]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: FIX: Detect failed devices during recover_backup_imsm()
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54 #define MPB_SECTOR_CNT 2210
55 #define IMSM_RESERVED_SECTORS 4096
56 #define SECT_PER_MB_SHIFT 11
57
58 /* Disk configuration info. */
59 #define IMSM_MAX_DEVICES 255
60 struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67 __u32 status; /* 0xF0 - 0xF3 */
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69 #define IMSM_DISK_FILLERS 4
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71 };
72
73 /* RAID map configuration infos. */
74 struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80 #define IMSM_T_STATE_NORMAL 0
81 #define IMSM_T_STATE_UNINITIALIZED 1
82 #define IMSM_T_STATE_DEGRADED 2
83 #define IMSM_T_STATE_FAILED 3
84 __u8 raid_level;
85 #define IMSM_T_RAID0 0
86 #define IMSM_T_RAID1 1
87 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
91 __u8 ddf;
92 __u32 filler[7]; /* expansion area */
93 #define IMSM_ORD_REBUILD (1 << 24)
94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
95 * top byte contains some flags
96 */
97 } __attribute__ ((packed));
98
99 struct imsm_vol {
100 __u32 curr_migr_unit;
101 __u32 checkpoint_id; /* id to access curr_migr_unit */
102 __u8 migr_state; /* Normal or Migrating */
103 #define MIGR_INIT 0
104 #define MIGR_REBUILD 1
105 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106 #define MIGR_GEN_MIGR 3
107 #define MIGR_STATE_CHANGE 4
108 #define MIGR_REPAIR 5
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117 } __attribute__ ((packed));
118
119 struct imsm_dev {
120 __u8 volume[MAX_RAID_SERIAL_LEN];
121 __u32 size_low;
122 __u32 size_high;
123 #define DEV_BOOTABLE __cpu_to_le32(0x01)
124 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
126 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145 #define IMSM_DEV_FILLERS 10
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148 } __attribute__ ((packed));
149
150 struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166 #define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
170 /* here comes BBM logs */
171 } __attribute__ ((packed));
172
173 #define BBM_LOG_MAX_ENTRIES 254
174
175 struct bbm_log_entry {
176 __u64 defective_block_start;
177 #define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181 } __attribute__ ((__packed__));
182
183 struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190 } __attribute__ ((__packed__));
191
192
193 #ifndef MDASSEMBLE
194 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195 #endif
196
197 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
198
199 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
200
201 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
202 * be recovered using srcMap */
203 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
204 * already been migrated and must
205 * be recovered from checkpoint area */
206 struct migr_record {
207 __u32 rec_status; /* Status used to determine how to restart
208 * migration in case it aborts
209 * in some fashion */
210 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
211 __u32 family_num; /* Family number of MPB
212 * containing the RaidDev
213 * that is migrating */
214 __u32 ascending_migr; /* True if migrating in increasing
215 * order of lbas */
216 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
217 __u32 dest_depth_per_unit; /* Num member blocks each destMap
218 * member disk
219 * advances per unit-of-operation */
220 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
221 __u32 dest_1st_member_lba; /* First member lba on first
222 * stripe of destination */
223 __u32 num_migr_units; /* Total num migration units-of-op */
224 __u32 post_migr_vol_cap; /* Size of volume after
225 * migration completes */
226 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
227 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
228 * migration ckpt record was read from
229 * (for recovered migrations) */
230 } __attribute__ ((__packed__));
231
232 static __u8 migr_type(struct imsm_dev *dev)
233 {
234 if (dev->vol.migr_type == MIGR_VERIFY &&
235 dev->status & DEV_VERIFY_AND_FIX)
236 return MIGR_REPAIR;
237 else
238 return dev->vol.migr_type;
239 }
240
241 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
242 {
243 /* for compatibility with older oroms convert MIGR_REPAIR, into
244 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
245 */
246 if (migr_type == MIGR_REPAIR) {
247 dev->vol.migr_type = MIGR_VERIFY;
248 dev->status |= DEV_VERIFY_AND_FIX;
249 } else {
250 dev->vol.migr_type = migr_type;
251 dev->status &= ~DEV_VERIFY_AND_FIX;
252 }
253 }
254
255 static unsigned int sector_count(__u32 bytes)
256 {
257 return ((bytes + (512-1)) & (~(512-1))) / 512;
258 }
259
260 static unsigned int mpb_sectors(struct imsm_super *mpb)
261 {
262 return sector_count(__le32_to_cpu(mpb->mpb_size));
263 }
264
265 struct intel_dev {
266 struct imsm_dev *dev;
267 struct intel_dev *next;
268 unsigned index;
269 };
270
271 struct intel_hba {
272 enum sys_dev_type type;
273 char *path;
274 char *pci_id;
275 struct intel_hba *next;
276 };
277
278 enum action {
279 DISK_REMOVE = 1,
280 DISK_ADD
281 };
282 /* internal representation of IMSM metadata */
283 struct intel_super {
284 union {
285 void *buf; /* O_DIRECT buffer for reading/writing metadata */
286 struct imsm_super *anchor; /* immovable parameters */
287 };
288 union {
289 void *migr_rec_buf; /* buffer for I/O operations */
290 struct migr_record *migr_rec; /* migration record */
291 };
292 size_t len; /* size of the 'buf' allocation */
293 void *next_buf; /* for realloc'ing buf from the manager */
294 size_t next_len;
295 int updates_pending; /* count of pending updates for mdmon */
296 int current_vol; /* index of raid device undergoing creation */
297 __u32 create_offset; /* common start for 'current_vol' */
298 __u32 random; /* random data for seeding new family numbers */
299 struct intel_dev *devlist;
300 struct dl {
301 struct dl *next;
302 int index;
303 __u8 serial[MAX_RAID_SERIAL_LEN];
304 int major, minor;
305 char *devname;
306 struct imsm_disk disk;
307 int fd;
308 int extent_cnt;
309 struct extent *e; /* for determining freespace @ create */
310 int raiddisk; /* slot to fill in autolayout */
311 enum action action;
312 } *disks;
313 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
314 active */
315 struct dl *missing; /* disks removed while we weren't looking */
316 struct bbm_log *bbm_log;
317 struct intel_hba *hba; /* device path of the raid controller for this metadata */
318 const struct imsm_orom *orom; /* platform firmware support */
319 struct intel_super *next; /* (temp) list for disambiguating family_num */
320 };
321
322 struct intel_disk {
323 struct imsm_disk disk;
324 #define IMSM_UNKNOWN_OWNER (-1)
325 int owner;
326 struct intel_disk *next;
327 };
328
329 struct extent {
330 unsigned long long start, size;
331 };
332
333 /* definitions of reshape process types */
334 enum imsm_reshape_type {
335 CH_TAKEOVER,
336 CH_MIGRATION,
337 };
338
339 /* definition of messages passed to imsm_process_update */
340 enum imsm_update_type {
341 update_activate_spare,
342 update_create_array,
343 update_kill_array,
344 update_rename_array,
345 update_add_remove_disk,
346 update_reshape_container_disks,
347 update_reshape_migration,
348 update_takeover,
349 update_general_migration_checkpoint,
350 };
351
352 struct imsm_update_activate_spare {
353 enum imsm_update_type type;
354 struct dl *dl;
355 int slot;
356 int array;
357 struct imsm_update_activate_spare *next;
358 };
359
360 struct geo_params {
361 int dev_id;
362 char *dev_name;
363 long long size;
364 int level;
365 int layout;
366 int chunksize;
367 int raid_disks;
368 };
369
370 enum takeover_direction {
371 R10_TO_R0,
372 R0_TO_R10
373 };
374 struct imsm_update_takeover {
375 enum imsm_update_type type;
376 int subarray;
377 enum takeover_direction direction;
378 };
379
380 struct imsm_update_reshape {
381 enum imsm_update_type type;
382 int old_raid_disks;
383 int new_raid_disks;
384
385 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
386 };
387
388 struct imsm_update_reshape_migration {
389 enum imsm_update_type type;
390 int old_raid_disks;
391 int new_raid_disks;
392 /* fields for array migration changes
393 */
394 int subdev;
395 int new_level;
396 int new_layout;
397 int new_chunksize;
398
399 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
400 };
401
402 struct imsm_update_general_migration_checkpoint {
403 enum imsm_update_type type;
404 __u32 curr_migr_unit;
405 };
406
407 struct disk_info {
408 __u8 serial[MAX_RAID_SERIAL_LEN];
409 };
410
411 struct imsm_update_create_array {
412 enum imsm_update_type type;
413 int dev_idx;
414 struct imsm_dev dev;
415 };
416
417 struct imsm_update_kill_array {
418 enum imsm_update_type type;
419 int dev_idx;
420 };
421
422 struct imsm_update_rename_array {
423 enum imsm_update_type type;
424 __u8 name[MAX_RAID_SERIAL_LEN];
425 int dev_idx;
426 };
427
428 struct imsm_update_add_remove_disk {
429 enum imsm_update_type type;
430 };
431
432
433 static const char *_sys_dev_type[] = {
434 [SYS_DEV_UNKNOWN] = "Unknown",
435 [SYS_DEV_SAS] = "SAS",
436 [SYS_DEV_SATA] = "SATA"
437 };
438
439 const char *get_sys_dev_type(enum sys_dev_type type)
440 {
441 if (type >= SYS_DEV_MAX)
442 type = SYS_DEV_UNKNOWN;
443
444 return _sys_dev_type[type];
445 }
446
447 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
448 {
449 struct intel_hba *result = malloc(sizeof(*result));
450 if (result) {
451 result->type = device->type;
452 result->path = strdup(device->path);
453 result->next = NULL;
454 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
455 result->pci_id++;
456 }
457 return result;
458 }
459
460 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
461 {
462 struct intel_hba *result=NULL;
463 for (result = hba; result; result = result->next) {
464 if (result->type == device->type && strcmp(result->path, device->path) == 0)
465 break;
466 }
467 return result;
468 }
469
470 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
471 {
472 struct intel_hba *hba;
473
474 /* check if disk attached to Intel HBA */
475 hba = find_intel_hba(super->hba, device);
476 if (hba != NULL)
477 return 1;
478 /* Check if HBA is already attached to super */
479 if (super->hba == NULL) {
480 super->hba = alloc_intel_hba(device);
481 return 1;
482 }
483
484 hba = super->hba;
485 /* Intel metadata allows for all disks attached to the same type HBA.
486 * Do not sypport odf HBA types mixing
487 */
488 if (device->type != hba->type)
489 return 2;
490
491 while (hba->next)
492 hba = hba->next;
493
494 hba->next = alloc_intel_hba(device);
495 return 1;
496 }
497
498 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
499 {
500 struct sys_dev *list, *elem, *prev;
501 char *disk_path;
502
503 if ((list = find_intel_devices()) == NULL)
504 return 0;
505
506 if (fd < 0)
507 disk_path = (char *) devname;
508 else
509 disk_path = diskfd_to_devpath(fd);
510
511 if (!disk_path) {
512 free_sys_dev(&list);
513 return 0;
514 }
515
516 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
517 if (path_attached_to_hba(disk_path, elem->path)) {
518 if (prev == NULL)
519 list = list->next;
520 else
521 prev->next = elem->next;
522 elem->next = NULL;
523 if (disk_path != devname)
524 free(disk_path);
525 free_sys_dev(&list);
526 return elem;
527 }
528 }
529 if (disk_path != devname)
530 free(disk_path);
531 free_sys_dev(&list);
532
533 return NULL;
534 }
535
536
537 static int find_intel_hba_capability(int fd, struct intel_super *super,
538 char *devname);
539
540 static struct supertype *match_metadata_desc_imsm(char *arg)
541 {
542 struct supertype *st;
543
544 if (strcmp(arg, "imsm") != 0 &&
545 strcmp(arg, "default") != 0
546 )
547 return NULL;
548
549 st = malloc(sizeof(*st));
550 if (!st)
551 return NULL;
552 memset(st, 0, sizeof(*st));
553 st->container_dev = NoMdDev;
554 st->ss = &super_imsm;
555 st->max_devs = IMSM_MAX_DEVICES;
556 st->minor_version = 0;
557 st->sb = NULL;
558 return st;
559 }
560
561 #ifndef MDASSEMBLE
562 static __u8 *get_imsm_version(struct imsm_super *mpb)
563 {
564 return &mpb->sig[MPB_SIG_LEN];
565 }
566 #endif
567
568 /* retrieve a disk directly from the anchor when the anchor is known to be
569 * up-to-date, currently only at load time
570 */
571 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
572 {
573 if (index >= mpb->num_disks)
574 return NULL;
575 return &mpb->disk[index];
576 }
577
578 /* retrieve the disk description based on a index of the disk
579 * in the sub-array
580 */
581 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
582 {
583 struct dl *d;
584
585 for (d = super->disks; d; d = d->next)
586 if (d->index == index)
587 return d;
588
589 return NULL;
590 }
591 /* retrieve a disk from the parsed metadata */
592 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
593 {
594 struct dl *dl;
595
596 dl = get_imsm_dl_disk(super, index);
597 if (dl)
598 return &dl->disk;
599
600 return NULL;
601 }
602
603 /* generate a checksum directly from the anchor when the anchor is known to be
604 * up-to-date, currently only at load or write_super after coalescing
605 */
606 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
607 {
608 __u32 end = mpb->mpb_size / sizeof(end);
609 __u32 *p = (__u32 *) mpb;
610 __u32 sum = 0;
611
612 while (end--) {
613 sum += __le32_to_cpu(*p);
614 p++;
615 }
616
617 return sum - __le32_to_cpu(mpb->check_sum);
618 }
619
620 static size_t sizeof_imsm_map(struct imsm_map *map)
621 {
622 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
623 }
624
625 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
626 {
627 /* A device can have 2 maps if it is in the middle of a migration.
628 * If second_map is:
629 * 0 - we return the first map
630 * 1 - we return the second map if it exists, else NULL
631 * -1 - we return the second map if it exists, else the first
632 */
633 struct imsm_map *map = &dev->vol.map[0];
634
635 if (second_map == 1 && !dev->vol.migr_state)
636 return NULL;
637 else if (second_map == 1 ||
638 (second_map < 0 && dev->vol.migr_state)) {
639 void *ptr = map;
640
641 return ptr + sizeof_imsm_map(map);
642 } else
643 return map;
644
645 }
646
647 /* return the size of the device.
648 * migr_state increases the returned size if map[0] were to be duplicated
649 */
650 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
651 {
652 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
653 sizeof_imsm_map(get_imsm_map(dev, 0));
654
655 /* migrating means an additional map */
656 if (dev->vol.migr_state)
657 size += sizeof_imsm_map(get_imsm_map(dev, 1));
658 else if (migr_state)
659 size += sizeof_imsm_map(get_imsm_map(dev, 0));
660
661 return size;
662 }
663
664 #ifndef MDASSEMBLE
665 /* retrieve disk serial number list from a metadata update */
666 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
667 {
668 void *u = update;
669 struct disk_info *inf;
670
671 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
672 sizeof_imsm_dev(&update->dev, 0);
673
674 return inf;
675 }
676 #endif
677
678 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
679 {
680 int offset;
681 int i;
682 void *_mpb = mpb;
683
684 if (index >= mpb->num_raid_devs)
685 return NULL;
686
687 /* devices start after all disks */
688 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
689
690 for (i = 0; i <= index; i++)
691 if (i == index)
692 return _mpb + offset;
693 else
694 offset += sizeof_imsm_dev(_mpb + offset, 0);
695
696 return NULL;
697 }
698
699 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
700 {
701 struct intel_dev *dv;
702
703 if (index >= super->anchor->num_raid_devs)
704 return NULL;
705 for (dv = super->devlist; dv; dv = dv->next)
706 if (dv->index == index)
707 return dv->dev;
708 return NULL;
709 }
710
711 /*
712 * for second_map:
713 * == 0 get first map
714 * == 1 get second map
715 * == -1 than get map according to the current migr_state
716 */
717 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
718 int slot,
719 int second_map)
720 {
721 struct imsm_map *map;
722
723 map = get_imsm_map(dev, second_map);
724
725 /* top byte identifies disk under rebuild */
726 return __le32_to_cpu(map->disk_ord_tbl[slot]);
727 }
728
729 #define ord_to_idx(ord) (((ord) << 8) >> 8)
730 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
731 {
732 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
733
734 return ord_to_idx(ord);
735 }
736
737 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
738 {
739 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
740 }
741
742 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
743 {
744 int slot;
745 __u32 ord;
746
747 for (slot = 0; slot < map->num_members; slot++) {
748 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
749 if (ord_to_idx(ord) == idx)
750 return slot;
751 }
752
753 return -1;
754 }
755
756 static int get_imsm_raid_level(struct imsm_map *map)
757 {
758 if (map->raid_level == 1) {
759 if (map->num_members == 2)
760 return 1;
761 else
762 return 10;
763 }
764
765 return map->raid_level;
766 }
767
768 static int cmp_extent(const void *av, const void *bv)
769 {
770 const struct extent *a = av;
771 const struct extent *b = bv;
772 if (a->start < b->start)
773 return -1;
774 if (a->start > b->start)
775 return 1;
776 return 0;
777 }
778
779 static int count_memberships(struct dl *dl, struct intel_super *super)
780 {
781 int memberships = 0;
782 int i;
783
784 for (i = 0; i < super->anchor->num_raid_devs; i++) {
785 struct imsm_dev *dev = get_imsm_dev(super, i);
786 struct imsm_map *map = get_imsm_map(dev, 0);
787
788 if (get_imsm_disk_slot(map, dl->index) >= 0)
789 memberships++;
790 }
791
792 return memberships;
793 }
794
795 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
796 {
797 /* find a list of used extents on the given physical device */
798 struct extent *rv, *e;
799 int i;
800 int memberships = count_memberships(dl, super);
801 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
802
803 rv = malloc(sizeof(struct extent) * (memberships + 1));
804 if (!rv)
805 return NULL;
806 e = rv;
807
808 for (i = 0; i < super->anchor->num_raid_devs; i++) {
809 struct imsm_dev *dev = get_imsm_dev(super, i);
810 struct imsm_map *map = get_imsm_map(dev, 0);
811
812 if (get_imsm_disk_slot(map, dl->index) >= 0) {
813 e->start = __le32_to_cpu(map->pba_of_lba0);
814 e->size = __le32_to_cpu(map->blocks_per_member);
815 e++;
816 }
817 }
818 qsort(rv, memberships, sizeof(*rv), cmp_extent);
819
820 /* determine the start of the metadata
821 * when no raid devices are defined use the default
822 * ...otherwise allow the metadata to truncate the value
823 * as is the case with older versions of imsm
824 */
825 if (memberships) {
826 struct extent *last = &rv[memberships - 1];
827 __u32 remainder;
828
829 remainder = __le32_to_cpu(dl->disk.total_blocks) -
830 (last->start + last->size);
831 /* round down to 1k block to satisfy precision of the kernel
832 * 'size' interface
833 */
834 remainder &= ~1UL;
835 /* make sure remainder is still sane */
836 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
837 remainder = ROUND_UP(super->len, 512) >> 9;
838 if (reservation > remainder)
839 reservation = remainder;
840 }
841 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
842 e->size = 0;
843 return rv;
844 }
845
846 /* try to determine how much space is reserved for metadata from
847 * the last get_extents() entry, otherwise fallback to the
848 * default
849 */
850 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
851 {
852 struct extent *e;
853 int i;
854 __u32 rv;
855
856 /* for spares just return a minimal reservation which will grow
857 * once the spare is picked up by an array
858 */
859 if (dl->index == -1)
860 return MPB_SECTOR_CNT;
861
862 e = get_extents(super, dl);
863 if (!e)
864 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
865
866 /* scroll to last entry */
867 for (i = 0; e[i].size; i++)
868 continue;
869
870 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
871
872 free(e);
873
874 return rv;
875 }
876
877 static int is_spare(struct imsm_disk *disk)
878 {
879 return (disk->status & SPARE_DISK) == SPARE_DISK;
880 }
881
882 static int is_configured(struct imsm_disk *disk)
883 {
884 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
885 }
886
887 static int is_failed(struct imsm_disk *disk)
888 {
889 return (disk->status & FAILED_DISK) == FAILED_DISK;
890 }
891
892 /* Return minimum size of a spare that can be used in this array*/
893 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
894 {
895 struct intel_super *super = st->sb;
896 struct dl *dl;
897 struct extent *e;
898 int i;
899 unsigned long long rv = 0;
900
901 if (!super)
902 return rv;
903 /* find first active disk in array */
904 dl = super->disks;
905 while (dl && (is_failed(&dl->disk) || dl->index == -1))
906 dl = dl->next;
907 if (!dl)
908 return rv;
909 /* find last lba used by subarrays */
910 e = get_extents(super, dl);
911 if (!e)
912 return rv;
913 for (i = 0; e[i].size; i++)
914 continue;
915 if (i > 0)
916 rv = e[i-1].start + e[i-1].size;
917 free(e);
918 /* add the amount of space needed for metadata */
919 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
920 return rv * 512;
921 }
922
923 #ifndef MDASSEMBLE
924 static __u64 blocks_per_migr_unit(struct intel_super *super,
925 struct imsm_dev *dev);
926
927 static void print_imsm_dev(struct intel_super *super,
928 struct imsm_dev *dev,
929 char *uuid,
930 int disk_idx)
931 {
932 __u64 sz;
933 int slot, i;
934 struct imsm_map *map = get_imsm_map(dev, 0);
935 struct imsm_map *map2 = get_imsm_map(dev, 1);
936 __u32 ord;
937
938 printf("\n");
939 printf("[%.16s]:\n", dev->volume);
940 printf(" UUID : %s\n", uuid);
941 printf(" RAID Level : %d", get_imsm_raid_level(map));
942 if (map2)
943 printf(" <-- %d", get_imsm_raid_level(map2));
944 printf("\n");
945 printf(" Members : %d", map->num_members);
946 if (map2)
947 printf(" <-- %d", map2->num_members);
948 printf("\n");
949 printf(" Slots : [");
950 for (i = 0; i < map->num_members; i++) {
951 ord = get_imsm_ord_tbl_ent(dev, i, 0);
952 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
953 }
954 printf("]");
955 if (map2) {
956 printf(" <-- [");
957 for (i = 0; i < map2->num_members; i++) {
958 ord = get_imsm_ord_tbl_ent(dev, i, 1);
959 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
960 }
961 printf("]");
962 }
963 printf("\n");
964 printf(" Failed disk : ");
965 if (map->failed_disk_num == 0xff)
966 printf("none");
967 else
968 printf("%i", map->failed_disk_num);
969 printf("\n");
970 slot = get_imsm_disk_slot(map, disk_idx);
971 if (slot >= 0) {
972 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
973 printf(" This Slot : %d%s\n", slot,
974 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
975 } else
976 printf(" This Slot : ?\n");
977 sz = __le32_to_cpu(dev->size_high);
978 sz <<= 32;
979 sz += __le32_to_cpu(dev->size_low);
980 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
981 human_size(sz * 512));
982 sz = __le32_to_cpu(map->blocks_per_member);
983 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
984 human_size(sz * 512));
985 printf(" Sector Offset : %u\n",
986 __le32_to_cpu(map->pba_of_lba0));
987 printf(" Num Stripes : %u\n",
988 __le32_to_cpu(map->num_data_stripes));
989 printf(" Chunk Size : %u KiB",
990 __le16_to_cpu(map->blocks_per_strip) / 2);
991 if (map2)
992 printf(" <-- %u KiB",
993 __le16_to_cpu(map2->blocks_per_strip) / 2);
994 printf("\n");
995 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
996 printf(" Migrate State : ");
997 if (dev->vol.migr_state) {
998 if (migr_type(dev) == MIGR_INIT)
999 printf("initialize\n");
1000 else if (migr_type(dev) == MIGR_REBUILD)
1001 printf("rebuild\n");
1002 else if (migr_type(dev) == MIGR_VERIFY)
1003 printf("check\n");
1004 else if (migr_type(dev) == MIGR_GEN_MIGR)
1005 printf("general migration\n");
1006 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1007 printf("state change\n");
1008 else if (migr_type(dev) == MIGR_REPAIR)
1009 printf("repair\n");
1010 else
1011 printf("<unknown:%d>\n", migr_type(dev));
1012 } else
1013 printf("idle\n");
1014 printf(" Map State : %s", map_state_str[map->map_state]);
1015 if (dev->vol.migr_state) {
1016 struct imsm_map *map = get_imsm_map(dev, 1);
1017
1018 printf(" <-- %s", map_state_str[map->map_state]);
1019 printf("\n Checkpoint : %u (%llu)",
1020 __le32_to_cpu(dev->vol.curr_migr_unit),
1021 (unsigned long long)blocks_per_migr_unit(super, dev));
1022 }
1023 printf("\n");
1024 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1025 }
1026
1027 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
1028 {
1029 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
1030 char str[MAX_RAID_SERIAL_LEN + 1];
1031 __u64 sz;
1032
1033 if (index < 0 || !disk)
1034 return;
1035
1036 printf("\n");
1037 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1038 printf(" Disk%02d Serial : %s\n", index, str);
1039 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1040 is_configured(disk) ? " active" : "",
1041 is_failed(disk) ? " failed" : "");
1042 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1043 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1044 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1045 human_size(sz * 512));
1046 }
1047
1048 static int is_gen_migration(struct imsm_dev *dev);
1049
1050 void examine_migr_rec_imsm(struct intel_super *super)
1051 {
1052 struct migr_record *migr_rec = super->migr_rec;
1053 struct imsm_super *mpb = super->anchor;
1054 int i;
1055
1056 for (i = 0; i < mpb->num_raid_devs; i++) {
1057 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1058 if (is_gen_migration(dev) == 0)
1059 continue;
1060
1061 printf("\nMigration Record Information:");
1062 if (super->disks->index > 1) {
1063 printf(" Empty\n ");
1064 printf("Examine one of first two disks in array\n");
1065 break;
1066 }
1067 printf("\n Status : ");
1068 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1069 printf("Normal\n");
1070 else
1071 printf("Contains Data\n");
1072 printf(" Current Unit : %u\n",
1073 __le32_to_cpu(migr_rec->curr_migr_unit));
1074 printf(" Family : %u\n",
1075 __le32_to_cpu(migr_rec->family_num));
1076 printf(" Ascending : %u\n",
1077 __le32_to_cpu(migr_rec->ascending_migr));
1078 printf(" Blocks Per Unit : %u\n",
1079 __le32_to_cpu(migr_rec->blocks_per_unit));
1080 printf(" Dest. Depth Per Unit : %u\n",
1081 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1082 printf(" Checkpoint Area pba : %u\n",
1083 __le32_to_cpu(migr_rec->ckpt_area_pba));
1084 printf(" First member lba : %u\n",
1085 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1086 printf(" Total Number of Units : %u\n",
1087 __le32_to_cpu(migr_rec->num_migr_units));
1088 printf(" Size of volume : %u\n",
1089 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1090 printf(" Expansion space for LBA64 : %u\n",
1091 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1092 printf(" Record was read from : %u\n",
1093 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1094
1095 break;
1096 }
1097 }
1098
1099 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1100
1101 static void examine_super_imsm(struct supertype *st, char *homehost)
1102 {
1103 struct intel_super *super = st->sb;
1104 struct imsm_super *mpb = super->anchor;
1105 char str[MAX_SIGNATURE_LENGTH];
1106 int i;
1107 struct mdinfo info;
1108 char nbuf[64];
1109 __u32 sum;
1110 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1111 struct dl *dl;
1112
1113 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1114 printf(" Magic : %s\n", str);
1115 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1116 printf(" Version : %s\n", get_imsm_version(mpb));
1117 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1118 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1119 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1120 getinfo_super_imsm(st, &info, NULL);
1121 fname_from_uuid(st, &info, nbuf, ':');
1122 printf(" UUID : %s\n", nbuf + 5);
1123 sum = __le32_to_cpu(mpb->check_sum);
1124 printf(" Checksum : %08x %s\n", sum,
1125 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1126 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1127 printf(" Disks : %d\n", mpb->num_disks);
1128 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1129 print_imsm_disk(mpb, super->disks->index, reserved);
1130 if (super->bbm_log) {
1131 struct bbm_log *log = super->bbm_log;
1132
1133 printf("\n");
1134 printf("Bad Block Management Log:\n");
1135 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1136 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1137 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1138 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1139 printf(" First Spare : %llx\n",
1140 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1141 }
1142 for (i = 0; i < mpb->num_raid_devs; i++) {
1143 struct mdinfo info;
1144 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1145
1146 super->current_vol = i;
1147 getinfo_super_imsm(st, &info, NULL);
1148 fname_from_uuid(st, &info, nbuf, ':');
1149 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1150 }
1151 for (i = 0; i < mpb->num_disks; i++) {
1152 if (i == super->disks->index)
1153 continue;
1154 print_imsm_disk(mpb, i, reserved);
1155 }
1156 for (dl = super->disks ; dl; dl = dl->next) {
1157 struct imsm_disk *disk;
1158 char str[MAX_RAID_SERIAL_LEN + 1];
1159 __u64 sz;
1160
1161 if (dl->index >= 0)
1162 continue;
1163
1164 disk = &dl->disk;
1165 printf("\n");
1166 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1167 printf(" Disk Serial : %s\n", str);
1168 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1169 is_configured(disk) ? " active" : "",
1170 is_failed(disk) ? " failed" : "");
1171 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1172 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1173 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1174 human_size(sz * 512));
1175 }
1176
1177 examine_migr_rec_imsm(super);
1178 }
1179
1180 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1181 {
1182 /* We just write a generic IMSM ARRAY entry */
1183 struct mdinfo info;
1184 char nbuf[64];
1185 struct intel_super *super = st->sb;
1186
1187 if (!super->anchor->num_raid_devs) {
1188 printf("ARRAY metadata=imsm\n");
1189 return;
1190 }
1191
1192 getinfo_super_imsm(st, &info, NULL);
1193 fname_from_uuid(st, &info, nbuf, ':');
1194 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1195 }
1196
1197 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1198 {
1199 /* We just write a generic IMSM ARRAY entry */
1200 struct mdinfo info;
1201 char nbuf[64];
1202 char nbuf1[64];
1203 struct intel_super *super = st->sb;
1204 int i;
1205
1206 if (!super->anchor->num_raid_devs)
1207 return;
1208
1209 getinfo_super_imsm(st, &info, NULL);
1210 fname_from_uuid(st, &info, nbuf, ':');
1211 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1212 struct imsm_dev *dev = get_imsm_dev(super, i);
1213
1214 super->current_vol = i;
1215 getinfo_super_imsm(st, &info, NULL);
1216 fname_from_uuid(st, &info, nbuf1, ':');
1217 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1218 dev->volume, nbuf + 5, i, nbuf1 + 5);
1219 }
1220 }
1221
1222 static void export_examine_super_imsm(struct supertype *st)
1223 {
1224 struct intel_super *super = st->sb;
1225 struct imsm_super *mpb = super->anchor;
1226 struct mdinfo info;
1227 char nbuf[64];
1228
1229 getinfo_super_imsm(st, &info, NULL);
1230 fname_from_uuid(st, &info, nbuf, ':');
1231 printf("MD_METADATA=imsm\n");
1232 printf("MD_LEVEL=container\n");
1233 printf("MD_UUID=%s\n", nbuf+5);
1234 printf("MD_DEVICES=%u\n", mpb->num_disks);
1235 }
1236
1237 static void detail_super_imsm(struct supertype *st, char *homehost)
1238 {
1239 struct mdinfo info;
1240 char nbuf[64];
1241
1242 getinfo_super_imsm(st, &info, NULL);
1243 fname_from_uuid(st, &info, nbuf, ':');
1244 printf("\n UUID : %s\n", nbuf + 5);
1245 }
1246
1247 static void brief_detail_super_imsm(struct supertype *st)
1248 {
1249 struct mdinfo info;
1250 char nbuf[64];
1251 getinfo_super_imsm(st, &info, NULL);
1252 fname_from_uuid(st, &info, nbuf, ':');
1253 printf(" UUID=%s", nbuf + 5);
1254 }
1255
1256 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1257 static void fd2devname(int fd, char *name);
1258
1259 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1260 {
1261 /* dump an unsorted list of devices attached to AHCI Intel storage
1262 * controller, as well as non-connected ports
1263 */
1264 int hba_len = strlen(hba_path) + 1;
1265 struct dirent *ent;
1266 DIR *dir;
1267 char *path = NULL;
1268 int err = 0;
1269 unsigned long port_mask = (1 << port_count) - 1;
1270
1271 if (port_count > (int)sizeof(port_mask) * 8) {
1272 if (verbose)
1273 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1274 return 2;
1275 }
1276
1277 /* scroll through /sys/dev/block looking for devices attached to
1278 * this hba
1279 */
1280 dir = opendir("/sys/dev/block");
1281 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1282 int fd;
1283 char model[64];
1284 char vendor[64];
1285 char buf[1024];
1286 int major, minor;
1287 char *device;
1288 char *c;
1289 int port;
1290 int type;
1291
1292 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1293 continue;
1294 path = devt_to_devpath(makedev(major, minor));
1295 if (!path)
1296 continue;
1297 if (!path_attached_to_hba(path, hba_path)) {
1298 free(path);
1299 path = NULL;
1300 continue;
1301 }
1302
1303 /* retrieve the scsi device type */
1304 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1305 if (verbose)
1306 fprintf(stderr, Name ": failed to allocate 'device'\n");
1307 err = 2;
1308 break;
1309 }
1310 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1311 if (load_sys(device, buf) != 0) {
1312 if (verbose)
1313 fprintf(stderr, Name ": failed to read device type for %s\n",
1314 path);
1315 err = 2;
1316 free(device);
1317 break;
1318 }
1319 type = strtoul(buf, NULL, 10);
1320
1321 /* if it's not a disk print the vendor and model */
1322 if (!(type == 0 || type == 7 || type == 14)) {
1323 vendor[0] = '\0';
1324 model[0] = '\0';
1325 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1326 if (load_sys(device, buf) == 0) {
1327 strncpy(vendor, buf, sizeof(vendor));
1328 vendor[sizeof(vendor) - 1] = '\0';
1329 c = (char *) &vendor[sizeof(vendor) - 1];
1330 while (isspace(*c) || *c == '\0')
1331 *c-- = '\0';
1332
1333 }
1334 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1335 if (load_sys(device, buf) == 0) {
1336 strncpy(model, buf, sizeof(model));
1337 model[sizeof(model) - 1] = '\0';
1338 c = (char *) &model[sizeof(model) - 1];
1339 while (isspace(*c) || *c == '\0')
1340 *c-- = '\0';
1341 }
1342
1343 if (vendor[0] && model[0])
1344 sprintf(buf, "%.64s %.64s", vendor, model);
1345 else
1346 switch (type) { /* numbers from hald/linux/device.c */
1347 case 1: sprintf(buf, "tape"); break;
1348 case 2: sprintf(buf, "printer"); break;
1349 case 3: sprintf(buf, "processor"); break;
1350 case 4:
1351 case 5: sprintf(buf, "cdrom"); break;
1352 case 6: sprintf(buf, "scanner"); break;
1353 case 8: sprintf(buf, "media_changer"); break;
1354 case 9: sprintf(buf, "comm"); break;
1355 case 12: sprintf(buf, "raid"); break;
1356 default: sprintf(buf, "unknown");
1357 }
1358 } else
1359 buf[0] = '\0';
1360 free(device);
1361
1362 /* chop device path to 'host%d' and calculate the port number */
1363 c = strchr(&path[hba_len], '/');
1364 if (!c) {
1365 if (verbose)
1366 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1367 err = 2;
1368 break;
1369 }
1370 *c = '\0';
1371 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1372 port -= host_base;
1373 else {
1374 if (verbose) {
1375 *c = '/'; /* repair the full string */
1376 fprintf(stderr, Name ": failed to determine port number for %s\n",
1377 path);
1378 }
1379 err = 2;
1380 break;
1381 }
1382
1383 /* mark this port as used */
1384 port_mask &= ~(1 << port);
1385
1386 /* print out the device information */
1387 if (buf[0]) {
1388 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1389 continue;
1390 }
1391
1392 fd = dev_open(ent->d_name, O_RDONLY);
1393 if (fd < 0)
1394 printf(" Port%d : - disk info unavailable -\n", port);
1395 else {
1396 fd2devname(fd, buf);
1397 printf(" Port%d : %s", port, buf);
1398 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1399 printf(" (%s)\n", buf);
1400 else
1401 printf("()\n");
1402 }
1403 close(fd);
1404 free(path);
1405 path = NULL;
1406 }
1407 if (path)
1408 free(path);
1409 if (dir)
1410 closedir(dir);
1411 if (err == 0) {
1412 int i;
1413
1414 for (i = 0; i < port_count; i++)
1415 if (port_mask & (1 << i))
1416 printf(" Port%d : - no device attached -\n", i);
1417 }
1418
1419 return err;
1420 }
1421
1422
1423
1424 static void print_found_intel_controllers(struct sys_dev *elem)
1425 {
1426 for (; elem; elem = elem->next) {
1427 fprintf(stderr, Name ": found Intel(R) ");
1428 if (elem->type == SYS_DEV_SATA)
1429 fprintf(stderr, "SATA ");
1430 else if (elem->type == SYS_DEV_SAS)
1431 fprintf(stderr, "SAS ");
1432 fprintf(stderr, "RAID controller");
1433 if (elem->pci_id)
1434 fprintf(stderr, " at %s", elem->pci_id);
1435 fprintf(stderr, ".\n");
1436 }
1437 fflush(stderr);
1438 }
1439
1440 static int ahci_get_port_count(const char *hba_path, int *port_count)
1441 {
1442 struct dirent *ent;
1443 DIR *dir;
1444 int host_base = -1;
1445
1446 *port_count = 0;
1447 if ((dir = opendir(hba_path)) == NULL)
1448 return -1;
1449
1450 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1451 int host;
1452
1453 if (sscanf(ent->d_name, "host%d", &host) != 1)
1454 continue;
1455 if (*port_count == 0)
1456 host_base = host;
1457 else if (host < host_base)
1458 host_base = host;
1459
1460 if (host + 1 > *port_count + host_base)
1461 *port_count = host + 1 - host_base;
1462 }
1463 closedir(dir);
1464 return host_base;
1465 }
1466
1467 static void print_imsm_capability(const struct imsm_orom *orom)
1468 {
1469 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1470 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1471 orom->hotfix_ver, orom->build);
1472 printf(" RAID Levels :%s%s%s%s%s\n",
1473 imsm_orom_has_raid0(orom) ? " raid0" : "",
1474 imsm_orom_has_raid1(orom) ? " raid1" : "",
1475 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1476 imsm_orom_has_raid10(orom) ? " raid10" : "",
1477 imsm_orom_has_raid5(orom) ? " raid5" : "");
1478 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1479 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1480 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1481 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1482 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1483 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1484 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1485 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1486 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1487 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1488 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1489 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1490 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1491 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1492 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1493 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1494 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1495 printf(" Max Disks : %d\n", orom->tds);
1496 printf(" Max Volumes : %d\n", orom->vpa);
1497 return;
1498 }
1499
1500 static int detail_platform_imsm(int verbose, int enumerate_only)
1501 {
1502 /* There are two components to imsm platform support, the ahci SATA
1503 * controller and the option-rom. To find the SATA controller we
1504 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1505 * controller with the Intel vendor id is present. This approach
1506 * allows mdadm to leverage the kernel's ahci detection logic, with the
1507 * caveat that if ahci.ko is not loaded mdadm will not be able to
1508 * detect platform raid capabilities. The option-rom resides in a
1509 * platform "Adapter ROM". We scan for its signature to retrieve the
1510 * platform capabilities. If raid support is disabled in the BIOS the
1511 * option-rom capability structure will not be available.
1512 */
1513 const struct imsm_orom *orom;
1514 struct sys_dev *list, *hba;
1515 int host_base = 0;
1516 int port_count = 0;
1517 int result=0;
1518
1519 if (enumerate_only) {
1520 if (check_env("IMSM_NO_PLATFORM"))
1521 return 0;
1522 list = find_intel_devices();
1523 if (!list)
1524 return 2;
1525 for (hba = list; hba; hba = hba->next) {
1526 orom = find_imsm_capability(hba->type);
1527 if (!orom) {
1528 result = 2;
1529 break;
1530 }
1531 }
1532 free_sys_dev(&list);
1533 return result;
1534 }
1535
1536 list = find_intel_devices();
1537 if (!list) {
1538 if (verbose)
1539 fprintf(stderr, Name ": no active Intel(R) RAID "
1540 "controller found.\n");
1541 free_sys_dev(&list);
1542 return 2;
1543 } else if (verbose)
1544 print_found_intel_controllers(list);
1545
1546 for (hba = list; hba; hba = hba->next) {
1547 orom = find_imsm_capability(hba->type);
1548 if (!orom)
1549 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1550 hba->path, get_sys_dev_type(hba->type));
1551 else
1552 print_imsm_capability(orom);
1553 }
1554
1555 for (hba = list; hba; hba = hba->next) {
1556 printf(" I/O Controller : %s (%s)\n",
1557 hba->path, get_sys_dev_type(hba->type));
1558
1559 if (hba->type == SYS_DEV_SATA) {
1560 host_base = ahci_get_port_count(hba->path, &port_count);
1561 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1562 if (verbose)
1563 fprintf(stderr, Name ": failed to enumerate "
1564 "ports on SATA controller at %s.", hba->pci_id);
1565 result |= 2;
1566 }
1567 }
1568 }
1569
1570 free_sys_dev(&list);
1571 return result;
1572 }
1573 #endif
1574
1575 static int match_home_imsm(struct supertype *st, char *homehost)
1576 {
1577 /* the imsm metadata format does not specify any host
1578 * identification information. We return -1 since we can never
1579 * confirm nor deny whether a given array is "meant" for this
1580 * host. We rely on compare_super and the 'family_num' fields to
1581 * exclude member disks that do not belong, and we rely on
1582 * mdadm.conf to specify the arrays that should be assembled.
1583 * Auto-assembly may still pick up "foreign" arrays.
1584 */
1585
1586 return -1;
1587 }
1588
1589 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1590 {
1591 /* The uuid returned here is used for:
1592 * uuid to put into bitmap file (Create, Grow)
1593 * uuid for backup header when saving critical section (Grow)
1594 * comparing uuids when re-adding a device into an array
1595 * In these cases the uuid required is that of the data-array,
1596 * not the device-set.
1597 * uuid to recognise same set when adding a missing device back
1598 * to an array. This is a uuid for the device-set.
1599 *
1600 * For each of these we can make do with a truncated
1601 * or hashed uuid rather than the original, as long as
1602 * everyone agrees.
1603 * In each case the uuid required is that of the data-array,
1604 * not the device-set.
1605 */
1606 /* imsm does not track uuid's so we synthesis one using sha1 on
1607 * - The signature (Which is constant for all imsm array, but no matter)
1608 * - the orig_family_num of the container
1609 * - the index number of the volume
1610 * - the 'serial' number of the volume.
1611 * Hopefully these are all constant.
1612 */
1613 struct intel_super *super = st->sb;
1614
1615 char buf[20];
1616 struct sha1_ctx ctx;
1617 struct imsm_dev *dev = NULL;
1618 __u32 family_num;
1619
1620 /* some mdadm versions failed to set ->orig_family_num, in which
1621 * case fall back to ->family_num. orig_family_num will be
1622 * fixed up with the first metadata update.
1623 */
1624 family_num = super->anchor->orig_family_num;
1625 if (family_num == 0)
1626 family_num = super->anchor->family_num;
1627 sha1_init_ctx(&ctx);
1628 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1629 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1630 if (super->current_vol >= 0)
1631 dev = get_imsm_dev(super, super->current_vol);
1632 if (dev) {
1633 __u32 vol = super->current_vol;
1634 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1635 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1636 }
1637 sha1_finish_ctx(&ctx, buf);
1638 memcpy(uuid, buf, 4*4);
1639 }
1640
1641 #if 0
1642 static void
1643 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1644 {
1645 __u8 *v = get_imsm_version(mpb);
1646 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1647 char major[] = { 0, 0, 0 };
1648 char minor[] = { 0 ,0, 0 };
1649 char patch[] = { 0, 0, 0 };
1650 char *ver_parse[] = { major, minor, patch };
1651 int i, j;
1652
1653 i = j = 0;
1654 while (*v != '\0' && v < end) {
1655 if (*v != '.' && j < 2)
1656 ver_parse[i][j++] = *v;
1657 else {
1658 i++;
1659 j = 0;
1660 }
1661 v++;
1662 }
1663
1664 *m = strtol(minor, NULL, 0);
1665 *p = strtol(patch, NULL, 0);
1666 }
1667 #endif
1668
1669 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1670 {
1671 /* migr_strip_size when repairing or initializing parity */
1672 struct imsm_map *map = get_imsm_map(dev, 0);
1673 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1674
1675 switch (get_imsm_raid_level(map)) {
1676 case 5:
1677 case 10:
1678 return chunk;
1679 default:
1680 return 128*1024 >> 9;
1681 }
1682 }
1683
1684 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1685 {
1686 /* migr_strip_size when rebuilding a degraded disk, no idea why
1687 * this is different than migr_strip_size_resync(), but it's good
1688 * to be compatible
1689 */
1690 struct imsm_map *map = get_imsm_map(dev, 1);
1691 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1692
1693 switch (get_imsm_raid_level(map)) {
1694 case 1:
1695 case 10:
1696 if (map->num_members % map->num_domains == 0)
1697 return 128*1024 >> 9;
1698 else
1699 return chunk;
1700 case 5:
1701 return max((__u32) 64*1024 >> 9, chunk);
1702 default:
1703 return 128*1024 >> 9;
1704 }
1705 }
1706
1707 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1708 {
1709 struct imsm_map *lo = get_imsm_map(dev, 0);
1710 struct imsm_map *hi = get_imsm_map(dev, 1);
1711 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1712 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1713
1714 return max((__u32) 1, hi_chunk / lo_chunk);
1715 }
1716
1717 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1718 {
1719 struct imsm_map *lo = get_imsm_map(dev, 0);
1720 int level = get_imsm_raid_level(lo);
1721
1722 if (level == 1 || level == 10) {
1723 struct imsm_map *hi = get_imsm_map(dev, 1);
1724
1725 return hi->num_domains;
1726 } else
1727 return num_stripes_per_unit_resync(dev);
1728 }
1729
1730 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1731 {
1732 /* named 'imsm_' because raid0, raid1 and raid10
1733 * counter-intuitively have the same number of data disks
1734 */
1735 struct imsm_map *map = get_imsm_map(dev, second_map);
1736
1737 switch (get_imsm_raid_level(map)) {
1738 case 0:
1739 case 1:
1740 case 10:
1741 return map->num_members;
1742 case 5:
1743 return map->num_members - 1;
1744 default:
1745 dprintf("%s: unsupported raid level\n", __func__);
1746 return 0;
1747 }
1748 }
1749
1750 static __u32 parity_segment_depth(struct imsm_dev *dev)
1751 {
1752 struct imsm_map *map = get_imsm_map(dev, 0);
1753 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1754
1755 switch(get_imsm_raid_level(map)) {
1756 case 1:
1757 case 10:
1758 return chunk * map->num_domains;
1759 case 5:
1760 return chunk * map->num_members;
1761 default:
1762 return chunk;
1763 }
1764 }
1765
1766 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1767 {
1768 struct imsm_map *map = get_imsm_map(dev, 1);
1769 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1770 __u32 strip = block / chunk;
1771
1772 switch (get_imsm_raid_level(map)) {
1773 case 1:
1774 case 10: {
1775 __u32 vol_strip = (strip * map->num_domains) + 1;
1776 __u32 vol_stripe = vol_strip / map->num_members;
1777
1778 return vol_stripe * chunk + block % chunk;
1779 } case 5: {
1780 __u32 stripe = strip / (map->num_members - 1);
1781
1782 return stripe * chunk + block % chunk;
1783 }
1784 default:
1785 return 0;
1786 }
1787 }
1788
1789 static __u64 blocks_per_migr_unit(struct intel_super *super,
1790 struct imsm_dev *dev)
1791 {
1792 /* calculate the conversion factor between per member 'blocks'
1793 * (md/{resync,rebuild}_start) and imsm migration units, return
1794 * 0 for the 'not migrating' and 'unsupported migration' cases
1795 */
1796 if (!dev->vol.migr_state)
1797 return 0;
1798
1799 switch (migr_type(dev)) {
1800 case MIGR_GEN_MIGR: {
1801 struct migr_record *migr_rec = super->migr_rec;
1802 return __le32_to_cpu(migr_rec->blocks_per_unit);
1803 }
1804 case MIGR_VERIFY:
1805 case MIGR_REPAIR:
1806 case MIGR_INIT: {
1807 struct imsm_map *map = get_imsm_map(dev, 0);
1808 __u32 stripes_per_unit;
1809 __u32 blocks_per_unit;
1810 __u32 parity_depth;
1811 __u32 migr_chunk;
1812 __u32 block_map;
1813 __u32 block_rel;
1814 __u32 segment;
1815 __u32 stripe;
1816 __u8 disks;
1817
1818 /* yes, this is really the translation of migr_units to
1819 * per-member blocks in the 'resync' case
1820 */
1821 stripes_per_unit = num_stripes_per_unit_resync(dev);
1822 migr_chunk = migr_strip_blocks_resync(dev);
1823 disks = imsm_num_data_members(dev, 0);
1824 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1825 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1826 segment = blocks_per_unit / stripe;
1827 block_rel = blocks_per_unit - segment * stripe;
1828 parity_depth = parity_segment_depth(dev);
1829 block_map = map_migr_block(dev, block_rel);
1830 return block_map + parity_depth * segment;
1831 }
1832 case MIGR_REBUILD: {
1833 __u32 stripes_per_unit;
1834 __u32 migr_chunk;
1835
1836 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1837 migr_chunk = migr_strip_blocks_rebuild(dev);
1838 return migr_chunk * stripes_per_unit;
1839 }
1840 case MIGR_STATE_CHANGE:
1841 default:
1842 return 0;
1843 }
1844 }
1845
1846 static int imsm_level_to_layout(int level)
1847 {
1848 switch (level) {
1849 case 0:
1850 case 1:
1851 return 0;
1852 case 5:
1853 case 6:
1854 return ALGORITHM_LEFT_ASYMMETRIC;
1855 case 10:
1856 return 0x102;
1857 }
1858 return UnSet;
1859 }
1860
1861 /*******************************************************************************
1862 * Function: read_imsm_migr_rec
1863 * Description: Function reads imsm migration record from last sector of disk
1864 * Parameters:
1865 * fd : disk descriptor
1866 * super : metadata info
1867 * Returns:
1868 * 0 : success,
1869 * -1 : fail
1870 ******************************************************************************/
1871 static int read_imsm_migr_rec(int fd, struct intel_super *super)
1872 {
1873 int ret_val = -1;
1874 unsigned long long dsize;
1875
1876 get_dev_size(fd, NULL, &dsize);
1877 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
1878 fprintf(stderr,
1879 Name ": Cannot seek to anchor block: %s\n",
1880 strerror(errno));
1881 goto out;
1882 }
1883 if (read(fd, super->migr_rec_buf, 512) != 512) {
1884 fprintf(stderr,
1885 Name ": Cannot read migr record block: %s\n",
1886 strerror(errno));
1887 goto out;
1888 }
1889 ret_val = 0;
1890
1891 out:
1892 return ret_val;
1893 }
1894
1895 /*******************************************************************************
1896 * Function: load_imsm_migr_rec
1897 * Description: Function reads imsm migration record (it is stored at the last
1898 * sector of disk)
1899 * Parameters:
1900 * super : imsm internal array info
1901 * info : general array info
1902 * Returns:
1903 * 0 : success
1904 * -1 : fail
1905 ******************************************************************************/
1906 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
1907 {
1908 struct mdinfo *sd;
1909 struct dl *dl = NULL;
1910 char nm[30];
1911 int retval = -1;
1912 int fd = -1;
1913
1914 if (info) {
1915 for (sd = info->devs ; sd ; sd = sd->next) {
1916 /* read only from one of the first two slots */
1917 if ((sd->disk.raid_disk > 1) ||
1918 (sd->disk.raid_disk < 0))
1919 continue;
1920 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1921 fd = dev_open(nm, O_RDONLY);
1922 if (fd >= 0)
1923 break;
1924 }
1925 }
1926 if (fd < 0) {
1927 for (dl = super->disks; dl; dl = dl->next) {
1928 /* read only from one of the first two slots */
1929 if (dl->index > 1)
1930 continue;
1931 sprintf(nm, "%d:%d", dl->major, dl->minor);
1932 fd = dev_open(nm, O_RDONLY);
1933 if (fd >= 0)
1934 break;
1935 }
1936 }
1937 if (fd < 0)
1938 goto out;
1939 retval = read_imsm_migr_rec(fd, super);
1940
1941 out:
1942 if (fd >= 0)
1943 close(fd);
1944 return retval;
1945 }
1946
1947 /*******************************************************************************
1948 * function: imsm_create_metadata_checkpoint_update
1949 * Description: It creates update for checkpoint change.
1950 * Parameters:
1951 * super : imsm internal array info
1952 * u : pointer to prepared update
1953 * Returns:
1954 * Uptate length.
1955 * If length is equal to 0, input pointer u contains no update
1956 ******************************************************************************/
1957 static int imsm_create_metadata_checkpoint_update(
1958 struct intel_super *super,
1959 struct imsm_update_general_migration_checkpoint **u)
1960 {
1961
1962 int update_memory_size = 0;
1963
1964 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
1965
1966 if (u == NULL)
1967 return 0;
1968 *u = NULL;
1969
1970 /* size of all update data without anchor */
1971 update_memory_size =
1972 sizeof(struct imsm_update_general_migration_checkpoint);
1973
1974 *u = calloc(1, update_memory_size);
1975 if (*u == NULL) {
1976 dprintf("error: cannot get memory for "
1977 "imsm_create_metadata_checkpoint_update update\n");
1978 return 0;
1979 }
1980 (*u)->type = update_general_migration_checkpoint;
1981 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
1982 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
1983 (*u)->curr_migr_unit);
1984
1985 return update_memory_size;
1986 }
1987
1988
1989 static void imsm_update_metadata_locally(struct supertype *st,
1990 void *buf, int len);
1991
1992 /*******************************************************************************
1993 * Function: write_imsm_migr_rec
1994 * Description: Function writes imsm migration record
1995 * (at the last sector of disk)
1996 * Parameters:
1997 * super : imsm internal array info
1998 * Returns:
1999 * 0 : success
2000 * -1 : if fail
2001 ******************************************************************************/
2002 static int write_imsm_migr_rec(struct supertype *st)
2003 {
2004 struct intel_super *super = st->sb;
2005 unsigned long long dsize;
2006 char nm[30];
2007 int fd = -1;
2008 int retval = -1;
2009 struct dl *sd;
2010 int len;
2011 struct imsm_update_general_migration_checkpoint *u;
2012
2013 for (sd = super->disks ; sd ; sd = sd->next) {
2014 /* write to 2 first slots only */
2015 if ((sd->index < 0) || (sd->index > 1))
2016 continue;
2017 sprintf(nm, "%d:%d", sd->major, sd->minor);
2018 fd = dev_open(nm, O_RDWR);
2019 if (fd < 0)
2020 continue;
2021 get_dev_size(fd, NULL, &dsize);
2022 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2023 fprintf(stderr,
2024 Name ": Cannot seek to anchor block: %s\n",
2025 strerror(errno));
2026 goto out;
2027 }
2028 if (write(fd, super->migr_rec_buf, 512) != 512) {
2029 fprintf(stderr,
2030 Name ": Cannot write migr record block: %s\n",
2031 strerror(errno));
2032 goto out;
2033 }
2034 close(fd);
2035 fd = -1;
2036 }
2037 /* update checkpoint information in metadata */
2038 len = imsm_create_metadata_checkpoint_update(super, &u);
2039
2040 if (len <= 0) {
2041 dprintf("imsm: Cannot prepare update\n");
2042 goto out;
2043 }
2044 /* update metadata locally */
2045 imsm_update_metadata_locally(st, u, len);
2046 /* and possibly remotely */
2047 if (st->update_tail) {
2048 append_metadata_update(st, u, len);
2049 /* during reshape we do all work inside metadata handler
2050 * manage_reshape(), so metadata update has to be triggered
2051 * insida it
2052 */
2053 flush_metadata_updates(st);
2054 st->update_tail = &st->updates;
2055 } else
2056 free(u);
2057
2058 retval = 0;
2059 out:
2060 if (fd >= 0)
2061 close(fd);
2062 return retval;
2063 }
2064
2065 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2066 {
2067 struct intel_super *super = st->sb;
2068 struct migr_record *migr_rec = super->migr_rec;
2069 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2070 struct imsm_map *map = get_imsm_map(dev, 0);
2071 struct imsm_map *prev_map = get_imsm_map(dev, 1);
2072 struct imsm_map *map_to_analyse = map;
2073 struct dl *dl;
2074 char *devname;
2075 unsigned int component_size_alligment;
2076 int map_disks = info->array.raid_disks;
2077
2078 memset(info, 0, sizeof(*info));
2079 if (prev_map)
2080 map_to_analyse = prev_map;
2081
2082 dl = super->disks;
2083
2084 info->container_member = super->current_vol;
2085 info->array.raid_disks = map->num_members;
2086 info->array.level = get_imsm_raid_level(map_to_analyse);
2087 info->array.layout = imsm_level_to_layout(info->array.level);
2088 info->array.md_minor = -1;
2089 info->array.ctime = 0;
2090 info->array.utime = 0;
2091 info->array.chunk_size =
2092 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2093 info->array.state = !dev->vol.dirty;
2094 info->custom_array_size = __le32_to_cpu(dev->size_high);
2095 info->custom_array_size <<= 32;
2096 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2097 if (prev_map && map->map_state == prev_map->map_state) {
2098 info->reshape_active = 1;
2099 info->new_level = get_imsm_raid_level(map);
2100 info->new_layout = imsm_level_to_layout(info->new_level);
2101 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2102 info->delta_disks = map->num_members - prev_map->num_members;
2103 if (info->delta_disks) {
2104 /* this needs to be applied to every array
2105 * in the container.
2106 */
2107 info->reshape_active = 2;
2108 }
2109 /* We shape information that we give to md might have to be
2110 * modify to cope with md's requirement for reshaping arrays.
2111 * For example, when reshaping a RAID0, md requires it to be
2112 * presented as a degraded RAID4.
2113 * Also if a RAID0 is migrating to a RAID5 we need to specify
2114 * the array as already being RAID5, but the 'before' layout
2115 * is a RAID4-like layout.
2116 */
2117 switch (info->array.level) {
2118 case 0:
2119 switch(info->new_level) {
2120 case 0:
2121 /* conversion is happening as RAID4 */
2122 info->array.level = 4;
2123 info->array.raid_disks += 1;
2124 break;
2125 case 5:
2126 /* conversion is happening as RAID5 */
2127 info->array.level = 5;
2128 info->array.layout = ALGORITHM_PARITY_N;
2129 info->array.raid_disks += 1;
2130 info->delta_disks -= 1;
2131 break;
2132 default:
2133 /* FIXME error message */
2134 info->array.level = UnSet;
2135 break;
2136 }
2137 break;
2138 }
2139 } else {
2140 info->new_level = UnSet;
2141 info->new_layout = UnSet;
2142 info->new_chunk = info->array.chunk_size;
2143 info->delta_disks = 0;
2144 }
2145 info->disk.major = 0;
2146 info->disk.minor = 0;
2147 if (dl) {
2148 info->disk.major = dl->major;
2149 info->disk.minor = dl->minor;
2150 }
2151
2152 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2153 info->component_size =
2154 __le32_to_cpu(map_to_analyse->blocks_per_member);
2155
2156 /* check component size aligment
2157 */
2158 component_size_alligment =
2159 info->component_size % (info->array.chunk_size/512);
2160
2161 if (component_size_alligment &&
2162 (info->array.level != 1) && (info->array.level != UnSet)) {
2163 dprintf("imsm: reported component size alligned from %llu ",
2164 info->component_size);
2165 info->component_size -= component_size_alligment;
2166 dprintf("to %llu (%i).\n",
2167 info->component_size, component_size_alligment);
2168 }
2169
2170 memset(info->uuid, 0, sizeof(info->uuid));
2171 info->recovery_start = MaxSector;
2172
2173 info->reshape_progress = 0;
2174 info->resync_start = MaxSector;
2175 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2176 dev->vol.dirty) {
2177 info->resync_start = 0;
2178 }
2179 if (dev->vol.migr_state) {
2180 switch (migr_type(dev)) {
2181 case MIGR_REPAIR:
2182 case MIGR_INIT: {
2183 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2184 dev);
2185 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2186
2187 info->resync_start = blocks_per_unit * units;
2188 break;
2189 }
2190 case MIGR_GEN_MIGR: {
2191 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2192 dev);
2193 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2194 unsigned long long array_blocks;
2195 int used_disks;
2196
2197 info->reshape_progress = blocks_per_unit * units;
2198
2199 dprintf("IMSM: General Migration checkpoint : %llu "
2200 "(%llu) -> read reshape progress : %llu\n",
2201 units, blocks_per_unit, info->reshape_progress);
2202
2203 used_disks = imsm_num_data_members(dev, 1);
2204 if (used_disks > 0) {
2205 array_blocks = map->blocks_per_member *
2206 used_disks;
2207 /* round array size down to closest MB
2208 */
2209 info->custom_array_size = (array_blocks
2210 >> SECT_PER_MB_SHIFT)
2211 << SECT_PER_MB_SHIFT;
2212 }
2213 }
2214 case MIGR_VERIFY:
2215 /* we could emulate the checkpointing of
2216 * 'sync_action=check' migrations, but for now
2217 * we just immediately complete them
2218 */
2219 case MIGR_REBUILD:
2220 /* this is handled by container_content_imsm() */
2221 case MIGR_STATE_CHANGE:
2222 /* FIXME handle other migrations */
2223 default:
2224 /* we are not dirty, so... */
2225 info->resync_start = MaxSector;
2226 }
2227 }
2228
2229 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2230 info->name[MAX_RAID_SERIAL_LEN] = 0;
2231
2232 info->array.major_version = -1;
2233 info->array.minor_version = -2;
2234 devname = devnum2devname(st->container_dev);
2235 *info->text_version = '\0';
2236 if (devname)
2237 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2238 free(devname);
2239 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2240 uuid_from_super_imsm(st, info->uuid);
2241
2242 if (dmap) {
2243 int i, j;
2244 for (i=0; i<map_disks; i++) {
2245 dmap[i] = 0;
2246 if (i < info->array.raid_disks) {
2247 struct imsm_disk *dsk;
2248 j = get_imsm_disk_idx(dev, i, -1);
2249 dsk = get_imsm_disk(super, j);
2250 if (dsk && (dsk->status & CONFIGURED_DISK))
2251 dmap[i] = 1;
2252 }
2253 }
2254 }
2255 }
2256
2257 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2258 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2259
2260 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2261 {
2262 struct dl *d;
2263
2264 for (d = super->missing; d; d = d->next)
2265 if (d->index == index)
2266 return &d->disk;
2267 return NULL;
2268 }
2269
2270 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2271 {
2272 struct intel_super *super = st->sb;
2273 struct imsm_disk *disk;
2274 int map_disks = info->array.raid_disks;
2275 int max_enough = -1;
2276 int i;
2277 struct imsm_super *mpb;
2278
2279 if (super->current_vol >= 0) {
2280 getinfo_super_imsm_volume(st, info, map);
2281 return;
2282 }
2283 memset(info, 0, sizeof(*info));
2284
2285 /* Set raid_disks to zero so that Assemble will always pull in valid
2286 * spares
2287 */
2288 info->array.raid_disks = 0;
2289 info->array.level = LEVEL_CONTAINER;
2290 info->array.layout = 0;
2291 info->array.md_minor = -1;
2292 info->array.ctime = 0; /* N/A for imsm */
2293 info->array.utime = 0;
2294 info->array.chunk_size = 0;
2295
2296 info->disk.major = 0;
2297 info->disk.minor = 0;
2298 info->disk.raid_disk = -1;
2299 info->reshape_active = 0;
2300 info->array.major_version = -1;
2301 info->array.minor_version = -2;
2302 strcpy(info->text_version, "imsm");
2303 info->safe_mode_delay = 0;
2304 info->disk.number = -1;
2305 info->disk.state = 0;
2306 info->name[0] = 0;
2307 info->recovery_start = MaxSector;
2308
2309 /* do we have the all the insync disks that we expect? */
2310 mpb = super->anchor;
2311
2312 for (i = 0; i < mpb->num_raid_devs; i++) {
2313 struct imsm_dev *dev = get_imsm_dev(super, i);
2314 int failed, enough, j, missing = 0;
2315 struct imsm_map *map;
2316 __u8 state;
2317
2318 failed = imsm_count_failed(super, dev);
2319 state = imsm_check_degraded(super, dev, failed);
2320 map = get_imsm_map(dev, dev->vol.migr_state);
2321
2322 /* any newly missing disks?
2323 * (catches single-degraded vs double-degraded)
2324 */
2325 for (j = 0; j < map->num_members; j++) {
2326 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
2327 __u32 idx = ord_to_idx(ord);
2328
2329 if (!(ord & IMSM_ORD_REBUILD) &&
2330 get_imsm_missing(super, idx)) {
2331 missing = 1;
2332 break;
2333 }
2334 }
2335
2336 if (state == IMSM_T_STATE_FAILED)
2337 enough = -1;
2338 else if (state == IMSM_T_STATE_DEGRADED &&
2339 (state != map->map_state || missing))
2340 enough = 0;
2341 else /* we're normal, or already degraded */
2342 enough = 1;
2343
2344 /* in the missing/failed disk case check to see
2345 * if at least one array is runnable
2346 */
2347 max_enough = max(max_enough, enough);
2348 }
2349 dprintf("%s: enough: %d\n", __func__, max_enough);
2350 info->container_enough = max_enough;
2351
2352 if (super->disks) {
2353 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2354
2355 disk = &super->disks->disk;
2356 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2357 info->component_size = reserved;
2358 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2359 /* we don't change info->disk.raid_disk here because
2360 * this state will be finalized in mdmon after we have
2361 * found the 'most fresh' version of the metadata
2362 */
2363 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2364 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2365 }
2366
2367 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2368 * ->compare_super may have updated the 'num_raid_devs' field for spares
2369 */
2370 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2371 uuid_from_super_imsm(st, info->uuid);
2372 else
2373 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2374
2375 /* I don't know how to compute 'map' on imsm, so use safe default */
2376 if (map) {
2377 int i;
2378 for (i = 0; i < map_disks; i++)
2379 map[i] = 1;
2380 }
2381
2382 }
2383
2384 /* allocates memory and fills disk in mdinfo structure
2385 * for each disk in array */
2386 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2387 {
2388 struct mdinfo *mddev = NULL;
2389 struct intel_super *super = st->sb;
2390 struct imsm_disk *disk;
2391 int count = 0;
2392 struct dl *dl;
2393 if (!super || !super->disks)
2394 return NULL;
2395 dl = super->disks;
2396 mddev = malloc(sizeof(*mddev));
2397 if (!mddev) {
2398 fprintf(stderr, Name ": Failed to allocate memory.\n");
2399 return NULL;
2400 }
2401 memset(mddev, 0, sizeof(*mddev));
2402 while (dl) {
2403 struct mdinfo *tmp;
2404 disk = &dl->disk;
2405 tmp = malloc(sizeof(*tmp));
2406 if (!tmp) {
2407 fprintf(stderr, Name ": Failed to allocate memory.\n");
2408 if (mddev)
2409 sysfs_free(mddev);
2410 return NULL;
2411 }
2412 memset(tmp, 0, sizeof(*tmp));
2413 if (mddev->devs)
2414 tmp->next = mddev->devs;
2415 mddev->devs = tmp;
2416 tmp->disk.number = count++;
2417 tmp->disk.major = dl->major;
2418 tmp->disk.minor = dl->minor;
2419 tmp->disk.state = is_configured(disk) ?
2420 (1 << MD_DISK_ACTIVE) : 0;
2421 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2422 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2423 tmp->disk.raid_disk = -1;
2424 dl = dl->next;
2425 }
2426 return mddev;
2427 }
2428
2429 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2430 char *update, char *devname, int verbose,
2431 int uuid_set, char *homehost)
2432 {
2433 /* For 'assemble' and 'force' we need to return non-zero if any
2434 * change was made. For others, the return value is ignored.
2435 * Update options are:
2436 * force-one : This device looks a bit old but needs to be included,
2437 * update age info appropriately.
2438 * assemble: clear any 'faulty' flag to allow this device to
2439 * be assembled.
2440 * force-array: Array is degraded but being forced, mark it clean
2441 * if that will be needed to assemble it.
2442 *
2443 * newdev: not used ????
2444 * grow: Array has gained a new device - this is currently for
2445 * linear only
2446 * resync: mark as dirty so a resync will happen.
2447 * name: update the name - preserving the homehost
2448 * uuid: Change the uuid of the array to match watch is given
2449 *
2450 * Following are not relevant for this imsm:
2451 * sparc2.2 : update from old dodgey metadata
2452 * super-minor: change the preferred_minor number
2453 * summaries: update redundant counters.
2454 * homehost: update the recorded homehost
2455 * _reshape_progress: record new reshape_progress position.
2456 */
2457 int rv = 1;
2458 struct intel_super *super = st->sb;
2459 struct imsm_super *mpb;
2460
2461 /* we can only update container info */
2462 if (!super || super->current_vol >= 0 || !super->anchor)
2463 return 1;
2464
2465 mpb = super->anchor;
2466
2467 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2468 rv = -1;
2469 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2470 mpb->orig_family_num = *((__u32 *) info->update_private);
2471 rv = 0;
2472 } else if (strcmp(update, "uuid") == 0) {
2473 __u32 *new_family = malloc(sizeof(*new_family));
2474
2475 /* update orig_family_number with the incoming random
2476 * data, report the new effective uuid, and store the
2477 * new orig_family_num for future updates.
2478 */
2479 if (new_family) {
2480 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2481 uuid_from_super_imsm(st, info->uuid);
2482 *new_family = mpb->orig_family_num;
2483 info->update_private = new_family;
2484 rv = 0;
2485 }
2486 } else if (strcmp(update, "assemble") == 0)
2487 rv = 0;
2488 else
2489 rv = -1;
2490
2491 /* successful update? recompute checksum */
2492 if (rv == 0)
2493 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2494
2495 return rv;
2496 }
2497
2498 static size_t disks_to_mpb_size(int disks)
2499 {
2500 size_t size;
2501
2502 size = sizeof(struct imsm_super);
2503 size += (disks - 1) * sizeof(struct imsm_disk);
2504 size += 2 * sizeof(struct imsm_dev);
2505 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2506 size += (4 - 2) * sizeof(struct imsm_map);
2507 /* 4 possible disk_ord_tbl's */
2508 size += 4 * (disks - 1) * sizeof(__u32);
2509
2510 return size;
2511 }
2512
2513 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2514 {
2515 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2516 return 0;
2517
2518 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2519 }
2520
2521 static void free_devlist(struct intel_super *super)
2522 {
2523 struct intel_dev *dv;
2524
2525 while (super->devlist) {
2526 dv = super->devlist->next;
2527 free(super->devlist->dev);
2528 free(super->devlist);
2529 super->devlist = dv;
2530 }
2531 }
2532
2533 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2534 {
2535 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2536 }
2537
2538 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2539 {
2540 /*
2541 * return:
2542 * 0 same, or first was empty, and second was copied
2543 * 1 second had wrong number
2544 * 2 wrong uuid
2545 * 3 wrong other info
2546 */
2547 struct intel_super *first = st->sb;
2548 struct intel_super *sec = tst->sb;
2549
2550 if (!first) {
2551 st->sb = tst->sb;
2552 tst->sb = NULL;
2553 return 0;
2554 }
2555 /* in platform dependent environment test if the disks
2556 * use the same Intel hba
2557 */
2558 if (!check_env("IMSM_NO_PLATFORM")) {
2559 if (!first->hba || !sec->hba ||
2560 (first->hba->type != sec->hba->type)) {
2561 fprintf(stderr,
2562 "HBAs of devices does not match %s != %s\n",
2563 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2564 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2565 return 3;
2566 }
2567 }
2568
2569 /* if an anchor does not have num_raid_devs set then it is a free
2570 * floating spare
2571 */
2572 if (first->anchor->num_raid_devs > 0 &&
2573 sec->anchor->num_raid_devs > 0) {
2574 /* Determine if these disks might ever have been
2575 * related. Further disambiguation can only take place
2576 * in load_super_imsm_all
2577 */
2578 __u32 first_family = first->anchor->orig_family_num;
2579 __u32 sec_family = sec->anchor->orig_family_num;
2580
2581 if (memcmp(first->anchor->sig, sec->anchor->sig,
2582 MAX_SIGNATURE_LENGTH) != 0)
2583 return 3;
2584
2585 if (first_family == 0)
2586 first_family = first->anchor->family_num;
2587 if (sec_family == 0)
2588 sec_family = sec->anchor->family_num;
2589
2590 if (first_family != sec_family)
2591 return 3;
2592
2593 }
2594
2595
2596 /* if 'first' is a spare promote it to a populated mpb with sec's
2597 * family number
2598 */
2599 if (first->anchor->num_raid_devs == 0 &&
2600 sec->anchor->num_raid_devs > 0) {
2601 int i;
2602 struct intel_dev *dv;
2603 struct imsm_dev *dev;
2604
2605 /* we need to copy raid device info from sec if an allocation
2606 * fails here we don't associate the spare
2607 */
2608 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2609 dv = malloc(sizeof(*dv));
2610 if (!dv)
2611 break;
2612 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2613 if (!dev) {
2614 free(dv);
2615 break;
2616 }
2617 dv->dev = dev;
2618 dv->index = i;
2619 dv->next = first->devlist;
2620 first->devlist = dv;
2621 }
2622 if (i < sec->anchor->num_raid_devs) {
2623 /* allocation failure */
2624 free_devlist(first);
2625 fprintf(stderr, "imsm: failed to associate spare\n");
2626 return 3;
2627 }
2628 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2629 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2630 first->anchor->family_num = sec->anchor->family_num;
2631 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2632 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2633 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2634 }
2635
2636 return 0;
2637 }
2638
2639 static void fd2devname(int fd, char *name)
2640 {
2641 struct stat st;
2642 char path[256];
2643 char dname[PATH_MAX];
2644 char *nm;
2645 int rv;
2646
2647 name[0] = '\0';
2648 if (fstat(fd, &st) != 0)
2649 return;
2650 sprintf(path, "/sys/dev/block/%d:%d",
2651 major(st.st_rdev), minor(st.st_rdev));
2652
2653 rv = readlink(path, dname, sizeof(dname));
2654 if (rv <= 0)
2655 return;
2656
2657 dname[rv] = '\0';
2658 nm = strrchr(dname, '/');
2659 nm++;
2660 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2661 }
2662
2663 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2664
2665 static int imsm_read_serial(int fd, char *devname,
2666 __u8 serial[MAX_RAID_SERIAL_LEN])
2667 {
2668 unsigned char scsi_serial[255];
2669 int rv;
2670 int rsp_len;
2671 int len;
2672 char *dest;
2673 char *src;
2674 char *rsp_buf;
2675 int i;
2676
2677 memset(scsi_serial, 0, sizeof(scsi_serial));
2678
2679 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2680
2681 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2682 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2683 fd2devname(fd, (char *) serial);
2684 return 0;
2685 }
2686
2687 if (rv != 0) {
2688 if (devname)
2689 fprintf(stderr,
2690 Name ": Failed to retrieve serial for %s\n",
2691 devname);
2692 return rv;
2693 }
2694
2695 rsp_len = scsi_serial[3];
2696 if (!rsp_len) {
2697 if (devname)
2698 fprintf(stderr,
2699 Name ": Failed to retrieve serial for %s\n",
2700 devname);
2701 return 2;
2702 }
2703 rsp_buf = (char *) &scsi_serial[4];
2704
2705 /* trim all whitespace and non-printable characters and convert
2706 * ':' to ';'
2707 */
2708 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2709 src = &rsp_buf[i];
2710 if (*src > 0x20) {
2711 /* ':' is reserved for use in placeholder serial
2712 * numbers for missing disks
2713 */
2714 if (*src == ':')
2715 *dest++ = ';';
2716 else
2717 *dest++ = *src;
2718 }
2719 }
2720 len = dest - rsp_buf;
2721 dest = rsp_buf;
2722
2723 /* truncate leading characters */
2724 if (len > MAX_RAID_SERIAL_LEN) {
2725 dest += len - MAX_RAID_SERIAL_LEN;
2726 len = MAX_RAID_SERIAL_LEN;
2727 }
2728
2729 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2730 memcpy(serial, dest, len);
2731
2732 return 0;
2733 }
2734
2735 static int serialcmp(__u8 *s1, __u8 *s2)
2736 {
2737 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2738 }
2739
2740 static void serialcpy(__u8 *dest, __u8 *src)
2741 {
2742 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2743 }
2744
2745 #ifndef MDASSEMBLE
2746 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2747 {
2748 struct dl *dl;
2749
2750 for (dl = super->disks; dl; dl = dl->next)
2751 if (serialcmp(dl->serial, serial) == 0)
2752 break;
2753
2754 return dl;
2755 }
2756 #endif
2757
2758 static struct imsm_disk *
2759 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2760 {
2761 int i;
2762
2763 for (i = 0; i < mpb->num_disks; i++) {
2764 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2765
2766 if (serialcmp(disk->serial, serial) == 0) {
2767 if (idx)
2768 *idx = i;
2769 return disk;
2770 }
2771 }
2772
2773 return NULL;
2774 }
2775
2776 static int
2777 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2778 {
2779 struct imsm_disk *disk;
2780 struct dl *dl;
2781 struct stat stb;
2782 int rv;
2783 char name[40];
2784 __u8 serial[MAX_RAID_SERIAL_LEN];
2785
2786 rv = imsm_read_serial(fd, devname, serial);
2787
2788 if (rv != 0)
2789 return 2;
2790
2791 dl = calloc(1, sizeof(*dl));
2792 if (!dl) {
2793 if (devname)
2794 fprintf(stderr,
2795 Name ": failed to allocate disk buffer for %s\n",
2796 devname);
2797 return 2;
2798 }
2799
2800 fstat(fd, &stb);
2801 dl->major = major(stb.st_rdev);
2802 dl->minor = minor(stb.st_rdev);
2803 dl->next = super->disks;
2804 dl->fd = keep_fd ? fd : -1;
2805 assert(super->disks == NULL);
2806 super->disks = dl;
2807 serialcpy(dl->serial, serial);
2808 dl->index = -2;
2809 dl->e = NULL;
2810 fd2devname(fd, name);
2811 if (devname)
2812 dl->devname = strdup(devname);
2813 else
2814 dl->devname = strdup(name);
2815
2816 /* look up this disk's index in the current anchor */
2817 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2818 if (disk) {
2819 dl->disk = *disk;
2820 /* only set index on disks that are a member of a
2821 * populated contianer, i.e. one with raid_devs
2822 */
2823 if (is_failed(&dl->disk))
2824 dl->index = -2;
2825 else if (is_spare(&dl->disk))
2826 dl->index = -1;
2827 }
2828
2829 return 0;
2830 }
2831
2832 #ifndef MDASSEMBLE
2833 /* When migrating map0 contains the 'destination' state while map1
2834 * contains the current state. When not migrating map0 contains the
2835 * current state. This routine assumes that map[0].map_state is set to
2836 * the current array state before being called.
2837 *
2838 * Migration is indicated by one of the following states
2839 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
2840 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
2841 * map1state=unitialized)
2842 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
2843 * map1state=normal)
2844 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
2845 * map1state=degraded)
2846 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
2847 * map1state=normal)
2848 */
2849 static void migrate(struct imsm_dev *dev, struct intel_super *super,
2850 __u8 to_state, int migr_type)
2851 {
2852 struct imsm_map *dest;
2853 struct imsm_map *src = get_imsm_map(dev, 0);
2854
2855 dev->vol.migr_state = 1;
2856 set_migr_type(dev, migr_type);
2857 dev->vol.curr_migr_unit = 0;
2858 dest = get_imsm_map(dev, 1);
2859
2860 /* duplicate and then set the target end state in map[0] */
2861 memcpy(dest, src, sizeof_imsm_map(src));
2862 if ((migr_type == MIGR_REBUILD) ||
2863 (migr_type == MIGR_GEN_MIGR)) {
2864 __u32 ord;
2865 int i;
2866
2867 for (i = 0; i < src->num_members; i++) {
2868 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2869 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2870 }
2871 }
2872
2873 if (migr_type == MIGR_GEN_MIGR)
2874 /* Clear migration record */
2875 memset(super->migr_rec, 0, sizeof(struct migr_record));
2876
2877 src->map_state = to_state;
2878 }
2879
2880 static void end_migration(struct imsm_dev *dev, __u8 map_state)
2881 {
2882 struct imsm_map *map = get_imsm_map(dev, 0);
2883 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
2884 int i, j;
2885
2886 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2887 * completed in the last migration.
2888 *
2889 * FIXME add support for raid-level-migration
2890 */
2891 for (i = 0; i < prev->num_members; i++)
2892 for (j = 0; j < map->num_members; j++)
2893 /* during online capacity expansion
2894 * disks position can be changed if takeover is used
2895 */
2896 if (ord_to_idx(map->disk_ord_tbl[j]) ==
2897 ord_to_idx(prev->disk_ord_tbl[i])) {
2898 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
2899 break;
2900 }
2901
2902 dev->vol.migr_state = 0;
2903 dev->vol.migr_type = 0;
2904 dev->vol.curr_migr_unit = 0;
2905 map->map_state = map_state;
2906 }
2907 #endif
2908
2909 static int parse_raid_devices(struct intel_super *super)
2910 {
2911 int i;
2912 struct imsm_dev *dev_new;
2913 size_t len, len_migr;
2914 size_t max_len = 0;
2915 size_t space_needed = 0;
2916 struct imsm_super *mpb = super->anchor;
2917
2918 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2919 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2920 struct intel_dev *dv;
2921
2922 len = sizeof_imsm_dev(dev_iter, 0);
2923 len_migr = sizeof_imsm_dev(dev_iter, 1);
2924 if (len_migr > len)
2925 space_needed += len_migr - len;
2926
2927 dv = malloc(sizeof(*dv));
2928 if (!dv)
2929 return 1;
2930 if (max_len < len_migr)
2931 max_len = len_migr;
2932 if (max_len > len_migr)
2933 space_needed += max_len - len_migr;
2934 dev_new = malloc(max_len);
2935 if (!dev_new) {
2936 free(dv);
2937 return 1;
2938 }
2939 imsm_copy_dev(dev_new, dev_iter);
2940 dv->dev = dev_new;
2941 dv->index = i;
2942 dv->next = super->devlist;
2943 super->devlist = dv;
2944 }
2945
2946 /* ensure that super->buf is large enough when all raid devices
2947 * are migrating
2948 */
2949 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2950 void *buf;
2951
2952 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2953 if (posix_memalign(&buf, 512, len) != 0)
2954 return 1;
2955
2956 memcpy(buf, super->buf, super->len);
2957 memset(buf + super->len, 0, len - super->len);
2958 free(super->buf);
2959 super->buf = buf;
2960 super->len = len;
2961 }
2962
2963 return 0;
2964 }
2965
2966 /* retrieve a pointer to the bbm log which starts after all raid devices */
2967 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2968 {
2969 void *ptr = NULL;
2970
2971 if (__le32_to_cpu(mpb->bbm_log_size)) {
2972 ptr = mpb;
2973 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2974 }
2975
2976 return ptr;
2977 }
2978
2979 /*******************************************************************************
2980 * Function: check_mpb_migr_compatibility
2981 * Description: Function checks for unsupported migration features:
2982 * - migration optimization area (pba_of_lba0)
2983 * - descending reshape (ascending_migr)
2984 * Parameters:
2985 * super : imsm metadata information
2986 * Returns:
2987 * 0 : migration is compatible
2988 * -1 : migration is not compatible
2989 ******************************************************************************/
2990 int check_mpb_migr_compatibility(struct intel_super *super)
2991 {
2992 struct imsm_map *map0, *map1;
2993 struct migr_record *migr_rec = super->migr_rec;
2994 int i;
2995
2996 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2997 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2998
2999 if (dev_iter &&
3000 dev_iter->vol.migr_state == 1 &&
3001 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3002 /* This device is migrating */
3003 map0 = get_imsm_map(dev_iter, 0);
3004 map1 = get_imsm_map(dev_iter, 1);
3005 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3006 /* migration optimization area was used */
3007 return -1;
3008 if (migr_rec->ascending_migr == 0
3009 && migr_rec->dest_depth_per_unit > 0)
3010 /* descending reshape not supported yet */
3011 return -1;
3012 }
3013 }
3014 return 0;
3015 }
3016
3017 static void __free_imsm(struct intel_super *super, int free_disks);
3018
3019 /* load_imsm_mpb - read matrix metadata
3020 * allocates super->mpb to be freed by free_imsm
3021 */
3022 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3023 {
3024 unsigned long long dsize;
3025 unsigned long long sectors;
3026 struct stat;
3027 struct imsm_super *anchor;
3028 __u32 check_sum;
3029
3030 get_dev_size(fd, NULL, &dsize);
3031 if (dsize < 1024) {
3032 if (devname)
3033 fprintf(stderr,
3034 Name ": %s: device to small for imsm\n",
3035 devname);
3036 return 1;
3037 }
3038
3039 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3040 if (devname)
3041 fprintf(stderr, Name
3042 ": Cannot seek to anchor block on %s: %s\n",
3043 devname, strerror(errno));
3044 return 1;
3045 }
3046
3047 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3048 if (devname)
3049 fprintf(stderr,
3050 Name ": Failed to allocate imsm anchor buffer"
3051 " on %s\n", devname);
3052 return 1;
3053 }
3054 if (read(fd, anchor, 512) != 512) {
3055 if (devname)
3056 fprintf(stderr,
3057 Name ": Cannot read anchor block on %s: %s\n",
3058 devname, strerror(errno));
3059 free(anchor);
3060 return 1;
3061 }
3062
3063 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3064 if (devname)
3065 fprintf(stderr,
3066 Name ": no IMSM anchor on %s\n", devname);
3067 free(anchor);
3068 return 2;
3069 }
3070
3071 __free_imsm(super, 0);
3072 /* reload capability and hba */
3073
3074 /* capability and hba must be updated with new super allocation */
3075 find_intel_hba_capability(fd, super, devname);
3076 super->len = ROUND_UP(anchor->mpb_size, 512);
3077 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3078 if (devname)
3079 fprintf(stderr,
3080 Name ": unable to allocate %zu byte mpb buffer\n",
3081 super->len);
3082 free(anchor);
3083 return 2;
3084 }
3085 memcpy(super->buf, anchor, 512);
3086
3087 sectors = mpb_sectors(anchor) - 1;
3088 free(anchor);
3089
3090 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3091 fprintf(stderr, Name
3092 ": %s could not allocate migr_rec buffer\n", __func__);
3093 free(super->buf);
3094 return 2;
3095 }
3096
3097 if (!sectors) {
3098 check_sum = __gen_imsm_checksum(super->anchor);
3099 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3100 if (devname)
3101 fprintf(stderr,
3102 Name ": IMSM checksum %x != %x on %s\n",
3103 check_sum,
3104 __le32_to_cpu(super->anchor->check_sum),
3105 devname);
3106 return 2;
3107 }
3108
3109 return 0;
3110 }
3111
3112 /* read the extended mpb */
3113 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3114 if (devname)
3115 fprintf(stderr,
3116 Name ": Cannot seek to extended mpb on %s: %s\n",
3117 devname, strerror(errno));
3118 return 1;
3119 }
3120
3121 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3122 if (devname)
3123 fprintf(stderr,
3124 Name ": Cannot read extended mpb on %s: %s\n",
3125 devname, strerror(errno));
3126 return 2;
3127 }
3128
3129 check_sum = __gen_imsm_checksum(super->anchor);
3130 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3131 if (devname)
3132 fprintf(stderr,
3133 Name ": IMSM checksum %x != %x on %s\n",
3134 check_sum, __le32_to_cpu(super->anchor->check_sum),
3135 devname);
3136 return 3;
3137 }
3138
3139 /* FIXME the BBM log is disk specific so we cannot use this global
3140 * buffer for all disks. Ok for now since we only look at the global
3141 * bbm_log_size parameter to gate assembly
3142 */
3143 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3144
3145 return 0;
3146 }
3147
3148 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3149
3150 static int
3151 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3152 {
3153 int err;
3154
3155 err = load_imsm_mpb(fd, super, devname);
3156 if (err)
3157 return err;
3158 err = load_imsm_disk(fd, super, devname, keep_fd);
3159 if (err)
3160 return err;
3161 err = parse_raid_devices(super);
3162
3163 return err;
3164 }
3165
3166 static void __free_imsm_disk(struct dl *d)
3167 {
3168 if (d->fd >= 0)
3169 close(d->fd);
3170 if (d->devname)
3171 free(d->devname);
3172 if (d->e)
3173 free(d->e);
3174 free(d);
3175
3176 }
3177
3178 static void free_imsm_disks(struct intel_super *super)
3179 {
3180 struct dl *d;
3181
3182 while (super->disks) {
3183 d = super->disks;
3184 super->disks = d->next;
3185 __free_imsm_disk(d);
3186 }
3187 while (super->disk_mgmt_list) {
3188 d = super->disk_mgmt_list;
3189 super->disk_mgmt_list = d->next;
3190 __free_imsm_disk(d);
3191 }
3192 while (super->missing) {
3193 d = super->missing;
3194 super->missing = d->next;
3195 __free_imsm_disk(d);
3196 }
3197
3198 }
3199
3200 /* free all the pieces hanging off of a super pointer */
3201 static void __free_imsm(struct intel_super *super, int free_disks)
3202 {
3203 struct intel_hba *elem, *next;
3204
3205 if (super->buf) {
3206 free(super->buf);
3207 super->buf = NULL;
3208 }
3209 /* unlink capability description */
3210 super->orom = NULL;
3211 if (super->migr_rec_buf) {
3212 free(super->migr_rec_buf);
3213 super->migr_rec_buf = NULL;
3214 }
3215 if (free_disks)
3216 free_imsm_disks(super);
3217 free_devlist(super);
3218 elem = super->hba;
3219 while (elem) {
3220 if (elem->path)
3221 free((void *)elem->path);
3222 next = elem->next;
3223 free(elem);
3224 elem = next;
3225 }
3226 super->hba = NULL;
3227 }
3228
3229 static void free_imsm(struct intel_super *super)
3230 {
3231 __free_imsm(super, 1);
3232 free(super);
3233 }
3234
3235 static void free_super_imsm(struct supertype *st)
3236 {
3237 struct intel_super *super = st->sb;
3238
3239 if (!super)
3240 return;
3241
3242 free_imsm(super);
3243 st->sb = NULL;
3244 }
3245
3246 static struct intel_super *alloc_super(void)
3247 {
3248 struct intel_super *super = malloc(sizeof(*super));
3249
3250 if (super) {
3251 memset(super, 0, sizeof(*super));
3252 super->current_vol = -1;
3253 super->create_offset = ~((__u32 ) 0);
3254 }
3255 return super;
3256 }
3257
3258 /*
3259 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3260 */
3261 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3262 {
3263 struct sys_dev *hba_name;
3264 int rv = 0;
3265
3266 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3267 super->orom = NULL;
3268 super->hba = NULL;
3269 return 0;
3270 }
3271 hba_name = find_disk_attached_hba(fd, NULL);
3272 if (!hba_name) {
3273 if (devname)
3274 fprintf(stderr,
3275 Name ": %s is not attached to Intel(R) RAID controller.\n",
3276 devname);
3277 return 1;
3278 }
3279 rv = attach_hba_to_super(super, hba_name);
3280 if (rv == 2) {
3281 if (devname) {
3282 struct intel_hba *hba = super->hba;
3283
3284 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3285 "controller (%s),\n"
3286 " but the container is assigned to Intel(R) "
3287 "%s RAID controller (",
3288 devname,
3289 hba_name->path,
3290 hba_name->pci_id ? : "Err!",
3291 get_sys_dev_type(hba_name->type));
3292
3293 while (hba) {
3294 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3295 if (hba->next)
3296 fprintf(stderr, ", ");
3297 hba = hba->next;
3298 }
3299
3300 fprintf(stderr, ").\n"
3301 " Mixing devices attached to different controllers "
3302 "is not allowed.\n");
3303 }
3304 free_sys_dev(&hba_name);
3305 return 2;
3306 }
3307 super->orom = find_imsm_capability(hba_name->type);
3308 free_sys_dev(&hba_name);
3309 if (!super->orom)
3310 return 3;
3311 return 0;
3312 }
3313
3314 #ifndef MDASSEMBLE
3315 /* find_missing - helper routine for load_super_imsm_all that identifies
3316 * disks that have disappeared from the system. This routine relies on
3317 * the mpb being uptodate, which it is at load time.
3318 */
3319 static int find_missing(struct intel_super *super)
3320 {
3321 int i;
3322 struct imsm_super *mpb = super->anchor;
3323 struct dl *dl;
3324 struct imsm_disk *disk;
3325
3326 for (i = 0; i < mpb->num_disks; i++) {
3327 disk = __get_imsm_disk(mpb, i);
3328 dl = serial_to_dl(disk->serial, super);
3329 if (dl)
3330 continue;
3331
3332 dl = malloc(sizeof(*dl));
3333 if (!dl)
3334 return 1;
3335 dl->major = 0;
3336 dl->minor = 0;
3337 dl->fd = -1;
3338 dl->devname = strdup("missing");
3339 dl->index = i;
3340 serialcpy(dl->serial, disk->serial);
3341 dl->disk = *disk;
3342 dl->e = NULL;
3343 dl->next = super->missing;
3344 super->missing = dl;
3345 }
3346
3347 return 0;
3348 }
3349
3350 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3351 {
3352 struct intel_disk *idisk = disk_list;
3353
3354 while (idisk) {
3355 if (serialcmp(idisk->disk.serial, serial) == 0)
3356 break;
3357 idisk = idisk->next;
3358 }
3359
3360 return idisk;
3361 }
3362
3363 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3364 struct intel_super *super,
3365 struct intel_disk **disk_list)
3366 {
3367 struct imsm_disk *d = &super->disks->disk;
3368 struct imsm_super *mpb = super->anchor;
3369 int i, j;
3370
3371 for (i = 0; i < tbl_size; i++) {
3372 struct imsm_super *tbl_mpb = table[i]->anchor;
3373 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3374
3375 if (tbl_mpb->family_num == mpb->family_num) {
3376 if (tbl_mpb->check_sum == mpb->check_sum) {
3377 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3378 __func__, super->disks->major,
3379 super->disks->minor,
3380 table[i]->disks->major,
3381 table[i]->disks->minor);
3382 break;
3383 }
3384
3385 if (((is_configured(d) && !is_configured(tbl_d)) ||
3386 is_configured(d) == is_configured(tbl_d)) &&
3387 tbl_mpb->generation_num < mpb->generation_num) {
3388 /* current version of the mpb is a
3389 * better candidate than the one in
3390 * super_table, but copy over "cross
3391 * generational" status
3392 */
3393 struct intel_disk *idisk;
3394
3395 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3396 __func__, super->disks->major,
3397 super->disks->minor,
3398 table[i]->disks->major,
3399 table[i]->disks->minor);
3400
3401 idisk = disk_list_get(tbl_d->serial, *disk_list);
3402 if (idisk && is_failed(&idisk->disk))
3403 tbl_d->status |= FAILED_DISK;
3404 break;
3405 } else {
3406 struct intel_disk *idisk;
3407 struct imsm_disk *disk;
3408
3409 /* tbl_mpb is more up to date, but copy
3410 * over cross generational status before
3411 * returning
3412 */
3413 disk = __serial_to_disk(d->serial, mpb, NULL);
3414 if (disk && is_failed(disk))
3415 d->status |= FAILED_DISK;
3416
3417 idisk = disk_list_get(d->serial, *disk_list);
3418 if (idisk) {
3419 idisk->owner = i;
3420 if (disk && is_configured(disk))
3421 idisk->disk.status |= CONFIGURED_DISK;
3422 }
3423
3424 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3425 __func__, super->disks->major,
3426 super->disks->minor,
3427 table[i]->disks->major,
3428 table[i]->disks->minor);
3429
3430 return tbl_size;
3431 }
3432 }
3433 }
3434
3435 if (i >= tbl_size)
3436 table[tbl_size++] = super;
3437 else
3438 table[i] = super;
3439
3440 /* update/extend the merged list of imsm_disk records */
3441 for (j = 0; j < mpb->num_disks; j++) {
3442 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3443 struct intel_disk *idisk;
3444
3445 idisk = disk_list_get(disk->serial, *disk_list);
3446 if (idisk) {
3447 idisk->disk.status |= disk->status;
3448 if (is_configured(&idisk->disk) ||
3449 is_failed(&idisk->disk))
3450 idisk->disk.status &= ~(SPARE_DISK);
3451 } else {
3452 idisk = calloc(1, sizeof(*idisk));
3453 if (!idisk)
3454 return -1;
3455 idisk->owner = IMSM_UNKNOWN_OWNER;
3456 idisk->disk = *disk;
3457 idisk->next = *disk_list;
3458 *disk_list = idisk;
3459 }
3460
3461 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3462 idisk->owner = i;
3463 }
3464
3465 return tbl_size;
3466 }
3467
3468 static struct intel_super *
3469 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3470 const int owner)
3471 {
3472 struct imsm_super *mpb = super->anchor;
3473 int ok_count = 0;
3474 int i;
3475
3476 for (i = 0; i < mpb->num_disks; i++) {
3477 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3478 struct intel_disk *idisk;
3479
3480 idisk = disk_list_get(disk->serial, disk_list);
3481 if (idisk) {
3482 if (idisk->owner == owner ||
3483 idisk->owner == IMSM_UNKNOWN_OWNER)
3484 ok_count++;
3485 else
3486 dprintf("%s: '%.16s' owner %d != %d\n",
3487 __func__, disk->serial, idisk->owner,
3488 owner);
3489 } else {
3490 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3491 __func__, __le32_to_cpu(mpb->family_num), i,
3492 disk->serial);
3493 break;
3494 }
3495 }
3496
3497 if (ok_count == mpb->num_disks)
3498 return super;
3499 return NULL;
3500 }
3501
3502 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3503 {
3504 struct intel_super *s;
3505
3506 for (s = super_list; s; s = s->next) {
3507 if (family_num != s->anchor->family_num)
3508 continue;
3509 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3510 __le32_to_cpu(family_num), s->disks->devname);
3511 }
3512 }
3513
3514 static struct intel_super *
3515 imsm_thunderdome(struct intel_super **super_list, int len)
3516 {
3517 struct intel_super *super_table[len];
3518 struct intel_disk *disk_list = NULL;
3519 struct intel_super *champion, *spare;
3520 struct intel_super *s, **del;
3521 int tbl_size = 0;
3522 int conflict;
3523 int i;
3524
3525 memset(super_table, 0, sizeof(super_table));
3526 for (s = *super_list; s; s = s->next)
3527 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3528
3529 for (i = 0; i < tbl_size; i++) {
3530 struct imsm_disk *d;
3531 struct intel_disk *idisk;
3532 struct imsm_super *mpb = super_table[i]->anchor;
3533
3534 s = super_table[i];
3535 d = &s->disks->disk;
3536
3537 /* 'd' must appear in merged disk list for its
3538 * configuration to be valid
3539 */
3540 idisk = disk_list_get(d->serial, disk_list);
3541 if (idisk && idisk->owner == i)
3542 s = validate_members(s, disk_list, i);
3543 else
3544 s = NULL;
3545
3546 if (!s)
3547 dprintf("%s: marking family: %#x from %d:%d offline\n",
3548 __func__, mpb->family_num,
3549 super_table[i]->disks->major,
3550 super_table[i]->disks->minor);
3551 super_table[i] = s;
3552 }
3553
3554 /* This is where the mdadm implementation differs from the Windows
3555 * driver which has no strict concept of a container. We can only
3556 * assemble one family from a container, so when returning a prodigal
3557 * array member to this system the code will not be able to disambiguate
3558 * the container contents that should be assembled ("foreign" versus
3559 * "local"). It requires user intervention to set the orig_family_num
3560 * to a new value to establish a new container. The Windows driver in
3561 * this situation fixes up the volume name in place and manages the
3562 * foreign array as an independent entity.
3563 */
3564 s = NULL;
3565 spare = NULL;
3566 conflict = 0;
3567 for (i = 0; i < tbl_size; i++) {
3568 struct intel_super *tbl_ent = super_table[i];
3569 int is_spare = 0;
3570
3571 if (!tbl_ent)
3572 continue;
3573
3574 if (tbl_ent->anchor->num_raid_devs == 0) {
3575 spare = tbl_ent;
3576 is_spare = 1;
3577 }
3578
3579 if (s && !is_spare) {
3580 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3581 conflict++;
3582 } else if (!s && !is_spare)
3583 s = tbl_ent;
3584 }
3585
3586 if (!s)
3587 s = spare;
3588 if (!s) {
3589 champion = NULL;
3590 goto out;
3591 }
3592 champion = s;
3593
3594 if (conflict)
3595 fprintf(stderr, "Chose family %#x on '%s', "
3596 "assemble conflicts to new container with '--update=uuid'\n",
3597 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3598
3599 /* collect all dl's onto 'champion', and update them to
3600 * champion's version of the status
3601 */
3602 for (s = *super_list; s; s = s->next) {
3603 struct imsm_super *mpb = champion->anchor;
3604 struct dl *dl = s->disks;
3605
3606 if (s == champion)
3607 continue;
3608
3609 for (i = 0; i < mpb->num_disks; i++) {
3610 struct imsm_disk *disk;
3611
3612 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3613 if (disk) {
3614 dl->disk = *disk;
3615 /* only set index on disks that are a member of
3616 * a populated contianer, i.e. one with
3617 * raid_devs
3618 */
3619 if (is_failed(&dl->disk))
3620 dl->index = -2;
3621 else if (is_spare(&dl->disk))
3622 dl->index = -1;
3623 break;
3624 }
3625 }
3626
3627 if (i >= mpb->num_disks) {
3628 struct intel_disk *idisk;
3629
3630 idisk = disk_list_get(dl->serial, disk_list);
3631 if (idisk && is_spare(&idisk->disk) &&
3632 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3633 dl->index = -1;
3634 else {
3635 dl->index = -2;
3636 continue;
3637 }
3638 }
3639
3640 dl->next = champion->disks;
3641 champion->disks = dl;
3642 s->disks = NULL;
3643 }
3644
3645 /* delete 'champion' from super_list */
3646 for (del = super_list; *del; ) {
3647 if (*del == champion) {
3648 *del = (*del)->next;
3649 break;
3650 } else
3651 del = &(*del)->next;
3652 }
3653 champion->next = NULL;
3654
3655 out:
3656 while (disk_list) {
3657 struct intel_disk *idisk = disk_list;
3658
3659 disk_list = disk_list->next;
3660 free(idisk);
3661 }
3662
3663 return champion;
3664 }
3665
3666 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3667 char *devname)
3668 {
3669 struct mdinfo *sra;
3670 struct intel_super *super_list = NULL;
3671 struct intel_super *super = NULL;
3672 int devnum = fd2devnum(fd);
3673 struct mdinfo *sd;
3674 int retry;
3675 int err = 0;
3676 int i;
3677
3678 /* check if 'fd' an opened container */
3679 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3680 if (!sra)
3681 return 1;
3682
3683 if (sra->array.major_version != -1 ||
3684 sra->array.minor_version != -2 ||
3685 strcmp(sra->text_version, "imsm") != 0) {
3686 err = 1;
3687 goto error;
3688 }
3689 /* load all mpbs */
3690 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3691 struct intel_super *s = alloc_super();
3692 char nm[32];
3693 int dfd;
3694 int rv;
3695
3696 err = 1;
3697 if (!s)
3698 goto error;
3699 s->next = super_list;
3700 super_list = s;
3701
3702 err = 2;
3703 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3704 dfd = dev_open(nm, O_RDWR);
3705 if (dfd < 0)
3706 goto error;
3707
3708 rv = find_intel_hba_capability(dfd, s, devname);
3709 /* no orom/efi or non-intel hba of the disk */
3710 if (rv != 0)
3711 goto error;
3712
3713 err = load_and_parse_mpb(dfd, s, NULL, 1);
3714
3715 /* retry the load if we might have raced against mdmon */
3716 if (err == 3 && mdmon_running(devnum))
3717 for (retry = 0; retry < 3; retry++) {
3718 usleep(3000);
3719 err = load_and_parse_mpb(dfd, s, NULL, 1);
3720 if (err != 3)
3721 break;
3722 }
3723 if (err)
3724 goto error;
3725 }
3726
3727 /* all mpbs enter, maybe one leaves */
3728 super = imsm_thunderdome(&super_list, i);
3729 if (!super) {
3730 err = 1;
3731 goto error;
3732 }
3733
3734 if (find_missing(super) != 0) {
3735 free_imsm(super);
3736 err = 2;
3737 goto error;
3738 }
3739
3740 /* load migration record */
3741 err = load_imsm_migr_rec(super, NULL);
3742 if (err) {
3743 err = 4;
3744 goto error;
3745 }
3746
3747 /* Check migration compatibility */
3748 if (check_mpb_migr_compatibility(super) != 0) {
3749 fprintf(stderr, Name ": Unsupported migration detected");
3750 if (devname)
3751 fprintf(stderr, " on %s\n", devname);
3752 else
3753 fprintf(stderr, " (IMSM).\n");
3754
3755 err = 5;
3756 goto error;
3757 }
3758
3759 err = 0;
3760
3761 error:
3762 while (super_list) {
3763 struct intel_super *s = super_list;
3764
3765 super_list = super_list->next;
3766 free_imsm(s);
3767 }
3768 sysfs_free(sra);
3769
3770 if (err)
3771 return err;
3772
3773 *sbp = super;
3774 st->container_dev = devnum;
3775 if (err == 0 && st->ss == NULL) {
3776 st->ss = &super_imsm;
3777 st->minor_version = 0;
3778 st->max_devs = IMSM_MAX_DEVICES;
3779 }
3780 return 0;
3781 }
3782
3783 static int load_container_imsm(struct supertype *st, int fd, char *devname)
3784 {
3785 return load_super_imsm_all(st, fd, &st->sb, devname);
3786 }
3787 #endif
3788
3789 static int load_super_imsm(struct supertype *st, int fd, char *devname)
3790 {
3791 struct intel_super *super;
3792 int rv;
3793
3794 if (test_partition(fd))
3795 /* IMSM not allowed on partitions */
3796 return 1;
3797
3798 free_super_imsm(st);
3799
3800 super = alloc_super();
3801 if (!super) {
3802 fprintf(stderr,
3803 Name ": malloc of %zu failed.\n",
3804 sizeof(*super));
3805 return 1;
3806 }
3807 /* Load hba and capabilities if they exist.
3808 * But do not preclude loading metadata in case capabilities or hba are
3809 * non-compliant and ignore_hw_compat is set.
3810 */
3811 rv = find_intel_hba_capability(fd, super, devname);
3812 /* no orom/efi or non-intel hba of the disk */
3813 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
3814 if (devname)
3815 fprintf(stderr,
3816 Name ": No OROM/EFI properties for %s\n", devname);
3817 free_imsm(super);
3818 return 2;
3819 }
3820 rv = load_and_parse_mpb(fd, super, devname, 0);
3821
3822 if (rv) {
3823 if (devname)
3824 fprintf(stderr,
3825 Name ": Failed to load all information "
3826 "sections on %s\n", devname);
3827 free_imsm(super);
3828 return rv;
3829 }
3830
3831 st->sb = super;
3832 if (st->ss == NULL) {
3833 st->ss = &super_imsm;
3834 st->minor_version = 0;
3835 st->max_devs = IMSM_MAX_DEVICES;
3836 }
3837
3838 /* load migration record */
3839 if (load_imsm_migr_rec(super, NULL) == 0) {
3840 /* Check for unsupported migration features */
3841 if (check_mpb_migr_compatibility(super) != 0) {
3842 fprintf(stderr,
3843 Name ": Unsupported migration detected");
3844 if (devname)
3845 fprintf(stderr, " on %s\n", devname);
3846 else
3847 fprintf(stderr, " (IMSM).\n");
3848 return 3;
3849 }
3850 }
3851
3852 return 0;
3853 }
3854
3855 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3856 {
3857 if (info->level == 1)
3858 return 128;
3859 return info->chunk_size >> 9;
3860 }
3861
3862 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
3863 {
3864 __u32 num_stripes;
3865
3866 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
3867 num_stripes /= num_domains;
3868
3869 return num_stripes;
3870 }
3871
3872 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
3873 {
3874 if (info->level == 1)
3875 return info->size * 2;
3876 else
3877 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
3878 }
3879
3880 static void imsm_update_version_info(struct intel_super *super)
3881 {
3882 /* update the version and attributes */
3883 struct imsm_super *mpb = super->anchor;
3884 char *version;
3885 struct imsm_dev *dev;
3886 struct imsm_map *map;
3887 int i;
3888
3889 for (i = 0; i < mpb->num_raid_devs; i++) {
3890 dev = get_imsm_dev(super, i);
3891 map = get_imsm_map(dev, 0);
3892 if (__le32_to_cpu(dev->size_high) > 0)
3893 mpb->attributes |= MPB_ATTRIB_2TB;
3894
3895 /* FIXME detect when an array spans a port multiplier */
3896 #if 0
3897 mpb->attributes |= MPB_ATTRIB_PM;
3898 #endif
3899
3900 if (mpb->num_raid_devs > 1 ||
3901 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
3902 version = MPB_VERSION_ATTRIBS;
3903 switch (get_imsm_raid_level(map)) {
3904 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
3905 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
3906 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
3907 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
3908 }
3909 } else {
3910 if (map->num_members >= 5)
3911 version = MPB_VERSION_5OR6_DISK_ARRAY;
3912 else if (dev->status == DEV_CLONE_N_GO)
3913 version = MPB_VERSION_CNG;
3914 else if (get_imsm_raid_level(map) == 5)
3915 version = MPB_VERSION_RAID5;
3916 else if (map->num_members >= 3)
3917 version = MPB_VERSION_3OR4_DISK_ARRAY;
3918 else if (get_imsm_raid_level(map) == 1)
3919 version = MPB_VERSION_RAID1;
3920 else
3921 version = MPB_VERSION_RAID0;
3922 }
3923 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
3924 }
3925 }
3926
3927 static int check_name(struct intel_super *super, char *name, int quiet)
3928 {
3929 struct imsm_super *mpb = super->anchor;
3930 char *reason = NULL;
3931 int i;
3932
3933 if (strlen(name) > MAX_RAID_SERIAL_LEN)
3934 reason = "must be 16 characters or less";
3935
3936 for (i = 0; i < mpb->num_raid_devs; i++) {
3937 struct imsm_dev *dev = get_imsm_dev(super, i);
3938
3939 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
3940 reason = "already exists";
3941 break;
3942 }
3943 }
3944
3945 if (reason && !quiet)
3946 fprintf(stderr, Name ": imsm volume name %s\n", reason);
3947
3948 return !reason;
3949 }
3950
3951 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
3952 unsigned long long size, char *name,
3953 char *homehost, int *uuid)
3954 {
3955 /* We are creating a volume inside a pre-existing container.
3956 * so st->sb is already set.
3957 */
3958 struct intel_super *super = st->sb;
3959 struct imsm_super *mpb = super->anchor;
3960 struct intel_dev *dv;
3961 struct imsm_dev *dev;
3962 struct imsm_vol *vol;
3963 struct imsm_map *map;
3964 int idx = mpb->num_raid_devs;
3965 int i;
3966 unsigned long long array_blocks;
3967 size_t size_old, size_new;
3968 __u32 num_data_stripes;
3969
3970 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
3971 fprintf(stderr, Name": This imsm-container already has the "
3972 "maximum of %d volumes\n", super->orom->vpa);
3973 return 0;
3974 }
3975
3976 /* ensure the mpb is large enough for the new data */
3977 size_old = __le32_to_cpu(mpb->mpb_size);
3978 size_new = disks_to_mpb_size(info->nr_disks);
3979 if (size_new > size_old) {
3980 void *mpb_new;
3981 size_t size_round = ROUND_UP(size_new, 512);
3982
3983 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
3984 fprintf(stderr, Name": could not allocate new mpb\n");
3985 return 0;
3986 }
3987 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3988 fprintf(stderr, Name
3989 ": %s could not allocate migr_rec buffer\n",
3990 __func__);
3991 free(super->buf);
3992 free(super);
3993 return 0;
3994 }
3995 memcpy(mpb_new, mpb, size_old);
3996 free(mpb);
3997 mpb = mpb_new;
3998 super->anchor = mpb_new;
3999 mpb->mpb_size = __cpu_to_le32(size_new);
4000 memset(mpb_new + size_old, 0, size_round - size_old);
4001 }
4002 super->current_vol = idx;
4003 /* when creating the first raid device in this container set num_disks
4004 * to zero, i.e. delete this spare and add raid member devices in
4005 * add_to_super_imsm_volume()
4006 */
4007 if (super->current_vol == 0)
4008 mpb->num_disks = 0;
4009
4010 if (!check_name(super, name, 0))
4011 return 0;
4012 dv = malloc(sizeof(*dv));
4013 if (!dv) {
4014 fprintf(stderr, Name ": failed to allocate device list entry\n");
4015 return 0;
4016 }
4017 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4018 if (!dev) {
4019 free(dv);
4020 fprintf(stderr, Name": could not allocate raid device\n");
4021 return 0;
4022 }
4023
4024 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4025 if (info->level == 1)
4026 array_blocks = info_to_blocks_per_member(info);
4027 else
4028 array_blocks = calc_array_size(info->level, info->raid_disks,
4029 info->layout, info->chunk_size,
4030 info->size*2);
4031 /* round array size down to closest MB */
4032 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4033
4034 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4035 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4036 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4037 vol = &dev->vol;
4038 vol->migr_state = 0;
4039 set_migr_type(dev, MIGR_INIT);
4040 vol->dirty = 0;
4041 vol->curr_migr_unit = 0;
4042 map = get_imsm_map(dev, 0);
4043 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
4044 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
4045 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4046 map->failed_disk_num = ~0;
4047 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
4048 IMSM_T_STATE_NORMAL;
4049 map->ddf = 1;
4050
4051 if (info->level == 1 && info->raid_disks > 2) {
4052 free(dev);
4053 free(dv);
4054 fprintf(stderr, Name": imsm does not support more than 2 disks"
4055 "in a raid1 volume\n");
4056 return 0;
4057 }
4058
4059 map->raid_level = info->level;
4060 if (info->level == 10) {
4061 map->raid_level = 1;
4062 map->num_domains = info->raid_disks / 2;
4063 } else if (info->level == 1)
4064 map->num_domains = info->raid_disks;
4065 else
4066 map->num_domains = 1;
4067
4068 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4069 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
4070
4071 map->num_members = info->raid_disks;
4072 for (i = 0; i < map->num_members; i++) {
4073 /* initialized in add_to_super */
4074 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4075 }
4076 mpb->num_raid_devs++;
4077
4078 dv->dev = dev;
4079 dv->index = super->current_vol;
4080 dv->next = super->devlist;
4081 super->devlist = dv;
4082
4083 imsm_update_version_info(super);
4084
4085 return 1;
4086 }
4087
4088 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4089 unsigned long long size, char *name,
4090 char *homehost, int *uuid)
4091 {
4092 /* This is primarily called by Create when creating a new array.
4093 * We will then get add_to_super called for each component, and then
4094 * write_init_super called to write it out to each device.
4095 * For IMSM, Create can create on fresh devices or on a pre-existing
4096 * array.
4097 * To create on a pre-existing array a different method will be called.
4098 * This one is just for fresh drives.
4099 */
4100 struct intel_super *super;
4101 struct imsm_super *mpb;
4102 size_t mpb_size;
4103 char *version;
4104
4105 if (st->sb)
4106 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4107
4108 if (info)
4109 mpb_size = disks_to_mpb_size(info->nr_disks);
4110 else
4111 mpb_size = 512;
4112
4113 super = alloc_super();
4114 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4115 free(super);
4116 super = NULL;
4117 }
4118 if (!super) {
4119 fprintf(stderr, Name
4120 ": %s could not allocate superblock\n", __func__);
4121 return 0;
4122 }
4123 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4124 fprintf(stderr, Name
4125 ": %s could not allocate migr_rec buffer\n", __func__);
4126 free(super->buf);
4127 free(super);
4128 return 0;
4129 }
4130 memset(super->buf, 0, mpb_size);
4131 mpb = super->buf;
4132 mpb->mpb_size = __cpu_to_le32(mpb_size);
4133 st->sb = super;
4134
4135 if (info == NULL) {
4136 /* zeroing superblock */
4137 return 0;
4138 }
4139
4140 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4141
4142 version = (char *) mpb->sig;
4143 strcpy(version, MPB_SIGNATURE);
4144 version += strlen(MPB_SIGNATURE);
4145 strcpy(version, MPB_VERSION_RAID0);
4146
4147 return 1;
4148 }
4149
4150 #ifndef MDASSEMBLE
4151 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4152 int fd, char *devname)
4153 {
4154 struct intel_super *super = st->sb;
4155 struct imsm_super *mpb = super->anchor;
4156 struct dl *dl;
4157 struct imsm_dev *dev;
4158 struct imsm_map *map;
4159 int slot;
4160
4161 dev = get_imsm_dev(super, super->current_vol);
4162 map = get_imsm_map(dev, 0);
4163
4164 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4165 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4166 devname);
4167 return 1;
4168 }
4169
4170 if (fd == -1) {
4171 /* we're doing autolayout so grab the pre-marked (in
4172 * validate_geometry) raid_disk
4173 */
4174 for (dl = super->disks; dl; dl = dl->next)
4175 if (dl->raiddisk == dk->raid_disk)
4176 break;
4177 } else {
4178 for (dl = super->disks; dl ; dl = dl->next)
4179 if (dl->major == dk->major &&
4180 dl->minor == dk->minor)
4181 break;
4182 }
4183
4184 if (!dl) {
4185 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4186 return 1;
4187 }
4188
4189 /* add a pristine spare to the metadata */
4190 if (dl->index < 0) {
4191 dl->index = super->anchor->num_disks;
4192 super->anchor->num_disks++;
4193 }
4194 /* Check the device has not already been added */
4195 slot = get_imsm_disk_slot(map, dl->index);
4196 if (slot >= 0 &&
4197 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4198 fprintf(stderr, Name ": %s has been included in this array twice\n",
4199 devname);
4200 return 1;
4201 }
4202 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
4203 dl->disk.status = CONFIGURED_DISK;
4204
4205 /* if we are creating the first raid device update the family number */
4206 if (super->current_vol == 0) {
4207 __u32 sum;
4208 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4209 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
4210
4211 if (!_dev || !_disk) {
4212 fprintf(stderr, Name ": BUG mpb setup error\n");
4213 return 1;
4214 }
4215 *_dev = *dev;
4216 *_disk = dl->disk;
4217 sum = random32();
4218 sum += __gen_imsm_checksum(mpb);
4219 mpb->family_num = __cpu_to_le32(sum);
4220 mpb->orig_family_num = mpb->family_num;
4221 }
4222
4223 return 0;
4224 }
4225
4226
4227 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4228 int fd, char *devname)
4229 {
4230 struct intel_super *super = st->sb;
4231 struct dl *dd;
4232 unsigned long long size;
4233 __u32 id;
4234 int rv;
4235 struct stat stb;
4236
4237 /* If we are on an RAID enabled platform check that the disk is
4238 * attached to the raid controller.
4239 * We do not need to test disks attachment for container based additions,
4240 * they shall be already tested when container was created/assembled.
4241 */
4242 rv = find_intel_hba_capability(fd, super, devname);
4243 /* no orom/efi or non-intel hba of the disk */
4244 if (rv != 0) {
4245 dprintf("capability: %p fd: %d ret: %d\n",
4246 super->orom, fd, rv);
4247 return 1;
4248 }
4249
4250 if (super->current_vol >= 0)
4251 return add_to_super_imsm_volume(st, dk, fd, devname);
4252
4253 fstat(fd, &stb);
4254 dd = malloc(sizeof(*dd));
4255 if (!dd) {
4256 fprintf(stderr,
4257 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4258 return 1;
4259 }
4260 memset(dd, 0, sizeof(*dd));
4261 dd->major = major(stb.st_rdev);
4262 dd->minor = minor(stb.st_rdev);
4263 dd->index = -1;
4264 dd->devname = devname ? strdup(devname) : NULL;
4265 dd->fd = fd;
4266 dd->e = NULL;
4267 dd->action = DISK_ADD;
4268 rv = imsm_read_serial(fd, devname, dd->serial);
4269 if (rv) {
4270 fprintf(stderr,
4271 Name ": failed to retrieve scsi serial, aborting\n");
4272 free(dd);
4273 abort();
4274 }
4275
4276 get_dev_size(fd, NULL, &size);
4277 size /= 512;
4278 serialcpy(dd->disk.serial, dd->serial);
4279 dd->disk.total_blocks = __cpu_to_le32(size);
4280 dd->disk.status = SPARE_DISK;
4281 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4282 dd->disk.scsi_id = __cpu_to_le32(id);
4283 else
4284 dd->disk.scsi_id = __cpu_to_le32(0);
4285
4286 if (st->update_tail) {
4287 dd->next = super->disk_mgmt_list;
4288 super->disk_mgmt_list = dd;
4289 } else {
4290 dd->next = super->disks;
4291 super->disks = dd;
4292 super->updates_pending++;
4293 }
4294
4295 return 0;
4296 }
4297
4298
4299 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4300 {
4301 struct intel_super *super = st->sb;
4302 struct dl *dd;
4303
4304 /* remove from super works only in mdmon - for communication
4305 * manager - monitor. Check if communication memory buffer
4306 * is prepared.
4307 */
4308 if (!st->update_tail) {
4309 fprintf(stderr,
4310 Name ": %s shall be used in mdmon context only"
4311 "(line %d).\n", __func__, __LINE__);
4312 return 1;
4313 }
4314 dd = malloc(sizeof(*dd));
4315 if (!dd) {
4316 fprintf(stderr,
4317 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4318 return 1;
4319 }
4320 memset(dd, 0, sizeof(*dd));
4321 dd->major = dk->major;
4322 dd->minor = dk->minor;
4323 dd->index = -1;
4324 dd->fd = -1;
4325 dd->disk.status = SPARE_DISK;
4326 dd->action = DISK_REMOVE;
4327
4328 dd->next = super->disk_mgmt_list;
4329 super->disk_mgmt_list = dd;
4330
4331
4332 return 0;
4333 }
4334
4335 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4336
4337 static union {
4338 char buf[512];
4339 struct imsm_super anchor;
4340 } spare_record __attribute__ ((aligned(512)));
4341
4342 /* spare records have their own family number and do not have any defined raid
4343 * devices
4344 */
4345 static int write_super_imsm_spares(struct intel_super *super, int doclose)
4346 {
4347 struct imsm_super *mpb = super->anchor;
4348 struct imsm_super *spare = &spare_record.anchor;
4349 __u32 sum;
4350 struct dl *d;
4351
4352 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4353 spare->generation_num = __cpu_to_le32(1UL),
4354 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4355 spare->num_disks = 1,
4356 spare->num_raid_devs = 0,
4357 spare->cache_size = mpb->cache_size,
4358 spare->pwr_cycle_count = __cpu_to_le32(1),
4359
4360 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4361 MPB_SIGNATURE MPB_VERSION_RAID0);
4362
4363 for (d = super->disks; d; d = d->next) {
4364 if (d->index != -1)
4365 continue;
4366
4367 spare->disk[0] = d->disk;
4368 sum = __gen_imsm_checksum(spare);
4369 spare->family_num = __cpu_to_le32(sum);
4370 spare->orig_family_num = 0;
4371 sum = __gen_imsm_checksum(spare);
4372 spare->check_sum = __cpu_to_le32(sum);
4373
4374 if (store_imsm_mpb(d->fd, spare)) {
4375 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4376 __func__, d->major, d->minor, strerror(errno));
4377 return 1;
4378 }
4379 if (doclose) {
4380 close(d->fd);
4381 d->fd = -1;
4382 }
4383 }
4384
4385 return 0;
4386 }
4387
4388 static int is_gen_migration(struct imsm_dev *dev);
4389
4390 static int write_super_imsm(struct supertype *st, int doclose)
4391 {
4392 struct intel_super *super = st->sb;
4393 struct imsm_super *mpb = super->anchor;
4394 struct dl *d;
4395 __u32 generation;
4396 __u32 sum;
4397 int spares = 0;
4398 int i;
4399 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
4400 int num_disks = 0;
4401 int clear_migration_record = 1;
4402
4403 /* 'generation' is incremented everytime the metadata is written */
4404 generation = __le32_to_cpu(mpb->generation_num);
4405 generation++;
4406 mpb->generation_num = __cpu_to_le32(generation);
4407
4408 /* fix up cases where previous mdadm releases failed to set
4409 * orig_family_num
4410 */
4411 if (mpb->orig_family_num == 0)
4412 mpb->orig_family_num = mpb->family_num;
4413
4414 for (d = super->disks; d; d = d->next) {
4415 if (d->index == -1)
4416 spares++;
4417 else {
4418 mpb->disk[d->index] = d->disk;
4419 num_disks++;
4420 }
4421 }
4422 for (d = super->missing; d; d = d->next) {
4423 mpb->disk[d->index] = d->disk;
4424 num_disks++;
4425 }
4426 mpb->num_disks = num_disks;
4427 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
4428
4429 for (i = 0; i < mpb->num_raid_devs; i++) {
4430 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
4431 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4432 if (dev && dev2) {
4433 imsm_copy_dev(dev, dev2);
4434 mpb_size += sizeof_imsm_dev(dev, 0);
4435 }
4436 if (is_gen_migration(dev2))
4437 clear_migration_record = 0;
4438 }
4439 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4440 mpb->mpb_size = __cpu_to_le32(mpb_size);
4441
4442 /* recalculate checksum */
4443 sum = __gen_imsm_checksum(mpb);
4444 mpb->check_sum = __cpu_to_le32(sum);
4445
4446 if (clear_migration_record)
4447 memset(super->migr_rec_buf, 0, 512);
4448
4449 /* write the mpb for disks that compose raid devices */
4450 for (d = super->disks; d ; d = d->next) {
4451 if (d->index < 0)
4452 continue;
4453 if (store_imsm_mpb(d->fd, mpb))
4454 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4455 __func__, d->major, d->minor, strerror(errno));
4456 if (clear_migration_record) {
4457 unsigned long long dsize;
4458
4459 get_dev_size(d->fd, NULL, &dsize);
4460 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4461 write(d->fd, super->migr_rec_buf, 512);
4462 }
4463 }
4464 if (doclose) {
4465 close(d->fd);
4466 d->fd = -1;
4467 }
4468 }
4469
4470 if (spares)
4471 return write_super_imsm_spares(super, doclose);
4472
4473 return 0;
4474 }
4475
4476
4477 static int create_array(struct supertype *st, int dev_idx)
4478 {
4479 size_t len;
4480 struct imsm_update_create_array *u;
4481 struct intel_super *super = st->sb;
4482 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4483 struct imsm_map *map = get_imsm_map(dev, 0);
4484 struct disk_info *inf;
4485 struct imsm_disk *disk;
4486 int i;
4487
4488 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4489 sizeof(*inf) * map->num_members;
4490 u = malloc(len);
4491 if (!u) {
4492 fprintf(stderr, "%s: failed to allocate update buffer\n",
4493 __func__);
4494 return 1;
4495 }
4496
4497 u->type = update_create_array;
4498 u->dev_idx = dev_idx;
4499 imsm_copy_dev(&u->dev, dev);
4500 inf = get_disk_info(u);
4501 for (i = 0; i < map->num_members; i++) {
4502 int idx = get_imsm_disk_idx(dev, i, -1);
4503
4504 disk = get_imsm_disk(super, idx);
4505 serialcpy(inf[i].serial, disk->serial);
4506 }
4507 append_metadata_update(st, u, len);
4508
4509 return 0;
4510 }
4511
4512 static int mgmt_disk(struct supertype *st)
4513 {
4514 struct intel_super *super = st->sb;
4515 size_t len;
4516 struct imsm_update_add_remove_disk *u;
4517
4518 if (!super->disk_mgmt_list)
4519 return 0;
4520
4521 len = sizeof(*u);
4522 u = malloc(len);
4523 if (!u) {
4524 fprintf(stderr, "%s: failed to allocate update buffer\n",
4525 __func__);
4526 return 1;
4527 }
4528
4529 u->type = update_add_remove_disk;
4530 append_metadata_update(st, u, len);
4531
4532 return 0;
4533 }
4534
4535 static int write_init_super_imsm(struct supertype *st)
4536 {
4537 struct intel_super *super = st->sb;
4538 int current_vol = super->current_vol;
4539
4540 /* we are done with current_vol reset it to point st at the container */
4541 super->current_vol = -1;
4542
4543 if (st->update_tail) {
4544 /* queue the recently created array / added disk
4545 * as a metadata update */
4546 int rv;
4547
4548 /* determine if we are creating a volume or adding a disk */
4549 if (current_vol < 0) {
4550 /* in the mgmt (add/remove) disk case we are running
4551 * in mdmon context, so don't close fd's
4552 */
4553 return mgmt_disk(st);
4554 } else
4555 rv = create_array(st, current_vol);
4556
4557 return rv;
4558 } else {
4559 struct dl *d;
4560 for (d = super->disks; d; d = d->next)
4561 Kill(d->devname, NULL, 0, 1, 1);
4562 return write_super_imsm(st, 1);
4563 }
4564 }
4565 #endif
4566
4567 static int store_super_imsm(struct supertype *st, int fd)
4568 {
4569 struct intel_super *super = st->sb;
4570 struct imsm_super *mpb = super ? super->anchor : NULL;
4571
4572 if (!mpb)
4573 return 1;
4574
4575 #ifndef MDASSEMBLE
4576 return store_imsm_mpb(fd, mpb);
4577 #else
4578 return 1;
4579 #endif
4580 }
4581
4582 static int imsm_bbm_log_size(struct imsm_super *mpb)
4583 {
4584 return __le32_to_cpu(mpb->bbm_log_size);
4585 }
4586
4587 #ifndef MDASSEMBLE
4588 static int validate_geometry_imsm_container(struct supertype *st, int level,
4589 int layout, int raiddisks, int chunk,
4590 unsigned long long size, char *dev,
4591 unsigned long long *freesize,
4592 int verbose)
4593 {
4594 int fd;
4595 unsigned long long ldsize;
4596 struct intel_super *super=NULL;
4597 int rv = 0;
4598
4599 if (level != LEVEL_CONTAINER)
4600 return 0;
4601 if (!dev)
4602 return 1;
4603
4604 fd = open(dev, O_RDONLY|O_EXCL, 0);
4605 if (fd < 0) {
4606 if (verbose)
4607 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4608 dev, strerror(errno));
4609 return 0;
4610 }
4611 if (!get_dev_size(fd, dev, &ldsize)) {
4612 close(fd);
4613 return 0;
4614 }
4615
4616 /* capabilities retrieve could be possible
4617 * note that there is no fd for the disks in array.
4618 */
4619 super = alloc_super();
4620 if (!super) {
4621 fprintf(stderr,
4622 Name ": malloc of %zu failed.\n",
4623 sizeof(*super));
4624 close(fd);
4625 return 0;
4626 }
4627
4628 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
4629 if (rv != 0) {
4630 #if DEBUG
4631 char str[256];
4632 fd2devname(fd, str);
4633 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4634 fd, str, super->orom, rv, raiddisks);
4635 #endif
4636 /* no orom/efi or non-intel hba of the disk */
4637 close(fd);
4638 free_imsm(super);
4639 return 0;
4640 }
4641 close(fd);
4642 if (super->orom && raiddisks > super->orom->tds) {
4643 if (verbose)
4644 fprintf(stderr, Name ": %d exceeds maximum number of"
4645 " platform supported disks: %d\n",
4646 raiddisks, super->orom->tds);
4647
4648 free_imsm(super);
4649 return 0;
4650 }
4651
4652 *freesize = avail_size_imsm(st, ldsize >> 9);
4653 free_imsm(super);
4654
4655 return 1;
4656 }
4657
4658 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4659 {
4660 const unsigned long long base_start = e[*idx].start;
4661 unsigned long long end = base_start + e[*idx].size;
4662 int i;
4663
4664 if (base_start == end)
4665 return 0;
4666
4667 *idx = *idx + 1;
4668 for (i = *idx; i < num_extents; i++) {
4669 /* extend overlapping extents */
4670 if (e[i].start >= base_start &&
4671 e[i].start <= end) {
4672 if (e[i].size == 0)
4673 return 0;
4674 if (e[i].start + e[i].size > end)
4675 end = e[i].start + e[i].size;
4676 } else if (e[i].start > end) {
4677 *idx = i;
4678 break;
4679 }
4680 }
4681
4682 return end - base_start;
4683 }
4684
4685 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4686 {
4687 /* build a composite disk with all known extents and generate a new
4688 * 'maxsize' given the "all disks in an array must share a common start
4689 * offset" constraint
4690 */
4691 struct extent *e = calloc(sum_extents, sizeof(*e));
4692 struct dl *dl;
4693 int i, j;
4694 int start_extent;
4695 unsigned long long pos;
4696 unsigned long long start = 0;
4697 unsigned long long maxsize;
4698 unsigned long reserve;
4699
4700 if (!e)
4701 return 0;
4702
4703 /* coalesce and sort all extents. also, check to see if we need to
4704 * reserve space between member arrays
4705 */
4706 j = 0;
4707 for (dl = super->disks; dl; dl = dl->next) {
4708 if (!dl->e)
4709 continue;
4710 for (i = 0; i < dl->extent_cnt; i++)
4711 e[j++] = dl->e[i];
4712 }
4713 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4714
4715 /* merge extents */
4716 i = 0;
4717 j = 0;
4718 while (i < sum_extents) {
4719 e[j].start = e[i].start;
4720 e[j].size = find_size(e, &i, sum_extents);
4721 j++;
4722 if (e[j-1].size == 0)
4723 break;
4724 }
4725
4726 pos = 0;
4727 maxsize = 0;
4728 start_extent = 0;
4729 i = 0;
4730 do {
4731 unsigned long long esize;
4732
4733 esize = e[i].start - pos;
4734 if (esize >= maxsize) {
4735 maxsize = esize;
4736 start = pos;
4737 start_extent = i;
4738 }
4739 pos = e[i].start + e[i].size;
4740 i++;
4741 } while (e[i-1].size);
4742 free(e);
4743
4744 if (maxsize == 0)
4745 return 0;
4746
4747 /* FIXME assumes volume at offset 0 is the first volume in a
4748 * container
4749 */
4750 if (start_extent > 0)
4751 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
4752 else
4753 reserve = 0;
4754
4755 if (maxsize < reserve)
4756 return 0;
4757
4758 super->create_offset = ~((__u32) 0);
4759 if (start + reserve > super->create_offset)
4760 return 0; /* start overflows create_offset */
4761 super->create_offset = start + reserve;
4762
4763 return maxsize - reserve;
4764 }
4765
4766 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
4767 {
4768 if (level < 0 || level == 6 || level == 4)
4769 return 0;
4770
4771 /* if we have an orom prevent invalid raid levels */
4772 if (orom)
4773 switch (level) {
4774 case 0: return imsm_orom_has_raid0(orom);
4775 case 1:
4776 if (raiddisks > 2)
4777 return imsm_orom_has_raid1e(orom);
4778 return imsm_orom_has_raid1(orom) && raiddisks == 2;
4779 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
4780 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
4781 }
4782 else
4783 return 1; /* not on an Intel RAID platform so anything goes */
4784
4785 return 0;
4786 }
4787
4788
4789 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
4790 /*
4791 * validate volume parameters with OROM/EFI capabilities
4792 */
4793 static int
4794 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
4795 int raiddisks, int *chunk, int verbose)
4796 {
4797 #if DEBUG
4798 verbose = 1;
4799 #endif
4800 /* validate container capabilities */
4801 if (super->orom && raiddisks > super->orom->tds) {
4802 if (verbose)
4803 fprintf(stderr, Name ": %d exceeds maximum number of"
4804 " platform supported disks: %d\n",
4805 raiddisks, super->orom->tds);
4806 return 0;
4807 }
4808
4809 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
4810 if (super->orom && (!is_raid_level_supported(super->orom, level,
4811 raiddisks))) {
4812 pr_vrb(": platform does not support raid%d with %d disk%s\n",
4813 level, raiddisks, raiddisks > 1 ? "s" : "");
4814 return 0;
4815 }
4816 if (super->orom && level != 1) {
4817 if (chunk && (*chunk == 0 || *chunk == UnSet))
4818 *chunk = imsm_orom_default_chunk(super->orom);
4819 else if (chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
4820 pr_vrb(": platform does not support a chunk size of: "
4821 "%d\n", *chunk);
4822 return 0;
4823 }
4824 }
4825 if (layout != imsm_level_to_layout(level)) {
4826 if (level == 5)
4827 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
4828 else if (level == 10)
4829 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
4830 else
4831 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
4832 layout, level);
4833 return 0;
4834 }
4835 return 1;
4836 }
4837
4838 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
4839 * FIX ME add ahci details
4840 */
4841 static int validate_geometry_imsm_volume(struct supertype *st, int level,
4842 int layout, int raiddisks, int *chunk,
4843 unsigned long long size, char *dev,
4844 unsigned long long *freesize,
4845 int verbose)
4846 {
4847 struct stat stb;
4848 struct intel_super *super = st->sb;
4849 struct imsm_super *mpb = super->anchor;
4850 struct dl *dl;
4851 unsigned long long pos = 0;
4852 unsigned long long maxsize;
4853 struct extent *e;
4854 int i;
4855
4856 /* We must have the container info already read in. */
4857 if (!super)
4858 return 0;
4859
4860 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
4861 fprintf(stderr, Name ": RAID gemetry validation failed. "
4862 "Cannot proceed with the action(s).\n");
4863 return 0;
4864 }
4865 if (!dev) {
4866 /* General test: make sure there is space for
4867 * 'raiddisks' device extents of size 'size' at a given
4868 * offset
4869 */
4870 unsigned long long minsize = size;
4871 unsigned long long start_offset = MaxSector;
4872 int dcnt = 0;
4873 if (minsize == 0)
4874 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
4875 for (dl = super->disks; dl ; dl = dl->next) {
4876 int found = 0;
4877
4878 pos = 0;
4879 i = 0;
4880 e = get_extents(super, dl);
4881 if (!e) continue;
4882 do {
4883 unsigned long long esize;
4884 esize = e[i].start - pos;
4885 if (esize >= minsize)
4886 found = 1;
4887 if (found && start_offset == MaxSector) {
4888 start_offset = pos;
4889 break;
4890 } else if (found && pos != start_offset) {
4891 found = 0;
4892 break;
4893 }
4894 pos = e[i].start + e[i].size;
4895 i++;
4896 } while (e[i-1].size);
4897 if (found)
4898 dcnt++;
4899 free(e);
4900 }
4901 if (dcnt < raiddisks) {
4902 if (verbose)
4903 fprintf(stderr, Name ": imsm: Not enough "
4904 "devices with space for this array "
4905 "(%d < %d)\n",
4906 dcnt, raiddisks);
4907 return 0;
4908 }
4909 return 1;
4910 }
4911
4912 /* This device must be a member of the set */
4913 if (stat(dev, &stb) < 0)
4914 return 0;
4915 if ((S_IFMT & stb.st_mode) != S_IFBLK)
4916 return 0;
4917 for (dl = super->disks ; dl ; dl = dl->next) {
4918 if (dl->major == (int)major(stb.st_rdev) &&
4919 dl->minor == (int)minor(stb.st_rdev))
4920 break;
4921 }
4922 if (!dl) {
4923 if (verbose)
4924 fprintf(stderr, Name ": %s is not in the "
4925 "same imsm set\n", dev);
4926 return 0;
4927 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
4928 /* If a volume is present then the current creation attempt
4929 * cannot incorporate new spares because the orom may not
4930 * understand this configuration (all member disks must be
4931 * members of each array in the container).
4932 */
4933 fprintf(stderr, Name ": %s is a spare and a volume"
4934 " is already defined for this container\n", dev);
4935 fprintf(stderr, Name ": The option-rom requires all member"
4936 " disks to be a member of all volumes\n");
4937 return 0;
4938 }
4939
4940 /* retrieve the largest free space block */
4941 e = get_extents(super, dl);
4942 maxsize = 0;
4943 i = 0;
4944 if (e) {
4945 do {
4946 unsigned long long esize;
4947
4948 esize = e[i].start - pos;
4949 if (esize >= maxsize)
4950 maxsize = esize;
4951 pos = e[i].start + e[i].size;
4952 i++;
4953 } while (e[i-1].size);
4954 dl->e = e;
4955 dl->extent_cnt = i;
4956 } else {
4957 if (verbose)
4958 fprintf(stderr, Name ": unable to determine free space for: %s\n",
4959 dev);
4960 return 0;
4961 }
4962 if (maxsize < size) {
4963 if (verbose)
4964 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
4965 dev, maxsize, size);
4966 return 0;
4967 }
4968
4969 /* count total number of extents for merge */
4970 i = 0;
4971 for (dl = super->disks; dl; dl = dl->next)
4972 if (dl->e)
4973 i += dl->extent_cnt;
4974
4975 maxsize = merge_extents(super, i);
4976 if (maxsize < size || maxsize == 0) {
4977 if (verbose)
4978 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
4979 maxsize, size);
4980 return 0;
4981 }
4982
4983 *freesize = maxsize;
4984
4985 return 1;
4986 }
4987
4988 static int reserve_space(struct supertype *st, int raiddisks,
4989 unsigned long long size, int chunk,
4990 unsigned long long *freesize)
4991 {
4992 struct intel_super *super = st->sb;
4993 struct imsm_super *mpb = super->anchor;
4994 struct dl *dl;
4995 int i;
4996 int extent_cnt;
4997 struct extent *e;
4998 unsigned long long maxsize;
4999 unsigned long long minsize;
5000 int cnt;
5001 int used;
5002
5003 /* find the largest common start free region of the possible disks */
5004 used = 0;
5005 extent_cnt = 0;
5006 cnt = 0;
5007 for (dl = super->disks; dl; dl = dl->next) {
5008 dl->raiddisk = -1;
5009
5010 if (dl->index >= 0)
5011 used++;
5012
5013 /* don't activate new spares if we are orom constrained
5014 * and there is already a volume active in the container
5015 */
5016 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5017 continue;
5018
5019 e = get_extents(super, dl);
5020 if (!e)
5021 continue;
5022 for (i = 1; e[i-1].size; i++)
5023 ;
5024 dl->e = e;
5025 dl->extent_cnt = i;
5026 extent_cnt += i;
5027 cnt++;
5028 }
5029
5030 maxsize = merge_extents(super, extent_cnt);
5031 minsize = size;
5032 if (size == 0)
5033 /* chunk is in K */
5034 minsize = chunk * 2;
5035
5036 if (cnt < raiddisks ||
5037 (super->orom && used && used != raiddisks) ||
5038 maxsize < minsize ||
5039 maxsize == 0) {
5040 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5041 return 0; /* No enough free spaces large enough */
5042 }
5043
5044 if (size == 0) {
5045 size = maxsize;
5046 if (chunk) {
5047 size /= 2 * chunk;
5048 size *= 2 * chunk;
5049 }
5050 }
5051
5052 cnt = 0;
5053 for (dl = super->disks; dl; dl = dl->next)
5054 if (dl->e)
5055 dl->raiddisk = cnt++;
5056
5057 *freesize = size;
5058
5059 return 1;
5060 }
5061
5062 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
5063 int raiddisks, int *chunk, unsigned long long size,
5064 char *dev, unsigned long long *freesize,
5065 int verbose)
5066 {
5067 int fd, cfd;
5068 struct mdinfo *sra;
5069 int is_member = 0;
5070
5071 /* load capability
5072 * if given unused devices create a container
5073 * if given given devices in a container create a member volume
5074 */
5075 if (level == LEVEL_CONTAINER) {
5076 /* Must be a fresh device to add to a container */
5077 return validate_geometry_imsm_container(st, level, layout,
5078 raiddisks,
5079 chunk?*chunk:0, size,
5080 dev, freesize,
5081 verbose);
5082 }
5083
5084 if (!dev) {
5085 if (st->sb && freesize) {
5086 /* we are being asked to automatically layout a
5087 * new volume based on the current contents of
5088 * the container. If the the parameters can be
5089 * satisfied reserve_space will record the disks,
5090 * start offset, and size of the volume to be
5091 * created. add_to_super and getinfo_super
5092 * detect when autolayout is in progress.
5093 */
5094 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5095 raiddisks, chunk,
5096 verbose))
5097 return 0;
5098 return reserve_space(st, raiddisks, size,
5099 chunk?*chunk:0, freesize);
5100 }
5101 return 1;
5102 }
5103 if (st->sb) {
5104 /* creating in a given container */
5105 return validate_geometry_imsm_volume(st, level, layout,
5106 raiddisks, chunk, size,
5107 dev, freesize, verbose);
5108 }
5109
5110 /* This device needs to be a device in an 'imsm' container */
5111 fd = open(dev, O_RDONLY|O_EXCL, 0);
5112 if (fd >= 0) {
5113 if (verbose)
5114 fprintf(stderr,
5115 Name ": Cannot create this array on device %s\n",
5116 dev);
5117 close(fd);
5118 return 0;
5119 }
5120 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5121 if (verbose)
5122 fprintf(stderr, Name ": Cannot open %s: %s\n",
5123 dev, strerror(errno));
5124 return 0;
5125 }
5126 /* Well, it is in use by someone, maybe an 'imsm' container. */
5127 cfd = open_container(fd);
5128 close(fd);
5129 if (cfd < 0) {
5130 if (verbose)
5131 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5132 dev);
5133 return 0;
5134 }
5135 sra = sysfs_read(cfd, 0, GET_VERSION);
5136 if (sra && sra->array.major_version == -1 &&
5137 strcmp(sra->text_version, "imsm") == 0)
5138 is_member = 1;
5139 sysfs_free(sra);
5140 if (is_member) {
5141 /* This is a member of a imsm container. Load the container
5142 * and try to create a volume
5143 */
5144 struct intel_super *super;
5145
5146 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
5147 st->sb = super;
5148 st->container_dev = fd2devnum(cfd);
5149 close(cfd);
5150 return validate_geometry_imsm_volume(st, level, layout,
5151 raiddisks, chunk,
5152 size, dev,
5153 freesize, verbose);
5154 }
5155 }
5156
5157 if (verbose)
5158 fprintf(stderr, Name ": failed container membership check\n");
5159
5160 close(cfd);
5161 return 0;
5162 }
5163
5164 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
5165 {
5166 struct intel_super *super = st->sb;
5167
5168 if (level && *level == UnSet)
5169 *level = LEVEL_CONTAINER;
5170
5171 if (level && layout && *layout == UnSet)
5172 *layout = imsm_level_to_layout(*level);
5173
5174 if (chunk && (*chunk == UnSet || *chunk == 0) &&
5175 super && super->orom)
5176 *chunk = imsm_orom_default_chunk(super->orom);
5177 }
5178
5179 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5180
5181 static int kill_subarray_imsm(struct supertype *st)
5182 {
5183 /* remove the subarray currently referenced by ->current_vol */
5184 __u8 i;
5185 struct intel_dev **dp;
5186 struct intel_super *super = st->sb;
5187 __u8 current_vol = super->current_vol;
5188 struct imsm_super *mpb = super->anchor;
5189
5190 if (super->current_vol < 0)
5191 return 2;
5192 super->current_vol = -1; /* invalidate subarray cursor */
5193
5194 /* block deletions that would change the uuid of active subarrays
5195 *
5196 * FIXME when immutable ids are available, but note that we'll
5197 * also need to fixup the invalidated/active subarray indexes in
5198 * mdstat
5199 */
5200 for (i = 0; i < mpb->num_raid_devs; i++) {
5201 char subarray[4];
5202
5203 if (i < current_vol)
5204 continue;
5205 sprintf(subarray, "%u", i);
5206 if (is_subarray_active(subarray, st->devname)) {
5207 fprintf(stderr,
5208 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5209 current_vol, i);
5210
5211 return 2;
5212 }
5213 }
5214
5215 if (st->update_tail) {
5216 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5217
5218 if (!u)
5219 return 2;
5220 u->type = update_kill_array;
5221 u->dev_idx = current_vol;
5222 append_metadata_update(st, u, sizeof(*u));
5223
5224 return 0;
5225 }
5226
5227 for (dp = &super->devlist; *dp;)
5228 if ((*dp)->index == current_vol) {
5229 *dp = (*dp)->next;
5230 } else {
5231 handle_missing(super, (*dp)->dev);
5232 if ((*dp)->index > current_vol)
5233 (*dp)->index--;
5234 dp = &(*dp)->next;
5235 }
5236
5237 /* no more raid devices, all active components are now spares,
5238 * but of course failed are still failed
5239 */
5240 if (--mpb->num_raid_devs == 0) {
5241 struct dl *d;
5242
5243 for (d = super->disks; d; d = d->next)
5244 if (d->index > -2) {
5245 d->index = -1;
5246 d->disk.status = SPARE_DISK;
5247 }
5248 }
5249
5250 super->updates_pending++;
5251
5252 return 0;
5253 }
5254
5255 static int update_subarray_imsm(struct supertype *st, char *subarray,
5256 char *update, struct mddev_ident *ident)
5257 {
5258 /* update the subarray currently referenced by ->current_vol */
5259 struct intel_super *super = st->sb;
5260 struct imsm_super *mpb = super->anchor;
5261
5262 if (strcmp(update, "name") == 0) {
5263 char *name = ident->name;
5264 char *ep;
5265 int vol;
5266
5267 if (is_subarray_active(subarray, st->devname)) {
5268 fprintf(stderr,
5269 Name ": Unable to update name of active subarray\n");
5270 return 2;
5271 }
5272
5273 if (!check_name(super, name, 0))
5274 return 2;
5275
5276 vol = strtoul(subarray, &ep, 10);
5277 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5278 return 2;
5279
5280 if (st->update_tail) {
5281 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5282
5283 if (!u)
5284 return 2;
5285 u->type = update_rename_array;
5286 u->dev_idx = vol;
5287 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5288 append_metadata_update(st, u, sizeof(*u));
5289 } else {
5290 struct imsm_dev *dev;
5291 int i;
5292
5293 dev = get_imsm_dev(super, vol);
5294 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5295 for (i = 0; i < mpb->num_raid_devs; i++) {
5296 dev = get_imsm_dev(super, i);
5297 handle_missing(super, dev);
5298 }
5299 super->updates_pending++;
5300 }
5301 } else
5302 return 2;
5303
5304 return 0;
5305 }
5306
5307 static int is_gen_migration(struct imsm_dev *dev)
5308 {
5309 if (!dev->vol.migr_state)
5310 return 0;
5311
5312 if (migr_type(dev) == MIGR_GEN_MIGR)
5313 return 1;
5314
5315 return 0;
5316 }
5317 #endif /* MDASSEMBLE */
5318
5319 static int is_rebuilding(struct imsm_dev *dev)
5320 {
5321 struct imsm_map *migr_map;
5322
5323 if (!dev->vol.migr_state)
5324 return 0;
5325
5326 if (migr_type(dev) != MIGR_REBUILD)
5327 return 0;
5328
5329 migr_map = get_imsm_map(dev, 1);
5330
5331 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5332 return 1;
5333 else
5334 return 0;
5335 }
5336
5337 static void update_recovery_start(struct intel_super *super,
5338 struct imsm_dev *dev,
5339 struct mdinfo *array)
5340 {
5341 struct mdinfo *rebuild = NULL;
5342 struct mdinfo *d;
5343 __u32 units;
5344
5345 if (!is_rebuilding(dev))
5346 return;
5347
5348 /* Find the rebuild target, but punt on the dual rebuild case */
5349 for (d = array->devs; d; d = d->next)
5350 if (d->recovery_start == 0) {
5351 if (rebuild)
5352 return;
5353 rebuild = d;
5354 }
5355
5356 if (!rebuild) {
5357 /* (?) none of the disks are marked with
5358 * IMSM_ORD_REBUILD, so assume they are missing and the
5359 * disk_ord_tbl was not correctly updated
5360 */
5361 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5362 return;
5363 }
5364
5365 units = __le32_to_cpu(dev->vol.curr_migr_unit);
5366 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
5367 }
5368
5369 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
5370
5371 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
5372 {
5373 /* Given a container loaded by load_super_imsm_all,
5374 * extract information about all the arrays into
5375 * an mdinfo tree.
5376 * If 'subarray' is given, just extract info about that array.
5377 *
5378 * For each imsm_dev create an mdinfo, fill it in,
5379 * then look for matching devices in super->disks
5380 * and create appropriate device mdinfo.
5381 */
5382 struct intel_super *super = st->sb;
5383 struct imsm_super *mpb = super->anchor;
5384 struct mdinfo *rest = NULL;
5385 unsigned int i;
5386 int bbm_errors = 0;
5387 struct dl *d;
5388 int spare_disks = 0;
5389
5390 /* check for bad blocks */
5391 if (imsm_bbm_log_size(super->anchor))
5392 bbm_errors = 1;
5393
5394 /* count spare devices, not used in maps
5395 */
5396 for (d = super->disks; d; d = d->next)
5397 if (d->index == -1)
5398 spare_disks++;
5399
5400 for (i = 0; i < mpb->num_raid_devs; i++) {
5401 struct imsm_dev *dev;
5402 struct imsm_map *map;
5403 struct imsm_map *map2;
5404 struct mdinfo *this;
5405 int slot, chunk;
5406 char *ep;
5407
5408 if (subarray &&
5409 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5410 continue;
5411
5412 dev = get_imsm_dev(super, i);
5413 map = get_imsm_map(dev, 0);
5414 map2 = get_imsm_map(dev, 1);
5415
5416 /* do not publish arrays that are in the middle of an
5417 * unsupported migration
5418 */
5419 if (dev->vol.migr_state &&
5420 (migr_type(dev) == MIGR_STATE_CHANGE)) {
5421 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5422 " unsupported migration in progress\n",
5423 dev->volume);
5424 continue;
5425 }
5426 /* do not publish arrays that are not support by controller's
5427 * OROM/EFI
5428 */
5429
5430 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
5431 #ifndef MDASSEMBLE
5432 if (!validate_geometry_imsm_orom(super,
5433 get_imsm_raid_level(map), /* RAID level */
5434 imsm_level_to_layout(get_imsm_raid_level(map)),
5435 map->num_members, /* raid disks */
5436 &chunk,
5437 1 /* verbose */)) {
5438 fprintf(stderr, Name ": RAID gemetry validation failed. "
5439 "Cannot proceed with the action(s).\n");
5440 continue;
5441 }
5442 #endif /* MDASSEMBLE */
5443 this = malloc(sizeof(*this));
5444 if (!this) {
5445 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
5446 sizeof(*this));
5447 break;
5448 }
5449
5450 super->current_vol = i;
5451 getinfo_super_imsm_volume(st, this, NULL);
5452 this->next = rest;
5453 for (slot = 0 ; slot < map->num_members; slot++) {
5454 unsigned long long recovery_start;
5455 struct mdinfo *info_d;
5456 struct dl *d;
5457 int idx;
5458 int skip;
5459 __u32 ord;
5460
5461 skip = 0;
5462 idx = get_imsm_disk_idx(dev, slot, 0);
5463 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
5464 for (d = super->disks; d ; d = d->next)
5465 if (d->index == idx)
5466 break;
5467
5468 recovery_start = MaxSector;
5469 if (d == NULL)
5470 skip = 1;
5471 if (d && is_failed(&d->disk))
5472 skip = 1;
5473 if (ord & IMSM_ORD_REBUILD)
5474 recovery_start = 0;
5475
5476 /*
5477 * if we skip some disks the array will be assmebled degraded;
5478 * reset resync start to avoid a dirty-degraded
5479 * situation when performing the intial sync
5480 *
5481 * FIXME handle dirty degraded
5482 */
5483 if ((skip || recovery_start == 0) && !dev->vol.dirty)
5484 this->resync_start = MaxSector;
5485 if (skip)
5486 continue;
5487
5488 info_d = calloc(1, sizeof(*info_d));
5489 if (!info_d) {
5490 fprintf(stderr, Name ": failed to allocate disk"
5491 " for volume %.16s\n", dev->volume);
5492 info_d = this->devs;
5493 while (info_d) {
5494 struct mdinfo *d = info_d->next;
5495
5496 free(info_d);
5497 info_d = d;
5498 }
5499 free(this);
5500 this = rest;
5501 break;
5502 }
5503 info_d->next = this->devs;
5504 this->devs = info_d;
5505
5506 info_d->disk.number = d->index;
5507 info_d->disk.major = d->major;
5508 info_d->disk.minor = d->minor;
5509 info_d->disk.raid_disk = slot;
5510 info_d->recovery_start = recovery_start;
5511 if (map2) {
5512 if (slot < map2->num_members)
5513 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5514 else
5515 this->array.spare_disks++;
5516 } else {
5517 if (slot < map->num_members)
5518 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5519 else
5520 this->array.spare_disks++;
5521 }
5522 if (info_d->recovery_start == MaxSector)
5523 this->array.working_disks++;
5524
5525 info_d->events = __le32_to_cpu(mpb->generation_num);
5526 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5527 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
5528 }
5529 /* now that the disk list is up-to-date fixup recovery_start */
5530 update_recovery_start(super, dev, this);
5531 this->array.spare_disks += spare_disks;
5532
5533 /* check for reshape */
5534 if (this->reshape_active == 1)
5535 recover_backup_imsm(st, this);
5536
5537 rest = this;
5538 }
5539
5540 /* if array has bad blocks, set suitable bit in array status */
5541 if (bbm_errors)
5542 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5543
5544 return rest;
5545 }
5546
5547
5548 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
5549 {
5550 struct imsm_map *map = get_imsm_map(dev, 0);
5551
5552 if (!failed)
5553 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5554 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
5555
5556 switch (get_imsm_raid_level(map)) {
5557 case 0:
5558 return IMSM_T_STATE_FAILED;
5559 break;
5560 case 1:
5561 if (failed < map->num_members)
5562 return IMSM_T_STATE_DEGRADED;
5563 else
5564 return IMSM_T_STATE_FAILED;
5565 break;
5566 case 10:
5567 {
5568 /**
5569 * check to see if any mirrors have failed, otherwise we
5570 * are degraded. Even numbered slots are mirrored on
5571 * slot+1
5572 */
5573 int i;
5574 /* gcc -Os complains that this is unused */
5575 int insync = insync;
5576
5577 for (i = 0; i < map->num_members; i++) {
5578 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
5579 int idx = ord_to_idx(ord);
5580 struct imsm_disk *disk;
5581
5582 /* reset the potential in-sync count on even-numbered
5583 * slots. num_copies is always 2 for imsm raid10
5584 */
5585 if ((i & 1) == 0)
5586 insync = 2;
5587
5588 disk = get_imsm_disk(super, idx);
5589 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5590 insync--;
5591
5592 /* no in-sync disks left in this mirror the
5593 * array has failed
5594 */
5595 if (insync == 0)
5596 return IMSM_T_STATE_FAILED;
5597 }
5598
5599 return IMSM_T_STATE_DEGRADED;
5600 }
5601 case 5:
5602 if (failed < 2)
5603 return IMSM_T_STATE_DEGRADED;
5604 else
5605 return IMSM_T_STATE_FAILED;
5606 break;
5607 default:
5608 break;
5609 }
5610
5611 return map->map_state;
5612 }
5613
5614 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
5615 {
5616 int i;
5617 int failed = 0;
5618 struct imsm_disk *disk;
5619 struct imsm_map *map = get_imsm_map(dev, 0);
5620 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5621 __u32 ord;
5622 int idx;
5623
5624 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5625 * disks that are being rebuilt. New failures are recorded to
5626 * map[0]. So we look through all the disks we started with and
5627 * see if any failures are still present, or if any new ones
5628 * have arrived
5629 *
5630 * FIXME add support for online capacity expansion and
5631 * raid-level-migration
5632 */
5633 for (i = 0; i < prev->num_members; i++) {
5634 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5635 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5636 idx = ord_to_idx(ord);
5637
5638 disk = get_imsm_disk(super, idx);
5639 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5640 failed++;
5641 }
5642
5643 return failed;
5644 }
5645
5646 #ifndef MDASSEMBLE
5647 static int imsm_open_new(struct supertype *c, struct active_array *a,
5648 char *inst)
5649 {
5650 struct intel_super *super = c->sb;
5651 struct imsm_super *mpb = super->anchor;
5652
5653 if (atoi(inst) >= mpb->num_raid_devs) {
5654 fprintf(stderr, "%s: subarry index %d, out of range\n",
5655 __func__, atoi(inst));
5656 return -ENODEV;
5657 }
5658
5659 dprintf("imsm: open_new %s\n", inst);
5660 a->info.container_member = atoi(inst);
5661 return 0;
5662 }
5663
5664 static int is_resyncing(struct imsm_dev *dev)
5665 {
5666 struct imsm_map *migr_map;
5667
5668 if (!dev->vol.migr_state)
5669 return 0;
5670
5671 if (migr_type(dev) == MIGR_INIT ||
5672 migr_type(dev) == MIGR_REPAIR)
5673 return 1;
5674
5675 if (migr_type(dev) == MIGR_GEN_MIGR)
5676 return 0;
5677
5678 migr_map = get_imsm_map(dev, 1);
5679
5680 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5681 (dev->vol.migr_type != MIGR_GEN_MIGR))
5682 return 1;
5683 else
5684 return 0;
5685 }
5686
5687 /* return true if we recorded new information */
5688 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5689 {
5690 __u32 ord;
5691 int slot;
5692 struct imsm_map *map;
5693
5694 /* new failures are always set in map[0] */
5695 map = get_imsm_map(dev, 0);
5696
5697 slot = get_imsm_disk_slot(map, idx);
5698 if (slot < 0)
5699 return 0;
5700
5701 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
5702 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
5703 return 0;
5704
5705 disk->status |= FAILED_DISK;
5706 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
5707 if (map->failed_disk_num == 0xff)
5708 map->failed_disk_num = slot;
5709 return 1;
5710 }
5711
5712 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5713 {
5714 mark_failure(dev, disk, idx);
5715
5716 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
5717 return;
5718
5719 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5720 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
5721 }
5722
5723 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
5724 {
5725 __u8 map_state;
5726 struct dl *dl;
5727 int failed;
5728
5729 if (!super->missing)
5730 return;
5731 failed = imsm_count_failed(super, dev);
5732 map_state = imsm_check_degraded(super, dev, failed);
5733
5734 dprintf("imsm: mark missing\n");
5735 end_migration(dev, map_state);
5736 for (dl = super->missing; dl; dl = dl->next)
5737 mark_missing(dev, &dl->disk, dl->index);
5738 super->updates_pending++;
5739 }
5740
5741 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
5742 {
5743 int used_disks = imsm_num_data_members(dev, 0);
5744 unsigned long long array_blocks;
5745 struct imsm_map *map;
5746
5747 if (used_disks == 0) {
5748 /* when problems occures
5749 * return current array_blocks value
5750 */
5751 array_blocks = __le32_to_cpu(dev->size_high);
5752 array_blocks = array_blocks << 32;
5753 array_blocks += __le32_to_cpu(dev->size_low);
5754
5755 return array_blocks;
5756 }
5757
5758 /* set array size in metadata
5759 */
5760 map = get_imsm_map(dev, 0);
5761 array_blocks = map->blocks_per_member * used_disks;
5762
5763 /* round array size down to closest MB
5764 */
5765 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5766 dev->size_low = __cpu_to_le32((__u32)array_blocks);
5767 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
5768
5769 return array_blocks;
5770 }
5771
5772 static void imsm_set_disk(struct active_array *a, int n, int state);
5773
5774 static void imsm_progress_container_reshape(struct intel_super *super)
5775 {
5776 /* if no device has a migr_state, but some device has a
5777 * different number of members than the previous device, start
5778 * changing the number of devices in this device to match
5779 * previous.
5780 */
5781 struct imsm_super *mpb = super->anchor;
5782 int prev_disks = -1;
5783 int i;
5784 int copy_map_size;
5785
5786 for (i = 0; i < mpb->num_raid_devs; i++) {
5787 struct imsm_dev *dev = get_imsm_dev(super, i);
5788 struct imsm_map *map = get_imsm_map(dev, 0);
5789 struct imsm_map *map2;
5790 int prev_num_members;
5791
5792 if (dev->vol.migr_state)
5793 return;
5794
5795 if (prev_disks == -1)
5796 prev_disks = map->num_members;
5797 if (prev_disks == map->num_members)
5798 continue;
5799
5800 /* OK, this array needs to enter reshape mode.
5801 * i.e it needs a migr_state
5802 */
5803
5804 copy_map_size = sizeof_imsm_map(map);
5805 prev_num_members = map->num_members;
5806 map->num_members = prev_disks;
5807 dev->vol.migr_state = 1;
5808 dev->vol.curr_migr_unit = 0;
5809 dev->vol.migr_type = MIGR_GEN_MIGR;
5810 for (i = prev_num_members;
5811 i < map->num_members; i++)
5812 set_imsm_ord_tbl_ent(map, i, i);
5813 map2 = get_imsm_map(dev, 1);
5814 /* Copy the current map */
5815 memcpy(map2, map, copy_map_size);
5816 map2->num_members = prev_num_members;
5817
5818 imsm_set_array_size(dev);
5819 super->updates_pending++;
5820 }
5821 }
5822
5823 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
5824 * states are handled in imsm_set_disk() with one exception, when a
5825 * resync is stopped due to a new failure this routine will set the
5826 * 'degraded' state for the array.
5827 */
5828 static int imsm_set_array_state(struct active_array *a, int consistent)
5829 {
5830 int inst = a->info.container_member;
5831 struct intel_super *super = a->container->sb;
5832 struct imsm_dev *dev = get_imsm_dev(super, inst);
5833 struct imsm_map *map = get_imsm_map(dev, 0);
5834 int failed = imsm_count_failed(super, dev);
5835 __u8 map_state = imsm_check_degraded(super, dev, failed);
5836 __u32 blocks_per_unit;
5837
5838 if (dev->vol.migr_state &&
5839 dev->vol.migr_type == MIGR_GEN_MIGR) {
5840 /* array state change is blocked due to reshape action
5841 * We might need to
5842 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
5843 * - finish the reshape (if last_checkpoint is big and action != reshape)
5844 * - update curr_migr_unit
5845 */
5846 if (a->curr_action == reshape) {
5847 /* still reshaping, maybe update curr_migr_unit */
5848 goto mark_checkpoint;
5849 } else {
5850 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
5851 /* for some reason we aborted the reshape.
5852 * Better clean up
5853 */
5854 struct imsm_map *map2 = get_imsm_map(dev, 1);
5855 dev->vol.migr_state = 0;
5856 dev->vol.migr_type = 0;
5857 dev->vol.curr_migr_unit = 0;
5858 memcpy(map, map2, sizeof_imsm_map(map2));
5859 super->updates_pending++;
5860 }
5861 if (a->last_checkpoint >= a->info.component_size) {
5862 unsigned long long array_blocks;
5863 int used_disks;
5864 struct mdinfo *mdi;
5865
5866 used_disks = imsm_num_data_members(dev, 0);
5867 if (used_disks > 0) {
5868 array_blocks =
5869 map->blocks_per_member *
5870 used_disks;
5871 /* round array size down to closest MB
5872 */
5873 array_blocks = (array_blocks
5874 >> SECT_PER_MB_SHIFT)
5875 << SECT_PER_MB_SHIFT;
5876 a->info.custom_array_size = array_blocks;
5877 /* encourage manager to update array
5878 * size
5879 */
5880
5881 a->check_reshape = 1;
5882 }
5883 /* finalize online capacity expansion/reshape */
5884 for (mdi = a->info.devs; mdi; mdi = mdi->next)
5885 imsm_set_disk(a,
5886 mdi->disk.raid_disk,
5887 mdi->curr_state);
5888
5889 imsm_progress_container_reshape(super);
5890 }
5891 }
5892 }
5893
5894 /* before we activate this array handle any missing disks */
5895 if (consistent == 2)
5896 handle_missing(super, dev);
5897
5898 if (consistent == 2 &&
5899 (!is_resync_complete(&a->info) ||
5900 map_state != IMSM_T_STATE_NORMAL ||
5901 dev->vol.migr_state))
5902 consistent = 0;
5903
5904 if (is_resync_complete(&a->info)) {
5905 /* complete intialization / resync,
5906 * recovery and interrupted recovery is completed in
5907 * ->set_disk
5908 */
5909 if (is_resyncing(dev)) {
5910 dprintf("imsm: mark resync done\n");
5911 end_migration(dev, map_state);
5912 super->updates_pending++;
5913 a->last_checkpoint = 0;
5914 }
5915 } else if (!is_resyncing(dev) && !failed) {
5916 /* mark the start of the init process if nothing is failed */
5917 dprintf("imsm: mark resync start\n");
5918 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
5919 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
5920 else
5921 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
5922 super->updates_pending++;
5923 }
5924
5925 mark_checkpoint:
5926 /* skip checkpointing for general migration,
5927 * it is controlled in mdadm
5928 */
5929 if (is_gen_migration(dev))
5930 goto skip_mark_checkpoint;
5931
5932 /* check if we can update curr_migr_unit from resync_start, recovery_start */
5933 blocks_per_unit = blocks_per_migr_unit(super, dev);
5934 if (blocks_per_unit) {
5935 __u32 units32;
5936 __u64 units;
5937
5938 units = a->last_checkpoint / blocks_per_unit;
5939 units32 = units;
5940
5941 /* check that we did not overflow 32-bits, and that
5942 * curr_migr_unit needs updating
5943 */
5944 if (units32 == units &&
5945 units32 != 0 &&
5946 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
5947 dprintf("imsm: mark checkpoint (%u)\n", units32);
5948 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
5949 super->updates_pending++;
5950 }
5951 }
5952
5953 skip_mark_checkpoint:
5954 /* mark dirty / clean */
5955 if (dev->vol.dirty != !consistent) {
5956 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
5957 if (consistent)
5958 dev->vol.dirty = 0;
5959 else
5960 dev->vol.dirty = 1;
5961 super->updates_pending++;
5962 }
5963
5964 return consistent;
5965 }
5966
5967 static void imsm_set_disk(struct active_array *a, int n, int state)
5968 {
5969 int inst = a->info.container_member;
5970 struct intel_super *super = a->container->sb;
5971 struct imsm_dev *dev = get_imsm_dev(super, inst);
5972 struct imsm_map *map = get_imsm_map(dev, 0);
5973 struct imsm_disk *disk;
5974 int failed;
5975 __u32 ord;
5976 __u8 map_state;
5977
5978 if (n > map->num_members)
5979 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
5980 n, map->num_members - 1);
5981
5982 if (n < 0)
5983 return;
5984
5985 dprintf("imsm: set_disk %d:%x\n", n, state);
5986
5987 ord = get_imsm_ord_tbl_ent(dev, n, -1);
5988 disk = get_imsm_disk(super, ord_to_idx(ord));
5989
5990 /* check for new failures */
5991 if (state & DS_FAULTY) {
5992 if (mark_failure(dev, disk, ord_to_idx(ord)))
5993 super->updates_pending++;
5994 }
5995
5996 /* check if in_sync */
5997 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
5998 struct imsm_map *migr_map = get_imsm_map(dev, 1);
5999
6000 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
6001 super->updates_pending++;
6002 }
6003
6004 failed = imsm_count_failed(super, dev);
6005 map_state = imsm_check_degraded(super, dev, failed);
6006
6007 /* check if recovery complete, newly degraded, or failed */
6008 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
6009 end_migration(dev, map_state);
6010 map = get_imsm_map(dev, 0);
6011 map->failed_disk_num = ~0;
6012 super->updates_pending++;
6013 a->last_checkpoint = 0;
6014 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6015 map->map_state != map_state &&
6016 !dev->vol.migr_state) {
6017 dprintf("imsm: mark degraded\n");
6018 map->map_state = map_state;
6019 super->updates_pending++;
6020 a->last_checkpoint = 0;
6021 } else if (map_state == IMSM_T_STATE_FAILED &&
6022 map->map_state != map_state) {
6023 dprintf("imsm: mark failed\n");
6024 end_migration(dev, map_state);
6025 super->updates_pending++;
6026 a->last_checkpoint = 0;
6027 } else if (is_gen_migration(dev)) {
6028 dprintf("imsm: Detected General Migration in state: ");
6029 if (map_state == IMSM_T_STATE_NORMAL) {
6030 end_migration(dev, map_state);
6031 map = get_imsm_map(dev, 0);
6032 map->failed_disk_num = ~0;
6033 dprintf("normal\n");
6034 } else {
6035 if (map_state == IMSM_T_STATE_DEGRADED) {
6036 printf("degraded\n");
6037 end_migration(dev, map_state);
6038 } else {
6039 dprintf("failed\n");
6040 }
6041 map->map_state = map_state;
6042 }
6043 super->updates_pending++;
6044 }
6045 }
6046
6047 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
6048 {
6049 void *buf = mpb;
6050 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6051 unsigned long long dsize;
6052 unsigned long long sectors;
6053
6054 get_dev_size(fd, NULL, &dsize);
6055
6056 if (mpb_size > 512) {
6057 /* -1 to account for anchor */
6058 sectors = mpb_sectors(mpb) - 1;
6059
6060 /* write the extended mpb to the sectors preceeding the anchor */
6061 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6062 return 1;
6063
6064 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6065 != 512 * sectors)
6066 return 1;
6067 }
6068
6069 /* first block is stored on second to last sector of the disk */
6070 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
6071 return 1;
6072
6073 if (write(fd, buf, 512) != 512)
6074 return 1;
6075
6076 return 0;
6077 }
6078
6079 static void imsm_sync_metadata(struct supertype *container)
6080 {
6081 struct intel_super *super = container->sb;
6082
6083 dprintf("sync metadata: %d\n", super->updates_pending);
6084 if (!super->updates_pending)
6085 return;
6086
6087 write_super_imsm(container, 0);
6088
6089 super->updates_pending = 0;
6090 }
6091
6092 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6093 {
6094 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6095 int i = get_imsm_disk_idx(dev, idx, -1);
6096 struct dl *dl;
6097
6098 for (dl = super->disks; dl; dl = dl->next)
6099 if (dl->index == i)
6100 break;
6101
6102 if (dl && is_failed(&dl->disk))
6103 dl = NULL;
6104
6105 if (dl)
6106 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6107
6108 return dl;
6109 }
6110
6111 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
6112 struct active_array *a, int activate_new,
6113 struct mdinfo *additional_test_list)
6114 {
6115 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6116 int idx = get_imsm_disk_idx(dev, slot, -1);
6117 struct imsm_super *mpb = super->anchor;
6118 struct imsm_map *map;
6119 unsigned long long pos;
6120 struct mdinfo *d;
6121 struct extent *ex;
6122 int i, j;
6123 int found;
6124 __u32 array_start = 0;
6125 __u32 array_end = 0;
6126 struct dl *dl;
6127 struct mdinfo *test_list;
6128
6129 for (dl = super->disks; dl; dl = dl->next) {
6130 /* If in this array, skip */
6131 for (d = a->info.devs ; d ; d = d->next)
6132 if (d->state_fd >= 0 &&
6133 d->disk.major == dl->major &&
6134 d->disk.minor == dl->minor) {
6135 dprintf("%x:%x already in array\n",
6136 dl->major, dl->minor);
6137 break;
6138 }
6139 if (d)
6140 continue;
6141 test_list = additional_test_list;
6142 while (test_list) {
6143 if (test_list->disk.major == dl->major &&
6144 test_list->disk.minor == dl->minor) {
6145 dprintf("%x:%x already in additional test list\n",
6146 dl->major, dl->minor);
6147 break;
6148 }
6149 test_list = test_list->next;
6150 }
6151 if (test_list)
6152 continue;
6153
6154 /* skip in use or failed drives */
6155 if (is_failed(&dl->disk) || idx == dl->index ||
6156 dl->index == -2) {
6157 dprintf("%x:%x status (failed: %d index: %d)\n",
6158 dl->major, dl->minor, is_failed(&dl->disk), idx);
6159 continue;
6160 }
6161
6162 /* skip pure spares when we are looking for partially
6163 * assimilated drives
6164 */
6165 if (dl->index == -1 && !activate_new)
6166 continue;
6167
6168 /* Does this unused device have the requisite free space?
6169 * It needs to be able to cover all member volumes
6170 */
6171 ex = get_extents(super, dl);
6172 if (!ex) {
6173 dprintf("cannot get extents\n");
6174 continue;
6175 }
6176 for (i = 0; i < mpb->num_raid_devs; i++) {
6177 dev = get_imsm_dev(super, i);
6178 map = get_imsm_map(dev, 0);
6179
6180 /* check if this disk is already a member of
6181 * this array
6182 */
6183 if (get_imsm_disk_slot(map, dl->index) >= 0)
6184 continue;
6185
6186 found = 0;
6187 j = 0;
6188 pos = 0;
6189 array_start = __le32_to_cpu(map->pba_of_lba0);
6190 array_end = array_start +
6191 __le32_to_cpu(map->blocks_per_member) - 1;
6192
6193 do {
6194 /* check that we can start at pba_of_lba0 with
6195 * blocks_per_member of space
6196 */
6197 if (array_start >= pos && array_end < ex[j].start) {
6198 found = 1;
6199 break;
6200 }
6201 pos = ex[j].start + ex[j].size;
6202 j++;
6203 } while (ex[j-1].size);
6204
6205 if (!found)
6206 break;
6207 }
6208
6209 free(ex);
6210 if (i < mpb->num_raid_devs) {
6211 dprintf("%x:%x does not have %u to %u available\n",
6212 dl->major, dl->minor, array_start, array_end);
6213 /* No room */
6214 continue;
6215 }
6216 return dl;
6217 }
6218
6219 return dl;
6220 }
6221
6222
6223 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6224 {
6225 struct imsm_dev *dev2;
6226 struct imsm_map *map;
6227 struct dl *idisk;
6228 int slot;
6229 int idx;
6230 __u8 state;
6231
6232 dev2 = get_imsm_dev(cont->sb, dev_idx);
6233 if (dev2) {
6234 state = imsm_check_degraded(cont->sb, dev2, failed);
6235 if (state == IMSM_T_STATE_FAILED) {
6236 map = get_imsm_map(dev2, 0);
6237 if (!map)
6238 return 1;
6239 for (slot = 0; slot < map->num_members; slot++) {
6240 /*
6241 * Check if failed disks are deleted from intel
6242 * disk list or are marked to be deleted
6243 */
6244 idx = get_imsm_disk_idx(dev2, slot, -1);
6245 idisk = get_imsm_dl_disk(cont->sb, idx);
6246 /*
6247 * Do not rebuild the array if failed disks
6248 * from failed sub-array are not removed from
6249 * container.
6250 */
6251 if (idisk &&
6252 is_failed(&idisk->disk) &&
6253 (idisk->action != DISK_REMOVE))
6254 return 0;
6255 }
6256 }
6257 }
6258 return 1;
6259 }
6260
6261 static struct mdinfo *imsm_activate_spare(struct active_array *a,
6262 struct metadata_update **updates)
6263 {
6264 /**
6265 * Find a device with unused free space and use it to replace a
6266 * failed/vacant region in an array. We replace failed regions one a
6267 * array at a time. The result is that a new spare disk will be added
6268 * to the first failed array and after the monitor has finished
6269 * propagating failures the remainder will be consumed.
6270 *
6271 * FIXME add a capability for mdmon to request spares from another
6272 * container.
6273 */
6274
6275 struct intel_super *super = a->container->sb;
6276 int inst = a->info.container_member;
6277 struct imsm_dev *dev = get_imsm_dev(super, inst);
6278 struct imsm_map *map = get_imsm_map(dev, 0);
6279 int failed = a->info.array.raid_disks;
6280 struct mdinfo *rv = NULL;
6281 struct mdinfo *d;
6282 struct mdinfo *di;
6283 struct metadata_update *mu;
6284 struct dl *dl;
6285 struct imsm_update_activate_spare *u;
6286 int num_spares = 0;
6287 int i;
6288 int allowed;
6289
6290 for (d = a->info.devs ; d ; d = d->next) {
6291 if ((d->curr_state & DS_FAULTY) &&
6292 d->state_fd >= 0)
6293 /* wait for Removal to happen */
6294 return NULL;
6295 if (d->state_fd >= 0)
6296 failed--;
6297 }
6298
6299 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6300 inst, failed, a->info.array.raid_disks, a->info.array.level);
6301
6302 if (dev->vol.migr_state &&
6303 dev->vol.migr_type == MIGR_GEN_MIGR)
6304 /* No repair during migration */
6305 return NULL;
6306
6307 if (a->info.array.level == 4)
6308 /* No repair for takeovered array
6309 * imsm doesn't support raid4
6310 */
6311 return NULL;
6312
6313 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
6314 return NULL;
6315
6316 /*
6317 * If there are any failed disks check state of the other volume.
6318 * Block rebuild if the another one is failed until failed disks
6319 * are removed from container.
6320 */
6321 if (failed) {
6322 dprintf("found failed disks in %s, check if there another"
6323 "failed sub-array.\n",
6324 dev->volume);
6325 /* check if states of the other volumes allow for rebuild */
6326 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6327 if (i != inst) {
6328 allowed = imsm_rebuild_allowed(a->container,
6329 i, failed);
6330 if (!allowed)
6331 return NULL;
6332 }
6333 }
6334 }
6335
6336 /* For each slot, if it is not working, find a spare */
6337 for (i = 0; i < a->info.array.raid_disks; i++) {
6338 for (d = a->info.devs ; d ; d = d->next)
6339 if (d->disk.raid_disk == i)
6340 break;
6341 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6342 if (d && (d->state_fd >= 0))
6343 continue;
6344
6345 /*
6346 * OK, this device needs recovery. Try to re-add the
6347 * previous occupant of this slot, if this fails see if
6348 * we can continue the assimilation of a spare that was
6349 * partially assimilated, finally try to activate a new
6350 * spare.
6351 */
6352 dl = imsm_readd(super, i, a);
6353 if (!dl)
6354 dl = imsm_add_spare(super, i, a, 0, NULL);
6355 if (!dl)
6356 dl = imsm_add_spare(super, i, a, 1, NULL);
6357 if (!dl)
6358 continue;
6359
6360 /* found a usable disk with enough space */
6361 di = malloc(sizeof(*di));
6362 if (!di)
6363 continue;
6364 memset(di, 0, sizeof(*di));
6365
6366 /* dl->index will be -1 in the case we are activating a
6367 * pristine spare. imsm_process_update() will create a
6368 * new index in this case. Once a disk is found to be
6369 * failed in all member arrays it is kicked from the
6370 * metadata
6371 */
6372 di->disk.number = dl->index;
6373
6374 /* (ab)use di->devs to store a pointer to the device
6375 * we chose
6376 */
6377 di->devs = (struct mdinfo *) dl;
6378
6379 di->disk.raid_disk = i;
6380 di->disk.major = dl->major;
6381 di->disk.minor = dl->minor;
6382 di->disk.state = 0;
6383 di->recovery_start = 0;
6384 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6385 di->component_size = a->info.component_size;
6386 di->container_member = inst;
6387 super->random = random32();
6388 di->next = rv;
6389 rv = di;
6390 num_spares++;
6391 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6392 i, di->data_offset);
6393
6394 break;
6395 }
6396
6397 if (!rv)
6398 /* No spares found */
6399 return rv;
6400 /* Now 'rv' has a list of devices to return.
6401 * Create a metadata_update record to update the
6402 * disk_ord_tbl for the array
6403 */
6404 mu = malloc(sizeof(*mu));
6405 if (mu) {
6406 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6407 if (mu->buf == NULL) {
6408 free(mu);
6409 mu = NULL;
6410 }
6411 }
6412 if (!mu) {
6413 while (rv) {
6414 struct mdinfo *n = rv->next;
6415
6416 free(rv);
6417 rv = n;
6418 }
6419 return NULL;
6420 }
6421
6422 mu->space = NULL;
6423 mu->space_list = NULL;
6424 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6425 mu->next = *updates;
6426 u = (struct imsm_update_activate_spare *) mu->buf;
6427
6428 for (di = rv ; di ; di = di->next) {
6429 u->type = update_activate_spare;
6430 u->dl = (struct dl *) di->devs;
6431 di->devs = NULL;
6432 u->slot = di->disk.raid_disk;
6433 u->array = inst;
6434 u->next = u + 1;
6435 u++;
6436 }
6437 (u-1)->next = NULL;
6438 *updates = mu;
6439
6440 return rv;
6441 }
6442
6443 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
6444 {
6445 struct imsm_dev *dev = get_imsm_dev(super, idx);
6446 struct imsm_map *map = get_imsm_map(dev, 0);
6447 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6448 struct disk_info *inf = get_disk_info(u);
6449 struct imsm_disk *disk;
6450 int i;
6451 int j;
6452
6453 for (i = 0; i < map->num_members; i++) {
6454 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
6455 for (j = 0; j < new_map->num_members; j++)
6456 if (serialcmp(disk->serial, inf[j].serial) == 0)
6457 return 1;
6458 }
6459
6460 return 0;
6461 }
6462
6463
6464 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6465 {
6466 struct dl *dl = NULL;
6467 for (dl = super->disks; dl; dl = dl->next)
6468 if ((dl->major == major) && (dl->minor == minor))
6469 return dl;
6470 return NULL;
6471 }
6472
6473 static int remove_disk_super(struct intel_super *super, int major, int minor)
6474 {
6475 struct dl *prev = NULL;
6476 struct dl *dl;
6477
6478 prev = NULL;
6479 for (dl = super->disks; dl; dl = dl->next) {
6480 if ((dl->major == major) && (dl->minor == minor)) {
6481 /* remove */
6482 if (prev)
6483 prev->next = dl->next;
6484 else
6485 super->disks = dl->next;
6486 dl->next = NULL;
6487 __free_imsm_disk(dl);
6488 dprintf("%s: removed %x:%x\n",
6489 __func__, major, minor);
6490 break;
6491 }
6492 prev = dl;
6493 }
6494 return 0;
6495 }
6496
6497 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
6498
6499 static int add_remove_disk_update(struct intel_super *super)
6500 {
6501 int check_degraded = 0;
6502 struct dl *disk = NULL;
6503 /* add/remove some spares to/from the metadata/contrainer */
6504 while (super->disk_mgmt_list) {
6505 struct dl *disk_cfg;
6506
6507 disk_cfg = super->disk_mgmt_list;
6508 super->disk_mgmt_list = disk_cfg->next;
6509 disk_cfg->next = NULL;
6510
6511 if (disk_cfg->action == DISK_ADD) {
6512 disk_cfg->next = super->disks;
6513 super->disks = disk_cfg;
6514 check_degraded = 1;
6515 dprintf("%s: added %x:%x\n",
6516 __func__, disk_cfg->major,
6517 disk_cfg->minor);
6518 } else if (disk_cfg->action == DISK_REMOVE) {
6519 dprintf("Disk remove action processed: %x.%x\n",
6520 disk_cfg->major, disk_cfg->minor);
6521 disk = get_disk_super(super,
6522 disk_cfg->major,
6523 disk_cfg->minor);
6524 if (disk) {
6525 /* store action status */
6526 disk->action = DISK_REMOVE;
6527 /* remove spare disks only */
6528 if (disk->index == -1) {
6529 remove_disk_super(super,
6530 disk_cfg->major,
6531 disk_cfg->minor);
6532 }
6533 }
6534 /* release allocate disk structure */
6535 __free_imsm_disk(disk_cfg);
6536 }
6537 }
6538 return check_degraded;
6539 }
6540
6541
6542 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6543 struct intel_super *super,
6544 void ***space_list)
6545 {
6546 struct intel_dev *id;
6547 void **tofree = NULL;
6548 int ret_val = 0;
6549
6550 dprintf("apply_reshape_migration_update()\n");
6551 if ((u->subdev < 0) ||
6552 (u->subdev > 1)) {
6553 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6554 return ret_val;
6555 }
6556 if ((space_list == NULL) || (*space_list == NULL)) {
6557 dprintf("imsm: Error: Memory is not allocated\n");
6558 return ret_val;
6559 }
6560
6561 for (id = super->devlist ; id; id = id->next) {
6562 if (id->index == (unsigned)u->subdev) {
6563 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6564 struct imsm_map *map;
6565 struct imsm_dev *new_dev =
6566 (struct imsm_dev *)*space_list;
6567 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6568 int to_state;
6569 struct dl *new_disk;
6570
6571 if (new_dev == NULL)
6572 return ret_val;
6573 *space_list = **space_list;
6574 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6575 map = get_imsm_map(new_dev, 0);
6576 if (migr_map) {
6577 dprintf("imsm: Error: migration in progress");
6578 return ret_val;
6579 }
6580
6581 to_state = map->map_state;
6582 if ((u->new_level == 5) && (map->raid_level == 0)) {
6583 map->num_members++;
6584 /* this should not happen */
6585 if (u->new_disks[0] < 0) {
6586 map->failed_disk_num =
6587 map->num_members - 1;
6588 to_state = IMSM_T_STATE_DEGRADED;
6589 } else
6590 to_state = IMSM_T_STATE_NORMAL;
6591 }
6592 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
6593 if (u->new_level > -1)
6594 map->raid_level = u->new_level;
6595 migr_map = get_imsm_map(new_dev, 1);
6596 if ((u->new_level == 5) &&
6597 (migr_map->raid_level == 0)) {
6598 int ord = map->num_members - 1;
6599 migr_map->num_members--;
6600 if (u->new_disks[0] < 0)
6601 ord |= IMSM_ORD_REBUILD;
6602 set_imsm_ord_tbl_ent(map,
6603 map->num_members - 1,
6604 ord);
6605 }
6606 id->dev = new_dev;
6607 tofree = (void **)dev;
6608
6609 /* update chunk size
6610 */
6611 if (u->new_chunksize > 0)
6612 map->blocks_per_strip =
6613 __cpu_to_le16(u->new_chunksize * 2);
6614
6615 /* add disk
6616 */
6617 if ((u->new_level != 5) ||
6618 (migr_map->raid_level != 0) ||
6619 (migr_map->raid_level == map->raid_level))
6620 goto skip_disk_add;
6621
6622 if (u->new_disks[0] >= 0) {
6623 /* use passes spare
6624 */
6625 new_disk = get_disk_super(super,
6626 major(u->new_disks[0]),
6627 minor(u->new_disks[0]));
6628 dprintf("imsm: new disk for reshape is: %i:%i "
6629 "(%p, index = %i)\n",
6630 major(u->new_disks[0]),
6631 minor(u->new_disks[0]),
6632 new_disk, new_disk->index);
6633 if (new_disk == NULL)
6634 goto error_disk_add;
6635
6636 new_disk->index = map->num_members - 1;
6637 /* slot to fill in autolayout
6638 */
6639 new_disk->raiddisk = new_disk->index;
6640 new_disk->disk.status |= CONFIGURED_DISK;
6641 new_disk->disk.status &= ~SPARE_DISK;
6642 } else
6643 goto error_disk_add;
6644
6645 skip_disk_add:
6646 *tofree = *space_list;
6647 /* calculate new size
6648 */
6649 imsm_set_array_size(new_dev);
6650
6651 ret_val = 1;
6652 }
6653 }
6654
6655 if (tofree)
6656 *space_list = tofree;
6657 return ret_val;
6658
6659 error_disk_add:
6660 dprintf("Error: imsm: Cannot find disk.\n");
6661 return ret_val;
6662 }
6663
6664
6665 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
6666 struct intel_super *super,
6667 void ***space_list)
6668 {
6669 struct dl *new_disk;
6670 struct intel_dev *id;
6671 int i;
6672 int delta_disks = u->new_raid_disks - u->old_raid_disks;
6673 int disk_count = u->old_raid_disks;
6674 void **tofree = NULL;
6675 int devices_to_reshape = 1;
6676 struct imsm_super *mpb = super->anchor;
6677 int ret_val = 0;
6678 unsigned int dev_id;
6679
6680 dprintf("imsm: apply_reshape_container_disks_update()\n");
6681
6682 /* enable spares to use in array */
6683 for (i = 0; i < delta_disks; i++) {
6684 new_disk = get_disk_super(super,
6685 major(u->new_disks[i]),
6686 minor(u->new_disks[i]));
6687 dprintf("imsm: new disk for reshape is: %i:%i "
6688 "(%p, index = %i)\n",
6689 major(u->new_disks[i]), minor(u->new_disks[i]),
6690 new_disk, new_disk->index);
6691 if ((new_disk == NULL) ||
6692 ((new_disk->index >= 0) &&
6693 (new_disk->index < u->old_raid_disks)))
6694 goto update_reshape_exit;
6695 new_disk->index = disk_count++;
6696 /* slot to fill in autolayout
6697 */
6698 new_disk->raiddisk = new_disk->index;
6699 new_disk->disk.status |=
6700 CONFIGURED_DISK;
6701 new_disk->disk.status &= ~SPARE_DISK;
6702 }
6703
6704 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
6705 mpb->num_raid_devs);
6706 /* manage changes in volume
6707 */
6708 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
6709 void **sp = *space_list;
6710 struct imsm_dev *newdev;
6711 struct imsm_map *newmap, *oldmap;
6712
6713 for (id = super->devlist ; id; id = id->next) {
6714 if (id->index == dev_id)
6715 break;
6716 }
6717 if (id == NULL)
6718 break;
6719 if (!sp)
6720 continue;
6721 *space_list = *sp;
6722 newdev = (void*)sp;
6723 /* Copy the dev, but not (all of) the map */
6724 memcpy(newdev, id->dev, sizeof(*newdev));
6725 oldmap = get_imsm_map(id->dev, 0);
6726 newmap = get_imsm_map(newdev, 0);
6727 /* Copy the current map */
6728 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6729 /* update one device only
6730 */
6731 if (devices_to_reshape) {
6732 dprintf("imsm: modifying subdev: %i\n",
6733 id->index);
6734 devices_to_reshape--;
6735 newdev->vol.migr_state = 1;
6736 newdev->vol.curr_migr_unit = 0;
6737 newdev->vol.migr_type = MIGR_GEN_MIGR;
6738 newmap->num_members = u->new_raid_disks;
6739 for (i = 0; i < delta_disks; i++) {
6740 set_imsm_ord_tbl_ent(newmap,
6741 u->old_raid_disks + i,
6742 u->old_raid_disks + i);
6743 }
6744 /* New map is correct, now need to save old map
6745 */
6746 newmap = get_imsm_map(newdev, 1);
6747 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6748
6749 imsm_set_array_size(newdev);
6750 }
6751
6752 sp = (void **)id->dev;
6753 id->dev = newdev;
6754 *sp = tofree;
6755 tofree = sp;
6756
6757 /* Clear migration record */
6758 memset(super->migr_rec, 0, sizeof(struct migr_record));
6759 }
6760 if (tofree)
6761 *space_list = tofree;
6762 ret_val = 1;
6763
6764 update_reshape_exit:
6765
6766 return ret_val;
6767 }
6768
6769 static int apply_takeover_update(struct imsm_update_takeover *u,
6770 struct intel_super *super,
6771 void ***space_list)
6772 {
6773 struct imsm_dev *dev = NULL;
6774 struct intel_dev *dv;
6775 struct imsm_dev *dev_new;
6776 struct imsm_map *map;
6777 struct dl *dm, *du;
6778 int i;
6779
6780 for (dv = super->devlist; dv; dv = dv->next)
6781 if (dv->index == (unsigned int)u->subarray) {
6782 dev = dv->dev;
6783 break;
6784 }
6785
6786 if (dev == NULL)
6787 return 0;
6788
6789 map = get_imsm_map(dev, 0);
6790
6791 if (u->direction == R10_TO_R0) {
6792 /* Number of failed disks must be half of initial disk number */
6793 if (imsm_count_failed(super, dev) != (map->num_members / 2))
6794 return 0;
6795
6796 /* iterate through devices to mark removed disks as spare */
6797 for (dm = super->disks; dm; dm = dm->next) {
6798 if (dm->disk.status & FAILED_DISK) {
6799 int idx = dm->index;
6800 /* update indexes on the disk list */
6801 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
6802 the index values will end up being correct.... NB */
6803 for (du = super->disks; du; du = du->next)
6804 if (du->index > idx)
6805 du->index--;
6806 /* mark as spare disk */
6807 dm->disk.status = SPARE_DISK;
6808 dm->index = -1;
6809 }
6810 }
6811 /* update map */
6812 map->num_members = map->num_members / 2;
6813 map->map_state = IMSM_T_STATE_NORMAL;
6814 map->num_domains = 1;
6815 map->raid_level = 0;
6816 map->failed_disk_num = -1;
6817 }
6818
6819 if (u->direction == R0_TO_R10) {
6820 void **space;
6821 /* update slots in current disk list */
6822 for (dm = super->disks; dm; dm = dm->next) {
6823 if (dm->index >= 0)
6824 dm->index *= 2;
6825 }
6826 /* create new *missing* disks */
6827 for (i = 0; i < map->num_members; i++) {
6828 space = *space_list;
6829 if (!space)
6830 continue;
6831 *space_list = *space;
6832 du = (void *)space;
6833 memcpy(du, super->disks, sizeof(*du));
6834 du->fd = -1;
6835 du->minor = 0;
6836 du->major = 0;
6837 du->index = (i * 2) + 1;
6838 sprintf((char *)du->disk.serial,
6839 " MISSING_%d", du->index);
6840 sprintf((char *)du->serial,
6841 "MISSING_%d", du->index);
6842 du->next = super->missing;
6843 super->missing = du;
6844 }
6845 /* create new dev and map */
6846 space = *space_list;
6847 if (!space)
6848 return 0;
6849 *space_list = *space;
6850 dev_new = (void *)space;
6851 memcpy(dev_new, dev, sizeof(*dev));
6852 /* update new map */
6853 map = get_imsm_map(dev_new, 0);
6854 map->num_members = map->num_members * 2;
6855 map->map_state = IMSM_T_STATE_DEGRADED;
6856 map->num_domains = 2;
6857 map->raid_level = 1;
6858 /* replace dev<->dev_new */
6859 dv->dev = dev_new;
6860 }
6861 /* update disk order table */
6862 for (du = super->disks; du; du = du->next)
6863 if (du->index >= 0)
6864 set_imsm_ord_tbl_ent(map, du->index, du->index);
6865 for (du = super->missing; du; du = du->next)
6866 if (du->index >= 0) {
6867 set_imsm_ord_tbl_ent(map, du->index, du->index);
6868 mark_missing(dev_new, &du->disk, du->index);
6869 }
6870
6871 return 1;
6872 }
6873
6874 static void imsm_process_update(struct supertype *st,
6875 struct metadata_update *update)
6876 {
6877 /**
6878 * crack open the metadata_update envelope to find the update record
6879 * update can be one of:
6880 * update_reshape_container_disks - all the arrays in the container
6881 * are being reshaped to have more devices. We need to mark
6882 * the arrays for general migration and convert selected spares
6883 * into active devices.
6884 * update_activate_spare - a spare device has replaced a failed
6885 * device in an array, update the disk_ord_tbl. If this disk is
6886 * present in all member arrays then also clear the SPARE_DISK
6887 * flag
6888 * update_create_array
6889 * update_kill_array
6890 * update_rename_array
6891 * update_add_remove_disk
6892 */
6893 struct intel_super *super = st->sb;
6894 struct imsm_super *mpb;
6895 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6896
6897 /* update requires a larger buf but the allocation failed */
6898 if (super->next_len && !super->next_buf) {
6899 super->next_len = 0;
6900 return;
6901 }
6902
6903 if (super->next_buf) {
6904 memcpy(super->next_buf, super->buf, super->len);
6905 free(super->buf);
6906 super->len = super->next_len;
6907 super->buf = super->next_buf;
6908
6909 super->next_len = 0;
6910 super->next_buf = NULL;
6911 }
6912
6913 mpb = super->anchor;
6914
6915 switch (type) {
6916 case update_general_migration_checkpoint: {
6917 struct intel_dev *id;
6918 struct imsm_update_general_migration_checkpoint *u =
6919 (void *)update->buf;
6920
6921 dprintf("imsm: process_update() "
6922 "for update_general_migration_checkpoint called\n");
6923
6924 /* find device under general migration */
6925 for (id = super->devlist ; id; id = id->next) {
6926 if (is_gen_migration(id->dev)) {
6927 id->dev->vol.curr_migr_unit =
6928 __cpu_to_le32(u->curr_migr_unit);
6929 super->updates_pending++;
6930 }
6931 }
6932 break;
6933 }
6934 case update_takeover: {
6935 struct imsm_update_takeover *u = (void *)update->buf;
6936 if (apply_takeover_update(u, super, &update->space_list)) {
6937 imsm_update_version_info(super);
6938 super->updates_pending++;
6939 }
6940 break;
6941 }
6942
6943 case update_reshape_container_disks: {
6944 struct imsm_update_reshape *u = (void *)update->buf;
6945 if (apply_reshape_container_disks_update(
6946 u, super, &update->space_list))
6947 super->updates_pending++;
6948 break;
6949 }
6950 case update_reshape_migration: {
6951 struct imsm_update_reshape_migration *u = (void *)update->buf;
6952 if (apply_reshape_migration_update(
6953 u, super, &update->space_list))
6954 super->updates_pending++;
6955 break;
6956 }
6957 case update_activate_spare: {
6958 struct imsm_update_activate_spare *u = (void *) update->buf;
6959 struct imsm_dev *dev = get_imsm_dev(super, u->array);
6960 struct imsm_map *map = get_imsm_map(dev, 0);
6961 struct imsm_map *migr_map;
6962 struct active_array *a;
6963 struct imsm_disk *disk;
6964 __u8 to_state;
6965 struct dl *dl;
6966 unsigned int found;
6967 int failed;
6968 int victim = get_imsm_disk_idx(dev, u->slot, -1);
6969 int i;
6970
6971 for (dl = super->disks; dl; dl = dl->next)
6972 if (dl == u->dl)
6973 break;
6974
6975 if (!dl) {
6976 fprintf(stderr, "error: imsm_activate_spare passed "
6977 "an unknown disk (index: %d)\n",
6978 u->dl->index);
6979 return;
6980 }
6981
6982 super->updates_pending++;
6983 /* count failures (excluding rebuilds and the victim)
6984 * to determine map[0] state
6985 */
6986 failed = 0;
6987 for (i = 0; i < map->num_members; i++) {
6988 if (i == u->slot)
6989 continue;
6990 disk = get_imsm_disk(super,
6991 get_imsm_disk_idx(dev, i, -1));
6992 if (!disk || is_failed(disk))
6993 failed++;
6994 }
6995
6996 /* adding a pristine spare, assign a new index */
6997 if (dl->index < 0) {
6998 dl->index = super->anchor->num_disks;
6999 super->anchor->num_disks++;
7000 }
7001 disk = &dl->disk;
7002 disk->status |= CONFIGURED_DISK;
7003 disk->status &= ~SPARE_DISK;
7004
7005 /* mark rebuild */
7006 to_state = imsm_check_degraded(super, dev, failed);
7007 map->map_state = IMSM_T_STATE_DEGRADED;
7008 migrate(dev, super, to_state, MIGR_REBUILD);
7009 migr_map = get_imsm_map(dev, 1);
7010 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7011 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
7012
7013 /* update the family_num to mark a new container
7014 * generation, being careful to record the existing
7015 * family_num in orig_family_num to clean up after
7016 * earlier mdadm versions that neglected to set it.
7017 */
7018 if (mpb->orig_family_num == 0)
7019 mpb->orig_family_num = mpb->family_num;
7020 mpb->family_num += super->random;
7021
7022 /* count arrays using the victim in the metadata */
7023 found = 0;
7024 for (a = st->arrays; a ; a = a->next) {
7025 dev = get_imsm_dev(super, a->info.container_member);
7026 map = get_imsm_map(dev, 0);
7027
7028 if (get_imsm_disk_slot(map, victim) >= 0)
7029 found++;
7030 }
7031
7032 /* delete the victim if it is no longer being
7033 * utilized anywhere
7034 */
7035 if (!found) {
7036 struct dl **dlp;
7037
7038 /* We know that 'manager' isn't touching anything,
7039 * so it is safe to delete
7040 */
7041 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
7042 if ((*dlp)->index == victim)
7043 break;
7044
7045 /* victim may be on the missing list */
7046 if (!*dlp)
7047 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
7048 if ((*dlp)->index == victim)
7049 break;
7050 imsm_delete(super, dlp, victim);
7051 }
7052 break;
7053 }
7054 case update_create_array: {
7055 /* someone wants to create a new array, we need to be aware of
7056 * a few races/collisions:
7057 * 1/ 'Create' called by two separate instances of mdadm
7058 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7059 * devices that have since been assimilated via
7060 * activate_spare.
7061 * In the event this update can not be carried out mdadm will
7062 * (FIX ME) notice that its update did not take hold.
7063 */
7064 struct imsm_update_create_array *u = (void *) update->buf;
7065 struct intel_dev *dv;
7066 struct imsm_dev *dev;
7067 struct imsm_map *map, *new_map;
7068 unsigned long long start, end;
7069 unsigned long long new_start, new_end;
7070 int i;
7071 struct disk_info *inf;
7072 struct dl *dl;
7073
7074 /* handle racing creates: first come first serve */
7075 if (u->dev_idx < mpb->num_raid_devs) {
7076 dprintf("%s: subarray %d already defined\n",
7077 __func__, u->dev_idx);
7078 goto create_error;
7079 }
7080
7081 /* check update is next in sequence */
7082 if (u->dev_idx != mpb->num_raid_devs) {
7083 dprintf("%s: can not create array %d expected index %d\n",
7084 __func__, u->dev_idx, mpb->num_raid_devs);
7085 goto create_error;
7086 }
7087
7088 new_map = get_imsm_map(&u->dev, 0);
7089 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7090 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
7091 inf = get_disk_info(u);
7092
7093 /* handle activate_spare versus create race:
7094 * check to make sure that overlapping arrays do not include
7095 * overalpping disks
7096 */
7097 for (i = 0; i < mpb->num_raid_devs; i++) {
7098 dev = get_imsm_dev(super, i);
7099 map = get_imsm_map(dev, 0);
7100 start = __le32_to_cpu(map->pba_of_lba0);
7101 end = start + __le32_to_cpu(map->blocks_per_member);
7102 if ((new_start >= start && new_start <= end) ||
7103 (start >= new_start && start <= new_end))
7104 /* overlap */;
7105 else
7106 continue;
7107
7108 if (disks_overlap(super, i, u)) {
7109 dprintf("%s: arrays overlap\n", __func__);
7110 goto create_error;
7111 }
7112 }
7113
7114 /* check that prepare update was successful */
7115 if (!update->space) {
7116 dprintf("%s: prepare update failed\n", __func__);
7117 goto create_error;
7118 }
7119
7120 /* check that all disks are still active before committing
7121 * changes. FIXME: could we instead handle this by creating a
7122 * degraded array? That's probably not what the user expects,
7123 * so better to drop this update on the floor.
7124 */
7125 for (i = 0; i < new_map->num_members; i++) {
7126 dl = serial_to_dl(inf[i].serial, super);
7127 if (!dl) {
7128 dprintf("%s: disk disappeared\n", __func__);
7129 goto create_error;
7130 }
7131 }
7132
7133 super->updates_pending++;
7134
7135 /* convert spares to members and fixup ord_tbl */
7136 for (i = 0; i < new_map->num_members; i++) {
7137 dl = serial_to_dl(inf[i].serial, super);
7138 if (dl->index == -1) {
7139 dl->index = mpb->num_disks;
7140 mpb->num_disks++;
7141 dl->disk.status |= CONFIGURED_DISK;
7142 dl->disk.status &= ~SPARE_DISK;
7143 }
7144 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7145 }
7146
7147 dv = update->space;
7148 dev = dv->dev;
7149 update->space = NULL;
7150 imsm_copy_dev(dev, &u->dev);
7151 dv->index = u->dev_idx;
7152 dv->next = super->devlist;
7153 super->devlist = dv;
7154 mpb->num_raid_devs++;
7155
7156 imsm_update_version_info(super);
7157 break;
7158 create_error:
7159 /* mdmon knows how to release update->space, but not
7160 * ((struct intel_dev *) update->space)->dev
7161 */
7162 if (update->space) {
7163 dv = update->space;
7164 free(dv->dev);
7165 }
7166 break;
7167 }
7168 case update_kill_array: {
7169 struct imsm_update_kill_array *u = (void *) update->buf;
7170 int victim = u->dev_idx;
7171 struct active_array *a;
7172 struct intel_dev **dp;
7173 struct imsm_dev *dev;
7174
7175 /* sanity check that we are not affecting the uuid of
7176 * active arrays, or deleting an active array
7177 *
7178 * FIXME when immutable ids are available, but note that
7179 * we'll also need to fixup the invalidated/active
7180 * subarray indexes in mdstat
7181 */
7182 for (a = st->arrays; a; a = a->next)
7183 if (a->info.container_member >= victim)
7184 break;
7185 /* by definition if mdmon is running at least one array
7186 * is active in the container, so checking
7187 * mpb->num_raid_devs is just extra paranoia
7188 */
7189 dev = get_imsm_dev(super, victim);
7190 if (a || !dev || mpb->num_raid_devs == 1) {
7191 dprintf("failed to delete subarray-%d\n", victim);
7192 break;
7193 }
7194
7195 for (dp = &super->devlist; *dp;)
7196 if ((*dp)->index == (unsigned)super->current_vol) {
7197 *dp = (*dp)->next;
7198 } else {
7199 if ((*dp)->index > (unsigned)victim)
7200 (*dp)->index--;
7201 dp = &(*dp)->next;
7202 }
7203 mpb->num_raid_devs--;
7204 super->updates_pending++;
7205 break;
7206 }
7207 case update_rename_array: {
7208 struct imsm_update_rename_array *u = (void *) update->buf;
7209 char name[MAX_RAID_SERIAL_LEN+1];
7210 int target = u->dev_idx;
7211 struct active_array *a;
7212 struct imsm_dev *dev;
7213
7214 /* sanity check that we are not affecting the uuid of
7215 * an active array
7216 */
7217 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7218 name[MAX_RAID_SERIAL_LEN] = '\0';
7219 for (a = st->arrays; a; a = a->next)
7220 if (a->info.container_member == target)
7221 break;
7222 dev = get_imsm_dev(super, u->dev_idx);
7223 if (a || !dev || !check_name(super, name, 1)) {
7224 dprintf("failed to rename subarray-%d\n", target);
7225 break;
7226 }
7227
7228 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7229 super->updates_pending++;
7230 break;
7231 }
7232 case update_add_remove_disk: {
7233 /* we may be able to repair some arrays if disks are
7234 * being added, check teh status of add_remove_disk
7235 * if discs has been added.
7236 */
7237 if (add_remove_disk_update(super)) {
7238 struct active_array *a;
7239
7240 super->updates_pending++;
7241 for (a = st->arrays; a; a = a->next)
7242 a->check_degraded = 1;
7243 }
7244 break;
7245 }
7246 default:
7247 fprintf(stderr, "error: unsuported process update type:"
7248 "(type: %d)\n", type);
7249 }
7250 }
7251
7252 static struct mdinfo *get_spares_for_grow(struct supertype *st);
7253
7254 static void imsm_prepare_update(struct supertype *st,
7255 struct metadata_update *update)
7256 {
7257 /**
7258 * Allocate space to hold new disk entries, raid-device entries or a new
7259 * mpb if necessary. The manager synchronously waits for updates to
7260 * complete in the monitor, so new mpb buffers allocated here can be
7261 * integrated by the monitor thread without worrying about live pointers
7262 * in the manager thread.
7263 */
7264 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7265 struct intel_super *super = st->sb;
7266 struct imsm_super *mpb = super->anchor;
7267 size_t buf_len;
7268 size_t len = 0;
7269
7270 switch (type) {
7271 case update_general_migration_checkpoint:
7272 dprintf("imsm: prepare_update() "
7273 "for update_general_migration_checkpoint called\n");
7274 break;
7275 case update_takeover: {
7276 struct imsm_update_takeover *u = (void *)update->buf;
7277 if (u->direction == R0_TO_R10) {
7278 void **tail = (void **)&update->space_list;
7279 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7280 struct imsm_map *map = get_imsm_map(dev, 0);
7281 int num_members = map->num_members;
7282 void *space;
7283 int size, i;
7284 int err = 0;
7285 /* allocate memory for added disks */
7286 for (i = 0; i < num_members; i++) {
7287 size = sizeof(struct dl);
7288 space = malloc(size);
7289 if (!space) {
7290 err++;
7291 break;
7292 }
7293 *tail = space;
7294 tail = space;
7295 *tail = NULL;
7296 }
7297 /* allocate memory for new device */
7298 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7299 (num_members * sizeof(__u32));
7300 space = malloc(size);
7301 if (!space)
7302 err++;
7303 else {
7304 *tail = space;
7305 tail = space;
7306 *tail = NULL;
7307 }
7308 if (!err) {
7309 len = disks_to_mpb_size(num_members * 2);
7310 } else {
7311 /* if allocation didn't success, free buffer */
7312 while (update->space_list) {
7313 void **sp = update->space_list;
7314 update->space_list = *sp;
7315 free(sp);
7316 }
7317 }
7318 }
7319
7320 break;
7321 }
7322 case update_reshape_container_disks: {
7323 /* Every raid device in the container is about to
7324 * gain some more devices, and we will enter a
7325 * reconfiguration.
7326 * So each 'imsm_map' will be bigger, and the imsm_vol
7327 * will now hold 2 of them.
7328 * Thus we need new 'struct imsm_dev' allocations sized
7329 * as sizeof_imsm_dev but with more devices in both maps.
7330 */
7331 struct imsm_update_reshape *u = (void *)update->buf;
7332 struct intel_dev *dl;
7333 void **space_tail = (void**)&update->space_list;
7334
7335 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7336
7337 for (dl = super->devlist; dl; dl = dl->next) {
7338 int size = sizeof_imsm_dev(dl->dev, 1);
7339 void *s;
7340 if (u->new_raid_disks > u->old_raid_disks)
7341 size += sizeof(__u32)*2*
7342 (u->new_raid_disks - u->old_raid_disks);
7343 s = malloc(size);
7344 if (!s)
7345 break;
7346 *space_tail = s;
7347 space_tail = s;
7348 *space_tail = NULL;
7349 }
7350
7351 len = disks_to_mpb_size(u->new_raid_disks);
7352 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7353 break;
7354 }
7355 case update_reshape_migration: {
7356 /* for migration level 0->5 we need to add disks
7357 * so the same as for container operation we will copy
7358 * device to the bigger location.
7359 * in memory prepared device and new disk area are prepared
7360 * for usage in process update
7361 */
7362 struct imsm_update_reshape_migration *u = (void *)update->buf;
7363 struct intel_dev *id;
7364 void **space_tail = (void **)&update->space_list;
7365 int size;
7366 void *s;
7367 int current_level = -1;
7368
7369 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7370
7371 /* add space for bigger array in update
7372 */
7373 for (id = super->devlist; id; id = id->next) {
7374 if (id->index == (unsigned)u->subdev) {
7375 size = sizeof_imsm_dev(id->dev, 1);
7376 if (u->new_raid_disks > u->old_raid_disks)
7377 size += sizeof(__u32)*2*
7378 (u->new_raid_disks - u->old_raid_disks);
7379 s = malloc(size);
7380 if (!s)
7381 break;
7382 *space_tail = s;
7383 space_tail = s;
7384 *space_tail = NULL;
7385 break;
7386 }
7387 }
7388 if (update->space_list == NULL)
7389 break;
7390
7391 /* add space for disk in update
7392 */
7393 size = sizeof(struct dl);
7394 s = malloc(size);
7395 if (!s) {
7396 free(update->space_list);
7397 update->space_list = NULL;
7398 break;
7399 }
7400 *space_tail = s;
7401 space_tail = s;
7402 *space_tail = NULL;
7403
7404 /* add spare device to update
7405 */
7406 for (id = super->devlist ; id; id = id->next)
7407 if (id->index == (unsigned)u->subdev) {
7408 struct imsm_dev *dev;
7409 struct imsm_map *map;
7410
7411 dev = get_imsm_dev(super, u->subdev);
7412 map = get_imsm_map(dev, 0);
7413 current_level = map->raid_level;
7414 break;
7415 }
7416 if ((u->new_level == 5) && (u->new_level != current_level)) {
7417 struct mdinfo *spares;
7418
7419 spares = get_spares_for_grow(st);
7420 if (spares) {
7421 struct dl *dl;
7422 struct mdinfo *dev;
7423
7424 dev = spares->devs;
7425 if (dev) {
7426 u->new_disks[0] =
7427 makedev(dev->disk.major,
7428 dev->disk.minor);
7429 dl = get_disk_super(super,
7430 dev->disk.major,
7431 dev->disk.minor);
7432 dl->index = u->old_raid_disks;
7433 dev = dev->next;
7434 }
7435 sysfs_free(spares);
7436 }
7437 }
7438 len = disks_to_mpb_size(u->new_raid_disks);
7439 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7440 break;
7441 }
7442 case update_create_array: {
7443 struct imsm_update_create_array *u = (void *) update->buf;
7444 struct intel_dev *dv;
7445 struct imsm_dev *dev = &u->dev;
7446 struct imsm_map *map = get_imsm_map(dev, 0);
7447 struct dl *dl;
7448 struct disk_info *inf;
7449 int i;
7450 int activate = 0;
7451
7452 inf = get_disk_info(u);
7453 len = sizeof_imsm_dev(dev, 1);
7454 /* allocate a new super->devlist entry */
7455 dv = malloc(sizeof(*dv));
7456 if (dv) {
7457 dv->dev = malloc(len);
7458 if (dv->dev)
7459 update->space = dv;
7460 else {
7461 free(dv);
7462 update->space = NULL;
7463 }
7464 }
7465
7466 /* count how many spares will be converted to members */
7467 for (i = 0; i < map->num_members; i++) {
7468 dl = serial_to_dl(inf[i].serial, super);
7469 if (!dl) {
7470 /* hmm maybe it failed?, nothing we can do about
7471 * it here
7472 */
7473 continue;
7474 }
7475 if (count_memberships(dl, super) == 0)
7476 activate++;
7477 }
7478 len += activate * sizeof(struct imsm_disk);
7479 break;
7480 default:
7481 break;
7482 }
7483 }
7484
7485 /* check if we need a larger metadata buffer */
7486 if (super->next_buf)
7487 buf_len = super->next_len;
7488 else
7489 buf_len = super->len;
7490
7491 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7492 /* ok we need a larger buf than what is currently allocated
7493 * if this allocation fails process_update will notice that
7494 * ->next_len is set and ->next_buf is NULL
7495 */
7496 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7497 if (super->next_buf)
7498 free(super->next_buf);
7499
7500 super->next_len = buf_len;
7501 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7502 memset(super->next_buf, 0, buf_len);
7503 else
7504 super->next_buf = NULL;
7505 }
7506 }
7507
7508 /* must be called while manager is quiesced */
7509 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
7510 {
7511 struct imsm_super *mpb = super->anchor;
7512 struct dl *iter;
7513 struct imsm_dev *dev;
7514 struct imsm_map *map;
7515 int i, j, num_members;
7516 __u32 ord;
7517
7518 dprintf("%s: deleting device[%d] from imsm_super\n",
7519 __func__, index);
7520
7521 /* shift all indexes down one */
7522 for (iter = super->disks; iter; iter = iter->next)
7523 if (iter->index > (int)index)
7524 iter->index--;
7525 for (iter = super->missing; iter; iter = iter->next)
7526 if (iter->index > (int)index)
7527 iter->index--;
7528
7529 for (i = 0; i < mpb->num_raid_devs; i++) {
7530 dev = get_imsm_dev(super, i);
7531 map = get_imsm_map(dev, 0);
7532 num_members = map->num_members;
7533 for (j = 0; j < num_members; j++) {
7534 /* update ord entries being careful not to propagate
7535 * ord-flags to the first map
7536 */
7537 ord = get_imsm_ord_tbl_ent(dev, j, -1);
7538
7539 if (ord_to_idx(ord) <= index)
7540 continue;
7541
7542 map = get_imsm_map(dev, 0);
7543 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7544 map = get_imsm_map(dev, 1);
7545 if (map)
7546 set_imsm_ord_tbl_ent(map, j, ord - 1);
7547 }
7548 }
7549
7550 mpb->num_disks--;
7551 super->updates_pending++;
7552 if (*dlp) {
7553 struct dl *dl = *dlp;
7554
7555 *dlp = (*dlp)->next;
7556 __free_imsm_disk(dl);
7557 }
7558 }
7559
7560 /*******************************************************************************
7561 * Function: open_backup_targets
7562 * Description: Function opens file descriptors for all devices given in
7563 * info->devs
7564 * Parameters:
7565 * info : general array info
7566 * raid_disks : number of disks
7567 * raid_fds : table of device's file descriptors
7568 * Returns:
7569 * 0 : success
7570 * -1 : fail
7571 ******************************************************************************/
7572 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7573 {
7574 struct mdinfo *sd;
7575
7576 for (sd = info->devs ; sd ; sd = sd->next) {
7577 char *dn;
7578
7579 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7580 dprintf("disk is faulty!!\n");
7581 continue;
7582 }
7583
7584 if ((sd->disk.raid_disk >= raid_disks) ||
7585 (sd->disk.raid_disk < 0))
7586 continue;
7587
7588 dn = map_dev(sd->disk.major,
7589 sd->disk.minor, 1);
7590 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7591 if (raid_fds[sd->disk.raid_disk] < 0) {
7592 fprintf(stderr, "cannot open component\n");
7593 return -1;
7594 }
7595 }
7596 return 0;
7597 }
7598
7599 /*******************************************************************************
7600 * Function: init_migr_record_imsm
7601 * Description: Function inits imsm migration record
7602 * Parameters:
7603 * super : imsm internal array info
7604 * dev : device under migration
7605 * info : general array info to find the smallest device
7606 * Returns:
7607 * none
7608 ******************************************************************************/
7609 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7610 struct mdinfo *info)
7611 {
7612 struct intel_super *super = st->sb;
7613 struct migr_record *migr_rec = super->migr_rec;
7614 int new_data_disks;
7615 unsigned long long dsize, dev_sectors;
7616 long long unsigned min_dev_sectors = -1LLU;
7617 struct mdinfo *sd;
7618 char nm[30];
7619 int fd;
7620 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7621 struct imsm_map *map_src = get_imsm_map(dev, 1);
7622 unsigned long long num_migr_units;
7623 unsigned long long array_blocks;
7624
7625 memset(migr_rec, 0, sizeof(struct migr_record));
7626 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
7627
7628 /* only ascending reshape supported now */
7629 migr_rec->ascending_migr = __cpu_to_le32(1);
7630
7631 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
7632 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
7633 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
7634 new_data_disks = imsm_num_data_members(dev, 0);
7635 migr_rec->blocks_per_unit =
7636 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
7637 migr_rec->dest_depth_per_unit =
7638 __cpu_to_le32(migr_rec->dest_depth_per_unit);
7639 array_blocks = info->component_size * new_data_disks;
7640 num_migr_units =
7641 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
7642
7643 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
7644 num_migr_units++;
7645 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
7646
7647 migr_rec->post_migr_vol_cap = dev->size_low;
7648 migr_rec->post_migr_vol_cap_hi = dev->size_high;
7649
7650
7651 /* Find the smallest dev */
7652 for (sd = info->devs ; sd ; sd = sd->next) {
7653 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
7654 fd = dev_open(nm, O_RDONLY);
7655 if (fd < 0)
7656 continue;
7657 get_dev_size(fd, NULL, &dsize);
7658 dev_sectors = dsize / 512;
7659 if (dev_sectors < min_dev_sectors)
7660 min_dev_sectors = dev_sectors;
7661 close(fd);
7662 }
7663 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
7664 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
7665
7666 write_imsm_migr_rec(st);
7667
7668 return;
7669 }
7670
7671 /*******************************************************************************
7672 * Function: save_backup_imsm
7673 * Description: Function saves critical data stripes to Migration Copy Area
7674 * and updates the current migration unit status.
7675 * Use restore_stripes() to form a destination stripe,
7676 * and to write it to the Copy Area.
7677 * Parameters:
7678 * st : supertype information
7679 * dev : imsm device that backup is saved for
7680 * info : general array info
7681 * buf : input buffer
7682 * length : length of data to backup (blocks_per_unit)
7683 * Returns:
7684 * 0 : success
7685 *, -1 : fail
7686 ******************************************************************************/
7687 int save_backup_imsm(struct supertype *st,
7688 struct imsm_dev *dev,
7689 struct mdinfo *info,
7690 void *buf,
7691 int length)
7692 {
7693 int rv = -1;
7694 struct intel_super *super = st->sb;
7695 unsigned long long *target_offsets = NULL;
7696 int *targets = NULL;
7697 int i;
7698 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7699 int new_disks = map_dest->num_members;
7700 int dest_layout = 0;
7701 int dest_chunk;
7702
7703 targets = malloc(new_disks * sizeof(int));
7704 if (!targets)
7705 goto abort;
7706
7707 target_offsets = malloc(new_disks * sizeof(unsigned long long));
7708 if (!target_offsets)
7709 goto abort;
7710
7711 for (i = 0; i < new_disks; i++) {
7712 targets[i] = -1;
7713 target_offsets[i] = (unsigned long long)
7714 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
7715 }
7716
7717 if (open_backup_targets(info, new_disks, targets))
7718 goto abort;
7719
7720 if (map_dest->raid_level != 0)
7721 dest_layout = ALGORITHM_LEFT_ASYMMETRIC;
7722 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
7723
7724 if (restore_stripes(targets, /* list of dest devices */
7725 target_offsets, /* migration record offsets */
7726 new_disks,
7727 dest_chunk,
7728 map_dest->raid_level,
7729 dest_layout,
7730 -1, /* source backup file descriptor */
7731 0, /* input buf offset
7732 * always 0 buf is already offseted */
7733 0,
7734 length,
7735 buf) != 0) {
7736 fprintf(stderr, Name ": Error restoring stripes\n");
7737 goto abort;
7738 }
7739
7740 rv = 0;
7741
7742 abort:
7743 if (targets) {
7744 for (i = 0; i < new_disks; i++)
7745 if (targets[i] >= 0)
7746 close(targets[i]);
7747 free(targets);
7748 }
7749 free(target_offsets);
7750
7751 return rv;
7752 }
7753
7754 /*******************************************************************************
7755 * Function: save_checkpoint_imsm
7756 * Description: Function called for current unit status update
7757 * in the migration record. It writes it to disk.
7758 * Parameters:
7759 * super : imsm internal array info
7760 * info : general array info
7761 * Returns:
7762 * 0: success
7763 * 1: failure
7764 * 2: failure, means no valid migration record
7765 * / no general migration in progress /
7766 ******************************************************************************/
7767 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
7768 {
7769 struct intel_super *super = st->sb;
7770 if (load_imsm_migr_rec(super, info) != 0) {
7771 dprintf("imsm: ERROR: Cannot read migration record "
7772 "for checkpoint save.\n");
7773 return 1;
7774 }
7775
7776 if (__le32_to_cpu(super->migr_rec->blocks_per_unit) == 0) {
7777 dprintf("imsm: no migration in progress.\n");
7778 return 2;
7779 }
7780
7781 super->migr_rec->curr_migr_unit =
7782 __cpu_to_le32(info->reshape_progress /
7783 __le32_to_cpu(super->migr_rec->blocks_per_unit));
7784 super->migr_rec->rec_status = __cpu_to_le32(state);
7785 super->migr_rec->dest_1st_member_lba =
7786 __cpu_to_le32((__le32_to_cpu(super->migr_rec->curr_migr_unit))
7787 * __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
7788 if (write_imsm_migr_rec(st) < 0) {
7789 dprintf("imsm: Cannot write migration record "
7790 "outside backup area\n");
7791 return 1;
7792 }
7793
7794 return 0;
7795 }
7796
7797 static __u64 blocks_per_migr_unit(struct intel_super *super,
7798 struct imsm_dev *dev);
7799
7800 /*******************************************************************************
7801 * Function: recover_backup_imsm
7802 * Description: Function recovers critical data from the Migration Copy Area
7803 * while assembling an array.
7804 * Parameters:
7805 * super : imsm internal array info
7806 * info : general array info
7807 * Returns:
7808 * 0 : success (or there is no data to recover)
7809 * 1 : fail
7810 ******************************************************************************/
7811 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
7812 {
7813 struct intel_super *super = st->sb;
7814 struct migr_record *migr_rec = super->migr_rec;
7815 struct imsm_map *map_dest = NULL;
7816 struct intel_dev *id = NULL;
7817 unsigned long long read_offset;
7818 unsigned long long write_offset;
7819 unsigned unit_len;
7820 int *targets = NULL;
7821 int new_disks, i, err;
7822 char *buf = NULL;
7823 int retval = 1;
7824 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
7825 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
7826 int ascending = __le32_to_cpu(migr_rec->ascending_migr);
7827 char buffer[20];
7828 int skipped_disks = 0;
7829 int max_degradation;
7830
7831 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
7832 if (err < 1)
7833 return 1;
7834
7835 /* recover data only during assemblation */
7836 if (strncmp(buffer, "inactive", 8) != 0)
7837 return 0;
7838 /* no data to recover */
7839 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
7840 return 0;
7841 if (curr_migr_unit >= num_migr_units)
7842 return 1;
7843
7844 /* find device during reshape */
7845 for (id = super->devlist; id; id = id->next)
7846 if (is_gen_migration(id->dev))
7847 break;
7848 if (id == NULL)
7849 return 1;
7850
7851 map_dest = get_imsm_map(id->dev, 0);
7852 new_disks = map_dest->num_members;
7853 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
7854
7855 read_offset = (unsigned long long)
7856 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
7857
7858 write_offset = ((unsigned long long)
7859 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
7860 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
7861
7862 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
7863 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
7864 goto abort;
7865 targets = malloc(new_disks * sizeof(int));
7866 if (!targets)
7867 goto abort;
7868
7869 open_backup_targets(info, new_disks, targets);
7870
7871 for (i = 0; i < new_disks; i++) {
7872 if (targets[i] < 0) {
7873 skipped_disks++;
7874 continue;
7875 }
7876 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
7877 fprintf(stderr,
7878 Name ": Cannot seek to block: %s\n",
7879 strerror(errno));
7880 goto abort;
7881 }
7882 if (read(targets[i], buf, unit_len) != unit_len) {
7883 fprintf(stderr,
7884 Name ": Cannot read copy area block: %s\n",
7885 strerror(errno));
7886 goto abort;
7887 }
7888 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
7889 fprintf(stderr,
7890 Name ": Cannot seek to block: %s\n",
7891 strerror(errno));
7892 goto abort;
7893 }
7894 if (write(targets[i], buf, unit_len) != unit_len) {
7895 fprintf(stderr,
7896 Name ": Cannot restore block: %s\n",
7897 strerror(errno));
7898 goto abort;
7899 }
7900 }
7901
7902 if (skipped_disks > max_degradation) {
7903 fprintf(stderr,
7904 Name ": Cannot restore data from backup."
7905 " Too many failed disks\n");
7906 goto abort;
7907 }
7908
7909 if (ascending && curr_migr_unit < (num_migr_units-1))
7910 curr_migr_unit++;
7911
7912 migr_rec->curr_migr_unit = __le32_to_cpu(curr_migr_unit);
7913 super->migr_rec->rec_status = __cpu_to_le32(UNIT_SRC_NORMAL);
7914 if (write_imsm_migr_rec(st) == 0) {
7915 __u64 blocks_per_unit = blocks_per_migr_unit(super, id->dev);
7916 info->reshape_progress = curr_migr_unit * blocks_per_unit;
7917 retval = 0;
7918 }
7919
7920 abort:
7921 if (targets) {
7922 for (i = 0; i < new_disks; i++)
7923 if (targets[i])
7924 close(targets[i]);
7925 free(targets);
7926 }
7927 free(buf);
7928 return retval;
7929 }
7930
7931 static char disk_by_path[] = "/dev/disk/by-path/";
7932
7933 static const char *imsm_get_disk_controller_domain(const char *path)
7934 {
7935 char disk_path[PATH_MAX];
7936 char *drv=NULL;
7937 struct stat st;
7938
7939 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
7940 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
7941 if (stat(disk_path, &st) == 0) {
7942 struct sys_dev* hba;
7943 char *path=NULL;
7944
7945 path = devt_to_devpath(st.st_rdev);
7946 if (path == NULL)
7947 return "unknown";
7948 hba = find_disk_attached_hba(-1, path);
7949 if (hba && hba->type == SYS_DEV_SAS)
7950 drv = "isci";
7951 else if (hba && hba->type == SYS_DEV_SATA)
7952 drv = "ahci";
7953 else
7954 drv = "unknown";
7955 dprintf("path: %s hba: %s attached: %s\n",
7956 path, (hba) ? hba->path : "NULL", drv);
7957 free(path);
7958 if (hba)
7959 free_sys_dev(&hba);
7960 }
7961 return drv;
7962 }
7963
7964 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
7965 {
7966 char subdev_name[20];
7967 struct mdstat_ent *mdstat;
7968
7969 sprintf(subdev_name, "%d", subdev);
7970 mdstat = mdstat_by_subdev(subdev_name, container);
7971 if (!mdstat)
7972 return -1;
7973
7974 *minor = mdstat->devnum;
7975 free_mdstat(mdstat);
7976 return 0;
7977 }
7978
7979 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
7980 struct geo_params *geo,
7981 int *old_raid_disks)
7982 {
7983 /* currently we only support increasing the number of devices
7984 * for a container. This increases the number of device for each
7985 * member array. They must all be RAID0 or RAID5.
7986 */
7987 int ret_val = 0;
7988 struct mdinfo *info, *member;
7989 int devices_that_can_grow = 0;
7990
7991 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
7992 "st->devnum = (%i)\n",
7993 st->devnum);
7994
7995 if (geo->size != -1 ||
7996 geo->level != UnSet ||
7997 geo->layout != UnSet ||
7998 geo->chunksize != 0 ||
7999 geo->raid_disks == UnSet) {
8000 dprintf("imsm: Container operation is allowed for "
8001 "raid disks number change only.\n");
8002 return ret_val;
8003 }
8004
8005 info = container_content_imsm(st, NULL);
8006 for (member = info; member; member = member->next) {
8007 int result;
8008 int minor;
8009
8010 dprintf("imsm: checking device_num: %i\n",
8011 member->container_member);
8012
8013 if (geo->raid_disks <= member->array.raid_disks) {
8014 /* we work on container for Online Capacity Expansion
8015 * only so raid_disks has to grow
8016 */
8017 dprintf("imsm: for container operation raid disks "
8018 "increase is required\n");
8019 break;
8020 }
8021
8022 if ((info->array.level != 0) &&
8023 (info->array.level != 5)) {
8024 /* we cannot use this container with other raid level
8025 */
8026 dprintf("imsm: for container operation wrong"
8027 " raid level (%i) detected\n",
8028 info->array.level);
8029 break;
8030 } else {
8031 /* check for platform support
8032 * for this raid level configuration
8033 */
8034 struct intel_super *super = st->sb;
8035 if (!is_raid_level_supported(super->orom,
8036 member->array.level,
8037 geo->raid_disks)) {
8038 dprintf("platform does not support raid%d with"
8039 " %d disk%s\n",
8040 info->array.level,
8041 geo->raid_disks,
8042 geo->raid_disks > 1 ? "s" : "");
8043 break;
8044 }
8045 /* check if component size is aligned to chunk size
8046 */
8047 if (info->component_size %
8048 (info->array.chunk_size/512)) {
8049 dprintf("Component size is not aligned to "
8050 "chunk size\n");
8051 break;
8052 }
8053 }
8054
8055 if (*old_raid_disks &&
8056 info->array.raid_disks != *old_raid_disks)
8057 break;
8058 *old_raid_disks = info->array.raid_disks;
8059
8060 /* All raid5 and raid0 volumes in container
8061 * have to be ready for Online Capacity Expansion
8062 * so they need to be assembled. We have already
8063 * checked that no recovery etc is happening.
8064 */
8065 result = imsm_find_array_minor_by_subdev(member->container_member,
8066 st->container_dev,
8067 &minor);
8068 if (result < 0) {
8069 dprintf("imsm: cannot find array\n");
8070 break;
8071 }
8072 devices_that_can_grow++;
8073 }
8074 sysfs_free(info);
8075 if (!member && devices_that_can_grow)
8076 ret_val = 1;
8077
8078 if (ret_val)
8079 dprintf("\tContainer operation allowed\n");
8080 else
8081 dprintf("\tError: %i\n", ret_val);
8082
8083 return ret_val;
8084 }
8085
8086 /* Function: get_spares_for_grow
8087 * Description: Allocates memory and creates list of spare devices
8088 * avaliable in container. Checks if spare drive size is acceptable.
8089 * Parameters: Pointer to the supertype structure
8090 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8091 * NULL if fail
8092 */
8093 static struct mdinfo *get_spares_for_grow(struct supertype *st)
8094 {
8095 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
8096 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
8097 }
8098
8099 /******************************************************************************
8100 * function: imsm_create_metadata_update_for_reshape
8101 * Function creates update for whole IMSM container.
8102 *
8103 ******************************************************************************/
8104 static int imsm_create_metadata_update_for_reshape(
8105 struct supertype *st,
8106 struct geo_params *geo,
8107 int old_raid_disks,
8108 struct imsm_update_reshape **updatep)
8109 {
8110 struct intel_super *super = st->sb;
8111 struct imsm_super *mpb = super->anchor;
8112 int update_memory_size = 0;
8113 struct imsm_update_reshape *u = NULL;
8114 struct mdinfo *spares = NULL;
8115 int i;
8116 int delta_disks = 0;
8117 struct mdinfo *dev;
8118
8119 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8120 geo->raid_disks);
8121
8122 delta_disks = geo->raid_disks - old_raid_disks;
8123
8124 /* size of all update data without anchor */
8125 update_memory_size = sizeof(struct imsm_update_reshape);
8126
8127 /* now add space for spare disks that we need to add. */
8128 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8129
8130 u = calloc(1, update_memory_size);
8131 if (u == NULL) {
8132 dprintf("error: "
8133 "cannot get memory for imsm_update_reshape update\n");
8134 return 0;
8135 }
8136 u->type = update_reshape_container_disks;
8137 u->old_raid_disks = old_raid_disks;
8138 u->new_raid_disks = geo->raid_disks;
8139
8140 /* now get spare disks list
8141 */
8142 spares = get_spares_for_grow(st);
8143
8144 if (spares == NULL
8145 || delta_disks > spares->array.spare_disks) {
8146 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8147 "for %s.\n", geo->dev_name);
8148 goto abort;
8149 }
8150
8151 /* we have got spares
8152 * update disk list in imsm_disk list table in anchor
8153 */
8154 dprintf("imsm: %i spares are available.\n\n",
8155 spares->array.spare_disks);
8156
8157 dev = spares->devs;
8158 for (i = 0; i < delta_disks; i++) {
8159 struct dl *dl;
8160
8161 if (dev == NULL)
8162 break;
8163 u->new_disks[i] = makedev(dev->disk.major,
8164 dev->disk.minor);
8165 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
8166 dl->index = mpb->num_disks;
8167 mpb->num_disks++;
8168 dev = dev->next;
8169 }
8170
8171 abort:
8172 /* free spares
8173 */
8174 sysfs_free(spares);
8175
8176 dprintf("imsm: reshape update preparation :");
8177 if (i == delta_disks) {
8178 dprintf(" OK\n");
8179 *updatep = u;
8180 return update_memory_size;
8181 }
8182 free(u);
8183 dprintf(" Error\n");
8184
8185 return 0;
8186 }
8187
8188 /******************************************************************************
8189 * function: imsm_create_metadata_update_for_migration()
8190 * Creates update for IMSM array.
8191 *
8192 ******************************************************************************/
8193 static int imsm_create_metadata_update_for_migration(
8194 struct supertype *st,
8195 struct geo_params *geo,
8196 struct imsm_update_reshape_migration **updatep)
8197 {
8198 struct intel_super *super = st->sb;
8199 int update_memory_size = 0;
8200 struct imsm_update_reshape_migration *u = NULL;
8201 struct imsm_dev *dev;
8202 int previous_level = -1;
8203
8204 dprintf("imsm_create_metadata_update_for_migration(enter)"
8205 " New Level = %i\n", geo->level);
8206
8207 /* size of all update data without anchor */
8208 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8209
8210 u = calloc(1, update_memory_size);
8211 if (u == NULL) {
8212 dprintf("error: cannot get memory for "
8213 "imsm_create_metadata_update_for_migration\n");
8214 return 0;
8215 }
8216 u->type = update_reshape_migration;
8217 u->subdev = super->current_vol;
8218 u->new_level = geo->level;
8219 u->new_layout = geo->layout;
8220 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8221 u->new_disks[0] = -1;
8222 u->new_chunksize = -1;
8223
8224 dev = get_imsm_dev(super, u->subdev);
8225 if (dev) {
8226 struct imsm_map *map;
8227
8228 map = get_imsm_map(dev, 0);
8229 if (map) {
8230 int current_chunk_size =
8231 __le16_to_cpu(map->blocks_per_strip) / 2;
8232
8233 if (geo->chunksize != current_chunk_size) {
8234 u->new_chunksize = geo->chunksize / 1024;
8235 dprintf("imsm: "
8236 "chunk size change from %i to %i\n",
8237 current_chunk_size, u->new_chunksize);
8238 }
8239 previous_level = map->raid_level;
8240 }
8241 }
8242 if ((geo->level == 5) && (previous_level == 0)) {
8243 struct mdinfo *spares = NULL;
8244
8245 u->new_raid_disks++;
8246 spares = get_spares_for_grow(st);
8247 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8248 free(u);
8249 sysfs_free(spares);
8250 update_memory_size = 0;
8251 dprintf("error: cannot get spare device "
8252 "for requested migration");
8253 return 0;
8254 }
8255 sysfs_free(spares);
8256 }
8257 dprintf("imsm: reshape update preparation : OK\n");
8258 *updatep = u;
8259
8260 return update_memory_size;
8261 }
8262
8263 static void imsm_update_metadata_locally(struct supertype *st,
8264 void *buf, int len)
8265 {
8266 struct metadata_update mu;
8267
8268 mu.buf = buf;
8269 mu.len = len;
8270 mu.space = NULL;
8271 mu.space_list = NULL;
8272 mu.next = NULL;
8273 imsm_prepare_update(st, &mu);
8274 imsm_process_update(st, &mu);
8275
8276 while (mu.space_list) {
8277 void **space = mu.space_list;
8278 mu.space_list = *space;
8279 free(space);
8280 }
8281 }
8282
8283 /***************************************************************************
8284 * Function: imsm_analyze_change
8285 * Description: Function analyze change for single volume
8286 * and validate if transition is supported
8287 * Parameters: Geometry parameters, supertype structure
8288 * Returns: Operation type code on success, -1 if fail
8289 ****************************************************************************/
8290 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8291 struct geo_params *geo)
8292 {
8293 struct mdinfo info;
8294 int change = -1;
8295 int check_devs = 0;
8296 int chunk;
8297
8298 getinfo_super_imsm_volume(st, &info, NULL);
8299 if ((geo->level != info.array.level) &&
8300 (geo->level >= 0) &&
8301 (geo->level != UnSet)) {
8302 switch (info.array.level) {
8303 case 0:
8304 if (geo->level == 5) {
8305 change = CH_MIGRATION;
8306 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8307 fprintf(stderr,
8308 Name " Error. Requested Layout "
8309 "not supported (left-asymmetric layout "
8310 "is supported only)!\n");
8311 change = -1;
8312 goto analyse_change_exit;
8313 }
8314 check_devs = 1;
8315 }
8316 if (geo->level == 10) {
8317 change = CH_TAKEOVER;
8318 check_devs = 1;
8319 }
8320 break;
8321 case 1:
8322 if (geo->level == 0) {
8323 change = CH_TAKEOVER;
8324 check_devs = 1;
8325 }
8326 break;
8327 case 10:
8328 if (geo->level == 0) {
8329 change = CH_TAKEOVER;
8330 check_devs = 1;
8331 }
8332 break;
8333 }
8334 if (change == -1) {
8335 fprintf(stderr,
8336 Name " Error. Level Migration from %d to %d "
8337 "not supported!\n",
8338 info.array.level, geo->level);
8339 goto analyse_change_exit;
8340 }
8341 } else
8342 geo->level = info.array.level;
8343
8344 if ((geo->layout != info.array.layout)
8345 && ((geo->layout != UnSet) && (geo->layout != -1))) {
8346 change = CH_MIGRATION;
8347 if ((info.array.layout == 0)
8348 && (info.array.level == 5)
8349 && (geo->layout == 5)) {
8350 /* reshape 5 -> 4 */
8351 } else if ((info.array.layout == 5)
8352 && (info.array.level == 5)
8353 && (geo->layout == 0)) {
8354 /* reshape 4 -> 5 */
8355 geo->layout = 0;
8356 geo->level = 5;
8357 } else {
8358 fprintf(stderr,
8359 Name " Error. Layout Migration from %d to %d "
8360 "not supported!\n",
8361 info.array.layout, geo->layout);
8362 change = -1;
8363 goto analyse_change_exit;
8364 }
8365 } else
8366 geo->layout = info.array.layout;
8367
8368 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8369 && (geo->chunksize != info.array.chunk_size))
8370 change = CH_MIGRATION;
8371 else
8372 geo->chunksize = info.array.chunk_size;
8373
8374 chunk = geo->chunksize / 1024;
8375 if (!validate_geometry_imsm(st,
8376 geo->level,
8377 geo->layout,
8378 geo->raid_disks,
8379 &chunk,
8380 geo->size,
8381 0, 0, 1))
8382 change = -1;
8383
8384 if (check_devs) {
8385 struct intel_super *super = st->sb;
8386 struct imsm_super *mpb = super->anchor;
8387
8388 if (mpb->num_raid_devs > 1) {
8389 fprintf(stderr,
8390 Name " Error. Cannot perform operation on %s"
8391 "- for this operation it MUST be single "
8392 "array in container\n",
8393 geo->dev_name);
8394 change = -1;
8395 }
8396 }
8397
8398 analyse_change_exit:
8399
8400 return change;
8401 }
8402
8403 int imsm_takeover(struct supertype *st, struct geo_params *geo)
8404 {
8405 struct intel_super *super = st->sb;
8406 struct imsm_update_takeover *u;
8407
8408 u = malloc(sizeof(struct imsm_update_takeover));
8409 if (u == NULL)
8410 return 1;
8411
8412 u->type = update_takeover;
8413 u->subarray = super->current_vol;
8414
8415 /* 10->0 transition */
8416 if (geo->level == 0)
8417 u->direction = R10_TO_R0;
8418
8419 /* 0->10 transition */
8420 if (geo->level == 10)
8421 u->direction = R0_TO_R10;
8422
8423 /* update metadata locally */
8424 imsm_update_metadata_locally(st, u,
8425 sizeof(struct imsm_update_takeover));
8426 /* and possibly remotely */
8427 if (st->update_tail)
8428 append_metadata_update(st, u,
8429 sizeof(struct imsm_update_takeover));
8430 else
8431 free(u);
8432
8433 return 0;
8434 }
8435
8436 static int imsm_reshape_super(struct supertype *st, long long size, int level,
8437 int layout, int chunksize, int raid_disks,
8438 int delta_disks, char *backup, char *dev,
8439 int verbose)
8440 {
8441 int ret_val = 1;
8442 struct geo_params geo;
8443
8444 dprintf("imsm: reshape_super called.\n");
8445
8446 memset(&geo, 0, sizeof(struct geo_params));
8447
8448 geo.dev_name = dev;
8449 geo.dev_id = st->devnum;
8450 geo.size = size;
8451 geo.level = level;
8452 geo.layout = layout;
8453 geo.chunksize = chunksize;
8454 geo.raid_disks = raid_disks;
8455 if (delta_disks != UnSet)
8456 geo.raid_disks += delta_disks;
8457
8458 dprintf("\tfor level : %i\n", geo.level);
8459 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8460
8461 if (experimental() == 0)
8462 return ret_val;
8463
8464 if (st->container_dev == st->devnum) {
8465 /* On container level we can only increase number of devices. */
8466 dprintf("imsm: info: Container operation\n");
8467 int old_raid_disks = 0;
8468
8469 if (imsm_reshape_is_allowed_on_container(
8470 st, &geo, &old_raid_disks)) {
8471 struct imsm_update_reshape *u = NULL;
8472 int len;
8473
8474 len = imsm_create_metadata_update_for_reshape(
8475 st, &geo, old_raid_disks, &u);
8476
8477 if (len <= 0) {
8478 dprintf("imsm: Cannot prepare update\n");
8479 goto exit_imsm_reshape_super;
8480 }
8481
8482 ret_val = 0;
8483 /* update metadata locally */
8484 imsm_update_metadata_locally(st, u, len);
8485 /* and possibly remotely */
8486 if (st->update_tail)
8487 append_metadata_update(st, u, len);
8488 else
8489 free(u);
8490
8491 } else {
8492 fprintf(stderr, Name ": (imsm) Operation "
8493 "is not allowed on this container\n");
8494 }
8495 } else {
8496 /* On volume level we support following operations
8497 * - takeover: raid10 -> raid0; raid0 -> raid10
8498 * - chunk size migration
8499 * - migration: raid5 -> raid0; raid0 -> raid5
8500 */
8501 struct intel_super *super = st->sb;
8502 struct intel_dev *dev = super->devlist;
8503 int change, devnum;
8504 dprintf("imsm: info: Volume operation\n");
8505 /* find requested device */
8506 while (dev) {
8507 imsm_find_array_minor_by_subdev(dev->index, st->container_dev, &devnum);
8508 if (devnum == geo.dev_id)
8509 break;
8510 dev = dev->next;
8511 }
8512 if (dev == NULL) {
8513 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8514 geo.dev_name, geo.dev_id);
8515 goto exit_imsm_reshape_super;
8516 }
8517 super->current_vol = dev->index;
8518 change = imsm_analyze_change(st, &geo);
8519 switch (change) {
8520 case CH_TAKEOVER:
8521 ret_val = imsm_takeover(st, &geo);
8522 break;
8523 case CH_MIGRATION: {
8524 struct imsm_update_reshape_migration *u = NULL;
8525 int len =
8526 imsm_create_metadata_update_for_migration(
8527 st, &geo, &u);
8528 if (len < 1) {
8529 dprintf("imsm: "
8530 "Cannot prepare update\n");
8531 break;
8532 }
8533 ret_val = 0;
8534 /* update metadata locally */
8535 imsm_update_metadata_locally(st, u, len);
8536 /* and possibly remotely */
8537 if (st->update_tail)
8538 append_metadata_update(st, u, len);
8539 else
8540 free(u);
8541 }
8542 break;
8543 default:
8544 ret_val = 1;
8545 }
8546 }
8547
8548 exit_imsm_reshape_super:
8549 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8550 return ret_val;
8551 }
8552
8553 /*******************************************************************************
8554 * Function: wait_for_reshape_imsm
8555 * Description: Function writes new sync_max value and waits until
8556 * reshape process reach new position
8557 * Parameters:
8558 * sra : general array info
8559 * to_complete : new sync_max position
8560 * ndata : number of disks in new array's layout
8561 * Returns:
8562 * 0 : success,
8563 * 1 : there is no reshape in progress,
8564 * -1 : fail
8565 ******************************************************************************/
8566 int wait_for_reshape_imsm(struct mdinfo *sra, unsigned long long to_complete,
8567 int ndata)
8568 {
8569 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8570 unsigned long long completed;
8571
8572 struct timeval timeout;
8573
8574 if (fd < 0)
8575 return 1;
8576
8577 sysfs_fd_get_ll(fd, &completed);
8578
8579 if (to_complete == 0) {/* reshape till the end of array */
8580 sysfs_set_str(sra, NULL, "sync_max", "max");
8581 to_complete = MaxSector;
8582 } else {
8583 if (completed > to_complete) {
8584 close(fd);
8585 return -1;
8586 }
8587 if (sysfs_set_num(sra, NULL, "sync_max",
8588 to_complete / ndata) != 0) {
8589 close(fd);
8590 return -1;
8591 }
8592 }
8593
8594 /* FIXME should not need a timeout at all */
8595 timeout.tv_sec = 30;
8596 timeout.tv_usec = 0;
8597 do {
8598 char action[20];
8599 fd_set rfds;
8600 FD_ZERO(&rfds);
8601 FD_SET(fd, &rfds);
8602 select(fd+1, NULL, NULL, &rfds, &timeout);
8603 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8604 close(fd);
8605 return 1;
8606 }
8607 if (sysfs_get_str(sra, NULL, "sync_action",
8608 action, 20) > 0 &&
8609 strncmp(action, "reshape", 7) != 0)
8610 break;
8611 } while (completed < to_complete);
8612 close(fd);
8613 return 0;
8614
8615 }
8616
8617 /*******************************************************************************
8618 * Function: check_degradation_change
8619 * Description: Check that array hasn't become failed.
8620 * Parameters:
8621 * info : for sysfs access
8622 * sources : source disks descriptors
8623 * degraded: previous degradation level
8624 * Returns:
8625 * degradation level
8626 ******************************************************************************/
8627 int check_degradation_change(struct mdinfo *info,
8628 int *sources,
8629 int degraded)
8630 {
8631 unsigned long long new_degraded;
8632 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
8633 if (new_degraded != (unsigned long long)degraded) {
8634 /* check each device to ensure it is still working */
8635 struct mdinfo *sd;
8636 new_degraded = 0;
8637 for (sd = info->devs ; sd ; sd = sd->next) {
8638 if (sd->disk.state & (1<<MD_DISK_FAULTY))
8639 continue;
8640 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
8641 char sbuf[20];
8642 if (sysfs_get_str(info,
8643 sd, "state", sbuf, 20) < 0 ||
8644 strstr(sbuf, "faulty") ||
8645 strstr(sbuf, "in_sync") == NULL) {
8646 /* this device is dead */
8647 sd->disk.state = (1<<MD_DISK_FAULTY);
8648 if (sd->disk.raid_disk >= 0 &&
8649 sources[sd->disk.raid_disk] >= 0) {
8650 close(sources[
8651 sd->disk.raid_disk]);
8652 sources[sd->disk.raid_disk] =
8653 -1;
8654 }
8655 new_degraded++;
8656 }
8657 }
8658 }
8659 }
8660
8661 return new_degraded;
8662 }
8663
8664 /*******************************************************************************
8665 * Function: imsm_manage_reshape
8666 * Description: Function finds array under reshape and it manages reshape
8667 * process. It creates stripes backups (if required) and sets
8668 * checheckpoits.
8669 * Parameters:
8670 * afd : Backup handle (nattive) - not used
8671 * sra : general array info
8672 * reshape : reshape parameters - not used
8673 * st : supertype structure
8674 * blocks : size of critical section [blocks]
8675 * fds : table of source device descriptor
8676 * offsets : start of array (offest per devices)
8677 * dests : not used
8678 * destfd : table of destination device descriptor
8679 * destoffsets : table of destination offsets (per device)
8680 * Returns:
8681 * 1 : success, reshape is done
8682 * 0 : fail
8683 ******************************************************************************/
8684 static int imsm_manage_reshape(
8685 int afd, struct mdinfo *sra, struct reshape *reshape,
8686 struct supertype *st, unsigned long backup_blocks,
8687 int *fds, unsigned long long *offsets,
8688 int dests, int *destfd, unsigned long long *destoffsets)
8689 {
8690 int ret_val = 0;
8691 struct intel_super *super = st->sb;
8692 struct intel_dev *dv = NULL;
8693 struct imsm_dev *dev = NULL;
8694 struct imsm_map *map_src, *map_dest;
8695 int migr_vol_qan = 0;
8696 int ndata, odata; /* [bytes] */
8697 int chunk; /* [bytes] */
8698 struct migr_record *migr_rec;
8699 char *buf = NULL;
8700 unsigned int buf_size; /* [bytes] */
8701 unsigned long long max_position; /* array size [bytes] */
8702 unsigned long long next_step; /* [blocks]/[bytes] */
8703 unsigned long long old_data_stripe_length;
8704 unsigned long long new_data_stripe_length;
8705 unsigned long long start_src; /* [bytes] */
8706 unsigned long long start; /* [bytes] */
8707 unsigned long long start_buf_shift; /* [bytes] */
8708 int degraded = 0;
8709 int source_layout = 0;
8710
8711 if (!fds || !offsets || !sra)
8712 goto abort;
8713
8714 /* Find volume during the reshape */
8715 for (dv = super->devlist; dv; dv = dv->next) {
8716 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
8717 && dv->dev->vol.migr_state == 1) {
8718 dev = dv->dev;
8719 migr_vol_qan++;
8720 }
8721 }
8722 /* Only one volume can migrate at the same time */
8723 if (migr_vol_qan != 1) {
8724 fprintf(stderr, Name " : %s", migr_vol_qan ?
8725 "Number of migrating volumes greater than 1\n" :
8726 "There is no volume during migrationg\n");
8727 goto abort;
8728 }
8729
8730 map_src = get_imsm_map(dev, 1);
8731 if (map_src == NULL)
8732 goto abort;
8733 map_dest = get_imsm_map(dev, 0);
8734
8735 ndata = imsm_num_data_members(dev, 0);
8736 odata = imsm_num_data_members(dev, 1);
8737
8738 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
8739 old_data_stripe_length = odata * chunk;
8740
8741 migr_rec = super->migr_rec;
8742
8743 /* [bytes] */
8744 sra->new_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8745 sra->new_level = map_dest->raid_level;
8746 new_data_stripe_length = sra->new_chunk * ndata;
8747
8748 /* initialize migration record for start condition */
8749 if (sra->reshape_progress == 0)
8750 init_migr_record_imsm(st, dev, sra);
8751
8752 /* size for data */
8753 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
8754 /* extend buffer size for parity disk */
8755 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8756 /* add space for stripe aligment */
8757 buf_size += old_data_stripe_length;
8758 if (posix_memalign((void **)&buf, 4096, buf_size)) {
8759 dprintf("imsm: Cannot allocate checpoint buffer\n");
8760 goto abort;
8761 }
8762
8763 max_position = sra->component_size * ndata;
8764 if (map_src->raid_level != 0)
8765 source_layout = ALGORITHM_LEFT_ASYMMETRIC;
8766
8767 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
8768 __le32_to_cpu(migr_rec->num_migr_units)) {
8769 /* current reshape position [blocks] */
8770 unsigned long long current_position =
8771 __le32_to_cpu(migr_rec->blocks_per_unit)
8772 * __le32_to_cpu(migr_rec->curr_migr_unit);
8773 unsigned long long border;
8774
8775 /* Check that array hasn't become failed.
8776 */
8777 degraded = check_degradation_change(sra, fds, degraded);
8778 if (degraded > 1) {
8779 dprintf("imsm: Abort reshape due to degradation"
8780 " level (%i)\n", degraded);
8781 goto abort;
8782 }
8783
8784 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
8785
8786 if ((current_position + next_step) > max_position)
8787 next_step = max_position - current_position;
8788
8789 start = current_position * 512;
8790
8791 /* allign reading start to old geometry */
8792 start_buf_shift = start % old_data_stripe_length;
8793 start_src = start - start_buf_shift;
8794
8795 border = (start_src / odata) - (start / ndata);
8796 border /= 512;
8797 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
8798 /* save critical stripes to buf
8799 * start - start address of current unit
8800 * to backup [bytes]
8801 * start_src - start address of current unit
8802 * to backup alligned to source array
8803 * [bytes]
8804 */
8805 unsigned long long next_step_filler = 0;
8806 unsigned long long copy_length = next_step * 512;
8807
8808 /* allign copy area length to stripe in old geometry */
8809 next_step_filler = ((copy_length + start_buf_shift)
8810 % old_data_stripe_length);
8811 if (next_step_filler)
8812 next_step_filler = (old_data_stripe_length
8813 - next_step_filler);
8814 dprintf("save_stripes() parameters: start = %llu,"
8815 "\tstart_src = %llu,\tnext_step*512 = %llu,"
8816 "\tstart_in_buf_shift = %llu,"
8817 "\tnext_step_filler = %llu\n",
8818 start, start_src, copy_length,
8819 start_buf_shift, next_step_filler);
8820
8821 if (save_stripes(fds, offsets, map_src->num_members,
8822 chunk, map_src->raid_level,
8823 source_layout, 0, NULL, start_src,
8824 copy_length +
8825 next_step_filler + start_buf_shift,
8826 buf)) {
8827 dprintf("imsm: Cannot save stripes"
8828 " to buffer\n");
8829 goto abort;
8830 }
8831 /* Convert data to destination format and store it
8832 * in backup general migration area
8833 */
8834 if (save_backup_imsm(st, dev, sra,
8835 buf + start_buf_shift, copy_length)) {
8836 dprintf("imsm: Cannot save stripes to "
8837 "target devices\n");
8838 goto abort;
8839 }
8840 if (save_checkpoint_imsm(st, sra,
8841 UNIT_SRC_IN_CP_AREA)) {
8842 dprintf("imsm: Cannot write checkpoint to "
8843 "migration record (UNIT_SRC_IN_CP_AREA)\n");
8844 goto abort;
8845 }
8846 /* decrease backup_blocks */
8847 if (backup_blocks > (unsigned long)next_step)
8848 backup_blocks -= next_step;
8849 else
8850 backup_blocks = 0;
8851 }
8852 /* When data backed up, checkpoint stored,
8853 * kick the kernel to reshape unit of data
8854 */
8855 next_step = next_step + sra->reshape_progress;
8856 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
8857 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
8858
8859 /* wait until reshape finish */
8860 if (wait_for_reshape_imsm(sra, next_step, ndata) < 0) {
8861 dprintf("wait_for_reshape_imsm returned error!\n");
8862 goto abort;
8863 }
8864
8865 sra->reshape_progress = next_step;
8866
8867 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
8868 /* ignore error == 2, this can mean end of reshape here
8869 */
8870 dprintf("imsm: Cannot write checkpoint to "
8871 "migration record (UNIT_SRC_NORMAL)\n");
8872 goto abort;
8873 }
8874
8875 }
8876
8877 /* return '1' if done */
8878 ret_val = 1;
8879 abort:
8880 free(buf);
8881 abort_reshape(sra);
8882
8883 return ret_val;
8884 }
8885 #endif /* MDASSEMBLE */
8886
8887 struct superswitch super_imsm = {
8888 #ifndef MDASSEMBLE
8889 .examine_super = examine_super_imsm,
8890 .brief_examine_super = brief_examine_super_imsm,
8891 .brief_examine_subarrays = brief_examine_subarrays_imsm,
8892 .export_examine_super = export_examine_super_imsm,
8893 .detail_super = detail_super_imsm,
8894 .brief_detail_super = brief_detail_super_imsm,
8895 .write_init_super = write_init_super_imsm,
8896 .validate_geometry = validate_geometry_imsm,
8897 .add_to_super = add_to_super_imsm,
8898 .remove_from_super = remove_from_super_imsm,
8899 .detail_platform = detail_platform_imsm,
8900 .kill_subarray = kill_subarray_imsm,
8901 .update_subarray = update_subarray_imsm,
8902 .load_container = load_container_imsm,
8903 .default_geometry = default_geometry_imsm,
8904 .get_disk_controller_domain = imsm_get_disk_controller_domain,
8905 .reshape_super = imsm_reshape_super,
8906 .manage_reshape = imsm_manage_reshape,
8907 #endif
8908 .match_home = match_home_imsm,
8909 .uuid_from_super= uuid_from_super_imsm,
8910 .getinfo_super = getinfo_super_imsm,
8911 .getinfo_super_disks = getinfo_super_disks_imsm,
8912 .update_super = update_super_imsm,
8913
8914 .avail_size = avail_size_imsm,
8915 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
8916
8917 .compare_super = compare_super_imsm,
8918
8919 .load_super = load_super_imsm,
8920 .init_super = init_super_imsm,
8921 .store_super = store_super_imsm,
8922 .free_super = free_super_imsm,
8923 .match_metadata_desc = match_metadata_desc_imsm,
8924 .container_content = container_content_imsm,
8925
8926 .recover_backup = recover_backup_imsm,
8927
8928 .external = 1,
8929 .name = "imsm",
8930
8931 #ifndef MDASSEMBLE
8932 /* for mdmon */
8933 .open_new = imsm_open_new,
8934 .set_array_state= imsm_set_array_state,
8935 .set_disk = imsm_set_disk,
8936 .sync_metadata = imsm_sync_metadata,
8937 .activate_spare = imsm_activate_spare,
8938 .process_update = imsm_process_update,
8939 .prepare_update = imsm_prepare_update,
8940 #endif /* MDASSEMBLE */
8941 };