]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: Fill recovery_blocked field present in mdinfo
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 #define IMSM_DISK_FILLERS 4
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107 };
108
109 /* RAID map configuration infos. */
110 struct imsm_map {
111 __u32 pba_of_lba0; /* start address of partition */
112 __u32 blocks_per_member;/* blocks per member */
113 __u32 num_data_stripes; /* number of data stripes */
114 __u16 blocks_per_strip;
115 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
116 #define IMSM_T_STATE_NORMAL 0
117 #define IMSM_T_STATE_UNINITIALIZED 1
118 #define IMSM_T_STATE_DEGRADED 2
119 #define IMSM_T_STATE_FAILED 3
120 __u8 raid_level;
121 #define IMSM_T_RAID0 0
122 #define IMSM_T_RAID1 1
123 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
124 __u8 num_members; /* number of member disks */
125 __u8 num_domains; /* number of parity domains */
126 __u8 failed_disk_num; /* valid only when state is degraded */
127 __u8 ddf;
128 __u32 filler[7]; /* expansion area */
129 #define IMSM_ORD_REBUILD (1 << 24)
130 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
131 * top byte contains some flags
132 */
133 } __attribute__ ((packed));
134
135 struct imsm_vol {
136 __u32 curr_migr_unit;
137 __u32 checkpoint_id; /* id to access curr_migr_unit */
138 __u8 migr_state; /* Normal or Migrating */
139 #define MIGR_INIT 0
140 #define MIGR_REBUILD 1
141 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
142 #define MIGR_GEN_MIGR 3
143 #define MIGR_STATE_CHANGE 4
144 #define MIGR_REPAIR 5
145 __u8 migr_type; /* Initializing, Rebuilding, ... */
146 __u8 dirty;
147 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
148 __u16 verify_errors; /* number of mismatches */
149 __u16 bad_blocks; /* number of bad blocks during verify */
150 __u32 filler[4];
151 struct imsm_map map[1];
152 /* here comes another one if migr_state */
153 } __attribute__ ((packed));
154
155 struct imsm_dev {
156 __u8 volume[MAX_RAID_SERIAL_LEN];
157 __u32 size_low;
158 __u32 size_high;
159 #define DEV_BOOTABLE __cpu_to_le32(0x01)
160 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
161 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
162 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
163 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
164 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
165 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
166 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
167 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
168 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
169 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
170 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
171 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
172 __u32 status; /* Persistent RaidDev status */
173 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
174 __u8 migr_priority;
175 __u8 num_sub_vols;
176 __u8 tid;
177 __u8 cng_master_disk;
178 __u16 cache_policy;
179 __u8 cng_state;
180 __u8 cng_sub_state;
181 #define IMSM_DEV_FILLERS 10
182 __u32 filler[IMSM_DEV_FILLERS];
183 struct imsm_vol vol;
184 } __attribute__ ((packed));
185
186 struct imsm_super {
187 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
188 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
189 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
190 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
191 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
192 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
193 __u32 attributes; /* 0x34 - 0x37 */
194 __u8 num_disks; /* 0x38 Number of configured disks */
195 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
196 __u8 error_log_pos; /* 0x3A */
197 __u8 fill[1]; /* 0x3B */
198 __u32 cache_size; /* 0x3c - 0x40 in mb */
199 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
200 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
201 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
202 #define IMSM_FILLERS 35
203 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
204 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
205 /* here comes imsm_dev[num_raid_devs] */
206 /* here comes BBM logs */
207 } __attribute__ ((packed));
208
209 #define BBM_LOG_MAX_ENTRIES 254
210
211 struct bbm_log_entry {
212 __u64 defective_block_start;
213 #define UNREADABLE 0xFFFFFFFF
214 __u32 spare_block_offset;
215 __u16 remapped_marked_count;
216 __u16 disk_ordinal;
217 } __attribute__ ((__packed__));
218
219 struct bbm_log {
220 __u32 signature; /* 0xABADB10C */
221 __u32 entry_count;
222 __u32 reserved_spare_block_count; /* 0 */
223 __u32 reserved; /* 0xFFFF */
224 __u64 first_spare_lba;
225 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
226 } __attribute__ ((__packed__));
227
228
229 #ifndef MDASSEMBLE
230 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
231 #endif
232
233 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
234
235 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
236
237 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
238 * be recovered using srcMap */
239 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
240 * already been migrated and must
241 * be recovered from checkpoint area */
242 struct migr_record {
243 __u32 rec_status; /* Status used to determine how to restart
244 * migration in case it aborts
245 * in some fashion */
246 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
247 __u32 family_num; /* Family number of MPB
248 * containing the RaidDev
249 * that is migrating */
250 __u32 ascending_migr; /* True if migrating in increasing
251 * order of lbas */
252 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
253 __u32 dest_depth_per_unit; /* Num member blocks each destMap
254 * member disk
255 * advances per unit-of-operation */
256 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
257 __u32 dest_1st_member_lba; /* First member lba on first
258 * stripe of destination */
259 __u32 num_migr_units; /* Total num migration units-of-op */
260 __u32 post_migr_vol_cap; /* Size of volume after
261 * migration completes */
262 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
263 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
264 * migration ckpt record was read from
265 * (for recovered migrations) */
266 } __attribute__ ((__packed__));
267
268 static __u8 migr_type(struct imsm_dev *dev)
269 {
270 if (dev->vol.migr_type == MIGR_VERIFY &&
271 dev->status & DEV_VERIFY_AND_FIX)
272 return MIGR_REPAIR;
273 else
274 return dev->vol.migr_type;
275 }
276
277 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
278 {
279 /* for compatibility with older oroms convert MIGR_REPAIR, into
280 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
281 */
282 if (migr_type == MIGR_REPAIR) {
283 dev->vol.migr_type = MIGR_VERIFY;
284 dev->status |= DEV_VERIFY_AND_FIX;
285 } else {
286 dev->vol.migr_type = migr_type;
287 dev->status &= ~DEV_VERIFY_AND_FIX;
288 }
289 }
290
291 static unsigned int sector_count(__u32 bytes)
292 {
293 return ((bytes + (512-1)) & (~(512-1))) / 512;
294 }
295
296 static unsigned int mpb_sectors(struct imsm_super *mpb)
297 {
298 return sector_count(__le32_to_cpu(mpb->mpb_size));
299 }
300
301 struct intel_dev {
302 struct imsm_dev *dev;
303 struct intel_dev *next;
304 unsigned index;
305 };
306
307 struct intel_hba {
308 enum sys_dev_type type;
309 char *path;
310 char *pci_id;
311 struct intel_hba *next;
312 };
313
314 enum action {
315 DISK_REMOVE = 1,
316 DISK_ADD
317 };
318 /* internal representation of IMSM metadata */
319 struct intel_super {
320 union {
321 void *buf; /* O_DIRECT buffer for reading/writing metadata */
322 struct imsm_super *anchor; /* immovable parameters */
323 };
324 union {
325 void *migr_rec_buf; /* buffer for I/O operations */
326 struct migr_record *migr_rec; /* migration record */
327 };
328 size_t len; /* size of the 'buf' allocation */
329 void *next_buf; /* for realloc'ing buf from the manager */
330 size_t next_len;
331 int updates_pending; /* count of pending updates for mdmon */
332 int current_vol; /* index of raid device undergoing creation */
333 __u32 create_offset; /* common start for 'current_vol' */
334 __u32 random; /* random data for seeding new family numbers */
335 struct intel_dev *devlist;
336 struct dl {
337 struct dl *next;
338 int index;
339 __u8 serial[MAX_RAID_SERIAL_LEN];
340 int major, minor;
341 char *devname;
342 struct imsm_disk disk;
343 int fd;
344 int extent_cnt;
345 struct extent *e; /* for determining freespace @ create */
346 int raiddisk; /* slot to fill in autolayout */
347 enum action action;
348 } *disks, *current_disk;
349 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
350 active */
351 struct dl *missing; /* disks removed while we weren't looking */
352 struct bbm_log *bbm_log;
353 struct intel_hba *hba; /* device path of the raid controller for this metadata */
354 const struct imsm_orom *orom; /* platform firmware support */
355 struct intel_super *next; /* (temp) list for disambiguating family_num */
356 };
357
358 struct intel_disk {
359 struct imsm_disk disk;
360 #define IMSM_UNKNOWN_OWNER (-1)
361 int owner;
362 struct intel_disk *next;
363 };
364
365 struct extent {
366 unsigned long long start, size;
367 };
368
369 /* definitions of reshape process types */
370 enum imsm_reshape_type {
371 CH_TAKEOVER,
372 CH_MIGRATION,
373 };
374
375 /* definition of messages passed to imsm_process_update */
376 enum imsm_update_type {
377 update_activate_spare,
378 update_create_array,
379 update_kill_array,
380 update_rename_array,
381 update_add_remove_disk,
382 update_reshape_container_disks,
383 update_reshape_migration,
384 update_takeover,
385 update_general_migration_checkpoint,
386 };
387
388 struct imsm_update_activate_spare {
389 enum imsm_update_type type;
390 struct dl *dl;
391 int slot;
392 int array;
393 struct imsm_update_activate_spare *next;
394 };
395
396 struct geo_params {
397 int dev_id;
398 char *dev_name;
399 long long size;
400 int level;
401 int layout;
402 int chunksize;
403 int raid_disks;
404 };
405
406 enum takeover_direction {
407 R10_TO_R0,
408 R0_TO_R10
409 };
410 struct imsm_update_takeover {
411 enum imsm_update_type type;
412 int subarray;
413 enum takeover_direction direction;
414 };
415
416 struct imsm_update_reshape {
417 enum imsm_update_type type;
418 int old_raid_disks;
419 int new_raid_disks;
420
421 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
422 };
423
424 struct imsm_update_reshape_migration {
425 enum imsm_update_type type;
426 int old_raid_disks;
427 int new_raid_disks;
428 /* fields for array migration changes
429 */
430 int subdev;
431 int new_level;
432 int new_layout;
433 int new_chunksize;
434
435 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
436 };
437
438 struct imsm_update_general_migration_checkpoint {
439 enum imsm_update_type type;
440 __u32 curr_migr_unit;
441 };
442
443 struct disk_info {
444 __u8 serial[MAX_RAID_SERIAL_LEN];
445 };
446
447 struct imsm_update_create_array {
448 enum imsm_update_type type;
449 int dev_idx;
450 struct imsm_dev dev;
451 };
452
453 struct imsm_update_kill_array {
454 enum imsm_update_type type;
455 int dev_idx;
456 };
457
458 struct imsm_update_rename_array {
459 enum imsm_update_type type;
460 __u8 name[MAX_RAID_SERIAL_LEN];
461 int dev_idx;
462 };
463
464 struct imsm_update_add_remove_disk {
465 enum imsm_update_type type;
466 };
467
468
469 static const char *_sys_dev_type[] = {
470 [SYS_DEV_UNKNOWN] = "Unknown",
471 [SYS_DEV_SAS] = "SAS",
472 [SYS_DEV_SATA] = "SATA"
473 };
474
475 const char *get_sys_dev_type(enum sys_dev_type type)
476 {
477 if (type >= SYS_DEV_MAX)
478 type = SYS_DEV_UNKNOWN;
479
480 return _sys_dev_type[type];
481 }
482
483 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
484 {
485 struct intel_hba *result = malloc(sizeof(*result));
486 if (result) {
487 result->type = device->type;
488 result->path = strdup(device->path);
489 result->next = NULL;
490 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
491 result->pci_id++;
492 }
493 return result;
494 }
495
496 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
497 {
498 struct intel_hba *result=NULL;
499 for (result = hba; result; result = result->next) {
500 if (result->type == device->type && strcmp(result->path, device->path) == 0)
501 break;
502 }
503 return result;
504 }
505
506 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
507 {
508 struct intel_hba *hba;
509
510 /* check if disk attached to Intel HBA */
511 hba = find_intel_hba(super->hba, device);
512 if (hba != NULL)
513 return 1;
514 /* Check if HBA is already attached to super */
515 if (super->hba == NULL) {
516 super->hba = alloc_intel_hba(device);
517 return 1;
518 }
519
520 hba = super->hba;
521 /* Intel metadata allows for all disks attached to the same type HBA.
522 * Do not sypport odf HBA types mixing
523 */
524 if (device->type != hba->type)
525 return 2;
526
527 while (hba->next)
528 hba = hba->next;
529
530 hba->next = alloc_intel_hba(device);
531 return 1;
532 }
533
534 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
535 {
536 struct sys_dev *list, *elem, *prev;
537 char *disk_path;
538
539 if ((list = find_intel_devices()) == NULL)
540 return 0;
541
542 if (fd < 0)
543 disk_path = (char *) devname;
544 else
545 disk_path = diskfd_to_devpath(fd);
546
547 if (!disk_path) {
548 free_sys_dev(&list);
549 return 0;
550 }
551
552 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
553 if (path_attached_to_hba(disk_path, elem->path)) {
554 if (prev == NULL)
555 list = list->next;
556 else
557 prev->next = elem->next;
558 elem->next = NULL;
559 if (disk_path != devname)
560 free(disk_path);
561 free_sys_dev(&list);
562 return elem;
563 }
564 }
565 if (disk_path != devname)
566 free(disk_path);
567 free_sys_dev(&list);
568
569 return NULL;
570 }
571
572
573 static int find_intel_hba_capability(int fd, struct intel_super *super,
574 char *devname);
575
576 static struct supertype *match_metadata_desc_imsm(char *arg)
577 {
578 struct supertype *st;
579
580 if (strcmp(arg, "imsm") != 0 &&
581 strcmp(arg, "default") != 0
582 )
583 return NULL;
584
585 st = malloc(sizeof(*st));
586 if (!st)
587 return NULL;
588 memset(st, 0, sizeof(*st));
589 st->container_dev = NoMdDev;
590 st->ss = &super_imsm;
591 st->max_devs = IMSM_MAX_DEVICES;
592 st->minor_version = 0;
593 st->sb = NULL;
594 return st;
595 }
596
597 #ifndef MDASSEMBLE
598 static __u8 *get_imsm_version(struct imsm_super *mpb)
599 {
600 return &mpb->sig[MPB_SIG_LEN];
601 }
602 #endif
603
604 /* retrieve a disk directly from the anchor when the anchor is known to be
605 * up-to-date, currently only at load time
606 */
607 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
608 {
609 if (index >= mpb->num_disks)
610 return NULL;
611 return &mpb->disk[index];
612 }
613
614 /* retrieve the disk description based on a index of the disk
615 * in the sub-array
616 */
617 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
618 {
619 struct dl *d;
620
621 for (d = super->disks; d; d = d->next)
622 if (d->index == index)
623 return d;
624
625 return NULL;
626 }
627 /* retrieve a disk from the parsed metadata */
628 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
629 {
630 struct dl *dl;
631
632 dl = get_imsm_dl_disk(super, index);
633 if (dl)
634 return &dl->disk;
635
636 return NULL;
637 }
638
639 /* generate a checksum directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load or write_super after coalescing
641 */
642 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
643 {
644 __u32 end = mpb->mpb_size / sizeof(end);
645 __u32 *p = (__u32 *) mpb;
646 __u32 sum = 0;
647
648 while (end--) {
649 sum += __le32_to_cpu(*p);
650 p++;
651 }
652
653 return sum - __le32_to_cpu(mpb->check_sum);
654 }
655
656 static size_t sizeof_imsm_map(struct imsm_map *map)
657 {
658 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
659 }
660
661 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
662 {
663 /* A device can have 2 maps if it is in the middle of a migration.
664 * If second_map is:
665 * 0 - we return the first map
666 * 1 - we return the second map if it exists, else NULL
667 * -1 - we return the second map if it exists, else the first
668 */
669 struct imsm_map *map = &dev->vol.map[0];
670
671 if (second_map == 1 && !dev->vol.migr_state)
672 return NULL;
673 else if (second_map == 1 ||
674 (second_map < 0 && dev->vol.migr_state)) {
675 void *ptr = map;
676
677 return ptr + sizeof_imsm_map(map);
678 } else
679 return map;
680
681 }
682
683 /* return the size of the device.
684 * migr_state increases the returned size if map[0] were to be duplicated
685 */
686 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
687 {
688 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
689 sizeof_imsm_map(get_imsm_map(dev, 0));
690
691 /* migrating means an additional map */
692 if (dev->vol.migr_state)
693 size += sizeof_imsm_map(get_imsm_map(dev, 1));
694 else if (migr_state)
695 size += sizeof_imsm_map(get_imsm_map(dev, 0));
696
697 return size;
698 }
699
700 #ifndef MDASSEMBLE
701 /* retrieve disk serial number list from a metadata update */
702 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
703 {
704 void *u = update;
705 struct disk_info *inf;
706
707 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
708 sizeof_imsm_dev(&update->dev, 0);
709
710 return inf;
711 }
712 #endif
713
714 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
715 {
716 int offset;
717 int i;
718 void *_mpb = mpb;
719
720 if (index >= mpb->num_raid_devs)
721 return NULL;
722
723 /* devices start after all disks */
724 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
725
726 for (i = 0; i <= index; i++)
727 if (i == index)
728 return _mpb + offset;
729 else
730 offset += sizeof_imsm_dev(_mpb + offset, 0);
731
732 return NULL;
733 }
734
735 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
736 {
737 struct intel_dev *dv;
738
739 if (index >= super->anchor->num_raid_devs)
740 return NULL;
741 for (dv = super->devlist; dv; dv = dv->next)
742 if (dv->index == index)
743 return dv->dev;
744 return NULL;
745 }
746
747 /*
748 * for second_map:
749 * == 0 get first map
750 * == 1 get second map
751 * == -1 than get map according to the current migr_state
752 */
753 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
754 int slot,
755 int second_map)
756 {
757 struct imsm_map *map;
758
759 map = get_imsm_map(dev, second_map);
760
761 /* top byte identifies disk under rebuild */
762 return __le32_to_cpu(map->disk_ord_tbl[slot]);
763 }
764
765 #define ord_to_idx(ord) (((ord) << 8) >> 8)
766 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
767 {
768 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
769
770 return ord_to_idx(ord);
771 }
772
773 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
774 {
775 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
776 }
777
778 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
779 {
780 int slot;
781 __u32 ord;
782
783 for (slot = 0; slot < map->num_members; slot++) {
784 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
785 if (ord_to_idx(ord) == idx)
786 return slot;
787 }
788
789 return -1;
790 }
791
792 static int get_imsm_raid_level(struct imsm_map *map)
793 {
794 if (map->raid_level == 1) {
795 if (map->num_members == 2)
796 return 1;
797 else
798 return 10;
799 }
800
801 return map->raid_level;
802 }
803
804 static int cmp_extent(const void *av, const void *bv)
805 {
806 const struct extent *a = av;
807 const struct extent *b = bv;
808 if (a->start < b->start)
809 return -1;
810 if (a->start > b->start)
811 return 1;
812 return 0;
813 }
814
815 static int count_memberships(struct dl *dl, struct intel_super *super)
816 {
817 int memberships = 0;
818 int i;
819
820 for (i = 0; i < super->anchor->num_raid_devs; i++) {
821 struct imsm_dev *dev = get_imsm_dev(super, i);
822 struct imsm_map *map = get_imsm_map(dev, 0);
823
824 if (get_imsm_disk_slot(map, dl->index) >= 0)
825 memberships++;
826 }
827
828 return memberships;
829 }
830
831 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
832
833 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
834 {
835 /* find a list of used extents on the given physical device */
836 struct extent *rv, *e;
837 int i;
838 int memberships = count_memberships(dl, super);
839 __u32 reservation;
840
841 /* trim the reserved area for spares, so they can join any array
842 * regardless of whether the OROM has assigned sectors from the
843 * IMSM_RESERVED_SECTORS region
844 */
845 if (dl->index == -1)
846 reservation = imsm_min_reserved_sectors(super);
847 else
848 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
849
850 rv = malloc(sizeof(struct extent) * (memberships + 1));
851 if (!rv)
852 return NULL;
853 e = rv;
854
855 for (i = 0; i < super->anchor->num_raid_devs; i++) {
856 struct imsm_dev *dev = get_imsm_dev(super, i);
857 struct imsm_map *map = get_imsm_map(dev, 0);
858
859 if (get_imsm_disk_slot(map, dl->index) >= 0) {
860 e->start = __le32_to_cpu(map->pba_of_lba0);
861 e->size = __le32_to_cpu(map->blocks_per_member);
862 e++;
863 }
864 }
865 qsort(rv, memberships, sizeof(*rv), cmp_extent);
866
867 /* determine the start of the metadata
868 * when no raid devices are defined use the default
869 * ...otherwise allow the metadata to truncate the value
870 * as is the case with older versions of imsm
871 */
872 if (memberships) {
873 struct extent *last = &rv[memberships - 1];
874 __u32 remainder;
875
876 remainder = __le32_to_cpu(dl->disk.total_blocks) -
877 (last->start + last->size);
878 /* round down to 1k block to satisfy precision of the kernel
879 * 'size' interface
880 */
881 remainder &= ~1UL;
882 /* make sure remainder is still sane */
883 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
884 remainder = ROUND_UP(super->len, 512) >> 9;
885 if (reservation > remainder)
886 reservation = remainder;
887 }
888 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
889 e->size = 0;
890 return rv;
891 }
892
893 /* try to determine how much space is reserved for metadata from
894 * the last get_extents() entry, otherwise fallback to the
895 * default
896 */
897 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
898 {
899 struct extent *e;
900 int i;
901 __u32 rv;
902
903 /* for spares just return a minimal reservation which will grow
904 * once the spare is picked up by an array
905 */
906 if (dl->index == -1)
907 return MPB_SECTOR_CNT;
908
909 e = get_extents(super, dl);
910 if (!e)
911 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
912
913 /* scroll to last entry */
914 for (i = 0; e[i].size; i++)
915 continue;
916
917 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
918
919 free(e);
920
921 return rv;
922 }
923
924 static int is_spare(struct imsm_disk *disk)
925 {
926 return (disk->status & SPARE_DISK) == SPARE_DISK;
927 }
928
929 static int is_configured(struct imsm_disk *disk)
930 {
931 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
932 }
933
934 static int is_failed(struct imsm_disk *disk)
935 {
936 return (disk->status & FAILED_DISK) == FAILED_DISK;
937 }
938
939 /* try to determine how much space is reserved for metadata from
940 * the last get_extents() entry on the smallest active disk,
941 * otherwise fallback to the default
942 */
943 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
944 {
945 struct extent *e;
946 int i;
947 __u32 min_active, remainder;
948 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
949 struct dl *dl, *dl_min = NULL;
950
951 if (!super)
952 return rv;
953
954 min_active = 0;
955 for (dl = super->disks; dl; dl = dl->next) {
956 if (dl->index < 0)
957 continue;
958 if (dl->disk.total_blocks < min_active || min_active == 0) {
959 dl_min = dl;
960 min_active = dl->disk.total_blocks;
961 }
962 }
963 if (!dl_min)
964 return rv;
965
966 /* find last lba used by subarrays on the smallest active disk */
967 e = get_extents(super, dl_min);
968 if (!e)
969 return rv;
970 for (i = 0; e[i].size; i++)
971 continue;
972
973 remainder = min_active - e[i].start;
974 free(e);
975
976 /* to give priority to recovery we should not require full
977 IMSM_RESERVED_SECTORS from the spare */
978 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
979
980 /* if real reservation is smaller use that value */
981 return (remainder < rv) ? remainder : rv;
982 }
983
984 /* Return minimum size of a spare that can be used in this array*/
985 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
986 {
987 struct intel_super *super = st->sb;
988 struct dl *dl;
989 struct extent *e;
990 int i;
991 unsigned long long rv = 0;
992 __u32 reservation;
993
994 if (!super)
995 return rv;
996 /* find first active disk in array */
997 dl = super->disks;
998 while (dl && (is_failed(&dl->disk) || dl->index == -1))
999 dl = dl->next;
1000 if (!dl)
1001 return rv;
1002 /* find last lba used by subarrays */
1003 e = get_extents(super, dl);
1004 if (!e)
1005 return rv;
1006 for (i = 0; e[i].size; i++)
1007 continue;
1008 if (i > 0)
1009 rv = e[i-1].start + e[i-1].size;
1010 reservation = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
1011 free(e);
1012
1013 /* add the amount of space needed for metadata */
1014 rv = rv + imsm_min_reserved_sectors(super);
1015
1016 return rv * 512;
1017 }
1018
1019 #ifndef MDASSEMBLE
1020 static __u64 blocks_per_migr_unit(struct intel_super *super,
1021 struct imsm_dev *dev);
1022
1023 static void print_imsm_dev(struct intel_super *super,
1024 struct imsm_dev *dev,
1025 char *uuid,
1026 int disk_idx)
1027 {
1028 __u64 sz;
1029 int slot, i;
1030 struct imsm_map *map = get_imsm_map(dev, 0);
1031 struct imsm_map *map2 = get_imsm_map(dev, 1);
1032 __u32 ord;
1033
1034 printf("\n");
1035 printf("[%.16s]:\n", dev->volume);
1036 printf(" UUID : %s\n", uuid);
1037 printf(" RAID Level : %d", get_imsm_raid_level(map));
1038 if (map2)
1039 printf(" <-- %d", get_imsm_raid_level(map2));
1040 printf("\n");
1041 printf(" Members : %d", map->num_members);
1042 if (map2)
1043 printf(" <-- %d", map2->num_members);
1044 printf("\n");
1045 printf(" Slots : [");
1046 for (i = 0; i < map->num_members; i++) {
1047 ord = get_imsm_ord_tbl_ent(dev, i, 0);
1048 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1049 }
1050 printf("]");
1051 if (map2) {
1052 printf(" <-- [");
1053 for (i = 0; i < map2->num_members; i++) {
1054 ord = get_imsm_ord_tbl_ent(dev, i, 1);
1055 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1056 }
1057 printf("]");
1058 }
1059 printf("\n");
1060 printf(" Failed disk : ");
1061 if (map->failed_disk_num == 0xff)
1062 printf("none");
1063 else
1064 printf("%i", map->failed_disk_num);
1065 printf("\n");
1066 slot = get_imsm_disk_slot(map, disk_idx);
1067 if (slot >= 0) {
1068 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
1069 printf(" This Slot : %d%s\n", slot,
1070 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1071 } else
1072 printf(" This Slot : ?\n");
1073 sz = __le32_to_cpu(dev->size_high);
1074 sz <<= 32;
1075 sz += __le32_to_cpu(dev->size_low);
1076 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1077 human_size(sz * 512));
1078 sz = __le32_to_cpu(map->blocks_per_member);
1079 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1080 human_size(sz * 512));
1081 printf(" Sector Offset : %u\n",
1082 __le32_to_cpu(map->pba_of_lba0));
1083 printf(" Num Stripes : %u\n",
1084 __le32_to_cpu(map->num_data_stripes));
1085 printf(" Chunk Size : %u KiB",
1086 __le16_to_cpu(map->blocks_per_strip) / 2);
1087 if (map2)
1088 printf(" <-- %u KiB",
1089 __le16_to_cpu(map2->blocks_per_strip) / 2);
1090 printf("\n");
1091 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1092 printf(" Migrate State : ");
1093 if (dev->vol.migr_state) {
1094 if (migr_type(dev) == MIGR_INIT)
1095 printf("initialize\n");
1096 else if (migr_type(dev) == MIGR_REBUILD)
1097 printf("rebuild\n");
1098 else if (migr_type(dev) == MIGR_VERIFY)
1099 printf("check\n");
1100 else if (migr_type(dev) == MIGR_GEN_MIGR)
1101 printf("general migration\n");
1102 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1103 printf("state change\n");
1104 else if (migr_type(dev) == MIGR_REPAIR)
1105 printf("repair\n");
1106 else
1107 printf("<unknown:%d>\n", migr_type(dev));
1108 } else
1109 printf("idle\n");
1110 printf(" Map State : %s", map_state_str[map->map_state]);
1111 if (dev->vol.migr_state) {
1112 struct imsm_map *map = get_imsm_map(dev, 1);
1113
1114 printf(" <-- %s", map_state_str[map->map_state]);
1115 printf("\n Checkpoint : %u (%llu)",
1116 __le32_to_cpu(dev->vol.curr_migr_unit),
1117 (unsigned long long)blocks_per_migr_unit(super, dev));
1118 }
1119 printf("\n");
1120 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1121 }
1122
1123 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1124 {
1125 char str[MAX_RAID_SERIAL_LEN + 1];
1126 __u64 sz;
1127
1128 if (index < -1 || !disk)
1129 return;
1130
1131 printf("\n");
1132 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1133 if (index >= 0)
1134 printf(" Disk%02d Serial : %s\n", index, str);
1135 else
1136 printf(" Disk Serial : %s\n", str);
1137 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1138 is_configured(disk) ? " active" : "",
1139 is_failed(disk) ? " failed" : "");
1140 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1141 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1142 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1143 human_size(sz * 512));
1144 }
1145
1146 static int is_gen_migration(struct imsm_dev *dev);
1147
1148 void examine_migr_rec_imsm(struct intel_super *super)
1149 {
1150 struct migr_record *migr_rec = super->migr_rec;
1151 struct imsm_super *mpb = super->anchor;
1152 int i;
1153
1154 for (i = 0; i < mpb->num_raid_devs; i++) {
1155 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1156 if (is_gen_migration(dev) == 0)
1157 continue;
1158
1159 printf("\nMigration Record Information:");
1160 if (super->disks->index > 1) {
1161 printf(" Empty\n ");
1162 printf("Examine one of first two disks in array\n");
1163 break;
1164 }
1165 printf("\n Status : ");
1166 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1167 printf("Normal\n");
1168 else
1169 printf("Contains Data\n");
1170 printf(" Current Unit : %u\n",
1171 __le32_to_cpu(migr_rec->curr_migr_unit));
1172 printf(" Family : %u\n",
1173 __le32_to_cpu(migr_rec->family_num));
1174 printf(" Ascending : %u\n",
1175 __le32_to_cpu(migr_rec->ascending_migr));
1176 printf(" Blocks Per Unit : %u\n",
1177 __le32_to_cpu(migr_rec->blocks_per_unit));
1178 printf(" Dest. Depth Per Unit : %u\n",
1179 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1180 printf(" Checkpoint Area pba : %u\n",
1181 __le32_to_cpu(migr_rec->ckpt_area_pba));
1182 printf(" First member lba : %u\n",
1183 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1184 printf(" Total Number of Units : %u\n",
1185 __le32_to_cpu(migr_rec->num_migr_units));
1186 printf(" Size of volume : %u\n",
1187 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1188 printf(" Expansion space for LBA64 : %u\n",
1189 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1190 printf(" Record was read from : %u\n",
1191 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1192
1193 break;
1194 }
1195 }
1196 #endif /* MDASSEMBLE */
1197 /*******************************************************************************
1198 * function: imsm_check_attributes
1199 * Description: Function checks if features represented by attributes flags
1200 * are supported by mdadm.
1201 * Parameters:
1202 * attributes - Attributes read from metadata
1203 * Returns:
1204 * 0 - passed attributes contains unsupported features flags
1205 * 1 - all features are supported
1206 ******************************************************************************/
1207 static int imsm_check_attributes(__u32 attributes)
1208 {
1209 int ret_val = 1;
1210 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1211
1212 not_supported &= ~MPB_ATTRIB_IGNORED;
1213
1214 not_supported &= attributes;
1215 if (not_supported) {
1216 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1217 (unsigned)__le32_to_cpu(not_supported));
1218 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1219 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1220 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1221 }
1222 if (not_supported & MPB_ATTRIB_2TB) {
1223 dprintf("\t\tMPB_ATTRIB_2TB\n");
1224 not_supported ^= MPB_ATTRIB_2TB;
1225 }
1226 if (not_supported & MPB_ATTRIB_RAID0) {
1227 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1228 not_supported ^= MPB_ATTRIB_RAID0;
1229 }
1230 if (not_supported & MPB_ATTRIB_RAID1) {
1231 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1232 not_supported ^= MPB_ATTRIB_RAID1;
1233 }
1234 if (not_supported & MPB_ATTRIB_RAID10) {
1235 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1236 not_supported ^= MPB_ATTRIB_RAID10;
1237 }
1238 if (not_supported & MPB_ATTRIB_RAID1E) {
1239 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1240 not_supported ^= MPB_ATTRIB_RAID1E;
1241 }
1242 if (not_supported & MPB_ATTRIB_RAID5) {
1243 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1244 not_supported ^= MPB_ATTRIB_RAID5;
1245 }
1246 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1247 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1248 not_supported ^= MPB_ATTRIB_RAIDCNG;
1249 }
1250 if (not_supported & MPB_ATTRIB_BBM) {
1251 dprintf("\t\tMPB_ATTRIB_BBM\n");
1252 not_supported ^= MPB_ATTRIB_BBM;
1253 }
1254 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1255 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1256 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1257 }
1258 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1259 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1260 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1261 }
1262 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1263 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1264 not_supported ^= MPB_ATTRIB_2TB_DISK;
1265 }
1266 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1267 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1268 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1269 }
1270 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1271 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1272 not_supported ^= MPB_ATTRIB_NEVER_USE;
1273 }
1274
1275 if (not_supported)
1276 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1277
1278 ret_val = 0;
1279 }
1280
1281 return ret_val;
1282 }
1283
1284 #ifndef MDASSEMBLE
1285 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1286
1287 static void examine_super_imsm(struct supertype *st, char *homehost)
1288 {
1289 struct intel_super *super = st->sb;
1290 struct imsm_super *mpb = super->anchor;
1291 char str[MAX_SIGNATURE_LENGTH];
1292 int i;
1293 struct mdinfo info;
1294 char nbuf[64];
1295 __u32 sum;
1296 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1297 struct dl *dl;
1298
1299 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1300 printf(" Magic : %s\n", str);
1301 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1302 printf(" Version : %s\n", get_imsm_version(mpb));
1303 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1304 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1305 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1306 printf(" Attributes : ");
1307 if (imsm_check_attributes(mpb->attributes))
1308 printf("All supported\n");
1309 else
1310 printf("not supported\n");
1311 getinfo_super_imsm(st, &info, NULL);
1312 fname_from_uuid(st, &info, nbuf, ':');
1313 printf(" UUID : %s\n", nbuf + 5);
1314 sum = __le32_to_cpu(mpb->check_sum);
1315 printf(" Checksum : %08x %s\n", sum,
1316 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1317 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1318 printf(" Disks : %d\n", mpb->num_disks);
1319 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1320 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1321 if (super->bbm_log) {
1322 struct bbm_log *log = super->bbm_log;
1323
1324 printf("\n");
1325 printf("Bad Block Management Log:\n");
1326 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1327 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1328 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1329 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1330 printf(" First Spare : %llx\n",
1331 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1332 }
1333 for (i = 0; i < mpb->num_raid_devs; i++) {
1334 struct mdinfo info;
1335 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1336
1337 super->current_vol = i;
1338 getinfo_super_imsm(st, &info, NULL);
1339 fname_from_uuid(st, &info, nbuf, ':');
1340 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1341 }
1342 for (i = 0; i < mpb->num_disks; i++) {
1343 if (i == super->disks->index)
1344 continue;
1345 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1346 }
1347
1348 for (dl = super->disks; dl; dl = dl->next)
1349 if (dl->index == -1)
1350 print_imsm_disk(&dl->disk, -1, reserved);
1351
1352 examine_migr_rec_imsm(super);
1353 }
1354
1355 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1356 {
1357 /* We just write a generic IMSM ARRAY entry */
1358 struct mdinfo info;
1359 char nbuf[64];
1360 struct intel_super *super = st->sb;
1361
1362 if (!super->anchor->num_raid_devs) {
1363 printf("ARRAY metadata=imsm\n");
1364 return;
1365 }
1366
1367 getinfo_super_imsm(st, &info, NULL);
1368 fname_from_uuid(st, &info, nbuf, ':');
1369 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1370 }
1371
1372 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1373 {
1374 /* We just write a generic IMSM ARRAY entry */
1375 struct mdinfo info;
1376 char nbuf[64];
1377 char nbuf1[64];
1378 struct intel_super *super = st->sb;
1379 int i;
1380
1381 if (!super->anchor->num_raid_devs)
1382 return;
1383
1384 getinfo_super_imsm(st, &info, NULL);
1385 fname_from_uuid(st, &info, nbuf, ':');
1386 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1387 struct imsm_dev *dev = get_imsm_dev(super, i);
1388
1389 super->current_vol = i;
1390 getinfo_super_imsm(st, &info, NULL);
1391 fname_from_uuid(st, &info, nbuf1, ':');
1392 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1393 dev->volume, nbuf + 5, i, nbuf1 + 5);
1394 }
1395 }
1396
1397 static void export_examine_super_imsm(struct supertype *st)
1398 {
1399 struct intel_super *super = st->sb;
1400 struct imsm_super *mpb = super->anchor;
1401 struct mdinfo info;
1402 char nbuf[64];
1403
1404 getinfo_super_imsm(st, &info, NULL);
1405 fname_from_uuid(st, &info, nbuf, ':');
1406 printf("MD_METADATA=imsm\n");
1407 printf("MD_LEVEL=container\n");
1408 printf("MD_UUID=%s\n", nbuf+5);
1409 printf("MD_DEVICES=%u\n", mpb->num_disks);
1410 }
1411
1412 static void detail_super_imsm(struct supertype *st, char *homehost)
1413 {
1414 struct mdinfo info;
1415 char nbuf[64];
1416
1417 getinfo_super_imsm(st, &info, NULL);
1418 fname_from_uuid(st, &info, nbuf, ':');
1419 printf("\n UUID : %s\n", nbuf + 5);
1420 }
1421
1422 static void brief_detail_super_imsm(struct supertype *st)
1423 {
1424 struct mdinfo info;
1425 char nbuf[64];
1426 getinfo_super_imsm(st, &info, NULL);
1427 fname_from_uuid(st, &info, nbuf, ':');
1428 printf(" UUID=%s", nbuf + 5);
1429 }
1430
1431 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1432 static void fd2devname(int fd, char *name);
1433
1434 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1435 {
1436 /* dump an unsorted list of devices attached to AHCI Intel storage
1437 * controller, as well as non-connected ports
1438 */
1439 int hba_len = strlen(hba_path) + 1;
1440 struct dirent *ent;
1441 DIR *dir;
1442 char *path = NULL;
1443 int err = 0;
1444 unsigned long port_mask = (1 << port_count) - 1;
1445
1446 if (port_count > (int)sizeof(port_mask) * 8) {
1447 if (verbose)
1448 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1449 return 2;
1450 }
1451
1452 /* scroll through /sys/dev/block looking for devices attached to
1453 * this hba
1454 */
1455 dir = opendir("/sys/dev/block");
1456 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1457 int fd;
1458 char model[64];
1459 char vendor[64];
1460 char buf[1024];
1461 int major, minor;
1462 char *device;
1463 char *c;
1464 int port;
1465 int type;
1466
1467 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1468 continue;
1469 path = devt_to_devpath(makedev(major, minor));
1470 if (!path)
1471 continue;
1472 if (!path_attached_to_hba(path, hba_path)) {
1473 free(path);
1474 path = NULL;
1475 continue;
1476 }
1477
1478 /* retrieve the scsi device type */
1479 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1480 if (verbose)
1481 fprintf(stderr, Name ": failed to allocate 'device'\n");
1482 err = 2;
1483 break;
1484 }
1485 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1486 if (load_sys(device, buf) != 0) {
1487 if (verbose)
1488 fprintf(stderr, Name ": failed to read device type for %s\n",
1489 path);
1490 err = 2;
1491 free(device);
1492 break;
1493 }
1494 type = strtoul(buf, NULL, 10);
1495
1496 /* if it's not a disk print the vendor and model */
1497 if (!(type == 0 || type == 7 || type == 14)) {
1498 vendor[0] = '\0';
1499 model[0] = '\0';
1500 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1501 if (load_sys(device, buf) == 0) {
1502 strncpy(vendor, buf, sizeof(vendor));
1503 vendor[sizeof(vendor) - 1] = '\0';
1504 c = (char *) &vendor[sizeof(vendor) - 1];
1505 while (isspace(*c) || *c == '\0')
1506 *c-- = '\0';
1507
1508 }
1509 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1510 if (load_sys(device, buf) == 0) {
1511 strncpy(model, buf, sizeof(model));
1512 model[sizeof(model) - 1] = '\0';
1513 c = (char *) &model[sizeof(model) - 1];
1514 while (isspace(*c) || *c == '\0')
1515 *c-- = '\0';
1516 }
1517
1518 if (vendor[0] && model[0])
1519 sprintf(buf, "%.64s %.64s", vendor, model);
1520 else
1521 switch (type) { /* numbers from hald/linux/device.c */
1522 case 1: sprintf(buf, "tape"); break;
1523 case 2: sprintf(buf, "printer"); break;
1524 case 3: sprintf(buf, "processor"); break;
1525 case 4:
1526 case 5: sprintf(buf, "cdrom"); break;
1527 case 6: sprintf(buf, "scanner"); break;
1528 case 8: sprintf(buf, "media_changer"); break;
1529 case 9: sprintf(buf, "comm"); break;
1530 case 12: sprintf(buf, "raid"); break;
1531 default: sprintf(buf, "unknown");
1532 }
1533 } else
1534 buf[0] = '\0';
1535 free(device);
1536
1537 /* chop device path to 'host%d' and calculate the port number */
1538 c = strchr(&path[hba_len], '/');
1539 if (!c) {
1540 if (verbose)
1541 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1542 err = 2;
1543 break;
1544 }
1545 *c = '\0';
1546 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1547 port -= host_base;
1548 else {
1549 if (verbose) {
1550 *c = '/'; /* repair the full string */
1551 fprintf(stderr, Name ": failed to determine port number for %s\n",
1552 path);
1553 }
1554 err = 2;
1555 break;
1556 }
1557
1558 /* mark this port as used */
1559 port_mask &= ~(1 << port);
1560
1561 /* print out the device information */
1562 if (buf[0]) {
1563 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1564 continue;
1565 }
1566
1567 fd = dev_open(ent->d_name, O_RDONLY);
1568 if (fd < 0)
1569 printf(" Port%d : - disk info unavailable -\n", port);
1570 else {
1571 fd2devname(fd, buf);
1572 printf(" Port%d : %s", port, buf);
1573 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1574 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1575 else
1576 printf(" ()\n");
1577 }
1578 close(fd);
1579 free(path);
1580 path = NULL;
1581 }
1582 if (path)
1583 free(path);
1584 if (dir)
1585 closedir(dir);
1586 if (err == 0) {
1587 int i;
1588
1589 for (i = 0; i < port_count; i++)
1590 if (port_mask & (1 << i))
1591 printf(" Port%d : - no device attached -\n", i);
1592 }
1593
1594 return err;
1595 }
1596
1597 static void print_found_intel_controllers(struct sys_dev *elem)
1598 {
1599 for (; elem; elem = elem->next) {
1600 fprintf(stderr, Name ": found Intel(R) ");
1601 if (elem->type == SYS_DEV_SATA)
1602 fprintf(stderr, "SATA ");
1603 else if (elem->type == SYS_DEV_SAS)
1604 fprintf(stderr, "SAS ");
1605 fprintf(stderr, "RAID controller");
1606 if (elem->pci_id)
1607 fprintf(stderr, " at %s", elem->pci_id);
1608 fprintf(stderr, ".\n");
1609 }
1610 fflush(stderr);
1611 }
1612
1613 static int ahci_get_port_count(const char *hba_path, int *port_count)
1614 {
1615 struct dirent *ent;
1616 DIR *dir;
1617 int host_base = -1;
1618
1619 *port_count = 0;
1620 if ((dir = opendir(hba_path)) == NULL)
1621 return -1;
1622
1623 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1624 int host;
1625
1626 if (sscanf(ent->d_name, "host%d", &host) != 1)
1627 continue;
1628 if (*port_count == 0)
1629 host_base = host;
1630 else if (host < host_base)
1631 host_base = host;
1632
1633 if (host + 1 > *port_count + host_base)
1634 *port_count = host + 1 - host_base;
1635 }
1636 closedir(dir);
1637 return host_base;
1638 }
1639
1640 static void print_imsm_capability(const struct imsm_orom *orom)
1641 {
1642 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1643 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1644 orom->hotfix_ver, orom->build);
1645 printf(" RAID Levels :%s%s%s%s%s\n",
1646 imsm_orom_has_raid0(orom) ? " raid0" : "",
1647 imsm_orom_has_raid1(orom) ? " raid1" : "",
1648 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1649 imsm_orom_has_raid10(orom) ? " raid10" : "",
1650 imsm_orom_has_raid5(orom) ? " raid5" : "");
1651 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1652 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1653 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1654 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1655 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1656 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1657 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1658 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1659 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1660 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1661 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1662 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1663 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1664 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1665 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1666 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1667 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1668 printf(" Max Disks : %d\n", orom->tds);
1669 printf(" Max Volumes : %d\n", orom->vpa);
1670 return;
1671 }
1672
1673 static int detail_platform_imsm(int verbose, int enumerate_only)
1674 {
1675 /* There are two components to imsm platform support, the ahci SATA
1676 * controller and the option-rom. To find the SATA controller we
1677 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1678 * controller with the Intel vendor id is present. This approach
1679 * allows mdadm to leverage the kernel's ahci detection logic, with the
1680 * caveat that if ahci.ko is not loaded mdadm will not be able to
1681 * detect platform raid capabilities. The option-rom resides in a
1682 * platform "Adapter ROM". We scan for its signature to retrieve the
1683 * platform capabilities. If raid support is disabled in the BIOS the
1684 * option-rom capability structure will not be available.
1685 */
1686 const struct imsm_orom *orom;
1687 struct sys_dev *list, *hba;
1688 int host_base = 0;
1689 int port_count = 0;
1690 int result=0;
1691
1692 if (enumerate_only) {
1693 if (check_env("IMSM_NO_PLATFORM"))
1694 return 0;
1695 list = find_intel_devices();
1696 if (!list)
1697 return 2;
1698 for (hba = list; hba; hba = hba->next) {
1699 orom = find_imsm_capability(hba->type);
1700 if (!orom) {
1701 result = 2;
1702 break;
1703 }
1704 }
1705 free_sys_dev(&list);
1706 return result;
1707 }
1708
1709 list = find_intel_devices();
1710 if (!list) {
1711 if (verbose)
1712 fprintf(stderr, Name ": no active Intel(R) RAID "
1713 "controller found.\n");
1714 free_sys_dev(&list);
1715 return 2;
1716 } else if (verbose)
1717 print_found_intel_controllers(list);
1718
1719 for (hba = list; hba; hba = hba->next) {
1720 orom = find_imsm_capability(hba->type);
1721 if (!orom)
1722 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1723 hba->path, get_sys_dev_type(hba->type));
1724 else
1725 print_imsm_capability(orom);
1726 }
1727
1728 for (hba = list; hba; hba = hba->next) {
1729 printf(" I/O Controller : %s (%s)\n",
1730 hba->path, get_sys_dev_type(hba->type));
1731
1732 if (hba->type == SYS_DEV_SATA) {
1733 host_base = ahci_get_port_count(hba->path, &port_count);
1734 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1735 if (verbose)
1736 fprintf(stderr, Name ": failed to enumerate "
1737 "ports on SATA controller at %s.", hba->pci_id);
1738 result |= 2;
1739 }
1740 }
1741 }
1742
1743 free_sys_dev(&list);
1744 return result;
1745 }
1746 #endif
1747
1748 static int match_home_imsm(struct supertype *st, char *homehost)
1749 {
1750 /* the imsm metadata format does not specify any host
1751 * identification information. We return -1 since we can never
1752 * confirm nor deny whether a given array is "meant" for this
1753 * host. We rely on compare_super and the 'family_num' fields to
1754 * exclude member disks that do not belong, and we rely on
1755 * mdadm.conf to specify the arrays that should be assembled.
1756 * Auto-assembly may still pick up "foreign" arrays.
1757 */
1758
1759 return -1;
1760 }
1761
1762 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1763 {
1764 /* The uuid returned here is used for:
1765 * uuid to put into bitmap file (Create, Grow)
1766 * uuid for backup header when saving critical section (Grow)
1767 * comparing uuids when re-adding a device into an array
1768 * In these cases the uuid required is that of the data-array,
1769 * not the device-set.
1770 * uuid to recognise same set when adding a missing device back
1771 * to an array. This is a uuid for the device-set.
1772 *
1773 * For each of these we can make do with a truncated
1774 * or hashed uuid rather than the original, as long as
1775 * everyone agrees.
1776 * In each case the uuid required is that of the data-array,
1777 * not the device-set.
1778 */
1779 /* imsm does not track uuid's so we synthesis one using sha1 on
1780 * - The signature (Which is constant for all imsm array, but no matter)
1781 * - the orig_family_num of the container
1782 * - the index number of the volume
1783 * - the 'serial' number of the volume.
1784 * Hopefully these are all constant.
1785 */
1786 struct intel_super *super = st->sb;
1787
1788 char buf[20];
1789 struct sha1_ctx ctx;
1790 struct imsm_dev *dev = NULL;
1791 __u32 family_num;
1792
1793 /* some mdadm versions failed to set ->orig_family_num, in which
1794 * case fall back to ->family_num. orig_family_num will be
1795 * fixed up with the first metadata update.
1796 */
1797 family_num = super->anchor->orig_family_num;
1798 if (family_num == 0)
1799 family_num = super->anchor->family_num;
1800 sha1_init_ctx(&ctx);
1801 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1802 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1803 if (super->current_vol >= 0)
1804 dev = get_imsm_dev(super, super->current_vol);
1805 if (dev) {
1806 __u32 vol = super->current_vol;
1807 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1808 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1809 }
1810 sha1_finish_ctx(&ctx, buf);
1811 memcpy(uuid, buf, 4*4);
1812 }
1813
1814 #if 0
1815 static void
1816 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1817 {
1818 __u8 *v = get_imsm_version(mpb);
1819 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1820 char major[] = { 0, 0, 0 };
1821 char minor[] = { 0 ,0, 0 };
1822 char patch[] = { 0, 0, 0 };
1823 char *ver_parse[] = { major, minor, patch };
1824 int i, j;
1825
1826 i = j = 0;
1827 while (*v != '\0' && v < end) {
1828 if (*v != '.' && j < 2)
1829 ver_parse[i][j++] = *v;
1830 else {
1831 i++;
1832 j = 0;
1833 }
1834 v++;
1835 }
1836
1837 *m = strtol(minor, NULL, 0);
1838 *p = strtol(patch, NULL, 0);
1839 }
1840 #endif
1841
1842 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1843 {
1844 /* migr_strip_size when repairing or initializing parity */
1845 struct imsm_map *map = get_imsm_map(dev, 0);
1846 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1847
1848 switch (get_imsm_raid_level(map)) {
1849 case 5:
1850 case 10:
1851 return chunk;
1852 default:
1853 return 128*1024 >> 9;
1854 }
1855 }
1856
1857 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1858 {
1859 /* migr_strip_size when rebuilding a degraded disk, no idea why
1860 * this is different than migr_strip_size_resync(), but it's good
1861 * to be compatible
1862 */
1863 struct imsm_map *map = get_imsm_map(dev, 1);
1864 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1865
1866 switch (get_imsm_raid_level(map)) {
1867 case 1:
1868 case 10:
1869 if (map->num_members % map->num_domains == 0)
1870 return 128*1024 >> 9;
1871 else
1872 return chunk;
1873 case 5:
1874 return max((__u32) 64*1024 >> 9, chunk);
1875 default:
1876 return 128*1024 >> 9;
1877 }
1878 }
1879
1880 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1881 {
1882 struct imsm_map *lo = get_imsm_map(dev, 0);
1883 struct imsm_map *hi = get_imsm_map(dev, 1);
1884 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1885 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1886
1887 return max((__u32) 1, hi_chunk / lo_chunk);
1888 }
1889
1890 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1891 {
1892 struct imsm_map *lo = get_imsm_map(dev, 0);
1893 int level = get_imsm_raid_level(lo);
1894
1895 if (level == 1 || level == 10) {
1896 struct imsm_map *hi = get_imsm_map(dev, 1);
1897
1898 return hi->num_domains;
1899 } else
1900 return num_stripes_per_unit_resync(dev);
1901 }
1902
1903 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1904 {
1905 /* named 'imsm_' because raid0, raid1 and raid10
1906 * counter-intuitively have the same number of data disks
1907 */
1908 struct imsm_map *map = get_imsm_map(dev, second_map);
1909
1910 switch (get_imsm_raid_level(map)) {
1911 case 0:
1912 case 1:
1913 case 10:
1914 return map->num_members;
1915 case 5:
1916 return map->num_members - 1;
1917 default:
1918 dprintf("%s: unsupported raid level\n", __func__);
1919 return 0;
1920 }
1921 }
1922
1923 static __u32 parity_segment_depth(struct imsm_dev *dev)
1924 {
1925 struct imsm_map *map = get_imsm_map(dev, 0);
1926 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1927
1928 switch(get_imsm_raid_level(map)) {
1929 case 1:
1930 case 10:
1931 return chunk * map->num_domains;
1932 case 5:
1933 return chunk * map->num_members;
1934 default:
1935 return chunk;
1936 }
1937 }
1938
1939 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1940 {
1941 struct imsm_map *map = get_imsm_map(dev, 1);
1942 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1943 __u32 strip = block / chunk;
1944
1945 switch (get_imsm_raid_level(map)) {
1946 case 1:
1947 case 10: {
1948 __u32 vol_strip = (strip * map->num_domains) + 1;
1949 __u32 vol_stripe = vol_strip / map->num_members;
1950
1951 return vol_stripe * chunk + block % chunk;
1952 } case 5: {
1953 __u32 stripe = strip / (map->num_members - 1);
1954
1955 return stripe * chunk + block % chunk;
1956 }
1957 default:
1958 return 0;
1959 }
1960 }
1961
1962 static __u64 blocks_per_migr_unit(struct intel_super *super,
1963 struct imsm_dev *dev)
1964 {
1965 /* calculate the conversion factor between per member 'blocks'
1966 * (md/{resync,rebuild}_start) and imsm migration units, return
1967 * 0 for the 'not migrating' and 'unsupported migration' cases
1968 */
1969 if (!dev->vol.migr_state)
1970 return 0;
1971
1972 switch (migr_type(dev)) {
1973 case MIGR_GEN_MIGR: {
1974 struct migr_record *migr_rec = super->migr_rec;
1975 return __le32_to_cpu(migr_rec->blocks_per_unit);
1976 }
1977 case MIGR_VERIFY:
1978 case MIGR_REPAIR:
1979 case MIGR_INIT: {
1980 struct imsm_map *map = get_imsm_map(dev, 0);
1981 __u32 stripes_per_unit;
1982 __u32 blocks_per_unit;
1983 __u32 parity_depth;
1984 __u32 migr_chunk;
1985 __u32 block_map;
1986 __u32 block_rel;
1987 __u32 segment;
1988 __u32 stripe;
1989 __u8 disks;
1990
1991 /* yes, this is really the translation of migr_units to
1992 * per-member blocks in the 'resync' case
1993 */
1994 stripes_per_unit = num_stripes_per_unit_resync(dev);
1995 migr_chunk = migr_strip_blocks_resync(dev);
1996 disks = imsm_num_data_members(dev, 0);
1997 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1998 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1999 segment = blocks_per_unit / stripe;
2000 block_rel = blocks_per_unit - segment * stripe;
2001 parity_depth = parity_segment_depth(dev);
2002 block_map = map_migr_block(dev, block_rel);
2003 return block_map + parity_depth * segment;
2004 }
2005 case MIGR_REBUILD: {
2006 __u32 stripes_per_unit;
2007 __u32 migr_chunk;
2008
2009 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2010 migr_chunk = migr_strip_blocks_rebuild(dev);
2011 return migr_chunk * stripes_per_unit;
2012 }
2013 case MIGR_STATE_CHANGE:
2014 default:
2015 return 0;
2016 }
2017 }
2018
2019 static int imsm_level_to_layout(int level)
2020 {
2021 switch (level) {
2022 case 0:
2023 case 1:
2024 return 0;
2025 case 5:
2026 case 6:
2027 return ALGORITHM_LEFT_ASYMMETRIC;
2028 case 10:
2029 return 0x102;
2030 }
2031 return UnSet;
2032 }
2033
2034 /*******************************************************************************
2035 * Function: read_imsm_migr_rec
2036 * Description: Function reads imsm migration record from last sector of disk
2037 * Parameters:
2038 * fd : disk descriptor
2039 * super : metadata info
2040 * Returns:
2041 * 0 : success,
2042 * -1 : fail
2043 ******************************************************************************/
2044 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2045 {
2046 int ret_val = -1;
2047 unsigned long long dsize;
2048
2049 get_dev_size(fd, NULL, &dsize);
2050 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2051 fprintf(stderr,
2052 Name ": Cannot seek to anchor block: %s\n",
2053 strerror(errno));
2054 goto out;
2055 }
2056 if (read(fd, super->migr_rec_buf, 512) != 512) {
2057 fprintf(stderr,
2058 Name ": Cannot read migr record block: %s\n",
2059 strerror(errno));
2060 goto out;
2061 }
2062 ret_val = 0;
2063
2064 out:
2065 return ret_val;
2066 }
2067
2068 /*******************************************************************************
2069 * Function: load_imsm_migr_rec
2070 * Description: Function reads imsm migration record (it is stored at the last
2071 * sector of disk)
2072 * Parameters:
2073 * super : imsm internal array info
2074 * info : general array info
2075 * Returns:
2076 * 0 : success
2077 * -1 : fail
2078 ******************************************************************************/
2079 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2080 {
2081 struct mdinfo *sd;
2082 struct dl *dl = NULL;
2083 char nm[30];
2084 int retval = -1;
2085 int fd = -1;
2086
2087 if (info) {
2088 for (sd = info->devs ; sd ; sd = sd->next) {
2089 /* read only from one of the first two slots */
2090 if ((sd->disk.raid_disk > 1) ||
2091 (sd->disk.raid_disk < 0))
2092 continue;
2093 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2094 fd = dev_open(nm, O_RDONLY);
2095 if (fd >= 0)
2096 break;
2097 }
2098 }
2099 if (fd < 0) {
2100 for (dl = super->disks; dl; dl = dl->next) {
2101 /* read only from one of the first two slots */
2102 if (dl->index > 1)
2103 continue;
2104 sprintf(nm, "%d:%d", dl->major, dl->minor);
2105 fd = dev_open(nm, O_RDONLY);
2106 if (fd >= 0)
2107 break;
2108 }
2109 }
2110 if (fd < 0)
2111 goto out;
2112 retval = read_imsm_migr_rec(fd, super);
2113
2114 out:
2115 if (fd >= 0)
2116 close(fd);
2117 return retval;
2118 }
2119
2120 #ifndef MDASSEMBLE
2121 /*******************************************************************************
2122 * function: imsm_create_metadata_checkpoint_update
2123 * Description: It creates update for checkpoint change.
2124 * Parameters:
2125 * super : imsm internal array info
2126 * u : pointer to prepared update
2127 * Returns:
2128 * Uptate length.
2129 * If length is equal to 0, input pointer u contains no update
2130 ******************************************************************************/
2131 static int imsm_create_metadata_checkpoint_update(
2132 struct intel_super *super,
2133 struct imsm_update_general_migration_checkpoint **u)
2134 {
2135
2136 int update_memory_size = 0;
2137
2138 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2139
2140 if (u == NULL)
2141 return 0;
2142 *u = NULL;
2143
2144 /* size of all update data without anchor */
2145 update_memory_size =
2146 sizeof(struct imsm_update_general_migration_checkpoint);
2147
2148 *u = calloc(1, update_memory_size);
2149 if (*u == NULL) {
2150 dprintf("error: cannot get memory for "
2151 "imsm_create_metadata_checkpoint_update update\n");
2152 return 0;
2153 }
2154 (*u)->type = update_general_migration_checkpoint;
2155 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2156 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2157 (*u)->curr_migr_unit);
2158
2159 return update_memory_size;
2160 }
2161
2162
2163 static void imsm_update_metadata_locally(struct supertype *st,
2164 void *buf, int len);
2165
2166 /*******************************************************************************
2167 * Function: write_imsm_migr_rec
2168 * Description: Function writes imsm migration record
2169 * (at the last sector of disk)
2170 * Parameters:
2171 * super : imsm internal array info
2172 * Returns:
2173 * 0 : success
2174 * -1 : if fail
2175 ******************************************************************************/
2176 static int write_imsm_migr_rec(struct supertype *st)
2177 {
2178 struct intel_super *super = st->sb;
2179 unsigned long long dsize;
2180 char nm[30];
2181 int fd = -1;
2182 int retval = -1;
2183 struct dl *sd;
2184 int len;
2185 struct imsm_update_general_migration_checkpoint *u;
2186
2187 for (sd = super->disks ; sd ; sd = sd->next) {
2188 /* write to 2 first slots only */
2189 if ((sd->index < 0) || (sd->index > 1))
2190 continue;
2191 sprintf(nm, "%d:%d", sd->major, sd->minor);
2192 fd = dev_open(nm, O_RDWR);
2193 if (fd < 0)
2194 continue;
2195 get_dev_size(fd, NULL, &dsize);
2196 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2197 fprintf(stderr,
2198 Name ": Cannot seek to anchor block: %s\n",
2199 strerror(errno));
2200 goto out;
2201 }
2202 if (write(fd, super->migr_rec_buf, 512) != 512) {
2203 fprintf(stderr,
2204 Name ": Cannot write migr record block: %s\n",
2205 strerror(errno));
2206 goto out;
2207 }
2208 close(fd);
2209 fd = -1;
2210 }
2211 /* update checkpoint information in metadata */
2212 len = imsm_create_metadata_checkpoint_update(super, &u);
2213
2214 if (len <= 0) {
2215 dprintf("imsm: Cannot prepare update\n");
2216 goto out;
2217 }
2218 /* update metadata locally */
2219 imsm_update_metadata_locally(st, u, len);
2220 /* and possibly remotely */
2221 if (st->update_tail) {
2222 append_metadata_update(st, u, len);
2223 /* during reshape we do all work inside metadata handler
2224 * manage_reshape(), so metadata update has to be triggered
2225 * insida it
2226 */
2227 flush_metadata_updates(st);
2228 st->update_tail = &st->updates;
2229 } else
2230 free(u);
2231
2232 retval = 0;
2233 out:
2234 if (fd >= 0)
2235 close(fd);
2236 return retval;
2237 }
2238 #endif /* MDASSEMBLE */
2239
2240 /* spare/missing disks activations are not allowe when
2241 * array/container performs reshape operation, because
2242 * all arrays in container works on the same disks set
2243 */
2244 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2245 {
2246 int rv = 0;
2247 struct intel_dev *i_dev;
2248 struct imsm_dev *dev;
2249
2250 /* check whole container
2251 */
2252 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2253 dev = i_dev->dev;
2254 if (is_gen_migration(dev)) {
2255 /* No repair during any migration in container
2256 */
2257 rv = 1;
2258 break;
2259 }
2260 }
2261 return rv;
2262 }
2263
2264 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2265 {
2266 struct intel_super *super = st->sb;
2267 struct migr_record *migr_rec = super->migr_rec;
2268 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2269 struct imsm_map *map = get_imsm_map(dev, 0);
2270 struct imsm_map *prev_map = get_imsm_map(dev, 1);
2271 struct imsm_map *map_to_analyse = map;
2272 struct dl *dl;
2273 char *devname;
2274 unsigned int component_size_alligment;
2275 int map_disks = info->array.raid_disks;
2276
2277 memset(info, 0, sizeof(*info));
2278 if (prev_map)
2279 map_to_analyse = prev_map;
2280
2281 dl = super->current_disk;
2282
2283 info->container_member = super->current_vol;
2284 info->array.raid_disks = map->num_members;
2285 info->array.level = get_imsm_raid_level(map_to_analyse);
2286 info->array.layout = imsm_level_to_layout(info->array.level);
2287 info->array.md_minor = -1;
2288 info->array.ctime = 0;
2289 info->array.utime = 0;
2290 info->array.chunk_size =
2291 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2292 info->array.state = !dev->vol.dirty;
2293 info->custom_array_size = __le32_to_cpu(dev->size_high);
2294 info->custom_array_size <<= 32;
2295 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2296 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2297
2298 if (prev_map && map->map_state == prev_map->map_state) {
2299 info->reshape_active = 1;
2300 info->new_level = get_imsm_raid_level(map);
2301 info->new_layout = imsm_level_to_layout(info->new_level);
2302 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2303 info->delta_disks = map->num_members - prev_map->num_members;
2304 if (info->delta_disks) {
2305 /* this needs to be applied to every array
2306 * in the container.
2307 */
2308 info->reshape_active = 2;
2309 }
2310 /* We shape information that we give to md might have to be
2311 * modify to cope with md's requirement for reshaping arrays.
2312 * For example, when reshaping a RAID0, md requires it to be
2313 * presented as a degraded RAID4.
2314 * Also if a RAID0 is migrating to a RAID5 we need to specify
2315 * the array as already being RAID5, but the 'before' layout
2316 * is a RAID4-like layout.
2317 */
2318 switch (info->array.level) {
2319 case 0:
2320 switch(info->new_level) {
2321 case 0:
2322 /* conversion is happening as RAID4 */
2323 info->array.level = 4;
2324 info->array.raid_disks += 1;
2325 break;
2326 case 5:
2327 /* conversion is happening as RAID5 */
2328 info->array.level = 5;
2329 info->array.layout = ALGORITHM_PARITY_N;
2330 info->delta_disks -= 1;
2331 break;
2332 default:
2333 /* FIXME error message */
2334 info->array.level = UnSet;
2335 break;
2336 }
2337 break;
2338 }
2339 } else {
2340 info->new_level = UnSet;
2341 info->new_layout = UnSet;
2342 info->new_chunk = info->array.chunk_size;
2343 info->delta_disks = 0;
2344 }
2345
2346 if (dl) {
2347 info->disk.major = dl->major;
2348 info->disk.minor = dl->minor;
2349 info->disk.number = dl->index;
2350 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2351 dl->index);
2352 }
2353
2354 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2355 info->component_size =
2356 __le32_to_cpu(map_to_analyse->blocks_per_member);
2357
2358 /* check component size aligment
2359 */
2360 component_size_alligment =
2361 info->component_size % (info->array.chunk_size/512);
2362
2363 if (component_size_alligment &&
2364 (info->array.level != 1) && (info->array.level != UnSet)) {
2365 dprintf("imsm: reported component size alligned from %llu ",
2366 info->component_size);
2367 info->component_size -= component_size_alligment;
2368 dprintf("to %llu (%i).\n",
2369 info->component_size, component_size_alligment);
2370 }
2371
2372 memset(info->uuid, 0, sizeof(info->uuid));
2373 info->recovery_start = MaxSector;
2374
2375 info->reshape_progress = 0;
2376 info->resync_start = MaxSector;
2377 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2378 dev->vol.dirty) &&
2379 imsm_reshape_blocks_arrays_changes(super) == 0) {
2380 info->resync_start = 0;
2381 }
2382 if (dev->vol.migr_state) {
2383 switch (migr_type(dev)) {
2384 case MIGR_REPAIR:
2385 case MIGR_INIT: {
2386 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2387 dev);
2388 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2389
2390 info->resync_start = blocks_per_unit * units;
2391 break;
2392 }
2393 case MIGR_GEN_MIGR: {
2394 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2395 dev);
2396 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2397 unsigned long long array_blocks;
2398 int used_disks;
2399
2400 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2401 (units <
2402 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2403 (super->migr_rec->rec_status ==
2404 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2405 units++;
2406
2407 info->reshape_progress = blocks_per_unit * units;
2408
2409 dprintf("IMSM: General Migration checkpoint : %llu "
2410 "(%llu) -> read reshape progress : %llu\n",
2411 (unsigned long long)units,
2412 (unsigned long long)blocks_per_unit,
2413 info->reshape_progress);
2414
2415 used_disks = imsm_num_data_members(dev, 1);
2416 if (used_disks > 0) {
2417 array_blocks = map->blocks_per_member *
2418 used_disks;
2419 /* round array size down to closest MB
2420 */
2421 info->custom_array_size = (array_blocks
2422 >> SECT_PER_MB_SHIFT)
2423 << SECT_PER_MB_SHIFT;
2424 }
2425 }
2426 case MIGR_VERIFY:
2427 /* we could emulate the checkpointing of
2428 * 'sync_action=check' migrations, but for now
2429 * we just immediately complete them
2430 */
2431 case MIGR_REBUILD:
2432 /* this is handled by container_content_imsm() */
2433 case MIGR_STATE_CHANGE:
2434 /* FIXME handle other migrations */
2435 default:
2436 /* we are not dirty, so... */
2437 info->resync_start = MaxSector;
2438 }
2439 }
2440
2441 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2442 info->name[MAX_RAID_SERIAL_LEN] = 0;
2443
2444 info->array.major_version = -1;
2445 info->array.minor_version = -2;
2446 devname = devnum2devname(st->container_dev);
2447 *info->text_version = '\0';
2448 if (devname)
2449 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2450 free(devname);
2451 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2452 uuid_from_super_imsm(st, info->uuid);
2453
2454 if (dmap) {
2455 int i, j;
2456 for (i=0; i<map_disks; i++) {
2457 dmap[i] = 0;
2458 if (i < info->array.raid_disks) {
2459 struct imsm_disk *dsk;
2460 j = get_imsm_disk_idx(dev, i, -1);
2461 dsk = get_imsm_disk(super, j);
2462 if (dsk && (dsk->status & CONFIGURED_DISK))
2463 dmap[i] = 1;
2464 }
2465 }
2466 }
2467 }
2468
2469 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2470 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2471
2472 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2473 {
2474 struct dl *d;
2475
2476 for (d = super->missing; d; d = d->next)
2477 if (d->index == index)
2478 return &d->disk;
2479 return NULL;
2480 }
2481
2482 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2483 {
2484 struct intel_super *super = st->sb;
2485 struct imsm_disk *disk;
2486 int map_disks = info->array.raid_disks;
2487 int max_enough = -1;
2488 int i;
2489 struct imsm_super *mpb;
2490
2491 if (super->current_vol >= 0) {
2492 getinfo_super_imsm_volume(st, info, map);
2493 return;
2494 }
2495 memset(info, 0, sizeof(*info));
2496
2497 /* Set raid_disks to zero so that Assemble will always pull in valid
2498 * spares
2499 */
2500 info->array.raid_disks = 0;
2501 info->array.level = LEVEL_CONTAINER;
2502 info->array.layout = 0;
2503 info->array.md_minor = -1;
2504 info->array.ctime = 0; /* N/A for imsm */
2505 info->array.utime = 0;
2506 info->array.chunk_size = 0;
2507
2508 info->disk.major = 0;
2509 info->disk.minor = 0;
2510 info->disk.raid_disk = -1;
2511 info->reshape_active = 0;
2512 info->array.major_version = -1;
2513 info->array.minor_version = -2;
2514 strcpy(info->text_version, "imsm");
2515 info->safe_mode_delay = 0;
2516 info->disk.number = -1;
2517 info->disk.state = 0;
2518 info->name[0] = 0;
2519 info->recovery_start = MaxSector;
2520 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2521
2522 /* do we have the all the insync disks that we expect? */
2523 mpb = super->anchor;
2524
2525 for (i = 0; i < mpb->num_raid_devs; i++) {
2526 struct imsm_dev *dev = get_imsm_dev(super, i);
2527 int failed, enough, j, missing = 0;
2528 struct imsm_map *map;
2529 __u8 state;
2530
2531 failed = imsm_count_failed(super, dev);
2532 state = imsm_check_degraded(super, dev, failed);
2533 map = get_imsm_map(dev, dev->vol.migr_state);
2534
2535 /* any newly missing disks?
2536 * (catches single-degraded vs double-degraded)
2537 */
2538 for (j = 0; j < map->num_members; j++) {
2539 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
2540 __u32 idx = ord_to_idx(ord);
2541
2542 if (!(ord & IMSM_ORD_REBUILD) &&
2543 get_imsm_missing(super, idx)) {
2544 missing = 1;
2545 break;
2546 }
2547 }
2548
2549 if (state == IMSM_T_STATE_FAILED)
2550 enough = -1;
2551 else if (state == IMSM_T_STATE_DEGRADED &&
2552 (state != map->map_state || missing))
2553 enough = 0;
2554 else /* we're normal, or already degraded */
2555 enough = 1;
2556
2557 /* in the missing/failed disk case check to see
2558 * if at least one array is runnable
2559 */
2560 max_enough = max(max_enough, enough);
2561 }
2562 dprintf("%s: enough: %d\n", __func__, max_enough);
2563 info->container_enough = max_enough;
2564
2565 if (super->disks) {
2566 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2567
2568 disk = &super->disks->disk;
2569 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2570 info->component_size = reserved;
2571 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2572 /* we don't change info->disk.raid_disk here because
2573 * this state will be finalized in mdmon after we have
2574 * found the 'most fresh' version of the metadata
2575 */
2576 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2577 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2578 }
2579
2580 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2581 * ->compare_super may have updated the 'num_raid_devs' field for spares
2582 */
2583 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2584 uuid_from_super_imsm(st, info->uuid);
2585 else
2586 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2587
2588 /* I don't know how to compute 'map' on imsm, so use safe default */
2589 if (map) {
2590 int i;
2591 for (i = 0; i < map_disks; i++)
2592 map[i] = 1;
2593 }
2594
2595 }
2596
2597 /* allocates memory and fills disk in mdinfo structure
2598 * for each disk in array */
2599 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2600 {
2601 struct mdinfo *mddev = NULL;
2602 struct intel_super *super = st->sb;
2603 struct imsm_disk *disk;
2604 int count = 0;
2605 struct dl *dl;
2606 if (!super || !super->disks)
2607 return NULL;
2608 dl = super->disks;
2609 mddev = malloc(sizeof(*mddev));
2610 if (!mddev) {
2611 fprintf(stderr, Name ": Failed to allocate memory.\n");
2612 return NULL;
2613 }
2614 memset(mddev, 0, sizeof(*mddev));
2615 while (dl) {
2616 struct mdinfo *tmp;
2617 disk = &dl->disk;
2618 tmp = malloc(sizeof(*tmp));
2619 if (!tmp) {
2620 fprintf(stderr, Name ": Failed to allocate memory.\n");
2621 if (mddev)
2622 sysfs_free(mddev);
2623 return NULL;
2624 }
2625 memset(tmp, 0, sizeof(*tmp));
2626 if (mddev->devs)
2627 tmp->next = mddev->devs;
2628 mddev->devs = tmp;
2629 tmp->disk.number = count++;
2630 tmp->disk.major = dl->major;
2631 tmp->disk.minor = dl->minor;
2632 tmp->disk.state = is_configured(disk) ?
2633 (1 << MD_DISK_ACTIVE) : 0;
2634 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2635 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2636 tmp->disk.raid_disk = -1;
2637 dl = dl->next;
2638 }
2639 return mddev;
2640 }
2641
2642 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2643 char *update, char *devname, int verbose,
2644 int uuid_set, char *homehost)
2645 {
2646 /* For 'assemble' and 'force' we need to return non-zero if any
2647 * change was made. For others, the return value is ignored.
2648 * Update options are:
2649 * force-one : This device looks a bit old but needs to be included,
2650 * update age info appropriately.
2651 * assemble: clear any 'faulty' flag to allow this device to
2652 * be assembled.
2653 * force-array: Array is degraded but being forced, mark it clean
2654 * if that will be needed to assemble it.
2655 *
2656 * newdev: not used ????
2657 * grow: Array has gained a new device - this is currently for
2658 * linear only
2659 * resync: mark as dirty so a resync will happen.
2660 * name: update the name - preserving the homehost
2661 * uuid: Change the uuid of the array to match watch is given
2662 *
2663 * Following are not relevant for this imsm:
2664 * sparc2.2 : update from old dodgey metadata
2665 * super-minor: change the preferred_minor number
2666 * summaries: update redundant counters.
2667 * homehost: update the recorded homehost
2668 * _reshape_progress: record new reshape_progress position.
2669 */
2670 int rv = 1;
2671 struct intel_super *super = st->sb;
2672 struct imsm_super *mpb;
2673
2674 /* we can only update container info */
2675 if (!super || super->current_vol >= 0 || !super->anchor)
2676 return 1;
2677
2678 mpb = super->anchor;
2679
2680 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2681 rv = -1;
2682 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2683 mpb->orig_family_num = *((__u32 *) info->update_private);
2684 rv = 0;
2685 } else if (strcmp(update, "uuid") == 0) {
2686 __u32 *new_family = malloc(sizeof(*new_family));
2687
2688 /* update orig_family_number with the incoming random
2689 * data, report the new effective uuid, and store the
2690 * new orig_family_num for future updates.
2691 */
2692 if (new_family) {
2693 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2694 uuid_from_super_imsm(st, info->uuid);
2695 *new_family = mpb->orig_family_num;
2696 info->update_private = new_family;
2697 rv = 0;
2698 }
2699 } else if (strcmp(update, "assemble") == 0)
2700 rv = 0;
2701 else
2702 rv = -1;
2703
2704 /* successful update? recompute checksum */
2705 if (rv == 0)
2706 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2707
2708 return rv;
2709 }
2710
2711 static size_t disks_to_mpb_size(int disks)
2712 {
2713 size_t size;
2714
2715 size = sizeof(struct imsm_super);
2716 size += (disks - 1) * sizeof(struct imsm_disk);
2717 size += 2 * sizeof(struct imsm_dev);
2718 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2719 size += (4 - 2) * sizeof(struct imsm_map);
2720 /* 4 possible disk_ord_tbl's */
2721 size += 4 * (disks - 1) * sizeof(__u32);
2722
2723 return size;
2724 }
2725
2726 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2727 {
2728 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2729 return 0;
2730
2731 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2732 }
2733
2734 static void free_devlist(struct intel_super *super)
2735 {
2736 struct intel_dev *dv;
2737
2738 while (super->devlist) {
2739 dv = super->devlist->next;
2740 free(super->devlist->dev);
2741 free(super->devlist);
2742 super->devlist = dv;
2743 }
2744 }
2745
2746 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2747 {
2748 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2749 }
2750
2751 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2752 {
2753 /*
2754 * return:
2755 * 0 same, or first was empty, and second was copied
2756 * 1 second had wrong number
2757 * 2 wrong uuid
2758 * 3 wrong other info
2759 */
2760 struct intel_super *first = st->sb;
2761 struct intel_super *sec = tst->sb;
2762
2763 if (!first) {
2764 st->sb = tst->sb;
2765 tst->sb = NULL;
2766 return 0;
2767 }
2768 /* in platform dependent environment test if the disks
2769 * use the same Intel hba
2770 */
2771 if (!check_env("IMSM_NO_PLATFORM")) {
2772 if (!first->hba || !sec->hba ||
2773 (first->hba->type != sec->hba->type)) {
2774 fprintf(stderr,
2775 "HBAs of devices does not match %s != %s\n",
2776 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2777 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2778 return 3;
2779 }
2780 }
2781
2782 /* if an anchor does not have num_raid_devs set then it is a free
2783 * floating spare
2784 */
2785 if (first->anchor->num_raid_devs > 0 &&
2786 sec->anchor->num_raid_devs > 0) {
2787 /* Determine if these disks might ever have been
2788 * related. Further disambiguation can only take place
2789 * in load_super_imsm_all
2790 */
2791 __u32 first_family = first->anchor->orig_family_num;
2792 __u32 sec_family = sec->anchor->orig_family_num;
2793
2794 if (memcmp(first->anchor->sig, sec->anchor->sig,
2795 MAX_SIGNATURE_LENGTH) != 0)
2796 return 3;
2797
2798 if (first_family == 0)
2799 first_family = first->anchor->family_num;
2800 if (sec_family == 0)
2801 sec_family = sec->anchor->family_num;
2802
2803 if (first_family != sec_family)
2804 return 3;
2805
2806 }
2807
2808
2809 /* if 'first' is a spare promote it to a populated mpb with sec's
2810 * family number
2811 */
2812 if (first->anchor->num_raid_devs == 0 &&
2813 sec->anchor->num_raid_devs > 0) {
2814 int i;
2815 struct intel_dev *dv;
2816 struct imsm_dev *dev;
2817
2818 /* we need to copy raid device info from sec if an allocation
2819 * fails here we don't associate the spare
2820 */
2821 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2822 dv = malloc(sizeof(*dv));
2823 if (!dv)
2824 break;
2825 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2826 if (!dev) {
2827 free(dv);
2828 break;
2829 }
2830 dv->dev = dev;
2831 dv->index = i;
2832 dv->next = first->devlist;
2833 first->devlist = dv;
2834 }
2835 if (i < sec->anchor->num_raid_devs) {
2836 /* allocation failure */
2837 free_devlist(first);
2838 fprintf(stderr, "imsm: failed to associate spare\n");
2839 return 3;
2840 }
2841 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2842 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2843 first->anchor->family_num = sec->anchor->family_num;
2844 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2845 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2846 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2847 }
2848
2849 return 0;
2850 }
2851
2852 static void fd2devname(int fd, char *name)
2853 {
2854 struct stat st;
2855 char path[256];
2856 char dname[PATH_MAX];
2857 char *nm;
2858 int rv;
2859
2860 name[0] = '\0';
2861 if (fstat(fd, &st) != 0)
2862 return;
2863 sprintf(path, "/sys/dev/block/%d:%d",
2864 major(st.st_rdev), minor(st.st_rdev));
2865
2866 rv = readlink(path, dname, sizeof(dname));
2867 if (rv <= 0)
2868 return;
2869
2870 dname[rv] = '\0';
2871 nm = strrchr(dname, '/');
2872 nm++;
2873 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2874 }
2875
2876 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2877
2878 static int imsm_read_serial(int fd, char *devname,
2879 __u8 serial[MAX_RAID_SERIAL_LEN])
2880 {
2881 unsigned char scsi_serial[255];
2882 int rv;
2883 int rsp_len;
2884 int len;
2885 char *dest;
2886 char *src;
2887 char *rsp_buf;
2888 int i;
2889
2890 memset(scsi_serial, 0, sizeof(scsi_serial));
2891
2892 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2893
2894 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2895 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2896 fd2devname(fd, (char *) serial);
2897 return 0;
2898 }
2899
2900 if (rv != 0) {
2901 if (devname)
2902 fprintf(stderr,
2903 Name ": Failed to retrieve serial for %s\n",
2904 devname);
2905 return rv;
2906 }
2907
2908 rsp_len = scsi_serial[3];
2909 if (!rsp_len) {
2910 if (devname)
2911 fprintf(stderr,
2912 Name ": Failed to retrieve serial for %s\n",
2913 devname);
2914 return 2;
2915 }
2916 rsp_buf = (char *) &scsi_serial[4];
2917
2918 /* trim all whitespace and non-printable characters and convert
2919 * ':' to ';'
2920 */
2921 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2922 src = &rsp_buf[i];
2923 if (*src > 0x20) {
2924 /* ':' is reserved for use in placeholder serial
2925 * numbers for missing disks
2926 */
2927 if (*src == ':')
2928 *dest++ = ';';
2929 else
2930 *dest++ = *src;
2931 }
2932 }
2933 len = dest - rsp_buf;
2934 dest = rsp_buf;
2935
2936 /* truncate leading characters */
2937 if (len > MAX_RAID_SERIAL_LEN) {
2938 dest += len - MAX_RAID_SERIAL_LEN;
2939 len = MAX_RAID_SERIAL_LEN;
2940 }
2941
2942 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2943 memcpy(serial, dest, len);
2944
2945 return 0;
2946 }
2947
2948 static int serialcmp(__u8 *s1, __u8 *s2)
2949 {
2950 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2951 }
2952
2953 static void serialcpy(__u8 *dest, __u8 *src)
2954 {
2955 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2956 }
2957
2958 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2959 {
2960 struct dl *dl;
2961
2962 for (dl = super->disks; dl; dl = dl->next)
2963 if (serialcmp(dl->serial, serial) == 0)
2964 break;
2965
2966 return dl;
2967 }
2968
2969 static struct imsm_disk *
2970 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2971 {
2972 int i;
2973
2974 for (i = 0; i < mpb->num_disks; i++) {
2975 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2976
2977 if (serialcmp(disk->serial, serial) == 0) {
2978 if (idx)
2979 *idx = i;
2980 return disk;
2981 }
2982 }
2983
2984 return NULL;
2985 }
2986
2987 static int
2988 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2989 {
2990 struct imsm_disk *disk;
2991 struct dl *dl;
2992 struct stat stb;
2993 int rv;
2994 char name[40];
2995 __u8 serial[MAX_RAID_SERIAL_LEN];
2996
2997 rv = imsm_read_serial(fd, devname, serial);
2998
2999 if (rv != 0)
3000 return 2;
3001
3002 dl = calloc(1, sizeof(*dl));
3003 if (!dl) {
3004 if (devname)
3005 fprintf(stderr,
3006 Name ": failed to allocate disk buffer for %s\n",
3007 devname);
3008 return 2;
3009 }
3010
3011 fstat(fd, &stb);
3012 dl->major = major(stb.st_rdev);
3013 dl->minor = minor(stb.st_rdev);
3014 dl->next = super->disks;
3015 dl->fd = keep_fd ? fd : -1;
3016 assert(super->disks == NULL);
3017 super->disks = dl;
3018 serialcpy(dl->serial, serial);
3019 dl->index = -2;
3020 dl->e = NULL;
3021 fd2devname(fd, name);
3022 if (devname)
3023 dl->devname = strdup(devname);
3024 else
3025 dl->devname = strdup(name);
3026
3027 /* look up this disk's index in the current anchor */
3028 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3029 if (disk) {
3030 dl->disk = *disk;
3031 /* only set index on disks that are a member of a
3032 * populated contianer, i.e. one with raid_devs
3033 */
3034 if (is_failed(&dl->disk))
3035 dl->index = -2;
3036 else if (is_spare(&dl->disk))
3037 dl->index = -1;
3038 }
3039
3040 return 0;
3041 }
3042
3043 #ifndef MDASSEMBLE
3044 /* When migrating map0 contains the 'destination' state while map1
3045 * contains the current state. When not migrating map0 contains the
3046 * current state. This routine assumes that map[0].map_state is set to
3047 * the current array state before being called.
3048 *
3049 * Migration is indicated by one of the following states
3050 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3051 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3052 * map1state=unitialized)
3053 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3054 * map1state=normal)
3055 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3056 * map1state=degraded)
3057 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3058 * map1state=normal)
3059 */
3060 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3061 __u8 to_state, int migr_type)
3062 {
3063 struct imsm_map *dest;
3064 struct imsm_map *src = get_imsm_map(dev, 0);
3065
3066 dev->vol.migr_state = 1;
3067 set_migr_type(dev, migr_type);
3068 dev->vol.curr_migr_unit = 0;
3069 dest = get_imsm_map(dev, 1);
3070
3071 /* duplicate and then set the target end state in map[0] */
3072 memcpy(dest, src, sizeof_imsm_map(src));
3073 if ((migr_type == MIGR_REBUILD) ||
3074 (migr_type == MIGR_GEN_MIGR)) {
3075 __u32 ord;
3076 int i;
3077
3078 for (i = 0; i < src->num_members; i++) {
3079 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3080 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3081 }
3082 }
3083
3084 if (migr_type == MIGR_GEN_MIGR)
3085 /* Clear migration record */
3086 memset(super->migr_rec, 0, sizeof(struct migr_record));
3087
3088 src->map_state = to_state;
3089 }
3090
3091 static void end_migration(struct imsm_dev *dev, __u8 map_state)
3092 {
3093 struct imsm_map *map = get_imsm_map(dev, 0);
3094 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
3095 int i, j;
3096
3097 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3098 * completed in the last migration.
3099 *
3100 * FIXME add support for raid-level-migration
3101 */
3102 for (i = 0; i < prev->num_members; i++)
3103 for (j = 0; j < map->num_members; j++)
3104 /* during online capacity expansion
3105 * disks position can be changed if takeover is used
3106 */
3107 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3108 ord_to_idx(prev->disk_ord_tbl[i])) {
3109 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3110 break;
3111 }
3112
3113 dev->vol.migr_state = 0;
3114 dev->vol.migr_type = 0;
3115 dev->vol.curr_migr_unit = 0;
3116 map->map_state = map_state;
3117 }
3118 #endif
3119
3120 static int parse_raid_devices(struct intel_super *super)
3121 {
3122 int i;
3123 struct imsm_dev *dev_new;
3124 size_t len, len_migr;
3125 size_t max_len = 0;
3126 size_t space_needed = 0;
3127 struct imsm_super *mpb = super->anchor;
3128
3129 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3130 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3131 struct intel_dev *dv;
3132
3133 len = sizeof_imsm_dev(dev_iter, 0);
3134 len_migr = sizeof_imsm_dev(dev_iter, 1);
3135 if (len_migr > len)
3136 space_needed += len_migr - len;
3137
3138 dv = malloc(sizeof(*dv));
3139 if (!dv)
3140 return 1;
3141 if (max_len < len_migr)
3142 max_len = len_migr;
3143 if (max_len > len_migr)
3144 space_needed += max_len - len_migr;
3145 dev_new = malloc(max_len);
3146 if (!dev_new) {
3147 free(dv);
3148 return 1;
3149 }
3150 imsm_copy_dev(dev_new, dev_iter);
3151 dv->dev = dev_new;
3152 dv->index = i;
3153 dv->next = super->devlist;
3154 super->devlist = dv;
3155 }
3156
3157 /* ensure that super->buf is large enough when all raid devices
3158 * are migrating
3159 */
3160 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3161 void *buf;
3162
3163 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3164 if (posix_memalign(&buf, 512, len) != 0)
3165 return 1;
3166
3167 memcpy(buf, super->buf, super->len);
3168 memset(buf + super->len, 0, len - super->len);
3169 free(super->buf);
3170 super->buf = buf;
3171 super->len = len;
3172 }
3173
3174 return 0;
3175 }
3176
3177 /* retrieve a pointer to the bbm log which starts after all raid devices */
3178 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3179 {
3180 void *ptr = NULL;
3181
3182 if (__le32_to_cpu(mpb->bbm_log_size)) {
3183 ptr = mpb;
3184 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3185 }
3186
3187 return ptr;
3188 }
3189
3190 /*******************************************************************************
3191 * Function: check_mpb_migr_compatibility
3192 * Description: Function checks for unsupported migration features:
3193 * - migration optimization area (pba_of_lba0)
3194 * - descending reshape (ascending_migr)
3195 * Parameters:
3196 * super : imsm metadata information
3197 * Returns:
3198 * 0 : migration is compatible
3199 * -1 : migration is not compatible
3200 ******************************************************************************/
3201 int check_mpb_migr_compatibility(struct intel_super *super)
3202 {
3203 struct imsm_map *map0, *map1;
3204 struct migr_record *migr_rec = super->migr_rec;
3205 int i;
3206
3207 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3208 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3209
3210 if (dev_iter &&
3211 dev_iter->vol.migr_state == 1 &&
3212 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3213 /* This device is migrating */
3214 map0 = get_imsm_map(dev_iter, 0);
3215 map1 = get_imsm_map(dev_iter, 1);
3216 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3217 /* migration optimization area was used */
3218 return -1;
3219 if (migr_rec->ascending_migr == 0
3220 && migr_rec->dest_depth_per_unit > 0)
3221 /* descending reshape not supported yet */
3222 return -1;
3223 }
3224 }
3225 return 0;
3226 }
3227
3228 static void __free_imsm(struct intel_super *super, int free_disks);
3229
3230 /* load_imsm_mpb - read matrix metadata
3231 * allocates super->mpb to be freed by free_imsm
3232 */
3233 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3234 {
3235 unsigned long long dsize;
3236 unsigned long long sectors;
3237 struct stat;
3238 struct imsm_super *anchor;
3239 __u32 check_sum;
3240
3241 get_dev_size(fd, NULL, &dsize);
3242 if (dsize < 1024) {
3243 if (devname)
3244 fprintf(stderr,
3245 Name ": %s: device to small for imsm\n",
3246 devname);
3247 return 1;
3248 }
3249
3250 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3251 if (devname)
3252 fprintf(stderr, Name
3253 ": Cannot seek to anchor block on %s: %s\n",
3254 devname, strerror(errno));
3255 return 1;
3256 }
3257
3258 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3259 if (devname)
3260 fprintf(stderr,
3261 Name ": Failed to allocate imsm anchor buffer"
3262 " on %s\n", devname);
3263 return 1;
3264 }
3265 if (read(fd, anchor, 512) != 512) {
3266 if (devname)
3267 fprintf(stderr,
3268 Name ": Cannot read anchor block on %s: %s\n",
3269 devname, strerror(errno));
3270 free(anchor);
3271 return 1;
3272 }
3273
3274 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3275 if (devname)
3276 fprintf(stderr,
3277 Name ": no IMSM anchor on %s\n", devname);
3278 free(anchor);
3279 return 2;
3280 }
3281
3282 __free_imsm(super, 0);
3283 /* reload capability and hba */
3284
3285 /* capability and hba must be updated with new super allocation */
3286 find_intel_hba_capability(fd, super, devname);
3287 super->len = ROUND_UP(anchor->mpb_size, 512);
3288 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3289 if (devname)
3290 fprintf(stderr,
3291 Name ": unable to allocate %zu byte mpb buffer\n",
3292 super->len);
3293 free(anchor);
3294 return 2;
3295 }
3296 memcpy(super->buf, anchor, 512);
3297
3298 sectors = mpb_sectors(anchor) - 1;
3299 free(anchor);
3300
3301 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3302 fprintf(stderr, Name
3303 ": %s could not allocate migr_rec buffer\n", __func__);
3304 free(super->buf);
3305 return 2;
3306 }
3307
3308 if (!sectors) {
3309 check_sum = __gen_imsm_checksum(super->anchor);
3310 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3311 if (devname)
3312 fprintf(stderr,
3313 Name ": IMSM checksum %x != %x on %s\n",
3314 check_sum,
3315 __le32_to_cpu(super->anchor->check_sum),
3316 devname);
3317 return 2;
3318 }
3319
3320 return 0;
3321 }
3322
3323 /* read the extended mpb */
3324 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3325 if (devname)
3326 fprintf(stderr,
3327 Name ": Cannot seek to extended mpb on %s: %s\n",
3328 devname, strerror(errno));
3329 return 1;
3330 }
3331
3332 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3333 if (devname)
3334 fprintf(stderr,
3335 Name ": Cannot read extended mpb on %s: %s\n",
3336 devname, strerror(errno));
3337 return 2;
3338 }
3339
3340 check_sum = __gen_imsm_checksum(super->anchor);
3341 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3342 if (devname)
3343 fprintf(stderr,
3344 Name ": IMSM checksum %x != %x on %s\n",
3345 check_sum, __le32_to_cpu(super->anchor->check_sum),
3346 devname);
3347 return 3;
3348 }
3349
3350 /* FIXME the BBM log is disk specific so we cannot use this global
3351 * buffer for all disks. Ok for now since we only look at the global
3352 * bbm_log_size parameter to gate assembly
3353 */
3354 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3355
3356 return 0;
3357 }
3358
3359 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3360
3361 static int
3362 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3363 {
3364 int err;
3365
3366 err = load_imsm_mpb(fd, super, devname);
3367 if (err)
3368 return err;
3369 err = load_imsm_disk(fd, super, devname, keep_fd);
3370 if (err)
3371 return err;
3372 err = parse_raid_devices(super);
3373
3374 return err;
3375 }
3376
3377 static void __free_imsm_disk(struct dl *d)
3378 {
3379 if (d->fd >= 0)
3380 close(d->fd);
3381 if (d->devname)
3382 free(d->devname);
3383 if (d->e)
3384 free(d->e);
3385 free(d);
3386
3387 }
3388
3389 static void free_imsm_disks(struct intel_super *super)
3390 {
3391 struct dl *d;
3392
3393 while (super->disks) {
3394 d = super->disks;
3395 super->disks = d->next;
3396 __free_imsm_disk(d);
3397 }
3398 while (super->disk_mgmt_list) {
3399 d = super->disk_mgmt_list;
3400 super->disk_mgmt_list = d->next;
3401 __free_imsm_disk(d);
3402 }
3403 while (super->missing) {
3404 d = super->missing;
3405 super->missing = d->next;
3406 __free_imsm_disk(d);
3407 }
3408
3409 }
3410
3411 /* free all the pieces hanging off of a super pointer */
3412 static void __free_imsm(struct intel_super *super, int free_disks)
3413 {
3414 struct intel_hba *elem, *next;
3415
3416 if (super->buf) {
3417 free(super->buf);
3418 super->buf = NULL;
3419 }
3420 /* unlink capability description */
3421 super->orom = NULL;
3422 if (super->migr_rec_buf) {
3423 free(super->migr_rec_buf);
3424 super->migr_rec_buf = NULL;
3425 }
3426 if (free_disks)
3427 free_imsm_disks(super);
3428 free_devlist(super);
3429 elem = super->hba;
3430 while (elem) {
3431 if (elem->path)
3432 free((void *)elem->path);
3433 next = elem->next;
3434 free(elem);
3435 elem = next;
3436 }
3437 super->hba = NULL;
3438 }
3439
3440 static void free_imsm(struct intel_super *super)
3441 {
3442 __free_imsm(super, 1);
3443 free(super);
3444 }
3445
3446 static void free_super_imsm(struct supertype *st)
3447 {
3448 struct intel_super *super = st->sb;
3449
3450 if (!super)
3451 return;
3452
3453 free_imsm(super);
3454 st->sb = NULL;
3455 }
3456
3457 static struct intel_super *alloc_super(void)
3458 {
3459 struct intel_super *super = malloc(sizeof(*super));
3460
3461 if (super) {
3462 memset(super, 0, sizeof(*super));
3463 super->current_vol = -1;
3464 super->create_offset = ~((__u32 ) 0);
3465 }
3466 return super;
3467 }
3468
3469 /*
3470 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3471 */
3472 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3473 {
3474 struct sys_dev *hba_name;
3475 int rv = 0;
3476
3477 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3478 super->orom = NULL;
3479 super->hba = NULL;
3480 return 0;
3481 }
3482 hba_name = find_disk_attached_hba(fd, NULL);
3483 if (!hba_name) {
3484 if (devname)
3485 fprintf(stderr,
3486 Name ": %s is not attached to Intel(R) RAID controller.\n",
3487 devname);
3488 return 1;
3489 }
3490 rv = attach_hba_to_super(super, hba_name);
3491 if (rv == 2) {
3492 if (devname) {
3493 struct intel_hba *hba = super->hba;
3494
3495 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3496 "controller (%s),\n"
3497 " but the container is assigned to Intel(R) "
3498 "%s RAID controller (",
3499 devname,
3500 hba_name->path,
3501 hba_name->pci_id ? : "Err!",
3502 get_sys_dev_type(hba_name->type));
3503
3504 while (hba) {
3505 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3506 if (hba->next)
3507 fprintf(stderr, ", ");
3508 hba = hba->next;
3509 }
3510
3511 fprintf(stderr, ").\n"
3512 " Mixing devices attached to different controllers "
3513 "is not allowed.\n");
3514 }
3515 free_sys_dev(&hba_name);
3516 return 2;
3517 }
3518 super->orom = find_imsm_capability(hba_name->type);
3519 free_sys_dev(&hba_name);
3520 if (!super->orom)
3521 return 3;
3522 return 0;
3523 }
3524
3525 /* find_missing - helper routine for load_super_imsm_all that identifies
3526 * disks that have disappeared from the system. This routine relies on
3527 * the mpb being uptodate, which it is at load time.
3528 */
3529 static int find_missing(struct intel_super *super)
3530 {
3531 int i;
3532 struct imsm_super *mpb = super->anchor;
3533 struct dl *dl;
3534 struct imsm_disk *disk;
3535
3536 for (i = 0; i < mpb->num_disks; i++) {
3537 disk = __get_imsm_disk(mpb, i);
3538 dl = serial_to_dl(disk->serial, super);
3539 if (dl)
3540 continue;
3541
3542 dl = malloc(sizeof(*dl));
3543 if (!dl)
3544 return 1;
3545 dl->major = 0;
3546 dl->minor = 0;
3547 dl->fd = -1;
3548 dl->devname = strdup("missing");
3549 dl->index = i;
3550 serialcpy(dl->serial, disk->serial);
3551 dl->disk = *disk;
3552 dl->e = NULL;
3553 dl->next = super->missing;
3554 super->missing = dl;
3555 }
3556
3557 return 0;
3558 }
3559
3560 #ifndef MDASSEMBLE
3561 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3562 {
3563 struct intel_disk *idisk = disk_list;
3564
3565 while (idisk) {
3566 if (serialcmp(idisk->disk.serial, serial) == 0)
3567 break;
3568 idisk = idisk->next;
3569 }
3570
3571 return idisk;
3572 }
3573
3574 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3575 struct intel_super *super,
3576 struct intel_disk **disk_list)
3577 {
3578 struct imsm_disk *d = &super->disks->disk;
3579 struct imsm_super *mpb = super->anchor;
3580 int i, j;
3581
3582 for (i = 0; i < tbl_size; i++) {
3583 struct imsm_super *tbl_mpb = table[i]->anchor;
3584 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3585
3586 if (tbl_mpb->family_num == mpb->family_num) {
3587 if (tbl_mpb->check_sum == mpb->check_sum) {
3588 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3589 __func__, super->disks->major,
3590 super->disks->minor,
3591 table[i]->disks->major,
3592 table[i]->disks->minor);
3593 break;
3594 }
3595
3596 if (((is_configured(d) && !is_configured(tbl_d)) ||
3597 is_configured(d) == is_configured(tbl_d)) &&
3598 tbl_mpb->generation_num < mpb->generation_num) {
3599 /* current version of the mpb is a
3600 * better candidate than the one in
3601 * super_table, but copy over "cross
3602 * generational" status
3603 */
3604 struct intel_disk *idisk;
3605
3606 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3607 __func__, super->disks->major,
3608 super->disks->minor,
3609 table[i]->disks->major,
3610 table[i]->disks->minor);
3611
3612 idisk = disk_list_get(tbl_d->serial, *disk_list);
3613 if (idisk && is_failed(&idisk->disk))
3614 tbl_d->status |= FAILED_DISK;
3615 break;
3616 } else {
3617 struct intel_disk *idisk;
3618 struct imsm_disk *disk;
3619
3620 /* tbl_mpb is more up to date, but copy
3621 * over cross generational status before
3622 * returning
3623 */
3624 disk = __serial_to_disk(d->serial, mpb, NULL);
3625 if (disk && is_failed(disk))
3626 d->status |= FAILED_DISK;
3627
3628 idisk = disk_list_get(d->serial, *disk_list);
3629 if (idisk) {
3630 idisk->owner = i;
3631 if (disk && is_configured(disk))
3632 idisk->disk.status |= CONFIGURED_DISK;
3633 }
3634
3635 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3636 __func__, super->disks->major,
3637 super->disks->minor,
3638 table[i]->disks->major,
3639 table[i]->disks->minor);
3640
3641 return tbl_size;
3642 }
3643 }
3644 }
3645
3646 if (i >= tbl_size)
3647 table[tbl_size++] = super;
3648 else
3649 table[i] = super;
3650
3651 /* update/extend the merged list of imsm_disk records */
3652 for (j = 0; j < mpb->num_disks; j++) {
3653 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3654 struct intel_disk *idisk;
3655
3656 idisk = disk_list_get(disk->serial, *disk_list);
3657 if (idisk) {
3658 idisk->disk.status |= disk->status;
3659 if (is_configured(&idisk->disk) ||
3660 is_failed(&idisk->disk))
3661 idisk->disk.status &= ~(SPARE_DISK);
3662 } else {
3663 idisk = calloc(1, sizeof(*idisk));
3664 if (!idisk)
3665 return -1;
3666 idisk->owner = IMSM_UNKNOWN_OWNER;
3667 idisk->disk = *disk;
3668 idisk->next = *disk_list;
3669 *disk_list = idisk;
3670 }
3671
3672 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3673 idisk->owner = i;
3674 }
3675
3676 return tbl_size;
3677 }
3678
3679 static struct intel_super *
3680 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3681 const int owner)
3682 {
3683 struct imsm_super *mpb = super->anchor;
3684 int ok_count = 0;
3685 int i;
3686
3687 for (i = 0; i < mpb->num_disks; i++) {
3688 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3689 struct intel_disk *idisk;
3690
3691 idisk = disk_list_get(disk->serial, disk_list);
3692 if (idisk) {
3693 if (idisk->owner == owner ||
3694 idisk->owner == IMSM_UNKNOWN_OWNER)
3695 ok_count++;
3696 else
3697 dprintf("%s: '%.16s' owner %d != %d\n",
3698 __func__, disk->serial, idisk->owner,
3699 owner);
3700 } else {
3701 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3702 __func__, __le32_to_cpu(mpb->family_num), i,
3703 disk->serial);
3704 break;
3705 }
3706 }
3707
3708 if (ok_count == mpb->num_disks)
3709 return super;
3710 return NULL;
3711 }
3712
3713 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3714 {
3715 struct intel_super *s;
3716
3717 for (s = super_list; s; s = s->next) {
3718 if (family_num != s->anchor->family_num)
3719 continue;
3720 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3721 __le32_to_cpu(family_num), s->disks->devname);
3722 }
3723 }
3724
3725 static struct intel_super *
3726 imsm_thunderdome(struct intel_super **super_list, int len)
3727 {
3728 struct intel_super *super_table[len];
3729 struct intel_disk *disk_list = NULL;
3730 struct intel_super *champion, *spare;
3731 struct intel_super *s, **del;
3732 int tbl_size = 0;
3733 int conflict;
3734 int i;
3735
3736 memset(super_table, 0, sizeof(super_table));
3737 for (s = *super_list; s; s = s->next)
3738 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3739
3740 for (i = 0; i < tbl_size; i++) {
3741 struct imsm_disk *d;
3742 struct intel_disk *idisk;
3743 struct imsm_super *mpb = super_table[i]->anchor;
3744
3745 s = super_table[i];
3746 d = &s->disks->disk;
3747
3748 /* 'd' must appear in merged disk list for its
3749 * configuration to be valid
3750 */
3751 idisk = disk_list_get(d->serial, disk_list);
3752 if (idisk && idisk->owner == i)
3753 s = validate_members(s, disk_list, i);
3754 else
3755 s = NULL;
3756
3757 if (!s)
3758 dprintf("%s: marking family: %#x from %d:%d offline\n",
3759 __func__, mpb->family_num,
3760 super_table[i]->disks->major,
3761 super_table[i]->disks->minor);
3762 super_table[i] = s;
3763 }
3764
3765 /* This is where the mdadm implementation differs from the Windows
3766 * driver which has no strict concept of a container. We can only
3767 * assemble one family from a container, so when returning a prodigal
3768 * array member to this system the code will not be able to disambiguate
3769 * the container contents that should be assembled ("foreign" versus
3770 * "local"). It requires user intervention to set the orig_family_num
3771 * to a new value to establish a new container. The Windows driver in
3772 * this situation fixes up the volume name in place and manages the
3773 * foreign array as an independent entity.
3774 */
3775 s = NULL;
3776 spare = NULL;
3777 conflict = 0;
3778 for (i = 0; i < tbl_size; i++) {
3779 struct intel_super *tbl_ent = super_table[i];
3780 int is_spare = 0;
3781
3782 if (!tbl_ent)
3783 continue;
3784
3785 if (tbl_ent->anchor->num_raid_devs == 0) {
3786 spare = tbl_ent;
3787 is_spare = 1;
3788 }
3789
3790 if (s && !is_spare) {
3791 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3792 conflict++;
3793 } else if (!s && !is_spare)
3794 s = tbl_ent;
3795 }
3796
3797 if (!s)
3798 s = spare;
3799 if (!s) {
3800 champion = NULL;
3801 goto out;
3802 }
3803 champion = s;
3804
3805 if (conflict)
3806 fprintf(stderr, "Chose family %#x on '%s', "
3807 "assemble conflicts to new container with '--update=uuid'\n",
3808 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3809
3810 /* collect all dl's onto 'champion', and update them to
3811 * champion's version of the status
3812 */
3813 for (s = *super_list; s; s = s->next) {
3814 struct imsm_super *mpb = champion->anchor;
3815 struct dl *dl = s->disks;
3816
3817 if (s == champion)
3818 continue;
3819
3820 for (i = 0; i < mpb->num_disks; i++) {
3821 struct imsm_disk *disk;
3822
3823 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3824 if (disk) {
3825 dl->disk = *disk;
3826 /* only set index on disks that are a member of
3827 * a populated contianer, i.e. one with
3828 * raid_devs
3829 */
3830 if (is_failed(&dl->disk))
3831 dl->index = -2;
3832 else if (is_spare(&dl->disk))
3833 dl->index = -1;
3834 break;
3835 }
3836 }
3837
3838 if (i >= mpb->num_disks) {
3839 struct intel_disk *idisk;
3840
3841 idisk = disk_list_get(dl->serial, disk_list);
3842 if (idisk && is_spare(&idisk->disk) &&
3843 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3844 dl->index = -1;
3845 else {
3846 dl->index = -2;
3847 continue;
3848 }
3849 }
3850
3851 dl->next = champion->disks;
3852 champion->disks = dl;
3853 s->disks = NULL;
3854 }
3855
3856 /* delete 'champion' from super_list */
3857 for (del = super_list; *del; ) {
3858 if (*del == champion) {
3859 *del = (*del)->next;
3860 break;
3861 } else
3862 del = &(*del)->next;
3863 }
3864 champion->next = NULL;
3865
3866 out:
3867 while (disk_list) {
3868 struct intel_disk *idisk = disk_list;
3869
3870 disk_list = disk_list->next;
3871 free(idisk);
3872 }
3873
3874 return champion;
3875 }
3876
3877 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3878 char *devname)
3879 {
3880 struct mdinfo *sra;
3881 struct intel_super *super_list = NULL;
3882 struct intel_super *super = NULL;
3883 int devnum = fd2devnum(fd);
3884 struct mdinfo *sd;
3885 int retry;
3886 int err = 0;
3887 int i;
3888
3889 /* check if 'fd' an opened container */
3890 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3891 if (!sra)
3892 return 1;
3893
3894 if (sra->array.major_version != -1 ||
3895 sra->array.minor_version != -2 ||
3896 strcmp(sra->text_version, "imsm") != 0) {
3897 err = 1;
3898 goto error;
3899 }
3900 /* load all mpbs */
3901 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3902 struct intel_super *s = alloc_super();
3903 char nm[32];
3904 int dfd;
3905 int rv;
3906
3907 err = 1;
3908 if (!s)
3909 goto error;
3910 s->next = super_list;
3911 super_list = s;
3912
3913 err = 2;
3914 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3915 dfd = dev_open(nm, O_RDWR);
3916 if (dfd < 0)
3917 goto error;
3918
3919 rv = find_intel_hba_capability(dfd, s, devname);
3920 /* no orom/efi or non-intel hba of the disk */
3921 if (rv != 0)
3922 goto error;
3923
3924 err = load_and_parse_mpb(dfd, s, NULL, 1);
3925
3926 /* retry the load if we might have raced against mdmon */
3927 if (err == 3 && mdmon_running(devnum))
3928 for (retry = 0; retry < 3; retry++) {
3929 usleep(3000);
3930 err = load_and_parse_mpb(dfd, s, NULL, 1);
3931 if (err != 3)
3932 break;
3933 }
3934 if (err)
3935 goto error;
3936 }
3937
3938 /* all mpbs enter, maybe one leaves */
3939 super = imsm_thunderdome(&super_list, i);
3940 if (!super) {
3941 err = 1;
3942 goto error;
3943 }
3944
3945 if (find_missing(super) != 0) {
3946 free_imsm(super);
3947 err = 2;
3948 goto error;
3949 }
3950
3951 /* load migration record */
3952 err = load_imsm_migr_rec(super, NULL);
3953 if (err) {
3954 err = 4;
3955 goto error;
3956 }
3957
3958 /* Check migration compatibility */
3959 if (check_mpb_migr_compatibility(super) != 0) {
3960 fprintf(stderr, Name ": Unsupported migration detected");
3961 if (devname)
3962 fprintf(stderr, " on %s\n", devname);
3963 else
3964 fprintf(stderr, " (IMSM).\n");
3965
3966 err = 5;
3967 goto error;
3968 }
3969
3970 err = 0;
3971
3972 error:
3973 while (super_list) {
3974 struct intel_super *s = super_list;
3975
3976 super_list = super_list->next;
3977 free_imsm(s);
3978 }
3979 sysfs_free(sra);
3980
3981 if (err)
3982 return err;
3983
3984 *sbp = super;
3985 st->container_dev = devnum;
3986 if (err == 0 && st->ss == NULL) {
3987 st->ss = &super_imsm;
3988 st->minor_version = 0;
3989 st->max_devs = IMSM_MAX_DEVICES;
3990 }
3991 return 0;
3992 }
3993
3994 static int load_container_imsm(struct supertype *st, int fd, char *devname)
3995 {
3996 return load_super_imsm_all(st, fd, &st->sb, devname);
3997 }
3998 #endif
3999
4000 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4001 {
4002 struct intel_super *super;
4003 int rv;
4004
4005 if (test_partition(fd))
4006 /* IMSM not allowed on partitions */
4007 return 1;
4008
4009 free_super_imsm(st);
4010
4011 super = alloc_super();
4012 if (!super) {
4013 fprintf(stderr,
4014 Name ": malloc of %zu failed.\n",
4015 sizeof(*super));
4016 return 1;
4017 }
4018 /* Load hba and capabilities if they exist.
4019 * But do not preclude loading metadata in case capabilities or hba are
4020 * non-compliant and ignore_hw_compat is set.
4021 */
4022 rv = find_intel_hba_capability(fd, super, devname);
4023 /* no orom/efi or non-intel hba of the disk */
4024 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4025 if (devname)
4026 fprintf(stderr,
4027 Name ": No OROM/EFI properties for %s\n", devname);
4028 free_imsm(super);
4029 return 2;
4030 }
4031 rv = load_and_parse_mpb(fd, super, devname, 0);
4032
4033 if (rv) {
4034 if (devname)
4035 fprintf(stderr,
4036 Name ": Failed to load all information "
4037 "sections on %s\n", devname);
4038 free_imsm(super);
4039 return rv;
4040 }
4041
4042 st->sb = super;
4043 if (st->ss == NULL) {
4044 st->ss = &super_imsm;
4045 st->minor_version = 0;
4046 st->max_devs = IMSM_MAX_DEVICES;
4047 }
4048
4049 /* load migration record */
4050 if (load_imsm_migr_rec(super, NULL) == 0) {
4051 /* Check for unsupported migration features */
4052 if (check_mpb_migr_compatibility(super) != 0) {
4053 fprintf(stderr,
4054 Name ": Unsupported migration detected");
4055 if (devname)
4056 fprintf(stderr, " on %s\n", devname);
4057 else
4058 fprintf(stderr, " (IMSM).\n");
4059 return 3;
4060 }
4061 }
4062
4063 return 0;
4064 }
4065
4066 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4067 {
4068 if (info->level == 1)
4069 return 128;
4070 return info->chunk_size >> 9;
4071 }
4072
4073 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
4074 {
4075 __u32 num_stripes;
4076
4077 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
4078 num_stripes /= num_domains;
4079
4080 return num_stripes;
4081 }
4082
4083 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4084 {
4085 if (info->level == 1)
4086 return info->size * 2;
4087 else
4088 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4089 }
4090
4091 static void imsm_update_version_info(struct intel_super *super)
4092 {
4093 /* update the version and attributes */
4094 struct imsm_super *mpb = super->anchor;
4095 char *version;
4096 struct imsm_dev *dev;
4097 struct imsm_map *map;
4098 int i;
4099
4100 for (i = 0; i < mpb->num_raid_devs; i++) {
4101 dev = get_imsm_dev(super, i);
4102 map = get_imsm_map(dev, 0);
4103 if (__le32_to_cpu(dev->size_high) > 0)
4104 mpb->attributes |= MPB_ATTRIB_2TB;
4105
4106 /* FIXME detect when an array spans a port multiplier */
4107 #if 0
4108 mpb->attributes |= MPB_ATTRIB_PM;
4109 #endif
4110
4111 if (mpb->num_raid_devs > 1 ||
4112 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4113 version = MPB_VERSION_ATTRIBS;
4114 switch (get_imsm_raid_level(map)) {
4115 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4116 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4117 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4118 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4119 }
4120 } else {
4121 if (map->num_members >= 5)
4122 version = MPB_VERSION_5OR6_DISK_ARRAY;
4123 else if (dev->status == DEV_CLONE_N_GO)
4124 version = MPB_VERSION_CNG;
4125 else if (get_imsm_raid_level(map) == 5)
4126 version = MPB_VERSION_RAID5;
4127 else if (map->num_members >= 3)
4128 version = MPB_VERSION_3OR4_DISK_ARRAY;
4129 else if (get_imsm_raid_level(map) == 1)
4130 version = MPB_VERSION_RAID1;
4131 else
4132 version = MPB_VERSION_RAID0;
4133 }
4134 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4135 }
4136 }
4137
4138 static int check_name(struct intel_super *super, char *name, int quiet)
4139 {
4140 struct imsm_super *mpb = super->anchor;
4141 char *reason = NULL;
4142 int i;
4143
4144 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4145 reason = "must be 16 characters or less";
4146
4147 for (i = 0; i < mpb->num_raid_devs; i++) {
4148 struct imsm_dev *dev = get_imsm_dev(super, i);
4149
4150 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4151 reason = "already exists";
4152 break;
4153 }
4154 }
4155
4156 if (reason && !quiet)
4157 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4158
4159 return !reason;
4160 }
4161
4162 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4163 unsigned long long size, char *name,
4164 char *homehost, int *uuid)
4165 {
4166 /* We are creating a volume inside a pre-existing container.
4167 * so st->sb is already set.
4168 */
4169 struct intel_super *super = st->sb;
4170 struct imsm_super *mpb = super->anchor;
4171 struct intel_dev *dv;
4172 struct imsm_dev *dev;
4173 struct imsm_vol *vol;
4174 struct imsm_map *map;
4175 int idx = mpb->num_raid_devs;
4176 int i;
4177 unsigned long long array_blocks;
4178 size_t size_old, size_new;
4179 __u32 num_data_stripes;
4180
4181 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4182 fprintf(stderr, Name": This imsm-container already has the "
4183 "maximum of %d volumes\n", super->orom->vpa);
4184 return 0;
4185 }
4186
4187 /* ensure the mpb is large enough for the new data */
4188 size_old = __le32_to_cpu(mpb->mpb_size);
4189 size_new = disks_to_mpb_size(info->nr_disks);
4190 if (size_new > size_old) {
4191 void *mpb_new;
4192 size_t size_round = ROUND_UP(size_new, 512);
4193
4194 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4195 fprintf(stderr, Name": could not allocate new mpb\n");
4196 return 0;
4197 }
4198 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4199 fprintf(stderr, Name
4200 ": %s could not allocate migr_rec buffer\n",
4201 __func__);
4202 free(super->buf);
4203 free(super);
4204 return 0;
4205 }
4206 memcpy(mpb_new, mpb, size_old);
4207 free(mpb);
4208 mpb = mpb_new;
4209 super->anchor = mpb_new;
4210 mpb->mpb_size = __cpu_to_le32(size_new);
4211 memset(mpb_new + size_old, 0, size_round - size_old);
4212 }
4213 super->current_vol = idx;
4214
4215 /* handle 'failed_disks' by either:
4216 * a) create dummy disk entries in the table if this the first
4217 * volume in the array. We add them here as this is the only
4218 * opportunity to add them. add_to_super_imsm_volume()
4219 * handles the non-failed disks and continues incrementing
4220 * mpb->num_disks.
4221 * b) validate that 'failed_disks' matches the current number
4222 * of missing disks if the container is populated
4223 */
4224 if (super->current_vol == 0) {
4225 mpb->num_disks = 0;
4226 for (i = 0; i < info->failed_disks; i++) {
4227 struct imsm_disk *disk;
4228
4229 mpb->num_disks++;
4230 disk = __get_imsm_disk(mpb, i);
4231 disk->status = CONFIGURED_DISK | FAILED_DISK;
4232 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4233 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4234 "missing:%d", i);
4235 }
4236 find_missing(super);
4237 } else {
4238 int missing = 0;
4239 struct dl *d;
4240
4241 for (d = super->missing; d; d = d->next)
4242 missing++;
4243 if (info->failed_disks > missing) {
4244 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4245 return 0;
4246 }
4247 }
4248
4249 if (!check_name(super, name, 0))
4250 return 0;
4251 dv = malloc(sizeof(*dv));
4252 if (!dv) {
4253 fprintf(stderr, Name ": failed to allocate device list entry\n");
4254 return 0;
4255 }
4256 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4257 if (!dev) {
4258 free(dv);
4259 fprintf(stderr, Name": could not allocate raid device\n");
4260 return 0;
4261 }
4262
4263 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4264 if (info->level == 1)
4265 array_blocks = info_to_blocks_per_member(info);
4266 else
4267 array_blocks = calc_array_size(info->level, info->raid_disks,
4268 info->layout, info->chunk_size,
4269 info->size*2);
4270 /* round array size down to closest MB */
4271 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4272
4273 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4274 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4275 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4276 vol = &dev->vol;
4277 vol->migr_state = 0;
4278 set_migr_type(dev, MIGR_INIT);
4279 vol->dirty = !info->state;
4280 vol->curr_migr_unit = 0;
4281 map = get_imsm_map(dev, 0);
4282 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
4283 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
4284 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4285 map->failed_disk_num = ~0;
4286 map->map_state = info->failed_disks ? IMSM_T_STATE_DEGRADED : IMSM_T_STATE_NORMAL;
4287 map->ddf = 1;
4288
4289 if (info->level == 1 && info->raid_disks > 2) {
4290 free(dev);
4291 free(dv);
4292 fprintf(stderr, Name": imsm does not support more than 2 disks"
4293 "in a raid1 volume\n");
4294 return 0;
4295 }
4296
4297 map->raid_level = info->level;
4298 if (info->level == 10) {
4299 map->raid_level = 1;
4300 map->num_domains = info->raid_disks / 2;
4301 } else if (info->level == 1)
4302 map->num_domains = info->raid_disks;
4303 else
4304 map->num_domains = 1;
4305
4306 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4307 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
4308
4309 map->num_members = info->raid_disks;
4310 for (i = 0; i < map->num_members; i++) {
4311 /* initialized in add_to_super */
4312 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4313 }
4314 mpb->num_raid_devs++;
4315
4316 dv->dev = dev;
4317 dv->index = super->current_vol;
4318 dv->next = super->devlist;
4319 super->devlist = dv;
4320
4321 imsm_update_version_info(super);
4322
4323 return 1;
4324 }
4325
4326 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4327 unsigned long long size, char *name,
4328 char *homehost, int *uuid)
4329 {
4330 /* This is primarily called by Create when creating a new array.
4331 * We will then get add_to_super called for each component, and then
4332 * write_init_super called to write it out to each device.
4333 * For IMSM, Create can create on fresh devices or on a pre-existing
4334 * array.
4335 * To create on a pre-existing array a different method will be called.
4336 * This one is just for fresh drives.
4337 */
4338 struct intel_super *super;
4339 struct imsm_super *mpb;
4340 size_t mpb_size;
4341 char *version;
4342
4343 if (st->sb)
4344 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4345
4346 if (info)
4347 mpb_size = disks_to_mpb_size(info->nr_disks);
4348 else
4349 mpb_size = 512;
4350
4351 super = alloc_super();
4352 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4353 free(super);
4354 super = NULL;
4355 }
4356 if (!super) {
4357 fprintf(stderr, Name
4358 ": %s could not allocate superblock\n", __func__);
4359 return 0;
4360 }
4361 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4362 fprintf(stderr, Name
4363 ": %s could not allocate migr_rec buffer\n", __func__);
4364 free(super->buf);
4365 free(super);
4366 return 0;
4367 }
4368 memset(super->buf, 0, mpb_size);
4369 mpb = super->buf;
4370 mpb->mpb_size = __cpu_to_le32(mpb_size);
4371 st->sb = super;
4372
4373 if (info == NULL) {
4374 /* zeroing superblock */
4375 return 0;
4376 }
4377
4378 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4379
4380 version = (char *) mpb->sig;
4381 strcpy(version, MPB_SIGNATURE);
4382 version += strlen(MPB_SIGNATURE);
4383 strcpy(version, MPB_VERSION_RAID0);
4384
4385 return 1;
4386 }
4387
4388 #ifndef MDASSEMBLE
4389 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4390 int fd, char *devname)
4391 {
4392 struct intel_super *super = st->sb;
4393 struct imsm_super *mpb = super->anchor;
4394 struct imsm_disk *_disk;
4395 struct imsm_dev *dev;
4396 struct imsm_map *map;
4397 struct dl *dl, *df;
4398 int slot;
4399
4400 dev = get_imsm_dev(super, super->current_vol);
4401 map = get_imsm_map(dev, 0);
4402
4403 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4404 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4405 devname);
4406 return 1;
4407 }
4408
4409 if (fd == -1) {
4410 /* we're doing autolayout so grab the pre-marked (in
4411 * validate_geometry) raid_disk
4412 */
4413 for (dl = super->disks; dl; dl = dl->next)
4414 if (dl->raiddisk == dk->raid_disk)
4415 break;
4416 } else {
4417 for (dl = super->disks; dl ; dl = dl->next)
4418 if (dl->major == dk->major &&
4419 dl->minor == dk->minor)
4420 break;
4421 }
4422
4423 if (!dl) {
4424 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4425 return 1;
4426 }
4427
4428 /* add a pristine spare to the metadata */
4429 if (dl->index < 0) {
4430 dl->index = super->anchor->num_disks;
4431 super->anchor->num_disks++;
4432 }
4433 /* Check the device has not already been added */
4434 slot = get_imsm_disk_slot(map, dl->index);
4435 if (slot >= 0 &&
4436 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4437 fprintf(stderr, Name ": %s has been included in this array twice\n",
4438 devname);
4439 return 1;
4440 }
4441 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4442 dl->disk.status = CONFIGURED_DISK;
4443
4444 /* update size of 'missing' disks to be at least as large as the
4445 * largest acitve member (we only have dummy missing disks when
4446 * creating the first volume)
4447 */
4448 if (super->current_vol == 0) {
4449 for (df = super->missing; df; df = df->next) {
4450 if (dl->disk.total_blocks > df->disk.total_blocks)
4451 df->disk.total_blocks = dl->disk.total_blocks;
4452 _disk = __get_imsm_disk(mpb, df->index);
4453 *_disk = df->disk;
4454 }
4455 }
4456
4457 /* refresh unset/failed slots to point to valid 'missing' entries */
4458 for (df = super->missing; df; df = df->next)
4459 for (slot = 0; slot < mpb->num_disks; slot++) {
4460 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4461
4462 if ((ord & IMSM_ORD_REBUILD) == 0)
4463 continue;
4464 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4465 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4466 break;
4467 }
4468
4469 /* if we are creating the first raid device update the family number */
4470 if (super->current_vol == 0) {
4471 __u32 sum;
4472 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4473
4474 _disk = __get_imsm_disk(mpb, dl->index);
4475 if (!_dev || !_disk) {
4476 fprintf(stderr, Name ": BUG mpb setup error\n");
4477 return 1;
4478 }
4479 *_dev = *dev;
4480 *_disk = dl->disk;
4481 sum = random32();
4482 sum += __gen_imsm_checksum(mpb);
4483 mpb->family_num = __cpu_to_le32(sum);
4484 mpb->orig_family_num = mpb->family_num;
4485 }
4486 super->current_disk = dl;
4487 return 0;
4488 }
4489
4490 /* mark_spare()
4491 * Function marks disk as spare and restores disk serial
4492 * in case it was previously marked as failed by takeover operation
4493 * reruns:
4494 * -1 : critical error
4495 * 0 : disk is marked as spare but serial is not set
4496 * 1 : success
4497 */
4498 int mark_spare(struct dl *disk)
4499 {
4500 __u8 serial[MAX_RAID_SERIAL_LEN];
4501 int ret_val = -1;
4502
4503 if (!disk)
4504 return ret_val;
4505
4506 ret_val = 0;
4507 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4508 /* Restore disk serial number, because takeover marks disk
4509 * as failed and adds to serial ':0' before it becomes
4510 * a spare disk.
4511 */
4512 serialcpy(disk->serial, serial);
4513 serialcpy(disk->disk.serial, serial);
4514 ret_val = 1;
4515 }
4516 disk->disk.status = SPARE_DISK;
4517 disk->index = -1;
4518
4519 return ret_val;
4520 }
4521
4522 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4523 int fd, char *devname)
4524 {
4525 struct intel_super *super = st->sb;
4526 struct dl *dd;
4527 unsigned long long size;
4528 __u32 id;
4529 int rv;
4530 struct stat stb;
4531
4532 /* If we are on an RAID enabled platform check that the disk is
4533 * attached to the raid controller.
4534 * We do not need to test disks attachment for container based additions,
4535 * they shall be already tested when container was created/assembled.
4536 */
4537 rv = find_intel_hba_capability(fd, super, devname);
4538 /* no orom/efi or non-intel hba of the disk */
4539 if (rv != 0) {
4540 dprintf("capability: %p fd: %d ret: %d\n",
4541 super->orom, fd, rv);
4542 return 1;
4543 }
4544
4545 if (super->current_vol >= 0)
4546 return add_to_super_imsm_volume(st, dk, fd, devname);
4547
4548 fstat(fd, &stb);
4549 dd = malloc(sizeof(*dd));
4550 if (!dd) {
4551 fprintf(stderr,
4552 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4553 return 1;
4554 }
4555 memset(dd, 0, sizeof(*dd));
4556 dd->major = major(stb.st_rdev);
4557 dd->minor = minor(stb.st_rdev);
4558 dd->devname = devname ? strdup(devname) : NULL;
4559 dd->fd = fd;
4560 dd->e = NULL;
4561 dd->action = DISK_ADD;
4562 rv = imsm_read_serial(fd, devname, dd->serial);
4563 if (rv) {
4564 fprintf(stderr,
4565 Name ": failed to retrieve scsi serial, aborting\n");
4566 free(dd);
4567 abort();
4568 }
4569
4570 get_dev_size(fd, NULL, &size);
4571 size /= 512;
4572 serialcpy(dd->disk.serial, dd->serial);
4573 dd->disk.total_blocks = __cpu_to_le32(size);
4574 mark_spare(dd);
4575 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4576 dd->disk.scsi_id = __cpu_to_le32(id);
4577 else
4578 dd->disk.scsi_id = __cpu_to_le32(0);
4579
4580 if (st->update_tail) {
4581 dd->next = super->disk_mgmt_list;
4582 super->disk_mgmt_list = dd;
4583 } else {
4584 dd->next = super->disks;
4585 super->disks = dd;
4586 super->updates_pending++;
4587 }
4588
4589 return 0;
4590 }
4591
4592
4593 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4594 {
4595 struct intel_super *super = st->sb;
4596 struct dl *dd;
4597
4598 /* remove from super works only in mdmon - for communication
4599 * manager - monitor. Check if communication memory buffer
4600 * is prepared.
4601 */
4602 if (!st->update_tail) {
4603 fprintf(stderr,
4604 Name ": %s shall be used in mdmon context only"
4605 "(line %d).\n", __func__, __LINE__);
4606 return 1;
4607 }
4608 dd = malloc(sizeof(*dd));
4609 if (!dd) {
4610 fprintf(stderr,
4611 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4612 return 1;
4613 }
4614 memset(dd, 0, sizeof(*dd));
4615 dd->major = dk->major;
4616 dd->minor = dk->minor;
4617 dd->fd = -1;
4618 mark_spare(dd);
4619 dd->action = DISK_REMOVE;
4620
4621 dd->next = super->disk_mgmt_list;
4622 super->disk_mgmt_list = dd;
4623
4624
4625 return 0;
4626 }
4627
4628 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4629
4630 static union {
4631 char buf[512];
4632 struct imsm_super anchor;
4633 } spare_record __attribute__ ((aligned(512)));
4634
4635 /* spare records have their own family number and do not have any defined raid
4636 * devices
4637 */
4638 static int write_super_imsm_spares(struct intel_super *super, int doclose)
4639 {
4640 struct imsm_super *mpb = super->anchor;
4641 struct imsm_super *spare = &spare_record.anchor;
4642 __u32 sum;
4643 struct dl *d;
4644
4645 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4646 spare->generation_num = __cpu_to_le32(1UL),
4647 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4648 spare->num_disks = 1,
4649 spare->num_raid_devs = 0,
4650 spare->cache_size = mpb->cache_size,
4651 spare->pwr_cycle_count = __cpu_to_le32(1),
4652
4653 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4654 MPB_SIGNATURE MPB_VERSION_RAID0);
4655
4656 for (d = super->disks; d; d = d->next) {
4657 if (d->index != -1)
4658 continue;
4659
4660 spare->disk[0] = d->disk;
4661 sum = __gen_imsm_checksum(spare);
4662 spare->family_num = __cpu_to_le32(sum);
4663 spare->orig_family_num = 0;
4664 sum = __gen_imsm_checksum(spare);
4665 spare->check_sum = __cpu_to_le32(sum);
4666
4667 if (store_imsm_mpb(d->fd, spare)) {
4668 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4669 __func__, d->major, d->minor, strerror(errno));
4670 return 1;
4671 }
4672 if (doclose) {
4673 close(d->fd);
4674 d->fd = -1;
4675 }
4676 }
4677
4678 return 0;
4679 }
4680
4681 static int write_super_imsm(struct supertype *st, int doclose)
4682 {
4683 struct intel_super *super = st->sb;
4684 struct imsm_super *mpb = super->anchor;
4685 struct dl *d;
4686 __u32 generation;
4687 __u32 sum;
4688 int spares = 0;
4689 int i;
4690 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
4691 int num_disks = 0;
4692 int clear_migration_record = 1;
4693
4694 /* 'generation' is incremented everytime the metadata is written */
4695 generation = __le32_to_cpu(mpb->generation_num);
4696 generation++;
4697 mpb->generation_num = __cpu_to_le32(generation);
4698
4699 /* fix up cases where previous mdadm releases failed to set
4700 * orig_family_num
4701 */
4702 if (mpb->orig_family_num == 0)
4703 mpb->orig_family_num = mpb->family_num;
4704
4705 for (d = super->disks; d; d = d->next) {
4706 if (d->index == -1)
4707 spares++;
4708 else {
4709 mpb->disk[d->index] = d->disk;
4710 num_disks++;
4711 }
4712 }
4713 for (d = super->missing; d; d = d->next) {
4714 mpb->disk[d->index] = d->disk;
4715 num_disks++;
4716 }
4717 mpb->num_disks = num_disks;
4718 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
4719
4720 for (i = 0; i < mpb->num_raid_devs; i++) {
4721 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
4722 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4723 if (dev && dev2) {
4724 imsm_copy_dev(dev, dev2);
4725 mpb_size += sizeof_imsm_dev(dev, 0);
4726 }
4727 if (is_gen_migration(dev2))
4728 clear_migration_record = 0;
4729 }
4730 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4731 mpb->mpb_size = __cpu_to_le32(mpb_size);
4732
4733 /* recalculate checksum */
4734 sum = __gen_imsm_checksum(mpb);
4735 mpb->check_sum = __cpu_to_le32(sum);
4736
4737 if (clear_migration_record)
4738 memset(super->migr_rec_buf, 0, 512);
4739
4740 /* write the mpb for disks that compose raid devices */
4741 for (d = super->disks; d ; d = d->next) {
4742 if (d->index < 0 || is_failed(&d->disk))
4743 continue;
4744 if (store_imsm_mpb(d->fd, mpb))
4745 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4746 __func__, d->major, d->minor, strerror(errno));
4747 if (clear_migration_record) {
4748 unsigned long long dsize;
4749
4750 get_dev_size(d->fd, NULL, &dsize);
4751 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4752 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4753 perror("Write migr_rec failed");
4754 }
4755 }
4756 if (doclose) {
4757 close(d->fd);
4758 d->fd = -1;
4759 }
4760 }
4761
4762 if (spares)
4763 return write_super_imsm_spares(super, doclose);
4764
4765 return 0;
4766 }
4767
4768
4769 static int create_array(struct supertype *st, int dev_idx)
4770 {
4771 size_t len;
4772 struct imsm_update_create_array *u;
4773 struct intel_super *super = st->sb;
4774 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4775 struct imsm_map *map = get_imsm_map(dev, 0);
4776 struct disk_info *inf;
4777 struct imsm_disk *disk;
4778 int i;
4779
4780 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4781 sizeof(*inf) * map->num_members;
4782 u = malloc(len);
4783 if (!u) {
4784 fprintf(stderr, "%s: failed to allocate update buffer\n",
4785 __func__);
4786 return 1;
4787 }
4788
4789 u->type = update_create_array;
4790 u->dev_idx = dev_idx;
4791 imsm_copy_dev(&u->dev, dev);
4792 inf = get_disk_info(u);
4793 for (i = 0; i < map->num_members; i++) {
4794 int idx = get_imsm_disk_idx(dev, i, -1);
4795
4796 disk = get_imsm_disk(super, idx);
4797 serialcpy(inf[i].serial, disk->serial);
4798 }
4799 append_metadata_update(st, u, len);
4800
4801 return 0;
4802 }
4803
4804 static int mgmt_disk(struct supertype *st)
4805 {
4806 struct intel_super *super = st->sb;
4807 size_t len;
4808 struct imsm_update_add_remove_disk *u;
4809
4810 if (!super->disk_mgmt_list)
4811 return 0;
4812
4813 len = sizeof(*u);
4814 u = malloc(len);
4815 if (!u) {
4816 fprintf(stderr, "%s: failed to allocate update buffer\n",
4817 __func__);
4818 return 1;
4819 }
4820
4821 u->type = update_add_remove_disk;
4822 append_metadata_update(st, u, len);
4823
4824 return 0;
4825 }
4826
4827 static int write_init_super_imsm(struct supertype *st)
4828 {
4829 struct intel_super *super = st->sb;
4830 int current_vol = super->current_vol;
4831
4832 /* we are done with current_vol reset it to point st at the container */
4833 super->current_vol = -1;
4834
4835 if (st->update_tail) {
4836 /* queue the recently created array / added disk
4837 * as a metadata update */
4838 int rv;
4839
4840 /* determine if we are creating a volume or adding a disk */
4841 if (current_vol < 0) {
4842 /* in the mgmt (add/remove) disk case we are running
4843 * in mdmon context, so don't close fd's
4844 */
4845 return mgmt_disk(st);
4846 } else
4847 rv = create_array(st, current_vol);
4848
4849 return rv;
4850 } else {
4851 struct dl *d;
4852 for (d = super->disks; d; d = d->next)
4853 Kill(d->devname, NULL, 0, 1, 1);
4854 return write_super_imsm(st, 1);
4855 }
4856 }
4857 #endif
4858
4859 static int store_super_imsm(struct supertype *st, int fd)
4860 {
4861 struct intel_super *super = st->sb;
4862 struct imsm_super *mpb = super ? super->anchor : NULL;
4863
4864 if (!mpb)
4865 return 1;
4866
4867 #ifndef MDASSEMBLE
4868 return store_imsm_mpb(fd, mpb);
4869 #else
4870 return 1;
4871 #endif
4872 }
4873
4874 static int imsm_bbm_log_size(struct imsm_super *mpb)
4875 {
4876 return __le32_to_cpu(mpb->bbm_log_size);
4877 }
4878
4879 #ifndef MDASSEMBLE
4880 static int validate_geometry_imsm_container(struct supertype *st, int level,
4881 int layout, int raiddisks, int chunk,
4882 unsigned long long size, char *dev,
4883 unsigned long long *freesize,
4884 int verbose)
4885 {
4886 int fd;
4887 unsigned long long ldsize;
4888 struct intel_super *super=NULL;
4889 int rv = 0;
4890
4891 if (level != LEVEL_CONTAINER)
4892 return 0;
4893 if (!dev)
4894 return 1;
4895
4896 fd = open(dev, O_RDONLY|O_EXCL, 0);
4897 if (fd < 0) {
4898 if (verbose)
4899 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4900 dev, strerror(errno));
4901 return 0;
4902 }
4903 if (!get_dev_size(fd, dev, &ldsize)) {
4904 close(fd);
4905 return 0;
4906 }
4907
4908 /* capabilities retrieve could be possible
4909 * note that there is no fd for the disks in array.
4910 */
4911 super = alloc_super();
4912 if (!super) {
4913 fprintf(stderr,
4914 Name ": malloc of %zu failed.\n",
4915 sizeof(*super));
4916 close(fd);
4917 return 0;
4918 }
4919
4920 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
4921 if (rv != 0) {
4922 #if DEBUG
4923 char str[256];
4924 fd2devname(fd, str);
4925 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4926 fd, str, super->orom, rv, raiddisks);
4927 #endif
4928 /* no orom/efi or non-intel hba of the disk */
4929 close(fd);
4930 free_imsm(super);
4931 return 0;
4932 }
4933 close(fd);
4934 if (super->orom && raiddisks > super->orom->tds) {
4935 if (verbose)
4936 fprintf(stderr, Name ": %d exceeds maximum number of"
4937 " platform supported disks: %d\n",
4938 raiddisks, super->orom->tds);
4939
4940 free_imsm(super);
4941 return 0;
4942 }
4943
4944 *freesize = avail_size_imsm(st, ldsize >> 9);
4945 free_imsm(super);
4946
4947 return 1;
4948 }
4949
4950 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4951 {
4952 const unsigned long long base_start = e[*idx].start;
4953 unsigned long long end = base_start + e[*idx].size;
4954 int i;
4955
4956 if (base_start == end)
4957 return 0;
4958
4959 *idx = *idx + 1;
4960 for (i = *idx; i < num_extents; i++) {
4961 /* extend overlapping extents */
4962 if (e[i].start >= base_start &&
4963 e[i].start <= end) {
4964 if (e[i].size == 0)
4965 return 0;
4966 if (e[i].start + e[i].size > end)
4967 end = e[i].start + e[i].size;
4968 } else if (e[i].start > end) {
4969 *idx = i;
4970 break;
4971 }
4972 }
4973
4974 return end - base_start;
4975 }
4976
4977 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4978 {
4979 /* build a composite disk with all known extents and generate a new
4980 * 'maxsize' given the "all disks in an array must share a common start
4981 * offset" constraint
4982 */
4983 struct extent *e = calloc(sum_extents, sizeof(*e));
4984 struct dl *dl;
4985 int i, j;
4986 int start_extent;
4987 unsigned long long pos;
4988 unsigned long long start = 0;
4989 unsigned long long maxsize;
4990 unsigned long reserve;
4991
4992 if (!e)
4993 return 0;
4994
4995 /* coalesce and sort all extents. also, check to see if we need to
4996 * reserve space between member arrays
4997 */
4998 j = 0;
4999 for (dl = super->disks; dl; dl = dl->next) {
5000 if (!dl->e)
5001 continue;
5002 for (i = 0; i < dl->extent_cnt; i++)
5003 e[j++] = dl->e[i];
5004 }
5005 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5006
5007 /* merge extents */
5008 i = 0;
5009 j = 0;
5010 while (i < sum_extents) {
5011 e[j].start = e[i].start;
5012 e[j].size = find_size(e, &i, sum_extents);
5013 j++;
5014 if (e[j-1].size == 0)
5015 break;
5016 }
5017
5018 pos = 0;
5019 maxsize = 0;
5020 start_extent = 0;
5021 i = 0;
5022 do {
5023 unsigned long long esize;
5024
5025 esize = e[i].start - pos;
5026 if (esize >= maxsize) {
5027 maxsize = esize;
5028 start = pos;
5029 start_extent = i;
5030 }
5031 pos = e[i].start + e[i].size;
5032 i++;
5033 } while (e[i-1].size);
5034 free(e);
5035
5036 if (maxsize == 0)
5037 return 0;
5038
5039 /* FIXME assumes volume at offset 0 is the first volume in a
5040 * container
5041 */
5042 if (start_extent > 0)
5043 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5044 else
5045 reserve = 0;
5046
5047 if (maxsize < reserve)
5048 return 0;
5049
5050 super->create_offset = ~((__u32) 0);
5051 if (start + reserve > super->create_offset)
5052 return 0; /* start overflows create_offset */
5053 super->create_offset = start + reserve;
5054
5055 return maxsize - reserve;
5056 }
5057
5058 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5059 {
5060 if (level < 0 || level == 6 || level == 4)
5061 return 0;
5062
5063 /* if we have an orom prevent invalid raid levels */
5064 if (orom)
5065 switch (level) {
5066 case 0: return imsm_orom_has_raid0(orom);
5067 case 1:
5068 if (raiddisks > 2)
5069 return imsm_orom_has_raid1e(orom);
5070 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5071 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5072 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5073 }
5074 else
5075 return 1; /* not on an Intel RAID platform so anything goes */
5076
5077 return 0;
5078 }
5079
5080 static int imsm_default_chunk(const struct imsm_orom *orom)
5081 {
5082 /* up to 512 if the plaform supports it, otherwise the platform max.
5083 * 128 if no platform detected
5084 */
5085 int fs = max(7, orom ? fls(orom->sss) : 0);
5086
5087 return min(512, (1 << fs));
5088 }
5089
5090 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
5091 static int
5092 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5093 int raiddisks, int *chunk, int verbose)
5094 {
5095 /* check/set platform and metadata limits/defaults */
5096 if (super->orom && raiddisks > super->orom->dpa) {
5097 pr_vrb(": platform supports a maximum of %d disks per array\n",
5098 super->orom->dpa);
5099 return 0;
5100 }
5101
5102 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5103 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5104 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5105 level, raiddisks, raiddisks > 1 ? "s" : "");
5106 return 0;
5107 }
5108
5109 if (chunk && (*chunk == 0 || *chunk == UnSet))
5110 *chunk = imsm_default_chunk(super->orom);
5111
5112 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5113 pr_vrb(": platform does not support a chunk size of: "
5114 "%d\n", *chunk);
5115 return 0;
5116 }
5117
5118 if (layout != imsm_level_to_layout(level)) {
5119 if (level == 5)
5120 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5121 else if (level == 10)
5122 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5123 else
5124 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5125 layout, level);
5126 return 0;
5127 }
5128 return 1;
5129 }
5130
5131 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5132 * FIX ME add ahci details
5133 */
5134 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5135 int layout, int raiddisks, int *chunk,
5136 unsigned long long size, char *dev,
5137 unsigned long long *freesize,
5138 int verbose)
5139 {
5140 struct stat stb;
5141 struct intel_super *super = st->sb;
5142 struct imsm_super *mpb = super->anchor;
5143 struct dl *dl;
5144 unsigned long long pos = 0;
5145 unsigned long long maxsize;
5146 struct extent *e;
5147 int i;
5148
5149 /* We must have the container info already read in. */
5150 if (!super)
5151 return 0;
5152
5153 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5154 fprintf(stderr, Name ": the option-rom requires all "
5155 "member disks to be a member of all volumes.\n");
5156 return 0;
5157 }
5158
5159 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5160 fprintf(stderr, Name ": RAID gemetry validation failed. "
5161 "Cannot proceed with the action(s).\n");
5162 return 0;
5163 }
5164 if (!dev) {
5165 /* General test: make sure there is space for
5166 * 'raiddisks' device extents of size 'size' at a given
5167 * offset
5168 */
5169 unsigned long long minsize = size;
5170 unsigned long long start_offset = MaxSector;
5171 int dcnt = 0;
5172 if (minsize == 0)
5173 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5174 for (dl = super->disks; dl ; dl = dl->next) {
5175 int found = 0;
5176
5177 pos = 0;
5178 i = 0;
5179 e = get_extents(super, dl);
5180 if (!e) continue;
5181 do {
5182 unsigned long long esize;
5183 esize = e[i].start - pos;
5184 if (esize >= minsize)
5185 found = 1;
5186 if (found && start_offset == MaxSector) {
5187 start_offset = pos;
5188 break;
5189 } else if (found && pos != start_offset) {
5190 found = 0;
5191 break;
5192 }
5193 pos = e[i].start + e[i].size;
5194 i++;
5195 } while (e[i-1].size);
5196 if (found)
5197 dcnt++;
5198 free(e);
5199 }
5200 if (dcnt < raiddisks) {
5201 if (verbose)
5202 fprintf(stderr, Name ": imsm: Not enough "
5203 "devices with space for this array "
5204 "(%d < %d)\n",
5205 dcnt, raiddisks);
5206 return 0;
5207 }
5208 return 1;
5209 }
5210
5211 /* This device must be a member of the set */
5212 if (stat(dev, &stb) < 0)
5213 return 0;
5214 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5215 return 0;
5216 for (dl = super->disks ; dl ; dl = dl->next) {
5217 if (dl->major == (int)major(stb.st_rdev) &&
5218 dl->minor == (int)minor(stb.st_rdev))
5219 break;
5220 }
5221 if (!dl) {
5222 if (verbose)
5223 fprintf(stderr, Name ": %s is not in the "
5224 "same imsm set\n", dev);
5225 return 0;
5226 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5227 /* If a volume is present then the current creation attempt
5228 * cannot incorporate new spares because the orom may not
5229 * understand this configuration (all member disks must be
5230 * members of each array in the container).
5231 */
5232 fprintf(stderr, Name ": %s is a spare and a volume"
5233 " is already defined for this container\n", dev);
5234 fprintf(stderr, Name ": The option-rom requires all member"
5235 " disks to be a member of all volumes\n");
5236 return 0;
5237 }
5238
5239 /* retrieve the largest free space block */
5240 e = get_extents(super, dl);
5241 maxsize = 0;
5242 i = 0;
5243 if (e) {
5244 do {
5245 unsigned long long esize;
5246
5247 esize = e[i].start - pos;
5248 if (esize >= maxsize)
5249 maxsize = esize;
5250 pos = e[i].start + e[i].size;
5251 i++;
5252 } while (e[i-1].size);
5253 dl->e = e;
5254 dl->extent_cnt = i;
5255 } else {
5256 if (verbose)
5257 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5258 dev);
5259 return 0;
5260 }
5261 if (maxsize < size) {
5262 if (verbose)
5263 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5264 dev, maxsize, size);
5265 return 0;
5266 }
5267
5268 /* count total number of extents for merge */
5269 i = 0;
5270 for (dl = super->disks; dl; dl = dl->next)
5271 if (dl->e)
5272 i += dl->extent_cnt;
5273
5274 maxsize = merge_extents(super, i);
5275 if (maxsize < size || maxsize == 0) {
5276 if (verbose)
5277 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5278 maxsize, size);
5279 return 0;
5280 }
5281
5282 *freesize = maxsize;
5283
5284 return 1;
5285 }
5286
5287 static int reserve_space(struct supertype *st, int raiddisks,
5288 unsigned long long size, int chunk,
5289 unsigned long long *freesize)
5290 {
5291 struct intel_super *super = st->sb;
5292 struct imsm_super *mpb = super->anchor;
5293 struct dl *dl;
5294 int i;
5295 int extent_cnt;
5296 struct extent *e;
5297 unsigned long long maxsize;
5298 unsigned long long minsize;
5299 int cnt;
5300 int used;
5301
5302 /* find the largest common start free region of the possible disks */
5303 used = 0;
5304 extent_cnt = 0;
5305 cnt = 0;
5306 for (dl = super->disks; dl; dl = dl->next) {
5307 dl->raiddisk = -1;
5308
5309 if (dl->index >= 0)
5310 used++;
5311
5312 /* don't activate new spares if we are orom constrained
5313 * and there is already a volume active in the container
5314 */
5315 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5316 continue;
5317
5318 e = get_extents(super, dl);
5319 if (!e)
5320 continue;
5321 for (i = 1; e[i-1].size; i++)
5322 ;
5323 dl->e = e;
5324 dl->extent_cnt = i;
5325 extent_cnt += i;
5326 cnt++;
5327 }
5328
5329 maxsize = merge_extents(super, extent_cnt);
5330 minsize = size;
5331 if (size == 0)
5332 /* chunk is in K */
5333 minsize = chunk * 2;
5334
5335 if (cnt < raiddisks ||
5336 (super->orom && used && used != raiddisks) ||
5337 maxsize < minsize ||
5338 maxsize == 0) {
5339 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5340 return 0; /* No enough free spaces large enough */
5341 }
5342
5343 if (size == 0) {
5344 size = maxsize;
5345 if (chunk) {
5346 size /= 2 * chunk;
5347 size *= 2 * chunk;
5348 }
5349 }
5350
5351 cnt = 0;
5352 for (dl = super->disks; dl; dl = dl->next)
5353 if (dl->e)
5354 dl->raiddisk = cnt++;
5355
5356 *freesize = size;
5357
5358 return 1;
5359 }
5360
5361 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
5362 int raiddisks, int *chunk, unsigned long long size,
5363 char *dev, unsigned long long *freesize,
5364 int verbose)
5365 {
5366 int fd, cfd;
5367 struct mdinfo *sra;
5368 int is_member = 0;
5369
5370 /* load capability
5371 * if given unused devices create a container
5372 * if given given devices in a container create a member volume
5373 */
5374 if (level == LEVEL_CONTAINER) {
5375 /* Must be a fresh device to add to a container */
5376 return validate_geometry_imsm_container(st, level, layout,
5377 raiddisks,
5378 chunk?*chunk:0, size,
5379 dev, freesize,
5380 verbose);
5381 }
5382
5383 if (!dev) {
5384 if (st->sb && freesize) {
5385 /* we are being asked to automatically layout a
5386 * new volume based on the current contents of
5387 * the container. If the the parameters can be
5388 * satisfied reserve_space will record the disks,
5389 * start offset, and size of the volume to be
5390 * created. add_to_super and getinfo_super
5391 * detect when autolayout is in progress.
5392 */
5393 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5394 raiddisks, chunk,
5395 verbose))
5396 return 0;
5397 return reserve_space(st, raiddisks, size,
5398 chunk?*chunk:0, freesize);
5399 }
5400 return 1;
5401 }
5402 if (st->sb) {
5403 /* creating in a given container */
5404 return validate_geometry_imsm_volume(st, level, layout,
5405 raiddisks, chunk, size,
5406 dev, freesize, verbose);
5407 }
5408
5409 /* This device needs to be a device in an 'imsm' container */
5410 fd = open(dev, O_RDONLY|O_EXCL, 0);
5411 if (fd >= 0) {
5412 if (verbose)
5413 fprintf(stderr,
5414 Name ": Cannot create this array on device %s\n",
5415 dev);
5416 close(fd);
5417 return 0;
5418 }
5419 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5420 if (verbose)
5421 fprintf(stderr, Name ": Cannot open %s: %s\n",
5422 dev, strerror(errno));
5423 return 0;
5424 }
5425 /* Well, it is in use by someone, maybe an 'imsm' container. */
5426 cfd = open_container(fd);
5427 close(fd);
5428 if (cfd < 0) {
5429 if (verbose)
5430 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5431 dev);
5432 return 0;
5433 }
5434 sra = sysfs_read(cfd, 0, GET_VERSION);
5435 if (sra && sra->array.major_version == -1 &&
5436 strcmp(sra->text_version, "imsm") == 0)
5437 is_member = 1;
5438 sysfs_free(sra);
5439 if (is_member) {
5440 /* This is a member of a imsm container. Load the container
5441 * and try to create a volume
5442 */
5443 struct intel_super *super;
5444
5445 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
5446 st->sb = super;
5447 st->container_dev = fd2devnum(cfd);
5448 close(cfd);
5449 return validate_geometry_imsm_volume(st, level, layout,
5450 raiddisks, chunk,
5451 size, dev,
5452 freesize, 1)
5453 ? 1 : -1;
5454 }
5455 }
5456
5457 if (verbose)
5458 fprintf(stderr, Name ": failed container membership check\n");
5459
5460 close(cfd);
5461 return 0;
5462 }
5463
5464 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
5465 {
5466 struct intel_super *super = st->sb;
5467
5468 if (level && *level == UnSet)
5469 *level = LEVEL_CONTAINER;
5470
5471 if (level && layout && *layout == UnSet)
5472 *layout = imsm_level_to_layout(*level);
5473
5474 if (chunk && (*chunk == UnSet || *chunk == 0))
5475 *chunk = imsm_default_chunk(super->orom);
5476 }
5477
5478 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5479
5480 static int kill_subarray_imsm(struct supertype *st)
5481 {
5482 /* remove the subarray currently referenced by ->current_vol */
5483 __u8 i;
5484 struct intel_dev **dp;
5485 struct intel_super *super = st->sb;
5486 __u8 current_vol = super->current_vol;
5487 struct imsm_super *mpb = super->anchor;
5488
5489 if (super->current_vol < 0)
5490 return 2;
5491 super->current_vol = -1; /* invalidate subarray cursor */
5492
5493 /* block deletions that would change the uuid of active subarrays
5494 *
5495 * FIXME when immutable ids are available, but note that we'll
5496 * also need to fixup the invalidated/active subarray indexes in
5497 * mdstat
5498 */
5499 for (i = 0; i < mpb->num_raid_devs; i++) {
5500 char subarray[4];
5501
5502 if (i < current_vol)
5503 continue;
5504 sprintf(subarray, "%u", i);
5505 if (is_subarray_active(subarray, st->devname)) {
5506 fprintf(stderr,
5507 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5508 current_vol, i);
5509
5510 return 2;
5511 }
5512 }
5513
5514 if (st->update_tail) {
5515 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5516
5517 if (!u)
5518 return 2;
5519 u->type = update_kill_array;
5520 u->dev_idx = current_vol;
5521 append_metadata_update(st, u, sizeof(*u));
5522
5523 return 0;
5524 }
5525
5526 for (dp = &super->devlist; *dp;)
5527 if ((*dp)->index == current_vol) {
5528 *dp = (*dp)->next;
5529 } else {
5530 handle_missing(super, (*dp)->dev);
5531 if ((*dp)->index > current_vol)
5532 (*dp)->index--;
5533 dp = &(*dp)->next;
5534 }
5535
5536 /* no more raid devices, all active components are now spares,
5537 * but of course failed are still failed
5538 */
5539 if (--mpb->num_raid_devs == 0) {
5540 struct dl *d;
5541
5542 for (d = super->disks; d; d = d->next)
5543 if (d->index > -2)
5544 mark_spare(d);
5545 }
5546
5547 super->updates_pending++;
5548
5549 return 0;
5550 }
5551
5552 static int update_subarray_imsm(struct supertype *st, char *subarray,
5553 char *update, struct mddev_ident *ident)
5554 {
5555 /* update the subarray currently referenced by ->current_vol */
5556 struct intel_super *super = st->sb;
5557 struct imsm_super *mpb = super->anchor;
5558
5559 if (strcmp(update, "name") == 0) {
5560 char *name = ident->name;
5561 char *ep;
5562 int vol;
5563
5564 if (is_subarray_active(subarray, st->devname)) {
5565 fprintf(stderr,
5566 Name ": Unable to update name of active subarray\n");
5567 return 2;
5568 }
5569
5570 if (!check_name(super, name, 0))
5571 return 2;
5572
5573 vol = strtoul(subarray, &ep, 10);
5574 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5575 return 2;
5576
5577 if (st->update_tail) {
5578 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5579
5580 if (!u)
5581 return 2;
5582 u->type = update_rename_array;
5583 u->dev_idx = vol;
5584 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5585 append_metadata_update(st, u, sizeof(*u));
5586 } else {
5587 struct imsm_dev *dev;
5588 int i;
5589
5590 dev = get_imsm_dev(super, vol);
5591 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5592 for (i = 0; i < mpb->num_raid_devs; i++) {
5593 dev = get_imsm_dev(super, i);
5594 handle_missing(super, dev);
5595 }
5596 super->updates_pending++;
5597 }
5598 } else
5599 return 2;
5600
5601 return 0;
5602 }
5603
5604 static int is_gen_migration(struct imsm_dev *dev)
5605 {
5606 if (dev == NULL)
5607 return 0;
5608
5609 if (!dev->vol.migr_state)
5610 return 0;
5611
5612 if (migr_type(dev) == MIGR_GEN_MIGR)
5613 return 1;
5614
5615 return 0;
5616 }
5617 #endif /* MDASSEMBLE */
5618
5619 static int is_rebuilding(struct imsm_dev *dev)
5620 {
5621 struct imsm_map *migr_map;
5622
5623 if (!dev->vol.migr_state)
5624 return 0;
5625
5626 if (migr_type(dev) != MIGR_REBUILD)
5627 return 0;
5628
5629 migr_map = get_imsm_map(dev, 1);
5630
5631 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5632 return 1;
5633 else
5634 return 0;
5635 }
5636
5637 static void update_recovery_start(struct intel_super *super,
5638 struct imsm_dev *dev,
5639 struct mdinfo *array)
5640 {
5641 struct mdinfo *rebuild = NULL;
5642 struct mdinfo *d;
5643 __u32 units;
5644
5645 if (!is_rebuilding(dev))
5646 return;
5647
5648 /* Find the rebuild target, but punt on the dual rebuild case */
5649 for (d = array->devs; d; d = d->next)
5650 if (d->recovery_start == 0) {
5651 if (rebuild)
5652 return;
5653 rebuild = d;
5654 }
5655
5656 if (!rebuild) {
5657 /* (?) none of the disks are marked with
5658 * IMSM_ORD_REBUILD, so assume they are missing and the
5659 * disk_ord_tbl was not correctly updated
5660 */
5661 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5662 return;
5663 }
5664
5665 units = __le32_to_cpu(dev->vol.curr_migr_unit);
5666 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
5667 }
5668
5669 #ifndef MDASSEMBLE
5670 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
5671 #endif
5672
5673 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
5674 {
5675 /* Given a container loaded by load_super_imsm_all,
5676 * extract information about all the arrays into
5677 * an mdinfo tree.
5678 * If 'subarray' is given, just extract info about that array.
5679 *
5680 * For each imsm_dev create an mdinfo, fill it in,
5681 * then look for matching devices in super->disks
5682 * and create appropriate device mdinfo.
5683 */
5684 struct intel_super *super = st->sb;
5685 struct imsm_super *mpb = super->anchor;
5686 struct mdinfo *rest = NULL;
5687 unsigned int i;
5688 int bbm_errors = 0;
5689 struct dl *d;
5690 int spare_disks = 0;
5691
5692 /* do not assemble arrays when not all attributes are supported */
5693 if (imsm_check_attributes(mpb->attributes) == 0) {
5694 fprintf(stderr, Name ": IMSM metadata loading not allowed "
5695 "due to attributes incompatibility.\n");
5696 return NULL;
5697 }
5698
5699 /* check for bad blocks */
5700 if (imsm_bbm_log_size(super->anchor))
5701 bbm_errors = 1;
5702
5703 /* count spare devices, not used in maps
5704 */
5705 for (d = super->disks; d; d = d->next)
5706 if (d->index == -1)
5707 spare_disks++;
5708
5709 for (i = 0; i < mpb->num_raid_devs; i++) {
5710 struct imsm_dev *dev;
5711 struct imsm_map *map;
5712 struct imsm_map *map2;
5713 struct mdinfo *this;
5714 int slot, chunk;
5715 char *ep;
5716
5717 if (subarray &&
5718 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5719 continue;
5720
5721 dev = get_imsm_dev(super, i);
5722 map = get_imsm_map(dev, 0);
5723 map2 = get_imsm_map(dev, 1);
5724
5725 /* do not publish arrays that are in the middle of an
5726 * unsupported migration
5727 */
5728 if (dev->vol.migr_state &&
5729 (migr_type(dev) == MIGR_STATE_CHANGE)) {
5730 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5731 " unsupported migration in progress\n",
5732 dev->volume);
5733 continue;
5734 }
5735 /* do not publish arrays that are not support by controller's
5736 * OROM/EFI
5737 */
5738
5739 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
5740 #ifndef MDASSEMBLE
5741 if (!validate_geometry_imsm_orom(super,
5742 get_imsm_raid_level(map), /* RAID level */
5743 imsm_level_to_layout(get_imsm_raid_level(map)),
5744 map->num_members, /* raid disks */
5745 &chunk,
5746 1 /* verbose */)) {
5747 fprintf(stderr, Name ": RAID gemetry validation failed. "
5748 "Cannot proceed with the action(s).\n");
5749 continue;
5750 }
5751 #endif /* MDASSEMBLE */
5752 this = malloc(sizeof(*this));
5753 if (!this) {
5754 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
5755 sizeof(*this));
5756 break;
5757 }
5758
5759 super->current_vol = i;
5760 getinfo_super_imsm_volume(st, this, NULL);
5761 this->next = rest;
5762 for (slot = 0 ; slot < map->num_members; slot++) {
5763 unsigned long long recovery_start;
5764 struct mdinfo *info_d;
5765 struct dl *d;
5766 int idx;
5767 int skip;
5768 __u32 ord;
5769
5770 skip = 0;
5771 idx = get_imsm_disk_idx(dev, slot, 0);
5772 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
5773 for (d = super->disks; d ; d = d->next)
5774 if (d->index == idx)
5775 break;
5776
5777 recovery_start = MaxSector;
5778 if (d == NULL)
5779 skip = 1;
5780 if (d && is_failed(&d->disk))
5781 skip = 1;
5782 if (ord & IMSM_ORD_REBUILD)
5783 recovery_start = 0;
5784
5785 /*
5786 * if we skip some disks the array will be assmebled degraded;
5787 * reset resync start to avoid a dirty-degraded
5788 * situation when performing the intial sync
5789 *
5790 * FIXME handle dirty degraded
5791 */
5792 if ((skip || recovery_start == 0) && !dev->vol.dirty)
5793 this->resync_start = MaxSector;
5794 if (skip)
5795 continue;
5796
5797 info_d = calloc(1, sizeof(*info_d));
5798 if (!info_d) {
5799 fprintf(stderr, Name ": failed to allocate disk"
5800 " for volume %.16s\n", dev->volume);
5801 info_d = this->devs;
5802 while (info_d) {
5803 struct mdinfo *d = info_d->next;
5804
5805 free(info_d);
5806 info_d = d;
5807 }
5808 free(this);
5809 this = rest;
5810 break;
5811 }
5812 info_d->next = this->devs;
5813 this->devs = info_d;
5814
5815 info_d->disk.number = d->index;
5816 info_d->disk.major = d->major;
5817 info_d->disk.minor = d->minor;
5818 info_d->disk.raid_disk = slot;
5819 info_d->recovery_start = recovery_start;
5820 if (map2) {
5821 if (slot < map2->num_members)
5822 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5823 else
5824 this->array.spare_disks++;
5825 } else {
5826 if (slot < map->num_members)
5827 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5828 else
5829 this->array.spare_disks++;
5830 }
5831 if (info_d->recovery_start == MaxSector)
5832 this->array.working_disks++;
5833
5834 info_d->events = __le32_to_cpu(mpb->generation_num);
5835 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5836 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
5837 }
5838 /* now that the disk list is up-to-date fixup recovery_start */
5839 update_recovery_start(super, dev, this);
5840 this->array.spare_disks += spare_disks;
5841
5842 #ifndef MDASSEMBLE
5843 /* check for reshape */
5844 if (this->reshape_active == 1)
5845 recover_backup_imsm(st, this);
5846 #endif
5847 rest = this;
5848 }
5849
5850 /* if array has bad blocks, set suitable bit in array status */
5851 if (bbm_errors)
5852 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5853
5854 return rest;
5855 }
5856
5857
5858 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
5859 {
5860 struct imsm_map *map = get_imsm_map(dev, 0);
5861
5862 if (!failed)
5863 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5864 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
5865
5866 switch (get_imsm_raid_level(map)) {
5867 case 0:
5868 return IMSM_T_STATE_FAILED;
5869 break;
5870 case 1:
5871 if (failed < map->num_members)
5872 return IMSM_T_STATE_DEGRADED;
5873 else
5874 return IMSM_T_STATE_FAILED;
5875 break;
5876 case 10:
5877 {
5878 /**
5879 * check to see if any mirrors have failed, otherwise we
5880 * are degraded. Even numbered slots are mirrored on
5881 * slot+1
5882 */
5883 int i;
5884 /* gcc -Os complains that this is unused */
5885 int insync = insync;
5886
5887 for (i = 0; i < map->num_members; i++) {
5888 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
5889 int idx = ord_to_idx(ord);
5890 struct imsm_disk *disk;
5891
5892 /* reset the potential in-sync count on even-numbered
5893 * slots. num_copies is always 2 for imsm raid10
5894 */
5895 if ((i & 1) == 0)
5896 insync = 2;
5897
5898 disk = get_imsm_disk(super, idx);
5899 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5900 insync--;
5901
5902 /* no in-sync disks left in this mirror the
5903 * array has failed
5904 */
5905 if (insync == 0)
5906 return IMSM_T_STATE_FAILED;
5907 }
5908
5909 return IMSM_T_STATE_DEGRADED;
5910 }
5911 case 5:
5912 if (failed < 2)
5913 return IMSM_T_STATE_DEGRADED;
5914 else
5915 return IMSM_T_STATE_FAILED;
5916 break;
5917 default:
5918 break;
5919 }
5920
5921 return map->map_state;
5922 }
5923
5924 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
5925 {
5926 int i;
5927 int failed = 0;
5928 struct imsm_disk *disk;
5929 struct imsm_map *map = get_imsm_map(dev, 0);
5930 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5931 __u32 ord;
5932 int idx;
5933
5934 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5935 * disks that are being rebuilt. New failures are recorded to
5936 * map[0]. So we look through all the disks we started with and
5937 * see if any failures are still present, or if any new ones
5938 * have arrived
5939 *
5940 * FIXME add support for online capacity expansion and
5941 * raid-level-migration
5942 */
5943 for (i = 0; i < prev->num_members; i++) {
5944 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5945 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5946 idx = ord_to_idx(ord);
5947
5948 disk = get_imsm_disk(super, idx);
5949 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5950 failed++;
5951 }
5952
5953 return failed;
5954 }
5955
5956 #ifndef MDASSEMBLE
5957 static int imsm_open_new(struct supertype *c, struct active_array *a,
5958 char *inst)
5959 {
5960 struct intel_super *super = c->sb;
5961 struct imsm_super *mpb = super->anchor;
5962
5963 if (atoi(inst) >= mpb->num_raid_devs) {
5964 fprintf(stderr, "%s: subarry index %d, out of range\n",
5965 __func__, atoi(inst));
5966 return -ENODEV;
5967 }
5968
5969 dprintf("imsm: open_new %s\n", inst);
5970 a->info.container_member = atoi(inst);
5971 return 0;
5972 }
5973
5974 static int is_resyncing(struct imsm_dev *dev)
5975 {
5976 struct imsm_map *migr_map;
5977
5978 if (!dev->vol.migr_state)
5979 return 0;
5980
5981 if (migr_type(dev) == MIGR_INIT ||
5982 migr_type(dev) == MIGR_REPAIR)
5983 return 1;
5984
5985 if (migr_type(dev) == MIGR_GEN_MIGR)
5986 return 0;
5987
5988 migr_map = get_imsm_map(dev, 1);
5989
5990 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5991 (dev->vol.migr_type != MIGR_GEN_MIGR))
5992 return 1;
5993 else
5994 return 0;
5995 }
5996
5997 /* return true if we recorded new information */
5998 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5999 {
6000 __u32 ord;
6001 int slot;
6002 struct imsm_map *map;
6003 char buf[MAX_RAID_SERIAL_LEN+3];
6004 unsigned int len, shift = 0;
6005
6006 /* new failures are always set in map[0] */
6007 map = get_imsm_map(dev, 0);
6008
6009 slot = get_imsm_disk_slot(map, idx);
6010 if (slot < 0)
6011 return 0;
6012
6013 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6014 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6015 return 0;
6016
6017 sprintf(buf, "%s:0", disk->serial);
6018 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6019 shift = len - MAX_RAID_SERIAL_LEN + 1;
6020 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6021
6022 disk->status |= FAILED_DISK;
6023 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6024 if (map->failed_disk_num == 0xff)
6025 map->failed_disk_num = slot;
6026 return 1;
6027 }
6028
6029 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6030 {
6031 mark_failure(dev, disk, idx);
6032
6033 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6034 return;
6035
6036 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6037 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6038 }
6039
6040 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6041 {
6042 __u8 map_state;
6043 struct dl *dl;
6044 int failed;
6045
6046 if (!super->missing)
6047 return;
6048 failed = imsm_count_failed(super, dev);
6049 map_state = imsm_check_degraded(super, dev, failed);
6050
6051 dprintf("imsm: mark missing\n");
6052 end_migration(dev, map_state);
6053 for (dl = super->missing; dl; dl = dl->next)
6054 mark_missing(dev, &dl->disk, dl->index);
6055 super->updates_pending++;
6056 }
6057
6058 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6059 {
6060 int used_disks = imsm_num_data_members(dev, 0);
6061 unsigned long long array_blocks;
6062 struct imsm_map *map;
6063
6064 if (used_disks == 0) {
6065 /* when problems occures
6066 * return current array_blocks value
6067 */
6068 array_blocks = __le32_to_cpu(dev->size_high);
6069 array_blocks = array_blocks << 32;
6070 array_blocks += __le32_to_cpu(dev->size_low);
6071
6072 return array_blocks;
6073 }
6074
6075 /* set array size in metadata
6076 */
6077 map = get_imsm_map(dev, 0);
6078 array_blocks = map->blocks_per_member * used_disks;
6079
6080 /* round array size down to closest MB
6081 */
6082 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6083 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6084 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6085
6086 return array_blocks;
6087 }
6088
6089 static void imsm_set_disk(struct active_array *a, int n, int state);
6090
6091 static void imsm_progress_container_reshape(struct intel_super *super)
6092 {
6093 /* if no device has a migr_state, but some device has a
6094 * different number of members than the previous device, start
6095 * changing the number of devices in this device to match
6096 * previous.
6097 */
6098 struct imsm_super *mpb = super->anchor;
6099 int prev_disks = -1;
6100 int i;
6101 int copy_map_size;
6102
6103 for (i = 0; i < mpb->num_raid_devs; i++) {
6104 struct imsm_dev *dev = get_imsm_dev(super, i);
6105 struct imsm_map *map = get_imsm_map(dev, 0);
6106 struct imsm_map *map2;
6107 int prev_num_members;
6108
6109 if (dev->vol.migr_state)
6110 return;
6111
6112 if (prev_disks == -1)
6113 prev_disks = map->num_members;
6114 if (prev_disks == map->num_members)
6115 continue;
6116
6117 /* OK, this array needs to enter reshape mode.
6118 * i.e it needs a migr_state
6119 */
6120
6121 copy_map_size = sizeof_imsm_map(map);
6122 prev_num_members = map->num_members;
6123 map->num_members = prev_disks;
6124 dev->vol.migr_state = 1;
6125 dev->vol.curr_migr_unit = 0;
6126 dev->vol.migr_type = MIGR_GEN_MIGR;
6127 for (i = prev_num_members;
6128 i < map->num_members; i++)
6129 set_imsm_ord_tbl_ent(map, i, i);
6130 map2 = get_imsm_map(dev, 1);
6131 /* Copy the current map */
6132 memcpy(map2, map, copy_map_size);
6133 map2->num_members = prev_num_members;
6134
6135 imsm_set_array_size(dev);
6136 super->updates_pending++;
6137 }
6138 }
6139
6140 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
6141 * states are handled in imsm_set_disk() with one exception, when a
6142 * resync is stopped due to a new failure this routine will set the
6143 * 'degraded' state for the array.
6144 */
6145 static int imsm_set_array_state(struct active_array *a, int consistent)
6146 {
6147 int inst = a->info.container_member;
6148 struct intel_super *super = a->container->sb;
6149 struct imsm_dev *dev = get_imsm_dev(super, inst);
6150 struct imsm_map *map = get_imsm_map(dev, 0);
6151 int failed = imsm_count_failed(super, dev);
6152 __u8 map_state = imsm_check_degraded(super, dev, failed);
6153 __u32 blocks_per_unit;
6154
6155 if (dev->vol.migr_state &&
6156 dev->vol.migr_type == MIGR_GEN_MIGR) {
6157 /* array state change is blocked due to reshape action
6158 * We might need to
6159 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6160 * - finish the reshape (if last_checkpoint is big and action != reshape)
6161 * - update curr_migr_unit
6162 */
6163 if (a->curr_action == reshape) {
6164 /* still reshaping, maybe update curr_migr_unit */
6165 goto mark_checkpoint;
6166 } else {
6167 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6168 /* for some reason we aborted the reshape.
6169 *
6170 * disable automatic metadata rollback
6171 * user action is required to recover process
6172 */
6173 if (0) {
6174 struct imsm_map *map2 = get_imsm_map(dev, 1);
6175 dev->vol.migr_state = 0;
6176 dev->vol.migr_type = 0;
6177 dev->vol.curr_migr_unit = 0;
6178 memcpy(map, map2, sizeof_imsm_map(map2));
6179 super->updates_pending++;
6180 }
6181 }
6182 if (a->last_checkpoint >= a->info.component_size) {
6183 unsigned long long array_blocks;
6184 int used_disks;
6185 struct mdinfo *mdi;
6186
6187 used_disks = imsm_num_data_members(dev, 0);
6188 if (used_disks > 0) {
6189 array_blocks =
6190 map->blocks_per_member *
6191 used_disks;
6192 /* round array size down to closest MB
6193 */
6194 array_blocks = (array_blocks
6195 >> SECT_PER_MB_SHIFT)
6196 << SECT_PER_MB_SHIFT;
6197 a->info.custom_array_size = array_blocks;
6198 /* encourage manager to update array
6199 * size
6200 */
6201
6202 a->check_reshape = 1;
6203 }
6204 /* finalize online capacity expansion/reshape */
6205 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6206 imsm_set_disk(a,
6207 mdi->disk.raid_disk,
6208 mdi->curr_state);
6209
6210 imsm_progress_container_reshape(super);
6211 }
6212 }
6213 }
6214
6215 /* before we activate this array handle any missing disks */
6216 if (consistent == 2)
6217 handle_missing(super, dev);
6218
6219 if (consistent == 2 &&
6220 (!is_resync_complete(&a->info) ||
6221 map_state != IMSM_T_STATE_NORMAL ||
6222 dev->vol.migr_state))
6223 consistent = 0;
6224
6225 if (is_resync_complete(&a->info)) {
6226 /* complete intialization / resync,
6227 * recovery and interrupted recovery is completed in
6228 * ->set_disk
6229 */
6230 if (is_resyncing(dev)) {
6231 dprintf("imsm: mark resync done\n");
6232 end_migration(dev, map_state);
6233 super->updates_pending++;
6234 a->last_checkpoint = 0;
6235 }
6236 } else if ((!is_resyncing(dev) && !failed) &&
6237 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
6238 /* mark the start of the init process if nothing is failed */
6239 dprintf("imsm: mark resync start\n");
6240 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
6241 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
6242 else
6243 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
6244 super->updates_pending++;
6245 }
6246
6247 mark_checkpoint:
6248 /* skip checkpointing for general migration,
6249 * it is controlled in mdadm
6250 */
6251 if (is_gen_migration(dev))
6252 goto skip_mark_checkpoint;
6253
6254 /* check if we can update curr_migr_unit from resync_start, recovery_start */
6255 blocks_per_unit = blocks_per_migr_unit(super, dev);
6256 if (blocks_per_unit) {
6257 __u32 units32;
6258 __u64 units;
6259
6260 units = a->last_checkpoint / blocks_per_unit;
6261 units32 = units;
6262
6263 /* check that we did not overflow 32-bits, and that
6264 * curr_migr_unit needs updating
6265 */
6266 if (units32 == units &&
6267 units32 != 0 &&
6268 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6269 dprintf("imsm: mark checkpoint (%u)\n", units32);
6270 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6271 super->updates_pending++;
6272 }
6273 }
6274
6275 skip_mark_checkpoint:
6276 /* mark dirty / clean */
6277 if (dev->vol.dirty != !consistent) {
6278 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
6279 if (consistent)
6280 dev->vol.dirty = 0;
6281 else
6282 dev->vol.dirty = 1;
6283 super->updates_pending++;
6284 }
6285
6286 return consistent;
6287 }
6288
6289 static void imsm_set_disk(struct active_array *a, int n, int state)
6290 {
6291 int inst = a->info.container_member;
6292 struct intel_super *super = a->container->sb;
6293 struct imsm_dev *dev = get_imsm_dev(super, inst);
6294 struct imsm_map *map = get_imsm_map(dev, 0);
6295 struct imsm_disk *disk;
6296 int failed;
6297 __u32 ord;
6298 __u8 map_state;
6299
6300 if (n > map->num_members)
6301 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6302 n, map->num_members - 1);
6303
6304 if (n < 0)
6305 return;
6306
6307 dprintf("imsm: set_disk %d:%x\n", n, state);
6308
6309 ord = get_imsm_ord_tbl_ent(dev, n, -1);
6310 disk = get_imsm_disk(super, ord_to_idx(ord));
6311
6312 /* check for new failures */
6313 if (state & DS_FAULTY) {
6314 if (mark_failure(dev, disk, ord_to_idx(ord)))
6315 super->updates_pending++;
6316 }
6317
6318 /* check if in_sync */
6319 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
6320 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6321
6322 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
6323 super->updates_pending++;
6324 }
6325
6326 failed = imsm_count_failed(super, dev);
6327 map_state = imsm_check_degraded(super, dev, failed);
6328
6329 /* check if recovery complete, newly degraded, or failed */
6330 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
6331 end_migration(dev, map_state);
6332 map = get_imsm_map(dev, 0);
6333 map->failed_disk_num = ~0;
6334 super->updates_pending++;
6335 a->last_checkpoint = 0;
6336 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6337 map->map_state != map_state &&
6338 !dev->vol.migr_state) {
6339 dprintf("imsm: mark degraded\n");
6340 map->map_state = map_state;
6341 super->updates_pending++;
6342 a->last_checkpoint = 0;
6343 } else if (map_state == IMSM_T_STATE_FAILED &&
6344 map->map_state != map_state) {
6345 dprintf("imsm: mark failed\n");
6346 end_migration(dev, map_state);
6347 super->updates_pending++;
6348 a->last_checkpoint = 0;
6349 } else if (is_gen_migration(dev)) {
6350 dprintf("imsm: Detected General Migration in state: ");
6351 if (map_state == IMSM_T_STATE_NORMAL) {
6352 end_migration(dev, map_state);
6353 map = get_imsm_map(dev, 0);
6354 map->failed_disk_num = ~0;
6355 dprintf("normal\n");
6356 } else {
6357 if (map_state == IMSM_T_STATE_DEGRADED) {
6358 printf("degraded\n");
6359 end_migration(dev, map_state);
6360 } else {
6361 dprintf("failed\n");
6362 }
6363 map->map_state = map_state;
6364 }
6365 super->updates_pending++;
6366 }
6367 }
6368
6369 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
6370 {
6371 void *buf = mpb;
6372 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6373 unsigned long long dsize;
6374 unsigned long long sectors;
6375
6376 get_dev_size(fd, NULL, &dsize);
6377
6378 if (mpb_size > 512) {
6379 /* -1 to account for anchor */
6380 sectors = mpb_sectors(mpb) - 1;
6381
6382 /* write the extended mpb to the sectors preceeding the anchor */
6383 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6384 return 1;
6385
6386 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6387 != 512 * sectors)
6388 return 1;
6389 }
6390
6391 /* first block is stored on second to last sector of the disk */
6392 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
6393 return 1;
6394
6395 if (write(fd, buf, 512) != 512)
6396 return 1;
6397
6398 return 0;
6399 }
6400
6401 static void imsm_sync_metadata(struct supertype *container)
6402 {
6403 struct intel_super *super = container->sb;
6404
6405 dprintf("sync metadata: %d\n", super->updates_pending);
6406 if (!super->updates_pending)
6407 return;
6408
6409 write_super_imsm(container, 0);
6410
6411 super->updates_pending = 0;
6412 }
6413
6414 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6415 {
6416 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6417 int i = get_imsm_disk_idx(dev, idx, -1);
6418 struct dl *dl;
6419
6420 for (dl = super->disks; dl; dl = dl->next)
6421 if (dl->index == i)
6422 break;
6423
6424 if (dl && is_failed(&dl->disk))
6425 dl = NULL;
6426
6427 if (dl)
6428 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6429
6430 return dl;
6431 }
6432
6433 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
6434 struct active_array *a, int activate_new,
6435 struct mdinfo *additional_test_list)
6436 {
6437 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6438 int idx = get_imsm_disk_idx(dev, slot, -1);
6439 struct imsm_super *mpb = super->anchor;
6440 struct imsm_map *map;
6441 unsigned long long pos;
6442 struct mdinfo *d;
6443 struct extent *ex;
6444 int i, j;
6445 int found;
6446 __u32 array_start = 0;
6447 __u32 array_end = 0;
6448 struct dl *dl;
6449 struct mdinfo *test_list;
6450
6451 for (dl = super->disks; dl; dl = dl->next) {
6452 /* If in this array, skip */
6453 for (d = a->info.devs ; d ; d = d->next)
6454 if (d->state_fd >= 0 &&
6455 d->disk.major == dl->major &&
6456 d->disk.minor == dl->minor) {
6457 dprintf("%x:%x already in array\n",
6458 dl->major, dl->minor);
6459 break;
6460 }
6461 if (d)
6462 continue;
6463 test_list = additional_test_list;
6464 while (test_list) {
6465 if (test_list->disk.major == dl->major &&
6466 test_list->disk.minor == dl->minor) {
6467 dprintf("%x:%x already in additional test list\n",
6468 dl->major, dl->minor);
6469 break;
6470 }
6471 test_list = test_list->next;
6472 }
6473 if (test_list)
6474 continue;
6475
6476 /* skip in use or failed drives */
6477 if (is_failed(&dl->disk) || idx == dl->index ||
6478 dl->index == -2) {
6479 dprintf("%x:%x status (failed: %d index: %d)\n",
6480 dl->major, dl->minor, is_failed(&dl->disk), idx);
6481 continue;
6482 }
6483
6484 /* skip pure spares when we are looking for partially
6485 * assimilated drives
6486 */
6487 if (dl->index == -1 && !activate_new)
6488 continue;
6489
6490 /* Does this unused device have the requisite free space?
6491 * It needs to be able to cover all member volumes
6492 */
6493 ex = get_extents(super, dl);
6494 if (!ex) {
6495 dprintf("cannot get extents\n");
6496 continue;
6497 }
6498 for (i = 0; i < mpb->num_raid_devs; i++) {
6499 dev = get_imsm_dev(super, i);
6500 map = get_imsm_map(dev, 0);
6501
6502 /* check if this disk is already a member of
6503 * this array
6504 */
6505 if (get_imsm_disk_slot(map, dl->index) >= 0)
6506 continue;
6507
6508 found = 0;
6509 j = 0;
6510 pos = 0;
6511 array_start = __le32_to_cpu(map->pba_of_lba0);
6512 array_end = array_start +
6513 __le32_to_cpu(map->blocks_per_member) - 1;
6514
6515 do {
6516 /* check that we can start at pba_of_lba0 with
6517 * blocks_per_member of space
6518 */
6519 if (array_start >= pos && array_end < ex[j].start) {
6520 found = 1;
6521 break;
6522 }
6523 pos = ex[j].start + ex[j].size;
6524 j++;
6525 } while (ex[j-1].size);
6526
6527 if (!found)
6528 break;
6529 }
6530
6531 free(ex);
6532 if (i < mpb->num_raid_devs) {
6533 dprintf("%x:%x does not have %u to %u available\n",
6534 dl->major, dl->minor, array_start, array_end);
6535 /* No room */
6536 continue;
6537 }
6538 return dl;
6539 }
6540
6541 return dl;
6542 }
6543
6544
6545 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6546 {
6547 struct imsm_dev *dev2;
6548 struct imsm_map *map;
6549 struct dl *idisk;
6550 int slot;
6551 int idx;
6552 __u8 state;
6553
6554 dev2 = get_imsm_dev(cont->sb, dev_idx);
6555 if (dev2) {
6556 state = imsm_check_degraded(cont->sb, dev2, failed);
6557 if (state == IMSM_T_STATE_FAILED) {
6558 map = get_imsm_map(dev2, 0);
6559 if (!map)
6560 return 1;
6561 for (slot = 0; slot < map->num_members; slot++) {
6562 /*
6563 * Check if failed disks are deleted from intel
6564 * disk list or are marked to be deleted
6565 */
6566 idx = get_imsm_disk_idx(dev2, slot, -1);
6567 idisk = get_imsm_dl_disk(cont->sb, idx);
6568 /*
6569 * Do not rebuild the array if failed disks
6570 * from failed sub-array are not removed from
6571 * container.
6572 */
6573 if (idisk &&
6574 is_failed(&idisk->disk) &&
6575 (idisk->action != DISK_REMOVE))
6576 return 0;
6577 }
6578 }
6579 }
6580 return 1;
6581 }
6582
6583 static struct mdinfo *imsm_activate_spare(struct active_array *a,
6584 struct metadata_update **updates)
6585 {
6586 /**
6587 * Find a device with unused free space and use it to replace a
6588 * failed/vacant region in an array. We replace failed regions one a
6589 * array at a time. The result is that a new spare disk will be added
6590 * to the first failed array and after the monitor has finished
6591 * propagating failures the remainder will be consumed.
6592 *
6593 * FIXME add a capability for mdmon to request spares from another
6594 * container.
6595 */
6596
6597 struct intel_super *super = a->container->sb;
6598 int inst = a->info.container_member;
6599 struct imsm_dev *dev = get_imsm_dev(super, inst);
6600 struct imsm_map *map = get_imsm_map(dev, 0);
6601 int failed = a->info.array.raid_disks;
6602 struct mdinfo *rv = NULL;
6603 struct mdinfo *d;
6604 struct mdinfo *di;
6605 struct metadata_update *mu;
6606 struct dl *dl;
6607 struct imsm_update_activate_spare *u;
6608 int num_spares = 0;
6609 int i;
6610 int allowed;
6611
6612 for (d = a->info.devs ; d ; d = d->next) {
6613 if ((d->curr_state & DS_FAULTY) &&
6614 d->state_fd >= 0)
6615 /* wait for Removal to happen */
6616 return NULL;
6617 if (d->state_fd >= 0)
6618 failed--;
6619 }
6620
6621 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6622 inst, failed, a->info.array.raid_disks, a->info.array.level);
6623
6624 if (imsm_reshape_blocks_arrays_changes(super))
6625 return NULL;
6626
6627 if (a->info.array.level == 4)
6628 /* No repair for takeovered array
6629 * imsm doesn't support raid4
6630 */
6631 return NULL;
6632
6633 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
6634 return NULL;
6635
6636 /*
6637 * If there are any failed disks check state of the other volume.
6638 * Block rebuild if the another one is failed until failed disks
6639 * are removed from container.
6640 */
6641 if (failed) {
6642 dprintf("found failed disks in %s, check if there another"
6643 "failed sub-array.\n",
6644 dev->volume);
6645 /* check if states of the other volumes allow for rebuild */
6646 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6647 if (i != inst) {
6648 allowed = imsm_rebuild_allowed(a->container,
6649 i, failed);
6650 if (!allowed)
6651 return NULL;
6652 }
6653 }
6654 }
6655
6656 /* For each slot, if it is not working, find a spare */
6657 for (i = 0; i < a->info.array.raid_disks; i++) {
6658 for (d = a->info.devs ; d ; d = d->next)
6659 if (d->disk.raid_disk == i)
6660 break;
6661 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6662 if (d && (d->state_fd >= 0))
6663 continue;
6664
6665 /*
6666 * OK, this device needs recovery. Try to re-add the
6667 * previous occupant of this slot, if this fails see if
6668 * we can continue the assimilation of a spare that was
6669 * partially assimilated, finally try to activate a new
6670 * spare.
6671 */
6672 dl = imsm_readd(super, i, a);
6673 if (!dl)
6674 dl = imsm_add_spare(super, i, a, 0, NULL);
6675 if (!dl)
6676 dl = imsm_add_spare(super, i, a, 1, NULL);
6677 if (!dl)
6678 continue;
6679
6680 /* found a usable disk with enough space */
6681 di = malloc(sizeof(*di));
6682 if (!di)
6683 continue;
6684 memset(di, 0, sizeof(*di));
6685
6686 /* dl->index will be -1 in the case we are activating a
6687 * pristine spare. imsm_process_update() will create a
6688 * new index in this case. Once a disk is found to be
6689 * failed in all member arrays it is kicked from the
6690 * metadata
6691 */
6692 di->disk.number = dl->index;
6693
6694 /* (ab)use di->devs to store a pointer to the device
6695 * we chose
6696 */
6697 di->devs = (struct mdinfo *) dl;
6698
6699 di->disk.raid_disk = i;
6700 di->disk.major = dl->major;
6701 di->disk.minor = dl->minor;
6702 di->disk.state = 0;
6703 di->recovery_start = 0;
6704 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6705 di->component_size = a->info.component_size;
6706 di->container_member = inst;
6707 super->random = random32();
6708 di->next = rv;
6709 rv = di;
6710 num_spares++;
6711 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6712 i, di->data_offset);
6713
6714 break;
6715 }
6716
6717 if (!rv)
6718 /* No spares found */
6719 return rv;
6720 /* Now 'rv' has a list of devices to return.
6721 * Create a metadata_update record to update the
6722 * disk_ord_tbl for the array
6723 */
6724 mu = malloc(sizeof(*mu));
6725 if (mu) {
6726 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6727 if (mu->buf == NULL) {
6728 free(mu);
6729 mu = NULL;
6730 }
6731 }
6732 if (!mu) {
6733 while (rv) {
6734 struct mdinfo *n = rv->next;
6735
6736 free(rv);
6737 rv = n;
6738 }
6739 return NULL;
6740 }
6741
6742 mu->space = NULL;
6743 mu->space_list = NULL;
6744 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6745 mu->next = *updates;
6746 u = (struct imsm_update_activate_spare *) mu->buf;
6747
6748 for (di = rv ; di ; di = di->next) {
6749 u->type = update_activate_spare;
6750 u->dl = (struct dl *) di->devs;
6751 di->devs = NULL;
6752 u->slot = di->disk.raid_disk;
6753 u->array = inst;
6754 u->next = u + 1;
6755 u++;
6756 }
6757 (u-1)->next = NULL;
6758 *updates = mu;
6759
6760 return rv;
6761 }
6762
6763 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
6764 {
6765 struct imsm_dev *dev = get_imsm_dev(super, idx);
6766 struct imsm_map *map = get_imsm_map(dev, 0);
6767 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6768 struct disk_info *inf = get_disk_info(u);
6769 struct imsm_disk *disk;
6770 int i;
6771 int j;
6772
6773 for (i = 0; i < map->num_members; i++) {
6774 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
6775 for (j = 0; j < new_map->num_members; j++)
6776 if (serialcmp(disk->serial, inf[j].serial) == 0)
6777 return 1;
6778 }
6779
6780 return 0;
6781 }
6782
6783
6784 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6785 {
6786 struct dl *dl = NULL;
6787 for (dl = super->disks; dl; dl = dl->next)
6788 if ((dl->major == major) && (dl->minor == minor))
6789 return dl;
6790 return NULL;
6791 }
6792
6793 static int remove_disk_super(struct intel_super *super, int major, int minor)
6794 {
6795 struct dl *prev = NULL;
6796 struct dl *dl;
6797
6798 prev = NULL;
6799 for (dl = super->disks; dl; dl = dl->next) {
6800 if ((dl->major == major) && (dl->minor == minor)) {
6801 /* remove */
6802 if (prev)
6803 prev->next = dl->next;
6804 else
6805 super->disks = dl->next;
6806 dl->next = NULL;
6807 __free_imsm_disk(dl);
6808 dprintf("%s: removed %x:%x\n",
6809 __func__, major, minor);
6810 break;
6811 }
6812 prev = dl;
6813 }
6814 return 0;
6815 }
6816
6817 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
6818
6819 static int add_remove_disk_update(struct intel_super *super)
6820 {
6821 int check_degraded = 0;
6822 struct dl *disk = NULL;
6823 /* add/remove some spares to/from the metadata/contrainer */
6824 while (super->disk_mgmt_list) {
6825 struct dl *disk_cfg;
6826
6827 disk_cfg = super->disk_mgmt_list;
6828 super->disk_mgmt_list = disk_cfg->next;
6829 disk_cfg->next = NULL;
6830
6831 if (disk_cfg->action == DISK_ADD) {
6832 disk_cfg->next = super->disks;
6833 super->disks = disk_cfg;
6834 check_degraded = 1;
6835 dprintf("%s: added %x:%x\n",
6836 __func__, disk_cfg->major,
6837 disk_cfg->minor);
6838 } else if (disk_cfg->action == DISK_REMOVE) {
6839 dprintf("Disk remove action processed: %x.%x\n",
6840 disk_cfg->major, disk_cfg->minor);
6841 disk = get_disk_super(super,
6842 disk_cfg->major,
6843 disk_cfg->minor);
6844 if (disk) {
6845 /* store action status */
6846 disk->action = DISK_REMOVE;
6847 /* remove spare disks only */
6848 if (disk->index == -1) {
6849 remove_disk_super(super,
6850 disk_cfg->major,
6851 disk_cfg->minor);
6852 }
6853 }
6854 /* release allocate disk structure */
6855 __free_imsm_disk(disk_cfg);
6856 }
6857 }
6858 return check_degraded;
6859 }
6860
6861
6862 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6863 struct intel_super *super,
6864 void ***space_list)
6865 {
6866 struct intel_dev *id;
6867 void **tofree = NULL;
6868 int ret_val = 0;
6869
6870 dprintf("apply_reshape_migration_update()\n");
6871 if ((u->subdev < 0) ||
6872 (u->subdev > 1)) {
6873 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6874 return ret_val;
6875 }
6876 if ((space_list == NULL) || (*space_list == NULL)) {
6877 dprintf("imsm: Error: Memory is not allocated\n");
6878 return ret_val;
6879 }
6880
6881 for (id = super->devlist ; id; id = id->next) {
6882 if (id->index == (unsigned)u->subdev) {
6883 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6884 struct imsm_map *map;
6885 struct imsm_dev *new_dev =
6886 (struct imsm_dev *)*space_list;
6887 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6888 int to_state;
6889 struct dl *new_disk;
6890
6891 if (new_dev == NULL)
6892 return ret_val;
6893 *space_list = **space_list;
6894 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6895 map = get_imsm_map(new_dev, 0);
6896 if (migr_map) {
6897 dprintf("imsm: Error: migration in progress");
6898 return ret_val;
6899 }
6900
6901 to_state = map->map_state;
6902 if ((u->new_level == 5) && (map->raid_level == 0)) {
6903 map->num_members++;
6904 /* this should not happen */
6905 if (u->new_disks[0] < 0) {
6906 map->failed_disk_num =
6907 map->num_members - 1;
6908 to_state = IMSM_T_STATE_DEGRADED;
6909 } else
6910 to_state = IMSM_T_STATE_NORMAL;
6911 }
6912 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
6913 if (u->new_level > -1)
6914 map->raid_level = u->new_level;
6915 migr_map = get_imsm_map(new_dev, 1);
6916 if ((u->new_level == 5) &&
6917 (migr_map->raid_level == 0)) {
6918 int ord = map->num_members - 1;
6919 migr_map->num_members--;
6920 if (u->new_disks[0] < 0)
6921 ord |= IMSM_ORD_REBUILD;
6922 set_imsm_ord_tbl_ent(map,
6923 map->num_members - 1,
6924 ord);
6925 }
6926 id->dev = new_dev;
6927 tofree = (void **)dev;
6928
6929 /* update chunk size
6930 */
6931 if (u->new_chunksize > 0)
6932 map->blocks_per_strip =
6933 __cpu_to_le16(u->new_chunksize * 2);
6934
6935 /* add disk
6936 */
6937 if ((u->new_level != 5) ||
6938 (migr_map->raid_level != 0) ||
6939 (migr_map->raid_level == map->raid_level))
6940 goto skip_disk_add;
6941
6942 if (u->new_disks[0] >= 0) {
6943 /* use passes spare
6944 */
6945 new_disk = get_disk_super(super,
6946 major(u->new_disks[0]),
6947 minor(u->new_disks[0]));
6948 dprintf("imsm: new disk for reshape is: %i:%i "
6949 "(%p, index = %i)\n",
6950 major(u->new_disks[0]),
6951 minor(u->new_disks[0]),
6952 new_disk, new_disk->index);
6953 if (new_disk == NULL)
6954 goto error_disk_add;
6955
6956 new_disk->index = map->num_members - 1;
6957 /* slot to fill in autolayout
6958 */
6959 new_disk->raiddisk = new_disk->index;
6960 new_disk->disk.status |= CONFIGURED_DISK;
6961 new_disk->disk.status &= ~SPARE_DISK;
6962 } else
6963 goto error_disk_add;
6964
6965 skip_disk_add:
6966 *tofree = *space_list;
6967 /* calculate new size
6968 */
6969 imsm_set_array_size(new_dev);
6970
6971 ret_val = 1;
6972 }
6973 }
6974
6975 if (tofree)
6976 *space_list = tofree;
6977 return ret_val;
6978
6979 error_disk_add:
6980 dprintf("Error: imsm: Cannot find disk.\n");
6981 return ret_val;
6982 }
6983
6984
6985 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
6986 struct intel_super *super,
6987 void ***space_list)
6988 {
6989 struct dl *new_disk;
6990 struct intel_dev *id;
6991 int i;
6992 int delta_disks = u->new_raid_disks - u->old_raid_disks;
6993 int disk_count = u->old_raid_disks;
6994 void **tofree = NULL;
6995 int devices_to_reshape = 1;
6996 struct imsm_super *mpb = super->anchor;
6997 int ret_val = 0;
6998 unsigned int dev_id;
6999
7000 dprintf("imsm: apply_reshape_container_disks_update()\n");
7001
7002 /* enable spares to use in array */
7003 for (i = 0; i < delta_disks; i++) {
7004 new_disk = get_disk_super(super,
7005 major(u->new_disks[i]),
7006 minor(u->new_disks[i]));
7007 dprintf("imsm: new disk for reshape is: %i:%i "
7008 "(%p, index = %i)\n",
7009 major(u->new_disks[i]), minor(u->new_disks[i]),
7010 new_disk, new_disk->index);
7011 if ((new_disk == NULL) ||
7012 ((new_disk->index >= 0) &&
7013 (new_disk->index < u->old_raid_disks)))
7014 goto update_reshape_exit;
7015 new_disk->index = disk_count++;
7016 /* slot to fill in autolayout
7017 */
7018 new_disk->raiddisk = new_disk->index;
7019 new_disk->disk.status |=
7020 CONFIGURED_DISK;
7021 new_disk->disk.status &= ~SPARE_DISK;
7022 }
7023
7024 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7025 mpb->num_raid_devs);
7026 /* manage changes in volume
7027 */
7028 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
7029 void **sp = *space_list;
7030 struct imsm_dev *newdev;
7031 struct imsm_map *newmap, *oldmap;
7032
7033 for (id = super->devlist ; id; id = id->next) {
7034 if (id->index == dev_id)
7035 break;
7036 }
7037 if (id == NULL)
7038 break;
7039 if (!sp)
7040 continue;
7041 *space_list = *sp;
7042 newdev = (void*)sp;
7043 /* Copy the dev, but not (all of) the map */
7044 memcpy(newdev, id->dev, sizeof(*newdev));
7045 oldmap = get_imsm_map(id->dev, 0);
7046 newmap = get_imsm_map(newdev, 0);
7047 /* Copy the current map */
7048 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7049 /* update one device only
7050 */
7051 if (devices_to_reshape) {
7052 dprintf("imsm: modifying subdev: %i\n",
7053 id->index);
7054 devices_to_reshape--;
7055 newdev->vol.migr_state = 1;
7056 newdev->vol.curr_migr_unit = 0;
7057 newdev->vol.migr_type = MIGR_GEN_MIGR;
7058 newmap->num_members = u->new_raid_disks;
7059 for (i = 0; i < delta_disks; i++) {
7060 set_imsm_ord_tbl_ent(newmap,
7061 u->old_raid_disks + i,
7062 u->old_raid_disks + i);
7063 }
7064 /* New map is correct, now need to save old map
7065 */
7066 newmap = get_imsm_map(newdev, 1);
7067 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7068
7069 imsm_set_array_size(newdev);
7070 }
7071
7072 sp = (void **)id->dev;
7073 id->dev = newdev;
7074 *sp = tofree;
7075 tofree = sp;
7076
7077 /* Clear migration record */
7078 memset(super->migr_rec, 0, sizeof(struct migr_record));
7079 }
7080 if (tofree)
7081 *space_list = tofree;
7082 ret_val = 1;
7083
7084 update_reshape_exit:
7085
7086 return ret_val;
7087 }
7088
7089 static int apply_takeover_update(struct imsm_update_takeover *u,
7090 struct intel_super *super,
7091 void ***space_list)
7092 {
7093 struct imsm_dev *dev = NULL;
7094 struct intel_dev *dv;
7095 struct imsm_dev *dev_new;
7096 struct imsm_map *map;
7097 struct dl *dm, *du;
7098 int i;
7099
7100 for (dv = super->devlist; dv; dv = dv->next)
7101 if (dv->index == (unsigned int)u->subarray) {
7102 dev = dv->dev;
7103 break;
7104 }
7105
7106 if (dev == NULL)
7107 return 0;
7108
7109 map = get_imsm_map(dev, 0);
7110
7111 if (u->direction == R10_TO_R0) {
7112 /* Number of failed disks must be half of initial disk number */
7113 if (imsm_count_failed(super, dev) != (map->num_members / 2))
7114 return 0;
7115
7116 /* iterate through devices to mark removed disks as spare */
7117 for (dm = super->disks; dm; dm = dm->next) {
7118 if (dm->disk.status & FAILED_DISK) {
7119 int idx = dm->index;
7120 /* update indexes on the disk list */
7121 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7122 the index values will end up being correct.... NB */
7123 for (du = super->disks; du; du = du->next)
7124 if (du->index > idx)
7125 du->index--;
7126 /* mark as spare disk */
7127 mark_spare(dm);
7128 }
7129 }
7130 /* update map */
7131 map->num_members = map->num_members / 2;
7132 map->map_state = IMSM_T_STATE_NORMAL;
7133 map->num_domains = 1;
7134 map->raid_level = 0;
7135 map->failed_disk_num = -1;
7136 }
7137
7138 if (u->direction == R0_TO_R10) {
7139 void **space;
7140 /* update slots in current disk list */
7141 for (dm = super->disks; dm; dm = dm->next) {
7142 if (dm->index >= 0)
7143 dm->index *= 2;
7144 }
7145 /* create new *missing* disks */
7146 for (i = 0; i < map->num_members; i++) {
7147 space = *space_list;
7148 if (!space)
7149 continue;
7150 *space_list = *space;
7151 du = (void *)space;
7152 memcpy(du, super->disks, sizeof(*du));
7153 du->fd = -1;
7154 du->minor = 0;
7155 du->major = 0;
7156 du->index = (i * 2) + 1;
7157 sprintf((char *)du->disk.serial,
7158 " MISSING_%d", du->index);
7159 sprintf((char *)du->serial,
7160 "MISSING_%d", du->index);
7161 du->next = super->missing;
7162 super->missing = du;
7163 }
7164 /* create new dev and map */
7165 space = *space_list;
7166 if (!space)
7167 return 0;
7168 *space_list = *space;
7169 dev_new = (void *)space;
7170 memcpy(dev_new, dev, sizeof(*dev));
7171 /* update new map */
7172 map = get_imsm_map(dev_new, 0);
7173 map->num_members = map->num_members * 2;
7174 map->map_state = IMSM_T_STATE_DEGRADED;
7175 map->num_domains = 2;
7176 map->raid_level = 1;
7177 /* replace dev<->dev_new */
7178 dv->dev = dev_new;
7179 }
7180 /* update disk order table */
7181 for (du = super->disks; du; du = du->next)
7182 if (du->index >= 0)
7183 set_imsm_ord_tbl_ent(map, du->index, du->index);
7184 for (du = super->missing; du; du = du->next)
7185 if (du->index >= 0) {
7186 set_imsm_ord_tbl_ent(map, du->index, du->index);
7187 mark_missing(dv->dev, &du->disk, du->index);
7188 }
7189
7190 return 1;
7191 }
7192
7193 static void imsm_process_update(struct supertype *st,
7194 struct metadata_update *update)
7195 {
7196 /**
7197 * crack open the metadata_update envelope to find the update record
7198 * update can be one of:
7199 * update_reshape_container_disks - all the arrays in the container
7200 * are being reshaped to have more devices. We need to mark
7201 * the arrays for general migration and convert selected spares
7202 * into active devices.
7203 * update_activate_spare - a spare device has replaced a failed
7204 * device in an array, update the disk_ord_tbl. If this disk is
7205 * present in all member arrays then also clear the SPARE_DISK
7206 * flag
7207 * update_create_array
7208 * update_kill_array
7209 * update_rename_array
7210 * update_add_remove_disk
7211 */
7212 struct intel_super *super = st->sb;
7213 struct imsm_super *mpb;
7214 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7215
7216 /* update requires a larger buf but the allocation failed */
7217 if (super->next_len && !super->next_buf) {
7218 super->next_len = 0;
7219 return;
7220 }
7221
7222 if (super->next_buf) {
7223 memcpy(super->next_buf, super->buf, super->len);
7224 free(super->buf);
7225 super->len = super->next_len;
7226 super->buf = super->next_buf;
7227
7228 super->next_len = 0;
7229 super->next_buf = NULL;
7230 }
7231
7232 mpb = super->anchor;
7233
7234 switch (type) {
7235 case update_general_migration_checkpoint: {
7236 struct intel_dev *id;
7237 struct imsm_update_general_migration_checkpoint *u =
7238 (void *)update->buf;
7239
7240 dprintf("imsm: process_update() "
7241 "for update_general_migration_checkpoint called\n");
7242
7243 /* find device under general migration */
7244 for (id = super->devlist ; id; id = id->next) {
7245 if (is_gen_migration(id->dev)) {
7246 id->dev->vol.curr_migr_unit =
7247 __cpu_to_le32(u->curr_migr_unit);
7248 super->updates_pending++;
7249 }
7250 }
7251 break;
7252 }
7253 case update_takeover: {
7254 struct imsm_update_takeover *u = (void *)update->buf;
7255 if (apply_takeover_update(u, super, &update->space_list)) {
7256 imsm_update_version_info(super);
7257 super->updates_pending++;
7258 }
7259 break;
7260 }
7261
7262 case update_reshape_container_disks: {
7263 struct imsm_update_reshape *u = (void *)update->buf;
7264 if (apply_reshape_container_disks_update(
7265 u, super, &update->space_list))
7266 super->updates_pending++;
7267 break;
7268 }
7269 case update_reshape_migration: {
7270 struct imsm_update_reshape_migration *u = (void *)update->buf;
7271 if (apply_reshape_migration_update(
7272 u, super, &update->space_list))
7273 super->updates_pending++;
7274 break;
7275 }
7276 case update_activate_spare: {
7277 struct imsm_update_activate_spare *u = (void *) update->buf;
7278 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7279 struct imsm_map *map = get_imsm_map(dev, 0);
7280 struct imsm_map *migr_map;
7281 struct active_array *a;
7282 struct imsm_disk *disk;
7283 __u8 to_state;
7284 struct dl *dl;
7285 unsigned int found;
7286 int failed;
7287 int victim = get_imsm_disk_idx(dev, u->slot, -1);
7288 int i;
7289
7290 for (dl = super->disks; dl; dl = dl->next)
7291 if (dl == u->dl)
7292 break;
7293
7294 if (!dl) {
7295 fprintf(stderr, "error: imsm_activate_spare passed "
7296 "an unknown disk (index: %d)\n",
7297 u->dl->index);
7298 return;
7299 }
7300
7301 super->updates_pending++;
7302 /* count failures (excluding rebuilds and the victim)
7303 * to determine map[0] state
7304 */
7305 failed = 0;
7306 for (i = 0; i < map->num_members; i++) {
7307 if (i == u->slot)
7308 continue;
7309 disk = get_imsm_disk(super,
7310 get_imsm_disk_idx(dev, i, -1));
7311 if (!disk || is_failed(disk))
7312 failed++;
7313 }
7314
7315 /* adding a pristine spare, assign a new index */
7316 if (dl->index < 0) {
7317 dl->index = super->anchor->num_disks;
7318 super->anchor->num_disks++;
7319 }
7320 disk = &dl->disk;
7321 disk->status |= CONFIGURED_DISK;
7322 disk->status &= ~SPARE_DISK;
7323
7324 /* mark rebuild */
7325 to_state = imsm_check_degraded(super, dev, failed);
7326 map->map_state = IMSM_T_STATE_DEGRADED;
7327 migrate(dev, super, to_state, MIGR_REBUILD);
7328 migr_map = get_imsm_map(dev, 1);
7329 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7330 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
7331
7332 /* update the family_num to mark a new container
7333 * generation, being careful to record the existing
7334 * family_num in orig_family_num to clean up after
7335 * earlier mdadm versions that neglected to set it.
7336 */
7337 if (mpb->orig_family_num == 0)
7338 mpb->orig_family_num = mpb->family_num;
7339 mpb->family_num += super->random;
7340
7341 /* count arrays using the victim in the metadata */
7342 found = 0;
7343 for (a = st->arrays; a ; a = a->next) {
7344 dev = get_imsm_dev(super, a->info.container_member);
7345 map = get_imsm_map(dev, 0);
7346
7347 if (get_imsm_disk_slot(map, victim) >= 0)
7348 found++;
7349 }
7350
7351 /* delete the victim if it is no longer being
7352 * utilized anywhere
7353 */
7354 if (!found) {
7355 struct dl **dlp;
7356
7357 /* We know that 'manager' isn't touching anything,
7358 * so it is safe to delete
7359 */
7360 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
7361 if ((*dlp)->index == victim)
7362 break;
7363
7364 /* victim may be on the missing list */
7365 if (!*dlp)
7366 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
7367 if ((*dlp)->index == victim)
7368 break;
7369 imsm_delete(super, dlp, victim);
7370 }
7371 break;
7372 }
7373 case update_create_array: {
7374 /* someone wants to create a new array, we need to be aware of
7375 * a few races/collisions:
7376 * 1/ 'Create' called by two separate instances of mdadm
7377 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7378 * devices that have since been assimilated via
7379 * activate_spare.
7380 * In the event this update can not be carried out mdadm will
7381 * (FIX ME) notice that its update did not take hold.
7382 */
7383 struct imsm_update_create_array *u = (void *) update->buf;
7384 struct intel_dev *dv;
7385 struct imsm_dev *dev;
7386 struct imsm_map *map, *new_map;
7387 unsigned long long start, end;
7388 unsigned long long new_start, new_end;
7389 int i;
7390 struct disk_info *inf;
7391 struct dl *dl;
7392
7393 /* handle racing creates: first come first serve */
7394 if (u->dev_idx < mpb->num_raid_devs) {
7395 dprintf("%s: subarray %d already defined\n",
7396 __func__, u->dev_idx);
7397 goto create_error;
7398 }
7399
7400 /* check update is next in sequence */
7401 if (u->dev_idx != mpb->num_raid_devs) {
7402 dprintf("%s: can not create array %d expected index %d\n",
7403 __func__, u->dev_idx, mpb->num_raid_devs);
7404 goto create_error;
7405 }
7406
7407 new_map = get_imsm_map(&u->dev, 0);
7408 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7409 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
7410 inf = get_disk_info(u);
7411
7412 /* handle activate_spare versus create race:
7413 * check to make sure that overlapping arrays do not include
7414 * overalpping disks
7415 */
7416 for (i = 0; i < mpb->num_raid_devs; i++) {
7417 dev = get_imsm_dev(super, i);
7418 map = get_imsm_map(dev, 0);
7419 start = __le32_to_cpu(map->pba_of_lba0);
7420 end = start + __le32_to_cpu(map->blocks_per_member);
7421 if ((new_start >= start && new_start <= end) ||
7422 (start >= new_start && start <= new_end))
7423 /* overlap */;
7424 else
7425 continue;
7426
7427 if (disks_overlap(super, i, u)) {
7428 dprintf("%s: arrays overlap\n", __func__);
7429 goto create_error;
7430 }
7431 }
7432
7433 /* check that prepare update was successful */
7434 if (!update->space) {
7435 dprintf("%s: prepare update failed\n", __func__);
7436 goto create_error;
7437 }
7438
7439 /* check that all disks are still active before committing
7440 * changes. FIXME: could we instead handle this by creating a
7441 * degraded array? That's probably not what the user expects,
7442 * so better to drop this update on the floor.
7443 */
7444 for (i = 0; i < new_map->num_members; i++) {
7445 dl = serial_to_dl(inf[i].serial, super);
7446 if (!dl) {
7447 dprintf("%s: disk disappeared\n", __func__);
7448 goto create_error;
7449 }
7450 }
7451
7452 super->updates_pending++;
7453
7454 /* convert spares to members and fixup ord_tbl */
7455 for (i = 0; i < new_map->num_members; i++) {
7456 dl = serial_to_dl(inf[i].serial, super);
7457 if (dl->index == -1) {
7458 dl->index = mpb->num_disks;
7459 mpb->num_disks++;
7460 dl->disk.status |= CONFIGURED_DISK;
7461 dl->disk.status &= ~SPARE_DISK;
7462 }
7463 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7464 }
7465
7466 dv = update->space;
7467 dev = dv->dev;
7468 update->space = NULL;
7469 imsm_copy_dev(dev, &u->dev);
7470 dv->index = u->dev_idx;
7471 dv->next = super->devlist;
7472 super->devlist = dv;
7473 mpb->num_raid_devs++;
7474
7475 imsm_update_version_info(super);
7476 break;
7477 create_error:
7478 /* mdmon knows how to release update->space, but not
7479 * ((struct intel_dev *) update->space)->dev
7480 */
7481 if (update->space) {
7482 dv = update->space;
7483 free(dv->dev);
7484 }
7485 break;
7486 }
7487 case update_kill_array: {
7488 struct imsm_update_kill_array *u = (void *) update->buf;
7489 int victim = u->dev_idx;
7490 struct active_array *a;
7491 struct intel_dev **dp;
7492 struct imsm_dev *dev;
7493
7494 /* sanity check that we are not affecting the uuid of
7495 * active arrays, or deleting an active array
7496 *
7497 * FIXME when immutable ids are available, but note that
7498 * we'll also need to fixup the invalidated/active
7499 * subarray indexes in mdstat
7500 */
7501 for (a = st->arrays; a; a = a->next)
7502 if (a->info.container_member >= victim)
7503 break;
7504 /* by definition if mdmon is running at least one array
7505 * is active in the container, so checking
7506 * mpb->num_raid_devs is just extra paranoia
7507 */
7508 dev = get_imsm_dev(super, victim);
7509 if (a || !dev || mpb->num_raid_devs == 1) {
7510 dprintf("failed to delete subarray-%d\n", victim);
7511 break;
7512 }
7513
7514 for (dp = &super->devlist; *dp;)
7515 if ((*dp)->index == (unsigned)super->current_vol) {
7516 *dp = (*dp)->next;
7517 } else {
7518 if ((*dp)->index > (unsigned)victim)
7519 (*dp)->index--;
7520 dp = &(*dp)->next;
7521 }
7522 mpb->num_raid_devs--;
7523 super->updates_pending++;
7524 break;
7525 }
7526 case update_rename_array: {
7527 struct imsm_update_rename_array *u = (void *) update->buf;
7528 char name[MAX_RAID_SERIAL_LEN+1];
7529 int target = u->dev_idx;
7530 struct active_array *a;
7531 struct imsm_dev *dev;
7532
7533 /* sanity check that we are not affecting the uuid of
7534 * an active array
7535 */
7536 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7537 name[MAX_RAID_SERIAL_LEN] = '\0';
7538 for (a = st->arrays; a; a = a->next)
7539 if (a->info.container_member == target)
7540 break;
7541 dev = get_imsm_dev(super, u->dev_idx);
7542 if (a || !dev || !check_name(super, name, 1)) {
7543 dprintf("failed to rename subarray-%d\n", target);
7544 break;
7545 }
7546
7547 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7548 super->updates_pending++;
7549 break;
7550 }
7551 case update_add_remove_disk: {
7552 /* we may be able to repair some arrays if disks are
7553 * being added, check teh status of add_remove_disk
7554 * if discs has been added.
7555 */
7556 if (add_remove_disk_update(super)) {
7557 struct active_array *a;
7558
7559 super->updates_pending++;
7560 for (a = st->arrays; a; a = a->next)
7561 a->check_degraded = 1;
7562 }
7563 break;
7564 }
7565 default:
7566 fprintf(stderr, "error: unsuported process update type:"
7567 "(type: %d)\n", type);
7568 }
7569 }
7570
7571 static struct mdinfo *get_spares_for_grow(struct supertype *st);
7572
7573 static void imsm_prepare_update(struct supertype *st,
7574 struct metadata_update *update)
7575 {
7576 /**
7577 * Allocate space to hold new disk entries, raid-device entries or a new
7578 * mpb if necessary. The manager synchronously waits for updates to
7579 * complete in the monitor, so new mpb buffers allocated here can be
7580 * integrated by the monitor thread without worrying about live pointers
7581 * in the manager thread.
7582 */
7583 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7584 struct intel_super *super = st->sb;
7585 struct imsm_super *mpb = super->anchor;
7586 size_t buf_len;
7587 size_t len = 0;
7588
7589 switch (type) {
7590 case update_general_migration_checkpoint:
7591 dprintf("imsm: prepare_update() "
7592 "for update_general_migration_checkpoint called\n");
7593 break;
7594 case update_takeover: {
7595 struct imsm_update_takeover *u = (void *)update->buf;
7596 if (u->direction == R0_TO_R10) {
7597 void **tail = (void **)&update->space_list;
7598 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7599 struct imsm_map *map = get_imsm_map(dev, 0);
7600 int num_members = map->num_members;
7601 void *space;
7602 int size, i;
7603 int err = 0;
7604 /* allocate memory for added disks */
7605 for (i = 0; i < num_members; i++) {
7606 size = sizeof(struct dl);
7607 space = malloc(size);
7608 if (!space) {
7609 err++;
7610 break;
7611 }
7612 *tail = space;
7613 tail = space;
7614 *tail = NULL;
7615 }
7616 /* allocate memory for new device */
7617 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7618 (num_members * sizeof(__u32));
7619 space = malloc(size);
7620 if (!space)
7621 err++;
7622 else {
7623 *tail = space;
7624 tail = space;
7625 *tail = NULL;
7626 }
7627 if (!err) {
7628 len = disks_to_mpb_size(num_members * 2);
7629 } else {
7630 /* if allocation didn't success, free buffer */
7631 while (update->space_list) {
7632 void **sp = update->space_list;
7633 update->space_list = *sp;
7634 free(sp);
7635 }
7636 }
7637 }
7638
7639 break;
7640 }
7641 case update_reshape_container_disks: {
7642 /* Every raid device in the container is about to
7643 * gain some more devices, and we will enter a
7644 * reconfiguration.
7645 * So each 'imsm_map' will be bigger, and the imsm_vol
7646 * will now hold 2 of them.
7647 * Thus we need new 'struct imsm_dev' allocations sized
7648 * as sizeof_imsm_dev but with more devices in both maps.
7649 */
7650 struct imsm_update_reshape *u = (void *)update->buf;
7651 struct intel_dev *dl;
7652 void **space_tail = (void**)&update->space_list;
7653
7654 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7655
7656 for (dl = super->devlist; dl; dl = dl->next) {
7657 int size = sizeof_imsm_dev(dl->dev, 1);
7658 void *s;
7659 if (u->new_raid_disks > u->old_raid_disks)
7660 size += sizeof(__u32)*2*
7661 (u->new_raid_disks - u->old_raid_disks);
7662 s = malloc(size);
7663 if (!s)
7664 break;
7665 *space_tail = s;
7666 space_tail = s;
7667 *space_tail = NULL;
7668 }
7669
7670 len = disks_to_mpb_size(u->new_raid_disks);
7671 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7672 break;
7673 }
7674 case update_reshape_migration: {
7675 /* for migration level 0->5 we need to add disks
7676 * so the same as for container operation we will copy
7677 * device to the bigger location.
7678 * in memory prepared device and new disk area are prepared
7679 * for usage in process update
7680 */
7681 struct imsm_update_reshape_migration *u = (void *)update->buf;
7682 struct intel_dev *id;
7683 void **space_tail = (void **)&update->space_list;
7684 int size;
7685 void *s;
7686 int current_level = -1;
7687
7688 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7689
7690 /* add space for bigger array in update
7691 */
7692 for (id = super->devlist; id; id = id->next) {
7693 if (id->index == (unsigned)u->subdev) {
7694 size = sizeof_imsm_dev(id->dev, 1);
7695 if (u->new_raid_disks > u->old_raid_disks)
7696 size += sizeof(__u32)*2*
7697 (u->new_raid_disks - u->old_raid_disks);
7698 s = malloc(size);
7699 if (!s)
7700 break;
7701 *space_tail = s;
7702 space_tail = s;
7703 *space_tail = NULL;
7704 break;
7705 }
7706 }
7707 if (update->space_list == NULL)
7708 break;
7709
7710 /* add space for disk in update
7711 */
7712 size = sizeof(struct dl);
7713 s = malloc(size);
7714 if (!s) {
7715 free(update->space_list);
7716 update->space_list = NULL;
7717 break;
7718 }
7719 *space_tail = s;
7720 space_tail = s;
7721 *space_tail = NULL;
7722
7723 /* add spare device to update
7724 */
7725 for (id = super->devlist ; id; id = id->next)
7726 if (id->index == (unsigned)u->subdev) {
7727 struct imsm_dev *dev;
7728 struct imsm_map *map;
7729
7730 dev = get_imsm_dev(super, u->subdev);
7731 map = get_imsm_map(dev, 0);
7732 current_level = map->raid_level;
7733 break;
7734 }
7735 if ((u->new_level == 5) && (u->new_level != current_level)) {
7736 struct mdinfo *spares;
7737
7738 spares = get_spares_for_grow(st);
7739 if (spares) {
7740 struct dl *dl;
7741 struct mdinfo *dev;
7742
7743 dev = spares->devs;
7744 if (dev) {
7745 u->new_disks[0] =
7746 makedev(dev->disk.major,
7747 dev->disk.minor);
7748 dl = get_disk_super(super,
7749 dev->disk.major,
7750 dev->disk.minor);
7751 dl->index = u->old_raid_disks;
7752 dev = dev->next;
7753 }
7754 sysfs_free(spares);
7755 }
7756 }
7757 len = disks_to_mpb_size(u->new_raid_disks);
7758 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7759 break;
7760 }
7761 case update_create_array: {
7762 struct imsm_update_create_array *u = (void *) update->buf;
7763 struct intel_dev *dv;
7764 struct imsm_dev *dev = &u->dev;
7765 struct imsm_map *map = get_imsm_map(dev, 0);
7766 struct dl *dl;
7767 struct disk_info *inf;
7768 int i;
7769 int activate = 0;
7770
7771 inf = get_disk_info(u);
7772 len = sizeof_imsm_dev(dev, 1);
7773 /* allocate a new super->devlist entry */
7774 dv = malloc(sizeof(*dv));
7775 if (dv) {
7776 dv->dev = malloc(len);
7777 if (dv->dev)
7778 update->space = dv;
7779 else {
7780 free(dv);
7781 update->space = NULL;
7782 }
7783 }
7784
7785 /* count how many spares will be converted to members */
7786 for (i = 0; i < map->num_members; i++) {
7787 dl = serial_to_dl(inf[i].serial, super);
7788 if (!dl) {
7789 /* hmm maybe it failed?, nothing we can do about
7790 * it here
7791 */
7792 continue;
7793 }
7794 if (count_memberships(dl, super) == 0)
7795 activate++;
7796 }
7797 len += activate * sizeof(struct imsm_disk);
7798 break;
7799 default:
7800 break;
7801 }
7802 }
7803
7804 /* check if we need a larger metadata buffer */
7805 if (super->next_buf)
7806 buf_len = super->next_len;
7807 else
7808 buf_len = super->len;
7809
7810 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7811 /* ok we need a larger buf than what is currently allocated
7812 * if this allocation fails process_update will notice that
7813 * ->next_len is set and ->next_buf is NULL
7814 */
7815 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7816 if (super->next_buf)
7817 free(super->next_buf);
7818
7819 super->next_len = buf_len;
7820 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7821 memset(super->next_buf, 0, buf_len);
7822 else
7823 super->next_buf = NULL;
7824 }
7825 }
7826
7827 /* must be called while manager is quiesced */
7828 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
7829 {
7830 struct imsm_super *mpb = super->anchor;
7831 struct dl *iter;
7832 struct imsm_dev *dev;
7833 struct imsm_map *map;
7834 int i, j, num_members;
7835 __u32 ord;
7836
7837 dprintf("%s: deleting device[%d] from imsm_super\n",
7838 __func__, index);
7839
7840 /* shift all indexes down one */
7841 for (iter = super->disks; iter; iter = iter->next)
7842 if (iter->index > (int)index)
7843 iter->index--;
7844 for (iter = super->missing; iter; iter = iter->next)
7845 if (iter->index > (int)index)
7846 iter->index--;
7847
7848 for (i = 0; i < mpb->num_raid_devs; i++) {
7849 dev = get_imsm_dev(super, i);
7850 map = get_imsm_map(dev, 0);
7851 num_members = map->num_members;
7852 for (j = 0; j < num_members; j++) {
7853 /* update ord entries being careful not to propagate
7854 * ord-flags to the first map
7855 */
7856 ord = get_imsm_ord_tbl_ent(dev, j, -1);
7857
7858 if (ord_to_idx(ord) <= index)
7859 continue;
7860
7861 map = get_imsm_map(dev, 0);
7862 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7863 map = get_imsm_map(dev, 1);
7864 if (map)
7865 set_imsm_ord_tbl_ent(map, j, ord - 1);
7866 }
7867 }
7868
7869 mpb->num_disks--;
7870 super->updates_pending++;
7871 if (*dlp) {
7872 struct dl *dl = *dlp;
7873
7874 *dlp = (*dlp)->next;
7875 __free_imsm_disk(dl);
7876 }
7877 }
7878 #endif /* MDASSEMBLE */
7879 /*******************************************************************************
7880 * Function: open_backup_targets
7881 * Description: Function opens file descriptors for all devices given in
7882 * info->devs
7883 * Parameters:
7884 * info : general array info
7885 * raid_disks : number of disks
7886 * raid_fds : table of device's file descriptors
7887 * Returns:
7888 * 0 : success
7889 * -1 : fail
7890 ******************************************************************************/
7891 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7892 {
7893 struct mdinfo *sd;
7894
7895 for (sd = info->devs ; sd ; sd = sd->next) {
7896 char *dn;
7897
7898 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7899 dprintf("disk is faulty!!\n");
7900 continue;
7901 }
7902
7903 if ((sd->disk.raid_disk >= raid_disks) ||
7904 (sd->disk.raid_disk < 0))
7905 continue;
7906
7907 dn = map_dev(sd->disk.major,
7908 sd->disk.minor, 1);
7909 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7910 if (raid_fds[sd->disk.raid_disk] < 0) {
7911 fprintf(stderr, "cannot open component\n");
7912 return -1;
7913 }
7914 }
7915 return 0;
7916 }
7917
7918 #ifndef MDASSEMBLE
7919 /*******************************************************************************
7920 * Function: init_migr_record_imsm
7921 * Description: Function inits imsm migration record
7922 * Parameters:
7923 * super : imsm internal array info
7924 * dev : device under migration
7925 * info : general array info to find the smallest device
7926 * Returns:
7927 * none
7928 ******************************************************************************/
7929 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7930 struct mdinfo *info)
7931 {
7932 struct intel_super *super = st->sb;
7933 struct migr_record *migr_rec = super->migr_rec;
7934 int new_data_disks;
7935 unsigned long long dsize, dev_sectors;
7936 long long unsigned min_dev_sectors = -1LLU;
7937 struct mdinfo *sd;
7938 char nm[30];
7939 int fd;
7940 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7941 struct imsm_map *map_src = get_imsm_map(dev, 1);
7942 unsigned long long num_migr_units;
7943 unsigned long long array_blocks;
7944
7945 memset(migr_rec, 0, sizeof(struct migr_record));
7946 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
7947
7948 /* only ascending reshape supported now */
7949 migr_rec->ascending_migr = __cpu_to_le32(1);
7950
7951 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
7952 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
7953 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
7954 new_data_disks = imsm_num_data_members(dev, 0);
7955 migr_rec->blocks_per_unit =
7956 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
7957 migr_rec->dest_depth_per_unit =
7958 __cpu_to_le32(migr_rec->dest_depth_per_unit);
7959 array_blocks = info->component_size * new_data_disks;
7960 num_migr_units =
7961 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
7962
7963 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
7964 num_migr_units++;
7965 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
7966
7967 migr_rec->post_migr_vol_cap = dev->size_low;
7968 migr_rec->post_migr_vol_cap_hi = dev->size_high;
7969
7970
7971 /* Find the smallest dev */
7972 for (sd = info->devs ; sd ; sd = sd->next) {
7973 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
7974 fd = dev_open(nm, O_RDONLY);
7975 if (fd < 0)
7976 continue;
7977 get_dev_size(fd, NULL, &dsize);
7978 dev_sectors = dsize / 512;
7979 if (dev_sectors < min_dev_sectors)
7980 min_dev_sectors = dev_sectors;
7981 close(fd);
7982 }
7983 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
7984 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
7985
7986 write_imsm_migr_rec(st);
7987
7988 return;
7989 }
7990
7991 /*******************************************************************************
7992 * Function: save_backup_imsm
7993 * Description: Function saves critical data stripes to Migration Copy Area
7994 * and updates the current migration unit status.
7995 * Use restore_stripes() to form a destination stripe,
7996 * and to write it to the Copy Area.
7997 * Parameters:
7998 * st : supertype information
7999 * dev : imsm device that backup is saved for
8000 * info : general array info
8001 * buf : input buffer
8002 * length : length of data to backup (blocks_per_unit)
8003 * Returns:
8004 * 0 : success
8005 *, -1 : fail
8006 ******************************************************************************/
8007 int save_backup_imsm(struct supertype *st,
8008 struct imsm_dev *dev,
8009 struct mdinfo *info,
8010 void *buf,
8011 int length)
8012 {
8013 int rv = -1;
8014 struct intel_super *super = st->sb;
8015 unsigned long long *target_offsets = NULL;
8016 int *targets = NULL;
8017 int i;
8018 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8019 int new_disks = map_dest->num_members;
8020 int dest_layout = 0;
8021 int dest_chunk;
8022 unsigned long long start;
8023 int data_disks = imsm_num_data_members(dev, 0);
8024
8025 targets = malloc(new_disks * sizeof(int));
8026 if (!targets)
8027 goto abort;
8028
8029 for (i = 0; i < new_disks; i++)
8030 targets[i] = -1;
8031
8032 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8033 if (!target_offsets)
8034 goto abort;
8035
8036 start = info->reshape_progress * 512;
8037 for (i = 0; i < new_disks; i++) {
8038 target_offsets[i] = (unsigned long long)
8039 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
8040 /* move back copy area adderss, it will be moved forward
8041 * in restore_stripes() using start input variable
8042 */
8043 target_offsets[i] -= start/data_disks;
8044 }
8045
8046 if (open_backup_targets(info, new_disks, targets))
8047 goto abort;
8048
8049 dest_layout = imsm_level_to_layout(map_dest->raid_level);
8050 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8051
8052 if (restore_stripes(targets, /* list of dest devices */
8053 target_offsets, /* migration record offsets */
8054 new_disks,
8055 dest_chunk,
8056 map_dest->raid_level,
8057 dest_layout,
8058 -1, /* source backup file descriptor */
8059 0, /* input buf offset
8060 * always 0 buf is already offseted */
8061 start,
8062 length,
8063 buf) != 0) {
8064 fprintf(stderr, Name ": Error restoring stripes\n");
8065 goto abort;
8066 }
8067
8068 rv = 0;
8069
8070 abort:
8071 if (targets) {
8072 for (i = 0; i < new_disks; i++)
8073 if (targets[i] >= 0)
8074 close(targets[i]);
8075 free(targets);
8076 }
8077 free(target_offsets);
8078
8079 return rv;
8080 }
8081
8082 /*******************************************************************************
8083 * Function: save_checkpoint_imsm
8084 * Description: Function called for current unit status update
8085 * in the migration record. It writes it to disk.
8086 * Parameters:
8087 * super : imsm internal array info
8088 * info : general array info
8089 * Returns:
8090 * 0: success
8091 * 1: failure
8092 * 2: failure, means no valid migration record
8093 * / no general migration in progress /
8094 ******************************************************************************/
8095 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8096 {
8097 struct intel_super *super = st->sb;
8098 unsigned long long blocks_per_unit;
8099 unsigned long long curr_migr_unit;
8100
8101 if (load_imsm_migr_rec(super, info) != 0) {
8102 dprintf("imsm: ERROR: Cannot read migration record "
8103 "for checkpoint save.\n");
8104 return 1;
8105 }
8106
8107 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8108 if (blocks_per_unit == 0) {
8109 dprintf("imsm: no migration in progress.\n");
8110 return 2;
8111 }
8112 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8113 /* check if array is alligned to copy area
8114 * if it is not alligned, add one to current migration unit value
8115 * this can happend on array reshape finish only
8116 */
8117 if (info->reshape_progress % blocks_per_unit)
8118 curr_migr_unit++;
8119
8120 super->migr_rec->curr_migr_unit =
8121 __cpu_to_le32(curr_migr_unit);
8122 super->migr_rec->rec_status = __cpu_to_le32(state);
8123 super->migr_rec->dest_1st_member_lba =
8124 __cpu_to_le32(curr_migr_unit *
8125 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
8126 if (write_imsm_migr_rec(st) < 0) {
8127 dprintf("imsm: Cannot write migration record "
8128 "outside backup area\n");
8129 return 1;
8130 }
8131
8132 return 0;
8133 }
8134
8135 /*******************************************************************************
8136 * Function: recover_backup_imsm
8137 * Description: Function recovers critical data from the Migration Copy Area
8138 * while assembling an array.
8139 * Parameters:
8140 * super : imsm internal array info
8141 * info : general array info
8142 * Returns:
8143 * 0 : success (or there is no data to recover)
8144 * 1 : fail
8145 ******************************************************************************/
8146 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8147 {
8148 struct intel_super *super = st->sb;
8149 struct migr_record *migr_rec = super->migr_rec;
8150 struct imsm_map *map_dest = NULL;
8151 struct intel_dev *id = NULL;
8152 unsigned long long read_offset;
8153 unsigned long long write_offset;
8154 unsigned unit_len;
8155 int *targets = NULL;
8156 int new_disks, i, err;
8157 char *buf = NULL;
8158 int retval = 1;
8159 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8160 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
8161 char buffer[20];
8162 int skipped_disks = 0;
8163 int max_degradation;
8164
8165 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8166 if (err < 1)
8167 return 1;
8168
8169 /* recover data only during assemblation */
8170 if (strncmp(buffer, "inactive", 8) != 0)
8171 return 0;
8172 /* no data to recover */
8173 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8174 return 0;
8175 if (curr_migr_unit >= num_migr_units)
8176 return 1;
8177
8178 /* find device during reshape */
8179 for (id = super->devlist; id; id = id->next)
8180 if (is_gen_migration(id->dev))
8181 break;
8182 if (id == NULL)
8183 return 1;
8184
8185 map_dest = get_imsm_map(id->dev, 0);
8186 new_disks = map_dest->num_members;
8187 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
8188
8189 read_offset = (unsigned long long)
8190 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8191
8192 write_offset = ((unsigned long long)
8193 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
8194 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
8195
8196 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8197 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8198 goto abort;
8199 targets = malloc(new_disks * sizeof(int));
8200 if (!targets)
8201 goto abort;
8202
8203 open_backup_targets(info, new_disks, targets);
8204
8205 for (i = 0; i < new_disks; i++) {
8206 if (targets[i] < 0) {
8207 skipped_disks++;
8208 continue;
8209 }
8210 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8211 fprintf(stderr,
8212 Name ": Cannot seek to block: %s\n",
8213 strerror(errno));
8214 goto abort;
8215 }
8216 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
8217 fprintf(stderr,
8218 Name ": Cannot read copy area block: %s\n",
8219 strerror(errno));
8220 goto abort;
8221 }
8222 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8223 fprintf(stderr,
8224 Name ": Cannot seek to block: %s\n",
8225 strerror(errno));
8226 goto abort;
8227 }
8228 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
8229 fprintf(stderr,
8230 Name ": Cannot restore block: %s\n",
8231 strerror(errno));
8232 goto abort;
8233 }
8234 }
8235
8236 if (skipped_disks > max_degradation) {
8237 fprintf(stderr,
8238 Name ": Cannot restore data from backup."
8239 " Too many failed disks\n");
8240 goto abort;
8241 }
8242
8243 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8244 /* ignore error == 2, this can mean end of reshape here
8245 */
8246 dprintf("imsm: Cannot write checkpoint to "
8247 "migration record (UNIT_SRC_NORMAL) during restart\n");
8248 } else
8249 retval = 0;
8250
8251 abort:
8252 if (targets) {
8253 for (i = 0; i < new_disks; i++)
8254 if (targets[i])
8255 close(targets[i]);
8256 free(targets);
8257 }
8258 free(buf);
8259 return retval;
8260 }
8261
8262 static char disk_by_path[] = "/dev/disk/by-path/";
8263
8264 static const char *imsm_get_disk_controller_domain(const char *path)
8265 {
8266 char disk_path[PATH_MAX];
8267 char *drv=NULL;
8268 struct stat st;
8269
8270 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8271 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8272 if (stat(disk_path, &st) == 0) {
8273 struct sys_dev* hba;
8274 char *path=NULL;
8275
8276 path = devt_to_devpath(st.st_rdev);
8277 if (path == NULL)
8278 return "unknown";
8279 hba = find_disk_attached_hba(-1, path);
8280 if (hba && hba->type == SYS_DEV_SAS)
8281 drv = "isci";
8282 else if (hba && hba->type == SYS_DEV_SATA)
8283 drv = "ahci";
8284 else
8285 drv = "unknown";
8286 dprintf("path: %s hba: %s attached: %s\n",
8287 path, (hba) ? hba->path : "NULL", drv);
8288 free(path);
8289 if (hba)
8290 free_sys_dev(&hba);
8291 }
8292 return drv;
8293 }
8294
8295 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8296 {
8297 char subdev_name[20];
8298 struct mdstat_ent *mdstat;
8299
8300 sprintf(subdev_name, "%d", subdev);
8301 mdstat = mdstat_by_subdev(subdev_name, container);
8302 if (!mdstat)
8303 return -1;
8304
8305 *minor = mdstat->devnum;
8306 free_mdstat(mdstat);
8307 return 0;
8308 }
8309
8310 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8311 struct geo_params *geo,
8312 int *old_raid_disks)
8313 {
8314 /* currently we only support increasing the number of devices
8315 * for a container. This increases the number of device for each
8316 * member array. They must all be RAID0 or RAID5.
8317 */
8318 int ret_val = 0;
8319 struct mdinfo *info, *member;
8320 int devices_that_can_grow = 0;
8321
8322 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8323 "st->devnum = (%i)\n",
8324 st->devnum);
8325
8326 if (geo->size != -1 ||
8327 geo->level != UnSet ||
8328 geo->layout != UnSet ||
8329 geo->chunksize != 0 ||
8330 geo->raid_disks == UnSet) {
8331 dprintf("imsm: Container operation is allowed for "
8332 "raid disks number change only.\n");
8333 return ret_val;
8334 }
8335
8336 info = container_content_imsm(st, NULL);
8337 for (member = info; member; member = member->next) {
8338 int result;
8339 int minor;
8340
8341 dprintf("imsm: checking device_num: %i\n",
8342 member->container_member);
8343
8344 if (geo->raid_disks <= member->array.raid_disks) {
8345 /* we work on container for Online Capacity Expansion
8346 * only so raid_disks has to grow
8347 */
8348 dprintf("imsm: for container operation raid disks "
8349 "increase is required\n");
8350 break;
8351 }
8352
8353 if ((info->array.level != 0) &&
8354 (info->array.level != 5)) {
8355 /* we cannot use this container with other raid level
8356 */
8357 dprintf("imsm: for container operation wrong"
8358 " raid level (%i) detected\n",
8359 info->array.level);
8360 break;
8361 } else {
8362 /* check for platform support
8363 * for this raid level configuration
8364 */
8365 struct intel_super *super = st->sb;
8366 if (!is_raid_level_supported(super->orom,
8367 member->array.level,
8368 geo->raid_disks)) {
8369 dprintf("platform does not support raid%d with"
8370 " %d disk%s\n",
8371 info->array.level,
8372 geo->raid_disks,
8373 geo->raid_disks > 1 ? "s" : "");
8374 break;
8375 }
8376 /* check if component size is aligned to chunk size
8377 */
8378 if (info->component_size %
8379 (info->array.chunk_size/512)) {
8380 dprintf("Component size is not aligned to "
8381 "chunk size\n");
8382 break;
8383 }
8384 }
8385
8386 if (*old_raid_disks &&
8387 info->array.raid_disks != *old_raid_disks)
8388 break;
8389 *old_raid_disks = info->array.raid_disks;
8390
8391 /* All raid5 and raid0 volumes in container
8392 * have to be ready for Online Capacity Expansion
8393 * so they need to be assembled. We have already
8394 * checked that no recovery etc is happening.
8395 */
8396 result = imsm_find_array_minor_by_subdev(member->container_member,
8397 st->container_dev,
8398 &minor);
8399 if (result < 0) {
8400 dprintf("imsm: cannot find array\n");
8401 break;
8402 }
8403 devices_that_can_grow++;
8404 }
8405 sysfs_free(info);
8406 if (!member && devices_that_can_grow)
8407 ret_val = 1;
8408
8409 if (ret_val)
8410 dprintf("\tContainer operation allowed\n");
8411 else
8412 dprintf("\tError: %i\n", ret_val);
8413
8414 return ret_val;
8415 }
8416
8417 /* Function: get_spares_for_grow
8418 * Description: Allocates memory and creates list of spare devices
8419 * avaliable in container. Checks if spare drive size is acceptable.
8420 * Parameters: Pointer to the supertype structure
8421 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8422 * NULL if fail
8423 */
8424 static struct mdinfo *get_spares_for_grow(struct supertype *st)
8425 {
8426 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
8427 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
8428 }
8429
8430 /******************************************************************************
8431 * function: imsm_create_metadata_update_for_reshape
8432 * Function creates update for whole IMSM container.
8433 *
8434 ******************************************************************************/
8435 static int imsm_create_metadata_update_for_reshape(
8436 struct supertype *st,
8437 struct geo_params *geo,
8438 int old_raid_disks,
8439 struct imsm_update_reshape **updatep)
8440 {
8441 struct intel_super *super = st->sb;
8442 struct imsm_super *mpb = super->anchor;
8443 int update_memory_size = 0;
8444 struct imsm_update_reshape *u = NULL;
8445 struct mdinfo *spares = NULL;
8446 int i;
8447 int delta_disks = 0;
8448 struct mdinfo *dev;
8449
8450 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8451 geo->raid_disks);
8452
8453 delta_disks = geo->raid_disks - old_raid_disks;
8454
8455 /* size of all update data without anchor */
8456 update_memory_size = sizeof(struct imsm_update_reshape);
8457
8458 /* now add space for spare disks that we need to add. */
8459 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8460
8461 u = calloc(1, update_memory_size);
8462 if (u == NULL) {
8463 dprintf("error: "
8464 "cannot get memory for imsm_update_reshape update\n");
8465 return 0;
8466 }
8467 u->type = update_reshape_container_disks;
8468 u->old_raid_disks = old_raid_disks;
8469 u->new_raid_disks = geo->raid_disks;
8470
8471 /* now get spare disks list
8472 */
8473 spares = get_spares_for_grow(st);
8474
8475 if (spares == NULL
8476 || delta_disks > spares->array.spare_disks) {
8477 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8478 "for %s.\n", geo->dev_name);
8479 i = -1;
8480 goto abort;
8481 }
8482
8483 /* we have got spares
8484 * update disk list in imsm_disk list table in anchor
8485 */
8486 dprintf("imsm: %i spares are available.\n\n",
8487 spares->array.spare_disks);
8488
8489 dev = spares->devs;
8490 for (i = 0; i < delta_disks; i++) {
8491 struct dl *dl;
8492
8493 if (dev == NULL)
8494 break;
8495 u->new_disks[i] = makedev(dev->disk.major,
8496 dev->disk.minor);
8497 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
8498 dl->index = mpb->num_disks;
8499 mpb->num_disks++;
8500 dev = dev->next;
8501 }
8502
8503 abort:
8504 /* free spares
8505 */
8506 sysfs_free(spares);
8507
8508 dprintf("imsm: reshape update preparation :");
8509 if (i == delta_disks) {
8510 dprintf(" OK\n");
8511 *updatep = u;
8512 return update_memory_size;
8513 }
8514 free(u);
8515 dprintf(" Error\n");
8516
8517 return 0;
8518 }
8519
8520 /******************************************************************************
8521 * function: imsm_create_metadata_update_for_migration()
8522 * Creates update for IMSM array.
8523 *
8524 ******************************************************************************/
8525 static int imsm_create_metadata_update_for_migration(
8526 struct supertype *st,
8527 struct geo_params *geo,
8528 struct imsm_update_reshape_migration **updatep)
8529 {
8530 struct intel_super *super = st->sb;
8531 int update_memory_size = 0;
8532 struct imsm_update_reshape_migration *u = NULL;
8533 struct imsm_dev *dev;
8534 int previous_level = -1;
8535
8536 dprintf("imsm_create_metadata_update_for_migration(enter)"
8537 " New Level = %i\n", geo->level);
8538
8539 /* size of all update data without anchor */
8540 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8541
8542 u = calloc(1, update_memory_size);
8543 if (u == NULL) {
8544 dprintf("error: cannot get memory for "
8545 "imsm_create_metadata_update_for_migration\n");
8546 return 0;
8547 }
8548 u->type = update_reshape_migration;
8549 u->subdev = super->current_vol;
8550 u->new_level = geo->level;
8551 u->new_layout = geo->layout;
8552 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8553 u->new_disks[0] = -1;
8554 u->new_chunksize = -1;
8555
8556 dev = get_imsm_dev(super, u->subdev);
8557 if (dev) {
8558 struct imsm_map *map;
8559
8560 map = get_imsm_map(dev, 0);
8561 if (map) {
8562 int current_chunk_size =
8563 __le16_to_cpu(map->blocks_per_strip) / 2;
8564
8565 if (geo->chunksize != current_chunk_size) {
8566 u->new_chunksize = geo->chunksize / 1024;
8567 dprintf("imsm: "
8568 "chunk size change from %i to %i\n",
8569 current_chunk_size, u->new_chunksize);
8570 }
8571 previous_level = map->raid_level;
8572 }
8573 }
8574 if ((geo->level == 5) && (previous_level == 0)) {
8575 struct mdinfo *spares = NULL;
8576
8577 u->new_raid_disks++;
8578 spares = get_spares_for_grow(st);
8579 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8580 free(u);
8581 sysfs_free(spares);
8582 update_memory_size = 0;
8583 dprintf("error: cannot get spare device "
8584 "for requested migration");
8585 return 0;
8586 }
8587 sysfs_free(spares);
8588 }
8589 dprintf("imsm: reshape update preparation : OK\n");
8590 *updatep = u;
8591
8592 return update_memory_size;
8593 }
8594
8595 static void imsm_update_metadata_locally(struct supertype *st,
8596 void *buf, int len)
8597 {
8598 struct metadata_update mu;
8599
8600 mu.buf = buf;
8601 mu.len = len;
8602 mu.space = NULL;
8603 mu.space_list = NULL;
8604 mu.next = NULL;
8605 imsm_prepare_update(st, &mu);
8606 imsm_process_update(st, &mu);
8607
8608 while (mu.space_list) {
8609 void **space = mu.space_list;
8610 mu.space_list = *space;
8611 free(space);
8612 }
8613 }
8614
8615 /***************************************************************************
8616 * Function: imsm_analyze_change
8617 * Description: Function analyze change for single volume
8618 * and validate if transition is supported
8619 * Parameters: Geometry parameters, supertype structure
8620 * Returns: Operation type code on success, -1 if fail
8621 ****************************************************************************/
8622 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8623 struct geo_params *geo)
8624 {
8625 struct mdinfo info;
8626 int change = -1;
8627 int check_devs = 0;
8628 int chunk;
8629
8630 getinfo_super_imsm_volume(st, &info, NULL);
8631 if ((geo->level != info.array.level) &&
8632 (geo->level >= 0) &&
8633 (geo->level != UnSet)) {
8634 switch (info.array.level) {
8635 case 0:
8636 if (geo->level == 5) {
8637 change = CH_MIGRATION;
8638 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8639 fprintf(stderr,
8640 Name " Error. Requested Layout "
8641 "not supported (left-asymmetric layout "
8642 "is supported only)!\n");
8643 change = -1;
8644 goto analyse_change_exit;
8645 }
8646 check_devs = 1;
8647 }
8648 if (geo->level == 10) {
8649 change = CH_TAKEOVER;
8650 check_devs = 1;
8651 }
8652 break;
8653 case 1:
8654 if (geo->level == 0) {
8655 change = CH_TAKEOVER;
8656 check_devs = 1;
8657 }
8658 break;
8659 case 10:
8660 if (geo->level == 0) {
8661 change = CH_TAKEOVER;
8662 check_devs = 1;
8663 }
8664 break;
8665 }
8666 if (change == -1) {
8667 fprintf(stderr,
8668 Name " Error. Level Migration from %d to %d "
8669 "not supported!\n",
8670 info.array.level, geo->level);
8671 goto analyse_change_exit;
8672 }
8673 } else
8674 geo->level = info.array.level;
8675
8676 if ((geo->layout != info.array.layout)
8677 && ((geo->layout != UnSet) && (geo->layout != -1))) {
8678 change = CH_MIGRATION;
8679 if ((info.array.layout == 0)
8680 && (info.array.level == 5)
8681 && (geo->layout == 5)) {
8682 /* reshape 5 -> 4 */
8683 } else if ((info.array.layout == 5)
8684 && (info.array.level == 5)
8685 && (geo->layout == 0)) {
8686 /* reshape 4 -> 5 */
8687 geo->layout = 0;
8688 geo->level = 5;
8689 } else {
8690 fprintf(stderr,
8691 Name " Error. Layout Migration from %d to %d "
8692 "not supported!\n",
8693 info.array.layout, geo->layout);
8694 change = -1;
8695 goto analyse_change_exit;
8696 }
8697 } else
8698 geo->layout = info.array.layout;
8699
8700 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8701 && (geo->chunksize != info.array.chunk_size))
8702 change = CH_MIGRATION;
8703 else
8704 geo->chunksize = info.array.chunk_size;
8705
8706 chunk = geo->chunksize / 1024;
8707 if (!validate_geometry_imsm(st,
8708 geo->level,
8709 geo->layout,
8710 geo->raid_disks,
8711 &chunk,
8712 geo->size,
8713 0, 0, 1))
8714 change = -1;
8715
8716 if (check_devs) {
8717 struct intel_super *super = st->sb;
8718 struct imsm_super *mpb = super->anchor;
8719
8720 if (mpb->num_raid_devs > 1) {
8721 fprintf(stderr,
8722 Name " Error. Cannot perform operation on %s"
8723 "- for this operation it MUST be single "
8724 "array in container\n",
8725 geo->dev_name);
8726 change = -1;
8727 }
8728 }
8729
8730 analyse_change_exit:
8731
8732 return change;
8733 }
8734
8735 int imsm_takeover(struct supertype *st, struct geo_params *geo)
8736 {
8737 struct intel_super *super = st->sb;
8738 struct imsm_update_takeover *u;
8739
8740 u = malloc(sizeof(struct imsm_update_takeover));
8741 if (u == NULL)
8742 return 1;
8743
8744 u->type = update_takeover;
8745 u->subarray = super->current_vol;
8746
8747 /* 10->0 transition */
8748 if (geo->level == 0)
8749 u->direction = R10_TO_R0;
8750
8751 /* 0->10 transition */
8752 if (geo->level == 10)
8753 u->direction = R0_TO_R10;
8754
8755 /* update metadata locally */
8756 imsm_update_metadata_locally(st, u,
8757 sizeof(struct imsm_update_takeover));
8758 /* and possibly remotely */
8759 if (st->update_tail)
8760 append_metadata_update(st, u,
8761 sizeof(struct imsm_update_takeover));
8762 else
8763 free(u);
8764
8765 return 0;
8766 }
8767
8768 static int imsm_reshape_super(struct supertype *st, long long size, int level,
8769 int layout, int chunksize, int raid_disks,
8770 int delta_disks, char *backup, char *dev,
8771 int verbose)
8772 {
8773 int ret_val = 1;
8774 struct geo_params geo;
8775
8776 dprintf("imsm: reshape_super called.\n");
8777
8778 memset(&geo, 0, sizeof(struct geo_params));
8779
8780 geo.dev_name = dev;
8781 geo.dev_id = st->devnum;
8782 geo.size = size;
8783 geo.level = level;
8784 geo.layout = layout;
8785 geo.chunksize = chunksize;
8786 geo.raid_disks = raid_disks;
8787 if (delta_disks != UnSet)
8788 geo.raid_disks += delta_disks;
8789
8790 dprintf("\tfor level : %i\n", geo.level);
8791 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8792
8793 if (experimental() == 0)
8794 return ret_val;
8795
8796 if (st->container_dev == st->devnum) {
8797 /* On container level we can only increase number of devices. */
8798 dprintf("imsm: info: Container operation\n");
8799 int old_raid_disks = 0;
8800
8801 if (imsm_reshape_is_allowed_on_container(
8802 st, &geo, &old_raid_disks)) {
8803 struct imsm_update_reshape *u = NULL;
8804 int len;
8805
8806 len = imsm_create_metadata_update_for_reshape(
8807 st, &geo, old_raid_disks, &u);
8808
8809 if (len <= 0) {
8810 dprintf("imsm: Cannot prepare update\n");
8811 goto exit_imsm_reshape_super;
8812 }
8813
8814 ret_val = 0;
8815 /* update metadata locally */
8816 imsm_update_metadata_locally(st, u, len);
8817 /* and possibly remotely */
8818 if (st->update_tail)
8819 append_metadata_update(st, u, len);
8820 else
8821 free(u);
8822
8823 } else {
8824 fprintf(stderr, Name ": (imsm) Operation "
8825 "is not allowed on this container\n");
8826 }
8827 } else {
8828 /* On volume level we support following operations
8829 * - takeover: raid10 -> raid0; raid0 -> raid10
8830 * - chunk size migration
8831 * - migration: raid5 -> raid0; raid0 -> raid5
8832 */
8833 struct intel_super *super = st->sb;
8834 struct intel_dev *dev = super->devlist;
8835 int change, devnum;
8836 dprintf("imsm: info: Volume operation\n");
8837 /* find requested device */
8838 while (dev) {
8839 if (imsm_find_array_minor_by_subdev(
8840 dev->index, st->container_dev, &devnum) == 0
8841 && devnum == geo.dev_id)
8842 break;
8843 dev = dev->next;
8844 }
8845 if (dev == NULL) {
8846 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8847 geo.dev_name, geo.dev_id);
8848 goto exit_imsm_reshape_super;
8849 }
8850 super->current_vol = dev->index;
8851 change = imsm_analyze_change(st, &geo);
8852 switch (change) {
8853 case CH_TAKEOVER:
8854 ret_val = imsm_takeover(st, &geo);
8855 break;
8856 case CH_MIGRATION: {
8857 struct imsm_update_reshape_migration *u = NULL;
8858 int len =
8859 imsm_create_metadata_update_for_migration(
8860 st, &geo, &u);
8861 if (len < 1) {
8862 dprintf("imsm: "
8863 "Cannot prepare update\n");
8864 break;
8865 }
8866 ret_val = 0;
8867 /* update metadata locally */
8868 imsm_update_metadata_locally(st, u, len);
8869 /* and possibly remotely */
8870 if (st->update_tail)
8871 append_metadata_update(st, u, len);
8872 else
8873 free(u);
8874 }
8875 break;
8876 default:
8877 ret_val = 1;
8878 }
8879 }
8880
8881 exit_imsm_reshape_super:
8882 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8883 return ret_val;
8884 }
8885
8886 /*******************************************************************************
8887 * Function: wait_for_reshape_imsm
8888 * Description: Function writes new sync_max value and waits until
8889 * reshape process reach new position
8890 * Parameters:
8891 * sra : general array info
8892 * ndata : number of disks in new array's layout
8893 * Returns:
8894 * 0 : success,
8895 * 1 : there is no reshape in progress,
8896 * -1 : fail
8897 ******************************************************************************/
8898 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
8899 {
8900 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8901 unsigned long long completed;
8902 /* to_complete : new sync_max position */
8903 unsigned long long to_complete = sra->reshape_progress;
8904 unsigned long long position_to_set = to_complete / ndata;
8905
8906 if (fd < 0) {
8907 dprintf("imsm: wait_for_reshape_imsm() "
8908 "cannot open reshape_position\n");
8909 return 1;
8910 }
8911
8912 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8913 dprintf("imsm: wait_for_reshape_imsm() "
8914 "cannot read reshape_position (no reshape in progres)\n");
8915 close(fd);
8916 return 0;
8917 }
8918
8919 if (completed > to_complete) {
8920 dprintf("imsm: wait_for_reshape_imsm() "
8921 "wrong next position to set %llu (%llu)\n",
8922 to_complete, completed);
8923 close(fd);
8924 return -1;
8925 }
8926 dprintf("Position set: %llu\n", position_to_set);
8927 if (sysfs_set_num(sra, NULL, "sync_max",
8928 position_to_set) != 0) {
8929 dprintf("imsm: wait_for_reshape_imsm() "
8930 "cannot set reshape position to %llu\n",
8931 position_to_set);
8932 close(fd);
8933 return -1;
8934 }
8935
8936 do {
8937 char action[20];
8938 fd_set rfds;
8939 FD_ZERO(&rfds);
8940 FD_SET(fd, &rfds);
8941 select(fd+1, &rfds, NULL, NULL, NULL);
8942 if (sysfs_get_str(sra, NULL, "sync_action",
8943 action, 20) > 0 &&
8944 strncmp(action, "reshape", 7) != 0)
8945 break;
8946 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8947 dprintf("imsm: wait_for_reshape_imsm() "
8948 "cannot read reshape_position (in loop)\n");
8949 close(fd);
8950 return 1;
8951 }
8952 } while (completed < to_complete);
8953 close(fd);
8954 return 0;
8955
8956 }
8957
8958 /*******************************************************************************
8959 * Function: check_degradation_change
8960 * Description: Check that array hasn't become failed.
8961 * Parameters:
8962 * info : for sysfs access
8963 * sources : source disks descriptors
8964 * degraded: previous degradation level
8965 * Returns:
8966 * degradation level
8967 ******************************************************************************/
8968 int check_degradation_change(struct mdinfo *info,
8969 int *sources,
8970 int degraded)
8971 {
8972 unsigned long long new_degraded;
8973 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
8974 if (new_degraded != (unsigned long long)degraded) {
8975 /* check each device to ensure it is still working */
8976 struct mdinfo *sd;
8977 new_degraded = 0;
8978 for (sd = info->devs ; sd ; sd = sd->next) {
8979 if (sd->disk.state & (1<<MD_DISK_FAULTY))
8980 continue;
8981 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
8982 char sbuf[20];
8983 if (sysfs_get_str(info,
8984 sd, "state", sbuf, 20) < 0 ||
8985 strstr(sbuf, "faulty") ||
8986 strstr(sbuf, "in_sync") == NULL) {
8987 /* this device is dead */
8988 sd->disk.state = (1<<MD_DISK_FAULTY);
8989 if (sd->disk.raid_disk >= 0 &&
8990 sources[sd->disk.raid_disk] >= 0) {
8991 close(sources[
8992 sd->disk.raid_disk]);
8993 sources[sd->disk.raid_disk] =
8994 -1;
8995 }
8996 new_degraded++;
8997 }
8998 }
8999 }
9000 }
9001
9002 return new_degraded;
9003 }
9004
9005 /*******************************************************************************
9006 * Function: imsm_manage_reshape
9007 * Description: Function finds array under reshape and it manages reshape
9008 * process. It creates stripes backups (if required) and sets
9009 * checheckpoits.
9010 * Parameters:
9011 * afd : Backup handle (nattive) - not used
9012 * sra : general array info
9013 * reshape : reshape parameters - not used
9014 * st : supertype structure
9015 * blocks : size of critical section [blocks]
9016 * fds : table of source device descriptor
9017 * offsets : start of array (offest per devices)
9018 * dests : not used
9019 * destfd : table of destination device descriptor
9020 * destoffsets : table of destination offsets (per device)
9021 * Returns:
9022 * 1 : success, reshape is done
9023 * 0 : fail
9024 ******************************************************************************/
9025 static int imsm_manage_reshape(
9026 int afd, struct mdinfo *sra, struct reshape *reshape,
9027 struct supertype *st, unsigned long backup_blocks,
9028 int *fds, unsigned long long *offsets,
9029 int dests, int *destfd, unsigned long long *destoffsets)
9030 {
9031 int ret_val = 0;
9032 struct intel_super *super = st->sb;
9033 struct intel_dev *dv = NULL;
9034 struct imsm_dev *dev = NULL;
9035 struct imsm_map *map_src;
9036 int migr_vol_qan = 0;
9037 int ndata, odata; /* [bytes] */
9038 int chunk; /* [bytes] */
9039 struct migr_record *migr_rec;
9040 char *buf = NULL;
9041 unsigned int buf_size; /* [bytes] */
9042 unsigned long long max_position; /* array size [bytes] */
9043 unsigned long long next_step; /* [blocks]/[bytes] */
9044 unsigned long long old_data_stripe_length;
9045 unsigned long long start_src; /* [bytes] */
9046 unsigned long long start; /* [bytes] */
9047 unsigned long long start_buf_shift; /* [bytes] */
9048 int degraded = 0;
9049 int source_layout = 0;
9050
9051 if (!fds || !offsets || !sra)
9052 goto abort;
9053
9054 /* Find volume during the reshape */
9055 for (dv = super->devlist; dv; dv = dv->next) {
9056 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9057 && dv->dev->vol.migr_state == 1) {
9058 dev = dv->dev;
9059 migr_vol_qan++;
9060 }
9061 }
9062 /* Only one volume can migrate at the same time */
9063 if (migr_vol_qan != 1) {
9064 fprintf(stderr, Name " : %s", migr_vol_qan ?
9065 "Number of migrating volumes greater than 1\n" :
9066 "There is no volume during migrationg\n");
9067 goto abort;
9068 }
9069
9070 map_src = get_imsm_map(dev, 1);
9071 if (map_src == NULL)
9072 goto abort;
9073
9074 ndata = imsm_num_data_members(dev, 0);
9075 odata = imsm_num_data_members(dev, 1);
9076
9077 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
9078 old_data_stripe_length = odata * chunk;
9079
9080 migr_rec = super->migr_rec;
9081
9082 /* initialize migration record for start condition */
9083 if (sra->reshape_progress == 0)
9084 init_migr_record_imsm(st, dev, sra);
9085 else {
9086 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9087 dprintf("imsm: cannot restart migration when data "
9088 "are present in copy area.\n");
9089 goto abort;
9090 }
9091 }
9092
9093 /* size for data */
9094 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9095 /* extend buffer size for parity disk */
9096 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9097 /* add space for stripe aligment */
9098 buf_size += old_data_stripe_length;
9099 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9100 dprintf("imsm: Cannot allocate checpoint buffer\n");
9101 goto abort;
9102 }
9103
9104 max_position = sra->component_size * ndata;
9105 source_layout = imsm_level_to_layout(map_src->raid_level);
9106
9107 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9108 __le32_to_cpu(migr_rec->num_migr_units)) {
9109 /* current reshape position [blocks] */
9110 unsigned long long current_position =
9111 __le32_to_cpu(migr_rec->blocks_per_unit)
9112 * __le32_to_cpu(migr_rec->curr_migr_unit);
9113 unsigned long long border;
9114
9115 /* Check that array hasn't become failed.
9116 */
9117 degraded = check_degradation_change(sra, fds, degraded);
9118 if (degraded > 1) {
9119 dprintf("imsm: Abort reshape due to degradation"
9120 " level (%i)\n", degraded);
9121 goto abort;
9122 }
9123
9124 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9125
9126 if ((current_position + next_step) > max_position)
9127 next_step = max_position - current_position;
9128
9129 start = current_position * 512;
9130
9131 /* allign reading start to old geometry */
9132 start_buf_shift = start % old_data_stripe_length;
9133 start_src = start - start_buf_shift;
9134
9135 border = (start_src / odata) - (start / ndata);
9136 border /= 512;
9137 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9138 /* save critical stripes to buf
9139 * start - start address of current unit
9140 * to backup [bytes]
9141 * start_src - start address of current unit
9142 * to backup alligned to source array
9143 * [bytes]
9144 */
9145 unsigned long long next_step_filler = 0;
9146 unsigned long long copy_length = next_step * 512;
9147
9148 /* allign copy area length to stripe in old geometry */
9149 next_step_filler = ((copy_length + start_buf_shift)
9150 % old_data_stripe_length);
9151 if (next_step_filler)
9152 next_step_filler = (old_data_stripe_length
9153 - next_step_filler);
9154 dprintf("save_stripes() parameters: start = %llu,"
9155 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9156 "\tstart_in_buf_shift = %llu,"
9157 "\tnext_step_filler = %llu\n",
9158 start, start_src, copy_length,
9159 start_buf_shift, next_step_filler);
9160
9161 if (save_stripes(fds, offsets, map_src->num_members,
9162 chunk, map_src->raid_level,
9163 source_layout, 0, NULL, start_src,
9164 copy_length +
9165 next_step_filler + start_buf_shift,
9166 buf)) {
9167 dprintf("imsm: Cannot save stripes"
9168 " to buffer\n");
9169 goto abort;
9170 }
9171 /* Convert data to destination format and store it
9172 * in backup general migration area
9173 */
9174 if (save_backup_imsm(st, dev, sra,
9175 buf + start_buf_shift, copy_length)) {
9176 dprintf("imsm: Cannot save stripes to "
9177 "target devices\n");
9178 goto abort;
9179 }
9180 if (save_checkpoint_imsm(st, sra,
9181 UNIT_SRC_IN_CP_AREA)) {
9182 dprintf("imsm: Cannot write checkpoint to "
9183 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9184 goto abort;
9185 }
9186 } else {
9187 /* set next step to use whole border area */
9188 border /= next_step;
9189 if (border > 1)
9190 next_step *= border;
9191 }
9192 /* When data backed up, checkpoint stored,
9193 * kick the kernel to reshape unit of data
9194 */
9195 next_step = next_step + sra->reshape_progress;
9196 /* limit next step to array max position */
9197 if (next_step > max_position)
9198 next_step = max_position;
9199 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9200 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
9201 sra->reshape_progress = next_step;
9202
9203 /* wait until reshape finish */
9204 if (wait_for_reshape_imsm(sra, ndata) < 0) {
9205 dprintf("wait_for_reshape_imsm returned error!\n");
9206 goto abort;
9207 }
9208
9209 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9210 /* ignore error == 2, this can mean end of reshape here
9211 */
9212 dprintf("imsm: Cannot write checkpoint to "
9213 "migration record (UNIT_SRC_NORMAL)\n");
9214 goto abort;
9215 }
9216
9217 }
9218
9219 /* return '1' if done */
9220 ret_val = 1;
9221 abort:
9222 free(buf);
9223 abort_reshape(sra);
9224
9225 return ret_val;
9226 }
9227 #endif /* MDASSEMBLE */
9228
9229 struct superswitch super_imsm = {
9230 #ifndef MDASSEMBLE
9231 .examine_super = examine_super_imsm,
9232 .brief_examine_super = brief_examine_super_imsm,
9233 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9234 .export_examine_super = export_examine_super_imsm,
9235 .detail_super = detail_super_imsm,
9236 .brief_detail_super = brief_detail_super_imsm,
9237 .write_init_super = write_init_super_imsm,
9238 .validate_geometry = validate_geometry_imsm,
9239 .add_to_super = add_to_super_imsm,
9240 .remove_from_super = remove_from_super_imsm,
9241 .detail_platform = detail_platform_imsm,
9242 .kill_subarray = kill_subarray_imsm,
9243 .update_subarray = update_subarray_imsm,
9244 .load_container = load_container_imsm,
9245 .default_geometry = default_geometry_imsm,
9246 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9247 .reshape_super = imsm_reshape_super,
9248 .manage_reshape = imsm_manage_reshape,
9249 .recover_backup = recover_backup_imsm,
9250 #endif
9251 .match_home = match_home_imsm,
9252 .uuid_from_super= uuid_from_super_imsm,
9253 .getinfo_super = getinfo_super_imsm,
9254 .getinfo_super_disks = getinfo_super_disks_imsm,
9255 .update_super = update_super_imsm,
9256
9257 .avail_size = avail_size_imsm,
9258 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
9259
9260 .compare_super = compare_super_imsm,
9261
9262 .load_super = load_super_imsm,
9263 .init_super = init_super_imsm,
9264 .store_super = store_super_imsm,
9265 .free_super = free_super_imsm,
9266 .match_metadata_desc = match_metadata_desc_imsm,
9267 .container_content = container_content_imsm,
9268
9269
9270 .external = 1,
9271 .name = "imsm",
9272
9273 #ifndef MDASSEMBLE
9274 /* for mdmon */
9275 .open_new = imsm_open_new,
9276 .set_array_state= imsm_set_array_state,
9277 .set_disk = imsm_set_disk,
9278 .sync_metadata = imsm_sync_metadata,
9279 .activate_spare = imsm_activate_spare,
9280 .process_update = imsm_process_update,
9281 .prepare_update = imsm_prepare_update,
9282 #endif /* MDASSEMBLE */
9283 };