x.%x\n",
7983 disk_cfg->major, disk_cfg->minor);
7984 disk = get_disk_super(super,
7985 disk_cfg->major,
7986 disk_cfg->minor);
7987 if (disk) {
7988 /* store action status */
7989 disk->action = DISK_REMOVE;
7990 /* remove spare disks only */
7991 if (disk->index == -1) {
7992 remove_disk_super(super,
7993 disk_cfg->major,
7994 disk_cfg->minor);
7995 }
7996 }
7997 /* release allocate disk structure */
7998 __free_imsm_disk(disk_cfg);
7999 }
8000 }
8001 return check_degraded;
8002 }
8003
8004 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
8005 struct intel_super *super,
8006 void ***space_list)
8007 {
8008 struct intel_dev *id;
8009 void **tofree = NULL;
8010 int ret_val = 0;
8011
8012 dprintf("(enter)\n");
8013 if (u->subdev < 0 || u->subdev > 1) {
8014 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8015 return ret_val;
8016 }
8017 if (space_list == NULL || *space_list == NULL) {
8018 dprintf("imsm: Error: Memory is not allocated\n");
8019 return ret_val;
8020 }
8021
8022 for (id = super->devlist ; id; id = id->next) {
8023 if (id->index == (unsigned)u->subdev) {
8024 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8025 struct imsm_map *map;
8026 struct imsm_dev *new_dev =
8027 (struct imsm_dev *)*space_list;
8028 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
8029 int to_state;
8030 struct dl *new_disk;
8031
8032 if (new_dev == NULL)
8033 return ret_val;
8034 *space_list = **space_list;
8035 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
8036 map = get_imsm_map(new_dev, MAP_0);
8037 if (migr_map) {
8038 dprintf("imsm: Error: migration in progress");
8039 return ret_val;
8040 }
8041
8042 to_state = map->map_state;
8043 if ((u->new_level == 5) && (map->raid_level == 0)) {
8044 map->num_members++;
8045 /* this should not happen */
8046 if (u->new_disks[0] < 0) {
8047 map->failed_disk_num =
8048 map->num_members - 1;
8049 to_state = IMSM_T_STATE_DEGRADED;
8050 } else
8051 to_state = IMSM_T_STATE_NORMAL;
8052 }
8053 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
8054 if (u->new_level > -1)
8055 map->raid_level = u->new_level;
8056 migr_map = get_imsm_map(new_dev, MAP_1);
8057 if ((u->new_level == 5) &&
8058 (migr_map->raid_level == 0)) {
8059 int ord = map->num_members - 1;
8060 migr_map->num_members--;
8061 if (u->new_disks[0] < 0)
8062 ord |= IMSM_ORD_REBUILD;
8063 set_imsm_ord_tbl_ent(map,
8064 map->num_members - 1,
8065 ord);
8066 }
8067 id->dev = new_dev;
8068 tofree = (void **)dev;
8069
8070 /* update chunk size
8071 */
8072 if (u->new_chunksize > 0)
8073 map->blocks_per_strip =
8074 __cpu_to_le16(u->new_chunksize * 2);
8075
8076 /* add disk
8077 */
8078 if (u->new_level != 5 || migr_map->raid_level != 0 ||
8079 migr_map->raid_level == map->raid_level)
8080 goto skip_disk_add;
8081
8082 if (u->new_disks[0] >= 0) {
8083 /* use passes spare
8084 */
8085 new_disk = get_disk_super(super,
8086 major(u->new_disks[0]),
8087 minor(u->new_disks[0]));
8088 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
8089 major(u->new_disks[0]),
8090 minor(u->new_disks[0]),
8091 new_disk, new_disk->index);
8092 if (new_disk == NULL)
8093 goto error_disk_add;
8094
8095 new_disk->index = map->num_members - 1;
8096 /* slot to fill in autolayout
8097 */
8098 new_disk->raiddisk = new_disk->index;
8099 new_disk->disk.status |= CONFIGURED_DISK;
8100 new_disk->disk.status &= ~SPARE_DISK;
8101 } else
8102 goto error_disk_add;
8103
8104 skip_disk_add:
8105 *tofree = *space_list;
8106 /* calculate new size
8107 */
8108 imsm_set_array_size(new_dev, -1);
8109
8110 ret_val = 1;
8111 }
8112 }
8113
8114 if (tofree)
8115 *space_list = tofree;
8116 return ret_val;
8117
8118 error_disk_add:
8119 dprintf("Error: imsm: Cannot find disk.\n");
8120 return ret_val;
8121 }
8122
8123 static int apply_size_change_update(struct imsm_update_size_change *u,
8124 struct intel_super *super)
8125 {
8126 struct intel_dev *id;
8127 int ret_val = 0;
8128
8129 dprintf("(enter)\n");
8130 if (u->subdev < 0 || u->subdev > 1) {
8131 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8132 return ret_val;
8133 }
8134
8135 for (id = super->devlist ; id; id = id->next) {
8136 if (id->index == (unsigned)u->subdev) {
8137 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8138 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8139 int used_disks = imsm_num_data_members(dev, MAP_0);
8140 unsigned long long blocks_per_member;
8141
8142 /* calculate new size
8143 */
8144 blocks_per_member = u->new_size / used_disks;
8145 dprintf("(size: %llu, blocks per member: %llu)\n",
8146 u->new_size, blocks_per_member);
8147 set_blocks_per_member(map, blocks_per_member);
8148 imsm_set_array_size(dev, u->new_size);
8149
8150 ret_val = 1;
8151 break;
8152 }
8153 }
8154
8155 return ret_val;
8156 }
8157
8158 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
8159 struct intel_super *super,
8160 struct active_array *active_array)
8161 {
8162 struct imsm_super *mpb = super->anchor;
8163 struct imsm_dev *dev = get_imsm_dev(super, u->array);
8164 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8165 struct imsm_map *migr_map;
8166 struct active_array *a;
8167 struct imsm_disk *disk;
8168 __u8 to_state;
8169 struct dl *dl;
8170 unsigned int found;
8171 int failed;
8172 int victim;
8173 int i;
8174 int second_map_created = 0;
8175
8176 for (; u; u = u->next) {
8177 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
8178
8179 if (victim < 0)
8180 return 0;
8181
8182 for (dl = super->disks; dl; dl = dl->next)
8183 if (dl == u->dl)
8184 break;
8185
8186 if (!dl) {
8187 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
8188 u->dl->index);
8189 return 0;
8190 }
8191
8192 /* count failures (excluding rebuilds and the victim)
8193 * to determine map[0] state
8194 */
8195 failed = 0;
8196 for (i = 0; i < map->num_members; i++) {
8197 if (i == u->slot)
8198 continue;
8199 disk = get_imsm_disk(super,
8200 get_imsm_disk_idx(dev, i, MAP_X));
8201 if (!disk || is_failed(disk))
8202 failed++;
8203 }
8204
8205 /* adding a pristine spare, assign a new index */
8206 if (dl->index < 0) {
8207 dl->index = super->anchor->num_disks;
8208 super->anchor->num_disks++;
8209 }
8210 disk = &dl->disk;
8211 disk->status |= CONFIGURED_DISK;
8212 disk->status &= ~SPARE_DISK;
8213
8214 /* mark rebuild */
8215 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
8216 if (!second_map_created) {
8217 second_map_created = 1;
8218 map->map_state = IMSM_T_STATE_DEGRADED;
8219 migrate(dev, super, to_state, MIGR_REBUILD);
8220 } else
8221 map->map_state = to_state;
8222 migr_map = get_imsm_map(dev, MAP_1);
8223 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8224 set_imsm_ord_tbl_ent(migr_map, u->slot,
8225 dl->index | IMSM_ORD_REBUILD);
8226
8227 /* update the family_num to mark a new container
8228 * generation, being careful to record the existing
8229 * family_num in orig_family_num to clean up after
8230 * earlier mdadm versions that neglected to set it.
8231 */
8232 if (mpb->orig_family_num == 0)
8233 mpb->orig_family_num = mpb->family_num;
8234 mpb->family_num += super->random;
8235
8236 /* count arrays using the victim in the metadata */
8237 found = 0;
8238 for (a = active_array; a ; a = a->next) {
8239 dev = get_imsm_dev(super, a->info.container_member);
8240 map = get_imsm_map(dev, MAP_0);
8241
8242 if (get_imsm_disk_slot(map, victim) >= 0)
8243 found++;
8244 }
8245
8246 /* delete the victim if it is no longer being
8247 * utilized anywhere
8248 */
8249 if (!found) {
8250 struct dl **dlp;
8251
8252 /* We know that 'manager' isn't touching anything,
8253 * so it is safe to delete
8254 */
8255 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
8256 if ((*dlp)->index == victim)
8257 break;
8258
8259 /* victim may be on the missing list */
8260 if (!*dlp)
8261 for (dlp = &super->missing; *dlp;
8262 dlp = &(*dlp)->next)
8263 if ((*dlp)->index == victim)
8264 break;
8265 imsm_delete(super, dlp, victim);
8266 }
8267 }
8268
8269 return 1;
8270 }
8271
8272 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8273 struct intel_super *super,
8274 void ***space_list)
8275 {
8276 struct dl *new_disk;
8277 struct intel_dev *id;
8278 int i;
8279 int delta_disks = u->new_raid_disks - u->old_raid_disks;
8280 int disk_count = u->old_raid_disks;
8281 void **tofree = NULL;
8282 int devices_to_reshape = 1;
8283 struct imsm_super *mpb = super->anchor;
8284 int ret_val = 0;
8285 unsigned int dev_id;
8286
8287 dprintf("(enter)\n");
8288
8289 /* enable spares to use in array */
8290 for (i = 0; i < delta_disks; i++) {
8291 new_disk = get_disk_super(super,
8292 major(u->new_disks[i]),
8293 minor(u->new_disks[i]));
8294 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
8295 major(u->new_disks[i]), minor(u->new_disks[i]),
8296 new_disk, new_disk->index);
8297 if (new_disk == NULL ||
8298 (new_disk->index >= 0 &&
8299 new_disk->index < u->old_raid_disks))
8300 goto update_reshape_exit;
8301 new_disk->index = disk_count++;
8302 /* slot to fill in autolayout
8303 */
8304 new_disk->raiddisk = new_disk->index;
8305 new_disk->disk.status |=
8306 CONFIGURED_DISK;
8307 new_disk->disk.status &= ~SPARE_DISK;
8308 }
8309
8310 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8311 mpb->num_raid_devs);
8312 /* manage changes in volume
8313 */
8314 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
8315 void **sp = *space_list;
8316 struct imsm_dev *newdev;
8317 struct imsm_map *newmap, *oldmap;
8318
8319 for (id = super->devlist ; id; id = id->next) {
8320 if (id->index == dev_id)
8321 break;
8322 }
8323 if (id == NULL)
8324 break;
8325 if (!sp)
8326 continue;
8327 *space_list = *sp;
8328 newdev = (void*)sp;
8329 /* Copy the dev, but not (all of) the map */
8330 memcpy(newdev, id->dev, sizeof(*newdev));
8331 oldmap = get_imsm_map(id->dev, MAP_0);
8332 newmap = get_imsm_map(newdev, MAP_0);
8333 /* Copy the current map */
8334 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8335 /* update one device only
8336 */
8337 if (devices_to_reshape) {
8338 dprintf("imsm: modifying subdev: %i\n",
8339 id->index);
8340 devices_to_reshape--;
8341 newdev->vol.migr_state = 1;
8342 newdev->vol.curr_migr_unit = 0;
8343 set_migr_type(newdev, MIGR_GEN_MIGR);
8344 newmap->num_members = u->new_raid_disks;
8345 for (i = 0; i < delta_disks; i++) {
8346 set_imsm_ord_tbl_ent(newmap,
8347 u->old_raid_disks + i,
8348 u->old_raid_disks + i);
8349 }
8350 /* New map is correct, now need to save old map
8351 */
8352 newmap = get_imsm_map(newdev, MAP_1);
8353 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8354
8355 imsm_set_array_size(newdev, -1);
8356 }
8357
8358 sp = (void **)id->dev;
8359 id->dev = newdev;
8360 *sp = tofree;
8361 tofree = sp;
8362
8363 /* Clear migration record */
8364 memset(super->migr_rec, 0, sizeof(struct migr_record));
8365 }
8366 if (tofree)
8367 *space_list = tofree;
8368 ret_val = 1;
8369
8370 update_reshape_exit:
8371
8372 return ret_val;
8373 }
8374
8375 static int apply_takeover_update(struct imsm_update_takeover *u,
8376 struct intel_super *super,
8377 void ***space_list)
8378 {
8379 struct imsm_dev *dev = NULL;
8380 struct intel_dev *dv;
8381 struct imsm_dev *dev_new;
8382 struct imsm_map *map;
8383 struct dl *dm, *du;
8384 int i;
8385
8386 for (dv = super->devlist; dv; dv = dv->next)
8387 if (dv->index == (unsigned int)u->subarray) {
8388 dev = dv->dev;
8389 break;
8390 }
8391
8392 if (dev == NULL)
8393 return 0;
8394
8395 map = get_imsm_map(dev, MAP_0);
8396
8397 if (u->direction == R10_TO_R0) {
8398 /* Number of failed disks must be half of initial disk number */
8399 if (imsm_count_failed(super, dev, MAP_0) !=
8400 (map->num_members / 2))
8401 return 0;
8402
8403 /* iterate through devices to mark removed disks as spare */
8404 for (dm = super->disks; dm; dm = dm->next) {
8405 if (dm->disk.status & FAILED_DISK) {
8406 int idx = dm->index;
8407 /* update indexes on the disk list */
8408 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
8409 the index values will end up being correct.... NB */
8410 for (du = super->disks; du; du = du->next)
8411 if (du->index > idx)
8412 du->index--;
8413 /* mark as spare disk */
8414 mark_spare(dm);
8415 }
8416 }
8417 /* update map */
8418 map->num_members = map->num_members / 2;
8419 map->map_state = IMSM_T_STATE_NORMAL;
8420 map->num_domains = 1;
8421 map->raid_level = 0;
8422 map->failed_disk_num = -1;
8423 }
8424
8425 if (u->direction == R0_TO_R10) {
8426 void **space;
8427 /* update slots in current disk list */
8428 for (dm = super->disks; dm; dm = dm->next) {
8429 if (dm->index >= 0)
8430 dm->index *= 2;
8431 }
8432 /* create new *missing* disks */
8433 for (i = 0; i < map->num_members; i++) {
8434 space = *space_list;
8435 if (!space)
8436 continue;
8437 *space_list = *space;
8438 du = (void *)space;
8439 memcpy(du, super->disks, sizeof(*du));
8440 du->fd = -1;
8441 du->minor = 0;
8442 du->major = 0;
8443 du->index = (i * 2) + 1;
8444 sprintf((char *)du->disk.serial,
8445 " MISSING_%d", du->index);
8446 sprintf((char *)du->serial,
8447 "MISSING_%d", du->index);
8448 du->next = super->missing;
8449 super->missing = du;
8450 }
8451 /* create new dev and map */
8452 space = *space_list;
8453 if (!space)
8454 return 0;
8455 *space_list = *space;
8456 dev_new = (void *)space;
8457 memcpy(dev_new, dev, sizeof(*dev));
8458 /* update new map */
8459 map = get_imsm_map(dev_new, MAP_0);
8460 map->num_members = map->num_members * 2;
8461 map->map_state = IMSM_T_STATE_DEGRADED;
8462 map->num_domains = 2;
8463 map->raid_level = 1;
8464 /* replace dev<->dev_new */
8465 dv->dev = dev_new;
8466 }
8467 /* update disk order table */
8468 for (du = super->disks; du; du = du->next)
8469 if (du->index >= 0)
8470 set_imsm_ord_tbl_ent(map, du->index, du->index);
8471 for (du = super->missing; du; du = du->next)
8472 if (du->index >= 0) {
8473 set_imsm_ord_tbl_ent(map, du->index, du->index);
8474 mark_missing(dv->dev, &du->disk, du->index);
8475 }
8476
8477 return 1;
8478 }
8479
8480 static void imsm_process_update(struct supertype *st,
8481 struct metadata_update *update)
8482 {
8483 /**
8484 * crack open the metadata_update envelope to find the update record
8485 * update can be one of:
8486 * update_reshape_container_disks - all the arrays in the container
8487 * are being reshaped to have more devices. We need to mark
8488 * the arrays for general migration and convert selected spares
8489 * into active devices.
8490 * update_activate_spare - a spare device has replaced a failed
8491 * device in an array, update the disk_ord_tbl. If this disk is
8492 * present in all member arrays then also clear the SPARE_DISK
8493 * flag
8494 * update_create_array
8495 * update_kill_array
8496 * update_rename_array
8497 * update_add_remove_disk
8498 */
8499 struct intel_super *super = st->sb;
8500 struct imsm_super *mpb;
8501 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8502
8503 /* update requires a larger buf but the allocation failed */
8504 if (super->next_len && !super->next_buf) {
8505 super->next_len = 0;
8506 return;
8507 }
8508
8509 if (super->next_buf) {
8510 memcpy(super->next_buf, super->buf, super->len);
8511 free(super->buf);
8512 super->len = super->next_len;
8513 super->buf = super->next_buf;
8514
8515 super->next_len = 0;
8516 super->next_buf = NULL;
8517 }
8518
8519 mpb = super->anchor;
8520
8521 switch (type) {
8522 case update_general_migration_checkpoint: {
8523 struct intel_dev *id;
8524 struct imsm_update_general_migration_checkpoint *u =
8525 (void *)update->buf;
8526
8527 dprintf("called for update_general_migration_checkpoint\n");
8528
8529 /* find device under general migration */
8530 for (id = super->devlist ; id; id = id->next) {
8531 if (is_gen_migration(id->dev)) {
8532 id->dev->vol.curr_migr_unit =
8533 __cpu_to_le32(u->curr_migr_unit);
8534 super->updates_pending++;
8535 }
8536 }
8537 break;
8538 }
8539 case update_takeover: {
8540 struct imsm_update_takeover *u = (void *)update->buf;
8541 if (apply_takeover_update(u, super, &update->space_list)) {
8542 imsm_update_version_info(super);
8543 super->updates_pending++;
8544 }
8545 break;
8546 }
8547
8548 case update_reshape_container_disks: {
8549 struct imsm_update_reshape *u = (void *)update->buf;
8550 if (apply_reshape_container_disks_update(
8551 u, super, &update->space_list))
8552 super->updates_pending++;
8553 break;
8554 }
8555 case update_reshape_migration: {
8556 struct imsm_update_reshape_migration *u = (void *)update->buf;
8557 if (apply_reshape_migration_update(
8558 u, super, &update->space_list))
8559 super->updates_pending++;
8560 break;
8561 }
8562 case update_size_change: {
8563 struct imsm_update_size_change *u = (void *)update->buf;
8564 if (apply_size_change_update(u, super))
8565 super->updates_pending++;
8566 break;
8567 }
8568 case update_activate_spare: {
8569 struct imsm_update_activate_spare *u = (void *) update->buf;
8570 if (apply_update_activate_spare(u, super, st->arrays))
8571 super->updates_pending++;
8572 break;
8573 }
8574 case update_create_array: {
8575 /* someone wants to create a new array, we need to be aware of
8576 * a few races/collisions:
8577 * 1/ 'Create' called by two separate instances of mdadm
8578 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
8579 * devices that have since been assimilated via
8580 * activate_spare.
8581 * In the event this update can not be carried out mdadm will
8582 * (FIX ME) notice that its update did not take hold.
8583 */
8584 struct imsm_update_create_array *u = (void *) update->buf;
8585 struct intel_dev *dv;
8586 struct imsm_dev *dev;
8587 struct imsm_map *map, *new_map;
8588 unsigned long long start, end;
8589 unsigned long long new_start, new_end;
8590 int i;
8591 struct disk_info *inf;
8592 struct dl *dl;
8593
8594 /* handle racing creates: first come first serve */
8595 if (u->dev_idx < mpb->num_raid_devs) {
8596 dprintf("subarray %d already defined\n", u->dev_idx);
8597 goto create_error;
8598 }
8599
8600 /* check update is next in sequence */
8601 if (u->dev_idx != mpb->num_raid_devs) {
8602 dprintf("can not create array %d expected index %d\n",
8603 u->dev_idx, mpb->num_raid_devs);
8604 goto create_error;
8605 }
8606
8607 new_map = get_imsm_map(&u->dev, MAP_0);
8608 new_start = pba_of_lba0(new_map);
8609 new_end = new_start + blocks_per_member(new_map);
8610 inf = get_disk_info(u);
8611
8612 /* handle activate_spare versus create race:
8613 * check to make sure that overlapping arrays do not include
8614 * overalpping disks
8615 */
8616 for (i = 0; i < mpb->num_raid_devs; i++) {
8617 dev = get_imsm_dev(super, i);
8618 map = get_imsm_map(dev, MAP_0);
8619 start = pba_of_lba0(map);
8620 end = start + blocks_per_member(map);
8621 if ((new_start >= start && new_start <= end) ||
8622 (start >= new_start && start <= new_end))
8623 /* overlap */;
8624 else
8625 continue;
8626
8627 if (disks_overlap(super, i, u)) {
8628 dprintf("arrays overlap\n");
8629 goto create_error;
8630 }
8631 }
8632
8633 /* check that prepare update was successful */
8634 if (!update->space) {
8635 dprintf("prepare update failed\n");
8636 goto create_error;
8637 }
8638
8639 /* check that all disks are still active before committing
8640 * changes. FIXME: could we instead handle this by creating a
8641 * degraded array? That's probably not what the user expects,
8642 * so better to drop this update on the floor.
8643 */
8644 for (i = 0; i < new_map->num_members; i++) {
8645 dl = serial_to_dl(inf[i].serial, super);
8646 if (!dl) {
8647 dprintf("disk disappeared\n");
8648 goto create_error;
8649 }
8650 }
8651
8652 super->updates_pending++;
8653
8654 /* convert spares to members and fixup ord_tbl */
8655 for (i = 0; i < new_map->num_members; i++) {
8656 dl = serial_to_dl(inf[i].serial, super);
8657 if (dl->index == -1) {
8658 dl->index = mpb->num_disks;
8659 mpb->num_disks++;
8660 dl->disk.status |= CONFIGURED_DISK;
8661 dl->disk.status &= ~SPARE_DISK;
8662 }
8663 set_imsm_ord_tbl_ent(new_map, i, dl->index);
8664 }
8665
8666 dv = update->space;
8667 dev = dv->dev;
8668 update->space = NULL;
8669 imsm_copy_dev(dev, &u->dev);
8670 dv->index = u->dev_idx;
8671 dv->next = super->devlist;
8672 super->devlist = dv;
8673 mpb->num_raid_devs++;
8674
8675 imsm_update_version_info(super);
8676 break;
8677 create_error:
8678 /* mdmon knows how to release update->space, but not
8679 * ((struct intel_dev *) update->space)->dev
8680 */
8681 if (update->space) {
8682 dv = update->space;
8683 free(dv->dev);
8684 }
8685 break;
8686 }
8687 case update_kill_array: {
8688 struct imsm_update_kill_array *u = (void *) update->buf;
8689 int victim = u->dev_idx;
8690 struct active_array *a;
8691 struct intel_dev **dp;
8692 struct imsm_dev *dev;
8693
8694 /* sanity check that we are not affecting the uuid of
8695 * active arrays, or deleting an active array
8696 *
8697 * FIXME when immutable ids are available, but note that
8698 * we'll also need to fixup the invalidated/active
8699 * subarray indexes in mdstat
8700 */
8701 for (a = st->arrays; a; a = a->next)
8702 if (a->info.container_member >= victim)
8703 break;
8704 /* by definition if mdmon is running at least one array
8705 * is active in the container, so checking
8706 * mpb->num_raid_devs is just extra paranoia
8707 */
8708 dev = get_imsm_dev(super, victim);
8709 if (a || !dev || mpb->num_raid_devs == 1) {
8710 dprintf("failed to delete subarray-%d\n", victim);
8711 break;
8712 }
8713
8714 for (dp = &super->devlist; *dp;)
8715 if ((*dp)->index == (unsigned)super->current_vol) {
8716 *dp = (*dp)->next;
8717 } else {
8718 if ((*dp)->index > (unsigned)victim)
8719 (*dp)->index--;
8720 dp = &(*dp)->next;
8721 }
8722 mpb->num_raid_devs--;
8723 super->updates_pending++;
8724 break;
8725 }
8726 case update_rename_array: {
8727 struct imsm_update_rename_array *u = (void *) update->buf;
8728 char name[MAX_RAID_SERIAL_LEN+1];
8729 int target = u->dev_idx;
8730 struct active_array *a;
8731 struct imsm_dev *dev;
8732
8733 /* sanity check that we are not affecting the uuid of
8734 * an active array
8735 */
8736 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
8737 name[MAX_RAID_SERIAL_LEN] = '\0';
8738 for (a = st->arrays; a; a = a->next)
8739 if (a->info.container_member == target)
8740 break;
8741 dev = get_imsm_dev(super, u->dev_idx);
8742 if (a || !dev || !check_name(super, name, 1)) {
8743 dprintf("failed to rename subarray-%d\n", target);
8744 break;
8745 }
8746
8747 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
8748 super->updates_pending++;
8749 break;
8750 }
8751 case update_add_remove_disk: {
8752 /* we may be able to repair some arrays if disks are
8753 * being added, check the status of add_remove_disk
8754 * if discs has been added.
8755 */
8756 if (add_remove_disk_update(super)) {
8757 struct active_array *a;
8758
8759 super->updates_pending++;
8760 for (a = st->arrays; a; a = a->next)
8761 a->check_degraded = 1;
8762 }
8763 break;
8764 }
8765 default:
8766 pr_err("error: unsuported process update type:(type: %d)\n", type);
8767 }
8768 }
8769
8770 static struct mdinfo *get_spares_for_grow(struct supertype *st);
8771
8772 static int imsm_prepare_update(struct supertype *st,
8773 struct metadata_update *update)
8774 {
8775 /**
8776 * Allocate space to hold new disk entries, raid-device entries or a new
8777 * mpb if necessary. The manager synchronously waits for updates to
8778 * complete in the monitor, so new mpb buffers allocated here can be
8779 * integrated by the monitor thread without worrying about live pointers
8780 * in the manager thread.
8781 */
8782 enum imsm_update_type type;
8783 struct intel_super *super = st->sb;
8784 struct imsm_super *mpb = super->anchor;
8785 size_t buf_len;
8786 size_t len = 0;
8787
8788 if (update->len < (int)sizeof(type))
8789 return 0;
8790
8791 type = *(enum imsm_update_type *) update->buf;
8792
8793 switch (type) {
8794 case update_general_migration_checkpoint:
8795 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
8796 return 0;
8797 dprintf("called for update_general_migration_checkpoint\n");
8798 break;
8799 case update_takeover: {
8800 struct imsm_update_takeover *u = (void *)update->buf;
8801 if (update->len < (int)sizeof(*u))
8802 return 0;
8803 if (u->direction == R0_TO_R10) {
8804 void **tail = (void **)&update->space_list;
8805 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
8806 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8807 int num_members = map->num_members;
8808 void *space;
8809 int size, i;
8810 /* allocate memory for added disks */
8811 for (i = 0; i < num_members; i++) {
8812 size = sizeof(struct dl);
8813 space = xmalloc(size);
8814 *tail = space;
8815 tail = space;
8816 *tail = NULL;
8817 }
8818 /* allocate memory for new device */
8819 size = sizeof_imsm_dev(super->devlist->dev, 0) +
8820 (num_members * sizeof(__u32));
8821 space = xmalloc(size);
8822 *tail = space;
8823 tail = space;
8824 *tail = NULL;
8825 len = disks_to_mpb_size(num_members * 2);
8826 }
8827
8828 break;
8829 }
8830 case update_reshape_container_disks: {
8831 /* Every raid device in the container is about to
8832 * gain some more devices, and we will enter a
8833 * reconfiguration.
8834 * So each 'imsm_map' will be bigger, and the imsm_vol
8835 * will now hold 2 of them.
8836 * Thus we need new 'struct imsm_dev' allocations sized
8837 * as sizeof_imsm_dev but with more devices in both maps.
8838 */
8839 struct imsm_update_reshape *u = (void *)update->buf;
8840 struct intel_dev *dl;
8841 void **space_tail = (void**)&update->space_list;
8842
8843 if (update->len < (int)sizeof(*u))
8844 return 0;
8845
8846 dprintf("for update_reshape\n");
8847
8848 for (dl = super->devlist; dl; dl = dl->next) {
8849 int size = sizeof_imsm_dev(dl->dev, 1);
8850 void *s;
8851 if (u->new_raid_disks > u->old_raid_disks)
8852 size += sizeof(__u32)*2*
8853 (u->new_raid_disks - u->old_raid_disks);
8854 s = xmalloc(size);
8855 *space_tail = s;
8856 space_tail = s;
8857 *space_tail = NULL;
8858 }
8859
8860 len = disks_to_mpb_size(u->new_raid_disks);
8861 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8862 break;
8863 }
8864 case update_reshape_migration: {
8865 /* for migration level 0->5 we need to add disks
8866 * so the same as for container operation we will copy
8867 * device to the bigger location.
8868 * in memory prepared device and new disk area are prepared
8869 * for usage in process update
8870 */
8871 struct imsm_update_reshape_migration *u = (void *)update->buf;
8872 struct intel_dev *id;
8873 void **space_tail = (void **)&update->space_list;
8874 int size;
8875 void *s;
8876 int current_level = -1;
8877
8878 if (update->len < (int)sizeof(*u))
8879 return 0;
8880
8881 dprintf("for update_reshape\n");
8882
8883 /* add space for bigger array in update
8884 */
8885 for (id = super->devlist; id; id = id->next) {
8886 if (id->index == (unsigned)u->subdev) {
8887 size = sizeof_imsm_dev(id->dev, 1);
8888 if (u->new_raid_disks > u->old_raid_disks)
8889 size += sizeof(__u32)*2*
8890 (u->new_raid_disks - u->old_raid_disks);
8891 s = xmalloc(size);
8892 *space_tail = s;
8893 space_tail = s;
8894 *space_tail = NULL;
8895 break;
8896 }
8897 }
8898 if (update->space_list == NULL)
8899 break;
8900
8901 /* add space for disk in update
8902 */
8903 size = sizeof(struct dl);
8904 s = xmalloc(size);
8905 *space_tail = s;
8906 space_tail = s;
8907 *space_tail = NULL;
8908
8909 /* add spare device to update
8910 */
8911 for (id = super->devlist ; id; id = id->next)
8912 if (id->index == (unsigned)u->subdev) {
8913 struct imsm_dev *dev;
8914 struct imsm_map *map;
8915
8916 dev = get_imsm_dev(super, u->subdev);
8917 map = get_imsm_map(dev, MAP_0);
8918 current_level = map->raid_level;
8919 break;
8920 }
8921 if (u->new_level == 5 && u->new_level != current_level) {
8922 struct mdinfo *spares;
8923
8924 spares = get_spares_for_grow(st);
8925 if (spares) {
8926 struct dl *dl;
8927 struct mdinfo *dev;
8928
8929 dev = spares->devs;
8930 if (dev) {
8931 u->new_disks[0] =
8932 makedev(dev->disk.major,
8933 dev->disk.minor);
8934 dl = get_disk_super(super,
8935 dev->disk.major,
8936 dev->disk.minor);
8937 dl->index = u->old_raid_disks;
8938 dev = dev->next;
8939 }
8940 sysfs_free(spares);
8941 }
8942 }
8943 len = disks_to_mpb_size(u->new_raid_disks);
8944 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8945 break;
8946 }
8947 case update_size_change: {
8948 if (update->len < (int)sizeof(struct imsm_update_size_change))
8949 return 0;
8950 break;
8951 }
8952 case update_activate_spare: {
8953 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
8954 return 0;
8955 break;
8956 }
8957 case update_create_array: {
8958 struct imsm_update_create_array *u = (void *) update->buf;
8959 struct intel_dev *dv;
8960 struct imsm_dev *dev = &u->dev;
8961 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8962 struct dl *dl;
8963 struct disk_info *inf;
8964 int i;
8965 int activate = 0;
8966
8967 if (update->len < (int)sizeof(*u))
8968 return 0;
8969
8970 inf = get_disk_info(u);
8971 len = sizeof_imsm_dev(dev, 1);
8972 /* allocate a new super->devlist entry */
8973 dv = xmalloc(sizeof(*dv));
8974 dv->dev = xmalloc(len);
8975 update->space = dv;
8976
8977 /* count how many spares will be converted to members */
8978 for (i = 0; i < map->num_members; i++) {
8979 dl = serial_to_dl(inf[i].serial, super);
8980 if (!dl) {
8981 /* hmm maybe it failed?, nothing we can do about
8982 * it here
8983 */
8984 continue;
8985 }
8986 if (count_memberships(dl, super) == 0)
8987 activate++;
8988 }
8989 len += activate * sizeof(struct imsm_disk);
8990 break;
8991 }
8992 case update_kill_array: {
8993 if (update->len < (int)sizeof(struct imsm_update_kill_array))
8994 return 0;
8995 break;
8996 }
8997 case update_rename_array: {
8998 if (update->len < (int)sizeof(struct imsm_update_rename_array))
8999 return 0;
9000 break;
9001 }
9002 case update_add_remove_disk:
9003 /* no update->len needed */
9004 break;
9005 default:
9006 return 0;
9007 }
9008
9009 /* check if we need a larger metadata buffer */
9010 if (super->next_buf)
9011 buf_len = super->next_len;
9012 else
9013 buf_len = super->len;
9014
9015 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
9016 /* ok we need a larger buf than what is currently allocated
9017 * if this allocation fails process_update will notice that
9018 * ->next_len is set and ->next_buf is NULL
9019 */
9020 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
9021 if (super->next_buf)
9022 free(super->next_buf);
9023
9024 super->next_len = buf_len;
9025 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
9026 memset(super->next_buf, 0, buf_len);
9027 else
9028 super->next_buf = NULL;
9029 }
9030 return 1;
9031 }
9032
9033 /* must be called while manager is quiesced */
9034 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
9035 {
9036 struct imsm_super *mpb = super->anchor;
9037 struct dl *iter;
9038 struct imsm_dev *dev;
9039 struct imsm_map *map;
9040 int i, j, num_members;
9041 __u32 ord;
9042
9043 dprintf("deleting device[%d] from imsm_super\n", index);
9044
9045 /* shift all indexes down one */
9046 for (iter = super->disks; iter; iter = iter->next)
9047 if (iter->index > (int)index)
9048 iter->index--;
9049 for (iter = super->missing; iter; iter = iter->next)
9050 if (iter->index > (int)index)
9051 iter->index--;
9052
9053 for (i = 0; i < mpb->num_raid_devs; i++) {
9054 dev = get_imsm_dev(super, i);
9055 map = get_imsm_map(dev, MAP_0);
9056 num_members = map->num_members;
9057 for (j = 0; j < num_members; j++) {
9058 /* update ord entries being careful not to propagate
9059 * ord-flags to the first map
9060 */
9061 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
9062
9063 if (ord_to_idx(ord) <= index)
9064 continue;
9065
9066 map = get_imsm_map(dev, MAP_0);
9067 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
9068 map = get_imsm_map(dev, MAP_1);
9069 if (map)
9070 set_imsm_ord_tbl_ent(map, j, ord - 1);
9071 }
9072 }
9073
9074 mpb->num_disks--;
9075 super->updates_pending++;
9076 if (*dlp) {
9077 struct dl *dl = *dlp;
9078
9079 *dlp = (*dlp)->next;
9080 __free_imsm_disk(dl);
9081 }
9082 }
9083 #endif /* MDASSEMBLE */
9084
9085 static void close_targets(int *targets, int new_disks)
9086 {
9087 int i;
9088
9089 if (!targets)
9090 return;
9091
9092 for (i = 0; i < new_disks; i++) {
9093 if (targets[i] >= 0) {
9094 close(targets[i]);
9095 targets[i] = -1;
9096 }
9097 }
9098 }
9099
9100 static int imsm_get_allowed_degradation(int level, int raid_disks,
9101 struct intel_super *super,
9102 struct imsm_dev *dev)
9103 {
9104 switch (level) {
9105 case 1:
9106 case 10:{
9107 int ret_val = 0;
9108 struct imsm_map *map;
9109 int i;
9110
9111 ret_val = raid_disks/2;
9112 /* check map if all disks pairs not failed
9113 * in both maps
9114 */
9115 map = get_imsm_map(dev, MAP_0);
9116 for (i = 0; i < ret_val; i++) {
9117 int degradation = 0;
9118 if (get_imsm_disk(super, i) == NULL)
9119 degradation++;
9120 if (get_imsm_disk(super, i + 1) == NULL)
9121 degradation++;
9122 if (degradation == 2)
9123 return 0;
9124 }
9125 map = get_imsm_map(dev, MAP_1);
9126 /* if there is no second map
9127 * result can be returned
9128 */
9129 if (map == NULL)
9130 return ret_val;
9131 /* check degradation in second map
9132 */
9133 for (i = 0; i < ret_val; i++) {
9134 int degradation = 0;
9135 if (get_imsm_disk(super, i) == NULL)
9136 degradation++;
9137 if (get_imsm_disk(super, i + 1) == NULL)
9138 degradation++;
9139 if (degradation == 2)
9140 return 0;
9141 }
9142 return ret_val;
9143 }
9144 case 5:
9145 return 1;
9146 case 6:
9147 return 2;
9148 default:
9149 return 0;
9150 }
9151 }
9152
9153 /*******************************************************************************
9154 * Function: open_backup_targets
9155 * Description: Function opens file descriptors for all devices given in
9156 * info->devs
9157 * Parameters:
9158 * info : general array info
9159 * raid_disks : number of disks
9160 * raid_fds : table of device's file descriptors
9161 * super : intel super for raid10 degradation check
9162 * dev : intel device for raid10 degradation check
9163 * Returns:
9164 * 0 : success
9165 * -1 : fail
9166 ******************************************************************************/
9167 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
9168 struct intel_super *super, struct imsm_dev *dev)
9169 {
9170 struct mdinfo *sd;
9171 int i;
9172 int opened = 0;
9173
9174 for (i = 0; i < raid_disks; i++)
9175 raid_fds[i] = -1;
9176
9177 for (sd = info->devs ; sd ; sd = sd->next) {
9178 char *dn;
9179
9180 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
9181 dprintf("disk is faulty!!\n");
9182 continue;
9183 }
9184
9185 if (sd->disk.raid_disk >= raid_disks || sd->disk.raid_disk < 0)
9186 continue;
9187
9188 dn = map_dev(sd->disk.major,
9189 sd->disk.minor, 1);
9190 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
9191 if (raid_fds[sd->disk.raid_disk] < 0) {
9192 pr_err("cannot open component\n");
9193 continue;
9194 }
9195 opened++;
9196 }
9197 /* check if maximum array degradation level is not exceeded
9198 */
9199 if ((raid_disks - opened) >
9200 imsm_get_allowed_degradation(info->new_level, raid_disks,
9201 super, dev)) {
9202 pr_err("Not enough disks can be opened.\n");
9203 close_targets(raid_fds, raid_disks);
9204 return -2;
9205 }
9206 return 0;
9207 }
9208
9209 /*******************************************************************************
9210 * Function: validate_container_imsm
9211 * Description: This routine validates container after assemble,
9212 * eg. if devices in container are under the same controller.
9213 *
9214 * Parameters:
9215 * info : linked list with info about devices used in array
9216 * Returns:
9217 * 1 : HBA mismatch
9218 * 0 : Success
9219 ******************************************************************************/
9220 int validate_container_imsm(struct mdinfo *info)
9221 {
9222 if (check_env("IMSM_NO_PLATFORM"))
9223 return 0;
9224
9225 struct sys_dev *idev;
9226 struct sys_dev *hba = NULL;
9227 struct sys_dev *intel_devices = find_intel_devices();
9228 char *dev_path = devt_to_devpath(makedev(info->disk.major,
9229 info->disk.minor));
9230
9231 for (idev = intel_devices; idev; idev = idev->next) {
9232 if (dev_path && strstr(dev_path, idev->path)) {
9233 hba = idev;
9234 break;
9235 }
9236 }
9237 if (dev_path)
9238 free(dev_path);
9239
9240 if (!hba) {
9241 pr_err("WARNING - Cannot detect HBA for device %s!\n",
9242 devid2kname(makedev(info->disk.major, info->disk.minor)));
9243 return 1;
9244 }
9245
9246 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
9247 struct mdinfo *dev;
9248
9249 for (dev = info->next; dev; dev = dev->next) {
9250 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
9251
9252 struct sys_dev *hba2 = NULL;
9253 for (idev = intel_devices; idev; idev = idev->next) {
9254 if (dev_path && strstr(dev_path, idev->path)) {
9255 hba2 = idev;
9256 break;
9257 }
9258 }
9259 if (dev_path)
9260 free(dev_path);
9261
9262 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
9263 get_orom_by_device_id(hba2->dev_id);
9264
9265 if (hba2 && hba->type != hba2->type) {
9266 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
9267 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
9268 return 1;
9269 }
9270
9271 if (orom != orom2 ||
9272 (hba->type == SYS_DEV_VMD && hba != hba2)) {
9273 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
9274 " This operation is not supported and can lead to data loss.\n");
9275 return 1;
9276 }
9277
9278 if (!orom) {
9279 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
9280 " This operation is not supported and can lead to data loss.\n");
9281 return 1;
9282 }
9283 }
9284
9285 return 0;
9286 }
9287 #ifndef MDASSEMBLE
9288 /*******************************************************************************
9289 * Function: init_migr_record_imsm
9290 * Description: Function inits imsm migration record
9291 * Parameters:
9292 * super : imsm internal array info
9293 * dev : device under migration
9294 * info : general array info to find the smallest device
9295 * Returns:
9296 * none
9297 ******************************************************************************/
9298 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
9299 struct mdinfo *info)
9300 {
9301 struct intel_super *super = st->sb;
9302 struct migr_record *migr_rec = super->migr_rec;
9303 int new_data_disks;
9304 unsigned long long dsize, dev_sectors;
9305 long long unsigned min_dev_sectors = -1LLU;
9306 struct mdinfo *sd;
9307 char nm[30];
9308 int fd;
9309 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9310 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
9311 unsigned long long num_migr_units;
9312 unsigned long long array_blocks;
9313
9314 memset(migr_rec, 0, sizeof(struct migr_record));
9315 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
9316
9317 /* only ascending reshape supported now */
9318 migr_rec->ascending_migr = __cpu_to_le32(1);
9319
9320 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
9321 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9322 migr_rec->dest_depth_per_unit *=
9323 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9324 new_data_disks = imsm_num_data_members(dev, MAP_0);
9325 migr_rec->blocks_per_unit =
9326 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
9327 migr_rec->dest_depth_per_unit =
9328 __cpu_to_le32(migr_rec->dest_depth_per_unit);
9329 array_blocks = info->component_size * new_data_disks;
9330 num_migr_units =
9331 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9332
9333 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9334 num_migr_units++;
9335 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9336
9337 migr_rec->post_migr_vol_cap = dev->size_low;
9338 migr_rec->post_migr_vol_cap_hi = dev->size_high;
9339
9340 /* Find the smallest dev */
9341 for (sd = info->devs ; sd ; sd = sd->next) {
9342 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9343 fd = dev_open(nm, O_RDONLY);
9344 if (fd < 0)
9345 continue;
9346 get_dev_size(fd, NULL, &dsize);
9347 dev_sectors = dsize / 512;
9348 if (dev_sectors < min_dev_sectors)
9349 min_dev_sectors = dev_sectors;
9350 close(fd);
9351 }
9352 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9353 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9354
9355 write_imsm_migr_rec(st);
9356
9357 return;
9358 }
9359
9360 /*******************************************************************************
9361 * Function: save_backup_imsm
9362 * Description: Function saves critical data stripes to Migration Copy Area
9363 * and updates the current migration unit status.
9364 * Use restore_stripes() to form a destination stripe,
9365 * and to write it to the Copy Area.
9366 * Parameters:
9367 * st : supertype information
9368 * dev : imsm device that backup is saved for
9369 * info : general array info
9370 * buf : input buffer
9371 * length : length of data to backup (blocks_per_unit)
9372 * Returns:
9373 * 0 : success
9374 *, -1 : fail
9375 ******************************************************************************/
9376 int save_backup_imsm(struct supertype *st,
9377 struct imsm_dev *dev,
9378 struct mdinfo *info,
9379 void *buf,
9380 int length)
9381 {
9382 int rv = -1;
9383 struct intel_super *super = st->sb;
9384 unsigned long long *target_offsets;
9385 int *targets;
9386 int i;
9387 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9388 int new_disks = map_dest->num_members;
9389 int dest_layout = 0;
9390 int dest_chunk;
9391 unsigned long long start;
9392 int data_disks = imsm_num_data_members(dev, MAP_0);
9393
9394 targets = xmalloc(new_disks * sizeof(int));
9395
9396 for (i = 0; i < new_disks; i++)
9397 targets[i] = -1;
9398
9399 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
9400
9401 start = info->reshape_progress * 512;
9402 for (i = 0; i < new_disks; i++) {
9403 target_offsets[i] = (unsigned long long)
9404 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
9405 /* move back copy area adderss, it will be moved forward
9406 * in restore_stripes() using start input variable
9407 */
9408 target_offsets[i] -= start/data_disks;
9409 }
9410
9411 if (open_backup_targets(info, new_disks, targets,
9412 super, dev))
9413 goto abort;
9414
9415 dest_layout = imsm_level_to_layout(map_dest->raid_level);
9416 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9417
9418 if (restore_stripes(targets, /* list of dest devices */
9419 target_offsets, /* migration record offsets */
9420 new_disks,
9421 dest_chunk,
9422 map_dest->raid_level,
9423 dest_layout,
9424 -1, /* source backup file descriptor */
9425 0, /* input buf offset
9426 * always 0 buf is already offseted */
9427 start,
9428 length,
9429 buf) != 0) {
9430 pr_err("Error restoring stripes\n");
9431 goto abort;
9432 }
9433
9434 rv = 0;
9435
9436 abort:
9437 if (targets) {
9438 close_targets(targets, new_disks);
9439 free(targets);
9440 }
9441 free(target_offsets);
9442
9443 return rv;
9444 }
9445
9446 /*******************************************************************************
9447 * Function: save_checkpoint_imsm
9448 * Description: Function called for current unit status update
9449 * in the migration record. It writes it to disk.
9450 * Parameters:
9451 * super : imsm internal array info
9452 * info : general array info
9453 * Returns:
9454 * 0: success
9455 * 1: failure
9456 * 2: failure, means no valid migration record
9457 * / no general migration in progress /
9458 ******************************************************************************/
9459 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
9460 {
9461 struct intel_super *super = st->sb;
9462 unsigned long long blocks_per_unit;
9463 unsigned long long curr_migr_unit;
9464
9465 if (load_imsm_migr_rec(super, info) != 0) {
9466 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
9467 return 1;
9468 }
9469
9470 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
9471 if (blocks_per_unit == 0) {
9472 dprintf("imsm: no migration in progress.\n");
9473 return 2;
9474 }
9475 curr_migr_unit = info->reshape_progress / blocks_per_unit;
9476 /* check if array is alligned to copy area
9477 * if it is not alligned, add one to current migration unit value
9478 * this can happend on array reshape finish only
9479 */
9480 if (info->reshape_progress % blocks_per_unit)
9481 curr_migr_unit++;
9482
9483 super->migr_rec->curr_migr_unit =
9484 __cpu_to_le32(curr_migr_unit);
9485 super->migr_rec->rec_status = __cpu_to_le32(state);
9486 super->migr_rec->dest_1st_member_lba =
9487 __cpu_to_le32(curr_migr_unit *
9488 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
9489 if (write_imsm_migr_rec(st) < 0) {
9490 dprintf("imsm: Cannot write migration record outside backup area\n");
9491 return 1;
9492 }
9493
9494 return 0;
9495 }
9496
9497 /*******************************************************************************
9498 * Function: recover_backup_imsm
9499 * Description: Function recovers critical data from the Migration Copy Area
9500 * while assembling an array.
9501 * Parameters:
9502 * super : imsm internal array info
9503 * info : general array info
9504 * Returns:
9505 * 0 : success (or there is no data to recover)
9506 * 1 : fail
9507 ******************************************************************************/
9508 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
9509 {
9510 struct intel_super *super = st->sb;
9511 struct migr_record *migr_rec = super->migr_rec;
9512 struct imsm_map *map_dest;
9513 struct intel_dev *id = NULL;
9514 unsigned long long read_offset;
9515 unsigned long long write_offset;
9516 unsigned unit_len;
9517 int *targets = NULL;
9518 int new_disks, i, err;
9519 char *buf = NULL;
9520 int retval = 1;
9521 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
9522 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
9523 char buffer[20];
9524 int skipped_disks = 0;
9525
9526 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
9527 if (err < 1)
9528 return 1;
9529
9530 /* recover data only during assemblation */
9531 if (strncmp(buffer, "inactive", 8) != 0)
9532 return 0;
9533 /* no data to recover */
9534 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
9535 return 0;
9536 if (curr_migr_unit >= num_migr_units)
9537 return 1;
9538
9539 /* find device during reshape */
9540 for (id = super->devlist; id; id = id->next)
9541 if (is_gen_migration(id->dev))
9542 break;
9543 if (id == NULL)
9544 return 1;
9545
9546 map_dest = get_imsm_map(id->dev, MAP_0);
9547 new_disks = map_dest->num_members;
9548
9549 read_offset = (unsigned long long)
9550 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
9551
9552 write_offset = ((unsigned long long)
9553 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
9554 pba_of_lba0(map_dest)) * 512;
9555
9556 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9557 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
9558 goto abort;
9559 targets = xcalloc(new_disks, sizeof(int));
9560
9561 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
9562 pr_err("Cannot open some devices belonging to array.\n");
9563 goto abort;
9564 }
9565
9566 for (i = 0; i < new_disks; i++) {
9567 if (targets[i] < 0) {
9568 skipped_disks++;
9569 continue;
9570 }
9571 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
9572 pr_err("Cannot seek to block: %s\n",
9573 strerror(errno));
9574 skipped_disks++;
9575 continue;
9576 }
9577 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
9578 pr_err("Cannot read copy area block: %s\n",
9579 strerror(errno));
9580 skipped_disks++;
9581 continue;
9582 }
9583 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
9584 pr_err("Cannot seek to block: %s\n",
9585 strerror(errno));
9586 skipped_disks++;
9587 continue;
9588 }
9589 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
9590 pr_err("Cannot restore block: %s\n",
9591 strerror(errno));
9592 skipped_disks++;
9593 continue;
9594 }
9595 }
9596
9597 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
9598 new_disks,
9599 super,
9600 id->dev)) {
9601 pr_err("Cannot restore data from backup. Too many failed disks\n");
9602 goto abort;
9603 }
9604
9605 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
9606 /* ignore error == 2, this can mean end of reshape here
9607 */
9608 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
9609 } else
9610 retval = 0;
9611
9612 abort:
9613 if (targets) {
9614 for (i = 0; i < new_disks; i++)
9615 if (targets[i])
9616 close(targets[i]);
9617 free(targets);
9618 }
9619 free(buf);
9620 return retval;
9621 }
9622
9623 static char disk_by_path[] = "/dev/disk/by-path/";
9624
9625 static const char *imsm_get_disk_controller_domain(const char *path)
9626 {
9627 char disk_path[PATH_MAX];
9628 char *drv=NULL;
9629 struct stat st;
9630
9631 strcpy(disk_path, disk_by_path);
9632 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
9633 if (stat(disk_path, &st) == 0) {
9634 struct sys_dev* hba;
9635 char *path;
9636
9637 path = devt_to_devpath(st.st_rdev);
9638 if (path == NULL)
9639 return "unknown";
9640 hba = find_disk_attached_hba(-1, path);
9641 if (hba && hba->type == SYS_DEV_SAS)
9642 drv = "isci";
9643 else if (hba && hba->type == SYS_DEV_SATA)
9644 drv = "ahci";
9645 else
9646 drv = "unknown";
9647 dprintf("path: %s hba: %s attached: %s\n",
9648 path, (hba) ? hba->path : "NULL", drv);
9649 free(path);
9650 }
9651 return drv;
9652 }
9653
9654 static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
9655 {
9656 static char devnm[32];
9657 char subdev_name[20];
9658 struct mdstat_ent *mdstat;
9659
9660 sprintf(subdev_name, "%d", subdev);
9661 mdstat = mdstat_by_subdev(subdev_name, container);
9662 if (!mdstat)
9663 return NULL;
9664
9665 strcpy(devnm, mdstat->devnm);
9666 free_mdstat(mdstat);
9667 return devnm;
9668 }
9669
9670 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
9671 struct geo_params *geo,
9672 int *old_raid_disks,
9673 int direction)
9674 {
9675 /* currently we only support increasing the number of devices
9676 * for a container. This increases the number of device for each
9677 * member array. They must all be RAID0 or RAID5.
9678 */
9679 int ret_val = 0;
9680 struct mdinfo *info, *member;
9681 int devices_that_can_grow = 0;
9682
9683 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
9684
9685 if (geo->size > 0 ||
9686 geo->level != UnSet ||
9687 geo->layout != UnSet ||
9688 geo->chunksize != 0 ||
9689 geo->raid_disks == UnSet) {
9690 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
9691 return ret_val;
9692 }
9693
9694 if (direction == ROLLBACK_METADATA_CHANGES) {
9695 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
9696 return ret_val;
9697 }
9698
9699 info = container_content_imsm(st, NULL);
9700 for (member = info; member; member = member->next) {
9701 char *result;
9702
9703 dprintf("imsm: checking device_num: %i\n",
9704 member->container_member);
9705
9706 if (geo->raid_disks <= member->array.raid_disks) {
9707 /* we work on container for Online Capacity Expansion
9708 * only so raid_disks has to grow
9709 */
9710 dprintf("imsm: for container operation raid disks increase is required\n");
9711 break;
9712 }
9713
9714 if (info->array.level != 0 && info->array.level != 5) {
9715 /* we cannot use this container with other raid level
9716 */
9717 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
9718 info->array.level);
9719 break;
9720 } else {
9721 /* check for platform support
9722 * for this raid level configuration
9723 */
9724 struct intel_super *super = st->sb;
9725 if (!is_raid_level_supported(super->orom,
9726 member->array.level,
9727 geo->raid_disks)) {
9728 dprintf("platform does not support raid%d with %d disk%s\n",
9729 info->array.level,
9730 geo->raid_disks,
9731 geo->raid_disks > 1 ? "s" : "");
9732 break;
9733 }
9734 /* check if component size is aligned to chunk size
9735 */
9736 if (info->component_size %
9737 (info->array.chunk_size/512)) {
9738 dprintf("Component size is not aligned to chunk size\n");
9739 break;
9740 }
9741 }
9742
9743 if (*old_raid_disks &&
9744 info->array.raid_disks != *old_raid_disks)
9745 break;
9746 *old_raid_disks = info->array.raid_disks;
9747
9748 /* All raid5 and raid0 volumes in container
9749 * have to be ready for Online Capacity Expansion
9750 * so they need to be assembled. We have already
9751 * checked that no recovery etc is happening.
9752 */
9753 result = imsm_find_array_devnm_by_subdev(member->container_member,
9754 st->container_devnm);
9755 if (result == NULL) {
9756 dprintf("imsm: cannot find array\n");
9757 break;
9758 }
9759 devices_that_can_grow++;
9760 }
9761 sysfs_free(info);
9762 if (!member && devices_that_can_grow)
9763 ret_val = 1;
9764
9765 if (ret_val)
9766 dprintf("Container operation allowed\n");
9767 else
9768 dprintf("Error: %i\n", ret_val);
9769
9770 return ret_val;
9771 }
9772
9773 /* Function: get_spares_for_grow
9774 * Description: Allocates memory and creates list of spare devices
9775 * avaliable in container. Checks if spare drive size is acceptable.
9776 * Parameters: Pointer to the supertype structure
9777 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
9778 * NULL if fail
9779 */
9780 static struct mdinfo *get_spares_for_grow(struct supertype *st)
9781 {
9782 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
9783 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
9784 }
9785
9786 /******************************************************************************
9787 * function: imsm_create_metadata_update_for_reshape
9788 * Function creates update for whole IMSM container.
9789 *
9790 ******************************************************************************/
9791 static int imsm_create_metadata_update_for_reshape(
9792 struct supertype *st,
9793 struct geo_params *geo,
9794 int old_raid_disks,
9795 struct imsm_update_reshape **updatep)
9796 {
9797 struct intel_super *super = st->sb;
9798 struct imsm_super *mpb = super->anchor;
9799 int update_memory_size;
9800 struct imsm_update_reshape *u;
9801 struct mdinfo *spares;
9802 int i;
9803 int delta_disks;
9804 struct mdinfo *dev;
9805
9806 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
9807
9808 delta_disks = geo->raid_disks - old_raid_disks;
9809
9810 /* size of all update data without anchor */
9811 update_memory_size = sizeof(struct imsm_update_reshape);
9812
9813 /* now add space for spare disks that we need to add. */
9814 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
9815
9816 u = xcalloc(1, update_memory_size);
9817 u->type = update_reshape_container_disks;
9818 u->old_raid_disks = old_raid_disks;
9819 u->new_raid_disks = geo->raid_disks;
9820
9821 /* now get spare disks list
9822 */
9823 spares = get_spares_for_grow(st);
9824
9825 if (spares == NULL
9826 || delta_disks > spares->array.spare_disks) {
9827 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
9828 i = -1;
9829 goto abort;
9830 }
9831
9832 /* we have got spares
9833 * update disk list in imsm_disk list table in anchor
9834 */
9835 dprintf("imsm: %i spares are available.\n\n",
9836 spares->array.spare_disks);
9837
9838 dev = spares->devs;
9839 for (i = 0; i < delta_disks; i++) {
9840 struct dl *dl;
9841
9842 if (dev == NULL)
9843 break;
9844 u->new_disks[i] = makedev(dev->disk.major,
9845 dev->disk.minor);
9846 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
9847 dl->index = mpb->num_disks;
9848 mpb->num_disks++;
9849 dev = dev->next;
9850 }
9851
9852 abort:
9853 /* free spares
9854 */
9855 sysfs_free(spares);
9856
9857 dprintf("imsm: reshape update preparation :");
9858 if (i == delta_disks) {
9859 dprintf_cont(" OK\n");
9860 *updatep = u;
9861 return update_memory_size;
9862 }
9863 free(u);
9864 dprintf_cont(" Error\n");
9865
9866 return 0;
9867 }
9868
9869 /******************************************************************************
9870 * function: imsm_create_metadata_update_for_size_change()
9871 * Creates update for IMSM array for array size change.
9872 *
9873 ******************************************************************************/
9874 static int imsm_create_metadata_update_for_size_change(
9875 struct supertype *st,
9876 struct geo_params *geo,
9877 struct imsm_update_size_change **updatep)
9878 {
9879 struct intel_super *super = st->sb;
9880 int update_memory_size;
9881 struct imsm_update_size_change *u;
9882
9883 dprintf("(enter) New size = %llu\n", geo->size);
9884
9885 /* size of all update data without anchor */
9886 update_memory_size = sizeof(struct imsm_update_size_change);
9887
9888 u = xcalloc(1, update_memory_size);
9889 u->type = update_size_change;
9890 u->subdev = super->current_vol;
9891 u->new_size = geo->size;
9892
9893 dprintf("imsm: reshape update preparation : OK\n");
9894 *updatep = u;
9895
9896 return update_memory_size;
9897 }
9898
9899 /******************************************************************************
9900 * function: imsm_create_metadata_update_for_migration()
9901 * Creates update for IMSM array.
9902 *
9903 ******************************************************************************/
9904 static int imsm_create_metadata_update_for_migration(
9905 struct supertype *st,
9906 struct geo_params *geo,
9907 struct imsm_update_reshape_migration **updatep)
9908 {
9909 struct intel_super *super = st->sb;
9910 int update_memory_size;
9911 struct imsm_update_reshape_migration *u;
9912 struct imsm_dev *dev;
9913 int previous_level = -1;
9914
9915 dprintf("(enter) New Level = %i\n", geo->level);
9916
9917 /* size of all update data without anchor */
9918 update_memory_size = sizeof(struct imsm_update_reshape_migration);
9919
9920 u = xcalloc(1, update_memory_size);
9921 u->type = update_reshape_migration;
9922 u->subdev = super->current_vol;
9923 u->new_level = geo->level;
9924 u->new_layout = geo->layout;
9925 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
9926 u->new_disks[0] = -1;
9927 u->new_chunksize = -1;
9928
9929 dev = get_imsm_dev(super, u->subdev);
9930 if (dev) {
9931 struct imsm_map *map;
9932
9933 map = get_imsm_map(dev, MAP_0);
9934 if (map) {
9935 int current_chunk_size =
9936 __le16_to_cpu(map->blocks_per_strip) / 2;
9937
9938 if (geo->chunksize != current_chunk_size) {
9939 u->new_chunksize = geo->chunksize / 1024;
9940 dprintf("imsm: chunk size change from %i to %i\n",
9941 current_chunk_size, u->new_chunksize);
9942 }
9943 previous_level = map->raid_level;
9944 }
9945 }
9946 if (geo->level == 5 && previous_level == 0) {
9947 struct mdinfo *spares = NULL;
9948
9949 u->new_raid_disks++;
9950 spares = get_spares_for_grow(st);
9951 if (spares == NULL || spares->array.spare_disks < 1) {
9952 free(u);
9953 sysfs_free(spares);
9954 update_memory_size = 0;
9955 dprintf("error: cannot get spare device for requested migration");
9956 return 0;
9957 }
9958 sysfs_free(spares);
9959 }
9960 dprintf("imsm: reshape update preparation : OK\n");
9961 *updatep = u;
9962
9963 return update_memory_size;
9964 }
9965
9966 static void imsm_update_metadata_locally(struct supertype *st,
9967 void *buf, int len)
9968 {
9969 struct metadata_update mu;
9970
9971 mu.buf = buf;
9972 mu.len = len;
9973 mu.space = NULL;
9974 mu.space_list = NULL;
9975 mu.next = NULL;
9976 if (imsm_prepare_update(st, &mu))
9977 imsm_process_update(st, &mu);
9978
9979 while (mu.space_list) {
9980 void **space = mu.space_list;
9981 mu.space_list = *space;
9982 free(space);
9983 }
9984 }
9985
9986 /***************************************************************************
9987 * Function: imsm_analyze_change
9988 * Description: Function analyze change for single volume
9989 * and validate if transition is supported
9990 * Parameters: Geometry parameters, supertype structure,
9991 * metadata change direction (apply/rollback)
9992 * Returns: Operation type code on success, -1 if fail
9993 ****************************************************************************/
9994 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
9995 struct geo_params *geo,
9996 int direction)
9997 {
9998 struct mdinfo info;
9999 int change = -1;
10000 int check_devs = 0;
10001 int chunk;
10002 /* number of added/removed disks in operation result */
10003 int devNumChange = 0;
10004 /* imsm compatible layout value for array geometry verification */
10005 int imsm_layout = -1;
10006 int data_disks;
10007 struct imsm_dev *dev;
10008 struct intel_super *super;
10009 unsigned long long current_size;
10010 unsigned long long free_size;
10011 unsigned long long max_size;
10012 int rv;
10013
10014 getinfo_super_imsm_volume(st, &info, NULL);
10015 if (geo->level != info.array.level && geo->level >= 0 &&
10016 geo->level != UnSet) {
10017 switch (info.array.level) {
10018 case 0:
10019 if (geo->level == 5) {
10020 change = CH_MIGRATION;
10021 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
10022 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
10023 change = -1;
10024 goto analyse_change_exit;
10025 }
10026 imsm_layout = geo->layout;
10027 check_devs = 1;
10028 devNumChange = 1; /* parity disk added */
10029 } else if (geo->level == 10) {
10030 change = CH_TAKEOVER;
10031 check_devs = 1;
10032 devNumChange = 2; /* two mirrors added */
10033 imsm_layout = 0x102; /* imsm supported layout */
10034 }
10035 break;
10036 case 1:
10037 case 10:
10038 if (geo->level == 0) {
10039 change = CH_TAKEOVER;
10040 check_devs = 1;
10041 devNumChange = -(geo->raid_disks/2);
10042 imsm_layout = 0; /* imsm raid0 layout */
10043 }
10044 break;
10045 }
10046 if (change == -1) {
10047 pr_err("Error. Level Migration from %d to %d not supported!\n",
10048 info.array.level, geo->level);
10049 goto analyse_change_exit;
10050 }
10051 } else
10052 geo->level = info.array.level;
10053
10054 if (geo->layout != info.array.layout &&
10055 (geo->layout != UnSet && geo->layout != -1)) {
10056 change = CH_MIGRATION;
10057 if (info.array.layout == 0 && info.array.level == 5 &&
10058 geo->layout == 5) {
10059 /* reshape 5 -> 4 */
10060 } else if (info.array.layout == 5 && info.array.level == 5 &&
10061 geo->layout == 0) {
10062 /* reshape 4 -> 5 */
10063 geo->layout = 0;
10064 geo->level = 5;
10065 } else {
10066 pr_err("Error. Layout Migration from %d to %d not supported!\n",
10067 info.array.layout, geo->layout);
10068 change = -1;
10069 goto analyse_change_exit;
10070 }
10071 } else {
10072 geo->layout = info.array.layout;
10073 if (imsm_layout == -1)
10074 imsm_layout = info.array.layout;
10075 }
10076
10077 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
10078 geo->chunksize != info.array.chunk_size) {
10079 if (info.array.level == 10) {
10080 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
10081 change = -1;
10082 goto analyse_change_exit;
10083 }
10084 change = CH_MIGRATION;
10085 } else {
10086 geo->chunksize = info.array.chunk_size;
10087 }
10088
10089 chunk = geo->chunksize / 1024;
10090
10091 super = st->sb;
10092 dev = get_imsm_dev(super, super->current_vol);
10093 data_disks = imsm_num_data_members(dev , MAP_0);
10094 /* compute current size per disk member
10095 */
10096 current_size = info.custom_array_size / data_disks;
10097
10098 if (geo->size > 0 && geo->size != MAX_SIZE) {
10099 /* align component size
10100 */
10101 geo->size = imsm_component_size_aligment_check(
10102 get_imsm_raid_level(dev->vol.map),
10103 chunk * 1024,
10104 geo->size * 2);
10105 if (geo->size == 0) {
10106 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
10107 current_size);
10108 goto analyse_change_exit;
10109 }
10110 }
10111
10112 if (current_size != geo->size && geo->size > 0) {
10113 if (change != -1) {
10114 pr_err("Error. Size change should be the only one at a time.\n");
10115 change = -1;
10116 goto analyse_change_exit;
10117 }
10118 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
10119 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
10120 super->current_vol, st->devnm);
10121 goto analyse_change_exit;
10122 }
10123 /* check the maximum available size
10124 */
10125 rv = imsm_get_free_size(st, dev->vol.map->num_members,
10126 0, chunk, &free_size);
10127 if (rv == 0)
10128 /* Cannot find maximum available space
10129 */
10130 max_size = 0;
10131 else {
10132 max_size = free_size + current_size;
10133 /* align component size
10134 */
10135 max_size = imsm_component_size_aligment_check(
10136 get_imsm_raid_level(dev->vol.map),
10137 chunk * 1024,
10138 max_size);
10139 }
10140 if (geo->size == MAX_SIZE) {
10141 /* requested size change to the maximum available size
10142 */
10143 if (max_size == 0) {
10144 pr_err("Error. Cannot find maximum available space.\n");
10145 change = -1;
10146 goto analyse_change_exit;
10147 } else
10148 geo->size = max_size;
10149 }
10150
10151 if (direction == ROLLBACK_METADATA_CHANGES) {
10152 /* accept size for rollback only
10153 */
10154 } else {
10155 /* round size due to metadata compatibility
10156 */
10157 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
10158 << SECT_PER_MB_SHIFT;
10159 dprintf("Prepare update for size change to %llu\n",
10160 geo->size );
10161 if (current_size >= geo->size) {
10162 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
10163 current_size, geo->size);
10164 goto analyse_change_exit;
10165 }
10166 if (max_size && geo->size > max_size) {
10167 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
10168 max_size, geo->size);
10169 goto analyse_change_exit;
10170 }
10171 }
10172 geo->size *= data_disks;
10173 geo->raid_disks = dev->vol.map->num_members;
10174 change = CH_ARRAY_SIZE;
10175 }
10176 if (!validate_geometry_imsm(st,
10177 geo->level,
10178 imsm_layout,
10179 geo->raid_disks + devNumChange,
10180 &chunk,
10181 geo->size, INVALID_SECTORS,
10182 0, 0, 1))
10183 change = -1;
10184
10185 if (check_devs) {
10186 struct intel_super *super = st->sb;
10187 struct imsm_super *mpb = super->anchor;
10188
10189 if (mpb->num_raid_devs > 1) {
10190 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
10191 geo->dev_name);
10192 change = -1;
10193 }
10194 }
10195
10196 analyse_change_exit:
10197 if (direction == ROLLBACK_METADATA_CHANGES &&
10198 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
10199 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
10200 change = -1;
10201 }
10202 return change;
10203 }
10204
10205 int imsm_takeover(struct supertype *st, struct geo_params *geo)
10206 {
10207 struct intel_super *super = st->sb;
10208 struct imsm_update_takeover *u;
10209
10210 u = xmalloc(sizeof(struct imsm_update_takeover));
10211
10212 u->type = update_takeover;
10213 u->subarray = super->current_vol;
10214
10215 /* 10->0 transition */
10216 if (geo->level == 0)
10217 u->direction = R10_TO_R0;
10218
10219 /* 0->10 transition */
10220 if (geo->level == 10)
10221 u->direction = R0_TO_R10;
10222
10223 /* update metadata locally */
10224 imsm_update_metadata_locally(st, u,
10225 sizeof(struct imsm_update_takeover));
10226 /* and possibly remotely */
10227 if (st->update_tail)
10228 append_metadata_update(st, u,
10229 sizeof(struct imsm_update_takeover));
10230 else
10231 free(u);
10232
10233 return 0;
10234 }
10235
10236 static int imsm_reshape_super(struct supertype *st, unsigned long long size,
10237 int level,
10238 int layout, int chunksize, int raid_disks,
10239 int delta_disks, char *backup, char *dev,
10240 int direction, int verbose)
10241 {
10242 int ret_val = 1;
10243 struct geo_params geo;
10244
10245 dprintf("(enter)\n");
10246
10247 memset(&geo, 0, sizeof(struct geo_params));
10248
10249 geo.dev_name = dev;
10250 strcpy(geo.devnm, st->devnm);
10251 geo.size = size;
10252 geo.level = level;
10253 geo.layout = layout;
10254 geo.chunksize = chunksize;
10255 geo.raid_disks = raid_disks;
10256 if (delta_disks != UnSet)
10257 geo.raid_disks += delta_disks;
10258
10259 dprintf("for level : %i\n", geo.level);
10260 dprintf("for raid_disks : %i\n", geo.raid_disks);
10261
10262 if (experimental() == 0)
10263 return ret_val;
10264
10265 if (strcmp(st->container_devnm, st->devnm) == 0) {
10266 /* On container level we can only increase number of devices. */
10267 dprintf("imsm: info: Container operation\n");
10268 int old_raid_disks = 0;
10269
10270 if (imsm_reshape_is_allowed_on_container(
10271 st, &geo, &old_raid_disks, direction)) {
10272 struct imsm_update_reshape *u = NULL;
10273 int len;
10274
10275 len = imsm_create_metadata_update_for_reshape(
10276 st, &geo, old_raid_disks, &u);
10277
10278 if (len <= 0) {
10279 dprintf("imsm: Cannot prepare update\n");
10280 goto exit_imsm_reshape_super;
10281 }
10282
10283 ret_val = 0;
10284 /* update metadata locally */
10285 imsm_update_metadata_locally(st, u, len);
10286 /* and possibly remotely */
10287 if (st->update_tail)
10288 append_metadata_update(st, u, len);
10289 else
10290 free(u);
10291
10292 } else {
10293 pr_err("(imsm) Operation is not allowed on this container\n");
10294 }
10295 } else {
10296 /* On volume level we support following operations
10297 * - takeover: raid10 -> raid0; raid0 -> raid10
10298 * - chunk size migration
10299 * - migration: raid5 -> raid0; raid0 -> raid5
10300 */
10301 struct intel_super *super = st->sb;
10302 struct intel_dev *dev = super->devlist;
10303 int change;
10304 dprintf("imsm: info: Volume operation\n");
10305 /* find requested device */
10306 while (dev) {
10307 char *devnm =
10308 imsm_find_array_devnm_by_subdev(
10309 dev->index, st->container_devnm);
10310 if (devnm && strcmp(devnm, geo.devnm) == 0)
10311 break;
10312 dev = dev->next;
10313 }
10314 if (dev == NULL) {
10315 pr_err("Cannot find %s (%s) subarray\n",
10316 geo.dev_name, geo.devnm);
10317 goto exit_imsm_reshape_super;
10318 }
10319 super->current_vol = dev->index;
10320 change = imsm_analyze_change(st, &geo, direction);
10321 switch (change) {
10322 case CH_TAKEOVER:
10323 ret_val = imsm_takeover(st, &geo);
10324 break;
10325 case CH_MIGRATION: {
10326 struct imsm_update_reshape_migration *u = NULL;
10327 int len =
10328 imsm_create_metadata_update_for_migration(
10329 st, &geo, &u);
10330 if (len < 1) {
10331 dprintf("imsm: Cannot prepare update\n");
10332 break;
10333 }
10334 ret_val = 0;
10335 /* update metadata locally */
10336 imsm_update_metadata_locally(st, u, len);
10337 /* and possibly remotely */
10338 if (st->update_tail)
10339 append_metadata_update(st, u, len);
10340 else
10341 free(u);
10342 }
10343 break;
10344 case CH_ARRAY_SIZE: {
10345 struct imsm_update_size_change *u = NULL;
10346 int len =
10347 imsm_create_metadata_update_for_size_change(
10348 st, &geo, &u);
10349 if (len < 1) {
10350 dprintf("imsm: Cannot prepare update\n");
10351 break;
10352 }
10353 ret_val = 0;
10354 /* update metadata locally */
10355 imsm_update_metadata_locally(st, u, len);
10356 /* and possibly remotely */
10357 if (st->update_tail)
10358 append_metadata_update(st, u, len);
10359 else
10360 free(u);
10361 }
10362 break;
10363 default:
10364 ret_val = 1;
10365 }
10366 }
10367
10368 exit_imsm_reshape_super:
10369 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
10370 return ret_val;
10371 }
10372
10373 #define COMPLETED_OK 0
10374 #define COMPLETED_NONE 1
10375 #define COMPLETED_DELAYED 2
10376
10377 static int read_completed(int fd, unsigned long long *val)
10378 {
10379 int ret;
10380 char buf[50];
10381
10382 ret = sysfs_fd_get_str(fd, buf, 50);
10383 if (ret < 0)
10384 return ret;
10385
10386 ret = COMPLETED_OK;
10387 if (strncmp(buf, "none", 4) == 0) {
10388 ret = COMPLETED_NONE;
10389 } else if (strncmp(buf, "delayed", 7) == 0) {
10390 ret = COMPLETED_DELAYED;
10391 } else {
10392 char *ep;
10393 *val = strtoull(buf, &ep, 0);
10394 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
10395 ret = -1;
10396 }
10397 return ret;
10398 }
10399
10400 /*******************************************************************************
10401 * Function: wait_for_reshape_imsm
10402 * Description: Function writes new sync_max value and waits until
10403 * reshape process reach new position
10404 * Parameters:
10405 * sra : general array info
10406 * ndata : number of disks in new array's layout
10407 * Returns:
10408 * 0 : success,
10409 * 1 : there is no reshape in progress,
10410 * -1 : fail
10411 ******************************************************************************/
10412 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
10413 {
10414 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
10415 int retry = 3;
10416 unsigned long long completed;
10417 /* to_complete : new sync_max position */
10418 unsigned long long to_complete = sra->reshape_progress;
10419 unsigned long long position_to_set = to_complete / ndata;
10420
10421 if (fd < 0) {
10422 dprintf("cannot open reshape_position\n");
10423 return 1;
10424 }
10425
10426 do {
10427 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10428 if (!retry) {
10429 dprintf("cannot read reshape_position (no reshape in progres)\n");
10430 close(fd);
10431 return 1;
10432 }
10433 usleep(30000);
10434 } else
10435 break;
10436 } while (retry--);
10437
10438 if (completed > position_to_set) {
10439 dprintf("wrong next position to set %llu (%llu)\n",
10440 to_complete, position_to_set);
10441 close(fd);
10442 return -1;
10443 }
10444 dprintf("Position set: %llu\n", position_to_set);
10445 if (sysfs_set_num(sra, NULL, "sync_max",
10446 position_to_set) != 0) {
10447 dprintf("cannot set reshape position to %llu\n",
10448 position_to_set);
10449 close(fd);
10450 return -1;
10451 }
10452
10453 do {
10454 int rc;
10455 char action[20];
10456 int timeout = 3000;
10457
10458 sysfs_wait(fd, &timeout);
10459 if (sysfs_get_str(sra, NULL, "sync_action",
10460 action, 20) > 0 &&
10461 strncmp(action, "reshape", 7) != 0) {
10462 if (strncmp(action, "idle", 4) == 0)
10463 break;
10464 close(fd);
10465 return -1;
10466 }
10467
10468 rc = read_completed(fd, &completed);
10469 if (rc < 0) {
10470 dprintf("cannot read reshape_position (in loop)\n");
10471 close(fd);
10472 return 1;
10473 } else if (rc == COMPLETED_NONE)
10474 break;
10475 } while (completed < position_to_set);
10476
10477 close(fd);
10478 return 0;
10479 }
10480
10481 /*******************************************************************************
10482 * Function: check_degradation_change
10483 * Description: Check that array hasn't become failed.
10484 * Parameters:
10485 * info : for sysfs access
10486 * sources : source disks descriptors
10487 * degraded: previous degradation level
10488 * Returns:
10489 * degradation level
10490 ******************************************************************************/
10491 int check_degradation_change(struct mdinfo *info,
10492 int *sources,
10493 int degraded)
10494 {
10495 unsigned long long new_degraded;
10496 int rv;
10497
10498 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
10499 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
10500 /* check each device to ensure it is still working */
10501 struct mdinfo *sd;
10502 new_degraded = 0;
10503 for (sd = info->devs ; sd ; sd = sd->next) {
10504 if (sd->disk.state & (1<<MD_DISK_FAULTY))
10505 continue;
10506 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
10507 char sbuf[20];
10508 if (sysfs_get_str(info,
10509 sd, "state", sbuf, 20) < 0 ||
10510 strstr(sbuf, "faulty") ||
10511 strstr(sbuf, "in_sync") == NULL) {
10512 /* this device is dead */
10513 sd->disk.state = (1<<MD_DISK_FAULTY);
10514 if (sd->disk.raid_disk >= 0 &&
10515 sources[sd->disk.raid_disk] >= 0) {
10516 close(sources[
10517 sd->disk.raid_disk]);
10518 sources[sd->disk.raid_disk] =
10519 -1;
10520 }
10521 new_degraded++;
10522 }
10523 }
10524 }
10525 }
10526
10527 return new_degraded;
10528 }
10529
10530 /*******************************************************************************
10531 * Function: imsm_manage_reshape
10532 * Description: Function finds array under reshape and it manages reshape
10533 * process. It creates stripes backups (if required) and sets
10534 * checkpoints.
10535 * Parameters:
10536 * afd : Backup handle (nattive) - not used
10537 * sra : general array info
10538 * reshape : reshape parameters - not used
10539 * st : supertype structure
10540 * blocks : size of critical section [blocks]
10541 * fds : table of source device descriptor
10542 * offsets : start of array (offest per devices)
10543 * dests : not used
10544 * destfd : table of destination device descriptor
10545 * destoffsets : table of destination offsets (per device)
10546 * Returns:
10547 * 1 : success, reshape is done
10548 * 0 : fail
10549 ******************************************************************************/
10550 static int imsm_manage_reshape(
10551 int afd, struct mdinfo *sra, struct reshape *reshape,
10552 struct supertype *st, unsigned long backup_blocks,
10553 int *fds, unsigned long long *offsets,
10554 int dests, int *destfd, unsigned long long *destoffsets)
10555 {
10556 int ret_val = 0;
10557 struct intel_super *super = st->sb;
10558 struct intel_dev *dv;
10559 struct imsm_dev *dev = NULL;
10560 struct imsm_map *map_src;
10561 int migr_vol_qan = 0;
10562 int ndata, odata; /* [bytes] */
10563 int chunk; /* [bytes] */
10564 struct migr_record *migr_rec;
10565 char *buf = NULL;
10566 unsigned int buf_size; /* [bytes] */
10567 unsigned long long max_position; /* array size [bytes] */
10568 unsigned long long next_step; /* [blocks]/[bytes] */
10569 unsigned long long old_data_stripe_length;
10570 unsigned long long start_src; /* [bytes] */
10571 unsigned long long start; /* [bytes] */
10572 unsigned long long start_buf_shift; /* [bytes] */
10573 int degraded = 0;
10574 int source_layout = 0;
10575
10576 if (!sra)
10577 return ret_val;
10578
10579 if (!fds || !offsets)
10580 goto abort;
10581
10582 /* Find volume during the reshape */
10583 for (dv = super->devlist; dv; dv = dv->next) {
10584 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
10585 && dv->dev->vol.migr_state == 1) {
10586 dev = dv->dev;
10587 migr_vol_qan++;
10588 }
10589 }
10590 /* Only one volume can migrate at the same time */
10591 if (migr_vol_qan != 1) {
10592 pr_err("%s", migr_vol_qan ?
10593 "Number of migrating volumes greater than 1\n" :
10594 "There is no volume during migrationg\n");
10595 goto abort;
10596 }
10597
10598 map_src = get_imsm_map(dev, MAP_1);
10599 if (map_src == NULL)
10600 goto abort;
10601
10602 ndata = imsm_num_data_members(dev, MAP_0);
10603 odata = imsm_num_data_members(dev, MAP_1);
10604
10605 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10606 old_data_stripe_length = odata * chunk;
10607
10608 migr_rec = super->migr_rec;
10609
10610 /* initialize migration record for start condition */
10611 if (sra->reshape_progress == 0)
10612 init_migr_record_imsm(st, dev, sra);
10613 else {
10614 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
10615 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
10616 goto abort;
10617 }
10618 /* Save checkpoint to update migration record for current
10619 * reshape position (in md). It can be farther than current
10620 * reshape position in metadata.
10621 */
10622 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10623 /* ignore error == 2, this can mean end of reshape here
10624 */
10625 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
10626 goto abort;
10627 }
10628 }
10629
10630 /* size for data */
10631 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
10632 /* extend buffer size for parity disk */
10633 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10634 /* add space for stripe aligment */
10635 buf_size += old_data_stripe_length;
10636 if (posix_memalign((void **)&buf, 4096, buf_size)) {
10637 dprintf("imsm: Cannot allocate checpoint buffer\n");
10638 goto abort;
10639 }
10640
10641 max_position = sra->component_size * ndata;
10642 source_layout = imsm_level_to_layout(map_src->raid_level);
10643
10644 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
10645 __le32_to_cpu(migr_rec->num_migr_units)) {
10646 /* current reshape position [blocks] */
10647 unsigned long long current_position =
10648 __le32_to_cpu(migr_rec->blocks_per_unit)
10649 * __le32_to_cpu(migr_rec->curr_migr_unit);
10650 unsigned long long border;
10651
10652 /* Check that array hasn't become failed.
10653 */
10654 degraded = check_degradation_change(sra, fds, degraded);
10655 if (degraded > 1) {
10656 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
10657 goto abort;
10658 }
10659
10660 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
10661
10662 if ((current_position + next_step) > max_position)
10663 next_step = max_position - current_position;
10664
10665 start = current_position * 512;
10666
10667 /* align reading start to old geometry */
10668 start_buf_shift = start % old_data_stripe_length;
10669 start_src = start - start_buf_shift;
10670
10671 border = (start_src / odata) - (start / ndata);
10672 border /= 512;
10673 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
10674 /* save critical stripes to buf
10675 * start - start address of current unit
10676 * to backup [bytes]
10677 * start_src - start address of current unit
10678 * to backup alligned to source array
10679 * [bytes]
10680 */
10681 unsigned long long next_step_filler;
10682 unsigned long long copy_length = next_step * 512;
10683
10684 /* allign copy area length to stripe in old geometry */
10685 next_step_filler = ((copy_length + start_buf_shift)
10686 % old_data_stripe_length);
10687 if (next_step_filler)
10688 next_step_filler = (old_data_stripe_length
10689 - next_step_filler);
10690 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10691 start, start_src, copy_length,
10692 start_buf_shift, next_step_filler);
10693
10694 if (save_stripes(fds, offsets, map_src->num_members,
10695 chunk, map_src->raid_level,
10696 source_layout, 0, NULL, start_src,
10697 copy_length +
10698 next_step_filler + start_buf_shift,
10699 buf)) {
10700 dprintf("imsm: Cannot save stripes to buffer\n");
10701 goto abort;
10702 }
10703 /* Convert data to destination format and store it
10704 * in backup general migration area
10705 */
10706 if (save_backup_imsm(st, dev, sra,
10707 buf + start_buf_shift, copy_length)) {
10708 dprintf("imsm: Cannot save stripes to target devices\n");
10709 goto abort;
10710 }
10711 if (save_checkpoint_imsm(st, sra,
10712 UNIT_SRC_IN_CP_AREA)) {
10713 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10714 goto abort;
10715 }
10716 } else {
10717 /* set next step to use whole border area */
10718 border /= next_step;
10719 if (border > 1)
10720 next_step *= border;
10721 }
10722 /* When data backed up, checkpoint stored,
10723 * kick the kernel to reshape unit of data
10724 */
10725 next_step = next_step + sra->reshape_progress;
10726 /* limit next step to array max position */
10727 if (next_step > max_position)
10728 next_step = max_position;
10729 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
10730 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
10731 sra->reshape_progress = next_step;
10732
10733 /* wait until reshape finish */
10734 if (wait_for_reshape_imsm(sra, ndata)) {
10735 dprintf("wait_for_reshape_imsm returned error!\n");
10736 goto abort;
10737 }
10738 if (sigterm)
10739 goto abort;
10740
10741 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10742 /* ignore error == 2, this can mean end of reshape here
10743 */
10744 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10745 goto abort;
10746 }
10747
10748 }
10749
10750 /* clear migr_rec on disks after successful migration */
10751 struct dl *d;
10752
10753 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
10754 for (d = super->disks; d; d = d->next) {
10755 if (d->index < 0 || is_failed(&d->disk))
10756 continue;
10757 unsigned long long dsize;
10758
10759 get_dev_size(d->fd, NULL, &dsize);
10760 if (lseek64(d->fd, dsize - MIGR_REC_POSITION,
10761 SEEK_SET) >= 0) {
10762 if (write(d->fd, super->migr_rec_buf,
10763 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
10764 perror("Write migr_rec failed");
10765 }
10766 }
10767
10768 /* return '1' if done */
10769 ret_val = 1;
10770 abort:
10771 free(buf);
10772 /* See Grow.c: abort_reshape() for further explanation */
10773 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
10774 sysfs_set_num(sra, NULL, "suspend_hi", 0);
10775 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10776
10777 return ret_val;
10778 }
10779
10780 #endif /* MDASSEMBLE */
10781
10782 struct superswitch super_imsm = {
10783 #ifndef MDASSEMBLE
10784 .examine_super = examine_super_imsm,
10785 .brief_examine_super = brief_examine_super_imsm,
10786 .brief_examine_subarrays = brief_examine_subarrays_imsm,
10787 .export_examine_super = export_examine_super_imsm,
10788 .detail_super = detail_super_imsm,
10789 .brief_detail_super = brief_detail_super_imsm,
10790 .write_init_super = write_init_super_imsm,
10791 .validate_geometry = validate_geometry_imsm,
10792 .add_to_super = add_to_super_imsm,
10793 .remove_from_super = remove_from_super_imsm,
10794 .detail_platform = detail_platform_imsm,
10795 .export_detail_platform = export_detail_platform_imsm,
10796 .kill_subarray = kill_subarray_imsm,
10797 .update_subarray = update_subarray_imsm,
10798 .load_container = load_container_imsm,
10799 .default_geometry = default_geometry_imsm,
10800 .get_disk_controller_domain = imsm_get_disk_controller_domain,
10801 .reshape_super = imsm_reshape_super,
10802 .manage_reshape = imsm_manage_reshape,
10803 .recover_backup = recover_backup_imsm,
10804 .copy_metadata = copy_metadata_imsm,
10805 #endif
10806 .match_home = match_home_imsm,
10807 .uuid_from_super= uuid_from_super_imsm,
10808 .getinfo_super = getinfo_super_imsm,
10809 .getinfo_super_disks = getinfo_super_disks_imsm,
10810 .update_super = update_super_imsm,
10811
10812 .avail_size = avail_size_imsm,
10813 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
10814
10815 .compare_super = compare_super_imsm,
10816
10817 .load_super = load_super_imsm,
10818 .init_super = init_super_imsm,
10819 .store_super = store_super_imsm,
10820 .free_super = free_super_imsm,
10821 .match_metadata_desc = match_metadata_desc_imsm,
10822 .container_content = container_content_imsm,
10823 .validate_container = validate_container_imsm,
10824
10825 .external = 1,
10826 .name = "imsm",
10827
10828 #ifndef MDASSEMBLE
10829 /* for mdmon */
10830 .open_new = imsm_open_new,
10831 .set_array_state= imsm_set_array_state,
10832 .set_disk = imsm_set_disk,
10833 .sync_metadata = imsm_sync_metadata,
10834 .activate_spare = imsm_activate_spare,
10835 .process_update = imsm_process_update,
10836 .prepare_update = imsm_prepare_update,
10837 #endif /* MDASSEMBLE */
10838 };