]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
Merge branch 'klockwork' of git://github.com/djbw/mdadm
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54 #define MPB_SECTOR_CNT 418
55 #define IMSM_RESERVED_SECTORS 4096
56 #define SECT_PER_MB_SHIFT 11
57
58 /* Disk configuration info. */
59 #define IMSM_MAX_DEVICES 255
60 struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67 __u32 status; /* 0xF0 - 0xF3 */
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69 #define IMSM_DISK_FILLERS 4
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71 };
72
73 /* RAID map configuration infos. */
74 struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80 #define IMSM_T_STATE_NORMAL 0
81 #define IMSM_T_STATE_UNINITIALIZED 1
82 #define IMSM_T_STATE_DEGRADED 2
83 #define IMSM_T_STATE_FAILED 3
84 __u8 raid_level;
85 #define IMSM_T_RAID0 0
86 #define IMSM_T_RAID1 1
87 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
91 __u8 ddf;
92 __u32 filler[7]; /* expansion area */
93 #define IMSM_ORD_REBUILD (1 << 24)
94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
95 * top byte contains some flags
96 */
97 } __attribute__ ((packed));
98
99 struct imsm_vol {
100 __u32 curr_migr_unit;
101 __u32 checkpoint_id; /* id to access curr_migr_unit */
102 __u8 migr_state; /* Normal or Migrating */
103 #define MIGR_INIT 0
104 #define MIGR_REBUILD 1
105 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106 #define MIGR_GEN_MIGR 3
107 #define MIGR_STATE_CHANGE 4
108 #define MIGR_REPAIR 5
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117 } __attribute__ ((packed));
118
119 struct imsm_dev {
120 __u8 volume[MAX_RAID_SERIAL_LEN];
121 __u32 size_low;
122 __u32 size_high;
123 #define DEV_BOOTABLE __cpu_to_le32(0x01)
124 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
126 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145 #define IMSM_DEV_FILLERS 10
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148 } __attribute__ ((packed));
149
150 struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166 #define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
170 /* here comes BBM logs */
171 } __attribute__ ((packed));
172
173 #define BBM_LOG_MAX_ENTRIES 254
174
175 struct bbm_log_entry {
176 __u64 defective_block_start;
177 #define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181 } __attribute__ ((__packed__));
182
183 struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190 } __attribute__ ((__packed__));
191
192
193 #ifndef MDASSEMBLE
194 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195 #endif
196
197 static __u8 migr_type(struct imsm_dev *dev)
198 {
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204 }
205
206 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207 {
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218 }
219
220 static unsigned int sector_count(__u32 bytes)
221 {
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223 }
224
225 static unsigned int mpb_sectors(struct imsm_super *mpb)
226 {
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
228 }
229
230 struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
233 int index;
234 };
235
236 /* internal representation of IMSM metadata */
237 struct intel_super {
238 union {
239 void *buf; /* O_DIRECT buffer for reading/writing metadata */
240 struct imsm_super *anchor; /* immovable parameters */
241 };
242 size_t len; /* size of the 'buf' allocation */
243 void *next_buf; /* for realloc'ing buf from the manager */
244 size_t next_len;
245 int updates_pending; /* count of pending updates for mdmon */
246 int creating_imsm; /* flag to indicate container creation */
247 int current_vol; /* index of raid device undergoing creation */
248 __u32 create_offset; /* common start for 'current_vol' */
249 __u32 random; /* random data for seeding new family numbers */
250 struct intel_dev *devlist;
251 struct dl {
252 struct dl *next;
253 int index;
254 __u8 serial[MAX_RAID_SERIAL_LEN];
255 int major, minor;
256 char *devname;
257 struct imsm_disk disk;
258 int fd;
259 int extent_cnt;
260 struct extent *e; /* for determining freespace @ create */
261 int raiddisk; /* slot to fill in autolayout */
262 } *disks;
263 struct dl *add; /* list of disks to add while mdmon active */
264 struct dl *missing; /* disks removed while we weren't looking */
265 struct bbm_log *bbm_log;
266 const char *hba; /* device path of the raid controller for this metadata */
267 const struct imsm_orom *orom; /* platform firmware support */
268 struct intel_super *next; /* (temp) list for disambiguating family_num */
269 };
270
271 struct intel_disk {
272 struct imsm_disk disk;
273 #define IMSM_UNKNOWN_OWNER (-1)
274 int owner;
275 struct intel_disk *next;
276 };
277
278 struct extent {
279 unsigned long long start, size;
280 };
281
282 /* definition of messages passed to imsm_process_update */
283 enum imsm_update_type {
284 update_activate_spare,
285 update_create_array,
286 update_add_disk,
287 };
288
289 struct imsm_update_activate_spare {
290 enum imsm_update_type type;
291 struct dl *dl;
292 int slot;
293 int array;
294 struct imsm_update_activate_spare *next;
295 };
296
297 struct disk_info {
298 __u8 serial[MAX_RAID_SERIAL_LEN];
299 };
300
301 struct imsm_update_create_array {
302 enum imsm_update_type type;
303 int dev_idx;
304 struct imsm_dev dev;
305 };
306
307 struct imsm_update_add_disk {
308 enum imsm_update_type type;
309 };
310
311 static struct supertype *match_metadata_desc_imsm(char *arg)
312 {
313 struct supertype *st;
314
315 if (strcmp(arg, "imsm") != 0 &&
316 strcmp(arg, "default") != 0
317 )
318 return NULL;
319
320 st = malloc(sizeof(*st));
321 if (!st)
322 return NULL;
323 memset(st, 0, sizeof(*st));
324 st->ss = &super_imsm;
325 st->max_devs = IMSM_MAX_DEVICES;
326 st->minor_version = 0;
327 st->sb = NULL;
328 return st;
329 }
330
331 #ifndef MDASSEMBLE
332 static __u8 *get_imsm_version(struct imsm_super *mpb)
333 {
334 return &mpb->sig[MPB_SIG_LEN];
335 }
336 #endif
337
338 /* retrieve a disk directly from the anchor when the anchor is known to be
339 * up-to-date, currently only at load time
340 */
341 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
342 {
343 if (index >= mpb->num_disks)
344 return NULL;
345 return &mpb->disk[index];
346 }
347
348 #ifndef MDASSEMBLE
349 /* retrieve a disk from the parsed metadata */
350 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
351 {
352 struct dl *d;
353
354 for (d = super->disks; d; d = d->next)
355 if (d->index == index)
356 return &d->disk;
357
358 return NULL;
359 }
360 #endif
361
362 /* generate a checksum directly from the anchor when the anchor is known to be
363 * up-to-date, currently only at load or write_super after coalescing
364 */
365 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
366 {
367 __u32 end = mpb->mpb_size / sizeof(end);
368 __u32 *p = (__u32 *) mpb;
369 __u32 sum = 0;
370
371 while (end--) {
372 sum += __le32_to_cpu(*p);
373 p++;
374 }
375
376 return sum - __le32_to_cpu(mpb->check_sum);
377 }
378
379 static size_t sizeof_imsm_map(struct imsm_map *map)
380 {
381 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
382 }
383
384 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
385 {
386 struct imsm_map *map = &dev->vol.map[0];
387
388 if (second_map && !dev->vol.migr_state)
389 return NULL;
390 else if (second_map) {
391 void *ptr = map;
392
393 return ptr + sizeof_imsm_map(map);
394 } else
395 return map;
396
397 }
398
399 /* return the size of the device.
400 * migr_state increases the returned size if map[0] were to be duplicated
401 */
402 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
403 {
404 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
405 sizeof_imsm_map(get_imsm_map(dev, 0));
406
407 /* migrating means an additional map */
408 if (dev->vol.migr_state)
409 size += sizeof_imsm_map(get_imsm_map(dev, 1));
410 else if (migr_state)
411 size += sizeof_imsm_map(get_imsm_map(dev, 0));
412
413 return size;
414 }
415
416 #ifndef MDASSEMBLE
417 /* retrieve disk serial number list from a metadata update */
418 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
419 {
420 void *u = update;
421 struct disk_info *inf;
422
423 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
424 sizeof_imsm_dev(&update->dev, 0);
425
426 return inf;
427 }
428 #endif
429
430 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
431 {
432 int offset;
433 int i;
434 void *_mpb = mpb;
435
436 if (index >= mpb->num_raid_devs)
437 return NULL;
438
439 /* devices start after all disks */
440 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
441
442 for (i = 0; i <= index; i++)
443 if (i == index)
444 return _mpb + offset;
445 else
446 offset += sizeof_imsm_dev(_mpb + offset, 0);
447
448 return NULL;
449 }
450
451 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
452 {
453 struct intel_dev *dv;
454
455 if (index >= super->anchor->num_raid_devs)
456 return NULL;
457 for (dv = super->devlist; dv; dv = dv->next)
458 if (dv->index == index)
459 return dv->dev;
460 return NULL;
461 }
462
463 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
464 {
465 struct imsm_map *map;
466
467 if (dev->vol.migr_state)
468 map = get_imsm_map(dev, 1);
469 else
470 map = get_imsm_map(dev, 0);
471
472 /* top byte identifies disk under rebuild */
473 return __le32_to_cpu(map->disk_ord_tbl[slot]);
474 }
475
476 #define ord_to_idx(ord) (((ord) << 8) >> 8)
477 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
478 {
479 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
480
481 return ord_to_idx(ord);
482 }
483
484 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
485 {
486 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
487 }
488
489 static int get_imsm_disk_slot(struct imsm_map *map, int idx)
490 {
491 int slot;
492 __u32 ord;
493
494 for (slot = 0; slot < map->num_members; slot++) {
495 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
496 if (ord_to_idx(ord) == idx)
497 return slot;
498 }
499
500 return -1;
501 }
502
503 static int get_imsm_raid_level(struct imsm_map *map)
504 {
505 if (map->raid_level == 1) {
506 if (map->num_members == 2)
507 return 1;
508 else
509 return 10;
510 }
511
512 return map->raid_level;
513 }
514
515 static int cmp_extent(const void *av, const void *bv)
516 {
517 const struct extent *a = av;
518 const struct extent *b = bv;
519 if (a->start < b->start)
520 return -1;
521 if (a->start > b->start)
522 return 1;
523 return 0;
524 }
525
526 static int count_memberships(struct dl *dl, struct intel_super *super)
527 {
528 int memberships = 0;
529 int i;
530
531 for (i = 0; i < super->anchor->num_raid_devs; i++) {
532 struct imsm_dev *dev = get_imsm_dev(super, i);
533 struct imsm_map *map = get_imsm_map(dev, 0);
534
535 if (get_imsm_disk_slot(map, dl->index) >= 0)
536 memberships++;
537 }
538
539 return memberships;
540 }
541
542 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
543 {
544 /* find a list of used extents on the given physical device */
545 struct extent *rv, *e;
546 int i;
547 int memberships = count_memberships(dl, super);
548 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
549
550 rv = malloc(sizeof(struct extent) * (memberships + 1));
551 if (!rv)
552 return NULL;
553 e = rv;
554
555 for (i = 0; i < super->anchor->num_raid_devs; i++) {
556 struct imsm_dev *dev = get_imsm_dev(super, i);
557 struct imsm_map *map = get_imsm_map(dev, 0);
558
559 if (get_imsm_disk_slot(map, dl->index) >= 0) {
560 e->start = __le32_to_cpu(map->pba_of_lba0);
561 e->size = __le32_to_cpu(map->blocks_per_member);
562 e++;
563 }
564 }
565 qsort(rv, memberships, sizeof(*rv), cmp_extent);
566
567 /* determine the start of the metadata
568 * when no raid devices are defined use the default
569 * ...otherwise allow the metadata to truncate the value
570 * as is the case with older versions of imsm
571 */
572 if (memberships) {
573 struct extent *last = &rv[memberships - 1];
574 __u32 remainder;
575
576 remainder = __le32_to_cpu(dl->disk.total_blocks) -
577 (last->start + last->size);
578 /* round down to 1k block to satisfy precision of the kernel
579 * 'size' interface
580 */
581 remainder &= ~1UL;
582 /* make sure remainder is still sane */
583 if (remainder < ROUND_UP(super->len, 512) >> 9)
584 remainder = ROUND_UP(super->len, 512) >> 9;
585 if (reservation > remainder)
586 reservation = remainder;
587 }
588 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
589 e->size = 0;
590 return rv;
591 }
592
593 /* try to determine how much space is reserved for metadata from
594 * the last get_extents() entry, otherwise fallback to the
595 * default
596 */
597 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
598 {
599 struct extent *e;
600 int i;
601 __u32 rv;
602
603 /* for spares just return a minimal reservation which will grow
604 * once the spare is picked up by an array
605 */
606 if (dl->index == -1)
607 return MPB_SECTOR_CNT;
608
609 e = get_extents(super, dl);
610 if (!e)
611 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
612
613 /* scroll to last entry */
614 for (i = 0; e[i].size; i++)
615 continue;
616
617 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
618
619 free(e);
620
621 return rv;
622 }
623
624 static int is_spare(struct imsm_disk *disk)
625 {
626 return (disk->status & SPARE_DISK) == SPARE_DISK;
627 }
628
629 static int is_configured(struct imsm_disk *disk)
630 {
631 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
632 }
633
634 static int is_failed(struct imsm_disk *disk)
635 {
636 return (disk->status & FAILED_DISK) == FAILED_DISK;
637 }
638
639 #ifndef MDASSEMBLE
640 static __u64 blocks_per_migr_unit(struct imsm_dev *dev);
641
642 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
643 {
644 __u64 sz;
645 int slot;
646 struct imsm_map *map = get_imsm_map(dev, 0);
647 __u32 ord;
648
649 printf("\n");
650 printf("[%.16s]:\n", dev->volume);
651 printf(" UUID : %s\n", uuid);
652 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
653 printf(" Members : %d\n", map->num_members);
654 slot = get_imsm_disk_slot(map, disk_idx);
655 if (slot >= 0) {
656 ord = get_imsm_ord_tbl_ent(dev, slot);
657 printf(" This Slot : %d%s\n", slot,
658 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
659 } else
660 printf(" This Slot : ?\n");
661 sz = __le32_to_cpu(dev->size_high);
662 sz <<= 32;
663 sz += __le32_to_cpu(dev->size_low);
664 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
665 human_size(sz * 512));
666 sz = __le32_to_cpu(map->blocks_per_member);
667 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
668 human_size(sz * 512));
669 printf(" Sector Offset : %u\n",
670 __le32_to_cpu(map->pba_of_lba0));
671 printf(" Num Stripes : %u\n",
672 __le32_to_cpu(map->num_data_stripes));
673 printf(" Chunk Size : %u KiB\n",
674 __le16_to_cpu(map->blocks_per_strip) / 2);
675 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
676 printf(" Migrate State : ");
677 if (dev->vol.migr_state) {
678 if (migr_type(dev) == MIGR_INIT)
679 printf("initialize\n");
680 else if (migr_type(dev) == MIGR_REBUILD)
681 printf("rebuild\n");
682 else if (migr_type(dev) == MIGR_VERIFY)
683 printf("check\n");
684 else if (migr_type(dev) == MIGR_GEN_MIGR)
685 printf("general migration\n");
686 else if (migr_type(dev) == MIGR_STATE_CHANGE)
687 printf("state change\n");
688 else if (migr_type(dev) == MIGR_REPAIR)
689 printf("repair\n");
690 else
691 printf("<unknown:%d>\n", migr_type(dev));
692 } else
693 printf("idle\n");
694 printf(" Map State : %s", map_state_str[map->map_state]);
695 if (dev->vol.migr_state) {
696 struct imsm_map *map = get_imsm_map(dev, 1);
697
698 printf(" <-- %s", map_state_str[map->map_state]);
699 printf("\n Checkpoint : %u (%llu)",
700 __le32_to_cpu(dev->vol.curr_migr_unit),
701 blocks_per_migr_unit(dev));
702 }
703 printf("\n");
704 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
705 }
706
707 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
708 {
709 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
710 char str[MAX_RAID_SERIAL_LEN + 1];
711 __u64 sz;
712
713 if (index < 0 || !disk)
714 return;
715
716 printf("\n");
717 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
718 printf(" Disk%02d Serial : %s\n", index, str);
719 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
720 is_configured(disk) ? " active" : "",
721 is_failed(disk) ? " failed" : "");
722 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
723 sz = __le32_to_cpu(disk->total_blocks) - reserved;
724 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
725 human_size(sz * 512));
726 }
727
728 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
729
730 static void examine_super_imsm(struct supertype *st, char *homehost)
731 {
732 struct intel_super *super = st->sb;
733 struct imsm_super *mpb = super->anchor;
734 char str[MAX_SIGNATURE_LENGTH];
735 int i;
736 struct mdinfo info;
737 char nbuf[64];
738 __u32 sum;
739 __u32 reserved = imsm_reserved_sectors(super, super->disks);
740
741
742 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
743 printf(" Magic : %s\n", str);
744 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
745 printf(" Version : %s\n", get_imsm_version(mpb));
746 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
747 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
748 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
749 getinfo_super_imsm(st, &info);
750 fname_from_uuid(st, &info, nbuf, ':');
751 printf(" UUID : %s\n", nbuf + 5);
752 sum = __le32_to_cpu(mpb->check_sum);
753 printf(" Checksum : %08x %s\n", sum,
754 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
755 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
756 printf(" Disks : %d\n", mpb->num_disks);
757 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
758 print_imsm_disk(mpb, super->disks->index, reserved);
759 if (super->bbm_log) {
760 struct bbm_log *log = super->bbm_log;
761
762 printf("\n");
763 printf("Bad Block Management Log:\n");
764 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
765 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
766 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
767 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
768 printf(" First Spare : %llx\n",
769 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
770 }
771 for (i = 0; i < mpb->num_raid_devs; i++) {
772 struct mdinfo info;
773 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
774
775 super->current_vol = i;
776 getinfo_super_imsm(st, &info);
777 fname_from_uuid(st, &info, nbuf, ':');
778 print_imsm_dev(dev, nbuf + 5, super->disks->index);
779 }
780 for (i = 0; i < mpb->num_disks; i++) {
781 if (i == super->disks->index)
782 continue;
783 print_imsm_disk(mpb, i, reserved);
784 }
785 }
786
787 static void brief_examine_super_imsm(struct supertype *st, int verbose)
788 {
789 /* We just write a generic IMSM ARRAY entry */
790 struct mdinfo info;
791 char nbuf[64];
792 struct intel_super *super = st->sb;
793
794 if (!super->anchor->num_raid_devs) {
795 printf("ARRAY metadata=imsm\n");
796 return;
797 }
798
799 getinfo_super_imsm(st, &info);
800 fname_from_uuid(st, &info, nbuf, ':');
801 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
802 }
803
804 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
805 {
806 /* We just write a generic IMSM ARRAY entry */
807 struct mdinfo info;
808 char nbuf[64];
809 char nbuf1[64];
810 struct intel_super *super = st->sb;
811 int i;
812
813 if (!super->anchor->num_raid_devs)
814 return;
815
816 getinfo_super_imsm(st, &info);
817 fname_from_uuid(st, &info, nbuf, ':');
818 for (i = 0; i < super->anchor->num_raid_devs; i++) {
819 struct imsm_dev *dev = get_imsm_dev(super, i);
820
821 super->current_vol = i;
822 getinfo_super_imsm(st, &info);
823 fname_from_uuid(st, &info, nbuf1, ':');
824 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
825 dev->volume, nbuf + 5, i, nbuf1 + 5);
826 }
827 }
828
829 static void export_examine_super_imsm(struct supertype *st)
830 {
831 struct intel_super *super = st->sb;
832 struct imsm_super *mpb = super->anchor;
833 struct mdinfo info;
834 char nbuf[64];
835
836 getinfo_super_imsm(st, &info);
837 fname_from_uuid(st, &info, nbuf, ':');
838 printf("MD_METADATA=imsm\n");
839 printf("MD_LEVEL=container\n");
840 printf("MD_UUID=%s\n", nbuf+5);
841 printf("MD_DEVICES=%u\n", mpb->num_disks);
842 }
843
844 static void detail_super_imsm(struct supertype *st, char *homehost)
845 {
846 struct mdinfo info;
847 char nbuf[64];
848
849 getinfo_super_imsm(st, &info);
850 fname_from_uuid(st, &info, nbuf, ':');
851 printf("\n UUID : %s\n", nbuf + 5);
852 }
853
854 static void brief_detail_super_imsm(struct supertype *st)
855 {
856 struct mdinfo info;
857 char nbuf[64];
858 getinfo_super_imsm(st, &info);
859 fname_from_uuid(st, &info, nbuf, ':');
860 printf(" UUID=%s", nbuf + 5);
861 }
862
863 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
864 static void fd2devname(int fd, char *name);
865
866 static int imsm_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
867 {
868 /* dump an unsorted list of devices attached to ahci, as well as
869 * non-connected ports
870 */
871 int hba_len = strlen(hba_path) + 1;
872 struct dirent *ent;
873 DIR *dir;
874 char *path = NULL;
875 int err = 0;
876 unsigned long port_mask = (1 << port_count) - 1;
877
878 if (port_count > sizeof(port_mask) * 8) {
879 if (verbose)
880 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
881 return 2;
882 }
883
884 /* scroll through /sys/dev/block looking for devices attached to
885 * this hba
886 */
887 dir = opendir("/sys/dev/block");
888 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
889 int fd;
890 char model[64];
891 char vendor[64];
892 char buf[1024];
893 int major, minor;
894 char *device;
895 char *c;
896 int port;
897 int type;
898
899 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
900 continue;
901 path = devt_to_devpath(makedev(major, minor));
902 if (!path)
903 continue;
904 if (!path_attached_to_hba(path, hba_path)) {
905 free(path);
906 path = NULL;
907 continue;
908 }
909
910 /* retrieve the scsi device type */
911 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
912 if (verbose)
913 fprintf(stderr, Name ": failed to allocate 'device'\n");
914 err = 2;
915 break;
916 }
917 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
918 if (load_sys(device, buf) != 0) {
919 if (verbose)
920 fprintf(stderr, Name ": failed to read device type for %s\n",
921 path);
922 err = 2;
923 free(device);
924 break;
925 }
926 type = strtoul(buf, NULL, 10);
927
928 /* if it's not a disk print the vendor and model */
929 if (!(type == 0 || type == 7 || type == 14)) {
930 vendor[0] = '\0';
931 model[0] = '\0';
932 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
933 if (load_sys(device, buf) == 0) {
934 strncpy(vendor, buf, sizeof(vendor));
935 vendor[sizeof(vendor) - 1] = '\0';
936 c = (char *) &vendor[sizeof(vendor) - 1];
937 while (isspace(*c) || *c == '\0')
938 *c-- = '\0';
939
940 }
941 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
942 if (load_sys(device, buf) == 0) {
943 strncpy(model, buf, sizeof(model));
944 model[sizeof(model) - 1] = '\0';
945 c = (char *) &model[sizeof(model) - 1];
946 while (isspace(*c) || *c == '\0')
947 *c-- = '\0';
948 }
949
950 if (vendor[0] && model[0])
951 sprintf(buf, "%.64s %.64s", vendor, model);
952 else
953 switch (type) { /* numbers from hald/linux/device.c */
954 case 1: sprintf(buf, "tape"); break;
955 case 2: sprintf(buf, "printer"); break;
956 case 3: sprintf(buf, "processor"); break;
957 case 4:
958 case 5: sprintf(buf, "cdrom"); break;
959 case 6: sprintf(buf, "scanner"); break;
960 case 8: sprintf(buf, "media_changer"); break;
961 case 9: sprintf(buf, "comm"); break;
962 case 12: sprintf(buf, "raid"); break;
963 default: sprintf(buf, "unknown");
964 }
965 } else
966 buf[0] = '\0';
967 free(device);
968
969 /* chop device path to 'host%d' and calculate the port number */
970 c = strchr(&path[hba_len], '/');
971 if (!c) {
972 if (verbose)
973 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
974 err = 2;
975 break;
976 }
977 *c = '\0';
978 if (sscanf(&path[hba_len], "host%d", &port) == 1)
979 port -= host_base;
980 else {
981 if (verbose) {
982 *c = '/'; /* repair the full string */
983 fprintf(stderr, Name ": failed to determine port number for %s\n",
984 path);
985 }
986 err = 2;
987 break;
988 }
989
990 /* mark this port as used */
991 port_mask &= ~(1 << port);
992
993 /* print out the device information */
994 if (buf[0]) {
995 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
996 continue;
997 }
998
999 fd = dev_open(ent->d_name, O_RDONLY);
1000 if (fd < 0)
1001 printf(" Port%d : - disk info unavailable -\n", port);
1002 else {
1003 fd2devname(fd, buf);
1004 printf(" Port%d : %s", port, buf);
1005 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1006 printf(" (%s)\n", buf);
1007 else
1008 printf("()\n");
1009 }
1010 close(fd);
1011 free(path);
1012 path = NULL;
1013 }
1014 if (path)
1015 free(path);
1016 if (dir)
1017 closedir(dir);
1018 if (err == 0) {
1019 int i;
1020
1021 for (i = 0; i < port_count; i++)
1022 if (port_mask & (1 << i))
1023 printf(" Port%d : - no device attached -\n", i);
1024 }
1025
1026 return err;
1027 }
1028
1029 static int detail_platform_imsm(int verbose, int enumerate_only)
1030 {
1031 /* There are two components to imsm platform support, the ahci SATA
1032 * controller and the option-rom. To find the SATA controller we
1033 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1034 * controller with the Intel vendor id is present. This approach
1035 * allows mdadm to leverage the kernel's ahci detection logic, with the
1036 * caveat that if ahci.ko is not loaded mdadm will not be able to
1037 * detect platform raid capabilities. The option-rom resides in a
1038 * platform "Adapter ROM". We scan for its signature to retrieve the
1039 * platform capabilities. If raid support is disabled in the BIOS the
1040 * option-rom capability structure will not be available.
1041 */
1042 const struct imsm_orom *orom;
1043 struct sys_dev *list, *hba;
1044 DIR *dir;
1045 struct dirent *ent;
1046 const char *hba_path;
1047 int host_base = 0;
1048 int port_count = 0;
1049
1050 if (enumerate_only) {
1051 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
1052 return 0;
1053 return 2;
1054 }
1055
1056 list = find_driver_devices("pci", "ahci");
1057 for (hba = list; hba; hba = hba->next)
1058 if (devpath_to_vendor(hba->path) == 0x8086)
1059 break;
1060
1061 if (!hba) {
1062 if (verbose)
1063 fprintf(stderr, Name ": unable to find active ahci controller\n");
1064 free_sys_dev(&list);
1065 return 2;
1066 } else if (verbose)
1067 fprintf(stderr, Name ": found Intel SATA AHCI Controller\n");
1068 hba_path = hba->path;
1069 hba->path = NULL;
1070 free_sys_dev(&list);
1071
1072 orom = find_imsm_orom();
1073 if (!orom) {
1074 if (verbose)
1075 fprintf(stderr, Name ": imsm option-rom not found\n");
1076 return 2;
1077 }
1078
1079 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1080 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1081 orom->hotfix_ver, orom->build);
1082 printf(" RAID Levels :%s%s%s%s%s\n",
1083 imsm_orom_has_raid0(orom) ? " raid0" : "",
1084 imsm_orom_has_raid1(orom) ? " raid1" : "",
1085 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1086 imsm_orom_has_raid10(orom) ? " raid10" : "",
1087 imsm_orom_has_raid5(orom) ? " raid5" : "");
1088 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1089 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1090 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1091 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1092 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1093 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1094 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1095 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1096 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1097 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1098 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1099 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1100 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1101 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1102 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1103 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1104 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1105 printf(" Max Disks : %d\n", orom->tds);
1106 printf(" Max Volumes : %d\n", orom->vpa);
1107 printf(" I/O Controller : %s\n", hba_path);
1108
1109 /* find the smallest scsi host number to determine a port number base */
1110 dir = opendir(hba_path);
1111 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1112 int host;
1113
1114 if (sscanf(ent->d_name, "host%d", &host) != 1)
1115 continue;
1116 if (port_count == 0)
1117 host_base = host;
1118 else if (host < host_base)
1119 host_base = host;
1120
1121 if (host + 1 > port_count + host_base)
1122 port_count = host + 1 - host_base;
1123
1124 }
1125 if (dir)
1126 closedir(dir);
1127
1128 if (!port_count || imsm_enumerate_ports(hba_path, port_count,
1129 host_base, verbose) != 0) {
1130 if (verbose)
1131 fprintf(stderr, Name ": failed to enumerate ports\n");
1132 return 2;
1133 }
1134
1135 return 0;
1136 }
1137 #endif
1138
1139 static int match_home_imsm(struct supertype *st, char *homehost)
1140 {
1141 /* the imsm metadata format does not specify any host
1142 * identification information. We return -1 since we can never
1143 * confirm nor deny whether a given array is "meant" for this
1144 * host. We rely on compare_super and the 'family_num' fields to
1145 * exclude member disks that do not belong, and we rely on
1146 * mdadm.conf to specify the arrays that should be assembled.
1147 * Auto-assembly may still pick up "foreign" arrays.
1148 */
1149
1150 return -1;
1151 }
1152
1153 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1154 {
1155 /* The uuid returned here is used for:
1156 * uuid to put into bitmap file (Create, Grow)
1157 * uuid for backup header when saving critical section (Grow)
1158 * comparing uuids when re-adding a device into an array
1159 * In these cases the uuid required is that of the data-array,
1160 * not the device-set.
1161 * uuid to recognise same set when adding a missing device back
1162 * to an array. This is a uuid for the device-set.
1163 *
1164 * For each of these we can make do with a truncated
1165 * or hashed uuid rather than the original, as long as
1166 * everyone agrees.
1167 * In each case the uuid required is that of the data-array,
1168 * not the device-set.
1169 */
1170 /* imsm does not track uuid's so we synthesis one using sha1 on
1171 * - The signature (Which is constant for all imsm array, but no matter)
1172 * - the orig_family_num of the container
1173 * - the index number of the volume
1174 * - the 'serial' number of the volume.
1175 * Hopefully these are all constant.
1176 */
1177 struct intel_super *super = st->sb;
1178
1179 char buf[20];
1180 struct sha1_ctx ctx;
1181 struct imsm_dev *dev = NULL;
1182 __u32 family_num;
1183
1184 /* some mdadm versions failed to set ->orig_family_num, in which
1185 * case fall back to ->family_num. orig_family_num will be
1186 * fixed up with the first metadata update.
1187 */
1188 family_num = super->anchor->orig_family_num;
1189 if (family_num == 0)
1190 family_num = super->anchor->family_num;
1191 sha1_init_ctx(&ctx);
1192 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1193 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1194 if (super->current_vol >= 0)
1195 dev = get_imsm_dev(super, super->current_vol);
1196 if (dev) {
1197 __u32 vol = super->current_vol;
1198 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1199 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1200 }
1201 sha1_finish_ctx(&ctx, buf);
1202 memcpy(uuid, buf, 4*4);
1203 }
1204
1205 #if 0
1206 static void
1207 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1208 {
1209 __u8 *v = get_imsm_version(mpb);
1210 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1211 char major[] = { 0, 0, 0 };
1212 char minor[] = { 0 ,0, 0 };
1213 char patch[] = { 0, 0, 0 };
1214 char *ver_parse[] = { major, minor, patch };
1215 int i, j;
1216
1217 i = j = 0;
1218 while (*v != '\0' && v < end) {
1219 if (*v != '.' && j < 2)
1220 ver_parse[i][j++] = *v;
1221 else {
1222 i++;
1223 j = 0;
1224 }
1225 v++;
1226 }
1227
1228 *m = strtol(minor, NULL, 0);
1229 *p = strtol(patch, NULL, 0);
1230 }
1231 #endif
1232
1233 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1234 {
1235 /* migr_strip_size when repairing or initializing parity */
1236 struct imsm_map *map = get_imsm_map(dev, 0);
1237 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1238
1239 switch (get_imsm_raid_level(map)) {
1240 case 5:
1241 case 10:
1242 return chunk;
1243 default:
1244 return 128*1024 >> 9;
1245 }
1246 }
1247
1248 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1249 {
1250 /* migr_strip_size when rebuilding a degraded disk, no idea why
1251 * this is different than migr_strip_size_resync(), but it's good
1252 * to be compatible
1253 */
1254 struct imsm_map *map = get_imsm_map(dev, 1);
1255 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1256
1257 switch (get_imsm_raid_level(map)) {
1258 case 1:
1259 case 10:
1260 if (map->num_members % map->num_domains == 0)
1261 return 128*1024 >> 9;
1262 else
1263 return chunk;
1264 case 5:
1265 return max((__u32) 64*1024 >> 9, chunk);
1266 default:
1267 return 128*1024 >> 9;
1268 }
1269 }
1270
1271 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1272 {
1273 struct imsm_map *lo = get_imsm_map(dev, 0);
1274 struct imsm_map *hi = get_imsm_map(dev, 1);
1275 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1276 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1277
1278 return max((__u32) 1, hi_chunk / lo_chunk);
1279 }
1280
1281 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1282 {
1283 struct imsm_map *lo = get_imsm_map(dev, 0);
1284 int level = get_imsm_raid_level(lo);
1285
1286 if (level == 1 || level == 10) {
1287 struct imsm_map *hi = get_imsm_map(dev, 1);
1288
1289 return hi->num_domains;
1290 } else
1291 return num_stripes_per_unit_resync(dev);
1292 }
1293
1294 static __u8 imsm_num_data_members(struct imsm_dev *dev)
1295 {
1296 /* named 'imsm_' because raid0, raid1 and raid10
1297 * counter-intuitively have the same number of data disks
1298 */
1299 struct imsm_map *map = get_imsm_map(dev, 0);
1300
1301 switch (get_imsm_raid_level(map)) {
1302 case 0:
1303 case 1:
1304 case 10:
1305 return map->num_members;
1306 case 5:
1307 return map->num_members - 1;
1308 default:
1309 dprintf("%s: unsupported raid level\n", __func__);
1310 return 0;
1311 }
1312 }
1313
1314 static __u32 parity_segment_depth(struct imsm_dev *dev)
1315 {
1316 struct imsm_map *map = get_imsm_map(dev, 0);
1317 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1318
1319 switch(get_imsm_raid_level(map)) {
1320 case 1:
1321 case 10:
1322 return chunk * map->num_domains;
1323 case 5:
1324 return chunk * map->num_members;
1325 default:
1326 return chunk;
1327 }
1328 }
1329
1330 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1331 {
1332 struct imsm_map *map = get_imsm_map(dev, 1);
1333 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1334 __u32 strip = block / chunk;
1335
1336 switch (get_imsm_raid_level(map)) {
1337 case 1:
1338 case 10: {
1339 __u32 vol_strip = (strip * map->num_domains) + 1;
1340 __u32 vol_stripe = vol_strip / map->num_members;
1341
1342 return vol_stripe * chunk + block % chunk;
1343 } case 5: {
1344 __u32 stripe = strip / (map->num_members - 1);
1345
1346 return stripe * chunk + block % chunk;
1347 }
1348 default:
1349 return 0;
1350 }
1351 }
1352
1353 static __u64 blocks_per_migr_unit(struct imsm_dev *dev)
1354 {
1355 /* calculate the conversion factor between per member 'blocks'
1356 * (md/{resync,rebuild}_start) and imsm migration units, return
1357 * 0 for the 'not migrating' and 'unsupported migration' cases
1358 */
1359 if (!dev->vol.migr_state)
1360 return 0;
1361
1362 switch (migr_type(dev)) {
1363 case MIGR_VERIFY:
1364 case MIGR_REPAIR:
1365 case MIGR_INIT: {
1366 struct imsm_map *map = get_imsm_map(dev, 0);
1367 __u32 stripes_per_unit;
1368 __u32 blocks_per_unit;
1369 __u32 parity_depth;
1370 __u32 migr_chunk;
1371 __u32 block_map;
1372 __u32 block_rel;
1373 __u32 segment;
1374 __u32 stripe;
1375 __u8 disks;
1376
1377 /* yes, this is really the translation of migr_units to
1378 * per-member blocks in the 'resync' case
1379 */
1380 stripes_per_unit = num_stripes_per_unit_resync(dev);
1381 migr_chunk = migr_strip_blocks_resync(dev);
1382 disks = imsm_num_data_members(dev);
1383 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1384 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1385 segment = blocks_per_unit / stripe;
1386 block_rel = blocks_per_unit - segment * stripe;
1387 parity_depth = parity_segment_depth(dev);
1388 block_map = map_migr_block(dev, block_rel);
1389 return block_map + parity_depth * segment;
1390 }
1391 case MIGR_REBUILD: {
1392 __u32 stripes_per_unit;
1393 __u32 migr_chunk;
1394
1395 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1396 migr_chunk = migr_strip_blocks_rebuild(dev);
1397 return migr_chunk * stripes_per_unit;
1398 }
1399 case MIGR_GEN_MIGR:
1400 case MIGR_STATE_CHANGE:
1401 default:
1402 return 0;
1403 }
1404 }
1405
1406 static int imsm_level_to_layout(int level)
1407 {
1408 switch (level) {
1409 case 0:
1410 case 1:
1411 return 0;
1412 case 5:
1413 case 6:
1414 return ALGORITHM_LEFT_ASYMMETRIC;
1415 case 10:
1416 return 0x102;
1417 }
1418 return UnSet;
1419 }
1420
1421 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
1422 {
1423 struct intel_super *super = st->sb;
1424 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1425 struct imsm_map *map = get_imsm_map(dev, 0);
1426 struct dl *dl;
1427 char *devname;
1428
1429 for (dl = super->disks; dl; dl = dl->next)
1430 if (dl->raiddisk == info->disk.raid_disk)
1431 break;
1432 info->container_member = super->current_vol;
1433 info->array.raid_disks = map->num_members;
1434 info->array.level = get_imsm_raid_level(map);
1435 info->array.layout = imsm_level_to_layout(info->array.level);
1436 info->array.md_minor = -1;
1437 info->array.ctime = 0;
1438 info->array.utime = 0;
1439 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1440 info->array.state = !dev->vol.dirty;
1441 info->custom_array_size = __le32_to_cpu(dev->size_high);
1442 info->custom_array_size <<= 32;
1443 info->custom_array_size |= __le32_to_cpu(dev->size_low);
1444
1445 info->disk.major = 0;
1446 info->disk.minor = 0;
1447 if (dl) {
1448 info->disk.major = dl->major;
1449 info->disk.minor = dl->minor;
1450 }
1451
1452 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
1453 info->component_size = __le32_to_cpu(map->blocks_per_member);
1454 memset(info->uuid, 0, sizeof(info->uuid));
1455
1456 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty) {
1457 info->resync_start = 0;
1458 } else if (dev->vol.migr_state) {
1459 switch (migr_type(dev)) {
1460 case MIGR_REPAIR:
1461 case MIGR_INIT: {
1462 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1463 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1464
1465 info->resync_start = blocks_per_unit * units;
1466 break;
1467 }
1468 case MIGR_VERIFY:
1469 /* we could emulate the checkpointing of
1470 * 'sync_action=check' migrations, but for now
1471 * we just immediately complete them
1472 */
1473 case MIGR_REBUILD:
1474 /* this is handled by container_content_imsm() */
1475 case MIGR_GEN_MIGR:
1476 case MIGR_STATE_CHANGE:
1477 /* FIXME handle other migrations */
1478 default:
1479 /* we are not dirty, so... */
1480 info->resync_start = MaxSector;
1481 }
1482 } else
1483 info->resync_start = MaxSector;
1484
1485 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1486 info->name[MAX_RAID_SERIAL_LEN] = 0;
1487
1488 info->array.major_version = -1;
1489 info->array.minor_version = -2;
1490 devname = devnum2devname(st->container_dev);
1491 *info->text_version = '\0';
1492 if (devname)
1493 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
1494 free(devname);
1495 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
1496 uuid_from_super_imsm(st, info->uuid);
1497 }
1498
1499 /* check the config file to see if we can return a real uuid for this spare */
1500 static void fixup_container_spare_uuid(struct mdinfo *inf)
1501 {
1502 struct mddev_ident_s *array_list;
1503
1504 if (inf->array.level != LEVEL_CONTAINER ||
1505 memcmp(inf->uuid, uuid_match_any, sizeof(int[4])) != 0)
1506 return;
1507
1508 array_list = conf_get_ident(NULL);
1509
1510 for (; array_list; array_list = array_list->next) {
1511 if (array_list->uuid_set) {
1512 struct supertype *_sst; /* spare supertype */
1513 struct supertype *_cst; /* container supertype */
1514
1515 _cst = array_list->st;
1516 if (_cst)
1517 _sst = _cst->ss->match_metadata_desc(inf->text_version);
1518 else
1519 _sst = NULL;
1520
1521 if (_sst) {
1522 memcpy(inf->uuid, array_list->uuid, sizeof(int[4]));
1523 free(_sst);
1524 break;
1525 }
1526 }
1527 }
1528 }
1529
1530 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
1531 {
1532 struct intel_super *super = st->sb;
1533 struct imsm_disk *disk;
1534
1535 if (super->current_vol >= 0) {
1536 getinfo_super_imsm_volume(st, info);
1537 return;
1538 }
1539
1540 /* Set raid_disks to zero so that Assemble will always pull in valid
1541 * spares
1542 */
1543 info->array.raid_disks = 0;
1544 info->array.level = LEVEL_CONTAINER;
1545 info->array.layout = 0;
1546 info->array.md_minor = -1;
1547 info->array.ctime = 0; /* N/A for imsm */
1548 info->array.utime = 0;
1549 info->array.chunk_size = 0;
1550
1551 info->disk.major = 0;
1552 info->disk.minor = 0;
1553 info->disk.raid_disk = -1;
1554 info->reshape_active = 0;
1555 info->array.major_version = -1;
1556 info->array.minor_version = -2;
1557 strcpy(info->text_version, "imsm");
1558 info->safe_mode_delay = 0;
1559 info->disk.number = -1;
1560 info->disk.state = 0;
1561 info->name[0] = 0;
1562
1563 if (super->disks) {
1564 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1565
1566 disk = &super->disks->disk;
1567 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1568 info->component_size = reserved;
1569 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
1570 /* we don't change info->disk.raid_disk here because
1571 * this state will be finalized in mdmon after we have
1572 * found the 'most fresh' version of the metadata
1573 */
1574 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
1575 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
1576 }
1577
1578 /* only call uuid_from_super_imsm when this disk is part of a populated container,
1579 * ->compare_super may have updated the 'num_raid_devs' field for spares
1580 */
1581 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
1582 uuid_from_super_imsm(st, info->uuid);
1583 else {
1584 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
1585 fixup_container_spare_uuid(info);
1586 }
1587 }
1588
1589 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
1590 char *update, char *devname, int verbose,
1591 int uuid_set, char *homehost)
1592 {
1593 /* For 'assemble' and 'force' we need to return non-zero if any
1594 * change was made. For others, the return value is ignored.
1595 * Update options are:
1596 * force-one : This device looks a bit old but needs to be included,
1597 * update age info appropriately.
1598 * assemble: clear any 'faulty' flag to allow this device to
1599 * be assembled.
1600 * force-array: Array is degraded but being forced, mark it clean
1601 * if that will be needed to assemble it.
1602 *
1603 * newdev: not used ????
1604 * grow: Array has gained a new device - this is currently for
1605 * linear only
1606 * resync: mark as dirty so a resync will happen.
1607 * name: update the name - preserving the homehost
1608 * uuid: Change the uuid of the array to match watch is given
1609 *
1610 * Following are not relevant for this imsm:
1611 * sparc2.2 : update from old dodgey metadata
1612 * super-minor: change the preferred_minor number
1613 * summaries: update redundant counters.
1614 * homehost: update the recorded homehost
1615 * _reshape_progress: record new reshape_progress position.
1616 */
1617 int rv = 1;
1618 struct intel_super *super = st->sb;
1619 struct imsm_super *mpb;
1620
1621 /* we can only update container info */
1622 if (!super || super->current_vol >= 0 || !super->anchor)
1623 return 1;
1624
1625 mpb = super->anchor;
1626
1627 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1628 fprintf(stderr,
1629 Name ": '--uuid' not supported for imsm metadata\n");
1630 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
1631 mpb->orig_family_num = *((__u32 *) info->update_private);
1632 rv = 0;
1633 } else if (strcmp(update, "uuid") == 0) {
1634 __u32 *new_family = malloc(sizeof(*new_family));
1635
1636 /* update orig_family_number with the incoming random
1637 * data, report the new effective uuid, and store the
1638 * new orig_family_num for future updates.
1639 */
1640 if (new_family) {
1641 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
1642 uuid_from_super_imsm(st, info->uuid);
1643 *new_family = mpb->orig_family_num;
1644 info->update_private = new_family;
1645 rv = 0;
1646 }
1647 } else if (strcmp(update, "assemble") == 0)
1648 rv = 0;
1649 else
1650 fprintf(stderr,
1651 Name ": '--update=%s' not supported for imsm metadata\n",
1652 update);
1653
1654 /* successful update? recompute checksum */
1655 if (rv == 0)
1656 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
1657
1658 return rv;
1659 }
1660
1661 static size_t disks_to_mpb_size(int disks)
1662 {
1663 size_t size;
1664
1665 size = sizeof(struct imsm_super);
1666 size += (disks - 1) * sizeof(struct imsm_disk);
1667 size += 2 * sizeof(struct imsm_dev);
1668 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
1669 size += (4 - 2) * sizeof(struct imsm_map);
1670 /* 4 possible disk_ord_tbl's */
1671 size += 4 * (disks - 1) * sizeof(__u32);
1672
1673 return size;
1674 }
1675
1676 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
1677 {
1678 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
1679 return 0;
1680
1681 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
1682 }
1683
1684 static void free_devlist(struct intel_super *super)
1685 {
1686 struct intel_dev *dv;
1687
1688 while (super->devlist) {
1689 dv = super->devlist->next;
1690 free(super->devlist->dev);
1691 free(super->devlist);
1692 super->devlist = dv;
1693 }
1694 }
1695
1696 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1697 {
1698 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1699 }
1700
1701 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
1702 {
1703 /*
1704 * return:
1705 * 0 same, or first was empty, and second was copied
1706 * 1 second had wrong number
1707 * 2 wrong uuid
1708 * 3 wrong other info
1709 */
1710 struct intel_super *first = st->sb;
1711 struct intel_super *sec = tst->sb;
1712
1713 if (!first) {
1714 st->sb = tst->sb;
1715 tst->sb = NULL;
1716 return 0;
1717 }
1718
1719 /* if an anchor does not have num_raid_devs set then it is a free
1720 * floating spare
1721 */
1722 if (first->anchor->num_raid_devs > 0 &&
1723 sec->anchor->num_raid_devs > 0) {
1724 /* Determine if these disks might ever have been
1725 * related. Further disambiguation can only take place
1726 * in load_super_imsm_all
1727 */
1728 __u32 first_family = first->anchor->orig_family_num;
1729 __u32 sec_family = sec->anchor->orig_family_num;
1730
1731 if (memcmp(first->anchor->sig, sec->anchor->sig,
1732 MAX_SIGNATURE_LENGTH) != 0)
1733 return 3;
1734
1735 if (first_family == 0)
1736 first_family = first->anchor->family_num;
1737 if (sec_family == 0)
1738 sec_family = sec->anchor->family_num;
1739
1740 if (first_family != sec_family)
1741 return 3;
1742
1743 }
1744
1745
1746 /* if 'first' is a spare promote it to a populated mpb with sec's
1747 * family number
1748 */
1749 if (first->anchor->num_raid_devs == 0 &&
1750 sec->anchor->num_raid_devs > 0) {
1751 int i;
1752 struct intel_dev *dv;
1753 struct imsm_dev *dev;
1754
1755 /* we need to copy raid device info from sec if an allocation
1756 * fails here we don't associate the spare
1757 */
1758 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
1759 dv = malloc(sizeof(*dv));
1760 if (!dv)
1761 break;
1762 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
1763 if (!dev) {
1764 free(dv);
1765 break;
1766 }
1767 dv->dev = dev;
1768 dv->index = i;
1769 dv->next = first->devlist;
1770 first->devlist = dv;
1771 }
1772 if (i < sec->anchor->num_raid_devs) {
1773 /* allocation failure */
1774 free_devlist(first);
1775 fprintf(stderr, "imsm: failed to associate spare\n");
1776 return 3;
1777 }
1778 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
1779 first->anchor->orig_family_num = sec->anchor->orig_family_num;
1780 first->anchor->family_num = sec->anchor->family_num;
1781 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
1782 for (i = 0; i < sec->anchor->num_raid_devs; i++)
1783 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
1784 }
1785
1786 return 0;
1787 }
1788
1789 static void fd2devname(int fd, char *name)
1790 {
1791 struct stat st;
1792 char path[256];
1793 char dname[PATH_MAX];
1794 char *nm;
1795 int rv;
1796
1797 name[0] = '\0';
1798 if (fstat(fd, &st) != 0)
1799 return;
1800 sprintf(path, "/sys/dev/block/%d:%d",
1801 major(st.st_rdev), minor(st.st_rdev));
1802
1803 rv = readlink(path, dname, sizeof(dname));
1804 if (rv <= 0)
1805 return;
1806
1807 dname[rv] = '\0';
1808 nm = strrchr(dname, '/');
1809 nm++;
1810 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1811 }
1812
1813 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1814
1815 static int imsm_read_serial(int fd, char *devname,
1816 __u8 serial[MAX_RAID_SERIAL_LEN])
1817 {
1818 unsigned char scsi_serial[255];
1819 int rv;
1820 int rsp_len;
1821 int len;
1822 char *dest;
1823 char *src;
1824 char *rsp_buf;
1825 int i;
1826
1827 memset(scsi_serial, 0, sizeof(scsi_serial));
1828
1829 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1830
1831 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
1832 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1833 fd2devname(fd, (char *) serial);
1834 return 0;
1835 }
1836
1837 if (rv != 0) {
1838 if (devname)
1839 fprintf(stderr,
1840 Name ": Failed to retrieve serial for %s\n",
1841 devname);
1842 return rv;
1843 }
1844
1845 rsp_len = scsi_serial[3];
1846 if (!rsp_len) {
1847 if (devname)
1848 fprintf(stderr,
1849 Name ": Failed to retrieve serial for %s\n",
1850 devname);
1851 return 2;
1852 }
1853 rsp_buf = (char *) &scsi_serial[4];
1854
1855 /* trim all whitespace and non-printable characters and convert
1856 * ':' to ';'
1857 */
1858 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
1859 src = &rsp_buf[i];
1860 if (*src > 0x20) {
1861 /* ':' is reserved for use in placeholder serial
1862 * numbers for missing disks
1863 */
1864 if (*src == ':')
1865 *dest++ = ';';
1866 else
1867 *dest++ = *src;
1868 }
1869 }
1870 len = dest - rsp_buf;
1871 dest = rsp_buf;
1872
1873 /* truncate leading characters */
1874 if (len > MAX_RAID_SERIAL_LEN) {
1875 dest += len - MAX_RAID_SERIAL_LEN;
1876 len = MAX_RAID_SERIAL_LEN;
1877 }
1878
1879 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1880 memcpy(serial, dest, len);
1881
1882 return 0;
1883 }
1884
1885 static int serialcmp(__u8 *s1, __u8 *s2)
1886 {
1887 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1888 }
1889
1890 static void serialcpy(__u8 *dest, __u8 *src)
1891 {
1892 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1893 }
1894
1895 #ifndef MDASSEMBLE
1896 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
1897 {
1898 struct dl *dl;
1899
1900 for (dl = super->disks; dl; dl = dl->next)
1901 if (serialcmp(dl->serial, serial) == 0)
1902 break;
1903
1904 return dl;
1905 }
1906 #endif
1907
1908 static struct imsm_disk *
1909 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
1910 {
1911 int i;
1912
1913 for (i = 0; i < mpb->num_disks; i++) {
1914 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
1915
1916 if (serialcmp(disk->serial, serial) == 0) {
1917 if (idx)
1918 *idx = i;
1919 return disk;
1920 }
1921 }
1922
1923 return NULL;
1924 }
1925
1926 static int
1927 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1928 {
1929 struct imsm_disk *disk;
1930 struct dl *dl;
1931 struct stat stb;
1932 int rv;
1933 char name[40];
1934 __u8 serial[MAX_RAID_SERIAL_LEN];
1935
1936 rv = imsm_read_serial(fd, devname, serial);
1937
1938 if (rv != 0)
1939 return 2;
1940
1941 dl = calloc(1, sizeof(*dl));
1942 if (!dl) {
1943 if (devname)
1944 fprintf(stderr,
1945 Name ": failed to allocate disk buffer for %s\n",
1946 devname);
1947 return 2;
1948 }
1949
1950 fstat(fd, &stb);
1951 dl->major = major(stb.st_rdev);
1952 dl->minor = minor(stb.st_rdev);
1953 dl->next = super->disks;
1954 dl->fd = keep_fd ? fd : -1;
1955 assert(super->disks == NULL);
1956 super->disks = dl;
1957 serialcpy(dl->serial, serial);
1958 dl->index = -2;
1959 dl->e = NULL;
1960 fd2devname(fd, name);
1961 if (devname)
1962 dl->devname = strdup(devname);
1963 else
1964 dl->devname = strdup(name);
1965
1966 /* look up this disk's index in the current anchor */
1967 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
1968 if (disk) {
1969 dl->disk = *disk;
1970 /* only set index on disks that are a member of a
1971 * populated contianer, i.e. one with raid_devs
1972 */
1973 if (is_failed(&dl->disk))
1974 dl->index = -2;
1975 else if (is_spare(&dl->disk))
1976 dl->index = -1;
1977 }
1978
1979 return 0;
1980 }
1981
1982 #ifndef MDASSEMBLE
1983 /* When migrating map0 contains the 'destination' state while map1
1984 * contains the current state. When not migrating map0 contains the
1985 * current state. This routine assumes that map[0].map_state is set to
1986 * the current array state before being called.
1987 *
1988 * Migration is indicated by one of the following states
1989 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
1990 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
1991 * map1state=unitialized)
1992 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
1993 * map1state=normal)
1994 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
1995 * map1state=degraded)
1996 */
1997 static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
1998 {
1999 struct imsm_map *dest;
2000 struct imsm_map *src = get_imsm_map(dev, 0);
2001
2002 dev->vol.migr_state = 1;
2003 set_migr_type(dev, migr_type);
2004 dev->vol.curr_migr_unit = 0;
2005 dest = get_imsm_map(dev, 1);
2006
2007 /* duplicate and then set the target end state in map[0] */
2008 memcpy(dest, src, sizeof_imsm_map(src));
2009 if (migr_type == MIGR_REBUILD) {
2010 __u32 ord;
2011 int i;
2012
2013 for (i = 0; i < src->num_members; i++) {
2014 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2015 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2016 }
2017 }
2018
2019 src->map_state = to_state;
2020 }
2021
2022 static void end_migration(struct imsm_dev *dev, __u8 map_state)
2023 {
2024 struct imsm_map *map = get_imsm_map(dev, 0);
2025 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
2026 int i;
2027
2028 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2029 * completed in the last migration.
2030 *
2031 * FIXME add support for online capacity expansion and
2032 * raid-level-migration
2033 */
2034 for (i = 0; i < prev->num_members; i++)
2035 map->disk_ord_tbl[i] |= prev->disk_ord_tbl[i];
2036
2037 dev->vol.migr_state = 0;
2038 dev->vol.curr_migr_unit = 0;
2039 map->map_state = map_state;
2040 }
2041 #endif
2042
2043 static int parse_raid_devices(struct intel_super *super)
2044 {
2045 int i;
2046 struct imsm_dev *dev_new;
2047 size_t len, len_migr;
2048 size_t space_needed = 0;
2049 struct imsm_super *mpb = super->anchor;
2050
2051 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2052 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2053 struct intel_dev *dv;
2054
2055 len = sizeof_imsm_dev(dev_iter, 0);
2056 len_migr = sizeof_imsm_dev(dev_iter, 1);
2057 if (len_migr > len)
2058 space_needed += len_migr - len;
2059
2060 dv = malloc(sizeof(*dv));
2061 if (!dv)
2062 return 1;
2063 dev_new = malloc(len_migr);
2064 if (!dev_new) {
2065 free(dv);
2066 return 1;
2067 }
2068 imsm_copy_dev(dev_new, dev_iter);
2069 dv->dev = dev_new;
2070 dv->index = i;
2071 dv->next = super->devlist;
2072 super->devlist = dv;
2073 }
2074
2075 /* ensure that super->buf is large enough when all raid devices
2076 * are migrating
2077 */
2078 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2079 void *buf;
2080
2081 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2082 if (posix_memalign(&buf, 512, len) != 0)
2083 return 1;
2084
2085 memcpy(buf, super->buf, super->len);
2086 memset(buf + super->len, 0, len - super->len);
2087 free(super->buf);
2088 super->buf = buf;
2089 super->len = len;
2090 }
2091
2092 return 0;
2093 }
2094
2095 /* retrieve a pointer to the bbm log which starts after all raid devices */
2096 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2097 {
2098 void *ptr = NULL;
2099
2100 if (__le32_to_cpu(mpb->bbm_log_size)) {
2101 ptr = mpb;
2102 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2103 }
2104
2105 return ptr;
2106 }
2107
2108 static void __free_imsm(struct intel_super *super, int free_disks);
2109
2110 /* load_imsm_mpb - read matrix metadata
2111 * allocates super->mpb to be freed by free_super
2112 */
2113 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
2114 {
2115 unsigned long long dsize;
2116 unsigned long long sectors;
2117 struct stat;
2118 struct imsm_super *anchor;
2119 __u32 check_sum;
2120
2121 get_dev_size(fd, NULL, &dsize);
2122
2123 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
2124 if (devname)
2125 fprintf(stderr,
2126 Name ": Cannot seek to anchor block on %s: %s\n",
2127 devname, strerror(errno));
2128 return 1;
2129 }
2130
2131 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
2132 if (devname)
2133 fprintf(stderr,
2134 Name ": Failed to allocate imsm anchor buffer"
2135 " on %s\n", devname);
2136 return 1;
2137 }
2138 if (read(fd, anchor, 512) != 512) {
2139 if (devname)
2140 fprintf(stderr,
2141 Name ": Cannot read anchor block on %s: %s\n",
2142 devname, strerror(errno));
2143 free(anchor);
2144 return 1;
2145 }
2146
2147 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
2148 if (devname)
2149 fprintf(stderr,
2150 Name ": no IMSM anchor on %s\n", devname);
2151 free(anchor);
2152 return 2;
2153 }
2154
2155 __free_imsm(super, 0);
2156 super->len = ROUND_UP(anchor->mpb_size, 512);
2157 if (posix_memalign(&super->buf, 512, super->len) != 0) {
2158 if (devname)
2159 fprintf(stderr,
2160 Name ": unable to allocate %zu byte mpb buffer\n",
2161 super->len);
2162 free(anchor);
2163 return 2;
2164 }
2165 memcpy(super->buf, anchor, 512);
2166
2167 sectors = mpb_sectors(anchor) - 1;
2168 free(anchor);
2169 if (!sectors) {
2170 check_sum = __gen_imsm_checksum(super->anchor);
2171 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2172 if (devname)
2173 fprintf(stderr,
2174 Name ": IMSM checksum %x != %x on %s\n",
2175 check_sum,
2176 __le32_to_cpu(super->anchor->check_sum),
2177 devname);
2178 return 2;
2179 }
2180
2181 return 0;
2182 }
2183
2184 /* read the extended mpb */
2185 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
2186 if (devname)
2187 fprintf(stderr,
2188 Name ": Cannot seek to extended mpb on %s: %s\n",
2189 devname, strerror(errno));
2190 return 1;
2191 }
2192
2193 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
2194 if (devname)
2195 fprintf(stderr,
2196 Name ": Cannot read extended mpb on %s: %s\n",
2197 devname, strerror(errno));
2198 return 2;
2199 }
2200
2201 check_sum = __gen_imsm_checksum(super->anchor);
2202 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2203 if (devname)
2204 fprintf(stderr,
2205 Name ": IMSM checksum %x != %x on %s\n",
2206 check_sum, __le32_to_cpu(super->anchor->check_sum),
2207 devname);
2208 return 3;
2209 }
2210
2211 /* FIXME the BBM log is disk specific so we cannot use this global
2212 * buffer for all disks. Ok for now since we only look at the global
2213 * bbm_log_size parameter to gate assembly
2214 */
2215 super->bbm_log = __get_imsm_bbm_log(super->anchor);
2216
2217 return 0;
2218 }
2219
2220 static int
2221 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
2222 {
2223 int err;
2224
2225 err = load_imsm_mpb(fd, super, devname);
2226 if (err)
2227 return err;
2228 err = load_imsm_disk(fd, super, devname, keep_fd);
2229 if (err)
2230 return err;
2231 err = parse_raid_devices(super);
2232
2233 return err;
2234 }
2235
2236 static void __free_imsm_disk(struct dl *d)
2237 {
2238 if (d->fd >= 0)
2239 close(d->fd);
2240 if (d->devname)
2241 free(d->devname);
2242 if (d->e)
2243 free(d->e);
2244 free(d);
2245
2246 }
2247 static void free_imsm_disks(struct intel_super *super)
2248 {
2249 struct dl *d;
2250
2251 while (super->disks) {
2252 d = super->disks;
2253 super->disks = d->next;
2254 __free_imsm_disk(d);
2255 }
2256 while (super->missing) {
2257 d = super->missing;
2258 super->missing = d->next;
2259 __free_imsm_disk(d);
2260 }
2261
2262 }
2263
2264 /* free all the pieces hanging off of a super pointer */
2265 static void __free_imsm(struct intel_super *super, int free_disks)
2266 {
2267 if (super->buf) {
2268 free(super->buf);
2269 super->buf = NULL;
2270 }
2271 if (free_disks)
2272 free_imsm_disks(super);
2273 free_devlist(super);
2274 if (super->hba) {
2275 free((void *) super->hba);
2276 super->hba = NULL;
2277 }
2278 }
2279
2280 static void free_imsm(struct intel_super *super)
2281 {
2282 __free_imsm(super, 1);
2283 free(super);
2284 }
2285
2286 static void free_super_imsm(struct supertype *st)
2287 {
2288 struct intel_super *super = st->sb;
2289
2290 if (!super)
2291 return;
2292
2293 free_imsm(super);
2294 st->sb = NULL;
2295 }
2296
2297 static struct intel_super *alloc_super(int creating_imsm)
2298 {
2299 struct intel_super *super = malloc(sizeof(*super));
2300
2301 if (super) {
2302 memset(super, 0, sizeof(*super));
2303 super->creating_imsm = creating_imsm;
2304 super->current_vol = -1;
2305 super->create_offset = ~((__u32 ) 0);
2306 if (!check_env("IMSM_NO_PLATFORM"))
2307 super->orom = find_imsm_orom();
2308 if (super->orom && !check_env("IMSM_TEST_OROM")) {
2309 struct sys_dev *list, *ent;
2310
2311 /* find the first intel ahci controller */
2312 list = find_driver_devices("pci", "ahci");
2313 for (ent = list; ent; ent = ent->next)
2314 if (devpath_to_vendor(ent->path) == 0x8086)
2315 break;
2316 if (ent) {
2317 super->hba = ent->path;
2318 ent->path = NULL;
2319 }
2320 free_sys_dev(&list);
2321 }
2322 }
2323
2324 return super;
2325 }
2326
2327 #ifndef MDASSEMBLE
2328 /* find_missing - helper routine for load_super_imsm_all that identifies
2329 * disks that have disappeared from the system. This routine relies on
2330 * the mpb being uptodate, which it is at load time.
2331 */
2332 static int find_missing(struct intel_super *super)
2333 {
2334 int i;
2335 struct imsm_super *mpb = super->anchor;
2336 struct dl *dl;
2337 struct imsm_disk *disk;
2338
2339 for (i = 0; i < mpb->num_disks; i++) {
2340 disk = __get_imsm_disk(mpb, i);
2341 dl = serial_to_dl(disk->serial, super);
2342 if (dl)
2343 continue;
2344
2345 dl = malloc(sizeof(*dl));
2346 if (!dl)
2347 return 1;
2348 dl->major = 0;
2349 dl->minor = 0;
2350 dl->fd = -1;
2351 dl->devname = strdup("missing");
2352 dl->index = i;
2353 serialcpy(dl->serial, disk->serial);
2354 dl->disk = *disk;
2355 dl->e = NULL;
2356 dl->next = super->missing;
2357 super->missing = dl;
2358 }
2359
2360 return 0;
2361 }
2362
2363 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2364 {
2365 struct intel_disk *idisk = disk_list;
2366
2367 while (idisk) {
2368 if (serialcmp(idisk->disk.serial, serial) == 0)
2369 break;
2370 idisk = idisk->next;
2371 }
2372
2373 return idisk;
2374 }
2375
2376 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2377 struct intel_super *super,
2378 struct intel_disk **disk_list)
2379 {
2380 struct imsm_disk *d = &super->disks->disk;
2381 struct imsm_super *mpb = super->anchor;
2382 int i, j;
2383
2384 for (i = 0; i < tbl_size; i++) {
2385 struct imsm_super *tbl_mpb = table[i]->anchor;
2386 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2387
2388 if (tbl_mpb->family_num == mpb->family_num) {
2389 if (tbl_mpb->check_sum == mpb->check_sum) {
2390 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2391 __func__, super->disks->major,
2392 super->disks->minor,
2393 table[i]->disks->major,
2394 table[i]->disks->minor);
2395 break;
2396 }
2397
2398 if (((is_configured(d) && !is_configured(tbl_d)) ||
2399 is_configured(d) == is_configured(tbl_d)) &&
2400 tbl_mpb->generation_num < mpb->generation_num) {
2401 /* current version of the mpb is a
2402 * better candidate than the one in
2403 * super_table, but copy over "cross
2404 * generational" status
2405 */
2406 struct intel_disk *idisk;
2407
2408 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
2409 __func__, super->disks->major,
2410 super->disks->minor,
2411 table[i]->disks->major,
2412 table[i]->disks->minor);
2413
2414 idisk = disk_list_get(tbl_d->serial, *disk_list);
2415 if (idisk && is_failed(&idisk->disk))
2416 tbl_d->status |= FAILED_DISK;
2417 break;
2418 } else {
2419 struct intel_disk *idisk;
2420 struct imsm_disk *disk;
2421
2422 /* tbl_mpb is more up to date, but copy
2423 * over cross generational status before
2424 * returning
2425 */
2426 disk = __serial_to_disk(d->serial, mpb, NULL);
2427 if (disk && is_failed(disk))
2428 d->status |= FAILED_DISK;
2429
2430 idisk = disk_list_get(d->serial, *disk_list);
2431 if (idisk) {
2432 idisk->owner = i;
2433 if (disk && is_configured(disk))
2434 idisk->disk.status |= CONFIGURED_DISK;
2435 }
2436
2437 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
2438 __func__, super->disks->major,
2439 super->disks->minor,
2440 table[i]->disks->major,
2441 table[i]->disks->minor);
2442
2443 return tbl_size;
2444 }
2445 }
2446 }
2447
2448 if (i >= tbl_size)
2449 table[tbl_size++] = super;
2450 else
2451 table[i] = super;
2452
2453 /* update/extend the merged list of imsm_disk records */
2454 for (j = 0; j < mpb->num_disks; j++) {
2455 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
2456 struct intel_disk *idisk;
2457
2458 idisk = disk_list_get(disk->serial, *disk_list);
2459 if (idisk) {
2460 idisk->disk.status |= disk->status;
2461 if (is_configured(&idisk->disk) ||
2462 is_failed(&idisk->disk))
2463 idisk->disk.status &= ~(SPARE_DISK);
2464 } else {
2465 idisk = calloc(1, sizeof(*idisk));
2466 if (!idisk)
2467 return -1;
2468 idisk->owner = IMSM_UNKNOWN_OWNER;
2469 idisk->disk = *disk;
2470 idisk->next = *disk_list;
2471 *disk_list = idisk;
2472 }
2473
2474 if (serialcmp(idisk->disk.serial, d->serial) == 0)
2475 idisk->owner = i;
2476 }
2477
2478 return tbl_size;
2479 }
2480
2481 static struct intel_super *
2482 validate_members(struct intel_super *super, struct intel_disk *disk_list,
2483 const int owner)
2484 {
2485 struct imsm_super *mpb = super->anchor;
2486 int ok_count = 0;
2487 int i;
2488
2489 for (i = 0; i < mpb->num_disks; i++) {
2490 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2491 struct intel_disk *idisk;
2492
2493 idisk = disk_list_get(disk->serial, disk_list);
2494 if (idisk) {
2495 if (idisk->owner == owner ||
2496 idisk->owner == IMSM_UNKNOWN_OWNER)
2497 ok_count++;
2498 else
2499 dprintf("%s: '%.16s' owner %d != %d\n",
2500 __func__, disk->serial, idisk->owner,
2501 owner);
2502 } else {
2503 dprintf("%s: unknown disk %x [%d]: %.16s\n",
2504 __func__, __le32_to_cpu(mpb->family_num), i,
2505 disk->serial);
2506 break;
2507 }
2508 }
2509
2510 if (ok_count == mpb->num_disks)
2511 return super;
2512 return NULL;
2513 }
2514
2515 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
2516 {
2517 struct intel_super *s;
2518
2519 for (s = super_list; s; s = s->next) {
2520 if (family_num != s->anchor->family_num)
2521 continue;
2522 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
2523 __le32_to_cpu(family_num), s->disks->devname);
2524 }
2525 }
2526
2527 static struct intel_super *
2528 imsm_thunderdome(struct intel_super **super_list, int len)
2529 {
2530 struct intel_super *super_table[len];
2531 struct intel_disk *disk_list = NULL;
2532 struct intel_super *champion, *spare;
2533 struct intel_super *s, **del;
2534 int tbl_size = 0;
2535 int conflict;
2536 int i;
2537
2538 memset(super_table, 0, sizeof(super_table));
2539 for (s = *super_list; s; s = s->next)
2540 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
2541
2542 for (i = 0; i < tbl_size; i++) {
2543 struct imsm_disk *d;
2544 struct intel_disk *idisk;
2545 struct imsm_super *mpb = super_table[i]->anchor;
2546
2547 s = super_table[i];
2548 d = &s->disks->disk;
2549
2550 /* 'd' must appear in merged disk list for its
2551 * configuration to be valid
2552 */
2553 idisk = disk_list_get(d->serial, disk_list);
2554 if (idisk && idisk->owner == i)
2555 s = validate_members(s, disk_list, i);
2556 else
2557 s = NULL;
2558
2559 if (!s)
2560 dprintf("%s: marking family: %#x from %d:%d offline\n",
2561 __func__, mpb->family_num,
2562 super_table[i]->disks->major,
2563 super_table[i]->disks->minor);
2564 super_table[i] = s;
2565 }
2566
2567 /* This is where the mdadm implementation differs from the Windows
2568 * driver which has no strict concept of a container. We can only
2569 * assemble one family from a container, so when returning a prodigal
2570 * array member to this system the code will not be able to disambiguate
2571 * the container contents that should be assembled ("foreign" versus
2572 * "local"). It requires user intervention to set the orig_family_num
2573 * to a new value to establish a new container. The Windows driver in
2574 * this situation fixes up the volume name in place and manages the
2575 * foreign array as an independent entity.
2576 */
2577 s = NULL;
2578 spare = NULL;
2579 conflict = 0;
2580 for (i = 0; i < tbl_size; i++) {
2581 struct intel_super *tbl_ent = super_table[i];
2582 int is_spare = 0;
2583
2584 if (!tbl_ent)
2585 continue;
2586
2587 if (tbl_ent->anchor->num_raid_devs == 0) {
2588 spare = tbl_ent;
2589 is_spare = 1;
2590 }
2591
2592 if (s && !is_spare) {
2593 show_conflicts(tbl_ent->anchor->family_num, *super_list);
2594 conflict++;
2595 } else if (!s && !is_spare)
2596 s = tbl_ent;
2597 }
2598
2599 if (!s)
2600 s = spare;
2601 if (!s) {
2602 champion = NULL;
2603 goto out;
2604 }
2605 champion = s;
2606
2607 if (conflict)
2608 fprintf(stderr, "Chose family %#x on '%s', "
2609 "assemble conflicts to new container with '--update=uuid'\n",
2610 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
2611
2612 /* collect all dl's onto 'champion', and update them to
2613 * champion's version of the status
2614 */
2615 for (s = *super_list; s; s = s->next) {
2616 struct imsm_super *mpb = champion->anchor;
2617 struct dl *dl = s->disks;
2618
2619 if (s == champion)
2620 continue;
2621
2622 for (i = 0; i < mpb->num_disks; i++) {
2623 struct imsm_disk *disk;
2624
2625 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
2626 if (disk) {
2627 dl->disk = *disk;
2628 /* only set index on disks that are a member of
2629 * a populated contianer, i.e. one with
2630 * raid_devs
2631 */
2632 if (is_failed(&dl->disk))
2633 dl->index = -2;
2634 else if (is_spare(&dl->disk))
2635 dl->index = -1;
2636 break;
2637 }
2638 }
2639
2640 if (i >= mpb->num_disks) {
2641 struct intel_disk *idisk;
2642
2643 idisk = disk_list_get(dl->serial, disk_list);
2644 if (idisk && is_spare(&idisk->disk) &&
2645 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
2646 dl->index = -1;
2647 else {
2648 dl->index = -2;
2649 continue;
2650 }
2651 }
2652
2653 dl->next = champion->disks;
2654 champion->disks = dl;
2655 s->disks = NULL;
2656 }
2657
2658 /* delete 'champion' from super_list */
2659 for (del = super_list; *del; ) {
2660 if (*del == champion) {
2661 *del = (*del)->next;
2662 break;
2663 } else
2664 del = &(*del)->next;
2665 }
2666 champion->next = NULL;
2667
2668 out:
2669 while (disk_list) {
2670 struct intel_disk *idisk = disk_list;
2671
2672 disk_list = disk_list->next;
2673 free(idisk);
2674 }
2675
2676 return champion;
2677 }
2678
2679 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
2680 char *devname, int keep_fd)
2681 {
2682 struct mdinfo *sra;
2683 struct intel_super *super_list = NULL;
2684 struct intel_super *super = NULL;
2685 int devnum = fd2devnum(fd);
2686 struct mdinfo *sd;
2687 int retry;
2688 int err = 0;
2689 int i;
2690 enum sysfs_read_flags flags;
2691
2692 flags = GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE;
2693 if (mdmon_running(devnum))
2694 flags |= SKIP_GONE_DEVS;
2695
2696 /* check if 'fd' an opened container */
2697 sra = sysfs_read(fd, 0, flags);
2698 if (!sra)
2699 return 1;
2700
2701 if (sra->array.major_version != -1 ||
2702 sra->array.minor_version != -2 ||
2703 strcmp(sra->text_version, "imsm") != 0) {
2704 err = 1;
2705 goto error;
2706 }
2707 /* load all mpbs */
2708 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
2709 struct intel_super *s = alloc_super(0);
2710 char nm[32];
2711 int dfd;
2712
2713 err = 1;
2714 if (!s)
2715 goto error;
2716 s->next = super_list;
2717 super_list = s;
2718
2719 err = 2;
2720 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2721 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
2722 if (dfd < 0)
2723 goto error;
2724
2725 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
2726
2727 /* retry the load if we might have raced against mdmon */
2728 if (err == 3 && mdmon_running(devnum))
2729 for (retry = 0; retry < 3; retry++) {
2730 usleep(3000);
2731 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
2732 if (err != 3)
2733 break;
2734 }
2735 if (!keep_fd)
2736 close(dfd);
2737 if (err)
2738 goto error;
2739 }
2740
2741 /* all mpbs enter, maybe one leaves */
2742 super = imsm_thunderdome(&super_list, i);
2743 if (!super) {
2744 err = 1;
2745 goto error;
2746 }
2747
2748 if (find_missing(super) != 0) {
2749 free_imsm(super);
2750 err = 2;
2751 goto error;
2752 }
2753
2754 if (st->subarray[0]) {
2755 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2756 super->current_vol = atoi(st->subarray);
2757 else {
2758 free_imsm(super);
2759 err = 1;
2760 goto error;
2761 }
2762 }
2763 err = 0;
2764
2765 error:
2766 while (super_list) {
2767 struct intel_super *s = super_list;
2768
2769 super_list = super_list->next;
2770 free_imsm(s);
2771 }
2772 sysfs_free(sra);
2773
2774 if (err)
2775 return err;
2776
2777 *sbp = super;
2778 st->container_dev = devnum;
2779 if (err == 0 && st->ss == NULL) {
2780 st->ss = &super_imsm;
2781 st->minor_version = 0;
2782 st->max_devs = IMSM_MAX_DEVICES;
2783 }
2784 st->loaded_container = 1;
2785
2786 return 0;
2787 }
2788 #endif
2789
2790 static int load_super_imsm(struct supertype *st, int fd, char *devname)
2791 {
2792 struct intel_super *super;
2793 int rv;
2794
2795 #ifndef MDASSEMBLE
2796 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
2797 return 0;
2798 #endif
2799
2800 free_super_imsm(st);
2801
2802 super = alloc_super(0);
2803 if (!super) {
2804 fprintf(stderr,
2805 Name ": malloc of %zu failed.\n",
2806 sizeof(*super));
2807 return 1;
2808 }
2809
2810 rv = load_and_parse_mpb(fd, super, devname, 0);
2811
2812 if (rv) {
2813 if (devname)
2814 fprintf(stderr,
2815 Name ": Failed to load all information "
2816 "sections on %s\n", devname);
2817 free_imsm(super);
2818 return rv;
2819 }
2820
2821 if (st->subarray[0]) {
2822 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2823 super->current_vol = atoi(st->subarray);
2824 else {
2825 free_imsm(super);
2826 return 1;
2827 }
2828 }
2829
2830 st->sb = super;
2831 if (st->ss == NULL) {
2832 st->ss = &super_imsm;
2833 st->minor_version = 0;
2834 st->max_devs = IMSM_MAX_DEVICES;
2835 }
2836 st->loaded_container = 0;
2837
2838 return 0;
2839 }
2840
2841 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
2842 {
2843 if (info->level == 1)
2844 return 128;
2845 return info->chunk_size >> 9;
2846 }
2847
2848 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
2849 {
2850 __u32 num_stripes;
2851
2852 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
2853 num_stripes /= num_domains;
2854
2855 return num_stripes;
2856 }
2857
2858 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
2859 {
2860 if (info->level == 1)
2861 return info->size * 2;
2862 else
2863 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
2864 }
2865
2866 static void imsm_update_version_info(struct intel_super *super)
2867 {
2868 /* update the version and attributes */
2869 struct imsm_super *mpb = super->anchor;
2870 char *version;
2871 struct imsm_dev *dev;
2872 struct imsm_map *map;
2873 int i;
2874
2875 for (i = 0; i < mpb->num_raid_devs; i++) {
2876 dev = get_imsm_dev(super, i);
2877 map = get_imsm_map(dev, 0);
2878 if (__le32_to_cpu(dev->size_high) > 0)
2879 mpb->attributes |= MPB_ATTRIB_2TB;
2880
2881 /* FIXME detect when an array spans a port multiplier */
2882 #if 0
2883 mpb->attributes |= MPB_ATTRIB_PM;
2884 #endif
2885
2886 if (mpb->num_raid_devs > 1 ||
2887 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
2888 version = MPB_VERSION_ATTRIBS;
2889 switch (get_imsm_raid_level(map)) {
2890 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
2891 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
2892 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
2893 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
2894 }
2895 } else {
2896 if (map->num_members >= 5)
2897 version = MPB_VERSION_5OR6_DISK_ARRAY;
2898 else if (dev->status == DEV_CLONE_N_GO)
2899 version = MPB_VERSION_CNG;
2900 else if (get_imsm_raid_level(map) == 5)
2901 version = MPB_VERSION_RAID5;
2902 else if (map->num_members >= 3)
2903 version = MPB_VERSION_3OR4_DISK_ARRAY;
2904 else if (get_imsm_raid_level(map) == 1)
2905 version = MPB_VERSION_RAID1;
2906 else
2907 version = MPB_VERSION_RAID0;
2908 }
2909 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
2910 }
2911 }
2912
2913 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
2914 unsigned long long size, char *name,
2915 char *homehost, int *uuid)
2916 {
2917 /* We are creating a volume inside a pre-existing container.
2918 * so st->sb is already set.
2919 */
2920 struct intel_super *super = st->sb;
2921 struct imsm_super *mpb = super->anchor;
2922 struct intel_dev *dv;
2923 struct imsm_dev *dev;
2924 struct imsm_vol *vol;
2925 struct imsm_map *map;
2926 int idx = mpb->num_raid_devs;
2927 int i;
2928 unsigned long long array_blocks;
2929 size_t size_old, size_new;
2930 __u32 num_data_stripes;
2931
2932 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
2933 fprintf(stderr, Name": This imsm-container already has the "
2934 "maximum of %d volumes\n", super->orom->vpa);
2935 return 0;
2936 }
2937
2938 /* ensure the mpb is large enough for the new data */
2939 size_old = __le32_to_cpu(mpb->mpb_size);
2940 size_new = disks_to_mpb_size(info->nr_disks);
2941 if (size_new > size_old) {
2942 void *mpb_new;
2943 size_t size_round = ROUND_UP(size_new, 512);
2944
2945 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
2946 fprintf(stderr, Name": could not allocate new mpb\n");
2947 return 0;
2948 }
2949 memcpy(mpb_new, mpb, size_old);
2950 free(mpb);
2951 mpb = mpb_new;
2952 super->anchor = mpb_new;
2953 mpb->mpb_size = __cpu_to_le32(size_new);
2954 memset(mpb_new + size_old, 0, size_round - size_old);
2955 }
2956 super->current_vol = idx;
2957 /* when creating the first raid device in this container set num_disks
2958 * to zero, i.e. delete this spare and add raid member devices in
2959 * add_to_super_imsm_volume()
2960 */
2961 if (super->current_vol == 0)
2962 mpb->num_disks = 0;
2963
2964 for (i = 0; i < super->current_vol; i++) {
2965 dev = get_imsm_dev(super, i);
2966 if (strncmp((char *) dev->volume, name,
2967 MAX_RAID_SERIAL_LEN) == 0) {
2968 fprintf(stderr, Name": '%s' is already defined for this container\n",
2969 name);
2970 return 0;
2971 }
2972 }
2973
2974 sprintf(st->subarray, "%d", idx);
2975 dv = malloc(sizeof(*dv));
2976 if (!dv) {
2977 fprintf(stderr, Name ": failed to allocate device list entry\n");
2978 return 0;
2979 }
2980 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
2981 if (!dev) {
2982 free(dv);
2983 fprintf(stderr, Name": could not allocate raid device\n");
2984 return 0;
2985 }
2986 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
2987 if (info->level == 1)
2988 array_blocks = info_to_blocks_per_member(info);
2989 else
2990 array_blocks = calc_array_size(info->level, info->raid_disks,
2991 info->layout, info->chunk_size,
2992 info->size*2);
2993 /* round array size down to closest MB */
2994 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
2995
2996 dev->size_low = __cpu_to_le32((__u32) array_blocks);
2997 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
2998 dev->status = __cpu_to_le32(0);
2999 dev->reserved_blocks = __cpu_to_le32(0);
3000 vol = &dev->vol;
3001 vol->migr_state = 0;
3002 set_migr_type(dev, MIGR_INIT);
3003 vol->dirty = 0;
3004 vol->curr_migr_unit = 0;
3005 map = get_imsm_map(dev, 0);
3006 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
3007 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
3008 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
3009 map->failed_disk_num = ~0;
3010 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
3011 IMSM_T_STATE_NORMAL;
3012 map->ddf = 1;
3013
3014 if (info->level == 1 && info->raid_disks > 2) {
3015 free(dev);
3016 free(dv);
3017 fprintf(stderr, Name": imsm does not support more than 2 disks"
3018 "in a raid1 volume\n");
3019 return 0;
3020 }
3021
3022 map->raid_level = info->level;
3023 if (info->level == 10) {
3024 map->raid_level = 1;
3025 map->num_domains = info->raid_disks / 2;
3026 } else if (info->level == 1)
3027 map->num_domains = info->raid_disks;
3028 else
3029 map->num_domains = 1;
3030
3031 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
3032 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
3033
3034 map->num_members = info->raid_disks;
3035 for (i = 0; i < map->num_members; i++) {
3036 /* initialized in add_to_super */
3037 set_imsm_ord_tbl_ent(map, i, 0);
3038 }
3039 mpb->num_raid_devs++;
3040
3041 dv->dev = dev;
3042 dv->index = super->current_vol;
3043 dv->next = super->devlist;
3044 super->devlist = dv;
3045
3046 imsm_update_version_info(super);
3047
3048 return 1;
3049 }
3050
3051 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
3052 unsigned long long size, char *name,
3053 char *homehost, int *uuid)
3054 {
3055 /* This is primarily called by Create when creating a new array.
3056 * We will then get add_to_super called for each component, and then
3057 * write_init_super called to write it out to each device.
3058 * For IMSM, Create can create on fresh devices or on a pre-existing
3059 * array.
3060 * To create on a pre-existing array a different method will be called.
3061 * This one is just for fresh drives.
3062 */
3063 struct intel_super *super;
3064 struct imsm_super *mpb;
3065 size_t mpb_size;
3066 char *version;
3067
3068 if (st->sb)
3069 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
3070
3071 if (info)
3072 mpb_size = disks_to_mpb_size(info->nr_disks);
3073 else
3074 mpb_size = 512;
3075
3076 super = alloc_super(1);
3077 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
3078 free(super);
3079 super = NULL;
3080 }
3081 if (!super) {
3082 fprintf(stderr, Name
3083 ": %s could not allocate superblock\n", __func__);
3084 return 0;
3085 }
3086 memset(super->buf, 0, mpb_size);
3087 mpb = super->buf;
3088 mpb->mpb_size = __cpu_to_le32(mpb_size);
3089 st->sb = super;
3090
3091 if (info == NULL) {
3092 /* zeroing superblock */
3093 return 0;
3094 }
3095
3096 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3097
3098 version = (char *) mpb->sig;
3099 strcpy(version, MPB_SIGNATURE);
3100 version += strlen(MPB_SIGNATURE);
3101 strcpy(version, MPB_VERSION_RAID0);
3102
3103 return 1;
3104 }
3105
3106 #ifndef MDASSEMBLE
3107 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
3108 int fd, char *devname)
3109 {
3110 struct intel_super *super = st->sb;
3111 struct imsm_super *mpb = super->anchor;
3112 struct dl *dl;
3113 struct imsm_dev *dev;
3114 struct imsm_map *map;
3115
3116 dev = get_imsm_dev(super, super->current_vol);
3117 map = get_imsm_map(dev, 0);
3118
3119 if (! (dk->state & (1<<MD_DISK_SYNC))) {
3120 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
3121 devname);
3122 return 1;
3123 }
3124
3125 if (fd == -1) {
3126 /* we're doing autolayout so grab the pre-marked (in
3127 * validate_geometry) raid_disk
3128 */
3129 for (dl = super->disks; dl; dl = dl->next)
3130 if (dl->raiddisk == dk->raid_disk)
3131 break;
3132 } else {
3133 for (dl = super->disks; dl ; dl = dl->next)
3134 if (dl->major == dk->major &&
3135 dl->minor == dk->minor)
3136 break;
3137 }
3138
3139 if (!dl) {
3140 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
3141 return 1;
3142 }
3143
3144 /* add a pristine spare to the metadata */
3145 if (dl->index < 0) {
3146 dl->index = super->anchor->num_disks;
3147 super->anchor->num_disks++;
3148 }
3149 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
3150 dl->disk.status = CONFIGURED_DISK;
3151
3152 /* if we are creating the first raid device update the family number */
3153 if (super->current_vol == 0) {
3154 __u32 sum;
3155 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
3156 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
3157
3158 if (!_dev || !_disk) {
3159 fprintf(stderr, Name ": BUG mpb setup error\n");
3160 return 1;
3161 }
3162 *_dev = *dev;
3163 *_disk = dl->disk;
3164 sum = random32();
3165 sum += __gen_imsm_checksum(mpb);
3166 mpb->family_num = __cpu_to_le32(sum);
3167 mpb->orig_family_num = mpb->family_num;
3168 }
3169
3170 return 0;
3171 }
3172
3173 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
3174 int fd, char *devname)
3175 {
3176 struct intel_super *super = st->sb;
3177 struct dl *dd;
3178 unsigned long long size;
3179 __u32 id;
3180 int rv;
3181 struct stat stb;
3182
3183 /* if we are on an RAID enabled platform check that the disk is
3184 * attached to the raid controller
3185 */
3186 if (super->hba && !disk_attached_to_hba(fd, super->hba)) {
3187 fprintf(stderr,
3188 Name ": %s is not attached to the raid controller: %s\n",
3189 devname ? : "disk", super->hba);
3190 return 1;
3191 }
3192
3193 if (super->current_vol >= 0)
3194 return add_to_super_imsm_volume(st, dk, fd, devname);
3195
3196 fstat(fd, &stb);
3197 dd = malloc(sizeof(*dd));
3198 if (!dd) {
3199 fprintf(stderr,
3200 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3201 return 1;
3202 }
3203 memset(dd, 0, sizeof(*dd));
3204 dd->major = major(stb.st_rdev);
3205 dd->minor = minor(stb.st_rdev);
3206 dd->index = -1;
3207 dd->devname = devname ? strdup(devname) : NULL;
3208 dd->fd = fd;
3209 dd->e = NULL;
3210 rv = imsm_read_serial(fd, devname, dd->serial);
3211 if (rv) {
3212 fprintf(stderr,
3213 Name ": failed to retrieve scsi serial, aborting\n");
3214 free(dd);
3215 abort();
3216 }
3217
3218 get_dev_size(fd, NULL, &size);
3219 size /= 512;
3220 serialcpy(dd->disk.serial, dd->serial);
3221 dd->disk.total_blocks = __cpu_to_le32(size);
3222 dd->disk.status = SPARE_DISK;
3223 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
3224 dd->disk.scsi_id = __cpu_to_le32(id);
3225 else
3226 dd->disk.scsi_id = __cpu_to_le32(0);
3227
3228 if (st->update_tail) {
3229 dd->next = super->add;
3230 super->add = dd;
3231 } else {
3232 dd->next = super->disks;
3233 super->disks = dd;
3234 }
3235
3236 return 0;
3237 }
3238
3239 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
3240
3241 static union {
3242 char buf[512];
3243 struct imsm_super anchor;
3244 } spare_record __attribute__ ((aligned(512)));
3245
3246 /* spare records have their own family number and do not have any defined raid
3247 * devices
3248 */
3249 static int write_super_imsm_spares(struct intel_super *super, int doclose)
3250 {
3251 struct imsm_super *mpb = super->anchor;
3252 struct imsm_super *spare = &spare_record.anchor;
3253 __u32 sum;
3254 struct dl *d;
3255
3256 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
3257 spare->generation_num = __cpu_to_le32(1UL),
3258 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3259 spare->num_disks = 1,
3260 spare->num_raid_devs = 0,
3261 spare->cache_size = mpb->cache_size,
3262 spare->pwr_cycle_count = __cpu_to_le32(1),
3263
3264 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
3265 MPB_SIGNATURE MPB_VERSION_RAID0);
3266
3267 for (d = super->disks; d; d = d->next) {
3268 if (d->index != -1)
3269 continue;
3270
3271 spare->disk[0] = d->disk;
3272 sum = __gen_imsm_checksum(spare);
3273 spare->family_num = __cpu_to_le32(sum);
3274 spare->orig_family_num = 0;
3275 sum = __gen_imsm_checksum(spare);
3276 spare->check_sum = __cpu_to_le32(sum);
3277
3278 if (store_imsm_mpb(d->fd, spare)) {
3279 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3280 __func__, d->major, d->minor, strerror(errno));
3281 return 1;
3282 }
3283 if (doclose) {
3284 close(d->fd);
3285 d->fd = -1;
3286 }
3287 }
3288
3289 return 0;
3290 }
3291
3292 static int write_super_imsm(struct intel_super *super, int doclose)
3293 {
3294 struct imsm_super *mpb = super->anchor;
3295 struct dl *d;
3296 __u32 generation;
3297 __u32 sum;
3298 int spares = 0;
3299 int i;
3300 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
3301
3302 /* 'generation' is incremented everytime the metadata is written */
3303 generation = __le32_to_cpu(mpb->generation_num);
3304 generation++;
3305 mpb->generation_num = __cpu_to_le32(generation);
3306
3307 /* fix up cases where previous mdadm releases failed to set
3308 * orig_family_num
3309 */
3310 if (mpb->orig_family_num == 0)
3311 mpb->orig_family_num = mpb->family_num;
3312
3313 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
3314 for (d = super->disks; d; d = d->next) {
3315 if (d->index == -1)
3316 spares++;
3317 else
3318 mpb->disk[d->index] = d->disk;
3319 }
3320 for (d = super->missing; d; d = d->next)
3321 mpb->disk[d->index] = d->disk;
3322
3323 for (i = 0; i < mpb->num_raid_devs; i++) {
3324 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3325
3326 imsm_copy_dev(dev, get_imsm_dev(super, i));
3327 mpb_size += sizeof_imsm_dev(dev, 0);
3328 }
3329 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
3330 mpb->mpb_size = __cpu_to_le32(mpb_size);
3331
3332 /* recalculate checksum */
3333 sum = __gen_imsm_checksum(mpb);
3334 mpb->check_sum = __cpu_to_le32(sum);
3335
3336 /* write the mpb for disks that compose raid devices */
3337 for (d = super->disks; d ; d = d->next) {
3338 if (d->index < 0)
3339 continue;
3340 if (store_imsm_mpb(d->fd, mpb))
3341 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3342 __func__, d->major, d->minor, strerror(errno));
3343 if (doclose) {
3344 close(d->fd);
3345 d->fd = -1;
3346 }
3347 }
3348
3349 if (spares)
3350 return write_super_imsm_spares(super, doclose);
3351
3352 return 0;
3353 }
3354
3355
3356 static int create_array(struct supertype *st, int dev_idx)
3357 {
3358 size_t len;
3359 struct imsm_update_create_array *u;
3360 struct intel_super *super = st->sb;
3361 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3362 struct imsm_map *map = get_imsm_map(dev, 0);
3363 struct disk_info *inf;
3364 struct imsm_disk *disk;
3365 int i;
3366
3367 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
3368 sizeof(*inf) * map->num_members;
3369 u = malloc(len);
3370 if (!u) {
3371 fprintf(stderr, "%s: failed to allocate update buffer\n",
3372 __func__);
3373 return 1;
3374 }
3375
3376 u->type = update_create_array;
3377 u->dev_idx = dev_idx;
3378 imsm_copy_dev(&u->dev, dev);
3379 inf = get_disk_info(u);
3380 for (i = 0; i < map->num_members; i++) {
3381 int idx = get_imsm_disk_idx(dev, i);
3382
3383 disk = get_imsm_disk(super, idx);
3384 serialcpy(inf[i].serial, disk->serial);
3385 }
3386 append_metadata_update(st, u, len);
3387
3388 return 0;
3389 }
3390
3391 static int _add_disk(struct supertype *st)
3392 {
3393 struct intel_super *super = st->sb;
3394 size_t len;
3395 struct imsm_update_add_disk *u;
3396
3397 if (!super->add)
3398 return 0;
3399
3400 len = sizeof(*u);
3401 u = malloc(len);
3402 if (!u) {
3403 fprintf(stderr, "%s: failed to allocate update buffer\n",
3404 __func__);
3405 return 1;
3406 }
3407
3408 u->type = update_add_disk;
3409 append_metadata_update(st, u, len);
3410
3411 return 0;
3412 }
3413
3414 static int write_init_super_imsm(struct supertype *st)
3415 {
3416 struct intel_super *super = st->sb;
3417 int current_vol = super->current_vol;
3418
3419 /* we are done with current_vol reset it to point st at the container */
3420 super->current_vol = -1;
3421
3422 if (st->update_tail) {
3423 /* queue the recently created array / added disk
3424 * as a metadata update */
3425 struct dl *d;
3426 int rv;
3427
3428 /* determine if we are creating a volume or adding a disk */
3429 if (current_vol < 0) {
3430 /* in the add disk case we are running in mdmon
3431 * context, so don't close fd's
3432 */
3433 return _add_disk(st);
3434 } else
3435 rv = create_array(st, current_vol);
3436
3437 for (d = super->disks; d ; d = d->next) {
3438 close(d->fd);
3439 d->fd = -1;
3440 }
3441
3442 return rv;
3443 } else
3444 return write_super_imsm(st->sb, 1);
3445 }
3446 #endif
3447
3448 static int store_super_imsm(struct supertype *st, int fd)
3449 {
3450 struct intel_super *super = st->sb;
3451 struct imsm_super *mpb = super ? super->anchor : NULL;
3452
3453 if (!mpb)
3454 return 1;
3455
3456 #ifndef MDASSEMBLE
3457 return store_imsm_mpb(fd, mpb);
3458 #else
3459 return 1;
3460 #endif
3461 }
3462
3463 static int imsm_bbm_log_size(struct imsm_super *mpb)
3464 {
3465 return __le32_to_cpu(mpb->bbm_log_size);
3466 }
3467
3468 #ifndef MDASSEMBLE
3469 static int validate_geometry_imsm_container(struct supertype *st, int level,
3470 int layout, int raiddisks, int chunk,
3471 unsigned long long size, char *dev,
3472 unsigned long long *freesize,
3473 int verbose)
3474 {
3475 int fd;
3476 unsigned long long ldsize;
3477 const struct imsm_orom *orom;
3478
3479 if (level != LEVEL_CONTAINER)
3480 return 0;
3481 if (!dev)
3482 return 1;
3483
3484 if (check_env("IMSM_NO_PLATFORM"))
3485 orom = NULL;
3486 else
3487 orom = find_imsm_orom();
3488 if (orom && raiddisks > orom->tds) {
3489 if (verbose)
3490 fprintf(stderr, Name ": %d exceeds maximum number of"
3491 " platform supported disks: %d\n",
3492 raiddisks, orom->tds);
3493 return 0;
3494 }
3495
3496 fd = open(dev, O_RDONLY|O_EXCL, 0);
3497 if (fd < 0) {
3498 if (verbose)
3499 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
3500 dev, strerror(errno));
3501 return 0;
3502 }
3503 if (!get_dev_size(fd, dev, &ldsize)) {
3504 close(fd);
3505 return 0;
3506 }
3507 close(fd);
3508
3509 *freesize = avail_size_imsm(st, ldsize >> 9);
3510
3511 return 1;
3512 }
3513
3514 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
3515 {
3516 const unsigned long long base_start = e[*idx].start;
3517 unsigned long long end = base_start + e[*idx].size;
3518 int i;
3519
3520 if (base_start == end)
3521 return 0;
3522
3523 *idx = *idx + 1;
3524 for (i = *idx; i < num_extents; i++) {
3525 /* extend overlapping extents */
3526 if (e[i].start >= base_start &&
3527 e[i].start <= end) {
3528 if (e[i].size == 0)
3529 return 0;
3530 if (e[i].start + e[i].size > end)
3531 end = e[i].start + e[i].size;
3532 } else if (e[i].start > end) {
3533 *idx = i;
3534 break;
3535 }
3536 }
3537
3538 return end - base_start;
3539 }
3540
3541 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
3542 {
3543 /* build a composite disk with all known extents and generate a new
3544 * 'maxsize' given the "all disks in an array must share a common start
3545 * offset" constraint
3546 */
3547 struct extent *e = calloc(sum_extents, sizeof(*e));
3548 struct dl *dl;
3549 int i, j;
3550 int start_extent;
3551 unsigned long long pos;
3552 unsigned long long start = 0;
3553 unsigned long long maxsize;
3554 unsigned long reserve;
3555
3556 if (!e)
3557 return 0;
3558
3559 /* coalesce and sort all extents. also, check to see if we need to
3560 * reserve space between member arrays
3561 */
3562 j = 0;
3563 for (dl = super->disks; dl; dl = dl->next) {
3564 if (!dl->e)
3565 continue;
3566 for (i = 0; i < dl->extent_cnt; i++)
3567 e[j++] = dl->e[i];
3568 }
3569 qsort(e, sum_extents, sizeof(*e), cmp_extent);
3570
3571 /* merge extents */
3572 i = 0;
3573 j = 0;
3574 while (i < sum_extents) {
3575 e[j].start = e[i].start;
3576 e[j].size = find_size(e, &i, sum_extents);
3577 j++;
3578 if (e[j-1].size == 0)
3579 break;
3580 }
3581
3582 pos = 0;
3583 maxsize = 0;
3584 start_extent = 0;
3585 i = 0;
3586 do {
3587 unsigned long long esize;
3588
3589 esize = e[i].start - pos;
3590 if (esize >= maxsize) {
3591 maxsize = esize;
3592 start = pos;
3593 start_extent = i;
3594 }
3595 pos = e[i].start + e[i].size;
3596 i++;
3597 } while (e[i-1].size);
3598 free(e);
3599
3600 if (maxsize == 0)
3601 return 0;
3602
3603 /* FIXME assumes volume at offset 0 is the first volume in a
3604 * container
3605 */
3606 if (start_extent > 0)
3607 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
3608 else
3609 reserve = 0;
3610
3611 if (maxsize < reserve)
3612 return 0;
3613
3614 super->create_offset = ~((__u32) 0);
3615 if (start + reserve > super->create_offset)
3616 return 0; /* start overflows create_offset */
3617 super->create_offset = start + reserve;
3618
3619 return maxsize - reserve;
3620 }
3621
3622 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
3623 {
3624 if (level < 0 || level == 6 || level == 4)
3625 return 0;
3626
3627 /* if we have an orom prevent invalid raid levels */
3628 if (orom)
3629 switch (level) {
3630 case 0: return imsm_orom_has_raid0(orom);
3631 case 1:
3632 if (raiddisks > 2)
3633 return imsm_orom_has_raid1e(orom);
3634 return imsm_orom_has_raid1(orom) && raiddisks == 2;
3635 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
3636 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
3637 }
3638 else
3639 return 1; /* not on an Intel RAID platform so anything goes */
3640
3641 return 0;
3642 }
3643
3644 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
3645 static int
3646 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
3647 int raiddisks, int chunk, int verbose)
3648 {
3649 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
3650 pr_vrb(": platform does not support raid%d with %d disk%s\n",
3651 level, raiddisks, raiddisks > 1 ? "s" : "");
3652 return 0;
3653 }
3654 if (super->orom && level != 1 &&
3655 !imsm_orom_has_chunk(super->orom, chunk)) {
3656 pr_vrb(": platform does not support a chunk size of: %d\n", chunk);
3657 return 0;
3658 }
3659 if (layout != imsm_level_to_layout(level)) {
3660 if (level == 5)
3661 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
3662 else if (level == 10)
3663 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
3664 else
3665 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
3666 layout, level);
3667 return 0;
3668 }
3669
3670 return 1;
3671 }
3672
3673 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
3674 * FIX ME add ahci details
3675 */
3676 static int validate_geometry_imsm_volume(struct supertype *st, int level,
3677 int layout, int raiddisks, int chunk,
3678 unsigned long long size, char *dev,
3679 unsigned long long *freesize,
3680 int verbose)
3681 {
3682 struct stat stb;
3683 struct intel_super *super = st->sb;
3684 struct imsm_super *mpb = super->anchor;
3685 struct dl *dl;
3686 unsigned long long pos = 0;
3687 unsigned long long maxsize;
3688 struct extent *e;
3689 int i;
3690
3691 /* We must have the container info already read in. */
3692 if (!super)
3693 return 0;
3694
3695 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose))
3696 return 0;
3697
3698 if (!dev) {
3699 /* General test: make sure there is space for
3700 * 'raiddisks' device extents of size 'size' at a given
3701 * offset
3702 */
3703 unsigned long long minsize = size;
3704 unsigned long long start_offset = MaxSector;
3705 int dcnt = 0;
3706 if (minsize == 0)
3707 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
3708 for (dl = super->disks; dl ; dl = dl->next) {
3709 int found = 0;
3710
3711 pos = 0;
3712 i = 0;
3713 e = get_extents(super, dl);
3714 if (!e) continue;
3715 do {
3716 unsigned long long esize;
3717 esize = e[i].start - pos;
3718 if (esize >= minsize)
3719 found = 1;
3720 if (found && start_offset == MaxSector) {
3721 start_offset = pos;
3722 break;
3723 } else if (found && pos != start_offset) {
3724 found = 0;
3725 break;
3726 }
3727 pos = e[i].start + e[i].size;
3728 i++;
3729 } while (e[i-1].size);
3730 if (found)
3731 dcnt++;
3732 free(e);
3733 }
3734 if (dcnt < raiddisks) {
3735 if (verbose)
3736 fprintf(stderr, Name ": imsm: Not enough "
3737 "devices with space for this array "
3738 "(%d < %d)\n",
3739 dcnt, raiddisks);
3740 return 0;
3741 }
3742 return 1;
3743 }
3744
3745 /* This device must be a member of the set */
3746 if (stat(dev, &stb) < 0)
3747 return 0;
3748 if ((S_IFMT & stb.st_mode) != S_IFBLK)
3749 return 0;
3750 for (dl = super->disks ; dl ; dl = dl->next) {
3751 if (dl->major == major(stb.st_rdev) &&
3752 dl->minor == minor(stb.st_rdev))
3753 break;
3754 }
3755 if (!dl) {
3756 if (verbose)
3757 fprintf(stderr, Name ": %s is not in the "
3758 "same imsm set\n", dev);
3759 return 0;
3760 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
3761 /* If a volume is present then the current creation attempt
3762 * cannot incorporate new spares because the orom may not
3763 * understand this configuration (all member disks must be
3764 * members of each array in the container).
3765 */
3766 fprintf(stderr, Name ": %s is a spare and a volume"
3767 " is already defined for this container\n", dev);
3768 fprintf(stderr, Name ": The option-rom requires all member"
3769 " disks to be a member of all volumes\n");
3770 return 0;
3771 }
3772
3773 /* retrieve the largest free space block */
3774 e = get_extents(super, dl);
3775 maxsize = 0;
3776 i = 0;
3777 if (e) {
3778 do {
3779 unsigned long long esize;
3780
3781 esize = e[i].start - pos;
3782 if (esize >= maxsize)
3783 maxsize = esize;
3784 pos = e[i].start + e[i].size;
3785 i++;
3786 } while (e[i-1].size);
3787 dl->e = e;
3788 dl->extent_cnt = i;
3789 } else {
3790 if (verbose)
3791 fprintf(stderr, Name ": unable to determine free space for: %s\n",
3792 dev);
3793 return 0;
3794 }
3795 if (maxsize < size) {
3796 if (verbose)
3797 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
3798 dev, maxsize, size);
3799 return 0;
3800 }
3801
3802 /* count total number of extents for merge */
3803 i = 0;
3804 for (dl = super->disks; dl; dl = dl->next)
3805 if (dl->e)
3806 i += dl->extent_cnt;
3807
3808 maxsize = merge_extents(super, i);
3809 if (maxsize < size || maxsize == 0) {
3810 if (verbose)
3811 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
3812 maxsize, size);
3813 return 0;
3814 }
3815
3816 *freesize = maxsize;
3817
3818 return 1;
3819 }
3820
3821 static int reserve_space(struct supertype *st, int raiddisks,
3822 unsigned long long size, int chunk,
3823 unsigned long long *freesize)
3824 {
3825 struct intel_super *super = st->sb;
3826 struct imsm_super *mpb = super->anchor;
3827 struct dl *dl;
3828 int i;
3829 int extent_cnt;
3830 struct extent *e;
3831 unsigned long long maxsize;
3832 unsigned long long minsize;
3833 int cnt;
3834 int used;
3835
3836 /* find the largest common start free region of the possible disks */
3837 used = 0;
3838 extent_cnt = 0;
3839 cnt = 0;
3840 for (dl = super->disks; dl; dl = dl->next) {
3841 dl->raiddisk = -1;
3842
3843 if (dl->index >= 0)
3844 used++;
3845
3846 /* don't activate new spares if we are orom constrained
3847 * and there is already a volume active in the container
3848 */
3849 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
3850 continue;
3851
3852 e = get_extents(super, dl);
3853 if (!e)
3854 continue;
3855 for (i = 1; e[i-1].size; i++)
3856 ;
3857 dl->e = e;
3858 dl->extent_cnt = i;
3859 extent_cnt += i;
3860 cnt++;
3861 }
3862
3863 maxsize = merge_extents(super, extent_cnt);
3864 minsize = size;
3865 if (size == 0)
3866 minsize = chunk;
3867
3868 if (cnt < raiddisks ||
3869 (super->orom && used && used != raiddisks) ||
3870 maxsize < minsize ||
3871 maxsize == 0) {
3872 fprintf(stderr, Name ": not enough devices with space to create array.\n");
3873 return 0; /* No enough free spaces large enough */
3874 }
3875
3876 if (size == 0) {
3877 size = maxsize;
3878 if (chunk) {
3879 size /= chunk;
3880 size *= chunk;
3881 }
3882 }
3883
3884 cnt = 0;
3885 for (dl = super->disks; dl; dl = dl->next)
3886 if (dl->e)
3887 dl->raiddisk = cnt++;
3888
3889 *freesize = size;
3890
3891 return 1;
3892 }
3893
3894 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
3895 int raiddisks, int chunk, unsigned long long size,
3896 char *dev, unsigned long long *freesize,
3897 int verbose)
3898 {
3899 int fd, cfd;
3900 struct mdinfo *sra;
3901 int is_member = 0;
3902
3903 /* if given unused devices create a container
3904 * if given given devices in a container create a member volume
3905 */
3906 if (level == LEVEL_CONTAINER) {
3907 /* Must be a fresh device to add to a container */
3908 return validate_geometry_imsm_container(st, level, layout,
3909 raiddisks, chunk, size,
3910 dev, freesize,
3911 verbose);
3912 }
3913
3914 if (!dev) {
3915 if (st->sb && freesize) {
3916 /* we are being asked to automatically layout a
3917 * new volume based on the current contents of
3918 * the container. If the the parameters can be
3919 * satisfied reserve_space will record the disks,
3920 * start offset, and size of the volume to be
3921 * created. add_to_super and getinfo_super
3922 * detect when autolayout is in progress.
3923 */
3924 if (!validate_geometry_imsm_orom(st->sb, level, layout,
3925 raiddisks, chunk,
3926 verbose))
3927 return 0;
3928 return reserve_space(st, raiddisks, size, chunk, freesize);
3929 }
3930 return 1;
3931 }
3932 if (st->sb) {
3933 /* creating in a given container */
3934 return validate_geometry_imsm_volume(st, level, layout,
3935 raiddisks, chunk, size,
3936 dev, freesize, verbose);
3937 }
3938
3939 /* This device needs to be a device in an 'imsm' container */
3940 fd = open(dev, O_RDONLY|O_EXCL, 0);
3941 if (fd >= 0) {
3942 if (verbose)
3943 fprintf(stderr,
3944 Name ": Cannot create this array on device %s\n",
3945 dev);
3946 close(fd);
3947 return 0;
3948 }
3949 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
3950 if (verbose)
3951 fprintf(stderr, Name ": Cannot open %s: %s\n",
3952 dev, strerror(errno));
3953 return 0;
3954 }
3955 /* Well, it is in use by someone, maybe an 'imsm' container. */
3956 cfd = open_container(fd);
3957 close(fd);
3958 if (cfd < 0) {
3959 if (verbose)
3960 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
3961 dev);
3962 return 0;
3963 }
3964 sra = sysfs_read(cfd, 0, GET_VERSION);
3965 if (sra && sra->array.major_version == -1 &&
3966 strcmp(sra->text_version, "imsm") == 0)
3967 is_member = 1;
3968 sysfs_free(sra);
3969 if (is_member) {
3970 /* This is a member of a imsm container. Load the container
3971 * and try to create a volume
3972 */
3973 struct intel_super *super;
3974
3975 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
3976 st->sb = super;
3977 st->container_dev = fd2devnum(cfd);
3978 close(cfd);
3979 return validate_geometry_imsm_volume(st, level, layout,
3980 raiddisks, chunk,
3981 size, dev,
3982 freesize, verbose);
3983 }
3984 }
3985
3986 if (verbose)
3987 fprintf(stderr, Name ": failed container membership check\n");
3988
3989 close(cfd);
3990 return 0;
3991 }
3992 #endif /* MDASSEMBLE */
3993
3994 static int is_rebuilding(struct imsm_dev *dev)
3995 {
3996 struct imsm_map *migr_map;
3997
3998 if (!dev->vol.migr_state)
3999 return 0;
4000
4001 if (migr_type(dev) != MIGR_REBUILD)
4002 return 0;
4003
4004 migr_map = get_imsm_map(dev, 1);
4005
4006 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
4007 return 1;
4008 else
4009 return 0;
4010 }
4011
4012 static void update_recovery_start(struct imsm_dev *dev, struct mdinfo *array)
4013 {
4014 struct mdinfo *rebuild = NULL;
4015 struct mdinfo *d;
4016 __u32 units;
4017
4018 if (!is_rebuilding(dev))
4019 return;
4020
4021 /* Find the rebuild target, but punt on the dual rebuild case */
4022 for (d = array->devs; d; d = d->next)
4023 if (d->recovery_start == 0) {
4024 if (rebuild)
4025 return;
4026 rebuild = d;
4027 }
4028
4029 units = __le32_to_cpu(dev->vol.curr_migr_unit);
4030 rebuild->recovery_start = units * blocks_per_migr_unit(dev);
4031 }
4032
4033
4034 static struct mdinfo *container_content_imsm(struct supertype *st)
4035 {
4036 /* Given a container loaded by load_super_imsm_all,
4037 * extract information about all the arrays into
4038 * an mdinfo tree.
4039 *
4040 * For each imsm_dev create an mdinfo, fill it in,
4041 * then look for matching devices in super->disks
4042 * and create appropriate device mdinfo.
4043 */
4044 struct intel_super *super = st->sb;
4045 struct imsm_super *mpb = super->anchor;
4046 struct mdinfo *rest = NULL;
4047 int i;
4048
4049 /* do not assemble arrays that might have bad blocks */
4050 if (imsm_bbm_log_size(super->anchor)) {
4051 fprintf(stderr, Name ": BBM log found in metadata. "
4052 "Cannot activate array(s).\n");
4053 return NULL;
4054 }
4055
4056 for (i = 0; i < mpb->num_raid_devs; i++) {
4057 struct imsm_dev *dev = get_imsm_dev(super, i);
4058 struct imsm_map *map = get_imsm_map(dev, 0);
4059 struct mdinfo *this;
4060 int slot;
4061
4062 /* do not publish arrays that are in the middle of an
4063 * unsupported migration
4064 */
4065 if (dev->vol.migr_state &&
4066 (migr_type(dev) == MIGR_GEN_MIGR ||
4067 migr_type(dev) == MIGR_STATE_CHANGE)) {
4068 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
4069 " unsupported migration in progress\n",
4070 dev->volume);
4071 continue;
4072 }
4073
4074 this = malloc(sizeof(*this));
4075 if (!this) {
4076 fprintf(stderr, Name ": failed to allocate %lu bytes\n",
4077 sizeof(*this));
4078 break;
4079 }
4080 memset(this, 0, sizeof(*this));
4081 this->next = rest;
4082
4083 super->current_vol = i;
4084 getinfo_super_imsm_volume(st, this);
4085 for (slot = 0 ; slot < map->num_members; slot++) {
4086 unsigned long long recovery_start;
4087 struct mdinfo *info_d;
4088 struct dl *d;
4089 int idx;
4090 int skip;
4091 __u32 ord;
4092
4093 skip = 0;
4094 idx = get_imsm_disk_idx(dev, slot);
4095 ord = get_imsm_ord_tbl_ent(dev, slot);
4096 for (d = super->disks; d ; d = d->next)
4097 if (d->index == idx)
4098 break;
4099
4100 recovery_start = MaxSector;
4101 if (d == NULL)
4102 skip = 1;
4103 if (d && is_failed(&d->disk))
4104 skip = 1;
4105 if (ord & IMSM_ORD_REBUILD)
4106 recovery_start = 0;
4107
4108 /*
4109 * if we skip some disks the array will be assmebled degraded;
4110 * reset resync start to avoid a dirty-degraded
4111 * situation when performing the intial sync
4112 *
4113 * FIXME handle dirty degraded
4114 */
4115 if ((skip || recovery_start == 0) && !dev->vol.dirty)
4116 this->resync_start = MaxSector;
4117 if (skip)
4118 continue;
4119
4120 info_d = calloc(1, sizeof(*info_d));
4121 if (!info_d) {
4122 fprintf(stderr, Name ": failed to allocate disk"
4123 " for volume %.16s\n", dev->volume);
4124 info_d = this->devs;
4125 while (info_d) {
4126 struct mdinfo *d = info_d->next;
4127
4128 free(info_d);
4129 info_d = d;
4130 }
4131 free(this);
4132 this = rest;
4133 break;
4134 }
4135 info_d->next = this->devs;
4136 this->devs = info_d;
4137
4138 info_d->disk.number = d->index;
4139 info_d->disk.major = d->major;
4140 info_d->disk.minor = d->minor;
4141 info_d->disk.raid_disk = slot;
4142 info_d->recovery_start = recovery_start;
4143
4144 if (info_d->recovery_start == MaxSector)
4145 this->array.working_disks++;
4146
4147 info_d->events = __le32_to_cpu(mpb->generation_num);
4148 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
4149 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4150 }
4151 /* now that the disk list is up-to-date fixup recovery_start */
4152 update_recovery_start(dev, this);
4153 rest = this;
4154 }
4155
4156 return rest;
4157 }
4158
4159
4160 #ifndef MDASSEMBLE
4161 static int imsm_open_new(struct supertype *c, struct active_array *a,
4162 char *inst)
4163 {
4164 struct intel_super *super = c->sb;
4165 struct imsm_super *mpb = super->anchor;
4166
4167 if (atoi(inst) >= mpb->num_raid_devs) {
4168 fprintf(stderr, "%s: subarry index %d, out of range\n",
4169 __func__, atoi(inst));
4170 return -ENODEV;
4171 }
4172
4173 dprintf("imsm: open_new %s\n", inst);
4174 a->info.container_member = atoi(inst);
4175 return 0;
4176 }
4177
4178 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
4179 {
4180 struct imsm_map *map = get_imsm_map(dev, 0);
4181
4182 if (!failed)
4183 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
4184 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
4185
4186 switch (get_imsm_raid_level(map)) {
4187 case 0:
4188 return IMSM_T_STATE_FAILED;
4189 break;
4190 case 1:
4191 if (failed < map->num_members)
4192 return IMSM_T_STATE_DEGRADED;
4193 else
4194 return IMSM_T_STATE_FAILED;
4195 break;
4196 case 10:
4197 {
4198 /**
4199 * check to see if any mirrors have failed, otherwise we
4200 * are degraded. Even numbered slots are mirrored on
4201 * slot+1
4202 */
4203 int i;
4204 /* gcc -Os complains that this is unused */
4205 int insync = insync;
4206
4207 for (i = 0; i < map->num_members; i++) {
4208 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
4209 int idx = ord_to_idx(ord);
4210 struct imsm_disk *disk;
4211
4212 /* reset the potential in-sync count on even-numbered
4213 * slots. num_copies is always 2 for imsm raid10
4214 */
4215 if ((i & 1) == 0)
4216 insync = 2;
4217
4218 disk = get_imsm_disk(super, idx);
4219 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
4220 insync--;
4221
4222 /* no in-sync disks left in this mirror the
4223 * array has failed
4224 */
4225 if (insync == 0)
4226 return IMSM_T_STATE_FAILED;
4227 }
4228
4229 return IMSM_T_STATE_DEGRADED;
4230 }
4231 case 5:
4232 if (failed < 2)
4233 return IMSM_T_STATE_DEGRADED;
4234 else
4235 return IMSM_T_STATE_FAILED;
4236 break;
4237 default:
4238 break;
4239 }
4240
4241 return map->map_state;
4242 }
4243
4244 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
4245 {
4246 int i;
4247 int failed = 0;
4248 struct imsm_disk *disk;
4249 struct imsm_map *map = get_imsm_map(dev, 0);
4250 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
4251 __u32 ord;
4252 int idx;
4253
4254 /* at the beginning of migration we set IMSM_ORD_REBUILD on
4255 * disks that are being rebuilt. New failures are recorded to
4256 * map[0]. So we look through all the disks we started with and
4257 * see if any failures are still present, or if any new ones
4258 * have arrived
4259 *
4260 * FIXME add support for online capacity expansion and
4261 * raid-level-migration
4262 */
4263 for (i = 0; i < prev->num_members; i++) {
4264 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
4265 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
4266 idx = ord_to_idx(ord);
4267
4268 disk = get_imsm_disk(super, idx);
4269 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
4270 failed++;
4271 }
4272
4273 return failed;
4274 }
4275
4276 static int is_resyncing(struct imsm_dev *dev)
4277 {
4278 struct imsm_map *migr_map;
4279
4280 if (!dev->vol.migr_state)
4281 return 0;
4282
4283 if (migr_type(dev) == MIGR_INIT ||
4284 migr_type(dev) == MIGR_REPAIR)
4285 return 1;
4286
4287 migr_map = get_imsm_map(dev, 1);
4288
4289 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
4290 return 1;
4291 else
4292 return 0;
4293 }
4294
4295 /* return true if we recorded new information */
4296 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
4297 {
4298 __u32 ord;
4299 int slot;
4300 struct imsm_map *map;
4301
4302 /* new failures are always set in map[0] */
4303 map = get_imsm_map(dev, 0);
4304
4305 slot = get_imsm_disk_slot(map, idx);
4306 if (slot < 0)
4307 return 0;
4308
4309 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
4310 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
4311 return 0;
4312
4313 disk->status |= FAILED_DISK;
4314 disk->status &= ~CONFIGURED_DISK;
4315 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
4316 if (~map->failed_disk_num == 0)
4317 map->failed_disk_num = slot;
4318 return 1;
4319 }
4320
4321 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
4322 {
4323 mark_failure(dev, disk, idx);
4324
4325 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
4326 return;
4327
4328 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4329 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
4330 }
4331
4332 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
4333 * states are handled in imsm_set_disk() with one exception, when a
4334 * resync is stopped due to a new failure this routine will set the
4335 * 'degraded' state for the array.
4336 */
4337 static int imsm_set_array_state(struct active_array *a, int consistent)
4338 {
4339 int inst = a->info.container_member;
4340 struct intel_super *super = a->container->sb;
4341 struct imsm_dev *dev = get_imsm_dev(super, inst);
4342 struct imsm_map *map = get_imsm_map(dev, 0);
4343 int failed = imsm_count_failed(super, dev);
4344 __u8 map_state = imsm_check_degraded(super, dev, failed);
4345 __u32 blocks_per_unit;
4346
4347 /* before we activate this array handle any missing disks */
4348 if (consistent == 2 && super->missing) {
4349 struct dl *dl;
4350
4351 dprintf("imsm: mark missing\n");
4352 end_migration(dev, map_state);
4353 for (dl = super->missing; dl; dl = dl->next)
4354 mark_missing(dev, &dl->disk, dl->index);
4355 super->updates_pending++;
4356 }
4357
4358 if (consistent == 2 &&
4359 (!is_resync_complete(&a->info) ||
4360 map_state != IMSM_T_STATE_NORMAL ||
4361 dev->vol.migr_state))
4362 consistent = 0;
4363
4364 if (is_resync_complete(&a->info)) {
4365 /* complete intialization / resync,
4366 * recovery and interrupted recovery is completed in
4367 * ->set_disk
4368 */
4369 if (is_resyncing(dev)) {
4370 dprintf("imsm: mark resync done\n");
4371 end_migration(dev, map_state);
4372 super->updates_pending++;
4373 }
4374 } else if (!is_resyncing(dev) && !failed) {
4375 /* mark the start of the init process if nothing is failed */
4376 dprintf("imsm: mark resync start\n");
4377 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
4378 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
4379 else
4380 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
4381 super->updates_pending++;
4382 }
4383
4384 /* check if we can update curr_migr_unit from resync_start, recovery_start */
4385 blocks_per_unit = blocks_per_migr_unit(dev);
4386 if (blocks_per_unit && failed <= 1) {
4387 __u32 units32;
4388 __u64 units;
4389
4390 if (migr_type(dev) == MIGR_REBUILD)
4391 units = min_recovery_start(&a->info) / blocks_per_unit;
4392 else
4393 units = a->info.resync_start / blocks_per_unit;
4394 units32 = units;
4395
4396 /* check that we did not overflow 32-bits, and that
4397 * curr_migr_unit needs updating
4398 */
4399 if (units32 == units &&
4400 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
4401 dprintf("imsm: mark checkpoint (%u)\n", units32);
4402 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
4403 super->updates_pending++;
4404 }
4405 }
4406
4407 /* mark dirty / clean */
4408 if (dev->vol.dirty != !consistent) {
4409 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
4410 if (consistent)
4411 dev->vol.dirty = 0;
4412 else
4413 dev->vol.dirty = 1;
4414 super->updates_pending++;
4415 }
4416 return consistent;
4417 }
4418
4419 static void imsm_set_disk(struct active_array *a, int n, int state)
4420 {
4421 int inst = a->info.container_member;
4422 struct intel_super *super = a->container->sb;
4423 struct imsm_dev *dev = get_imsm_dev(super, inst);
4424 struct imsm_map *map = get_imsm_map(dev, 0);
4425 struct imsm_disk *disk;
4426 int failed;
4427 __u32 ord;
4428 __u8 map_state;
4429
4430 if (n > map->num_members)
4431 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
4432 n, map->num_members - 1);
4433
4434 if (n < 0)
4435 return;
4436
4437 dprintf("imsm: set_disk %d:%x\n", n, state);
4438
4439 ord = get_imsm_ord_tbl_ent(dev, n);
4440 disk = get_imsm_disk(super, ord_to_idx(ord));
4441
4442 /* check for new failures */
4443 if (state & DS_FAULTY) {
4444 if (mark_failure(dev, disk, ord_to_idx(ord)))
4445 super->updates_pending++;
4446 }
4447
4448 /* check if in_sync */
4449 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
4450 struct imsm_map *migr_map = get_imsm_map(dev, 1);
4451
4452 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
4453 super->updates_pending++;
4454 }
4455
4456 failed = imsm_count_failed(super, dev);
4457 map_state = imsm_check_degraded(super, dev, failed);
4458
4459 /* check if recovery complete, newly degraded, or failed */
4460 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
4461 end_migration(dev, map_state);
4462 map = get_imsm_map(dev, 0);
4463 map->failed_disk_num = ~0;
4464 super->updates_pending++;
4465 } else if (map_state == IMSM_T_STATE_DEGRADED &&
4466 map->map_state != map_state &&
4467 !dev->vol.migr_state) {
4468 dprintf("imsm: mark degraded\n");
4469 map->map_state = map_state;
4470 super->updates_pending++;
4471 } else if (map_state == IMSM_T_STATE_FAILED &&
4472 map->map_state != map_state) {
4473 dprintf("imsm: mark failed\n");
4474 end_migration(dev, map_state);
4475 super->updates_pending++;
4476 }
4477 }
4478
4479 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
4480 {
4481 void *buf = mpb;
4482 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
4483 unsigned long long dsize;
4484 unsigned long long sectors;
4485
4486 get_dev_size(fd, NULL, &dsize);
4487
4488 if (mpb_size > 512) {
4489 /* -1 to account for anchor */
4490 sectors = mpb_sectors(mpb) - 1;
4491
4492 /* write the extended mpb to the sectors preceeding the anchor */
4493 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
4494 return 1;
4495
4496 if (write(fd, buf + 512, 512 * sectors) != 512 * sectors)
4497 return 1;
4498 }
4499
4500 /* first block is stored on second to last sector of the disk */
4501 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
4502 return 1;
4503
4504 if (write(fd, buf, 512) != 512)
4505 return 1;
4506
4507 return 0;
4508 }
4509
4510 static void imsm_sync_metadata(struct supertype *container)
4511 {
4512 struct intel_super *super = container->sb;
4513
4514 if (!super->updates_pending)
4515 return;
4516
4517 write_super_imsm(super, 0);
4518
4519 super->updates_pending = 0;
4520 }
4521
4522 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
4523 {
4524 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
4525 int i = get_imsm_disk_idx(dev, idx);
4526 struct dl *dl;
4527
4528 for (dl = super->disks; dl; dl = dl->next)
4529 if (dl->index == i)
4530 break;
4531
4532 if (dl && is_failed(&dl->disk))
4533 dl = NULL;
4534
4535 if (dl)
4536 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
4537
4538 return dl;
4539 }
4540
4541 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
4542 struct active_array *a, int activate_new)
4543 {
4544 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
4545 int idx = get_imsm_disk_idx(dev, slot);
4546 struct imsm_super *mpb = super->anchor;
4547 struct imsm_map *map;
4548 unsigned long long pos;
4549 struct mdinfo *d;
4550 struct extent *ex;
4551 int i, j;
4552 int found;
4553 __u32 array_start;
4554 __u32 array_end;
4555 struct dl *dl;
4556
4557 for (dl = super->disks; dl; dl = dl->next) {
4558 /* If in this array, skip */
4559 for (d = a->info.devs ; d ; d = d->next)
4560 if (d->state_fd >= 0 &&
4561 d->disk.major == dl->major &&
4562 d->disk.minor == dl->minor) {
4563 dprintf("%x:%x already in array\n", dl->major, dl->minor);
4564 break;
4565 }
4566 if (d)
4567 continue;
4568
4569 /* skip in use or failed drives */
4570 if (is_failed(&dl->disk) || idx == dl->index ||
4571 dl->index == -2) {
4572 dprintf("%x:%x status (failed: %d index: %d)\n",
4573 dl->major, dl->minor, is_failed(&dl->disk), idx);
4574 continue;
4575 }
4576
4577 /* skip pure spares when we are looking for partially
4578 * assimilated drives
4579 */
4580 if (dl->index == -1 && !activate_new)
4581 continue;
4582
4583 /* Does this unused device have the requisite free space?
4584 * It needs to be able to cover all member volumes
4585 */
4586 ex = get_extents(super, dl);
4587 if (!ex) {
4588 dprintf("cannot get extents\n");
4589 continue;
4590 }
4591 for (i = 0; i < mpb->num_raid_devs; i++) {
4592 dev = get_imsm_dev(super, i);
4593 map = get_imsm_map(dev, 0);
4594
4595 /* check if this disk is already a member of
4596 * this array
4597 */
4598 if (get_imsm_disk_slot(map, dl->index) >= 0)
4599 continue;
4600
4601 found = 0;
4602 j = 0;
4603 pos = 0;
4604 array_start = __le32_to_cpu(map->pba_of_lba0);
4605 array_end = array_start +
4606 __le32_to_cpu(map->blocks_per_member) - 1;
4607
4608 do {
4609 /* check that we can start at pba_of_lba0 with
4610 * blocks_per_member of space
4611 */
4612 if (array_start >= pos && array_end < ex[j].start) {
4613 found = 1;
4614 break;
4615 }
4616 pos = ex[j].start + ex[j].size;
4617 j++;
4618 } while (ex[j-1].size);
4619
4620 if (!found)
4621 break;
4622 }
4623
4624 free(ex);
4625 if (i < mpb->num_raid_devs) {
4626 dprintf("%x:%x does not have %u to %u available\n",
4627 dl->major, dl->minor, array_start, array_end);
4628 /* No room */
4629 continue;
4630 }
4631 return dl;
4632 }
4633
4634 return dl;
4635 }
4636
4637 static struct mdinfo *imsm_activate_spare(struct active_array *a,
4638 struct metadata_update **updates)
4639 {
4640 /**
4641 * Find a device with unused free space and use it to replace a
4642 * failed/vacant region in an array. We replace failed regions one a
4643 * array at a time. The result is that a new spare disk will be added
4644 * to the first failed array and after the monitor has finished
4645 * propagating failures the remainder will be consumed.
4646 *
4647 * FIXME add a capability for mdmon to request spares from another
4648 * container.
4649 */
4650
4651 struct intel_super *super = a->container->sb;
4652 int inst = a->info.container_member;
4653 struct imsm_dev *dev = get_imsm_dev(super, inst);
4654 struct imsm_map *map = get_imsm_map(dev, 0);
4655 int failed = a->info.array.raid_disks;
4656 struct mdinfo *rv = NULL;
4657 struct mdinfo *d;
4658 struct mdinfo *di;
4659 struct metadata_update *mu;
4660 struct dl *dl;
4661 struct imsm_update_activate_spare *u;
4662 int num_spares = 0;
4663 int i;
4664
4665 for (d = a->info.devs ; d ; d = d->next) {
4666 if ((d->curr_state & DS_FAULTY) &&
4667 d->state_fd >= 0)
4668 /* wait for Removal to happen */
4669 return NULL;
4670 if (d->state_fd >= 0)
4671 failed--;
4672 }
4673
4674 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
4675 inst, failed, a->info.array.raid_disks, a->info.array.level);
4676 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
4677 return NULL;
4678
4679 /* For each slot, if it is not working, find a spare */
4680 for (i = 0; i < a->info.array.raid_disks; i++) {
4681 for (d = a->info.devs ; d ; d = d->next)
4682 if (d->disk.raid_disk == i)
4683 break;
4684 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
4685 if (d && (d->state_fd >= 0))
4686 continue;
4687
4688 /*
4689 * OK, this device needs recovery. Try to re-add the
4690 * previous occupant of this slot, if this fails see if
4691 * we can continue the assimilation of a spare that was
4692 * partially assimilated, finally try to activate a new
4693 * spare.
4694 */
4695 dl = imsm_readd(super, i, a);
4696 if (!dl)
4697 dl = imsm_add_spare(super, i, a, 0);
4698 if (!dl)
4699 dl = imsm_add_spare(super, i, a, 1);
4700 if (!dl)
4701 continue;
4702
4703 /* found a usable disk with enough space */
4704 di = malloc(sizeof(*di));
4705 if (!di)
4706 continue;
4707 memset(di, 0, sizeof(*di));
4708
4709 /* dl->index will be -1 in the case we are activating a
4710 * pristine spare. imsm_process_update() will create a
4711 * new index in this case. Once a disk is found to be
4712 * failed in all member arrays it is kicked from the
4713 * metadata
4714 */
4715 di->disk.number = dl->index;
4716
4717 /* (ab)use di->devs to store a pointer to the device
4718 * we chose
4719 */
4720 di->devs = (struct mdinfo *) dl;
4721
4722 di->disk.raid_disk = i;
4723 di->disk.major = dl->major;
4724 di->disk.minor = dl->minor;
4725 di->disk.state = 0;
4726 di->recovery_start = 0;
4727 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
4728 di->component_size = a->info.component_size;
4729 di->container_member = inst;
4730 super->random = random32();
4731 di->next = rv;
4732 rv = di;
4733 num_spares++;
4734 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
4735 i, di->data_offset);
4736
4737 break;
4738 }
4739
4740 if (!rv)
4741 /* No spares found */
4742 return rv;
4743 /* Now 'rv' has a list of devices to return.
4744 * Create a metadata_update record to update the
4745 * disk_ord_tbl for the array
4746 */
4747 mu = malloc(sizeof(*mu));
4748 if (mu) {
4749 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
4750 if (mu->buf == NULL) {
4751 free(mu);
4752 mu = NULL;
4753 }
4754 }
4755 if (!mu) {
4756 while (rv) {
4757 struct mdinfo *n = rv->next;
4758
4759 free(rv);
4760 rv = n;
4761 }
4762 return NULL;
4763 }
4764
4765 mu->space = NULL;
4766 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
4767 mu->next = *updates;
4768 u = (struct imsm_update_activate_spare *) mu->buf;
4769
4770 for (di = rv ; di ; di = di->next) {
4771 u->type = update_activate_spare;
4772 u->dl = (struct dl *) di->devs;
4773 di->devs = NULL;
4774 u->slot = di->disk.raid_disk;
4775 u->array = inst;
4776 u->next = u + 1;
4777 u++;
4778 }
4779 (u-1)->next = NULL;
4780 *updates = mu;
4781
4782 return rv;
4783 }
4784
4785 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
4786 {
4787 struct imsm_dev *dev = get_imsm_dev(super, idx);
4788 struct imsm_map *map = get_imsm_map(dev, 0);
4789 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
4790 struct disk_info *inf = get_disk_info(u);
4791 struct imsm_disk *disk;
4792 int i;
4793 int j;
4794
4795 for (i = 0; i < map->num_members; i++) {
4796 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4797 for (j = 0; j < new_map->num_members; j++)
4798 if (serialcmp(disk->serial, inf[j].serial) == 0)
4799 return 1;
4800 }
4801
4802 return 0;
4803 }
4804
4805 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
4806
4807 static void imsm_process_update(struct supertype *st,
4808 struct metadata_update *update)
4809 {
4810 /**
4811 * crack open the metadata_update envelope to find the update record
4812 * update can be one of:
4813 * update_activate_spare - a spare device has replaced a failed
4814 * device in an array, update the disk_ord_tbl. If this disk is
4815 * present in all member arrays then also clear the SPARE_DISK
4816 * flag
4817 */
4818 struct intel_super *super = st->sb;
4819 struct imsm_super *mpb;
4820 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4821
4822 /* update requires a larger buf but the allocation failed */
4823 if (super->next_len && !super->next_buf) {
4824 super->next_len = 0;
4825 return;
4826 }
4827
4828 if (super->next_buf) {
4829 memcpy(super->next_buf, super->buf, super->len);
4830 free(super->buf);
4831 super->len = super->next_len;
4832 super->buf = super->next_buf;
4833
4834 super->next_len = 0;
4835 super->next_buf = NULL;
4836 }
4837
4838 mpb = super->anchor;
4839
4840 switch (type) {
4841 case update_activate_spare: {
4842 struct imsm_update_activate_spare *u = (void *) update->buf;
4843 struct imsm_dev *dev = get_imsm_dev(super, u->array);
4844 struct imsm_map *map = get_imsm_map(dev, 0);
4845 struct imsm_map *migr_map;
4846 struct active_array *a;
4847 struct imsm_disk *disk;
4848 __u8 to_state;
4849 struct dl *dl;
4850 unsigned int found;
4851 int failed;
4852 int victim = get_imsm_disk_idx(dev, u->slot);
4853 int i;
4854
4855 for (dl = super->disks; dl; dl = dl->next)
4856 if (dl == u->dl)
4857 break;
4858
4859 if (!dl) {
4860 fprintf(stderr, "error: imsm_activate_spare passed "
4861 "an unknown disk (index: %d)\n",
4862 u->dl->index);
4863 return;
4864 }
4865
4866 super->updates_pending++;
4867
4868 /* count failures (excluding rebuilds and the victim)
4869 * to determine map[0] state
4870 */
4871 failed = 0;
4872 for (i = 0; i < map->num_members; i++) {
4873 if (i == u->slot)
4874 continue;
4875 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4876 if (!disk || is_failed(disk))
4877 failed++;
4878 }
4879
4880 /* adding a pristine spare, assign a new index */
4881 if (dl->index < 0) {
4882 dl->index = super->anchor->num_disks;
4883 super->anchor->num_disks++;
4884 }
4885 disk = &dl->disk;
4886 disk->status |= CONFIGURED_DISK;
4887 disk->status &= ~SPARE_DISK;
4888
4889 /* mark rebuild */
4890 to_state = imsm_check_degraded(super, dev, failed);
4891 map->map_state = IMSM_T_STATE_DEGRADED;
4892 migrate(dev, to_state, MIGR_REBUILD);
4893 migr_map = get_imsm_map(dev, 1);
4894 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
4895 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
4896
4897 /* update the family_num to mark a new container
4898 * generation, being careful to record the existing
4899 * family_num in orig_family_num to clean up after
4900 * earlier mdadm versions that neglected to set it.
4901 */
4902 if (mpb->orig_family_num == 0)
4903 mpb->orig_family_num = mpb->family_num;
4904 mpb->family_num += super->random;
4905
4906 /* count arrays using the victim in the metadata */
4907 found = 0;
4908 for (a = st->arrays; a ; a = a->next) {
4909 dev = get_imsm_dev(super, a->info.container_member);
4910 map = get_imsm_map(dev, 0);
4911
4912 if (get_imsm_disk_slot(map, victim) >= 0)
4913 found++;
4914 }
4915
4916 /* delete the victim if it is no longer being
4917 * utilized anywhere
4918 */
4919 if (!found) {
4920 struct dl **dlp;
4921
4922 /* We know that 'manager' isn't touching anything,
4923 * so it is safe to delete
4924 */
4925 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
4926 if ((*dlp)->index == victim)
4927 break;
4928
4929 /* victim may be on the missing list */
4930 if (!*dlp)
4931 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
4932 if ((*dlp)->index == victim)
4933 break;
4934 imsm_delete(super, dlp, victim);
4935 }
4936 break;
4937 }
4938 case update_create_array: {
4939 /* someone wants to create a new array, we need to be aware of
4940 * a few races/collisions:
4941 * 1/ 'Create' called by two separate instances of mdadm
4942 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
4943 * devices that have since been assimilated via
4944 * activate_spare.
4945 * In the event this update can not be carried out mdadm will
4946 * (FIX ME) notice that its update did not take hold.
4947 */
4948 struct imsm_update_create_array *u = (void *) update->buf;
4949 struct intel_dev *dv;
4950 struct imsm_dev *dev;
4951 struct imsm_map *map, *new_map;
4952 unsigned long long start, end;
4953 unsigned long long new_start, new_end;
4954 int i;
4955 struct disk_info *inf;
4956 struct dl *dl;
4957
4958 /* handle racing creates: first come first serve */
4959 if (u->dev_idx < mpb->num_raid_devs) {
4960 dprintf("%s: subarray %d already defined\n",
4961 __func__, u->dev_idx);
4962 goto create_error;
4963 }
4964
4965 /* check update is next in sequence */
4966 if (u->dev_idx != mpb->num_raid_devs) {
4967 dprintf("%s: can not create array %d expected index %d\n",
4968 __func__, u->dev_idx, mpb->num_raid_devs);
4969 goto create_error;
4970 }
4971
4972 new_map = get_imsm_map(&u->dev, 0);
4973 new_start = __le32_to_cpu(new_map->pba_of_lba0);
4974 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
4975 inf = get_disk_info(u);
4976
4977 /* handle activate_spare versus create race:
4978 * check to make sure that overlapping arrays do not include
4979 * overalpping disks
4980 */
4981 for (i = 0; i < mpb->num_raid_devs; i++) {
4982 dev = get_imsm_dev(super, i);
4983 map = get_imsm_map(dev, 0);
4984 start = __le32_to_cpu(map->pba_of_lba0);
4985 end = start + __le32_to_cpu(map->blocks_per_member);
4986 if ((new_start >= start && new_start <= end) ||
4987 (start >= new_start && start <= new_end))
4988 /* overlap */;
4989 else
4990 continue;
4991
4992 if (disks_overlap(super, i, u)) {
4993 dprintf("%s: arrays overlap\n", __func__);
4994 goto create_error;
4995 }
4996 }
4997
4998 /* check that prepare update was successful */
4999 if (!update->space) {
5000 dprintf("%s: prepare update failed\n", __func__);
5001 goto create_error;
5002 }
5003
5004 /* check that all disks are still active before committing
5005 * changes. FIXME: could we instead handle this by creating a
5006 * degraded array? That's probably not what the user expects,
5007 * so better to drop this update on the floor.
5008 */
5009 for (i = 0; i < new_map->num_members; i++) {
5010 dl = serial_to_dl(inf[i].serial, super);
5011 if (!dl) {
5012 dprintf("%s: disk disappeared\n", __func__);
5013 goto create_error;
5014 }
5015 }
5016
5017 super->updates_pending++;
5018
5019 /* convert spares to members and fixup ord_tbl */
5020 for (i = 0; i < new_map->num_members; i++) {
5021 dl = serial_to_dl(inf[i].serial, super);
5022 if (dl->index == -1) {
5023 dl->index = mpb->num_disks;
5024 mpb->num_disks++;
5025 dl->disk.status |= CONFIGURED_DISK;
5026 dl->disk.status &= ~SPARE_DISK;
5027 }
5028 set_imsm_ord_tbl_ent(new_map, i, dl->index);
5029 }
5030
5031 dv = update->space;
5032 dev = dv->dev;
5033 update->space = NULL;
5034 imsm_copy_dev(dev, &u->dev);
5035 dv->index = u->dev_idx;
5036 dv->next = super->devlist;
5037 super->devlist = dv;
5038 mpb->num_raid_devs++;
5039
5040 imsm_update_version_info(super);
5041 break;
5042 create_error:
5043 /* mdmon knows how to release update->space, but not
5044 * ((struct intel_dev *) update->space)->dev
5045 */
5046 if (update->space) {
5047 dv = update->space;
5048 free(dv->dev);
5049 }
5050 break;
5051 }
5052 case update_add_disk:
5053
5054 /* we may be able to repair some arrays if disks are
5055 * being added */
5056 if (super->add) {
5057 struct active_array *a;
5058
5059 super->updates_pending++;
5060 for (a = st->arrays; a; a = a->next)
5061 a->check_degraded = 1;
5062 }
5063 /* add some spares to the metadata */
5064 while (super->add) {
5065 struct dl *al;
5066
5067 al = super->add;
5068 super->add = al->next;
5069 al->next = super->disks;
5070 super->disks = al;
5071 dprintf("%s: added %x:%x\n",
5072 __func__, al->major, al->minor);
5073 }
5074
5075 break;
5076 }
5077 }
5078
5079 static void imsm_prepare_update(struct supertype *st,
5080 struct metadata_update *update)
5081 {
5082 /**
5083 * Allocate space to hold new disk entries, raid-device entries or a new
5084 * mpb if necessary. The manager synchronously waits for updates to
5085 * complete in the monitor, so new mpb buffers allocated here can be
5086 * integrated by the monitor thread without worrying about live pointers
5087 * in the manager thread.
5088 */
5089 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
5090 struct intel_super *super = st->sb;
5091 struct imsm_super *mpb = super->anchor;
5092 size_t buf_len;
5093 size_t len = 0;
5094
5095 switch (type) {
5096 case update_create_array: {
5097 struct imsm_update_create_array *u = (void *) update->buf;
5098 struct intel_dev *dv;
5099 struct imsm_dev *dev = &u->dev;
5100 struct imsm_map *map = get_imsm_map(dev, 0);
5101 struct dl *dl;
5102 struct disk_info *inf;
5103 int i;
5104 int activate = 0;
5105
5106 inf = get_disk_info(u);
5107 len = sizeof_imsm_dev(dev, 1);
5108 /* allocate a new super->devlist entry */
5109 dv = malloc(sizeof(*dv));
5110 if (dv) {
5111 dv->dev = malloc(len);
5112 if (dv->dev)
5113 update->space = dv;
5114 else {
5115 free(dv);
5116 update->space = NULL;
5117 }
5118 }
5119
5120 /* count how many spares will be converted to members */
5121 for (i = 0; i < map->num_members; i++) {
5122 dl = serial_to_dl(inf[i].serial, super);
5123 if (!dl) {
5124 /* hmm maybe it failed?, nothing we can do about
5125 * it here
5126 */
5127 continue;
5128 }
5129 if (count_memberships(dl, super) == 0)
5130 activate++;
5131 }
5132 len += activate * sizeof(struct imsm_disk);
5133 break;
5134 default:
5135 break;
5136 }
5137 }
5138
5139 /* check if we need a larger metadata buffer */
5140 if (super->next_buf)
5141 buf_len = super->next_len;
5142 else
5143 buf_len = super->len;
5144
5145 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
5146 /* ok we need a larger buf than what is currently allocated
5147 * if this allocation fails process_update will notice that
5148 * ->next_len is set and ->next_buf is NULL
5149 */
5150 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
5151 if (super->next_buf)
5152 free(super->next_buf);
5153
5154 super->next_len = buf_len;
5155 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
5156 memset(super->next_buf, 0, buf_len);
5157 else
5158 super->next_buf = NULL;
5159 }
5160 }
5161
5162 /* must be called while manager is quiesced */
5163 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
5164 {
5165 struct imsm_super *mpb = super->anchor;
5166 struct dl *iter;
5167 struct imsm_dev *dev;
5168 struct imsm_map *map;
5169 int i, j, num_members;
5170 __u32 ord;
5171
5172 dprintf("%s: deleting device[%d] from imsm_super\n",
5173 __func__, index);
5174
5175 /* shift all indexes down one */
5176 for (iter = super->disks; iter; iter = iter->next)
5177 if (iter->index > index)
5178 iter->index--;
5179 for (iter = super->missing; iter; iter = iter->next)
5180 if (iter->index > index)
5181 iter->index--;
5182
5183 for (i = 0; i < mpb->num_raid_devs; i++) {
5184 dev = get_imsm_dev(super, i);
5185 map = get_imsm_map(dev, 0);
5186 num_members = map->num_members;
5187 for (j = 0; j < num_members; j++) {
5188 /* update ord entries being careful not to propagate
5189 * ord-flags to the first map
5190 */
5191 ord = get_imsm_ord_tbl_ent(dev, j);
5192
5193 if (ord_to_idx(ord) <= index)
5194 continue;
5195
5196 map = get_imsm_map(dev, 0);
5197 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
5198 map = get_imsm_map(dev, 1);
5199 if (map)
5200 set_imsm_ord_tbl_ent(map, j, ord - 1);
5201 }
5202 }
5203
5204 mpb->num_disks--;
5205 super->updates_pending++;
5206 if (*dlp) {
5207 struct dl *dl = *dlp;
5208
5209 *dlp = (*dlp)->next;
5210 __free_imsm_disk(dl);
5211 }
5212 }
5213 #endif /* MDASSEMBLE */
5214
5215 struct superswitch super_imsm = {
5216 #ifndef MDASSEMBLE
5217 .examine_super = examine_super_imsm,
5218 .brief_examine_super = brief_examine_super_imsm,
5219 .brief_examine_subarrays = brief_examine_subarrays_imsm,
5220 .export_examine_super = export_examine_super_imsm,
5221 .detail_super = detail_super_imsm,
5222 .brief_detail_super = brief_detail_super_imsm,
5223 .write_init_super = write_init_super_imsm,
5224 .validate_geometry = validate_geometry_imsm,
5225 .add_to_super = add_to_super_imsm,
5226 .detail_platform = detail_platform_imsm,
5227 #endif
5228 .match_home = match_home_imsm,
5229 .uuid_from_super= uuid_from_super_imsm,
5230 .getinfo_super = getinfo_super_imsm,
5231 .update_super = update_super_imsm,
5232
5233 .avail_size = avail_size_imsm,
5234
5235 .compare_super = compare_super_imsm,
5236
5237 .load_super = load_super_imsm,
5238 .init_super = init_super_imsm,
5239 .store_super = store_super_imsm,
5240 .free_super = free_super_imsm,
5241 .match_metadata_desc = match_metadata_desc_imsm,
5242 .container_content = container_content_imsm,
5243 .default_layout = imsm_level_to_layout,
5244
5245 .external = 1,
5246 .name = "imsm",
5247
5248 #ifndef MDASSEMBLE
5249 /* for mdmon */
5250 .open_new = imsm_open_new,
5251 .load_super = load_super_imsm,
5252 .set_array_state= imsm_set_array_state,
5253 .set_disk = imsm_set_disk,
5254 .sync_metadata = imsm_sync_metadata,
5255 .activate_spare = imsm_activate_spare,
5256 .process_update = imsm_process_update,
5257 .prepare_update = imsm_prepare_update,
5258 #endif /* MDASSEMBLE */
5259 };