]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
Fix compile warning/error.
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2007 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "mdadm.h"
21 #include "mdmon.h"
22 #include <values.h>
23 #include <scsi/sg.h>
24 #include <ctype.h>
25
26 /* MPB == Metadata Parameter Block */
27 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
28 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
29 #define MPB_VERSION_RAID0 "1.0.00"
30 #define MPB_VERSION_RAID1 "1.1.00"
31 #define MPB_VERSION_RAID5 "1.2.02"
32 #define MAX_SIGNATURE_LENGTH 32
33 #define MAX_RAID_SERIAL_LEN 16
34 #define MPB_SECTOR_CNT 418
35 #define IMSM_RESERVED_SECTORS 4096
36
37 /* Disk configuration info. */
38 #define IMSM_MAX_DEVICES 255
39 struct imsm_disk {
40 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
41 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
42 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
43 __u32 status; /* 0xF0 - 0xF3 */
44 #define SPARE_DISK 0x01 /* Spare */
45 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
46 #define FAILED_DISK 0x04 /* Permanent failure */
47 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
48
49 #define IMSM_DISK_FILLERS 5
50 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
51 };
52
53 /* RAID map configuration infos. */
54 struct imsm_map {
55 __u32 pba_of_lba0; /* start address of partition */
56 __u32 blocks_per_member;/* blocks per member */
57 __u32 num_data_stripes; /* number of data stripes */
58 __u16 blocks_per_strip;
59 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
60 #define IMSM_T_STATE_NORMAL 0
61 #define IMSM_T_STATE_UNINITIALIZED 1
62 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
63 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
64 __u8 raid_level;
65 #define IMSM_T_RAID0 0
66 #define IMSM_T_RAID1 1
67 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
68 __u8 num_members; /* number of member disks */
69 __u8 reserved[3];
70 __u32 filler[7]; /* expansion area */
71 #define IMSM_ORD_REBUILD (1 << 24)
72 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
73 * top byte contains some flags
74 */
75 } __attribute__ ((packed));
76
77 struct imsm_vol {
78 __u32 reserved[2];
79 __u8 migr_state; /* Normal or Migrating */
80 __u8 migr_type; /* Initializing, Rebuilding, ... */
81 __u8 dirty;
82 __u8 fill[1];
83 __u32 filler[5];
84 struct imsm_map map[1];
85 /* here comes another one if migr_state */
86 } __attribute__ ((packed));
87
88 struct imsm_dev {
89 __u8 volume[MAX_RAID_SERIAL_LEN];
90 __u32 size_low;
91 __u32 size_high;
92 __u32 status; /* Persistent RaidDev status */
93 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
94 #define IMSM_DEV_FILLERS 12
95 __u32 filler[IMSM_DEV_FILLERS];
96 struct imsm_vol vol;
97 } __attribute__ ((packed));
98
99 struct imsm_super {
100 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
101 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
102 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
103 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
104 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
105 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
106 __u32 attributes; /* 0x34 - 0x37 */
107 __u8 num_disks; /* 0x38 Number of configured disks */
108 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
109 __u8 error_log_pos; /* 0x3A */
110 __u8 fill[1]; /* 0x3B */
111 __u32 cache_size; /* 0x3c - 0x40 in mb */
112 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
113 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
114 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
115 #define IMSM_FILLERS 35
116 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
117 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
118 /* here comes imsm_dev[num_raid_devs] */
119 /* here comes BBM logs */
120 } __attribute__ ((packed));
121
122 #define BBM_LOG_MAX_ENTRIES 254
123
124 struct bbm_log_entry {
125 __u64 defective_block_start;
126 #define UNREADABLE 0xFFFFFFFF
127 __u32 spare_block_offset;
128 __u16 remapped_marked_count;
129 __u16 disk_ordinal;
130 } __attribute__ ((__packed__));
131
132 struct bbm_log {
133 __u32 signature; /* 0xABADB10C */
134 __u32 entry_count;
135 __u32 reserved_spare_block_count; /* 0 */
136 __u32 reserved; /* 0xFFFF */
137 __u64 first_spare_lba;
138 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
139 } __attribute__ ((__packed__));
140
141
142 #ifndef MDASSEMBLE
143 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
144 #endif
145
146 static unsigned int sector_count(__u32 bytes)
147 {
148 return ((bytes + (512-1)) & (~(512-1))) / 512;
149 }
150
151 static unsigned int mpb_sectors(struct imsm_super *mpb)
152 {
153 return sector_count(__le32_to_cpu(mpb->mpb_size));
154 }
155
156 /* internal representation of IMSM metadata */
157 struct intel_super {
158 union {
159 void *buf; /* O_DIRECT buffer for reading/writing metadata */
160 struct imsm_super *anchor; /* immovable parameters */
161 };
162 size_t len; /* size of the 'buf' allocation */
163 void *next_buf; /* for realloc'ing buf from the manager */
164 size_t next_len;
165 int updates_pending; /* count of pending updates for mdmon */
166 int creating_imsm; /* flag to indicate container creation */
167 int current_vol; /* index of raid device undergoing creation */
168 #define IMSM_MAX_RAID_DEVS 2
169 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
170 struct dl {
171 struct dl *next;
172 int index;
173 __u8 serial[MAX_RAID_SERIAL_LEN];
174 int major, minor;
175 char *devname;
176 struct imsm_disk disk;
177 int fd;
178 } *disks;
179 struct dl *add; /* list of disks to add while mdmon active */
180 struct bbm_log *bbm_log;
181 };
182
183 struct extent {
184 unsigned long long start, size;
185 };
186
187 /* definition of messages passed to imsm_process_update */
188 enum imsm_update_type {
189 update_activate_spare,
190 update_create_array,
191 update_add_disk,
192 };
193
194 struct imsm_update_activate_spare {
195 enum imsm_update_type type;
196 struct dl *dl;
197 int slot;
198 int array;
199 struct imsm_update_activate_spare *next;
200 };
201
202 struct imsm_update_create_array {
203 enum imsm_update_type type;
204 int dev_idx;
205 struct imsm_dev dev;
206 };
207
208 struct imsm_update_add_disk {
209 enum imsm_update_type type;
210 };
211
212 static int imsm_env_devname_as_serial(void)
213 {
214 char *val = getenv("IMSM_DEVNAME_AS_SERIAL");
215
216 if (val && atoi(val) == 1)
217 return 1;
218
219 return 0;
220 }
221
222
223 static struct supertype *match_metadata_desc_imsm(char *arg)
224 {
225 struct supertype *st;
226
227 if (strcmp(arg, "imsm") != 0 &&
228 strcmp(arg, "default") != 0
229 )
230 return NULL;
231
232 st = malloc(sizeof(*st));
233 memset(st, 0, sizeof(*st));
234 st->ss = &super_imsm;
235 st->max_devs = IMSM_MAX_DEVICES;
236 st->minor_version = 0;
237 st->sb = NULL;
238 return st;
239 }
240
241 static __u8 *get_imsm_version(struct imsm_super *mpb)
242 {
243 return &mpb->sig[MPB_SIG_LEN];
244 }
245
246 /* retrieve a disk directly from the anchor when the anchor is known to be
247 * up-to-date, currently only at load time
248 */
249 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
250 {
251 if (index >= mpb->num_disks)
252 return NULL;
253 return &mpb->disk[index];
254 }
255
256 /* retrieve a disk from the parsed metadata */
257 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
258 {
259 struct dl *d;
260
261 for (d = super->disks; d; d = d->next)
262 if (d->index == index)
263 return &d->disk;
264
265 return NULL;
266 }
267
268 /* generate a checksum directly from the anchor when the anchor is known to be
269 * up-to-date, currently only at load or write_super after coalescing
270 */
271 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
272 {
273 __u32 end = mpb->mpb_size / sizeof(end);
274 __u32 *p = (__u32 *) mpb;
275 __u32 sum = 0;
276
277 while (end--)
278 sum += __le32_to_cpu(*p++);
279
280 return sum - __le32_to_cpu(mpb->check_sum);
281 }
282
283 static size_t sizeof_imsm_map(struct imsm_map *map)
284 {
285 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
286 }
287
288 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
289 {
290 struct imsm_map *map = &dev->vol.map[0];
291
292 if (second_map && !dev->vol.migr_state)
293 return NULL;
294 else if (second_map) {
295 void *ptr = map;
296
297 return ptr + sizeof_imsm_map(map);
298 } else
299 return map;
300
301 }
302
303 /* return the size of the device.
304 * migr_state increases the returned size if map[0] were to be duplicated
305 */
306 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
307 {
308 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
309 sizeof_imsm_map(get_imsm_map(dev, 0));
310
311 /* migrating means an additional map */
312 if (dev->vol.migr_state)
313 size += sizeof_imsm_map(get_imsm_map(dev, 1));
314 else if (migr_state)
315 size += sizeof_imsm_map(get_imsm_map(dev, 0));
316
317 return size;
318 }
319
320 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
321 {
322 int offset;
323 int i;
324 void *_mpb = mpb;
325
326 if (index >= mpb->num_raid_devs)
327 return NULL;
328
329 /* devices start after all disks */
330 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
331
332 for (i = 0; i <= index; i++)
333 if (i == index)
334 return _mpb + offset;
335 else
336 offset += sizeof_imsm_dev(_mpb + offset, 0);
337
338 return NULL;
339 }
340
341 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
342 {
343 if (index >= super->anchor->num_raid_devs)
344 return NULL;
345 return super->dev_tbl[index];
346 }
347
348 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
349 {
350 struct imsm_map *map;
351
352 if (dev->vol.migr_state)
353 map = get_imsm_map(dev, 1);
354 else
355 map = get_imsm_map(dev, 0);
356
357 /* top byte identifies disk under rebuild */
358 return __le32_to_cpu(map->disk_ord_tbl[slot]);
359 }
360
361 #define ord_to_idx(ord) (((ord) << 8) >> 8)
362 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
363 {
364 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
365
366 return ord_to_idx(ord);
367 }
368
369 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
370 {
371 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
372 }
373
374 static int get_imsm_raid_level(struct imsm_map *map)
375 {
376 if (map->raid_level == 1) {
377 if (map->num_members == 2)
378 return 1;
379 else
380 return 10;
381 }
382
383 return map->raid_level;
384 }
385
386 static int cmp_extent(const void *av, const void *bv)
387 {
388 const struct extent *a = av;
389 const struct extent *b = bv;
390 if (a->start < b->start)
391 return -1;
392 if (a->start > b->start)
393 return 1;
394 return 0;
395 }
396
397 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
398 {
399 /* find a list of used extents on the given physical device */
400 struct extent *rv, *e;
401 int i, j;
402 int memberships = 0;
403
404 for (i = 0; i < super->anchor->num_raid_devs; i++) {
405 struct imsm_dev *dev = get_imsm_dev(super, i);
406 struct imsm_map *map = get_imsm_map(dev, 0);
407
408 for (j = 0; j < map->num_members; j++) {
409 __u32 index = get_imsm_disk_idx(dev, j);
410
411 if (index == dl->index)
412 memberships++;
413 }
414 }
415 rv = malloc(sizeof(struct extent) * (memberships + 1));
416 if (!rv)
417 return NULL;
418 e = rv;
419
420 for (i = 0; i < super->anchor->num_raid_devs; i++) {
421 struct imsm_dev *dev = get_imsm_dev(super, i);
422 struct imsm_map *map = get_imsm_map(dev, 0);
423
424 for (j = 0; j < map->num_members; j++) {
425 __u32 index = get_imsm_disk_idx(dev, j);
426
427 if (index == dl->index) {
428 e->start = __le32_to_cpu(map->pba_of_lba0);
429 e->size = __le32_to_cpu(map->blocks_per_member);
430 e++;
431 }
432 }
433 }
434 qsort(rv, memberships, sizeof(*rv), cmp_extent);
435
436 e->start = __le32_to_cpu(dl->disk.total_blocks) -
437 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
438 e->size = 0;
439 return rv;
440 }
441
442 #ifndef MDASSEMBLE
443 static void print_imsm_dev(struct imsm_dev *dev, int index)
444 {
445 __u64 sz;
446 int slot;
447 struct imsm_map *map = get_imsm_map(dev, 0);
448 __u32 ord;
449
450 printf("\n");
451 printf("[%s]:\n", dev->volume);
452 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
453 printf(" Members : %d\n", map->num_members);
454 for (slot = 0; slot < map->num_members; slot++)
455 if (index == get_imsm_disk_idx(dev, slot))
456 break;
457 if (slot < map->num_members) {
458 ord = get_imsm_ord_tbl_ent(dev, slot);
459 printf(" This Slot : %d%s\n", slot,
460 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
461 } else
462 printf(" This Slot : ?\n");
463 sz = __le32_to_cpu(dev->size_high);
464 sz <<= 32;
465 sz += __le32_to_cpu(dev->size_low);
466 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
467 human_size(sz * 512));
468 sz = __le32_to_cpu(map->blocks_per_member);
469 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
470 human_size(sz * 512));
471 printf(" Sector Offset : %u\n",
472 __le32_to_cpu(map->pba_of_lba0));
473 printf(" Num Stripes : %u\n",
474 __le32_to_cpu(map->num_data_stripes));
475 printf(" Chunk Size : %u KiB\n",
476 __le16_to_cpu(map->blocks_per_strip) / 2);
477 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
478 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle");
479 if (dev->vol.migr_state)
480 printf(": %s", dev->vol.migr_type ? "rebuilding" : "initializing");
481 printf("\n");
482 printf(" Map State : %s", map_state_str[map->map_state]);
483 if (dev->vol.migr_state) {
484 struct imsm_map *map = get_imsm_map(dev, 1);
485 printf(" <-- %s", map_state_str[map->map_state]);
486 }
487 printf("\n");
488 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
489 }
490
491 static void print_imsm_disk(struct imsm_super *mpb, int index)
492 {
493 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
494 char str[MAX_RAID_SERIAL_LEN + 1];
495 __u32 s;
496 __u64 sz;
497
498 if (index < 0)
499 return;
500
501 printf("\n");
502 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
503 printf(" Disk%02d Serial : %s\n", index, str);
504 s = __le32_to_cpu(disk->status);
505 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
506 s&CONFIGURED_DISK ? " active" : "",
507 s&FAILED_DISK ? " failed" : "",
508 s&USABLE_DISK ? " usable" : "");
509 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
510 sz = __le32_to_cpu(disk->total_blocks) -
511 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS * mpb->num_raid_devs);
512 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
513 human_size(sz * 512));
514 }
515
516 static void examine_super_imsm(struct supertype *st, char *homehost)
517 {
518 struct intel_super *super = st->sb;
519 struct imsm_super *mpb = super->anchor;
520 char str[MAX_SIGNATURE_LENGTH];
521 int i;
522 __u32 sum;
523
524 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
525 printf(" Magic : %s\n", str);
526 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
527 printf(" Version : %s\n", get_imsm_version(mpb));
528 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
529 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
530 sum = __le32_to_cpu(mpb->check_sum);
531 printf(" Checksum : %08x %s\n", sum,
532 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
533 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
534 printf(" Disks : %d\n", mpb->num_disks);
535 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
536 print_imsm_disk(mpb, super->disks->index);
537 if (super->bbm_log) {
538 struct bbm_log *log = super->bbm_log;
539
540 printf("\n");
541 printf("Bad Block Management Log:\n");
542 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
543 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
544 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
545 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
546 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
547 }
548 for (i = 0; i < mpb->num_raid_devs; i++)
549 print_imsm_dev(__get_imsm_dev(mpb, i), super->disks->index);
550 for (i = 0; i < mpb->num_disks; i++) {
551 if (i == super->disks->index)
552 continue;
553 print_imsm_disk(mpb, i);
554 }
555 }
556
557 static void brief_examine_super_imsm(struct supertype *st)
558 {
559 printf("ARRAY /dev/imsm metadata=imsm\n");
560 }
561
562 static void detail_super_imsm(struct supertype *st, char *homehost)
563 {
564 printf("%s\n", __FUNCTION__);
565 }
566
567 static void brief_detail_super_imsm(struct supertype *st)
568 {
569 printf("%s\n", __FUNCTION__);
570 }
571 #endif
572
573 static int match_home_imsm(struct supertype *st, char *homehost)
574 {
575 printf("%s\n", __FUNCTION__);
576
577 return 0;
578 }
579
580 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
581 {
582 /* imsm does not track uuid's so just make sure we never return
583 * the same value twice to break uuid matching in Manage_subdevs
584 * FIXME what about the use of uuid's with bitmap's?
585 */
586 static int dummy_id = 0;
587
588 uuid[0] = dummy_id++;
589 }
590
591 #if 0
592 static void
593 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
594 {
595 __u8 *v = get_imsm_version(mpb);
596 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
597 char major[] = { 0, 0, 0 };
598 char minor[] = { 0 ,0, 0 };
599 char patch[] = { 0, 0, 0 };
600 char *ver_parse[] = { major, minor, patch };
601 int i, j;
602
603 i = j = 0;
604 while (*v != '\0' && v < end) {
605 if (*v != '.' && j < 2)
606 ver_parse[i][j++] = *v;
607 else {
608 i++;
609 j = 0;
610 }
611 v++;
612 }
613
614 *m = strtol(minor, NULL, 0);
615 *p = strtol(patch, NULL, 0);
616 }
617 #endif
618
619 static int imsm_level_to_layout(int level)
620 {
621 switch (level) {
622 case 0:
623 case 1:
624 return 0;
625 case 5:
626 case 6:
627 return ALGORITHM_LEFT_ASYMMETRIC;
628 case 10:
629 return 0x102; //FIXME is this correct?
630 }
631 return -1;
632 }
633
634 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
635 {
636 struct intel_super *super = st->sb;
637 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
638 struct imsm_map *map = get_imsm_map(dev, 0);
639
640 info->container_member = super->current_vol;
641 info->array.raid_disks = map->num_members;
642 info->array.level = get_imsm_raid_level(map);
643 info->array.layout = imsm_level_to_layout(info->array.level);
644 info->array.md_minor = -1;
645 info->array.ctime = 0;
646 info->array.utime = 0;
647 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
648 info->array.state = !dev->vol.dirty;
649
650 info->disk.major = 0;
651 info->disk.minor = 0;
652
653 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
654 info->component_size = __le32_to_cpu(map->blocks_per_member);
655 memset(info->uuid, 0, sizeof(info->uuid));
656
657 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
658 dev->vol.dirty || dev->vol.migr_state)
659 info->resync_start = 0;
660 else
661 info->resync_start = ~0ULL;
662
663 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
664 info->name[MAX_RAID_SERIAL_LEN] = 0;
665
666 sprintf(info->text_version, "/%s/%d",
667 devnum2devname(st->container_dev),
668 info->container_member);
669 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
670 }
671
672
673 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
674 {
675 struct intel_super *super = st->sb;
676 struct imsm_disk *disk;
677 __u32 s;
678
679 if (super->current_vol >= 0) {
680 getinfo_super_imsm_volume(st, info);
681 return;
682 }
683
684 /* Set raid_disks to zero so that Assemble will always pull in valid
685 * spares
686 */
687 info->array.raid_disks = 0;
688 info->array.level = LEVEL_CONTAINER;
689 info->array.layout = 0;
690 info->array.md_minor = -1;
691 info->array.ctime = 0; /* N/A for imsm */
692 info->array.utime = 0;
693 info->array.chunk_size = 0;
694
695 info->disk.major = 0;
696 info->disk.minor = 0;
697 info->disk.raid_disk = -1;
698 info->reshape_active = 0;
699 strcpy(info->text_version, "imsm");
700 info->safe_mode_delay = 0;
701 info->disk.number = -1;
702 info->disk.state = 0;
703
704 if (super->disks) {
705 disk = &super->disks->disk;
706 info->disk.number = super->disks->index;
707 info->disk.raid_disk = super->disks->index;
708 info->data_offset = __le32_to_cpu(disk->total_blocks) -
709 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
710 info->component_size = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
711 s = __le32_to_cpu(disk->status);
712 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
713 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
714 info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
715 }
716 }
717
718 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
719 char *update, char *devname, int verbose,
720 int uuid_set, char *homehost)
721 {
722 /* FIXME */
723
724 /* For 'assemble' and 'force' we need to return non-zero if any
725 * change was made. For others, the return value is ignored.
726 * Update options are:
727 * force-one : This device looks a bit old but needs to be included,
728 * update age info appropriately.
729 * assemble: clear any 'faulty' flag to allow this device to
730 * be assembled.
731 * force-array: Array is degraded but being forced, mark it clean
732 * if that will be needed to assemble it.
733 *
734 * newdev: not used ????
735 * grow: Array has gained a new device - this is currently for
736 * linear only
737 * resync: mark as dirty so a resync will happen.
738 * name: update the name - preserving the homehost
739 *
740 * Following are not relevant for this imsm:
741 * sparc2.2 : update from old dodgey metadata
742 * super-minor: change the preferred_minor number
743 * summaries: update redundant counters.
744 * uuid: Change the uuid of the array to match watch is given
745 * homehost: update the recorded homehost
746 * _reshape_progress: record new reshape_progress position.
747 */
748 int rv = 0;
749 //struct intel_super *super = st->sb;
750 //struct imsm_super *mpb = super->mpb;
751
752 if (strcmp(update, "grow") == 0) {
753 }
754 if (strcmp(update, "resync") == 0) {
755 /* dev->vol.dirty = 1; */
756 }
757
758 /* IMSM has no concept of UUID or homehost */
759
760 return rv;
761 }
762
763 static size_t disks_to_mpb_size(int disks)
764 {
765 size_t size;
766
767 size = sizeof(struct imsm_super);
768 size += (disks - 1) * sizeof(struct imsm_disk);
769 size += 2 * sizeof(struct imsm_dev);
770 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
771 size += (4 - 2) * sizeof(struct imsm_map);
772 /* 4 possible disk_ord_tbl's */
773 size += 4 * (disks - 1) * sizeof(__u32);
774
775 return size;
776 }
777
778 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
779 {
780 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
781 return 0;
782
783 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
784 }
785
786 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
787 {
788 /*
789 * return:
790 * 0 same, or first was empty, and second was copied
791 * 1 second had wrong number
792 * 2 wrong uuid
793 * 3 wrong other info
794 */
795 struct intel_super *first = st->sb;
796 struct intel_super *sec = tst->sb;
797
798 if (!first) {
799 st->sb = tst->sb;
800 tst->sb = NULL;
801 return 0;
802 }
803
804 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
805 return 3;
806
807 /* if an anchor does not have num_raid_devs set then it is a free
808 * floating spare
809 */
810 if (first->anchor->num_raid_devs > 0 &&
811 sec->anchor->num_raid_devs > 0) {
812 if (first->anchor->family_num != sec->anchor->family_num)
813 return 3;
814 }
815
816 /* if 'first' is a spare promote it to a populated mpb with sec's
817 * family number
818 */
819 if (first->anchor->num_raid_devs == 0 &&
820 sec->anchor->num_raid_devs > 0) {
821 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
822 first->anchor->family_num = sec->anchor->family_num;
823 }
824
825 return 0;
826 }
827
828 static void fd2devname(int fd, char *name)
829 {
830 struct stat st;
831 char path[256];
832 char dname[100];
833 char *nm;
834 int rv;
835
836 name[0] = '\0';
837 if (fstat(fd, &st) != 0)
838 return;
839 sprintf(path, "/sys/dev/block/%d:%d",
840 major(st.st_rdev), minor(st.st_rdev));
841
842 rv = readlink(path, dname, sizeof(dname));
843 if (rv <= 0)
844 return;
845
846 dname[rv] = '\0';
847 nm = strrchr(dname, '/');
848 nm++;
849 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
850 }
851
852
853 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
854
855 static int imsm_read_serial(int fd, char *devname,
856 __u8 serial[MAX_RAID_SERIAL_LEN])
857 {
858 unsigned char scsi_serial[255];
859 int rv;
860 int rsp_len;
861 int len;
862 char *c, *rsp_buf;
863
864 memset(scsi_serial, 0, sizeof(scsi_serial));
865
866 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
867
868 if (rv && imsm_env_devname_as_serial()) {
869 memset(serial, 0, MAX_RAID_SERIAL_LEN);
870 fd2devname(fd, (char *) serial);
871 return 0;
872 }
873
874 if (rv != 0) {
875 if (devname)
876 fprintf(stderr,
877 Name ": Failed to retrieve serial for %s\n",
878 devname);
879 return rv;
880 }
881
882 /* trim whitespace */
883 rsp_len = scsi_serial[3];
884 rsp_buf = (char *) &scsi_serial[4];
885 c = rsp_buf;
886 while (isspace(*c))
887 c++;
888 if (c + MAX_RAID_SERIAL_LEN > rsp_buf + rsp_len)
889 len = rsp_len - (c - rsp_buf);
890 else
891 len = MAX_RAID_SERIAL_LEN;
892 memcpy(serial, c, len);
893 c = (char *) &serial[len - 1];
894 while (isspace(*c) || *c == '\0')
895 *c-- = '\0';
896
897 return 0;
898 }
899
900 static int serialcmp(__u8 *s1, __u8 *s2)
901 {
902 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
903 }
904
905 static void serialcpy(__u8 *dest, __u8 *src)
906 {
907 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
908 }
909
910 static int
911 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
912 {
913 struct dl *dl;
914 struct stat stb;
915 int rv;
916 int i;
917 int alloc = 1;
918 __u8 serial[MAX_RAID_SERIAL_LEN];
919
920 rv = imsm_read_serial(fd, devname, serial);
921
922 if (rv != 0)
923 return 2;
924
925 /* check if this is a disk we have seen before. it may be a spare in
926 * super->disks while the current anchor believes it is a raid member,
927 * check if we need to update dl->index
928 */
929 for (dl = super->disks; dl; dl = dl->next)
930 if (serialcmp(dl->serial, serial) == 0)
931 break;
932
933 if (!dl)
934 dl = malloc(sizeof(*dl));
935 else
936 alloc = 0;
937
938 if (!dl) {
939 if (devname)
940 fprintf(stderr,
941 Name ": failed to allocate disk buffer for %s\n",
942 devname);
943 return 2;
944 }
945
946 if (alloc) {
947 fstat(fd, &stb);
948 dl->major = major(stb.st_rdev);
949 dl->minor = minor(stb.st_rdev);
950 dl->next = super->disks;
951 dl->fd = keep_fd ? fd : -1;
952 dl->devname = devname ? strdup(devname) : NULL;
953 serialcpy(dl->serial, serial);
954 dl->index = -2;
955 } else if (keep_fd) {
956 close(dl->fd);
957 dl->fd = fd;
958 }
959
960 /* look up this disk's index in the current anchor */
961 for (i = 0; i < super->anchor->num_disks; i++) {
962 struct imsm_disk *disk_iter;
963
964 disk_iter = __get_imsm_disk(super->anchor, i);
965
966 if (serialcmp(disk_iter->serial, dl->serial) == 0) {
967 __u32 status;
968
969 dl->disk = *disk_iter;
970 status = __le32_to_cpu(dl->disk.status);
971 /* only set index on disks that are a member of a
972 * populated contianer, i.e. one with raid_devs
973 */
974 if (status & FAILED_DISK)
975 dl->index = -2;
976 else if (status & SPARE_DISK)
977 dl->index = -1;
978 else
979 dl->index = i;
980
981 break;
982 }
983 }
984
985 if (alloc)
986 super->disks = dl;
987
988 return 0;
989 }
990
991 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
992 {
993 memcpy(dest, src, sizeof_imsm_dev(src, 0));
994 }
995
996 /* When migrating map0 contains the 'destination' state while map1
997 * contains the current state. When not migrating map0 contains the
998 * current state. This routine assumes that map[0].map_state is set to
999 * the current array state before being called.
1000 *
1001 * Migration is indicated by one of the following states
1002 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
1003 * 2/ Initialize (migr_state=1 migr_type=0 map0state=normal
1004 * map1state=unitialized)
1005 * 3/ Verify (Resync) (migr_state=1 migr_type=1 map0state=normal
1006 * map1state=normal)
1007 * 4/ Rebuild (migr_state=1 migr_type=1 map0state=normal
1008 * map1state=degraded)
1009 */
1010 static void migrate(struct imsm_dev *dev, __u8 to_state, int rebuild_resync)
1011 {
1012 struct imsm_map *dest;
1013 struct imsm_map *src = get_imsm_map(dev, 0);
1014
1015 dev->vol.migr_state = 1;
1016 dev->vol.migr_type = rebuild_resync;
1017 dest = get_imsm_map(dev, 1);
1018
1019 memcpy(dest, src, sizeof_imsm_map(src));
1020 src->map_state = to_state;
1021 }
1022
1023 static int parse_raid_devices(struct intel_super *super)
1024 {
1025 int i;
1026 struct imsm_dev *dev_new;
1027 size_t len, len_migr;
1028 size_t space_needed = 0;
1029 struct imsm_super *mpb = super->anchor;
1030
1031 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1032 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
1033
1034 len = sizeof_imsm_dev(dev_iter, 0);
1035 len_migr = sizeof_imsm_dev(dev_iter, 1);
1036 if (len_migr > len)
1037 space_needed += len_migr - len;
1038
1039 dev_new = malloc(len_migr);
1040 if (!dev_new)
1041 return 1;
1042 imsm_copy_dev(dev_new, dev_iter);
1043 super->dev_tbl[i] = dev_new;
1044 }
1045
1046 /* ensure that super->buf is large enough when all raid devices
1047 * are migrating
1048 */
1049 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1050 void *buf;
1051
1052 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1053 if (posix_memalign(&buf, 512, len) != 0)
1054 return 1;
1055
1056 memcpy(buf, super->buf, len);
1057 free(super->buf);
1058 super->buf = buf;
1059 super->len = len;
1060 }
1061
1062 return 0;
1063 }
1064
1065 /* retrieve a pointer to the bbm log which starts after all raid devices */
1066 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1067 {
1068 void *ptr = NULL;
1069
1070 if (__le32_to_cpu(mpb->bbm_log_size)) {
1071 ptr = mpb;
1072 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1073 }
1074
1075 return ptr;
1076 }
1077
1078 static void __free_imsm(struct intel_super *super, int free_disks);
1079
1080 /* load_imsm_mpb - read matrix metadata
1081 * allocates super->mpb to be freed by free_super
1082 */
1083 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1084 {
1085 unsigned long long dsize;
1086 unsigned long long sectors;
1087 struct stat;
1088 struct imsm_super *anchor;
1089 __u32 check_sum;
1090 int rc;
1091
1092 get_dev_size(fd, NULL, &dsize);
1093
1094 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1095 if (devname)
1096 fprintf(stderr,
1097 Name ": Cannot seek to anchor block on %s: %s\n",
1098 devname, strerror(errno));
1099 return 1;
1100 }
1101
1102 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1103 if (devname)
1104 fprintf(stderr,
1105 Name ": Failed to allocate imsm anchor buffer"
1106 " on %s\n", devname);
1107 return 1;
1108 }
1109 if (read(fd, anchor, 512) != 512) {
1110 if (devname)
1111 fprintf(stderr,
1112 Name ": Cannot read anchor block on %s: %s\n",
1113 devname, strerror(errno));
1114 free(anchor);
1115 return 1;
1116 }
1117
1118 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1119 if (devname)
1120 fprintf(stderr,
1121 Name ": no IMSM anchor on %s\n", devname);
1122 free(anchor);
1123 return 2;
1124 }
1125
1126 __free_imsm(super, 0);
1127 super->len = ROUND_UP(anchor->mpb_size, 512);
1128 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1129 if (devname)
1130 fprintf(stderr,
1131 Name ": unable to allocate %zu byte mpb buffer\n",
1132 super->len);
1133 free(anchor);
1134 return 2;
1135 }
1136 memcpy(super->buf, anchor, 512);
1137
1138 sectors = mpb_sectors(anchor) - 1;
1139 free(anchor);
1140 if (!sectors) {
1141 rc = load_imsm_disk(fd, super, devname, 0);
1142 if (rc == 0)
1143 rc = parse_raid_devices(super);
1144 return rc;
1145 }
1146
1147 /* read the extended mpb */
1148 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1149 if (devname)
1150 fprintf(stderr,
1151 Name ": Cannot seek to extended mpb on %s: %s\n",
1152 devname, strerror(errno));
1153 return 1;
1154 }
1155
1156 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1157 if (devname)
1158 fprintf(stderr,
1159 Name ": Cannot read extended mpb on %s: %s\n",
1160 devname, strerror(errno));
1161 return 2;
1162 }
1163
1164 check_sum = __gen_imsm_checksum(super->anchor);
1165 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1166 if (devname)
1167 fprintf(stderr,
1168 Name ": IMSM checksum %x != %x on %s\n",
1169 check_sum, __le32_to_cpu(super->anchor->check_sum),
1170 devname);
1171 return 2;
1172 }
1173
1174 /* FIXME the BBM log is disk specific so we cannot use this global
1175 * buffer for all disks. Ok for now since we only look at the global
1176 * bbm_log_size parameter to gate assembly
1177 */
1178 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1179
1180 rc = load_imsm_disk(fd, super, devname, 0);
1181 if (rc == 0)
1182 rc = parse_raid_devices(super);
1183
1184 return rc;
1185 }
1186
1187 static void __free_imsm_disk(struct dl *d)
1188 {
1189 if (d->fd >= 0)
1190 close(d->fd);
1191 if (d->devname)
1192 free(d->devname);
1193 free(d);
1194
1195 }
1196 static void free_imsm_disks(struct intel_super *super)
1197 {
1198 while (super->disks) {
1199 struct dl *d = super->disks;
1200
1201 super->disks = d->next;
1202 __free_imsm_disk(d);
1203 }
1204 }
1205
1206 /* free all the pieces hanging off of a super pointer */
1207 static void __free_imsm(struct intel_super *super, int free_disks)
1208 {
1209 int i;
1210
1211 if (super->buf) {
1212 free(super->buf);
1213 super->buf = NULL;
1214 }
1215 if (free_disks)
1216 free_imsm_disks(super);
1217 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1218 if (super->dev_tbl[i]) {
1219 free(super->dev_tbl[i]);
1220 super->dev_tbl[i] = NULL;
1221 }
1222 }
1223
1224 static void free_imsm(struct intel_super *super)
1225 {
1226 __free_imsm(super, 1);
1227 free(super);
1228 }
1229
1230 static void free_super_imsm(struct supertype *st)
1231 {
1232 struct intel_super *super = st->sb;
1233
1234 if (!super)
1235 return;
1236
1237 free_imsm(super);
1238 st->sb = NULL;
1239 }
1240
1241 static struct intel_super *alloc_super(int creating_imsm)
1242 {
1243 struct intel_super *super = malloc(sizeof(*super));
1244
1245 if (super) {
1246 memset(super, 0, sizeof(*super));
1247 super->creating_imsm = creating_imsm;
1248 super->current_vol = -1;
1249 }
1250
1251 return super;
1252 }
1253
1254 #ifndef MDASSEMBLE
1255 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1256 char *devname, int keep_fd)
1257 {
1258 struct mdinfo *sra;
1259 struct intel_super *super;
1260 struct mdinfo *sd, *best = NULL;
1261 __u32 bestgen = 0;
1262 __u32 gen;
1263 char nm[20];
1264 int dfd;
1265 int rv;
1266
1267 /* check if this disk is a member of an active array */
1268 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1269 if (!sra)
1270 return 1;
1271
1272 if (sra->array.major_version != -1 ||
1273 sra->array.minor_version != -2 ||
1274 strcmp(sra->text_version, "imsm") != 0)
1275 return 1;
1276
1277 super = alloc_super(0);
1278 if (!super)
1279 return 1;
1280
1281 /* find the most up to date disk in this array, skipping spares */
1282 for (sd = sra->devs; sd; sd = sd->next) {
1283 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1284 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1285 if (!dfd) {
1286 free_imsm(super);
1287 return 2;
1288 }
1289 rv = load_imsm_mpb(dfd, super, NULL);
1290 if (!keep_fd)
1291 close(dfd);
1292 if (rv == 0) {
1293 if (super->anchor->num_raid_devs == 0)
1294 gen = 0;
1295 else
1296 gen = __le32_to_cpu(super->anchor->generation_num);
1297 if (!best || gen > bestgen) {
1298 bestgen = gen;
1299 best = sd;
1300 }
1301 } else {
1302 free_imsm(super);
1303 return 2;
1304 }
1305 }
1306
1307 if (!best) {
1308 free_imsm(super);
1309 return 1;
1310 }
1311
1312 /* load the most up to date anchor */
1313 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1314 dfd = dev_open(nm, O_RDONLY);
1315 if (!dfd) {
1316 free_imsm(super);
1317 return 1;
1318 }
1319 rv = load_imsm_mpb(dfd, super, NULL);
1320 close(dfd);
1321 if (rv != 0) {
1322 free_imsm(super);
1323 return 2;
1324 }
1325
1326 /* re-parse the disk list with the current anchor */
1327 for (sd = sra->devs ; sd ; sd = sd->next) {
1328 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1329 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1330 if (!dfd) {
1331 free_imsm(super);
1332 return 2;
1333 }
1334 load_imsm_disk(dfd, super, NULL, keep_fd);
1335 if (!keep_fd)
1336 close(dfd);
1337 }
1338
1339 if (st->subarray[0]) {
1340 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1341 super->current_vol = atoi(st->subarray);
1342 else
1343 return 1;
1344 }
1345
1346 *sbp = super;
1347 st->container_dev = fd2devnum(fd);
1348 if (st->ss == NULL) {
1349 st->ss = &super_imsm;
1350 st->minor_version = 0;
1351 st->max_devs = IMSM_MAX_DEVICES;
1352 }
1353
1354 return 0;
1355 }
1356 #endif
1357
1358 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1359 {
1360 struct intel_super *super;
1361 int rv;
1362
1363 #ifndef MDASSEMBLE
1364 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1365 return 0;
1366 #endif
1367 if (st->subarray[0])
1368 return 1; /* FIXME */
1369
1370 super = alloc_super(0);
1371 if (!super) {
1372 fprintf(stderr,
1373 Name ": malloc of %zu failed.\n",
1374 sizeof(*super));
1375 return 1;
1376 }
1377
1378 rv = load_imsm_mpb(fd, super, devname);
1379
1380 if (rv) {
1381 if (devname)
1382 fprintf(stderr,
1383 Name ": Failed to load all information "
1384 "sections on %s\n", devname);
1385 free_imsm(super);
1386 return rv;
1387 }
1388
1389 st->sb = super;
1390 if (st->ss == NULL) {
1391 st->ss = &super_imsm;
1392 st->minor_version = 0;
1393 st->max_devs = IMSM_MAX_DEVICES;
1394 }
1395
1396 return 0;
1397 }
1398
1399 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1400 {
1401 if (info->level == 1)
1402 return 128;
1403 return info->chunk_size >> 9;
1404 }
1405
1406 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1407 {
1408 __u32 num_stripes;
1409
1410 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1411 if (info->level == 1)
1412 num_stripes /= 2;
1413
1414 return num_stripes;
1415 }
1416
1417 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1418 {
1419 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1420 }
1421
1422 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1423 unsigned long long size, char *name,
1424 char *homehost, int *uuid)
1425 {
1426 /* We are creating a volume inside a pre-existing container.
1427 * so st->sb is already set.
1428 */
1429 struct intel_super *super = st->sb;
1430 struct imsm_super *mpb = super->anchor;
1431 struct imsm_dev *dev;
1432 struct imsm_vol *vol;
1433 struct imsm_map *map;
1434 int idx = mpb->num_raid_devs;
1435 int i;
1436 unsigned long long array_blocks;
1437 __u32 offset = 0;
1438 size_t size_old, size_new;
1439
1440 if (mpb->num_raid_devs >= 2) {
1441 fprintf(stderr, Name": This imsm-container already has the "
1442 "maximum of 2 volumes\n");
1443 return 0;
1444 }
1445
1446 /* ensure the mpb is large enough for the new data */
1447 size_old = __le32_to_cpu(mpb->mpb_size);
1448 size_new = disks_to_mpb_size(info->nr_disks);
1449 if (size_new > size_old) {
1450 void *mpb_new;
1451 size_t size_round = ROUND_UP(size_new, 512);
1452
1453 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1454 fprintf(stderr, Name": could not allocate new mpb\n");
1455 return 0;
1456 }
1457 memcpy(mpb_new, mpb, size_old);
1458 free(mpb);
1459 mpb = mpb_new;
1460 super->anchor = mpb_new;
1461 mpb->mpb_size = __cpu_to_le32(size_new);
1462 memset(mpb_new + size_old, 0, size_round - size_old);
1463 }
1464 super->current_vol = idx;
1465 /* when creating the first raid device in this container set num_disks
1466 * to zero, i.e. delete this spare and add raid member devices in
1467 * add_to_super_imsm_volume()
1468 */
1469 if (super->current_vol == 0)
1470 mpb->num_disks = 0;
1471 sprintf(st->subarray, "%d", idx);
1472 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1473 if (!dev) {
1474 fprintf(stderr, Name": could not allocate raid device\n");
1475 return 0;
1476 }
1477 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1478 array_blocks = calc_array_size(info->level, info->raid_disks,
1479 info->layout, info->chunk_size,
1480 info->size*2);
1481 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1482 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1483 dev->status = __cpu_to_le32(0);
1484 dev->reserved_blocks = __cpu_to_le32(0);
1485 vol = &dev->vol;
1486 vol->migr_state = 0;
1487 vol->migr_type = 0;
1488 vol->dirty = 0;
1489 for (i = 0; i < idx; i++) {
1490 struct imsm_dev *prev = get_imsm_dev(super, i);
1491 struct imsm_map *pmap = get_imsm_map(prev, 0);
1492
1493 offset += __le32_to_cpu(pmap->blocks_per_member);
1494 offset += IMSM_RESERVED_SECTORS;
1495 }
1496 map = get_imsm_map(dev, 0);
1497 map->pba_of_lba0 = __cpu_to_le32(offset);
1498 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1499 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1500 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1501 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1502 IMSM_T_STATE_NORMAL;
1503
1504 if (info->level == 1 && info->raid_disks > 2) {
1505 fprintf(stderr, Name": imsm does not support more than 2 disks"
1506 "in a raid1 volume\n");
1507 return 0;
1508 }
1509 if (info->level == 10)
1510 map->raid_level = 1;
1511 else
1512 map->raid_level = info->level;
1513
1514 map->num_members = info->raid_disks;
1515 for (i = 0; i < map->num_members; i++) {
1516 /* initialized in add_to_super */
1517 set_imsm_ord_tbl_ent(map, i, 0);
1518 }
1519 mpb->num_raid_devs++;
1520 super->dev_tbl[super->current_vol] = dev;
1521
1522 return 1;
1523 }
1524
1525 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1526 unsigned long long size, char *name,
1527 char *homehost, int *uuid)
1528 {
1529 /* This is primarily called by Create when creating a new array.
1530 * We will then get add_to_super called for each component, and then
1531 * write_init_super called to write it out to each device.
1532 * For IMSM, Create can create on fresh devices or on a pre-existing
1533 * array.
1534 * To create on a pre-existing array a different method will be called.
1535 * This one is just for fresh drives.
1536 */
1537 struct intel_super *super;
1538 struct imsm_super *mpb;
1539 size_t mpb_size;
1540
1541 if (!info) {
1542 st->sb = NULL;
1543 return 0;
1544 }
1545 if (st->sb)
1546 return init_super_imsm_volume(st, info, size, name, homehost,
1547 uuid);
1548
1549 super = alloc_super(1);
1550 if (!super)
1551 return 0;
1552 mpb_size = disks_to_mpb_size(info->nr_disks);
1553 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1554 free(super);
1555 return 0;
1556 }
1557 mpb = super->buf;
1558 memset(mpb, 0, mpb_size);
1559
1560 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1561 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1562 strlen(MPB_VERSION_RAID5));
1563 mpb->mpb_size = mpb_size;
1564
1565 st->sb = super;
1566 return 1;
1567 }
1568
1569 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1570 int fd, char *devname)
1571 {
1572 struct intel_super *super = st->sb;
1573 struct imsm_super *mpb = super->anchor;
1574 struct dl *dl;
1575 struct imsm_dev *dev;
1576 struct imsm_map *map;
1577 __u32 status;
1578
1579 dev = get_imsm_dev(super, super->current_vol);
1580 map = get_imsm_map(dev, 0);
1581
1582 for (dl = super->disks; dl ; dl = dl->next)
1583 if (dl->major == dk->major &&
1584 dl->minor == dk->minor)
1585 break;
1586
1587 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1588 return;
1589
1590 /* add a pristine spare to the metadata */
1591 if (dl->index < 0) {
1592 dl->index = super->anchor->num_disks;
1593 super->anchor->num_disks++;
1594 }
1595 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
1596 status = CONFIGURED_DISK | USABLE_DISK;
1597 dl->disk.status = __cpu_to_le32(status);
1598
1599 /* if we are creating the first raid device update the family number */
1600 if (super->current_vol == 0) {
1601 __u32 sum;
1602 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
1603 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
1604
1605 *_dev = *dev;
1606 *_disk = dl->disk;
1607 sum = __gen_imsm_checksum(mpb);
1608 mpb->family_num = __cpu_to_le32(sum);
1609 }
1610 }
1611
1612 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1613 int fd, char *devname)
1614 {
1615 struct intel_super *super = st->sb;
1616 struct dl *dd;
1617 unsigned long long size;
1618 __u32 status, id;
1619 int rv;
1620 struct stat stb;
1621
1622 if (super->current_vol >= 0) {
1623 add_to_super_imsm_volume(st, dk, fd, devname);
1624 return;
1625 }
1626
1627 fstat(fd, &stb);
1628 dd = malloc(sizeof(*dd));
1629 if (!dd) {
1630 fprintf(stderr,
1631 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1632 abort();
1633 }
1634 memset(dd, 0, sizeof(*dd));
1635 dd->major = major(stb.st_rdev);
1636 dd->minor = minor(stb.st_rdev);
1637 dd->index = -1;
1638 dd->devname = devname ? strdup(devname) : NULL;
1639 dd->fd = fd;
1640 rv = imsm_read_serial(fd, devname, dd->serial);
1641 if (rv) {
1642 fprintf(stderr,
1643 Name ": failed to retrieve scsi serial, aborting\n");
1644 free(dd);
1645 abort();
1646 }
1647
1648 get_dev_size(fd, NULL, &size);
1649 size /= 512;
1650 status = USABLE_DISK | SPARE_DISK;
1651 serialcpy(dd->disk.serial, dd->serial);
1652 dd->disk.total_blocks = __cpu_to_le32(size);
1653 dd->disk.status = __cpu_to_le32(status);
1654 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1655 dd->disk.scsi_id = __cpu_to_le32(id);
1656 else
1657 dd->disk.scsi_id = __cpu_to_le32(0);
1658
1659 if (st->update_tail) {
1660 dd->next = super->add;
1661 super->add = dd;
1662 } else {
1663 dd->next = super->disks;
1664 super->disks = dd;
1665 }
1666 }
1667
1668 static int store_imsm_mpb(int fd, struct intel_super *super);
1669
1670 /* spare records have their own family number and do not have any defined raid
1671 * devices
1672 */
1673 static int write_super_imsm_spares(struct intel_super *super, int doclose)
1674 {
1675 struct imsm_super mpb_save;
1676 struct imsm_super *mpb = super->anchor;
1677 __u32 sum;
1678 struct dl *d;
1679
1680 mpb_save = *mpb;
1681 mpb->num_raid_devs = 0;
1682 mpb->num_disks = 1;
1683 mpb->mpb_size = sizeof(struct imsm_super);
1684 mpb->generation_num = __cpu_to_le32(1UL);
1685
1686 for (d = super->disks; d; d = d->next) {
1687 if (d->index != -1)
1688 continue;
1689
1690 mpb->disk[0] = d->disk;
1691 sum = __gen_imsm_checksum(mpb);
1692 mpb->family_num = __cpu_to_le32(sum);
1693 sum = __gen_imsm_checksum(mpb);
1694 mpb->check_sum = __cpu_to_le32(sum);
1695
1696 if (store_imsm_mpb(d->fd, super)) {
1697 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1698 __func__, d->major, d->minor, strerror(errno));
1699 *mpb = mpb_save;
1700 return 1;
1701 }
1702 if (doclose) {
1703 close(d->fd);
1704 d->fd = -1;
1705 }
1706 }
1707
1708 *mpb = mpb_save;
1709 return 0;
1710 }
1711
1712 static int write_super_imsm(struct intel_super *super, int doclose)
1713 {
1714 struct imsm_super *mpb = super->anchor;
1715 struct dl *d;
1716 __u32 generation;
1717 __u32 sum;
1718 int spares = 0;
1719 int i;
1720 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
1721
1722 /* 'generation' is incremented everytime the metadata is written */
1723 generation = __le32_to_cpu(mpb->generation_num);
1724 generation++;
1725 mpb->generation_num = __cpu_to_le32(generation);
1726
1727 for (d = super->disks; d; d = d->next) {
1728 if (d->index == -1)
1729 spares++;
1730 else {
1731 mpb->disk[d->index] = d->disk;
1732 mpb_size += sizeof(struct imsm_disk);
1733 }
1734 }
1735
1736 for (i = 0; i < mpb->num_raid_devs; i++) {
1737 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1738
1739 imsm_copy_dev(dev, super->dev_tbl[i]);
1740 mpb_size += sizeof_imsm_dev(dev, 0);
1741 }
1742 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
1743 mpb->mpb_size = __cpu_to_le32(mpb_size);
1744
1745 /* recalculate checksum */
1746 sum = __gen_imsm_checksum(mpb);
1747 mpb->check_sum = __cpu_to_le32(sum);
1748
1749 /* write the mpb for disks that compose raid devices */
1750 for (d = super->disks; d ; d = d->next) {
1751 if (d->index < 0)
1752 continue;
1753 if (store_imsm_mpb(d->fd, super))
1754 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1755 __func__, d->major, d->minor, strerror(errno));
1756 if (doclose) {
1757 close(d->fd);
1758 d->fd = -1;
1759 }
1760 }
1761
1762 if (spares)
1763 return write_super_imsm_spares(super, doclose);
1764
1765 return 0;
1766 }
1767
1768 static int create_array(struct supertype *st)
1769 {
1770 size_t len;
1771 struct imsm_update_create_array *u;
1772 struct intel_super *super = st->sb;
1773 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1774
1775 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0);
1776 u = malloc(len);
1777 if (!u) {
1778 fprintf(stderr, "%s: failed to allocate update buffer\n",
1779 __func__);
1780 return 1;
1781 }
1782
1783 u->type = update_create_array;
1784 u->dev_idx = super->current_vol;
1785 imsm_copy_dev(&u->dev, dev);
1786 append_metadata_update(st, u, len);
1787
1788 return 0;
1789 }
1790
1791 static int add_disk(struct supertype *st)
1792 {
1793 struct intel_super *super = st->sb;
1794 size_t len;
1795 struct imsm_update_add_disk *u;
1796
1797 if (!super->add)
1798 return 0;
1799
1800 len = sizeof(*u);
1801 u = malloc(len);
1802 if (!u) {
1803 fprintf(stderr, "%s: failed to allocate update buffer\n",
1804 __func__);
1805 return 1;
1806 }
1807
1808 u->type = update_add_disk;
1809 append_metadata_update(st, u, len);
1810
1811 return 0;
1812 }
1813
1814 static int write_init_super_imsm(struct supertype *st)
1815 {
1816 if (st->update_tail) {
1817 /* queue the recently created array / added disk
1818 * as a metadata update */
1819 struct intel_super *super = st->sb;
1820 struct dl *d;
1821 int rv;
1822
1823 /* determine if we are creating a volume or adding a disk */
1824 if (super->current_vol < 0) {
1825 /* in the add disk case we are running in mdmon
1826 * context, so don't close fd's
1827 */
1828 return add_disk(st);
1829 } else
1830 rv = create_array(st);
1831
1832 for (d = super->disks; d ; d = d->next) {
1833 close(d->fd);
1834 d->fd = -1;
1835 }
1836
1837 return rv;
1838 } else
1839 return write_super_imsm(st->sb, 1);
1840 }
1841
1842 static int store_zero_imsm(struct supertype *st, int fd)
1843 {
1844 unsigned long long dsize;
1845 void *buf;
1846
1847 get_dev_size(fd, NULL, &dsize);
1848
1849 /* first block is stored on second to last sector of the disk */
1850 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
1851 return 1;
1852
1853 if (posix_memalign(&buf, 512, 512) != 0)
1854 return 1;
1855
1856 memset(buf, 0, 512);
1857 if (write(fd, buf, 512) != 512)
1858 return 1;
1859 return 0;
1860 }
1861
1862 static int validate_geometry_imsm_container(struct supertype *st, int level,
1863 int layout, int raiddisks, int chunk,
1864 unsigned long long size, char *dev,
1865 unsigned long long *freesize,
1866 int verbose)
1867 {
1868 int fd;
1869 unsigned long long ldsize;
1870
1871 if (level != LEVEL_CONTAINER)
1872 return 0;
1873 if (!dev)
1874 return 1;
1875
1876 fd = open(dev, O_RDONLY|O_EXCL, 0);
1877 if (fd < 0) {
1878 if (verbose)
1879 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
1880 dev, strerror(errno));
1881 return 0;
1882 }
1883 if (!get_dev_size(fd, dev, &ldsize)) {
1884 close(fd);
1885 return 0;
1886 }
1887 close(fd);
1888
1889 *freesize = avail_size_imsm(st, ldsize >> 9);
1890
1891 return 1;
1892 }
1893
1894 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
1895 * FIX ME add ahci details
1896 */
1897 static int validate_geometry_imsm_volume(struct supertype *st, int level,
1898 int layout, int raiddisks, int chunk,
1899 unsigned long long size, char *dev,
1900 unsigned long long *freesize,
1901 int verbose)
1902 {
1903 struct stat stb;
1904 struct intel_super *super = st->sb;
1905 struct dl *dl;
1906 unsigned long long pos = 0;
1907 unsigned long long maxsize;
1908 struct extent *e;
1909 int i;
1910
1911 if (level == LEVEL_CONTAINER)
1912 return 0;
1913
1914 if (level == 1 && raiddisks > 2) {
1915 if (verbose)
1916 fprintf(stderr, Name ": imsm does not support more "
1917 "than 2 in a raid1 configuration\n");
1918 return 0;
1919 }
1920
1921 /* We must have the container info already read in. */
1922 if (!super)
1923 return 0;
1924
1925 if (!dev) {
1926 /* General test: make sure there is space for
1927 * 'raiddisks' device extents of size 'size' at a given
1928 * offset
1929 */
1930 unsigned long long minsize = size*2 /* convert to blocks */;
1931 unsigned long long start_offset = ~0ULL;
1932 int dcnt = 0;
1933 if (minsize == 0)
1934 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1935 for (dl = super->disks; dl ; dl = dl->next) {
1936 int found = 0;
1937
1938 pos = 0;
1939 i = 0;
1940 e = get_extents(super, dl);
1941 if (!e) continue;
1942 do {
1943 unsigned long long esize;
1944 esize = e[i].start - pos;
1945 if (esize >= minsize)
1946 found = 1;
1947 if (found && start_offset == ~0ULL) {
1948 start_offset = pos;
1949 break;
1950 } else if (found && pos != start_offset) {
1951 found = 0;
1952 break;
1953 }
1954 pos = e[i].start + e[i].size;
1955 i++;
1956 } while (e[i-1].size);
1957 if (found)
1958 dcnt++;
1959 free(e);
1960 }
1961 if (dcnt < raiddisks) {
1962 if (verbose)
1963 fprintf(stderr, Name ": imsm: Not enough "
1964 "devices with space for this array "
1965 "(%d < %d)\n",
1966 dcnt, raiddisks);
1967 return 0;
1968 }
1969 return 1;
1970 }
1971 /* This device must be a member of the set */
1972 if (stat(dev, &stb) < 0)
1973 return 0;
1974 if ((S_IFMT & stb.st_mode) != S_IFBLK)
1975 return 0;
1976 for (dl = super->disks ; dl ; dl = dl->next) {
1977 if (dl->major == major(stb.st_rdev) &&
1978 dl->minor == minor(stb.st_rdev))
1979 break;
1980 }
1981 if (!dl) {
1982 if (verbose)
1983 fprintf(stderr, Name ": %s is not in the "
1984 "same imsm set\n", dev);
1985 return 0;
1986 }
1987 e = get_extents(super, dl);
1988 maxsize = 0;
1989 i = 0;
1990 if (e) do {
1991 unsigned long long esize;
1992 esize = e[i].start - pos;
1993 if (esize >= maxsize)
1994 maxsize = esize;
1995 pos = e[i].start + e[i].size;
1996 i++;
1997 } while (e[i-1].size);
1998 *freesize = maxsize;
1999
2000 return 1;
2001 }
2002
2003 int imsm_bbm_log_size(struct imsm_super *mpb)
2004 {
2005 return __le32_to_cpu(mpb->bbm_log_size);
2006 }
2007
2008 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
2009 int raiddisks, int chunk, unsigned long long size,
2010 char *dev, unsigned long long *freesize,
2011 int verbose)
2012 {
2013 int fd, cfd;
2014 struct mdinfo *sra;
2015
2016 /* if given unused devices create a container
2017 * if given given devices in a container create a member volume
2018 */
2019 if (level == LEVEL_CONTAINER) {
2020 /* Must be a fresh device to add to a container */
2021 return validate_geometry_imsm_container(st, level, layout,
2022 raiddisks, chunk, size,
2023 dev, freesize,
2024 verbose);
2025 }
2026
2027 if (st->sb) {
2028 /* creating in a given container */
2029 return validate_geometry_imsm_volume(st, level, layout,
2030 raiddisks, chunk, size,
2031 dev, freesize, verbose);
2032 }
2033
2034 /* limit creation to the following levels */
2035 if (!dev)
2036 switch (level) {
2037 case 0:
2038 case 1:
2039 case 10:
2040 case 5:
2041 break;
2042 default:
2043 return 1;
2044 }
2045
2046 /* This device needs to be a device in an 'imsm' container */
2047 fd = open(dev, O_RDONLY|O_EXCL, 0);
2048 if (fd >= 0) {
2049 if (verbose)
2050 fprintf(stderr,
2051 Name ": Cannot create this array on device %s\n",
2052 dev);
2053 close(fd);
2054 return 0;
2055 }
2056 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2057 if (verbose)
2058 fprintf(stderr, Name ": Cannot open %s: %s\n",
2059 dev, strerror(errno));
2060 return 0;
2061 }
2062 /* Well, it is in use by someone, maybe an 'imsm' container. */
2063 cfd = open_container(fd);
2064 if (cfd < 0) {
2065 close(fd);
2066 if (verbose)
2067 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
2068 dev);
2069 return 0;
2070 }
2071 sra = sysfs_read(cfd, 0, GET_VERSION);
2072 close(fd);
2073 if (sra && sra->array.major_version == -1 &&
2074 strcmp(sra->text_version, "imsm") == 0) {
2075 /* This is a member of a imsm container. Load the container
2076 * and try to create a volume
2077 */
2078 struct intel_super *super;
2079
2080 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
2081 st->sb = super;
2082 st->container_dev = fd2devnum(cfd);
2083 close(cfd);
2084 return validate_geometry_imsm_volume(st, level, layout,
2085 raiddisks, chunk,
2086 size, dev,
2087 freesize, verbose);
2088 }
2089 close(cfd);
2090 } else /* may belong to another container */
2091 return 0;
2092
2093 return 1;
2094 }
2095
2096 static struct mdinfo *container_content_imsm(struct supertype *st)
2097 {
2098 /* Given a container loaded by load_super_imsm_all,
2099 * extract information about all the arrays into
2100 * an mdinfo tree.
2101 *
2102 * For each imsm_dev create an mdinfo, fill it in,
2103 * then look for matching devices in super->disks
2104 * and create appropriate device mdinfo.
2105 */
2106 struct intel_super *super = st->sb;
2107 struct imsm_super *mpb = super->anchor;
2108 struct mdinfo *rest = NULL;
2109 int i;
2110
2111 /* do not assemble arrays that might have bad blocks */
2112 if (imsm_bbm_log_size(super->anchor)) {
2113 fprintf(stderr, Name ": BBM log found in metadata. "
2114 "Cannot activate array(s).\n");
2115 return NULL;
2116 }
2117
2118 for (i = 0; i < mpb->num_raid_devs; i++) {
2119 struct imsm_dev *dev = get_imsm_dev(super, i);
2120 struct imsm_map *map = get_imsm_map(dev, 0);
2121 struct mdinfo *this;
2122 int slot;
2123
2124 this = malloc(sizeof(*this));
2125 memset(this, 0, sizeof(*this));
2126 this->next = rest;
2127
2128 super->current_vol = i;
2129 getinfo_super_imsm_volume(st, this);
2130 for (slot = 0 ; slot < map->num_members; slot++) {
2131 struct mdinfo *info_d;
2132 struct dl *d;
2133 int idx;
2134 int skip;
2135 __u32 s;
2136 __u32 ord;
2137
2138 skip = 0;
2139 idx = get_imsm_disk_idx(dev, slot);
2140 ord = get_imsm_ord_tbl_ent(dev, slot);
2141 for (d = super->disks; d ; d = d->next)
2142 if (d->index == idx)
2143 break;
2144
2145 if (d == NULL)
2146 skip = 1;
2147
2148 s = d ? __le32_to_cpu(d->disk.status) : 0;
2149 if (s & FAILED_DISK)
2150 skip = 1;
2151 if (!(s & USABLE_DISK))
2152 skip = 1;
2153 if (ord & IMSM_ORD_REBUILD)
2154 skip = 1;
2155
2156 /*
2157 * if we skip some disks the array will be assmebled degraded;
2158 * reset resync start to avoid a dirty-degraded situation
2159 *
2160 * FIXME handle dirty degraded
2161 */
2162 if (skip && !dev->vol.dirty)
2163 this->resync_start = ~0ULL;
2164 if (skip)
2165 continue;
2166
2167 info_d = malloc(sizeof(*info_d));
2168 if (!info_d) {
2169 fprintf(stderr, Name ": failed to allocate disk"
2170 " for volume %s\n", (char *) dev->volume);
2171 free(this);
2172 this = rest;
2173 break;
2174 }
2175 memset(info_d, 0, sizeof(*info_d));
2176 info_d->next = this->devs;
2177 this->devs = info_d;
2178
2179 info_d->disk.number = d->index;
2180 info_d->disk.major = d->major;
2181 info_d->disk.minor = d->minor;
2182 info_d->disk.raid_disk = slot;
2183
2184 this->array.working_disks++;
2185
2186 info_d->events = __le32_to_cpu(mpb->generation_num);
2187 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
2188 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
2189 if (d->devname)
2190 strcpy(info_d->name, d->devname);
2191 }
2192 rest = this;
2193 }
2194
2195 return rest;
2196 }
2197
2198
2199 static int imsm_open_new(struct supertype *c, struct active_array *a,
2200 char *inst)
2201 {
2202 struct intel_super *super = c->sb;
2203 struct imsm_super *mpb = super->anchor;
2204
2205 if (atoi(inst) >= mpb->num_raid_devs) {
2206 fprintf(stderr, "%s: subarry index %d, out of range\n",
2207 __func__, atoi(inst));
2208 return -ENODEV;
2209 }
2210
2211 dprintf("imsm: open_new %s\n", inst);
2212 a->info.container_member = atoi(inst);
2213 return 0;
2214 }
2215
2216 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
2217 {
2218 struct imsm_map *map = get_imsm_map(dev, 0);
2219
2220 if (!failed)
2221 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
2222 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
2223
2224 switch (get_imsm_raid_level(map)) {
2225 case 0:
2226 return IMSM_T_STATE_FAILED;
2227 break;
2228 case 1:
2229 if (failed < map->num_members)
2230 return IMSM_T_STATE_DEGRADED;
2231 else
2232 return IMSM_T_STATE_FAILED;
2233 break;
2234 case 10:
2235 {
2236 /**
2237 * check to see if any mirrors have failed,
2238 * otherwise we are degraded
2239 */
2240 int device_per_mirror = 2; /* FIXME is this always the case?
2241 * and are they always adjacent?
2242 */
2243 int r10fail = 0;
2244 int i;
2245
2246 for (i = 0; i < map->num_members; i++) {
2247 int idx = get_imsm_disk_idx(dev, i);
2248 struct imsm_disk *disk = get_imsm_disk(super, idx);
2249
2250 if (!disk)
2251 r10fail++;
2252 else if (__le32_to_cpu(disk->status) & FAILED_DISK)
2253 r10fail++;
2254
2255 if (r10fail >= device_per_mirror)
2256 return IMSM_T_STATE_FAILED;
2257
2258 /* reset 'r10fail' for next mirror set */
2259 if (!((i + 1) % device_per_mirror))
2260 r10fail = 0;
2261 }
2262
2263 return IMSM_T_STATE_DEGRADED;
2264 }
2265 case 5:
2266 if (failed < 2)
2267 return IMSM_T_STATE_DEGRADED;
2268 else
2269 return IMSM_T_STATE_FAILED;
2270 break;
2271 default:
2272 break;
2273 }
2274
2275 return map->map_state;
2276 }
2277
2278 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
2279 {
2280 int i;
2281 int failed = 0;
2282 struct imsm_disk *disk;
2283 struct imsm_map *map = get_imsm_map(dev, 0);
2284
2285 for (i = 0; i < map->num_members; i++) {
2286 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
2287 int idx = ord_to_idx(ord);
2288
2289 disk = get_imsm_disk(super, idx);
2290 if (!disk ||
2291 __le32_to_cpu(disk->status) & FAILED_DISK ||
2292 ord & IMSM_ORD_REBUILD)
2293 failed++;
2294 }
2295
2296 return failed;
2297 }
2298
2299 static int is_resyncing(struct imsm_dev *dev)
2300 {
2301 struct imsm_map *migr_map;
2302
2303 if (!dev->vol.migr_state)
2304 return 0;
2305
2306 if (dev->vol.migr_type == 0)
2307 return 1;
2308
2309 migr_map = get_imsm_map(dev, 1);
2310
2311 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
2312 return 1;
2313 else
2314 return 0;
2315 }
2316
2317 static int is_rebuilding(struct imsm_dev *dev)
2318 {
2319 struct imsm_map *migr_map;
2320
2321 if (!dev->vol.migr_state)
2322 return 0;
2323
2324 if (dev->vol.migr_type == 0)
2325 return 0;
2326
2327 migr_map = get_imsm_map(dev, 1);
2328
2329 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
2330 return 1;
2331 else
2332 return 0;
2333 }
2334
2335 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
2336 * states are handled in imsm_set_disk() with one exception, when a
2337 * resync is stopped due to a new failure this routine will set the
2338 * 'degraded' state for the array.
2339 */
2340 static int imsm_set_array_state(struct active_array *a, int consistent)
2341 {
2342 int inst = a->info.container_member;
2343 struct intel_super *super = a->container->sb;
2344 struct imsm_dev *dev = get_imsm_dev(super, inst);
2345 struct imsm_map *map = get_imsm_map(dev, 0);
2346 int failed = imsm_count_failed(super, dev);
2347 __u8 map_state = imsm_check_degraded(super, dev, failed);
2348
2349 if (consistent == 2 &&
2350 (a->resync_start != ~0ULL ||
2351 map_state != IMSM_T_STATE_NORMAL ||
2352 dev->vol.migr_state))
2353 consistent = 0;
2354
2355 if (a->resync_start == ~0ULL) {
2356 /* complete intialization / resync,
2357 * recovery is completed in ->set_disk
2358 */
2359 if (is_resyncing(dev)) {
2360 dprintf("imsm: mark resync done\n");
2361 dev->vol.migr_state = 0;
2362 map->map_state = map_state;
2363 super->updates_pending++;
2364 }
2365 } else if (!is_resyncing(dev) && !failed) {
2366 /* mark the start of the init process if nothing is failed */
2367 dprintf("imsm: mark resync start (%llu)\n", a->resync_start);
2368 map->map_state = map_state;
2369 migrate(dev, IMSM_T_STATE_NORMAL,
2370 map->map_state == IMSM_T_STATE_NORMAL);
2371 super->updates_pending++;
2372 }
2373
2374 /* mark dirty / clean */
2375 if (dev->vol.dirty != !consistent) {
2376 dprintf("imsm: mark '%s' (%llu)\n",
2377 consistent ? "clean" : "dirty", a->resync_start);
2378 if (consistent)
2379 dev->vol.dirty = 0;
2380 else
2381 dev->vol.dirty = 1;
2382 super->updates_pending++;
2383 }
2384 return consistent;
2385 }
2386
2387 static void imsm_set_disk(struct active_array *a, int n, int state)
2388 {
2389 int inst = a->info.container_member;
2390 struct intel_super *super = a->container->sb;
2391 struct imsm_dev *dev = get_imsm_dev(super, inst);
2392 struct imsm_map *map = get_imsm_map(dev, 0);
2393 struct imsm_disk *disk;
2394 int failed;
2395 __u32 status;
2396 __u32 ord;
2397 __u8 map_state;
2398
2399 if (n > map->num_members)
2400 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2401 n, map->num_members - 1);
2402
2403 if (n < 0)
2404 return;
2405
2406 dprintf("imsm: set_disk %d:%x\n", n, state);
2407
2408 ord = get_imsm_ord_tbl_ent(dev, n);
2409 disk = get_imsm_disk(super, ord_to_idx(ord));
2410
2411 /* check for new failures */
2412 status = __le32_to_cpu(disk->status);
2413 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
2414 status |= FAILED_DISK;
2415 disk->status = __cpu_to_le32(status);
2416 disk->scsi_id = __cpu_to_le32(~(__u32)0);
2417 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
2418 super->updates_pending++;
2419 }
2420 /* check if in_sync */
2421 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD) {
2422 struct imsm_map *migr_map = get_imsm_map(dev, 1);
2423
2424 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
2425 super->updates_pending++;
2426 }
2427
2428 failed = imsm_count_failed(super, dev);
2429 map_state = imsm_check_degraded(super, dev, failed);
2430
2431 /* check if recovery complete, newly degraded, or failed */
2432 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
2433 map->map_state = map_state;
2434 dev->vol.migr_state = 0;
2435 super->updates_pending++;
2436 } else if (map_state == IMSM_T_STATE_DEGRADED &&
2437 map->map_state != map_state &&
2438 !dev->vol.migr_state) {
2439 dprintf("imsm: mark degraded\n");
2440 map->map_state = map_state;
2441 super->updates_pending++;
2442 } else if (map_state == IMSM_T_STATE_FAILED &&
2443 map->map_state != map_state) {
2444 dprintf("imsm: mark failed\n");
2445 dev->vol.migr_state = 0;
2446 map->map_state = map_state;
2447 super->updates_pending++;
2448 }
2449 }
2450
2451 static int store_imsm_mpb(int fd, struct intel_super *super)
2452 {
2453 struct imsm_super *mpb = super->anchor;
2454 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2455 unsigned long long dsize;
2456 unsigned long long sectors;
2457
2458 get_dev_size(fd, NULL, &dsize);
2459
2460 if (mpb_size > 512) {
2461 /* -1 to account for anchor */
2462 sectors = mpb_sectors(mpb) - 1;
2463
2464 /* write the extended mpb to the sectors preceeding the anchor */
2465 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2466 return 1;
2467
2468 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
2469 return 1;
2470 }
2471
2472 /* first block is stored on second to last sector of the disk */
2473 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2474 return 1;
2475
2476 if (write(fd, super->buf, 512) != 512)
2477 return 1;
2478
2479 return 0;
2480 }
2481
2482 static void imsm_sync_metadata(struct supertype *container)
2483 {
2484 struct intel_super *super = container->sb;
2485
2486 if (!super->updates_pending)
2487 return;
2488
2489 write_super_imsm(super, 0);
2490
2491 super->updates_pending = 0;
2492 }
2493
2494 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
2495 {
2496 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2497 int i = get_imsm_disk_idx(dev, idx);
2498 struct dl *dl;
2499
2500 for (dl = super->disks; dl; dl = dl->next)
2501 if (dl->index == i)
2502 break;
2503
2504 if (dl && __le32_to_cpu(dl->disk.status) & FAILED_DISK)
2505 dl = NULL;
2506
2507 if (dl)
2508 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
2509
2510 return dl;
2511 }
2512
2513 static struct dl *imsm_add_spare(struct intel_super *super, int slot, struct active_array *a)
2514 {
2515 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2516 int idx = get_imsm_disk_idx(dev, slot);
2517 struct imsm_map *map = get_imsm_map(dev, 0);
2518 unsigned long long esize;
2519 unsigned long long pos;
2520 struct mdinfo *d;
2521 struct extent *ex;
2522 int j;
2523 int found;
2524 __u32 array_start;
2525 __u32 status;
2526 struct dl *dl;
2527
2528 for (dl = super->disks; dl; dl = dl->next) {
2529 /* If in this array, skip */
2530 for (d = a->info.devs ; d ; d = d->next)
2531 if (d->state_fd >= 0 &&
2532 d->disk.major == dl->major &&
2533 d->disk.minor == dl->minor) {
2534 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2535 break;
2536 }
2537 if (d)
2538 continue;
2539
2540 /* skip in use or failed drives */
2541 status = __le32_to_cpu(dl->disk.status);
2542 if (status & FAILED_DISK || idx == dl->index) {
2543 dprintf("%x:%x status ( %s%s)\n",
2544 dl->major, dl->minor,
2545 status & FAILED_DISK ? "failed " : "",
2546 idx == dl->index ? "in use " : "");
2547 continue;
2548 }
2549
2550 /* Does this unused device have the requisite free space?
2551 * We need a->info.component_size sectors
2552 */
2553 ex = get_extents(super, dl);
2554 if (!ex) {
2555 dprintf("cannot get extents\n");
2556 continue;
2557 }
2558 found = 0;
2559 j = 0;
2560 pos = 0;
2561 array_start = __le32_to_cpu(map->pba_of_lba0);
2562
2563 do {
2564 /* check that we can start at pba_of_lba0 with
2565 * a->info.component_size of space
2566 */
2567 esize = ex[j].start - pos;
2568 if (array_start >= pos &&
2569 array_start + a->info.component_size < ex[j].start) {
2570 found = 1;
2571 break;
2572 }
2573 pos = ex[j].start + ex[j].size;
2574 j++;
2575
2576 } while (ex[j-1].size);
2577
2578 free(ex);
2579 if (!found) {
2580 dprintf("%x:%x does not have %llu at %d\n",
2581 dl->major, dl->minor,
2582 a->info.component_size,
2583 __le32_to_cpu(map->pba_of_lba0));
2584 /* No room */
2585 continue;
2586 } else
2587 break;
2588 }
2589
2590 return dl;
2591 }
2592
2593 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2594 struct metadata_update **updates)
2595 {
2596 /**
2597 * Find a device with unused free space and use it to replace a
2598 * failed/vacant region in an array. We replace failed regions one a
2599 * array at a time. The result is that a new spare disk will be added
2600 * to the first failed array and after the monitor has finished
2601 * propagating failures the remainder will be consumed.
2602 *
2603 * FIXME add a capability for mdmon to request spares from another
2604 * container.
2605 */
2606
2607 struct intel_super *super = a->container->sb;
2608 int inst = a->info.container_member;
2609 struct imsm_dev *dev = get_imsm_dev(super, inst);
2610 struct imsm_map *map = get_imsm_map(dev, 0);
2611 int failed = a->info.array.raid_disks;
2612 struct mdinfo *rv = NULL;
2613 struct mdinfo *d;
2614 struct mdinfo *di;
2615 struct metadata_update *mu;
2616 struct dl *dl;
2617 struct imsm_update_activate_spare *u;
2618 int num_spares = 0;
2619 int i;
2620
2621 for (d = a->info.devs ; d ; d = d->next) {
2622 if ((d->curr_state & DS_FAULTY) &&
2623 d->state_fd >= 0)
2624 /* wait for Removal to happen */
2625 return NULL;
2626 if (d->state_fd >= 0)
2627 failed--;
2628 }
2629
2630 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2631 inst, failed, a->info.array.raid_disks, a->info.array.level);
2632 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
2633 return NULL;
2634
2635 /* For each slot, if it is not working, find a spare */
2636 for (i = 0; i < a->info.array.raid_disks; i++) {
2637 for (d = a->info.devs ; d ; d = d->next)
2638 if (d->disk.raid_disk == i)
2639 break;
2640 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2641 if (d && (d->state_fd >= 0))
2642 continue;
2643
2644 /*
2645 * OK, this device needs recovery. Try to re-add the previous
2646 * occupant of this slot, if this fails add a new spare
2647 */
2648 dl = imsm_readd(super, i, a);
2649 if (!dl)
2650 dl = imsm_add_spare(super, i, a);
2651 if (!dl)
2652 continue;
2653
2654 /* found a usable disk with enough space */
2655 di = malloc(sizeof(*di));
2656 memset(di, 0, sizeof(*di));
2657
2658 /* dl->index will be -1 in the case we are activating a
2659 * pristine spare. imsm_process_update() will create a
2660 * new index in this case. Once a disk is found to be
2661 * failed in all member arrays it is kicked from the
2662 * metadata
2663 */
2664 di->disk.number = dl->index;
2665
2666 /* (ab)use di->devs to store a pointer to the device
2667 * we chose
2668 */
2669 di->devs = (struct mdinfo *) dl;
2670
2671 di->disk.raid_disk = i;
2672 di->disk.major = dl->major;
2673 di->disk.minor = dl->minor;
2674 di->disk.state = 0;
2675 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
2676 di->component_size = a->info.component_size;
2677 di->container_member = inst;
2678 di->next = rv;
2679 rv = di;
2680 num_spares++;
2681 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2682 i, di->data_offset);
2683
2684 break;
2685 }
2686
2687 if (!rv)
2688 /* No spares found */
2689 return rv;
2690 /* Now 'rv' has a list of devices to return.
2691 * Create a metadata_update record to update the
2692 * disk_ord_tbl for the array
2693 */
2694 mu = malloc(sizeof(*mu));
2695 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2696 mu->space = NULL;
2697 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2698 mu->next = *updates;
2699 u = (struct imsm_update_activate_spare *) mu->buf;
2700
2701 for (di = rv ; di ; di = di->next) {
2702 u->type = update_activate_spare;
2703 u->dl = (struct dl *) di->devs;
2704 di->devs = NULL;
2705 u->slot = di->disk.raid_disk;
2706 u->array = inst;
2707 u->next = u + 1;
2708 u++;
2709 }
2710 (u-1)->next = NULL;
2711 *updates = mu;
2712
2713 return rv;
2714 }
2715
2716 static int disks_overlap(struct imsm_dev *d1, struct imsm_dev *d2)
2717 {
2718 struct imsm_map *m1 = get_imsm_map(d1, 0);
2719 struct imsm_map *m2 = get_imsm_map(d2, 0);
2720 int i;
2721 int j;
2722 int idx;
2723
2724 for (i = 0; i < m1->num_members; i++) {
2725 idx = get_imsm_disk_idx(d1, i);
2726 for (j = 0; j < m2->num_members; j++)
2727 if (idx == get_imsm_disk_idx(d2, j))
2728 return 1;
2729 }
2730
2731 return 0;
2732 }
2733
2734 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
2735
2736 static void imsm_process_update(struct supertype *st,
2737 struct metadata_update *update)
2738 {
2739 /**
2740 * crack open the metadata_update envelope to find the update record
2741 * update can be one of:
2742 * update_activate_spare - a spare device has replaced a failed
2743 * device in an array, update the disk_ord_tbl. If this disk is
2744 * present in all member arrays then also clear the SPARE_DISK
2745 * flag
2746 */
2747 struct intel_super *super = st->sb;
2748 struct imsm_super *mpb;
2749 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2750
2751 /* update requires a larger buf but the allocation failed */
2752 if (super->next_len && !super->next_buf) {
2753 super->next_len = 0;
2754 return;
2755 }
2756
2757 if (super->next_buf) {
2758 memcpy(super->next_buf, super->buf, super->len);
2759 free(super->buf);
2760 super->len = super->next_len;
2761 super->buf = super->next_buf;
2762
2763 super->next_len = 0;
2764 super->next_buf = NULL;
2765 }
2766
2767 mpb = super->anchor;
2768
2769 switch (type) {
2770 case update_activate_spare: {
2771 struct imsm_update_activate_spare *u = (void *) update->buf;
2772 struct imsm_dev *dev = get_imsm_dev(super, u->array);
2773 struct imsm_map *map = get_imsm_map(dev, 0);
2774 struct imsm_map *migr_map;
2775 struct active_array *a;
2776 struct imsm_disk *disk;
2777 __u32 status;
2778 __u8 to_state;
2779 struct dl *dl;
2780 unsigned int found;
2781 int failed;
2782 int victim = get_imsm_disk_idx(dev, u->slot);
2783 int i;
2784
2785 for (dl = super->disks; dl; dl = dl->next)
2786 if (dl == u->dl)
2787 break;
2788
2789 if (!dl) {
2790 fprintf(stderr, "error: imsm_activate_spare passed "
2791 "an unknown disk (index: %d)\n",
2792 u->dl->index);
2793 return;
2794 }
2795
2796 super->updates_pending++;
2797
2798 /* count failures (excluding rebuilds and the victim)
2799 * to determine map[0] state
2800 */
2801 failed = 0;
2802 for (i = 0; i < map->num_members; i++) {
2803 if (i == u->slot)
2804 continue;
2805 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
2806 if (!disk ||
2807 __le32_to_cpu(disk->status) & FAILED_DISK)
2808 failed++;
2809 }
2810
2811 /* adding a pristine spare, assign a new index */
2812 if (dl->index < 0) {
2813 dl->index = super->anchor->num_disks;
2814 super->anchor->num_disks++;
2815 }
2816 disk = &dl->disk;
2817 status = __le32_to_cpu(disk->status);
2818 status |= CONFIGURED_DISK;
2819 status &= ~SPARE_DISK;
2820 disk->status = __cpu_to_le32(status);
2821
2822 /* mark rebuild */
2823 to_state = imsm_check_degraded(super, dev, failed);
2824 map->map_state = IMSM_T_STATE_DEGRADED;
2825 migrate(dev, to_state, 1);
2826 migr_map = get_imsm_map(dev, 1);
2827 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
2828 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
2829
2830 /* count arrays using the victim in the metadata */
2831 found = 0;
2832 for (a = st->arrays; a ; a = a->next) {
2833 dev = get_imsm_dev(super, a->info.container_member);
2834 for (i = 0; i < map->num_members; i++)
2835 if (victim == get_imsm_disk_idx(dev, i))
2836 found++;
2837 }
2838
2839 /* delete the victim if it is no longer being
2840 * utilized anywhere
2841 */
2842 if (!found) {
2843 struct dl **dlp;
2844
2845 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
2846 if ((*dlp)->index == victim)
2847 break;
2848 /* We know that 'manager' isn't touching anything,
2849 * so it is safe to:
2850 */
2851 imsm_delete(super, dlp, victim);
2852 }
2853 break;
2854 }
2855 case update_create_array: {
2856 /* someone wants to create a new array, we need to be aware of
2857 * a few races/collisions:
2858 * 1/ 'Create' called by two separate instances of mdadm
2859 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
2860 * devices that have since been assimilated via
2861 * activate_spare.
2862 * In the event this update can not be carried out mdadm will
2863 * (FIX ME) notice that its update did not take hold.
2864 */
2865 struct imsm_update_create_array *u = (void *) update->buf;
2866 struct imsm_dev *dev;
2867 struct imsm_map *map, *new_map;
2868 unsigned long long start, end;
2869 unsigned long long new_start, new_end;
2870 int i;
2871 int overlap = 0;
2872
2873 /* handle racing creates: first come first serve */
2874 if (u->dev_idx < mpb->num_raid_devs) {
2875 dprintf("%s: subarray %d already defined\n",
2876 __func__, u->dev_idx);
2877 return;
2878 }
2879
2880 /* check update is next in sequence */
2881 if (u->dev_idx != mpb->num_raid_devs) {
2882 dprintf("%s: can not create array %d expected index %d\n",
2883 __func__, u->dev_idx, mpb->num_raid_devs);
2884 return;
2885 }
2886
2887 new_map = get_imsm_map(&u->dev, 0);
2888 new_start = __le32_to_cpu(new_map->pba_of_lba0);
2889 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
2890
2891 /* handle activate_spare versus create race:
2892 * check to make sure that overlapping arrays do not include
2893 * overalpping disks
2894 */
2895 for (i = 0; i < mpb->num_raid_devs; i++) {
2896 dev = get_imsm_dev(super, i);
2897 map = get_imsm_map(dev, 0);
2898 start = __le32_to_cpu(map->pba_of_lba0);
2899 end = start + __le32_to_cpu(map->blocks_per_member);
2900 if ((new_start >= start && new_start <= end) ||
2901 (start >= new_start && start <= new_end))
2902 overlap = 1;
2903 if (overlap && disks_overlap(dev, &u->dev)) {
2904 dprintf("%s: arrays overlap\n", __func__);
2905 return;
2906 }
2907 }
2908 /* check num_members sanity */
2909 if (new_map->num_members > mpb->num_disks) {
2910 dprintf("%s: num_disks out of range\n", __func__);
2911 return;
2912 }
2913
2914 /* check that prepare update was successful */
2915 if (!update->space) {
2916 dprintf("%s: prepare update failed\n", __func__);
2917 return;
2918 }
2919
2920 super->updates_pending++;
2921 dev = update->space;
2922 map = get_imsm_map(dev, 0);
2923 update->space = NULL;
2924 imsm_copy_dev(dev, &u->dev);
2925 map = get_imsm_map(dev, 0);
2926 super->dev_tbl[u->dev_idx] = dev;
2927 mpb->num_raid_devs++;
2928
2929 /* fix up flags */
2930 for (i = 0; i < map->num_members; i++) {
2931 struct imsm_disk *disk;
2932 __u32 status;
2933
2934 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
2935 status = __le32_to_cpu(disk->status);
2936 status |= CONFIGURED_DISK;
2937 status &= ~SPARE_DISK;
2938 disk->status = __cpu_to_le32(status);
2939 }
2940 break;
2941 }
2942 case update_add_disk:
2943
2944 /* we may be able to repair some arrays if disks are
2945 * being added */
2946 if (super->add) {
2947 struct active_array *a;
2948 for (a = st->arrays; a; a = a->next)
2949 a->check_degraded = 1;
2950 }
2951 /* add some spares to the metadata */
2952 while (super->add) {
2953 struct dl *al;
2954
2955 al = super->add;
2956 super->add = al->next;
2957 al->next = super->disks;
2958 super->disks = al;
2959 dprintf("%s: added %x:%x\n",
2960 __func__, al->major, al->minor);
2961 }
2962
2963 break;
2964 }
2965 }
2966
2967 static void imsm_prepare_update(struct supertype *st,
2968 struct metadata_update *update)
2969 {
2970 /**
2971 * Allocate space to hold new disk entries, raid-device entries or a new
2972 * mpb if necessary. The manager synchronously waits for updates to
2973 * complete in the monitor, so new mpb buffers allocated here can be
2974 * integrated by the monitor thread without worrying about live pointers
2975 * in the manager thread.
2976 */
2977 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2978 struct intel_super *super = st->sb;
2979 struct imsm_super *mpb = super->anchor;
2980 size_t buf_len;
2981 size_t len = 0;
2982
2983 switch (type) {
2984 case update_create_array: {
2985 struct imsm_update_create_array *u = (void *) update->buf;
2986
2987 len = sizeof_imsm_dev(&u->dev, 1);
2988 update->space = malloc(len);
2989 break;
2990 default:
2991 break;
2992 }
2993 }
2994
2995 /* check if we need a larger metadata buffer */
2996 if (super->next_buf)
2997 buf_len = super->next_len;
2998 else
2999 buf_len = super->len;
3000
3001 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
3002 /* ok we need a larger buf than what is currently allocated
3003 * if this allocation fails process_update will notice that
3004 * ->next_len is set and ->next_buf is NULL
3005 */
3006 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
3007 if (super->next_buf)
3008 free(super->next_buf);
3009
3010 super->next_len = buf_len;
3011 if (posix_memalign(&super->next_buf, buf_len, 512) != 0)
3012 super->next_buf = NULL;
3013 }
3014 }
3015
3016 /* must be called while manager is quiesced */
3017 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
3018 {
3019 struct imsm_super *mpb = super->anchor;
3020 struct dl *iter;
3021 struct imsm_dev *dev;
3022 struct imsm_map *map;
3023 int i, j, num_members;
3024 __u32 ord;
3025
3026 dprintf("%s: deleting device[%d] from imsm_super\n",
3027 __func__, index);
3028
3029 /* shift all indexes down one */
3030 for (iter = super->disks; iter; iter = iter->next)
3031 if (iter->index > index)
3032 iter->index--;
3033
3034 for (i = 0; i < mpb->num_raid_devs; i++) {
3035 dev = get_imsm_dev(super, i);
3036 map = get_imsm_map(dev, 0);
3037 num_members = map->num_members;
3038 for (j = 0; j < num_members; j++) {
3039 /* update ord entries being careful not to propagate
3040 * ord-flags to the first map
3041 */
3042 ord = get_imsm_ord_tbl_ent(dev, j);
3043
3044 if (ord_to_idx(ord) <= index)
3045 continue;
3046
3047 map = get_imsm_map(dev, 0);
3048 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
3049 map = get_imsm_map(dev, 1);
3050 if (map)
3051 set_imsm_ord_tbl_ent(map, j, ord - 1);
3052 }
3053 }
3054
3055 mpb->num_disks--;
3056 super->updates_pending++;
3057 if (*dlp) {
3058 struct dl *dl = *dlp;
3059
3060 *dlp = (*dlp)->next;
3061 __free_imsm_disk(dl);
3062 }
3063 }
3064
3065 struct superswitch super_imsm = {
3066 #ifndef MDASSEMBLE
3067 .examine_super = examine_super_imsm,
3068 .brief_examine_super = brief_examine_super_imsm,
3069 .detail_super = detail_super_imsm,
3070 .brief_detail_super = brief_detail_super_imsm,
3071 .write_init_super = write_init_super_imsm,
3072 #endif
3073 .match_home = match_home_imsm,
3074 .uuid_from_super= uuid_from_super_imsm,
3075 .getinfo_super = getinfo_super_imsm,
3076 .update_super = update_super_imsm,
3077
3078 .avail_size = avail_size_imsm,
3079
3080 .compare_super = compare_super_imsm,
3081
3082 .load_super = load_super_imsm,
3083 .init_super = init_super_imsm,
3084 .add_to_super = add_to_super_imsm,
3085 .store_super = store_zero_imsm,
3086 .free_super = free_super_imsm,
3087 .match_metadata_desc = match_metadata_desc_imsm,
3088 .container_content = container_content_imsm,
3089
3090 .validate_geometry = validate_geometry_imsm,
3091 .external = 1,
3092
3093 /* for mdmon */
3094 .open_new = imsm_open_new,
3095 .load_super = load_super_imsm,
3096 .set_array_state= imsm_set_array_state,
3097 .set_disk = imsm_set_disk,
3098 .sync_metadata = imsm_sync_metadata,
3099 .activate_spare = imsm_activate_spare,
3100 .process_update = imsm_process_update,
3101 .prepare_update = imsm_prepare_update,
3102 };