]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: fix up serial handling
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2007 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "mdadm.h"
21 #include "mdmon.h"
22 #include <values.h>
23 #include <scsi/sg.h>
24 #include <ctype.h>
25
26 /* MPB == Metadata Parameter Block */
27 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
28 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
29 #define MPB_VERSION_RAID0 "1.0.00"
30 #define MPB_VERSION_RAID1 "1.1.00"
31 #define MPB_VERSION_RAID5 "1.2.02"
32 #define MAX_SIGNATURE_LENGTH 32
33 #define MAX_RAID_SERIAL_LEN 16
34 #define MPB_SECTOR_CNT 418
35 #define IMSM_RESERVED_SECTORS 4096
36
37 /* Disk configuration info. */
38 #define IMSM_MAX_DEVICES 255
39 struct imsm_disk {
40 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
41 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
42 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
43 __u32 status; /* 0xF0 - 0xF3 */
44 #define SPARE_DISK 0x01 /* Spare */
45 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
46 #define FAILED_DISK 0x04 /* Permanent failure */
47 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
48
49 #define IMSM_DISK_FILLERS 5
50 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
51 };
52
53 /* RAID map configuration infos. */
54 struct imsm_map {
55 __u32 pba_of_lba0; /* start address of partition */
56 __u32 blocks_per_member;/* blocks per member */
57 __u32 num_data_stripes; /* number of data stripes */
58 __u16 blocks_per_strip;
59 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
60 #define IMSM_T_STATE_NORMAL 0
61 #define IMSM_T_STATE_UNINITIALIZED 1
62 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
63 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
64 __u8 raid_level;
65 #define IMSM_T_RAID0 0
66 #define IMSM_T_RAID1 1
67 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
68 __u8 num_members; /* number of member disks */
69 __u8 reserved[3];
70 __u32 filler[7]; /* expansion area */
71 #define IMSM_ORD_REBUILD (1 << 24)
72 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
73 * top byte contains some flags
74 */
75 } __attribute__ ((packed));
76
77 struct imsm_vol {
78 __u32 reserved[2];
79 __u8 migr_state; /* Normal or Migrating */
80 __u8 migr_type; /* Initializing, Rebuilding, ... */
81 __u8 dirty;
82 __u8 fill[1];
83 __u32 filler[5];
84 struct imsm_map map[1];
85 /* here comes another one if migr_state */
86 } __attribute__ ((packed));
87
88 struct imsm_dev {
89 __u8 volume[MAX_RAID_SERIAL_LEN];
90 __u32 size_low;
91 __u32 size_high;
92 __u32 status; /* Persistent RaidDev status */
93 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
94 #define IMSM_DEV_FILLERS 12
95 __u32 filler[IMSM_DEV_FILLERS];
96 struct imsm_vol vol;
97 } __attribute__ ((packed));
98
99 struct imsm_super {
100 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
101 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
102 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
103 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
104 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
105 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
106 __u32 attributes; /* 0x34 - 0x37 */
107 __u8 num_disks; /* 0x38 Number of configured disks */
108 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
109 __u8 error_log_pos; /* 0x3A */
110 __u8 fill[1]; /* 0x3B */
111 __u32 cache_size; /* 0x3c - 0x40 in mb */
112 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
113 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
114 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
115 #define IMSM_FILLERS 35
116 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
117 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
118 /* here comes imsm_dev[num_raid_devs] */
119 /* here comes BBM logs */
120 } __attribute__ ((packed));
121
122 #define BBM_LOG_MAX_ENTRIES 254
123
124 struct bbm_log_entry {
125 __u64 defective_block_start;
126 #define UNREADABLE 0xFFFFFFFF
127 __u32 spare_block_offset;
128 __u16 remapped_marked_count;
129 __u16 disk_ordinal;
130 } __attribute__ ((__packed__));
131
132 struct bbm_log {
133 __u32 signature; /* 0xABADB10C */
134 __u32 entry_count;
135 __u32 reserved_spare_block_count; /* 0 */
136 __u32 reserved; /* 0xFFFF */
137 __u64 first_spare_lba;
138 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
139 } __attribute__ ((__packed__));
140
141
142 #ifndef MDASSEMBLE
143 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
144 #endif
145
146 static unsigned int sector_count(__u32 bytes)
147 {
148 return ((bytes + (512-1)) & (~(512-1))) / 512;
149 }
150
151 static unsigned int mpb_sectors(struct imsm_super *mpb)
152 {
153 return sector_count(__le32_to_cpu(mpb->mpb_size));
154 }
155
156 /* internal representation of IMSM metadata */
157 struct intel_super {
158 union {
159 void *buf; /* O_DIRECT buffer for reading/writing metadata */
160 struct imsm_super *anchor; /* immovable parameters */
161 };
162 size_t len; /* size of the 'buf' allocation */
163 void *next_buf; /* for realloc'ing buf from the manager */
164 size_t next_len;
165 int updates_pending; /* count of pending updates for mdmon */
166 int creating_imsm; /* flag to indicate container creation */
167 int current_vol; /* index of raid device undergoing creation */
168 #define IMSM_MAX_RAID_DEVS 2
169 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
170 struct dl {
171 struct dl *next;
172 int index;
173 __u8 serial[MAX_RAID_SERIAL_LEN];
174 int major, minor;
175 char *devname;
176 struct imsm_disk disk;
177 int fd;
178 } *disks;
179 struct dl *add; /* list of disks to add while mdmon active */
180 struct bbm_log *bbm_log;
181 };
182
183 struct extent {
184 unsigned long long start, size;
185 };
186
187 /* definition of messages passed to imsm_process_update */
188 enum imsm_update_type {
189 update_activate_spare,
190 update_create_array,
191 update_add_disk,
192 };
193
194 struct imsm_update_activate_spare {
195 enum imsm_update_type type;
196 struct dl *dl;
197 int slot;
198 int array;
199 struct imsm_update_activate_spare *next;
200 };
201
202 struct imsm_update_create_array {
203 enum imsm_update_type type;
204 int dev_idx;
205 struct imsm_dev dev;
206 };
207
208 struct imsm_update_add_disk {
209 enum imsm_update_type type;
210 };
211
212 static int imsm_env_devname_as_serial(void)
213 {
214 char *val = getenv("IMSM_DEVNAME_AS_SERIAL");
215
216 if (val && atoi(val) == 1)
217 return 1;
218
219 return 0;
220 }
221
222
223 static struct supertype *match_metadata_desc_imsm(char *arg)
224 {
225 struct supertype *st;
226
227 if (strcmp(arg, "imsm") != 0 &&
228 strcmp(arg, "default") != 0
229 )
230 return NULL;
231
232 st = malloc(sizeof(*st));
233 memset(st, 0, sizeof(*st));
234 st->ss = &super_imsm;
235 st->max_devs = IMSM_MAX_DEVICES;
236 st->minor_version = 0;
237 st->sb = NULL;
238 return st;
239 }
240
241 static __u8 *get_imsm_version(struct imsm_super *mpb)
242 {
243 return &mpb->sig[MPB_SIG_LEN];
244 }
245
246 /* retrieve a disk directly from the anchor when the anchor is known to be
247 * up-to-date, currently only at load time
248 */
249 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
250 {
251 if (index >= mpb->num_disks)
252 return NULL;
253 return &mpb->disk[index];
254 }
255
256 /* retrieve a disk from the parsed metadata */
257 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
258 {
259 struct dl *d;
260
261 for (d = super->disks; d; d = d->next)
262 if (d->index == index)
263 return &d->disk;
264
265 return NULL;
266 }
267
268 /* generate a checksum directly from the anchor when the anchor is known to be
269 * up-to-date, currently only at load or write_super after coalescing
270 */
271 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
272 {
273 __u32 end = mpb->mpb_size / sizeof(end);
274 __u32 *p = (__u32 *) mpb;
275 __u32 sum = 0;
276
277 while (end--)
278 sum += __le32_to_cpu(*p++);
279
280 return sum - __le32_to_cpu(mpb->check_sum);
281 }
282
283 static size_t sizeof_imsm_map(struct imsm_map *map)
284 {
285 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
286 }
287
288 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
289 {
290 struct imsm_map *map = &dev->vol.map[0];
291
292 if (second_map && !dev->vol.migr_state)
293 return NULL;
294 else if (second_map) {
295 void *ptr = map;
296
297 return ptr + sizeof_imsm_map(map);
298 } else
299 return map;
300
301 }
302
303 /* return the size of the device.
304 * migr_state increases the returned size if map[0] were to be duplicated
305 */
306 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
307 {
308 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
309 sizeof_imsm_map(get_imsm_map(dev, 0));
310
311 /* migrating means an additional map */
312 if (dev->vol.migr_state)
313 size += sizeof_imsm_map(get_imsm_map(dev, 1));
314 else if (migr_state)
315 size += sizeof_imsm_map(get_imsm_map(dev, 0));
316
317 return size;
318 }
319
320 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
321 {
322 int offset;
323 int i;
324 void *_mpb = mpb;
325
326 if (index >= mpb->num_raid_devs)
327 return NULL;
328
329 /* devices start after all disks */
330 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
331
332 for (i = 0; i <= index; i++)
333 if (i == index)
334 return _mpb + offset;
335 else
336 offset += sizeof_imsm_dev(_mpb + offset, 0);
337
338 return NULL;
339 }
340
341 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
342 {
343 if (index >= super->anchor->num_raid_devs)
344 return NULL;
345 return super->dev_tbl[index];
346 }
347
348 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
349 {
350 struct imsm_map *map;
351
352 if (dev->vol.migr_state)
353 map = get_imsm_map(dev, 1);
354 else
355 map = get_imsm_map(dev, 0);
356
357 /* top byte identifies disk under rebuild */
358 return __le32_to_cpu(map->disk_ord_tbl[slot]);
359 }
360
361 #define ord_to_idx(ord) (((ord) << 8) >> 8)
362 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
363 {
364 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
365
366 return ord_to_idx(ord);
367 }
368
369 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
370 {
371 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
372 }
373
374 static int get_imsm_raid_level(struct imsm_map *map)
375 {
376 if (map->raid_level == 1) {
377 if (map->num_members == 2)
378 return 1;
379 else
380 return 10;
381 }
382
383 return map->raid_level;
384 }
385
386 static int cmp_extent(const void *av, const void *bv)
387 {
388 const struct extent *a = av;
389 const struct extent *b = bv;
390 if (a->start < b->start)
391 return -1;
392 if (a->start > b->start)
393 return 1;
394 return 0;
395 }
396
397 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
398 {
399 /* find a list of used extents on the given physical device */
400 struct extent *rv, *e;
401 int i, j;
402 int memberships = 0;
403
404 for (i = 0; i < super->anchor->num_raid_devs; i++) {
405 struct imsm_dev *dev = get_imsm_dev(super, i);
406 struct imsm_map *map = get_imsm_map(dev, 0);
407
408 for (j = 0; j < map->num_members; j++) {
409 __u32 index = get_imsm_disk_idx(dev, j);
410
411 if (index == dl->index)
412 memberships++;
413 }
414 }
415 rv = malloc(sizeof(struct extent) * (memberships + 1));
416 if (!rv)
417 return NULL;
418 e = rv;
419
420 for (i = 0; i < super->anchor->num_raid_devs; i++) {
421 struct imsm_dev *dev = get_imsm_dev(super, i);
422 struct imsm_map *map = get_imsm_map(dev, 0);
423
424 for (j = 0; j < map->num_members; j++) {
425 __u32 index = get_imsm_disk_idx(dev, j);
426
427 if (index == dl->index) {
428 e->start = __le32_to_cpu(map->pba_of_lba0);
429 e->size = __le32_to_cpu(map->blocks_per_member);
430 e++;
431 }
432 }
433 }
434 qsort(rv, memberships, sizeof(*rv), cmp_extent);
435
436 e->start = __le32_to_cpu(dl->disk.total_blocks) -
437 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
438 e->size = 0;
439 return rv;
440 }
441
442 #ifndef MDASSEMBLE
443 static void print_imsm_dev(struct imsm_dev *dev, int index)
444 {
445 __u64 sz;
446 int slot;
447 struct imsm_map *map = get_imsm_map(dev, 0);
448 __u32 ord;
449
450 printf("\n");
451 printf("[%s]:\n", dev->volume);
452 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
453 printf(" Members : %d\n", map->num_members);
454 for (slot = 0; slot < map->num_members; slot++)
455 if (index == get_imsm_disk_idx(dev, slot))
456 break;
457 if (slot < map->num_members) {
458 ord = get_imsm_ord_tbl_ent(dev, slot);
459 printf(" This Slot : %d%s\n", slot,
460 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
461 } else
462 printf(" This Slot : ?\n");
463 sz = __le32_to_cpu(dev->size_high);
464 sz <<= 32;
465 sz += __le32_to_cpu(dev->size_low);
466 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
467 human_size(sz * 512));
468 sz = __le32_to_cpu(map->blocks_per_member);
469 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
470 human_size(sz * 512));
471 printf(" Sector Offset : %u\n",
472 __le32_to_cpu(map->pba_of_lba0));
473 printf(" Num Stripes : %u\n",
474 __le32_to_cpu(map->num_data_stripes));
475 printf(" Chunk Size : %u KiB\n",
476 __le16_to_cpu(map->blocks_per_strip) / 2);
477 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
478 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle");
479 if (dev->vol.migr_state)
480 printf(": %s", dev->vol.migr_type ? "rebuilding" : "initializing");
481 printf("\n");
482 printf(" Map State : %s", map_state_str[map->map_state]);
483 if (dev->vol.migr_state) {
484 struct imsm_map *map = get_imsm_map(dev, 1);
485 printf(" <-- %s", map_state_str[map->map_state]);
486 }
487 printf("\n");
488 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
489 }
490
491 static void print_imsm_disk(struct imsm_super *mpb, int index)
492 {
493 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
494 char str[MAX_RAID_SERIAL_LEN + 1];
495 __u32 s;
496 __u64 sz;
497
498 if (index < 0)
499 return;
500
501 printf("\n");
502 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
503 printf(" Disk%02d Serial : %s\n", index, str);
504 s = __le32_to_cpu(disk->status);
505 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
506 s&CONFIGURED_DISK ? " active" : "",
507 s&FAILED_DISK ? " failed" : "",
508 s&USABLE_DISK ? " usable" : "");
509 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
510 sz = __le32_to_cpu(disk->total_blocks) -
511 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS * mpb->num_raid_devs);
512 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
513 human_size(sz * 512));
514 }
515
516 static void examine_super_imsm(struct supertype *st, char *homehost)
517 {
518 struct intel_super *super = st->sb;
519 struct imsm_super *mpb = super->anchor;
520 char str[MAX_SIGNATURE_LENGTH];
521 int i;
522 __u32 sum;
523
524 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
525 printf(" Magic : %s\n", str);
526 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
527 printf(" Version : %s\n", get_imsm_version(mpb));
528 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
529 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
530 sum = __le32_to_cpu(mpb->check_sum);
531 printf(" Checksum : %08x %s\n", sum,
532 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
533 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
534 printf(" Disks : %d\n", mpb->num_disks);
535 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
536 print_imsm_disk(mpb, super->disks->index);
537 if (super->bbm_log) {
538 struct bbm_log *log = super->bbm_log;
539
540 printf("\n");
541 printf("Bad Block Management Log:\n");
542 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
543 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
544 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
545 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
546 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
547 }
548 for (i = 0; i < mpb->num_raid_devs; i++)
549 print_imsm_dev(__get_imsm_dev(mpb, i), super->disks->index);
550 for (i = 0; i < mpb->num_disks; i++) {
551 if (i == super->disks->index)
552 continue;
553 print_imsm_disk(mpb, i);
554 }
555 }
556
557 static void brief_examine_super_imsm(struct supertype *st)
558 {
559 printf("ARRAY /dev/imsm metadata=imsm\n");
560 }
561
562 static void detail_super_imsm(struct supertype *st, char *homehost)
563 {
564 printf("%s\n", __FUNCTION__);
565 }
566
567 static void brief_detail_super_imsm(struct supertype *st)
568 {
569 printf("%s\n", __FUNCTION__);
570 }
571 #endif
572
573 static int match_home_imsm(struct supertype *st, char *homehost)
574 {
575 printf("%s\n", __FUNCTION__);
576
577 return 0;
578 }
579
580 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
581 {
582 /* imsm does not track uuid's so just make sure we never return
583 * the same value twice to break uuid matching in Manage_subdevs
584 * FIXME what about the use of uuid's with bitmap's?
585 */
586 static int dummy_id = 0;
587
588 uuid[0] = dummy_id++;
589 }
590
591 #if 0
592 static void
593 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
594 {
595 __u8 *v = get_imsm_version(mpb);
596 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
597 char major[] = { 0, 0, 0 };
598 char minor[] = { 0 ,0, 0 };
599 char patch[] = { 0, 0, 0 };
600 char *ver_parse[] = { major, minor, patch };
601 int i, j;
602
603 i = j = 0;
604 while (*v != '\0' && v < end) {
605 if (*v != '.' && j < 2)
606 ver_parse[i][j++] = *v;
607 else {
608 i++;
609 j = 0;
610 }
611 v++;
612 }
613
614 *m = strtol(minor, NULL, 0);
615 *p = strtol(patch, NULL, 0);
616 }
617 #endif
618
619 static int imsm_level_to_layout(int level)
620 {
621 switch (level) {
622 case 0:
623 case 1:
624 return 0;
625 case 5:
626 case 6:
627 return ALGORITHM_LEFT_ASYMMETRIC;
628 case 10:
629 return 0x102; //FIXME is this correct?
630 }
631 return -1;
632 }
633
634 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
635 {
636 struct intel_super *super = st->sb;
637 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
638 struct imsm_map *map = get_imsm_map(dev, 0);
639
640 info->container_member = super->current_vol;
641 info->array.raid_disks = map->num_members;
642 info->array.level = get_imsm_raid_level(map);
643 info->array.layout = imsm_level_to_layout(info->array.level);
644 info->array.md_minor = -1;
645 info->array.ctime = 0;
646 info->array.utime = 0;
647 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip * 512);
648
649 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
650 info->component_size = __le32_to_cpu(map->blocks_per_member);
651
652 info->disk.major = 0;
653 info->disk.minor = 0;
654
655 sprintf(info->text_version, "/%s/%d",
656 devnum2devname(st->container_dev),
657 info->container_member);
658 }
659
660
661 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
662 {
663 struct intel_super *super = st->sb;
664 struct imsm_disk *disk;
665 __u32 s;
666
667 if (super->current_vol >= 0) {
668 getinfo_super_imsm_volume(st, info);
669 return;
670 }
671
672 /* Set raid_disks to zero so that Assemble will always pull in valid
673 * spares
674 */
675 info->array.raid_disks = 0;
676 info->array.level = LEVEL_CONTAINER;
677 info->array.layout = 0;
678 info->array.md_minor = -1;
679 info->array.ctime = 0; /* N/A for imsm */
680 info->array.utime = 0;
681 info->array.chunk_size = 0;
682
683 info->disk.major = 0;
684 info->disk.minor = 0;
685 info->disk.raid_disk = -1;
686 info->reshape_active = 0;
687 strcpy(info->text_version, "imsm");
688 info->disk.number = -1;
689 info->disk.state = 0;
690
691 if (super->disks) {
692 disk = &super->disks->disk;
693 info->disk.number = super->disks->index;
694 info->disk.raid_disk = super->disks->index;
695 info->data_offset = __le32_to_cpu(disk->total_blocks) -
696 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
697 info->component_size = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
698 s = __le32_to_cpu(disk->status);
699 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
700 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
701 info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
702 }
703 }
704
705 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
706 char *update, char *devname, int verbose,
707 int uuid_set, char *homehost)
708 {
709 /* FIXME */
710
711 /* For 'assemble' and 'force' we need to return non-zero if any
712 * change was made. For others, the return value is ignored.
713 * Update options are:
714 * force-one : This device looks a bit old but needs to be included,
715 * update age info appropriately.
716 * assemble: clear any 'faulty' flag to allow this device to
717 * be assembled.
718 * force-array: Array is degraded but being forced, mark it clean
719 * if that will be needed to assemble it.
720 *
721 * newdev: not used ????
722 * grow: Array has gained a new device - this is currently for
723 * linear only
724 * resync: mark as dirty so a resync will happen.
725 * name: update the name - preserving the homehost
726 *
727 * Following are not relevant for this imsm:
728 * sparc2.2 : update from old dodgey metadata
729 * super-minor: change the preferred_minor number
730 * summaries: update redundant counters.
731 * uuid: Change the uuid of the array to match watch is given
732 * homehost: update the recorded homehost
733 * _reshape_progress: record new reshape_progress position.
734 */
735 int rv = 0;
736 //struct intel_super *super = st->sb;
737 //struct imsm_super *mpb = super->mpb;
738
739 if (strcmp(update, "grow") == 0) {
740 }
741 if (strcmp(update, "resync") == 0) {
742 /* dev->vol.dirty = 1; */
743 }
744
745 /* IMSM has no concept of UUID or homehost */
746
747 return rv;
748 }
749
750 static size_t disks_to_mpb_size(int disks)
751 {
752 size_t size;
753
754 size = sizeof(struct imsm_super);
755 size += (disks - 1) * sizeof(struct imsm_disk);
756 size += 2 * sizeof(struct imsm_dev);
757 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
758 size += (4 - 2) * sizeof(struct imsm_map);
759 /* 4 possible disk_ord_tbl's */
760 size += 4 * (disks - 1) * sizeof(__u32);
761
762 return size;
763 }
764
765 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
766 {
767 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
768 return 0;
769
770 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
771 }
772
773 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
774 {
775 /*
776 * return:
777 * 0 same, or first was empty, and second was copied
778 * 1 second had wrong number
779 * 2 wrong uuid
780 * 3 wrong other info
781 */
782 struct intel_super *first = st->sb;
783 struct intel_super *sec = tst->sb;
784
785 if (!first) {
786 st->sb = tst->sb;
787 tst->sb = NULL;
788 return 0;
789 }
790
791 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
792 return 3;
793
794 /* if an anchor does not have num_raid_devs set then it is a free
795 * floating spare
796 */
797 if (first->anchor->num_raid_devs > 0 &&
798 sec->anchor->num_raid_devs > 0) {
799 if (first->anchor->family_num != sec->anchor->family_num)
800 return 3;
801 }
802
803 /* if 'first' is a spare promote it to a populated mpb with sec's
804 * family number
805 */
806 if (first->anchor->num_raid_devs == 0 &&
807 sec->anchor->num_raid_devs > 0) {
808 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
809 first->anchor->family_num = sec->anchor->family_num;
810 }
811
812 return 0;
813 }
814
815 static void fd2devname(int fd, char *name)
816 {
817 struct stat st;
818 char path[256];
819 char dname[100];
820 char *nm;
821 int rv;
822
823 name[0] = '\0';
824 if (fstat(fd, &st) != 0)
825 return;
826 sprintf(path, "/sys/dev/block/%d:%d",
827 major(st.st_rdev), minor(st.st_rdev));
828
829 rv = readlink(path, dname, sizeof(dname));
830 if (rv <= 0)
831 return;
832
833 dname[rv] = '\0';
834 nm = strrchr(dname, '/');
835 nm++;
836 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
837 }
838
839
840 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
841
842 static int imsm_read_serial(int fd, char *devname,
843 __u8 serial[MAX_RAID_SERIAL_LEN])
844 {
845 unsigned char scsi_serial[255];
846 int rv;
847 int rsp_len;
848 int len;
849 char *c, *rsp_buf;
850
851 memset(scsi_serial, 0, sizeof(scsi_serial));
852
853 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
854
855 if (rv && imsm_env_devname_as_serial()) {
856 memset(serial, 0, MAX_RAID_SERIAL_LEN);
857 fd2devname(fd, (char *) serial);
858 return 0;
859 }
860
861 if (rv != 0) {
862 if (devname)
863 fprintf(stderr,
864 Name ": Failed to retrieve serial for %s\n",
865 devname);
866 return rv;
867 }
868
869 /* trim whitespace */
870 rsp_len = scsi_serial[3];
871 rsp_buf = (char *) &scsi_serial[4];
872 c = rsp_buf;
873 while (isspace(*c))
874 c++;
875 if (c + MAX_RAID_SERIAL_LEN > rsp_buf + rsp_len)
876 len = rsp_len - (c - rsp_buf);
877 else
878 len = MAX_RAID_SERIAL_LEN;
879 memcpy(serial, c, len);
880 c = (char *) &serial[len - 1];
881 while (isspace(*c) || *c == '\0')
882 *c-- = '\0';
883
884 return 0;
885 }
886
887 static int serialcmp(__u8 *s1, __u8 *s2)
888 {
889 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
890 }
891
892 static void serialcpy(__u8 *dest, __u8 *src)
893 {
894 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
895 }
896
897 static int
898 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
899 {
900 struct dl *dl;
901 struct stat stb;
902 int rv;
903 int i;
904 int alloc = 1;
905 __u8 serial[MAX_RAID_SERIAL_LEN];
906
907 rv = imsm_read_serial(fd, devname, serial);
908
909 if (rv != 0)
910 return 2;
911
912 /* check if this is a disk we have seen before. it may be a spare in
913 * super->disks while the current anchor believes it is a raid member,
914 * check if we need to update dl->index
915 */
916 for (dl = super->disks; dl; dl = dl->next)
917 if (serialcmp(dl->serial, serial) == 0)
918 break;
919
920 if (!dl)
921 dl = malloc(sizeof(*dl));
922 else
923 alloc = 0;
924
925 if (!dl) {
926 if (devname)
927 fprintf(stderr,
928 Name ": failed to allocate disk buffer for %s\n",
929 devname);
930 return 2;
931 }
932
933 if (alloc) {
934 fstat(fd, &stb);
935 dl->major = major(stb.st_rdev);
936 dl->minor = minor(stb.st_rdev);
937 dl->next = super->disks;
938 dl->fd = keep_fd ? fd : -1;
939 dl->devname = devname ? strdup(devname) : NULL;
940 serialcpy(dl->serial, serial);
941 dl->index = -2;
942 } else if (keep_fd) {
943 close(dl->fd);
944 dl->fd = fd;
945 }
946
947 /* look up this disk's index in the current anchor */
948 for (i = 0; i < super->anchor->num_disks; i++) {
949 struct imsm_disk *disk_iter;
950
951 disk_iter = __get_imsm_disk(super->anchor, i);
952
953 if (serialcmp(disk_iter->serial, dl->serial) == 0) {
954 __u32 status;
955
956 dl->disk = *disk_iter;
957 status = __le32_to_cpu(dl->disk.status);
958 /* only set index on disks that are a member of a
959 * populated contianer, i.e. one with raid_devs
960 */
961 if (status & FAILED_DISK)
962 dl->index = -2;
963 else if (status & SPARE_DISK)
964 dl->index = -1;
965 else
966 dl->index = i;
967
968 break;
969 }
970 }
971
972 if (alloc)
973 super->disks = dl;
974
975 return 0;
976 }
977
978 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
979 {
980 memcpy(dest, src, sizeof_imsm_dev(src, 0));
981 }
982
983 /* When migrating map0 contains the 'destination' state while map1
984 * contains the current state. When not migrating map0 contains the
985 * current state. This routine assumes that map[0].map_state is set to
986 * the current array state before being called.
987 *
988 * Migration is indicated by one of the following states
989 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
990 * 2/ Initialize (migr_state=1 migr_type=0 map0state=normal
991 * map1state=unitialized)
992 * 3/ Verify (Resync) (migr_state=1 migr_type=1 map0state=normal
993 * map1state=normal)
994 * 4/ Rebuild (migr_state=1 migr_type=1 map0state=normal
995 * map1state=degraded)
996 */
997 static void migrate(struct imsm_dev *dev, __u8 to_state, int rebuild_resync)
998 {
999 struct imsm_map *dest;
1000 struct imsm_map *src = get_imsm_map(dev, 0);
1001
1002 dev->vol.migr_state = 1;
1003 dev->vol.migr_type = rebuild_resync;
1004 dest = get_imsm_map(dev, 1);
1005
1006 memcpy(dest, src, sizeof_imsm_map(src));
1007 src->map_state = to_state;
1008 }
1009
1010 static int parse_raid_devices(struct intel_super *super)
1011 {
1012 int i;
1013 struct imsm_dev *dev_new;
1014 size_t len, len_migr;
1015 size_t space_needed = 0;
1016 struct imsm_super *mpb = super->anchor;
1017
1018 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1019 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
1020
1021 len = sizeof_imsm_dev(dev_iter, 0);
1022 len_migr = sizeof_imsm_dev(dev_iter, 1);
1023 if (len_migr > len)
1024 space_needed += len_migr - len;
1025
1026 dev_new = malloc(len_migr);
1027 if (!dev_new)
1028 return 1;
1029 imsm_copy_dev(dev_new, dev_iter);
1030 super->dev_tbl[i] = dev_new;
1031 }
1032
1033 /* ensure that super->buf is large enough when all raid devices
1034 * are migrating
1035 */
1036 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1037 void *buf;
1038
1039 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1040 if (posix_memalign(&buf, 512, len) != 0)
1041 return 1;
1042
1043 memcpy(buf, super->buf, len);
1044 free(super->buf);
1045 super->buf = buf;
1046 super->len = len;
1047 }
1048
1049 return 0;
1050 }
1051
1052 /* retrieve a pointer to the bbm log which starts after all raid devices */
1053 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1054 {
1055 void *ptr = NULL;
1056
1057 if (__le32_to_cpu(mpb->bbm_log_size)) {
1058 ptr = mpb;
1059 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1060 }
1061
1062 return ptr;
1063 }
1064
1065 static void __free_imsm(struct intel_super *super, int free_disks);
1066
1067 /* load_imsm_mpb - read matrix metadata
1068 * allocates super->mpb to be freed by free_super
1069 */
1070 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1071 {
1072 unsigned long long dsize;
1073 unsigned long long sectors;
1074 struct stat;
1075 struct imsm_super *anchor;
1076 __u32 check_sum;
1077 int rc;
1078
1079 get_dev_size(fd, NULL, &dsize);
1080
1081 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1082 if (devname)
1083 fprintf(stderr,
1084 Name ": Cannot seek to anchor block on %s: %s\n",
1085 devname, strerror(errno));
1086 return 1;
1087 }
1088
1089 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1090 if (devname)
1091 fprintf(stderr,
1092 Name ": Failed to allocate imsm anchor buffer"
1093 " on %s\n", devname);
1094 return 1;
1095 }
1096 if (read(fd, anchor, 512) != 512) {
1097 if (devname)
1098 fprintf(stderr,
1099 Name ": Cannot read anchor block on %s: %s\n",
1100 devname, strerror(errno));
1101 free(anchor);
1102 return 1;
1103 }
1104
1105 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1106 if (devname)
1107 fprintf(stderr,
1108 Name ": no IMSM anchor on %s\n", devname);
1109 free(anchor);
1110 return 2;
1111 }
1112
1113 __free_imsm(super, 0);
1114 super->len = ROUND_UP(anchor->mpb_size, 512);
1115 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1116 if (devname)
1117 fprintf(stderr,
1118 Name ": unable to allocate %zu byte mpb buffer\n",
1119 super->len);
1120 free(anchor);
1121 return 2;
1122 }
1123 memcpy(super->buf, anchor, 512);
1124
1125 sectors = mpb_sectors(anchor) - 1;
1126 free(anchor);
1127 if (!sectors) {
1128 rc = load_imsm_disk(fd, super, devname, 0);
1129 if (rc == 0)
1130 rc = parse_raid_devices(super);
1131 return rc;
1132 }
1133
1134 /* read the extended mpb */
1135 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1136 if (devname)
1137 fprintf(stderr,
1138 Name ": Cannot seek to extended mpb on %s: %s\n",
1139 devname, strerror(errno));
1140 return 1;
1141 }
1142
1143 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1144 if (devname)
1145 fprintf(stderr,
1146 Name ": Cannot read extended mpb on %s: %s\n",
1147 devname, strerror(errno));
1148 return 2;
1149 }
1150
1151 check_sum = __gen_imsm_checksum(super->anchor);
1152 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1153 if (devname)
1154 fprintf(stderr,
1155 Name ": IMSM checksum %x != %x on %s\n",
1156 check_sum, __le32_to_cpu(super->anchor->check_sum),
1157 devname);
1158 return 2;
1159 }
1160
1161 /* FIXME the BBM log is disk specific so we cannot use this global
1162 * buffer for all disks. Ok for now since we only look at the global
1163 * bbm_log_size parameter to gate assembly
1164 */
1165 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1166
1167 rc = load_imsm_disk(fd, super, devname, 0);
1168 if (rc == 0)
1169 rc = parse_raid_devices(super);
1170
1171 return rc;
1172 }
1173
1174 static void __free_imsm_disk(struct dl *d)
1175 {
1176 if (d->fd >= 0)
1177 close(d->fd);
1178 if (d->devname)
1179 free(d->devname);
1180 free(d);
1181
1182 }
1183 static void free_imsm_disks(struct intel_super *super)
1184 {
1185 while (super->disks) {
1186 struct dl *d = super->disks;
1187
1188 super->disks = d->next;
1189 __free_imsm_disk(d);
1190 }
1191 }
1192
1193 /* free all the pieces hanging off of a super pointer */
1194 static void __free_imsm(struct intel_super *super, int free_disks)
1195 {
1196 int i;
1197
1198 if (super->buf) {
1199 free(super->buf);
1200 super->buf = NULL;
1201 }
1202 if (free_disks)
1203 free_imsm_disks(super);
1204 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1205 if (super->dev_tbl[i]) {
1206 free(super->dev_tbl[i]);
1207 super->dev_tbl[i] = NULL;
1208 }
1209 }
1210
1211 static void free_imsm(struct intel_super *super)
1212 {
1213 __free_imsm(super, 1);
1214 free(super);
1215 }
1216
1217 static void free_super_imsm(struct supertype *st)
1218 {
1219 struct intel_super *super = st->sb;
1220
1221 if (!super)
1222 return;
1223
1224 free_imsm(super);
1225 st->sb = NULL;
1226 }
1227
1228 static struct intel_super *alloc_super(int creating_imsm)
1229 {
1230 struct intel_super *super = malloc(sizeof(*super));
1231
1232 if (super) {
1233 memset(super, 0, sizeof(*super));
1234 super->creating_imsm = creating_imsm;
1235 super->current_vol = -1;
1236 }
1237
1238 return super;
1239 }
1240
1241 #ifndef MDASSEMBLE
1242 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1243 char *devname, int keep_fd)
1244 {
1245 struct mdinfo *sra;
1246 struct intel_super *super;
1247 struct mdinfo *sd, *best = NULL;
1248 __u32 bestgen = 0;
1249 __u32 gen;
1250 char nm[20];
1251 int dfd;
1252 int rv;
1253
1254 /* check if this disk is a member of an active array */
1255 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1256 if (!sra)
1257 return 1;
1258
1259 if (sra->array.major_version != -1 ||
1260 sra->array.minor_version != -2 ||
1261 strcmp(sra->text_version, "imsm") != 0)
1262 return 1;
1263
1264 super = alloc_super(0);
1265 if (!super)
1266 return 1;
1267
1268 /* find the most up to date disk in this array, skipping spares */
1269 for (sd = sra->devs; sd; sd = sd->next) {
1270 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1271 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1272 if (!dfd) {
1273 free_imsm(super);
1274 return 2;
1275 }
1276 rv = load_imsm_mpb(dfd, super, NULL);
1277 if (!keep_fd)
1278 close(dfd);
1279 if (rv == 0) {
1280 if (super->anchor->num_raid_devs == 0)
1281 gen = 0;
1282 else
1283 gen = __le32_to_cpu(super->anchor->generation_num);
1284 if (!best || gen > bestgen) {
1285 bestgen = gen;
1286 best = sd;
1287 }
1288 } else {
1289 free_imsm(super);
1290 return 2;
1291 }
1292 }
1293
1294 if (!best) {
1295 free_imsm(super);
1296 return 1;
1297 }
1298
1299 /* load the most up to date anchor */
1300 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1301 dfd = dev_open(nm, O_RDONLY);
1302 if (!dfd) {
1303 free_imsm(super);
1304 return 1;
1305 }
1306 rv = load_imsm_mpb(dfd, super, NULL);
1307 close(dfd);
1308 if (rv != 0) {
1309 free_imsm(super);
1310 return 2;
1311 }
1312
1313 /* re-parse the disk list with the current anchor */
1314 for (sd = sra->devs ; sd ; sd = sd->next) {
1315 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1316 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1317 if (!dfd) {
1318 free_imsm(super);
1319 return 2;
1320 }
1321 load_imsm_disk(dfd, super, NULL, keep_fd);
1322 if (!keep_fd)
1323 close(dfd);
1324 }
1325
1326 if (st->subarray[0]) {
1327 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1328 super->current_vol = atoi(st->subarray);
1329 else
1330 return 1;
1331 }
1332
1333 *sbp = super;
1334 st->container_dev = fd2devnum(fd);
1335 if (st->ss == NULL) {
1336 st->ss = &super_imsm;
1337 st->minor_version = 0;
1338 st->max_devs = IMSM_MAX_DEVICES;
1339 }
1340
1341 return 0;
1342 }
1343 #endif
1344
1345 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1346 {
1347 struct intel_super *super;
1348 int rv;
1349
1350 #ifndef MDASSEMBLE
1351 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1352 return 0;
1353 #endif
1354 if (st->subarray[0])
1355 return 1; /* FIXME */
1356
1357 super = alloc_super(0);
1358 if (!super) {
1359 fprintf(stderr,
1360 Name ": malloc of %zu failed.\n",
1361 sizeof(*super));
1362 return 1;
1363 }
1364
1365 rv = load_imsm_mpb(fd, super, devname);
1366
1367 if (rv) {
1368 if (devname)
1369 fprintf(stderr,
1370 Name ": Failed to load all information "
1371 "sections on %s\n", devname);
1372 free_imsm(super);
1373 return rv;
1374 }
1375
1376 st->sb = super;
1377 if (st->ss == NULL) {
1378 st->ss = &super_imsm;
1379 st->minor_version = 0;
1380 st->max_devs = IMSM_MAX_DEVICES;
1381 }
1382
1383 return 0;
1384 }
1385
1386 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1387 {
1388 if (info->level == 1)
1389 return 128;
1390 return info->chunk_size >> 9;
1391 }
1392
1393 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1394 {
1395 __u32 num_stripes;
1396
1397 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1398 if (info->level == 1)
1399 num_stripes /= 2;
1400
1401 return num_stripes;
1402 }
1403
1404 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1405 {
1406 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1407 }
1408
1409 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1410 unsigned long long size, char *name,
1411 char *homehost, int *uuid)
1412 {
1413 /* We are creating a volume inside a pre-existing container.
1414 * so st->sb is already set.
1415 */
1416 struct intel_super *super = st->sb;
1417 struct imsm_super *mpb = super->anchor;
1418 struct imsm_dev *dev;
1419 struct imsm_vol *vol;
1420 struct imsm_map *map;
1421 int idx = mpb->num_raid_devs;
1422 int i;
1423 unsigned long long array_blocks;
1424 __u32 offset = 0;
1425 size_t size_old, size_new;
1426
1427 if (mpb->num_raid_devs >= 2) {
1428 fprintf(stderr, Name": This imsm-container already has the "
1429 "maximum of 2 volumes\n");
1430 return 0;
1431 }
1432
1433 /* ensure the mpb is large enough for the new data */
1434 size_old = __le32_to_cpu(mpb->mpb_size);
1435 size_new = disks_to_mpb_size(info->nr_disks);
1436 if (size_new > size_old) {
1437 void *mpb_new;
1438 size_t size_round = ROUND_UP(size_new, 512);
1439
1440 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1441 fprintf(stderr, Name": could not allocate new mpb\n");
1442 return 0;
1443 }
1444 memcpy(mpb_new, mpb, size_old);
1445 free(mpb);
1446 mpb = mpb_new;
1447 super->anchor = mpb_new;
1448 mpb->mpb_size = __cpu_to_le32(size_new);
1449 memset(mpb_new + size_old, 0, size_round - size_old);
1450 }
1451 super->current_vol = idx;
1452 /* when creating the first raid device in this container set num_disks
1453 * to zero, i.e. delete this spare and add raid member devices in
1454 * add_to_super_imsm_volume()
1455 */
1456 if (super->current_vol == 0)
1457 mpb->num_disks = 0;
1458 sprintf(st->subarray, "%d", idx);
1459 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1460 if (!dev) {
1461 fprintf(stderr, Name": could not allocate raid device\n");
1462 return 0;
1463 }
1464 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1465 array_blocks = calc_array_size(info->level, info->raid_disks,
1466 info->layout, info->chunk_size,
1467 info->size*2);
1468 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1469 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1470 dev->status = __cpu_to_le32(0);
1471 dev->reserved_blocks = __cpu_to_le32(0);
1472 vol = &dev->vol;
1473 vol->migr_state = 0;
1474 vol->migr_type = 0;
1475 vol->dirty = 0;
1476 for (i = 0; i < idx; i++) {
1477 struct imsm_dev *prev = get_imsm_dev(super, i);
1478 struct imsm_map *pmap = get_imsm_map(prev, 0);
1479
1480 offset += __le32_to_cpu(pmap->blocks_per_member);
1481 offset += IMSM_RESERVED_SECTORS;
1482 }
1483 map = get_imsm_map(dev, 0);
1484 map->pba_of_lba0 = __cpu_to_le32(offset);
1485 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1486 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1487 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1488 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1489 IMSM_T_STATE_NORMAL;
1490
1491 if (info->level == 1 && info->raid_disks > 2) {
1492 fprintf(stderr, Name": imsm does not support more than 2 disks"
1493 "in a raid1 volume\n");
1494 return 0;
1495 }
1496 if (info->level == 10)
1497 map->raid_level = 1;
1498 else
1499 map->raid_level = info->level;
1500
1501 map->num_members = info->raid_disks;
1502 for (i = 0; i < map->num_members; i++) {
1503 /* initialized in add_to_super */
1504 set_imsm_ord_tbl_ent(map, i, 0);
1505 }
1506 mpb->num_raid_devs++;
1507 super->dev_tbl[super->current_vol] = dev;
1508
1509 return 1;
1510 }
1511
1512 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1513 unsigned long long size, char *name,
1514 char *homehost, int *uuid)
1515 {
1516 /* This is primarily called by Create when creating a new array.
1517 * We will then get add_to_super called for each component, and then
1518 * write_init_super called to write it out to each device.
1519 * For IMSM, Create can create on fresh devices or on a pre-existing
1520 * array.
1521 * To create on a pre-existing array a different method will be called.
1522 * This one is just for fresh drives.
1523 */
1524 struct intel_super *super;
1525 struct imsm_super *mpb;
1526 size_t mpb_size;
1527
1528 if (!info) {
1529 st->sb = NULL;
1530 return 0;
1531 }
1532 if (st->sb)
1533 return init_super_imsm_volume(st, info, size, name, homehost,
1534 uuid);
1535
1536 super = alloc_super(1);
1537 if (!super)
1538 return 0;
1539 mpb_size = disks_to_mpb_size(info->nr_disks);
1540 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1541 free(super);
1542 return 0;
1543 }
1544 mpb = super->buf;
1545 memset(mpb, 0, mpb_size);
1546
1547 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1548 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1549 strlen(MPB_VERSION_RAID5));
1550 mpb->mpb_size = mpb_size;
1551
1552 st->sb = super;
1553 return 1;
1554 }
1555
1556 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1557 int fd, char *devname)
1558 {
1559 struct intel_super *super = st->sb;
1560 struct imsm_super *mpb = super->anchor;
1561 struct dl *dl;
1562 struct imsm_dev *dev;
1563 struct imsm_map *map;
1564 __u32 status;
1565
1566 dev = get_imsm_dev(super, super->current_vol);
1567 map = get_imsm_map(dev, 0);
1568
1569 for (dl = super->disks; dl ; dl = dl->next)
1570 if (dl->major == dk->major &&
1571 dl->minor == dk->minor)
1572 break;
1573
1574 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1575 return;
1576
1577 /* add a pristine spare to the metadata */
1578 if (dl->index < 0) {
1579 dl->index = super->anchor->num_disks;
1580 super->anchor->num_disks++;
1581 }
1582 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
1583 status = CONFIGURED_DISK | USABLE_DISK;
1584 dl->disk.status = __cpu_to_le32(status);
1585
1586 /* if we are creating the first raid device update the family number */
1587 if (super->current_vol == 0) {
1588 __u32 sum;
1589 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
1590 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
1591
1592 *_dev = *dev;
1593 *_disk = dl->disk;
1594 sum = __gen_imsm_checksum(mpb);
1595 mpb->family_num = __cpu_to_le32(sum);
1596 }
1597 }
1598
1599 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1600 int fd, char *devname)
1601 {
1602 struct intel_super *super = st->sb;
1603 struct dl *dd;
1604 unsigned long long size;
1605 __u32 status, id;
1606 int rv;
1607 struct stat stb;
1608
1609 if (super->current_vol >= 0) {
1610 add_to_super_imsm_volume(st, dk, fd, devname);
1611 return;
1612 }
1613
1614 fstat(fd, &stb);
1615 dd = malloc(sizeof(*dd));
1616 if (!dd) {
1617 fprintf(stderr,
1618 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1619 abort();
1620 }
1621 memset(dd, 0, sizeof(*dd));
1622 dd->major = major(stb.st_rdev);
1623 dd->minor = minor(stb.st_rdev);
1624 dd->index = -1;
1625 dd->devname = devname ? strdup(devname) : NULL;
1626 dd->fd = fd;
1627 rv = imsm_read_serial(fd, devname, dd->serial);
1628 if (rv) {
1629 fprintf(stderr,
1630 Name ": failed to retrieve scsi serial, aborting\n");
1631 free(dd);
1632 abort();
1633 }
1634
1635 get_dev_size(fd, NULL, &size);
1636 size /= 512;
1637 status = USABLE_DISK | SPARE_DISK;
1638 serialcpy(dd->disk.serial, dd->serial);
1639 dd->disk.total_blocks = __cpu_to_le32(size);
1640 dd->disk.status = __cpu_to_le32(status);
1641 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1642 dd->disk.scsi_id = __cpu_to_le32(id);
1643 else
1644 dd->disk.scsi_id = __cpu_to_le32(0);
1645
1646 if (st->update_tail) {
1647 dd->next = super->add;
1648 super->add = dd;
1649 } else {
1650 dd->next = super->disks;
1651 super->disks = dd;
1652 }
1653 }
1654
1655 static int store_imsm_mpb(int fd, struct intel_super *super);
1656
1657 /* spare records have their own family number and do not have any defined raid
1658 * devices
1659 */
1660 static int write_super_imsm_spares(struct intel_super *super, int doclose)
1661 {
1662 struct imsm_super mpb_save;
1663 struct imsm_super *mpb = super->anchor;
1664 __u32 sum;
1665 struct dl *d;
1666
1667 mpb_save = *mpb;
1668 mpb->num_raid_devs = 0;
1669 mpb->num_disks = 1;
1670 mpb->mpb_size = sizeof(struct imsm_super);
1671 mpb->generation_num = __cpu_to_le32(1UL);
1672
1673 for (d = super->disks; d; d = d->next) {
1674 if (d->index != -1)
1675 continue;
1676
1677 mpb->disk[0] = d->disk;
1678 sum = __gen_imsm_checksum(mpb);
1679 mpb->family_num = __cpu_to_le32(sum);
1680 sum = __gen_imsm_checksum(mpb);
1681 mpb->check_sum = __cpu_to_le32(sum);
1682
1683 if (store_imsm_mpb(d->fd, super)) {
1684 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1685 __func__, d->major, d->minor, strerror(errno));
1686 *mpb = mpb_save;
1687 return 1;
1688 }
1689 if (doclose) {
1690 close(d->fd);
1691 d->fd = -1;
1692 }
1693 }
1694
1695 *mpb = mpb_save;
1696 return 0;
1697 }
1698
1699 static int write_super_imsm(struct intel_super *super, int doclose)
1700 {
1701 struct imsm_super *mpb = super->anchor;
1702 struct dl *d;
1703 __u32 generation;
1704 __u32 sum;
1705 int spares = 0;
1706 int i;
1707 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
1708
1709 /* 'generation' is incremented everytime the metadata is written */
1710 generation = __le32_to_cpu(mpb->generation_num);
1711 generation++;
1712 mpb->generation_num = __cpu_to_le32(generation);
1713
1714 for (d = super->disks; d; d = d->next) {
1715 if (d->index == -1)
1716 spares++;
1717 else {
1718 mpb->disk[d->index] = d->disk;
1719 mpb_size += sizeof(struct imsm_disk);
1720 }
1721 }
1722
1723 for (i = 0; i < mpb->num_raid_devs; i++) {
1724 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1725
1726 imsm_copy_dev(dev, super->dev_tbl[i]);
1727 mpb_size += sizeof_imsm_dev(dev, 0);
1728 }
1729 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
1730 mpb->mpb_size = __cpu_to_le32(mpb_size);
1731
1732 /* recalculate checksum */
1733 sum = __gen_imsm_checksum(mpb);
1734 mpb->check_sum = __cpu_to_le32(sum);
1735
1736 /* write the mpb for disks that compose raid devices */
1737 for (d = super->disks; d ; d = d->next) {
1738 if (d->index < 0)
1739 continue;
1740 if (store_imsm_mpb(d->fd, super))
1741 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1742 __func__, d->major, d->minor, strerror(errno));
1743 if (doclose) {
1744 close(d->fd);
1745 d->fd = -1;
1746 }
1747 }
1748
1749 if (spares)
1750 return write_super_imsm_spares(super, doclose);
1751
1752 return 0;
1753 }
1754
1755 static int create_array(struct supertype *st)
1756 {
1757 size_t len;
1758 struct imsm_update_create_array *u;
1759 struct intel_super *super = st->sb;
1760 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1761
1762 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0);
1763 u = malloc(len);
1764 if (!u) {
1765 fprintf(stderr, "%s: failed to allocate update buffer\n",
1766 __func__);
1767 return 1;
1768 }
1769
1770 u->type = update_create_array;
1771 u->dev_idx = super->current_vol;
1772 imsm_copy_dev(&u->dev, dev);
1773 append_metadata_update(st, u, len);
1774
1775 return 0;
1776 }
1777
1778 static int add_disk(struct supertype *st)
1779 {
1780 struct intel_super *super = st->sb;
1781 size_t len;
1782 struct imsm_update_add_disk *u;
1783
1784 if (!super->add)
1785 return 0;
1786
1787 len = sizeof(*u);
1788 u = malloc(len);
1789 if (!u) {
1790 fprintf(stderr, "%s: failed to allocate update buffer\n",
1791 __func__);
1792 return 1;
1793 }
1794
1795 u->type = update_add_disk;
1796 append_metadata_update(st, u, len);
1797
1798 return 0;
1799 }
1800
1801 static int write_init_super_imsm(struct supertype *st)
1802 {
1803 if (st->update_tail) {
1804 /* queue the recently created array / added disk
1805 * as a metadata update */
1806 struct intel_super *super = st->sb;
1807 struct dl *d;
1808 int rv;
1809
1810 /* determine if we are creating a volume or adding a disk */
1811 if (super->current_vol < 0) {
1812 /* in the add disk case we are running in mdmon
1813 * context, so don't close fd's
1814 */
1815 return add_disk(st);
1816 } else
1817 rv = create_array(st);
1818
1819 for (d = super->disks; d ; d = d->next) {
1820 close(d->fd);
1821 d->fd = -1;
1822 }
1823
1824 return rv;
1825 } else
1826 return write_super_imsm(st->sb, 1);
1827 }
1828
1829 static int store_zero_imsm(struct supertype *st, int fd)
1830 {
1831 unsigned long long dsize;
1832 void *buf;
1833
1834 get_dev_size(fd, NULL, &dsize);
1835
1836 /* first block is stored on second to last sector of the disk */
1837 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
1838 return 1;
1839
1840 if (posix_memalign(&buf, 512, 512) != 0)
1841 return 1;
1842
1843 memset(buf, 0, 512);
1844 if (write(fd, buf, 512) != 512)
1845 return 1;
1846 return 0;
1847 }
1848
1849 static int validate_geometry_imsm_container(struct supertype *st, int level,
1850 int layout, int raiddisks, int chunk,
1851 unsigned long long size, char *dev,
1852 unsigned long long *freesize,
1853 int verbose)
1854 {
1855 int fd;
1856 unsigned long long ldsize;
1857
1858 if (level != LEVEL_CONTAINER)
1859 return 0;
1860 if (!dev)
1861 return 1;
1862
1863 fd = open(dev, O_RDONLY|O_EXCL, 0);
1864 if (fd < 0) {
1865 if (verbose)
1866 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
1867 dev, strerror(errno));
1868 return 0;
1869 }
1870 if (!get_dev_size(fd, dev, &ldsize)) {
1871 close(fd);
1872 return 0;
1873 }
1874 close(fd);
1875
1876 *freesize = avail_size_imsm(st, ldsize >> 9);
1877
1878 return 1;
1879 }
1880
1881 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
1882 * FIX ME add ahci details
1883 */
1884 static int validate_geometry_imsm_volume(struct supertype *st, int level,
1885 int layout, int raiddisks, int chunk,
1886 unsigned long long size, char *dev,
1887 unsigned long long *freesize,
1888 int verbose)
1889 {
1890 struct stat stb;
1891 struct intel_super *super = st->sb;
1892 struct dl *dl;
1893 unsigned long long pos = 0;
1894 unsigned long long maxsize;
1895 struct extent *e;
1896 int i;
1897
1898 if (level == LEVEL_CONTAINER)
1899 return 0;
1900
1901 if (level == 1 && raiddisks > 2) {
1902 if (verbose)
1903 fprintf(stderr, Name ": imsm does not support more "
1904 "than 2 in a raid1 configuration\n");
1905 return 0;
1906 }
1907
1908 /* We must have the container info already read in. */
1909 if (!super)
1910 return 0;
1911
1912 if (!dev) {
1913 /* General test: make sure there is space for
1914 * 'raiddisks' device extents of size 'size' at a given
1915 * offset
1916 */
1917 unsigned long long minsize = size*2 /* convert to blocks */;
1918 unsigned long long start_offset = ~0ULL;
1919 int dcnt = 0;
1920 if (minsize == 0)
1921 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1922 for (dl = super->disks; dl ; dl = dl->next) {
1923 int found = 0;
1924
1925 pos = 0;
1926 i = 0;
1927 e = get_extents(super, dl);
1928 if (!e) continue;
1929 do {
1930 unsigned long long esize;
1931 esize = e[i].start - pos;
1932 if (esize >= minsize)
1933 found = 1;
1934 if (found && start_offset == ~0ULL) {
1935 start_offset = pos;
1936 break;
1937 } else if (found && pos != start_offset) {
1938 found = 0;
1939 break;
1940 }
1941 pos = e[i].start + e[i].size;
1942 i++;
1943 } while (e[i-1].size);
1944 if (found)
1945 dcnt++;
1946 free(e);
1947 }
1948 if (dcnt < raiddisks) {
1949 if (verbose)
1950 fprintf(stderr, Name ": imsm: Not enough "
1951 "devices with space for this array "
1952 "(%d < %d)\n",
1953 dcnt, raiddisks);
1954 return 0;
1955 }
1956 return 1;
1957 }
1958 /* This device must be a member of the set */
1959 if (stat(dev, &stb) < 0)
1960 return 0;
1961 if ((S_IFMT & stb.st_mode) != S_IFBLK)
1962 return 0;
1963 for (dl = super->disks ; dl ; dl = dl->next) {
1964 if (dl->major == major(stb.st_rdev) &&
1965 dl->minor == minor(stb.st_rdev))
1966 break;
1967 }
1968 if (!dl) {
1969 if (verbose)
1970 fprintf(stderr, Name ": %s is not in the "
1971 "same imsm set\n", dev);
1972 return 0;
1973 }
1974 e = get_extents(super, dl);
1975 maxsize = 0;
1976 i = 0;
1977 if (e) do {
1978 unsigned long long esize;
1979 esize = e[i].start - pos;
1980 if (esize >= maxsize)
1981 maxsize = esize;
1982 pos = e[i].start + e[i].size;
1983 i++;
1984 } while (e[i-1].size);
1985 *freesize = maxsize;
1986
1987 return 1;
1988 }
1989
1990 int imsm_bbm_log_size(struct imsm_super *mpb)
1991 {
1992 return __le32_to_cpu(mpb->bbm_log_size);
1993 }
1994
1995 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
1996 int raiddisks, int chunk, unsigned long long size,
1997 char *dev, unsigned long long *freesize,
1998 int verbose)
1999 {
2000 int fd, cfd;
2001 struct mdinfo *sra;
2002
2003 /* if given unused devices create a container
2004 * if given given devices in a container create a member volume
2005 */
2006 if (level == LEVEL_CONTAINER) {
2007 /* Must be a fresh device to add to a container */
2008 return validate_geometry_imsm_container(st, level, layout,
2009 raiddisks, chunk, size,
2010 dev, freesize,
2011 verbose);
2012 }
2013
2014 if (st->sb) {
2015 /* creating in a given container */
2016 return validate_geometry_imsm_volume(st, level, layout,
2017 raiddisks, chunk, size,
2018 dev, freesize, verbose);
2019 }
2020
2021 /* limit creation to the following levels */
2022 if (!dev)
2023 switch (level) {
2024 case 0:
2025 case 1:
2026 case 10:
2027 case 5:
2028 break;
2029 default:
2030 return 1;
2031 }
2032
2033 /* This device needs to be a device in an 'imsm' container */
2034 fd = open(dev, O_RDONLY|O_EXCL, 0);
2035 if (fd >= 0) {
2036 if (verbose)
2037 fprintf(stderr,
2038 Name ": Cannot create this array on device %s\n",
2039 dev);
2040 close(fd);
2041 return 0;
2042 }
2043 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2044 if (verbose)
2045 fprintf(stderr, Name ": Cannot open %s: %s\n",
2046 dev, strerror(errno));
2047 return 0;
2048 }
2049 /* Well, it is in use by someone, maybe an 'imsm' container. */
2050 cfd = open_container(fd);
2051 if (cfd < 0) {
2052 close(fd);
2053 if (verbose)
2054 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
2055 dev);
2056 return 0;
2057 }
2058 sra = sysfs_read(cfd, 0, GET_VERSION);
2059 close(fd);
2060 if (sra && sra->array.major_version == -1 &&
2061 strcmp(sra->text_version, "imsm") == 0) {
2062 /* This is a member of a imsm container. Load the container
2063 * and try to create a volume
2064 */
2065 struct intel_super *super;
2066
2067 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
2068 st->sb = super;
2069 st->container_dev = fd2devnum(cfd);
2070 close(cfd);
2071 return validate_geometry_imsm_volume(st, level, layout,
2072 raiddisks, chunk,
2073 size, dev,
2074 freesize, verbose);
2075 }
2076 close(cfd);
2077 } else /* may belong to another container */
2078 return 0;
2079
2080 return 1;
2081 }
2082
2083 static struct mdinfo *container_content_imsm(struct supertype *st)
2084 {
2085 /* Given a container loaded by load_super_imsm_all,
2086 * extract information about all the arrays into
2087 * an mdinfo tree.
2088 *
2089 * For each imsm_dev create an mdinfo, fill it in,
2090 * then look for matching devices in super->disks
2091 * and create appropriate device mdinfo.
2092 */
2093 struct intel_super *super = st->sb;
2094 struct imsm_super *mpb = super->anchor;
2095 struct mdinfo *rest = NULL;
2096 int i;
2097
2098 /* do not assemble arrays that might have bad blocks */
2099 if (imsm_bbm_log_size(super->anchor)) {
2100 fprintf(stderr, Name ": BBM log found in metadata. "
2101 "Cannot activate array(s).\n");
2102 return NULL;
2103 }
2104
2105 for (i = 0; i < mpb->num_raid_devs; i++) {
2106 struct imsm_dev *dev = get_imsm_dev(super, i);
2107 struct imsm_vol *vol = &dev->vol;
2108 struct imsm_map *map = get_imsm_map(dev, 0);
2109 struct mdinfo *this;
2110 int slot;
2111
2112 this = malloc(sizeof(*this));
2113 memset(this, 0, sizeof(*this));
2114 this->next = rest;
2115
2116 this->array.level = get_imsm_raid_level(map);
2117 this->array.raid_disks = map->num_members;
2118 this->array.layout = imsm_level_to_layout(this->array.level);
2119 this->array.md_minor = -1;
2120 this->array.ctime = 0;
2121 this->array.utime = 0;
2122 this->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
2123 this->array.state = !vol->dirty;
2124 this->container_member = i;
2125 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
2126 dev->vol.dirty || dev->vol.migr_state)
2127 this->resync_start = 0;
2128 else
2129 this->resync_start = ~0ULL;
2130
2131 strncpy(this->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2132 this->name[MAX_RAID_SERIAL_LEN] = 0;
2133
2134 sprintf(this->text_version, "/%s/%d",
2135 devnum2devname(st->container_dev),
2136 this->container_member);
2137
2138 memset(this->uuid, 0, sizeof(this->uuid));
2139
2140 this->component_size = __le32_to_cpu(map->blocks_per_member);
2141
2142 for (slot = 0 ; slot < map->num_members; slot++) {
2143 struct mdinfo *info_d;
2144 struct dl *d;
2145 int idx;
2146 int skip;
2147 __u32 s;
2148 __u32 ord;
2149
2150 skip = 0;
2151 idx = get_imsm_disk_idx(dev, slot);
2152 ord = get_imsm_ord_tbl_ent(dev, slot);
2153 for (d = super->disks; d ; d = d->next)
2154 if (d->index == idx)
2155 break;
2156
2157 if (d == NULL)
2158 skip = 1;
2159
2160 s = d ? __le32_to_cpu(d->disk.status) : 0;
2161 if (s & FAILED_DISK)
2162 skip = 1;
2163 if (!(s & USABLE_DISK))
2164 skip = 1;
2165 if (ord & IMSM_ORD_REBUILD)
2166 skip = 1;
2167
2168 /*
2169 * if we skip some disks the array will be assmebled degraded;
2170 * reset resync start to avoid a dirty-degraded situation
2171 *
2172 * FIXME handle dirty degraded
2173 */
2174 if (skip && !dev->vol.dirty)
2175 this->resync_start = ~0ULL;
2176 if (skip)
2177 continue;
2178
2179 info_d = malloc(sizeof(*info_d));
2180 if (!info_d) {
2181 fprintf(stderr, Name ": failed to allocate disk"
2182 " for volume %s\n", (char *) dev->volume);
2183 free(this);
2184 this = rest;
2185 break;
2186 }
2187 memset(info_d, 0, sizeof(*info_d));
2188 info_d->next = this->devs;
2189 this->devs = info_d;
2190
2191 info_d->disk.number = d->index;
2192 info_d->disk.major = d->major;
2193 info_d->disk.minor = d->minor;
2194 info_d->disk.raid_disk = slot;
2195
2196 this->array.working_disks++;
2197
2198 info_d->events = __le32_to_cpu(mpb->generation_num);
2199 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
2200 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
2201 if (d->devname)
2202 strcpy(info_d->name, d->devname);
2203 }
2204 rest = this;
2205 }
2206
2207 return rest;
2208 }
2209
2210
2211 static int imsm_open_new(struct supertype *c, struct active_array *a,
2212 char *inst)
2213 {
2214 struct intel_super *super = c->sb;
2215 struct imsm_super *mpb = super->anchor;
2216
2217 if (atoi(inst) >= mpb->num_raid_devs) {
2218 fprintf(stderr, "%s: subarry index %d, out of range\n",
2219 __func__, atoi(inst));
2220 return -ENODEV;
2221 }
2222
2223 dprintf("imsm: open_new %s\n", inst);
2224 a->info.container_member = atoi(inst);
2225 return 0;
2226 }
2227
2228 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
2229 {
2230 struct imsm_map *map = get_imsm_map(dev, 0);
2231
2232 if (!failed)
2233 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
2234 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
2235
2236 switch (get_imsm_raid_level(map)) {
2237 case 0:
2238 return IMSM_T_STATE_FAILED;
2239 break;
2240 case 1:
2241 if (failed < map->num_members)
2242 return IMSM_T_STATE_DEGRADED;
2243 else
2244 return IMSM_T_STATE_FAILED;
2245 break;
2246 case 10:
2247 {
2248 /**
2249 * check to see if any mirrors have failed,
2250 * otherwise we are degraded
2251 */
2252 int device_per_mirror = 2; /* FIXME is this always the case?
2253 * and are they always adjacent?
2254 */
2255 int r10fail = 0;
2256 int i;
2257
2258 for (i = 0; i < map->num_members; i++) {
2259 int idx = get_imsm_disk_idx(dev, i);
2260 struct imsm_disk *disk = get_imsm_disk(super, idx);
2261
2262 if (!disk)
2263 r10fail++;
2264 else if (__le32_to_cpu(disk->status) & FAILED_DISK)
2265 r10fail++;
2266
2267 if (r10fail >= device_per_mirror)
2268 return IMSM_T_STATE_FAILED;
2269
2270 /* reset 'r10fail' for next mirror set */
2271 if (!((i + 1) % device_per_mirror))
2272 r10fail = 0;
2273 }
2274
2275 return IMSM_T_STATE_DEGRADED;
2276 }
2277 case 5:
2278 if (failed < 2)
2279 return IMSM_T_STATE_DEGRADED;
2280 else
2281 return IMSM_T_STATE_FAILED;
2282 break;
2283 default:
2284 break;
2285 }
2286
2287 return map->map_state;
2288 }
2289
2290 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
2291 {
2292 int i;
2293 int failed = 0;
2294 struct imsm_disk *disk;
2295 struct imsm_map *map = get_imsm_map(dev, 0);
2296
2297 for (i = 0; i < map->num_members; i++) {
2298 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
2299 int idx = ord_to_idx(ord);
2300
2301 disk = get_imsm_disk(super, idx);
2302 if (!disk ||
2303 __le32_to_cpu(disk->status) & FAILED_DISK ||
2304 ord & IMSM_ORD_REBUILD)
2305 failed++;
2306 }
2307
2308 return failed;
2309 }
2310
2311 static int is_resyncing(struct imsm_dev *dev)
2312 {
2313 struct imsm_map *migr_map;
2314
2315 if (!dev->vol.migr_state)
2316 return 0;
2317
2318 if (dev->vol.migr_type == 0)
2319 return 1;
2320
2321 migr_map = get_imsm_map(dev, 1);
2322
2323 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
2324 return 1;
2325 else
2326 return 0;
2327 }
2328
2329 static int is_rebuilding(struct imsm_dev *dev)
2330 {
2331 struct imsm_map *migr_map;
2332
2333 if (!dev->vol.migr_state)
2334 return 0;
2335
2336 if (dev->vol.migr_type == 0)
2337 return 0;
2338
2339 migr_map = get_imsm_map(dev, 1);
2340
2341 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
2342 return 1;
2343 else
2344 return 0;
2345 }
2346
2347 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
2348 * states are handled in imsm_set_disk() with one exception, when a
2349 * resync is stopped due to a new failure this routine will set the
2350 * 'degraded' state for the array.
2351 */
2352 static int imsm_set_array_state(struct active_array *a, int consistent)
2353 {
2354 int inst = a->info.container_member;
2355 struct intel_super *super = a->container->sb;
2356 struct imsm_dev *dev = get_imsm_dev(super, inst);
2357 struct imsm_map *map = get_imsm_map(dev, 0);
2358 int failed = imsm_count_failed(super, dev);
2359 __u8 map_state = imsm_check_degraded(super, dev, failed);
2360
2361 if (consistent == 2 &&
2362 (a->resync_start != ~0ULL ||
2363 map_state != IMSM_T_STATE_NORMAL ||
2364 dev->vol.migr_state))
2365 consistent = 0;
2366
2367 if (a->resync_start == ~0ULL) {
2368 /* complete intialization / resync,
2369 * recovery is completed in ->set_disk
2370 */
2371 if (is_resyncing(dev)) {
2372 dprintf("imsm: mark resync done\n");
2373 dev->vol.migr_state = 0;
2374 map->map_state = map_state;
2375 super->updates_pending++;
2376 }
2377 } else if (!is_resyncing(dev) && !failed) {
2378 /* mark the start of the init process if nothing is failed */
2379 dprintf("imsm: mark resync start (%llu)\n", a->resync_start);
2380 map->map_state = map_state;
2381 migrate(dev, IMSM_T_STATE_NORMAL,
2382 map->map_state == IMSM_T_STATE_NORMAL);
2383 super->updates_pending++;
2384 }
2385
2386 /* mark dirty / clean */
2387 if (dev->vol.dirty != !consistent) {
2388 dprintf("imsm: mark '%s' (%llu)\n",
2389 consistent ? "clean" : "dirty", a->resync_start);
2390 if (consistent)
2391 dev->vol.dirty = 0;
2392 else
2393 dev->vol.dirty = 1;
2394 super->updates_pending++;
2395 }
2396 return consistent;
2397 }
2398
2399 static void imsm_set_disk(struct active_array *a, int n, int state)
2400 {
2401 int inst = a->info.container_member;
2402 struct intel_super *super = a->container->sb;
2403 struct imsm_dev *dev = get_imsm_dev(super, inst);
2404 struct imsm_map *map = get_imsm_map(dev, 0);
2405 struct imsm_disk *disk;
2406 int failed;
2407 __u32 status;
2408 __u32 ord;
2409 __u8 map_state;
2410
2411 if (n > map->num_members)
2412 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2413 n, map->num_members - 1);
2414
2415 if (n < 0)
2416 return;
2417
2418 dprintf("imsm: set_disk %d:%x\n", n, state);
2419
2420 ord = get_imsm_ord_tbl_ent(dev, n);
2421 disk = get_imsm_disk(super, ord_to_idx(ord));
2422
2423 /* check for new failures */
2424 status = __le32_to_cpu(disk->status);
2425 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
2426 status |= FAILED_DISK;
2427 disk->status = __cpu_to_le32(status);
2428 disk->scsi_id = __cpu_to_le32(~0UL);
2429 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
2430 super->updates_pending++;
2431 }
2432 /* check if in_sync */
2433 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD) {
2434 struct imsm_map *migr_map = get_imsm_map(dev, 1);
2435
2436 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
2437 super->updates_pending++;
2438 }
2439
2440 failed = imsm_count_failed(super, dev);
2441 map_state = imsm_check_degraded(super, dev, failed);
2442
2443 /* check if recovery complete, newly degraded, or failed */
2444 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
2445 map->map_state = map_state;
2446 dev->vol.migr_state = 0;
2447 super->updates_pending++;
2448 } else if (map_state == IMSM_T_STATE_DEGRADED &&
2449 map->map_state != map_state &&
2450 !dev->vol.migr_state) {
2451 dprintf("imsm: mark degraded\n");
2452 map->map_state = map_state;
2453 super->updates_pending++;
2454 } else if (map_state == IMSM_T_STATE_FAILED &&
2455 map->map_state != map_state) {
2456 dprintf("imsm: mark failed\n");
2457 dev->vol.migr_state = 0;
2458 map->map_state = map_state;
2459 super->updates_pending++;
2460 }
2461 }
2462
2463 static int store_imsm_mpb(int fd, struct intel_super *super)
2464 {
2465 struct imsm_super *mpb = super->anchor;
2466 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2467 unsigned long long dsize;
2468 unsigned long long sectors;
2469
2470 get_dev_size(fd, NULL, &dsize);
2471
2472 if (mpb_size > 512) {
2473 /* -1 to account for anchor */
2474 sectors = mpb_sectors(mpb) - 1;
2475
2476 /* write the extended mpb to the sectors preceeding the anchor */
2477 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2478 return 1;
2479
2480 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
2481 return 1;
2482 }
2483
2484 /* first block is stored on second to last sector of the disk */
2485 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2486 return 1;
2487
2488 if (write(fd, super->buf, 512) != 512)
2489 return 1;
2490
2491 return 0;
2492 }
2493
2494 static void imsm_sync_metadata(struct supertype *container)
2495 {
2496 struct intel_super *super = container->sb;
2497
2498 if (!super->updates_pending)
2499 return;
2500
2501 write_super_imsm(super, 0);
2502
2503 super->updates_pending = 0;
2504 }
2505
2506 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
2507 {
2508 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2509 int i = get_imsm_disk_idx(dev, idx);
2510 struct dl *dl;
2511
2512 for (dl = super->disks; dl; dl = dl->next)
2513 if (dl->index == i)
2514 break;
2515
2516 if (dl && __le32_to_cpu(dl->disk.status) & FAILED_DISK)
2517 dl = NULL;
2518
2519 if (dl)
2520 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
2521
2522 return dl;
2523 }
2524
2525 static struct dl *imsm_add_spare(struct intel_super *super, int idx, struct active_array *a)
2526 {
2527 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2528 struct imsm_map *map = get_imsm_map(dev, 0);
2529 unsigned long long esize;
2530 unsigned long long pos;
2531 struct mdinfo *d;
2532 struct extent *ex;
2533 int j;
2534 int found;
2535 __u32 array_start;
2536 __u32 status;
2537 struct dl *dl;
2538
2539 for (dl = super->disks; dl; dl = dl->next) {
2540 /* If in this array, skip */
2541 for (d = a->info.devs ; d ; d = d->next)
2542 if (d->disk.major == dl->major &&
2543 d->disk.minor == dl->minor) {
2544 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2545 break;
2546 }
2547 if (d)
2548 continue;
2549
2550 /* skip marked in use or failed drives */
2551 status = __le32_to_cpu(dl->disk.status);
2552 if (status & FAILED_DISK || status & CONFIGURED_DISK) {
2553 dprintf("%x:%x status ( %s%s)\n",
2554 dl->major, dl->minor,
2555 status & FAILED_DISK ? "failed " : "",
2556 status & CONFIGURED_DISK ? "configured " : "");
2557 continue;
2558 }
2559
2560 /* Does this unused device have the requisite free space?
2561 * We need a->info.component_size sectors
2562 */
2563 ex = get_extents(super, dl);
2564 if (!ex) {
2565 dprintf("cannot get extents\n");
2566 continue;
2567 }
2568 found = 0;
2569 j = 0;
2570 pos = 0;
2571 array_start = __le32_to_cpu(map->pba_of_lba0);
2572
2573 do {
2574 /* check that we can start at pba_of_lba0 with
2575 * a->info.component_size of space
2576 */
2577 esize = ex[j].start - pos;
2578 if (array_start >= pos &&
2579 array_start + a->info.component_size < ex[j].start) {
2580 found = 1;
2581 break;
2582 }
2583 pos = ex[j].start + ex[j].size;
2584 j++;
2585
2586 } while (ex[j-1].size);
2587
2588 free(ex);
2589 if (!found) {
2590 dprintf("%x:%x does not have %llu at %d\n",
2591 dl->major, dl->minor,
2592 a->info.component_size,
2593 __le32_to_cpu(map->pba_of_lba0));
2594 /* No room */
2595 continue;
2596 } else
2597 break;
2598 }
2599
2600 return dl;
2601 }
2602
2603 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2604 struct metadata_update **updates)
2605 {
2606 /**
2607 * Find a device with unused free space and use it to replace a
2608 * failed/vacant region in an array. We replace failed regions one a
2609 * array at a time. The result is that a new spare disk will be added
2610 * to the first failed array and after the monitor has finished
2611 * propagating failures the remainder will be consumed.
2612 *
2613 * FIXME add a capability for mdmon to request spares from another
2614 * container.
2615 */
2616
2617 struct intel_super *super = a->container->sb;
2618 int inst = a->info.container_member;
2619 struct imsm_dev *dev = get_imsm_dev(super, inst);
2620 struct imsm_map *map = get_imsm_map(dev, 0);
2621 int failed = a->info.array.raid_disks;
2622 struct mdinfo *rv = NULL;
2623 struct mdinfo *d;
2624 struct mdinfo *di;
2625 struct metadata_update *mu;
2626 struct dl *dl;
2627 struct imsm_update_activate_spare *u;
2628 int num_spares = 0;
2629 int i;
2630
2631 for (d = a->info.devs ; d ; d = d->next) {
2632 if ((d->curr_state & DS_FAULTY) &&
2633 d->state_fd >= 0)
2634 /* wait for Removal to happen */
2635 return NULL;
2636 if (d->state_fd >= 0)
2637 failed--;
2638 }
2639
2640 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2641 inst, failed, a->info.array.raid_disks, a->info.array.level);
2642 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
2643 return NULL;
2644
2645 /* For each slot, if it is not working, find a spare */
2646 for (i = 0; i < a->info.array.raid_disks; i++) {
2647 for (d = a->info.devs ; d ; d = d->next)
2648 if (d->disk.raid_disk == i)
2649 break;
2650 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2651 if (d && (d->state_fd >= 0))
2652 continue;
2653
2654 /*
2655 * OK, this device needs recovery. Try to re-add the previous
2656 * occupant of this slot, if this fails add a new spare
2657 */
2658 dl = imsm_readd(super, i, a);
2659 if (!dl)
2660 dl = imsm_add_spare(super, i, a);
2661 if (!dl)
2662 continue;
2663
2664 /* found a usable disk with enough space */
2665 di = malloc(sizeof(*di));
2666 memset(di, 0, sizeof(*di));
2667
2668 /* dl->index will be -1 in the case we are activating a
2669 * pristine spare. imsm_process_update() will create a
2670 * new index in this case. Once a disk is found to be
2671 * failed in all member arrays it is kicked from the
2672 * metadata
2673 */
2674 di->disk.number = dl->index;
2675
2676 /* (ab)use di->devs to store a pointer to the device
2677 * we chose
2678 */
2679 di->devs = (struct mdinfo *) dl;
2680
2681 di->disk.raid_disk = i;
2682 di->disk.major = dl->major;
2683 di->disk.minor = dl->minor;
2684 di->disk.state = 0;
2685 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
2686 di->component_size = a->info.component_size;
2687 di->container_member = inst;
2688 di->next = rv;
2689 rv = di;
2690 num_spares++;
2691 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2692 i, di->data_offset);
2693
2694 break;
2695 }
2696
2697 if (!rv)
2698 /* No spares found */
2699 return rv;
2700 /* Now 'rv' has a list of devices to return.
2701 * Create a metadata_update record to update the
2702 * disk_ord_tbl for the array
2703 */
2704 mu = malloc(sizeof(*mu));
2705 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2706 mu->space = NULL;
2707 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2708 mu->next = *updates;
2709 u = (struct imsm_update_activate_spare *) mu->buf;
2710
2711 for (di = rv ; di ; di = di->next) {
2712 u->type = update_activate_spare;
2713 u->dl = (struct dl *) di->devs;
2714 di->devs = NULL;
2715 u->slot = di->disk.raid_disk;
2716 u->array = inst;
2717 u->next = u + 1;
2718 u++;
2719 }
2720 (u-1)->next = NULL;
2721 *updates = mu;
2722
2723 return rv;
2724 }
2725
2726 static int disks_overlap(struct imsm_dev *d1, struct imsm_dev *d2)
2727 {
2728 struct imsm_map *m1 = get_imsm_map(d1, 0);
2729 struct imsm_map *m2 = get_imsm_map(d2, 0);
2730 int i;
2731 int j;
2732 int idx;
2733
2734 for (i = 0; i < m1->num_members; i++) {
2735 idx = get_imsm_disk_idx(d1, i);
2736 for (j = 0; j < m2->num_members; j++)
2737 if (idx == get_imsm_disk_idx(d2, j))
2738 return 1;
2739 }
2740
2741 return 0;
2742 }
2743
2744 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
2745
2746 static void imsm_process_update(struct supertype *st,
2747 struct metadata_update *update)
2748 {
2749 /**
2750 * crack open the metadata_update envelope to find the update record
2751 * update can be one of:
2752 * update_activate_spare - a spare device has replaced a failed
2753 * device in an array, update the disk_ord_tbl. If this disk is
2754 * present in all member arrays then also clear the SPARE_DISK
2755 * flag
2756 */
2757 struct intel_super *super = st->sb;
2758 struct imsm_super *mpb;
2759 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2760
2761 /* update requires a larger buf but the allocation failed */
2762 if (super->next_len && !super->next_buf) {
2763 super->next_len = 0;
2764 return;
2765 }
2766
2767 if (super->next_buf) {
2768 memcpy(super->next_buf, super->buf, super->len);
2769 free(super->buf);
2770 super->len = super->next_len;
2771 super->buf = super->next_buf;
2772
2773 super->next_len = 0;
2774 super->next_buf = NULL;
2775 }
2776
2777 mpb = super->anchor;
2778
2779 switch (type) {
2780 case update_activate_spare: {
2781 struct imsm_update_activate_spare *u = (void *) update->buf;
2782 struct imsm_dev *dev = get_imsm_dev(super, u->array);
2783 struct imsm_map *map = get_imsm_map(dev, 0);
2784 struct imsm_map *migr_map;
2785 struct active_array *a;
2786 struct imsm_disk *disk;
2787 __u32 status;
2788 __u8 to_state;
2789 struct dl *dl;
2790 unsigned int found;
2791 int failed;
2792 int victim = get_imsm_disk_idx(dev, u->slot);
2793 int i;
2794
2795 for (dl = super->disks; dl; dl = dl->next)
2796 if (dl == u->dl)
2797 break;
2798
2799 if (!dl) {
2800 fprintf(stderr, "error: imsm_activate_spare passed "
2801 "an unknown disk (index: %d)\n",
2802 u->dl->index);
2803 return;
2804 }
2805
2806 super->updates_pending++;
2807
2808 /* count failures (excluding rebuilds and the victim)
2809 * to determine map[0] state
2810 */
2811 failed = 0;
2812 for (i = 0; i < map->num_members; i++) {
2813 if (i == u->slot)
2814 continue;
2815 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
2816 if (!disk ||
2817 __le32_to_cpu(disk->status) & FAILED_DISK)
2818 failed++;
2819 }
2820
2821 /* adding a pristine spare, assign a new index */
2822 if (dl->index < 0) {
2823 dl->index = super->anchor->num_disks;
2824 super->anchor->num_disks++;
2825 }
2826 disk = &dl->disk;
2827 status = __le32_to_cpu(disk->status);
2828 status |= CONFIGURED_DISK;
2829 status &= ~SPARE_DISK;
2830 disk->status = __cpu_to_le32(status);
2831
2832 /* mark rebuild */
2833 to_state = imsm_check_degraded(super, dev, failed);
2834 map->map_state = IMSM_T_STATE_DEGRADED;
2835 migrate(dev, to_state, 1);
2836 migr_map = get_imsm_map(dev, 1);
2837 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
2838 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
2839
2840 /* count arrays using the victim in the metadata */
2841 found = 0;
2842 for (a = st->arrays; a ; a = a->next) {
2843 dev = get_imsm_dev(super, a->info.container_member);
2844 for (i = 0; i < map->num_members; i++)
2845 if (victim == get_imsm_disk_idx(dev, i))
2846 found++;
2847 }
2848
2849 /* delete the victim if it is no longer being
2850 * utilized anywhere
2851 */
2852 if (!found) {
2853 struct dl **dlp;
2854
2855 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
2856 if ((*dlp)->index == victim)
2857 break;
2858 /* We know that 'manager' isn't touching anything,
2859 * so it is safe to:
2860 */
2861 imsm_delete(super, dlp, victim);
2862 }
2863 break;
2864 }
2865 case update_create_array: {
2866 /* someone wants to create a new array, we need to be aware of
2867 * a few races/collisions:
2868 * 1/ 'Create' called by two separate instances of mdadm
2869 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
2870 * devices that have since been assimilated via
2871 * activate_spare.
2872 * In the event this update can not be carried out mdadm will
2873 * (FIX ME) notice that its update did not take hold.
2874 */
2875 struct imsm_update_create_array *u = (void *) update->buf;
2876 struct imsm_dev *dev;
2877 struct imsm_map *map, *new_map;
2878 unsigned long long start, end;
2879 unsigned long long new_start, new_end;
2880 int i;
2881 int overlap = 0;
2882
2883 /* handle racing creates: first come first serve */
2884 if (u->dev_idx < mpb->num_raid_devs) {
2885 dprintf("%s: subarray %d already defined\n",
2886 __func__, u->dev_idx);
2887 return;
2888 }
2889
2890 /* check update is next in sequence */
2891 if (u->dev_idx != mpb->num_raid_devs) {
2892 dprintf("%s: can not create array %d expected index %d\n",
2893 __func__, u->dev_idx, mpb->num_raid_devs);
2894 return;
2895 }
2896
2897 new_map = get_imsm_map(&u->dev, 0);
2898 new_start = __le32_to_cpu(new_map->pba_of_lba0);
2899 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
2900
2901 /* handle activate_spare versus create race:
2902 * check to make sure that overlapping arrays do not include
2903 * overalpping disks
2904 */
2905 for (i = 0; i < mpb->num_raid_devs; i++) {
2906 dev = get_imsm_dev(super, i);
2907 map = get_imsm_map(dev, 0);
2908 start = __le32_to_cpu(map->pba_of_lba0);
2909 end = start + __le32_to_cpu(map->blocks_per_member);
2910 if ((new_start >= start && new_start <= end) ||
2911 (start >= new_start && start <= new_end))
2912 overlap = 1;
2913 if (overlap && disks_overlap(dev, &u->dev)) {
2914 dprintf("%s: arrays overlap\n", __func__);
2915 return;
2916 }
2917 }
2918 /* check num_members sanity */
2919 if (new_map->num_members > mpb->num_disks) {
2920 dprintf("%s: num_disks out of range\n", __func__);
2921 return;
2922 }
2923
2924 /* check that prepare update was successful */
2925 if (!update->space) {
2926 dprintf("%s: prepare update failed\n", __func__);
2927 return;
2928 }
2929
2930 super->updates_pending++;
2931 dev = update->space;
2932 map = get_imsm_map(dev, 0);
2933 update->space = NULL;
2934 imsm_copy_dev(dev, &u->dev);
2935 map = get_imsm_map(dev, 0);
2936 super->dev_tbl[u->dev_idx] = dev;
2937 mpb->num_raid_devs++;
2938
2939 /* fix up flags */
2940 for (i = 0; i < map->num_members; i++) {
2941 struct imsm_disk *disk;
2942 __u32 status;
2943
2944 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
2945 status = __le32_to_cpu(disk->status);
2946 status |= CONFIGURED_DISK;
2947 status &= ~SPARE_DISK;
2948 disk->status = __cpu_to_le32(status);
2949 }
2950 break;
2951 }
2952 case update_add_disk:
2953
2954 /* we may be able to repair some arrays if disks are
2955 * being added */
2956 if (super->add) {
2957 struct active_array *a;
2958 for (a = st->arrays; a; a = a->next)
2959 a->check_degraded = 1;
2960 }
2961 /* check if we can add / replace some disks in the
2962 * metadata */
2963 while (super->add) {
2964 struct dl **dlp, *dl, *al;
2965 al = super->add;
2966 super->add = al->next;
2967 for (dlp = &super->disks; *dlp ; ) {
2968 if (serialcmp(al->serial, (*dlp)->serial) == 0) {
2969 dl = *dlp;
2970 *dlp = (*dlp)->next;
2971 __free_imsm_disk(dl);
2972 break;
2973 } else
2974 dlp = &(*dlp)->next;
2975 }
2976 al->next = super->disks;
2977 super->disks = al;
2978 }
2979
2980 break;
2981 }
2982 }
2983
2984 static void imsm_prepare_update(struct supertype *st,
2985 struct metadata_update *update)
2986 {
2987 /**
2988 * Allocate space to hold new disk entries, raid-device entries or a new
2989 * mpb if necessary. The manager synchronously waits for updates to
2990 * complete in the monitor, so new mpb buffers allocated here can be
2991 * integrated by the monitor thread without worrying about live pointers
2992 * in the manager thread.
2993 */
2994 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2995 struct intel_super *super = st->sb;
2996 struct imsm_super *mpb = super->anchor;
2997 size_t buf_len;
2998 size_t len = 0;
2999
3000 switch (type) {
3001 case update_create_array: {
3002 struct imsm_update_create_array *u = (void *) update->buf;
3003
3004 len = sizeof_imsm_dev(&u->dev, 1);
3005 update->space = malloc(len);
3006 break;
3007 default:
3008 break;
3009 }
3010 }
3011
3012 /* check if we need a larger metadata buffer */
3013 if (super->next_buf)
3014 buf_len = super->next_len;
3015 else
3016 buf_len = super->len;
3017
3018 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
3019 /* ok we need a larger buf than what is currently allocated
3020 * if this allocation fails process_update will notice that
3021 * ->next_len is set and ->next_buf is NULL
3022 */
3023 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
3024 if (super->next_buf)
3025 free(super->next_buf);
3026
3027 super->next_len = buf_len;
3028 if (posix_memalign(&super->next_buf, buf_len, 512) != 0)
3029 super->next_buf = NULL;
3030 }
3031 }
3032
3033 /* must be called while manager is quiesced */
3034 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
3035 {
3036 struct imsm_super *mpb = super->anchor;
3037 struct dl *iter;
3038 struct imsm_dev *dev;
3039 struct imsm_map *map;
3040 int i, j, num_members;
3041 __u32 ord;
3042
3043 dprintf("%s: deleting device[%d] from imsm_super\n",
3044 __func__, index);
3045
3046 /* shift all indexes down one */
3047 for (iter = super->disks; iter; iter = iter->next)
3048 if (iter->index > index)
3049 iter->index--;
3050
3051 for (i = 0; i < mpb->num_raid_devs; i++) {
3052 dev = get_imsm_dev(super, i);
3053 map = get_imsm_map(dev, 0);
3054 num_members = map->num_members;
3055 for (j = 0; j < num_members; j++) {
3056 /* update ord entries being careful not to propagate
3057 * ord-flags to the first map
3058 */
3059 ord = get_imsm_ord_tbl_ent(dev, j);
3060
3061 if (ord_to_idx(ord) <= index)
3062 continue;
3063
3064 map = get_imsm_map(dev, 0);
3065 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
3066 map = get_imsm_map(dev, 1);
3067 if (map)
3068 set_imsm_ord_tbl_ent(map, j, ord - 1);
3069 }
3070 }
3071
3072 mpb->num_disks--;
3073 super->updates_pending++;
3074 if (*dlp) {
3075 struct dl *dl = *dlp;
3076
3077 *dlp = (*dlp)->next;
3078 __free_imsm_disk(dl);
3079 }
3080 }
3081
3082 struct superswitch super_imsm = {
3083 #ifndef MDASSEMBLE
3084 .examine_super = examine_super_imsm,
3085 .brief_examine_super = brief_examine_super_imsm,
3086 .detail_super = detail_super_imsm,
3087 .brief_detail_super = brief_detail_super_imsm,
3088 .write_init_super = write_init_super_imsm,
3089 #endif
3090 .match_home = match_home_imsm,
3091 .uuid_from_super= uuid_from_super_imsm,
3092 .getinfo_super = getinfo_super_imsm,
3093 .update_super = update_super_imsm,
3094
3095 .avail_size = avail_size_imsm,
3096
3097 .compare_super = compare_super_imsm,
3098
3099 .load_super = load_super_imsm,
3100 .init_super = init_super_imsm,
3101 .add_to_super = add_to_super_imsm,
3102 .store_super = store_zero_imsm,
3103 .free_super = free_super_imsm,
3104 .match_metadata_desc = match_metadata_desc_imsm,
3105 .container_content = container_content_imsm,
3106
3107 .validate_geometry = validate_geometry_imsm,
3108 .external = 1,
3109
3110 /* for mdmon */
3111 .open_new = imsm_open_new,
3112 .load_super = load_super_imsm,
3113 .set_array_state= imsm_set_array_state,
3114 .set_disk = imsm_set_disk,
3115 .sync_metadata = imsm_sync_metadata,
3116 .activate_spare = imsm_activate_spare,
3117 .process_update = imsm_process_update,
3118 .prepare_update = imsm_prepare_update,
3119 };