]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
super-intel: ensure suspended region is removed when reshape completes.
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
106 #define IMSM_DISK_FILLERS 3
107 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
108 };
109
110 /* map selector for map managment
111 */
112 #define MAP_0 0
113 #define MAP_1 1
114 #define MAP_X -1
115
116 /* RAID map configuration infos. */
117 struct imsm_map {
118 __u32 pba_of_lba0_lo; /* start address of partition */
119 __u32 blocks_per_member_lo;/* blocks per member */
120 __u32 num_data_stripes_lo; /* number of data stripes */
121 __u16 blocks_per_strip;
122 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
123 #define IMSM_T_STATE_NORMAL 0
124 #define IMSM_T_STATE_UNINITIALIZED 1
125 #define IMSM_T_STATE_DEGRADED 2
126 #define IMSM_T_STATE_FAILED 3
127 __u8 raid_level;
128 #define IMSM_T_RAID0 0
129 #define IMSM_T_RAID1 1
130 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
131 __u8 num_members; /* number of member disks */
132 __u8 num_domains; /* number of parity domains */
133 __u8 failed_disk_num; /* valid only when state is degraded */
134 __u8 ddf;
135 __u32 pba_of_lba0_hi;
136 __u32 blocks_per_member_hi;
137 __u32 num_data_stripes_hi;
138 __u32 filler[4]; /* expansion area */
139 #define IMSM_ORD_REBUILD (1 << 24)
140 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
141 * top byte contains some flags
142 */
143 } __attribute__ ((packed));
144
145 struct imsm_vol {
146 __u32 curr_migr_unit;
147 __u32 checkpoint_id; /* id to access curr_migr_unit */
148 __u8 migr_state; /* Normal or Migrating */
149 #define MIGR_INIT 0
150 #define MIGR_REBUILD 1
151 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
152 #define MIGR_GEN_MIGR 3
153 #define MIGR_STATE_CHANGE 4
154 #define MIGR_REPAIR 5
155 __u8 migr_type; /* Initializing, Rebuilding, ... */
156 __u8 dirty;
157 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
158 __u16 verify_errors; /* number of mismatches */
159 __u16 bad_blocks; /* number of bad blocks during verify */
160 __u32 filler[4];
161 struct imsm_map map[1];
162 /* here comes another one if migr_state */
163 } __attribute__ ((packed));
164
165 struct imsm_dev {
166 __u8 volume[MAX_RAID_SERIAL_LEN];
167 __u32 size_low;
168 __u32 size_high;
169 #define DEV_BOOTABLE __cpu_to_le32(0x01)
170 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
171 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
172 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
173 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
174 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
175 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
176 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
177 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
178 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
179 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
180 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
181 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
182 __u32 status; /* Persistent RaidDev status */
183 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
184 __u8 migr_priority;
185 __u8 num_sub_vols;
186 __u8 tid;
187 __u8 cng_master_disk;
188 __u16 cache_policy;
189 __u8 cng_state;
190 __u8 cng_sub_state;
191 #define IMSM_DEV_FILLERS 10
192 __u32 filler[IMSM_DEV_FILLERS];
193 struct imsm_vol vol;
194 } __attribute__ ((packed));
195
196 struct imsm_super {
197 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
198 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
199 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
200 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
201 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
202 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
203 __u32 attributes; /* 0x34 - 0x37 */
204 __u8 num_disks; /* 0x38 Number of configured disks */
205 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
206 __u8 error_log_pos; /* 0x3A */
207 __u8 fill[1]; /* 0x3B */
208 __u32 cache_size; /* 0x3c - 0x40 in mb */
209 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
210 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
211 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
212 #define IMSM_FILLERS 35
213 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
214 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
215 /* here comes imsm_dev[num_raid_devs] */
216 /* here comes BBM logs */
217 } __attribute__ ((packed));
218
219 #define BBM_LOG_MAX_ENTRIES 254
220
221 struct bbm_log_entry {
222 __u64 defective_block_start;
223 #define UNREADABLE 0xFFFFFFFF
224 __u32 spare_block_offset;
225 __u16 remapped_marked_count;
226 __u16 disk_ordinal;
227 } __attribute__ ((__packed__));
228
229 struct bbm_log {
230 __u32 signature; /* 0xABADB10C */
231 __u32 entry_count;
232 __u32 reserved_spare_block_count; /* 0 */
233 __u32 reserved; /* 0xFFFF */
234 __u64 first_spare_lba;
235 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
236 } __attribute__ ((__packed__));
237
238 #ifndef MDASSEMBLE
239 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
240 #endif
241
242 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
243
244 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
245
246 #define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
247 #define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
248 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
249 */
250
251 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
252 * be recovered using srcMap */
253 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
254 * already been migrated and must
255 * be recovered from checkpoint area */
256 struct migr_record {
257 __u32 rec_status; /* Status used to determine how to restart
258 * migration in case it aborts
259 * in some fashion */
260 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
261 __u32 family_num; /* Family number of MPB
262 * containing the RaidDev
263 * that is migrating */
264 __u32 ascending_migr; /* True if migrating in increasing
265 * order of lbas */
266 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
267 __u32 dest_depth_per_unit; /* Num member blocks each destMap
268 * member disk
269 * advances per unit-of-operation */
270 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
271 __u32 dest_1st_member_lba; /* First member lba on first
272 * stripe of destination */
273 __u32 num_migr_units; /* Total num migration units-of-op */
274 __u32 post_migr_vol_cap; /* Size of volume after
275 * migration completes */
276 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
277 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
278 * migration ckpt record was read from
279 * (for recovered migrations) */
280 } __attribute__ ((__packed__));
281
282 struct md_list {
283 /* usage marker:
284 * 1: load metadata
285 * 2: metadata does not match
286 * 4: already checked
287 */
288 int used;
289 char *devname;
290 int found;
291 int container;
292 dev_t st_rdev;
293 struct md_list *next;
294 };
295
296 #define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
297
298 static __u8 migr_type(struct imsm_dev *dev)
299 {
300 if (dev->vol.migr_type == MIGR_VERIFY &&
301 dev->status & DEV_VERIFY_AND_FIX)
302 return MIGR_REPAIR;
303 else
304 return dev->vol.migr_type;
305 }
306
307 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
308 {
309 /* for compatibility with older oroms convert MIGR_REPAIR, into
310 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
311 */
312 if (migr_type == MIGR_REPAIR) {
313 dev->vol.migr_type = MIGR_VERIFY;
314 dev->status |= DEV_VERIFY_AND_FIX;
315 } else {
316 dev->vol.migr_type = migr_type;
317 dev->status &= ~DEV_VERIFY_AND_FIX;
318 }
319 }
320
321 static unsigned int sector_count(__u32 bytes)
322 {
323 return ROUND_UP(bytes, 512) / 512;
324 }
325
326 static unsigned int mpb_sectors(struct imsm_super *mpb)
327 {
328 return sector_count(__le32_to_cpu(mpb->mpb_size));
329 }
330
331 struct intel_dev {
332 struct imsm_dev *dev;
333 struct intel_dev *next;
334 unsigned index;
335 };
336
337 struct intel_hba {
338 enum sys_dev_type type;
339 char *path;
340 char *pci_id;
341 struct intel_hba *next;
342 };
343
344 enum action {
345 DISK_REMOVE = 1,
346 DISK_ADD
347 };
348 /* internal representation of IMSM metadata */
349 struct intel_super {
350 union {
351 void *buf; /* O_DIRECT buffer for reading/writing metadata */
352 struct imsm_super *anchor; /* immovable parameters */
353 };
354 union {
355 void *migr_rec_buf; /* buffer for I/O operations */
356 struct migr_record *migr_rec; /* migration record */
357 };
358 int clean_migration_record_by_mdmon; /* when reshape is switched to next
359 array, it indicates that mdmon is allowed to clean migration
360 record */
361 size_t len; /* size of the 'buf' allocation */
362 void *next_buf; /* for realloc'ing buf from the manager */
363 size_t next_len;
364 int updates_pending; /* count of pending updates for mdmon */
365 int current_vol; /* index of raid device undergoing creation */
366 unsigned long long create_offset; /* common start for 'current_vol' */
367 __u32 random; /* random data for seeding new family numbers */
368 struct intel_dev *devlist;
369 struct dl {
370 struct dl *next;
371 int index;
372 __u8 serial[MAX_RAID_SERIAL_LEN];
373 int major, minor;
374 char *devname;
375 struct imsm_disk disk;
376 int fd;
377 int extent_cnt;
378 struct extent *e; /* for determining freespace @ create */
379 int raiddisk; /* slot to fill in autolayout */
380 enum action action;
381 } *disks, *current_disk;
382 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
383 active */
384 struct dl *missing; /* disks removed while we weren't looking */
385 struct bbm_log *bbm_log;
386 struct intel_hba *hba; /* device path of the raid controller for this metadata */
387 const struct imsm_orom *orom; /* platform firmware support */
388 struct intel_super *next; /* (temp) list for disambiguating family_num */
389 };
390
391 struct intel_disk {
392 struct imsm_disk disk;
393 #define IMSM_UNKNOWN_OWNER (-1)
394 int owner;
395 struct intel_disk *next;
396 };
397
398 struct extent {
399 unsigned long long start, size;
400 };
401
402 /* definitions of reshape process types */
403 enum imsm_reshape_type {
404 CH_TAKEOVER,
405 CH_MIGRATION,
406 CH_ARRAY_SIZE,
407 };
408
409 /* definition of messages passed to imsm_process_update */
410 enum imsm_update_type {
411 update_activate_spare,
412 update_create_array,
413 update_kill_array,
414 update_rename_array,
415 update_add_remove_disk,
416 update_reshape_container_disks,
417 update_reshape_migration,
418 update_takeover,
419 update_general_migration_checkpoint,
420 update_size_change,
421 };
422
423 struct imsm_update_activate_spare {
424 enum imsm_update_type type;
425 struct dl *dl;
426 int slot;
427 int array;
428 struct imsm_update_activate_spare *next;
429 };
430
431 struct geo_params {
432 char devnm[32];
433 char *dev_name;
434 unsigned long long size;
435 int level;
436 int layout;
437 int chunksize;
438 int raid_disks;
439 };
440
441 enum takeover_direction {
442 R10_TO_R0,
443 R0_TO_R10
444 };
445 struct imsm_update_takeover {
446 enum imsm_update_type type;
447 int subarray;
448 enum takeover_direction direction;
449 };
450
451 struct imsm_update_reshape {
452 enum imsm_update_type type;
453 int old_raid_disks;
454 int new_raid_disks;
455
456 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
457 };
458
459 struct imsm_update_reshape_migration {
460 enum imsm_update_type type;
461 int old_raid_disks;
462 int new_raid_disks;
463 /* fields for array migration changes
464 */
465 int subdev;
466 int new_level;
467 int new_layout;
468 int new_chunksize;
469
470 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
471 };
472
473 struct imsm_update_size_change {
474 enum imsm_update_type type;
475 int subdev;
476 long long new_size;
477 };
478
479 struct imsm_update_general_migration_checkpoint {
480 enum imsm_update_type type;
481 __u32 curr_migr_unit;
482 };
483
484 struct disk_info {
485 __u8 serial[MAX_RAID_SERIAL_LEN];
486 };
487
488 struct imsm_update_create_array {
489 enum imsm_update_type type;
490 int dev_idx;
491 struct imsm_dev dev;
492 };
493
494 struct imsm_update_kill_array {
495 enum imsm_update_type type;
496 int dev_idx;
497 };
498
499 struct imsm_update_rename_array {
500 enum imsm_update_type type;
501 __u8 name[MAX_RAID_SERIAL_LEN];
502 int dev_idx;
503 };
504
505 struct imsm_update_add_remove_disk {
506 enum imsm_update_type type;
507 };
508
509 static const char *_sys_dev_type[] = {
510 [SYS_DEV_UNKNOWN] = "Unknown",
511 [SYS_DEV_SAS] = "SAS",
512 [SYS_DEV_SATA] = "SATA",
513 [SYS_DEV_NVME] = "NVMe",
514 [SYS_DEV_VMD] = "VMD"
515 };
516
517 const char *get_sys_dev_type(enum sys_dev_type type)
518 {
519 if (type >= SYS_DEV_MAX)
520 type = SYS_DEV_UNKNOWN;
521
522 return _sys_dev_type[type];
523 }
524
525 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
526 {
527 struct intel_hba *result = xmalloc(sizeof(*result));
528
529 result->type = device->type;
530 result->path = xstrdup(device->path);
531 result->next = NULL;
532 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
533 result->pci_id++;
534
535 return result;
536 }
537
538 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
539 {
540 struct intel_hba *result=NULL;
541 for (result = hba; result; result = result->next) {
542 if (result->type == device->type && strcmp(result->path, device->path) == 0)
543 break;
544 }
545 return result;
546 }
547
548 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
549 {
550 struct intel_hba *hba;
551
552 /* check if disk attached to Intel HBA */
553 hba = find_intel_hba(super->hba, device);
554 if (hba != NULL)
555 return 1;
556 /* Check if HBA is already attached to super */
557 if (super->hba == NULL) {
558 super->hba = alloc_intel_hba(device);
559 return 1;
560 }
561
562 hba = super->hba;
563 /* Intel metadata allows for all disks attached to the same type HBA.
564 * Do not support HBA types mixing
565 */
566 if (device->type != hba->type)
567 return 2;
568
569 /* Always forbid spanning between VMD domains (seen as different controllers by mdadm) */
570 if (device->type == SYS_DEV_VMD && !path_attached_to_hba(device->path, hba->path))
571 return 2;
572
573 /* Multiple same type HBAs can be used if they share the same OROM */
574 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
575
576 if (device_orom != super->orom)
577 return 2;
578
579 while (hba->next)
580 hba = hba->next;
581
582 hba->next = alloc_intel_hba(device);
583 return 1;
584 }
585
586 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
587 {
588 struct sys_dev *list, *elem;
589 char *disk_path;
590
591 if ((list = find_intel_devices()) == NULL)
592 return 0;
593
594 if (fd < 0)
595 disk_path = (char *) devname;
596 else
597 disk_path = diskfd_to_devpath(fd);
598
599 if (!disk_path)
600 return 0;
601
602 for (elem = list; elem; elem = elem->next)
603 if (path_attached_to_hba(disk_path, elem->path))
604 return elem;
605
606 if (disk_path != devname)
607 free(disk_path);
608
609 return NULL;
610 }
611
612 static int find_intel_hba_capability(int fd, struct intel_super *super,
613 char *devname);
614
615 static struct supertype *match_metadata_desc_imsm(char *arg)
616 {
617 struct supertype *st;
618
619 if (strcmp(arg, "imsm") != 0 &&
620 strcmp(arg, "default") != 0
621 )
622 return NULL;
623
624 st = xcalloc(1, sizeof(*st));
625 st->ss = &super_imsm;
626 st->max_devs = IMSM_MAX_DEVICES;
627 st->minor_version = 0;
628 st->sb = NULL;
629 return st;
630 }
631
632 #ifndef MDASSEMBLE
633 static __u8 *get_imsm_version(struct imsm_super *mpb)
634 {
635 return &mpb->sig[MPB_SIG_LEN];
636 }
637 #endif
638
639 /* retrieve a disk directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load time
641 */
642 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
643 {
644 if (index >= mpb->num_disks)
645 return NULL;
646 return &mpb->disk[index];
647 }
648
649 /* retrieve the disk description based on a index of the disk
650 * in the sub-array
651 */
652 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
653 {
654 struct dl *d;
655
656 for (d = super->disks; d; d = d->next)
657 if (d->index == index)
658 return d;
659
660 return NULL;
661 }
662 /* retrieve a disk from the parsed metadata */
663 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
664 {
665 struct dl *dl;
666
667 dl = get_imsm_dl_disk(super, index);
668 if (dl)
669 return &dl->disk;
670
671 return NULL;
672 }
673
674 /* generate a checksum directly from the anchor when the anchor is known to be
675 * up-to-date, currently only at load or write_super after coalescing
676 */
677 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
678 {
679 __u32 end = mpb->mpb_size / sizeof(end);
680 __u32 *p = (__u32 *) mpb;
681 __u32 sum = 0;
682
683 while (end--) {
684 sum += __le32_to_cpu(*p);
685 p++;
686 }
687
688 return sum - __le32_to_cpu(mpb->check_sum);
689 }
690
691 static size_t sizeof_imsm_map(struct imsm_map *map)
692 {
693 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
694 }
695
696 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
697 {
698 /* A device can have 2 maps if it is in the middle of a migration.
699 * If second_map is:
700 * MAP_0 - we return the first map
701 * MAP_1 - we return the second map if it exists, else NULL
702 * MAP_X - we return the second map if it exists, else the first
703 */
704 struct imsm_map *map = &dev->vol.map[0];
705 struct imsm_map *map2 = NULL;
706
707 if (dev->vol.migr_state)
708 map2 = (void *)map + sizeof_imsm_map(map);
709
710 switch (second_map) {
711 case MAP_0:
712 break;
713 case MAP_1:
714 map = map2;
715 break;
716 case MAP_X:
717 if (map2)
718 map = map2;
719 break;
720 default:
721 map = NULL;
722 }
723 return map;
724
725 }
726
727 /* return the size of the device.
728 * migr_state increases the returned size if map[0] were to be duplicated
729 */
730 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
731 {
732 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
733 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
734
735 /* migrating means an additional map */
736 if (dev->vol.migr_state)
737 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
738 else if (migr_state)
739 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
740
741 return size;
742 }
743
744 #ifndef MDASSEMBLE
745 /* retrieve disk serial number list from a metadata update */
746 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
747 {
748 void *u = update;
749 struct disk_info *inf;
750
751 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
752 sizeof_imsm_dev(&update->dev, 0);
753
754 return inf;
755 }
756 #endif
757
758 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
759 {
760 int offset;
761 int i;
762 void *_mpb = mpb;
763
764 if (index >= mpb->num_raid_devs)
765 return NULL;
766
767 /* devices start after all disks */
768 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
769
770 for (i = 0; i <= index; i++)
771 if (i == index)
772 return _mpb + offset;
773 else
774 offset += sizeof_imsm_dev(_mpb + offset, 0);
775
776 return NULL;
777 }
778
779 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
780 {
781 struct intel_dev *dv;
782
783 if (index >= super->anchor->num_raid_devs)
784 return NULL;
785 for (dv = super->devlist; dv; dv = dv->next)
786 if (dv->index == index)
787 return dv->dev;
788 return NULL;
789 }
790
791 /*
792 * for second_map:
793 * == MAP_0 get first map
794 * == MAP_1 get second map
795 * == MAP_X than get map according to the current migr_state
796 */
797 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
798 int slot,
799 int second_map)
800 {
801 struct imsm_map *map;
802
803 map = get_imsm_map(dev, second_map);
804
805 /* top byte identifies disk under rebuild */
806 return __le32_to_cpu(map->disk_ord_tbl[slot]);
807 }
808
809 #define ord_to_idx(ord) (((ord) << 8) >> 8)
810 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
811 {
812 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
813
814 return ord_to_idx(ord);
815 }
816
817 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
818 {
819 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
820 }
821
822 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
823 {
824 int slot;
825 __u32 ord;
826
827 for (slot = 0; slot < map->num_members; slot++) {
828 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
829 if (ord_to_idx(ord) == idx)
830 return slot;
831 }
832
833 return -1;
834 }
835
836 static int get_imsm_raid_level(struct imsm_map *map)
837 {
838 if (map->raid_level == 1) {
839 if (map->num_members == 2)
840 return 1;
841 else
842 return 10;
843 }
844
845 return map->raid_level;
846 }
847
848 static int cmp_extent(const void *av, const void *bv)
849 {
850 const struct extent *a = av;
851 const struct extent *b = bv;
852 if (a->start < b->start)
853 return -1;
854 if (a->start > b->start)
855 return 1;
856 return 0;
857 }
858
859 static int count_memberships(struct dl *dl, struct intel_super *super)
860 {
861 int memberships = 0;
862 int i;
863
864 for (i = 0; i < super->anchor->num_raid_devs; i++) {
865 struct imsm_dev *dev = get_imsm_dev(super, i);
866 struct imsm_map *map = get_imsm_map(dev, MAP_0);
867
868 if (get_imsm_disk_slot(map, dl->index) >= 0)
869 memberships++;
870 }
871
872 return memberships;
873 }
874
875 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
876
877 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
878 {
879 if (lo == 0 || hi == 0)
880 return 1;
881 *lo = __le32_to_cpu((unsigned)n);
882 *hi = __le32_to_cpu((unsigned)(n >> 32));
883 return 0;
884 }
885
886 static unsigned long long join_u32(__u32 lo, __u32 hi)
887 {
888 return (unsigned long long)__le32_to_cpu(lo) |
889 (((unsigned long long)__le32_to_cpu(hi)) << 32);
890 }
891
892 static unsigned long long total_blocks(struct imsm_disk *disk)
893 {
894 if (disk == NULL)
895 return 0;
896 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
897 }
898
899 static unsigned long long pba_of_lba0(struct imsm_map *map)
900 {
901 if (map == NULL)
902 return 0;
903 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
904 }
905
906 static unsigned long long blocks_per_member(struct imsm_map *map)
907 {
908 if (map == NULL)
909 return 0;
910 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
911 }
912
913 #ifndef MDASSEMBLE
914 static unsigned long long num_data_stripes(struct imsm_map *map)
915 {
916 if (map == NULL)
917 return 0;
918 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
919 }
920
921 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
922 {
923 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
924 }
925 #endif
926
927 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
928 {
929 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
930 }
931
932 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
933 {
934 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
935 }
936
937 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
938 {
939 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
940 }
941
942 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
943 {
944 /* find a list of used extents on the given physical device */
945 struct extent *rv, *e;
946 int i;
947 int memberships = count_memberships(dl, super);
948 __u32 reservation;
949
950 /* trim the reserved area for spares, so they can join any array
951 * regardless of whether the OROM has assigned sectors from the
952 * IMSM_RESERVED_SECTORS region
953 */
954 if (dl->index == -1)
955 reservation = imsm_min_reserved_sectors(super);
956 else
957 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
958
959 rv = xcalloc(sizeof(struct extent), (memberships + 1));
960 e = rv;
961
962 for (i = 0; i < super->anchor->num_raid_devs; i++) {
963 struct imsm_dev *dev = get_imsm_dev(super, i);
964 struct imsm_map *map = get_imsm_map(dev, MAP_0);
965
966 if (get_imsm_disk_slot(map, dl->index) >= 0) {
967 e->start = pba_of_lba0(map);
968 e->size = blocks_per_member(map);
969 e++;
970 }
971 }
972 qsort(rv, memberships, sizeof(*rv), cmp_extent);
973
974 /* determine the start of the metadata
975 * when no raid devices are defined use the default
976 * ...otherwise allow the metadata to truncate the value
977 * as is the case with older versions of imsm
978 */
979 if (memberships) {
980 struct extent *last = &rv[memberships - 1];
981 unsigned long long remainder;
982
983 remainder = total_blocks(&dl->disk) - (last->start + last->size);
984 /* round down to 1k block to satisfy precision of the kernel
985 * 'size' interface
986 */
987 remainder &= ~1UL;
988 /* make sure remainder is still sane */
989 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
990 remainder = ROUND_UP(super->len, 512) >> 9;
991 if (reservation > remainder)
992 reservation = remainder;
993 }
994 e->start = total_blocks(&dl->disk) - reservation;
995 e->size = 0;
996 return rv;
997 }
998
999 /* try to determine how much space is reserved for metadata from
1000 * the last get_extents() entry, otherwise fallback to the
1001 * default
1002 */
1003 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1004 {
1005 struct extent *e;
1006 int i;
1007 __u32 rv;
1008
1009 /* for spares just return a minimal reservation which will grow
1010 * once the spare is picked up by an array
1011 */
1012 if (dl->index == -1)
1013 return MPB_SECTOR_CNT;
1014
1015 e = get_extents(super, dl);
1016 if (!e)
1017 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1018
1019 /* scroll to last entry */
1020 for (i = 0; e[i].size; i++)
1021 continue;
1022
1023 rv = total_blocks(&dl->disk) - e[i].start;
1024
1025 free(e);
1026
1027 return rv;
1028 }
1029
1030 static int is_spare(struct imsm_disk *disk)
1031 {
1032 return (disk->status & SPARE_DISK) == SPARE_DISK;
1033 }
1034
1035 static int is_configured(struct imsm_disk *disk)
1036 {
1037 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1038 }
1039
1040 static int is_failed(struct imsm_disk *disk)
1041 {
1042 return (disk->status & FAILED_DISK) == FAILED_DISK;
1043 }
1044
1045 /* try to determine how much space is reserved for metadata from
1046 * the last get_extents() entry on the smallest active disk,
1047 * otherwise fallback to the default
1048 */
1049 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1050 {
1051 struct extent *e;
1052 int i;
1053 unsigned long long min_active;
1054 __u32 remainder;
1055 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1056 struct dl *dl, *dl_min = NULL;
1057
1058 if (!super)
1059 return rv;
1060
1061 min_active = 0;
1062 for (dl = super->disks; dl; dl = dl->next) {
1063 if (dl->index < 0)
1064 continue;
1065 unsigned long long blocks = total_blocks(&dl->disk);
1066 if (blocks < min_active || min_active == 0) {
1067 dl_min = dl;
1068 min_active = blocks;
1069 }
1070 }
1071 if (!dl_min)
1072 return rv;
1073
1074 /* find last lba used by subarrays on the smallest active disk */
1075 e = get_extents(super, dl_min);
1076 if (!e)
1077 return rv;
1078 for (i = 0; e[i].size; i++)
1079 continue;
1080
1081 remainder = min_active - e[i].start;
1082 free(e);
1083
1084 /* to give priority to recovery we should not require full
1085 IMSM_RESERVED_SECTORS from the spare */
1086 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1087
1088 /* if real reservation is smaller use that value */
1089 return (remainder < rv) ? remainder : rv;
1090 }
1091
1092 /* Return minimum size of a spare that can be used in this array*/
1093 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1094 {
1095 struct intel_super *super = st->sb;
1096 struct dl *dl;
1097 struct extent *e;
1098 int i;
1099 unsigned long long rv = 0;
1100
1101 if (!super)
1102 return rv;
1103 /* find first active disk in array */
1104 dl = super->disks;
1105 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1106 dl = dl->next;
1107 if (!dl)
1108 return rv;
1109 /* find last lba used by subarrays */
1110 e = get_extents(super, dl);
1111 if (!e)
1112 return rv;
1113 for (i = 0; e[i].size; i++)
1114 continue;
1115 if (i > 0)
1116 rv = e[i-1].start + e[i-1].size;
1117 free(e);
1118
1119 /* add the amount of space needed for metadata */
1120 rv = rv + imsm_min_reserved_sectors(super);
1121
1122 return rv * 512;
1123 }
1124
1125 static int is_gen_migration(struct imsm_dev *dev);
1126
1127 #ifndef MDASSEMBLE
1128 static __u64 blocks_per_migr_unit(struct intel_super *super,
1129 struct imsm_dev *dev);
1130
1131 static void print_imsm_dev(struct intel_super *super,
1132 struct imsm_dev *dev,
1133 char *uuid,
1134 int disk_idx)
1135 {
1136 __u64 sz;
1137 int slot, i;
1138 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1139 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1140 __u32 ord;
1141
1142 printf("\n");
1143 printf("[%.16s]:\n", dev->volume);
1144 printf(" UUID : %s\n", uuid);
1145 printf(" RAID Level : %d", get_imsm_raid_level(map));
1146 if (map2)
1147 printf(" <-- %d", get_imsm_raid_level(map2));
1148 printf("\n");
1149 printf(" Members : %d", map->num_members);
1150 if (map2)
1151 printf(" <-- %d", map2->num_members);
1152 printf("\n");
1153 printf(" Slots : [");
1154 for (i = 0; i < map->num_members; i++) {
1155 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1156 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1157 }
1158 printf("]");
1159 if (map2) {
1160 printf(" <-- [");
1161 for (i = 0; i < map2->num_members; i++) {
1162 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1163 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1164 }
1165 printf("]");
1166 }
1167 printf("\n");
1168 printf(" Failed disk : ");
1169 if (map->failed_disk_num == 0xff)
1170 printf("none");
1171 else
1172 printf("%i", map->failed_disk_num);
1173 printf("\n");
1174 slot = get_imsm_disk_slot(map, disk_idx);
1175 if (slot >= 0) {
1176 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1177 printf(" This Slot : %d%s\n", slot,
1178 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1179 } else
1180 printf(" This Slot : ?\n");
1181 sz = __le32_to_cpu(dev->size_high);
1182 sz <<= 32;
1183 sz += __le32_to_cpu(dev->size_low);
1184 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1185 human_size(sz * 512));
1186 sz = blocks_per_member(map);
1187 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1188 human_size(sz * 512));
1189 printf(" Sector Offset : %llu\n",
1190 pba_of_lba0(map));
1191 printf(" Num Stripes : %llu\n",
1192 num_data_stripes(map));
1193 printf(" Chunk Size : %u KiB",
1194 __le16_to_cpu(map->blocks_per_strip) / 2);
1195 if (map2)
1196 printf(" <-- %u KiB",
1197 __le16_to_cpu(map2->blocks_per_strip) / 2);
1198 printf("\n");
1199 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1200 printf(" Migrate State : ");
1201 if (dev->vol.migr_state) {
1202 if (migr_type(dev) == MIGR_INIT)
1203 printf("initialize\n");
1204 else if (migr_type(dev) == MIGR_REBUILD)
1205 printf("rebuild\n");
1206 else if (migr_type(dev) == MIGR_VERIFY)
1207 printf("check\n");
1208 else if (migr_type(dev) == MIGR_GEN_MIGR)
1209 printf("general migration\n");
1210 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1211 printf("state change\n");
1212 else if (migr_type(dev) == MIGR_REPAIR)
1213 printf("repair\n");
1214 else
1215 printf("<unknown:%d>\n", migr_type(dev));
1216 } else
1217 printf("idle\n");
1218 printf(" Map State : %s", map_state_str[map->map_state]);
1219 if (dev->vol.migr_state) {
1220 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1221
1222 printf(" <-- %s", map_state_str[map->map_state]);
1223 printf("\n Checkpoint : %u ",
1224 __le32_to_cpu(dev->vol.curr_migr_unit));
1225 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
1226 printf("(N/A)");
1227 else
1228 printf("(%llu)", (unsigned long long)
1229 blocks_per_migr_unit(super, dev));
1230 }
1231 printf("\n");
1232 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1233 }
1234
1235 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1236 {
1237 char str[MAX_RAID_SERIAL_LEN + 1];
1238 __u64 sz;
1239
1240 if (index < -1 || !disk)
1241 return;
1242
1243 printf("\n");
1244 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1245 if (index >= 0)
1246 printf(" Disk%02d Serial : %s\n", index, str);
1247 else
1248 printf(" Disk Serial : %s\n", str);
1249 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1250 is_configured(disk) ? " active" : "",
1251 is_failed(disk) ? " failed" : "");
1252 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1253 sz = total_blocks(disk) - reserved;
1254 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1255 human_size(sz * 512));
1256 }
1257
1258 void examine_migr_rec_imsm(struct intel_super *super)
1259 {
1260 struct migr_record *migr_rec = super->migr_rec;
1261 struct imsm_super *mpb = super->anchor;
1262 int i;
1263
1264 for (i = 0; i < mpb->num_raid_devs; i++) {
1265 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1266 struct imsm_map *map;
1267 int slot = -1;
1268
1269 if (is_gen_migration(dev) == 0)
1270 continue;
1271
1272 printf("\nMigration Record Information:");
1273
1274 /* first map under migration */
1275 map = get_imsm_map(dev, MAP_0);
1276 if (map)
1277 slot = get_imsm_disk_slot(map, super->disks->index);
1278 if ((map == NULL) || (slot > 1) || (slot < 0)) {
1279 printf(" Empty\n ");
1280 printf("Examine one of first two disks in array\n");
1281 break;
1282 }
1283 printf("\n Status : ");
1284 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1285 printf("Normal\n");
1286 else
1287 printf("Contains Data\n");
1288 printf(" Current Unit : %u\n",
1289 __le32_to_cpu(migr_rec->curr_migr_unit));
1290 printf(" Family : %u\n",
1291 __le32_to_cpu(migr_rec->family_num));
1292 printf(" Ascending : %u\n",
1293 __le32_to_cpu(migr_rec->ascending_migr));
1294 printf(" Blocks Per Unit : %u\n",
1295 __le32_to_cpu(migr_rec->blocks_per_unit));
1296 printf(" Dest. Depth Per Unit : %u\n",
1297 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1298 printf(" Checkpoint Area pba : %u\n",
1299 __le32_to_cpu(migr_rec->ckpt_area_pba));
1300 printf(" First member lba : %u\n",
1301 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1302 printf(" Total Number of Units : %u\n",
1303 __le32_to_cpu(migr_rec->num_migr_units));
1304 printf(" Size of volume : %u\n",
1305 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1306 printf(" Expansion space for LBA64 : %u\n",
1307 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1308 printf(" Record was read from : %u\n",
1309 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1310
1311 break;
1312 }
1313 }
1314 #endif /* MDASSEMBLE */
1315 /*******************************************************************************
1316 * function: imsm_check_attributes
1317 * Description: Function checks if features represented by attributes flags
1318 * are supported by mdadm.
1319 * Parameters:
1320 * attributes - Attributes read from metadata
1321 * Returns:
1322 * 0 - passed attributes contains unsupported features flags
1323 * 1 - all features are supported
1324 ******************************************************************************/
1325 static int imsm_check_attributes(__u32 attributes)
1326 {
1327 int ret_val = 1;
1328 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1329
1330 not_supported &= ~MPB_ATTRIB_IGNORED;
1331
1332 not_supported &= attributes;
1333 if (not_supported) {
1334 pr_err("(IMSM): Unsupported attributes : %x\n",
1335 (unsigned)__le32_to_cpu(not_supported));
1336 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1337 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1338 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1339 }
1340 if (not_supported & MPB_ATTRIB_2TB) {
1341 dprintf("\t\tMPB_ATTRIB_2TB\n");
1342 not_supported ^= MPB_ATTRIB_2TB;
1343 }
1344 if (not_supported & MPB_ATTRIB_RAID0) {
1345 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1346 not_supported ^= MPB_ATTRIB_RAID0;
1347 }
1348 if (not_supported & MPB_ATTRIB_RAID1) {
1349 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1350 not_supported ^= MPB_ATTRIB_RAID1;
1351 }
1352 if (not_supported & MPB_ATTRIB_RAID10) {
1353 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1354 not_supported ^= MPB_ATTRIB_RAID10;
1355 }
1356 if (not_supported & MPB_ATTRIB_RAID1E) {
1357 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1358 not_supported ^= MPB_ATTRIB_RAID1E;
1359 }
1360 if (not_supported & MPB_ATTRIB_RAID5) {
1361 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1362 not_supported ^= MPB_ATTRIB_RAID5;
1363 }
1364 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1365 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1366 not_supported ^= MPB_ATTRIB_RAIDCNG;
1367 }
1368 if (not_supported & MPB_ATTRIB_BBM) {
1369 dprintf("\t\tMPB_ATTRIB_BBM\n");
1370 not_supported ^= MPB_ATTRIB_BBM;
1371 }
1372 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1373 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1374 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1375 }
1376 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1377 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1378 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1379 }
1380 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1381 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1382 not_supported ^= MPB_ATTRIB_2TB_DISK;
1383 }
1384 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1385 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1386 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1387 }
1388 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1389 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1390 not_supported ^= MPB_ATTRIB_NEVER_USE;
1391 }
1392
1393 if (not_supported)
1394 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
1395
1396 ret_val = 0;
1397 }
1398
1399 return ret_val;
1400 }
1401
1402 #ifndef MDASSEMBLE
1403 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1404
1405 static void examine_super_imsm(struct supertype *st, char *homehost)
1406 {
1407 struct intel_super *super = st->sb;
1408 struct imsm_super *mpb = super->anchor;
1409 char str[MAX_SIGNATURE_LENGTH];
1410 int i;
1411 struct mdinfo info;
1412 char nbuf[64];
1413 __u32 sum;
1414 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1415 struct dl *dl;
1416
1417 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1418 printf(" Magic : %s\n", str);
1419 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1420 printf(" Version : %s\n", get_imsm_version(mpb));
1421 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1422 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1423 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1424 printf(" Attributes : ");
1425 if (imsm_check_attributes(mpb->attributes))
1426 printf("All supported\n");
1427 else
1428 printf("not supported\n");
1429 getinfo_super_imsm(st, &info, NULL);
1430 fname_from_uuid(st, &info, nbuf, ':');
1431 printf(" UUID : %s\n", nbuf + 5);
1432 sum = __le32_to_cpu(mpb->check_sum);
1433 printf(" Checksum : %08x %s\n", sum,
1434 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1435 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1436 printf(" Disks : %d\n", mpb->num_disks);
1437 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1438 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1439 if (super->bbm_log) {
1440 struct bbm_log *log = super->bbm_log;
1441
1442 printf("\n");
1443 printf("Bad Block Management Log:\n");
1444 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1445 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1446 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1447 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1448 printf(" First Spare : %llx\n",
1449 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1450 }
1451 for (i = 0; i < mpb->num_raid_devs; i++) {
1452 struct mdinfo info;
1453 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1454
1455 super->current_vol = i;
1456 getinfo_super_imsm(st, &info, NULL);
1457 fname_from_uuid(st, &info, nbuf, ':');
1458 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1459 }
1460 for (i = 0; i < mpb->num_disks; i++) {
1461 if (i == super->disks->index)
1462 continue;
1463 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1464 }
1465
1466 for (dl = super->disks; dl; dl = dl->next)
1467 if (dl->index == -1)
1468 print_imsm_disk(&dl->disk, -1, reserved);
1469
1470 examine_migr_rec_imsm(super);
1471 }
1472
1473 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1474 {
1475 /* We just write a generic IMSM ARRAY entry */
1476 struct mdinfo info;
1477 char nbuf[64];
1478 struct intel_super *super = st->sb;
1479
1480 if (!super->anchor->num_raid_devs) {
1481 printf("ARRAY metadata=imsm\n");
1482 return;
1483 }
1484
1485 getinfo_super_imsm(st, &info, NULL);
1486 fname_from_uuid(st, &info, nbuf, ':');
1487 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1488 }
1489
1490 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1491 {
1492 /* We just write a generic IMSM ARRAY entry */
1493 struct mdinfo info;
1494 char nbuf[64];
1495 char nbuf1[64];
1496 struct intel_super *super = st->sb;
1497 int i;
1498
1499 if (!super->anchor->num_raid_devs)
1500 return;
1501
1502 getinfo_super_imsm(st, &info, NULL);
1503 fname_from_uuid(st, &info, nbuf, ':');
1504 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1505 struct imsm_dev *dev = get_imsm_dev(super, i);
1506
1507 super->current_vol = i;
1508 getinfo_super_imsm(st, &info, NULL);
1509 fname_from_uuid(st, &info, nbuf1, ':');
1510 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1511 dev->volume, nbuf + 5, i, nbuf1 + 5);
1512 }
1513 }
1514
1515 static void export_examine_super_imsm(struct supertype *st)
1516 {
1517 struct intel_super *super = st->sb;
1518 struct imsm_super *mpb = super->anchor;
1519 struct mdinfo info;
1520 char nbuf[64];
1521
1522 getinfo_super_imsm(st, &info, NULL);
1523 fname_from_uuid(st, &info, nbuf, ':');
1524 printf("MD_METADATA=imsm\n");
1525 printf("MD_LEVEL=container\n");
1526 printf("MD_UUID=%s\n", nbuf+5);
1527 printf("MD_DEVICES=%u\n", mpb->num_disks);
1528 }
1529
1530 static int copy_metadata_imsm(struct supertype *st, int from, int to)
1531 {
1532 /* The second last 512byte sector of the device contains
1533 * the "struct imsm_super" metadata.
1534 * This contains mpb_size which is the size in bytes of the
1535 * extended metadata. This is located immediately before
1536 * the imsm_super.
1537 * We want to read all that, plus the last sector which
1538 * may contain a migration record, and write it all
1539 * to the target.
1540 */
1541 void *buf;
1542 unsigned long long dsize, offset;
1543 int sectors;
1544 struct imsm_super *sb;
1545 int written = 0;
1546
1547 if (posix_memalign(&buf, 4096, 4096) != 0)
1548 return 1;
1549
1550 if (!get_dev_size(from, NULL, &dsize))
1551 goto err;
1552
1553 if (lseek64(from, dsize-1024, 0) < 0)
1554 goto err;
1555 if (read(from, buf, 512) != 512)
1556 goto err;
1557 sb = buf;
1558 if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
1559 goto err;
1560
1561 sectors = mpb_sectors(sb) + 2;
1562 offset = dsize - sectors * 512;
1563 if (lseek64(from, offset, 0) < 0 ||
1564 lseek64(to, offset, 0) < 0)
1565 goto err;
1566 while (written < sectors * 512) {
1567 int n = sectors*512 - written;
1568 if (n > 4096)
1569 n = 4096;
1570 if (read(from, buf, n) != n)
1571 goto err;
1572 if (write(to, buf, n) != n)
1573 goto err;
1574 written += n;
1575 }
1576 free(buf);
1577 return 0;
1578 err:
1579 free(buf);
1580 return 1;
1581 }
1582
1583 static void detail_super_imsm(struct supertype *st, char *homehost)
1584 {
1585 struct mdinfo info;
1586 char nbuf[64];
1587
1588 getinfo_super_imsm(st, &info, NULL);
1589 fname_from_uuid(st, &info, nbuf, ':');
1590 printf("\n UUID : %s\n", nbuf + 5);
1591 }
1592
1593 static void brief_detail_super_imsm(struct supertype *st)
1594 {
1595 struct mdinfo info;
1596 char nbuf[64];
1597 getinfo_super_imsm(st, &info, NULL);
1598 fname_from_uuid(st, &info, nbuf, ':');
1599 printf(" UUID=%s", nbuf + 5);
1600 }
1601
1602 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1603 static void fd2devname(int fd, char *name);
1604
1605 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1606 {
1607 /* dump an unsorted list of devices attached to AHCI Intel storage
1608 * controller, as well as non-connected ports
1609 */
1610 int hba_len = strlen(hba_path) + 1;
1611 struct dirent *ent;
1612 DIR *dir;
1613 char *path = NULL;
1614 int err = 0;
1615 unsigned long port_mask = (1 << port_count) - 1;
1616
1617 if (port_count > (int)sizeof(port_mask) * 8) {
1618 if (verbose > 0)
1619 pr_err("port_count %d out of range\n", port_count);
1620 return 2;
1621 }
1622
1623 /* scroll through /sys/dev/block looking for devices attached to
1624 * this hba
1625 */
1626 dir = opendir("/sys/dev/block");
1627 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1628 int fd;
1629 char model[64];
1630 char vendor[64];
1631 char buf[1024];
1632 int major, minor;
1633 char *device;
1634 char *c;
1635 int port;
1636 int type;
1637
1638 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1639 continue;
1640 path = devt_to_devpath(makedev(major, minor));
1641 if (!path)
1642 continue;
1643 if (!path_attached_to_hba(path, hba_path)) {
1644 free(path);
1645 path = NULL;
1646 continue;
1647 }
1648
1649 /* retrieve the scsi device type */
1650 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1651 if (verbose > 0)
1652 pr_err("failed to allocate 'device'\n");
1653 err = 2;
1654 break;
1655 }
1656 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1657 if (load_sys(device, buf) != 0) {
1658 if (verbose > 0)
1659 pr_err("failed to read device type for %s\n",
1660 path);
1661 err = 2;
1662 free(device);
1663 break;
1664 }
1665 type = strtoul(buf, NULL, 10);
1666
1667 /* if it's not a disk print the vendor and model */
1668 if (!(type == 0 || type == 7 || type == 14)) {
1669 vendor[0] = '\0';
1670 model[0] = '\0';
1671 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1672 if (load_sys(device, buf) == 0) {
1673 strncpy(vendor, buf, sizeof(vendor));
1674 vendor[sizeof(vendor) - 1] = '\0';
1675 c = (char *) &vendor[sizeof(vendor) - 1];
1676 while (isspace(*c) || *c == '\0')
1677 *c-- = '\0';
1678
1679 }
1680 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1681 if (load_sys(device, buf) == 0) {
1682 strncpy(model, buf, sizeof(model));
1683 model[sizeof(model) - 1] = '\0';
1684 c = (char *) &model[sizeof(model) - 1];
1685 while (isspace(*c) || *c == '\0')
1686 *c-- = '\0';
1687 }
1688
1689 if (vendor[0] && model[0])
1690 sprintf(buf, "%.64s %.64s", vendor, model);
1691 else
1692 switch (type) { /* numbers from hald/linux/device.c */
1693 case 1: sprintf(buf, "tape"); break;
1694 case 2: sprintf(buf, "printer"); break;
1695 case 3: sprintf(buf, "processor"); break;
1696 case 4:
1697 case 5: sprintf(buf, "cdrom"); break;
1698 case 6: sprintf(buf, "scanner"); break;
1699 case 8: sprintf(buf, "media_changer"); break;
1700 case 9: sprintf(buf, "comm"); break;
1701 case 12: sprintf(buf, "raid"); break;
1702 default: sprintf(buf, "unknown");
1703 }
1704 } else
1705 buf[0] = '\0';
1706 free(device);
1707
1708 /* chop device path to 'host%d' and calculate the port number */
1709 c = strchr(&path[hba_len], '/');
1710 if (!c) {
1711 if (verbose > 0)
1712 pr_err("%s - invalid path name\n", path + hba_len);
1713 err = 2;
1714 break;
1715 }
1716 *c = '\0';
1717 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
1718 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
1719 port -= host_base;
1720 else {
1721 if (verbose > 0) {
1722 *c = '/'; /* repair the full string */
1723 pr_err("failed to determine port number for %s\n",
1724 path);
1725 }
1726 err = 2;
1727 break;
1728 }
1729
1730 /* mark this port as used */
1731 port_mask &= ~(1 << port);
1732
1733 /* print out the device information */
1734 if (buf[0]) {
1735 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1736 continue;
1737 }
1738
1739 fd = dev_open(ent->d_name, O_RDONLY);
1740 if (fd < 0)
1741 printf(" Port%d : - disk info unavailable -\n", port);
1742 else {
1743 fd2devname(fd, buf);
1744 printf(" Port%d : %s", port, buf);
1745 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1746 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1747 else
1748 printf(" ()\n");
1749 close(fd);
1750 }
1751 free(path);
1752 path = NULL;
1753 }
1754 if (path)
1755 free(path);
1756 if (dir)
1757 closedir(dir);
1758 if (err == 0) {
1759 int i;
1760
1761 for (i = 0; i < port_count; i++)
1762 if (port_mask & (1 << i))
1763 printf(" Port%d : - no device attached -\n", i);
1764 }
1765
1766 return err;
1767 }
1768
1769 static int print_vmd_attached_devs(struct sys_dev *hba)
1770 {
1771 struct dirent *ent;
1772 DIR *dir;
1773 char path[292];
1774 char link[256];
1775 char *c, *rp;
1776
1777 if (hba->type != SYS_DEV_VMD)
1778 return 1;
1779
1780 /* scroll through /sys/dev/block looking for devices attached to
1781 * this hba
1782 */
1783 dir = opendir("/sys/bus/pci/drivers/nvme");
1784 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1785 int n;
1786
1787 /* is 'ent' a device? check that the 'subsystem' link exists and
1788 * that its target matches 'bus'
1789 */
1790 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
1791 ent->d_name);
1792 n = readlink(path, link, sizeof(link));
1793 if (n < 0 || n >= (int)sizeof(link))
1794 continue;
1795 link[n] = '\0';
1796 c = strrchr(link, '/');
1797 if (!c)
1798 continue;
1799 if (strncmp("pci", c+1, strlen("pci")) != 0)
1800 continue;
1801
1802 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
1803 /* if not a intel NVMe - skip it*/
1804 if (devpath_to_vendor(path) != 0x8086)
1805 continue;
1806
1807 rp = realpath(path, NULL);
1808 if (!rp)
1809 continue;
1810
1811 if (path_attached_to_hba(rp, hba->path)) {
1812 printf(" NVMe under VMD : %s\n", rp);
1813 }
1814 free(rp);
1815 }
1816
1817 return 0;
1818 }
1819
1820 static void print_found_intel_controllers(struct sys_dev *elem)
1821 {
1822 for (; elem; elem = elem->next) {
1823 pr_err("found Intel(R) ");
1824 if (elem->type == SYS_DEV_SATA)
1825 fprintf(stderr, "SATA ");
1826 else if (elem->type == SYS_DEV_SAS)
1827 fprintf(stderr, "SAS ");
1828 else if (elem->type == SYS_DEV_NVME)
1829 fprintf(stderr, "NVMe ");
1830
1831 if (elem->type == SYS_DEV_VMD)
1832 fprintf(stderr, "VMD domain");
1833 else
1834 fprintf(stderr, "RAID controller");
1835
1836 if (elem->pci_id)
1837 fprintf(stderr, " at %s", elem->pci_id);
1838 fprintf(stderr, ".\n");
1839 }
1840 fflush(stderr);
1841 }
1842
1843 static int ahci_get_port_count(const char *hba_path, int *port_count)
1844 {
1845 struct dirent *ent;
1846 DIR *dir;
1847 int host_base = -1;
1848
1849 *port_count = 0;
1850 if ((dir = opendir(hba_path)) == NULL)
1851 return -1;
1852
1853 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1854 int host;
1855
1856 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
1857 ((sscanf(ent->d_name, "host%d", &host) != 1)))
1858 continue;
1859 if (*port_count == 0)
1860 host_base = host;
1861 else if (host < host_base)
1862 host_base = host;
1863
1864 if (host + 1 > *port_count + host_base)
1865 *port_count = host + 1 - host_base;
1866 }
1867 closedir(dir);
1868 return host_base;
1869 }
1870
1871 static void print_imsm_capability(const struct imsm_orom *orom)
1872 {
1873 printf(" Platform : Intel(R) ");
1874 if (orom->capabilities == 0 && orom->driver_features == 0)
1875 printf("Matrix Storage Manager\n");
1876 else
1877 printf("Rapid Storage Technology%s\n",
1878 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
1879 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
1880 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
1881 orom->minor_ver, orom->hotfix_ver, orom->build);
1882 printf(" RAID Levels :%s%s%s%s%s\n",
1883 imsm_orom_has_raid0(orom) ? " raid0" : "",
1884 imsm_orom_has_raid1(orom) ? " raid1" : "",
1885 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1886 imsm_orom_has_raid10(orom) ? " raid10" : "",
1887 imsm_orom_has_raid5(orom) ? " raid5" : "");
1888 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1889 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1890 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1891 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1892 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1893 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1894 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1895 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1896 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1897 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1898 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1899 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1900 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1901 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1902 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1903 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1904 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1905 printf(" 2TB volumes :%s supported\n",
1906 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
1907 printf(" 2TB disks :%s supported\n",
1908 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
1909 printf(" Max Disks : %d\n", orom->tds);
1910 printf(" Max Volumes : %d per array, %d per %s\n",
1911 orom->vpa, orom->vphba,
1912 imsm_orom_is_nvme(orom) ? "platform" : "controller");
1913 return;
1914 }
1915
1916 static void print_imsm_capability_export(const struct imsm_orom *orom)
1917 {
1918 printf("MD_FIRMWARE_TYPE=imsm\n");
1919 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
1920 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1921 orom->hotfix_ver, orom->build);
1922 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
1923 imsm_orom_has_raid0(orom) ? "raid0 " : "",
1924 imsm_orom_has_raid1(orom) ? "raid1 " : "",
1925 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
1926 imsm_orom_has_raid5(orom) ? "raid10 " : "",
1927 imsm_orom_has_raid10(orom) ? "raid5 " : "");
1928 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1929 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
1930 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
1931 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
1932 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
1933 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
1934 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
1935 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
1936 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
1937 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
1938 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
1939 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
1940 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
1941 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
1942 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
1943 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
1944 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
1945 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
1946 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
1947 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
1948 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
1949 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
1950 }
1951
1952 static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
1953 {
1954 /* There are two components to imsm platform support, the ahci SATA
1955 * controller and the option-rom. To find the SATA controller we
1956 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1957 * controller with the Intel vendor id is present. This approach
1958 * allows mdadm to leverage the kernel's ahci detection logic, with the
1959 * caveat that if ahci.ko is not loaded mdadm will not be able to
1960 * detect platform raid capabilities. The option-rom resides in a
1961 * platform "Adapter ROM". We scan for its signature to retrieve the
1962 * platform capabilities. If raid support is disabled in the BIOS the
1963 * option-rom capability structure will not be available.
1964 */
1965 struct sys_dev *list, *hba;
1966 int host_base = 0;
1967 int port_count = 0;
1968 int result=1;
1969
1970 if (enumerate_only) {
1971 if (check_env("IMSM_NO_PLATFORM"))
1972 return 0;
1973 list = find_intel_devices();
1974 if (!list)
1975 return 2;
1976 for (hba = list; hba; hba = hba->next) {
1977 if (find_imsm_capability(hba)) {
1978 result = 0;
1979 break;
1980 }
1981 else
1982 result = 2;
1983 }
1984 return result;
1985 }
1986
1987 list = find_intel_devices();
1988 if (!list) {
1989 if (verbose > 0)
1990 pr_err("no active Intel(R) RAID controller found.\n");
1991 return 2;
1992 } else if (verbose > 0)
1993 print_found_intel_controllers(list);
1994
1995 for (hba = list; hba; hba = hba->next) {
1996 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
1997 continue;
1998 if (!find_imsm_capability(hba)) {
1999 char buf[PATH_MAX];
2000 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
2001 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2002 get_sys_dev_type(hba->type));
2003 continue;
2004 }
2005 result = 0;
2006 }
2007
2008 if (controller_path && result == 1) {
2009 pr_err("no active Intel(R) RAID controller found under %s\n",
2010 controller_path);
2011 return result;
2012 }
2013
2014 const struct orom_entry *entry;
2015
2016 for (entry = orom_entries; entry; entry = entry->next) {
2017 if (entry->type == SYS_DEV_VMD) {
2018 for (hba = list; hba; hba = hba->next) {
2019 if (hba->type == SYS_DEV_VMD) {
2020 char buf[PATH_MAX];
2021 print_imsm_capability(&entry->orom);
2022 printf(" I/O Controller : %s (%s)\n",
2023 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
2024 print_vmd_attached_devs(hba);
2025 printf("\n");
2026 }
2027 }
2028 continue;
2029 }
2030
2031 print_imsm_capability(&entry->orom);
2032 if (entry->type == SYS_DEV_NVME) {
2033 for (hba = list; hba; hba = hba->next) {
2034 if (hba->type == SYS_DEV_NVME)
2035 printf(" NVMe Device : %s\n", hba->path);
2036 }
2037 printf("\n");
2038 continue;
2039 }
2040
2041 struct devid_list *devid;
2042 for (devid = entry->devid_list; devid; devid = devid->next) {
2043 hba = device_by_id(devid->devid);
2044 if (!hba)
2045 continue;
2046
2047 printf(" I/O Controller : %s (%s)\n",
2048 hba->path, get_sys_dev_type(hba->type));
2049 if (hba->type == SYS_DEV_SATA) {
2050 host_base = ahci_get_port_count(hba->path, &port_count);
2051 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2052 if (verbose > 0)
2053 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
2054 result |= 2;
2055 }
2056 }
2057 }
2058 printf("\n");
2059 }
2060
2061 return result;
2062 }
2063
2064 static int export_detail_platform_imsm(int verbose, char *controller_path)
2065 {
2066 struct sys_dev *list, *hba;
2067 int result=1;
2068
2069 list = find_intel_devices();
2070 if (!list) {
2071 if (verbose > 0)
2072 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2073 result = 2;
2074 return result;
2075 }
2076
2077 for (hba = list; hba; hba = hba->next) {
2078 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2079 continue;
2080 if (!find_imsm_capability(hba) && verbose > 0) {
2081 char buf[PATH_MAX];
2082 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2083 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2084 }
2085 else
2086 result = 0;
2087 }
2088
2089 const struct orom_entry *entry;
2090
2091 for (entry = orom_entries; entry; entry = entry->next) {
2092 if (entry->type == SYS_DEV_VMD) {
2093 for (hba = list; hba; hba = hba->next)
2094 print_imsm_capability_export(&entry->orom);
2095 continue;
2096 }
2097 print_imsm_capability_export(&entry->orom);
2098 }
2099
2100 return result;
2101 }
2102
2103 #endif
2104
2105 static int match_home_imsm(struct supertype *st, char *homehost)
2106 {
2107 /* the imsm metadata format does not specify any host
2108 * identification information. We return -1 since we can never
2109 * confirm nor deny whether a given array is "meant" for this
2110 * host. We rely on compare_super and the 'family_num' fields to
2111 * exclude member disks that do not belong, and we rely on
2112 * mdadm.conf to specify the arrays that should be assembled.
2113 * Auto-assembly may still pick up "foreign" arrays.
2114 */
2115
2116 return -1;
2117 }
2118
2119 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2120 {
2121 /* The uuid returned here is used for:
2122 * uuid to put into bitmap file (Create, Grow)
2123 * uuid for backup header when saving critical section (Grow)
2124 * comparing uuids when re-adding a device into an array
2125 * In these cases the uuid required is that of the data-array,
2126 * not the device-set.
2127 * uuid to recognise same set when adding a missing device back
2128 * to an array. This is a uuid for the device-set.
2129 *
2130 * For each of these we can make do with a truncated
2131 * or hashed uuid rather than the original, as long as
2132 * everyone agrees.
2133 * In each case the uuid required is that of the data-array,
2134 * not the device-set.
2135 */
2136 /* imsm does not track uuid's so we synthesis one using sha1 on
2137 * - The signature (Which is constant for all imsm array, but no matter)
2138 * - the orig_family_num of the container
2139 * - the index number of the volume
2140 * - the 'serial' number of the volume.
2141 * Hopefully these are all constant.
2142 */
2143 struct intel_super *super = st->sb;
2144
2145 char buf[20];
2146 struct sha1_ctx ctx;
2147 struct imsm_dev *dev = NULL;
2148 __u32 family_num;
2149
2150 /* some mdadm versions failed to set ->orig_family_num, in which
2151 * case fall back to ->family_num. orig_family_num will be
2152 * fixed up with the first metadata update.
2153 */
2154 family_num = super->anchor->orig_family_num;
2155 if (family_num == 0)
2156 family_num = super->anchor->family_num;
2157 sha1_init_ctx(&ctx);
2158 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
2159 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
2160 if (super->current_vol >= 0)
2161 dev = get_imsm_dev(super, super->current_vol);
2162 if (dev) {
2163 __u32 vol = super->current_vol;
2164 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2165 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2166 }
2167 sha1_finish_ctx(&ctx, buf);
2168 memcpy(uuid, buf, 4*4);
2169 }
2170
2171 #if 0
2172 static void
2173 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
2174 {
2175 __u8 *v = get_imsm_version(mpb);
2176 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2177 char major[] = { 0, 0, 0 };
2178 char minor[] = { 0 ,0, 0 };
2179 char patch[] = { 0, 0, 0 };
2180 char *ver_parse[] = { major, minor, patch };
2181 int i, j;
2182
2183 i = j = 0;
2184 while (*v != '\0' && v < end) {
2185 if (*v != '.' && j < 2)
2186 ver_parse[i][j++] = *v;
2187 else {
2188 i++;
2189 j = 0;
2190 }
2191 v++;
2192 }
2193
2194 *m = strtol(minor, NULL, 0);
2195 *p = strtol(patch, NULL, 0);
2196 }
2197 #endif
2198
2199 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2200 {
2201 /* migr_strip_size when repairing or initializing parity */
2202 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2203 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2204
2205 switch (get_imsm_raid_level(map)) {
2206 case 5:
2207 case 10:
2208 return chunk;
2209 default:
2210 return 128*1024 >> 9;
2211 }
2212 }
2213
2214 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2215 {
2216 /* migr_strip_size when rebuilding a degraded disk, no idea why
2217 * this is different than migr_strip_size_resync(), but it's good
2218 * to be compatible
2219 */
2220 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2221 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2222
2223 switch (get_imsm_raid_level(map)) {
2224 case 1:
2225 case 10:
2226 if (map->num_members % map->num_domains == 0)
2227 return 128*1024 >> 9;
2228 else
2229 return chunk;
2230 case 5:
2231 return max((__u32) 64*1024 >> 9, chunk);
2232 default:
2233 return 128*1024 >> 9;
2234 }
2235 }
2236
2237 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2238 {
2239 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2240 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2241 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2242 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2243
2244 return max((__u32) 1, hi_chunk / lo_chunk);
2245 }
2246
2247 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2248 {
2249 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2250 int level = get_imsm_raid_level(lo);
2251
2252 if (level == 1 || level == 10) {
2253 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2254
2255 return hi->num_domains;
2256 } else
2257 return num_stripes_per_unit_resync(dev);
2258 }
2259
2260 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
2261 {
2262 /* named 'imsm_' because raid0, raid1 and raid10
2263 * counter-intuitively have the same number of data disks
2264 */
2265 struct imsm_map *map = get_imsm_map(dev, second_map);
2266
2267 switch (get_imsm_raid_level(map)) {
2268 case 0:
2269 return map->num_members;
2270 break;
2271 case 1:
2272 case 10:
2273 return map->num_members/2;
2274 case 5:
2275 return map->num_members - 1;
2276 default:
2277 dprintf("unsupported raid level\n");
2278 return 0;
2279 }
2280 }
2281
2282 static __u32 parity_segment_depth(struct imsm_dev *dev)
2283 {
2284 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2285 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2286
2287 switch(get_imsm_raid_level(map)) {
2288 case 1:
2289 case 10:
2290 return chunk * map->num_domains;
2291 case 5:
2292 return chunk * map->num_members;
2293 default:
2294 return chunk;
2295 }
2296 }
2297
2298 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2299 {
2300 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2301 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2302 __u32 strip = block / chunk;
2303
2304 switch (get_imsm_raid_level(map)) {
2305 case 1:
2306 case 10: {
2307 __u32 vol_strip = (strip * map->num_domains) + 1;
2308 __u32 vol_stripe = vol_strip / map->num_members;
2309
2310 return vol_stripe * chunk + block % chunk;
2311 } case 5: {
2312 __u32 stripe = strip / (map->num_members - 1);
2313
2314 return stripe * chunk + block % chunk;
2315 }
2316 default:
2317 return 0;
2318 }
2319 }
2320
2321 static __u64 blocks_per_migr_unit(struct intel_super *super,
2322 struct imsm_dev *dev)
2323 {
2324 /* calculate the conversion factor between per member 'blocks'
2325 * (md/{resync,rebuild}_start) and imsm migration units, return
2326 * 0 for the 'not migrating' and 'unsupported migration' cases
2327 */
2328 if (!dev->vol.migr_state)
2329 return 0;
2330
2331 switch (migr_type(dev)) {
2332 case MIGR_GEN_MIGR: {
2333 struct migr_record *migr_rec = super->migr_rec;
2334 return __le32_to_cpu(migr_rec->blocks_per_unit);
2335 }
2336 case MIGR_VERIFY:
2337 case MIGR_REPAIR:
2338 case MIGR_INIT: {
2339 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2340 __u32 stripes_per_unit;
2341 __u32 blocks_per_unit;
2342 __u32 parity_depth;
2343 __u32 migr_chunk;
2344 __u32 block_map;
2345 __u32 block_rel;
2346 __u32 segment;
2347 __u32 stripe;
2348 __u8 disks;
2349
2350 /* yes, this is really the translation of migr_units to
2351 * per-member blocks in the 'resync' case
2352 */
2353 stripes_per_unit = num_stripes_per_unit_resync(dev);
2354 migr_chunk = migr_strip_blocks_resync(dev);
2355 disks = imsm_num_data_members(dev, MAP_0);
2356 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2357 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2358 segment = blocks_per_unit / stripe;
2359 block_rel = blocks_per_unit - segment * stripe;
2360 parity_depth = parity_segment_depth(dev);
2361 block_map = map_migr_block(dev, block_rel);
2362 return block_map + parity_depth * segment;
2363 }
2364 case MIGR_REBUILD: {
2365 __u32 stripes_per_unit;
2366 __u32 migr_chunk;
2367
2368 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2369 migr_chunk = migr_strip_blocks_rebuild(dev);
2370 return migr_chunk * stripes_per_unit;
2371 }
2372 case MIGR_STATE_CHANGE:
2373 default:
2374 return 0;
2375 }
2376 }
2377
2378 static int imsm_level_to_layout(int level)
2379 {
2380 switch (level) {
2381 case 0:
2382 case 1:
2383 return 0;
2384 case 5:
2385 case 6:
2386 return ALGORITHM_LEFT_ASYMMETRIC;
2387 case 10:
2388 return 0x102;
2389 }
2390 return UnSet;
2391 }
2392
2393 /*******************************************************************************
2394 * Function: read_imsm_migr_rec
2395 * Description: Function reads imsm migration record from last sector of disk
2396 * Parameters:
2397 * fd : disk descriptor
2398 * super : metadata info
2399 * Returns:
2400 * 0 : success,
2401 * -1 : fail
2402 ******************************************************************************/
2403 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2404 {
2405 int ret_val = -1;
2406 unsigned long long dsize;
2407
2408 get_dev_size(fd, NULL, &dsize);
2409 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2410 pr_err("Cannot seek to anchor block: %s\n",
2411 strerror(errno));
2412 goto out;
2413 }
2414 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2415 MIGR_REC_BUF_SIZE) {
2416 pr_err("Cannot read migr record block: %s\n",
2417 strerror(errno));
2418 goto out;
2419 }
2420 ret_val = 0;
2421
2422 out:
2423 return ret_val;
2424 }
2425
2426 static struct imsm_dev *imsm_get_device_during_migration(
2427 struct intel_super *super)
2428 {
2429
2430 struct intel_dev *dv;
2431
2432 for (dv = super->devlist; dv; dv = dv->next) {
2433 if (is_gen_migration(dv->dev))
2434 return dv->dev;
2435 }
2436 return NULL;
2437 }
2438
2439 /*******************************************************************************
2440 * Function: load_imsm_migr_rec
2441 * Description: Function reads imsm migration record (it is stored at the last
2442 * sector of disk)
2443 * Parameters:
2444 * super : imsm internal array info
2445 * info : general array info
2446 * Returns:
2447 * 0 : success
2448 * -1 : fail
2449 * -2 : no migration in progress
2450 ******************************************************************************/
2451 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2452 {
2453 struct mdinfo *sd;
2454 struct dl *dl = NULL;
2455 char nm[30];
2456 int retval = -1;
2457 int fd = -1;
2458 struct imsm_dev *dev;
2459 struct imsm_map *map = NULL;
2460 int slot = -1;
2461
2462 /* find map under migration */
2463 dev = imsm_get_device_during_migration(super);
2464 /* nothing to load,no migration in progress?
2465 */
2466 if (dev == NULL)
2467 return -2;
2468 map = get_imsm_map(dev, MAP_0);
2469
2470 if (info) {
2471 for (sd = info->devs ; sd ; sd = sd->next) {
2472 /* skip spare and failed disks
2473 */
2474 if (sd->disk.raid_disk < 0)
2475 continue;
2476 /* read only from one of the first two slots */
2477 if (map)
2478 slot = get_imsm_disk_slot(map,
2479 sd->disk.raid_disk);
2480 if ((map == NULL) || (slot > 1) || (slot < 0))
2481 continue;
2482
2483 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2484 fd = dev_open(nm, O_RDONLY);
2485 if (fd >= 0)
2486 break;
2487 }
2488 }
2489 if (fd < 0) {
2490 for (dl = super->disks; dl; dl = dl->next) {
2491 /* skip spare and failed disks
2492 */
2493 if (dl->index < 0)
2494 continue;
2495 /* read only from one of the first two slots */
2496 if (map)
2497 slot = get_imsm_disk_slot(map, dl->index);
2498 if ((map == NULL) || (slot > 1) || (slot < 0))
2499 continue;
2500 sprintf(nm, "%d:%d", dl->major, dl->minor);
2501 fd = dev_open(nm, O_RDONLY);
2502 if (fd >= 0)
2503 break;
2504 }
2505 }
2506 if (fd < 0)
2507 goto out;
2508 retval = read_imsm_migr_rec(fd, super);
2509
2510 out:
2511 if (fd >= 0)
2512 close(fd);
2513 return retval;
2514 }
2515
2516 #ifndef MDASSEMBLE
2517 /*******************************************************************************
2518 * function: imsm_create_metadata_checkpoint_update
2519 * Description: It creates update for checkpoint change.
2520 * Parameters:
2521 * super : imsm internal array info
2522 * u : pointer to prepared update
2523 * Returns:
2524 * Uptate length.
2525 * If length is equal to 0, input pointer u contains no update
2526 ******************************************************************************/
2527 static int imsm_create_metadata_checkpoint_update(
2528 struct intel_super *super,
2529 struct imsm_update_general_migration_checkpoint **u)
2530 {
2531
2532 int update_memory_size = 0;
2533
2534 dprintf("(enter)\n");
2535
2536 if (u == NULL)
2537 return 0;
2538 *u = NULL;
2539
2540 /* size of all update data without anchor */
2541 update_memory_size =
2542 sizeof(struct imsm_update_general_migration_checkpoint);
2543
2544 *u = xcalloc(1, update_memory_size);
2545 if (*u == NULL) {
2546 dprintf("error: cannot get memory\n");
2547 return 0;
2548 }
2549 (*u)->type = update_general_migration_checkpoint;
2550 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2551 dprintf("prepared for %u\n", (*u)->curr_migr_unit);
2552
2553 return update_memory_size;
2554 }
2555
2556 static void imsm_update_metadata_locally(struct supertype *st,
2557 void *buf, int len);
2558
2559 /*******************************************************************************
2560 * Function: write_imsm_migr_rec
2561 * Description: Function writes imsm migration record
2562 * (at the last sector of disk)
2563 * Parameters:
2564 * super : imsm internal array info
2565 * Returns:
2566 * 0 : success
2567 * -1 : if fail
2568 ******************************************************************************/
2569 static int write_imsm_migr_rec(struct supertype *st)
2570 {
2571 struct intel_super *super = st->sb;
2572 unsigned long long dsize;
2573 char nm[30];
2574 int fd = -1;
2575 int retval = -1;
2576 struct dl *sd;
2577 int len;
2578 struct imsm_update_general_migration_checkpoint *u;
2579 struct imsm_dev *dev;
2580 struct imsm_map *map = NULL;
2581
2582 /* find map under migration */
2583 dev = imsm_get_device_during_migration(super);
2584 /* if no migration, write buffer anyway to clear migr_record
2585 * on disk based on first available device
2586 */
2587 if (dev == NULL)
2588 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2589 super->current_vol);
2590
2591 map = get_imsm_map(dev, MAP_0);
2592
2593 for (sd = super->disks ; sd ; sd = sd->next) {
2594 int slot = -1;
2595
2596 /* skip failed and spare devices */
2597 if (sd->index < 0)
2598 continue;
2599 /* write to 2 first slots only */
2600 if (map)
2601 slot = get_imsm_disk_slot(map, sd->index);
2602 if ((map == NULL) || (slot > 1) || (slot < 0))
2603 continue;
2604
2605 sprintf(nm, "%d:%d", sd->major, sd->minor);
2606 fd = dev_open(nm, O_RDWR);
2607 if (fd < 0)
2608 continue;
2609 get_dev_size(fd, NULL, &dsize);
2610 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2611 pr_err("Cannot seek to anchor block: %s\n",
2612 strerror(errno));
2613 goto out;
2614 }
2615 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2616 MIGR_REC_BUF_SIZE) {
2617 pr_err("Cannot write migr record block: %s\n",
2618 strerror(errno));
2619 goto out;
2620 }
2621 close(fd);
2622 fd = -1;
2623 }
2624 /* update checkpoint information in metadata */
2625 len = imsm_create_metadata_checkpoint_update(super, &u);
2626
2627 if (len <= 0) {
2628 dprintf("imsm: Cannot prepare update\n");
2629 goto out;
2630 }
2631 /* update metadata locally */
2632 imsm_update_metadata_locally(st, u, len);
2633 /* and possibly remotely */
2634 if (st->update_tail) {
2635 append_metadata_update(st, u, len);
2636 /* during reshape we do all work inside metadata handler
2637 * manage_reshape(), so metadata update has to be triggered
2638 * insida it
2639 */
2640 flush_metadata_updates(st);
2641 st->update_tail = &st->updates;
2642 } else
2643 free(u);
2644
2645 retval = 0;
2646 out:
2647 if (fd >= 0)
2648 close(fd);
2649 return retval;
2650 }
2651 #endif /* MDASSEMBLE */
2652
2653 /* spare/missing disks activations are not allowe when
2654 * array/container performs reshape operation, because
2655 * all arrays in container works on the same disks set
2656 */
2657 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2658 {
2659 int rv = 0;
2660 struct intel_dev *i_dev;
2661 struct imsm_dev *dev;
2662
2663 /* check whole container
2664 */
2665 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2666 dev = i_dev->dev;
2667 if (is_gen_migration(dev)) {
2668 /* No repair during any migration in container
2669 */
2670 rv = 1;
2671 break;
2672 }
2673 }
2674 return rv;
2675 }
2676 static unsigned long long imsm_component_size_aligment_check(int level,
2677 int chunk_size,
2678 unsigned long long component_size)
2679 {
2680 unsigned int component_size_alligment;
2681
2682 /* check component size aligment
2683 */
2684 component_size_alligment = component_size % (chunk_size/512);
2685
2686 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alligment = %u\n",
2687 level, chunk_size, component_size,
2688 component_size_alligment);
2689
2690 if (component_size_alligment && (level != 1) && (level != UnSet)) {
2691 dprintf("imsm: reported component size alligned from %llu ",
2692 component_size);
2693 component_size -= component_size_alligment;
2694 dprintf_cont("to %llu (%i).\n",
2695 component_size, component_size_alligment);
2696 }
2697
2698 return component_size;
2699 }
2700
2701 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2702 {
2703 struct intel_super *super = st->sb;
2704 struct migr_record *migr_rec = super->migr_rec;
2705 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2706 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2707 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2708 struct imsm_map *map_to_analyse = map;
2709 struct dl *dl;
2710 int map_disks = info->array.raid_disks;
2711
2712 memset(info, 0, sizeof(*info));
2713 if (prev_map)
2714 map_to_analyse = prev_map;
2715
2716 dl = super->current_disk;
2717
2718 info->container_member = super->current_vol;
2719 info->array.raid_disks = map->num_members;
2720 info->array.level = get_imsm_raid_level(map_to_analyse);
2721 info->array.layout = imsm_level_to_layout(info->array.level);
2722 info->array.md_minor = -1;
2723 info->array.ctime = 0;
2724 info->array.utime = 0;
2725 info->array.chunk_size =
2726 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2727 info->array.state = !dev->vol.dirty;
2728 info->custom_array_size = __le32_to_cpu(dev->size_high);
2729 info->custom_array_size <<= 32;
2730 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2731 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2732
2733 if (is_gen_migration(dev)) {
2734 info->reshape_active = 1;
2735 info->new_level = get_imsm_raid_level(map);
2736 info->new_layout = imsm_level_to_layout(info->new_level);
2737 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2738 info->delta_disks = map->num_members - prev_map->num_members;
2739 if (info->delta_disks) {
2740 /* this needs to be applied to every array
2741 * in the container.
2742 */
2743 info->reshape_active = CONTAINER_RESHAPE;
2744 }
2745 /* We shape information that we give to md might have to be
2746 * modify to cope with md's requirement for reshaping arrays.
2747 * For example, when reshaping a RAID0, md requires it to be
2748 * presented as a degraded RAID4.
2749 * Also if a RAID0 is migrating to a RAID5 we need to specify
2750 * the array as already being RAID5, but the 'before' layout
2751 * is a RAID4-like layout.
2752 */
2753 switch (info->array.level) {
2754 case 0:
2755 switch(info->new_level) {
2756 case 0:
2757 /* conversion is happening as RAID4 */
2758 info->array.level = 4;
2759 info->array.raid_disks += 1;
2760 break;
2761 case 5:
2762 /* conversion is happening as RAID5 */
2763 info->array.level = 5;
2764 info->array.layout = ALGORITHM_PARITY_N;
2765 info->delta_disks -= 1;
2766 break;
2767 default:
2768 /* FIXME error message */
2769 info->array.level = UnSet;
2770 break;
2771 }
2772 break;
2773 }
2774 } else {
2775 info->new_level = UnSet;
2776 info->new_layout = UnSet;
2777 info->new_chunk = info->array.chunk_size;
2778 info->delta_disks = 0;
2779 }
2780
2781 if (dl) {
2782 info->disk.major = dl->major;
2783 info->disk.minor = dl->minor;
2784 info->disk.number = dl->index;
2785 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2786 dl->index);
2787 }
2788
2789 info->data_offset = pba_of_lba0(map_to_analyse);
2790 info->component_size = blocks_per_member(map_to_analyse);
2791
2792 info->component_size = imsm_component_size_aligment_check(
2793 info->array.level,
2794 info->array.chunk_size,
2795 info->component_size);
2796
2797 memset(info->uuid, 0, sizeof(info->uuid));
2798 info->recovery_start = MaxSector;
2799
2800 info->reshape_progress = 0;
2801 info->resync_start = MaxSector;
2802 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2803 dev->vol.dirty) &&
2804 imsm_reshape_blocks_arrays_changes(super) == 0) {
2805 info->resync_start = 0;
2806 }
2807 if (dev->vol.migr_state) {
2808 switch (migr_type(dev)) {
2809 case MIGR_REPAIR:
2810 case MIGR_INIT: {
2811 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2812 dev);
2813 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2814
2815 info->resync_start = blocks_per_unit * units;
2816 break;
2817 }
2818 case MIGR_GEN_MIGR: {
2819 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2820 dev);
2821 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2822 unsigned long long array_blocks;
2823 int used_disks;
2824
2825 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2826 (units <
2827 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2828 (super->migr_rec->rec_status ==
2829 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2830 units++;
2831
2832 info->reshape_progress = blocks_per_unit * units;
2833
2834 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
2835 (unsigned long long)units,
2836 (unsigned long long)blocks_per_unit,
2837 info->reshape_progress);
2838
2839 used_disks = imsm_num_data_members(dev, MAP_1);
2840 if (used_disks > 0) {
2841 array_blocks = blocks_per_member(map) *
2842 used_disks;
2843 /* round array size down to closest MB
2844 */
2845 info->custom_array_size = (array_blocks
2846 >> SECT_PER_MB_SHIFT)
2847 << SECT_PER_MB_SHIFT;
2848 }
2849 }
2850 case MIGR_VERIFY:
2851 /* we could emulate the checkpointing of
2852 * 'sync_action=check' migrations, but for now
2853 * we just immediately complete them
2854 */
2855 case MIGR_REBUILD:
2856 /* this is handled by container_content_imsm() */
2857 case MIGR_STATE_CHANGE:
2858 /* FIXME handle other migrations */
2859 default:
2860 /* we are not dirty, so... */
2861 info->resync_start = MaxSector;
2862 }
2863 }
2864
2865 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2866 info->name[MAX_RAID_SERIAL_LEN] = 0;
2867
2868 info->array.major_version = -1;
2869 info->array.minor_version = -2;
2870 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
2871 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2872 uuid_from_super_imsm(st, info->uuid);
2873
2874 if (dmap) {
2875 int i, j;
2876 for (i=0; i<map_disks; i++) {
2877 dmap[i] = 0;
2878 if (i < info->array.raid_disks) {
2879 struct imsm_disk *dsk;
2880 j = get_imsm_disk_idx(dev, i, MAP_X);
2881 dsk = get_imsm_disk(super, j);
2882 if (dsk && (dsk->status & CONFIGURED_DISK))
2883 dmap[i] = 1;
2884 }
2885 }
2886 }
2887 }
2888
2889 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2890 int failed, int look_in_map);
2891
2892 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2893 int look_in_map);
2894
2895 #ifndef MDASSEMBLE
2896 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2897 {
2898 if (is_gen_migration(dev)) {
2899 int failed;
2900 __u8 map_state;
2901 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2902
2903 failed = imsm_count_failed(super, dev, MAP_1);
2904 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2905 if (map2->map_state != map_state) {
2906 map2->map_state = map_state;
2907 super->updates_pending++;
2908 }
2909 }
2910 }
2911 #endif
2912
2913 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2914 {
2915 struct dl *d;
2916
2917 for (d = super->missing; d; d = d->next)
2918 if (d->index == index)
2919 return &d->disk;
2920 return NULL;
2921 }
2922
2923 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2924 {
2925 struct intel_super *super = st->sb;
2926 struct imsm_disk *disk;
2927 int map_disks = info->array.raid_disks;
2928 int max_enough = -1;
2929 int i;
2930 struct imsm_super *mpb;
2931
2932 if (super->current_vol >= 0) {
2933 getinfo_super_imsm_volume(st, info, map);
2934 return;
2935 }
2936 memset(info, 0, sizeof(*info));
2937
2938 /* Set raid_disks to zero so that Assemble will always pull in valid
2939 * spares
2940 */
2941 info->array.raid_disks = 0;
2942 info->array.level = LEVEL_CONTAINER;
2943 info->array.layout = 0;
2944 info->array.md_minor = -1;
2945 info->array.ctime = 0; /* N/A for imsm */
2946 info->array.utime = 0;
2947 info->array.chunk_size = 0;
2948
2949 info->disk.major = 0;
2950 info->disk.minor = 0;
2951 info->disk.raid_disk = -1;
2952 info->reshape_active = 0;
2953 info->array.major_version = -1;
2954 info->array.minor_version = -2;
2955 strcpy(info->text_version, "imsm");
2956 info->safe_mode_delay = 0;
2957 info->disk.number = -1;
2958 info->disk.state = 0;
2959 info->name[0] = 0;
2960 info->recovery_start = MaxSector;
2961 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2962
2963 /* do we have the all the insync disks that we expect? */
2964 mpb = super->anchor;
2965
2966 for (i = 0; i < mpb->num_raid_devs; i++) {
2967 struct imsm_dev *dev = get_imsm_dev(super, i);
2968 int failed, enough, j, missing = 0;
2969 struct imsm_map *map;
2970 __u8 state;
2971
2972 failed = imsm_count_failed(super, dev, MAP_0);
2973 state = imsm_check_degraded(super, dev, failed, MAP_0);
2974 map = get_imsm_map(dev, MAP_0);
2975
2976 /* any newly missing disks?
2977 * (catches single-degraded vs double-degraded)
2978 */
2979 for (j = 0; j < map->num_members; j++) {
2980 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
2981 __u32 idx = ord_to_idx(ord);
2982
2983 if (!(ord & IMSM_ORD_REBUILD) &&
2984 get_imsm_missing(super, idx)) {
2985 missing = 1;
2986 break;
2987 }
2988 }
2989
2990 if (state == IMSM_T_STATE_FAILED)
2991 enough = -1;
2992 else if (state == IMSM_T_STATE_DEGRADED &&
2993 (state != map->map_state || missing))
2994 enough = 0;
2995 else /* we're normal, or already degraded */
2996 enough = 1;
2997 if (is_gen_migration(dev) && missing) {
2998 /* during general migration we need all disks
2999 * that process is running on.
3000 * No new missing disk is allowed.
3001 */
3002 max_enough = -1;
3003 enough = -1;
3004 /* no more checks necessary
3005 */
3006 break;
3007 }
3008 /* in the missing/failed disk case check to see
3009 * if at least one array is runnable
3010 */
3011 max_enough = max(max_enough, enough);
3012 }
3013 dprintf("enough: %d\n", max_enough);
3014 info->container_enough = max_enough;
3015
3016 if (super->disks) {
3017 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3018
3019 disk = &super->disks->disk;
3020 info->data_offset = total_blocks(&super->disks->disk) - reserved;
3021 info->component_size = reserved;
3022 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
3023 /* we don't change info->disk.raid_disk here because
3024 * this state will be finalized in mdmon after we have
3025 * found the 'most fresh' version of the metadata
3026 */
3027 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3028 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3029 }
3030
3031 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3032 * ->compare_super may have updated the 'num_raid_devs' field for spares
3033 */
3034 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
3035 uuid_from_super_imsm(st, info->uuid);
3036 else
3037 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
3038
3039 /* I don't know how to compute 'map' on imsm, so use safe default */
3040 if (map) {
3041 int i;
3042 for (i = 0; i < map_disks; i++)
3043 map[i] = 1;
3044 }
3045
3046 }
3047
3048 /* allocates memory and fills disk in mdinfo structure
3049 * for each disk in array */
3050 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3051 {
3052 struct mdinfo *mddev = NULL;
3053 struct intel_super *super = st->sb;
3054 struct imsm_disk *disk;
3055 int count = 0;
3056 struct dl *dl;
3057 if (!super || !super->disks)
3058 return NULL;
3059 dl = super->disks;
3060 mddev = xcalloc(1, sizeof(*mddev));
3061 while (dl) {
3062 struct mdinfo *tmp;
3063 disk = &dl->disk;
3064 tmp = xcalloc(1, sizeof(*tmp));
3065 if (mddev->devs)
3066 tmp->next = mddev->devs;
3067 mddev->devs = tmp;
3068 tmp->disk.number = count++;
3069 tmp->disk.major = dl->major;
3070 tmp->disk.minor = dl->minor;
3071 tmp->disk.state = is_configured(disk) ?
3072 (1 << MD_DISK_ACTIVE) : 0;
3073 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3074 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3075 tmp->disk.raid_disk = -1;
3076 dl = dl->next;
3077 }
3078 return mddev;
3079 }
3080
3081 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3082 char *update, char *devname, int verbose,
3083 int uuid_set, char *homehost)
3084 {
3085 /* For 'assemble' and 'force' we need to return non-zero if any
3086 * change was made. For others, the return value is ignored.
3087 * Update options are:
3088 * force-one : This device looks a bit old but needs to be included,
3089 * update age info appropriately.
3090 * assemble: clear any 'faulty' flag to allow this device to
3091 * be assembled.
3092 * force-array: Array is degraded but being forced, mark it clean
3093 * if that will be needed to assemble it.
3094 *
3095 * newdev: not used ????
3096 * grow: Array has gained a new device - this is currently for
3097 * linear only
3098 * resync: mark as dirty so a resync will happen.
3099 * name: update the name - preserving the homehost
3100 * uuid: Change the uuid of the array to match watch is given
3101 *
3102 * Following are not relevant for this imsm:
3103 * sparc2.2 : update from old dodgey metadata
3104 * super-minor: change the preferred_minor number
3105 * summaries: update redundant counters.
3106 * homehost: update the recorded homehost
3107 * _reshape_progress: record new reshape_progress position.
3108 */
3109 int rv = 1;
3110 struct intel_super *super = st->sb;
3111 struct imsm_super *mpb;
3112
3113 /* we can only update container info */
3114 if (!super || super->current_vol >= 0 || !super->anchor)
3115 return 1;
3116
3117 mpb = super->anchor;
3118
3119 if (strcmp(update, "uuid") == 0) {
3120 /* We take this to mean that the family_num should be updated.
3121 * However that is much smaller than the uuid so we cannot really
3122 * allow an explicit uuid to be given. And it is hard to reliably
3123 * know if one was.
3124 * So if !uuid_set we know the current uuid is random and just used
3125 * the first 'int' and copy it to the other 3 positions.
3126 * Otherwise we require the 4 'int's to be the same as would be the
3127 * case if we are using a random uuid. So an explicit uuid will be
3128 * accepted as long as all for ints are the same... which shouldn't hurt
3129 */
3130 if (!uuid_set) {
3131 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
3132 rv = 0;
3133 } else {
3134 if (info->uuid[0] != info->uuid[1] ||
3135 info->uuid[1] != info->uuid[2] ||
3136 info->uuid[2] != info->uuid[3])
3137 rv = -1;
3138 else
3139 rv = 0;
3140 }
3141 if (rv == 0)
3142 mpb->orig_family_num = info->uuid[0];
3143 } else if (strcmp(update, "assemble") == 0)
3144 rv = 0;
3145 else
3146 rv = -1;
3147
3148 /* successful update? recompute checksum */
3149 if (rv == 0)
3150 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
3151
3152 return rv;
3153 }
3154
3155 static size_t disks_to_mpb_size(int disks)
3156 {
3157 size_t size;
3158
3159 size = sizeof(struct imsm_super);
3160 size += (disks - 1) * sizeof(struct imsm_disk);
3161 size += 2 * sizeof(struct imsm_dev);
3162 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3163 size += (4 - 2) * sizeof(struct imsm_map);
3164 /* 4 possible disk_ord_tbl's */
3165 size += 4 * (disks - 1) * sizeof(__u32);
3166
3167 return size;
3168 }
3169
3170 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3171 unsigned long long data_offset)
3172 {
3173 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3174 return 0;
3175
3176 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
3177 }
3178
3179 static void free_devlist(struct intel_super *super)
3180 {
3181 struct intel_dev *dv;
3182
3183 while (super->devlist) {
3184 dv = super->devlist->next;
3185 free(super->devlist->dev);
3186 free(super->devlist);
3187 super->devlist = dv;
3188 }
3189 }
3190
3191 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3192 {
3193 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3194 }
3195
3196 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3197 {
3198 /*
3199 * return:
3200 * 0 same, or first was empty, and second was copied
3201 * 1 second had wrong number
3202 * 2 wrong uuid
3203 * 3 wrong other info
3204 */
3205 struct intel_super *first = st->sb;
3206 struct intel_super *sec = tst->sb;
3207
3208 if (!first) {
3209 st->sb = tst->sb;
3210 tst->sb = NULL;
3211 return 0;
3212 }
3213 /* in platform dependent environment test if the disks
3214 * use the same Intel hba
3215 * If not on Intel hba at all, allow anything.
3216 */
3217 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3218 if (first->hba->type != sec->hba->type) {
3219 fprintf(stderr,
3220 "HBAs of devices do not match %s != %s\n",
3221 get_sys_dev_type(first->hba->type),
3222 get_sys_dev_type(sec->hba->type));
3223 return 3;
3224 }
3225 if (first->orom != sec->orom) {
3226 fprintf(stderr,
3227 "HBAs of devices do not match %s != %s\n",
3228 first->hba->pci_id, sec->hba->pci_id);
3229 return 3;
3230 }
3231 }
3232
3233 /* if an anchor does not have num_raid_devs set then it is a free
3234 * floating spare
3235 */
3236 if (first->anchor->num_raid_devs > 0 &&
3237 sec->anchor->num_raid_devs > 0) {
3238 /* Determine if these disks might ever have been
3239 * related. Further disambiguation can only take place
3240 * in load_super_imsm_all
3241 */
3242 __u32 first_family = first->anchor->orig_family_num;
3243 __u32 sec_family = sec->anchor->orig_family_num;
3244
3245 if (memcmp(first->anchor->sig, sec->anchor->sig,
3246 MAX_SIGNATURE_LENGTH) != 0)
3247 return 3;
3248
3249 if (first_family == 0)
3250 first_family = first->anchor->family_num;
3251 if (sec_family == 0)
3252 sec_family = sec->anchor->family_num;
3253
3254 if (first_family != sec_family)
3255 return 3;
3256
3257 }
3258
3259 /* if 'first' is a spare promote it to a populated mpb with sec's
3260 * family number
3261 */
3262 if (first->anchor->num_raid_devs == 0 &&
3263 sec->anchor->num_raid_devs > 0) {
3264 int i;
3265 struct intel_dev *dv;
3266 struct imsm_dev *dev;
3267
3268 /* we need to copy raid device info from sec if an allocation
3269 * fails here we don't associate the spare
3270 */
3271 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3272 dv = xmalloc(sizeof(*dv));
3273 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3274 dv->dev = dev;
3275 dv->index = i;
3276 dv->next = first->devlist;
3277 first->devlist = dv;
3278 }
3279 if (i < sec->anchor->num_raid_devs) {
3280 /* allocation failure */
3281 free_devlist(first);
3282 pr_err("imsm: failed to associate spare\n");
3283 return 3;
3284 }
3285 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3286 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3287 first->anchor->family_num = sec->anchor->family_num;
3288 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3289 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3290 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3291 }
3292
3293 return 0;
3294 }
3295
3296 static void fd2devname(int fd, char *name)
3297 {
3298 struct stat st;
3299 char path[256];
3300 char dname[PATH_MAX];
3301 char *nm;
3302 int rv;
3303
3304 name[0] = '\0';
3305 if (fstat(fd, &st) != 0)
3306 return;
3307 sprintf(path, "/sys/dev/block/%d:%d",
3308 major(st.st_rdev), minor(st.st_rdev));
3309
3310 rv = readlink(path, dname, sizeof(dname)-1);
3311 if (rv <= 0)
3312 return;
3313
3314 dname[rv] = '\0';
3315 nm = strrchr(dname, '/');
3316 if (nm) {
3317 nm++;
3318 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3319 }
3320 }
3321
3322 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3323
3324 static int imsm_read_serial(int fd, char *devname,
3325 __u8 serial[MAX_RAID_SERIAL_LEN])
3326 {
3327 unsigned char scsi_serial[255];
3328 int rv;
3329 int rsp_len;
3330 int len;
3331 char *dest;
3332 char *src;
3333 char *rsp_buf;
3334 int i;
3335
3336 memset(scsi_serial, 0, sizeof(scsi_serial));
3337
3338 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3339
3340 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3341 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3342 fd2devname(fd, (char *) serial);
3343 return 0;
3344 }
3345
3346 if (rv != 0) {
3347 if (devname)
3348 pr_err("Failed to retrieve serial for %s\n",
3349 devname);
3350 return rv;
3351 }
3352
3353 rsp_len = scsi_serial[3];
3354 if (!rsp_len) {
3355 if (devname)
3356 pr_err("Failed to retrieve serial for %s\n",
3357 devname);
3358 return 2;
3359 }
3360 rsp_buf = (char *) &scsi_serial[4];
3361
3362 /* trim all whitespace and non-printable characters and convert
3363 * ':' to ';'
3364 */
3365 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3366 src = &rsp_buf[i];
3367 if (*src > 0x20) {
3368 /* ':' is reserved for use in placeholder serial
3369 * numbers for missing disks
3370 */
3371 if (*src == ':')
3372 *dest++ = ';';
3373 else
3374 *dest++ = *src;
3375 }
3376 }
3377 len = dest - rsp_buf;
3378 dest = rsp_buf;
3379
3380 /* truncate leading characters */
3381 if (len > MAX_RAID_SERIAL_LEN) {
3382 dest += len - MAX_RAID_SERIAL_LEN;
3383 len = MAX_RAID_SERIAL_LEN;
3384 }
3385
3386 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3387 memcpy(serial, dest, len);
3388
3389 return 0;
3390 }
3391
3392 static int serialcmp(__u8 *s1, __u8 *s2)
3393 {
3394 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3395 }
3396
3397 static void serialcpy(__u8 *dest, __u8 *src)
3398 {
3399 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3400 }
3401
3402 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3403 {
3404 struct dl *dl;
3405
3406 for (dl = super->disks; dl; dl = dl->next)
3407 if (serialcmp(dl->serial, serial) == 0)
3408 break;
3409
3410 return dl;
3411 }
3412
3413 static struct imsm_disk *
3414 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3415 {
3416 int i;
3417
3418 for (i = 0; i < mpb->num_disks; i++) {
3419 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3420
3421 if (serialcmp(disk->serial, serial) == 0) {
3422 if (idx)
3423 *idx = i;
3424 return disk;
3425 }
3426 }
3427
3428 return NULL;
3429 }
3430
3431 static int
3432 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3433 {
3434 struct imsm_disk *disk;
3435 struct dl *dl;
3436 struct stat stb;
3437 int rv;
3438 char name[40];
3439 __u8 serial[MAX_RAID_SERIAL_LEN];
3440
3441 rv = imsm_read_serial(fd, devname, serial);
3442
3443 if (rv != 0)
3444 return 2;
3445
3446 dl = xcalloc(1, sizeof(*dl));
3447
3448 fstat(fd, &stb);
3449 dl->major = major(stb.st_rdev);
3450 dl->minor = minor(stb.st_rdev);
3451 dl->next = super->disks;
3452 dl->fd = keep_fd ? fd : -1;
3453 assert(super->disks == NULL);
3454 super->disks = dl;
3455 serialcpy(dl->serial, serial);
3456 dl->index = -2;
3457 dl->e = NULL;
3458 fd2devname(fd, name);
3459 if (devname)
3460 dl->devname = xstrdup(devname);
3461 else
3462 dl->devname = xstrdup(name);
3463
3464 /* look up this disk's index in the current anchor */
3465 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3466 if (disk) {
3467 dl->disk = *disk;
3468 /* only set index on disks that are a member of a
3469 * populated contianer, i.e. one with raid_devs
3470 */
3471 if (is_failed(&dl->disk))
3472 dl->index = -2;
3473 else if (is_spare(&dl->disk))
3474 dl->index = -1;
3475 }
3476
3477 return 0;
3478 }
3479
3480 #ifndef MDASSEMBLE
3481 /* When migrating map0 contains the 'destination' state while map1
3482 * contains the current state. When not migrating map0 contains the
3483 * current state. This routine assumes that map[0].map_state is set to
3484 * the current array state before being called.
3485 *
3486 * Migration is indicated by one of the following states
3487 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3488 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3489 * map1state=unitialized)
3490 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3491 * map1state=normal)
3492 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3493 * map1state=degraded)
3494 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3495 * map1state=normal)
3496 */
3497 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3498 __u8 to_state, int migr_type)
3499 {
3500 struct imsm_map *dest;
3501 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3502
3503 dev->vol.migr_state = 1;
3504 set_migr_type(dev, migr_type);
3505 dev->vol.curr_migr_unit = 0;
3506 dest = get_imsm_map(dev, MAP_1);
3507
3508 /* duplicate and then set the target end state in map[0] */
3509 memcpy(dest, src, sizeof_imsm_map(src));
3510 if ((migr_type == MIGR_REBUILD) ||
3511 (migr_type == MIGR_GEN_MIGR)) {
3512 __u32 ord;
3513 int i;
3514
3515 for (i = 0; i < src->num_members; i++) {
3516 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3517 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3518 }
3519 }
3520
3521 if (migr_type == MIGR_GEN_MIGR)
3522 /* Clear migration record */
3523 memset(super->migr_rec, 0, sizeof(struct migr_record));
3524
3525 src->map_state = to_state;
3526 }
3527
3528 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3529 __u8 map_state)
3530 {
3531 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3532 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3533 MAP_0 : MAP_1);
3534 int i, j;
3535
3536 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3537 * completed in the last migration.
3538 *
3539 * FIXME add support for raid-level-migration
3540 */
3541 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3542 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3543 /* when final map state is other than expected
3544 * merge maps (not for migration)
3545 */
3546 int failed;
3547
3548 for (i = 0; i < prev->num_members; i++)
3549 for (j = 0; j < map->num_members; j++)
3550 /* during online capacity expansion
3551 * disks position can be changed
3552 * if takeover is used
3553 */
3554 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3555 ord_to_idx(prev->disk_ord_tbl[i])) {
3556 map->disk_ord_tbl[j] |=
3557 prev->disk_ord_tbl[i];
3558 break;
3559 }
3560 failed = imsm_count_failed(super, dev, MAP_0);
3561 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3562 }
3563
3564 dev->vol.migr_state = 0;
3565 set_migr_type(dev, 0);
3566 dev->vol.curr_migr_unit = 0;
3567 map->map_state = map_state;
3568 }
3569 #endif
3570
3571 static int parse_raid_devices(struct intel_super *super)
3572 {
3573 int i;
3574 struct imsm_dev *dev_new;
3575 size_t len, len_migr;
3576 size_t max_len = 0;
3577 size_t space_needed = 0;
3578 struct imsm_super *mpb = super->anchor;
3579
3580 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3581 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3582 struct intel_dev *dv;
3583
3584 len = sizeof_imsm_dev(dev_iter, 0);
3585 len_migr = sizeof_imsm_dev(dev_iter, 1);
3586 if (len_migr > len)
3587 space_needed += len_migr - len;
3588
3589 dv = xmalloc(sizeof(*dv));
3590 if (max_len < len_migr)
3591 max_len = len_migr;
3592 if (max_len > len_migr)
3593 space_needed += max_len - len_migr;
3594 dev_new = xmalloc(max_len);
3595 imsm_copy_dev(dev_new, dev_iter);
3596 dv->dev = dev_new;
3597 dv->index = i;
3598 dv->next = super->devlist;
3599 super->devlist = dv;
3600 }
3601
3602 /* ensure that super->buf is large enough when all raid devices
3603 * are migrating
3604 */
3605 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3606 void *buf;
3607
3608 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3609 if (posix_memalign(&buf, 512, len) != 0)
3610 return 1;
3611
3612 memcpy(buf, super->buf, super->len);
3613 memset(buf + super->len, 0, len - super->len);
3614 free(super->buf);
3615 super->buf = buf;
3616 super->len = len;
3617 }
3618
3619 return 0;
3620 }
3621
3622 /* retrieve a pointer to the bbm log which starts after all raid devices */
3623 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3624 {
3625 void *ptr = NULL;
3626
3627 if (__le32_to_cpu(mpb->bbm_log_size)) {
3628 ptr = mpb;
3629 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3630 }
3631
3632 return ptr;
3633 }
3634
3635 /*******************************************************************************
3636 * Function: check_mpb_migr_compatibility
3637 * Description: Function checks for unsupported migration features:
3638 * - migration optimization area (pba_of_lba0)
3639 * - descending reshape (ascending_migr)
3640 * Parameters:
3641 * super : imsm metadata information
3642 * Returns:
3643 * 0 : migration is compatible
3644 * -1 : migration is not compatible
3645 ******************************************************************************/
3646 int check_mpb_migr_compatibility(struct intel_super *super)
3647 {
3648 struct imsm_map *map0, *map1;
3649 struct migr_record *migr_rec = super->migr_rec;
3650 int i;
3651
3652 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3653 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3654
3655 if (dev_iter &&
3656 dev_iter->vol.migr_state == 1 &&
3657 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3658 /* This device is migrating */
3659 map0 = get_imsm_map(dev_iter, MAP_0);
3660 map1 = get_imsm_map(dev_iter, MAP_1);
3661 if (pba_of_lba0(map0) != pba_of_lba0(map1))
3662 /* migration optimization area was used */
3663 return -1;
3664 if (migr_rec->ascending_migr == 0
3665 && migr_rec->dest_depth_per_unit > 0)
3666 /* descending reshape not supported yet */
3667 return -1;
3668 }
3669 }
3670 return 0;
3671 }
3672
3673 static void __free_imsm(struct intel_super *super, int free_disks);
3674
3675 /* load_imsm_mpb - read matrix metadata
3676 * allocates super->mpb to be freed by free_imsm
3677 */
3678 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3679 {
3680 unsigned long long dsize;
3681 unsigned long long sectors;
3682 struct stat;
3683 struct imsm_super *anchor;
3684 __u32 check_sum;
3685
3686 get_dev_size(fd, NULL, &dsize);
3687 if (dsize < 1024) {
3688 if (devname)
3689 pr_err("%s: device to small for imsm\n",
3690 devname);
3691 return 1;
3692 }
3693
3694 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3695 if (devname)
3696 pr_err("Cannot seek to anchor block on %s: %s\n",
3697 devname, strerror(errno));
3698 return 1;
3699 }
3700
3701 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3702 if (devname)
3703 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
3704 return 1;
3705 }
3706 if (read(fd, anchor, 512) != 512) {
3707 if (devname)
3708 pr_err("Cannot read anchor block on %s: %s\n",
3709 devname, strerror(errno));
3710 free(anchor);
3711 return 1;
3712 }
3713
3714 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3715 if (devname)
3716 pr_err("no IMSM anchor on %s\n", devname);
3717 free(anchor);
3718 return 2;
3719 }
3720
3721 __free_imsm(super, 0);
3722 /* reload capability and hba */
3723
3724 /* capability and hba must be updated with new super allocation */
3725 find_intel_hba_capability(fd, super, devname);
3726 super->len = ROUND_UP(anchor->mpb_size, 512);
3727 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3728 if (devname)
3729 pr_err("unable to allocate %zu byte mpb buffer\n",
3730 super->len);
3731 free(anchor);
3732 return 2;
3733 }
3734 memcpy(super->buf, anchor, 512);
3735
3736 sectors = mpb_sectors(anchor) - 1;
3737 free(anchor);
3738
3739 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
3740 pr_err("could not allocate migr_rec buffer\n");
3741 free(super->buf);
3742 return 2;
3743 }
3744 super->clean_migration_record_by_mdmon = 0;
3745
3746 if (!sectors) {
3747 check_sum = __gen_imsm_checksum(super->anchor);
3748 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3749 if (devname)
3750 pr_err("IMSM checksum %x != %x on %s\n",
3751 check_sum,
3752 __le32_to_cpu(super->anchor->check_sum),
3753 devname);
3754 return 2;
3755 }
3756
3757 return 0;
3758 }
3759
3760 /* read the extended mpb */
3761 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3762 if (devname)
3763 pr_err("Cannot seek to extended mpb on %s: %s\n",
3764 devname, strerror(errno));
3765 return 1;
3766 }
3767
3768 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3769 if (devname)
3770 pr_err("Cannot read extended mpb on %s: %s\n",
3771 devname, strerror(errno));
3772 return 2;
3773 }
3774
3775 check_sum = __gen_imsm_checksum(super->anchor);
3776 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3777 if (devname)
3778 pr_err("IMSM checksum %x != %x on %s\n",
3779 check_sum, __le32_to_cpu(super->anchor->check_sum),
3780 devname);
3781 return 3;
3782 }
3783
3784 /* FIXME the BBM log is disk specific so we cannot use this global
3785 * buffer for all disks. Ok for now since we only look at the global
3786 * bbm_log_size parameter to gate assembly
3787 */
3788 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3789
3790 return 0;
3791 }
3792
3793 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3794
3795 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
3796 static void clear_hi(struct intel_super *super)
3797 {
3798 struct imsm_super *mpb = super->anchor;
3799 int i, n;
3800 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
3801 return;
3802 for (i = 0; i < mpb->num_disks; ++i) {
3803 struct imsm_disk *disk = &mpb->disk[i];
3804 disk->total_blocks_hi = 0;
3805 }
3806 for (i = 0; i < mpb->num_raid_devs; ++i) {
3807 struct imsm_dev *dev = get_imsm_dev(super, i);
3808 if (!dev)
3809 return;
3810 for (n = 0; n < 2; ++n) {
3811 struct imsm_map *map = get_imsm_map(dev, n);
3812 if (!map)
3813 continue;
3814 map->pba_of_lba0_hi = 0;
3815 map->blocks_per_member_hi = 0;
3816 map->num_data_stripes_hi = 0;
3817 }
3818 }
3819 }
3820
3821 static int
3822 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3823 {
3824 int err;
3825
3826 err = load_imsm_mpb(fd, super, devname);
3827 if (err)
3828 return err;
3829 err = load_imsm_disk(fd, super, devname, keep_fd);
3830 if (err)
3831 return err;
3832 err = parse_raid_devices(super);
3833 clear_hi(super);
3834 return err;
3835 }
3836
3837 static void __free_imsm_disk(struct dl *d)
3838 {
3839 if (d->fd >= 0)
3840 close(d->fd);
3841 if (d->devname)
3842 free(d->devname);
3843 if (d->e)
3844 free(d->e);
3845 free(d);
3846
3847 }
3848
3849 static void free_imsm_disks(struct intel_super *super)
3850 {
3851 struct dl *d;
3852
3853 while (super->disks) {
3854 d = super->disks;
3855 super->disks = d->next;
3856 __free_imsm_disk(d);
3857 }
3858 while (super->disk_mgmt_list) {
3859 d = super->disk_mgmt_list;
3860 super->disk_mgmt_list = d->next;
3861 __free_imsm_disk(d);
3862 }
3863 while (super->missing) {
3864 d = super->missing;
3865 super->missing = d->next;
3866 __free_imsm_disk(d);
3867 }
3868
3869 }
3870
3871 /* free all the pieces hanging off of a super pointer */
3872 static void __free_imsm(struct intel_super *super, int free_disks)
3873 {
3874 struct intel_hba *elem, *next;
3875
3876 if (super->buf) {
3877 free(super->buf);
3878 super->buf = NULL;
3879 }
3880 /* unlink capability description */
3881 super->orom = NULL;
3882 if (super->migr_rec_buf) {
3883 free(super->migr_rec_buf);
3884 super->migr_rec_buf = NULL;
3885 }
3886 if (free_disks)
3887 free_imsm_disks(super);
3888 free_devlist(super);
3889 elem = super->hba;
3890 while (elem) {
3891 if (elem->path)
3892 free((void *)elem->path);
3893 next = elem->next;
3894 free(elem);
3895 elem = next;
3896 }
3897 super->hba = NULL;
3898 }
3899
3900 static void free_imsm(struct intel_super *super)
3901 {
3902 __free_imsm(super, 1);
3903 free(super);
3904 }
3905
3906 static void free_super_imsm(struct supertype *st)
3907 {
3908 struct intel_super *super = st->sb;
3909
3910 if (!super)
3911 return;
3912
3913 free_imsm(super);
3914 st->sb = NULL;
3915 }
3916
3917 static struct intel_super *alloc_super(void)
3918 {
3919 struct intel_super *super = xcalloc(1, sizeof(*super));
3920
3921 super->current_vol = -1;
3922 super->create_offset = ~((unsigned long long) 0);
3923 return super;
3924 }
3925
3926 /*
3927 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3928 */
3929 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3930 {
3931 struct sys_dev *hba_name;
3932 int rv = 0;
3933
3934 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3935 super->orom = NULL;
3936 super->hba = NULL;
3937 return 0;
3938 }
3939 hba_name = find_disk_attached_hba(fd, NULL);
3940 if (!hba_name) {
3941 if (devname)
3942 pr_err("%s is not attached to Intel(R) RAID controller.\n",
3943 devname);
3944 return 1;
3945 }
3946 rv = attach_hba_to_super(super, hba_name);
3947 if (rv == 2) {
3948 if (devname) {
3949 struct intel_hba *hba = super->hba;
3950
3951 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
3952 " but the container is assigned to Intel(R) %s %s (",
3953 devname,
3954 get_sys_dev_type(hba_name->type),
3955 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
3956 hba_name->pci_id ? : "Err!",
3957 get_sys_dev_type(super->hba->type),
3958 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
3959
3960 while (hba) {
3961 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3962 if (hba->next)
3963 fprintf(stderr, ", ");
3964 hba = hba->next;
3965 }
3966 fprintf(stderr, ").\n"
3967 " Mixing devices attached to different %s is not allowed.\n",
3968 hba_name->type == SYS_DEV_VMD ? "VMD domains" : "controllers");
3969 }
3970 return 2;
3971 }
3972 super->orom = find_imsm_capability(hba_name);
3973 if (!super->orom)
3974 return 3;
3975
3976 return 0;
3977 }
3978
3979 /* find_missing - helper routine for load_super_imsm_all that identifies
3980 * disks that have disappeared from the system. This routine relies on
3981 * the mpb being uptodate, which it is at load time.
3982 */
3983 static int find_missing(struct intel_super *super)
3984 {
3985 int i;
3986 struct imsm_super *mpb = super->anchor;
3987 struct dl *dl;
3988 struct imsm_disk *disk;
3989
3990 for (i = 0; i < mpb->num_disks; i++) {
3991 disk = __get_imsm_disk(mpb, i);
3992 dl = serial_to_dl(disk->serial, super);
3993 if (dl)
3994 continue;
3995
3996 dl = xmalloc(sizeof(*dl));
3997 dl->major = 0;
3998 dl->minor = 0;
3999 dl->fd = -1;
4000 dl->devname = xstrdup("missing");
4001 dl->index = i;
4002 serialcpy(dl->serial, disk->serial);
4003 dl->disk = *disk;
4004 dl->e = NULL;
4005 dl->next = super->missing;
4006 super->missing = dl;
4007 }
4008
4009 return 0;
4010 }
4011
4012 #ifndef MDASSEMBLE
4013 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4014 {
4015 struct intel_disk *idisk = disk_list;
4016
4017 while (idisk) {
4018 if (serialcmp(idisk->disk.serial, serial) == 0)
4019 break;
4020 idisk = idisk->next;
4021 }
4022
4023 return idisk;
4024 }
4025
4026 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4027 struct intel_super *super,
4028 struct intel_disk **disk_list)
4029 {
4030 struct imsm_disk *d = &super->disks->disk;
4031 struct imsm_super *mpb = super->anchor;
4032 int i, j;
4033
4034 for (i = 0; i < tbl_size; i++) {
4035 struct imsm_super *tbl_mpb = table[i]->anchor;
4036 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4037
4038 if (tbl_mpb->family_num == mpb->family_num) {
4039 if (tbl_mpb->check_sum == mpb->check_sum) {
4040 dprintf("mpb from %d:%d matches %d:%d\n",
4041 super->disks->major,
4042 super->disks->minor,
4043 table[i]->disks->major,
4044 table[i]->disks->minor);
4045 break;
4046 }
4047
4048 if (((is_configured(d) && !is_configured(tbl_d)) ||
4049 is_configured(d) == is_configured(tbl_d)) &&
4050 tbl_mpb->generation_num < mpb->generation_num) {
4051 /* current version of the mpb is a
4052 * better candidate than the one in
4053 * super_table, but copy over "cross
4054 * generational" status
4055 */
4056 struct intel_disk *idisk;
4057
4058 dprintf("mpb from %d:%d replaces %d:%d\n",
4059 super->disks->major,
4060 super->disks->minor,
4061 table[i]->disks->major,
4062 table[i]->disks->minor);
4063
4064 idisk = disk_list_get(tbl_d->serial, *disk_list);
4065 if (idisk && is_failed(&idisk->disk))
4066 tbl_d->status |= FAILED_DISK;
4067 break;
4068 } else {
4069 struct intel_disk *idisk;
4070 struct imsm_disk *disk;
4071
4072 /* tbl_mpb is more up to date, but copy
4073 * over cross generational status before
4074 * returning
4075 */
4076 disk = __serial_to_disk(d->serial, mpb, NULL);
4077 if (disk && is_failed(disk))
4078 d->status |= FAILED_DISK;
4079
4080 idisk = disk_list_get(d->serial, *disk_list);
4081 if (idisk) {
4082 idisk->owner = i;
4083 if (disk && is_configured(disk))
4084 idisk->disk.status |= CONFIGURED_DISK;
4085 }
4086
4087 dprintf("mpb from %d:%d prefer %d:%d\n",
4088 super->disks->major,
4089 super->disks->minor,
4090 table[i]->disks->major,
4091 table[i]->disks->minor);
4092
4093 return tbl_size;
4094 }
4095 }
4096 }
4097
4098 if (i >= tbl_size)
4099 table[tbl_size++] = super;
4100 else
4101 table[i] = super;
4102
4103 /* update/extend the merged list of imsm_disk records */
4104 for (j = 0; j < mpb->num_disks; j++) {
4105 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4106 struct intel_disk *idisk;
4107
4108 idisk = disk_list_get(disk->serial, *disk_list);
4109 if (idisk) {
4110 idisk->disk.status |= disk->status;
4111 if (is_configured(&idisk->disk) ||
4112 is_failed(&idisk->disk))
4113 idisk->disk.status &= ~(SPARE_DISK);
4114 } else {
4115 idisk = xcalloc(1, sizeof(*idisk));
4116 idisk->owner = IMSM_UNKNOWN_OWNER;
4117 idisk->disk = *disk;
4118 idisk->next = *disk_list;
4119 *disk_list = idisk;
4120 }
4121
4122 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4123 idisk->owner = i;
4124 }
4125
4126 return tbl_size;
4127 }
4128
4129 static struct intel_super *
4130 validate_members(struct intel_super *super, struct intel_disk *disk_list,
4131 const int owner)
4132 {
4133 struct imsm_super *mpb = super->anchor;
4134 int ok_count = 0;
4135 int i;
4136
4137 for (i = 0; i < mpb->num_disks; i++) {
4138 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4139 struct intel_disk *idisk;
4140
4141 idisk = disk_list_get(disk->serial, disk_list);
4142 if (idisk) {
4143 if (idisk->owner == owner ||
4144 idisk->owner == IMSM_UNKNOWN_OWNER)
4145 ok_count++;
4146 else
4147 dprintf("'%.16s' owner %d != %d\n",
4148 disk->serial, idisk->owner,
4149 owner);
4150 } else {
4151 dprintf("unknown disk %x [%d]: %.16s\n",
4152 __le32_to_cpu(mpb->family_num), i,
4153 disk->serial);
4154 break;
4155 }
4156 }
4157
4158 if (ok_count == mpb->num_disks)
4159 return super;
4160 return NULL;
4161 }
4162
4163 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4164 {
4165 struct intel_super *s;
4166
4167 for (s = super_list; s; s = s->next) {
4168 if (family_num != s->anchor->family_num)
4169 continue;
4170 pr_err("Conflict, offlining family %#x on '%s'\n",
4171 __le32_to_cpu(family_num), s->disks->devname);
4172 }
4173 }
4174
4175 static struct intel_super *
4176 imsm_thunderdome(struct intel_super **super_list, int len)
4177 {
4178 struct intel_super *super_table[len];
4179 struct intel_disk *disk_list = NULL;
4180 struct intel_super *champion, *spare;
4181 struct intel_super *s, **del;
4182 int tbl_size = 0;
4183 int conflict;
4184 int i;
4185
4186 memset(super_table, 0, sizeof(super_table));
4187 for (s = *super_list; s; s = s->next)
4188 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4189
4190 for (i = 0; i < tbl_size; i++) {
4191 struct imsm_disk *d;
4192 struct intel_disk *idisk;
4193 struct imsm_super *mpb = super_table[i]->anchor;
4194
4195 s = super_table[i];
4196 d = &s->disks->disk;
4197
4198 /* 'd' must appear in merged disk list for its
4199 * configuration to be valid
4200 */
4201 idisk = disk_list_get(d->serial, disk_list);
4202 if (idisk && idisk->owner == i)
4203 s = validate_members(s, disk_list, i);
4204 else
4205 s = NULL;
4206
4207 if (!s)
4208 dprintf("marking family: %#x from %d:%d offline\n",
4209 mpb->family_num,
4210 super_table[i]->disks->major,
4211 super_table[i]->disks->minor);
4212 super_table[i] = s;
4213 }
4214
4215 /* This is where the mdadm implementation differs from the Windows
4216 * driver which has no strict concept of a container. We can only
4217 * assemble one family from a container, so when returning a prodigal
4218 * array member to this system the code will not be able to disambiguate
4219 * the container contents that should be assembled ("foreign" versus
4220 * "local"). It requires user intervention to set the orig_family_num
4221 * to a new value to establish a new container. The Windows driver in
4222 * this situation fixes up the volume name in place and manages the
4223 * foreign array as an independent entity.
4224 */
4225 s = NULL;
4226 spare = NULL;
4227 conflict = 0;
4228 for (i = 0; i < tbl_size; i++) {
4229 struct intel_super *tbl_ent = super_table[i];
4230 int is_spare = 0;
4231
4232 if (!tbl_ent)
4233 continue;
4234
4235 if (tbl_ent->anchor->num_raid_devs == 0) {
4236 spare = tbl_ent;
4237 is_spare = 1;
4238 }
4239
4240 if (s && !is_spare) {
4241 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4242 conflict++;
4243 } else if (!s && !is_spare)
4244 s = tbl_ent;
4245 }
4246
4247 if (!s)
4248 s = spare;
4249 if (!s) {
4250 champion = NULL;
4251 goto out;
4252 }
4253 champion = s;
4254
4255 if (conflict)
4256 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
4257 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4258
4259 /* collect all dl's onto 'champion', and update them to
4260 * champion's version of the status
4261 */
4262 for (s = *super_list; s; s = s->next) {
4263 struct imsm_super *mpb = champion->anchor;
4264 struct dl *dl = s->disks;
4265
4266 if (s == champion)
4267 continue;
4268
4269 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4270
4271 for (i = 0; i < mpb->num_disks; i++) {
4272 struct imsm_disk *disk;
4273
4274 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4275 if (disk) {
4276 dl->disk = *disk;
4277 /* only set index on disks that are a member of
4278 * a populated contianer, i.e. one with
4279 * raid_devs
4280 */
4281 if (is_failed(&dl->disk))
4282 dl->index = -2;
4283 else if (is_spare(&dl->disk))
4284 dl->index = -1;
4285 break;
4286 }
4287 }
4288
4289 if (i >= mpb->num_disks) {
4290 struct intel_disk *idisk;
4291
4292 idisk = disk_list_get(dl->serial, disk_list);
4293 if (idisk && is_spare(&idisk->disk) &&
4294 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4295 dl->index = -1;
4296 else {
4297 dl->index = -2;
4298 continue;
4299 }
4300 }
4301
4302 dl->next = champion->disks;
4303 champion->disks = dl;
4304 s->disks = NULL;
4305 }
4306
4307 /* delete 'champion' from super_list */
4308 for (del = super_list; *del; ) {
4309 if (*del == champion) {
4310 *del = (*del)->next;
4311 break;
4312 } else
4313 del = &(*del)->next;
4314 }
4315 champion->next = NULL;
4316
4317 out:
4318 while (disk_list) {
4319 struct intel_disk *idisk = disk_list;
4320
4321 disk_list = disk_list->next;
4322 free(idisk);
4323 }
4324
4325 return champion;
4326 }
4327
4328 static int
4329 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4330 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4331 int major, int minor, int keep_fd);
4332 static int
4333 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4334 int *max, int keep_fd);
4335
4336 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4337 char *devname, struct md_list *devlist,
4338 int keep_fd)
4339 {
4340 struct intel_super *super_list = NULL;
4341 struct intel_super *super = NULL;
4342 int err = 0;
4343 int i = 0;
4344
4345 if (fd >= 0)
4346 /* 'fd' is an opened container */
4347 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4348 else
4349 /* get super block from devlist devices */
4350 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4351 if (err)
4352 goto error;
4353 /* all mpbs enter, maybe one leaves */
4354 super = imsm_thunderdome(&super_list, i);
4355 if (!super) {
4356 err = 1;
4357 goto error;
4358 }
4359
4360 if (find_missing(super) != 0) {
4361 free_imsm(super);
4362 err = 2;
4363 goto error;
4364 }
4365
4366 /* load migration record */
4367 err = load_imsm_migr_rec(super, NULL);
4368 if (err == -1) {
4369 /* migration is in progress,
4370 * but migr_rec cannot be loaded,
4371 */
4372 err = 4;
4373 goto error;
4374 }
4375
4376 /* Check migration compatibility */
4377 if ((err == 0) && (check_mpb_migr_compatibility(super) != 0)) {
4378 pr_err("Unsupported migration detected");
4379 if (devname)
4380 fprintf(stderr, " on %s\n", devname);
4381 else
4382 fprintf(stderr, " (IMSM).\n");
4383
4384 err = 5;
4385 goto error;
4386 }
4387
4388 err = 0;
4389
4390 error:
4391 while (super_list) {
4392 struct intel_super *s = super_list;
4393
4394 super_list = super_list->next;
4395 free_imsm(s);
4396 }
4397
4398 if (err)
4399 return err;
4400
4401 *sbp = super;
4402 if (fd >= 0)
4403 strcpy(st->container_devnm, fd2devnm(fd));
4404 else
4405 st->container_devnm[0] = 0;
4406 if (err == 0 && st->ss == NULL) {
4407 st->ss = &super_imsm;
4408 st->minor_version = 0;
4409 st->max_devs = IMSM_MAX_DEVICES;
4410 }
4411 return 0;
4412 }
4413
4414 static int
4415 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4416 int *max, int keep_fd)
4417 {
4418 struct md_list *tmpdev;
4419 int err = 0;
4420 int i = 0;
4421
4422 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4423 if (tmpdev->used != 1)
4424 continue;
4425 if (tmpdev->container == 1) {
4426 int lmax = 0;
4427 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4428 if (fd < 0) {
4429 pr_err("cannot open device %s: %s\n",
4430 tmpdev->devname, strerror(errno));
4431 err = 8;
4432 goto error;
4433 }
4434 err = get_sra_super_block(fd, super_list,
4435 tmpdev->devname, &lmax,
4436 keep_fd);
4437 i += lmax;
4438 close(fd);
4439 if (err) {
4440 err = 7;
4441 goto error;
4442 }
4443 } else {
4444 int major = major(tmpdev->st_rdev);
4445 int minor = minor(tmpdev->st_rdev);
4446 err = get_super_block(super_list,
4447 NULL,
4448 tmpdev->devname,
4449 major, minor,
4450 keep_fd);
4451 i++;
4452 if (err) {
4453 err = 6;
4454 goto error;
4455 }
4456 }
4457 }
4458 error:
4459 *max = i;
4460 return err;
4461 }
4462
4463 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4464 int major, int minor, int keep_fd)
4465 {
4466 struct intel_super*s = NULL;
4467 char nm[32];
4468 int dfd = -1;
4469 int err = 0;
4470 int retry;
4471
4472 s = alloc_super();
4473 if (!s) {
4474 err = 1;
4475 goto error;
4476 }
4477
4478 sprintf(nm, "%d:%d", major, minor);
4479 dfd = dev_open(nm, O_RDWR);
4480 if (dfd < 0) {
4481 err = 2;
4482 goto error;
4483 }
4484
4485 find_intel_hba_capability(dfd, s, devname);
4486 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4487
4488 /* retry the load if we might have raced against mdmon */
4489 if (err == 3 && devnm && mdmon_running(devnm))
4490 for (retry = 0; retry < 3; retry++) {
4491 usleep(3000);
4492 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4493 if (err != 3)
4494 break;
4495 }
4496 error:
4497 if (!err) {
4498 s->next = *super_list;
4499 *super_list = s;
4500 } else {
4501 if (s)
4502 free(s);
4503 if (dfd >= 0)
4504 close(dfd);
4505 }
4506 if ((dfd >= 0) && (!keep_fd))
4507 close(dfd);
4508 return err;
4509
4510 }
4511
4512 static int
4513 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4514 {
4515 struct mdinfo *sra;
4516 char *devnm;
4517 struct mdinfo *sd;
4518 int err = 0;
4519 int i = 0;
4520 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4521 if (!sra)
4522 return 1;
4523
4524 if (sra->array.major_version != -1 ||
4525 sra->array.minor_version != -2 ||
4526 strcmp(sra->text_version, "imsm") != 0) {
4527 err = 1;
4528 goto error;
4529 }
4530 /* load all mpbs */
4531 devnm = fd2devnm(fd);
4532 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4533 if (get_super_block(super_list, devnm, devname,
4534 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4535 err = 7;
4536 goto error;
4537 }
4538 }
4539 error:
4540 sysfs_free(sra);
4541 *max = i;
4542 return err;
4543 }
4544
4545 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4546 {
4547 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
4548 }
4549 #endif
4550
4551 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4552 {
4553 struct intel_super *super;
4554 int rv;
4555 int retry;
4556
4557 if (test_partition(fd))
4558 /* IMSM not allowed on partitions */
4559 return 1;
4560
4561 free_super_imsm(st);
4562
4563 super = alloc_super();
4564 /* Load hba and capabilities if they exist.
4565 * But do not preclude loading metadata in case capabilities or hba are
4566 * non-compliant and ignore_hw_compat is set.
4567 */
4568 rv = find_intel_hba_capability(fd, super, devname);
4569 /* no orom/efi or non-intel hba of the disk */
4570 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4571 if (devname)
4572 pr_err("No OROM/EFI properties for %s\n", devname);
4573 free_imsm(super);
4574 return 2;
4575 }
4576 rv = load_and_parse_mpb(fd, super, devname, 0);
4577
4578 /* retry the load if we might have raced against mdmon */
4579 if (rv == 3) {
4580 struct mdstat_ent *mdstat = mdstat_by_component(fd2devnm(fd));
4581
4582 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
4583 for (retry = 0; retry < 3; retry++) {
4584 usleep(3000);
4585 rv = load_and_parse_mpb(fd, super, devname, 0);
4586 if (rv != 3)
4587 break;
4588 }
4589 }
4590
4591 free_mdstat(mdstat);
4592 }
4593
4594 if (rv) {
4595 if (devname)
4596 pr_err("Failed to load all information sections on %s\n", devname);
4597 free_imsm(super);
4598 return rv;
4599 }
4600
4601 st->sb = super;
4602 if (st->ss == NULL) {
4603 st->ss = &super_imsm;
4604 st->minor_version = 0;
4605 st->max_devs = IMSM_MAX_DEVICES;
4606 }
4607
4608 /* load migration record */
4609 if (load_imsm_migr_rec(super, NULL) == 0) {
4610 /* Check for unsupported migration features */
4611 if (check_mpb_migr_compatibility(super) != 0) {
4612 pr_err("Unsupported migration detected");
4613 if (devname)
4614 fprintf(stderr, " on %s\n", devname);
4615 else
4616 fprintf(stderr, " (IMSM).\n");
4617 return 3;
4618 }
4619 }
4620
4621 return 0;
4622 }
4623
4624 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4625 {
4626 if (info->level == 1)
4627 return 128;
4628 return info->chunk_size >> 9;
4629 }
4630
4631 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
4632 unsigned long long size)
4633 {
4634 if (info->level == 1)
4635 return size * 2;
4636 else
4637 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4638 }
4639
4640 static void imsm_update_version_info(struct intel_super *super)
4641 {
4642 /* update the version and attributes */
4643 struct imsm_super *mpb = super->anchor;
4644 char *version;
4645 struct imsm_dev *dev;
4646 struct imsm_map *map;
4647 int i;
4648
4649 for (i = 0; i < mpb->num_raid_devs; i++) {
4650 dev = get_imsm_dev(super, i);
4651 map = get_imsm_map(dev, MAP_0);
4652 if (__le32_to_cpu(dev->size_high) > 0)
4653 mpb->attributes |= MPB_ATTRIB_2TB;
4654
4655 /* FIXME detect when an array spans a port multiplier */
4656 #if 0
4657 mpb->attributes |= MPB_ATTRIB_PM;
4658 #endif
4659
4660 if (mpb->num_raid_devs > 1 ||
4661 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4662 version = MPB_VERSION_ATTRIBS;
4663 switch (get_imsm_raid_level(map)) {
4664 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4665 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4666 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4667 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4668 }
4669 } else {
4670 if (map->num_members >= 5)
4671 version = MPB_VERSION_5OR6_DISK_ARRAY;
4672 else if (dev->status == DEV_CLONE_N_GO)
4673 version = MPB_VERSION_CNG;
4674 else if (get_imsm_raid_level(map) == 5)
4675 version = MPB_VERSION_RAID5;
4676 else if (map->num_members >= 3)
4677 version = MPB_VERSION_3OR4_DISK_ARRAY;
4678 else if (get_imsm_raid_level(map) == 1)
4679 version = MPB_VERSION_RAID1;
4680 else
4681 version = MPB_VERSION_RAID0;
4682 }
4683 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4684 }
4685 }
4686
4687 static int check_name(struct intel_super *super, char *name, int quiet)
4688 {
4689 struct imsm_super *mpb = super->anchor;
4690 char *reason = NULL;
4691 int i;
4692
4693 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4694 reason = "must be 16 characters or less";
4695
4696 for (i = 0; i < mpb->num_raid_devs; i++) {
4697 struct imsm_dev *dev = get_imsm_dev(super, i);
4698
4699 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4700 reason = "already exists";
4701 break;
4702 }
4703 }
4704
4705 if (reason && !quiet)
4706 pr_err("imsm volume name %s\n", reason);
4707
4708 return !reason;
4709 }
4710
4711 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4712 unsigned long long size, char *name,
4713 char *homehost, int *uuid,
4714 long long data_offset)
4715 {
4716 /* We are creating a volume inside a pre-existing container.
4717 * so st->sb is already set.
4718 */
4719 struct intel_super *super = st->sb;
4720 struct imsm_super *mpb = super->anchor;
4721 struct intel_dev *dv;
4722 struct imsm_dev *dev;
4723 struct imsm_vol *vol;
4724 struct imsm_map *map;
4725 int idx = mpb->num_raid_devs;
4726 int i;
4727 unsigned long long array_blocks;
4728 size_t size_old, size_new;
4729 unsigned long long num_data_stripes;
4730
4731 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4732 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
4733 return 0;
4734 }
4735
4736 /* ensure the mpb is large enough for the new data */
4737 size_old = __le32_to_cpu(mpb->mpb_size);
4738 size_new = disks_to_mpb_size(info->nr_disks);
4739 if (size_new > size_old) {
4740 void *mpb_new;
4741 size_t size_round = ROUND_UP(size_new, 512);
4742
4743 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4744 pr_err("could not allocate new mpb\n");
4745 return 0;
4746 }
4747 if (posix_memalign(&super->migr_rec_buf, 512,
4748 MIGR_REC_BUF_SIZE) != 0) {
4749 pr_err("could not allocate migr_rec buffer\n");
4750 free(super->buf);
4751 free(super);
4752 free(mpb_new);
4753 return 0;
4754 }
4755 memcpy(mpb_new, mpb, size_old);
4756 free(mpb);
4757 mpb = mpb_new;
4758 super->anchor = mpb_new;
4759 mpb->mpb_size = __cpu_to_le32(size_new);
4760 memset(mpb_new + size_old, 0, size_round - size_old);
4761 }
4762 super->current_vol = idx;
4763
4764 /* handle 'failed_disks' by either:
4765 * a) create dummy disk entries in the table if this the first
4766 * volume in the array. We add them here as this is the only
4767 * opportunity to add them. add_to_super_imsm_volume()
4768 * handles the non-failed disks and continues incrementing
4769 * mpb->num_disks.
4770 * b) validate that 'failed_disks' matches the current number
4771 * of missing disks if the container is populated
4772 */
4773 if (super->current_vol == 0) {
4774 mpb->num_disks = 0;
4775 for (i = 0; i < info->failed_disks; i++) {
4776 struct imsm_disk *disk;
4777
4778 mpb->num_disks++;
4779 disk = __get_imsm_disk(mpb, i);
4780 disk->status = CONFIGURED_DISK | FAILED_DISK;
4781 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4782 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4783 "missing:%d", i);
4784 }
4785 find_missing(super);
4786 } else {
4787 int missing = 0;
4788 struct dl *d;
4789
4790 for (d = super->missing; d; d = d->next)
4791 missing++;
4792 if (info->failed_disks > missing) {
4793 pr_err("unable to add 'missing' disk to container\n");
4794 return 0;
4795 }
4796 }
4797
4798 if (!check_name(super, name, 0))
4799 return 0;
4800 dv = xmalloc(sizeof(*dv));
4801 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4802 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4803 array_blocks = calc_array_size(info->level, info->raid_disks,
4804 info->layout, info->chunk_size,
4805 size * 2);
4806 /* round array size down to closest MB */
4807 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4808
4809 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4810 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4811 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4812 vol = &dev->vol;
4813 vol->migr_state = 0;
4814 set_migr_type(dev, MIGR_INIT);
4815 vol->dirty = !info->state;
4816 vol->curr_migr_unit = 0;
4817 map = get_imsm_map(dev, MAP_0);
4818 set_pba_of_lba0(map, super->create_offset);
4819 set_blocks_per_member(map, info_to_blocks_per_member(info, size));
4820 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4821 map->failed_disk_num = ~0;
4822 if (info->level > 0)
4823 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
4824 : IMSM_T_STATE_UNINITIALIZED);
4825 else
4826 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4827 IMSM_T_STATE_NORMAL;
4828 map->ddf = 1;
4829
4830 if (info->level == 1 && info->raid_disks > 2) {
4831 free(dev);
4832 free(dv);
4833 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
4834 return 0;
4835 }
4836
4837 map->raid_level = info->level;
4838 if (info->level == 10) {
4839 map->raid_level = 1;
4840 map->num_domains = info->raid_disks / 2;
4841 } else if (info->level == 1)
4842 map->num_domains = info->raid_disks;
4843 else
4844 map->num_domains = 1;
4845
4846 /* info->size is only int so use the 'size' parameter instead */
4847 num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
4848 num_data_stripes /= map->num_domains;
4849 set_num_data_stripes(map, num_data_stripes);
4850
4851 map->num_members = info->raid_disks;
4852 for (i = 0; i < map->num_members; i++) {
4853 /* initialized in add_to_super */
4854 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4855 }
4856 mpb->num_raid_devs++;
4857
4858 dv->dev = dev;
4859 dv->index = super->current_vol;
4860 dv->next = super->devlist;
4861 super->devlist = dv;
4862
4863 imsm_update_version_info(super);
4864
4865 return 1;
4866 }
4867
4868 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4869 unsigned long long size, char *name,
4870 char *homehost, int *uuid,
4871 unsigned long long data_offset)
4872 {
4873 /* This is primarily called by Create when creating a new array.
4874 * We will then get add_to_super called for each component, and then
4875 * write_init_super called to write it out to each device.
4876 * For IMSM, Create can create on fresh devices or on a pre-existing
4877 * array.
4878 * To create on a pre-existing array a different method will be called.
4879 * This one is just for fresh drives.
4880 */
4881 struct intel_super *super;
4882 struct imsm_super *mpb;
4883 size_t mpb_size;
4884 char *version;
4885
4886 if (data_offset != INVALID_SECTORS) {
4887 pr_err("data-offset not supported by imsm\n");
4888 return 0;
4889 }
4890
4891 if (st->sb)
4892 return init_super_imsm_volume(st, info, size, name, homehost, uuid,
4893 data_offset);
4894
4895 if (info)
4896 mpb_size = disks_to_mpb_size(info->nr_disks);
4897 else
4898 mpb_size = 512;
4899
4900 super = alloc_super();
4901 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4902 free(super);
4903 super = NULL;
4904 }
4905 if (!super) {
4906 pr_err("could not allocate superblock\n");
4907 return 0;
4908 }
4909 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
4910 pr_err("could not allocate migr_rec buffer\n");
4911 free(super->buf);
4912 free(super);
4913 return 0;
4914 }
4915 memset(super->buf, 0, mpb_size);
4916 mpb = super->buf;
4917 mpb->mpb_size = __cpu_to_le32(mpb_size);
4918 st->sb = super;
4919
4920 if (info == NULL) {
4921 /* zeroing superblock */
4922 return 0;
4923 }
4924
4925 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4926
4927 version = (char *) mpb->sig;
4928 strcpy(version, MPB_SIGNATURE);
4929 version += strlen(MPB_SIGNATURE);
4930 strcpy(version, MPB_VERSION_RAID0);
4931
4932 return 1;
4933 }
4934
4935 #ifndef MDASSEMBLE
4936 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4937 int fd, char *devname)
4938 {
4939 struct intel_super *super = st->sb;
4940 struct imsm_super *mpb = super->anchor;
4941 struct imsm_disk *_disk;
4942 struct imsm_dev *dev;
4943 struct imsm_map *map;
4944 struct dl *dl, *df;
4945 int slot;
4946
4947 dev = get_imsm_dev(super, super->current_vol);
4948 map = get_imsm_map(dev, MAP_0);
4949
4950 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4951 pr_err("%s: Cannot add spare devices to IMSM volume\n",
4952 devname);
4953 return 1;
4954 }
4955
4956 if (fd == -1) {
4957 /* we're doing autolayout so grab the pre-marked (in
4958 * validate_geometry) raid_disk
4959 */
4960 for (dl = super->disks; dl; dl = dl->next)
4961 if (dl->raiddisk == dk->raid_disk)
4962 break;
4963 } else {
4964 for (dl = super->disks; dl ; dl = dl->next)
4965 if (dl->major == dk->major &&
4966 dl->minor == dk->minor)
4967 break;
4968 }
4969
4970 if (!dl) {
4971 pr_err("%s is not a member of the same container\n", devname);
4972 return 1;
4973 }
4974
4975 /* add a pristine spare to the metadata */
4976 if (dl->index < 0) {
4977 dl->index = super->anchor->num_disks;
4978 super->anchor->num_disks++;
4979 }
4980 /* Check the device has not already been added */
4981 slot = get_imsm_disk_slot(map, dl->index);
4982 if (slot >= 0 &&
4983 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
4984 pr_err("%s has been included in this array twice\n",
4985 devname);
4986 return 1;
4987 }
4988 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4989 dl->disk.status = CONFIGURED_DISK;
4990
4991 /* update size of 'missing' disks to be at least as large as the
4992 * largest acitve member (we only have dummy missing disks when
4993 * creating the first volume)
4994 */
4995 if (super->current_vol == 0) {
4996 for (df = super->missing; df; df = df->next) {
4997 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
4998 set_total_blocks(&df->disk, total_blocks(&dl->disk));
4999 _disk = __get_imsm_disk(mpb, df->index);
5000 *_disk = df->disk;
5001 }
5002 }
5003
5004 /* refresh unset/failed slots to point to valid 'missing' entries */
5005 for (df = super->missing; df; df = df->next)
5006 for (slot = 0; slot < mpb->num_disks; slot++) {
5007 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5008
5009 if ((ord & IMSM_ORD_REBUILD) == 0)
5010 continue;
5011 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
5012 if (is_gen_migration(dev)) {
5013 struct imsm_map *map2 = get_imsm_map(dev,
5014 MAP_1);
5015 int slot2 = get_imsm_disk_slot(map2, df->index);
5016 if ((slot2 < map2->num_members) &&
5017 (slot2 >= 0)) {
5018 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
5019 slot2,
5020 MAP_1);
5021 if ((unsigned)df->index ==
5022 ord_to_idx(ord2))
5023 set_imsm_ord_tbl_ent(map2,
5024 slot2,
5025 df->index |
5026 IMSM_ORD_REBUILD);
5027 }
5028 }
5029 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5030 break;
5031 }
5032
5033 /* if we are creating the first raid device update the family number */
5034 if (super->current_vol == 0) {
5035 __u32 sum;
5036 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
5037
5038 _disk = __get_imsm_disk(mpb, dl->index);
5039 if (!_dev || !_disk) {
5040 pr_err("BUG mpb setup error\n");
5041 return 1;
5042 }
5043 *_dev = *dev;
5044 *_disk = dl->disk;
5045 sum = random32();
5046 sum += __gen_imsm_checksum(mpb);
5047 mpb->family_num = __cpu_to_le32(sum);
5048 mpb->orig_family_num = mpb->family_num;
5049 }
5050 super->current_disk = dl;
5051 return 0;
5052 }
5053
5054 /* mark_spare()
5055 * Function marks disk as spare and restores disk serial
5056 * in case it was previously marked as failed by takeover operation
5057 * reruns:
5058 * -1 : critical error
5059 * 0 : disk is marked as spare but serial is not set
5060 * 1 : success
5061 */
5062 int mark_spare(struct dl *disk)
5063 {
5064 __u8 serial[MAX_RAID_SERIAL_LEN];
5065 int ret_val = -1;
5066
5067 if (!disk)
5068 return ret_val;
5069
5070 ret_val = 0;
5071 if (!imsm_read_serial(disk->fd, NULL, serial)) {
5072 /* Restore disk serial number, because takeover marks disk
5073 * as failed and adds to serial ':0' before it becomes
5074 * a spare disk.
5075 */
5076 serialcpy(disk->serial, serial);
5077 serialcpy(disk->disk.serial, serial);
5078 ret_val = 1;
5079 }
5080 disk->disk.status = SPARE_DISK;
5081 disk->index = -1;
5082
5083 return ret_val;
5084 }
5085
5086 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
5087 int fd, char *devname,
5088 unsigned long long data_offset)
5089 {
5090 struct intel_super *super = st->sb;
5091 struct dl *dd;
5092 unsigned long long size;
5093 __u32 id;
5094 int rv;
5095 struct stat stb;
5096
5097 /* If we are on an RAID enabled platform check that the disk is
5098 * attached to the raid controller.
5099 * We do not need to test disks attachment for container based additions,
5100 * they shall be already tested when container was created/assembled.
5101 */
5102 rv = find_intel_hba_capability(fd, super, devname);
5103 /* no orom/efi or non-intel hba of the disk */
5104 if (rv != 0) {
5105 dprintf("capability: %p fd: %d ret: %d\n",
5106 super->orom, fd, rv);
5107 return 1;
5108 }
5109
5110 if (super->current_vol >= 0)
5111 return add_to_super_imsm_volume(st, dk, fd, devname);
5112
5113 fstat(fd, &stb);
5114 dd = xcalloc(sizeof(*dd), 1);
5115 dd->major = major(stb.st_rdev);
5116 dd->minor = minor(stb.st_rdev);
5117 dd->devname = devname ? xstrdup(devname) : NULL;
5118 dd->fd = fd;
5119 dd->e = NULL;
5120 dd->action = DISK_ADD;
5121 rv = imsm_read_serial(fd, devname, dd->serial);
5122 if (rv) {
5123 pr_err("failed to retrieve scsi serial, aborting\n");
5124 free(dd);
5125 abort();
5126 }
5127
5128 get_dev_size(fd, NULL, &size);
5129 /* clear migr_rec when adding disk to container */
5130 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5131 if (lseek64(fd, size - MIGR_REC_POSITION, SEEK_SET) >= 0) {
5132 if (write(fd, super->migr_rec_buf,
5133 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5134 perror("Write migr_rec failed");
5135 }
5136
5137 size /= 512;
5138 serialcpy(dd->disk.serial, dd->serial);
5139 set_total_blocks(&dd->disk, size);
5140 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5141 struct imsm_super *mpb = super->anchor;
5142 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5143 }
5144 mark_spare(dd);
5145 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
5146 dd->disk.scsi_id = __cpu_to_le32(id);
5147 else
5148 dd->disk.scsi_id = __cpu_to_le32(0);
5149
5150 if (st->update_tail) {
5151 dd->next = super->disk_mgmt_list;
5152 super->disk_mgmt_list = dd;
5153 } else {
5154 dd->next = super->disks;
5155 super->disks = dd;
5156 super->updates_pending++;
5157 }
5158
5159 return 0;
5160 }
5161
5162 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5163 {
5164 struct intel_super *super = st->sb;
5165 struct dl *dd;
5166
5167 /* remove from super works only in mdmon - for communication
5168 * manager - monitor. Check if communication memory buffer
5169 * is prepared.
5170 */
5171 if (!st->update_tail) {
5172 pr_err("shall be used in mdmon context only\n");
5173 return 1;
5174 }
5175 dd = xcalloc(1, sizeof(*dd));
5176 dd->major = dk->major;
5177 dd->minor = dk->minor;
5178 dd->fd = -1;
5179 mark_spare(dd);
5180 dd->action = DISK_REMOVE;
5181
5182 dd->next = super->disk_mgmt_list;
5183 super->disk_mgmt_list = dd;
5184
5185 return 0;
5186 }
5187
5188 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5189
5190 static union {
5191 char buf[512];
5192 struct imsm_super anchor;
5193 } spare_record __attribute__ ((aligned(512)));
5194
5195 /* spare records have their own family number and do not have any defined raid
5196 * devices
5197 */
5198 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5199 {
5200 struct imsm_super *mpb = super->anchor;
5201 struct imsm_super *spare = &spare_record.anchor;
5202 __u32 sum;
5203 struct dl *d;
5204
5205 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5206 spare->generation_num = __cpu_to_le32(1UL);
5207 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5208 spare->num_disks = 1;
5209 spare->num_raid_devs = 0;
5210 spare->cache_size = mpb->cache_size;
5211 spare->pwr_cycle_count = __cpu_to_le32(1);
5212
5213 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5214 MPB_SIGNATURE MPB_VERSION_RAID0);
5215
5216 for (d = super->disks; d; d = d->next) {
5217 if (d->index != -1)
5218 continue;
5219
5220 spare->disk[0] = d->disk;
5221 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5222 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5223
5224 sum = __gen_imsm_checksum(spare);
5225 spare->family_num = __cpu_to_le32(sum);
5226 spare->orig_family_num = 0;
5227 sum = __gen_imsm_checksum(spare);
5228 spare->check_sum = __cpu_to_le32(sum);
5229
5230 if (store_imsm_mpb(d->fd, spare)) {
5231 pr_err("failed for device %d:%d %s\n",
5232 d->major, d->minor, strerror(errno));
5233 return 1;
5234 }
5235 if (doclose) {
5236 close(d->fd);
5237 d->fd = -1;
5238 }
5239 }
5240
5241 return 0;
5242 }
5243
5244 static int write_super_imsm(struct supertype *st, int doclose)
5245 {
5246 struct intel_super *super = st->sb;
5247 struct imsm_super *mpb = super->anchor;
5248 struct dl *d;
5249 __u32 generation;
5250 __u32 sum;
5251 int spares = 0;
5252 int i;
5253 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5254 int num_disks = 0;
5255 int clear_migration_record = 1;
5256
5257 /* 'generation' is incremented everytime the metadata is written */
5258 generation = __le32_to_cpu(mpb->generation_num);
5259 generation++;
5260 mpb->generation_num = __cpu_to_le32(generation);
5261
5262 /* fix up cases where previous mdadm releases failed to set
5263 * orig_family_num
5264 */
5265 if (mpb->orig_family_num == 0)
5266 mpb->orig_family_num = mpb->family_num;
5267
5268 for (d = super->disks; d; d = d->next) {
5269 if (d->index == -1)
5270 spares++;
5271 else {
5272 mpb->disk[d->index] = d->disk;
5273 num_disks++;
5274 }
5275 }
5276 for (d = super->missing; d; d = d->next) {
5277 mpb->disk[d->index] = d->disk;
5278 num_disks++;
5279 }
5280 mpb->num_disks = num_disks;
5281 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5282
5283 for (i = 0; i < mpb->num_raid_devs; i++) {
5284 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5285 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5286 if (dev && dev2) {
5287 imsm_copy_dev(dev, dev2);
5288 mpb_size += sizeof_imsm_dev(dev, 0);
5289 }
5290 if (is_gen_migration(dev2))
5291 clear_migration_record = 0;
5292 }
5293 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
5294 mpb->mpb_size = __cpu_to_le32(mpb_size);
5295
5296 /* recalculate checksum */
5297 sum = __gen_imsm_checksum(mpb);
5298 mpb->check_sum = __cpu_to_le32(sum);
5299
5300 if (super->clean_migration_record_by_mdmon) {
5301 clear_migration_record = 1;
5302 super->clean_migration_record_by_mdmon = 0;
5303 }
5304 if (clear_migration_record)
5305 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5306
5307 /* write the mpb for disks that compose raid devices */
5308 for (d = super->disks; d ; d = d->next) {
5309 if (d->index < 0 || is_failed(&d->disk))
5310 continue;
5311
5312 if (clear_migration_record) {
5313 unsigned long long dsize;
5314
5315 get_dev_size(d->fd, NULL, &dsize);
5316 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
5317 if (write(d->fd, super->migr_rec_buf,
5318 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5319 perror("Write migr_rec failed");
5320 }
5321 }
5322
5323 if (store_imsm_mpb(d->fd, mpb))
5324 fprintf(stderr,
5325 "failed for device %d:%d (fd: %d)%s\n",
5326 d->major, d->minor,
5327 d->fd, strerror(errno));
5328
5329 if (doclose) {
5330 close(d->fd);
5331 d->fd = -1;
5332 }
5333 }
5334
5335 if (spares)
5336 return write_super_imsm_spares(super, doclose);
5337
5338 return 0;
5339 }
5340
5341 static int create_array(struct supertype *st, int dev_idx)
5342 {
5343 size_t len;
5344 struct imsm_update_create_array *u;
5345 struct intel_super *super = st->sb;
5346 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
5347 struct imsm_map *map = get_imsm_map(dev, MAP_0);
5348 struct disk_info *inf;
5349 struct imsm_disk *disk;
5350 int i;
5351
5352 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5353 sizeof(*inf) * map->num_members;
5354 u = xmalloc(len);
5355 u->type = update_create_array;
5356 u->dev_idx = dev_idx;
5357 imsm_copy_dev(&u->dev, dev);
5358 inf = get_disk_info(u);
5359 for (i = 0; i < map->num_members; i++) {
5360 int idx = get_imsm_disk_idx(dev, i, MAP_X);
5361
5362 disk = get_imsm_disk(super, idx);
5363 if (!disk)
5364 disk = get_imsm_missing(super, idx);
5365 serialcpy(inf[i].serial, disk->serial);
5366 }
5367 append_metadata_update(st, u, len);
5368
5369 return 0;
5370 }
5371
5372 static int mgmt_disk(struct supertype *st)
5373 {
5374 struct intel_super *super = st->sb;
5375 size_t len;
5376 struct imsm_update_add_remove_disk *u;
5377
5378 if (!super->disk_mgmt_list)
5379 return 0;
5380
5381 len = sizeof(*u);
5382 u = xmalloc(len);
5383 u->type = update_add_remove_disk;
5384 append_metadata_update(st, u, len);
5385
5386 return 0;
5387 }
5388
5389 static int write_init_super_imsm(struct supertype *st)
5390 {
5391 struct intel_super *super = st->sb;
5392 int current_vol = super->current_vol;
5393
5394 /* we are done with current_vol reset it to point st at the container */
5395 super->current_vol = -1;
5396
5397 if (st->update_tail) {
5398 /* queue the recently created array / added disk
5399 * as a metadata update */
5400 int rv;
5401
5402 /* determine if we are creating a volume or adding a disk */
5403 if (current_vol < 0) {
5404 /* in the mgmt (add/remove) disk case we are running
5405 * in mdmon context, so don't close fd's
5406 */
5407 return mgmt_disk(st);
5408 } else
5409 rv = create_array(st, current_vol);
5410
5411 return rv;
5412 } else {
5413 struct dl *d;
5414 for (d = super->disks; d; d = d->next)
5415 Kill(d->devname, NULL, 0, -1, 1);
5416 return write_super_imsm(st, 1);
5417 }
5418 }
5419 #endif
5420
5421 static int store_super_imsm(struct supertype *st, int fd)
5422 {
5423 struct intel_super *super = st->sb;
5424 struct imsm_super *mpb = super ? super->anchor : NULL;
5425
5426 if (!mpb)
5427 return 1;
5428
5429 #ifndef MDASSEMBLE
5430 return store_imsm_mpb(fd, mpb);
5431 #else
5432 return 1;
5433 #endif
5434 }
5435
5436 static int imsm_bbm_log_size(struct imsm_super *mpb)
5437 {
5438 return __le32_to_cpu(mpb->bbm_log_size);
5439 }
5440
5441 #ifndef MDASSEMBLE
5442 static int validate_geometry_imsm_container(struct supertype *st, int level,
5443 int layout, int raiddisks, int chunk,
5444 unsigned long long size,
5445 unsigned long long data_offset,
5446 char *dev,
5447 unsigned long long *freesize,
5448 int verbose)
5449 {
5450 int fd;
5451 unsigned long long ldsize;
5452 struct intel_super *super=NULL;
5453 int rv = 0;
5454
5455 if (level != LEVEL_CONTAINER)
5456 return 0;
5457 if (!dev)
5458 return 1;
5459
5460 fd = open(dev, O_RDONLY|O_EXCL, 0);
5461 if (fd < 0) {
5462 if (verbose > 0)
5463 pr_err("imsm: Cannot open %s: %s\n",
5464 dev, strerror(errno));
5465 return 0;
5466 }
5467 if (!get_dev_size(fd, dev, &ldsize)) {
5468 close(fd);
5469 return 0;
5470 }
5471
5472 /* capabilities retrieve could be possible
5473 * note that there is no fd for the disks in array.
5474 */
5475 super = alloc_super();
5476 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
5477 if (rv != 0) {
5478 #if DEBUG
5479 char str[256];
5480 fd2devname(fd, str);
5481 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5482 fd, str, super->orom, rv, raiddisks);
5483 #endif
5484 /* no orom/efi or non-intel hba of the disk */
5485 close(fd);
5486 free_imsm(super);
5487 return 0;
5488 }
5489 close(fd);
5490 if (super->orom) {
5491 if (raiddisks > super->orom->tds) {
5492 if (verbose)
5493 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
5494 raiddisks, super->orom->tds);
5495 free_imsm(super);
5496 return 0;
5497 }
5498 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
5499 (ldsize >> 9) >> 32 > 0) {
5500 if (verbose)
5501 pr_err("%s exceeds maximum platform supported size\n", dev);
5502 free_imsm(super);
5503 return 0;
5504 }
5505 }
5506
5507 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
5508 free_imsm(super);
5509
5510 return 1;
5511 }
5512
5513 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5514 {
5515 const unsigned long long base_start = e[*idx].start;
5516 unsigned long long end = base_start + e[*idx].size;
5517 int i;
5518
5519 if (base_start == end)
5520 return 0;
5521
5522 *idx = *idx + 1;
5523 for (i = *idx; i < num_extents; i++) {
5524 /* extend overlapping extents */
5525 if (e[i].start >= base_start &&
5526 e[i].start <= end) {
5527 if (e[i].size == 0)
5528 return 0;
5529 if (e[i].start + e[i].size > end)
5530 end = e[i].start + e[i].size;
5531 } else if (e[i].start > end) {
5532 *idx = i;
5533 break;
5534 }
5535 }
5536
5537 return end - base_start;
5538 }
5539
5540 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5541 {
5542 /* build a composite disk with all known extents and generate a new
5543 * 'maxsize' given the "all disks in an array must share a common start
5544 * offset" constraint
5545 */
5546 struct extent *e = xcalloc(sum_extents, sizeof(*e));
5547 struct dl *dl;
5548 int i, j;
5549 int start_extent;
5550 unsigned long long pos;
5551 unsigned long long start = 0;
5552 unsigned long long maxsize;
5553 unsigned long reserve;
5554
5555 /* coalesce and sort all extents. also, check to see if we need to
5556 * reserve space between member arrays
5557 */
5558 j = 0;
5559 for (dl = super->disks; dl; dl = dl->next) {
5560 if (!dl->e)
5561 continue;
5562 for (i = 0; i < dl->extent_cnt; i++)
5563 e[j++] = dl->e[i];
5564 }
5565 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5566
5567 /* merge extents */
5568 i = 0;
5569 j = 0;
5570 while (i < sum_extents) {
5571 e[j].start = e[i].start;
5572 e[j].size = find_size(e, &i, sum_extents);
5573 j++;
5574 if (e[j-1].size == 0)
5575 break;
5576 }
5577
5578 pos = 0;
5579 maxsize = 0;
5580 start_extent = 0;
5581 i = 0;
5582 do {
5583 unsigned long long esize;
5584
5585 esize = e[i].start - pos;
5586 if (esize >= maxsize) {
5587 maxsize = esize;
5588 start = pos;
5589 start_extent = i;
5590 }
5591 pos = e[i].start + e[i].size;
5592 i++;
5593 } while (e[i-1].size);
5594 free(e);
5595
5596 if (maxsize == 0)
5597 return 0;
5598
5599 /* FIXME assumes volume at offset 0 is the first volume in a
5600 * container
5601 */
5602 if (start_extent > 0)
5603 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5604 else
5605 reserve = 0;
5606
5607 if (maxsize < reserve)
5608 return 0;
5609
5610 super->create_offset = ~((unsigned long long) 0);
5611 if (start + reserve > super->create_offset)
5612 return 0; /* start overflows create_offset */
5613 super->create_offset = start + reserve;
5614
5615 return maxsize - reserve;
5616 }
5617
5618 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5619 {
5620 if (level < 0 || level == 6 || level == 4)
5621 return 0;
5622
5623 /* if we have an orom prevent invalid raid levels */
5624 if (orom)
5625 switch (level) {
5626 case 0: return imsm_orom_has_raid0(orom);
5627 case 1:
5628 if (raiddisks > 2)
5629 return imsm_orom_has_raid1e(orom);
5630 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5631 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5632 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5633 }
5634 else
5635 return 1; /* not on an Intel RAID platform so anything goes */
5636
5637 return 0;
5638 }
5639
5640 static int
5641 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
5642 int dpa, int verbose)
5643 {
5644 struct mdstat_ent *mdstat = mdstat_read(0, 0);
5645 struct mdstat_ent *memb = NULL;
5646 int count = 0;
5647 int num = 0;
5648 struct md_list *dv = NULL;
5649 int found;
5650
5651 for (memb = mdstat ; memb ; memb = memb->next) {
5652 if (memb->metadata_version &&
5653 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
5654 (strcmp(&memb->metadata_version[9], name) == 0) &&
5655 !is_subarray(memb->metadata_version+9) &&
5656 memb->members) {
5657 struct dev_member *dev = memb->members;
5658 int fd = -1;
5659 while(dev && (fd < 0)) {
5660 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
5661 num = sprintf(path, "%s%s", "/dev/", dev->name);
5662 if (num > 0)
5663 fd = open(path, O_RDONLY, 0);
5664 if ((num <= 0) || (fd < 0)) {
5665 pr_vrb(": Cannot open %s: %s\n",
5666 dev->name, strerror(errno));
5667 }
5668 free(path);
5669 dev = dev->next;
5670 }
5671 found = 0;
5672 if ((fd >= 0) && disk_attached_to_hba(fd, hba)) {
5673 struct mdstat_ent *vol;
5674 for (vol = mdstat ; vol ; vol = vol->next) {
5675 if ((vol->active > 0) &&
5676 vol->metadata_version &&
5677 is_container_member(vol, memb->devnm)) {
5678 found++;
5679 count++;
5680 }
5681 }
5682 if (*devlist && (found < dpa)) {
5683 dv = xcalloc(1, sizeof(*dv));
5684 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
5685 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
5686 dv->found = found;
5687 dv->used = 0;
5688 dv->next = *devlist;
5689 *devlist = dv;
5690 }
5691 }
5692 if (fd >= 0)
5693 close(fd);
5694 }
5695 }
5696 free_mdstat(mdstat);
5697 return count;
5698 }
5699
5700 #ifdef DEBUG_LOOP
5701 static struct md_list*
5702 get_loop_devices(void)
5703 {
5704 int i;
5705 struct md_list *devlist = NULL;
5706 struct md_list *dv = NULL;
5707
5708 for(i = 0; i < 12; i++) {
5709 dv = xcalloc(1, sizeof(*dv));
5710 dv->devname = xmalloc(40);
5711 sprintf(dv->devname, "/dev/loop%d", i);
5712 dv->next = devlist;
5713 devlist = dv;
5714 }
5715 return devlist;
5716 }
5717 #endif
5718
5719 static struct md_list*
5720 get_devices(const char *hba_path)
5721 {
5722 struct md_list *devlist = NULL;
5723 struct md_list *dv = NULL;
5724 struct dirent *ent;
5725 DIR *dir;
5726 int err = 0;
5727
5728 #if DEBUG_LOOP
5729 devlist = get_loop_devices();
5730 return devlist;
5731 #endif
5732 /* scroll through /sys/dev/block looking for devices attached to
5733 * this hba
5734 */
5735 dir = opendir("/sys/dev/block");
5736 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
5737 int fd;
5738 char buf[1024];
5739 int major, minor;
5740 char *path = NULL;
5741 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
5742 continue;
5743 path = devt_to_devpath(makedev(major, minor));
5744 if (!path)
5745 continue;
5746 if (!path_attached_to_hba(path, hba_path)) {
5747 free(path);
5748 path = NULL;
5749 continue;
5750 }
5751 free(path);
5752 path = NULL;
5753 fd = dev_open(ent->d_name, O_RDONLY);
5754 if (fd >= 0) {
5755 fd2devname(fd, buf);
5756 close(fd);
5757 } else {
5758 pr_err("cannot open device: %s\n",
5759 ent->d_name);
5760 continue;
5761 }
5762
5763 dv = xcalloc(1, sizeof(*dv));
5764 dv->devname = xstrdup(buf);
5765 dv->next = devlist;
5766 devlist = dv;
5767 }
5768 if (err) {
5769 while(devlist) {
5770 dv = devlist;
5771 devlist = devlist->next;
5772 free(dv->devname);
5773 free(dv);
5774 }
5775 }
5776 closedir(dir);
5777 return devlist;
5778 }
5779
5780 static int
5781 count_volumes_list(struct md_list *devlist, char *homehost,
5782 int verbose, int *found)
5783 {
5784 struct md_list *tmpdev;
5785 int count = 0;
5786 struct supertype *st = NULL;
5787
5788 /* first walk the list of devices to find a consistent set
5789 * that match the criterea, if that is possible.
5790 * We flag the ones we like with 'used'.
5791 */
5792 *found = 0;
5793 st = match_metadata_desc_imsm("imsm");
5794 if (st == NULL) {
5795 pr_vrb(": cannot allocate memory for imsm supertype\n");
5796 return 0;
5797 }
5798
5799 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5800 char *devname = tmpdev->devname;
5801 struct stat stb;
5802 struct supertype *tst;
5803 int dfd;
5804 if (tmpdev->used > 1)
5805 continue;
5806 tst = dup_super(st);
5807 if (tst == NULL) {
5808 pr_vrb(": cannot allocate memory for imsm supertype\n");
5809 goto err_1;
5810 }
5811 tmpdev->container = 0;
5812 dfd = dev_open(devname, O_RDONLY|O_EXCL);
5813 if (dfd < 0) {
5814 dprintf("cannot open device %s: %s\n",
5815 devname, strerror(errno));
5816 tmpdev->used = 2;
5817 } else if (fstat(dfd, &stb)< 0) {
5818 /* Impossible! */
5819 dprintf("fstat failed for %s: %s\n",
5820 devname, strerror(errno));
5821 tmpdev->used = 2;
5822 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
5823 dprintf("%s is not a block device.\n",
5824 devname);
5825 tmpdev->used = 2;
5826 } else if (must_be_container(dfd)) {
5827 struct supertype *cst;
5828 cst = super_by_fd(dfd, NULL);
5829 if (cst == NULL) {
5830 dprintf("cannot recognize container type %s\n",
5831 devname);
5832 tmpdev->used = 2;
5833 } else if (tst->ss != st->ss) {
5834 dprintf("non-imsm container - ignore it: %s\n",
5835 devname);
5836 tmpdev->used = 2;
5837 } else if (!tst->ss->load_container ||
5838 tst->ss->load_container(tst, dfd, NULL))
5839 tmpdev->used = 2;
5840 else {
5841 tmpdev->container = 1;
5842 }
5843 if (cst)
5844 cst->ss->free_super(cst);
5845 } else {
5846 tmpdev->st_rdev = stb.st_rdev;
5847 if (tst->ss->load_super(tst,dfd, NULL)) {
5848 dprintf("no RAID superblock on %s\n",
5849 devname);
5850 tmpdev->used = 2;
5851 } else if (tst->ss->compare_super == NULL) {
5852 dprintf("Cannot assemble %s metadata on %s\n",
5853 tst->ss->name, devname);
5854 tmpdev->used = 2;
5855 }
5856 }
5857 if (dfd >= 0)
5858 close(dfd);
5859 if (tmpdev->used == 2 || tmpdev->used == 4) {
5860 /* Ignore unrecognised devices during auto-assembly */
5861 goto loop;
5862 }
5863 else {
5864 struct mdinfo info;
5865 tst->ss->getinfo_super(tst, &info, NULL);
5866
5867 if (st->minor_version == -1)
5868 st->minor_version = tst->minor_version;
5869
5870 if (memcmp(info.uuid, uuid_zero,
5871 sizeof(int[4])) == 0) {
5872 /* this is a floating spare. It cannot define
5873 * an array unless there are no more arrays of
5874 * this type to be found. It can be included
5875 * in an array of this type though.
5876 */
5877 tmpdev->used = 3;
5878 goto loop;
5879 }
5880
5881 if (st->ss != tst->ss ||
5882 st->minor_version != tst->minor_version ||
5883 st->ss->compare_super(st, tst) != 0) {
5884 /* Some mismatch. If exactly one array matches this host,
5885 * we can resolve on that one.
5886 * Or, if we are auto assembling, we just ignore the second
5887 * for now.
5888 */
5889 dprintf("superblock on %s doesn't match others - assembly aborted\n",
5890 devname);
5891 goto loop;
5892 }
5893 tmpdev->used = 1;
5894 *found = 1;
5895 dprintf("found: devname: %s\n", devname);
5896 }
5897 loop:
5898 if (tst)
5899 tst->ss->free_super(tst);
5900 }
5901 if (*found != 0) {
5902 int err;
5903 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
5904 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
5905 for (iter = head; iter; iter = iter->next) {
5906 dprintf("content->text_version: %s vol\n",
5907 iter->text_version);
5908 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
5909 /* do not assemble arrays with unsupported
5910 configurations */
5911 dprintf("Cannot activate member %s.\n",
5912 iter->text_version);
5913 } else
5914 count++;
5915 }
5916 sysfs_free(head);
5917
5918 } else {
5919 dprintf("No valid super block on device list: err: %d %p\n",
5920 err, st->sb);
5921 }
5922 } else {
5923 dprintf("no more devices to examine\n");
5924 }
5925
5926 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5927 if ((tmpdev->used == 1) && (tmpdev->found)) {
5928 if (count) {
5929 if (count < tmpdev->found)
5930 count = 0;
5931 else
5932 count -= tmpdev->found;
5933 }
5934 }
5935 if (tmpdev->used == 1)
5936 tmpdev->used = 4;
5937 }
5938 err_1:
5939 if (st)
5940 st->ss->free_super(st);
5941 return count;
5942 }
5943
5944 static int
5945 count_volumes(struct intel_hba *hba, int dpa, int verbose)
5946 {
5947 struct sys_dev *idev, *intel_devices = find_intel_devices();
5948 int count = 0;
5949 const struct orom_entry *entry;
5950 struct devid_list *dv, *devid_list;
5951
5952 if (!hba || !hba->path)
5953 return 0;
5954
5955 for (idev = intel_devices; idev; idev = idev->next) {
5956 if (strstr(idev->path, hba->path))
5957 break;
5958 }
5959
5960 if (!idev || !idev->dev_id)
5961 return 0;
5962
5963 entry = get_orom_entry_by_device_id(idev->dev_id);
5964
5965 if (!entry || !entry->devid_list)
5966 return 0;
5967
5968 devid_list = entry->devid_list;
5969 for (dv = devid_list; dv; dv = dv->next) {
5970 struct md_list *devlist = NULL;
5971 struct sys_dev *device = device_by_id(dv->devid);
5972 char *hba_path;
5973 int found = 0;
5974
5975 if (device)
5976 hba_path = device->path;
5977 else
5978 return 0;
5979
5980 /* VMD has one orom entry for all domain, but spanning is not allowed.
5981 * VMD arrays should be counted per domain (controller), so skip
5982 * domains that are not the given one.
5983 */
5984 if ((hba->type == SYS_DEV_VMD) &&
5985 (strncmp(device->path, hba->path, strlen(device->path)) != 0))
5986 continue;
5987
5988 devlist = get_devices(hba_path);
5989 /* if no intel devices return zero volumes */
5990 if (devlist == NULL)
5991 return 0;
5992
5993 count += active_arrays_by_format("imsm", hba_path, &devlist, dpa, verbose);
5994 dprintf("path: %s active arrays: %d\n", hba_path, count);
5995 if (devlist == NULL)
5996 return 0;
5997 do {
5998 found = 0;
5999 count += count_volumes_list(devlist,
6000 NULL,
6001 verbose,
6002 &found);
6003 dprintf("found %d count: %d\n", found, count);
6004 } while (found);
6005
6006 dprintf("path: %s total number of volumes: %d\n", hba_path, count);
6007
6008 while (devlist) {
6009 struct md_list *dv = devlist;
6010 devlist = devlist->next;
6011 free(dv->devname);
6012 free(dv);
6013 }
6014 }
6015 return count;
6016 }
6017
6018 static int imsm_default_chunk(const struct imsm_orom *orom)
6019 {
6020 /* up to 512 if the plaform supports it, otherwise the platform max.
6021 * 128 if no platform detected
6022 */
6023 int fs = max(7, orom ? fls(orom->sss) : 0);
6024
6025 return min(512, (1 << fs));
6026 }
6027
6028 static int
6029 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
6030 int raiddisks, int *chunk, unsigned long long size, int verbose)
6031 {
6032 /* check/set platform and metadata limits/defaults */
6033 if (super->orom && raiddisks > super->orom->dpa) {
6034 pr_vrb(": platform supports a maximum of %d disks per array\n",
6035 super->orom->dpa);
6036 return 0;
6037 }
6038
6039 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
6040 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6041 pr_vrb(": platform does not support raid%d with %d disk%s\n",
6042 level, raiddisks, raiddisks > 1 ? "s" : "");
6043 return 0;
6044 }
6045
6046 if (*chunk == 0 || *chunk == UnSet)
6047 *chunk = imsm_default_chunk(super->orom);
6048
6049 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
6050 pr_vrb(": platform does not support a chunk size of: %d\n", *chunk);
6051 return 0;
6052 }
6053
6054 if (layout != imsm_level_to_layout(level)) {
6055 if (level == 5)
6056 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
6057 else if (level == 10)
6058 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
6059 else
6060 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
6061 layout, level);
6062 return 0;
6063 }
6064
6065 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
6066 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
6067 pr_vrb(": platform does not support a volume size over 2TB\n");
6068 return 0;
6069 }
6070
6071 return 1;
6072 }
6073
6074 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
6075 * FIX ME add ahci details
6076 */
6077 static int validate_geometry_imsm_volume(struct supertype *st, int level,
6078 int layout, int raiddisks, int *chunk,
6079 unsigned long long size,
6080 unsigned long long data_offset,
6081 char *dev,
6082 unsigned long long *freesize,
6083 int verbose)
6084 {
6085 struct stat stb;
6086 struct intel_super *super = st->sb;
6087 struct imsm_super *mpb;
6088 struct dl *dl;
6089 unsigned long long pos = 0;
6090 unsigned long long maxsize;
6091 struct extent *e;
6092 int i;
6093
6094 /* We must have the container info already read in. */
6095 if (!super)
6096 return 0;
6097
6098 mpb = super->anchor;
6099
6100 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
6101 pr_err("RAID gemetry validation failed. Cannot proceed with the action(s).\n");
6102 return 0;
6103 }
6104 if (!dev) {
6105 /* General test: make sure there is space for
6106 * 'raiddisks' device extents of size 'size' at a given
6107 * offset
6108 */
6109 unsigned long long minsize = size;
6110 unsigned long long start_offset = MaxSector;
6111 int dcnt = 0;
6112 if (minsize == 0)
6113 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
6114 for (dl = super->disks; dl ; dl = dl->next) {
6115 int found = 0;
6116
6117 pos = 0;
6118 i = 0;
6119 e = get_extents(super, dl);
6120 if (!e) continue;
6121 do {
6122 unsigned long long esize;
6123 esize = e[i].start - pos;
6124 if (esize >= minsize)
6125 found = 1;
6126 if (found && start_offset == MaxSector) {
6127 start_offset = pos;
6128 break;
6129 } else if (found && pos != start_offset) {
6130 found = 0;
6131 break;
6132 }
6133 pos = e[i].start + e[i].size;
6134 i++;
6135 } while (e[i-1].size);
6136 if (found)
6137 dcnt++;
6138 free(e);
6139 }
6140 if (dcnt < raiddisks) {
6141 if (verbose)
6142 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
6143 dcnt, raiddisks);
6144 return 0;
6145 }
6146 return 1;
6147 }
6148
6149 /* This device must be a member of the set */
6150 if (stat(dev, &stb) < 0)
6151 return 0;
6152 if ((S_IFMT & stb.st_mode) != S_IFBLK)
6153 return 0;
6154 for (dl = super->disks ; dl ; dl = dl->next) {
6155 if (dl->major == (int)major(stb.st_rdev) &&
6156 dl->minor == (int)minor(stb.st_rdev))
6157 break;
6158 }
6159 if (!dl) {
6160 if (verbose)
6161 pr_err("%s is not in the same imsm set\n", dev);
6162 return 0;
6163 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6164 /* If a volume is present then the current creation attempt
6165 * cannot incorporate new spares because the orom may not
6166 * understand this configuration (all member disks must be
6167 * members of each array in the container).
6168 */
6169 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
6170 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6171 return 0;
6172 } else if (super->orom && mpb->num_raid_devs > 0 &&
6173 mpb->num_disks != raiddisks) {
6174 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6175 return 0;
6176 }
6177
6178 /* retrieve the largest free space block */
6179 e = get_extents(super, dl);
6180 maxsize = 0;
6181 i = 0;
6182 if (e) {
6183 do {
6184 unsigned long long esize;
6185
6186 esize = e[i].start - pos;
6187 if (esize >= maxsize)
6188 maxsize = esize;
6189 pos = e[i].start + e[i].size;
6190 i++;
6191 } while (e[i-1].size);
6192 dl->e = e;
6193 dl->extent_cnt = i;
6194 } else {
6195 if (verbose)
6196 pr_err("unable to determine free space for: %s\n",
6197 dev);
6198 return 0;
6199 }
6200 if (maxsize < size) {
6201 if (verbose)
6202 pr_err("%s not enough space (%llu < %llu)\n",
6203 dev, maxsize, size);
6204 return 0;
6205 }
6206
6207 /* count total number of extents for merge */
6208 i = 0;
6209 for (dl = super->disks; dl; dl = dl->next)
6210 if (dl->e)
6211 i += dl->extent_cnt;
6212
6213 maxsize = merge_extents(super, i);
6214
6215 if (!check_env("IMSM_NO_PLATFORM") &&
6216 mpb->num_raid_devs > 0 && size && size != maxsize) {
6217 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
6218 return 0;
6219 }
6220
6221 if (maxsize < size || maxsize == 0) {
6222 if (verbose) {
6223 if (maxsize == 0)
6224 pr_err("no free space left on device. Aborting...\n");
6225 else
6226 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
6227 maxsize, size);
6228 }
6229 return 0;
6230 }
6231
6232 *freesize = maxsize;
6233
6234 if (super->orom) {
6235 int count = count_volumes(super->hba,
6236 super->orom->dpa, verbose);
6237 if (super->orom->vphba <= count) {
6238 pr_vrb(": platform does not support more than %d raid volumes.\n",
6239 super->orom->vphba);
6240 return 0;
6241 }
6242 }
6243 return 1;
6244 }
6245
6246 static int imsm_get_free_size(struct supertype *st, int raiddisks,
6247 unsigned long long size, int chunk,
6248 unsigned long long *freesize)
6249 {
6250 struct intel_super *super = st->sb;
6251 struct imsm_super *mpb = super->anchor;
6252 struct dl *dl;
6253 int i;
6254 int extent_cnt;
6255 struct extent *e;
6256 unsigned long long maxsize;
6257 unsigned long long minsize;
6258 int cnt;
6259 int used;
6260
6261 /* find the largest common start free region of the possible disks */
6262 used = 0;
6263 extent_cnt = 0;
6264 cnt = 0;
6265 for (dl = super->disks; dl; dl = dl->next) {
6266 dl->raiddisk = -1;
6267
6268 if (dl->index >= 0)
6269 used++;
6270
6271 /* don't activate new spares if we are orom constrained
6272 * and there is already a volume active in the container
6273 */
6274 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6275 continue;
6276
6277 e = get_extents(super, dl);
6278 if (!e)
6279 continue;
6280 for (i = 1; e[i-1].size; i++)
6281 ;
6282 dl->e = e;
6283 dl->extent_cnt = i;
6284 extent_cnt += i;
6285 cnt++;
6286 }
6287
6288 maxsize = merge_extents(super, extent_cnt);
6289 minsize = size;
6290 if (size == 0)
6291 /* chunk is in K */
6292 minsize = chunk * 2;
6293
6294 if (cnt < raiddisks ||
6295 (super->orom && used && used != raiddisks) ||
6296 maxsize < minsize ||
6297 maxsize == 0) {
6298 pr_err("not enough devices with space to create array.\n");
6299 return 0; /* No enough free spaces large enough */
6300 }
6301
6302 if (size == 0) {
6303 size = maxsize;
6304 if (chunk) {
6305 size /= 2 * chunk;
6306 size *= 2 * chunk;
6307 }
6308 maxsize = size;
6309 }
6310 if (!check_env("IMSM_NO_PLATFORM") &&
6311 mpb->num_raid_devs > 0 && size && size != maxsize) {
6312 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
6313 return 0;
6314 }
6315 cnt = 0;
6316 for (dl = super->disks; dl; dl = dl->next)
6317 if (dl->e)
6318 dl->raiddisk = cnt++;
6319
6320 *freesize = size;
6321
6322 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
6323
6324 return 1;
6325 }
6326
6327 static int reserve_space(struct supertype *st, int raiddisks,
6328 unsigned long long size, int chunk,
6329 unsigned long long *freesize)
6330 {
6331 struct intel_super *super = st->sb;
6332 struct dl *dl;
6333 int cnt;
6334 int rv = 0;
6335
6336 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
6337 if (rv) {
6338 cnt = 0;
6339 for (dl = super->disks; dl; dl = dl->next)
6340 if (dl->e)
6341 dl->raiddisk = cnt++;
6342 rv = 1;
6343 }
6344
6345 return rv;
6346 }
6347
6348 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
6349 int raiddisks, int *chunk, unsigned long long size,
6350 unsigned long long data_offset,
6351 char *dev, unsigned long long *freesize,
6352 int verbose)
6353 {
6354 int fd, cfd;
6355 struct mdinfo *sra;
6356 int is_member = 0;
6357
6358 /* load capability
6359 * if given unused devices create a container
6360 * if given given devices in a container create a member volume
6361 */
6362 if (level == LEVEL_CONTAINER) {
6363 /* Must be a fresh device to add to a container */
6364 return validate_geometry_imsm_container(st, level, layout,
6365 raiddisks,
6366 *chunk,
6367 size, data_offset,
6368 dev, freesize,
6369 verbose);
6370 }
6371
6372 if (!dev) {
6373 if (st->sb) {
6374 struct intel_super *super = st->sb;
6375 if (!validate_geometry_imsm_orom(st->sb, level, layout,
6376 raiddisks, chunk, size,
6377 verbose))
6378 return 0;
6379 /* we are being asked to automatically layout a
6380 * new volume based on the current contents of
6381 * the container. If the the parameters can be
6382 * satisfied reserve_space will record the disks,
6383 * start offset, and size of the volume to be
6384 * created. add_to_super and getinfo_super
6385 * detect when autolayout is in progress.
6386 */
6387 /* assuming that freesize is always given when array is
6388 created */
6389 if (super->orom && freesize) {
6390 int count;
6391 count = count_volumes(super->hba,
6392 super->orom->dpa, verbose);
6393 if (super->orom->vphba <= count) {
6394 pr_vrb(": platform does not support more than %d raid volumes.\n",
6395 super->orom->vphba);
6396 return 0;
6397 }
6398 }
6399 if (freesize)
6400 return reserve_space(st, raiddisks, size,
6401 *chunk, freesize);
6402 }
6403 return 1;
6404 }
6405 if (st->sb) {
6406 /* creating in a given container */
6407 return validate_geometry_imsm_volume(st, level, layout,
6408 raiddisks, chunk, size,
6409 data_offset,
6410 dev, freesize, verbose);
6411 }
6412
6413 /* This device needs to be a device in an 'imsm' container */
6414 fd = open(dev, O_RDONLY|O_EXCL, 0);
6415 if (fd >= 0) {
6416 if (verbose)
6417 pr_err("Cannot create this array on device %s\n",
6418 dev);
6419 close(fd);
6420 return 0;
6421 }
6422 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6423 if (verbose)
6424 pr_err("Cannot open %s: %s\n",
6425 dev, strerror(errno));
6426 return 0;
6427 }
6428 /* Well, it is in use by someone, maybe an 'imsm' container. */
6429 cfd = open_container(fd);
6430 close(fd);
6431 if (cfd < 0) {
6432 if (verbose)
6433 pr_err("Cannot use %s: It is busy\n",
6434 dev);
6435 return 0;
6436 }
6437 sra = sysfs_read(cfd, NULL, GET_VERSION);
6438 if (sra && sra->array.major_version == -1 &&
6439 strcmp(sra->text_version, "imsm") == 0)
6440 is_member = 1;
6441 sysfs_free(sra);
6442 if (is_member) {
6443 /* This is a member of a imsm container. Load the container
6444 * and try to create a volume
6445 */
6446 struct intel_super *super;
6447
6448 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
6449 st->sb = super;
6450 strcpy(st->container_devnm, fd2devnm(cfd));
6451 close(cfd);
6452 return validate_geometry_imsm_volume(st, level, layout,
6453 raiddisks, chunk,
6454 size, data_offset, dev,
6455 freesize, 1)
6456 ? 1 : -1;
6457 }
6458 }
6459
6460 if (verbose)
6461 pr_err("failed container membership check\n");
6462
6463 close(cfd);
6464 return 0;
6465 }
6466
6467 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
6468 {
6469 struct intel_super *super = st->sb;
6470
6471 if (level && *level == UnSet)
6472 *level = LEVEL_CONTAINER;
6473
6474 if (level && layout && *layout == UnSet)
6475 *layout = imsm_level_to_layout(*level);
6476
6477 if (chunk && (*chunk == UnSet || *chunk == 0))
6478 *chunk = imsm_default_chunk(super->orom);
6479 }
6480
6481 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6482
6483 static int kill_subarray_imsm(struct supertype *st)
6484 {
6485 /* remove the subarray currently referenced by ->current_vol */
6486 __u8 i;
6487 struct intel_dev **dp;
6488 struct intel_super *super = st->sb;
6489 __u8 current_vol = super->current_vol;
6490 struct imsm_super *mpb = super->anchor;
6491
6492 if (super->current_vol < 0)
6493 return 2;
6494 super->current_vol = -1; /* invalidate subarray cursor */
6495
6496 /* block deletions that would change the uuid of active subarrays
6497 *
6498 * FIXME when immutable ids are available, but note that we'll
6499 * also need to fixup the invalidated/active subarray indexes in
6500 * mdstat
6501 */
6502 for (i = 0; i < mpb->num_raid_devs; i++) {
6503 char subarray[4];
6504
6505 if (i < current_vol)
6506 continue;
6507 sprintf(subarray, "%u", i);
6508 if (is_subarray_active(subarray, st->devnm)) {
6509 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6510 current_vol, i);
6511
6512 return 2;
6513 }
6514 }
6515
6516 if (st->update_tail) {
6517 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
6518
6519 u->type = update_kill_array;
6520 u->dev_idx = current_vol;
6521 append_metadata_update(st, u, sizeof(*u));
6522
6523 return 0;
6524 }
6525
6526 for (dp = &super->devlist; *dp;)
6527 if ((*dp)->index == current_vol) {
6528 *dp = (*dp)->next;
6529 } else {
6530 handle_missing(super, (*dp)->dev);
6531 if ((*dp)->index > current_vol)
6532 (*dp)->index--;
6533 dp = &(*dp)->next;
6534 }
6535
6536 /* no more raid devices, all active components are now spares,
6537 * but of course failed are still failed
6538 */
6539 if (--mpb->num_raid_devs == 0) {
6540 struct dl *d;
6541
6542 for (d = super->disks; d; d = d->next)
6543 if (d->index > -2)
6544 mark_spare(d);
6545 }
6546
6547 super->updates_pending++;
6548
6549 return 0;
6550 }
6551
6552 static int update_subarray_imsm(struct supertype *st, char *subarray,
6553 char *update, struct mddev_ident *ident)
6554 {
6555 /* update the subarray currently referenced by ->current_vol */
6556 struct intel_super *super = st->sb;
6557 struct imsm_super *mpb = super->anchor;
6558
6559 if (strcmp(update, "name") == 0) {
6560 char *name = ident->name;
6561 char *ep;
6562 int vol;
6563
6564 if (is_subarray_active(subarray, st->devnm)) {
6565 pr_err("Unable to update name of active subarray\n");
6566 return 2;
6567 }
6568
6569 if (!check_name(super, name, 0))
6570 return 2;
6571
6572 vol = strtoul(subarray, &ep, 10);
6573 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
6574 return 2;
6575
6576 if (st->update_tail) {
6577 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
6578
6579 u->type = update_rename_array;
6580 u->dev_idx = vol;
6581 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
6582 append_metadata_update(st, u, sizeof(*u));
6583 } else {
6584 struct imsm_dev *dev;
6585 int i;
6586
6587 dev = get_imsm_dev(super, vol);
6588 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6589 for (i = 0; i < mpb->num_raid_devs; i++) {
6590 dev = get_imsm_dev(super, i);
6591 handle_missing(super, dev);
6592 }
6593 super->updates_pending++;
6594 }
6595 } else
6596 return 2;
6597
6598 return 0;
6599 }
6600 #endif /* MDASSEMBLE */
6601
6602 static int is_gen_migration(struct imsm_dev *dev)
6603 {
6604 if (dev == NULL)
6605 return 0;
6606
6607 if (!dev->vol.migr_state)
6608 return 0;
6609
6610 if (migr_type(dev) == MIGR_GEN_MIGR)
6611 return 1;
6612
6613 return 0;
6614 }
6615
6616 static int is_rebuilding(struct imsm_dev *dev)
6617 {
6618 struct imsm_map *migr_map;
6619
6620 if (!dev->vol.migr_state)
6621 return 0;
6622
6623 if (migr_type(dev) != MIGR_REBUILD)
6624 return 0;
6625
6626 migr_map = get_imsm_map(dev, MAP_1);
6627
6628 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
6629 return 1;
6630 else
6631 return 0;
6632 }
6633
6634 #ifndef MDASSEMBLE
6635 static int is_initializing(struct imsm_dev *dev)
6636 {
6637 struct imsm_map *migr_map;
6638
6639 if (!dev->vol.migr_state)
6640 return 0;
6641
6642 if (migr_type(dev) != MIGR_INIT)
6643 return 0;
6644
6645 migr_map = get_imsm_map(dev, MAP_1);
6646
6647 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
6648 return 1;
6649
6650 return 0;
6651 }
6652 #endif
6653
6654 static void update_recovery_start(struct intel_super *super,
6655 struct imsm_dev *dev,
6656 struct mdinfo *array)
6657 {
6658 struct mdinfo *rebuild = NULL;
6659 struct mdinfo *d;
6660 __u32 units;
6661
6662 if (!is_rebuilding(dev))
6663 return;
6664
6665 /* Find the rebuild target, but punt on the dual rebuild case */
6666 for (d = array->devs; d; d = d->next)
6667 if (d->recovery_start == 0) {
6668 if (rebuild)
6669 return;
6670 rebuild = d;
6671 }
6672
6673 if (!rebuild) {
6674 /* (?) none of the disks are marked with
6675 * IMSM_ORD_REBUILD, so assume they are missing and the
6676 * disk_ord_tbl was not correctly updated
6677 */
6678 dprintf("failed to locate out-of-sync disk\n");
6679 return;
6680 }
6681
6682 units = __le32_to_cpu(dev->vol.curr_migr_unit);
6683 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
6684 }
6685
6686 #ifndef MDASSEMBLE
6687 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
6688 #endif
6689
6690 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
6691 {
6692 /* Given a container loaded by load_super_imsm_all,
6693 * extract information about all the arrays into
6694 * an mdinfo tree.
6695 * If 'subarray' is given, just extract info about that array.
6696 *
6697 * For each imsm_dev create an mdinfo, fill it in,
6698 * then look for matching devices in super->disks
6699 * and create appropriate device mdinfo.
6700 */
6701 struct intel_super *super = st->sb;
6702 struct imsm_super *mpb = super->anchor;
6703 struct mdinfo *rest = NULL;
6704 unsigned int i;
6705 int sb_errors = 0;
6706 struct dl *d;
6707 int spare_disks = 0;
6708
6709 /* do not assemble arrays when not all attributes are supported */
6710 if (imsm_check_attributes(mpb->attributes) == 0) {
6711 sb_errors = 1;
6712 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
6713 }
6714
6715 /* check for bad blocks */
6716 if (imsm_bbm_log_size(super->anchor)) {
6717 pr_err("BBM log found in IMSM metadata.Arrays activation is blocked.\n");
6718 sb_errors = 1;
6719 }
6720
6721 /* count spare devices, not used in maps
6722 */
6723 for (d = super->disks; d; d = d->next)
6724 if (d->index == -1)
6725 spare_disks++;
6726
6727 for (i = 0; i < mpb->num_raid_devs; i++) {
6728 struct imsm_dev *dev;
6729 struct imsm_map *map;
6730 struct imsm_map *map2;
6731 struct mdinfo *this;
6732 int slot;
6733 #ifndef MDASSEMBLE
6734 int chunk;
6735 #endif
6736 char *ep;
6737
6738 if (subarray &&
6739 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
6740 continue;
6741
6742 dev = get_imsm_dev(super, i);
6743 map = get_imsm_map(dev, MAP_0);
6744 map2 = get_imsm_map(dev, MAP_1);
6745
6746 /* do not publish arrays that are in the middle of an
6747 * unsupported migration
6748 */
6749 if (dev->vol.migr_state &&
6750 (migr_type(dev) == MIGR_STATE_CHANGE)) {
6751 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
6752 dev->volume);
6753 continue;
6754 }
6755 /* do not publish arrays that are not support by controller's
6756 * OROM/EFI
6757 */
6758
6759 this = xmalloc(sizeof(*this));
6760
6761 super->current_vol = i;
6762 getinfo_super_imsm_volume(st, this, NULL);
6763 this->next = rest;
6764 #ifndef MDASSEMBLE
6765 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
6766 /* mdadm does not support all metadata features- set the bit in all arrays state */
6767 if (!validate_geometry_imsm_orom(super,
6768 get_imsm_raid_level(map), /* RAID level */
6769 imsm_level_to_layout(get_imsm_raid_level(map)),
6770 map->num_members, /* raid disks */
6771 &chunk, join_u32(dev->size_low, dev->size_high),
6772 1 /* verbose */)) {
6773 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
6774 dev->volume);
6775 this->array.state |=
6776 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6777 (1<<MD_SB_BLOCK_VOLUME);
6778 }
6779 #endif
6780
6781 /* if array has bad blocks, set suitable bit in all arrays state */
6782 if (sb_errors)
6783 this->array.state |=
6784 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6785 (1<<MD_SB_BLOCK_VOLUME);
6786
6787 for (slot = 0 ; slot < map->num_members; slot++) {
6788 unsigned long long recovery_start;
6789 struct mdinfo *info_d;
6790 struct dl *d;
6791 int idx;
6792 int skip;
6793 __u32 ord;
6794
6795 skip = 0;
6796 idx = get_imsm_disk_idx(dev, slot, MAP_0);
6797 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
6798 for (d = super->disks; d ; d = d->next)
6799 if (d->index == idx)
6800 break;
6801
6802 recovery_start = MaxSector;
6803 if (d == NULL)
6804 skip = 1;
6805 if (d && is_failed(&d->disk))
6806 skip = 1;
6807 if (ord & IMSM_ORD_REBUILD)
6808 recovery_start = 0;
6809
6810 /*
6811 * if we skip some disks the array will be assmebled degraded;
6812 * reset resync start to avoid a dirty-degraded
6813 * situation when performing the intial sync
6814 *
6815 * FIXME handle dirty degraded
6816 */
6817 if ((skip || recovery_start == 0) && !dev->vol.dirty)
6818 this->resync_start = MaxSector;
6819 if (skip)
6820 continue;
6821
6822 info_d = xcalloc(1, sizeof(*info_d));
6823 info_d->next = this->devs;
6824 this->devs = info_d;
6825
6826 info_d->disk.number = d->index;
6827 info_d->disk.major = d->major;
6828 info_d->disk.minor = d->minor;
6829 info_d->disk.raid_disk = slot;
6830 info_d->recovery_start = recovery_start;
6831 if (map2) {
6832 if (slot < map2->num_members)
6833 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6834 else
6835 this->array.spare_disks++;
6836 } else {
6837 if (slot < map->num_members)
6838 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6839 else
6840 this->array.spare_disks++;
6841 }
6842 if (info_d->recovery_start == MaxSector)
6843 this->array.working_disks++;
6844
6845 info_d->events = __le32_to_cpu(mpb->generation_num);
6846 info_d->data_offset = pba_of_lba0(map);
6847 info_d->component_size = blocks_per_member(map);
6848 }
6849 /* now that the disk list is up-to-date fixup recovery_start */
6850 update_recovery_start(super, dev, this);
6851 this->array.spare_disks += spare_disks;
6852
6853 #ifndef MDASSEMBLE
6854 /* check for reshape */
6855 if (this->reshape_active == 1)
6856 recover_backup_imsm(st, this);
6857 #endif
6858 rest = this;
6859 }
6860
6861 return rest;
6862 }
6863
6864 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6865 int failed, int look_in_map)
6866 {
6867 struct imsm_map *map;
6868
6869 map = get_imsm_map(dev, look_in_map);
6870
6871 if (!failed)
6872 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6873 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
6874
6875 switch (get_imsm_raid_level(map)) {
6876 case 0:
6877 return IMSM_T_STATE_FAILED;
6878 break;
6879 case 1:
6880 if (failed < map->num_members)
6881 return IMSM_T_STATE_DEGRADED;
6882 else
6883 return IMSM_T_STATE_FAILED;
6884 break;
6885 case 10:
6886 {
6887 /**
6888 * check to see if any mirrors have failed, otherwise we
6889 * are degraded. Even numbered slots are mirrored on
6890 * slot+1
6891 */
6892 int i;
6893 /* gcc -Os complains that this is unused */
6894 int insync = insync;
6895
6896 for (i = 0; i < map->num_members; i++) {
6897 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
6898 int idx = ord_to_idx(ord);
6899 struct imsm_disk *disk;
6900
6901 /* reset the potential in-sync count on even-numbered
6902 * slots. num_copies is always 2 for imsm raid10
6903 */
6904 if ((i & 1) == 0)
6905 insync = 2;
6906
6907 disk = get_imsm_disk(super, idx);
6908 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6909 insync--;
6910
6911 /* no in-sync disks left in this mirror the
6912 * array has failed
6913 */
6914 if (insync == 0)
6915 return IMSM_T_STATE_FAILED;
6916 }
6917
6918 return IMSM_T_STATE_DEGRADED;
6919 }
6920 case 5:
6921 if (failed < 2)
6922 return IMSM_T_STATE_DEGRADED;
6923 else
6924 return IMSM_T_STATE_FAILED;
6925 break;
6926 default:
6927 break;
6928 }
6929
6930 return map->map_state;
6931 }
6932
6933 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6934 int look_in_map)
6935 {
6936 int i;
6937 int failed = 0;
6938 struct imsm_disk *disk;
6939 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6940 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
6941 struct imsm_map *map_for_loop;
6942 __u32 ord;
6943 int idx;
6944 int idx_1;
6945
6946 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6947 * disks that are being rebuilt. New failures are recorded to
6948 * map[0]. So we look through all the disks we started with and
6949 * see if any failures are still present, or if any new ones
6950 * have arrived
6951 */
6952 map_for_loop = map;
6953 if (prev && (map->num_members < prev->num_members))
6954 map_for_loop = prev;
6955
6956 for (i = 0; i < map_for_loop->num_members; i++) {
6957 idx_1 = -255;
6958 /* when MAP_X is passed both maps failures are counted
6959 */
6960 if (prev &&
6961 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6962 (i < prev->num_members)) {
6963 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6964 idx_1 = ord_to_idx(ord);
6965
6966 disk = get_imsm_disk(super, idx_1);
6967 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6968 failed++;
6969 }
6970 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6971 (i < map->num_members)) {
6972 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6973 idx = ord_to_idx(ord);
6974
6975 if (idx != idx_1) {
6976 disk = get_imsm_disk(super, idx);
6977 if (!disk || is_failed(disk) ||
6978 ord & IMSM_ORD_REBUILD)
6979 failed++;
6980 }
6981 }
6982 }
6983
6984 return failed;
6985 }
6986
6987 #ifndef MDASSEMBLE
6988 static int imsm_open_new(struct supertype *c, struct active_array *a,
6989 char *inst)
6990 {
6991 struct intel_super *super = c->sb;
6992 struct imsm_super *mpb = super->anchor;
6993
6994 if (atoi(inst) >= mpb->num_raid_devs) {
6995 pr_err("subarry index %d, out of range\n", atoi(inst));
6996 return -ENODEV;
6997 }
6998
6999 dprintf("imsm: open_new %s\n", inst);
7000 a->info.container_member = atoi(inst);
7001 return 0;
7002 }
7003
7004 static int is_resyncing(struct imsm_dev *dev)
7005 {
7006 struct imsm_map *migr_map;
7007
7008 if (!dev->vol.migr_state)
7009 return 0;
7010
7011 if (migr_type(dev) == MIGR_INIT ||
7012 migr_type(dev) == MIGR_REPAIR)
7013 return 1;
7014
7015 if (migr_type(dev) == MIGR_GEN_MIGR)
7016 return 0;
7017
7018 migr_map = get_imsm_map(dev, MAP_1);
7019
7020 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
7021 (dev->vol.migr_type != MIGR_GEN_MIGR))
7022 return 1;
7023 else
7024 return 0;
7025 }
7026
7027 /* return true if we recorded new information */
7028 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7029 {
7030 __u32 ord;
7031 int slot;
7032 struct imsm_map *map;
7033 char buf[MAX_RAID_SERIAL_LEN+3];
7034 unsigned int len, shift = 0;
7035
7036 /* new failures are always set in map[0] */
7037 map = get_imsm_map(dev, MAP_0);
7038
7039 slot = get_imsm_disk_slot(map, idx);
7040 if (slot < 0)
7041 return 0;
7042
7043 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
7044 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
7045 return 0;
7046
7047 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
7048 buf[MAX_RAID_SERIAL_LEN] = '\000';
7049 strcat(buf, ":0");
7050 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
7051 shift = len - MAX_RAID_SERIAL_LEN + 1;
7052 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
7053
7054 disk->status |= FAILED_DISK;
7055 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
7056 /* mark failures in second map if second map exists and this disk
7057 * in this slot.
7058 * This is valid for migration, initialization and rebuild
7059 */
7060 if (dev->vol.migr_state) {
7061 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
7062 int slot2 = get_imsm_disk_slot(map2, idx);
7063
7064 if ((slot2 < map2->num_members) &&
7065 (slot2 >= 0))
7066 set_imsm_ord_tbl_ent(map2, slot2,
7067 idx | IMSM_ORD_REBUILD);
7068 }
7069 if (map->failed_disk_num == 0xff)
7070 map->failed_disk_num = slot;
7071 return 1;
7072 }
7073
7074 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7075 {
7076 mark_failure(dev, disk, idx);
7077
7078 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
7079 return;
7080
7081 disk->scsi_id = __cpu_to_le32(~(__u32)0);
7082 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
7083 }
7084
7085 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
7086 {
7087 struct dl *dl;
7088
7089 if (!super->missing)
7090 return;
7091
7092 /* When orom adds replacement for missing disk it does
7093 * not remove entry of missing disk, but just updates map with
7094 * new added disk. So it is not enough just to test if there is
7095 * any missing disk, we have to look if there are any failed disks
7096 * in map to stop migration */
7097
7098 dprintf("imsm: mark missing\n");
7099 /* end process for initialization and rebuild only
7100 */
7101 if (is_gen_migration(dev) == 0) {
7102 __u8 map_state;
7103 int failed;
7104
7105 failed = imsm_count_failed(super, dev, MAP_0);
7106 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7107
7108 if (failed)
7109 end_migration(dev, super, map_state);
7110 }
7111 for (dl = super->missing; dl; dl = dl->next)
7112 mark_missing(dev, &dl->disk, dl->index);
7113 super->updates_pending++;
7114 }
7115
7116 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
7117 long long new_size)
7118 {
7119 int used_disks = imsm_num_data_members(dev, MAP_0);
7120 unsigned long long array_blocks;
7121 struct imsm_map *map;
7122
7123 if (used_disks == 0) {
7124 /* when problems occures
7125 * return current array_blocks value
7126 */
7127 array_blocks = __le32_to_cpu(dev->size_high);
7128 array_blocks = array_blocks << 32;
7129 array_blocks += __le32_to_cpu(dev->size_low);
7130
7131 return array_blocks;
7132 }
7133
7134 /* set array size in metadata
7135 */
7136 if (new_size <= 0) {
7137 /* OLCE size change is caused by added disks
7138 */
7139 map = get_imsm_map(dev, MAP_0);
7140 array_blocks = blocks_per_member(map) * used_disks;
7141 } else {
7142 /* Online Volume Size Change
7143 * Using available free space
7144 */
7145 array_blocks = new_size;
7146 }
7147
7148 /* round array size down to closest MB
7149 */
7150 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
7151 dev->size_low = __cpu_to_le32((__u32)array_blocks);
7152 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7153
7154 return array_blocks;
7155 }
7156
7157 static void imsm_set_disk(struct active_array *a, int n, int state);
7158
7159 static void imsm_progress_container_reshape(struct intel_super *super)
7160 {
7161 /* if no device has a migr_state, but some device has a
7162 * different number of members than the previous device, start
7163 * changing the number of devices in this device to match
7164 * previous.
7165 */
7166 struct imsm_super *mpb = super->anchor;
7167 int prev_disks = -1;
7168 int i;
7169 int copy_map_size;
7170
7171 for (i = 0; i < mpb->num_raid_devs; i++) {
7172 struct imsm_dev *dev = get_imsm_dev(super, i);
7173 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7174 struct imsm_map *map2;
7175 int prev_num_members;
7176
7177 if (dev->vol.migr_state)
7178 return;
7179
7180 if (prev_disks == -1)
7181 prev_disks = map->num_members;
7182 if (prev_disks == map->num_members)
7183 continue;
7184
7185 /* OK, this array needs to enter reshape mode.
7186 * i.e it needs a migr_state
7187 */
7188
7189 copy_map_size = sizeof_imsm_map(map);
7190 prev_num_members = map->num_members;
7191 map->num_members = prev_disks;
7192 dev->vol.migr_state = 1;
7193 dev->vol.curr_migr_unit = 0;
7194 set_migr_type(dev, MIGR_GEN_MIGR);
7195 for (i = prev_num_members;
7196 i < map->num_members; i++)
7197 set_imsm_ord_tbl_ent(map, i, i);
7198 map2 = get_imsm_map(dev, MAP_1);
7199 /* Copy the current map */
7200 memcpy(map2, map, copy_map_size);
7201 map2->num_members = prev_num_members;
7202
7203 imsm_set_array_size(dev, -1);
7204 super->clean_migration_record_by_mdmon = 1;
7205 super->updates_pending++;
7206 }
7207 }
7208
7209 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
7210 * states are handled in imsm_set_disk() with one exception, when a
7211 * resync is stopped due to a new failure this routine will set the
7212 * 'degraded' state for the array.
7213 */
7214 static int imsm_set_array_state(struct active_array *a, int consistent)
7215 {
7216 int inst = a->info.container_member;
7217 struct intel_super *super = a->container->sb;
7218 struct imsm_dev *dev = get_imsm_dev(super, inst);
7219 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7220 int failed = imsm_count_failed(super, dev, MAP_0);
7221 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7222 __u32 blocks_per_unit;
7223
7224 if (dev->vol.migr_state &&
7225 dev->vol.migr_type == MIGR_GEN_MIGR) {
7226 /* array state change is blocked due to reshape action
7227 * We might need to
7228 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7229 * - finish the reshape (if last_checkpoint is big and action != reshape)
7230 * - update curr_migr_unit
7231 */
7232 if (a->curr_action == reshape) {
7233 /* still reshaping, maybe update curr_migr_unit */
7234 goto mark_checkpoint;
7235 } else {
7236 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7237 /* for some reason we aborted the reshape.
7238 *
7239 * disable automatic metadata rollback
7240 * user action is required to recover process
7241 */
7242 if (0) {
7243 struct imsm_map *map2 =
7244 get_imsm_map(dev, MAP_1);
7245 dev->vol.migr_state = 0;
7246 set_migr_type(dev, 0);
7247 dev->vol.curr_migr_unit = 0;
7248 memcpy(map, map2,
7249 sizeof_imsm_map(map2));
7250 super->updates_pending++;
7251 }
7252 }
7253 if (a->last_checkpoint >= a->info.component_size) {
7254 unsigned long long array_blocks;
7255 int used_disks;
7256 struct mdinfo *mdi;
7257
7258 used_disks = imsm_num_data_members(dev, MAP_0);
7259 if (used_disks > 0) {
7260 array_blocks =
7261 blocks_per_member(map) *
7262 used_disks;
7263 /* round array size down to closest MB
7264 */
7265 array_blocks = (array_blocks
7266 >> SECT_PER_MB_SHIFT)
7267 << SECT_PER_MB_SHIFT;
7268 a->info.custom_array_size = array_blocks;
7269 /* encourage manager to update array
7270 * size
7271 */
7272
7273 a->check_reshape = 1;
7274 }
7275 /* finalize online capacity expansion/reshape */
7276 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7277 imsm_set_disk(a,
7278 mdi->disk.raid_disk,
7279 mdi->curr_state);
7280
7281 imsm_progress_container_reshape(super);
7282 }
7283 }
7284 }
7285
7286 /* before we activate this array handle any missing disks */
7287 if (consistent == 2)
7288 handle_missing(super, dev);
7289
7290 if (consistent == 2 &&
7291 (!is_resync_complete(&a->info) ||
7292 map_state != IMSM_T_STATE_NORMAL ||
7293 dev->vol.migr_state))
7294 consistent = 0;
7295
7296 if (is_resync_complete(&a->info)) {
7297 /* complete intialization / resync,
7298 * recovery and interrupted recovery is completed in
7299 * ->set_disk
7300 */
7301 if (is_resyncing(dev)) {
7302 dprintf("imsm: mark resync done\n");
7303 end_migration(dev, super, map_state);
7304 super->updates_pending++;
7305 a->last_checkpoint = 0;
7306 }
7307 } else if ((!is_resyncing(dev) && !failed) &&
7308 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
7309 /* mark the start of the init process if nothing is failed */
7310 dprintf("imsm: mark resync start\n");
7311 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
7312 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
7313 else
7314 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
7315 super->updates_pending++;
7316 }
7317
7318 mark_checkpoint:
7319 /* skip checkpointing for general migration,
7320 * it is controlled in mdadm
7321 */
7322 if (is_gen_migration(dev))
7323 goto skip_mark_checkpoint;
7324
7325 /* check if we can update curr_migr_unit from resync_start, recovery_start */
7326 blocks_per_unit = blocks_per_migr_unit(super, dev);
7327 if (blocks_per_unit) {
7328 __u32 units32;
7329 __u64 units;
7330
7331 units = a->last_checkpoint / blocks_per_unit;
7332 units32 = units;
7333
7334 /* check that we did not overflow 32-bits, and that
7335 * curr_migr_unit needs updating
7336 */
7337 if (units32 == units &&
7338 units32 != 0 &&
7339 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7340 dprintf("imsm: mark checkpoint (%u)\n", units32);
7341 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7342 super->updates_pending++;
7343 }
7344 }
7345
7346 skip_mark_checkpoint:
7347 /* mark dirty / clean */
7348 if (dev->vol.dirty != !consistent) {
7349 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
7350 if (consistent)
7351 dev->vol.dirty = 0;
7352 else
7353 dev->vol.dirty = 1;
7354 super->updates_pending++;
7355 }
7356
7357 return consistent;
7358 }
7359
7360 static void imsm_set_disk(struct active_array *a, int n, int state)
7361 {
7362 int inst = a->info.container_member;
7363 struct intel_super *super = a->container->sb;
7364 struct imsm_dev *dev = get_imsm_dev(super, inst);
7365 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7366 struct imsm_disk *disk;
7367 struct mdinfo *mdi;
7368 int recovery_not_finished = 0;
7369 int failed;
7370 __u32 ord;
7371 __u8 map_state;
7372
7373 if (n > map->num_members)
7374 pr_err("imsm: set_disk %d out of range 0..%d\n",
7375 n, map->num_members - 1);
7376
7377 if (n < 0)
7378 return;
7379
7380 dprintf("imsm: set_disk %d:%x\n", n, state);
7381
7382 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
7383 disk = get_imsm_disk(super, ord_to_idx(ord));
7384
7385 /* check for new failures */
7386 if (state & DS_FAULTY) {
7387 if (mark_failure(dev, disk, ord_to_idx(ord)))
7388 super->updates_pending++;
7389 }
7390
7391 /* check if in_sync */
7392 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
7393 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7394
7395 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
7396 super->updates_pending++;
7397 }
7398
7399 failed = imsm_count_failed(super, dev, MAP_0);
7400 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7401
7402 /* check if recovery complete, newly degraded, or failed */
7403 dprintf("imsm: Detected transition to state ");
7404 switch (map_state) {
7405 case IMSM_T_STATE_NORMAL: /* transition to normal state */
7406 dprintf("normal: ");
7407 if (is_rebuilding(dev)) {
7408 dprintf_cont("while rebuilding");
7409 /* check if recovery is really finished */
7410 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
7411 if (mdi->recovery_start != MaxSector) {
7412 recovery_not_finished = 1;
7413 break;
7414 }
7415 if (recovery_not_finished) {
7416 dprintf_cont("\n");
7417 dprintf("Rebuild has not finished yet, state not changed");
7418 if (a->last_checkpoint < mdi->recovery_start) {
7419 a->last_checkpoint = mdi->recovery_start;
7420 super->updates_pending++;
7421 }
7422 break;
7423 }
7424 end_migration(dev, super, map_state);
7425 map = get_imsm_map(dev, MAP_0);
7426 map->failed_disk_num = ~0;
7427 super->updates_pending++;
7428 a->last_checkpoint = 0;
7429 break;
7430 }
7431 if (is_gen_migration(dev)) {
7432 dprintf_cont("while general migration");
7433 if (a->last_checkpoint >= a->info.component_size)
7434 end_migration(dev, super, map_state);
7435 else
7436 map->map_state = map_state;
7437 map = get_imsm_map(dev, MAP_0);
7438 map->failed_disk_num = ~0;
7439 super->updates_pending++;
7440 break;
7441 }
7442 break;
7443 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
7444 dprintf_cont("degraded: ");
7445 if ((map->map_state != map_state) &&
7446 !dev->vol.migr_state) {
7447 dprintf_cont("mark degraded");
7448 map->map_state = map_state;
7449 super->updates_pending++;
7450 a->last_checkpoint = 0;
7451 break;
7452 }
7453 if (is_rebuilding(dev)) {
7454 dprintf_cont("while rebuilding.");
7455 if (map->map_state != map_state) {
7456 dprintf_cont(" Map state change");
7457 end_migration(dev, super, map_state);
7458 super->updates_pending++;
7459 }
7460 break;
7461 }
7462 if (is_gen_migration(dev)) {
7463 dprintf_cont("while general migration");
7464 if (a->last_checkpoint >= a->info.component_size)
7465 end_migration(dev, super, map_state);
7466 else {
7467 map->map_state = map_state;
7468 manage_second_map(super, dev);
7469 }
7470 super->updates_pending++;
7471 break;
7472 }
7473 if (is_initializing(dev)) {
7474 dprintf_cont("while initialization.");
7475 map->map_state = map_state;
7476 super->updates_pending++;
7477 break;
7478 }
7479 break;
7480 case IMSM_T_STATE_FAILED: /* transition to failed state */
7481 dprintf_cont("failed: ");
7482 if (is_gen_migration(dev)) {
7483 dprintf_cont("while general migration");
7484 map->map_state = map_state;
7485 super->updates_pending++;
7486 break;
7487 }
7488 if (map->map_state != map_state) {
7489 dprintf_cont("mark failed");
7490 end_migration(dev, super, map_state);
7491 super->updates_pending++;
7492 a->last_checkpoint = 0;
7493 break;
7494 }
7495 break;
7496 default:
7497 dprintf_cont("state %i\n", map_state);
7498 }
7499 dprintf_cont("\n");
7500 }
7501
7502 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
7503 {
7504 void *buf = mpb;
7505 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7506 unsigned long long dsize;
7507 unsigned long long sectors;
7508
7509 get_dev_size(fd, NULL, &dsize);
7510
7511 if (mpb_size > 512) {
7512 /* -1 to account for anchor */
7513 sectors = mpb_sectors(mpb) - 1;
7514
7515 /* write the extended mpb to the sectors preceeding the anchor */
7516 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
7517 return 1;
7518
7519 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
7520 != 512 * sectors)
7521 return 1;
7522 }
7523
7524 /* first block is stored on second to last sector of the disk */
7525 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
7526 return 1;
7527
7528 if (write(fd, buf, 512) != 512)
7529 return 1;
7530
7531 return 0;
7532 }
7533
7534 static void imsm_sync_metadata(struct supertype *container)
7535 {
7536 struct intel_super *super = container->sb;
7537
7538 dprintf("sync metadata: %d\n", super->updates_pending);
7539 if (!super->updates_pending)
7540 return;
7541
7542 write_super_imsm(container, 0);
7543
7544 super->updates_pending = 0;
7545 }
7546
7547 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
7548 {
7549 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7550 int i = get_imsm_disk_idx(dev, idx, MAP_X);
7551 struct dl *dl;
7552
7553 for (dl = super->disks; dl; dl = dl->next)
7554 if (dl->index == i)
7555 break;
7556
7557 if (dl && is_failed(&dl->disk))
7558 dl = NULL;
7559
7560 if (dl)
7561 dprintf("found %x:%x\n", dl->major, dl->minor);
7562
7563 return dl;
7564 }
7565
7566 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
7567 struct active_array *a, int activate_new,
7568 struct mdinfo *additional_test_list)
7569 {
7570 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7571 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
7572 struct imsm_super *mpb = super->anchor;
7573 struct imsm_map *map;
7574 unsigned long long pos;
7575 struct mdinfo *d;
7576 struct extent *ex;
7577 int i, j;
7578 int found;
7579 __u32 array_start = 0;
7580 __u32 array_end = 0;
7581 struct dl *dl;
7582 struct mdinfo *test_list;
7583
7584 for (dl = super->disks; dl; dl = dl->next) {
7585 /* If in this array, skip */
7586 for (d = a->info.devs ; d ; d = d->next)
7587 if (d->state_fd >= 0 &&
7588 d->disk.major == dl->major &&
7589 d->disk.minor == dl->minor) {
7590 dprintf("%x:%x already in array\n",
7591 dl->major, dl->minor);
7592 break;
7593 }
7594 if (d)
7595 continue;
7596 test_list = additional_test_list;
7597 while (test_list) {
7598 if (test_list->disk.major == dl->major &&
7599 test_list->disk.minor == dl->minor) {
7600 dprintf("%x:%x already in additional test list\n",
7601 dl->major, dl->minor);
7602 break;
7603 }
7604 test_list = test_list->next;
7605 }
7606 if (test_list)
7607 continue;
7608
7609 /* skip in use or failed drives */
7610 if (is_failed(&dl->disk) || idx == dl->index ||
7611 dl->index == -2) {
7612 dprintf("%x:%x status (failed: %d index: %d)\n",
7613 dl->major, dl->minor, is_failed(&dl->disk), idx);
7614 continue;
7615 }
7616
7617 /* skip pure spares when we are looking for partially
7618 * assimilated drives
7619 */
7620 if (dl->index == -1 && !activate_new)
7621 continue;
7622
7623 /* Does this unused device have the requisite free space?
7624 * It needs to be able to cover all member volumes
7625 */
7626 ex = get_extents(super, dl);
7627 if (!ex) {
7628 dprintf("cannot get extents\n");
7629 continue;
7630 }
7631 for (i = 0; i < mpb->num_raid_devs; i++) {
7632 dev = get_imsm_dev(super, i);
7633 map = get_imsm_map(dev, MAP_0);
7634
7635 /* check if this disk is already a member of
7636 * this array
7637 */
7638 if (get_imsm_disk_slot(map, dl->index) >= 0)
7639 continue;
7640
7641 found = 0;
7642 j = 0;
7643 pos = 0;
7644 array_start = pba_of_lba0(map);
7645 array_end = array_start +
7646 blocks_per_member(map) - 1;
7647
7648 do {
7649 /* check that we can start at pba_of_lba0 with
7650 * blocks_per_member of space
7651 */
7652 if (array_start >= pos && array_end < ex[j].start) {
7653 found = 1;
7654 break;
7655 }
7656 pos = ex[j].start + ex[j].size;
7657 j++;
7658 } while (ex[j-1].size);
7659
7660 if (!found)
7661 break;
7662 }
7663
7664 free(ex);
7665 if (i < mpb->num_raid_devs) {
7666 dprintf("%x:%x does not have %u to %u available\n",
7667 dl->major, dl->minor, array_start, array_end);
7668 /* No room */
7669 continue;
7670 }
7671 return dl;
7672 }
7673
7674 return dl;
7675 }
7676
7677 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
7678 {
7679 struct imsm_dev *dev2;
7680 struct imsm_map *map;
7681 struct dl *idisk;
7682 int slot;
7683 int idx;
7684 __u8 state;
7685
7686 dev2 = get_imsm_dev(cont->sb, dev_idx);
7687 if (dev2) {
7688 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
7689 if (state == IMSM_T_STATE_FAILED) {
7690 map = get_imsm_map(dev2, MAP_0);
7691 if (!map)
7692 return 1;
7693 for (slot = 0; slot < map->num_members; slot++) {
7694 /*
7695 * Check if failed disks are deleted from intel
7696 * disk list or are marked to be deleted
7697 */
7698 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
7699 idisk = get_imsm_dl_disk(cont->sb, idx);
7700 /*
7701 * Do not rebuild the array if failed disks
7702 * from failed sub-array are not removed from
7703 * container.
7704 */
7705 if (idisk &&
7706 is_failed(&idisk->disk) &&
7707 (idisk->action != DISK_REMOVE))
7708 return 0;
7709 }
7710 }
7711 }
7712 return 1;
7713 }
7714
7715 static struct mdinfo *imsm_activate_spare(struct active_array *a,
7716 struct metadata_update **updates)
7717 {
7718 /**
7719 * Find a device with unused free space and use it to replace a
7720 * failed/vacant region in an array. We replace failed regions one a
7721 * array at a time. The result is that a new spare disk will be added
7722 * to the first failed array and after the monitor has finished
7723 * propagating failures the remainder will be consumed.
7724 *
7725 * FIXME add a capability for mdmon to request spares from another
7726 * container.
7727 */
7728
7729 struct intel_super *super = a->container->sb;
7730 int inst = a->info.container_member;
7731 struct imsm_dev *dev = get_imsm_dev(super, inst);
7732 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7733 int failed = a->info.array.raid_disks;
7734 struct mdinfo *rv = NULL;
7735 struct mdinfo *d;
7736 struct mdinfo *di;
7737 struct metadata_update *mu;
7738 struct dl *dl;
7739 struct imsm_update_activate_spare *u;
7740 int num_spares = 0;
7741 int i;
7742 int allowed;
7743
7744 for (d = a->info.devs ; d ; d = d->next) {
7745 if ((d->curr_state & DS_FAULTY) &&
7746 d->state_fd >= 0)
7747 /* wait for Removal to happen */
7748 return NULL;
7749 if (d->state_fd >= 0)
7750 failed--;
7751 }
7752
7753 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
7754 inst, failed, a->info.array.raid_disks, a->info.array.level);
7755
7756 if (imsm_reshape_blocks_arrays_changes(super))
7757 return NULL;
7758
7759 /* Cannot activate another spare if rebuild is in progress already
7760 */
7761 if (is_rebuilding(dev)) {
7762 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
7763 return NULL;
7764 }
7765
7766 if (a->info.array.level == 4)
7767 /* No repair for takeovered array
7768 * imsm doesn't support raid4
7769 */
7770 return NULL;
7771
7772 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
7773 IMSM_T_STATE_DEGRADED)
7774 return NULL;
7775
7776 /*
7777 * If there are any failed disks check state of the other volume.
7778 * Block rebuild if the another one is failed until failed disks
7779 * are removed from container.
7780 */
7781 if (failed) {
7782 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
7783 MAX_RAID_SERIAL_LEN, dev->volume);
7784 /* check if states of the other volumes allow for rebuild */
7785 for (i = 0; i < super->anchor->num_raid_devs; i++) {
7786 if (i != inst) {
7787 allowed = imsm_rebuild_allowed(a->container,
7788 i, failed);
7789 if (!allowed)
7790 return NULL;
7791 }
7792 }
7793 }
7794
7795 /* For each slot, if it is not working, find a spare */
7796 for (i = 0; i < a->info.array.raid_disks; i++) {
7797 for (d = a->info.devs ; d ; d = d->next)
7798 if (d->disk.raid_disk == i)
7799 break;
7800 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
7801 if (d && (d->state_fd >= 0))
7802 continue;
7803
7804 /*
7805 * OK, this device needs recovery. Try to re-add the
7806 * previous occupant of this slot, if this fails see if
7807 * we can continue the assimilation of a spare that was
7808 * partially assimilated, finally try to activate a new
7809 * spare.
7810 */
7811 dl = imsm_readd(super, i, a);
7812 if (!dl)
7813 dl = imsm_add_spare(super, i, a, 0, rv);
7814 if (!dl)
7815 dl = imsm_add_spare(super, i, a, 1, rv);
7816 if (!dl)
7817 continue;
7818
7819 /* found a usable disk with enough space */
7820 di = xcalloc(1, sizeof(*di));
7821
7822 /* dl->index will be -1 in the case we are activating a
7823 * pristine spare. imsm_process_update() will create a
7824 * new index in this case. Once a disk is found to be
7825 * failed in all member arrays it is kicked from the
7826 * metadata
7827 */
7828 di->disk.number = dl->index;
7829
7830 /* (ab)use di->devs to store a pointer to the device
7831 * we chose
7832 */
7833 di->devs = (struct mdinfo *) dl;
7834
7835 di->disk.raid_disk = i;
7836 di->disk.major = dl->major;
7837 di->disk.minor = dl->minor;
7838 di->disk.state = 0;
7839 di->recovery_start = 0;
7840 di->data_offset = pba_of_lba0(map);
7841 di->component_size = a->info.component_size;
7842 di->container_member = inst;
7843 super->random = random32();
7844 di->next = rv;
7845 rv = di;
7846 num_spares++;
7847 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7848 i, di->data_offset);
7849 }
7850
7851 if (!rv)
7852 /* No spares found */
7853 return rv;
7854 /* Now 'rv' has a list of devices to return.
7855 * Create a metadata_update record to update the
7856 * disk_ord_tbl for the array
7857 */
7858 mu = xmalloc(sizeof(*mu));
7859 mu->buf = xcalloc(num_spares,
7860 sizeof(struct imsm_update_activate_spare));
7861 mu->space = NULL;
7862 mu->space_list = NULL;
7863 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7864 mu->next = *updates;
7865 u = (struct imsm_update_activate_spare *) mu->buf;
7866
7867 for (di = rv ; di ; di = di->next) {
7868 u->type = update_activate_spare;
7869 u->dl = (struct dl *) di->devs;
7870 di->devs = NULL;
7871 u->slot = di->disk.raid_disk;
7872 u->array = inst;
7873 u->next = u + 1;
7874 u++;
7875 }
7876 (u-1)->next = NULL;
7877 *updates = mu;
7878
7879 return rv;
7880 }
7881
7882 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
7883 {
7884 struct imsm_dev *dev = get_imsm_dev(super, idx);
7885 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7886 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
7887 struct disk_info *inf = get_disk_info(u);
7888 struct imsm_disk *disk;
7889 int i;
7890 int j;
7891
7892 for (i = 0; i < map->num_members; i++) {
7893 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
7894 for (j = 0; j < new_map->num_members; j++)
7895 if (serialcmp(disk->serial, inf[j].serial) == 0)
7896 return 1;
7897 }
7898
7899 return 0;
7900 }
7901
7902 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7903 {
7904 struct dl *dl = NULL;
7905 for (dl = super->disks; dl; dl = dl->next)
7906 if ((dl->major == major) && (dl->minor == minor))
7907 return dl;
7908 return NULL;
7909 }
7910
7911 static int remove_disk_super(struct intel_super *super, int major, int minor)
7912 {
7913 struct dl *prev = NULL;
7914 struct dl *dl;
7915
7916 prev = NULL;
7917 for (dl = super->disks; dl; dl = dl->next) {
7918 if ((dl->major == major) && (dl->minor == minor)) {
7919 /* remove */
7920 if (prev)
7921 prev->next = dl->next;
7922 else
7923 super->disks = dl->next;
7924 dl->next = NULL;
7925 __free_imsm_disk(dl);
7926 dprintf("removed %x:%x\n", major, minor);
7927 break;
7928 }
7929 prev = dl;
7930 }
7931 return 0;
7932 }
7933
7934 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
7935
7936 static int add_remove_disk_update(struct intel_super *super)
7937 {
7938 int check_degraded = 0;
7939 struct dl *disk = NULL;
7940 /* add/remove some spares to/from the metadata/contrainer */
7941 while (super->disk_mgmt_list) {
7942 struct dl *disk_cfg;
7943
7944 disk_cfg = super->disk_mgmt_list;
7945 super->disk_mgmt_list = disk_cfg->next;
7946 disk_cfg->next = NULL;
7947
7948 if (disk_cfg->action == DISK_ADD) {
7949 disk_cfg->next = super->disks;
7950 super->disks = disk_cfg;
7951 check_degraded = 1;
7952 dprintf("added %x:%x\n",
7953 disk_cfg->major, disk_cfg->minor);
7954 } else if (disk_cfg->action == DISK_REMOVE) {
7955 dprintf("Disk remove action processed: %x.%x\n",
7956 disk_cfg->major, disk_cfg->minor);
7957 disk = get_disk_super(super,
7958 disk_cfg->major,
7959 disk_cfg->minor);
7960 if (disk) {
7961 /* store action status */
7962 disk->action = DISK_REMOVE;
7963 /* remove spare disks only */
7964 if (disk->index == -1) {
7965 remove_disk_super(super,
7966 disk_cfg->major,
7967 disk_cfg->minor);
7968 }
7969 }
7970 /* release allocate disk structure */
7971 __free_imsm_disk(disk_cfg);
7972 }
7973 }
7974 return check_degraded;
7975 }
7976
7977 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7978 struct intel_super *super,
7979 void ***space_list)
7980 {
7981 struct intel_dev *id;
7982 void **tofree = NULL;
7983 int ret_val = 0;
7984
7985 dprintf("(enter)\n");
7986 if ((u->subdev < 0) ||
7987 (u->subdev > 1)) {
7988 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7989 return ret_val;
7990 }
7991 if ((space_list == NULL) || (*space_list == NULL)) {
7992 dprintf("imsm: Error: Memory is not allocated\n");
7993 return ret_val;
7994 }
7995
7996 for (id = super->devlist ; id; id = id->next) {
7997 if (id->index == (unsigned)u->subdev) {
7998 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7999 struct imsm_map *map;
8000 struct imsm_dev *new_dev =
8001 (struct imsm_dev *)*space_list;
8002 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
8003 int to_state;
8004 struct dl *new_disk;
8005
8006 if (new_dev == NULL)
8007 return ret_val;
8008 *space_list = **space_list;
8009 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
8010 map = get_imsm_map(new_dev, MAP_0);
8011 if (migr_map) {
8012 dprintf("imsm: Error: migration in progress");
8013 return ret_val;
8014 }
8015
8016 to_state = map->map_state;
8017 if ((u->new_level == 5) && (map->raid_level == 0)) {
8018 map->num_members++;
8019 /* this should not happen */
8020 if (u->new_disks[0] < 0) {
8021 map->failed_disk_num =
8022 map->num_members - 1;
8023 to_state = IMSM_T_STATE_DEGRADED;
8024 } else
8025 to_state = IMSM_T_STATE_NORMAL;
8026 }
8027 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
8028 if (u->new_level > -1)
8029 map->raid_level = u->new_level;
8030 migr_map = get_imsm_map(new_dev, MAP_1);
8031 if ((u->new_level == 5) &&
8032 (migr_map->raid_level == 0)) {
8033 int ord = map->num_members - 1;
8034 migr_map->num_members--;
8035 if (u->new_disks[0] < 0)
8036 ord |= IMSM_ORD_REBUILD;
8037 set_imsm_ord_tbl_ent(map,
8038 map->num_members - 1,
8039 ord);
8040 }
8041 id->dev = new_dev;
8042 tofree = (void **)dev;
8043
8044 /* update chunk size
8045 */
8046 if (u->new_chunksize > 0)
8047 map->blocks_per_strip =
8048 __cpu_to_le16(u->new_chunksize * 2);
8049
8050 /* add disk
8051 */
8052 if ((u->new_level != 5) ||
8053 (migr_map->raid_level != 0) ||
8054 (migr_map->raid_level == map->raid_level))
8055 goto skip_disk_add;
8056
8057 if (u->new_disks[0] >= 0) {
8058 /* use passes spare
8059 */
8060 new_disk = get_disk_super(super,
8061 major(u->new_disks[0]),
8062 minor(u->new_disks[0]));
8063 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
8064 major(u->new_disks[0]),
8065 minor(u->new_disks[0]),
8066 new_disk, new_disk->index);
8067 if (new_disk == NULL)
8068 goto error_disk_add;
8069
8070 new_disk->index = map->num_members - 1;
8071 /* slot to fill in autolayout
8072 */
8073 new_disk->raiddisk = new_disk->index;
8074 new_disk->disk.status |= CONFIGURED_DISK;
8075 new_disk->disk.status &= ~SPARE_DISK;
8076 } else
8077 goto error_disk_add;
8078
8079 skip_disk_add:
8080 *tofree = *space_list;
8081 /* calculate new size
8082 */
8083 imsm_set_array_size(new_dev, -1);
8084
8085 ret_val = 1;
8086 }
8087 }
8088
8089 if (tofree)
8090 *space_list = tofree;
8091 return ret_val;
8092
8093 error_disk_add:
8094 dprintf("Error: imsm: Cannot find disk.\n");
8095 return ret_val;
8096 }
8097
8098 static int apply_size_change_update(struct imsm_update_size_change *u,
8099 struct intel_super *super)
8100 {
8101 struct intel_dev *id;
8102 int ret_val = 0;
8103
8104 dprintf("(enter)\n");
8105 if ((u->subdev < 0) ||
8106 (u->subdev > 1)) {
8107 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8108 return ret_val;
8109 }
8110
8111 for (id = super->devlist ; id; id = id->next) {
8112 if (id->index == (unsigned)u->subdev) {
8113 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8114 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8115 int used_disks = imsm_num_data_members(dev, MAP_0);
8116 unsigned long long blocks_per_member;
8117
8118 /* calculate new size
8119 */
8120 blocks_per_member = u->new_size / used_disks;
8121 dprintf("(size: %llu, blocks per member: %llu)\n",
8122 u->new_size, blocks_per_member);
8123 set_blocks_per_member(map, blocks_per_member);
8124 imsm_set_array_size(dev, u->new_size);
8125
8126 ret_val = 1;
8127 break;
8128 }
8129 }
8130
8131 return ret_val;
8132 }
8133
8134 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
8135 struct intel_super *super,
8136 struct active_array *active_array)
8137 {
8138 struct imsm_super *mpb = super->anchor;
8139 struct imsm_dev *dev = get_imsm_dev(super, u->array);
8140 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8141 struct imsm_map *migr_map;
8142 struct active_array *a;
8143 struct imsm_disk *disk;
8144 __u8 to_state;
8145 struct dl *dl;
8146 unsigned int found;
8147 int failed;
8148 int victim;
8149 int i;
8150 int second_map_created = 0;
8151
8152 for (; u; u = u->next) {
8153 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
8154
8155 if (victim < 0)
8156 return 0;
8157
8158 for (dl = super->disks; dl; dl = dl->next)
8159 if (dl == u->dl)
8160 break;
8161
8162 if (!dl) {
8163 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
8164 u->dl->index);
8165 return 0;
8166 }
8167
8168 /* count failures (excluding rebuilds and the victim)
8169 * to determine map[0] state
8170 */
8171 failed = 0;
8172 for (i = 0; i < map->num_members; i++) {
8173 if (i == u->slot)
8174 continue;
8175 disk = get_imsm_disk(super,
8176 get_imsm_disk_idx(dev, i, MAP_X));
8177 if (!disk || is_failed(disk))
8178 failed++;
8179 }
8180
8181 /* adding a pristine spare, assign a new index */
8182 if (dl->index < 0) {
8183 dl->index = super->anchor->num_disks;
8184 super->anchor->num_disks++;
8185 }
8186 disk = &dl->disk;
8187 disk->status |= CONFIGURED_DISK;
8188 disk->status &= ~SPARE_DISK;
8189
8190 /* mark rebuild */
8191 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
8192 if (!second_map_created) {
8193 second_map_created = 1;
8194 map->map_state = IMSM_T_STATE_DEGRADED;
8195 migrate(dev, super, to_state, MIGR_REBUILD);
8196 } else
8197 map->map_state = to_state;
8198 migr_map = get_imsm_map(dev, MAP_1);
8199 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8200 set_imsm_ord_tbl_ent(migr_map, u->slot,
8201 dl->index | IMSM_ORD_REBUILD);
8202
8203 /* update the family_num to mark a new container
8204 * generation, being careful to record the existing
8205 * family_num in orig_family_num to clean up after
8206 * earlier mdadm versions that neglected to set it.
8207 */
8208 if (mpb->orig_family_num == 0)
8209 mpb->orig_family_num = mpb->family_num;
8210 mpb->family_num += super->random;
8211
8212 /* count arrays using the victim in the metadata */
8213 found = 0;
8214 for (a = active_array; a ; a = a->next) {
8215 dev = get_imsm_dev(super, a->info.container_member);
8216 map = get_imsm_map(dev, MAP_0);
8217
8218 if (get_imsm_disk_slot(map, victim) >= 0)
8219 found++;
8220 }
8221
8222 /* delete the victim if it is no longer being
8223 * utilized anywhere
8224 */
8225 if (!found) {
8226 struct dl **dlp;
8227
8228 /* We know that 'manager' isn't touching anything,
8229 * so it is safe to delete
8230 */
8231 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
8232 if ((*dlp)->index == victim)
8233 break;
8234
8235 /* victim may be on the missing list */
8236 if (!*dlp)
8237 for (dlp = &super->missing; *dlp;
8238 dlp = &(*dlp)->next)
8239 if ((*dlp)->index == victim)
8240 break;
8241 imsm_delete(super, dlp, victim);
8242 }
8243 }
8244
8245 return 1;
8246 }
8247
8248 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8249 struct intel_super *super,
8250 void ***space_list)
8251 {
8252 struct dl *new_disk;
8253 struct intel_dev *id;
8254 int i;
8255 int delta_disks = u->new_raid_disks - u->old_raid_disks;
8256 int disk_count = u->old_raid_disks;
8257 void **tofree = NULL;
8258 int devices_to_reshape = 1;
8259 struct imsm_super *mpb = super->anchor;
8260 int ret_val = 0;
8261 unsigned int dev_id;
8262
8263 dprintf("(enter)\n");
8264
8265 /* enable spares to use in array */
8266 for (i = 0; i < delta_disks; i++) {
8267 new_disk = get_disk_super(super,
8268 major(u->new_disks[i]),
8269 minor(u->new_disks[i]));
8270 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
8271 major(u->new_disks[i]), minor(u->new_disks[i]),
8272 new_disk, new_disk->index);
8273 if ((new_disk == NULL) ||
8274 ((new_disk->index >= 0) &&
8275 (new_disk->index < u->old_raid_disks)))
8276 goto update_reshape_exit;
8277 new_disk->index = disk_count++;
8278 /* slot to fill in autolayout
8279 */
8280 new_disk->raiddisk = new_disk->index;
8281 new_disk->disk.status |=
8282 CONFIGURED_DISK;
8283 new_disk->disk.status &= ~SPARE_DISK;
8284 }
8285
8286 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8287 mpb->num_raid_devs);
8288 /* manage changes in volume
8289 */
8290 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
8291 void **sp = *space_list;
8292 struct imsm_dev *newdev;
8293 struct imsm_map *newmap, *oldmap;
8294
8295 for (id = super->devlist ; id; id = id->next) {
8296 if (id->index == dev_id)
8297 break;
8298 }
8299 if (id == NULL)
8300 break;
8301 if (!sp)
8302 continue;
8303 *space_list = *sp;
8304 newdev = (void*)sp;
8305 /* Copy the dev, but not (all of) the map */
8306 memcpy(newdev, id->dev, sizeof(*newdev));
8307 oldmap = get_imsm_map(id->dev, MAP_0);
8308 newmap = get_imsm_map(newdev, MAP_0);
8309 /* Copy the current map */
8310 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8311 /* update one device only
8312 */
8313 if (devices_to_reshape) {
8314 dprintf("imsm: modifying subdev: %i\n",
8315 id->index);
8316 devices_to_reshape--;
8317 newdev->vol.migr_state = 1;
8318 newdev->vol.curr_migr_unit = 0;
8319 set_migr_type(newdev, MIGR_GEN_MIGR);
8320 newmap->num_members = u->new_raid_disks;
8321 for (i = 0; i < delta_disks; i++) {
8322 set_imsm_ord_tbl_ent(newmap,
8323 u->old_raid_disks + i,
8324 u->old_raid_disks + i);
8325 }
8326 /* New map is correct, now need to save old map
8327 */
8328 newmap = get_imsm_map(newdev, MAP_1);
8329 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8330
8331 imsm_set_array_size(newdev, -1);
8332 }
8333
8334 sp = (void **)id->dev;
8335 id->dev = newdev;
8336 *sp = tofree;
8337 tofree = sp;
8338
8339 /* Clear migration record */
8340 memset(super->migr_rec, 0, sizeof(struct migr_record));
8341 }
8342 if (tofree)
8343 *space_list = tofree;
8344 ret_val = 1;
8345
8346 update_reshape_exit:
8347
8348 return ret_val;
8349 }
8350
8351 static int apply_takeover_update(struct imsm_update_takeover *u,
8352 struct intel_super *super,
8353 void ***space_list)
8354 {
8355 struct imsm_dev *dev = NULL;
8356 struct intel_dev *dv;
8357 struct imsm_dev *dev_new;
8358 struct imsm_map *map;
8359 struct dl *dm, *du;
8360 int i;
8361
8362 for (dv = super->devlist; dv; dv = dv->next)
8363 if (dv->index == (unsigned int)u->subarray) {
8364 dev = dv->dev;
8365 break;
8366 }
8367
8368 if (dev == NULL)
8369 return 0;
8370
8371 map = get_imsm_map(dev, MAP_0);
8372
8373 if (u->direction == R10_TO_R0) {
8374 /* Number of failed disks must be half of initial disk number */
8375 if (imsm_count_failed(super, dev, MAP_0) !=
8376 (map->num_members / 2))
8377 return 0;
8378
8379 /* iterate through devices to mark removed disks as spare */
8380 for (dm = super->disks; dm; dm = dm->next) {
8381 if (dm->disk.status & FAILED_DISK) {
8382 int idx = dm->index;
8383 /* update indexes on the disk list */
8384 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
8385 the index values will end up being correct.... NB */
8386 for (du = super->disks; du; du = du->next)
8387 if (du->index > idx)
8388 du->index--;
8389 /* mark as spare disk */
8390 mark_spare(dm);
8391 }
8392 }
8393 /* update map */
8394 map->num_members = map->num_members / 2;
8395 map->map_state = IMSM_T_STATE_NORMAL;
8396 map->num_domains = 1;
8397 map->raid_level = 0;
8398 map->failed_disk_num = -1;
8399 }
8400
8401 if (u->direction == R0_TO_R10) {
8402 void **space;
8403 /* update slots in current disk list */
8404 for (dm = super->disks; dm; dm = dm->next) {
8405 if (dm->index >= 0)
8406 dm->index *= 2;
8407 }
8408 /* create new *missing* disks */
8409 for (i = 0; i < map->num_members; i++) {
8410 space = *space_list;
8411 if (!space)
8412 continue;
8413 *space_list = *space;
8414 du = (void *)space;
8415 memcpy(du, super->disks, sizeof(*du));
8416 du->fd = -1;
8417 du->minor = 0;
8418 du->major = 0;
8419 du->index = (i * 2) + 1;
8420 sprintf((char *)du->disk.serial,
8421 " MISSING_%d", du->index);
8422 sprintf((char *)du->serial,
8423 "MISSING_%d", du->index);
8424 du->next = super->missing;
8425 super->missing = du;
8426 }
8427 /* create new dev and map */
8428 space = *space_list;
8429 if (!space)
8430 return 0;
8431 *space_list = *space;
8432 dev_new = (void *)space;
8433 memcpy(dev_new, dev, sizeof(*dev));
8434 /* update new map */
8435 map = get_imsm_map(dev_new, MAP_0);
8436 map->num_members = map->num_members * 2;
8437 map->map_state = IMSM_T_STATE_DEGRADED;
8438 map->num_domains = 2;
8439 map->raid_level = 1;
8440 /* replace dev<->dev_new */
8441 dv->dev = dev_new;
8442 }
8443 /* update disk order table */
8444 for (du = super->disks; du; du = du->next)
8445 if (du->index >= 0)
8446 set_imsm_ord_tbl_ent(map, du->index, du->index);
8447 for (du = super->missing; du; du = du->next)
8448 if (du->index >= 0) {
8449 set_imsm_ord_tbl_ent(map, du->index, du->index);
8450 mark_missing(dv->dev, &du->disk, du->index);
8451 }
8452
8453 return 1;
8454 }
8455
8456 static void imsm_process_update(struct supertype *st,
8457 struct metadata_update *update)
8458 {
8459 /**
8460 * crack open the metadata_update envelope to find the update record
8461 * update can be one of:
8462 * update_reshape_container_disks - all the arrays in the container
8463 * are being reshaped to have more devices. We need to mark
8464 * the arrays for general migration and convert selected spares
8465 * into active devices.
8466 * update_activate_spare - a spare device has replaced a failed
8467 * device in an array, update the disk_ord_tbl. If this disk is
8468 * present in all member arrays then also clear the SPARE_DISK
8469 * flag
8470 * update_create_array
8471 * update_kill_array
8472 * update_rename_array
8473 * update_add_remove_disk
8474 */
8475 struct intel_super *super = st->sb;
8476 struct imsm_super *mpb;
8477 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8478
8479 /* update requires a larger buf but the allocation failed */
8480 if (super->next_len && !super->next_buf) {
8481 super->next_len = 0;
8482 return;
8483 }
8484
8485 if (super->next_buf) {
8486 memcpy(super->next_buf, super->buf, super->len);
8487 free(super->buf);
8488 super->len = super->next_len;
8489 super->buf = super->next_buf;
8490
8491 super->next_len = 0;
8492 super->next_buf = NULL;
8493 }
8494
8495 mpb = super->anchor;
8496
8497 switch (type) {
8498 case update_general_migration_checkpoint: {
8499 struct intel_dev *id;
8500 struct imsm_update_general_migration_checkpoint *u =
8501 (void *)update->buf;
8502
8503 dprintf("called for update_general_migration_checkpoint\n");
8504
8505 /* find device under general migration */
8506 for (id = super->devlist ; id; id = id->next) {
8507 if (is_gen_migration(id->dev)) {
8508 id->dev->vol.curr_migr_unit =
8509 __cpu_to_le32(u->curr_migr_unit);
8510 super->updates_pending++;
8511 }
8512 }
8513 break;
8514 }
8515 case update_takeover: {
8516 struct imsm_update_takeover *u = (void *)update->buf;
8517 if (apply_takeover_update(u, super, &update->space_list)) {
8518 imsm_update_version_info(super);
8519 super->updates_pending++;
8520 }
8521 break;
8522 }
8523
8524 case update_reshape_container_disks: {
8525 struct imsm_update_reshape *u = (void *)update->buf;
8526 if (apply_reshape_container_disks_update(
8527 u, super, &update->space_list))
8528 super->updates_pending++;
8529 break;
8530 }
8531 case update_reshape_migration: {
8532 struct imsm_update_reshape_migration *u = (void *)update->buf;
8533 if (apply_reshape_migration_update(
8534 u, super, &update->space_list))
8535 super->updates_pending++;
8536 break;
8537 }
8538 case update_size_change: {
8539 struct imsm_update_size_change *u = (void *)update->buf;
8540 if (apply_size_change_update(u, super))
8541 super->updates_pending++;
8542 break;
8543 }
8544 case update_activate_spare: {
8545 struct imsm_update_activate_spare *u = (void *) update->buf;
8546 if (apply_update_activate_spare(u, super, st->arrays))
8547 super->updates_pending++;
8548 break;
8549 }
8550 case update_create_array: {
8551 /* someone wants to create a new array, we need to be aware of
8552 * a few races/collisions:
8553 * 1/ 'Create' called by two separate instances of mdadm
8554 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
8555 * devices that have since been assimilated via
8556 * activate_spare.
8557 * In the event this update can not be carried out mdadm will
8558 * (FIX ME) notice that its update did not take hold.
8559 */
8560 struct imsm_update_create_array *u = (void *) update->buf;
8561 struct intel_dev *dv;
8562 struct imsm_dev *dev;
8563 struct imsm_map *map, *new_map;
8564 unsigned long long start, end;
8565 unsigned long long new_start, new_end;
8566 int i;
8567 struct disk_info *inf;
8568 struct dl *dl;
8569
8570 /* handle racing creates: first come first serve */
8571 if (u->dev_idx < mpb->num_raid_devs) {
8572 dprintf("subarray %d already defined\n", u->dev_idx);
8573 goto create_error;
8574 }
8575
8576 /* check update is next in sequence */
8577 if (u->dev_idx != mpb->num_raid_devs) {
8578 dprintf("can not create array %d expected index %d\n",
8579 u->dev_idx, mpb->num_raid_devs);
8580 goto create_error;
8581 }
8582
8583 new_map = get_imsm_map(&u->dev, MAP_0);
8584 new_start = pba_of_lba0(new_map);
8585 new_end = new_start + blocks_per_member(new_map);
8586 inf = get_disk_info(u);
8587
8588 /* handle activate_spare versus create race:
8589 * check to make sure that overlapping arrays do not include
8590 * overalpping disks
8591 */
8592 for (i = 0; i < mpb->num_raid_devs; i++) {
8593 dev = get_imsm_dev(super, i);
8594 map = get_imsm_map(dev, MAP_0);
8595 start = pba_of_lba0(map);
8596 end = start + blocks_per_member(map);
8597 if ((new_start >= start && new_start <= end) ||
8598 (start >= new_start && start <= new_end))
8599 /* overlap */;
8600 else
8601 continue;
8602
8603 if (disks_overlap(super, i, u)) {
8604 dprintf("arrays overlap\n");
8605 goto create_error;
8606 }
8607 }
8608
8609 /* check that prepare update was successful */
8610 if (!update->space) {
8611 dprintf("prepare update failed\n");
8612 goto create_error;
8613 }
8614
8615 /* check that all disks are still active before committing
8616 * changes. FIXME: could we instead handle this by creating a
8617 * degraded array? That's probably not what the user expects,
8618 * so better to drop this update on the floor.
8619 */
8620 for (i = 0; i < new_map->num_members; i++) {
8621 dl = serial_to_dl(inf[i].serial, super);
8622 if (!dl) {
8623 dprintf("disk disappeared\n");
8624 goto create_error;
8625 }
8626 }
8627
8628 super->updates_pending++;
8629
8630 /* convert spares to members and fixup ord_tbl */
8631 for (i = 0; i < new_map->num_members; i++) {
8632 dl = serial_to_dl(inf[i].serial, super);
8633 if (dl->index == -1) {
8634 dl->index = mpb->num_disks;
8635 mpb->num_disks++;
8636 dl->disk.status |= CONFIGURED_DISK;
8637 dl->disk.status &= ~SPARE_DISK;
8638 }
8639 set_imsm_ord_tbl_ent(new_map, i, dl->index);
8640 }
8641
8642 dv = update->space;
8643 dev = dv->dev;
8644 update->space = NULL;
8645 imsm_copy_dev(dev, &u->dev);
8646 dv->index = u->dev_idx;
8647 dv->next = super->devlist;
8648 super->devlist = dv;
8649 mpb->num_raid_devs++;
8650
8651 imsm_update_version_info(super);
8652 break;
8653 create_error:
8654 /* mdmon knows how to release update->space, but not
8655 * ((struct intel_dev *) update->space)->dev
8656 */
8657 if (update->space) {
8658 dv = update->space;
8659 free(dv->dev);
8660 }
8661 break;
8662 }
8663 case update_kill_array: {
8664 struct imsm_update_kill_array *u = (void *) update->buf;
8665 int victim = u->dev_idx;
8666 struct active_array *a;
8667 struct intel_dev **dp;
8668 struct imsm_dev *dev;
8669
8670 /* sanity check that we are not affecting the uuid of
8671 * active arrays, or deleting an active array
8672 *
8673 * FIXME when immutable ids are available, but note that
8674 * we'll also need to fixup the invalidated/active
8675 * subarray indexes in mdstat
8676 */
8677 for (a = st->arrays; a; a = a->next)
8678 if (a->info.container_member >= victim)
8679 break;
8680 /* by definition if mdmon is running at least one array
8681 * is active in the container, so checking
8682 * mpb->num_raid_devs is just extra paranoia
8683 */
8684 dev = get_imsm_dev(super, victim);
8685 if (a || !dev || mpb->num_raid_devs == 1) {
8686 dprintf("failed to delete subarray-%d\n", victim);
8687 break;
8688 }
8689
8690 for (dp = &super->devlist; *dp;)
8691 if ((*dp)->index == (unsigned)super->current_vol) {
8692 *dp = (*dp)->next;
8693 } else {
8694 if ((*dp)->index > (unsigned)victim)
8695 (*dp)->index--;
8696 dp = &(*dp)->next;
8697 }
8698 mpb->num_raid_devs--;
8699 super->updates_pending++;
8700 break;
8701 }
8702 case update_rename_array: {
8703 struct imsm_update_rename_array *u = (void *) update->buf;
8704 char name[MAX_RAID_SERIAL_LEN+1];
8705 int target = u->dev_idx;
8706 struct active_array *a;
8707 struct imsm_dev *dev;
8708
8709 /* sanity check that we are not affecting the uuid of
8710 * an active array
8711 */
8712 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
8713 name[MAX_RAID_SERIAL_LEN] = '\0';
8714 for (a = st->arrays; a; a = a->next)
8715 if (a->info.container_member == target)
8716 break;
8717 dev = get_imsm_dev(super, u->dev_idx);
8718 if (a || !dev || !check_name(super, name, 1)) {
8719 dprintf("failed to rename subarray-%d\n", target);
8720 break;
8721 }
8722
8723 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
8724 super->updates_pending++;
8725 break;
8726 }
8727 case update_add_remove_disk: {
8728 /* we may be able to repair some arrays if disks are
8729 * being added, check the status of add_remove_disk
8730 * if discs has been added.
8731 */
8732 if (add_remove_disk_update(super)) {
8733 struct active_array *a;
8734
8735 super->updates_pending++;
8736 for (a = st->arrays; a; a = a->next)
8737 a->check_degraded = 1;
8738 }
8739 break;
8740 }
8741 default:
8742 pr_err("error: unsuported process update type:(type: %d)\n", type);
8743 }
8744 }
8745
8746 static struct mdinfo *get_spares_for_grow(struct supertype *st);
8747
8748 static int imsm_prepare_update(struct supertype *st,
8749 struct metadata_update *update)
8750 {
8751 /**
8752 * Allocate space to hold new disk entries, raid-device entries or a new
8753 * mpb if necessary. The manager synchronously waits for updates to
8754 * complete in the monitor, so new mpb buffers allocated here can be
8755 * integrated by the monitor thread without worrying about live pointers
8756 * in the manager thread.
8757 */
8758 enum imsm_update_type type;
8759 struct intel_super *super = st->sb;
8760 struct imsm_super *mpb = super->anchor;
8761 size_t buf_len;
8762 size_t len = 0;
8763
8764 if (update->len < (int)sizeof(type))
8765 return 0;
8766
8767 type = *(enum imsm_update_type *) update->buf;
8768
8769 switch (type) {
8770 case update_general_migration_checkpoint:
8771 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
8772 return 0;
8773 dprintf("called for update_general_migration_checkpoint\n");
8774 break;
8775 case update_takeover: {
8776 struct imsm_update_takeover *u = (void *)update->buf;
8777 if (update->len < (int)sizeof(*u))
8778 return 0;
8779 if (u->direction == R0_TO_R10) {
8780 void **tail = (void **)&update->space_list;
8781 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
8782 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8783 int num_members = map->num_members;
8784 void *space;
8785 int size, i;
8786 /* allocate memory for added disks */
8787 for (i = 0; i < num_members; i++) {
8788 size = sizeof(struct dl);
8789 space = xmalloc(size);
8790 *tail = space;
8791 tail = space;
8792 *tail = NULL;
8793 }
8794 /* allocate memory for new device */
8795 size = sizeof_imsm_dev(super->devlist->dev, 0) +
8796 (num_members * sizeof(__u32));
8797 space = xmalloc(size);
8798 *tail = space;
8799 tail = space;
8800 *tail = NULL;
8801 len = disks_to_mpb_size(num_members * 2);
8802 }
8803
8804 break;
8805 }
8806 case update_reshape_container_disks: {
8807 /* Every raid device in the container is about to
8808 * gain some more devices, and we will enter a
8809 * reconfiguration.
8810 * So each 'imsm_map' will be bigger, and the imsm_vol
8811 * will now hold 2 of them.
8812 * Thus we need new 'struct imsm_dev' allocations sized
8813 * as sizeof_imsm_dev but with more devices in both maps.
8814 */
8815 struct imsm_update_reshape *u = (void *)update->buf;
8816 struct intel_dev *dl;
8817 void **space_tail = (void**)&update->space_list;
8818
8819 if (update->len < (int)sizeof(*u))
8820 return 0;
8821
8822 dprintf("for update_reshape\n");
8823
8824 for (dl = super->devlist; dl; dl = dl->next) {
8825 int size = sizeof_imsm_dev(dl->dev, 1);
8826 void *s;
8827 if (u->new_raid_disks > u->old_raid_disks)
8828 size += sizeof(__u32)*2*
8829 (u->new_raid_disks - u->old_raid_disks);
8830 s = xmalloc(size);
8831 *space_tail = s;
8832 space_tail = s;
8833 *space_tail = NULL;
8834 }
8835
8836 len = disks_to_mpb_size(u->new_raid_disks);
8837 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8838 break;
8839 }
8840 case update_reshape_migration: {
8841 /* for migration level 0->5 we need to add disks
8842 * so the same as for container operation we will copy
8843 * device to the bigger location.
8844 * in memory prepared device and new disk area are prepared
8845 * for usage in process update
8846 */
8847 struct imsm_update_reshape_migration *u = (void *)update->buf;
8848 struct intel_dev *id;
8849 void **space_tail = (void **)&update->space_list;
8850 int size;
8851 void *s;
8852 int current_level = -1;
8853
8854 if (update->len < (int)sizeof(*u))
8855 return 0;
8856
8857 dprintf("for update_reshape\n");
8858
8859 /* add space for bigger array in update
8860 */
8861 for (id = super->devlist; id; id = id->next) {
8862 if (id->index == (unsigned)u->subdev) {
8863 size = sizeof_imsm_dev(id->dev, 1);
8864 if (u->new_raid_disks > u->old_raid_disks)
8865 size += sizeof(__u32)*2*
8866 (u->new_raid_disks - u->old_raid_disks);
8867 s = xmalloc(size);
8868 *space_tail = s;
8869 space_tail = s;
8870 *space_tail = NULL;
8871 break;
8872 }
8873 }
8874 if (update->space_list == NULL)
8875 break;
8876
8877 /* add space for disk in update
8878 */
8879 size = sizeof(struct dl);
8880 s = xmalloc(size);
8881 *space_tail = s;
8882 space_tail = s;
8883 *space_tail = NULL;
8884
8885 /* add spare device to update
8886 */
8887 for (id = super->devlist ; id; id = id->next)
8888 if (id->index == (unsigned)u->subdev) {
8889 struct imsm_dev *dev;
8890 struct imsm_map *map;
8891
8892 dev = get_imsm_dev(super, u->subdev);
8893 map = get_imsm_map(dev, MAP_0);
8894 current_level = map->raid_level;
8895 break;
8896 }
8897 if ((u->new_level == 5) && (u->new_level != current_level)) {
8898 struct mdinfo *spares;
8899
8900 spares = get_spares_for_grow(st);
8901 if (spares) {
8902 struct dl *dl;
8903 struct mdinfo *dev;
8904
8905 dev = spares->devs;
8906 if (dev) {
8907 u->new_disks[0] =
8908 makedev(dev->disk.major,
8909 dev->disk.minor);
8910 dl = get_disk_super(super,
8911 dev->disk.major,
8912 dev->disk.minor);
8913 dl->index = u->old_raid_disks;
8914 dev = dev->next;
8915 }
8916 sysfs_free(spares);
8917 }
8918 }
8919 len = disks_to_mpb_size(u->new_raid_disks);
8920 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8921 break;
8922 }
8923 case update_size_change: {
8924 if (update->len < (int)sizeof(struct imsm_update_size_change))
8925 return 0;
8926 break;
8927 }
8928 case update_activate_spare: {
8929 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
8930 return 0;
8931 break;
8932 }
8933 case update_create_array: {
8934 struct imsm_update_create_array *u = (void *) update->buf;
8935 struct intel_dev *dv;
8936 struct imsm_dev *dev = &u->dev;
8937 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8938 struct dl *dl;
8939 struct disk_info *inf;
8940 int i;
8941 int activate = 0;
8942
8943 if (update->len < (int)sizeof(*u))
8944 return 0;
8945
8946 inf = get_disk_info(u);
8947 len = sizeof_imsm_dev(dev, 1);
8948 /* allocate a new super->devlist entry */
8949 dv = xmalloc(sizeof(*dv));
8950 dv->dev = xmalloc(len);
8951 update->space = dv;
8952
8953 /* count how many spares will be converted to members */
8954 for (i = 0; i < map->num_members; i++) {
8955 dl = serial_to_dl(inf[i].serial, super);
8956 if (!dl) {
8957 /* hmm maybe it failed?, nothing we can do about
8958 * it here
8959 */
8960 continue;
8961 }
8962 if (count_memberships(dl, super) == 0)
8963 activate++;
8964 }
8965 len += activate * sizeof(struct imsm_disk);
8966 break;
8967 }
8968 case update_kill_array: {
8969 if (update->len < (int)sizeof(struct imsm_update_kill_array))
8970 return 0;
8971 break;
8972 }
8973 case update_rename_array: {
8974 if (update->len < (int)sizeof(struct imsm_update_rename_array))
8975 return 0;
8976 break;
8977 }
8978 case update_add_remove_disk:
8979 /* no update->len needed */
8980 break;
8981 default:
8982 return 0;
8983 }
8984
8985 /* check if we need a larger metadata buffer */
8986 if (super->next_buf)
8987 buf_len = super->next_len;
8988 else
8989 buf_len = super->len;
8990
8991 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
8992 /* ok we need a larger buf than what is currently allocated
8993 * if this allocation fails process_update will notice that
8994 * ->next_len is set and ->next_buf is NULL
8995 */
8996 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
8997 if (super->next_buf)
8998 free(super->next_buf);
8999
9000 super->next_len = buf_len;
9001 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
9002 memset(super->next_buf, 0, buf_len);
9003 else
9004 super->next_buf = NULL;
9005 }
9006 return 1;
9007 }
9008
9009 /* must be called while manager is quiesced */
9010 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
9011 {
9012 struct imsm_super *mpb = super->anchor;
9013 struct dl *iter;
9014 struct imsm_dev *dev;
9015 struct imsm_map *map;
9016 int i, j, num_members;
9017 __u32 ord;
9018
9019 dprintf("deleting device[%d] from imsm_super\n", index);
9020
9021 /* shift all indexes down one */
9022 for (iter = super->disks; iter; iter = iter->next)
9023 if (iter->index > (int)index)
9024 iter->index--;
9025 for (iter = super->missing; iter; iter = iter->next)
9026 if (iter->index > (int)index)
9027 iter->index--;
9028
9029 for (i = 0; i < mpb->num_raid_devs; i++) {
9030 dev = get_imsm_dev(super, i);
9031 map = get_imsm_map(dev, MAP_0);
9032 num_members = map->num_members;
9033 for (j = 0; j < num_members; j++) {
9034 /* update ord entries being careful not to propagate
9035 * ord-flags to the first map
9036 */
9037 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
9038
9039 if (ord_to_idx(ord) <= index)
9040 continue;
9041
9042 map = get_imsm_map(dev, MAP_0);
9043 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
9044 map = get_imsm_map(dev, MAP_1);
9045 if (map)
9046 set_imsm_ord_tbl_ent(map, j, ord - 1);
9047 }
9048 }
9049
9050 mpb->num_disks--;
9051 super->updates_pending++;
9052 if (*dlp) {
9053 struct dl *dl = *dlp;
9054
9055 *dlp = (*dlp)->next;
9056 __free_imsm_disk(dl);
9057 }
9058 }
9059 #endif /* MDASSEMBLE */
9060
9061 static void close_targets(int *targets, int new_disks)
9062 {
9063 int i;
9064
9065 if (!targets)
9066 return;
9067
9068 for (i = 0; i < new_disks; i++) {
9069 if (targets[i] >= 0) {
9070 close(targets[i]);
9071 targets[i] = -1;
9072 }
9073 }
9074 }
9075
9076 static int imsm_get_allowed_degradation(int level, int raid_disks,
9077 struct intel_super *super,
9078 struct imsm_dev *dev)
9079 {
9080 switch (level) {
9081 case 1:
9082 case 10:{
9083 int ret_val = 0;
9084 struct imsm_map *map;
9085 int i;
9086
9087 ret_val = raid_disks/2;
9088 /* check map if all disks pairs not failed
9089 * in both maps
9090 */
9091 map = get_imsm_map(dev, MAP_0);
9092 for (i = 0; i < ret_val; i++) {
9093 int degradation = 0;
9094 if (get_imsm_disk(super, i) == NULL)
9095 degradation++;
9096 if (get_imsm_disk(super, i + 1) == NULL)
9097 degradation++;
9098 if (degradation == 2)
9099 return 0;
9100 }
9101 map = get_imsm_map(dev, MAP_1);
9102 /* if there is no second map
9103 * result can be returned
9104 */
9105 if (map == NULL)
9106 return ret_val;
9107 /* check degradation in second map
9108 */
9109 for (i = 0; i < ret_val; i++) {
9110 int degradation = 0;
9111 if (get_imsm_disk(super, i) == NULL)
9112 degradation++;
9113 if (get_imsm_disk(super, i + 1) == NULL)
9114 degradation++;
9115 if (degradation == 2)
9116 return 0;
9117 }
9118 return ret_val;
9119 }
9120 case 5:
9121 return 1;
9122 case 6:
9123 return 2;
9124 default:
9125 return 0;
9126 }
9127 }
9128
9129 /*******************************************************************************
9130 * Function: open_backup_targets
9131 * Description: Function opens file descriptors for all devices given in
9132 * info->devs
9133 * Parameters:
9134 * info : general array info
9135 * raid_disks : number of disks
9136 * raid_fds : table of device's file descriptors
9137 * super : intel super for raid10 degradation check
9138 * dev : intel device for raid10 degradation check
9139 * Returns:
9140 * 0 : success
9141 * -1 : fail
9142 ******************************************************************************/
9143 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
9144 struct intel_super *super, struct imsm_dev *dev)
9145 {
9146 struct mdinfo *sd;
9147 int i;
9148 int opened = 0;
9149
9150 for (i = 0; i < raid_disks; i++)
9151 raid_fds[i] = -1;
9152
9153 for (sd = info->devs ; sd ; sd = sd->next) {
9154 char *dn;
9155
9156 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
9157 dprintf("disk is faulty!!\n");
9158 continue;
9159 }
9160
9161 if ((sd->disk.raid_disk >= raid_disks) ||
9162 (sd->disk.raid_disk < 0))
9163 continue;
9164
9165 dn = map_dev(sd->disk.major,
9166 sd->disk.minor, 1);
9167 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
9168 if (raid_fds[sd->disk.raid_disk] < 0) {
9169 pr_err("cannot open component\n");
9170 continue;
9171 }
9172 opened++;
9173 }
9174 /* check if maximum array degradation level is not exceeded
9175 */
9176 if ((raid_disks - opened) >
9177 imsm_get_allowed_degradation(info->new_level,
9178 raid_disks,
9179 super, dev)) {
9180 pr_err("Not enough disks can be opened.\n");
9181 close_targets(raid_fds, raid_disks);
9182 return -2;
9183 }
9184 return 0;
9185 }
9186
9187 /*******************************************************************************
9188 * Function: validate_container_imsm
9189 * Description: This routine validates container after assemble,
9190 * eg. if devices in container are under the same controller.
9191 *
9192 * Parameters:
9193 * info : linked list with info about devices used in array
9194 * Returns:
9195 * 1 : HBA mismatch
9196 * 0 : Success
9197 ******************************************************************************/
9198 int validate_container_imsm(struct mdinfo *info)
9199 {
9200 if (check_env("IMSM_NO_PLATFORM"))
9201 return 0;
9202
9203 struct sys_dev *idev;
9204 struct sys_dev *hba = NULL;
9205 struct sys_dev *intel_devices = find_intel_devices();
9206 char *dev_path = devt_to_devpath(makedev(info->disk.major,
9207 info->disk.minor));
9208
9209 for (idev = intel_devices; idev; idev = idev->next) {
9210 if (dev_path && strstr(dev_path, idev->path)) {
9211 hba = idev;
9212 break;
9213 }
9214 }
9215 if (dev_path)
9216 free(dev_path);
9217
9218 if (!hba) {
9219 pr_err("WARNING - Cannot detect HBA for device %s!\n",
9220 devid2kname(makedev(info->disk.major, info->disk.minor)));
9221 return 1;
9222 }
9223
9224 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
9225 struct mdinfo *dev;
9226
9227 for (dev = info->next; dev; dev = dev->next) {
9228 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
9229
9230 struct sys_dev *hba2 = NULL;
9231 for (idev = intel_devices; idev; idev = idev->next) {
9232 if (dev_path && strstr(dev_path, idev->path)) {
9233 hba2 = idev;
9234 break;
9235 }
9236 }
9237 if (dev_path)
9238 free(dev_path);
9239
9240 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
9241 get_orom_by_device_id(hba2->dev_id);
9242
9243 if (hba2 && hba->type != hba2->type) {
9244 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
9245 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
9246 return 1;
9247 }
9248
9249 if ((orom != orom2) || ((hba->type == SYS_DEV_VMD) && (hba != hba2))) {
9250 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
9251 " This operation is not supported and can lead to data loss.\n");
9252 return 1;
9253 }
9254
9255 if (!orom) {
9256 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
9257 " This operation is not supported and can lead to data loss.\n");
9258 return 1;
9259 }
9260 }
9261
9262 return 0;
9263 }
9264 #ifndef MDASSEMBLE
9265 /*******************************************************************************
9266 * Function: init_migr_record_imsm
9267 * Description: Function inits imsm migration record
9268 * Parameters:
9269 * super : imsm internal array info
9270 * dev : device under migration
9271 * info : general array info to find the smallest device
9272 * Returns:
9273 * none
9274 ******************************************************************************/
9275 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
9276 struct mdinfo *info)
9277 {
9278 struct intel_super *super = st->sb;
9279 struct migr_record *migr_rec = super->migr_rec;
9280 int new_data_disks;
9281 unsigned long long dsize, dev_sectors;
9282 long long unsigned min_dev_sectors = -1LLU;
9283 struct mdinfo *sd;
9284 char nm[30];
9285 int fd;
9286 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9287 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
9288 unsigned long long num_migr_units;
9289 unsigned long long array_blocks;
9290
9291 memset(migr_rec, 0, sizeof(struct migr_record));
9292 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
9293
9294 /* only ascending reshape supported now */
9295 migr_rec->ascending_migr = __cpu_to_le32(1);
9296
9297 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
9298 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9299 migr_rec->dest_depth_per_unit *=
9300 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9301 new_data_disks = imsm_num_data_members(dev, MAP_0);
9302 migr_rec->blocks_per_unit =
9303 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
9304 migr_rec->dest_depth_per_unit =
9305 __cpu_to_le32(migr_rec->dest_depth_per_unit);
9306 array_blocks = info->component_size * new_data_disks;
9307 num_migr_units =
9308 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9309
9310 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9311 num_migr_units++;
9312 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9313
9314 migr_rec->post_migr_vol_cap = dev->size_low;
9315 migr_rec->post_migr_vol_cap_hi = dev->size_high;
9316
9317 /* Find the smallest dev */
9318 for (sd = info->devs ; sd ; sd = sd->next) {
9319 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9320 fd = dev_open(nm, O_RDONLY);
9321 if (fd < 0)
9322 continue;
9323 get_dev_size(fd, NULL, &dsize);
9324 dev_sectors = dsize / 512;
9325 if (dev_sectors < min_dev_sectors)
9326 min_dev_sectors = dev_sectors;
9327 close(fd);
9328 }
9329 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9330 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9331
9332 write_imsm_migr_rec(st);
9333
9334 return;
9335 }
9336
9337 /*******************************************************************************
9338 * Function: save_backup_imsm
9339 * Description: Function saves critical data stripes to Migration Copy Area
9340 * and updates the current migration unit status.
9341 * Use restore_stripes() to form a destination stripe,
9342 * and to write it to the Copy Area.
9343 * Parameters:
9344 * st : supertype information
9345 * dev : imsm device that backup is saved for
9346 * info : general array info
9347 * buf : input buffer
9348 * length : length of data to backup (blocks_per_unit)
9349 * Returns:
9350 * 0 : success
9351 *, -1 : fail
9352 ******************************************************************************/
9353 int save_backup_imsm(struct supertype *st,
9354 struct imsm_dev *dev,
9355 struct mdinfo *info,
9356 void *buf,
9357 int length)
9358 {
9359 int rv = -1;
9360 struct intel_super *super = st->sb;
9361 unsigned long long *target_offsets = NULL;
9362 int *targets = NULL;
9363 int i;
9364 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9365 int new_disks = map_dest->num_members;
9366 int dest_layout = 0;
9367 int dest_chunk;
9368 unsigned long long start;
9369 int data_disks = imsm_num_data_members(dev, MAP_0);
9370
9371 targets = xmalloc(new_disks * sizeof(int));
9372
9373 for (i = 0; i < new_disks; i++)
9374 targets[i] = -1;
9375
9376 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
9377
9378 start = info->reshape_progress * 512;
9379 for (i = 0; i < new_disks; i++) {
9380 target_offsets[i] = (unsigned long long)
9381 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
9382 /* move back copy area adderss, it will be moved forward
9383 * in restore_stripes() using start input variable
9384 */
9385 target_offsets[i] -= start/data_disks;
9386 }
9387
9388 if (open_backup_targets(info, new_disks, targets,
9389 super, dev))
9390 goto abort;
9391
9392 dest_layout = imsm_level_to_layout(map_dest->raid_level);
9393 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9394
9395 if (restore_stripes(targets, /* list of dest devices */
9396 target_offsets, /* migration record offsets */
9397 new_disks,
9398 dest_chunk,
9399 map_dest->raid_level,
9400 dest_layout,
9401 -1, /* source backup file descriptor */
9402 0, /* input buf offset
9403 * always 0 buf is already offseted */
9404 start,
9405 length,
9406 buf) != 0) {
9407 pr_err("Error restoring stripes\n");
9408 goto abort;
9409 }
9410
9411 rv = 0;
9412
9413 abort:
9414 if (targets) {
9415 close_targets(targets, new_disks);
9416 free(targets);
9417 }
9418 free(target_offsets);
9419
9420 return rv;
9421 }
9422
9423 /*******************************************************************************
9424 * Function: save_checkpoint_imsm
9425 * Description: Function called for current unit status update
9426 * in the migration record. It writes it to disk.
9427 * Parameters:
9428 * super : imsm internal array info
9429 * info : general array info
9430 * Returns:
9431 * 0: success
9432 * 1: failure
9433 * 2: failure, means no valid migration record
9434 * / no general migration in progress /
9435 ******************************************************************************/
9436 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
9437 {
9438 struct intel_super *super = st->sb;
9439 unsigned long long blocks_per_unit;
9440 unsigned long long curr_migr_unit;
9441
9442 if (load_imsm_migr_rec(super, info) != 0) {
9443 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
9444 return 1;
9445 }
9446
9447 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
9448 if (blocks_per_unit == 0) {
9449 dprintf("imsm: no migration in progress.\n");
9450 return 2;
9451 }
9452 curr_migr_unit = info->reshape_progress / blocks_per_unit;
9453 /* check if array is alligned to copy area
9454 * if it is not alligned, add one to current migration unit value
9455 * this can happend on array reshape finish only
9456 */
9457 if (info->reshape_progress % blocks_per_unit)
9458 curr_migr_unit++;
9459
9460 super->migr_rec->curr_migr_unit =
9461 __cpu_to_le32(curr_migr_unit);
9462 super->migr_rec->rec_status = __cpu_to_le32(state);
9463 super->migr_rec->dest_1st_member_lba =
9464 __cpu_to_le32(curr_migr_unit *
9465 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
9466 if (write_imsm_migr_rec(st) < 0) {
9467 dprintf("imsm: Cannot write migration record outside backup area\n");
9468 return 1;
9469 }
9470
9471 return 0;
9472 }
9473
9474 /*******************************************************************************
9475 * Function: recover_backup_imsm
9476 * Description: Function recovers critical data from the Migration Copy Area
9477 * while assembling an array.
9478 * Parameters:
9479 * super : imsm internal array info
9480 * info : general array info
9481 * Returns:
9482 * 0 : success (or there is no data to recover)
9483 * 1 : fail
9484 ******************************************************************************/
9485 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
9486 {
9487 struct intel_super *super = st->sb;
9488 struct migr_record *migr_rec = super->migr_rec;
9489 struct imsm_map *map_dest = NULL;
9490 struct intel_dev *id = NULL;
9491 unsigned long long read_offset;
9492 unsigned long long write_offset;
9493 unsigned unit_len;
9494 int *targets = NULL;
9495 int new_disks, i, err;
9496 char *buf = NULL;
9497 int retval = 1;
9498 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
9499 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
9500 char buffer[20];
9501 int skipped_disks = 0;
9502
9503 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
9504 if (err < 1)
9505 return 1;
9506
9507 /* recover data only during assemblation */
9508 if (strncmp(buffer, "inactive", 8) != 0)
9509 return 0;
9510 /* no data to recover */
9511 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
9512 return 0;
9513 if (curr_migr_unit >= num_migr_units)
9514 return 1;
9515
9516 /* find device during reshape */
9517 for (id = super->devlist; id; id = id->next)
9518 if (is_gen_migration(id->dev))
9519 break;
9520 if (id == NULL)
9521 return 1;
9522
9523 map_dest = get_imsm_map(id->dev, MAP_0);
9524 new_disks = map_dest->num_members;
9525
9526 read_offset = (unsigned long long)
9527 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
9528
9529 write_offset = ((unsigned long long)
9530 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
9531 pba_of_lba0(map_dest)) * 512;
9532
9533 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9534 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
9535 goto abort;
9536 targets = xcalloc(new_disks, sizeof(int));
9537
9538 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
9539 pr_err("Cannot open some devices belonging to array.\n");
9540 goto abort;
9541 }
9542
9543 for (i = 0; i < new_disks; i++) {
9544 if (targets[i] < 0) {
9545 skipped_disks++;
9546 continue;
9547 }
9548 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
9549 pr_err("Cannot seek to block: %s\n",
9550 strerror(errno));
9551 skipped_disks++;
9552 continue;
9553 }
9554 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
9555 pr_err("Cannot read copy area block: %s\n",
9556 strerror(errno));
9557 skipped_disks++;
9558 continue;
9559 }
9560 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
9561 pr_err("Cannot seek to block: %s\n",
9562 strerror(errno));
9563 skipped_disks++;
9564 continue;
9565 }
9566 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
9567 pr_err("Cannot restore block: %s\n",
9568 strerror(errno));
9569 skipped_disks++;
9570 continue;
9571 }
9572 }
9573
9574 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
9575 new_disks,
9576 super,
9577 id->dev)) {
9578 pr_err("Cannot restore data from backup. Too many failed disks\n");
9579 goto abort;
9580 }
9581
9582 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
9583 /* ignore error == 2, this can mean end of reshape here
9584 */
9585 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
9586 } else
9587 retval = 0;
9588
9589 abort:
9590 if (targets) {
9591 for (i = 0; i < new_disks; i++)
9592 if (targets[i])
9593 close(targets[i]);
9594 free(targets);
9595 }
9596 free(buf);
9597 return retval;
9598 }
9599
9600 static char disk_by_path[] = "/dev/disk/by-path/";
9601
9602 static const char *imsm_get_disk_controller_domain(const char *path)
9603 {
9604 char disk_path[PATH_MAX];
9605 char *drv=NULL;
9606 struct stat st;
9607
9608 strcpy(disk_path, disk_by_path);
9609 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
9610 if (stat(disk_path, &st) == 0) {
9611 struct sys_dev* hba;
9612 char *path=NULL;
9613
9614 path = devt_to_devpath(st.st_rdev);
9615 if (path == NULL)
9616 return "unknown";
9617 hba = find_disk_attached_hba(-1, path);
9618 if (hba && hba->type == SYS_DEV_SAS)
9619 drv = "isci";
9620 else if (hba && hba->type == SYS_DEV_SATA)
9621 drv = "ahci";
9622 else
9623 drv = "unknown";
9624 dprintf("path: %s hba: %s attached: %s\n",
9625 path, (hba) ? hba->path : "NULL", drv);
9626 free(path);
9627 }
9628 return drv;
9629 }
9630
9631 static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
9632 {
9633 static char devnm[32];
9634 char subdev_name[20];
9635 struct mdstat_ent *mdstat;
9636
9637 sprintf(subdev_name, "%d", subdev);
9638 mdstat = mdstat_by_subdev(subdev_name, container);
9639 if (!mdstat)
9640 return NULL;
9641
9642 strcpy(devnm, mdstat->devnm);
9643 free_mdstat(mdstat);
9644 return devnm;
9645 }
9646
9647 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
9648 struct geo_params *geo,
9649 int *old_raid_disks,
9650 int direction)
9651 {
9652 /* currently we only support increasing the number of devices
9653 * for a container. This increases the number of device for each
9654 * member array. They must all be RAID0 or RAID5.
9655 */
9656 int ret_val = 0;
9657 struct mdinfo *info, *member;
9658 int devices_that_can_grow = 0;
9659
9660 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
9661
9662 if (geo->size > 0 ||
9663 geo->level != UnSet ||
9664 geo->layout != UnSet ||
9665 geo->chunksize != 0 ||
9666 geo->raid_disks == UnSet) {
9667 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
9668 return ret_val;
9669 }
9670
9671 if (direction == ROLLBACK_METADATA_CHANGES) {
9672 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
9673 return ret_val;
9674 }
9675
9676 info = container_content_imsm(st, NULL);
9677 for (member = info; member; member = member->next) {
9678 char *result;
9679
9680 dprintf("imsm: checking device_num: %i\n",
9681 member->container_member);
9682
9683 if (geo->raid_disks <= member->array.raid_disks) {
9684 /* we work on container for Online Capacity Expansion
9685 * only so raid_disks has to grow
9686 */
9687 dprintf("imsm: for container operation raid disks increase is required\n");
9688 break;
9689 }
9690
9691 if ((info->array.level != 0) &&
9692 (info->array.level != 5)) {
9693 /* we cannot use this container with other raid level
9694 */
9695 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
9696 info->array.level);
9697 break;
9698 } else {
9699 /* check for platform support
9700 * for this raid level configuration
9701 */
9702 struct intel_super *super = st->sb;
9703 if (!is_raid_level_supported(super->orom,
9704 member->array.level,
9705 geo->raid_disks)) {
9706 dprintf("platform does not support raid%d with %d disk%s\n",
9707 info->array.level,
9708 geo->raid_disks,
9709 geo->raid_disks > 1 ? "s" : "");
9710 break;
9711 }
9712 /* check if component size is aligned to chunk size
9713 */
9714 if (info->component_size %
9715 (info->array.chunk_size/512)) {
9716 dprintf("Component size is not aligned to chunk size\n");
9717 break;
9718 }
9719 }
9720
9721 if (*old_raid_disks &&
9722 info->array.raid_disks != *old_raid_disks)
9723 break;
9724 *old_raid_disks = info->array.raid_disks;
9725
9726 /* All raid5 and raid0 volumes in container
9727 * have to be ready for Online Capacity Expansion
9728 * so they need to be assembled. We have already
9729 * checked that no recovery etc is happening.
9730 */
9731 result = imsm_find_array_devnm_by_subdev(member->container_member,
9732 st->container_devnm);
9733 if (result == NULL) {
9734 dprintf("imsm: cannot find array\n");
9735 break;
9736 }
9737 devices_that_can_grow++;
9738 }
9739 sysfs_free(info);
9740 if (!member && devices_that_can_grow)
9741 ret_val = 1;
9742
9743 if (ret_val)
9744 dprintf("Container operation allowed\n");
9745 else
9746 dprintf("Error: %i\n", ret_val);
9747
9748 return ret_val;
9749 }
9750
9751 /* Function: get_spares_for_grow
9752 * Description: Allocates memory and creates list of spare devices
9753 * avaliable in container. Checks if spare drive size is acceptable.
9754 * Parameters: Pointer to the supertype structure
9755 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
9756 * NULL if fail
9757 */
9758 static struct mdinfo *get_spares_for_grow(struct supertype *st)
9759 {
9760 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
9761 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
9762 }
9763
9764 /******************************************************************************
9765 * function: imsm_create_metadata_update_for_reshape
9766 * Function creates update for whole IMSM container.
9767 *
9768 ******************************************************************************/
9769 static int imsm_create_metadata_update_for_reshape(
9770 struct supertype *st,
9771 struct geo_params *geo,
9772 int old_raid_disks,
9773 struct imsm_update_reshape **updatep)
9774 {
9775 struct intel_super *super = st->sb;
9776 struct imsm_super *mpb = super->anchor;
9777 int update_memory_size = 0;
9778 struct imsm_update_reshape *u = NULL;
9779 struct mdinfo *spares = NULL;
9780 int i;
9781 int delta_disks = 0;
9782 struct mdinfo *dev;
9783
9784 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
9785
9786 delta_disks = geo->raid_disks - old_raid_disks;
9787
9788 /* size of all update data without anchor */
9789 update_memory_size = sizeof(struct imsm_update_reshape);
9790
9791 /* now add space for spare disks that we need to add. */
9792 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
9793
9794 u = xcalloc(1, update_memory_size);
9795 u->type = update_reshape_container_disks;
9796 u->old_raid_disks = old_raid_disks;
9797 u->new_raid_disks = geo->raid_disks;
9798
9799 /* now get spare disks list
9800 */
9801 spares = get_spares_for_grow(st);
9802
9803 if (spares == NULL
9804 || delta_disks > spares->array.spare_disks) {
9805 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
9806 i = -1;
9807 goto abort;
9808 }
9809
9810 /* we have got spares
9811 * update disk list in imsm_disk list table in anchor
9812 */
9813 dprintf("imsm: %i spares are available.\n\n",
9814 spares->array.spare_disks);
9815
9816 dev = spares->devs;
9817 for (i = 0; i < delta_disks; i++) {
9818 struct dl *dl;
9819
9820 if (dev == NULL)
9821 break;
9822 u->new_disks[i] = makedev(dev->disk.major,
9823 dev->disk.minor);
9824 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
9825 dl->index = mpb->num_disks;
9826 mpb->num_disks++;
9827 dev = dev->next;
9828 }
9829
9830 abort:
9831 /* free spares
9832 */
9833 sysfs_free(spares);
9834
9835 dprintf("imsm: reshape update preparation :");
9836 if (i == delta_disks) {
9837 dprintf_cont(" OK\n");
9838 *updatep = u;
9839 return update_memory_size;
9840 }
9841 free(u);
9842 dprintf_cont(" Error\n");
9843
9844 return 0;
9845 }
9846
9847 /******************************************************************************
9848 * function: imsm_create_metadata_update_for_size_change()
9849 * Creates update for IMSM array for array size change.
9850 *
9851 ******************************************************************************/
9852 static int imsm_create_metadata_update_for_size_change(
9853 struct supertype *st,
9854 struct geo_params *geo,
9855 struct imsm_update_size_change **updatep)
9856 {
9857 struct intel_super *super = st->sb;
9858 int update_memory_size = 0;
9859 struct imsm_update_size_change *u = NULL;
9860
9861 dprintf("(enter) New size = %llu\n", geo->size);
9862
9863 /* size of all update data without anchor */
9864 update_memory_size = sizeof(struct imsm_update_size_change);
9865
9866 u = xcalloc(1, update_memory_size);
9867 u->type = update_size_change;
9868 u->subdev = super->current_vol;
9869 u->new_size = geo->size;
9870
9871 dprintf("imsm: reshape update preparation : OK\n");
9872 *updatep = u;
9873
9874 return update_memory_size;
9875 }
9876
9877 /******************************************************************************
9878 * function: imsm_create_metadata_update_for_migration()
9879 * Creates update for IMSM array.
9880 *
9881 ******************************************************************************/
9882 static int imsm_create_metadata_update_for_migration(
9883 struct supertype *st,
9884 struct geo_params *geo,
9885 struct imsm_update_reshape_migration **updatep)
9886 {
9887 struct intel_super *super = st->sb;
9888 int update_memory_size = 0;
9889 struct imsm_update_reshape_migration *u = NULL;
9890 struct imsm_dev *dev;
9891 int previous_level = -1;
9892
9893 dprintf("(enter) New Level = %i\n", geo->level);
9894
9895 /* size of all update data without anchor */
9896 update_memory_size = sizeof(struct imsm_update_reshape_migration);
9897
9898 u = xcalloc(1, update_memory_size);
9899 u->type = update_reshape_migration;
9900 u->subdev = super->current_vol;
9901 u->new_level = geo->level;
9902 u->new_layout = geo->layout;
9903 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
9904 u->new_disks[0] = -1;
9905 u->new_chunksize = -1;
9906
9907 dev = get_imsm_dev(super, u->subdev);
9908 if (dev) {
9909 struct imsm_map *map;
9910
9911 map = get_imsm_map(dev, MAP_0);
9912 if (map) {
9913 int current_chunk_size =
9914 __le16_to_cpu(map->blocks_per_strip) / 2;
9915
9916 if (geo->chunksize != current_chunk_size) {
9917 u->new_chunksize = geo->chunksize / 1024;
9918 dprintf("imsm: chunk size change from %i to %i\n",
9919 current_chunk_size, u->new_chunksize);
9920 }
9921 previous_level = map->raid_level;
9922 }
9923 }
9924 if ((geo->level == 5) && (previous_level == 0)) {
9925 struct mdinfo *spares = NULL;
9926
9927 u->new_raid_disks++;
9928 spares = get_spares_for_grow(st);
9929 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
9930 free(u);
9931 sysfs_free(spares);
9932 update_memory_size = 0;
9933 dprintf("error: cannot get spare device for requested migration");
9934 return 0;
9935 }
9936 sysfs_free(spares);
9937 }
9938 dprintf("imsm: reshape update preparation : OK\n");
9939 *updatep = u;
9940
9941 return update_memory_size;
9942 }
9943
9944 static void imsm_update_metadata_locally(struct supertype *st,
9945 void *buf, int len)
9946 {
9947 struct metadata_update mu;
9948
9949 mu.buf = buf;
9950 mu.len = len;
9951 mu.space = NULL;
9952 mu.space_list = NULL;
9953 mu.next = NULL;
9954 if (imsm_prepare_update(st, &mu))
9955 imsm_process_update(st, &mu);
9956
9957 while (mu.space_list) {
9958 void **space = mu.space_list;
9959 mu.space_list = *space;
9960 free(space);
9961 }
9962 }
9963
9964 /***************************************************************************
9965 * Function: imsm_analyze_change
9966 * Description: Function analyze change for single volume
9967 * and validate if transition is supported
9968 * Parameters: Geometry parameters, supertype structure,
9969 * metadata change direction (apply/rollback)
9970 * Returns: Operation type code on success, -1 if fail
9971 ****************************************************************************/
9972 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
9973 struct geo_params *geo,
9974 int direction)
9975 {
9976 struct mdinfo info;
9977 int change = -1;
9978 int check_devs = 0;
9979 int chunk;
9980 /* number of added/removed disks in operation result */
9981 int devNumChange = 0;
9982 /* imsm compatible layout value for array geometry verification */
9983 int imsm_layout = -1;
9984 int data_disks;
9985 struct imsm_dev *dev;
9986 struct intel_super *super;
9987 unsigned long long current_size;
9988 unsigned long long free_size;
9989 unsigned long long max_size;
9990 int rv;
9991
9992 getinfo_super_imsm_volume(st, &info, NULL);
9993 if ((geo->level != info.array.level) &&
9994 (geo->level >= 0) &&
9995 (geo->level != UnSet)) {
9996 switch (info.array.level) {
9997 case 0:
9998 if (geo->level == 5) {
9999 change = CH_MIGRATION;
10000 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
10001 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
10002 change = -1;
10003 goto analyse_change_exit;
10004 }
10005 imsm_layout = geo->layout;
10006 check_devs = 1;
10007 devNumChange = 1; /* parity disk added */
10008 } else if (geo->level == 10) {
10009 change = CH_TAKEOVER;
10010 check_devs = 1;
10011 devNumChange = 2; /* two mirrors added */
10012 imsm_layout = 0x102; /* imsm supported layout */
10013 }
10014 break;
10015 case 1:
10016 case 10:
10017 if (geo->level == 0) {
10018 change = CH_TAKEOVER;
10019 check_devs = 1;
10020 devNumChange = -(geo->raid_disks/2);
10021 imsm_layout = 0; /* imsm raid0 layout */
10022 }
10023 break;
10024 }
10025 if (change == -1) {
10026 pr_err("Error. Level Migration from %d to %d not supported!\n",
10027 info.array.level, geo->level);
10028 goto analyse_change_exit;
10029 }
10030 } else
10031 geo->level = info.array.level;
10032
10033 if ((geo->layout != info.array.layout)
10034 && ((geo->layout != UnSet) && (geo->layout != -1))) {
10035 change = CH_MIGRATION;
10036 if ((info.array.layout == 0)
10037 && (info.array.level == 5)
10038 && (geo->layout == 5)) {
10039 /* reshape 5 -> 4 */
10040 } else if ((info.array.layout == 5)
10041 && (info.array.level == 5)
10042 && (geo->layout == 0)) {
10043 /* reshape 4 -> 5 */
10044 geo->layout = 0;
10045 geo->level = 5;
10046 } else {
10047 pr_err("Error. Layout Migration from %d to %d not supported!\n",
10048 info.array.layout, geo->layout);
10049 change = -1;
10050 goto analyse_change_exit;
10051 }
10052 } else {
10053 geo->layout = info.array.layout;
10054 if (imsm_layout == -1)
10055 imsm_layout = info.array.layout;
10056 }
10057
10058 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
10059 && (geo->chunksize != info.array.chunk_size))
10060 change = CH_MIGRATION;
10061 else
10062 geo->chunksize = info.array.chunk_size;
10063
10064 chunk = geo->chunksize / 1024;
10065
10066 super = st->sb;
10067 dev = get_imsm_dev(super, super->current_vol);
10068 data_disks = imsm_num_data_members(dev , MAP_0);
10069 /* compute current size per disk member
10070 */
10071 current_size = info.custom_array_size / data_disks;
10072
10073 if ((geo->size > 0) && (geo->size != MAX_SIZE)) {
10074 /* align component size
10075 */
10076 geo->size = imsm_component_size_aligment_check(
10077 get_imsm_raid_level(dev->vol.map),
10078 chunk * 1024,
10079 geo->size * 2);
10080 if (geo->size == 0) {
10081 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
10082 current_size);
10083 goto analyse_change_exit;
10084 }
10085 }
10086
10087 if ((current_size != geo->size) && (geo->size > 0)) {
10088 if (change != -1) {
10089 pr_err("Error. Size change should be the only one at a time.\n");
10090 change = -1;
10091 goto analyse_change_exit;
10092 }
10093 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
10094 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
10095 super->current_vol, st->devnm);
10096 goto analyse_change_exit;
10097 }
10098 /* check the maximum available size
10099 */
10100 rv = imsm_get_free_size(st, dev->vol.map->num_members,
10101 0, chunk, &free_size);
10102 if (rv == 0)
10103 /* Cannot find maximum available space
10104 */
10105 max_size = 0;
10106 else {
10107 max_size = free_size + current_size;
10108 /* align component size
10109 */
10110 max_size = imsm_component_size_aligment_check(
10111 get_imsm_raid_level(dev->vol.map),
10112 chunk * 1024,
10113 max_size);
10114 }
10115 if (geo->size == MAX_SIZE) {
10116 /* requested size change to the maximum available size
10117 */
10118 if (max_size == 0) {
10119 pr_err("Error. Cannot find maximum available space.\n");
10120 change = -1;
10121 goto analyse_change_exit;
10122 } else
10123 geo->size = max_size;
10124 }
10125
10126 if ((direction == ROLLBACK_METADATA_CHANGES)) {
10127 /* accept size for rollback only
10128 */
10129 } else {
10130 /* round size due to metadata compatibility
10131 */
10132 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
10133 << SECT_PER_MB_SHIFT;
10134 dprintf("Prepare update for size change to %llu\n",
10135 geo->size );
10136 if (current_size >= geo->size) {
10137 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
10138 current_size, geo->size);
10139 goto analyse_change_exit;
10140 }
10141 if (max_size && geo->size > max_size) {
10142 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
10143 max_size, geo->size);
10144 goto analyse_change_exit;
10145 }
10146 }
10147 geo->size *= data_disks;
10148 geo->raid_disks = dev->vol.map->num_members;
10149 change = CH_ARRAY_SIZE;
10150 }
10151 if (!validate_geometry_imsm(st,
10152 geo->level,
10153 imsm_layout,
10154 geo->raid_disks + devNumChange,
10155 &chunk,
10156 geo->size, INVALID_SECTORS,
10157 0, 0, 1))
10158 change = -1;
10159
10160 if (check_devs) {
10161 struct intel_super *super = st->sb;
10162 struct imsm_super *mpb = super->anchor;
10163
10164 if (mpb->num_raid_devs > 1) {
10165 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
10166 geo->dev_name);
10167 change = -1;
10168 }
10169 }
10170
10171 analyse_change_exit:
10172 if ((direction == ROLLBACK_METADATA_CHANGES) &&
10173 ((change == CH_MIGRATION) || (change == CH_TAKEOVER))) {
10174 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
10175 change = -1;
10176 }
10177 return change;
10178 }
10179
10180 int imsm_takeover(struct supertype *st, struct geo_params *geo)
10181 {
10182 struct intel_super *super = st->sb;
10183 struct imsm_update_takeover *u;
10184
10185 u = xmalloc(sizeof(struct imsm_update_takeover));
10186
10187 u->type = update_takeover;
10188 u->subarray = super->current_vol;
10189
10190 /* 10->0 transition */
10191 if (geo->level == 0)
10192 u->direction = R10_TO_R0;
10193
10194 /* 0->10 transition */
10195 if (geo->level == 10)
10196 u->direction = R0_TO_R10;
10197
10198 /* update metadata locally */
10199 imsm_update_metadata_locally(st, u,
10200 sizeof(struct imsm_update_takeover));
10201 /* and possibly remotely */
10202 if (st->update_tail)
10203 append_metadata_update(st, u,
10204 sizeof(struct imsm_update_takeover));
10205 else
10206 free(u);
10207
10208 return 0;
10209 }
10210
10211 static int imsm_reshape_super(struct supertype *st, unsigned long long size,
10212 int level,
10213 int layout, int chunksize, int raid_disks,
10214 int delta_disks, char *backup, char *dev,
10215 int direction, int verbose)
10216 {
10217 int ret_val = 1;
10218 struct geo_params geo;
10219
10220 dprintf("(enter)\n");
10221
10222 memset(&geo, 0, sizeof(struct geo_params));
10223
10224 geo.dev_name = dev;
10225 strcpy(geo.devnm, st->devnm);
10226 geo.size = size;
10227 geo.level = level;
10228 geo.layout = layout;
10229 geo.chunksize = chunksize;
10230 geo.raid_disks = raid_disks;
10231 if (delta_disks != UnSet)
10232 geo.raid_disks += delta_disks;
10233
10234 dprintf("for level : %i\n", geo.level);
10235 dprintf("for raid_disks : %i\n", geo.raid_disks);
10236
10237 if (experimental() == 0)
10238 return ret_val;
10239
10240 if (strcmp(st->container_devnm, st->devnm) == 0) {
10241 /* On container level we can only increase number of devices. */
10242 dprintf("imsm: info: Container operation\n");
10243 int old_raid_disks = 0;
10244
10245 if (imsm_reshape_is_allowed_on_container(
10246 st, &geo, &old_raid_disks, direction)) {
10247 struct imsm_update_reshape *u = NULL;
10248 int len;
10249
10250 len = imsm_create_metadata_update_for_reshape(
10251 st, &geo, old_raid_disks, &u);
10252
10253 if (len <= 0) {
10254 dprintf("imsm: Cannot prepare update\n");
10255 goto exit_imsm_reshape_super;
10256 }
10257
10258 ret_val = 0;
10259 /* update metadata locally */
10260 imsm_update_metadata_locally(st, u, len);
10261 /* and possibly remotely */
10262 if (st->update_tail)
10263 append_metadata_update(st, u, len);
10264 else
10265 free(u);
10266
10267 } else {
10268 pr_err("(imsm) Operation is not allowed on this container\n");
10269 }
10270 } else {
10271 /* On volume level we support following operations
10272 * - takeover: raid10 -> raid0; raid0 -> raid10
10273 * - chunk size migration
10274 * - migration: raid5 -> raid0; raid0 -> raid5
10275 */
10276 struct intel_super *super = st->sb;
10277 struct intel_dev *dev = super->devlist;
10278 int change;
10279 dprintf("imsm: info: Volume operation\n");
10280 /* find requested device */
10281 while (dev) {
10282 char *devnm =
10283 imsm_find_array_devnm_by_subdev(
10284 dev->index, st->container_devnm);
10285 if (devnm && strcmp(devnm, geo.devnm) == 0)
10286 break;
10287 dev = dev->next;
10288 }
10289 if (dev == NULL) {
10290 pr_err("Cannot find %s (%s) subarray\n",
10291 geo.dev_name, geo.devnm);
10292 goto exit_imsm_reshape_super;
10293 }
10294 super->current_vol = dev->index;
10295 change = imsm_analyze_change(st, &geo, direction);
10296 switch (change) {
10297 case CH_TAKEOVER:
10298 ret_val = imsm_takeover(st, &geo);
10299 break;
10300 case CH_MIGRATION: {
10301 struct imsm_update_reshape_migration *u = NULL;
10302 int len =
10303 imsm_create_metadata_update_for_migration(
10304 st, &geo, &u);
10305 if (len < 1) {
10306 dprintf("imsm: Cannot prepare update\n");
10307 break;
10308 }
10309 ret_val = 0;
10310 /* update metadata locally */
10311 imsm_update_metadata_locally(st, u, len);
10312 /* and possibly remotely */
10313 if (st->update_tail)
10314 append_metadata_update(st, u, len);
10315 else
10316 free(u);
10317 }
10318 break;
10319 case CH_ARRAY_SIZE: {
10320 struct imsm_update_size_change *u = NULL;
10321 int len =
10322 imsm_create_metadata_update_for_size_change(
10323 st, &geo, &u);
10324 if (len < 1) {
10325 dprintf("imsm: Cannot prepare update\n");
10326 break;
10327 }
10328 ret_val = 0;
10329 /* update metadata locally */
10330 imsm_update_metadata_locally(st, u, len);
10331 /* and possibly remotely */
10332 if (st->update_tail)
10333 append_metadata_update(st, u, len);
10334 else
10335 free(u);
10336 }
10337 break;
10338 default:
10339 ret_val = 1;
10340 }
10341 }
10342
10343 exit_imsm_reshape_super:
10344 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
10345 return ret_val;
10346 }
10347
10348 /*******************************************************************************
10349 * Function: wait_for_reshape_imsm
10350 * Description: Function writes new sync_max value and waits until
10351 * reshape process reach new position
10352 * Parameters:
10353 * sra : general array info
10354 * ndata : number of disks in new array's layout
10355 * Returns:
10356 * 0 : success,
10357 * 1 : there is no reshape in progress,
10358 * -1 : fail
10359 ******************************************************************************/
10360 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
10361 {
10362 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
10363 unsigned long long completed;
10364 /* to_complete : new sync_max position */
10365 unsigned long long to_complete = sra->reshape_progress;
10366 unsigned long long position_to_set = to_complete / ndata;
10367
10368 if (fd < 0) {
10369 dprintf("cannot open reshape_position\n");
10370 return 1;
10371 }
10372
10373 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10374 dprintf("cannot read reshape_position (no reshape in progres)\n");
10375 close(fd);
10376 return 1;
10377 }
10378
10379 if (completed > position_to_set) {
10380 dprintf("wrong next position to set %llu (%llu)\n",
10381 to_complete, position_to_set);
10382 close(fd);
10383 return -1;
10384 }
10385 dprintf("Position set: %llu\n", position_to_set);
10386 if (sysfs_set_num(sra, NULL, "sync_max",
10387 position_to_set) != 0) {
10388 dprintf("cannot set reshape position to %llu\n",
10389 position_to_set);
10390 close(fd);
10391 return -1;
10392 }
10393
10394 do {
10395 char action[20];
10396 int timeout = 3000;
10397 sysfs_wait(fd, &timeout);
10398 if (sysfs_get_str(sra, NULL, "sync_action",
10399 action, 20) > 0 &&
10400 strncmp(action, "reshape", 7) != 0) {
10401 close(fd);
10402 return -1;
10403 }
10404 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10405 dprintf("cannot read reshape_position (in loop)\n");
10406 close(fd);
10407 return 1;
10408 }
10409 } while (completed < position_to_set);
10410 close(fd);
10411 return 0;
10412
10413 }
10414
10415 /*******************************************************************************
10416 * Function: check_degradation_change
10417 * Description: Check that array hasn't become failed.
10418 * Parameters:
10419 * info : for sysfs access
10420 * sources : source disks descriptors
10421 * degraded: previous degradation level
10422 * Returns:
10423 * degradation level
10424 ******************************************************************************/
10425 int check_degradation_change(struct mdinfo *info,
10426 int *sources,
10427 int degraded)
10428 {
10429 unsigned long long new_degraded;
10430 int rv;
10431
10432 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
10433 if ((rv == -1) || (new_degraded != (unsigned long long)degraded)) {
10434 /* check each device to ensure it is still working */
10435 struct mdinfo *sd;
10436 new_degraded = 0;
10437 for (sd = info->devs ; sd ; sd = sd->next) {
10438 if (sd->disk.state & (1<<MD_DISK_FAULTY))
10439 continue;
10440 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
10441 char sbuf[20];
10442 if (sysfs_get_str(info,
10443 sd, "state", sbuf, 20) < 0 ||
10444 strstr(sbuf, "faulty") ||
10445 strstr(sbuf, "in_sync") == NULL) {
10446 /* this device is dead */
10447 sd->disk.state = (1<<MD_DISK_FAULTY);
10448 if (sd->disk.raid_disk >= 0 &&
10449 sources[sd->disk.raid_disk] >= 0) {
10450 close(sources[
10451 sd->disk.raid_disk]);
10452 sources[sd->disk.raid_disk] =
10453 -1;
10454 }
10455 new_degraded++;
10456 }
10457 }
10458 }
10459 }
10460
10461 return new_degraded;
10462 }
10463
10464 /*******************************************************************************
10465 * Function: imsm_manage_reshape
10466 * Description: Function finds array under reshape and it manages reshape
10467 * process. It creates stripes backups (if required) and sets
10468 * checkpoints.
10469 * Parameters:
10470 * afd : Backup handle (nattive) - not used
10471 * sra : general array info
10472 * reshape : reshape parameters - not used
10473 * st : supertype structure
10474 * blocks : size of critical section [blocks]
10475 * fds : table of source device descriptor
10476 * offsets : start of array (offest per devices)
10477 * dests : not used
10478 * destfd : table of destination device descriptor
10479 * destoffsets : table of destination offsets (per device)
10480 * Returns:
10481 * 1 : success, reshape is done
10482 * 0 : fail
10483 ******************************************************************************/
10484 static int imsm_manage_reshape(
10485 int afd, struct mdinfo *sra, struct reshape *reshape,
10486 struct supertype *st, unsigned long backup_blocks,
10487 int *fds, unsigned long long *offsets,
10488 int dests, int *destfd, unsigned long long *destoffsets)
10489 {
10490 int ret_val = 0;
10491 struct intel_super *super = st->sb;
10492 struct intel_dev *dv = NULL;
10493 struct imsm_dev *dev = NULL;
10494 struct imsm_map *map_src;
10495 int migr_vol_qan = 0;
10496 int ndata, odata; /* [bytes] */
10497 int chunk; /* [bytes] */
10498 struct migr_record *migr_rec;
10499 char *buf = NULL;
10500 unsigned int buf_size; /* [bytes] */
10501 unsigned long long max_position; /* array size [bytes] */
10502 unsigned long long next_step; /* [blocks]/[bytes] */
10503 unsigned long long old_data_stripe_length;
10504 unsigned long long start_src; /* [bytes] */
10505 unsigned long long start; /* [bytes] */
10506 unsigned long long start_buf_shift; /* [bytes] */
10507 int degraded = 0;
10508 int source_layout = 0;
10509
10510 if (!fds || !offsets || !sra)
10511 goto abort;
10512
10513 /* Find volume during the reshape */
10514 for (dv = super->devlist; dv; dv = dv->next) {
10515 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
10516 && dv->dev->vol.migr_state == 1) {
10517 dev = dv->dev;
10518 migr_vol_qan++;
10519 }
10520 }
10521 /* Only one volume can migrate at the same time */
10522 if (migr_vol_qan != 1) {
10523 pr_err(": %s", migr_vol_qan ?
10524 "Number of migrating volumes greater than 1\n" :
10525 "There is no volume during migrationg\n");
10526 goto abort;
10527 }
10528
10529 map_src = get_imsm_map(dev, MAP_1);
10530 if (map_src == NULL)
10531 goto abort;
10532
10533 ndata = imsm_num_data_members(dev, MAP_0);
10534 odata = imsm_num_data_members(dev, MAP_1);
10535
10536 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10537 old_data_stripe_length = odata * chunk;
10538
10539 migr_rec = super->migr_rec;
10540
10541 /* initialize migration record for start condition */
10542 if (sra->reshape_progress == 0)
10543 init_migr_record_imsm(st, dev, sra);
10544 else {
10545 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
10546 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
10547 goto abort;
10548 }
10549 /* Save checkpoint to update migration record for current
10550 * reshape position (in md). It can be farther than current
10551 * reshape position in metadata.
10552 */
10553 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10554 /* ignore error == 2, this can mean end of reshape here
10555 */
10556 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
10557 goto abort;
10558 }
10559 }
10560
10561 /* size for data */
10562 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
10563 /* extend buffer size for parity disk */
10564 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10565 /* add space for stripe aligment */
10566 buf_size += old_data_stripe_length;
10567 if (posix_memalign((void **)&buf, 4096, buf_size)) {
10568 dprintf("imsm: Cannot allocate checpoint buffer\n");
10569 goto abort;
10570 }
10571
10572 max_position = sra->component_size * ndata;
10573 source_layout = imsm_level_to_layout(map_src->raid_level);
10574
10575 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
10576 __le32_to_cpu(migr_rec->num_migr_units)) {
10577 /* current reshape position [blocks] */
10578 unsigned long long current_position =
10579 __le32_to_cpu(migr_rec->blocks_per_unit)
10580 * __le32_to_cpu(migr_rec->curr_migr_unit);
10581 unsigned long long border;
10582
10583 /* Check that array hasn't become failed.
10584 */
10585 degraded = check_degradation_change(sra, fds, degraded);
10586 if (degraded > 1) {
10587 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
10588 goto abort;
10589 }
10590
10591 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
10592
10593 if ((current_position + next_step) > max_position)
10594 next_step = max_position - current_position;
10595
10596 start = current_position * 512;
10597
10598 /* align reading start to old geometry */
10599 start_buf_shift = start % old_data_stripe_length;
10600 start_src = start - start_buf_shift;
10601
10602 border = (start_src / odata) - (start / ndata);
10603 border /= 512;
10604 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
10605 /* save critical stripes to buf
10606 * start - start address of current unit
10607 * to backup [bytes]
10608 * start_src - start address of current unit
10609 * to backup alligned to source array
10610 * [bytes]
10611 */
10612 unsigned long long next_step_filler = 0;
10613 unsigned long long copy_length = next_step * 512;
10614
10615 /* allign copy area length to stripe in old geometry */
10616 next_step_filler = ((copy_length + start_buf_shift)
10617 % old_data_stripe_length);
10618 if (next_step_filler)
10619 next_step_filler = (old_data_stripe_length
10620 - next_step_filler);
10621 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10622 start, start_src, copy_length,
10623 start_buf_shift, next_step_filler);
10624
10625 if (save_stripes(fds, offsets, map_src->num_members,
10626 chunk, map_src->raid_level,
10627 source_layout, 0, NULL, start_src,
10628 copy_length +
10629 next_step_filler + start_buf_shift,
10630 buf)) {
10631 dprintf("imsm: Cannot save stripes to buffer\n");
10632 goto abort;
10633 }
10634 /* Convert data to destination format and store it
10635 * in backup general migration area
10636 */
10637 if (save_backup_imsm(st, dev, sra,
10638 buf + start_buf_shift, copy_length)) {
10639 dprintf("imsm: Cannot save stripes to target devices\n");
10640 goto abort;
10641 }
10642 if (save_checkpoint_imsm(st, sra,
10643 UNIT_SRC_IN_CP_AREA)) {
10644 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10645 goto abort;
10646 }
10647 } else {
10648 /* set next step to use whole border area */
10649 border /= next_step;
10650 if (border > 1)
10651 next_step *= border;
10652 }
10653 /* When data backed up, checkpoint stored,
10654 * kick the kernel to reshape unit of data
10655 */
10656 next_step = next_step + sra->reshape_progress;
10657 /* limit next step to array max position */
10658 if (next_step > max_position)
10659 next_step = max_position;
10660 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
10661 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
10662 sra->reshape_progress = next_step;
10663
10664 /* wait until reshape finish */
10665 if (wait_for_reshape_imsm(sra, ndata)) {
10666 dprintf("wait_for_reshape_imsm returned error!\n");
10667 goto abort;
10668 }
10669 if (sigterm)
10670 goto abort;
10671
10672 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10673 /* ignore error == 2, this can mean end of reshape here
10674 */
10675 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10676 goto abort;
10677 }
10678
10679 }
10680
10681 /* clear migr_rec on disks after successful migration */
10682 struct dl *d;
10683
10684 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
10685 for (d = super->disks; d; d = d->next) {
10686 if (d->index < 0 || is_failed(&d->disk))
10687 continue;
10688 unsigned long long dsize;
10689
10690 get_dev_size(d->fd, NULL, &dsize);
10691 if (lseek64(d->fd, dsize - MIGR_REC_POSITION,
10692 SEEK_SET) >= 0) {
10693 if (write(d->fd, super->migr_rec_buf,
10694 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
10695 perror("Write migr_rec failed");
10696 }
10697 }
10698
10699 /* return '1' if done */
10700 ret_val = 1;
10701 abort:
10702 free(buf);
10703 /* See Grow.c: abort_reshape() for further explanation */
10704 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
10705 sysfs_set_num(sra, NULL, "suspend_hi", 0);
10706 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10707
10708 return ret_val;
10709 }
10710
10711 #endif /* MDASSEMBLE */
10712
10713 struct superswitch super_imsm = {
10714 #ifndef MDASSEMBLE
10715 .examine_super = examine_super_imsm,
10716 .brief_examine_super = brief_examine_super_imsm,
10717 .brief_examine_subarrays = brief_examine_subarrays_imsm,
10718 .export_examine_super = export_examine_super_imsm,
10719 .detail_super = detail_super_imsm,
10720 .brief_detail_super = brief_detail_super_imsm,
10721 .write_init_super = write_init_super_imsm,
10722 .validate_geometry = validate_geometry_imsm,
10723 .add_to_super = add_to_super_imsm,
10724 .remove_from_super = remove_from_super_imsm,
10725 .detail_platform = detail_platform_imsm,
10726 .export_detail_platform = export_detail_platform_imsm,
10727 .kill_subarray = kill_subarray_imsm,
10728 .update_subarray = update_subarray_imsm,
10729 .load_container = load_container_imsm,
10730 .default_geometry = default_geometry_imsm,
10731 .get_disk_controller_domain = imsm_get_disk_controller_domain,
10732 .reshape_super = imsm_reshape_super,
10733 .manage_reshape = imsm_manage_reshape,
10734 .recover_backup = recover_backup_imsm,
10735 .copy_metadata = copy_metadata_imsm,
10736 #endif
10737 .match_home = match_home_imsm,
10738 .uuid_from_super= uuid_from_super_imsm,
10739 .getinfo_super = getinfo_super_imsm,
10740 .getinfo_super_disks = getinfo_super_disks_imsm,
10741 .update_super = update_super_imsm,
10742
10743 .avail_size = avail_size_imsm,
10744 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
10745
10746 .compare_super = compare_super_imsm,
10747
10748 .load_super = load_super_imsm,
10749 .init_super = init_super_imsm,
10750 .store_super = store_super_imsm,
10751 .free_super = free_super_imsm,
10752 .match_metadata_desc = match_metadata_desc_imsm,
10753 .container_content = container_content_imsm,
10754 .validate_container = validate_container_imsm,
10755
10756 .external = 1,
10757 .name = "imsm",
10758
10759 #ifndef MDASSEMBLE
10760 /* for mdmon */
10761 .open_new = imsm_open_new,
10762 .set_array_state= imsm_set_array_state,
10763 .set_disk = imsm_set_disk,
10764 .sync_metadata = imsm_sync_metadata,
10765 .activate_spare = imsm_activate_spare,
10766 .process_update = imsm_process_update,
10767 .prepare_update = imsm_prepare_update,
10768 #endif /* MDASSEMBLE */
10769 };