]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
super-intel: Make print_vmd_attached_devs() return int again
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
106 #define IMSM_DISK_FILLERS 3
107 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
108 };
109
110 /* map selector for map managment
111 */
112 #define MAP_0 0
113 #define MAP_1 1
114 #define MAP_X -1
115
116 /* RAID map configuration infos. */
117 struct imsm_map {
118 __u32 pba_of_lba0_lo; /* start address of partition */
119 __u32 blocks_per_member_lo;/* blocks per member */
120 __u32 num_data_stripes_lo; /* number of data stripes */
121 __u16 blocks_per_strip;
122 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
123 #define IMSM_T_STATE_NORMAL 0
124 #define IMSM_T_STATE_UNINITIALIZED 1
125 #define IMSM_T_STATE_DEGRADED 2
126 #define IMSM_T_STATE_FAILED 3
127 __u8 raid_level;
128 #define IMSM_T_RAID0 0
129 #define IMSM_T_RAID1 1
130 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
131 __u8 num_members; /* number of member disks */
132 __u8 num_domains; /* number of parity domains */
133 __u8 failed_disk_num; /* valid only when state is degraded */
134 __u8 ddf;
135 __u32 pba_of_lba0_hi;
136 __u32 blocks_per_member_hi;
137 __u32 num_data_stripes_hi;
138 __u32 filler[4]; /* expansion area */
139 #define IMSM_ORD_REBUILD (1 << 24)
140 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
141 * top byte contains some flags
142 */
143 } __attribute__ ((packed));
144
145 struct imsm_vol {
146 __u32 curr_migr_unit;
147 __u32 checkpoint_id; /* id to access curr_migr_unit */
148 __u8 migr_state; /* Normal or Migrating */
149 #define MIGR_INIT 0
150 #define MIGR_REBUILD 1
151 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
152 #define MIGR_GEN_MIGR 3
153 #define MIGR_STATE_CHANGE 4
154 #define MIGR_REPAIR 5
155 __u8 migr_type; /* Initializing, Rebuilding, ... */
156 __u8 dirty;
157 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
158 __u16 verify_errors; /* number of mismatches */
159 __u16 bad_blocks; /* number of bad blocks during verify */
160 __u32 filler[4];
161 struct imsm_map map[1];
162 /* here comes another one if migr_state */
163 } __attribute__ ((packed));
164
165 struct imsm_dev {
166 __u8 volume[MAX_RAID_SERIAL_LEN];
167 __u32 size_low;
168 __u32 size_high;
169 #define DEV_BOOTABLE __cpu_to_le32(0x01)
170 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
171 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
172 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
173 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
174 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
175 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
176 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
177 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
178 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
179 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
180 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
181 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
182 __u32 status; /* Persistent RaidDev status */
183 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
184 __u8 migr_priority;
185 __u8 num_sub_vols;
186 __u8 tid;
187 __u8 cng_master_disk;
188 __u16 cache_policy;
189 __u8 cng_state;
190 __u8 cng_sub_state;
191 #define IMSM_DEV_FILLERS 10
192 __u32 filler[IMSM_DEV_FILLERS];
193 struct imsm_vol vol;
194 } __attribute__ ((packed));
195
196 struct imsm_super {
197 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
198 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
199 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
200 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
201 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
202 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
203 __u32 attributes; /* 0x34 - 0x37 */
204 __u8 num_disks; /* 0x38 Number of configured disks */
205 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
206 __u8 error_log_pos; /* 0x3A */
207 __u8 fill[1]; /* 0x3B */
208 __u32 cache_size; /* 0x3c - 0x40 in mb */
209 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
210 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
211 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
212 #define IMSM_FILLERS 35
213 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
214 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
215 /* here comes imsm_dev[num_raid_devs] */
216 /* here comes BBM logs */
217 } __attribute__ ((packed));
218
219 #define BBM_LOG_MAX_ENTRIES 254
220
221 struct bbm_log_entry {
222 __u64 defective_block_start;
223 #define UNREADABLE 0xFFFFFFFF
224 __u32 spare_block_offset;
225 __u16 remapped_marked_count;
226 __u16 disk_ordinal;
227 } __attribute__ ((__packed__));
228
229 struct bbm_log {
230 __u32 signature; /* 0xABADB10C */
231 __u32 entry_count;
232 __u32 reserved_spare_block_count; /* 0 */
233 __u32 reserved; /* 0xFFFF */
234 __u64 first_spare_lba;
235 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
236 } __attribute__ ((__packed__));
237
238 #ifndef MDASSEMBLE
239 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
240 #endif
241
242 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
243
244 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
245
246 #define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
247 #define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
248 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
249 */
250
251 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
252 * be recovered using srcMap */
253 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
254 * already been migrated and must
255 * be recovered from checkpoint area */
256 struct migr_record {
257 __u32 rec_status; /* Status used to determine how to restart
258 * migration in case it aborts
259 * in some fashion */
260 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
261 __u32 family_num; /* Family number of MPB
262 * containing the RaidDev
263 * that is migrating */
264 __u32 ascending_migr; /* True if migrating in increasing
265 * order of lbas */
266 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
267 __u32 dest_depth_per_unit; /* Num member blocks each destMap
268 * member disk
269 * advances per unit-of-operation */
270 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
271 __u32 dest_1st_member_lba; /* First member lba on first
272 * stripe of destination */
273 __u32 num_migr_units; /* Total num migration units-of-op */
274 __u32 post_migr_vol_cap; /* Size of volume after
275 * migration completes */
276 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
277 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
278 * migration ckpt record was read from
279 * (for recovered migrations) */
280 } __attribute__ ((__packed__));
281
282 struct md_list {
283 /* usage marker:
284 * 1: load metadata
285 * 2: metadata does not match
286 * 4: already checked
287 */
288 int used;
289 char *devname;
290 int found;
291 int container;
292 dev_t st_rdev;
293 struct md_list *next;
294 };
295
296 #define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
297
298 static __u8 migr_type(struct imsm_dev *dev)
299 {
300 if (dev->vol.migr_type == MIGR_VERIFY &&
301 dev->status & DEV_VERIFY_AND_FIX)
302 return MIGR_REPAIR;
303 else
304 return dev->vol.migr_type;
305 }
306
307 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
308 {
309 /* for compatibility with older oroms convert MIGR_REPAIR, into
310 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
311 */
312 if (migr_type == MIGR_REPAIR) {
313 dev->vol.migr_type = MIGR_VERIFY;
314 dev->status |= DEV_VERIFY_AND_FIX;
315 } else {
316 dev->vol.migr_type = migr_type;
317 dev->status &= ~DEV_VERIFY_AND_FIX;
318 }
319 }
320
321 static unsigned int sector_count(__u32 bytes)
322 {
323 return ROUND_UP(bytes, 512) / 512;
324 }
325
326 static unsigned int mpb_sectors(struct imsm_super *mpb)
327 {
328 return sector_count(__le32_to_cpu(mpb->mpb_size));
329 }
330
331 struct intel_dev {
332 struct imsm_dev *dev;
333 struct intel_dev *next;
334 unsigned index;
335 };
336
337 struct intel_hba {
338 enum sys_dev_type type;
339 char *path;
340 char *pci_id;
341 struct intel_hba *next;
342 };
343
344 enum action {
345 DISK_REMOVE = 1,
346 DISK_ADD
347 };
348 /* internal representation of IMSM metadata */
349 struct intel_super {
350 union {
351 void *buf; /* O_DIRECT buffer for reading/writing metadata */
352 struct imsm_super *anchor; /* immovable parameters */
353 };
354 union {
355 void *migr_rec_buf; /* buffer for I/O operations */
356 struct migr_record *migr_rec; /* migration record */
357 };
358 int clean_migration_record_by_mdmon; /* when reshape is switched to next
359 array, it indicates that mdmon is allowed to clean migration
360 record */
361 size_t len; /* size of the 'buf' allocation */
362 void *next_buf; /* for realloc'ing buf from the manager */
363 size_t next_len;
364 int updates_pending; /* count of pending updates for mdmon */
365 int current_vol; /* index of raid device undergoing creation */
366 unsigned long long create_offset; /* common start for 'current_vol' */
367 __u32 random; /* random data for seeding new family numbers */
368 struct intel_dev *devlist;
369 struct dl {
370 struct dl *next;
371 int index;
372 __u8 serial[MAX_RAID_SERIAL_LEN];
373 int major, minor;
374 char *devname;
375 struct imsm_disk disk;
376 int fd;
377 int extent_cnt;
378 struct extent *e; /* for determining freespace @ create */
379 int raiddisk; /* slot to fill in autolayout */
380 enum action action;
381 } *disks, *current_disk;
382 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
383 active */
384 struct dl *missing; /* disks removed while we weren't looking */
385 struct bbm_log *bbm_log;
386 struct intel_hba *hba; /* device path of the raid controller for this metadata */
387 const struct imsm_orom *orom; /* platform firmware support */
388 struct intel_super *next; /* (temp) list for disambiguating family_num */
389 };
390
391 struct intel_disk {
392 struct imsm_disk disk;
393 #define IMSM_UNKNOWN_OWNER (-1)
394 int owner;
395 struct intel_disk *next;
396 };
397
398 struct extent {
399 unsigned long long start, size;
400 };
401
402 /* definitions of reshape process types */
403 enum imsm_reshape_type {
404 CH_TAKEOVER,
405 CH_MIGRATION,
406 CH_ARRAY_SIZE,
407 };
408
409 /* definition of messages passed to imsm_process_update */
410 enum imsm_update_type {
411 update_activate_spare,
412 update_create_array,
413 update_kill_array,
414 update_rename_array,
415 update_add_remove_disk,
416 update_reshape_container_disks,
417 update_reshape_migration,
418 update_takeover,
419 update_general_migration_checkpoint,
420 update_size_change,
421 };
422
423 struct imsm_update_activate_spare {
424 enum imsm_update_type type;
425 struct dl *dl;
426 int slot;
427 int array;
428 struct imsm_update_activate_spare *next;
429 };
430
431 struct geo_params {
432 char devnm[32];
433 char *dev_name;
434 unsigned long long size;
435 int level;
436 int layout;
437 int chunksize;
438 int raid_disks;
439 };
440
441 enum takeover_direction {
442 R10_TO_R0,
443 R0_TO_R10
444 };
445 struct imsm_update_takeover {
446 enum imsm_update_type type;
447 int subarray;
448 enum takeover_direction direction;
449 };
450
451 struct imsm_update_reshape {
452 enum imsm_update_type type;
453 int old_raid_disks;
454 int new_raid_disks;
455
456 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
457 };
458
459 struct imsm_update_reshape_migration {
460 enum imsm_update_type type;
461 int old_raid_disks;
462 int new_raid_disks;
463 /* fields for array migration changes
464 */
465 int subdev;
466 int new_level;
467 int new_layout;
468 int new_chunksize;
469
470 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
471 };
472
473 struct imsm_update_size_change {
474 enum imsm_update_type type;
475 int subdev;
476 long long new_size;
477 };
478
479 struct imsm_update_general_migration_checkpoint {
480 enum imsm_update_type type;
481 __u32 curr_migr_unit;
482 };
483
484 struct disk_info {
485 __u8 serial[MAX_RAID_SERIAL_LEN];
486 };
487
488 struct imsm_update_create_array {
489 enum imsm_update_type type;
490 int dev_idx;
491 struct imsm_dev dev;
492 };
493
494 struct imsm_update_kill_array {
495 enum imsm_update_type type;
496 int dev_idx;
497 };
498
499 struct imsm_update_rename_array {
500 enum imsm_update_type type;
501 __u8 name[MAX_RAID_SERIAL_LEN];
502 int dev_idx;
503 };
504
505 struct imsm_update_add_remove_disk {
506 enum imsm_update_type type;
507 };
508
509 static const char *_sys_dev_type[] = {
510 [SYS_DEV_UNKNOWN] = "Unknown",
511 [SYS_DEV_SAS] = "SAS",
512 [SYS_DEV_SATA] = "SATA",
513 [SYS_DEV_NVME] = "NVMe",
514 [SYS_DEV_VMD] = "VMD"
515 };
516
517 const char *get_sys_dev_type(enum sys_dev_type type)
518 {
519 if (type >= SYS_DEV_MAX)
520 type = SYS_DEV_UNKNOWN;
521
522 return _sys_dev_type[type];
523 }
524
525 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
526 {
527 struct intel_hba *result = xmalloc(sizeof(*result));
528
529 result->type = device->type;
530 result->path = xstrdup(device->path);
531 result->next = NULL;
532 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
533 result->pci_id++;
534
535 return result;
536 }
537
538 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
539 {
540 struct intel_hba *result=NULL;
541 for (result = hba; result; result = result->next) {
542 if (result->type == device->type && strcmp(result->path, device->path) == 0)
543 break;
544 }
545 return result;
546 }
547
548 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
549 {
550 struct intel_hba *hba;
551
552 /* check if disk attached to Intel HBA */
553 hba = find_intel_hba(super->hba, device);
554 if (hba != NULL)
555 return 1;
556 /* Check if HBA is already attached to super */
557 if (super->hba == NULL) {
558 super->hba = alloc_intel_hba(device);
559 return 1;
560 }
561
562 hba = super->hba;
563 /* Intel metadata allows for all disks attached to the same type HBA.
564 * Do not support HBA types mixing
565 */
566 if (device->type != hba->type)
567 return 2;
568
569 /* Always forbid spanning between VMD domains (seen as different controllers by mdadm) */
570 if (device->type == SYS_DEV_VMD && !path_attached_to_hba(device->path, hba->path))
571 return 2;
572
573 /* Multiple same type HBAs can be used if they share the same OROM */
574 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
575
576 if (device_orom != super->orom)
577 return 2;
578
579 while (hba->next)
580 hba = hba->next;
581
582 hba->next = alloc_intel_hba(device);
583 return 1;
584 }
585
586 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
587 {
588 struct sys_dev *list, *elem;
589 char *disk_path;
590
591 if ((list = find_intel_devices()) == NULL)
592 return 0;
593
594 if (fd < 0)
595 disk_path = (char *) devname;
596 else
597 disk_path = diskfd_to_devpath(fd);
598
599 if (!disk_path)
600 return 0;
601
602 for (elem = list; elem; elem = elem->next)
603 if (path_attached_to_hba(disk_path, elem->path))
604 return elem;
605
606 if (disk_path != devname)
607 free(disk_path);
608
609 return NULL;
610 }
611
612 static int find_intel_hba_capability(int fd, struct intel_super *super,
613 char *devname);
614
615 static struct supertype *match_metadata_desc_imsm(char *arg)
616 {
617 struct supertype *st;
618
619 if (strcmp(arg, "imsm") != 0 &&
620 strcmp(arg, "default") != 0
621 )
622 return NULL;
623
624 st = xcalloc(1, sizeof(*st));
625 st->ss = &super_imsm;
626 st->max_devs = IMSM_MAX_DEVICES;
627 st->minor_version = 0;
628 st->sb = NULL;
629 return st;
630 }
631
632 #ifndef MDASSEMBLE
633 static __u8 *get_imsm_version(struct imsm_super *mpb)
634 {
635 return &mpb->sig[MPB_SIG_LEN];
636 }
637 #endif
638
639 /* retrieve a disk directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load time
641 */
642 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
643 {
644 if (index >= mpb->num_disks)
645 return NULL;
646 return &mpb->disk[index];
647 }
648
649 /* retrieve the disk description based on a index of the disk
650 * in the sub-array
651 */
652 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
653 {
654 struct dl *d;
655
656 for (d = super->disks; d; d = d->next)
657 if (d->index == index)
658 return d;
659
660 return NULL;
661 }
662 /* retrieve a disk from the parsed metadata */
663 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
664 {
665 struct dl *dl;
666
667 dl = get_imsm_dl_disk(super, index);
668 if (dl)
669 return &dl->disk;
670
671 return NULL;
672 }
673
674 /* generate a checksum directly from the anchor when the anchor is known to be
675 * up-to-date, currently only at load or write_super after coalescing
676 */
677 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
678 {
679 __u32 end = mpb->mpb_size / sizeof(end);
680 __u32 *p = (__u32 *) mpb;
681 __u32 sum = 0;
682
683 while (end--) {
684 sum += __le32_to_cpu(*p);
685 p++;
686 }
687
688 return sum - __le32_to_cpu(mpb->check_sum);
689 }
690
691 static size_t sizeof_imsm_map(struct imsm_map *map)
692 {
693 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
694 }
695
696 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
697 {
698 /* A device can have 2 maps if it is in the middle of a migration.
699 * If second_map is:
700 * MAP_0 - we return the first map
701 * MAP_1 - we return the second map if it exists, else NULL
702 * MAP_X - we return the second map if it exists, else the first
703 */
704 struct imsm_map *map = &dev->vol.map[0];
705 struct imsm_map *map2 = NULL;
706
707 if (dev->vol.migr_state)
708 map2 = (void *)map + sizeof_imsm_map(map);
709
710 switch (second_map) {
711 case MAP_0:
712 break;
713 case MAP_1:
714 map = map2;
715 break;
716 case MAP_X:
717 if (map2)
718 map = map2;
719 break;
720 default:
721 map = NULL;
722 }
723 return map;
724
725 }
726
727 /* return the size of the device.
728 * migr_state increases the returned size if map[0] were to be duplicated
729 */
730 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
731 {
732 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
733 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
734
735 /* migrating means an additional map */
736 if (dev->vol.migr_state)
737 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
738 else if (migr_state)
739 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
740
741 return size;
742 }
743
744 #ifndef MDASSEMBLE
745 /* retrieve disk serial number list from a metadata update */
746 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
747 {
748 void *u = update;
749 struct disk_info *inf;
750
751 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
752 sizeof_imsm_dev(&update->dev, 0);
753
754 return inf;
755 }
756 #endif
757
758 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
759 {
760 int offset;
761 int i;
762 void *_mpb = mpb;
763
764 if (index >= mpb->num_raid_devs)
765 return NULL;
766
767 /* devices start after all disks */
768 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
769
770 for (i = 0; i <= index; i++)
771 if (i == index)
772 return _mpb + offset;
773 else
774 offset += sizeof_imsm_dev(_mpb + offset, 0);
775
776 return NULL;
777 }
778
779 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
780 {
781 struct intel_dev *dv;
782
783 if (index >= super->anchor->num_raid_devs)
784 return NULL;
785 for (dv = super->devlist; dv; dv = dv->next)
786 if (dv->index == index)
787 return dv->dev;
788 return NULL;
789 }
790
791 /*
792 * for second_map:
793 * == MAP_0 get first map
794 * == MAP_1 get second map
795 * == MAP_X than get map according to the current migr_state
796 */
797 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
798 int slot,
799 int second_map)
800 {
801 struct imsm_map *map;
802
803 map = get_imsm_map(dev, second_map);
804
805 /* top byte identifies disk under rebuild */
806 return __le32_to_cpu(map->disk_ord_tbl[slot]);
807 }
808
809 #define ord_to_idx(ord) (((ord) << 8) >> 8)
810 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
811 {
812 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
813
814 return ord_to_idx(ord);
815 }
816
817 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
818 {
819 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
820 }
821
822 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
823 {
824 int slot;
825 __u32 ord;
826
827 for (slot = 0; slot < map->num_members; slot++) {
828 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
829 if (ord_to_idx(ord) == idx)
830 return slot;
831 }
832
833 return -1;
834 }
835
836 static int get_imsm_raid_level(struct imsm_map *map)
837 {
838 if (map->raid_level == 1) {
839 if (map->num_members == 2)
840 return 1;
841 else
842 return 10;
843 }
844
845 return map->raid_level;
846 }
847
848 static int cmp_extent(const void *av, const void *bv)
849 {
850 const struct extent *a = av;
851 const struct extent *b = bv;
852 if (a->start < b->start)
853 return -1;
854 if (a->start > b->start)
855 return 1;
856 return 0;
857 }
858
859 static int count_memberships(struct dl *dl, struct intel_super *super)
860 {
861 int memberships = 0;
862 int i;
863
864 for (i = 0; i < super->anchor->num_raid_devs; i++) {
865 struct imsm_dev *dev = get_imsm_dev(super, i);
866 struct imsm_map *map = get_imsm_map(dev, MAP_0);
867
868 if (get_imsm_disk_slot(map, dl->index) >= 0)
869 memberships++;
870 }
871
872 return memberships;
873 }
874
875 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
876
877 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
878 {
879 if (lo == 0 || hi == 0)
880 return 1;
881 *lo = __le32_to_cpu((unsigned)n);
882 *hi = __le32_to_cpu((unsigned)(n >> 32));
883 return 0;
884 }
885
886 static unsigned long long join_u32(__u32 lo, __u32 hi)
887 {
888 return (unsigned long long)__le32_to_cpu(lo) |
889 (((unsigned long long)__le32_to_cpu(hi)) << 32);
890 }
891
892 static unsigned long long total_blocks(struct imsm_disk *disk)
893 {
894 if (disk == NULL)
895 return 0;
896 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
897 }
898
899 static unsigned long long pba_of_lba0(struct imsm_map *map)
900 {
901 if (map == NULL)
902 return 0;
903 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
904 }
905
906 static unsigned long long blocks_per_member(struct imsm_map *map)
907 {
908 if (map == NULL)
909 return 0;
910 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
911 }
912
913 #ifndef MDASSEMBLE
914 static unsigned long long num_data_stripes(struct imsm_map *map)
915 {
916 if (map == NULL)
917 return 0;
918 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
919 }
920
921 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
922 {
923 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
924 }
925 #endif
926
927 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
928 {
929 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
930 }
931
932 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
933 {
934 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
935 }
936
937 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
938 {
939 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
940 }
941
942 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
943 {
944 /* find a list of used extents on the given physical device */
945 struct extent *rv, *e;
946 int i;
947 int memberships = count_memberships(dl, super);
948 __u32 reservation;
949
950 /* trim the reserved area for spares, so they can join any array
951 * regardless of whether the OROM has assigned sectors from the
952 * IMSM_RESERVED_SECTORS region
953 */
954 if (dl->index == -1)
955 reservation = imsm_min_reserved_sectors(super);
956 else
957 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
958
959 rv = xcalloc(sizeof(struct extent), (memberships + 1));
960 e = rv;
961
962 for (i = 0; i < super->anchor->num_raid_devs; i++) {
963 struct imsm_dev *dev = get_imsm_dev(super, i);
964 struct imsm_map *map = get_imsm_map(dev, MAP_0);
965
966 if (get_imsm_disk_slot(map, dl->index) >= 0) {
967 e->start = pba_of_lba0(map);
968 e->size = blocks_per_member(map);
969 e++;
970 }
971 }
972 qsort(rv, memberships, sizeof(*rv), cmp_extent);
973
974 /* determine the start of the metadata
975 * when no raid devices are defined use the default
976 * ...otherwise allow the metadata to truncate the value
977 * as is the case with older versions of imsm
978 */
979 if (memberships) {
980 struct extent *last = &rv[memberships - 1];
981 unsigned long long remainder;
982
983 remainder = total_blocks(&dl->disk) - (last->start + last->size);
984 /* round down to 1k block to satisfy precision of the kernel
985 * 'size' interface
986 */
987 remainder &= ~1UL;
988 /* make sure remainder is still sane */
989 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
990 remainder = ROUND_UP(super->len, 512) >> 9;
991 if (reservation > remainder)
992 reservation = remainder;
993 }
994 e->start = total_blocks(&dl->disk) - reservation;
995 e->size = 0;
996 return rv;
997 }
998
999 /* try to determine how much space is reserved for metadata from
1000 * the last get_extents() entry, otherwise fallback to the
1001 * default
1002 */
1003 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1004 {
1005 struct extent *e;
1006 int i;
1007 __u32 rv;
1008
1009 /* for spares just return a minimal reservation which will grow
1010 * once the spare is picked up by an array
1011 */
1012 if (dl->index == -1)
1013 return MPB_SECTOR_CNT;
1014
1015 e = get_extents(super, dl);
1016 if (!e)
1017 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1018
1019 /* scroll to last entry */
1020 for (i = 0; e[i].size; i++)
1021 continue;
1022
1023 rv = total_blocks(&dl->disk) - e[i].start;
1024
1025 free(e);
1026
1027 return rv;
1028 }
1029
1030 static int is_spare(struct imsm_disk *disk)
1031 {
1032 return (disk->status & SPARE_DISK) == SPARE_DISK;
1033 }
1034
1035 static int is_configured(struct imsm_disk *disk)
1036 {
1037 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1038 }
1039
1040 static int is_failed(struct imsm_disk *disk)
1041 {
1042 return (disk->status & FAILED_DISK) == FAILED_DISK;
1043 }
1044
1045 /* try to determine how much space is reserved for metadata from
1046 * the last get_extents() entry on the smallest active disk,
1047 * otherwise fallback to the default
1048 */
1049 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1050 {
1051 struct extent *e;
1052 int i;
1053 unsigned long long min_active;
1054 __u32 remainder;
1055 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1056 struct dl *dl, *dl_min = NULL;
1057
1058 if (!super)
1059 return rv;
1060
1061 min_active = 0;
1062 for (dl = super->disks; dl; dl = dl->next) {
1063 if (dl->index < 0)
1064 continue;
1065 unsigned long long blocks = total_blocks(&dl->disk);
1066 if (blocks < min_active || min_active == 0) {
1067 dl_min = dl;
1068 min_active = blocks;
1069 }
1070 }
1071 if (!dl_min)
1072 return rv;
1073
1074 /* find last lba used by subarrays on the smallest active disk */
1075 e = get_extents(super, dl_min);
1076 if (!e)
1077 return rv;
1078 for (i = 0; e[i].size; i++)
1079 continue;
1080
1081 remainder = min_active - e[i].start;
1082 free(e);
1083
1084 /* to give priority to recovery we should not require full
1085 IMSM_RESERVED_SECTORS from the spare */
1086 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1087
1088 /* if real reservation is smaller use that value */
1089 return (remainder < rv) ? remainder : rv;
1090 }
1091
1092 /* Return minimum size of a spare that can be used in this array*/
1093 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1094 {
1095 struct intel_super *super = st->sb;
1096 struct dl *dl;
1097 struct extent *e;
1098 int i;
1099 unsigned long long rv = 0;
1100
1101 if (!super)
1102 return rv;
1103 /* find first active disk in array */
1104 dl = super->disks;
1105 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1106 dl = dl->next;
1107 if (!dl)
1108 return rv;
1109 /* find last lba used by subarrays */
1110 e = get_extents(super, dl);
1111 if (!e)
1112 return rv;
1113 for (i = 0; e[i].size; i++)
1114 continue;
1115 if (i > 0)
1116 rv = e[i-1].start + e[i-1].size;
1117 free(e);
1118
1119 /* add the amount of space needed for metadata */
1120 rv = rv + imsm_min_reserved_sectors(super);
1121
1122 return rv * 512;
1123 }
1124
1125 static int is_gen_migration(struct imsm_dev *dev);
1126
1127 #ifndef MDASSEMBLE
1128 static __u64 blocks_per_migr_unit(struct intel_super *super,
1129 struct imsm_dev *dev);
1130
1131 static void print_imsm_dev(struct intel_super *super,
1132 struct imsm_dev *dev,
1133 char *uuid,
1134 int disk_idx)
1135 {
1136 __u64 sz;
1137 int slot, i;
1138 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1139 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1140 __u32 ord;
1141
1142 printf("\n");
1143 printf("[%.16s]:\n", dev->volume);
1144 printf(" UUID : %s\n", uuid);
1145 printf(" RAID Level : %d", get_imsm_raid_level(map));
1146 if (map2)
1147 printf(" <-- %d", get_imsm_raid_level(map2));
1148 printf("\n");
1149 printf(" Members : %d", map->num_members);
1150 if (map2)
1151 printf(" <-- %d", map2->num_members);
1152 printf("\n");
1153 printf(" Slots : [");
1154 for (i = 0; i < map->num_members; i++) {
1155 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1156 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1157 }
1158 printf("]");
1159 if (map2) {
1160 printf(" <-- [");
1161 for (i = 0; i < map2->num_members; i++) {
1162 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1163 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1164 }
1165 printf("]");
1166 }
1167 printf("\n");
1168 printf(" Failed disk : ");
1169 if (map->failed_disk_num == 0xff)
1170 printf("none");
1171 else
1172 printf("%i", map->failed_disk_num);
1173 printf("\n");
1174 slot = get_imsm_disk_slot(map, disk_idx);
1175 if (slot >= 0) {
1176 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1177 printf(" This Slot : %d%s\n", slot,
1178 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1179 } else
1180 printf(" This Slot : ?\n");
1181 sz = __le32_to_cpu(dev->size_high);
1182 sz <<= 32;
1183 sz += __le32_to_cpu(dev->size_low);
1184 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1185 human_size(sz * 512));
1186 sz = blocks_per_member(map);
1187 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1188 human_size(sz * 512));
1189 printf(" Sector Offset : %llu\n",
1190 pba_of_lba0(map));
1191 printf(" Num Stripes : %llu\n",
1192 num_data_stripes(map));
1193 printf(" Chunk Size : %u KiB",
1194 __le16_to_cpu(map->blocks_per_strip) / 2);
1195 if (map2)
1196 printf(" <-- %u KiB",
1197 __le16_to_cpu(map2->blocks_per_strip) / 2);
1198 printf("\n");
1199 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1200 printf(" Migrate State : ");
1201 if (dev->vol.migr_state) {
1202 if (migr_type(dev) == MIGR_INIT)
1203 printf("initialize\n");
1204 else if (migr_type(dev) == MIGR_REBUILD)
1205 printf("rebuild\n");
1206 else if (migr_type(dev) == MIGR_VERIFY)
1207 printf("check\n");
1208 else if (migr_type(dev) == MIGR_GEN_MIGR)
1209 printf("general migration\n");
1210 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1211 printf("state change\n");
1212 else if (migr_type(dev) == MIGR_REPAIR)
1213 printf("repair\n");
1214 else
1215 printf("<unknown:%d>\n", migr_type(dev));
1216 } else
1217 printf("idle\n");
1218 printf(" Map State : %s", map_state_str[map->map_state]);
1219 if (dev->vol.migr_state) {
1220 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1221
1222 printf(" <-- %s", map_state_str[map->map_state]);
1223 printf("\n Checkpoint : %u ",
1224 __le32_to_cpu(dev->vol.curr_migr_unit));
1225 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
1226 printf("(N/A)");
1227 else
1228 printf("(%llu)", (unsigned long long)
1229 blocks_per_migr_unit(super, dev));
1230 }
1231 printf("\n");
1232 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1233 }
1234
1235 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1236 {
1237 char str[MAX_RAID_SERIAL_LEN + 1];
1238 __u64 sz;
1239
1240 if (index < -1 || !disk)
1241 return;
1242
1243 printf("\n");
1244 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1245 if (index >= 0)
1246 printf(" Disk%02d Serial : %s\n", index, str);
1247 else
1248 printf(" Disk Serial : %s\n", str);
1249 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1250 is_configured(disk) ? " active" : "",
1251 is_failed(disk) ? " failed" : "");
1252 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1253 sz = total_blocks(disk) - reserved;
1254 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1255 human_size(sz * 512));
1256 }
1257
1258 void examine_migr_rec_imsm(struct intel_super *super)
1259 {
1260 struct migr_record *migr_rec = super->migr_rec;
1261 struct imsm_super *mpb = super->anchor;
1262 int i;
1263
1264 for (i = 0; i < mpb->num_raid_devs; i++) {
1265 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1266 struct imsm_map *map;
1267 int slot = -1;
1268
1269 if (is_gen_migration(dev) == 0)
1270 continue;
1271
1272 printf("\nMigration Record Information:");
1273
1274 /* first map under migration */
1275 map = get_imsm_map(dev, MAP_0);
1276 if (map)
1277 slot = get_imsm_disk_slot(map, super->disks->index);
1278 if ((map == NULL) || (slot > 1) || (slot < 0)) {
1279 printf(" Empty\n ");
1280 printf("Examine one of first two disks in array\n");
1281 break;
1282 }
1283 printf("\n Status : ");
1284 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1285 printf("Normal\n");
1286 else
1287 printf("Contains Data\n");
1288 printf(" Current Unit : %u\n",
1289 __le32_to_cpu(migr_rec->curr_migr_unit));
1290 printf(" Family : %u\n",
1291 __le32_to_cpu(migr_rec->family_num));
1292 printf(" Ascending : %u\n",
1293 __le32_to_cpu(migr_rec->ascending_migr));
1294 printf(" Blocks Per Unit : %u\n",
1295 __le32_to_cpu(migr_rec->blocks_per_unit));
1296 printf(" Dest. Depth Per Unit : %u\n",
1297 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1298 printf(" Checkpoint Area pba : %u\n",
1299 __le32_to_cpu(migr_rec->ckpt_area_pba));
1300 printf(" First member lba : %u\n",
1301 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1302 printf(" Total Number of Units : %u\n",
1303 __le32_to_cpu(migr_rec->num_migr_units));
1304 printf(" Size of volume : %u\n",
1305 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1306 printf(" Expansion space for LBA64 : %u\n",
1307 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1308 printf(" Record was read from : %u\n",
1309 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1310
1311 break;
1312 }
1313 }
1314 #endif /* MDASSEMBLE */
1315 /*******************************************************************************
1316 * function: imsm_check_attributes
1317 * Description: Function checks if features represented by attributes flags
1318 * are supported by mdadm.
1319 * Parameters:
1320 * attributes - Attributes read from metadata
1321 * Returns:
1322 * 0 - passed attributes contains unsupported features flags
1323 * 1 - all features are supported
1324 ******************************************************************************/
1325 static int imsm_check_attributes(__u32 attributes)
1326 {
1327 int ret_val = 1;
1328 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1329
1330 not_supported &= ~MPB_ATTRIB_IGNORED;
1331
1332 not_supported &= attributes;
1333 if (not_supported) {
1334 pr_err("(IMSM): Unsupported attributes : %x\n",
1335 (unsigned)__le32_to_cpu(not_supported));
1336 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1337 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1338 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1339 }
1340 if (not_supported & MPB_ATTRIB_2TB) {
1341 dprintf("\t\tMPB_ATTRIB_2TB\n");
1342 not_supported ^= MPB_ATTRIB_2TB;
1343 }
1344 if (not_supported & MPB_ATTRIB_RAID0) {
1345 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1346 not_supported ^= MPB_ATTRIB_RAID0;
1347 }
1348 if (not_supported & MPB_ATTRIB_RAID1) {
1349 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1350 not_supported ^= MPB_ATTRIB_RAID1;
1351 }
1352 if (not_supported & MPB_ATTRIB_RAID10) {
1353 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1354 not_supported ^= MPB_ATTRIB_RAID10;
1355 }
1356 if (not_supported & MPB_ATTRIB_RAID1E) {
1357 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1358 not_supported ^= MPB_ATTRIB_RAID1E;
1359 }
1360 if (not_supported & MPB_ATTRIB_RAID5) {
1361 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1362 not_supported ^= MPB_ATTRIB_RAID5;
1363 }
1364 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1365 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1366 not_supported ^= MPB_ATTRIB_RAIDCNG;
1367 }
1368 if (not_supported & MPB_ATTRIB_BBM) {
1369 dprintf("\t\tMPB_ATTRIB_BBM\n");
1370 not_supported ^= MPB_ATTRIB_BBM;
1371 }
1372 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1373 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1374 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1375 }
1376 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1377 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1378 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1379 }
1380 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1381 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1382 not_supported ^= MPB_ATTRIB_2TB_DISK;
1383 }
1384 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1385 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1386 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1387 }
1388 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1389 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1390 not_supported ^= MPB_ATTRIB_NEVER_USE;
1391 }
1392
1393 if (not_supported)
1394 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
1395
1396 ret_val = 0;
1397 }
1398
1399 return ret_val;
1400 }
1401
1402 #ifndef MDASSEMBLE
1403 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1404
1405 static void examine_super_imsm(struct supertype *st, char *homehost)
1406 {
1407 struct intel_super *super = st->sb;
1408 struct imsm_super *mpb = super->anchor;
1409 char str[MAX_SIGNATURE_LENGTH];
1410 int i;
1411 struct mdinfo info;
1412 char nbuf[64];
1413 __u32 sum;
1414 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1415 struct dl *dl;
1416
1417 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1418 printf(" Magic : %s\n", str);
1419 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1420 printf(" Version : %s\n", get_imsm_version(mpb));
1421 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1422 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1423 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1424 printf(" Attributes : ");
1425 if (imsm_check_attributes(mpb->attributes))
1426 printf("All supported\n");
1427 else
1428 printf("not supported\n");
1429 getinfo_super_imsm(st, &info, NULL);
1430 fname_from_uuid(st, &info, nbuf, ':');
1431 printf(" UUID : %s\n", nbuf + 5);
1432 sum = __le32_to_cpu(mpb->check_sum);
1433 printf(" Checksum : %08x %s\n", sum,
1434 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1435 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1436 printf(" Disks : %d\n", mpb->num_disks);
1437 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1438 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1439 if (super->bbm_log) {
1440 struct bbm_log *log = super->bbm_log;
1441
1442 printf("\n");
1443 printf("Bad Block Management Log:\n");
1444 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1445 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1446 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1447 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1448 printf(" First Spare : %llx\n",
1449 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1450 }
1451 for (i = 0; i < mpb->num_raid_devs; i++) {
1452 struct mdinfo info;
1453 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1454
1455 super->current_vol = i;
1456 getinfo_super_imsm(st, &info, NULL);
1457 fname_from_uuid(st, &info, nbuf, ':');
1458 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1459 }
1460 for (i = 0; i < mpb->num_disks; i++) {
1461 if (i == super->disks->index)
1462 continue;
1463 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1464 }
1465
1466 for (dl = super->disks; dl; dl = dl->next)
1467 if (dl->index == -1)
1468 print_imsm_disk(&dl->disk, -1, reserved);
1469
1470 examine_migr_rec_imsm(super);
1471 }
1472
1473 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1474 {
1475 /* We just write a generic IMSM ARRAY entry */
1476 struct mdinfo info;
1477 char nbuf[64];
1478 struct intel_super *super = st->sb;
1479
1480 if (!super->anchor->num_raid_devs) {
1481 printf("ARRAY metadata=imsm\n");
1482 return;
1483 }
1484
1485 getinfo_super_imsm(st, &info, NULL);
1486 fname_from_uuid(st, &info, nbuf, ':');
1487 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1488 }
1489
1490 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1491 {
1492 /* We just write a generic IMSM ARRAY entry */
1493 struct mdinfo info;
1494 char nbuf[64];
1495 char nbuf1[64];
1496 struct intel_super *super = st->sb;
1497 int i;
1498
1499 if (!super->anchor->num_raid_devs)
1500 return;
1501
1502 getinfo_super_imsm(st, &info, NULL);
1503 fname_from_uuid(st, &info, nbuf, ':');
1504 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1505 struct imsm_dev *dev = get_imsm_dev(super, i);
1506
1507 super->current_vol = i;
1508 getinfo_super_imsm(st, &info, NULL);
1509 fname_from_uuid(st, &info, nbuf1, ':');
1510 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1511 dev->volume, nbuf + 5, i, nbuf1 + 5);
1512 }
1513 }
1514
1515 static void export_examine_super_imsm(struct supertype *st)
1516 {
1517 struct intel_super *super = st->sb;
1518 struct imsm_super *mpb = super->anchor;
1519 struct mdinfo info;
1520 char nbuf[64];
1521
1522 getinfo_super_imsm(st, &info, NULL);
1523 fname_from_uuid(st, &info, nbuf, ':');
1524 printf("MD_METADATA=imsm\n");
1525 printf("MD_LEVEL=container\n");
1526 printf("MD_UUID=%s\n", nbuf+5);
1527 printf("MD_DEVICES=%u\n", mpb->num_disks);
1528 }
1529
1530 static int copy_metadata_imsm(struct supertype *st, int from, int to)
1531 {
1532 /* The second last 512byte sector of the device contains
1533 * the "struct imsm_super" metadata.
1534 * This contains mpb_size which is the size in bytes of the
1535 * extended metadata. This is located immediately before
1536 * the imsm_super.
1537 * We want to read all that, plus the last sector which
1538 * may contain a migration record, and write it all
1539 * to the target.
1540 */
1541 void *buf;
1542 unsigned long long dsize, offset;
1543 int sectors;
1544 struct imsm_super *sb;
1545 int written = 0;
1546
1547 if (posix_memalign(&buf, 4096, 4096) != 0)
1548 return 1;
1549
1550 if (!get_dev_size(from, NULL, &dsize))
1551 goto err;
1552
1553 if (lseek64(from, dsize-1024, 0) < 0)
1554 goto err;
1555 if (read(from, buf, 512) != 512)
1556 goto err;
1557 sb = buf;
1558 if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
1559 goto err;
1560
1561 sectors = mpb_sectors(sb) + 2;
1562 offset = dsize - sectors * 512;
1563 if (lseek64(from, offset, 0) < 0 ||
1564 lseek64(to, offset, 0) < 0)
1565 goto err;
1566 while (written < sectors * 512) {
1567 int n = sectors*512 - written;
1568 if (n > 4096)
1569 n = 4096;
1570 if (read(from, buf, n) != n)
1571 goto err;
1572 if (write(to, buf, n) != n)
1573 goto err;
1574 written += n;
1575 }
1576 free(buf);
1577 return 0;
1578 err:
1579 free(buf);
1580 return 1;
1581 }
1582
1583 static void detail_super_imsm(struct supertype *st, char *homehost)
1584 {
1585 struct mdinfo info;
1586 char nbuf[64];
1587
1588 getinfo_super_imsm(st, &info, NULL);
1589 fname_from_uuid(st, &info, nbuf, ':');
1590 printf("\n UUID : %s\n", nbuf + 5);
1591 }
1592
1593 static void brief_detail_super_imsm(struct supertype *st)
1594 {
1595 struct mdinfo info;
1596 char nbuf[64];
1597 getinfo_super_imsm(st, &info, NULL);
1598 fname_from_uuid(st, &info, nbuf, ':');
1599 printf(" UUID=%s", nbuf + 5);
1600 }
1601
1602 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1603 static void fd2devname(int fd, char *name);
1604
1605 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1606 {
1607 /* dump an unsorted list of devices attached to AHCI Intel storage
1608 * controller, as well as non-connected ports
1609 */
1610 int hba_len = strlen(hba_path) + 1;
1611 struct dirent *ent;
1612 DIR *dir;
1613 char *path = NULL;
1614 int err = 0;
1615 unsigned long port_mask = (1 << port_count) - 1;
1616
1617 if (port_count > (int)sizeof(port_mask) * 8) {
1618 if (verbose > 0)
1619 pr_err("port_count %d out of range\n", port_count);
1620 return 2;
1621 }
1622
1623 /* scroll through /sys/dev/block looking for devices attached to
1624 * this hba
1625 */
1626 dir = opendir("/sys/dev/block");
1627 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1628 int fd;
1629 char model[64];
1630 char vendor[64];
1631 char buf[1024];
1632 int major, minor;
1633 char *device;
1634 char *c;
1635 int port;
1636 int type;
1637
1638 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1639 continue;
1640 path = devt_to_devpath(makedev(major, minor));
1641 if (!path)
1642 continue;
1643 if (!path_attached_to_hba(path, hba_path)) {
1644 free(path);
1645 path = NULL;
1646 continue;
1647 }
1648
1649 /* retrieve the scsi device type */
1650 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1651 if (verbose > 0)
1652 pr_err("failed to allocate 'device'\n");
1653 err = 2;
1654 break;
1655 }
1656 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1657 if (load_sys(device, buf, sizeof(buf)) != 0) {
1658 if (verbose > 0)
1659 pr_err("failed to read device type for %s\n",
1660 path);
1661 err = 2;
1662 free(device);
1663 break;
1664 }
1665 type = strtoul(buf, NULL, 10);
1666
1667 /* if it's not a disk print the vendor and model */
1668 if (!(type == 0 || type == 7 || type == 14)) {
1669 vendor[0] = '\0';
1670 model[0] = '\0';
1671 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1672 if (load_sys(device, buf, sizeof(buf)) == 0) {
1673 strncpy(vendor, buf, sizeof(vendor));
1674 vendor[sizeof(vendor) - 1] = '\0';
1675 c = (char *) &vendor[sizeof(vendor) - 1];
1676 while (isspace(*c) || *c == '\0')
1677 *c-- = '\0';
1678
1679 }
1680 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1681 if (load_sys(device, buf, sizeof(buf)) == 0) {
1682 strncpy(model, buf, sizeof(model));
1683 model[sizeof(model) - 1] = '\0';
1684 c = (char *) &model[sizeof(model) - 1];
1685 while (isspace(*c) || *c == '\0')
1686 *c-- = '\0';
1687 }
1688
1689 if (vendor[0] && model[0])
1690 sprintf(buf, "%.64s %.64s", vendor, model);
1691 else
1692 switch (type) { /* numbers from hald/linux/device.c */
1693 case 1: sprintf(buf, "tape"); break;
1694 case 2: sprintf(buf, "printer"); break;
1695 case 3: sprintf(buf, "processor"); break;
1696 case 4:
1697 case 5: sprintf(buf, "cdrom"); break;
1698 case 6: sprintf(buf, "scanner"); break;
1699 case 8: sprintf(buf, "media_changer"); break;
1700 case 9: sprintf(buf, "comm"); break;
1701 case 12: sprintf(buf, "raid"); break;
1702 default: sprintf(buf, "unknown");
1703 }
1704 } else
1705 buf[0] = '\0';
1706 free(device);
1707
1708 /* chop device path to 'host%d' and calculate the port number */
1709 c = strchr(&path[hba_len], '/');
1710 if (!c) {
1711 if (verbose > 0)
1712 pr_err("%s - invalid path name\n", path + hba_len);
1713 err = 2;
1714 break;
1715 }
1716 *c = '\0';
1717 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
1718 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
1719 port -= host_base;
1720 else {
1721 if (verbose > 0) {
1722 *c = '/'; /* repair the full string */
1723 pr_err("failed to determine port number for %s\n",
1724 path);
1725 }
1726 err = 2;
1727 break;
1728 }
1729
1730 /* mark this port as used */
1731 port_mask &= ~(1 << port);
1732
1733 /* print out the device information */
1734 if (buf[0]) {
1735 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1736 continue;
1737 }
1738
1739 fd = dev_open(ent->d_name, O_RDONLY);
1740 if (fd < 0)
1741 printf(" Port%d : - disk info unavailable -\n", port);
1742 else {
1743 fd2devname(fd, buf);
1744 printf(" Port%d : %s", port, buf);
1745 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1746 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1747 else
1748 printf(" ()\n");
1749 close(fd);
1750 }
1751 free(path);
1752 path = NULL;
1753 }
1754 if (path)
1755 free(path);
1756 if (dir)
1757 closedir(dir);
1758 if (err == 0) {
1759 int i;
1760
1761 for (i = 0; i < port_count; i++)
1762 if (port_mask & (1 << i))
1763 printf(" Port%d : - no device attached -\n", i);
1764 }
1765
1766 return err;
1767 }
1768
1769 static int print_vmd_attached_devs(struct sys_dev *hba)
1770 {
1771 struct dirent *ent;
1772 DIR *dir;
1773 char path[292];
1774 char link[256];
1775 char *c, *rp;
1776
1777 if (hba->type != SYS_DEV_VMD)
1778 return 1;
1779
1780 /* scroll through /sys/dev/block looking for devices attached to
1781 * this hba
1782 */
1783 dir = opendir("/sys/bus/pci/drivers/nvme");
1784 if (!dir)
1785 return 1;
1786
1787 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1788 int n;
1789
1790 /* is 'ent' a device? check that the 'subsystem' link exists and
1791 * that its target matches 'bus'
1792 */
1793 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
1794 ent->d_name);
1795 n = readlink(path, link, sizeof(link));
1796 if (n < 0 || n >= (int)sizeof(link))
1797 continue;
1798 link[n] = '\0';
1799 c = strrchr(link, '/');
1800 if (!c)
1801 continue;
1802 if (strncmp("pci", c+1, strlen("pci")) != 0)
1803 continue;
1804
1805 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
1806 /* if not a intel NVMe - skip it*/
1807 if (devpath_to_vendor(path) != 0x8086)
1808 continue;
1809
1810 rp = realpath(path, NULL);
1811 if (!rp)
1812 continue;
1813
1814 if (path_attached_to_hba(rp, hba->path)) {
1815 printf(" NVMe under VMD : %s\n", rp);
1816 }
1817 free(rp);
1818 }
1819
1820 closedir(dir);
1821 return 0;
1822 }
1823
1824 static void print_found_intel_controllers(struct sys_dev *elem)
1825 {
1826 for (; elem; elem = elem->next) {
1827 pr_err("found Intel(R) ");
1828 if (elem->type == SYS_DEV_SATA)
1829 fprintf(stderr, "SATA ");
1830 else if (elem->type == SYS_DEV_SAS)
1831 fprintf(stderr, "SAS ");
1832 else if (elem->type == SYS_DEV_NVME)
1833 fprintf(stderr, "NVMe ");
1834
1835 if (elem->type == SYS_DEV_VMD)
1836 fprintf(stderr, "VMD domain");
1837 else
1838 fprintf(stderr, "RAID controller");
1839
1840 if (elem->pci_id)
1841 fprintf(stderr, " at %s", elem->pci_id);
1842 fprintf(stderr, ".\n");
1843 }
1844 fflush(stderr);
1845 }
1846
1847 static int ahci_get_port_count(const char *hba_path, int *port_count)
1848 {
1849 struct dirent *ent;
1850 DIR *dir;
1851 int host_base = -1;
1852
1853 *port_count = 0;
1854 if ((dir = opendir(hba_path)) == NULL)
1855 return -1;
1856
1857 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1858 int host;
1859
1860 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
1861 ((sscanf(ent->d_name, "host%d", &host) != 1)))
1862 continue;
1863 if (*port_count == 0)
1864 host_base = host;
1865 else if (host < host_base)
1866 host_base = host;
1867
1868 if (host + 1 > *port_count + host_base)
1869 *port_count = host + 1 - host_base;
1870 }
1871 closedir(dir);
1872 return host_base;
1873 }
1874
1875 static void print_imsm_capability(const struct imsm_orom *orom)
1876 {
1877 printf(" Platform : Intel(R) ");
1878 if (orom->capabilities == 0 && orom->driver_features == 0)
1879 printf("Matrix Storage Manager\n");
1880 else
1881 printf("Rapid Storage Technology%s\n",
1882 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
1883 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
1884 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
1885 orom->minor_ver, orom->hotfix_ver, orom->build);
1886 printf(" RAID Levels :%s%s%s%s%s\n",
1887 imsm_orom_has_raid0(orom) ? " raid0" : "",
1888 imsm_orom_has_raid1(orom) ? " raid1" : "",
1889 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1890 imsm_orom_has_raid10(orom) ? " raid10" : "",
1891 imsm_orom_has_raid5(orom) ? " raid5" : "");
1892 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1893 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1894 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1895 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1896 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1897 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1898 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1899 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1900 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1901 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1902 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1903 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1904 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1905 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1906 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1907 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1908 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1909 printf(" 2TB volumes :%s supported\n",
1910 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
1911 printf(" 2TB disks :%s supported\n",
1912 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
1913 printf(" Max Disks : %d\n", orom->tds);
1914 printf(" Max Volumes : %d per array, %d per %s\n",
1915 orom->vpa, orom->vphba,
1916 imsm_orom_is_nvme(orom) ? "platform" : "controller");
1917 return;
1918 }
1919
1920 static void print_imsm_capability_export(const struct imsm_orom *orom)
1921 {
1922 printf("MD_FIRMWARE_TYPE=imsm\n");
1923 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
1924 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1925 orom->hotfix_ver, orom->build);
1926 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
1927 imsm_orom_has_raid0(orom) ? "raid0 " : "",
1928 imsm_orom_has_raid1(orom) ? "raid1 " : "",
1929 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
1930 imsm_orom_has_raid5(orom) ? "raid10 " : "",
1931 imsm_orom_has_raid10(orom) ? "raid5 " : "");
1932 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1933 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
1934 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
1935 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
1936 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
1937 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
1938 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
1939 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
1940 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
1941 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
1942 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
1943 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
1944 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
1945 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
1946 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
1947 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
1948 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
1949 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
1950 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
1951 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
1952 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
1953 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
1954 }
1955
1956 static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
1957 {
1958 /* There are two components to imsm platform support, the ahci SATA
1959 * controller and the option-rom. To find the SATA controller we
1960 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1961 * controller with the Intel vendor id is present. This approach
1962 * allows mdadm to leverage the kernel's ahci detection logic, with the
1963 * caveat that if ahci.ko is not loaded mdadm will not be able to
1964 * detect platform raid capabilities. The option-rom resides in a
1965 * platform "Adapter ROM". We scan for its signature to retrieve the
1966 * platform capabilities. If raid support is disabled in the BIOS the
1967 * option-rom capability structure will not be available.
1968 */
1969 struct sys_dev *list, *hba;
1970 int host_base = 0;
1971 int port_count = 0;
1972 int result=1;
1973
1974 if (enumerate_only) {
1975 if (check_env("IMSM_NO_PLATFORM"))
1976 return 0;
1977 list = find_intel_devices();
1978 if (!list)
1979 return 2;
1980 for (hba = list; hba; hba = hba->next) {
1981 if (find_imsm_capability(hba)) {
1982 result = 0;
1983 break;
1984 }
1985 else
1986 result = 2;
1987 }
1988 return result;
1989 }
1990
1991 list = find_intel_devices();
1992 if (!list) {
1993 if (verbose > 0)
1994 pr_err("no active Intel(R) RAID controller found.\n");
1995 return 2;
1996 } else if (verbose > 0)
1997 print_found_intel_controllers(list);
1998
1999 for (hba = list; hba; hba = hba->next) {
2000 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
2001 continue;
2002 if (!find_imsm_capability(hba)) {
2003 char buf[PATH_MAX];
2004 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
2005 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2006 get_sys_dev_type(hba->type));
2007 continue;
2008 }
2009 result = 0;
2010 }
2011
2012 if (controller_path && result == 1) {
2013 pr_err("no active Intel(R) RAID controller found under %s\n",
2014 controller_path);
2015 return result;
2016 }
2017
2018 const struct orom_entry *entry;
2019
2020 for (entry = orom_entries; entry; entry = entry->next) {
2021 if (entry->type == SYS_DEV_VMD) {
2022 for (hba = list; hba; hba = hba->next) {
2023 if (hba->type == SYS_DEV_VMD) {
2024 char buf[PATH_MAX];
2025 print_imsm_capability(&entry->orom);
2026 printf(" I/O Controller : %s (%s)\n",
2027 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
2028 if (print_vmd_attached_devs(hba)) {
2029 if (verbose > 0)
2030 pr_err("failed to get devices attached to VMD domain.\n");
2031 result |= 2;
2032 }
2033 printf("\n");
2034 }
2035 }
2036 continue;
2037 }
2038
2039 print_imsm_capability(&entry->orom);
2040 if (entry->type == SYS_DEV_NVME) {
2041 for (hba = list; hba; hba = hba->next) {
2042 if (hba->type == SYS_DEV_NVME)
2043 printf(" NVMe Device : %s\n", hba->path);
2044 }
2045 printf("\n");
2046 continue;
2047 }
2048
2049 struct devid_list *devid;
2050 for (devid = entry->devid_list; devid; devid = devid->next) {
2051 hba = device_by_id(devid->devid);
2052 if (!hba)
2053 continue;
2054
2055 printf(" I/O Controller : %s (%s)\n",
2056 hba->path, get_sys_dev_type(hba->type));
2057 if (hba->type == SYS_DEV_SATA) {
2058 host_base = ahci_get_port_count(hba->path, &port_count);
2059 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2060 if (verbose > 0)
2061 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
2062 result |= 2;
2063 }
2064 }
2065 }
2066 printf("\n");
2067 }
2068
2069 return result;
2070 }
2071
2072 static int export_detail_platform_imsm(int verbose, char *controller_path)
2073 {
2074 struct sys_dev *list, *hba;
2075 int result=1;
2076
2077 list = find_intel_devices();
2078 if (!list) {
2079 if (verbose > 0)
2080 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2081 result = 2;
2082 return result;
2083 }
2084
2085 for (hba = list; hba; hba = hba->next) {
2086 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2087 continue;
2088 if (!find_imsm_capability(hba) && verbose > 0) {
2089 char buf[PATH_MAX];
2090 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2091 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2092 }
2093 else
2094 result = 0;
2095 }
2096
2097 const struct orom_entry *entry;
2098
2099 for (entry = orom_entries; entry; entry = entry->next) {
2100 if (entry->type == SYS_DEV_VMD) {
2101 for (hba = list; hba; hba = hba->next)
2102 print_imsm_capability_export(&entry->orom);
2103 continue;
2104 }
2105 print_imsm_capability_export(&entry->orom);
2106 }
2107
2108 return result;
2109 }
2110
2111 #endif
2112
2113 static int match_home_imsm(struct supertype *st, char *homehost)
2114 {
2115 /* the imsm metadata format does not specify any host
2116 * identification information. We return -1 since we can never
2117 * confirm nor deny whether a given array is "meant" for this
2118 * host. We rely on compare_super and the 'family_num' fields to
2119 * exclude member disks that do not belong, and we rely on
2120 * mdadm.conf to specify the arrays that should be assembled.
2121 * Auto-assembly may still pick up "foreign" arrays.
2122 */
2123
2124 return -1;
2125 }
2126
2127 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2128 {
2129 /* The uuid returned here is used for:
2130 * uuid to put into bitmap file (Create, Grow)
2131 * uuid for backup header when saving critical section (Grow)
2132 * comparing uuids when re-adding a device into an array
2133 * In these cases the uuid required is that of the data-array,
2134 * not the device-set.
2135 * uuid to recognise same set when adding a missing device back
2136 * to an array. This is a uuid for the device-set.
2137 *
2138 * For each of these we can make do with a truncated
2139 * or hashed uuid rather than the original, as long as
2140 * everyone agrees.
2141 * In each case the uuid required is that of the data-array,
2142 * not the device-set.
2143 */
2144 /* imsm does not track uuid's so we synthesis one using sha1 on
2145 * - The signature (Which is constant for all imsm array, but no matter)
2146 * - the orig_family_num of the container
2147 * - the index number of the volume
2148 * - the 'serial' number of the volume.
2149 * Hopefully these are all constant.
2150 */
2151 struct intel_super *super = st->sb;
2152
2153 char buf[20];
2154 struct sha1_ctx ctx;
2155 struct imsm_dev *dev = NULL;
2156 __u32 family_num;
2157
2158 /* some mdadm versions failed to set ->orig_family_num, in which
2159 * case fall back to ->family_num. orig_family_num will be
2160 * fixed up with the first metadata update.
2161 */
2162 family_num = super->anchor->orig_family_num;
2163 if (family_num == 0)
2164 family_num = super->anchor->family_num;
2165 sha1_init_ctx(&ctx);
2166 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
2167 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
2168 if (super->current_vol >= 0)
2169 dev = get_imsm_dev(super, super->current_vol);
2170 if (dev) {
2171 __u32 vol = super->current_vol;
2172 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2173 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2174 }
2175 sha1_finish_ctx(&ctx, buf);
2176 memcpy(uuid, buf, 4*4);
2177 }
2178
2179 #if 0
2180 static void
2181 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
2182 {
2183 __u8 *v = get_imsm_version(mpb);
2184 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2185 char major[] = { 0, 0, 0 };
2186 char minor[] = { 0 ,0, 0 };
2187 char patch[] = { 0, 0, 0 };
2188 char *ver_parse[] = { major, minor, patch };
2189 int i, j;
2190
2191 i = j = 0;
2192 while (*v != '\0' && v < end) {
2193 if (*v != '.' && j < 2)
2194 ver_parse[i][j++] = *v;
2195 else {
2196 i++;
2197 j = 0;
2198 }
2199 v++;
2200 }
2201
2202 *m = strtol(minor, NULL, 0);
2203 *p = strtol(patch, NULL, 0);
2204 }
2205 #endif
2206
2207 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2208 {
2209 /* migr_strip_size when repairing or initializing parity */
2210 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2211 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2212
2213 switch (get_imsm_raid_level(map)) {
2214 case 5:
2215 case 10:
2216 return chunk;
2217 default:
2218 return 128*1024 >> 9;
2219 }
2220 }
2221
2222 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2223 {
2224 /* migr_strip_size when rebuilding a degraded disk, no idea why
2225 * this is different than migr_strip_size_resync(), but it's good
2226 * to be compatible
2227 */
2228 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2229 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2230
2231 switch (get_imsm_raid_level(map)) {
2232 case 1:
2233 case 10:
2234 if (map->num_members % map->num_domains == 0)
2235 return 128*1024 >> 9;
2236 else
2237 return chunk;
2238 case 5:
2239 return max((__u32) 64*1024 >> 9, chunk);
2240 default:
2241 return 128*1024 >> 9;
2242 }
2243 }
2244
2245 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2246 {
2247 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2248 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2249 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2250 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2251
2252 return max((__u32) 1, hi_chunk / lo_chunk);
2253 }
2254
2255 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2256 {
2257 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2258 int level = get_imsm_raid_level(lo);
2259
2260 if (level == 1 || level == 10) {
2261 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2262
2263 return hi->num_domains;
2264 } else
2265 return num_stripes_per_unit_resync(dev);
2266 }
2267
2268 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
2269 {
2270 /* named 'imsm_' because raid0, raid1 and raid10
2271 * counter-intuitively have the same number of data disks
2272 */
2273 struct imsm_map *map = get_imsm_map(dev, second_map);
2274
2275 switch (get_imsm_raid_level(map)) {
2276 case 0:
2277 return map->num_members;
2278 break;
2279 case 1:
2280 case 10:
2281 return map->num_members/2;
2282 case 5:
2283 return map->num_members - 1;
2284 default:
2285 dprintf("unsupported raid level\n");
2286 return 0;
2287 }
2288 }
2289
2290 static __u32 parity_segment_depth(struct imsm_dev *dev)
2291 {
2292 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2293 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2294
2295 switch(get_imsm_raid_level(map)) {
2296 case 1:
2297 case 10:
2298 return chunk * map->num_domains;
2299 case 5:
2300 return chunk * map->num_members;
2301 default:
2302 return chunk;
2303 }
2304 }
2305
2306 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2307 {
2308 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2309 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2310 __u32 strip = block / chunk;
2311
2312 switch (get_imsm_raid_level(map)) {
2313 case 1:
2314 case 10: {
2315 __u32 vol_strip = (strip * map->num_domains) + 1;
2316 __u32 vol_stripe = vol_strip / map->num_members;
2317
2318 return vol_stripe * chunk + block % chunk;
2319 } case 5: {
2320 __u32 stripe = strip / (map->num_members - 1);
2321
2322 return stripe * chunk + block % chunk;
2323 }
2324 default:
2325 return 0;
2326 }
2327 }
2328
2329 static __u64 blocks_per_migr_unit(struct intel_super *super,
2330 struct imsm_dev *dev)
2331 {
2332 /* calculate the conversion factor between per member 'blocks'
2333 * (md/{resync,rebuild}_start) and imsm migration units, return
2334 * 0 for the 'not migrating' and 'unsupported migration' cases
2335 */
2336 if (!dev->vol.migr_state)
2337 return 0;
2338
2339 switch (migr_type(dev)) {
2340 case MIGR_GEN_MIGR: {
2341 struct migr_record *migr_rec = super->migr_rec;
2342 return __le32_to_cpu(migr_rec->blocks_per_unit);
2343 }
2344 case MIGR_VERIFY:
2345 case MIGR_REPAIR:
2346 case MIGR_INIT: {
2347 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2348 __u32 stripes_per_unit;
2349 __u32 blocks_per_unit;
2350 __u32 parity_depth;
2351 __u32 migr_chunk;
2352 __u32 block_map;
2353 __u32 block_rel;
2354 __u32 segment;
2355 __u32 stripe;
2356 __u8 disks;
2357
2358 /* yes, this is really the translation of migr_units to
2359 * per-member blocks in the 'resync' case
2360 */
2361 stripes_per_unit = num_stripes_per_unit_resync(dev);
2362 migr_chunk = migr_strip_blocks_resync(dev);
2363 disks = imsm_num_data_members(dev, MAP_0);
2364 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2365 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2366 segment = blocks_per_unit / stripe;
2367 block_rel = blocks_per_unit - segment * stripe;
2368 parity_depth = parity_segment_depth(dev);
2369 block_map = map_migr_block(dev, block_rel);
2370 return block_map + parity_depth * segment;
2371 }
2372 case MIGR_REBUILD: {
2373 __u32 stripes_per_unit;
2374 __u32 migr_chunk;
2375
2376 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2377 migr_chunk = migr_strip_blocks_rebuild(dev);
2378 return migr_chunk * stripes_per_unit;
2379 }
2380 case MIGR_STATE_CHANGE:
2381 default:
2382 return 0;
2383 }
2384 }
2385
2386 static int imsm_level_to_layout(int level)
2387 {
2388 switch (level) {
2389 case 0:
2390 case 1:
2391 return 0;
2392 case 5:
2393 case 6:
2394 return ALGORITHM_LEFT_ASYMMETRIC;
2395 case 10:
2396 return 0x102;
2397 }
2398 return UnSet;
2399 }
2400
2401 /*******************************************************************************
2402 * Function: read_imsm_migr_rec
2403 * Description: Function reads imsm migration record from last sector of disk
2404 * Parameters:
2405 * fd : disk descriptor
2406 * super : metadata info
2407 * Returns:
2408 * 0 : success,
2409 * -1 : fail
2410 ******************************************************************************/
2411 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2412 {
2413 int ret_val = -1;
2414 unsigned long long dsize;
2415
2416 get_dev_size(fd, NULL, &dsize);
2417 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2418 pr_err("Cannot seek to anchor block: %s\n",
2419 strerror(errno));
2420 goto out;
2421 }
2422 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2423 MIGR_REC_BUF_SIZE) {
2424 pr_err("Cannot read migr record block: %s\n",
2425 strerror(errno));
2426 goto out;
2427 }
2428 ret_val = 0;
2429
2430 out:
2431 return ret_val;
2432 }
2433
2434 static struct imsm_dev *imsm_get_device_during_migration(
2435 struct intel_super *super)
2436 {
2437
2438 struct intel_dev *dv;
2439
2440 for (dv = super->devlist; dv; dv = dv->next) {
2441 if (is_gen_migration(dv->dev))
2442 return dv->dev;
2443 }
2444 return NULL;
2445 }
2446
2447 /*******************************************************************************
2448 * Function: load_imsm_migr_rec
2449 * Description: Function reads imsm migration record (it is stored at the last
2450 * sector of disk)
2451 * Parameters:
2452 * super : imsm internal array info
2453 * info : general array info
2454 * Returns:
2455 * 0 : success
2456 * -1 : fail
2457 * -2 : no migration in progress
2458 ******************************************************************************/
2459 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2460 {
2461 struct mdinfo *sd;
2462 struct dl *dl = NULL;
2463 char nm[30];
2464 int retval = -1;
2465 int fd = -1;
2466 struct imsm_dev *dev;
2467 struct imsm_map *map = NULL;
2468 int slot = -1;
2469
2470 /* find map under migration */
2471 dev = imsm_get_device_during_migration(super);
2472 /* nothing to load,no migration in progress?
2473 */
2474 if (dev == NULL)
2475 return -2;
2476 map = get_imsm_map(dev, MAP_0);
2477
2478 if (info) {
2479 for (sd = info->devs ; sd ; sd = sd->next) {
2480 /* skip spare and failed disks
2481 */
2482 if (sd->disk.raid_disk < 0)
2483 continue;
2484 /* read only from one of the first two slots */
2485 if (map)
2486 slot = get_imsm_disk_slot(map,
2487 sd->disk.raid_disk);
2488 if ((map == NULL) || (slot > 1) || (slot < 0))
2489 continue;
2490
2491 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2492 fd = dev_open(nm, O_RDONLY);
2493 if (fd >= 0)
2494 break;
2495 }
2496 }
2497 if (fd < 0) {
2498 for (dl = super->disks; dl; dl = dl->next) {
2499 /* skip spare and failed disks
2500 */
2501 if (dl->index < 0)
2502 continue;
2503 /* read only from one of the first two slots */
2504 if (map)
2505 slot = get_imsm_disk_slot(map, dl->index);
2506 if ((map == NULL) || (slot > 1) || (slot < 0))
2507 continue;
2508 sprintf(nm, "%d:%d", dl->major, dl->minor);
2509 fd = dev_open(nm, O_RDONLY);
2510 if (fd >= 0)
2511 break;
2512 }
2513 }
2514 if (fd < 0)
2515 goto out;
2516 retval = read_imsm_migr_rec(fd, super);
2517
2518 out:
2519 if (fd >= 0)
2520 close(fd);
2521 return retval;
2522 }
2523
2524 #ifndef MDASSEMBLE
2525 /*******************************************************************************
2526 * function: imsm_create_metadata_checkpoint_update
2527 * Description: It creates update for checkpoint change.
2528 * Parameters:
2529 * super : imsm internal array info
2530 * u : pointer to prepared update
2531 * Returns:
2532 * Uptate length.
2533 * If length is equal to 0, input pointer u contains no update
2534 ******************************************************************************/
2535 static int imsm_create_metadata_checkpoint_update(
2536 struct intel_super *super,
2537 struct imsm_update_general_migration_checkpoint **u)
2538 {
2539
2540 int update_memory_size = 0;
2541
2542 dprintf("(enter)\n");
2543
2544 if (u == NULL)
2545 return 0;
2546 *u = NULL;
2547
2548 /* size of all update data without anchor */
2549 update_memory_size =
2550 sizeof(struct imsm_update_general_migration_checkpoint);
2551
2552 *u = xcalloc(1, update_memory_size);
2553 if (*u == NULL) {
2554 dprintf("error: cannot get memory\n");
2555 return 0;
2556 }
2557 (*u)->type = update_general_migration_checkpoint;
2558 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2559 dprintf("prepared for %u\n", (*u)->curr_migr_unit);
2560
2561 return update_memory_size;
2562 }
2563
2564 static void imsm_update_metadata_locally(struct supertype *st,
2565 void *buf, int len);
2566
2567 /*******************************************************************************
2568 * Function: write_imsm_migr_rec
2569 * Description: Function writes imsm migration record
2570 * (at the last sector of disk)
2571 * Parameters:
2572 * super : imsm internal array info
2573 * Returns:
2574 * 0 : success
2575 * -1 : if fail
2576 ******************************************************************************/
2577 static int write_imsm_migr_rec(struct supertype *st)
2578 {
2579 struct intel_super *super = st->sb;
2580 unsigned long long dsize;
2581 char nm[30];
2582 int fd = -1;
2583 int retval = -1;
2584 struct dl *sd;
2585 int len;
2586 struct imsm_update_general_migration_checkpoint *u;
2587 struct imsm_dev *dev;
2588 struct imsm_map *map = NULL;
2589
2590 /* find map under migration */
2591 dev = imsm_get_device_during_migration(super);
2592 /* if no migration, write buffer anyway to clear migr_record
2593 * on disk based on first available device
2594 */
2595 if (dev == NULL)
2596 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2597 super->current_vol);
2598
2599 map = get_imsm_map(dev, MAP_0);
2600
2601 for (sd = super->disks ; sd ; sd = sd->next) {
2602 int slot = -1;
2603
2604 /* skip failed and spare devices */
2605 if (sd->index < 0)
2606 continue;
2607 /* write to 2 first slots only */
2608 if (map)
2609 slot = get_imsm_disk_slot(map, sd->index);
2610 if ((map == NULL) || (slot > 1) || (slot < 0))
2611 continue;
2612
2613 sprintf(nm, "%d:%d", sd->major, sd->minor);
2614 fd = dev_open(nm, O_RDWR);
2615 if (fd < 0)
2616 continue;
2617 get_dev_size(fd, NULL, &dsize);
2618 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2619 pr_err("Cannot seek to anchor block: %s\n",
2620 strerror(errno));
2621 goto out;
2622 }
2623 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2624 MIGR_REC_BUF_SIZE) {
2625 pr_err("Cannot write migr record block: %s\n",
2626 strerror(errno));
2627 goto out;
2628 }
2629 close(fd);
2630 fd = -1;
2631 }
2632 /* update checkpoint information in metadata */
2633 len = imsm_create_metadata_checkpoint_update(super, &u);
2634
2635 if (len <= 0) {
2636 dprintf("imsm: Cannot prepare update\n");
2637 goto out;
2638 }
2639 /* update metadata locally */
2640 imsm_update_metadata_locally(st, u, len);
2641 /* and possibly remotely */
2642 if (st->update_tail) {
2643 append_metadata_update(st, u, len);
2644 /* during reshape we do all work inside metadata handler
2645 * manage_reshape(), so metadata update has to be triggered
2646 * insida it
2647 */
2648 flush_metadata_updates(st);
2649 st->update_tail = &st->updates;
2650 } else
2651 free(u);
2652
2653 retval = 0;
2654 out:
2655 if (fd >= 0)
2656 close(fd);
2657 return retval;
2658 }
2659 #endif /* MDASSEMBLE */
2660
2661 /* spare/missing disks activations are not allowe when
2662 * array/container performs reshape operation, because
2663 * all arrays in container works on the same disks set
2664 */
2665 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2666 {
2667 int rv = 0;
2668 struct intel_dev *i_dev;
2669 struct imsm_dev *dev;
2670
2671 /* check whole container
2672 */
2673 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2674 dev = i_dev->dev;
2675 if (is_gen_migration(dev)) {
2676 /* No repair during any migration in container
2677 */
2678 rv = 1;
2679 break;
2680 }
2681 }
2682 return rv;
2683 }
2684 static unsigned long long imsm_component_size_aligment_check(int level,
2685 int chunk_size,
2686 unsigned long long component_size)
2687 {
2688 unsigned int component_size_alligment;
2689
2690 /* check component size aligment
2691 */
2692 component_size_alligment = component_size % (chunk_size/512);
2693
2694 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alligment = %u\n",
2695 level, chunk_size, component_size,
2696 component_size_alligment);
2697
2698 if (component_size_alligment && (level != 1) && (level != UnSet)) {
2699 dprintf("imsm: reported component size alligned from %llu ",
2700 component_size);
2701 component_size -= component_size_alligment;
2702 dprintf_cont("to %llu (%i).\n",
2703 component_size, component_size_alligment);
2704 }
2705
2706 return component_size;
2707 }
2708
2709 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2710 {
2711 struct intel_super *super = st->sb;
2712 struct migr_record *migr_rec = super->migr_rec;
2713 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2714 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2715 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2716 struct imsm_map *map_to_analyse = map;
2717 struct dl *dl;
2718 int map_disks = info->array.raid_disks;
2719
2720 memset(info, 0, sizeof(*info));
2721 if (prev_map)
2722 map_to_analyse = prev_map;
2723
2724 dl = super->current_disk;
2725
2726 info->container_member = super->current_vol;
2727 info->array.raid_disks = map->num_members;
2728 info->array.level = get_imsm_raid_level(map_to_analyse);
2729 info->array.layout = imsm_level_to_layout(info->array.level);
2730 info->array.md_minor = -1;
2731 info->array.ctime = 0;
2732 info->array.utime = 0;
2733 info->array.chunk_size =
2734 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2735 info->array.state = !dev->vol.dirty;
2736 info->custom_array_size = __le32_to_cpu(dev->size_high);
2737 info->custom_array_size <<= 32;
2738 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2739 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2740
2741 if (is_gen_migration(dev)) {
2742 info->reshape_active = 1;
2743 info->new_level = get_imsm_raid_level(map);
2744 info->new_layout = imsm_level_to_layout(info->new_level);
2745 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2746 info->delta_disks = map->num_members - prev_map->num_members;
2747 if (info->delta_disks) {
2748 /* this needs to be applied to every array
2749 * in the container.
2750 */
2751 info->reshape_active = CONTAINER_RESHAPE;
2752 }
2753 /* We shape information that we give to md might have to be
2754 * modify to cope with md's requirement for reshaping arrays.
2755 * For example, when reshaping a RAID0, md requires it to be
2756 * presented as a degraded RAID4.
2757 * Also if a RAID0 is migrating to a RAID5 we need to specify
2758 * the array as already being RAID5, but the 'before' layout
2759 * is a RAID4-like layout.
2760 */
2761 switch (info->array.level) {
2762 case 0:
2763 switch(info->new_level) {
2764 case 0:
2765 /* conversion is happening as RAID4 */
2766 info->array.level = 4;
2767 info->array.raid_disks += 1;
2768 break;
2769 case 5:
2770 /* conversion is happening as RAID5 */
2771 info->array.level = 5;
2772 info->array.layout = ALGORITHM_PARITY_N;
2773 info->delta_disks -= 1;
2774 break;
2775 default:
2776 /* FIXME error message */
2777 info->array.level = UnSet;
2778 break;
2779 }
2780 break;
2781 }
2782 } else {
2783 info->new_level = UnSet;
2784 info->new_layout = UnSet;
2785 info->new_chunk = info->array.chunk_size;
2786 info->delta_disks = 0;
2787 }
2788
2789 if (dl) {
2790 info->disk.major = dl->major;
2791 info->disk.minor = dl->minor;
2792 info->disk.number = dl->index;
2793 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2794 dl->index);
2795 }
2796
2797 info->data_offset = pba_of_lba0(map_to_analyse);
2798 info->component_size = blocks_per_member(map_to_analyse);
2799
2800 info->component_size = imsm_component_size_aligment_check(
2801 info->array.level,
2802 info->array.chunk_size,
2803 info->component_size);
2804
2805 memset(info->uuid, 0, sizeof(info->uuid));
2806 info->recovery_start = MaxSector;
2807
2808 info->reshape_progress = 0;
2809 info->resync_start = MaxSector;
2810 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2811 dev->vol.dirty) &&
2812 imsm_reshape_blocks_arrays_changes(super) == 0) {
2813 info->resync_start = 0;
2814 }
2815 if (dev->vol.migr_state) {
2816 switch (migr_type(dev)) {
2817 case MIGR_REPAIR:
2818 case MIGR_INIT: {
2819 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2820 dev);
2821 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2822
2823 info->resync_start = blocks_per_unit * units;
2824 break;
2825 }
2826 case MIGR_GEN_MIGR: {
2827 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2828 dev);
2829 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2830 unsigned long long array_blocks;
2831 int used_disks;
2832
2833 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2834 (units <
2835 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2836 (super->migr_rec->rec_status ==
2837 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2838 units++;
2839
2840 info->reshape_progress = blocks_per_unit * units;
2841
2842 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
2843 (unsigned long long)units,
2844 (unsigned long long)blocks_per_unit,
2845 info->reshape_progress);
2846
2847 used_disks = imsm_num_data_members(dev, MAP_1);
2848 if (used_disks > 0) {
2849 array_blocks = blocks_per_member(map) *
2850 used_disks;
2851 /* round array size down to closest MB
2852 */
2853 info->custom_array_size = (array_blocks
2854 >> SECT_PER_MB_SHIFT)
2855 << SECT_PER_MB_SHIFT;
2856 }
2857 }
2858 case MIGR_VERIFY:
2859 /* we could emulate the checkpointing of
2860 * 'sync_action=check' migrations, but for now
2861 * we just immediately complete them
2862 */
2863 case MIGR_REBUILD:
2864 /* this is handled by container_content_imsm() */
2865 case MIGR_STATE_CHANGE:
2866 /* FIXME handle other migrations */
2867 default:
2868 /* we are not dirty, so... */
2869 info->resync_start = MaxSector;
2870 }
2871 }
2872
2873 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2874 info->name[MAX_RAID_SERIAL_LEN] = 0;
2875
2876 info->array.major_version = -1;
2877 info->array.minor_version = -2;
2878 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
2879 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2880 uuid_from_super_imsm(st, info->uuid);
2881
2882 if (dmap) {
2883 int i, j;
2884 for (i=0; i<map_disks; i++) {
2885 dmap[i] = 0;
2886 if (i < info->array.raid_disks) {
2887 struct imsm_disk *dsk;
2888 j = get_imsm_disk_idx(dev, i, MAP_X);
2889 dsk = get_imsm_disk(super, j);
2890 if (dsk && (dsk->status & CONFIGURED_DISK))
2891 dmap[i] = 1;
2892 }
2893 }
2894 }
2895 }
2896
2897 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2898 int failed, int look_in_map);
2899
2900 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2901 int look_in_map);
2902
2903 #ifndef MDASSEMBLE
2904 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2905 {
2906 if (is_gen_migration(dev)) {
2907 int failed;
2908 __u8 map_state;
2909 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2910
2911 failed = imsm_count_failed(super, dev, MAP_1);
2912 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2913 if (map2->map_state != map_state) {
2914 map2->map_state = map_state;
2915 super->updates_pending++;
2916 }
2917 }
2918 }
2919 #endif
2920
2921 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2922 {
2923 struct dl *d;
2924
2925 for (d = super->missing; d; d = d->next)
2926 if (d->index == index)
2927 return &d->disk;
2928 return NULL;
2929 }
2930
2931 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2932 {
2933 struct intel_super *super = st->sb;
2934 struct imsm_disk *disk;
2935 int map_disks = info->array.raid_disks;
2936 int max_enough = -1;
2937 int i;
2938 struct imsm_super *mpb;
2939
2940 if (super->current_vol >= 0) {
2941 getinfo_super_imsm_volume(st, info, map);
2942 return;
2943 }
2944 memset(info, 0, sizeof(*info));
2945
2946 /* Set raid_disks to zero so that Assemble will always pull in valid
2947 * spares
2948 */
2949 info->array.raid_disks = 0;
2950 info->array.level = LEVEL_CONTAINER;
2951 info->array.layout = 0;
2952 info->array.md_minor = -1;
2953 info->array.ctime = 0; /* N/A for imsm */
2954 info->array.utime = 0;
2955 info->array.chunk_size = 0;
2956
2957 info->disk.major = 0;
2958 info->disk.minor = 0;
2959 info->disk.raid_disk = -1;
2960 info->reshape_active = 0;
2961 info->array.major_version = -1;
2962 info->array.minor_version = -2;
2963 strcpy(info->text_version, "imsm");
2964 info->safe_mode_delay = 0;
2965 info->disk.number = -1;
2966 info->disk.state = 0;
2967 info->name[0] = 0;
2968 info->recovery_start = MaxSector;
2969 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2970
2971 /* do we have the all the insync disks that we expect? */
2972 mpb = super->anchor;
2973
2974 for (i = 0; i < mpb->num_raid_devs; i++) {
2975 struct imsm_dev *dev = get_imsm_dev(super, i);
2976 int failed, enough, j, missing = 0;
2977 struct imsm_map *map;
2978 __u8 state;
2979
2980 failed = imsm_count_failed(super, dev, MAP_0);
2981 state = imsm_check_degraded(super, dev, failed, MAP_0);
2982 map = get_imsm_map(dev, MAP_0);
2983
2984 /* any newly missing disks?
2985 * (catches single-degraded vs double-degraded)
2986 */
2987 for (j = 0; j < map->num_members; j++) {
2988 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
2989 __u32 idx = ord_to_idx(ord);
2990
2991 if (!(ord & IMSM_ORD_REBUILD) &&
2992 get_imsm_missing(super, idx)) {
2993 missing = 1;
2994 break;
2995 }
2996 }
2997
2998 if (state == IMSM_T_STATE_FAILED)
2999 enough = -1;
3000 else if (state == IMSM_T_STATE_DEGRADED &&
3001 (state != map->map_state || missing))
3002 enough = 0;
3003 else /* we're normal, or already degraded */
3004 enough = 1;
3005 if (is_gen_migration(dev) && missing) {
3006 /* during general migration we need all disks
3007 * that process is running on.
3008 * No new missing disk is allowed.
3009 */
3010 max_enough = -1;
3011 enough = -1;
3012 /* no more checks necessary
3013 */
3014 break;
3015 }
3016 /* in the missing/failed disk case check to see
3017 * if at least one array is runnable
3018 */
3019 max_enough = max(max_enough, enough);
3020 }
3021 dprintf("enough: %d\n", max_enough);
3022 info->container_enough = max_enough;
3023
3024 if (super->disks) {
3025 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3026
3027 disk = &super->disks->disk;
3028 info->data_offset = total_blocks(&super->disks->disk) - reserved;
3029 info->component_size = reserved;
3030 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
3031 /* we don't change info->disk.raid_disk here because
3032 * this state will be finalized in mdmon after we have
3033 * found the 'most fresh' version of the metadata
3034 */
3035 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3036 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3037 }
3038
3039 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3040 * ->compare_super may have updated the 'num_raid_devs' field for spares
3041 */
3042 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
3043 uuid_from_super_imsm(st, info->uuid);
3044 else
3045 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
3046
3047 /* I don't know how to compute 'map' on imsm, so use safe default */
3048 if (map) {
3049 int i;
3050 for (i = 0; i < map_disks; i++)
3051 map[i] = 1;
3052 }
3053
3054 }
3055
3056 /* allocates memory and fills disk in mdinfo structure
3057 * for each disk in array */
3058 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3059 {
3060 struct mdinfo *mddev = NULL;
3061 struct intel_super *super = st->sb;
3062 struct imsm_disk *disk;
3063 int count = 0;
3064 struct dl *dl;
3065 if (!super || !super->disks)
3066 return NULL;
3067 dl = super->disks;
3068 mddev = xcalloc(1, sizeof(*mddev));
3069 while (dl) {
3070 struct mdinfo *tmp;
3071 disk = &dl->disk;
3072 tmp = xcalloc(1, sizeof(*tmp));
3073 if (mddev->devs)
3074 tmp->next = mddev->devs;
3075 mddev->devs = tmp;
3076 tmp->disk.number = count++;
3077 tmp->disk.major = dl->major;
3078 tmp->disk.minor = dl->minor;
3079 tmp->disk.state = is_configured(disk) ?
3080 (1 << MD_DISK_ACTIVE) : 0;
3081 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3082 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3083 tmp->disk.raid_disk = -1;
3084 dl = dl->next;
3085 }
3086 return mddev;
3087 }
3088
3089 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3090 char *update, char *devname, int verbose,
3091 int uuid_set, char *homehost)
3092 {
3093 /* For 'assemble' and 'force' we need to return non-zero if any
3094 * change was made. For others, the return value is ignored.
3095 * Update options are:
3096 * force-one : This device looks a bit old but needs to be included,
3097 * update age info appropriately.
3098 * assemble: clear any 'faulty' flag to allow this device to
3099 * be assembled.
3100 * force-array: Array is degraded but being forced, mark it clean
3101 * if that will be needed to assemble it.
3102 *
3103 * newdev: not used ????
3104 * grow: Array has gained a new device - this is currently for
3105 * linear only
3106 * resync: mark as dirty so a resync will happen.
3107 * name: update the name - preserving the homehost
3108 * uuid: Change the uuid of the array to match watch is given
3109 *
3110 * Following are not relevant for this imsm:
3111 * sparc2.2 : update from old dodgey metadata
3112 * super-minor: change the preferred_minor number
3113 * summaries: update redundant counters.
3114 * homehost: update the recorded homehost
3115 * _reshape_progress: record new reshape_progress position.
3116 */
3117 int rv = 1;
3118 struct intel_super *super = st->sb;
3119 struct imsm_super *mpb;
3120
3121 /* we can only update container info */
3122 if (!super || super->current_vol >= 0 || !super->anchor)
3123 return 1;
3124
3125 mpb = super->anchor;
3126
3127 if (strcmp(update, "uuid") == 0) {
3128 /* We take this to mean that the family_num should be updated.
3129 * However that is much smaller than the uuid so we cannot really
3130 * allow an explicit uuid to be given. And it is hard to reliably
3131 * know if one was.
3132 * So if !uuid_set we know the current uuid is random and just used
3133 * the first 'int' and copy it to the other 3 positions.
3134 * Otherwise we require the 4 'int's to be the same as would be the
3135 * case if we are using a random uuid. So an explicit uuid will be
3136 * accepted as long as all for ints are the same... which shouldn't hurt
3137 */
3138 if (!uuid_set) {
3139 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
3140 rv = 0;
3141 } else {
3142 if (info->uuid[0] != info->uuid[1] ||
3143 info->uuid[1] != info->uuid[2] ||
3144 info->uuid[2] != info->uuid[3])
3145 rv = -1;
3146 else
3147 rv = 0;
3148 }
3149 if (rv == 0)
3150 mpb->orig_family_num = info->uuid[0];
3151 } else if (strcmp(update, "assemble") == 0)
3152 rv = 0;
3153 else
3154 rv = -1;
3155
3156 /* successful update? recompute checksum */
3157 if (rv == 0)
3158 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
3159
3160 return rv;
3161 }
3162
3163 static size_t disks_to_mpb_size(int disks)
3164 {
3165 size_t size;
3166
3167 size = sizeof(struct imsm_super);
3168 size += (disks - 1) * sizeof(struct imsm_disk);
3169 size += 2 * sizeof(struct imsm_dev);
3170 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3171 size += (4 - 2) * sizeof(struct imsm_map);
3172 /* 4 possible disk_ord_tbl's */
3173 size += 4 * (disks - 1) * sizeof(__u32);
3174
3175 return size;
3176 }
3177
3178 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3179 unsigned long long data_offset)
3180 {
3181 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3182 return 0;
3183
3184 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
3185 }
3186
3187 static void free_devlist(struct intel_super *super)
3188 {
3189 struct intel_dev *dv;
3190
3191 while (super->devlist) {
3192 dv = super->devlist->next;
3193 free(super->devlist->dev);
3194 free(super->devlist);
3195 super->devlist = dv;
3196 }
3197 }
3198
3199 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3200 {
3201 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3202 }
3203
3204 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3205 {
3206 /*
3207 * return:
3208 * 0 same, or first was empty, and second was copied
3209 * 1 second had wrong number
3210 * 2 wrong uuid
3211 * 3 wrong other info
3212 */
3213 struct intel_super *first = st->sb;
3214 struct intel_super *sec = tst->sb;
3215
3216 if (!first) {
3217 st->sb = tst->sb;
3218 tst->sb = NULL;
3219 return 0;
3220 }
3221 /* in platform dependent environment test if the disks
3222 * use the same Intel hba
3223 * If not on Intel hba at all, allow anything.
3224 */
3225 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3226 if (first->hba->type != sec->hba->type) {
3227 fprintf(stderr,
3228 "HBAs of devices do not match %s != %s\n",
3229 get_sys_dev_type(first->hba->type),
3230 get_sys_dev_type(sec->hba->type));
3231 return 3;
3232 }
3233 if (first->orom != sec->orom) {
3234 fprintf(stderr,
3235 "HBAs of devices do not match %s != %s\n",
3236 first->hba->pci_id, sec->hba->pci_id);
3237 return 3;
3238 }
3239 }
3240
3241 /* if an anchor does not have num_raid_devs set then it is a free
3242 * floating spare
3243 */
3244 if (first->anchor->num_raid_devs > 0 &&
3245 sec->anchor->num_raid_devs > 0) {
3246 /* Determine if these disks might ever have been
3247 * related. Further disambiguation can only take place
3248 * in load_super_imsm_all
3249 */
3250 __u32 first_family = first->anchor->orig_family_num;
3251 __u32 sec_family = sec->anchor->orig_family_num;
3252
3253 if (memcmp(first->anchor->sig, sec->anchor->sig,
3254 MAX_SIGNATURE_LENGTH) != 0)
3255 return 3;
3256
3257 if (first_family == 0)
3258 first_family = first->anchor->family_num;
3259 if (sec_family == 0)
3260 sec_family = sec->anchor->family_num;
3261
3262 if (first_family != sec_family)
3263 return 3;
3264
3265 }
3266
3267 /* if 'first' is a spare promote it to a populated mpb with sec's
3268 * family number
3269 */
3270 if (first->anchor->num_raid_devs == 0 &&
3271 sec->anchor->num_raid_devs > 0) {
3272 int i;
3273 struct intel_dev *dv;
3274 struct imsm_dev *dev;
3275
3276 /* we need to copy raid device info from sec if an allocation
3277 * fails here we don't associate the spare
3278 */
3279 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3280 dv = xmalloc(sizeof(*dv));
3281 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3282 dv->dev = dev;
3283 dv->index = i;
3284 dv->next = first->devlist;
3285 first->devlist = dv;
3286 }
3287 if (i < sec->anchor->num_raid_devs) {
3288 /* allocation failure */
3289 free_devlist(first);
3290 pr_err("imsm: failed to associate spare\n");
3291 return 3;
3292 }
3293 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3294 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3295 first->anchor->family_num = sec->anchor->family_num;
3296 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3297 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3298 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3299 }
3300
3301 return 0;
3302 }
3303
3304 static void fd2devname(int fd, char *name)
3305 {
3306 struct stat st;
3307 char path[256];
3308 char dname[PATH_MAX];
3309 char *nm;
3310 int rv;
3311
3312 name[0] = '\0';
3313 if (fstat(fd, &st) != 0)
3314 return;
3315 sprintf(path, "/sys/dev/block/%d:%d",
3316 major(st.st_rdev), minor(st.st_rdev));
3317
3318 rv = readlink(path, dname, sizeof(dname)-1);
3319 if (rv <= 0)
3320 return;
3321
3322 dname[rv] = '\0';
3323 nm = strrchr(dname, '/');
3324 if (nm) {
3325 nm++;
3326 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3327 }
3328 }
3329
3330 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3331
3332 static int imsm_read_serial(int fd, char *devname,
3333 __u8 serial[MAX_RAID_SERIAL_LEN])
3334 {
3335 unsigned char scsi_serial[255];
3336 int rv;
3337 int rsp_len;
3338 int len;
3339 char *dest;
3340 char *src;
3341 char *rsp_buf;
3342 int i;
3343
3344 memset(scsi_serial, 0, sizeof(scsi_serial));
3345
3346 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3347
3348 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3349 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3350 fd2devname(fd, (char *) serial);
3351 return 0;
3352 }
3353
3354 if (rv != 0) {
3355 if (devname)
3356 pr_err("Failed to retrieve serial for %s\n",
3357 devname);
3358 return rv;
3359 }
3360
3361 rsp_len = scsi_serial[3];
3362 if (!rsp_len) {
3363 if (devname)
3364 pr_err("Failed to retrieve serial for %s\n",
3365 devname);
3366 return 2;
3367 }
3368 rsp_buf = (char *) &scsi_serial[4];
3369
3370 /* trim all whitespace and non-printable characters and convert
3371 * ':' to ';'
3372 */
3373 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3374 src = &rsp_buf[i];
3375 if (*src > 0x20) {
3376 /* ':' is reserved for use in placeholder serial
3377 * numbers for missing disks
3378 */
3379 if (*src == ':')
3380 *dest++ = ';';
3381 else
3382 *dest++ = *src;
3383 }
3384 }
3385 len = dest - rsp_buf;
3386 dest = rsp_buf;
3387
3388 /* truncate leading characters */
3389 if (len > MAX_RAID_SERIAL_LEN) {
3390 dest += len - MAX_RAID_SERIAL_LEN;
3391 len = MAX_RAID_SERIAL_LEN;
3392 }
3393
3394 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3395 memcpy(serial, dest, len);
3396
3397 return 0;
3398 }
3399
3400 static int serialcmp(__u8 *s1, __u8 *s2)
3401 {
3402 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3403 }
3404
3405 static void serialcpy(__u8 *dest, __u8 *src)
3406 {
3407 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3408 }
3409
3410 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3411 {
3412 struct dl *dl;
3413
3414 for (dl = super->disks; dl; dl = dl->next)
3415 if (serialcmp(dl->serial, serial) == 0)
3416 break;
3417
3418 return dl;
3419 }
3420
3421 static struct imsm_disk *
3422 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3423 {
3424 int i;
3425
3426 for (i = 0; i < mpb->num_disks; i++) {
3427 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3428
3429 if (serialcmp(disk->serial, serial) == 0) {
3430 if (idx)
3431 *idx = i;
3432 return disk;
3433 }
3434 }
3435
3436 return NULL;
3437 }
3438
3439 static int
3440 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3441 {
3442 struct imsm_disk *disk;
3443 struct dl *dl;
3444 struct stat stb;
3445 int rv;
3446 char name[40];
3447 __u8 serial[MAX_RAID_SERIAL_LEN];
3448
3449 rv = imsm_read_serial(fd, devname, serial);
3450
3451 if (rv != 0)
3452 return 2;
3453
3454 dl = xcalloc(1, sizeof(*dl));
3455
3456 fstat(fd, &stb);
3457 dl->major = major(stb.st_rdev);
3458 dl->minor = minor(stb.st_rdev);
3459 dl->next = super->disks;
3460 dl->fd = keep_fd ? fd : -1;
3461 assert(super->disks == NULL);
3462 super->disks = dl;
3463 serialcpy(dl->serial, serial);
3464 dl->index = -2;
3465 dl->e = NULL;
3466 fd2devname(fd, name);
3467 if (devname)
3468 dl->devname = xstrdup(devname);
3469 else
3470 dl->devname = xstrdup(name);
3471
3472 /* look up this disk's index in the current anchor */
3473 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3474 if (disk) {
3475 dl->disk = *disk;
3476 /* only set index on disks that are a member of a
3477 * populated contianer, i.e. one with raid_devs
3478 */
3479 if (is_failed(&dl->disk))
3480 dl->index = -2;
3481 else if (is_spare(&dl->disk))
3482 dl->index = -1;
3483 }
3484
3485 return 0;
3486 }
3487
3488 #ifndef MDASSEMBLE
3489 /* When migrating map0 contains the 'destination' state while map1
3490 * contains the current state. When not migrating map0 contains the
3491 * current state. This routine assumes that map[0].map_state is set to
3492 * the current array state before being called.
3493 *
3494 * Migration is indicated by one of the following states
3495 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3496 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3497 * map1state=unitialized)
3498 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3499 * map1state=normal)
3500 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3501 * map1state=degraded)
3502 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3503 * map1state=normal)
3504 */
3505 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3506 __u8 to_state, int migr_type)
3507 {
3508 struct imsm_map *dest;
3509 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3510
3511 dev->vol.migr_state = 1;
3512 set_migr_type(dev, migr_type);
3513 dev->vol.curr_migr_unit = 0;
3514 dest = get_imsm_map(dev, MAP_1);
3515
3516 /* duplicate and then set the target end state in map[0] */
3517 memcpy(dest, src, sizeof_imsm_map(src));
3518 if ((migr_type == MIGR_REBUILD) ||
3519 (migr_type == MIGR_GEN_MIGR)) {
3520 __u32 ord;
3521 int i;
3522
3523 for (i = 0; i < src->num_members; i++) {
3524 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3525 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3526 }
3527 }
3528
3529 if (migr_type == MIGR_GEN_MIGR)
3530 /* Clear migration record */
3531 memset(super->migr_rec, 0, sizeof(struct migr_record));
3532
3533 src->map_state = to_state;
3534 }
3535
3536 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3537 __u8 map_state)
3538 {
3539 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3540 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3541 MAP_0 : MAP_1);
3542 int i, j;
3543
3544 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3545 * completed in the last migration.
3546 *
3547 * FIXME add support for raid-level-migration
3548 */
3549 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3550 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3551 /* when final map state is other than expected
3552 * merge maps (not for migration)
3553 */
3554 int failed;
3555
3556 for (i = 0; i < prev->num_members; i++)
3557 for (j = 0; j < map->num_members; j++)
3558 /* during online capacity expansion
3559 * disks position can be changed
3560 * if takeover is used
3561 */
3562 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3563 ord_to_idx(prev->disk_ord_tbl[i])) {
3564 map->disk_ord_tbl[j] |=
3565 prev->disk_ord_tbl[i];
3566 break;
3567 }
3568 failed = imsm_count_failed(super, dev, MAP_0);
3569 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3570 }
3571
3572 dev->vol.migr_state = 0;
3573 set_migr_type(dev, 0);
3574 dev->vol.curr_migr_unit = 0;
3575 map->map_state = map_state;
3576 }
3577 #endif
3578
3579 static int parse_raid_devices(struct intel_super *super)
3580 {
3581 int i;
3582 struct imsm_dev *dev_new;
3583 size_t len, len_migr;
3584 size_t max_len = 0;
3585 size_t space_needed = 0;
3586 struct imsm_super *mpb = super->anchor;
3587
3588 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3589 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3590 struct intel_dev *dv;
3591
3592 len = sizeof_imsm_dev(dev_iter, 0);
3593 len_migr = sizeof_imsm_dev(dev_iter, 1);
3594 if (len_migr > len)
3595 space_needed += len_migr - len;
3596
3597 dv = xmalloc(sizeof(*dv));
3598 if (max_len < len_migr)
3599 max_len = len_migr;
3600 if (max_len > len_migr)
3601 space_needed += max_len - len_migr;
3602 dev_new = xmalloc(max_len);
3603 imsm_copy_dev(dev_new, dev_iter);
3604 dv->dev = dev_new;
3605 dv->index = i;
3606 dv->next = super->devlist;
3607 super->devlist = dv;
3608 }
3609
3610 /* ensure that super->buf is large enough when all raid devices
3611 * are migrating
3612 */
3613 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3614 void *buf;
3615
3616 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3617 if (posix_memalign(&buf, 512, len) != 0)
3618 return 1;
3619
3620 memcpy(buf, super->buf, super->len);
3621 memset(buf + super->len, 0, len - super->len);
3622 free(super->buf);
3623 super->buf = buf;
3624 super->len = len;
3625 }
3626
3627 return 0;
3628 }
3629
3630 /* retrieve a pointer to the bbm log which starts after all raid devices */
3631 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3632 {
3633 void *ptr = NULL;
3634
3635 if (__le32_to_cpu(mpb->bbm_log_size)) {
3636 ptr = mpb;
3637 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3638 }
3639
3640 return ptr;
3641 }
3642
3643 /*******************************************************************************
3644 * Function: check_mpb_migr_compatibility
3645 * Description: Function checks for unsupported migration features:
3646 * - migration optimization area (pba_of_lba0)
3647 * - descending reshape (ascending_migr)
3648 * Parameters:
3649 * super : imsm metadata information
3650 * Returns:
3651 * 0 : migration is compatible
3652 * -1 : migration is not compatible
3653 ******************************************************************************/
3654 int check_mpb_migr_compatibility(struct intel_super *super)
3655 {
3656 struct imsm_map *map0, *map1;
3657 struct migr_record *migr_rec = super->migr_rec;
3658 int i;
3659
3660 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3661 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3662
3663 if (dev_iter &&
3664 dev_iter->vol.migr_state == 1 &&
3665 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3666 /* This device is migrating */
3667 map0 = get_imsm_map(dev_iter, MAP_0);
3668 map1 = get_imsm_map(dev_iter, MAP_1);
3669 if (pba_of_lba0(map0) != pba_of_lba0(map1))
3670 /* migration optimization area was used */
3671 return -1;
3672 if (migr_rec->ascending_migr == 0
3673 && migr_rec->dest_depth_per_unit > 0)
3674 /* descending reshape not supported yet */
3675 return -1;
3676 }
3677 }
3678 return 0;
3679 }
3680
3681 static void __free_imsm(struct intel_super *super, int free_disks);
3682
3683 /* load_imsm_mpb - read matrix metadata
3684 * allocates super->mpb to be freed by free_imsm
3685 */
3686 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3687 {
3688 unsigned long long dsize;
3689 unsigned long long sectors;
3690 struct stat;
3691 struct imsm_super *anchor;
3692 __u32 check_sum;
3693
3694 get_dev_size(fd, NULL, &dsize);
3695 if (dsize < 1024) {
3696 if (devname)
3697 pr_err("%s: device to small for imsm\n",
3698 devname);
3699 return 1;
3700 }
3701
3702 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3703 if (devname)
3704 pr_err("Cannot seek to anchor block on %s: %s\n",
3705 devname, strerror(errno));
3706 return 1;
3707 }
3708
3709 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3710 if (devname)
3711 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
3712 return 1;
3713 }
3714 if (read(fd, anchor, 512) != 512) {
3715 if (devname)
3716 pr_err("Cannot read anchor block on %s: %s\n",
3717 devname, strerror(errno));
3718 free(anchor);
3719 return 1;
3720 }
3721
3722 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3723 if (devname)
3724 pr_err("no IMSM anchor on %s\n", devname);
3725 free(anchor);
3726 return 2;
3727 }
3728
3729 __free_imsm(super, 0);
3730 /* reload capability and hba */
3731
3732 /* capability and hba must be updated with new super allocation */
3733 find_intel_hba_capability(fd, super, devname);
3734 super->len = ROUND_UP(anchor->mpb_size, 512);
3735 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3736 if (devname)
3737 pr_err("unable to allocate %zu byte mpb buffer\n",
3738 super->len);
3739 free(anchor);
3740 return 2;
3741 }
3742 memcpy(super->buf, anchor, 512);
3743
3744 sectors = mpb_sectors(anchor) - 1;
3745 free(anchor);
3746
3747 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
3748 pr_err("could not allocate migr_rec buffer\n");
3749 free(super->buf);
3750 return 2;
3751 }
3752 super->clean_migration_record_by_mdmon = 0;
3753
3754 if (!sectors) {
3755 check_sum = __gen_imsm_checksum(super->anchor);
3756 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3757 if (devname)
3758 pr_err("IMSM checksum %x != %x on %s\n",
3759 check_sum,
3760 __le32_to_cpu(super->anchor->check_sum),
3761 devname);
3762 return 2;
3763 }
3764
3765 return 0;
3766 }
3767
3768 /* read the extended mpb */
3769 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3770 if (devname)
3771 pr_err("Cannot seek to extended mpb on %s: %s\n",
3772 devname, strerror(errno));
3773 return 1;
3774 }
3775
3776 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3777 if (devname)
3778 pr_err("Cannot read extended mpb on %s: %s\n",
3779 devname, strerror(errno));
3780 return 2;
3781 }
3782
3783 check_sum = __gen_imsm_checksum(super->anchor);
3784 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3785 if (devname)
3786 pr_err("IMSM checksum %x != %x on %s\n",
3787 check_sum, __le32_to_cpu(super->anchor->check_sum),
3788 devname);
3789 return 3;
3790 }
3791
3792 /* FIXME the BBM log is disk specific so we cannot use this global
3793 * buffer for all disks. Ok for now since we only look at the global
3794 * bbm_log_size parameter to gate assembly
3795 */
3796 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3797
3798 return 0;
3799 }
3800
3801 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3802
3803 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
3804 static void clear_hi(struct intel_super *super)
3805 {
3806 struct imsm_super *mpb = super->anchor;
3807 int i, n;
3808 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
3809 return;
3810 for (i = 0; i < mpb->num_disks; ++i) {
3811 struct imsm_disk *disk = &mpb->disk[i];
3812 disk->total_blocks_hi = 0;
3813 }
3814 for (i = 0; i < mpb->num_raid_devs; ++i) {
3815 struct imsm_dev *dev = get_imsm_dev(super, i);
3816 if (!dev)
3817 return;
3818 for (n = 0; n < 2; ++n) {
3819 struct imsm_map *map = get_imsm_map(dev, n);
3820 if (!map)
3821 continue;
3822 map->pba_of_lba0_hi = 0;
3823 map->blocks_per_member_hi = 0;
3824 map->num_data_stripes_hi = 0;
3825 }
3826 }
3827 }
3828
3829 static int
3830 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3831 {
3832 int err;
3833
3834 err = load_imsm_mpb(fd, super, devname);
3835 if (err)
3836 return err;
3837 err = load_imsm_disk(fd, super, devname, keep_fd);
3838 if (err)
3839 return err;
3840 err = parse_raid_devices(super);
3841 clear_hi(super);
3842 return err;
3843 }
3844
3845 static void __free_imsm_disk(struct dl *d)
3846 {
3847 if (d->fd >= 0)
3848 close(d->fd);
3849 if (d->devname)
3850 free(d->devname);
3851 if (d->e)
3852 free(d->e);
3853 free(d);
3854
3855 }
3856
3857 static void free_imsm_disks(struct intel_super *super)
3858 {
3859 struct dl *d;
3860
3861 while (super->disks) {
3862 d = super->disks;
3863 super->disks = d->next;
3864 __free_imsm_disk(d);
3865 }
3866 while (super->disk_mgmt_list) {
3867 d = super->disk_mgmt_list;
3868 super->disk_mgmt_list = d->next;
3869 __free_imsm_disk(d);
3870 }
3871 while (super->missing) {
3872 d = super->missing;
3873 super->missing = d->next;
3874 __free_imsm_disk(d);
3875 }
3876
3877 }
3878
3879 /* free all the pieces hanging off of a super pointer */
3880 static void __free_imsm(struct intel_super *super, int free_disks)
3881 {
3882 struct intel_hba *elem, *next;
3883
3884 if (super->buf) {
3885 free(super->buf);
3886 super->buf = NULL;
3887 }
3888 /* unlink capability description */
3889 super->orom = NULL;
3890 if (super->migr_rec_buf) {
3891 free(super->migr_rec_buf);
3892 super->migr_rec_buf = NULL;
3893 }
3894 if (free_disks)
3895 free_imsm_disks(super);
3896 free_devlist(super);
3897 elem = super->hba;
3898 while (elem) {
3899 if (elem->path)
3900 free((void *)elem->path);
3901 next = elem->next;
3902 free(elem);
3903 elem = next;
3904 }
3905 super->hba = NULL;
3906 }
3907
3908 static void free_imsm(struct intel_super *super)
3909 {
3910 __free_imsm(super, 1);
3911 free(super);
3912 }
3913
3914 static void free_super_imsm(struct supertype *st)
3915 {
3916 struct intel_super *super = st->sb;
3917
3918 if (!super)
3919 return;
3920
3921 free_imsm(super);
3922 st->sb = NULL;
3923 }
3924
3925 static struct intel_super *alloc_super(void)
3926 {
3927 struct intel_super *super = xcalloc(1, sizeof(*super));
3928
3929 super->current_vol = -1;
3930 super->create_offset = ~((unsigned long long) 0);
3931 return super;
3932 }
3933
3934 /*
3935 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3936 */
3937 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3938 {
3939 struct sys_dev *hba_name;
3940 int rv = 0;
3941
3942 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3943 super->orom = NULL;
3944 super->hba = NULL;
3945 return 0;
3946 }
3947 hba_name = find_disk_attached_hba(fd, NULL);
3948 if (!hba_name) {
3949 if (devname)
3950 pr_err("%s is not attached to Intel(R) RAID controller.\n",
3951 devname);
3952 return 1;
3953 }
3954 rv = attach_hba_to_super(super, hba_name);
3955 if (rv == 2) {
3956 if (devname) {
3957 struct intel_hba *hba = super->hba;
3958
3959 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
3960 " but the container is assigned to Intel(R) %s %s (",
3961 devname,
3962 get_sys_dev_type(hba_name->type),
3963 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
3964 hba_name->pci_id ? : "Err!",
3965 get_sys_dev_type(super->hba->type),
3966 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
3967
3968 while (hba) {
3969 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3970 if (hba->next)
3971 fprintf(stderr, ", ");
3972 hba = hba->next;
3973 }
3974 fprintf(stderr, ").\n"
3975 " Mixing devices attached to different %s is not allowed.\n",
3976 hba_name->type == SYS_DEV_VMD ? "VMD domains" : "controllers");
3977 }
3978 return 2;
3979 }
3980 super->orom = find_imsm_capability(hba_name);
3981 if (!super->orom)
3982 return 3;
3983
3984 return 0;
3985 }
3986
3987 /* find_missing - helper routine for load_super_imsm_all that identifies
3988 * disks that have disappeared from the system. This routine relies on
3989 * the mpb being uptodate, which it is at load time.
3990 */
3991 static int find_missing(struct intel_super *super)
3992 {
3993 int i;
3994 struct imsm_super *mpb = super->anchor;
3995 struct dl *dl;
3996 struct imsm_disk *disk;
3997
3998 for (i = 0; i < mpb->num_disks; i++) {
3999 disk = __get_imsm_disk(mpb, i);
4000 dl = serial_to_dl(disk->serial, super);
4001 if (dl)
4002 continue;
4003
4004 dl = xmalloc(sizeof(*dl));
4005 dl->major = 0;
4006 dl->minor = 0;
4007 dl->fd = -1;
4008 dl->devname = xstrdup("missing");
4009 dl->index = i;
4010 serialcpy(dl->serial, disk->serial);
4011 dl->disk = *disk;
4012 dl->e = NULL;
4013 dl->next = super->missing;
4014 super->missing = dl;
4015 }
4016
4017 return 0;
4018 }
4019
4020 #ifndef MDASSEMBLE
4021 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4022 {
4023 struct intel_disk *idisk = disk_list;
4024
4025 while (idisk) {
4026 if (serialcmp(idisk->disk.serial, serial) == 0)
4027 break;
4028 idisk = idisk->next;
4029 }
4030
4031 return idisk;
4032 }
4033
4034 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4035 struct intel_super *super,
4036 struct intel_disk **disk_list)
4037 {
4038 struct imsm_disk *d = &super->disks->disk;
4039 struct imsm_super *mpb = super->anchor;
4040 int i, j;
4041
4042 for (i = 0; i < tbl_size; i++) {
4043 struct imsm_super *tbl_mpb = table[i]->anchor;
4044 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4045
4046 if (tbl_mpb->family_num == mpb->family_num) {
4047 if (tbl_mpb->check_sum == mpb->check_sum) {
4048 dprintf("mpb from %d:%d matches %d:%d\n",
4049 super->disks->major,
4050 super->disks->minor,
4051 table[i]->disks->major,
4052 table[i]->disks->minor);
4053 break;
4054 }
4055
4056 if (((is_configured(d) && !is_configured(tbl_d)) ||
4057 is_configured(d) == is_configured(tbl_d)) &&
4058 tbl_mpb->generation_num < mpb->generation_num) {
4059 /* current version of the mpb is a
4060 * better candidate than the one in
4061 * super_table, but copy over "cross
4062 * generational" status
4063 */
4064 struct intel_disk *idisk;
4065
4066 dprintf("mpb from %d:%d replaces %d:%d\n",
4067 super->disks->major,
4068 super->disks->minor,
4069 table[i]->disks->major,
4070 table[i]->disks->minor);
4071
4072 idisk = disk_list_get(tbl_d->serial, *disk_list);
4073 if (idisk && is_failed(&idisk->disk))
4074 tbl_d->status |= FAILED_DISK;
4075 break;
4076 } else {
4077 struct intel_disk *idisk;
4078 struct imsm_disk *disk;
4079
4080 /* tbl_mpb is more up to date, but copy
4081 * over cross generational status before
4082 * returning
4083 */
4084 disk = __serial_to_disk(d->serial, mpb, NULL);
4085 if (disk && is_failed(disk))
4086 d->status |= FAILED_DISK;
4087
4088 idisk = disk_list_get(d->serial, *disk_list);
4089 if (idisk) {
4090 idisk->owner = i;
4091 if (disk && is_configured(disk))
4092 idisk->disk.status |= CONFIGURED_DISK;
4093 }
4094
4095 dprintf("mpb from %d:%d prefer %d:%d\n",
4096 super->disks->major,
4097 super->disks->minor,
4098 table[i]->disks->major,
4099 table[i]->disks->minor);
4100
4101 return tbl_size;
4102 }
4103 }
4104 }
4105
4106 if (i >= tbl_size)
4107 table[tbl_size++] = super;
4108 else
4109 table[i] = super;
4110
4111 /* update/extend the merged list of imsm_disk records */
4112 for (j = 0; j < mpb->num_disks; j++) {
4113 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4114 struct intel_disk *idisk;
4115
4116 idisk = disk_list_get(disk->serial, *disk_list);
4117 if (idisk) {
4118 idisk->disk.status |= disk->status;
4119 if (is_configured(&idisk->disk) ||
4120 is_failed(&idisk->disk))
4121 idisk->disk.status &= ~(SPARE_DISK);
4122 } else {
4123 idisk = xcalloc(1, sizeof(*idisk));
4124 idisk->owner = IMSM_UNKNOWN_OWNER;
4125 idisk->disk = *disk;
4126 idisk->next = *disk_list;
4127 *disk_list = idisk;
4128 }
4129
4130 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4131 idisk->owner = i;
4132 }
4133
4134 return tbl_size;
4135 }
4136
4137 static struct intel_super *
4138 validate_members(struct intel_super *super, struct intel_disk *disk_list,
4139 const int owner)
4140 {
4141 struct imsm_super *mpb = super->anchor;
4142 int ok_count = 0;
4143 int i;
4144
4145 for (i = 0; i < mpb->num_disks; i++) {
4146 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4147 struct intel_disk *idisk;
4148
4149 idisk = disk_list_get(disk->serial, disk_list);
4150 if (idisk) {
4151 if (idisk->owner == owner ||
4152 idisk->owner == IMSM_UNKNOWN_OWNER)
4153 ok_count++;
4154 else
4155 dprintf("'%.16s' owner %d != %d\n",
4156 disk->serial, idisk->owner,
4157 owner);
4158 } else {
4159 dprintf("unknown disk %x [%d]: %.16s\n",
4160 __le32_to_cpu(mpb->family_num), i,
4161 disk->serial);
4162 break;
4163 }
4164 }
4165
4166 if (ok_count == mpb->num_disks)
4167 return super;
4168 return NULL;
4169 }
4170
4171 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4172 {
4173 struct intel_super *s;
4174
4175 for (s = super_list; s; s = s->next) {
4176 if (family_num != s->anchor->family_num)
4177 continue;
4178 pr_err("Conflict, offlining family %#x on '%s'\n",
4179 __le32_to_cpu(family_num), s->disks->devname);
4180 }
4181 }
4182
4183 static struct intel_super *
4184 imsm_thunderdome(struct intel_super **super_list, int len)
4185 {
4186 struct intel_super *super_table[len];
4187 struct intel_disk *disk_list = NULL;
4188 struct intel_super *champion, *spare;
4189 struct intel_super *s, **del;
4190 int tbl_size = 0;
4191 int conflict;
4192 int i;
4193
4194 memset(super_table, 0, sizeof(super_table));
4195 for (s = *super_list; s; s = s->next)
4196 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4197
4198 for (i = 0; i < tbl_size; i++) {
4199 struct imsm_disk *d;
4200 struct intel_disk *idisk;
4201 struct imsm_super *mpb = super_table[i]->anchor;
4202
4203 s = super_table[i];
4204 d = &s->disks->disk;
4205
4206 /* 'd' must appear in merged disk list for its
4207 * configuration to be valid
4208 */
4209 idisk = disk_list_get(d->serial, disk_list);
4210 if (idisk && idisk->owner == i)
4211 s = validate_members(s, disk_list, i);
4212 else
4213 s = NULL;
4214
4215 if (!s)
4216 dprintf("marking family: %#x from %d:%d offline\n",
4217 mpb->family_num,
4218 super_table[i]->disks->major,
4219 super_table[i]->disks->minor);
4220 super_table[i] = s;
4221 }
4222
4223 /* This is where the mdadm implementation differs from the Windows
4224 * driver which has no strict concept of a container. We can only
4225 * assemble one family from a container, so when returning a prodigal
4226 * array member to this system the code will not be able to disambiguate
4227 * the container contents that should be assembled ("foreign" versus
4228 * "local"). It requires user intervention to set the orig_family_num
4229 * to a new value to establish a new container. The Windows driver in
4230 * this situation fixes up the volume name in place and manages the
4231 * foreign array as an independent entity.
4232 */
4233 s = NULL;
4234 spare = NULL;
4235 conflict = 0;
4236 for (i = 0; i < tbl_size; i++) {
4237 struct intel_super *tbl_ent = super_table[i];
4238 int is_spare = 0;
4239
4240 if (!tbl_ent)
4241 continue;
4242
4243 if (tbl_ent->anchor->num_raid_devs == 0) {
4244 spare = tbl_ent;
4245 is_spare = 1;
4246 }
4247
4248 if (s && !is_spare) {
4249 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4250 conflict++;
4251 } else if (!s && !is_spare)
4252 s = tbl_ent;
4253 }
4254
4255 if (!s)
4256 s = spare;
4257 if (!s) {
4258 champion = NULL;
4259 goto out;
4260 }
4261 champion = s;
4262
4263 if (conflict)
4264 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
4265 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4266
4267 /* collect all dl's onto 'champion', and update them to
4268 * champion's version of the status
4269 */
4270 for (s = *super_list; s; s = s->next) {
4271 struct imsm_super *mpb = champion->anchor;
4272 struct dl *dl = s->disks;
4273
4274 if (s == champion)
4275 continue;
4276
4277 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4278
4279 for (i = 0; i < mpb->num_disks; i++) {
4280 struct imsm_disk *disk;
4281
4282 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4283 if (disk) {
4284 dl->disk = *disk;
4285 /* only set index on disks that are a member of
4286 * a populated contianer, i.e. one with
4287 * raid_devs
4288 */
4289 if (is_failed(&dl->disk))
4290 dl->index = -2;
4291 else if (is_spare(&dl->disk))
4292 dl->index = -1;
4293 break;
4294 }
4295 }
4296
4297 if (i >= mpb->num_disks) {
4298 struct intel_disk *idisk;
4299
4300 idisk = disk_list_get(dl->serial, disk_list);
4301 if (idisk && is_spare(&idisk->disk) &&
4302 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4303 dl->index = -1;
4304 else {
4305 dl->index = -2;
4306 continue;
4307 }
4308 }
4309
4310 dl->next = champion->disks;
4311 champion->disks = dl;
4312 s->disks = NULL;
4313 }
4314
4315 /* delete 'champion' from super_list */
4316 for (del = super_list; *del; ) {
4317 if (*del == champion) {
4318 *del = (*del)->next;
4319 break;
4320 } else
4321 del = &(*del)->next;
4322 }
4323 champion->next = NULL;
4324
4325 out:
4326 while (disk_list) {
4327 struct intel_disk *idisk = disk_list;
4328
4329 disk_list = disk_list->next;
4330 free(idisk);
4331 }
4332
4333 return champion;
4334 }
4335
4336 static int
4337 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4338 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4339 int major, int minor, int keep_fd);
4340 static int
4341 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4342 int *max, int keep_fd);
4343
4344 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4345 char *devname, struct md_list *devlist,
4346 int keep_fd)
4347 {
4348 struct intel_super *super_list = NULL;
4349 struct intel_super *super = NULL;
4350 int err = 0;
4351 int i = 0;
4352
4353 if (fd >= 0)
4354 /* 'fd' is an opened container */
4355 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4356 else
4357 /* get super block from devlist devices */
4358 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4359 if (err)
4360 goto error;
4361 /* all mpbs enter, maybe one leaves */
4362 super = imsm_thunderdome(&super_list, i);
4363 if (!super) {
4364 err = 1;
4365 goto error;
4366 }
4367
4368 if (find_missing(super) != 0) {
4369 free_imsm(super);
4370 err = 2;
4371 goto error;
4372 }
4373
4374 /* load migration record */
4375 err = load_imsm_migr_rec(super, NULL);
4376 if (err == -1) {
4377 /* migration is in progress,
4378 * but migr_rec cannot be loaded,
4379 */
4380 err = 4;
4381 goto error;
4382 }
4383
4384 /* Check migration compatibility */
4385 if ((err == 0) && (check_mpb_migr_compatibility(super) != 0)) {
4386 pr_err("Unsupported migration detected");
4387 if (devname)
4388 fprintf(stderr, " on %s\n", devname);
4389 else
4390 fprintf(stderr, " (IMSM).\n");
4391
4392 err = 5;
4393 goto error;
4394 }
4395
4396 err = 0;
4397
4398 error:
4399 while (super_list) {
4400 struct intel_super *s = super_list;
4401
4402 super_list = super_list->next;
4403 free_imsm(s);
4404 }
4405
4406 if (err)
4407 return err;
4408
4409 *sbp = super;
4410 if (fd >= 0)
4411 strcpy(st->container_devnm, fd2devnm(fd));
4412 else
4413 st->container_devnm[0] = 0;
4414 if (err == 0 && st->ss == NULL) {
4415 st->ss = &super_imsm;
4416 st->minor_version = 0;
4417 st->max_devs = IMSM_MAX_DEVICES;
4418 }
4419 return 0;
4420 }
4421
4422 static int
4423 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4424 int *max, int keep_fd)
4425 {
4426 struct md_list *tmpdev;
4427 int err = 0;
4428 int i = 0;
4429
4430 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4431 if (tmpdev->used != 1)
4432 continue;
4433 if (tmpdev->container == 1) {
4434 int lmax = 0;
4435 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4436 if (fd < 0) {
4437 pr_err("cannot open device %s: %s\n",
4438 tmpdev->devname, strerror(errno));
4439 err = 8;
4440 goto error;
4441 }
4442 err = get_sra_super_block(fd, super_list,
4443 tmpdev->devname, &lmax,
4444 keep_fd);
4445 i += lmax;
4446 close(fd);
4447 if (err) {
4448 err = 7;
4449 goto error;
4450 }
4451 } else {
4452 int major = major(tmpdev->st_rdev);
4453 int minor = minor(tmpdev->st_rdev);
4454 err = get_super_block(super_list,
4455 NULL,
4456 tmpdev->devname,
4457 major, minor,
4458 keep_fd);
4459 i++;
4460 if (err) {
4461 err = 6;
4462 goto error;
4463 }
4464 }
4465 }
4466 error:
4467 *max = i;
4468 return err;
4469 }
4470
4471 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4472 int major, int minor, int keep_fd)
4473 {
4474 struct intel_super*s = NULL;
4475 char nm[32];
4476 int dfd = -1;
4477 int err = 0;
4478 int retry;
4479
4480 s = alloc_super();
4481 if (!s) {
4482 err = 1;
4483 goto error;
4484 }
4485
4486 sprintf(nm, "%d:%d", major, minor);
4487 dfd = dev_open(nm, O_RDWR);
4488 if (dfd < 0) {
4489 err = 2;
4490 goto error;
4491 }
4492
4493 find_intel_hba_capability(dfd, s, devname);
4494 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4495
4496 /* retry the load if we might have raced against mdmon */
4497 if (err == 3 && devnm && mdmon_running(devnm))
4498 for (retry = 0; retry < 3; retry++) {
4499 usleep(3000);
4500 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4501 if (err != 3)
4502 break;
4503 }
4504 error:
4505 if (!err) {
4506 s->next = *super_list;
4507 *super_list = s;
4508 } else {
4509 if (s)
4510 free(s);
4511 if (dfd >= 0)
4512 close(dfd);
4513 }
4514 if ((dfd >= 0) && (!keep_fd))
4515 close(dfd);
4516 return err;
4517
4518 }
4519
4520 static int
4521 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4522 {
4523 struct mdinfo *sra;
4524 char *devnm;
4525 struct mdinfo *sd;
4526 int err = 0;
4527 int i = 0;
4528 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4529 if (!sra)
4530 return 1;
4531
4532 if (sra->array.major_version != -1 ||
4533 sra->array.minor_version != -2 ||
4534 strcmp(sra->text_version, "imsm") != 0) {
4535 err = 1;
4536 goto error;
4537 }
4538 /* load all mpbs */
4539 devnm = fd2devnm(fd);
4540 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4541 if (get_super_block(super_list, devnm, devname,
4542 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4543 err = 7;
4544 goto error;
4545 }
4546 }
4547 error:
4548 sysfs_free(sra);
4549 *max = i;
4550 return err;
4551 }
4552
4553 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4554 {
4555 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
4556 }
4557 #endif
4558
4559 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4560 {
4561 struct intel_super *super;
4562 int rv;
4563 int retry;
4564
4565 if (test_partition(fd))
4566 /* IMSM not allowed on partitions */
4567 return 1;
4568
4569 free_super_imsm(st);
4570
4571 super = alloc_super();
4572 /* Load hba and capabilities if they exist.
4573 * But do not preclude loading metadata in case capabilities or hba are
4574 * non-compliant and ignore_hw_compat is set.
4575 */
4576 rv = find_intel_hba_capability(fd, super, devname);
4577 /* no orom/efi or non-intel hba of the disk */
4578 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4579 if (devname)
4580 pr_err("No OROM/EFI properties for %s\n", devname);
4581 free_imsm(super);
4582 return 2;
4583 }
4584 rv = load_and_parse_mpb(fd, super, devname, 0);
4585
4586 /* retry the load if we might have raced against mdmon */
4587 if (rv == 3) {
4588 struct mdstat_ent *mdstat = mdstat_by_component(fd2devnm(fd));
4589
4590 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
4591 for (retry = 0; retry < 3; retry++) {
4592 usleep(3000);
4593 rv = load_and_parse_mpb(fd, super, devname, 0);
4594 if (rv != 3)
4595 break;
4596 }
4597 }
4598
4599 free_mdstat(mdstat);
4600 }
4601
4602 if (rv) {
4603 if (devname)
4604 pr_err("Failed to load all information sections on %s\n", devname);
4605 free_imsm(super);
4606 return rv;
4607 }
4608
4609 st->sb = super;
4610 if (st->ss == NULL) {
4611 st->ss = &super_imsm;
4612 st->minor_version = 0;
4613 st->max_devs = IMSM_MAX_DEVICES;
4614 }
4615
4616 /* load migration record */
4617 if (load_imsm_migr_rec(super, NULL) == 0) {
4618 /* Check for unsupported migration features */
4619 if (check_mpb_migr_compatibility(super) != 0) {
4620 pr_err("Unsupported migration detected");
4621 if (devname)
4622 fprintf(stderr, " on %s\n", devname);
4623 else
4624 fprintf(stderr, " (IMSM).\n");
4625 return 3;
4626 }
4627 }
4628
4629 return 0;
4630 }
4631
4632 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4633 {
4634 if (info->level == 1)
4635 return 128;
4636 return info->chunk_size >> 9;
4637 }
4638
4639 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
4640 unsigned long long size)
4641 {
4642 if (info->level == 1)
4643 return size * 2;
4644 else
4645 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4646 }
4647
4648 static void imsm_update_version_info(struct intel_super *super)
4649 {
4650 /* update the version and attributes */
4651 struct imsm_super *mpb = super->anchor;
4652 char *version;
4653 struct imsm_dev *dev;
4654 struct imsm_map *map;
4655 int i;
4656
4657 for (i = 0; i < mpb->num_raid_devs; i++) {
4658 dev = get_imsm_dev(super, i);
4659 map = get_imsm_map(dev, MAP_0);
4660 if (__le32_to_cpu(dev->size_high) > 0)
4661 mpb->attributes |= MPB_ATTRIB_2TB;
4662
4663 /* FIXME detect when an array spans a port multiplier */
4664 #if 0
4665 mpb->attributes |= MPB_ATTRIB_PM;
4666 #endif
4667
4668 if (mpb->num_raid_devs > 1 ||
4669 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4670 version = MPB_VERSION_ATTRIBS;
4671 switch (get_imsm_raid_level(map)) {
4672 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4673 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4674 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4675 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4676 }
4677 } else {
4678 if (map->num_members >= 5)
4679 version = MPB_VERSION_5OR6_DISK_ARRAY;
4680 else if (dev->status == DEV_CLONE_N_GO)
4681 version = MPB_VERSION_CNG;
4682 else if (get_imsm_raid_level(map) == 5)
4683 version = MPB_VERSION_RAID5;
4684 else if (map->num_members >= 3)
4685 version = MPB_VERSION_3OR4_DISK_ARRAY;
4686 else if (get_imsm_raid_level(map) == 1)
4687 version = MPB_VERSION_RAID1;
4688 else
4689 version = MPB_VERSION_RAID0;
4690 }
4691 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4692 }
4693 }
4694
4695 static int check_name(struct intel_super *super, char *name, int quiet)
4696 {
4697 struct imsm_super *mpb = super->anchor;
4698 char *reason = NULL;
4699 int i;
4700
4701 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4702 reason = "must be 16 characters or less";
4703
4704 for (i = 0; i < mpb->num_raid_devs; i++) {
4705 struct imsm_dev *dev = get_imsm_dev(super, i);
4706
4707 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4708 reason = "already exists";
4709 break;
4710 }
4711 }
4712
4713 if (reason && !quiet)
4714 pr_err("imsm volume name %s\n", reason);
4715
4716 return !reason;
4717 }
4718
4719 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4720 unsigned long long size, char *name,
4721 char *homehost, int *uuid,
4722 long long data_offset)
4723 {
4724 /* We are creating a volume inside a pre-existing container.
4725 * so st->sb is already set.
4726 */
4727 struct intel_super *super = st->sb;
4728 struct imsm_super *mpb = super->anchor;
4729 struct intel_dev *dv;
4730 struct imsm_dev *dev;
4731 struct imsm_vol *vol;
4732 struct imsm_map *map;
4733 int idx = mpb->num_raid_devs;
4734 int i;
4735 unsigned long long array_blocks;
4736 size_t size_old, size_new;
4737 unsigned long long num_data_stripes;
4738
4739 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4740 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
4741 return 0;
4742 }
4743
4744 /* ensure the mpb is large enough for the new data */
4745 size_old = __le32_to_cpu(mpb->mpb_size);
4746 size_new = disks_to_mpb_size(info->nr_disks);
4747 if (size_new > size_old) {
4748 void *mpb_new;
4749 size_t size_round = ROUND_UP(size_new, 512);
4750
4751 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4752 pr_err("could not allocate new mpb\n");
4753 return 0;
4754 }
4755 if (posix_memalign(&super->migr_rec_buf, 512,
4756 MIGR_REC_BUF_SIZE) != 0) {
4757 pr_err("could not allocate migr_rec buffer\n");
4758 free(super->buf);
4759 free(super);
4760 free(mpb_new);
4761 return 0;
4762 }
4763 memcpy(mpb_new, mpb, size_old);
4764 free(mpb);
4765 mpb = mpb_new;
4766 super->anchor = mpb_new;
4767 mpb->mpb_size = __cpu_to_le32(size_new);
4768 memset(mpb_new + size_old, 0, size_round - size_old);
4769 }
4770 super->current_vol = idx;
4771
4772 /* handle 'failed_disks' by either:
4773 * a) create dummy disk entries in the table if this the first
4774 * volume in the array. We add them here as this is the only
4775 * opportunity to add them. add_to_super_imsm_volume()
4776 * handles the non-failed disks and continues incrementing
4777 * mpb->num_disks.
4778 * b) validate that 'failed_disks' matches the current number
4779 * of missing disks if the container is populated
4780 */
4781 if (super->current_vol == 0) {
4782 mpb->num_disks = 0;
4783 for (i = 0; i < info->failed_disks; i++) {
4784 struct imsm_disk *disk;
4785
4786 mpb->num_disks++;
4787 disk = __get_imsm_disk(mpb, i);
4788 disk->status = CONFIGURED_DISK | FAILED_DISK;
4789 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4790 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4791 "missing:%d", i);
4792 }
4793 find_missing(super);
4794 } else {
4795 int missing = 0;
4796 struct dl *d;
4797
4798 for (d = super->missing; d; d = d->next)
4799 missing++;
4800 if (info->failed_disks > missing) {
4801 pr_err("unable to add 'missing' disk to container\n");
4802 return 0;
4803 }
4804 }
4805
4806 if (!check_name(super, name, 0))
4807 return 0;
4808 dv = xmalloc(sizeof(*dv));
4809 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4810 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4811 array_blocks = calc_array_size(info->level, info->raid_disks,
4812 info->layout, info->chunk_size,
4813 size * 2);
4814 /* round array size down to closest MB */
4815 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4816
4817 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4818 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4819 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4820 vol = &dev->vol;
4821 vol->migr_state = 0;
4822 set_migr_type(dev, MIGR_INIT);
4823 vol->dirty = !info->state;
4824 vol->curr_migr_unit = 0;
4825 map = get_imsm_map(dev, MAP_0);
4826 set_pba_of_lba0(map, super->create_offset);
4827 set_blocks_per_member(map, info_to_blocks_per_member(info, size));
4828 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4829 map->failed_disk_num = ~0;
4830 if (info->level > 0)
4831 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
4832 : IMSM_T_STATE_UNINITIALIZED);
4833 else
4834 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4835 IMSM_T_STATE_NORMAL;
4836 map->ddf = 1;
4837
4838 if (info->level == 1 && info->raid_disks > 2) {
4839 free(dev);
4840 free(dv);
4841 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
4842 return 0;
4843 }
4844
4845 map->raid_level = info->level;
4846 if (info->level == 10) {
4847 map->raid_level = 1;
4848 map->num_domains = info->raid_disks / 2;
4849 } else if (info->level == 1)
4850 map->num_domains = info->raid_disks;
4851 else
4852 map->num_domains = 1;
4853
4854 /* info->size is only int so use the 'size' parameter instead */
4855 num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
4856 num_data_stripes /= map->num_domains;
4857 set_num_data_stripes(map, num_data_stripes);
4858
4859 map->num_members = info->raid_disks;
4860 for (i = 0; i < map->num_members; i++) {
4861 /* initialized in add_to_super */
4862 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4863 }
4864 mpb->num_raid_devs++;
4865
4866 dv->dev = dev;
4867 dv->index = super->current_vol;
4868 dv->next = super->devlist;
4869 super->devlist = dv;
4870
4871 imsm_update_version_info(super);
4872
4873 return 1;
4874 }
4875
4876 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4877 unsigned long long size, char *name,
4878 char *homehost, int *uuid,
4879 unsigned long long data_offset)
4880 {
4881 /* This is primarily called by Create when creating a new array.
4882 * We will then get add_to_super called for each component, and then
4883 * write_init_super called to write it out to each device.
4884 * For IMSM, Create can create on fresh devices or on a pre-existing
4885 * array.
4886 * To create on a pre-existing array a different method will be called.
4887 * This one is just for fresh drives.
4888 */
4889 struct intel_super *super;
4890 struct imsm_super *mpb;
4891 size_t mpb_size;
4892 char *version;
4893
4894 if (data_offset != INVALID_SECTORS) {
4895 pr_err("data-offset not supported by imsm\n");
4896 return 0;
4897 }
4898
4899 if (st->sb)
4900 return init_super_imsm_volume(st, info, size, name, homehost, uuid,
4901 data_offset);
4902
4903 if (info)
4904 mpb_size = disks_to_mpb_size(info->nr_disks);
4905 else
4906 mpb_size = 512;
4907
4908 super = alloc_super();
4909 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4910 free(super);
4911 super = NULL;
4912 }
4913 if (!super) {
4914 pr_err("could not allocate superblock\n");
4915 return 0;
4916 }
4917 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
4918 pr_err("could not allocate migr_rec buffer\n");
4919 free(super->buf);
4920 free(super);
4921 return 0;
4922 }
4923 memset(super->buf, 0, mpb_size);
4924 mpb = super->buf;
4925 mpb->mpb_size = __cpu_to_le32(mpb_size);
4926 st->sb = super;
4927
4928 if (info == NULL) {
4929 /* zeroing superblock */
4930 return 0;
4931 }
4932
4933 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4934
4935 version = (char *) mpb->sig;
4936 strcpy(version, MPB_SIGNATURE);
4937 version += strlen(MPB_SIGNATURE);
4938 strcpy(version, MPB_VERSION_RAID0);
4939
4940 return 1;
4941 }
4942
4943 #ifndef MDASSEMBLE
4944 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4945 int fd, char *devname)
4946 {
4947 struct intel_super *super = st->sb;
4948 struct imsm_super *mpb = super->anchor;
4949 struct imsm_disk *_disk;
4950 struct imsm_dev *dev;
4951 struct imsm_map *map;
4952 struct dl *dl, *df;
4953 int slot;
4954
4955 dev = get_imsm_dev(super, super->current_vol);
4956 map = get_imsm_map(dev, MAP_0);
4957
4958 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4959 pr_err("%s: Cannot add spare devices to IMSM volume\n",
4960 devname);
4961 return 1;
4962 }
4963
4964 if (fd == -1) {
4965 /* we're doing autolayout so grab the pre-marked (in
4966 * validate_geometry) raid_disk
4967 */
4968 for (dl = super->disks; dl; dl = dl->next)
4969 if (dl->raiddisk == dk->raid_disk)
4970 break;
4971 } else {
4972 for (dl = super->disks; dl ; dl = dl->next)
4973 if (dl->major == dk->major &&
4974 dl->minor == dk->minor)
4975 break;
4976 }
4977
4978 if (!dl) {
4979 pr_err("%s is not a member of the same container\n", devname);
4980 return 1;
4981 }
4982
4983 /* add a pristine spare to the metadata */
4984 if (dl->index < 0) {
4985 dl->index = super->anchor->num_disks;
4986 super->anchor->num_disks++;
4987 }
4988 /* Check the device has not already been added */
4989 slot = get_imsm_disk_slot(map, dl->index);
4990 if (slot >= 0 &&
4991 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
4992 pr_err("%s has been included in this array twice\n",
4993 devname);
4994 return 1;
4995 }
4996 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4997 dl->disk.status = CONFIGURED_DISK;
4998
4999 /* update size of 'missing' disks to be at least as large as the
5000 * largest acitve member (we only have dummy missing disks when
5001 * creating the first volume)
5002 */
5003 if (super->current_vol == 0) {
5004 for (df = super->missing; df; df = df->next) {
5005 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5006 set_total_blocks(&df->disk, total_blocks(&dl->disk));
5007 _disk = __get_imsm_disk(mpb, df->index);
5008 *_disk = df->disk;
5009 }
5010 }
5011
5012 /* refresh unset/failed slots to point to valid 'missing' entries */
5013 for (df = super->missing; df; df = df->next)
5014 for (slot = 0; slot < mpb->num_disks; slot++) {
5015 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5016
5017 if ((ord & IMSM_ORD_REBUILD) == 0)
5018 continue;
5019 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
5020 if (is_gen_migration(dev)) {
5021 struct imsm_map *map2 = get_imsm_map(dev,
5022 MAP_1);
5023 int slot2 = get_imsm_disk_slot(map2, df->index);
5024 if ((slot2 < map2->num_members) &&
5025 (slot2 >= 0)) {
5026 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
5027 slot2,
5028 MAP_1);
5029 if ((unsigned)df->index ==
5030 ord_to_idx(ord2))
5031 set_imsm_ord_tbl_ent(map2,
5032 slot2,
5033 df->index |
5034 IMSM_ORD_REBUILD);
5035 }
5036 }
5037 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5038 break;
5039 }
5040
5041 /* if we are creating the first raid device update the family number */
5042 if (super->current_vol == 0) {
5043 __u32 sum;
5044 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
5045
5046 _disk = __get_imsm_disk(mpb, dl->index);
5047 if (!_dev || !_disk) {
5048 pr_err("BUG mpb setup error\n");
5049 return 1;
5050 }
5051 *_dev = *dev;
5052 *_disk = dl->disk;
5053 sum = random32();
5054 sum += __gen_imsm_checksum(mpb);
5055 mpb->family_num = __cpu_to_le32(sum);
5056 mpb->orig_family_num = mpb->family_num;
5057 }
5058 super->current_disk = dl;
5059 return 0;
5060 }
5061
5062 /* mark_spare()
5063 * Function marks disk as spare and restores disk serial
5064 * in case it was previously marked as failed by takeover operation
5065 * reruns:
5066 * -1 : critical error
5067 * 0 : disk is marked as spare but serial is not set
5068 * 1 : success
5069 */
5070 int mark_spare(struct dl *disk)
5071 {
5072 __u8 serial[MAX_RAID_SERIAL_LEN];
5073 int ret_val = -1;
5074
5075 if (!disk)
5076 return ret_val;
5077
5078 ret_val = 0;
5079 if (!imsm_read_serial(disk->fd, NULL, serial)) {
5080 /* Restore disk serial number, because takeover marks disk
5081 * as failed and adds to serial ':0' before it becomes
5082 * a spare disk.
5083 */
5084 serialcpy(disk->serial, serial);
5085 serialcpy(disk->disk.serial, serial);
5086 ret_val = 1;
5087 }
5088 disk->disk.status = SPARE_DISK;
5089 disk->index = -1;
5090
5091 return ret_val;
5092 }
5093
5094 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
5095 int fd, char *devname,
5096 unsigned long long data_offset)
5097 {
5098 struct intel_super *super = st->sb;
5099 struct dl *dd;
5100 unsigned long long size;
5101 __u32 id;
5102 int rv;
5103 struct stat stb;
5104
5105 /* If we are on an RAID enabled platform check that the disk is
5106 * attached to the raid controller.
5107 * We do not need to test disks attachment for container based additions,
5108 * they shall be already tested when container was created/assembled.
5109 */
5110 rv = find_intel_hba_capability(fd, super, devname);
5111 /* no orom/efi or non-intel hba of the disk */
5112 if (rv != 0) {
5113 dprintf("capability: %p fd: %d ret: %d\n",
5114 super->orom, fd, rv);
5115 return 1;
5116 }
5117
5118 if (super->current_vol >= 0)
5119 return add_to_super_imsm_volume(st, dk, fd, devname);
5120
5121 fstat(fd, &stb);
5122 dd = xcalloc(sizeof(*dd), 1);
5123 dd->major = major(stb.st_rdev);
5124 dd->minor = minor(stb.st_rdev);
5125 dd->devname = devname ? xstrdup(devname) : NULL;
5126 dd->fd = fd;
5127 dd->e = NULL;
5128 dd->action = DISK_ADD;
5129 rv = imsm_read_serial(fd, devname, dd->serial);
5130 if (rv) {
5131 pr_err("failed to retrieve scsi serial, aborting\n");
5132 free(dd);
5133 abort();
5134 }
5135
5136 get_dev_size(fd, NULL, &size);
5137 /* clear migr_rec when adding disk to container */
5138 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5139 if (lseek64(fd, size - MIGR_REC_POSITION, SEEK_SET) >= 0) {
5140 if (write(fd, super->migr_rec_buf,
5141 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5142 perror("Write migr_rec failed");
5143 }
5144
5145 size /= 512;
5146 serialcpy(dd->disk.serial, dd->serial);
5147 set_total_blocks(&dd->disk, size);
5148 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5149 struct imsm_super *mpb = super->anchor;
5150 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5151 }
5152 mark_spare(dd);
5153 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
5154 dd->disk.scsi_id = __cpu_to_le32(id);
5155 else
5156 dd->disk.scsi_id = __cpu_to_le32(0);
5157
5158 if (st->update_tail) {
5159 dd->next = super->disk_mgmt_list;
5160 super->disk_mgmt_list = dd;
5161 } else {
5162 dd->next = super->disks;
5163 super->disks = dd;
5164 super->updates_pending++;
5165 }
5166
5167 return 0;
5168 }
5169
5170 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5171 {
5172 struct intel_super *super = st->sb;
5173 struct dl *dd;
5174
5175 /* remove from super works only in mdmon - for communication
5176 * manager - monitor. Check if communication memory buffer
5177 * is prepared.
5178 */
5179 if (!st->update_tail) {
5180 pr_err("shall be used in mdmon context only\n");
5181 return 1;
5182 }
5183 dd = xcalloc(1, sizeof(*dd));
5184 dd->major = dk->major;
5185 dd->minor = dk->minor;
5186 dd->fd = -1;
5187 mark_spare(dd);
5188 dd->action = DISK_REMOVE;
5189
5190 dd->next = super->disk_mgmt_list;
5191 super->disk_mgmt_list = dd;
5192
5193 return 0;
5194 }
5195
5196 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5197
5198 static union {
5199 char buf[512];
5200 struct imsm_super anchor;
5201 } spare_record __attribute__ ((aligned(512)));
5202
5203 /* spare records have their own family number and do not have any defined raid
5204 * devices
5205 */
5206 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5207 {
5208 struct imsm_super *mpb = super->anchor;
5209 struct imsm_super *spare = &spare_record.anchor;
5210 __u32 sum;
5211 struct dl *d;
5212
5213 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5214 spare->generation_num = __cpu_to_le32(1UL);
5215 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5216 spare->num_disks = 1;
5217 spare->num_raid_devs = 0;
5218 spare->cache_size = mpb->cache_size;
5219 spare->pwr_cycle_count = __cpu_to_le32(1);
5220
5221 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5222 MPB_SIGNATURE MPB_VERSION_RAID0);
5223
5224 for (d = super->disks; d; d = d->next) {
5225 if (d->index != -1)
5226 continue;
5227
5228 spare->disk[0] = d->disk;
5229 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5230 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5231
5232 sum = __gen_imsm_checksum(spare);
5233 spare->family_num = __cpu_to_le32(sum);
5234 spare->orig_family_num = 0;
5235 sum = __gen_imsm_checksum(spare);
5236 spare->check_sum = __cpu_to_le32(sum);
5237
5238 if (store_imsm_mpb(d->fd, spare)) {
5239 pr_err("failed for device %d:%d %s\n",
5240 d->major, d->minor, strerror(errno));
5241 return 1;
5242 }
5243 if (doclose) {
5244 close(d->fd);
5245 d->fd = -1;
5246 }
5247 }
5248
5249 return 0;
5250 }
5251
5252 static int write_super_imsm(struct supertype *st, int doclose)
5253 {
5254 struct intel_super *super = st->sb;
5255 struct imsm_super *mpb = super->anchor;
5256 struct dl *d;
5257 __u32 generation;
5258 __u32 sum;
5259 int spares = 0;
5260 int i;
5261 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5262 int num_disks = 0;
5263 int clear_migration_record = 1;
5264
5265 /* 'generation' is incremented everytime the metadata is written */
5266 generation = __le32_to_cpu(mpb->generation_num);
5267 generation++;
5268 mpb->generation_num = __cpu_to_le32(generation);
5269
5270 /* fix up cases where previous mdadm releases failed to set
5271 * orig_family_num
5272 */
5273 if (mpb->orig_family_num == 0)
5274 mpb->orig_family_num = mpb->family_num;
5275
5276 for (d = super->disks; d; d = d->next) {
5277 if (d->index == -1)
5278 spares++;
5279 else {
5280 mpb->disk[d->index] = d->disk;
5281 num_disks++;
5282 }
5283 }
5284 for (d = super->missing; d; d = d->next) {
5285 mpb->disk[d->index] = d->disk;
5286 num_disks++;
5287 }
5288 mpb->num_disks = num_disks;
5289 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5290
5291 for (i = 0; i < mpb->num_raid_devs; i++) {
5292 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5293 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5294 if (dev && dev2) {
5295 imsm_copy_dev(dev, dev2);
5296 mpb_size += sizeof_imsm_dev(dev, 0);
5297 }
5298 if (is_gen_migration(dev2))
5299 clear_migration_record = 0;
5300 }
5301 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
5302 mpb->mpb_size = __cpu_to_le32(mpb_size);
5303
5304 /* recalculate checksum */
5305 sum = __gen_imsm_checksum(mpb);
5306 mpb->check_sum = __cpu_to_le32(sum);
5307
5308 if (super->clean_migration_record_by_mdmon) {
5309 clear_migration_record = 1;
5310 super->clean_migration_record_by_mdmon = 0;
5311 }
5312 if (clear_migration_record)
5313 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5314
5315 /* write the mpb for disks that compose raid devices */
5316 for (d = super->disks; d ; d = d->next) {
5317 if (d->index < 0 || is_failed(&d->disk))
5318 continue;
5319
5320 if (clear_migration_record) {
5321 unsigned long long dsize;
5322
5323 get_dev_size(d->fd, NULL, &dsize);
5324 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
5325 if (write(d->fd, super->migr_rec_buf,
5326 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5327 perror("Write migr_rec failed");
5328 }
5329 }
5330
5331 if (store_imsm_mpb(d->fd, mpb))
5332 fprintf(stderr,
5333 "failed for device %d:%d (fd: %d)%s\n",
5334 d->major, d->minor,
5335 d->fd, strerror(errno));
5336
5337 if (doclose) {
5338 close(d->fd);
5339 d->fd = -1;
5340 }
5341 }
5342
5343 if (spares)
5344 return write_super_imsm_spares(super, doclose);
5345
5346 return 0;
5347 }
5348
5349 static int create_array(struct supertype *st, int dev_idx)
5350 {
5351 size_t len;
5352 struct imsm_update_create_array *u;
5353 struct intel_super *super = st->sb;
5354 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
5355 struct imsm_map *map = get_imsm_map(dev, MAP_0);
5356 struct disk_info *inf;
5357 struct imsm_disk *disk;
5358 int i;
5359
5360 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5361 sizeof(*inf) * map->num_members;
5362 u = xmalloc(len);
5363 u->type = update_create_array;
5364 u->dev_idx = dev_idx;
5365 imsm_copy_dev(&u->dev, dev);
5366 inf = get_disk_info(u);
5367 for (i = 0; i < map->num_members; i++) {
5368 int idx = get_imsm_disk_idx(dev, i, MAP_X);
5369
5370 disk = get_imsm_disk(super, idx);
5371 if (!disk)
5372 disk = get_imsm_missing(super, idx);
5373 serialcpy(inf[i].serial, disk->serial);
5374 }
5375 append_metadata_update(st, u, len);
5376
5377 return 0;
5378 }
5379
5380 static int mgmt_disk(struct supertype *st)
5381 {
5382 struct intel_super *super = st->sb;
5383 size_t len;
5384 struct imsm_update_add_remove_disk *u;
5385
5386 if (!super->disk_mgmt_list)
5387 return 0;
5388
5389 len = sizeof(*u);
5390 u = xmalloc(len);
5391 u->type = update_add_remove_disk;
5392 append_metadata_update(st, u, len);
5393
5394 return 0;
5395 }
5396
5397 static int write_init_super_imsm(struct supertype *st)
5398 {
5399 struct intel_super *super = st->sb;
5400 int current_vol = super->current_vol;
5401
5402 /* we are done with current_vol reset it to point st at the container */
5403 super->current_vol = -1;
5404
5405 if (st->update_tail) {
5406 /* queue the recently created array / added disk
5407 * as a metadata update */
5408 int rv;
5409
5410 /* determine if we are creating a volume or adding a disk */
5411 if (current_vol < 0) {
5412 /* in the mgmt (add/remove) disk case we are running
5413 * in mdmon context, so don't close fd's
5414 */
5415 return mgmt_disk(st);
5416 } else
5417 rv = create_array(st, current_vol);
5418
5419 return rv;
5420 } else {
5421 struct dl *d;
5422 for (d = super->disks; d; d = d->next)
5423 Kill(d->devname, NULL, 0, -1, 1);
5424 return write_super_imsm(st, 1);
5425 }
5426 }
5427 #endif
5428
5429 static int store_super_imsm(struct supertype *st, int fd)
5430 {
5431 struct intel_super *super = st->sb;
5432 struct imsm_super *mpb = super ? super->anchor : NULL;
5433
5434 if (!mpb)
5435 return 1;
5436
5437 #ifndef MDASSEMBLE
5438 return store_imsm_mpb(fd, mpb);
5439 #else
5440 return 1;
5441 #endif
5442 }
5443
5444 static int imsm_bbm_log_size(struct imsm_super *mpb)
5445 {
5446 return __le32_to_cpu(mpb->bbm_log_size);
5447 }
5448
5449 #ifndef MDASSEMBLE
5450 static int validate_geometry_imsm_container(struct supertype *st, int level,
5451 int layout, int raiddisks, int chunk,
5452 unsigned long long size,
5453 unsigned long long data_offset,
5454 char *dev,
5455 unsigned long long *freesize,
5456 int verbose)
5457 {
5458 int fd;
5459 unsigned long long ldsize;
5460 struct intel_super *super=NULL;
5461 int rv = 0;
5462
5463 if (level != LEVEL_CONTAINER)
5464 return 0;
5465 if (!dev)
5466 return 1;
5467
5468 fd = open(dev, O_RDONLY|O_EXCL, 0);
5469 if (fd < 0) {
5470 if (verbose > 0)
5471 pr_err("imsm: Cannot open %s: %s\n",
5472 dev, strerror(errno));
5473 return 0;
5474 }
5475 if (!get_dev_size(fd, dev, &ldsize)) {
5476 close(fd);
5477 return 0;
5478 }
5479
5480 /* capabilities retrieve could be possible
5481 * note that there is no fd for the disks in array.
5482 */
5483 super = alloc_super();
5484 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
5485 if (rv != 0) {
5486 #if DEBUG
5487 char str[256];
5488 fd2devname(fd, str);
5489 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5490 fd, str, super->orom, rv, raiddisks);
5491 #endif
5492 /* no orom/efi or non-intel hba of the disk */
5493 close(fd);
5494 free_imsm(super);
5495 return 0;
5496 }
5497 close(fd);
5498 if (super->orom) {
5499 if (raiddisks > super->orom->tds) {
5500 if (verbose)
5501 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
5502 raiddisks, super->orom->tds);
5503 free_imsm(super);
5504 return 0;
5505 }
5506 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
5507 (ldsize >> 9) >> 32 > 0) {
5508 if (verbose)
5509 pr_err("%s exceeds maximum platform supported size\n", dev);
5510 free_imsm(super);
5511 return 0;
5512 }
5513 }
5514
5515 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
5516 free_imsm(super);
5517
5518 return 1;
5519 }
5520
5521 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5522 {
5523 const unsigned long long base_start = e[*idx].start;
5524 unsigned long long end = base_start + e[*idx].size;
5525 int i;
5526
5527 if (base_start == end)
5528 return 0;
5529
5530 *idx = *idx + 1;
5531 for (i = *idx; i < num_extents; i++) {
5532 /* extend overlapping extents */
5533 if (e[i].start >= base_start &&
5534 e[i].start <= end) {
5535 if (e[i].size == 0)
5536 return 0;
5537 if (e[i].start + e[i].size > end)
5538 end = e[i].start + e[i].size;
5539 } else if (e[i].start > end) {
5540 *idx = i;
5541 break;
5542 }
5543 }
5544
5545 return end - base_start;
5546 }
5547
5548 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5549 {
5550 /* build a composite disk with all known extents and generate a new
5551 * 'maxsize' given the "all disks in an array must share a common start
5552 * offset" constraint
5553 */
5554 struct extent *e = xcalloc(sum_extents, sizeof(*e));
5555 struct dl *dl;
5556 int i, j;
5557 int start_extent;
5558 unsigned long long pos;
5559 unsigned long long start = 0;
5560 unsigned long long maxsize;
5561 unsigned long reserve;
5562
5563 /* coalesce and sort all extents. also, check to see if we need to
5564 * reserve space between member arrays
5565 */
5566 j = 0;
5567 for (dl = super->disks; dl; dl = dl->next) {
5568 if (!dl->e)
5569 continue;
5570 for (i = 0; i < dl->extent_cnt; i++)
5571 e[j++] = dl->e[i];
5572 }
5573 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5574
5575 /* merge extents */
5576 i = 0;
5577 j = 0;
5578 while (i < sum_extents) {
5579 e[j].start = e[i].start;
5580 e[j].size = find_size(e, &i, sum_extents);
5581 j++;
5582 if (e[j-1].size == 0)
5583 break;
5584 }
5585
5586 pos = 0;
5587 maxsize = 0;
5588 start_extent = 0;
5589 i = 0;
5590 do {
5591 unsigned long long esize;
5592
5593 esize = e[i].start - pos;
5594 if (esize >= maxsize) {
5595 maxsize = esize;
5596 start = pos;
5597 start_extent = i;
5598 }
5599 pos = e[i].start + e[i].size;
5600 i++;
5601 } while (e[i-1].size);
5602 free(e);
5603
5604 if (maxsize == 0)
5605 return 0;
5606
5607 /* FIXME assumes volume at offset 0 is the first volume in a
5608 * container
5609 */
5610 if (start_extent > 0)
5611 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5612 else
5613 reserve = 0;
5614
5615 if (maxsize < reserve)
5616 return 0;
5617
5618 super->create_offset = ~((unsigned long long) 0);
5619 if (start + reserve > super->create_offset)
5620 return 0; /* start overflows create_offset */
5621 super->create_offset = start + reserve;
5622
5623 return maxsize - reserve;
5624 }
5625
5626 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5627 {
5628 if (level < 0 || level == 6 || level == 4)
5629 return 0;
5630
5631 /* if we have an orom prevent invalid raid levels */
5632 if (orom)
5633 switch (level) {
5634 case 0: return imsm_orom_has_raid0(orom);
5635 case 1:
5636 if (raiddisks > 2)
5637 return imsm_orom_has_raid1e(orom);
5638 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5639 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5640 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5641 }
5642 else
5643 return 1; /* not on an Intel RAID platform so anything goes */
5644
5645 return 0;
5646 }
5647
5648 static int
5649 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
5650 int dpa, int verbose)
5651 {
5652 struct mdstat_ent *mdstat = mdstat_read(0, 0);
5653 struct mdstat_ent *memb = NULL;
5654 int count = 0;
5655 int num = 0;
5656 struct md_list *dv = NULL;
5657 int found;
5658
5659 for (memb = mdstat ; memb ; memb = memb->next) {
5660 if (memb->metadata_version &&
5661 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
5662 (strcmp(&memb->metadata_version[9], name) == 0) &&
5663 !is_subarray(memb->metadata_version+9) &&
5664 memb->members) {
5665 struct dev_member *dev = memb->members;
5666 int fd = -1;
5667 while(dev && (fd < 0)) {
5668 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
5669 num = sprintf(path, "%s%s", "/dev/", dev->name);
5670 if (num > 0)
5671 fd = open(path, O_RDONLY, 0);
5672 if ((num <= 0) || (fd < 0)) {
5673 pr_vrb(": Cannot open %s: %s\n",
5674 dev->name, strerror(errno));
5675 }
5676 free(path);
5677 dev = dev->next;
5678 }
5679 found = 0;
5680 if ((fd >= 0) && disk_attached_to_hba(fd, hba)) {
5681 struct mdstat_ent *vol;
5682 for (vol = mdstat ; vol ; vol = vol->next) {
5683 if ((vol->active > 0) &&
5684 vol->metadata_version &&
5685 is_container_member(vol, memb->devnm)) {
5686 found++;
5687 count++;
5688 }
5689 }
5690 if (*devlist && (found < dpa)) {
5691 dv = xcalloc(1, sizeof(*dv));
5692 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
5693 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
5694 dv->found = found;
5695 dv->used = 0;
5696 dv->next = *devlist;
5697 *devlist = dv;
5698 }
5699 }
5700 if (fd >= 0)
5701 close(fd);
5702 }
5703 }
5704 free_mdstat(mdstat);
5705 return count;
5706 }
5707
5708 #ifdef DEBUG_LOOP
5709 static struct md_list*
5710 get_loop_devices(void)
5711 {
5712 int i;
5713 struct md_list *devlist = NULL;
5714 struct md_list *dv = NULL;
5715
5716 for(i = 0; i < 12; i++) {
5717 dv = xcalloc(1, sizeof(*dv));
5718 dv->devname = xmalloc(40);
5719 sprintf(dv->devname, "/dev/loop%d", i);
5720 dv->next = devlist;
5721 devlist = dv;
5722 }
5723 return devlist;
5724 }
5725 #endif
5726
5727 static struct md_list*
5728 get_devices(const char *hba_path)
5729 {
5730 struct md_list *devlist = NULL;
5731 struct md_list *dv = NULL;
5732 struct dirent *ent;
5733 DIR *dir;
5734 int err = 0;
5735
5736 #if DEBUG_LOOP
5737 devlist = get_loop_devices();
5738 return devlist;
5739 #endif
5740 /* scroll through /sys/dev/block looking for devices attached to
5741 * this hba
5742 */
5743 dir = opendir("/sys/dev/block");
5744 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
5745 int fd;
5746 char buf[1024];
5747 int major, minor;
5748 char *path = NULL;
5749 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
5750 continue;
5751 path = devt_to_devpath(makedev(major, minor));
5752 if (!path)
5753 continue;
5754 if (!path_attached_to_hba(path, hba_path)) {
5755 free(path);
5756 path = NULL;
5757 continue;
5758 }
5759 free(path);
5760 path = NULL;
5761 fd = dev_open(ent->d_name, O_RDONLY);
5762 if (fd >= 0) {
5763 fd2devname(fd, buf);
5764 close(fd);
5765 } else {
5766 pr_err("cannot open device: %s\n",
5767 ent->d_name);
5768 continue;
5769 }
5770
5771 dv = xcalloc(1, sizeof(*dv));
5772 dv->devname = xstrdup(buf);
5773 dv->next = devlist;
5774 devlist = dv;
5775 }
5776 if (err) {
5777 while(devlist) {
5778 dv = devlist;
5779 devlist = devlist->next;
5780 free(dv->devname);
5781 free(dv);
5782 }
5783 }
5784 closedir(dir);
5785 return devlist;
5786 }
5787
5788 static int
5789 count_volumes_list(struct md_list *devlist, char *homehost,
5790 int verbose, int *found)
5791 {
5792 struct md_list *tmpdev;
5793 int count = 0;
5794 struct supertype *st = NULL;
5795
5796 /* first walk the list of devices to find a consistent set
5797 * that match the criterea, if that is possible.
5798 * We flag the ones we like with 'used'.
5799 */
5800 *found = 0;
5801 st = match_metadata_desc_imsm("imsm");
5802 if (st == NULL) {
5803 pr_vrb(": cannot allocate memory for imsm supertype\n");
5804 return 0;
5805 }
5806
5807 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5808 char *devname = tmpdev->devname;
5809 struct stat stb;
5810 struct supertype *tst;
5811 int dfd;
5812 if (tmpdev->used > 1)
5813 continue;
5814 tst = dup_super(st);
5815 if (tst == NULL) {
5816 pr_vrb(": cannot allocate memory for imsm supertype\n");
5817 goto err_1;
5818 }
5819 tmpdev->container = 0;
5820 dfd = dev_open(devname, O_RDONLY|O_EXCL);
5821 if (dfd < 0) {
5822 dprintf("cannot open device %s: %s\n",
5823 devname, strerror(errno));
5824 tmpdev->used = 2;
5825 } else if (fstat(dfd, &stb)< 0) {
5826 /* Impossible! */
5827 dprintf("fstat failed for %s: %s\n",
5828 devname, strerror(errno));
5829 tmpdev->used = 2;
5830 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
5831 dprintf("%s is not a block device.\n",
5832 devname);
5833 tmpdev->used = 2;
5834 } else if (must_be_container(dfd)) {
5835 struct supertype *cst;
5836 cst = super_by_fd(dfd, NULL);
5837 if (cst == NULL) {
5838 dprintf("cannot recognize container type %s\n",
5839 devname);
5840 tmpdev->used = 2;
5841 } else if (tst->ss != st->ss) {
5842 dprintf("non-imsm container - ignore it: %s\n",
5843 devname);
5844 tmpdev->used = 2;
5845 } else if (!tst->ss->load_container ||
5846 tst->ss->load_container(tst, dfd, NULL))
5847 tmpdev->used = 2;
5848 else {
5849 tmpdev->container = 1;
5850 }
5851 if (cst)
5852 cst->ss->free_super(cst);
5853 } else {
5854 tmpdev->st_rdev = stb.st_rdev;
5855 if (tst->ss->load_super(tst,dfd, NULL)) {
5856 dprintf("no RAID superblock on %s\n",
5857 devname);
5858 tmpdev->used = 2;
5859 } else if (tst->ss->compare_super == NULL) {
5860 dprintf("Cannot assemble %s metadata on %s\n",
5861 tst->ss->name, devname);
5862 tmpdev->used = 2;
5863 }
5864 }
5865 if (dfd >= 0)
5866 close(dfd);
5867 if (tmpdev->used == 2 || tmpdev->used == 4) {
5868 /* Ignore unrecognised devices during auto-assembly */
5869 goto loop;
5870 }
5871 else {
5872 struct mdinfo info;
5873 tst->ss->getinfo_super(tst, &info, NULL);
5874
5875 if (st->minor_version == -1)
5876 st->minor_version = tst->minor_version;
5877
5878 if (memcmp(info.uuid, uuid_zero,
5879 sizeof(int[4])) == 0) {
5880 /* this is a floating spare. It cannot define
5881 * an array unless there are no more arrays of
5882 * this type to be found. It can be included
5883 * in an array of this type though.
5884 */
5885 tmpdev->used = 3;
5886 goto loop;
5887 }
5888
5889 if (st->ss != tst->ss ||
5890 st->minor_version != tst->minor_version ||
5891 st->ss->compare_super(st, tst) != 0) {
5892 /* Some mismatch. If exactly one array matches this host,
5893 * we can resolve on that one.
5894 * Or, if we are auto assembling, we just ignore the second
5895 * for now.
5896 */
5897 dprintf("superblock on %s doesn't match others - assembly aborted\n",
5898 devname);
5899 goto loop;
5900 }
5901 tmpdev->used = 1;
5902 *found = 1;
5903 dprintf("found: devname: %s\n", devname);
5904 }
5905 loop:
5906 if (tst)
5907 tst->ss->free_super(tst);
5908 }
5909 if (*found != 0) {
5910 int err;
5911 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
5912 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
5913 for (iter = head; iter; iter = iter->next) {
5914 dprintf("content->text_version: %s vol\n",
5915 iter->text_version);
5916 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
5917 /* do not assemble arrays with unsupported
5918 configurations */
5919 dprintf("Cannot activate member %s.\n",
5920 iter->text_version);
5921 } else
5922 count++;
5923 }
5924 sysfs_free(head);
5925
5926 } else {
5927 dprintf("No valid super block on device list: err: %d %p\n",
5928 err, st->sb);
5929 }
5930 } else {
5931 dprintf("no more devices to examine\n");
5932 }
5933
5934 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5935 if ((tmpdev->used == 1) && (tmpdev->found)) {
5936 if (count) {
5937 if (count < tmpdev->found)
5938 count = 0;
5939 else
5940 count -= tmpdev->found;
5941 }
5942 }
5943 if (tmpdev->used == 1)
5944 tmpdev->used = 4;
5945 }
5946 err_1:
5947 if (st)
5948 st->ss->free_super(st);
5949 return count;
5950 }
5951
5952 static int
5953 count_volumes(struct intel_hba *hba, int dpa, int verbose)
5954 {
5955 struct sys_dev *idev, *intel_devices = find_intel_devices();
5956 int count = 0;
5957 const struct orom_entry *entry;
5958 struct devid_list *dv, *devid_list;
5959
5960 if (!hba || !hba->path)
5961 return 0;
5962
5963 for (idev = intel_devices; idev; idev = idev->next) {
5964 if (strstr(idev->path, hba->path))
5965 break;
5966 }
5967
5968 if (!idev || !idev->dev_id)
5969 return 0;
5970
5971 entry = get_orom_entry_by_device_id(idev->dev_id);
5972
5973 if (!entry || !entry->devid_list)
5974 return 0;
5975
5976 devid_list = entry->devid_list;
5977 for (dv = devid_list; dv; dv = dv->next) {
5978 struct md_list *devlist = NULL;
5979 struct sys_dev *device = device_by_id(dv->devid);
5980 char *hba_path;
5981 int found = 0;
5982
5983 if (device)
5984 hba_path = device->path;
5985 else
5986 return 0;
5987
5988 /* VMD has one orom entry for all domain, but spanning is not allowed.
5989 * VMD arrays should be counted per domain (controller), so skip
5990 * domains that are not the given one.
5991 */
5992 if ((hba->type == SYS_DEV_VMD) &&
5993 (strncmp(device->path, hba->path, strlen(device->path)) != 0))
5994 continue;
5995
5996 devlist = get_devices(hba_path);
5997 /* if no intel devices return zero volumes */
5998 if (devlist == NULL)
5999 return 0;
6000
6001 count += active_arrays_by_format("imsm", hba_path, &devlist, dpa, verbose);
6002 dprintf("path: %s active arrays: %d\n", hba_path, count);
6003 if (devlist == NULL)
6004 return 0;
6005 do {
6006 found = 0;
6007 count += count_volumes_list(devlist,
6008 NULL,
6009 verbose,
6010 &found);
6011 dprintf("found %d count: %d\n", found, count);
6012 } while (found);
6013
6014 dprintf("path: %s total number of volumes: %d\n", hba_path, count);
6015
6016 while (devlist) {
6017 struct md_list *dv = devlist;
6018 devlist = devlist->next;
6019 free(dv->devname);
6020 free(dv);
6021 }
6022 }
6023 return count;
6024 }
6025
6026 static int imsm_default_chunk(const struct imsm_orom *orom)
6027 {
6028 /* up to 512 if the plaform supports it, otherwise the platform max.
6029 * 128 if no platform detected
6030 */
6031 int fs = max(7, orom ? fls(orom->sss) : 0);
6032
6033 return min(512, (1 << fs));
6034 }
6035
6036 static int
6037 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
6038 int raiddisks, int *chunk, unsigned long long size, int verbose)
6039 {
6040 /* check/set platform and metadata limits/defaults */
6041 if (super->orom && raiddisks > super->orom->dpa) {
6042 pr_vrb(": platform supports a maximum of %d disks per array\n",
6043 super->orom->dpa);
6044 return 0;
6045 }
6046
6047 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
6048 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6049 pr_vrb(": platform does not support raid%d with %d disk%s\n",
6050 level, raiddisks, raiddisks > 1 ? "s" : "");
6051 return 0;
6052 }
6053
6054 if (*chunk == 0 || *chunk == UnSet)
6055 *chunk = imsm_default_chunk(super->orom);
6056
6057 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
6058 pr_vrb(": platform does not support a chunk size of: %d\n", *chunk);
6059 return 0;
6060 }
6061
6062 if (layout != imsm_level_to_layout(level)) {
6063 if (level == 5)
6064 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
6065 else if (level == 10)
6066 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
6067 else
6068 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
6069 layout, level);
6070 return 0;
6071 }
6072
6073 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
6074 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
6075 pr_vrb(": platform does not support a volume size over 2TB\n");
6076 return 0;
6077 }
6078
6079 return 1;
6080 }
6081
6082 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
6083 * FIX ME add ahci details
6084 */
6085 static int validate_geometry_imsm_volume(struct supertype *st, int level,
6086 int layout, int raiddisks, int *chunk,
6087 unsigned long long size,
6088 unsigned long long data_offset,
6089 char *dev,
6090 unsigned long long *freesize,
6091 int verbose)
6092 {
6093 struct stat stb;
6094 struct intel_super *super = st->sb;
6095 struct imsm_super *mpb;
6096 struct dl *dl;
6097 unsigned long long pos = 0;
6098 unsigned long long maxsize;
6099 struct extent *e;
6100 int i;
6101
6102 /* We must have the container info already read in. */
6103 if (!super)
6104 return 0;
6105
6106 mpb = super->anchor;
6107
6108 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
6109 pr_err("RAID gemetry validation failed. Cannot proceed with the action(s).\n");
6110 return 0;
6111 }
6112 if (!dev) {
6113 /* General test: make sure there is space for
6114 * 'raiddisks' device extents of size 'size' at a given
6115 * offset
6116 */
6117 unsigned long long minsize = size;
6118 unsigned long long start_offset = MaxSector;
6119 int dcnt = 0;
6120 if (minsize == 0)
6121 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
6122 for (dl = super->disks; dl ; dl = dl->next) {
6123 int found = 0;
6124
6125 pos = 0;
6126 i = 0;
6127 e = get_extents(super, dl);
6128 if (!e) continue;
6129 do {
6130 unsigned long long esize;
6131 esize = e[i].start - pos;
6132 if (esize >= minsize)
6133 found = 1;
6134 if (found && start_offset == MaxSector) {
6135 start_offset = pos;
6136 break;
6137 } else if (found && pos != start_offset) {
6138 found = 0;
6139 break;
6140 }
6141 pos = e[i].start + e[i].size;
6142 i++;
6143 } while (e[i-1].size);
6144 if (found)
6145 dcnt++;
6146 free(e);
6147 }
6148 if (dcnt < raiddisks) {
6149 if (verbose)
6150 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
6151 dcnt, raiddisks);
6152 return 0;
6153 }
6154 return 1;
6155 }
6156
6157 /* This device must be a member of the set */
6158 if (stat(dev, &stb) < 0)
6159 return 0;
6160 if ((S_IFMT & stb.st_mode) != S_IFBLK)
6161 return 0;
6162 for (dl = super->disks ; dl ; dl = dl->next) {
6163 if (dl->major == (int)major(stb.st_rdev) &&
6164 dl->minor == (int)minor(stb.st_rdev))
6165 break;
6166 }
6167 if (!dl) {
6168 if (verbose)
6169 pr_err("%s is not in the same imsm set\n", dev);
6170 return 0;
6171 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6172 /* If a volume is present then the current creation attempt
6173 * cannot incorporate new spares because the orom may not
6174 * understand this configuration (all member disks must be
6175 * members of each array in the container).
6176 */
6177 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
6178 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6179 return 0;
6180 } else if (super->orom && mpb->num_raid_devs > 0 &&
6181 mpb->num_disks != raiddisks) {
6182 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6183 return 0;
6184 }
6185
6186 /* retrieve the largest free space block */
6187 e = get_extents(super, dl);
6188 maxsize = 0;
6189 i = 0;
6190 if (e) {
6191 do {
6192 unsigned long long esize;
6193
6194 esize = e[i].start - pos;
6195 if (esize >= maxsize)
6196 maxsize = esize;
6197 pos = e[i].start + e[i].size;
6198 i++;
6199 } while (e[i-1].size);
6200 dl->e = e;
6201 dl->extent_cnt = i;
6202 } else {
6203 if (verbose)
6204 pr_err("unable to determine free space for: %s\n",
6205 dev);
6206 return 0;
6207 }
6208 if (maxsize < size) {
6209 if (verbose)
6210 pr_err("%s not enough space (%llu < %llu)\n",
6211 dev, maxsize, size);
6212 return 0;
6213 }
6214
6215 /* count total number of extents for merge */
6216 i = 0;
6217 for (dl = super->disks; dl; dl = dl->next)
6218 if (dl->e)
6219 i += dl->extent_cnt;
6220
6221 maxsize = merge_extents(super, i);
6222
6223 if (!check_env("IMSM_NO_PLATFORM") &&
6224 mpb->num_raid_devs > 0 && size && size != maxsize) {
6225 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
6226 return 0;
6227 }
6228
6229 if (maxsize < size || maxsize == 0) {
6230 if (verbose) {
6231 if (maxsize == 0)
6232 pr_err("no free space left on device. Aborting...\n");
6233 else
6234 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
6235 maxsize, size);
6236 }
6237 return 0;
6238 }
6239
6240 *freesize = maxsize;
6241
6242 if (super->orom) {
6243 int count = count_volumes(super->hba,
6244 super->orom->dpa, verbose);
6245 if (super->orom->vphba <= count) {
6246 pr_vrb(": platform does not support more than %d raid volumes.\n",
6247 super->orom->vphba);
6248 return 0;
6249 }
6250 }
6251 return 1;
6252 }
6253
6254 static int imsm_get_free_size(struct supertype *st, int raiddisks,
6255 unsigned long long size, int chunk,
6256 unsigned long long *freesize)
6257 {
6258 struct intel_super *super = st->sb;
6259 struct imsm_super *mpb = super->anchor;
6260 struct dl *dl;
6261 int i;
6262 int extent_cnt;
6263 struct extent *e;
6264 unsigned long long maxsize;
6265 unsigned long long minsize;
6266 int cnt;
6267 int used;
6268
6269 /* find the largest common start free region of the possible disks */
6270 used = 0;
6271 extent_cnt = 0;
6272 cnt = 0;
6273 for (dl = super->disks; dl; dl = dl->next) {
6274 dl->raiddisk = -1;
6275
6276 if (dl->index >= 0)
6277 used++;
6278
6279 /* don't activate new spares if we are orom constrained
6280 * and there is already a volume active in the container
6281 */
6282 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6283 continue;
6284
6285 e = get_extents(super, dl);
6286 if (!e)
6287 continue;
6288 for (i = 1; e[i-1].size; i++)
6289 ;
6290 dl->e = e;
6291 dl->extent_cnt = i;
6292 extent_cnt += i;
6293 cnt++;
6294 }
6295
6296 maxsize = merge_extents(super, extent_cnt);
6297 minsize = size;
6298 if (size == 0)
6299 /* chunk is in K */
6300 minsize = chunk * 2;
6301
6302 if (cnt < raiddisks ||
6303 (super->orom && used && used != raiddisks) ||
6304 maxsize < minsize ||
6305 maxsize == 0) {
6306 pr_err("not enough devices with space to create array.\n");
6307 return 0; /* No enough free spaces large enough */
6308 }
6309
6310 if (size == 0) {
6311 size = maxsize;
6312 if (chunk) {
6313 size /= 2 * chunk;
6314 size *= 2 * chunk;
6315 }
6316 maxsize = size;
6317 }
6318 if (!check_env("IMSM_NO_PLATFORM") &&
6319 mpb->num_raid_devs > 0 && size && size != maxsize) {
6320 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
6321 return 0;
6322 }
6323 cnt = 0;
6324 for (dl = super->disks; dl; dl = dl->next)
6325 if (dl->e)
6326 dl->raiddisk = cnt++;
6327
6328 *freesize = size;
6329
6330 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
6331
6332 return 1;
6333 }
6334
6335 static int reserve_space(struct supertype *st, int raiddisks,
6336 unsigned long long size, int chunk,
6337 unsigned long long *freesize)
6338 {
6339 struct intel_super *super = st->sb;
6340 struct dl *dl;
6341 int cnt;
6342 int rv = 0;
6343
6344 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
6345 if (rv) {
6346 cnt = 0;
6347 for (dl = super->disks; dl; dl = dl->next)
6348 if (dl->e)
6349 dl->raiddisk = cnt++;
6350 rv = 1;
6351 }
6352
6353 return rv;
6354 }
6355
6356 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
6357 int raiddisks, int *chunk, unsigned long long size,
6358 unsigned long long data_offset,
6359 char *dev, unsigned long long *freesize,
6360 int verbose)
6361 {
6362 int fd, cfd;
6363 struct mdinfo *sra;
6364 int is_member = 0;
6365
6366 /* load capability
6367 * if given unused devices create a container
6368 * if given given devices in a container create a member volume
6369 */
6370 if (level == LEVEL_CONTAINER) {
6371 /* Must be a fresh device to add to a container */
6372 return validate_geometry_imsm_container(st, level, layout,
6373 raiddisks,
6374 *chunk,
6375 size, data_offset,
6376 dev, freesize,
6377 verbose);
6378 }
6379
6380 if (!dev) {
6381 if (st->sb) {
6382 struct intel_super *super = st->sb;
6383 if (!validate_geometry_imsm_orom(st->sb, level, layout,
6384 raiddisks, chunk, size,
6385 verbose))
6386 return 0;
6387 /* we are being asked to automatically layout a
6388 * new volume based on the current contents of
6389 * the container. If the the parameters can be
6390 * satisfied reserve_space will record the disks,
6391 * start offset, and size of the volume to be
6392 * created. add_to_super and getinfo_super
6393 * detect when autolayout is in progress.
6394 */
6395 /* assuming that freesize is always given when array is
6396 created */
6397 if (super->orom && freesize) {
6398 int count;
6399 count = count_volumes(super->hba,
6400 super->orom->dpa, verbose);
6401 if (super->orom->vphba <= count) {
6402 pr_vrb(": platform does not support more than %d raid volumes.\n",
6403 super->orom->vphba);
6404 return 0;
6405 }
6406 }
6407 if (freesize)
6408 return reserve_space(st, raiddisks, size,
6409 *chunk, freesize);
6410 }
6411 return 1;
6412 }
6413 if (st->sb) {
6414 /* creating in a given container */
6415 return validate_geometry_imsm_volume(st, level, layout,
6416 raiddisks, chunk, size,
6417 data_offset,
6418 dev, freesize, verbose);
6419 }
6420
6421 /* This device needs to be a device in an 'imsm' container */
6422 fd = open(dev, O_RDONLY|O_EXCL, 0);
6423 if (fd >= 0) {
6424 if (verbose)
6425 pr_err("Cannot create this array on device %s\n",
6426 dev);
6427 close(fd);
6428 return 0;
6429 }
6430 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6431 if (verbose)
6432 pr_err("Cannot open %s: %s\n",
6433 dev, strerror(errno));
6434 return 0;
6435 }
6436 /* Well, it is in use by someone, maybe an 'imsm' container. */
6437 cfd = open_container(fd);
6438 close(fd);
6439 if (cfd < 0) {
6440 if (verbose)
6441 pr_err("Cannot use %s: It is busy\n",
6442 dev);
6443 return 0;
6444 }
6445 sra = sysfs_read(cfd, NULL, GET_VERSION);
6446 if (sra && sra->array.major_version == -1 &&
6447 strcmp(sra->text_version, "imsm") == 0)
6448 is_member = 1;
6449 sysfs_free(sra);
6450 if (is_member) {
6451 /* This is a member of a imsm container. Load the container
6452 * and try to create a volume
6453 */
6454 struct intel_super *super;
6455
6456 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
6457 st->sb = super;
6458 strcpy(st->container_devnm, fd2devnm(cfd));
6459 close(cfd);
6460 return validate_geometry_imsm_volume(st, level, layout,
6461 raiddisks, chunk,
6462 size, data_offset, dev,
6463 freesize, 1)
6464 ? 1 : -1;
6465 }
6466 }
6467
6468 if (verbose)
6469 pr_err("failed container membership check\n");
6470
6471 close(cfd);
6472 return 0;
6473 }
6474
6475 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
6476 {
6477 struct intel_super *super = st->sb;
6478
6479 if (level && *level == UnSet)
6480 *level = LEVEL_CONTAINER;
6481
6482 if (level && layout && *layout == UnSet)
6483 *layout = imsm_level_to_layout(*level);
6484
6485 if (chunk && (*chunk == UnSet || *chunk == 0))
6486 *chunk = imsm_default_chunk(super->orom);
6487 }
6488
6489 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6490
6491 static int kill_subarray_imsm(struct supertype *st)
6492 {
6493 /* remove the subarray currently referenced by ->current_vol */
6494 __u8 i;
6495 struct intel_dev **dp;
6496 struct intel_super *super = st->sb;
6497 __u8 current_vol = super->current_vol;
6498 struct imsm_super *mpb = super->anchor;
6499
6500 if (super->current_vol < 0)
6501 return 2;
6502 super->current_vol = -1; /* invalidate subarray cursor */
6503
6504 /* block deletions that would change the uuid of active subarrays
6505 *
6506 * FIXME when immutable ids are available, but note that we'll
6507 * also need to fixup the invalidated/active subarray indexes in
6508 * mdstat
6509 */
6510 for (i = 0; i < mpb->num_raid_devs; i++) {
6511 char subarray[4];
6512
6513 if (i < current_vol)
6514 continue;
6515 sprintf(subarray, "%u", i);
6516 if (is_subarray_active(subarray, st->devnm)) {
6517 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6518 current_vol, i);
6519
6520 return 2;
6521 }
6522 }
6523
6524 if (st->update_tail) {
6525 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
6526
6527 u->type = update_kill_array;
6528 u->dev_idx = current_vol;
6529 append_metadata_update(st, u, sizeof(*u));
6530
6531 return 0;
6532 }
6533
6534 for (dp = &super->devlist; *dp;)
6535 if ((*dp)->index == current_vol) {
6536 *dp = (*dp)->next;
6537 } else {
6538 handle_missing(super, (*dp)->dev);
6539 if ((*dp)->index > current_vol)
6540 (*dp)->index--;
6541 dp = &(*dp)->next;
6542 }
6543
6544 /* no more raid devices, all active components are now spares,
6545 * but of course failed are still failed
6546 */
6547 if (--mpb->num_raid_devs == 0) {
6548 struct dl *d;
6549
6550 for (d = super->disks; d; d = d->next)
6551 if (d->index > -2)
6552 mark_spare(d);
6553 }
6554
6555 super->updates_pending++;
6556
6557 return 0;
6558 }
6559
6560 static int update_subarray_imsm(struct supertype *st, char *subarray,
6561 char *update, struct mddev_ident *ident)
6562 {
6563 /* update the subarray currently referenced by ->current_vol */
6564 struct intel_super *super = st->sb;
6565 struct imsm_super *mpb = super->anchor;
6566
6567 if (strcmp(update, "name") == 0) {
6568 char *name = ident->name;
6569 char *ep;
6570 int vol;
6571
6572 if (is_subarray_active(subarray, st->devnm)) {
6573 pr_err("Unable to update name of active subarray\n");
6574 return 2;
6575 }
6576
6577 if (!check_name(super, name, 0))
6578 return 2;
6579
6580 vol = strtoul(subarray, &ep, 10);
6581 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
6582 return 2;
6583
6584 if (st->update_tail) {
6585 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
6586
6587 u->type = update_rename_array;
6588 u->dev_idx = vol;
6589 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
6590 append_metadata_update(st, u, sizeof(*u));
6591 } else {
6592 struct imsm_dev *dev;
6593 int i;
6594
6595 dev = get_imsm_dev(super, vol);
6596 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6597 for (i = 0; i < mpb->num_raid_devs; i++) {
6598 dev = get_imsm_dev(super, i);
6599 handle_missing(super, dev);
6600 }
6601 super->updates_pending++;
6602 }
6603 } else
6604 return 2;
6605
6606 return 0;
6607 }
6608 #endif /* MDASSEMBLE */
6609
6610 static int is_gen_migration(struct imsm_dev *dev)
6611 {
6612 if (dev == NULL)
6613 return 0;
6614
6615 if (!dev->vol.migr_state)
6616 return 0;
6617
6618 if (migr_type(dev) == MIGR_GEN_MIGR)
6619 return 1;
6620
6621 return 0;
6622 }
6623
6624 static int is_rebuilding(struct imsm_dev *dev)
6625 {
6626 struct imsm_map *migr_map;
6627
6628 if (!dev->vol.migr_state)
6629 return 0;
6630
6631 if (migr_type(dev) != MIGR_REBUILD)
6632 return 0;
6633
6634 migr_map = get_imsm_map(dev, MAP_1);
6635
6636 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
6637 return 1;
6638 else
6639 return 0;
6640 }
6641
6642 #ifndef MDASSEMBLE
6643 static int is_initializing(struct imsm_dev *dev)
6644 {
6645 struct imsm_map *migr_map;
6646
6647 if (!dev->vol.migr_state)
6648 return 0;
6649
6650 if (migr_type(dev) != MIGR_INIT)
6651 return 0;
6652
6653 migr_map = get_imsm_map(dev, MAP_1);
6654
6655 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
6656 return 1;
6657
6658 return 0;
6659 }
6660 #endif
6661
6662 static void update_recovery_start(struct intel_super *super,
6663 struct imsm_dev *dev,
6664 struct mdinfo *array)
6665 {
6666 struct mdinfo *rebuild = NULL;
6667 struct mdinfo *d;
6668 __u32 units;
6669
6670 if (!is_rebuilding(dev))
6671 return;
6672
6673 /* Find the rebuild target, but punt on the dual rebuild case */
6674 for (d = array->devs; d; d = d->next)
6675 if (d->recovery_start == 0) {
6676 if (rebuild)
6677 return;
6678 rebuild = d;
6679 }
6680
6681 if (!rebuild) {
6682 /* (?) none of the disks are marked with
6683 * IMSM_ORD_REBUILD, so assume they are missing and the
6684 * disk_ord_tbl was not correctly updated
6685 */
6686 dprintf("failed to locate out-of-sync disk\n");
6687 return;
6688 }
6689
6690 units = __le32_to_cpu(dev->vol.curr_migr_unit);
6691 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
6692 }
6693
6694 #ifndef MDASSEMBLE
6695 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
6696 #endif
6697
6698 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
6699 {
6700 /* Given a container loaded by load_super_imsm_all,
6701 * extract information about all the arrays into
6702 * an mdinfo tree.
6703 * If 'subarray' is given, just extract info about that array.
6704 *
6705 * For each imsm_dev create an mdinfo, fill it in,
6706 * then look for matching devices in super->disks
6707 * and create appropriate device mdinfo.
6708 */
6709 struct intel_super *super = st->sb;
6710 struct imsm_super *mpb = super->anchor;
6711 struct mdinfo *rest = NULL;
6712 unsigned int i;
6713 int sb_errors = 0;
6714 struct dl *d;
6715 int spare_disks = 0;
6716
6717 /* do not assemble arrays when not all attributes are supported */
6718 if (imsm_check_attributes(mpb->attributes) == 0) {
6719 sb_errors = 1;
6720 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
6721 }
6722
6723 /* check for bad blocks */
6724 if (imsm_bbm_log_size(super->anchor)) {
6725 pr_err("BBM log found in IMSM metadata.Arrays activation is blocked.\n");
6726 sb_errors = 1;
6727 }
6728
6729 /* count spare devices, not used in maps
6730 */
6731 for (d = super->disks; d; d = d->next)
6732 if (d->index == -1)
6733 spare_disks++;
6734
6735 for (i = 0; i < mpb->num_raid_devs; i++) {
6736 struct imsm_dev *dev;
6737 struct imsm_map *map;
6738 struct imsm_map *map2;
6739 struct mdinfo *this;
6740 int slot;
6741 #ifndef MDASSEMBLE
6742 int chunk;
6743 #endif
6744 char *ep;
6745
6746 if (subarray &&
6747 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
6748 continue;
6749
6750 dev = get_imsm_dev(super, i);
6751 map = get_imsm_map(dev, MAP_0);
6752 map2 = get_imsm_map(dev, MAP_1);
6753
6754 /* do not publish arrays that are in the middle of an
6755 * unsupported migration
6756 */
6757 if (dev->vol.migr_state &&
6758 (migr_type(dev) == MIGR_STATE_CHANGE)) {
6759 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
6760 dev->volume);
6761 continue;
6762 }
6763 /* do not publish arrays that are not support by controller's
6764 * OROM/EFI
6765 */
6766
6767 this = xmalloc(sizeof(*this));
6768
6769 super->current_vol = i;
6770 getinfo_super_imsm_volume(st, this, NULL);
6771 this->next = rest;
6772 #ifndef MDASSEMBLE
6773 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
6774 /* mdadm does not support all metadata features- set the bit in all arrays state */
6775 if (!validate_geometry_imsm_orom(super,
6776 get_imsm_raid_level(map), /* RAID level */
6777 imsm_level_to_layout(get_imsm_raid_level(map)),
6778 map->num_members, /* raid disks */
6779 &chunk, join_u32(dev->size_low, dev->size_high),
6780 1 /* verbose */)) {
6781 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
6782 dev->volume);
6783 this->array.state |=
6784 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6785 (1<<MD_SB_BLOCK_VOLUME);
6786 }
6787 #endif
6788
6789 /* if array has bad blocks, set suitable bit in all arrays state */
6790 if (sb_errors)
6791 this->array.state |=
6792 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6793 (1<<MD_SB_BLOCK_VOLUME);
6794
6795 for (slot = 0 ; slot < map->num_members; slot++) {
6796 unsigned long long recovery_start;
6797 struct mdinfo *info_d;
6798 struct dl *d;
6799 int idx;
6800 int skip;
6801 __u32 ord;
6802
6803 skip = 0;
6804 idx = get_imsm_disk_idx(dev, slot, MAP_0);
6805 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
6806 for (d = super->disks; d ; d = d->next)
6807 if (d->index == idx)
6808 break;
6809
6810 recovery_start = MaxSector;
6811 if (d == NULL)
6812 skip = 1;
6813 if (d && is_failed(&d->disk))
6814 skip = 1;
6815 if (ord & IMSM_ORD_REBUILD)
6816 recovery_start = 0;
6817
6818 /*
6819 * if we skip some disks the array will be assmebled degraded;
6820 * reset resync start to avoid a dirty-degraded
6821 * situation when performing the intial sync
6822 *
6823 * FIXME handle dirty degraded
6824 */
6825 if ((skip || recovery_start == 0) && !dev->vol.dirty)
6826 this->resync_start = MaxSector;
6827 if (skip)
6828 continue;
6829
6830 info_d = xcalloc(1, sizeof(*info_d));
6831 info_d->next = this->devs;
6832 this->devs = info_d;
6833
6834 info_d->disk.number = d->index;
6835 info_d->disk.major = d->major;
6836 info_d->disk.minor = d->minor;
6837 info_d->disk.raid_disk = slot;
6838 info_d->recovery_start = recovery_start;
6839 if (map2) {
6840 if (slot < map2->num_members)
6841 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6842 else
6843 this->array.spare_disks++;
6844 } else {
6845 if (slot < map->num_members)
6846 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6847 else
6848 this->array.spare_disks++;
6849 }
6850 if (info_d->recovery_start == MaxSector)
6851 this->array.working_disks++;
6852
6853 info_d->events = __le32_to_cpu(mpb->generation_num);
6854 info_d->data_offset = pba_of_lba0(map);
6855 info_d->component_size = blocks_per_member(map);
6856 }
6857 /* now that the disk list is up-to-date fixup recovery_start */
6858 update_recovery_start(super, dev, this);
6859 this->array.spare_disks += spare_disks;
6860
6861 #ifndef MDASSEMBLE
6862 /* check for reshape */
6863 if (this->reshape_active == 1)
6864 recover_backup_imsm(st, this);
6865 #endif
6866 rest = this;
6867 }
6868
6869 return rest;
6870 }
6871
6872 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6873 int failed, int look_in_map)
6874 {
6875 struct imsm_map *map;
6876
6877 map = get_imsm_map(dev, look_in_map);
6878
6879 if (!failed)
6880 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6881 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
6882
6883 switch (get_imsm_raid_level(map)) {
6884 case 0:
6885 return IMSM_T_STATE_FAILED;
6886 break;
6887 case 1:
6888 if (failed < map->num_members)
6889 return IMSM_T_STATE_DEGRADED;
6890 else
6891 return IMSM_T_STATE_FAILED;
6892 break;
6893 case 10:
6894 {
6895 /**
6896 * check to see if any mirrors have failed, otherwise we
6897 * are degraded. Even numbered slots are mirrored on
6898 * slot+1
6899 */
6900 int i;
6901 /* gcc -Os complains that this is unused */
6902 int insync = insync;
6903
6904 for (i = 0; i < map->num_members; i++) {
6905 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
6906 int idx = ord_to_idx(ord);
6907 struct imsm_disk *disk;
6908
6909 /* reset the potential in-sync count on even-numbered
6910 * slots. num_copies is always 2 for imsm raid10
6911 */
6912 if ((i & 1) == 0)
6913 insync = 2;
6914
6915 disk = get_imsm_disk(super, idx);
6916 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6917 insync--;
6918
6919 /* no in-sync disks left in this mirror the
6920 * array has failed
6921 */
6922 if (insync == 0)
6923 return IMSM_T_STATE_FAILED;
6924 }
6925
6926 return IMSM_T_STATE_DEGRADED;
6927 }
6928 case 5:
6929 if (failed < 2)
6930 return IMSM_T_STATE_DEGRADED;
6931 else
6932 return IMSM_T_STATE_FAILED;
6933 break;
6934 default:
6935 break;
6936 }
6937
6938 return map->map_state;
6939 }
6940
6941 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6942 int look_in_map)
6943 {
6944 int i;
6945 int failed = 0;
6946 struct imsm_disk *disk;
6947 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6948 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
6949 struct imsm_map *map_for_loop;
6950 __u32 ord;
6951 int idx;
6952 int idx_1;
6953
6954 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6955 * disks that are being rebuilt. New failures are recorded to
6956 * map[0]. So we look through all the disks we started with and
6957 * see if any failures are still present, or if any new ones
6958 * have arrived
6959 */
6960 map_for_loop = map;
6961 if (prev && (map->num_members < prev->num_members))
6962 map_for_loop = prev;
6963
6964 for (i = 0; i < map_for_loop->num_members; i++) {
6965 idx_1 = -255;
6966 /* when MAP_X is passed both maps failures are counted
6967 */
6968 if (prev &&
6969 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6970 (i < prev->num_members)) {
6971 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6972 idx_1 = ord_to_idx(ord);
6973
6974 disk = get_imsm_disk(super, idx_1);
6975 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6976 failed++;
6977 }
6978 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6979 (i < map->num_members)) {
6980 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6981 idx = ord_to_idx(ord);
6982
6983 if (idx != idx_1) {
6984 disk = get_imsm_disk(super, idx);
6985 if (!disk || is_failed(disk) ||
6986 ord & IMSM_ORD_REBUILD)
6987 failed++;
6988 }
6989 }
6990 }
6991
6992 return failed;
6993 }
6994
6995 #ifndef MDASSEMBLE
6996 static int imsm_open_new(struct supertype *c, struct active_array *a,
6997 char *inst)
6998 {
6999 struct intel_super *super = c->sb;
7000 struct imsm_super *mpb = super->anchor;
7001
7002 if (atoi(inst) >= mpb->num_raid_devs) {
7003 pr_err("subarry index %d, out of range\n", atoi(inst));
7004 return -ENODEV;
7005 }
7006
7007 dprintf("imsm: open_new %s\n", inst);
7008 a->info.container_member = atoi(inst);
7009 return 0;
7010 }
7011
7012 static int is_resyncing(struct imsm_dev *dev)
7013 {
7014 struct imsm_map *migr_map;
7015
7016 if (!dev->vol.migr_state)
7017 return 0;
7018
7019 if (migr_type(dev) == MIGR_INIT ||
7020 migr_type(dev) == MIGR_REPAIR)
7021 return 1;
7022
7023 if (migr_type(dev) == MIGR_GEN_MIGR)
7024 return 0;
7025
7026 migr_map = get_imsm_map(dev, MAP_1);
7027
7028 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
7029 (dev->vol.migr_type != MIGR_GEN_MIGR))
7030 return 1;
7031 else
7032 return 0;
7033 }
7034
7035 /* return true if we recorded new information */
7036 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7037 {
7038 __u32 ord;
7039 int slot;
7040 struct imsm_map *map;
7041 char buf[MAX_RAID_SERIAL_LEN+3];
7042 unsigned int len, shift = 0;
7043
7044 /* new failures are always set in map[0] */
7045 map = get_imsm_map(dev, MAP_0);
7046
7047 slot = get_imsm_disk_slot(map, idx);
7048 if (slot < 0)
7049 return 0;
7050
7051 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
7052 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
7053 return 0;
7054
7055 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
7056 buf[MAX_RAID_SERIAL_LEN] = '\000';
7057 strcat(buf, ":0");
7058 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
7059 shift = len - MAX_RAID_SERIAL_LEN + 1;
7060 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
7061
7062 disk->status |= FAILED_DISK;
7063 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
7064 /* mark failures in second map if second map exists and this disk
7065 * in this slot.
7066 * This is valid for migration, initialization and rebuild
7067 */
7068 if (dev->vol.migr_state) {
7069 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
7070 int slot2 = get_imsm_disk_slot(map2, idx);
7071
7072 if ((slot2 < map2->num_members) &&
7073 (slot2 >= 0))
7074 set_imsm_ord_tbl_ent(map2, slot2,
7075 idx | IMSM_ORD_REBUILD);
7076 }
7077 if (map->failed_disk_num == 0xff)
7078 map->failed_disk_num = slot;
7079 return 1;
7080 }
7081
7082 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7083 {
7084 mark_failure(dev, disk, idx);
7085
7086 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
7087 return;
7088
7089 disk->scsi_id = __cpu_to_le32(~(__u32)0);
7090 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
7091 }
7092
7093 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
7094 {
7095 struct dl *dl;
7096
7097 if (!super->missing)
7098 return;
7099
7100 /* When orom adds replacement for missing disk it does
7101 * not remove entry of missing disk, but just updates map with
7102 * new added disk. So it is not enough just to test if there is
7103 * any missing disk, we have to look if there are any failed disks
7104 * in map to stop migration */
7105
7106 dprintf("imsm: mark missing\n");
7107 /* end process for initialization and rebuild only
7108 */
7109 if (is_gen_migration(dev) == 0) {
7110 __u8 map_state;
7111 int failed;
7112
7113 failed = imsm_count_failed(super, dev, MAP_0);
7114 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7115
7116 if (failed)
7117 end_migration(dev, super, map_state);
7118 }
7119 for (dl = super->missing; dl; dl = dl->next)
7120 mark_missing(dev, &dl->disk, dl->index);
7121 super->updates_pending++;
7122 }
7123
7124 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
7125 long long new_size)
7126 {
7127 int used_disks = imsm_num_data_members(dev, MAP_0);
7128 unsigned long long array_blocks;
7129 struct imsm_map *map;
7130
7131 if (used_disks == 0) {
7132 /* when problems occures
7133 * return current array_blocks value
7134 */
7135 array_blocks = __le32_to_cpu(dev->size_high);
7136 array_blocks = array_blocks << 32;
7137 array_blocks += __le32_to_cpu(dev->size_low);
7138
7139 return array_blocks;
7140 }
7141
7142 /* set array size in metadata
7143 */
7144 if (new_size <= 0) {
7145 /* OLCE size change is caused by added disks
7146 */
7147 map = get_imsm_map(dev, MAP_0);
7148 array_blocks = blocks_per_member(map) * used_disks;
7149 } else {
7150 /* Online Volume Size Change
7151 * Using available free space
7152 */
7153 array_blocks = new_size;
7154 }
7155
7156 /* round array size down to closest MB
7157 */
7158 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
7159 dev->size_low = __cpu_to_le32((__u32)array_blocks);
7160 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7161
7162 return array_blocks;
7163 }
7164
7165 static void imsm_set_disk(struct active_array *a, int n, int state);
7166
7167 static void imsm_progress_container_reshape(struct intel_super *super)
7168 {
7169 /* if no device has a migr_state, but some device has a
7170 * different number of members than the previous device, start
7171 * changing the number of devices in this device to match
7172 * previous.
7173 */
7174 struct imsm_super *mpb = super->anchor;
7175 int prev_disks = -1;
7176 int i;
7177 int copy_map_size;
7178
7179 for (i = 0; i < mpb->num_raid_devs; i++) {
7180 struct imsm_dev *dev = get_imsm_dev(super, i);
7181 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7182 struct imsm_map *map2;
7183 int prev_num_members;
7184
7185 if (dev->vol.migr_state)
7186 return;
7187
7188 if (prev_disks == -1)
7189 prev_disks = map->num_members;
7190 if (prev_disks == map->num_members)
7191 continue;
7192
7193 /* OK, this array needs to enter reshape mode.
7194 * i.e it needs a migr_state
7195 */
7196
7197 copy_map_size = sizeof_imsm_map(map);
7198 prev_num_members = map->num_members;
7199 map->num_members = prev_disks;
7200 dev->vol.migr_state = 1;
7201 dev->vol.curr_migr_unit = 0;
7202 set_migr_type(dev, MIGR_GEN_MIGR);
7203 for (i = prev_num_members;
7204 i < map->num_members; i++)
7205 set_imsm_ord_tbl_ent(map, i, i);
7206 map2 = get_imsm_map(dev, MAP_1);
7207 /* Copy the current map */
7208 memcpy(map2, map, copy_map_size);
7209 map2->num_members = prev_num_members;
7210
7211 imsm_set_array_size(dev, -1);
7212 super->clean_migration_record_by_mdmon = 1;
7213 super->updates_pending++;
7214 }
7215 }
7216
7217 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
7218 * states are handled in imsm_set_disk() with one exception, when a
7219 * resync is stopped due to a new failure this routine will set the
7220 * 'degraded' state for the array.
7221 */
7222 static int imsm_set_array_state(struct active_array *a, int consistent)
7223 {
7224 int inst = a->info.container_member;
7225 struct intel_super *super = a->container->sb;
7226 struct imsm_dev *dev = get_imsm_dev(super, inst);
7227 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7228 int failed = imsm_count_failed(super, dev, MAP_0);
7229 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7230 __u32 blocks_per_unit;
7231
7232 if (dev->vol.migr_state &&
7233 dev->vol.migr_type == MIGR_GEN_MIGR) {
7234 /* array state change is blocked due to reshape action
7235 * We might need to
7236 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7237 * - finish the reshape (if last_checkpoint is big and action != reshape)
7238 * - update curr_migr_unit
7239 */
7240 if (a->curr_action == reshape) {
7241 /* still reshaping, maybe update curr_migr_unit */
7242 goto mark_checkpoint;
7243 } else {
7244 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7245 /* for some reason we aborted the reshape.
7246 *
7247 * disable automatic metadata rollback
7248 * user action is required to recover process
7249 */
7250 if (0) {
7251 struct imsm_map *map2 =
7252 get_imsm_map(dev, MAP_1);
7253 dev->vol.migr_state = 0;
7254 set_migr_type(dev, 0);
7255 dev->vol.curr_migr_unit = 0;
7256 memcpy(map, map2,
7257 sizeof_imsm_map(map2));
7258 super->updates_pending++;
7259 }
7260 }
7261 if (a->last_checkpoint >= a->info.component_size) {
7262 unsigned long long array_blocks;
7263 int used_disks;
7264 struct mdinfo *mdi;
7265
7266 used_disks = imsm_num_data_members(dev, MAP_0);
7267 if (used_disks > 0) {
7268 array_blocks =
7269 blocks_per_member(map) *
7270 used_disks;
7271 /* round array size down to closest MB
7272 */
7273 array_blocks = (array_blocks
7274 >> SECT_PER_MB_SHIFT)
7275 << SECT_PER_MB_SHIFT;
7276 a->info.custom_array_size = array_blocks;
7277 /* encourage manager to update array
7278 * size
7279 */
7280
7281 a->check_reshape = 1;
7282 }
7283 /* finalize online capacity expansion/reshape */
7284 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7285 imsm_set_disk(a,
7286 mdi->disk.raid_disk,
7287 mdi->curr_state);
7288
7289 imsm_progress_container_reshape(super);
7290 }
7291 }
7292 }
7293
7294 /* before we activate this array handle any missing disks */
7295 if (consistent == 2)
7296 handle_missing(super, dev);
7297
7298 if (consistent == 2 &&
7299 (!is_resync_complete(&a->info) ||
7300 map_state != IMSM_T_STATE_NORMAL ||
7301 dev->vol.migr_state))
7302 consistent = 0;
7303
7304 if (is_resync_complete(&a->info)) {
7305 /* complete intialization / resync,
7306 * recovery and interrupted recovery is completed in
7307 * ->set_disk
7308 */
7309 if (is_resyncing(dev)) {
7310 dprintf("imsm: mark resync done\n");
7311 end_migration(dev, super, map_state);
7312 super->updates_pending++;
7313 a->last_checkpoint = 0;
7314 }
7315 } else if ((!is_resyncing(dev) && !failed) &&
7316 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
7317 /* mark the start of the init process if nothing is failed */
7318 dprintf("imsm: mark resync start\n");
7319 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
7320 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
7321 else
7322 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
7323 super->updates_pending++;
7324 }
7325
7326 mark_checkpoint:
7327 /* skip checkpointing for general migration,
7328 * it is controlled in mdadm
7329 */
7330 if (is_gen_migration(dev))
7331 goto skip_mark_checkpoint;
7332
7333 /* check if we can update curr_migr_unit from resync_start, recovery_start */
7334 blocks_per_unit = blocks_per_migr_unit(super, dev);
7335 if (blocks_per_unit) {
7336 __u32 units32;
7337 __u64 units;
7338
7339 units = a->last_checkpoint / blocks_per_unit;
7340 units32 = units;
7341
7342 /* check that we did not overflow 32-bits, and that
7343 * curr_migr_unit needs updating
7344 */
7345 if (units32 == units &&
7346 units32 != 0 &&
7347 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7348 dprintf("imsm: mark checkpoint (%u)\n", units32);
7349 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7350 super->updates_pending++;
7351 }
7352 }
7353
7354 skip_mark_checkpoint:
7355 /* mark dirty / clean */
7356 if (dev->vol.dirty != !consistent) {
7357 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
7358 if (consistent)
7359 dev->vol.dirty = 0;
7360 else
7361 dev->vol.dirty = 1;
7362 super->updates_pending++;
7363 }
7364
7365 return consistent;
7366 }
7367
7368 static void imsm_set_disk(struct active_array *a, int n, int state)
7369 {
7370 int inst = a->info.container_member;
7371 struct intel_super *super = a->container->sb;
7372 struct imsm_dev *dev = get_imsm_dev(super, inst);
7373 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7374 struct imsm_disk *disk;
7375 struct mdinfo *mdi;
7376 int recovery_not_finished = 0;
7377 int failed;
7378 __u32 ord;
7379 __u8 map_state;
7380
7381 if (n > map->num_members)
7382 pr_err("imsm: set_disk %d out of range 0..%d\n",
7383 n, map->num_members - 1);
7384
7385 if (n < 0)
7386 return;
7387
7388 dprintf("imsm: set_disk %d:%x\n", n, state);
7389
7390 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
7391 disk = get_imsm_disk(super, ord_to_idx(ord));
7392
7393 /* check for new failures */
7394 if (state & DS_FAULTY) {
7395 if (mark_failure(dev, disk, ord_to_idx(ord)))
7396 super->updates_pending++;
7397 }
7398
7399 /* check if in_sync */
7400 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
7401 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7402
7403 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
7404 super->updates_pending++;
7405 }
7406
7407 failed = imsm_count_failed(super, dev, MAP_0);
7408 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7409
7410 /* check if recovery complete, newly degraded, or failed */
7411 dprintf("imsm: Detected transition to state ");
7412 switch (map_state) {
7413 case IMSM_T_STATE_NORMAL: /* transition to normal state */
7414 dprintf("normal: ");
7415 if (is_rebuilding(dev)) {
7416 dprintf_cont("while rebuilding");
7417 /* check if recovery is really finished */
7418 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
7419 if (mdi->recovery_start != MaxSector) {
7420 recovery_not_finished = 1;
7421 break;
7422 }
7423 if (recovery_not_finished) {
7424 dprintf_cont("\n");
7425 dprintf("Rebuild has not finished yet, state not changed");
7426 if (a->last_checkpoint < mdi->recovery_start) {
7427 a->last_checkpoint = mdi->recovery_start;
7428 super->updates_pending++;
7429 }
7430 break;
7431 }
7432 end_migration(dev, super, map_state);
7433 map = get_imsm_map(dev, MAP_0);
7434 map->failed_disk_num = ~0;
7435 super->updates_pending++;
7436 a->last_checkpoint = 0;
7437 break;
7438 }
7439 if (is_gen_migration(dev)) {
7440 dprintf_cont("while general migration");
7441 if (a->last_checkpoint >= a->info.component_size)
7442 end_migration(dev, super, map_state);
7443 else
7444 map->map_state = map_state;
7445 map = get_imsm_map(dev, MAP_0);
7446 map->failed_disk_num = ~0;
7447 super->updates_pending++;
7448 break;
7449 }
7450 break;
7451 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
7452 dprintf_cont("degraded: ");
7453 if ((map->map_state != map_state) &&
7454 !dev->vol.migr_state) {
7455 dprintf_cont("mark degraded");
7456 map->map_state = map_state;
7457 super->updates_pending++;
7458 a->last_checkpoint = 0;
7459 break;
7460 }
7461 if (is_rebuilding(dev)) {
7462 dprintf_cont("while rebuilding.");
7463 if (map->map_state != map_state) {
7464 dprintf_cont(" Map state change");
7465 end_migration(dev, super, map_state);
7466 super->updates_pending++;
7467 }
7468 break;
7469 }
7470 if (is_gen_migration(dev)) {
7471 dprintf_cont("while general migration");
7472 if (a->last_checkpoint >= a->info.component_size)
7473 end_migration(dev, super, map_state);
7474 else {
7475 map->map_state = map_state;
7476 manage_second_map(super, dev);
7477 }
7478 super->updates_pending++;
7479 break;
7480 }
7481 if (is_initializing(dev)) {
7482 dprintf_cont("while initialization.");
7483 map->map_state = map_state;
7484 super->updates_pending++;
7485 break;
7486 }
7487 break;
7488 case IMSM_T_STATE_FAILED: /* transition to failed state */
7489 dprintf_cont("failed: ");
7490 if (is_gen_migration(dev)) {
7491 dprintf_cont("while general migration");
7492 map->map_state = map_state;
7493 super->updates_pending++;
7494 break;
7495 }
7496 if (map->map_state != map_state) {
7497 dprintf_cont("mark failed");
7498 end_migration(dev, super, map_state);
7499 super->updates_pending++;
7500 a->last_checkpoint = 0;
7501 break;
7502 }
7503 break;
7504 default:
7505 dprintf_cont("state %i\n", map_state);
7506 }
7507 dprintf_cont("\n");
7508 }
7509
7510 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
7511 {
7512 void *buf = mpb;
7513 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7514 unsigned long long dsize;
7515 unsigned long long sectors;
7516
7517 get_dev_size(fd, NULL, &dsize);
7518
7519 if (mpb_size > 512) {
7520 /* -1 to account for anchor */
7521 sectors = mpb_sectors(mpb) - 1;
7522
7523 /* write the extended mpb to the sectors preceeding the anchor */
7524 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
7525 return 1;
7526
7527 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
7528 != 512 * sectors)
7529 return 1;
7530 }
7531
7532 /* first block is stored on second to last sector of the disk */
7533 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
7534 return 1;
7535
7536 if (write(fd, buf, 512) != 512)
7537 return 1;
7538
7539 return 0;
7540 }
7541
7542 static void imsm_sync_metadata(struct supertype *container)
7543 {
7544 struct intel_super *super = container->sb;
7545
7546 dprintf("sync metadata: %d\n", super->updates_pending);
7547 if (!super->updates_pending)
7548 return;
7549
7550 write_super_imsm(container, 0);
7551
7552 super->updates_pending = 0;
7553 }
7554
7555 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
7556 {
7557 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7558 int i = get_imsm_disk_idx(dev, idx, MAP_X);
7559 struct dl *dl;
7560
7561 for (dl = super->disks; dl; dl = dl->next)
7562 if (dl->index == i)
7563 break;
7564
7565 if (dl && is_failed(&dl->disk))
7566 dl = NULL;
7567
7568 if (dl)
7569 dprintf("found %x:%x\n", dl->major, dl->minor);
7570
7571 return dl;
7572 }
7573
7574 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
7575 struct active_array *a, int activate_new,
7576 struct mdinfo *additional_test_list)
7577 {
7578 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7579 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
7580 struct imsm_super *mpb = super->anchor;
7581 struct imsm_map *map;
7582 unsigned long long pos;
7583 struct mdinfo *d;
7584 struct extent *ex;
7585 int i, j;
7586 int found;
7587 __u32 array_start = 0;
7588 __u32 array_end = 0;
7589 struct dl *dl;
7590 struct mdinfo *test_list;
7591
7592 for (dl = super->disks; dl; dl = dl->next) {
7593 /* If in this array, skip */
7594 for (d = a->info.devs ; d ; d = d->next)
7595 if (d->state_fd >= 0 &&
7596 d->disk.major == dl->major &&
7597 d->disk.minor == dl->minor) {
7598 dprintf("%x:%x already in array\n",
7599 dl->major, dl->minor);
7600 break;
7601 }
7602 if (d)
7603 continue;
7604 test_list = additional_test_list;
7605 while (test_list) {
7606 if (test_list->disk.major == dl->major &&
7607 test_list->disk.minor == dl->minor) {
7608 dprintf("%x:%x already in additional test list\n",
7609 dl->major, dl->minor);
7610 break;
7611 }
7612 test_list = test_list->next;
7613 }
7614 if (test_list)
7615 continue;
7616
7617 /* skip in use or failed drives */
7618 if (is_failed(&dl->disk) || idx == dl->index ||
7619 dl->index == -2) {
7620 dprintf("%x:%x status (failed: %d index: %d)\n",
7621 dl->major, dl->minor, is_failed(&dl->disk), idx);
7622 continue;
7623 }
7624
7625 /* skip pure spares when we are looking for partially
7626 * assimilated drives
7627 */
7628 if (dl->index == -1 && !activate_new)
7629 continue;
7630
7631 /* Does this unused device have the requisite free space?
7632 * It needs to be able to cover all member volumes
7633 */
7634 ex = get_extents(super, dl);
7635 if (!ex) {
7636 dprintf("cannot get extents\n");
7637 continue;
7638 }
7639 for (i = 0; i < mpb->num_raid_devs; i++) {
7640 dev = get_imsm_dev(super, i);
7641 map = get_imsm_map(dev, MAP_0);
7642
7643 /* check if this disk is already a member of
7644 * this array
7645 */
7646 if (get_imsm_disk_slot(map, dl->index) >= 0)
7647 continue;
7648
7649 found = 0;
7650 j = 0;
7651 pos = 0;
7652 array_start = pba_of_lba0(map);
7653 array_end = array_start +
7654 blocks_per_member(map) - 1;
7655
7656 do {
7657 /* check that we can start at pba_of_lba0 with
7658 * blocks_per_member of space
7659 */
7660 if (array_start >= pos && array_end < ex[j].start) {
7661 found = 1;
7662 break;
7663 }
7664 pos = ex[j].start + ex[j].size;
7665 j++;
7666 } while (ex[j-1].size);
7667
7668 if (!found)
7669 break;
7670 }
7671
7672 free(ex);
7673 if (i < mpb->num_raid_devs) {
7674 dprintf("%x:%x does not have %u to %u available\n",
7675 dl->major, dl->minor, array_start, array_end);
7676 /* No room */
7677 continue;
7678 }
7679 return dl;
7680 }
7681
7682 return dl;
7683 }
7684
7685 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
7686 {
7687 struct imsm_dev *dev2;
7688 struct imsm_map *map;
7689 struct dl *idisk;
7690 int slot;
7691 int idx;
7692 __u8 state;
7693
7694 dev2 = get_imsm_dev(cont->sb, dev_idx);
7695 if (dev2) {
7696 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
7697 if (state == IMSM_T_STATE_FAILED) {
7698 map = get_imsm_map(dev2, MAP_0);
7699 if (!map)
7700 return 1;
7701 for (slot = 0; slot < map->num_members; slot++) {
7702 /*
7703 * Check if failed disks are deleted from intel
7704 * disk list or are marked to be deleted
7705 */
7706 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
7707 idisk = get_imsm_dl_disk(cont->sb, idx);
7708 /*
7709 * Do not rebuild the array if failed disks
7710 * from failed sub-array are not removed from
7711 * container.
7712 */
7713 if (idisk &&
7714 is_failed(&idisk->disk) &&
7715 (idisk->action != DISK_REMOVE))
7716 return 0;
7717 }
7718 }
7719 }
7720 return 1;
7721 }
7722
7723 static struct mdinfo *imsm_activate_spare(struct active_array *a,
7724 struct metadata_update **updates)
7725 {
7726 /**
7727 * Find a device with unused free space and use it to replace a
7728 * failed/vacant region in an array. We replace failed regions one a
7729 * array at a time. The result is that a new spare disk will be added
7730 * to the first failed array and after the monitor has finished
7731 * propagating failures the remainder will be consumed.
7732 *
7733 * FIXME add a capability for mdmon to request spares from another
7734 * container.
7735 */
7736
7737 struct intel_super *super = a->container->sb;
7738 int inst = a->info.container_member;
7739 struct imsm_dev *dev = get_imsm_dev(super, inst);
7740 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7741 int failed = a->info.array.raid_disks;
7742 struct mdinfo *rv = NULL;
7743 struct mdinfo *d;
7744 struct mdinfo *di;
7745 struct metadata_update *mu;
7746 struct dl *dl;
7747 struct imsm_update_activate_spare *u;
7748 int num_spares = 0;
7749 int i;
7750 int allowed;
7751
7752 for (d = a->info.devs ; d ; d = d->next) {
7753 if ((d->curr_state & DS_FAULTY) &&
7754 d->state_fd >= 0)
7755 /* wait for Removal to happen */
7756 return NULL;
7757 if (d->state_fd >= 0)
7758 failed--;
7759 }
7760
7761 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
7762 inst, failed, a->info.array.raid_disks, a->info.array.level);
7763
7764 if (imsm_reshape_blocks_arrays_changes(super))
7765 return NULL;
7766
7767 /* Cannot activate another spare if rebuild is in progress already
7768 */
7769 if (is_rebuilding(dev)) {
7770 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
7771 return NULL;
7772 }
7773
7774 if (a->info.array.level == 4)
7775 /* No repair for takeovered array
7776 * imsm doesn't support raid4
7777 */
7778 return NULL;
7779
7780 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
7781 IMSM_T_STATE_DEGRADED)
7782 return NULL;
7783
7784 /*
7785 * If there are any failed disks check state of the other volume.
7786 * Block rebuild if the another one is failed until failed disks
7787 * are removed from container.
7788 */
7789 if (failed) {
7790 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
7791 MAX_RAID_SERIAL_LEN, dev->volume);
7792 /* check if states of the other volumes allow for rebuild */
7793 for (i = 0; i < super->anchor->num_raid_devs; i++) {
7794 if (i != inst) {
7795 allowed = imsm_rebuild_allowed(a->container,
7796 i, failed);
7797 if (!allowed)
7798 return NULL;
7799 }
7800 }
7801 }
7802
7803 /* For each slot, if it is not working, find a spare */
7804 for (i = 0; i < a->info.array.raid_disks; i++) {
7805 for (d = a->info.devs ; d ; d = d->next)
7806 if (d->disk.raid_disk == i)
7807 break;
7808 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
7809 if (d && (d->state_fd >= 0))
7810 continue;
7811
7812 /*
7813 * OK, this device needs recovery. Try to re-add the
7814 * previous occupant of this slot, if this fails see if
7815 * we can continue the assimilation of a spare that was
7816 * partially assimilated, finally try to activate a new
7817 * spare.
7818 */
7819 dl = imsm_readd(super, i, a);
7820 if (!dl)
7821 dl = imsm_add_spare(super, i, a, 0, rv);
7822 if (!dl)
7823 dl = imsm_add_spare(super, i, a, 1, rv);
7824 if (!dl)
7825 continue;
7826
7827 /* found a usable disk with enough space */
7828 di = xcalloc(1, sizeof(*di));
7829
7830 /* dl->index will be -1 in the case we are activating a
7831 * pristine spare. imsm_process_update() will create a
7832 * new index in this case. Once a disk is found to be
7833 * failed in all member arrays it is kicked from the
7834 * metadata
7835 */
7836 di->disk.number = dl->index;
7837
7838 /* (ab)use di->devs to store a pointer to the device
7839 * we chose
7840 */
7841 di->devs = (struct mdinfo *) dl;
7842
7843 di->disk.raid_disk = i;
7844 di->disk.major = dl->major;
7845 di->disk.minor = dl->minor;
7846 di->disk.state = 0;
7847 di->recovery_start = 0;
7848 di->data_offset = pba_of_lba0(map);
7849 di->component_size = a->info.component_size;
7850 di->container_member = inst;
7851 super->random = random32();
7852 di->next = rv;
7853 rv = di;
7854 num_spares++;
7855 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7856 i, di->data_offset);
7857 }
7858
7859 if (!rv)
7860 /* No spares found */
7861 return rv;
7862 /* Now 'rv' has a list of devices to return.
7863 * Create a metadata_update record to update the
7864 * disk_ord_tbl for the array
7865 */
7866 mu = xmalloc(sizeof(*mu));
7867 mu->buf = xcalloc(num_spares,
7868 sizeof(struct imsm_update_activate_spare));
7869 mu->space = NULL;
7870 mu->space_list = NULL;
7871 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7872 mu->next = *updates;
7873 u = (struct imsm_update_activate_spare *) mu->buf;
7874
7875 for (di = rv ; di ; di = di->next) {
7876 u->type = update_activate_spare;
7877 u->dl = (struct dl *) di->devs;
7878 di->devs = NULL;
7879 u->slot = di->disk.raid_disk;
7880 u->array = inst;
7881 u->next = u + 1;
7882 u++;
7883 }
7884 (u-1)->next = NULL;
7885 *updates = mu;
7886
7887 return rv;
7888 }
7889
7890 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
7891 {
7892 struct imsm_dev *dev = get_imsm_dev(super, idx);
7893 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7894 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
7895 struct disk_info *inf = get_disk_info(u);
7896 struct imsm_disk *disk;
7897 int i;
7898 int j;
7899
7900 for (i = 0; i < map->num_members; i++) {
7901 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
7902 for (j = 0; j < new_map->num_members; j++)
7903 if (serialcmp(disk->serial, inf[j].serial) == 0)
7904 return 1;
7905 }
7906
7907 return 0;
7908 }
7909
7910 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7911 {
7912 struct dl *dl = NULL;
7913 for (dl = super->disks; dl; dl = dl->next)
7914 if ((dl->major == major) && (dl->minor == minor))
7915 return dl;
7916 return NULL;
7917 }
7918
7919 static int remove_disk_super(struct intel_super *super, int major, int minor)
7920 {
7921 struct dl *prev = NULL;
7922 struct dl *dl;
7923
7924 prev = NULL;
7925 for (dl = super->disks; dl; dl = dl->next) {
7926 if ((dl->major == major) && (dl->minor == minor)) {
7927 /* remove */
7928 if (prev)
7929 prev->next = dl->next;
7930 else
7931 super->disks = dl->next;
7932 dl->next = NULL;
7933 __free_imsm_disk(dl);
7934 dprintf("removed %x:%x\n", major, minor);
7935 break;
7936 }
7937 prev = dl;
7938 }
7939 return 0;
7940 }
7941
7942 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
7943
7944 static int add_remove_disk_update(struct intel_super *super)
7945 {
7946 int check_degraded = 0;
7947 struct dl *disk = NULL;
7948 /* add/remove some spares to/from the metadata/contrainer */
7949 while (super->disk_mgmt_list) {
7950 struct dl *disk_cfg;
7951
7952 disk_cfg = super->disk_mgmt_list;
7953 super->disk_mgmt_list = disk_cfg->next;
7954 disk_cfg->next = NULL;
7955
7956 if (disk_cfg->action == DISK_ADD) {
7957 disk_cfg->next = super->disks;
7958 super->disks = disk_cfg;
7959 check_degraded = 1;
7960 dprintf("added %x:%x\n",
7961 disk_cfg->major, disk_cfg->minor);
7962 } else if (disk_cfg->action == DISK_REMOVE) {
7963 dprintf("Disk remove action processed: %x.%x\n",
7964 disk_cfg->major, disk_cfg->minor);
7965 disk = get_disk_super(super,
7966 disk_cfg->major,
7967 disk_cfg->minor);
7968 if (disk) {
7969 /* store action status */
7970 disk->action = DISK_REMOVE;
7971 /* remove spare disks only */
7972 if (disk->index == -1) {
7973 remove_disk_super(super,
7974 disk_cfg->major,
7975 disk_cfg->minor);
7976 }
7977 }
7978 /* release allocate disk structure */
7979 __free_imsm_disk(disk_cfg);
7980 }
7981 }
7982 return check_degraded;
7983 }
7984
7985 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7986 struct intel_super *super,
7987 void ***space_list)
7988 {
7989 struct intel_dev *id;
7990 void **tofree = NULL;
7991 int ret_val = 0;
7992
7993 dprintf("(enter)\n");
7994 if ((u->subdev < 0) ||
7995 (u->subdev > 1)) {
7996 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7997 return ret_val;
7998 }
7999 if ((space_list == NULL) || (*space_list == NULL)) {
8000 dprintf("imsm: Error: Memory is not allocated\n");
8001 return ret_val;
8002 }
8003
8004 for (id = super->devlist ; id; id = id->next) {
8005 if (id->index == (unsigned)u->subdev) {
8006 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8007 struct imsm_map *map;
8008 struct imsm_dev *new_dev =
8009 (struct imsm_dev *)*space_list;
8010 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
8011 int to_state;
8012 struct dl *new_disk;
8013
8014 if (new_dev == NULL)
8015 return ret_val;
8016 *space_list = **space_list;
8017 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
8018 map = get_imsm_map(new_dev, MAP_0);
8019 if (migr_map) {
8020 dprintf("imsm: Error: migration in progress");
8021 return ret_val;
8022 }
8023
8024 to_state = map->map_state;
8025 if ((u->new_level == 5) && (map->raid_level == 0)) {
8026 map->num_members++;
8027 /* this should not happen */
8028 if (u->new_disks[0] < 0) {
8029 map->failed_disk_num =
8030 map->num_members - 1;
8031 to_state = IMSM_T_STATE_DEGRADED;
8032 } else
8033 to_state = IMSM_T_STATE_NORMAL;
8034 }
8035 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
8036 if (u->new_level > -1)
8037 map->raid_level = u->new_level;
8038 migr_map = get_imsm_map(new_dev, MAP_1);
8039 if ((u->new_level == 5) &&
8040 (migr_map->raid_level == 0)) {
8041 int ord = map->num_members - 1;
8042 migr_map->num_members--;
8043 if (u->new_disks[0] < 0)
8044 ord |= IMSM_ORD_REBUILD;
8045 set_imsm_ord_tbl_ent(map,
8046 map->num_members - 1,
8047 ord);
8048 }
8049 id->dev = new_dev;
8050 tofree = (void **)dev;
8051
8052 /* update chunk size
8053 */
8054 if (u->new_chunksize > 0)
8055 map->blocks_per_strip =
8056 __cpu_to_le16(u->new_chunksize * 2);
8057
8058 /* add disk
8059 */
8060 if ((u->new_level != 5) ||
8061 (migr_map->raid_level != 0) ||
8062 (migr_map->raid_level == map->raid_level))
8063 goto skip_disk_add;
8064
8065 if (u->new_disks[0] >= 0) {
8066 /* use passes spare
8067 */
8068 new_disk = get_disk_super(super,
8069 major(u->new_disks[0]),
8070 minor(u->new_disks[0]));
8071 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
8072 major(u->new_disks[0]),
8073 minor(u->new_disks[0]),
8074 new_disk, new_disk->index);
8075 if (new_disk == NULL)
8076 goto error_disk_add;
8077
8078 new_disk->index = map->num_members - 1;
8079 /* slot to fill in autolayout
8080 */
8081 new_disk->raiddisk = new_disk->index;
8082 new_disk->disk.status |= CONFIGURED_DISK;
8083 new_disk->disk.status &= ~SPARE_DISK;
8084 } else
8085 goto error_disk_add;
8086
8087 skip_disk_add:
8088 *tofree = *space_list;
8089 /* calculate new size
8090 */
8091 imsm_set_array_size(new_dev, -1);
8092
8093 ret_val = 1;
8094 }
8095 }
8096
8097 if (tofree)
8098 *space_list = tofree;
8099 return ret_val;
8100
8101 error_disk_add:
8102 dprintf("Error: imsm: Cannot find disk.\n");
8103 return ret_val;
8104 }
8105
8106 static int apply_size_change_update(struct imsm_update_size_change *u,
8107 struct intel_super *super)
8108 {
8109 struct intel_dev *id;
8110 int ret_val = 0;
8111
8112 dprintf("(enter)\n");
8113 if ((u->subdev < 0) ||
8114 (u->subdev > 1)) {
8115 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8116 return ret_val;
8117 }
8118
8119 for (id = super->devlist ; id; id = id->next) {
8120 if (id->index == (unsigned)u->subdev) {
8121 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8122 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8123 int used_disks = imsm_num_data_members(dev, MAP_0);
8124 unsigned long long blocks_per_member;
8125
8126 /* calculate new size
8127 */
8128 blocks_per_member = u->new_size / used_disks;
8129 dprintf("(size: %llu, blocks per member: %llu)\n",
8130 u->new_size, blocks_per_member);
8131 set_blocks_per_member(map, blocks_per_member);
8132 imsm_set_array_size(dev, u->new_size);
8133
8134 ret_val = 1;
8135 break;
8136 }
8137 }
8138
8139 return ret_val;
8140 }
8141
8142 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
8143 struct intel_super *super,
8144 struct active_array *active_array)
8145 {
8146 struct imsm_super *mpb = super->anchor;
8147 struct imsm_dev *dev = get_imsm_dev(super, u->array);
8148 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8149 struct imsm_map *migr_map;
8150 struct active_array *a;
8151 struct imsm_disk *disk;
8152 __u8 to_state;
8153 struct dl *dl;
8154 unsigned int found;
8155 int failed;
8156 int victim;
8157 int i;
8158 int second_map_created = 0;
8159
8160 for (; u; u = u->next) {
8161 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
8162
8163 if (victim < 0)
8164 return 0;
8165
8166 for (dl = super->disks; dl; dl = dl->next)
8167 if (dl == u->dl)
8168 break;
8169
8170 if (!dl) {
8171 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
8172 u->dl->index);
8173 return 0;
8174 }
8175
8176 /* count failures (excluding rebuilds and the victim)
8177 * to determine map[0] state
8178 */
8179 failed = 0;
8180 for (i = 0; i < map->num_members; i++) {
8181 if (i == u->slot)
8182 continue;
8183 disk = get_imsm_disk(super,
8184 get_imsm_disk_idx(dev, i, MAP_X));
8185 if (!disk || is_failed(disk))
8186 failed++;
8187 }
8188
8189 /* adding a pristine spare, assign a new index */
8190 if (dl->index < 0) {
8191 dl->index = super->anchor->num_disks;
8192 super->anchor->num_disks++;
8193 }
8194 disk = &dl->disk;
8195 disk->status |= CONFIGURED_DISK;
8196 disk->status &= ~SPARE_DISK;
8197
8198 /* mark rebuild */
8199 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
8200 if (!second_map_created) {
8201 second_map_created = 1;
8202 map->map_state = IMSM_T_STATE_DEGRADED;
8203 migrate(dev, super, to_state, MIGR_REBUILD);
8204 } else
8205 map->map_state = to_state;
8206 migr_map = get_imsm_map(dev, MAP_1);
8207 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8208 set_imsm_ord_tbl_ent(migr_map, u->slot,
8209 dl->index | IMSM_ORD_REBUILD);
8210
8211 /* update the family_num to mark a new container
8212 * generation, being careful to record the existing
8213 * family_num in orig_family_num to clean up after
8214 * earlier mdadm versions that neglected to set it.
8215 */
8216 if (mpb->orig_family_num == 0)
8217 mpb->orig_family_num = mpb->family_num;
8218 mpb->family_num += super->random;
8219
8220 /* count arrays using the victim in the metadata */
8221 found = 0;
8222 for (a = active_array; a ; a = a->next) {
8223 dev = get_imsm_dev(super, a->info.container_member);
8224 map = get_imsm_map(dev, MAP_0);
8225
8226 if (get_imsm_disk_slot(map, victim) >= 0)
8227 found++;
8228 }
8229
8230 /* delete the victim if it is no longer being
8231 * utilized anywhere
8232 */
8233 if (!found) {
8234 struct dl **dlp;
8235
8236 /* We know that 'manager' isn't touching anything,
8237 * so it is safe to delete
8238 */
8239 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
8240 if ((*dlp)->index == victim)
8241 break;
8242
8243 /* victim may be on the missing list */
8244 if (!*dlp)
8245 for (dlp = &super->missing; *dlp;
8246 dlp = &(*dlp)->next)
8247 if ((*dlp)->index == victim)
8248 break;
8249 imsm_delete(super, dlp, victim);
8250 }
8251 }
8252
8253 return 1;
8254 }
8255
8256 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8257 struct intel_super *super,
8258 void ***space_list)
8259 {
8260 struct dl *new_disk;
8261 struct intel_dev *id;
8262 int i;
8263 int delta_disks = u->new_raid_disks - u->old_raid_disks;
8264 int disk_count = u->old_raid_disks;
8265 void **tofree = NULL;
8266 int devices_to_reshape = 1;
8267 struct imsm_super *mpb = super->anchor;
8268 int ret_val = 0;
8269 unsigned int dev_id;
8270
8271 dprintf("(enter)\n");
8272
8273 /* enable spares to use in array */
8274 for (i = 0; i < delta_disks; i++) {
8275 new_disk = get_disk_super(super,
8276 major(u->new_disks[i]),
8277 minor(u->new_disks[i]));
8278 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
8279 major(u->new_disks[i]), minor(u->new_disks[i]),
8280 new_disk, new_disk->index);
8281 if ((new_disk == NULL) ||
8282 ((new_disk->index >= 0) &&
8283 (new_disk->index < u->old_raid_disks)))
8284 goto update_reshape_exit;
8285 new_disk->index = disk_count++;
8286 /* slot to fill in autolayout
8287 */
8288 new_disk->raiddisk = new_disk->index;
8289 new_disk->disk.status |=
8290 CONFIGURED_DISK;
8291 new_disk->disk.status &= ~SPARE_DISK;
8292 }
8293
8294 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8295 mpb->num_raid_devs);
8296 /* manage changes in volume
8297 */
8298 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
8299 void **sp = *space_list;
8300 struct imsm_dev *newdev;
8301 struct imsm_map *newmap, *oldmap;
8302
8303 for (id = super->devlist ; id; id = id->next) {
8304 if (id->index == dev_id)
8305 break;
8306 }
8307 if (id == NULL)
8308 break;
8309 if (!sp)
8310 continue;
8311 *space_list = *sp;
8312 newdev = (void*)sp;
8313 /* Copy the dev, but not (all of) the map */
8314 memcpy(newdev, id->dev, sizeof(*newdev));
8315 oldmap = get_imsm_map(id->dev, MAP_0);
8316 newmap = get_imsm_map(newdev, MAP_0);
8317 /* Copy the current map */
8318 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8319 /* update one device only
8320 */
8321 if (devices_to_reshape) {
8322 dprintf("imsm: modifying subdev: %i\n",
8323 id->index);
8324 devices_to_reshape--;
8325 newdev->vol.migr_state = 1;
8326 newdev->vol.curr_migr_unit = 0;
8327 set_migr_type(newdev, MIGR_GEN_MIGR);
8328 newmap->num_members = u->new_raid_disks;
8329 for (i = 0; i < delta_disks; i++) {
8330 set_imsm_ord_tbl_ent(newmap,
8331 u->old_raid_disks + i,
8332 u->old_raid_disks + i);
8333 }
8334 /* New map is correct, now need to save old map
8335 */
8336 newmap = get_imsm_map(newdev, MAP_1);
8337 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8338
8339 imsm_set_array_size(newdev, -1);
8340 }
8341
8342 sp = (void **)id->dev;
8343 id->dev = newdev;
8344 *sp = tofree;
8345 tofree = sp;
8346
8347 /* Clear migration record */
8348 memset(super->migr_rec, 0, sizeof(struct migr_record));
8349 }
8350 if (tofree)
8351 *space_list = tofree;
8352 ret_val = 1;
8353
8354 update_reshape_exit:
8355
8356 return ret_val;
8357 }
8358
8359 static int apply_takeover_update(struct imsm_update_takeover *u,
8360 struct intel_super *super,
8361 void ***space_list)
8362 {
8363 struct imsm_dev *dev = NULL;
8364 struct intel_dev *dv;
8365 struct imsm_dev *dev_new;
8366 struct imsm_map *map;
8367 struct dl *dm, *du;
8368 int i;
8369
8370 for (dv = super->devlist; dv; dv = dv->next)
8371 if (dv->index == (unsigned int)u->subarray) {
8372 dev = dv->dev;
8373 break;
8374 }
8375
8376 if (dev == NULL)
8377 return 0;
8378
8379 map = get_imsm_map(dev, MAP_0);
8380
8381 if (u->direction == R10_TO_R0) {
8382 /* Number of failed disks must be half of initial disk number */
8383 if (imsm_count_failed(super, dev, MAP_0) !=
8384 (map->num_members / 2))
8385 return 0;
8386
8387 /* iterate through devices to mark removed disks as spare */
8388 for (dm = super->disks; dm; dm = dm->next) {
8389 if (dm->disk.status & FAILED_DISK) {
8390 int idx = dm->index;
8391 /* update indexes on the disk list */
8392 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
8393 the index values will end up being correct.... NB */
8394 for (du = super->disks; du; du = du->next)
8395 if (du->index > idx)
8396 du->index--;
8397 /* mark as spare disk */
8398 mark_spare(dm);
8399 }
8400 }
8401 /* update map */
8402 map->num_members = map->num_members / 2;
8403 map->map_state = IMSM_T_STATE_NORMAL;
8404 map->num_domains = 1;
8405 map->raid_level = 0;
8406 map->failed_disk_num = -1;
8407 }
8408
8409 if (u->direction == R0_TO_R10) {
8410 void **space;
8411 /* update slots in current disk list */
8412 for (dm = super->disks; dm; dm = dm->next) {
8413 if (dm->index >= 0)
8414 dm->index *= 2;
8415 }
8416 /* create new *missing* disks */
8417 for (i = 0; i < map->num_members; i++) {
8418 space = *space_list;
8419 if (!space)
8420 continue;
8421 *space_list = *space;
8422 du = (void *)space;
8423 memcpy(du, super->disks, sizeof(*du));
8424 du->fd = -1;
8425 du->minor = 0;
8426 du->major = 0;
8427 du->index = (i * 2) + 1;
8428 sprintf((char *)du->disk.serial,
8429 " MISSING_%d", du->index);
8430 sprintf((char *)du->serial,
8431 "MISSING_%d", du->index);
8432 du->next = super->missing;
8433 super->missing = du;
8434 }
8435 /* create new dev and map */
8436 space = *space_list;
8437 if (!space)
8438 return 0;
8439 *space_list = *space;
8440 dev_new = (void *)space;
8441 memcpy(dev_new, dev, sizeof(*dev));
8442 /* update new map */
8443 map = get_imsm_map(dev_new, MAP_0);
8444 map->num_members = map->num_members * 2;
8445 map->map_state = IMSM_T_STATE_DEGRADED;
8446 map->num_domains = 2;
8447 map->raid_level = 1;
8448 /* replace dev<->dev_new */
8449 dv->dev = dev_new;
8450 }
8451 /* update disk order table */
8452 for (du = super->disks; du; du = du->next)
8453 if (du->index >= 0)
8454 set_imsm_ord_tbl_ent(map, du->index, du->index);
8455 for (du = super->missing; du; du = du->next)
8456 if (du->index >= 0) {
8457 set_imsm_ord_tbl_ent(map, du->index, du->index);
8458 mark_missing(dv->dev, &du->disk, du->index);
8459 }
8460
8461 return 1;
8462 }
8463
8464 static void imsm_process_update(struct supertype *st,
8465 struct metadata_update *update)
8466 {
8467 /**
8468 * crack open the metadata_update envelope to find the update record
8469 * update can be one of:
8470 * update_reshape_container_disks - all the arrays in the container
8471 * are being reshaped to have more devices. We need to mark
8472 * the arrays for general migration and convert selected spares
8473 * into active devices.
8474 * update_activate_spare - a spare device has replaced a failed
8475 * device in an array, update the disk_ord_tbl. If this disk is
8476 * present in all member arrays then also clear the SPARE_DISK
8477 * flag
8478 * update_create_array
8479 * update_kill_array
8480 * update_rename_array
8481 * update_add_remove_disk
8482 */
8483 struct intel_super *super = st->sb;
8484 struct imsm_super *mpb;
8485 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8486
8487 /* update requires a larger buf but the allocation failed */
8488 if (super->next_len && !super->next_buf) {
8489 super->next_len = 0;
8490 return;
8491 }
8492
8493 if (super->next_buf) {
8494 memcpy(super->next_buf, super->buf, super->len);
8495 free(super->buf);
8496 super->len = super->next_len;
8497 super->buf = super->next_buf;
8498
8499 super->next_len = 0;
8500 super->next_buf = NULL;
8501 }
8502
8503 mpb = super->anchor;
8504
8505 switch (type) {
8506 case update_general_migration_checkpoint: {
8507 struct intel_dev *id;
8508 struct imsm_update_general_migration_checkpoint *u =
8509 (void *)update->buf;
8510
8511 dprintf("called for update_general_migration_checkpoint\n");
8512
8513 /* find device under general migration */
8514 for (id = super->devlist ; id; id = id->next) {
8515 if (is_gen_migration(id->dev)) {
8516 id->dev->vol.curr_migr_unit =
8517 __cpu_to_le32(u->curr_migr_unit);
8518 super->updates_pending++;
8519 }
8520 }
8521 break;
8522 }
8523 case update_takeover: {
8524 struct imsm_update_takeover *u = (void *)update->buf;
8525 if (apply_takeover_update(u, super, &update->space_list)) {
8526 imsm_update_version_info(super);
8527 super->updates_pending++;
8528 }
8529 break;
8530 }
8531
8532 case update_reshape_container_disks: {
8533 struct imsm_update_reshape *u = (void *)update->buf;
8534 if (apply_reshape_container_disks_update(
8535 u, super, &update->space_list))
8536 super->updates_pending++;
8537 break;
8538 }
8539 case update_reshape_migration: {
8540 struct imsm_update_reshape_migration *u = (void *)update->buf;
8541 if (apply_reshape_migration_update(
8542 u, super, &update->space_list))
8543 super->updates_pending++;
8544 break;
8545 }
8546 case update_size_change: {
8547 struct imsm_update_size_change *u = (void *)update->buf;
8548 if (apply_size_change_update(u, super))
8549 super->updates_pending++;
8550 break;
8551 }
8552 case update_activate_spare: {
8553 struct imsm_update_activate_spare *u = (void *) update->buf;
8554 if (apply_update_activate_spare(u, super, st->arrays))
8555 super->updates_pending++;
8556 break;
8557 }
8558 case update_create_array: {
8559 /* someone wants to create a new array, we need to be aware of
8560 * a few races/collisions:
8561 * 1/ 'Create' called by two separate instances of mdadm
8562 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
8563 * devices that have since been assimilated via
8564 * activate_spare.
8565 * In the event this update can not be carried out mdadm will
8566 * (FIX ME) notice that its update did not take hold.
8567 */
8568 struct imsm_update_create_array *u = (void *) update->buf;
8569 struct intel_dev *dv;
8570 struct imsm_dev *dev;
8571 struct imsm_map *map, *new_map;
8572 unsigned long long start, end;
8573 unsigned long long new_start, new_end;
8574 int i;
8575 struct disk_info *inf;
8576 struct dl *dl;
8577
8578 /* handle racing creates: first come first serve */
8579 if (u->dev_idx < mpb->num_raid_devs) {
8580 dprintf("subarray %d already defined\n", u->dev_idx);
8581 goto create_error;
8582 }
8583
8584 /* check update is next in sequence */
8585 if (u->dev_idx != mpb->num_raid_devs) {
8586 dprintf("can not create array %d expected index %d\n",
8587 u->dev_idx, mpb->num_raid_devs);
8588 goto create_error;
8589 }
8590
8591 new_map = get_imsm_map(&u->dev, MAP_0);
8592 new_start = pba_of_lba0(new_map);
8593 new_end = new_start + blocks_per_member(new_map);
8594 inf = get_disk_info(u);
8595
8596 /* handle activate_spare versus create race:
8597 * check to make sure that overlapping arrays do not include
8598 * overalpping disks
8599 */
8600 for (i = 0; i < mpb->num_raid_devs; i++) {
8601 dev = get_imsm_dev(super, i);
8602 map = get_imsm_map(dev, MAP_0);
8603 start = pba_of_lba0(map);
8604 end = start + blocks_per_member(map);
8605 if ((new_start >= start && new_start <= end) ||
8606 (start >= new_start && start <= new_end))
8607 /* overlap */;
8608 else
8609 continue;
8610
8611 if (disks_overlap(super, i, u)) {
8612 dprintf("arrays overlap\n");
8613 goto create_error;
8614 }
8615 }
8616
8617 /* check that prepare update was successful */
8618 if (!update->space) {
8619 dprintf("prepare update failed\n");
8620 goto create_error;
8621 }
8622
8623 /* check that all disks are still active before committing
8624 * changes. FIXME: could we instead handle this by creating a
8625 * degraded array? That's probably not what the user expects,
8626 * so better to drop this update on the floor.
8627 */
8628 for (i = 0; i < new_map->num_members; i++) {
8629 dl = serial_to_dl(inf[i].serial, super);
8630 if (!dl) {
8631 dprintf("disk disappeared\n");
8632 goto create_error;
8633 }
8634 }
8635
8636 super->updates_pending++;
8637
8638 /* convert spares to members and fixup ord_tbl */
8639 for (i = 0; i < new_map->num_members; i++) {
8640 dl = serial_to_dl(inf[i].serial, super);
8641 if (dl->index == -1) {
8642 dl->index = mpb->num_disks;
8643 mpb->num_disks++;
8644 dl->disk.status |= CONFIGURED_DISK;
8645 dl->disk.status &= ~SPARE_DISK;
8646 }
8647 set_imsm_ord_tbl_ent(new_map, i, dl->index);
8648 }
8649
8650 dv = update->space;
8651 dev = dv->dev;
8652 update->space = NULL;
8653 imsm_copy_dev(dev, &u->dev);
8654 dv->index = u->dev_idx;
8655 dv->next = super->devlist;
8656 super->devlist = dv;
8657 mpb->num_raid_devs++;
8658
8659 imsm_update_version_info(super);
8660 break;
8661 create_error:
8662 /* mdmon knows how to release update->space, but not
8663 * ((struct intel_dev *) update->space)->dev
8664 */
8665 if (update->space) {
8666 dv = update->space;
8667 free(dv->dev);
8668 }
8669 break;
8670 }
8671 case update_kill_array: {
8672 struct imsm_update_kill_array *u = (void *) update->buf;
8673 int victim = u->dev_idx;
8674 struct active_array *a;
8675 struct intel_dev **dp;
8676 struct imsm_dev *dev;
8677
8678 /* sanity check that we are not affecting the uuid of
8679 * active arrays, or deleting an active array
8680 *
8681 * FIXME when immutable ids are available, but note that
8682 * we'll also need to fixup the invalidated/active
8683 * subarray indexes in mdstat
8684 */
8685 for (a = st->arrays; a; a = a->next)
8686 if (a->info.container_member >= victim)
8687 break;
8688 /* by definition if mdmon is running at least one array
8689 * is active in the container, so checking
8690 * mpb->num_raid_devs is just extra paranoia
8691 */
8692 dev = get_imsm_dev(super, victim);
8693 if (a || !dev || mpb->num_raid_devs == 1) {
8694 dprintf("failed to delete subarray-%d\n", victim);
8695 break;
8696 }
8697
8698 for (dp = &super->devlist; *dp;)
8699 if ((*dp)->index == (unsigned)super->current_vol) {
8700 *dp = (*dp)->next;
8701 } else {
8702 if ((*dp)->index > (unsigned)victim)
8703 (*dp)->index--;
8704 dp = &(*dp)->next;
8705 }
8706 mpb->num_raid_devs--;
8707 super->updates_pending++;
8708 break;
8709 }
8710 case update_rename_array: {
8711 struct imsm_update_rename_array *u = (void *) update->buf;
8712 char name[MAX_RAID_SERIAL_LEN+1];
8713 int target = u->dev_idx;
8714 struct active_array *a;
8715 struct imsm_dev *dev;
8716
8717 /* sanity check that we are not affecting the uuid of
8718 * an active array
8719 */
8720 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
8721 name[MAX_RAID_SERIAL_LEN] = '\0';
8722 for (a = st->arrays; a; a = a->next)
8723 if (a->info.container_member == target)
8724 break;
8725 dev = get_imsm_dev(super, u->dev_idx);
8726 if (a || !dev || !check_name(super, name, 1)) {
8727 dprintf("failed to rename subarray-%d\n", target);
8728 break;
8729 }
8730
8731 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
8732 super->updates_pending++;
8733 break;
8734 }
8735 case update_add_remove_disk: {
8736 /* we may be able to repair some arrays if disks are
8737 * being added, check the status of add_remove_disk
8738 * if discs has been added.
8739 */
8740 if (add_remove_disk_update(super)) {
8741 struct active_array *a;
8742
8743 super->updates_pending++;
8744 for (a = st->arrays; a; a = a->next)
8745 a->check_degraded = 1;
8746 }
8747 break;
8748 }
8749 default:
8750 pr_err("error: unsuported process update type:(type: %d)\n", type);
8751 }
8752 }
8753
8754 static struct mdinfo *get_spares_for_grow(struct supertype *st);
8755
8756 static int imsm_prepare_update(struct supertype *st,
8757 struct metadata_update *update)
8758 {
8759 /**
8760 * Allocate space to hold new disk entries, raid-device entries or a new
8761 * mpb if necessary. The manager synchronously waits for updates to
8762 * complete in the monitor, so new mpb buffers allocated here can be
8763 * integrated by the monitor thread without worrying about live pointers
8764 * in the manager thread.
8765 */
8766 enum imsm_update_type type;
8767 struct intel_super *super = st->sb;
8768 struct imsm_super *mpb = super->anchor;
8769 size_t buf_len;
8770 size_t len = 0;
8771
8772 if (update->len < (int)sizeof(type))
8773 return 0;
8774
8775 type = *(enum imsm_update_type *) update->buf;
8776
8777 switch (type) {
8778 case update_general_migration_checkpoint:
8779 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
8780 return 0;
8781 dprintf("called for update_general_migration_checkpoint\n");
8782 break;
8783 case update_takeover: {
8784 struct imsm_update_takeover *u = (void *)update->buf;
8785 if (update->len < (int)sizeof(*u))
8786 return 0;
8787 if (u->direction == R0_TO_R10) {
8788 void **tail = (void **)&update->space_list;
8789 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
8790 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8791 int num_members = map->num_members;
8792 void *space;
8793 int size, i;
8794 /* allocate memory for added disks */
8795 for (i = 0; i < num_members; i++) {
8796 size = sizeof(struct dl);
8797 space = xmalloc(size);
8798 *tail = space;
8799 tail = space;
8800 *tail = NULL;
8801 }
8802 /* allocate memory for new device */
8803 size = sizeof_imsm_dev(super->devlist->dev, 0) +
8804 (num_members * sizeof(__u32));
8805 space = xmalloc(size);
8806 *tail = space;
8807 tail = space;
8808 *tail = NULL;
8809 len = disks_to_mpb_size(num_members * 2);
8810 }
8811
8812 break;
8813 }
8814 case update_reshape_container_disks: {
8815 /* Every raid device in the container is about to
8816 * gain some more devices, and we will enter a
8817 * reconfiguration.
8818 * So each 'imsm_map' will be bigger, and the imsm_vol
8819 * will now hold 2 of them.
8820 * Thus we need new 'struct imsm_dev' allocations sized
8821 * as sizeof_imsm_dev but with more devices in both maps.
8822 */
8823 struct imsm_update_reshape *u = (void *)update->buf;
8824 struct intel_dev *dl;
8825 void **space_tail = (void**)&update->space_list;
8826
8827 if (update->len < (int)sizeof(*u))
8828 return 0;
8829
8830 dprintf("for update_reshape\n");
8831
8832 for (dl = super->devlist; dl; dl = dl->next) {
8833 int size = sizeof_imsm_dev(dl->dev, 1);
8834 void *s;
8835 if (u->new_raid_disks > u->old_raid_disks)
8836 size += sizeof(__u32)*2*
8837 (u->new_raid_disks - u->old_raid_disks);
8838 s = xmalloc(size);
8839 *space_tail = s;
8840 space_tail = s;
8841 *space_tail = NULL;
8842 }
8843
8844 len = disks_to_mpb_size(u->new_raid_disks);
8845 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8846 break;
8847 }
8848 case update_reshape_migration: {
8849 /* for migration level 0->5 we need to add disks
8850 * so the same as for container operation we will copy
8851 * device to the bigger location.
8852 * in memory prepared device and new disk area are prepared
8853 * for usage in process update
8854 */
8855 struct imsm_update_reshape_migration *u = (void *)update->buf;
8856 struct intel_dev *id;
8857 void **space_tail = (void **)&update->space_list;
8858 int size;
8859 void *s;
8860 int current_level = -1;
8861
8862 if (update->len < (int)sizeof(*u))
8863 return 0;
8864
8865 dprintf("for update_reshape\n");
8866
8867 /* add space for bigger array in update
8868 */
8869 for (id = super->devlist; id; id = id->next) {
8870 if (id->index == (unsigned)u->subdev) {
8871 size = sizeof_imsm_dev(id->dev, 1);
8872 if (u->new_raid_disks > u->old_raid_disks)
8873 size += sizeof(__u32)*2*
8874 (u->new_raid_disks - u->old_raid_disks);
8875 s = xmalloc(size);
8876 *space_tail = s;
8877 space_tail = s;
8878 *space_tail = NULL;
8879 break;
8880 }
8881 }
8882 if (update->space_list == NULL)
8883 break;
8884
8885 /* add space for disk in update
8886 */
8887 size = sizeof(struct dl);
8888 s = xmalloc(size);
8889 *space_tail = s;
8890 space_tail = s;
8891 *space_tail = NULL;
8892
8893 /* add spare device to update
8894 */
8895 for (id = super->devlist ; id; id = id->next)
8896 if (id->index == (unsigned)u->subdev) {
8897 struct imsm_dev *dev;
8898 struct imsm_map *map;
8899
8900 dev = get_imsm_dev(super, u->subdev);
8901 map = get_imsm_map(dev, MAP_0);
8902 current_level = map->raid_level;
8903 break;
8904 }
8905 if ((u->new_level == 5) && (u->new_level != current_level)) {
8906 struct mdinfo *spares;
8907
8908 spares = get_spares_for_grow(st);
8909 if (spares) {
8910 struct dl *dl;
8911 struct mdinfo *dev;
8912
8913 dev = spares->devs;
8914 if (dev) {
8915 u->new_disks[0] =
8916 makedev(dev->disk.major,
8917 dev->disk.minor);
8918 dl = get_disk_super(super,
8919 dev->disk.major,
8920 dev->disk.minor);
8921 dl->index = u->old_raid_disks;
8922 dev = dev->next;
8923 }
8924 sysfs_free(spares);
8925 }
8926 }
8927 len = disks_to_mpb_size(u->new_raid_disks);
8928 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8929 break;
8930 }
8931 case update_size_change: {
8932 if (update->len < (int)sizeof(struct imsm_update_size_change))
8933 return 0;
8934 break;
8935 }
8936 case update_activate_spare: {
8937 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
8938 return 0;
8939 break;
8940 }
8941 case update_create_array: {
8942 struct imsm_update_create_array *u = (void *) update->buf;
8943 struct intel_dev *dv;
8944 struct imsm_dev *dev = &u->dev;
8945 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8946 struct dl *dl;
8947 struct disk_info *inf;
8948 int i;
8949 int activate = 0;
8950
8951 if (update->len < (int)sizeof(*u))
8952 return 0;
8953
8954 inf = get_disk_info(u);
8955 len = sizeof_imsm_dev(dev, 1);
8956 /* allocate a new super->devlist entry */
8957 dv = xmalloc(sizeof(*dv));
8958 dv->dev = xmalloc(len);
8959 update->space = dv;
8960
8961 /* count how many spares will be converted to members */
8962 for (i = 0; i < map->num_members; i++) {
8963 dl = serial_to_dl(inf[i].serial, super);
8964 if (!dl) {
8965 /* hmm maybe it failed?, nothing we can do about
8966 * it here
8967 */
8968 continue;
8969 }
8970 if (count_memberships(dl, super) == 0)
8971 activate++;
8972 }
8973 len += activate * sizeof(struct imsm_disk);
8974 break;
8975 }
8976 case update_kill_array: {
8977 if (update->len < (int)sizeof(struct imsm_update_kill_array))
8978 return 0;
8979 break;
8980 }
8981 case update_rename_array: {
8982 if (update->len < (int)sizeof(struct imsm_update_rename_array))
8983 return 0;
8984 break;
8985 }
8986 case update_add_remove_disk:
8987 /* no update->len needed */
8988 break;
8989 default:
8990 return 0;
8991 }
8992
8993 /* check if we need a larger metadata buffer */
8994 if (super->next_buf)
8995 buf_len = super->next_len;
8996 else
8997 buf_len = super->len;
8998
8999 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
9000 /* ok we need a larger buf than what is currently allocated
9001 * if this allocation fails process_update will notice that
9002 * ->next_len is set and ->next_buf is NULL
9003 */
9004 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
9005 if (super->next_buf)
9006 free(super->next_buf);
9007
9008 super->next_len = buf_len;
9009 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
9010 memset(super->next_buf, 0, buf_len);
9011 else
9012 super->next_buf = NULL;
9013 }
9014 return 1;
9015 }
9016
9017 /* must be called while manager is quiesced */
9018 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
9019 {
9020 struct imsm_super *mpb = super->anchor;
9021 struct dl *iter;
9022 struct imsm_dev *dev;
9023 struct imsm_map *map;
9024 int i, j, num_members;
9025 __u32 ord;
9026
9027 dprintf("deleting device[%d] from imsm_super\n", index);
9028
9029 /* shift all indexes down one */
9030 for (iter = super->disks; iter; iter = iter->next)
9031 if (iter->index > (int)index)
9032 iter->index--;
9033 for (iter = super->missing; iter; iter = iter->next)
9034 if (iter->index > (int)index)
9035 iter->index--;
9036
9037 for (i = 0; i < mpb->num_raid_devs; i++) {
9038 dev = get_imsm_dev(super, i);
9039 map = get_imsm_map(dev, MAP_0);
9040 num_members = map->num_members;
9041 for (j = 0; j < num_members; j++) {
9042 /* update ord entries being careful not to propagate
9043 * ord-flags to the first map
9044 */
9045 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
9046
9047 if (ord_to_idx(ord) <= index)
9048 continue;
9049
9050 map = get_imsm_map(dev, MAP_0);
9051 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
9052 map = get_imsm_map(dev, MAP_1);
9053 if (map)
9054 set_imsm_ord_tbl_ent(map, j, ord - 1);
9055 }
9056 }
9057
9058 mpb->num_disks--;
9059 super->updates_pending++;
9060 if (*dlp) {
9061 struct dl *dl = *dlp;
9062
9063 *dlp = (*dlp)->next;
9064 __free_imsm_disk(dl);
9065 }
9066 }
9067 #endif /* MDASSEMBLE */
9068
9069 static void close_targets(int *targets, int new_disks)
9070 {
9071 int i;
9072
9073 if (!targets)
9074 return;
9075
9076 for (i = 0; i < new_disks; i++) {
9077 if (targets[i] >= 0) {
9078 close(targets[i]);
9079 targets[i] = -1;
9080 }
9081 }
9082 }
9083
9084 static int imsm_get_allowed_degradation(int level, int raid_disks,
9085 struct intel_super *super,
9086 struct imsm_dev *dev)
9087 {
9088 switch (level) {
9089 case 1:
9090 case 10:{
9091 int ret_val = 0;
9092 struct imsm_map *map;
9093 int i;
9094
9095 ret_val = raid_disks/2;
9096 /* check map if all disks pairs not failed
9097 * in both maps
9098 */
9099 map = get_imsm_map(dev, MAP_0);
9100 for (i = 0; i < ret_val; i++) {
9101 int degradation = 0;
9102 if (get_imsm_disk(super, i) == NULL)
9103 degradation++;
9104 if (get_imsm_disk(super, i + 1) == NULL)
9105 degradation++;
9106 if (degradation == 2)
9107 return 0;
9108 }
9109 map = get_imsm_map(dev, MAP_1);
9110 /* if there is no second map
9111 * result can be returned
9112 */
9113 if (map == NULL)
9114 return ret_val;
9115 /* check degradation in second map
9116 */
9117 for (i = 0; i < ret_val; i++) {
9118 int degradation = 0;
9119 if (get_imsm_disk(super, i) == NULL)
9120 degradation++;
9121 if (get_imsm_disk(super, i + 1) == NULL)
9122 degradation++;
9123 if (degradation == 2)
9124 return 0;
9125 }
9126 return ret_val;
9127 }
9128 case 5:
9129 return 1;
9130 case 6:
9131 return 2;
9132 default:
9133 return 0;
9134 }
9135 }
9136
9137 /*******************************************************************************
9138 * Function: open_backup_targets
9139 * Description: Function opens file descriptors for all devices given in
9140 * info->devs
9141 * Parameters:
9142 * info : general array info
9143 * raid_disks : number of disks
9144 * raid_fds : table of device's file descriptors
9145 * super : intel super for raid10 degradation check
9146 * dev : intel device for raid10 degradation check
9147 * Returns:
9148 * 0 : success
9149 * -1 : fail
9150 ******************************************************************************/
9151 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
9152 struct intel_super *super, struct imsm_dev *dev)
9153 {
9154 struct mdinfo *sd;
9155 int i;
9156 int opened = 0;
9157
9158 for (i = 0; i < raid_disks; i++)
9159 raid_fds[i] = -1;
9160
9161 for (sd = info->devs ; sd ; sd = sd->next) {
9162 char *dn;
9163
9164 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
9165 dprintf("disk is faulty!!\n");
9166 continue;
9167 }
9168
9169 if ((sd->disk.raid_disk >= raid_disks) ||
9170 (sd->disk.raid_disk < 0))
9171 continue;
9172
9173 dn = map_dev(sd->disk.major,
9174 sd->disk.minor, 1);
9175 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
9176 if (raid_fds[sd->disk.raid_disk] < 0) {
9177 pr_err("cannot open component\n");
9178 continue;
9179 }
9180 opened++;
9181 }
9182 /* check if maximum array degradation level is not exceeded
9183 */
9184 if ((raid_disks - opened) >
9185 imsm_get_allowed_degradation(info->new_level,
9186 raid_disks,
9187 super, dev)) {
9188 pr_err("Not enough disks can be opened.\n");
9189 close_targets(raid_fds, raid_disks);
9190 return -2;
9191 }
9192 return 0;
9193 }
9194
9195 /*******************************************************************************
9196 * Function: validate_container_imsm
9197 * Description: This routine validates container after assemble,
9198 * eg. if devices in container are under the same controller.
9199 *
9200 * Parameters:
9201 * info : linked list with info about devices used in array
9202 * Returns:
9203 * 1 : HBA mismatch
9204 * 0 : Success
9205 ******************************************************************************/
9206 int validate_container_imsm(struct mdinfo *info)
9207 {
9208 if (check_env("IMSM_NO_PLATFORM"))
9209 return 0;
9210
9211 struct sys_dev *idev;
9212 struct sys_dev *hba = NULL;
9213 struct sys_dev *intel_devices = find_intel_devices();
9214 char *dev_path = devt_to_devpath(makedev(info->disk.major,
9215 info->disk.minor));
9216
9217 for (idev = intel_devices; idev; idev = idev->next) {
9218 if (dev_path && strstr(dev_path, idev->path)) {
9219 hba = idev;
9220 break;
9221 }
9222 }
9223 if (dev_path)
9224 free(dev_path);
9225
9226 if (!hba) {
9227 pr_err("WARNING - Cannot detect HBA for device %s!\n",
9228 devid2kname(makedev(info->disk.major, info->disk.minor)));
9229 return 1;
9230 }
9231
9232 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
9233 struct mdinfo *dev;
9234
9235 for (dev = info->next; dev; dev = dev->next) {
9236 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
9237
9238 struct sys_dev *hba2 = NULL;
9239 for (idev = intel_devices; idev; idev = idev->next) {
9240 if (dev_path && strstr(dev_path, idev->path)) {
9241 hba2 = idev;
9242 break;
9243 }
9244 }
9245 if (dev_path)
9246 free(dev_path);
9247
9248 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
9249 get_orom_by_device_id(hba2->dev_id);
9250
9251 if (hba2 && hba->type != hba2->type) {
9252 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
9253 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
9254 return 1;
9255 }
9256
9257 if ((orom != orom2) || ((hba->type == SYS_DEV_VMD) && (hba != hba2))) {
9258 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
9259 " This operation is not supported and can lead to data loss.\n");
9260 return 1;
9261 }
9262
9263 if (!orom) {
9264 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
9265 " This operation is not supported and can lead to data loss.\n");
9266 return 1;
9267 }
9268 }
9269
9270 return 0;
9271 }
9272 #ifndef MDASSEMBLE
9273 /*******************************************************************************
9274 * Function: init_migr_record_imsm
9275 * Description: Function inits imsm migration record
9276 * Parameters:
9277 * super : imsm internal array info
9278 * dev : device under migration
9279 * info : general array info to find the smallest device
9280 * Returns:
9281 * none
9282 ******************************************************************************/
9283 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
9284 struct mdinfo *info)
9285 {
9286 struct intel_super *super = st->sb;
9287 struct migr_record *migr_rec = super->migr_rec;
9288 int new_data_disks;
9289 unsigned long long dsize, dev_sectors;
9290 long long unsigned min_dev_sectors = -1LLU;
9291 struct mdinfo *sd;
9292 char nm[30];
9293 int fd;
9294 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9295 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
9296 unsigned long long num_migr_units;
9297 unsigned long long array_blocks;
9298
9299 memset(migr_rec, 0, sizeof(struct migr_record));
9300 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
9301
9302 /* only ascending reshape supported now */
9303 migr_rec->ascending_migr = __cpu_to_le32(1);
9304
9305 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
9306 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9307 migr_rec->dest_depth_per_unit *=
9308 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9309 new_data_disks = imsm_num_data_members(dev, MAP_0);
9310 migr_rec->blocks_per_unit =
9311 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
9312 migr_rec->dest_depth_per_unit =
9313 __cpu_to_le32(migr_rec->dest_depth_per_unit);
9314 array_blocks = info->component_size * new_data_disks;
9315 num_migr_units =
9316 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9317
9318 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9319 num_migr_units++;
9320 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9321
9322 migr_rec->post_migr_vol_cap = dev->size_low;
9323 migr_rec->post_migr_vol_cap_hi = dev->size_high;
9324
9325 /* Find the smallest dev */
9326 for (sd = info->devs ; sd ; sd = sd->next) {
9327 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9328 fd = dev_open(nm, O_RDONLY);
9329 if (fd < 0)
9330 continue;
9331 get_dev_size(fd, NULL, &dsize);
9332 dev_sectors = dsize / 512;
9333 if (dev_sectors < min_dev_sectors)
9334 min_dev_sectors = dev_sectors;
9335 close(fd);
9336 }
9337 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9338 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9339
9340 write_imsm_migr_rec(st);
9341
9342 return;
9343 }
9344
9345 /*******************************************************************************
9346 * Function: save_backup_imsm
9347 * Description: Function saves critical data stripes to Migration Copy Area
9348 * and updates the current migration unit status.
9349 * Use restore_stripes() to form a destination stripe,
9350 * and to write it to the Copy Area.
9351 * Parameters:
9352 * st : supertype information
9353 * dev : imsm device that backup is saved for
9354 * info : general array info
9355 * buf : input buffer
9356 * length : length of data to backup (blocks_per_unit)
9357 * Returns:
9358 * 0 : success
9359 *, -1 : fail
9360 ******************************************************************************/
9361 int save_backup_imsm(struct supertype *st,
9362 struct imsm_dev *dev,
9363 struct mdinfo *info,
9364 void *buf,
9365 int length)
9366 {
9367 int rv = -1;
9368 struct intel_super *super = st->sb;
9369 unsigned long long *target_offsets = NULL;
9370 int *targets = NULL;
9371 int i;
9372 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9373 int new_disks = map_dest->num_members;
9374 int dest_layout = 0;
9375 int dest_chunk;
9376 unsigned long long start;
9377 int data_disks = imsm_num_data_members(dev, MAP_0);
9378
9379 targets = xmalloc(new_disks * sizeof(int));
9380
9381 for (i = 0; i < new_disks; i++)
9382 targets[i] = -1;
9383
9384 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
9385
9386 start = info->reshape_progress * 512;
9387 for (i = 0; i < new_disks; i++) {
9388 target_offsets[i] = (unsigned long long)
9389 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
9390 /* move back copy area adderss, it will be moved forward
9391 * in restore_stripes() using start input variable
9392 */
9393 target_offsets[i] -= start/data_disks;
9394 }
9395
9396 if (open_backup_targets(info, new_disks, targets,
9397 super, dev))
9398 goto abort;
9399
9400 dest_layout = imsm_level_to_layout(map_dest->raid_level);
9401 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9402
9403 if (restore_stripes(targets, /* list of dest devices */
9404 target_offsets, /* migration record offsets */
9405 new_disks,
9406 dest_chunk,
9407 map_dest->raid_level,
9408 dest_layout,
9409 -1, /* source backup file descriptor */
9410 0, /* input buf offset
9411 * always 0 buf is already offseted */
9412 start,
9413 length,
9414 buf) != 0) {
9415 pr_err("Error restoring stripes\n");
9416 goto abort;
9417 }
9418
9419 rv = 0;
9420
9421 abort:
9422 if (targets) {
9423 close_targets(targets, new_disks);
9424 free(targets);
9425 }
9426 free(target_offsets);
9427
9428 return rv;
9429 }
9430
9431 /*******************************************************************************
9432 * Function: save_checkpoint_imsm
9433 * Description: Function called for current unit status update
9434 * in the migration record. It writes it to disk.
9435 * Parameters:
9436 * super : imsm internal array info
9437 * info : general array info
9438 * Returns:
9439 * 0: success
9440 * 1: failure
9441 * 2: failure, means no valid migration record
9442 * / no general migration in progress /
9443 ******************************************************************************/
9444 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
9445 {
9446 struct intel_super *super = st->sb;
9447 unsigned long long blocks_per_unit;
9448 unsigned long long curr_migr_unit;
9449
9450 if (load_imsm_migr_rec(super, info) != 0) {
9451 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
9452 return 1;
9453 }
9454
9455 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
9456 if (blocks_per_unit == 0) {
9457 dprintf("imsm: no migration in progress.\n");
9458 return 2;
9459 }
9460 curr_migr_unit = info->reshape_progress / blocks_per_unit;
9461 /* check if array is alligned to copy area
9462 * if it is not alligned, add one to current migration unit value
9463 * this can happend on array reshape finish only
9464 */
9465 if (info->reshape_progress % blocks_per_unit)
9466 curr_migr_unit++;
9467
9468 super->migr_rec->curr_migr_unit =
9469 __cpu_to_le32(curr_migr_unit);
9470 super->migr_rec->rec_status = __cpu_to_le32(state);
9471 super->migr_rec->dest_1st_member_lba =
9472 __cpu_to_le32(curr_migr_unit *
9473 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
9474 if (write_imsm_migr_rec(st) < 0) {
9475 dprintf("imsm: Cannot write migration record outside backup area\n");
9476 return 1;
9477 }
9478
9479 return 0;
9480 }
9481
9482 /*******************************************************************************
9483 * Function: recover_backup_imsm
9484 * Description: Function recovers critical data from the Migration Copy Area
9485 * while assembling an array.
9486 * Parameters:
9487 * super : imsm internal array info
9488 * info : general array info
9489 * Returns:
9490 * 0 : success (or there is no data to recover)
9491 * 1 : fail
9492 ******************************************************************************/
9493 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
9494 {
9495 struct intel_super *super = st->sb;
9496 struct migr_record *migr_rec = super->migr_rec;
9497 struct imsm_map *map_dest = NULL;
9498 struct intel_dev *id = NULL;
9499 unsigned long long read_offset;
9500 unsigned long long write_offset;
9501 unsigned unit_len;
9502 int *targets = NULL;
9503 int new_disks, i, err;
9504 char *buf = NULL;
9505 int retval = 1;
9506 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
9507 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
9508 char buffer[20];
9509 int skipped_disks = 0;
9510
9511 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
9512 if (err < 1)
9513 return 1;
9514
9515 /* recover data only during assemblation */
9516 if (strncmp(buffer, "inactive", 8) != 0)
9517 return 0;
9518 /* no data to recover */
9519 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
9520 return 0;
9521 if (curr_migr_unit >= num_migr_units)
9522 return 1;
9523
9524 /* find device during reshape */
9525 for (id = super->devlist; id; id = id->next)
9526 if (is_gen_migration(id->dev))
9527 break;
9528 if (id == NULL)
9529 return 1;
9530
9531 map_dest = get_imsm_map(id->dev, MAP_0);
9532 new_disks = map_dest->num_members;
9533
9534 read_offset = (unsigned long long)
9535 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
9536
9537 write_offset = ((unsigned long long)
9538 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
9539 pba_of_lba0(map_dest)) * 512;
9540
9541 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9542 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
9543 goto abort;
9544 targets = xcalloc(new_disks, sizeof(int));
9545
9546 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
9547 pr_err("Cannot open some devices belonging to array.\n");
9548 goto abort;
9549 }
9550
9551 for (i = 0; i < new_disks; i++) {
9552 if (targets[i] < 0) {
9553 skipped_disks++;
9554 continue;
9555 }
9556 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
9557 pr_err("Cannot seek to block: %s\n",
9558 strerror(errno));
9559 skipped_disks++;
9560 continue;
9561 }
9562 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
9563 pr_err("Cannot read copy area block: %s\n",
9564 strerror(errno));
9565 skipped_disks++;
9566 continue;
9567 }
9568 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
9569 pr_err("Cannot seek to block: %s\n",
9570 strerror(errno));
9571 skipped_disks++;
9572 continue;
9573 }
9574 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
9575 pr_err("Cannot restore block: %s\n",
9576 strerror(errno));
9577 skipped_disks++;
9578 continue;
9579 }
9580 }
9581
9582 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
9583 new_disks,
9584 super,
9585 id->dev)) {
9586 pr_err("Cannot restore data from backup. Too many failed disks\n");
9587 goto abort;
9588 }
9589
9590 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
9591 /* ignore error == 2, this can mean end of reshape here
9592 */
9593 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
9594 } else
9595 retval = 0;
9596
9597 abort:
9598 if (targets) {
9599 for (i = 0; i < new_disks; i++)
9600 if (targets[i])
9601 close(targets[i]);
9602 free(targets);
9603 }
9604 free(buf);
9605 return retval;
9606 }
9607
9608 static char disk_by_path[] = "/dev/disk/by-path/";
9609
9610 static const char *imsm_get_disk_controller_domain(const char *path)
9611 {
9612 char disk_path[PATH_MAX];
9613 char *drv=NULL;
9614 struct stat st;
9615
9616 strcpy(disk_path, disk_by_path);
9617 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
9618 if (stat(disk_path, &st) == 0) {
9619 struct sys_dev* hba;
9620 char *path=NULL;
9621
9622 path = devt_to_devpath(st.st_rdev);
9623 if (path == NULL)
9624 return "unknown";
9625 hba = find_disk_attached_hba(-1, path);
9626 if (hba && hba->type == SYS_DEV_SAS)
9627 drv = "isci";
9628 else if (hba && hba->type == SYS_DEV_SATA)
9629 drv = "ahci";
9630 else
9631 drv = "unknown";
9632 dprintf("path: %s hba: %s attached: %s\n",
9633 path, (hba) ? hba->path : "NULL", drv);
9634 free(path);
9635 }
9636 return drv;
9637 }
9638
9639 static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
9640 {
9641 static char devnm[32];
9642 char subdev_name[20];
9643 struct mdstat_ent *mdstat;
9644
9645 sprintf(subdev_name, "%d", subdev);
9646 mdstat = mdstat_by_subdev(subdev_name, container);
9647 if (!mdstat)
9648 return NULL;
9649
9650 strcpy(devnm, mdstat->devnm);
9651 free_mdstat(mdstat);
9652 return devnm;
9653 }
9654
9655 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
9656 struct geo_params *geo,
9657 int *old_raid_disks,
9658 int direction)
9659 {
9660 /* currently we only support increasing the number of devices
9661 * for a container. This increases the number of device for each
9662 * member array. They must all be RAID0 or RAID5.
9663 */
9664 int ret_val = 0;
9665 struct mdinfo *info, *member;
9666 int devices_that_can_grow = 0;
9667
9668 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
9669
9670 if (geo->size > 0 ||
9671 geo->level != UnSet ||
9672 geo->layout != UnSet ||
9673 geo->chunksize != 0 ||
9674 geo->raid_disks == UnSet) {
9675 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
9676 return ret_val;
9677 }
9678
9679 if (direction == ROLLBACK_METADATA_CHANGES) {
9680 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
9681 return ret_val;
9682 }
9683
9684 info = container_content_imsm(st, NULL);
9685 for (member = info; member; member = member->next) {
9686 char *result;
9687
9688 dprintf("imsm: checking device_num: %i\n",
9689 member->container_member);
9690
9691 if (geo->raid_disks <= member->array.raid_disks) {
9692 /* we work on container for Online Capacity Expansion
9693 * only so raid_disks has to grow
9694 */
9695 dprintf("imsm: for container operation raid disks increase is required\n");
9696 break;
9697 }
9698
9699 if ((info->array.level != 0) &&
9700 (info->array.level != 5)) {
9701 /* we cannot use this container with other raid level
9702 */
9703 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
9704 info->array.level);
9705 break;
9706 } else {
9707 /* check for platform support
9708 * for this raid level configuration
9709 */
9710 struct intel_super *super = st->sb;
9711 if (!is_raid_level_supported(super->orom,
9712 member->array.level,
9713 geo->raid_disks)) {
9714 dprintf("platform does not support raid%d with %d disk%s\n",
9715 info->array.level,
9716 geo->raid_disks,
9717 geo->raid_disks > 1 ? "s" : "");
9718 break;
9719 }
9720 /* check if component size is aligned to chunk size
9721 */
9722 if (info->component_size %
9723 (info->array.chunk_size/512)) {
9724 dprintf("Component size is not aligned to chunk size\n");
9725 break;
9726 }
9727 }
9728
9729 if (*old_raid_disks &&
9730 info->array.raid_disks != *old_raid_disks)
9731 break;
9732 *old_raid_disks = info->array.raid_disks;
9733
9734 /* All raid5 and raid0 volumes in container
9735 * have to be ready for Online Capacity Expansion
9736 * so they need to be assembled. We have already
9737 * checked that no recovery etc is happening.
9738 */
9739 result = imsm_find_array_devnm_by_subdev(member->container_member,
9740 st->container_devnm);
9741 if (result == NULL) {
9742 dprintf("imsm: cannot find array\n");
9743 break;
9744 }
9745 devices_that_can_grow++;
9746 }
9747 sysfs_free(info);
9748 if (!member && devices_that_can_grow)
9749 ret_val = 1;
9750
9751 if (ret_val)
9752 dprintf("Container operation allowed\n");
9753 else
9754 dprintf("Error: %i\n", ret_val);
9755
9756 return ret_val;
9757 }
9758
9759 /* Function: get_spares_for_grow
9760 * Description: Allocates memory and creates list of spare devices
9761 * avaliable in container. Checks if spare drive size is acceptable.
9762 * Parameters: Pointer to the supertype structure
9763 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
9764 * NULL if fail
9765 */
9766 static struct mdinfo *get_spares_for_grow(struct supertype *st)
9767 {
9768 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
9769 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
9770 }
9771
9772 /******************************************************************************
9773 * function: imsm_create_metadata_update_for_reshape
9774 * Function creates update for whole IMSM container.
9775 *
9776 ******************************************************************************/
9777 static int imsm_create_metadata_update_for_reshape(
9778 struct supertype *st,
9779 struct geo_params *geo,
9780 int old_raid_disks,
9781 struct imsm_update_reshape **updatep)
9782 {
9783 struct intel_super *super = st->sb;
9784 struct imsm_super *mpb = super->anchor;
9785 int update_memory_size = 0;
9786 struct imsm_update_reshape *u = NULL;
9787 struct mdinfo *spares = NULL;
9788 int i;
9789 int delta_disks = 0;
9790 struct mdinfo *dev;
9791
9792 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
9793
9794 delta_disks = geo->raid_disks - old_raid_disks;
9795
9796 /* size of all update data without anchor */
9797 update_memory_size = sizeof(struct imsm_update_reshape);
9798
9799 /* now add space for spare disks that we need to add. */
9800 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
9801
9802 u = xcalloc(1, update_memory_size);
9803 u->type = update_reshape_container_disks;
9804 u->old_raid_disks = old_raid_disks;
9805 u->new_raid_disks = geo->raid_disks;
9806
9807 /* now get spare disks list
9808 */
9809 spares = get_spares_for_grow(st);
9810
9811 if (spares == NULL
9812 || delta_disks > spares->array.spare_disks) {
9813 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
9814 i = -1;
9815 goto abort;
9816 }
9817
9818 /* we have got spares
9819 * update disk list in imsm_disk list table in anchor
9820 */
9821 dprintf("imsm: %i spares are available.\n\n",
9822 spares->array.spare_disks);
9823
9824 dev = spares->devs;
9825 for (i = 0; i < delta_disks; i++) {
9826 struct dl *dl;
9827
9828 if (dev == NULL)
9829 break;
9830 u->new_disks[i] = makedev(dev->disk.major,
9831 dev->disk.minor);
9832 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
9833 dl->index = mpb->num_disks;
9834 mpb->num_disks++;
9835 dev = dev->next;
9836 }
9837
9838 abort:
9839 /* free spares
9840 */
9841 sysfs_free(spares);
9842
9843 dprintf("imsm: reshape update preparation :");
9844 if (i == delta_disks) {
9845 dprintf_cont(" OK\n");
9846 *updatep = u;
9847 return update_memory_size;
9848 }
9849 free(u);
9850 dprintf_cont(" Error\n");
9851
9852 return 0;
9853 }
9854
9855 /******************************************************************************
9856 * function: imsm_create_metadata_update_for_size_change()
9857 * Creates update for IMSM array for array size change.
9858 *
9859 ******************************************************************************/
9860 static int imsm_create_metadata_update_for_size_change(
9861 struct supertype *st,
9862 struct geo_params *geo,
9863 struct imsm_update_size_change **updatep)
9864 {
9865 struct intel_super *super = st->sb;
9866 int update_memory_size = 0;
9867 struct imsm_update_size_change *u = NULL;
9868
9869 dprintf("(enter) New size = %llu\n", geo->size);
9870
9871 /* size of all update data without anchor */
9872 update_memory_size = sizeof(struct imsm_update_size_change);
9873
9874 u = xcalloc(1, update_memory_size);
9875 u->type = update_size_change;
9876 u->subdev = super->current_vol;
9877 u->new_size = geo->size;
9878
9879 dprintf("imsm: reshape update preparation : OK\n");
9880 *updatep = u;
9881
9882 return update_memory_size;
9883 }
9884
9885 /******************************************************************************
9886 * function: imsm_create_metadata_update_for_migration()
9887 * Creates update for IMSM array.
9888 *
9889 ******************************************************************************/
9890 static int imsm_create_metadata_update_for_migration(
9891 struct supertype *st,
9892 struct geo_params *geo,
9893 struct imsm_update_reshape_migration **updatep)
9894 {
9895 struct intel_super *super = st->sb;
9896 int update_memory_size = 0;
9897 struct imsm_update_reshape_migration *u = NULL;
9898 struct imsm_dev *dev;
9899 int previous_level = -1;
9900
9901 dprintf("(enter) New Level = %i\n", geo->level);
9902
9903 /* size of all update data without anchor */
9904 update_memory_size = sizeof(struct imsm_update_reshape_migration);
9905
9906 u = xcalloc(1, update_memory_size);
9907 u->type = update_reshape_migration;
9908 u->subdev = super->current_vol;
9909 u->new_level = geo->level;
9910 u->new_layout = geo->layout;
9911 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
9912 u->new_disks[0] = -1;
9913 u->new_chunksize = -1;
9914
9915 dev = get_imsm_dev(super, u->subdev);
9916 if (dev) {
9917 struct imsm_map *map;
9918
9919 map = get_imsm_map(dev, MAP_0);
9920 if (map) {
9921 int current_chunk_size =
9922 __le16_to_cpu(map->blocks_per_strip) / 2;
9923
9924 if (geo->chunksize != current_chunk_size) {
9925 u->new_chunksize = geo->chunksize / 1024;
9926 dprintf("imsm: chunk size change from %i to %i\n",
9927 current_chunk_size, u->new_chunksize);
9928 }
9929 previous_level = map->raid_level;
9930 }
9931 }
9932 if ((geo->level == 5) && (previous_level == 0)) {
9933 struct mdinfo *spares = NULL;
9934
9935 u->new_raid_disks++;
9936 spares = get_spares_for_grow(st);
9937 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
9938 free(u);
9939 sysfs_free(spares);
9940 update_memory_size = 0;
9941 dprintf("error: cannot get spare device for requested migration");
9942 return 0;
9943 }
9944 sysfs_free(spares);
9945 }
9946 dprintf("imsm: reshape update preparation : OK\n");
9947 *updatep = u;
9948
9949 return update_memory_size;
9950 }
9951
9952 static void imsm_update_metadata_locally(struct supertype *st,
9953 void *buf, int len)
9954 {
9955 struct metadata_update mu;
9956
9957 mu.buf = buf;
9958 mu.len = len;
9959 mu.space = NULL;
9960 mu.space_list = NULL;
9961 mu.next = NULL;
9962 if (imsm_prepare_update(st, &mu))
9963 imsm_process_update(st, &mu);
9964
9965 while (mu.space_list) {
9966 void **space = mu.space_list;
9967 mu.space_list = *space;
9968 free(space);
9969 }
9970 }
9971
9972 /***************************************************************************
9973 * Function: imsm_analyze_change
9974 * Description: Function analyze change for single volume
9975 * and validate if transition is supported
9976 * Parameters: Geometry parameters, supertype structure,
9977 * metadata change direction (apply/rollback)
9978 * Returns: Operation type code on success, -1 if fail
9979 ****************************************************************************/
9980 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
9981 struct geo_params *geo,
9982 int direction)
9983 {
9984 struct mdinfo info;
9985 int change = -1;
9986 int check_devs = 0;
9987 int chunk;
9988 /* number of added/removed disks in operation result */
9989 int devNumChange = 0;
9990 /* imsm compatible layout value for array geometry verification */
9991 int imsm_layout = -1;
9992 int data_disks;
9993 struct imsm_dev *dev;
9994 struct intel_super *super;
9995 unsigned long long current_size;
9996 unsigned long long free_size;
9997 unsigned long long max_size;
9998 int rv;
9999
10000 getinfo_super_imsm_volume(st, &info, NULL);
10001 if ((geo->level != info.array.level) &&
10002 (geo->level >= 0) &&
10003 (geo->level != UnSet)) {
10004 switch (info.array.level) {
10005 case 0:
10006 if (geo->level == 5) {
10007 change = CH_MIGRATION;
10008 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
10009 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
10010 change = -1;
10011 goto analyse_change_exit;
10012 }
10013 imsm_layout = geo->layout;
10014 check_devs = 1;
10015 devNumChange = 1; /* parity disk added */
10016 } else if (geo->level == 10) {
10017 change = CH_TAKEOVER;
10018 check_devs = 1;
10019 devNumChange = 2; /* two mirrors added */
10020 imsm_layout = 0x102; /* imsm supported layout */
10021 }
10022 break;
10023 case 1:
10024 case 10:
10025 if (geo->level == 0) {
10026 change = CH_TAKEOVER;
10027 check_devs = 1;
10028 devNumChange = -(geo->raid_disks/2);
10029 imsm_layout = 0; /* imsm raid0 layout */
10030 }
10031 break;
10032 }
10033 if (change == -1) {
10034 pr_err("Error. Level Migration from %d to %d not supported!\n",
10035 info.array.level, geo->level);
10036 goto analyse_change_exit;
10037 }
10038 } else
10039 geo->level = info.array.level;
10040
10041 if ((geo->layout != info.array.layout)
10042 && ((geo->layout != UnSet) && (geo->layout != -1))) {
10043 change = CH_MIGRATION;
10044 if ((info.array.layout == 0)
10045 && (info.array.level == 5)
10046 && (geo->layout == 5)) {
10047 /* reshape 5 -> 4 */
10048 } else if ((info.array.layout == 5)
10049 && (info.array.level == 5)
10050 && (geo->layout == 0)) {
10051 /* reshape 4 -> 5 */
10052 geo->layout = 0;
10053 geo->level = 5;
10054 } else {
10055 pr_err("Error. Layout Migration from %d to %d not supported!\n",
10056 info.array.layout, geo->layout);
10057 change = -1;
10058 goto analyse_change_exit;
10059 }
10060 } else {
10061 geo->layout = info.array.layout;
10062 if (imsm_layout == -1)
10063 imsm_layout = info.array.layout;
10064 }
10065
10066 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
10067 && (geo->chunksize != info.array.chunk_size))
10068 change = CH_MIGRATION;
10069 else
10070 geo->chunksize = info.array.chunk_size;
10071
10072 chunk = geo->chunksize / 1024;
10073
10074 super = st->sb;
10075 dev = get_imsm_dev(super, super->current_vol);
10076 data_disks = imsm_num_data_members(dev , MAP_0);
10077 /* compute current size per disk member
10078 */
10079 current_size = info.custom_array_size / data_disks;
10080
10081 if ((geo->size > 0) && (geo->size != MAX_SIZE)) {
10082 /* align component size
10083 */
10084 geo->size = imsm_component_size_aligment_check(
10085 get_imsm_raid_level(dev->vol.map),
10086 chunk * 1024,
10087 geo->size * 2);
10088 if (geo->size == 0) {
10089 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
10090 current_size);
10091 goto analyse_change_exit;
10092 }
10093 }
10094
10095 if ((current_size != geo->size) && (geo->size > 0)) {
10096 if (change != -1) {
10097 pr_err("Error. Size change should be the only one at a time.\n");
10098 change = -1;
10099 goto analyse_change_exit;
10100 }
10101 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
10102 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
10103 super->current_vol, st->devnm);
10104 goto analyse_change_exit;
10105 }
10106 /* check the maximum available size
10107 */
10108 rv = imsm_get_free_size(st, dev->vol.map->num_members,
10109 0, chunk, &free_size);
10110 if (rv == 0)
10111 /* Cannot find maximum available space
10112 */
10113 max_size = 0;
10114 else {
10115 max_size = free_size + current_size;
10116 /* align component size
10117 */
10118 max_size = imsm_component_size_aligment_check(
10119 get_imsm_raid_level(dev->vol.map),
10120 chunk * 1024,
10121 max_size);
10122 }
10123 if (geo->size == MAX_SIZE) {
10124 /* requested size change to the maximum available size
10125 */
10126 if (max_size == 0) {
10127 pr_err("Error. Cannot find maximum available space.\n");
10128 change = -1;
10129 goto analyse_change_exit;
10130 } else
10131 geo->size = max_size;
10132 }
10133
10134 if ((direction == ROLLBACK_METADATA_CHANGES)) {
10135 /* accept size for rollback only
10136 */
10137 } else {
10138 /* round size due to metadata compatibility
10139 */
10140 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
10141 << SECT_PER_MB_SHIFT;
10142 dprintf("Prepare update for size change to %llu\n",
10143 geo->size );
10144 if (current_size >= geo->size) {
10145 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
10146 current_size, geo->size);
10147 goto analyse_change_exit;
10148 }
10149 if (max_size && geo->size > max_size) {
10150 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
10151 max_size, geo->size);
10152 goto analyse_change_exit;
10153 }
10154 }
10155 geo->size *= data_disks;
10156 geo->raid_disks = dev->vol.map->num_members;
10157 change = CH_ARRAY_SIZE;
10158 }
10159 if (!validate_geometry_imsm(st,
10160 geo->level,
10161 imsm_layout,
10162 geo->raid_disks + devNumChange,
10163 &chunk,
10164 geo->size, INVALID_SECTORS,
10165 0, 0, 1))
10166 change = -1;
10167
10168 if (check_devs) {
10169 struct intel_super *super = st->sb;
10170 struct imsm_super *mpb = super->anchor;
10171
10172 if (mpb->num_raid_devs > 1) {
10173 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
10174 geo->dev_name);
10175 change = -1;
10176 }
10177 }
10178
10179 analyse_change_exit:
10180 if ((direction == ROLLBACK_METADATA_CHANGES) &&
10181 ((change == CH_MIGRATION) || (change == CH_TAKEOVER))) {
10182 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
10183 change = -1;
10184 }
10185 return change;
10186 }
10187
10188 int imsm_takeover(struct supertype *st, struct geo_params *geo)
10189 {
10190 struct intel_super *super = st->sb;
10191 struct imsm_update_takeover *u;
10192
10193 u = xmalloc(sizeof(struct imsm_update_takeover));
10194
10195 u->type = update_takeover;
10196 u->subarray = super->current_vol;
10197
10198 /* 10->0 transition */
10199 if (geo->level == 0)
10200 u->direction = R10_TO_R0;
10201
10202 /* 0->10 transition */
10203 if (geo->level == 10)
10204 u->direction = R0_TO_R10;
10205
10206 /* update metadata locally */
10207 imsm_update_metadata_locally(st, u,
10208 sizeof(struct imsm_update_takeover));
10209 /* and possibly remotely */
10210 if (st->update_tail)
10211 append_metadata_update(st, u,
10212 sizeof(struct imsm_update_takeover));
10213 else
10214 free(u);
10215
10216 return 0;
10217 }
10218
10219 static int imsm_reshape_super(struct supertype *st, unsigned long long size,
10220 int level,
10221 int layout, int chunksize, int raid_disks,
10222 int delta_disks, char *backup, char *dev,
10223 int direction, int verbose)
10224 {
10225 int ret_val = 1;
10226 struct geo_params geo;
10227
10228 dprintf("(enter)\n");
10229
10230 memset(&geo, 0, sizeof(struct geo_params));
10231
10232 geo.dev_name = dev;
10233 strcpy(geo.devnm, st->devnm);
10234 geo.size = size;
10235 geo.level = level;
10236 geo.layout = layout;
10237 geo.chunksize = chunksize;
10238 geo.raid_disks = raid_disks;
10239 if (delta_disks != UnSet)
10240 geo.raid_disks += delta_disks;
10241
10242 dprintf("for level : %i\n", geo.level);
10243 dprintf("for raid_disks : %i\n", geo.raid_disks);
10244
10245 if (experimental() == 0)
10246 return ret_val;
10247
10248 if (strcmp(st->container_devnm, st->devnm) == 0) {
10249 /* On container level we can only increase number of devices. */
10250 dprintf("imsm: info: Container operation\n");
10251 int old_raid_disks = 0;
10252
10253 if (imsm_reshape_is_allowed_on_container(
10254 st, &geo, &old_raid_disks, direction)) {
10255 struct imsm_update_reshape *u = NULL;
10256 int len;
10257
10258 len = imsm_create_metadata_update_for_reshape(
10259 st, &geo, old_raid_disks, &u);
10260
10261 if (len <= 0) {
10262 dprintf("imsm: Cannot prepare update\n");
10263 goto exit_imsm_reshape_super;
10264 }
10265
10266 ret_val = 0;
10267 /* update metadata locally */
10268 imsm_update_metadata_locally(st, u, len);
10269 /* and possibly remotely */
10270 if (st->update_tail)
10271 append_metadata_update(st, u, len);
10272 else
10273 free(u);
10274
10275 } else {
10276 pr_err("(imsm) Operation is not allowed on this container\n");
10277 }
10278 } else {
10279 /* On volume level we support following operations
10280 * - takeover: raid10 -> raid0; raid0 -> raid10
10281 * - chunk size migration
10282 * - migration: raid5 -> raid0; raid0 -> raid5
10283 */
10284 struct intel_super *super = st->sb;
10285 struct intel_dev *dev = super->devlist;
10286 int change;
10287 dprintf("imsm: info: Volume operation\n");
10288 /* find requested device */
10289 while (dev) {
10290 char *devnm =
10291 imsm_find_array_devnm_by_subdev(
10292 dev->index, st->container_devnm);
10293 if (devnm && strcmp(devnm, geo.devnm) == 0)
10294 break;
10295 dev = dev->next;
10296 }
10297 if (dev == NULL) {
10298 pr_err("Cannot find %s (%s) subarray\n",
10299 geo.dev_name, geo.devnm);
10300 goto exit_imsm_reshape_super;
10301 }
10302 super->current_vol = dev->index;
10303 change = imsm_analyze_change(st, &geo, direction);
10304 switch (change) {
10305 case CH_TAKEOVER:
10306 ret_val = imsm_takeover(st, &geo);
10307 break;
10308 case CH_MIGRATION: {
10309 struct imsm_update_reshape_migration *u = NULL;
10310 int len =
10311 imsm_create_metadata_update_for_migration(
10312 st, &geo, &u);
10313 if (len < 1) {
10314 dprintf("imsm: Cannot prepare update\n");
10315 break;
10316 }
10317 ret_val = 0;
10318 /* update metadata locally */
10319 imsm_update_metadata_locally(st, u, len);
10320 /* and possibly remotely */
10321 if (st->update_tail)
10322 append_metadata_update(st, u, len);
10323 else
10324 free(u);
10325 }
10326 break;
10327 case CH_ARRAY_SIZE: {
10328 struct imsm_update_size_change *u = NULL;
10329 int len =
10330 imsm_create_metadata_update_for_size_change(
10331 st, &geo, &u);
10332 if (len < 1) {
10333 dprintf("imsm: Cannot prepare update\n");
10334 break;
10335 }
10336 ret_val = 0;
10337 /* update metadata locally */
10338 imsm_update_metadata_locally(st, u, len);
10339 /* and possibly remotely */
10340 if (st->update_tail)
10341 append_metadata_update(st, u, len);
10342 else
10343 free(u);
10344 }
10345 break;
10346 default:
10347 ret_val = 1;
10348 }
10349 }
10350
10351 exit_imsm_reshape_super:
10352 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
10353 return ret_val;
10354 }
10355
10356 /*******************************************************************************
10357 * Function: wait_for_reshape_imsm
10358 * Description: Function writes new sync_max value and waits until
10359 * reshape process reach new position
10360 * Parameters:
10361 * sra : general array info
10362 * ndata : number of disks in new array's layout
10363 * Returns:
10364 * 0 : success,
10365 * 1 : there is no reshape in progress,
10366 * -1 : fail
10367 ******************************************************************************/
10368 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
10369 {
10370 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
10371 unsigned long long completed;
10372 /* to_complete : new sync_max position */
10373 unsigned long long to_complete = sra->reshape_progress;
10374 unsigned long long position_to_set = to_complete / ndata;
10375
10376 if (fd < 0) {
10377 dprintf("cannot open reshape_position\n");
10378 return 1;
10379 }
10380
10381 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10382 dprintf("cannot read reshape_position (no reshape in progres)\n");
10383 close(fd);
10384 return 1;
10385 }
10386
10387 if (completed > position_to_set) {
10388 dprintf("wrong next position to set %llu (%llu)\n",
10389 to_complete, position_to_set);
10390 close(fd);
10391 return -1;
10392 }
10393 dprintf("Position set: %llu\n", position_to_set);
10394 if (sysfs_set_num(sra, NULL, "sync_max",
10395 position_to_set) != 0) {
10396 dprintf("cannot set reshape position to %llu\n",
10397 position_to_set);
10398 close(fd);
10399 return -1;
10400 }
10401
10402 do {
10403 char action[20];
10404 int timeout = 3000;
10405 sysfs_wait(fd, &timeout);
10406 if (sysfs_get_str(sra, NULL, "sync_action",
10407 action, 20) > 0 &&
10408 strncmp(action, "reshape", 7) != 0) {
10409 close(fd);
10410 return -1;
10411 }
10412 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10413 dprintf("cannot read reshape_position (in loop)\n");
10414 close(fd);
10415 return 1;
10416 }
10417 } while (completed < position_to_set);
10418 close(fd);
10419 return 0;
10420
10421 }
10422
10423 /*******************************************************************************
10424 * Function: check_degradation_change
10425 * Description: Check that array hasn't become failed.
10426 * Parameters:
10427 * info : for sysfs access
10428 * sources : source disks descriptors
10429 * degraded: previous degradation level
10430 * Returns:
10431 * degradation level
10432 ******************************************************************************/
10433 int check_degradation_change(struct mdinfo *info,
10434 int *sources,
10435 int degraded)
10436 {
10437 unsigned long long new_degraded;
10438 int rv;
10439
10440 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
10441 if ((rv == -1) || (new_degraded != (unsigned long long)degraded)) {
10442 /* check each device to ensure it is still working */
10443 struct mdinfo *sd;
10444 new_degraded = 0;
10445 for (sd = info->devs ; sd ; sd = sd->next) {
10446 if (sd->disk.state & (1<<MD_DISK_FAULTY))
10447 continue;
10448 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
10449 char sbuf[20];
10450 if (sysfs_get_str(info,
10451 sd, "state", sbuf, 20) < 0 ||
10452 strstr(sbuf, "faulty") ||
10453 strstr(sbuf, "in_sync") == NULL) {
10454 /* this device is dead */
10455 sd->disk.state = (1<<MD_DISK_FAULTY);
10456 if (sd->disk.raid_disk >= 0 &&
10457 sources[sd->disk.raid_disk] >= 0) {
10458 close(sources[
10459 sd->disk.raid_disk]);
10460 sources[sd->disk.raid_disk] =
10461 -1;
10462 }
10463 new_degraded++;
10464 }
10465 }
10466 }
10467 }
10468
10469 return new_degraded;
10470 }
10471
10472 /*******************************************************************************
10473 * Function: imsm_manage_reshape
10474 * Description: Function finds array under reshape and it manages reshape
10475 * process. It creates stripes backups (if required) and sets
10476 * checkpoints.
10477 * Parameters:
10478 * afd : Backup handle (nattive) - not used
10479 * sra : general array info
10480 * reshape : reshape parameters - not used
10481 * st : supertype structure
10482 * blocks : size of critical section [blocks]
10483 * fds : table of source device descriptor
10484 * offsets : start of array (offest per devices)
10485 * dests : not used
10486 * destfd : table of destination device descriptor
10487 * destoffsets : table of destination offsets (per device)
10488 * Returns:
10489 * 1 : success, reshape is done
10490 * 0 : fail
10491 ******************************************************************************/
10492 static int imsm_manage_reshape(
10493 int afd, struct mdinfo *sra, struct reshape *reshape,
10494 struct supertype *st, unsigned long backup_blocks,
10495 int *fds, unsigned long long *offsets,
10496 int dests, int *destfd, unsigned long long *destoffsets)
10497 {
10498 int ret_val = 0;
10499 struct intel_super *super = st->sb;
10500 struct intel_dev *dv = NULL;
10501 struct imsm_dev *dev = NULL;
10502 struct imsm_map *map_src;
10503 int migr_vol_qan = 0;
10504 int ndata, odata; /* [bytes] */
10505 int chunk; /* [bytes] */
10506 struct migr_record *migr_rec;
10507 char *buf = NULL;
10508 unsigned int buf_size; /* [bytes] */
10509 unsigned long long max_position; /* array size [bytes] */
10510 unsigned long long next_step; /* [blocks]/[bytes] */
10511 unsigned long long old_data_stripe_length;
10512 unsigned long long start_src; /* [bytes] */
10513 unsigned long long start; /* [bytes] */
10514 unsigned long long start_buf_shift; /* [bytes] */
10515 int degraded = 0;
10516 int source_layout = 0;
10517
10518 if (!fds || !offsets || !sra)
10519 goto abort;
10520
10521 /* Find volume during the reshape */
10522 for (dv = super->devlist; dv; dv = dv->next) {
10523 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
10524 && dv->dev->vol.migr_state == 1) {
10525 dev = dv->dev;
10526 migr_vol_qan++;
10527 }
10528 }
10529 /* Only one volume can migrate at the same time */
10530 if (migr_vol_qan != 1) {
10531 pr_err(": %s", migr_vol_qan ?
10532 "Number of migrating volumes greater than 1\n" :
10533 "There is no volume during migrationg\n");
10534 goto abort;
10535 }
10536
10537 map_src = get_imsm_map(dev, MAP_1);
10538 if (map_src == NULL)
10539 goto abort;
10540
10541 ndata = imsm_num_data_members(dev, MAP_0);
10542 odata = imsm_num_data_members(dev, MAP_1);
10543
10544 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10545 old_data_stripe_length = odata * chunk;
10546
10547 migr_rec = super->migr_rec;
10548
10549 /* initialize migration record for start condition */
10550 if (sra->reshape_progress == 0)
10551 init_migr_record_imsm(st, dev, sra);
10552 else {
10553 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
10554 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
10555 goto abort;
10556 }
10557 /* Save checkpoint to update migration record for current
10558 * reshape position (in md). It can be farther than current
10559 * reshape position in metadata.
10560 */
10561 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10562 /* ignore error == 2, this can mean end of reshape here
10563 */
10564 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
10565 goto abort;
10566 }
10567 }
10568
10569 /* size for data */
10570 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
10571 /* extend buffer size for parity disk */
10572 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10573 /* add space for stripe aligment */
10574 buf_size += old_data_stripe_length;
10575 if (posix_memalign((void **)&buf, 4096, buf_size)) {
10576 dprintf("imsm: Cannot allocate checpoint buffer\n");
10577 goto abort;
10578 }
10579
10580 max_position = sra->component_size * ndata;
10581 source_layout = imsm_level_to_layout(map_src->raid_level);
10582
10583 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
10584 __le32_to_cpu(migr_rec->num_migr_units)) {
10585 /* current reshape position [blocks] */
10586 unsigned long long current_position =
10587 __le32_to_cpu(migr_rec->blocks_per_unit)
10588 * __le32_to_cpu(migr_rec->curr_migr_unit);
10589 unsigned long long border;
10590
10591 /* Check that array hasn't become failed.
10592 */
10593 degraded = check_degradation_change(sra, fds, degraded);
10594 if (degraded > 1) {
10595 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
10596 goto abort;
10597 }
10598
10599 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
10600
10601 if ((current_position + next_step) > max_position)
10602 next_step = max_position - current_position;
10603
10604 start = current_position * 512;
10605
10606 /* align reading start to old geometry */
10607 start_buf_shift = start % old_data_stripe_length;
10608 start_src = start - start_buf_shift;
10609
10610 border = (start_src / odata) - (start / ndata);
10611 border /= 512;
10612 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
10613 /* save critical stripes to buf
10614 * start - start address of current unit
10615 * to backup [bytes]
10616 * start_src - start address of current unit
10617 * to backup alligned to source array
10618 * [bytes]
10619 */
10620 unsigned long long next_step_filler = 0;
10621 unsigned long long copy_length = next_step * 512;
10622
10623 /* allign copy area length to stripe in old geometry */
10624 next_step_filler = ((copy_length + start_buf_shift)
10625 % old_data_stripe_length);
10626 if (next_step_filler)
10627 next_step_filler = (old_data_stripe_length
10628 - next_step_filler);
10629 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10630 start, start_src, copy_length,
10631 start_buf_shift, next_step_filler);
10632
10633 if (save_stripes(fds, offsets, map_src->num_members,
10634 chunk, map_src->raid_level,
10635 source_layout, 0, NULL, start_src,
10636 copy_length +
10637 next_step_filler + start_buf_shift,
10638 buf)) {
10639 dprintf("imsm: Cannot save stripes to buffer\n");
10640 goto abort;
10641 }
10642 /* Convert data to destination format and store it
10643 * in backup general migration area
10644 */
10645 if (save_backup_imsm(st, dev, sra,
10646 buf + start_buf_shift, copy_length)) {
10647 dprintf("imsm: Cannot save stripes to target devices\n");
10648 goto abort;
10649 }
10650 if (save_checkpoint_imsm(st, sra,
10651 UNIT_SRC_IN_CP_AREA)) {
10652 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10653 goto abort;
10654 }
10655 } else {
10656 /* set next step to use whole border area */
10657 border /= next_step;
10658 if (border > 1)
10659 next_step *= border;
10660 }
10661 /* When data backed up, checkpoint stored,
10662 * kick the kernel to reshape unit of data
10663 */
10664 next_step = next_step + sra->reshape_progress;
10665 /* limit next step to array max position */
10666 if (next_step > max_position)
10667 next_step = max_position;
10668 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
10669 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
10670 sra->reshape_progress = next_step;
10671
10672 /* wait until reshape finish */
10673 if (wait_for_reshape_imsm(sra, ndata)) {
10674 dprintf("wait_for_reshape_imsm returned error!\n");
10675 goto abort;
10676 }
10677 if (sigterm)
10678 goto abort;
10679
10680 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10681 /* ignore error == 2, this can mean end of reshape here
10682 */
10683 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10684 goto abort;
10685 }
10686
10687 }
10688
10689 /* clear migr_rec on disks after successful migration */
10690 struct dl *d;
10691
10692 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
10693 for (d = super->disks; d; d = d->next) {
10694 if (d->index < 0 || is_failed(&d->disk))
10695 continue;
10696 unsigned long long dsize;
10697
10698 get_dev_size(d->fd, NULL, &dsize);
10699 if (lseek64(d->fd, dsize - MIGR_REC_POSITION,
10700 SEEK_SET) >= 0) {
10701 if (write(d->fd, super->migr_rec_buf,
10702 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
10703 perror("Write migr_rec failed");
10704 }
10705 }
10706
10707 /* return '1' if done */
10708 ret_val = 1;
10709 abort:
10710 free(buf);
10711 /* See Grow.c: abort_reshape() for further explanation */
10712 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
10713 sysfs_set_num(sra, NULL, "suspend_hi", 0);
10714 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10715
10716 return ret_val;
10717 }
10718
10719 #endif /* MDASSEMBLE */
10720
10721 struct superswitch super_imsm = {
10722 #ifndef MDASSEMBLE
10723 .examine_super = examine_super_imsm,
10724 .brief_examine_super = brief_examine_super_imsm,
10725 .brief_examine_subarrays = brief_examine_subarrays_imsm,
10726 .export_examine_super = export_examine_super_imsm,
10727 .detail_super = detail_super_imsm,
10728 .brief_detail_super = brief_detail_super_imsm,
10729 .write_init_super = write_init_super_imsm,
10730 .validate_geometry = validate_geometry_imsm,
10731 .add_to_super = add_to_super_imsm,
10732 .remove_from_super = remove_from_super_imsm,
10733 .detail_platform = detail_platform_imsm,
10734 .export_detail_platform = export_detail_platform_imsm,
10735 .kill_subarray = kill_subarray_imsm,
10736 .update_subarray = update_subarray_imsm,
10737 .load_container = load_container_imsm,
10738 .default_geometry = default_geometry_imsm,
10739 .get_disk_controller_domain = imsm_get_disk_controller_domain,
10740 .reshape_super = imsm_reshape_super,
10741 .manage_reshape = imsm_manage_reshape,
10742 .recover_backup = recover_backup_imsm,
10743 .copy_metadata = copy_metadata_imsm,
10744 #endif
10745 .match_home = match_home_imsm,
10746 .uuid_from_super= uuid_from_super_imsm,
10747 .getinfo_super = getinfo_super_imsm,
10748 .getinfo_super_disks = getinfo_super_disks_imsm,
10749 .update_super = update_super_imsm,
10750
10751 .avail_size = avail_size_imsm,
10752 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
10753
10754 .compare_super = compare_super_imsm,
10755
10756 .load_super = load_super_imsm,
10757 .init_super = init_super_imsm,
10758 .store_super = store_super_imsm,
10759 .free_super = free_super_imsm,
10760 .match_metadata_desc = match_metadata_desc_imsm,
10761 .container_content = container_content_imsm,
10762 .validate_container = validate_container_imsm,
10763
10764 .external = 1,
10765 .name = "imsm",
10766
10767 #ifndef MDASSEMBLE
10768 /* for mdmon */
10769 .open_new = imsm_open_new,
10770 .set_array_state= imsm_set_array_state,
10771 .set_disk = imsm_set_disk,
10772 .sync_metadata = imsm_sync_metadata,
10773 .activate_spare = imsm_activate_spare,
10774 .process_update = imsm_process_update,
10775 .prepare_update = imsm_prepare_update,
10776 #endif /* MDASSEMBLE */
10777 };