]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: fix: Fixes metadata after migration from Raid 0 to Raid 10
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 #define IMSM_DISK_FILLERS 4
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107 };
108
109 /* RAID map configuration infos. */
110 struct imsm_map {
111 __u32 pba_of_lba0; /* start address of partition */
112 __u32 blocks_per_member;/* blocks per member */
113 __u32 num_data_stripes; /* number of data stripes */
114 __u16 blocks_per_strip;
115 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
116 #define IMSM_T_STATE_NORMAL 0
117 #define IMSM_T_STATE_UNINITIALIZED 1
118 #define IMSM_T_STATE_DEGRADED 2
119 #define IMSM_T_STATE_FAILED 3
120 __u8 raid_level;
121 #define IMSM_T_RAID0 0
122 #define IMSM_T_RAID1 1
123 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
124 __u8 num_members; /* number of member disks */
125 __u8 num_domains; /* number of parity domains */
126 __u8 failed_disk_num; /* valid only when state is degraded */
127 __u8 ddf;
128 __u32 filler[7]; /* expansion area */
129 #define IMSM_ORD_REBUILD (1 << 24)
130 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
131 * top byte contains some flags
132 */
133 } __attribute__ ((packed));
134
135 struct imsm_vol {
136 __u32 curr_migr_unit;
137 __u32 checkpoint_id; /* id to access curr_migr_unit */
138 __u8 migr_state; /* Normal or Migrating */
139 #define MIGR_INIT 0
140 #define MIGR_REBUILD 1
141 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
142 #define MIGR_GEN_MIGR 3
143 #define MIGR_STATE_CHANGE 4
144 #define MIGR_REPAIR 5
145 __u8 migr_type; /* Initializing, Rebuilding, ... */
146 __u8 dirty;
147 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
148 __u16 verify_errors; /* number of mismatches */
149 __u16 bad_blocks; /* number of bad blocks during verify */
150 __u32 filler[4];
151 struct imsm_map map[1];
152 /* here comes another one if migr_state */
153 } __attribute__ ((packed));
154
155 struct imsm_dev {
156 __u8 volume[MAX_RAID_SERIAL_LEN];
157 __u32 size_low;
158 __u32 size_high;
159 #define DEV_BOOTABLE __cpu_to_le32(0x01)
160 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
161 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
162 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
163 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
164 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
165 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
166 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
167 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
168 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
169 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
170 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
171 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
172 __u32 status; /* Persistent RaidDev status */
173 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
174 __u8 migr_priority;
175 __u8 num_sub_vols;
176 __u8 tid;
177 __u8 cng_master_disk;
178 __u16 cache_policy;
179 __u8 cng_state;
180 __u8 cng_sub_state;
181 #define IMSM_DEV_FILLERS 10
182 __u32 filler[IMSM_DEV_FILLERS];
183 struct imsm_vol vol;
184 } __attribute__ ((packed));
185
186 struct imsm_super {
187 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
188 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
189 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
190 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
191 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
192 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
193 __u32 attributes; /* 0x34 - 0x37 */
194 __u8 num_disks; /* 0x38 Number of configured disks */
195 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
196 __u8 error_log_pos; /* 0x3A */
197 __u8 fill[1]; /* 0x3B */
198 __u32 cache_size; /* 0x3c - 0x40 in mb */
199 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
200 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
201 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
202 #define IMSM_FILLERS 35
203 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
204 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
205 /* here comes imsm_dev[num_raid_devs] */
206 /* here comes BBM logs */
207 } __attribute__ ((packed));
208
209 #define BBM_LOG_MAX_ENTRIES 254
210
211 struct bbm_log_entry {
212 __u64 defective_block_start;
213 #define UNREADABLE 0xFFFFFFFF
214 __u32 spare_block_offset;
215 __u16 remapped_marked_count;
216 __u16 disk_ordinal;
217 } __attribute__ ((__packed__));
218
219 struct bbm_log {
220 __u32 signature; /* 0xABADB10C */
221 __u32 entry_count;
222 __u32 reserved_spare_block_count; /* 0 */
223 __u32 reserved; /* 0xFFFF */
224 __u64 first_spare_lba;
225 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
226 } __attribute__ ((__packed__));
227
228
229 #ifndef MDASSEMBLE
230 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
231 #endif
232
233 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
234
235 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
236
237 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
238 * be recovered using srcMap */
239 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
240 * already been migrated and must
241 * be recovered from checkpoint area */
242 struct migr_record {
243 __u32 rec_status; /* Status used to determine how to restart
244 * migration in case it aborts
245 * in some fashion */
246 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
247 __u32 family_num; /* Family number of MPB
248 * containing the RaidDev
249 * that is migrating */
250 __u32 ascending_migr; /* True if migrating in increasing
251 * order of lbas */
252 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
253 __u32 dest_depth_per_unit; /* Num member blocks each destMap
254 * member disk
255 * advances per unit-of-operation */
256 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
257 __u32 dest_1st_member_lba; /* First member lba on first
258 * stripe of destination */
259 __u32 num_migr_units; /* Total num migration units-of-op */
260 __u32 post_migr_vol_cap; /* Size of volume after
261 * migration completes */
262 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
263 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
264 * migration ckpt record was read from
265 * (for recovered migrations) */
266 } __attribute__ ((__packed__));
267
268 static __u8 migr_type(struct imsm_dev *dev)
269 {
270 if (dev->vol.migr_type == MIGR_VERIFY &&
271 dev->status & DEV_VERIFY_AND_FIX)
272 return MIGR_REPAIR;
273 else
274 return dev->vol.migr_type;
275 }
276
277 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
278 {
279 /* for compatibility with older oroms convert MIGR_REPAIR, into
280 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
281 */
282 if (migr_type == MIGR_REPAIR) {
283 dev->vol.migr_type = MIGR_VERIFY;
284 dev->status |= DEV_VERIFY_AND_FIX;
285 } else {
286 dev->vol.migr_type = migr_type;
287 dev->status &= ~DEV_VERIFY_AND_FIX;
288 }
289 }
290
291 static unsigned int sector_count(__u32 bytes)
292 {
293 return ((bytes + (512-1)) & (~(512-1))) / 512;
294 }
295
296 static unsigned int mpb_sectors(struct imsm_super *mpb)
297 {
298 return sector_count(__le32_to_cpu(mpb->mpb_size));
299 }
300
301 struct intel_dev {
302 struct imsm_dev *dev;
303 struct intel_dev *next;
304 unsigned index;
305 };
306
307 struct intel_hba {
308 enum sys_dev_type type;
309 char *path;
310 char *pci_id;
311 struct intel_hba *next;
312 };
313
314 enum action {
315 DISK_REMOVE = 1,
316 DISK_ADD
317 };
318 /* internal representation of IMSM metadata */
319 struct intel_super {
320 union {
321 void *buf; /* O_DIRECT buffer for reading/writing metadata */
322 struct imsm_super *anchor; /* immovable parameters */
323 };
324 union {
325 void *migr_rec_buf; /* buffer for I/O operations */
326 struct migr_record *migr_rec; /* migration record */
327 };
328 size_t len; /* size of the 'buf' allocation */
329 void *next_buf; /* for realloc'ing buf from the manager */
330 size_t next_len;
331 int updates_pending; /* count of pending updates for mdmon */
332 int current_vol; /* index of raid device undergoing creation */
333 __u32 create_offset; /* common start for 'current_vol' */
334 __u32 random; /* random data for seeding new family numbers */
335 struct intel_dev *devlist;
336 struct dl {
337 struct dl *next;
338 int index;
339 __u8 serial[MAX_RAID_SERIAL_LEN];
340 int major, minor;
341 char *devname;
342 struct imsm_disk disk;
343 int fd;
344 int extent_cnt;
345 struct extent *e; /* for determining freespace @ create */
346 int raiddisk; /* slot to fill in autolayout */
347 enum action action;
348 } *disks, *current_disk;
349 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
350 active */
351 struct dl *missing; /* disks removed while we weren't looking */
352 struct bbm_log *bbm_log;
353 struct intel_hba *hba; /* device path of the raid controller for this metadata */
354 const struct imsm_orom *orom; /* platform firmware support */
355 struct intel_super *next; /* (temp) list for disambiguating family_num */
356 };
357
358 struct intel_disk {
359 struct imsm_disk disk;
360 #define IMSM_UNKNOWN_OWNER (-1)
361 int owner;
362 struct intel_disk *next;
363 };
364
365 struct extent {
366 unsigned long long start, size;
367 };
368
369 /* definitions of reshape process types */
370 enum imsm_reshape_type {
371 CH_TAKEOVER,
372 CH_MIGRATION,
373 };
374
375 /* definition of messages passed to imsm_process_update */
376 enum imsm_update_type {
377 update_activate_spare,
378 update_create_array,
379 update_kill_array,
380 update_rename_array,
381 update_add_remove_disk,
382 update_reshape_container_disks,
383 update_reshape_migration,
384 update_takeover,
385 update_general_migration_checkpoint,
386 };
387
388 struct imsm_update_activate_spare {
389 enum imsm_update_type type;
390 struct dl *dl;
391 int slot;
392 int array;
393 struct imsm_update_activate_spare *next;
394 };
395
396 struct geo_params {
397 int dev_id;
398 char *dev_name;
399 long long size;
400 int level;
401 int layout;
402 int chunksize;
403 int raid_disks;
404 };
405
406 enum takeover_direction {
407 R10_TO_R0,
408 R0_TO_R10
409 };
410 struct imsm_update_takeover {
411 enum imsm_update_type type;
412 int subarray;
413 enum takeover_direction direction;
414 };
415
416 struct imsm_update_reshape {
417 enum imsm_update_type type;
418 int old_raid_disks;
419 int new_raid_disks;
420
421 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
422 };
423
424 struct imsm_update_reshape_migration {
425 enum imsm_update_type type;
426 int old_raid_disks;
427 int new_raid_disks;
428 /* fields for array migration changes
429 */
430 int subdev;
431 int new_level;
432 int new_layout;
433 int new_chunksize;
434
435 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
436 };
437
438 struct imsm_update_general_migration_checkpoint {
439 enum imsm_update_type type;
440 __u32 curr_migr_unit;
441 };
442
443 struct disk_info {
444 __u8 serial[MAX_RAID_SERIAL_LEN];
445 };
446
447 struct imsm_update_create_array {
448 enum imsm_update_type type;
449 int dev_idx;
450 struct imsm_dev dev;
451 };
452
453 struct imsm_update_kill_array {
454 enum imsm_update_type type;
455 int dev_idx;
456 };
457
458 struct imsm_update_rename_array {
459 enum imsm_update_type type;
460 __u8 name[MAX_RAID_SERIAL_LEN];
461 int dev_idx;
462 };
463
464 struct imsm_update_add_remove_disk {
465 enum imsm_update_type type;
466 };
467
468
469 static const char *_sys_dev_type[] = {
470 [SYS_DEV_UNKNOWN] = "Unknown",
471 [SYS_DEV_SAS] = "SAS",
472 [SYS_DEV_SATA] = "SATA"
473 };
474
475 const char *get_sys_dev_type(enum sys_dev_type type)
476 {
477 if (type >= SYS_DEV_MAX)
478 type = SYS_DEV_UNKNOWN;
479
480 return _sys_dev_type[type];
481 }
482
483 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
484 {
485 struct intel_hba *result = malloc(sizeof(*result));
486 if (result) {
487 result->type = device->type;
488 result->path = strdup(device->path);
489 result->next = NULL;
490 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
491 result->pci_id++;
492 }
493 return result;
494 }
495
496 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
497 {
498 struct intel_hba *result=NULL;
499 for (result = hba; result; result = result->next) {
500 if (result->type == device->type && strcmp(result->path, device->path) == 0)
501 break;
502 }
503 return result;
504 }
505
506 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
507 {
508 struct intel_hba *hba;
509
510 /* check if disk attached to Intel HBA */
511 hba = find_intel_hba(super->hba, device);
512 if (hba != NULL)
513 return 1;
514 /* Check if HBA is already attached to super */
515 if (super->hba == NULL) {
516 super->hba = alloc_intel_hba(device);
517 return 1;
518 }
519
520 hba = super->hba;
521 /* Intel metadata allows for all disks attached to the same type HBA.
522 * Do not sypport odf HBA types mixing
523 */
524 if (device->type != hba->type)
525 return 2;
526
527 while (hba->next)
528 hba = hba->next;
529
530 hba->next = alloc_intel_hba(device);
531 return 1;
532 }
533
534 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
535 {
536 struct sys_dev *list, *elem, *prev;
537 char *disk_path;
538
539 if ((list = find_intel_devices()) == NULL)
540 return 0;
541
542 if (fd < 0)
543 disk_path = (char *) devname;
544 else
545 disk_path = diskfd_to_devpath(fd);
546
547 if (!disk_path) {
548 free_sys_dev(&list);
549 return 0;
550 }
551
552 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
553 if (path_attached_to_hba(disk_path, elem->path)) {
554 if (prev == NULL)
555 list = list->next;
556 else
557 prev->next = elem->next;
558 elem->next = NULL;
559 if (disk_path != devname)
560 free(disk_path);
561 free_sys_dev(&list);
562 return elem;
563 }
564 }
565 if (disk_path != devname)
566 free(disk_path);
567 free_sys_dev(&list);
568
569 return NULL;
570 }
571
572
573 static int find_intel_hba_capability(int fd, struct intel_super *super,
574 char *devname);
575
576 static struct supertype *match_metadata_desc_imsm(char *arg)
577 {
578 struct supertype *st;
579
580 if (strcmp(arg, "imsm") != 0 &&
581 strcmp(arg, "default") != 0
582 )
583 return NULL;
584
585 st = malloc(sizeof(*st));
586 if (!st)
587 return NULL;
588 memset(st, 0, sizeof(*st));
589 st->container_dev = NoMdDev;
590 st->ss = &super_imsm;
591 st->max_devs = IMSM_MAX_DEVICES;
592 st->minor_version = 0;
593 st->sb = NULL;
594 return st;
595 }
596
597 #ifndef MDASSEMBLE
598 static __u8 *get_imsm_version(struct imsm_super *mpb)
599 {
600 return &mpb->sig[MPB_SIG_LEN];
601 }
602 #endif
603
604 /* retrieve a disk directly from the anchor when the anchor is known to be
605 * up-to-date, currently only at load time
606 */
607 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
608 {
609 if (index >= mpb->num_disks)
610 return NULL;
611 return &mpb->disk[index];
612 }
613
614 /* retrieve the disk description based on a index of the disk
615 * in the sub-array
616 */
617 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
618 {
619 struct dl *d;
620
621 for (d = super->disks; d; d = d->next)
622 if (d->index == index)
623 return d;
624
625 return NULL;
626 }
627 /* retrieve a disk from the parsed metadata */
628 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
629 {
630 struct dl *dl;
631
632 dl = get_imsm_dl_disk(super, index);
633 if (dl)
634 return &dl->disk;
635
636 return NULL;
637 }
638
639 /* generate a checksum directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load or write_super after coalescing
641 */
642 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
643 {
644 __u32 end = mpb->mpb_size / sizeof(end);
645 __u32 *p = (__u32 *) mpb;
646 __u32 sum = 0;
647
648 while (end--) {
649 sum += __le32_to_cpu(*p);
650 p++;
651 }
652
653 return sum - __le32_to_cpu(mpb->check_sum);
654 }
655
656 static size_t sizeof_imsm_map(struct imsm_map *map)
657 {
658 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
659 }
660
661 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
662 {
663 /* A device can have 2 maps if it is in the middle of a migration.
664 * If second_map is:
665 * 0 - we return the first map
666 * 1 - we return the second map if it exists, else NULL
667 * -1 - we return the second map if it exists, else the first
668 */
669 struct imsm_map *map = &dev->vol.map[0];
670
671 if (second_map == 1 && !dev->vol.migr_state)
672 return NULL;
673 else if (second_map == 1 ||
674 (second_map < 0 && dev->vol.migr_state)) {
675 void *ptr = map;
676
677 return ptr + sizeof_imsm_map(map);
678 } else
679 return map;
680
681 }
682
683 /* return the size of the device.
684 * migr_state increases the returned size if map[0] were to be duplicated
685 */
686 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
687 {
688 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
689 sizeof_imsm_map(get_imsm_map(dev, 0));
690
691 /* migrating means an additional map */
692 if (dev->vol.migr_state)
693 size += sizeof_imsm_map(get_imsm_map(dev, 1));
694 else if (migr_state)
695 size += sizeof_imsm_map(get_imsm_map(dev, 0));
696
697 return size;
698 }
699
700 #ifndef MDASSEMBLE
701 /* retrieve disk serial number list from a metadata update */
702 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
703 {
704 void *u = update;
705 struct disk_info *inf;
706
707 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
708 sizeof_imsm_dev(&update->dev, 0);
709
710 return inf;
711 }
712 #endif
713
714 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
715 {
716 int offset;
717 int i;
718 void *_mpb = mpb;
719
720 if (index >= mpb->num_raid_devs)
721 return NULL;
722
723 /* devices start after all disks */
724 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
725
726 for (i = 0; i <= index; i++)
727 if (i == index)
728 return _mpb + offset;
729 else
730 offset += sizeof_imsm_dev(_mpb + offset, 0);
731
732 return NULL;
733 }
734
735 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
736 {
737 struct intel_dev *dv;
738
739 if (index >= super->anchor->num_raid_devs)
740 return NULL;
741 for (dv = super->devlist; dv; dv = dv->next)
742 if (dv->index == index)
743 return dv->dev;
744 return NULL;
745 }
746
747 /*
748 * for second_map:
749 * == 0 get first map
750 * == 1 get second map
751 * == -1 than get map according to the current migr_state
752 */
753 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
754 int slot,
755 int second_map)
756 {
757 struct imsm_map *map;
758
759 map = get_imsm_map(dev, second_map);
760
761 /* top byte identifies disk under rebuild */
762 return __le32_to_cpu(map->disk_ord_tbl[slot]);
763 }
764
765 #define ord_to_idx(ord) (((ord) << 8) >> 8)
766 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
767 {
768 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
769
770 return ord_to_idx(ord);
771 }
772
773 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
774 {
775 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
776 }
777
778 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
779 {
780 int slot;
781 __u32 ord;
782
783 for (slot = 0; slot < map->num_members; slot++) {
784 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
785 if (ord_to_idx(ord) == idx)
786 return slot;
787 }
788
789 return -1;
790 }
791
792 static int get_imsm_raid_level(struct imsm_map *map)
793 {
794 if (map->raid_level == 1) {
795 if (map->num_members == 2)
796 return 1;
797 else
798 return 10;
799 }
800
801 return map->raid_level;
802 }
803
804 static int cmp_extent(const void *av, const void *bv)
805 {
806 const struct extent *a = av;
807 const struct extent *b = bv;
808 if (a->start < b->start)
809 return -1;
810 if (a->start > b->start)
811 return 1;
812 return 0;
813 }
814
815 static int count_memberships(struct dl *dl, struct intel_super *super)
816 {
817 int memberships = 0;
818 int i;
819
820 for (i = 0; i < super->anchor->num_raid_devs; i++) {
821 struct imsm_dev *dev = get_imsm_dev(super, i);
822 struct imsm_map *map = get_imsm_map(dev, 0);
823
824 if (get_imsm_disk_slot(map, dl->index) >= 0)
825 memberships++;
826 }
827
828 return memberships;
829 }
830
831 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
832
833 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
834 {
835 /* find a list of used extents on the given physical device */
836 struct extent *rv, *e;
837 int i;
838 int memberships = count_memberships(dl, super);
839 __u32 reservation;
840
841 /* trim the reserved area for spares, so they can join any array
842 * regardless of whether the OROM has assigned sectors from the
843 * IMSM_RESERVED_SECTORS region
844 */
845 if (dl->index == -1)
846 reservation = imsm_min_reserved_sectors(super);
847 else
848 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
849
850 rv = malloc(sizeof(struct extent) * (memberships + 1));
851 if (!rv)
852 return NULL;
853 e = rv;
854
855 for (i = 0; i < super->anchor->num_raid_devs; i++) {
856 struct imsm_dev *dev = get_imsm_dev(super, i);
857 struct imsm_map *map = get_imsm_map(dev, 0);
858
859 if (get_imsm_disk_slot(map, dl->index) >= 0) {
860 e->start = __le32_to_cpu(map->pba_of_lba0);
861 e->size = __le32_to_cpu(map->blocks_per_member);
862 e++;
863 }
864 }
865 qsort(rv, memberships, sizeof(*rv), cmp_extent);
866
867 /* determine the start of the metadata
868 * when no raid devices are defined use the default
869 * ...otherwise allow the metadata to truncate the value
870 * as is the case with older versions of imsm
871 */
872 if (memberships) {
873 struct extent *last = &rv[memberships - 1];
874 __u32 remainder;
875
876 remainder = __le32_to_cpu(dl->disk.total_blocks) -
877 (last->start + last->size);
878 /* round down to 1k block to satisfy precision of the kernel
879 * 'size' interface
880 */
881 remainder &= ~1UL;
882 /* make sure remainder is still sane */
883 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
884 remainder = ROUND_UP(super->len, 512) >> 9;
885 if (reservation > remainder)
886 reservation = remainder;
887 }
888 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
889 e->size = 0;
890 return rv;
891 }
892
893 /* try to determine how much space is reserved for metadata from
894 * the last get_extents() entry, otherwise fallback to the
895 * default
896 */
897 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
898 {
899 struct extent *e;
900 int i;
901 __u32 rv;
902
903 /* for spares just return a minimal reservation which will grow
904 * once the spare is picked up by an array
905 */
906 if (dl->index == -1)
907 return MPB_SECTOR_CNT;
908
909 e = get_extents(super, dl);
910 if (!e)
911 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
912
913 /* scroll to last entry */
914 for (i = 0; e[i].size; i++)
915 continue;
916
917 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
918
919 free(e);
920
921 return rv;
922 }
923
924 static int is_spare(struct imsm_disk *disk)
925 {
926 return (disk->status & SPARE_DISK) == SPARE_DISK;
927 }
928
929 static int is_configured(struct imsm_disk *disk)
930 {
931 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
932 }
933
934 static int is_failed(struct imsm_disk *disk)
935 {
936 return (disk->status & FAILED_DISK) == FAILED_DISK;
937 }
938
939 /* try to determine how much space is reserved for metadata from
940 * the last get_extents() entry on the smallest active disk,
941 * otherwise fallback to the default
942 */
943 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
944 {
945 struct extent *e;
946 int i;
947 __u32 min_active, remainder;
948 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
949 struct dl *dl, *dl_min = NULL;
950
951 if (!super)
952 return rv;
953
954 min_active = 0;
955 for (dl = super->disks; dl; dl = dl->next) {
956 if (dl->index < 0)
957 continue;
958 if (dl->disk.total_blocks < min_active || min_active == 0) {
959 dl_min = dl;
960 min_active = dl->disk.total_blocks;
961 }
962 }
963 if (!dl_min)
964 return rv;
965
966 /* find last lba used by subarrays on the smallest active disk */
967 e = get_extents(super, dl_min);
968 if (!e)
969 return rv;
970 for (i = 0; e[i].size; i++)
971 continue;
972
973 remainder = min_active - e[i].start;
974 free(e);
975
976 /* to give priority to recovery we should not require full
977 IMSM_RESERVED_SECTORS from the spare */
978 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
979
980 /* if real reservation is smaller use that value */
981 return (remainder < rv) ? remainder : rv;
982 }
983
984 /* Return minimum size of a spare that can be used in this array*/
985 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
986 {
987 struct intel_super *super = st->sb;
988 struct dl *dl;
989 struct extent *e;
990 int i;
991 unsigned long long rv = 0;
992 __u32 reservation;
993
994 if (!super)
995 return rv;
996 /* find first active disk in array */
997 dl = super->disks;
998 while (dl && (is_failed(&dl->disk) || dl->index == -1))
999 dl = dl->next;
1000 if (!dl)
1001 return rv;
1002 /* find last lba used by subarrays */
1003 e = get_extents(super, dl);
1004 if (!e)
1005 return rv;
1006 for (i = 0; e[i].size; i++)
1007 continue;
1008 if (i > 0)
1009 rv = e[i-1].start + e[i-1].size;
1010 reservation = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
1011 free(e);
1012
1013 /* add the amount of space needed for metadata */
1014 rv = rv + imsm_min_reserved_sectors(super);
1015
1016 return rv * 512;
1017 }
1018
1019 #ifndef MDASSEMBLE
1020 static __u64 blocks_per_migr_unit(struct intel_super *super,
1021 struct imsm_dev *dev);
1022
1023 static void print_imsm_dev(struct intel_super *super,
1024 struct imsm_dev *dev,
1025 char *uuid,
1026 int disk_idx)
1027 {
1028 __u64 sz;
1029 int slot, i;
1030 struct imsm_map *map = get_imsm_map(dev, 0);
1031 struct imsm_map *map2 = get_imsm_map(dev, 1);
1032 __u32 ord;
1033
1034 printf("\n");
1035 printf("[%.16s]:\n", dev->volume);
1036 printf(" UUID : %s\n", uuid);
1037 printf(" RAID Level : %d", get_imsm_raid_level(map));
1038 if (map2)
1039 printf(" <-- %d", get_imsm_raid_level(map2));
1040 printf("\n");
1041 printf(" Members : %d", map->num_members);
1042 if (map2)
1043 printf(" <-- %d", map2->num_members);
1044 printf("\n");
1045 printf(" Slots : [");
1046 for (i = 0; i < map->num_members; i++) {
1047 ord = get_imsm_ord_tbl_ent(dev, i, 0);
1048 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1049 }
1050 printf("]");
1051 if (map2) {
1052 printf(" <-- [");
1053 for (i = 0; i < map2->num_members; i++) {
1054 ord = get_imsm_ord_tbl_ent(dev, i, 1);
1055 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1056 }
1057 printf("]");
1058 }
1059 printf("\n");
1060 printf(" Failed disk : ");
1061 if (map->failed_disk_num == 0xff)
1062 printf("none");
1063 else
1064 printf("%i", map->failed_disk_num);
1065 printf("\n");
1066 slot = get_imsm_disk_slot(map, disk_idx);
1067 if (slot >= 0) {
1068 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
1069 printf(" This Slot : %d%s\n", slot,
1070 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1071 } else
1072 printf(" This Slot : ?\n");
1073 sz = __le32_to_cpu(dev->size_high);
1074 sz <<= 32;
1075 sz += __le32_to_cpu(dev->size_low);
1076 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1077 human_size(sz * 512));
1078 sz = __le32_to_cpu(map->blocks_per_member);
1079 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1080 human_size(sz * 512));
1081 printf(" Sector Offset : %u\n",
1082 __le32_to_cpu(map->pba_of_lba0));
1083 printf(" Num Stripes : %u\n",
1084 __le32_to_cpu(map->num_data_stripes));
1085 printf(" Chunk Size : %u KiB",
1086 __le16_to_cpu(map->blocks_per_strip) / 2);
1087 if (map2)
1088 printf(" <-- %u KiB",
1089 __le16_to_cpu(map2->blocks_per_strip) / 2);
1090 printf("\n");
1091 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1092 printf(" Migrate State : ");
1093 if (dev->vol.migr_state) {
1094 if (migr_type(dev) == MIGR_INIT)
1095 printf("initialize\n");
1096 else if (migr_type(dev) == MIGR_REBUILD)
1097 printf("rebuild\n");
1098 else if (migr_type(dev) == MIGR_VERIFY)
1099 printf("check\n");
1100 else if (migr_type(dev) == MIGR_GEN_MIGR)
1101 printf("general migration\n");
1102 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1103 printf("state change\n");
1104 else if (migr_type(dev) == MIGR_REPAIR)
1105 printf("repair\n");
1106 else
1107 printf("<unknown:%d>\n", migr_type(dev));
1108 } else
1109 printf("idle\n");
1110 printf(" Map State : %s", map_state_str[map->map_state]);
1111 if (dev->vol.migr_state) {
1112 struct imsm_map *map = get_imsm_map(dev, 1);
1113
1114 printf(" <-- %s", map_state_str[map->map_state]);
1115 printf("\n Checkpoint : %u (%llu)",
1116 __le32_to_cpu(dev->vol.curr_migr_unit),
1117 (unsigned long long)blocks_per_migr_unit(super, dev));
1118 }
1119 printf("\n");
1120 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1121 }
1122
1123 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1124 {
1125 char str[MAX_RAID_SERIAL_LEN + 1];
1126 __u64 sz;
1127
1128 if (index < -1 || !disk)
1129 return;
1130
1131 printf("\n");
1132 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1133 if (index >= 0)
1134 printf(" Disk%02d Serial : %s\n", index, str);
1135 else
1136 printf(" Disk Serial : %s\n", str);
1137 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1138 is_configured(disk) ? " active" : "",
1139 is_failed(disk) ? " failed" : "");
1140 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1141 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1142 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1143 human_size(sz * 512));
1144 }
1145
1146 static int is_gen_migration(struct imsm_dev *dev);
1147
1148 void examine_migr_rec_imsm(struct intel_super *super)
1149 {
1150 struct migr_record *migr_rec = super->migr_rec;
1151 struct imsm_super *mpb = super->anchor;
1152 int i;
1153
1154 for (i = 0; i < mpb->num_raid_devs; i++) {
1155 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1156 if (is_gen_migration(dev) == 0)
1157 continue;
1158
1159 printf("\nMigration Record Information:");
1160 if (super->disks->index > 1) {
1161 printf(" Empty\n ");
1162 printf("Examine one of first two disks in array\n");
1163 break;
1164 }
1165 printf("\n Status : ");
1166 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1167 printf("Normal\n");
1168 else
1169 printf("Contains Data\n");
1170 printf(" Current Unit : %u\n",
1171 __le32_to_cpu(migr_rec->curr_migr_unit));
1172 printf(" Family : %u\n",
1173 __le32_to_cpu(migr_rec->family_num));
1174 printf(" Ascending : %u\n",
1175 __le32_to_cpu(migr_rec->ascending_migr));
1176 printf(" Blocks Per Unit : %u\n",
1177 __le32_to_cpu(migr_rec->blocks_per_unit));
1178 printf(" Dest. Depth Per Unit : %u\n",
1179 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1180 printf(" Checkpoint Area pba : %u\n",
1181 __le32_to_cpu(migr_rec->ckpt_area_pba));
1182 printf(" First member lba : %u\n",
1183 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1184 printf(" Total Number of Units : %u\n",
1185 __le32_to_cpu(migr_rec->num_migr_units));
1186 printf(" Size of volume : %u\n",
1187 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1188 printf(" Expansion space for LBA64 : %u\n",
1189 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1190 printf(" Record was read from : %u\n",
1191 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1192
1193 break;
1194 }
1195 }
1196 #endif /* MDASSEMBLE */
1197 /*******************************************************************************
1198 * function: imsm_check_attributes
1199 * Description: Function checks if features represented by attributes flags
1200 * are supported by mdadm.
1201 * Parameters:
1202 * attributes - Attributes read from metadata
1203 * Returns:
1204 * 0 - passed attributes contains unsupported features flags
1205 * 1 - all features are supported
1206 ******************************************************************************/
1207 static int imsm_check_attributes(__u32 attributes)
1208 {
1209 int ret_val = 1;
1210 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1211
1212 not_supported &= ~MPB_ATTRIB_IGNORED;
1213
1214 not_supported &= attributes;
1215 if (not_supported) {
1216 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1217 (unsigned)__le32_to_cpu(not_supported));
1218 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1219 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1220 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1221 }
1222 if (not_supported & MPB_ATTRIB_2TB) {
1223 dprintf("\t\tMPB_ATTRIB_2TB\n");
1224 not_supported ^= MPB_ATTRIB_2TB;
1225 }
1226 if (not_supported & MPB_ATTRIB_RAID0) {
1227 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1228 not_supported ^= MPB_ATTRIB_RAID0;
1229 }
1230 if (not_supported & MPB_ATTRIB_RAID1) {
1231 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1232 not_supported ^= MPB_ATTRIB_RAID1;
1233 }
1234 if (not_supported & MPB_ATTRIB_RAID10) {
1235 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1236 not_supported ^= MPB_ATTRIB_RAID10;
1237 }
1238 if (not_supported & MPB_ATTRIB_RAID1E) {
1239 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1240 not_supported ^= MPB_ATTRIB_RAID1E;
1241 }
1242 if (not_supported & MPB_ATTRIB_RAID5) {
1243 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1244 not_supported ^= MPB_ATTRIB_RAID5;
1245 }
1246 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1247 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1248 not_supported ^= MPB_ATTRIB_RAIDCNG;
1249 }
1250 if (not_supported & MPB_ATTRIB_BBM) {
1251 dprintf("\t\tMPB_ATTRIB_BBM\n");
1252 not_supported ^= MPB_ATTRIB_BBM;
1253 }
1254 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1255 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1256 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1257 }
1258 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1259 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1260 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1261 }
1262 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1263 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1264 not_supported ^= MPB_ATTRIB_2TB_DISK;
1265 }
1266 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1267 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1268 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1269 }
1270 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1271 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1272 not_supported ^= MPB_ATTRIB_NEVER_USE;
1273 }
1274
1275 if (not_supported)
1276 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1277
1278 ret_val = 0;
1279 }
1280
1281 return ret_val;
1282 }
1283
1284 #ifndef MDASSEMBLE
1285 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1286
1287 static void examine_super_imsm(struct supertype *st, char *homehost)
1288 {
1289 struct intel_super *super = st->sb;
1290 struct imsm_super *mpb = super->anchor;
1291 char str[MAX_SIGNATURE_LENGTH];
1292 int i;
1293 struct mdinfo info;
1294 char nbuf[64];
1295 __u32 sum;
1296 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1297 struct dl *dl;
1298
1299 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1300 printf(" Magic : %s\n", str);
1301 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1302 printf(" Version : %s\n", get_imsm_version(mpb));
1303 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1304 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1305 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1306 printf(" Attributes : ");
1307 if (imsm_check_attributes(mpb->attributes))
1308 printf("All supported\n");
1309 else
1310 printf("not supported\n");
1311 getinfo_super_imsm(st, &info, NULL);
1312 fname_from_uuid(st, &info, nbuf, ':');
1313 printf(" UUID : %s\n", nbuf + 5);
1314 sum = __le32_to_cpu(mpb->check_sum);
1315 printf(" Checksum : %08x %s\n", sum,
1316 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1317 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1318 printf(" Disks : %d\n", mpb->num_disks);
1319 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1320 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1321 if (super->bbm_log) {
1322 struct bbm_log *log = super->bbm_log;
1323
1324 printf("\n");
1325 printf("Bad Block Management Log:\n");
1326 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1327 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1328 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1329 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1330 printf(" First Spare : %llx\n",
1331 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1332 }
1333 for (i = 0; i < mpb->num_raid_devs; i++) {
1334 struct mdinfo info;
1335 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1336
1337 super->current_vol = i;
1338 getinfo_super_imsm(st, &info, NULL);
1339 fname_from_uuid(st, &info, nbuf, ':');
1340 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1341 }
1342 for (i = 0; i < mpb->num_disks; i++) {
1343 if (i == super->disks->index)
1344 continue;
1345 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1346 }
1347
1348 for (dl = super->disks; dl; dl = dl->next)
1349 if (dl->index == -1)
1350 print_imsm_disk(&dl->disk, -1, reserved);
1351
1352 examine_migr_rec_imsm(super);
1353 }
1354
1355 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1356 {
1357 /* We just write a generic IMSM ARRAY entry */
1358 struct mdinfo info;
1359 char nbuf[64];
1360 struct intel_super *super = st->sb;
1361
1362 if (!super->anchor->num_raid_devs) {
1363 printf("ARRAY metadata=imsm\n");
1364 return;
1365 }
1366
1367 getinfo_super_imsm(st, &info, NULL);
1368 fname_from_uuid(st, &info, nbuf, ':');
1369 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1370 }
1371
1372 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1373 {
1374 /* We just write a generic IMSM ARRAY entry */
1375 struct mdinfo info;
1376 char nbuf[64];
1377 char nbuf1[64];
1378 struct intel_super *super = st->sb;
1379 int i;
1380
1381 if (!super->anchor->num_raid_devs)
1382 return;
1383
1384 getinfo_super_imsm(st, &info, NULL);
1385 fname_from_uuid(st, &info, nbuf, ':');
1386 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1387 struct imsm_dev *dev = get_imsm_dev(super, i);
1388
1389 super->current_vol = i;
1390 getinfo_super_imsm(st, &info, NULL);
1391 fname_from_uuid(st, &info, nbuf1, ':');
1392 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1393 dev->volume, nbuf + 5, i, nbuf1 + 5);
1394 }
1395 }
1396
1397 static void export_examine_super_imsm(struct supertype *st)
1398 {
1399 struct intel_super *super = st->sb;
1400 struct imsm_super *mpb = super->anchor;
1401 struct mdinfo info;
1402 char nbuf[64];
1403
1404 getinfo_super_imsm(st, &info, NULL);
1405 fname_from_uuid(st, &info, nbuf, ':');
1406 printf("MD_METADATA=imsm\n");
1407 printf("MD_LEVEL=container\n");
1408 printf("MD_UUID=%s\n", nbuf+5);
1409 printf("MD_DEVICES=%u\n", mpb->num_disks);
1410 }
1411
1412 static void detail_super_imsm(struct supertype *st, char *homehost)
1413 {
1414 struct mdinfo info;
1415 char nbuf[64];
1416
1417 getinfo_super_imsm(st, &info, NULL);
1418 fname_from_uuid(st, &info, nbuf, ':');
1419 printf("\n UUID : %s\n", nbuf + 5);
1420 }
1421
1422 static void brief_detail_super_imsm(struct supertype *st)
1423 {
1424 struct mdinfo info;
1425 char nbuf[64];
1426 getinfo_super_imsm(st, &info, NULL);
1427 fname_from_uuid(st, &info, nbuf, ':');
1428 printf(" UUID=%s", nbuf + 5);
1429 }
1430
1431 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1432 static void fd2devname(int fd, char *name);
1433
1434 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1435 {
1436 /* dump an unsorted list of devices attached to AHCI Intel storage
1437 * controller, as well as non-connected ports
1438 */
1439 int hba_len = strlen(hba_path) + 1;
1440 struct dirent *ent;
1441 DIR *dir;
1442 char *path = NULL;
1443 int err = 0;
1444 unsigned long port_mask = (1 << port_count) - 1;
1445
1446 if (port_count > (int)sizeof(port_mask) * 8) {
1447 if (verbose)
1448 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1449 return 2;
1450 }
1451
1452 /* scroll through /sys/dev/block looking for devices attached to
1453 * this hba
1454 */
1455 dir = opendir("/sys/dev/block");
1456 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1457 int fd;
1458 char model[64];
1459 char vendor[64];
1460 char buf[1024];
1461 int major, minor;
1462 char *device;
1463 char *c;
1464 int port;
1465 int type;
1466
1467 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1468 continue;
1469 path = devt_to_devpath(makedev(major, minor));
1470 if (!path)
1471 continue;
1472 if (!path_attached_to_hba(path, hba_path)) {
1473 free(path);
1474 path = NULL;
1475 continue;
1476 }
1477
1478 /* retrieve the scsi device type */
1479 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1480 if (verbose)
1481 fprintf(stderr, Name ": failed to allocate 'device'\n");
1482 err = 2;
1483 break;
1484 }
1485 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1486 if (load_sys(device, buf) != 0) {
1487 if (verbose)
1488 fprintf(stderr, Name ": failed to read device type for %s\n",
1489 path);
1490 err = 2;
1491 free(device);
1492 break;
1493 }
1494 type = strtoul(buf, NULL, 10);
1495
1496 /* if it's not a disk print the vendor and model */
1497 if (!(type == 0 || type == 7 || type == 14)) {
1498 vendor[0] = '\0';
1499 model[0] = '\0';
1500 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1501 if (load_sys(device, buf) == 0) {
1502 strncpy(vendor, buf, sizeof(vendor));
1503 vendor[sizeof(vendor) - 1] = '\0';
1504 c = (char *) &vendor[sizeof(vendor) - 1];
1505 while (isspace(*c) || *c == '\0')
1506 *c-- = '\0';
1507
1508 }
1509 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1510 if (load_sys(device, buf) == 0) {
1511 strncpy(model, buf, sizeof(model));
1512 model[sizeof(model) - 1] = '\0';
1513 c = (char *) &model[sizeof(model) - 1];
1514 while (isspace(*c) || *c == '\0')
1515 *c-- = '\0';
1516 }
1517
1518 if (vendor[0] && model[0])
1519 sprintf(buf, "%.64s %.64s", vendor, model);
1520 else
1521 switch (type) { /* numbers from hald/linux/device.c */
1522 case 1: sprintf(buf, "tape"); break;
1523 case 2: sprintf(buf, "printer"); break;
1524 case 3: sprintf(buf, "processor"); break;
1525 case 4:
1526 case 5: sprintf(buf, "cdrom"); break;
1527 case 6: sprintf(buf, "scanner"); break;
1528 case 8: sprintf(buf, "media_changer"); break;
1529 case 9: sprintf(buf, "comm"); break;
1530 case 12: sprintf(buf, "raid"); break;
1531 default: sprintf(buf, "unknown");
1532 }
1533 } else
1534 buf[0] = '\0';
1535 free(device);
1536
1537 /* chop device path to 'host%d' and calculate the port number */
1538 c = strchr(&path[hba_len], '/');
1539 if (!c) {
1540 if (verbose)
1541 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1542 err = 2;
1543 break;
1544 }
1545 *c = '\0';
1546 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1547 port -= host_base;
1548 else {
1549 if (verbose) {
1550 *c = '/'; /* repair the full string */
1551 fprintf(stderr, Name ": failed to determine port number for %s\n",
1552 path);
1553 }
1554 err = 2;
1555 break;
1556 }
1557
1558 /* mark this port as used */
1559 port_mask &= ~(1 << port);
1560
1561 /* print out the device information */
1562 if (buf[0]) {
1563 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1564 continue;
1565 }
1566
1567 fd = dev_open(ent->d_name, O_RDONLY);
1568 if (fd < 0)
1569 printf(" Port%d : - disk info unavailable -\n", port);
1570 else {
1571 fd2devname(fd, buf);
1572 printf(" Port%d : %s", port, buf);
1573 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1574 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1575 else
1576 printf(" ()\n");
1577 }
1578 close(fd);
1579 free(path);
1580 path = NULL;
1581 }
1582 if (path)
1583 free(path);
1584 if (dir)
1585 closedir(dir);
1586 if (err == 0) {
1587 int i;
1588
1589 for (i = 0; i < port_count; i++)
1590 if (port_mask & (1 << i))
1591 printf(" Port%d : - no device attached -\n", i);
1592 }
1593
1594 return err;
1595 }
1596
1597 static void print_found_intel_controllers(struct sys_dev *elem)
1598 {
1599 for (; elem; elem = elem->next) {
1600 fprintf(stderr, Name ": found Intel(R) ");
1601 if (elem->type == SYS_DEV_SATA)
1602 fprintf(stderr, "SATA ");
1603 else if (elem->type == SYS_DEV_SAS)
1604 fprintf(stderr, "SAS ");
1605 fprintf(stderr, "RAID controller");
1606 if (elem->pci_id)
1607 fprintf(stderr, " at %s", elem->pci_id);
1608 fprintf(stderr, ".\n");
1609 }
1610 fflush(stderr);
1611 }
1612
1613 static int ahci_get_port_count(const char *hba_path, int *port_count)
1614 {
1615 struct dirent *ent;
1616 DIR *dir;
1617 int host_base = -1;
1618
1619 *port_count = 0;
1620 if ((dir = opendir(hba_path)) == NULL)
1621 return -1;
1622
1623 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1624 int host;
1625
1626 if (sscanf(ent->d_name, "host%d", &host) != 1)
1627 continue;
1628 if (*port_count == 0)
1629 host_base = host;
1630 else if (host < host_base)
1631 host_base = host;
1632
1633 if (host + 1 > *port_count + host_base)
1634 *port_count = host + 1 - host_base;
1635 }
1636 closedir(dir);
1637 return host_base;
1638 }
1639
1640 static void print_imsm_capability(const struct imsm_orom *orom)
1641 {
1642 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1643 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1644 orom->hotfix_ver, orom->build);
1645 printf(" RAID Levels :%s%s%s%s%s\n",
1646 imsm_orom_has_raid0(orom) ? " raid0" : "",
1647 imsm_orom_has_raid1(orom) ? " raid1" : "",
1648 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1649 imsm_orom_has_raid10(orom) ? " raid10" : "",
1650 imsm_orom_has_raid5(orom) ? " raid5" : "");
1651 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1652 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1653 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1654 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1655 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1656 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1657 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1658 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1659 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1660 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1661 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1662 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1663 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1664 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1665 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1666 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1667 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1668 printf(" Max Disks : %d\n", orom->tds);
1669 printf(" Max Volumes : %d\n", orom->vpa);
1670 return;
1671 }
1672
1673 static int detail_platform_imsm(int verbose, int enumerate_only)
1674 {
1675 /* There are two components to imsm platform support, the ahci SATA
1676 * controller and the option-rom. To find the SATA controller we
1677 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1678 * controller with the Intel vendor id is present. This approach
1679 * allows mdadm to leverage the kernel's ahci detection logic, with the
1680 * caveat that if ahci.ko is not loaded mdadm will not be able to
1681 * detect platform raid capabilities. The option-rom resides in a
1682 * platform "Adapter ROM". We scan for its signature to retrieve the
1683 * platform capabilities. If raid support is disabled in the BIOS the
1684 * option-rom capability structure will not be available.
1685 */
1686 const struct imsm_orom *orom;
1687 struct sys_dev *list, *hba;
1688 int host_base = 0;
1689 int port_count = 0;
1690 int result=0;
1691
1692 if (enumerate_only) {
1693 if (check_env("IMSM_NO_PLATFORM"))
1694 return 0;
1695 list = find_intel_devices();
1696 if (!list)
1697 return 2;
1698 for (hba = list; hba; hba = hba->next) {
1699 orom = find_imsm_capability(hba->type);
1700 if (!orom) {
1701 result = 2;
1702 break;
1703 }
1704 }
1705 free_sys_dev(&list);
1706 return result;
1707 }
1708
1709 list = find_intel_devices();
1710 if (!list) {
1711 if (verbose)
1712 fprintf(stderr, Name ": no active Intel(R) RAID "
1713 "controller found.\n");
1714 free_sys_dev(&list);
1715 return 2;
1716 } else if (verbose)
1717 print_found_intel_controllers(list);
1718
1719 for (hba = list; hba; hba = hba->next) {
1720 orom = find_imsm_capability(hba->type);
1721 if (!orom)
1722 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1723 hba->path, get_sys_dev_type(hba->type));
1724 else
1725 print_imsm_capability(orom);
1726 }
1727
1728 for (hba = list; hba; hba = hba->next) {
1729 printf(" I/O Controller : %s (%s)\n",
1730 hba->path, get_sys_dev_type(hba->type));
1731
1732 if (hba->type == SYS_DEV_SATA) {
1733 host_base = ahci_get_port_count(hba->path, &port_count);
1734 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1735 if (verbose)
1736 fprintf(stderr, Name ": failed to enumerate "
1737 "ports on SATA controller at %s.", hba->pci_id);
1738 result |= 2;
1739 }
1740 }
1741 }
1742
1743 free_sys_dev(&list);
1744 return result;
1745 }
1746 #endif
1747
1748 static int match_home_imsm(struct supertype *st, char *homehost)
1749 {
1750 /* the imsm metadata format does not specify any host
1751 * identification information. We return -1 since we can never
1752 * confirm nor deny whether a given array is "meant" for this
1753 * host. We rely on compare_super and the 'family_num' fields to
1754 * exclude member disks that do not belong, and we rely on
1755 * mdadm.conf to specify the arrays that should be assembled.
1756 * Auto-assembly may still pick up "foreign" arrays.
1757 */
1758
1759 return -1;
1760 }
1761
1762 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1763 {
1764 /* The uuid returned here is used for:
1765 * uuid to put into bitmap file (Create, Grow)
1766 * uuid for backup header when saving critical section (Grow)
1767 * comparing uuids when re-adding a device into an array
1768 * In these cases the uuid required is that of the data-array,
1769 * not the device-set.
1770 * uuid to recognise same set when adding a missing device back
1771 * to an array. This is a uuid for the device-set.
1772 *
1773 * For each of these we can make do with a truncated
1774 * or hashed uuid rather than the original, as long as
1775 * everyone agrees.
1776 * In each case the uuid required is that of the data-array,
1777 * not the device-set.
1778 */
1779 /* imsm does not track uuid's so we synthesis one using sha1 on
1780 * - The signature (Which is constant for all imsm array, but no matter)
1781 * - the orig_family_num of the container
1782 * - the index number of the volume
1783 * - the 'serial' number of the volume.
1784 * Hopefully these are all constant.
1785 */
1786 struct intel_super *super = st->sb;
1787
1788 char buf[20];
1789 struct sha1_ctx ctx;
1790 struct imsm_dev *dev = NULL;
1791 __u32 family_num;
1792
1793 /* some mdadm versions failed to set ->orig_family_num, in which
1794 * case fall back to ->family_num. orig_family_num will be
1795 * fixed up with the first metadata update.
1796 */
1797 family_num = super->anchor->orig_family_num;
1798 if (family_num == 0)
1799 family_num = super->anchor->family_num;
1800 sha1_init_ctx(&ctx);
1801 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1802 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1803 if (super->current_vol >= 0)
1804 dev = get_imsm_dev(super, super->current_vol);
1805 if (dev) {
1806 __u32 vol = super->current_vol;
1807 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1808 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1809 }
1810 sha1_finish_ctx(&ctx, buf);
1811 memcpy(uuid, buf, 4*4);
1812 }
1813
1814 #if 0
1815 static void
1816 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1817 {
1818 __u8 *v = get_imsm_version(mpb);
1819 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1820 char major[] = { 0, 0, 0 };
1821 char minor[] = { 0 ,0, 0 };
1822 char patch[] = { 0, 0, 0 };
1823 char *ver_parse[] = { major, minor, patch };
1824 int i, j;
1825
1826 i = j = 0;
1827 while (*v != '\0' && v < end) {
1828 if (*v != '.' && j < 2)
1829 ver_parse[i][j++] = *v;
1830 else {
1831 i++;
1832 j = 0;
1833 }
1834 v++;
1835 }
1836
1837 *m = strtol(minor, NULL, 0);
1838 *p = strtol(patch, NULL, 0);
1839 }
1840 #endif
1841
1842 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1843 {
1844 /* migr_strip_size when repairing or initializing parity */
1845 struct imsm_map *map = get_imsm_map(dev, 0);
1846 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1847
1848 switch (get_imsm_raid_level(map)) {
1849 case 5:
1850 case 10:
1851 return chunk;
1852 default:
1853 return 128*1024 >> 9;
1854 }
1855 }
1856
1857 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1858 {
1859 /* migr_strip_size when rebuilding a degraded disk, no idea why
1860 * this is different than migr_strip_size_resync(), but it's good
1861 * to be compatible
1862 */
1863 struct imsm_map *map = get_imsm_map(dev, 1);
1864 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1865
1866 switch (get_imsm_raid_level(map)) {
1867 case 1:
1868 case 10:
1869 if (map->num_members % map->num_domains == 0)
1870 return 128*1024 >> 9;
1871 else
1872 return chunk;
1873 case 5:
1874 return max((__u32) 64*1024 >> 9, chunk);
1875 default:
1876 return 128*1024 >> 9;
1877 }
1878 }
1879
1880 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1881 {
1882 struct imsm_map *lo = get_imsm_map(dev, 0);
1883 struct imsm_map *hi = get_imsm_map(dev, 1);
1884 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1885 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1886
1887 return max((__u32) 1, hi_chunk / lo_chunk);
1888 }
1889
1890 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1891 {
1892 struct imsm_map *lo = get_imsm_map(dev, 0);
1893 int level = get_imsm_raid_level(lo);
1894
1895 if (level == 1 || level == 10) {
1896 struct imsm_map *hi = get_imsm_map(dev, 1);
1897
1898 return hi->num_domains;
1899 } else
1900 return num_stripes_per_unit_resync(dev);
1901 }
1902
1903 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1904 {
1905 /* named 'imsm_' because raid0, raid1 and raid10
1906 * counter-intuitively have the same number of data disks
1907 */
1908 struct imsm_map *map = get_imsm_map(dev, second_map);
1909
1910 switch (get_imsm_raid_level(map)) {
1911 case 0:
1912 case 1:
1913 case 10:
1914 return map->num_members;
1915 case 5:
1916 return map->num_members - 1;
1917 default:
1918 dprintf("%s: unsupported raid level\n", __func__);
1919 return 0;
1920 }
1921 }
1922
1923 static __u32 parity_segment_depth(struct imsm_dev *dev)
1924 {
1925 struct imsm_map *map = get_imsm_map(dev, 0);
1926 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1927
1928 switch(get_imsm_raid_level(map)) {
1929 case 1:
1930 case 10:
1931 return chunk * map->num_domains;
1932 case 5:
1933 return chunk * map->num_members;
1934 default:
1935 return chunk;
1936 }
1937 }
1938
1939 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1940 {
1941 struct imsm_map *map = get_imsm_map(dev, 1);
1942 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1943 __u32 strip = block / chunk;
1944
1945 switch (get_imsm_raid_level(map)) {
1946 case 1:
1947 case 10: {
1948 __u32 vol_strip = (strip * map->num_domains) + 1;
1949 __u32 vol_stripe = vol_strip / map->num_members;
1950
1951 return vol_stripe * chunk + block % chunk;
1952 } case 5: {
1953 __u32 stripe = strip / (map->num_members - 1);
1954
1955 return stripe * chunk + block % chunk;
1956 }
1957 default:
1958 return 0;
1959 }
1960 }
1961
1962 static __u64 blocks_per_migr_unit(struct intel_super *super,
1963 struct imsm_dev *dev)
1964 {
1965 /* calculate the conversion factor between per member 'blocks'
1966 * (md/{resync,rebuild}_start) and imsm migration units, return
1967 * 0 for the 'not migrating' and 'unsupported migration' cases
1968 */
1969 if (!dev->vol.migr_state)
1970 return 0;
1971
1972 switch (migr_type(dev)) {
1973 case MIGR_GEN_MIGR: {
1974 struct migr_record *migr_rec = super->migr_rec;
1975 return __le32_to_cpu(migr_rec->blocks_per_unit);
1976 }
1977 case MIGR_VERIFY:
1978 case MIGR_REPAIR:
1979 case MIGR_INIT: {
1980 struct imsm_map *map = get_imsm_map(dev, 0);
1981 __u32 stripes_per_unit;
1982 __u32 blocks_per_unit;
1983 __u32 parity_depth;
1984 __u32 migr_chunk;
1985 __u32 block_map;
1986 __u32 block_rel;
1987 __u32 segment;
1988 __u32 stripe;
1989 __u8 disks;
1990
1991 /* yes, this is really the translation of migr_units to
1992 * per-member blocks in the 'resync' case
1993 */
1994 stripes_per_unit = num_stripes_per_unit_resync(dev);
1995 migr_chunk = migr_strip_blocks_resync(dev);
1996 disks = imsm_num_data_members(dev, 0);
1997 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1998 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1999 segment = blocks_per_unit / stripe;
2000 block_rel = blocks_per_unit - segment * stripe;
2001 parity_depth = parity_segment_depth(dev);
2002 block_map = map_migr_block(dev, block_rel);
2003 return block_map + parity_depth * segment;
2004 }
2005 case MIGR_REBUILD: {
2006 __u32 stripes_per_unit;
2007 __u32 migr_chunk;
2008
2009 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2010 migr_chunk = migr_strip_blocks_rebuild(dev);
2011 return migr_chunk * stripes_per_unit;
2012 }
2013 case MIGR_STATE_CHANGE:
2014 default:
2015 return 0;
2016 }
2017 }
2018
2019 static int imsm_level_to_layout(int level)
2020 {
2021 switch (level) {
2022 case 0:
2023 case 1:
2024 return 0;
2025 case 5:
2026 case 6:
2027 return ALGORITHM_LEFT_ASYMMETRIC;
2028 case 10:
2029 return 0x102;
2030 }
2031 return UnSet;
2032 }
2033
2034 /*******************************************************************************
2035 * Function: read_imsm_migr_rec
2036 * Description: Function reads imsm migration record from last sector of disk
2037 * Parameters:
2038 * fd : disk descriptor
2039 * super : metadata info
2040 * Returns:
2041 * 0 : success,
2042 * -1 : fail
2043 ******************************************************************************/
2044 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2045 {
2046 int ret_val = -1;
2047 unsigned long long dsize;
2048
2049 get_dev_size(fd, NULL, &dsize);
2050 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2051 fprintf(stderr,
2052 Name ": Cannot seek to anchor block: %s\n",
2053 strerror(errno));
2054 goto out;
2055 }
2056 if (read(fd, super->migr_rec_buf, 512) != 512) {
2057 fprintf(stderr,
2058 Name ": Cannot read migr record block: %s\n",
2059 strerror(errno));
2060 goto out;
2061 }
2062 ret_val = 0;
2063
2064 out:
2065 return ret_val;
2066 }
2067
2068 /*******************************************************************************
2069 * Function: load_imsm_migr_rec
2070 * Description: Function reads imsm migration record (it is stored at the last
2071 * sector of disk)
2072 * Parameters:
2073 * super : imsm internal array info
2074 * info : general array info
2075 * Returns:
2076 * 0 : success
2077 * -1 : fail
2078 ******************************************************************************/
2079 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2080 {
2081 struct mdinfo *sd;
2082 struct dl *dl = NULL;
2083 char nm[30];
2084 int retval = -1;
2085 int fd = -1;
2086
2087 if (info) {
2088 for (sd = info->devs ; sd ; sd = sd->next) {
2089 /* read only from one of the first two slots */
2090 if ((sd->disk.raid_disk > 1) ||
2091 (sd->disk.raid_disk < 0))
2092 continue;
2093 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2094 fd = dev_open(nm, O_RDONLY);
2095 if (fd >= 0)
2096 break;
2097 }
2098 }
2099 if (fd < 0) {
2100 for (dl = super->disks; dl; dl = dl->next) {
2101 /* read only from one of the first two slots */
2102 if (dl->index > 1)
2103 continue;
2104 sprintf(nm, "%d:%d", dl->major, dl->minor);
2105 fd = dev_open(nm, O_RDONLY);
2106 if (fd >= 0)
2107 break;
2108 }
2109 }
2110 if (fd < 0)
2111 goto out;
2112 retval = read_imsm_migr_rec(fd, super);
2113
2114 out:
2115 if (fd >= 0)
2116 close(fd);
2117 return retval;
2118 }
2119
2120 #ifndef MDASSEMBLE
2121 /*******************************************************************************
2122 * function: imsm_create_metadata_checkpoint_update
2123 * Description: It creates update for checkpoint change.
2124 * Parameters:
2125 * super : imsm internal array info
2126 * u : pointer to prepared update
2127 * Returns:
2128 * Uptate length.
2129 * If length is equal to 0, input pointer u contains no update
2130 ******************************************************************************/
2131 static int imsm_create_metadata_checkpoint_update(
2132 struct intel_super *super,
2133 struct imsm_update_general_migration_checkpoint **u)
2134 {
2135
2136 int update_memory_size = 0;
2137
2138 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2139
2140 if (u == NULL)
2141 return 0;
2142 *u = NULL;
2143
2144 /* size of all update data without anchor */
2145 update_memory_size =
2146 sizeof(struct imsm_update_general_migration_checkpoint);
2147
2148 *u = calloc(1, update_memory_size);
2149 if (*u == NULL) {
2150 dprintf("error: cannot get memory for "
2151 "imsm_create_metadata_checkpoint_update update\n");
2152 return 0;
2153 }
2154 (*u)->type = update_general_migration_checkpoint;
2155 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2156 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2157 (*u)->curr_migr_unit);
2158
2159 return update_memory_size;
2160 }
2161
2162
2163 static void imsm_update_metadata_locally(struct supertype *st,
2164 void *buf, int len);
2165
2166 /*******************************************************************************
2167 * Function: write_imsm_migr_rec
2168 * Description: Function writes imsm migration record
2169 * (at the last sector of disk)
2170 * Parameters:
2171 * super : imsm internal array info
2172 * Returns:
2173 * 0 : success
2174 * -1 : if fail
2175 ******************************************************************************/
2176 static int write_imsm_migr_rec(struct supertype *st)
2177 {
2178 struct intel_super *super = st->sb;
2179 unsigned long long dsize;
2180 char nm[30];
2181 int fd = -1;
2182 int retval = -1;
2183 struct dl *sd;
2184 int len;
2185 struct imsm_update_general_migration_checkpoint *u;
2186
2187 for (sd = super->disks ; sd ; sd = sd->next) {
2188 /* write to 2 first slots only */
2189 if ((sd->index < 0) || (sd->index > 1))
2190 continue;
2191 sprintf(nm, "%d:%d", sd->major, sd->minor);
2192 fd = dev_open(nm, O_RDWR);
2193 if (fd < 0)
2194 continue;
2195 get_dev_size(fd, NULL, &dsize);
2196 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2197 fprintf(stderr,
2198 Name ": Cannot seek to anchor block: %s\n",
2199 strerror(errno));
2200 goto out;
2201 }
2202 if (write(fd, super->migr_rec_buf, 512) != 512) {
2203 fprintf(stderr,
2204 Name ": Cannot write migr record block: %s\n",
2205 strerror(errno));
2206 goto out;
2207 }
2208 close(fd);
2209 fd = -1;
2210 }
2211 /* update checkpoint information in metadata */
2212 len = imsm_create_metadata_checkpoint_update(super, &u);
2213
2214 if (len <= 0) {
2215 dprintf("imsm: Cannot prepare update\n");
2216 goto out;
2217 }
2218 /* update metadata locally */
2219 imsm_update_metadata_locally(st, u, len);
2220 /* and possibly remotely */
2221 if (st->update_tail) {
2222 append_metadata_update(st, u, len);
2223 /* during reshape we do all work inside metadata handler
2224 * manage_reshape(), so metadata update has to be triggered
2225 * insida it
2226 */
2227 flush_metadata_updates(st);
2228 st->update_tail = &st->updates;
2229 } else
2230 free(u);
2231
2232 retval = 0;
2233 out:
2234 if (fd >= 0)
2235 close(fd);
2236 return retval;
2237 }
2238 #endif /* MDASSEMBLE */
2239
2240 /* spare/missing disks activations are not allowe when
2241 * array/container performs reshape operation, because
2242 * all arrays in container works on the same disks set
2243 */
2244 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2245 {
2246 int rv = 0;
2247 struct intel_dev *i_dev;
2248 struct imsm_dev *dev;
2249
2250 /* check whole container
2251 */
2252 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2253 dev = i_dev->dev;
2254 if (is_gen_migration(dev)) {
2255 /* No repair during any migration in container
2256 */
2257 rv = 1;
2258 break;
2259 }
2260 }
2261 return rv;
2262 }
2263
2264 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2265 {
2266 struct intel_super *super = st->sb;
2267 struct migr_record *migr_rec = super->migr_rec;
2268 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2269 struct imsm_map *map = get_imsm_map(dev, 0);
2270 struct imsm_map *prev_map = get_imsm_map(dev, 1);
2271 struct imsm_map *map_to_analyse = map;
2272 struct dl *dl;
2273 char *devname;
2274 unsigned int component_size_alligment;
2275 int map_disks = info->array.raid_disks;
2276
2277 memset(info, 0, sizeof(*info));
2278 if (prev_map)
2279 map_to_analyse = prev_map;
2280
2281 dl = super->current_disk;
2282
2283 info->container_member = super->current_vol;
2284 info->array.raid_disks = map->num_members;
2285 info->array.level = get_imsm_raid_level(map_to_analyse);
2286 info->array.layout = imsm_level_to_layout(info->array.level);
2287 info->array.md_minor = -1;
2288 info->array.ctime = 0;
2289 info->array.utime = 0;
2290 info->array.chunk_size =
2291 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2292 info->array.state = !dev->vol.dirty;
2293 info->custom_array_size = __le32_to_cpu(dev->size_high);
2294 info->custom_array_size <<= 32;
2295 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2296 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2297
2298 if (prev_map && map->map_state == prev_map->map_state &&
2299 (migr_type(dev) == MIGR_GEN_MIGR)) {
2300 info->reshape_active = 1;
2301 info->new_level = get_imsm_raid_level(map);
2302 info->new_layout = imsm_level_to_layout(info->new_level);
2303 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2304 info->delta_disks = map->num_members - prev_map->num_members;
2305 if (info->delta_disks) {
2306 /* this needs to be applied to every array
2307 * in the container.
2308 */
2309 info->reshape_active = 2;
2310 }
2311 /* We shape information that we give to md might have to be
2312 * modify to cope with md's requirement for reshaping arrays.
2313 * For example, when reshaping a RAID0, md requires it to be
2314 * presented as a degraded RAID4.
2315 * Also if a RAID0 is migrating to a RAID5 we need to specify
2316 * the array as already being RAID5, but the 'before' layout
2317 * is a RAID4-like layout.
2318 */
2319 switch (info->array.level) {
2320 case 0:
2321 switch(info->new_level) {
2322 case 0:
2323 /* conversion is happening as RAID4 */
2324 info->array.level = 4;
2325 info->array.raid_disks += 1;
2326 break;
2327 case 5:
2328 /* conversion is happening as RAID5 */
2329 info->array.level = 5;
2330 info->array.layout = ALGORITHM_PARITY_N;
2331 info->delta_disks -= 1;
2332 break;
2333 default:
2334 /* FIXME error message */
2335 info->array.level = UnSet;
2336 break;
2337 }
2338 break;
2339 }
2340 } else {
2341 info->new_level = UnSet;
2342 info->new_layout = UnSet;
2343 info->new_chunk = info->array.chunk_size;
2344 info->delta_disks = 0;
2345 }
2346
2347 if (dl) {
2348 info->disk.major = dl->major;
2349 info->disk.minor = dl->minor;
2350 info->disk.number = dl->index;
2351 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2352 dl->index);
2353 }
2354
2355 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2356 info->component_size =
2357 __le32_to_cpu(map_to_analyse->blocks_per_member);
2358
2359 /* check component size aligment
2360 */
2361 component_size_alligment =
2362 info->component_size % (info->array.chunk_size/512);
2363
2364 if (component_size_alligment &&
2365 (info->array.level != 1) && (info->array.level != UnSet)) {
2366 dprintf("imsm: reported component size alligned from %llu ",
2367 info->component_size);
2368 info->component_size -= component_size_alligment;
2369 dprintf("to %llu (%i).\n",
2370 info->component_size, component_size_alligment);
2371 }
2372
2373 memset(info->uuid, 0, sizeof(info->uuid));
2374 info->recovery_start = MaxSector;
2375
2376 info->reshape_progress = 0;
2377 info->resync_start = MaxSector;
2378 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2379 dev->vol.dirty) &&
2380 imsm_reshape_blocks_arrays_changes(super) == 0) {
2381 info->resync_start = 0;
2382 }
2383 if (dev->vol.migr_state) {
2384 switch (migr_type(dev)) {
2385 case MIGR_REPAIR:
2386 case MIGR_INIT: {
2387 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2388 dev);
2389 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2390
2391 info->resync_start = blocks_per_unit * units;
2392 break;
2393 }
2394 case MIGR_GEN_MIGR: {
2395 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2396 dev);
2397 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2398 unsigned long long array_blocks;
2399 int used_disks;
2400
2401 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2402 (units <
2403 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2404 (super->migr_rec->rec_status ==
2405 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2406 units++;
2407
2408 info->reshape_progress = blocks_per_unit * units;
2409
2410 dprintf("IMSM: General Migration checkpoint : %llu "
2411 "(%llu) -> read reshape progress : %llu\n",
2412 (unsigned long long)units,
2413 (unsigned long long)blocks_per_unit,
2414 info->reshape_progress);
2415
2416 used_disks = imsm_num_data_members(dev, 1);
2417 if (used_disks > 0) {
2418 array_blocks = map->blocks_per_member *
2419 used_disks;
2420 /* round array size down to closest MB
2421 */
2422 info->custom_array_size = (array_blocks
2423 >> SECT_PER_MB_SHIFT)
2424 << SECT_PER_MB_SHIFT;
2425 }
2426 }
2427 case MIGR_VERIFY:
2428 /* we could emulate the checkpointing of
2429 * 'sync_action=check' migrations, but for now
2430 * we just immediately complete them
2431 */
2432 case MIGR_REBUILD:
2433 /* this is handled by container_content_imsm() */
2434 case MIGR_STATE_CHANGE:
2435 /* FIXME handle other migrations */
2436 default:
2437 /* we are not dirty, so... */
2438 info->resync_start = MaxSector;
2439 }
2440 }
2441
2442 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2443 info->name[MAX_RAID_SERIAL_LEN] = 0;
2444
2445 info->array.major_version = -1;
2446 info->array.minor_version = -2;
2447 devname = devnum2devname(st->container_dev);
2448 *info->text_version = '\0';
2449 if (devname)
2450 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2451 free(devname);
2452 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2453 uuid_from_super_imsm(st, info->uuid);
2454
2455 if (dmap) {
2456 int i, j;
2457 for (i=0; i<map_disks; i++) {
2458 dmap[i] = 0;
2459 if (i < info->array.raid_disks) {
2460 struct imsm_disk *dsk;
2461 j = get_imsm_disk_idx(dev, i, -1);
2462 dsk = get_imsm_disk(super, j);
2463 if (dsk && (dsk->status & CONFIGURED_DISK))
2464 dmap[i] = 1;
2465 }
2466 }
2467 }
2468 }
2469
2470 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2471 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2472
2473 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2474 {
2475 struct dl *d;
2476
2477 for (d = super->missing; d; d = d->next)
2478 if (d->index == index)
2479 return &d->disk;
2480 return NULL;
2481 }
2482
2483 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2484 {
2485 struct intel_super *super = st->sb;
2486 struct imsm_disk *disk;
2487 int map_disks = info->array.raid_disks;
2488 int max_enough = -1;
2489 int i;
2490 struct imsm_super *mpb;
2491
2492 if (super->current_vol >= 0) {
2493 getinfo_super_imsm_volume(st, info, map);
2494 return;
2495 }
2496 memset(info, 0, sizeof(*info));
2497
2498 /* Set raid_disks to zero so that Assemble will always pull in valid
2499 * spares
2500 */
2501 info->array.raid_disks = 0;
2502 info->array.level = LEVEL_CONTAINER;
2503 info->array.layout = 0;
2504 info->array.md_minor = -1;
2505 info->array.ctime = 0; /* N/A for imsm */
2506 info->array.utime = 0;
2507 info->array.chunk_size = 0;
2508
2509 info->disk.major = 0;
2510 info->disk.minor = 0;
2511 info->disk.raid_disk = -1;
2512 info->reshape_active = 0;
2513 info->array.major_version = -1;
2514 info->array.minor_version = -2;
2515 strcpy(info->text_version, "imsm");
2516 info->safe_mode_delay = 0;
2517 info->disk.number = -1;
2518 info->disk.state = 0;
2519 info->name[0] = 0;
2520 info->recovery_start = MaxSector;
2521 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2522
2523 /* do we have the all the insync disks that we expect? */
2524 mpb = super->anchor;
2525
2526 for (i = 0; i < mpb->num_raid_devs; i++) {
2527 struct imsm_dev *dev = get_imsm_dev(super, i);
2528 int failed, enough, j, missing = 0;
2529 struct imsm_map *map;
2530 __u8 state;
2531
2532 failed = imsm_count_failed(super, dev);
2533 state = imsm_check_degraded(super, dev, failed);
2534 map = get_imsm_map(dev, dev->vol.migr_state);
2535
2536 /* any newly missing disks?
2537 * (catches single-degraded vs double-degraded)
2538 */
2539 for (j = 0; j < map->num_members; j++) {
2540 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
2541 __u32 idx = ord_to_idx(ord);
2542
2543 if (!(ord & IMSM_ORD_REBUILD) &&
2544 get_imsm_missing(super, idx)) {
2545 missing = 1;
2546 break;
2547 }
2548 }
2549
2550 if (state == IMSM_T_STATE_FAILED)
2551 enough = -1;
2552 else if (state == IMSM_T_STATE_DEGRADED &&
2553 (state != map->map_state || missing))
2554 enough = 0;
2555 else /* we're normal, or already degraded */
2556 enough = 1;
2557
2558 /* in the missing/failed disk case check to see
2559 * if at least one array is runnable
2560 */
2561 max_enough = max(max_enough, enough);
2562 }
2563 dprintf("%s: enough: %d\n", __func__, max_enough);
2564 info->container_enough = max_enough;
2565
2566 if (super->disks) {
2567 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2568
2569 disk = &super->disks->disk;
2570 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2571 info->component_size = reserved;
2572 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2573 /* we don't change info->disk.raid_disk here because
2574 * this state will be finalized in mdmon after we have
2575 * found the 'most fresh' version of the metadata
2576 */
2577 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2578 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2579 }
2580
2581 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2582 * ->compare_super may have updated the 'num_raid_devs' field for spares
2583 */
2584 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2585 uuid_from_super_imsm(st, info->uuid);
2586 else
2587 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2588
2589 /* I don't know how to compute 'map' on imsm, so use safe default */
2590 if (map) {
2591 int i;
2592 for (i = 0; i < map_disks; i++)
2593 map[i] = 1;
2594 }
2595
2596 }
2597
2598 /* allocates memory and fills disk in mdinfo structure
2599 * for each disk in array */
2600 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2601 {
2602 struct mdinfo *mddev = NULL;
2603 struct intel_super *super = st->sb;
2604 struct imsm_disk *disk;
2605 int count = 0;
2606 struct dl *dl;
2607 if (!super || !super->disks)
2608 return NULL;
2609 dl = super->disks;
2610 mddev = malloc(sizeof(*mddev));
2611 if (!mddev) {
2612 fprintf(stderr, Name ": Failed to allocate memory.\n");
2613 return NULL;
2614 }
2615 memset(mddev, 0, sizeof(*mddev));
2616 while (dl) {
2617 struct mdinfo *tmp;
2618 disk = &dl->disk;
2619 tmp = malloc(sizeof(*tmp));
2620 if (!tmp) {
2621 fprintf(stderr, Name ": Failed to allocate memory.\n");
2622 if (mddev)
2623 sysfs_free(mddev);
2624 return NULL;
2625 }
2626 memset(tmp, 0, sizeof(*tmp));
2627 if (mddev->devs)
2628 tmp->next = mddev->devs;
2629 mddev->devs = tmp;
2630 tmp->disk.number = count++;
2631 tmp->disk.major = dl->major;
2632 tmp->disk.minor = dl->minor;
2633 tmp->disk.state = is_configured(disk) ?
2634 (1 << MD_DISK_ACTIVE) : 0;
2635 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2636 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2637 tmp->disk.raid_disk = -1;
2638 dl = dl->next;
2639 }
2640 return mddev;
2641 }
2642
2643 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2644 char *update, char *devname, int verbose,
2645 int uuid_set, char *homehost)
2646 {
2647 /* For 'assemble' and 'force' we need to return non-zero if any
2648 * change was made. For others, the return value is ignored.
2649 * Update options are:
2650 * force-one : This device looks a bit old but needs to be included,
2651 * update age info appropriately.
2652 * assemble: clear any 'faulty' flag to allow this device to
2653 * be assembled.
2654 * force-array: Array is degraded but being forced, mark it clean
2655 * if that will be needed to assemble it.
2656 *
2657 * newdev: not used ????
2658 * grow: Array has gained a new device - this is currently for
2659 * linear only
2660 * resync: mark as dirty so a resync will happen.
2661 * name: update the name - preserving the homehost
2662 * uuid: Change the uuid of the array to match watch is given
2663 *
2664 * Following are not relevant for this imsm:
2665 * sparc2.2 : update from old dodgey metadata
2666 * super-minor: change the preferred_minor number
2667 * summaries: update redundant counters.
2668 * homehost: update the recorded homehost
2669 * _reshape_progress: record new reshape_progress position.
2670 */
2671 int rv = 1;
2672 struct intel_super *super = st->sb;
2673 struct imsm_super *mpb;
2674
2675 /* we can only update container info */
2676 if (!super || super->current_vol >= 0 || !super->anchor)
2677 return 1;
2678
2679 mpb = super->anchor;
2680
2681 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2682 rv = -1;
2683 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2684 mpb->orig_family_num = *((__u32 *) info->update_private);
2685 rv = 0;
2686 } else if (strcmp(update, "uuid") == 0) {
2687 __u32 *new_family = malloc(sizeof(*new_family));
2688
2689 /* update orig_family_number with the incoming random
2690 * data, report the new effective uuid, and store the
2691 * new orig_family_num for future updates.
2692 */
2693 if (new_family) {
2694 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2695 uuid_from_super_imsm(st, info->uuid);
2696 *new_family = mpb->orig_family_num;
2697 info->update_private = new_family;
2698 rv = 0;
2699 }
2700 } else if (strcmp(update, "assemble") == 0)
2701 rv = 0;
2702 else
2703 rv = -1;
2704
2705 /* successful update? recompute checksum */
2706 if (rv == 0)
2707 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2708
2709 return rv;
2710 }
2711
2712 static size_t disks_to_mpb_size(int disks)
2713 {
2714 size_t size;
2715
2716 size = sizeof(struct imsm_super);
2717 size += (disks - 1) * sizeof(struct imsm_disk);
2718 size += 2 * sizeof(struct imsm_dev);
2719 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2720 size += (4 - 2) * sizeof(struct imsm_map);
2721 /* 4 possible disk_ord_tbl's */
2722 size += 4 * (disks - 1) * sizeof(__u32);
2723
2724 return size;
2725 }
2726
2727 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2728 {
2729 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2730 return 0;
2731
2732 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2733 }
2734
2735 static void free_devlist(struct intel_super *super)
2736 {
2737 struct intel_dev *dv;
2738
2739 while (super->devlist) {
2740 dv = super->devlist->next;
2741 free(super->devlist->dev);
2742 free(super->devlist);
2743 super->devlist = dv;
2744 }
2745 }
2746
2747 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2748 {
2749 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2750 }
2751
2752 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2753 {
2754 /*
2755 * return:
2756 * 0 same, or first was empty, and second was copied
2757 * 1 second had wrong number
2758 * 2 wrong uuid
2759 * 3 wrong other info
2760 */
2761 struct intel_super *first = st->sb;
2762 struct intel_super *sec = tst->sb;
2763
2764 if (!first) {
2765 st->sb = tst->sb;
2766 tst->sb = NULL;
2767 return 0;
2768 }
2769 /* in platform dependent environment test if the disks
2770 * use the same Intel hba
2771 */
2772 if (!check_env("IMSM_NO_PLATFORM")) {
2773 if (!first->hba || !sec->hba ||
2774 (first->hba->type != sec->hba->type)) {
2775 fprintf(stderr,
2776 "HBAs of devices does not match %s != %s\n",
2777 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2778 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2779 return 3;
2780 }
2781 }
2782
2783 /* if an anchor does not have num_raid_devs set then it is a free
2784 * floating spare
2785 */
2786 if (first->anchor->num_raid_devs > 0 &&
2787 sec->anchor->num_raid_devs > 0) {
2788 /* Determine if these disks might ever have been
2789 * related. Further disambiguation can only take place
2790 * in load_super_imsm_all
2791 */
2792 __u32 first_family = first->anchor->orig_family_num;
2793 __u32 sec_family = sec->anchor->orig_family_num;
2794
2795 if (memcmp(first->anchor->sig, sec->anchor->sig,
2796 MAX_SIGNATURE_LENGTH) != 0)
2797 return 3;
2798
2799 if (first_family == 0)
2800 first_family = first->anchor->family_num;
2801 if (sec_family == 0)
2802 sec_family = sec->anchor->family_num;
2803
2804 if (first_family != sec_family)
2805 return 3;
2806
2807 }
2808
2809
2810 /* if 'first' is a spare promote it to a populated mpb with sec's
2811 * family number
2812 */
2813 if (first->anchor->num_raid_devs == 0 &&
2814 sec->anchor->num_raid_devs > 0) {
2815 int i;
2816 struct intel_dev *dv;
2817 struct imsm_dev *dev;
2818
2819 /* we need to copy raid device info from sec if an allocation
2820 * fails here we don't associate the spare
2821 */
2822 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2823 dv = malloc(sizeof(*dv));
2824 if (!dv)
2825 break;
2826 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2827 if (!dev) {
2828 free(dv);
2829 break;
2830 }
2831 dv->dev = dev;
2832 dv->index = i;
2833 dv->next = first->devlist;
2834 first->devlist = dv;
2835 }
2836 if (i < sec->anchor->num_raid_devs) {
2837 /* allocation failure */
2838 free_devlist(first);
2839 fprintf(stderr, "imsm: failed to associate spare\n");
2840 return 3;
2841 }
2842 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2843 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2844 first->anchor->family_num = sec->anchor->family_num;
2845 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2846 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2847 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2848 }
2849
2850 return 0;
2851 }
2852
2853 static void fd2devname(int fd, char *name)
2854 {
2855 struct stat st;
2856 char path[256];
2857 char dname[PATH_MAX];
2858 char *nm;
2859 int rv;
2860
2861 name[0] = '\0';
2862 if (fstat(fd, &st) != 0)
2863 return;
2864 sprintf(path, "/sys/dev/block/%d:%d",
2865 major(st.st_rdev), minor(st.st_rdev));
2866
2867 rv = readlink(path, dname, sizeof(dname)-1);
2868 if (rv <= 0)
2869 return;
2870
2871 dname[rv] = '\0';
2872 nm = strrchr(dname, '/');
2873 nm++;
2874 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2875 }
2876
2877 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2878
2879 static int imsm_read_serial(int fd, char *devname,
2880 __u8 serial[MAX_RAID_SERIAL_LEN])
2881 {
2882 unsigned char scsi_serial[255];
2883 int rv;
2884 int rsp_len;
2885 int len;
2886 char *dest;
2887 char *src;
2888 char *rsp_buf;
2889 int i;
2890
2891 memset(scsi_serial, 0, sizeof(scsi_serial));
2892
2893 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2894
2895 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2896 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2897 fd2devname(fd, (char *) serial);
2898 return 0;
2899 }
2900
2901 if (rv != 0) {
2902 if (devname)
2903 fprintf(stderr,
2904 Name ": Failed to retrieve serial for %s\n",
2905 devname);
2906 return rv;
2907 }
2908
2909 rsp_len = scsi_serial[3];
2910 if (!rsp_len) {
2911 if (devname)
2912 fprintf(stderr,
2913 Name ": Failed to retrieve serial for %s\n",
2914 devname);
2915 return 2;
2916 }
2917 rsp_buf = (char *) &scsi_serial[4];
2918
2919 /* trim all whitespace and non-printable characters and convert
2920 * ':' to ';'
2921 */
2922 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2923 src = &rsp_buf[i];
2924 if (*src > 0x20) {
2925 /* ':' is reserved for use in placeholder serial
2926 * numbers for missing disks
2927 */
2928 if (*src == ':')
2929 *dest++ = ';';
2930 else
2931 *dest++ = *src;
2932 }
2933 }
2934 len = dest - rsp_buf;
2935 dest = rsp_buf;
2936
2937 /* truncate leading characters */
2938 if (len > MAX_RAID_SERIAL_LEN) {
2939 dest += len - MAX_RAID_SERIAL_LEN;
2940 len = MAX_RAID_SERIAL_LEN;
2941 }
2942
2943 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2944 memcpy(serial, dest, len);
2945
2946 return 0;
2947 }
2948
2949 static int serialcmp(__u8 *s1, __u8 *s2)
2950 {
2951 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2952 }
2953
2954 static void serialcpy(__u8 *dest, __u8 *src)
2955 {
2956 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2957 }
2958
2959 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2960 {
2961 struct dl *dl;
2962
2963 for (dl = super->disks; dl; dl = dl->next)
2964 if (serialcmp(dl->serial, serial) == 0)
2965 break;
2966
2967 return dl;
2968 }
2969
2970 static struct imsm_disk *
2971 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2972 {
2973 int i;
2974
2975 for (i = 0; i < mpb->num_disks; i++) {
2976 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2977
2978 if (serialcmp(disk->serial, serial) == 0) {
2979 if (idx)
2980 *idx = i;
2981 return disk;
2982 }
2983 }
2984
2985 return NULL;
2986 }
2987
2988 static int
2989 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2990 {
2991 struct imsm_disk *disk;
2992 struct dl *dl;
2993 struct stat stb;
2994 int rv;
2995 char name[40];
2996 __u8 serial[MAX_RAID_SERIAL_LEN];
2997
2998 rv = imsm_read_serial(fd, devname, serial);
2999
3000 if (rv != 0)
3001 return 2;
3002
3003 dl = calloc(1, sizeof(*dl));
3004 if (!dl) {
3005 if (devname)
3006 fprintf(stderr,
3007 Name ": failed to allocate disk buffer for %s\n",
3008 devname);
3009 return 2;
3010 }
3011
3012 fstat(fd, &stb);
3013 dl->major = major(stb.st_rdev);
3014 dl->minor = minor(stb.st_rdev);
3015 dl->next = super->disks;
3016 dl->fd = keep_fd ? fd : -1;
3017 assert(super->disks == NULL);
3018 super->disks = dl;
3019 serialcpy(dl->serial, serial);
3020 dl->index = -2;
3021 dl->e = NULL;
3022 fd2devname(fd, name);
3023 if (devname)
3024 dl->devname = strdup(devname);
3025 else
3026 dl->devname = strdup(name);
3027
3028 /* look up this disk's index in the current anchor */
3029 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3030 if (disk) {
3031 dl->disk = *disk;
3032 /* only set index on disks that are a member of a
3033 * populated contianer, i.e. one with raid_devs
3034 */
3035 if (is_failed(&dl->disk))
3036 dl->index = -2;
3037 else if (is_spare(&dl->disk))
3038 dl->index = -1;
3039 }
3040
3041 return 0;
3042 }
3043
3044 #ifndef MDASSEMBLE
3045 /* When migrating map0 contains the 'destination' state while map1
3046 * contains the current state. When not migrating map0 contains the
3047 * current state. This routine assumes that map[0].map_state is set to
3048 * the current array state before being called.
3049 *
3050 * Migration is indicated by one of the following states
3051 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3052 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3053 * map1state=unitialized)
3054 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3055 * map1state=normal)
3056 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3057 * map1state=degraded)
3058 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3059 * map1state=normal)
3060 */
3061 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3062 __u8 to_state, int migr_type)
3063 {
3064 struct imsm_map *dest;
3065 struct imsm_map *src = get_imsm_map(dev, 0);
3066
3067 dev->vol.migr_state = 1;
3068 set_migr_type(dev, migr_type);
3069 dev->vol.curr_migr_unit = 0;
3070 dest = get_imsm_map(dev, 1);
3071
3072 /* duplicate and then set the target end state in map[0] */
3073 memcpy(dest, src, sizeof_imsm_map(src));
3074 if ((migr_type == MIGR_REBUILD) ||
3075 (migr_type == MIGR_GEN_MIGR)) {
3076 __u32 ord;
3077 int i;
3078
3079 for (i = 0; i < src->num_members; i++) {
3080 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3081 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3082 }
3083 }
3084
3085 if (migr_type == MIGR_GEN_MIGR)
3086 /* Clear migration record */
3087 memset(super->migr_rec, 0, sizeof(struct migr_record));
3088
3089 src->map_state = to_state;
3090 }
3091
3092 static void end_migration(struct imsm_dev *dev, __u8 map_state)
3093 {
3094 struct imsm_map *map = get_imsm_map(dev, 0);
3095 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
3096 int i, j;
3097
3098 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3099 * completed in the last migration.
3100 *
3101 * FIXME add support for raid-level-migration
3102 */
3103 for (i = 0; i < prev->num_members; i++)
3104 for (j = 0; j < map->num_members; j++)
3105 /* during online capacity expansion
3106 * disks position can be changed if takeover is used
3107 */
3108 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3109 ord_to_idx(prev->disk_ord_tbl[i])) {
3110 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3111 break;
3112 }
3113
3114 dev->vol.migr_state = 0;
3115 set_migr_type(dev, 0);
3116 dev->vol.curr_migr_unit = 0;
3117 map->map_state = map_state;
3118 }
3119 #endif
3120
3121 static int parse_raid_devices(struct intel_super *super)
3122 {
3123 int i;
3124 struct imsm_dev *dev_new;
3125 size_t len, len_migr;
3126 size_t max_len = 0;
3127 size_t space_needed = 0;
3128 struct imsm_super *mpb = super->anchor;
3129
3130 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3131 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3132 struct intel_dev *dv;
3133
3134 len = sizeof_imsm_dev(dev_iter, 0);
3135 len_migr = sizeof_imsm_dev(dev_iter, 1);
3136 if (len_migr > len)
3137 space_needed += len_migr - len;
3138
3139 dv = malloc(sizeof(*dv));
3140 if (!dv)
3141 return 1;
3142 if (max_len < len_migr)
3143 max_len = len_migr;
3144 if (max_len > len_migr)
3145 space_needed += max_len - len_migr;
3146 dev_new = malloc(max_len);
3147 if (!dev_new) {
3148 free(dv);
3149 return 1;
3150 }
3151 imsm_copy_dev(dev_new, dev_iter);
3152 dv->dev = dev_new;
3153 dv->index = i;
3154 dv->next = super->devlist;
3155 super->devlist = dv;
3156 }
3157
3158 /* ensure that super->buf is large enough when all raid devices
3159 * are migrating
3160 */
3161 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3162 void *buf;
3163
3164 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3165 if (posix_memalign(&buf, 512, len) != 0)
3166 return 1;
3167
3168 memcpy(buf, super->buf, super->len);
3169 memset(buf + super->len, 0, len - super->len);
3170 free(super->buf);
3171 super->buf = buf;
3172 super->len = len;
3173 }
3174
3175 return 0;
3176 }
3177
3178 /* retrieve a pointer to the bbm log which starts after all raid devices */
3179 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3180 {
3181 void *ptr = NULL;
3182
3183 if (__le32_to_cpu(mpb->bbm_log_size)) {
3184 ptr = mpb;
3185 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3186 }
3187
3188 return ptr;
3189 }
3190
3191 /*******************************************************************************
3192 * Function: check_mpb_migr_compatibility
3193 * Description: Function checks for unsupported migration features:
3194 * - migration optimization area (pba_of_lba0)
3195 * - descending reshape (ascending_migr)
3196 * Parameters:
3197 * super : imsm metadata information
3198 * Returns:
3199 * 0 : migration is compatible
3200 * -1 : migration is not compatible
3201 ******************************************************************************/
3202 int check_mpb_migr_compatibility(struct intel_super *super)
3203 {
3204 struct imsm_map *map0, *map1;
3205 struct migr_record *migr_rec = super->migr_rec;
3206 int i;
3207
3208 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3209 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3210
3211 if (dev_iter &&
3212 dev_iter->vol.migr_state == 1 &&
3213 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3214 /* This device is migrating */
3215 map0 = get_imsm_map(dev_iter, 0);
3216 map1 = get_imsm_map(dev_iter, 1);
3217 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3218 /* migration optimization area was used */
3219 return -1;
3220 if (migr_rec->ascending_migr == 0
3221 && migr_rec->dest_depth_per_unit > 0)
3222 /* descending reshape not supported yet */
3223 return -1;
3224 }
3225 }
3226 return 0;
3227 }
3228
3229 static void __free_imsm(struct intel_super *super, int free_disks);
3230
3231 /* load_imsm_mpb - read matrix metadata
3232 * allocates super->mpb to be freed by free_imsm
3233 */
3234 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3235 {
3236 unsigned long long dsize;
3237 unsigned long long sectors;
3238 struct stat;
3239 struct imsm_super *anchor;
3240 __u32 check_sum;
3241
3242 get_dev_size(fd, NULL, &dsize);
3243 if (dsize < 1024) {
3244 if (devname)
3245 fprintf(stderr,
3246 Name ": %s: device to small for imsm\n",
3247 devname);
3248 return 1;
3249 }
3250
3251 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3252 if (devname)
3253 fprintf(stderr, Name
3254 ": Cannot seek to anchor block on %s: %s\n",
3255 devname, strerror(errno));
3256 return 1;
3257 }
3258
3259 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3260 if (devname)
3261 fprintf(stderr,
3262 Name ": Failed to allocate imsm anchor buffer"
3263 " on %s\n", devname);
3264 return 1;
3265 }
3266 if (read(fd, anchor, 512) != 512) {
3267 if (devname)
3268 fprintf(stderr,
3269 Name ": Cannot read anchor block on %s: %s\n",
3270 devname, strerror(errno));
3271 free(anchor);
3272 return 1;
3273 }
3274
3275 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3276 if (devname)
3277 fprintf(stderr,
3278 Name ": no IMSM anchor on %s\n", devname);
3279 free(anchor);
3280 return 2;
3281 }
3282
3283 __free_imsm(super, 0);
3284 /* reload capability and hba */
3285
3286 /* capability and hba must be updated with new super allocation */
3287 find_intel_hba_capability(fd, super, devname);
3288 super->len = ROUND_UP(anchor->mpb_size, 512);
3289 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3290 if (devname)
3291 fprintf(stderr,
3292 Name ": unable to allocate %zu byte mpb buffer\n",
3293 super->len);
3294 free(anchor);
3295 return 2;
3296 }
3297 memcpy(super->buf, anchor, 512);
3298
3299 sectors = mpb_sectors(anchor) - 1;
3300 free(anchor);
3301
3302 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3303 fprintf(stderr, Name
3304 ": %s could not allocate migr_rec buffer\n", __func__);
3305 free(super->buf);
3306 return 2;
3307 }
3308
3309 if (!sectors) {
3310 check_sum = __gen_imsm_checksum(super->anchor);
3311 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3312 if (devname)
3313 fprintf(stderr,
3314 Name ": IMSM checksum %x != %x on %s\n",
3315 check_sum,
3316 __le32_to_cpu(super->anchor->check_sum),
3317 devname);
3318 return 2;
3319 }
3320
3321 return 0;
3322 }
3323
3324 /* read the extended mpb */
3325 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3326 if (devname)
3327 fprintf(stderr,
3328 Name ": Cannot seek to extended mpb on %s: %s\n",
3329 devname, strerror(errno));
3330 return 1;
3331 }
3332
3333 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3334 if (devname)
3335 fprintf(stderr,
3336 Name ": Cannot read extended mpb on %s: %s\n",
3337 devname, strerror(errno));
3338 return 2;
3339 }
3340
3341 check_sum = __gen_imsm_checksum(super->anchor);
3342 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3343 if (devname)
3344 fprintf(stderr,
3345 Name ": IMSM checksum %x != %x on %s\n",
3346 check_sum, __le32_to_cpu(super->anchor->check_sum),
3347 devname);
3348 return 3;
3349 }
3350
3351 /* FIXME the BBM log is disk specific so we cannot use this global
3352 * buffer for all disks. Ok for now since we only look at the global
3353 * bbm_log_size parameter to gate assembly
3354 */
3355 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3356
3357 return 0;
3358 }
3359
3360 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3361
3362 static int
3363 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3364 {
3365 int err;
3366
3367 err = load_imsm_mpb(fd, super, devname);
3368 if (err)
3369 return err;
3370 err = load_imsm_disk(fd, super, devname, keep_fd);
3371 if (err)
3372 return err;
3373 err = parse_raid_devices(super);
3374
3375 return err;
3376 }
3377
3378 static void __free_imsm_disk(struct dl *d)
3379 {
3380 if (d->fd >= 0)
3381 close(d->fd);
3382 if (d->devname)
3383 free(d->devname);
3384 if (d->e)
3385 free(d->e);
3386 free(d);
3387
3388 }
3389
3390 static void free_imsm_disks(struct intel_super *super)
3391 {
3392 struct dl *d;
3393
3394 while (super->disks) {
3395 d = super->disks;
3396 super->disks = d->next;
3397 __free_imsm_disk(d);
3398 }
3399 while (super->disk_mgmt_list) {
3400 d = super->disk_mgmt_list;
3401 super->disk_mgmt_list = d->next;
3402 __free_imsm_disk(d);
3403 }
3404 while (super->missing) {
3405 d = super->missing;
3406 super->missing = d->next;
3407 __free_imsm_disk(d);
3408 }
3409
3410 }
3411
3412 /* free all the pieces hanging off of a super pointer */
3413 static void __free_imsm(struct intel_super *super, int free_disks)
3414 {
3415 struct intel_hba *elem, *next;
3416
3417 if (super->buf) {
3418 free(super->buf);
3419 super->buf = NULL;
3420 }
3421 /* unlink capability description */
3422 super->orom = NULL;
3423 if (super->migr_rec_buf) {
3424 free(super->migr_rec_buf);
3425 super->migr_rec_buf = NULL;
3426 }
3427 if (free_disks)
3428 free_imsm_disks(super);
3429 free_devlist(super);
3430 elem = super->hba;
3431 while (elem) {
3432 if (elem->path)
3433 free((void *)elem->path);
3434 next = elem->next;
3435 free(elem);
3436 elem = next;
3437 }
3438 super->hba = NULL;
3439 }
3440
3441 static void free_imsm(struct intel_super *super)
3442 {
3443 __free_imsm(super, 1);
3444 free(super);
3445 }
3446
3447 static void free_super_imsm(struct supertype *st)
3448 {
3449 struct intel_super *super = st->sb;
3450
3451 if (!super)
3452 return;
3453
3454 free_imsm(super);
3455 st->sb = NULL;
3456 }
3457
3458 static struct intel_super *alloc_super(void)
3459 {
3460 struct intel_super *super = malloc(sizeof(*super));
3461
3462 if (super) {
3463 memset(super, 0, sizeof(*super));
3464 super->current_vol = -1;
3465 super->create_offset = ~((__u32 ) 0);
3466 }
3467 return super;
3468 }
3469
3470 /*
3471 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3472 */
3473 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3474 {
3475 struct sys_dev *hba_name;
3476 int rv = 0;
3477
3478 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3479 super->orom = NULL;
3480 super->hba = NULL;
3481 return 0;
3482 }
3483 hba_name = find_disk_attached_hba(fd, NULL);
3484 if (!hba_name) {
3485 if (devname)
3486 fprintf(stderr,
3487 Name ": %s is not attached to Intel(R) RAID controller.\n",
3488 devname);
3489 return 1;
3490 }
3491 rv = attach_hba_to_super(super, hba_name);
3492 if (rv == 2) {
3493 if (devname) {
3494 struct intel_hba *hba = super->hba;
3495
3496 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3497 "controller (%s),\n"
3498 " but the container is assigned to Intel(R) "
3499 "%s RAID controller (",
3500 devname,
3501 hba_name->path,
3502 hba_name->pci_id ? : "Err!",
3503 get_sys_dev_type(hba_name->type));
3504
3505 while (hba) {
3506 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3507 if (hba->next)
3508 fprintf(stderr, ", ");
3509 hba = hba->next;
3510 }
3511
3512 fprintf(stderr, ").\n"
3513 " Mixing devices attached to different controllers "
3514 "is not allowed.\n");
3515 }
3516 free_sys_dev(&hba_name);
3517 return 2;
3518 }
3519 super->orom = find_imsm_capability(hba_name->type);
3520 free_sys_dev(&hba_name);
3521 if (!super->orom)
3522 return 3;
3523 return 0;
3524 }
3525
3526 /* find_missing - helper routine for load_super_imsm_all that identifies
3527 * disks that have disappeared from the system. This routine relies on
3528 * the mpb being uptodate, which it is at load time.
3529 */
3530 static int find_missing(struct intel_super *super)
3531 {
3532 int i;
3533 struct imsm_super *mpb = super->anchor;
3534 struct dl *dl;
3535 struct imsm_disk *disk;
3536
3537 for (i = 0; i < mpb->num_disks; i++) {
3538 disk = __get_imsm_disk(mpb, i);
3539 dl = serial_to_dl(disk->serial, super);
3540 if (dl)
3541 continue;
3542
3543 dl = malloc(sizeof(*dl));
3544 if (!dl)
3545 return 1;
3546 dl->major = 0;
3547 dl->minor = 0;
3548 dl->fd = -1;
3549 dl->devname = strdup("missing");
3550 dl->index = i;
3551 serialcpy(dl->serial, disk->serial);
3552 dl->disk = *disk;
3553 dl->e = NULL;
3554 dl->next = super->missing;
3555 super->missing = dl;
3556 }
3557
3558 return 0;
3559 }
3560
3561 #ifndef MDASSEMBLE
3562 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3563 {
3564 struct intel_disk *idisk = disk_list;
3565
3566 while (idisk) {
3567 if (serialcmp(idisk->disk.serial, serial) == 0)
3568 break;
3569 idisk = idisk->next;
3570 }
3571
3572 return idisk;
3573 }
3574
3575 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3576 struct intel_super *super,
3577 struct intel_disk **disk_list)
3578 {
3579 struct imsm_disk *d = &super->disks->disk;
3580 struct imsm_super *mpb = super->anchor;
3581 int i, j;
3582
3583 for (i = 0; i < tbl_size; i++) {
3584 struct imsm_super *tbl_mpb = table[i]->anchor;
3585 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3586
3587 if (tbl_mpb->family_num == mpb->family_num) {
3588 if (tbl_mpb->check_sum == mpb->check_sum) {
3589 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3590 __func__, super->disks->major,
3591 super->disks->minor,
3592 table[i]->disks->major,
3593 table[i]->disks->minor);
3594 break;
3595 }
3596
3597 if (((is_configured(d) && !is_configured(tbl_d)) ||
3598 is_configured(d) == is_configured(tbl_d)) &&
3599 tbl_mpb->generation_num < mpb->generation_num) {
3600 /* current version of the mpb is a
3601 * better candidate than the one in
3602 * super_table, but copy over "cross
3603 * generational" status
3604 */
3605 struct intel_disk *idisk;
3606
3607 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3608 __func__, super->disks->major,
3609 super->disks->minor,
3610 table[i]->disks->major,
3611 table[i]->disks->minor);
3612
3613 idisk = disk_list_get(tbl_d->serial, *disk_list);
3614 if (idisk && is_failed(&idisk->disk))
3615 tbl_d->status |= FAILED_DISK;
3616 break;
3617 } else {
3618 struct intel_disk *idisk;
3619 struct imsm_disk *disk;
3620
3621 /* tbl_mpb is more up to date, but copy
3622 * over cross generational status before
3623 * returning
3624 */
3625 disk = __serial_to_disk(d->serial, mpb, NULL);
3626 if (disk && is_failed(disk))
3627 d->status |= FAILED_DISK;
3628
3629 idisk = disk_list_get(d->serial, *disk_list);
3630 if (idisk) {
3631 idisk->owner = i;
3632 if (disk && is_configured(disk))
3633 idisk->disk.status |= CONFIGURED_DISK;
3634 }
3635
3636 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3637 __func__, super->disks->major,
3638 super->disks->minor,
3639 table[i]->disks->major,
3640 table[i]->disks->minor);
3641
3642 return tbl_size;
3643 }
3644 }
3645 }
3646
3647 if (i >= tbl_size)
3648 table[tbl_size++] = super;
3649 else
3650 table[i] = super;
3651
3652 /* update/extend the merged list of imsm_disk records */
3653 for (j = 0; j < mpb->num_disks; j++) {
3654 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3655 struct intel_disk *idisk;
3656
3657 idisk = disk_list_get(disk->serial, *disk_list);
3658 if (idisk) {
3659 idisk->disk.status |= disk->status;
3660 if (is_configured(&idisk->disk) ||
3661 is_failed(&idisk->disk))
3662 idisk->disk.status &= ~(SPARE_DISK);
3663 } else {
3664 idisk = calloc(1, sizeof(*idisk));
3665 if (!idisk)
3666 return -1;
3667 idisk->owner = IMSM_UNKNOWN_OWNER;
3668 idisk->disk = *disk;
3669 idisk->next = *disk_list;
3670 *disk_list = idisk;
3671 }
3672
3673 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3674 idisk->owner = i;
3675 }
3676
3677 return tbl_size;
3678 }
3679
3680 static struct intel_super *
3681 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3682 const int owner)
3683 {
3684 struct imsm_super *mpb = super->anchor;
3685 int ok_count = 0;
3686 int i;
3687
3688 for (i = 0; i < mpb->num_disks; i++) {
3689 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3690 struct intel_disk *idisk;
3691
3692 idisk = disk_list_get(disk->serial, disk_list);
3693 if (idisk) {
3694 if (idisk->owner == owner ||
3695 idisk->owner == IMSM_UNKNOWN_OWNER)
3696 ok_count++;
3697 else
3698 dprintf("%s: '%.16s' owner %d != %d\n",
3699 __func__, disk->serial, idisk->owner,
3700 owner);
3701 } else {
3702 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3703 __func__, __le32_to_cpu(mpb->family_num), i,
3704 disk->serial);
3705 break;
3706 }
3707 }
3708
3709 if (ok_count == mpb->num_disks)
3710 return super;
3711 return NULL;
3712 }
3713
3714 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3715 {
3716 struct intel_super *s;
3717
3718 for (s = super_list; s; s = s->next) {
3719 if (family_num != s->anchor->family_num)
3720 continue;
3721 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3722 __le32_to_cpu(family_num), s->disks->devname);
3723 }
3724 }
3725
3726 static struct intel_super *
3727 imsm_thunderdome(struct intel_super **super_list, int len)
3728 {
3729 struct intel_super *super_table[len];
3730 struct intel_disk *disk_list = NULL;
3731 struct intel_super *champion, *spare;
3732 struct intel_super *s, **del;
3733 int tbl_size = 0;
3734 int conflict;
3735 int i;
3736
3737 memset(super_table, 0, sizeof(super_table));
3738 for (s = *super_list; s; s = s->next)
3739 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3740
3741 for (i = 0; i < tbl_size; i++) {
3742 struct imsm_disk *d;
3743 struct intel_disk *idisk;
3744 struct imsm_super *mpb = super_table[i]->anchor;
3745
3746 s = super_table[i];
3747 d = &s->disks->disk;
3748
3749 /* 'd' must appear in merged disk list for its
3750 * configuration to be valid
3751 */
3752 idisk = disk_list_get(d->serial, disk_list);
3753 if (idisk && idisk->owner == i)
3754 s = validate_members(s, disk_list, i);
3755 else
3756 s = NULL;
3757
3758 if (!s)
3759 dprintf("%s: marking family: %#x from %d:%d offline\n",
3760 __func__, mpb->family_num,
3761 super_table[i]->disks->major,
3762 super_table[i]->disks->minor);
3763 super_table[i] = s;
3764 }
3765
3766 /* This is where the mdadm implementation differs from the Windows
3767 * driver which has no strict concept of a container. We can only
3768 * assemble one family from a container, so when returning a prodigal
3769 * array member to this system the code will not be able to disambiguate
3770 * the container contents that should be assembled ("foreign" versus
3771 * "local"). It requires user intervention to set the orig_family_num
3772 * to a new value to establish a new container. The Windows driver in
3773 * this situation fixes up the volume name in place and manages the
3774 * foreign array as an independent entity.
3775 */
3776 s = NULL;
3777 spare = NULL;
3778 conflict = 0;
3779 for (i = 0; i < tbl_size; i++) {
3780 struct intel_super *tbl_ent = super_table[i];
3781 int is_spare = 0;
3782
3783 if (!tbl_ent)
3784 continue;
3785
3786 if (tbl_ent->anchor->num_raid_devs == 0) {
3787 spare = tbl_ent;
3788 is_spare = 1;
3789 }
3790
3791 if (s && !is_spare) {
3792 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3793 conflict++;
3794 } else if (!s && !is_spare)
3795 s = tbl_ent;
3796 }
3797
3798 if (!s)
3799 s = spare;
3800 if (!s) {
3801 champion = NULL;
3802 goto out;
3803 }
3804 champion = s;
3805
3806 if (conflict)
3807 fprintf(stderr, "Chose family %#x on '%s', "
3808 "assemble conflicts to new container with '--update=uuid'\n",
3809 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3810
3811 /* collect all dl's onto 'champion', and update them to
3812 * champion's version of the status
3813 */
3814 for (s = *super_list; s; s = s->next) {
3815 struct imsm_super *mpb = champion->anchor;
3816 struct dl *dl = s->disks;
3817
3818 if (s == champion)
3819 continue;
3820
3821 for (i = 0; i < mpb->num_disks; i++) {
3822 struct imsm_disk *disk;
3823
3824 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3825 if (disk) {
3826 dl->disk = *disk;
3827 /* only set index on disks that are a member of
3828 * a populated contianer, i.e. one with
3829 * raid_devs
3830 */
3831 if (is_failed(&dl->disk))
3832 dl->index = -2;
3833 else if (is_spare(&dl->disk))
3834 dl->index = -1;
3835 break;
3836 }
3837 }
3838
3839 if (i >= mpb->num_disks) {
3840 struct intel_disk *idisk;
3841
3842 idisk = disk_list_get(dl->serial, disk_list);
3843 if (idisk && is_spare(&idisk->disk) &&
3844 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3845 dl->index = -1;
3846 else {
3847 dl->index = -2;
3848 continue;
3849 }
3850 }
3851
3852 dl->next = champion->disks;
3853 champion->disks = dl;
3854 s->disks = NULL;
3855 }
3856
3857 /* delete 'champion' from super_list */
3858 for (del = super_list; *del; ) {
3859 if (*del == champion) {
3860 *del = (*del)->next;
3861 break;
3862 } else
3863 del = &(*del)->next;
3864 }
3865 champion->next = NULL;
3866
3867 out:
3868 while (disk_list) {
3869 struct intel_disk *idisk = disk_list;
3870
3871 disk_list = disk_list->next;
3872 free(idisk);
3873 }
3874
3875 return champion;
3876 }
3877
3878 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3879 char *devname)
3880 {
3881 struct mdinfo *sra;
3882 struct intel_super *super_list = NULL;
3883 struct intel_super *super = NULL;
3884 int devnum = fd2devnum(fd);
3885 struct mdinfo *sd;
3886 int retry;
3887 int err = 0;
3888 int i;
3889
3890 /* check if 'fd' an opened container */
3891 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3892 if (!sra)
3893 return 1;
3894
3895 if (sra->array.major_version != -1 ||
3896 sra->array.minor_version != -2 ||
3897 strcmp(sra->text_version, "imsm") != 0) {
3898 err = 1;
3899 goto error;
3900 }
3901 /* load all mpbs */
3902 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3903 struct intel_super *s = alloc_super();
3904 char nm[32];
3905 int dfd;
3906 int rv;
3907
3908 err = 1;
3909 if (!s)
3910 goto error;
3911 s->next = super_list;
3912 super_list = s;
3913
3914 err = 2;
3915 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3916 dfd = dev_open(nm, O_RDWR);
3917 if (dfd < 0)
3918 goto error;
3919
3920 rv = find_intel_hba_capability(dfd, s, devname);
3921 /* no orom/efi or non-intel hba of the disk */
3922 if (rv != 0)
3923 goto error;
3924
3925 err = load_and_parse_mpb(dfd, s, NULL, 1);
3926
3927 /* retry the load if we might have raced against mdmon */
3928 if (err == 3 && mdmon_running(devnum))
3929 for (retry = 0; retry < 3; retry++) {
3930 usleep(3000);
3931 err = load_and_parse_mpb(dfd, s, NULL, 1);
3932 if (err != 3)
3933 break;
3934 }
3935 if (err)
3936 goto error;
3937 }
3938
3939 /* all mpbs enter, maybe one leaves */
3940 super = imsm_thunderdome(&super_list, i);
3941 if (!super) {
3942 err = 1;
3943 goto error;
3944 }
3945
3946 if (find_missing(super) != 0) {
3947 free_imsm(super);
3948 err = 2;
3949 goto error;
3950 }
3951
3952 /* load migration record */
3953 err = load_imsm_migr_rec(super, NULL);
3954 if (err) {
3955 err = 4;
3956 goto error;
3957 }
3958
3959 /* Check migration compatibility */
3960 if (check_mpb_migr_compatibility(super) != 0) {
3961 fprintf(stderr, Name ": Unsupported migration detected");
3962 if (devname)
3963 fprintf(stderr, " on %s\n", devname);
3964 else
3965 fprintf(stderr, " (IMSM).\n");
3966
3967 err = 5;
3968 goto error;
3969 }
3970
3971 err = 0;
3972
3973 error:
3974 while (super_list) {
3975 struct intel_super *s = super_list;
3976
3977 super_list = super_list->next;
3978 free_imsm(s);
3979 }
3980 sysfs_free(sra);
3981
3982 if (err)
3983 return err;
3984
3985 *sbp = super;
3986 st->container_dev = devnum;
3987 if (err == 0 && st->ss == NULL) {
3988 st->ss = &super_imsm;
3989 st->minor_version = 0;
3990 st->max_devs = IMSM_MAX_DEVICES;
3991 }
3992 return 0;
3993 }
3994
3995 static int load_container_imsm(struct supertype *st, int fd, char *devname)
3996 {
3997 return load_super_imsm_all(st, fd, &st->sb, devname);
3998 }
3999 #endif
4000
4001 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4002 {
4003 struct intel_super *super;
4004 int rv;
4005
4006 if (test_partition(fd))
4007 /* IMSM not allowed on partitions */
4008 return 1;
4009
4010 free_super_imsm(st);
4011
4012 super = alloc_super();
4013 if (!super) {
4014 fprintf(stderr,
4015 Name ": malloc of %zu failed.\n",
4016 sizeof(*super));
4017 return 1;
4018 }
4019 /* Load hba and capabilities if they exist.
4020 * But do not preclude loading metadata in case capabilities or hba are
4021 * non-compliant and ignore_hw_compat is set.
4022 */
4023 rv = find_intel_hba_capability(fd, super, devname);
4024 /* no orom/efi or non-intel hba of the disk */
4025 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4026 if (devname)
4027 fprintf(stderr,
4028 Name ": No OROM/EFI properties for %s\n", devname);
4029 free_imsm(super);
4030 return 2;
4031 }
4032 rv = load_and_parse_mpb(fd, super, devname, 0);
4033
4034 if (rv) {
4035 if (devname)
4036 fprintf(stderr,
4037 Name ": Failed to load all information "
4038 "sections on %s\n", devname);
4039 free_imsm(super);
4040 return rv;
4041 }
4042
4043 st->sb = super;
4044 if (st->ss == NULL) {
4045 st->ss = &super_imsm;
4046 st->minor_version = 0;
4047 st->max_devs = IMSM_MAX_DEVICES;
4048 }
4049
4050 /* load migration record */
4051 if (load_imsm_migr_rec(super, NULL) == 0) {
4052 /* Check for unsupported migration features */
4053 if (check_mpb_migr_compatibility(super) != 0) {
4054 fprintf(stderr,
4055 Name ": Unsupported migration detected");
4056 if (devname)
4057 fprintf(stderr, " on %s\n", devname);
4058 else
4059 fprintf(stderr, " (IMSM).\n");
4060 return 3;
4061 }
4062 }
4063
4064 return 0;
4065 }
4066
4067 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4068 {
4069 if (info->level == 1)
4070 return 128;
4071 return info->chunk_size >> 9;
4072 }
4073
4074 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
4075 {
4076 __u32 num_stripes;
4077
4078 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
4079 num_stripes /= num_domains;
4080
4081 return num_stripes;
4082 }
4083
4084 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4085 {
4086 if (info->level == 1)
4087 return info->size * 2;
4088 else
4089 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4090 }
4091
4092 static void imsm_update_version_info(struct intel_super *super)
4093 {
4094 /* update the version and attributes */
4095 struct imsm_super *mpb = super->anchor;
4096 char *version;
4097 struct imsm_dev *dev;
4098 struct imsm_map *map;
4099 int i;
4100
4101 for (i = 0; i < mpb->num_raid_devs; i++) {
4102 dev = get_imsm_dev(super, i);
4103 map = get_imsm_map(dev, 0);
4104 if (__le32_to_cpu(dev->size_high) > 0)
4105 mpb->attributes |= MPB_ATTRIB_2TB;
4106
4107 /* FIXME detect when an array spans a port multiplier */
4108 #if 0
4109 mpb->attributes |= MPB_ATTRIB_PM;
4110 #endif
4111
4112 if (mpb->num_raid_devs > 1 ||
4113 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4114 version = MPB_VERSION_ATTRIBS;
4115 switch (get_imsm_raid_level(map)) {
4116 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4117 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4118 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4119 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4120 }
4121 } else {
4122 if (map->num_members >= 5)
4123 version = MPB_VERSION_5OR6_DISK_ARRAY;
4124 else if (dev->status == DEV_CLONE_N_GO)
4125 version = MPB_VERSION_CNG;
4126 else if (get_imsm_raid_level(map) == 5)
4127 version = MPB_VERSION_RAID5;
4128 else if (map->num_members >= 3)
4129 version = MPB_VERSION_3OR4_DISK_ARRAY;
4130 else if (get_imsm_raid_level(map) == 1)
4131 version = MPB_VERSION_RAID1;
4132 else
4133 version = MPB_VERSION_RAID0;
4134 }
4135 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4136 }
4137 }
4138
4139 static int check_name(struct intel_super *super, char *name, int quiet)
4140 {
4141 struct imsm_super *mpb = super->anchor;
4142 char *reason = NULL;
4143 int i;
4144
4145 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4146 reason = "must be 16 characters or less";
4147
4148 for (i = 0; i < mpb->num_raid_devs; i++) {
4149 struct imsm_dev *dev = get_imsm_dev(super, i);
4150
4151 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4152 reason = "already exists";
4153 break;
4154 }
4155 }
4156
4157 if (reason && !quiet)
4158 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4159
4160 return !reason;
4161 }
4162
4163 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4164 unsigned long long size, char *name,
4165 char *homehost, int *uuid)
4166 {
4167 /* We are creating a volume inside a pre-existing container.
4168 * so st->sb is already set.
4169 */
4170 struct intel_super *super = st->sb;
4171 struct imsm_super *mpb = super->anchor;
4172 struct intel_dev *dv;
4173 struct imsm_dev *dev;
4174 struct imsm_vol *vol;
4175 struct imsm_map *map;
4176 int idx = mpb->num_raid_devs;
4177 int i;
4178 unsigned long long array_blocks;
4179 size_t size_old, size_new;
4180 __u32 num_data_stripes;
4181
4182 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4183 fprintf(stderr, Name": This imsm-container already has the "
4184 "maximum of %d volumes\n", super->orom->vpa);
4185 return 0;
4186 }
4187
4188 /* ensure the mpb is large enough for the new data */
4189 size_old = __le32_to_cpu(mpb->mpb_size);
4190 size_new = disks_to_mpb_size(info->nr_disks);
4191 if (size_new > size_old) {
4192 void *mpb_new;
4193 size_t size_round = ROUND_UP(size_new, 512);
4194
4195 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4196 fprintf(stderr, Name": could not allocate new mpb\n");
4197 return 0;
4198 }
4199 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4200 fprintf(stderr, Name
4201 ": %s could not allocate migr_rec buffer\n",
4202 __func__);
4203 free(super->buf);
4204 free(super);
4205 return 0;
4206 }
4207 memcpy(mpb_new, mpb, size_old);
4208 free(mpb);
4209 mpb = mpb_new;
4210 super->anchor = mpb_new;
4211 mpb->mpb_size = __cpu_to_le32(size_new);
4212 memset(mpb_new + size_old, 0, size_round - size_old);
4213 }
4214 super->current_vol = idx;
4215
4216 /* handle 'failed_disks' by either:
4217 * a) create dummy disk entries in the table if this the first
4218 * volume in the array. We add them here as this is the only
4219 * opportunity to add them. add_to_super_imsm_volume()
4220 * handles the non-failed disks and continues incrementing
4221 * mpb->num_disks.
4222 * b) validate that 'failed_disks' matches the current number
4223 * of missing disks if the container is populated
4224 */
4225 if (super->current_vol == 0) {
4226 mpb->num_disks = 0;
4227 for (i = 0; i < info->failed_disks; i++) {
4228 struct imsm_disk *disk;
4229
4230 mpb->num_disks++;
4231 disk = __get_imsm_disk(mpb, i);
4232 disk->status = CONFIGURED_DISK | FAILED_DISK;
4233 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4234 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4235 "missing:%d", i);
4236 }
4237 find_missing(super);
4238 } else {
4239 int missing = 0;
4240 struct dl *d;
4241
4242 for (d = super->missing; d; d = d->next)
4243 missing++;
4244 if (info->failed_disks > missing) {
4245 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4246 return 0;
4247 }
4248 }
4249
4250 if (!check_name(super, name, 0))
4251 return 0;
4252 dv = malloc(sizeof(*dv));
4253 if (!dv) {
4254 fprintf(stderr, Name ": failed to allocate device list entry\n");
4255 return 0;
4256 }
4257 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4258 if (!dev) {
4259 free(dv);
4260 fprintf(stderr, Name": could not allocate raid device\n");
4261 return 0;
4262 }
4263
4264 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4265 if (info->level == 1)
4266 array_blocks = info_to_blocks_per_member(info);
4267 else
4268 array_blocks = calc_array_size(info->level, info->raid_disks,
4269 info->layout, info->chunk_size,
4270 info->size*2);
4271 /* round array size down to closest MB */
4272 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4273
4274 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4275 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4276 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4277 vol = &dev->vol;
4278 vol->migr_state = 0;
4279 set_migr_type(dev, MIGR_INIT);
4280 vol->dirty = !info->state;
4281 vol->curr_migr_unit = 0;
4282 map = get_imsm_map(dev, 0);
4283 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
4284 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
4285 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4286 map->failed_disk_num = ~0;
4287 map->map_state = info->failed_disks ? IMSM_T_STATE_DEGRADED : IMSM_T_STATE_NORMAL;
4288 map->ddf = 1;
4289
4290 if (info->level == 1 && info->raid_disks > 2) {
4291 free(dev);
4292 free(dv);
4293 fprintf(stderr, Name": imsm does not support more than 2 disks"
4294 "in a raid1 volume\n");
4295 return 0;
4296 }
4297
4298 map->raid_level = info->level;
4299 if (info->level == 10) {
4300 map->raid_level = 1;
4301 map->num_domains = info->raid_disks / 2;
4302 } else if (info->level == 1)
4303 map->num_domains = info->raid_disks;
4304 else
4305 map->num_domains = 1;
4306
4307 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4308 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
4309
4310 map->num_members = info->raid_disks;
4311 for (i = 0; i < map->num_members; i++) {
4312 /* initialized in add_to_super */
4313 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4314 }
4315 mpb->num_raid_devs++;
4316
4317 dv->dev = dev;
4318 dv->index = super->current_vol;
4319 dv->next = super->devlist;
4320 super->devlist = dv;
4321
4322 imsm_update_version_info(super);
4323
4324 return 1;
4325 }
4326
4327 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4328 unsigned long long size, char *name,
4329 char *homehost, int *uuid)
4330 {
4331 /* This is primarily called by Create when creating a new array.
4332 * We will then get add_to_super called for each component, and then
4333 * write_init_super called to write it out to each device.
4334 * For IMSM, Create can create on fresh devices or on a pre-existing
4335 * array.
4336 * To create on a pre-existing array a different method will be called.
4337 * This one is just for fresh drives.
4338 */
4339 struct intel_super *super;
4340 struct imsm_super *mpb;
4341 size_t mpb_size;
4342 char *version;
4343
4344 if (st->sb)
4345 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4346
4347 if (info)
4348 mpb_size = disks_to_mpb_size(info->nr_disks);
4349 else
4350 mpb_size = 512;
4351
4352 super = alloc_super();
4353 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4354 free(super);
4355 super = NULL;
4356 }
4357 if (!super) {
4358 fprintf(stderr, Name
4359 ": %s could not allocate superblock\n", __func__);
4360 return 0;
4361 }
4362 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4363 fprintf(stderr, Name
4364 ": %s could not allocate migr_rec buffer\n", __func__);
4365 free(super->buf);
4366 free(super);
4367 return 0;
4368 }
4369 memset(super->buf, 0, mpb_size);
4370 mpb = super->buf;
4371 mpb->mpb_size = __cpu_to_le32(mpb_size);
4372 st->sb = super;
4373
4374 if (info == NULL) {
4375 /* zeroing superblock */
4376 return 0;
4377 }
4378
4379 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4380
4381 version = (char *) mpb->sig;
4382 strcpy(version, MPB_SIGNATURE);
4383 version += strlen(MPB_SIGNATURE);
4384 strcpy(version, MPB_VERSION_RAID0);
4385
4386 return 1;
4387 }
4388
4389 #ifndef MDASSEMBLE
4390 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4391 int fd, char *devname)
4392 {
4393 struct intel_super *super = st->sb;
4394 struct imsm_super *mpb = super->anchor;
4395 struct imsm_disk *_disk;
4396 struct imsm_dev *dev;
4397 struct imsm_map *map;
4398 struct dl *dl, *df;
4399 int slot;
4400
4401 dev = get_imsm_dev(super, super->current_vol);
4402 map = get_imsm_map(dev, 0);
4403
4404 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4405 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4406 devname);
4407 return 1;
4408 }
4409
4410 if (fd == -1) {
4411 /* we're doing autolayout so grab the pre-marked (in
4412 * validate_geometry) raid_disk
4413 */
4414 for (dl = super->disks; dl; dl = dl->next)
4415 if (dl->raiddisk == dk->raid_disk)
4416 break;
4417 } else {
4418 for (dl = super->disks; dl ; dl = dl->next)
4419 if (dl->major == dk->major &&
4420 dl->minor == dk->minor)
4421 break;
4422 }
4423
4424 if (!dl) {
4425 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4426 return 1;
4427 }
4428
4429 /* add a pristine spare to the metadata */
4430 if (dl->index < 0) {
4431 dl->index = super->anchor->num_disks;
4432 super->anchor->num_disks++;
4433 }
4434 /* Check the device has not already been added */
4435 slot = get_imsm_disk_slot(map, dl->index);
4436 if (slot >= 0 &&
4437 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4438 fprintf(stderr, Name ": %s has been included in this array twice\n",
4439 devname);
4440 return 1;
4441 }
4442 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4443 dl->disk.status = CONFIGURED_DISK;
4444
4445 /* update size of 'missing' disks to be at least as large as the
4446 * largest acitve member (we only have dummy missing disks when
4447 * creating the first volume)
4448 */
4449 if (super->current_vol == 0) {
4450 for (df = super->missing; df; df = df->next) {
4451 if (dl->disk.total_blocks > df->disk.total_blocks)
4452 df->disk.total_blocks = dl->disk.total_blocks;
4453 _disk = __get_imsm_disk(mpb, df->index);
4454 *_disk = df->disk;
4455 }
4456 }
4457
4458 /* refresh unset/failed slots to point to valid 'missing' entries */
4459 for (df = super->missing; df; df = df->next)
4460 for (slot = 0; slot < mpb->num_disks; slot++) {
4461 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4462
4463 if ((ord & IMSM_ORD_REBUILD) == 0)
4464 continue;
4465 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4466 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4467 break;
4468 }
4469
4470 /* if we are creating the first raid device update the family number */
4471 if (super->current_vol == 0) {
4472 __u32 sum;
4473 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4474
4475 _disk = __get_imsm_disk(mpb, dl->index);
4476 if (!_dev || !_disk) {
4477 fprintf(stderr, Name ": BUG mpb setup error\n");
4478 return 1;
4479 }
4480 *_dev = *dev;
4481 *_disk = dl->disk;
4482 sum = random32();
4483 sum += __gen_imsm_checksum(mpb);
4484 mpb->family_num = __cpu_to_le32(sum);
4485 mpb->orig_family_num = mpb->family_num;
4486 }
4487 super->current_disk = dl;
4488 return 0;
4489 }
4490
4491 /* mark_spare()
4492 * Function marks disk as spare and restores disk serial
4493 * in case it was previously marked as failed by takeover operation
4494 * reruns:
4495 * -1 : critical error
4496 * 0 : disk is marked as spare but serial is not set
4497 * 1 : success
4498 */
4499 int mark_spare(struct dl *disk)
4500 {
4501 __u8 serial[MAX_RAID_SERIAL_LEN];
4502 int ret_val = -1;
4503
4504 if (!disk)
4505 return ret_val;
4506
4507 ret_val = 0;
4508 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4509 /* Restore disk serial number, because takeover marks disk
4510 * as failed and adds to serial ':0' before it becomes
4511 * a spare disk.
4512 */
4513 serialcpy(disk->serial, serial);
4514 serialcpy(disk->disk.serial, serial);
4515 ret_val = 1;
4516 }
4517 disk->disk.status = SPARE_DISK;
4518 disk->index = -1;
4519
4520 return ret_val;
4521 }
4522
4523 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4524 int fd, char *devname)
4525 {
4526 struct intel_super *super = st->sb;
4527 struct dl *dd;
4528 unsigned long long size;
4529 __u32 id;
4530 int rv;
4531 struct stat stb;
4532
4533 /* If we are on an RAID enabled platform check that the disk is
4534 * attached to the raid controller.
4535 * We do not need to test disks attachment for container based additions,
4536 * they shall be already tested when container was created/assembled.
4537 */
4538 rv = find_intel_hba_capability(fd, super, devname);
4539 /* no orom/efi or non-intel hba of the disk */
4540 if (rv != 0) {
4541 dprintf("capability: %p fd: %d ret: %d\n",
4542 super->orom, fd, rv);
4543 return 1;
4544 }
4545
4546 if (super->current_vol >= 0)
4547 return add_to_super_imsm_volume(st, dk, fd, devname);
4548
4549 fstat(fd, &stb);
4550 dd = malloc(sizeof(*dd));
4551 if (!dd) {
4552 fprintf(stderr,
4553 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4554 return 1;
4555 }
4556 memset(dd, 0, sizeof(*dd));
4557 dd->major = major(stb.st_rdev);
4558 dd->minor = minor(stb.st_rdev);
4559 dd->devname = devname ? strdup(devname) : NULL;
4560 dd->fd = fd;
4561 dd->e = NULL;
4562 dd->action = DISK_ADD;
4563 rv = imsm_read_serial(fd, devname, dd->serial);
4564 if (rv) {
4565 fprintf(stderr,
4566 Name ": failed to retrieve scsi serial, aborting\n");
4567 free(dd);
4568 abort();
4569 }
4570
4571 get_dev_size(fd, NULL, &size);
4572 size /= 512;
4573 serialcpy(dd->disk.serial, dd->serial);
4574 dd->disk.total_blocks = __cpu_to_le32(size);
4575 mark_spare(dd);
4576 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4577 dd->disk.scsi_id = __cpu_to_le32(id);
4578 else
4579 dd->disk.scsi_id = __cpu_to_le32(0);
4580
4581 if (st->update_tail) {
4582 dd->next = super->disk_mgmt_list;
4583 super->disk_mgmt_list = dd;
4584 } else {
4585 dd->next = super->disks;
4586 super->disks = dd;
4587 super->updates_pending++;
4588 }
4589
4590 return 0;
4591 }
4592
4593
4594 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4595 {
4596 struct intel_super *super = st->sb;
4597 struct dl *dd;
4598
4599 /* remove from super works only in mdmon - for communication
4600 * manager - monitor. Check if communication memory buffer
4601 * is prepared.
4602 */
4603 if (!st->update_tail) {
4604 fprintf(stderr,
4605 Name ": %s shall be used in mdmon context only"
4606 "(line %d).\n", __func__, __LINE__);
4607 return 1;
4608 }
4609 dd = malloc(sizeof(*dd));
4610 if (!dd) {
4611 fprintf(stderr,
4612 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4613 return 1;
4614 }
4615 memset(dd, 0, sizeof(*dd));
4616 dd->major = dk->major;
4617 dd->minor = dk->minor;
4618 dd->fd = -1;
4619 mark_spare(dd);
4620 dd->action = DISK_REMOVE;
4621
4622 dd->next = super->disk_mgmt_list;
4623 super->disk_mgmt_list = dd;
4624
4625
4626 return 0;
4627 }
4628
4629 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4630
4631 static union {
4632 char buf[512];
4633 struct imsm_super anchor;
4634 } spare_record __attribute__ ((aligned(512)));
4635
4636 /* spare records have their own family number and do not have any defined raid
4637 * devices
4638 */
4639 static int write_super_imsm_spares(struct intel_super *super, int doclose)
4640 {
4641 struct imsm_super *mpb = super->anchor;
4642 struct imsm_super *spare = &spare_record.anchor;
4643 __u32 sum;
4644 struct dl *d;
4645
4646 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4647 spare->generation_num = __cpu_to_le32(1UL),
4648 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4649 spare->num_disks = 1,
4650 spare->num_raid_devs = 0,
4651 spare->cache_size = mpb->cache_size,
4652 spare->pwr_cycle_count = __cpu_to_le32(1),
4653
4654 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4655 MPB_SIGNATURE MPB_VERSION_RAID0);
4656
4657 for (d = super->disks; d; d = d->next) {
4658 if (d->index != -1)
4659 continue;
4660
4661 spare->disk[0] = d->disk;
4662 sum = __gen_imsm_checksum(spare);
4663 spare->family_num = __cpu_to_le32(sum);
4664 spare->orig_family_num = 0;
4665 sum = __gen_imsm_checksum(spare);
4666 spare->check_sum = __cpu_to_le32(sum);
4667
4668 if (store_imsm_mpb(d->fd, spare)) {
4669 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4670 __func__, d->major, d->minor, strerror(errno));
4671 return 1;
4672 }
4673 if (doclose) {
4674 close(d->fd);
4675 d->fd = -1;
4676 }
4677 }
4678
4679 return 0;
4680 }
4681
4682 static int write_super_imsm(struct supertype *st, int doclose)
4683 {
4684 struct intel_super *super = st->sb;
4685 struct imsm_super *mpb = super->anchor;
4686 struct dl *d;
4687 __u32 generation;
4688 __u32 sum;
4689 int spares = 0;
4690 int i;
4691 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
4692 int num_disks = 0;
4693 int clear_migration_record = 1;
4694
4695 /* 'generation' is incremented everytime the metadata is written */
4696 generation = __le32_to_cpu(mpb->generation_num);
4697 generation++;
4698 mpb->generation_num = __cpu_to_le32(generation);
4699
4700 /* fix up cases where previous mdadm releases failed to set
4701 * orig_family_num
4702 */
4703 if (mpb->orig_family_num == 0)
4704 mpb->orig_family_num = mpb->family_num;
4705
4706 for (d = super->disks; d; d = d->next) {
4707 if (d->index == -1)
4708 spares++;
4709 else {
4710 mpb->disk[d->index] = d->disk;
4711 num_disks++;
4712 }
4713 }
4714 for (d = super->missing; d; d = d->next) {
4715 mpb->disk[d->index] = d->disk;
4716 num_disks++;
4717 }
4718 mpb->num_disks = num_disks;
4719 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
4720
4721 for (i = 0; i < mpb->num_raid_devs; i++) {
4722 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
4723 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4724 if (dev && dev2) {
4725 imsm_copy_dev(dev, dev2);
4726 mpb_size += sizeof_imsm_dev(dev, 0);
4727 }
4728 if (is_gen_migration(dev2))
4729 clear_migration_record = 0;
4730 }
4731 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4732 mpb->mpb_size = __cpu_to_le32(mpb_size);
4733
4734 /* recalculate checksum */
4735 sum = __gen_imsm_checksum(mpb);
4736 mpb->check_sum = __cpu_to_le32(sum);
4737
4738 if (clear_migration_record)
4739 memset(super->migr_rec_buf, 0, 512);
4740
4741 /* write the mpb for disks that compose raid devices */
4742 for (d = super->disks; d ; d = d->next) {
4743 if (d->index < 0 || is_failed(&d->disk))
4744 continue;
4745 if (store_imsm_mpb(d->fd, mpb))
4746 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4747 __func__, d->major, d->minor, strerror(errno));
4748 if (clear_migration_record) {
4749 unsigned long long dsize;
4750
4751 get_dev_size(d->fd, NULL, &dsize);
4752 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4753 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4754 perror("Write migr_rec failed");
4755 }
4756 }
4757 if (doclose) {
4758 close(d->fd);
4759 d->fd = -1;
4760 }
4761 }
4762
4763 if (spares)
4764 return write_super_imsm_spares(super, doclose);
4765
4766 return 0;
4767 }
4768
4769
4770 static int create_array(struct supertype *st, int dev_idx)
4771 {
4772 size_t len;
4773 struct imsm_update_create_array *u;
4774 struct intel_super *super = st->sb;
4775 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4776 struct imsm_map *map = get_imsm_map(dev, 0);
4777 struct disk_info *inf;
4778 struct imsm_disk *disk;
4779 int i;
4780
4781 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4782 sizeof(*inf) * map->num_members;
4783 u = malloc(len);
4784 if (!u) {
4785 fprintf(stderr, "%s: failed to allocate update buffer\n",
4786 __func__);
4787 return 1;
4788 }
4789
4790 u->type = update_create_array;
4791 u->dev_idx = dev_idx;
4792 imsm_copy_dev(&u->dev, dev);
4793 inf = get_disk_info(u);
4794 for (i = 0; i < map->num_members; i++) {
4795 int idx = get_imsm_disk_idx(dev, i, -1);
4796
4797 disk = get_imsm_disk(super, idx);
4798 serialcpy(inf[i].serial, disk->serial);
4799 }
4800 append_metadata_update(st, u, len);
4801
4802 return 0;
4803 }
4804
4805 static int mgmt_disk(struct supertype *st)
4806 {
4807 struct intel_super *super = st->sb;
4808 size_t len;
4809 struct imsm_update_add_remove_disk *u;
4810
4811 if (!super->disk_mgmt_list)
4812 return 0;
4813
4814 len = sizeof(*u);
4815 u = malloc(len);
4816 if (!u) {
4817 fprintf(stderr, "%s: failed to allocate update buffer\n",
4818 __func__);
4819 return 1;
4820 }
4821
4822 u->type = update_add_remove_disk;
4823 append_metadata_update(st, u, len);
4824
4825 return 0;
4826 }
4827
4828 static int write_init_super_imsm(struct supertype *st)
4829 {
4830 struct intel_super *super = st->sb;
4831 int current_vol = super->current_vol;
4832
4833 /* we are done with current_vol reset it to point st at the container */
4834 super->current_vol = -1;
4835
4836 if (st->update_tail) {
4837 /* queue the recently created array / added disk
4838 * as a metadata update */
4839 int rv;
4840
4841 /* determine if we are creating a volume or adding a disk */
4842 if (current_vol < 0) {
4843 /* in the mgmt (add/remove) disk case we are running
4844 * in mdmon context, so don't close fd's
4845 */
4846 return mgmt_disk(st);
4847 } else
4848 rv = create_array(st, current_vol);
4849
4850 return rv;
4851 } else {
4852 struct dl *d;
4853 for (d = super->disks; d; d = d->next)
4854 Kill(d->devname, NULL, 0, 1, 1);
4855 return write_super_imsm(st, 1);
4856 }
4857 }
4858 #endif
4859
4860 static int store_super_imsm(struct supertype *st, int fd)
4861 {
4862 struct intel_super *super = st->sb;
4863 struct imsm_super *mpb = super ? super->anchor : NULL;
4864
4865 if (!mpb)
4866 return 1;
4867
4868 #ifndef MDASSEMBLE
4869 return store_imsm_mpb(fd, mpb);
4870 #else
4871 return 1;
4872 #endif
4873 }
4874
4875 static int imsm_bbm_log_size(struct imsm_super *mpb)
4876 {
4877 return __le32_to_cpu(mpb->bbm_log_size);
4878 }
4879
4880 #ifndef MDASSEMBLE
4881 static int validate_geometry_imsm_container(struct supertype *st, int level,
4882 int layout, int raiddisks, int chunk,
4883 unsigned long long size, char *dev,
4884 unsigned long long *freesize,
4885 int verbose)
4886 {
4887 int fd;
4888 unsigned long long ldsize;
4889 struct intel_super *super=NULL;
4890 int rv = 0;
4891
4892 if (level != LEVEL_CONTAINER)
4893 return 0;
4894 if (!dev)
4895 return 1;
4896
4897 fd = open(dev, O_RDONLY|O_EXCL, 0);
4898 if (fd < 0) {
4899 if (verbose)
4900 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4901 dev, strerror(errno));
4902 return 0;
4903 }
4904 if (!get_dev_size(fd, dev, &ldsize)) {
4905 close(fd);
4906 return 0;
4907 }
4908
4909 /* capabilities retrieve could be possible
4910 * note that there is no fd for the disks in array.
4911 */
4912 super = alloc_super();
4913 if (!super) {
4914 fprintf(stderr,
4915 Name ": malloc of %zu failed.\n",
4916 sizeof(*super));
4917 close(fd);
4918 return 0;
4919 }
4920
4921 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
4922 if (rv != 0) {
4923 #if DEBUG
4924 char str[256];
4925 fd2devname(fd, str);
4926 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4927 fd, str, super->orom, rv, raiddisks);
4928 #endif
4929 /* no orom/efi or non-intel hba of the disk */
4930 close(fd);
4931 free_imsm(super);
4932 return 0;
4933 }
4934 close(fd);
4935 if (super->orom && raiddisks > super->orom->tds) {
4936 if (verbose)
4937 fprintf(stderr, Name ": %d exceeds maximum number of"
4938 " platform supported disks: %d\n",
4939 raiddisks, super->orom->tds);
4940
4941 free_imsm(super);
4942 return 0;
4943 }
4944
4945 *freesize = avail_size_imsm(st, ldsize >> 9);
4946 free_imsm(super);
4947
4948 return 1;
4949 }
4950
4951 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4952 {
4953 const unsigned long long base_start = e[*idx].start;
4954 unsigned long long end = base_start + e[*idx].size;
4955 int i;
4956
4957 if (base_start == end)
4958 return 0;
4959
4960 *idx = *idx + 1;
4961 for (i = *idx; i < num_extents; i++) {
4962 /* extend overlapping extents */
4963 if (e[i].start >= base_start &&
4964 e[i].start <= end) {
4965 if (e[i].size == 0)
4966 return 0;
4967 if (e[i].start + e[i].size > end)
4968 end = e[i].start + e[i].size;
4969 } else if (e[i].start > end) {
4970 *idx = i;
4971 break;
4972 }
4973 }
4974
4975 return end - base_start;
4976 }
4977
4978 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4979 {
4980 /* build a composite disk with all known extents and generate a new
4981 * 'maxsize' given the "all disks in an array must share a common start
4982 * offset" constraint
4983 */
4984 struct extent *e = calloc(sum_extents, sizeof(*e));
4985 struct dl *dl;
4986 int i, j;
4987 int start_extent;
4988 unsigned long long pos;
4989 unsigned long long start = 0;
4990 unsigned long long maxsize;
4991 unsigned long reserve;
4992
4993 if (!e)
4994 return 0;
4995
4996 /* coalesce and sort all extents. also, check to see if we need to
4997 * reserve space between member arrays
4998 */
4999 j = 0;
5000 for (dl = super->disks; dl; dl = dl->next) {
5001 if (!dl->e)
5002 continue;
5003 for (i = 0; i < dl->extent_cnt; i++)
5004 e[j++] = dl->e[i];
5005 }
5006 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5007
5008 /* merge extents */
5009 i = 0;
5010 j = 0;
5011 while (i < sum_extents) {
5012 e[j].start = e[i].start;
5013 e[j].size = find_size(e, &i, sum_extents);
5014 j++;
5015 if (e[j-1].size == 0)
5016 break;
5017 }
5018
5019 pos = 0;
5020 maxsize = 0;
5021 start_extent = 0;
5022 i = 0;
5023 do {
5024 unsigned long long esize;
5025
5026 esize = e[i].start - pos;
5027 if (esize >= maxsize) {
5028 maxsize = esize;
5029 start = pos;
5030 start_extent = i;
5031 }
5032 pos = e[i].start + e[i].size;
5033 i++;
5034 } while (e[i-1].size);
5035 free(e);
5036
5037 if (maxsize == 0)
5038 return 0;
5039
5040 /* FIXME assumes volume at offset 0 is the first volume in a
5041 * container
5042 */
5043 if (start_extent > 0)
5044 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5045 else
5046 reserve = 0;
5047
5048 if (maxsize < reserve)
5049 return 0;
5050
5051 super->create_offset = ~((__u32) 0);
5052 if (start + reserve > super->create_offset)
5053 return 0; /* start overflows create_offset */
5054 super->create_offset = start + reserve;
5055
5056 return maxsize - reserve;
5057 }
5058
5059 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5060 {
5061 if (level < 0 || level == 6 || level == 4)
5062 return 0;
5063
5064 /* if we have an orom prevent invalid raid levels */
5065 if (orom)
5066 switch (level) {
5067 case 0: return imsm_orom_has_raid0(orom);
5068 case 1:
5069 if (raiddisks > 2)
5070 return imsm_orom_has_raid1e(orom);
5071 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5072 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5073 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5074 }
5075 else
5076 return 1; /* not on an Intel RAID platform so anything goes */
5077
5078 return 0;
5079 }
5080
5081 static int imsm_default_chunk(const struct imsm_orom *orom)
5082 {
5083 /* up to 512 if the plaform supports it, otherwise the platform max.
5084 * 128 if no platform detected
5085 */
5086 int fs = max(7, orom ? fls(orom->sss) : 0);
5087
5088 return min(512, (1 << fs));
5089 }
5090
5091 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
5092 static int
5093 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5094 int raiddisks, int *chunk, int verbose)
5095 {
5096 /* check/set platform and metadata limits/defaults */
5097 if (super->orom && raiddisks > super->orom->dpa) {
5098 pr_vrb(": platform supports a maximum of %d disks per array\n",
5099 super->orom->dpa);
5100 return 0;
5101 }
5102
5103 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5104 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5105 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5106 level, raiddisks, raiddisks > 1 ? "s" : "");
5107 return 0;
5108 }
5109
5110 if (chunk && (*chunk == 0 || *chunk == UnSet))
5111 *chunk = imsm_default_chunk(super->orom);
5112
5113 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5114 pr_vrb(": platform does not support a chunk size of: "
5115 "%d\n", *chunk);
5116 return 0;
5117 }
5118
5119 if (layout != imsm_level_to_layout(level)) {
5120 if (level == 5)
5121 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5122 else if (level == 10)
5123 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5124 else
5125 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5126 layout, level);
5127 return 0;
5128 }
5129 return 1;
5130 }
5131
5132 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5133 * FIX ME add ahci details
5134 */
5135 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5136 int layout, int raiddisks, int *chunk,
5137 unsigned long long size, char *dev,
5138 unsigned long long *freesize,
5139 int verbose)
5140 {
5141 struct stat stb;
5142 struct intel_super *super = st->sb;
5143 struct imsm_super *mpb = super->anchor;
5144 struct dl *dl;
5145 unsigned long long pos = 0;
5146 unsigned long long maxsize;
5147 struct extent *e;
5148 int i;
5149
5150 /* We must have the container info already read in. */
5151 if (!super)
5152 return 0;
5153
5154 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5155 fprintf(stderr, Name ": the option-rom requires all "
5156 "member disks to be a member of all volumes.\n");
5157 return 0;
5158 }
5159
5160 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5161 fprintf(stderr, Name ": RAID gemetry validation failed. "
5162 "Cannot proceed with the action(s).\n");
5163 return 0;
5164 }
5165 if (!dev) {
5166 /* General test: make sure there is space for
5167 * 'raiddisks' device extents of size 'size' at a given
5168 * offset
5169 */
5170 unsigned long long minsize = size;
5171 unsigned long long start_offset = MaxSector;
5172 int dcnt = 0;
5173 if (minsize == 0)
5174 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5175 for (dl = super->disks; dl ; dl = dl->next) {
5176 int found = 0;
5177
5178 pos = 0;
5179 i = 0;
5180 e = get_extents(super, dl);
5181 if (!e) continue;
5182 do {
5183 unsigned long long esize;
5184 esize = e[i].start - pos;
5185 if (esize >= minsize)
5186 found = 1;
5187 if (found && start_offset == MaxSector) {
5188 start_offset = pos;
5189 break;
5190 } else if (found && pos != start_offset) {
5191 found = 0;
5192 break;
5193 }
5194 pos = e[i].start + e[i].size;
5195 i++;
5196 } while (e[i-1].size);
5197 if (found)
5198 dcnt++;
5199 free(e);
5200 }
5201 if (dcnt < raiddisks) {
5202 if (verbose)
5203 fprintf(stderr, Name ": imsm: Not enough "
5204 "devices with space for this array "
5205 "(%d < %d)\n",
5206 dcnt, raiddisks);
5207 return 0;
5208 }
5209 return 1;
5210 }
5211
5212 /* This device must be a member of the set */
5213 if (stat(dev, &stb) < 0)
5214 return 0;
5215 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5216 return 0;
5217 for (dl = super->disks ; dl ; dl = dl->next) {
5218 if (dl->major == (int)major(stb.st_rdev) &&
5219 dl->minor == (int)minor(stb.st_rdev))
5220 break;
5221 }
5222 if (!dl) {
5223 if (verbose)
5224 fprintf(stderr, Name ": %s is not in the "
5225 "same imsm set\n", dev);
5226 return 0;
5227 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5228 /* If a volume is present then the current creation attempt
5229 * cannot incorporate new spares because the orom may not
5230 * understand this configuration (all member disks must be
5231 * members of each array in the container).
5232 */
5233 fprintf(stderr, Name ": %s is a spare and a volume"
5234 " is already defined for this container\n", dev);
5235 fprintf(stderr, Name ": The option-rom requires all member"
5236 " disks to be a member of all volumes\n");
5237 return 0;
5238 }
5239
5240 /* retrieve the largest free space block */
5241 e = get_extents(super, dl);
5242 maxsize = 0;
5243 i = 0;
5244 if (e) {
5245 do {
5246 unsigned long long esize;
5247
5248 esize = e[i].start - pos;
5249 if (esize >= maxsize)
5250 maxsize = esize;
5251 pos = e[i].start + e[i].size;
5252 i++;
5253 } while (e[i-1].size);
5254 dl->e = e;
5255 dl->extent_cnt = i;
5256 } else {
5257 if (verbose)
5258 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5259 dev);
5260 return 0;
5261 }
5262 if (maxsize < size) {
5263 if (verbose)
5264 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5265 dev, maxsize, size);
5266 return 0;
5267 }
5268
5269 /* count total number of extents for merge */
5270 i = 0;
5271 for (dl = super->disks; dl; dl = dl->next)
5272 if (dl->e)
5273 i += dl->extent_cnt;
5274
5275 maxsize = merge_extents(super, i);
5276 if (maxsize < size || maxsize == 0) {
5277 if (verbose)
5278 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5279 maxsize, size);
5280 return 0;
5281 }
5282
5283 *freesize = maxsize;
5284
5285 return 1;
5286 }
5287
5288 static int reserve_space(struct supertype *st, int raiddisks,
5289 unsigned long long size, int chunk,
5290 unsigned long long *freesize)
5291 {
5292 struct intel_super *super = st->sb;
5293 struct imsm_super *mpb = super->anchor;
5294 struct dl *dl;
5295 int i;
5296 int extent_cnt;
5297 struct extent *e;
5298 unsigned long long maxsize;
5299 unsigned long long minsize;
5300 int cnt;
5301 int used;
5302
5303 /* find the largest common start free region of the possible disks */
5304 used = 0;
5305 extent_cnt = 0;
5306 cnt = 0;
5307 for (dl = super->disks; dl; dl = dl->next) {
5308 dl->raiddisk = -1;
5309
5310 if (dl->index >= 0)
5311 used++;
5312
5313 /* don't activate new spares if we are orom constrained
5314 * and there is already a volume active in the container
5315 */
5316 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5317 continue;
5318
5319 e = get_extents(super, dl);
5320 if (!e)
5321 continue;
5322 for (i = 1; e[i-1].size; i++)
5323 ;
5324 dl->e = e;
5325 dl->extent_cnt = i;
5326 extent_cnt += i;
5327 cnt++;
5328 }
5329
5330 maxsize = merge_extents(super, extent_cnt);
5331 minsize = size;
5332 if (size == 0)
5333 /* chunk is in K */
5334 minsize = chunk * 2;
5335
5336 if (cnt < raiddisks ||
5337 (super->orom && used && used != raiddisks) ||
5338 maxsize < minsize ||
5339 maxsize == 0) {
5340 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5341 return 0; /* No enough free spaces large enough */
5342 }
5343
5344 if (size == 0) {
5345 size = maxsize;
5346 if (chunk) {
5347 size /= 2 * chunk;
5348 size *= 2 * chunk;
5349 }
5350 }
5351
5352 cnt = 0;
5353 for (dl = super->disks; dl; dl = dl->next)
5354 if (dl->e)
5355 dl->raiddisk = cnt++;
5356
5357 *freesize = size;
5358
5359 return 1;
5360 }
5361
5362 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
5363 int raiddisks, int *chunk, unsigned long long size,
5364 char *dev, unsigned long long *freesize,
5365 int verbose)
5366 {
5367 int fd, cfd;
5368 struct mdinfo *sra;
5369 int is_member = 0;
5370
5371 /* load capability
5372 * if given unused devices create a container
5373 * if given given devices in a container create a member volume
5374 */
5375 if (level == LEVEL_CONTAINER) {
5376 /* Must be a fresh device to add to a container */
5377 return validate_geometry_imsm_container(st, level, layout,
5378 raiddisks,
5379 chunk?*chunk:0, size,
5380 dev, freesize,
5381 verbose);
5382 }
5383
5384 if (!dev) {
5385 if (st->sb && freesize) {
5386 /* we are being asked to automatically layout a
5387 * new volume based on the current contents of
5388 * the container. If the the parameters can be
5389 * satisfied reserve_space will record the disks,
5390 * start offset, and size of the volume to be
5391 * created. add_to_super and getinfo_super
5392 * detect when autolayout is in progress.
5393 */
5394 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5395 raiddisks, chunk,
5396 verbose))
5397 return 0;
5398 return reserve_space(st, raiddisks, size,
5399 chunk?*chunk:0, freesize);
5400 }
5401 return 1;
5402 }
5403 if (st->sb) {
5404 /* creating in a given container */
5405 return validate_geometry_imsm_volume(st, level, layout,
5406 raiddisks, chunk, size,
5407 dev, freesize, verbose);
5408 }
5409
5410 /* This device needs to be a device in an 'imsm' container */
5411 fd = open(dev, O_RDONLY|O_EXCL, 0);
5412 if (fd >= 0) {
5413 if (verbose)
5414 fprintf(stderr,
5415 Name ": Cannot create this array on device %s\n",
5416 dev);
5417 close(fd);
5418 return 0;
5419 }
5420 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5421 if (verbose)
5422 fprintf(stderr, Name ": Cannot open %s: %s\n",
5423 dev, strerror(errno));
5424 return 0;
5425 }
5426 /* Well, it is in use by someone, maybe an 'imsm' container. */
5427 cfd = open_container(fd);
5428 close(fd);
5429 if (cfd < 0) {
5430 if (verbose)
5431 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5432 dev);
5433 return 0;
5434 }
5435 sra = sysfs_read(cfd, 0, GET_VERSION);
5436 if (sra && sra->array.major_version == -1 &&
5437 strcmp(sra->text_version, "imsm") == 0)
5438 is_member = 1;
5439 sysfs_free(sra);
5440 if (is_member) {
5441 /* This is a member of a imsm container. Load the container
5442 * and try to create a volume
5443 */
5444 struct intel_super *super;
5445
5446 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
5447 st->sb = super;
5448 st->container_dev = fd2devnum(cfd);
5449 close(cfd);
5450 return validate_geometry_imsm_volume(st, level, layout,
5451 raiddisks, chunk,
5452 size, dev,
5453 freesize, 1)
5454 ? 1 : -1;
5455 }
5456 }
5457
5458 if (verbose)
5459 fprintf(stderr, Name ": failed container membership check\n");
5460
5461 close(cfd);
5462 return 0;
5463 }
5464
5465 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
5466 {
5467 struct intel_super *super = st->sb;
5468
5469 if (level && *level == UnSet)
5470 *level = LEVEL_CONTAINER;
5471
5472 if (level && layout && *layout == UnSet)
5473 *layout = imsm_level_to_layout(*level);
5474
5475 if (chunk && (*chunk == UnSet || *chunk == 0))
5476 *chunk = imsm_default_chunk(super->orom);
5477 }
5478
5479 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5480
5481 static int kill_subarray_imsm(struct supertype *st)
5482 {
5483 /* remove the subarray currently referenced by ->current_vol */
5484 __u8 i;
5485 struct intel_dev **dp;
5486 struct intel_super *super = st->sb;
5487 __u8 current_vol = super->current_vol;
5488 struct imsm_super *mpb = super->anchor;
5489
5490 if (super->current_vol < 0)
5491 return 2;
5492 super->current_vol = -1; /* invalidate subarray cursor */
5493
5494 /* block deletions that would change the uuid of active subarrays
5495 *
5496 * FIXME when immutable ids are available, but note that we'll
5497 * also need to fixup the invalidated/active subarray indexes in
5498 * mdstat
5499 */
5500 for (i = 0; i < mpb->num_raid_devs; i++) {
5501 char subarray[4];
5502
5503 if (i < current_vol)
5504 continue;
5505 sprintf(subarray, "%u", i);
5506 if (is_subarray_active(subarray, st->devname)) {
5507 fprintf(stderr,
5508 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5509 current_vol, i);
5510
5511 return 2;
5512 }
5513 }
5514
5515 if (st->update_tail) {
5516 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5517
5518 if (!u)
5519 return 2;
5520 u->type = update_kill_array;
5521 u->dev_idx = current_vol;
5522 append_metadata_update(st, u, sizeof(*u));
5523
5524 return 0;
5525 }
5526
5527 for (dp = &super->devlist; *dp;)
5528 if ((*dp)->index == current_vol) {
5529 *dp = (*dp)->next;
5530 } else {
5531 handle_missing(super, (*dp)->dev);
5532 if ((*dp)->index > current_vol)
5533 (*dp)->index--;
5534 dp = &(*dp)->next;
5535 }
5536
5537 /* no more raid devices, all active components are now spares,
5538 * but of course failed are still failed
5539 */
5540 if (--mpb->num_raid_devs == 0) {
5541 struct dl *d;
5542
5543 for (d = super->disks; d; d = d->next)
5544 if (d->index > -2)
5545 mark_spare(d);
5546 }
5547
5548 super->updates_pending++;
5549
5550 return 0;
5551 }
5552
5553 static int update_subarray_imsm(struct supertype *st, char *subarray,
5554 char *update, struct mddev_ident *ident)
5555 {
5556 /* update the subarray currently referenced by ->current_vol */
5557 struct intel_super *super = st->sb;
5558 struct imsm_super *mpb = super->anchor;
5559
5560 if (strcmp(update, "name") == 0) {
5561 char *name = ident->name;
5562 char *ep;
5563 int vol;
5564
5565 if (is_subarray_active(subarray, st->devname)) {
5566 fprintf(stderr,
5567 Name ": Unable to update name of active subarray\n");
5568 return 2;
5569 }
5570
5571 if (!check_name(super, name, 0))
5572 return 2;
5573
5574 vol = strtoul(subarray, &ep, 10);
5575 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5576 return 2;
5577
5578 if (st->update_tail) {
5579 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5580
5581 if (!u)
5582 return 2;
5583 u->type = update_rename_array;
5584 u->dev_idx = vol;
5585 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5586 append_metadata_update(st, u, sizeof(*u));
5587 } else {
5588 struct imsm_dev *dev;
5589 int i;
5590
5591 dev = get_imsm_dev(super, vol);
5592 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5593 for (i = 0; i < mpb->num_raid_devs; i++) {
5594 dev = get_imsm_dev(super, i);
5595 handle_missing(super, dev);
5596 }
5597 super->updates_pending++;
5598 }
5599 } else
5600 return 2;
5601
5602 return 0;
5603 }
5604
5605 static int is_gen_migration(struct imsm_dev *dev)
5606 {
5607 if (dev == NULL)
5608 return 0;
5609
5610 if (!dev->vol.migr_state)
5611 return 0;
5612
5613 if (migr_type(dev) == MIGR_GEN_MIGR)
5614 return 1;
5615
5616 return 0;
5617 }
5618 #endif /* MDASSEMBLE */
5619
5620 static int is_rebuilding(struct imsm_dev *dev)
5621 {
5622 struct imsm_map *migr_map;
5623
5624 if (!dev->vol.migr_state)
5625 return 0;
5626
5627 if (migr_type(dev) != MIGR_REBUILD)
5628 return 0;
5629
5630 migr_map = get_imsm_map(dev, 1);
5631
5632 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5633 return 1;
5634 else
5635 return 0;
5636 }
5637
5638 static void update_recovery_start(struct intel_super *super,
5639 struct imsm_dev *dev,
5640 struct mdinfo *array)
5641 {
5642 struct mdinfo *rebuild = NULL;
5643 struct mdinfo *d;
5644 __u32 units;
5645
5646 if (!is_rebuilding(dev))
5647 return;
5648
5649 /* Find the rebuild target, but punt on the dual rebuild case */
5650 for (d = array->devs; d; d = d->next)
5651 if (d->recovery_start == 0) {
5652 if (rebuild)
5653 return;
5654 rebuild = d;
5655 }
5656
5657 if (!rebuild) {
5658 /* (?) none of the disks are marked with
5659 * IMSM_ORD_REBUILD, so assume they are missing and the
5660 * disk_ord_tbl was not correctly updated
5661 */
5662 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5663 return;
5664 }
5665
5666 units = __le32_to_cpu(dev->vol.curr_migr_unit);
5667 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
5668 }
5669
5670 #ifndef MDASSEMBLE
5671 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
5672 #endif
5673
5674 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
5675 {
5676 /* Given a container loaded by load_super_imsm_all,
5677 * extract information about all the arrays into
5678 * an mdinfo tree.
5679 * If 'subarray' is given, just extract info about that array.
5680 *
5681 * For each imsm_dev create an mdinfo, fill it in,
5682 * then look for matching devices in super->disks
5683 * and create appropriate device mdinfo.
5684 */
5685 struct intel_super *super = st->sb;
5686 struct imsm_super *mpb = super->anchor;
5687 struct mdinfo *rest = NULL;
5688 unsigned int i;
5689 int bbm_errors = 0;
5690 struct dl *d;
5691 int spare_disks = 0;
5692
5693 /* do not assemble arrays when not all attributes are supported */
5694 if (imsm_check_attributes(mpb->attributes) == 0) {
5695 fprintf(stderr, Name ": IMSM metadata loading not allowed "
5696 "due to attributes incompatibility.\n");
5697 return NULL;
5698 }
5699
5700 /* check for bad blocks */
5701 if (imsm_bbm_log_size(super->anchor))
5702 bbm_errors = 1;
5703
5704 /* count spare devices, not used in maps
5705 */
5706 for (d = super->disks; d; d = d->next)
5707 if (d->index == -1)
5708 spare_disks++;
5709
5710 for (i = 0; i < mpb->num_raid_devs; i++) {
5711 struct imsm_dev *dev;
5712 struct imsm_map *map;
5713 struct imsm_map *map2;
5714 struct mdinfo *this;
5715 int slot, chunk;
5716 char *ep;
5717
5718 if (subarray &&
5719 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5720 continue;
5721
5722 dev = get_imsm_dev(super, i);
5723 map = get_imsm_map(dev, 0);
5724 map2 = get_imsm_map(dev, 1);
5725
5726 /* do not publish arrays that are in the middle of an
5727 * unsupported migration
5728 */
5729 if (dev->vol.migr_state &&
5730 (migr_type(dev) == MIGR_STATE_CHANGE)) {
5731 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5732 " unsupported migration in progress\n",
5733 dev->volume);
5734 continue;
5735 }
5736 /* do not publish arrays that are not support by controller's
5737 * OROM/EFI
5738 */
5739
5740 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
5741 #ifndef MDASSEMBLE
5742 if (!validate_geometry_imsm_orom(super,
5743 get_imsm_raid_level(map), /* RAID level */
5744 imsm_level_to_layout(get_imsm_raid_level(map)),
5745 map->num_members, /* raid disks */
5746 &chunk,
5747 1 /* verbose */)) {
5748 fprintf(stderr, Name ": RAID gemetry validation failed. "
5749 "Cannot proceed with the action(s).\n");
5750 continue;
5751 }
5752 #endif /* MDASSEMBLE */
5753 this = malloc(sizeof(*this));
5754 if (!this) {
5755 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
5756 sizeof(*this));
5757 break;
5758 }
5759
5760 super->current_vol = i;
5761 getinfo_super_imsm_volume(st, this, NULL);
5762 this->next = rest;
5763 for (slot = 0 ; slot < map->num_members; slot++) {
5764 unsigned long long recovery_start;
5765 struct mdinfo *info_d;
5766 struct dl *d;
5767 int idx;
5768 int skip;
5769 __u32 ord;
5770
5771 skip = 0;
5772 idx = get_imsm_disk_idx(dev, slot, 0);
5773 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
5774 for (d = super->disks; d ; d = d->next)
5775 if (d->index == idx)
5776 break;
5777
5778 recovery_start = MaxSector;
5779 if (d == NULL)
5780 skip = 1;
5781 if (d && is_failed(&d->disk))
5782 skip = 1;
5783 if (ord & IMSM_ORD_REBUILD)
5784 recovery_start = 0;
5785
5786 /*
5787 * if we skip some disks the array will be assmebled degraded;
5788 * reset resync start to avoid a dirty-degraded
5789 * situation when performing the intial sync
5790 *
5791 * FIXME handle dirty degraded
5792 */
5793 if ((skip || recovery_start == 0) && !dev->vol.dirty)
5794 this->resync_start = MaxSector;
5795 if (skip)
5796 continue;
5797
5798 info_d = calloc(1, sizeof(*info_d));
5799 if (!info_d) {
5800 fprintf(stderr, Name ": failed to allocate disk"
5801 " for volume %.16s\n", dev->volume);
5802 info_d = this->devs;
5803 while (info_d) {
5804 struct mdinfo *d = info_d->next;
5805
5806 free(info_d);
5807 info_d = d;
5808 }
5809 free(this);
5810 this = rest;
5811 break;
5812 }
5813 info_d->next = this->devs;
5814 this->devs = info_d;
5815
5816 info_d->disk.number = d->index;
5817 info_d->disk.major = d->major;
5818 info_d->disk.minor = d->minor;
5819 info_d->disk.raid_disk = slot;
5820 info_d->recovery_start = recovery_start;
5821 if (map2) {
5822 if (slot < map2->num_members)
5823 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5824 else
5825 this->array.spare_disks++;
5826 } else {
5827 if (slot < map->num_members)
5828 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5829 else
5830 this->array.spare_disks++;
5831 }
5832 if (info_d->recovery_start == MaxSector)
5833 this->array.working_disks++;
5834
5835 info_d->events = __le32_to_cpu(mpb->generation_num);
5836 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5837 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
5838 }
5839 /* now that the disk list is up-to-date fixup recovery_start */
5840 update_recovery_start(super, dev, this);
5841 this->array.spare_disks += spare_disks;
5842
5843 #ifndef MDASSEMBLE
5844 /* check for reshape */
5845 if (this->reshape_active == 1)
5846 recover_backup_imsm(st, this);
5847 #endif
5848 rest = this;
5849 }
5850
5851 /* if array has bad blocks, set suitable bit in array status */
5852 if (bbm_errors)
5853 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5854
5855 return rest;
5856 }
5857
5858
5859 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
5860 {
5861 struct imsm_map *map = get_imsm_map(dev, 0);
5862
5863 if (!failed)
5864 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5865 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
5866
5867 switch (get_imsm_raid_level(map)) {
5868 case 0:
5869 return IMSM_T_STATE_FAILED;
5870 break;
5871 case 1:
5872 if (failed < map->num_members)
5873 return IMSM_T_STATE_DEGRADED;
5874 else
5875 return IMSM_T_STATE_FAILED;
5876 break;
5877 case 10:
5878 {
5879 /**
5880 * check to see if any mirrors have failed, otherwise we
5881 * are degraded. Even numbered slots are mirrored on
5882 * slot+1
5883 */
5884 int i;
5885 /* gcc -Os complains that this is unused */
5886 int insync = insync;
5887
5888 for (i = 0; i < map->num_members; i++) {
5889 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
5890 int idx = ord_to_idx(ord);
5891 struct imsm_disk *disk;
5892
5893 /* reset the potential in-sync count on even-numbered
5894 * slots. num_copies is always 2 for imsm raid10
5895 */
5896 if ((i & 1) == 0)
5897 insync = 2;
5898
5899 disk = get_imsm_disk(super, idx);
5900 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5901 insync--;
5902
5903 /* no in-sync disks left in this mirror the
5904 * array has failed
5905 */
5906 if (insync == 0)
5907 return IMSM_T_STATE_FAILED;
5908 }
5909
5910 return IMSM_T_STATE_DEGRADED;
5911 }
5912 case 5:
5913 if (failed < 2)
5914 return IMSM_T_STATE_DEGRADED;
5915 else
5916 return IMSM_T_STATE_FAILED;
5917 break;
5918 default:
5919 break;
5920 }
5921
5922 return map->map_state;
5923 }
5924
5925 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
5926 {
5927 int i;
5928 int failed = 0;
5929 struct imsm_disk *disk;
5930 struct imsm_map *map = get_imsm_map(dev, 0);
5931 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5932 __u32 ord;
5933 int idx;
5934
5935 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5936 * disks that are being rebuilt. New failures are recorded to
5937 * map[0]. So we look through all the disks we started with and
5938 * see if any failures are still present, or if any new ones
5939 * have arrived
5940 *
5941 * FIXME add support for online capacity expansion and
5942 * raid-level-migration
5943 */
5944 for (i = 0; i < prev->num_members; i++) {
5945 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5946 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5947 idx = ord_to_idx(ord);
5948
5949 disk = get_imsm_disk(super, idx);
5950 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5951 failed++;
5952 }
5953
5954 return failed;
5955 }
5956
5957 #ifndef MDASSEMBLE
5958 static int imsm_open_new(struct supertype *c, struct active_array *a,
5959 char *inst)
5960 {
5961 struct intel_super *super = c->sb;
5962 struct imsm_super *mpb = super->anchor;
5963
5964 if (atoi(inst) >= mpb->num_raid_devs) {
5965 fprintf(stderr, "%s: subarry index %d, out of range\n",
5966 __func__, atoi(inst));
5967 return -ENODEV;
5968 }
5969
5970 dprintf("imsm: open_new %s\n", inst);
5971 a->info.container_member = atoi(inst);
5972 return 0;
5973 }
5974
5975 static int is_resyncing(struct imsm_dev *dev)
5976 {
5977 struct imsm_map *migr_map;
5978
5979 if (!dev->vol.migr_state)
5980 return 0;
5981
5982 if (migr_type(dev) == MIGR_INIT ||
5983 migr_type(dev) == MIGR_REPAIR)
5984 return 1;
5985
5986 if (migr_type(dev) == MIGR_GEN_MIGR)
5987 return 0;
5988
5989 migr_map = get_imsm_map(dev, 1);
5990
5991 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5992 (dev->vol.migr_type != MIGR_GEN_MIGR))
5993 return 1;
5994 else
5995 return 0;
5996 }
5997
5998 /* return true if we recorded new information */
5999 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6000 {
6001 __u32 ord;
6002 int slot;
6003 struct imsm_map *map;
6004 char buf[MAX_RAID_SERIAL_LEN+3];
6005 unsigned int len, shift = 0;
6006
6007 /* new failures are always set in map[0] */
6008 map = get_imsm_map(dev, 0);
6009
6010 slot = get_imsm_disk_slot(map, idx);
6011 if (slot < 0)
6012 return 0;
6013
6014 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6015 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6016 return 0;
6017
6018 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6019 buf[MAX_RAID_SERIAL_LEN] = '\000';
6020 strcat(buf, ":0");
6021 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6022 shift = len - MAX_RAID_SERIAL_LEN + 1;
6023 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6024
6025 disk->status |= FAILED_DISK;
6026 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6027 if (map->failed_disk_num == 0xff)
6028 map->failed_disk_num = slot;
6029 return 1;
6030 }
6031
6032 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6033 {
6034 mark_failure(dev, disk, idx);
6035
6036 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6037 return;
6038
6039 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6040 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6041 }
6042
6043 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6044 {
6045 __u8 map_state;
6046 struct dl *dl;
6047 int failed;
6048
6049 if (!super->missing)
6050 return;
6051 failed = imsm_count_failed(super, dev);
6052 map_state = imsm_check_degraded(super, dev, failed);
6053
6054 dprintf("imsm: mark missing\n");
6055 end_migration(dev, map_state);
6056 for (dl = super->missing; dl; dl = dl->next)
6057 mark_missing(dev, &dl->disk, dl->index);
6058 super->updates_pending++;
6059 }
6060
6061 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6062 {
6063 int used_disks = imsm_num_data_members(dev, 0);
6064 unsigned long long array_blocks;
6065 struct imsm_map *map;
6066
6067 if (used_disks == 0) {
6068 /* when problems occures
6069 * return current array_blocks value
6070 */
6071 array_blocks = __le32_to_cpu(dev->size_high);
6072 array_blocks = array_blocks << 32;
6073 array_blocks += __le32_to_cpu(dev->size_low);
6074
6075 return array_blocks;
6076 }
6077
6078 /* set array size in metadata
6079 */
6080 map = get_imsm_map(dev, 0);
6081 array_blocks = map->blocks_per_member * used_disks;
6082
6083 /* round array size down to closest MB
6084 */
6085 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6086 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6087 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6088
6089 return array_blocks;
6090 }
6091
6092 static void imsm_set_disk(struct active_array *a, int n, int state);
6093
6094 static void imsm_progress_container_reshape(struct intel_super *super)
6095 {
6096 /* if no device has a migr_state, but some device has a
6097 * different number of members than the previous device, start
6098 * changing the number of devices in this device to match
6099 * previous.
6100 */
6101 struct imsm_super *mpb = super->anchor;
6102 int prev_disks = -1;
6103 int i;
6104 int copy_map_size;
6105
6106 for (i = 0; i < mpb->num_raid_devs; i++) {
6107 struct imsm_dev *dev = get_imsm_dev(super, i);
6108 struct imsm_map *map = get_imsm_map(dev, 0);
6109 struct imsm_map *map2;
6110 int prev_num_members;
6111
6112 if (dev->vol.migr_state)
6113 return;
6114
6115 if (prev_disks == -1)
6116 prev_disks = map->num_members;
6117 if (prev_disks == map->num_members)
6118 continue;
6119
6120 /* OK, this array needs to enter reshape mode.
6121 * i.e it needs a migr_state
6122 */
6123
6124 copy_map_size = sizeof_imsm_map(map);
6125 prev_num_members = map->num_members;
6126 map->num_members = prev_disks;
6127 dev->vol.migr_state = 1;
6128 dev->vol.curr_migr_unit = 0;
6129 set_migr_type(dev, MIGR_GEN_MIGR);
6130 for (i = prev_num_members;
6131 i < map->num_members; i++)
6132 set_imsm_ord_tbl_ent(map, i, i);
6133 map2 = get_imsm_map(dev, 1);
6134 /* Copy the current map */
6135 memcpy(map2, map, copy_map_size);
6136 map2->num_members = prev_num_members;
6137
6138 imsm_set_array_size(dev);
6139 super->updates_pending++;
6140 }
6141 }
6142
6143 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
6144 * states are handled in imsm_set_disk() with one exception, when a
6145 * resync is stopped due to a new failure this routine will set the
6146 * 'degraded' state for the array.
6147 */
6148 static int imsm_set_array_state(struct active_array *a, int consistent)
6149 {
6150 int inst = a->info.container_member;
6151 struct intel_super *super = a->container->sb;
6152 struct imsm_dev *dev = get_imsm_dev(super, inst);
6153 struct imsm_map *map = get_imsm_map(dev, 0);
6154 int failed = imsm_count_failed(super, dev);
6155 __u8 map_state = imsm_check_degraded(super, dev, failed);
6156 __u32 blocks_per_unit;
6157
6158 if (dev->vol.migr_state &&
6159 dev->vol.migr_type == MIGR_GEN_MIGR) {
6160 /* array state change is blocked due to reshape action
6161 * We might need to
6162 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6163 * - finish the reshape (if last_checkpoint is big and action != reshape)
6164 * - update curr_migr_unit
6165 */
6166 if (a->curr_action == reshape) {
6167 /* still reshaping, maybe update curr_migr_unit */
6168 goto mark_checkpoint;
6169 } else {
6170 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6171 /* for some reason we aborted the reshape.
6172 *
6173 * disable automatic metadata rollback
6174 * user action is required to recover process
6175 */
6176 if (0) {
6177 struct imsm_map *map2 = get_imsm_map(dev, 1);
6178 dev->vol.migr_state = 0;
6179 set_migr_type(dev, 0);
6180 dev->vol.curr_migr_unit = 0;
6181 memcpy(map, map2, sizeof_imsm_map(map2));
6182 super->updates_pending++;
6183 }
6184 }
6185 if (a->last_checkpoint >= a->info.component_size) {
6186 unsigned long long array_blocks;
6187 int used_disks;
6188 struct mdinfo *mdi;
6189
6190 used_disks = imsm_num_data_members(dev, 0);
6191 if (used_disks > 0) {
6192 array_blocks =
6193 map->blocks_per_member *
6194 used_disks;
6195 /* round array size down to closest MB
6196 */
6197 array_blocks = (array_blocks
6198 >> SECT_PER_MB_SHIFT)
6199 << SECT_PER_MB_SHIFT;
6200 a->info.custom_array_size = array_blocks;
6201 /* encourage manager to update array
6202 * size
6203 */
6204
6205 a->check_reshape = 1;
6206 }
6207 /* finalize online capacity expansion/reshape */
6208 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6209 imsm_set_disk(a,
6210 mdi->disk.raid_disk,
6211 mdi->curr_state);
6212
6213 imsm_progress_container_reshape(super);
6214 }
6215 }
6216 }
6217
6218 /* before we activate this array handle any missing disks */
6219 if (consistent == 2)
6220 handle_missing(super, dev);
6221
6222 if (consistent == 2 &&
6223 (!is_resync_complete(&a->info) ||
6224 map_state != IMSM_T_STATE_NORMAL ||
6225 dev->vol.migr_state))
6226 consistent = 0;
6227
6228 if (is_resync_complete(&a->info)) {
6229 /* complete intialization / resync,
6230 * recovery and interrupted recovery is completed in
6231 * ->set_disk
6232 */
6233 if (is_resyncing(dev)) {
6234 dprintf("imsm: mark resync done\n");
6235 end_migration(dev, map_state);
6236 super->updates_pending++;
6237 a->last_checkpoint = 0;
6238 }
6239 } else if ((!is_resyncing(dev) && !failed) &&
6240 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
6241 /* mark the start of the init process if nothing is failed */
6242 dprintf("imsm: mark resync start\n");
6243 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
6244 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
6245 else
6246 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
6247 super->updates_pending++;
6248 }
6249
6250 mark_checkpoint:
6251 /* skip checkpointing for general migration,
6252 * it is controlled in mdadm
6253 */
6254 if (is_gen_migration(dev))
6255 goto skip_mark_checkpoint;
6256
6257 /* check if we can update curr_migr_unit from resync_start, recovery_start */
6258 blocks_per_unit = blocks_per_migr_unit(super, dev);
6259 if (blocks_per_unit) {
6260 __u32 units32;
6261 __u64 units;
6262
6263 units = a->last_checkpoint / blocks_per_unit;
6264 units32 = units;
6265
6266 /* check that we did not overflow 32-bits, and that
6267 * curr_migr_unit needs updating
6268 */
6269 if (units32 == units &&
6270 units32 != 0 &&
6271 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6272 dprintf("imsm: mark checkpoint (%u)\n", units32);
6273 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6274 super->updates_pending++;
6275 }
6276 }
6277
6278 skip_mark_checkpoint:
6279 /* mark dirty / clean */
6280 if (dev->vol.dirty != !consistent) {
6281 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
6282 if (consistent)
6283 dev->vol.dirty = 0;
6284 else
6285 dev->vol.dirty = 1;
6286 super->updates_pending++;
6287 }
6288
6289 return consistent;
6290 }
6291
6292 static void imsm_set_disk(struct active_array *a, int n, int state)
6293 {
6294 int inst = a->info.container_member;
6295 struct intel_super *super = a->container->sb;
6296 struct imsm_dev *dev = get_imsm_dev(super, inst);
6297 struct imsm_map *map = get_imsm_map(dev, 0);
6298 struct imsm_disk *disk;
6299 int failed;
6300 __u32 ord;
6301 __u8 map_state;
6302
6303 if (n > map->num_members)
6304 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6305 n, map->num_members - 1);
6306
6307 if (n < 0)
6308 return;
6309
6310 dprintf("imsm: set_disk %d:%x\n", n, state);
6311
6312 ord = get_imsm_ord_tbl_ent(dev, n, -1);
6313 disk = get_imsm_disk(super, ord_to_idx(ord));
6314
6315 /* check for new failures */
6316 if (state & DS_FAULTY) {
6317 if (mark_failure(dev, disk, ord_to_idx(ord)))
6318 super->updates_pending++;
6319 }
6320
6321 /* check if in_sync */
6322 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
6323 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6324
6325 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
6326 super->updates_pending++;
6327 }
6328
6329 failed = imsm_count_failed(super, dev);
6330 map_state = imsm_check_degraded(super, dev, failed);
6331
6332 /* check if recovery complete, newly degraded, or failed */
6333 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
6334 end_migration(dev, map_state);
6335 map = get_imsm_map(dev, 0);
6336 map->failed_disk_num = ~0;
6337 super->updates_pending++;
6338 a->last_checkpoint = 0;
6339 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6340 map->map_state != map_state &&
6341 !dev->vol.migr_state) {
6342 dprintf("imsm: mark degraded\n");
6343 map->map_state = map_state;
6344 super->updates_pending++;
6345 a->last_checkpoint = 0;
6346 } else if (map_state == IMSM_T_STATE_FAILED &&
6347 map->map_state != map_state) {
6348 dprintf("imsm: mark failed\n");
6349 end_migration(dev, map_state);
6350 super->updates_pending++;
6351 a->last_checkpoint = 0;
6352 } else if (is_gen_migration(dev)) {
6353 dprintf("imsm: Detected General Migration in state: ");
6354 if (map_state == IMSM_T_STATE_NORMAL) {
6355 end_migration(dev, map_state);
6356 map = get_imsm_map(dev, 0);
6357 map->failed_disk_num = ~0;
6358 dprintf("normal\n");
6359 } else {
6360 if (map_state == IMSM_T_STATE_DEGRADED) {
6361 printf("degraded\n");
6362 end_migration(dev, map_state);
6363 } else {
6364 dprintf("failed\n");
6365 }
6366 map->map_state = map_state;
6367 }
6368 super->updates_pending++;
6369 }
6370 }
6371
6372 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
6373 {
6374 void *buf = mpb;
6375 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6376 unsigned long long dsize;
6377 unsigned long long sectors;
6378
6379 get_dev_size(fd, NULL, &dsize);
6380
6381 if (mpb_size > 512) {
6382 /* -1 to account for anchor */
6383 sectors = mpb_sectors(mpb) - 1;
6384
6385 /* write the extended mpb to the sectors preceeding the anchor */
6386 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6387 return 1;
6388
6389 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6390 != 512 * sectors)
6391 return 1;
6392 }
6393
6394 /* first block is stored on second to last sector of the disk */
6395 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
6396 return 1;
6397
6398 if (write(fd, buf, 512) != 512)
6399 return 1;
6400
6401 return 0;
6402 }
6403
6404 static void imsm_sync_metadata(struct supertype *container)
6405 {
6406 struct intel_super *super = container->sb;
6407
6408 dprintf("sync metadata: %d\n", super->updates_pending);
6409 if (!super->updates_pending)
6410 return;
6411
6412 write_super_imsm(container, 0);
6413
6414 super->updates_pending = 0;
6415 }
6416
6417 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6418 {
6419 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6420 int i = get_imsm_disk_idx(dev, idx, -1);
6421 struct dl *dl;
6422
6423 for (dl = super->disks; dl; dl = dl->next)
6424 if (dl->index == i)
6425 break;
6426
6427 if (dl && is_failed(&dl->disk))
6428 dl = NULL;
6429
6430 if (dl)
6431 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6432
6433 return dl;
6434 }
6435
6436 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
6437 struct active_array *a, int activate_new,
6438 struct mdinfo *additional_test_list)
6439 {
6440 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6441 int idx = get_imsm_disk_idx(dev, slot, -1);
6442 struct imsm_super *mpb = super->anchor;
6443 struct imsm_map *map;
6444 unsigned long long pos;
6445 struct mdinfo *d;
6446 struct extent *ex;
6447 int i, j;
6448 int found;
6449 __u32 array_start = 0;
6450 __u32 array_end = 0;
6451 struct dl *dl;
6452 struct mdinfo *test_list;
6453
6454 for (dl = super->disks; dl; dl = dl->next) {
6455 /* If in this array, skip */
6456 for (d = a->info.devs ; d ; d = d->next)
6457 if (d->state_fd >= 0 &&
6458 d->disk.major == dl->major &&
6459 d->disk.minor == dl->minor) {
6460 dprintf("%x:%x already in array\n",
6461 dl->major, dl->minor);
6462 break;
6463 }
6464 if (d)
6465 continue;
6466 test_list = additional_test_list;
6467 while (test_list) {
6468 if (test_list->disk.major == dl->major &&
6469 test_list->disk.minor == dl->minor) {
6470 dprintf("%x:%x already in additional test list\n",
6471 dl->major, dl->minor);
6472 break;
6473 }
6474 test_list = test_list->next;
6475 }
6476 if (test_list)
6477 continue;
6478
6479 /* skip in use or failed drives */
6480 if (is_failed(&dl->disk) || idx == dl->index ||
6481 dl->index == -2) {
6482 dprintf("%x:%x status (failed: %d index: %d)\n",
6483 dl->major, dl->minor, is_failed(&dl->disk), idx);
6484 continue;
6485 }
6486
6487 /* skip pure spares when we are looking for partially
6488 * assimilated drives
6489 */
6490 if (dl->index == -1 && !activate_new)
6491 continue;
6492
6493 /* Does this unused device have the requisite free space?
6494 * It needs to be able to cover all member volumes
6495 */
6496 ex = get_extents(super, dl);
6497 if (!ex) {
6498 dprintf("cannot get extents\n");
6499 continue;
6500 }
6501 for (i = 0; i < mpb->num_raid_devs; i++) {
6502 dev = get_imsm_dev(super, i);
6503 map = get_imsm_map(dev, 0);
6504
6505 /* check if this disk is already a member of
6506 * this array
6507 */
6508 if (get_imsm_disk_slot(map, dl->index) >= 0)
6509 continue;
6510
6511 found = 0;
6512 j = 0;
6513 pos = 0;
6514 array_start = __le32_to_cpu(map->pba_of_lba0);
6515 array_end = array_start +
6516 __le32_to_cpu(map->blocks_per_member) - 1;
6517
6518 do {
6519 /* check that we can start at pba_of_lba0 with
6520 * blocks_per_member of space
6521 */
6522 if (array_start >= pos && array_end < ex[j].start) {
6523 found = 1;
6524 break;
6525 }
6526 pos = ex[j].start + ex[j].size;
6527 j++;
6528 } while (ex[j-1].size);
6529
6530 if (!found)
6531 break;
6532 }
6533
6534 free(ex);
6535 if (i < mpb->num_raid_devs) {
6536 dprintf("%x:%x does not have %u to %u available\n",
6537 dl->major, dl->minor, array_start, array_end);
6538 /* No room */
6539 continue;
6540 }
6541 return dl;
6542 }
6543
6544 return dl;
6545 }
6546
6547
6548 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6549 {
6550 struct imsm_dev *dev2;
6551 struct imsm_map *map;
6552 struct dl *idisk;
6553 int slot;
6554 int idx;
6555 __u8 state;
6556
6557 dev2 = get_imsm_dev(cont->sb, dev_idx);
6558 if (dev2) {
6559 state = imsm_check_degraded(cont->sb, dev2, failed);
6560 if (state == IMSM_T_STATE_FAILED) {
6561 map = get_imsm_map(dev2, 0);
6562 if (!map)
6563 return 1;
6564 for (slot = 0; slot < map->num_members; slot++) {
6565 /*
6566 * Check if failed disks are deleted from intel
6567 * disk list or are marked to be deleted
6568 */
6569 idx = get_imsm_disk_idx(dev2, slot, -1);
6570 idisk = get_imsm_dl_disk(cont->sb, idx);
6571 /*
6572 * Do not rebuild the array if failed disks
6573 * from failed sub-array are not removed from
6574 * container.
6575 */
6576 if (idisk &&
6577 is_failed(&idisk->disk) &&
6578 (idisk->action != DISK_REMOVE))
6579 return 0;
6580 }
6581 }
6582 }
6583 return 1;
6584 }
6585
6586 static struct mdinfo *imsm_activate_spare(struct active_array *a,
6587 struct metadata_update **updates)
6588 {
6589 /**
6590 * Find a device with unused free space and use it to replace a
6591 * failed/vacant region in an array. We replace failed regions one a
6592 * array at a time. The result is that a new spare disk will be added
6593 * to the first failed array and after the monitor has finished
6594 * propagating failures the remainder will be consumed.
6595 *
6596 * FIXME add a capability for mdmon to request spares from another
6597 * container.
6598 */
6599
6600 struct intel_super *super = a->container->sb;
6601 int inst = a->info.container_member;
6602 struct imsm_dev *dev = get_imsm_dev(super, inst);
6603 struct imsm_map *map = get_imsm_map(dev, 0);
6604 int failed = a->info.array.raid_disks;
6605 struct mdinfo *rv = NULL;
6606 struct mdinfo *d;
6607 struct mdinfo *di;
6608 struct metadata_update *mu;
6609 struct dl *dl;
6610 struct imsm_update_activate_spare *u;
6611 int num_spares = 0;
6612 int i;
6613 int allowed;
6614
6615 for (d = a->info.devs ; d ; d = d->next) {
6616 if ((d->curr_state & DS_FAULTY) &&
6617 d->state_fd >= 0)
6618 /* wait for Removal to happen */
6619 return NULL;
6620 if (d->state_fd >= 0)
6621 failed--;
6622 }
6623
6624 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6625 inst, failed, a->info.array.raid_disks, a->info.array.level);
6626
6627 if (imsm_reshape_blocks_arrays_changes(super))
6628 return NULL;
6629
6630 if (a->info.array.level == 4)
6631 /* No repair for takeovered array
6632 * imsm doesn't support raid4
6633 */
6634 return NULL;
6635
6636 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
6637 return NULL;
6638
6639 /*
6640 * If there are any failed disks check state of the other volume.
6641 * Block rebuild if the another one is failed until failed disks
6642 * are removed from container.
6643 */
6644 if (failed) {
6645 dprintf("found failed disks in %.*s, check if there another"
6646 "failed sub-array.\n",
6647 MAX_RAID_SERIAL_LEN, dev->volume);
6648 /* check if states of the other volumes allow for rebuild */
6649 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6650 if (i != inst) {
6651 allowed = imsm_rebuild_allowed(a->container,
6652 i, failed);
6653 if (!allowed)
6654 return NULL;
6655 }
6656 }
6657 }
6658
6659 /* For each slot, if it is not working, find a spare */
6660 for (i = 0; i < a->info.array.raid_disks; i++) {
6661 for (d = a->info.devs ; d ; d = d->next)
6662 if (d->disk.raid_disk == i)
6663 break;
6664 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6665 if (d && (d->state_fd >= 0))
6666 continue;
6667
6668 /*
6669 * OK, this device needs recovery. Try to re-add the
6670 * previous occupant of this slot, if this fails see if
6671 * we can continue the assimilation of a spare that was
6672 * partially assimilated, finally try to activate a new
6673 * spare.
6674 */
6675 dl = imsm_readd(super, i, a);
6676 if (!dl)
6677 dl = imsm_add_spare(super, i, a, 0, rv);
6678 if (!dl)
6679 dl = imsm_add_spare(super, i, a, 1, rv);
6680 if (!dl)
6681 continue;
6682
6683 /* found a usable disk with enough space */
6684 di = malloc(sizeof(*di));
6685 if (!di)
6686 continue;
6687 memset(di, 0, sizeof(*di));
6688
6689 /* dl->index will be -1 in the case we are activating a
6690 * pristine spare. imsm_process_update() will create a
6691 * new index in this case. Once a disk is found to be
6692 * failed in all member arrays it is kicked from the
6693 * metadata
6694 */
6695 di->disk.number = dl->index;
6696
6697 /* (ab)use di->devs to store a pointer to the device
6698 * we chose
6699 */
6700 di->devs = (struct mdinfo *) dl;
6701
6702 di->disk.raid_disk = i;
6703 di->disk.major = dl->major;
6704 di->disk.minor = dl->minor;
6705 di->disk.state = 0;
6706 di->recovery_start = 0;
6707 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6708 di->component_size = a->info.component_size;
6709 di->container_member = inst;
6710 super->random = random32();
6711 di->next = rv;
6712 rv = di;
6713 num_spares++;
6714 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6715 i, di->data_offset);
6716 }
6717
6718 if (!rv)
6719 /* No spares found */
6720 return rv;
6721 /* Now 'rv' has a list of devices to return.
6722 * Create a metadata_update record to update the
6723 * disk_ord_tbl for the array
6724 */
6725 mu = malloc(sizeof(*mu));
6726 if (mu) {
6727 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6728 if (mu->buf == NULL) {
6729 free(mu);
6730 mu = NULL;
6731 }
6732 }
6733 if (!mu) {
6734 while (rv) {
6735 struct mdinfo *n = rv->next;
6736
6737 free(rv);
6738 rv = n;
6739 }
6740 return NULL;
6741 }
6742
6743 mu->space = NULL;
6744 mu->space_list = NULL;
6745 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6746 mu->next = *updates;
6747 u = (struct imsm_update_activate_spare *) mu->buf;
6748
6749 for (di = rv ; di ; di = di->next) {
6750 u->type = update_activate_spare;
6751 u->dl = (struct dl *) di->devs;
6752 di->devs = NULL;
6753 u->slot = di->disk.raid_disk;
6754 u->array = inst;
6755 u->next = u + 1;
6756 u++;
6757 }
6758 (u-1)->next = NULL;
6759 *updates = mu;
6760
6761 return rv;
6762 }
6763
6764 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
6765 {
6766 struct imsm_dev *dev = get_imsm_dev(super, idx);
6767 struct imsm_map *map = get_imsm_map(dev, 0);
6768 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6769 struct disk_info *inf = get_disk_info(u);
6770 struct imsm_disk *disk;
6771 int i;
6772 int j;
6773
6774 for (i = 0; i < map->num_members; i++) {
6775 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
6776 for (j = 0; j < new_map->num_members; j++)
6777 if (serialcmp(disk->serial, inf[j].serial) == 0)
6778 return 1;
6779 }
6780
6781 return 0;
6782 }
6783
6784
6785 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6786 {
6787 struct dl *dl = NULL;
6788 for (dl = super->disks; dl; dl = dl->next)
6789 if ((dl->major == major) && (dl->minor == minor))
6790 return dl;
6791 return NULL;
6792 }
6793
6794 static int remove_disk_super(struct intel_super *super, int major, int minor)
6795 {
6796 struct dl *prev = NULL;
6797 struct dl *dl;
6798
6799 prev = NULL;
6800 for (dl = super->disks; dl; dl = dl->next) {
6801 if ((dl->major == major) && (dl->minor == minor)) {
6802 /* remove */
6803 if (prev)
6804 prev->next = dl->next;
6805 else
6806 super->disks = dl->next;
6807 dl->next = NULL;
6808 __free_imsm_disk(dl);
6809 dprintf("%s: removed %x:%x\n",
6810 __func__, major, minor);
6811 break;
6812 }
6813 prev = dl;
6814 }
6815 return 0;
6816 }
6817
6818 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
6819
6820 static int add_remove_disk_update(struct intel_super *super)
6821 {
6822 int check_degraded = 0;
6823 struct dl *disk = NULL;
6824 /* add/remove some spares to/from the metadata/contrainer */
6825 while (super->disk_mgmt_list) {
6826 struct dl *disk_cfg;
6827
6828 disk_cfg = super->disk_mgmt_list;
6829 super->disk_mgmt_list = disk_cfg->next;
6830 disk_cfg->next = NULL;
6831
6832 if (disk_cfg->action == DISK_ADD) {
6833 disk_cfg->next = super->disks;
6834 super->disks = disk_cfg;
6835 check_degraded = 1;
6836 dprintf("%s: added %x:%x\n",
6837 __func__, disk_cfg->major,
6838 disk_cfg->minor);
6839 } else if (disk_cfg->action == DISK_REMOVE) {
6840 dprintf("Disk remove action processed: %x.%x\n",
6841 disk_cfg->major, disk_cfg->minor);
6842 disk = get_disk_super(super,
6843 disk_cfg->major,
6844 disk_cfg->minor);
6845 if (disk) {
6846 /* store action status */
6847 disk->action = DISK_REMOVE;
6848 /* remove spare disks only */
6849 if (disk->index == -1) {
6850 remove_disk_super(super,
6851 disk_cfg->major,
6852 disk_cfg->minor);
6853 }
6854 }
6855 /* release allocate disk structure */
6856 __free_imsm_disk(disk_cfg);
6857 }
6858 }
6859 return check_degraded;
6860 }
6861
6862
6863 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6864 struct intel_super *super,
6865 void ***space_list)
6866 {
6867 struct intel_dev *id;
6868 void **tofree = NULL;
6869 int ret_val = 0;
6870
6871 dprintf("apply_reshape_migration_update()\n");
6872 if ((u->subdev < 0) ||
6873 (u->subdev > 1)) {
6874 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6875 return ret_val;
6876 }
6877 if ((space_list == NULL) || (*space_list == NULL)) {
6878 dprintf("imsm: Error: Memory is not allocated\n");
6879 return ret_val;
6880 }
6881
6882 for (id = super->devlist ; id; id = id->next) {
6883 if (id->index == (unsigned)u->subdev) {
6884 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6885 struct imsm_map *map;
6886 struct imsm_dev *new_dev =
6887 (struct imsm_dev *)*space_list;
6888 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6889 int to_state;
6890 struct dl *new_disk;
6891
6892 if (new_dev == NULL)
6893 return ret_val;
6894 *space_list = **space_list;
6895 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6896 map = get_imsm_map(new_dev, 0);
6897 if (migr_map) {
6898 dprintf("imsm: Error: migration in progress");
6899 return ret_val;
6900 }
6901
6902 to_state = map->map_state;
6903 if ((u->new_level == 5) && (map->raid_level == 0)) {
6904 map->num_members++;
6905 /* this should not happen */
6906 if (u->new_disks[0] < 0) {
6907 map->failed_disk_num =
6908 map->num_members - 1;
6909 to_state = IMSM_T_STATE_DEGRADED;
6910 } else
6911 to_state = IMSM_T_STATE_NORMAL;
6912 }
6913 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
6914 if (u->new_level > -1)
6915 map->raid_level = u->new_level;
6916 migr_map = get_imsm_map(new_dev, 1);
6917 if ((u->new_level == 5) &&
6918 (migr_map->raid_level == 0)) {
6919 int ord = map->num_members - 1;
6920 migr_map->num_members--;
6921 if (u->new_disks[0] < 0)
6922 ord |= IMSM_ORD_REBUILD;
6923 set_imsm_ord_tbl_ent(map,
6924 map->num_members - 1,
6925 ord);
6926 }
6927 id->dev = new_dev;
6928 tofree = (void **)dev;
6929
6930 /* update chunk size
6931 */
6932 if (u->new_chunksize > 0)
6933 map->blocks_per_strip =
6934 __cpu_to_le16(u->new_chunksize * 2);
6935
6936 /* add disk
6937 */
6938 if ((u->new_level != 5) ||
6939 (migr_map->raid_level != 0) ||
6940 (migr_map->raid_level == map->raid_level))
6941 goto skip_disk_add;
6942
6943 if (u->new_disks[0] >= 0) {
6944 /* use passes spare
6945 */
6946 new_disk = get_disk_super(super,
6947 major(u->new_disks[0]),
6948 minor(u->new_disks[0]));
6949 dprintf("imsm: new disk for reshape is: %i:%i "
6950 "(%p, index = %i)\n",
6951 major(u->new_disks[0]),
6952 minor(u->new_disks[0]),
6953 new_disk, new_disk->index);
6954 if (new_disk == NULL)
6955 goto error_disk_add;
6956
6957 new_disk->index = map->num_members - 1;
6958 /* slot to fill in autolayout
6959 */
6960 new_disk->raiddisk = new_disk->index;
6961 new_disk->disk.status |= CONFIGURED_DISK;
6962 new_disk->disk.status &= ~SPARE_DISK;
6963 } else
6964 goto error_disk_add;
6965
6966 skip_disk_add:
6967 *tofree = *space_list;
6968 /* calculate new size
6969 */
6970 imsm_set_array_size(new_dev);
6971
6972 ret_val = 1;
6973 }
6974 }
6975
6976 if (tofree)
6977 *space_list = tofree;
6978 return ret_val;
6979
6980 error_disk_add:
6981 dprintf("Error: imsm: Cannot find disk.\n");
6982 return ret_val;
6983 }
6984
6985 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
6986 struct intel_super *super,
6987 struct active_array *active_array)
6988 {
6989 struct imsm_super *mpb = super->anchor;
6990 struct imsm_dev *dev = get_imsm_dev(super, u->array);
6991 struct imsm_map *map = get_imsm_map(dev, 0);
6992 struct imsm_map *migr_map;
6993 struct active_array *a;
6994 struct imsm_disk *disk;
6995 __u8 to_state;
6996 struct dl *dl;
6997 unsigned int found;
6998 int failed;
6999 int victim;
7000 int i;
7001 int second_map_created = 0;
7002
7003 for (; u; u = u->next) {
7004 victim = get_imsm_disk_idx(dev, u->slot, -1);
7005
7006 if (victim < 0)
7007 return 0;
7008
7009 for (dl = super->disks; dl; dl = dl->next)
7010 if (dl == u->dl)
7011 break;
7012
7013 if (!dl) {
7014 fprintf(stderr, "error: imsm_activate_spare passed "
7015 "an unknown disk (index: %d)\n",
7016 u->dl->index);
7017 return 0;
7018 }
7019
7020 /* count failures (excluding rebuilds and the victim)
7021 * to determine map[0] state
7022 */
7023 failed = 0;
7024 for (i = 0; i < map->num_members; i++) {
7025 if (i == u->slot)
7026 continue;
7027 disk = get_imsm_disk(super,
7028 get_imsm_disk_idx(dev, i, -1));
7029 if (!disk || is_failed(disk))
7030 failed++;
7031 }
7032
7033 /* adding a pristine spare, assign a new index */
7034 if (dl->index < 0) {
7035 dl->index = super->anchor->num_disks;
7036 super->anchor->num_disks++;
7037 }
7038 disk = &dl->disk;
7039 disk->status |= CONFIGURED_DISK;
7040 disk->status &= ~SPARE_DISK;
7041
7042 /* mark rebuild */
7043 to_state = imsm_check_degraded(super, dev, failed);
7044 if (!second_map_created) {
7045 second_map_created = 1;
7046 map->map_state = IMSM_T_STATE_DEGRADED;
7047 migrate(dev, super, to_state, MIGR_REBUILD);
7048 } else
7049 map->map_state = to_state;
7050 migr_map = get_imsm_map(dev, 1);
7051 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7052 set_imsm_ord_tbl_ent(migr_map, u->slot,
7053 dl->index | IMSM_ORD_REBUILD);
7054
7055 /* update the family_num to mark a new container
7056 * generation, being careful to record the existing
7057 * family_num in orig_family_num to clean up after
7058 * earlier mdadm versions that neglected to set it.
7059 */
7060 if (mpb->orig_family_num == 0)
7061 mpb->orig_family_num = mpb->family_num;
7062 mpb->family_num += super->random;
7063
7064 /* count arrays using the victim in the metadata */
7065 found = 0;
7066 for (a = active_array; a ; a = a->next) {
7067 dev = get_imsm_dev(super, a->info.container_member);
7068 map = get_imsm_map(dev, 0);
7069
7070 if (get_imsm_disk_slot(map, victim) >= 0)
7071 found++;
7072 }
7073
7074 /* delete the victim if it is no longer being
7075 * utilized anywhere
7076 */
7077 if (!found) {
7078 struct dl **dlp;
7079
7080 /* We know that 'manager' isn't touching anything,
7081 * so it is safe to delete
7082 */
7083 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
7084 if ((*dlp)->index == victim)
7085 break;
7086
7087 /* victim may be on the missing list */
7088 if (!*dlp)
7089 for (dlp = &super->missing; *dlp;
7090 dlp = &(*dlp)->next)
7091 if ((*dlp)->index == victim)
7092 break;
7093 imsm_delete(super, dlp, victim);
7094 }
7095 }
7096
7097 return 1;
7098 }
7099
7100 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7101 struct intel_super *super,
7102 void ***space_list)
7103 {
7104 struct dl *new_disk;
7105 struct intel_dev *id;
7106 int i;
7107 int delta_disks = u->new_raid_disks - u->old_raid_disks;
7108 int disk_count = u->old_raid_disks;
7109 void **tofree = NULL;
7110 int devices_to_reshape = 1;
7111 struct imsm_super *mpb = super->anchor;
7112 int ret_val = 0;
7113 unsigned int dev_id;
7114
7115 dprintf("imsm: apply_reshape_container_disks_update()\n");
7116
7117 /* enable spares to use in array */
7118 for (i = 0; i < delta_disks; i++) {
7119 new_disk = get_disk_super(super,
7120 major(u->new_disks[i]),
7121 minor(u->new_disks[i]));
7122 dprintf("imsm: new disk for reshape is: %i:%i "
7123 "(%p, index = %i)\n",
7124 major(u->new_disks[i]), minor(u->new_disks[i]),
7125 new_disk, new_disk->index);
7126 if ((new_disk == NULL) ||
7127 ((new_disk->index >= 0) &&
7128 (new_disk->index < u->old_raid_disks)))
7129 goto update_reshape_exit;
7130 new_disk->index = disk_count++;
7131 /* slot to fill in autolayout
7132 */
7133 new_disk->raiddisk = new_disk->index;
7134 new_disk->disk.status |=
7135 CONFIGURED_DISK;
7136 new_disk->disk.status &= ~SPARE_DISK;
7137 }
7138
7139 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7140 mpb->num_raid_devs);
7141 /* manage changes in volume
7142 */
7143 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
7144 void **sp = *space_list;
7145 struct imsm_dev *newdev;
7146 struct imsm_map *newmap, *oldmap;
7147
7148 for (id = super->devlist ; id; id = id->next) {
7149 if (id->index == dev_id)
7150 break;
7151 }
7152 if (id == NULL)
7153 break;
7154 if (!sp)
7155 continue;
7156 *space_list = *sp;
7157 newdev = (void*)sp;
7158 /* Copy the dev, but not (all of) the map */
7159 memcpy(newdev, id->dev, sizeof(*newdev));
7160 oldmap = get_imsm_map(id->dev, 0);
7161 newmap = get_imsm_map(newdev, 0);
7162 /* Copy the current map */
7163 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7164 /* update one device only
7165 */
7166 if (devices_to_reshape) {
7167 dprintf("imsm: modifying subdev: %i\n",
7168 id->index);
7169 devices_to_reshape--;
7170 newdev->vol.migr_state = 1;
7171 newdev->vol.curr_migr_unit = 0;
7172 set_migr_type(newdev, MIGR_GEN_MIGR);
7173 newmap->num_members = u->new_raid_disks;
7174 for (i = 0; i < delta_disks; i++) {
7175 set_imsm_ord_tbl_ent(newmap,
7176 u->old_raid_disks + i,
7177 u->old_raid_disks + i);
7178 }
7179 /* New map is correct, now need to save old map
7180 */
7181 newmap = get_imsm_map(newdev, 1);
7182 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7183
7184 imsm_set_array_size(newdev);
7185 }
7186
7187 sp = (void **)id->dev;
7188 id->dev = newdev;
7189 *sp = tofree;
7190 tofree = sp;
7191
7192 /* Clear migration record */
7193 memset(super->migr_rec, 0, sizeof(struct migr_record));
7194 }
7195 if (tofree)
7196 *space_list = tofree;
7197 ret_val = 1;
7198
7199 update_reshape_exit:
7200
7201 return ret_val;
7202 }
7203
7204 static int apply_takeover_update(struct imsm_update_takeover *u,
7205 struct intel_super *super,
7206 void ***space_list)
7207 {
7208 struct imsm_dev *dev = NULL;
7209 struct intel_dev *dv;
7210 struct imsm_dev *dev_new;
7211 struct imsm_map *map;
7212 struct dl *dm, *du;
7213 int i;
7214
7215 for (dv = super->devlist; dv; dv = dv->next)
7216 if (dv->index == (unsigned int)u->subarray) {
7217 dev = dv->dev;
7218 break;
7219 }
7220
7221 if (dev == NULL)
7222 return 0;
7223
7224 map = get_imsm_map(dev, 0);
7225
7226 if (u->direction == R10_TO_R0) {
7227 /* Number of failed disks must be half of initial disk number */
7228 if (imsm_count_failed(super, dev) != (map->num_members / 2))
7229 return 0;
7230
7231 /* iterate through devices to mark removed disks as spare */
7232 for (dm = super->disks; dm; dm = dm->next) {
7233 if (dm->disk.status & FAILED_DISK) {
7234 int idx = dm->index;
7235 /* update indexes on the disk list */
7236 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7237 the index values will end up being correct.... NB */
7238 for (du = super->disks; du; du = du->next)
7239 if (du->index > idx)
7240 du->index--;
7241 /* mark as spare disk */
7242 mark_spare(dm);
7243 }
7244 }
7245 /* update map */
7246 map->num_members = map->num_members / 2;
7247 map->map_state = IMSM_T_STATE_NORMAL;
7248 map->num_domains = 1;
7249 map->raid_level = 0;
7250 map->failed_disk_num = -1;
7251 }
7252
7253 if (u->direction == R0_TO_R10) {
7254 void **space;
7255 /* update slots in current disk list */
7256 for (dm = super->disks; dm; dm = dm->next) {
7257 if (dm->index >= 0)
7258 dm->index *= 2;
7259 }
7260 /* create new *missing* disks */
7261 for (i = 0; i < map->num_members; i++) {
7262 space = *space_list;
7263 if (!space)
7264 continue;
7265 *space_list = *space;
7266 du = (void *)space;
7267 memcpy(du, super->disks, sizeof(*du));
7268 du->fd = -1;
7269 du->minor = 0;
7270 du->major = 0;
7271 du->index = (i * 2) + 1;
7272 sprintf((char *)du->disk.serial,
7273 " MISSING_%d", du->index);
7274 sprintf((char *)du->serial,
7275 "MISSING_%d", du->index);
7276 du->next = super->missing;
7277 super->missing = du;
7278 }
7279 /* create new dev and map */
7280 space = *space_list;
7281 if (!space)
7282 return 0;
7283 *space_list = *space;
7284 dev_new = (void *)space;
7285 memcpy(dev_new, dev, sizeof(*dev));
7286 /* update new map */
7287 map = get_imsm_map(dev_new, 0);
7288 map->num_members = map->num_members * 2;
7289 map->map_state = IMSM_T_STATE_DEGRADED;
7290 map->num_domains = 2;
7291 map->raid_level = 1;
7292 /* replace dev<->dev_new */
7293 dv->dev = dev_new;
7294 }
7295 /* update disk order table */
7296 for (du = super->disks; du; du = du->next)
7297 if (du->index >= 0)
7298 set_imsm_ord_tbl_ent(map, du->index, du->index);
7299 for (du = super->missing; du; du = du->next)
7300 if (du->index >= 0) {
7301 set_imsm_ord_tbl_ent(map, du->index, du->index);
7302 mark_missing(dv->dev, &du->disk, du->index);
7303 }
7304
7305 return 1;
7306 }
7307
7308 static void imsm_process_update(struct supertype *st,
7309 struct metadata_update *update)
7310 {
7311 /**
7312 * crack open the metadata_update envelope to find the update record
7313 * update can be one of:
7314 * update_reshape_container_disks - all the arrays in the container
7315 * are being reshaped to have more devices. We need to mark
7316 * the arrays for general migration and convert selected spares
7317 * into active devices.
7318 * update_activate_spare - a spare device has replaced a failed
7319 * device in an array, update the disk_ord_tbl. If this disk is
7320 * present in all member arrays then also clear the SPARE_DISK
7321 * flag
7322 * update_create_array
7323 * update_kill_array
7324 * update_rename_array
7325 * update_add_remove_disk
7326 */
7327 struct intel_super *super = st->sb;
7328 struct imsm_super *mpb;
7329 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7330
7331 /* update requires a larger buf but the allocation failed */
7332 if (super->next_len && !super->next_buf) {
7333 super->next_len = 0;
7334 return;
7335 }
7336
7337 if (super->next_buf) {
7338 memcpy(super->next_buf, super->buf, super->len);
7339 free(super->buf);
7340 super->len = super->next_len;
7341 super->buf = super->next_buf;
7342
7343 super->next_len = 0;
7344 super->next_buf = NULL;
7345 }
7346
7347 mpb = super->anchor;
7348
7349 switch (type) {
7350 case update_general_migration_checkpoint: {
7351 struct intel_dev *id;
7352 struct imsm_update_general_migration_checkpoint *u =
7353 (void *)update->buf;
7354
7355 dprintf("imsm: process_update() "
7356 "for update_general_migration_checkpoint called\n");
7357
7358 /* find device under general migration */
7359 for (id = super->devlist ; id; id = id->next) {
7360 if (is_gen_migration(id->dev)) {
7361 id->dev->vol.curr_migr_unit =
7362 __cpu_to_le32(u->curr_migr_unit);
7363 super->updates_pending++;
7364 }
7365 }
7366 break;
7367 }
7368 case update_takeover: {
7369 struct imsm_update_takeover *u = (void *)update->buf;
7370 if (apply_takeover_update(u, super, &update->space_list)) {
7371 imsm_update_version_info(super);
7372 super->updates_pending++;
7373 }
7374 break;
7375 }
7376
7377 case update_reshape_container_disks: {
7378 struct imsm_update_reshape *u = (void *)update->buf;
7379 if (apply_reshape_container_disks_update(
7380 u, super, &update->space_list))
7381 super->updates_pending++;
7382 break;
7383 }
7384 case update_reshape_migration: {
7385 struct imsm_update_reshape_migration *u = (void *)update->buf;
7386 if (apply_reshape_migration_update(
7387 u, super, &update->space_list))
7388 super->updates_pending++;
7389 break;
7390 }
7391 case update_activate_spare: {
7392 struct imsm_update_activate_spare *u = (void *) update->buf;
7393 if (apply_update_activate_spare(u, super, st->arrays))
7394 super->updates_pending++;
7395 break;
7396 }
7397 case update_create_array: {
7398 /* someone wants to create a new array, we need to be aware of
7399 * a few races/collisions:
7400 * 1/ 'Create' called by two separate instances of mdadm
7401 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7402 * devices that have since been assimilated via
7403 * activate_spare.
7404 * In the event this update can not be carried out mdadm will
7405 * (FIX ME) notice that its update did not take hold.
7406 */
7407 struct imsm_update_create_array *u = (void *) update->buf;
7408 struct intel_dev *dv;
7409 struct imsm_dev *dev;
7410 struct imsm_map *map, *new_map;
7411 unsigned long long start, end;
7412 unsigned long long new_start, new_end;
7413 int i;
7414 struct disk_info *inf;
7415 struct dl *dl;
7416
7417 /* handle racing creates: first come first serve */
7418 if (u->dev_idx < mpb->num_raid_devs) {
7419 dprintf("%s: subarray %d already defined\n",
7420 __func__, u->dev_idx);
7421 goto create_error;
7422 }
7423
7424 /* check update is next in sequence */
7425 if (u->dev_idx != mpb->num_raid_devs) {
7426 dprintf("%s: can not create array %d expected index %d\n",
7427 __func__, u->dev_idx, mpb->num_raid_devs);
7428 goto create_error;
7429 }
7430
7431 new_map = get_imsm_map(&u->dev, 0);
7432 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7433 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
7434 inf = get_disk_info(u);
7435
7436 /* handle activate_spare versus create race:
7437 * check to make sure that overlapping arrays do not include
7438 * overalpping disks
7439 */
7440 for (i = 0; i < mpb->num_raid_devs; i++) {
7441 dev = get_imsm_dev(super, i);
7442 map = get_imsm_map(dev, 0);
7443 start = __le32_to_cpu(map->pba_of_lba0);
7444 end = start + __le32_to_cpu(map->blocks_per_member);
7445 if ((new_start >= start && new_start <= end) ||
7446 (start >= new_start && start <= new_end))
7447 /* overlap */;
7448 else
7449 continue;
7450
7451 if (disks_overlap(super, i, u)) {
7452 dprintf("%s: arrays overlap\n", __func__);
7453 goto create_error;
7454 }
7455 }
7456
7457 /* check that prepare update was successful */
7458 if (!update->space) {
7459 dprintf("%s: prepare update failed\n", __func__);
7460 goto create_error;
7461 }
7462
7463 /* check that all disks are still active before committing
7464 * changes. FIXME: could we instead handle this by creating a
7465 * degraded array? That's probably not what the user expects,
7466 * so better to drop this update on the floor.
7467 */
7468 for (i = 0; i < new_map->num_members; i++) {
7469 dl = serial_to_dl(inf[i].serial, super);
7470 if (!dl) {
7471 dprintf("%s: disk disappeared\n", __func__);
7472 goto create_error;
7473 }
7474 }
7475
7476 super->updates_pending++;
7477
7478 /* convert spares to members and fixup ord_tbl */
7479 for (i = 0; i < new_map->num_members; i++) {
7480 dl = serial_to_dl(inf[i].serial, super);
7481 if (dl->index == -1) {
7482 dl->index = mpb->num_disks;
7483 mpb->num_disks++;
7484 dl->disk.status |= CONFIGURED_DISK;
7485 dl->disk.status &= ~SPARE_DISK;
7486 }
7487 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7488 }
7489
7490 dv = update->space;
7491 dev = dv->dev;
7492 update->space = NULL;
7493 imsm_copy_dev(dev, &u->dev);
7494 dv->index = u->dev_idx;
7495 dv->next = super->devlist;
7496 super->devlist = dv;
7497 mpb->num_raid_devs++;
7498
7499 imsm_update_version_info(super);
7500 break;
7501 create_error:
7502 /* mdmon knows how to release update->space, but not
7503 * ((struct intel_dev *) update->space)->dev
7504 */
7505 if (update->space) {
7506 dv = update->space;
7507 free(dv->dev);
7508 }
7509 break;
7510 }
7511 case update_kill_array: {
7512 struct imsm_update_kill_array *u = (void *) update->buf;
7513 int victim = u->dev_idx;
7514 struct active_array *a;
7515 struct intel_dev **dp;
7516 struct imsm_dev *dev;
7517
7518 /* sanity check that we are not affecting the uuid of
7519 * active arrays, or deleting an active array
7520 *
7521 * FIXME when immutable ids are available, but note that
7522 * we'll also need to fixup the invalidated/active
7523 * subarray indexes in mdstat
7524 */
7525 for (a = st->arrays; a; a = a->next)
7526 if (a->info.container_member >= victim)
7527 break;
7528 /* by definition if mdmon is running at least one array
7529 * is active in the container, so checking
7530 * mpb->num_raid_devs is just extra paranoia
7531 */
7532 dev = get_imsm_dev(super, victim);
7533 if (a || !dev || mpb->num_raid_devs == 1) {
7534 dprintf("failed to delete subarray-%d\n", victim);
7535 break;
7536 }
7537
7538 for (dp = &super->devlist; *dp;)
7539 if ((*dp)->index == (unsigned)super->current_vol) {
7540 *dp = (*dp)->next;
7541 } else {
7542 if ((*dp)->index > (unsigned)victim)
7543 (*dp)->index--;
7544 dp = &(*dp)->next;
7545 }
7546 mpb->num_raid_devs--;
7547 super->updates_pending++;
7548 break;
7549 }
7550 case update_rename_array: {
7551 struct imsm_update_rename_array *u = (void *) update->buf;
7552 char name[MAX_RAID_SERIAL_LEN+1];
7553 int target = u->dev_idx;
7554 struct active_array *a;
7555 struct imsm_dev *dev;
7556
7557 /* sanity check that we are not affecting the uuid of
7558 * an active array
7559 */
7560 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7561 name[MAX_RAID_SERIAL_LEN] = '\0';
7562 for (a = st->arrays; a; a = a->next)
7563 if (a->info.container_member == target)
7564 break;
7565 dev = get_imsm_dev(super, u->dev_idx);
7566 if (a || !dev || !check_name(super, name, 1)) {
7567 dprintf("failed to rename subarray-%d\n", target);
7568 break;
7569 }
7570
7571 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7572 super->updates_pending++;
7573 break;
7574 }
7575 case update_add_remove_disk: {
7576 /* we may be able to repair some arrays if disks are
7577 * being added, check teh status of add_remove_disk
7578 * if discs has been added.
7579 */
7580 if (add_remove_disk_update(super)) {
7581 struct active_array *a;
7582
7583 super->updates_pending++;
7584 for (a = st->arrays; a; a = a->next)
7585 a->check_degraded = 1;
7586 }
7587 break;
7588 }
7589 default:
7590 fprintf(stderr, "error: unsuported process update type:"
7591 "(type: %d)\n", type);
7592 }
7593 }
7594
7595 static struct mdinfo *get_spares_for_grow(struct supertype *st);
7596
7597 static void imsm_prepare_update(struct supertype *st,
7598 struct metadata_update *update)
7599 {
7600 /**
7601 * Allocate space to hold new disk entries, raid-device entries or a new
7602 * mpb if necessary. The manager synchronously waits for updates to
7603 * complete in the monitor, so new mpb buffers allocated here can be
7604 * integrated by the monitor thread without worrying about live pointers
7605 * in the manager thread.
7606 */
7607 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7608 struct intel_super *super = st->sb;
7609 struct imsm_super *mpb = super->anchor;
7610 size_t buf_len;
7611 size_t len = 0;
7612
7613 switch (type) {
7614 case update_general_migration_checkpoint:
7615 dprintf("imsm: prepare_update() "
7616 "for update_general_migration_checkpoint called\n");
7617 break;
7618 case update_takeover: {
7619 struct imsm_update_takeover *u = (void *)update->buf;
7620 if (u->direction == R0_TO_R10) {
7621 void **tail = (void **)&update->space_list;
7622 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7623 struct imsm_map *map = get_imsm_map(dev, 0);
7624 int num_members = map->num_members;
7625 void *space;
7626 int size, i;
7627 int err = 0;
7628 /* allocate memory for added disks */
7629 for (i = 0; i < num_members; i++) {
7630 size = sizeof(struct dl);
7631 space = malloc(size);
7632 if (!space) {
7633 err++;
7634 break;
7635 }
7636 *tail = space;
7637 tail = space;
7638 *tail = NULL;
7639 }
7640 /* allocate memory for new device */
7641 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7642 (num_members * sizeof(__u32));
7643 space = malloc(size);
7644 if (!space)
7645 err++;
7646 else {
7647 *tail = space;
7648 tail = space;
7649 *tail = NULL;
7650 }
7651 if (!err) {
7652 len = disks_to_mpb_size(num_members * 2);
7653 } else {
7654 /* if allocation didn't success, free buffer */
7655 while (update->space_list) {
7656 void **sp = update->space_list;
7657 update->space_list = *sp;
7658 free(sp);
7659 }
7660 }
7661 }
7662
7663 break;
7664 }
7665 case update_reshape_container_disks: {
7666 /* Every raid device in the container is about to
7667 * gain some more devices, and we will enter a
7668 * reconfiguration.
7669 * So each 'imsm_map' will be bigger, and the imsm_vol
7670 * will now hold 2 of them.
7671 * Thus we need new 'struct imsm_dev' allocations sized
7672 * as sizeof_imsm_dev but with more devices in both maps.
7673 */
7674 struct imsm_update_reshape *u = (void *)update->buf;
7675 struct intel_dev *dl;
7676 void **space_tail = (void**)&update->space_list;
7677
7678 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7679
7680 for (dl = super->devlist; dl; dl = dl->next) {
7681 int size = sizeof_imsm_dev(dl->dev, 1);
7682 void *s;
7683 if (u->new_raid_disks > u->old_raid_disks)
7684 size += sizeof(__u32)*2*
7685 (u->new_raid_disks - u->old_raid_disks);
7686 s = malloc(size);
7687 if (!s)
7688 break;
7689 *space_tail = s;
7690 space_tail = s;
7691 *space_tail = NULL;
7692 }
7693
7694 len = disks_to_mpb_size(u->new_raid_disks);
7695 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7696 break;
7697 }
7698 case update_reshape_migration: {
7699 /* for migration level 0->5 we need to add disks
7700 * so the same as for container operation we will copy
7701 * device to the bigger location.
7702 * in memory prepared device and new disk area are prepared
7703 * for usage in process update
7704 */
7705 struct imsm_update_reshape_migration *u = (void *)update->buf;
7706 struct intel_dev *id;
7707 void **space_tail = (void **)&update->space_list;
7708 int size;
7709 void *s;
7710 int current_level = -1;
7711
7712 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7713
7714 /* add space for bigger array in update
7715 */
7716 for (id = super->devlist; id; id = id->next) {
7717 if (id->index == (unsigned)u->subdev) {
7718 size = sizeof_imsm_dev(id->dev, 1);
7719 if (u->new_raid_disks > u->old_raid_disks)
7720 size += sizeof(__u32)*2*
7721 (u->new_raid_disks - u->old_raid_disks);
7722 s = malloc(size);
7723 if (!s)
7724 break;
7725 *space_tail = s;
7726 space_tail = s;
7727 *space_tail = NULL;
7728 break;
7729 }
7730 }
7731 if (update->space_list == NULL)
7732 break;
7733
7734 /* add space for disk in update
7735 */
7736 size = sizeof(struct dl);
7737 s = malloc(size);
7738 if (!s) {
7739 free(update->space_list);
7740 update->space_list = NULL;
7741 break;
7742 }
7743 *space_tail = s;
7744 space_tail = s;
7745 *space_tail = NULL;
7746
7747 /* add spare device to update
7748 */
7749 for (id = super->devlist ; id; id = id->next)
7750 if (id->index == (unsigned)u->subdev) {
7751 struct imsm_dev *dev;
7752 struct imsm_map *map;
7753
7754 dev = get_imsm_dev(super, u->subdev);
7755 map = get_imsm_map(dev, 0);
7756 current_level = map->raid_level;
7757 break;
7758 }
7759 if ((u->new_level == 5) && (u->new_level != current_level)) {
7760 struct mdinfo *spares;
7761
7762 spares = get_spares_for_grow(st);
7763 if (spares) {
7764 struct dl *dl;
7765 struct mdinfo *dev;
7766
7767 dev = spares->devs;
7768 if (dev) {
7769 u->new_disks[0] =
7770 makedev(dev->disk.major,
7771 dev->disk.minor);
7772 dl = get_disk_super(super,
7773 dev->disk.major,
7774 dev->disk.minor);
7775 dl->index = u->old_raid_disks;
7776 dev = dev->next;
7777 }
7778 sysfs_free(spares);
7779 }
7780 }
7781 len = disks_to_mpb_size(u->new_raid_disks);
7782 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7783 break;
7784 }
7785 case update_create_array: {
7786 struct imsm_update_create_array *u = (void *) update->buf;
7787 struct intel_dev *dv;
7788 struct imsm_dev *dev = &u->dev;
7789 struct imsm_map *map = get_imsm_map(dev, 0);
7790 struct dl *dl;
7791 struct disk_info *inf;
7792 int i;
7793 int activate = 0;
7794
7795 inf = get_disk_info(u);
7796 len = sizeof_imsm_dev(dev, 1);
7797 /* allocate a new super->devlist entry */
7798 dv = malloc(sizeof(*dv));
7799 if (dv) {
7800 dv->dev = malloc(len);
7801 if (dv->dev)
7802 update->space = dv;
7803 else {
7804 free(dv);
7805 update->space = NULL;
7806 }
7807 }
7808
7809 /* count how many spares will be converted to members */
7810 for (i = 0; i < map->num_members; i++) {
7811 dl = serial_to_dl(inf[i].serial, super);
7812 if (!dl) {
7813 /* hmm maybe it failed?, nothing we can do about
7814 * it here
7815 */
7816 continue;
7817 }
7818 if (count_memberships(dl, super) == 0)
7819 activate++;
7820 }
7821 len += activate * sizeof(struct imsm_disk);
7822 break;
7823 default:
7824 break;
7825 }
7826 }
7827
7828 /* check if we need a larger metadata buffer */
7829 if (super->next_buf)
7830 buf_len = super->next_len;
7831 else
7832 buf_len = super->len;
7833
7834 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7835 /* ok we need a larger buf than what is currently allocated
7836 * if this allocation fails process_update will notice that
7837 * ->next_len is set and ->next_buf is NULL
7838 */
7839 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7840 if (super->next_buf)
7841 free(super->next_buf);
7842
7843 super->next_len = buf_len;
7844 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7845 memset(super->next_buf, 0, buf_len);
7846 else
7847 super->next_buf = NULL;
7848 }
7849 }
7850
7851 /* must be called while manager is quiesced */
7852 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
7853 {
7854 struct imsm_super *mpb = super->anchor;
7855 struct dl *iter;
7856 struct imsm_dev *dev;
7857 struct imsm_map *map;
7858 int i, j, num_members;
7859 __u32 ord;
7860
7861 dprintf("%s: deleting device[%d] from imsm_super\n",
7862 __func__, index);
7863
7864 /* shift all indexes down one */
7865 for (iter = super->disks; iter; iter = iter->next)
7866 if (iter->index > (int)index)
7867 iter->index--;
7868 for (iter = super->missing; iter; iter = iter->next)
7869 if (iter->index > (int)index)
7870 iter->index--;
7871
7872 for (i = 0; i < mpb->num_raid_devs; i++) {
7873 dev = get_imsm_dev(super, i);
7874 map = get_imsm_map(dev, 0);
7875 num_members = map->num_members;
7876 for (j = 0; j < num_members; j++) {
7877 /* update ord entries being careful not to propagate
7878 * ord-flags to the first map
7879 */
7880 ord = get_imsm_ord_tbl_ent(dev, j, -1);
7881
7882 if (ord_to_idx(ord) <= index)
7883 continue;
7884
7885 map = get_imsm_map(dev, 0);
7886 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7887 map = get_imsm_map(dev, 1);
7888 if (map)
7889 set_imsm_ord_tbl_ent(map, j, ord - 1);
7890 }
7891 }
7892
7893 mpb->num_disks--;
7894 super->updates_pending++;
7895 if (*dlp) {
7896 struct dl *dl = *dlp;
7897
7898 *dlp = (*dlp)->next;
7899 __free_imsm_disk(dl);
7900 }
7901 }
7902 #endif /* MDASSEMBLE */
7903 /*******************************************************************************
7904 * Function: open_backup_targets
7905 * Description: Function opens file descriptors for all devices given in
7906 * info->devs
7907 * Parameters:
7908 * info : general array info
7909 * raid_disks : number of disks
7910 * raid_fds : table of device's file descriptors
7911 * Returns:
7912 * 0 : success
7913 * -1 : fail
7914 ******************************************************************************/
7915 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7916 {
7917 struct mdinfo *sd;
7918
7919 for (sd = info->devs ; sd ; sd = sd->next) {
7920 char *dn;
7921
7922 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7923 dprintf("disk is faulty!!\n");
7924 continue;
7925 }
7926
7927 if ((sd->disk.raid_disk >= raid_disks) ||
7928 (sd->disk.raid_disk < 0))
7929 continue;
7930
7931 dn = map_dev(sd->disk.major,
7932 sd->disk.minor, 1);
7933 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7934 if (raid_fds[sd->disk.raid_disk] < 0) {
7935 fprintf(stderr, "cannot open component\n");
7936 return -1;
7937 }
7938 }
7939 return 0;
7940 }
7941
7942 #ifndef MDASSEMBLE
7943 /*******************************************************************************
7944 * Function: init_migr_record_imsm
7945 * Description: Function inits imsm migration record
7946 * Parameters:
7947 * super : imsm internal array info
7948 * dev : device under migration
7949 * info : general array info to find the smallest device
7950 * Returns:
7951 * none
7952 ******************************************************************************/
7953 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7954 struct mdinfo *info)
7955 {
7956 struct intel_super *super = st->sb;
7957 struct migr_record *migr_rec = super->migr_rec;
7958 int new_data_disks;
7959 unsigned long long dsize, dev_sectors;
7960 long long unsigned min_dev_sectors = -1LLU;
7961 struct mdinfo *sd;
7962 char nm[30];
7963 int fd;
7964 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7965 struct imsm_map *map_src = get_imsm_map(dev, 1);
7966 unsigned long long num_migr_units;
7967 unsigned long long array_blocks;
7968
7969 memset(migr_rec, 0, sizeof(struct migr_record));
7970 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
7971
7972 /* only ascending reshape supported now */
7973 migr_rec->ascending_migr = __cpu_to_le32(1);
7974
7975 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
7976 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
7977 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
7978 new_data_disks = imsm_num_data_members(dev, 0);
7979 migr_rec->blocks_per_unit =
7980 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
7981 migr_rec->dest_depth_per_unit =
7982 __cpu_to_le32(migr_rec->dest_depth_per_unit);
7983 array_blocks = info->component_size * new_data_disks;
7984 num_migr_units =
7985 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
7986
7987 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
7988 num_migr_units++;
7989 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
7990
7991 migr_rec->post_migr_vol_cap = dev->size_low;
7992 migr_rec->post_migr_vol_cap_hi = dev->size_high;
7993
7994
7995 /* Find the smallest dev */
7996 for (sd = info->devs ; sd ; sd = sd->next) {
7997 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
7998 fd = dev_open(nm, O_RDONLY);
7999 if (fd < 0)
8000 continue;
8001 get_dev_size(fd, NULL, &dsize);
8002 dev_sectors = dsize / 512;
8003 if (dev_sectors < min_dev_sectors)
8004 min_dev_sectors = dev_sectors;
8005 close(fd);
8006 }
8007 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8008 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8009
8010 write_imsm_migr_rec(st);
8011
8012 return;
8013 }
8014
8015 /*******************************************************************************
8016 * Function: save_backup_imsm
8017 * Description: Function saves critical data stripes to Migration Copy Area
8018 * and updates the current migration unit status.
8019 * Use restore_stripes() to form a destination stripe,
8020 * and to write it to the Copy Area.
8021 * Parameters:
8022 * st : supertype information
8023 * dev : imsm device that backup is saved for
8024 * info : general array info
8025 * buf : input buffer
8026 * length : length of data to backup (blocks_per_unit)
8027 * Returns:
8028 * 0 : success
8029 *, -1 : fail
8030 ******************************************************************************/
8031 int save_backup_imsm(struct supertype *st,
8032 struct imsm_dev *dev,
8033 struct mdinfo *info,
8034 void *buf,
8035 int length)
8036 {
8037 int rv = -1;
8038 struct intel_super *super = st->sb;
8039 unsigned long long *target_offsets = NULL;
8040 int *targets = NULL;
8041 int i;
8042 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8043 int new_disks = map_dest->num_members;
8044 int dest_layout = 0;
8045 int dest_chunk;
8046 unsigned long long start;
8047 int data_disks = imsm_num_data_members(dev, 0);
8048
8049 targets = malloc(new_disks * sizeof(int));
8050 if (!targets)
8051 goto abort;
8052
8053 for (i = 0; i < new_disks; i++)
8054 targets[i] = -1;
8055
8056 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8057 if (!target_offsets)
8058 goto abort;
8059
8060 start = info->reshape_progress * 512;
8061 for (i = 0; i < new_disks; i++) {
8062 target_offsets[i] = (unsigned long long)
8063 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
8064 /* move back copy area adderss, it will be moved forward
8065 * in restore_stripes() using start input variable
8066 */
8067 target_offsets[i] -= start/data_disks;
8068 }
8069
8070 if (open_backup_targets(info, new_disks, targets))
8071 goto abort;
8072
8073 dest_layout = imsm_level_to_layout(map_dest->raid_level);
8074 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8075
8076 if (restore_stripes(targets, /* list of dest devices */
8077 target_offsets, /* migration record offsets */
8078 new_disks,
8079 dest_chunk,
8080 map_dest->raid_level,
8081 dest_layout,
8082 -1, /* source backup file descriptor */
8083 0, /* input buf offset
8084 * always 0 buf is already offseted */
8085 start,
8086 length,
8087 buf) != 0) {
8088 fprintf(stderr, Name ": Error restoring stripes\n");
8089 goto abort;
8090 }
8091
8092 rv = 0;
8093
8094 abort:
8095 if (targets) {
8096 for (i = 0; i < new_disks; i++)
8097 if (targets[i] >= 0)
8098 close(targets[i]);
8099 free(targets);
8100 }
8101 free(target_offsets);
8102
8103 return rv;
8104 }
8105
8106 /*******************************************************************************
8107 * Function: save_checkpoint_imsm
8108 * Description: Function called for current unit status update
8109 * in the migration record. It writes it to disk.
8110 * Parameters:
8111 * super : imsm internal array info
8112 * info : general array info
8113 * Returns:
8114 * 0: success
8115 * 1: failure
8116 * 2: failure, means no valid migration record
8117 * / no general migration in progress /
8118 ******************************************************************************/
8119 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8120 {
8121 struct intel_super *super = st->sb;
8122 unsigned long long blocks_per_unit;
8123 unsigned long long curr_migr_unit;
8124
8125 if (load_imsm_migr_rec(super, info) != 0) {
8126 dprintf("imsm: ERROR: Cannot read migration record "
8127 "for checkpoint save.\n");
8128 return 1;
8129 }
8130
8131 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8132 if (blocks_per_unit == 0) {
8133 dprintf("imsm: no migration in progress.\n");
8134 return 2;
8135 }
8136 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8137 /* check if array is alligned to copy area
8138 * if it is not alligned, add one to current migration unit value
8139 * this can happend on array reshape finish only
8140 */
8141 if (info->reshape_progress % blocks_per_unit)
8142 curr_migr_unit++;
8143
8144 super->migr_rec->curr_migr_unit =
8145 __cpu_to_le32(curr_migr_unit);
8146 super->migr_rec->rec_status = __cpu_to_le32(state);
8147 super->migr_rec->dest_1st_member_lba =
8148 __cpu_to_le32(curr_migr_unit *
8149 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
8150 if (write_imsm_migr_rec(st) < 0) {
8151 dprintf("imsm: Cannot write migration record "
8152 "outside backup area\n");
8153 return 1;
8154 }
8155
8156 return 0;
8157 }
8158
8159 /*******************************************************************************
8160 * Function: recover_backup_imsm
8161 * Description: Function recovers critical data from the Migration Copy Area
8162 * while assembling an array.
8163 * Parameters:
8164 * super : imsm internal array info
8165 * info : general array info
8166 * Returns:
8167 * 0 : success (or there is no data to recover)
8168 * 1 : fail
8169 ******************************************************************************/
8170 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8171 {
8172 struct intel_super *super = st->sb;
8173 struct migr_record *migr_rec = super->migr_rec;
8174 struct imsm_map *map_dest = NULL;
8175 struct intel_dev *id = NULL;
8176 unsigned long long read_offset;
8177 unsigned long long write_offset;
8178 unsigned unit_len;
8179 int *targets = NULL;
8180 int new_disks, i, err;
8181 char *buf = NULL;
8182 int retval = 1;
8183 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8184 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
8185 char buffer[20];
8186 int skipped_disks = 0;
8187 int max_degradation;
8188
8189 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8190 if (err < 1)
8191 return 1;
8192
8193 /* recover data only during assemblation */
8194 if (strncmp(buffer, "inactive", 8) != 0)
8195 return 0;
8196 /* no data to recover */
8197 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8198 return 0;
8199 if (curr_migr_unit >= num_migr_units)
8200 return 1;
8201
8202 /* find device during reshape */
8203 for (id = super->devlist; id; id = id->next)
8204 if (is_gen_migration(id->dev))
8205 break;
8206 if (id == NULL)
8207 return 1;
8208
8209 map_dest = get_imsm_map(id->dev, 0);
8210 new_disks = map_dest->num_members;
8211 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
8212
8213 read_offset = (unsigned long long)
8214 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8215
8216 write_offset = ((unsigned long long)
8217 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
8218 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
8219
8220 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8221 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8222 goto abort;
8223 targets = malloc(new_disks * sizeof(int));
8224 if (!targets)
8225 goto abort;
8226
8227 open_backup_targets(info, new_disks, targets);
8228
8229 for (i = 0; i < new_disks; i++) {
8230 if (targets[i] < 0) {
8231 skipped_disks++;
8232 continue;
8233 }
8234 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8235 fprintf(stderr,
8236 Name ": Cannot seek to block: %s\n",
8237 strerror(errno));
8238 goto abort;
8239 }
8240 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
8241 fprintf(stderr,
8242 Name ": Cannot read copy area block: %s\n",
8243 strerror(errno));
8244 goto abort;
8245 }
8246 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8247 fprintf(stderr,
8248 Name ": Cannot seek to block: %s\n",
8249 strerror(errno));
8250 goto abort;
8251 }
8252 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
8253 fprintf(stderr,
8254 Name ": Cannot restore block: %s\n",
8255 strerror(errno));
8256 goto abort;
8257 }
8258 }
8259
8260 if (skipped_disks > max_degradation) {
8261 fprintf(stderr,
8262 Name ": Cannot restore data from backup."
8263 " Too many failed disks\n");
8264 goto abort;
8265 }
8266
8267 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8268 /* ignore error == 2, this can mean end of reshape here
8269 */
8270 dprintf("imsm: Cannot write checkpoint to "
8271 "migration record (UNIT_SRC_NORMAL) during restart\n");
8272 } else
8273 retval = 0;
8274
8275 abort:
8276 if (targets) {
8277 for (i = 0; i < new_disks; i++)
8278 if (targets[i])
8279 close(targets[i]);
8280 free(targets);
8281 }
8282 free(buf);
8283 return retval;
8284 }
8285
8286 static char disk_by_path[] = "/dev/disk/by-path/";
8287
8288 static const char *imsm_get_disk_controller_domain(const char *path)
8289 {
8290 char disk_path[PATH_MAX];
8291 char *drv=NULL;
8292 struct stat st;
8293
8294 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8295 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8296 if (stat(disk_path, &st) == 0) {
8297 struct sys_dev* hba;
8298 char *path=NULL;
8299
8300 path = devt_to_devpath(st.st_rdev);
8301 if (path == NULL)
8302 return "unknown";
8303 hba = find_disk_attached_hba(-1, path);
8304 if (hba && hba->type == SYS_DEV_SAS)
8305 drv = "isci";
8306 else if (hba && hba->type == SYS_DEV_SATA)
8307 drv = "ahci";
8308 else
8309 drv = "unknown";
8310 dprintf("path: %s hba: %s attached: %s\n",
8311 path, (hba) ? hba->path : "NULL", drv);
8312 free(path);
8313 if (hba)
8314 free_sys_dev(&hba);
8315 }
8316 return drv;
8317 }
8318
8319 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8320 {
8321 char subdev_name[20];
8322 struct mdstat_ent *mdstat;
8323
8324 sprintf(subdev_name, "%d", subdev);
8325 mdstat = mdstat_by_subdev(subdev_name, container);
8326 if (!mdstat)
8327 return -1;
8328
8329 *minor = mdstat->devnum;
8330 free_mdstat(mdstat);
8331 return 0;
8332 }
8333
8334 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8335 struct geo_params *geo,
8336 int *old_raid_disks)
8337 {
8338 /* currently we only support increasing the number of devices
8339 * for a container. This increases the number of device for each
8340 * member array. They must all be RAID0 or RAID5.
8341 */
8342 int ret_val = 0;
8343 struct mdinfo *info, *member;
8344 int devices_that_can_grow = 0;
8345
8346 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8347 "st->devnum = (%i)\n",
8348 st->devnum);
8349
8350 if (geo->size != -1 ||
8351 geo->level != UnSet ||
8352 geo->layout != UnSet ||
8353 geo->chunksize != 0 ||
8354 geo->raid_disks == UnSet) {
8355 dprintf("imsm: Container operation is allowed for "
8356 "raid disks number change only.\n");
8357 return ret_val;
8358 }
8359
8360 info = container_content_imsm(st, NULL);
8361 for (member = info; member; member = member->next) {
8362 int result;
8363 int minor;
8364
8365 dprintf("imsm: checking device_num: %i\n",
8366 member->container_member);
8367
8368 if (geo->raid_disks <= member->array.raid_disks) {
8369 /* we work on container for Online Capacity Expansion
8370 * only so raid_disks has to grow
8371 */
8372 dprintf("imsm: for container operation raid disks "
8373 "increase is required\n");
8374 break;
8375 }
8376
8377 if ((info->array.level != 0) &&
8378 (info->array.level != 5)) {
8379 /* we cannot use this container with other raid level
8380 */
8381 dprintf("imsm: for container operation wrong"
8382 " raid level (%i) detected\n",
8383 info->array.level);
8384 break;
8385 } else {
8386 /* check for platform support
8387 * for this raid level configuration
8388 */
8389 struct intel_super *super = st->sb;
8390 if (!is_raid_level_supported(super->orom,
8391 member->array.level,
8392 geo->raid_disks)) {
8393 dprintf("platform does not support raid%d with"
8394 " %d disk%s\n",
8395 info->array.level,
8396 geo->raid_disks,
8397 geo->raid_disks > 1 ? "s" : "");
8398 break;
8399 }
8400 /* check if component size is aligned to chunk size
8401 */
8402 if (info->component_size %
8403 (info->array.chunk_size/512)) {
8404 dprintf("Component size is not aligned to "
8405 "chunk size\n");
8406 break;
8407 }
8408 }
8409
8410 if (*old_raid_disks &&
8411 info->array.raid_disks != *old_raid_disks)
8412 break;
8413 *old_raid_disks = info->array.raid_disks;
8414
8415 /* All raid5 and raid0 volumes in container
8416 * have to be ready for Online Capacity Expansion
8417 * so they need to be assembled. We have already
8418 * checked that no recovery etc is happening.
8419 */
8420 result = imsm_find_array_minor_by_subdev(member->container_member,
8421 st->container_dev,
8422 &minor);
8423 if (result < 0) {
8424 dprintf("imsm: cannot find array\n");
8425 break;
8426 }
8427 devices_that_can_grow++;
8428 }
8429 sysfs_free(info);
8430 if (!member && devices_that_can_grow)
8431 ret_val = 1;
8432
8433 if (ret_val)
8434 dprintf("\tContainer operation allowed\n");
8435 else
8436 dprintf("\tError: %i\n", ret_val);
8437
8438 return ret_val;
8439 }
8440
8441 /* Function: get_spares_for_grow
8442 * Description: Allocates memory and creates list of spare devices
8443 * avaliable in container. Checks if spare drive size is acceptable.
8444 * Parameters: Pointer to the supertype structure
8445 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8446 * NULL if fail
8447 */
8448 static struct mdinfo *get_spares_for_grow(struct supertype *st)
8449 {
8450 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
8451 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
8452 }
8453
8454 /******************************************************************************
8455 * function: imsm_create_metadata_update_for_reshape
8456 * Function creates update for whole IMSM container.
8457 *
8458 ******************************************************************************/
8459 static int imsm_create_metadata_update_for_reshape(
8460 struct supertype *st,
8461 struct geo_params *geo,
8462 int old_raid_disks,
8463 struct imsm_update_reshape **updatep)
8464 {
8465 struct intel_super *super = st->sb;
8466 struct imsm_super *mpb = super->anchor;
8467 int update_memory_size = 0;
8468 struct imsm_update_reshape *u = NULL;
8469 struct mdinfo *spares = NULL;
8470 int i;
8471 int delta_disks = 0;
8472 struct mdinfo *dev;
8473
8474 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8475 geo->raid_disks);
8476
8477 delta_disks = geo->raid_disks - old_raid_disks;
8478
8479 /* size of all update data without anchor */
8480 update_memory_size = sizeof(struct imsm_update_reshape);
8481
8482 /* now add space for spare disks that we need to add. */
8483 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8484
8485 u = calloc(1, update_memory_size);
8486 if (u == NULL) {
8487 dprintf("error: "
8488 "cannot get memory for imsm_update_reshape update\n");
8489 return 0;
8490 }
8491 u->type = update_reshape_container_disks;
8492 u->old_raid_disks = old_raid_disks;
8493 u->new_raid_disks = geo->raid_disks;
8494
8495 /* now get spare disks list
8496 */
8497 spares = get_spares_for_grow(st);
8498
8499 if (spares == NULL
8500 || delta_disks > spares->array.spare_disks) {
8501 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8502 "for %s.\n", geo->dev_name);
8503 i = -1;
8504 goto abort;
8505 }
8506
8507 /* we have got spares
8508 * update disk list in imsm_disk list table in anchor
8509 */
8510 dprintf("imsm: %i spares are available.\n\n",
8511 spares->array.spare_disks);
8512
8513 dev = spares->devs;
8514 for (i = 0; i < delta_disks; i++) {
8515 struct dl *dl;
8516
8517 if (dev == NULL)
8518 break;
8519 u->new_disks[i] = makedev(dev->disk.major,
8520 dev->disk.minor);
8521 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
8522 dl->index = mpb->num_disks;
8523 mpb->num_disks++;
8524 dev = dev->next;
8525 }
8526
8527 abort:
8528 /* free spares
8529 */
8530 sysfs_free(spares);
8531
8532 dprintf("imsm: reshape update preparation :");
8533 if (i == delta_disks) {
8534 dprintf(" OK\n");
8535 *updatep = u;
8536 return update_memory_size;
8537 }
8538 free(u);
8539 dprintf(" Error\n");
8540
8541 return 0;
8542 }
8543
8544 /******************************************************************************
8545 * function: imsm_create_metadata_update_for_migration()
8546 * Creates update for IMSM array.
8547 *
8548 ******************************************************************************/
8549 static int imsm_create_metadata_update_for_migration(
8550 struct supertype *st,
8551 struct geo_params *geo,
8552 struct imsm_update_reshape_migration **updatep)
8553 {
8554 struct intel_super *super = st->sb;
8555 int update_memory_size = 0;
8556 struct imsm_update_reshape_migration *u = NULL;
8557 struct imsm_dev *dev;
8558 int previous_level = -1;
8559
8560 dprintf("imsm_create_metadata_update_for_migration(enter)"
8561 " New Level = %i\n", geo->level);
8562
8563 /* size of all update data without anchor */
8564 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8565
8566 u = calloc(1, update_memory_size);
8567 if (u == NULL) {
8568 dprintf("error: cannot get memory for "
8569 "imsm_create_metadata_update_for_migration\n");
8570 return 0;
8571 }
8572 u->type = update_reshape_migration;
8573 u->subdev = super->current_vol;
8574 u->new_level = geo->level;
8575 u->new_layout = geo->layout;
8576 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8577 u->new_disks[0] = -1;
8578 u->new_chunksize = -1;
8579
8580 dev = get_imsm_dev(super, u->subdev);
8581 if (dev) {
8582 struct imsm_map *map;
8583
8584 map = get_imsm_map(dev, 0);
8585 if (map) {
8586 int current_chunk_size =
8587 __le16_to_cpu(map->blocks_per_strip) / 2;
8588
8589 if (geo->chunksize != current_chunk_size) {
8590 u->new_chunksize = geo->chunksize / 1024;
8591 dprintf("imsm: "
8592 "chunk size change from %i to %i\n",
8593 current_chunk_size, u->new_chunksize);
8594 }
8595 previous_level = map->raid_level;
8596 }
8597 }
8598 if ((geo->level == 5) && (previous_level == 0)) {
8599 struct mdinfo *spares = NULL;
8600
8601 u->new_raid_disks++;
8602 spares = get_spares_for_grow(st);
8603 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8604 free(u);
8605 sysfs_free(spares);
8606 update_memory_size = 0;
8607 dprintf("error: cannot get spare device "
8608 "for requested migration");
8609 return 0;
8610 }
8611 sysfs_free(spares);
8612 }
8613 dprintf("imsm: reshape update preparation : OK\n");
8614 *updatep = u;
8615
8616 return update_memory_size;
8617 }
8618
8619 static void imsm_update_metadata_locally(struct supertype *st,
8620 void *buf, int len)
8621 {
8622 struct metadata_update mu;
8623
8624 mu.buf = buf;
8625 mu.len = len;
8626 mu.space = NULL;
8627 mu.space_list = NULL;
8628 mu.next = NULL;
8629 imsm_prepare_update(st, &mu);
8630 imsm_process_update(st, &mu);
8631
8632 while (mu.space_list) {
8633 void **space = mu.space_list;
8634 mu.space_list = *space;
8635 free(space);
8636 }
8637 }
8638
8639 /***************************************************************************
8640 * Function: imsm_analyze_change
8641 * Description: Function analyze change for single volume
8642 * and validate if transition is supported
8643 * Parameters: Geometry parameters, supertype structure
8644 * Returns: Operation type code on success, -1 if fail
8645 ****************************************************************************/
8646 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8647 struct geo_params *geo)
8648 {
8649 struct mdinfo info;
8650 int change = -1;
8651 int check_devs = 0;
8652 int chunk;
8653
8654 getinfo_super_imsm_volume(st, &info, NULL);
8655 if ((geo->level != info.array.level) &&
8656 (geo->level >= 0) &&
8657 (geo->level != UnSet)) {
8658 switch (info.array.level) {
8659 case 0:
8660 if (geo->level == 5) {
8661 change = CH_MIGRATION;
8662 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8663 fprintf(stderr,
8664 Name " Error. Requested Layout "
8665 "not supported (left-asymmetric layout "
8666 "is supported only)!\n");
8667 change = -1;
8668 goto analyse_change_exit;
8669 }
8670 check_devs = 1;
8671 }
8672 if (geo->level == 10) {
8673 change = CH_TAKEOVER;
8674 check_devs = 1;
8675 }
8676 break;
8677 case 1:
8678 if (geo->level == 0) {
8679 change = CH_TAKEOVER;
8680 check_devs = 1;
8681 }
8682 break;
8683 case 10:
8684 if (geo->level == 0) {
8685 change = CH_TAKEOVER;
8686 check_devs = 1;
8687 }
8688 break;
8689 }
8690 if (change == -1) {
8691 fprintf(stderr,
8692 Name " Error. Level Migration from %d to %d "
8693 "not supported!\n",
8694 info.array.level, geo->level);
8695 goto analyse_change_exit;
8696 }
8697 } else
8698 geo->level = info.array.level;
8699
8700 if ((geo->layout != info.array.layout)
8701 && ((geo->layout != UnSet) && (geo->layout != -1))) {
8702 change = CH_MIGRATION;
8703 if ((info.array.layout == 0)
8704 && (info.array.level == 5)
8705 && (geo->layout == 5)) {
8706 /* reshape 5 -> 4 */
8707 } else if ((info.array.layout == 5)
8708 && (info.array.level == 5)
8709 && (geo->layout == 0)) {
8710 /* reshape 4 -> 5 */
8711 geo->layout = 0;
8712 geo->level = 5;
8713 } else {
8714 fprintf(stderr,
8715 Name " Error. Layout Migration from %d to %d "
8716 "not supported!\n",
8717 info.array.layout, geo->layout);
8718 change = -1;
8719 goto analyse_change_exit;
8720 }
8721 } else
8722 geo->layout = info.array.layout;
8723
8724 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8725 && (geo->chunksize != info.array.chunk_size))
8726 change = CH_MIGRATION;
8727 else
8728 geo->chunksize = info.array.chunk_size;
8729
8730 chunk = geo->chunksize / 1024;
8731 if (!validate_geometry_imsm(st,
8732 geo->level,
8733 geo->layout,
8734 geo->raid_disks,
8735 &chunk,
8736 geo->size,
8737 0, 0, 1))
8738 change = -1;
8739
8740 if (check_devs) {
8741 struct intel_super *super = st->sb;
8742 struct imsm_super *mpb = super->anchor;
8743
8744 if (mpb->num_raid_devs > 1) {
8745 fprintf(stderr,
8746 Name " Error. Cannot perform operation on %s"
8747 "- for this operation it MUST be single "
8748 "array in container\n",
8749 geo->dev_name);
8750 change = -1;
8751 }
8752 }
8753
8754 analyse_change_exit:
8755
8756 return change;
8757 }
8758
8759 int imsm_takeover(struct supertype *st, struct geo_params *geo)
8760 {
8761 struct intel_super *super = st->sb;
8762 struct imsm_update_takeover *u;
8763
8764 u = malloc(sizeof(struct imsm_update_takeover));
8765 if (u == NULL)
8766 return 1;
8767
8768 u->type = update_takeover;
8769 u->subarray = super->current_vol;
8770
8771 /* 10->0 transition */
8772 if (geo->level == 0)
8773 u->direction = R10_TO_R0;
8774
8775 /* 0->10 transition */
8776 if (geo->level == 10)
8777 u->direction = R0_TO_R10;
8778
8779 /* update metadata locally */
8780 imsm_update_metadata_locally(st, u,
8781 sizeof(struct imsm_update_takeover));
8782 /* and possibly remotely */
8783 if (st->update_tail)
8784 append_metadata_update(st, u,
8785 sizeof(struct imsm_update_takeover));
8786 else
8787 free(u);
8788
8789 return 0;
8790 }
8791
8792 static int imsm_reshape_super(struct supertype *st, long long size, int level,
8793 int layout, int chunksize, int raid_disks,
8794 int delta_disks, char *backup, char *dev,
8795 int verbose)
8796 {
8797 int ret_val = 1;
8798 struct geo_params geo;
8799
8800 dprintf("imsm: reshape_super called.\n");
8801
8802 memset(&geo, 0, sizeof(struct geo_params));
8803
8804 geo.dev_name = dev;
8805 geo.dev_id = st->devnum;
8806 geo.size = size;
8807 geo.level = level;
8808 geo.layout = layout;
8809 geo.chunksize = chunksize;
8810 geo.raid_disks = raid_disks;
8811 if (delta_disks != UnSet)
8812 geo.raid_disks += delta_disks;
8813
8814 dprintf("\tfor level : %i\n", geo.level);
8815 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8816
8817 if (experimental() == 0)
8818 return ret_val;
8819
8820 if (st->container_dev == st->devnum) {
8821 /* On container level we can only increase number of devices. */
8822 dprintf("imsm: info: Container operation\n");
8823 int old_raid_disks = 0;
8824
8825 if (imsm_reshape_is_allowed_on_container(
8826 st, &geo, &old_raid_disks)) {
8827 struct imsm_update_reshape *u = NULL;
8828 int len;
8829
8830 len = imsm_create_metadata_update_for_reshape(
8831 st, &geo, old_raid_disks, &u);
8832
8833 if (len <= 0) {
8834 dprintf("imsm: Cannot prepare update\n");
8835 goto exit_imsm_reshape_super;
8836 }
8837
8838 ret_val = 0;
8839 /* update metadata locally */
8840 imsm_update_metadata_locally(st, u, len);
8841 /* and possibly remotely */
8842 if (st->update_tail)
8843 append_metadata_update(st, u, len);
8844 else
8845 free(u);
8846
8847 } else {
8848 fprintf(stderr, Name ": (imsm) Operation "
8849 "is not allowed on this container\n");
8850 }
8851 } else {
8852 /* On volume level we support following operations
8853 * - takeover: raid10 -> raid0; raid0 -> raid10
8854 * - chunk size migration
8855 * - migration: raid5 -> raid0; raid0 -> raid5
8856 */
8857 struct intel_super *super = st->sb;
8858 struct intel_dev *dev = super->devlist;
8859 int change, devnum;
8860 dprintf("imsm: info: Volume operation\n");
8861 /* find requested device */
8862 while (dev) {
8863 if (imsm_find_array_minor_by_subdev(
8864 dev->index, st->container_dev, &devnum) == 0
8865 && devnum == geo.dev_id)
8866 break;
8867 dev = dev->next;
8868 }
8869 if (dev == NULL) {
8870 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8871 geo.dev_name, geo.dev_id);
8872 goto exit_imsm_reshape_super;
8873 }
8874 super->current_vol = dev->index;
8875 change = imsm_analyze_change(st, &geo);
8876 switch (change) {
8877 case CH_TAKEOVER:
8878 ret_val = imsm_takeover(st, &geo);
8879 break;
8880 case CH_MIGRATION: {
8881 struct imsm_update_reshape_migration *u = NULL;
8882 int len =
8883 imsm_create_metadata_update_for_migration(
8884 st, &geo, &u);
8885 if (len < 1) {
8886 dprintf("imsm: "
8887 "Cannot prepare update\n");
8888 break;
8889 }
8890 ret_val = 0;
8891 /* update metadata locally */
8892 imsm_update_metadata_locally(st, u, len);
8893 /* and possibly remotely */
8894 if (st->update_tail)
8895 append_metadata_update(st, u, len);
8896 else
8897 free(u);
8898 }
8899 break;
8900 default:
8901 ret_val = 1;
8902 }
8903 }
8904
8905 exit_imsm_reshape_super:
8906 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8907 return ret_val;
8908 }
8909
8910 /*******************************************************************************
8911 * Function: wait_for_reshape_imsm
8912 * Description: Function writes new sync_max value and waits until
8913 * reshape process reach new position
8914 * Parameters:
8915 * sra : general array info
8916 * ndata : number of disks in new array's layout
8917 * Returns:
8918 * 0 : success,
8919 * 1 : there is no reshape in progress,
8920 * -1 : fail
8921 ******************************************************************************/
8922 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
8923 {
8924 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8925 unsigned long long completed;
8926 /* to_complete : new sync_max position */
8927 unsigned long long to_complete = sra->reshape_progress;
8928 unsigned long long position_to_set = to_complete / ndata;
8929
8930 if (fd < 0) {
8931 dprintf("imsm: wait_for_reshape_imsm() "
8932 "cannot open reshape_position\n");
8933 return 1;
8934 }
8935
8936 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8937 dprintf("imsm: wait_for_reshape_imsm() "
8938 "cannot read reshape_position (no reshape in progres)\n");
8939 close(fd);
8940 return 0;
8941 }
8942
8943 if (completed > to_complete) {
8944 dprintf("imsm: wait_for_reshape_imsm() "
8945 "wrong next position to set %llu (%llu)\n",
8946 to_complete, completed);
8947 close(fd);
8948 return -1;
8949 }
8950 dprintf("Position set: %llu\n", position_to_set);
8951 if (sysfs_set_num(sra, NULL, "sync_max",
8952 position_to_set) != 0) {
8953 dprintf("imsm: wait_for_reshape_imsm() "
8954 "cannot set reshape position to %llu\n",
8955 position_to_set);
8956 close(fd);
8957 return -1;
8958 }
8959
8960 do {
8961 char action[20];
8962 fd_set rfds;
8963 FD_ZERO(&rfds);
8964 FD_SET(fd, &rfds);
8965 select(fd+1, &rfds, NULL, NULL, NULL);
8966 if (sysfs_get_str(sra, NULL, "sync_action",
8967 action, 20) > 0 &&
8968 strncmp(action, "reshape", 7) != 0)
8969 break;
8970 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8971 dprintf("imsm: wait_for_reshape_imsm() "
8972 "cannot read reshape_position (in loop)\n");
8973 close(fd);
8974 return 1;
8975 }
8976 } while (completed < to_complete);
8977 close(fd);
8978 return 0;
8979
8980 }
8981
8982 /*******************************************************************************
8983 * Function: check_degradation_change
8984 * Description: Check that array hasn't become failed.
8985 * Parameters:
8986 * info : for sysfs access
8987 * sources : source disks descriptors
8988 * degraded: previous degradation level
8989 * Returns:
8990 * degradation level
8991 ******************************************************************************/
8992 int check_degradation_change(struct mdinfo *info,
8993 int *sources,
8994 int degraded)
8995 {
8996 unsigned long long new_degraded;
8997 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
8998 if (new_degraded != (unsigned long long)degraded) {
8999 /* check each device to ensure it is still working */
9000 struct mdinfo *sd;
9001 new_degraded = 0;
9002 for (sd = info->devs ; sd ; sd = sd->next) {
9003 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9004 continue;
9005 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9006 char sbuf[20];
9007 if (sysfs_get_str(info,
9008 sd, "state", sbuf, 20) < 0 ||
9009 strstr(sbuf, "faulty") ||
9010 strstr(sbuf, "in_sync") == NULL) {
9011 /* this device is dead */
9012 sd->disk.state = (1<<MD_DISK_FAULTY);
9013 if (sd->disk.raid_disk >= 0 &&
9014 sources[sd->disk.raid_disk] >= 0) {
9015 close(sources[
9016 sd->disk.raid_disk]);
9017 sources[sd->disk.raid_disk] =
9018 -1;
9019 }
9020 new_degraded++;
9021 }
9022 }
9023 }
9024 }
9025
9026 return new_degraded;
9027 }
9028
9029 /*******************************************************************************
9030 * Function: imsm_manage_reshape
9031 * Description: Function finds array under reshape and it manages reshape
9032 * process. It creates stripes backups (if required) and sets
9033 * checheckpoits.
9034 * Parameters:
9035 * afd : Backup handle (nattive) - not used
9036 * sra : general array info
9037 * reshape : reshape parameters - not used
9038 * st : supertype structure
9039 * blocks : size of critical section [blocks]
9040 * fds : table of source device descriptor
9041 * offsets : start of array (offest per devices)
9042 * dests : not used
9043 * destfd : table of destination device descriptor
9044 * destoffsets : table of destination offsets (per device)
9045 * Returns:
9046 * 1 : success, reshape is done
9047 * 0 : fail
9048 ******************************************************************************/
9049 static int imsm_manage_reshape(
9050 int afd, struct mdinfo *sra, struct reshape *reshape,
9051 struct supertype *st, unsigned long backup_blocks,
9052 int *fds, unsigned long long *offsets,
9053 int dests, int *destfd, unsigned long long *destoffsets)
9054 {
9055 int ret_val = 0;
9056 struct intel_super *super = st->sb;
9057 struct intel_dev *dv = NULL;
9058 struct imsm_dev *dev = NULL;
9059 struct imsm_map *map_src;
9060 int migr_vol_qan = 0;
9061 int ndata, odata; /* [bytes] */
9062 int chunk; /* [bytes] */
9063 struct migr_record *migr_rec;
9064 char *buf = NULL;
9065 unsigned int buf_size; /* [bytes] */
9066 unsigned long long max_position; /* array size [bytes] */
9067 unsigned long long next_step; /* [blocks]/[bytes] */
9068 unsigned long long old_data_stripe_length;
9069 unsigned long long start_src; /* [bytes] */
9070 unsigned long long start; /* [bytes] */
9071 unsigned long long start_buf_shift; /* [bytes] */
9072 int degraded = 0;
9073 int source_layout = 0;
9074
9075 if (!fds || !offsets || !sra)
9076 goto abort;
9077
9078 /* Find volume during the reshape */
9079 for (dv = super->devlist; dv; dv = dv->next) {
9080 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9081 && dv->dev->vol.migr_state == 1) {
9082 dev = dv->dev;
9083 migr_vol_qan++;
9084 }
9085 }
9086 /* Only one volume can migrate at the same time */
9087 if (migr_vol_qan != 1) {
9088 fprintf(stderr, Name " : %s", migr_vol_qan ?
9089 "Number of migrating volumes greater than 1\n" :
9090 "There is no volume during migrationg\n");
9091 goto abort;
9092 }
9093
9094 map_src = get_imsm_map(dev, 1);
9095 if (map_src == NULL)
9096 goto abort;
9097
9098 ndata = imsm_num_data_members(dev, 0);
9099 odata = imsm_num_data_members(dev, 1);
9100
9101 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
9102 old_data_stripe_length = odata * chunk;
9103
9104 migr_rec = super->migr_rec;
9105
9106 /* initialize migration record for start condition */
9107 if (sra->reshape_progress == 0)
9108 init_migr_record_imsm(st, dev, sra);
9109 else {
9110 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9111 dprintf("imsm: cannot restart migration when data "
9112 "are present in copy area.\n");
9113 goto abort;
9114 }
9115 }
9116
9117 /* size for data */
9118 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9119 /* extend buffer size for parity disk */
9120 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9121 /* add space for stripe aligment */
9122 buf_size += old_data_stripe_length;
9123 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9124 dprintf("imsm: Cannot allocate checpoint buffer\n");
9125 goto abort;
9126 }
9127
9128 max_position = sra->component_size * ndata;
9129 source_layout = imsm_level_to_layout(map_src->raid_level);
9130
9131 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9132 __le32_to_cpu(migr_rec->num_migr_units)) {
9133 /* current reshape position [blocks] */
9134 unsigned long long current_position =
9135 __le32_to_cpu(migr_rec->blocks_per_unit)
9136 * __le32_to_cpu(migr_rec->curr_migr_unit);
9137 unsigned long long border;
9138
9139 /* Check that array hasn't become failed.
9140 */
9141 degraded = check_degradation_change(sra, fds, degraded);
9142 if (degraded > 1) {
9143 dprintf("imsm: Abort reshape due to degradation"
9144 " level (%i)\n", degraded);
9145 goto abort;
9146 }
9147
9148 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9149
9150 if ((current_position + next_step) > max_position)
9151 next_step = max_position - current_position;
9152
9153 start = current_position * 512;
9154
9155 /* allign reading start to old geometry */
9156 start_buf_shift = start % old_data_stripe_length;
9157 start_src = start - start_buf_shift;
9158
9159 border = (start_src / odata) - (start / ndata);
9160 border /= 512;
9161 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9162 /* save critical stripes to buf
9163 * start - start address of current unit
9164 * to backup [bytes]
9165 * start_src - start address of current unit
9166 * to backup alligned to source array
9167 * [bytes]
9168 */
9169 unsigned long long next_step_filler = 0;
9170 unsigned long long copy_length = next_step * 512;
9171
9172 /* allign copy area length to stripe in old geometry */
9173 next_step_filler = ((copy_length + start_buf_shift)
9174 % old_data_stripe_length);
9175 if (next_step_filler)
9176 next_step_filler = (old_data_stripe_length
9177 - next_step_filler);
9178 dprintf("save_stripes() parameters: start = %llu,"
9179 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9180 "\tstart_in_buf_shift = %llu,"
9181 "\tnext_step_filler = %llu\n",
9182 start, start_src, copy_length,
9183 start_buf_shift, next_step_filler);
9184
9185 if (save_stripes(fds, offsets, map_src->num_members,
9186 chunk, map_src->raid_level,
9187 source_layout, 0, NULL, start_src,
9188 copy_length +
9189 next_step_filler + start_buf_shift,
9190 buf)) {
9191 dprintf("imsm: Cannot save stripes"
9192 " to buffer\n");
9193 goto abort;
9194 }
9195 /* Convert data to destination format and store it
9196 * in backup general migration area
9197 */
9198 if (save_backup_imsm(st, dev, sra,
9199 buf + start_buf_shift, copy_length)) {
9200 dprintf("imsm: Cannot save stripes to "
9201 "target devices\n");
9202 goto abort;
9203 }
9204 if (save_checkpoint_imsm(st, sra,
9205 UNIT_SRC_IN_CP_AREA)) {
9206 dprintf("imsm: Cannot write checkpoint to "
9207 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9208 goto abort;
9209 }
9210 } else {
9211 /* set next step to use whole border area */
9212 border /= next_step;
9213 if (border > 1)
9214 next_step *= border;
9215 }
9216 /* When data backed up, checkpoint stored,
9217 * kick the kernel to reshape unit of data
9218 */
9219 next_step = next_step + sra->reshape_progress;
9220 /* limit next step to array max position */
9221 if (next_step > max_position)
9222 next_step = max_position;
9223 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9224 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
9225 sra->reshape_progress = next_step;
9226
9227 /* wait until reshape finish */
9228 if (wait_for_reshape_imsm(sra, ndata) < 0) {
9229 dprintf("wait_for_reshape_imsm returned error!\n");
9230 goto abort;
9231 }
9232
9233 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9234 /* ignore error == 2, this can mean end of reshape here
9235 */
9236 dprintf("imsm: Cannot write checkpoint to "
9237 "migration record (UNIT_SRC_NORMAL)\n");
9238 goto abort;
9239 }
9240
9241 }
9242
9243 /* return '1' if done */
9244 ret_val = 1;
9245 abort:
9246 free(buf);
9247 abort_reshape(sra);
9248
9249 return ret_val;
9250 }
9251 #endif /* MDASSEMBLE */
9252
9253 struct superswitch super_imsm = {
9254 #ifndef MDASSEMBLE
9255 .examine_super = examine_super_imsm,
9256 .brief_examine_super = brief_examine_super_imsm,
9257 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9258 .export_examine_super = export_examine_super_imsm,
9259 .detail_super = detail_super_imsm,
9260 .brief_detail_super = brief_detail_super_imsm,
9261 .write_init_super = write_init_super_imsm,
9262 .validate_geometry = validate_geometry_imsm,
9263 .add_to_super = add_to_super_imsm,
9264 .remove_from_super = remove_from_super_imsm,
9265 .detail_platform = detail_platform_imsm,
9266 .kill_subarray = kill_subarray_imsm,
9267 .update_subarray = update_subarray_imsm,
9268 .load_container = load_container_imsm,
9269 .default_geometry = default_geometry_imsm,
9270 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9271 .reshape_super = imsm_reshape_super,
9272 .manage_reshape = imsm_manage_reshape,
9273 .recover_backup = recover_backup_imsm,
9274 #endif
9275 .match_home = match_home_imsm,
9276 .uuid_from_super= uuid_from_super_imsm,
9277 .getinfo_super = getinfo_super_imsm,
9278 .getinfo_super_disks = getinfo_super_disks_imsm,
9279 .update_super = update_super_imsm,
9280
9281 .avail_size = avail_size_imsm,
9282 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
9283
9284 .compare_super = compare_super_imsm,
9285
9286 .load_super = load_super_imsm,
9287 .init_super = init_super_imsm,
9288 .store_super = store_super_imsm,
9289 .free_super = free_super_imsm,
9290 .match_metadata_desc = match_metadata_desc_imsm,
9291 .container_content = container_content_imsm,
9292
9293
9294 .external = 1,
9295 .name = "imsm",
9296
9297 #ifndef MDASSEMBLE
9298 /* for mdmon */
9299 .open_new = imsm_open_new,
9300 .set_array_state= imsm_set_array_state,
9301 .set_disk = imsm_set_disk,
9302 .sync_metadata = imsm_sync_metadata,
9303 .activate_spare = imsm_activate_spare,
9304 .process_update = imsm_process_update,
9305 .prepare_update = imsm_prepare_update,
9306 #endif /* MDASSEMBLE */
9307 };