]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: detail_platform_imsm displays AHCI and SAS controller information
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54 #define MPB_SECTOR_CNT 418
55 #define IMSM_RESERVED_SECTORS 4096
56 #define SECT_PER_MB_SHIFT 11
57
58 /* Disk configuration info. */
59 #define IMSM_MAX_DEVICES 255
60 struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67 __u32 status; /* 0xF0 - 0xF3 */
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69 #define IMSM_DISK_FILLERS 4
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71 };
72
73 /* RAID map configuration infos. */
74 struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80 #define IMSM_T_STATE_NORMAL 0
81 #define IMSM_T_STATE_UNINITIALIZED 1
82 #define IMSM_T_STATE_DEGRADED 2
83 #define IMSM_T_STATE_FAILED 3
84 __u8 raid_level;
85 #define IMSM_T_RAID0 0
86 #define IMSM_T_RAID1 1
87 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
91 __u8 ddf;
92 __u32 filler[7]; /* expansion area */
93 #define IMSM_ORD_REBUILD (1 << 24)
94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
95 * top byte contains some flags
96 */
97 } __attribute__ ((packed));
98
99 struct imsm_vol {
100 __u32 curr_migr_unit;
101 __u32 checkpoint_id; /* id to access curr_migr_unit */
102 __u8 migr_state; /* Normal or Migrating */
103 #define MIGR_INIT 0
104 #define MIGR_REBUILD 1
105 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106 #define MIGR_GEN_MIGR 3
107 #define MIGR_STATE_CHANGE 4
108 #define MIGR_REPAIR 5
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117 } __attribute__ ((packed));
118
119 struct imsm_dev {
120 __u8 volume[MAX_RAID_SERIAL_LEN];
121 __u32 size_low;
122 __u32 size_high;
123 #define DEV_BOOTABLE __cpu_to_le32(0x01)
124 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
126 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145 #define IMSM_DEV_FILLERS 10
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148 } __attribute__ ((packed));
149
150 struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166 #define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
170 /* here comes BBM logs */
171 } __attribute__ ((packed));
172
173 #define BBM_LOG_MAX_ENTRIES 254
174
175 struct bbm_log_entry {
176 __u64 defective_block_start;
177 #define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181 } __attribute__ ((__packed__));
182
183 struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190 } __attribute__ ((__packed__));
191
192
193 #ifndef MDASSEMBLE
194 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195 #endif
196
197 static __u8 migr_type(struct imsm_dev *dev)
198 {
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204 }
205
206 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207 {
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218 }
219
220 static unsigned int sector_count(__u32 bytes)
221 {
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223 }
224
225 static unsigned int mpb_sectors(struct imsm_super *mpb)
226 {
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
228 }
229
230 struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
233 unsigned index;
234 };
235
236 struct intel_hba {
237 enum sys_dev_type type;
238 char *path;
239 char *pci_id;
240 struct intel_hba *next;
241 };
242
243 enum action {
244 DISK_REMOVE = 1,
245 DISK_ADD
246 };
247 /* internal representation of IMSM metadata */
248 struct intel_super {
249 union {
250 void *buf; /* O_DIRECT buffer for reading/writing metadata */
251 struct imsm_super *anchor; /* immovable parameters */
252 };
253 size_t len; /* size of the 'buf' allocation */
254 void *next_buf; /* for realloc'ing buf from the manager */
255 size_t next_len;
256 int updates_pending; /* count of pending updates for mdmon */
257 int current_vol; /* index of raid device undergoing creation */
258 __u32 create_offset; /* common start for 'current_vol' */
259 __u32 random; /* random data for seeding new family numbers */
260 struct intel_dev *devlist;
261 struct dl {
262 struct dl *next;
263 int index;
264 __u8 serial[MAX_RAID_SERIAL_LEN];
265 int major, minor;
266 char *devname;
267 struct imsm_disk disk;
268 int fd;
269 int extent_cnt;
270 struct extent *e; /* for determining freespace @ create */
271 int raiddisk; /* slot to fill in autolayout */
272 enum action action;
273 } *disks;
274 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
275 active */
276 struct dl *missing; /* disks removed while we weren't looking */
277 struct bbm_log *bbm_log;
278 struct intel_hba *hba; /* device path of the raid controller for this metadata */
279 const struct imsm_orom *orom; /* platform firmware support */
280 struct intel_super *next; /* (temp) list for disambiguating family_num */
281 };
282
283 struct intel_disk {
284 struct imsm_disk disk;
285 #define IMSM_UNKNOWN_OWNER (-1)
286 int owner;
287 struct intel_disk *next;
288 };
289
290 struct extent {
291 unsigned long long start, size;
292 };
293
294 /* definitions of reshape process types */
295 enum imsm_reshape_type {
296 CH_TAKEOVER,
297 CH_MIGRATION,
298 };
299
300 /* definition of messages passed to imsm_process_update */
301 enum imsm_update_type {
302 update_activate_spare,
303 update_create_array,
304 update_kill_array,
305 update_rename_array,
306 update_add_remove_disk,
307 update_reshape_container_disks,
308 update_takeover
309 };
310
311 struct imsm_update_activate_spare {
312 enum imsm_update_type type;
313 struct dl *dl;
314 int slot;
315 int array;
316 struct imsm_update_activate_spare *next;
317 };
318
319 struct geo_params {
320 int dev_id;
321 char *dev_name;
322 long long size;
323 int level;
324 int layout;
325 int chunksize;
326 int raid_disks;
327 };
328
329 enum takeover_direction {
330 R10_TO_R0,
331 R0_TO_R10
332 };
333 struct imsm_update_takeover {
334 enum imsm_update_type type;
335 int subarray;
336 enum takeover_direction direction;
337 };
338
339 struct imsm_update_reshape {
340 enum imsm_update_type type;
341 int old_raid_disks;
342 int new_raid_disks;
343 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
344 };
345
346 struct disk_info {
347 __u8 serial[MAX_RAID_SERIAL_LEN];
348 };
349
350 struct imsm_update_create_array {
351 enum imsm_update_type type;
352 int dev_idx;
353 struct imsm_dev dev;
354 };
355
356 struct imsm_update_kill_array {
357 enum imsm_update_type type;
358 int dev_idx;
359 };
360
361 struct imsm_update_rename_array {
362 enum imsm_update_type type;
363 __u8 name[MAX_RAID_SERIAL_LEN];
364 int dev_idx;
365 };
366
367 struct imsm_update_add_remove_disk {
368 enum imsm_update_type type;
369 };
370
371
372 static const char *_sys_dev_type[] = {
373 [SYS_DEV_UNKNOWN] = "Unknown",
374 [SYS_DEV_SAS] = "SAS",
375 [SYS_DEV_SATA] = "SATA"
376 };
377
378 const char *get_sys_dev_type(enum sys_dev_type type)
379 {
380 if (type >= SYS_DEV_MAX)
381 type = SYS_DEV_UNKNOWN;
382
383 return _sys_dev_type[type];
384 }
385
386 #ifndef MDASSEMBLE
387 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
388 {
389 struct intel_hba *result = malloc(sizeof(*result));
390 if (result) {
391 result->type = device->type;
392 result->path = strdup(device->path);
393 result->next = NULL;
394 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
395 result->pci_id++;
396 }
397 return result;
398 }
399
400 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
401 {
402 struct intel_hba *result=NULL;
403 for (result = hba; result; result = result->next) {
404 if (result->type == device->type && strcmp(result->path, device->path) == 0)
405 break;
406 }
407 return result;
408 }
409
410
411 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
412 {
413 struct intel_hba *hba;
414
415 /* check if disk attached to Intel HBA */
416 hba = find_intel_hba(super->hba, device);
417 if (hba != NULL)
418 return 1;
419 /* Check if HBA is already attached to super */
420 if (super->hba == NULL) {
421 super->hba = alloc_intel_hba(device);
422 return 1;
423 }
424
425 hba = super->hba;
426 /* Intel metadata allows for all disks attached to the same type HBA.
427 * Do not sypport odf HBA types mixing
428 */
429 if (device->type != hba->type)
430 return 2;
431
432 while (hba->next)
433 hba = hba->next;
434
435 hba->next = alloc_intel_hba(device);
436 return 1;
437 }
438
439 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
440 {
441 struct sys_dev *list, *elem, *prev;
442 char *disk_path;
443
444 if ((list = find_intel_devices()) == NULL)
445 return 0;
446
447 if (fd < 0)
448 disk_path = (char *) devname;
449 else
450 disk_path = diskfd_to_devpath(fd);
451
452 if (!disk_path) {
453 free_sys_dev(&list);
454 return 0;
455 }
456
457 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
458 if (path_attached_to_hba(disk_path, elem->path)) {
459 if (prev == NULL)
460 list = list->next;
461 else
462 prev->next = elem->next;
463 elem->next = NULL;
464 if (disk_path != devname)
465 free(disk_path);
466 free_sys_dev(&list);
467 return elem;
468 }
469 }
470 if (disk_path != devname)
471 free(disk_path);
472 free_sys_dev(&list);
473
474 return NULL;
475 }
476 #endif /* MDASSEMBLE */
477
478
479 static struct supertype *match_metadata_desc_imsm(char *arg)
480 {
481 struct supertype *st;
482
483 if (strcmp(arg, "imsm") != 0 &&
484 strcmp(arg, "default") != 0
485 )
486 return NULL;
487
488 st = malloc(sizeof(*st));
489 if (!st)
490 return NULL;
491 memset(st, 0, sizeof(*st));
492 st->container_dev = NoMdDev;
493 st->ss = &super_imsm;
494 st->max_devs = IMSM_MAX_DEVICES;
495 st->minor_version = 0;
496 st->sb = NULL;
497 return st;
498 }
499
500 #ifndef MDASSEMBLE
501 static __u8 *get_imsm_version(struct imsm_super *mpb)
502 {
503 return &mpb->sig[MPB_SIG_LEN];
504 }
505 #endif
506
507 /* retrieve a disk directly from the anchor when the anchor is known to be
508 * up-to-date, currently only at load time
509 */
510 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
511 {
512 if (index >= mpb->num_disks)
513 return NULL;
514 return &mpb->disk[index];
515 }
516
517 /* retrieve the disk description based on a index of the disk
518 * in the sub-array
519 */
520 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
521 {
522 struct dl *d;
523
524 for (d = super->disks; d; d = d->next)
525 if (d->index == index)
526 return d;
527
528 return NULL;
529 }
530 /* retrieve a disk from the parsed metadata */
531 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
532 {
533 struct dl *dl;
534
535 dl = get_imsm_dl_disk(super, index);
536 if (dl)
537 return &dl->disk;
538
539 return NULL;
540 }
541
542 /* generate a checksum directly from the anchor when the anchor is known to be
543 * up-to-date, currently only at load or write_super after coalescing
544 */
545 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
546 {
547 __u32 end = mpb->mpb_size / sizeof(end);
548 __u32 *p = (__u32 *) mpb;
549 __u32 sum = 0;
550
551 while (end--) {
552 sum += __le32_to_cpu(*p);
553 p++;
554 }
555
556 return sum - __le32_to_cpu(mpb->check_sum);
557 }
558
559 static size_t sizeof_imsm_map(struct imsm_map *map)
560 {
561 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
562 }
563
564 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
565 {
566 /* A device can have 2 maps if it is in the middle of a migration.
567 * If second_map is:
568 * 0 - we return the first map
569 * 1 - we return the second map if it exists, else NULL
570 * -1 - we return the second map if it exists, else the first
571 */
572 struct imsm_map *map = &dev->vol.map[0];
573
574 if (second_map == 1 && !dev->vol.migr_state)
575 return NULL;
576 else if (second_map == 1 ||
577 (second_map < 0 && dev->vol.migr_state)) {
578 void *ptr = map;
579
580 return ptr + sizeof_imsm_map(map);
581 } else
582 return map;
583
584 }
585
586 /* return the size of the device.
587 * migr_state increases the returned size if map[0] were to be duplicated
588 */
589 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
590 {
591 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
592 sizeof_imsm_map(get_imsm_map(dev, 0));
593
594 /* migrating means an additional map */
595 if (dev->vol.migr_state)
596 size += sizeof_imsm_map(get_imsm_map(dev, 1));
597 else if (migr_state)
598 size += sizeof_imsm_map(get_imsm_map(dev, 0));
599
600 return size;
601 }
602
603 #ifndef MDASSEMBLE
604 /* retrieve disk serial number list from a metadata update */
605 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
606 {
607 void *u = update;
608 struct disk_info *inf;
609
610 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
611 sizeof_imsm_dev(&update->dev, 0);
612
613 return inf;
614 }
615 #endif
616
617 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
618 {
619 int offset;
620 int i;
621 void *_mpb = mpb;
622
623 if (index >= mpb->num_raid_devs)
624 return NULL;
625
626 /* devices start after all disks */
627 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
628
629 for (i = 0; i <= index; i++)
630 if (i == index)
631 return _mpb + offset;
632 else
633 offset += sizeof_imsm_dev(_mpb + offset, 0);
634
635 return NULL;
636 }
637
638 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
639 {
640 struct intel_dev *dv;
641
642 if (index >= super->anchor->num_raid_devs)
643 return NULL;
644 for (dv = super->devlist; dv; dv = dv->next)
645 if (dv->index == index)
646 return dv->dev;
647 return NULL;
648 }
649
650 /*
651 * for second_map:
652 * == 0 get first map
653 * == 1 get second map
654 * == -1 than get map according to the current migr_state
655 */
656 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
657 int slot,
658 int second_map)
659 {
660 struct imsm_map *map;
661
662 map = get_imsm_map(dev, second_map);
663
664 /* top byte identifies disk under rebuild */
665 return __le32_to_cpu(map->disk_ord_tbl[slot]);
666 }
667
668 #define ord_to_idx(ord) (((ord) << 8) >> 8)
669 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
670 {
671 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
672
673 return ord_to_idx(ord);
674 }
675
676 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
677 {
678 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
679 }
680
681 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
682 {
683 int slot;
684 __u32 ord;
685
686 for (slot = 0; slot < map->num_members; slot++) {
687 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
688 if (ord_to_idx(ord) == idx)
689 return slot;
690 }
691
692 return -1;
693 }
694
695 static int get_imsm_raid_level(struct imsm_map *map)
696 {
697 if (map->raid_level == 1) {
698 if (map->num_members == 2)
699 return 1;
700 else
701 return 10;
702 }
703
704 return map->raid_level;
705 }
706
707 static int cmp_extent(const void *av, const void *bv)
708 {
709 const struct extent *a = av;
710 const struct extent *b = bv;
711 if (a->start < b->start)
712 return -1;
713 if (a->start > b->start)
714 return 1;
715 return 0;
716 }
717
718 static int count_memberships(struct dl *dl, struct intel_super *super)
719 {
720 int memberships = 0;
721 int i;
722
723 for (i = 0; i < super->anchor->num_raid_devs; i++) {
724 struct imsm_dev *dev = get_imsm_dev(super, i);
725 struct imsm_map *map = get_imsm_map(dev, 0);
726
727 if (get_imsm_disk_slot(map, dl->index) >= 0)
728 memberships++;
729 }
730
731 return memberships;
732 }
733
734 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
735 {
736 /* find a list of used extents on the given physical device */
737 struct extent *rv, *e;
738 int i;
739 int memberships = count_memberships(dl, super);
740 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
741
742 rv = malloc(sizeof(struct extent) * (memberships + 1));
743 if (!rv)
744 return NULL;
745 e = rv;
746
747 for (i = 0; i < super->anchor->num_raid_devs; i++) {
748 struct imsm_dev *dev = get_imsm_dev(super, i);
749 struct imsm_map *map = get_imsm_map(dev, 0);
750
751 if (get_imsm_disk_slot(map, dl->index) >= 0) {
752 e->start = __le32_to_cpu(map->pba_of_lba0);
753 e->size = __le32_to_cpu(map->blocks_per_member);
754 e++;
755 }
756 }
757 qsort(rv, memberships, sizeof(*rv), cmp_extent);
758
759 /* determine the start of the metadata
760 * when no raid devices are defined use the default
761 * ...otherwise allow the metadata to truncate the value
762 * as is the case with older versions of imsm
763 */
764 if (memberships) {
765 struct extent *last = &rv[memberships - 1];
766 __u32 remainder;
767
768 remainder = __le32_to_cpu(dl->disk.total_blocks) -
769 (last->start + last->size);
770 /* round down to 1k block to satisfy precision of the kernel
771 * 'size' interface
772 */
773 remainder &= ~1UL;
774 /* make sure remainder is still sane */
775 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
776 remainder = ROUND_UP(super->len, 512) >> 9;
777 if (reservation > remainder)
778 reservation = remainder;
779 }
780 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
781 e->size = 0;
782 return rv;
783 }
784
785 /* try to determine how much space is reserved for metadata from
786 * the last get_extents() entry, otherwise fallback to the
787 * default
788 */
789 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
790 {
791 struct extent *e;
792 int i;
793 __u32 rv;
794
795 /* for spares just return a minimal reservation which will grow
796 * once the spare is picked up by an array
797 */
798 if (dl->index == -1)
799 return MPB_SECTOR_CNT;
800
801 e = get_extents(super, dl);
802 if (!e)
803 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
804
805 /* scroll to last entry */
806 for (i = 0; e[i].size; i++)
807 continue;
808
809 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
810
811 free(e);
812
813 return rv;
814 }
815
816 static int is_spare(struct imsm_disk *disk)
817 {
818 return (disk->status & SPARE_DISK) == SPARE_DISK;
819 }
820
821 static int is_configured(struct imsm_disk *disk)
822 {
823 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
824 }
825
826 static int is_failed(struct imsm_disk *disk)
827 {
828 return (disk->status & FAILED_DISK) == FAILED_DISK;
829 }
830
831 /* Return minimum size of a spare that can be used in this array*/
832 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
833 {
834 struct intel_super *super = st->sb;
835 struct dl *dl;
836 struct extent *e;
837 int i;
838 unsigned long long rv = 0;
839
840 if (!super)
841 return rv;
842 /* find first active disk in array */
843 dl = super->disks;
844 while (dl && (is_failed(&dl->disk) || dl->index == -1))
845 dl = dl->next;
846 if (!dl)
847 return rv;
848 /* find last lba used by subarrays */
849 e = get_extents(super, dl);
850 if (!e)
851 return rv;
852 for (i = 0; e[i].size; i++)
853 continue;
854 if (i > 0)
855 rv = e[i-1].start + e[i-1].size;
856 free(e);
857 /* add the amount of space needed for metadata */
858 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
859 return rv * 512;
860 }
861
862 #ifndef MDASSEMBLE
863 static __u64 blocks_per_migr_unit(struct imsm_dev *dev);
864
865 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
866 {
867 __u64 sz;
868 int slot, i;
869 struct imsm_map *map = get_imsm_map(dev, 0);
870 struct imsm_map *map2 = get_imsm_map(dev, 1);
871 __u32 ord;
872
873 printf("\n");
874 printf("[%.16s]:\n", dev->volume);
875 printf(" UUID : %s\n", uuid);
876 printf(" RAID Level : %d", get_imsm_raid_level(map));
877 if (map2)
878 printf(" <-- %d", get_imsm_raid_level(map2));
879 printf("\n");
880 printf(" Members : %d", map->num_members);
881 if (map2)
882 printf(" <-- %d", map2->num_members);
883 printf("\n");
884 printf(" Slots : [");
885 for (i = 0; i < map->num_members; i++) {
886 ord = get_imsm_ord_tbl_ent(dev, i, 0);
887 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
888 }
889 printf("]");
890 if (map2) {
891 printf(" <-- [");
892 for (i = 0; i < map2->num_members; i++) {
893 ord = get_imsm_ord_tbl_ent(dev, i, 1);
894 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
895 }
896 printf("]");
897 }
898 printf("\n");
899 printf(" Failed disk : ");
900 if (map->failed_disk_num == 0xff)
901 printf("none");
902 else
903 printf("%i", map->failed_disk_num);
904 printf("\n");
905 slot = get_imsm_disk_slot(map, disk_idx);
906 if (slot >= 0) {
907 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
908 printf(" This Slot : %d%s\n", slot,
909 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
910 } else
911 printf(" This Slot : ?\n");
912 sz = __le32_to_cpu(dev->size_high);
913 sz <<= 32;
914 sz += __le32_to_cpu(dev->size_low);
915 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
916 human_size(sz * 512));
917 sz = __le32_to_cpu(map->blocks_per_member);
918 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
919 human_size(sz * 512));
920 printf(" Sector Offset : %u\n",
921 __le32_to_cpu(map->pba_of_lba0));
922 printf(" Num Stripes : %u\n",
923 __le32_to_cpu(map->num_data_stripes));
924 printf(" Chunk Size : %u KiB",
925 __le16_to_cpu(map->blocks_per_strip) / 2);
926 if (map2)
927 printf(" <-- %u KiB",
928 __le16_to_cpu(map2->blocks_per_strip) / 2);
929 printf("\n");
930 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
931 printf(" Migrate State : ");
932 if (dev->vol.migr_state) {
933 if (migr_type(dev) == MIGR_INIT)
934 printf("initialize\n");
935 else if (migr_type(dev) == MIGR_REBUILD)
936 printf("rebuild\n");
937 else if (migr_type(dev) == MIGR_VERIFY)
938 printf("check\n");
939 else if (migr_type(dev) == MIGR_GEN_MIGR)
940 printf("general migration\n");
941 else if (migr_type(dev) == MIGR_STATE_CHANGE)
942 printf("state change\n");
943 else if (migr_type(dev) == MIGR_REPAIR)
944 printf("repair\n");
945 else
946 printf("<unknown:%d>\n", migr_type(dev));
947 } else
948 printf("idle\n");
949 printf(" Map State : %s", map_state_str[map->map_state]);
950 if (dev->vol.migr_state) {
951 struct imsm_map *map = get_imsm_map(dev, 1);
952
953 printf(" <-- %s", map_state_str[map->map_state]);
954 printf("\n Checkpoint : %u (%llu)",
955 __le32_to_cpu(dev->vol.curr_migr_unit),
956 (unsigned long long)blocks_per_migr_unit(dev));
957 }
958 printf("\n");
959 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
960 }
961
962 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
963 {
964 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
965 char str[MAX_RAID_SERIAL_LEN + 1];
966 __u64 sz;
967
968 if (index < 0 || !disk)
969 return;
970
971 printf("\n");
972 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
973 printf(" Disk%02d Serial : %s\n", index, str);
974 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
975 is_configured(disk) ? " active" : "",
976 is_failed(disk) ? " failed" : "");
977 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
978 sz = __le32_to_cpu(disk->total_blocks) - reserved;
979 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
980 human_size(sz * 512));
981 }
982
983 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
984
985 static void examine_super_imsm(struct supertype *st, char *homehost)
986 {
987 struct intel_super *super = st->sb;
988 struct imsm_super *mpb = super->anchor;
989 char str[MAX_SIGNATURE_LENGTH];
990 int i;
991 struct mdinfo info;
992 char nbuf[64];
993 __u32 sum;
994 __u32 reserved = imsm_reserved_sectors(super, super->disks);
995 struct dl *dl;
996
997 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
998 printf(" Magic : %s\n", str);
999 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1000 printf(" Version : %s\n", get_imsm_version(mpb));
1001 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1002 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1003 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1004 getinfo_super_imsm(st, &info, NULL);
1005 fname_from_uuid(st, &info, nbuf, ':');
1006 printf(" UUID : %s\n", nbuf + 5);
1007 sum = __le32_to_cpu(mpb->check_sum);
1008 printf(" Checksum : %08x %s\n", sum,
1009 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1010 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1011 printf(" Disks : %d\n", mpb->num_disks);
1012 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1013 print_imsm_disk(mpb, super->disks->index, reserved);
1014 if (super->bbm_log) {
1015 struct bbm_log *log = super->bbm_log;
1016
1017 printf("\n");
1018 printf("Bad Block Management Log:\n");
1019 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1020 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1021 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1022 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1023 printf(" First Spare : %llx\n",
1024 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1025 }
1026 for (i = 0; i < mpb->num_raid_devs; i++) {
1027 struct mdinfo info;
1028 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1029
1030 super->current_vol = i;
1031 getinfo_super_imsm(st, &info, NULL);
1032 fname_from_uuid(st, &info, nbuf, ':');
1033 print_imsm_dev(dev, nbuf + 5, super->disks->index);
1034 }
1035 for (i = 0; i < mpb->num_disks; i++) {
1036 if (i == super->disks->index)
1037 continue;
1038 print_imsm_disk(mpb, i, reserved);
1039 }
1040 for (dl = super->disks ; dl; dl = dl->next) {
1041 struct imsm_disk *disk;
1042 char str[MAX_RAID_SERIAL_LEN + 1];
1043 __u64 sz;
1044
1045 if (dl->index >= 0)
1046 continue;
1047
1048 disk = &dl->disk;
1049 printf("\n");
1050 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1051 printf(" Disk Serial : %s\n", str);
1052 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1053 is_configured(disk) ? " active" : "",
1054 is_failed(disk) ? " failed" : "");
1055 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1056 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1057 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1058 human_size(sz * 512));
1059 }
1060 }
1061
1062 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1063 {
1064 /* We just write a generic IMSM ARRAY entry */
1065 struct mdinfo info;
1066 char nbuf[64];
1067 struct intel_super *super = st->sb;
1068
1069 if (!super->anchor->num_raid_devs) {
1070 printf("ARRAY metadata=imsm\n");
1071 return;
1072 }
1073
1074 getinfo_super_imsm(st, &info, NULL);
1075 fname_from_uuid(st, &info, nbuf, ':');
1076 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1077 }
1078
1079 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1080 {
1081 /* We just write a generic IMSM ARRAY entry */
1082 struct mdinfo info;
1083 char nbuf[64];
1084 char nbuf1[64];
1085 struct intel_super *super = st->sb;
1086 int i;
1087
1088 if (!super->anchor->num_raid_devs)
1089 return;
1090
1091 getinfo_super_imsm(st, &info, NULL);
1092 fname_from_uuid(st, &info, nbuf, ':');
1093 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1094 struct imsm_dev *dev = get_imsm_dev(super, i);
1095
1096 super->current_vol = i;
1097 getinfo_super_imsm(st, &info, NULL);
1098 fname_from_uuid(st, &info, nbuf1, ':');
1099 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1100 dev->volume, nbuf + 5, i, nbuf1 + 5);
1101 }
1102 }
1103
1104 static void export_examine_super_imsm(struct supertype *st)
1105 {
1106 struct intel_super *super = st->sb;
1107 struct imsm_super *mpb = super->anchor;
1108 struct mdinfo info;
1109 char nbuf[64];
1110
1111 getinfo_super_imsm(st, &info, NULL);
1112 fname_from_uuid(st, &info, nbuf, ':');
1113 printf("MD_METADATA=imsm\n");
1114 printf("MD_LEVEL=container\n");
1115 printf("MD_UUID=%s\n", nbuf+5);
1116 printf("MD_DEVICES=%u\n", mpb->num_disks);
1117 }
1118
1119 static void detail_super_imsm(struct supertype *st, char *homehost)
1120 {
1121 struct mdinfo info;
1122 char nbuf[64];
1123
1124 getinfo_super_imsm(st, &info, NULL);
1125 fname_from_uuid(st, &info, nbuf, ':');
1126 printf("\n UUID : %s\n", nbuf + 5);
1127 }
1128
1129 static void brief_detail_super_imsm(struct supertype *st)
1130 {
1131 struct mdinfo info;
1132 char nbuf[64];
1133 getinfo_super_imsm(st, &info, NULL);
1134 fname_from_uuid(st, &info, nbuf, ':');
1135 printf(" UUID=%s", nbuf + 5);
1136 }
1137
1138 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1139 static void fd2devname(int fd, char *name);
1140
1141 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1142 {
1143 /* dump an unsorted list of devices attached to AHCI Intel storage
1144 * controller, as well as non-connected ports
1145 */
1146 int hba_len = strlen(hba_path) + 1;
1147 struct dirent *ent;
1148 DIR *dir;
1149 char *path = NULL;
1150 int err = 0;
1151 unsigned long port_mask = (1 << port_count) - 1;
1152
1153 if (port_count > (int)sizeof(port_mask) * 8) {
1154 if (verbose)
1155 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1156 return 2;
1157 }
1158
1159 /* scroll through /sys/dev/block looking for devices attached to
1160 * this hba
1161 */
1162 dir = opendir("/sys/dev/block");
1163 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1164 int fd;
1165 char model[64];
1166 char vendor[64];
1167 char buf[1024];
1168 int major, minor;
1169 char *device;
1170 char *c;
1171 int port;
1172 int type;
1173
1174 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1175 continue;
1176 path = devt_to_devpath(makedev(major, minor));
1177 if (!path)
1178 continue;
1179 if (!path_attached_to_hba(path, hba_path)) {
1180 free(path);
1181 path = NULL;
1182 continue;
1183 }
1184
1185 /* retrieve the scsi device type */
1186 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1187 if (verbose)
1188 fprintf(stderr, Name ": failed to allocate 'device'\n");
1189 err = 2;
1190 break;
1191 }
1192 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1193 if (load_sys(device, buf) != 0) {
1194 if (verbose)
1195 fprintf(stderr, Name ": failed to read device type for %s\n",
1196 path);
1197 err = 2;
1198 free(device);
1199 break;
1200 }
1201 type = strtoul(buf, NULL, 10);
1202
1203 /* if it's not a disk print the vendor and model */
1204 if (!(type == 0 || type == 7 || type == 14)) {
1205 vendor[0] = '\0';
1206 model[0] = '\0';
1207 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1208 if (load_sys(device, buf) == 0) {
1209 strncpy(vendor, buf, sizeof(vendor));
1210 vendor[sizeof(vendor) - 1] = '\0';
1211 c = (char *) &vendor[sizeof(vendor) - 1];
1212 while (isspace(*c) || *c == '\0')
1213 *c-- = '\0';
1214
1215 }
1216 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1217 if (load_sys(device, buf) == 0) {
1218 strncpy(model, buf, sizeof(model));
1219 model[sizeof(model) - 1] = '\0';
1220 c = (char *) &model[sizeof(model) - 1];
1221 while (isspace(*c) || *c == '\0')
1222 *c-- = '\0';
1223 }
1224
1225 if (vendor[0] && model[0])
1226 sprintf(buf, "%.64s %.64s", vendor, model);
1227 else
1228 switch (type) { /* numbers from hald/linux/device.c */
1229 case 1: sprintf(buf, "tape"); break;
1230 case 2: sprintf(buf, "printer"); break;
1231 case 3: sprintf(buf, "processor"); break;
1232 case 4:
1233 case 5: sprintf(buf, "cdrom"); break;
1234 case 6: sprintf(buf, "scanner"); break;
1235 case 8: sprintf(buf, "media_changer"); break;
1236 case 9: sprintf(buf, "comm"); break;
1237 case 12: sprintf(buf, "raid"); break;
1238 default: sprintf(buf, "unknown");
1239 }
1240 } else
1241 buf[0] = '\0';
1242 free(device);
1243
1244 /* chop device path to 'host%d' and calculate the port number */
1245 c = strchr(&path[hba_len], '/');
1246 if (!c) {
1247 if (verbose)
1248 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1249 err = 2;
1250 break;
1251 }
1252 *c = '\0';
1253 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1254 port -= host_base;
1255 else {
1256 if (verbose) {
1257 *c = '/'; /* repair the full string */
1258 fprintf(stderr, Name ": failed to determine port number for %s\n",
1259 path);
1260 }
1261 err = 2;
1262 break;
1263 }
1264
1265 /* mark this port as used */
1266 port_mask &= ~(1 << port);
1267
1268 /* print out the device information */
1269 if (buf[0]) {
1270 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1271 continue;
1272 }
1273
1274 fd = dev_open(ent->d_name, O_RDONLY);
1275 if (fd < 0)
1276 printf(" Port%d : - disk info unavailable -\n", port);
1277 else {
1278 fd2devname(fd, buf);
1279 printf(" Port%d : %s", port, buf);
1280 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1281 printf(" (%s)\n", buf);
1282 else
1283 printf("()\n");
1284 }
1285 close(fd);
1286 free(path);
1287 path = NULL;
1288 }
1289 if (path)
1290 free(path);
1291 if (dir)
1292 closedir(dir);
1293 if (err == 0) {
1294 int i;
1295
1296 for (i = 0; i < port_count; i++)
1297 if (port_mask & (1 << i))
1298 printf(" Port%d : - no device attached -\n", i);
1299 }
1300
1301 return err;
1302 }
1303
1304
1305
1306 static void print_found_intel_controllers(struct sys_dev *elem)
1307 {
1308 for (; elem; elem = elem->next) {
1309 fprintf(stderr, Name ": found Intel(R) ");
1310 if (elem->type == SYS_DEV_SATA)
1311 fprintf(stderr, "SATA ");
1312 else if (elem->type == SYS_DEV_SAS)
1313 fprintf(stderr, "SAS ");
1314 fprintf(stderr, "RAID controller");
1315 if (elem->pci_id)
1316 fprintf(stderr, " at %s", elem->pci_id);
1317 fprintf(stderr, ".\n");
1318 }
1319 fflush(stderr);
1320 }
1321
1322 static int ahci_get_port_count(const char *hba_path, int *port_count)
1323 {
1324 struct dirent *ent;
1325 DIR *dir;
1326 int host_base = -1;
1327
1328 *port_count = 0;
1329 if ((dir = opendir(hba_path)) == NULL)
1330 return -1;
1331
1332 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1333 int host;
1334
1335 if (sscanf(ent->d_name, "host%d", &host) != 1)
1336 continue;
1337 if (*port_count == 0)
1338 host_base = host;
1339 else if (host < host_base)
1340 host_base = host;
1341
1342 if (host + 1 > *port_count + host_base)
1343 *port_count = host + 1 - host_base;
1344 }
1345 closedir(dir);
1346 return host_base;
1347 }
1348
1349 static void print_imsm_capability(const struct imsm_orom *orom)
1350 {
1351 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1352 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1353 orom->hotfix_ver, orom->build);
1354 printf(" RAID Levels :%s%s%s%s%s\n",
1355 imsm_orom_has_raid0(orom) ? " raid0" : "",
1356 imsm_orom_has_raid1(orom) ? " raid1" : "",
1357 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1358 imsm_orom_has_raid10(orom) ? " raid10" : "",
1359 imsm_orom_has_raid5(orom) ? " raid5" : "");
1360 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1361 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1362 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1363 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1364 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1365 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1366 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1367 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1368 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1369 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1370 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1371 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1372 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1373 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1374 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1375 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1376 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1377 printf(" Max Disks : %d\n", orom->tds);
1378 printf(" Max Volumes : %d\n", orom->vpa);
1379 return;
1380 }
1381
1382 static int detail_platform_imsm(int verbose, int enumerate_only)
1383 {
1384 /* There are two components to imsm platform support, the ahci SATA
1385 * controller and the option-rom. To find the SATA controller we
1386 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1387 * controller with the Intel vendor id is present. This approach
1388 * allows mdadm to leverage the kernel's ahci detection logic, with the
1389 * caveat that if ahci.ko is not loaded mdadm will not be able to
1390 * detect platform raid capabilities. The option-rom resides in a
1391 * platform "Adapter ROM". We scan for its signature to retrieve the
1392 * platform capabilities. If raid support is disabled in the BIOS the
1393 * option-rom capability structure will not be available.
1394 */
1395 const struct imsm_orom *orom;
1396 struct sys_dev *list, *hba;
1397 int host_base = 0;
1398 int port_count = 0;
1399 int result=0;
1400
1401 if (enumerate_only) {
1402 if (check_env("IMSM_NO_PLATFORM"))
1403 return 0;
1404 list = find_intel_devices();
1405 if (!list)
1406 return 2;
1407 for (hba = list; hba; hba = hba->next) {
1408 orom = find_imsm_capability(hba->type);
1409 if (!orom) {
1410 result = 2;
1411 break;
1412 }
1413 }
1414 free_sys_dev(&list);
1415 return result;
1416 }
1417
1418 list = find_intel_devices();
1419 if (!list) {
1420 if (verbose)
1421 fprintf(stderr, Name ": no active Intel(R) RAID "
1422 "controller found.\n");
1423 free_sys_dev(&list);
1424 return 2;
1425 } else if (verbose)
1426 print_found_intel_controllers(list);
1427
1428 for (hba = list; hba; hba = hba->next) {
1429 orom = find_imsm_capability(hba->type);
1430 if (!orom)
1431 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1432 hba->path, get_sys_dev_type(hba->type));
1433 else
1434 print_imsm_capability(orom);
1435 }
1436
1437 for (hba = list; hba; hba = hba->next) {
1438 printf(" I/O Controller : %s (%s)\n",
1439 hba->path, get_sys_dev_type(hba->type));
1440
1441 if (hba->type == SYS_DEV_SATA) {
1442 host_base = ahci_get_port_count(hba->path, &port_count);
1443 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1444 if (verbose)
1445 fprintf(stderr, Name ": failed to enumerate "
1446 "ports on SATA controller at %s.", hba->pci_id);
1447 result |= 2;
1448 }
1449 }
1450 }
1451
1452 free_sys_dev(&list);
1453 return result;
1454 }
1455 #endif
1456
1457 static int match_home_imsm(struct supertype *st, char *homehost)
1458 {
1459 /* the imsm metadata format does not specify any host
1460 * identification information. We return -1 since we can never
1461 * confirm nor deny whether a given array is "meant" for this
1462 * host. We rely on compare_super and the 'family_num' fields to
1463 * exclude member disks that do not belong, and we rely on
1464 * mdadm.conf to specify the arrays that should be assembled.
1465 * Auto-assembly may still pick up "foreign" arrays.
1466 */
1467
1468 return -1;
1469 }
1470
1471 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1472 {
1473 /* The uuid returned here is used for:
1474 * uuid to put into bitmap file (Create, Grow)
1475 * uuid for backup header when saving critical section (Grow)
1476 * comparing uuids when re-adding a device into an array
1477 * In these cases the uuid required is that of the data-array,
1478 * not the device-set.
1479 * uuid to recognise same set when adding a missing device back
1480 * to an array. This is a uuid for the device-set.
1481 *
1482 * For each of these we can make do with a truncated
1483 * or hashed uuid rather than the original, as long as
1484 * everyone agrees.
1485 * In each case the uuid required is that of the data-array,
1486 * not the device-set.
1487 */
1488 /* imsm does not track uuid's so we synthesis one using sha1 on
1489 * - The signature (Which is constant for all imsm array, but no matter)
1490 * - the orig_family_num of the container
1491 * - the index number of the volume
1492 * - the 'serial' number of the volume.
1493 * Hopefully these are all constant.
1494 */
1495 struct intel_super *super = st->sb;
1496
1497 char buf[20];
1498 struct sha1_ctx ctx;
1499 struct imsm_dev *dev = NULL;
1500 __u32 family_num;
1501
1502 /* some mdadm versions failed to set ->orig_family_num, in which
1503 * case fall back to ->family_num. orig_family_num will be
1504 * fixed up with the first metadata update.
1505 */
1506 family_num = super->anchor->orig_family_num;
1507 if (family_num == 0)
1508 family_num = super->anchor->family_num;
1509 sha1_init_ctx(&ctx);
1510 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1511 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1512 if (super->current_vol >= 0)
1513 dev = get_imsm_dev(super, super->current_vol);
1514 if (dev) {
1515 __u32 vol = super->current_vol;
1516 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1517 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1518 }
1519 sha1_finish_ctx(&ctx, buf);
1520 memcpy(uuid, buf, 4*4);
1521 }
1522
1523 #if 0
1524 static void
1525 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1526 {
1527 __u8 *v = get_imsm_version(mpb);
1528 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1529 char major[] = { 0, 0, 0 };
1530 char minor[] = { 0 ,0, 0 };
1531 char patch[] = { 0, 0, 0 };
1532 char *ver_parse[] = { major, minor, patch };
1533 int i, j;
1534
1535 i = j = 0;
1536 while (*v != '\0' && v < end) {
1537 if (*v != '.' && j < 2)
1538 ver_parse[i][j++] = *v;
1539 else {
1540 i++;
1541 j = 0;
1542 }
1543 v++;
1544 }
1545
1546 *m = strtol(minor, NULL, 0);
1547 *p = strtol(patch, NULL, 0);
1548 }
1549 #endif
1550
1551 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1552 {
1553 /* migr_strip_size when repairing or initializing parity */
1554 struct imsm_map *map = get_imsm_map(dev, 0);
1555 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1556
1557 switch (get_imsm_raid_level(map)) {
1558 case 5:
1559 case 10:
1560 return chunk;
1561 default:
1562 return 128*1024 >> 9;
1563 }
1564 }
1565
1566 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1567 {
1568 /* migr_strip_size when rebuilding a degraded disk, no idea why
1569 * this is different than migr_strip_size_resync(), but it's good
1570 * to be compatible
1571 */
1572 struct imsm_map *map = get_imsm_map(dev, 1);
1573 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1574
1575 switch (get_imsm_raid_level(map)) {
1576 case 1:
1577 case 10:
1578 if (map->num_members % map->num_domains == 0)
1579 return 128*1024 >> 9;
1580 else
1581 return chunk;
1582 case 5:
1583 return max((__u32) 64*1024 >> 9, chunk);
1584 default:
1585 return 128*1024 >> 9;
1586 }
1587 }
1588
1589 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1590 {
1591 struct imsm_map *lo = get_imsm_map(dev, 0);
1592 struct imsm_map *hi = get_imsm_map(dev, 1);
1593 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1594 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1595
1596 return max((__u32) 1, hi_chunk / lo_chunk);
1597 }
1598
1599 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1600 {
1601 struct imsm_map *lo = get_imsm_map(dev, 0);
1602 int level = get_imsm_raid_level(lo);
1603
1604 if (level == 1 || level == 10) {
1605 struct imsm_map *hi = get_imsm_map(dev, 1);
1606
1607 return hi->num_domains;
1608 } else
1609 return num_stripes_per_unit_resync(dev);
1610 }
1611
1612 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1613 {
1614 /* named 'imsm_' because raid0, raid1 and raid10
1615 * counter-intuitively have the same number of data disks
1616 */
1617 struct imsm_map *map = get_imsm_map(dev, second_map);
1618
1619 switch (get_imsm_raid_level(map)) {
1620 case 0:
1621 case 1:
1622 case 10:
1623 return map->num_members;
1624 case 5:
1625 return map->num_members - 1;
1626 default:
1627 dprintf("%s: unsupported raid level\n", __func__);
1628 return 0;
1629 }
1630 }
1631
1632 static __u32 parity_segment_depth(struct imsm_dev *dev)
1633 {
1634 struct imsm_map *map = get_imsm_map(dev, 0);
1635 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1636
1637 switch(get_imsm_raid_level(map)) {
1638 case 1:
1639 case 10:
1640 return chunk * map->num_domains;
1641 case 5:
1642 return chunk * map->num_members;
1643 default:
1644 return chunk;
1645 }
1646 }
1647
1648 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1649 {
1650 struct imsm_map *map = get_imsm_map(dev, 1);
1651 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1652 __u32 strip = block / chunk;
1653
1654 switch (get_imsm_raid_level(map)) {
1655 case 1:
1656 case 10: {
1657 __u32 vol_strip = (strip * map->num_domains) + 1;
1658 __u32 vol_stripe = vol_strip / map->num_members;
1659
1660 return vol_stripe * chunk + block % chunk;
1661 } case 5: {
1662 __u32 stripe = strip / (map->num_members - 1);
1663
1664 return stripe * chunk + block % chunk;
1665 }
1666 default:
1667 return 0;
1668 }
1669 }
1670
1671 static __u64 blocks_per_migr_unit(struct imsm_dev *dev)
1672 {
1673 /* calculate the conversion factor between per member 'blocks'
1674 * (md/{resync,rebuild}_start) and imsm migration units, return
1675 * 0 for the 'not migrating' and 'unsupported migration' cases
1676 */
1677 if (!dev->vol.migr_state)
1678 return 0;
1679
1680 switch (migr_type(dev)) {
1681 case MIGR_GEN_MIGR:
1682 case MIGR_VERIFY:
1683 case MIGR_REPAIR:
1684 case MIGR_INIT: {
1685 struct imsm_map *map = get_imsm_map(dev, 0);
1686 __u32 stripes_per_unit;
1687 __u32 blocks_per_unit;
1688 __u32 parity_depth;
1689 __u32 migr_chunk;
1690 __u32 block_map;
1691 __u32 block_rel;
1692 __u32 segment;
1693 __u32 stripe;
1694 __u8 disks;
1695
1696 /* yes, this is really the translation of migr_units to
1697 * per-member blocks in the 'resync' case
1698 */
1699 stripes_per_unit = num_stripes_per_unit_resync(dev);
1700 migr_chunk = migr_strip_blocks_resync(dev);
1701 disks = imsm_num_data_members(dev, 0);
1702 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1703 if (migr_type(dev) == MIGR_GEN_MIGR)
1704 return blocks_per_unit;
1705 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1706 segment = blocks_per_unit / stripe;
1707 block_rel = blocks_per_unit - segment * stripe;
1708 parity_depth = parity_segment_depth(dev);
1709 block_map = map_migr_block(dev, block_rel);
1710 return block_map + parity_depth * segment;
1711 }
1712 case MIGR_REBUILD: {
1713 __u32 stripes_per_unit;
1714 __u32 migr_chunk;
1715
1716 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1717 migr_chunk = migr_strip_blocks_rebuild(dev);
1718 return migr_chunk * stripes_per_unit;
1719 }
1720 case MIGR_STATE_CHANGE:
1721 default:
1722 return 0;
1723 }
1724 }
1725
1726 static int imsm_level_to_layout(int level)
1727 {
1728 switch (level) {
1729 case 0:
1730 case 1:
1731 return 0;
1732 case 5:
1733 case 6:
1734 return ALGORITHM_LEFT_ASYMMETRIC;
1735 case 10:
1736 return 0x102;
1737 }
1738 return UnSet;
1739 }
1740
1741 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
1742 {
1743 struct intel_super *super = st->sb;
1744 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1745 struct imsm_map *map = get_imsm_map(dev, 0);
1746 struct imsm_map *prev_map = get_imsm_map(dev, 1);
1747 struct imsm_map *map_to_analyse = map;
1748 struct dl *dl;
1749 char *devname;
1750 int map_disks = info->array.raid_disks;
1751
1752 if (prev_map)
1753 map_to_analyse = prev_map;
1754
1755 for (dl = super->disks; dl; dl = dl->next)
1756 if (dl->raiddisk == info->disk.raid_disk)
1757 break;
1758 info->container_member = super->current_vol;
1759 info->array.raid_disks = map_to_analyse->num_members;
1760 info->array.level = get_imsm_raid_level(map_to_analyse);
1761 info->array.layout = imsm_level_to_layout(info->array.level);
1762 info->array.md_minor = -1;
1763 info->array.ctime = 0;
1764 info->array.utime = 0;
1765 info->array.chunk_size =
1766 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
1767 info->array.state = !dev->vol.dirty;
1768 info->custom_array_size = __le32_to_cpu(dev->size_high);
1769 info->custom_array_size <<= 32;
1770 info->custom_array_size |= __le32_to_cpu(dev->size_low);
1771 if (prev_map && map->map_state == prev_map->map_state) {
1772 info->reshape_active = 1;
1773 info->new_level = get_imsm_raid_level(map);
1774 info->new_layout = imsm_level_to_layout(info->new_level);
1775 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
1776 info->delta_disks = map->num_members - prev_map->num_members;
1777 if (info->delta_disks) {
1778 /* this needs to be applied to every array
1779 * in the container.
1780 */
1781 info->reshape_active = 2;
1782 }
1783 /* We shape information that we give to md might have to be
1784 * modify to cope with md's requirement for reshaping arrays.
1785 * For example, when reshaping a RAID0, md requires it to be
1786 * presented as a degraded RAID4.
1787 * Also if a RAID0 is migrating to a RAID5 we need to specify
1788 * the array as already being RAID5, but the 'before' layout
1789 * is a RAID4-like layout.
1790 */
1791 switch (info->array.level) {
1792 case 0:
1793 switch(info->new_level) {
1794 case 0:
1795 /* conversion is happening as RAID4 */
1796 info->array.level = 4;
1797 info->array.raid_disks += 1;
1798 break;
1799 case 5:
1800 /* conversion is happening as RAID5 */
1801 info->array.level = 5;
1802 info->array.layout = ALGORITHM_PARITY_N;
1803 info->array.raid_disks += 1;
1804 info->delta_disks -= 1;
1805 break;
1806 default:
1807 /* FIXME error message */
1808 info->array.level = UnSet;
1809 break;
1810 }
1811 break;
1812 }
1813 } else {
1814 info->new_level = UnSet;
1815 info->new_layout = UnSet;
1816 info->new_chunk = info->array.chunk_size;
1817 info->delta_disks = 0;
1818 }
1819 info->disk.major = 0;
1820 info->disk.minor = 0;
1821 if (dl) {
1822 info->disk.major = dl->major;
1823 info->disk.minor = dl->minor;
1824 }
1825
1826 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
1827 info->component_size =
1828 __le32_to_cpu(map_to_analyse->blocks_per_member);
1829 memset(info->uuid, 0, sizeof(info->uuid));
1830 info->recovery_start = MaxSector;
1831
1832 info->reshape_progress = 0;
1833 info->resync_start = MaxSector;
1834 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
1835 dev->vol.dirty) {
1836 info->resync_start = 0;
1837 }
1838 if (dev->vol.migr_state) {
1839 switch (migr_type(dev)) {
1840 case MIGR_REPAIR:
1841 case MIGR_INIT: {
1842 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1843 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1844
1845 info->resync_start = blocks_per_unit * units;
1846 break;
1847 }
1848 case MIGR_GEN_MIGR: {
1849 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1850 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1851 unsigned long long array_blocks;
1852 int used_disks;
1853
1854 info->reshape_progress = blocks_per_unit * units;
1855 dprintf("IMSM: General Migration checkpoint : %llu "
1856 "(%llu) -> read reshape progress : %llu\n",
1857 units, blocks_per_unit, info->reshape_progress);
1858
1859 used_disks = imsm_num_data_members(dev, 1);
1860 if (used_disks > 0) {
1861 array_blocks = map->blocks_per_member *
1862 used_disks;
1863 /* round array size down to closest MB
1864 */
1865 info->custom_array_size = (array_blocks
1866 >> SECT_PER_MB_SHIFT)
1867 << SECT_PER_MB_SHIFT;
1868 }
1869 }
1870 case MIGR_VERIFY:
1871 /* we could emulate the checkpointing of
1872 * 'sync_action=check' migrations, but for now
1873 * we just immediately complete them
1874 */
1875 case MIGR_REBUILD:
1876 /* this is handled by container_content_imsm() */
1877 case MIGR_STATE_CHANGE:
1878 /* FIXME handle other migrations */
1879 default:
1880 /* we are not dirty, so... */
1881 info->resync_start = MaxSector;
1882 }
1883 }
1884
1885 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1886 info->name[MAX_RAID_SERIAL_LEN] = 0;
1887
1888 info->array.major_version = -1;
1889 info->array.minor_version = -2;
1890 devname = devnum2devname(st->container_dev);
1891 *info->text_version = '\0';
1892 if (devname)
1893 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
1894 free(devname);
1895 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
1896 uuid_from_super_imsm(st, info->uuid);
1897
1898 if (dmap) {
1899 int i, j;
1900 for (i=0; i<map_disks; i++) {
1901 dmap[i] = 0;
1902 if (i < info->array.raid_disks) {
1903 struct imsm_disk *dsk;
1904 j = get_imsm_disk_idx(dev, i, -1);
1905 dsk = get_imsm_disk(super, j);
1906 if (dsk && (dsk->status & CONFIGURED_DISK))
1907 dmap[i] = 1;
1908 }
1909 }
1910 }
1911 }
1912
1913 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
1914 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
1915
1916 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
1917 {
1918 struct dl *d;
1919
1920 for (d = super->missing; d; d = d->next)
1921 if (d->index == index)
1922 return &d->disk;
1923 return NULL;
1924 }
1925
1926 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
1927 {
1928 struct intel_super *super = st->sb;
1929 struct imsm_disk *disk;
1930 int map_disks = info->array.raid_disks;
1931 int max_enough = -1;
1932 int i;
1933 struct imsm_super *mpb;
1934
1935 if (super->current_vol >= 0) {
1936 getinfo_super_imsm_volume(st, info, map);
1937 return;
1938 }
1939
1940 /* Set raid_disks to zero so that Assemble will always pull in valid
1941 * spares
1942 */
1943 info->array.raid_disks = 0;
1944 info->array.level = LEVEL_CONTAINER;
1945 info->array.layout = 0;
1946 info->array.md_minor = -1;
1947 info->array.ctime = 0; /* N/A for imsm */
1948 info->array.utime = 0;
1949 info->array.chunk_size = 0;
1950
1951 info->disk.major = 0;
1952 info->disk.minor = 0;
1953 info->disk.raid_disk = -1;
1954 info->reshape_active = 0;
1955 info->array.major_version = -1;
1956 info->array.minor_version = -2;
1957 strcpy(info->text_version, "imsm");
1958 info->safe_mode_delay = 0;
1959 info->disk.number = -1;
1960 info->disk.state = 0;
1961 info->name[0] = 0;
1962 info->recovery_start = MaxSector;
1963
1964 /* do we have the all the insync disks that we expect? */
1965 mpb = super->anchor;
1966
1967 for (i = 0; i < mpb->num_raid_devs; i++) {
1968 struct imsm_dev *dev = get_imsm_dev(super, i);
1969 int failed, enough, j, missing = 0;
1970 struct imsm_map *map;
1971 __u8 state;
1972
1973 failed = imsm_count_failed(super, dev);
1974 state = imsm_check_degraded(super, dev, failed);
1975 map = get_imsm_map(dev, dev->vol.migr_state);
1976
1977 /* any newly missing disks?
1978 * (catches single-degraded vs double-degraded)
1979 */
1980 for (j = 0; j < map->num_members; j++) {
1981 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
1982 __u32 idx = ord_to_idx(ord);
1983
1984 if (!(ord & IMSM_ORD_REBUILD) &&
1985 get_imsm_missing(super, idx)) {
1986 missing = 1;
1987 break;
1988 }
1989 }
1990
1991 if (state == IMSM_T_STATE_FAILED)
1992 enough = -1;
1993 else if (state == IMSM_T_STATE_DEGRADED &&
1994 (state != map->map_state || missing))
1995 enough = 0;
1996 else /* we're normal, or already degraded */
1997 enough = 1;
1998
1999 /* in the missing/failed disk case check to see
2000 * if at least one array is runnable
2001 */
2002 max_enough = max(max_enough, enough);
2003 }
2004 dprintf("%s: enough: %d\n", __func__, max_enough);
2005 info->container_enough = max_enough;
2006
2007 if (super->disks) {
2008 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2009
2010 disk = &super->disks->disk;
2011 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2012 info->component_size = reserved;
2013 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2014 /* we don't change info->disk.raid_disk here because
2015 * this state will be finalized in mdmon after we have
2016 * found the 'most fresh' version of the metadata
2017 */
2018 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2019 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2020 }
2021
2022 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2023 * ->compare_super may have updated the 'num_raid_devs' field for spares
2024 */
2025 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2026 uuid_from_super_imsm(st, info->uuid);
2027 else
2028 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2029
2030 /* I don't know how to compute 'map' on imsm, so use safe default */
2031 if (map) {
2032 int i;
2033 for (i = 0; i < map_disks; i++)
2034 map[i] = 1;
2035 }
2036
2037 }
2038
2039 /* allocates memory and fills disk in mdinfo structure
2040 * for each disk in array */
2041 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2042 {
2043 struct mdinfo *mddev = NULL;
2044 struct intel_super *super = st->sb;
2045 struct imsm_disk *disk;
2046 int count = 0;
2047 struct dl *dl;
2048 if (!super || !super->disks)
2049 return NULL;
2050 dl = super->disks;
2051 mddev = malloc(sizeof(*mddev));
2052 if (!mddev) {
2053 fprintf(stderr, Name ": Failed to allocate memory.\n");
2054 return NULL;
2055 }
2056 memset(mddev, 0, sizeof(*mddev));
2057 while (dl) {
2058 struct mdinfo *tmp;
2059 disk = &dl->disk;
2060 tmp = malloc(sizeof(*tmp));
2061 if (!tmp) {
2062 fprintf(stderr, Name ": Failed to allocate memory.\n");
2063 if (mddev)
2064 sysfs_free(mddev);
2065 return NULL;
2066 }
2067 memset(tmp, 0, sizeof(*tmp));
2068 if (mddev->devs)
2069 tmp->next = mddev->devs;
2070 mddev->devs = tmp;
2071 tmp->disk.number = count++;
2072 tmp->disk.major = dl->major;
2073 tmp->disk.minor = dl->minor;
2074 tmp->disk.state = is_configured(disk) ?
2075 (1 << MD_DISK_ACTIVE) : 0;
2076 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2077 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2078 tmp->disk.raid_disk = -1;
2079 dl = dl->next;
2080 }
2081 return mddev;
2082 }
2083
2084 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2085 char *update, char *devname, int verbose,
2086 int uuid_set, char *homehost)
2087 {
2088 /* For 'assemble' and 'force' we need to return non-zero if any
2089 * change was made. For others, the return value is ignored.
2090 * Update options are:
2091 * force-one : This device looks a bit old but needs to be included,
2092 * update age info appropriately.
2093 * assemble: clear any 'faulty' flag to allow this device to
2094 * be assembled.
2095 * force-array: Array is degraded but being forced, mark it clean
2096 * if that will be needed to assemble it.
2097 *
2098 * newdev: not used ????
2099 * grow: Array has gained a new device - this is currently for
2100 * linear only
2101 * resync: mark as dirty so a resync will happen.
2102 * name: update the name - preserving the homehost
2103 * uuid: Change the uuid of the array to match watch is given
2104 *
2105 * Following are not relevant for this imsm:
2106 * sparc2.2 : update from old dodgey metadata
2107 * super-minor: change the preferred_minor number
2108 * summaries: update redundant counters.
2109 * homehost: update the recorded homehost
2110 * _reshape_progress: record new reshape_progress position.
2111 */
2112 int rv = 1;
2113 struct intel_super *super = st->sb;
2114 struct imsm_super *mpb;
2115
2116 /* we can only update container info */
2117 if (!super || super->current_vol >= 0 || !super->anchor)
2118 return 1;
2119
2120 mpb = super->anchor;
2121
2122 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2123 rv = -1;
2124 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2125 mpb->orig_family_num = *((__u32 *) info->update_private);
2126 rv = 0;
2127 } else if (strcmp(update, "uuid") == 0) {
2128 __u32 *new_family = malloc(sizeof(*new_family));
2129
2130 /* update orig_family_number with the incoming random
2131 * data, report the new effective uuid, and store the
2132 * new orig_family_num for future updates.
2133 */
2134 if (new_family) {
2135 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2136 uuid_from_super_imsm(st, info->uuid);
2137 *new_family = mpb->orig_family_num;
2138 info->update_private = new_family;
2139 rv = 0;
2140 }
2141 } else if (strcmp(update, "assemble") == 0)
2142 rv = 0;
2143 else
2144 rv = -1;
2145
2146 /* successful update? recompute checksum */
2147 if (rv == 0)
2148 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2149
2150 return rv;
2151 }
2152
2153 static size_t disks_to_mpb_size(int disks)
2154 {
2155 size_t size;
2156
2157 size = sizeof(struct imsm_super);
2158 size += (disks - 1) * sizeof(struct imsm_disk);
2159 size += 2 * sizeof(struct imsm_dev);
2160 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2161 size += (4 - 2) * sizeof(struct imsm_map);
2162 /* 4 possible disk_ord_tbl's */
2163 size += 4 * (disks - 1) * sizeof(__u32);
2164
2165 return size;
2166 }
2167
2168 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2169 {
2170 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2171 return 0;
2172
2173 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2174 }
2175
2176 static void free_devlist(struct intel_super *super)
2177 {
2178 struct intel_dev *dv;
2179
2180 while (super->devlist) {
2181 dv = super->devlist->next;
2182 free(super->devlist->dev);
2183 free(super->devlist);
2184 super->devlist = dv;
2185 }
2186 }
2187
2188 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2189 {
2190 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2191 }
2192
2193 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2194 {
2195 /*
2196 * return:
2197 * 0 same, or first was empty, and second was copied
2198 * 1 second had wrong number
2199 * 2 wrong uuid
2200 * 3 wrong other info
2201 */
2202 struct intel_super *first = st->sb;
2203 struct intel_super *sec = tst->sb;
2204
2205 if (!first) {
2206 st->sb = tst->sb;
2207 tst->sb = NULL;
2208 return 0;
2209 }
2210
2211 /* if an anchor does not have num_raid_devs set then it is a free
2212 * floating spare
2213 */
2214 if (first->anchor->num_raid_devs > 0 &&
2215 sec->anchor->num_raid_devs > 0) {
2216 /* Determine if these disks might ever have been
2217 * related. Further disambiguation can only take place
2218 * in load_super_imsm_all
2219 */
2220 __u32 first_family = first->anchor->orig_family_num;
2221 __u32 sec_family = sec->anchor->orig_family_num;
2222
2223 if (memcmp(first->anchor->sig, sec->anchor->sig,
2224 MAX_SIGNATURE_LENGTH) != 0)
2225 return 3;
2226
2227 if (first_family == 0)
2228 first_family = first->anchor->family_num;
2229 if (sec_family == 0)
2230 sec_family = sec->anchor->family_num;
2231
2232 if (first_family != sec_family)
2233 return 3;
2234
2235 }
2236
2237
2238 /* if 'first' is a spare promote it to a populated mpb with sec's
2239 * family number
2240 */
2241 if (first->anchor->num_raid_devs == 0 &&
2242 sec->anchor->num_raid_devs > 0) {
2243 int i;
2244 struct intel_dev *dv;
2245 struct imsm_dev *dev;
2246
2247 /* we need to copy raid device info from sec if an allocation
2248 * fails here we don't associate the spare
2249 */
2250 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2251 dv = malloc(sizeof(*dv));
2252 if (!dv)
2253 break;
2254 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2255 if (!dev) {
2256 free(dv);
2257 break;
2258 }
2259 dv->dev = dev;
2260 dv->index = i;
2261 dv->next = first->devlist;
2262 first->devlist = dv;
2263 }
2264 if (i < sec->anchor->num_raid_devs) {
2265 /* allocation failure */
2266 free_devlist(first);
2267 fprintf(stderr, "imsm: failed to associate spare\n");
2268 return 3;
2269 }
2270 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2271 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2272 first->anchor->family_num = sec->anchor->family_num;
2273 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2274 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2275 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2276 }
2277
2278 return 0;
2279 }
2280
2281 static void fd2devname(int fd, char *name)
2282 {
2283 struct stat st;
2284 char path[256];
2285 char dname[PATH_MAX];
2286 char *nm;
2287 int rv;
2288
2289 name[0] = '\0';
2290 if (fstat(fd, &st) != 0)
2291 return;
2292 sprintf(path, "/sys/dev/block/%d:%d",
2293 major(st.st_rdev), minor(st.st_rdev));
2294
2295 rv = readlink(path, dname, sizeof(dname));
2296 if (rv <= 0)
2297 return;
2298
2299 dname[rv] = '\0';
2300 nm = strrchr(dname, '/');
2301 nm++;
2302 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2303 }
2304
2305 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2306
2307 static int imsm_read_serial(int fd, char *devname,
2308 __u8 serial[MAX_RAID_SERIAL_LEN])
2309 {
2310 unsigned char scsi_serial[255];
2311 int rv;
2312 int rsp_len;
2313 int len;
2314 char *dest;
2315 char *src;
2316 char *rsp_buf;
2317 int i;
2318
2319 memset(scsi_serial, 0, sizeof(scsi_serial));
2320
2321 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2322
2323 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2324 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2325 fd2devname(fd, (char *) serial);
2326 return 0;
2327 }
2328
2329 if (rv != 0) {
2330 if (devname)
2331 fprintf(stderr,
2332 Name ": Failed to retrieve serial for %s\n",
2333 devname);
2334 return rv;
2335 }
2336
2337 rsp_len = scsi_serial[3];
2338 if (!rsp_len) {
2339 if (devname)
2340 fprintf(stderr,
2341 Name ": Failed to retrieve serial for %s\n",
2342 devname);
2343 return 2;
2344 }
2345 rsp_buf = (char *) &scsi_serial[4];
2346
2347 /* trim all whitespace and non-printable characters and convert
2348 * ':' to ';'
2349 */
2350 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2351 src = &rsp_buf[i];
2352 if (*src > 0x20) {
2353 /* ':' is reserved for use in placeholder serial
2354 * numbers for missing disks
2355 */
2356 if (*src == ':')
2357 *dest++ = ';';
2358 else
2359 *dest++ = *src;
2360 }
2361 }
2362 len = dest - rsp_buf;
2363 dest = rsp_buf;
2364
2365 /* truncate leading characters */
2366 if (len > MAX_RAID_SERIAL_LEN) {
2367 dest += len - MAX_RAID_SERIAL_LEN;
2368 len = MAX_RAID_SERIAL_LEN;
2369 }
2370
2371 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2372 memcpy(serial, dest, len);
2373
2374 return 0;
2375 }
2376
2377 static int serialcmp(__u8 *s1, __u8 *s2)
2378 {
2379 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2380 }
2381
2382 static void serialcpy(__u8 *dest, __u8 *src)
2383 {
2384 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2385 }
2386
2387 #ifndef MDASSEMBLE
2388 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2389 {
2390 struct dl *dl;
2391
2392 for (dl = super->disks; dl; dl = dl->next)
2393 if (serialcmp(dl->serial, serial) == 0)
2394 break;
2395
2396 return dl;
2397 }
2398 #endif
2399
2400 static struct imsm_disk *
2401 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2402 {
2403 int i;
2404
2405 for (i = 0; i < mpb->num_disks; i++) {
2406 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2407
2408 if (serialcmp(disk->serial, serial) == 0) {
2409 if (idx)
2410 *idx = i;
2411 return disk;
2412 }
2413 }
2414
2415 return NULL;
2416 }
2417
2418 static int
2419 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2420 {
2421 struct imsm_disk *disk;
2422 struct dl *dl;
2423 struct stat stb;
2424 int rv;
2425 char name[40];
2426 __u8 serial[MAX_RAID_SERIAL_LEN];
2427
2428 rv = imsm_read_serial(fd, devname, serial);
2429
2430 if (rv != 0)
2431 return 2;
2432
2433 dl = calloc(1, sizeof(*dl));
2434 if (!dl) {
2435 if (devname)
2436 fprintf(stderr,
2437 Name ": failed to allocate disk buffer for %s\n",
2438 devname);
2439 return 2;
2440 }
2441
2442 fstat(fd, &stb);
2443 dl->major = major(stb.st_rdev);
2444 dl->minor = minor(stb.st_rdev);
2445 dl->next = super->disks;
2446 dl->fd = keep_fd ? fd : -1;
2447 assert(super->disks == NULL);
2448 super->disks = dl;
2449 serialcpy(dl->serial, serial);
2450 dl->index = -2;
2451 dl->e = NULL;
2452 fd2devname(fd, name);
2453 if (devname)
2454 dl->devname = strdup(devname);
2455 else
2456 dl->devname = strdup(name);
2457
2458 /* look up this disk's index in the current anchor */
2459 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2460 if (disk) {
2461 dl->disk = *disk;
2462 /* only set index on disks that are a member of a
2463 * populated contianer, i.e. one with raid_devs
2464 */
2465 if (is_failed(&dl->disk))
2466 dl->index = -2;
2467 else if (is_spare(&dl->disk))
2468 dl->index = -1;
2469 }
2470
2471 return 0;
2472 }
2473
2474 #ifndef MDASSEMBLE
2475 /* When migrating map0 contains the 'destination' state while map1
2476 * contains the current state. When not migrating map0 contains the
2477 * current state. This routine assumes that map[0].map_state is set to
2478 * the current array state before being called.
2479 *
2480 * Migration is indicated by one of the following states
2481 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
2482 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
2483 * map1state=unitialized)
2484 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
2485 * map1state=normal)
2486 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
2487 * map1state=degraded)
2488 */
2489 static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
2490 {
2491 struct imsm_map *dest;
2492 struct imsm_map *src = get_imsm_map(dev, 0);
2493
2494 dev->vol.migr_state = 1;
2495 set_migr_type(dev, migr_type);
2496 dev->vol.curr_migr_unit = 0;
2497 dest = get_imsm_map(dev, 1);
2498
2499 /* duplicate and then set the target end state in map[0] */
2500 memcpy(dest, src, sizeof_imsm_map(src));
2501 if ((migr_type == MIGR_REBUILD) ||
2502 (migr_type == MIGR_GEN_MIGR)) {
2503 __u32 ord;
2504 int i;
2505
2506 for (i = 0; i < src->num_members; i++) {
2507 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2508 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2509 }
2510 }
2511
2512 src->map_state = to_state;
2513 }
2514
2515 static void end_migration(struct imsm_dev *dev, __u8 map_state)
2516 {
2517 struct imsm_map *map = get_imsm_map(dev, 0);
2518 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
2519 int i, j;
2520
2521 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2522 * completed in the last migration.
2523 *
2524 * FIXME add support for raid-level-migration
2525 */
2526 for (i = 0; i < prev->num_members; i++)
2527 for (j = 0; j < map->num_members; j++)
2528 /* during online capacity expansion
2529 * disks position can be changed if takeover is used
2530 */
2531 if (ord_to_idx(map->disk_ord_tbl[j]) ==
2532 ord_to_idx(prev->disk_ord_tbl[i])) {
2533 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
2534 break;
2535 }
2536
2537 dev->vol.migr_state = 0;
2538 dev->vol.migr_type = 0;
2539 dev->vol.curr_migr_unit = 0;
2540 map->map_state = map_state;
2541 }
2542 #endif
2543
2544 static int parse_raid_devices(struct intel_super *super)
2545 {
2546 int i;
2547 struct imsm_dev *dev_new;
2548 size_t len, len_migr;
2549 size_t max_len = 0;
2550 size_t space_needed = 0;
2551 struct imsm_super *mpb = super->anchor;
2552
2553 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2554 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2555 struct intel_dev *dv;
2556
2557 len = sizeof_imsm_dev(dev_iter, 0);
2558 len_migr = sizeof_imsm_dev(dev_iter, 1);
2559 if (len_migr > len)
2560 space_needed += len_migr - len;
2561
2562 dv = malloc(sizeof(*dv));
2563 if (!dv)
2564 return 1;
2565 if (max_len < len_migr)
2566 max_len = len_migr;
2567 if (max_len > len_migr)
2568 space_needed += max_len - len_migr;
2569 dev_new = malloc(max_len);
2570 if (!dev_new) {
2571 free(dv);
2572 return 1;
2573 }
2574 imsm_copy_dev(dev_new, dev_iter);
2575 dv->dev = dev_new;
2576 dv->index = i;
2577 dv->next = super->devlist;
2578 super->devlist = dv;
2579 }
2580
2581 /* ensure that super->buf is large enough when all raid devices
2582 * are migrating
2583 */
2584 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2585 void *buf;
2586
2587 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2588 if (posix_memalign(&buf, 512, len) != 0)
2589 return 1;
2590
2591 memcpy(buf, super->buf, super->len);
2592 memset(buf + super->len, 0, len - super->len);
2593 free(super->buf);
2594 super->buf = buf;
2595 super->len = len;
2596 }
2597
2598 return 0;
2599 }
2600
2601 /* retrieve a pointer to the bbm log which starts after all raid devices */
2602 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2603 {
2604 void *ptr = NULL;
2605
2606 if (__le32_to_cpu(mpb->bbm_log_size)) {
2607 ptr = mpb;
2608 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2609 }
2610
2611 return ptr;
2612 }
2613
2614 static void __free_imsm(struct intel_super *super, int free_disks);
2615
2616 /* load_imsm_mpb - read matrix metadata
2617 * allocates super->mpb to be freed by free_super
2618 */
2619 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
2620 {
2621 unsigned long long dsize;
2622 unsigned long long sectors;
2623 struct stat;
2624 struct imsm_super *anchor;
2625 __u32 check_sum;
2626
2627 get_dev_size(fd, NULL, &dsize);
2628 if (dsize < 1024) {
2629 if (devname)
2630 fprintf(stderr,
2631 Name ": %s: device to small for imsm\n",
2632 devname);
2633 return 1;
2634 }
2635
2636 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
2637 if (devname)
2638 fprintf(stderr,
2639 Name ": Cannot seek to anchor block on %s: %s\n",
2640 devname, strerror(errno));
2641 return 1;
2642 }
2643
2644 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
2645 if (devname)
2646 fprintf(stderr,
2647 Name ": Failed to allocate imsm anchor buffer"
2648 " on %s\n", devname);
2649 return 1;
2650 }
2651 if (read(fd, anchor, 512) != 512) {
2652 if (devname)
2653 fprintf(stderr,
2654 Name ": Cannot read anchor block on %s: %s\n",
2655 devname, strerror(errno));
2656 free(anchor);
2657 return 1;
2658 }
2659
2660 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
2661 if (devname)
2662 fprintf(stderr,
2663 Name ": no IMSM anchor on %s\n", devname);
2664 free(anchor);
2665 return 2;
2666 }
2667
2668 __free_imsm(super, 0);
2669 super->len = ROUND_UP(anchor->mpb_size, 512);
2670 if (posix_memalign(&super->buf, 512, super->len) != 0) {
2671 if (devname)
2672 fprintf(stderr,
2673 Name ": unable to allocate %zu byte mpb buffer\n",
2674 super->len);
2675 free(anchor);
2676 return 2;
2677 }
2678 memcpy(super->buf, anchor, 512);
2679
2680 sectors = mpb_sectors(anchor) - 1;
2681 free(anchor);
2682 if (!sectors) {
2683 check_sum = __gen_imsm_checksum(super->anchor);
2684 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2685 if (devname)
2686 fprintf(stderr,
2687 Name ": IMSM checksum %x != %x on %s\n",
2688 check_sum,
2689 __le32_to_cpu(super->anchor->check_sum),
2690 devname);
2691 return 2;
2692 }
2693
2694 return 0;
2695 }
2696
2697 /* read the extended mpb */
2698 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
2699 if (devname)
2700 fprintf(stderr,
2701 Name ": Cannot seek to extended mpb on %s: %s\n",
2702 devname, strerror(errno));
2703 return 1;
2704 }
2705
2706 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
2707 if (devname)
2708 fprintf(stderr,
2709 Name ": Cannot read extended mpb on %s: %s\n",
2710 devname, strerror(errno));
2711 return 2;
2712 }
2713
2714 check_sum = __gen_imsm_checksum(super->anchor);
2715 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2716 if (devname)
2717 fprintf(stderr,
2718 Name ": IMSM checksum %x != %x on %s\n",
2719 check_sum, __le32_to_cpu(super->anchor->check_sum),
2720 devname);
2721 return 3;
2722 }
2723
2724 /* FIXME the BBM log is disk specific so we cannot use this global
2725 * buffer for all disks. Ok for now since we only look at the global
2726 * bbm_log_size parameter to gate assembly
2727 */
2728 super->bbm_log = __get_imsm_bbm_log(super->anchor);
2729
2730 return 0;
2731 }
2732
2733 static int
2734 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
2735 {
2736 int err;
2737
2738 err = load_imsm_mpb(fd, super, devname);
2739 if (err)
2740 return err;
2741 err = load_imsm_disk(fd, super, devname, keep_fd);
2742 if (err)
2743 return err;
2744 err = parse_raid_devices(super);
2745
2746 return err;
2747 }
2748
2749 static void __free_imsm_disk(struct dl *d)
2750 {
2751 if (d->fd >= 0)
2752 close(d->fd);
2753 if (d->devname)
2754 free(d->devname);
2755 if (d->e)
2756 free(d->e);
2757 free(d);
2758
2759 }
2760
2761 static void free_imsm_disks(struct intel_super *super)
2762 {
2763 struct dl *d;
2764
2765 while (super->disks) {
2766 d = super->disks;
2767 super->disks = d->next;
2768 __free_imsm_disk(d);
2769 }
2770 while (super->disk_mgmt_list) {
2771 d = super->disk_mgmt_list;
2772 super->disk_mgmt_list = d->next;
2773 __free_imsm_disk(d);
2774 }
2775 while (super->missing) {
2776 d = super->missing;
2777 super->missing = d->next;
2778 __free_imsm_disk(d);
2779 }
2780
2781 }
2782
2783 /* free all the pieces hanging off of a super pointer */
2784 static void __free_imsm(struct intel_super *super, int free_disks)
2785 {
2786 struct intel_hba *elem, *next;
2787
2788 if (super->buf) {
2789 free(super->buf);
2790 super->buf = NULL;
2791 }
2792 if (free_disks)
2793 free_imsm_disks(super);
2794 free_devlist(super);
2795 elem = super->hba;
2796 while (elem) {
2797 if (elem->path)
2798 free((void *)elem->path);
2799 next = elem->next;
2800 free(elem);
2801 elem = next;
2802 }
2803 super->hba = NULL;
2804 }
2805
2806 static void free_imsm(struct intel_super *super)
2807 {
2808 __free_imsm(super, 1);
2809 free(super);
2810 }
2811
2812 static void free_super_imsm(struct supertype *st)
2813 {
2814 struct intel_super *super = st->sb;
2815
2816 if (!super)
2817 return;
2818
2819 free_imsm(super);
2820 st->sb = NULL;
2821 }
2822
2823 static struct intel_super *alloc_super(void)
2824 {
2825 struct intel_super *super = malloc(sizeof(*super));
2826
2827 if (super) {
2828 memset(super, 0, sizeof(*super));
2829 super->current_vol = -1;
2830 super->create_offset = ~((__u32 ) 0);
2831 if (!check_env("IMSM_NO_PLATFORM"))
2832 super->orom = find_imsm_orom();
2833 }
2834
2835 return super;
2836 }
2837
2838 #ifndef MDASSEMBLE
2839 /* find_missing - helper routine for load_super_imsm_all that identifies
2840 * disks that have disappeared from the system. This routine relies on
2841 * the mpb being uptodate, which it is at load time.
2842 */
2843 static int find_missing(struct intel_super *super)
2844 {
2845 int i;
2846 struct imsm_super *mpb = super->anchor;
2847 struct dl *dl;
2848 struct imsm_disk *disk;
2849
2850 for (i = 0; i < mpb->num_disks; i++) {
2851 disk = __get_imsm_disk(mpb, i);
2852 dl = serial_to_dl(disk->serial, super);
2853 if (dl)
2854 continue;
2855
2856 dl = malloc(sizeof(*dl));
2857 if (!dl)
2858 return 1;
2859 dl->major = 0;
2860 dl->minor = 0;
2861 dl->fd = -1;
2862 dl->devname = strdup("missing");
2863 dl->index = i;
2864 serialcpy(dl->serial, disk->serial);
2865 dl->disk = *disk;
2866 dl->e = NULL;
2867 dl->next = super->missing;
2868 super->missing = dl;
2869 }
2870
2871 return 0;
2872 }
2873
2874 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2875 {
2876 struct intel_disk *idisk = disk_list;
2877
2878 while (idisk) {
2879 if (serialcmp(idisk->disk.serial, serial) == 0)
2880 break;
2881 idisk = idisk->next;
2882 }
2883
2884 return idisk;
2885 }
2886
2887 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2888 struct intel_super *super,
2889 struct intel_disk **disk_list)
2890 {
2891 struct imsm_disk *d = &super->disks->disk;
2892 struct imsm_super *mpb = super->anchor;
2893 int i, j;
2894
2895 for (i = 0; i < tbl_size; i++) {
2896 struct imsm_super *tbl_mpb = table[i]->anchor;
2897 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2898
2899 if (tbl_mpb->family_num == mpb->family_num) {
2900 if (tbl_mpb->check_sum == mpb->check_sum) {
2901 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2902 __func__, super->disks->major,
2903 super->disks->minor,
2904 table[i]->disks->major,
2905 table[i]->disks->minor);
2906 break;
2907 }
2908
2909 if (((is_configured(d) && !is_configured(tbl_d)) ||
2910 is_configured(d) == is_configured(tbl_d)) &&
2911 tbl_mpb->generation_num < mpb->generation_num) {
2912 /* current version of the mpb is a
2913 * better candidate than the one in
2914 * super_table, but copy over "cross
2915 * generational" status
2916 */
2917 struct intel_disk *idisk;
2918
2919 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
2920 __func__, super->disks->major,
2921 super->disks->minor,
2922 table[i]->disks->major,
2923 table[i]->disks->minor);
2924
2925 idisk = disk_list_get(tbl_d->serial, *disk_list);
2926 if (idisk && is_failed(&idisk->disk))
2927 tbl_d->status |= FAILED_DISK;
2928 break;
2929 } else {
2930 struct intel_disk *idisk;
2931 struct imsm_disk *disk;
2932
2933 /* tbl_mpb is more up to date, but copy
2934 * over cross generational status before
2935 * returning
2936 */
2937 disk = __serial_to_disk(d->serial, mpb, NULL);
2938 if (disk && is_failed(disk))
2939 d->status |= FAILED_DISK;
2940
2941 idisk = disk_list_get(d->serial, *disk_list);
2942 if (idisk) {
2943 idisk->owner = i;
2944 if (disk && is_configured(disk))
2945 idisk->disk.status |= CONFIGURED_DISK;
2946 }
2947
2948 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
2949 __func__, super->disks->major,
2950 super->disks->minor,
2951 table[i]->disks->major,
2952 table[i]->disks->minor);
2953
2954 return tbl_size;
2955 }
2956 }
2957 }
2958
2959 if (i >= tbl_size)
2960 table[tbl_size++] = super;
2961 else
2962 table[i] = super;
2963
2964 /* update/extend the merged list of imsm_disk records */
2965 for (j = 0; j < mpb->num_disks; j++) {
2966 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
2967 struct intel_disk *idisk;
2968
2969 idisk = disk_list_get(disk->serial, *disk_list);
2970 if (idisk) {
2971 idisk->disk.status |= disk->status;
2972 if (is_configured(&idisk->disk) ||
2973 is_failed(&idisk->disk))
2974 idisk->disk.status &= ~(SPARE_DISK);
2975 } else {
2976 idisk = calloc(1, sizeof(*idisk));
2977 if (!idisk)
2978 return -1;
2979 idisk->owner = IMSM_UNKNOWN_OWNER;
2980 idisk->disk = *disk;
2981 idisk->next = *disk_list;
2982 *disk_list = idisk;
2983 }
2984
2985 if (serialcmp(idisk->disk.serial, d->serial) == 0)
2986 idisk->owner = i;
2987 }
2988
2989 return tbl_size;
2990 }
2991
2992 static struct intel_super *
2993 validate_members(struct intel_super *super, struct intel_disk *disk_list,
2994 const int owner)
2995 {
2996 struct imsm_super *mpb = super->anchor;
2997 int ok_count = 0;
2998 int i;
2999
3000 for (i = 0; i < mpb->num_disks; i++) {
3001 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3002 struct intel_disk *idisk;
3003
3004 idisk = disk_list_get(disk->serial, disk_list);
3005 if (idisk) {
3006 if (idisk->owner == owner ||
3007 idisk->owner == IMSM_UNKNOWN_OWNER)
3008 ok_count++;
3009 else
3010 dprintf("%s: '%.16s' owner %d != %d\n",
3011 __func__, disk->serial, idisk->owner,
3012 owner);
3013 } else {
3014 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3015 __func__, __le32_to_cpu(mpb->family_num), i,
3016 disk->serial);
3017 break;
3018 }
3019 }
3020
3021 if (ok_count == mpb->num_disks)
3022 return super;
3023 return NULL;
3024 }
3025
3026 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3027 {
3028 struct intel_super *s;
3029
3030 for (s = super_list; s; s = s->next) {
3031 if (family_num != s->anchor->family_num)
3032 continue;
3033 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3034 __le32_to_cpu(family_num), s->disks->devname);
3035 }
3036 }
3037
3038 static struct intel_super *
3039 imsm_thunderdome(struct intel_super **super_list, int len)
3040 {
3041 struct intel_super *super_table[len];
3042 struct intel_disk *disk_list = NULL;
3043 struct intel_super *champion, *spare;
3044 struct intel_super *s, **del;
3045 int tbl_size = 0;
3046 int conflict;
3047 int i;
3048
3049 memset(super_table, 0, sizeof(super_table));
3050 for (s = *super_list; s; s = s->next)
3051 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3052
3053 for (i = 0; i < tbl_size; i++) {
3054 struct imsm_disk *d;
3055 struct intel_disk *idisk;
3056 struct imsm_super *mpb = super_table[i]->anchor;
3057
3058 s = super_table[i];
3059 d = &s->disks->disk;
3060
3061 /* 'd' must appear in merged disk list for its
3062 * configuration to be valid
3063 */
3064 idisk = disk_list_get(d->serial, disk_list);
3065 if (idisk && idisk->owner == i)
3066 s = validate_members(s, disk_list, i);
3067 else
3068 s = NULL;
3069
3070 if (!s)
3071 dprintf("%s: marking family: %#x from %d:%d offline\n",
3072 __func__, mpb->family_num,
3073 super_table[i]->disks->major,
3074 super_table[i]->disks->minor);
3075 super_table[i] = s;
3076 }
3077
3078 /* This is where the mdadm implementation differs from the Windows
3079 * driver which has no strict concept of a container. We can only
3080 * assemble one family from a container, so when returning a prodigal
3081 * array member to this system the code will not be able to disambiguate
3082 * the container contents that should be assembled ("foreign" versus
3083 * "local"). It requires user intervention to set the orig_family_num
3084 * to a new value to establish a new container. The Windows driver in
3085 * this situation fixes up the volume name in place and manages the
3086 * foreign array as an independent entity.
3087 */
3088 s = NULL;
3089 spare = NULL;
3090 conflict = 0;
3091 for (i = 0; i < tbl_size; i++) {
3092 struct intel_super *tbl_ent = super_table[i];
3093 int is_spare = 0;
3094
3095 if (!tbl_ent)
3096 continue;
3097
3098 if (tbl_ent->anchor->num_raid_devs == 0) {
3099 spare = tbl_ent;
3100 is_spare = 1;
3101 }
3102
3103 if (s && !is_spare) {
3104 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3105 conflict++;
3106 } else if (!s && !is_spare)
3107 s = tbl_ent;
3108 }
3109
3110 if (!s)
3111 s = spare;
3112 if (!s) {
3113 champion = NULL;
3114 goto out;
3115 }
3116 champion = s;
3117
3118 if (conflict)
3119 fprintf(stderr, "Chose family %#x on '%s', "
3120 "assemble conflicts to new container with '--update=uuid'\n",
3121 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3122
3123 /* collect all dl's onto 'champion', and update them to
3124 * champion's version of the status
3125 */
3126 for (s = *super_list; s; s = s->next) {
3127 struct imsm_super *mpb = champion->anchor;
3128 struct dl *dl = s->disks;
3129
3130 if (s == champion)
3131 continue;
3132
3133 for (i = 0; i < mpb->num_disks; i++) {
3134 struct imsm_disk *disk;
3135
3136 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3137 if (disk) {
3138 dl->disk = *disk;
3139 /* only set index on disks that are a member of
3140 * a populated contianer, i.e. one with
3141 * raid_devs
3142 */
3143 if (is_failed(&dl->disk))
3144 dl->index = -2;
3145 else if (is_spare(&dl->disk))
3146 dl->index = -1;
3147 break;
3148 }
3149 }
3150
3151 if (i >= mpb->num_disks) {
3152 struct intel_disk *idisk;
3153
3154 idisk = disk_list_get(dl->serial, disk_list);
3155 if (idisk && is_spare(&idisk->disk) &&
3156 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3157 dl->index = -1;
3158 else {
3159 dl->index = -2;
3160 continue;
3161 }
3162 }
3163
3164 dl->next = champion->disks;
3165 champion->disks = dl;
3166 s->disks = NULL;
3167 }
3168
3169 /* delete 'champion' from super_list */
3170 for (del = super_list; *del; ) {
3171 if (*del == champion) {
3172 *del = (*del)->next;
3173 break;
3174 } else
3175 del = &(*del)->next;
3176 }
3177 champion->next = NULL;
3178
3179 out:
3180 while (disk_list) {
3181 struct intel_disk *idisk = disk_list;
3182
3183 disk_list = disk_list->next;
3184 free(idisk);
3185 }
3186
3187 return champion;
3188 }
3189
3190 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3191 char *devname)
3192 {
3193 struct mdinfo *sra;
3194 struct intel_super *super_list = NULL;
3195 struct intel_super *super = NULL;
3196 int devnum = fd2devnum(fd);
3197 struct mdinfo *sd;
3198 int retry;
3199 int err = 0;
3200 int i;
3201
3202 /* check if 'fd' an opened container */
3203 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3204 if (!sra)
3205 return 1;
3206
3207 if (sra->array.major_version != -1 ||
3208 sra->array.minor_version != -2 ||
3209 strcmp(sra->text_version, "imsm") != 0) {
3210 err = 1;
3211 goto error;
3212 }
3213 /* load all mpbs */
3214 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3215 struct intel_super *s = alloc_super();
3216 char nm[32];
3217 int dfd;
3218
3219 err = 1;
3220 if (!s)
3221 goto error;
3222 s->next = super_list;
3223 super_list = s;
3224
3225 err = 2;
3226 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3227 dfd = dev_open(nm, O_RDWR);
3228 if (dfd < 0)
3229 goto error;
3230
3231 err = load_and_parse_mpb(dfd, s, NULL, 1);
3232
3233 /* retry the load if we might have raced against mdmon */
3234 if (err == 3 && mdmon_running(devnum))
3235 for (retry = 0; retry < 3; retry++) {
3236 usleep(3000);
3237 err = load_and_parse_mpb(dfd, s, NULL, 1);
3238 if (err != 3)
3239 break;
3240 }
3241 if (err)
3242 goto error;
3243 }
3244
3245 /* all mpbs enter, maybe one leaves */
3246 super = imsm_thunderdome(&super_list, i);
3247 if (!super) {
3248 err = 1;
3249 goto error;
3250 }
3251
3252 if (find_missing(super) != 0) {
3253 free_imsm(super);
3254 err = 2;
3255 goto error;
3256 }
3257 err = 0;
3258
3259 error:
3260 while (super_list) {
3261 struct intel_super *s = super_list;
3262
3263 super_list = super_list->next;
3264 free_imsm(s);
3265 }
3266 sysfs_free(sra);
3267
3268 if (err)
3269 return err;
3270
3271 *sbp = super;
3272 st->container_dev = devnum;
3273 if (err == 0 && st->ss == NULL) {
3274 st->ss = &super_imsm;
3275 st->minor_version = 0;
3276 st->max_devs = IMSM_MAX_DEVICES;
3277 }
3278 return 0;
3279 }
3280
3281 static int load_container_imsm(struct supertype *st, int fd, char *devname)
3282 {
3283 return load_super_imsm_all(st, fd, &st->sb, devname);
3284 }
3285 #endif
3286
3287 static int load_super_imsm(struct supertype *st, int fd, char *devname)
3288 {
3289 struct intel_super *super;
3290 int rv;
3291
3292 if (test_partition(fd))
3293 /* IMSM not allowed on partitions */
3294 return 1;
3295
3296 free_super_imsm(st);
3297
3298 super = alloc_super();
3299 if (!super) {
3300 fprintf(stderr,
3301 Name ": malloc of %zu failed.\n",
3302 sizeof(*super));
3303 return 1;
3304 }
3305
3306 rv = load_and_parse_mpb(fd, super, devname, 0);
3307
3308 if (rv) {
3309 if (devname)
3310 fprintf(stderr,
3311 Name ": Failed to load all information "
3312 "sections on %s\n", devname);
3313 free_imsm(super);
3314 return rv;
3315 }
3316
3317 st->sb = super;
3318 if (st->ss == NULL) {
3319 st->ss = &super_imsm;
3320 st->minor_version = 0;
3321 st->max_devs = IMSM_MAX_DEVICES;
3322 }
3323 return 0;
3324 }
3325
3326 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3327 {
3328 if (info->level == 1)
3329 return 128;
3330 return info->chunk_size >> 9;
3331 }
3332
3333 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
3334 {
3335 __u32 num_stripes;
3336
3337 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
3338 num_stripes /= num_domains;
3339
3340 return num_stripes;
3341 }
3342
3343 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
3344 {
3345 if (info->level == 1)
3346 return info->size * 2;
3347 else
3348 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
3349 }
3350
3351 static void imsm_update_version_info(struct intel_super *super)
3352 {
3353 /* update the version and attributes */
3354 struct imsm_super *mpb = super->anchor;
3355 char *version;
3356 struct imsm_dev *dev;
3357 struct imsm_map *map;
3358 int i;
3359
3360 for (i = 0; i < mpb->num_raid_devs; i++) {
3361 dev = get_imsm_dev(super, i);
3362 map = get_imsm_map(dev, 0);
3363 if (__le32_to_cpu(dev->size_high) > 0)
3364 mpb->attributes |= MPB_ATTRIB_2TB;
3365
3366 /* FIXME detect when an array spans a port multiplier */
3367 #if 0
3368 mpb->attributes |= MPB_ATTRIB_PM;
3369 #endif
3370
3371 if (mpb->num_raid_devs > 1 ||
3372 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
3373 version = MPB_VERSION_ATTRIBS;
3374 switch (get_imsm_raid_level(map)) {
3375 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
3376 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
3377 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
3378 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
3379 }
3380 } else {
3381 if (map->num_members >= 5)
3382 version = MPB_VERSION_5OR6_DISK_ARRAY;
3383 else if (dev->status == DEV_CLONE_N_GO)
3384 version = MPB_VERSION_CNG;
3385 else if (get_imsm_raid_level(map) == 5)
3386 version = MPB_VERSION_RAID5;
3387 else if (map->num_members >= 3)
3388 version = MPB_VERSION_3OR4_DISK_ARRAY;
3389 else if (get_imsm_raid_level(map) == 1)
3390 version = MPB_VERSION_RAID1;
3391 else
3392 version = MPB_VERSION_RAID0;
3393 }
3394 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
3395 }
3396 }
3397
3398 static int check_name(struct intel_super *super, char *name, int quiet)
3399 {
3400 struct imsm_super *mpb = super->anchor;
3401 char *reason = NULL;
3402 int i;
3403
3404 if (strlen(name) > MAX_RAID_SERIAL_LEN)
3405 reason = "must be 16 characters or less";
3406
3407 for (i = 0; i < mpb->num_raid_devs; i++) {
3408 struct imsm_dev *dev = get_imsm_dev(super, i);
3409
3410 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
3411 reason = "already exists";
3412 break;
3413 }
3414 }
3415
3416 if (reason && !quiet)
3417 fprintf(stderr, Name ": imsm volume name %s\n", reason);
3418
3419 return !reason;
3420 }
3421
3422 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
3423 unsigned long long size, char *name,
3424 char *homehost, int *uuid)
3425 {
3426 /* We are creating a volume inside a pre-existing container.
3427 * so st->sb is already set.
3428 */
3429 struct intel_super *super = st->sb;
3430 struct imsm_super *mpb = super->anchor;
3431 struct intel_dev *dv;
3432 struct imsm_dev *dev;
3433 struct imsm_vol *vol;
3434 struct imsm_map *map;
3435 int idx = mpb->num_raid_devs;
3436 int i;
3437 unsigned long long array_blocks;
3438 size_t size_old, size_new;
3439 __u32 num_data_stripes;
3440
3441 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
3442 fprintf(stderr, Name": This imsm-container already has the "
3443 "maximum of %d volumes\n", super->orom->vpa);
3444 return 0;
3445 }
3446
3447 /* ensure the mpb is large enough for the new data */
3448 size_old = __le32_to_cpu(mpb->mpb_size);
3449 size_new = disks_to_mpb_size(info->nr_disks);
3450 if (size_new > size_old) {
3451 void *mpb_new;
3452 size_t size_round = ROUND_UP(size_new, 512);
3453
3454 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
3455 fprintf(stderr, Name": could not allocate new mpb\n");
3456 return 0;
3457 }
3458 memcpy(mpb_new, mpb, size_old);
3459 free(mpb);
3460 mpb = mpb_new;
3461 super->anchor = mpb_new;
3462 mpb->mpb_size = __cpu_to_le32(size_new);
3463 memset(mpb_new + size_old, 0, size_round - size_old);
3464 }
3465 super->current_vol = idx;
3466 /* when creating the first raid device in this container set num_disks
3467 * to zero, i.e. delete this spare and add raid member devices in
3468 * add_to_super_imsm_volume()
3469 */
3470 if (super->current_vol == 0)
3471 mpb->num_disks = 0;
3472
3473 if (!check_name(super, name, 0))
3474 return 0;
3475 dv = malloc(sizeof(*dv));
3476 if (!dv) {
3477 fprintf(stderr, Name ": failed to allocate device list entry\n");
3478 return 0;
3479 }
3480 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
3481 if (!dev) {
3482 free(dv);
3483 fprintf(stderr, Name": could not allocate raid device\n");
3484 return 0;
3485 }
3486
3487 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
3488 if (info->level == 1)
3489 array_blocks = info_to_blocks_per_member(info);
3490 else
3491 array_blocks = calc_array_size(info->level, info->raid_disks,
3492 info->layout, info->chunk_size,
3493 info->size*2);
3494 /* round array size down to closest MB */
3495 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
3496
3497 dev->size_low = __cpu_to_le32((__u32) array_blocks);
3498 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
3499 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
3500 vol = &dev->vol;
3501 vol->migr_state = 0;
3502 set_migr_type(dev, MIGR_INIT);
3503 vol->dirty = 0;
3504 vol->curr_migr_unit = 0;
3505 map = get_imsm_map(dev, 0);
3506 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
3507 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
3508 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
3509 map->failed_disk_num = ~0;
3510 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
3511 IMSM_T_STATE_NORMAL;
3512 map->ddf = 1;
3513
3514 if (info->level == 1 && info->raid_disks > 2) {
3515 free(dev);
3516 free(dv);
3517 fprintf(stderr, Name": imsm does not support more than 2 disks"
3518 "in a raid1 volume\n");
3519 return 0;
3520 }
3521
3522 map->raid_level = info->level;
3523 if (info->level == 10) {
3524 map->raid_level = 1;
3525 map->num_domains = info->raid_disks / 2;
3526 } else if (info->level == 1)
3527 map->num_domains = info->raid_disks;
3528 else
3529 map->num_domains = 1;
3530
3531 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
3532 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
3533
3534 map->num_members = info->raid_disks;
3535 for (i = 0; i < map->num_members; i++) {
3536 /* initialized in add_to_super */
3537 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
3538 }
3539 mpb->num_raid_devs++;
3540
3541 dv->dev = dev;
3542 dv->index = super->current_vol;
3543 dv->next = super->devlist;
3544 super->devlist = dv;
3545
3546 imsm_update_version_info(super);
3547
3548 return 1;
3549 }
3550
3551 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
3552 unsigned long long size, char *name,
3553 char *homehost, int *uuid)
3554 {
3555 /* This is primarily called by Create when creating a new array.
3556 * We will then get add_to_super called for each component, and then
3557 * write_init_super called to write it out to each device.
3558 * For IMSM, Create can create on fresh devices or on a pre-existing
3559 * array.
3560 * To create on a pre-existing array a different method will be called.
3561 * This one is just for fresh drives.
3562 */
3563 struct intel_super *super;
3564 struct imsm_super *mpb;
3565 size_t mpb_size;
3566 char *version;
3567
3568 if (st->sb)
3569 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
3570
3571 if (info)
3572 mpb_size = disks_to_mpb_size(info->nr_disks);
3573 else
3574 mpb_size = 512;
3575
3576 super = alloc_super();
3577 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
3578 free(super);
3579 super = NULL;
3580 }
3581 if (!super) {
3582 fprintf(stderr, Name
3583 ": %s could not allocate superblock\n", __func__);
3584 return 0;
3585 }
3586 memset(super->buf, 0, mpb_size);
3587 mpb = super->buf;
3588 mpb->mpb_size = __cpu_to_le32(mpb_size);
3589 st->sb = super;
3590
3591 if (info == NULL) {
3592 /* zeroing superblock */
3593 return 0;
3594 }
3595
3596 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3597
3598 version = (char *) mpb->sig;
3599 strcpy(version, MPB_SIGNATURE);
3600 version += strlen(MPB_SIGNATURE);
3601 strcpy(version, MPB_VERSION_RAID0);
3602
3603 return 1;
3604 }
3605
3606 #ifndef MDASSEMBLE
3607 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
3608 int fd, char *devname)
3609 {
3610 struct intel_super *super = st->sb;
3611 struct imsm_super *mpb = super->anchor;
3612 struct dl *dl;
3613 struct imsm_dev *dev;
3614 struct imsm_map *map;
3615 int slot;
3616
3617 dev = get_imsm_dev(super, super->current_vol);
3618 map = get_imsm_map(dev, 0);
3619
3620 if (! (dk->state & (1<<MD_DISK_SYNC))) {
3621 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
3622 devname);
3623 return 1;
3624 }
3625
3626 if (fd == -1) {
3627 /* we're doing autolayout so grab the pre-marked (in
3628 * validate_geometry) raid_disk
3629 */
3630 for (dl = super->disks; dl; dl = dl->next)
3631 if (dl->raiddisk == dk->raid_disk)
3632 break;
3633 } else {
3634 for (dl = super->disks; dl ; dl = dl->next)
3635 if (dl->major == dk->major &&
3636 dl->minor == dk->minor)
3637 break;
3638 }
3639
3640 if (!dl) {
3641 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
3642 return 1;
3643 }
3644
3645 /* add a pristine spare to the metadata */
3646 if (dl->index < 0) {
3647 dl->index = super->anchor->num_disks;
3648 super->anchor->num_disks++;
3649 }
3650 /* Check the device has not already been added */
3651 slot = get_imsm_disk_slot(map, dl->index);
3652 if (slot >= 0 &&
3653 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
3654 fprintf(stderr, Name ": %s has been included in this array twice\n",
3655 devname);
3656 return 1;
3657 }
3658 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
3659 dl->disk.status = CONFIGURED_DISK;
3660
3661 /* if we are creating the first raid device update the family number */
3662 if (super->current_vol == 0) {
3663 __u32 sum;
3664 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
3665 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
3666
3667 if (!_dev || !_disk) {
3668 fprintf(stderr, Name ": BUG mpb setup error\n");
3669 return 1;
3670 }
3671 *_dev = *dev;
3672 *_disk = dl->disk;
3673 sum = random32();
3674 sum += __gen_imsm_checksum(mpb);
3675 mpb->family_num = __cpu_to_le32(sum);
3676 mpb->orig_family_num = mpb->family_num;
3677 }
3678
3679 return 0;
3680 }
3681
3682
3683 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
3684 int fd, char *devname)
3685 {
3686 struct intel_super *super = st->sb;
3687 struct dl *dd;
3688 unsigned long long size;
3689 __u32 id;
3690 int rv;
3691 struct stat stb;
3692
3693 /* If we are on an RAID enabled platform check that the disk is
3694 * attached to the raid controller.
3695 * We do not need to test disks attachment for container based additions,
3696 * they shall be already tested when container was created/assembled.
3697 */
3698 if ((fd != -1) && !check_env("IMSM_NO_PLATFORM")) {
3699 struct sys_dev *hba_name;
3700 struct intel_hba *hba;
3701
3702 hba_name = find_disk_attached_hba(fd, NULL);
3703 if (!hba_name) {
3704 fprintf(stderr,
3705 Name ": %s is not attached to Intel(R) RAID controller.\n",
3706 devname ? : "disk");
3707 return 1;
3708 }
3709 rv = attach_hba_to_super(super, hba_name);
3710 switch (rv) {
3711 case 2:
3712 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3713 "controller (%s),\n but the container is assigned to Intel(R) "
3714 "%s RAID controller (",
3715 devname,
3716 get_sys_dev_type(hba_name->type),
3717 hba_name->pci_id ? : "Err!",
3718 get_sys_dev_type(hba_name->type));
3719
3720 hba = super->hba;
3721 while (hba) {
3722 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3723 if (hba->next)
3724 fprintf(stderr, ", ");
3725 hba = hba->next;
3726 }
3727
3728 fprintf(stderr, ").\n"
3729 " Mixing devices attached to different controllers "
3730 "is not allowed.\n");
3731 free_sys_dev(&hba_name);
3732 return 1;
3733 }
3734 free_sys_dev(&hba_name);
3735 }
3736
3737 if (super->current_vol >= 0)
3738 return add_to_super_imsm_volume(st, dk, fd, devname);
3739
3740 fstat(fd, &stb);
3741 dd = malloc(sizeof(*dd));
3742 if (!dd) {
3743 fprintf(stderr,
3744 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3745 return 1;
3746 }
3747 memset(dd, 0, sizeof(*dd));
3748 dd->major = major(stb.st_rdev);
3749 dd->minor = minor(stb.st_rdev);
3750 dd->index = -1;
3751 dd->devname = devname ? strdup(devname) : NULL;
3752 dd->fd = fd;
3753 dd->e = NULL;
3754 dd->action = DISK_ADD;
3755 rv = imsm_read_serial(fd, devname, dd->serial);
3756 if (rv) {
3757 fprintf(stderr,
3758 Name ": failed to retrieve scsi serial, aborting\n");
3759 free(dd);
3760 abort();
3761 }
3762
3763 get_dev_size(fd, NULL, &size);
3764 size /= 512;
3765 serialcpy(dd->disk.serial, dd->serial);
3766 dd->disk.total_blocks = __cpu_to_le32(size);
3767 dd->disk.status = SPARE_DISK;
3768 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
3769 dd->disk.scsi_id = __cpu_to_le32(id);
3770 else
3771 dd->disk.scsi_id = __cpu_to_le32(0);
3772
3773 if (st->update_tail) {
3774 dd->next = super->disk_mgmt_list;
3775 super->disk_mgmt_list = dd;
3776 } else {
3777 dd->next = super->disks;
3778 super->disks = dd;
3779 }
3780
3781 return 0;
3782 }
3783
3784
3785 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
3786 {
3787 struct intel_super *super = st->sb;
3788 struct dl *dd;
3789
3790 /* remove from super works only in mdmon - for communication
3791 * manager - monitor. Check if communication memory buffer
3792 * is prepared.
3793 */
3794 if (!st->update_tail) {
3795 fprintf(stderr,
3796 Name ": %s shall be used in mdmon context only"
3797 "(line %d).\n", __func__, __LINE__);
3798 return 1;
3799 }
3800 dd = malloc(sizeof(*dd));
3801 if (!dd) {
3802 fprintf(stderr,
3803 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3804 return 1;
3805 }
3806 memset(dd, 0, sizeof(*dd));
3807 dd->major = dk->major;
3808 dd->minor = dk->minor;
3809 dd->index = -1;
3810 dd->fd = -1;
3811 dd->disk.status = SPARE_DISK;
3812 dd->action = DISK_REMOVE;
3813
3814 dd->next = super->disk_mgmt_list;
3815 super->disk_mgmt_list = dd;
3816
3817
3818 return 0;
3819 }
3820
3821 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
3822
3823 static union {
3824 char buf[512];
3825 struct imsm_super anchor;
3826 } spare_record __attribute__ ((aligned(512)));
3827
3828 /* spare records have their own family number and do not have any defined raid
3829 * devices
3830 */
3831 static int write_super_imsm_spares(struct intel_super *super, int doclose)
3832 {
3833 struct imsm_super *mpb = super->anchor;
3834 struct imsm_super *spare = &spare_record.anchor;
3835 __u32 sum;
3836 struct dl *d;
3837
3838 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
3839 spare->generation_num = __cpu_to_le32(1UL),
3840 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3841 spare->num_disks = 1,
3842 spare->num_raid_devs = 0,
3843 spare->cache_size = mpb->cache_size,
3844 spare->pwr_cycle_count = __cpu_to_le32(1),
3845
3846 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
3847 MPB_SIGNATURE MPB_VERSION_RAID0);
3848
3849 for (d = super->disks; d; d = d->next) {
3850 if (d->index != -1)
3851 continue;
3852
3853 spare->disk[0] = d->disk;
3854 sum = __gen_imsm_checksum(spare);
3855 spare->family_num = __cpu_to_le32(sum);
3856 spare->orig_family_num = 0;
3857 sum = __gen_imsm_checksum(spare);
3858 spare->check_sum = __cpu_to_le32(sum);
3859
3860 if (store_imsm_mpb(d->fd, spare)) {
3861 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3862 __func__, d->major, d->minor, strerror(errno));
3863 return 1;
3864 }
3865 if (doclose) {
3866 close(d->fd);
3867 d->fd = -1;
3868 }
3869 }
3870
3871 return 0;
3872 }
3873
3874 static int write_super_imsm(struct supertype *st, int doclose)
3875 {
3876 struct intel_super *super = st->sb;
3877 struct imsm_super *mpb = super->anchor;
3878 struct dl *d;
3879 __u32 generation;
3880 __u32 sum;
3881 int spares = 0;
3882 int i;
3883 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
3884 int num_disks = 0;
3885
3886 /* 'generation' is incremented everytime the metadata is written */
3887 generation = __le32_to_cpu(mpb->generation_num);
3888 generation++;
3889 mpb->generation_num = __cpu_to_le32(generation);
3890
3891 /* fix up cases where previous mdadm releases failed to set
3892 * orig_family_num
3893 */
3894 if (mpb->orig_family_num == 0)
3895 mpb->orig_family_num = mpb->family_num;
3896
3897 for (d = super->disks; d; d = d->next) {
3898 if (d->index == -1)
3899 spares++;
3900 else {
3901 mpb->disk[d->index] = d->disk;
3902 num_disks++;
3903 }
3904 }
3905 for (d = super->missing; d; d = d->next) {
3906 mpb->disk[d->index] = d->disk;
3907 num_disks++;
3908 }
3909 mpb->num_disks = num_disks;
3910 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
3911
3912 for (i = 0; i < mpb->num_raid_devs; i++) {
3913 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3914 struct imsm_dev *dev2 = get_imsm_dev(super, i);
3915 if (dev && dev2) {
3916 imsm_copy_dev(dev, dev2);
3917 mpb_size += sizeof_imsm_dev(dev, 0);
3918 }
3919 }
3920 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
3921 mpb->mpb_size = __cpu_to_le32(mpb_size);
3922
3923 /* recalculate checksum */
3924 sum = __gen_imsm_checksum(mpb);
3925 mpb->check_sum = __cpu_to_le32(sum);
3926
3927 /* write the mpb for disks that compose raid devices */
3928 for (d = super->disks; d ; d = d->next) {
3929 if (d->index < 0)
3930 continue;
3931 if (store_imsm_mpb(d->fd, mpb))
3932 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3933 __func__, d->major, d->minor, strerror(errno));
3934 if (doclose) {
3935 close(d->fd);
3936 d->fd = -1;
3937 }
3938 }
3939
3940 if (spares)
3941 return write_super_imsm_spares(super, doclose);
3942
3943 return 0;
3944 }
3945
3946
3947 static int create_array(struct supertype *st, int dev_idx)
3948 {
3949 size_t len;
3950 struct imsm_update_create_array *u;
3951 struct intel_super *super = st->sb;
3952 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3953 struct imsm_map *map = get_imsm_map(dev, 0);
3954 struct disk_info *inf;
3955 struct imsm_disk *disk;
3956 int i;
3957
3958 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
3959 sizeof(*inf) * map->num_members;
3960 u = malloc(len);
3961 if (!u) {
3962 fprintf(stderr, "%s: failed to allocate update buffer\n",
3963 __func__);
3964 return 1;
3965 }
3966
3967 u->type = update_create_array;
3968 u->dev_idx = dev_idx;
3969 imsm_copy_dev(&u->dev, dev);
3970 inf = get_disk_info(u);
3971 for (i = 0; i < map->num_members; i++) {
3972 int idx = get_imsm_disk_idx(dev, i, -1);
3973
3974 disk = get_imsm_disk(super, idx);
3975 serialcpy(inf[i].serial, disk->serial);
3976 }
3977 append_metadata_update(st, u, len);
3978
3979 return 0;
3980 }
3981
3982 static int mgmt_disk(struct supertype *st)
3983 {
3984 struct intel_super *super = st->sb;
3985 size_t len;
3986 struct imsm_update_add_remove_disk *u;
3987
3988 if (!super->disk_mgmt_list)
3989 return 0;
3990
3991 len = sizeof(*u);
3992 u = malloc(len);
3993 if (!u) {
3994 fprintf(stderr, "%s: failed to allocate update buffer\n",
3995 __func__);
3996 return 1;
3997 }
3998
3999 u->type = update_add_remove_disk;
4000 append_metadata_update(st, u, len);
4001
4002 return 0;
4003 }
4004
4005 static int write_init_super_imsm(struct supertype *st)
4006 {
4007 struct intel_super *super = st->sb;
4008 int current_vol = super->current_vol;
4009
4010 /* we are done with current_vol reset it to point st at the container */
4011 super->current_vol = -1;
4012
4013 if (st->update_tail) {
4014 /* queue the recently created array / added disk
4015 * as a metadata update */
4016 int rv;
4017
4018 /* determine if we are creating a volume or adding a disk */
4019 if (current_vol < 0) {
4020 /* in the mgmt (add/remove) disk case we are running
4021 * in mdmon context, so don't close fd's
4022 */
4023 return mgmt_disk(st);
4024 } else
4025 rv = create_array(st, current_vol);
4026
4027 return rv;
4028 } else {
4029 struct dl *d;
4030 for (d = super->disks; d; d = d->next)
4031 Kill(d->devname, NULL, 0, 1, 1);
4032 return write_super_imsm(st, 1);
4033 }
4034 }
4035 #endif
4036
4037 static int store_super_imsm(struct supertype *st, int fd)
4038 {
4039 struct intel_super *super = st->sb;
4040 struct imsm_super *mpb = super ? super->anchor : NULL;
4041
4042 if (!mpb)
4043 return 1;
4044
4045 #ifndef MDASSEMBLE
4046 return store_imsm_mpb(fd, mpb);
4047 #else
4048 return 1;
4049 #endif
4050 }
4051
4052 static int imsm_bbm_log_size(struct imsm_super *mpb)
4053 {
4054 return __le32_to_cpu(mpb->bbm_log_size);
4055 }
4056
4057 #ifndef MDASSEMBLE
4058 static int validate_geometry_imsm_container(struct supertype *st, int level,
4059 int layout, int raiddisks, int chunk,
4060 unsigned long long size, char *dev,
4061 unsigned long long *freesize,
4062 int verbose)
4063 {
4064 int fd;
4065 unsigned long long ldsize;
4066 const struct imsm_orom *orom;
4067
4068 if (level != LEVEL_CONTAINER)
4069 return 0;
4070 if (!dev)
4071 return 1;
4072
4073 if (check_env("IMSM_NO_PLATFORM"))
4074 orom = NULL;
4075 else
4076 orom = find_imsm_orom();
4077 if (orom && raiddisks > orom->tds) {
4078 if (verbose)
4079 fprintf(stderr, Name ": %d exceeds maximum number of"
4080 " platform supported disks: %d\n",
4081 raiddisks, orom->tds);
4082 return 0;
4083 }
4084
4085 fd = open(dev, O_RDONLY|O_EXCL, 0);
4086 if (fd < 0) {
4087 if (verbose)
4088 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4089 dev, strerror(errno));
4090 return 0;
4091 }
4092 if (!get_dev_size(fd, dev, &ldsize)) {
4093 close(fd);
4094 return 0;
4095 }
4096 close(fd);
4097
4098 *freesize = avail_size_imsm(st, ldsize >> 9);
4099
4100 return 1;
4101 }
4102
4103 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4104 {
4105 const unsigned long long base_start = e[*idx].start;
4106 unsigned long long end = base_start + e[*idx].size;
4107 int i;
4108
4109 if (base_start == end)
4110 return 0;
4111
4112 *idx = *idx + 1;
4113 for (i = *idx; i < num_extents; i++) {
4114 /* extend overlapping extents */
4115 if (e[i].start >= base_start &&
4116 e[i].start <= end) {
4117 if (e[i].size == 0)
4118 return 0;
4119 if (e[i].start + e[i].size > end)
4120 end = e[i].start + e[i].size;
4121 } else if (e[i].start > end) {
4122 *idx = i;
4123 break;
4124 }
4125 }
4126
4127 return end - base_start;
4128 }
4129
4130 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4131 {
4132 /* build a composite disk with all known extents and generate a new
4133 * 'maxsize' given the "all disks in an array must share a common start
4134 * offset" constraint
4135 */
4136 struct extent *e = calloc(sum_extents, sizeof(*e));
4137 struct dl *dl;
4138 int i, j;
4139 int start_extent;
4140 unsigned long long pos;
4141 unsigned long long start = 0;
4142 unsigned long long maxsize;
4143 unsigned long reserve;
4144
4145 if (!e)
4146 return 0;
4147
4148 /* coalesce and sort all extents. also, check to see if we need to
4149 * reserve space between member arrays
4150 */
4151 j = 0;
4152 for (dl = super->disks; dl; dl = dl->next) {
4153 if (!dl->e)
4154 continue;
4155 for (i = 0; i < dl->extent_cnt; i++)
4156 e[j++] = dl->e[i];
4157 }
4158 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4159
4160 /* merge extents */
4161 i = 0;
4162 j = 0;
4163 while (i < sum_extents) {
4164 e[j].start = e[i].start;
4165 e[j].size = find_size(e, &i, sum_extents);
4166 j++;
4167 if (e[j-1].size == 0)
4168 break;
4169 }
4170
4171 pos = 0;
4172 maxsize = 0;
4173 start_extent = 0;
4174 i = 0;
4175 do {
4176 unsigned long long esize;
4177
4178 esize = e[i].start - pos;
4179 if (esize >= maxsize) {
4180 maxsize = esize;
4181 start = pos;
4182 start_extent = i;
4183 }
4184 pos = e[i].start + e[i].size;
4185 i++;
4186 } while (e[i-1].size);
4187 free(e);
4188
4189 if (maxsize == 0)
4190 return 0;
4191
4192 /* FIXME assumes volume at offset 0 is the first volume in a
4193 * container
4194 */
4195 if (start_extent > 0)
4196 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
4197 else
4198 reserve = 0;
4199
4200 if (maxsize < reserve)
4201 return 0;
4202
4203 super->create_offset = ~((__u32) 0);
4204 if (start + reserve > super->create_offset)
4205 return 0; /* start overflows create_offset */
4206 super->create_offset = start + reserve;
4207
4208 return maxsize - reserve;
4209 }
4210
4211 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
4212 {
4213 if (level < 0 || level == 6 || level == 4)
4214 return 0;
4215
4216 /* if we have an orom prevent invalid raid levels */
4217 if (orom)
4218 switch (level) {
4219 case 0: return imsm_orom_has_raid0(orom);
4220 case 1:
4221 if (raiddisks > 2)
4222 return imsm_orom_has_raid1e(orom);
4223 return imsm_orom_has_raid1(orom) && raiddisks == 2;
4224 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
4225 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
4226 }
4227 else
4228 return 1; /* not on an Intel RAID platform so anything goes */
4229
4230 return 0;
4231 }
4232
4233 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
4234 static int
4235 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
4236 int raiddisks, int *chunk, int verbose)
4237 {
4238 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
4239 pr_vrb(": platform does not support raid%d with %d disk%s\n",
4240 level, raiddisks, raiddisks > 1 ? "s" : "");
4241 return 0;
4242 }
4243 if (super->orom && level != 1) {
4244 if (chunk && (*chunk == 0 || *chunk == UnSet))
4245 *chunk = imsm_orom_default_chunk(super->orom);
4246 else if (chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
4247 pr_vrb(": platform does not support a chunk size of: "
4248 "%d\n", *chunk);
4249 return 0;
4250 }
4251 }
4252 if (layout != imsm_level_to_layout(level)) {
4253 if (level == 5)
4254 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
4255 else if (level == 10)
4256 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
4257 else
4258 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
4259 layout, level);
4260 return 0;
4261 }
4262
4263 return 1;
4264 }
4265
4266 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
4267 * FIX ME add ahci details
4268 */
4269 static int validate_geometry_imsm_volume(struct supertype *st, int level,
4270 int layout, int raiddisks, int *chunk,
4271 unsigned long long size, char *dev,
4272 unsigned long long *freesize,
4273 int verbose)
4274 {
4275 struct stat stb;
4276 struct intel_super *super = st->sb;
4277 struct imsm_super *mpb = super->anchor;
4278 struct dl *dl;
4279 unsigned long long pos = 0;
4280 unsigned long long maxsize;
4281 struct extent *e;
4282 int i;
4283
4284 /* We must have the container info already read in. */
4285 if (!super)
4286 return 0;
4287
4288 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose))
4289 return 0;
4290
4291 if (!dev) {
4292 /* General test: make sure there is space for
4293 * 'raiddisks' device extents of size 'size' at a given
4294 * offset
4295 */
4296 unsigned long long minsize = size;
4297 unsigned long long start_offset = MaxSector;
4298 int dcnt = 0;
4299 if (minsize == 0)
4300 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
4301 for (dl = super->disks; dl ; dl = dl->next) {
4302 int found = 0;
4303
4304 pos = 0;
4305 i = 0;
4306 e = get_extents(super, dl);
4307 if (!e) continue;
4308 do {
4309 unsigned long long esize;
4310 esize = e[i].start - pos;
4311 if (esize >= minsize)
4312 found = 1;
4313 if (found && start_offset == MaxSector) {
4314 start_offset = pos;
4315 break;
4316 } else if (found && pos != start_offset) {
4317 found = 0;
4318 break;
4319 }
4320 pos = e[i].start + e[i].size;
4321 i++;
4322 } while (e[i-1].size);
4323 if (found)
4324 dcnt++;
4325 free(e);
4326 }
4327 if (dcnt < raiddisks) {
4328 if (verbose)
4329 fprintf(stderr, Name ": imsm: Not enough "
4330 "devices with space for this array "
4331 "(%d < %d)\n",
4332 dcnt, raiddisks);
4333 return 0;
4334 }
4335 return 1;
4336 }
4337
4338 /* This device must be a member of the set */
4339 if (stat(dev, &stb) < 0)
4340 return 0;
4341 if ((S_IFMT & stb.st_mode) != S_IFBLK)
4342 return 0;
4343 for (dl = super->disks ; dl ; dl = dl->next) {
4344 if (dl->major == (int)major(stb.st_rdev) &&
4345 dl->minor == (int)minor(stb.st_rdev))
4346 break;
4347 }
4348 if (!dl) {
4349 if (verbose)
4350 fprintf(stderr, Name ": %s is not in the "
4351 "same imsm set\n", dev);
4352 return 0;
4353 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
4354 /* If a volume is present then the current creation attempt
4355 * cannot incorporate new spares because the orom may not
4356 * understand this configuration (all member disks must be
4357 * members of each array in the container).
4358 */
4359 fprintf(stderr, Name ": %s is a spare and a volume"
4360 " is already defined for this container\n", dev);
4361 fprintf(stderr, Name ": The option-rom requires all member"
4362 " disks to be a member of all volumes\n");
4363 return 0;
4364 }
4365
4366 /* retrieve the largest free space block */
4367 e = get_extents(super, dl);
4368 maxsize = 0;
4369 i = 0;
4370 if (e) {
4371 do {
4372 unsigned long long esize;
4373
4374 esize = e[i].start - pos;
4375 if (esize >= maxsize)
4376 maxsize = esize;
4377 pos = e[i].start + e[i].size;
4378 i++;
4379 } while (e[i-1].size);
4380 dl->e = e;
4381 dl->extent_cnt = i;
4382 } else {
4383 if (verbose)
4384 fprintf(stderr, Name ": unable to determine free space for: %s\n",
4385 dev);
4386 return 0;
4387 }
4388 if (maxsize < size) {
4389 if (verbose)
4390 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
4391 dev, maxsize, size);
4392 return 0;
4393 }
4394
4395 /* count total number of extents for merge */
4396 i = 0;
4397 for (dl = super->disks; dl; dl = dl->next)
4398 if (dl->e)
4399 i += dl->extent_cnt;
4400
4401 maxsize = merge_extents(super, i);
4402 if (maxsize < size || maxsize == 0) {
4403 if (verbose)
4404 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
4405 maxsize, size);
4406 return 0;
4407 }
4408
4409 *freesize = maxsize;
4410
4411 return 1;
4412 }
4413
4414 static int reserve_space(struct supertype *st, int raiddisks,
4415 unsigned long long size, int chunk,
4416 unsigned long long *freesize)
4417 {
4418 struct intel_super *super = st->sb;
4419 struct imsm_super *mpb = super->anchor;
4420 struct dl *dl;
4421 int i;
4422 int extent_cnt;
4423 struct extent *e;
4424 unsigned long long maxsize;
4425 unsigned long long minsize;
4426 int cnt;
4427 int used;
4428
4429 /* find the largest common start free region of the possible disks */
4430 used = 0;
4431 extent_cnt = 0;
4432 cnt = 0;
4433 for (dl = super->disks; dl; dl = dl->next) {
4434 dl->raiddisk = -1;
4435
4436 if (dl->index >= 0)
4437 used++;
4438
4439 /* don't activate new spares if we are orom constrained
4440 * and there is already a volume active in the container
4441 */
4442 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
4443 continue;
4444
4445 e = get_extents(super, dl);
4446 if (!e)
4447 continue;
4448 for (i = 1; e[i-1].size; i++)
4449 ;
4450 dl->e = e;
4451 dl->extent_cnt = i;
4452 extent_cnt += i;
4453 cnt++;
4454 }
4455
4456 maxsize = merge_extents(super, extent_cnt);
4457 minsize = size;
4458 if (size == 0)
4459 /* chunk is in K */
4460 minsize = chunk * 2;
4461
4462 if (cnt < raiddisks ||
4463 (super->orom && used && used != raiddisks) ||
4464 maxsize < minsize ||
4465 maxsize == 0) {
4466 fprintf(stderr, Name ": not enough devices with space to create array.\n");
4467 return 0; /* No enough free spaces large enough */
4468 }
4469
4470 if (size == 0) {
4471 size = maxsize;
4472 if (chunk) {
4473 size /= 2 * chunk;
4474 size *= 2 * chunk;
4475 }
4476 }
4477
4478 cnt = 0;
4479 for (dl = super->disks; dl; dl = dl->next)
4480 if (dl->e)
4481 dl->raiddisk = cnt++;
4482
4483 *freesize = size;
4484
4485 return 1;
4486 }
4487
4488 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
4489 int raiddisks, int *chunk, unsigned long long size,
4490 char *dev, unsigned long long *freesize,
4491 int verbose)
4492 {
4493 int fd, cfd;
4494 struct mdinfo *sra;
4495 int is_member = 0;
4496
4497 /* if given unused devices create a container
4498 * if given given devices in a container create a member volume
4499 */
4500 if (level == LEVEL_CONTAINER) {
4501 /* Must be a fresh device to add to a container */
4502 return validate_geometry_imsm_container(st, level, layout,
4503 raiddisks,
4504 chunk?*chunk:0, size,
4505 dev, freesize,
4506 verbose);
4507 }
4508
4509 if (!dev) {
4510 if (st->sb && freesize) {
4511 /* we are being asked to automatically layout a
4512 * new volume based on the current contents of
4513 * the container. If the the parameters can be
4514 * satisfied reserve_space will record the disks,
4515 * start offset, and size of the volume to be
4516 * created. add_to_super and getinfo_super
4517 * detect when autolayout is in progress.
4518 */
4519 if (!validate_geometry_imsm_orom(st->sb, level, layout,
4520 raiddisks, chunk,
4521 verbose))
4522 return 0;
4523 return reserve_space(st, raiddisks, size,
4524 chunk?*chunk:0, freesize);
4525 }
4526 return 1;
4527 }
4528 if (st->sb) {
4529 /* creating in a given container */
4530 return validate_geometry_imsm_volume(st, level, layout,
4531 raiddisks, chunk, size,
4532 dev, freesize, verbose);
4533 }
4534
4535 /* This device needs to be a device in an 'imsm' container */
4536 fd = open(dev, O_RDONLY|O_EXCL, 0);
4537 if (fd >= 0) {
4538 if (verbose)
4539 fprintf(stderr,
4540 Name ": Cannot create this array on device %s\n",
4541 dev);
4542 close(fd);
4543 return 0;
4544 }
4545 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
4546 if (verbose)
4547 fprintf(stderr, Name ": Cannot open %s: %s\n",
4548 dev, strerror(errno));
4549 return 0;
4550 }
4551 /* Well, it is in use by someone, maybe an 'imsm' container. */
4552 cfd = open_container(fd);
4553 close(fd);
4554 if (cfd < 0) {
4555 if (verbose)
4556 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
4557 dev);
4558 return 0;
4559 }
4560 sra = sysfs_read(cfd, 0, GET_VERSION);
4561 if (sra && sra->array.major_version == -1 &&
4562 strcmp(sra->text_version, "imsm") == 0)
4563 is_member = 1;
4564 sysfs_free(sra);
4565 if (is_member) {
4566 /* This is a member of a imsm container. Load the container
4567 * and try to create a volume
4568 */
4569 struct intel_super *super;
4570
4571 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
4572 st->sb = super;
4573 st->container_dev = fd2devnum(cfd);
4574 close(cfd);
4575 return validate_geometry_imsm_volume(st, level, layout,
4576 raiddisks, chunk,
4577 size, dev,
4578 freesize, verbose);
4579 }
4580 }
4581
4582 if (verbose)
4583 fprintf(stderr, Name ": failed container membership check\n");
4584
4585 close(cfd);
4586 return 0;
4587 }
4588
4589 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
4590 {
4591 struct intel_super *super = st->sb;
4592
4593 if (level && *level == UnSet)
4594 *level = LEVEL_CONTAINER;
4595
4596 if (level && layout && *layout == UnSet)
4597 *layout = imsm_level_to_layout(*level);
4598
4599 if (chunk && (*chunk == UnSet || *chunk == 0) &&
4600 super && super->orom)
4601 *chunk = imsm_orom_default_chunk(super->orom);
4602 }
4603
4604 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
4605
4606 static int kill_subarray_imsm(struct supertype *st)
4607 {
4608 /* remove the subarray currently referenced by ->current_vol */
4609 __u8 i;
4610 struct intel_dev **dp;
4611 struct intel_super *super = st->sb;
4612 __u8 current_vol = super->current_vol;
4613 struct imsm_super *mpb = super->anchor;
4614
4615 if (super->current_vol < 0)
4616 return 2;
4617 super->current_vol = -1; /* invalidate subarray cursor */
4618
4619 /* block deletions that would change the uuid of active subarrays
4620 *
4621 * FIXME when immutable ids are available, but note that we'll
4622 * also need to fixup the invalidated/active subarray indexes in
4623 * mdstat
4624 */
4625 for (i = 0; i < mpb->num_raid_devs; i++) {
4626 char subarray[4];
4627
4628 if (i < current_vol)
4629 continue;
4630 sprintf(subarray, "%u", i);
4631 if (is_subarray_active(subarray, st->devname)) {
4632 fprintf(stderr,
4633 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
4634 current_vol, i);
4635
4636 return 2;
4637 }
4638 }
4639
4640 if (st->update_tail) {
4641 struct imsm_update_kill_array *u = malloc(sizeof(*u));
4642
4643 if (!u)
4644 return 2;
4645 u->type = update_kill_array;
4646 u->dev_idx = current_vol;
4647 append_metadata_update(st, u, sizeof(*u));
4648
4649 return 0;
4650 }
4651
4652 for (dp = &super->devlist; *dp;)
4653 if ((*dp)->index == current_vol) {
4654 *dp = (*dp)->next;
4655 } else {
4656 handle_missing(super, (*dp)->dev);
4657 if ((*dp)->index > current_vol)
4658 (*dp)->index--;
4659 dp = &(*dp)->next;
4660 }
4661
4662 /* no more raid devices, all active components are now spares,
4663 * but of course failed are still failed
4664 */
4665 if (--mpb->num_raid_devs == 0) {
4666 struct dl *d;
4667
4668 for (d = super->disks; d; d = d->next)
4669 if (d->index > -2) {
4670 d->index = -1;
4671 d->disk.status = SPARE_DISK;
4672 }
4673 }
4674
4675 super->updates_pending++;
4676
4677 return 0;
4678 }
4679
4680 static int update_subarray_imsm(struct supertype *st, char *subarray,
4681 char *update, struct mddev_ident *ident)
4682 {
4683 /* update the subarray currently referenced by ->current_vol */
4684 struct intel_super *super = st->sb;
4685 struct imsm_super *mpb = super->anchor;
4686
4687 if (strcmp(update, "name") == 0) {
4688 char *name = ident->name;
4689 char *ep;
4690 int vol;
4691
4692 if (is_subarray_active(subarray, st->devname)) {
4693 fprintf(stderr,
4694 Name ": Unable to update name of active subarray\n");
4695 return 2;
4696 }
4697
4698 if (!check_name(super, name, 0))
4699 return 2;
4700
4701 vol = strtoul(subarray, &ep, 10);
4702 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
4703 return 2;
4704
4705 if (st->update_tail) {
4706 struct imsm_update_rename_array *u = malloc(sizeof(*u));
4707
4708 if (!u)
4709 return 2;
4710 u->type = update_rename_array;
4711 u->dev_idx = vol;
4712 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
4713 append_metadata_update(st, u, sizeof(*u));
4714 } else {
4715 struct imsm_dev *dev;
4716 int i;
4717
4718 dev = get_imsm_dev(super, vol);
4719 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
4720 for (i = 0; i < mpb->num_raid_devs; i++) {
4721 dev = get_imsm_dev(super, i);
4722 handle_missing(super, dev);
4723 }
4724 super->updates_pending++;
4725 }
4726 } else
4727 return 2;
4728
4729 return 0;
4730 }
4731
4732 static int is_gen_migration(struct imsm_dev *dev)
4733 {
4734 if (!dev->vol.migr_state)
4735 return 0;
4736
4737 if (migr_type(dev) == MIGR_GEN_MIGR)
4738 return 1;
4739
4740 return 0;
4741 }
4742 #endif /* MDASSEMBLE */
4743
4744 static int is_rebuilding(struct imsm_dev *dev)
4745 {
4746 struct imsm_map *migr_map;
4747
4748 if (!dev->vol.migr_state)
4749 return 0;
4750
4751 if (migr_type(dev) != MIGR_REBUILD)
4752 return 0;
4753
4754 migr_map = get_imsm_map(dev, 1);
4755
4756 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
4757 return 1;
4758 else
4759 return 0;
4760 }
4761
4762 static void update_recovery_start(struct imsm_dev *dev, struct mdinfo *array)
4763 {
4764 struct mdinfo *rebuild = NULL;
4765 struct mdinfo *d;
4766 __u32 units;
4767
4768 if (!is_rebuilding(dev))
4769 return;
4770
4771 /* Find the rebuild target, but punt on the dual rebuild case */
4772 for (d = array->devs; d; d = d->next)
4773 if (d->recovery_start == 0) {
4774 if (rebuild)
4775 return;
4776 rebuild = d;
4777 }
4778
4779 if (!rebuild) {
4780 /* (?) none of the disks are marked with
4781 * IMSM_ORD_REBUILD, so assume they are missing and the
4782 * disk_ord_tbl was not correctly updated
4783 */
4784 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
4785 return;
4786 }
4787
4788 units = __le32_to_cpu(dev->vol.curr_migr_unit);
4789 rebuild->recovery_start = units * blocks_per_migr_unit(dev);
4790 }
4791
4792
4793 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
4794 {
4795 /* Given a container loaded by load_super_imsm_all,
4796 * extract information about all the arrays into
4797 * an mdinfo tree.
4798 * If 'subarray' is given, just extract info about that array.
4799 *
4800 * For each imsm_dev create an mdinfo, fill it in,
4801 * then look for matching devices in super->disks
4802 * and create appropriate device mdinfo.
4803 */
4804 struct intel_super *super = st->sb;
4805 struct imsm_super *mpb = super->anchor;
4806 struct mdinfo *rest = NULL;
4807 unsigned int i;
4808 int bbm_errors = 0;
4809 struct dl *d;
4810 int spare_disks = 0;
4811
4812 /* check for bad blocks */
4813 if (imsm_bbm_log_size(super->anchor))
4814 bbm_errors = 1;
4815
4816 /* count spare devices, not used in maps
4817 */
4818 for (d = super->disks; d; d = d->next)
4819 if (d->index == -1)
4820 spare_disks++;
4821
4822 for (i = 0; i < mpb->num_raid_devs; i++) {
4823 struct imsm_dev *dev;
4824 struct imsm_map *map;
4825 struct imsm_map *map2;
4826 struct mdinfo *this;
4827 int slot;
4828 char *ep;
4829
4830 if (subarray &&
4831 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
4832 continue;
4833
4834 dev = get_imsm_dev(super, i);
4835 map = get_imsm_map(dev, 0);
4836 map2 = get_imsm_map(dev, 1);
4837
4838 /* do not publish arrays that are in the middle of an
4839 * unsupported migration
4840 */
4841 if (dev->vol.migr_state &&
4842 (migr_type(dev) == MIGR_STATE_CHANGE)) {
4843 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
4844 " unsupported migration in progress\n",
4845 dev->volume);
4846 continue;
4847 }
4848
4849 this = malloc(sizeof(*this));
4850 if (!this) {
4851 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
4852 sizeof(*this));
4853 break;
4854 }
4855 memset(this, 0, sizeof(*this));
4856 this->next = rest;
4857
4858 super->current_vol = i;
4859 getinfo_super_imsm_volume(st, this, NULL);
4860 for (slot = 0 ; slot < map->num_members; slot++) {
4861 unsigned long long recovery_start;
4862 struct mdinfo *info_d;
4863 struct dl *d;
4864 int idx;
4865 int skip;
4866 __u32 ord;
4867
4868 skip = 0;
4869 idx = get_imsm_disk_idx(dev, slot, 0);
4870 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4871 for (d = super->disks; d ; d = d->next)
4872 if (d->index == idx)
4873 break;
4874
4875 recovery_start = MaxSector;
4876 if (d == NULL)
4877 skip = 1;
4878 if (d && is_failed(&d->disk))
4879 skip = 1;
4880 if (ord & IMSM_ORD_REBUILD)
4881 recovery_start = 0;
4882
4883 /*
4884 * if we skip some disks the array will be assmebled degraded;
4885 * reset resync start to avoid a dirty-degraded
4886 * situation when performing the intial sync
4887 *
4888 * FIXME handle dirty degraded
4889 */
4890 if ((skip || recovery_start == 0) && !dev->vol.dirty)
4891 this->resync_start = MaxSector;
4892 if (skip)
4893 continue;
4894
4895 info_d = calloc(1, sizeof(*info_d));
4896 if (!info_d) {
4897 fprintf(stderr, Name ": failed to allocate disk"
4898 " for volume %.16s\n", dev->volume);
4899 info_d = this->devs;
4900 while (info_d) {
4901 struct mdinfo *d = info_d->next;
4902
4903 free(info_d);
4904 info_d = d;
4905 }
4906 free(this);
4907 this = rest;
4908 break;
4909 }
4910 info_d->next = this->devs;
4911 this->devs = info_d;
4912
4913 info_d->disk.number = d->index;
4914 info_d->disk.major = d->major;
4915 info_d->disk.minor = d->minor;
4916 info_d->disk.raid_disk = slot;
4917 info_d->recovery_start = recovery_start;
4918 if (map2) {
4919 if (slot < map2->num_members)
4920 info_d->disk.state = (1 << MD_DISK_ACTIVE);
4921 else
4922 this->array.spare_disks++;
4923 } else {
4924 if (slot < map->num_members)
4925 info_d->disk.state = (1 << MD_DISK_ACTIVE);
4926 else
4927 this->array.spare_disks++;
4928 }
4929 if (info_d->recovery_start == MaxSector)
4930 this->array.working_disks++;
4931
4932 info_d->events = __le32_to_cpu(mpb->generation_num);
4933 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
4934 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4935 }
4936 /* now that the disk list is up-to-date fixup recovery_start */
4937 update_recovery_start(dev, this);
4938 this->array.spare_disks += spare_disks;
4939 rest = this;
4940 }
4941
4942 /* if array has bad blocks, set suitable bit in array status */
4943 if (bbm_errors)
4944 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
4945
4946 return rest;
4947 }
4948
4949
4950 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
4951 {
4952 struct imsm_map *map = get_imsm_map(dev, 0);
4953
4954 if (!failed)
4955 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
4956 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
4957
4958 switch (get_imsm_raid_level(map)) {
4959 case 0:
4960 return IMSM_T_STATE_FAILED;
4961 break;
4962 case 1:
4963 if (failed < map->num_members)
4964 return IMSM_T_STATE_DEGRADED;
4965 else
4966 return IMSM_T_STATE_FAILED;
4967 break;
4968 case 10:
4969 {
4970 /**
4971 * check to see if any mirrors have failed, otherwise we
4972 * are degraded. Even numbered slots are mirrored on
4973 * slot+1
4974 */
4975 int i;
4976 /* gcc -Os complains that this is unused */
4977 int insync = insync;
4978
4979 for (i = 0; i < map->num_members; i++) {
4980 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
4981 int idx = ord_to_idx(ord);
4982 struct imsm_disk *disk;
4983
4984 /* reset the potential in-sync count on even-numbered
4985 * slots. num_copies is always 2 for imsm raid10
4986 */
4987 if ((i & 1) == 0)
4988 insync = 2;
4989
4990 disk = get_imsm_disk(super, idx);
4991 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
4992 insync--;
4993
4994 /* no in-sync disks left in this mirror the
4995 * array has failed
4996 */
4997 if (insync == 0)
4998 return IMSM_T_STATE_FAILED;
4999 }
5000
5001 return IMSM_T_STATE_DEGRADED;
5002 }
5003 case 5:
5004 if (failed < 2)
5005 return IMSM_T_STATE_DEGRADED;
5006 else
5007 return IMSM_T_STATE_FAILED;
5008 break;
5009 default:
5010 break;
5011 }
5012
5013 return map->map_state;
5014 }
5015
5016 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
5017 {
5018 int i;
5019 int failed = 0;
5020 struct imsm_disk *disk;
5021 struct imsm_map *map = get_imsm_map(dev, 0);
5022 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5023 __u32 ord;
5024 int idx;
5025
5026 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5027 * disks that are being rebuilt. New failures are recorded to
5028 * map[0]. So we look through all the disks we started with and
5029 * see if any failures are still present, or if any new ones
5030 * have arrived
5031 *
5032 * FIXME add support for online capacity expansion and
5033 * raid-level-migration
5034 */
5035 for (i = 0; i < prev->num_members; i++) {
5036 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5037 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5038 idx = ord_to_idx(ord);
5039
5040 disk = get_imsm_disk(super, idx);
5041 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5042 failed++;
5043 }
5044
5045 return failed;
5046 }
5047
5048 #ifndef MDASSEMBLE
5049 static int imsm_open_new(struct supertype *c, struct active_array *a,
5050 char *inst)
5051 {
5052 struct intel_super *super = c->sb;
5053 struct imsm_super *mpb = super->anchor;
5054
5055 if (atoi(inst) >= mpb->num_raid_devs) {
5056 fprintf(stderr, "%s: subarry index %d, out of range\n",
5057 __func__, atoi(inst));
5058 return -ENODEV;
5059 }
5060
5061 dprintf("imsm: open_new %s\n", inst);
5062 a->info.container_member = atoi(inst);
5063 return 0;
5064 }
5065
5066 static int is_resyncing(struct imsm_dev *dev)
5067 {
5068 struct imsm_map *migr_map;
5069
5070 if (!dev->vol.migr_state)
5071 return 0;
5072
5073 if (migr_type(dev) == MIGR_INIT ||
5074 migr_type(dev) == MIGR_REPAIR)
5075 return 1;
5076
5077 if (migr_type(dev) == MIGR_GEN_MIGR)
5078 return 0;
5079
5080 migr_map = get_imsm_map(dev, 1);
5081
5082 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5083 (dev->vol.migr_type != MIGR_GEN_MIGR))
5084 return 1;
5085 else
5086 return 0;
5087 }
5088
5089 /* return true if we recorded new information */
5090 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5091 {
5092 __u32 ord;
5093 int slot;
5094 struct imsm_map *map;
5095 char buf[MAX_RAID_SERIAL_LEN+3];
5096 unsigned int len, shift = 0;
5097
5098 /* new failures are always set in map[0] */
5099 map = get_imsm_map(dev, 0);
5100
5101 slot = get_imsm_disk_slot(map, idx);
5102 if (slot < 0)
5103 return 0;
5104
5105 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
5106 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
5107 return 0;
5108
5109 sprintf(buf, "%s:0", disk->serial);
5110 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
5111 shift = len - MAX_RAID_SERIAL_LEN + 1;
5112 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
5113
5114 disk->status |= FAILED_DISK;
5115 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
5116 if (map->failed_disk_num == 0xff)
5117 map->failed_disk_num = slot;
5118 return 1;
5119 }
5120
5121 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5122 {
5123 mark_failure(dev, disk, idx);
5124
5125 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
5126 return;
5127
5128 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5129 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
5130 }
5131
5132 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
5133 {
5134 __u8 map_state;
5135 struct dl *dl;
5136 int failed;
5137
5138 if (!super->missing)
5139 return;
5140 failed = imsm_count_failed(super, dev);
5141 map_state = imsm_check_degraded(super, dev, failed);
5142
5143 dprintf("imsm: mark missing\n");
5144 end_migration(dev, map_state);
5145 for (dl = super->missing; dl; dl = dl->next)
5146 mark_missing(dev, &dl->disk, dl->index);
5147 super->updates_pending++;
5148 }
5149
5150 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
5151 {
5152 int used_disks = imsm_num_data_members(dev, 0);
5153 unsigned long long array_blocks;
5154 struct imsm_map *map;
5155
5156 if (used_disks == 0) {
5157 /* when problems occures
5158 * return current array_blocks value
5159 */
5160 array_blocks = __le32_to_cpu(dev->size_high);
5161 array_blocks = array_blocks << 32;
5162 array_blocks += __le32_to_cpu(dev->size_low);
5163
5164 return array_blocks;
5165 }
5166
5167 /* set array size in metadata
5168 */
5169 map = get_imsm_map(dev, 0);
5170 array_blocks = map->blocks_per_member * used_disks;
5171
5172 /* round array size down to closest MB
5173 */
5174 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5175 dev->size_low = __cpu_to_le32((__u32)array_blocks);
5176 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
5177
5178 return array_blocks;
5179 }
5180
5181 static void imsm_set_disk(struct active_array *a, int n, int state);
5182
5183 static void imsm_progress_container_reshape(struct intel_super *super)
5184 {
5185 /* if no device has a migr_state, but some device has a
5186 * different number of members than the previous device, start
5187 * changing the number of devices in this device to match
5188 * previous.
5189 */
5190 struct imsm_super *mpb = super->anchor;
5191 int prev_disks = -1;
5192 int i;
5193 int copy_map_size;
5194
5195 for (i = 0; i < mpb->num_raid_devs; i++) {
5196 struct imsm_dev *dev = get_imsm_dev(super, i);
5197 struct imsm_map *map = get_imsm_map(dev, 0);
5198 struct imsm_map *map2;
5199 int prev_num_members;
5200
5201 if (dev->vol.migr_state)
5202 return;
5203
5204 if (prev_disks == -1)
5205 prev_disks = map->num_members;
5206 if (prev_disks == map->num_members)
5207 continue;
5208
5209 /* OK, this array needs to enter reshape mode.
5210 * i.e it needs a migr_state
5211 */
5212
5213 copy_map_size = sizeof_imsm_map(map);
5214 prev_num_members = map->num_members;
5215 map->num_members = prev_disks;
5216 dev->vol.migr_state = 1;
5217 dev->vol.curr_migr_unit = 0;
5218 dev->vol.migr_type = MIGR_GEN_MIGR;
5219 for (i = prev_num_members;
5220 i < map->num_members; i++)
5221 set_imsm_ord_tbl_ent(map, i, i);
5222 map2 = get_imsm_map(dev, 1);
5223 /* Copy the current map */
5224 memcpy(map2, map, copy_map_size);
5225 map2->num_members = prev_num_members;
5226
5227 imsm_set_array_size(dev);
5228 super->updates_pending++;
5229 }
5230 }
5231
5232 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
5233 * states are handled in imsm_set_disk() with one exception, when a
5234 * resync is stopped due to a new failure this routine will set the
5235 * 'degraded' state for the array.
5236 */
5237 static int imsm_set_array_state(struct active_array *a, int consistent)
5238 {
5239 int inst = a->info.container_member;
5240 struct intel_super *super = a->container->sb;
5241 struct imsm_dev *dev = get_imsm_dev(super, inst);
5242 struct imsm_map *map = get_imsm_map(dev, 0);
5243 int failed = imsm_count_failed(super, dev);
5244 __u8 map_state = imsm_check_degraded(super, dev, failed);
5245 __u32 blocks_per_unit;
5246
5247 if (dev->vol.migr_state &&
5248 dev->vol.migr_type == MIGR_GEN_MIGR) {
5249 /* array state change is blocked due to reshape action
5250 * We might need to
5251 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
5252 * - finish the reshape (if last_checkpoint is big and action != reshape)
5253 * - update curr_migr_unit
5254 */
5255 if (a->curr_action == reshape) {
5256 /* still reshaping, maybe update curr_migr_unit */
5257 goto mark_checkpoint;
5258 } else {
5259 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
5260 /* for some reason we aborted the reshape.
5261 * Better clean up
5262 */
5263 struct imsm_map *map2 = get_imsm_map(dev, 1);
5264 dev->vol.migr_state = 0;
5265 dev->vol.migr_type = 0;
5266 dev->vol.curr_migr_unit = 0;
5267 memcpy(map, map2, sizeof_imsm_map(map2));
5268 super->updates_pending++;
5269 }
5270 if (a->last_checkpoint >= a->info.component_size) {
5271 unsigned long long array_blocks;
5272 int used_disks;
5273 struct mdinfo *mdi;
5274
5275 used_disks = imsm_num_data_members(dev, 0);
5276 if (used_disks > 0) {
5277 array_blocks =
5278 map->blocks_per_member *
5279 used_disks;
5280 /* round array size down to closest MB
5281 */
5282 array_blocks = (array_blocks
5283 >> SECT_PER_MB_SHIFT)
5284 << SECT_PER_MB_SHIFT;
5285 a->info.custom_array_size = array_blocks;
5286 /* encourage manager to update array
5287 * size
5288 */
5289
5290 a->check_reshape = 1;
5291 }
5292 /* finalize online capacity expansion/reshape */
5293 for (mdi = a->info.devs; mdi; mdi = mdi->next)
5294 imsm_set_disk(a,
5295 mdi->disk.raid_disk,
5296 mdi->curr_state);
5297
5298 imsm_progress_container_reshape(super);
5299 }
5300 }
5301 }
5302
5303 /* before we activate this array handle any missing disks */
5304 if (consistent == 2)
5305 handle_missing(super, dev);
5306
5307 if (consistent == 2 &&
5308 (!is_resync_complete(&a->info) ||
5309 map_state != IMSM_T_STATE_NORMAL ||
5310 dev->vol.migr_state))
5311 consistent = 0;
5312
5313 if (is_resync_complete(&a->info)) {
5314 /* complete intialization / resync,
5315 * recovery and interrupted recovery is completed in
5316 * ->set_disk
5317 */
5318 if (is_resyncing(dev)) {
5319 dprintf("imsm: mark resync done\n");
5320 end_migration(dev, map_state);
5321 super->updates_pending++;
5322 a->last_checkpoint = 0;
5323 }
5324 } else if (!is_resyncing(dev) && !failed) {
5325 /* mark the start of the init process if nothing is failed */
5326 dprintf("imsm: mark resync start\n");
5327 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
5328 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
5329 else
5330 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
5331 super->updates_pending++;
5332 }
5333
5334 mark_checkpoint:
5335 /* check if we can update curr_migr_unit from resync_start, recovery_start */
5336 blocks_per_unit = blocks_per_migr_unit(dev);
5337 if (blocks_per_unit) {
5338 __u32 units32;
5339 __u64 units;
5340
5341 units = a->last_checkpoint / blocks_per_unit;
5342 units32 = units;
5343
5344 /* check that we did not overflow 32-bits, and that
5345 * curr_migr_unit needs updating
5346 */
5347 if (units32 == units &&
5348 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
5349 dprintf("imsm: mark checkpoint (%u)\n", units32);
5350 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
5351 super->updates_pending++;
5352 }
5353 }
5354
5355 /* mark dirty / clean */
5356 if (dev->vol.dirty != !consistent) {
5357 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
5358 if (consistent)
5359 dev->vol.dirty = 0;
5360 else
5361 dev->vol.dirty = 1;
5362 super->updates_pending++;
5363 }
5364
5365 return consistent;
5366 }
5367
5368 static void imsm_set_disk(struct active_array *a, int n, int state)
5369 {
5370 int inst = a->info.container_member;
5371 struct intel_super *super = a->container->sb;
5372 struct imsm_dev *dev = get_imsm_dev(super, inst);
5373 struct imsm_map *map = get_imsm_map(dev, 0);
5374 struct imsm_disk *disk;
5375 int failed;
5376 __u32 ord;
5377 __u8 map_state;
5378
5379 if (n > map->num_members)
5380 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
5381 n, map->num_members - 1);
5382
5383 if (n < 0)
5384 return;
5385
5386 dprintf("imsm: set_disk %d:%x\n", n, state);
5387
5388 ord = get_imsm_ord_tbl_ent(dev, n, -1);
5389 disk = get_imsm_disk(super, ord_to_idx(ord));
5390
5391 /* check for new failures */
5392 if (state & DS_FAULTY) {
5393 if (mark_failure(dev, disk, ord_to_idx(ord)))
5394 super->updates_pending++;
5395 }
5396
5397 /* check if in_sync */
5398 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
5399 struct imsm_map *migr_map = get_imsm_map(dev, 1);
5400
5401 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
5402 super->updates_pending++;
5403 }
5404
5405 failed = imsm_count_failed(super, dev);
5406 map_state = imsm_check_degraded(super, dev, failed);
5407
5408 /* check if recovery complete, newly degraded, or failed */
5409 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
5410 end_migration(dev, map_state);
5411 map = get_imsm_map(dev, 0);
5412 map->failed_disk_num = ~0;
5413 super->updates_pending++;
5414 a->last_checkpoint = 0;
5415 } else if (map_state == IMSM_T_STATE_DEGRADED &&
5416 map->map_state != map_state &&
5417 !dev->vol.migr_state) {
5418 dprintf("imsm: mark degraded\n");
5419 map->map_state = map_state;
5420 super->updates_pending++;
5421 a->last_checkpoint = 0;
5422 } else if (map_state == IMSM_T_STATE_FAILED &&
5423 map->map_state != map_state) {
5424 dprintf("imsm: mark failed\n");
5425 end_migration(dev, map_state);
5426 super->updates_pending++;
5427 a->last_checkpoint = 0;
5428 } else if (is_gen_migration(dev)) {
5429 dprintf("imsm: Detected General Migration in state: ");
5430 if (map_state == IMSM_T_STATE_NORMAL) {
5431 end_migration(dev, map_state);
5432 map = get_imsm_map(dev, 0);
5433 map->failed_disk_num = ~0;
5434 dprintf("normal\n");
5435 } else {
5436 if (map_state == IMSM_T_STATE_DEGRADED) {
5437 printf("degraded\n");
5438 end_migration(dev, map_state);
5439 } else {
5440 dprintf("failed\n");
5441 }
5442 map->map_state = map_state;
5443 }
5444 super->updates_pending++;
5445 }
5446 }
5447
5448 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
5449 {
5450 void *buf = mpb;
5451 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
5452 unsigned long long dsize;
5453 unsigned long long sectors;
5454
5455 get_dev_size(fd, NULL, &dsize);
5456
5457 if (mpb_size > 512) {
5458 /* -1 to account for anchor */
5459 sectors = mpb_sectors(mpb) - 1;
5460
5461 /* write the extended mpb to the sectors preceeding the anchor */
5462 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
5463 return 1;
5464
5465 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
5466 != 512 * sectors)
5467 return 1;
5468 }
5469
5470 /* first block is stored on second to last sector of the disk */
5471 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
5472 return 1;
5473
5474 if (write(fd, buf, 512) != 512)
5475 return 1;
5476
5477 return 0;
5478 }
5479
5480 static void imsm_sync_metadata(struct supertype *container)
5481 {
5482 struct intel_super *super = container->sb;
5483
5484 dprintf("sync metadata: %d\n", super->updates_pending);
5485 if (!super->updates_pending)
5486 return;
5487
5488 write_super_imsm(container, 0);
5489
5490 super->updates_pending = 0;
5491 }
5492
5493 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
5494 {
5495 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
5496 int i = get_imsm_disk_idx(dev, idx, -1);
5497 struct dl *dl;
5498
5499 for (dl = super->disks; dl; dl = dl->next)
5500 if (dl->index == i)
5501 break;
5502
5503 if (dl && is_failed(&dl->disk))
5504 dl = NULL;
5505
5506 if (dl)
5507 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
5508
5509 return dl;
5510 }
5511
5512 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
5513 struct active_array *a, int activate_new,
5514 struct mdinfo *additional_test_list)
5515 {
5516 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
5517 int idx = get_imsm_disk_idx(dev, slot, -1);
5518 struct imsm_super *mpb = super->anchor;
5519 struct imsm_map *map;
5520 unsigned long long pos;
5521 struct mdinfo *d;
5522 struct extent *ex;
5523 int i, j;
5524 int found;
5525 __u32 array_start = 0;
5526 __u32 array_end = 0;
5527 struct dl *dl;
5528 struct mdinfo *test_list;
5529
5530 for (dl = super->disks; dl; dl = dl->next) {
5531 /* If in this array, skip */
5532 for (d = a->info.devs ; d ; d = d->next)
5533 if (d->state_fd >= 0 &&
5534 d->disk.major == dl->major &&
5535 d->disk.minor == dl->minor) {
5536 dprintf("%x:%x already in array\n",
5537 dl->major, dl->minor);
5538 break;
5539 }
5540 if (d)
5541 continue;
5542 test_list = additional_test_list;
5543 while (test_list) {
5544 if (test_list->disk.major == dl->major &&
5545 test_list->disk.minor == dl->minor) {
5546 dprintf("%x:%x already in additional test list\n",
5547 dl->major, dl->minor);
5548 break;
5549 }
5550 test_list = test_list->next;
5551 }
5552 if (test_list)
5553 continue;
5554
5555 /* skip in use or failed drives */
5556 if (is_failed(&dl->disk) || idx == dl->index ||
5557 dl->index == -2) {
5558 dprintf("%x:%x status (failed: %d index: %d)\n",
5559 dl->major, dl->minor, is_failed(&dl->disk), idx);
5560 continue;
5561 }
5562
5563 /* skip pure spares when we are looking for partially
5564 * assimilated drives
5565 */
5566 if (dl->index == -1 && !activate_new)
5567 continue;
5568
5569 /* Does this unused device have the requisite free space?
5570 * It needs to be able to cover all member volumes
5571 */
5572 ex = get_extents(super, dl);
5573 if (!ex) {
5574 dprintf("cannot get extents\n");
5575 continue;
5576 }
5577 for (i = 0; i < mpb->num_raid_devs; i++) {
5578 dev = get_imsm_dev(super, i);
5579 map = get_imsm_map(dev, 0);
5580
5581 /* check if this disk is already a member of
5582 * this array
5583 */
5584 if (get_imsm_disk_slot(map, dl->index) >= 0)
5585 continue;
5586
5587 found = 0;
5588 j = 0;
5589 pos = 0;
5590 array_start = __le32_to_cpu(map->pba_of_lba0);
5591 array_end = array_start +
5592 __le32_to_cpu(map->blocks_per_member) - 1;
5593
5594 do {
5595 /* check that we can start at pba_of_lba0 with
5596 * blocks_per_member of space
5597 */
5598 if (array_start >= pos && array_end < ex[j].start) {
5599 found = 1;
5600 break;
5601 }
5602 pos = ex[j].start + ex[j].size;
5603 j++;
5604 } while (ex[j-1].size);
5605
5606 if (!found)
5607 break;
5608 }
5609
5610 free(ex);
5611 if (i < mpb->num_raid_devs) {
5612 dprintf("%x:%x does not have %u to %u available\n",
5613 dl->major, dl->minor, array_start, array_end);
5614 /* No room */
5615 continue;
5616 }
5617 return dl;
5618 }
5619
5620 return dl;
5621 }
5622
5623
5624 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
5625 {
5626 struct imsm_dev *dev2;
5627 struct imsm_map *map;
5628 struct dl *idisk;
5629 int slot;
5630 int idx;
5631 __u8 state;
5632
5633 dev2 = get_imsm_dev(cont->sb, dev_idx);
5634 if (dev2) {
5635 state = imsm_check_degraded(cont->sb, dev2, failed);
5636 if (state == IMSM_T_STATE_FAILED) {
5637 map = get_imsm_map(dev2, 0);
5638 if (!map)
5639 return 1;
5640 for (slot = 0; slot < map->num_members; slot++) {
5641 /*
5642 * Check if failed disks are deleted from intel
5643 * disk list or are marked to be deleted
5644 */
5645 idx = get_imsm_disk_idx(dev2, slot, -1);
5646 idisk = get_imsm_dl_disk(cont->sb, idx);
5647 /*
5648 * Do not rebuild the array if failed disks
5649 * from failed sub-array are not removed from
5650 * container.
5651 */
5652 if (idisk &&
5653 is_failed(&idisk->disk) &&
5654 (idisk->action != DISK_REMOVE))
5655 return 0;
5656 }
5657 }
5658 }
5659 return 1;
5660 }
5661
5662 static struct mdinfo *imsm_activate_spare(struct active_array *a,
5663 struct metadata_update **updates)
5664 {
5665 /**
5666 * Find a device with unused free space and use it to replace a
5667 * failed/vacant region in an array. We replace failed regions one a
5668 * array at a time. The result is that a new spare disk will be added
5669 * to the first failed array and after the monitor has finished
5670 * propagating failures the remainder will be consumed.
5671 *
5672 * FIXME add a capability for mdmon to request spares from another
5673 * container.
5674 */
5675
5676 struct intel_super *super = a->container->sb;
5677 int inst = a->info.container_member;
5678 struct imsm_dev *dev = get_imsm_dev(super, inst);
5679 struct imsm_map *map = get_imsm_map(dev, 0);
5680 int failed = a->info.array.raid_disks;
5681 struct mdinfo *rv = NULL;
5682 struct mdinfo *d;
5683 struct mdinfo *di;
5684 struct metadata_update *mu;
5685 struct dl *dl;
5686 struct imsm_update_activate_spare *u;
5687 int num_spares = 0;
5688 int i;
5689 int allowed;
5690
5691 for (d = a->info.devs ; d ; d = d->next) {
5692 if ((d->curr_state & DS_FAULTY) &&
5693 d->state_fd >= 0)
5694 /* wait for Removal to happen */
5695 return NULL;
5696 if (d->state_fd >= 0)
5697 failed--;
5698 }
5699
5700 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
5701 inst, failed, a->info.array.raid_disks, a->info.array.level);
5702
5703 if (dev->vol.migr_state &&
5704 dev->vol.migr_type == MIGR_GEN_MIGR)
5705 /* No repair during migration */
5706 return NULL;
5707
5708 if (a->info.array.level == 4)
5709 /* No repair for takeovered array
5710 * imsm doesn't support raid4
5711 */
5712 return NULL;
5713
5714 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
5715 return NULL;
5716
5717 /*
5718 * If there are any failed disks check state of the other volume.
5719 * Block rebuild if the another one is failed until failed disks
5720 * are removed from container.
5721 */
5722 if (failed) {
5723 dprintf("found failed disks in %s, check if there another"
5724 "failed sub-array.\n",
5725 dev->volume);
5726 /* check if states of the other volumes allow for rebuild */
5727 for (i = 0; i < super->anchor->num_raid_devs; i++) {
5728 if (i != inst) {
5729 allowed = imsm_rebuild_allowed(a->container,
5730 i, failed);
5731 if (!allowed)
5732 return NULL;
5733 }
5734 }
5735 }
5736
5737 /* For each slot, if it is not working, find a spare */
5738 for (i = 0; i < a->info.array.raid_disks; i++) {
5739 for (d = a->info.devs ; d ; d = d->next)
5740 if (d->disk.raid_disk == i)
5741 break;
5742 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
5743 if (d && (d->state_fd >= 0))
5744 continue;
5745
5746 /*
5747 * OK, this device needs recovery. Try to re-add the
5748 * previous occupant of this slot, if this fails see if
5749 * we can continue the assimilation of a spare that was
5750 * partially assimilated, finally try to activate a new
5751 * spare.
5752 */
5753 dl = imsm_readd(super, i, a);
5754 if (!dl)
5755 dl = imsm_add_spare(super, i, a, 0, NULL);
5756 if (!dl)
5757 dl = imsm_add_spare(super, i, a, 1, NULL);
5758 if (!dl)
5759 continue;
5760
5761 /* found a usable disk with enough space */
5762 di = malloc(sizeof(*di));
5763 if (!di)
5764 continue;
5765 memset(di, 0, sizeof(*di));
5766
5767 /* dl->index will be -1 in the case we are activating a
5768 * pristine spare. imsm_process_update() will create a
5769 * new index in this case. Once a disk is found to be
5770 * failed in all member arrays it is kicked from the
5771 * metadata
5772 */
5773 di->disk.number = dl->index;
5774
5775 /* (ab)use di->devs to store a pointer to the device
5776 * we chose
5777 */
5778 di->devs = (struct mdinfo *) dl;
5779
5780 di->disk.raid_disk = i;
5781 di->disk.major = dl->major;
5782 di->disk.minor = dl->minor;
5783 di->disk.state = 0;
5784 di->recovery_start = 0;
5785 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
5786 di->component_size = a->info.component_size;
5787 di->container_member = inst;
5788 super->random = random32();
5789 di->next = rv;
5790 rv = di;
5791 num_spares++;
5792 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
5793 i, di->data_offset);
5794
5795 break;
5796 }
5797
5798 if (!rv)
5799 /* No spares found */
5800 return rv;
5801 /* Now 'rv' has a list of devices to return.
5802 * Create a metadata_update record to update the
5803 * disk_ord_tbl for the array
5804 */
5805 mu = malloc(sizeof(*mu));
5806 if (mu) {
5807 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
5808 if (mu->buf == NULL) {
5809 free(mu);
5810 mu = NULL;
5811 }
5812 }
5813 if (!mu) {
5814 while (rv) {
5815 struct mdinfo *n = rv->next;
5816
5817 free(rv);
5818 rv = n;
5819 }
5820 return NULL;
5821 }
5822
5823 mu->space = NULL;
5824 mu->space_list = NULL;
5825 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
5826 mu->next = *updates;
5827 u = (struct imsm_update_activate_spare *) mu->buf;
5828
5829 for (di = rv ; di ; di = di->next) {
5830 u->type = update_activate_spare;
5831 u->dl = (struct dl *) di->devs;
5832 di->devs = NULL;
5833 u->slot = di->disk.raid_disk;
5834 u->array = inst;
5835 u->next = u + 1;
5836 u++;
5837 }
5838 (u-1)->next = NULL;
5839 *updates = mu;
5840
5841 return rv;
5842 }
5843
5844 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
5845 {
5846 struct imsm_dev *dev = get_imsm_dev(super, idx);
5847 struct imsm_map *map = get_imsm_map(dev, 0);
5848 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
5849 struct disk_info *inf = get_disk_info(u);
5850 struct imsm_disk *disk;
5851 int i;
5852 int j;
5853
5854 for (i = 0; i < map->num_members; i++) {
5855 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
5856 for (j = 0; j < new_map->num_members; j++)
5857 if (serialcmp(disk->serial, inf[j].serial) == 0)
5858 return 1;
5859 }
5860
5861 return 0;
5862 }
5863
5864
5865 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
5866 {
5867 struct dl *dl = NULL;
5868 for (dl = super->disks; dl; dl = dl->next)
5869 if ((dl->major == major) && (dl->minor == minor))
5870 return dl;
5871 return NULL;
5872 }
5873
5874 static int remove_disk_super(struct intel_super *super, int major, int minor)
5875 {
5876 struct dl *prev = NULL;
5877 struct dl *dl;
5878
5879 prev = NULL;
5880 for (dl = super->disks; dl; dl = dl->next) {
5881 if ((dl->major == major) && (dl->minor == minor)) {
5882 /* remove */
5883 if (prev)
5884 prev->next = dl->next;
5885 else
5886 super->disks = dl->next;
5887 dl->next = NULL;
5888 __free_imsm_disk(dl);
5889 dprintf("%s: removed %x:%x\n",
5890 __func__, major, minor);
5891 break;
5892 }
5893 prev = dl;
5894 }
5895 return 0;
5896 }
5897
5898 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
5899
5900 static int add_remove_disk_update(struct intel_super *super)
5901 {
5902 int check_degraded = 0;
5903 struct dl *disk = NULL;
5904 /* add/remove some spares to/from the metadata/contrainer */
5905 while (super->disk_mgmt_list) {
5906 struct dl *disk_cfg;
5907
5908 disk_cfg = super->disk_mgmt_list;
5909 super->disk_mgmt_list = disk_cfg->next;
5910 disk_cfg->next = NULL;
5911
5912 if (disk_cfg->action == DISK_ADD) {
5913 disk_cfg->next = super->disks;
5914 super->disks = disk_cfg;
5915 check_degraded = 1;
5916 dprintf("%s: added %x:%x\n",
5917 __func__, disk_cfg->major,
5918 disk_cfg->minor);
5919 } else if (disk_cfg->action == DISK_REMOVE) {
5920 dprintf("Disk remove action processed: %x.%x\n",
5921 disk_cfg->major, disk_cfg->minor);
5922 disk = get_disk_super(super,
5923 disk_cfg->major,
5924 disk_cfg->minor);
5925 if (disk) {
5926 /* store action status */
5927 disk->action = DISK_REMOVE;
5928 /* remove spare disks only */
5929 if (disk->index == -1) {
5930 remove_disk_super(super,
5931 disk_cfg->major,
5932 disk_cfg->minor);
5933 }
5934 }
5935 /* release allocate disk structure */
5936 __free_imsm_disk(disk_cfg);
5937 }
5938 }
5939 return check_degraded;
5940 }
5941
5942 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
5943 struct intel_super *super,
5944 void ***space_list)
5945 {
5946 struct dl *new_disk;
5947 struct intel_dev *id;
5948 int i;
5949 int delta_disks = u->new_raid_disks - u->old_raid_disks;
5950 int disk_count = u->old_raid_disks;
5951 void **tofree = NULL;
5952 int devices_to_reshape = 1;
5953 struct imsm_super *mpb = super->anchor;
5954 int ret_val = 0;
5955 unsigned int dev_id;
5956
5957 dprintf("imsm: apply_reshape_container_disks_update()\n");
5958
5959 /* enable spares to use in array */
5960 for (i = 0; i < delta_disks; i++) {
5961 new_disk = get_disk_super(super,
5962 major(u->new_disks[i]),
5963 minor(u->new_disks[i]));
5964 dprintf("imsm: new disk for reshape is: %i:%i "
5965 "(%p, index = %i)\n",
5966 major(u->new_disks[i]), minor(u->new_disks[i]),
5967 new_disk, new_disk->index);
5968 if ((new_disk == NULL) ||
5969 ((new_disk->index >= 0) &&
5970 (new_disk->index < u->old_raid_disks)))
5971 goto update_reshape_exit;
5972 new_disk->index = disk_count++;
5973 /* slot to fill in autolayout
5974 */
5975 new_disk->raiddisk = new_disk->index;
5976 new_disk->disk.status |=
5977 CONFIGURED_DISK;
5978 new_disk->disk.status &= ~SPARE_DISK;
5979 }
5980
5981 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
5982 mpb->num_raid_devs);
5983 /* manage changes in volume
5984 */
5985 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
5986 void **sp = *space_list;
5987 struct imsm_dev *newdev;
5988 struct imsm_map *newmap, *oldmap;
5989
5990 for (id = super->devlist ; id; id = id->next) {
5991 if (id->index == dev_id)
5992 break;
5993 }
5994 if (id == NULL)
5995 break;
5996 if (!sp)
5997 continue;
5998 *space_list = *sp;
5999 newdev = (void*)sp;
6000 /* Copy the dev, but not (all of) the map */
6001 memcpy(newdev, id->dev, sizeof(*newdev));
6002 oldmap = get_imsm_map(id->dev, 0);
6003 newmap = get_imsm_map(newdev, 0);
6004 /* Copy the current map */
6005 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6006 /* update one device only
6007 */
6008 if (devices_to_reshape) {
6009 dprintf("imsm: modifying subdev: %i\n",
6010 id->index);
6011 devices_to_reshape--;
6012 newdev->vol.migr_state = 1;
6013 newdev->vol.curr_migr_unit = 0;
6014 newdev->vol.migr_type = MIGR_GEN_MIGR;
6015 newmap->num_members = u->new_raid_disks;
6016 for (i = 0; i < delta_disks; i++) {
6017 set_imsm_ord_tbl_ent(newmap,
6018 u->old_raid_disks + i,
6019 u->old_raid_disks + i);
6020 }
6021 /* New map is correct, now need to save old map
6022 */
6023 newmap = get_imsm_map(newdev, 1);
6024 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6025
6026 imsm_set_array_size(newdev);
6027 }
6028
6029 sp = (void **)id->dev;
6030 id->dev = newdev;
6031 *sp = tofree;
6032 tofree = sp;
6033 }
6034 if (tofree)
6035 *space_list = tofree;
6036 ret_val = 1;
6037
6038 update_reshape_exit:
6039
6040 return ret_val;
6041 }
6042
6043 static int apply_takeover_update(struct imsm_update_takeover *u,
6044 struct intel_super *super,
6045 void ***space_list)
6046 {
6047 struct imsm_dev *dev = NULL;
6048 struct intel_dev *dv;
6049 struct imsm_dev *dev_new;
6050 struct imsm_map *map;
6051 struct dl *dm, *du;
6052 int i;
6053
6054 for (dv = super->devlist; dv; dv = dv->next)
6055 if (dv->index == (unsigned int)u->subarray) {
6056 dev = dv->dev;
6057 break;
6058 }
6059
6060 if (dev == NULL)
6061 return 0;
6062
6063 map = get_imsm_map(dev, 0);
6064
6065 if (u->direction == R10_TO_R0) {
6066 /* Number of failed disks must be half of initial disk number */
6067 if (imsm_count_failed(super, dev) != (map->num_members / 2))
6068 return 0;
6069
6070 /* iterate through devices to mark removed disks as spare */
6071 for (dm = super->disks; dm; dm = dm->next) {
6072 if (dm->disk.status & FAILED_DISK) {
6073 int idx = dm->index;
6074 /* update indexes on the disk list */
6075 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
6076 the index values will end up being correct.... NB */
6077 for (du = super->disks; du; du = du->next)
6078 if (du->index > idx)
6079 du->index--;
6080 /* mark as spare disk */
6081 dm->disk.status = SPARE_DISK;
6082 dm->index = -1;
6083 }
6084 }
6085 /* update map */
6086 map->num_members = map->num_members / 2;
6087 map->map_state = IMSM_T_STATE_NORMAL;
6088 map->num_domains = 1;
6089 map->raid_level = 0;
6090 map->failed_disk_num = -1;
6091 }
6092
6093 if (u->direction == R0_TO_R10) {
6094 void **space;
6095 /* update slots in current disk list */
6096 for (dm = super->disks; dm; dm = dm->next) {
6097 if (dm->index >= 0)
6098 dm->index *= 2;
6099 }
6100 /* create new *missing* disks */
6101 for (i = 0; i < map->num_members; i++) {
6102 space = *space_list;
6103 if (!space)
6104 continue;
6105 *space_list = *space;
6106 du = (void *)space;
6107 memcpy(du, super->disks, sizeof(*du));
6108 du->fd = -1;
6109 du->minor = 0;
6110 du->major = 0;
6111 du->index = (i * 2) + 1;
6112 sprintf((char *)du->disk.serial,
6113 " MISSING_%d", du->index);
6114 sprintf((char *)du->serial,
6115 "MISSING_%d", du->index);
6116 du->next = super->missing;
6117 super->missing = du;
6118 }
6119 /* create new dev and map */
6120 space = *space_list;
6121 if (!space)
6122 return 0;
6123 *space_list = *space;
6124 dev_new = (void *)space;
6125 memcpy(dev_new, dev, sizeof(*dev));
6126 /* update new map */
6127 map = get_imsm_map(dev_new, 0);
6128 map->num_members = map->num_members * 2;
6129 map->map_state = IMSM_T_STATE_DEGRADED;
6130 map->num_domains = 2;
6131 map->raid_level = 1;
6132 /* replace dev<->dev_new */
6133 dv->dev = dev_new;
6134 }
6135 /* update disk order table */
6136 for (du = super->disks; du; du = du->next)
6137 if (du->index >= 0)
6138 set_imsm_ord_tbl_ent(map, du->index, du->index);
6139 for (du = super->missing; du; du = du->next)
6140 if (du->index >= 0) {
6141 set_imsm_ord_tbl_ent(map, du->index, du->index);
6142 mark_missing(dev_new, &du->disk, du->index);
6143 }
6144
6145 return 1;
6146 }
6147
6148 static void imsm_process_update(struct supertype *st,
6149 struct metadata_update *update)
6150 {
6151 /**
6152 * crack open the metadata_update envelope to find the update record
6153 * update can be one of:
6154 * update_reshape_container_disks - all the arrays in the container
6155 * are being reshaped to have more devices. We need to mark
6156 * the arrays for general migration and convert selected spares
6157 * into active devices.
6158 * update_activate_spare - a spare device has replaced a failed
6159 * device in an array, update the disk_ord_tbl. If this disk is
6160 * present in all member arrays then also clear the SPARE_DISK
6161 * flag
6162 * update_create_array
6163 * update_kill_array
6164 * update_rename_array
6165 * update_add_remove_disk
6166 */
6167 struct intel_super *super = st->sb;
6168 struct imsm_super *mpb;
6169 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6170
6171 /* update requires a larger buf but the allocation failed */
6172 if (super->next_len && !super->next_buf) {
6173 super->next_len = 0;
6174 return;
6175 }
6176
6177 if (super->next_buf) {
6178 memcpy(super->next_buf, super->buf, super->len);
6179 free(super->buf);
6180 super->len = super->next_len;
6181 super->buf = super->next_buf;
6182
6183 super->next_len = 0;
6184 super->next_buf = NULL;
6185 }
6186
6187 mpb = super->anchor;
6188
6189 switch (type) {
6190 case update_takeover: {
6191 struct imsm_update_takeover *u = (void *)update->buf;
6192 if (apply_takeover_update(u, super, &update->space_list)) {
6193 imsm_update_version_info(super);
6194 super->updates_pending++;
6195 }
6196 break;
6197 }
6198
6199 case update_reshape_container_disks: {
6200 struct imsm_update_reshape *u = (void *)update->buf;
6201 if (apply_reshape_container_disks_update(
6202 u, super, &update->space_list))
6203 super->updates_pending++;
6204 break;
6205 }
6206 case update_activate_spare: {
6207 struct imsm_update_activate_spare *u = (void *) update->buf;
6208 struct imsm_dev *dev = get_imsm_dev(super, u->array);
6209 struct imsm_map *map = get_imsm_map(dev, 0);
6210 struct imsm_map *migr_map;
6211 struct active_array *a;
6212 struct imsm_disk *disk;
6213 __u8 to_state;
6214 struct dl *dl;
6215 unsigned int found;
6216 int failed;
6217 int victim = get_imsm_disk_idx(dev, u->slot, -1);
6218 int i;
6219
6220 for (dl = super->disks; dl; dl = dl->next)
6221 if (dl == u->dl)
6222 break;
6223
6224 if (!dl) {
6225 fprintf(stderr, "error: imsm_activate_spare passed "
6226 "an unknown disk (index: %d)\n",
6227 u->dl->index);
6228 return;
6229 }
6230
6231 super->updates_pending++;
6232
6233 /* count failures (excluding rebuilds and the victim)
6234 * to determine map[0] state
6235 */
6236 failed = 0;
6237 for (i = 0; i < map->num_members; i++) {
6238 if (i == u->slot)
6239 continue;
6240 disk = get_imsm_disk(super,
6241 get_imsm_disk_idx(dev, i, -1));
6242 if (!disk || is_failed(disk))
6243 failed++;
6244 }
6245
6246 /* adding a pristine spare, assign a new index */
6247 if (dl->index < 0) {
6248 dl->index = super->anchor->num_disks;
6249 super->anchor->num_disks++;
6250 }
6251 disk = &dl->disk;
6252 disk->status |= CONFIGURED_DISK;
6253 disk->status &= ~SPARE_DISK;
6254
6255 /* mark rebuild */
6256 to_state = imsm_check_degraded(super, dev, failed);
6257 map->map_state = IMSM_T_STATE_DEGRADED;
6258 migrate(dev, to_state, MIGR_REBUILD);
6259 migr_map = get_imsm_map(dev, 1);
6260 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
6261 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
6262
6263 /* update the family_num to mark a new container
6264 * generation, being careful to record the existing
6265 * family_num in orig_family_num to clean up after
6266 * earlier mdadm versions that neglected to set it.
6267 */
6268 if (mpb->orig_family_num == 0)
6269 mpb->orig_family_num = mpb->family_num;
6270 mpb->family_num += super->random;
6271
6272 /* count arrays using the victim in the metadata */
6273 found = 0;
6274 for (a = st->arrays; a ; a = a->next) {
6275 dev = get_imsm_dev(super, a->info.container_member);
6276 map = get_imsm_map(dev, 0);
6277
6278 if (get_imsm_disk_slot(map, victim) >= 0)
6279 found++;
6280 }
6281
6282 /* delete the victim if it is no longer being
6283 * utilized anywhere
6284 */
6285 if (!found) {
6286 struct dl **dlp;
6287
6288 /* We know that 'manager' isn't touching anything,
6289 * so it is safe to delete
6290 */
6291 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
6292 if ((*dlp)->index == victim)
6293 break;
6294
6295 /* victim may be on the missing list */
6296 if (!*dlp)
6297 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
6298 if ((*dlp)->index == victim)
6299 break;
6300 imsm_delete(super, dlp, victim);
6301 }
6302 break;
6303 }
6304 case update_create_array: {
6305 /* someone wants to create a new array, we need to be aware of
6306 * a few races/collisions:
6307 * 1/ 'Create' called by two separate instances of mdadm
6308 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
6309 * devices that have since been assimilated via
6310 * activate_spare.
6311 * In the event this update can not be carried out mdadm will
6312 * (FIX ME) notice that its update did not take hold.
6313 */
6314 struct imsm_update_create_array *u = (void *) update->buf;
6315 struct intel_dev *dv;
6316 struct imsm_dev *dev;
6317 struct imsm_map *map, *new_map;
6318 unsigned long long start, end;
6319 unsigned long long new_start, new_end;
6320 int i;
6321 struct disk_info *inf;
6322 struct dl *dl;
6323
6324 /* handle racing creates: first come first serve */
6325 if (u->dev_idx < mpb->num_raid_devs) {
6326 dprintf("%s: subarray %d already defined\n",
6327 __func__, u->dev_idx);
6328 goto create_error;
6329 }
6330
6331 /* check update is next in sequence */
6332 if (u->dev_idx != mpb->num_raid_devs) {
6333 dprintf("%s: can not create array %d expected index %d\n",
6334 __func__, u->dev_idx, mpb->num_raid_devs);
6335 goto create_error;
6336 }
6337
6338 new_map = get_imsm_map(&u->dev, 0);
6339 new_start = __le32_to_cpu(new_map->pba_of_lba0);
6340 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
6341 inf = get_disk_info(u);
6342
6343 /* handle activate_spare versus create race:
6344 * check to make sure that overlapping arrays do not include
6345 * overalpping disks
6346 */
6347 for (i = 0; i < mpb->num_raid_devs; i++) {
6348 dev = get_imsm_dev(super, i);
6349 map = get_imsm_map(dev, 0);
6350 start = __le32_to_cpu(map->pba_of_lba0);
6351 end = start + __le32_to_cpu(map->blocks_per_member);
6352 if ((new_start >= start && new_start <= end) ||
6353 (start >= new_start && start <= new_end))
6354 /* overlap */;
6355 else
6356 continue;
6357
6358 if (disks_overlap(super, i, u)) {
6359 dprintf("%s: arrays overlap\n", __func__);
6360 goto create_error;
6361 }
6362 }
6363
6364 /* check that prepare update was successful */
6365 if (!update->space) {
6366 dprintf("%s: prepare update failed\n", __func__);
6367 goto create_error;
6368 }
6369
6370 /* check that all disks are still active before committing
6371 * changes. FIXME: could we instead handle this by creating a
6372 * degraded array? That's probably not what the user expects,
6373 * so better to drop this update on the floor.
6374 */
6375 for (i = 0; i < new_map->num_members; i++) {
6376 dl = serial_to_dl(inf[i].serial, super);
6377 if (!dl) {
6378 dprintf("%s: disk disappeared\n", __func__);
6379 goto create_error;
6380 }
6381 }
6382
6383 super->updates_pending++;
6384
6385 /* convert spares to members and fixup ord_tbl */
6386 for (i = 0; i < new_map->num_members; i++) {
6387 dl = serial_to_dl(inf[i].serial, super);
6388 if (dl->index == -1) {
6389 dl->index = mpb->num_disks;
6390 mpb->num_disks++;
6391 dl->disk.status |= CONFIGURED_DISK;
6392 dl->disk.status &= ~SPARE_DISK;
6393 }
6394 set_imsm_ord_tbl_ent(new_map, i, dl->index);
6395 }
6396
6397 dv = update->space;
6398 dev = dv->dev;
6399 update->space = NULL;
6400 imsm_copy_dev(dev, &u->dev);
6401 dv->index = u->dev_idx;
6402 dv->next = super->devlist;
6403 super->devlist = dv;
6404 mpb->num_raid_devs++;
6405
6406 imsm_update_version_info(super);
6407 break;
6408 create_error:
6409 /* mdmon knows how to release update->space, but not
6410 * ((struct intel_dev *) update->space)->dev
6411 */
6412 if (update->space) {
6413 dv = update->space;
6414 free(dv->dev);
6415 }
6416 break;
6417 }
6418 case update_kill_array: {
6419 struct imsm_update_kill_array *u = (void *) update->buf;
6420 int victim = u->dev_idx;
6421 struct active_array *a;
6422 struct intel_dev **dp;
6423 struct imsm_dev *dev;
6424
6425 /* sanity check that we are not affecting the uuid of
6426 * active arrays, or deleting an active array
6427 *
6428 * FIXME when immutable ids are available, but note that
6429 * we'll also need to fixup the invalidated/active
6430 * subarray indexes in mdstat
6431 */
6432 for (a = st->arrays; a; a = a->next)
6433 if (a->info.container_member >= victim)
6434 break;
6435 /* by definition if mdmon is running at least one array
6436 * is active in the container, so checking
6437 * mpb->num_raid_devs is just extra paranoia
6438 */
6439 dev = get_imsm_dev(super, victim);
6440 if (a || !dev || mpb->num_raid_devs == 1) {
6441 dprintf("failed to delete subarray-%d\n", victim);
6442 break;
6443 }
6444
6445 for (dp = &super->devlist; *dp;)
6446 if ((*dp)->index == (unsigned)super->current_vol) {
6447 *dp = (*dp)->next;
6448 } else {
6449 if ((*dp)->index > (unsigned)victim)
6450 (*dp)->index--;
6451 dp = &(*dp)->next;
6452 }
6453 mpb->num_raid_devs--;
6454 super->updates_pending++;
6455 break;
6456 }
6457 case update_rename_array: {
6458 struct imsm_update_rename_array *u = (void *) update->buf;
6459 char name[MAX_RAID_SERIAL_LEN+1];
6460 int target = u->dev_idx;
6461 struct active_array *a;
6462 struct imsm_dev *dev;
6463
6464 /* sanity check that we are not affecting the uuid of
6465 * an active array
6466 */
6467 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
6468 name[MAX_RAID_SERIAL_LEN] = '\0';
6469 for (a = st->arrays; a; a = a->next)
6470 if (a->info.container_member == target)
6471 break;
6472 dev = get_imsm_dev(super, u->dev_idx);
6473 if (a || !dev || !check_name(super, name, 1)) {
6474 dprintf("failed to rename subarray-%d\n", target);
6475 break;
6476 }
6477
6478 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6479 super->updates_pending++;
6480 break;
6481 }
6482 case update_add_remove_disk: {
6483 /* we may be able to repair some arrays if disks are
6484 * being added, check teh status of add_remove_disk
6485 * if discs has been added.
6486 */
6487 if (add_remove_disk_update(super)) {
6488 struct active_array *a;
6489
6490 super->updates_pending++;
6491 for (a = st->arrays; a; a = a->next)
6492 a->check_degraded = 1;
6493 }
6494 break;
6495 }
6496 default:
6497 fprintf(stderr, "error: unsuported process update type:"
6498 "(type: %d)\n", type);
6499 }
6500 }
6501
6502 static void imsm_prepare_update(struct supertype *st,
6503 struct metadata_update *update)
6504 {
6505 /**
6506 * Allocate space to hold new disk entries, raid-device entries or a new
6507 * mpb if necessary. The manager synchronously waits for updates to
6508 * complete in the monitor, so new mpb buffers allocated here can be
6509 * integrated by the monitor thread without worrying about live pointers
6510 * in the manager thread.
6511 */
6512 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6513 struct intel_super *super = st->sb;
6514 struct imsm_super *mpb = super->anchor;
6515 size_t buf_len;
6516 size_t len = 0;
6517
6518 switch (type) {
6519 case update_takeover: {
6520 struct imsm_update_takeover *u = (void *)update->buf;
6521 if (u->direction == R0_TO_R10) {
6522 void **tail = (void **)&update->space_list;
6523 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
6524 struct imsm_map *map = get_imsm_map(dev, 0);
6525 int num_members = map->num_members;
6526 void *space;
6527 int size, i;
6528 int err = 0;
6529 /* allocate memory for added disks */
6530 for (i = 0; i < num_members; i++) {
6531 size = sizeof(struct dl);
6532 space = malloc(size);
6533 if (!space) {
6534 err++;
6535 break;
6536 }
6537 *tail = space;
6538 tail = space;
6539 *tail = NULL;
6540 }
6541 /* allocate memory for new device */
6542 size = sizeof_imsm_dev(super->devlist->dev, 0) +
6543 (num_members * sizeof(__u32));
6544 space = malloc(size);
6545 if (!space)
6546 err++;
6547 else {
6548 *tail = space;
6549 tail = space;
6550 *tail = NULL;
6551 }
6552 if (!err) {
6553 len = disks_to_mpb_size(num_members * 2);
6554 } else {
6555 /* if allocation didn't success, free buffer */
6556 while (update->space_list) {
6557 void **sp = update->space_list;
6558 update->space_list = *sp;
6559 free(sp);
6560 }
6561 }
6562 }
6563
6564 break;
6565 }
6566 case update_reshape_container_disks: {
6567 /* Every raid device in the container is about to
6568 * gain some more devices, and we will enter a
6569 * reconfiguration.
6570 * So each 'imsm_map' will be bigger, and the imsm_vol
6571 * will now hold 2 of them.
6572 * Thus we need new 'struct imsm_dev' allocations sized
6573 * as sizeof_imsm_dev but with more devices in both maps.
6574 */
6575 struct imsm_update_reshape *u = (void *)update->buf;
6576 struct intel_dev *dl;
6577 void **space_tail = (void**)&update->space_list;
6578
6579 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
6580
6581 for (dl = super->devlist; dl; dl = dl->next) {
6582 int size = sizeof_imsm_dev(dl->dev, 1);
6583 void *s;
6584 if (u->new_raid_disks > u->old_raid_disks)
6585 size += sizeof(__u32)*2*
6586 (u->new_raid_disks - u->old_raid_disks);
6587 s = malloc(size);
6588 if (!s)
6589 break;
6590 *space_tail = s;
6591 space_tail = s;
6592 *space_tail = NULL;
6593 }
6594
6595 len = disks_to_mpb_size(u->new_raid_disks);
6596 dprintf("New anchor length is %llu\n", (unsigned long long)len);
6597 break;
6598 }
6599 case update_create_array: {
6600 struct imsm_update_create_array *u = (void *) update->buf;
6601 struct intel_dev *dv;
6602 struct imsm_dev *dev = &u->dev;
6603 struct imsm_map *map = get_imsm_map(dev, 0);
6604 struct dl *dl;
6605 struct disk_info *inf;
6606 int i;
6607 int activate = 0;
6608
6609 inf = get_disk_info(u);
6610 len = sizeof_imsm_dev(dev, 1);
6611 /* allocate a new super->devlist entry */
6612 dv = malloc(sizeof(*dv));
6613 if (dv) {
6614 dv->dev = malloc(len);
6615 if (dv->dev)
6616 update->space = dv;
6617 else {
6618 free(dv);
6619 update->space = NULL;
6620 }
6621 }
6622
6623 /* count how many spares will be converted to members */
6624 for (i = 0; i < map->num_members; i++) {
6625 dl = serial_to_dl(inf[i].serial, super);
6626 if (!dl) {
6627 /* hmm maybe it failed?, nothing we can do about
6628 * it here
6629 */
6630 continue;
6631 }
6632 if (count_memberships(dl, super) == 0)
6633 activate++;
6634 }
6635 len += activate * sizeof(struct imsm_disk);
6636 break;
6637 default:
6638 break;
6639 }
6640 }
6641
6642 /* check if we need a larger metadata buffer */
6643 if (super->next_buf)
6644 buf_len = super->next_len;
6645 else
6646 buf_len = super->len;
6647
6648 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
6649 /* ok we need a larger buf than what is currently allocated
6650 * if this allocation fails process_update will notice that
6651 * ->next_len is set and ->next_buf is NULL
6652 */
6653 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
6654 if (super->next_buf)
6655 free(super->next_buf);
6656
6657 super->next_len = buf_len;
6658 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
6659 memset(super->next_buf, 0, buf_len);
6660 else
6661 super->next_buf = NULL;
6662 }
6663 }
6664
6665 /* must be called while manager is quiesced */
6666 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
6667 {
6668 struct imsm_super *mpb = super->anchor;
6669 struct dl *iter;
6670 struct imsm_dev *dev;
6671 struct imsm_map *map;
6672 int i, j, num_members;
6673 __u32 ord;
6674
6675 dprintf("%s: deleting device[%d] from imsm_super\n",
6676 __func__, index);
6677
6678 /* shift all indexes down one */
6679 for (iter = super->disks; iter; iter = iter->next)
6680 if (iter->index > (int)index)
6681 iter->index--;
6682 for (iter = super->missing; iter; iter = iter->next)
6683 if (iter->index > (int)index)
6684 iter->index--;
6685
6686 for (i = 0; i < mpb->num_raid_devs; i++) {
6687 dev = get_imsm_dev(super, i);
6688 map = get_imsm_map(dev, 0);
6689 num_members = map->num_members;
6690 for (j = 0; j < num_members; j++) {
6691 /* update ord entries being careful not to propagate
6692 * ord-flags to the first map
6693 */
6694 ord = get_imsm_ord_tbl_ent(dev, j, -1);
6695
6696 if (ord_to_idx(ord) <= index)
6697 continue;
6698
6699 map = get_imsm_map(dev, 0);
6700 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
6701 map = get_imsm_map(dev, 1);
6702 if (map)
6703 set_imsm_ord_tbl_ent(map, j, ord - 1);
6704 }
6705 }
6706
6707 mpb->num_disks--;
6708 super->updates_pending++;
6709 if (*dlp) {
6710 struct dl *dl = *dlp;
6711
6712 *dlp = (*dlp)->next;
6713 __free_imsm_disk(dl);
6714 }
6715 }
6716
6717 static char disk_by_path[] = "/dev/disk/by-path/";
6718
6719 static const char *imsm_get_disk_controller_domain(const char *path)
6720 {
6721 char disk_path[PATH_MAX];
6722 char *drv=NULL;
6723 struct stat st;
6724
6725 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
6726 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
6727 if (stat(disk_path, &st) == 0) {
6728 struct sys_dev* hba;
6729 char *path=NULL;
6730
6731 path = devt_to_devpath(st.st_rdev);
6732 if (path == NULL)
6733 return "unknown";
6734 hba = find_disk_attached_hba(-1, path);
6735 if (hba && hba->type == SYS_DEV_SAS)
6736 drv = "isci";
6737 else if (hba && hba->type == SYS_DEV_SATA)
6738 drv = "ahci";
6739 else
6740 drv = "unknown";
6741 dprintf("path: %s hba: %s attached: %s\n",
6742 path, (hba) ? hba->path : "NULL", drv);
6743 free(path);
6744 if (hba)
6745 free_sys_dev(&hba);
6746 }
6747 return drv;
6748 }
6749
6750 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
6751 {
6752 char subdev_name[20];
6753 struct mdstat_ent *mdstat;
6754
6755 sprintf(subdev_name, "%d", subdev);
6756 mdstat = mdstat_by_subdev(subdev_name, container);
6757 if (!mdstat)
6758 return -1;
6759
6760 *minor = mdstat->devnum;
6761 free_mdstat(mdstat);
6762 return 0;
6763 }
6764
6765 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
6766 struct geo_params *geo,
6767 int *old_raid_disks)
6768 {
6769 /* currently we only support increasing the number of devices
6770 * for a container. This increases the number of device for each
6771 * member array. They must all be RAID0 or RAID5.
6772 */
6773 int ret_val = 0;
6774 struct mdinfo *info, *member;
6775 int devices_that_can_grow = 0;
6776
6777 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
6778 "st->devnum = (%i)\n",
6779 st->devnum);
6780
6781 if (geo->size != -1 ||
6782 geo->level != UnSet ||
6783 geo->layout != UnSet ||
6784 geo->chunksize != 0 ||
6785 geo->raid_disks == UnSet) {
6786 dprintf("imsm: Container operation is allowed for "
6787 "raid disks number change only.\n");
6788 return ret_val;
6789 }
6790
6791 info = container_content_imsm(st, NULL);
6792 for (member = info; member; member = member->next) {
6793 int result;
6794 int minor;
6795
6796 dprintf("imsm: checking device_num: %i\n",
6797 member->container_member);
6798
6799 if (geo->raid_disks <= member->array.raid_disks) {
6800 /* we work on container for Online Capacity Expansion
6801 * only so raid_disks has to grow
6802 */
6803 dprintf("imsm: for container operation raid disks "
6804 "increase is required\n");
6805 break;
6806 }
6807
6808 if ((info->array.level != 0) &&
6809 (info->array.level != 5)) {
6810 /* we cannot use this container with other raid level
6811 */
6812 dprintf("imsm: for container operation wrong"
6813 " raid level (%i) detected\n",
6814 info->array.level);
6815 break;
6816 } else {
6817 /* check for platform support
6818 * for this raid level configuration
6819 */
6820 struct intel_super *super = st->sb;
6821 if (!is_raid_level_supported(super->orom,
6822 member->array.level,
6823 geo->raid_disks)) {
6824 dprintf("platform does not support raid%d with"
6825 " %d disk%s\n",
6826 info->array.level,
6827 geo->raid_disks,
6828 geo->raid_disks > 1 ? "s" : "");
6829 break;
6830 }
6831 }
6832
6833 if (*old_raid_disks &&
6834 info->array.raid_disks != *old_raid_disks)
6835 break;
6836 *old_raid_disks = info->array.raid_disks;
6837
6838 /* All raid5 and raid0 volumes in container
6839 * have to be ready for Online Capacity Expansion
6840 * so they need to be assembled. We have already
6841 * checked that no recovery etc is happening.
6842 */
6843 result = imsm_find_array_minor_by_subdev(member->container_member,
6844 st->container_dev,
6845 &minor);
6846 if (result < 0) {
6847 dprintf("imsm: cannot find array\n");
6848 break;
6849 }
6850 devices_that_can_grow++;
6851 }
6852 sysfs_free(info);
6853 if (!member && devices_that_can_grow)
6854 ret_val = 1;
6855
6856 if (ret_val)
6857 dprintf("\tContainer operation allowed\n");
6858 else
6859 dprintf("\tError: %i\n", ret_val);
6860
6861 return ret_val;
6862 }
6863
6864 /* Function: get_spares_for_grow
6865 * Description: Allocates memory and creates list of spare devices
6866 * avaliable in container. Checks if spare drive size is acceptable.
6867 * Parameters: Pointer to the supertype structure
6868 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
6869 * NULL if fail
6870 */
6871 static struct mdinfo *get_spares_for_grow(struct supertype *st)
6872 {
6873 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
6874 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
6875 }
6876
6877 /******************************************************************************
6878 * function: imsm_create_metadata_update_for_reshape
6879 * Function creates update for whole IMSM container.
6880 *
6881 ******************************************************************************/
6882 static int imsm_create_metadata_update_for_reshape(
6883 struct supertype *st,
6884 struct geo_params *geo,
6885 int old_raid_disks,
6886 struct imsm_update_reshape **updatep)
6887 {
6888 struct intel_super *super = st->sb;
6889 struct imsm_super *mpb = super->anchor;
6890 int update_memory_size = 0;
6891 struct imsm_update_reshape *u = NULL;
6892 struct mdinfo *spares = NULL;
6893 int i;
6894 int delta_disks = 0;
6895 struct mdinfo *dev;
6896
6897 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
6898 geo->raid_disks);
6899
6900 delta_disks = geo->raid_disks - old_raid_disks;
6901
6902 /* size of all update data without anchor */
6903 update_memory_size = sizeof(struct imsm_update_reshape);
6904
6905 /* now add space for spare disks that we need to add. */
6906 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
6907
6908 u = calloc(1, update_memory_size);
6909 if (u == NULL) {
6910 dprintf("error: "
6911 "cannot get memory for imsm_update_reshape update\n");
6912 return 0;
6913 }
6914 u->type = update_reshape_container_disks;
6915 u->old_raid_disks = old_raid_disks;
6916 u->new_raid_disks = geo->raid_disks;
6917
6918 /* now get spare disks list
6919 */
6920 spares = get_spares_for_grow(st);
6921
6922 if (spares == NULL
6923 || delta_disks > spares->array.spare_disks) {
6924 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
6925 "for %s.\n", geo->dev_name);
6926 goto abort;
6927 }
6928
6929 /* we have got spares
6930 * update disk list in imsm_disk list table in anchor
6931 */
6932 dprintf("imsm: %i spares are available.\n\n",
6933 spares->array.spare_disks);
6934
6935 dev = spares->devs;
6936 for (i = 0; i < delta_disks; i++) {
6937 struct dl *dl;
6938
6939 if (dev == NULL)
6940 break;
6941 u->new_disks[i] = makedev(dev->disk.major,
6942 dev->disk.minor);
6943 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
6944 dl->index = mpb->num_disks;
6945 mpb->num_disks++;
6946 dev = dev->next;
6947 }
6948
6949 abort:
6950 /* free spares
6951 */
6952 sysfs_free(spares);
6953
6954 dprintf("imsm: reshape update preparation :");
6955 if (i == delta_disks) {
6956 dprintf(" OK\n");
6957 *updatep = u;
6958 return update_memory_size;
6959 }
6960 free(u);
6961 dprintf(" Error\n");
6962
6963 return 0;
6964 }
6965
6966 static void imsm_update_metadata_locally(struct supertype *st,
6967 void *buf, int len)
6968 {
6969 struct metadata_update mu;
6970
6971 mu.buf = buf;
6972 mu.len = len;
6973 mu.space = NULL;
6974 mu.space_list = NULL;
6975 mu.next = NULL;
6976 imsm_prepare_update(st, &mu);
6977 imsm_process_update(st, &mu);
6978
6979 while (mu.space_list) {
6980 void **space = mu.space_list;
6981 mu.space_list = *space;
6982 free(space);
6983 }
6984 }
6985
6986 /***************************************************************************
6987 * Function: imsm_analyze_change
6988 * Description: Function analyze change for single volume
6989 * and validate if transition is supported
6990 * Parameters: Geometry parameters, supertype structure
6991 * Returns: Operation type code on success, -1 if fail
6992 ****************************************************************************/
6993 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
6994 struct geo_params *geo)
6995 {
6996 struct mdinfo info;
6997 int change = -1;
6998 int check_devs = 0;
6999 int chunk;
7000
7001 getinfo_super_imsm_volume(st, &info, NULL);
7002
7003 if ((geo->level != info.array.level) &&
7004 (geo->level >= 0) &&
7005 (geo->level != UnSet)) {
7006 switch (info.array.level) {
7007 case 0:
7008 if (geo->level == 5) {
7009 change = CH_MIGRATION;
7010 check_devs = 1;
7011 }
7012 if (geo->level == 10) {
7013 change = CH_TAKEOVER;
7014 check_devs = 1;
7015 }
7016 break;
7017 case 1:
7018 if (geo->level == 0) {
7019 change = CH_TAKEOVER;
7020 check_devs = 1;
7021 }
7022 break;
7023 case 5:
7024 if (geo->level == 0)
7025 change = CH_MIGRATION;
7026 break;
7027 case 10:
7028 if (geo->level == 0) {
7029 change = CH_TAKEOVER;
7030 check_devs = 1;
7031 }
7032 break;
7033 }
7034 if (change == -1) {
7035 fprintf(stderr,
7036 Name " Error. Level Migration from %d to %d "
7037 "not supported!\n",
7038 info.array.level, geo->level);
7039 goto analyse_change_exit;
7040 }
7041 } else
7042 geo->level = info.array.level;
7043
7044 if ((geo->layout != info.array.layout)
7045 && ((geo->layout != UnSet) && (geo->layout != -1))) {
7046 change = CH_MIGRATION;
7047 if ((info.array.layout == 0)
7048 && (info.array.level == 5)
7049 && (geo->layout == 5)) {
7050 /* reshape 5 -> 4 */
7051 } else if ((info.array.layout == 5)
7052 && (info.array.level == 5)
7053 && (geo->layout == 0)) {
7054 /* reshape 4 -> 5 */
7055 geo->layout = 0;
7056 geo->level = 5;
7057 } else {
7058 fprintf(stderr,
7059 Name " Error. Layout Migration from %d to %d "
7060 "not supported!\n",
7061 info.array.layout, geo->layout);
7062 change = -1;
7063 goto analyse_change_exit;
7064 }
7065 } else
7066 geo->layout = info.array.layout;
7067
7068 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
7069 && (geo->chunksize != info.array.chunk_size))
7070 change = CH_MIGRATION;
7071 else
7072 geo->chunksize = info.array.chunk_size;
7073
7074 chunk = geo->chunksize / 1024;
7075 if (!validate_geometry_imsm(st,
7076 geo->level,
7077 geo->layout,
7078 geo->raid_disks,
7079 &chunk,
7080 geo->size,
7081 0, 0, 1))
7082 change = -1;
7083
7084 if (check_devs) {
7085 struct intel_super *super = st->sb;
7086 struct imsm_super *mpb = super->anchor;
7087
7088 if (mpb->num_raid_devs > 1) {
7089 fprintf(stderr,
7090 Name " Error. Cannot perform operation on %s"
7091 "- for this operation it MUST be single "
7092 "array in container\n",
7093 geo->dev_name);
7094 change = -1;
7095 }
7096 }
7097
7098 analyse_change_exit:
7099
7100 return change;
7101 }
7102
7103 int imsm_takeover(struct supertype *st, struct geo_params *geo)
7104 {
7105 struct intel_super *super = st->sb;
7106 struct imsm_update_takeover *u;
7107
7108 u = malloc(sizeof(struct imsm_update_takeover));
7109 if (u == NULL)
7110 return 1;
7111
7112 u->type = update_takeover;
7113 u->subarray = super->current_vol;
7114
7115 /* 10->0 transition */
7116 if (geo->level == 0)
7117 u->direction = R10_TO_R0;
7118
7119 /* 0->10 transition */
7120 if (geo->level == 10)
7121 u->direction = R0_TO_R10;
7122
7123 /* update metadata locally */
7124 imsm_update_metadata_locally(st, u,
7125 sizeof(struct imsm_update_takeover));
7126 /* and possibly remotely */
7127 if (st->update_tail)
7128 append_metadata_update(st, u,
7129 sizeof(struct imsm_update_takeover));
7130 else
7131 free(u);
7132
7133 return 0;
7134 }
7135
7136 static int imsm_reshape_super(struct supertype *st, long long size, int level,
7137 int layout, int chunksize, int raid_disks,
7138 int delta_disks, char *backup, char *dev,
7139 int verbose)
7140 {
7141 int ret_val = 1;
7142 struct geo_params geo;
7143
7144 dprintf("imsm: reshape_super called.\n");
7145
7146 memset(&geo, 0, sizeof(struct geo_params));
7147
7148 geo.dev_name = dev;
7149 geo.dev_id = st->devnum;
7150 geo.size = size;
7151 geo.level = level;
7152 geo.layout = layout;
7153 geo.chunksize = chunksize;
7154 geo.raid_disks = raid_disks;
7155 if (delta_disks != UnSet)
7156 geo.raid_disks += delta_disks;
7157
7158 dprintf("\tfor level : %i\n", geo.level);
7159 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
7160
7161 if (experimental() == 0)
7162 return ret_val;
7163
7164 if (st->container_dev == st->devnum) {
7165 /* On container level we can only increase number of devices. */
7166 dprintf("imsm: info: Container operation\n");
7167 int old_raid_disks = 0;
7168 if (imsm_reshape_is_allowed_on_container(
7169 st, &geo, &old_raid_disks)) {
7170 struct imsm_update_reshape *u = NULL;
7171 int len;
7172
7173 len = imsm_create_metadata_update_for_reshape(
7174 st, &geo, old_raid_disks, &u);
7175
7176 if (len <= 0) {
7177 dprintf("imsm: Cannot prepare update\n");
7178 goto exit_imsm_reshape_super;
7179 }
7180
7181 ret_val = 0;
7182 /* update metadata locally */
7183 imsm_update_metadata_locally(st, u, len);
7184 /* and possibly remotely */
7185 if (st->update_tail)
7186 append_metadata_update(st, u, len);
7187 else
7188 free(u);
7189
7190 } else {
7191 fprintf(stderr, Name ": (imsm) Operation "
7192 "is not allowed on this container\n");
7193 }
7194 } else {
7195 /* On volume level we support following operations
7196 * - takeover: raid10 -> raid0; raid0 -> raid10
7197 * - chunk size migration
7198 * - migration: raid5 -> raid0; raid0 -> raid5
7199 */
7200 struct intel_super *super = st->sb;
7201 struct intel_dev *dev = super->devlist;
7202 int change, devnum;
7203 dprintf("imsm: info: Volume operation\n");
7204 /* find requested device */
7205 while (dev) {
7206 imsm_find_array_minor_by_subdev(dev->index, st->container_dev, &devnum);
7207 if (devnum == geo.dev_id)
7208 break;
7209 dev = dev->next;
7210 }
7211 if (dev == NULL) {
7212 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
7213 geo.dev_name, geo.dev_id);
7214 goto exit_imsm_reshape_super;
7215 }
7216 super->current_vol = dev->index;
7217 change = imsm_analyze_change(st, &geo);
7218 switch (change) {
7219 case CH_TAKEOVER:
7220 ret_val = imsm_takeover(st, &geo);
7221 break;
7222 case CH_MIGRATION:
7223 ret_val = 0;
7224 break;
7225 default:
7226 ret_val = 1;
7227 }
7228 }
7229
7230 exit_imsm_reshape_super:
7231 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
7232 return ret_val;
7233 }
7234
7235 static int imsm_manage_reshape(
7236 int afd, struct mdinfo *sra, struct reshape *reshape,
7237 struct supertype *st, unsigned long stripes,
7238 int *fds, unsigned long long *offsets,
7239 int dests, int *destfd, unsigned long long *destoffsets)
7240 {
7241 /* Just use child_monitor for now */
7242 return child_monitor(
7243 afd, sra, reshape, st, stripes,
7244 fds, offsets, dests, destfd, destoffsets);
7245 }
7246 #endif /* MDASSEMBLE */
7247
7248 struct superswitch super_imsm = {
7249 #ifndef MDASSEMBLE
7250 .examine_super = examine_super_imsm,
7251 .brief_examine_super = brief_examine_super_imsm,
7252 .brief_examine_subarrays = brief_examine_subarrays_imsm,
7253 .export_examine_super = export_examine_super_imsm,
7254 .detail_super = detail_super_imsm,
7255 .brief_detail_super = brief_detail_super_imsm,
7256 .write_init_super = write_init_super_imsm,
7257 .validate_geometry = validate_geometry_imsm,
7258 .add_to_super = add_to_super_imsm,
7259 .remove_from_super = remove_from_super_imsm,
7260 .detail_platform = detail_platform_imsm,
7261 .kill_subarray = kill_subarray_imsm,
7262 .update_subarray = update_subarray_imsm,
7263 .load_container = load_container_imsm,
7264 .default_geometry = default_geometry_imsm,
7265 .get_disk_controller_domain = imsm_get_disk_controller_domain,
7266 .reshape_super = imsm_reshape_super,
7267 .manage_reshape = imsm_manage_reshape,
7268 #endif
7269 .match_home = match_home_imsm,
7270 .uuid_from_super= uuid_from_super_imsm,
7271 .getinfo_super = getinfo_super_imsm,
7272 .getinfo_super_disks = getinfo_super_disks_imsm,
7273 .update_super = update_super_imsm,
7274
7275 .avail_size = avail_size_imsm,
7276 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
7277
7278 .compare_super = compare_super_imsm,
7279
7280 .load_super = load_super_imsm,
7281 .init_super = init_super_imsm,
7282 .store_super = store_super_imsm,
7283 .free_super = free_super_imsm,
7284 .match_metadata_desc = match_metadata_desc_imsm,
7285 .container_content = container_content_imsm,
7286
7287 .external = 1,
7288 .name = "imsm",
7289
7290 #ifndef MDASSEMBLE
7291 /* for mdmon */
7292 .open_new = imsm_open_new,
7293 .set_array_state= imsm_set_array_state,
7294 .set_disk = imsm_set_disk,
7295 .sync_metadata = imsm_sync_metadata,
7296 .activate_spare = imsm_activate_spare,
7297 .process_update = imsm_process_update,
7298 .prepare_update = imsm_prepare_update,
7299 #endif /* MDASSEMBLE */
7300 };