]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
mdadm: fix build failures (ppc64)
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE
85
86 #define MPB_SECTOR_CNT 2210
87 #define IMSM_RESERVED_SECTORS 4096
88 #define SECT_PER_MB_SHIFT 11
89
90 /* Disk configuration info. */
91 #define IMSM_MAX_DEVICES 255
92 struct imsm_disk {
93 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
94 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
95 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
96 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
97 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
98 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
99 __u32 status; /* 0xF0 - 0xF3 */
100 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
101 #define IMSM_DISK_FILLERS 4
102 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
103 };
104
105 /* RAID map configuration infos. */
106 struct imsm_map {
107 __u32 pba_of_lba0; /* start address of partition */
108 __u32 blocks_per_member;/* blocks per member */
109 __u32 num_data_stripes; /* number of data stripes */
110 __u16 blocks_per_strip;
111 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
112 #define IMSM_T_STATE_NORMAL 0
113 #define IMSM_T_STATE_UNINITIALIZED 1
114 #define IMSM_T_STATE_DEGRADED 2
115 #define IMSM_T_STATE_FAILED 3
116 __u8 raid_level;
117 #define IMSM_T_RAID0 0
118 #define IMSM_T_RAID1 1
119 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
120 __u8 num_members; /* number of member disks */
121 __u8 num_domains; /* number of parity domains */
122 __u8 failed_disk_num; /* valid only when state is degraded */
123 __u8 ddf;
124 __u32 filler[7]; /* expansion area */
125 #define IMSM_ORD_REBUILD (1 << 24)
126 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
127 * top byte contains some flags
128 */
129 } __attribute__ ((packed));
130
131 struct imsm_vol {
132 __u32 curr_migr_unit;
133 __u32 checkpoint_id; /* id to access curr_migr_unit */
134 __u8 migr_state; /* Normal or Migrating */
135 #define MIGR_INIT 0
136 #define MIGR_REBUILD 1
137 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
138 #define MIGR_GEN_MIGR 3
139 #define MIGR_STATE_CHANGE 4
140 #define MIGR_REPAIR 5
141 __u8 migr_type; /* Initializing, Rebuilding, ... */
142 __u8 dirty;
143 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
144 __u16 verify_errors; /* number of mismatches */
145 __u16 bad_blocks; /* number of bad blocks during verify */
146 __u32 filler[4];
147 struct imsm_map map[1];
148 /* here comes another one if migr_state */
149 } __attribute__ ((packed));
150
151 struct imsm_dev {
152 __u8 volume[MAX_RAID_SERIAL_LEN];
153 __u32 size_low;
154 __u32 size_high;
155 #define DEV_BOOTABLE __cpu_to_le32(0x01)
156 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
157 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
158 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
159 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
160 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
161 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
162 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
163 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
164 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
165 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
166 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
167 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
168 __u32 status; /* Persistent RaidDev status */
169 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
170 __u8 migr_priority;
171 __u8 num_sub_vols;
172 __u8 tid;
173 __u8 cng_master_disk;
174 __u16 cache_policy;
175 __u8 cng_state;
176 __u8 cng_sub_state;
177 #define IMSM_DEV_FILLERS 10
178 __u32 filler[IMSM_DEV_FILLERS];
179 struct imsm_vol vol;
180 } __attribute__ ((packed));
181
182 struct imsm_super {
183 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
184 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
185 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
186 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
187 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
188 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
189 __u32 attributes; /* 0x34 - 0x37 */
190 __u8 num_disks; /* 0x38 Number of configured disks */
191 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
192 __u8 error_log_pos; /* 0x3A */
193 __u8 fill[1]; /* 0x3B */
194 __u32 cache_size; /* 0x3c - 0x40 in mb */
195 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
196 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
197 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
198 #define IMSM_FILLERS 35
199 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
200 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
201 /* here comes imsm_dev[num_raid_devs] */
202 /* here comes BBM logs */
203 } __attribute__ ((packed));
204
205 #define BBM_LOG_MAX_ENTRIES 254
206
207 struct bbm_log_entry {
208 __u64 defective_block_start;
209 #define UNREADABLE 0xFFFFFFFF
210 __u32 spare_block_offset;
211 __u16 remapped_marked_count;
212 __u16 disk_ordinal;
213 } __attribute__ ((__packed__));
214
215 struct bbm_log {
216 __u32 signature; /* 0xABADB10C */
217 __u32 entry_count;
218 __u32 reserved_spare_block_count; /* 0 */
219 __u32 reserved; /* 0xFFFF */
220 __u64 first_spare_lba;
221 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
222 } __attribute__ ((__packed__));
223
224
225 #ifndef MDASSEMBLE
226 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
227 #endif
228
229 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
230
231 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
232
233 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
234 * be recovered using srcMap */
235 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
236 * already been migrated and must
237 * be recovered from checkpoint area */
238 struct migr_record {
239 __u32 rec_status; /* Status used to determine how to restart
240 * migration in case it aborts
241 * in some fashion */
242 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
243 __u32 family_num; /* Family number of MPB
244 * containing the RaidDev
245 * that is migrating */
246 __u32 ascending_migr; /* True if migrating in increasing
247 * order of lbas */
248 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
249 __u32 dest_depth_per_unit; /* Num member blocks each destMap
250 * member disk
251 * advances per unit-of-operation */
252 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
253 __u32 dest_1st_member_lba; /* First member lba on first
254 * stripe of destination */
255 __u32 num_migr_units; /* Total num migration units-of-op */
256 __u32 post_migr_vol_cap; /* Size of volume after
257 * migration completes */
258 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
259 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
260 * migration ckpt record was read from
261 * (for recovered migrations) */
262 } __attribute__ ((__packed__));
263
264 static __u8 migr_type(struct imsm_dev *dev)
265 {
266 if (dev->vol.migr_type == MIGR_VERIFY &&
267 dev->status & DEV_VERIFY_AND_FIX)
268 return MIGR_REPAIR;
269 else
270 return dev->vol.migr_type;
271 }
272
273 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
274 {
275 /* for compatibility with older oroms convert MIGR_REPAIR, into
276 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
277 */
278 if (migr_type == MIGR_REPAIR) {
279 dev->vol.migr_type = MIGR_VERIFY;
280 dev->status |= DEV_VERIFY_AND_FIX;
281 } else {
282 dev->vol.migr_type = migr_type;
283 dev->status &= ~DEV_VERIFY_AND_FIX;
284 }
285 }
286
287 static unsigned int sector_count(__u32 bytes)
288 {
289 return ((bytes + (512-1)) & (~(512-1))) / 512;
290 }
291
292 static unsigned int mpb_sectors(struct imsm_super *mpb)
293 {
294 return sector_count(__le32_to_cpu(mpb->mpb_size));
295 }
296
297 struct intel_dev {
298 struct imsm_dev *dev;
299 struct intel_dev *next;
300 unsigned index;
301 };
302
303 struct intel_hba {
304 enum sys_dev_type type;
305 char *path;
306 char *pci_id;
307 struct intel_hba *next;
308 };
309
310 enum action {
311 DISK_REMOVE = 1,
312 DISK_ADD
313 };
314 /* internal representation of IMSM metadata */
315 struct intel_super {
316 union {
317 void *buf; /* O_DIRECT buffer for reading/writing metadata */
318 struct imsm_super *anchor; /* immovable parameters */
319 };
320 union {
321 void *migr_rec_buf; /* buffer for I/O operations */
322 struct migr_record *migr_rec; /* migration record */
323 };
324 size_t len; /* size of the 'buf' allocation */
325 void *next_buf; /* for realloc'ing buf from the manager */
326 size_t next_len;
327 int updates_pending; /* count of pending updates for mdmon */
328 int current_vol; /* index of raid device undergoing creation */
329 __u32 create_offset; /* common start for 'current_vol' */
330 __u32 random; /* random data for seeding new family numbers */
331 struct intel_dev *devlist;
332 struct dl {
333 struct dl *next;
334 int index;
335 __u8 serial[MAX_RAID_SERIAL_LEN];
336 int major, minor;
337 char *devname;
338 struct imsm_disk disk;
339 int fd;
340 int extent_cnt;
341 struct extent *e; /* for determining freespace @ create */
342 int raiddisk; /* slot to fill in autolayout */
343 enum action action;
344 } *disks;
345 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
346 active */
347 struct dl *missing; /* disks removed while we weren't looking */
348 struct bbm_log *bbm_log;
349 struct intel_hba *hba; /* device path of the raid controller for this metadata */
350 const struct imsm_orom *orom; /* platform firmware support */
351 struct intel_super *next; /* (temp) list for disambiguating family_num */
352 };
353
354 struct intel_disk {
355 struct imsm_disk disk;
356 #define IMSM_UNKNOWN_OWNER (-1)
357 int owner;
358 struct intel_disk *next;
359 };
360
361 struct extent {
362 unsigned long long start, size;
363 };
364
365 /* definitions of reshape process types */
366 enum imsm_reshape_type {
367 CH_TAKEOVER,
368 CH_MIGRATION,
369 };
370
371 /* definition of messages passed to imsm_process_update */
372 enum imsm_update_type {
373 update_activate_spare,
374 update_create_array,
375 update_kill_array,
376 update_rename_array,
377 update_add_remove_disk,
378 update_reshape_container_disks,
379 update_reshape_migration,
380 update_takeover,
381 update_general_migration_checkpoint,
382 };
383
384 struct imsm_update_activate_spare {
385 enum imsm_update_type type;
386 struct dl *dl;
387 int slot;
388 int array;
389 struct imsm_update_activate_spare *next;
390 };
391
392 struct geo_params {
393 int dev_id;
394 char *dev_name;
395 long long size;
396 int level;
397 int layout;
398 int chunksize;
399 int raid_disks;
400 };
401
402 enum takeover_direction {
403 R10_TO_R0,
404 R0_TO_R10
405 };
406 struct imsm_update_takeover {
407 enum imsm_update_type type;
408 int subarray;
409 enum takeover_direction direction;
410 };
411
412 struct imsm_update_reshape {
413 enum imsm_update_type type;
414 int old_raid_disks;
415 int new_raid_disks;
416
417 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
418 };
419
420 struct imsm_update_reshape_migration {
421 enum imsm_update_type type;
422 int old_raid_disks;
423 int new_raid_disks;
424 /* fields for array migration changes
425 */
426 int subdev;
427 int new_level;
428 int new_layout;
429 int new_chunksize;
430
431 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
432 };
433
434 struct imsm_update_general_migration_checkpoint {
435 enum imsm_update_type type;
436 __u32 curr_migr_unit;
437 };
438
439 struct disk_info {
440 __u8 serial[MAX_RAID_SERIAL_LEN];
441 };
442
443 struct imsm_update_create_array {
444 enum imsm_update_type type;
445 int dev_idx;
446 struct imsm_dev dev;
447 };
448
449 struct imsm_update_kill_array {
450 enum imsm_update_type type;
451 int dev_idx;
452 };
453
454 struct imsm_update_rename_array {
455 enum imsm_update_type type;
456 __u8 name[MAX_RAID_SERIAL_LEN];
457 int dev_idx;
458 };
459
460 struct imsm_update_add_remove_disk {
461 enum imsm_update_type type;
462 };
463
464
465 static const char *_sys_dev_type[] = {
466 [SYS_DEV_UNKNOWN] = "Unknown",
467 [SYS_DEV_SAS] = "SAS",
468 [SYS_DEV_SATA] = "SATA"
469 };
470
471 const char *get_sys_dev_type(enum sys_dev_type type)
472 {
473 if (type >= SYS_DEV_MAX)
474 type = SYS_DEV_UNKNOWN;
475
476 return _sys_dev_type[type];
477 }
478
479 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
480 {
481 struct intel_hba *result = malloc(sizeof(*result));
482 if (result) {
483 result->type = device->type;
484 result->path = strdup(device->path);
485 result->next = NULL;
486 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
487 result->pci_id++;
488 }
489 return result;
490 }
491
492 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
493 {
494 struct intel_hba *result=NULL;
495 for (result = hba; result; result = result->next) {
496 if (result->type == device->type && strcmp(result->path, device->path) == 0)
497 break;
498 }
499 return result;
500 }
501
502 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
503 {
504 struct intel_hba *hba;
505
506 /* check if disk attached to Intel HBA */
507 hba = find_intel_hba(super->hba, device);
508 if (hba != NULL)
509 return 1;
510 /* Check if HBA is already attached to super */
511 if (super->hba == NULL) {
512 super->hba = alloc_intel_hba(device);
513 return 1;
514 }
515
516 hba = super->hba;
517 /* Intel metadata allows for all disks attached to the same type HBA.
518 * Do not sypport odf HBA types mixing
519 */
520 if (device->type != hba->type)
521 return 2;
522
523 while (hba->next)
524 hba = hba->next;
525
526 hba->next = alloc_intel_hba(device);
527 return 1;
528 }
529
530 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
531 {
532 struct sys_dev *list, *elem, *prev;
533 char *disk_path;
534
535 if ((list = find_intel_devices()) == NULL)
536 return 0;
537
538 if (fd < 0)
539 disk_path = (char *) devname;
540 else
541 disk_path = diskfd_to_devpath(fd);
542
543 if (!disk_path) {
544 free_sys_dev(&list);
545 return 0;
546 }
547
548 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
549 if (path_attached_to_hba(disk_path, elem->path)) {
550 if (prev == NULL)
551 list = list->next;
552 else
553 prev->next = elem->next;
554 elem->next = NULL;
555 if (disk_path != devname)
556 free(disk_path);
557 free_sys_dev(&list);
558 return elem;
559 }
560 }
561 if (disk_path != devname)
562 free(disk_path);
563 free_sys_dev(&list);
564
565 return NULL;
566 }
567
568
569 static int find_intel_hba_capability(int fd, struct intel_super *super,
570 char *devname);
571
572 static struct supertype *match_metadata_desc_imsm(char *arg)
573 {
574 struct supertype *st;
575
576 if (strcmp(arg, "imsm") != 0 &&
577 strcmp(arg, "default") != 0
578 )
579 return NULL;
580
581 st = malloc(sizeof(*st));
582 if (!st)
583 return NULL;
584 memset(st, 0, sizeof(*st));
585 st->container_dev = NoMdDev;
586 st->ss = &super_imsm;
587 st->max_devs = IMSM_MAX_DEVICES;
588 st->minor_version = 0;
589 st->sb = NULL;
590 return st;
591 }
592
593 #ifndef MDASSEMBLE
594 static __u8 *get_imsm_version(struct imsm_super *mpb)
595 {
596 return &mpb->sig[MPB_SIG_LEN];
597 }
598 #endif
599
600 /* retrieve a disk directly from the anchor when the anchor is known to be
601 * up-to-date, currently only at load time
602 */
603 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
604 {
605 if (index >= mpb->num_disks)
606 return NULL;
607 return &mpb->disk[index];
608 }
609
610 /* retrieve the disk description based on a index of the disk
611 * in the sub-array
612 */
613 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
614 {
615 struct dl *d;
616
617 for (d = super->disks; d; d = d->next)
618 if (d->index == index)
619 return d;
620
621 return NULL;
622 }
623 /* retrieve a disk from the parsed metadata */
624 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
625 {
626 struct dl *dl;
627
628 dl = get_imsm_dl_disk(super, index);
629 if (dl)
630 return &dl->disk;
631
632 return NULL;
633 }
634
635 /* generate a checksum directly from the anchor when the anchor is known to be
636 * up-to-date, currently only at load or write_super after coalescing
637 */
638 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
639 {
640 __u32 end = mpb->mpb_size / sizeof(end);
641 __u32 *p = (__u32 *) mpb;
642 __u32 sum = 0;
643
644 while (end--) {
645 sum += __le32_to_cpu(*p);
646 p++;
647 }
648
649 return sum - __le32_to_cpu(mpb->check_sum);
650 }
651
652 static size_t sizeof_imsm_map(struct imsm_map *map)
653 {
654 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
655 }
656
657 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
658 {
659 /* A device can have 2 maps if it is in the middle of a migration.
660 * If second_map is:
661 * 0 - we return the first map
662 * 1 - we return the second map if it exists, else NULL
663 * -1 - we return the second map if it exists, else the first
664 */
665 struct imsm_map *map = &dev->vol.map[0];
666
667 if (second_map == 1 && !dev->vol.migr_state)
668 return NULL;
669 else if (second_map == 1 ||
670 (second_map < 0 && dev->vol.migr_state)) {
671 void *ptr = map;
672
673 return ptr + sizeof_imsm_map(map);
674 } else
675 return map;
676
677 }
678
679 /* return the size of the device.
680 * migr_state increases the returned size if map[0] were to be duplicated
681 */
682 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
683 {
684 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
685 sizeof_imsm_map(get_imsm_map(dev, 0));
686
687 /* migrating means an additional map */
688 if (dev->vol.migr_state)
689 size += sizeof_imsm_map(get_imsm_map(dev, 1));
690 else if (migr_state)
691 size += sizeof_imsm_map(get_imsm_map(dev, 0));
692
693 return size;
694 }
695
696 #ifndef MDASSEMBLE
697 /* retrieve disk serial number list from a metadata update */
698 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
699 {
700 void *u = update;
701 struct disk_info *inf;
702
703 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
704 sizeof_imsm_dev(&update->dev, 0);
705
706 return inf;
707 }
708 #endif
709
710 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
711 {
712 int offset;
713 int i;
714 void *_mpb = mpb;
715
716 if (index >= mpb->num_raid_devs)
717 return NULL;
718
719 /* devices start after all disks */
720 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
721
722 for (i = 0; i <= index; i++)
723 if (i == index)
724 return _mpb + offset;
725 else
726 offset += sizeof_imsm_dev(_mpb + offset, 0);
727
728 return NULL;
729 }
730
731 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
732 {
733 struct intel_dev *dv;
734
735 if (index >= super->anchor->num_raid_devs)
736 return NULL;
737 for (dv = super->devlist; dv; dv = dv->next)
738 if (dv->index == index)
739 return dv->dev;
740 return NULL;
741 }
742
743 /*
744 * for second_map:
745 * == 0 get first map
746 * == 1 get second map
747 * == -1 than get map according to the current migr_state
748 */
749 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
750 int slot,
751 int second_map)
752 {
753 struct imsm_map *map;
754
755 map = get_imsm_map(dev, second_map);
756
757 /* top byte identifies disk under rebuild */
758 return __le32_to_cpu(map->disk_ord_tbl[slot]);
759 }
760
761 #define ord_to_idx(ord) (((ord) << 8) >> 8)
762 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
763 {
764 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
765
766 return ord_to_idx(ord);
767 }
768
769 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
770 {
771 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
772 }
773
774 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
775 {
776 int slot;
777 __u32 ord;
778
779 for (slot = 0; slot < map->num_members; slot++) {
780 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
781 if (ord_to_idx(ord) == idx)
782 return slot;
783 }
784
785 return -1;
786 }
787
788 static int get_imsm_raid_level(struct imsm_map *map)
789 {
790 if (map->raid_level == 1) {
791 if (map->num_members == 2)
792 return 1;
793 else
794 return 10;
795 }
796
797 return map->raid_level;
798 }
799
800 static int cmp_extent(const void *av, const void *bv)
801 {
802 const struct extent *a = av;
803 const struct extent *b = bv;
804 if (a->start < b->start)
805 return -1;
806 if (a->start > b->start)
807 return 1;
808 return 0;
809 }
810
811 static int count_memberships(struct dl *dl, struct intel_super *super)
812 {
813 int memberships = 0;
814 int i;
815
816 for (i = 0; i < super->anchor->num_raid_devs; i++) {
817 struct imsm_dev *dev = get_imsm_dev(super, i);
818 struct imsm_map *map = get_imsm_map(dev, 0);
819
820 if (get_imsm_disk_slot(map, dl->index) >= 0)
821 memberships++;
822 }
823
824 return memberships;
825 }
826
827 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
828 {
829 /* find a list of used extents on the given physical device */
830 struct extent *rv, *e;
831 int i;
832 int memberships = count_memberships(dl, super);
833 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
834
835 rv = malloc(sizeof(struct extent) * (memberships + 1));
836 if (!rv)
837 return NULL;
838 e = rv;
839
840 for (i = 0; i < super->anchor->num_raid_devs; i++) {
841 struct imsm_dev *dev = get_imsm_dev(super, i);
842 struct imsm_map *map = get_imsm_map(dev, 0);
843
844 if (get_imsm_disk_slot(map, dl->index) >= 0) {
845 e->start = __le32_to_cpu(map->pba_of_lba0);
846 e->size = __le32_to_cpu(map->blocks_per_member);
847 e++;
848 }
849 }
850 qsort(rv, memberships, sizeof(*rv), cmp_extent);
851
852 /* determine the start of the metadata
853 * when no raid devices are defined use the default
854 * ...otherwise allow the metadata to truncate the value
855 * as is the case with older versions of imsm
856 */
857 if (memberships) {
858 struct extent *last = &rv[memberships - 1];
859 __u32 remainder;
860
861 remainder = __le32_to_cpu(dl->disk.total_blocks) -
862 (last->start + last->size);
863 /* round down to 1k block to satisfy precision of the kernel
864 * 'size' interface
865 */
866 remainder &= ~1UL;
867 /* make sure remainder is still sane */
868 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
869 remainder = ROUND_UP(super->len, 512) >> 9;
870 if (reservation > remainder)
871 reservation = remainder;
872 }
873 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
874 e->size = 0;
875 return rv;
876 }
877
878 /* try to determine how much space is reserved for metadata from
879 * the last get_extents() entry, otherwise fallback to the
880 * default
881 */
882 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
883 {
884 struct extent *e;
885 int i;
886 __u32 rv;
887
888 /* for spares just return a minimal reservation which will grow
889 * once the spare is picked up by an array
890 */
891 if (dl->index == -1)
892 return MPB_SECTOR_CNT;
893
894 e = get_extents(super, dl);
895 if (!e)
896 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
897
898 /* scroll to last entry */
899 for (i = 0; e[i].size; i++)
900 continue;
901
902 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
903
904 free(e);
905
906 return rv;
907 }
908
909 static int is_spare(struct imsm_disk *disk)
910 {
911 return (disk->status & SPARE_DISK) == SPARE_DISK;
912 }
913
914 static int is_configured(struct imsm_disk *disk)
915 {
916 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
917 }
918
919 static int is_failed(struct imsm_disk *disk)
920 {
921 return (disk->status & FAILED_DISK) == FAILED_DISK;
922 }
923
924 /* Return minimum size of a spare that can be used in this array*/
925 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
926 {
927 struct intel_super *super = st->sb;
928 struct dl *dl;
929 struct extent *e;
930 int i;
931 unsigned long long rv = 0;
932
933 if (!super)
934 return rv;
935 /* find first active disk in array */
936 dl = super->disks;
937 while (dl && (is_failed(&dl->disk) || dl->index == -1))
938 dl = dl->next;
939 if (!dl)
940 return rv;
941 /* find last lba used by subarrays */
942 e = get_extents(super, dl);
943 if (!e)
944 return rv;
945 for (i = 0; e[i].size; i++)
946 continue;
947 if (i > 0)
948 rv = e[i-1].start + e[i-1].size;
949 free(e);
950 /* add the amount of space needed for metadata */
951 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
952 return rv * 512;
953 }
954
955 #ifndef MDASSEMBLE
956 static __u64 blocks_per_migr_unit(struct intel_super *super,
957 struct imsm_dev *dev);
958
959 static void print_imsm_dev(struct intel_super *super,
960 struct imsm_dev *dev,
961 char *uuid,
962 int disk_idx)
963 {
964 __u64 sz;
965 int slot, i;
966 struct imsm_map *map = get_imsm_map(dev, 0);
967 struct imsm_map *map2 = get_imsm_map(dev, 1);
968 __u32 ord;
969
970 printf("\n");
971 printf("[%.16s]:\n", dev->volume);
972 printf(" UUID : %s\n", uuid);
973 printf(" RAID Level : %d", get_imsm_raid_level(map));
974 if (map2)
975 printf(" <-- %d", get_imsm_raid_level(map2));
976 printf("\n");
977 printf(" Members : %d", map->num_members);
978 if (map2)
979 printf(" <-- %d", map2->num_members);
980 printf("\n");
981 printf(" Slots : [");
982 for (i = 0; i < map->num_members; i++) {
983 ord = get_imsm_ord_tbl_ent(dev, i, 0);
984 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
985 }
986 printf("]");
987 if (map2) {
988 printf(" <-- [");
989 for (i = 0; i < map2->num_members; i++) {
990 ord = get_imsm_ord_tbl_ent(dev, i, 1);
991 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
992 }
993 printf("]");
994 }
995 printf("\n");
996 printf(" Failed disk : ");
997 if (map->failed_disk_num == 0xff)
998 printf("none");
999 else
1000 printf("%i", map->failed_disk_num);
1001 printf("\n");
1002 slot = get_imsm_disk_slot(map, disk_idx);
1003 if (slot >= 0) {
1004 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
1005 printf(" This Slot : %d%s\n", slot,
1006 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1007 } else
1008 printf(" This Slot : ?\n");
1009 sz = __le32_to_cpu(dev->size_high);
1010 sz <<= 32;
1011 sz += __le32_to_cpu(dev->size_low);
1012 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1013 human_size(sz * 512));
1014 sz = __le32_to_cpu(map->blocks_per_member);
1015 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1016 human_size(sz * 512));
1017 printf(" Sector Offset : %u\n",
1018 __le32_to_cpu(map->pba_of_lba0));
1019 printf(" Num Stripes : %u\n",
1020 __le32_to_cpu(map->num_data_stripes));
1021 printf(" Chunk Size : %u KiB",
1022 __le16_to_cpu(map->blocks_per_strip) / 2);
1023 if (map2)
1024 printf(" <-- %u KiB",
1025 __le16_to_cpu(map2->blocks_per_strip) / 2);
1026 printf("\n");
1027 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1028 printf(" Migrate State : ");
1029 if (dev->vol.migr_state) {
1030 if (migr_type(dev) == MIGR_INIT)
1031 printf("initialize\n");
1032 else if (migr_type(dev) == MIGR_REBUILD)
1033 printf("rebuild\n");
1034 else if (migr_type(dev) == MIGR_VERIFY)
1035 printf("check\n");
1036 else if (migr_type(dev) == MIGR_GEN_MIGR)
1037 printf("general migration\n");
1038 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1039 printf("state change\n");
1040 else if (migr_type(dev) == MIGR_REPAIR)
1041 printf("repair\n");
1042 else
1043 printf("<unknown:%d>\n", migr_type(dev));
1044 } else
1045 printf("idle\n");
1046 printf(" Map State : %s", map_state_str[map->map_state]);
1047 if (dev->vol.migr_state) {
1048 struct imsm_map *map = get_imsm_map(dev, 1);
1049
1050 printf(" <-- %s", map_state_str[map->map_state]);
1051 printf("\n Checkpoint : %u (%llu)",
1052 __le32_to_cpu(dev->vol.curr_migr_unit),
1053 (unsigned long long)blocks_per_migr_unit(super, dev));
1054 }
1055 printf("\n");
1056 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1057 }
1058
1059 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
1060 {
1061 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
1062 char str[MAX_RAID_SERIAL_LEN + 1];
1063 __u64 sz;
1064
1065 if (index < 0 || !disk)
1066 return;
1067
1068 printf("\n");
1069 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1070 printf(" Disk%02d Serial : %s\n", index, str);
1071 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1072 is_configured(disk) ? " active" : "",
1073 is_failed(disk) ? " failed" : "");
1074 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1075 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1076 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1077 human_size(sz * 512));
1078 }
1079
1080 static int is_gen_migration(struct imsm_dev *dev);
1081
1082 void examine_migr_rec_imsm(struct intel_super *super)
1083 {
1084 struct migr_record *migr_rec = super->migr_rec;
1085 struct imsm_super *mpb = super->anchor;
1086 int i;
1087
1088 for (i = 0; i < mpb->num_raid_devs; i++) {
1089 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1090 if (is_gen_migration(dev) == 0)
1091 continue;
1092
1093 printf("\nMigration Record Information:");
1094 if (super->disks->index > 1) {
1095 printf(" Empty\n ");
1096 printf("Examine one of first two disks in array\n");
1097 break;
1098 }
1099 printf("\n Status : ");
1100 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1101 printf("Normal\n");
1102 else
1103 printf("Contains Data\n");
1104 printf(" Current Unit : %u\n",
1105 __le32_to_cpu(migr_rec->curr_migr_unit));
1106 printf(" Family : %u\n",
1107 __le32_to_cpu(migr_rec->family_num));
1108 printf(" Ascending : %u\n",
1109 __le32_to_cpu(migr_rec->ascending_migr));
1110 printf(" Blocks Per Unit : %u\n",
1111 __le32_to_cpu(migr_rec->blocks_per_unit));
1112 printf(" Dest. Depth Per Unit : %u\n",
1113 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1114 printf(" Checkpoint Area pba : %u\n",
1115 __le32_to_cpu(migr_rec->ckpt_area_pba));
1116 printf(" First member lba : %u\n",
1117 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1118 printf(" Total Number of Units : %u\n",
1119 __le32_to_cpu(migr_rec->num_migr_units));
1120 printf(" Size of volume : %u\n",
1121 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1122 printf(" Expansion space for LBA64 : %u\n",
1123 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1124 printf(" Record was read from : %u\n",
1125 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1126
1127 break;
1128 }
1129 }
1130 #endif /* MDASSEMBLE */
1131 /*******************************************************************************
1132 * function: imsm_check_attributes
1133 * Description: Function checks if features represented by attributes flags
1134 * are supported by mdadm.
1135 * Parameters:
1136 * attributes - Attributes read from metadata
1137 * Returns:
1138 * 0 - passed attributes contains unsupported features flags
1139 * 1 - all features are supported
1140 ******************************************************************************/
1141 static int imsm_check_attributes(__u32 attributes)
1142 {
1143 int ret_val = 1;
1144 __u32 not_supported = (MPB_ATTRIB_SUPPORTED)^0xffffffff;
1145
1146 not_supported &= attributes;
1147 if (not_supported) {
1148 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n", not_supported);
1149 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1150 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1151 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1152 }
1153 if (not_supported & MPB_ATTRIB_2TB) {
1154 dprintf("\t\tMPB_ATTRIB_2TB\n");
1155 not_supported ^= MPB_ATTRIB_2TB;
1156 }
1157 if (not_supported & MPB_ATTRIB_RAID0) {
1158 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1159 not_supported ^= MPB_ATTRIB_RAID0;
1160 }
1161 if (not_supported & MPB_ATTRIB_RAID1) {
1162 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1163 not_supported ^= MPB_ATTRIB_RAID1;
1164 }
1165 if (not_supported & MPB_ATTRIB_RAID10) {
1166 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1167 not_supported ^= MPB_ATTRIB_RAID10;
1168 }
1169 if (not_supported & MPB_ATTRIB_RAID1E) {
1170 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1171 not_supported ^= MPB_ATTRIB_RAID1E;
1172 }
1173 if (not_supported & MPB_ATTRIB_RAID5) {
1174 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1175 not_supported ^= MPB_ATTRIB_RAID5;
1176 }
1177 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1178 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1179 not_supported ^= MPB_ATTRIB_RAIDCNG;
1180 }
1181 if (not_supported & MPB_ATTRIB_BBM) {
1182 dprintf("\t\tMPB_ATTRIB_BBM\n");
1183 not_supported ^= MPB_ATTRIB_BBM;
1184 }
1185 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1186 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1187 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1188 }
1189 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1190 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1191 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1192 }
1193 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1194 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1195 not_supported ^= MPB_ATTRIB_2TB_DISK;
1196 }
1197 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1198 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1199 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1200 }
1201 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1202 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1203 not_supported ^= MPB_ATTRIB_NEVER_USE;
1204 }
1205
1206 if (not_supported)
1207 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1208
1209 ret_val = 0;
1210 }
1211
1212 return ret_val;
1213 }
1214
1215 #ifndef MDASSEMBLE
1216 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1217
1218 static void examine_super_imsm(struct supertype *st, char *homehost)
1219 {
1220 struct intel_super *super = st->sb;
1221 struct imsm_super *mpb = super->anchor;
1222 char str[MAX_SIGNATURE_LENGTH];
1223 int i;
1224 struct mdinfo info;
1225 char nbuf[64];
1226 __u32 sum;
1227 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1228 struct dl *dl;
1229
1230 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1231 printf(" Magic : %s\n", str);
1232 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1233 printf(" Version : %s\n", get_imsm_version(mpb));
1234 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1235 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1236 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1237 printf(" Attributes : ");
1238 if (imsm_check_attributes(mpb->attributes))
1239 printf("All supported\n");
1240 else
1241 printf("not supported\n");
1242 getinfo_super_imsm(st, &info, NULL);
1243 fname_from_uuid(st, &info, nbuf, ':');
1244 printf(" UUID : %s\n", nbuf + 5);
1245 sum = __le32_to_cpu(mpb->check_sum);
1246 printf(" Checksum : %08x %s\n", sum,
1247 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1248 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1249 printf(" Disks : %d\n", mpb->num_disks);
1250 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1251 print_imsm_disk(mpb, super->disks->index, reserved);
1252 if (super->bbm_log) {
1253 struct bbm_log *log = super->bbm_log;
1254
1255 printf("\n");
1256 printf("Bad Block Management Log:\n");
1257 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1258 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1259 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1260 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1261 printf(" First Spare : %llx\n",
1262 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1263 }
1264 for (i = 0; i < mpb->num_raid_devs; i++) {
1265 struct mdinfo info;
1266 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1267
1268 super->current_vol = i;
1269 getinfo_super_imsm(st, &info, NULL);
1270 fname_from_uuid(st, &info, nbuf, ':');
1271 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1272 }
1273 for (i = 0; i < mpb->num_disks; i++) {
1274 if (i == super->disks->index)
1275 continue;
1276 print_imsm_disk(mpb, i, reserved);
1277 }
1278 for (dl = super->disks ; dl; dl = dl->next) {
1279 struct imsm_disk *disk;
1280 char str[MAX_RAID_SERIAL_LEN + 1];
1281 __u64 sz;
1282
1283 if (dl->index >= 0)
1284 continue;
1285
1286 disk = &dl->disk;
1287 printf("\n");
1288 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1289 printf(" Disk Serial : %s\n", str);
1290 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1291 is_configured(disk) ? " active" : "",
1292 is_failed(disk) ? " failed" : "");
1293 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1294 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1295 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1296 human_size(sz * 512));
1297 }
1298
1299 examine_migr_rec_imsm(super);
1300 }
1301
1302 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1303 {
1304 /* We just write a generic IMSM ARRAY entry */
1305 struct mdinfo info;
1306 char nbuf[64];
1307 struct intel_super *super = st->sb;
1308
1309 if (!super->anchor->num_raid_devs) {
1310 printf("ARRAY metadata=imsm\n");
1311 return;
1312 }
1313
1314 getinfo_super_imsm(st, &info, NULL);
1315 fname_from_uuid(st, &info, nbuf, ':');
1316 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1317 }
1318
1319 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1320 {
1321 /* We just write a generic IMSM ARRAY entry */
1322 struct mdinfo info;
1323 char nbuf[64];
1324 char nbuf1[64];
1325 struct intel_super *super = st->sb;
1326 int i;
1327
1328 if (!super->anchor->num_raid_devs)
1329 return;
1330
1331 getinfo_super_imsm(st, &info, NULL);
1332 fname_from_uuid(st, &info, nbuf, ':');
1333 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1334 struct imsm_dev *dev = get_imsm_dev(super, i);
1335
1336 super->current_vol = i;
1337 getinfo_super_imsm(st, &info, NULL);
1338 fname_from_uuid(st, &info, nbuf1, ':');
1339 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1340 dev->volume, nbuf + 5, i, nbuf1 + 5);
1341 }
1342 }
1343
1344 static void export_examine_super_imsm(struct supertype *st)
1345 {
1346 struct intel_super *super = st->sb;
1347 struct imsm_super *mpb = super->anchor;
1348 struct mdinfo info;
1349 char nbuf[64];
1350
1351 getinfo_super_imsm(st, &info, NULL);
1352 fname_from_uuid(st, &info, nbuf, ':');
1353 printf("MD_METADATA=imsm\n");
1354 printf("MD_LEVEL=container\n");
1355 printf("MD_UUID=%s\n", nbuf+5);
1356 printf("MD_DEVICES=%u\n", mpb->num_disks);
1357 }
1358
1359 static void detail_super_imsm(struct supertype *st, char *homehost)
1360 {
1361 struct mdinfo info;
1362 char nbuf[64];
1363
1364 getinfo_super_imsm(st, &info, NULL);
1365 fname_from_uuid(st, &info, nbuf, ':');
1366 printf("\n UUID : %s\n", nbuf + 5);
1367 }
1368
1369 static void brief_detail_super_imsm(struct supertype *st)
1370 {
1371 struct mdinfo info;
1372 char nbuf[64];
1373 getinfo_super_imsm(st, &info, NULL);
1374 fname_from_uuid(st, &info, nbuf, ':');
1375 printf(" UUID=%s", nbuf + 5);
1376 }
1377
1378 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1379 static void fd2devname(int fd, char *name);
1380
1381 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1382 {
1383 /* dump an unsorted list of devices attached to AHCI Intel storage
1384 * controller, as well as non-connected ports
1385 */
1386 int hba_len = strlen(hba_path) + 1;
1387 struct dirent *ent;
1388 DIR *dir;
1389 char *path = NULL;
1390 int err = 0;
1391 unsigned long port_mask = (1 << port_count) - 1;
1392
1393 if (port_count > (int)sizeof(port_mask) * 8) {
1394 if (verbose)
1395 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1396 return 2;
1397 }
1398
1399 /* scroll through /sys/dev/block looking for devices attached to
1400 * this hba
1401 */
1402 dir = opendir("/sys/dev/block");
1403 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1404 int fd;
1405 char model[64];
1406 char vendor[64];
1407 char buf[1024];
1408 int major, minor;
1409 char *device;
1410 char *c;
1411 int port;
1412 int type;
1413
1414 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1415 continue;
1416 path = devt_to_devpath(makedev(major, minor));
1417 if (!path)
1418 continue;
1419 if (!path_attached_to_hba(path, hba_path)) {
1420 free(path);
1421 path = NULL;
1422 continue;
1423 }
1424
1425 /* retrieve the scsi device type */
1426 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1427 if (verbose)
1428 fprintf(stderr, Name ": failed to allocate 'device'\n");
1429 err = 2;
1430 break;
1431 }
1432 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1433 if (load_sys(device, buf) != 0) {
1434 if (verbose)
1435 fprintf(stderr, Name ": failed to read device type for %s\n",
1436 path);
1437 err = 2;
1438 free(device);
1439 break;
1440 }
1441 type = strtoul(buf, NULL, 10);
1442
1443 /* if it's not a disk print the vendor and model */
1444 if (!(type == 0 || type == 7 || type == 14)) {
1445 vendor[0] = '\0';
1446 model[0] = '\0';
1447 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1448 if (load_sys(device, buf) == 0) {
1449 strncpy(vendor, buf, sizeof(vendor));
1450 vendor[sizeof(vendor) - 1] = '\0';
1451 c = (char *) &vendor[sizeof(vendor) - 1];
1452 while (isspace(*c) || *c == '\0')
1453 *c-- = '\0';
1454
1455 }
1456 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1457 if (load_sys(device, buf) == 0) {
1458 strncpy(model, buf, sizeof(model));
1459 model[sizeof(model) - 1] = '\0';
1460 c = (char *) &model[sizeof(model) - 1];
1461 while (isspace(*c) || *c == '\0')
1462 *c-- = '\0';
1463 }
1464
1465 if (vendor[0] && model[0])
1466 sprintf(buf, "%.64s %.64s", vendor, model);
1467 else
1468 switch (type) { /* numbers from hald/linux/device.c */
1469 case 1: sprintf(buf, "tape"); break;
1470 case 2: sprintf(buf, "printer"); break;
1471 case 3: sprintf(buf, "processor"); break;
1472 case 4:
1473 case 5: sprintf(buf, "cdrom"); break;
1474 case 6: sprintf(buf, "scanner"); break;
1475 case 8: sprintf(buf, "media_changer"); break;
1476 case 9: sprintf(buf, "comm"); break;
1477 case 12: sprintf(buf, "raid"); break;
1478 default: sprintf(buf, "unknown");
1479 }
1480 } else
1481 buf[0] = '\0';
1482 free(device);
1483
1484 /* chop device path to 'host%d' and calculate the port number */
1485 c = strchr(&path[hba_len], '/');
1486 if (!c) {
1487 if (verbose)
1488 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1489 err = 2;
1490 break;
1491 }
1492 *c = '\0';
1493 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1494 port -= host_base;
1495 else {
1496 if (verbose) {
1497 *c = '/'; /* repair the full string */
1498 fprintf(stderr, Name ": failed to determine port number for %s\n",
1499 path);
1500 }
1501 err = 2;
1502 break;
1503 }
1504
1505 /* mark this port as used */
1506 port_mask &= ~(1 << port);
1507
1508 /* print out the device information */
1509 if (buf[0]) {
1510 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1511 continue;
1512 }
1513
1514 fd = dev_open(ent->d_name, O_RDONLY);
1515 if (fd < 0)
1516 printf(" Port%d : - disk info unavailable -\n", port);
1517 else {
1518 fd2devname(fd, buf);
1519 printf(" Port%d : %s", port, buf);
1520 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1521 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1522 else
1523 printf(" ()\n");
1524 }
1525 close(fd);
1526 free(path);
1527 path = NULL;
1528 }
1529 if (path)
1530 free(path);
1531 if (dir)
1532 closedir(dir);
1533 if (err == 0) {
1534 int i;
1535
1536 for (i = 0; i < port_count; i++)
1537 if (port_mask & (1 << i))
1538 printf(" Port%d : - no device attached -\n", i);
1539 }
1540
1541 return err;
1542 }
1543
1544 static void print_found_intel_controllers(struct sys_dev *elem)
1545 {
1546 for (; elem; elem = elem->next) {
1547 fprintf(stderr, Name ": found Intel(R) ");
1548 if (elem->type == SYS_DEV_SATA)
1549 fprintf(stderr, "SATA ");
1550 else if (elem->type == SYS_DEV_SAS)
1551 fprintf(stderr, "SAS ");
1552 fprintf(stderr, "RAID controller");
1553 if (elem->pci_id)
1554 fprintf(stderr, " at %s", elem->pci_id);
1555 fprintf(stderr, ".\n");
1556 }
1557 fflush(stderr);
1558 }
1559
1560 static int ahci_get_port_count(const char *hba_path, int *port_count)
1561 {
1562 struct dirent *ent;
1563 DIR *dir;
1564 int host_base = -1;
1565
1566 *port_count = 0;
1567 if ((dir = opendir(hba_path)) == NULL)
1568 return -1;
1569
1570 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1571 int host;
1572
1573 if (sscanf(ent->d_name, "host%d", &host) != 1)
1574 continue;
1575 if (*port_count == 0)
1576 host_base = host;
1577 else if (host < host_base)
1578 host_base = host;
1579
1580 if (host + 1 > *port_count + host_base)
1581 *port_count = host + 1 - host_base;
1582 }
1583 closedir(dir);
1584 return host_base;
1585 }
1586
1587 static void print_imsm_capability(const struct imsm_orom *orom)
1588 {
1589 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1590 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1591 orom->hotfix_ver, orom->build);
1592 printf(" RAID Levels :%s%s%s%s%s\n",
1593 imsm_orom_has_raid0(orom) ? " raid0" : "",
1594 imsm_orom_has_raid1(orom) ? " raid1" : "",
1595 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1596 imsm_orom_has_raid10(orom) ? " raid10" : "",
1597 imsm_orom_has_raid5(orom) ? " raid5" : "");
1598 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1599 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1600 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1601 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1602 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1603 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1604 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1605 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1606 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1607 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1608 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1609 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1610 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1611 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1612 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1613 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1614 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1615 printf(" Max Disks : %d\n", orom->tds);
1616 printf(" Max Volumes : %d\n", orom->vpa);
1617 return;
1618 }
1619
1620 static int detail_platform_imsm(int verbose, int enumerate_only)
1621 {
1622 /* There are two components to imsm platform support, the ahci SATA
1623 * controller and the option-rom. To find the SATA controller we
1624 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1625 * controller with the Intel vendor id is present. This approach
1626 * allows mdadm to leverage the kernel's ahci detection logic, with the
1627 * caveat that if ahci.ko is not loaded mdadm will not be able to
1628 * detect platform raid capabilities. The option-rom resides in a
1629 * platform "Adapter ROM". We scan for its signature to retrieve the
1630 * platform capabilities. If raid support is disabled in the BIOS the
1631 * option-rom capability structure will not be available.
1632 */
1633 const struct imsm_orom *orom;
1634 struct sys_dev *list, *hba;
1635 int host_base = 0;
1636 int port_count = 0;
1637 int result=0;
1638
1639 if (enumerate_only) {
1640 if (check_env("IMSM_NO_PLATFORM"))
1641 return 0;
1642 list = find_intel_devices();
1643 if (!list)
1644 return 2;
1645 for (hba = list; hba; hba = hba->next) {
1646 orom = find_imsm_capability(hba->type);
1647 if (!orom) {
1648 result = 2;
1649 break;
1650 }
1651 }
1652 free_sys_dev(&list);
1653 return result;
1654 }
1655
1656 list = find_intel_devices();
1657 if (!list) {
1658 if (verbose)
1659 fprintf(stderr, Name ": no active Intel(R) RAID "
1660 "controller found.\n");
1661 free_sys_dev(&list);
1662 return 2;
1663 } else if (verbose)
1664 print_found_intel_controllers(list);
1665
1666 for (hba = list; hba; hba = hba->next) {
1667 orom = find_imsm_capability(hba->type);
1668 if (!orom)
1669 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1670 hba->path, get_sys_dev_type(hba->type));
1671 else
1672 print_imsm_capability(orom);
1673 }
1674
1675 for (hba = list; hba; hba = hba->next) {
1676 printf(" I/O Controller : %s (%s)\n",
1677 hba->path, get_sys_dev_type(hba->type));
1678
1679 if (hba->type == SYS_DEV_SATA) {
1680 host_base = ahci_get_port_count(hba->path, &port_count);
1681 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1682 if (verbose)
1683 fprintf(stderr, Name ": failed to enumerate "
1684 "ports on SATA controller at %s.", hba->pci_id);
1685 result |= 2;
1686 }
1687 }
1688 }
1689
1690 free_sys_dev(&list);
1691 return result;
1692 }
1693 #endif
1694
1695 static int match_home_imsm(struct supertype *st, char *homehost)
1696 {
1697 /* the imsm metadata format does not specify any host
1698 * identification information. We return -1 since we can never
1699 * confirm nor deny whether a given array is "meant" for this
1700 * host. We rely on compare_super and the 'family_num' fields to
1701 * exclude member disks that do not belong, and we rely on
1702 * mdadm.conf to specify the arrays that should be assembled.
1703 * Auto-assembly may still pick up "foreign" arrays.
1704 */
1705
1706 return -1;
1707 }
1708
1709 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1710 {
1711 /* The uuid returned here is used for:
1712 * uuid to put into bitmap file (Create, Grow)
1713 * uuid for backup header when saving critical section (Grow)
1714 * comparing uuids when re-adding a device into an array
1715 * In these cases the uuid required is that of the data-array,
1716 * not the device-set.
1717 * uuid to recognise same set when adding a missing device back
1718 * to an array. This is a uuid for the device-set.
1719 *
1720 * For each of these we can make do with a truncated
1721 * or hashed uuid rather than the original, as long as
1722 * everyone agrees.
1723 * In each case the uuid required is that of the data-array,
1724 * not the device-set.
1725 */
1726 /* imsm does not track uuid's so we synthesis one using sha1 on
1727 * - The signature (Which is constant for all imsm array, but no matter)
1728 * - the orig_family_num of the container
1729 * - the index number of the volume
1730 * - the 'serial' number of the volume.
1731 * Hopefully these are all constant.
1732 */
1733 struct intel_super *super = st->sb;
1734
1735 char buf[20];
1736 struct sha1_ctx ctx;
1737 struct imsm_dev *dev = NULL;
1738 __u32 family_num;
1739
1740 /* some mdadm versions failed to set ->orig_family_num, in which
1741 * case fall back to ->family_num. orig_family_num will be
1742 * fixed up with the first metadata update.
1743 */
1744 family_num = super->anchor->orig_family_num;
1745 if (family_num == 0)
1746 family_num = super->anchor->family_num;
1747 sha1_init_ctx(&ctx);
1748 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1749 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1750 if (super->current_vol >= 0)
1751 dev = get_imsm_dev(super, super->current_vol);
1752 if (dev) {
1753 __u32 vol = super->current_vol;
1754 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1755 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1756 }
1757 sha1_finish_ctx(&ctx, buf);
1758 memcpy(uuid, buf, 4*4);
1759 }
1760
1761 #if 0
1762 static void
1763 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1764 {
1765 __u8 *v = get_imsm_version(mpb);
1766 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1767 char major[] = { 0, 0, 0 };
1768 char minor[] = { 0 ,0, 0 };
1769 char patch[] = { 0, 0, 0 };
1770 char *ver_parse[] = { major, minor, patch };
1771 int i, j;
1772
1773 i = j = 0;
1774 while (*v != '\0' && v < end) {
1775 if (*v != '.' && j < 2)
1776 ver_parse[i][j++] = *v;
1777 else {
1778 i++;
1779 j = 0;
1780 }
1781 v++;
1782 }
1783
1784 *m = strtol(minor, NULL, 0);
1785 *p = strtol(patch, NULL, 0);
1786 }
1787 #endif
1788
1789 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1790 {
1791 /* migr_strip_size when repairing or initializing parity */
1792 struct imsm_map *map = get_imsm_map(dev, 0);
1793 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1794
1795 switch (get_imsm_raid_level(map)) {
1796 case 5:
1797 case 10:
1798 return chunk;
1799 default:
1800 return 128*1024 >> 9;
1801 }
1802 }
1803
1804 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1805 {
1806 /* migr_strip_size when rebuilding a degraded disk, no idea why
1807 * this is different than migr_strip_size_resync(), but it's good
1808 * to be compatible
1809 */
1810 struct imsm_map *map = get_imsm_map(dev, 1);
1811 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1812
1813 switch (get_imsm_raid_level(map)) {
1814 case 1:
1815 case 10:
1816 if (map->num_members % map->num_domains == 0)
1817 return 128*1024 >> 9;
1818 else
1819 return chunk;
1820 case 5:
1821 return max((__u32) 64*1024 >> 9, chunk);
1822 default:
1823 return 128*1024 >> 9;
1824 }
1825 }
1826
1827 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1828 {
1829 struct imsm_map *lo = get_imsm_map(dev, 0);
1830 struct imsm_map *hi = get_imsm_map(dev, 1);
1831 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1832 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1833
1834 return max((__u32) 1, hi_chunk / lo_chunk);
1835 }
1836
1837 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1838 {
1839 struct imsm_map *lo = get_imsm_map(dev, 0);
1840 int level = get_imsm_raid_level(lo);
1841
1842 if (level == 1 || level == 10) {
1843 struct imsm_map *hi = get_imsm_map(dev, 1);
1844
1845 return hi->num_domains;
1846 } else
1847 return num_stripes_per_unit_resync(dev);
1848 }
1849
1850 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1851 {
1852 /* named 'imsm_' because raid0, raid1 and raid10
1853 * counter-intuitively have the same number of data disks
1854 */
1855 struct imsm_map *map = get_imsm_map(dev, second_map);
1856
1857 switch (get_imsm_raid_level(map)) {
1858 case 0:
1859 case 1:
1860 case 10:
1861 return map->num_members;
1862 case 5:
1863 return map->num_members - 1;
1864 default:
1865 dprintf("%s: unsupported raid level\n", __func__);
1866 return 0;
1867 }
1868 }
1869
1870 static __u32 parity_segment_depth(struct imsm_dev *dev)
1871 {
1872 struct imsm_map *map = get_imsm_map(dev, 0);
1873 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1874
1875 switch(get_imsm_raid_level(map)) {
1876 case 1:
1877 case 10:
1878 return chunk * map->num_domains;
1879 case 5:
1880 return chunk * map->num_members;
1881 default:
1882 return chunk;
1883 }
1884 }
1885
1886 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1887 {
1888 struct imsm_map *map = get_imsm_map(dev, 1);
1889 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1890 __u32 strip = block / chunk;
1891
1892 switch (get_imsm_raid_level(map)) {
1893 case 1:
1894 case 10: {
1895 __u32 vol_strip = (strip * map->num_domains) + 1;
1896 __u32 vol_stripe = vol_strip / map->num_members;
1897
1898 return vol_stripe * chunk + block % chunk;
1899 } case 5: {
1900 __u32 stripe = strip / (map->num_members - 1);
1901
1902 return stripe * chunk + block % chunk;
1903 }
1904 default:
1905 return 0;
1906 }
1907 }
1908
1909 static __u64 blocks_per_migr_unit(struct intel_super *super,
1910 struct imsm_dev *dev)
1911 {
1912 /* calculate the conversion factor between per member 'blocks'
1913 * (md/{resync,rebuild}_start) and imsm migration units, return
1914 * 0 for the 'not migrating' and 'unsupported migration' cases
1915 */
1916 if (!dev->vol.migr_state)
1917 return 0;
1918
1919 switch (migr_type(dev)) {
1920 case MIGR_GEN_MIGR: {
1921 struct migr_record *migr_rec = super->migr_rec;
1922 return __le32_to_cpu(migr_rec->blocks_per_unit);
1923 }
1924 case MIGR_VERIFY:
1925 case MIGR_REPAIR:
1926 case MIGR_INIT: {
1927 struct imsm_map *map = get_imsm_map(dev, 0);
1928 __u32 stripes_per_unit;
1929 __u32 blocks_per_unit;
1930 __u32 parity_depth;
1931 __u32 migr_chunk;
1932 __u32 block_map;
1933 __u32 block_rel;
1934 __u32 segment;
1935 __u32 stripe;
1936 __u8 disks;
1937
1938 /* yes, this is really the translation of migr_units to
1939 * per-member blocks in the 'resync' case
1940 */
1941 stripes_per_unit = num_stripes_per_unit_resync(dev);
1942 migr_chunk = migr_strip_blocks_resync(dev);
1943 disks = imsm_num_data_members(dev, 0);
1944 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1945 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1946 segment = blocks_per_unit / stripe;
1947 block_rel = blocks_per_unit - segment * stripe;
1948 parity_depth = parity_segment_depth(dev);
1949 block_map = map_migr_block(dev, block_rel);
1950 return block_map + parity_depth * segment;
1951 }
1952 case MIGR_REBUILD: {
1953 __u32 stripes_per_unit;
1954 __u32 migr_chunk;
1955
1956 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1957 migr_chunk = migr_strip_blocks_rebuild(dev);
1958 return migr_chunk * stripes_per_unit;
1959 }
1960 case MIGR_STATE_CHANGE:
1961 default:
1962 return 0;
1963 }
1964 }
1965
1966 static int imsm_level_to_layout(int level)
1967 {
1968 switch (level) {
1969 case 0:
1970 case 1:
1971 return 0;
1972 case 5:
1973 case 6:
1974 return ALGORITHM_LEFT_ASYMMETRIC;
1975 case 10:
1976 return 0x102;
1977 }
1978 return UnSet;
1979 }
1980
1981 /*******************************************************************************
1982 * Function: read_imsm_migr_rec
1983 * Description: Function reads imsm migration record from last sector of disk
1984 * Parameters:
1985 * fd : disk descriptor
1986 * super : metadata info
1987 * Returns:
1988 * 0 : success,
1989 * -1 : fail
1990 ******************************************************************************/
1991 static int read_imsm_migr_rec(int fd, struct intel_super *super)
1992 {
1993 int ret_val = -1;
1994 unsigned long long dsize;
1995
1996 get_dev_size(fd, NULL, &dsize);
1997 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
1998 fprintf(stderr,
1999 Name ": Cannot seek to anchor block: %s\n",
2000 strerror(errno));
2001 goto out;
2002 }
2003 if (read(fd, super->migr_rec_buf, 512) != 512) {
2004 fprintf(stderr,
2005 Name ": Cannot read migr record block: %s\n",
2006 strerror(errno));
2007 goto out;
2008 }
2009 ret_val = 0;
2010
2011 out:
2012 return ret_val;
2013 }
2014
2015 /*******************************************************************************
2016 * Function: load_imsm_migr_rec
2017 * Description: Function reads imsm migration record (it is stored at the last
2018 * sector of disk)
2019 * Parameters:
2020 * super : imsm internal array info
2021 * info : general array info
2022 * Returns:
2023 * 0 : success
2024 * -1 : fail
2025 ******************************************************************************/
2026 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2027 {
2028 struct mdinfo *sd;
2029 struct dl *dl = NULL;
2030 char nm[30];
2031 int retval = -1;
2032 int fd = -1;
2033
2034 if (info) {
2035 for (sd = info->devs ; sd ; sd = sd->next) {
2036 /* read only from one of the first two slots */
2037 if ((sd->disk.raid_disk > 1) ||
2038 (sd->disk.raid_disk < 0))
2039 continue;
2040 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2041 fd = dev_open(nm, O_RDONLY);
2042 if (fd >= 0)
2043 break;
2044 }
2045 }
2046 if (fd < 0) {
2047 for (dl = super->disks; dl; dl = dl->next) {
2048 /* read only from one of the first two slots */
2049 if (dl->index > 1)
2050 continue;
2051 sprintf(nm, "%d:%d", dl->major, dl->minor);
2052 fd = dev_open(nm, O_RDONLY);
2053 if (fd >= 0)
2054 break;
2055 }
2056 }
2057 if (fd < 0)
2058 goto out;
2059 retval = read_imsm_migr_rec(fd, super);
2060
2061 out:
2062 if (fd >= 0)
2063 close(fd);
2064 return retval;
2065 }
2066
2067 #ifndef MDASSEMBLE
2068 /*******************************************************************************
2069 * function: imsm_create_metadata_checkpoint_update
2070 * Description: It creates update for checkpoint change.
2071 * Parameters:
2072 * super : imsm internal array info
2073 * u : pointer to prepared update
2074 * Returns:
2075 * Uptate length.
2076 * If length is equal to 0, input pointer u contains no update
2077 ******************************************************************************/
2078 static int imsm_create_metadata_checkpoint_update(
2079 struct intel_super *super,
2080 struct imsm_update_general_migration_checkpoint **u)
2081 {
2082
2083 int update_memory_size = 0;
2084
2085 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2086
2087 if (u == NULL)
2088 return 0;
2089 *u = NULL;
2090
2091 /* size of all update data without anchor */
2092 update_memory_size =
2093 sizeof(struct imsm_update_general_migration_checkpoint);
2094
2095 *u = calloc(1, update_memory_size);
2096 if (*u == NULL) {
2097 dprintf("error: cannot get memory for "
2098 "imsm_create_metadata_checkpoint_update update\n");
2099 return 0;
2100 }
2101 (*u)->type = update_general_migration_checkpoint;
2102 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2103 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2104 (*u)->curr_migr_unit);
2105
2106 return update_memory_size;
2107 }
2108
2109
2110 static void imsm_update_metadata_locally(struct supertype *st,
2111 void *buf, int len);
2112
2113 /*******************************************************************************
2114 * Function: write_imsm_migr_rec
2115 * Description: Function writes imsm migration record
2116 * (at the last sector of disk)
2117 * Parameters:
2118 * super : imsm internal array info
2119 * Returns:
2120 * 0 : success
2121 * -1 : if fail
2122 ******************************************************************************/
2123 static int write_imsm_migr_rec(struct supertype *st)
2124 {
2125 struct intel_super *super = st->sb;
2126 unsigned long long dsize;
2127 char nm[30];
2128 int fd = -1;
2129 int retval = -1;
2130 struct dl *sd;
2131 int len;
2132 struct imsm_update_general_migration_checkpoint *u;
2133
2134 for (sd = super->disks ; sd ; sd = sd->next) {
2135 /* write to 2 first slots only */
2136 if ((sd->index < 0) || (sd->index > 1))
2137 continue;
2138 sprintf(nm, "%d:%d", sd->major, sd->minor);
2139 fd = dev_open(nm, O_RDWR);
2140 if (fd < 0)
2141 continue;
2142 get_dev_size(fd, NULL, &dsize);
2143 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2144 fprintf(stderr,
2145 Name ": Cannot seek to anchor block: %s\n",
2146 strerror(errno));
2147 goto out;
2148 }
2149 if (write(fd, super->migr_rec_buf, 512) != 512) {
2150 fprintf(stderr,
2151 Name ": Cannot write migr record block: %s\n",
2152 strerror(errno));
2153 goto out;
2154 }
2155 close(fd);
2156 fd = -1;
2157 }
2158 /* update checkpoint information in metadata */
2159 len = imsm_create_metadata_checkpoint_update(super, &u);
2160
2161 if (len <= 0) {
2162 dprintf("imsm: Cannot prepare update\n");
2163 goto out;
2164 }
2165 /* update metadata locally */
2166 imsm_update_metadata_locally(st, u, len);
2167 /* and possibly remotely */
2168 if (st->update_tail) {
2169 append_metadata_update(st, u, len);
2170 /* during reshape we do all work inside metadata handler
2171 * manage_reshape(), so metadata update has to be triggered
2172 * insida it
2173 */
2174 flush_metadata_updates(st);
2175 st->update_tail = &st->updates;
2176 } else
2177 free(u);
2178
2179 retval = 0;
2180 out:
2181 if (fd >= 0)
2182 close(fd);
2183 return retval;
2184 }
2185 #endif /* MDASSEMBLE */
2186
2187 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2188 {
2189 struct intel_super *super = st->sb;
2190 struct migr_record *migr_rec = super->migr_rec;
2191 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2192 struct imsm_map *map = get_imsm_map(dev, 0);
2193 struct imsm_map *prev_map = get_imsm_map(dev, 1);
2194 struct imsm_map *map_to_analyse = map;
2195 struct dl *dl;
2196 char *devname;
2197 unsigned int component_size_alligment;
2198 int map_disks = info->array.raid_disks;
2199
2200 memset(info, 0, sizeof(*info));
2201 if (prev_map)
2202 map_to_analyse = prev_map;
2203
2204 dl = super->disks;
2205
2206 info->container_member = super->current_vol;
2207 info->array.raid_disks = map->num_members;
2208 info->array.level = get_imsm_raid_level(map_to_analyse);
2209 info->array.layout = imsm_level_to_layout(info->array.level);
2210 info->array.md_minor = -1;
2211 info->array.ctime = 0;
2212 info->array.utime = 0;
2213 info->array.chunk_size =
2214 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2215 info->array.state = !dev->vol.dirty;
2216 info->custom_array_size = __le32_to_cpu(dev->size_high);
2217 info->custom_array_size <<= 32;
2218 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2219 if (prev_map && map->map_state == prev_map->map_state) {
2220 info->reshape_active = 1;
2221 info->new_level = get_imsm_raid_level(map);
2222 info->new_layout = imsm_level_to_layout(info->new_level);
2223 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2224 info->delta_disks = map->num_members - prev_map->num_members;
2225 if (info->delta_disks) {
2226 /* this needs to be applied to every array
2227 * in the container.
2228 */
2229 info->reshape_active = 2;
2230 }
2231 /* We shape information that we give to md might have to be
2232 * modify to cope with md's requirement for reshaping arrays.
2233 * For example, when reshaping a RAID0, md requires it to be
2234 * presented as a degraded RAID4.
2235 * Also if a RAID0 is migrating to a RAID5 we need to specify
2236 * the array as already being RAID5, but the 'before' layout
2237 * is a RAID4-like layout.
2238 */
2239 switch (info->array.level) {
2240 case 0:
2241 switch(info->new_level) {
2242 case 0:
2243 /* conversion is happening as RAID4 */
2244 info->array.level = 4;
2245 info->array.raid_disks += 1;
2246 break;
2247 case 5:
2248 /* conversion is happening as RAID5 */
2249 info->array.level = 5;
2250 info->array.layout = ALGORITHM_PARITY_N;
2251 info->delta_disks -= 1;
2252 break;
2253 default:
2254 /* FIXME error message */
2255 info->array.level = UnSet;
2256 break;
2257 }
2258 break;
2259 }
2260 } else {
2261 info->new_level = UnSet;
2262 info->new_layout = UnSet;
2263 info->new_chunk = info->array.chunk_size;
2264 info->delta_disks = 0;
2265 }
2266 info->disk.major = 0;
2267 info->disk.minor = 0;
2268 if (dl) {
2269 info->disk.major = dl->major;
2270 info->disk.minor = dl->minor;
2271 }
2272
2273 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2274 info->component_size =
2275 __le32_to_cpu(map_to_analyse->blocks_per_member);
2276
2277 /* check component size aligment
2278 */
2279 component_size_alligment =
2280 info->component_size % (info->array.chunk_size/512);
2281
2282 if (component_size_alligment &&
2283 (info->array.level != 1) && (info->array.level != UnSet)) {
2284 dprintf("imsm: reported component size alligned from %llu ",
2285 info->component_size);
2286 info->component_size -= component_size_alligment;
2287 dprintf("to %llu (%i).\n",
2288 info->component_size, component_size_alligment);
2289 }
2290
2291 memset(info->uuid, 0, sizeof(info->uuid));
2292 info->recovery_start = MaxSector;
2293
2294 info->reshape_progress = 0;
2295 info->resync_start = MaxSector;
2296 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2297 dev->vol.dirty) {
2298 info->resync_start = 0;
2299 }
2300 if (dev->vol.migr_state) {
2301 switch (migr_type(dev)) {
2302 case MIGR_REPAIR:
2303 case MIGR_INIT: {
2304 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2305 dev);
2306 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2307
2308 info->resync_start = blocks_per_unit * units;
2309 break;
2310 }
2311 case MIGR_GEN_MIGR: {
2312 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2313 dev);
2314 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2315 unsigned long long array_blocks;
2316 int used_disks;
2317
2318 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2319 (units <
2320 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2321 (super->migr_rec->rec_status ==
2322 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2323 units++;
2324
2325 info->reshape_progress = blocks_per_unit * units;
2326
2327 dprintf("IMSM: General Migration checkpoint : %llu "
2328 "(%llu) -> read reshape progress : %llu\n",
2329 (unsigned long long)units,
2330 (unsigned long long)blocks_per_unit,
2331 info->reshape_progress);
2332
2333 used_disks = imsm_num_data_members(dev, 1);
2334 if (used_disks > 0) {
2335 array_blocks = map->blocks_per_member *
2336 used_disks;
2337 /* round array size down to closest MB
2338 */
2339 info->custom_array_size = (array_blocks
2340 >> SECT_PER_MB_SHIFT)
2341 << SECT_PER_MB_SHIFT;
2342 }
2343 }
2344 case MIGR_VERIFY:
2345 /* we could emulate the checkpointing of
2346 * 'sync_action=check' migrations, but for now
2347 * we just immediately complete them
2348 */
2349 case MIGR_REBUILD:
2350 /* this is handled by container_content_imsm() */
2351 case MIGR_STATE_CHANGE:
2352 /* FIXME handle other migrations */
2353 default:
2354 /* we are not dirty, so... */
2355 info->resync_start = MaxSector;
2356 }
2357 }
2358
2359 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2360 info->name[MAX_RAID_SERIAL_LEN] = 0;
2361
2362 info->array.major_version = -1;
2363 info->array.minor_version = -2;
2364 devname = devnum2devname(st->container_dev);
2365 *info->text_version = '\0';
2366 if (devname)
2367 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2368 free(devname);
2369 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2370 uuid_from_super_imsm(st, info->uuid);
2371
2372 if (dmap) {
2373 int i, j;
2374 for (i=0; i<map_disks; i++) {
2375 dmap[i] = 0;
2376 if (i < info->array.raid_disks) {
2377 struct imsm_disk *dsk;
2378 j = get_imsm_disk_idx(dev, i, -1);
2379 dsk = get_imsm_disk(super, j);
2380 if (dsk && (dsk->status & CONFIGURED_DISK))
2381 dmap[i] = 1;
2382 }
2383 }
2384 }
2385 }
2386
2387 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2388 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2389
2390 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2391 {
2392 struct dl *d;
2393
2394 for (d = super->missing; d; d = d->next)
2395 if (d->index == index)
2396 return &d->disk;
2397 return NULL;
2398 }
2399
2400 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2401 {
2402 struct intel_super *super = st->sb;
2403 struct imsm_disk *disk;
2404 int map_disks = info->array.raid_disks;
2405 int max_enough = -1;
2406 int i;
2407 struct imsm_super *mpb;
2408
2409 if (super->current_vol >= 0) {
2410 getinfo_super_imsm_volume(st, info, map);
2411 return;
2412 }
2413 memset(info, 0, sizeof(*info));
2414
2415 /* Set raid_disks to zero so that Assemble will always pull in valid
2416 * spares
2417 */
2418 info->array.raid_disks = 0;
2419 info->array.level = LEVEL_CONTAINER;
2420 info->array.layout = 0;
2421 info->array.md_minor = -1;
2422 info->array.ctime = 0; /* N/A for imsm */
2423 info->array.utime = 0;
2424 info->array.chunk_size = 0;
2425
2426 info->disk.major = 0;
2427 info->disk.minor = 0;
2428 info->disk.raid_disk = -1;
2429 info->reshape_active = 0;
2430 info->array.major_version = -1;
2431 info->array.minor_version = -2;
2432 strcpy(info->text_version, "imsm");
2433 info->safe_mode_delay = 0;
2434 info->disk.number = -1;
2435 info->disk.state = 0;
2436 info->name[0] = 0;
2437 info->recovery_start = MaxSector;
2438
2439 /* do we have the all the insync disks that we expect? */
2440 mpb = super->anchor;
2441
2442 for (i = 0; i < mpb->num_raid_devs; i++) {
2443 struct imsm_dev *dev = get_imsm_dev(super, i);
2444 int failed, enough, j, missing = 0;
2445 struct imsm_map *map;
2446 __u8 state;
2447
2448 failed = imsm_count_failed(super, dev);
2449 state = imsm_check_degraded(super, dev, failed);
2450 map = get_imsm_map(dev, dev->vol.migr_state);
2451
2452 /* any newly missing disks?
2453 * (catches single-degraded vs double-degraded)
2454 */
2455 for (j = 0; j < map->num_members; j++) {
2456 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
2457 __u32 idx = ord_to_idx(ord);
2458
2459 if (!(ord & IMSM_ORD_REBUILD) &&
2460 get_imsm_missing(super, idx)) {
2461 missing = 1;
2462 break;
2463 }
2464 }
2465
2466 if (state == IMSM_T_STATE_FAILED)
2467 enough = -1;
2468 else if (state == IMSM_T_STATE_DEGRADED &&
2469 (state != map->map_state || missing))
2470 enough = 0;
2471 else /* we're normal, or already degraded */
2472 enough = 1;
2473
2474 /* in the missing/failed disk case check to see
2475 * if at least one array is runnable
2476 */
2477 max_enough = max(max_enough, enough);
2478 }
2479 dprintf("%s: enough: %d\n", __func__, max_enough);
2480 info->container_enough = max_enough;
2481
2482 if (super->disks) {
2483 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2484
2485 disk = &super->disks->disk;
2486 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2487 info->component_size = reserved;
2488 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2489 /* we don't change info->disk.raid_disk here because
2490 * this state will be finalized in mdmon after we have
2491 * found the 'most fresh' version of the metadata
2492 */
2493 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2494 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2495 }
2496
2497 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2498 * ->compare_super may have updated the 'num_raid_devs' field for spares
2499 */
2500 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2501 uuid_from_super_imsm(st, info->uuid);
2502 else
2503 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2504
2505 /* I don't know how to compute 'map' on imsm, so use safe default */
2506 if (map) {
2507 int i;
2508 for (i = 0; i < map_disks; i++)
2509 map[i] = 1;
2510 }
2511
2512 }
2513
2514 /* allocates memory and fills disk in mdinfo structure
2515 * for each disk in array */
2516 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2517 {
2518 struct mdinfo *mddev = NULL;
2519 struct intel_super *super = st->sb;
2520 struct imsm_disk *disk;
2521 int count = 0;
2522 struct dl *dl;
2523 if (!super || !super->disks)
2524 return NULL;
2525 dl = super->disks;
2526 mddev = malloc(sizeof(*mddev));
2527 if (!mddev) {
2528 fprintf(stderr, Name ": Failed to allocate memory.\n");
2529 return NULL;
2530 }
2531 memset(mddev, 0, sizeof(*mddev));
2532 while (dl) {
2533 struct mdinfo *tmp;
2534 disk = &dl->disk;
2535 tmp = malloc(sizeof(*tmp));
2536 if (!tmp) {
2537 fprintf(stderr, Name ": Failed to allocate memory.\n");
2538 if (mddev)
2539 sysfs_free(mddev);
2540 return NULL;
2541 }
2542 memset(tmp, 0, sizeof(*tmp));
2543 if (mddev->devs)
2544 tmp->next = mddev->devs;
2545 mddev->devs = tmp;
2546 tmp->disk.number = count++;
2547 tmp->disk.major = dl->major;
2548 tmp->disk.minor = dl->minor;
2549 tmp->disk.state = is_configured(disk) ?
2550 (1 << MD_DISK_ACTIVE) : 0;
2551 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2552 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2553 tmp->disk.raid_disk = -1;
2554 dl = dl->next;
2555 }
2556 return mddev;
2557 }
2558
2559 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2560 char *update, char *devname, int verbose,
2561 int uuid_set, char *homehost)
2562 {
2563 /* For 'assemble' and 'force' we need to return non-zero if any
2564 * change was made. For others, the return value is ignored.
2565 * Update options are:
2566 * force-one : This device looks a bit old but needs to be included,
2567 * update age info appropriately.
2568 * assemble: clear any 'faulty' flag to allow this device to
2569 * be assembled.
2570 * force-array: Array is degraded but being forced, mark it clean
2571 * if that will be needed to assemble it.
2572 *
2573 * newdev: not used ????
2574 * grow: Array has gained a new device - this is currently for
2575 * linear only
2576 * resync: mark as dirty so a resync will happen.
2577 * name: update the name - preserving the homehost
2578 * uuid: Change the uuid of the array to match watch is given
2579 *
2580 * Following are not relevant for this imsm:
2581 * sparc2.2 : update from old dodgey metadata
2582 * super-minor: change the preferred_minor number
2583 * summaries: update redundant counters.
2584 * homehost: update the recorded homehost
2585 * _reshape_progress: record new reshape_progress position.
2586 */
2587 int rv = 1;
2588 struct intel_super *super = st->sb;
2589 struct imsm_super *mpb;
2590
2591 /* we can only update container info */
2592 if (!super || super->current_vol >= 0 || !super->anchor)
2593 return 1;
2594
2595 mpb = super->anchor;
2596
2597 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2598 rv = -1;
2599 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2600 mpb->orig_family_num = *((__u32 *) info->update_private);
2601 rv = 0;
2602 } else if (strcmp(update, "uuid") == 0) {
2603 __u32 *new_family = malloc(sizeof(*new_family));
2604
2605 /* update orig_family_number with the incoming random
2606 * data, report the new effective uuid, and store the
2607 * new orig_family_num for future updates.
2608 */
2609 if (new_family) {
2610 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2611 uuid_from_super_imsm(st, info->uuid);
2612 *new_family = mpb->orig_family_num;
2613 info->update_private = new_family;
2614 rv = 0;
2615 }
2616 } else if (strcmp(update, "assemble") == 0)
2617 rv = 0;
2618 else
2619 rv = -1;
2620
2621 /* successful update? recompute checksum */
2622 if (rv == 0)
2623 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2624
2625 return rv;
2626 }
2627
2628 static size_t disks_to_mpb_size(int disks)
2629 {
2630 size_t size;
2631
2632 size = sizeof(struct imsm_super);
2633 size += (disks - 1) * sizeof(struct imsm_disk);
2634 size += 2 * sizeof(struct imsm_dev);
2635 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2636 size += (4 - 2) * sizeof(struct imsm_map);
2637 /* 4 possible disk_ord_tbl's */
2638 size += 4 * (disks - 1) * sizeof(__u32);
2639
2640 return size;
2641 }
2642
2643 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2644 {
2645 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2646 return 0;
2647
2648 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2649 }
2650
2651 static void free_devlist(struct intel_super *super)
2652 {
2653 struct intel_dev *dv;
2654
2655 while (super->devlist) {
2656 dv = super->devlist->next;
2657 free(super->devlist->dev);
2658 free(super->devlist);
2659 super->devlist = dv;
2660 }
2661 }
2662
2663 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2664 {
2665 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2666 }
2667
2668 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2669 {
2670 /*
2671 * return:
2672 * 0 same, or first was empty, and second was copied
2673 * 1 second had wrong number
2674 * 2 wrong uuid
2675 * 3 wrong other info
2676 */
2677 struct intel_super *first = st->sb;
2678 struct intel_super *sec = tst->sb;
2679
2680 if (!first) {
2681 st->sb = tst->sb;
2682 tst->sb = NULL;
2683 return 0;
2684 }
2685 /* in platform dependent environment test if the disks
2686 * use the same Intel hba
2687 */
2688 if (!check_env("IMSM_NO_PLATFORM")) {
2689 if (!first->hba || !sec->hba ||
2690 (first->hba->type != sec->hba->type)) {
2691 fprintf(stderr,
2692 "HBAs of devices does not match %s != %s\n",
2693 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2694 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2695 return 3;
2696 }
2697 }
2698
2699 /* if an anchor does not have num_raid_devs set then it is a free
2700 * floating spare
2701 */
2702 if (first->anchor->num_raid_devs > 0 &&
2703 sec->anchor->num_raid_devs > 0) {
2704 /* Determine if these disks might ever have been
2705 * related. Further disambiguation can only take place
2706 * in load_super_imsm_all
2707 */
2708 __u32 first_family = first->anchor->orig_family_num;
2709 __u32 sec_family = sec->anchor->orig_family_num;
2710
2711 if (memcmp(first->anchor->sig, sec->anchor->sig,
2712 MAX_SIGNATURE_LENGTH) != 0)
2713 return 3;
2714
2715 if (first_family == 0)
2716 first_family = first->anchor->family_num;
2717 if (sec_family == 0)
2718 sec_family = sec->anchor->family_num;
2719
2720 if (first_family != sec_family)
2721 return 3;
2722
2723 }
2724
2725
2726 /* if 'first' is a spare promote it to a populated mpb with sec's
2727 * family number
2728 */
2729 if (first->anchor->num_raid_devs == 0 &&
2730 sec->anchor->num_raid_devs > 0) {
2731 int i;
2732 struct intel_dev *dv;
2733 struct imsm_dev *dev;
2734
2735 /* we need to copy raid device info from sec if an allocation
2736 * fails here we don't associate the spare
2737 */
2738 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2739 dv = malloc(sizeof(*dv));
2740 if (!dv)
2741 break;
2742 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2743 if (!dev) {
2744 free(dv);
2745 break;
2746 }
2747 dv->dev = dev;
2748 dv->index = i;
2749 dv->next = first->devlist;
2750 first->devlist = dv;
2751 }
2752 if (i < sec->anchor->num_raid_devs) {
2753 /* allocation failure */
2754 free_devlist(first);
2755 fprintf(stderr, "imsm: failed to associate spare\n");
2756 return 3;
2757 }
2758 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2759 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2760 first->anchor->family_num = sec->anchor->family_num;
2761 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2762 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2763 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2764 }
2765
2766 return 0;
2767 }
2768
2769 static void fd2devname(int fd, char *name)
2770 {
2771 struct stat st;
2772 char path[256];
2773 char dname[PATH_MAX];
2774 char *nm;
2775 int rv;
2776
2777 name[0] = '\0';
2778 if (fstat(fd, &st) != 0)
2779 return;
2780 sprintf(path, "/sys/dev/block/%d:%d",
2781 major(st.st_rdev), minor(st.st_rdev));
2782
2783 rv = readlink(path, dname, sizeof(dname));
2784 if (rv <= 0)
2785 return;
2786
2787 dname[rv] = '\0';
2788 nm = strrchr(dname, '/');
2789 nm++;
2790 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2791 }
2792
2793 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2794
2795 static int imsm_read_serial(int fd, char *devname,
2796 __u8 serial[MAX_RAID_SERIAL_LEN])
2797 {
2798 unsigned char scsi_serial[255];
2799 int rv;
2800 int rsp_len;
2801 int len;
2802 char *dest;
2803 char *src;
2804 char *rsp_buf;
2805 int i;
2806
2807 memset(scsi_serial, 0, sizeof(scsi_serial));
2808
2809 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2810
2811 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2812 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2813 fd2devname(fd, (char *) serial);
2814 return 0;
2815 }
2816
2817 if (rv != 0) {
2818 if (devname)
2819 fprintf(stderr,
2820 Name ": Failed to retrieve serial for %s\n",
2821 devname);
2822 return rv;
2823 }
2824
2825 rsp_len = scsi_serial[3];
2826 if (!rsp_len) {
2827 if (devname)
2828 fprintf(stderr,
2829 Name ": Failed to retrieve serial for %s\n",
2830 devname);
2831 return 2;
2832 }
2833 rsp_buf = (char *) &scsi_serial[4];
2834
2835 /* trim all whitespace and non-printable characters and convert
2836 * ':' to ';'
2837 */
2838 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2839 src = &rsp_buf[i];
2840 if (*src > 0x20) {
2841 /* ':' is reserved for use in placeholder serial
2842 * numbers for missing disks
2843 */
2844 if (*src == ':')
2845 *dest++ = ';';
2846 else
2847 *dest++ = *src;
2848 }
2849 }
2850 len = dest - rsp_buf;
2851 dest = rsp_buf;
2852
2853 /* truncate leading characters */
2854 if (len > MAX_RAID_SERIAL_LEN) {
2855 dest += len - MAX_RAID_SERIAL_LEN;
2856 len = MAX_RAID_SERIAL_LEN;
2857 }
2858
2859 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2860 memcpy(serial, dest, len);
2861
2862 return 0;
2863 }
2864
2865 static int serialcmp(__u8 *s1, __u8 *s2)
2866 {
2867 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2868 }
2869
2870 static void serialcpy(__u8 *dest, __u8 *src)
2871 {
2872 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2873 }
2874
2875 #ifndef MDASSEMBLE
2876 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2877 {
2878 struct dl *dl;
2879
2880 for (dl = super->disks; dl; dl = dl->next)
2881 if (serialcmp(dl->serial, serial) == 0)
2882 break;
2883
2884 return dl;
2885 }
2886 #endif
2887
2888 static struct imsm_disk *
2889 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2890 {
2891 int i;
2892
2893 for (i = 0; i < mpb->num_disks; i++) {
2894 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2895
2896 if (serialcmp(disk->serial, serial) == 0) {
2897 if (idx)
2898 *idx = i;
2899 return disk;
2900 }
2901 }
2902
2903 return NULL;
2904 }
2905
2906 static int
2907 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2908 {
2909 struct imsm_disk *disk;
2910 struct dl *dl;
2911 struct stat stb;
2912 int rv;
2913 char name[40];
2914 __u8 serial[MAX_RAID_SERIAL_LEN];
2915
2916 rv = imsm_read_serial(fd, devname, serial);
2917
2918 if (rv != 0)
2919 return 2;
2920
2921 dl = calloc(1, sizeof(*dl));
2922 if (!dl) {
2923 if (devname)
2924 fprintf(stderr,
2925 Name ": failed to allocate disk buffer for %s\n",
2926 devname);
2927 return 2;
2928 }
2929
2930 fstat(fd, &stb);
2931 dl->major = major(stb.st_rdev);
2932 dl->minor = minor(stb.st_rdev);
2933 dl->next = super->disks;
2934 dl->fd = keep_fd ? fd : -1;
2935 assert(super->disks == NULL);
2936 super->disks = dl;
2937 serialcpy(dl->serial, serial);
2938 dl->index = -2;
2939 dl->e = NULL;
2940 fd2devname(fd, name);
2941 if (devname)
2942 dl->devname = strdup(devname);
2943 else
2944 dl->devname = strdup(name);
2945
2946 /* look up this disk's index in the current anchor */
2947 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2948 if (disk) {
2949 dl->disk = *disk;
2950 /* only set index on disks that are a member of a
2951 * populated contianer, i.e. one with raid_devs
2952 */
2953 if (is_failed(&dl->disk))
2954 dl->index = -2;
2955 else if (is_spare(&dl->disk))
2956 dl->index = -1;
2957 }
2958
2959 return 0;
2960 }
2961
2962 #ifndef MDASSEMBLE
2963 /* When migrating map0 contains the 'destination' state while map1
2964 * contains the current state. When not migrating map0 contains the
2965 * current state. This routine assumes that map[0].map_state is set to
2966 * the current array state before being called.
2967 *
2968 * Migration is indicated by one of the following states
2969 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
2970 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
2971 * map1state=unitialized)
2972 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
2973 * map1state=normal)
2974 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
2975 * map1state=degraded)
2976 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
2977 * map1state=normal)
2978 */
2979 static void migrate(struct imsm_dev *dev, struct intel_super *super,
2980 __u8 to_state, int migr_type)
2981 {
2982 struct imsm_map *dest;
2983 struct imsm_map *src = get_imsm_map(dev, 0);
2984
2985 dev->vol.migr_state = 1;
2986 set_migr_type(dev, migr_type);
2987 dev->vol.curr_migr_unit = 0;
2988 dest = get_imsm_map(dev, 1);
2989
2990 /* duplicate and then set the target end state in map[0] */
2991 memcpy(dest, src, sizeof_imsm_map(src));
2992 if ((migr_type == MIGR_REBUILD) ||
2993 (migr_type == MIGR_GEN_MIGR)) {
2994 __u32 ord;
2995 int i;
2996
2997 for (i = 0; i < src->num_members; i++) {
2998 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2999 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3000 }
3001 }
3002
3003 if (migr_type == MIGR_GEN_MIGR)
3004 /* Clear migration record */
3005 memset(super->migr_rec, 0, sizeof(struct migr_record));
3006
3007 src->map_state = to_state;
3008 }
3009
3010 static void end_migration(struct imsm_dev *dev, __u8 map_state)
3011 {
3012 struct imsm_map *map = get_imsm_map(dev, 0);
3013 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
3014 int i, j;
3015
3016 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3017 * completed in the last migration.
3018 *
3019 * FIXME add support for raid-level-migration
3020 */
3021 for (i = 0; i < prev->num_members; i++)
3022 for (j = 0; j < map->num_members; j++)
3023 /* during online capacity expansion
3024 * disks position can be changed if takeover is used
3025 */
3026 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3027 ord_to_idx(prev->disk_ord_tbl[i])) {
3028 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3029 break;
3030 }
3031
3032 dev->vol.migr_state = 0;
3033 dev->vol.migr_type = 0;
3034 dev->vol.curr_migr_unit = 0;
3035 map->map_state = map_state;
3036 }
3037 #endif
3038
3039 static int parse_raid_devices(struct intel_super *super)
3040 {
3041 int i;
3042 struct imsm_dev *dev_new;
3043 size_t len, len_migr;
3044 size_t max_len = 0;
3045 size_t space_needed = 0;
3046 struct imsm_super *mpb = super->anchor;
3047
3048 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3049 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3050 struct intel_dev *dv;
3051
3052 len = sizeof_imsm_dev(dev_iter, 0);
3053 len_migr = sizeof_imsm_dev(dev_iter, 1);
3054 if (len_migr > len)
3055 space_needed += len_migr - len;
3056
3057 dv = malloc(sizeof(*dv));
3058 if (!dv)
3059 return 1;
3060 if (max_len < len_migr)
3061 max_len = len_migr;
3062 if (max_len > len_migr)
3063 space_needed += max_len - len_migr;
3064 dev_new = malloc(max_len);
3065 if (!dev_new) {
3066 free(dv);
3067 return 1;
3068 }
3069 imsm_copy_dev(dev_new, dev_iter);
3070 dv->dev = dev_new;
3071 dv->index = i;
3072 dv->next = super->devlist;
3073 super->devlist = dv;
3074 }
3075
3076 /* ensure that super->buf is large enough when all raid devices
3077 * are migrating
3078 */
3079 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3080 void *buf;
3081
3082 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3083 if (posix_memalign(&buf, 512, len) != 0)
3084 return 1;
3085
3086 memcpy(buf, super->buf, super->len);
3087 memset(buf + super->len, 0, len - super->len);
3088 free(super->buf);
3089 super->buf = buf;
3090 super->len = len;
3091 }
3092
3093 return 0;
3094 }
3095
3096 /* retrieve a pointer to the bbm log which starts after all raid devices */
3097 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3098 {
3099 void *ptr = NULL;
3100
3101 if (__le32_to_cpu(mpb->bbm_log_size)) {
3102 ptr = mpb;
3103 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3104 }
3105
3106 return ptr;
3107 }
3108
3109 /*******************************************************************************
3110 * Function: check_mpb_migr_compatibility
3111 * Description: Function checks for unsupported migration features:
3112 * - migration optimization area (pba_of_lba0)
3113 * - descending reshape (ascending_migr)
3114 * Parameters:
3115 * super : imsm metadata information
3116 * Returns:
3117 * 0 : migration is compatible
3118 * -1 : migration is not compatible
3119 ******************************************************************************/
3120 int check_mpb_migr_compatibility(struct intel_super *super)
3121 {
3122 struct imsm_map *map0, *map1;
3123 struct migr_record *migr_rec = super->migr_rec;
3124 int i;
3125
3126 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3127 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3128
3129 if (dev_iter &&
3130 dev_iter->vol.migr_state == 1 &&
3131 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3132 /* This device is migrating */
3133 map0 = get_imsm_map(dev_iter, 0);
3134 map1 = get_imsm_map(dev_iter, 1);
3135 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3136 /* migration optimization area was used */
3137 return -1;
3138 if (migr_rec->ascending_migr == 0
3139 && migr_rec->dest_depth_per_unit > 0)
3140 /* descending reshape not supported yet */
3141 return -1;
3142 }
3143 }
3144 return 0;
3145 }
3146
3147 static void __free_imsm(struct intel_super *super, int free_disks);
3148
3149 /* load_imsm_mpb - read matrix metadata
3150 * allocates super->mpb to be freed by free_imsm
3151 */
3152 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3153 {
3154 unsigned long long dsize;
3155 unsigned long long sectors;
3156 struct stat;
3157 struct imsm_super *anchor;
3158 __u32 check_sum;
3159
3160 get_dev_size(fd, NULL, &dsize);
3161 if (dsize < 1024) {
3162 if (devname)
3163 fprintf(stderr,
3164 Name ": %s: device to small for imsm\n",
3165 devname);
3166 return 1;
3167 }
3168
3169 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3170 if (devname)
3171 fprintf(stderr, Name
3172 ": Cannot seek to anchor block on %s: %s\n",
3173 devname, strerror(errno));
3174 return 1;
3175 }
3176
3177 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3178 if (devname)
3179 fprintf(stderr,
3180 Name ": Failed to allocate imsm anchor buffer"
3181 " on %s\n", devname);
3182 return 1;
3183 }
3184 if (read(fd, anchor, 512) != 512) {
3185 if (devname)
3186 fprintf(stderr,
3187 Name ": Cannot read anchor block on %s: %s\n",
3188 devname, strerror(errno));
3189 free(anchor);
3190 return 1;
3191 }
3192
3193 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3194 if (devname)
3195 fprintf(stderr,
3196 Name ": no IMSM anchor on %s\n", devname);
3197 free(anchor);
3198 return 2;
3199 }
3200
3201 __free_imsm(super, 0);
3202 /* reload capability and hba */
3203
3204 /* capability and hba must be updated with new super allocation */
3205 find_intel_hba_capability(fd, super, devname);
3206 super->len = ROUND_UP(anchor->mpb_size, 512);
3207 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3208 if (devname)
3209 fprintf(stderr,
3210 Name ": unable to allocate %zu byte mpb buffer\n",
3211 super->len);
3212 free(anchor);
3213 return 2;
3214 }
3215 memcpy(super->buf, anchor, 512);
3216
3217 sectors = mpb_sectors(anchor) - 1;
3218 free(anchor);
3219
3220 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3221 fprintf(stderr, Name
3222 ": %s could not allocate migr_rec buffer\n", __func__);
3223 free(super->buf);
3224 return 2;
3225 }
3226
3227 if (!sectors) {
3228 check_sum = __gen_imsm_checksum(super->anchor);
3229 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3230 if (devname)
3231 fprintf(stderr,
3232 Name ": IMSM checksum %x != %x on %s\n",
3233 check_sum,
3234 __le32_to_cpu(super->anchor->check_sum),
3235 devname);
3236 return 2;
3237 }
3238
3239 return 0;
3240 }
3241
3242 /* read the extended mpb */
3243 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3244 if (devname)
3245 fprintf(stderr,
3246 Name ": Cannot seek to extended mpb on %s: %s\n",
3247 devname, strerror(errno));
3248 return 1;
3249 }
3250
3251 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3252 if (devname)
3253 fprintf(stderr,
3254 Name ": Cannot read extended mpb on %s: %s\n",
3255 devname, strerror(errno));
3256 return 2;
3257 }
3258
3259 check_sum = __gen_imsm_checksum(super->anchor);
3260 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3261 if (devname)
3262 fprintf(stderr,
3263 Name ": IMSM checksum %x != %x on %s\n",
3264 check_sum, __le32_to_cpu(super->anchor->check_sum),
3265 devname);
3266 return 3;
3267 }
3268
3269 /* FIXME the BBM log is disk specific so we cannot use this global
3270 * buffer for all disks. Ok for now since we only look at the global
3271 * bbm_log_size parameter to gate assembly
3272 */
3273 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3274
3275 return 0;
3276 }
3277
3278 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3279
3280 static int
3281 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3282 {
3283 int err;
3284
3285 err = load_imsm_mpb(fd, super, devname);
3286 if (err)
3287 return err;
3288 err = load_imsm_disk(fd, super, devname, keep_fd);
3289 if (err)
3290 return err;
3291 err = parse_raid_devices(super);
3292
3293 return err;
3294 }
3295
3296 static void __free_imsm_disk(struct dl *d)
3297 {
3298 if (d->fd >= 0)
3299 close(d->fd);
3300 if (d->devname)
3301 free(d->devname);
3302 if (d->e)
3303 free(d->e);
3304 free(d);
3305
3306 }
3307
3308 static void free_imsm_disks(struct intel_super *super)
3309 {
3310 struct dl *d;
3311
3312 while (super->disks) {
3313 d = super->disks;
3314 super->disks = d->next;
3315 __free_imsm_disk(d);
3316 }
3317 while (super->disk_mgmt_list) {
3318 d = super->disk_mgmt_list;
3319 super->disk_mgmt_list = d->next;
3320 __free_imsm_disk(d);
3321 }
3322 while (super->missing) {
3323 d = super->missing;
3324 super->missing = d->next;
3325 __free_imsm_disk(d);
3326 }
3327
3328 }
3329
3330 /* free all the pieces hanging off of a super pointer */
3331 static void __free_imsm(struct intel_super *super, int free_disks)
3332 {
3333 struct intel_hba *elem, *next;
3334
3335 if (super->buf) {
3336 free(super->buf);
3337 super->buf = NULL;
3338 }
3339 /* unlink capability description */
3340 super->orom = NULL;
3341 if (super->migr_rec_buf) {
3342 free(super->migr_rec_buf);
3343 super->migr_rec_buf = NULL;
3344 }
3345 if (free_disks)
3346 free_imsm_disks(super);
3347 free_devlist(super);
3348 elem = super->hba;
3349 while (elem) {
3350 if (elem->path)
3351 free((void *)elem->path);
3352 next = elem->next;
3353 free(elem);
3354 elem = next;
3355 }
3356 super->hba = NULL;
3357 }
3358
3359 static void free_imsm(struct intel_super *super)
3360 {
3361 __free_imsm(super, 1);
3362 free(super);
3363 }
3364
3365 static void free_super_imsm(struct supertype *st)
3366 {
3367 struct intel_super *super = st->sb;
3368
3369 if (!super)
3370 return;
3371
3372 free_imsm(super);
3373 st->sb = NULL;
3374 }
3375
3376 static struct intel_super *alloc_super(void)
3377 {
3378 struct intel_super *super = malloc(sizeof(*super));
3379
3380 if (super) {
3381 memset(super, 0, sizeof(*super));
3382 super->current_vol = -1;
3383 super->create_offset = ~((__u32 ) 0);
3384 }
3385 return super;
3386 }
3387
3388 /*
3389 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3390 */
3391 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3392 {
3393 struct sys_dev *hba_name;
3394 int rv = 0;
3395
3396 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3397 super->orom = NULL;
3398 super->hba = NULL;
3399 return 0;
3400 }
3401 hba_name = find_disk_attached_hba(fd, NULL);
3402 if (!hba_name) {
3403 if (devname)
3404 fprintf(stderr,
3405 Name ": %s is not attached to Intel(R) RAID controller.\n",
3406 devname);
3407 return 1;
3408 }
3409 rv = attach_hba_to_super(super, hba_name);
3410 if (rv == 2) {
3411 if (devname) {
3412 struct intel_hba *hba = super->hba;
3413
3414 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3415 "controller (%s),\n"
3416 " but the container is assigned to Intel(R) "
3417 "%s RAID controller (",
3418 devname,
3419 hba_name->path,
3420 hba_name->pci_id ? : "Err!",
3421 get_sys_dev_type(hba_name->type));
3422
3423 while (hba) {
3424 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3425 if (hba->next)
3426 fprintf(stderr, ", ");
3427 hba = hba->next;
3428 }
3429
3430 fprintf(stderr, ").\n"
3431 " Mixing devices attached to different controllers "
3432 "is not allowed.\n");
3433 }
3434 free_sys_dev(&hba_name);
3435 return 2;
3436 }
3437 super->orom = find_imsm_capability(hba_name->type);
3438 free_sys_dev(&hba_name);
3439 if (!super->orom)
3440 return 3;
3441 return 0;
3442 }
3443
3444 #ifndef MDASSEMBLE
3445 /* find_missing - helper routine for load_super_imsm_all that identifies
3446 * disks that have disappeared from the system. This routine relies on
3447 * the mpb being uptodate, which it is at load time.
3448 */
3449 static int find_missing(struct intel_super *super)
3450 {
3451 int i;
3452 struct imsm_super *mpb = super->anchor;
3453 struct dl *dl;
3454 struct imsm_disk *disk;
3455
3456 for (i = 0; i < mpb->num_disks; i++) {
3457 disk = __get_imsm_disk(mpb, i);
3458 dl = serial_to_dl(disk->serial, super);
3459 if (dl)
3460 continue;
3461
3462 dl = malloc(sizeof(*dl));
3463 if (!dl)
3464 return 1;
3465 dl->major = 0;
3466 dl->minor = 0;
3467 dl->fd = -1;
3468 dl->devname = strdup("missing");
3469 dl->index = i;
3470 serialcpy(dl->serial, disk->serial);
3471 dl->disk = *disk;
3472 dl->e = NULL;
3473 dl->next = super->missing;
3474 super->missing = dl;
3475 }
3476
3477 return 0;
3478 }
3479
3480 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3481 {
3482 struct intel_disk *idisk = disk_list;
3483
3484 while (idisk) {
3485 if (serialcmp(idisk->disk.serial, serial) == 0)
3486 break;
3487 idisk = idisk->next;
3488 }
3489
3490 return idisk;
3491 }
3492
3493 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3494 struct intel_super *super,
3495 struct intel_disk **disk_list)
3496 {
3497 struct imsm_disk *d = &super->disks->disk;
3498 struct imsm_super *mpb = super->anchor;
3499 int i, j;
3500
3501 for (i = 0; i < tbl_size; i++) {
3502 struct imsm_super *tbl_mpb = table[i]->anchor;
3503 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3504
3505 if (tbl_mpb->family_num == mpb->family_num) {
3506 if (tbl_mpb->check_sum == mpb->check_sum) {
3507 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3508 __func__, super->disks->major,
3509 super->disks->minor,
3510 table[i]->disks->major,
3511 table[i]->disks->minor);
3512 break;
3513 }
3514
3515 if (((is_configured(d) && !is_configured(tbl_d)) ||
3516 is_configured(d) == is_configured(tbl_d)) &&
3517 tbl_mpb->generation_num < mpb->generation_num) {
3518 /* current version of the mpb is a
3519 * better candidate than the one in
3520 * super_table, but copy over "cross
3521 * generational" status
3522 */
3523 struct intel_disk *idisk;
3524
3525 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3526 __func__, super->disks->major,
3527 super->disks->minor,
3528 table[i]->disks->major,
3529 table[i]->disks->minor);
3530
3531 idisk = disk_list_get(tbl_d->serial, *disk_list);
3532 if (idisk && is_failed(&idisk->disk))
3533 tbl_d->status |= FAILED_DISK;
3534 break;
3535 } else {
3536 struct intel_disk *idisk;
3537 struct imsm_disk *disk;
3538
3539 /* tbl_mpb is more up to date, but copy
3540 * over cross generational status before
3541 * returning
3542 */
3543 disk = __serial_to_disk(d->serial, mpb, NULL);
3544 if (disk && is_failed(disk))
3545 d->status |= FAILED_DISK;
3546
3547 idisk = disk_list_get(d->serial, *disk_list);
3548 if (idisk) {
3549 idisk->owner = i;
3550 if (disk && is_configured(disk))
3551 idisk->disk.status |= CONFIGURED_DISK;
3552 }
3553
3554 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3555 __func__, super->disks->major,
3556 super->disks->minor,
3557 table[i]->disks->major,
3558 table[i]->disks->minor);
3559
3560 return tbl_size;
3561 }
3562 }
3563 }
3564
3565 if (i >= tbl_size)
3566 table[tbl_size++] = super;
3567 else
3568 table[i] = super;
3569
3570 /* update/extend the merged list of imsm_disk records */
3571 for (j = 0; j < mpb->num_disks; j++) {
3572 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3573 struct intel_disk *idisk;
3574
3575 idisk = disk_list_get(disk->serial, *disk_list);
3576 if (idisk) {
3577 idisk->disk.status |= disk->status;
3578 if (is_configured(&idisk->disk) ||
3579 is_failed(&idisk->disk))
3580 idisk->disk.status &= ~(SPARE_DISK);
3581 } else {
3582 idisk = calloc(1, sizeof(*idisk));
3583 if (!idisk)
3584 return -1;
3585 idisk->owner = IMSM_UNKNOWN_OWNER;
3586 idisk->disk = *disk;
3587 idisk->next = *disk_list;
3588 *disk_list = idisk;
3589 }
3590
3591 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3592 idisk->owner = i;
3593 }
3594
3595 return tbl_size;
3596 }
3597
3598 static struct intel_super *
3599 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3600 const int owner)
3601 {
3602 struct imsm_super *mpb = super->anchor;
3603 int ok_count = 0;
3604 int i;
3605
3606 for (i = 0; i < mpb->num_disks; i++) {
3607 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3608 struct intel_disk *idisk;
3609
3610 idisk = disk_list_get(disk->serial, disk_list);
3611 if (idisk) {
3612 if (idisk->owner == owner ||
3613 idisk->owner == IMSM_UNKNOWN_OWNER)
3614 ok_count++;
3615 else
3616 dprintf("%s: '%.16s' owner %d != %d\n",
3617 __func__, disk->serial, idisk->owner,
3618 owner);
3619 } else {
3620 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3621 __func__, __le32_to_cpu(mpb->family_num), i,
3622 disk->serial);
3623 break;
3624 }
3625 }
3626
3627 if (ok_count == mpb->num_disks)
3628 return super;
3629 return NULL;
3630 }
3631
3632 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3633 {
3634 struct intel_super *s;
3635
3636 for (s = super_list; s; s = s->next) {
3637 if (family_num != s->anchor->family_num)
3638 continue;
3639 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3640 __le32_to_cpu(family_num), s->disks->devname);
3641 }
3642 }
3643
3644 static struct intel_super *
3645 imsm_thunderdome(struct intel_super **super_list, int len)
3646 {
3647 struct intel_super *super_table[len];
3648 struct intel_disk *disk_list = NULL;
3649 struct intel_super *champion, *spare;
3650 struct intel_super *s, **del;
3651 int tbl_size = 0;
3652 int conflict;
3653 int i;
3654
3655 memset(super_table, 0, sizeof(super_table));
3656 for (s = *super_list; s; s = s->next)
3657 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3658
3659 for (i = 0; i < tbl_size; i++) {
3660 struct imsm_disk *d;
3661 struct intel_disk *idisk;
3662 struct imsm_super *mpb = super_table[i]->anchor;
3663
3664 s = super_table[i];
3665 d = &s->disks->disk;
3666
3667 /* 'd' must appear in merged disk list for its
3668 * configuration to be valid
3669 */
3670 idisk = disk_list_get(d->serial, disk_list);
3671 if (idisk && idisk->owner == i)
3672 s = validate_members(s, disk_list, i);
3673 else
3674 s = NULL;
3675
3676 if (!s)
3677 dprintf("%s: marking family: %#x from %d:%d offline\n",
3678 __func__, mpb->family_num,
3679 super_table[i]->disks->major,
3680 super_table[i]->disks->minor);
3681 super_table[i] = s;
3682 }
3683
3684 /* This is where the mdadm implementation differs from the Windows
3685 * driver which has no strict concept of a container. We can only
3686 * assemble one family from a container, so when returning a prodigal
3687 * array member to this system the code will not be able to disambiguate
3688 * the container contents that should be assembled ("foreign" versus
3689 * "local"). It requires user intervention to set the orig_family_num
3690 * to a new value to establish a new container. The Windows driver in
3691 * this situation fixes up the volume name in place and manages the
3692 * foreign array as an independent entity.
3693 */
3694 s = NULL;
3695 spare = NULL;
3696 conflict = 0;
3697 for (i = 0; i < tbl_size; i++) {
3698 struct intel_super *tbl_ent = super_table[i];
3699 int is_spare = 0;
3700
3701 if (!tbl_ent)
3702 continue;
3703
3704 if (tbl_ent->anchor->num_raid_devs == 0) {
3705 spare = tbl_ent;
3706 is_spare = 1;
3707 }
3708
3709 if (s && !is_spare) {
3710 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3711 conflict++;
3712 } else if (!s && !is_spare)
3713 s = tbl_ent;
3714 }
3715
3716 if (!s)
3717 s = spare;
3718 if (!s) {
3719 champion = NULL;
3720 goto out;
3721 }
3722 champion = s;
3723
3724 if (conflict)
3725 fprintf(stderr, "Chose family %#x on '%s', "
3726 "assemble conflicts to new container with '--update=uuid'\n",
3727 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3728
3729 /* collect all dl's onto 'champion', and update them to
3730 * champion's version of the status
3731 */
3732 for (s = *super_list; s; s = s->next) {
3733 struct imsm_super *mpb = champion->anchor;
3734 struct dl *dl = s->disks;
3735
3736 if (s == champion)
3737 continue;
3738
3739 for (i = 0; i < mpb->num_disks; i++) {
3740 struct imsm_disk *disk;
3741
3742 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3743 if (disk) {
3744 dl->disk = *disk;
3745 /* only set index on disks that are a member of
3746 * a populated contianer, i.e. one with
3747 * raid_devs
3748 */
3749 if (is_failed(&dl->disk))
3750 dl->index = -2;
3751 else if (is_spare(&dl->disk))
3752 dl->index = -1;
3753 break;
3754 }
3755 }
3756
3757 if (i >= mpb->num_disks) {
3758 struct intel_disk *idisk;
3759
3760 idisk = disk_list_get(dl->serial, disk_list);
3761 if (idisk && is_spare(&idisk->disk) &&
3762 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3763 dl->index = -1;
3764 else {
3765 dl->index = -2;
3766 continue;
3767 }
3768 }
3769
3770 dl->next = champion->disks;
3771 champion->disks = dl;
3772 s->disks = NULL;
3773 }
3774
3775 /* delete 'champion' from super_list */
3776 for (del = super_list; *del; ) {
3777 if (*del == champion) {
3778 *del = (*del)->next;
3779 break;
3780 } else
3781 del = &(*del)->next;
3782 }
3783 champion->next = NULL;
3784
3785 out:
3786 while (disk_list) {
3787 struct intel_disk *idisk = disk_list;
3788
3789 disk_list = disk_list->next;
3790 free(idisk);
3791 }
3792
3793 return champion;
3794 }
3795
3796 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3797 char *devname)
3798 {
3799 struct mdinfo *sra;
3800 struct intel_super *super_list = NULL;
3801 struct intel_super *super = NULL;
3802 int devnum = fd2devnum(fd);
3803 struct mdinfo *sd;
3804 int retry;
3805 int err = 0;
3806 int i;
3807
3808 /* check if 'fd' an opened container */
3809 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3810 if (!sra)
3811 return 1;
3812
3813 if (sra->array.major_version != -1 ||
3814 sra->array.minor_version != -2 ||
3815 strcmp(sra->text_version, "imsm") != 0) {
3816 err = 1;
3817 goto error;
3818 }
3819 /* load all mpbs */
3820 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3821 struct intel_super *s = alloc_super();
3822 char nm[32];
3823 int dfd;
3824 int rv;
3825
3826 err = 1;
3827 if (!s)
3828 goto error;
3829 s->next = super_list;
3830 super_list = s;
3831
3832 err = 2;
3833 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3834 dfd = dev_open(nm, O_RDWR);
3835 if (dfd < 0)
3836 goto error;
3837
3838 rv = find_intel_hba_capability(dfd, s, devname);
3839 /* no orom/efi or non-intel hba of the disk */
3840 if (rv != 0)
3841 goto error;
3842
3843 err = load_and_parse_mpb(dfd, s, NULL, 1);
3844
3845 /* retry the load if we might have raced against mdmon */
3846 if (err == 3 && mdmon_running(devnum))
3847 for (retry = 0; retry < 3; retry++) {
3848 usleep(3000);
3849 err = load_and_parse_mpb(dfd, s, NULL, 1);
3850 if (err != 3)
3851 break;
3852 }
3853 if (err)
3854 goto error;
3855 }
3856
3857 /* all mpbs enter, maybe one leaves */
3858 super = imsm_thunderdome(&super_list, i);
3859 if (!super) {
3860 err = 1;
3861 goto error;
3862 }
3863
3864 if (find_missing(super) != 0) {
3865 free_imsm(super);
3866 err = 2;
3867 goto error;
3868 }
3869
3870 /* load migration record */
3871 err = load_imsm_migr_rec(super, NULL);
3872 if (err) {
3873 err = 4;
3874 goto error;
3875 }
3876
3877 /* Check migration compatibility */
3878 if (check_mpb_migr_compatibility(super) != 0) {
3879 fprintf(stderr, Name ": Unsupported migration detected");
3880 if (devname)
3881 fprintf(stderr, " on %s\n", devname);
3882 else
3883 fprintf(stderr, " (IMSM).\n");
3884
3885 err = 5;
3886 goto error;
3887 }
3888
3889 err = 0;
3890
3891 error:
3892 while (super_list) {
3893 struct intel_super *s = super_list;
3894
3895 super_list = super_list->next;
3896 free_imsm(s);
3897 }
3898 sysfs_free(sra);
3899
3900 if (err)
3901 return err;
3902
3903 *sbp = super;
3904 st->container_dev = devnum;
3905 if (err == 0 && st->ss == NULL) {
3906 st->ss = &super_imsm;
3907 st->minor_version = 0;
3908 st->max_devs = IMSM_MAX_DEVICES;
3909 }
3910 return 0;
3911 }
3912
3913 static int load_container_imsm(struct supertype *st, int fd, char *devname)
3914 {
3915 return load_super_imsm_all(st, fd, &st->sb, devname);
3916 }
3917 #endif
3918
3919 static int load_super_imsm(struct supertype *st, int fd, char *devname)
3920 {
3921 struct intel_super *super;
3922 int rv;
3923
3924 if (test_partition(fd))
3925 /* IMSM not allowed on partitions */
3926 return 1;
3927
3928 free_super_imsm(st);
3929
3930 super = alloc_super();
3931 if (!super) {
3932 fprintf(stderr,
3933 Name ": malloc of %zu failed.\n",
3934 sizeof(*super));
3935 return 1;
3936 }
3937 /* Load hba and capabilities if they exist.
3938 * But do not preclude loading metadata in case capabilities or hba are
3939 * non-compliant and ignore_hw_compat is set.
3940 */
3941 rv = find_intel_hba_capability(fd, super, devname);
3942 /* no orom/efi or non-intel hba of the disk */
3943 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
3944 if (devname)
3945 fprintf(stderr,
3946 Name ": No OROM/EFI properties for %s\n", devname);
3947 free_imsm(super);
3948 return 2;
3949 }
3950 rv = load_and_parse_mpb(fd, super, devname, 0);
3951
3952 if (rv) {
3953 if (devname)
3954 fprintf(stderr,
3955 Name ": Failed to load all information "
3956 "sections on %s\n", devname);
3957 free_imsm(super);
3958 return rv;
3959 }
3960
3961 st->sb = super;
3962 if (st->ss == NULL) {
3963 st->ss = &super_imsm;
3964 st->minor_version = 0;
3965 st->max_devs = IMSM_MAX_DEVICES;
3966 }
3967
3968 /* load migration record */
3969 if (load_imsm_migr_rec(super, NULL) == 0) {
3970 /* Check for unsupported migration features */
3971 if (check_mpb_migr_compatibility(super) != 0) {
3972 fprintf(stderr,
3973 Name ": Unsupported migration detected");
3974 if (devname)
3975 fprintf(stderr, " on %s\n", devname);
3976 else
3977 fprintf(stderr, " (IMSM).\n");
3978 return 3;
3979 }
3980 }
3981
3982 return 0;
3983 }
3984
3985 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3986 {
3987 if (info->level == 1)
3988 return 128;
3989 return info->chunk_size >> 9;
3990 }
3991
3992 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
3993 {
3994 __u32 num_stripes;
3995
3996 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
3997 num_stripes /= num_domains;
3998
3999 return num_stripes;
4000 }
4001
4002 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4003 {
4004 if (info->level == 1)
4005 return info->size * 2;
4006 else
4007 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4008 }
4009
4010 static void imsm_update_version_info(struct intel_super *super)
4011 {
4012 /* update the version and attributes */
4013 struct imsm_super *mpb = super->anchor;
4014 char *version;
4015 struct imsm_dev *dev;
4016 struct imsm_map *map;
4017 int i;
4018
4019 for (i = 0; i < mpb->num_raid_devs; i++) {
4020 dev = get_imsm_dev(super, i);
4021 map = get_imsm_map(dev, 0);
4022 if (__le32_to_cpu(dev->size_high) > 0)
4023 mpb->attributes |= MPB_ATTRIB_2TB;
4024
4025 /* FIXME detect when an array spans a port multiplier */
4026 #if 0
4027 mpb->attributes |= MPB_ATTRIB_PM;
4028 #endif
4029
4030 if (mpb->num_raid_devs > 1 ||
4031 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4032 version = MPB_VERSION_ATTRIBS;
4033 switch (get_imsm_raid_level(map)) {
4034 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4035 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4036 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4037 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4038 }
4039 } else {
4040 if (map->num_members >= 5)
4041 version = MPB_VERSION_5OR6_DISK_ARRAY;
4042 else if (dev->status == DEV_CLONE_N_GO)
4043 version = MPB_VERSION_CNG;
4044 else if (get_imsm_raid_level(map) == 5)
4045 version = MPB_VERSION_RAID5;
4046 else if (map->num_members >= 3)
4047 version = MPB_VERSION_3OR4_DISK_ARRAY;
4048 else if (get_imsm_raid_level(map) == 1)
4049 version = MPB_VERSION_RAID1;
4050 else
4051 version = MPB_VERSION_RAID0;
4052 }
4053 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4054 }
4055 }
4056
4057 static int check_name(struct intel_super *super, char *name, int quiet)
4058 {
4059 struct imsm_super *mpb = super->anchor;
4060 char *reason = NULL;
4061 int i;
4062
4063 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4064 reason = "must be 16 characters or less";
4065
4066 for (i = 0; i < mpb->num_raid_devs; i++) {
4067 struct imsm_dev *dev = get_imsm_dev(super, i);
4068
4069 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4070 reason = "already exists";
4071 break;
4072 }
4073 }
4074
4075 if (reason && !quiet)
4076 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4077
4078 return !reason;
4079 }
4080
4081 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4082 unsigned long long size, char *name,
4083 char *homehost, int *uuid)
4084 {
4085 /* We are creating a volume inside a pre-existing container.
4086 * so st->sb is already set.
4087 */
4088 struct intel_super *super = st->sb;
4089 struct imsm_super *mpb = super->anchor;
4090 struct intel_dev *dv;
4091 struct imsm_dev *dev;
4092 struct imsm_vol *vol;
4093 struct imsm_map *map;
4094 int idx = mpb->num_raid_devs;
4095 int i;
4096 unsigned long long array_blocks;
4097 size_t size_old, size_new;
4098 __u32 num_data_stripes;
4099
4100 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4101 fprintf(stderr, Name": This imsm-container already has the "
4102 "maximum of %d volumes\n", super->orom->vpa);
4103 return 0;
4104 }
4105
4106 /* ensure the mpb is large enough for the new data */
4107 size_old = __le32_to_cpu(mpb->mpb_size);
4108 size_new = disks_to_mpb_size(info->nr_disks);
4109 if (size_new > size_old) {
4110 void *mpb_new;
4111 size_t size_round = ROUND_UP(size_new, 512);
4112
4113 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4114 fprintf(stderr, Name": could not allocate new mpb\n");
4115 return 0;
4116 }
4117 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4118 fprintf(stderr, Name
4119 ": %s could not allocate migr_rec buffer\n",
4120 __func__);
4121 free(super->buf);
4122 free(super);
4123 return 0;
4124 }
4125 memcpy(mpb_new, mpb, size_old);
4126 free(mpb);
4127 mpb = mpb_new;
4128 super->anchor = mpb_new;
4129 mpb->mpb_size = __cpu_to_le32(size_new);
4130 memset(mpb_new + size_old, 0, size_round - size_old);
4131 }
4132 super->current_vol = idx;
4133 /* when creating the first raid device in this container set num_disks
4134 * to zero, i.e. delete this spare and add raid member devices in
4135 * add_to_super_imsm_volume()
4136 */
4137 if (super->current_vol == 0)
4138 mpb->num_disks = 0;
4139
4140 if (!check_name(super, name, 0))
4141 return 0;
4142 dv = malloc(sizeof(*dv));
4143 if (!dv) {
4144 fprintf(stderr, Name ": failed to allocate device list entry\n");
4145 return 0;
4146 }
4147 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4148 if (!dev) {
4149 free(dv);
4150 fprintf(stderr, Name": could not allocate raid device\n");
4151 return 0;
4152 }
4153
4154 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4155 if (info->level == 1)
4156 array_blocks = info_to_blocks_per_member(info);
4157 else
4158 array_blocks = calc_array_size(info->level, info->raid_disks,
4159 info->layout, info->chunk_size,
4160 info->size*2);
4161 /* round array size down to closest MB */
4162 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4163
4164 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4165 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4166 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4167 vol = &dev->vol;
4168 vol->migr_state = 0;
4169 set_migr_type(dev, MIGR_INIT);
4170 vol->dirty = 0;
4171 vol->curr_migr_unit = 0;
4172 map = get_imsm_map(dev, 0);
4173 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
4174 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
4175 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4176 map->failed_disk_num = ~0;
4177 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
4178 IMSM_T_STATE_NORMAL;
4179 map->ddf = 1;
4180
4181 if (info->level == 1 && info->raid_disks > 2) {
4182 free(dev);
4183 free(dv);
4184 fprintf(stderr, Name": imsm does not support more than 2 disks"
4185 "in a raid1 volume\n");
4186 return 0;
4187 }
4188
4189 map->raid_level = info->level;
4190 if (info->level == 10) {
4191 map->raid_level = 1;
4192 map->num_domains = info->raid_disks / 2;
4193 } else if (info->level == 1)
4194 map->num_domains = info->raid_disks;
4195 else
4196 map->num_domains = 1;
4197
4198 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4199 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
4200
4201 map->num_members = info->raid_disks;
4202 for (i = 0; i < map->num_members; i++) {
4203 /* initialized in add_to_super */
4204 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4205 }
4206 mpb->num_raid_devs++;
4207
4208 dv->dev = dev;
4209 dv->index = super->current_vol;
4210 dv->next = super->devlist;
4211 super->devlist = dv;
4212
4213 imsm_update_version_info(super);
4214
4215 return 1;
4216 }
4217
4218 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4219 unsigned long long size, char *name,
4220 char *homehost, int *uuid)
4221 {
4222 /* This is primarily called by Create when creating a new array.
4223 * We will then get add_to_super called for each component, and then
4224 * write_init_super called to write it out to each device.
4225 * For IMSM, Create can create on fresh devices or on a pre-existing
4226 * array.
4227 * To create on a pre-existing array a different method will be called.
4228 * This one is just for fresh drives.
4229 */
4230 struct intel_super *super;
4231 struct imsm_super *mpb;
4232 size_t mpb_size;
4233 char *version;
4234
4235 if (st->sb)
4236 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4237
4238 if (info)
4239 mpb_size = disks_to_mpb_size(info->nr_disks);
4240 else
4241 mpb_size = 512;
4242
4243 super = alloc_super();
4244 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4245 free(super);
4246 super = NULL;
4247 }
4248 if (!super) {
4249 fprintf(stderr, Name
4250 ": %s could not allocate superblock\n", __func__);
4251 return 0;
4252 }
4253 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4254 fprintf(stderr, Name
4255 ": %s could not allocate migr_rec buffer\n", __func__);
4256 free(super->buf);
4257 free(super);
4258 return 0;
4259 }
4260 memset(super->buf, 0, mpb_size);
4261 mpb = super->buf;
4262 mpb->mpb_size = __cpu_to_le32(mpb_size);
4263 st->sb = super;
4264
4265 if (info == NULL) {
4266 /* zeroing superblock */
4267 return 0;
4268 }
4269
4270 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4271
4272 version = (char *) mpb->sig;
4273 strcpy(version, MPB_SIGNATURE);
4274 version += strlen(MPB_SIGNATURE);
4275 strcpy(version, MPB_VERSION_RAID0);
4276
4277 return 1;
4278 }
4279
4280 #ifndef MDASSEMBLE
4281 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4282 int fd, char *devname)
4283 {
4284 struct intel_super *super = st->sb;
4285 struct imsm_super *mpb = super->anchor;
4286 struct dl *dl;
4287 struct imsm_dev *dev;
4288 struct imsm_map *map;
4289 int slot;
4290
4291 dev = get_imsm_dev(super, super->current_vol);
4292 map = get_imsm_map(dev, 0);
4293
4294 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4295 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4296 devname);
4297 return 1;
4298 }
4299
4300 if (fd == -1) {
4301 /* we're doing autolayout so grab the pre-marked (in
4302 * validate_geometry) raid_disk
4303 */
4304 for (dl = super->disks; dl; dl = dl->next)
4305 if (dl->raiddisk == dk->raid_disk)
4306 break;
4307 } else {
4308 for (dl = super->disks; dl ; dl = dl->next)
4309 if (dl->major == dk->major &&
4310 dl->minor == dk->minor)
4311 break;
4312 }
4313
4314 if (!dl) {
4315 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4316 return 1;
4317 }
4318
4319 /* add a pristine spare to the metadata */
4320 if (dl->index < 0) {
4321 dl->index = super->anchor->num_disks;
4322 super->anchor->num_disks++;
4323 }
4324 /* Check the device has not already been added */
4325 slot = get_imsm_disk_slot(map, dl->index);
4326 if (slot >= 0 &&
4327 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4328 fprintf(stderr, Name ": %s has been included in this array twice\n",
4329 devname);
4330 return 1;
4331 }
4332 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
4333 dl->disk.status = CONFIGURED_DISK;
4334
4335 /* if we are creating the first raid device update the family number */
4336 if (super->current_vol == 0) {
4337 __u32 sum;
4338 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4339 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
4340
4341 if (!_dev || !_disk) {
4342 fprintf(stderr, Name ": BUG mpb setup error\n");
4343 return 1;
4344 }
4345 *_dev = *dev;
4346 *_disk = dl->disk;
4347 sum = random32();
4348 sum += __gen_imsm_checksum(mpb);
4349 mpb->family_num = __cpu_to_le32(sum);
4350 mpb->orig_family_num = mpb->family_num;
4351 }
4352
4353 return 0;
4354 }
4355
4356
4357 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4358 int fd, char *devname)
4359 {
4360 struct intel_super *super = st->sb;
4361 struct dl *dd;
4362 unsigned long long size;
4363 __u32 id;
4364 int rv;
4365 struct stat stb;
4366
4367 /* If we are on an RAID enabled platform check that the disk is
4368 * attached to the raid controller.
4369 * We do not need to test disks attachment for container based additions,
4370 * they shall be already tested when container was created/assembled.
4371 */
4372 rv = find_intel_hba_capability(fd, super, devname);
4373 /* no orom/efi or non-intel hba of the disk */
4374 if (rv != 0) {
4375 dprintf("capability: %p fd: %d ret: %d\n",
4376 super->orom, fd, rv);
4377 return 1;
4378 }
4379
4380 if (super->current_vol >= 0)
4381 return add_to_super_imsm_volume(st, dk, fd, devname);
4382
4383 fstat(fd, &stb);
4384 dd = malloc(sizeof(*dd));
4385 if (!dd) {
4386 fprintf(stderr,
4387 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4388 return 1;
4389 }
4390 memset(dd, 0, sizeof(*dd));
4391 dd->major = major(stb.st_rdev);
4392 dd->minor = minor(stb.st_rdev);
4393 dd->index = -1;
4394 dd->devname = devname ? strdup(devname) : NULL;
4395 dd->fd = fd;
4396 dd->e = NULL;
4397 dd->action = DISK_ADD;
4398 rv = imsm_read_serial(fd, devname, dd->serial);
4399 if (rv) {
4400 fprintf(stderr,
4401 Name ": failed to retrieve scsi serial, aborting\n");
4402 free(dd);
4403 abort();
4404 }
4405
4406 get_dev_size(fd, NULL, &size);
4407 size /= 512;
4408 serialcpy(dd->disk.serial, dd->serial);
4409 dd->disk.total_blocks = __cpu_to_le32(size);
4410 dd->disk.status = SPARE_DISK;
4411 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4412 dd->disk.scsi_id = __cpu_to_le32(id);
4413 else
4414 dd->disk.scsi_id = __cpu_to_le32(0);
4415
4416 if (st->update_tail) {
4417 dd->next = super->disk_mgmt_list;
4418 super->disk_mgmt_list = dd;
4419 } else {
4420 dd->next = super->disks;
4421 super->disks = dd;
4422 super->updates_pending++;
4423 }
4424
4425 return 0;
4426 }
4427
4428
4429 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4430 {
4431 struct intel_super *super = st->sb;
4432 struct dl *dd;
4433
4434 /* remove from super works only in mdmon - for communication
4435 * manager - monitor. Check if communication memory buffer
4436 * is prepared.
4437 */
4438 if (!st->update_tail) {
4439 fprintf(stderr,
4440 Name ": %s shall be used in mdmon context only"
4441 "(line %d).\n", __func__, __LINE__);
4442 return 1;
4443 }
4444 dd = malloc(sizeof(*dd));
4445 if (!dd) {
4446 fprintf(stderr,
4447 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4448 return 1;
4449 }
4450 memset(dd, 0, sizeof(*dd));
4451 dd->major = dk->major;
4452 dd->minor = dk->minor;
4453 dd->index = -1;
4454 dd->fd = -1;
4455 dd->disk.status = SPARE_DISK;
4456 dd->action = DISK_REMOVE;
4457
4458 dd->next = super->disk_mgmt_list;
4459 super->disk_mgmt_list = dd;
4460
4461
4462 return 0;
4463 }
4464
4465 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4466
4467 static union {
4468 char buf[512];
4469 struct imsm_super anchor;
4470 } spare_record __attribute__ ((aligned(512)));
4471
4472 /* spare records have their own family number and do not have any defined raid
4473 * devices
4474 */
4475 static int write_super_imsm_spares(struct intel_super *super, int doclose)
4476 {
4477 struct imsm_super *mpb = super->anchor;
4478 struct imsm_super *spare = &spare_record.anchor;
4479 __u32 sum;
4480 struct dl *d;
4481
4482 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4483 spare->generation_num = __cpu_to_le32(1UL),
4484 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4485 spare->num_disks = 1,
4486 spare->num_raid_devs = 0,
4487 spare->cache_size = mpb->cache_size,
4488 spare->pwr_cycle_count = __cpu_to_le32(1),
4489
4490 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4491 MPB_SIGNATURE MPB_VERSION_RAID0);
4492
4493 for (d = super->disks; d; d = d->next) {
4494 if (d->index != -1)
4495 continue;
4496
4497 spare->disk[0] = d->disk;
4498 sum = __gen_imsm_checksum(spare);
4499 spare->family_num = __cpu_to_le32(sum);
4500 spare->orig_family_num = 0;
4501 sum = __gen_imsm_checksum(spare);
4502 spare->check_sum = __cpu_to_le32(sum);
4503
4504 if (store_imsm_mpb(d->fd, spare)) {
4505 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4506 __func__, d->major, d->minor, strerror(errno));
4507 return 1;
4508 }
4509 if (doclose) {
4510 close(d->fd);
4511 d->fd = -1;
4512 }
4513 }
4514
4515 return 0;
4516 }
4517
4518 static int write_super_imsm(struct supertype *st, int doclose)
4519 {
4520 struct intel_super *super = st->sb;
4521 struct imsm_super *mpb = super->anchor;
4522 struct dl *d;
4523 __u32 generation;
4524 __u32 sum;
4525 int spares = 0;
4526 int i;
4527 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
4528 int num_disks = 0;
4529 int clear_migration_record = 1;
4530
4531 /* 'generation' is incremented everytime the metadata is written */
4532 generation = __le32_to_cpu(mpb->generation_num);
4533 generation++;
4534 mpb->generation_num = __cpu_to_le32(generation);
4535
4536 /* fix up cases where previous mdadm releases failed to set
4537 * orig_family_num
4538 */
4539 if (mpb->orig_family_num == 0)
4540 mpb->orig_family_num = mpb->family_num;
4541
4542 for (d = super->disks; d; d = d->next) {
4543 if (d->index == -1)
4544 spares++;
4545 else {
4546 mpb->disk[d->index] = d->disk;
4547 num_disks++;
4548 }
4549 }
4550 for (d = super->missing; d; d = d->next) {
4551 mpb->disk[d->index] = d->disk;
4552 num_disks++;
4553 }
4554 mpb->num_disks = num_disks;
4555 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
4556
4557 for (i = 0; i < mpb->num_raid_devs; i++) {
4558 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
4559 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4560 if (dev && dev2) {
4561 imsm_copy_dev(dev, dev2);
4562 mpb_size += sizeof_imsm_dev(dev, 0);
4563 }
4564 if (is_gen_migration(dev2))
4565 clear_migration_record = 0;
4566 }
4567 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4568 mpb->mpb_size = __cpu_to_le32(mpb_size);
4569
4570 /* recalculate checksum */
4571 sum = __gen_imsm_checksum(mpb);
4572 mpb->check_sum = __cpu_to_le32(sum);
4573
4574 if (clear_migration_record)
4575 memset(super->migr_rec_buf, 0, 512);
4576
4577 /* write the mpb for disks that compose raid devices */
4578 for (d = super->disks; d ; d = d->next) {
4579 if (d->index < 0)
4580 continue;
4581 if (store_imsm_mpb(d->fd, mpb))
4582 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4583 __func__, d->major, d->minor, strerror(errno));
4584 if (clear_migration_record) {
4585 unsigned long long dsize;
4586
4587 get_dev_size(d->fd, NULL, &dsize);
4588 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4589 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4590 perror("Write migr_rec failed");
4591 }
4592 }
4593 if (doclose) {
4594 close(d->fd);
4595 d->fd = -1;
4596 }
4597 }
4598
4599 if (spares)
4600 return write_super_imsm_spares(super, doclose);
4601
4602 return 0;
4603 }
4604
4605
4606 static int create_array(struct supertype *st, int dev_idx)
4607 {
4608 size_t len;
4609 struct imsm_update_create_array *u;
4610 struct intel_super *super = st->sb;
4611 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4612 struct imsm_map *map = get_imsm_map(dev, 0);
4613 struct disk_info *inf;
4614 struct imsm_disk *disk;
4615 int i;
4616
4617 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4618 sizeof(*inf) * map->num_members;
4619 u = malloc(len);
4620 if (!u) {
4621 fprintf(stderr, "%s: failed to allocate update buffer\n",
4622 __func__);
4623 return 1;
4624 }
4625
4626 u->type = update_create_array;
4627 u->dev_idx = dev_idx;
4628 imsm_copy_dev(&u->dev, dev);
4629 inf = get_disk_info(u);
4630 for (i = 0; i < map->num_members; i++) {
4631 int idx = get_imsm_disk_idx(dev, i, -1);
4632
4633 disk = get_imsm_disk(super, idx);
4634 serialcpy(inf[i].serial, disk->serial);
4635 }
4636 append_metadata_update(st, u, len);
4637
4638 return 0;
4639 }
4640
4641 static int mgmt_disk(struct supertype *st)
4642 {
4643 struct intel_super *super = st->sb;
4644 size_t len;
4645 struct imsm_update_add_remove_disk *u;
4646
4647 if (!super->disk_mgmt_list)
4648 return 0;
4649
4650 len = sizeof(*u);
4651 u = malloc(len);
4652 if (!u) {
4653 fprintf(stderr, "%s: failed to allocate update buffer\n",
4654 __func__);
4655 return 1;
4656 }
4657
4658 u->type = update_add_remove_disk;
4659 append_metadata_update(st, u, len);
4660
4661 return 0;
4662 }
4663
4664 static int write_init_super_imsm(struct supertype *st)
4665 {
4666 struct intel_super *super = st->sb;
4667 int current_vol = super->current_vol;
4668
4669 /* we are done with current_vol reset it to point st at the container */
4670 super->current_vol = -1;
4671
4672 if (st->update_tail) {
4673 /* queue the recently created array / added disk
4674 * as a metadata update */
4675 int rv;
4676
4677 /* determine if we are creating a volume or adding a disk */
4678 if (current_vol < 0) {
4679 /* in the mgmt (add/remove) disk case we are running
4680 * in mdmon context, so don't close fd's
4681 */
4682 return mgmt_disk(st);
4683 } else
4684 rv = create_array(st, current_vol);
4685
4686 return rv;
4687 } else {
4688 struct dl *d;
4689 for (d = super->disks; d; d = d->next)
4690 Kill(d->devname, NULL, 0, 1, 1);
4691 return write_super_imsm(st, 1);
4692 }
4693 }
4694 #endif
4695
4696 static int store_super_imsm(struct supertype *st, int fd)
4697 {
4698 struct intel_super *super = st->sb;
4699 struct imsm_super *mpb = super ? super->anchor : NULL;
4700
4701 if (!mpb)
4702 return 1;
4703
4704 #ifndef MDASSEMBLE
4705 return store_imsm_mpb(fd, mpb);
4706 #else
4707 return 1;
4708 #endif
4709 }
4710
4711 static int imsm_bbm_log_size(struct imsm_super *mpb)
4712 {
4713 return __le32_to_cpu(mpb->bbm_log_size);
4714 }
4715
4716 #ifndef MDASSEMBLE
4717 static int validate_geometry_imsm_container(struct supertype *st, int level,
4718 int layout, int raiddisks, int chunk,
4719 unsigned long long size, char *dev,
4720 unsigned long long *freesize,
4721 int verbose)
4722 {
4723 int fd;
4724 unsigned long long ldsize;
4725 struct intel_super *super=NULL;
4726 int rv = 0;
4727
4728 if (level != LEVEL_CONTAINER)
4729 return 0;
4730 if (!dev)
4731 return 1;
4732
4733 fd = open(dev, O_RDONLY|O_EXCL, 0);
4734 if (fd < 0) {
4735 if (verbose)
4736 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4737 dev, strerror(errno));
4738 return 0;
4739 }
4740 if (!get_dev_size(fd, dev, &ldsize)) {
4741 close(fd);
4742 return 0;
4743 }
4744
4745 /* capabilities retrieve could be possible
4746 * note that there is no fd for the disks in array.
4747 */
4748 super = alloc_super();
4749 if (!super) {
4750 fprintf(stderr,
4751 Name ": malloc of %zu failed.\n",
4752 sizeof(*super));
4753 close(fd);
4754 return 0;
4755 }
4756
4757 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
4758 if (rv != 0) {
4759 #if DEBUG
4760 char str[256];
4761 fd2devname(fd, str);
4762 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4763 fd, str, super->orom, rv, raiddisks);
4764 #endif
4765 /* no orom/efi or non-intel hba of the disk */
4766 close(fd);
4767 free_imsm(super);
4768 return 0;
4769 }
4770 close(fd);
4771 if (super->orom && raiddisks > super->orom->tds) {
4772 if (verbose)
4773 fprintf(stderr, Name ": %d exceeds maximum number of"
4774 " platform supported disks: %d\n",
4775 raiddisks, super->orom->tds);
4776
4777 free_imsm(super);
4778 return 0;
4779 }
4780
4781 *freesize = avail_size_imsm(st, ldsize >> 9);
4782 free_imsm(super);
4783
4784 return 1;
4785 }
4786
4787 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4788 {
4789 const unsigned long long base_start = e[*idx].start;
4790 unsigned long long end = base_start + e[*idx].size;
4791 int i;
4792
4793 if (base_start == end)
4794 return 0;
4795
4796 *idx = *idx + 1;
4797 for (i = *idx; i < num_extents; i++) {
4798 /* extend overlapping extents */
4799 if (e[i].start >= base_start &&
4800 e[i].start <= end) {
4801 if (e[i].size == 0)
4802 return 0;
4803 if (e[i].start + e[i].size > end)
4804 end = e[i].start + e[i].size;
4805 } else if (e[i].start > end) {
4806 *idx = i;
4807 break;
4808 }
4809 }
4810
4811 return end - base_start;
4812 }
4813
4814 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4815 {
4816 /* build a composite disk with all known extents and generate a new
4817 * 'maxsize' given the "all disks in an array must share a common start
4818 * offset" constraint
4819 */
4820 struct extent *e = calloc(sum_extents, sizeof(*e));
4821 struct dl *dl;
4822 int i, j;
4823 int start_extent;
4824 unsigned long long pos;
4825 unsigned long long start = 0;
4826 unsigned long long maxsize;
4827 unsigned long reserve;
4828
4829 if (!e)
4830 return 0;
4831
4832 /* coalesce and sort all extents. also, check to see if we need to
4833 * reserve space between member arrays
4834 */
4835 j = 0;
4836 for (dl = super->disks; dl; dl = dl->next) {
4837 if (!dl->e)
4838 continue;
4839 for (i = 0; i < dl->extent_cnt; i++)
4840 e[j++] = dl->e[i];
4841 }
4842 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4843
4844 /* merge extents */
4845 i = 0;
4846 j = 0;
4847 while (i < sum_extents) {
4848 e[j].start = e[i].start;
4849 e[j].size = find_size(e, &i, sum_extents);
4850 j++;
4851 if (e[j-1].size == 0)
4852 break;
4853 }
4854
4855 pos = 0;
4856 maxsize = 0;
4857 start_extent = 0;
4858 i = 0;
4859 do {
4860 unsigned long long esize;
4861
4862 esize = e[i].start - pos;
4863 if (esize >= maxsize) {
4864 maxsize = esize;
4865 start = pos;
4866 start_extent = i;
4867 }
4868 pos = e[i].start + e[i].size;
4869 i++;
4870 } while (e[i-1].size);
4871 free(e);
4872
4873 if (maxsize == 0)
4874 return 0;
4875
4876 /* FIXME assumes volume at offset 0 is the first volume in a
4877 * container
4878 */
4879 if (start_extent > 0)
4880 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
4881 else
4882 reserve = 0;
4883
4884 if (maxsize < reserve)
4885 return 0;
4886
4887 super->create_offset = ~((__u32) 0);
4888 if (start + reserve > super->create_offset)
4889 return 0; /* start overflows create_offset */
4890 super->create_offset = start + reserve;
4891
4892 return maxsize - reserve;
4893 }
4894
4895 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
4896 {
4897 if (level < 0 || level == 6 || level == 4)
4898 return 0;
4899
4900 /* if we have an orom prevent invalid raid levels */
4901 if (orom)
4902 switch (level) {
4903 case 0: return imsm_orom_has_raid0(orom);
4904 case 1:
4905 if (raiddisks > 2)
4906 return imsm_orom_has_raid1e(orom);
4907 return imsm_orom_has_raid1(orom) && raiddisks == 2;
4908 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
4909 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
4910 }
4911 else
4912 return 1; /* not on an Intel RAID platform so anything goes */
4913
4914 return 0;
4915 }
4916
4917
4918 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
4919 /*
4920 * validate volume parameters with OROM/EFI capabilities
4921 */
4922 static int
4923 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
4924 int raiddisks, int *chunk, int verbose)
4925 {
4926 #if DEBUG
4927 verbose = 1;
4928 #endif
4929 /* validate container capabilities */
4930 if (super->orom && raiddisks > super->orom->tds) {
4931 if (verbose)
4932 fprintf(stderr, Name ": %d exceeds maximum number of"
4933 " platform supported disks: %d\n",
4934 raiddisks, super->orom->tds);
4935 return 0;
4936 }
4937
4938 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
4939 if (super->orom && (!is_raid_level_supported(super->orom, level,
4940 raiddisks))) {
4941 pr_vrb(": platform does not support raid%d with %d disk%s\n",
4942 level, raiddisks, raiddisks > 1 ? "s" : "");
4943 return 0;
4944 }
4945 if (super->orom && level != 1) {
4946 if (chunk && (*chunk == 0 || *chunk == UnSet))
4947 *chunk = imsm_orom_default_chunk(super->orom);
4948 else if (chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
4949 pr_vrb(": platform does not support a chunk size of: "
4950 "%d\n", *chunk);
4951 return 0;
4952 }
4953 }
4954 if (layout != imsm_level_to_layout(level)) {
4955 if (level == 5)
4956 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
4957 else if (level == 10)
4958 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
4959 else
4960 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
4961 layout, level);
4962 return 0;
4963 }
4964 return 1;
4965 }
4966
4967 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
4968 * FIX ME add ahci details
4969 */
4970 static int validate_geometry_imsm_volume(struct supertype *st, int level,
4971 int layout, int raiddisks, int *chunk,
4972 unsigned long long size, char *dev,
4973 unsigned long long *freesize,
4974 int verbose)
4975 {
4976 struct stat stb;
4977 struct intel_super *super = st->sb;
4978 struct imsm_super *mpb = super->anchor;
4979 struct dl *dl;
4980 unsigned long long pos = 0;
4981 unsigned long long maxsize;
4982 struct extent *e;
4983 int i;
4984
4985 /* We must have the container info already read in. */
4986 if (!super)
4987 return 0;
4988
4989 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
4990 fprintf(stderr, Name ": RAID gemetry validation failed. "
4991 "Cannot proceed with the action(s).\n");
4992 return 0;
4993 }
4994 if (!dev) {
4995 /* General test: make sure there is space for
4996 * 'raiddisks' device extents of size 'size' at a given
4997 * offset
4998 */
4999 unsigned long long minsize = size;
5000 unsigned long long start_offset = MaxSector;
5001 int dcnt = 0;
5002 if (minsize == 0)
5003 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5004 for (dl = super->disks; dl ; dl = dl->next) {
5005 int found = 0;
5006
5007 pos = 0;
5008 i = 0;
5009 e = get_extents(super, dl);
5010 if (!e) continue;
5011 do {
5012 unsigned long long esize;
5013 esize = e[i].start - pos;
5014 if (esize >= minsize)
5015 found = 1;
5016 if (found && start_offset == MaxSector) {
5017 start_offset = pos;
5018 break;
5019 } else if (found && pos != start_offset) {
5020 found = 0;
5021 break;
5022 }
5023 pos = e[i].start + e[i].size;
5024 i++;
5025 } while (e[i-1].size);
5026 if (found)
5027 dcnt++;
5028 free(e);
5029 }
5030 if (dcnt < raiddisks) {
5031 if (verbose)
5032 fprintf(stderr, Name ": imsm: Not enough "
5033 "devices with space for this array "
5034 "(%d < %d)\n",
5035 dcnt, raiddisks);
5036 return 0;
5037 }
5038 return 1;
5039 }
5040
5041 /* This device must be a member of the set */
5042 if (stat(dev, &stb) < 0)
5043 return 0;
5044 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5045 return 0;
5046 for (dl = super->disks ; dl ; dl = dl->next) {
5047 if (dl->major == (int)major(stb.st_rdev) &&
5048 dl->minor == (int)minor(stb.st_rdev))
5049 break;
5050 }
5051 if (!dl) {
5052 if (verbose)
5053 fprintf(stderr, Name ": %s is not in the "
5054 "same imsm set\n", dev);
5055 return 0;
5056 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5057 /* If a volume is present then the current creation attempt
5058 * cannot incorporate new spares because the orom may not
5059 * understand this configuration (all member disks must be
5060 * members of each array in the container).
5061 */
5062 fprintf(stderr, Name ": %s is a spare and a volume"
5063 " is already defined for this container\n", dev);
5064 fprintf(stderr, Name ": The option-rom requires all member"
5065 " disks to be a member of all volumes\n");
5066 return 0;
5067 }
5068
5069 /* retrieve the largest free space block */
5070 e = get_extents(super, dl);
5071 maxsize = 0;
5072 i = 0;
5073 if (e) {
5074 do {
5075 unsigned long long esize;
5076
5077 esize = e[i].start - pos;
5078 if (esize >= maxsize)
5079 maxsize = esize;
5080 pos = e[i].start + e[i].size;
5081 i++;
5082 } while (e[i-1].size);
5083 dl->e = e;
5084 dl->extent_cnt = i;
5085 } else {
5086 if (verbose)
5087 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5088 dev);
5089 return 0;
5090 }
5091 if (maxsize < size) {
5092 if (verbose)
5093 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5094 dev, maxsize, size);
5095 return 0;
5096 }
5097
5098 /* count total number of extents for merge */
5099 i = 0;
5100 for (dl = super->disks; dl; dl = dl->next)
5101 if (dl->e)
5102 i += dl->extent_cnt;
5103
5104 maxsize = merge_extents(super, i);
5105 if (maxsize < size || maxsize == 0) {
5106 if (verbose)
5107 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5108 maxsize, size);
5109 return 0;
5110 }
5111
5112 *freesize = maxsize;
5113
5114 return 1;
5115 }
5116
5117 static int reserve_space(struct supertype *st, int raiddisks,
5118 unsigned long long size, int chunk,
5119 unsigned long long *freesize)
5120 {
5121 struct intel_super *super = st->sb;
5122 struct imsm_super *mpb = super->anchor;
5123 struct dl *dl;
5124 int i;
5125 int extent_cnt;
5126 struct extent *e;
5127 unsigned long long maxsize;
5128 unsigned long long minsize;
5129 int cnt;
5130 int used;
5131
5132 /* find the largest common start free region of the possible disks */
5133 used = 0;
5134 extent_cnt = 0;
5135 cnt = 0;
5136 for (dl = super->disks; dl; dl = dl->next) {
5137 dl->raiddisk = -1;
5138
5139 if (dl->index >= 0)
5140 used++;
5141
5142 /* don't activate new spares if we are orom constrained
5143 * and there is already a volume active in the container
5144 */
5145 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5146 continue;
5147
5148 e = get_extents(super, dl);
5149 if (!e)
5150 continue;
5151 for (i = 1; e[i-1].size; i++)
5152 ;
5153 dl->e = e;
5154 dl->extent_cnt = i;
5155 extent_cnt += i;
5156 cnt++;
5157 }
5158
5159 maxsize = merge_extents(super, extent_cnt);
5160 minsize = size;
5161 if (size == 0)
5162 /* chunk is in K */
5163 minsize = chunk * 2;
5164
5165 if (cnt < raiddisks ||
5166 (super->orom && used && used != raiddisks) ||
5167 maxsize < minsize ||
5168 maxsize == 0) {
5169 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5170 return 0; /* No enough free spaces large enough */
5171 }
5172
5173 if (size == 0) {
5174 size = maxsize;
5175 if (chunk) {
5176 size /= 2 * chunk;
5177 size *= 2 * chunk;
5178 }
5179 }
5180
5181 cnt = 0;
5182 for (dl = super->disks; dl; dl = dl->next)
5183 if (dl->e)
5184 dl->raiddisk = cnt++;
5185
5186 *freesize = size;
5187
5188 return 1;
5189 }
5190
5191 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
5192 int raiddisks, int *chunk, unsigned long long size,
5193 char *dev, unsigned long long *freesize,
5194 int verbose)
5195 {
5196 int fd, cfd;
5197 struct mdinfo *sra;
5198 int is_member = 0;
5199
5200 /* load capability
5201 * if given unused devices create a container
5202 * if given given devices in a container create a member volume
5203 */
5204 if (level == LEVEL_CONTAINER) {
5205 /* Must be a fresh device to add to a container */
5206 return validate_geometry_imsm_container(st, level, layout,
5207 raiddisks,
5208 chunk?*chunk:0, size,
5209 dev, freesize,
5210 verbose);
5211 }
5212
5213 if (!dev) {
5214 if (st->sb && freesize) {
5215 /* we are being asked to automatically layout a
5216 * new volume based on the current contents of
5217 * the container. If the the parameters can be
5218 * satisfied reserve_space will record the disks,
5219 * start offset, and size of the volume to be
5220 * created. add_to_super and getinfo_super
5221 * detect when autolayout is in progress.
5222 */
5223 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5224 raiddisks, chunk,
5225 verbose))
5226 return 0;
5227 return reserve_space(st, raiddisks, size,
5228 chunk?*chunk:0, freesize);
5229 }
5230 return 1;
5231 }
5232 if (st->sb) {
5233 /* creating in a given container */
5234 return validate_geometry_imsm_volume(st, level, layout,
5235 raiddisks, chunk, size,
5236 dev, freesize, verbose);
5237 }
5238
5239 /* This device needs to be a device in an 'imsm' container */
5240 fd = open(dev, O_RDONLY|O_EXCL, 0);
5241 if (fd >= 0) {
5242 if (verbose)
5243 fprintf(stderr,
5244 Name ": Cannot create this array on device %s\n",
5245 dev);
5246 close(fd);
5247 return 0;
5248 }
5249 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5250 if (verbose)
5251 fprintf(stderr, Name ": Cannot open %s: %s\n",
5252 dev, strerror(errno));
5253 return 0;
5254 }
5255 /* Well, it is in use by someone, maybe an 'imsm' container. */
5256 cfd = open_container(fd);
5257 close(fd);
5258 if (cfd < 0) {
5259 if (verbose)
5260 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5261 dev);
5262 return 0;
5263 }
5264 sra = sysfs_read(cfd, 0, GET_VERSION);
5265 if (sra && sra->array.major_version == -1 &&
5266 strcmp(sra->text_version, "imsm") == 0)
5267 is_member = 1;
5268 sysfs_free(sra);
5269 if (is_member) {
5270 /* This is a member of a imsm container. Load the container
5271 * and try to create a volume
5272 */
5273 struct intel_super *super;
5274
5275 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
5276 st->sb = super;
5277 st->container_dev = fd2devnum(cfd);
5278 close(cfd);
5279 return validate_geometry_imsm_volume(st, level, layout,
5280 raiddisks, chunk,
5281 size, dev,
5282 freesize, verbose);
5283 }
5284 }
5285
5286 if (verbose)
5287 fprintf(stderr, Name ": failed container membership check\n");
5288
5289 close(cfd);
5290 return 0;
5291 }
5292
5293 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
5294 {
5295 struct intel_super *super = st->sb;
5296
5297 if (level && *level == UnSet)
5298 *level = LEVEL_CONTAINER;
5299
5300 if (level && layout && *layout == UnSet)
5301 *layout = imsm_level_to_layout(*level);
5302
5303 if (chunk && (*chunk == UnSet || *chunk == 0) &&
5304 super && super->orom)
5305 *chunk = imsm_orom_default_chunk(super->orom);
5306 }
5307
5308 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5309
5310 static int kill_subarray_imsm(struct supertype *st)
5311 {
5312 /* remove the subarray currently referenced by ->current_vol */
5313 __u8 i;
5314 struct intel_dev **dp;
5315 struct intel_super *super = st->sb;
5316 __u8 current_vol = super->current_vol;
5317 struct imsm_super *mpb = super->anchor;
5318
5319 if (super->current_vol < 0)
5320 return 2;
5321 super->current_vol = -1; /* invalidate subarray cursor */
5322
5323 /* block deletions that would change the uuid of active subarrays
5324 *
5325 * FIXME when immutable ids are available, but note that we'll
5326 * also need to fixup the invalidated/active subarray indexes in
5327 * mdstat
5328 */
5329 for (i = 0; i < mpb->num_raid_devs; i++) {
5330 char subarray[4];
5331
5332 if (i < current_vol)
5333 continue;
5334 sprintf(subarray, "%u", i);
5335 if (is_subarray_active(subarray, st->devname)) {
5336 fprintf(stderr,
5337 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5338 current_vol, i);
5339
5340 return 2;
5341 }
5342 }
5343
5344 if (st->update_tail) {
5345 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5346
5347 if (!u)
5348 return 2;
5349 u->type = update_kill_array;
5350 u->dev_idx = current_vol;
5351 append_metadata_update(st, u, sizeof(*u));
5352
5353 return 0;
5354 }
5355
5356 for (dp = &super->devlist; *dp;)
5357 if ((*dp)->index == current_vol) {
5358 *dp = (*dp)->next;
5359 } else {
5360 handle_missing(super, (*dp)->dev);
5361 if ((*dp)->index > current_vol)
5362 (*dp)->index--;
5363 dp = &(*dp)->next;
5364 }
5365
5366 /* no more raid devices, all active components are now spares,
5367 * but of course failed are still failed
5368 */
5369 if (--mpb->num_raid_devs == 0) {
5370 struct dl *d;
5371
5372 for (d = super->disks; d; d = d->next)
5373 if (d->index > -2) {
5374 d->index = -1;
5375 d->disk.status = SPARE_DISK;
5376 }
5377 }
5378
5379 super->updates_pending++;
5380
5381 return 0;
5382 }
5383
5384 static int update_subarray_imsm(struct supertype *st, char *subarray,
5385 char *update, struct mddev_ident *ident)
5386 {
5387 /* update the subarray currently referenced by ->current_vol */
5388 struct intel_super *super = st->sb;
5389 struct imsm_super *mpb = super->anchor;
5390
5391 if (strcmp(update, "name") == 0) {
5392 char *name = ident->name;
5393 char *ep;
5394 int vol;
5395
5396 if (is_subarray_active(subarray, st->devname)) {
5397 fprintf(stderr,
5398 Name ": Unable to update name of active subarray\n");
5399 return 2;
5400 }
5401
5402 if (!check_name(super, name, 0))
5403 return 2;
5404
5405 vol = strtoul(subarray, &ep, 10);
5406 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5407 return 2;
5408
5409 if (st->update_tail) {
5410 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5411
5412 if (!u)
5413 return 2;
5414 u->type = update_rename_array;
5415 u->dev_idx = vol;
5416 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5417 append_metadata_update(st, u, sizeof(*u));
5418 } else {
5419 struct imsm_dev *dev;
5420 int i;
5421
5422 dev = get_imsm_dev(super, vol);
5423 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5424 for (i = 0; i < mpb->num_raid_devs; i++) {
5425 dev = get_imsm_dev(super, i);
5426 handle_missing(super, dev);
5427 }
5428 super->updates_pending++;
5429 }
5430 } else
5431 return 2;
5432
5433 return 0;
5434 }
5435
5436 static int is_gen_migration(struct imsm_dev *dev)
5437 {
5438 if (dev == NULL)
5439 return 0;
5440
5441 if (!dev->vol.migr_state)
5442 return 0;
5443
5444 if (migr_type(dev) == MIGR_GEN_MIGR)
5445 return 1;
5446
5447 return 0;
5448 }
5449 #endif /* MDASSEMBLE */
5450
5451 static int is_rebuilding(struct imsm_dev *dev)
5452 {
5453 struct imsm_map *migr_map;
5454
5455 if (!dev->vol.migr_state)
5456 return 0;
5457
5458 if (migr_type(dev) != MIGR_REBUILD)
5459 return 0;
5460
5461 migr_map = get_imsm_map(dev, 1);
5462
5463 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5464 return 1;
5465 else
5466 return 0;
5467 }
5468
5469 static void update_recovery_start(struct intel_super *super,
5470 struct imsm_dev *dev,
5471 struct mdinfo *array)
5472 {
5473 struct mdinfo *rebuild = NULL;
5474 struct mdinfo *d;
5475 __u32 units;
5476
5477 if (!is_rebuilding(dev))
5478 return;
5479
5480 /* Find the rebuild target, but punt on the dual rebuild case */
5481 for (d = array->devs; d; d = d->next)
5482 if (d->recovery_start == 0) {
5483 if (rebuild)
5484 return;
5485 rebuild = d;
5486 }
5487
5488 if (!rebuild) {
5489 /* (?) none of the disks are marked with
5490 * IMSM_ORD_REBUILD, so assume they are missing and the
5491 * disk_ord_tbl was not correctly updated
5492 */
5493 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5494 return;
5495 }
5496
5497 units = __le32_to_cpu(dev->vol.curr_migr_unit);
5498 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
5499 }
5500
5501 #ifndef MDASSEMBLE
5502 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
5503 #endif
5504
5505 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
5506 {
5507 /* Given a container loaded by load_super_imsm_all,
5508 * extract information about all the arrays into
5509 * an mdinfo tree.
5510 * If 'subarray' is given, just extract info about that array.
5511 *
5512 * For each imsm_dev create an mdinfo, fill it in,
5513 * then look for matching devices in super->disks
5514 * and create appropriate device mdinfo.
5515 */
5516 struct intel_super *super = st->sb;
5517 struct imsm_super *mpb = super->anchor;
5518 struct mdinfo *rest = NULL;
5519 unsigned int i;
5520 int bbm_errors = 0;
5521 struct dl *d;
5522 int spare_disks = 0;
5523
5524 /* do not assemble arrays when not all attributes are supported */
5525 if (imsm_check_attributes(mpb->attributes) == 0) {
5526 fprintf(stderr, Name ": IMSM metadata loading not allowed "
5527 "due to attributes incompatibility.\n");
5528 return NULL;
5529 }
5530
5531 /* check for bad blocks */
5532 if (imsm_bbm_log_size(super->anchor))
5533 bbm_errors = 1;
5534
5535 /* count spare devices, not used in maps
5536 */
5537 for (d = super->disks; d; d = d->next)
5538 if (d->index == -1)
5539 spare_disks++;
5540
5541 for (i = 0; i < mpb->num_raid_devs; i++) {
5542 struct imsm_dev *dev;
5543 struct imsm_map *map;
5544 struct imsm_map *map2;
5545 struct mdinfo *this;
5546 int slot, chunk;
5547 char *ep;
5548
5549 if (subarray &&
5550 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5551 continue;
5552
5553 dev = get_imsm_dev(super, i);
5554 map = get_imsm_map(dev, 0);
5555 map2 = get_imsm_map(dev, 1);
5556
5557 /* do not publish arrays that are in the middle of an
5558 * unsupported migration
5559 */
5560 if (dev->vol.migr_state &&
5561 (migr_type(dev) == MIGR_STATE_CHANGE)) {
5562 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5563 " unsupported migration in progress\n",
5564 dev->volume);
5565 continue;
5566 }
5567 /* do not publish arrays that are not support by controller's
5568 * OROM/EFI
5569 */
5570
5571 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
5572 #ifndef MDASSEMBLE
5573 if (!validate_geometry_imsm_orom(super,
5574 get_imsm_raid_level(map), /* RAID level */
5575 imsm_level_to_layout(get_imsm_raid_level(map)),
5576 map->num_members, /* raid disks */
5577 &chunk,
5578 1 /* verbose */)) {
5579 fprintf(stderr, Name ": RAID gemetry validation failed. "
5580 "Cannot proceed with the action(s).\n");
5581 continue;
5582 }
5583 #endif /* MDASSEMBLE */
5584 this = malloc(sizeof(*this));
5585 if (!this) {
5586 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
5587 sizeof(*this));
5588 break;
5589 }
5590
5591 super->current_vol = i;
5592 getinfo_super_imsm_volume(st, this, NULL);
5593 this->next = rest;
5594 for (slot = 0 ; slot < map->num_members; slot++) {
5595 unsigned long long recovery_start;
5596 struct mdinfo *info_d;
5597 struct dl *d;
5598 int idx;
5599 int skip;
5600 __u32 ord;
5601
5602 skip = 0;
5603 idx = get_imsm_disk_idx(dev, slot, 0);
5604 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
5605 for (d = super->disks; d ; d = d->next)
5606 if (d->index == idx)
5607 break;
5608
5609 recovery_start = MaxSector;
5610 if (d == NULL)
5611 skip = 1;
5612 if (d && is_failed(&d->disk))
5613 skip = 1;
5614 if (ord & IMSM_ORD_REBUILD)
5615 recovery_start = 0;
5616
5617 /*
5618 * if we skip some disks the array will be assmebled degraded;
5619 * reset resync start to avoid a dirty-degraded
5620 * situation when performing the intial sync
5621 *
5622 * FIXME handle dirty degraded
5623 */
5624 if ((skip || recovery_start == 0) && !dev->vol.dirty)
5625 this->resync_start = MaxSector;
5626 if (skip)
5627 continue;
5628
5629 info_d = calloc(1, sizeof(*info_d));
5630 if (!info_d) {
5631 fprintf(stderr, Name ": failed to allocate disk"
5632 " for volume %.16s\n", dev->volume);
5633 info_d = this->devs;
5634 while (info_d) {
5635 struct mdinfo *d = info_d->next;
5636
5637 free(info_d);
5638 info_d = d;
5639 }
5640 free(this);
5641 this = rest;
5642 break;
5643 }
5644 info_d->next = this->devs;
5645 this->devs = info_d;
5646
5647 info_d->disk.number = d->index;
5648 info_d->disk.major = d->major;
5649 info_d->disk.minor = d->minor;
5650 info_d->disk.raid_disk = slot;
5651 info_d->recovery_start = recovery_start;
5652 if (map2) {
5653 if (slot < map2->num_members)
5654 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5655 else
5656 this->array.spare_disks++;
5657 } else {
5658 if (slot < map->num_members)
5659 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5660 else
5661 this->array.spare_disks++;
5662 }
5663 if (info_d->recovery_start == MaxSector)
5664 this->array.working_disks++;
5665
5666 info_d->events = __le32_to_cpu(mpb->generation_num);
5667 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5668 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
5669 }
5670 /* now that the disk list is up-to-date fixup recovery_start */
5671 update_recovery_start(super, dev, this);
5672 this->array.spare_disks += spare_disks;
5673
5674 #ifndef MDASSEMBLE
5675 /* check for reshape */
5676 if (this->reshape_active == 1)
5677 recover_backup_imsm(st, this);
5678 #endif
5679 rest = this;
5680 }
5681
5682 /* if array has bad blocks, set suitable bit in array status */
5683 if (bbm_errors)
5684 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5685
5686 return rest;
5687 }
5688
5689
5690 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
5691 {
5692 struct imsm_map *map = get_imsm_map(dev, 0);
5693
5694 if (!failed)
5695 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5696 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
5697
5698 switch (get_imsm_raid_level(map)) {
5699 case 0:
5700 return IMSM_T_STATE_FAILED;
5701 break;
5702 case 1:
5703 if (failed < map->num_members)
5704 return IMSM_T_STATE_DEGRADED;
5705 else
5706 return IMSM_T_STATE_FAILED;
5707 break;
5708 case 10:
5709 {
5710 /**
5711 * check to see if any mirrors have failed, otherwise we
5712 * are degraded. Even numbered slots are mirrored on
5713 * slot+1
5714 */
5715 int i;
5716 /* gcc -Os complains that this is unused */
5717 int insync = insync;
5718
5719 for (i = 0; i < map->num_members; i++) {
5720 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
5721 int idx = ord_to_idx(ord);
5722 struct imsm_disk *disk;
5723
5724 /* reset the potential in-sync count on even-numbered
5725 * slots. num_copies is always 2 for imsm raid10
5726 */
5727 if ((i & 1) == 0)
5728 insync = 2;
5729
5730 disk = get_imsm_disk(super, idx);
5731 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5732 insync--;
5733
5734 /* no in-sync disks left in this mirror the
5735 * array has failed
5736 */
5737 if (insync == 0)
5738 return IMSM_T_STATE_FAILED;
5739 }
5740
5741 return IMSM_T_STATE_DEGRADED;
5742 }
5743 case 5:
5744 if (failed < 2)
5745 return IMSM_T_STATE_DEGRADED;
5746 else
5747 return IMSM_T_STATE_FAILED;
5748 break;
5749 default:
5750 break;
5751 }
5752
5753 return map->map_state;
5754 }
5755
5756 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
5757 {
5758 int i;
5759 int failed = 0;
5760 struct imsm_disk *disk;
5761 struct imsm_map *map = get_imsm_map(dev, 0);
5762 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5763 __u32 ord;
5764 int idx;
5765
5766 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5767 * disks that are being rebuilt. New failures are recorded to
5768 * map[0]. So we look through all the disks we started with and
5769 * see if any failures are still present, or if any new ones
5770 * have arrived
5771 *
5772 * FIXME add support for online capacity expansion and
5773 * raid-level-migration
5774 */
5775 for (i = 0; i < prev->num_members; i++) {
5776 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5777 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5778 idx = ord_to_idx(ord);
5779
5780 disk = get_imsm_disk(super, idx);
5781 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5782 failed++;
5783 }
5784
5785 return failed;
5786 }
5787
5788 #ifndef MDASSEMBLE
5789 static int imsm_open_new(struct supertype *c, struct active_array *a,
5790 char *inst)
5791 {
5792 struct intel_super *super = c->sb;
5793 struct imsm_super *mpb = super->anchor;
5794
5795 if (atoi(inst) >= mpb->num_raid_devs) {
5796 fprintf(stderr, "%s: subarry index %d, out of range\n",
5797 __func__, atoi(inst));
5798 return -ENODEV;
5799 }
5800
5801 dprintf("imsm: open_new %s\n", inst);
5802 a->info.container_member = atoi(inst);
5803 return 0;
5804 }
5805
5806 static int is_resyncing(struct imsm_dev *dev)
5807 {
5808 struct imsm_map *migr_map;
5809
5810 if (!dev->vol.migr_state)
5811 return 0;
5812
5813 if (migr_type(dev) == MIGR_INIT ||
5814 migr_type(dev) == MIGR_REPAIR)
5815 return 1;
5816
5817 if (migr_type(dev) == MIGR_GEN_MIGR)
5818 return 0;
5819
5820 migr_map = get_imsm_map(dev, 1);
5821
5822 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5823 (dev->vol.migr_type != MIGR_GEN_MIGR))
5824 return 1;
5825 else
5826 return 0;
5827 }
5828
5829 /* return true if we recorded new information */
5830 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5831 {
5832 __u32 ord;
5833 int slot;
5834 struct imsm_map *map;
5835
5836 /* new failures are always set in map[0] */
5837 map = get_imsm_map(dev, 0);
5838
5839 slot = get_imsm_disk_slot(map, idx);
5840 if (slot < 0)
5841 return 0;
5842
5843 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
5844 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
5845 return 0;
5846
5847 disk->status |= FAILED_DISK;
5848 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
5849 if (map->failed_disk_num == 0xff)
5850 map->failed_disk_num = slot;
5851 return 1;
5852 }
5853
5854 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5855 {
5856 mark_failure(dev, disk, idx);
5857
5858 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
5859 return;
5860
5861 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5862 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
5863 }
5864
5865 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
5866 {
5867 __u8 map_state;
5868 struct dl *dl;
5869 int failed;
5870
5871 if (!super->missing)
5872 return;
5873 failed = imsm_count_failed(super, dev);
5874 map_state = imsm_check_degraded(super, dev, failed);
5875
5876 dprintf("imsm: mark missing\n");
5877 end_migration(dev, map_state);
5878 for (dl = super->missing; dl; dl = dl->next)
5879 mark_missing(dev, &dl->disk, dl->index);
5880 super->updates_pending++;
5881 }
5882
5883 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
5884 {
5885 int used_disks = imsm_num_data_members(dev, 0);
5886 unsigned long long array_blocks;
5887 struct imsm_map *map;
5888
5889 if (used_disks == 0) {
5890 /* when problems occures
5891 * return current array_blocks value
5892 */
5893 array_blocks = __le32_to_cpu(dev->size_high);
5894 array_blocks = array_blocks << 32;
5895 array_blocks += __le32_to_cpu(dev->size_low);
5896
5897 return array_blocks;
5898 }
5899
5900 /* set array size in metadata
5901 */
5902 map = get_imsm_map(dev, 0);
5903 array_blocks = map->blocks_per_member * used_disks;
5904
5905 /* round array size down to closest MB
5906 */
5907 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5908 dev->size_low = __cpu_to_le32((__u32)array_blocks);
5909 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
5910
5911 return array_blocks;
5912 }
5913
5914 static void imsm_set_disk(struct active_array *a, int n, int state);
5915
5916 static void imsm_progress_container_reshape(struct intel_super *super)
5917 {
5918 /* if no device has a migr_state, but some device has a
5919 * different number of members than the previous device, start
5920 * changing the number of devices in this device to match
5921 * previous.
5922 */
5923 struct imsm_super *mpb = super->anchor;
5924 int prev_disks = -1;
5925 int i;
5926 int copy_map_size;
5927
5928 for (i = 0; i < mpb->num_raid_devs; i++) {
5929 struct imsm_dev *dev = get_imsm_dev(super, i);
5930 struct imsm_map *map = get_imsm_map(dev, 0);
5931 struct imsm_map *map2;
5932 int prev_num_members;
5933
5934 if (dev->vol.migr_state)
5935 return;
5936
5937 if (prev_disks == -1)
5938 prev_disks = map->num_members;
5939 if (prev_disks == map->num_members)
5940 continue;
5941
5942 /* OK, this array needs to enter reshape mode.
5943 * i.e it needs a migr_state
5944 */
5945
5946 copy_map_size = sizeof_imsm_map(map);
5947 prev_num_members = map->num_members;
5948 map->num_members = prev_disks;
5949 dev->vol.migr_state = 1;
5950 dev->vol.curr_migr_unit = 0;
5951 dev->vol.migr_type = MIGR_GEN_MIGR;
5952 for (i = prev_num_members;
5953 i < map->num_members; i++)
5954 set_imsm_ord_tbl_ent(map, i, i);
5955 map2 = get_imsm_map(dev, 1);
5956 /* Copy the current map */
5957 memcpy(map2, map, copy_map_size);
5958 map2->num_members = prev_num_members;
5959
5960 imsm_set_array_size(dev);
5961 super->updates_pending++;
5962 }
5963 }
5964
5965 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
5966 * states are handled in imsm_set_disk() with one exception, when a
5967 * resync is stopped due to a new failure this routine will set the
5968 * 'degraded' state for the array.
5969 */
5970 static int imsm_set_array_state(struct active_array *a, int consistent)
5971 {
5972 int inst = a->info.container_member;
5973 struct intel_super *super = a->container->sb;
5974 struct imsm_dev *dev = get_imsm_dev(super, inst);
5975 struct imsm_map *map = get_imsm_map(dev, 0);
5976 int failed = imsm_count_failed(super, dev);
5977 __u8 map_state = imsm_check_degraded(super, dev, failed);
5978 __u32 blocks_per_unit;
5979
5980 if (dev->vol.migr_state &&
5981 dev->vol.migr_type == MIGR_GEN_MIGR) {
5982 /* array state change is blocked due to reshape action
5983 * We might need to
5984 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
5985 * - finish the reshape (if last_checkpoint is big and action != reshape)
5986 * - update curr_migr_unit
5987 */
5988 if (a->curr_action == reshape) {
5989 /* still reshaping, maybe update curr_migr_unit */
5990 goto mark_checkpoint;
5991 } else {
5992 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
5993 /* for some reason we aborted the reshape.
5994 *
5995 * disable automatic metadata rollback
5996 * user action is required to recover process
5997 */
5998 if (0) {
5999 struct imsm_map *map2 = get_imsm_map(dev, 1);
6000 dev->vol.migr_state = 0;
6001 dev->vol.migr_type = 0;
6002 dev->vol.curr_migr_unit = 0;
6003 memcpy(map, map2, sizeof_imsm_map(map2));
6004 super->updates_pending++;
6005 }
6006 }
6007 if (a->last_checkpoint >= a->info.component_size) {
6008 unsigned long long array_blocks;
6009 int used_disks;
6010 struct mdinfo *mdi;
6011
6012 used_disks = imsm_num_data_members(dev, 0);
6013 if (used_disks > 0) {
6014 array_blocks =
6015 map->blocks_per_member *
6016 used_disks;
6017 /* round array size down to closest MB
6018 */
6019 array_blocks = (array_blocks
6020 >> SECT_PER_MB_SHIFT)
6021 << SECT_PER_MB_SHIFT;
6022 a->info.custom_array_size = array_blocks;
6023 /* encourage manager to update array
6024 * size
6025 */
6026
6027 a->check_reshape = 1;
6028 }
6029 /* finalize online capacity expansion/reshape */
6030 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6031 imsm_set_disk(a,
6032 mdi->disk.raid_disk,
6033 mdi->curr_state);
6034
6035 imsm_progress_container_reshape(super);
6036 }
6037 }
6038 }
6039
6040 /* before we activate this array handle any missing disks */
6041 if (consistent == 2)
6042 handle_missing(super, dev);
6043
6044 if (consistent == 2 &&
6045 (!is_resync_complete(&a->info) ||
6046 map_state != IMSM_T_STATE_NORMAL ||
6047 dev->vol.migr_state))
6048 consistent = 0;
6049
6050 if (is_resync_complete(&a->info)) {
6051 /* complete intialization / resync,
6052 * recovery and interrupted recovery is completed in
6053 * ->set_disk
6054 */
6055 if (is_resyncing(dev)) {
6056 dprintf("imsm: mark resync done\n");
6057 end_migration(dev, map_state);
6058 super->updates_pending++;
6059 a->last_checkpoint = 0;
6060 }
6061 } else if (!is_resyncing(dev) && !failed) {
6062 /* mark the start of the init process if nothing is failed */
6063 dprintf("imsm: mark resync start\n");
6064 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
6065 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
6066 else
6067 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
6068 super->updates_pending++;
6069 }
6070
6071 mark_checkpoint:
6072 /* skip checkpointing for general migration,
6073 * it is controlled in mdadm
6074 */
6075 if (is_gen_migration(dev))
6076 goto skip_mark_checkpoint;
6077
6078 /* check if we can update curr_migr_unit from resync_start, recovery_start */
6079 blocks_per_unit = blocks_per_migr_unit(super, dev);
6080 if (blocks_per_unit) {
6081 __u32 units32;
6082 __u64 units;
6083
6084 units = a->last_checkpoint / blocks_per_unit;
6085 units32 = units;
6086
6087 /* check that we did not overflow 32-bits, and that
6088 * curr_migr_unit needs updating
6089 */
6090 if (units32 == units &&
6091 units32 != 0 &&
6092 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6093 dprintf("imsm: mark checkpoint (%u)\n", units32);
6094 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6095 super->updates_pending++;
6096 }
6097 }
6098
6099 skip_mark_checkpoint:
6100 /* mark dirty / clean */
6101 if (dev->vol.dirty != !consistent) {
6102 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
6103 if (consistent)
6104 dev->vol.dirty = 0;
6105 else
6106 dev->vol.dirty = 1;
6107 super->updates_pending++;
6108 }
6109
6110 return consistent;
6111 }
6112
6113 static void imsm_set_disk(struct active_array *a, int n, int state)
6114 {
6115 int inst = a->info.container_member;
6116 struct intel_super *super = a->container->sb;
6117 struct imsm_dev *dev = get_imsm_dev(super, inst);
6118 struct imsm_map *map = get_imsm_map(dev, 0);
6119 struct imsm_disk *disk;
6120 int failed;
6121 __u32 ord;
6122 __u8 map_state;
6123
6124 if (n > map->num_members)
6125 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6126 n, map->num_members - 1);
6127
6128 if (n < 0)
6129 return;
6130
6131 dprintf("imsm: set_disk %d:%x\n", n, state);
6132
6133 ord = get_imsm_ord_tbl_ent(dev, n, -1);
6134 disk = get_imsm_disk(super, ord_to_idx(ord));
6135
6136 /* check for new failures */
6137 if (state & DS_FAULTY) {
6138 if (mark_failure(dev, disk, ord_to_idx(ord)))
6139 super->updates_pending++;
6140 }
6141
6142 /* check if in_sync */
6143 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
6144 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6145
6146 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
6147 super->updates_pending++;
6148 }
6149
6150 failed = imsm_count_failed(super, dev);
6151 map_state = imsm_check_degraded(super, dev, failed);
6152
6153 /* check if recovery complete, newly degraded, or failed */
6154 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
6155 end_migration(dev, map_state);
6156 map = get_imsm_map(dev, 0);
6157 map->failed_disk_num = ~0;
6158 super->updates_pending++;
6159 a->last_checkpoint = 0;
6160 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6161 map->map_state != map_state &&
6162 !dev->vol.migr_state) {
6163 dprintf("imsm: mark degraded\n");
6164 map->map_state = map_state;
6165 super->updates_pending++;
6166 a->last_checkpoint = 0;
6167 } else if (map_state == IMSM_T_STATE_FAILED &&
6168 map->map_state != map_state) {
6169 dprintf("imsm: mark failed\n");
6170 end_migration(dev, map_state);
6171 super->updates_pending++;
6172 a->last_checkpoint = 0;
6173 } else if (is_gen_migration(dev)) {
6174 dprintf("imsm: Detected General Migration in state: ");
6175 if (map_state == IMSM_T_STATE_NORMAL) {
6176 end_migration(dev, map_state);
6177 map = get_imsm_map(dev, 0);
6178 map->failed_disk_num = ~0;
6179 dprintf("normal\n");
6180 } else {
6181 if (map_state == IMSM_T_STATE_DEGRADED) {
6182 printf("degraded\n");
6183 end_migration(dev, map_state);
6184 } else {
6185 dprintf("failed\n");
6186 }
6187 map->map_state = map_state;
6188 }
6189 super->updates_pending++;
6190 }
6191 }
6192
6193 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
6194 {
6195 void *buf = mpb;
6196 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6197 unsigned long long dsize;
6198 unsigned long long sectors;
6199
6200 get_dev_size(fd, NULL, &dsize);
6201
6202 if (mpb_size > 512) {
6203 /* -1 to account for anchor */
6204 sectors = mpb_sectors(mpb) - 1;
6205
6206 /* write the extended mpb to the sectors preceeding the anchor */
6207 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6208 return 1;
6209
6210 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6211 != 512 * sectors)
6212 return 1;
6213 }
6214
6215 /* first block is stored on second to last sector of the disk */
6216 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
6217 return 1;
6218
6219 if (write(fd, buf, 512) != 512)
6220 return 1;
6221
6222 return 0;
6223 }
6224
6225 static void imsm_sync_metadata(struct supertype *container)
6226 {
6227 struct intel_super *super = container->sb;
6228
6229 dprintf("sync metadata: %d\n", super->updates_pending);
6230 if (!super->updates_pending)
6231 return;
6232
6233 write_super_imsm(container, 0);
6234
6235 super->updates_pending = 0;
6236 }
6237
6238 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6239 {
6240 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6241 int i = get_imsm_disk_idx(dev, idx, -1);
6242 struct dl *dl;
6243
6244 for (dl = super->disks; dl; dl = dl->next)
6245 if (dl->index == i)
6246 break;
6247
6248 if (dl && is_failed(&dl->disk))
6249 dl = NULL;
6250
6251 if (dl)
6252 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6253
6254 return dl;
6255 }
6256
6257 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
6258 struct active_array *a, int activate_new,
6259 struct mdinfo *additional_test_list)
6260 {
6261 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6262 int idx = get_imsm_disk_idx(dev, slot, -1);
6263 struct imsm_super *mpb = super->anchor;
6264 struct imsm_map *map;
6265 unsigned long long pos;
6266 struct mdinfo *d;
6267 struct extent *ex;
6268 int i, j;
6269 int found;
6270 __u32 array_start = 0;
6271 __u32 array_end = 0;
6272 struct dl *dl;
6273 struct mdinfo *test_list;
6274
6275 for (dl = super->disks; dl; dl = dl->next) {
6276 /* If in this array, skip */
6277 for (d = a->info.devs ; d ; d = d->next)
6278 if (d->state_fd >= 0 &&
6279 d->disk.major == dl->major &&
6280 d->disk.minor == dl->minor) {
6281 dprintf("%x:%x already in array\n",
6282 dl->major, dl->minor);
6283 break;
6284 }
6285 if (d)
6286 continue;
6287 test_list = additional_test_list;
6288 while (test_list) {
6289 if (test_list->disk.major == dl->major &&
6290 test_list->disk.minor == dl->minor) {
6291 dprintf("%x:%x already in additional test list\n",
6292 dl->major, dl->minor);
6293 break;
6294 }
6295 test_list = test_list->next;
6296 }
6297 if (test_list)
6298 continue;
6299
6300 /* skip in use or failed drives */
6301 if (is_failed(&dl->disk) || idx == dl->index ||
6302 dl->index == -2) {
6303 dprintf("%x:%x status (failed: %d index: %d)\n",
6304 dl->major, dl->minor, is_failed(&dl->disk), idx);
6305 continue;
6306 }
6307
6308 /* skip pure spares when we are looking for partially
6309 * assimilated drives
6310 */
6311 if (dl->index == -1 && !activate_new)
6312 continue;
6313
6314 /* Does this unused device have the requisite free space?
6315 * It needs to be able to cover all member volumes
6316 */
6317 ex = get_extents(super, dl);
6318 if (!ex) {
6319 dprintf("cannot get extents\n");
6320 continue;
6321 }
6322 for (i = 0; i < mpb->num_raid_devs; i++) {
6323 dev = get_imsm_dev(super, i);
6324 map = get_imsm_map(dev, 0);
6325
6326 /* check if this disk is already a member of
6327 * this array
6328 */
6329 if (get_imsm_disk_slot(map, dl->index) >= 0)
6330 continue;
6331
6332 found = 0;
6333 j = 0;
6334 pos = 0;
6335 array_start = __le32_to_cpu(map->pba_of_lba0);
6336 array_end = array_start +
6337 __le32_to_cpu(map->blocks_per_member) - 1;
6338
6339 do {
6340 /* check that we can start at pba_of_lba0 with
6341 * blocks_per_member of space
6342 */
6343 if (array_start >= pos && array_end < ex[j].start) {
6344 found = 1;
6345 break;
6346 }
6347 pos = ex[j].start + ex[j].size;
6348 j++;
6349 } while (ex[j-1].size);
6350
6351 if (!found)
6352 break;
6353 }
6354
6355 free(ex);
6356 if (i < mpb->num_raid_devs) {
6357 dprintf("%x:%x does not have %u to %u available\n",
6358 dl->major, dl->minor, array_start, array_end);
6359 /* No room */
6360 continue;
6361 }
6362 return dl;
6363 }
6364
6365 return dl;
6366 }
6367
6368
6369 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6370 {
6371 struct imsm_dev *dev2;
6372 struct imsm_map *map;
6373 struct dl *idisk;
6374 int slot;
6375 int idx;
6376 __u8 state;
6377
6378 dev2 = get_imsm_dev(cont->sb, dev_idx);
6379 if (dev2) {
6380 state = imsm_check_degraded(cont->sb, dev2, failed);
6381 if (state == IMSM_T_STATE_FAILED) {
6382 map = get_imsm_map(dev2, 0);
6383 if (!map)
6384 return 1;
6385 for (slot = 0; slot < map->num_members; slot++) {
6386 /*
6387 * Check if failed disks are deleted from intel
6388 * disk list or are marked to be deleted
6389 */
6390 idx = get_imsm_disk_idx(dev2, slot, -1);
6391 idisk = get_imsm_dl_disk(cont->sb, idx);
6392 /*
6393 * Do not rebuild the array if failed disks
6394 * from failed sub-array are not removed from
6395 * container.
6396 */
6397 if (idisk &&
6398 is_failed(&idisk->disk) &&
6399 (idisk->action != DISK_REMOVE))
6400 return 0;
6401 }
6402 }
6403 }
6404 return 1;
6405 }
6406
6407 static struct mdinfo *imsm_activate_spare(struct active_array *a,
6408 struct metadata_update **updates)
6409 {
6410 /**
6411 * Find a device with unused free space and use it to replace a
6412 * failed/vacant region in an array. We replace failed regions one a
6413 * array at a time. The result is that a new spare disk will be added
6414 * to the first failed array and after the monitor has finished
6415 * propagating failures the remainder will be consumed.
6416 *
6417 * FIXME add a capability for mdmon to request spares from another
6418 * container.
6419 */
6420
6421 struct intel_super *super = a->container->sb;
6422 int inst = a->info.container_member;
6423 struct imsm_dev *dev = get_imsm_dev(super, inst);
6424 struct imsm_map *map = get_imsm_map(dev, 0);
6425 int failed = a->info.array.raid_disks;
6426 struct mdinfo *rv = NULL;
6427 struct mdinfo *d;
6428 struct mdinfo *di;
6429 struct metadata_update *mu;
6430 struct dl *dl;
6431 struct imsm_update_activate_spare *u;
6432 int num_spares = 0;
6433 int i;
6434 int allowed;
6435
6436 for (d = a->info.devs ; d ; d = d->next) {
6437 if ((d->curr_state & DS_FAULTY) &&
6438 d->state_fd >= 0)
6439 /* wait for Removal to happen */
6440 return NULL;
6441 if (d->state_fd >= 0)
6442 failed--;
6443 }
6444
6445 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6446 inst, failed, a->info.array.raid_disks, a->info.array.level);
6447
6448 if (dev->vol.migr_state &&
6449 dev->vol.migr_type == MIGR_GEN_MIGR)
6450 /* No repair during migration */
6451 return NULL;
6452
6453 if (a->info.array.level == 4)
6454 /* No repair for takeovered array
6455 * imsm doesn't support raid4
6456 */
6457 return NULL;
6458
6459 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
6460 return NULL;
6461
6462 /*
6463 * If there are any failed disks check state of the other volume.
6464 * Block rebuild if the another one is failed until failed disks
6465 * are removed from container.
6466 */
6467 if (failed) {
6468 dprintf("found failed disks in %s, check if there another"
6469 "failed sub-array.\n",
6470 dev->volume);
6471 /* check if states of the other volumes allow for rebuild */
6472 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6473 if (i != inst) {
6474 allowed = imsm_rebuild_allowed(a->container,
6475 i, failed);
6476 if (!allowed)
6477 return NULL;
6478 }
6479 }
6480 }
6481
6482 /* For each slot, if it is not working, find a spare */
6483 for (i = 0; i < a->info.array.raid_disks; i++) {
6484 for (d = a->info.devs ; d ; d = d->next)
6485 if (d->disk.raid_disk == i)
6486 break;
6487 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6488 if (d && (d->state_fd >= 0))
6489 continue;
6490
6491 /*
6492 * OK, this device needs recovery. Try to re-add the
6493 * previous occupant of this slot, if this fails see if
6494 * we can continue the assimilation of a spare that was
6495 * partially assimilated, finally try to activate a new
6496 * spare.
6497 */
6498 dl = imsm_readd(super, i, a);
6499 if (!dl)
6500 dl = imsm_add_spare(super, i, a, 0, NULL);
6501 if (!dl)
6502 dl = imsm_add_spare(super, i, a, 1, NULL);
6503 if (!dl)
6504 continue;
6505
6506 /* found a usable disk with enough space */
6507 di = malloc(sizeof(*di));
6508 if (!di)
6509 continue;
6510 memset(di, 0, sizeof(*di));
6511
6512 /* dl->index will be -1 in the case we are activating a
6513 * pristine spare. imsm_process_update() will create a
6514 * new index in this case. Once a disk is found to be
6515 * failed in all member arrays it is kicked from the
6516 * metadata
6517 */
6518 di->disk.number = dl->index;
6519
6520 /* (ab)use di->devs to store a pointer to the device
6521 * we chose
6522 */
6523 di->devs = (struct mdinfo *) dl;
6524
6525 di->disk.raid_disk = i;
6526 di->disk.major = dl->major;
6527 di->disk.minor = dl->minor;
6528 di->disk.state = 0;
6529 di->recovery_start = 0;
6530 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6531 di->component_size = a->info.component_size;
6532 di->container_member = inst;
6533 super->random = random32();
6534 di->next = rv;
6535 rv = di;
6536 num_spares++;
6537 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6538 i, di->data_offset);
6539
6540 break;
6541 }
6542
6543 if (!rv)
6544 /* No spares found */
6545 return rv;
6546 /* Now 'rv' has a list of devices to return.
6547 * Create a metadata_update record to update the
6548 * disk_ord_tbl for the array
6549 */
6550 mu = malloc(sizeof(*mu));
6551 if (mu) {
6552 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6553 if (mu->buf == NULL) {
6554 free(mu);
6555 mu = NULL;
6556 }
6557 }
6558 if (!mu) {
6559 while (rv) {
6560 struct mdinfo *n = rv->next;
6561
6562 free(rv);
6563 rv = n;
6564 }
6565 return NULL;
6566 }
6567
6568 mu->space = NULL;
6569 mu->space_list = NULL;
6570 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6571 mu->next = *updates;
6572 u = (struct imsm_update_activate_spare *) mu->buf;
6573
6574 for (di = rv ; di ; di = di->next) {
6575 u->type = update_activate_spare;
6576 u->dl = (struct dl *) di->devs;
6577 di->devs = NULL;
6578 u->slot = di->disk.raid_disk;
6579 u->array = inst;
6580 u->next = u + 1;
6581 u++;
6582 }
6583 (u-1)->next = NULL;
6584 *updates = mu;
6585
6586 return rv;
6587 }
6588
6589 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
6590 {
6591 struct imsm_dev *dev = get_imsm_dev(super, idx);
6592 struct imsm_map *map = get_imsm_map(dev, 0);
6593 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6594 struct disk_info *inf = get_disk_info(u);
6595 struct imsm_disk *disk;
6596 int i;
6597 int j;
6598
6599 for (i = 0; i < map->num_members; i++) {
6600 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
6601 for (j = 0; j < new_map->num_members; j++)
6602 if (serialcmp(disk->serial, inf[j].serial) == 0)
6603 return 1;
6604 }
6605
6606 return 0;
6607 }
6608
6609
6610 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6611 {
6612 struct dl *dl = NULL;
6613 for (dl = super->disks; dl; dl = dl->next)
6614 if ((dl->major == major) && (dl->minor == minor))
6615 return dl;
6616 return NULL;
6617 }
6618
6619 static int remove_disk_super(struct intel_super *super, int major, int minor)
6620 {
6621 struct dl *prev = NULL;
6622 struct dl *dl;
6623
6624 prev = NULL;
6625 for (dl = super->disks; dl; dl = dl->next) {
6626 if ((dl->major == major) && (dl->minor == minor)) {
6627 /* remove */
6628 if (prev)
6629 prev->next = dl->next;
6630 else
6631 super->disks = dl->next;
6632 dl->next = NULL;
6633 __free_imsm_disk(dl);
6634 dprintf("%s: removed %x:%x\n",
6635 __func__, major, minor);
6636 break;
6637 }
6638 prev = dl;
6639 }
6640 return 0;
6641 }
6642
6643 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
6644
6645 static int add_remove_disk_update(struct intel_super *super)
6646 {
6647 int check_degraded = 0;
6648 struct dl *disk = NULL;
6649 /* add/remove some spares to/from the metadata/contrainer */
6650 while (super->disk_mgmt_list) {
6651 struct dl *disk_cfg;
6652
6653 disk_cfg = super->disk_mgmt_list;
6654 super->disk_mgmt_list = disk_cfg->next;
6655 disk_cfg->next = NULL;
6656
6657 if (disk_cfg->action == DISK_ADD) {
6658 disk_cfg->next = super->disks;
6659 super->disks = disk_cfg;
6660 check_degraded = 1;
6661 dprintf("%s: added %x:%x\n",
6662 __func__, disk_cfg->major,
6663 disk_cfg->minor);
6664 } else if (disk_cfg->action == DISK_REMOVE) {
6665 dprintf("Disk remove action processed: %x.%x\n",
6666 disk_cfg->major, disk_cfg->minor);
6667 disk = get_disk_super(super,
6668 disk_cfg->major,
6669 disk_cfg->minor);
6670 if (disk) {
6671 /* store action status */
6672 disk->action = DISK_REMOVE;
6673 /* remove spare disks only */
6674 if (disk->index == -1) {
6675 remove_disk_super(super,
6676 disk_cfg->major,
6677 disk_cfg->minor);
6678 }
6679 }
6680 /* release allocate disk structure */
6681 __free_imsm_disk(disk_cfg);
6682 }
6683 }
6684 return check_degraded;
6685 }
6686
6687
6688 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6689 struct intel_super *super,
6690 void ***space_list)
6691 {
6692 struct intel_dev *id;
6693 void **tofree = NULL;
6694 int ret_val = 0;
6695
6696 dprintf("apply_reshape_migration_update()\n");
6697 if ((u->subdev < 0) ||
6698 (u->subdev > 1)) {
6699 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6700 return ret_val;
6701 }
6702 if ((space_list == NULL) || (*space_list == NULL)) {
6703 dprintf("imsm: Error: Memory is not allocated\n");
6704 return ret_val;
6705 }
6706
6707 for (id = super->devlist ; id; id = id->next) {
6708 if (id->index == (unsigned)u->subdev) {
6709 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6710 struct imsm_map *map;
6711 struct imsm_dev *new_dev =
6712 (struct imsm_dev *)*space_list;
6713 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6714 int to_state;
6715 struct dl *new_disk;
6716
6717 if (new_dev == NULL)
6718 return ret_val;
6719 *space_list = **space_list;
6720 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6721 map = get_imsm_map(new_dev, 0);
6722 if (migr_map) {
6723 dprintf("imsm: Error: migration in progress");
6724 return ret_val;
6725 }
6726
6727 to_state = map->map_state;
6728 if ((u->new_level == 5) && (map->raid_level == 0)) {
6729 map->num_members++;
6730 /* this should not happen */
6731 if (u->new_disks[0] < 0) {
6732 map->failed_disk_num =
6733 map->num_members - 1;
6734 to_state = IMSM_T_STATE_DEGRADED;
6735 } else
6736 to_state = IMSM_T_STATE_NORMAL;
6737 }
6738 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
6739 if (u->new_level > -1)
6740 map->raid_level = u->new_level;
6741 migr_map = get_imsm_map(new_dev, 1);
6742 if ((u->new_level == 5) &&
6743 (migr_map->raid_level == 0)) {
6744 int ord = map->num_members - 1;
6745 migr_map->num_members--;
6746 if (u->new_disks[0] < 0)
6747 ord |= IMSM_ORD_REBUILD;
6748 set_imsm_ord_tbl_ent(map,
6749 map->num_members - 1,
6750 ord);
6751 }
6752 id->dev = new_dev;
6753 tofree = (void **)dev;
6754
6755 /* update chunk size
6756 */
6757 if (u->new_chunksize > 0)
6758 map->blocks_per_strip =
6759 __cpu_to_le16(u->new_chunksize * 2);
6760
6761 /* add disk
6762 */
6763 if ((u->new_level != 5) ||
6764 (migr_map->raid_level != 0) ||
6765 (migr_map->raid_level == map->raid_level))
6766 goto skip_disk_add;
6767
6768 if (u->new_disks[0] >= 0) {
6769 /* use passes spare
6770 */
6771 new_disk = get_disk_super(super,
6772 major(u->new_disks[0]),
6773 minor(u->new_disks[0]));
6774 dprintf("imsm: new disk for reshape is: %i:%i "
6775 "(%p, index = %i)\n",
6776 major(u->new_disks[0]),
6777 minor(u->new_disks[0]),
6778 new_disk, new_disk->index);
6779 if (new_disk == NULL)
6780 goto error_disk_add;
6781
6782 new_disk->index = map->num_members - 1;
6783 /* slot to fill in autolayout
6784 */
6785 new_disk->raiddisk = new_disk->index;
6786 new_disk->disk.status |= CONFIGURED_DISK;
6787 new_disk->disk.status &= ~SPARE_DISK;
6788 } else
6789 goto error_disk_add;
6790
6791 skip_disk_add:
6792 *tofree = *space_list;
6793 /* calculate new size
6794 */
6795 imsm_set_array_size(new_dev);
6796
6797 ret_val = 1;
6798 }
6799 }
6800
6801 if (tofree)
6802 *space_list = tofree;
6803 return ret_val;
6804
6805 error_disk_add:
6806 dprintf("Error: imsm: Cannot find disk.\n");
6807 return ret_val;
6808 }
6809
6810
6811 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
6812 struct intel_super *super,
6813 void ***space_list)
6814 {
6815 struct dl *new_disk;
6816 struct intel_dev *id;
6817 int i;
6818 int delta_disks = u->new_raid_disks - u->old_raid_disks;
6819 int disk_count = u->old_raid_disks;
6820 void **tofree = NULL;
6821 int devices_to_reshape = 1;
6822 struct imsm_super *mpb = super->anchor;
6823 int ret_val = 0;
6824 unsigned int dev_id;
6825
6826 dprintf("imsm: apply_reshape_container_disks_update()\n");
6827
6828 /* enable spares to use in array */
6829 for (i = 0; i < delta_disks; i++) {
6830 new_disk = get_disk_super(super,
6831 major(u->new_disks[i]),
6832 minor(u->new_disks[i]));
6833 dprintf("imsm: new disk for reshape is: %i:%i "
6834 "(%p, index = %i)\n",
6835 major(u->new_disks[i]), minor(u->new_disks[i]),
6836 new_disk, new_disk->index);
6837 if ((new_disk == NULL) ||
6838 ((new_disk->index >= 0) &&
6839 (new_disk->index < u->old_raid_disks)))
6840 goto update_reshape_exit;
6841 new_disk->index = disk_count++;
6842 /* slot to fill in autolayout
6843 */
6844 new_disk->raiddisk = new_disk->index;
6845 new_disk->disk.status |=
6846 CONFIGURED_DISK;
6847 new_disk->disk.status &= ~SPARE_DISK;
6848 }
6849
6850 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
6851 mpb->num_raid_devs);
6852 /* manage changes in volume
6853 */
6854 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
6855 void **sp = *space_list;
6856 struct imsm_dev *newdev;
6857 struct imsm_map *newmap, *oldmap;
6858
6859 for (id = super->devlist ; id; id = id->next) {
6860 if (id->index == dev_id)
6861 break;
6862 }
6863 if (id == NULL)
6864 break;
6865 if (!sp)
6866 continue;
6867 *space_list = *sp;
6868 newdev = (void*)sp;
6869 /* Copy the dev, but not (all of) the map */
6870 memcpy(newdev, id->dev, sizeof(*newdev));
6871 oldmap = get_imsm_map(id->dev, 0);
6872 newmap = get_imsm_map(newdev, 0);
6873 /* Copy the current map */
6874 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6875 /* update one device only
6876 */
6877 if (devices_to_reshape) {
6878 dprintf("imsm: modifying subdev: %i\n",
6879 id->index);
6880 devices_to_reshape--;
6881 newdev->vol.migr_state = 1;
6882 newdev->vol.curr_migr_unit = 0;
6883 newdev->vol.migr_type = MIGR_GEN_MIGR;
6884 newmap->num_members = u->new_raid_disks;
6885 for (i = 0; i < delta_disks; i++) {
6886 set_imsm_ord_tbl_ent(newmap,
6887 u->old_raid_disks + i,
6888 u->old_raid_disks + i);
6889 }
6890 /* New map is correct, now need to save old map
6891 */
6892 newmap = get_imsm_map(newdev, 1);
6893 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6894
6895 imsm_set_array_size(newdev);
6896 }
6897
6898 sp = (void **)id->dev;
6899 id->dev = newdev;
6900 *sp = tofree;
6901 tofree = sp;
6902
6903 /* Clear migration record */
6904 memset(super->migr_rec, 0, sizeof(struct migr_record));
6905 }
6906 if (tofree)
6907 *space_list = tofree;
6908 ret_val = 1;
6909
6910 update_reshape_exit:
6911
6912 return ret_val;
6913 }
6914
6915 static int apply_takeover_update(struct imsm_update_takeover *u,
6916 struct intel_super *super,
6917 void ***space_list)
6918 {
6919 struct imsm_dev *dev = NULL;
6920 struct intel_dev *dv;
6921 struct imsm_dev *dev_new;
6922 struct imsm_map *map;
6923 struct dl *dm, *du;
6924 int i;
6925
6926 for (dv = super->devlist; dv; dv = dv->next)
6927 if (dv->index == (unsigned int)u->subarray) {
6928 dev = dv->dev;
6929 break;
6930 }
6931
6932 if (dev == NULL)
6933 return 0;
6934
6935 map = get_imsm_map(dev, 0);
6936
6937 if (u->direction == R10_TO_R0) {
6938 /* Number of failed disks must be half of initial disk number */
6939 if (imsm_count_failed(super, dev) != (map->num_members / 2))
6940 return 0;
6941
6942 /* iterate through devices to mark removed disks as spare */
6943 for (dm = super->disks; dm; dm = dm->next) {
6944 if (dm->disk.status & FAILED_DISK) {
6945 int idx = dm->index;
6946 /* update indexes on the disk list */
6947 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
6948 the index values will end up being correct.... NB */
6949 for (du = super->disks; du; du = du->next)
6950 if (du->index > idx)
6951 du->index--;
6952 /* mark as spare disk */
6953 dm->disk.status = SPARE_DISK;
6954 dm->index = -1;
6955 }
6956 }
6957 /* update map */
6958 map->num_members = map->num_members / 2;
6959 map->map_state = IMSM_T_STATE_NORMAL;
6960 map->num_domains = 1;
6961 map->raid_level = 0;
6962 map->failed_disk_num = -1;
6963 }
6964
6965 if (u->direction == R0_TO_R10) {
6966 void **space;
6967 /* update slots in current disk list */
6968 for (dm = super->disks; dm; dm = dm->next) {
6969 if (dm->index >= 0)
6970 dm->index *= 2;
6971 }
6972 /* create new *missing* disks */
6973 for (i = 0; i < map->num_members; i++) {
6974 space = *space_list;
6975 if (!space)
6976 continue;
6977 *space_list = *space;
6978 du = (void *)space;
6979 memcpy(du, super->disks, sizeof(*du));
6980 du->fd = -1;
6981 du->minor = 0;
6982 du->major = 0;
6983 du->index = (i * 2) + 1;
6984 sprintf((char *)du->disk.serial,
6985 " MISSING_%d", du->index);
6986 sprintf((char *)du->serial,
6987 "MISSING_%d", du->index);
6988 du->next = super->missing;
6989 super->missing = du;
6990 }
6991 /* create new dev and map */
6992 space = *space_list;
6993 if (!space)
6994 return 0;
6995 *space_list = *space;
6996 dev_new = (void *)space;
6997 memcpy(dev_new, dev, sizeof(*dev));
6998 /* update new map */
6999 map = get_imsm_map(dev_new, 0);
7000 map->num_members = map->num_members * 2;
7001 map->map_state = IMSM_T_STATE_DEGRADED;
7002 map->num_domains = 2;
7003 map->raid_level = 1;
7004 /* replace dev<->dev_new */
7005 dv->dev = dev_new;
7006 }
7007 /* update disk order table */
7008 for (du = super->disks; du; du = du->next)
7009 if (du->index >= 0)
7010 set_imsm_ord_tbl_ent(map, du->index, du->index);
7011 for (du = super->missing; du; du = du->next)
7012 if (du->index >= 0) {
7013 set_imsm_ord_tbl_ent(map, du->index, du->index);
7014 mark_missing(dv->dev, &du->disk, du->index);
7015 }
7016
7017 return 1;
7018 }
7019
7020 static void imsm_process_update(struct supertype *st,
7021 struct metadata_update *update)
7022 {
7023 /**
7024 * crack open the metadata_update envelope to find the update record
7025 * update can be one of:
7026 * update_reshape_container_disks - all the arrays in the container
7027 * are being reshaped to have more devices. We need to mark
7028 * the arrays for general migration and convert selected spares
7029 * into active devices.
7030 * update_activate_spare - a spare device has replaced a failed
7031 * device in an array, update the disk_ord_tbl. If this disk is
7032 * present in all member arrays then also clear the SPARE_DISK
7033 * flag
7034 * update_create_array
7035 * update_kill_array
7036 * update_rename_array
7037 * update_add_remove_disk
7038 */
7039 struct intel_super *super = st->sb;
7040 struct imsm_super *mpb;
7041 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7042
7043 /* update requires a larger buf but the allocation failed */
7044 if (super->next_len && !super->next_buf) {
7045 super->next_len = 0;
7046 return;
7047 }
7048
7049 if (super->next_buf) {
7050 memcpy(super->next_buf, super->buf, super->len);
7051 free(super->buf);
7052 super->len = super->next_len;
7053 super->buf = super->next_buf;
7054
7055 super->next_len = 0;
7056 super->next_buf = NULL;
7057 }
7058
7059 mpb = super->anchor;
7060
7061 switch (type) {
7062 case update_general_migration_checkpoint: {
7063 struct intel_dev *id;
7064 struct imsm_update_general_migration_checkpoint *u =
7065 (void *)update->buf;
7066
7067 dprintf("imsm: process_update() "
7068 "for update_general_migration_checkpoint called\n");
7069
7070 /* find device under general migration */
7071 for (id = super->devlist ; id; id = id->next) {
7072 if (is_gen_migration(id->dev)) {
7073 id->dev->vol.curr_migr_unit =
7074 __cpu_to_le32(u->curr_migr_unit);
7075 super->updates_pending++;
7076 }
7077 }
7078 break;
7079 }
7080 case update_takeover: {
7081 struct imsm_update_takeover *u = (void *)update->buf;
7082 if (apply_takeover_update(u, super, &update->space_list)) {
7083 imsm_update_version_info(super);
7084 super->updates_pending++;
7085 }
7086 break;
7087 }
7088
7089 case update_reshape_container_disks: {
7090 struct imsm_update_reshape *u = (void *)update->buf;
7091 if (apply_reshape_container_disks_update(
7092 u, super, &update->space_list))
7093 super->updates_pending++;
7094 break;
7095 }
7096 case update_reshape_migration: {
7097 struct imsm_update_reshape_migration *u = (void *)update->buf;
7098 if (apply_reshape_migration_update(
7099 u, super, &update->space_list))
7100 super->updates_pending++;
7101 break;
7102 }
7103 case update_activate_spare: {
7104 struct imsm_update_activate_spare *u = (void *) update->buf;
7105 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7106 struct imsm_map *map = get_imsm_map(dev, 0);
7107 struct imsm_map *migr_map;
7108 struct active_array *a;
7109 struct imsm_disk *disk;
7110 __u8 to_state;
7111 struct dl *dl;
7112 unsigned int found;
7113 int failed;
7114 int victim = get_imsm_disk_idx(dev, u->slot, -1);
7115 int i;
7116
7117 for (dl = super->disks; dl; dl = dl->next)
7118 if (dl == u->dl)
7119 break;
7120
7121 if (!dl) {
7122 fprintf(stderr, "error: imsm_activate_spare passed "
7123 "an unknown disk (index: %d)\n",
7124 u->dl->index);
7125 return;
7126 }
7127
7128 super->updates_pending++;
7129 /* count failures (excluding rebuilds and the victim)
7130 * to determine map[0] state
7131 */
7132 failed = 0;
7133 for (i = 0; i < map->num_members; i++) {
7134 if (i == u->slot)
7135 continue;
7136 disk = get_imsm_disk(super,
7137 get_imsm_disk_idx(dev, i, -1));
7138 if (!disk || is_failed(disk))
7139 failed++;
7140 }
7141
7142 /* adding a pristine spare, assign a new index */
7143 if (dl->index < 0) {
7144 dl->index = super->anchor->num_disks;
7145 super->anchor->num_disks++;
7146 }
7147 disk = &dl->disk;
7148 disk->status |= CONFIGURED_DISK;
7149 disk->status &= ~SPARE_DISK;
7150
7151 /* mark rebuild */
7152 to_state = imsm_check_degraded(super, dev, failed);
7153 map->map_state = IMSM_T_STATE_DEGRADED;
7154 migrate(dev, super, to_state, MIGR_REBUILD);
7155 migr_map = get_imsm_map(dev, 1);
7156 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7157 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
7158
7159 /* update the family_num to mark a new container
7160 * generation, being careful to record the existing
7161 * family_num in orig_family_num to clean up after
7162 * earlier mdadm versions that neglected to set it.
7163 */
7164 if (mpb->orig_family_num == 0)
7165 mpb->orig_family_num = mpb->family_num;
7166 mpb->family_num += super->random;
7167
7168 /* count arrays using the victim in the metadata */
7169 found = 0;
7170 for (a = st->arrays; a ; a = a->next) {
7171 dev = get_imsm_dev(super, a->info.container_member);
7172 map = get_imsm_map(dev, 0);
7173
7174 if (get_imsm_disk_slot(map, victim) >= 0)
7175 found++;
7176 }
7177
7178 /* delete the victim if it is no longer being
7179 * utilized anywhere
7180 */
7181 if (!found) {
7182 struct dl **dlp;
7183
7184 /* We know that 'manager' isn't touching anything,
7185 * so it is safe to delete
7186 */
7187 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
7188 if ((*dlp)->index == victim)
7189 break;
7190
7191 /* victim may be on the missing list */
7192 if (!*dlp)
7193 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
7194 if ((*dlp)->index == victim)
7195 break;
7196 imsm_delete(super, dlp, victim);
7197 }
7198 break;
7199 }
7200 case update_create_array: {
7201 /* someone wants to create a new array, we need to be aware of
7202 * a few races/collisions:
7203 * 1/ 'Create' called by two separate instances of mdadm
7204 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7205 * devices that have since been assimilated via
7206 * activate_spare.
7207 * In the event this update can not be carried out mdadm will
7208 * (FIX ME) notice that its update did not take hold.
7209 */
7210 struct imsm_update_create_array *u = (void *) update->buf;
7211 struct intel_dev *dv;
7212 struct imsm_dev *dev;
7213 struct imsm_map *map, *new_map;
7214 unsigned long long start, end;
7215 unsigned long long new_start, new_end;
7216 int i;
7217 struct disk_info *inf;
7218 struct dl *dl;
7219
7220 /* handle racing creates: first come first serve */
7221 if (u->dev_idx < mpb->num_raid_devs) {
7222 dprintf("%s: subarray %d already defined\n",
7223 __func__, u->dev_idx);
7224 goto create_error;
7225 }
7226
7227 /* check update is next in sequence */
7228 if (u->dev_idx != mpb->num_raid_devs) {
7229 dprintf("%s: can not create array %d expected index %d\n",
7230 __func__, u->dev_idx, mpb->num_raid_devs);
7231 goto create_error;
7232 }
7233
7234 new_map = get_imsm_map(&u->dev, 0);
7235 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7236 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
7237 inf = get_disk_info(u);
7238
7239 /* handle activate_spare versus create race:
7240 * check to make sure that overlapping arrays do not include
7241 * overalpping disks
7242 */
7243 for (i = 0; i < mpb->num_raid_devs; i++) {
7244 dev = get_imsm_dev(super, i);
7245 map = get_imsm_map(dev, 0);
7246 start = __le32_to_cpu(map->pba_of_lba0);
7247 end = start + __le32_to_cpu(map->blocks_per_member);
7248 if ((new_start >= start && new_start <= end) ||
7249 (start >= new_start && start <= new_end))
7250 /* overlap */;
7251 else
7252 continue;
7253
7254 if (disks_overlap(super, i, u)) {
7255 dprintf("%s: arrays overlap\n", __func__);
7256 goto create_error;
7257 }
7258 }
7259
7260 /* check that prepare update was successful */
7261 if (!update->space) {
7262 dprintf("%s: prepare update failed\n", __func__);
7263 goto create_error;
7264 }
7265
7266 /* check that all disks are still active before committing
7267 * changes. FIXME: could we instead handle this by creating a
7268 * degraded array? That's probably not what the user expects,
7269 * so better to drop this update on the floor.
7270 */
7271 for (i = 0; i < new_map->num_members; i++) {
7272 dl = serial_to_dl(inf[i].serial, super);
7273 if (!dl) {
7274 dprintf("%s: disk disappeared\n", __func__);
7275 goto create_error;
7276 }
7277 }
7278
7279 super->updates_pending++;
7280
7281 /* convert spares to members and fixup ord_tbl */
7282 for (i = 0; i < new_map->num_members; i++) {
7283 dl = serial_to_dl(inf[i].serial, super);
7284 if (dl->index == -1) {
7285 dl->index = mpb->num_disks;
7286 mpb->num_disks++;
7287 dl->disk.status |= CONFIGURED_DISK;
7288 dl->disk.status &= ~SPARE_DISK;
7289 }
7290 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7291 }
7292
7293 dv = update->space;
7294 dev = dv->dev;
7295 update->space = NULL;
7296 imsm_copy_dev(dev, &u->dev);
7297 dv->index = u->dev_idx;
7298 dv->next = super->devlist;
7299 super->devlist = dv;
7300 mpb->num_raid_devs++;
7301
7302 imsm_update_version_info(super);
7303 break;
7304 create_error:
7305 /* mdmon knows how to release update->space, but not
7306 * ((struct intel_dev *) update->space)->dev
7307 */
7308 if (update->space) {
7309 dv = update->space;
7310 free(dv->dev);
7311 }
7312 break;
7313 }
7314 case update_kill_array: {
7315 struct imsm_update_kill_array *u = (void *) update->buf;
7316 int victim = u->dev_idx;
7317 struct active_array *a;
7318 struct intel_dev **dp;
7319 struct imsm_dev *dev;
7320
7321 /* sanity check that we are not affecting the uuid of
7322 * active arrays, or deleting an active array
7323 *
7324 * FIXME when immutable ids are available, but note that
7325 * we'll also need to fixup the invalidated/active
7326 * subarray indexes in mdstat
7327 */
7328 for (a = st->arrays; a; a = a->next)
7329 if (a->info.container_member >= victim)
7330 break;
7331 /* by definition if mdmon is running at least one array
7332 * is active in the container, so checking
7333 * mpb->num_raid_devs is just extra paranoia
7334 */
7335 dev = get_imsm_dev(super, victim);
7336 if (a || !dev || mpb->num_raid_devs == 1) {
7337 dprintf("failed to delete subarray-%d\n", victim);
7338 break;
7339 }
7340
7341 for (dp = &super->devlist; *dp;)
7342 if ((*dp)->index == (unsigned)super->current_vol) {
7343 *dp = (*dp)->next;
7344 } else {
7345 if ((*dp)->index > (unsigned)victim)
7346 (*dp)->index--;
7347 dp = &(*dp)->next;
7348 }
7349 mpb->num_raid_devs--;
7350 super->updates_pending++;
7351 break;
7352 }
7353 case update_rename_array: {
7354 struct imsm_update_rename_array *u = (void *) update->buf;
7355 char name[MAX_RAID_SERIAL_LEN+1];
7356 int target = u->dev_idx;
7357 struct active_array *a;
7358 struct imsm_dev *dev;
7359
7360 /* sanity check that we are not affecting the uuid of
7361 * an active array
7362 */
7363 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7364 name[MAX_RAID_SERIAL_LEN] = '\0';
7365 for (a = st->arrays; a; a = a->next)
7366 if (a->info.container_member == target)
7367 break;
7368 dev = get_imsm_dev(super, u->dev_idx);
7369 if (a || !dev || !check_name(super, name, 1)) {
7370 dprintf("failed to rename subarray-%d\n", target);
7371 break;
7372 }
7373
7374 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7375 super->updates_pending++;
7376 break;
7377 }
7378 case update_add_remove_disk: {
7379 /* we may be able to repair some arrays if disks are
7380 * being added, check teh status of add_remove_disk
7381 * if discs has been added.
7382 */
7383 if (add_remove_disk_update(super)) {
7384 struct active_array *a;
7385
7386 super->updates_pending++;
7387 for (a = st->arrays; a; a = a->next)
7388 a->check_degraded = 1;
7389 }
7390 break;
7391 }
7392 default:
7393 fprintf(stderr, "error: unsuported process update type:"
7394 "(type: %d)\n", type);
7395 }
7396 }
7397
7398 static struct mdinfo *get_spares_for_grow(struct supertype *st);
7399
7400 static void imsm_prepare_update(struct supertype *st,
7401 struct metadata_update *update)
7402 {
7403 /**
7404 * Allocate space to hold new disk entries, raid-device entries or a new
7405 * mpb if necessary. The manager synchronously waits for updates to
7406 * complete in the monitor, so new mpb buffers allocated here can be
7407 * integrated by the monitor thread without worrying about live pointers
7408 * in the manager thread.
7409 */
7410 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7411 struct intel_super *super = st->sb;
7412 struct imsm_super *mpb = super->anchor;
7413 size_t buf_len;
7414 size_t len = 0;
7415
7416 switch (type) {
7417 case update_general_migration_checkpoint:
7418 dprintf("imsm: prepare_update() "
7419 "for update_general_migration_checkpoint called\n");
7420 break;
7421 case update_takeover: {
7422 struct imsm_update_takeover *u = (void *)update->buf;
7423 if (u->direction == R0_TO_R10) {
7424 void **tail = (void **)&update->space_list;
7425 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7426 struct imsm_map *map = get_imsm_map(dev, 0);
7427 int num_members = map->num_members;
7428 void *space;
7429 int size, i;
7430 int err = 0;
7431 /* allocate memory for added disks */
7432 for (i = 0; i < num_members; i++) {
7433 size = sizeof(struct dl);
7434 space = malloc(size);
7435 if (!space) {
7436 err++;
7437 break;
7438 }
7439 *tail = space;
7440 tail = space;
7441 *tail = NULL;
7442 }
7443 /* allocate memory for new device */
7444 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7445 (num_members * sizeof(__u32));
7446 space = malloc(size);
7447 if (!space)
7448 err++;
7449 else {
7450 *tail = space;
7451 tail = space;
7452 *tail = NULL;
7453 }
7454 if (!err) {
7455 len = disks_to_mpb_size(num_members * 2);
7456 } else {
7457 /* if allocation didn't success, free buffer */
7458 while (update->space_list) {
7459 void **sp = update->space_list;
7460 update->space_list = *sp;
7461 free(sp);
7462 }
7463 }
7464 }
7465
7466 break;
7467 }
7468 case update_reshape_container_disks: {
7469 /* Every raid device in the container is about to
7470 * gain some more devices, and we will enter a
7471 * reconfiguration.
7472 * So each 'imsm_map' will be bigger, and the imsm_vol
7473 * will now hold 2 of them.
7474 * Thus we need new 'struct imsm_dev' allocations sized
7475 * as sizeof_imsm_dev but with more devices in both maps.
7476 */
7477 struct imsm_update_reshape *u = (void *)update->buf;
7478 struct intel_dev *dl;
7479 void **space_tail = (void**)&update->space_list;
7480
7481 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7482
7483 for (dl = super->devlist; dl; dl = dl->next) {
7484 int size = sizeof_imsm_dev(dl->dev, 1);
7485 void *s;
7486 if (u->new_raid_disks > u->old_raid_disks)
7487 size += sizeof(__u32)*2*
7488 (u->new_raid_disks - u->old_raid_disks);
7489 s = malloc(size);
7490 if (!s)
7491 break;
7492 *space_tail = s;
7493 space_tail = s;
7494 *space_tail = NULL;
7495 }
7496
7497 len = disks_to_mpb_size(u->new_raid_disks);
7498 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7499 break;
7500 }
7501 case update_reshape_migration: {
7502 /* for migration level 0->5 we need to add disks
7503 * so the same as for container operation we will copy
7504 * device to the bigger location.
7505 * in memory prepared device and new disk area are prepared
7506 * for usage in process update
7507 */
7508 struct imsm_update_reshape_migration *u = (void *)update->buf;
7509 struct intel_dev *id;
7510 void **space_tail = (void **)&update->space_list;
7511 int size;
7512 void *s;
7513 int current_level = -1;
7514
7515 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7516
7517 /* add space for bigger array in update
7518 */
7519 for (id = super->devlist; id; id = id->next) {
7520 if (id->index == (unsigned)u->subdev) {
7521 size = sizeof_imsm_dev(id->dev, 1);
7522 if (u->new_raid_disks > u->old_raid_disks)
7523 size += sizeof(__u32)*2*
7524 (u->new_raid_disks - u->old_raid_disks);
7525 s = malloc(size);
7526 if (!s)
7527 break;
7528 *space_tail = s;
7529 space_tail = s;
7530 *space_tail = NULL;
7531 break;
7532 }
7533 }
7534 if (update->space_list == NULL)
7535 break;
7536
7537 /* add space for disk in update
7538 */
7539 size = sizeof(struct dl);
7540 s = malloc(size);
7541 if (!s) {
7542 free(update->space_list);
7543 update->space_list = NULL;
7544 break;
7545 }
7546 *space_tail = s;
7547 space_tail = s;
7548 *space_tail = NULL;
7549
7550 /* add spare device to update
7551 */
7552 for (id = super->devlist ; id; id = id->next)
7553 if (id->index == (unsigned)u->subdev) {
7554 struct imsm_dev *dev;
7555 struct imsm_map *map;
7556
7557 dev = get_imsm_dev(super, u->subdev);
7558 map = get_imsm_map(dev, 0);
7559 current_level = map->raid_level;
7560 break;
7561 }
7562 if ((u->new_level == 5) && (u->new_level != current_level)) {
7563 struct mdinfo *spares;
7564
7565 spares = get_spares_for_grow(st);
7566 if (spares) {
7567 struct dl *dl;
7568 struct mdinfo *dev;
7569
7570 dev = spares->devs;
7571 if (dev) {
7572 u->new_disks[0] =
7573 makedev(dev->disk.major,
7574 dev->disk.minor);
7575 dl = get_disk_super(super,
7576 dev->disk.major,
7577 dev->disk.minor);
7578 dl->index = u->old_raid_disks;
7579 dev = dev->next;
7580 }
7581 sysfs_free(spares);
7582 }
7583 }
7584 len = disks_to_mpb_size(u->new_raid_disks);
7585 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7586 break;
7587 }
7588 case update_create_array: {
7589 struct imsm_update_create_array *u = (void *) update->buf;
7590 struct intel_dev *dv;
7591 struct imsm_dev *dev = &u->dev;
7592 struct imsm_map *map = get_imsm_map(dev, 0);
7593 struct dl *dl;
7594 struct disk_info *inf;
7595 int i;
7596 int activate = 0;
7597
7598 inf = get_disk_info(u);
7599 len = sizeof_imsm_dev(dev, 1);
7600 /* allocate a new super->devlist entry */
7601 dv = malloc(sizeof(*dv));
7602 if (dv) {
7603 dv->dev = malloc(len);
7604 if (dv->dev)
7605 update->space = dv;
7606 else {
7607 free(dv);
7608 update->space = NULL;
7609 }
7610 }
7611
7612 /* count how many spares will be converted to members */
7613 for (i = 0; i < map->num_members; i++) {
7614 dl = serial_to_dl(inf[i].serial, super);
7615 if (!dl) {
7616 /* hmm maybe it failed?, nothing we can do about
7617 * it here
7618 */
7619 continue;
7620 }
7621 if (count_memberships(dl, super) == 0)
7622 activate++;
7623 }
7624 len += activate * sizeof(struct imsm_disk);
7625 break;
7626 default:
7627 break;
7628 }
7629 }
7630
7631 /* check if we need a larger metadata buffer */
7632 if (super->next_buf)
7633 buf_len = super->next_len;
7634 else
7635 buf_len = super->len;
7636
7637 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7638 /* ok we need a larger buf than what is currently allocated
7639 * if this allocation fails process_update will notice that
7640 * ->next_len is set and ->next_buf is NULL
7641 */
7642 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7643 if (super->next_buf)
7644 free(super->next_buf);
7645
7646 super->next_len = buf_len;
7647 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7648 memset(super->next_buf, 0, buf_len);
7649 else
7650 super->next_buf = NULL;
7651 }
7652 }
7653
7654 /* must be called while manager is quiesced */
7655 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
7656 {
7657 struct imsm_super *mpb = super->anchor;
7658 struct dl *iter;
7659 struct imsm_dev *dev;
7660 struct imsm_map *map;
7661 int i, j, num_members;
7662 __u32 ord;
7663
7664 dprintf("%s: deleting device[%d] from imsm_super\n",
7665 __func__, index);
7666
7667 /* shift all indexes down one */
7668 for (iter = super->disks; iter; iter = iter->next)
7669 if (iter->index > (int)index)
7670 iter->index--;
7671 for (iter = super->missing; iter; iter = iter->next)
7672 if (iter->index > (int)index)
7673 iter->index--;
7674
7675 for (i = 0; i < mpb->num_raid_devs; i++) {
7676 dev = get_imsm_dev(super, i);
7677 map = get_imsm_map(dev, 0);
7678 num_members = map->num_members;
7679 for (j = 0; j < num_members; j++) {
7680 /* update ord entries being careful not to propagate
7681 * ord-flags to the first map
7682 */
7683 ord = get_imsm_ord_tbl_ent(dev, j, -1);
7684
7685 if (ord_to_idx(ord) <= index)
7686 continue;
7687
7688 map = get_imsm_map(dev, 0);
7689 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7690 map = get_imsm_map(dev, 1);
7691 if (map)
7692 set_imsm_ord_tbl_ent(map, j, ord - 1);
7693 }
7694 }
7695
7696 mpb->num_disks--;
7697 super->updates_pending++;
7698 if (*dlp) {
7699 struct dl *dl = *dlp;
7700
7701 *dlp = (*dlp)->next;
7702 __free_imsm_disk(dl);
7703 }
7704 }
7705 #endif /* MDASSEMBLE */
7706 /*******************************************************************************
7707 * Function: open_backup_targets
7708 * Description: Function opens file descriptors for all devices given in
7709 * info->devs
7710 * Parameters:
7711 * info : general array info
7712 * raid_disks : number of disks
7713 * raid_fds : table of device's file descriptors
7714 * Returns:
7715 * 0 : success
7716 * -1 : fail
7717 ******************************************************************************/
7718 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7719 {
7720 struct mdinfo *sd;
7721
7722 for (sd = info->devs ; sd ; sd = sd->next) {
7723 char *dn;
7724
7725 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7726 dprintf("disk is faulty!!\n");
7727 continue;
7728 }
7729
7730 if ((sd->disk.raid_disk >= raid_disks) ||
7731 (sd->disk.raid_disk < 0))
7732 continue;
7733
7734 dn = map_dev(sd->disk.major,
7735 sd->disk.minor, 1);
7736 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7737 if (raid_fds[sd->disk.raid_disk] < 0) {
7738 fprintf(stderr, "cannot open component\n");
7739 return -1;
7740 }
7741 }
7742 return 0;
7743 }
7744
7745 #ifndef MDASSEMBLE
7746 /*******************************************************************************
7747 * Function: init_migr_record_imsm
7748 * Description: Function inits imsm migration record
7749 * Parameters:
7750 * super : imsm internal array info
7751 * dev : device under migration
7752 * info : general array info to find the smallest device
7753 * Returns:
7754 * none
7755 ******************************************************************************/
7756 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7757 struct mdinfo *info)
7758 {
7759 struct intel_super *super = st->sb;
7760 struct migr_record *migr_rec = super->migr_rec;
7761 int new_data_disks;
7762 unsigned long long dsize, dev_sectors;
7763 long long unsigned min_dev_sectors = -1LLU;
7764 struct mdinfo *sd;
7765 char nm[30];
7766 int fd;
7767 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7768 struct imsm_map *map_src = get_imsm_map(dev, 1);
7769 unsigned long long num_migr_units;
7770 unsigned long long array_blocks;
7771
7772 memset(migr_rec, 0, sizeof(struct migr_record));
7773 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
7774
7775 /* only ascending reshape supported now */
7776 migr_rec->ascending_migr = __cpu_to_le32(1);
7777
7778 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
7779 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
7780 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
7781 new_data_disks = imsm_num_data_members(dev, 0);
7782 migr_rec->blocks_per_unit =
7783 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
7784 migr_rec->dest_depth_per_unit =
7785 __cpu_to_le32(migr_rec->dest_depth_per_unit);
7786 array_blocks = info->component_size * new_data_disks;
7787 num_migr_units =
7788 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
7789
7790 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
7791 num_migr_units++;
7792 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
7793
7794 migr_rec->post_migr_vol_cap = dev->size_low;
7795 migr_rec->post_migr_vol_cap_hi = dev->size_high;
7796
7797
7798 /* Find the smallest dev */
7799 for (sd = info->devs ; sd ; sd = sd->next) {
7800 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
7801 fd = dev_open(nm, O_RDONLY);
7802 if (fd < 0)
7803 continue;
7804 get_dev_size(fd, NULL, &dsize);
7805 dev_sectors = dsize / 512;
7806 if (dev_sectors < min_dev_sectors)
7807 min_dev_sectors = dev_sectors;
7808 close(fd);
7809 }
7810 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
7811 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
7812
7813 write_imsm_migr_rec(st);
7814
7815 return;
7816 }
7817
7818 /*******************************************************************************
7819 * Function: save_backup_imsm
7820 * Description: Function saves critical data stripes to Migration Copy Area
7821 * and updates the current migration unit status.
7822 * Use restore_stripes() to form a destination stripe,
7823 * and to write it to the Copy Area.
7824 * Parameters:
7825 * st : supertype information
7826 * dev : imsm device that backup is saved for
7827 * info : general array info
7828 * buf : input buffer
7829 * length : length of data to backup (blocks_per_unit)
7830 * Returns:
7831 * 0 : success
7832 *, -1 : fail
7833 ******************************************************************************/
7834 int save_backup_imsm(struct supertype *st,
7835 struct imsm_dev *dev,
7836 struct mdinfo *info,
7837 void *buf,
7838 int length)
7839 {
7840 int rv = -1;
7841 struct intel_super *super = st->sb;
7842 unsigned long long *target_offsets = NULL;
7843 int *targets = NULL;
7844 int i;
7845 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7846 int new_disks = map_dest->num_members;
7847 int dest_layout = 0;
7848 int dest_chunk;
7849 unsigned long long start;
7850 int data_disks = imsm_num_data_members(dev, 0);
7851
7852 targets = malloc(new_disks * sizeof(int));
7853 if (!targets)
7854 goto abort;
7855
7856 for (i = 0; i < new_disks; i++)
7857 targets[i] = -1;
7858
7859 target_offsets = malloc(new_disks * sizeof(unsigned long long));
7860 if (!target_offsets)
7861 goto abort;
7862
7863 start = info->reshape_progress * 512;
7864 for (i = 0; i < new_disks; i++) {
7865 target_offsets[i] = (unsigned long long)
7866 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
7867 /* move back copy area adderss, it will be moved forward
7868 * in restore_stripes() using start input variable
7869 */
7870 target_offsets[i] -= start/data_disks;
7871 }
7872
7873 if (open_backup_targets(info, new_disks, targets))
7874 goto abort;
7875
7876 dest_layout = imsm_level_to_layout(map_dest->raid_level);
7877 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
7878
7879 if (restore_stripes(targets, /* list of dest devices */
7880 target_offsets, /* migration record offsets */
7881 new_disks,
7882 dest_chunk,
7883 map_dest->raid_level,
7884 dest_layout,
7885 -1, /* source backup file descriptor */
7886 0, /* input buf offset
7887 * always 0 buf is already offseted */
7888 start,
7889 length,
7890 buf) != 0) {
7891 fprintf(stderr, Name ": Error restoring stripes\n");
7892 goto abort;
7893 }
7894
7895 rv = 0;
7896
7897 abort:
7898 if (targets) {
7899 for (i = 0; i < new_disks; i++)
7900 if (targets[i] >= 0)
7901 close(targets[i]);
7902 free(targets);
7903 }
7904 free(target_offsets);
7905
7906 return rv;
7907 }
7908
7909 /*******************************************************************************
7910 * Function: save_checkpoint_imsm
7911 * Description: Function called for current unit status update
7912 * in the migration record. It writes it to disk.
7913 * Parameters:
7914 * super : imsm internal array info
7915 * info : general array info
7916 * Returns:
7917 * 0: success
7918 * 1: failure
7919 * 2: failure, means no valid migration record
7920 * / no general migration in progress /
7921 ******************************************************************************/
7922 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
7923 {
7924 struct intel_super *super = st->sb;
7925 unsigned long long blocks_per_unit;
7926 unsigned long long curr_migr_unit;
7927
7928 if (load_imsm_migr_rec(super, info) != 0) {
7929 dprintf("imsm: ERROR: Cannot read migration record "
7930 "for checkpoint save.\n");
7931 return 1;
7932 }
7933
7934 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
7935 if (blocks_per_unit == 0) {
7936 dprintf("imsm: no migration in progress.\n");
7937 return 2;
7938 }
7939 curr_migr_unit = info->reshape_progress / blocks_per_unit;
7940 /* check if array is alligned to copy area
7941 * if it is not alligned, add one to current migration unit value
7942 * this can happend on array reshape finish only
7943 */
7944 if (info->reshape_progress % blocks_per_unit)
7945 curr_migr_unit++;
7946
7947 super->migr_rec->curr_migr_unit =
7948 __cpu_to_le32(curr_migr_unit);
7949 super->migr_rec->rec_status = __cpu_to_le32(state);
7950 super->migr_rec->dest_1st_member_lba =
7951 __cpu_to_le32(curr_migr_unit *
7952 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
7953 if (write_imsm_migr_rec(st) < 0) {
7954 dprintf("imsm: Cannot write migration record "
7955 "outside backup area\n");
7956 return 1;
7957 }
7958
7959 return 0;
7960 }
7961
7962 /*******************************************************************************
7963 * Function: recover_backup_imsm
7964 * Description: Function recovers critical data from the Migration Copy Area
7965 * while assembling an array.
7966 * Parameters:
7967 * super : imsm internal array info
7968 * info : general array info
7969 * Returns:
7970 * 0 : success (or there is no data to recover)
7971 * 1 : fail
7972 ******************************************************************************/
7973 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
7974 {
7975 struct intel_super *super = st->sb;
7976 struct migr_record *migr_rec = super->migr_rec;
7977 struct imsm_map *map_dest = NULL;
7978 struct intel_dev *id = NULL;
7979 unsigned long long read_offset;
7980 unsigned long long write_offset;
7981 unsigned unit_len;
7982 int *targets = NULL;
7983 int new_disks, i, err;
7984 char *buf = NULL;
7985 int retval = 1;
7986 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
7987 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
7988 char buffer[20];
7989 int skipped_disks = 0;
7990 int max_degradation;
7991
7992 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
7993 if (err < 1)
7994 return 1;
7995
7996 /* recover data only during assemblation */
7997 if (strncmp(buffer, "inactive", 8) != 0)
7998 return 0;
7999 /* no data to recover */
8000 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8001 return 0;
8002 if (curr_migr_unit >= num_migr_units)
8003 return 1;
8004
8005 /* find device during reshape */
8006 for (id = super->devlist; id; id = id->next)
8007 if (is_gen_migration(id->dev))
8008 break;
8009 if (id == NULL)
8010 return 1;
8011
8012 map_dest = get_imsm_map(id->dev, 0);
8013 new_disks = map_dest->num_members;
8014 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
8015
8016 read_offset = (unsigned long long)
8017 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8018
8019 write_offset = ((unsigned long long)
8020 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
8021 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
8022
8023 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8024 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8025 goto abort;
8026 targets = malloc(new_disks * sizeof(int));
8027 if (!targets)
8028 goto abort;
8029
8030 open_backup_targets(info, new_disks, targets);
8031
8032 for (i = 0; i < new_disks; i++) {
8033 if (targets[i] < 0) {
8034 skipped_disks++;
8035 continue;
8036 }
8037 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8038 fprintf(stderr,
8039 Name ": Cannot seek to block: %s\n",
8040 strerror(errno));
8041 goto abort;
8042 }
8043 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
8044 fprintf(stderr,
8045 Name ": Cannot read copy area block: %s\n",
8046 strerror(errno));
8047 goto abort;
8048 }
8049 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8050 fprintf(stderr,
8051 Name ": Cannot seek to block: %s\n",
8052 strerror(errno));
8053 goto abort;
8054 }
8055 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
8056 fprintf(stderr,
8057 Name ": Cannot restore block: %s\n",
8058 strerror(errno));
8059 goto abort;
8060 }
8061 }
8062
8063 if (skipped_disks > max_degradation) {
8064 fprintf(stderr,
8065 Name ": Cannot restore data from backup."
8066 " Too many failed disks\n");
8067 goto abort;
8068 }
8069
8070 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8071 /* ignore error == 2, this can mean end of reshape here
8072 */
8073 dprintf("imsm: Cannot write checkpoint to "
8074 "migration record (UNIT_SRC_NORMAL) during restart\n");
8075 } else
8076 retval = 0;
8077
8078 abort:
8079 if (targets) {
8080 for (i = 0; i < new_disks; i++)
8081 if (targets[i])
8082 close(targets[i]);
8083 free(targets);
8084 }
8085 free(buf);
8086 return retval;
8087 }
8088
8089 static char disk_by_path[] = "/dev/disk/by-path/";
8090
8091 static const char *imsm_get_disk_controller_domain(const char *path)
8092 {
8093 char disk_path[PATH_MAX];
8094 char *drv=NULL;
8095 struct stat st;
8096
8097 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8098 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8099 if (stat(disk_path, &st) == 0) {
8100 struct sys_dev* hba;
8101 char *path=NULL;
8102
8103 path = devt_to_devpath(st.st_rdev);
8104 if (path == NULL)
8105 return "unknown";
8106 hba = find_disk_attached_hba(-1, path);
8107 if (hba && hba->type == SYS_DEV_SAS)
8108 drv = "isci";
8109 else if (hba && hba->type == SYS_DEV_SATA)
8110 drv = "ahci";
8111 else
8112 drv = "unknown";
8113 dprintf("path: %s hba: %s attached: %s\n",
8114 path, (hba) ? hba->path : "NULL", drv);
8115 free(path);
8116 if (hba)
8117 free_sys_dev(&hba);
8118 }
8119 return drv;
8120 }
8121
8122 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8123 {
8124 char subdev_name[20];
8125 struct mdstat_ent *mdstat;
8126
8127 sprintf(subdev_name, "%d", subdev);
8128 mdstat = mdstat_by_subdev(subdev_name, container);
8129 if (!mdstat)
8130 return -1;
8131
8132 *minor = mdstat->devnum;
8133 free_mdstat(mdstat);
8134 return 0;
8135 }
8136
8137 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8138 struct geo_params *geo,
8139 int *old_raid_disks)
8140 {
8141 /* currently we only support increasing the number of devices
8142 * for a container. This increases the number of device for each
8143 * member array. They must all be RAID0 or RAID5.
8144 */
8145 int ret_val = 0;
8146 struct mdinfo *info, *member;
8147 int devices_that_can_grow = 0;
8148
8149 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8150 "st->devnum = (%i)\n",
8151 st->devnum);
8152
8153 if (geo->size != -1 ||
8154 geo->level != UnSet ||
8155 geo->layout != UnSet ||
8156 geo->chunksize != 0 ||
8157 geo->raid_disks == UnSet) {
8158 dprintf("imsm: Container operation is allowed for "
8159 "raid disks number change only.\n");
8160 return ret_val;
8161 }
8162
8163 info = container_content_imsm(st, NULL);
8164 for (member = info; member; member = member->next) {
8165 int result;
8166 int minor;
8167
8168 dprintf("imsm: checking device_num: %i\n",
8169 member->container_member);
8170
8171 if (geo->raid_disks <= member->array.raid_disks) {
8172 /* we work on container for Online Capacity Expansion
8173 * only so raid_disks has to grow
8174 */
8175 dprintf("imsm: for container operation raid disks "
8176 "increase is required\n");
8177 break;
8178 }
8179
8180 if ((info->array.level != 0) &&
8181 (info->array.level != 5)) {
8182 /* we cannot use this container with other raid level
8183 */
8184 dprintf("imsm: for container operation wrong"
8185 " raid level (%i) detected\n",
8186 info->array.level);
8187 break;
8188 } else {
8189 /* check for platform support
8190 * for this raid level configuration
8191 */
8192 struct intel_super *super = st->sb;
8193 if (!is_raid_level_supported(super->orom,
8194 member->array.level,
8195 geo->raid_disks)) {
8196 dprintf("platform does not support raid%d with"
8197 " %d disk%s\n",
8198 info->array.level,
8199 geo->raid_disks,
8200 geo->raid_disks > 1 ? "s" : "");
8201 break;
8202 }
8203 /* check if component size is aligned to chunk size
8204 */
8205 if (info->component_size %
8206 (info->array.chunk_size/512)) {
8207 dprintf("Component size is not aligned to "
8208 "chunk size\n");
8209 break;
8210 }
8211 }
8212
8213 if (*old_raid_disks &&
8214 info->array.raid_disks != *old_raid_disks)
8215 break;
8216 *old_raid_disks = info->array.raid_disks;
8217
8218 /* All raid5 and raid0 volumes in container
8219 * have to be ready for Online Capacity Expansion
8220 * so they need to be assembled. We have already
8221 * checked that no recovery etc is happening.
8222 */
8223 result = imsm_find_array_minor_by_subdev(member->container_member,
8224 st->container_dev,
8225 &minor);
8226 if (result < 0) {
8227 dprintf("imsm: cannot find array\n");
8228 break;
8229 }
8230 devices_that_can_grow++;
8231 }
8232 sysfs_free(info);
8233 if (!member && devices_that_can_grow)
8234 ret_val = 1;
8235
8236 if (ret_val)
8237 dprintf("\tContainer operation allowed\n");
8238 else
8239 dprintf("\tError: %i\n", ret_val);
8240
8241 return ret_val;
8242 }
8243
8244 /* Function: get_spares_for_grow
8245 * Description: Allocates memory and creates list of spare devices
8246 * avaliable in container. Checks if spare drive size is acceptable.
8247 * Parameters: Pointer to the supertype structure
8248 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8249 * NULL if fail
8250 */
8251 static struct mdinfo *get_spares_for_grow(struct supertype *st)
8252 {
8253 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
8254 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
8255 }
8256
8257 /******************************************************************************
8258 * function: imsm_create_metadata_update_for_reshape
8259 * Function creates update for whole IMSM container.
8260 *
8261 ******************************************************************************/
8262 static int imsm_create_metadata_update_for_reshape(
8263 struct supertype *st,
8264 struct geo_params *geo,
8265 int old_raid_disks,
8266 struct imsm_update_reshape **updatep)
8267 {
8268 struct intel_super *super = st->sb;
8269 struct imsm_super *mpb = super->anchor;
8270 int update_memory_size = 0;
8271 struct imsm_update_reshape *u = NULL;
8272 struct mdinfo *spares = NULL;
8273 int i;
8274 int delta_disks = 0;
8275 struct mdinfo *dev;
8276
8277 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8278 geo->raid_disks);
8279
8280 delta_disks = geo->raid_disks - old_raid_disks;
8281
8282 /* size of all update data without anchor */
8283 update_memory_size = sizeof(struct imsm_update_reshape);
8284
8285 /* now add space for spare disks that we need to add. */
8286 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8287
8288 u = calloc(1, update_memory_size);
8289 if (u == NULL) {
8290 dprintf("error: "
8291 "cannot get memory for imsm_update_reshape update\n");
8292 return 0;
8293 }
8294 u->type = update_reshape_container_disks;
8295 u->old_raid_disks = old_raid_disks;
8296 u->new_raid_disks = geo->raid_disks;
8297
8298 /* now get spare disks list
8299 */
8300 spares = get_spares_for_grow(st);
8301
8302 if (spares == NULL
8303 || delta_disks > spares->array.spare_disks) {
8304 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8305 "for %s.\n", geo->dev_name);
8306 i = -1;
8307 goto abort;
8308 }
8309
8310 /* we have got spares
8311 * update disk list in imsm_disk list table in anchor
8312 */
8313 dprintf("imsm: %i spares are available.\n\n",
8314 spares->array.spare_disks);
8315
8316 dev = spares->devs;
8317 for (i = 0; i < delta_disks; i++) {
8318 struct dl *dl;
8319
8320 if (dev == NULL)
8321 break;
8322 u->new_disks[i] = makedev(dev->disk.major,
8323 dev->disk.minor);
8324 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
8325 dl->index = mpb->num_disks;
8326 mpb->num_disks++;
8327 dev = dev->next;
8328 }
8329
8330 abort:
8331 /* free spares
8332 */
8333 sysfs_free(spares);
8334
8335 dprintf("imsm: reshape update preparation :");
8336 if (i == delta_disks) {
8337 dprintf(" OK\n");
8338 *updatep = u;
8339 return update_memory_size;
8340 }
8341 free(u);
8342 dprintf(" Error\n");
8343
8344 return 0;
8345 }
8346
8347 /******************************************************************************
8348 * function: imsm_create_metadata_update_for_migration()
8349 * Creates update for IMSM array.
8350 *
8351 ******************************************************************************/
8352 static int imsm_create_metadata_update_for_migration(
8353 struct supertype *st,
8354 struct geo_params *geo,
8355 struct imsm_update_reshape_migration **updatep)
8356 {
8357 struct intel_super *super = st->sb;
8358 int update_memory_size = 0;
8359 struct imsm_update_reshape_migration *u = NULL;
8360 struct imsm_dev *dev;
8361 int previous_level = -1;
8362
8363 dprintf("imsm_create_metadata_update_for_migration(enter)"
8364 " New Level = %i\n", geo->level);
8365
8366 /* size of all update data without anchor */
8367 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8368
8369 u = calloc(1, update_memory_size);
8370 if (u == NULL) {
8371 dprintf("error: cannot get memory for "
8372 "imsm_create_metadata_update_for_migration\n");
8373 return 0;
8374 }
8375 u->type = update_reshape_migration;
8376 u->subdev = super->current_vol;
8377 u->new_level = geo->level;
8378 u->new_layout = geo->layout;
8379 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8380 u->new_disks[0] = -1;
8381 u->new_chunksize = -1;
8382
8383 dev = get_imsm_dev(super, u->subdev);
8384 if (dev) {
8385 struct imsm_map *map;
8386
8387 map = get_imsm_map(dev, 0);
8388 if (map) {
8389 int current_chunk_size =
8390 __le16_to_cpu(map->blocks_per_strip) / 2;
8391
8392 if (geo->chunksize != current_chunk_size) {
8393 u->new_chunksize = geo->chunksize / 1024;
8394 dprintf("imsm: "
8395 "chunk size change from %i to %i\n",
8396 current_chunk_size, u->new_chunksize);
8397 }
8398 previous_level = map->raid_level;
8399 }
8400 }
8401 if ((geo->level == 5) && (previous_level == 0)) {
8402 struct mdinfo *spares = NULL;
8403
8404 u->new_raid_disks++;
8405 spares = get_spares_for_grow(st);
8406 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8407 free(u);
8408 sysfs_free(spares);
8409 update_memory_size = 0;
8410 dprintf("error: cannot get spare device "
8411 "for requested migration");
8412 return 0;
8413 }
8414 sysfs_free(spares);
8415 }
8416 dprintf("imsm: reshape update preparation : OK\n");
8417 *updatep = u;
8418
8419 return update_memory_size;
8420 }
8421
8422 static void imsm_update_metadata_locally(struct supertype *st,
8423 void *buf, int len)
8424 {
8425 struct metadata_update mu;
8426
8427 mu.buf = buf;
8428 mu.len = len;
8429 mu.space = NULL;
8430 mu.space_list = NULL;
8431 mu.next = NULL;
8432 imsm_prepare_update(st, &mu);
8433 imsm_process_update(st, &mu);
8434
8435 while (mu.space_list) {
8436 void **space = mu.space_list;
8437 mu.space_list = *space;
8438 free(space);
8439 }
8440 }
8441
8442 /***************************************************************************
8443 * Function: imsm_analyze_change
8444 * Description: Function analyze change for single volume
8445 * and validate if transition is supported
8446 * Parameters: Geometry parameters, supertype structure
8447 * Returns: Operation type code on success, -1 if fail
8448 ****************************************************************************/
8449 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8450 struct geo_params *geo)
8451 {
8452 struct mdinfo info;
8453 int change = -1;
8454 int check_devs = 0;
8455 int chunk;
8456
8457 getinfo_super_imsm_volume(st, &info, NULL);
8458 if ((geo->level != info.array.level) &&
8459 (geo->level >= 0) &&
8460 (geo->level != UnSet)) {
8461 switch (info.array.level) {
8462 case 0:
8463 if (geo->level == 5) {
8464 change = CH_MIGRATION;
8465 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8466 fprintf(stderr,
8467 Name " Error. Requested Layout "
8468 "not supported (left-asymmetric layout "
8469 "is supported only)!\n");
8470 change = -1;
8471 goto analyse_change_exit;
8472 }
8473 check_devs = 1;
8474 }
8475 if (geo->level == 10) {
8476 change = CH_TAKEOVER;
8477 check_devs = 1;
8478 }
8479 break;
8480 case 1:
8481 if (geo->level == 0) {
8482 change = CH_TAKEOVER;
8483 check_devs = 1;
8484 }
8485 break;
8486 case 10:
8487 if (geo->level == 0) {
8488 change = CH_TAKEOVER;
8489 check_devs = 1;
8490 }
8491 break;
8492 }
8493 if (change == -1) {
8494 fprintf(stderr,
8495 Name " Error. Level Migration from %d to %d "
8496 "not supported!\n",
8497 info.array.level, geo->level);
8498 goto analyse_change_exit;
8499 }
8500 } else
8501 geo->level = info.array.level;
8502
8503 if ((geo->layout != info.array.layout)
8504 && ((geo->layout != UnSet) && (geo->layout != -1))) {
8505 change = CH_MIGRATION;
8506 if ((info.array.layout == 0)
8507 && (info.array.level == 5)
8508 && (geo->layout == 5)) {
8509 /* reshape 5 -> 4 */
8510 } else if ((info.array.layout == 5)
8511 && (info.array.level == 5)
8512 && (geo->layout == 0)) {
8513 /* reshape 4 -> 5 */
8514 geo->layout = 0;
8515 geo->level = 5;
8516 } else {
8517 fprintf(stderr,
8518 Name " Error. Layout Migration from %d to %d "
8519 "not supported!\n",
8520 info.array.layout, geo->layout);
8521 change = -1;
8522 goto analyse_change_exit;
8523 }
8524 } else
8525 geo->layout = info.array.layout;
8526
8527 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8528 && (geo->chunksize != info.array.chunk_size))
8529 change = CH_MIGRATION;
8530 else
8531 geo->chunksize = info.array.chunk_size;
8532
8533 chunk = geo->chunksize / 1024;
8534 if (!validate_geometry_imsm(st,
8535 geo->level,
8536 geo->layout,
8537 geo->raid_disks,
8538 &chunk,
8539 geo->size,
8540 0, 0, 1))
8541 change = -1;
8542
8543 if (check_devs) {
8544 struct intel_super *super = st->sb;
8545 struct imsm_super *mpb = super->anchor;
8546
8547 if (mpb->num_raid_devs > 1) {
8548 fprintf(stderr,
8549 Name " Error. Cannot perform operation on %s"
8550 "- for this operation it MUST be single "
8551 "array in container\n",
8552 geo->dev_name);
8553 change = -1;
8554 }
8555 }
8556
8557 analyse_change_exit:
8558
8559 return change;
8560 }
8561
8562 int imsm_takeover(struct supertype *st, struct geo_params *geo)
8563 {
8564 struct intel_super *super = st->sb;
8565 struct imsm_update_takeover *u;
8566
8567 u = malloc(sizeof(struct imsm_update_takeover));
8568 if (u == NULL)
8569 return 1;
8570
8571 u->type = update_takeover;
8572 u->subarray = super->current_vol;
8573
8574 /* 10->0 transition */
8575 if (geo->level == 0)
8576 u->direction = R10_TO_R0;
8577
8578 /* 0->10 transition */
8579 if (geo->level == 10)
8580 u->direction = R0_TO_R10;
8581
8582 /* update metadata locally */
8583 imsm_update_metadata_locally(st, u,
8584 sizeof(struct imsm_update_takeover));
8585 /* and possibly remotely */
8586 if (st->update_tail)
8587 append_metadata_update(st, u,
8588 sizeof(struct imsm_update_takeover));
8589 else
8590 free(u);
8591
8592 return 0;
8593 }
8594
8595 static int imsm_reshape_super(struct supertype *st, long long size, int level,
8596 int layout, int chunksize, int raid_disks,
8597 int delta_disks, char *backup, char *dev,
8598 int verbose)
8599 {
8600 int ret_val = 1;
8601 struct geo_params geo;
8602
8603 dprintf("imsm: reshape_super called.\n");
8604
8605 memset(&geo, 0, sizeof(struct geo_params));
8606
8607 geo.dev_name = dev;
8608 geo.dev_id = st->devnum;
8609 geo.size = size;
8610 geo.level = level;
8611 geo.layout = layout;
8612 geo.chunksize = chunksize;
8613 geo.raid_disks = raid_disks;
8614 if (delta_disks != UnSet)
8615 geo.raid_disks += delta_disks;
8616
8617 dprintf("\tfor level : %i\n", geo.level);
8618 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8619
8620 if (experimental() == 0)
8621 return ret_val;
8622
8623 if (st->container_dev == st->devnum) {
8624 /* On container level we can only increase number of devices. */
8625 dprintf("imsm: info: Container operation\n");
8626 int old_raid_disks = 0;
8627
8628 if (imsm_reshape_is_allowed_on_container(
8629 st, &geo, &old_raid_disks)) {
8630 struct imsm_update_reshape *u = NULL;
8631 int len;
8632
8633 len = imsm_create_metadata_update_for_reshape(
8634 st, &geo, old_raid_disks, &u);
8635
8636 if (len <= 0) {
8637 dprintf("imsm: Cannot prepare update\n");
8638 goto exit_imsm_reshape_super;
8639 }
8640
8641 ret_val = 0;
8642 /* update metadata locally */
8643 imsm_update_metadata_locally(st, u, len);
8644 /* and possibly remotely */
8645 if (st->update_tail)
8646 append_metadata_update(st, u, len);
8647 else
8648 free(u);
8649
8650 } else {
8651 fprintf(stderr, Name ": (imsm) Operation "
8652 "is not allowed on this container\n");
8653 }
8654 } else {
8655 /* On volume level we support following operations
8656 * - takeover: raid10 -> raid0; raid0 -> raid10
8657 * - chunk size migration
8658 * - migration: raid5 -> raid0; raid0 -> raid5
8659 */
8660 struct intel_super *super = st->sb;
8661 struct intel_dev *dev = super->devlist;
8662 int change, devnum;
8663 dprintf("imsm: info: Volume operation\n");
8664 /* find requested device */
8665 while (dev) {
8666 if (imsm_find_array_minor_by_subdev(
8667 dev->index, st->container_dev, &devnum) == 0
8668 && devnum == geo.dev_id)
8669 break;
8670 dev = dev->next;
8671 }
8672 if (dev == NULL) {
8673 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8674 geo.dev_name, geo.dev_id);
8675 goto exit_imsm_reshape_super;
8676 }
8677 super->current_vol = dev->index;
8678 change = imsm_analyze_change(st, &geo);
8679 switch (change) {
8680 case CH_TAKEOVER:
8681 ret_val = imsm_takeover(st, &geo);
8682 break;
8683 case CH_MIGRATION: {
8684 struct imsm_update_reshape_migration *u = NULL;
8685 int len =
8686 imsm_create_metadata_update_for_migration(
8687 st, &geo, &u);
8688 if (len < 1) {
8689 dprintf("imsm: "
8690 "Cannot prepare update\n");
8691 break;
8692 }
8693 ret_val = 0;
8694 /* update metadata locally */
8695 imsm_update_metadata_locally(st, u, len);
8696 /* and possibly remotely */
8697 if (st->update_tail)
8698 append_metadata_update(st, u, len);
8699 else
8700 free(u);
8701 }
8702 break;
8703 default:
8704 ret_val = 1;
8705 }
8706 }
8707
8708 exit_imsm_reshape_super:
8709 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8710 return ret_val;
8711 }
8712
8713 /*******************************************************************************
8714 * Function: wait_for_reshape_imsm
8715 * Description: Function writes new sync_max value and waits until
8716 * reshape process reach new position
8717 * Parameters:
8718 * sra : general array info
8719 * ndata : number of disks in new array's layout
8720 * Returns:
8721 * 0 : success,
8722 * 1 : there is no reshape in progress,
8723 * -1 : fail
8724 ******************************************************************************/
8725 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
8726 {
8727 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8728 unsigned long long completed;
8729 /* to_complete : new sync_max position */
8730 unsigned long long to_complete = sra->reshape_progress;
8731 unsigned long long position_to_set = to_complete / ndata;
8732
8733 if (fd < 0) {
8734 dprintf("imsm: wait_for_reshape_imsm() "
8735 "cannot open reshape_position\n");
8736 return 1;
8737 }
8738
8739 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8740 dprintf("imsm: wait_for_reshape_imsm() "
8741 "cannot read reshape_position (no reshape in progres)\n");
8742 close(fd);
8743 return 0;
8744 }
8745
8746 if (completed > to_complete) {
8747 dprintf("imsm: wait_for_reshape_imsm() "
8748 "wrong next position to set %llu (%llu)\n",
8749 to_complete, completed);
8750 close(fd);
8751 return -1;
8752 }
8753 dprintf("Position set: %llu\n", position_to_set);
8754 if (sysfs_set_num(sra, NULL, "sync_max",
8755 position_to_set) != 0) {
8756 dprintf("imsm: wait_for_reshape_imsm() "
8757 "cannot set reshape position to %llu\n",
8758 position_to_set);
8759 close(fd);
8760 return -1;
8761 }
8762
8763 do {
8764 char action[20];
8765 fd_set rfds;
8766 FD_ZERO(&rfds);
8767 FD_SET(fd, &rfds);
8768 select(fd+1, &rfds, NULL, NULL, NULL);
8769 if (sysfs_get_str(sra, NULL, "sync_action",
8770 action, 20) > 0 &&
8771 strncmp(action, "reshape", 7) != 0)
8772 break;
8773 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8774 dprintf("imsm: wait_for_reshape_imsm() "
8775 "cannot read reshape_position (in loop)\n");
8776 close(fd);
8777 return 1;
8778 }
8779 } while (completed < to_complete);
8780 close(fd);
8781 return 0;
8782
8783 }
8784
8785 /*******************************************************************************
8786 * Function: check_degradation_change
8787 * Description: Check that array hasn't become failed.
8788 * Parameters:
8789 * info : for sysfs access
8790 * sources : source disks descriptors
8791 * degraded: previous degradation level
8792 * Returns:
8793 * degradation level
8794 ******************************************************************************/
8795 int check_degradation_change(struct mdinfo *info,
8796 int *sources,
8797 int degraded)
8798 {
8799 unsigned long long new_degraded;
8800 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
8801 if (new_degraded != (unsigned long long)degraded) {
8802 /* check each device to ensure it is still working */
8803 struct mdinfo *sd;
8804 new_degraded = 0;
8805 for (sd = info->devs ; sd ; sd = sd->next) {
8806 if (sd->disk.state & (1<<MD_DISK_FAULTY))
8807 continue;
8808 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
8809 char sbuf[20];
8810 if (sysfs_get_str(info,
8811 sd, "state", sbuf, 20) < 0 ||
8812 strstr(sbuf, "faulty") ||
8813 strstr(sbuf, "in_sync") == NULL) {
8814 /* this device is dead */
8815 sd->disk.state = (1<<MD_DISK_FAULTY);
8816 if (sd->disk.raid_disk >= 0 &&
8817 sources[sd->disk.raid_disk] >= 0) {
8818 close(sources[
8819 sd->disk.raid_disk]);
8820 sources[sd->disk.raid_disk] =
8821 -1;
8822 }
8823 new_degraded++;
8824 }
8825 }
8826 }
8827 }
8828
8829 return new_degraded;
8830 }
8831
8832 /*******************************************************************************
8833 * Function: imsm_manage_reshape
8834 * Description: Function finds array under reshape and it manages reshape
8835 * process. It creates stripes backups (if required) and sets
8836 * checheckpoits.
8837 * Parameters:
8838 * afd : Backup handle (nattive) - not used
8839 * sra : general array info
8840 * reshape : reshape parameters - not used
8841 * st : supertype structure
8842 * blocks : size of critical section [blocks]
8843 * fds : table of source device descriptor
8844 * offsets : start of array (offest per devices)
8845 * dests : not used
8846 * destfd : table of destination device descriptor
8847 * destoffsets : table of destination offsets (per device)
8848 * Returns:
8849 * 1 : success, reshape is done
8850 * 0 : fail
8851 ******************************************************************************/
8852 static int imsm_manage_reshape(
8853 int afd, struct mdinfo *sra, struct reshape *reshape,
8854 struct supertype *st, unsigned long backup_blocks,
8855 int *fds, unsigned long long *offsets,
8856 int dests, int *destfd, unsigned long long *destoffsets)
8857 {
8858 int ret_val = 0;
8859 struct intel_super *super = st->sb;
8860 struct intel_dev *dv = NULL;
8861 struct imsm_dev *dev = NULL;
8862 struct imsm_map *map_src;
8863 int migr_vol_qan = 0;
8864 int ndata, odata; /* [bytes] */
8865 int chunk; /* [bytes] */
8866 struct migr_record *migr_rec;
8867 char *buf = NULL;
8868 unsigned int buf_size; /* [bytes] */
8869 unsigned long long max_position; /* array size [bytes] */
8870 unsigned long long next_step; /* [blocks]/[bytes] */
8871 unsigned long long old_data_stripe_length;
8872 unsigned long long start_src; /* [bytes] */
8873 unsigned long long start; /* [bytes] */
8874 unsigned long long start_buf_shift; /* [bytes] */
8875 int degraded = 0;
8876 int source_layout = 0;
8877
8878 if (!fds || !offsets || !sra)
8879 goto abort;
8880
8881 /* Find volume during the reshape */
8882 for (dv = super->devlist; dv; dv = dv->next) {
8883 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
8884 && dv->dev->vol.migr_state == 1) {
8885 dev = dv->dev;
8886 migr_vol_qan++;
8887 }
8888 }
8889 /* Only one volume can migrate at the same time */
8890 if (migr_vol_qan != 1) {
8891 fprintf(stderr, Name " : %s", migr_vol_qan ?
8892 "Number of migrating volumes greater than 1\n" :
8893 "There is no volume during migrationg\n");
8894 goto abort;
8895 }
8896
8897 map_src = get_imsm_map(dev, 1);
8898 if (map_src == NULL)
8899 goto abort;
8900
8901 ndata = imsm_num_data_members(dev, 0);
8902 odata = imsm_num_data_members(dev, 1);
8903
8904 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
8905 old_data_stripe_length = odata * chunk;
8906
8907 migr_rec = super->migr_rec;
8908
8909 /* initialize migration record for start condition */
8910 if (sra->reshape_progress == 0)
8911 init_migr_record_imsm(st, dev, sra);
8912 else {
8913 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
8914 dprintf("imsm: cannot restart migration when data "
8915 "are present in copy area.\n");
8916 goto abort;
8917 }
8918 }
8919
8920 /* size for data */
8921 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
8922 /* extend buffer size for parity disk */
8923 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8924 /* add space for stripe aligment */
8925 buf_size += old_data_stripe_length;
8926 if (posix_memalign((void **)&buf, 4096, buf_size)) {
8927 dprintf("imsm: Cannot allocate checpoint buffer\n");
8928 goto abort;
8929 }
8930
8931 max_position = sra->component_size * ndata;
8932 source_layout = imsm_level_to_layout(map_src->raid_level);
8933
8934 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
8935 __le32_to_cpu(migr_rec->num_migr_units)) {
8936 /* current reshape position [blocks] */
8937 unsigned long long current_position =
8938 __le32_to_cpu(migr_rec->blocks_per_unit)
8939 * __le32_to_cpu(migr_rec->curr_migr_unit);
8940 unsigned long long border;
8941
8942 /* Check that array hasn't become failed.
8943 */
8944 degraded = check_degradation_change(sra, fds, degraded);
8945 if (degraded > 1) {
8946 dprintf("imsm: Abort reshape due to degradation"
8947 " level (%i)\n", degraded);
8948 goto abort;
8949 }
8950
8951 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
8952
8953 if ((current_position + next_step) > max_position)
8954 next_step = max_position - current_position;
8955
8956 start = current_position * 512;
8957
8958 /* allign reading start to old geometry */
8959 start_buf_shift = start % old_data_stripe_length;
8960 start_src = start - start_buf_shift;
8961
8962 border = (start_src / odata) - (start / ndata);
8963 border /= 512;
8964 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
8965 /* save critical stripes to buf
8966 * start - start address of current unit
8967 * to backup [bytes]
8968 * start_src - start address of current unit
8969 * to backup alligned to source array
8970 * [bytes]
8971 */
8972 unsigned long long next_step_filler = 0;
8973 unsigned long long copy_length = next_step * 512;
8974
8975 /* allign copy area length to stripe in old geometry */
8976 next_step_filler = ((copy_length + start_buf_shift)
8977 % old_data_stripe_length);
8978 if (next_step_filler)
8979 next_step_filler = (old_data_stripe_length
8980 - next_step_filler);
8981 dprintf("save_stripes() parameters: start = %llu,"
8982 "\tstart_src = %llu,\tnext_step*512 = %llu,"
8983 "\tstart_in_buf_shift = %llu,"
8984 "\tnext_step_filler = %llu\n",
8985 start, start_src, copy_length,
8986 start_buf_shift, next_step_filler);
8987
8988 if (save_stripes(fds, offsets, map_src->num_members,
8989 chunk, map_src->raid_level,
8990 source_layout, 0, NULL, start_src,
8991 copy_length +
8992 next_step_filler + start_buf_shift,
8993 buf)) {
8994 dprintf("imsm: Cannot save stripes"
8995 " to buffer\n");
8996 goto abort;
8997 }
8998 /* Convert data to destination format and store it
8999 * in backup general migration area
9000 */
9001 if (save_backup_imsm(st, dev, sra,
9002 buf + start_buf_shift, copy_length)) {
9003 dprintf("imsm: Cannot save stripes to "
9004 "target devices\n");
9005 goto abort;
9006 }
9007 if (save_checkpoint_imsm(st, sra,
9008 UNIT_SRC_IN_CP_AREA)) {
9009 dprintf("imsm: Cannot write checkpoint to "
9010 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9011 goto abort;
9012 }
9013 } else {
9014 /* set next step to use whole border area */
9015 border /= next_step;
9016 if (border > 1)
9017 next_step *= border;
9018 }
9019 /* When data backed up, checkpoint stored,
9020 * kick the kernel to reshape unit of data
9021 */
9022 next_step = next_step + sra->reshape_progress;
9023 /* limit next step to array max position */
9024 if (next_step > max_position)
9025 next_step = max_position;
9026 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9027 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
9028 sra->reshape_progress = next_step;
9029
9030 /* wait until reshape finish */
9031 if (wait_for_reshape_imsm(sra, ndata) < 0) {
9032 dprintf("wait_for_reshape_imsm returned error!\n");
9033 goto abort;
9034 }
9035
9036 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9037 /* ignore error == 2, this can mean end of reshape here
9038 */
9039 dprintf("imsm: Cannot write checkpoint to "
9040 "migration record (UNIT_SRC_NORMAL)\n");
9041 goto abort;
9042 }
9043
9044 }
9045
9046 /* return '1' if done */
9047 ret_val = 1;
9048 abort:
9049 free(buf);
9050 abort_reshape(sra);
9051
9052 return ret_val;
9053 }
9054 #endif /* MDASSEMBLE */
9055
9056 struct superswitch super_imsm = {
9057 #ifndef MDASSEMBLE
9058 .examine_super = examine_super_imsm,
9059 .brief_examine_super = brief_examine_super_imsm,
9060 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9061 .export_examine_super = export_examine_super_imsm,
9062 .detail_super = detail_super_imsm,
9063 .brief_detail_super = brief_detail_super_imsm,
9064 .write_init_super = write_init_super_imsm,
9065 .validate_geometry = validate_geometry_imsm,
9066 .add_to_super = add_to_super_imsm,
9067 .remove_from_super = remove_from_super_imsm,
9068 .detail_platform = detail_platform_imsm,
9069 .kill_subarray = kill_subarray_imsm,
9070 .update_subarray = update_subarray_imsm,
9071 .load_container = load_container_imsm,
9072 .default_geometry = default_geometry_imsm,
9073 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9074 .reshape_super = imsm_reshape_super,
9075 .manage_reshape = imsm_manage_reshape,
9076 .recover_backup = recover_backup_imsm,
9077 #endif
9078 .match_home = match_home_imsm,
9079 .uuid_from_super= uuid_from_super_imsm,
9080 .getinfo_super = getinfo_super_imsm,
9081 .getinfo_super_disks = getinfo_super_disks_imsm,
9082 .update_super = update_super_imsm,
9083
9084 .avail_size = avail_size_imsm,
9085 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
9086
9087 .compare_super = compare_super_imsm,
9088
9089 .load_super = load_super_imsm,
9090 .init_super = init_super_imsm,
9091 .store_super = store_super_imsm,
9092 .free_super = free_super_imsm,
9093 .match_metadata_desc = match_metadata_desc_imsm,
9094 .container_content = container_content_imsm,
9095
9096
9097 .external = 1,
9098 .name = "imsm",
9099
9100 #ifndef MDASSEMBLE
9101 /* for mdmon */
9102 .open_new = imsm_open_new,
9103 .set_array_state= imsm_set_array_state,
9104 .set_disk = imsm_set_disk,
9105 .sync_metadata = imsm_sync_metadata,
9106 .activate_spare = imsm_activate_spare,
9107 .process_update = imsm_process_update,
9108 .prepare_update = imsm_prepare_update,
9109 #endif /* MDASSEMBLE */
9110 };