]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: FIX: UT '08imsm-overlap' fails
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 #define IMSM_DISK_FILLERS 4
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107 };
108
109 /* map selector for map managment
110 */
111 #define MAP_0 0
112 #define MAP_1 1
113 #define MAP_X -1
114
115 /* RAID map configuration infos. */
116 struct imsm_map {
117 __u32 pba_of_lba0; /* start address of partition */
118 __u32 blocks_per_member;/* blocks per member */
119 __u32 num_data_stripes; /* number of data stripes */
120 __u16 blocks_per_strip;
121 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
122 #define IMSM_T_STATE_NORMAL 0
123 #define IMSM_T_STATE_UNINITIALIZED 1
124 #define IMSM_T_STATE_DEGRADED 2
125 #define IMSM_T_STATE_FAILED 3
126 __u8 raid_level;
127 #define IMSM_T_RAID0 0
128 #define IMSM_T_RAID1 1
129 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
130 __u8 num_members; /* number of member disks */
131 __u8 num_domains; /* number of parity domains */
132 __u8 failed_disk_num; /* valid only when state is degraded */
133 __u8 ddf;
134 __u32 filler[7]; /* expansion area */
135 #define IMSM_ORD_REBUILD (1 << 24)
136 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
137 * top byte contains some flags
138 */
139 } __attribute__ ((packed));
140
141 struct imsm_vol {
142 __u32 curr_migr_unit;
143 __u32 checkpoint_id; /* id to access curr_migr_unit */
144 __u8 migr_state; /* Normal or Migrating */
145 #define MIGR_INIT 0
146 #define MIGR_REBUILD 1
147 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
148 #define MIGR_GEN_MIGR 3
149 #define MIGR_STATE_CHANGE 4
150 #define MIGR_REPAIR 5
151 __u8 migr_type; /* Initializing, Rebuilding, ... */
152 __u8 dirty;
153 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
154 __u16 verify_errors; /* number of mismatches */
155 __u16 bad_blocks; /* number of bad blocks during verify */
156 __u32 filler[4];
157 struct imsm_map map[1];
158 /* here comes another one if migr_state */
159 } __attribute__ ((packed));
160
161 struct imsm_dev {
162 __u8 volume[MAX_RAID_SERIAL_LEN];
163 __u32 size_low;
164 __u32 size_high;
165 #define DEV_BOOTABLE __cpu_to_le32(0x01)
166 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
167 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
168 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
169 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
170 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
171 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
172 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
173 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
174 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
175 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
176 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
177 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
178 __u32 status; /* Persistent RaidDev status */
179 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
180 __u8 migr_priority;
181 __u8 num_sub_vols;
182 __u8 tid;
183 __u8 cng_master_disk;
184 __u16 cache_policy;
185 __u8 cng_state;
186 __u8 cng_sub_state;
187 #define IMSM_DEV_FILLERS 10
188 __u32 filler[IMSM_DEV_FILLERS];
189 struct imsm_vol vol;
190 } __attribute__ ((packed));
191
192 struct imsm_super {
193 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
194 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
195 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
196 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
197 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
198 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
199 __u32 attributes; /* 0x34 - 0x37 */
200 __u8 num_disks; /* 0x38 Number of configured disks */
201 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
202 __u8 error_log_pos; /* 0x3A */
203 __u8 fill[1]; /* 0x3B */
204 __u32 cache_size; /* 0x3c - 0x40 in mb */
205 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
206 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
207 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
208 #define IMSM_FILLERS 35
209 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
210 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
211 /* here comes imsm_dev[num_raid_devs] */
212 /* here comes BBM logs */
213 } __attribute__ ((packed));
214
215 #define BBM_LOG_MAX_ENTRIES 254
216
217 struct bbm_log_entry {
218 __u64 defective_block_start;
219 #define UNREADABLE 0xFFFFFFFF
220 __u32 spare_block_offset;
221 __u16 remapped_marked_count;
222 __u16 disk_ordinal;
223 } __attribute__ ((__packed__));
224
225 struct bbm_log {
226 __u32 signature; /* 0xABADB10C */
227 __u32 entry_count;
228 __u32 reserved_spare_block_count; /* 0 */
229 __u32 reserved; /* 0xFFFF */
230 __u64 first_spare_lba;
231 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
232 } __attribute__ ((__packed__));
233
234
235 #ifndef MDASSEMBLE
236 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
237 #endif
238
239 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
240
241 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
242
243 #define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
244 #define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
245 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
246 */
247
248
249 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
250 * be recovered using srcMap */
251 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
252 * already been migrated and must
253 * be recovered from checkpoint area */
254 struct migr_record {
255 __u32 rec_status; /* Status used to determine how to restart
256 * migration in case it aborts
257 * in some fashion */
258 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
259 __u32 family_num; /* Family number of MPB
260 * containing the RaidDev
261 * that is migrating */
262 __u32 ascending_migr; /* True if migrating in increasing
263 * order of lbas */
264 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
265 __u32 dest_depth_per_unit; /* Num member blocks each destMap
266 * member disk
267 * advances per unit-of-operation */
268 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
269 __u32 dest_1st_member_lba; /* First member lba on first
270 * stripe of destination */
271 __u32 num_migr_units; /* Total num migration units-of-op */
272 __u32 post_migr_vol_cap; /* Size of volume after
273 * migration completes */
274 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
275 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
276 * migration ckpt record was read from
277 * (for recovered migrations) */
278 } __attribute__ ((__packed__));
279
280 static __u8 migr_type(struct imsm_dev *dev)
281 {
282 if (dev->vol.migr_type == MIGR_VERIFY &&
283 dev->status & DEV_VERIFY_AND_FIX)
284 return MIGR_REPAIR;
285 else
286 return dev->vol.migr_type;
287 }
288
289 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
290 {
291 /* for compatibility with older oroms convert MIGR_REPAIR, into
292 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
293 */
294 if (migr_type == MIGR_REPAIR) {
295 dev->vol.migr_type = MIGR_VERIFY;
296 dev->status |= DEV_VERIFY_AND_FIX;
297 } else {
298 dev->vol.migr_type = migr_type;
299 dev->status &= ~DEV_VERIFY_AND_FIX;
300 }
301 }
302
303 static unsigned int sector_count(__u32 bytes)
304 {
305 return ((bytes + (512-1)) & (~(512-1))) / 512;
306 }
307
308 static unsigned int mpb_sectors(struct imsm_super *mpb)
309 {
310 return sector_count(__le32_to_cpu(mpb->mpb_size));
311 }
312
313 struct intel_dev {
314 struct imsm_dev *dev;
315 struct intel_dev *next;
316 unsigned index;
317 };
318
319 struct intel_hba {
320 enum sys_dev_type type;
321 char *path;
322 char *pci_id;
323 struct intel_hba *next;
324 };
325
326 enum action {
327 DISK_REMOVE = 1,
328 DISK_ADD
329 };
330 /* internal representation of IMSM metadata */
331 struct intel_super {
332 union {
333 void *buf; /* O_DIRECT buffer for reading/writing metadata */
334 struct imsm_super *anchor; /* immovable parameters */
335 };
336 union {
337 void *migr_rec_buf; /* buffer for I/O operations */
338 struct migr_record *migr_rec; /* migration record */
339 };
340 size_t len; /* size of the 'buf' allocation */
341 void *next_buf; /* for realloc'ing buf from the manager */
342 size_t next_len;
343 int updates_pending; /* count of pending updates for mdmon */
344 int current_vol; /* index of raid device undergoing creation */
345 __u32 create_offset; /* common start for 'current_vol' */
346 __u32 random; /* random data for seeding new family numbers */
347 struct intel_dev *devlist;
348 struct dl {
349 struct dl *next;
350 int index;
351 __u8 serial[MAX_RAID_SERIAL_LEN];
352 int major, minor;
353 char *devname;
354 struct imsm_disk disk;
355 int fd;
356 int extent_cnt;
357 struct extent *e; /* for determining freespace @ create */
358 int raiddisk; /* slot to fill in autolayout */
359 enum action action;
360 } *disks, *current_disk;
361 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
362 active */
363 struct dl *missing; /* disks removed while we weren't looking */
364 struct bbm_log *bbm_log;
365 struct intel_hba *hba; /* device path of the raid controller for this metadata */
366 const struct imsm_orom *orom; /* platform firmware support */
367 struct intel_super *next; /* (temp) list for disambiguating family_num */
368 };
369
370 struct intel_disk {
371 struct imsm_disk disk;
372 #define IMSM_UNKNOWN_OWNER (-1)
373 int owner;
374 struct intel_disk *next;
375 };
376
377 struct extent {
378 unsigned long long start, size;
379 };
380
381 /* definitions of reshape process types */
382 enum imsm_reshape_type {
383 CH_TAKEOVER,
384 CH_MIGRATION,
385 };
386
387 /* definition of messages passed to imsm_process_update */
388 enum imsm_update_type {
389 update_activate_spare,
390 update_create_array,
391 update_kill_array,
392 update_rename_array,
393 update_add_remove_disk,
394 update_reshape_container_disks,
395 update_reshape_migration,
396 update_takeover,
397 update_general_migration_checkpoint,
398 };
399
400 struct imsm_update_activate_spare {
401 enum imsm_update_type type;
402 struct dl *dl;
403 int slot;
404 int array;
405 struct imsm_update_activate_spare *next;
406 };
407
408 struct geo_params {
409 int dev_id;
410 char *dev_name;
411 long long size;
412 int level;
413 int layout;
414 int chunksize;
415 int raid_disks;
416 };
417
418 enum takeover_direction {
419 R10_TO_R0,
420 R0_TO_R10
421 };
422 struct imsm_update_takeover {
423 enum imsm_update_type type;
424 int subarray;
425 enum takeover_direction direction;
426 };
427
428 struct imsm_update_reshape {
429 enum imsm_update_type type;
430 int old_raid_disks;
431 int new_raid_disks;
432
433 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
434 };
435
436 struct imsm_update_reshape_migration {
437 enum imsm_update_type type;
438 int old_raid_disks;
439 int new_raid_disks;
440 /* fields for array migration changes
441 */
442 int subdev;
443 int new_level;
444 int new_layout;
445 int new_chunksize;
446
447 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
448 };
449
450 struct imsm_update_general_migration_checkpoint {
451 enum imsm_update_type type;
452 __u32 curr_migr_unit;
453 };
454
455 struct disk_info {
456 __u8 serial[MAX_RAID_SERIAL_LEN];
457 };
458
459 struct imsm_update_create_array {
460 enum imsm_update_type type;
461 int dev_idx;
462 struct imsm_dev dev;
463 };
464
465 struct imsm_update_kill_array {
466 enum imsm_update_type type;
467 int dev_idx;
468 };
469
470 struct imsm_update_rename_array {
471 enum imsm_update_type type;
472 __u8 name[MAX_RAID_SERIAL_LEN];
473 int dev_idx;
474 };
475
476 struct imsm_update_add_remove_disk {
477 enum imsm_update_type type;
478 };
479
480
481 static const char *_sys_dev_type[] = {
482 [SYS_DEV_UNKNOWN] = "Unknown",
483 [SYS_DEV_SAS] = "SAS",
484 [SYS_DEV_SATA] = "SATA"
485 };
486
487 const char *get_sys_dev_type(enum sys_dev_type type)
488 {
489 if (type >= SYS_DEV_MAX)
490 type = SYS_DEV_UNKNOWN;
491
492 return _sys_dev_type[type];
493 }
494
495 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
496 {
497 struct intel_hba *result = malloc(sizeof(*result));
498 if (result) {
499 result->type = device->type;
500 result->path = strdup(device->path);
501 result->next = NULL;
502 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
503 result->pci_id++;
504 }
505 return result;
506 }
507
508 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
509 {
510 struct intel_hba *result=NULL;
511 for (result = hba; result; result = result->next) {
512 if (result->type == device->type && strcmp(result->path, device->path) == 0)
513 break;
514 }
515 return result;
516 }
517
518 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
519 {
520 struct intel_hba *hba;
521
522 /* check if disk attached to Intel HBA */
523 hba = find_intel_hba(super->hba, device);
524 if (hba != NULL)
525 return 1;
526 /* Check if HBA is already attached to super */
527 if (super->hba == NULL) {
528 super->hba = alloc_intel_hba(device);
529 return 1;
530 }
531
532 hba = super->hba;
533 /* Intel metadata allows for all disks attached to the same type HBA.
534 * Do not sypport odf HBA types mixing
535 */
536 if (device->type != hba->type)
537 return 2;
538
539 while (hba->next)
540 hba = hba->next;
541
542 hba->next = alloc_intel_hba(device);
543 return 1;
544 }
545
546 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
547 {
548 struct sys_dev *list, *elem, *prev;
549 char *disk_path;
550
551 if ((list = find_intel_devices()) == NULL)
552 return 0;
553
554 if (fd < 0)
555 disk_path = (char *) devname;
556 else
557 disk_path = diskfd_to_devpath(fd);
558
559 if (!disk_path) {
560 free_sys_dev(&list);
561 return 0;
562 }
563
564 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
565 if (path_attached_to_hba(disk_path, elem->path)) {
566 if (prev == NULL)
567 list = list->next;
568 else
569 prev->next = elem->next;
570 elem->next = NULL;
571 if (disk_path != devname)
572 free(disk_path);
573 free_sys_dev(&list);
574 return elem;
575 }
576 }
577 if (disk_path != devname)
578 free(disk_path);
579 free_sys_dev(&list);
580
581 return NULL;
582 }
583
584
585 static int find_intel_hba_capability(int fd, struct intel_super *super,
586 char *devname);
587
588 static struct supertype *match_metadata_desc_imsm(char *arg)
589 {
590 struct supertype *st;
591
592 if (strcmp(arg, "imsm") != 0 &&
593 strcmp(arg, "default") != 0
594 )
595 return NULL;
596
597 st = malloc(sizeof(*st));
598 if (!st)
599 return NULL;
600 memset(st, 0, sizeof(*st));
601 st->container_dev = NoMdDev;
602 st->ss = &super_imsm;
603 st->max_devs = IMSM_MAX_DEVICES;
604 st->minor_version = 0;
605 st->sb = NULL;
606 return st;
607 }
608
609 #ifndef MDASSEMBLE
610 static __u8 *get_imsm_version(struct imsm_super *mpb)
611 {
612 return &mpb->sig[MPB_SIG_LEN];
613 }
614 #endif
615
616 /* retrieve a disk directly from the anchor when the anchor is known to be
617 * up-to-date, currently only at load time
618 */
619 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
620 {
621 if (index >= mpb->num_disks)
622 return NULL;
623 return &mpb->disk[index];
624 }
625
626 /* retrieve the disk description based on a index of the disk
627 * in the sub-array
628 */
629 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
630 {
631 struct dl *d;
632
633 for (d = super->disks; d; d = d->next)
634 if (d->index == index)
635 return d;
636
637 return NULL;
638 }
639 /* retrieve a disk from the parsed metadata */
640 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
641 {
642 struct dl *dl;
643
644 dl = get_imsm_dl_disk(super, index);
645 if (dl)
646 return &dl->disk;
647
648 return NULL;
649 }
650
651 /* generate a checksum directly from the anchor when the anchor is known to be
652 * up-to-date, currently only at load or write_super after coalescing
653 */
654 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
655 {
656 __u32 end = mpb->mpb_size / sizeof(end);
657 __u32 *p = (__u32 *) mpb;
658 __u32 sum = 0;
659
660 while (end--) {
661 sum += __le32_to_cpu(*p);
662 p++;
663 }
664
665 return sum - __le32_to_cpu(mpb->check_sum);
666 }
667
668 static size_t sizeof_imsm_map(struct imsm_map *map)
669 {
670 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
671 }
672
673 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
674 {
675 /* A device can have 2 maps if it is in the middle of a migration.
676 * If second_map is:
677 * MAP_0 - we return the first map
678 * MAP_1 - we return the second map if it exists, else NULL
679 * MAP_X - we return the second map if it exists, else the first
680 */
681 struct imsm_map *map = &dev->vol.map[0];
682 struct imsm_map *map2 = NULL;
683
684 if (dev->vol.migr_state)
685 map2 = (void *)map + sizeof_imsm_map(map);
686
687 switch (second_map) {
688 case MAP_0:
689 break;
690 case MAP_1:
691 map = map2;
692 break;
693 case MAP_X:
694 if (map2)
695 map = map2;
696 break;
697 default:
698 map = NULL;
699 }
700 return map;
701
702 }
703
704 /* return the size of the device.
705 * migr_state increases the returned size if map[0] were to be duplicated
706 */
707 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
708 {
709 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
710 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
711
712 /* migrating means an additional map */
713 if (dev->vol.migr_state)
714 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
715 else if (migr_state)
716 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
717
718 return size;
719 }
720
721 #ifndef MDASSEMBLE
722 /* retrieve disk serial number list from a metadata update */
723 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
724 {
725 void *u = update;
726 struct disk_info *inf;
727
728 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
729 sizeof_imsm_dev(&update->dev, 0);
730
731 return inf;
732 }
733 #endif
734
735 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
736 {
737 int offset;
738 int i;
739 void *_mpb = mpb;
740
741 if (index >= mpb->num_raid_devs)
742 return NULL;
743
744 /* devices start after all disks */
745 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
746
747 for (i = 0; i <= index; i++)
748 if (i == index)
749 return _mpb + offset;
750 else
751 offset += sizeof_imsm_dev(_mpb + offset, 0);
752
753 return NULL;
754 }
755
756 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
757 {
758 struct intel_dev *dv;
759
760 if (index >= super->anchor->num_raid_devs)
761 return NULL;
762 for (dv = super->devlist; dv; dv = dv->next)
763 if (dv->index == index)
764 return dv->dev;
765 return NULL;
766 }
767
768 /*
769 * for second_map:
770 * == MAP_0 get first map
771 * == MAP_1 get second map
772 * == MAP_X than get map according to the current migr_state
773 */
774 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
775 int slot,
776 int second_map)
777 {
778 struct imsm_map *map;
779
780 map = get_imsm_map(dev, second_map);
781
782 /* top byte identifies disk under rebuild */
783 return __le32_to_cpu(map->disk_ord_tbl[slot]);
784 }
785
786 #define ord_to_idx(ord) (((ord) << 8) >> 8)
787 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
788 {
789 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
790
791 return ord_to_idx(ord);
792 }
793
794 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
795 {
796 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
797 }
798
799 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
800 {
801 int slot;
802 __u32 ord;
803
804 for (slot = 0; slot < map->num_members; slot++) {
805 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
806 if (ord_to_idx(ord) == idx)
807 return slot;
808 }
809
810 return -1;
811 }
812
813 static int get_imsm_raid_level(struct imsm_map *map)
814 {
815 if (map->raid_level == 1) {
816 if (map->num_members == 2)
817 return 1;
818 else
819 return 10;
820 }
821
822 return map->raid_level;
823 }
824
825 static int cmp_extent(const void *av, const void *bv)
826 {
827 const struct extent *a = av;
828 const struct extent *b = bv;
829 if (a->start < b->start)
830 return -1;
831 if (a->start > b->start)
832 return 1;
833 return 0;
834 }
835
836 static int count_memberships(struct dl *dl, struct intel_super *super)
837 {
838 int memberships = 0;
839 int i;
840
841 for (i = 0; i < super->anchor->num_raid_devs; i++) {
842 struct imsm_dev *dev = get_imsm_dev(super, i);
843 struct imsm_map *map = get_imsm_map(dev, MAP_0);
844
845 if (get_imsm_disk_slot(map, dl->index) >= 0)
846 memberships++;
847 }
848
849 return memberships;
850 }
851
852 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
853
854 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
855 {
856 /* find a list of used extents on the given physical device */
857 struct extent *rv, *e;
858 int i;
859 int memberships = count_memberships(dl, super);
860 __u32 reservation;
861
862 /* trim the reserved area for spares, so they can join any array
863 * regardless of whether the OROM has assigned sectors from the
864 * IMSM_RESERVED_SECTORS region
865 */
866 if (dl->index == -1)
867 reservation = imsm_min_reserved_sectors(super);
868 else
869 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
870
871 rv = malloc(sizeof(struct extent) * (memberships + 1));
872 if (!rv)
873 return NULL;
874 e = rv;
875
876 for (i = 0; i < super->anchor->num_raid_devs; i++) {
877 struct imsm_dev *dev = get_imsm_dev(super, i);
878 struct imsm_map *map = get_imsm_map(dev, MAP_0);
879
880 if (get_imsm_disk_slot(map, dl->index) >= 0) {
881 e->start = __le32_to_cpu(map->pba_of_lba0);
882 e->size = __le32_to_cpu(map->blocks_per_member);
883 e++;
884 }
885 }
886 qsort(rv, memberships, sizeof(*rv), cmp_extent);
887
888 /* determine the start of the metadata
889 * when no raid devices are defined use the default
890 * ...otherwise allow the metadata to truncate the value
891 * as is the case with older versions of imsm
892 */
893 if (memberships) {
894 struct extent *last = &rv[memberships - 1];
895 __u32 remainder;
896
897 remainder = __le32_to_cpu(dl->disk.total_blocks) -
898 (last->start + last->size);
899 /* round down to 1k block to satisfy precision of the kernel
900 * 'size' interface
901 */
902 remainder &= ~1UL;
903 /* make sure remainder is still sane */
904 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
905 remainder = ROUND_UP(super->len, 512) >> 9;
906 if (reservation > remainder)
907 reservation = remainder;
908 }
909 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
910 e->size = 0;
911 return rv;
912 }
913
914 /* try to determine how much space is reserved for metadata from
915 * the last get_extents() entry, otherwise fallback to the
916 * default
917 */
918 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
919 {
920 struct extent *e;
921 int i;
922 __u32 rv;
923
924 /* for spares just return a minimal reservation which will grow
925 * once the spare is picked up by an array
926 */
927 if (dl->index == -1)
928 return MPB_SECTOR_CNT;
929
930 e = get_extents(super, dl);
931 if (!e)
932 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
933
934 /* scroll to last entry */
935 for (i = 0; e[i].size; i++)
936 continue;
937
938 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
939
940 free(e);
941
942 return rv;
943 }
944
945 static int is_spare(struct imsm_disk *disk)
946 {
947 return (disk->status & SPARE_DISK) == SPARE_DISK;
948 }
949
950 static int is_configured(struct imsm_disk *disk)
951 {
952 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
953 }
954
955 static int is_failed(struct imsm_disk *disk)
956 {
957 return (disk->status & FAILED_DISK) == FAILED_DISK;
958 }
959
960 /* try to determine how much space is reserved for metadata from
961 * the last get_extents() entry on the smallest active disk,
962 * otherwise fallback to the default
963 */
964 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
965 {
966 struct extent *e;
967 int i;
968 __u32 min_active, remainder;
969 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
970 struct dl *dl, *dl_min = NULL;
971
972 if (!super)
973 return rv;
974
975 min_active = 0;
976 for (dl = super->disks; dl; dl = dl->next) {
977 if (dl->index < 0)
978 continue;
979 if (dl->disk.total_blocks < min_active || min_active == 0) {
980 dl_min = dl;
981 min_active = dl->disk.total_blocks;
982 }
983 }
984 if (!dl_min)
985 return rv;
986
987 /* find last lba used by subarrays on the smallest active disk */
988 e = get_extents(super, dl_min);
989 if (!e)
990 return rv;
991 for (i = 0; e[i].size; i++)
992 continue;
993
994 remainder = min_active - e[i].start;
995 free(e);
996
997 /* to give priority to recovery we should not require full
998 IMSM_RESERVED_SECTORS from the spare */
999 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1000
1001 /* if real reservation is smaller use that value */
1002 return (remainder < rv) ? remainder : rv;
1003 }
1004
1005 /* Return minimum size of a spare that can be used in this array*/
1006 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1007 {
1008 struct intel_super *super = st->sb;
1009 struct dl *dl;
1010 struct extent *e;
1011 int i;
1012 unsigned long long rv = 0;
1013
1014 if (!super)
1015 return rv;
1016 /* find first active disk in array */
1017 dl = super->disks;
1018 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1019 dl = dl->next;
1020 if (!dl)
1021 return rv;
1022 /* find last lba used by subarrays */
1023 e = get_extents(super, dl);
1024 if (!e)
1025 return rv;
1026 for (i = 0; e[i].size; i++)
1027 continue;
1028 if (i > 0)
1029 rv = e[i-1].start + e[i-1].size;
1030 free(e);
1031
1032 /* add the amount of space needed for metadata */
1033 rv = rv + imsm_min_reserved_sectors(super);
1034
1035 return rv * 512;
1036 }
1037
1038 static int is_gen_migration(struct imsm_dev *dev);
1039
1040 #ifndef MDASSEMBLE
1041 static __u64 blocks_per_migr_unit(struct intel_super *super,
1042 struct imsm_dev *dev);
1043
1044 static void print_imsm_dev(struct intel_super *super,
1045 struct imsm_dev *dev,
1046 char *uuid,
1047 int disk_idx)
1048 {
1049 __u64 sz;
1050 int slot, i;
1051 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1052 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1053 __u32 ord;
1054
1055 printf("\n");
1056 printf("[%.16s]:\n", dev->volume);
1057 printf(" UUID : %s\n", uuid);
1058 printf(" RAID Level : %d", get_imsm_raid_level(map));
1059 if (map2)
1060 printf(" <-- %d", get_imsm_raid_level(map2));
1061 printf("\n");
1062 printf(" Members : %d", map->num_members);
1063 if (map2)
1064 printf(" <-- %d", map2->num_members);
1065 printf("\n");
1066 printf(" Slots : [");
1067 for (i = 0; i < map->num_members; i++) {
1068 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1069 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1070 }
1071 printf("]");
1072 if (map2) {
1073 printf(" <-- [");
1074 for (i = 0; i < map2->num_members; i++) {
1075 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1076 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1077 }
1078 printf("]");
1079 }
1080 printf("\n");
1081 printf(" Failed disk : ");
1082 if (map->failed_disk_num == 0xff)
1083 printf("none");
1084 else
1085 printf("%i", map->failed_disk_num);
1086 printf("\n");
1087 slot = get_imsm_disk_slot(map, disk_idx);
1088 if (slot >= 0) {
1089 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1090 printf(" This Slot : %d%s\n", slot,
1091 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1092 } else
1093 printf(" This Slot : ?\n");
1094 sz = __le32_to_cpu(dev->size_high);
1095 sz <<= 32;
1096 sz += __le32_to_cpu(dev->size_low);
1097 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1098 human_size(sz * 512));
1099 sz = __le32_to_cpu(map->blocks_per_member);
1100 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1101 human_size(sz * 512));
1102 printf(" Sector Offset : %u\n",
1103 __le32_to_cpu(map->pba_of_lba0));
1104 printf(" Num Stripes : %u\n",
1105 __le32_to_cpu(map->num_data_stripes));
1106 printf(" Chunk Size : %u KiB",
1107 __le16_to_cpu(map->blocks_per_strip) / 2);
1108 if (map2)
1109 printf(" <-- %u KiB",
1110 __le16_to_cpu(map2->blocks_per_strip) / 2);
1111 printf("\n");
1112 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1113 printf(" Migrate State : ");
1114 if (dev->vol.migr_state) {
1115 if (migr_type(dev) == MIGR_INIT)
1116 printf("initialize\n");
1117 else if (migr_type(dev) == MIGR_REBUILD)
1118 printf("rebuild\n");
1119 else if (migr_type(dev) == MIGR_VERIFY)
1120 printf("check\n");
1121 else if (migr_type(dev) == MIGR_GEN_MIGR)
1122 printf("general migration\n");
1123 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1124 printf("state change\n");
1125 else if (migr_type(dev) == MIGR_REPAIR)
1126 printf("repair\n");
1127 else
1128 printf("<unknown:%d>\n", migr_type(dev));
1129 } else
1130 printf("idle\n");
1131 printf(" Map State : %s", map_state_str[map->map_state]);
1132 if (dev->vol.migr_state) {
1133 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1134
1135 printf(" <-- %s", map_state_str[map->map_state]);
1136 printf("\n Checkpoint : %u ",
1137 __le32_to_cpu(dev->vol.curr_migr_unit));
1138 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
1139 printf("(N/A)");
1140 else
1141 printf("(%llu)", (unsigned long long)
1142 blocks_per_migr_unit(super, dev));
1143 }
1144 printf("\n");
1145 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1146 }
1147
1148 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1149 {
1150 char str[MAX_RAID_SERIAL_LEN + 1];
1151 __u64 sz;
1152
1153 if (index < -1 || !disk)
1154 return;
1155
1156 printf("\n");
1157 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1158 if (index >= 0)
1159 printf(" Disk%02d Serial : %s\n", index, str);
1160 else
1161 printf(" Disk Serial : %s\n", str);
1162 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1163 is_configured(disk) ? " active" : "",
1164 is_failed(disk) ? " failed" : "");
1165 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1166 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1167 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1168 human_size(sz * 512));
1169 }
1170
1171 void examine_migr_rec_imsm(struct intel_super *super)
1172 {
1173 struct migr_record *migr_rec = super->migr_rec;
1174 struct imsm_super *mpb = super->anchor;
1175 int i;
1176
1177 for (i = 0; i < mpb->num_raid_devs; i++) {
1178 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1179 struct imsm_map *map;
1180 int slot = -1;
1181
1182 if (is_gen_migration(dev) == 0)
1183 continue;
1184
1185 printf("\nMigration Record Information:");
1186
1187 /* first map under migration */
1188 map = get_imsm_map(dev, MAP_0);
1189 if (map)
1190 slot = get_imsm_disk_slot(map, super->disks->index);
1191 if ((map == NULL) || (slot > 1) || (slot < 0)) {
1192 printf(" Empty\n ");
1193 printf("Examine one of first two disks in array\n");
1194 break;
1195 }
1196 printf("\n Status : ");
1197 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1198 printf("Normal\n");
1199 else
1200 printf("Contains Data\n");
1201 printf(" Current Unit : %u\n",
1202 __le32_to_cpu(migr_rec->curr_migr_unit));
1203 printf(" Family : %u\n",
1204 __le32_to_cpu(migr_rec->family_num));
1205 printf(" Ascending : %u\n",
1206 __le32_to_cpu(migr_rec->ascending_migr));
1207 printf(" Blocks Per Unit : %u\n",
1208 __le32_to_cpu(migr_rec->blocks_per_unit));
1209 printf(" Dest. Depth Per Unit : %u\n",
1210 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1211 printf(" Checkpoint Area pba : %u\n",
1212 __le32_to_cpu(migr_rec->ckpt_area_pba));
1213 printf(" First member lba : %u\n",
1214 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1215 printf(" Total Number of Units : %u\n",
1216 __le32_to_cpu(migr_rec->num_migr_units));
1217 printf(" Size of volume : %u\n",
1218 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1219 printf(" Expansion space for LBA64 : %u\n",
1220 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1221 printf(" Record was read from : %u\n",
1222 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1223
1224 break;
1225 }
1226 }
1227 #endif /* MDASSEMBLE */
1228 /*******************************************************************************
1229 * function: imsm_check_attributes
1230 * Description: Function checks if features represented by attributes flags
1231 * are supported by mdadm.
1232 * Parameters:
1233 * attributes - Attributes read from metadata
1234 * Returns:
1235 * 0 - passed attributes contains unsupported features flags
1236 * 1 - all features are supported
1237 ******************************************************************************/
1238 static int imsm_check_attributes(__u32 attributes)
1239 {
1240 int ret_val = 1;
1241 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1242
1243 not_supported &= ~MPB_ATTRIB_IGNORED;
1244
1245 not_supported &= attributes;
1246 if (not_supported) {
1247 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1248 (unsigned)__le32_to_cpu(not_supported));
1249 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1250 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1251 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1252 }
1253 if (not_supported & MPB_ATTRIB_2TB) {
1254 dprintf("\t\tMPB_ATTRIB_2TB\n");
1255 not_supported ^= MPB_ATTRIB_2TB;
1256 }
1257 if (not_supported & MPB_ATTRIB_RAID0) {
1258 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1259 not_supported ^= MPB_ATTRIB_RAID0;
1260 }
1261 if (not_supported & MPB_ATTRIB_RAID1) {
1262 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1263 not_supported ^= MPB_ATTRIB_RAID1;
1264 }
1265 if (not_supported & MPB_ATTRIB_RAID10) {
1266 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1267 not_supported ^= MPB_ATTRIB_RAID10;
1268 }
1269 if (not_supported & MPB_ATTRIB_RAID1E) {
1270 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1271 not_supported ^= MPB_ATTRIB_RAID1E;
1272 }
1273 if (not_supported & MPB_ATTRIB_RAID5) {
1274 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1275 not_supported ^= MPB_ATTRIB_RAID5;
1276 }
1277 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1278 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1279 not_supported ^= MPB_ATTRIB_RAIDCNG;
1280 }
1281 if (not_supported & MPB_ATTRIB_BBM) {
1282 dprintf("\t\tMPB_ATTRIB_BBM\n");
1283 not_supported ^= MPB_ATTRIB_BBM;
1284 }
1285 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1286 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1287 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1288 }
1289 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1290 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1291 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1292 }
1293 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1294 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1295 not_supported ^= MPB_ATTRIB_2TB_DISK;
1296 }
1297 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1298 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1299 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1300 }
1301 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1302 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1303 not_supported ^= MPB_ATTRIB_NEVER_USE;
1304 }
1305
1306 if (not_supported)
1307 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1308
1309 ret_val = 0;
1310 }
1311
1312 return ret_val;
1313 }
1314
1315 #ifndef MDASSEMBLE
1316 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1317
1318 static void examine_super_imsm(struct supertype *st, char *homehost)
1319 {
1320 struct intel_super *super = st->sb;
1321 struct imsm_super *mpb = super->anchor;
1322 char str[MAX_SIGNATURE_LENGTH];
1323 int i;
1324 struct mdinfo info;
1325 char nbuf[64];
1326 __u32 sum;
1327 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1328 struct dl *dl;
1329
1330 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1331 printf(" Magic : %s\n", str);
1332 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1333 printf(" Version : %s\n", get_imsm_version(mpb));
1334 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1335 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1336 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1337 printf(" Attributes : ");
1338 if (imsm_check_attributes(mpb->attributes))
1339 printf("All supported\n");
1340 else
1341 printf("not supported\n");
1342 getinfo_super_imsm(st, &info, NULL);
1343 fname_from_uuid(st, &info, nbuf, ':');
1344 printf(" UUID : %s\n", nbuf + 5);
1345 sum = __le32_to_cpu(mpb->check_sum);
1346 printf(" Checksum : %08x %s\n", sum,
1347 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1348 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1349 printf(" Disks : %d\n", mpb->num_disks);
1350 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1351 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1352 if (super->bbm_log) {
1353 struct bbm_log *log = super->bbm_log;
1354
1355 printf("\n");
1356 printf("Bad Block Management Log:\n");
1357 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1358 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1359 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1360 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1361 printf(" First Spare : %llx\n",
1362 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1363 }
1364 for (i = 0; i < mpb->num_raid_devs; i++) {
1365 struct mdinfo info;
1366 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1367
1368 super->current_vol = i;
1369 getinfo_super_imsm(st, &info, NULL);
1370 fname_from_uuid(st, &info, nbuf, ':');
1371 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1372 }
1373 for (i = 0; i < mpb->num_disks; i++) {
1374 if (i == super->disks->index)
1375 continue;
1376 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1377 }
1378
1379 for (dl = super->disks; dl; dl = dl->next)
1380 if (dl->index == -1)
1381 print_imsm_disk(&dl->disk, -1, reserved);
1382
1383 examine_migr_rec_imsm(super);
1384 }
1385
1386 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1387 {
1388 /* We just write a generic IMSM ARRAY entry */
1389 struct mdinfo info;
1390 char nbuf[64];
1391 struct intel_super *super = st->sb;
1392
1393 if (!super->anchor->num_raid_devs) {
1394 printf("ARRAY metadata=imsm\n");
1395 return;
1396 }
1397
1398 getinfo_super_imsm(st, &info, NULL);
1399 fname_from_uuid(st, &info, nbuf, ':');
1400 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1401 }
1402
1403 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1404 {
1405 /* We just write a generic IMSM ARRAY entry */
1406 struct mdinfo info;
1407 char nbuf[64];
1408 char nbuf1[64];
1409 struct intel_super *super = st->sb;
1410 int i;
1411
1412 if (!super->anchor->num_raid_devs)
1413 return;
1414
1415 getinfo_super_imsm(st, &info, NULL);
1416 fname_from_uuid(st, &info, nbuf, ':');
1417 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1418 struct imsm_dev *dev = get_imsm_dev(super, i);
1419
1420 super->current_vol = i;
1421 getinfo_super_imsm(st, &info, NULL);
1422 fname_from_uuid(st, &info, nbuf1, ':');
1423 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1424 dev->volume, nbuf + 5, i, nbuf1 + 5);
1425 }
1426 }
1427
1428 static void export_examine_super_imsm(struct supertype *st)
1429 {
1430 struct intel_super *super = st->sb;
1431 struct imsm_super *mpb = super->anchor;
1432 struct mdinfo info;
1433 char nbuf[64];
1434
1435 getinfo_super_imsm(st, &info, NULL);
1436 fname_from_uuid(st, &info, nbuf, ':');
1437 printf("MD_METADATA=imsm\n");
1438 printf("MD_LEVEL=container\n");
1439 printf("MD_UUID=%s\n", nbuf+5);
1440 printf("MD_DEVICES=%u\n", mpb->num_disks);
1441 }
1442
1443 static void detail_super_imsm(struct supertype *st, char *homehost)
1444 {
1445 struct mdinfo info;
1446 char nbuf[64];
1447
1448 getinfo_super_imsm(st, &info, NULL);
1449 fname_from_uuid(st, &info, nbuf, ':');
1450 printf("\n UUID : %s\n", nbuf + 5);
1451 }
1452
1453 static void brief_detail_super_imsm(struct supertype *st)
1454 {
1455 struct mdinfo info;
1456 char nbuf[64];
1457 getinfo_super_imsm(st, &info, NULL);
1458 fname_from_uuid(st, &info, nbuf, ':');
1459 printf(" UUID=%s", nbuf + 5);
1460 }
1461
1462 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1463 static void fd2devname(int fd, char *name);
1464
1465 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1466 {
1467 /* dump an unsorted list of devices attached to AHCI Intel storage
1468 * controller, as well as non-connected ports
1469 */
1470 int hba_len = strlen(hba_path) + 1;
1471 struct dirent *ent;
1472 DIR *dir;
1473 char *path = NULL;
1474 int err = 0;
1475 unsigned long port_mask = (1 << port_count) - 1;
1476
1477 if (port_count > (int)sizeof(port_mask) * 8) {
1478 if (verbose)
1479 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1480 return 2;
1481 }
1482
1483 /* scroll through /sys/dev/block looking for devices attached to
1484 * this hba
1485 */
1486 dir = opendir("/sys/dev/block");
1487 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1488 int fd;
1489 char model[64];
1490 char vendor[64];
1491 char buf[1024];
1492 int major, minor;
1493 char *device;
1494 char *c;
1495 int port;
1496 int type;
1497
1498 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1499 continue;
1500 path = devt_to_devpath(makedev(major, minor));
1501 if (!path)
1502 continue;
1503 if (!path_attached_to_hba(path, hba_path)) {
1504 free(path);
1505 path = NULL;
1506 continue;
1507 }
1508
1509 /* retrieve the scsi device type */
1510 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1511 if (verbose)
1512 fprintf(stderr, Name ": failed to allocate 'device'\n");
1513 err = 2;
1514 break;
1515 }
1516 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1517 if (load_sys(device, buf) != 0) {
1518 if (verbose)
1519 fprintf(stderr, Name ": failed to read device type for %s\n",
1520 path);
1521 err = 2;
1522 free(device);
1523 break;
1524 }
1525 type = strtoul(buf, NULL, 10);
1526
1527 /* if it's not a disk print the vendor and model */
1528 if (!(type == 0 || type == 7 || type == 14)) {
1529 vendor[0] = '\0';
1530 model[0] = '\0';
1531 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1532 if (load_sys(device, buf) == 0) {
1533 strncpy(vendor, buf, sizeof(vendor));
1534 vendor[sizeof(vendor) - 1] = '\0';
1535 c = (char *) &vendor[sizeof(vendor) - 1];
1536 while (isspace(*c) || *c == '\0')
1537 *c-- = '\0';
1538
1539 }
1540 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1541 if (load_sys(device, buf) == 0) {
1542 strncpy(model, buf, sizeof(model));
1543 model[sizeof(model) - 1] = '\0';
1544 c = (char *) &model[sizeof(model) - 1];
1545 while (isspace(*c) || *c == '\0')
1546 *c-- = '\0';
1547 }
1548
1549 if (vendor[0] && model[0])
1550 sprintf(buf, "%.64s %.64s", vendor, model);
1551 else
1552 switch (type) { /* numbers from hald/linux/device.c */
1553 case 1: sprintf(buf, "tape"); break;
1554 case 2: sprintf(buf, "printer"); break;
1555 case 3: sprintf(buf, "processor"); break;
1556 case 4:
1557 case 5: sprintf(buf, "cdrom"); break;
1558 case 6: sprintf(buf, "scanner"); break;
1559 case 8: sprintf(buf, "media_changer"); break;
1560 case 9: sprintf(buf, "comm"); break;
1561 case 12: sprintf(buf, "raid"); break;
1562 default: sprintf(buf, "unknown");
1563 }
1564 } else
1565 buf[0] = '\0';
1566 free(device);
1567
1568 /* chop device path to 'host%d' and calculate the port number */
1569 c = strchr(&path[hba_len], '/');
1570 if (!c) {
1571 if (verbose)
1572 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1573 err = 2;
1574 break;
1575 }
1576 *c = '\0';
1577 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1578 port -= host_base;
1579 else {
1580 if (verbose) {
1581 *c = '/'; /* repair the full string */
1582 fprintf(stderr, Name ": failed to determine port number for %s\n",
1583 path);
1584 }
1585 err = 2;
1586 break;
1587 }
1588
1589 /* mark this port as used */
1590 port_mask &= ~(1 << port);
1591
1592 /* print out the device information */
1593 if (buf[0]) {
1594 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1595 continue;
1596 }
1597
1598 fd = dev_open(ent->d_name, O_RDONLY);
1599 if (fd < 0)
1600 printf(" Port%d : - disk info unavailable -\n", port);
1601 else {
1602 fd2devname(fd, buf);
1603 printf(" Port%d : %s", port, buf);
1604 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1605 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1606 else
1607 printf(" ()\n");
1608 close(fd);
1609 }
1610 free(path);
1611 path = NULL;
1612 }
1613 if (path)
1614 free(path);
1615 if (dir)
1616 closedir(dir);
1617 if (err == 0) {
1618 int i;
1619
1620 for (i = 0; i < port_count; i++)
1621 if (port_mask & (1 << i))
1622 printf(" Port%d : - no device attached -\n", i);
1623 }
1624
1625 return err;
1626 }
1627
1628 static void print_found_intel_controllers(struct sys_dev *elem)
1629 {
1630 for (; elem; elem = elem->next) {
1631 fprintf(stderr, Name ": found Intel(R) ");
1632 if (elem->type == SYS_DEV_SATA)
1633 fprintf(stderr, "SATA ");
1634 else if (elem->type == SYS_DEV_SAS)
1635 fprintf(stderr, "SAS ");
1636 fprintf(stderr, "RAID controller");
1637 if (elem->pci_id)
1638 fprintf(stderr, " at %s", elem->pci_id);
1639 fprintf(stderr, ".\n");
1640 }
1641 fflush(stderr);
1642 }
1643
1644 static int ahci_get_port_count(const char *hba_path, int *port_count)
1645 {
1646 struct dirent *ent;
1647 DIR *dir;
1648 int host_base = -1;
1649
1650 *port_count = 0;
1651 if ((dir = opendir(hba_path)) == NULL)
1652 return -1;
1653
1654 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1655 int host;
1656
1657 if (sscanf(ent->d_name, "host%d", &host) != 1)
1658 continue;
1659 if (*port_count == 0)
1660 host_base = host;
1661 else if (host < host_base)
1662 host_base = host;
1663
1664 if (host + 1 > *port_count + host_base)
1665 *port_count = host + 1 - host_base;
1666 }
1667 closedir(dir);
1668 return host_base;
1669 }
1670
1671 static void print_imsm_capability(const struct imsm_orom *orom)
1672 {
1673 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1674 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1675 orom->hotfix_ver, orom->build);
1676 printf(" RAID Levels :%s%s%s%s%s\n",
1677 imsm_orom_has_raid0(orom) ? " raid0" : "",
1678 imsm_orom_has_raid1(orom) ? " raid1" : "",
1679 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1680 imsm_orom_has_raid10(orom) ? " raid10" : "",
1681 imsm_orom_has_raid5(orom) ? " raid5" : "");
1682 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1683 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1684 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1685 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1686 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1687 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1688 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1689 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1690 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1691 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1692 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1693 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1694 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1695 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1696 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1697 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1698 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1699 printf(" Max Disks : %d\n", orom->tds);
1700 printf(" Max Volumes : %d\n", orom->vpa);
1701 return;
1702 }
1703
1704 static int detail_platform_imsm(int verbose, int enumerate_only)
1705 {
1706 /* There are two components to imsm platform support, the ahci SATA
1707 * controller and the option-rom. To find the SATA controller we
1708 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1709 * controller with the Intel vendor id is present. This approach
1710 * allows mdadm to leverage the kernel's ahci detection logic, with the
1711 * caveat that if ahci.ko is not loaded mdadm will not be able to
1712 * detect platform raid capabilities. The option-rom resides in a
1713 * platform "Adapter ROM". We scan for its signature to retrieve the
1714 * platform capabilities. If raid support is disabled in the BIOS the
1715 * option-rom capability structure will not be available.
1716 */
1717 const struct imsm_orom *orom;
1718 struct sys_dev *list, *hba;
1719 int host_base = 0;
1720 int port_count = 0;
1721 int result=0;
1722
1723 if (enumerate_only) {
1724 if (check_env("IMSM_NO_PLATFORM"))
1725 return 0;
1726 list = find_intel_devices();
1727 if (!list)
1728 return 2;
1729 for (hba = list; hba; hba = hba->next) {
1730 orom = find_imsm_capability(hba->type);
1731 if (!orom) {
1732 result = 2;
1733 break;
1734 }
1735 }
1736 free_sys_dev(&list);
1737 return result;
1738 }
1739
1740 list = find_intel_devices();
1741 if (!list) {
1742 if (verbose)
1743 fprintf(stderr, Name ": no active Intel(R) RAID "
1744 "controller found.\n");
1745 free_sys_dev(&list);
1746 return 2;
1747 } else if (verbose)
1748 print_found_intel_controllers(list);
1749
1750 for (hba = list; hba; hba = hba->next) {
1751 orom = find_imsm_capability(hba->type);
1752 if (!orom)
1753 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1754 hba->path, get_sys_dev_type(hba->type));
1755 else
1756 print_imsm_capability(orom);
1757 }
1758
1759 for (hba = list; hba; hba = hba->next) {
1760 printf(" I/O Controller : %s (%s)\n",
1761 hba->path, get_sys_dev_type(hba->type));
1762
1763 if (hba->type == SYS_DEV_SATA) {
1764 host_base = ahci_get_port_count(hba->path, &port_count);
1765 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1766 if (verbose)
1767 fprintf(stderr, Name ": failed to enumerate "
1768 "ports on SATA controller at %s.", hba->pci_id);
1769 result |= 2;
1770 }
1771 }
1772 }
1773
1774 free_sys_dev(&list);
1775 return result;
1776 }
1777 #endif
1778
1779 static int match_home_imsm(struct supertype *st, char *homehost)
1780 {
1781 /* the imsm metadata format does not specify any host
1782 * identification information. We return -1 since we can never
1783 * confirm nor deny whether a given array is "meant" for this
1784 * host. We rely on compare_super and the 'family_num' fields to
1785 * exclude member disks that do not belong, and we rely on
1786 * mdadm.conf to specify the arrays that should be assembled.
1787 * Auto-assembly may still pick up "foreign" arrays.
1788 */
1789
1790 return -1;
1791 }
1792
1793 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1794 {
1795 /* The uuid returned here is used for:
1796 * uuid to put into bitmap file (Create, Grow)
1797 * uuid for backup header when saving critical section (Grow)
1798 * comparing uuids when re-adding a device into an array
1799 * In these cases the uuid required is that of the data-array,
1800 * not the device-set.
1801 * uuid to recognise same set when adding a missing device back
1802 * to an array. This is a uuid for the device-set.
1803 *
1804 * For each of these we can make do with a truncated
1805 * or hashed uuid rather than the original, as long as
1806 * everyone agrees.
1807 * In each case the uuid required is that of the data-array,
1808 * not the device-set.
1809 */
1810 /* imsm does not track uuid's so we synthesis one using sha1 on
1811 * - The signature (Which is constant for all imsm array, but no matter)
1812 * - the orig_family_num of the container
1813 * - the index number of the volume
1814 * - the 'serial' number of the volume.
1815 * Hopefully these are all constant.
1816 */
1817 struct intel_super *super = st->sb;
1818
1819 char buf[20];
1820 struct sha1_ctx ctx;
1821 struct imsm_dev *dev = NULL;
1822 __u32 family_num;
1823
1824 /* some mdadm versions failed to set ->orig_family_num, in which
1825 * case fall back to ->family_num. orig_family_num will be
1826 * fixed up with the first metadata update.
1827 */
1828 family_num = super->anchor->orig_family_num;
1829 if (family_num == 0)
1830 family_num = super->anchor->family_num;
1831 sha1_init_ctx(&ctx);
1832 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1833 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1834 if (super->current_vol >= 0)
1835 dev = get_imsm_dev(super, super->current_vol);
1836 if (dev) {
1837 __u32 vol = super->current_vol;
1838 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1839 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1840 }
1841 sha1_finish_ctx(&ctx, buf);
1842 memcpy(uuid, buf, 4*4);
1843 }
1844
1845 #if 0
1846 static void
1847 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1848 {
1849 __u8 *v = get_imsm_version(mpb);
1850 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1851 char major[] = { 0, 0, 0 };
1852 char minor[] = { 0 ,0, 0 };
1853 char patch[] = { 0, 0, 0 };
1854 char *ver_parse[] = { major, minor, patch };
1855 int i, j;
1856
1857 i = j = 0;
1858 while (*v != '\0' && v < end) {
1859 if (*v != '.' && j < 2)
1860 ver_parse[i][j++] = *v;
1861 else {
1862 i++;
1863 j = 0;
1864 }
1865 v++;
1866 }
1867
1868 *m = strtol(minor, NULL, 0);
1869 *p = strtol(patch, NULL, 0);
1870 }
1871 #endif
1872
1873 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1874 {
1875 /* migr_strip_size when repairing or initializing parity */
1876 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1877 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1878
1879 switch (get_imsm_raid_level(map)) {
1880 case 5:
1881 case 10:
1882 return chunk;
1883 default:
1884 return 128*1024 >> 9;
1885 }
1886 }
1887
1888 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1889 {
1890 /* migr_strip_size when rebuilding a degraded disk, no idea why
1891 * this is different than migr_strip_size_resync(), but it's good
1892 * to be compatible
1893 */
1894 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1895 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1896
1897 switch (get_imsm_raid_level(map)) {
1898 case 1:
1899 case 10:
1900 if (map->num_members % map->num_domains == 0)
1901 return 128*1024 >> 9;
1902 else
1903 return chunk;
1904 case 5:
1905 return max((__u32) 64*1024 >> 9, chunk);
1906 default:
1907 return 128*1024 >> 9;
1908 }
1909 }
1910
1911 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1912 {
1913 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1914 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1915 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1916 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1917
1918 return max((__u32) 1, hi_chunk / lo_chunk);
1919 }
1920
1921 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1922 {
1923 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1924 int level = get_imsm_raid_level(lo);
1925
1926 if (level == 1 || level == 10) {
1927 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1928
1929 return hi->num_domains;
1930 } else
1931 return num_stripes_per_unit_resync(dev);
1932 }
1933
1934 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1935 {
1936 /* named 'imsm_' because raid0, raid1 and raid10
1937 * counter-intuitively have the same number of data disks
1938 */
1939 struct imsm_map *map = get_imsm_map(dev, second_map);
1940
1941 switch (get_imsm_raid_level(map)) {
1942 case 0:
1943 case 1:
1944 case 10:
1945 return map->num_members;
1946 case 5:
1947 return map->num_members - 1;
1948 default:
1949 dprintf("%s: unsupported raid level\n", __func__);
1950 return 0;
1951 }
1952 }
1953
1954 static __u32 parity_segment_depth(struct imsm_dev *dev)
1955 {
1956 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1957 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1958
1959 switch(get_imsm_raid_level(map)) {
1960 case 1:
1961 case 10:
1962 return chunk * map->num_domains;
1963 case 5:
1964 return chunk * map->num_members;
1965 default:
1966 return chunk;
1967 }
1968 }
1969
1970 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1971 {
1972 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1973 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1974 __u32 strip = block / chunk;
1975
1976 switch (get_imsm_raid_level(map)) {
1977 case 1:
1978 case 10: {
1979 __u32 vol_strip = (strip * map->num_domains) + 1;
1980 __u32 vol_stripe = vol_strip / map->num_members;
1981
1982 return vol_stripe * chunk + block % chunk;
1983 } case 5: {
1984 __u32 stripe = strip / (map->num_members - 1);
1985
1986 return stripe * chunk + block % chunk;
1987 }
1988 default:
1989 return 0;
1990 }
1991 }
1992
1993 static __u64 blocks_per_migr_unit(struct intel_super *super,
1994 struct imsm_dev *dev)
1995 {
1996 /* calculate the conversion factor between per member 'blocks'
1997 * (md/{resync,rebuild}_start) and imsm migration units, return
1998 * 0 for the 'not migrating' and 'unsupported migration' cases
1999 */
2000 if (!dev->vol.migr_state)
2001 return 0;
2002
2003 switch (migr_type(dev)) {
2004 case MIGR_GEN_MIGR: {
2005 struct migr_record *migr_rec = super->migr_rec;
2006 return __le32_to_cpu(migr_rec->blocks_per_unit);
2007 }
2008 case MIGR_VERIFY:
2009 case MIGR_REPAIR:
2010 case MIGR_INIT: {
2011 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2012 __u32 stripes_per_unit;
2013 __u32 blocks_per_unit;
2014 __u32 parity_depth;
2015 __u32 migr_chunk;
2016 __u32 block_map;
2017 __u32 block_rel;
2018 __u32 segment;
2019 __u32 stripe;
2020 __u8 disks;
2021
2022 /* yes, this is really the translation of migr_units to
2023 * per-member blocks in the 'resync' case
2024 */
2025 stripes_per_unit = num_stripes_per_unit_resync(dev);
2026 migr_chunk = migr_strip_blocks_resync(dev);
2027 disks = imsm_num_data_members(dev, MAP_0);
2028 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2029 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2030 segment = blocks_per_unit / stripe;
2031 block_rel = blocks_per_unit - segment * stripe;
2032 parity_depth = parity_segment_depth(dev);
2033 block_map = map_migr_block(dev, block_rel);
2034 return block_map + parity_depth * segment;
2035 }
2036 case MIGR_REBUILD: {
2037 __u32 stripes_per_unit;
2038 __u32 migr_chunk;
2039
2040 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2041 migr_chunk = migr_strip_blocks_rebuild(dev);
2042 return migr_chunk * stripes_per_unit;
2043 }
2044 case MIGR_STATE_CHANGE:
2045 default:
2046 return 0;
2047 }
2048 }
2049
2050 static int imsm_level_to_layout(int level)
2051 {
2052 switch (level) {
2053 case 0:
2054 case 1:
2055 return 0;
2056 case 5:
2057 case 6:
2058 return ALGORITHM_LEFT_ASYMMETRIC;
2059 case 10:
2060 return 0x102;
2061 }
2062 return UnSet;
2063 }
2064
2065 /*******************************************************************************
2066 * Function: read_imsm_migr_rec
2067 * Description: Function reads imsm migration record from last sector of disk
2068 * Parameters:
2069 * fd : disk descriptor
2070 * super : metadata info
2071 * Returns:
2072 * 0 : success,
2073 * -1 : fail
2074 ******************************************************************************/
2075 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2076 {
2077 int ret_val = -1;
2078 unsigned long long dsize;
2079
2080 get_dev_size(fd, NULL, &dsize);
2081 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2082 fprintf(stderr,
2083 Name ": Cannot seek to anchor block: %s\n",
2084 strerror(errno));
2085 goto out;
2086 }
2087 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2088 MIGR_REC_BUF_SIZE) {
2089 fprintf(stderr,
2090 Name ": Cannot read migr record block: %s\n",
2091 strerror(errno));
2092 goto out;
2093 }
2094 ret_val = 0;
2095
2096 out:
2097 return ret_val;
2098 }
2099
2100 static struct imsm_dev *imsm_get_device_during_migration(
2101 struct intel_super *super)
2102 {
2103
2104 struct intel_dev *dv;
2105
2106 for (dv = super->devlist; dv; dv = dv->next) {
2107 if (is_gen_migration(dv->dev))
2108 return dv->dev;
2109 }
2110 return NULL;
2111 }
2112
2113 /*******************************************************************************
2114 * Function: load_imsm_migr_rec
2115 * Description: Function reads imsm migration record (it is stored at the last
2116 * sector of disk)
2117 * Parameters:
2118 * super : imsm internal array info
2119 * info : general array info
2120 * Returns:
2121 * 0 : success
2122 * -1 : fail
2123 * -2 : no migration in progress
2124 ******************************************************************************/
2125 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2126 {
2127 struct mdinfo *sd;
2128 struct dl *dl = NULL;
2129 char nm[30];
2130 int retval = -1;
2131 int fd = -1;
2132 struct imsm_dev *dev;
2133 struct imsm_map *map = NULL;
2134 int slot = -1;
2135
2136 /* find map under migration */
2137 dev = imsm_get_device_during_migration(super);
2138 /* nothing to load,no migration in progress?
2139 */
2140 if (dev == NULL)
2141 return -2;
2142 map = get_imsm_map(dev, MAP_0);
2143
2144 if (info) {
2145 for (sd = info->devs ; sd ; sd = sd->next) {
2146 /* skip spare and failed disks
2147 */
2148 if (sd->disk.raid_disk < 0)
2149 continue;
2150 /* read only from one of the first two slots */
2151 if (map)
2152 slot = get_imsm_disk_slot(map,
2153 sd->disk.raid_disk);
2154 if ((map == NULL) || (slot > 1) || (slot < 0))
2155 continue;
2156
2157 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2158 fd = dev_open(nm, O_RDONLY);
2159 if (fd >= 0)
2160 break;
2161 }
2162 }
2163 if (fd < 0) {
2164 for (dl = super->disks; dl; dl = dl->next) {
2165 /* skip spare and failed disks
2166 */
2167 if (dl->index < 0)
2168 continue;
2169 /* read only from one of the first two slots */
2170 if (map)
2171 slot = get_imsm_disk_slot(map, dl->index);
2172 if ((map == NULL) || (slot > 1) || (slot < 0))
2173 continue;
2174 sprintf(nm, "%d:%d", dl->major, dl->minor);
2175 fd = dev_open(nm, O_RDONLY);
2176 if (fd >= 0)
2177 break;
2178 }
2179 }
2180 if (fd < 0)
2181 goto out;
2182 retval = read_imsm_migr_rec(fd, super);
2183
2184 out:
2185 if (fd >= 0)
2186 close(fd);
2187 return retval;
2188 }
2189
2190 #ifndef MDASSEMBLE
2191 /*******************************************************************************
2192 * function: imsm_create_metadata_checkpoint_update
2193 * Description: It creates update for checkpoint change.
2194 * Parameters:
2195 * super : imsm internal array info
2196 * u : pointer to prepared update
2197 * Returns:
2198 * Uptate length.
2199 * If length is equal to 0, input pointer u contains no update
2200 ******************************************************************************/
2201 static int imsm_create_metadata_checkpoint_update(
2202 struct intel_super *super,
2203 struct imsm_update_general_migration_checkpoint **u)
2204 {
2205
2206 int update_memory_size = 0;
2207
2208 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2209
2210 if (u == NULL)
2211 return 0;
2212 *u = NULL;
2213
2214 /* size of all update data without anchor */
2215 update_memory_size =
2216 sizeof(struct imsm_update_general_migration_checkpoint);
2217
2218 *u = calloc(1, update_memory_size);
2219 if (*u == NULL) {
2220 dprintf("error: cannot get memory for "
2221 "imsm_create_metadata_checkpoint_update update\n");
2222 return 0;
2223 }
2224 (*u)->type = update_general_migration_checkpoint;
2225 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2226 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2227 (*u)->curr_migr_unit);
2228
2229 return update_memory_size;
2230 }
2231
2232
2233 static void imsm_update_metadata_locally(struct supertype *st,
2234 void *buf, int len);
2235
2236 /*******************************************************************************
2237 * Function: write_imsm_migr_rec
2238 * Description: Function writes imsm migration record
2239 * (at the last sector of disk)
2240 * Parameters:
2241 * super : imsm internal array info
2242 * Returns:
2243 * 0 : success
2244 * -1 : if fail
2245 ******************************************************************************/
2246 static int write_imsm_migr_rec(struct supertype *st)
2247 {
2248 struct intel_super *super = st->sb;
2249 unsigned long long dsize;
2250 char nm[30];
2251 int fd = -1;
2252 int retval = -1;
2253 struct dl *sd;
2254 int len;
2255 struct imsm_update_general_migration_checkpoint *u;
2256 struct imsm_dev *dev;
2257 struct imsm_map *map = NULL;
2258
2259 /* find map under migration */
2260 dev = imsm_get_device_during_migration(super);
2261 /* if no migration, write buffer anyway to clear migr_record
2262 * on disk based on first available device
2263 */
2264 if (dev == NULL)
2265 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2266 super->current_vol);
2267
2268 map = get_imsm_map(dev, MAP_0);
2269
2270 for (sd = super->disks ; sd ; sd = sd->next) {
2271 int slot = -1;
2272
2273 /* skip failed and spare devices */
2274 if (sd->index < 0)
2275 continue;
2276 /* write to 2 first slots only */
2277 if (map)
2278 slot = get_imsm_disk_slot(map, sd->index);
2279 if ((map == NULL) || (slot > 1) || (slot < 0))
2280 continue;
2281
2282 sprintf(nm, "%d:%d", sd->major, sd->minor);
2283 fd = dev_open(nm, O_RDWR);
2284 if (fd < 0)
2285 continue;
2286 get_dev_size(fd, NULL, &dsize);
2287 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2288 fprintf(stderr,
2289 Name ": Cannot seek to anchor block: %s\n",
2290 strerror(errno));
2291 goto out;
2292 }
2293 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2294 MIGR_REC_BUF_SIZE) {
2295 fprintf(stderr,
2296 Name ": Cannot write migr record block: %s\n",
2297 strerror(errno));
2298 goto out;
2299 }
2300 close(fd);
2301 fd = -1;
2302 }
2303 /* update checkpoint information in metadata */
2304 len = imsm_create_metadata_checkpoint_update(super, &u);
2305
2306 if (len <= 0) {
2307 dprintf("imsm: Cannot prepare update\n");
2308 goto out;
2309 }
2310 /* update metadata locally */
2311 imsm_update_metadata_locally(st, u, len);
2312 /* and possibly remotely */
2313 if (st->update_tail) {
2314 append_metadata_update(st, u, len);
2315 /* during reshape we do all work inside metadata handler
2316 * manage_reshape(), so metadata update has to be triggered
2317 * insida it
2318 */
2319 flush_metadata_updates(st);
2320 st->update_tail = &st->updates;
2321 } else
2322 free(u);
2323
2324 retval = 0;
2325 out:
2326 if (fd >= 0)
2327 close(fd);
2328 return retval;
2329 }
2330 #endif /* MDASSEMBLE */
2331
2332 /* spare/missing disks activations are not allowe when
2333 * array/container performs reshape operation, because
2334 * all arrays in container works on the same disks set
2335 */
2336 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2337 {
2338 int rv = 0;
2339 struct intel_dev *i_dev;
2340 struct imsm_dev *dev;
2341
2342 /* check whole container
2343 */
2344 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2345 dev = i_dev->dev;
2346 if (is_gen_migration(dev)) {
2347 /* No repair during any migration in container
2348 */
2349 rv = 1;
2350 break;
2351 }
2352 }
2353 return rv;
2354 }
2355
2356 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2357 {
2358 struct intel_super *super = st->sb;
2359 struct migr_record *migr_rec = super->migr_rec;
2360 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2361 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2362 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2363 struct imsm_map *map_to_analyse = map;
2364 struct dl *dl;
2365 char *devname;
2366 unsigned int component_size_alligment;
2367 int map_disks = info->array.raid_disks;
2368
2369 memset(info, 0, sizeof(*info));
2370 if (prev_map)
2371 map_to_analyse = prev_map;
2372
2373 dl = super->current_disk;
2374
2375 info->container_member = super->current_vol;
2376 info->array.raid_disks = map->num_members;
2377 info->array.level = get_imsm_raid_level(map_to_analyse);
2378 info->array.layout = imsm_level_to_layout(info->array.level);
2379 info->array.md_minor = -1;
2380 info->array.ctime = 0;
2381 info->array.utime = 0;
2382 info->array.chunk_size =
2383 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2384 info->array.state = !dev->vol.dirty;
2385 info->custom_array_size = __le32_to_cpu(dev->size_high);
2386 info->custom_array_size <<= 32;
2387 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2388 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2389
2390 if (is_gen_migration(dev)) {
2391 info->reshape_active = 1;
2392 info->new_level = get_imsm_raid_level(map);
2393 info->new_layout = imsm_level_to_layout(info->new_level);
2394 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2395 info->delta_disks = map->num_members - prev_map->num_members;
2396 if (info->delta_disks) {
2397 /* this needs to be applied to every array
2398 * in the container.
2399 */
2400 info->reshape_active = CONTAINER_RESHAPE;
2401 }
2402 /* We shape information that we give to md might have to be
2403 * modify to cope with md's requirement for reshaping arrays.
2404 * For example, when reshaping a RAID0, md requires it to be
2405 * presented as a degraded RAID4.
2406 * Also if a RAID0 is migrating to a RAID5 we need to specify
2407 * the array as already being RAID5, but the 'before' layout
2408 * is a RAID4-like layout.
2409 */
2410 switch (info->array.level) {
2411 case 0:
2412 switch(info->new_level) {
2413 case 0:
2414 /* conversion is happening as RAID4 */
2415 info->array.level = 4;
2416 info->array.raid_disks += 1;
2417 break;
2418 case 5:
2419 /* conversion is happening as RAID5 */
2420 info->array.level = 5;
2421 info->array.layout = ALGORITHM_PARITY_N;
2422 info->delta_disks -= 1;
2423 break;
2424 default:
2425 /* FIXME error message */
2426 info->array.level = UnSet;
2427 break;
2428 }
2429 break;
2430 }
2431 } else {
2432 info->new_level = UnSet;
2433 info->new_layout = UnSet;
2434 info->new_chunk = info->array.chunk_size;
2435 info->delta_disks = 0;
2436 }
2437
2438 if (dl) {
2439 info->disk.major = dl->major;
2440 info->disk.minor = dl->minor;
2441 info->disk.number = dl->index;
2442 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2443 dl->index);
2444 }
2445
2446 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2447 info->component_size =
2448 __le32_to_cpu(map_to_analyse->blocks_per_member);
2449
2450 /* check component size aligment
2451 */
2452 component_size_alligment =
2453 info->component_size % (info->array.chunk_size/512);
2454
2455 if (component_size_alligment &&
2456 (info->array.level != 1) && (info->array.level != UnSet)) {
2457 dprintf("imsm: reported component size alligned from %llu ",
2458 info->component_size);
2459 info->component_size -= component_size_alligment;
2460 dprintf("to %llu (%i).\n",
2461 info->component_size, component_size_alligment);
2462 }
2463
2464 memset(info->uuid, 0, sizeof(info->uuid));
2465 info->recovery_start = MaxSector;
2466
2467 info->reshape_progress = 0;
2468 info->resync_start = MaxSector;
2469 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2470 dev->vol.dirty) &&
2471 imsm_reshape_blocks_arrays_changes(super) == 0) {
2472 info->resync_start = 0;
2473 }
2474 if (dev->vol.migr_state) {
2475 switch (migr_type(dev)) {
2476 case MIGR_REPAIR:
2477 case MIGR_INIT: {
2478 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2479 dev);
2480 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2481
2482 info->resync_start = blocks_per_unit * units;
2483 break;
2484 }
2485 case MIGR_GEN_MIGR: {
2486 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2487 dev);
2488 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2489 unsigned long long array_blocks;
2490 int used_disks;
2491
2492 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2493 (units <
2494 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2495 (super->migr_rec->rec_status ==
2496 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2497 units++;
2498
2499 info->reshape_progress = blocks_per_unit * units;
2500
2501 dprintf("IMSM: General Migration checkpoint : %llu "
2502 "(%llu) -> read reshape progress : %llu\n",
2503 (unsigned long long)units,
2504 (unsigned long long)blocks_per_unit,
2505 info->reshape_progress);
2506
2507 used_disks = imsm_num_data_members(dev, MAP_1);
2508 if (used_disks > 0) {
2509 array_blocks = map->blocks_per_member *
2510 used_disks;
2511 /* round array size down to closest MB
2512 */
2513 info->custom_array_size = (array_blocks
2514 >> SECT_PER_MB_SHIFT)
2515 << SECT_PER_MB_SHIFT;
2516 }
2517 }
2518 case MIGR_VERIFY:
2519 /* we could emulate the checkpointing of
2520 * 'sync_action=check' migrations, but for now
2521 * we just immediately complete them
2522 */
2523 case MIGR_REBUILD:
2524 /* this is handled by container_content_imsm() */
2525 case MIGR_STATE_CHANGE:
2526 /* FIXME handle other migrations */
2527 default:
2528 /* we are not dirty, so... */
2529 info->resync_start = MaxSector;
2530 }
2531 }
2532
2533 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2534 info->name[MAX_RAID_SERIAL_LEN] = 0;
2535
2536 info->array.major_version = -1;
2537 info->array.minor_version = -2;
2538 devname = devnum2devname(st->container_dev);
2539 *info->text_version = '\0';
2540 if (devname)
2541 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2542 free(devname);
2543 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2544 uuid_from_super_imsm(st, info->uuid);
2545
2546 if (dmap) {
2547 int i, j;
2548 for (i=0; i<map_disks; i++) {
2549 dmap[i] = 0;
2550 if (i < info->array.raid_disks) {
2551 struct imsm_disk *dsk;
2552 j = get_imsm_disk_idx(dev, i, MAP_X);
2553 dsk = get_imsm_disk(super, j);
2554 if (dsk && (dsk->status & CONFIGURED_DISK))
2555 dmap[i] = 1;
2556 }
2557 }
2558 }
2559 }
2560
2561 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2562 int failed, int look_in_map);
2563
2564 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2565 int look_in_map);
2566
2567
2568 #ifndef MDASSEMBLE
2569 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2570 {
2571 if (is_gen_migration(dev)) {
2572 int failed;
2573 __u8 map_state;
2574 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2575
2576 failed = imsm_count_failed(super, dev, MAP_1);
2577 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2578 if (map2->map_state != map_state) {
2579 map2->map_state = map_state;
2580 super->updates_pending++;
2581 }
2582 }
2583 }
2584 #endif
2585
2586 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2587 {
2588 struct dl *d;
2589
2590 for (d = super->missing; d; d = d->next)
2591 if (d->index == index)
2592 return &d->disk;
2593 return NULL;
2594 }
2595
2596 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2597 {
2598 struct intel_super *super = st->sb;
2599 struct imsm_disk *disk;
2600 int map_disks = info->array.raid_disks;
2601 int max_enough = -1;
2602 int i;
2603 struct imsm_super *mpb;
2604
2605 if (super->current_vol >= 0) {
2606 getinfo_super_imsm_volume(st, info, map);
2607 return;
2608 }
2609 memset(info, 0, sizeof(*info));
2610
2611 /* Set raid_disks to zero so that Assemble will always pull in valid
2612 * spares
2613 */
2614 info->array.raid_disks = 0;
2615 info->array.level = LEVEL_CONTAINER;
2616 info->array.layout = 0;
2617 info->array.md_minor = -1;
2618 info->array.ctime = 0; /* N/A for imsm */
2619 info->array.utime = 0;
2620 info->array.chunk_size = 0;
2621
2622 info->disk.major = 0;
2623 info->disk.minor = 0;
2624 info->disk.raid_disk = -1;
2625 info->reshape_active = 0;
2626 info->array.major_version = -1;
2627 info->array.minor_version = -2;
2628 strcpy(info->text_version, "imsm");
2629 info->safe_mode_delay = 0;
2630 info->disk.number = -1;
2631 info->disk.state = 0;
2632 info->name[0] = 0;
2633 info->recovery_start = MaxSector;
2634 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2635
2636 /* do we have the all the insync disks that we expect? */
2637 mpb = super->anchor;
2638
2639 for (i = 0; i < mpb->num_raid_devs; i++) {
2640 struct imsm_dev *dev = get_imsm_dev(super, i);
2641 int failed, enough, j, missing = 0;
2642 struct imsm_map *map;
2643 __u8 state;
2644
2645 failed = imsm_count_failed(super, dev, MAP_0);
2646 state = imsm_check_degraded(super, dev, failed, MAP_0);
2647 map = get_imsm_map(dev, MAP_0);
2648
2649 /* any newly missing disks?
2650 * (catches single-degraded vs double-degraded)
2651 */
2652 for (j = 0; j < map->num_members; j++) {
2653 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
2654 __u32 idx = ord_to_idx(ord);
2655
2656 if (!(ord & IMSM_ORD_REBUILD) &&
2657 get_imsm_missing(super, idx)) {
2658 missing = 1;
2659 break;
2660 }
2661 }
2662
2663 if (state == IMSM_T_STATE_FAILED)
2664 enough = -1;
2665 else if (state == IMSM_T_STATE_DEGRADED &&
2666 (state != map->map_state || missing))
2667 enough = 0;
2668 else /* we're normal, or already degraded */
2669 enough = 1;
2670
2671 /* in the missing/failed disk case check to see
2672 * if at least one array is runnable
2673 */
2674 max_enough = max(max_enough, enough);
2675 }
2676 dprintf("%s: enough: %d\n", __func__, max_enough);
2677 info->container_enough = max_enough;
2678
2679 if (super->disks) {
2680 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2681
2682 disk = &super->disks->disk;
2683 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2684 info->component_size = reserved;
2685 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2686 /* we don't change info->disk.raid_disk here because
2687 * this state will be finalized in mdmon after we have
2688 * found the 'most fresh' version of the metadata
2689 */
2690 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2691 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2692 }
2693
2694 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2695 * ->compare_super may have updated the 'num_raid_devs' field for spares
2696 */
2697 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2698 uuid_from_super_imsm(st, info->uuid);
2699 else
2700 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2701
2702 /* I don't know how to compute 'map' on imsm, so use safe default */
2703 if (map) {
2704 int i;
2705 for (i = 0; i < map_disks; i++)
2706 map[i] = 1;
2707 }
2708
2709 }
2710
2711 /* allocates memory and fills disk in mdinfo structure
2712 * for each disk in array */
2713 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2714 {
2715 struct mdinfo *mddev = NULL;
2716 struct intel_super *super = st->sb;
2717 struct imsm_disk *disk;
2718 int count = 0;
2719 struct dl *dl;
2720 if (!super || !super->disks)
2721 return NULL;
2722 dl = super->disks;
2723 mddev = malloc(sizeof(*mddev));
2724 if (!mddev) {
2725 fprintf(stderr, Name ": Failed to allocate memory.\n");
2726 return NULL;
2727 }
2728 memset(mddev, 0, sizeof(*mddev));
2729 while (dl) {
2730 struct mdinfo *tmp;
2731 disk = &dl->disk;
2732 tmp = malloc(sizeof(*tmp));
2733 if (!tmp) {
2734 fprintf(stderr, Name ": Failed to allocate memory.\n");
2735 if (mddev)
2736 sysfs_free(mddev);
2737 return NULL;
2738 }
2739 memset(tmp, 0, sizeof(*tmp));
2740 if (mddev->devs)
2741 tmp->next = mddev->devs;
2742 mddev->devs = tmp;
2743 tmp->disk.number = count++;
2744 tmp->disk.major = dl->major;
2745 tmp->disk.minor = dl->minor;
2746 tmp->disk.state = is_configured(disk) ?
2747 (1 << MD_DISK_ACTIVE) : 0;
2748 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2749 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2750 tmp->disk.raid_disk = -1;
2751 dl = dl->next;
2752 }
2753 return mddev;
2754 }
2755
2756 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2757 char *update, char *devname, int verbose,
2758 int uuid_set, char *homehost)
2759 {
2760 /* For 'assemble' and 'force' we need to return non-zero if any
2761 * change was made. For others, the return value is ignored.
2762 * Update options are:
2763 * force-one : This device looks a bit old but needs to be included,
2764 * update age info appropriately.
2765 * assemble: clear any 'faulty' flag to allow this device to
2766 * be assembled.
2767 * force-array: Array is degraded but being forced, mark it clean
2768 * if that will be needed to assemble it.
2769 *
2770 * newdev: not used ????
2771 * grow: Array has gained a new device - this is currently for
2772 * linear only
2773 * resync: mark as dirty so a resync will happen.
2774 * name: update the name - preserving the homehost
2775 * uuid: Change the uuid of the array to match watch is given
2776 *
2777 * Following are not relevant for this imsm:
2778 * sparc2.2 : update from old dodgey metadata
2779 * super-minor: change the preferred_minor number
2780 * summaries: update redundant counters.
2781 * homehost: update the recorded homehost
2782 * _reshape_progress: record new reshape_progress position.
2783 */
2784 int rv = 1;
2785 struct intel_super *super = st->sb;
2786 struct imsm_super *mpb;
2787
2788 /* we can only update container info */
2789 if (!super || super->current_vol >= 0 || !super->anchor)
2790 return 1;
2791
2792 mpb = super->anchor;
2793
2794 if (strcmp(update, "uuid") == 0) {
2795 /* We take this to mean that the family_num should be updated.
2796 * However that is much smaller than the uuid so we cannot really
2797 * allow an explicit uuid to be given. And it is hard to reliably
2798 * know if one was.
2799 * So if !uuid_set we know the current uuid is random and just used
2800 * the first 'int' and copy it to the other 3 positions.
2801 * Otherwise we require the 4 'int's to be the same as would be the
2802 * case if we are using a random uuid. So an explicit uuid will be
2803 * accepted as long as all for ints are the same... which shouldn't hurt
2804 */
2805 if (!uuid_set) {
2806 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
2807 rv = 0;
2808 } else {
2809 if (info->uuid[0] != info->uuid[1] ||
2810 info->uuid[1] != info->uuid[2] ||
2811 info->uuid[2] != info->uuid[3])
2812 rv = -1;
2813 else
2814 rv = 0;
2815 }
2816 if (rv == 0)
2817 mpb->orig_family_num = info->uuid[0];
2818 } else if (strcmp(update, "assemble") == 0)
2819 rv = 0;
2820 else
2821 rv = -1;
2822
2823 /* successful update? recompute checksum */
2824 if (rv == 0)
2825 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2826
2827 return rv;
2828 }
2829
2830 static size_t disks_to_mpb_size(int disks)
2831 {
2832 size_t size;
2833
2834 size = sizeof(struct imsm_super);
2835 size += (disks - 1) * sizeof(struct imsm_disk);
2836 size += 2 * sizeof(struct imsm_dev);
2837 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2838 size += (4 - 2) * sizeof(struct imsm_map);
2839 /* 4 possible disk_ord_tbl's */
2840 size += 4 * (disks - 1) * sizeof(__u32);
2841
2842 return size;
2843 }
2844
2845 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2846 {
2847 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2848 return 0;
2849
2850 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2851 }
2852
2853 static void free_devlist(struct intel_super *super)
2854 {
2855 struct intel_dev *dv;
2856
2857 while (super->devlist) {
2858 dv = super->devlist->next;
2859 free(super->devlist->dev);
2860 free(super->devlist);
2861 super->devlist = dv;
2862 }
2863 }
2864
2865 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2866 {
2867 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2868 }
2869
2870 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2871 {
2872 /*
2873 * return:
2874 * 0 same, or first was empty, and second was copied
2875 * 1 second had wrong number
2876 * 2 wrong uuid
2877 * 3 wrong other info
2878 */
2879 struct intel_super *first = st->sb;
2880 struct intel_super *sec = tst->sb;
2881
2882 if (!first) {
2883 st->sb = tst->sb;
2884 tst->sb = NULL;
2885 return 0;
2886 }
2887 /* in platform dependent environment test if the disks
2888 * use the same Intel hba
2889 */
2890 if (!check_env("IMSM_NO_PLATFORM")) {
2891 if (!first->hba || !sec->hba ||
2892 (first->hba->type != sec->hba->type)) {
2893 fprintf(stderr,
2894 "HBAs of devices does not match %s != %s\n",
2895 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2896 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2897 return 3;
2898 }
2899 }
2900
2901 /* if an anchor does not have num_raid_devs set then it is a free
2902 * floating spare
2903 */
2904 if (first->anchor->num_raid_devs > 0 &&
2905 sec->anchor->num_raid_devs > 0) {
2906 /* Determine if these disks might ever have been
2907 * related. Further disambiguation can only take place
2908 * in load_super_imsm_all
2909 */
2910 __u32 first_family = first->anchor->orig_family_num;
2911 __u32 sec_family = sec->anchor->orig_family_num;
2912
2913 if (memcmp(first->anchor->sig, sec->anchor->sig,
2914 MAX_SIGNATURE_LENGTH) != 0)
2915 return 3;
2916
2917 if (first_family == 0)
2918 first_family = first->anchor->family_num;
2919 if (sec_family == 0)
2920 sec_family = sec->anchor->family_num;
2921
2922 if (first_family != sec_family)
2923 return 3;
2924
2925 }
2926
2927
2928 /* if 'first' is a spare promote it to a populated mpb with sec's
2929 * family number
2930 */
2931 if (first->anchor->num_raid_devs == 0 &&
2932 sec->anchor->num_raid_devs > 0) {
2933 int i;
2934 struct intel_dev *dv;
2935 struct imsm_dev *dev;
2936
2937 /* we need to copy raid device info from sec if an allocation
2938 * fails here we don't associate the spare
2939 */
2940 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2941 dv = malloc(sizeof(*dv));
2942 if (!dv)
2943 break;
2944 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2945 if (!dev) {
2946 free(dv);
2947 break;
2948 }
2949 dv->dev = dev;
2950 dv->index = i;
2951 dv->next = first->devlist;
2952 first->devlist = dv;
2953 }
2954 if (i < sec->anchor->num_raid_devs) {
2955 /* allocation failure */
2956 free_devlist(first);
2957 fprintf(stderr, "imsm: failed to associate spare\n");
2958 return 3;
2959 }
2960 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2961 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2962 first->anchor->family_num = sec->anchor->family_num;
2963 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2964 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2965 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2966 }
2967
2968 return 0;
2969 }
2970
2971 static void fd2devname(int fd, char *name)
2972 {
2973 struct stat st;
2974 char path[256];
2975 char dname[PATH_MAX];
2976 char *nm;
2977 int rv;
2978
2979 name[0] = '\0';
2980 if (fstat(fd, &st) != 0)
2981 return;
2982 sprintf(path, "/sys/dev/block/%d:%d",
2983 major(st.st_rdev), minor(st.st_rdev));
2984
2985 rv = readlink(path, dname, sizeof(dname)-1);
2986 if (rv <= 0)
2987 return;
2988
2989 dname[rv] = '\0';
2990 nm = strrchr(dname, '/');
2991 if (nm) {
2992 nm++;
2993 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2994 }
2995 }
2996
2997 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2998
2999 static int imsm_read_serial(int fd, char *devname,
3000 __u8 serial[MAX_RAID_SERIAL_LEN])
3001 {
3002 unsigned char scsi_serial[255];
3003 int rv;
3004 int rsp_len;
3005 int len;
3006 char *dest;
3007 char *src;
3008 char *rsp_buf;
3009 int i;
3010
3011 memset(scsi_serial, 0, sizeof(scsi_serial));
3012
3013 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3014
3015 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3016 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3017 fd2devname(fd, (char *) serial);
3018 return 0;
3019 }
3020
3021 if (rv != 0) {
3022 if (devname)
3023 fprintf(stderr,
3024 Name ": Failed to retrieve serial for %s\n",
3025 devname);
3026 return rv;
3027 }
3028
3029 rsp_len = scsi_serial[3];
3030 if (!rsp_len) {
3031 if (devname)
3032 fprintf(stderr,
3033 Name ": Failed to retrieve serial for %s\n",
3034 devname);
3035 return 2;
3036 }
3037 rsp_buf = (char *) &scsi_serial[4];
3038
3039 /* trim all whitespace and non-printable characters and convert
3040 * ':' to ';'
3041 */
3042 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3043 src = &rsp_buf[i];
3044 if (*src > 0x20) {
3045 /* ':' is reserved for use in placeholder serial
3046 * numbers for missing disks
3047 */
3048 if (*src == ':')
3049 *dest++ = ';';
3050 else
3051 *dest++ = *src;
3052 }
3053 }
3054 len = dest - rsp_buf;
3055 dest = rsp_buf;
3056
3057 /* truncate leading characters */
3058 if (len > MAX_RAID_SERIAL_LEN) {
3059 dest += len - MAX_RAID_SERIAL_LEN;
3060 len = MAX_RAID_SERIAL_LEN;
3061 }
3062
3063 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3064 memcpy(serial, dest, len);
3065
3066 return 0;
3067 }
3068
3069 static int serialcmp(__u8 *s1, __u8 *s2)
3070 {
3071 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3072 }
3073
3074 static void serialcpy(__u8 *dest, __u8 *src)
3075 {
3076 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3077 }
3078
3079 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3080 {
3081 struct dl *dl;
3082
3083 for (dl = super->disks; dl; dl = dl->next)
3084 if (serialcmp(dl->serial, serial) == 0)
3085 break;
3086
3087 return dl;
3088 }
3089
3090 static struct imsm_disk *
3091 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3092 {
3093 int i;
3094
3095 for (i = 0; i < mpb->num_disks; i++) {
3096 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3097
3098 if (serialcmp(disk->serial, serial) == 0) {
3099 if (idx)
3100 *idx = i;
3101 return disk;
3102 }
3103 }
3104
3105 return NULL;
3106 }
3107
3108 static int
3109 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3110 {
3111 struct imsm_disk *disk;
3112 struct dl *dl;
3113 struct stat stb;
3114 int rv;
3115 char name[40];
3116 __u8 serial[MAX_RAID_SERIAL_LEN];
3117
3118 rv = imsm_read_serial(fd, devname, serial);
3119
3120 if (rv != 0)
3121 return 2;
3122
3123 dl = calloc(1, sizeof(*dl));
3124 if (!dl) {
3125 if (devname)
3126 fprintf(stderr,
3127 Name ": failed to allocate disk buffer for %s\n",
3128 devname);
3129 return 2;
3130 }
3131
3132 fstat(fd, &stb);
3133 dl->major = major(stb.st_rdev);
3134 dl->minor = minor(stb.st_rdev);
3135 dl->next = super->disks;
3136 dl->fd = keep_fd ? fd : -1;
3137 assert(super->disks == NULL);
3138 super->disks = dl;
3139 serialcpy(dl->serial, serial);
3140 dl->index = -2;
3141 dl->e = NULL;
3142 fd2devname(fd, name);
3143 if (devname)
3144 dl->devname = strdup(devname);
3145 else
3146 dl->devname = strdup(name);
3147
3148 /* look up this disk's index in the current anchor */
3149 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3150 if (disk) {
3151 dl->disk = *disk;
3152 /* only set index on disks that are a member of a
3153 * populated contianer, i.e. one with raid_devs
3154 */
3155 if (is_failed(&dl->disk))
3156 dl->index = -2;
3157 else if (is_spare(&dl->disk))
3158 dl->index = -1;
3159 }
3160
3161 return 0;
3162 }
3163
3164 #ifndef MDASSEMBLE
3165 /* When migrating map0 contains the 'destination' state while map1
3166 * contains the current state. When not migrating map0 contains the
3167 * current state. This routine assumes that map[0].map_state is set to
3168 * the current array state before being called.
3169 *
3170 * Migration is indicated by one of the following states
3171 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3172 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3173 * map1state=unitialized)
3174 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3175 * map1state=normal)
3176 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3177 * map1state=degraded)
3178 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3179 * map1state=normal)
3180 */
3181 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3182 __u8 to_state, int migr_type)
3183 {
3184 struct imsm_map *dest;
3185 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3186
3187 dev->vol.migr_state = 1;
3188 set_migr_type(dev, migr_type);
3189 dev->vol.curr_migr_unit = 0;
3190 dest = get_imsm_map(dev, MAP_1);
3191
3192 /* duplicate and then set the target end state in map[0] */
3193 memcpy(dest, src, sizeof_imsm_map(src));
3194 if ((migr_type == MIGR_REBUILD) ||
3195 (migr_type == MIGR_GEN_MIGR)) {
3196 __u32 ord;
3197 int i;
3198
3199 for (i = 0; i < src->num_members; i++) {
3200 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3201 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3202 }
3203 }
3204
3205 if (migr_type == MIGR_GEN_MIGR)
3206 /* Clear migration record */
3207 memset(super->migr_rec, 0, sizeof(struct migr_record));
3208
3209 src->map_state = to_state;
3210 }
3211
3212 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3213 __u8 map_state)
3214 {
3215 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3216 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3217 MAP_0 : MAP_1);
3218 int i, j;
3219
3220 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3221 * completed in the last migration.
3222 *
3223 * FIXME add support for raid-level-migration
3224 */
3225 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3226 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3227 /* when final map state is other than expected
3228 * merge maps (not for migration)
3229 */
3230 int failed;
3231
3232 for (i = 0; i < prev->num_members; i++)
3233 for (j = 0; j < map->num_members; j++)
3234 /* during online capacity expansion
3235 * disks position can be changed
3236 * if takeover is used
3237 */
3238 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3239 ord_to_idx(prev->disk_ord_tbl[i])) {
3240 map->disk_ord_tbl[j] |=
3241 prev->disk_ord_tbl[i];
3242 break;
3243 }
3244 failed = imsm_count_failed(super, dev, MAP_0);
3245 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3246 }
3247
3248 dev->vol.migr_state = 0;
3249 set_migr_type(dev, 0);
3250 dev->vol.curr_migr_unit = 0;
3251 map->map_state = map_state;
3252 }
3253 #endif
3254
3255 static int parse_raid_devices(struct intel_super *super)
3256 {
3257 int i;
3258 struct imsm_dev *dev_new;
3259 size_t len, len_migr;
3260 size_t max_len = 0;
3261 size_t space_needed = 0;
3262 struct imsm_super *mpb = super->anchor;
3263
3264 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3265 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3266 struct intel_dev *dv;
3267
3268 len = sizeof_imsm_dev(dev_iter, 0);
3269 len_migr = sizeof_imsm_dev(dev_iter, 1);
3270 if (len_migr > len)
3271 space_needed += len_migr - len;
3272
3273 dv = malloc(sizeof(*dv));
3274 if (!dv)
3275 return 1;
3276 if (max_len < len_migr)
3277 max_len = len_migr;
3278 if (max_len > len_migr)
3279 space_needed += max_len - len_migr;
3280 dev_new = malloc(max_len);
3281 if (!dev_new) {
3282 free(dv);
3283 return 1;
3284 }
3285 imsm_copy_dev(dev_new, dev_iter);
3286 dv->dev = dev_new;
3287 dv->index = i;
3288 dv->next = super->devlist;
3289 super->devlist = dv;
3290 }
3291
3292 /* ensure that super->buf is large enough when all raid devices
3293 * are migrating
3294 */
3295 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3296 void *buf;
3297
3298 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3299 if (posix_memalign(&buf, 512, len) != 0)
3300 return 1;
3301
3302 memcpy(buf, super->buf, super->len);
3303 memset(buf + super->len, 0, len - super->len);
3304 free(super->buf);
3305 super->buf = buf;
3306 super->len = len;
3307 }
3308
3309 return 0;
3310 }
3311
3312 /* retrieve a pointer to the bbm log which starts after all raid devices */
3313 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3314 {
3315 void *ptr = NULL;
3316
3317 if (__le32_to_cpu(mpb->bbm_log_size)) {
3318 ptr = mpb;
3319 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3320 }
3321
3322 return ptr;
3323 }
3324
3325 /*******************************************************************************
3326 * Function: check_mpb_migr_compatibility
3327 * Description: Function checks for unsupported migration features:
3328 * - migration optimization area (pba_of_lba0)
3329 * - descending reshape (ascending_migr)
3330 * Parameters:
3331 * super : imsm metadata information
3332 * Returns:
3333 * 0 : migration is compatible
3334 * -1 : migration is not compatible
3335 ******************************************************************************/
3336 int check_mpb_migr_compatibility(struct intel_super *super)
3337 {
3338 struct imsm_map *map0, *map1;
3339 struct migr_record *migr_rec = super->migr_rec;
3340 int i;
3341
3342 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3343 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3344
3345 if (dev_iter &&
3346 dev_iter->vol.migr_state == 1 &&
3347 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3348 /* This device is migrating */
3349 map0 = get_imsm_map(dev_iter, MAP_0);
3350 map1 = get_imsm_map(dev_iter, MAP_1);
3351 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3352 /* migration optimization area was used */
3353 return -1;
3354 if (migr_rec->ascending_migr == 0
3355 && migr_rec->dest_depth_per_unit > 0)
3356 /* descending reshape not supported yet */
3357 return -1;
3358 }
3359 }
3360 return 0;
3361 }
3362
3363 static void __free_imsm(struct intel_super *super, int free_disks);
3364
3365 /* load_imsm_mpb - read matrix metadata
3366 * allocates super->mpb to be freed by free_imsm
3367 */
3368 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3369 {
3370 unsigned long long dsize;
3371 unsigned long long sectors;
3372 struct stat;
3373 struct imsm_super *anchor;
3374 __u32 check_sum;
3375
3376 get_dev_size(fd, NULL, &dsize);
3377 if (dsize < 1024) {
3378 if (devname)
3379 fprintf(stderr,
3380 Name ": %s: device to small for imsm\n",
3381 devname);
3382 return 1;
3383 }
3384
3385 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3386 if (devname)
3387 fprintf(stderr, Name
3388 ": Cannot seek to anchor block on %s: %s\n",
3389 devname, strerror(errno));
3390 return 1;
3391 }
3392
3393 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3394 if (devname)
3395 fprintf(stderr,
3396 Name ": Failed to allocate imsm anchor buffer"
3397 " on %s\n", devname);
3398 return 1;
3399 }
3400 if (read(fd, anchor, 512) != 512) {
3401 if (devname)
3402 fprintf(stderr,
3403 Name ": Cannot read anchor block on %s: %s\n",
3404 devname, strerror(errno));
3405 free(anchor);
3406 return 1;
3407 }
3408
3409 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3410 if (devname)
3411 fprintf(stderr,
3412 Name ": no IMSM anchor on %s\n", devname);
3413 free(anchor);
3414 return 2;
3415 }
3416
3417 __free_imsm(super, 0);
3418 /* reload capability and hba */
3419
3420 /* capability and hba must be updated with new super allocation */
3421 find_intel_hba_capability(fd, super, devname);
3422 super->len = ROUND_UP(anchor->mpb_size, 512);
3423 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3424 if (devname)
3425 fprintf(stderr,
3426 Name ": unable to allocate %zu byte mpb buffer\n",
3427 super->len);
3428 free(anchor);
3429 return 2;
3430 }
3431 memcpy(super->buf, anchor, 512);
3432
3433 sectors = mpb_sectors(anchor) - 1;
3434 free(anchor);
3435
3436 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
3437 fprintf(stderr, Name
3438 ": %s could not allocate migr_rec buffer\n", __func__);
3439 free(super->buf);
3440 return 2;
3441 }
3442
3443 if (!sectors) {
3444 check_sum = __gen_imsm_checksum(super->anchor);
3445 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3446 if (devname)
3447 fprintf(stderr,
3448 Name ": IMSM checksum %x != %x on %s\n",
3449 check_sum,
3450 __le32_to_cpu(super->anchor->check_sum),
3451 devname);
3452 return 2;
3453 }
3454
3455 return 0;
3456 }
3457
3458 /* read the extended mpb */
3459 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3460 if (devname)
3461 fprintf(stderr,
3462 Name ": Cannot seek to extended mpb on %s: %s\n",
3463 devname, strerror(errno));
3464 return 1;
3465 }
3466
3467 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3468 if (devname)
3469 fprintf(stderr,
3470 Name ": Cannot read extended mpb on %s: %s\n",
3471 devname, strerror(errno));
3472 return 2;
3473 }
3474
3475 check_sum = __gen_imsm_checksum(super->anchor);
3476 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3477 if (devname)
3478 fprintf(stderr,
3479 Name ": IMSM checksum %x != %x on %s\n",
3480 check_sum, __le32_to_cpu(super->anchor->check_sum),
3481 devname);
3482 return 3;
3483 }
3484
3485 /* FIXME the BBM log is disk specific so we cannot use this global
3486 * buffer for all disks. Ok for now since we only look at the global
3487 * bbm_log_size parameter to gate assembly
3488 */
3489 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3490
3491 return 0;
3492 }
3493
3494 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3495
3496 static int
3497 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3498 {
3499 int err;
3500
3501 err = load_imsm_mpb(fd, super, devname);
3502 if (err)
3503 return err;
3504 err = load_imsm_disk(fd, super, devname, keep_fd);
3505 if (err)
3506 return err;
3507 err = parse_raid_devices(super);
3508
3509 return err;
3510 }
3511
3512 static void __free_imsm_disk(struct dl *d)
3513 {
3514 if (d->fd >= 0)
3515 close(d->fd);
3516 if (d->devname)
3517 free(d->devname);
3518 if (d->e)
3519 free(d->e);
3520 free(d);
3521
3522 }
3523
3524 static void free_imsm_disks(struct intel_super *super)
3525 {
3526 struct dl *d;
3527
3528 while (super->disks) {
3529 d = super->disks;
3530 super->disks = d->next;
3531 __free_imsm_disk(d);
3532 }
3533 while (super->disk_mgmt_list) {
3534 d = super->disk_mgmt_list;
3535 super->disk_mgmt_list = d->next;
3536 __free_imsm_disk(d);
3537 }
3538 while (super->missing) {
3539 d = super->missing;
3540 super->missing = d->next;
3541 __free_imsm_disk(d);
3542 }
3543
3544 }
3545
3546 /* free all the pieces hanging off of a super pointer */
3547 static void __free_imsm(struct intel_super *super, int free_disks)
3548 {
3549 struct intel_hba *elem, *next;
3550
3551 if (super->buf) {
3552 free(super->buf);
3553 super->buf = NULL;
3554 }
3555 /* unlink capability description */
3556 super->orom = NULL;
3557 if (super->migr_rec_buf) {
3558 free(super->migr_rec_buf);
3559 super->migr_rec_buf = NULL;
3560 }
3561 if (free_disks)
3562 free_imsm_disks(super);
3563 free_devlist(super);
3564 elem = super->hba;
3565 while (elem) {
3566 if (elem->path)
3567 free((void *)elem->path);
3568 next = elem->next;
3569 free(elem);
3570 elem = next;
3571 }
3572 super->hba = NULL;
3573 }
3574
3575 static void free_imsm(struct intel_super *super)
3576 {
3577 __free_imsm(super, 1);
3578 free(super);
3579 }
3580
3581 static void free_super_imsm(struct supertype *st)
3582 {
3583 struct intel_super *super = st->sb;
3584
3585 if (!super)
3586 return;
3587
3588 free_imsm(super);
3589 st->sb = NULL;
3590 }
3591
3592 static struct intel_super *alloc_super(void)
3593 {
3594 struct intel_super *super = malloc(sizeof(*super));
3595
3596 if (super) {
3597 memset(super, 0, sizeof(*super));
3598 super->current_vol = -1;
3599 super->create_offset = ~((__u32 ) 0);
3600 }
3601 return super;
3602 }
3603
3604 /*
3605 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3606 */
3607 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3608 {
3609 struct sys_dev *hba_name;
3610 int rv = 0;
3611
3612 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3613 super->orom = NULL;
3614 super->hba = NULL;
3615 return 0;
3616 }
3617 hba_name = find_disk_attached_hba(fd, NULL);
3618 if (!hba_name) {
3619 if (devname)
3620 fprintf(stderr,
3621 Name ": %s is not attached to Intel(R) RAID controller.\n",
3622 devname);
3623 return 1;
3624 }
3625 rv = attach_hba_to_super(super, hba_name);
3626 if (rv == 2) {
3627 if (devname) {
3628 struct intel_hba *hba = super->hba;
3629
3630 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3631 "controller (%s),\n"
3632 " but the container is assigned to Intel(R) "
3633 "%s RAID controller (",
3634 devname,
3635 hba_name->path,
3636 hba_name->pci_id ? : "Err!",
3637 get_sys_dev_type(hba_name->type));
3638
3639 while (hba) {
3640 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3641 if (hba->next)
3642 fprintf(stderr, ", ");
3643 hba = hba->next;
3644 }
3645
3646 fprintf(stderr, ").\n"
3647 " Mixing devices attached to different controllers "
3648 "is not allowed.\n");
3649 }
3650 free_sys_dev(&hba_name);
3651 return 2;
3652 }
3653 super->orom = find_imsm_capability(hba_name->type);
3654 free_sys_dev(&hba_name);
3655 if (!super->orom)
3656 return 3;
3657 return 0;
3658 }
3659
3660 /* find_missing - helper routine for load_super_imsm_all that identifies
3661 * disks that have disappeared from the system. This routine relies on
3662 * the mpb being uptodate, which it is at load time.
3663 */
3664 static int find_missing(struct intel_super *super)
3665 {
3666 int i;
3667 struct imsm_super *mpb = super->anchor;
3668 struct dl *dl;
3669 struct imsm_disk *disk;
3670
3671 for (i = 0; i < mpb->num_disks; i++) {
3672 disk = __get_imsm_disk(mpb, i);
3673 dl = serial_to_dl(disk->serial, super);
3674 if (dl)
3675 continue;
3676
3677 dl = malloc(sizeof(*dl));
3678 if (!dl)
3679 return 1;
3680 dl->major = 0;
3681 dl->minor = 0;
3682 dl->fd = -1;
3683 dl->devname = strdup("missing");
3684 dl->index = i;
3685 serialcpy(dl->serial, disk->serial);
3686 dl->disk = *disk;
3687 dl->e = NULL;
3688 dl->next = super->missing;
3689 super->missing = dl;
3690 }
3691
3692 return 0;
3693 }
3694
3695 #ifndef MDASSEMBLE
3696 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3697 {
3698 struct intel_disk *idisk = disk_list;
3699
3700 while (idisk) {
3701 if (serialcmp(idisk->disk.serial, serial) == 0)
3702 break;
3703 idisk = idisk->next;
3704 }
3705
3706 return idisk;
3707 }
3708
3709 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3710 struct intel_super *super,
3711 struct intel_disk **disk_list)
3712 {
3713 struct imsm_disk *d = &super->disks->disk;
3714 struct imsm_super *mpb = super->anchor;
3715 int i, j;
3716
3717 for (i = 0; i < tbl_size; i++) {
3718 struct imsm_super *tbl_mpb = table[i]->anchor;
3719 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3720
3721 if (tbl_mpb->family_num == mpb->family_num) {
3722 if (tbl_mpb->check_sum == mpb->check_sum) {
3723 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3724 __func__, super->disks->major,
3725 super->disks->minor,
3726 table[i]->disks->major,
3727 table[i]->disks->minor);
3728 break;
3729 }
3730
3731 if (((is_configured(d) && !is_configured(tbl_d)) ||
3732 is_configured(d) == is_configured(tbl_d)) &&
3733 tbl_mpb->generation_num < mpb->generation_num) {
3734 /* current version of the mpb is a
3735 * better candidate than the one in
3736 * super_table, but copy over "cross
3737 * generational" status
3738 */
3739 struct intel_disk *idisk;
3740
3741 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3742 __func__, super->disks->major,
3743 super->disks->minor,
3744 table[i]->disks->major,
3745 table[i]->disks->minor);
3746
3747 idisk = disk_list_get(tbl_d->serial, *disk_list);
3748 if (idisk && is_failed(&idisk->disk))
3749 tbl_d->status |= FAILED_DISK;
3750 break;
3751 } else {
3752 struct intel_disk *idisk;
3753 struct imsm_disk *disk;
3754
3755 /* tbl_mpb is more up to date, but copy
3756 * over cross generational status before
3757 * returning
3758 */
3759 disk = __serial_to_disk(d->serial, mpb, NULL);
3760 if (disk && is_failed(disk))
3761 d->status |= FAILED_DISK;
3762
3763 idisk = disk_list_get(d->serial, *disk_list);
3764 if (idisk) {
3765 idisk->owner = i;
3766 if (disk && is_configured(disk))
3767 idisk->disk.status |= CONFIGURED_DISK;
3768 }
3769
3770 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3771 __func__, super->disks->major,
3772 super->disks->minor,
3773 table[i]->disks->major,
3774 table[i]->disks->minor);
3775
3776 return tbl_size;
3777 }
3778 }
3779 }
3780
3781 if (i >= tbl_size)
3782 table[tbl_size++] = super;
3783 else
3784 table[i] = super;
3785
3786 /* update/extend the merged list of imsm_disk records */
3787 for (j = 0; j < mpb->num_disks; j++) {
3788 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3789 struct intel_disk *idisk;
3790
3791 idisk = disk_list_get(disk->serial, *disk_list);
3792 if (idisk) {
3793 idisk->disk.status |= disk->status;
3794 if (is_configured(&idisk->disk) ||
3795 is_failed(&idisk->disk))
3796 idisk->disk.status &= ~(SPARE_DISK);
3797 } else {
3798 idisk = calloc(1, sizeof(*idisk));
3799 if (!idisk)
3800 return -1;
3801 idisk->owner = IMSM_UNKNOWN_OWNER;
3802 idisk->disk = *disk;
3803 idisk->next = *disk_list;
3804 *disk_list = idisk;
3805 }
3806
3807 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3808 idisk->owner = i;
3809 }
3810
3811 return tbl_size;
3812 }
3813
3814 static struct intel_super *
3815 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3816 const int owner)
3817 {
3818 struct imsm_super *mpb = super->anchor;
3819 int ok_count = 0;
3820 int i;
3821
3822 for (i = 0; i < mpb->num_disks; i++) {
3823 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3824 struct intel_disk *idisk;
3825
3826 idisk = disk_list_get(disk->serial, disk_list);
3827 if (idisk) {
3828 if (idisk->owner == owner ||
3829 idisk->owner == IMSM_UNKNOWN_OWNER)
3830 ok_count++;
3831 else
3832 dprintf("%s: '%.16s' owner %d != %d\n",
3833 __func__, disk->serial, idisk->owner,
3834 owner);
3835 } else {
3836 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3837 __func__, __le32_to_cpu(mpb->family_num), i,
3838 disk->serial);
3839 break;
3840 }
3841 }
3842
3843 if (ok_count == mpb->num_disks)
3844 return super;
3845 return NULL;
3846 }
3847
3848 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3849 {
3850 struct intel_super *s;
3851
3852 for (s = super_list; s; s = s->next) {
3853 if (family_num != s->anchor->family_num)
3854 continue;
3855 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3856 __le32_to_cpu(family_num), s->disks->devname);
3857 }
3858 }
3859
3860 static struct intel_super *
3861 imsm_thunderdome(struct intel_super **super_list, int len)
3862 {
3863 struct intel_super *super_table[len];
3864 struct intel_disk *disk_list = NULL;
3865 struct intel_super *champion, *spare;
3866 struct intel_super *s, **del;
3867 int tbl_size = 0;
3868 int conflict;
3869 int i;
3870
3871 memset(super_table, 0, sizeof(super_table));
3872 for (s = *super_list; s; s = s->next)
3873 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3874
3875 for (i = 0; i < tbl_size; i++) {
3876 struct imsm_disk *d;
3877 struct intel_disk *idisk;
3878 struct imsm_super *mpb = super_table[i]->anchor;
3879
3880 s = super_table[i];
3881 d = &s->disks->disk;
3882
3883 /* 'd' must appear in merged disk list for its
3884 * configuration to be valid
3885 */
3886 idisk = disk_list_get(d->serial, disk_list);
3887 if (idisk && idisk->owner == i)
3888 s = validate_members(s, disk_list, i);
3889 else
3890 s = NULL;
3891
3892 if (!s)
3893 dprintf("%s: marking family: %#x from %d:%d offline\n",
3894 __func__, mpb->family_num,
3895 super_table[i]->disks->major,
3896 super_table[i]->disks->minor);
3897 super_table[i] = s;
3898 }
3899
3900 /* This is where the mdadm implementation differs from the Windows
3901 * driver which has no strict concept of a container. We can only
3902 * assemble one family from a container, so when returning a prodigal
3903 * array member to this system the code will not be able to disambiguate
3904 * the container contents that should be assembled ("foreign" versus
3905 * "local"). It requires user intervention to set the orig_family_num
3906 * to a new value to establish a new container. The Windows driver in
3907 * this situation fixes up the volume name in place and manages the
3908 * foreign array as an independent entity.
3909 */
3910 s = NULL;
3911 spare = NULL;
3912 conflict = 0;
3913 for (i = 0; i < tbl_size; i++) {
3914 struct intel_super *tbl_ent = super_table[i];
3915 int is_spare = 0;
3916
3917 if (!tbl_ent)
3918 continue;
3919
3920 if (tbl_ent->anchor->num_raid_devs == 0) {
3921 spare = tbl_ent;
3922 is_spare = 1;
3923 }
3924
3925 if (s && !is_spare) {
3926 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3927 conflict++;
3928 } else if (!s && !is_spare)
3929 s = tbl_ent;
3930 }
3931
3932 if (!s)
3933 s = spare;
3934 if (!s) {
3935 champion = NULL;
3936 goto out;
3937 }
3938 champion = s;
3939
3940 if (conflict)
3941 fprintf(stderr, "Chose family %#x on '%s', "
3942 "assemble conflicts to new container with '--update=uuid'\n",
3943 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3944
3945 /* collect all dl's onto 'champion', and update them to
3946 * champion's version of the status
3947 */
3948 for (s = *super_list; s; s = s->next) {
3949 struct imsm_super *mpb = champion->anchor;
3950 struct dl *dl = s->disks;
3951
3952 if (s == champion)
3953 continue;
3954
3955 for (i = 0; i < mpb->num_disks; i++) {
3956 struct imsm_disk *disk;
3957
3958 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3959 if (disk) {
3960 dl->disk = *disk;
3961 /* only set index on disks that are a member of
3962 * a populated contianer, i.e. one with
3963 * raid_devs
3964 */
3965 if (is_failed(&dl->disk))
3966 dl->index = -2;
3967 else if (is_spare(&dl->disk))
3968 dl->index = -1;
3969 break;
3970 }
3971 }
3972
3973 if (i >= mpb->num_disks) {
3974 struct intel_disk *idisk;
3975
3976 idisk = disk_list_get(dl->serial, disk_list);
3977 if (idisk && is_spare(&idisk->disk) &&
3978 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3979 dl->index = -1;
3980 else {
3981 dl->index = -2;
3982 continue;
3983 }
3984 }
3985
3986 dl->next = champion->disks;
3987 champion->disks = dl;
3988 s->disks = NULL;
3989 }
3990
3991 /* delete 'champion' from super_list */
3992 for (del = super_list; *del; ) {
3993 if (*del == champion) {
3994 *del = (*del)->next;
3995 break;
3996 } else
3997 del = &(*del)->next;
3998 }
3999 champion->next = NULL;
4000
4001 out:
4002 while (disk_list) {
4003 struct intel_disk *idisk = disk_list;
4004
4005 disk_list = disk_list->next;
4006 free(idisk);
4007 }
4008
4009 return champion;
4010 }
4011
4012 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4013 char *devname)
4014 {
4015 struct mdinfo *sra;
4016 struct intel_super *super_list = NULL;
4017 struct intel_super *super = NULL;
4018 int devnum = fd2devnum(fd);
4019 struct mdinfo *sd;
4020 int retry;
4021 int err = 0;
4022 int i;
4023
4024 /* check if 'fd' an opened container */
4025 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4026 if (!sra)
4027 return 1;
4028
4029 if (sra->array.major_version != -1 ||
4030 sra->array.minor_version != -2 ||
4031 strcmp(sra->text_version, "imsm") != 0) {
4032 err = 1;
4033 goto error;
4034 }
4035 /* load all mpbs */
4036 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4037 struct intel_super *s = alloc_super();
4038 char nm[32];
4039 int dfd;
4040 int rv;
4041
4042 err = 1;
4043 if (!s)
4044 goto error;
4045 s->next = super_list;
4046 super_list = s;
4047
4048 err = 2;
4049 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
4050 dfd = dev_open(nm, O_RDWR);
4051 if (dfd < 0)
4052 goto error;
4053
4054 rv = find_intel_hba_capability(dfd, s, devname);
4055 /* no orom/efi or non-intel hba of the disk */
4056 if (rv != 0)
4057 goto error;
4058
4059 err = load_and_parse_mpb(dfd, s, NULL, 1);
4060
4061 /* retry the load if we might have raced against mdmon */
4062 if (err == 3 && mdmon_running(devnum))
4063 for (retry = 0; retry < 3; retry++) {
4064 usleep(3000);
4065 err = load_and_parse_mpb(dfd, s, NULL, 1);
4066 if (err != 3)
4067 break;
4068 }
4069 if (err)
4070 goto error;
4071 }
4072
4073 /* all mpbs enter, maybe one leaves */
4074 super = imsm_thunderdome(&super_list, i);
4075 if (!super) {
4076 err = 1;
4077 goto error;
4078 }
4079
4080 if (find_missing(super) != 0) {
4081 free_imsm(super);
4082 err = 2;
4083 goto error;
4084 }
4085
4086 /* load migration record */
4087 err = load_imsm_migr_rec(super, NULL);
4088 if (err == -1) {
4089 /* migration is in progress,
4090 * but migr_rec cannot be loaded,
4091 */
4092 err = 4;
4093 goto error;
4094 }
4095
4096 /* Check migration compatibility */
4097 if ((err == 0) && (check_mpb_migr_compatibility(super) != 0)) {
4098 fprintf(stderr, Name ": Unsupported migration detected");
4099 if (devname)
4100 fprintf(stderr, " on %s\n", devname);
4101 else
4102 fprintf(stderr, " (IMSM).\n");
4103
4104 err = 5;
4105 goto error;
4106 }
4107
4108 err = 0;
4109
4110 error:
4111 while (super_list) {
4112 struct intel_super *s = super_list;
4113
4114 super_list = super_list->next;
4115 free_imsm(s);
4116 }
4117 sysfs_free(sra);
4118
4119 if (err)
4120 return err;
4121
4122 *sbp = super;
4123 st->container_dev = devnum;
4124 if (err == 0 && st->ss == NULL) {
4125 st->ss = &super_imsm;
4126 st->minor_version = 0;
4127 st->max_devs = IMSM_MAX_DEVICES;
4128 }
4129 return 0;
4130 }
4131
4132 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4133 {
4134 return load_super_imsm_all(st, fd, &st->sb, devname);
4135 }
4136 #endif
4137
4138 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4139 {
4140 struct intel_super *super;
4141 int rv;
4142
4143 if (test_partition(fd))
4144 /* IMSM not allowed on partitions */
4145 return 1;
4146
4147 free_super_imsm(st);
4148
4149 super = alloc_super();
4150 if (!super) {
4151 fprintf(stderr,
4152 Name ": malloc of %zu failed.\n",
4153 sizeof(*super));
4154 return 1;
4155 }
4156 /* Load hba and capabilities if they exist.
4157 * But do not preclude loading metadata in case capabilities or hba are
4158 * non-compliant and ignore_hw_compat is set.
4159 */
4160 rv = find_intel_hba_capability(fd, super, devname);
4161 /* no orom/efi or non-intel hba of the disk */
4162 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4163 if (devname)
4164 fprintf(stderr,
4165 Name ": No OROM/EFI properties for %s\n", devname);
4166 free_imsm(super);
4167 return 2;
4168 }
4169 rv = load_and_parse_mpb(fd, super, devname, 0);
4170
4171 if (rv) {
4172 if (devname)
4173 fprintf(stderr,
4174 Name ": Failed to load all information "
4175 "sections on %s\n", devname);
4176 free_imsm(super);
4177 return rv;
4178 }
4179
4180 st->sb = super;
4181 if (st->ss == NULL) {
4182 st->ss = &super_imsm;
4183 st->minor_version = 0;
4184 st->max_devs = IMSM_MAX_DEVICES;
4185 }
4186
4187 /* load migration record */
4188 if (load_imsm_migr_rec(super, NULL) == 0) {
4189 /* Check for unsupported migration features */
4190 if (check_mpb_migr_compatibility(super) != 0) {
4191 fprintf(stderr,
4192 Name ": Unsupported migration detected");
4193 if (devname)
4194 fprintf(stderr, " on %s\n", devname);
4195 else
4196 fprintf(stderr, " (IMSM).\n");
4197 return 3;
4198 }
4199 }
4200
4201 return 0;
4202 }
4203
4204 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4205 {
4206 if (info->level == 1)
4207 return 128;
4208 return info->chunk_size >> 9;
4209 }
4210
4211 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
4212 {
4213 __u32 num_stripes;
4214
4215 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
4216 num_stripes /= num_domains;
4217
4218 return num_stripes;
4219 }
4220
4221 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4222 {
4223 if (info->level == 1)
4224 return info->size * 2;
4225 else
4226 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4227 }
4228
4229 static void imsm_update_version_info(struct intel_super *super)
4230 {
4231 /* update the version and attributes */
4232 struct imsm_super *mpb = super->anchor;
4233 char *version;
4234 struct imsm_dev *dev;
4235 struct imsm_map *map;
4236 int i;
4237
4238 for (i = 0; i < mpb->num_raid_devs; i++) {
4239 dev = get_imsm_dev(super, i);
4240 map = get_imsm_map(dev, MAP_0);
4241 if (__le32_to_cpu(dev->size_high) > 0)
4242 mpb->attributes |= MPB_ATTRIB_2TB;
4243
4244 /* FIXME detect when an array spans a port multiplier */
4245 #if 0
4246 mpb->attributes |= MPB_ATTRIB_PM;
4247 #endif
4248
4249 if (mpb->num_raid_devs > 1 ||
4250 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4251 version = MPB_VERSION_ATTRIBS;
4252 switch (get_imsm_raid_level(map)) {
4253 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4254 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4255 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4256 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4257 }
4258 } else {
4259 if (map->num_members >= 5)
4260 version = MPB_VERSION_5OR6_DISK_ARRAY;
4261 else if (dev->status == DEV_CLONE_N_GO)
4262 version = MPB_VERSION_CNG;
4263 else if (get_imsm_raid_level(map) == 5)
4264 version = MPB_VERSION_RAID5;
4265 else if (map->num_members >= 3)
4266 version = MPB_VERSION_3OR4_DISK_ARRAY;
4267 else if (get_imsm_raid_level(map) == 1)
4268 version = MPB_VERSION_RAID1;
4269 else
4270 version = MPB_VERSION_RAID0;
4271 }
4272 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4273 }
4274 }
4275
4276 static int check_name(struct intel_super *super, char *name, int quiet)
4277 {
4278 struct imsm_super *mpb = super->anchor;
4279 char *reason = NULL;
4280 int i;
4281
4282 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4283 reason = "must be 16 characters or less";
4284
4285 for (i = 0; i < mpb->num_raid_devs; i++) {
4286 struct imsm_dev *dev = get_imsm_dev(super, i);
4287
4288 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4289 reason = "already exists";
4290 break;
4291 }
4292 }
4293
4294 if (reason && !quiet)
4295 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4296
4297 return !reason;
4298 }
4299
4300 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4301 unsigned long long size, char *name,
4302 char *homehost, int *uuid)
4303 {
4304 /* We are creating a volume inside a pre-existing container.
4305 * so st->sb is already set.
4306 */
4307 struct intel_super *super = st->sb;
4308 struct imsm_super *mpb = super->anchor;
4309 struct intel_dev *dv;
4310 struct imsm_dev *dev;
4311 struct imsm_vol *vol;
4312 struct imsm_map *map;
4313 int idx = mpb->num_raid_devs;
4314 int i;
4315 unsigned long long array_blocks;
4316 size_t size_old, size_new;
4317 __u32 num_data_stripes;
4318
4319 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4320 fprintf(stderr, Name": This imsm-container already has the "
4321 "maximum of %d volumes\n", super->orom->vpa);
4322 return 0;
4323 }
4324
4325 /* ensure the mpb is large enough for the new data */
4326 size_old = __le32_to_cpu(mpb->mpb_size);
4327 size_new = disks_to_mpb_size(info->nr_disks);
4328 if (size_new > size_old) {
4329 void *mpb_new;
4330 size_t size_round = ROUND_UP(size_new, 512);
4331
4332 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4333 fprintf(stderr, Name": could not allocate new mpb\n");
4334 return 0;
4335 }
4336 if (posix_memalign(&super->migr_rec_buf, 512,
4337 MIGR_REC_BUF_SIZE) != 0) {
4338 fprintf(stderr, Name
4339 ": %s could not allocate migr_rec buffer\n",
4340 __func__);
4341 free(super->buf);
4342 free(super);
4343 free(mpb_new);
4344 return 0;
4345 }
4346 memcpy(mpb_new, mpb, size_old);
4347 free(mpb);
4348 mpb = mpb_new;
4349 super->anchor = mpb_new;
4350 mpb->mpb_size = __cpu_to_le32(size_new);
4351 memset(mpb_new + size_old, 0, size_round - size_old);
4352 }
4353 super->current_vol = idx;
4354
4355 /* handle 'failed_disks' by either:
4356 * a) create dummy disk entries in the table if this the first
4357 * volume in the array. We add them here as this is the only
4358 * opportunity to add them. add_to_super_imsm_volume()
4359 * handles the non-failed disks and continues incrementing
4360 * mpb->num_disks.
4361 * b) validate that 'failed_disks' matches the current number
4362 * of missing disks if the container is populated
4363 */
4364 if (super->current_vol == 0) {
4365 mpb->num_disks = 0;
4366 for (i = 0; i < info->failed_disks; i++) {
4367 struct imsm_disk *disk;
4368
4369 mpb->num_disks++;
4370 disk = __get_imsm_disk(mpb, i);
4371 disk->status = CONFIGURED_DISK | FAILED_DISK;
4372 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4373 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4374 "missing:%d", i);
4375 }
4376 find_missing(super);
4377 } else {
4378 int missing = 0;
4379 struct dl *d;
4380
4381 for (d = super->missing; d; d = d->next)
4382 missing++;
4383 if (info->failed_disks > missing) {
4384 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4385 return 0;
4386 }
4387 }
4388
4389 if (!check_name(super, name, 0))
4390 return 0;
4391 dv = malloc(sizeof(*dv));
4392 if (!dv) {
4393 fprintf(stderr, Name ": failed to allocate device list entry\n");
4394 return 0;
4395 }
4396 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4397 if (!dev) {
4398 free(dv);
4399 fprintf(stderr, Name": could not allocate raid device\n");
4400 return 0;
4401 }
4402
4403 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4404 if (info->level == 1)
4405 array_blocks = info_to_blocks_per_member(info);
4406 else
4407 array_blocks = calc_array_size(info->level, info->raid_disks,
4408 info->layout, info->chunk_size,
4409 info->size*2);
4410 /* round array size down to closest MB */
4411 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4412
4413 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4414 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4415 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4416 vol = &dev->vol;
4417 vol->migr_state = 0;
4418 set_migr_type(dev, MIGR_INIT);
4419 vol->dirty = !info->state;
4420 vol->curr_migr_unit = 0;
4421 map = get_imsm_map(dev, MAP_0);
4422 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
4423 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
4424 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4425 map->failed_disk_num = ~0;
4426 if (info->level > 0)
4427 map->map_state = IMSM_T_STATE_UNINITIALIZED;
4428 else
4429 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4430 IMSM_T_STATE_NORMAL;
4431 map->ddf = 1;
4432
4433 if (info->level == 1 && info->raid_disks > 2) {
4434 free(dev);
4435 free(dv);
4436 fprintf(stderr, Name": imsm does not support more than 2 disks"
4437 "in a raid1 volume\n");
4438 return 0;
4439 }
4440
4441 map->raid_level = info->level;
4442 if (info->level == 10) {
4443 map->raid_level = 1;
4444 map->num_domains = info->raid_disks / 2;
4445 } else if (info->level == 1)
4446 map->num_domains = info->raid_disks;
4447 else
4448 map->num_domains = 1;
4449
4450 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4451 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
4452
4453 map->num_members = info->raid_disks;
4454 for (i = 0; i < map->num_members; i++) {
4455 /* initialized in add_to_super */
4456 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4457 }
4458 mpb->num_raid_devs++;
4459
4460 dv->dev = dev;
4461 dv->index = super->current_vol;
4462 dv->next = super->devlist;
4463 super->devlist = dv;
4464
4465 imsm_update_version_info(super);
4466
4467 return 1;
4468 }
4469
4470 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4471 unsigned long long size, char *name,
4472 char *homehost, int *uuid)
4473 {
4474 /* This is primarily called by Create when creating a new array.
4475 * We will then get add_to_super called for each component, and then
4476 * write_init_super called to write it out to each device.
4477 * For IMSM, Create can create on fresh devices or on a pre-existing
4478 * array.
4479 * To create on a pre-existing array a different method will be called.
4480 * This one is just for fresh drives.
4481 */
4482 struct intel_super *super;
4483 struct imsm_super *mpb;
4484 size_t mpb_size;
4485 char *version;
4486
4487 if (st->sb)
4488 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4489
4490 if (info)
4491 mpb_size = disks_to_mpb_size(info->nr_disks);
4492 else
4493 mpb_size = 512;
4494
4495 super = alloc_super();
4496 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4497 free(super);
4498 super = NULL;
4499 }
4500 if (!super) {
4501 fprintf(stderr, Name
4502 ": %s could not allocate superblock\n", __func__);
4503 return 0;
4504 }
4505 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
4506 fprintf(stderr, Name
4507 ": %s could not allocate migr_rec buffer\n", __func__);
4508 free(super->buf);
4509 free(super);
4510 return 0;
4511 }
4512 memset(super->buf, 0, mpb_size);
4513 mpb = super->buf;
4514 mpb->mpb_size = __cpu_to_le32(mpb_size);
4515 st->sb = super;
4516
4517 if (info == NULL) {
4518 /* zeroing superblock */
4519 return 0;
4520 }
4521
4522 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4523
4524 version = (char *) mpb->sig;
4525 strcpy(version, MPB_SIGNATURE);
4526 version += strlen(MPB_SIGNATURE);
4527 strcpy(version, MPB_VERSION_RAID0);
4528
4529 return 1;
4530 }
4531
4532 #ifndef MDASSEMBLE
4533 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4534 int fd, char *devname)
4535 {
4536 struct intel_super *super = st->sb;
4537 struct imsm_super *mpb = super->anchor;
4538 struct imsm_disk *_disk;
4539 struct imsm_dev *dev;
4540 struct imsm_map *map;
4541 struct dl *dl, *df;
4542 int slot;
4543
4544 dev = get_imsm_dev(super, super->current_vol);
4545 map = get_imsm_map(dev, MAP_0);
4546
4547 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4548 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4549 devname);
4550 return 1;
4551 }
4552
4553 if (fd == -1) {
4554 /* we're doing autolayout so grab the pre-marked (in
4555 * validate_geometry) raid_disk
4556 */
4557 for (dl = super->disks; dl; dl = dl->next)
4558 if (dl->raiddisk == dk->raid_disk)
4559 break;
4560 } else {
4561 for (dl = super->disks; dl ; dl = dl->next)
4562 if (dl->major == dk->major &&
4563 dl->minor == dk->minor)
4564 break;
4565 }
4566
4567 if (!dl) {
4568 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4569 return 1;
4570 }
4571
4572 /* add a pristine spare to the metadata */
4573 if (dl->index < 0) {
4574 dl->index = super->anchor->num_disks;
4575 super->anchor->num_disks++;
4576 }
4577 /* Check the device has not already been added */
4578 slot = get_imsm_disk_slot(map, dl->index);
4579 if (slot >= 0 &&
4580 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
4581 fprintf(stderr, Name ": %s has been included in this array twice\n",
4582 devname);
4583 return 1;
4584 }
4585 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4586 dl->disk.status = CONFIGURED_DISK;
4587
4588 /* update size of 'missing' disks to be at least as large as the
4589 * largest acitve member (we only have dummy missing disks when
4590 * creating the first volume)
4591 */
4592 if (super->current_vol == 0) {
4593 for (df = super->missing; df; df = df->next) {
4594 if (dl->disk.total_blocks > df->disk.total_blocks)
4595 df->disk.total_blocks = dl->disk.total_blocks;
4596 _disk = __get_imsm_disk(mpb, df->index);
4597 *_disk = df->disk;
4598 }
4599 }
4600
4601 /* refresh unset/failed slots to point to valid 'missing' entries */
4602 for (df = super->missing; df; df = df->next)
4603 for (slot = 0; slot < mpb->num_disks; slot++) {
4604 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4605
4606 if ((ord & IMSM_ORD_REBUILD) == 0)
4607 continue;
4608 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4609 if (is_gen_migration(dev)) {
4610 struct imsm_map *map2 = get_imsm_map(dev,
4611 MAP_1);
4612 int slot2 = get_imsm_disk_slot(map2, df->index);
4613 if ((slot2 < map2->num_members) &&
4614 (slot2 >= 0)) {
4615 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
4616 slot2,
4617 MAP_1);
4618 if ((unsigned)df->index ==
4619 ord_to_idx(ord2))
4620 set_imsm_ord_tbl_ent(map2,
4621 slot2,
4622 df->index |
4623 IMSM_ORD_REBUILD);
4624 }
4625 }
4626 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4627 break;
4628 }
4629
4630 /* if we are creating the first raid device update the family number */
4631 if (super->current_vol == 0) {
4632 __u32 sum;
4633 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4634
4635 _disk = __get_imsm_disk(mpb, dl->index);
4636 if (!_dev || !_disk) {
4637 fprintf(stderr, Name ": BUG mpb setup error\n");
4638 return 1;
4639 }
4640 *_dev = *dev;
4641 *_disk = dl->disk;
4642 sum = random32();
4643 sum += __gen_imsm_checksum(mpb);
4644 mpb->family_num = __cpu_to_le32(sum);
4645 mpb->orig_family_num = mpb->family_num;
4646 }
4647 super->current_disk = dl;
4648 return 0;
4649 }
4650
4651 /* mark_spare()
4652 * Function marks disk as spare and restores disk serial
4653 * in case it was previously marked as failed by takeover operation
4654 * reruns:
4655 * -1 : critical error
4656 * 0 : disk is marked as spare but serial is not set
4657 * 1 : success
4658 */
4659 int mark_spare(struct dl *disk)
4660 {
4661 __u8 serial[MAX_RAID_SERIAL_LEN];
4662 int ret_val = -1;
4663
4664 if (!disk)
4665 return ret_val;
4666
4667 ret_val = 0;
4668 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4669 /* Restore disk serial number, because takeover marks disk
4670 * as failed and adds to serial ':0' before it becomes
4671 * a spare disk.
4672 */
4673 serialcpy(disk->serial, serial);
4674 serialcpy(disk->disk.serial, serial);
4675 ret_val = 1;
4676 }
4677 disk->disk.status = SPARE_DISK;
4678 disk->index = -1;
4679
4680 return ret_val;
4681 }
4682
4683 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4684 int fd, char *devname)
4685 {
4686 struct intel_super *super = st->sb;
4687 struct dl *dd;
4688 unsigned long long size;
4689 __u32 id;
4690 int rv;
4691 struct stat stb;
4692
4693 /* If we are on an RAID enabled platform check that the disk is
4694 * attached to the raid controller.
4695 * We do not need to test disks attachment for container based additions,
4696 * they shall be already tested when container was created/assembled.
4697 */
4698 rv = find_intel_hba_capability(fd, super, devname);
4699 /* no orom/efi or non-intel hba of the disk */
4700 if (rv != 0) {
4701 dprintf("capability: %p fd: %d ret: %d\n",
4702 super->orom, fd, rv);
4703 return 1;
4704 }
4705
4706 if (super->current_vol >= 0)
4707 return add_to_super_imsm_volume(st, dk, fd, devname);
4708
4709 fstat(fd, &stb);
4710 dd = malloc(sizeof(*dd));
4711 if (!dd) {
4712 fprintf(stderr,
4713 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4714 return 1;
4715 }
4716 memset(dd, 0, sizeof(*dd));
4717 dd->major = major(stb.st_rdev);
4718 dd->minor = minor(stb.st_rdev);
4719 dd->devname = devname ? strdup(devname) : NULL;
4720 dd->fd = fd;
4721 dd->e = NULL;
4722 dd->action = DISK_ADD;
4723 rv = imsm_read_serial(fd, devname, dd->serial);
4724 if (rv) {
4725 fprintf(stderr,
4726 Name ": failed to retrieve scsi serial, aborting\n");
4727 free(dd);
4728 abort();
4729 }
4730
4731 get_dev_size(fd, NULL, &size);
4732 size /= 512;
4733 serialcpy(dd->disk.serial, dd->serial);
4734 dd->disk.total_blocks = __cpu_to_le32(size);
4735 mark_spare(dd);
4736 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4737 dd->disk.scsi_id = __cpu_to_le32(id);
4738 else
4739 dd->disk.scsi_id = __cpu_to_le32(0);
4740
4741 if (st->update_tail) {
4742 dd->next = super->disk_mgmt_list;
4743 super->disk_mgmt_list = dd;
4744 } else {
4745 dd->next = super->disks;
4746 super->disks = dd;
4747 super->updates_pending++;
4748 }
4749
4750 return 0;
4751 }
4752
4753
4754 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4755 {
4756 struct intel_super *super = st->sb;
4757 struct dl *dd;
4758
4759 /* remove from super works only in mdmon - for communication
4760 * manager - monitor. Check if communication memory buffer
4761 * is prepared.
4762 */
4763 if (!st->update_tail) {
4764 fprintf(stderr,
4765 Name ": %s shall be used in mdmon context only"
4766 "(line %d).\n", __func__, __LINE__);
4767 return 1;
4768 }
4769 dd = malloc(sizeof(*dd));
4770 if (!dd) {
4771 fprintf(stderr,
4772 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4773 return 1;
4774 }
4775 memset(dd, 0, sizeof(*dd));
4776 dd->major = dk->major;
4777 dd->minor = dk->minor;
4778 dd->fd = -1;
4779 mark_spare(dd);
4780 dd->action = DISK_REMOVE;
4781
4782 dd->next = super->disk_mgmt_list;
4783 super->disk_mgmt_list = dd;
4784
4785
4786 return 0;
4787 }
4788
4789 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4790
4791 static union {
4792 char buf[512];
4793 struct imsm_super anchor;
4794 } spare_record __attribute__ ((aligned(512)));
4795
4796 /* spare records have their own family number and do not have any defined raid
4797 * devices
4798 */
4799 static int write_super_imsm_spares(struct intel_super *super, int doclose)
4800 {
4801 struct imsm_super *mpb = super->anchor;
4802 struct imsm_super *spare = &spare_record.anchor;
4803 __u32 sum;
4804 struct dl *d;
4805
4806 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4807 spare->generation_num = __cpu_to_le32(1UL),
4808 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4809 spare->num_disks = 1,
4810 spare->num_raid_devs = 0,
4811 spare->cache_size = mpb->cache_size,
4812 spare->pwr_cycle_count = __cpu_to_le32(1),
4813
4814 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4815 MPB_SIGNATURE MPB_VERSION_RAID0);
4816
4817 for (d = super->disks; d; d = d->next) {
4818 if (d->index != -1)
4819 continue;
4820
4821 spare->disk[0] = d->disk;
4822 sum = __gen_imsm_checksum(spare);
4823 spare->family_num = __cpu_to_le32(sum);
4824 spare->orig_family_num = 0;
4825 sum = __gen_imsm_checksum(spare);
4826 spare->check_sum = __cpu_to_le32(sum);
4827
4828 if (store_imsm_mpb(d->fd, spare)) {
4829 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4830 __func__, d->major, d->minor, strerror(errno));
4831 return 1;
4832 }
4833 if (doclose) {
4834 close(d->fd);
4835 d->fd = -1;
4836 }
4837 }
4838
4839 return 0;
4840 }
4841
4842 static int write_super_imsm(struct supertype *st, int doclose)
4843 {
4844 struct intel_super *super = st->sb;
4845 struct imsm_super *mpb = super->anchor;
4846 struct dl *d;
4847 __u32 generation;
4848 __u32 sum;
4849 int spares = 0;
4850 int i;
4851 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
4852 int num_disks = 0;
4853 int clear_migration_record = 1;
4854
4855 /* 'generation' is incremented everytime the metadata is written */
4856 generation = __le32_to_cpu(mpb->generation_num);
4857 generation++;
4858 mpb->generation_num = __cpu_to_le32(generation);
4859
4860 /* fix up cases where previous mdadm releases failed to set
4861 * orig_family_num
4862 */
4863 if (mpb->orig_family_num == 0)
4864 mpb->orig_family_num = mpb->family_num;
4865
4866 for (d = super->disks; d; d = d->next) {
4867 if (d->index == -1)
4868 spares++;
4869 else {
4870 mpb->disk[d->index] = d->disk;
4871 num_disks++;
4872 }
4873 }
4874 for (d = super->missing; d; d = d->next) {
4875 mpb->disk[d->index] = d->disk;
4876 num_disks++;
4877 }
4878 mpb->num_disks = num_disks;
4879 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
4880
4881 for (i = 0; i < mpb->num_raid_devs; i++) {
4882 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
4883 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4884 if (dev && dev2) {
4885 imsm_copy_dev(dev, dev2);
4886 mpb_size += sizeof_imsm_dev(dev, 0);
4887 }
4888 if (is_gen_migration(dev2))
4889 clear_migration_record = 0;
4890 }
4891 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4892 mpb->mpb_size = __cpu_to_le32(mpb_size);
4893
4894 /* recalculate checksum */
4895 sum = __gen_imsm_checksum(mpb);
4896 mpb->check_sum = __cpu_to_le32(sum);
4897
4898 if (clear_migration_record)
4899 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
4900
4901 /* write the mpb for disks that compose raid devices */
4902 for (d = super->disks; d ; d = d->next) {
4903 if (d->index < 0 || is_failed(&d->disk))
4904 continue;
4905 if (store_imsm_mpb(d->fd, mpb))
4906 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4907 __func__, d->major, d->minor, strerror(errno));
4908 if (clear_migration_record) {
4909 unsigned long long dsize;
4910
4911 get_dev_size(d->fd, NULL, &dsize);
4912 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4913 if (write(d->fd, super->migr_rec_buf,
4914 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
4915 perror("Write migr_rec failed");
4916 }
4917 }
4918 if (doclose) {
4919 close(d->fd);
4920 d->fd = -1;
4921 }
4922 }
4923
4924 if (spares)
4925 return write_super_imsm_spares(super, doclose);
4926
4927 return 0;
4928 }
4929
4930
4931 static int create_array(struct supertype *st, int dev_idx)
4932 {
4933 size_t len;
4934 struct imsm_update_create_array *u;
4935 struct intel_super *super = st->sb;
4936 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4937 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4938 struct disk_info *inf;
4939 struct imsm_disk *disk;
4940 int i;
4941
4942 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4943 sizeof(*inf) * map->num_members;
4944 u = malloc(len);
4945 if (!u) {
4946 fprintf(stderr, "%s: failed to allocate update buffer\n",
4947 __func__);
4948 return 1;
4949 }
4950
4951 u->type = update_create_array;
4952 u->dev_idx = dev_idx;
4953 imsm_copy_dev(&u->dev, dev);
4954 inf = get_disk_info(u);
4955 for (i = 0; i < map->num_members; i++) {
4956 int idx = get_imsm_disk_idx(dev, i, MAP_X);
4957
4958 disk = get_imsm_disk(super, idx);
4959 serialcpy(inf[i].serial, disk->serial);
4960 }
4961 append_metadata_update(st, u, len);
4962
4963 return 0;
4964 }
4965
4966 static int mgmt_disk(struct supertype *st)
4967 {
4968 struct intel_super *super = st->sb;
4969 size_t len;
4970 struct imsm_update_add_remove_disk *u;
4971
4972 if (!super->disk_mgmt_list)
4973 return 0;
4974
4975 len = sizeof(*u);
4976 u = malloc(len);
4977 if (!u) {
4978 fprintf(stderr, "%s: failed to allocate update buffer\n",
4979 __func__);
4980 return 1;
4981 }
4982
4983 u->type = update_add_remove_disk;
4984 append_metadata_update(st, u, len);
4985
4986 return 0;
4987 }
4988
4989 static int write_init_super_imsm(struct supertype *st)
4990 {
4991 struct intel_super *super = st->sb;
4992 int current_vol = super->current_vol;
4993
4994 /* we are done with current_vol reset it to point st at the container */
4995 super->current_vol = -1;
4996
4997 if (st->update_tail) {
4998 /* queue the recently created array / added disk
4999 * as a metadata update */
5000 int rv;
5001
5002 /* determine if we are creating a volume or adding a disk */
5003 if (current_vol < 0) {
5004 /* in the mgmt (add/remove) disk case we are running
5005 * in mdmon context, so don't close fd's
5006 */
5007 return mgmt_disk(st);
5008 } else
5009 rv = create_array(st, current_vol);
5010
5011 return rv;
5012 } else {
5013 struct dl *d;
5014 for (d = super->disks; d; d = d->next)
5015 Kill(d->devname, NULL, 0, 1, 1);
5016 return write_super_imsm(st, 1);
5017 }
5018 }
5019 #endif
5020
5021 static int store_super_imsm(struct supertype *st, int fd)
5022 {
5023 struct intel_super *super = st->sb;
5024 struct imsm_super *mpb = super ? super->anchor : NULL;
5025
5026 if (!mpb)
5027 return 1;
5028
5029 #ifndef MDASSEMBLE
5030 return store_imsm_mpb(fd, mpb);
5031 #else
5032 return 1;
5033 #endif
5034 }
5035
5036 static int imsm_bbm_log_size(struct imsm_super *mpb)
5037 {
5038 return __le32_to_cpu(mpb->bbm_log_size);
5039 }
5040
5041 #ifndef MDASSEMBLE
5042 static int validate_geometry_imsm_container(struct supertype *st, int level,
5043 int layout, int raiddisks, int chunk,
5044 unsigned long long size, char *dev,
5045 unsigned long long *freesize,
5046 int verbose)
5047 {
5048 int fd;
5049 unsigned long long ldsize;
5050 struct intel_super *super=NULL;
5051 int rv = 0;
5052
5053 if (level != LEVEL_CONTAINER)
5054 return 0;
5055 if (!dev)
5056 return 1;
5057
5058 fd = open(dev, O_RDONLY|O_EXCL, 0);
5059 if (fd < 0) {
5060 if (verbose)
5061 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
5062 dev, strerror(errno));
5063 return 0;
5064 }
5065 if (!get_dev_size(fd, dev, &ldsize)) {
5066 close(fd);
5067 return 0;
5068 }
5069
5070 /* capabilities retrieve could be possible
5071 * note that there is no fd for the disks in array.
5072 */
5073 super = alloc_super();
5074 if (!super) {
5075 fprintf(stderr,
5076 Name ": malloc of %zu failed.\n",
5077 sizeof(*super));
5078 close(fd);
5079 return 0;
5080 }
5081
5082 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
5083 if (rv != 0) {
5084 #if DEBUG
5085 char str[256];
5086 fd2devname(fd, str);
5087 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5088 fd, str, super->orom, rv, raiddisks);
5089 #endif
5090 /* no orom/efi or non-intel hba of the disk */
5091 close(fd);
5092 free_imsm(super);
5093 return 0;
5094 }
5095 close(fd);
5096 if (super->orom && raiddisks > super->orom->tds) {
5097 if (verbose)
5098 fprintf(stderr, Name ": %d exceeds maximum number of"
5099 " platform supported disks: %d\n",
5100 raiddisks, super->orom->tds);
5101
5102 free_imsm(super);
5103 return 0;
5104 }
5105
5106 *freesize = avail_size_imsm(st, ldsize >> 9);
5107 free_imsm(super);
5108
5109 return 1;
5110 }
5111
5112 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5113 {
5114 const unsigned long long base_start = e[*idx].start;
5115 unsigned long long end = base_start + e[*idx].size;
5116 int i;
5117
5118 if (base_start == end)
5119 return 0;
5120
5121 *idx = *idx + 1;
5122 for (i = *idx; i < num_extents; i++) {
5123 /* extend overlapping extents */
5124 if (e[i].start >= base_start &&
5125 e[i].start <= end) {
5126 if (e[i].size == 0)
5127 return 0;
5128 if (e[i].start + e[i].size > end)
5129 end = e[i].start + e[i].size;
5130 } else if (e[i].start > end) {
5131 *idx = i;
5132 break;
5133 }
5134 }
5135
5136 return end - base_start;
5137 }
5138
5139 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5140 {
5141 /* build a composite disk with all known extents and generate a new
5142 * 'maxsize' given the "all disks in an array must share a common start
5143 * offset" constraint
5144 */
5145 struct extent *e = calloc(sum_extents, sizeof(*e));
5146 struct dl *dl;
5147 int i, j;
5148 int start_extent;
5149 unsigned long long pos;
5150 unsigned long long start = 0;
5151 unsigned long long maxsize;
5152 unsigned long reserve;
5153
5154 if (!e)
5155 return 0;
5156
5157 /* coalesce and sort all extents. also, check to see if we need to
5158 * reserve space between member arrays
5159 */
5160 j = 0;
5161 for (dl = super->disks; dl; dl = dl->next) {
5162 if (!dl->e)
5163 continue;
5164 for (i = 0; i < dl->extent_cnt; i++)
5165 e[j++] = dl->e[i];
5166 }
5167 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5168
5169 /* merge extents */
5170 i = 0;
5171 j = 0;
5172 while (i < sum_extents) {
5173 e[j].start = e[i].start;
5174 e[j].size = find_size(e, &i, sum_extents);
5175 j++;
5176 if (e[j-1].size == 0)
5177 break;
5178 }
5179
5180 pos = 0;
5181 maxsize = 0;
5182 start_extent = 0;
5183 i = 0;
5184 do {
5185 unsigned long long esize;
5186
5187 esize = e[i].start - pos;
5188 if (esize >= maxsize) {
5189 maxsize = esize;
5190 start = pos;
5191 start_extent = i;
5192 }
5193 pos = e[i].start + e[i].size;
5194 i++;
5195 } while (e[i-1].size);
5196 free(e);
5197
5198 if (maxsize == 0)
5199 return 0;
5200
5201 /* FIXME assumes volume at offset 0 is the first volume in a
5202 * container
5203 */
5204 if (start_extent > 0)
5205 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5206 else
5207 reserve = 0;
5208
5209 if (maxsize < reserve)
5210 return 0;
5211
5212 super->create_offset = ~((__u32) 0);
5213 if (start + reserve > super->create_offset)
5214 return 0; /* start overflows create_offset */
5215 super->create_offset = start + reserve;
5216
5217 return maxsize - reserve;
5218 }
5219
5220 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5221 {
5222 if (level < 0 || level == 6 || level == 4)
5223 return 0;
5224
5225 /* if we have an orom prevent invalid raid levels */
5226 if (orom)
5227 switch (level) {
5228 case 0: return imsm_orom_has_raid0(orom);
5229 case 1:
5230 if (raiddisks > 2)
5231 return imsm_orom_has_raid1e(orom);
5232 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5233 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5234 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5235 }
5236 else
5237 return 1; /* not on an Intel RAID platform so anything goes */
5238
5239 return 0;
5240 }
5241
5242 static int imsm_default_chunk(const struct imsm_orom *orom)
5243 {
5244 /* up to 512 if the plaform supports it, otherwise the platform max.
5245 * 128 if no platform detected
5246 */
5247 int fs = max(7, orom ? fls(orom->sss) : 0);
5248
5249 return min(512, (1 << fs));
5250 }
5251
5252 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
5253 static int
5254 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5255 int raiddisks, int *chunk, int verbose)
5256 {
5257 /* check/set platform and metadata limits/defaults */
5258 if (super->orom && raiddisks > super->orom->dpa) {
5259 pr_vrb(": platform supports a maximum of %d disks per array\n",
5260 super->orom->dpa);
5261 return 0;
5262 }
5263
5264 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5265 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5266 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5267 level, raiddisks, raiddisks > 1 ? "s" : "");
5268 return 0;
5269 }
5270
5271 if (chunk && (*chunk == 0 || *chunk == UnSet))
5272 *chunk = imsm_default_chunk(super->orom);
5273
5274 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5275 pr_vrb(": platform does not support a chunk size of: "
5276 "%d\n", *chunk);
5277 return 0;
5278 }
5279
5280 if (layout != imsm_level_to_layout(level)) {
5281 if (level == 5)
5282 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5283 else if (level == 10)
5284 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5285 else
5286 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5287 layout, level);
5288 return 0;
5289 }
5290 return 1;
5291 }
5292
5293 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5294 * FIX ME add ahci details
5295 */
5296 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5297 int layout, int raiddisks, int *chunk,
5298 unsigned long long size, char *dev,
5299 unsigned long long *freesize,
5300 int verbose)
5301 {
5302 struct stat stb;
5303 struct intel_super *super = st->sb;
5304 struct imsm_super *mpb;
5305 struct dl *dl;
5306 unsigned long long pos = 0;
5307 unsigned long long maxsize;
5308 struct extent *e;
5309 int i;
5310
5311 /* We must have the container info already read in. */
5312 if (!super)
5313 return 0;
5314
5315 mpb = super->anchor;
5316
5317 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5318 fprintf(stderr, Name ": RAID gemetry validation failed. "
5319 "Cannot proceed with the action(s).\n");
5320 return 0;
5321 }
5322 if (!dev) {
5323 /* General test: make sure there is space for
5324 * 'raiddisks' device extents of size 'size' at a given
5325 * offset
5326 */
5327 unsigned long long minsize = size;
5328 unsigned long long start_offset = MaxSector;
5329 int dcnt = 0;
5330 if (minsize == 0)
5331 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5332 for (dl = super->disks; dl ; dl = dl->next) {
5333 int found = 0;
5334
5335 pos = 0;
5336 i = 0;
5337 e = get_extents(super, dl);
5338 if (!e) continue;
5339 do {
5340 unsigned long long esize;
5341 esize = e[i].start - pos;
5342 if (esize >= minsize)
5343 found = 1;
5344 if (found && start_offset == MaxSector) {
5345 start_offset = pos;
5346 break;
5347 } else if (found && pos != start_offset) {
5348 found = 0;
5349 break;
5350 }
5351 pos = e[i].start + e[i].size;
5352 i++;
5353 } while (e[i-1].size);
5354 if (found)
5355 dcnt++;
5356 free(e);
5357 }
5358 if (dcnt < raiddisks) {
5359 if (verbose)
5360 fprintf(stderr, Name ": imsm: Not enough "
5361 "devices with space for this array "
5362 "(%d < %d)\n",
5363 dcnt, raiddisks);
5364 return 0;
5365 }
5366 return 1;
5367 }
5368
5369 /* This device must be a member of the set */
5370 if (stat(dev, &stb) < 0)
5371 return 0;
5372 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5373 return 0;
5374 for (dl = super->disks ; dl ; dl = dl->next) {
5375 if (dl->major == (int)major(stb.st_rdev) &&
5376 dl->minor == (int)minor(stb.st_rdev))
5377 break;
5378 }
5379 if (!dl) {
5380 if (verbose)
5381 fprintf(stderr, Name ": %s is not in the "
5382 "same imsm set\n", dev);
5383 return 0;
5384 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5385 /* If a volume is present then the current creation attempt
5386 * cannot incorporate new spares because the orom may not
5387 * understand this configuration (all member disks must be
5388 * members of each array in the container).
5389 */
5390 fprintf(stderr, Name ": %s is a spare and a volume"
5391 " is already defined for this container\n", dev);
5392 fprintf(stderr, Name ": The option-rom requires all member"
5393 " disks to be a member of all volumes\n");
5394 return 0;
5395 } else if (super->orom && mpb->num_raid_devs > 0 &&
5396 mpb->num_disks != raiddisks) {
5397 fprintf(stderr, Name ": The option-rom requires all member"
5398 " disks to be a member of all volumes\n");
5399 return 0;
5400 }
5401
5402 /* retrieve the largest free space block */
5403 e = get_extents(super, dl);
5404 maxsize = 0;
5405 i = 0;
5406 if (e) {
5407 do {
5408 unsigned long long esize;
5409
5410 esize = e[i].start - pos;
5411 if (esize >= maxsize)
5412 maxsize = esize;
5413 pos = e[i].start + e[i].size;
5414 i++;
5415 } while (e[i-1].size);
5416 dl->e = e;
5417 dl->extent_cnt = i;
5418 } else {
5419 if (verbose)
5420 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5421 dev);
5422 return 0;
5423 }
5424 if (maxsize < size) {
5425 if (verbose)
5426 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5427 dev, maxsize, size);
5428 return 0;
5429 }
5430
5431 /* count total number of extents for merge */
5432 i = 0;
5433 for (dl = super->disks; dl; dl = dl->next)
5434 if (dl->e)
5435 i += dl->extent_cnt;
5436
5437 maxsize = merge_extents(super, i);
5438
5439 if (!check_env("IMSM_NO_PLATFORM") &&
5440 mpb->num_raid_devs > 0 && size && size != maxsize) {
5441 fprintf(stderr, Name ": attempting to create a second "
5442 "volume with size less then remaining space. "
5443 "Aborting...\n");
5444 return 0;
5445 }
5446
5447 if (maxsize < size || maxsize == 0) {
5448 if (verbose)
5449 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5450 maxsize, size);
5451 return 0;
5452 }
5453
5454 *freesize = maxsize;
5455
5456 return 1;
5457 }
5458
5459 static int reserve_space(struct supertype *st, int raiddisks,
5460 unsigned long long size, int chunk,
5461 unsigned long long *freesize)
5462 {
5463 struct intel_super *super = st->sb;
5464 struct imsm_super *mpb = super->anchor;
5465 struct dl *dl;
5466 int i;
5467 int extent_cnt;
5468 struct extent *e;
5469 unsigned long long maxsize;
5470 unsigned long long minsize;
5471 int cnt;
5472 int used;
5473
5474 /* find the largest common start free region of the possible disks */
5475 used = 0;
5476 extent_cnt = 0;
5477 cnt = 0;
5478 for (dl = super->disks; dl; dl = dl->next) {
5479 dl->raiddisk = -1;
5480
5481 if (dl->index >= 0)
5482 used++;
5483
5484 /* don't activate new spares if we are orom constrained
5485 * and there is already a volume active in the container
5486 */
5487 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5488 continue;
5489
5490 e = get_extents(super, dl);
5491 if (!e)
5492 continue;
5493 for (i = 1; e[i-1].size; i++)
5494 ;
5495 dl->e = e;
5496 dl->extent_cnt = i;
5497 extent_cnt += i;
5498 cnt++;
5499 }
5500
5501 maxsize = merge_extents(super, extent_cnt);
5502 minsize = size;
5503 if (size == 0)
5504 /* chunk is in K */
5505 minsize = chunk * 2;
5506
5507 if (cnt < raiddisks ||
5508 (super->orom && used && used != raiddisks) ||
5509 maxsize < minsize ||
5510 maxsize == 0) {
5511 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5512 return 0; /* No enough free spaces large enough */
5513 }
5514
5515 if (size == 0) {
5516 size = maxsize;
5517 if (chunk) {
5518 size /= 2 * chunk;
5519 size *= 2 * chunk;
5520 }
5521 }
5522
5523 cnt = 0;
5524 for (dl = super->disks; dl; dl = dl->next)
5525 if (dl->e)
5526 dl->raiddisk = cnt++;
5527
5528 *freesize = size;
5529
5530 return 1;
5531 }
5532
5533 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
5534 int raiddisks, int *chunk, unsigned long long size,
5535 char *dev, unsigned long long *freesize,
5536 int verbose)
5537 {
5538 int fd, cfd;
5539 struct mdinfo *sra;
5540 int is_member = 0;
5541
5542 /* load capability
5543 * if given unused devices create a container
5544 * if given given devices in a container create a member volume
5545 */
5546 if (level == LEVEL_CONTAINER) {
5547 /* Must be a fresh device to add to a container */
5548 return validate_geometry_imsm_container(st, level, layout,
5549 raiddisks,
5550 chunk?*chunk:0, size,
5551 dev, freesize,
5552 verbose);
5553 }
5554
5555 if (!dev) {
5556 if (st->sb) {
5557 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5558 raiddisks, chunk,
5559 verbose))
5560 return 0;
5561 /* we are being asked to automatically layout a
5562 * new volume based on the current contents of
5563 * the container. If the the parameters can be
5564 * satisfied reserve_space will record the disks,
5565 * start offset, and size of the volume to be
5566 * created. add_to_super and getinfo_super
5567 * detect when autolayout is in progress.
5568 */
5569 if (freesize)
5570 return reserve_space(st, raiddisks, size,
5571 chunk?*chunk:0, freesize);
5572 }
5573 return 1;
5574 }
5575 if (st->sb) {
5576 /* creating in a given container */
5577 return validate_geometry_imsm_volume(st, level, layout,
5578 raiddisks, chunk, size,
5579 dev, freesize, verbose);
5580 }
5581
5582 /* This device needs to be a device in an 'imsm' container */
5583 fd = open(dev, O_RDONLY|O_EXCL, 0);
5584 if (fd >= 0) {
5585 if (verbose)
5586 fprintf(stderr,
5587 Name ": Cannot create this array on device %s\n",
5588 dev);
5589 close(fd);
5590 return 0;
5591 }
5592 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5593 if (verbose)
5594 fprintf(stderr, Name ": Cannot open %s: %s\n",
5595 dev, strerror(errno));
5596 return 0;
5597 }
5598 /* Well, it is in use by someone, maybe an 'imsm' container. */
5599 cfd = open_container(fd);
5600 close(fd);
5601 if (cfd < 0) {
5602 if (verbose)
5603 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5604 dev);
5605 return 0;
5606 }
5607 sra = sysfs_read(cfd, 0, GET_VERSION);
5608 if (sra && sra->array.major_version == -1 &&
5609 strcmp(sra->text_version, "imsm") == 0)
5610 is_member = 1;
5611 sysfs_free(sra);
5612 if (is_member) {
5613 /* This is a member of a imsm container. Load the container
5614 * and try to create a volume
5615 */
5616 struct intel_super *super;
5617
5618 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
5619 st->sb = super;
5620 st->container_dev = fd2devnum(cfd);
5621 close(cfd);
5622 return validate_geometry_imsm_volume(st, level, layout,
5623 raiddisks, chunk,
5624 size, dev,
5625 freesize, 1)
5626 ? 1 : -1;
5627 }
5628 }
5629
5630 if (verbose)
5631 fprintf(stderr, Name ": failed container membership check\n");
5632
5633 close(cfd);
5634 return 0;
5635 }
5636
5637 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
5638 {
5639 struct intel_super *super = st->sb;
5640
5641 if (level && *level == UnSet)
5642 *level = LEVEL_CONTAINER;
5643
5644 if (level && layout && *layout == UnSet)
5645 *layout = imsm_level_to_layout(*level);
5646
5647 if (chunk && (*chunk == UnSet || *chunk == 0))
5648 *chunk = imsm_default_chunk(super->orom);
5649 }
5650
5651 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5652
5653 static int kill_subarray_imsm(struct supertype *st)
5654 {
5655 /* remove the subarray currently referenced by ->current_vol */
5656 __u8 i;
5657 struct intel_dev **dp;
5658 struct intel_super *super = st->sb;
5659 __u8 current_vol = super->current_vol;
5660 struct imsm_super *mpb = super->anchor;
5661
5662 if (super->current_vol < 0)
5663 return 2;
5664 super->current_vol = -1; /* invalidate subarray cursor */
5665
5666 /* block deletions that would change the uuid of active subarrays
5667 *
5668 * FIXME when immutable ids are available, but note that we'll
5669 * also need to fixup the invalidated/active subarray indexes in
5670 * mdstat
5671 */
5672 for (i = 0; i < mpb->num_raid_devs; i++) {
5673 char subarray[4];
5674
5675 if (i < current_vol)
5676 continue;
5677 sprintf(subarray, "%u", i);
5678 if (is_subarray_active(subarray, st->devname)) {
5679 fprintf(stderr,
5680 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5681 current_vol, i);
5682
5683 return 2;
5684 }
5685 }
5686
5687 if (st->update_tail) {
5688 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5689
5690 if (!u)
5691 return 2;
5692 u->type = update_kill_array;
5693 u->dev_idx = current_vol;
5694 append_metadata_update(st, u, sizeof(*u));
5695
5696 return 0;
5697 }
5698
5699 for (dp = &super->devlist; *dp;)
5700 if ((*dp)->index == current_vol) {
5701 *dp = (*dp)->next;
5702 } else {
5703 handle_missing(super, (*dp)->dev);
5704 if ((*dp)->index > current_vol)
5705 (*dp)->index--;
5706 dp = &(*dp)->next;
5707 }
5708
5709 /* no more raid devices, all active components are now spares,
5710 * but of course failed are still failed
5711 */
5712 if (--mpb->num_raid_devs == 0) {
5713 struct dl *d;
5714
5715 for (d = super->disks; d; d = d->next)
5716 if (d->index > -2)
5717 mark_spare(d);
5718 }
5719
5720 super->updates_pending++;
5721
5722 return 0;
5723 }
5724
5725 static int update_subarray_imsm(struct supertype *st, char *subarray,
5726 char *update, struct mddev_ident *ident)
5727 {
5728 /* update the subarray currently referenced by ->current_vol */
5729 struct intel_super *super = st->sb;
5730 struct imsm_super *mpb = super->anchor;
5731
5732 if (strcmp(update, "name") == 0) {
5733 char *name = ident->name;
5734 char *ep;
5735 int vol;
5736
5737 if (is_subarray_active(subarray, st->devname)) {
5738 fprintf(stderr,
5739 Name ": Unable to update name of active subarray\n");
5740 return 2;
5741 }
5742
5743 if (!check_name(super, name, 0))
5744 return 2;
5745
5746 vol = strtoul(subarray, &ep, 10);
5747 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5748 return 2;
5749
5750 if (st->update_tail) {
5751 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5752
5753 if (!u)
5754 return 2;
5755 u->type = update_rename_array;
5756 u->dev_idx = vol;
5757 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5758 append_metadata_update(st, u, sizeof(*u));
5759 } else {
5760 struct imsm_dev *dev;
5761 int i;
5762
5763 dev = get_imsm_dev(super, vol);
5764 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5765 for (i = 0; i < mpb->num_raid_devs; i++) {
5766 dev = get_imsm_dev(super, i);
5767 handle_missing(super, dev);
5768 }
5769 super->updates_pending++;
5770 }
5771 } else
5772 return 2;
5773
5774 return 0;
5775 }
5776 #endif /* MDASSEMBLE */
5777
5778 static int is_gen_migration(struct imsm_dev *dev)
5779 {
5780 if (dev == NULL)
5781 return 0;
5782
5783 if (!dev->vol.migr_state)
5784 return 0;
5785
5786 if (migr_type(dev) == MIGR_GEN_MIGR)
5787 return 1;
5788
5789 return 0;
5790 }
5791
5792 static int is_rebuilding(struct imsm_dev *dev)
5793 {
5794 struct imsm_map *migr_map;
5795
5796 if (!dev->vol.migr_state)
5797 return 0;
5798
5799 if (migr_type(dev) != MIGR_REBUILD)
5800 return 0;
5801
5802 migr_map = get_imsm_map(dev, MAP_1);
5803
5804 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5805 return 1;
5806 else
5807 return 0;
5808 }
5809
5810 #ifndef MDASSEMBLE
5811 static int is_initializing(struct imsm_dev *dev)
5812 {
5813 struct imsm_map *migr_map;
5814
5815 if (!dev->vol.migr_state)
5816 return 0;
5817
5818 if (migr_type(dev) != MIGR_INIT)
5819 return 0;
5820
5821 migr_map = get_imsm_map(dev, MAP_1);
5822
5823 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
5824 return 1;
5825
5826 return 0;
5827 }
5828 #endif
5829
5830 static void update_recovery_start(struct intel_super *super,
5831 struct imsm_dev *dev,
5832 struct mdinfo *array)
5833 {
5834 struct mdinfo *rebuild = NULL;
5835 struct mdinfo *d;
5836 __u32 units;
5837
5838 if (!is_rebuilding(dev))
5839 return;
5840
5841 /* Find the rebuild target, but punt on the dual rebuild case */
5842 for (d = array->devs; d; d = d->next)
5843 if (d->recovery_start == 0) {
5844 if (rebuild)
5845 return;
5846 rebuild = d;
5847 }
5848
5849 if (!rebuild) {
5850 /* (?) none of the disks are marked with
5851 * IMSM_ORD_REBUILD, so assume they are missing and the
5852 * disk_ord_tbl was not correctly updated
5853 */
5854 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5855 return;
5856 }
5857
5858 units = __le32_to_cpu(dev->vol.curr_migr_unit);
5859 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
5860 }
5861
5862 #ifndef MDASSEMBLE
5863 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
5864 #endif
5865
5866 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
5867 {
5868 /* Given a container loaded by load_super_imsm_all,
5869 * extract information about all the arrays into
5870 * an mdinfo tree.
5871 * If 'subarray' is given, just extract info about that array.
5872 *
5873 * For each imsm_dev create an mdinfo, fill it in,
5874 * then look for matching devices in super->disks
5875 * and create appropriate device mdinfo.
5876 */
5877 struct intel_super *super = st->sb;
5878 struct imsm_super *mpb = super->anchor;
5879 struct mdinfo *rest = NULL;
5880 unsigned int i;
5881 int sb_errors = 0;
5882 struct dl *d;
5883 int spare_disks = 0;
5884
5885 /* do not assemble arrays when not all attributes are supported */
5886 if (imsm_check_attributes(mpb->attributes) == 0) {
5887 sb_errors = 1;
5888 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
5889 "Arrays activation is blocked.\n");
5890 }
5891
5892 /* check for bad blocks */
5893 if (imsm_bbm_log_size(super->anchor)) {
5894 fprintf(stderr, Name ": BBM log found in IMSM metadata."
5895 "Arrays activation is blocked.\n");
5896 sb_errors = 1;
5897 }
5898
5899
5900 /* count spare devices, not used in maps
5901 */
5902 for (d = super->disks; d; d = d->next)
5903 if (d->index == -1)
5904 spare_disks++;
5905
5906 for (i = 0; i < mpb->num_raid_devs; i++) {
5907 struct imsm_dev *dev;
5908 struct imsm_map *map;
5909 struct imsm_map *map2;
5910 struct mdinfo *this;
5911 int slot;
5912 #ifndef MDASSEMBLE
5913 int chunk;
5914 #endif
5915 char *ep;
5916
5917 if (subarray &&
5918 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5919 continue;
5920
5921 dev = get_imsm_dev(super, i);
5922 map = get_imsm_map(dev, MAP_0);
5923 map2 = get_imsm_map(dev, MAP_1);
5924
5925 /* do not publish arrays that are in the middle of an
5926 * unsupported migration
5927 */
5928 if (dev->vol.migr_state &&
5929 (migr_type(dev) == MIGR_STATE_CHANGE)) {
5930 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5931 " unsupported migration in progress\n",
5932 dev->volume);
5933 continue;
5934 }
5935 /* do not publish arrays that are not support by controller's
5936 * OROM/EFI
5937 */
5938
5939 this = malloc(sizeof(*this));
5940 if (!this) {
5941 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
5942 sizeof(*this));
5943 break;
5944 }
5945
5946 super->current_vol = i;
5947 getinfo_super_imsm_volume(st, this, NULL);
5948 this->next = rest;
5949 #ifndef MDASSEMBLE
5950 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
5951 /* mdadm does not support all metadata features- set the bit in all arrays state */
5952 if (!validate_geometry_imsm_orom(super,
5953 get_imsm_raid_level(map), /* RAID level */
5954 imsm_level_to_layout(get_imsm_raid_level(map)),
5955 map->num_members, /* raid disks */
5956 &chunk,
5957 1 /* verbose */)) {
5958 fprintf(stderr, Name ": IMSM RAID geometry validation"
5959 " failed. Array %s activation is blocked.\n",
5960 dev->volume);
5961 this->array.state |=
5962 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5963 (1<<MD_SB_BLOCK_VOLUME);
5964 }
5965 #endif
5966
5967 /* if array has bad blocks, set suitable bit in all arrays state */
5968 if (sb_errors)
5969 this->array.state |=
5970 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5971 (1<<MD_SB_BLOCK_VOLUME);
5972
5973 for (slot = 0 ; slot < map->num_members; slot++) {
5974 unsigned long long recovery_start;
5975 struct mdinfo *info_d;
5976 struct dl *d;
5977 int idx;
5978 int skip;
5979 __u32 ord;
5980
5981 skip = 0;
5982 idx = get_imsm_disk_idx(dev, slot, MAP_0);
5983 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5984 for (d = super->disks; d ; d = d->next)
5985 if (d->index == idx)
5986 break;
5987
5988 recovery_start = MaxSector;
5989 if (d == NULL)
5990 skip = 1;
5991 if (d && is_failed(&d->disk))
5992 skip = 1;
5993 if (ord & IMSM_ORD_REBUILD)
5994 recovery_start = 0;
5995
5996 /*
5997 * if we skip some disks the array will be assmebled degraded;
5998 * reset resync start to avoid a dirty-degraded
5999 * situation when performing the intial sync
6000 *
6001 * FIXME handle dirty degraded
6002 */
6003 if ((skip || recovery_start == 0) && !dev->vol.dirty)
6004 this->resync_start = MaxSector;
6005 if (skip)
6006 continue;
6007
6008 info_d = calloc(1, sizeof(*info_d));
6009 if (!info_d) {
6010 fprintf(stderr, Name ": failed to allocate disk"
6011 " for volume %.16s\n", dev->volume);
6012 info_d = this->devs;
6013 while (info_d) {
6014 struct mdinfo *d = info_d->next;
6015
6016 free(info_d);
6017 info_d = d;
6018 }
6019 free(this);
6020 this = rest;
6021 break;
6022 }
6023 info_d->next = this->devs;
6024 this->devs = info_d;
6025
6026 info_d->disk.number = d->index;
6027 info_d->disk.major = d->major;
6028 info_d->disk.minor = d->minor;
6029 info_d->disk.raid_disk = slot;
6030 info_d->recovery_start = recovery_start;
6031 if (map2) {
6032 if (slot < map2->num_members)
6033 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6034 else
6035 this->array.spare_disks++;
6036 } else {
6037 if (slot < map->num_members)
6038 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6039 else
6040 this->array.spare_disks++;
6041 }
6042 if (info_d->recovery_start == MaxSector)
6043 this->array.working_disks++;
6044
6045 info_d->events = __le32_to_cpu(mpb->generation_num);
6046 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
6047 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
6048 }
6049 /* now that the disk list is up-to-date fixup recovery_start */
6050 update_recovery_start(super, dev, this);
6051 this->array.spare_disks += spare_disks;
6052
6053 #ifndef MDASSEMBLE
6054 /* check for reshape */
6055 if (this->reshape_active == 1)
6056 recover_backup_imsm(st, this);
6057 #endif
6058 rest = this;
6059 }
6060
6061 return rest;
6062 }
6063
6064
6065 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6066 int failed, int look_in_map)
6067 {
6068 struct imsm_map *map;
6069
6070 map = get_imsm_map(dev, look_in_map);
6071
6072 if (!failed)
6073 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6074 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
6075
6076 switch (get_imsm_raid_level(map)) {
6077 case 0:
6078 return IMSM_T_STATE_FAILED;
6079 break;
6080 case 1:
6081 if (failed < map->num_members)
6082 return IMSM_T_STATE_DEGRADED;
6083 else
6084 return IMSM_T_STATE_FAILED;
6085 break;
6086 case 10:
6087 {
6088 /**
6089 * check to see if any mirrors have failed, otherwise we
6090 * are degraded. Even numbered slots are mirrored on
6091 * slot+1
6092 */
6093 int i;
6094 /* gcc -Os complains that this is unused */
6095 int insync = insync;
6096
6097 for (i = 0; i < map->num_members; i++) {
6098 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
6099 int idx = ord_to_idx(ord);
6100 struct imsm_disk *disk;
6101
6102 /* reset the potential in-sync count on even-numbered
6103 * slots. num_copies is always 2 for imsm raid10
6104 */
6105 if ((i & 1) == 0)
6106 insync = 2;
6107
6108 disk = get_imsm_disk(super, idx);
6109 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6110 insync--;
6111
6112 /* no in-sync disks left in this mirror the
6113 * array has failed
6114 */
6115 if (insync == 0)
6116 return IMSM_T_STATE_FAILED;
6117 }
6118
6119 return IMSM_T_STATE_DEGRADED;
6120 }
6121 case 5:
6122 if (failed < 2)
6123 return IMSM_T_STATE_DEGRADED;
6124 else
6125 return IMSM_T_STATE_FAILED;
6126 break;
6127 default:
6128 break;
6129 }
6130
6131 return map->map_state;
6132 }
6133
6134 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6135 int look_in_map)
6136 {
6137 int i;
6138 int failed = 0;
6139 struct imsm_disk *disk;
6140 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6141 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
6142 struct imsm_map *map_for_loop;
6143 __u32 ord;
6144 int idx;
6145 int idx_1;
6146
6147 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6148 * disks that are being rebuilt. New failures are recorded to
6149 * map[0]. So we look through all the disks we started with and
6150 * see if any failures are still present, or if any new ones
6151 * have arrived
6152 */
6153 map_for_loop = map;
6154 if (prev && (map->num_members < prev->num_members))
6155 map_for_loop = prev;
6156
6157 for (i = 0; i < map_for_loop->num_members; i++) {
6158 idx_1 = -255;
6159 /* when MAP_X is passed both maps failures are counted
6160 */
6161 if (prev &&
6162 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6163 (i < prev->num_members)) {
6164 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6165 idx_1 = ord_to_idx(ord);
6166
6167 disk = get_imsm_disk(super, idx_1);
6168 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6169 failed++;
6170 }
6171 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6172 (i < map->num_members)) {
6173 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6174 idx = ord_to_idx(ord);
6175
6176 if (idx != idx_1) {
6177 disk = get_imsm_disk(super, idx);
6178 if (!disk || is_failed(disk) ||
6179 ord & IMSM_ORD_REBUILD)
6180 failed++;
6181 }
6182 }
6183 }
6184
6185 return failed;
6186 }
6187
6188 #ifndef MDASSEMBLE
6189 static int imsm_open_new(struct supertype *c, struct active_array *a,
6190 char *inst)
6191 {
6192 struct intel_super *super = c->sb;
6193 struct imsm_super *mpb = super->anchor;
6194
6195 if (atoi(inst) >= mpb->num_raid_devs) {
6196 fprintf(stderr, "%s: subarry index %d, out of range\n",
6197 __func__, atoi(inst));
6198 return -ENODEV;
6199 }
6200
6201 dprintf("imsm: open_new %s\n", inst);
6202 a->info.container_member = atoi(inst);
6203 return 0;
6204 }
6205
6206 static int is_resyncing(struct imsm_dev *dev)
6207 {
6208 struct imsm_map *migr_map;
6209
6210 if (!dev->vol.migr_state)
6211 return 0;
6212
6213 if (migr_type(dev) == MIGR_INIT ||
6214 migr_type(dev) == MIGR_REPAIR)
6215 return 1;
6216
6217 if (migr_type(dev) == MIGR_GEN_MIGR)
6218 return 0;
6219
6220 migr_map = get_imsm_map(dev, MAP_1);
6221
6222 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6223 (dev->vol.migr_type != MIGR_GEN_MIGR))
6224 return 1;
6225 else
6226 return 0;
6227 }
6228
6229 /* return true if we recorded new information */
6230 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6231 {
6232 __u32 ord;
6233 int slot;
6234 struct imsm_map *map;
6235 char buf[MAX_RAID_SERIAL_LEN+3];
6236 unsigned int len, shift = 0;
6237
6238 /* new failures are always set in map[0] */
6239 map = get_imsm_map(dev, MAP_0);
6240
6241 slot = get_imsm_disk_slot(map, idx);
6242 if (slot < 0)
6243 return 0;
6244
6245 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6246 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6247 return 0;
6248
6249 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6250 buf[MAX_RAID_SERIAL_LEN] = '\000';
6251 strcat(buf, ":0");
6252 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6253 shift = len - MAX_RAID_SERIAL_LEN + 1;
6254 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6255
6256 disk->status |= FAILED_DISK;
6257 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6258 /* mark failures in second map if second map exists and this disk
6259 * in this slot.
6260 * This is valid for migration, initialization and rebuild
6261 */
6262 if (dev->vol.migr_state) {
6263 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
6264 int slot2 = get_imsm_disk_slot(map2, idx);
6265
6266 if ((slot2 < map2->num_members) &&
6267 (slot2 >= 0))
6268 set_imsm_ord_tbl_ent(map2, slot2,
6269 idx | IMSM_ORD_REBUILD);
6270 }
6271 if (map->failed_disk_num == 0xff)
6272 map->failed_disk_num = slot;
6273 return 1;
6274 }
6275
6276 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6277 {
6278 mark_failure(dev, disk, idx);
6279
6280 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6281 return;
6282
6283 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6284 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6285 }
6286
6287 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6288 {
6289 struct dl *dl;
6290
6291 if (!super->missing)
6292 return;
6293
6294 dprintf("imsm: mark missing\n");
6295 /* end process for initialization and rebuild only
6296 */
6297 if (is_gen_migration(dev) == 0) {
6298 __u8 map_state;
6299 int failed;
6300
6301 failed = imsm_count_failed(super, dev, MAP_0);
6302 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6303
6304 end_migration(dev, super, map_state);
6305 }
6306 for (dl = super->missing; dl; dl = dl->next)
6307 mark_missing(dev, &dl->disk, dl->index);
6308 super->updates_pending++;
6309 }
6310
6311 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6312 {
6313 int used_disks = imsm_num_data_members(dev, MAP_0);
6314 unsigned long long array_blocks;
6315 struct imsm_map *map;
6316
6317 if (used_disks == 0) {
6318 /* when problems occures
6319 * return current array_blocks value
6320 */
6321 array_blocks = __le32_to_cpu(dev->size_high);
6322 array_blocks = array_blocks << 32;
6323 array_blocks += __le32_to_cpu(dev->size_low);
6324
6325 return array_blocks;
6326 }
6327
6328 /* set array size in metadata
6329 */
6330 map = get_imsm_map(dev, MAP_0);
6331 array_blocks = map->blocks_per_member * used_disks;
6332
6333 /* round array size down to closest MB
6334 */
6335 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6336 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6337 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6338
6339 return array_blocks;
6340 }
6341
6342 static void imsm_set_disk(struct active_array *a, int n, int state);
6343
6344 static void imsm_progress_container_reshape(struct intel_super *super)
6345 {
6346 /* if no device has a migr_state, but some device has a
6347 * different number of members than the previous device, start
6348 * changing the number of devices in this device to match
6349 * previous.
6350 */
6351 struct imsm_super *mpb = super->anchor;
6352 int prev_disks = -1;
6353 int i;
6354 int copy_map_size;
6355
6356 for (i = 0; i < mpb->num_raid_devs; i++) {
6357 struct imsm_dev *dev = get_imsm_dev(super, i);
6358 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6359 struct imsm_map *map2;
6360 int prev_num_members;
6361
6362 if (dev->vol.migr_state)
6363 return;
6364
6365 if (prev_disks == -1)
6366 prev_disks = map->num_members;
6367 if (prev_disks == map->num_members)
6368 continue;
6369
6370 /* OK, this array needs to enter reshape mode.
6371 * i.e it needs a migr_state
6372 */
6373
6374 copy_map_size = sizeof_imsm_map(map);
6375 prev_num_members = map->num_members;
6376 map->num_members = prev_disks;
6377 dev->vol.migr_state = 1;
6378 dev->vol.curr_migr_unit = 0;
6379 set_migr_type(dev, MIGR_GEN_MIGR);
6380 for (i = prev_num_members;
6381 i < map->num_members; i++)
6382 set_imsm_ord_tbl_ent(map, i, i);
6383 map2 = get_imsm_map(dev, MAP_1);
6384 /* Copy the current map */
6385 memcpy(map2, map, copy_map_size);
6386 map2->num_members = prev_num_members;
6387
6388 imsm_set_array_size(dev);
6389 super->updates_pending++;
6390 }
6391 }
6392
6393 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
6394 * states are handled in imsm_set_disk() with one exception, when a
6395 * resync is stopped due to a new failure this routine will set the
6396 * 'degraded' state for the array.
6397 */
6398 static int imsm_set_array_state(struct active_array *a, int consistent)
6399 {
6400 int inst = a->info.container_member;
6401 struct intel_super *super = a->container->sb;
6402 struct imsm_dev *dev = get_imsm_dev(super, inst);
6403 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6404 int failed = imsm_count_failed(super, dev, MAP_0);
6405 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6406 __u32 blocks_per_unit;
6407
6408 if (dev->vol.migr_state &&
6409 dev->vol.migr_type == MIGR_GEN_MIGR) {
6410 /* array state change is blocked due to reshape action
6411 * We might need to
6412 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6413 * - finish the reshape (if last_checkpoint is big and action != reshape)
6414 * - update curr_migr_unit
6415 */
6416 if (a->curr_action == reshape) {
6417 /* still reshaping, maybe update curr_migr_unit */
6418 goto mark_checkpoint;
6419 } else {
6420 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6421 /* for some reason we aborted the reshape.
6422 *
6423 * disable automatic metadata rollback
6424 * user action is required to recover process
6425 */
6426 if (0) {
6427 struct imsm_map *map2 =
6428 get_imsm_map(dev, MAP_1);
6429 dev->vol.migr_state = 0;
6430 set_migr_type(dev, 0);
6431 dev->vol.curr_migr_unit = 0;
6432 memcpy(map, map2,
6433 sizeof_imsm_map(map2));
6434 super->updates_pending++;
6435 }
6436 }
6437 if (a->last_checkpoint >= a->info.component_size) {
6438 unsigned long long array_blocks;
6439 int used_disks;
6440 struct mdinfo *mdi;
6441
6442 used_disks = imsm_num_data_members(dev, MAP_0);
6443 if (used_disks > 0) {
6444 array_blocks =
6445 map->blocks_per_member *
6446 used_disks;
6447 /* round array size down to closest MB
6448 */
6449 array_blocks = (array_blocks
6450 >> SECT_PER_MB_SHIFT)
6451 << SECT_PER_MB_SHIFT;
6452 a->info.custom_array_size = array_blocks;
6453 /* encourage manager to update array
6454 * size
6455 */
6456
6457 a->check_reshape = 1;
6458 }
6459 /* finalize online capacity expansion/reshape */
6460 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6461 imsm_set_disk(a,
6462 mdi->disk.raid_disk,
6463 mdi->curr_state);
6464
6465 imsm_progress_container_reshape(super);
6466 }
6467 }
6468 }
6469
6470 /* before we activate this array handle any missing disks */
6471 if (consistent == 2)
6472 handle_missing(super, dev);
6473
6474 if (consistent == 2 &&
6475 (!is_resync_complete(&a->info) ||
6476 map_state != IMSM_T_STATE_NORMAL ||
6477 dev->vol.migr_state))
6478 consistent = 0;
6479
6480 if (is_resync_complete(&a->info)) {
6481 /* complete intialization / resync,
6482 * recovery and interrupted recovery is completed in
6483 * ->set_disk
6484 */
6485 if (is_resyncing(dev)) {
6486 dprintf("imsm: mark resync done\n");
6487 end_migration(dev, super, map_state);
6488 super->updates_pending++;
6489 a->last_checkpoint = 0;
6490 }
6491 } else if ((!is_resyncing(dev) && !failed) &&
6492 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
6493 /* mark the start of the init process if nothing is failed */
6494 dprintf("imsm: mark resync start\n");
6495 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
6496 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
6497 else
6498 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
6499 super->updates_pending++;
6500 }
6501
6502 mark_checkpoint:
6503 /* skip checkpointing for general migration,
6504 * it is controlled in mdadm
6505 */
6506 if (is_gen_migration(dev))
6507 goto skip_mark_checkpoint;
6508
6509 /* check if we can update curr_migr_unit from resync_start, recovery_start */
6510 blocks_per_unit = blocks_per_migr_unit(super, dev);
6511 if (blocks_per_unit) {
6512 __u32 units32;
6513 __u64 units;
6514
6515 units = a->last_checkpoint / blocks_per_unit;
6516 units32 = units;
6517
6518 /* check that we did not overflow 32-bits, and that
6519 * curr_migr_unit needs updating
6520 */
6521 if (units32 == units &&
6522 units32 != 0 &&
6523 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6524 dprintf("imsm: mark checkpoint (%u)\n", units32);
6525 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6526 super->updates_pending++;
6527 }
6528 }
6529
6530 skip_mark_checkpoint:
6531 /* mark dirty / clean */
6532 if (dev->vol.dirty != !consistent) {
6533 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
6534 if (consistent)
6535 dev->vol.dirty = 0;
6536 else
6537 dev->vol.dirty = 1;
6538 super->updates_pending++;
6539 }
6540
6541 return consistent;
6542 }
6543
6544 static void imsm_set_disk(struct active_array *a, int n, int state)
6545 {
6546 int inst = a->info.container_member;
6547 struct intel_super *super = a->container->sb;
6548 struct imsm_dev *dev = get_imsm_dev(super, inst);
6549 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6550 struct imsm_disk *disk;
6551 int failed;
6552 __u32 ord;
6553 __u8 map_state;
6554
6555 if (n > map->num_members)
6556 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6557 n, map->num_members - 1);
6558
6559 if (n < 0)
6560 return;
6561
6562 dprintf("imsm: set_disk %d:%x\n", n, state);
6563
6564 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
6565 disk = get_imsm_disk(super, ord_to_idx(ord));
6566
6567 /* check for new failures */
6568 if (state & DS_FAULTY) {
6569 if (mark_failure(dev, disk, ord_to_idx(ord)))
6570 super->updates_pending++;
6571 }
6572
6573 /* check if in_sync */
6574 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
6575 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
6576
6577 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
6578 super->updates_pending++;
6579 }
6580
6581 failed = imsm_count_failed(super, dev, MAP_0);
6582 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6583
6584 /* check if recovery complete, newly degraded, or failed */
6585 dprintf("imsm: Detected transition to state ");
6586 switch (map_state) {
6587 case IMSM_T_STATE_NORMAL: /* transition to normal state */
6588 dprintf("normal: ");
6589 if (is_rebuilding(dev)) {
6590 dprintf("while rebuilding");
6591 end_migration(dev, super, map_state);
6592 map = get_imsm_map(dev, MAP_0);
6593 map->failed_disk_num = ~0;
6594 super->updates_pending++;
6595 a->last_checkpoint = 0;
6596 break;
6597 }
6598 if (is_gen_migration(dev)) {
6599 dprintf("while general migration");
6600 if (a->last_checkpoint >= a->info.component_size)
6601 end_migration(dev, super, map_state);
6602 else
6603 map->map_state = map_state;
6604 map = get_imsm_map(dev, MAP_0);
6605 map->failed_disk_num = ~0;
6606 super->updates_pending++;
6607 break;
6608 }
6609 break;
6610 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
6611 dprintf("degraded: ");
6612 if ((map->map_state != map_state) &&
6613 !dev->vol.migr_state) {
6614 dprintf("mark degraded");
6615 map->map_state = map_state;
6616 super->updates_pending++;
6617 a->last_checkpoint = 0;
6618 break;
6619 }
6620 if (is_rebuilding(dev)) {
6621 dprintf("while rebuilding.");
6622 if (map->map_state != map_state) {
6623 dprintf(" Map state change");
6624 end_migration(dev, super, map_state);
6625 super->updates_pending++;
6626 }
6627 break;
6628 }
6629 if (is_gen_migration(dev)) {
6630 dprintf("while general migration");
6631 if (a->last_checkpoint >= a->info.component_size)
6632 end_migration(dev, super, map_state);
6633 else {
6634 map->map_state = map_state;
6635 manage_second_map(super, dev);
6636 }
6637 super->updates_pending++;
6638 break;
6639 }
6640 if (is_initializing(dev)) {
6641 dprintf("while initialization.");
6642 map->map_state = map_state;
6643 super->updates_pending++;
6644 break;
6645 }
6646 break;
6647 case IMSM_T_STATE_FAILED: /* transition to failed state */
6648 dprintf("failed: ");
6649 if (is_gen_migration(dev)) {
6650 dprintf("while general migration");
6651 map->map_state = map_state;
6652 super->updates_pending++;
6653 break;
6654 }
6655 if (map->map_state != map_state) {
6656 dprintf("mark failed");
6657 end_migration(dev, super, map_state);
6658 super->updates_pending++;
6659 a->last_checkpoint = 0;
6660 break;
6661 }
6662 break;
6663 default:
6664 dprintf("state %i\n", map_state);
6665 }
6666 dprintf("\n");
6667
6668 }
6669
6670 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
6671 {
6672 void *buf = mpb;
6673 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6674 unsigned long long dsize;
6675 unsigned long long sectors;
6676
6677 get_dev_size(fd, NULL, &dsize);
6678
6679 if (mpb_size > 512) {
6680 /* -1 to account for anchor */
6681 sectors = mpb_sectors(mpb) - 1;
6682
6683 /* write the extended mpb to the sectors preceeding the anchor */
6684 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6685 return 1;
6686
6687 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6688 != 512 * sectors)
6689 return 1;
6690 }
6691
6692 /* first block is stored on second to last sector of the disk */
6693 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
6694 return 1;
6695
6696 if (write(fd, buf, 512) != 512)
6697 return 1;
6698
6699 return 0;
6700 }
6701
6702 static void imsm_sync_metadata(struct supertype *container)
6703 {
6704 struct intel_super *super = container->sb;
6705
6706 dprintf("sync metadata: %d\n", super->updates_pending);
6707 if (!super->updates_pending)
6708 return;
6709
6710 write_super_imsm(container, 0);
6711
6712 super->updates_pending = 0;
6713 }
6714
6715 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6716 {
6717 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6718 int i = get_imsm_disk_idx(dev, idx, MAP_X);
6719 struct dl *dl;
6720
6721 for (dl = super->disks; dl; dl = dl->next)
6722 if (dl->index == i)
6723 break;
6724
6725 if (dl && is_failed(&dl->disk))
6726 dl = NULL;
6727
6728 if (dl)
6729 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6730
6731 return dl;
6732 }
6733
6734 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
6735 struct active_array *a, int activate_new,
6736 struct mdinfo *additional_test_list)
6737 {
6738 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6739 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
6740 struct imsm_super *mpb = super->anchor;
6741 struct imsm_map *map;
6742 unsigned long long pos;
6743 struct mdinfo *d;
6744 struct extent *ex;
6745 int i, j;
6746 int found;
6747 __u32 array_start = 0;
6748 __u32 array_end = 0;
6749 struct dl *dl;
6750 struct mdinfo *test_list;
6751
6752 for (dl = super->disks; dl; dl = dl->next) {
6753 /* If in this array, skip */
6754 for (d = a->info.devs ; d ; d = d->next)
6755 if (d->state_fd >= 0 &&
6756 d->disk.major == dl->major &&
6757 d->disk.minor == dl->minor) {
6758 dprintf("%x:%x already in array\n",
6759 dl->major, dl->minor);
6760 break;
6761 }
6762 if (d)
6763 continue;
6764 test_list = additional_test_list;
6765 while (test_list) {
6766 if (test_list->disk.major == dl->major &&
6767 test_list->disk.minor == dl->minor) {
6768 dprintf("%x:%x already in additional test list\n",
6769 dl->major, dl->minor);
6770 break;
6771 }
6772 test_list = test_list->next;
6773 }
6774 if (test_list)
6775 continue;
6776
6777 /* skip in use or failed drives */
6778 if (is_failed(&dl->disk) || idx == dl->index ||
6779 dl->index == -2) {
6780 dprintf("%x:%x status (failed: %d index: %d)\n",
6781 dl->major, dl->minor, is_failed(&dl->disk), idx);
6782 continue;
6783 }
6784
6785 /* skip pure spares when we are looking for partially
6786 * assimilated drives
6787 */
6788 if (dl->index == -1 && !activate_new)
6789 continue;
6790
6791 /* Does this unused device have the requisite free space?
6792 * It needs to be able to cover all member volumes
6793 */
6794 ex = get_extents(super, dl);
6795 if (!ex) {
6796 dprintf("cannot get extents\n");
6797 continue;
6798 }
6799 for (i = 0; i < mpb->num_raid_devs; i++) {
6800 dev = get_imsm_dev(super, i);
6801 map = get_imsm_map(dev, MAP_0);
6802
6803 /* check if this disk is already a member of
6804 * this array
6805 */
6806 if (get_imsm_disk_slot(map, dl->index) >= 0)
6807 continue;
6808
6809 found = 0;
6810 j = 0;
6811 pos = 0;
6812 array_start = __le32_to_cpu(map->pba_of_lba0);
6813 array_end = array_start +
6814 __le32_to_cpu(map->blocks_per_member) - 1;
6815
6816 do {
6817 /* check that we can start at pba_of_lba0 with
6818 * blocks_per_member of space
6819 */
6820 if (array_start >= pos && array_end < ex[j].start) {
6821 found = 1;
6822 break;
6823 }
6824 pos = ex[j].start + ex[j].size;
6825 j++;
6826 } while (ex[j-1].size);
6827
6828 if (!found)
6829 break;
6830 }
6831
6832 free(ex);
6833 if (i < mpb->num_raid_devs) {
6834 dprintf("%x:%x does not have %u to %u available\n",
6835 dl->major, dl->minor, array_start, array_end);
6836 /* No room */
6837 continue;
6838 }
6839 return dl;
6840 }
6841
6842 return dl;
6843 }
6844
6845
6846 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6847 {
6848 struct imsm_dev *dev2;
6849 struct imsm_map *map;
6850 struct dl *idisk;
6851 int slot;
6852 int idx;
6853 __u8 state;
6854
6855 dev2 = get_imsm_dev(cont->sb, dev_idx);
6856 if (dev2) {
6857 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
6858 if (state == IMSM_T_STATE_FAILED) {
6859 map = get_imsm_map(dev2, MAP_0);
6860 if (!map)
6861 return 1;
6862 for (slot = 0; slot < map->num_members; slot++) {
6863 /*
6864 * Check if failed disks are deleted from intel
6865 * disk list or are marked to be deleted
6866 */
6867 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
6868 idisk = get_imsm_dl_disk(cont->sb, idx);
6869 /*
6870 * Do not rebuild the array if failed disks
6871 * from failed sub-array are not removed from
6872 * container.
6873 */
6874 if (idisk &&
6875 is_failed(&idisk->disk) &&
6876 (idisk->action != DISK_REMOVE))
6877 return 0;
6878 }
6879 }
6880 }
6881 return 1;
6882 }
6883
6884 static struct mdinfo *imsm_activate_spare(struct active_array *a,
6885 struct metadata_update **updates)
6886 {
6887 /**
6888 * Find a device with unused free space and use it to replace a
6889 * failed/vacant region in an array. We replace failed regions one a
6890 * array at a time. The result is that a new spare disk will be added
6891 * to the first failed array and after the monitor has finished
6892 * propagating failures the remainder will be consumed.
6893 *
6894 * FIXME add a capability for mdmon to request spares from another
6895 * container.
6896 */
6897
6898 struct intel_super *super = a->container->sb;
6899 int inst = a->info.container_member;
6900 struct imsm_dev *dev = get_imsm_dev(super, inst);
6901 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6902 int failed = a->info.array.raid_disks;
6903 struct mdinfo *rv = NULL;
6904 struct mdinfo *d;
6905 struct mdinfo *di;
6906 struct metadata_update *mu;
6907 struct dl *dl;
6908 struct imsm_update_activate_spare *u;
6909 int num_spares = 0;
6910 int i;
6911 int allowed;
6912
6913 for (d = a->info.devs ; d ; d = d->next) {
6914 if ((d->curr_state & DS_FAULTY) &&
6915 d->state_fd >= 0)
6916 /* wait for Removal to happen */
6917 return NULL;
6918 if (d->state_fd >= 0)
6919 failed--;
6920 }
6921
6922 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6923 inst, failed, a->info.array.raid_disks, a->info.array.level);
6924
6925 if (imsm_reshape_blocks_arrays_changes(super))
6926 return NULL;
6927
6928 /* Cannot activate another spare if rebuild is in progress already
6929 */
6930 if (is_rebuilding(dev)) {
6931 dprintf("imsm: No spare activation allowed. "
6932 "Rebuild in progress already.\n");
6933 return NULL;
6934 }
6935
6936 if (a->info.array.level == 4)
6937 /* No repair for takeovered array
6938 * imsm doesn't support raid4
6939 */
6940 return NULL;
6941
6942 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
6943 IMSM_T_STATE_DEGRADED)
6944 return NULL;
6945
6946 /*
6947 * If there are any failed disks check state of the other volume.
6948 * Block rebuild if the another one is failed until failed disks
6949 * are removed from container.
6950 */
6951 if (failed) {
6952 dprintf("found failed disks in %.*s, check if there another"
6953 "failed sub-array.\n",
6954 MAX_RAID_SERIAL_LEN, dev->volume);
6955 /* check if states of the other volumes allow for rebuild */
6956 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6957 if (i != inst) {
6958 allowed = imsm_rebuild_allowed(a->container,
6959 i, failed);
6960 if (!allowed)
6961 return NULL;
6962 }
6963 }
6964 }
6965
6966 /* For each slot, if it is not working, find a spare */
6967 for (i = 0; i < a->info.array.raid_disks; i++) {
6968 for (d = a->info.devs ; d ; d = d->next)
6969 if (d->disk.raid_disk == i)
6970 break;
6971 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6972 if (d && (d->state_fd >= 0))
6973 continue;
6974
6975 /*
6976 * OK, this device needs recovery. Try to re-add the
6977 * previous occupant of this slot, if this fails see if
6978 * we can continue the assimilation of a spare that was
6979 * partially assimilated, finally try to activate a new
6980 * spare.
6981 */
6982 dl = imsm_readd(super, i, a);
6983 if (!dl)
6984 dl = imsm_add_spare(super, i, a, 0, rv);
6985 if (!dl)
6986 dl = imsm_add_spare(super, i, a, 1, rv);
6987 if (!dl)
6988 continue;
6989
6990 /* found a usable disk with enough space */
6991 di = malloc(sizeof(*di));
6992 if (!di)
6993 continue;
6994 memset(di, 0, sizeof(*di));
6995
6996 /* dl->index will be -1 in the case we are activating a
6997 * pristine spare. imsm_process_update() will create a
6998 * new index in this case. Once a disk is found to be
6999 * failed in all member arrays it is kicked from the
7000 * metadata
7001 */
7002 di->disk.number = dl->index;
7003
7004 /* (ab)use di->devs to store a pointer to the device
7005 * we chose
7006 */
7007 di->devs = (struct mdinfo *) dl;
7008
7009 di->disk.raid_disk = i;
7010 di->disk.major = dl->major;
7011 di->disk.minor = dl->minor;
7012 di->disk.state = 0;
7013 di->recovery_start = 0;
7014 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
7015 di->component_size = a->info.component_size;
7016 di->container_member = inst;
7017 super->random = random32();
7018 di->next = rv;
7019 rv = di;
7020 num_spares++;
7021 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7022 i, di->data_offset);
7023 }
7024
7025 if (!rv)
7026 /* No spares found */
7027 return rv;
7028 /* Now 'rv' has a list of devices to return.
7029 * Create a metadata_update record to update the
7030 * disk_ord_tbl for the array
7031 */
7032 mu = malloc(sizeof(*mu));
7033 if (mu) {
7034 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
7035 if (mu->buf == NULL) {
7036 free(mu);
7037 mu = NULL;
7038 }
7039 }
7040 if (!mu) {
7041 while (rv) {
7042 struct mdinfo *n = rv->next;
7043
7044 free(rv);
7045 rv = n;
7046 }
7047 return NULL;
7048 }
7049
7050 mu->space = NULL;
7051 mu->space_list = NULL;
7052 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7053 mu->next = *updates;
7054 u = (struct imsm_update_activate_spare *) mu->buf;
7055
7056 for (di = rv ; di ; di = di->next) {
7057 u->type = update_activate_spare;
7058 u->dl = (struct dl *) di->devs;
7059 di->devs = NULL;
7060 u->slot = di->disk.raid_disk;
7061 u->array = inst;
7062 u->next = u + 1;
7063 u++;
7064 }
7065 (u-1)->next = NULL;
7066 *updates = mu;
7067
7068 return rv;
7069 }
7070
7071 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
7072 {
7073 struct imsm_dev *dev = get_imsm_dev(super, idx);
7074 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7075 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
7076 struct disk_info *inf = get_disk_info(u);
7077 struct imsm_disk *disk;
7078 int i;
7079 int j;
7080
7081 for (i = 0; i < map->num_members; i++) {
7082 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
7083 for (j = 0; j < new_map->num_members; j++)
7084 if (serialcmp(disk->serial, inf[j].serial) == 0)
7085 return 1;
7086 }
7087
7088 return 0;
7089 }
7090
7091
7092 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7093 {
7094 struct dl *dl = NULL;
7095 for (dl = super->disks; dl; dl = dl->next)
7096 if ((dl->major == major) && (dl->minor == minor))
7097 return dl;
7098 return NULL;
7099 }
7100
7101 static int remove_disk_super(struct intel_super *super, int major, int minor)
7102 {
7103 struct dl *prev = NULL;
7104 struct dl *dl;
7105
7106 prev = NULL;
7107 for (dl = super->disks; dl; dl = dl->next) {
7108 if ((dl->major == major) && (dl->minor == minor)) {
7109 /* remove */
7110 if (prev)
7111 prev->next = dl->next;
7112 else
7113 super->disks = dl->next;
7114 dl->next = NULL;
7115 __free_imsm_disk(dl);
7116 dprintf("%s: removed %x:%x\n",
7117 __func__, major, minor);
7118 break;
7119 }
7120 prev = dl;
7121 }
7122 return 0;
7123 }
7124
7125 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
7126
7127 static int add_remove_disk_update(struct intel_super *super)
7128 {
7129 int check_degraded = 0;
7130 struct dl *disk = NULL;
7131 /* add/remove some spares to/from the metadata/contrainer */
7132 while (super->disk_mgmt_list) {
7133 struct dl *disk_cfg;
7134
7135 disk_cfg = super->disk_mgmt_list;
7136 super->disk_mgmt_list = disk_cfg->next;
7137 disk_cfg->next = NULL;
7138
7139 if (disk_cfg->action == DISK_ADD) {
7140 disk_cfg->next = super->disks;
7141 super->disks = disk_cfg;
7142 check_degraded = 1;
7143 dprintf("%s: added %x:%x\n",
7144 __func__, disk_cfg->major,
7145 disk_cfg->minor);
7146 } else if (disk_cfg->action == DISK_REMOVE) {
7147 dprintf("Disk remove action processed: %x.%x\n",
7148 disk_cfg->major, disk_cfg->minor);
7149 disk = get_disk_super(super,
7150 disk_cfg->major,
7151 disk_cfg->minor);
7152 if (disk) {
7153 /* store action status */
7154 disk->action = DISK_REMOVE;
7155 /* remove spare disks only */
7156 if (disk->index == -1) {
7157 remove_disk_super(super,
7158 disk_cfg->major,
7159 disk_cfg->minor);
7160 }
7161 }
7162 /* release allocate disk structure */
7163 __free_imsm_disk(disk_cfg);
7164 }
7165 }
7166 return check_degraded;
7167 }
7168
7169
7170 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7171 struct intel_super *super,
7172 void ***space_list)
7173 {
7174 struct intel_dev *id;
7175 void **tofree = NULL;
7176 int ret_val = 0;
7177
7178 dprintf("apply_reshape_migration_update()\n");
7179 if ((u->subdev < 0) ||
7180 (u->subdev > 1)) {
7181 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7182 return ret_val;
7183 }
7184 if ((space_list == NULL) || (*space_list == NULL)) {
7185 dprintf("imsm: Error: Memory is not allocated\n");
7186 return ret_val;
7187 }
7188
7189 for (id = super->devlist ; id; id = id->next) {
7190 if (id->index == (unsigned)u->subdev) {
7191 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7192 struct imsm_map *map;
7193 struct imsm_dev *new_dev =
7194 (struct imsm_dev *)*space_list;
7195 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7196 int to_state;
7197 struct dl *new_disk;
7198
7199 if (new_dev == NULL)
7200 return ret_val;
7201 *space_list = **space_list;
7202 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
7203 map = get_imsm_map(new_dev, MAP_0);
7204 if (migr_map) {
7205 dprintf("imsm: Error: migration in progress");
7206 return ret_val;
7207 }
7208
7209 to_state = map->map_state;
7210 if ((u->new_level == 5) && (map->raid_level == 0)) {
7211 map->num_members++;
7212 /* this should not happen */
7213 if (u->new_disks[0] < 0) {
7214 map->failed_disk_num =
7215 map->num_members - 1;
7216 to_state = IMSM_T_STATE_DEGRADED;
7217 } else
7218 to_state = IMSM_T_STATE_NORMAL;
7219 }
7220 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
7221 if (u->new_level > -1)
7222 map->raid_level = u->new_level;
7223 migr_map = get_imsm_map(new_dev, MAP_1);
7224 if ((u->new_level == 5) &&
7225 (migr_map->raid_level == 0)) {
7226 int ord = map->num_members - 1;
7227 migr_map->num_members--;
7228 if (u->new_disks[0] < 0)
7229 ord |= IMSM_ORD_REBUILD;
7230 set_imsm_ord_tbl_ent(map,
7231 map->num_members - 1,
7232 ord);
7233 }
7234 id->dev = new_dev;
7235 tofree = (void **)dev;
7236
7237 /* update chunk size
7238 */
7239 if (u->new_chunksize > 0)
7240 map->blocks_per_strip =
7241 __cpu_to_le16(u->new_chunksize * 2);
7242
7243 /* add disk
7244 */
7245 if ((u->new_level != 5) ||
7246 (migr_map->raid_level != 0) ||
7247 (migr_map->raid_level == map->raid_level))
7248 goto skip_disk_add;
7249
7250 if (u->new_disks[0] >= 0) {
7251 /* use passes spare
7252 */
7253 new_disk = get_disk_super(super,
7254 major(u->new_disks[0]),
7255 minor(u->new_disks[0]));
7256 dprintf("imsm: new disk for reshape is: %i:%i "
7257 "(%p, index = %i)\n",
7258 major(u->new_disks[0]),
7259 minor(u->new_disks[0]),
7260 new_disk, new_disk->index);
7261 if (new_disk == NULL)
7262 goto error_disk_add;
7263
7264 new_disk->index = map->num_members - 1;
7265 /* slot to fill in autolayout
7266 */
7267 new_disk->raiddisk = new_disk->index;
7268 new_disk->disk.status |= CONFIGURED_DISK;
7269 new_disk->disk.status &= ~SPARE_DISK;
7270 } else
7271 goto error_disk_add;
7272
7273 skip_disk_add:
7274 *tofree = *space_list;
7275 /* calculate new size
7276 */
7277 imsm_set_array_size(new_dev);
7278
7279 ret_val = 1;
7280 }
7281 }
7282
7283 if (tofree)
7284 *space_list = tofree;
7285 return ret_val;
7286
7287 error_disk_add:
7288 dprintf("Error: imsm: Cannot find disk.\n");
7289 return ret_val;
7290 }
7291
7292 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7293 struct intel_super *super,
7294 struct active_array *active_array)
7295 {
7296 struct imsm_super *mpb = super->anchor;
7297 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7298 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7299 struct imsm_map *migr_map;
7300 struct active_array *a;
7301 struct imsm_disk *disk;
7302 __u8 to_state;
7303 struct dl *dl;
7304 unsigned int found;
7305 int failed;
7306 int victim;
7307 int i;
7308 int second_map_created = 0;
7309
7310 for (; u; u = u->next) {
7311 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
7312
7313 if (victim < 0)
7314 return 0;
7315
7316 for (dl = super->disks; dl; dl = dl->next)
7317 if (dl == u->dl)
7318 break;
7319
7320 if (!dl) {
7321 fprintf(stderr, "error: imsm_activate_spare passed "
7322 "an unknown disk (index: %d)\n",
7323 u->dl->index);
7324 return 0;
7325 }
7326
7327 /* count failures (excluding rebuilds and the victim)
7328 * to determine map[0] state
7329 */
7330 failed = 0;
7331 for (i = 0; i < map->num_members; i++) {
7332 if (i == u->slot)
7333 continue;
7334 disk = get_imsm_disk(super,
7335 get_imsm_disk_idx(dev, i, MAP_X));
7336 if (!disk || is_failed(disk))
7337 failed++;
7338 }
7339
7340 /* adding a pristine spare, assign a new index */
7341 if (dl->index < 0) {
7342 dl->index = super->anchor->num_disks;
7343 super->anchor->num_disks++;
7344 }
7345 disk = &dl->disk;
7346 disk->status |= CONFIGURED_DISK;
7347 disk->status &= ~SPARE_DISK;
7348
7349 /* mark rebuild */
7350 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
7351 if (!second_map_created) {
7352 second_map_created = 1;
7353 map->map_state = IMSM_T_STATE_DEGRADED;
7354 migrate(dev, super, to_state, MIGR_REBUILD);
7355 } else
7356 map->map_state = to_state;
7357 migr_map = get_imsm_map(dev, MAP_1);
7358 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7359 set_imsm_ord_tbl_ent(migr_map, u->slot,
7360 dl->index | IMSM_ORD_REBUILD);
7361
7362 /* update the family_num to mark a new container
7363 * generation, being careful to record the existing
7364 * family_num in orig_family_num to clean up after
7365 * earlier mdadm versions that neglected to set it.
7366 */
7367 if (mpb->orig_family_num == 0)
7368 mpb->orig_family_num = mpb->family_num;
7369 mpb->family_num += super->random;
7370
7371 /* count arrays using the victim in the metadata */
7372 found = 0;
7373 for (a = active_array; a ; a = a->next) {
7374 dev = get_imsm_dev(super, a->info.container_member);
7375 map = get_imsm_map(dev, MAP_0);
7376
7377 if (get_imsm_disk_slot(map, victim) >= 0)
7378 found++;
7379 }
7380
7381 /* delete the victim if it is no longer being
7382 * utilized anywhere
7383 */
7384 if (!found) {
7385 struct dl **dlp;
7386
7387 /* We know that 'manager' isn't touching anything,
7388 * so it is safe to delete
7389 */
7390 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
7391 if ((*dlp)->index == victim)
7392 break;
7393
7394 /* victim may be on the missing list */
7395 if (!*dlp)
7396 for (dlp = &super->missing; *dlp;
7397 dlp = &(*dlp)->next)
7398 if ((*dlp)->index == victim)
7399 break;
7400 imsm_delete(super, dlp, victim);
7401 }
7402 }
7403
7404 return 1;
7405 }
7406
7407 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7408 struct intel_super *super,
7409 void ***space_list)
7410 {
7411 struct dl *new_disk;
7412 struct intel_dev *id;
7413 int i;
7414 int delta_disks = u->new_raid_disks - u->old_raid_disks;
7415 int disk_count = u->old_raid_disks;
7416 void **tofree = NULL;
7417 int devices_to_reshape = 1;
7418 struct imsm_super *mpb = super->anchor;
7419 int ret_val = 0;
7420 unsigned int dev_id;
7421
7422 dprintf("imsm: apply_reshape_container_disks_update()\n");
7423
7424 /* enable spares to use in array */
7425 for (i = 0; i < delta_disks; i++) {
7426 new_disk = get_disk_super(super,
7427 major(u->new_disks[i]),
7428 minor(u->new_disks[i]));
7429 dprintf("imsm: new disk for reshape is: %i:%i "
7430 "(%p, index = %i)\n",
7431 major(u->new_disks[i]), minor(u->new_disks[i]),
7432 new_disk, new_disk->index);
7433 if ((new_disk == NULL) ||
7434 ((new_disk->index >= 0) &&
7435 (new_disk->index < u->old_raid_disks)))
7436 goto update_reshape_exit;
7437 new_disk->index = disk_count++;
7438 /* slot to fill in autolayout
7439 */
7440 new_disk->raiddisk = new_disk->index;
7441 new_disk->disk.status |=
7442 CONFIGURED_DISK;
7443 new_disk->disk.status &= ~SPARE_DISK;
7444 }
7445
7446 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7447 mpb->num_raid_devs);
7448 /* manage changes in volume
7449 */
7450 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
7451 void **sp = *space_list;
7452 struct imsm_dev *newdev;
7453 struct imsm_map *newmap, *oldmap;
7454
7455 for (id = super->devlist ; id; id = id->next) {
7456 if (id->index == dev_id)
7457 break;
7458 }
7459 if (id == NULL)
7460 break;
7461 if (!sp)
7462 continue;
7463 *space_list = *sp;
7464 newdev = (void*)sp;
7465 /* Copy the dev, but not (all of) the map */
7466 memcpy(newdev, id->dev, sizeof(*newdev));
7467 oldmap = get_imsm_map(id->dev, MAP_0);
7468 newmap = get_imsm_map(newdev, MAP_0);
7469 /* Copy the current map */
7470 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7471 /* update one device only
7472 */
7473 if (devices_to_reshape) {
7474 dprintf("imsm: modifying subdev: %i\n",
7475 id->index);
7476 devices_to_reshape--;
7477 newdev->vol.migr_state = 1;
7478 newdev->vol.curr_migr_unit = 0;
7479 set_migr_type(newdev, MIGR_GEN_MIGR);
7480 newmap->num_members = u->new_raid_disks;
7481 for (i = 0; i < delta_disks; i++) {
7482 set_imsm_ord_tbl_ent(newmap,
7483 u->old_raid_disks + i,
7484 u->old_raid_disks + i);
7485 }
7486 /* New map is correct, now need to save old map
7487 */
7488 newmap = get_imsm_map(newdev, MAP_1);
7489 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7490
7491 imsm_set_array_size(newdev);
7492 }
7493
7494 sp = (void **)id->dev;
7495 id->dev = newdev;
7496 *sp = tofree;
7497 tofree = sp;
7498
7499 /* Clear migration record */
7500 memset(super->migr_rec, 0, sizeof(struct migr_record));
7501 }
7502 if (tofree)
7503 *space_list = tofree;
7504 ret_val = 1;
7505
7506 update_reshape_exit:
7507
7508 return ret_val;
7509 }
7510
7511 static int apply_takeover_update(struct imsm_update_takeover *u,
7512 struct intel_super *super,
7513 void ***space_list)
7514 {
7515 struct imsm_dev *dev = NULL;
7516 struct intel_dev *dv;
7517 struct imsm_dev *dev_new;
7518 struct imsm_map *map;
7519 struct dl *dm, *du;
7520 int i;
7521
7522 for (dv = super->devlist; dv; dv = dv->next)
7523 if (dv->index == (unsigned int)u->subarray) {
7524 dev = dv->dev;
7525 break;
7526 }
7527
7528 if (dev == NULL)
7529 return 0;
7530
7531 map = get_imsm_map(dev, MAP_0);
7532
7533 if (u->direction == R10_TO_R0) {
7534 /* Number of failed disks must be half of initial disk number */
7535 if (imsm_count_failed(super, dev, MAP_0) !=
7536 (map->num_members / 2))
7537 return 0;
7538
7539 /* iterate through devices to mark removed disks as spare */
7540 for (dm = super->disks; dm; dm = dm->next) {
7541 if (dm->disk.status & FAILED_DISK) {
7542 int idx = dm->index;
7543 /* update indexes on the disk list */
7544 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7545 the index values will end up being correct.... NB */
7546 for (du = super->disks; du; du = du->next)
7547 if (du->index > idx)
7548 du->index--;
7549 /* mark as spare disk */
7550 mark_spare(dm);
7551 }
7552 }
7553 /* update map */
7554 map->num_members = map->num_members / 2;
7555 map->map_state = IMSM_T_STATE_NORMAL;
7556 map->num_domains = 1;
7557 map->raid_level = 0;
7558 map->failed_disk_num = -1;
7559 }
7560
7561 if (u->direction == R0_TO_R10) {
7562 void **space;
7563 /* update slots in current disk list */
7564 for (dm = super->disks; dm; dm = dm->next) {
7565 if (dm->index >= 0)
7566 dm->index *= 2;
7567 }
7568 /* create new *missing* disks */
7569 for (i = 0; i < map->num_members; i++) {
7570 space = *space_list;
7571 if (!space)
7572 continue;
7573 *space_list = *space;
7574 du = (void *)space;
7575 memcpy(du, super->disks, sizeof(*du));
7576 du->fd = -1;
7577 du->minor = 0;
7578 du->major = 0;
7579 du->index = (i * 2) + 1;
7580 sprintf((char *)du->disk.serial,
7581 " MISSING_%d", du->index);
7582 sprintf((char *)du->serial,
7583 "MISSING_%d", du->index);
7584 du->next = super->missing;
7585 super->missing = du;
7586 }
7587 /* create new dev and map */
7588 space = *space_list;
7589 if (!space)
7590 return 0;
7591 *space_list = *space;
7592 dev_new = (void *)space;
7593 memcpy(dev_new, dev, sizeof(*dev));
7594 /* update new map */
7595 map = get_imsm_map(dev_new, MAP_0);
7596 map->num_members = map->num_members * 2;
7597 map->map_state = IMSM_T_STATE_DEGRADED;
7598 map->num_domains = 2;
7599 map->raid_level = 1;
7600 /* replace dev<->dev_new */
7601 dv->dev = dev_new;
7602 }
7603 /* update disk order table */
7604 for (du = super->disks; du; du = du->next)
7605 if (du->index >= 0)
7606 set_imsm_ord_tbl_ent(map, du->index, du->index);
7607 for (du = super->missing; du; du = du->next)
7608 if (du->index >= 0) {
7609 set_imsm_ord_tbl_ent(map, du->index, du->index);
7610 mark_missing(dv->dev, &du->disk, du->index);
7611 }
7612
7613 return 1;
7614 }
7615
7616 static void imsm_process_update(struct supertype *st,
7617 struct metadata_update *update)
7618 {
7619 /**
7620 * crack open the metadata_update envelope to find the update record
7621 * update can be one of:
7622 * update_reshape_container_disks - all the arrays in the container
7623 * are being reshaped to have more devices. We need to mark
7624 * the arrays for general migration and convert selected spares
7625 * into active devices.
7626 * update_activate_spare - a spare device has replaced a failed
7627 * device in an array, update the disk_ord_tbl. If this disk is
7628 * present in all member arrays then also clear the SPARE_DISK
7629 * flag
7630 * update_create_array
7631 * update_kill_array
7632 * update_rename_array
7633 * update_add_remove_disk
7634 */
7635 struct intel_super *super = st->sb;
7636 struct imsm_super *mpb;
7637 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7638
7639 /* update requires a larger buf but the allocation failed */
7640 if (super->next_len && !super->next_buf) {
7641 super->next_len = 0;
7642 return;
7643 }
7644
7645 if (super->next_buf) {
7646 memcpy(super->next_buf, super->buf, super->len);
7647 free(super->buf);
7648 super->len = super->next_len;
7649 super->buf = super->next_buf;
7650
7651 super->next_len = 0;
7652 super->next_buf = NULL;
7653 }
7654
7655 mpb = super->anchor;
7656
7657 switch (type) {
7658 case update_general_migration_checkpoint: {
7659 struct intel_dev *id;
7660 struct imsm_update_general_migration_checkpoint *u =
7661 (void *)update->buf;
7662
7663 dprintf("imsm: process_update() "
7664 "for update_general_migration_checkpoint called\n");
7665
7666 /* find device under general migration */
7667 for (id = super->devlist ; id; id = id->next) {
7668 if (is_gen_migration(id->dev)) {
7669 id->dev->vol.curr_migr_unit =
7670 __cpu_to_le32(u->curr_migr_unit);
7671 super->updates_pending++;
7672 }
7673 }
7674 break;
7675 }
7676 case update_takeover: {
7677 struct imsm_update_takeover *u = (void *)update->buf;
7678 if (apply_takeover_update(u, super, &update->space_list)) {
7679 imsm_update_version_info(super);
7680 super->updates_pending++;
7681 }
7682 break;
7683 }
7684
7685 case update_reshape_container_disks: {
7686 struct imsm_update_reshape *u = (void *)update->buf;
7687 if (apply_reshape_container_disks_update(
7688 u, super, &update->space_list))
7689 super->updates_pending++;
7690 break;
7691 }
7692 case update_reshape_migration: {
7693 struct imsm_update_reshape_migration *u = (void *)update->buf;
7694 if (apply_reshape_migration_update(
7695 u, super, &update->space_list))
7696 super->updates_pending++;
7697 break;
7698 }
7699 case update_activate_spare: {
7700 struct imsm_update_activate_spare *u = (void *) update->buf;
7701 if (apply_update_activate_spare(u, super, st->arrays))
7702 super->updates_pending++;
7703 break;
7704 }
7705 case update_create_array: {
7706 /* someone wants to create a new array, we need to be aware of
7707 * a few races/collisions:
7708 * 1/ 'Create' called by two separate instances of mdadm
7709 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7710 * devices that have since been assimilated via
7711 * activate_spare.
7712 * In the event this update can not be carried out mdadm will
7713 * (FIX ME) notice that its update did not take hold.
7714 */
7715 struct imsm_update_create_array *u = (void *) update->buf;
7716 struct intel_dev *dv;
7717 struct imsm_dev *dev;
7718 struct imsm_map *map, *new_map;
7719 unsigned long long start, end;
7720 unsigned long long new_start, new_end;
7721 int i;
7722 struct disk_info *inf;
7723 struct dl *dl;
7724
7725 /* handle racing creates: first come first serve */
7726 if (u->dev_idx < mpb->num_raid_devs) {
7727 dprintf("%s: subarray %d already defined\n",
7728 __func__, u->dev_idx);
7729 goto create_error;
7730 }
7731
7732 /* check update is next in sequence */
7733 if (u->dev_idx != mpb->num_raid_devs) {
7734 dprintf("%s: can not create array %d expected index %d\n",
7735 __func__, u->dev_idx, mpb->num_raid_devs);
7736 goto create_error;
7737 }
7738
7739 new_map = get_imsm_map(&u->dev, MAP_0);
7740 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7741 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
7742 inf = get_disk_info(u);
7743
7744 /* handle activate_spare versus create race:
7745 * check to make sure that overlapping arrays do not include
7746 * overalpping disks
7747 */
7748 for (i = 0; i < mpb->num_raid_devs; i++) {
7749 dev = get_imsm_dev(super, i);
7750 map = get_imsm_map(dev, MAP_0);
7751 start = __le32_to_cpu(map->pba_of_lba0);
7752 end = start + __le32_to_cpu(map->blocks_per_member);
7753 if ((new_start >= start && new_start <= end) ||
7754 (start >= new_start && start <= new_end))
7755 /* overlap */;
7756 else
7757 continue;
7758
7759 if (disks_overlap(super, i, u)) {
7760 dprintf("%s: arrays overlap\n", __func__);
7761 goto create_error;
7762 }
7763 }
7764
7765 /* check that prepare update was successful */
7766 if (!update->space) {
7767 dprintf("%s: prepare update failed\n", __func__);
7768 goto create_error;
7769 }
7770
7771 /* check that all disks are still active before committing
7772 * changes. FIXME: could we instead handle this by creating a
7773 * degraded array? That's probably not what the user expects,
7774 * so better to drop this update on the floor.
7775 */
7776 for (i = 0; i < new_map->num_members; i++) {
7777 dl = serial_to_dl(inf[i].serial, super);
7778 if (!dl) {
7779 dprintf("%s: disk disappeared\n", __func__);
7780 goto create_error;
7781 }
7782 }
7783
7784 super->updates_pending++;
7785
7786 /* convert spares to members and fixup ord_tbl */
7787 for (i = 0; i < new_map->num_members; i++) {
7788 dl = serial_to_dl(inf[i].serial, super);
7789 if (dl->index == -1) {
7790 dl->index = mpb->num_disks;
7791 mpb->num_disks++;
7792 dl->disk.status |= CONFIGURED_DISK;
7793 dl->disk.status &= ~SPARE_DISK;
7794 }
7795 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7796 }
7797
7798 dv = update->space;
7799 dev = dv->dev;
7800 update->space = NULL;
7801 imsm_copy_dev(dev, &u->dev);
7802 dv->index = u->dev_idx;
7803 dv->next = super->devlist;
7804 super->devlist = dv;
7805 mpb->num_raid_devs++;
7806
7807 imsm_update_version_info(super);
7808 break;
7809 create_error:
7810 /* mdmon knows how to release update->space, but not
7811 * ((struct intel_dev *) update->space)->dev
7812 */
7813 if (update->space) {
7814 dv = update->space;
7815 free(dv->dev);
7816 }
7817 break;
7818 }
7819 case update_kill_array: {
7820 struct imsm_update_kill_array *u = (void *) update->buf;
7821 int victim = u->dev_idx;
7822 struct active_array *a;
7823 struct intel_dev **dp;
7824 struct imsm_dev *dev;
7825
7826 /* sanity check that we are not affecting the uuid of
7827 * active arrays, or deleting an active array
7828 *
7829 * FIXME when immutable ids are available, but note that
7830 * we'll also need to fixup the invalidated/active
7831 * subarray indexes in mdstat
7832 */
7833 for (a = st->arrays; a; a = a->next)
7834 if (a->info.container_member >= victim)
7835 break;
7836 /* by definition if mdmon is running at least one array
7837 * is active in the container, so checking
7838 * mpb->num_raid_devs is just extra paranoia
7839 */
7840 dev = get_imsm_dev(super, victim);
7841 if (a || !dev || mpb->num_raid_devs == 1) {
7842 dprintf("failed to delete subarray-%d\n", victim);
7843 break;
7844 }
7845
7846 for (dp = &super->devlist; *dp;)
7847 if ((*dp)->index == (unsigned)super->current_vol) {
7848 *dp = (*dp)->next;
7849 } else {
7850 if ((*dp)->index > (unsigned)victim)
7851 (*dp)->index--;
7852 dp = &(*dp)->next;
7853 }
7854 mpb->num_raid_devs--;
7855 super->updates_pending++;
7856 break;
7857 }
7858 case update_rename_array: {
7859 struct imsm_update_rename_array *u = (void *) update->buf;
7860 char name[MAX_RAID_SERIAL_LEN+1];
7861 int target = u->dev_idx;
7862 struct active_array *a;
7863 struct imsm_dev *dev;
7864
7865 /* sanity check that we are not affecting the uuid of
7866 * an active array
7867 */
7868 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7869 name[MAX_RAID_SERIAL_LEN] = '\0';
7870 for (a = st->arrays; a; a = a->next)
7871 if (a->info.container_member == target)
7872 break;
7873 dev = get_imsm_dev(super, u->dev_idx);
7874 if (a || !dev || !check_name(super, name, 1)) {
7875 dprintf("failed to rename subarray-%d\n", target);
7876 break;
7877 }
7878
7879 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7880 super->updates_pending++;
7881 break;
7882 }
7883 case update_add_remove_disk: {
7884 /* we may be able to repair some arrays if disks are
7885 * being added, check teh status of add_remove_disk
7886 * if discs has been added.
7887 */
7888 if (add_remove_disk_update(super)) {
7889 struct active_array *a;
7890
7891 super->updates_pending++;
7892 for (a = st->arrays; a; a = a->next)
7893 a->check_degraded = 1;
7894 }
7895 break;
7896 }
7897 default:
7898 fprintf(stderr, "error: unsuported process update type:"
7899 "(type: %d)\n", type);
7900 }
7901 }
7902
7903 static struct mdinfo *get_spares_for_grow(struct supertype *st);
7904
7905 static void imsm_prepare_update(struct supertype *st,
7906 struct metadata_update *update)
7907 {
7908 /**
7909 * Allocate space to hold new disk entries, raid-device entries or a new
7910 * mpb if necessary. The manager synchronously waits for updates to
7911 * complete in the monitor, so new mpb buffers allocated here can be
7912 * integrated by the monitor thread without worrying about live pointers
7913 * in the manager thread.
7914 */
7915 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7916 struct intel_super *super = st->sb;
7917 struct imsm_super *mpb = super->anchor;
7918 size_t buf_len;
7919 size_t len = 0;
7920
7921 switch (type) {
7922 case update_general_migration_checkpoint:
7923 dprintf("imsm: prepare_update() "
7924 "for update_general_migration_checkpoint called\n");
7925 break;
7926 case update_takeover: {
7927 struct imsm_update_takeover *u = (void *)update->buf;
7928 if (u->direction == R0_TO_R10) {
7929 void **tail = (void **)&update->space_list;
7930 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7931 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7932 int num_members = map->num_members;
7933 void *space;
7934 int size, i;
7935 int err = 0;
7936 /* allocate memory for added disks */
7937 for (i = 0; i < num_members; i++) {
7938 size = sizeof(struct dl);
7939 space = malloc(size);
7940 if (!space) {
7941 err++;
7942 break;
7943 }
7944 *tail = space;
7945 tail = space;
7946 *tail = NULL;
7947 }
7948 /* allocate memory for new device */
7949 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7950 (num_members * sizeof(__u32));
7951 space = malloc(size);
7952 if (!space)
7953 err++;
7954 else {
7955 *tail = space;
7956 tail = space;
7957 *tail = NULL;
7958 }
7959 if (!err) {
7960 len = disks_to_mpb_size(num_members * 2);
7961 } else {
7962 /* if allocation didn't success, free buffer */
7963 while (update->space_list) {
7964 void **sp = update->space_list;
7965 update->space_list = *sp;
7966 free(sp);
7967 }
7968 }
7969 }
7970
7971 break;
7972 }
7973 case update_reshape_container_disks: {
7974 /* Every raid device in the container is about to
7975 * gain some more devices, and we will enter a
7976 * reconfiguration.
7977 * So each 'imsm_map' will be bigger, and the imsm_vol
7978 * will now hold 2 of them.
7979 * Thus we need new 'struct imsm_dev' allocations sized
7980 * as sizeof_imsm_dev but with more devices in both maps.
7981 */
7982 struct imsm_update_reshape *u = (void *)update->buf;
7983 struct intel_dev *dl;
7984 void **space_tail = (void**)&update->space_list;
7985
7986 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7987
7988 for (dl = super->devlist; dl; dl = dl->next) {
7989 int size = sizeof_imsm_dev(dl->dev, 1);
7990 void *s;
7991 if (u->new_raid_disks > u->old_raid_disks)
7992 size += sizeof(__u32)*2*
7993 (u->new_raid_disks - u->old_raid_disks);
7994 s = malloc(size);
7995 if (!s)
7996 break;
7997 *space_tail = s;
7998 space_tail = s;
7999 *space_tail = NULL;
8000 }
8001
8002 len = disks_to_mpb_size(u->new_raid_disks);
8003 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8004 break;
8005 }
8006 case update_reshape_migration: {
8007 /* for migration level 0->5 we need to add disks
8008 * so the same as for container operation we will copy
8009 * device to the bigger location.
8010 * in memory prepared device and new disk area are prepared
8011 * for usage in process update
8012 */
8013 struct imsm_update_reshape_migration *u = (void *)update->buf;
8014 struct intel_dev *id;
8015 void **space_tail = (void **)&update->space_list;
8016 int size;
8017 void *s;
8018 int current_level = -1;
8019
8020 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8021
8022 /* add space for bigger array in update
8023 */
8024 for (id = super->devlist; id; id = id->next) {
8025 if (id->index == (unsigned)u->subdev) {
8026 size = sizeof_imsm_dev(id->dev, 1);
8027 if (u->new_raid_disks > u->old_raid_disks)
8028 size += sizeof(__u32)*2*
8029 (u->new_raid_disks - u->old_raid_disks);
8030 s = malloc(size);
8031 if (!s)
8032 break;
8033 *space_tail = s;
8034 space_tail = s;
8035 *space_tail = NULL;
8036 break;
8037 }
8038 }
8039 if (update->space_list == NULL)
8040 break;
8041
8042 /* add space for disk in update
8043 */
8044 size = sizeof(struct dl);
8045 s = malloc(size);
8046 if (!s) {
8047 free(update->space_list);
8048 update->space_list = NULL;
8049 break;
8050 }
8051 *space_tail = s;
8052 space_tail = s;
8053 *space_tail = NULL;
8054
8055 /* add spare device to update
8056 */
8057 for (id = super->devlist ; id; id = id->next)
8058 if (id->index == (unsigned)u->subdev) {
8059 struct imsm_dev *dev;
8060 struct imsm_map *map;
8061
8062 dev = get_imsm_dev(super, u->subdev);
8063 map = get_imsm_map(dev, MAP_0);
8064 current_level = map->raid_level;
8065 break;
8066 }
8067 if ((u->new_level == 5) && (u->new_level != current_level)) {
8068 struct mdinfo *spares;
8069
8070 spares = get_spares_for_grow(st);
8071 if (spares) {
8072 struct dl *dl;
8073 struct mdinfo *dev;
8074
8075 dev = spares->devs;
8076 if (dev) {
8077 u->new_disks[0] =
8078 makedev(dev->disk.major,
8079 dev->disk.minor);
8080 dl = get_disk_super(super,
8081 dev->disk.major,
8082 dev->disk.minor);
8083 dl->index = u->old_raid_disks;
8084 dev = dev->next;
8085 }
8086 sysfs_free(spares);
8087 }
8088 }
8089 len = disks_to_mpb_size(u->new_raid_disks);
8090 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8091 break;
8092 }
8093 case update_create_array: {
8094 struct imsm_update_create_array *u = (void *) update->buf;
8095 struct intel_dev *dv;
8096 struct imsm_dev *dev = &u->dev;
8097 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8098 struct dl *dl;
8099 struct disk_info *inf;
8100 int i;
8101 int activate = 0;
8102
8103 inf = get_disk_info(u);
8104 len = sizeof_imsm_dev(dev, 1);
8105 /* allocate a new super->devlist entry */
8106 dv = malloc(sizeof(*dv));
8107 if (dv) {
8108 dv->dev = malloc(len);
8109 if (dv->dev)
8110 update->space = dv;
8111 else {
8112 free(dv);
8113 update->space = NULL;
8114 }
8115 }
8116
8117 /* count how many spares will be converted to members */
8118 for (i = 0; i < map->num_members; i++) {
8119 dl = serial_to_dl(inf[i].serial, super);
8120 if (!dl) {
8121 /* hmm maybe it failed?, nothing we can do about
8122 * it here
8123 */
8124 continue;
8125 }
8126 if (count_memberships(dl, super) == 0)
8127 activate++;
8128 }
8129 len += activate * sizeof(struct imsm_disk);
8130 break;
8131 default:
8132 break;
8133 }
8134 }
8135
8136 /* check if we need a larger metadata buffer */
8137 if (super->next_buf)
8138 buf_len = super->next_len;
8139 else
8140 buf_len = super->len;
8141
8142 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
8143 /* ok we need a larger buf than what is currently allocated
8144 * if this allocation fails process_update will notice that
8145 * ->next_len is set and ->next_buf is NULL
8146 */
8147 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
8148 if (super->next_buf)
8149 free(super->next_buf);
8150
8151 super->next_len = buf_len;
8152 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
8153 memset(super->next_buf, 0, buf_len);
8154 else
8155 super->next_buf = NULL;
8156 }
8157 }
8158
8159 /* must be called while manager is quiesced */
8160 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
8161 {
8162 struct imsm_super *mpb = super->anchor;
8163 struct dl *iter;
8164 struct imsm_dev *dev;
8165 struct imsm_map *map;
8166 int i, j, num_members;
8167 __u32 ord;
8168
8169 dprintf("%s: deleting device[%d] from imsm_super\n",
8170 __func__, index);
8171
8172 /* shift all indexes down one */
8173 for (iter = super->disks; iter; iter = iter->next)
8174 if (iter->index > (int)index)
8175 iter->index--;
8176 for (iter = super->missing; iter; iter = iter->next)
8177 if (iter->index > (int)index)
8178 iter->index--;
8179
8180 for (i = 0; i < mpb->num_raid_devs; i++) {
8181 dev = get_imsm_dev(super, i);
8182 map = get_imsm_map(dev, MAP_0);
8183 num_members = map->num_members;
8184 for (j = 0; j < num_members; j++) {
8185 /* update ord entries being careful not to propagate
8186 * ord-flags to the first map
8187 */
8188 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
8189
8190 if (ord_to_idx(ord) <= index)
8191 continue;
8192
8193 map = get_imsm_map(dev, MAP_0);
8194 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
8195 map = get_imsm_map(dev, MAP_1);
8196 if (map)
8197 set_imsm_ord_tbl_ent(map, j, ord - 1);
8198 }
8199 }
8200
8201 mpb->num_disks--;
8202 super->updates_pending++;
8203 if (*dlp) {
8204 struct dl *dl = *dlp;
8205
8206 *dlp = (*dlp)->next;
8207 __free_imsm_disk(dl);
8208 }
8209 }
8210 #endif /* MDASSEMBLE */
8211
8212 static void close_targets(int *targets, int new_disks)
8213 {
8214 int i;
8215
8216 if (!targets)
8217 return;
8218
8219 for (i = 0; i < new_disks; i++) {
8220 if (targets[i] >= 0) {
8221 close(targets[i]);
8222 targets[i] = -1;
8223 }
8224 }
8225 }
8226
8227 static int imsm_get_allowed_degradation(int level, int raid_disks,
8228 struct intel_super *super,
8229 struct imsm_dev *dev)
8230 {
8231 switch (level) {
8232 case 10:{
8233 int ret_val = 0;
8234 struct imsm_map *map;
8235 int i;
8236
8237 ret_val = raid_disks/2;
8238 /* check map if all disks pairs not failed
8239 * in both maps
8240 */
8241 map = get_imsm_map(dev, MAP_0);
8242 for (i = 0; i < ret_val; i++) {
8243 int degradation = 0;
8244 if (get_imsm_disk(super, i) == NULL)
8245 degradation++;
8246 if (get_imsm_disk(super, i + 1) == NULL)
8247 degradation++;
8248 if (degradation == 2)
8249 return 0;
8250 }
8251 map = get_imsm_map(dev, MAP_1);
8252 /* if there is no second map
8253 * result can be returned
8254 */
8255 if (map == NULL)
8256 return ret_val;
8257 /* check degradation in second map
8258 */
8259 for (i = 0; i < ret_val; i++) {
8260 int degradation = 0;
8261 if (get_imsm_disk(super, i) == NULL)
8262 degradation++;
8263 if (get_imsm_disk(super, i + 1) == NULL)
8264 degradation++;
8265 if (degradation == 2)
8266 return 0;
8267 }
8268 return ret_val;
8269 }
8270 case 5:
8271 return 1;
8272 case 6:
8273 return 2;
8274 default:
8275 return 0;
8276 }
8277 }
8278
8279
8280 /*******************************************************************************
8281 * Function: open_backup_targets
8282 * Description: Function opens file descriptors for all devices given in
8283 * info->devs
8284 * Parameters:
8285 * info : general array info
8286 * raid_disks : number of disks
8287 * raid_fds : table of device's file descriptors
8288 * super : intel super for raid10 degradation check
8289 * dev : intel device for raid10 degradation check
8290 * Returns:
8291 * 0 : success
8292 * -1 : fail
8293 ******************************************************************************/
8294 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
8295 struct intel_super *super, struct imsm_dev *dev)
8296 {
8297 struct mdinfo *sd;
8298 int i;
8299 int opened = 0;
8300
8301 for (i = 0; i < raid_disks; i++)
8302 raid_fds[i] = -1;
8303
8304 for (sd = info->devs ; sd ; sd = sd->next) {
8305 char *dn;
8306
8307 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
8308 dprintf("disk is faulty!!\n");
8309 continue;
8310 }
8311
8312 if ((sd->disk.raid_disk >= raid_disks) ||
8313 (sd->disk.raid_disk < 0))
8314 continue;
8315
8316 dn = map_dev(sd->disk.major,
8317 sd->disk.minor, 1);
8318 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8319 if (raid_fds[sd->disk.raid_disk] < 0) {
8320 fprintf(stderr, "cannot open component\n");
8321 continue;
8322 }
8323 opened++;
8324 }
8325 /* check if maximum array degradation level is not exceeded
8326 */
8327 if ((raid_disks - opened) >
8328 imsm_get_allowed_degradation(info->new_level,
8329 raid_disks,
8330 super, dev)) {
8331 fprintf(stderr, "Not enough disks can be opened.\n");
8332 close_targets(raid_fds, raid_disks);
8333 return -2;
8334 }
8335 return 0;
8336 }
8337
8338 #ifndef MDASSEMBLE
8339 /*******************************************************************************
8340 * Function: init_migr_record_imsm
8341 * Description: Function inits imsm migration record
8342 * Parameters:
8343 * super : imsm internal array info
8344 * dev : device under migration
8345 * info : general array info to find the smallest device
8346 * Returns:
8347 * none
8348 ******************************************************************************/
8349 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
8350 struct mdinfo *info)
8351 {
8352 struct intel_super *super = st->sb;
8353 struct migr_record *migr_rec = super->migr_rec;
8354 int new_data_disks;
8355 unsigned long long dsize, dev_sectors;
8356 long long unsigned min_dev_sectors = -1LLU;
8357 struct mdinfo *sd;
8358 char nm[30];
8359 int fd;
8360 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
8361 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
8362 unsigned long long num_migr_units;
8363 unsigned long long array_blocks;
8364
8365 memset(migr_rec, 0, sizeof(struct migr_record));
8366 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
8367
8368 /* only ascending reshape supported now */
8369 migr_rec->ascending_migr = __cpu_to_le32(1);
8370
8371 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
8372 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
8373 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
8374 new_data_disks = imsm_num_data_members(dev, MAP_0);
8375 migr_rec->blocks_per_unit =
8376 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
8377 migr_rec->dest_depth_per_unit =
8378 __cpu_to_le32(migr_rec->dest_depth_per_unit);
8379 array_blocks = info->component_size * new_data_disks;
8380 num_migr_units =
8381 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
8382
8383 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
8384 num_migr_units++;
8385 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
8386
8387 migr_rec->post_migr_vol_cap = dev->size_low;
8388 migr_rec->post_migr_vol_cap_hi = dev->size_high;
8389
8390
8391 /* Find the smallest dev */
8392 for (sd = info->devs ; sd ; sd = sd->next) {
8393 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
8394 fd = dev_open(nm, O_RDONLY);
8395 if (fd < 0)
8396 continue;
8397 get_dev_size(fd, NULL, &dsize);
8398 dev_sectors = dsize / 512;
8399 if (dev_sectors < min_dev_sectors)
8400 min_dev_sectors = dev_sectors;
8401 close(fd);
8402 }
8403 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8404 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8405
8406 write_imsm_migr_rec(st);
8407
8408 return;
8409 }
8410
8411 /*******************************************************************************
8412 * Function: save_backup_imsm
8413 * Description: Function saves critical data stripes to Migration Copy Area
8414 * and updates the current migration unit status.
8415 * Use restore_stripes() to form a destination stripe,
8416 * and to write it to the Copy Area.
8417 * Parameters:
8418 * st : supertype information
8419 * dev : imsm device that backup is saved for
8420 * info : general array info
8421 * buf : input buffer
8422 * length : length of data to backup (blocks_per_unit)
8423 * Returns:
8424 * 0 : success
8425 *, -1 : fail
8426 ******************************************************************************/
8427 int save_backup_imsm(struct supertype *st,
8428 struct imsm_dev *dev,
8429 struct mdinfo *info,
8430 void *buf,
8431 int length)
8432 {
8433 int rv = -1;
8434 struct intel_super *super = st->sb;
8435 unsigned long long *target_offsets = NULL;
8436 int *targets = NULL;
8437 int i;
8438 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
8439 int new_disks = map_dest->num_members;
8440 int dest_layout = 0;
8441 int dest_chunk;
8442 unsigned long long start;
8443 int data_disks = imsm_num_data_members(dev, MAP_0);
8444
8445 targets = malloc(new_disks * sizeof(int));
8446 if (!targets)
8447 goto abort;
8448
8449 for (i = 0; i < new_disks; i++)
8450 targets[i] = -1;
8451
8452 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8453 if (!target_offsets)
8454 goto abort;
8455
8456 start = info->reshape_progress * 512;
8457 for (i = 0; i < new_disks; i++) {
8458 target_offsets[i] = (unsigned long long)
8459 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
8460 /* move back copy area adderss, it will be moved forward
8461 * in restore_stripes() using start input variable
8462 */
8463 target_offsets[i] -= start/data_disks;
8464 }
8465
8466 if (open_backup_targets(info, new_disks, targets,
8467 super, dev))
8468 goto abort;
8469
8470 dest_layout = imsm_level_to_layout(map_dest->raid_level);
8471 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8472
8473 if (restore_stripes(targets, /* list of dest devices */
8474 target_offsets, /* migration record offsets */
8475 new_disks,
8476 dest_chunk,
8477 map_dest->raid_level,
8478 dest_layout,
8479 -1, /* source backup file descriptor */
8480 0, /* input buf offset
8481 * always 0 buf is already offseted */
8482 start,
8483 length,
8484 buf) != 0) {
8485 fprintf(stderr, Name ": Error restoring stripes\n");
8486 goto abort;
8487 }
8488
8489 rv = 0;
8490
8491 abort:
8492 if (targets) {
8493 close_targets(targets, new_disks);
8494 free(targets);
8495 }
8496 free(target_offsets);
8497
8498 return rv;
8499 }
8500
8501 /*******************************************************************************
8502 * Function: save_checkpoint_imsm
8503 * Description: Function called for current unit status update
8504 * in the migration record. It writes it to disk.
8505 * Parameters:
8506 * super : imsm internal array info
8507 * info : general array info
8508 * Returns:
8509 * 0: success
8510 * 1: failure
8511 * 2: failure, means no valid migration record
8512 * / no general migration in progress /
8513 ******************************************************************************/
8514 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8515 {
8516 struct intel_super *super = st->sb;
8517 unsigned long long blocks_per_unit;
8518 unsigned long long curr_migr_unit;
8519
8520 if (load_imsm_migr_rec(super, info) != 0) {
8521 dprintf("imsm: ERROR: Cannot read migration record "
8522 "for checkpoint save.\n");
8523 return 1;
8524 }
8525
8526 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8527 if (blocks_per_unit == 0) {
8528 dprintf("imsm: no migration in progress.\n");
8529 return 2;
8530 }
8531 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8532 /* check if array is alligned to copy area
8533 * if it is not alligned, add one to current migration unit value
8534 * this can happend on array reshape finish only
8535 */
8536 if (info->reshape_progress % blocks_per_unit)
8537 curr_migr_unit++;
8538
8539 super->migr_rec->curr_migr_unit =
8540 __cpu_to_le32(curr_migr_unit);
8541 super->migr_rec->rec_status = __cpu_to_le32(state);
8542 super->migr_rec->dest_1st_member_lba =
8543 __cpu_to_le32(curr_migr_unit *
8544 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
8545 if (write_imsm_migr_rec(st) < 0) {
8546 dprintf("imsm: Cannot write migration record "
8547 "outside backup area\n");
8548 return 1;
8549 }
8550
8551 return 0;
8552 }
8553
8554 /*******************************************************************************
8555 * Function: recover_backup_imsm
8556 * Description: Function recovers critical data from the Migration Copy Area
8557 * while assembling an array.
8558 * Parameters:
8559 * super : imsm internal array info
8560 * info : general array info
8561 * Returns:
8562 * 0 : success (or there is no data to recover)
8563 * 1 : fail
8564 ******************************************************************************/
8565 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8566 {
8567 struct intel_super *super = st->sb;
8568 struct migr_record *migr_rec = super->migr_rec;
8569 struct imsm_map *map_dest = NULL;
8570 struct intel_dev *id = NULL;
8571 unsigned long long read_offset;
8572 unsigned long long write_offset;
8573 unsigned unit_len;
8574 int *targets = NULL;
8575 int new_disks, i, err;
8576 char *buf = NULL;
8577 int retval = 1;
8578 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8579 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
8580 char buffer[20];
8581 int skipped_disks = 0;
8582
8583 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8584 if (err < 1)
8585 return 1;
8586
8587 /* recover data only during assemblation */
8588 if (strncmp(buffer, "inactive", 8) != 0)
8589 return 0;
8590 /* no data to recover */
8591 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8592 return 0;
8593 if (curr_migr_unit >= num_migr_units)
8594 return 1;
8595
8596 /* find device during reshape */
8597 for (id = super->devlist; id; id = id->next)
8598 if (is_gen_migration(id->dev))
8599 break;
8600 if (id == NULL)
8601 return 1;
8602
8603 map_dest = get_imsm_map(id->dev, MAP_0);
8604 new_disks = map_dest->num_members;
8605
8606 read_offset = (unsigned long long)
8607 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8608
8609 write_offset = ((unsigned long long)
8610 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
8611 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
8612
8613 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8614 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8615 goto abort;
8616 targets = malloc(new_disks * sizeof(int));
8617 if (!targets)
8618 goto abort;
8619
8620 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
8621 fprintf(stderr,
8622 Name ": Cannot open some devices belonging to array.\n");
8623 goto abort;
8624 }
8625
8626 for (i = 0; i < new_disks; i++) {
8627 if (targets[i] < 0) {
8628 skipped_disks++;
8629 continue;
8630 }
8631 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8632 fprintf(stderr,
8633 Name ": Cannot seek to block: %s\n",
8634 strerror(errno));
8635 skipped_disks++;
8636 continue;
8637 }
8638 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
8639 fprintf(stderr,
8640 Name ": Cannot read copy area block: %s\n",
8641 strerror(errno));
8642 skipped_disks++;
8643 continue;
8644 }
8645 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8646 fprintf(stderr,
8647 Name ": Cannot seek to block: %s\n",
8648 strerror(errno));
8649 skipped_disks++;
8650 continue;
8651 }
8652 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
8653 fprintf(stderr,
8654 Name ": Cannot restore block: %s\n",
8655 strerror(errno));
8656 skipped_disks++;
8657 continue;
8658 }
8659 }
8660
8661 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
8662 new_disks,
8663 super,
8664 id->dev)) {
8665 fprintf(stderr,
8666 Name ": Cannot restore data from backup."
8667 " Too many failed disks\n");
8668 goto abort;
8669 }
8670
8671 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8672 /* ignore error == 2, this can mean end of reshape here
8673 */
8674 dprintf("imsm: Cannot write checkpoint to "
8675 "migration record (UNIT_SRC_NORMAL) during restart\n");
8676 } else
8677 retval = 0;
8678
8679 abort:
8680 if (targets) {
8681 for (i = 0; i < new_disks; i++)
8682 if (targets[i])
8683 close(targets[i]);
8684 free(targets);
8685 }
8686 free(buf);
8687 return retval;
8688 }
8689
8690 static char disk_by_path[] = "/dev/disk/by-path/";
8691
8692 static const char *imsm_get_disk_controller_domain(const char *path)
8693 {
8694 char disk_path[PATH_MAX];
8695 char *drv=NULL;
8696 struct stat st;
8697
8698 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8699 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8700 if (stat(disk_path, &st) == 0) {
8701 struct sys_dev* hba;
8702 char *path=NULL;
8703
8704 path = devt_to_devpath(st.st_rdev);
8705 if (path == NULL)
8706 return "unknown";
8707 hba = find_disk_attached_hba(-1, path);
8708 if (hba && hba->type == SYS_DEV_SAS)
8709 drv = "isci";
8710 else if (hba && hba->type == SYS_DEV_SATA)
8711 drv = "ahci";
8712 else
8713 drv = "unknown";
8714 dprintf("path: %s hba: %s attached: %s\n",
8715 path, (hba) ? hba->path : "NULL", drv);
8716 free(path);
8717 if (hba)
8718 free_sys_dev(&hba);
8719 }
8720 return drv;
8721 }
8722
8723 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8724 {
8725 char subdev_name[20];
8726 struct mdstat_ent *mdstat;
8727
8728 sprintf(subdev_name, "%d", subdev);
8729 mdstat = mdstat_by_subdev(subdev_name, container);
8730 if (!mdstat)
8731 return -1;
8732
8733 *minor = mdstat->devnum;
8734 free_mdstat(mdstat);
8735 return 0;
8736 }
8737
8738 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8739 struct geo_params *geo,
8740 int *old_raid_disks)
8741 {
8742 /* currently we only support increasing the number of devices
8743 * for a container. This increases the number of device for each
8744 * member array. They must all be RAID0 or RAID5.
8745 */
8746 int ret_val = 0;
8747 struct mdinfo *info, *member;
8748 int devices_that_can_grow = 0;
8749
8750 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8751 "st->devnum = (%i)\n",
8752 st->devnum);
8753
8754 if (geo->size != -1 ||
8755 geo->level != UnSet ||
8756 geo->layout != UnSet ||
8757 geo->chunksize != 0 ||
8758 geo->raid_disks == UnSet) {
8759 dprintf("imsm: Container operation is allowed for "
8760 "raid disks number change only.\n");
8761 return ret_val;
8762 }
8763
8764 info = container_content_imsm(st, NULL);
8765 for (member = info; member; member = member->next) {
8766 int result;
8767 int minor;
8768
8769 dprintf("imsm: checking device_num: %i\n",
8770 member->container_member);
8771
8772 if (geo->raid_disks <= member->array.raid_disks) {
8773 /* we work on container for Online Capacity Expansion
8774 * only so raid_disks has to grow
8775 */
8776 dprintf("imsm: for container operation raid disks "
8777 "increase is required\n");
8778 break;
8779 }
8780
8781 if ((info->array.level != 0) &&
8782 (info->array.level != 5)) {
8783 /* we cannot use this container with other raid level
8784 */
8785 dprintf("imsm: for container operation wrong"
8786 " raid level (%i) detected\n",
8787 info->array.level);
8788 break;
8789 } else {
8790 /* check for platform support
8791 * for this raid level configuration
8792 */
8793 struct intel_super *super = st->sb;
8794 if (!is_raid_level_supported(super->orom,
8795 member->array.level,
8796 geo->raid_disks)) {
8797 dprintf("platform does not support raid%d with"
8798 " %d disk%s\n",
8799 info->array.level,
8800 geo->raid_disks,
8801 geo->raid_disks > 1 ? "s" : "");
8802 break;
8803 }
8804 /* check if component size is aligned to chunk size
8805 */
8806 if (info->component_size %
8807 (info->array.chunk_size/512)) {
8808 dprintf("Component size is not aligned to "
8809 "chunk size\n");
8810 break;
8811 }
8812 }
8813
8814 if (*old_raid_disks &&
8815 info->array.raid_disks != *old_raid_disks)
8816 break;
8817 *old_raid_disks = info->array.raid_disks;
8818
8819 /* All raid5 and raid0 volumes in container
8820 * have to be ready for Online Capacity Expansion
8821 * so they need to be assembled. We have already
8822 * checked that no recovery etc is happening.
8823 */
8824 result = imsm_find_array_minor_by_subdev(member->container_member,
8825 st->container_dev,
8826 &minor);
8827 if (result < 0) {
8828 dprintf("imsm: cannot find array\n");
8829 break;
8830 }
8831 devices_that_can_grow++;
8832 }
8833 sysfs_free(info);
8834 if (!member && devices_that_can_grow)
8835 ret_val = 1;
8836
8837 if (ret_val)
8838 dprintf("\tContainer operation allowed\n");
8839 else
8840 dprintf("\tError: %i\n", ret_val);
8841
8842 return ret_val;
8843 }
8844
8845 /* Function: get_spares_for_grow
8846 * Description: Allocates memory and creates list of spare devices
8847 * avaliable in container. Checks if spare drive size is acceptable.
8848 * Parameters: Pointer to the supertype structure
8849 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8850 * NULL if fail
8851 */
8852 static struct mdinfo *get_spares_for_grow(struct supertype *st)
8853 {
8854 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
8855 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
8856 }
8857
8858 /******************************************************************************
8859 * function: imsm_create_metadata_update_for_reshape
8860 * Function creates update for whole IMSM container.
8861 *
8862 ******************************************************************************/
8863 static int imsm_create_metadata_update_for_reshape(
8864 struct supertype *st,
8865 struct geo_params *geo,
8866 int old_raid_disks,
8867 struct imsm_update_reshape **updatep)
8868 {
8869 struct intel_super *super = st->sb;
8870 struct imsm_super *mpb = super->anchor;
8871 int update_memory_size = 0;
8872 struct imsm_update_reshape *u = NULL;
8873 struct mdinfo *spares = NULL;
8874 int i;
8875 int delta_disks = 0;
8876 struct mdinfo *dev;
8877
8878 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8879 geo->raid_disks);
8880
8881 delta_disks = geo->raid_disks - old_raid_disks;
8882
8883 /* size of all update data without anchor */
8884 update_memory_size = sizeof(struct imsm_update_reshape);
8885
8886 /* now add space for spare disks that we need to add. */
8887 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8888
8889 u = calloc(1, update_memory_size);
8890 if (u == NULL) {
8891 dprintf("error: "
8892 "cannot get memory for imsm_update_reshape update\n");
8893 return 0;
8894 }
8895 u->type = update_reshape_container_disks;
8896 u->old_raid_disks = old_raid_disks;
8897 u->new_raid_disks = geo->raid_disks;
8898
8899 /* now get spare disks list
8900 */
8901 spares = get_spares_for_grow(st);
8902
8903 if (spares == NULL
8904 || delta_disks > spares->array.spare_disks) {
8905 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8906 "for %s.\n", geo->dev_name);
8907 i = -1;
8908 goto abort;
8909 }
8910
8911 /* we have got spares
8912 * update disk list in imsm_disk list table in anchor
8913 */
8914 dprintf("imsm: %i spares are available.\n\n",
8915 spares->array.spare_disks);
8916
8917 dev = spares->devs;
8918 for (i = 0; i < delta_disks; i++) {
8919 struct dl *dl;
8920
8921 if (dev == NULL)
8922 break;
8923 u->new_disks[i] = makedev(dev->disk.major,
8924 dev->disk.minor);
8925 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
8926 dl->index = mpb->num_disks;
8927 mpb->num_disks++;
8928 dev = dev->next;
8929 }
8930
8931 abort:
8932 /* free spares
8933 */
8934 sysfs_free(spares);
8935
8936 dprintf("imsm: reshape update preparation :");
8937 if (i == delta_disks) {
8938 dprintf(" OK\n");
8939 *updatep = u;
8940 return update_memory_size;
8941 }
8942 free(u);
8943 dprintf(" Error\n");
8944
8945 return 0;
8946 }
8947
8948 /******************************************************************************
8949 * function: imsm_create_metadata_update_for_migration()
8950 * Creates update for IMSM array.
8951 *
8952 ******************************************************************************/
8953 static int imsm_create_metadata_update_for_migration(
8954 struct supertype *st,
8955 struct geo_params *geo,
8956 struct imsm_update_reshape_migration **updatep)
8957 {
8958 struct intel_super *super = st->sb;
8959 int update_memory_size = 0;
8960 struct imsm_update_reshape_migration *u = NULL;
8961 struct imsm_dev *dev;
8962 int previous_level = -1;
8963
8964 dprintf("imsm_create_metadata_update_for_migration(enter)"
8965 " New Level = %i\n", geo->level);
8966
8967 /* size of all update data without anchor */
8968 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8969
8970 u = calloc(1, update_memory_size);
8971 if (u == NULL) {
8972 dprintf("error: cannot get memory for "
8973 "imsm_create_metadata_update_for_migration\n");
8974 return 0;
8975 }
8976 u->type = update_reshape_migration;
8977 u->subdev = super->current_vol;
8978 u->new_level = geo->level;
8979 u->new_layout = geo->layout;
8980 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8981 u->new_disks[0] = -1;
8982 u->new_chunksize = -1;
8983
8984 dev = get_imsm_dev(super, u->subdev);
8985 if (dev) {
8986 struct imsm_map *map;
8987
8988 map = get_imsm_map(dev, MAP_0);
8989 if (map) {
8990 int current_chunk_size =
8991 __le16_to_cpu(map->blocks_per_strip) / 2;
8992
8993 if (geo->chunksize != current_chunk_size) {
8994 u->new_chunksize = geo->chunksize / 1024;
8995 dprintf("imsm: "
8996 "chunk size change from %i to %i\n",
8997 current_chunk_size, u->new_chunksize);
8998 }
8999 previous_level = map->raid_level;
9000 }
9001 }
9002 if ((geo->level == 5) && (previous_level == 0)) {
9003 struct mdinfo *spares = NULL;
9004
9005 u->new_raid_disks++;
9006 spares = get_spares_for_grow(st);
9007 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
9008 free(u);
9009 sysfs_free(spares);
9010 update_memory_size = 0;
9011 dprintf("error: cannot get spare device "
9012 "for requested migration");
9013 return 0;
9014 }
9015 sysfs_free(spares);
9016 }
9017 dprintf("imsm: reshape update preparation : OK\n");
9018 *updatep = u;
9019
9020 return update_memory_size;
9021 }
9022
9023 static void imsm_update_metadata_locally(struct supertype *st,
9024 void *buf, int len)
9025 {
9026 struct metadata_update mu;
9027
9028 mu.buf = buf;
9029 mu.len = len;
9030 mu.space = NULL;
9031 mu.space_list = NULL;
9032 mu.next = NULL;
9033 imsm_prepare_update(st, &mu);
9034 imsm_process_update(st, &mu);
9035
9036 while (mu.space_list) {
9037 void **space = mu.space_list;
9038 mu.space_list = *space;
9039 free(space);
9040 }
9041 }
9042
9043 /***************************************************************************
9044 * Function: imsm_analyze_change
9045 * Description: Function analyze change for single volume
9046 * and validate if transition is supported
9047 * Parameters: Geometry parameters, supertype structure
9048 * Returns: Operation type code on success, -1 if fail
9049 ****************************************************************************/
9050 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
9051 struct geo_params *geo)
9052 {
9053 struct mdinfo info;
9054 int change = -1;
9055 int check_devs = 0;
9056 int chunk;
9057 /* number of added/removed disks in operation result */
9058 int devNumChange = 0;
9059 /* imsm compatible layout value for array geometry verification */
9060 int imsm_layout = -1;
9061
9062 getinfo_super_imsm_volume(st, &info, NULL);
9063 if ((geo->level != info.array.level) &&
9064 (geo->level >= 0) &&
9065 (geo->level != UnSet)) {
9066 switch (info.array.level) {
9067 case 0:
9068 if (geo->level == 5) {
9069 change = CH_MIGRATION;
9070 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
9071 fprintf(stderr,
9072 Name " Error. Requested Layout "
9073 "not supported (left-asymmetric layout "
9074 "is supported only)!\n");
9075 change = -1;
9076 goto analyse_change_exit;
9077 }
9078 imsm_layout = geo->layout;
9079 check_devs = 1;
9080 devNumChange = 1; /* parity disk added */
9081 } else if (geo->level == 10) {
9082 change = CH_TAKEOVER;
9083 check_devs = 1;
9084 devNumChange = 2; /* two mirrors added */
9085 imsm_layout = 0x102; /* imsm supported layout */
9086 }
9087 break;
9088 case 1:
9089 case 10:
9090 if (geo->level == 0) {
9091 change = CH_TAKEOVER;
9092 check_devs = 1;
9093 devNumChange = -(geo->raid_disks/2);
9094 imsm_layout = 0; /* imsm raid0 layout */
9095 }
9096 break;
9097 }
9098 if (change == -1) {
9099 fprintf(stderr,
9100 Name " Error. Level Migration from %d to %d "
9101 "not supported!\n",
9102 info.array.level, geo->level);
9103 goto analyse_change_exit;
9104 }
9105 } else
9106 geo->level = info.array.level;
9107
9108 if ((geo->layout != info.array.layout)
9109 && ((geo->layout != UnSet) && (geo->layout != -1))) {
9110 change = CH_MIGRATION;
9111 if ((info.array.layout == 0)
9112 && (info.array.level == 5)
9113 && (geo->layout == 5)) {
9114 /* reshape 5 -> 4 */
9115 } else if ((info.array.layout == 5)
9116 && (info.array.level == 5)
9117 && (geo->layout == 0)) {
9118 /* reshape 4 -> 5 */
9119 geo->layout = 0;
9120 geo->level = 5;
9121 } else {
9122 fprintf(stderr,
9123 Name " Error. Layout Migration from %d to %d "
9124 "not supported!\n",
9125 info.array.layout, geo->layout);
9126 change = -1;
9127 goto analyse_change_exit;
9128 }
9129 } else {
9130 geo->layout = info.array.layout;
9131 if (imsm_layout == -1)
9132 imsm_layout = info.array.layout;
9133 }
9134
9135 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
9136 && (geo->chunksize != info.array.chunk_size))
9137 change = CH_MIGRATION;
9138 else
9139 geo->chunksize = info.array.chunk_size;
9140
9141 chunk = geo->chunksize / 1024;
9142 if (!validate_geometry_imsm(st,
9143 geo->level,
9144 imsm_layout,
9145 geo->raid_disks + devNumChange,
9146 &chunk,
9147 geo->size,
9148 0, 0, 1))
9149 change = -1;
9150
9151 if (check_devs) {
9152 struct intel_super *super = st->sb;
9153 struct imsm_super *mpb = super->anchor;
9154
9155 if (mpb->num_raid_devs > 1) {
9156 fprintf(stderr,
9157 Name " Error. Cannot perform operation on %s"
9158 "- for this operation it MUST be single "
9159 "array in container\n",
9160 geo->dev_name);
9161 change = -1;
9162 }
9163 }
9164
9165 analyse_change_exit:
9166
9167 return change;
9168 }
9169
9170 int imsm_takeover(struct supertype *st, struct geo_params *geo)
9171 {
9172 struct intel_super *super = st->sb;
9173 struct imsm_update_takeover *u;
9174
9175 u = malloc(sizeof(struct imsm_update_takeover));
9176 if (u == NULL)
9177 return 1;
9178
9179 u->type = update_takeover;
9180 u->subarray = super->current_vol;
9181
9182 /* 10->0 transition */
9183 if (geo->level == 0)
9184 u->direction = R10_TO_R0;
9185
9186 /* 0->10 transition */
9187 if (geo->level == 10)
9188 u->direction = R0_TO_R10;
9189
9190 /* update metadata locally */
9191 imsm_update_metadata_locally(st, u,
9192 sizeof(struct imsm_update_takeover));
9193 /* and possibly remotely */
9194 if (st->update_tail)
9195 append_metadata_update(st, u,
9196 sizeof(struct imsm_update_takeover));
9197 else
9198 free(u);
9199
9200 return 0;
9201 }
9202
9203 static int imsm_reshape_super(struct supertype *st, long long size, int level,
9204 int layout, int chunksize, int raid_disks,
9205 int delta_disks, char *backup, char *dev,
9206 int verbose)
9207 {
9208 int ret_val = 1;
9209 struct geo_params geo;
9210
9211 dprintf("imsm: reshape_super called.\n");
9212
9213 memset(&geo, 0, sizeof(struct geo_params));
9214
9215 geo.dev_name = dev;
9216 geo.dev_id = st->devnum;
9217 geo.size = size;
9218 geo.level = level;
9219 geo.layout = layout;
9220 geo.chunksize = chunksize;
9221 geo.raid_disks = raid_disks;
9222 if (delta_disks != UnSet)
9223 geo.raid_disks += delta_disks;
9224
9225 dprintf("\tfor level : %i\n", geo.level);
9226 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
9227
9228 if (experimental() == 0)
9229 return ret_val;
9230
9231 if (st->container_dev == st->devnum) {
9232 /* On container level we can only increase number of devices. */
9233 dprintf("imsm: info: Container operation\n");
9234 int old_raid_disks = 0;
9235
9236 if (imsm_reshape_is_allowed_on_container(
9237 st, &geo, &old_raid_disks)) {
9238 struct imsm_update_reshape *u = NULL;
9239 int len;
9240
9241 len = imsm_create_metadata_update_for_reshape(
9242 st, &geo, old_raid_disks, &u);
9243
9244 if (len <= 0) {
9245 dprintf("imsm: Cannot prepare update\n");
9246 goto exit_imsm_reshape_super;
9247 }
9248
9249 ret_val = 0;
9250 /* update metadata locally */
9251 imsm_update_metadata_locally(st, u, len);
9252 /* and possibly remotely */
9253 if (st->update_tail)
9254 append_metadata_update(st, u, len);
9255 else
9256 free(u);
9257
9258 } else {
9259 fprintf(stderr, Name ": (imsm) Operation "
9260 "is not allowed on this container\n");
9261 }
9262 } else {
9263 /* On volume level we support following operations
9264 * - takeover: raid10 -> raid0; raid0 -> raid10
9265 * - chunk size migration
9266 * - migration: raid5 -> raid0; raid0 -> raid5
9267 */
9268 struct intel_super *super = st->sb;
9269 struct intel_dev *dev = super->devlist;
9270 int change, devnum;
9271 dprintf("imsm: info: Volume operation\n");
9272 /* find requested device */
9273 while (dev) {
9274 if (imsm_find_array_minor_by_subdev(
9275 dev->index, st->container_dev, &devnum) == 0
9276 && devnum == geo.dev_id)
9277 break;
9278 dev = dev->next;
9279 }
9280 if (dev == NULL) {
9281 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
9282 geo.dev_name, geo.dev_id);
9283 goto exit_imsm_reshape_super;
9284 }
9285 super->current_vol = dev->index;
9286 change = imsm_analyze_change(st, &geo);
9287 switch (change) {
9288 case CH_TAKEOVER:
9289 ret_val = imsm_takeover(st, &geo);
9290 break;
9291 case CH_MIGRATION: {
9292 struct imsm_update_reshape_migration *u = NULL;
9293 int len =
9294 imsm_create_metadata_update_for_migration(
9295 st, &geo, &u);
9296 if (len < 1) {
9297 dprintf("imsm: "
9298 "Cannot prepare update\n");
9299 break;
9300 }
9301 ret_val = 0;
9302 /* update metadata locally */
9303 imsm_update_metadata_locally(st, u, len);
9304 /* and possibly remotely */
9305 if (st->update_tail)
9306 append_metadata_update(st, u, len);
9307 else
9308 free(u);
9309 }
9310 break;
9311 default:
9312 ret_val = 1;
9313 }
9314 }
9315
9316 exit_imsm_reshape_super:
9317 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
9318 return ret_val;
9319 }
9320
9321 /*******************************************************************************
9322 * Function: wait_for_reshape_imsm
9323 * Description: Function writes new sync_max value and waits until
9324 * reshape process reach new position
9325 * Parameters:
9326 * sra : general array info
9327 * ndata : number of disks in new array's layout
9328 * Returns:
9329 * 0 : success,
9330 * 1 : there is no reshape in progress,
9331 * -1 : fail
9332 ******************************************************************************/
9333 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
9334 {
9335 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
9336 unsigned long long completed;
9337 /* to_complete : new sync_max position */
9338 unsigned long long to_complete = sra->reshape_progress;
9339 unsigned long long position_to_set = to_complete / ndata;
9340
9341 if (fd < 0) {
9342 dprintf("imsm: wait_for_reshape_imsm() "
9343 "cannot open reshape_position\n");
9344 return 1;
9345 }
9346
9347 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9348 dprintf("imsm: wait_for_reshape_imsm() "
9349 "cannot read reshape_position (no reshape in progres)\n");
9350 close(fd);
9351 return 0;
9352 }
9353
9354 if (completed > to_complete) {
9355 dprintf("imsm: wait_for_reshape_imsm() "
9356 "wrong next position to set %llu (%llu)\n",
9357 to_complete, completed);
9358 close(fd);
9359 return -1;
9360 }
9361 dprintf("Position set: %llu\n", position_to_set);
9362 if (sysfs_set_num(sra, NULL, "sync_max",
9363 position_to_set) != 0) {
9364 dprintf("imsm: wait_for_reshape_imsm() "
9365 "cannot set reshape position to %llu\n",
9366 position_to_set);
9367 close(fd);
9368 return -1;
9369 }
9370
9371 do {
9372 char action[20];
9373 fd_set rfds;
9374 FD_ZERO(&rfds);
9375 FD_SET(fd, &rfds);
9376 select(fd+1, &rfds, NULL, NULL, NULL);
9377 if (sysfs_get_str(sra, NULL, "sync_action",
9378 action, 20) > 0 &&
9379 strncmp(action, "reshape", 7) != 0)
9380 break;
9381 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9382 dprintf("imsm: wait_for_reshape_imsm() "
9383 "cannot read reshape_position (in loop)\n");
9384 close(fd);
9385 return 1;
9386 }
9387 } while (completed < to_complete);
9388 close(fd);
9389 return 0;
9390
9391 }
9392
9393 /*******************************************************************************
9394 * Function: check_degradation_change
9395 * Description: Check that array hasn't become failed.
9396 * Parameters:
9397 * info : for sysfs access
9398 * sources : source disks descriptors
9399 * degraded: previous degradation level
9400 * Returns:
9401 * degradation level
9402 ******************************************************************************/
9403 int check_degradation_change(struct mdinfo *info,
9404 int *sources,
9405 int degraded)
9406 {
9407 unsigned long long new_degraded;
9408 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
9409 if (new_degraded != (unsigned long long)degraded) {
9410 /* check each device to ensure it is still working */
9411 struct mdinfo *sd;
9412 new_degraded = 0;
9413 for (sd = info->devs ; sd ; sd = sd->next) {
9414 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9415 continue;
9416 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9417 char sbuf[20];
9418 if (sysfs_get_str(info,
9419 sd, "state", sbuf, 20) < 0 ||
9420 strstr(sbuf, "faulty") ||
9421 strstr(sbuf, "in_sync") == NULL) {
9422 /* this device is dead */
9423 sd->disk.state = (1<<MD_DISK_FAULTY);
9424 if (sd->disk.raid_disk >= 0 &&
9425 sources[sd->disk.raid_disk] >= 0) {
9426 close(sources[
9427 sd->disk.raid_disk]);
9428 sources[sd->disk.raid_disk] =
9429 -1;
9430 }
9431 new_degraded++;
9432 }
9433 }
9434 }
9435 }
9436
9437 return new_degraded;
9438 }
9439
9440 /*******************************************************************************
9441 * Function: imsm_manage_reshape
9442 * Description: Function finds array under reshape and it manages reshape
9443 * process. It creates stripes backups (if required) and sets
9444 * checheckpoits.
9445 * Parameters:
9446 * afd : Backup handle (nattive) - not used
9447 * sra : general array info
9448 * reshape : reshape parameters - not used
9449 * st : supertype structure
9450 * blocks : size of critical section [blocks]
9451 * fds : table of source device descriptor
9452 * offsets : start of array (offest per devices)
9453 * dests : not used
9454 * destfd : table of destination device descriptor
9455 * destoffsets : table of destination offsets (per device)
9456 * Returns:
9457 * 1 : success, reshape is done
9458 * 0 : fail
9459 ******************************************************************************/
9460 static int imsm_manage_reshape(
9461 int afd, struct mdinfo *sra, struct reshape *reshape,
9462 struct supertype *st, unsigned long backup_blocks,
9463 int *fds, unsigned long long *offsets,
9464 int dests, int *destfd, unsigned long long *destoffsets)
9465 {
9466 int ret_val = 0;
9467 struct intel_super *super = st->sb;
9468 struct intel_dev *dv = NULL;
9469 struct imsm_dev *dev = NULL;
9470 struct imsm_map *map_src;
9471 int migr_vol_qan = 0;
9472 int ndata, odata; /* [bytes] */
9473 int chunk; /* [bytes] */
9474 struct migr_record *migr_rec;
9475 char *buf = NULL;
9476 unsigned int buf_size; /* [bytes] */
9477 unsigned long long max_position; /* array size [bytes] */
9478 unsigned long long next_step; /* [blocks]/[bytes] */
9479 unsigned long long old_data_stripe_length;
9480 unsigned long long start_src; /* [bytes] */
9481 unsigned long long start; /* [bytes] */
9482 unsigned long long start_buf_shift; /* [bytes] */
9483 int degraded = 0;
9484 int source_layout = 0;
9485
9486 if (!fds || !offsets || !sra)
9487 goto abort;
9488
9489 /* Find volume during the reshape */
9490 for (dv = super->devlist; dv; dv = dv->next) {
9491 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9492 && dv->dev->vol.migr_state == 1) {
9493 dev = dv->dev;
9494 migr_vol_qan++;
9495 }
9496 }
9497 /* Only one volume can migrate at the same time */
9498 if (migr_vol_qan != 1) {
9499 fprintf(stderr, Name " : %s", migr_vol_qan ?
9500 "Number of migrating volumes greater than 1\n" :
9501 "There is no volume during migrationg\n");
9502 goto abort;
9503 }
9504
9505 map_src = get_imsm_map(dev, MAP_1);
9506 if (map_src == NULL)
9507 goto abort;
9508
9509 ndata = imsm_num_data_members(dev, MAP_0);
9510 odata = imsm_num_data_members(dev, MAP_1);
9511
9512 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
9513 old_data_stripe_length = odata * chunk;
9514
9515 migr_rec = super->migr_rec;
9516
9517 /* initialize migration record for start condition */
9518 if (sra->reshape_progress == 0)
9519 init_migr_record_imsm(st, dev, sra);
9520 else {
9521 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9522 dprintf("imsm: cannot restart migration when data "
9523 "are present in copy area.\n");
9524 goto abort;
9525 }
9526 }
9527
9528 /* size for data */
9529 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9530 /* extend buffer size for parity disk */
9531 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9532 /* add space for stripe aligment */
9533 buf_size += old_data_stripe_length;
9534 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9535 dprintf("imsm: Cannot allocate checpoint buffer\n");
9536 goto abort;
9537 }
9538
9539 max_position = sra->component_size * ndata;
9540 source_layout = imsm_level_to_layout(map_src->raid_level);
9541
9542 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9543 __le32_to_cpu(migr_rec->num_migr_units)) {
9544 /* current reshape position [blocks] */
9545 unsigned long long current_position =
9546 __le32_to_cpu(migr_rec->blocks_per_unit)
9547 * __le32_to_cpu(migr_rec->curr_migr_unit);
9548 unsigned long long border;
9549
9550 /* Check that array hasn't become failed.
9551 */
9552 degraded = check_degradation_change(sra, fds, degraded);
9553 if (degraded > 1) {
9554 dprintf("imsm: Abort reshape due to degradation"
9555 " level (%i)\n", degraded);
9556 goto abort;
9557 }
9558
9559 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9560
9561 if ((current_position + next_step) > max_position)
9562 next_step = max_position - current_position;
9563
9564 start = current_position * 512;
9565
9566 /* allign reading start to old geometry */
9567 start_buf_shift = start % old_data_stripe_length;
9568 start_src = start - start_buf_shift;
9569
9570 border = (start_src / odata) - (start / ndata);
9571 border /= 512;
9572 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9573 /* save critical stripes to buf
9574 * start - start address of current unit
9575 * to backup [bytes]
9576 * start_src - start address of current unit
9577 * to backup alligned to source array
9578 * [bytes]
9579 */
9580 unsigned long long next_step_filler = 0;
9581 unsigned long long copy_length = next_step * 512;
9582
9583 /* allign copy area length to stripe in old geometry */
9584 next_step_filler = ((copy_length + start_buf_shift)
9585 % old_data_stripe_length);
9586 if (next_step_filler)
9587 next_step_filler = (old_data_stripe_length
9588 - next_step_filler);
9589 dprintf("save_stripes() parameters: start = %llu,"
9590 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9591 "\tstart_in_buf_shift = %llu,"
9592 "\tnext_step_filler = %llu\n",
9593 start, start_src, copy_length,
9594 start_buf_shift, next_step_filler);
9595
9596 if (save_stripes(fds, offsets, map_src->num_members,
9597 chunk, map_src->raid_level,
9598 source_layout, 0, NULL, start_src,
9599 copy_length +
9600 next_step_filler + start_buf_shift,
9601 buf)) {
9602 dprintf("imsm: Cannot save stripes"
9603 " to buffer\n");
9604 goto abort;
9605 }
9606 /* Convert data to destination format and store it
9607 * in backup general migration area
9608 */
9609 if (save_backup_imsm(st, dev, sra,
9610 buf + start_buf_shift, copy_length)) {
9611 dprintf("imsm: Cannot save stripes to "
9612 "target devices\n");
9613 goto abort;
9614 }
9615 if (save_checkpoint_imsm(st, sra,
9616 UNIT_SRC_IN_CP_AREA)) {
9617 dprintf("imsm: Cannot write checkpoint to "
9618 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9619 goto abort;
9620 }
9621 } else {
9622 /* set next step to use whole border area */
9623 border /= next_step;
9624 if (border > 1)
9625 next_step *= border;
9626 }
9627 /* When data backed up, checkpoint stored,
9628 * kick the kernel to reshape unit of data
9629 */
9630 next_step = next_step + sra->reshape_progress;
9631 /* limit next step to array max position */
9632 if (next_step > max_position)
9633 next_step = max_position;
9634 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9635 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
9636 sra->reshape_progress = next_step;
9637
9638 /* wait until reshape finish */
9639 if (wait_for_reshape_imsm(sra, ndata) < 0) {
9640 dprintf("wait_for_reshape_imsm returned error!\n");
9641 goto abort;
9642 }
9643
9644 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9645 /* ignore error == 2, this can mean end of reshape here
9646 */
9647 dprintf("imsm: Cannot write checkpoint to "
9648 "migration record (UNIT_SRC_NORMAL)\n");
9649 goto abort;
9650 }
9651
9652 }
9653
9654 /* return '1' if done */
9655 ret_val = 1;
9656 abort:
9657 free(buf);
9658 abort_reshape(sra);
9659
9660 return ret_val;
9661 }
9662 #endif /* MDASSEMBLE */
9663
9664 struct superswitch super_imsm = {
9665 #ifndef MDASSEMBLE
9666 .examine_super = examine_super_imsm,
9667 .brief_examine_super = brief_examine_super_imsm,
9668 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9669 .export_examine_super = export_examine_super_imsm,
9670 .detail_super = detail_super_imsm,
9671 .brief_detail_super = brief_detail_super_imsm,
9672 .write_init_super = write_init_super_imsm,
9673 .validate_geometry = validate_geometry_imsm,
9674 .add_to_super = add_to_super_imsm,
9675 .remove_from_super = remove_from_super_imsm,
9676 .detail_platform = detail_platform_imsm,
9677 .kill_subarray = kill_subarray_imsm,
9678 .update_subarray = update_subarray_imsm,
9679 .load_container = load_container_imsm,
9680 .default_geometry = default_geometry_imsm,
9681 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9682 .reshape_super = imsm_reshape_super,
9683 .manage_reshape = imsm_manage_reshape,
9684 .recover_backup = recover_backup_imsm,
9685 #endif
9686 .match_home = match_home_imsm,
9687 .uuid_from_super= uuid_from_super_imsm,
9688 .getinfo_super = getinfo_super_imsm,
9689 .getinfo_super_disks = getinfo_super_disks_imsm,
9690 .update_super = update_super_imsm,
9691
9692 .avail_size = avail_size_imsm,
9693 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
9694
9695 .compare_super = compare_super_imsm,
9696
9697 .load_super = load_super_imsm,
9698 .init_super = init_super_imsm,
9699 .store_super = store_super_imsm,
9700 .free_super = free_super_imsm,
9701 .match_metadata_desc = match_metadata_desc_imsm,
9702 .container_content = container_content_imsm,
9703
9704
9705 .external = 1,
9706 .name = "imsm",
9707
9708 #ifndef MDASSEMBLE
9709 /* for mdmon */
9710 .open_new = imsm_open_new,
9711 .set_array_state= imsm_set_array_state,
9712 .set_disk = imsm_set_disk,
9713 .sync_metadata = imsm_sync_metadata,
9714 .activate_spare = imsm_activate_spare,
9715 .process_update = imsm_process_update,
9716 .prepare_update = imsm_prepare_update,
9717 #endif /* MDASSEMBLE */
9718 };