]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: FIX: Check array alignment before expansion
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54 #define MPB_SECTOR_CNT 418
55 #define IMSM_RESERVED_SECTORS 4096
56 #define SECT_PER_MB_SHIFT 11
57
58 /* Disk configuration info. */
59 #define IMSM_MAX_DEVICES 255
60 struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67 __u32 status; /* 0xF0 - 0xF3 */
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69 #define IMSM_DISK_FILLERS 4
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71 };
72
73 /* RAID map configuration infos. */
74 struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80 #define IMSM_T_STATE_NORMAL 0
81 #define IMSM_T_STATE_UNINITIALIZED 1
82 #define IMSM_T_STATE_DEGRADED 2
83 #define IMSM_T_STATE_FAILED 3
84 __u8 raid_level;
85 #define IMSM_T_RAID0 0
86 #define IMSM_T_RAID1 1
87 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
91 __u8 ddf;
92 __u32 filler[7]; /* expansion area */
93 #define IMSM_ORD_REBUILD (1 << 24)
94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
95 * top byte contains some flags
96 */
97 } __attribute__ ((packed));
98
99 struct imsm_vol {
100 __u32 curr_migr_unit;
101 __u32 checkpoint_id; /* id to access curr_migr_unit */
102 __u8 migr_state; /* Normal or Migrating */
103 #define MIGR_INIT 0
104 #define MIGR_REBUILD 1
105 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106 #define MIGR_GEN_MIGR 3
107 #define MIGR_STATE_CHANGE 4
108 #define MIGR_REPAIR 5
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117 } __attribute__ ((packed));
118
119 struct imsm_dev {
120 __u8 volume[MAX_RAID_SERIAL_LEN];
121 __u32 size_low;
122 __u32 size_high;
123 #define DEV_BOOTABLE __cpu_to_le32(0x01)
124 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
126 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145 #define IMSM_DEV_FILLERS 10
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148 } __attribute__ ((packed));
149
150 struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166 #define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
170 /* here comes BBM logs */
171 } __attribute__ ((packed));
172
173 #define BBM_LOG_MAX_ENTRIES 254
174
175 struct bbm_log_entry {
176 __u64 defective_block_start;
177 #define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181 } __attribute__ ((__packed__));
182
183 struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190 } __attribute__ ((__packed__));
191
192
193 #ifndef MDASSEMBLE
194 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195 #endif
196
197 static __u8 migr_type(struct imsm_dev *dev)
198 {
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204 }
205
206 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207 {
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218 }
219
220 static unsigned int sector_count(__u32 bytes)
221 {
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223 }
224
225 static unsigned int mpb_sectors(struct imsm_super *mpb)
226 {
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
228 }
229
230 struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
233 unsigned index;
234 };
235
236 struct intel_hba {
237 enum sys_dev_type type;
238 char *path;
239 char *pci_id;
240 struct intel_hba *next;
241 };
242
243 enum action {
244 DISK_REMOVE = 1,
245 DISK_ADD
246 };
247 /* internal representation of IMSM metadata */
248 struct intel_super {
249 union {
250 void *buf; /* O_DIRECT buffer for reading/writing metadata */
251 struct imsm_super *anchor; /* immovable parameters */
252 };
253 size_t len; /* size of the 'buf' allocation */
254 void *next_buf; /* for realloc'ing buf from the manager */
255 size_t next_len;
256 int updates_pending; /* count of pending updates for mdmon */
257 int current_vol; /* index of raid device undergoing creation */
258 __u32 create_offset; /* common start for 'current_vol' */
259 __u32 random; /* random data for seeding new family numbers */
260 struct intel_dev *devlist;
261 struct dl {
262 struct dl *next;
263 int index;
264 __u8 serial[MAX_RAID_SERIAL_LEN];
265 int major, minor;
266 char *devname;
267 struct imsm_disk disk;
268 int fd;
269 int extent_cnt;
270 struct extent *e; /* for determining freespace @ create */
271 int raiddisk; /* slot to fill in autolayout */
272 enum action action;
273 } *disks;
274 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
275 active */
276 struct dl *missing; /* disks removed while we weren't looking */
277 struct bbm_log *bbm_log;
278 struct intel_hba *hba; /* device path of the raid controller for this metadata */
279 const struct imsm_orom *orom; /* platform firmware support */
280 struct intel_super *next; /* (temp) list for disambiguating family_num */
281 };
282
283 struct intel_disk {
284 struct imsm_disk disk;
285 #define IMSM_UNKNOWN_OWNER (-1)
286 int owner;
287 struct intel_disk *next;
288 };
289
290 struct extent {
291 unsigned long long start, size;
292 };
293
294 /* definitions of reshape process types */
295 enum imsm_reshape_type {
296 CH_TAKEOVER,
297 CH_MIGRATION,
298 };
299
300 /* definition of messages passed to imsm_process_update */
301 enum imsm_update_type {
302 update_activate_spare,
303 update_create_array,
304 update_kill_array,
305 update_rename_array,
306 update_add_remove_disk,
307 update_reshape_container_disks,
308 update_takeover
309 };
310
311 struct imsm_update_activate_spare {
312 enum imsm_update_type type;
313 struct dl *dl;
314 int slot;
315 int array;
316 struct imsm_update_activate_spare *next;
317 };
318
319 struct geo_params {
320 int dev_id;
321 char *dev_name;
322 long long size;
323 int level;
324 int layout;
325 int chunksize;
326 int raid_disks;
327 };
328
329 enum takeover_direction {
330 R10_TO_R0,
331 R0_TO_R10
332 };
333 struct imsm_update_takeover {
334 enum imsm_update_type type;
335 int subarray;
336 enum takeover_direction direction;
337 };
338
339 struct imsm_update_reshape {
340 enum imsm_update_type type;
341 int old_raid_disks;
342 int new_raid_disks;
343 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
344 };
345
346 struct disk_info {
347 __u8 serial[MAX_RAID_SERIAL_LEN];
348 };
349
350 struct imsm_update_create_array {
351 enum imsm_update_type type;
352 int dev_idx;
353 struct imsm_dev dev;
354 };
355
356 struct imsm_update_kill_array {
357 enum imsm_update_type type;
358 int dev_idx;
359 };
360
361 struct imsm_update_rename_array {
362 enum imsm_update_type type;
363 __u8 name[MAX_RAID_SERIAL_LEN];
364 int dev_idx;
365 };
366
367 struct imsm_update_add_remove_disk {
368 enum imsm_update_type type;
369 };
370
371
372 static const char *_sys_dev_type[] = {
373 [SYS_DEV_UNKNOWN] = "Unknown",
374 [SYS_DEV_SAS] = "SAS",
375 [SYS_DEV_SATA] = "SATA"
376 };
377
378 const char *get_sys_dev_type(enum sys_dev_type type)
379 {
380 if (type >= SYS_DEV_MAX)
381 type = SYS_DEV_UNKNOWN;
382
383 return _sys_dev_type[type];
384 }
385
386 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
387 {
388 struct intel_hba *result = malloc(sizeof(*result));
389 if (result) {
390 result->type = device->type;
391 result->path = strdup(device->path);
392 result->next = NULL;
393 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
394 result->pci_id++;
395 }
396 return result;
397 }
398
399 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
400 {
401 struct intel_hba *result=NULL;
402 for (result = hba; result; result = result->next) {
403 if (result->type == device->type && strcmp(result->path, device->path) == 0)
404 break;
405 }
406 return result;
407 }
408
409 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
410 {
411 struct intel_hba *hba;
412
413 /* check if disk attached to Intel HBA */
414 hba = find_intel_hba(super->hba, device);
415 if (hba != NULL)
416 return 1;
417 /* Check if HBA is already attached to super */
418 if (super->hba == NULL) {
419 super->hba = alloc_intel_hba(device);
420 return 1;
421 }
422
423 hba = super->hba;
424 /* Intel metadata allows for all disks attached to the same type HBA.
425 * Do not sypport odf HBA types mixing
426 */
427 if (device->type != hba->type)
428 return 2;
429
430 while (hba->next)
431 hba = hba->next;
432
433 hba->next = alloc_intel_hba(device);
434 return 1;
435 }
436
437 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
438 {
439 struct sys_dev *list, *elem, *prev;
440 char *disk_path;
441
442 if ((list = find_intel_devices()) == NULL)
443 return 0;
444
445 if (fd < 0)
446 disk_path = (char *) devname;
447 else
448 disk_path = diskfd_to_devpath(fd);
449
450 if (!disk_path) {
451 free_sys_dev(&list);
452 return 0;
453 }
454
455 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
456 if (path_attached_to_hba(disk_path, elem->path)) {
457 if (prev == NULL)
458 list = list->next;
459 else
460 prev->next = elem->next;
461 elem->next = NULL;
462 if (disk_path != devname)
463 free(disk_path);
464 free_sys_dev(&list);
465 return elem;
466 }
467 }
468 if (disk_path != devname)
469 free(disk_path);
470 free_sys_dev(&list);
471
472 return NULL;
473 }
474
475
476 static int find_intel_hba_capability(int fd, struct intel_super *super,
477 char *devname);
478
479 static struct supertype *match_metadata_desc_imsm(char *arg)
480 {
481 struct supertype *st;
482
483 if (strcmp(arg, "imsm") != 0 &&
484 strcmp(arg, "default") != 0
485 )
486 return NULL;
487
488 st = malloc(sizeof(*st));
489 if (!st)
490 return NULL;
491 memset(st, 0, sizeof(*st));
492 st->container_dev = NoMdDev;
493 st->ss = &super_imsm;
494 st->max_devs = IMSM_MAX_DEVICES;
495 st->minor_version = 0;
496 st->sb = NULL;
497 return st;
498 }
499
500 #ifndef MDASSEMBLE
501 static __u8 *get_imsm_version(struct imsm_super *mpb)
502 {
503 return &mpb->sig[MPB_SIG_LEN];
504 }
505 #endif
506
507 /* retrieve a disk directly from the anchor when the anchor is known to be
508 * up-to-date, currently only at load time
509 */
510 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
511 {
512 if (index >= mpb->num_disks)
513 return NULL;
514 return &mpb->disk[index];
515 }
516
517 /* retrieve the disk description based on a index of the disk
518 * in the sub-array
519 */
520 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
521 {
522 struct dl *d;
523
524 for (d = super->disks; d; d = d->next)
525 if (d->index == index)
526 return d;
527
528 return NULL;
529 }
530 /* retrieve a disk from the parsed metadata */
531 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
532 {
533 struct dl *dl;
534
535 dl = get_imsm_dl_disk(super, index);
536 if (dl)
537 return &dl->disk;
538
539 return NULL;
540 }
541
542 /* generate a checksum directly from the anchor when the anchor is known to be
543 * up-to-date, currently only at load or write_super after coalescing
544 */
545 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
546 {
547 __u32 end = mpb->mpb_size / sizeof(end);
548 __u32 *p = (__u32 *) mpb;
549 __u32 sum = 0;
550
551 while (end--) {
552 sum += __le32_to_cpu(*p);
553 p++;
554 }
555
556 return sum - __le32_to_cpu(mpb->check_sum);
557 }
558
559 static size_t sizeof_imsm_map(struct imsm_map *map)
560 {
561 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
562 }
563
564 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
565 {
566 /* A device can have 2 maps if it is in the middle of a migration.
567 * If second_map is:
568 * 0 - we return the first map
569 * 1 - we return the second map if it exists, else NULL
570 * -1 - we return the second map if it exists, else the first
571 */
572 struct imsm_map *map = &dev->vol.map[0];
573
574 if (second_map == 1 && !dev->vol.migr_state)
575 return NULL;
576 else if (second_map == 1 ||
577 (second_map < 0 && dev->vol.migr_state)) {
578 void *ptr = map;
579
580 return ptr + sizeof_imsm_map(map);
581 } else
582 return map;
583
584 }
585
586 /* return the size of the device.
587 * migr_state increases the returned size if map[0] were to be duplicated
588 */
589 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
590 {
591 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
592 sizeof_imsm_map(get_imsm_map(dev, 0));
593
594 /* migrating means an additional map */
595 if (dev->vol.migr_state)
596 size += sizeof_imsm_map(get_imsm_map(dev, 1));
597 else if (migr_state)
598 size += sizeof_imsm_map(get_imsm_map(dev, 0));
599
600 return size;
601 }
602
603 #ifndef MDASSEMBLE
604 /* retrieve disk serial number list from a metadata update */
605 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
606 {
607 void *u = update;
608 struct disk_info *inf;
609
610 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
611 sizeof_imsm_dev(&update->dev, 0);
612
613 return inf;
614 }
615 #endif
616
617 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
618 {
619 int offset;
620 int i;
621 void *_mpb = mpb;
622
623 if (index >= mpb->num_raid_devs)
624 return NULL;
625
626 /* devices start after all disks */
627 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
628
629 for (i = 0; i <= index; i++)
630 if (i == index)
631 return _mpb + offset;
632 else
633 offset += sizeof_imsm_dev(_mpb + offset, 0);
634
635 return NULL;
636 }
637
638 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
639 {
640 struct intel_dev *dv;
641
642 if (index >= super->anchor->num_raid_devs)
643 return NULL;
644 for (dv = super->devlist; dv; dv = dv->next)
645 if (dv->index == index)
646 return dv->dev;
647 return NULL;
648 }
649
650 /*
651 * for second_map:
652 * == 0 get first map
653 * == 1 get second map
654 * == -1 than get map according to the current migr_state
655 */
656 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
657 int slot,
658 int second_map)
659 {
660 struct imsm_map *map;
661
662 map = get_imsm_map(dev, second_map);
663
664 /* top byte identifies disk under rebuild */
665 return __le32_to_cpu(map->disk_ord_tbl[slot]);
666 }
667
668 #define ord_to_idx(ord) (((ord) << 8) >> 8)
669 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
670 {
671 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
672
673 return ord_to_idx(ord);
674 }
675
676 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
677 {
678 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
679 }
680
681 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
682 {
683 int slot;
684 __u32 ord;
685
686 for (slot = 0; slot < map->num_members; slot++) {
687 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
688 if (ord_to_idx(ord) == idx)
689 return slot;
690 }
691
692 return -1;
693 }
694
695 static int get_imsm_raid_level(struct imsm_map *map)
696 {
697 if (map->raid_level == 1) {
698 if (map->num_members == 2)
699 return 1;
700 else
701 return 10;
702 }
703
704 return map->raid_level;
705 }
706
707 static int cmp_extent(const void *av, const void *bv)
708 {
709 const struct extent *a = av;
710 const struct extent *b = bv;
711 if (a->start < b->start)
712 return -1;
713 if (a->start > b->start)
714 return 1;
715 return 0;
716 }
717
718 static int count_memberships(struct dl *dl, struct intel_super *super)
719 {
720 int memberships = 0;
721 int i;
722
723 for (i = 0; i < super->anchor->num_raid_devs; i++) {
724 struct imsm_dev *dev = get_imsm_dev(super, i);
725 struct imsm_map *map = get_imsm_map(dev, 0);
726
727 if (get_imsm_disk_slot(map, dl->index) >= 0)
728 memberships++;
729 }
730
731 return memberships;
732 }
733
734 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
735 {
736 /* find a list of used extents on the given physical device */
737 struct extent *rv, *e;
738 int i;
739 int memberships = count_memberships(dl, super);
740 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
741
742 rv = malloc(sizeof(struct extent) * (memberships + 1));
743 if (!rv)
744 return NULL;
745 e = rv;
746
747 for (i = 0; i < super->anchor->num_raid_devs; i++) {
748 struct imsm_dev *dev = get_imsm_dev(super, i);
749 struct imsm_map *map = get_imsm_map(dev, 0);
750
751 if (get_imsm_disk_slot(map, dl->index) >= 0) {
752 e->start = __le32_to_cpu(map->pba_of_lba0);
753 e->size = __le32_to_cpu(map->blocks_per_member);
754 e++;
755 }
756 }
757 qsort(rv, memberships, sizeof(*rv), cmp_extent);
758
759 /* determine the start of the metadata
760 * when no raid devices are defined use the default
761 * ...otherwise allow the metadata to truncate the value
762 * as is the case with older versions of imsm
763 */
764 if (memberships) {
765 struct extent *last = &rv[memberships - 1];
766 __u32 remainder;
767
768 remainder = __le32_to_cpu(dl->disk.total_blocks) -
769 (last->start + last->size);
770 /* round down to 1k block to satisfy precision of the kernel
771 * 'size' interface
772 */
773 remainder &= ~1UL;
774 /* make sure remainder is still sane */
775 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
776 remainder = ROUND_UP(super->len, 512) >> 9;
777 if (reservation > remainder)
778 reservation = remainder;
779 }
780 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
781 e->size = 0;
782 return rv;
783 }
784
785 /* try to determine how much space is reserved for metadata from
786 * the last get_extents() entry, otherwise fallback to the
787 * default
788 */
789 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
790 {
791 struct extent *e;
792 int i;
793 __u32 rv;
794
795 /* for spares just return a minimal reservation which will grow
796 * once the spare is picked up by an array
797 */
798 if (dl->index == -1)
799 return MPB_SECTOR_CNT;
800
801 e = get_extents(super, dl);
802 if (!e)
803 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
804
805 /* scroll to last entry */
806 for (i = 0; e[i].size; i++)
807 continue;
808
809 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
810
811 free(e);
812
813 return rv;
814 }
815
816 static int is_spare(struct imsm_disk *disk)
817 {
818 return (disk->status & SPARE_DISK) == SPARE_DISK;
819 }
820
821 static int is_configured(struct imsm_disk *disk)
822 {
823 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
824 }
825
826 static int is_failed(struct imsm_disk *disk)
827 {
828 return (disk->status & FAILED_DISK) == FAILED_DISK;
829 }
830
831 /* Return minimum size of a spare that can be used in this array*/
832 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
833 {
834 struct intel_super *super = st->sb;
835 struct dl *dl;
836 struct extent *e;
837 int i;
838 unsigned long long rv = 0;
839
840 if (!super)
841 return rv;
842 /* find first active disk in array */
843 dl = super->disks;
844 while (dl && (is_failed(&dl->disk) || dl->index == -1))
845 dl = dl->next;
846 if (!dl)
847 return rv;
848 /* find last lba used by subarrays */
849 e = get_extents(super, dl);
850 if (!e)
851 return rv;
852 for (i = 0; e[i].size; i++)
853 continue;
854 if (i > 0)
855 rv = e[i-1].start + e[i-1].size;
856 free(e);
857 /* add the amount of space needed for metadata */
858 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
859 return rv * 512;
860 }
861
862 #ifndef MDASSEMBLE
863 static __u64 blocks_per_migr_unit(struct imsm_dev *dev);
864
865 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
866 {
867 __u64 sz;
868 int slot, i;
869 struct imsm_map *map = get_imsm_map(dev, 0);
870 struct imsm_map *map2 = get_imsm_map(dev, 1);
871 __u32 ord;
872
873 printf("\n");
874 printf("[%.16s]:\n", dev->volume);
875 printf(" UUID : %s\n", uuid);
876 printf(" RAID Level : %d", get_imsm_raid_level(map));
877 if (map2)
878 printf(" <-- %d", get_imsm_raid_level(map2));
879 printf("\n");
880 printf(" Members : %d", map->num_members);
881 if (map2)
882 printf(" <-- %d", map2->num_members);
883 printf("\n");
884 printf(" Slots : [");
885 for (i = 0; i < map->num_members; i++) {
886 ord = get_imsm_ord_tbl_ent(dev, i, 0);
887 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
888 }
889 printf("]");
890 if (map2) {
891 printf(" <-- [");
892 for (i = 0; i < map2->num_members; i++) {
893 ord = get_imsm_ord_tbl_ent(dev, i, 1);
894 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
895 }
896 printf("]");
897 }
898 printf("\n");
899 printf(" Failed disk : ");
900 if (map->failed_disk_num == 0xff)
901 printf("none");
902 else
903 printf("%i", map->failed_disk_num);
904 printf("\n");
905 slot = get_imsm_disk_slot(map, disk_idx);
906 if (slot >= 0) {
907 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
908 printf(" This Slot : %d%s\n", slot,
909 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
910 } else
911 printf(" This Slot : ?\n");
912 sz = __le32_to_cpu(dev->size_high);
913 sz <<= 32;
914 sz += __le32_to_cpu(dev->size_low);
915 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
916 human_size(sz * 512));
917 sz = __le32_to_cpu(map->blocks_per_member);
918 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
919 human_size(sz * 512));
920 printf(" Sector Offset : %u\n",
921 __le32_to_cpu(map->pba_of_lba0));
922 printf(" Num Stripes : %u\n",
923 __le32_to_cpu(map->num_data_stripes));
924 printf(" Chunk Size : %u KiB",
925 __le16_to_cpu(map->blocks_per_strip) / 2);
926 if (map2)
927 printf(" <-- %u KiB",
928 __le16_to_cpu(map2->blocks_per_strip) / 2);
929 printf("\n");
930 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
931 printf(" Migrate State : ");
932 if (dev->vol.migr_state) {
933 if (migr_type(dev) == MIGR_INIT)
934 printf("initialize\n");
935 else if (migr_type(dev) == MIGR_REBUILD)
936 printf("rebuild\n");
937 else if (migr_type(dev) == MIGR_VERIFY)
938 printf("check\n");
939 else if (migr_type(dev) == MIGR_GEN_MIGR)
940 printf("general migration\n");
941 else if (migr_type(dev) == MIGR_STATE_CHANGE)
942 printf("state change\n");
943 else if (migr_type(dev) == MIGR_REPAIR)
944 printf("repair\n");
945 else
946 printf("<unknown:%d>\n", migr_type(dev));
947 } else
948 printf("idle\n");
949 printf(" Map State : %s", map_state_str[map->map_state]);
950 if (dev->vol.migr_state) {
951 struct imsm_map *map = get_imsm_map(dev, 1);
952
953 printf(" <-- %s", map_state_str[map->map_state]);
954 printf("\n Checkpoint : %u (%llu)",
955 __le32_to_cpu(dev->vol.curr_migr_unit),
956 (unsigned long long)blocks_per_migr_unit(dev));
957 }
958 printf("\n");
959 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
960 }
961
962 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
963 {
964 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
965 char str[MAX_RAID_SERIAL_LEN + 1];
966 __u64 sz;
967
968 if (index < 0 || !disk)
969 return;
970
971 printf("\n");
972 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
973 printf(" Disk%02d Serial : %s\n", index, str);
974 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
975 is_configured(disk) ? " active" : "",
976 is_failed(disk) ? " failed" : "");
977 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
978 sz = __le32_to_cpu(disk->total_blocks) - reserved;
979 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
980 human_size(sz * 512));
981 }
982
983 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
984
985 static void examine_super_imsm(struct supertype *st, char *homehost)
986 {
987 struct intel_super *super = st->sb;
988 struct imsm_super *mpb = super->anchor;
989 char str[MAX_SIGNATURE_LENGTH];
990 int i;
991 struct mdinfo info;
992 char nbuf[64];
993 __u32 sum;
994 __u32 reserved = imsm_reserved_sectors(super, super->disks);
995 struct dl *dl;
996
997 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
998 printf(" Magic : %s\n", str);
999 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1000 printf(" Version : %s\n", get_imsm_version(mpb));
1001 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1002 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1003 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1004 getinfo_super_imsm(st, &info, NULL);
1005 fname_from_uuid(st, &info, nbuf, ':');
1006 printf(" UUID : %s\n", nbuf + 5);
1007 sum = __le32_to_cpu(mpb->check_sum);
1008 printf(" Checksum : %08x %s\n", sum,
1009 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1010 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1011 printf(" Disks : %d\n", mpb->num_disks);
1012 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1013 print_imsm_disk(mpb, super->disks->index, reserved);
1014 if (super->bbm_log) {
1015 struct bbm_log *log = super->bbm_log;
1016
1017 printf("\n");
1018 printf("Bad Block Management Log:\n");
1019 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1020 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1021 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1022 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1023 printf(" First Spare : %llx\n",
1024 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1025 }
1026 for (i = 0; i < mpb->num_raid_devs; i++) {
1027 struct mdinfo info;
1028 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1029
1030 super->current_vol = i;
1031 getinfo_super_imsm(st, &info, NULL);
1032 fname_from_uuid(st, &info, nbuf, ':');
1033 print_imsm_dev(dev, nbuf + 5, super->disks->index);
1034 }
1035 for (i = 0; i < mpb->num_disks; i++) {
1036 if (i == super->disks->index)
1037 continue;
1038 print_imsm_disk(mpb, i, reserved);
1039 }
1040 for (dl = super->disks ; dl; dl = dl->next) {
1041 struct imsm_disk *disk;
1042 char str[MAX_RAID_SERIAL_LEN + 1];
1043 __u64 sz;
1044
1045 if (dl->index >= 0)
1046 continue;
1047
1048 disk = &dl->disk;
1049 printf("\n");
1050 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1051 printf(" Disk Serial : %s\n", str);
1052 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1053 is_configured(disk) ? " active" : "",
1054 is_failed(disk) ? " failed" : "");
1055 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1056 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1057 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1058 human_size(sz * 512));
1059 }
1060 }
1061
1062 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1063 {
1064 /* We just write a generic IMSM ARRAY entry */
1065 struct mdinfo info;
1066 char nbuf[64];
1067 struct intel_super *super = st->sb;
1068
1069 if (!super->anchor->num_raid_devs) {
1070 printf("ARRAY metadata=imsm\n");
1071 return;
1072 }
1073
1074 getinfo_super_imsm(st, &info, NULL);
1075 fname_from_uuid(st, &info, nbuf, ':');
1076 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1077 }
1078
1079 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1080 {
1081 /* We just write a generic IMSM ARRAY entry */
1082 struct mdinfo info;
1083 char nbuf[64];
1084 char nbuf1[64];
1085 struct intel_super *super = st->sb;
1086 int i;
1087
1088 if (!super->anchor->num_raid_devs)
1089 return;
1090
1091 getinfo_super_imsm(st, &info, NULL);
1092 fname_from_uuid(st, &info, nbuf, ':');
1093 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1094 struct imsm_dev *dev = get_imsm_dev(super, i);
1095
1096 super->current_vol = i;
1097 getinfo_super_imsm(st, &info, NULL);
1098 fname_from_uuid(st, &info, nbuf1, ':');
1099 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1100 dev->volume, nbuf + 5, i, nbuf1 + 5);
1101 }
1102 }
1103
1104 static void export_examine_super_imsm(struct supertype *st)
1105 {
1106 struct intel_super *super = st->sb;
1107 struct imsm_super *mpb = super->anchor;
1108 struct mdinfo info;
1109 char nbuf[64];
1110
1111 getinfo_super_imsm(st, &info, NULL);
1112 fname_from_uuid(st, &info, nbuf, ':');
1113 printf("MD_METADATA=imsm\n");
1114 printf("MD_LEVEL=container\n");
1115 printf("MD_UUID=%s\n", nbuf+5);
1116 printf("MD_DEVICES=%u\n", mpb->num_disks);
1117 }
1118
1119 static void detail_super_imsm(struct supertype *st, char *homehost)
1120 {
1121 struct mdinfo info;
1122 char nbuf[64];
1123
1124 getinfo_super_imsm(st, &info, NULL);
1125 fname_from_uuid(st, &info, nbuf, ':');
1126 printf("\n UUID : %s\n", nbuf + 5);
1127 }
1128
1129 static void brief_detail_super_imsm(struct supertype *st)
1130 {
1131 struct mdinfo info;
1132 char nbuf[64];
1133 getinfo_super_imsm(st, &info, NULL);
1134 fname_from_uuid(st, &info, nbuf, ':');
1135 printf(" UUID=%s", nbuf + 5);
1136 }
1137
1138 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1139 static void fd2devname(int fd, char *name);
1140
1141 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1142 {
1143 /* dump an unsorted list of devices attached to AHCI Intel storage
1144 * controller, as well as non-connected ports
1145 */
1146 int hba_len = strlen(hba_path) + 1;
1147 struct dirent *ent;
1148 DIR *dir;
1149 char *path = NULL;
1150 int err = 0;
1151 unsigned long port_mask = (1 << port_count) - 1;
1152
1153 if (port_count > (int)sizeof(port_mask) * 8) {
1154 if (verbose)
1155 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1156 return 2;
1157 }
1158
1159 /* scroll through /sys/dev/block looking for devices attached to
1160 * this hba
1161 */
1162 dir = opendir("/sys/dev/block");
1163 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1164 int fd;
1165 char model[64];
1166 char vendor[64];
1167 char buf[1024];
1168 int major, minor;
1169 char *device;
1170 char *c;
1171 int port;
1172 int type;
1173
1174 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1175 continue;
1176 path = devt_to_devpath(makedev(major, minor));
1177 if (!path)
1178 continue;
1179 if (!path_attached_to_hba(path, hba_path)) {
1180 free(path);
1181 path = NULL;
1182 continue;
1183 }
1184
1185 /* retrieve the scsi device type */
1186 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1187 if (verbose)
1188 fprintf(stderr, Name ": failed to allocate 'device'\n");
1189 err = 2;
1190 break;
1191 }
1192 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1193 if (load_sys(device, buf) != 0) {
1194 if (verbose)
1195 fprintf(stderr, Name ": failed to read device type for %s\n",
1196 path);
1197 err = 2;
1198 free(device);
1199 break;
1200 }
1201 type = strtoul(buf, NULL, 10);
1202
1203 /* if it's not a disk print the vendor and model */
1204 if (!(type == 0 || type == 7 || type == 14)) {
1205 vendor[0] = '\0';
1206 model[0] = '\0';
1207 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1208 if (load_sys(device, buf) == 0) {
1209 strncpy(vendor, buf, sizeof(vendor));
1210 vendor[sizeof(vendor) - 1] = '\0';
1211 c = (char *) &vendor[sizeof(vendor) - 1];
1212 while (isspace(*c) || *c == '\0')
1213 *c-- = '\0';
1214
1215 }
1216 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1217 if (load_sys(device, buf) == 0) {
1218 strncpy(model, buf, sizeof(model));
1219 model[sizeof(model) - 1] = '\0';
1220 c = (char *) &model[sizeof(model) - 1];
1221 while (isspace(*c) || *c == '\0')
1222 *c-- = '\0';
1223 }
1224
1225 if (vendor[0] && model[0])
1226 sprintf(buf, "%.64s %.64s", vendor, model);
1227 else
1228 switch (type) { /* numbers from hald/linux/device.c */
1229 case 1: sprintf(buf, "tape"); break;
1230 case 2: sprintf(buf, "printer"); break;
1231 case 3: sprintf(buf, "processor"); break;
1232 case 4:
1233 case 5: sprintf(buf, "cdrom"); break;
1234 case 6: sprintf(buf, "scanner"); break;
1235 case 8: sprintf(buf, "media_changer"); break;
1236 case 9: sprintf(buf, "comm"); break;
1237 case 12: sprintf(buf, "raid"); break;
1238 default: sprintf(buf, "unknown");
1239 }
1240 } else
1241 buf[0] = '\0';
1242 free(device);
1243
1244 /* chop device path to 'host%d' and calculate the port number */
1245 c = strchr(&path[hba_len], '/');
1246 if (!c) {
1247 if (verbose)
1248 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1249 err = 2;
1250 break;
1251 }
1252 *c = '\0';
1253 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1254 port -= host_base;
1255 else {
1256 if (verbose) {
1257 *c = '/'; /* repair the full string */
1258 fprintf(stderr, Name ": failed to determine port number for %s\n",
1259 path);
1260 }
1261 err = 2;
1262 break;
1263 }
1264
1265 /* mark this port as used */
1266 port_mask &= ~(1 << port);
1267
1268 /* print out the device information */
1269 if (buf[0]) {
1270 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1271 continue;
1272 }
1273
1274 fd = dev_open(ent->d_name, O_RDONLY);
1275 if (fd < 0)
1276 printf(" Port%d : - disk info unavailable -\n", port);
1277 else {
1278 fd2devname(fd, buf);
1279 printf(" Port%d : %s", port, buf);
1280 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1281 printf(" (%s)\n", buf);
1282 else
1283 printf("()\n");
1284 }
1285 close(fd);
1286 free(path);
1287 path = NULL;
1288 }
1289 if (path)
1290 free(path);
1291 if (dir)
1292 closedir(dir);
1293 if (err == 0) {
1294 int i;
1295
1296 for (i = 0; i < port_count; i++)
1297 if (port_mask & (1 << i))
1298 printf(" Port%d : - no device attached -\n", i);
1299 }
1300
1301 return err;
1302 }
1303
1304
1305
1306 static void print_found_intel_controllers(struct sys_dev *elem)
1307 {
1308 for (; elem; elem = elem->next) {
1309 fprintf(stderr, Name ": found Intel(R) ");
1310 if (elem->type == SYS_DEV_SATA)
1311 fprintf(stderr, "SATA ");
1312 else if (elem->type == SYS_DEV_SAS)
1313 fprintf(stderr, "SAS ");
1314 fprintf(stderr, "RAID controller");
1315 if (elem->pci_id)
1316 fprintf(stderr, " at %s", elem->pci_id);
1317 fprintf(stderr, ".\n");
1318 }
1319 fflush(stderr);
1320 }
1321
1322 static int ahci_get_port_count(const char *hba_path, int *port_count)
1323 {
1324 struct dirent *ent;
1325 DIR *dir;
1326 int host_base = -1;
1327
1328 *port_count = 0;
1329 if ((dir = opendir(hba_path)) == NULL)
1330 return -1;
1331
1332 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1333 int host;
1334
1335 if (sscanf(ent->d_name, "host%d", &host) != 1)
1336 continue;
1337 if (*port_count == 0)
1338 host_base = host;
1339 else if (host < host_base)
1340 host_base = host;
1341
1342 if (host + 1 > *port_count + host_base)
1343 *port_count = host + 1 - host_base;
1344 }
1345 closedir(dir);
1346 return host_base;
1347 }
1348
1349 static void print_imsm_capability(const struct imsm_orom *orom)
1350 {
1351 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1352 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1353 orom->hotfix_ver, orom->build);
1354 printf(" RAID Levels :%s%s%s%s%s\n",
1355 imsm_orom_has_raid0(orom) ? " raid0" : "",
1356 imsm_orom_has_raid1(orom) ? " raid1" : "",
1357 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1358 imsm_orom_has_raid10(orom) ? " raid10" : "",
1359 imsm_orom_has_raid5(orom) ? " raid5" : "");
1360 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1361 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1362 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1363 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1364 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1365 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1366 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1367 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1368 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1369 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1370 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1371 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1372 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1373 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1374 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1375 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1376 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1377 printf(" Max Disks : %d\n", orom->tds);
1378 printf(" Max Volumes : %d\n", orom->vpa);
1379 return;
1380 }
1381
1382 static int detail_platform_imsm(int verbose, int enumerate_only)
1383 {
1384 /* There are two components to imsm platform support, the ahci SATA
1385 * controller and the option-rom. To find the SATA controller we
1386 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1387 * controller with the Intel vendor id is present. This approach
1388 * allows mdadm to leverage the kernel's ahci detection logic, with the
1389 * caveat that if ahci.ko is not loaded mdadm will not be able to
1390 * detect platform raid capabilities. The option-rom resides in a
1391 * platform "Adapter ROM". We scan for its signature to retrieve the
1392 * platform capabilities. If raid support is disabled in the BIOS the
1393 * option-rom capability structure will not be available.
1394 */
1395 const struct imsm_orom *orom;
1396 struct sys_dev *list, *hba;
1397 int host_base = 0;
1398 int port_count = 0;
1399 int result=0;
1400
1401 if (enumerate_only) {
1402 if (check_env("IMSM_NO_PLATFORM"))
1403 return 0;
1404 list = find_intel_devices();
1405 if (!list)
1406 return 2;
1407 for (hba = list; hba; hba = hba->next) {
1408 orom = find_imsm_capability(hba->type);
1409 if (!orom) {
1410 result = 2;
1411 break;
1412 }
1413 }
1414 free_sys_dev(&list);
1415 return result;
1416 }
1417
1418 list = find_intel_devices();
1419 if (!list) {
1420 if (verbose)
1421 fprintf(stderr, Name ": no active Intel(R) RAID "
1422 "controller found.\n");
1423 free_sys_dev(&list);
1424 return 2;
1425 } else if (verbose)
1426 print_found_intel_controllers(list);
1427
1428 for (hba = list; hba; hba = hba->next) {
1429 orom = find_imsm_capability(hba->type);
1430 if (!orom)
1431 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1432 hba->path, get_sys_dev_type(hba->type));
1433 else
1434 print_imsm_capability(orom);
1435 }
1436
1437 for (hba = list; hba; hba = hba->next) {
1438 printf(" I/O Controller : %s (%s)\n",
1439 hba->path, get_sys_dev_type(hba->type));
1440
1441 if (hba->type == SYS_DEV_SATA) {
1442 host_base = ahci_get_port_count(hba->path, &port_count);
1443 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1444 if (verbose)
1445 fprintf(stderr, Name ": failed to enumerate "
1446 "ports on SATA controller at %s.", hba->pci_id);
1447 result |= 2;
1448 }
1449 }
1450 }
1451
1452 free_sys_dev(&list);
1453 return result;
1454 }
1455 #endif
1456
1457 static int match_home_imsm(struct supertype *st, char *homehost)
1458 {
1459 /* the imsm metadata format does not specify any host
1460 * identification information. We return -1 since we can never
1461 * confirm nor deny whether a given array is "meant" for this
1462 * host. We rely on compare_super and the 'family_num' fields to
1463 * exclude member disks that do not belong, and we rely on
1464 * mdadm.conf to specify the arrays that should be assembled.
1465 * Auto-assembly may still pick up "foreign" arrays.
1466 */
1467
1468 return -1;
1469 }
1470
1471 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1472 {
1473 /* The uuid returned here is used for:
1474 * uuid to put into bitmap file (Create, Grow)
1475 * uuid for backup header when saving critical section (Grow)
1476 * comparing uuids when re-adding a device into an array
1477 * In these cases the uuid required is that of the data-array,
1478 * not the device-set.
1479 * uuid to recognise same set when adding a missing device back
1480 * to an array. This is a uuid for the device-set.
1481 *
1482 * For each of these we can make do with a truncated
1483 * or hashed uuid rather than the original, as long as
1484 * everyone agrees.
1485 * In each case the uuid required is that of the data-array,
1486 * not the device-set.
1487 */
1488 /* imsm does not track uuid's so we synthesis one using sha1 on
1489 * - The signature (Which is constant for all imsm array, but no matter)
1490 * - the orig_family_num of the container
1491 * - the index number of the volume
1492 * - the 'serial' number of the volume.
1493 * Hopefully these are all constant.
1494 */
1495 struct intel_super *super = st->sb;
1496
1497 char buf[20];
1498 struct sha1_ctx ctx;
1499 struct imsm_dev *dev = NULL;
1500 __u32 family_num;
1501
1502 /* some mdadm versions failed to set ->orig_family_num, in which
1503 * case fall back to ->family_num. orig_family_num will be
1504 * fixed up with the first metadata update.
1505 */
1506 family_num = super->anchor->orig_family_num;
1507 if (family_num == 0)
1508 family_num = super->anchor->family_num;
1509 sha1_init_ctx(&ctx);
1510 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1511 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1512 if (super->current_vol >= 0)
1513 dev = get_imsm_dev(super, super->current_vol);
1514 if (dev) {
1515 __u32 vol = super->current_vol;
1516 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1517 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1518 }
1519 sha1_finish_ctx(&ctx, buf);
1520 memcpy(uuid, buf, 4*4);
1521 }
1522
1523 #if 0
1524 static void
1525 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1526 {
1527 __u8 *v = get_imsm_version(mpb);
1528 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1529 char major[] = { 0, 0, 0 };
1530 char minor[] = { 0 ,0, 0 };
1531 char patch[] = { 0, 0, 0 };
1532 char *ver_parse[] = { major, minor, patch };
1533 int i, j;
1534
1535 i = j = 0;
1536 while (*v != '\0' && v < end) {
1537 if (*v != '.' && j < 2)
1538 ver_parse[i][j++] = *v;
1539 else {
1540 i++;
1541 j = 0;
1542 }
1543 v++;
1544 }
1545
1546 *m = strtol(minor, NULL, 0);
1547 *p = strtol(patch, NULL, 0);
1548 }
1549 #endif
1550
1551 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1552 {
1553 /* migr_strip_size when repairing or initializing parity */
1554 struct imsm_map *map = get_imsm_map(dev, 0);
1555 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1556
1557 switch (get_imsm_raid_level(map)) {
1558 case 5:
1559 case 10:
1560 return chunk;
1561 default:
1562 return 128*1024 >> 9;
1563 }
1564 }
1565
1566 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1567 {
1568 /* migr_strip_size when rebuilding a degraded disk, no idea why
1569 * this is different than migr_strip_size_resync(), but it's good
1570 * to be compatible
1571 */
1572 struct imsm_map *map = get_imsm_map(dev, 1);
1573 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1574
1575 switch (get_imsm_raid_level(map)) {
1576 case 1:
1577 case 10:
1578 if (map->num_members % map->num_domains == 0)
1579 return 128*1024 >> 9;
1580 else
1581 return chunk;
1582 case 5:
1583 return max((__u32) 64*1024 >> 9, chunk);
1584 default:
1585 return 128*1024 >> 9;
1586 }
1587 }
1588
1589 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1590 {
1591 struct imsm_map *lo = get_imsm_map(dev, 0);
1592 struct imsm_map *hi = get_imsm_map(dev, 1);
1593 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1594 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1595
1596 return max((__u32) 1, hi_chunk / lo_chunk);
1597 }
1598
1599 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1600 {
1601 struct imsm_map *lo = get_imsm_map(dev, 0);
1602 int level = get_imsm_raid_level(lo);
1603
1604 if (level == 1 || level == 10) {
1605 struct imsm_map *hi = get_imsm_map(dev, 1);
1606
1607 return hi->num_domains;
1608 } else
1609 return num_stripes_per_unit_resync(dev);
1610 }
1611
1612 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1613 {
1614 /* named 'imsm_' because raid0, raid1 and raid10
1615 * counter-intuitively have the same number of data disks
1616 */
1617 struct imsm_map *map = get_imsm_map(dev, second_map);
1618
1619 switch (get_imsm_raid_level(map)) {
1620 case 0:
1621 case 1:
1622 case 10:
1623 return map->num_members;
1624 case 5:
1625 return map->num_members - 1;
1626 default:
1627 dprintf("%s: unsupported raid level\n", __func__);
1628 return 0;
1629 }
1630 }
1631
1632 static __u32 parity_segment_depth(struct imsm_dev *dev)
1633 {
1634 struct imsm_map *map = get_imsm_map(dev, 0);
1635 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1636
1637 switch(get_imsm_raid_level(map)) {
1638 case 1:
1639 case 10:
1640 return chunk * map->num_domains;
1641 case 5:
1642 return chunk * map->num_members;
1643 default:
1644 return chunk;
1645 }
1646 }
1647
1648 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1649 {
1650 struct imsm_map *map = get_imsm_map(dev, 1);
1651 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1652 __u32 strip = block / chunk;
1653
1654 switch (get_imsm_raid_level(map)) {
1655 case 1:
1656 case 10: {
1657 __u32 vol_strip = (strip * map->num_domains) + 1;
1658 __u32 vol_stripe = vol_strip / map->num_members;
1659
1660 return vol_stripe * chunk + block % chunk;
1661 } case 5: {
1662 __u32 stripe = strip / (map->num_members - 1);
1663
1664 return stripe * chunk + block % chunk;
1665 }
1666 default:
1667 return 0;
1668 }
1669 }
1670
1671 static __u64 blocks_per_migr_unit(struct imsm_dev *dev)
1672 {
1673 /* calculate the conversion factor between per member 'blocks'
1674 * (md/{resync,rebuild}_start) and imsm migration units, return
1675 * 0 for the 'not migrating' and 'unsupported migration' cases
1676 */
1677 if (!dev->vol.migr_state)
1678 return 0;
1679
1680 switch (migr_type(dev)) {
1681 case MIGR_GEN_MIGR:
1682 case MIGR_VERIFY:
1683 case MIGR_REPAIR:
1684 case MIGR_INIT: {
1685 struct imsm_map *map = get_imsm_map(dev, 0);
1686 __u32 stripes_per_unit;
1687 __u32 blocks_per_unit;
1688 __u32 parity_depth;
1689 __u32 migr_chunk;
1690 __u32 block_map;
1691 __u32 block_rel;
1692 __u32 segment;
1693 __u32 stripe;
1694 __u8 disks;
1695
1696 /* yes, this is really the translation of migr_units to
1697 * per-member blocks in the 'resync' case
1698 */
1699 stripes_per_unit = num_stripes_per_unit_resync(dev);
1700 migr_chunk = migr_strip_blocks_resync(dev);
1701 disks = imsm_num_data_members(dev, 0);
1702 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1703 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1704 segment = blocks_per_unit / stripe;
1705 block_rel = blocks_per_unit - segment * stripe;
1706 parity_depth = parity_segment_depth(dev);
1707 block_map = map_migr_block(dev, block_rel);
1708 return block_map + parity_depth * segment;
1709 }
1710 case MIGR_REBUILD: {
1711 __u32 stripes_per_unit;
1712 __u32 migr_chunk;
1713
1714 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1715 migr_chunk = migr_strip_blocks_rebuild(dev);
1716 return migr_chunk * stripes_per_unit;
1717 }
1718 case MIGR_STATE_CHANGE:
1719 default:
1720 return 0;
1721 }
1722 }
1723
1724 static int imsm_level_to_layout(int level)
1725 {
1726 switch (level) {
1727 case 0:
1728 case 1:
1729 return 0;
1730 case 5:
1731 case 6:
1732 return ALGORITHM_LEFT_ASYMMETRIC;
1733 case 10:
1734 return 0x102;
1735 }
1736 return UnSet;
1737 }
1738
1739 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
1740 {
1741 struct intel_super *super = st->sb;
1742 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1743 struct imsm_map *map = get_imsm_map(dev, 0);
1744 struct imsm_map *prev_map = get_imsm_map(dev, 1);
1745 struct imsm_map *map_to_analyse = map;
1746 struct dl *dl;
1747 char *devname;
1748 int map_disks = info->array.raid_disks;
1749
1750 if (prev_map)
1751 map_to_analyse = prev_map;
1752
1753 for (dl = super->disks; dl; dl = dl->next)
1754 if (dl->raiddisk == info->disk.raid_disk)
1755 break;
1756 info->container_member = super->current_vol;
1757 info->array.raid_disks = map_to_analyse->num_members;
1758 info->array.level = get_imsm_raid_level(map_to_analyse);
1759 info->array.layout = imsm_level_to_layout(info->array.level);
1760 info->array.md_minor = -1;
1761 info->array.ctime = 0;
1762 info->array.utime = 0;
1763 info->array.chunk_size =
1764 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
1765 info->array.state = !dev->vol.dirty;
1766 info->custom_array_size = __le32_to_cpu(dev->size_high);
1767 info->custom_array_size <<= 32;
1768 info->custom_array_size |= __le32_to_cpu(dev->size_low);
1769 if (prev_map && map->map_state == prev_map->map_state) {
1770 info->reshape_active = 1;
1771 info->new_level = get_imsm_raid_level(map);
1772 info->new_layout = imsm_level_to_layout(info->new_level);
1773 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
1774 info->delta_disks = map->num_members - prev_map->num_members;
1775 if (info->delta_disks) {
1776 /* this needs to be applied to every array
1777 * in the container.
1778 */
1779 info->reshape_active = 2;
1780 }
1781 /* We shape information that we give to md might have to be
1782 * modify to cope with md's requirement for reshaping arrays.
1783 * For example, when reshaping a RAID0, md requires it to be
1784 * presented as a degraded RAID4.
1785 * Also if a RAID0 is migrating to a RAID5 we need to specify
1786 * the array as already being RAID5, but the 'before' layout
1787 * is a RAID4-like layout.
1788 */
1789 switch (info->array.level) {
1790 case 0:
1791 switch(info->new_level) {
1792 case 0:
1793 /* conversion is happening as RAID4 */
1794 info->array.level = 4;
1795 info->array.raid_disks += 1;
1796 break;
1797 case 5:
1798 /* conversion is happening as RAID5 */
1799 info->array.level = 5;
1800 info->array.layout = ALGORITHM_PARITY_N;
1801 info->array.raid_disks += 1;
1802 info->delta_disks -= 1;
1803 break;
1804 default:
1805 /* FIXME error message */
1806 info->array.level = UnSet;
1807 break;
1808 }
1809 break;
1810 }
1811 } else {
1812 info->new_level = UnSet;
1813 info->new_layout = UnSet;
1814 info->new_chunk = info->array.chunk_size;
1815 info->delta_disks = 0;
1816 }
1817 info->disk.major = 0;
1818 info->disk.minor = 0;
1819 if (dl) {
1820 info->disk.major = dl->major;
1821 info->disk.minor = dl->minor;
1822 }
1823
1824 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
1825 info->component_size =
1826 __le32_to_cpu(map_to_analyse->blocks_per_member);
1827 memset(info->uuid, 0, sizeof(info->uuid));
1828 info->recovery_start = MaxSector;
1829
1830 info->reshape_progress = 0;
1831 info->resync_start = MaxSector;
1832 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
1833 dev->vol.dirty) {
1834 info->resync_start = 0;
1835 }
1836 if (dev->vol.migr_state) {
1837 switch (migr_type(dev)) {
1838 case MIGR_REPAIR:
1839 case MIGR_INIT: {
1840 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1841 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1842
1843 info->resync_start = blocks_per_unit * units;
1844 break;
1845 }
1846 case MIGR_GEN_MIGR: {
1847 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1848 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1849 unsigned long long array_blocks;
1850 int used_disks;
1851
1852 info->reshape_progress = blocks_per_unit * units;
1853
1854 /* checkpoint is written per disks unit
1855 * recalculate it to reshape position
1856 */
1857 used_disks = imsm_num_data_members(dev, 0);
1858 info->reshape_progress *= used_disks;
1859 dprintf("IMSM: General Migration checkpoint : %llu "
1860 "(%llu) -> read reshape progress : %llu\n",
1861 units, blocks_per_unit, info->reshape_progress);
1862
1863 used_disks = imsm_num_data_members(dev, 1);
1864 if (used_disks > 0) {
1865 array_blocks = map->blocks_per_member *
1866 used_disks;
1867 /* round array size down to closest MB
1868 */
1869 info->custom_array_size = (array_blocks
1870 >> SECT_PER_MB_SHIFT)
1871 << SECT_PER_MB_SHIFT;
1872 }
1873 }
1874 case MIGR_VERIFY:
1875 /* we could emulate the checkpointing of
1876 * 'sync_action=check' migrations, but for now
1877 * we just immediately complete them
1878 */
1879 case MIGR_REBUILD:
1880 /* this is handled by container_content_imsm() */
1881 case MIGR_STATE_CHANGE:
1882 /* FIXME handle other migrations */
1883 default:
1884 /* we are not dirty, so... */
1885 info->resync_start = MaxSector;
1886 }
1887 }
1888
1889 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1890 info->name[MAX_RAID_SERIAL_LEN] = 0;
1891
1892 info->array.major_version = -1;
1893 info->array.minor_version = -2;
1894 devname = devnum2devname(st->container_dev);
1895 *info->text_version = '\0';
1896 if (devname)
1897 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
1898 free(devname);
1899 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
1900 uuid_from_super_imsm(st, info->uuid);
1901
1902 if (dmap) {
1903 int i, j;
1904 for (i=0; i<map_disks; i++) {
1905 dmap[i] = 0;
1906 if (i < info->array.raid_disks) {
1907 struct imsm_disk *dsk;
1908 j = get_imsm_disk_idx(dev, i, -1);
1909 dsk = get_imsm_disk(super, j);
1910 if (dsk && (dsk->status & CONFIGURED_DISK))
1911 dmap[i] = 1;
1912 }
1913 }
1914 }
1915 }
1916
1917 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
1918 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
1919
1920 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
1921 {
1922 struct dl *d;
1923
1924 for (d = super->missing; d; d = d->next)
1925 if (d->index == index)
1926 return &d->disk;
1927 return NULL;
1928 }
1929
1930 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
1931 {
1932 struct intel_super *super = st->sb;
1933 struct imsm_disk *disk;
1934 int map_disks = info->array.raid_disks;
1935 int max_enough = -1;
1936 int i;
1937 struct imsm_super *mpb;
1938
1939 if (super->current_vol >= 0) {
1940 getinfo_super_imsm_volume(st, info, map);
1941 return;
1942 }
1943
1944 /* Set raid_disks to zero so that Assemble will always pull in valid
1945 * spares
1946 */
1947 info->array.raid_disks = 0;
1948 info->array.level = LEVEL_CONTAINER;
1949 info->array.layout = 0;
1950 info->array.md_minor = -1;
1951 info->array.ctime = 0; /* N/A for imsm */
1952 info->array.utime = 0;
1953 info->array.chunk_size = 0;
1954
1955 info->disk.major = 0;
1956 info->disk.minor = 0;
1957 info->disk.raid_disk = -1;
1958 info->reshape_active = 0;
1959 info->array.major_version = -1;
1960 info->array.minor_version = -2;
1961 strcpy(info->text_version, "imsm");
1962 info->safe_mode_delay = 0;
1963 info->disk.number = -1;
1964 info->disk.state = 0;
1965 info->name[0] = 0;
1966 info->recovery_start = MaxSector;
1967
1968 /* do we have the all the insync disks that we expect? */
1969 mpb = super->anchor;
1970
1971 for (i = 0; i < mpb->num_raid_devs; i++) {
1972 struct imsm_dev *dev = get_imsm_dev(super, i);
1973 int failed, enough, j, missing = 0;
1974 struct imsm_map *map;
1975 __u8 state;
1976
1977 failed = imsm_count_failed(super, dev);
1978 state = imsm_check_degraded(super, dev, failed);
1979 map = get_imsm_map(dev, dev->vol.migr_state);
1980
1981 /* any newly missing disks?
1982 * (catches single-degraded vs double-degraded)
1983 */
1984 for (j = 0; j < map->num_members; j++) {
1985 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
1986 __u32 idx = ord_to_idx(ord);
1987
1988 if (!(ord & IMSM_ORD_REBUILD) &&
1989 get_imsm_missing(super, idx)) {
1990 missing = 1;
1991 break;
1992 }
1993 }
1994
1995 if (state == IMSM_T_STATE_FAILED)
1996 enough = -1;
1997 else if (state == IMSM_T_STATE_DEGRADED &&
1998 (state != map->map_state || missing))
1999 enough = 0;
2000 else /* we're normal, or already degraded */
2001 enough = 1;
2002
2003 /* in the missing/failed disk case check to see
2004 * if at least one array is runnable
2005 */
2006 max_enough = max(max_enough, enough);
2007 }
2008 dprintf("%s: enough: %d\n", __func__, max_enough);
2009 info->container_enough = max_enough;
2010
2011 if (super->disks) {
2012 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2013
2014 disk = &super->disks->disk;
2015 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2016 info->component_size = reserved;
2017 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2018 /* we don't change info->disk.raid_disk here because
2019 * this state will be finalized in mdmon after we have
2020 * found the 'most fresh' version of the metadata
2021 */
2022 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2023 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2024 }
2025
2026 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2027 * ->compare_super may have updated the 'num_raid_devs' field for spares
2028 */
2029 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2030 uuid_from_super_imsm(st, info->uuid);
2031 else
2032 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2033
2034 /* I don't know how to compute 'map' on imsm, so use safe default */
2035 if (map) {
2036 int i;
2037 for (i = 0; i < map_disks; i++)
2038 map[i] = 1;
2039 }
2040
2041 }
2042
2043 /* allocates memory and fills disk in mdinfo structure
2044 * for each disk in array */
2045 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2046 {
2047 struct mdinfo *mddev = NULL;
2048 struct intel_super *super = st->sb;
2049 struct imsm_disk *disk;
2050 int count = 0;
2051 struct dl *dl;
2052 if (!super || !super->disks)
2053 return NULL;
2054 dl = super->disks;
2055 mddev = malloc(sizeof(*mddev));
2056 if (!mddev) {
2057 fprintf(stderr, Name ": Failed to allocate memory.\n");
2058 return NULL;
2059 }
2060 memset(mddev, 0, sizeof(*mddev));
2061 while (dl) {
2062 struct mdinfo *tmp;
2063 disk = &dl->disk;
2064 tmp = malloc(sizeof(*tmp));
2065 if (!tmp) {
2066 fprintf(stderr, Name ": Failed to allocate memory.\n");
2067 if (mddev)
2068 sysfs_free(mddev);
2069 return NULL;
2070 }
2071 memset(tmp, 0, sizeof(*tmp));
2072 if (mddev->devs)
2073 tmp->next = mddev->devs;
2074 mddev->devs = tmp;
2075 tmp->disk.number = count++;
2076 tmp->disk.major = dl->major;
2077 tmp->disk.minor = dl->minor;
2078 tmp->disk.state = is_configured(disk) ?
2079 (1 << MD_DISK_ACTIVE) : 0;
2080 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2081 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2082 tmp->disk.raid_disk = -1;
2083 dl = dl->next;
2084 }
2085 return mddev;
2086 }
2087
2088 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2089 char *update, char *devname, int verbose,
2090 int uuid_set, char *homehost)
2091 {
2092 /* For 'assemble' and 'force' we need to return non-zero if any
2093 * change was made. For others, the return value is ignored.
2094 * Update options are:
2095 * force-one : This device looks a bit old but needs to be included,
2096 * update age info appropriately.
2097 * assemble: clear any 'faulty' flag to allow this device to
2098 * be assembled.
2099 * force-array: Array is degraded but being forced, mark it clean
2100 * if that will be needed to assemble it.
2101 *
2102 * newdev: not used ????
2103 * grow: Array has gained a new device - this is currently for
2104 * linear only
2105 * resync: mark as dirty so a resync will happen.
2106 * name: update the name - preserving the homehost
2107 * uuid: Change the uuid of the array to match watch is given
2108 *
2109 * Following are not relevant for this imsm:
2110 * sparc2.2 : update from old dodgey metadata
2111 * super-minor: change the preferred_minor number
2112 * summaries: update redundant counters.
2113 * homehost: update the recorded homehost
2114 * _reshape_progress: record new reshape_progress position.
2115 */
2116 int rv = 1;
2117 struct intel_super *super = st->sb;
2118 struct imsm_super *mpb;
2119
2120 /* we can only update container info */
2121 if (!super || super->current_vol >= 0 || !super->anchor)
2122 return 1;
2123
2124 mpb = super->anchor;
2125
2126 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2127 rv = -1;
2128 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2129 mpb->orig_family_num = *((__u32 *) info->update_private);
2130 rv = 0;
2131 } else if (strcmp(update, "uuid") == 0) {
2132 __u32 *new_family = malloc(sizeof(*new_family));
2133
2134 /* update orig_family_number with the incoming random
2135 * data, report the new effective uuid, and store the
2136 * new orig_family_num for future updates.
2137 */
2138 if (new_family) {
2139 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2140 uuid_from_super_imsm(st, info->uuid);
2141 *new_family = mpb->orig_family_num;
2142 info->update_private = new_family;
2143 rv = 0;
2144 }
2145 } else if (strcmp(update, "assemble") == 0)
2146 rv = 0;
2147 else
2148 rv = -1;
2149
2150 /* successful update? recompute checksum */
2151 if (rv == 0)
2152 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2153
2154 return rv;
2155 }
2156
2157 static size_t disks_to_mpb_size(int disks)
2158 {
2159 size_t size;
2160
2161 size = sizeof(struct imsm_super);
2162 size += (disks - 1) * sizeof(struct imsm_disk);
2163 size += 2 * sizeof(struct imsm_dev);
2164 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2165 size += (4 - 2) * sizeof(struct imsm_map);
2166 /* 4 possible disk_ord_tbl's */
2167 size += 4 * (disks - 1) * sizeof(__u32);
2168
2169 return size;
2170 }
2171
2172 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2173 {
2174 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2175 return 0;
2176
2177 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2178 }
2179
2180 static void free_devlist(struct intel_super *super)
2181 {
2182 struct intel_dev *dv;
2183
2184 while (super->devlist) {
2185 dv = super->devlist->next;
2186 free(super->devlist->dev);
2187 free(super->devlist);
2188 super->devlist = dv;
2189 }
2190 }
2191
2192 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2193 {
2194 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2195 }
2196
2197 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2198 {
2199 /*
2200 * return:
2201 * 0 same, or first was empty, and second was copied
2202 * 1 second had wrong number
2203 * 2 wrong uuid
2204 * 3 wrong other info
2205 */
2206 struct intel_super *first = st->sb;
2207 struct intel_super *sec = tst->sb;
2208
2209 if (!first) {
2210 st->sb = tst->sb;
2211 tst->sb = NULL;
2212 return 0;
2213 }
2214 /* in platform dependent environment test if the disks
2215 * use the same Intel hba
2216 */
2217 if (!check_env("IMSM_NO_PLATFORM")) {
2218 if (!first->hba || !sec->hba ||
2219 (first->hba->type != sec->hba->type)) {
2220 fprintf(stderr,
2221 "HBAs of devices does not match %s != %s\n",
2222 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2223 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2224 return 3;
2225 }
2226 }
2227
2228 /* if an anchor does not have num_raid_devs set then it is a free
2229 * floating spare
2230 */
2231 if (first->anchor->num_raid_devs > 0 &&
2232 sec->anchor->num_raid_devs > 0) {
2233 /* Determine if these disks might ever have been
2234 * related. Further disambiguation can only take place
2235 * in load_super_imsm_all
2236 */
2237 __u32 first_family = first->anchor->orig_family_num;
2238 __u32 sec_family = sec->anchor->orig_family_num;
2239
2240 if (memcmp(first->anchor->sig, sec->anchor->sig,
2241 MAX_SIGNATURE_LENGTH) != 0)
2242 return 3;
2243
2244 if (first_family == 0)
2245 first_family = first->anchor->family_num;
2246 if (sec_family == 0)
2247 sec_family = sec->anchor->family_num;
2248
2249 if (first_family != sec_family)
2250 return 3;
2251
2252 }
2253
2254
2255 /* if 'first' is a spare promote it to a populated mpb with sec's
2256 * family number
2257 */
2258 if (first->anchor->num_raid_devs == 0 &&
2259 sec->anchor->num_raid_devs > 0) {
2260 int i;
2261 struct intel_dev *dv;
2262 struct imsm_dev *dev;
2263
2264 /* we need to copy raid device info from sec if an allocation
2265 * fails here we don't associate the spare
2266 */
2267 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2268 dv = malloc(sizeof(*dv));
2269 if (!dv)
2270 break;
2271 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2272 if (!dev) {
2273 free(dv);
2274 break;
2275 }
2276 dv->dev = dev;
2277 dv->index = i;
2278 dv->next = first->devlist;
2279 first->devlist = dv;
2280 }
2281 if (i < sec->anchor->num_raid_devs) {
2282 /* allocation failure */
2283 free_devlist(first);
2284 fprintf(stderr, "imsm: failed to associate spare\n");
2285 return 3;
2286 }
2287 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2288 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2289 first->anchor->family_num = sec->anchor->family_num;
2290 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2291 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2292 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2293 }
2294
2295 return 0;
2296 }
2297
2298 static void fd2devname(int fd, char *name)
2299 {
2300 struct stat st;
2301 char path[256];
2302 char dname[PATH_MAX];
2303 char *nm;
2304 int rv;
2305
2306 name[0] = '\0';
2307 if (fstat(fd, &st) != 0)
2308 return;
2309 sprintf(path, "/sys/dev/block/%d:%d",
2310 major(st.st_rdev), minor(st.st_rdev));
2311
2312 rv = readlink(path, dname, sizeof(dname));
2313 if (rv <= 0)
2314 return;
2315
2316 dname[rv] = '\0';
2317 nm = strrchr(dname, '/');
2318 nm++;
2319 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2320 }
2321
2322 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2323
2324 static int imsm_read_serial(int fd, char *devname,
2325 __u8 serial[MAX_RAID_SERIAL_LEN])
2326 {
2327 unsigned char scsi_serial[255];
2328 int rv;
2329 int rsp_len;
2330 int len;
2331 char *dest;
2332 char *src;
2333 char *rsp_buf;
2334 int i;
2335
2336 memset(scsi_serial, 0, sizeof(scsi_serial));
2337
2338 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2339
2340 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2341 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2342 fd2devname(fd, (char *) serial);
2343 return 0;
2344 }
2345
2346 if (rv != 0) {
2347 if (devname)
2348 fprintf(stderr,
2349 Name ": Failed to retrieve serial for %s\n",
2350 devname);
2351 return rv;
2352 }
2353
2354 rsp_len = scsi_serial[3];
2355 if (!rsp_len) {
2356 if (devname)
2357 fprintf(stderr,
2358 Name ": Failed to retrieve serial for %s\n",
2359 devname);
2360 return 2;
2361 }
2362 rsp_buf = (char *) &scsi_serial[4];
2363
2364 /* trim all whitespace and non-printable characters and convert
2365 * ':' to ';'
2366 */
2367 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2368 src = &rsp_buf[i];
2369 if (*src > 0x20) {
2370 /* ':' is reserved for use in placeholder serial
2371 * numbers for missing disks
2372 */
2373 if (*src == ':')
2374 *dest++ = ';';
2375 else
2376 *dest++ = *src;
2377 }
2378 }
2379 len = dest - rsp_buf;
2380 dest = rsp_buf;
2381
2382 /* truncate leading characters */
2383 if (len > MAX_RAID_SERIAL_LEN) {
2384 dest += len - MAX_RAID_SERIAL_LEN;
2385 len = MAX_RAID_SERIAL_LEN;
2386 }
2387
2388 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2389 memcpy(serial, dest, len);
2390
2391 return 0;
2392 }
2393
2394 static int serialcmp(__u8 *s1, __u8 *s2)
2395 {
2396 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2397 }
2398
2399 static void serialcpy(__u8 *dest, __u8 *src)
2400 {
2401 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2402 }
2403
2404 #ifndef MDASSEMBLE
2405 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2406 {
2407 struct dl *dl;
2408
2409 for (dl = super->disks; dl; dl = dl->next)
2410 if (serialcmp(dl->serial, serial) == 0)
2411 break;
2412
2413 return dl;
2414 }
2415 #endif
2416
2417 static struct imsm_disk *
2418 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2419 {
2420 int i;
2421
2422 for (i = 0; i < mpb->num_disks; i++) {
2423 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2424
2425 if (serialcmp(disk->serial, serial) == 0) {
2426 if (idx)
2427 *idx = i;
2428 return disk;
2429 }
2430 }
2431
2432 return NULL;
2433 }
2434
2435 static int
2436 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2437 {
2438 struct imsm_disk *disk;
2439 struct dl *dl;
2440 struct stat stb;
2441 int rv;
2442 char name[40];
2443 __u8 serial[MAX_RAID_SERIAL_LEN];
2444
2445 rv = imsm_read_serial(fd, devname, serial);
2446
2447 if (rv != 0)
2448 return 2;
2449
2450 dl = calloc(1, sizeof(*dl));
2451 if (!dl) {
2452 if (devname)
2453 fprintf(stderr,
2454 Name ": failed to allocate disk buffer for %s\n",
2455 devname);
2456 return 2;
2457 }
2458
2459 fstat(fd, &stb);
2460 dl->major = major(stb.st_rdev);
2461 dl->minor = minor(stb.st_rdev);
2462 dl->next = super->disks;
2463 dl->fd = keep_fd ? fd : -1;
2464 assert(super->disks == NULL);
2465 super->disks = dl;
2466 serialcpy(dl->serial, serial);
2467 dl->index = -2;
2468 dl->e = NULL;
2469 fd2devname(fd, name);
2470 if (devname)
2471 dl->devname = strdup(devname);
2472 else
2473 dl->devname = strdup(name);
2474
2475 /* look up this disk's index in the current anchor */
2476 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2477 if (disk) {
2478 dl->disk = *disk;
2479 /* only set index on disks that are a member of a
2480 * populated contianer, i.e. one with raid_devs
2481 */
2482 if (is_failed(&dl->disk))
2483 dl->index = -2;
2484 else if (is_spare(&dl->disk))
2485 dl->index = -1;
2486 }
2487
2488 return 0;
2489 }
2490
2491 #ifndef MDASSEMBLE
2492 /* When migrating map0 contains the 'destination' state while map1
2493 * contains the current state. When not migrating map0 contains the
2494 * current state. This routine assumes that map[0].map_state is set to
2495 * the current array state before being called.
2496 *
2497 * Migration is indicated by one of the following states
2498 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
2499 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
2500 * map1state=unitialized)
2501 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
2502 * map1state=normal)
2503 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
2504 * map1state=degraded)
2505 */
2506 static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
2507 {
2508 struct imsm_map *dest;
2509 struct imsm_map *src = get_imsm_map(dev, 0);
2510
2511 dev->vol.migr_state = 1;
2512 set_migr_type(dev, migr_type);
2513 dev->vol.curr_migr_unit = 0;
2514 dest = get_imsm_map(dev, 1);
2515
2516 /* duplicate and then set the target end state in map[0] */
2517 memcpy(dest, src, sizeof_imsm_map(src));
2518 if ((migr_type == MIGR_REBUILD) ||
2519 (migr_type == MIGR_GEN_MIGR)) {
2520 __u32 ord;
2521 int i;
2522
2523 for (i = 0; i < src->num_members; i++) {
2524 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2525 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2526 }
2527 }
2528
2529 src->map_state = to_state;
2530 }
2531
2532 static void end_migration(struct imsm_dev *dev, __u8 map_state)
2533 {
2534 struct imsm_map *map = get_imsm_map(dev, 0);
2535 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
2536 int i, j;
2537
2538 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2539 * completed in the last migration.
2540 *
2541 * FIXME add support for raid-level-migration
2542 */
2543 for (i = 0; i < prev->num_members; i++)
2544 for (j = 0; j < map->num_members; j++)
2545 /* during online capacity expansion
2546 * disks position can be changed if takeover is used
2547 */
2548 if (ord_to_idx(map->disk_ord_tbl[j]) ==
2549 ord_to_idx(prev->disk_ord_tbl[i])) {
2550 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
2551 break;
2552 }
2553
2554 dev->vol.migr_state = 0;
2555 dev->vol.migr_type = 0;
2556 dev->vol.curr_migr_unit = 0;
2557 map->map_state = map_state;
2558 }
2559 #endif
2560
2561 static int parse_raid_devices(struct intel_super *super)
2562 {
2563 int i;
2564 struct imsm_dev *dev_new;
2565 size_t len, len_migr;
2566 size_t max_len = 0;
2567 size_t space_needed = 0;
2568 struct imsm_super *mpb = super->anchor;
2569
2570 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2571 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2572 struct intel_dev *dv;
2573
2574 len = sizeof_imsm_dev(dev_iter, 0);
2575 len_migr = sizeof_imsm_dev(dev_iter, 1);
2576 if (len_migr > len)
2577 space_needed += len_migr - len;
2578
2579 dv = malloc(sizeof(*dv));
2580 if (!dv)
2581 return 1;
2582 if (max_len < len_migr)
2583 max_len = len_migr;
2584 if (max_len > len_migr)
2585 space_needed += max_len - len_migr;
2586 dev_new = malloc(max_len);
2587 if (!dev_new) {
2588 free(dv);
2589 return 1;
2590 }
2591 imsm_copy_dev(dev_new, dev_iter);
2592 dv->dev = dev_new;
2593 dv->index = i;
2594 dv->next = super->devlist;
2595 super->devlist = dv;
2596 }
2597
2598 /* ensure that super->buf is large enough when all raid devices
2599 * are migrating
2600 */
2601 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2602 void *buf;
2603
2604 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2605 if (posix_memalign(&buf, 512, len) != 0)
2606 return 1;
2607
2608 memcpy(buf, super->buf, super->len);
2609 memset(buf + super->len, 0, len - super->len);
2610 free(super->buf);
2611 super->buf = buf;
2612 super->len = len;
2613 }
2614
2615 return 0;
2616 }
2617
2618 /* retrieve a pointer to the bbm log which starts after all raid devices */
2619 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2620 {
2621 void *ptr = NULL;
2622
2623 if (__le32_to_cpu(mpb->bbm_log_size)) {
2624 ptr = mpb;
2625 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2626 }
2627
2628 return ptr;
2629 }
2630
2631 static void __free_imsm(struct intel_super *super, int free_disks);
2632
2633 /* load_imsm_mpb - read matrix metadata
2634 * allocates super->mpb to be freed by free_imsm
2635 */
2636 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
2637 {
2638 unsigned long long dsize;
2639 unsigned long long sectors;
2640 struct stat;
2641 struct imsm_super *anchor;
2642 __u32 check_sum;
2643
2644 get_dev_size(fd, NULL, &dsize);
2645 if (dsize < 1024) {
2646 if (devname)
2647 fprintf(stderr,
2648 Name ": %s: device to small for imsm\n",
2649 devname);
2650 return 1;
2651 }
2652
2653 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
2654 if (devname)
2655 fprintf(stderr,
2656 Name ": Cannot seek to anchor block on %s: %s\n",
2657 devname, strerror(errno));
2658 return 1;
2659 }
2660
2661 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
2662 if (devname)
2663 fprintf(stderr,
2664 Name ": Failed to allocate imsm anchor buffer"
2665 " on %s\n", devname);
2666 return 1;
2667 }
2668 if (read(fd, anchor, 512) != 512) {
2669 if (devname)
2670 fprintf(stderr,
2671 Name ": Cannot read anchor block on %s: %s\n",
2672 devname, strerror(errno));
2673 free(anchor);
2674 return 1;
2675 }
2676
2677 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
2678 if (devname)
2679 fprintf(stderr,
2680 Name ": no IMSM anchor on %s\n", devname);
2681 free(anchor);
2682 return 2;
2683 }
2684
2685 __free_imsm(super, 0);
2686 /* reload capability and hba */
2687
2688 /* capability and hba must be updated with new super allocation */
2689 find_intel_hba_capability(fd, super, devname);
2690 super->len = ROUND_UP(anchor->mpb_size, 512);
2691 if (posix_memalign(&super->buf, 512, super->len) != 0) {
2692 if (devname)
2693 fprintf(stderr,
2694 Name ": unable to allocate %zu byte mpb buffer\n",
2695 super->len);
2696 free(anchor);
2697 return 2;
2698 }
2699 memcpy(super->buf, anchor, 512);
2700
2701 sectors = mpb_sectors(anchor) - 1;
2702 free(anchor);
2703 if (!sectors) {
2704 check_sum = __gen_imsm_checksum(super->anchor);
2705 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2706 if (devname)
2707 fprintf(stderr,
2708 Name ": IMSM checksum %x != %x on %s\n",
2709 check_sum,
2710 __le32_to_cpu(super->anchor->check_sum),
2711 devname);
2712 return 2;
2713 }
2714
2715 return 0;
2716 }
2717
2718 /* read the extended mpb */
2719 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
2720 if (devname)
2721 fprintf(stderr,
2722 Name ": Cannot seek to extended mpb on %s: %s\n",
2723 devname, strerror(errno));
2724 return 1;
2725 }
2726
2727 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
2728 if (devname)
2729 fprintf(stderr,
2730 Name ": Cannot read extended mpb on %s: %s\n",
2731 devname, strerror(errno));
2732 return 2;
2733 }
2734
2735 check_sum = __gen_imsm_checksum(super->anchor);
2736 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2737 if (devname)
2738 fprintf(stderr,
2739 Name ": IMSM checksum %x != %x on %s\n",
2740 check_sum, __le32_to_cpu(super->anchor->check_sum),
2741 devname);
2742 return 3;
2743 }
2744
2745 /* FIXME the BBM log is disk specific so we cannot use this global
2746 * buffer for all disks. Ok for now since we only look at the global
2747 * bbm_log_size parameter to gate assembly
2748 */
2749 super->bbm_log = __get_imsm_bbm_log(super->anchor);
2750
2751 return 0;
2752 }
2753
2754 static int
2755 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
2756 {
2757 int err;
2758
2759 err = load_imsm_mpb(fd, super, devname);
2760 if (err)
2761 return err;
2762 err = load_imsm_disk(fd, super, devname, keep_fd);
2763 if (err)
2764 return err;
2765 err = parse_raid_devices(super);
2766
2767 return err;
2768 }
2769
2770 static void __free_imsm_disk(struct dl *d)
2771 {
2772 if (d->fd >= 0)
2773 close(d->fd);
2774 if (d->devname)
2775 free(d->devname);
2776 if (d->e)
2777 free(d->e);
2778 free(d);
2779
2780 }
2781
2782 static void free_imsm_disks(struct intel_super *super)
2783 {
2784 struct dl *d;
2785
2786 while (super->disks) {
2787 d = super->disks;
2788 super->disks = d->next;
2789 __free_imsm_disk(d);
2790 }
2791 while (super->disk_mgmt_list) {
2792 d = super->disk_mgmt_list;
2793 super->disk_mgmt_list = d->next;
2794 __free_imsm_disk(d);
2795 }
2796 while (super->missing) {
2797 d = super->missing;
2798 super->missing = d->next;
2799 __free_imsm_disk(d);
2800 }
2801
2802 }
2803
2804 /* free all the pieces hanging off of a super pointer */
2805 static void __free_imsm(struct intel_super *super, int free_disks)
2806 {
2807 struct intel_hba *elem, *next;
2808
2809 if (super->buf) {
2810 free(super->buf);
2811 super->buf = NULL;
2812 }
2813 /* unlink capability description */
2814 super->orom = NULL;
2815 if (free_disks)
2816 free_imsm_disks(super);
2817 free_devlist(super);
2818 elem = super->hba;
2819 while (elem) {
2820 if (elem->path)
2821 free((void *)elem->path);
2822 next = elem->next;
2823 free(elem);
2824 elem = next;
2825 }
2826 super->hba = NULL;
2827 }
2828
2829 static void free_imsm(struct intel_super *super)
2830 {
2831 __free_imsm(super, 1);
2832 free(super);
2833 }
2834
2835 static void free_super_imsm(struct supertype *st)
2836 {
2837 struct intel_super *super = st->sb;
2838
2839 if (!super)
2840 return;
2841
2842 free_imsm(super);
2843 st->sb = NULL;
2844 }
2845
2846 static struct intel_super *alloc_super(void)
2847 {
2848 struct intel_super *super = malloc(sizeof(*super));
2849
2850 if (super) {
2851 memset(super, 0, sizeof(*super));
2852 super->current_vol = -1;
2853 super->create_offset = ~((__u32 ) 0);
2854 }
2855 return super;
2856 }
2857
2858 /*
2859 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
2860 */
2861 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
2862 {
2863 struct sys_dev *hba_name;
2864 int rv = 0;
2865
2866 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
2867 super->orom = NULL;
2868 super->hba = NULL;
2869 return 0;
2870 }
2871 hba_name = find_disk_attached_hba(fd, NULL);
2872 if (!hba_name) {
2873 if (devname)
2874 fprintf(stderr,
2875 Name ": %s is not attached to Intel(R) RAID controller.\n",
2876 devname);
2877 return 1;
2878 }
2879 rv = attach_hba_to_super(super, hba_name);
2880 if (rv == 2) {
2881 if (devname) {
2882 struct intel_hba *hba = super->hba;
2883
2884 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
2885 "controller (%s),\n"
2886 " but the container is assigned to Intel(R) "
2887 "%s RAID controller (",
2888 devname,
2889 hba_name->path,
2890 hba_name->pci_id ? : "Err!",
2891 get_sys_dev_type(hba_name->type));
2892
2893 while (hba) {
2894 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
2895 if (hba->next)
2896 fprintf(stderr, ", ");
2897 hba = hba->next;
2898 }
2899
2900 fprintf(stderr, ").\n"
2901 " Mixing devices attached to different controllers "
2902 "is not allowed.\n");
2903 }
2904 free_sys_dev(&hba_name);
2905 return 2;
2906 }
2907 super->orom = find_imsm_capability(hba_name->type);
2908 free_sys_dev(&hba_name);
2909 if (!super->orom)
2910 return 3;
2911 return 0;
2912 }
2913
2914 #ifndef MDASSEMBLE
2915 /* find_missing - helper routine for load_super_imsm_all that identifies
2916 * disks that have disappeared from the system. This routine relies on
2917 * the mpb being uptodate, which it is at load time.
2918 */
2919 static int find_missing(struct intel_super *super)
2920 {
2921 int i;
2922 struct imsm_super *mpb = super->anchor;
2923 struct dl *dl;
2924 struct imsm_disk *disk;
2925
2926 for (i = 0; i < mpb->num_disks; i++) {
2927 disk = __get_imsm_disk(mpb, i);
2928 dl = serial_to_dl(disk->serial, super);
2929 if (dl)
2930 continue;
2931
2932 dl = malloc(sizeof(*dl));
2933 if (!dl)
2934 return 1;
2935 dl->major = 0;
2936 dl->minor = 0;
2937 dl->fd = -1;
2938 dl->devname = strdup("missing");
2939 dl->index = i;
2940 serialcpy(dl->serial, disk->serial);
2941 dl->disk = *disk;
2942 dl->e = NULL;
2943 dl->next = super->missing;
2944 super->missing = dl;
2945 }
2946
2947 return 0;
2948 }
2949
2950 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2951 {
2952 struct intel_disk *idisk = disk_list;
2953
2954 while (idisk) {
2955 if (serialcmp(idisk->disk.serial, serial) == 0)
2956 break;
2957 idisk = idisk->next;
2958 }
2959
2960 return idisk;
2961 }
2962
2963 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2964 struct intel_super *super,
2965 struct intel_disk **disk_list)
2966 {
2967 struct imsm_disk *d = &super->disks->disk;
2968 struct imsm_super *mpb = super->anchor;
2969 int i, j;
2970
2971 for (i = 0; i < tbl_size; i++) {
2972 struct imsm_super *tbl_mpb = table[i]->anchor;
2973 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2974
2975 if (tbl_mpb->family_num == mpb->family_num) {
2976 if (tbl_mpb->check_sum == mpb->check_sum) {
2977 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2978 __func__, super->disks->major,
2979 super->disks->minor,
2980 table[i]->disks->major,
2981 table[i]->disks->minor);
2982 break;
2983 }
2984
2985 if (((is_configured(d) && !is_configured(tbl_d)) ||
2986 is_configured(d) == is_configured(tbl_d)) &&
2987 tbl_mpb->generation_num < mpb->generation_num) {
2988 /* current version of the mpb is a
2989 * better candidate than the one in
2990 * super_table, but copy over "cross
2991 * generational" status
2992 */
2993 struct intel_disk *idisk;
2994
2995 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
2996 __func__, super->disks->major,
2997 super->disks->minor,
2998 table[i]->disks->major,
2999 table[i]->disks->minor);
3000
3001 idisk = disk_list_get(tbl_d->serial, *disk_list);
3002 if (idisk && is_failed(&idisk->disk))
3003 tbl_d->status |= FAILED_DISK;
3004 break;
3005 } else {
3006 struct intel_disk *idisk;
3007 struct imsm_disk *disk;
3008
3009 /* tbl_mpb is more up to date, but copy
3010 * over cross generational status before
3011 * returning
3012 */
3013 disk = __serial_to_disk(d->serial, mpb, NULL);
3014 if (disk && is_failed(disk))
3015 d->status |= FAILED_DISK;
3016
3017 idisk = disk_list_get(d->serial, *disk_list);
3018 if (idisk) {
3019 idisk->owner = i;
3020 if (disk && is_configured(disk))
3021 idisk->disk.status |= CONFIGURED_DISK;
3022 }
3023
3024 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3025 __func__, super->disks->major,
3026 super->disks->minor,
3027 table[i]->disks->major,
3028 table[i]->disks->minor);
3029
3030 return tbl_size;
3031 }
3032 }
3033 }
3034
3035 if (i >= tbl_size)
3036 table[tbl_size++] = super;
3037 else
3038 table[i] = super;
3039
3040 /* update/extend the merged list of imsm_disk records */
3041 for (j = 0; j < mpb->num_disks; j++) {
3042 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3043 struct intel_disk *idisk;
3044
3045 idisk = disk_list_get(disk->serial, *disk_list);
3046 if (idisk) {
3047 idisk->disk.status |= disk->status;
3048 if (is_configured(&idisk->disk) ||
3049 is_failed(&idisk->disk))
3050 idisk->disk.status &= ~(SPARE_DISK);
3051 } else {
3052 idisk = calloc(1, sizeof(*idisk));
3053 if (!idisk)
3054 return -1;
3055 idisk->owner = IMSM_UNKNOWN_OWNER;
3056 idisk->disk = *disk;
3057 idisk->next = *disk_list;
3058 *disk_list = idisk;
3059 }
3060
3061 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3062 idisk->owner = i;
3063 }
3064
3065 return tbl_size;
3066 }
3067
3068 static struct intel_super *
3069 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3070 const int owner)
3071 {
3072 struct imsm_super *mpb = super->anchor;
3073 int ok_count = 0;
3074 int i;
3075
3076 for (i = 0; i < mpb->num_disks; i++) {
3077 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3078 struct intel_disk *idisk;
3079
3080 idisk = disk_list_get(disk->serial, disk_list);
3081 if (idisk) {
3082 if (idisk->owner == owner ||
3083 idisk->owner == IMSM_UNKNOWN_OWNER)
3084 ok_count++;
3085 else
3086 dprintf("%s: '%.16s' owner %d != %d\n",
3087 __func__, disk->serial, idisk->owner,
3088 owner);
3089 } else {
3090 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3091 __func__, __le32_to_cpu(mpb->family_num), i,
3092 disk->serial);
3093 break;
3094 }
3095 }
3096
3097 if (ok_count == mpb->num_disks)
3098 return super;
3099 return NULL;
3100 }
3101
3102 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3103 {
3104 struct intel_super *s;
3105
3106 for (s = super_list; s; s = s->next) {
3107 if (family_num != s->anchor->family_num)
3108 continue;
3109 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3110 __le32_to_cpu(family_num), s->disks->devname);
3111 }
3112 }
3113
3114 static struct intel_super *
3115 imsm_thunderdome(struct intel_super **super_list, int len)
3116 {
3117 struct intel_super *super_table[len];
3118 struct intel_disk *disk_list = NULL;
3119 struct intel_super *champion, *spare;
3120 struct intel_super *s, **del;
3121 int tbl_size = 0;
3122 int conflict;
3123 int i;
3124
3125 memset(super_table, 0, sizeof(super_table));
3126 for (s = *super_list; s; s = s->next)
3127 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3128
3129 for (i = 0; i < tbl_size; i++) {
3130 struct imsm_disk *d;
3131 struct intel_disk *idisk;
3132 struct imsm_super *mpb = super_table[i]->anchor;
3133
3134 s = super_table[i];
3135 d = &s->disks->disk;
3136
3137 /* 'd' must appear in merged disk list for its
3138 * configuration to be valid
3139 */
3140 idisk = disk_list_get(d->serial, disk_list);
3141 if (idisk && idisk->owner == i)
3142 s = validate_members(s, disk_list, i);
3143 else
3144 s = NULL;
3145
3146 if (!s)
3147 dprintf("%s: marking family: %#x from %d:%d offline\n",
3148 __func__, mpb->family_num,
3149 super_table[i]->disks->major,
3150 super_table[i]->disks->minor);
3151 super_table[i] = s;
3152 }
3153
3154 /* This is where the mdadm implementation differs from the Windows
3155 * driver which has no strict concept of a container. We can only
3156 * assemble one family from a container, so when returning a prodigal
3157 * array member to this system the code will not be able to disambiguate
3158 * the container contents that should be assembled ("foreign" versus
3159 * "local"). It requires user intervention to set the orig_family_num
3160 * to a new value to establish a new container. The Windows driver in
3161 * this situation fixes up the volume name in place and manages the
3162 * foreign array as an independent entity.
3163 */
3164 s = NULL;
3165 spare = NULL;
3166 conflict = 0;
3167 for (i = 0; i < tbl_size; i++) {
3168 struct intel_super *tbl_ent = super_table[i];
3169 int is_spare = 0;
3170
3171 if (!tbl_ent)
3172 continue;
3173
3174 if (tbl_ent->anchor->num_raid_devs == 0) {
3175 spare = tbl_ent;
3176 is_spare = 1;
3177 }
3178
3179 if (s && !is_spare) {
3180 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3181 conflict++;
3182 } else if (!s && !is_spare)
3183 s = tbl_ent;
3184 }
3185
3186 if (!s)
3187 s = spare;
3188 if (!s) {
3189 champion = NULL;
3190 goto out;
3191 }
3192 champion = s;
3193
3194 if (conflict)
3195 fprintf(stderr, "Chose family %#x on '%s', "
3196 "assemble conflicts to new container with '--update=uuid'\n",
3197 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3198
3199 /* collect all dl's onto 'champion', and update them to
3200 * champion's version of the status
3201 */
3202 for (s = *super_list; s; s = s->next) {
3203 struct imsm_super *mpb = champion->anchor;
3204 struct dl *dl = s->disks;
3205
3206 if (s == champion)
3207 continue;
3208
3209 for (i = 0; i < mpb->num_disks; i++) {
3210 struct imsm_disk *disk;
3211
3212 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3213 if (disk) {
3214 dl->disk = *disk;
3215 /* only set index on disks that are a member of
3216 * a populated contianer, i.e. one with
3217 * raid_devs
3218 */
3219 if (is_failed(&dl->disk))
3220 dl->index = -2;
3221 else if (is_spare(&dl->disk))
3222 dl->index = -1;
3223 break;
3224 }
3225 }
3226
3227 if (i >= mpb->num_disks) {
3228 struct intel_disk *idisk;
3229
3230 idisk = disk_list_get(dl->serial, disk_list);
3231 if (idisk && is_spare(&idisk->disk) &&
3232 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3233 dl->index = -1;
3234 else {
3235 dl->index = -2;
3236 continue;
3237 }
3238 }
3239
3240 dl->next = champion->disks;
3241 champion->disks = dl;
3242 s->disks = NULL;
3243 }
3244
3245 /* delete 'champion' from super_list */
3246 for (del = super_list; *del; ) {
3247 if (*del == champion) {
3248 *del = (*del)->next;
3249 break;
3250 } else
3251 del = &(*del)->next;
3252 }
3253 champion->next = NULL;
3254
3255 out:
3256 while (disk_list) {
3257 struct intel_disk *idisk = disk_list;
3258
3259 disk_list = disk_list->next;
3260 free(idisk);
3261 }
3262
3263 return champion;
3264 }
3265
3266 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3267 char *devname)
3268 {
3269 struct mdinfo *sra;
3270 struct intel_super *super_list = NULL;
3271 struct intel_super *super = NULL;
3272 int devnum = fd2devnum(fd);
3273 struct mdinfo *sd;
3274 int retry;
3275 int err = 0;
3276 int i;
3277
3278 /* check if 'fd' an opened container */
3279 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3280 if (!sra)
3281 return 1;
3282
3283 if (sra->array.major_version != -1 ||
3284 sra->array.minor_version != -2 ||
3285 strcmp(sra->text_version, "imsm") != 0) {
3286 err = 1;
3287 goto error;
3288 }
3289 /* load all mpbs */
3290 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3291 struct intel_super *s = alloc_super();
3292 char nm[32];
3293 int dfd;
3294 int rv;
3295
3296 err = 1;
3297 if (!s)
3298 goto error;
3299 s->next = super_list;
3300 super_list = s;
3301
3302 err = 2;
3303 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3304 dfd = dev_open(nm, O_RDWR);
3305 if (dfd < 0)
3306 goto error;
3307
3308 rv = find_intel_hba_capability(dfd, s, devname);
3309 /* no orom/efi or non-intel hba of the disk */
3310 if (rv != 0)
3311 goto error;
3312
3313 err = load_and_parse_mpb(dfd, s, NULL, 1);
3314
3315 /* retry the load if we might have raced against mdmon */
3316 if (err == 3 && mdmon_running(devnum))
3317 for (retry = 0; retry < 3; retry++) {
3318 usleep(3000);
3319 err = load_and_parse_mpb(dfd, s, NULL, 1);
3320 if (err != 3)
3321 break;
3322 }
3323 if (err)
3324 goto error;
3325 }
3326
3327 /* all mpbs enter, maybe one leaves */
3328 super = imsm_thunderdome(&super_list, i);
3329 if (!super) {
3330 err = 1;
3331 goto error;
3332 }
3333
3334 if (find_missing(super) != 0) {
3335 free_imsm(super);
3336 err = 2;
3337 goto error;
3338 }
3339 err = 0;
3340
3341 error:
3342 while (super_list) {
3343 struct intel_super *s = super_list;
3344
3345 super_list = super_list->next;
3346 free_imsm(s);
3347 }
3348 sysfs_free(sra);
3349
3350 if (err)
3351 return err;
3352
3353 *sbp = super;
3354 st->container_dev = devnum;
3355 if (err == 0 && st->ss == NULL) {
3356 st->ss = &super_imsm;
3357 st->minor_version = 0;
3358 st->max_devs = IMSM_MAX_DEVICES;
3359 }
3360 return 0;
3361 }
3362
3363 static int load_container_imsm(struct supertype *st, int fd, char *devname)
3364 {
3365 return load_super_imsm_all(st, fd, &st->sb, devname);
3366 }
3367 #endif
3368
3369 static int load_super_imsm(struct supertype *st, int fd, char *devname)
3370 {
3371 struct intel_super *super;
3372 int rv;
3373
3374 if (test_partition(fd))
3375 /* IMSM not allowed on partitions */
3376 return 1;
3377
3378 free_super_imsm(st);
3379
3380 super = alloc_super();
3381 if (!super) {
3382 fprintf(stderr,
3383 Name ": malloc of %zu failed.\n",
3384 sizeof(*super));
3385 return 1;
3386 }
3387 /* Load hba and capabilities if they exist.
3388 * But do not preclude loading metadata in case capabilities or hba are
3389 * non-compliant and ignore_hw_compat is set.
3390 */
3391 rv = find_intel_hba_capability(fd, super, devname);
3392 /* no orom/efi or non-intel hba of the disk */
3393 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
3394 if (devname)
3395 fprintf(stderr,
3396 Name ": No OROM/EFI properties for %s\n", devname);
3397 free_imsm(super);
3398 return 2;
3399 }
3400 rv = load_and_parse_mpb(fd, super, devname, 0);
3401
3402 if (rv) {
3403 if (devname)
3404 fprintf(stderr,
3405 Name ": Failed to load all information "
3406 "sections on %s\n", devname);
3407 free_imsm(super);
3408 return rv;
3409 }
3410
3411 st->sb = super;
3412 if (st->ss == NULL) {
3413 st->ss = &super_imsm;
3414 st->minor_version = 0;
3415 st->max_devs = IMSM_MAX_DEVICES;
3416 }
3417 return 0;
3418 }
3419
3420 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3421 {
3422 if (info->level == 1)
3423 return 128;
3424 return info->chunk_size >> 9;
3425 }
3426
3427 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
3428 {
3429 __u32 num_stripes;
3430
3431 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
3432 num_stripes /= num_domains;
3433
3434 return num_stripes;
3435 }
3436
3437 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
3438 {
3439 if (info->level == 1)
3440 return info->size * 2;
3441 else
3442 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
3443 }
3444
3445 static void imsm_update_version_info(struct intel_super *super)
3446 {
3447 /* update the version and attributes */
3448 struct imsm_super *mpb = super->anchor;
3449 char *version;
3450 struct imsm_dev *dev;
3451 struct imsm_map *map;
3452 int i;
3453
3454 for (i = 0; i < mpb->num_raid_devs; i++) {
3455 dev = get_imsm_dev(super, i);
3456 map = get_imsm_map(dev, 0);
3457 if (__le32_to_cpu(dev->size_high) > 0)
3458 mpb->attributes |= MPB_ATTRIB_2TB;
3459
3460 /* FIXME detect when an array spans a port multiplier */
3461 #if 0
3462 mpb->attributes |= MPB_ATTRIB_PM;
3463 #endif
3464
3465 if (mpb->num_raid_devs > 1 ||
3466 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
3467 version = MPB_VERSION_ATTRIBS;
3468 switch (get_imsm_raid_level(map)) {
3469 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
3470 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
3471 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
3472 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
3473 }
3474 } else {
3475 if (map->num_members >= 5)
3476 version = MPB_VERSION_5OR6_DISK_ARRAY;
3477 else if (dev->status == DEV_CLONE_N_GO)
3478 version = MPB_VERSION_CNG;
3479 else if (get_imsm_raid_level(map) == 5)
3480 version = MPB_VERSION_RAID5;
3481 else if (map->num_members >= 3)
3482 version = MPB_VERSION_3OR4_DISK_ARRAY;
3483 else if (get_imsm_raid_level(map) == 1)
3484 version = MPB_VERSION_RAID1;
3485 else
3486 version = MPB_VERSION_RAID0;
3487 }
3488 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
3489 }
3490 }
3491
3492 static int check_name(struct intel_super *super, char *name, int quiet)
3493 {
3494 struct imsm_super *mpb = super->anchor;
3495 char *reason = NULL;
3496 int i;
3497
3498 if (strlen(name) > MAX_RAID_SERIAL_LEN)
3499 reason = "must be 16 characters or less";
3500
3501 for (i = 0; i < mpb->num_raid_devs; i++) {
3502 struct imsm_dev *dev = get_imsm_dev(super, i);
3503
3504 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
3505 reason = "already exists";
3506 break;
3507 }
3508 }
3509
3510 if (reason && !quiet)
3511 fprintf(stderr, Name ": imsm volume name %s\n", reason);
3512
3513 return !reason;
3514 }
3515
3516 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
3517 unsigned long long size, char *name,
3518 char *homehost, int *uuid)
3519 {
3520 /* We are creating a volume inside a pre-existing container.
3521 * so st->sb is already set.
3522 */
3523 struct intel_super *super = st->sb;
3524 struct imsm_super *mpb = super->anchor;
3525 struct intel_dev *dv;
3526 struct imsm_dev *dev;
3527 struct imsm_vol *vol;
3528 struct imsm_map *map;
3529 int idx = mpb->num_raid_devs;
3530 int i;
3531 unsigned long long array_blocks;
3532 size_t size_old, size_new;
3533 __u32 num_data_stripes;
3534
3535 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
3536 fprintf(stderr, Name": This imsm-container already has the "
3537 "maximum of %d volumes\n", super->orom->vpa);
3538 return 0;
3539 }
3540
3541 /* ensure the mpb is large enough for the new data */
3542 size_old = __le32_to_cpu(mpb->mpb_size);
3543 size_new = disks_to_mpb_size(info->nr_disks);
3544 if (size_new > size_old) {
3545 void *mpb_new;
3546 size_t size_round = ROUND_UP(size_new, 512);
3547
3548 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
3549 fprintf(stderr, Name": could not allocate new mpb\n");
3550 return 0;
3551 }
3552 memcpy(mpb_new, mpb, size_old);
3553 free(mpb);
3554 mpb = mpb_new;
3555 super->anchor = mpb_new;
3556 mpb->mpb_size = __cpu_to_le32(size_new);
3557 memset(mpb_new + size_old, 0, size_round - size_old);
3558 }
3559 super->current_vol = idx;
3560 /* when creating the first raid device in this container set num_disks
3561 * to zero, i.e. delete this spare and add raid member devices in
3562 * add_to_super_imsm_volume()
3563 */
3564 if (super->current_vol == 0)
3565 mpb->num_disks = 0;
3566
3567 if (!check_name(super, name, 0))
3568 return 0;
3569 dv = malloc(sizeof(*dv));
3570 if (!dv) {
3571 fprintf(stderr, Name ": failed to allocate device list entry\n");
3572 return 0;
3573 }
3574 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
3575 if (!dev) {
3576 free(dv);
3577 fprintf(stderr, Name": could not allocate raid device\n");
3578 return 0;
3579 }
3580
3581 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
3582 if (info->level == 1)
3583 array_blocks = info_to_blocks_per_member(info);
3584 else
3585 array_blocks = calc_array_size(info->level, info->raid_disks,
3586 info->layout, info->chunk_size,
3587 info->size*2);
3588 /* round array size down to closest MB */
3589 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
3590
3591 dev->size_low = __cpu_to_le32((__u32) array_blocks);
3592 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
3593 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
3594 vol = &dev->vol;
3595 vol->migr_state = 0;
3596 set_migr_type(dev, MIGR_INIT);
3597 vol->dirty = 0;
3598 vol->curr_migr_unit = 0;
3599 map = get_imsm_map(dev, 0);
3600 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
3601 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
3602 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
3603 map->failed_disk_num = ~0;
3604 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
3605 IMSM_T_STATE_NORMAL;
3606 map->ddf = 1;
3607
3608 if (info->level == 1 && info->raid_disks > 2) {
3609 free(dev);
3610 free(dv);
3611 fprintf(stderr, Name": imsm does not support more than 2 disks"
3612 "in a raid1 volume\n");
3613 return 0;
3614 }
3615
3616 map->raid_level = info->level;
3617 if (info->level == 10) {
3618 map->raid_level = 1;
3619 map->num_domains = info->raid_disks / 2;
3620 } else if (info->level == 1)
3621 map->num_domains = info->raid_disks;
3622 else
3623 map->num_domains = 1;
3624
3625 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
3626 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
3627
3628 map->num_members = info->raid_disks;
3629 for (i = 0; i < map->num_members; i++) {
3630 /* initialized in add_to_super */
3631 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
3632 }
3633 mpb->num_raid_devs++;
3634
3635 dv->dev = dev;
3636 dv->index = super->current_vol;
3637 dv->next = super->devlist;
3638 super->devlist = dv;
3639
3640 imsm_update_version_info(super);
3641
3642 return 1;
3643 }
3644
3645 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
3646 unsigned long long size, char *name,
3647 char *homehost, int *uuid)
3648 {
3649 /* This is primarily called by Create when creating a new array.
3650 * We will then get add_to_super called for each component, and then
3651 * write_init_super called to write it out to each device.
3652 * For IMSM, Create can create on fresh devices or on a pre-existing
3653 * array.
3654 * To create on a pre-existing array a different method will be called.
3655 * This one is just for fresh drives.
3656 */
3657 struct intel_super *super;
3658 struct imsm_super *mpb;
3659 size_t mpb_size;
3660 char *version;
3661
3662 if (st->sb)
3663 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
3664
3665 if (info)
3666 mpb_size = disks_to_mpb_size(info->nr_disks);
3667 else
3668 mpb_size = 512;
3669
3670 super = alloc_super();
3671 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
3672 free(super);
3673 super = NULL;
3674 }
3675 if (!super) {
3676 fprintf(stderr, Name
3677 ": %s could not allocate superblock\n", __func__);
3678 return 0;
3679 }
3680 memset(super->buf, 0, mpb_size);
3681 mpb = super->buf;
3682 mpb->mpb_size = __cpu_to_le32(mpb_size);
3683 st->sb = super;
3684
3685 if (info == NULL) {
3686 /* zeroing superblock */
3687 return 0;
3688 }
3689
3690 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3691
3692 version = (char *) mpb->sig;
3693 strcpy(version, MPB_SIGNATURE);
3694 version += strlen(MPB_SIGNATURE);
3695 strcpy(version, MPB_VERSION_RAID0);
3696
3697 return 1;
3698 }
3699
3700 #ifndef MDASSEMBLE
3701 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
3702 int fd, char *devname)
3703 {
3704 struct intel_super *super = st->sb;
3705 struct imsm_super *mpb = super->anchor;
3706 struct dl *dl;
3707 struct imsm_dev *dev;
3708 struct imsm_map *map;
3709 int slot;
3710
3711 dev = get_imsm_dev(super, super->current_vol);
3712 map = get_imsm_map(dev, 0);
3713
3714 if (! (dk->state & (1<<MD_DISK_SYNC))) {
3715 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
3716 devname);
3717 return 1;
3718 }
3719
3720 if (fd == -1) {
3721 /* we're doing autolayout so grab the pre-marked (in
3722 * validate_geometry) raid_disk
3723 */
3724 for (dl = super->disks; dl; dl = dl->next)
3725 if (dl->raiddisk == dk->raid_disk)
3726 break;
3727 } else {
3728 for (dl = super->disks; dl ; dl = dl->next)
3729 if (dl->major == dk->major &&
3730 dl->minor == dk->minor)
3731 break;
3732 }
3733
3734 if (!dl) {
3735 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
3736 return 1;
3737 }
3738
3739 /* add a pristine spare to the metadata */
3740 if (dl->index < 0) {
3741 dl->index = super->anchor->num_disks;
3742 super->anchor->num_disks++;
3743 }
3744 /* Check the device has not already been added */
3745 slot = get_imsm_disk_slot(map, dl->index);
3746 if (slot >= 0 &&
3747 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
3748 fprintf(stderr, Name ": %s has been included in this array twice\n",
3749 devname);
3750 return 1;
3751 }
3752 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
3753 dl->disk.status = CONFIGURED_DISK;
3754
3755 /* if we are creating the first raid device update the family number */
3756 if (super->current_vol == 0) {
3757 __u32 sum;
3758 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
3759 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
3760
3761 if (!_dev || !_disk) {
3762 fprintf(stderr, Name ": BUG mpb setup error\n");
3763 return 1;
3764 }
3765 *_dev = *dev;
3766 *_disk = dl->disk;
3767 sum = random32();
3768 sum += __gen_imsm_checksum(mpb);
3769 mpb->family_num = __cpu_to_le32(sum);
3770 mpb->orig_family_num = mpb->family_num;
3771 }
3772
3773 return 0;
3774 }
3775
3776
3777 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
3778 int fd, char *devname)
3779 {
3780 struct intel_super *super = st->sb;
3781 struct dl *dd;
3782 unsigned long long size;
3783 __u32 id;
3784 int rv;
3785 struct stat stb;
3786
3787 /* If we are on an RAID enabled platform check that the disk is
3788 * attached to the raid controller.
3789 * We do not need to test disks attachment for container based additions,
3790 * they shall be already tested when container was created/assembled.
3791 */
3792 rv = find_intel_hba_capability(fd, super, devname);
3793 /* no orom/efi or non-intel hba of the disk */
3794 if (rv != 0) {
3795 dprintf("capability: %p fd: %d ret: %d\n",
3796 super->orom, fd, rv);
3797 return 1;
3798 }
3799
3800 if (super->current_vol >= 0)
3801 return add_to_super_imsm_volume(st, dk, fd, devname);
3802
3803 fstat(fd, &stb);
3804 dd = malloc(sizeof(*dd));
3805 if (!dd) {
3806 fprintf(stderr,
3807 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3808 return 1;
3809 }
3810 memset(dd, 0, sizeof(*dd));
3811 dd->major = major(stb.st_rdev);
3812 dd->minor = minor(stb.st_rdev);
3813 dd->index = -1;
3814 dd->devname = devname ? strdup(devname) : NULL;
3815 dd->fd = fd;
3816 dd->e = NULL;
3817 dd->action = DISK_ADD;
3818 rv = imsm_read_serial(fd, devname, dd->serial);
3819 if (rv) {
3820 fprintf(stderr,
3821 Name ": failed to retrieve scsi serial, aborting\n");
3822 free(dd);
3823 abort();
3824 }
3825
3826 get_dev_size(fd, NULL, &size);
3827 size /= 512;
3828 serialcpy(dd->disk.serial, dd->serial);
3829 dd->disk.total_blocks = __cpu_to_le32(size);
3830 dd->disk.status = SPARE_DISK;
3831 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
3832 dd->disk.scsi_id = __cpu_to_le32(id);
3833 else
3834 dd->disk.scsi_id = __cpu_to_le32(0);
3835
3836 if (st->update_tail) {
3837 dd->next = super->disk_mgmt_list;
3838 super->disk_mgmt_list = dd;
3839 } else {
3840 dd->next = super->disks;
3841 super->disks = dd;
3842 super->updates_pending++;
3843 }
3844
3845 return 0;
3846 }
3847
3848
3849 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
3850 {
3851 struct intel_super *super = st->sb;
3852 struct dl *dd;
3853
3854 /* remove from super works only in mdmon - for communication
3855 * manager - monitor. Check if communication memory buffer
3856 * is prepared.
3857 */
3858 if (!st->update_tail) {
3859 fprintf(stderr,
3860 Name ": %s shall be used in mdmon context only"
3861 "(line %d).\n", __func__, __LINE__);
3862 return 1;
3863 }
3864 dd = malloc(sizeof(*dd));
3865 if (!dd) {
3866 fprintf(stderr,
3867 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3868 return 1;
3869 }
3870 memset(dd, 0, sizeof(*dd));
3871 dd->major = dk->major;
3872 dd->minor = dk->minor;
3873 dd->index = -1;
3874 dd->fd = -1;
3875 dd->disk.status = SPARE_DISK;
3876 dd->action = DISK_REMOVE;
3877
3878 dd->next = super->disk_mgmt_list;
3879 super->disk_mgmt_list = dd;
3880
3881
3882 return 0;
3883 }
3884
3885 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
3886
3887 static union {
3888 char buf[512];
3889 struct imsm_super anchor;
3890 } spare_record __attribute__ ((aligned(512)));
3891
3892 /* spare records have their own family number and do not have any defined raid
3893 * devices
3894 */
3895 static int write_super_imsm_spares(struct intel_super *super, int doclose)
3896 {
3897 struct imsm_super *mpb = super->anchor;
3898 struct imsm_super *spare = &spare_record.anchor;
3899 __u32 sum;
3900 struct dl *d;
3901
3902 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
3903 spare->generation_num = __cpu_to_le32(1UL),
3904 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3905 spare->num_disks = 1,
3906 spare->num_raid_devs = 0,
3907 spare->cache_size = mpb->cache_size,
3908 spare->pwr_cycle_count = __cpu_to_le32(1),
3909
3910 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
3911 MPB_SIGNATURE MPB_VERSION_RAID0);
3912
3913 for (d = super->disks; d; d = d->next) {
3914 if (d->index != -1)
3915 continue;
3916
3917 spare->disk[0] = d->disk;
3918 sum = __gen_imsm_checksum(spare);
3919 spare->family_num = __cpu_to_le32(sum);
3920 spare->orig_family_num = 0;
3921 sum = __gen_imsm_checksum(spare);
3922 spare->check_sum = __cpu_to_le32(sum);
3923
3924 if (store_imsm_mpb(d->fd, spare)) {
3925 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3926 __func__, d->major, d->minor, strerror(errno));
3927 return 1;
3928 }
3929 if (doclose) {
3930 close(d->fd);
3931 d->fd = -1;
3932 }
3933 }
3934
3935 return 0;
3936 }
3937
3938 static int write_super_imsm(struct supertype *st, int doclose)
3939 {
3940 struct intel_super *super = st->sb;
3941 struct imsm_super *mpb = super->anchor;
3942 struct dl *d;
3943 __u32 generation;
3944 __u32 sum;
3945 int spares = 0;
3946 int i;
3947 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
3948 int num_disks = 0;
3949
3950 /* 'generation' is incremented everytime the metadata is written */
3951 generation = __le32_to_cpu(mpb->generation_num);
3952 generation++;
3953 mpb->generation_num = __cpu_to_le32(generation);
3954
3955 /* fix up cases where previous mdadm releases failed to set
3956 * orig_family_num
3957 */
3958 if (mpb->orig_family_num == 0)
3959 mpb->orig_family_num = mpb->family_num;
3960
3961 for (d = super->disks; d; d = d->next) {
3962 if (d->index == -1)
3963 spares++;
3964 else {
3965 mpb->disk[d->index] = d->disk;
3966 num_disks++;
3967 }
3968 }
3969 for (d = super->missing; d; d = d->next) {
3970 mpb->disk[d->index] = d->disk;
3971 num_disks++;
3972 }
3973 mpb->num_disks = num_disks;
3974 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
3975
3976 for (i = 0; i < mpb->num_raid_devs; i++) {
3977 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3978 struct imsm_dev *dev2 = get_imsm_dev(super, i);
3979 if (dev && dev2) {
3980 imsm_copy_dev(dev, dev2);
3981 mpb_size += sizeof_imsm_dev(dev, 0);
3982 }
3983 }
3984 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
3985 mpb->mpb_size = __cpu_to_le32(mpb_size);
3986
3987 /* recalculate checksum */
3988 sum = __gen_imsm_checksum(mpb);
3989 mpb->check_sum = __cpu_to_le32(sum);
3990
3991 /* write the mpb for disks that compose raid devices */
3992 for (d = super->disks; d ; d = d->next) {
3993 if (d->index < 0)
3994 continue;
3995 if (store_imsm_mpb(d->fd, mpb))
3996 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3997 __func__, d->major, d->minor, strerror(errno));
3998 if (doclose) {
3999 close(d->fd);
4000 d->fd = -1;
4001 }
4002 }
4003
4004 if (spares)
4005 return write_super_imsm_spares(super, doclose);
4006
4007 return 0;
4008 }
4009
4010
4011 static int create_array(struct supertype *st, int dev_idx)
4012 {
4013 size_t len;
4014 struct imsm_update_create_array *u;
4015 struct intel_super *super = st->sb;
4016 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4017 struct imsm_map *map = get_imsm_map(dev, 0);
4018 struct disk_info *inf;
4019 struct imsm_disk *disk;
4020 int i;
4021
4022 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4023 sizeof(*inf) * map->num_members;
4024 u = malloc(len);
4025 if (!u) {
4026 fprintf(stderr, "%s: failed to allocate update buffer\n",
4027 __func__);
4028 return 1;
4029 }
4030
4031 u->type = update_create_array;
4032 u->dev_idx = dev_idx;
4033 imsm_copy_dev(&u->dev, dev);
4034 inf = get_disk_info(u);
4035 for (i = 0; i < map->num_members; i++) {
4036 int idx = get_imsm_disk_idx(dev, i, -1);
4037
4038 disk = get_imsm_disk(super, idx);
4039 serialcpy(inf[i].serial, disk->serial);
4040 }
4041 append_metadata_update(st, u, len);
4042
4043 return 0;
4044 }
4045
4046 static int mgmt_disk(struct supertype *st)
4047 {
4048 struct intel_super *super = st->sb;
4049 size_t len;
4050 struct imsm_update_add_remove_disk *u;
4051
4052 if (!super->disk_mgmt_list)
4053 return 0;
4054
4055 len = sizeof(*u);
4056 u = malloc(len);
4057 if (!u) {
4058 fprintf(stderr, "%s: failed to allocate update buffer\n",
4059 __func__);
4060 return 1;
4061 }
4062
4063 u->type = update_add_remove_disk;
4064 append_metadata_update(st, u, len);
4065
4066 return 0;
4067 }
4068
4069 static int write_init_super_imsm(struct supertype *st)
4070 {
4071 struct intel_super *super = st->sb;
4072 int current_vol = super->current_vol;
4073
4074 /* we are done with current_vol reset it to point st at the container */
4075 super->current_vol = -1;
4076
4077 if (st->update_tail) {
4078 /* queue the recently created array / added disk
4079 * as a metadata update */
4080 int rv;
4081
4082 /* determine if we are creating a volume or adding a disk */
4083 if (current_vol < 0) {
4084 /* in the mgmt (add/remove) disk case we are running
4085 * in mdmon context, so don't close fd's
4086 */
4087 return mgmt_disk(st);
4088 } else
4089 rv = create_array(st, current_vol);
4090
4091 return rv;
4092 } else {
4093 struct dl *d;
4094 for (d = super->disks; d; d = d->next)
4095 Kill(d->devname, NULL, 0, 1, 1);
4096 return write_super_imsm(st, 1);
4097 }
4098 }
4099 #endif
4100
4101 static int store_super_imsm(struct supertype *st, int fd)
4102 {
4103 struct intel_super *super = st->sb;
4104 struct imsm_super *mpb = super ? super->anchor : NULL;
4105
4106 if (!mpb)
4107 return 1;
4108
4109 #ifndef MDASSEMBLE
4110 return store_imsm_mpb(fd, mpb);
4111 #else
4112 return 1;
4113 #endif
4114 }
4115
4116 static int imsm_bbm_log_size(struct imsm_super *mpb)
4117 {
4118 return __le32_to_cpu(mpb->bbm_log_size);
4119 }
4120
4121 #ifndef MDASSEMBLE
4122 static int validate_geometry_imsm_container(struct supertype *st, int level,
4123 int layout, int raiddisks, int chunk,
4124 unsigned long long size, char *dev,
4125 unsigned long long *freesize,
4126 int verbose)
4127 {
4128 int fd;
4129 unsigned long long ldsize;
4130 struct intel_super *super=NULL;
4131 int rv = 0;
4132
4133 if (level != LEVEL_CONTAINER)
4134 return 0;
4135 if (!dev)
4136 return 1;
4137
4138 fd = open(dev, O_RDONLY|O_EXCL, 0);
4139 if (fd < 0) {
4140 if (verbose)
4141 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4142 dev, strerror(errno));
4143 return 0;
4144 }
4145 if (!get_dev_size(fd, dev, &ldsize)) {
4146 close(fd);
4147 return 0;
4148 }
4149
4150 /* capabilities retrieve could be possible
4151 * note that there is no fd for the disks in array.
4152 */
4153 super = alloc_super();
4154 if (!super) {
4155 fprintf(stderr,
4156 Name ": malloc of %zu failed.\n",
4157 sizeof(*super));
4158 close(fd);
4159 return 0;
4160 }
4161
4162 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
4163 if (rv != 0) {
4164 #if DEBUG
4165 char str[256];
4166 fd2devname(fd, str);
4167 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4168 fd, str, super->orom, rv, raiddisks);
4169 #endif
4170 /* no orom/efi or non-intel hba of the disk */
4171 close(fd);
4172 free_imsm(super);
4173 return 0;
4174 }
4175 close(fd);
4176 if (super->orom && raiddisks > super->orom->tds) {
4177 if (verbose)
4178 fprintf(stderr, Name ": %d exceeds maximum number of"
4179 " platform supported disks: %d\n",
4180 raiddisks, super->orom->tds);
4181
4182 free_imsm(super);
4183 return 0;
4184 }
4185
4186 *freesize = avail_size_imsm(st, ldsize >> 9);
4187 free_imsm(super);
4188
4189 return 1;
4190 }
4191
4192 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4193 {
4194 const unsigned long long base_start = e[*idx].start;
4195 unsigned long long end = base_start + e[*idx].size;
4196 int i;
4197
4198 if (base_start == end)
4199 return 0;
4200
4201 *idx = *idx + 1;
4202 for (i = *idx; i < num_extents; i++) {
4203 /* extend overlapping extents */
4204 if (e[i].start >= base_start &&
4205 e[i].start <= end) {
4206 if (e[i].size == 0)
4207 return 0;
4208 if (e[i].start + e[i].size > end)
4209 end = e[i].start + e[i].size;
4210 } else if (e[i].start > end) {
4211 *idx = i;
4212 break;
4213 }
4214 }
4215
4216 return end - base_start;
4217 }
4218
4219 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4220 {
4221 /* build a composite disk with all known extents and generate a new
4222 * 'maxsize' given the "all disks in an array must share a common start
4223 * offset" constraint
4224 */
4225 struct extent *e = calloc(sum_extents, sizeof(*e));
4226 struct dl *dl;
4227 int i, j;
4228 int start_extent;
4229 unsigned long long pos;
4230 unsigned long long start = 0;
4231 unsigned long long maxsize;
4232 unsigned long reserve;
4233
4234 if (!e)
4235 return 0;
4236
4237 /* coalesce and sort all extents. also, check to see if we need to
4238 * reserve space between member arrays
4239 */
4240 j = 0;
4241 for (dl = super->disks; dl; dl = dl->next) {
4242 if (!dl->e)
4243 continue;
4244 for (i = 0; i < dl->extent_cnt; i++)
4245 e[j++] = dl->e[i];
4246 }
4247 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4248
4249 /* merge extents */
4250 i = 0;
4251 j = 0;
4252 while (i < sum_extents) {
4253 e[j].start = e[i].start;
4254 e[j].size = find_size(e, &i, sum_extents);
4255 j++;
4256 if (e[j-1].size == 0)
4257 break;
4258 }
4259
4260 pos = 0;
4261 maxsize = 0;
4262 start_extent = 0;
4263 i = 0;
4264 do {
4265 unsigned long long esize;
4266
4267 esize = e[i].start - pos;
4268 if (esize >= maxsize) {
4269 maxsize = esize;
4270 start = pos;
4271 start_extent = i;
4272 }
4273 pos = e[i].start + e[i].size;
4274 i++;
4275 } while (e[i-1].size);
4276 free(e);
4277
4278 if (maxsize == 0)
4279 return 0;
4280
4281 /* FIXME assumes volume at offset 0 is the first volume in a
4282 * container
4283 */
4284 if (start_extent > 0)
4285 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
4286 else
4287 reserve = 0;
4288
4289 if (maxsize < reserve)
4290 return 0;
4291
4292 super->create_offset = ~((__u32) 0);
4293 if (start + reserve > super->create_offset)
4294 return 0; /* start overflows create_offset */
4295 super->create_offset = start + reserve;
4296
4297 return maxsize - reserve;
4298 }
4299
4300 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
4301 {
4302 if (level < 0 || level == 6 || level == 4)
4303 return 0;
4304
4305 /* if we have an orom prevent invalid raid levels */
4306 if (orom)
4307 switch (level) {
4308 case 0: return imsm_orom_has_raid0(orom);
4309 case 1:
4310 if (raiddisks > 2)
4311 return imsm_orom_has_raid1e(orom);
4312 return imsm_orom_has_raid1(orom) && raiddisks == 2;
4313 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
4314 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
4315 }
4316 else
4317 return 1; /* not on an Intel RAID platform so anything goes */
4318
4319 return 0;
4320 }
4321
4322
4323 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
4324 /*
4325 * validate volume parameters with OROM/EFI capabilities
4326 */
4327 static int
4328 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
4329 int raiddisks, int *chunk, int verbose)
4330 {
4331 #if DEBUG
4332 verbose = 1;
4333 #endif
4334 /* validate container capabilities */
4335 if (super->orom && raiddisks > super->orom->tds) {
4336 if (verbose)
4337 fprintf(stderr, Name ": %d exceeds maximum number of"
4338 " platform supported disks: %d\n",
4339 raiddisks, super->orom->tds);
4340 return 0;
4341 }
4342
4343 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
4344 if (super->orom && (!is_raid_level_supported(super->orom, level,
4345 raiddisks))) {
4346 pr_vrb(": platform does not support raid%d with %d disk%s\n",
4347 level, raiddisks, raiddisks > 1 ? "s" : "");
4348 return 0;
4349 }
4350 if (super->orom && level != 1) {
4351 if (chunk && (*chunk == 0 || *chunk == UnSet))
4352 *chunk = imsm_orom_default_chunk(super->orom);
4353 else if (chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
4354 pr_vrb(": platform does not support a chunk size of: "
4355 "%d\n", *chunk);
4356 return 0;
4357 }
4358 }
4359 if (layout != imsm_level_to_layout(level)) {
4360 if (level == 5)
4361 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
4362 else if (level == 10)
4363 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
4364 else
4365 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
4366 layout, level);
4367 return 0;
4368 }
4369 return 1;
4370 }
4371
4372 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
4373 * FIX ME add ahci details
4374 */
4375 static int validate_geometry_imsm_volume(struct supertype *st, int level,
4376 int layout, int raiddisks, int *chunk,
4377 unsigned long long size, char *dev,
4378 unsigned long long *freesize,
4379 int verbose)
4380 {
4381 struct stat stb;
4382 struct intel_super *super = st->sb;
4383 struct imsm_super *mpb = super->anchor;
4384 struct dl *dl;
4385 unsigned long long pos = 0;
4386 unsigned long long maxsize;
4387 struct extent *e;
4388 int i;
4389
4390 /* We must have the container info already read in. */
4391 if (!super)
4392 return 0;
4393
4394 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
4395 fprintf(stderr, Name ": RAID gemetry validation failed. "
4396 "Cannot proceed with the action(s).\n");
4397 return 0;
4398 }
4399 if (!dev) {
4400 /* General test: make sure there is space for
4401 * 'raiddisks' device extents of size 'size' at a given
4402 * offset
4403 */
4404 unsigned long long minsize = size;
4405 unsigned long long start_offset = MaxSector;
4406 int dcnt = 0;
4407 if (minsize == 0)
4408 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
4409 for (dl = super->disks; dl ; dl = dl->next) {
4410 int found = 0;
4411
4412 pos = 0;
4413 i = 0;
4414 e = get_extents(super, dl);
4415 if (!e) continue;
4416 do {
4417 unsigned long long esize;
4418 esize = e[i].start - pos;
4419 if (esize >= minsize)
4420 found = 1;
4421 if (found && start_offset == MaxSector) {
4422 start_offset = pos;
4423 break;
4424 } else if (found && pos != start_offset) {
4425 found = 0;
4426 break;
4427 }
4428 pos = e[i].start + e[i].size;
4429 i++;
4430 } while (e[i-1].size);
4431 if (found)
4432 dcnt++;
4433 free(e);
4434 }
4435 if (dcnt < raiddisks) {
4436 if (verbose)
4437 fprintf(stderr, Name ": imsm: Not enough "
4438 "devices with space for this array "
4439 "(%d < %d)\n",
4440 dcnt, raiddisks);
4441 return 0;
4442 }
4443 return 1;
4444 }
4445
4446 /* This device must be a member of the set */
4447 if (stat(dev, &stb) < 0)
4448 return 0;
4449 if ((S_IFMT & stb.st_mode) != S_IFBLK)
4450 return 0;
4451 for (dl = super->disks ; dl ; dl = dl->next) {
4452 if (dl->major == (int)major(stb.st_rdev) &&
4453 dl->minor == (int)minor(stb.st_rdev))
4454 break;
4455 }
4456 if (!dl) {
4457 if (verbose)
4458 fprintf(stderr, Name ": %s is not in the "
4459 "same imsm set\n", dev);
4460 return 0;
4461 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
4462 /* If a volume is present then the current creation attempt
4463 * cannot incorporate new spares because the orom may not
4464 * understand this configuration (all member disks must be
4465 * members of each array in the container).
4466 */
4467 fprintf(stderr, Name ": %s is a spare and a volume"
4468 " is already defined for this container\n", dev);
4469 fprintf(stderr, Name ": The option-rom requires all member"
4470 " disks to be a member of all volumes\n");
4471 return 0;
4472 }
4473
4474 /* retrieve the largest free space block */
4475 e = get_extents(super, dl);
4476 maxsize = 0;
4477 i = 0;
4478 if (e) {
4479 do {
4480 unsigned long long esize;
4481
4482 esize = e[i].start - pos;
4483 if (esize >= maxsize)
4484 maxsize = esize;
4485 pos = e[i].start + e[i].size;
4486 i++;
4487 } while (e[i-1].size);
4488 dl->e = e;
4489 dl->extent_cnt = i;
4490 } else {
4491 if (verbose)
4492 fprintf(stderr, Name ": unable to determine free space for: %s\n",
4493 dev);
4494 return 0;
4495 }
4496 if (maxsize < size) {
4497 if (verbose)
4498 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
4499 dev, maxsize, size);
4500 return 0;
4501 }
4502
4503 /* count total number of extents for merge */
4504 i = 0;
4505 for (dl = super->disks; dl; dl = dl->next)
4506 if (dl->e)
4507 i += dl->extent_cnt;
4508
4509 maxsize = merge_extents(super, i);
4510 if (maxsize < size || maxsize == 0) {
4511 if (verbose)
4512 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
4513 maxsize, size);
4514 return 0;
4515 }
4516
4517 *freesize = maxsize;
4518
4519 return 1;
4520 }
4521
4522 static int reserve_space(struct supertype *st, int raiddisks,
4523 unsigned long long size, int chunk,
4524 unsigned long long *freesize)
4525 {
4526 struct intel_super *super = st->sb;
4527 struct imsm_super *mpb = super->anchor;
4528 struct dl *dl;
4529 int i;
4530 int extent_cnt;
4531 struct extent *e;
4532 unsigned long long maxsize;
4533 unsigned long long minsize;
4534 int cnt;
4535 int used;
4536
4537 /* find the largest common start free region of the possible disks */
4538 used = 0;
4539 extent_cnt = 0;
4540 cnt = 0;
4541 for (dl = super->disks; dl; dl = dl->next) {
4542 dl->raiddisk = -1;
4543
4544 if (dl->index >= 0)
4545 used++;
4546
4547 /* don't activate new spares if we are orom constrained
4548 * and there is already a volume active in the container
4549 */
4550 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
4551 continue;
4552
4553 e = get_extents(super, dl);
4554 if (!e)
4555 continue;
4556 for (i = 1; e[i-1].size; i++)
4557 ;
4558 dl->e = e;
4559 dl->extent_cnt = i;
4560 extent_cnt += i;
4561 cnt++;
4562 }
4563
4564 maxsize = merge_extents(super, extent_cnt);
4565 minsize = size;
4566 if (size == 0)
4567 /* chunk is in K */
4568 minsize = chunk * 2;
4569
4570 if (cnt < raiddisks ||
4571 (super->orom && used && used != raiddisks) ||
4572 maxsize < minsize ||
4573 maxsize == 0) {
4574 fprintf(stderr, Name ": not enough devices with space to create array.\n");
4575 return 0; /* No enough free spaces large enough */
4576 }
4577
4578 if (size == 0) {
4579 size = maxsize;
4580 if (chunk) {
4581 size /= 2 * chunk;
4582 size *= 2 * chunk;
4583 }
4584 }
4585
4586 cnt = 0;
4587 for (dl = super->disks; dl; dl = dl->next)
4588 if (dl->e)
4589 dl->raiddisk = cnt++;
4590
4591 *freesize = size;
4592
4593 return 1;
4594 }
4595
4596 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
4597 int raiddisks, int *chunk, unsigned long long size,
4598 char *dev, unsigned long long *freesize,
4599 int verbose)
4600 {
4601 int fd, cfd;
4602 struct mdinfo *sra;
4603 int is_member = 0;
4604
4605 /* load capability
4606 * if given unused devices create a container
4607 * if given given devices in a container create a member volume
4608 */
4609 if (level == LEVEL_CONTAINER) {
4610 /* Must be a fresh device to add to a container */
4611 return validate_geometry_imsm_container(st, level, layout,
4612 raiddisks,
4613 chunk?*chunk:0, size,
4614 dev, freesize,
4615 verbose);
4616 }
4617
4618 if (!dev) {
4619 if (st->sb && freesize) {
4620 /* we are being asked to automatically layout a
4621 * new volume based on the current contents of
4622 * the container. If the the parameters can be
4623 * satisfied reserve_space will record the disks,
4624 * start offset, and size of the volume to be
4625 * created. add_to_super and getinfo_super
4626 * detect when autolayout is in progress.
4627 */
4628 if (!validate_geometry_imsm_orom(st->sb, level, layout,
4629 raiddisks, chunk,
4630 verbose))
4631 return 0;
4632 return reserve_space(st, raiddisks, size,
4633 chunk?*chunk:0, freesize);
4634 }
4635 return 1;
4636 }
4637 if (st->sb) {
4638 /* creating in a given container */
4639 return validate_geometry_imsm_volume(st, level, layout,
4640 raiddisks, chunk, size,
4641 dev, freesize, verbose);
4642 }
4643
4644 /* This device needs to be a device in an 'imsm' container */
4645 fd = open(dev, O_RDONLY|O_EXCL, 0);
4646 if (fd >= 0) {
4647 if (verbose)
4648 fprintf(stderr,
4649 Name ": Cannot create this array on device %s\n",
4650 dev);
4651 close(fd);
4652 return 0;
4653 }
4654 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
4655 if (verbose)
4656 fprintf(stderr, Name ": Cannot open %s: %s\n",
4657 dev, strerror(errno));
4658 return 0;
4659 }
4660 /* Well, it is in use by someone, maybe an 'imsm' container. */
4661 cfd = open_container(fd);
4662 close(fd);
4663 if (cfd < 0) {
4664 if (verbose)
4665 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
4666 dev);
4667 return 0;
4668 }
4669 sra = sysfs_read(cfd, 0, GET_VERSION);
4670 if (sra && sra->array.major_version == -1 &&
4671 strcmp(sra->text_version, "imsm") == 0)
4672 is_member = 1;
4673 sysfs_free(sra);
4674 if (is_member) {
4675 /* This is a member of a imsm container. Load the container
4676 * and try to create a volume
4677 */
4678 struct intel_super *super;
4679
4680 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
4681 st->sb = super;
4682 st->container_dev = fd2devnum(cfd);
4683 close(cfd);
4684 return validate_geometry_imsm_volume(st, level, layout,
4685 raiddisks, chunk,
4686 size, dev,
4687 freesize, verbose);
4688 }
4689 }
4690
4691 if (verbose)
4692 fprintf(stderr, Name ": failed container membership check\n");
4693
4694 close(cfd);
4695 return 0;
4696 }
4697
4698 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
4699 {
4700 struct intel_super *super = st->sb;
4701
4702 if (level && *level == UnSet)
4703 *level = LEVEL_CONTAINER;
4704
4705 if (level && layout && *layout == UnSet)
4706 *layout = imsm_level_to_layout(*level);
4707
4708 if (chunk && (*chunk == UnSet || *chunk == 0) &&
4709 super && super->orom)
4710 *chunk = imsm_orom_default_chunk(super->orom);
4711 }
4712
4713 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
4714
4715 static int kill_subarray_imsm(struct supertype *st)
4716 {
4717 /* remove the subarray currently referenced by ->current_vol */
4718 __u8 i;
4719 struct intel_dev **dp;
4720 struct intel_super *super = st->sb;
4721 __u8 current_vol = super->current_vol;
4722 struct imsm_super *mpb = super->anchor;
4723
4724 if (super->current_vol < 0)
4725 return 2;
4726 super->current_vol = -1; /* invalidate subarray cursor */
4727
4728 /* block deletions that would change the uuid of active subarrays
4729 *
4730 * FIXME when immutable ids are available, but note that we'll
4731 * also need to fixup the invalidated/active subarray indexes in
4732 * mdstat
4733 */
4734 for (i = 0; i < mpb->num_raid_devs; i++) {
4735 char subarray[4];
4736
4737 if (i < current_vol)
4738 continue;
4739 sprintf(subarray, "%u", i);
4740 if (is_subarray_active(subarray, st->devname)) {
4741 fprintf(stderr,
4742 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
4743 current_vol, i);
4744
4745 return 2;
4746 }
4747 }
4748
4749 if (st->update_tail) {
4750 struct imsm_update_kill_array *u = malloc(sizeof(*u));
4751
4752 if (!u)
4753 return 2;
4754 u->type = update_kill_array;
4755 u->dev_idx = current_vol;
4756 append_metadata_update(st, u, sizeof(*u));
4757
4758 return 0;
4759 }
4760
4761 for (dp = &super->devlist; *dp;)
4762 if ((*dp)->index == current_vol) {
4763 *dp = (*dp)->next;
4764 } else {
4765 handle_missing(super, (*dp)->dev);
4766 if ((*dp)->index > current_vol)
4767 (*dp)->index--;
4768 dp = &(*dp)->next;
4769 }
4770
4771 /* no more raid devices, all active components are now spares,
4772 * but of course failed are still failed
4773 */
4774 if (--mpb->num_raid_devs == 0) {
4775 struct dl *d;
4776
4777 for (d = super->disks; d; d = d->next)
4778 if (d->index > -2) {
4779 d->index = -1;
4780 d->disk.status = SPARE_DISK;
4781 }
4782 }
4783
4784 super->updates_pending++;
4785
4786 return 0;
4787 }
4788
4789 static int update_subarray_imsm(struct supertype *st, char *subarray,
4790 char *update, struct mddev_ident *ident)
4791 {
4792 /* update the subarray currently referenced by ->current_vol */
4793 struct intel_super *super = st->sb;
4794 struct imsm_super *mpb = super->anchor;
4795
4796 if (strcmp(update, "name") == 0) {
4797 char *name = ident->name;
4798 char *ep;
4799 int vol;
4800
4801 if (is_subarray_active(subarray, st->devname)) {
4802 fprintf(stderr,
4803 Name ": Unable to update name of active subarray\n");
4804 return 2;
4805 }
4806
4807 if (!check_name(super, name, 0))
4808 return 2;
4809
4810 vol = strtoul(subarray, &ep, 10);
4811 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
4812 return 2;
4813
4814 if (st->update_tail) {
4815 struct imsm_update_rename_array *u = malloc(sizeof(*u));
4816
4817 if (!u)
4818 return 2;
4819 u->type = update_rename_array;
4820 u->dev_idx = vol;
4821 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
4822 append_metadata_update(st, u, sizeof(*u));
4823 } else {
4824 struct imsm_dev *dev;
4825 int i;
4826
4827 dev = get_imsm_dev(super, vol);
4828 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
4829 for (i = 0; i < mpb->num_raid_devs; i++) {
4830 dev = get_imsm_dev(super, i);
4831 handle_missing(super, dev);
4832 }
4833 super->updates_pending++;
4834 }
4835 } else
4836 return 2;
4837
4838 return 0;
4839 }
4840
4841 static int is_gen_migration(struct imsm_dev *dev)
4842 {
4843 if (!dev->vol.migr_state)
4844 return 0;
4845
4846 if (migr_type(dev) == MIGR_GEN_MIGR)
4847 return 1;
4848
4849 return 0;
4850 }
4851 #endif /* MDASSEMBLE */
4852
4853 static int is_rebuilding(struct imsm_dev *dev)
4854 {
4855 struct imsm_map *migr_map;
4856
4857 if (!dev->vol.migr_state)
4858 return 0;
4859
4860 if (migr_type(dev) != MIGR_REBUILD)
4861 return 0;
4862
4863 migr_map = get_imsm_map(dev, 1);
4864
4865 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
4866 return 1;
4867 else
4868 return 0;
4869 }
4870
4871 static void update_recovery_start(struct imsm_dev *dev, struct mdinfo *array)
4872 {
4873 struct mdinfo *rebuild = NULL;
4874 struct mdinfo *d;
4875 __u32 units;
4876
4877 if (!is_rebuilding(dev))
4878 return;
4879
4880 /* Find the rebuild target, but punt on the dual rebuild case */
4881 for (d = array->devs; d; d = d->next)
4882 if (d->recovery_start == 0) {
4883 if (rebuild)
4884 return;
4885 rebuild = d;
4886 }
4887
4888 if (!rebuild) {
4889 /* (?) none of the disks are marked with
4890 * IMSM_ORD_REBUILD, so assume they are missing and the
4891 * disk_ord_tbl was not correctly updated
4892 */
4893 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
4894 return;
4895 }
4896
4897 units = __le32_to_cpu(dev->vol.curr_migr_unit);
4898 rebuild->recovery_start = units * blocks_per_migr_unit(dev);
4899 }
4900
4901
4902 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
4903 {
4904 /* Given a container loaded by load_super_imsm_all,
4905 * extract information about all the arrays into
4906 * an mdinfo tree.
4907 * If 'subarray' is given, just extract info about that array.
4908 *
4909 * For each imsm_dev create an mdinfo, fill it in,
4910 * then look for matching devices in super->disks
4911 * and create appropriate device mdinfo.
4912 */
4913 struct intel_super *super = st->sb;
4914 struct imsm_super *mpb = super->anchor;
4915 struct mdinfo *rest = NULL;
4916 unsigned int i;
4917 int bbm_errors = 0;
4918 struct dl *d;
4919 int spare_disks = 0;
4920
4921 /* check for bad blocks */
4922 if (imsm_bbm_log_size(super->anchor))
4923 bbm_errors = 1;
4924
4925 /* count spare devices, not used in maps
4926 */
4927 for (d = super->disks; d; d = d->next)
4928 if (d->index == -1)
4929 spare_disks++;
4930
4931 for (i = 0; i < mpb->num_raid_devs; i++) {
4932 struct imsm_dev *dev;
4933 struct imsm_map *map;
4934 struct imsm_map *map2;
4935 struct mdinfo *this;
4936 int slot, chunk;
4937 char *ep;
4938
4939 if (subarray &&
4940 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
4941 continue;
4942
4943 dev = get_imsm_dev(super, i);
4944 map = get_imsm_map(dev, 0);
4945 map2 = get_imsm_map(dev, 1);
4946
4947 /* do not publish arrays that are in the middle of an
4948 * unsupported migration
4949 */
4950 if (dev->vol.migr_state &&
4951 (migr_type(dev) == MIGR_STATE_CHANGE)) {
4952 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
4953 " unsupported migration in progress\n",
4954 dev->volume);
4955 continue;
4956 }
4957 /* do not publish arrays that are not support by controller's
4958 * OROM/EFI
4959 */
4960
4961 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
4962 #ifndef MDASSEMBLE
4963 if (!validate_geometry_imsm_orom(super,
4964 get_imsm_raid_level(map), /* RAID level */
4965 imsm_level_to_layout(get_imsm_raid_level(map)),
4966 map->num_members, /* raid disks */
4967 &chunk,
4968 1 /* verbose */)) {
4969 fprintf(stderr, Name ": RAID gemetry validation failed. "
4970 "Cannot proceed with the action(s).\n");
4971 continue;
4972 }
4973 #endif /* MDASSEMBLE */
4974 this = malloc(sizeof(*this));
4975 if (!this) {
4976 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
4977 sizeof(*this));
4978 break;
4979 }
4980 memset(this, 0, sizeof(*this));
4981 this->next = rest;
4982
4983 super->current_vol = i;
4984 getinfo_super_imsm_volume(st, this, NULL);
4985 for (slot = 0 ; slot < map->num_members; slot++) {
4986 unsigned long long recovery_start;
4987 struct mdinfo *info_d;
4988 struct dl *d;
4989 int idx;
4990 int skip;
4991 __u32 ord;
4992
4993 skip = 0;
4994 idx = get_imsm_disk_idx(dev, slot, 0);
4995 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4996 for (d = super->disks; d ; d = d->next)
4997 if (d->index == idx)
4998 break;
4999
5000 recovery_start = MaxSector;
5001 if (d == NULL)
5002 skip = 1;
5003 if (d && is_failed(&d->disk))
5004 skip = 1;
5005 if (ord & IMSM_ORD_REBUILD)
5006 recovery_start = 0;
5007
5008 /*
5009 * if we skip some disks the array will be assmebled degraded;
5010 * reset resync start to avoid a dirty-degraded
5011 * situation when performing the intial sync
5012 *
5013 * FIXME handle dirty degraded
5014 */
5015 if ((skip || recovery_start == 0) && !dev->vol.dirty)
5016 this->resync_start = MaxSector;
5017 if (skip)
5018 continue;
5019
5020 info_d = calloc(1, sizeof(*info_d));
5021 if (!info_d) {
5022 fprintf(stderr, Name ": failed to allocate disk"
5023 " for volume %.16s\n", dev->volume);
5024 info_d = this->devs;
5025 while (info_d) {
5026 struct mdinfo *d = info_d->next;
5027
5028 free(info_d);
5029 info_d = d;
5030 }
5031 free(this);
5032 this = rest;
5033 break;
5034 }
5035 info_d->next = this->devs;
5036 this->devs = info_d;
5037
5038 info_d->disk.number = d->index;
5039 info_d->disk.major = d->major;
5040 info_d->disk.minor = d->minor;
5041 info_d->disk.raid_disk = slot;
5042 info_d->recovery_start = recovery_start;
5043 if (map2) {
5044 if (slot < map2->num_members)
5045 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5046 else
5047 this->array.spare_disks++;
5048 } else {
5049 if (slot < map->num_members)
5050 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5051 else
5052 this->array.spare_disks++;
5053 }
5054 if (info_d->recovery_start == MaxSector)
5055 this->array.working_disks++;
5056
5057 info_d->events = __le32_to_cpu(mpb->generation_num);
5058 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5059 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
5060 }
5061 /* now that the disk list is up-to-date fixup recovery_start */
5062 update_recovery_start(dev, this);
5063 this->array.spare_disks += spare_disks;
5064 rest = this;
5065 }
5066
5067 /* if array has bad blocks, set suitable bit in array status */
5068 if (bbm_errors)
5069 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5070
5071 return rest;
5072 }
5073
5074
5075 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
5076 {
5077 struct imsm_map *map = get_imsm_map(dev, 0);
5078
5079 if (!failed)
5080 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5081 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
5082
5083 switch (get_imsm_raid_level(map)) {
5084 case 0:
5085 return IMSM_T_STATE_FAILED;
5086 break;
5087 case 1:
5088 if (failed < map->num_members)
5089 return IMSM_T_STATE_DEGRADED;
5090 else
5091 return IMSM_T_STATE_FAILED;
5092 break;
5093 case 10:
5094 {
5095 /**
5096 * check to see if any mirrors have failed, otherwise we
5097 * are degraded. Even numbered slots are mirrored on
5098 * slot+1
5099 */
5100 int i;
5101 /* gcc -Os complains that this is unused */
5102 int insync = insync;
5103
5104 for (i = 0; i < map->num_members; i++) {
5105 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
5106 int idx = ord_to_idx(ord);
5107 struct imsm_disk *disk;
5108
5109 /* reset the potential in-sync count on even-numbered
5110 * slots. num_copies is always 2 for imsm raid10
5111 */
5112 if ((i & 1) == 0)
5113 insync = 2;
5114
5115 disk = get_imsm_disk(super, idx);
5116 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5117 insync--;
5118
5119 /* no in-sync disks left in this mirror the
5120 * array has failed
5121 */
5122 if (insync == 0)
5123 return IMSM_T_STATE_FAILED;
5124 }
5125
5126 return IMSM_T_STATE_DEGRADED;
5127 }
5128 case 5:
5129 if (failed < 2)
5130 return IMSM_T_STATE_DEGRADED;
5131 else
5132 return IMSM_T_STATE_FAILED;
5133 break;
5134 default:
5135 break;
5136 }
5137
5138 return map->map_state;
5139 }
5140
5141 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
5142 {
5143 int i;
5144 int failed = 0;
5145 struct imsm_disk *disk;
5146 struct imsm_map *map = get_imsm_map(dev, 0);
5147 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5148 __u32 ord;
5149 int idx;
5150
5151 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5152 * disks that are being rebuilt. New failures are recorded to
5153 * map[0]. So we look through all the disks we started with and
5154 * see if any failures are still present, or if any new ones
5155 * have arrived
5156 *
5157 * FIXME add support for online capacity expansion and
5158 * raid-level-migration
5159 */
5160 for (i = 0; i < prev->num_members; i++) {
5161 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5162 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5163 idx = ord_to_idx(ord);
5164
5165 disk = get_imsm_disk(super, idx);
5166 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5167 failed++;
5168 }
5169
5170 return failed;
5171 }
5172
5173 #ifndef MDASSEMBLE
5174 static int imsm_open_new(struct supertype *c, struct active_array *a,
5175 char *inst)
5176 {
5177 struct intel_super *super = c->sb;
5178 struct imsm_super *mpb = super->anchor;
5179
5180 if (atoi(inst) >= mpb->num_raid_devs) {
5181 fprintf(stderr, "%s: subarry index %d, out of range\n",
5182 __func__, atoi(inst));
5183 return -ENODEV;
5184 }
5185
5186 dprintf("imsm: open_new %s\n", inst);
5187 a->info.container_member = atoi(inst);
5188 return 0;
5189 }
5190
5191 static int is_resyncing(struct imsm_dev *dev)
5192 {
5193 struct imsm_map *migr_map;
5194
5195 if (!dev->vol.migr_state)
5196 return 0;
5197
5198 if (migr_type(dev) == MIGR_INIT ||
5199 migr_type(dev) == MIGR_REPAIR)
5200 return 1;
5201
5202 if (migr_type(dev) == MIGR_GEN_MIGR)
5203 return 0;
5204
5205 migr_map = get_imsm_map(dev, 1);
5206
5207 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5208 (dev->vol.migr_type != MIGR_GEN_MIGR))
5209 return 1;
5210 else
5211 return 0;
5212 }
5213
5214 /* return true if we recorded new information */
5215 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5216 {
5217 __u32 ord;
5218 int slot;
5219 struct imsm_map *map;
5220
5221 /* new failures are always set in map[0] */
5222 map = get_imsm_map(dev, 0);
5223
5224 slot = get_imsm_disk_slot(map, idx);
5225 if (slot < 0)
5226 return 0;
5227
5228 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
5229 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
5230 return 0;
5231
5232 disk->status |= FAILED_DISK;
5233 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
5234 if (map->failed_disk_num == 0xff)
5235 map->failed_disk_num = slot;
5236 return 1;
5237 }
5238
5239 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5240 {
5241 mark_failure(dev, disk, idx);
5242
5243 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
5244 return;
5245
5246 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5247 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
5248 }
5249
5250 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
5251 {
5252 __u8 map_state;
5253 struct dl *dl;
5254 int failed;
5255
5256 if (!super->missing)
5257 return;
5258 failed = imsm_count_failed(super, dev);
5259 map_state = imsm_check_degraded(super, dev, failed);
5260
5261 dprintf("imsm: mark missing\n");
5262 end_migration(dev, map_state);
5263 for (dl = super->missing; dl; dl = dl->next)
5264 mark_missing(dev, &dl->disk, dl->index);
5265 super->updates_pending++;
5266 }
5267
5268 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
5269 {
5270 int used_disks = imsm_num_data_members(dev, 0);
5271 unsigned long long array_blocks;
5272 struct imsm_map *map;
5273
5274 if (used_disks == 0) {
5275 /* when problems occures
5276 * return current array_blocks value
5277 */
5278 array_blocks = __le32_to_cpu(dev->size_high);
5279 array_blocks = array_blocks << 32;
5280 array_blocks += __le32_to_cpu(dev->size_low);
5281
5282 return array_blocks;
5283 }
5284
5285 /* set array size in metadata
5286 */
5287 map = get_imsm_map(dev, 0);
5288 array_blocks = map->blocks_per_member * used_disks;
5289
5290 /* round array size down to closest MB
5291 */
5292 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5293 dev->size_low = __cpu_to_le32((__u32)array_blocks);
5294 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
5295
5296 return array_blocks;
5297 }
5298
5299 static void imsm_set_disk(struct active_array *a, int n, int state);
5300
5301 static void imsm_progress_container_reshape(struct intel_super *super)
5302 {
5303 /* if no device has a migr_state, but some device has a
5304 * different number of members than the previous device, start
5305 * changing the number of devices in this device to match
5306 * previous.
5307 */
5308 struct imsm_super *mpb = super->anchor;
5309 int prev_disks = -1;
5310 int i;
5311 int copy_map_size;
5312
5313 for (i = 0; i < mpb->num_raid_devs; i++) {
5314 struct imsm_dev *dev = get_imsm_dev(super, i);
5315 struct imsm_map *map = get_imsm_map(dev, 0);
5316 struct imsm_map *map2;
5317 int prev_num_members;
5318
5319 if (dev->vol.migr_state)
5320 return;
5321
5322 if (prev_disks == -1)
5323 prev_disks = map->num_members;
5324 if (prev_disks == map->num_members)
5325 continue;
5326
5327 /* OK, this array needs to enter reshape mode.
5328 * i.e it needs a migr_state
5329 */
5330
5331 copy_map_size = sizeof_imsm_map(map);
5332 prev_num_members = map->num_members;
5333 map->num_members = prev_disks;
5334 dev->vol.migr_state = 1;
5335 dev->vol.curr_migr_unit = 0;
5336 dev->vol.migr_type = MIGR_GEN_MIGR;
5337 for (i = prev_num_members;
5338 i < map->num_members; i++)
5339 set_imsm_ord_tbl_ent(map, i, i);
5340 map2 = get_imsm_map(dev, 1);
5341 /* Copy the current map */
5342 memcpy(map2, map, copy_map_size);
5343 map2->num_members = prev_num_members;
5344
5345 imsm_set_array_size(dev);
5346 super->updates_pending++;
5347 }
5348 }
5349
5350 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
5351 * states are handled in imsm_set_disk() with one exception, when a
5352 * resync is stopped due to a new failure this routine will set the
5353 * 'degraded' state for the array.
5354 */
5355 static int imsm_set_array_state(struct active_array *a, int consistent)
5356 {
5357 int inst = a->info.container_member;
5358 struct intel_super *super = a->container->sb;
5359 struct imsm_dev *dev = get_imsm_dev(super, inst);
5360 struct imsm_map *map = get_imsm_map(dev, 0);
5361 int failed = imsm_count_failed(super, dev);
5362 __u8 map_state = imsm_check_degraded(super, dev, failed);
5363 __u32 blocks_per_unit;
5364
5365 if (dev->vol.migr_state &&
5366 dev->vol.migr_type == MIGR_GEN_MIGR) {
5367 /* array state change is blocked due to reshape action
5368 * We might need to
5369 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
5370 * - finish the reshape (if last_checkpoint is big and action != reshape)
5371 * - update curr_migr_unit
5372 */
5373 if (a->curr_action == reshape) {
5374 /* still reshaping, maybe update curr_migr_unit */
5375 goto mark_checkpoint;
5376 } else {
5377 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
5378 /* for some reason we aborted the reshape.
5379 * Better clean up
5380 */
5381 struct imsm_map *map2 = get_imsm_map(dev, 1);
5382 dev->vol.migr_state = 0;
5383 dev->vol.migr_type = 0;
5384 dev->vol.curr_migr_unit = 0;
5385 memcpy(map, map2, sizeof_imsm_map(map2));
5386 super->updates_pending++;
5387 }
5388 if (a->last_checkpoint >= a->info.component_size) {
5389 unsigned long long array_blocks;
5390 int used_disks;
5391 struct mdinfo *mdi;
5392
5393 used_disks = imsm_num_data_members(dev, 0);
5394 if (used_disks > 0) {
5395 array_blocks =
5396 map->blocks_per_member *
5397 used_disks;
5398 /* round array size down to closest MB
5399 */
5400 array_blocks = (array_blocks
5401 >> SECT_PER_MB_SHIFT)
5402 << SECT_PER_MB_SHIFT;
5403 a->info.custom_array_size = array_blocks;
5404 /* encourage manager to update array
5405 * size
5406 */
5407
5408 a->check_reshape = 1;
5409 }
5410 /* finalize online capacity expansion/reshape */
5411 for (mdi = a->info.devs; mdi; mdi = mdi->next)
5412 imsm_set_disk(a,
5413 mdi->disk.raid_disk,
5414 mdi->curr_state);
5415
5416 imsm_progress_container_reshape(super);
5417 }
5418 }
5419 }
5420
5421 /* before we activate this array handle any missing disks */
5422 if (consistent == 2)
5423 handle_missing(super, dev);
5424
5425 if (consistent == 2 &&
5426 (!is_resync_complete(&a->info) ||
5427 map_state != IMSM_T_STATE_NORMAL ||
5428 dev->vol.migr_state))
5429 consistent = 0;
5430
5431 if (is_resync_complete(&a->info)) {
5432 /* complete intialization / resync,
5433 * recovery and interrupted recovery is completed in
5434 * ->set_disk
5435 */
5436 if (is_resyncing(dev)) {
5437 dprintf("imsm: mark resync done\n");
5438 end_migration(dev, map_state);
5439 super->updates_pending++;
5440 a->last_checkpoint = 0;
5441 }
5442 } else if (!is_resyncing(dev) && !failed) {
5443 /* mark the start of the init process if nothing is failed */
5444 dprintf("imsm: mark resync start\n");
5445 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
5446 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
5447 else
5448 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
5449 super->updates_pending++;
5450 }
5451
5452 mark_checkpoint:
5453 /* check if we can update curr_migr_unit from resync_start, recovery_start */
5454 blocks_per_unit = blocks_per_migr_unit(dev);
5455 if (blocks_per_unit) {
5456 __u32 units32;
5457 __u64 units;
5458
5459 units = a->last_checkpoint / blocks_per_unit;
5460 units32 = units;
5461
5462 /* check that we did not overflow 32-bits, and that
5463 * curr_migr_unit needs updating
5464 */
5465 if (units32 == units &&
5466 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
5467 dprintf("imsm: mark checkpoint (%u)\n", units32);
5468 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
5469 super->updates_pending++;
5470 }
5471 }
5472
5473 /* mark dirty / clean */
5474 if (dev->vol.dirty != !consistent) {
5475 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
5476 if (consistent)
5477 dev->vol.dirty = 0;
5478 else
5479 dev->vol.dirty = 1;
5480 super->updates_pending++;
5481 }
5482
5483 return consistent;
5484 }
5485
5486 static void imsm_set_disk(struct active_array *a, int n, int state)
5487 {
5488 int inst = a->info.container_member;
5489 struct intel_super *super = a->container->sb;
5490 struct imsm_dev *dev = get_imsm_dev(super, inst);
5491 struct imsm_map *map = get_imsm_map(dev, 0);
5492 struct imsm_disk *disk;
5493 int failed;
5494 __u32 ord;
5495 __u8 map_state;
5496
5497 if (n > map->num_members)
5498 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
5499 n, map->num_members - 1);
5500
5501 if (n < 0)
5502 return;
5503
5504 dprintf("imsm: set_disk %d:%x\n", n, state);
5505
5506 ord = get_imsm_ord_tbl_ent(dev, n, -1);
5507 disk = get_imsm_disk(super, ord_to_idx(ord));
5508
5509 /* check for new failures */
5510 if (state & DS_FAULTY) {
5511 if (mark_failure(dev, disk, ord_to_idx(ord)))
5512 super->updates_pending++;
5513 }
5514
5515 /* check if in_sync */
5516 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
5517 struct imsm_map *migr_map = get_imsm_map(dev, 1);
5518
5519 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
5520 super->updates_pending++;
5521 }
5522
5523 failed = imsm_count_failed(super, dev);
5524 map_state = imsm_check_degraded(super, dev, failed);
5525
5526 /* check if recovery complete, newly degraded, or failed */
5527 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
5528 end_migration(dev, map_state);
5529 map = get_imsm_map(dev, 0);
5530 map->failed_disk_num = ~0;
5531 super->updates_pending++;
5532 a->last_checkpoint = 0;
5533 } else if (map_state == IMSM_T_STATE_DEGRADED &&
5534 map->map_state != map_state &&
5535 !dev->vol.migr_state) {
5536 dprintf("imsm: mark degraded\n");
5537 map->map_state = map_state;
5538 super->updates_pending++;
5539 a->last_checkpoint = 0;
5540 } else if (map_state == IMSM_T_STATE_FAILED &&
5541 map->map_state != map_state) {
5542 dprintf("imsm: mark failed\n");
5543 end_migration(dev, map_state);
5544 super->updates_pending++;
5545 a->last_checkpoint = 0;
5546 } else if (is_gen_migration(dev)) {
5547 dprintf("imsm: Detected General Migration in state: ");
5548 if (map_state == IMSM_T_STATE_NORMAL) {
5549 end_migration(dev, map_state);
5550 map = get_imsm_map(dev, 0);
5551 map->failed_disk_num = ~0;
5552 dprintf("normal\n");
5553 } else {
5554 if (map_state == IMSM_T_STATE_DEGRADED) {
5555 printf("degraded\n");
5556 end_migration(dev, map_state);
5557 } else {
5558 dprintf("failed\n");
5559 }
5560 map->map_state = map_state;
5561 }
5562 super->updates_pending++;
5563 }
5564 }
5565
5566 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
5567 {
5568 void *buf = mpb;
5569 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
5570 unsigned long long dsize;
5571 unsigned long long sectors;
5572
5573 get_dev_size(fd, NULL, &dsize);
5574
5575 if (mpb_size > 512) {
5576 /* -1 to account for anchor */
5577 sectors = mpb_sectors(mpb) - 1;
5578
5579 /* write the extended mpb to the sectors preceeding the anchor */
5580 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
5581 return 1;
5582
5583 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
5584 != 512 * sectors)
5585 return 1;
5586 }
5587
5588 /* first block is stored on second to last sector of the disk */
5589 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
5590 return 1;
5591
5592 if (write(fd, buf, 512) != 512)
5593 return 1;
5594
5595 return 0;
5596 }
5597
5598 static void imsm_sync_metadata(struct supertype *container)
5599 {
5600 struct intel_super *super = container->sb;
5601
5602 dprintf("sync metadata: %d\n", super->updates_pending);
5603 if (!super->updates_pending)
5604 return;
5605
5606 write_super_imsm(container, 0);
5607
5608 super->updates_pending = 0;
5609 }
5610
5611 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
5612 {
5613 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
5614 int i = get_imsm_disk_idx(dev, idx, -1);
5615 struct dl *dl;
5616
5617 for (dl = super->disks; dl; dl = dl->next)
5618 if (dl->index == i)
5619 break;
5620
5621 if (dl && is_failed(&dl->disk))
5622 dl = NULL;
5623
5624 if (dl)
5625 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
5626
5627 return dl;
5628 }
5629
5630 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
5631 struct active_array *a, int activate_new,
5632 struct mdinfo *additional_test_list)
5633 {
5634 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
5635 int idx = get_imsm_disk_idx(dev, slot, -1);
5636 struct imsm_super *mpb = super->anchor;
5637 struct imsm_map *map;
5638 unsigned long long pos;
5639 struct mdinfo *d;
5640 struct extent *ex;
5641 int i, j;
5642 int found;
5643 __u32 array_start = 0;
5644 __u32 array_end = 0;
5645 struct dl *dl;
5646 struct mdinfo *test_list;
5647
5648 for (dl = super->disks; dl; dl = dl->next) {
5649 /* If in this array, skip */
5650 for (d = a->info.devs ; d ; d = d->next)
5651 if (d->state_fd >= 0 &&
5652 d->disk.major == dl->major &&
5653 d->disk.minor == dl->minor) {
5654 dprintf("%x:%x already in array\n",
5655 dl->major, dl->minor);
5656 break;
5657 }
5658 if (d)
5659 continue;
5660 test_list = additional_test_list;
5661 while (test_list) {
5662 if (test_list->disk.major == dl->major &&
5663 test_list->disk.minor == dl->minor) {
5664 dprintf("%x:%x already in additional test list\n",
5665 dl->major, dl->minor);
5666 break;
5667 }
5668 test_list = test_list->next;
5669 }
5670 if (test_list)
5671 continue;
5672
5673 /* skip in use or failed drives */
5674 if (is_failed(&dl->disk) || idx == dl->index ||
5675 dl->index == -2) {
5676 dprintf("%x:%x status (failed: %d index: %d)\n",
5677 dl->major, dl->minor, is_failed(&dl->disk), idx);
5678 continue;
5679 }
5680
5681 /* skip pure spares when we are looking for partially
5682 * assimilated drives
5683 */
5684 if (dl->index == -1 && !activate_new)
5685 continue;
5686
5687 /* Does this unused device have the requisite free space?
5688 * It needs to be able to cover all member volumes
5689 */
5690 ex = get_extents(super, dl);
5691 if (!ex) {
5692 dprintf("cannot get extents\n");
5693 continue;
5694 }
5695 for (i = 0; i < mpb->num_raid_devs; i++) {
5696 dev = get_imsm_dev(super, i);
5697 map = get_imsm_map(dev, 0);
5698
5699 /* check if this disk is already a member of
5700 * this array
5701 */
5702 if (get_imsm_disk_slot(map, dl->index) >= 0)
5703 continue;
5704
5705 found = 0;
5706 j = 0;
5707 pos = 0;
5708 array_start = __le32_to_cpu(map->pba_of_lba0);
5709 array_end = array_start +
5710 __le32_to_cpu(map->blocks_per_member) - 1;
5711
5712 do {
5713 /* check that we can start at pba_of_lba0 with
5714 * blocks_per_member of space
5715 */
5716 if (array_start >= pos && array_end < ex[j].start) {
5717 found = 1;
5718 break;
5719 }
5720 pos = ex[j].start + ex[j].size;
5721 j++;
5722 } while (ex[j-1].size);
5723
5724 if (!found)
5725 break;
5726 }
5727
5728 free(ex);
5729 if (i < mpb->num_raid_devs) {
5730 dprintf("%x:%x does not have %u to %u available\n",
5731 dl->major, dl->minor, array_start, array_end);
5732 /* No room */
5733 continue;
5734 }
5735 return dl;
5736 }
5737
5738 return dl;
5739 }
5740
5741
5742 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
5743 {
5744 struct imsm_dev *dev2;
5745 struct imsm_map *map;
5746 struct dl *idisk;
5747 int slot;
5748 int idx;
5749 __u8 state;
5750
5751 dev2 = get_imsm_dev(cont->sb, dev_idx);
5752 if (dev2) {
5753 state = imsm_check_degraded(cont->sb, dev2, failed);
5754 if (state == IMSM_T_STATE_FAILED) {
5755 map = get_imsm_map(dev2, 0);
5756 if (!map)
5757 return 1;
5758 for (slot = 0; slot < map->num_members; slot++) {
5759 /*
5760 * Check if failed disks are deleted from intel
5761 * disk list or are marked to be deleted
5762 */
5763 idx = get_imsm_disk_idx(dev2, slot, -1);
5764 idisk = get_imsm_dl_disk(cont->sb, idx);
5765 /*
5766 * Do not rebuild the array if failed disks
5767 * from failed sub-array are not removed from
5768 * container.
5769 */
5770 if (idisk &&
5771 is_failed(&idisk->disk) &&
5772 (idisk->action != DISK_REMOVE))
5773 return 0;
5774 }
5775 }
5776 }
5777 return 1;
5778 }
5779
5780 static struct mdinfo *imsm_activate_spare(struct active_array *a,
5781 struct metadata_update **updates)
5782 {
5783 /**
5784 * Find a device with unused free space and use it to replace a
5785 * failed/vacant region in an array. We replace failed regions one a
5786 * array at a time. The result is that a new spare disk will be added
5787 * to the first failed array and after the monitor has finished
5788 * propagating failures the remainder will be consumed.
5789 *
5790 * FIXME add a capability for mdmon to request spares from another
5791 * container.
5792 */
5793
5794 struct intel_super *super = a->container->sb;
5795 int inst = a->info.container_member;
5796 struct imsm_dev *dev = get_imsm_dev(super, inst);
5797 struct imsm_map *map = get_imsm_map(dev, 0);
5798 int failed = a->info.array.raid_disks;
5799 struct mdinfo *rv = NULL;
5800 struct mdinfo *d;
5801 struct mdinfo *di;
5802 struct metadata_update *mu;
5803 struct dl *dl;
5804 struct imsm_update_activate_spare *u;
5805 int num_spares = 0;
5806 int i;
5807 int allowed;
5808
5809 for (d = a->info.devs ; d ; d = d->next) {
5810 if ((d->curr_state & DS_FAULTY) &&
5811 d->state_fd >= 0)
5812 /* wait for Removal to happen */
5813 return NULL;
5814 if (d->state_fd >= 0)
5815 failed--;
5816 }
5817
5818 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
5819 inst, failed, a->info.array.raid_disks, a->info.array.level);
5820
5821 if (dev->vol.migr_state &&
5822 dev->vol.migr_type == MIGR_GEN_MIGR)
5823 /* No repair during migration */
5824 return NULL;
5825
5826 if (a->info.array.level == 4)
5827 /* No repair for takeovered array
5828 * imsm doesn't support raid4
5829 */
5830 return NULL;
5831
5832 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
5833 return NULL;
5834
5835 /*
5836 * If there are any failed disks check state of the other volume.
5837 * Block rebuild if the another one is failed until failed disks
5838 * are removed from container.
5839 */
5840 if (failed) {
5841 dprintf("found failed disks in %s, check if there another"
5842 "failed sub-array.\n",
5843 dev->volume);
5844 /* check if states of the other volumes allow for rebuild */
5845 for (i = 0; i < super->anchor->num_raid_devs; i++) {
5846 if (i != inst) {
5847 allowed = imsm_rebuild_allowed(a->container,
5848 i, failed);
5849 if (!allowed)
5850 return NULL;
5851 }
5852 }
5853 }
5854
5855 /* For each slot, if it is not working, find a spare */
5856 for (i = 0; i < a->info.array.raid_disks; i++) {
5857 for (d = a->info.devs ; d ; d = d->next)
5858 if (d->disk.raid_disk == i)
5859 break;
5860 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
5861 if (d && (d->state_fd >= 0))
5862 continue;
5863
5864 /*
5865 * OK, this device needs recovery. Try to re-add the
5866 * previous occupant of this slot, if this fails see if
5867 * we can continue the assimilation of a spare that was
5868 * partially assimilated, finally try to activate a new
5869 * spare.
5870 */
5871 dl = imsm_readd(super, i, a);
5872 if (!dl)
5873 dl = imsm_add_spare(super, i, a, 0, NULL);
5874 if (!dl)
5875 dl = imsm_add_spare(super, i, a, 1, NULL);
5876 if (!dl)
5877 continue;
5878
5879 /* found a usable disk with enough space */
5880 di = malloc(sizeof(*di));
5881 if (!di)
5882 continue;
5883 memset(di, 0, sizeof(*di));
5884
5885 /* dl->index will be -1 in the case we are activating a
5886 * pristine spare. imsm_process_update() will create a
5887 * new index in this case. Once a disk is found to be
5888 * failed in all member arrays it is kicked from the
5889 * metadata
5890 */
5891 di->disk.number = dl->index;
5892
5893 /* (ab)use di->devs to store a pointer to the device
5894 * we chose
5895 */
5896 di->devs = (struct mdinfo *) dl;
5897
5898 di->disk.raid_disk = i;
5899 di->disk.major = dl->major;
5900 di->disk.minor = dl->minor;
5901 di->disk.state = 0;
5902 di->recovery_start = 0;
5903 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
5904 di->component_size = a->info.component_size;
5905 di->container_member = inst;
5906 super->random = random32();
5907 di->next = rv;
5908 rv = di;
5909 num_spares++;
5910 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
5911 i, di->data_offset);
5912
5913 break;
5914 }
5915
5916 if (!rv)
5917 /* No spares found */
5918 return rv;
5919 /* Now 'rv' has a list of devices to return.
5920 * Create a metadata_update record to update the
5921 * disk_ord_tbl for the array
5922 */
5923 mu = malloc(sizeof(*mu));
5924 if (mu) {
5925 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
5926 if (mu->buf == NULL) {
5927 free(mu);
5928 mu = NULL;
5929 }
5930 }
5931 if (!mu) {
5932 while (rv) {
5933 struct mdinfo *n = rv->next;
5934
5935 free(rv);
5936 rv = n;
5937 }
5938 return NULL;
5939 }
5940
5941 mu->space = NULL;
5942 mu->space_list = NULL;
5943 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
5944 mu->next = *updates;
5945 u = (struct imsm_update_activate_spare *) mu->buf;
5946
5947 for (di = rv ; di ; di = di->next) {
5948 u->type = update_activate_spare;
5949 u->dl = (struct dl *) di->devs;
5950 di->devs = NULL;
5951 u->slot = di->disk.raid_disk;
5952 u->array = inst;
5953 u->next = u + 1;
5954 u++;
5955 }
5956 (u-1)->next = NULL;
5957 *updates = mu;
5958
5959 return rv;
5960 }
5961
5962 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
5963 {
5964 struct imsm_dev *dev = get_imsm_dev(super, idx);
5965 struct imsm_map *map = get_imsm_map(dev, 0);
5966 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
5967 struct disk_info *inf = get_disk_info(u);
5968 struct imsm_disk *disk;
5969 int i;
5970 int j;
5971
5972 for (i = 0; i < map->num_members; i++) {
5973 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
5974 for (j = 0; j < new_map->num_members; j++)
5975 if (serialcmp(disk->serial, inf[j].serial) == 0)
5976 return 1;
5977 }
5978
5979 return 0;
5980 }
5981
5982
5983 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
5984 {
5985 struct dl *dl = NULL;
5986 for (dl = super->disks; dl; dl = dl->next)
5987 if ((dl->major == major) && (dl->minor == minor))
5988 return dl;
5989 return NULL;
5990 }
5991
5992 static int remove_disk_super(struct intel_super *super, int major, int minor)
5993 {
5994 struct dl *prev = NULL;
5995 struct dl *dl;
5996
5997 prev = NULL;
5998 for (dl = super->disks; dl; dl = dl->next) {
5999 if ((dl->major == major) && (dl->minor == minor)) {
6000 /* remove */
6001 if (prev)
6002 prev->next = dl->next;
6003 else
6004 super->disks = dl->next;
6005 dl->next = NULL;
6006 __free_imsm_disk(dl);
6007 dprintf("%s: removed %x:%x\n",
6008 __func__, major, minor);
6009 break;
6010 }
6011 prev = dl;
6012 }
6013 return 0;
6014 }
6015
6016 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
6017
6018 static int add_remove_disk_update(struct intel_super *super)
6019 {
6020 int check_degraded = 0;
6021 struct dl *disk = NULL;
6022 /* add/remove some spares to/from the metadata/contrainer */
6023 while (super->disk_mgmt_list) {
6024 struct dl *disk_cfg;
6025
6026 disk_cfg = super->disk_mgmt_list;
6027 super->disk_mgmt_list = disk_cfg->next;
6028 disk_cfg->next = NULL;
6029
6030 if (disk_cfg->action == DISK_ADD) {
6031 disk_cfg->next = super->disks;
6032 super->disks = disk_cfg;
6033 check_degraded = 1;
6034 dprintf("%s: added %x:%x\n",
6035 __func__, disk_cfg->major,
6036 disk_cfg->minor);
6037 } else if (disk_cfg->action == DISK_REMOVE) {
6038 dprintf("Disk remove action processed: %x.%x\n",
6039 disk_cfg->major, disk_cfg->minor);
6040 disk = get_disk_super(super,
6041 disk_cfg->major,
6042 disk_cfg->minor);
6043 if (disk) {
6044 /* store action status */
6045 disk->action = DISK_REMOVE;
6046 /* remove spare disks only */
6047 if (disk->index == -1) {
6048 remove_disk_super(super,
6049 disk_cfg->major,
6050 disk_cfg->minor);
6051 }
6052 }
6053 /* release allocate disk structure */
6054 __free_imsm_disk(disk_cfg);
6055 }
6056 }
6057 return check_degraded;
6058 }
6059
6060 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
6061 struct intel_super *super,
6062 void ***space_list)
6063 {
6064 struct dl *new_disk;
6065 struct intel_dev *id;
6066 int i;
6067 int delta_disks = u->new_raid_disks - u->old_raid_disks;
6068 int disk_count = u->old_raid_disks;
6069 void **tofree = NULL;
6070 int devices_to_reshape = 1;
6071 struct imsm_super *mpb = super->anchor;
6072 int ret_val = 0;
6073 unsigned int dev_id;
6074
6075 dprintf("imsm: apply_reshape_container_disks_update()\n");
6076
6077 /* enable spares to use in array */
6078 for (i = 0; i < delta_disks; i++) {
6079 new_disk = get_disk_super(super,
6080 major(u->new_disks[i]),
6081 minor(u->new_disks[i]));
6082 dprintf("imsm: new disk for reshape is: %i:%i "
6083 "(%p, index = %i)\n",
6084 major(u->new_disks[i]), minor(u->new_disks[i]),
6085 new_disk, new_disk->index);
6086 if ((new_disk == NULL) ||
6087 ((new_disk->index >= 0) &&
6088 (new_disk->index < u->old_raid_disks)))
6089 goto update_reshape_exit;
6090 new_disk->index = disk_count++;
6091 /* slot to fill in autolayout
6092 */
6093 new_disk->raiddisk = new_disk->index;
6094 new_disk->disk.status |=
6095 CONFIGURED_DISK;
6096 new_disk->disk.status &= ~SPARE_DISK;
6097 }
6098
6099 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
6100 mpb->num_raid_devs);
6101 /* manage changes in volume
6102 */
6103 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
6104 void **sp = *space_list;
6105 struct imsm_dev *newdev;
6106 struct imsm_map *newmap, *oldmap;
6107
6108 for (id = super->devlist ; id; id = id->next) {
6109 if (id->index == dev_id)
6110 break;
6111 }
6112 if (id == NULL)
6113 break;
6114 if (!sp)
6115 continue;
6116 *space_list = *sp;
6117 newdev = (void*)sp;
6118 /* Copy the dev, but not (all of) the map */
6119 memcpy(newdev, id->dev, sizeof(*newdev));
6120 oldmap = get_imsm_map(id->dev, 0);
6121 newmap = get_imsm_map(newdev, 0);
6122 /* Copy the current map */
6123 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6124 /* update one device only
6125 */
6126 if (devices_to_reshape) {
6127 dprintf("imsm: modifying subdev: %i\n",
6128 id->index);
6129 devices_to_reshape--;
6130 newdev->vol.migr_state = 1;
6131 newdev->vol.curr_migr_unit = 0;
6132 newdev->vol.migr_type = MIGR_GEN_MIGR;
6133 newmap->num_members = u->new_raid_disks;
6134 for (i = 0; i < delta_disks; i++) {
6135 set_imsm_ord_tbl_ent(newmap,
6136 u->old_raid_disks + i,
6137 u->old_raid_disks + i);
6138 }
6139 /* New map is correct, now need to save old map
6140 */
6141 newmap = get_imsm_map(newdev, 1);
6142 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6143
6144 imsm_set_array_size(newdev);
6145 }
6146
6147 sp = (void **)id->dev;
6148 id->dev = newdev;
6149 *sp = tofree;
6150 tofree = sp;
6151 }
6152 if (tofree)
6153 *space_list = tofree;
6154 ret_val = 1;
6155
6156 update_reshape_exit:
6157
6158 return ret_val;
6159 }
6160
6161 static int apply_takeover_update(struct imsm_update_takeover *u,
6162 struct intel_super *super,
6163 void ***space_list)
6164 {
6165 struct imsm_dev *dev = NULL;
6166 struct intel_dev *dv;
6167 struct imsm_dev *dev_new;
6168 struct imsm_map *map;
6169 struct dl *dm, *du;
6170 int i;
6171
6172 for (dv = super->devlist; dv; dv = dv->next)
6173 if (dv->index == (unsigned int)u->subarray) {
6174 dev = dv->dev;
6175 break;
6176 }
6177
6178 if (dev == NULL)
6179 return 0;
6180
6181 map = get_imsm_map(dev, 0);
6182
6183 if (u->direction == R10_TO_R0) {
6184 /* Number of failed disks must be half of initial disk number */
6185 if (imsm_count_failed(super, dev) != (map->num_members / 2))
6186 return 0;
6187
6188 /* iterate through devices to mark removed disks as spare */
6189 for (dm = super->disks; dm; dm = dm->next) {
6190 if (dm->disk.status & FAILED_DISK) {
6191 int idx = dm->index;
6192 /* update indexes on the disk list */
6193 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
6194 the index values will end up being correct.... NB */
6195 for (du = super->disks; du; du = du->next)
6196 if (du->index > idx)
6197 du->index--;
6198 /* mark as spare disk */
6199 dm->disk.status = SPARE_DISK;
6200 dm->index = -1;
6201 }
6202 }
6203 /* update map */
6204 map->num_members = map->num_members / 2;
6205 map->map_state = IMSM_T_STATE_NORMAL;
6206 map->num_domains = 1;
6207 map->raid_level = 0;
6208 map->failed_disk_num = -1;
6209 }
6210
6211 if (u->direction == R0_TO_R10) {
6212 void **space;
6213 /* update slots in current disk list */
6214 for (dm = super->disks; dm; dm = dm->next) {
6215 if (dm->index >= 0)
6216 dm->index *= 2;
6217 }
6218 /* create new *missing* disks */
6219 for (i = 0; i < map->num_members; i++) {
6220 space = *space_list;
6221 if (!space)
6222 continue;
6223 *space_list = *space;
6224 du = (void *)space;
6225 memcpy(du, super->disks, sizeof(*du));
6226 du->fd = -1;
6227 du->minor = 0;
6228 du->major = 0;
6229 du->index = (i * 2) + 1;
6230 sprintf((char *)du->disk.serial,
6231 " MISSING_%d", du->index);
6232 sprintf((char *)du->serial,
6233 "MISSING_%d", du->index);
6234 du->next = super->missing;
6235 super->missing = du;
6236 }
6237 /* create new dev and map */
6238 space = *space_list;
6239 if (!space)
6240 return 0;
6241 *space_list = *space;
6242 dev_new = (void *)space;
6243 memcpy(dev_new, dev, sizeof(*dev));
6244 /* update new map */
6245 map = get_imsm_map(dev_new, 0);
6246 map->num_members = map->num_members * 2;
6247 map->map_state = IMSM_T_STATE_DEGRADED;
6248 map->num_domains = 2;
6249 map->raid_level = 1;
6250 /* replace dev<->dev_new */
6251 dv->dev = dev_new;
6252 }
6253 /* update disk order table */
6254 for (du = super->disks; du; du = du->next)
6255 if (du->index >= 0)
6256 set_imsm_ord_tbl_ent(map, du->index, du->index);
6257 for (du = super->missing; du; du = du->next)
6258 if (du->index >= 0) {
6259 set_imsm_ord_tbl_ent(map, du->index, du->index);
6260 mark_missing(dev_new, &du->disk, du->index);
6261 }
6262
6263 return 1;
6264 }
6265
6266 static void imsm_process_update(struct supertype *st,
6267 struct metadata_update *update)
6268 {
6269 /**
6270 * crack open the metadata_update envelope to find the update record
6271 * update can be one of:
6272 * update_reshape_container_disks - all the arrays in the container
6273 * are being reshaped to have more devices. We need to mark
6274 * the arrays for general migration and convert selected spares
6275 * into active devices.
6276 * update_activate_spare - a spare device has replaced a failed
6277 * device in an array, update the disk_ord_tbl. If this disk is
6278 * present in all member arrays then also clear the SPARE_DISK
6279 * flag
6280 * update_create_array
6281 * update_kill_array
6282 * update_rename_array
6283 * update_add_remove_disk
6284 */
6285 struct intel_super *super = st->sb;
6286 struct imsm_super *mpb;
6287 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6288
6289 /* update requires a larger buf but the allocation failed */
6290 if (super->next_len && !super->next_buf) {
6291 super->next_len = 0;
6292 return;
6293 }
6294
6295 if (super->next_buf) {
6296 memcpy(super->next_buf, super->buf, super->len);
6297 free(super->buf);
6298 super->len = super->next_len;
6299 super->buf = super->next_buf;
6300
6301 super->next_len = 0;
6302 super->next_buf = NULL;
6303 }
6304
6305 mpb = super->anchor;
6306
6307 switch (type) {
6308 case update_takeover: {
6309 struct imsm_update_takeover *u = (void *)update->buf;
6310 if (apply_takeover_update(u, super, &update->space_list)) {
6311 imsm_update_version_info(super);
6312 super->updates_pending++;
6313 }
6314 break;
6315 }
6316
6317 case update_reshape_container_disks: {
6318 struct imsm_update_reshape *u = (void *)update->buf;
6319 if (apply_reshape_container_disks_update(
6320 u, super, &update->space_list))
6321 super->updates_pending++;
6322 break;
6323 }
6324 case update_activate_spare: {
6325 struct imsm_update_activate_spare *u = (void *) update->buf;
6326 struct imsm_dev *dev = get_imsm_dev(super, u->array);
6327 struct imsm_map *map = get_imsm_map(dev, 0);
6328 struct imsm_map *migr_map;
6329 struct active_array *a;
6330 struct imsm_disk *disk;
6331 __u8 to_state;
6332 struct dl *dl;
6333 unsigned int found;
6334 int failed;
6335 int victim = get_imsm_disk_idx(dev, u->slot, -1);
6336 int i;
6337
6338 for (dl = super->disks; dl; dl = dl->next)
6339 if (dl == u->dl)
6340 break;
6341
6342 if (!dl) {
6343 fprintf(stderr, "error: imsm_activate_spare passed "
6344 "an unknown disk (index: %d)\n",
6345 u->dl->index);
6346 return;
6347 }
6348
6349 super->updates_pending++;
6350
6351 /* count failures (excluding rebuilds and the victim)
6352 * to determine map[0] state
6353 */
6354 failed = 0;
6355 for (i = 0; i < map->num_members; i++) {
6356 if (i == u->slot)
6357 continue;
6358 disk = get_imsm_disk(super,
6359 get_imsm_disk_idx(dev, i, -1));
6360 if (!disk || is_failed(disk))
6361 failed++;
6362 }
6363
6364 /* adding a pristine spare, assign a new index */
6365 if (dl->index < 0) {
6366 dl->index = super->anchor->num_disks;
6367 super->anchor->num_disks++;
6368 }
6369 disk = &dl->disk;
6370 disk->status |= CONFIGURED_DISK;
6371 disk->status &= ~SPARE_DISK;
6372
6373 /* mark rebuild */
6374 to_state = imsm_check_degraded(super, dev, failed);
6375 map->map_state = IMSM_T_STATE_DEGRADED;
6376 migrate(dev, to_state, MIGR_REBUILD);
6377 migr_map = get_imsm_map(dev, 1);
6378 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
6379 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
6380
6381 /* update the family_num to mark a new container
6382 * generation, being careful to record the existing
6383 * family_num in orig_family_num to clean up after
6384 * earlier mdadm versions that neglected to set it.
6385 */
6386 if (mpb->orig_family_num == 0)
6387 mpb->orig_family_num = mpb->family_num;
6388 mpb->family_num += super->random;
6389
6390 /* count arrays using the victim in the metadata */
6391 found = 0;
6392 for (a = st->arrays; a ; a = a->next) {
6393 dev = get_imsm_dev(super, a->info.container_member);
6394 map = get_imsm_map(dev, 0);
6395
6396 if (get_imsm_disk_slot(map, victim) >= 0)
6397 found++;
6398 }
6399
6400 /* delete the victim if it is no longer being
6401 * utilized anywhere
6402 */
6403 if (!found) {
6404 struct dl **dlp;
6405
6406 /* We know that 'manager' isn't touching anything,
6407 * so it is safe to delete
6408 */
6409 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
6410 if ((*dlp)->index == victim)
6411 break;
6412
6413 /* victim may be on the missing list */
6414 if (!*dlp)
6415 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
6416 if ((*dlp)->index == victim)
6417 break;
6418 imsm_delete(super, dlp, victim);
6419 }
6420 break;
6421 }
6422 case update_create_array: {
6423 /* someone wants to create a new array, we need to be aware of
6424 * a few races/collisions:
6425 * 1/ 'Create' called by two separate instances of mdadm
6426 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
6427 * devices that have since been assimilated via
6428 * activate_spare.
6429 * In the event this update can not be carried out mdadm will
6430 * (FIX ME) notice that its update did not take hold.
6431 */
6432 struct imsm_update_create_array *u = (void *) update->buf;
6433 struct intel_dev *dv;
6434 struct imsm_dev *dev;
6435 struct imsm_map *map, *new_map;
6436 unsigned long long start, end;
6437 unsigned long long new_start, new_end;
6438 int i;
6439 struct disk_info *inf;
6440 struct dl *dl;
6441
6442 /* handle racing creates: first come first serve */
6443 if (u->dev_idx < mpb->num_raid_devs) {
6444 dprintf("%s: subarray %d already defined\n",
6445 __func__, u->dev_idx);
6446 goto create_error;
6447 }
6448
6449 /* check update is next in sequence */
6450 if (u->dev_idx != mpb->num_raid_devs) {
6451 dprintf("%s: can not create array %d expected index %d\n",
6452 __func__, u->dev_idx, mpb->num_raid_devs);
6453 goto create_error;
6454 }
6455
6456 new_map = get_imsm_map(&u->dev, 0);
6457 new_start = __le32_to_cpu(new_map->pba_of_lba0);
6458 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
6459 inf = get_disk_info(u);
6460
6461 /* handle activate_spare versus create race:
6462 * check to make sure that overlapping arrays do not include
6463 * overalpping disks
6464 */
6465 for (i = 0; i < mpb->num_raid_devs; i++) {
6466 dev = get_imsm_dev(super, i);
6467 map = get_imsm_map(dev, 0);
6468 start = __le32_to_cpu(map->pba_of_lba0);
6469 end = start + __le32_to_cpu(map->blocks_per_member);
6470 if ((new_start >= start && new_start <= end) ||
6471 (start >= new_start && start <= new_end))
6472 /* overlap */;
6473 else
6474 continue;
6475
6476 if (disks_overlap(super, i, u)) {
6477 dprintf("%s: arrays overlap\n", __func__);
6478 goto create_error;
6479 }
6480 }
6481
6482 /* check that prepare update was successful */
6483 if (!update->space) {
6484 dprintf("%s: prepare update failed\n", __func__);
6485 goto create_error;
6486 }
6487
6488 /* check that all disks are still active before committing
6489 * changes. FIXME: could we instead handle this by creating a
6490 * degraded array? That's probably not what the user expects,
6491 * so better to drop this update on the floor.
6492 */
6493 for (i = 0; i < new_map->num_members; i++) {
6494 dl = serial_to_dl(inf[i].serial, super);
6495 if (!dl) {
6496 dprintf("%s: disk disappeared\n", __func__);
6497 goto create_error;
6498 }
6499 }
6500
6501 super->updates_pending++;
6502
6503 /* convert spares to members and fixup ord_tbl */
6504 for (i = 0; i < new_map->num_members; i++) {
6505 dl = serial_to_dl(inf[i].serial, super);
6506 if (dl->index == -1) {
6507 dl->index = mpb->num_disks;
6508 mpb->num_disks++;
6509 dl->disk.status |= CONFIGURED_DISK;
6510 dl->disk.status &= ~SPARE_DISK;
6511 }
6512 set_imsm_ord_tbl_ent(new_map, i, dl->index);
6513 }
6514
6515 dv = update->space;
6516 dev = dv->dev;
6517 update->space = NULL;
6518 imsm_copy_dev(dev, &u->dev);
6519 dv->index = u->dev_idx;
6520 dv->next = super->devlist;
6521 super->devlist = dv;
6522 mpb->num_raid_devs++;
6523
6524 imsm_update_version_info(super);
6525 break;
6526 create_error:
6527 /* mdmon knows how to release update->space, but not
6528 * ((struct intel_dev *) update->space)->dev
6529 */
6530 if (update->space) {
6531 dv = update->space;
6532 free(dv->dev);
6533 }
6534 break;
6535 }
6536 case update_kill_array: {
6537 struct imsm_update_kill_array *u = (void *) update->buf;
6538 int victim = u->dev_idx;
6539 struct active_array *a;
6540 struct intel_dev **dp;
6541 struct imsm_dev *dev;
6542
6543 /* sanity check that we are not affecting the uuid of
6544 * active arrays, or deleting an active array
6545 *
6546 * FIXME when immutable ids are available, but note that
6547 * we'll also need to fixup the invalidated/active
6548 * subarray indexes in mdstat
6549 */
6550 for (a = st->arrays; a; a = a->next)
6551 if (a->info.container_member >= victim)
6552 break;
6553 /* by definition if mdmon is running at least one array
6554 * is active in the container, so checking
6555 * mpb->num_raid_devs is just extra paranoia
6556 */
6557 dev = get_imsm_dev(super, victim);
6558 if (a || !dev || mpb->num_raid_devs == 1) {
6559 dprintf("failed to delete subarray-%d\n", victim);
6560 break;
6561 }
6562
6563 for (dp = &super->devlist; *dp;)
6564 if ((*dp)->index == (unsigned)super->current_vol) {
6565 *dp = (*dp)->next;
6566 } else {
6567 if ((*dp)->index > (unsigned)victim)
6568 (*dp)->index--;
6569 dp = &(*dp)->next;
6570 }
6571 mpb->num_raid_devs--;
6572 super->updates_pending++;
6573 break;
6574 }
6575 case update_rename_array: {
6576 struct imsm_update_rename_array *u = (void *) update->buf;
6577 char name[MAX_RAID_SERIAL_LEN+1];
6578 int target = u->dev_idx;
6579 struct active_array *a;
6580 struct imsm_dev *dev;
6581
6582 /* sanity check that we are not affecting the uuid of
6583 * an active array
6584 */
6585 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
6586 name[MAX_RAID_SERIAL_LEN] = '\0';
6587 for (a = st->arrays; a; a = a->next)
6588 if (a->info.container_member == target)
6589 break;
6590 dev = get_imsm_dev(super, u->dev_idx);
6591 if (a || !dev || !check_name(super, name, 1)) {
6592 dprintf("failed to rename subarray-%d\n", target);
6593 break;
6594 }
6595
6596 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6597 super->updates_pending++;
6598 break;
6599 }
6600 case update_add_remove_disk: {
6601 /* we may be able to repair some arrays if disks are
6602 * being added, check teh status of add_remove_disk
6603 * if discs has been added.
6604 */
6605 if (add_remove_disk_update(super)) {
6606 struct active_array *a;
6607
6608 super->updates_pending++;
6609 for (a = st->arrays; a; a = a->next)
6610 a->check_degraded = 1;
6611 }
6612 break;
6613 }
6614 default:
6615 fprintf(stderr, "error: unsuported process update type:"
6616 "(type: %d)\n", type);
6617 }
6618 }
6619
6620 static void imsm_prepare_update(struct supertype *st,
6621 struct metadata_update *update)
6622 {
6623 /**
6624 * Allocate space to hold new disk entries, raid-device entries or a new
6625 * mpb if necessary. The manager synchronously waits for updates to
6626 * complete in the monitor, so new mpb buffers allocated here can be
6627 * integrated by the monitor thread without worrying about live pointers
6628 * in the manager thread.
6629 */
6630 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6631 struct intel_super *super = st->sb;
6632 struct imsm_super *mpb = super->anchor;
6633 size_t buf_len;
6634 size_t len = 0;
6635
6636 switch (type) {
6637 case update_takeover: {
6638 struct imsm_update_takeover *u = (void *)update->buf;
6639 if (u->direction == R0_TO_R10) {
6640 void **tail = (void **)&update->space_list;
6641 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
6642 struct imsm_map *map = get_imsm_map(dev, 0);
6643 int num_members = map->num_members;
6644 void *space;
6645 int size, i;
6646 int err = 0;
6647 /* allocate memory for added disks */
6648 for (i = 0; i < num_members; i++) {
6649 size = sizeof(struct dl);
6650 space = malloc(size);
6651 if (!space) {
6652 err++;
6653 break;
6654 }
6655 *tail = space;
6656 tail = space;
6657 *tail = NULL;
6658 }
6659 /* allocate memory for new device */
6660 size = sizeof_imsm_dev(super->devlist->dev, 0) +
6661 (num_members * sizeof(__u32));
6662 space = malloc(size);
6663 if (!space)
6664 err++;
6665 else {
6666 *tail = space;
6667 tail = space;
6668 *tail = NULL;
6669 }
6670 if (!err) {
6671 len = disks_to_mpb_size(num_members * 2);
6672 } else {
6673 /* if allocation didn't success, free buffer */
6674 while (update->space_list) {
6675 void **sp = update->space_list;
6676 update->space_list = *sp;
6677 free(sp);
6678 }
6679 }
6680 }
6681
6682 break;
6683 }
6684 case update_reshape_container_disks: {
6685 /* Every raid device in the container is about to
6686 * gain some more devices, and we will enter a
6687 * reconfiguration.
6688 * So each 'imsm_map' will be bigger, and the imsm_vol
6689 * will now hold 2 of them.
6690 * Thus we need new 'struct imsm_dev' allocations sized
6691 * as sizeof_imsm_dev but with more devices in both maps.
6692 */
6693 struct imsm_update_reshape *u = (void *)update->buf;
6694 struct intel_dev *dl;
6695 void **space_tail = (void**)&update->space_list;
6696
6697 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
6698
6699 for (dl = super->devlist; dl; dl = dl->next) {
6700 int size = sizeof_imsm_dev(dl->dev, 1);
6701 void *s;
6702 if (u->new_raid_disks > u->old_raid_disks)
6703 size += sizeof(__u32)*2*
6704 (u->new_raid_disks - u->old_raid_disks);
6705 s = malloc(size);
6706 if (!s)
6707 break;
6708 *space_tail = s;
6709 space_tail = s;
6710 *space_tail = NULL;
6711 }
6712
6713 len = disks_to_mpb_size(u->new_raid_disks);
6714 dprintf("New anchor length is %llu\n", (unsigned long long)len);
6715 break;
6716 }
6717 case update_create_array: {
6718 struct imsm_update_create_array *u = (void *) update->buf;
6719 struct intel_dev *dv;
6720 struct imsm_dev *dev = &u->dev;
6721 struct imsm_map *map = get_imsm_map(dev, 0);
6722 struct dl *dl;
6723 struct disk_info *inf;
6724 int i;
6725 int activate = 0;
6726
6727 inf = get_disk_info(u);
6728 len = sizeof_imsm_dev(dev, 1);
6729 /* allocate a new super->devlist entry */
6730 dv = malloc(sizeof(*dv));
6731 if (dv) {
6732 dv->dev = malloc(len);
6733 if (dv->dev)
6734 update->space = dv;
6735 else {
6736 free(dv);
6737 update->space = NULL;
6738 }
6739 }
6740
6741 /* count how many spares will be converted to members */
6742 for (i = 0; i < map->num_members; i++) {
6743 dl = serial_to_dl(inf[i].serial, super);
6744 if (!dl) {
6745 /* hmm maybe it failed?, nothing we can do about
6746 * it here
6747 */
6748 continue;
6749 }
6750 if (count_memberships(dl, super) == 0)
6751 activate++;
6752 }
6753 len += activate * sizeof(struct imsm_disk);
6754 break;
6755 default:
6756 break;
6757 }
6758 }
6759
6760 /* check if we need a larger metadata buffer */
6761 if (super->next_buf)
6762 buf_len = super->next_len;
6763 else
6764 buf_len = super->len;
6765
6766 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
6767 /* ok we need a larger buf than what is currently allocated
6768 * if this allocation fails process_update will notice that
6769 * ->next_len is set and ->next_buf is NULL
6770 */
6771 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
6772 if (super->next_buf)
6773 free(super->next_buf);
6774
6775 super->next_len = buf_len;
6776 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
6777 memset(super->next_buf, 0, buf_len);
6778 else
6779 super->next_buf = NULL;
6780 }
6781 }
6782
6783 /* must be called while manager is quiesced */
6784 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
6785 {
6786 struct imsm_super *mpb = super->anchor;
6787 struct dl *iter;
6788 struct imsm_dev *dev;
6789 struct imsm_map *map;
6790 int i, j, num_members;
6791 __u32 ord;
6792
6793 dprintf("%s: deleting device[%d] from imsm_super\n",
6794 __func__, index);
6795
6796 /* shift all indexes down one */
6797 for (iter = super->disks; iter; iter = iter->next)
6798 if (iter->index > (int)index)
6799 iter->index--;
6800 for (iter = super->missing; iter; iter = iter->next)
6801 if (iter->index > (int)index)
6802 iter->index--;
6803
6804 for (i = 0; i < mpb->num_raid_devs; i++) {
6805 dev = get_imsm_dev(super, i);
6806 map = get_imsm_map(dev, 0);
6807 num_members = map->num_members;
6808 for (j = 0; j < num_members; j++) {
6809 /* update ord entries being careful not to propagate
6810 * ord-flags to the first map
6811 */
6812 ord = get_imsm_ord_tbl_ent(dev, j, -1);
6813
6814 if (ord_to_idx(ord) <= index)
6815 continue;
6816
6817 map = get_imsm_map(dev, 0);
6818 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
6819 map = get_imsm_map(dev, 1);
6820 if (map)
6821 set_imsm_ord_tbl_ent(map, j, ord - 1);
6822 }
6823 }
6824
6825 mpb->num_disks--;
6826 super->updates_pending++;
6827 if (*dlp) {
6828 struct dl *dl = *dlp;
6829
6830 *dlp = (*dlp)->next;
6831 __free_imsm_disk(dl);
6832 }
6833 }
6834
6835 static char disk_by_path[] = "/dev/disk/by-path/";
6836
6837 static const char *imsm_get_disk_controller_domain(const char *path)
6838 {
6839 char disk_path[PATH_MAX];
6840 char *drv=NULL;
6841 struct stat st;
6842
6843 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
6844 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
6845 if (stat(disk_path, &st) == 0) {
6846 struct sys_dev* hba;
6847 char *path=NULL;
6848
6849 path = devt_to_devpath(st.st_rdev);
6850 if (path == NULL)
6851 return "unknown";
6852 hba = find_disk_attached_hba(-1, path);
6853 if (hba && hba->type == SYS_DEV_SAS)
6854 drv = "isci";
6855 else if (hba && hba->type == SYS_DEV_SATA)
6856 drv = "ahci";
6857 else
6858 drv = "unknown";
6859 dprintf("path: %s hba: %s attached: %s\n",
6860 path, (hba) ? hba->path : "NULL", drv);
6861 free(path);
6862 if (hba)
6863 free_sys_dev(&hba);
6864 }
6865 return drv;
6866 }
6867
6868 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
6869 {
6870 char subdev_name[20];
6871 struct mdstat_ent *mdstat;
6872
6873 sprintf(subdev_name, "%d", subdev);
6874 mdstat = mdstat_by_subdev(subdev_name, container);
6875 if (!mdstat)
6876 return -1;
6877
6878 *minor = mdstat->devnum;
6879 free_mdstat(mdstat);
6880 return 0;
6881 }
6882
6883 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
6884 struct geo_params *geo,
6885 int *old_raid_disks)
6886 {
6887 /* currently we only support increasing the number of devices
6888 * for a container. This increases the number of device for each
6889 * member array. They must all be RAID0 or RAID5.
6890 */
6891 int ret_val = 0;
6892 struct mdinfo *info, *member;
6893 int devices_that_can_grow = 0;
6894
6895 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
6896 "st->devnum = (%i)\n",
6897 st->devnum);
6898
6899 if (geo->size != -1 ||
6900 geo->level != UnSet ||
6901 geo->layout != UnSet ||
6902 geo->chunksize != 0 ||
6903 geo->raid_disks == UnSet) {
6904 dprintf("imsm: Container operation is allowed for "
6905 "raid disks number change only.\n");
6906 return ret_val;
6907 }
6908
6909 info = container_content_imsm(st, NULL);
6910 for (member = info; member; member = member->next) {
6911 int result;
6912 int minor;
6913
6914 dprintf("imsm: checking device_num: %i\n",
6915 member->container_member);
6916
6917 if (geo->raid_disks <= member->array.raid_disks) {
6918 /* we work on container for Online Capacity Expansion
6919 * only so raid_disks has to grow
6920 */
6921 dprintf("imsm: for container operation raid disks "
6922 "increase is required\n");
6923 break;
6924 }
6925
6926 if ((info->array.level != 0) &&
6927 (info->array.level != 5)) {
6928 /* we cannot use this container with other raid level
6929 */
6930 dprintf("imsm: for container operation wrong"
6931 " raid level (%i) detected\n",
6932 info->array.level);
6933 break;
6934 } else {
6935 /* check for platform support
6936 * for this raid level configuration
6937 */
6938 struct intel_super *super = st->sb;
6939 if (!is_raid_level_supported(super->orom,
6940 member->array.level,
6941 geo->raid_disks)) {
6942 dprintf("platform does not support raid%d with"
6943 " %d disk%s\n",
6944 info->array.level,
6945 geo->raid_disks,
6946 geo->raid_disks > 1 ? "s" : "");
6947 break;
6948 }
6949 /* check if component size is aligned to chunk size
6950 */
6951 if (info->component_size %
6952 (info->array.chunk_size/512)) {
6953 dprintf("Component size is not aligned to "
6954 "chunk size\n");
6955 break;
6956 }
6957 }
6958
6959 if (*old_raid_disks &&
6960 info->array.raid_disks != *old_raid_disks)
6961 break;
6962 *old_raid_disks = info->array.raid_disks;
6963
6964 /* All raid5 and raid0 volumes in container
6965 * have to be ready for Online Capacity Expansion
6966 * so they need to be assembled. We have already
6967 * checked that no recovery etc is happening.
6968 */
6969 result = imsm_find_array_minor_by_subdev(member->container_member,
6970 st->container_dev,
6971 &minor);
6972 if (result < 0) {
6973 dprintf("imsm: cannot find array\n");
6974 break;
6975 }
6976 devices_that_can_grow++;
6977 }
6978 sysfs_free(info);
6979 if (!member && devices_that_can_grow)
6980 ret_val = 1;
6981
6982 if (ret_val)
6983 dprintf("\tContainer operation allowed\n");
6984 else
6985 dprintf("\tError: %i\n", ret_val);
6986
6987 return ret_val;
6988 }
6989
6990 /* Function: get_spares_for_grow
6991 * Description: Allocates memory and creates list of spare devices
6992 * avaliable in container. Checks if spare drive size is acceptable.
6993 * Parameters: Pointer to the supertype structure
6994 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
6995 * NULL if fail
6996 */
6997 static struct mdinfo *get_spares_for_grow(struct supertype *st)
6998 {
6999 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
7000 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
7001 }
7002
7003 /******************************************************************************
7004 * function: imsm_create_metadata_update_for_reshape
7005 * Function creates update for whole IMSM container.
7006 *
7007 ******************************************************************************/
7008 static int imsm_create_metadata_update_for_reshape(
7009 struct supertype *st,
7010 struct geo_params *geo,
7011 int old_raid_disks,
7012 struct imsm_update_reshape **updatep)
7013 {
7014 struct intel_super *super = st->sb;
7015 struct imsm_super *mpb = super->anchor;
7016 int update_memory_size = 0;
7017 struct imsm_update_reshape *u = NULL;
7018 struct mdinfo *spares = NULL;
7019 int i;
7020 int delta_disks = 0;
7021 struct mdinfo *dev;
7022
7023 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
7024 geo->raid_disks);
7025
7026 delta_disks = geo->raid_disks - old_raid_disks;
7027
7028 /* size of all update data without anchor */
7029 update_memory_size = sizeof(struct imsm_update_reshape);
7030
7031 /* now add space for spare disks that we need to add. */
7032 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
7033
7034 u = calloc(1, update_memory_size);
7035 if (u == NULL) {
7036 dprintf("error: "
7037 "cannot get memory for imsm_update_reshape update\n");
7038 return 0;
7039 }
7040 u->type = update_reshape_container_disks;
7041 u->old_raid_disks = old_raid_disks;
7042 u->new_raid_disks = geo->raid_disks;
7043
7044 /* now get spare disks list
7045 */
7046 spares = get_spares_for_grow(st);
7047
7048 if (spares == NULL
7049 || delta_disks > spares->array.spare_disks) {
7050 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
7051 "for %s.\n", geo->dev_name);
7052 goto abort;
7053 }
7054
7055 /* we have got spares
7056 * update disk list in imsm_disk list table in anchor
7057 */
7058 dprintf("imsm: %i spares are available.\n\n",
7059 spares->array.spare_disks);
7060
7061 dev = spares->devs;
7062 for (i = 0; i < delta_disks; i++) {
7063 struct dl *dl;
7064
7065 if (dev == NULL)
7066 break;
7067 u->new_disks[i] = makedev(dev->disk.major,
7068 dev->disk.minor);
7069 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
7070 dl->index = mpb->num_disks;
7071 mpb->num_disks++;
7072 dev = dev->next;
7073 }
7074
7075 abort:
7076 /* free spares
7077 */
7078 sysfs_free(spares);
7079
7080 dprintf("imsm: reshape update preparation :");
7081 if (i == delta_disks) {
7082 dprintf(" OK\n");
7083 *updatep = u;
7084 return update_memory_size;
7085 }
7086 free(u);
7087 dprintf(" Error\n");
7088
7089 return 0;
7090 }
7091
7092 static void imsm_update_metadata_locally(struct supertype *st,
7093 void *buf, int len)
7094 {
7095 struct metadata_update mu;
7096
7097 mu.buf = buf;
7098 mu.len = len;
7099 mu.space = NULL;
7100 mu.space_list = NULL;
7101 mu.next = NULL;
7102 imsm_prepare_update(st, &mu);
7103 imsm_process_update(st, &mu);
7104
7105 while (mu.space_list) {
7106 void **space = mu.space_list;
7107 mu.space_list = *space;
7108 free(space);
7109 }
7110 }
7111
7112 /***************************************************************************
7113 * Function: imsm_analyze_change
7114 * Description: Function analyze change for single volume
7115 * and validate if transition is supported
7116 * Parameters: Geometry parameters, supertype structure
7117 * Returns: Operation type code on success, -1 if fail
7118 ****************************************************************************/
7119 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
7120 struct geo_params *geo)
7121 {
7122 struct mdinfo info;
7123 int change = -1;
7124 int check_devs = 0;
7125 int chunk;
7126
7127 getinfo_super_imsm_volume(st, &info, NULL);
7128
7129 if ((geo->level != info.array.level) &&
7130 (geo->level >= 0) &&
7131 (geo->level != UnSet)) {
7132 switch (info.array.level) {
7133 case 0:
7134 if (geo->level == 5) {
7135 change = CH_MIGRATION;
7136 check_devs = 1;
7137 }
7138 if (geo->level == 10) {
7139 change = CH_TAKEOVER;
7140 check_devs = 1;
7141 }
7142 break;
7143 case 1:
7144 if (geo->level == 0) {
7145 change = CH_TAKEOVER;
7146 check_devs = 1;
7147 }
7148 break;
7149 case 5:
7150 if (geo->level == 0)
7151 change = CH_MIGRATION;
7152 break;
7153 case 10:
7154 if (geo->level == 0) {
7155 change = CH_TAKEOVER;
7156 check_devs = 1;
7157 }
7158 break;
7159 }
7160 if (change == -1) {
7161 fprintf(stderr,
7162 Name " Error. Level Migration from %d to %d "
7163 "not supported!\n",
7164 info.array.level, geo->level);
7165 goto analyse_change_exit;
7166 }
7167 } else
7168 geo->level = info.array.level;
7169
7170 if ((geo->layout != info.array.layout)
7171 && ((geo->layout != UnSet) && (geo->layout != -1))) {
7172 change = CH_MIGRATION;
7173 if ((info.array.layout == 0)
7174 && (info.array.level == 5)
7175 && (geo->layout == 5)) {
7176 /* reshape 5 -> 4 */
7177 } else if ((info.array.layout == 5)
7178 && (info.array.level == 5)
7179 && (geo->layout == 0)) {
7180 /* reshape 4 -> 5 */
7181 geo->layout = 0;
7182 geo->level = 5;
7183 } else {
7184 fprintf(stderr,
7185 Name " Error. Layout Migration from %d to %d "
7186 "not supported!\n",
7187 info.array.layout, geo->layout);
7188 change = -1;
7189 goto analyse_change_exit;
7190 }
7191 } else
7192 geo->layout = info.array.layout;
7193
7194 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
7195 && (geo->chunksize != info.array.chunk_size))
7196 change = CH_MIGRATION;
7197 else
7198 geo->chunksize = info.array.chunk_size;
7199
7200 chunk = geo->chunksize / 1024;
7201 if (!validate_geometry_imsm(st,
7202 geo->level,
7203 geo->layout,
7204 geo->raid_disks,
7205 &chunk,
7206 geo->size,
7207 0, 0, 1))
7208 change = -1;
7209
7210 if (check_devs) {
7211 struct intel_super *super = st->sb;
7212 struct imsm_super *mpb = super->anchor;
7213
7214 if (mpb->num_raid_devs > 1) {
7215 fprintf(stderr,
7216 Name " Error. Cannot perform operation on %s"
7217 "- for this operation it MUST be single "
7218 "array in container\n",
7219 geo->dev_name);
7220 change = -1;
7221 }
7222 }
7223
7224 analyse_change_exit:
7225
7226 return change;
7227 }
7228
7229 int imsm_takeover(struct supertype *st, struct geo_params *geo)
7230 {
7231 struct intel_super *super = st->sb;
7232 struct imsm_update_takeover *u;
7233
7234 u = malloc(sizeof(struct imsm_update_takeover));
7235 if (u == NULL)
7236 return 1;
7237
7238 u->type = update_takeover;
7239 u->subarray = super->current_vol;
7240
7241 /* 10->0 transition */
7242 if (geo->level == 0)
7243 u->direction = R10_TO_R0;
7244
7245 /* 0->10 transition */
7246 if (geo->level == 10)
7247 u->direction = R0_TO_R10;
7248
7249 /* update metadata locally */
7250 imsm_update_metadata_locally(st, u,
7251 sizeof(struct imsm_update_takeover));
7252 /* and possibly remotely */
7253 if (st->update_tail)
7254 append_metadata_update(st, u,
7255 sizeof(struct imsm_update_takeover));
7256 else
7257 free(u);
7258
7259 return 0;
7260 }
7261
7262 static int warn_user_about_risk(void)
7263 {
7264 int rv = 0;
7265
7266 fprintf(stderr,
7267 "\nThis is an experimental feature. Data on the RAID volume(s) "
7268 "can be lost!!!\n\n"
7269 "To continue command execution please make sure that\n"
7270 "the grow process will not be interrupted. Use safe power\n"
7271 "supply to avoid unexpected system reboot. Make sure that\n"
7272 "reshaped container is not assembled automatically during\n"
7273 "system boot.\n"
7274 "If reshape is interrupted, assemble array manually\n"
7275 "using e.g. '-Ac' option and up to date mdadm.conf file.\n"
7276 "Assembly in scan mode is not possible in such case.\n"
7277 "Growing container with boot array is not possible.\n"
7278 "If boot array reshape is interrupted, whole file system\n"
7279 "can be lost.\n\n");
7280 rv = ask("Do you want to continue? ");
7281 fprintf(stderr, "\n");
7282
7283 return rv;
7284 }
7285
7286 static int imsm_reshape_super(struct supertype *st, long long size, int level,
7287 int layout, int chunksize, int raid_disks,
7288 int delta_disks, char *backup, char *dev,
7289 int verbose)
7290 {
7291 int ret_val = 1;
7292 struct geo_params geo;
7293
7294 dprintf("imsm: reshape_super called.\n");
7295
7296 memset(&geo, 0, sizeof(struct geo_params));
7297
7298 geo.dev_name = dev;
7299 geo.dev_id = st->devnum;
7300 geo.size = size;
7301 geo.level = level;
7302 geo.layout = layout;
7303 geo.chunksize = chunksize;
7304 geo.raid_disks = raid_disks;
7305 if (delta_disks != UnSet)
7306 geo.raid_disks += delta_disks;
7307
7308 dprintf("\tfor level : %i\n", geo.level);
7309 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
7310
7311 if (experimental() == 0)
7312 return ret_val;
7313
7314 if (st->container_dev == st->devnum) {
7315 /* On container level we can only increase number of devices. */
7316 dprintf("imsm: info: Container operation\n");
7317 int old_raid_disks = 0;
7318
7319 /* this warning will be removed when imsm checkpointing
7320 * will be implemented, and restoring from check-point
7321 * operation will be transparent for reboot process
7322 */
7323 if (warn_user_about_risk() == 0)
7324 return ret_val;
7325
7326 if (imsm_reshape_is_allowed_on_container(
7327 st, &geo, &old_raid_disks)) {
7328 struct imsm_update_reshape *u = NULL;
7329 int len;
7330
7331 len = imsm_create_metadata_update_for_reshape(
7332 st, &geo, old_raid_disks, &u);
7333
7334 if (len <= 0) {
7335 dprintf("imsm: Cannot prepare update\n");
7336 goto exit_imsm_reshape_super;
7337 }
7338
7339 ret_val = 0;
7340 /* update metadata locally */
7341 imsm_update_metadata_locally(st, u, len);
7342 /* and possibly remotely */
7343 if (st->update_tail)
7344 append_metadata_update(st, u, len);
7345 else
7346 free(u);
7347
7348 } else {
7349 fprintf(stderr, Name ": (imsm) Operation "
7350 "is not allowed on this container\n");
7351 }
7352 } else {
7353 /* On volume level we support following operations
7354 * - takeover: raid10 -> raid0; raid0 -> raid10
7355 * - chunk size migration
7356 * - migration: raid5 -> raid0; raid0 -> raid5
7357 */
7358 struct intel_super *super = st->sb;
7359 struct intel_dev *dev = super->devlist;
7360 int change, devnum;
7361 dprintf("imsm: info: Volume operation\n");
7362 /* find requested device */
7363 while (dev) {
7364 imsm_find_array_minor_by_subdev(dev->index, st->container_dev, &devnum);
7365 if (devnum == geo.dev_id)
7366 break;
7367 dev = dev->next;
7368 }
7369 if (dev == NULL) {
7370 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
7371 geo.dev_name, geo.dev_id);
7372 goto exit_imsm_reshape_super;
7373 }
7374 super->current_vol = dev->index;
7375 change = imsm_analyze_change(st, &geo);
7376 switch (change) {
7377 case CH_TAKEOVER:
7378 ret_val = imsm_takeover(st, &geo);
7379 break;
7380 case CH_MIGRATION:
7381 ret_val = 0;
7382 break;
7383 default:
7384 ret_val = 1;
7385 }
7386 }
7387
7388 exit_imsm_reshape_super:
7389 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
7390 return ret_val;
7391 }
7392
7393 static int imsm_manage_reshape(
7394 int afd, struct mdinfo *sra, struct reshape *reshape,
7395 struct supertype *st, unsigned long stripes,
7396 int *fds, unsigned long long *offsets,
7397 int dests, int *destfd, unsigned long long *destoffsets)
7398 {
7399 /* Just use child_monitor for now */
7400 return child_monitor(
7401 afd, sra, reshape, st, stripes,
7402 fds, offsets, dests, destfd, destoffsets);
7403 }
7404 #endif /* MDASSEMBLE */
7405
7406 struct superswitch super_imsm = {
7407 #ifndef MDASSEMBLE
7408 .examine_super = examine_super_imsm,
7409 .brief_examine_super = brief_examine_super_imsm,
7410 .brief_examine_subarrays = brief_examine_subarrays_imsm,
7411 .export_examine_super = export_examine_super_imsm,
7412 .detail_super = detail_super_imsm,
7413 .brief_detail_super = brief_detail_super_imsm,
7414 .write_init_super = write_init_super_imsm,
7415 .validate_geometry = validate_geometry_imsm,
7416 .add_to_super = add_to_super_imsm,
7417 .remove_from_super = remove_from_super_imsm,
7418 .detail_platform = detail_platform_imsm,
7419 .kill_subarray = kill_subarray_imsm,
7420 .update_subarray = update_subarray_imsm,
7421 .load_container = load_container_imsm,
7422 .default_geometry = default_geometry_imsm,
7423 .get_disk_controller_domain = imsm_get_disk_controller_domain,
7424 .reshape_super = imsm_reshape_super,
7425 .manage_reshape = imsm_manage_reshape,
7426 #endif
7427 .match_home = match_home_imsm,
7428 .uuid_from_super= uuid_from_super_imsm,
7429 .getinfo_super = getinfo_super_imsm,
7430 .getinfo_super_disks = getinfo_super_disks_imsm,
7431 .update_super = update_super_imsm,
7432
7433 .avail_size = avail_size_imsm,
7434 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
7435
7436 .compare_super = compare_super_imsm,
7437
7438 .load_super = load_super_imsm,
7439 .init_super = init_super_imsm,
7440 .store_super = store_super_imsm,
7441 .free_super = free_super_imsm,
7442 .match_metadata_desc = match_metadata_desc_imsm,
7443 .container_content = container_content_imsm,
7444
7445 .external = 1,
7446 .name = "imsm",
7447
7448 #ifndef MDASSEMBLE
7449 /* for mdmon */
7450 .open_new = imsm_open_new,
7451 .set_array_state= imsm_set_array_state,
7452 .set_disk = imsm_set_disk,
7453 .sync_metadata = imsm_sync_metadata,
7454 .activate_spare = imsm_activate_spare,
7455 .process_update = imsm_process_update,
7456 .prepare_update = imsm_prepare_update,
7457 #endif /* MDASSEMBLE */
7458 };