]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
Don't give array name in --examine --brief output if it is doubtful.
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include <values.h>
25 #include <scsi/sg.h>
26 #include <ctype.h>
27
28 /* MPB == Metadata Parameter Block */
29 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
30 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
31 #define MPB_VERSION_RAID0 "1.0.00"
32 #define MPB_VERSION_RAID1 "1.1.00"
33 #define MPB_VERSION_RAID5 "1.2.02"
34 #define MAX_SIGNATURE_LENGTH 32
35 #define MAX_RAID_SERIAL_LEN 16
36 #define MPB_SECTOR_CNT 418
37 #define IMSM_RESERVED_SECTORS 4096
38
39 /* Disk configuration info. */
40 #define IMSM_MAX_DEVICES 255
41 struct imsm_disk {
42 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
43 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
44 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
45 __u32 status; /* 0xF0 - 0xF3 */
46 #define SPARE_DISK 0x01 /* Spare */
47 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
48 #define FAILED_DISK 0x04 /* Permanent failure */
49 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
50
51 #define IMSM_DISK_FILLERS 5
52 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
53 };
54
55 /* RAID map configuration infos. */
56 struct imsm_map {
57 __u32 pba_of_lba0; /* start address of partition */
58 __u32 blocks_per_member;/* blocks per member */
59 __u32 num_data_stripes; /* number of data stripes */
60 __u16 blocks_per_strip;
61 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
62 #define IMSM_T_STATE_NORMAL 0
63 #define IMSM_T_STATE_UNINITIALIZED 1
64 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
65 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
66 __u8 raid_level;
67 #define IMSM_T_RAID0 0
68 #define IMSM_T_RAID1 1
69 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
70 __u8 num_members; /* number of member disks */
71 __u8 reserved[3];
72 __u32 filler[7]; /* expansion area */
73 #define IMSM_ORD_REBUILD (1 << 24)
74 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
75 * top byte contains some flags
76 */
77 } __attribute__ ((packed));
78
79 struct imsm_vol {
80 __u32 curr_migr_unit;
81 __u32 reserved;
82 __u8 migr_state; /* Normal or Migrating */
83 __u8 migr_type; /* Initializing, Rebuilding, ... */
84 __u8 dirty;
85 __u8 fill[1];
86 __u32 filler[5];
87 struct imsm_map map[1];
88 /* here comes another one if migr_state */
89 } __attribute__ ((packed));
90
91 struct imsm_dev {
92 __u8 volume[MAX_RAID_SERIAL_LEN];
93 __u32 size_low;
94 __u32 size_high;
95 __u32 status; /* Persistent RaidDev status */
96 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
97 #define IMSM_DEV_FILLERS 12
98 __u32 filler[IMSM_DEV_FILLERS];
99 struct imsm_vol vol;
100 } __attribute__ ((packed));
101
102 struct imsm_super {
103 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
104 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
105 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
106 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
107 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
108 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
109 __u32 attributes; /* 0x34 - 0x37 */
110 __u8 num_disks; /* 0x38 Number of configured disks */
111 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
112 __u8 error_log_pos; /* 0x3A */
113 __u8 fill[1]; /* 0x3B */
114 __u32 cache_size; /* 0x3c - 0x40 in mb */
115 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
116 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
117 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
118 #define IMSM_FILLERS 35
119 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
120 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
121 /* here comes imsm_dev[num_raid_devs] */
122 /* here comes BBM logs */
123 } __attribute__ ((packed));
124
125 #define BBM_LOG_MAX_ENTRIES 254
126
127 struct bbm_log_entry {
128 __u64 defective_block_start;
129 #define UNREADABLE 0xFFFFFFFF
130 __u32 spare_block_offset;
131 __u16 remapped_marked_count;
132 __u16 disk_ordinal;
133 } __attribute__ ((__packed__));
134
135 struct bbm_log {
136 __u32 signature; /* 0xABADB10C */
137 __u32 entry_count;
138 __u32 reserved_spare_block_count; /* 0 */
139 __u32 reserved; /* 0xFFFF */
140 __u64 first_spare_lba;
141 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
142 } __attribute__ ((__packed__));
143
144
145 #ifndef MDASSEMBLE
146 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
147 #endif
148
149 static unsigned int sector_count(__u32 bytes)
150 {
151 return ((bytes + (512-1)) & (~(512-1))) / 512;
152 }
153
154 static unsigned int mpb_sectors(struct imsm_super *mpb)
155 {
156 return sector_count(__le32_to_cpu(mpb->mpb_size));
157 }
158
159 /* internal representation of IMSM metadata */
160 struct intel_super {
161 union {
162 void *buf; /* O_DIRECT buffer for reading/writing metadata */
163 struct imsm_super *anchor; /* immovable parameters */
164 };
165 size_t len; /* size of the 'buf' allocation */
166 void *next_buf; /* for realloc'ing buf from the manager */
167 size_t next_len;
168 int updates_pending; /* count of pending updates for mdmon */
169 int creating_imsm; /* flag to indicate container creation */
170 int current_vol; /* index of raid device undergoing creation */
171 #define IMSM_MAX_RAID_DEVS 2
172 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
173 struct dl {
174 struct dl *next;
175 int index;
176 __u8 serial[MAX_RAID_SERIAL_LEN];
177 int major, minor;
178 char *devname;
179 struct imsm_disk disk;
180 int fd;
181 } *disks;
182 struct dl *add; /* list of disks to add while mdmon active */
183 struct dl *missing; /* disks removed while we weren't looking */
184 struct bbm_log *bbm_log;
185 };
186
187 struct extent {
188 unsigned long long start, size;
189 };
190
191 /* definition of messages passed to imsm_process_update */
192 enum imsm_update_type {
193 update_activate_spare,
194 update_create_array,
195 update_add_disk,
196 };
197
198 struct imsm_update_activate_spare {
199 enum imsm_update_type type;
200 struct dl *dl;
201 int slot;
202 int array;
203 struct imsm_update_activate_spare *next;
204 };
205
206 struct imsm_update_create_array {
207 enum imsm_update_type type;
208 int dev_idx;
209 struct imsm_dev dev;
210 };
211
212 struct imsm_update_add_disk {
213 enum imsm_update_type type;
214 };
215
216 static struct supertype *match_metadata_desc_imsm(char *arg)
217 {
218 struct supertype *st;
219
220 if (strcmp(arg, "imsm") != 0 &&
221 strcmp(arg, "default") != 0
222 )
223 return NULL;
224
225 st = malloc(sizeof(*st));
226 memset(st, 0, sizeof(*st));
227 st->ss = &super_imsm;
228 st->max_devs = IMSM_MAX_DEVICES;
229 st->minor_version = 0;
230 st->sb = NULL;
231 return st;
232 }
233
234 #ifndef MDASSEMBLE
235 static __u8 *get_imsm_version(struct imsm_super *mpb)
236 {
237 return &mpb->sig[MPB_SIG_LEN];
238 }
239 #endif
240
241 /* retrieve a disk directly from the anchor when the anchor is known to be
242 * up-to-date, currently only at load time
243 */
244 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
245 {
246 if (index >= mpb->num_disks)
247 return NULL;
248 return &mpb->disk[index];
249 }
250
251 #ifndef MDASSEMBLE
252 /* retrieve a disk from the parsed metadata */
253 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
254 {
255 struct dl *d;
256
257 for (d = super->disks; d; d = d->next)
258 if (d->index == index)
259 return &d->disk;
260
261 return NULL;
262 }
263 #endif
264
265 /* generate a checksum directly from the anchor when the anchor is known to be
266 * up-to-date, currently only at load or write_super after coalescing
267 */
268 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
269 {
270 __u32 end = mpb->mpb_size / sizeof(end);
271 __u32 *p = (__u32 *) mpb;
272 __u32 sum = 0;
273
274 while (end--)
275 sum += __le32_to_cpu(*p++);
276
277 return sum - __le32_to_cpu(mpb->check_sum);
278 }
279
280 static size_t sizeof_imsm_map(struct imsm_map *map)
281 {
282 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
283 }
284
285 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
286 {
287 struct imsm_map *map = &dev->vol.map[0];
288
289 if (second_map && !dev->vol.migr_state)
290 return NULL;
291 else if (second_map) {
292 void *ptr = map;
293
294 return ptr + sizeof_imsm_map(map);
295 } else
296 return map;
297
298 }
299
300 /* return the size of the device.
301 * migr_state increases the returned size if map[0] were to be duplicated
302 */
303 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
304 {
305 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
306 sizeof_imsm_map(get_imsm_map(dev, 0));
307
308 /* migrating means an additional map */
309 if (dev->vol.migr_state)
310 size += sizeof_imsm_map(get_imsm_map(dev, 1));
311 else if (migr_state)
312 size += sizeof_imsm_map(get_imsm_map(dev, 0));
313
314 return size;
315 }
316
317 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
318 {
319 int offset;
320 int i;
321 void *_mpb = mpb;
322
323 if (index >= mpb->num_raid_devs)
324 return NULL;
325
326 /* devices start after all disks */
327 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
328
329 for (i = 0; i <= index; i++)
330 if (i == index)
331 return _mpb + offset;
332 else
333 offset += sizeof_imsm_dev(_mpb + offset, 0);
334
335 return NULL;
336 }
337
338 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
339 {
340 if (index >= super->anchor->num_raid_devs)
341 return NULL;
342 return super->dev_tbl[index];
343 }
344
345 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
346 {
347 struct imsm_map *map;
348
349 if (dev->vol.migr_state)
350 map = get_imsm_map(dev, 1);
351 else
352 map = get_imsm_map(dev, 0);
353
354 /* top byte identifies disk under rebuild */
355 return __le32_to_cpu(map->disk_ord_tbl[slot]);
356 }
357
358 #define ord_to_idx(ord) (((ord) << 8) >> 8)
359 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
360 {
361 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
362
363 return ord_to_idx(ord);
364 }
365
366 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
367 {
368 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
369 }
370
371 static int get_imsm_raid_level(struct imsm_map *map)
372 {
373 if (map->raid_level == 1) {
374 if (map->num_members == 2)
375 return 1;
376 else
377 return 10;
378 }
379
380 return map->raid_level;
381 }
382
383 static int cmp_extent(const void *av, const void *bv)
384 {
385 const struct extent *a = av;
386 const struct extent *b = bv;
387 if (a->start < b->start)
388 return -1;
389 if (a->start > b->start)
390 return 1;
391 return 0;
392 }
393
394 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
395 {
396 /* find a list of used extents on the given physical device */
397 struct extent *rv, *e;
398 int i, j;
399 int memberships = 0;
400 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
401
402 for (i = 0; i < super->anchor->num_raid_devs; i++) {
403 struct imsm_dev *dev = get_imsm_dev(super, i);
404 struct imsm_map *map = get_imsm_map(dev, 0);
405
406 for (j = 0; j < map->num_members; j++) {
407 __u32 index = get_imsm_disk_idx(dev, j);
408
409 if (index == dl->index)
410 memberships++;
411 }
412 }
413 rv = malloc(sizeof(struct extent) * (memberships + 1));
414 if (!rv)
415 return NULL;
416 e = rv;
417
418 for (i = 0; i < super->anchor->num_raid_devs; i++) {
419 struct imsm_dev *dev = get_imsm_dev(super, i);
420 struct imsm_map *map = get_imsm_map(dev, 0);
421
422 for (j = 0; j < map->num_members; j++) {
423 __u32 index = get_imsm_disk_idx(dev, j);
424
425 if (index == dl->index) {
426 e->start = __le32_to_cpu(map->pba_of_lba0);
427 e->size = __le32_to_cpu(map->blocks_per_member);
428 e++;
429 }
430 }
431 }
432 qsort(rv, memberships, sizeof(*rv), cmp_extent);
433
434 /* determine the start of the metadata
435 * when no raid devices are defined use the default
436 * ...otherwise allow the metadata to truncate the value
437 * as is the case with older versions of imsm
438 */
439 if (memberships) {
440 struct extent *last = &rv[memberships - 1];
441 __u32 remainder;
442
443 remainder = __le32_to_cpu(dl->disk.total_blocks) -
444 (last->start + last->size);
445 if (reservation > remainder)
446 reservation = remainder;
447 }
448 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
449 e->size = 0;
450 return rv;
451 }
452
453 /* try to determine how much space is reserved for metadata from
454 * the last get_extents() entry, otherwise fallback to the
455 * default
456 */
457 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
458 {
459 struct extent *e;
460 int i;
461 __u32 rv;
462
463 /* for spares just return a minimal reservation which will grow
464 * once the spare is picked up by an array
465 */
466 if (dl->index == -1)
467 return MPB_SECTOR_CNT;
468
469 e = get_extents(super, dl);
470 if (!e)
471 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
472
473 /* scroll to last entry */
474 for (i = 0; e[i].size; i++)
475 continue;
476
477 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
478
479 free(e);
480
481 return rv;
482 }
483
484 #ifndef MDASSEMBLE
485 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
486
487 static void print_imsm_dev(struct imsm_dev *dev, int index)
488 {
489 __u64 sz;
490 int slot;
491 struct imsm_map *map = get_imsm_map(dev, 0);
492 __u32 ord;
493
494 printf("\n");
495 printf("[%.16s]:\n", dev->volume);
496 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
497 printf(" Members : %d\n", map->num_members);
498 for (slot = 0; slot < map->num_members; slot++)
499 if (index == get_imsm_disk_idx(dev, slot))
500 break;
501 if (slot < map->num_members) {
502 ord = get_imsm_ord_tbl_ent(dev, slot);
503 printf(" This Slot : %d%s\n", slot,
504 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
505 } else
506 printf(" This Slot : ?\n");
507 sz = __le32_to_cpu(dev->size_high);
508 sz <<= 32;
509 sz += __le32_to_cpu(dev->size_low);
510 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
511 human_size(sz * 512));
512 sz = __le32_to_cpu(map->blocks_per_member);
513 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
514 human_size(sz * 512));
515 printf(" Sector Offset : %u\n",
516 __le32_to_cpu(map->pba_of_lba0));
517 printf(" Num Stripes : %u\n",
518 __le32_to_cpu(map->num_data_stripes));
519 printf(" Chunk Size : %u KiB\n",
520 __le16_to_cpu(map->blocks_per_strip) / 2);
521 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
522 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle");
523 if (dev->vol.migr_state)
524 printf(": %s", dev->vol.migr_type ? "rebuilding" : "initializing");
525 printf("\n");
526 printf(" Map State : %s", map_state_str[map->map_state]);
527 if (dev->vol.migr_state) {
528 struct imsm_map *map = get_imsm_map(dev, 1);
529 printf(" <-- %s", map_state_str[map->map_state]);
530 }
531 printf("\n");
532 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
533 }
534
535 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
536 {
537 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
538 char str[MAX_RAID_SERIAL_LEN + 1];
539 __u32 s;
540 __u64 sz;
541
542 if (index < 0)
543 return;
544
545 printf("\n");
546 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
547 printf(" Disk%02d Serial : %s\n", index, str);
548 s = __le32_to_cpu(disk->status);
549 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
550 s&CONFIGURED_DISK ? " active" : "",
551 s&FAILED_DISK ? " failed" : "",
552 s&USABLE_DISK ? " usable" : "");
553 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
554 sz = __le32_to_cpu(disk->total_blocks) - reserved;
555 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
556 human_size(sz * 512));
557 }
558
559 static void examine_super_imsm(struct supertype *st, char *homehost)
560 {
561 struct intel_super *super = st->sb;
562 struct imsm_super *mpb = super->anchor;
563 char str[MAX_SIGNATURE_LENGTH];
564 int i;
565 struct mdinfo info;
566 char nbuf[64];
567 __u32 sum;
568 __u32 reserved = imsm_reserved_sectors(super, super->disks);
569
570
571 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
572 printf(" Magic : %s\n", str);
573 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
574 printf(" Version : %s\n", get_imsm_version(mpb));
575 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
576 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
577 getinfo_super_imsm(st, &info);
578 fname_from_uuid(st, &info, nbuf,'-');
579 printf(" UUID : %s\n", nbuf + 5);
580 sum = __le32_to_cpu(mpb->check_sum);
581 printf(" Checksum : %08x %s\n", sum,
582 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
583 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
584 printf(" Disks : %d\n", mpb->num_disks);
585 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
586 print_imsm_disk(mpb, super->disks->index, reserved);
587 if (super->bbm_log) {
588 struct bbm_log *log = super->bbm_log;
589
590 printf("\n");
591 printf("Bad Block Management Log:\n");
592 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
593 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
594 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
595 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
596 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
597 }
598 for (i = 0; i < mpb->num_raid_devs; i++)
599 print_imsm_dev(__get_imsm_dev(mpb, i), super->disks->index);
600 for (i = 0; i < mpb->num_disks; i++) {
601 if (i == super->disks->index)
602 continue;
603 print_imsm_disk(mpb, i, reserved);
604 }
605 }
606
607 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
608
609 static void brief_examine_super_imsm(struct supertype *st)
610 {
611 /* We just write a generic IMSM ARRAY entry */
612 struct mdinfo info;
613 char nbuf[64];
614 char nbuf1[64];
615 struct intel_super *super = st->sb;
616 int i;
617
618 if (!super->anchor->num_raid_devs)
619 return;
620
621 getinfo_super_imsm(st, &info);
622 fname_from_uuid(st, &info, nbuf,'-');
623 printf("ARRAY metadata=imsm auto=md UUID=%s\n", nbuf + 5);
624 for (i = 0; i < super->anchor->num_raid_devs; i++) {
625 struct imsm_dev *dev = get_imsm_dev(super, i);
626
627 super->current_vol = i;
628 getinfo_super_imsm(st, &info);
629 fname_from_uuid(st, &info, nbuf1,'-');
630 printf("ARRAY /dev/md/%.16s container=%s member=%d auto=mdp UUID=%s\n",
631 dev->volume, nbuf + 5, i, nbuf1 + 5);
632 }
633 }
634
635 static void detail_super_imsm(struct supertype *st, char *homehost)
636 {
637 printf("%s\n", __FUNCTION__);
638 }
639
640 static void brief_detail_super_imsm(struct supertype *st)
641 {
642 struct mdinfo info;
643 char nbuf[64];
644 getinfo_super_imsm(st, &info);
645 fname_from_uuid(st, &info, nbuf,'-');
646 printf(" UUID=%s", nbuf + 5);
647 }
648 #endif
649
650 static int match_home_imsm(struct supertype *st, char *homehost)
651 {
652 printf("%s\n", __FUNCTION__);
653
654 return -1;
655 }
656
657 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
658 {
659 /* The uuid returned here is used for:
660 * uuid to put into bitmap file (Create, Grow)
661 * uuid for backup header when saving critical section (Grow)
662 * comparing uuids when re-adding a device into an array
663 * In these cases the uuid required is that of the data-array,
664 * not the device-set.
665 * uuid to recognise same set when adding a missing device back
666 * to an array. This is a uuid for the device-set.
667 *
668 * For each of these we can make do with a truncated
669 * or hashed uuid rather than the original, as long as
670 * everyone agrees.
671 * In each case the uuid required is that of the data-array,
672 * not the device-set.
673 */
674 /* imsm does not track uuid's so we synthesis one using sha1 on
675 * - The signature (Which is constant for all imsm array, but no matter)
676 * - the family_num of the container
677 * - the index number of the volume
678 * - the 'serial' number of the volume.
679 * Hopefully these are all constant.
680 */
681 struct intel_super *super = st->sb;
682
683 char buf[20];
684 struct sha1_ctx ctx;
685 struct imsm_dev *dev = NULL;
686
687 sha1_init_ctx(&ctx);
688 sha1_process_bytes(super->anchor->sig, MAX_SIGNATURE_LENGTH, &ctx);
689 sha1_process_bytes(&super->anchor->family_num, sizeof(__u32), &ctx);
690 if (super->current_vol >= 0)
691 dev = get_imsm_dev(super, super->current_vol);
692 if (dev) {
693 __u32 vol = super->current_vol;
694 sha1_process_bytes(&vol, sizeof(vol), &ctx);
695 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
696 }
697 sha1_finish_ctx(&ctx, buf);
698 memcpy(uuid, buf, 4*4);
699 }
700
701 #if 0
702 static void
703 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
704 {
705 __u8 *v = get_imsm_version(mpb);
706 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
707 char major[] = { 0, 0, 0 };
708 char minor[] = { 0 ,0, 0 };
709 char patch[] = { 0, 0, 0 };
710 char *ver_parse[] = { major, minor, patch };
711 int i, j;
712
713 i = j = 0;
714 while (*v != '\0' && v < end) {
715 if (*v != '.' && j < 2)
716 ver_parse[i][j++] = *v;
717 else {
718 i++;
719 j = 0;
720 }
721 v++;
722 }
723
724 *m = strtol(minor, NULL, 0);
725 *p = strtol(patch, NULL, 0);
726 }
727 #endif
728
729 static int imsm_level_to_layout(int level)
730 {
731 switch (level) {
732 case 0:
733 case 1:
734 return 0;
735 case 5:
736 case 6:
737 return ALGORITHM_LEFT_ASYMMETRIC;
738 case 10:
739 return 0x102;
740 }
741 return -1;
742 }
743
744 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
745 {
746 struct intel_super *super = st->sb;
747 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
748 struct imsm_map *map = get_imsm_map(dev, 0);
749
750 info->container_member = super->current_vol;
751 info->array.raid_disks = map->num_members;
752 info->array.level = get_imsm_raid_level(map);
753 info->array.layout = imsm_level_to_layout(info->array.level);
754 info->array.md_minor = -1;
755 info->array.ctime = 0;
756 info->array.utime = 0;
757 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
758 info->array.state = !dev->vol.dirty;
759
760 info->disk.major = 0;
761 info->disk.minor = 0;
762
763 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
764 info->component_size = __le32_to_cpu(map->blocks_per_member);
765 memset(info->uuid, 0, sizeof(info->uuid));
766
767 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
768 info->resync_start = 0;
769 else if (dev->vol.migr_state)
770 info->resync_start = __le32_to_cpu(dev->vol.curr_migr_unit);
771 else
772 info->resync_start = ~0ULL;
773
774 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
775 info->name[MAX_RAID_SERIAL_LEN] = 0;
776
777 info->array.major_version = -1;
778 info->array.minor_version = -2;
779 sprintf(info->text_version, "/%s/%d",
780 devnum2devname(st->container_dev),
781 info->container_member);
782 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
783 uuid_from_super_imsm(st, info->uuid);
784 }
785
786
787 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
788 {
789 struct intel_super *super = st->sb;
790 struct imsm_disk *disk;
791 __u32 s;
792
793 if (super->current_vol >= 0) {
794 getinfo_super_imsm_volume(st, info);
795 return;
796 }
797
798 /* Set raid_disks to zero so that Assemble will always pull in valid
799 * spares
800 */
801 info->array.raid_disks = 0;
802 info->array.level = LEVEL_CONTAINER;
803 info->array.layout = 0;
804 info->array.md_minor = -1;
805 info->array.ctime = 0; /* N/A for imsm */
806 info->array.utime = 0;
807 info->array.chunk_size = 0;
808
809 info->disk.major = 0;
810 info->disk.minor = 0;
811 info->disk.raid_disk = -1;
812 info->reshape_active = 0;
813 info->array.major_version = -1;
814 info->array.minor_version = -2;
815 strcpy(info->text_version, "imsm");
816 info->safe_mode_delay = 0;
817 info->disk.number = -1;
818 info->disk.state = 0;
819 info->name[0] = 0;
820
821 if (super->disks) {
822 __u32 reserved = imsm_reserved_sectors(super, super->disks);
823
824 disk = &super->disks->disk;
825 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
826 info->component_size = reserved;
827 s = __le32_to_cpu(disk->status);
828 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
829 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
830 info->disk.state |= s & SPARE_DISK ? 0 : (1 << MD_DISK_SYNC);
831 }
832
833 /* only call uuid_from_super_imsm when this disk is part of a populated container,
834 * ->compare_super may have updated the 'num_raid_devs' field for spares
835 */
836 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
837 uuid_from_super_imsm(st, info->uuid);
838 else
839 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
840 }
841
842 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
843 char *update, char *devname, int verbose,
844 int uuid_set, char *homehost)
845 {
846 /* FIXME */
847
848 /* For 'assemble' and 'force' we need to return non-zero if any
849 * change was made. For others, the return value is ignored.
850 * Update options are:
851 * force-one : This device looks a bit old but needs to be included,
852 * update age info appropriately.
853 * assemble: clear any 'faulty' flag to allow this device to
854 * be assembled.
855 * force-array: Array is degraded but being forced, mark it clean
856 * if that will be needed to assemble it.
857 *
858 * newdev: not used ????
859 * grow: Array has gained a new device - this is currently for
860 * linear only
861 * resync: mark as dirty so a resync will happen.
862 * name: update the name - preserving the homehost
863 *
864 * Following are not relevant for this imsm:
865 * sparc2.2 : update from old dodgey metadata
866 * super-minor: change the preferred_minor number
867 * summaries: update redundant counters.
868 * uuid: Change the uuid of the array to match watch is given
869 * homehost: update the recorded homehost
870 * _reshape_progress: record new reshape_progress position.
871 */
872 int rv = 0;
873 //struct intel_super *super = st->sb;
874 //struct imsm_super *mpb = super->mpb;
875
876 if (strcmp(update, "grow") == 0) {
877 }
878 if (strcmp(update, "resync") == 0) {
879 /* dev->vol.dirty = 1; */
880 }
881
882 /* IMSM has no concept of UUID or homehost */
883
884 return rv;
885 }
886
887 static size_t disks_to_mpb_size(int disks)
888 {
889 size_t size;
890
891 size = sizeof(struct imsm_super);
892 size += (disks - 1) * sizeof(struct imsm_disk);
893 size += 2 * sizeof(struct imsm_dev);
894 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
895 size += (4 - 2) * sizeof(struct imsm_map);
896 /* 4 possible disk_ord_tbl's */
897 size += 4 * (disks - 1) * sizeof(__u32);
898
899 return size;
900 }
901
902 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
903 {
904 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
905 return 0;
906
907 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
908 }
909
910 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
911 {
912 /*
913 * return:
914 * 0 same, or first was empty, and second was copied
915 * 1 second had wrong number
916 * 2 wrong uuid
917 * 3 wrong other info
918 */
919 struct intel_super *first = st->sb;
920 struct intel_super *sec = tst->sb;
921
922 if (!first) {
923 st->sb = tst->sb;
924 tst->sb = NULL;
925 return 0;
926 }
927
928 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
929 return 3;
930
931 /* if an anchor does not have num_raid_devs set then it is a free
932 * floating spare
933 */
934 if (first->anchor->num_raid_devs > 0 &&
935 sec->anchor->num_raid_devs > 0) {
936 if (first->anchor->family_num != sec->anchor->family_num)
937 return 3;
938 }
939
940 /* if 'first' is a spare promote it to a populated mpb with sec's
941 * family number
942 */
943 if (first->anchor->num_raid_devs == 0 &&
944 sec->anchor->num_raid_devs > 0) {
945 int i;
946
947 /* we need to copy raid device info from sec if an allocation
948 * fails here we don't associate the spare
949 */
950 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
951 first->dev_tbl[i] = malloc(sizeof(struct imsm_dev));
952 if (!first->dev_tbl) {
953 while (--i >= 0) {
954 free(first->dev_tbl[i]);
955 first->dev_tbl[i] = NULL;
956 }
957 fprintf(stderr, "imsm: failed to associate spare\n");
958 return 3;
959 }
960 *first->dev_tbl[i] = *sec->dev_tbl[i];
961 }
962
963 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
964 first->anchor->family_num = sec->anchor->family_num;
965 }
966
967 return 0;
968 }
969
970 static void fd2devname(int fd, char *name)
971 {
972 struct stat st;
973 char path[256];
974 char dname[100];
975 char *nm;
976 int rv;
977
978 name[0] = '\0';
979 if (fstat(fd, &st) != 0)
980 return;
981 sprintf(path, "/sys/dev/block/%d:%d",
982 major(st.st_rdev), minor(st.st_rdev));
983
984 rv = readlink(path, dname, sizeof(dname));
985 if (rv <= 0)
986 return;
987
988 dname[rv] = '\0';
989 nm = strrchr(dname, '/');
990 nm++;
991 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
992 }
993
994
995 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
996
997 static int imsm_read_serial(int fd, char *devname,
998 __u8 serial[MAX_RAID_SERIAL_LEN])
999 {
1000 unsigned char scsi_serial[255];
1001 int rv;
1002 int rsp_len;
1003 int len;
1004 char *c, *rsp_buf;
1005
1006 memset(scsi_serial, 0, sizeof(scsi_serial));
1007
1008 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1009
1010 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
1011 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1012 fd2devname(fd, (char *) serial);
1013 return 0;
1014 }
1015
1016 if (rv != 0) {
1017 if (devname)
1018 fprintf(stderr,
1019 Name ": Failed to retrieve serial for %s\n",
1020 devname);
1021 return rv;
1022 }
1023
1024 /* trim leading whitespace */
1025 rsp_len = scsi_serial[3];
1026 rsp_buf = (char *) &scsi_serial[4];
1027 c = rsp_buf;
1028 while (isspace(*c))
1029 c++;
1030
1031 /* truncate len to the end of rsp_buf if necessary */
1032 if (c + MAX_RAID_SERIAL_LEN > rsp_buf + rsp_len)
1033 len = rsp_len - (c - rsp_buf);
1034 else
1035 len = MAX_RAID_SERIAL_LEN;
1036
1037 /* initialize the buffer and copy rsp_buf characters */
1038 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1039 memcpy(serial, c, len);
1040
1041 /* trim trailing whitespace starting with the last character copied */
1042 c = (char *) &serial[len - 1];
1043 while (isspace(*c) || *c == '\0')
1044 *c-- = '\0';
1045
1046 return 0;
1047 }
1048
1049 static int serialcmp(__u8 *s1, __u8 *s2)
1050 {
1051 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1052 }
1053
1054 static void serialcpy(__u8 *dest, __u8 *src)
1055 {
1056 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1057 }
1058
1059 static int
1060 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1061 {
1062 struct dl *dl;
1063 struct stat stb;
1064 int rv;
1065 int i;
1066 int alloc = 1;
1067 __u8 serial[MAX_RAID_SERIAL_LEN];
1068
1069 rv = imsm_read_serial(fd, devname, serial);
1070
1071 if (rv != 0)
1072 return 2;
1073
1074 /* check if this is a disk we have seen before. it may be a spare in
1075 * super->disks while the current anchor believes it is a raid member,
1076 * check if we need to update dl->index
1077 */
1078 for (dl = super->disks; dl; dl = dl->next)
1079 if (serialcmp(dl->serial, serial) == 0)
1080 break;
1081
1082 if (!dl)
1083 dl = malloc(sizeof(*dl));
1084 else
1085 alloc = 0;
1086
1087 if (!dl) {
1088 if (devname)
1089 fprintf(stderr,
1090 Name ": failed to allocate disk buffer for %s\n",
1091 devname);
1092 return 2;
1093 }
1094
1095 if (alloc) {
1096 fstat(fd, &stb);
1097 dl->major = major(stb.st_rdev);
1098 dl->minor = minor(stb.st_rdev);
1099 dl->next = super->disks;
1100 dl->fd = keep_fd ? fd : -1;
1101 dl->devname = devname ? strdup(devname) : NULL;
1102 serialcpy(dl->serial, serial);
1103 dl->index = -2;
1104 } else if (keep_fd) {
1105 close(dl->fd);
1106 dl->fd = fd;
1107 }
1108
1109 /* look up this disk's index in the current anchor */
1110 for (i = 0; i < super->anchor->num_disks; i++) {
1111 struct imsm_disk *disk_iter;
1112
1113 disk_iter = __get_imsm_disk(super->anchor, i);
1114
1115 if (serialcmp(disk_iter->serial, dl->serial) == 0) {
1116 __u32 status;
1117
1118 dl->disk = *disk_iter;
1119 status = __le32_to_cpu(dl->disk.status);
1120 /* only set index on disks that are a member of a
1121 * populated contianer, i.e. one with raid_devs
1122 */
1123 if (status & FAILED_DISK)
1124 dl->index = -2;
1125 else if (status & SPARE_DISK)
1126 dl->index = -1;
1127 else
1128 dl->index = i;
1129
1130 break;
1131 }
1132 }
1133
1134 /* no match, maybe a stale failed drive */
1135 if (i == super->anchor->num_disks && dl->index >= 0) {
1136 dl->disk = *__get_imsm_disk(super->anchor, dl->index);
1137 if (__le32_to_cpu(dl->disk.status) & FAILED_DISK)
1138 dl->index = -2;
1139 }
1140
1141 if (alloc)
1142 super->disks = dl;
1143
1144 return 0;
1145 }
1146
1147 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1148 {
1149 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1150 }
1151
1152 #ifndef MDASSEMBLE
1153 /* When migrating map0 contains the 'destination' state while map1
1154 * contains the current state. When not migrating map0 contains the
1155 * current state. This routine assumes that map[0].map_state is set to
1156 * the current array state before being called.
1157 *
1158 * Migration is indicated by one of the following states
1159 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
1160 * 2/ Initialize (migr_state=1 migr_type=0 map0state=normal
1161 * map1state=unitialized)
1162 * 3/ Verify (Resync) (migr_state=1 migr_type=1 map0state=normal
1163 * map1state=normal)
1164 * 4/ Rebuild (migr_state=1 migr_type=1 map0state=normal
1165 * map1state=degraded)
1166 */
1167 static void migrate(struct imsm_dev *dev, __u8 to_state, int rebuild_resync)
1168 {
1169 struct imsm_map *dest;
1170 struct imsm_map *src = get_imsm_map(dev, 0);
1171
1172 dev->vol.migr_state = 1;
1173 dev->vol.migr_type = rebuild_resync;
1174 dev->vol.curr_migr_unit = 0;
1175 dest = get_imsm_map(dev, 1);
1176
1177 memcpy(dest, src, sizeof_imsm_map(src));
1178 src->map_state = to_state;
1179 }
1180
1181 static void end_migration(struct imsm_dev *dev, __u8 map_state)
1182 {
1183 struct imsm_map *map = get_imsm_map(dev, 0);
1184
1185 dev->vol.migr_state = 0;
1186 dev->vol.curr_migr_unit = 0;
1187 map->map_state = map_state;
1188 }
1189 #endif
1190
1191 static int parse_raid_devices(struct intel_super *super)
1192 {
1193 int i;
1194 struct imsm_dev *dev_new;
1195 size_t len, len_migr;
1196 size_t space_needed = 0;
1197 struct imsm_super *mpb = super->anchor;
1198
1199 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1200 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
1201
1202 len = sizeof_imsm_dev(dev_iter, 0);
1203 len_migr = sizeof_imsm_dev(dev_iter, 1);
1204 if (len_migr > len)
1205 space_needed += len_migr - len;
1206
1207 dev_new = malloc(len_migr);
1208 if (!dev_new)
1209 return 1;
1210 imsm_copy_dev(dev_new, dev_iter);
1211 super->dev_tbl[i] = dev_new;
1212 }
1213
1214 /* ensure that super->buf is large enough when all raid devices
1215 * are migrating
1216 */
1217 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1218 void *buf;
1219
1220 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1221 if (posix_memalign(&buf, 512, len) != 0)
1222 return 1;
1223
1224 memcpy(buf, super->buf, len);
1225 free(super->buf);
1226 super->buf = buf;
1227 super->len = len;
1228 }
1229
1230 return 0;
1231 }
1232
1233 /* retrieve a pointer to the bbm log which starts after all raid devices */
1234 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1235 {
1236 void *ptr = NULL;
1237
1238 if (__le32_to_cpu(mpb->bbm_log_size)) {
1239 ptr = mpb;
1240 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1241 }
1242
1243 return ptr;
1244 }
1245
1246 static void __free_imsm(struct intel_super *super, int free_disks);
1247
1248 /* load_imsm_mpb - read matrix metadata
1249 * allocates super->mpb to be freed by free_super
1250 */
1251 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1252 {
1253 unsigned long long dsize;
1254 unsigned long long sectors;
1255 struct stat;
1256 struct imsm_super *anchor;
1257 __u32 check_sum;
1258 int rc;
1259
1260 get_dev_size(fd, NULL, &dsize);
1261
1262 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1263 if (devname)
1264 fprintf(stderr,
1265 Name ": Cannot seek to anchor block on %s: %s\n",
1266 devname, strerror(errno));
1267 return 1;
1268 }
1269
1270 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1271 if (devname)
1272 fprintf(stderr,
1273 Name ": Failed to allocate imsm anchor buffer"
1274 " on %s\n", devname);
1275 return 1;
1276 }
1277 if (read(fd, anchor, 512) != 512) {
1278 if (devname)
1279 fprintf(stderr,
1280 Name ": Cannot read anchor block on %s: %s\n",
1281 devname, strerror(errno));
1282 free(anchor);
1283 return 1;
1284 }
1285
1286 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1287 if (devname)
1288 fprintf(stderr,
1289 Name ": no IMSM anchor on %s\n", devname);
1290 free(anchor);
1291 return 2;
1292 }
1293
1294 __free_imsm(super, 0);
1295 super->len = ROUND_UP(anchor->mpb_size, 512);
1296 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1297 if (devname)
1298 fprintf(stderr,
1299 Name ": unable to allocate %zu byte mpb buffer\n",
1300 super->len);
1301 free(anchor);
1302 return 2;
1303 }
1304 memcpy(super->buf, anchor, 512);
1305
1306 sectors = mpb_sectors(anchor) - 1;
1307 free(anchor);
1308 if (!sectors) {
1309 rc = load_imsm_disk(fd, super, devname, 0);
1310 if (rc == 0)
1311 rc = parse_raid_devices(super);
1312 return rc;
1313 }
1314
1315 /* read the extended mpb */
1316 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1317 if (devname)
1318 fprintf(stderr,
1319 Name ": Cannot seek to extended mpb on %s: %s\n",
1320 devname, strerror(errno));
1321 return 1;
1322 }
1323
1324 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1325 if (devname)
1326 fprintf(stderr,
1327 Name ": Cannot read extended mpb on %s: %s\n",
1328 devname, strerror(errno));
1329 return 2;
1330 }
1331
1332 check_sum = __gen_imsm_checksum(super->anchor);
1333 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1334 if (devname)
1335 fprintf(stderr,
1336 Name ": IMSM checksum %x != %x on %s\n",
1337 check_sum, __le32_to_cpu(super->anchor->check_sum),
1338 devname);
1339 return 2;
1340 }
1341
1342 /* FIXME the BBM log is disk specific so we cannot use this global
1343 * buffer for all disks. Ok for now since we only look at the global
1344 * bbm_log_size parameter to gate assembly
1345 */
1346 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1347
1348 rc = load_imsm_disk(fd, super, devname, 0);
1349 if (rc == 0)
1350 rc = parse_raid_devices(super);
1351
1352 return rc;
1353 }
1354
1355 static void __free_imsm_disk(struct dl *d)
1356 {
1357 if (d->fd >= 0)
1358 close(d->fd);
1359 if (d->devname)
1360 free(d->devname);
1361 free(d);
1362
1363 }
1364 static void free_imsm_disks(struct intel_super *super)
1365 {
1366 struct dl *d;
1367
1368 while (super->disks) {
1369 d = super->disks;
1370 super->disks = d->next;
1371 __free_imsm_disk(d);
1372 }
1373 while (super->missing) {
1374 d = super->missing;
1375 super->missing = d->next;
1376 __free_imsm_disk(d);
1377 }
1378
1379 }
1380
1381 /* free all the pieces hanging off of a super pointer */
1382 static void __free_imsm(struct intel_super *super, int free_disks)
1383 {
1384 int i;
1385
1386 if (super->buf) {
1387 free(super->buf);
1388 super->buf = NULL;
1389 }
1390 if (free_disks)
1391 free_imsm_disks(super);
1392 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1393 if (super->dev_tbl[i]) {
1394 free(super->dev_tbl[i]);
1395 super->dev_tbl[i] = NULL;
1396 }
1397 }
1398
1399 static void free_imsm(struct intel_super *super)
1400 {
1401 __free_imsm(super, 1);
1402 free(super);
1403 }
1404
1405 static void free_super_imsm(struct supertype *st)
1406 {
1407 struct intel_super *super = st->sb;
1408
1409 if (!super)
1410 return;
1411
1412 free_imsm(super);
1413 st->sb = NULL;
1414 }
1415
1416 static struct intel_super *alloc_super(int creating_imsm)
1417 {
1418 struct intel_super *super = malloc(sizeof(*super));
1419
1420 if (super) {
1421 memset(super, 0, sizeof(*super));
1422 super->creating_imsm = creating_imsm;
1423 super->current_vol = -1;
1424 }
1425
1426 return super;
1427 }
1428
1429 #ifndef MDASSEMBLE
1430 /* find_missing - helper routine for load_super_imsm_all that identifies
1431 * disks that have disappeared from the system. This routine relies on
1432 * the mpb being uptodate, which it is at load time.
1433 */
1434 static int find_missing(struct intel_super *super)
1435 {
1436 int i;
1437 struct imsm_super *mpb = super->anchor;
1438 struct dl *dl;
1439 struct imsm_disk *disk;
1440 __u32 status;
1441
1442 for (i = 0; i < mpb->num_disks; i++) {
1443 disk = __get_imsm_disk(mpb, i);
1444 for (dl = super->disks; dl; dl = dl->next)
1445 if (serialcmp(dl->disk.serial, disk->serial) == 0)
1446 break;
1447 if (dl)
1448 continue;
1449 /* ok we have a 'disk' without a live entry in
1450 * super->disks
1451 */
1452 status = __le32_to_cpu(disk->status);
1453 if (status & FAILED_DISK || !(status & USABLE_DISK))
1454 continue; /* never mind, already marked */
1455
1456 dl = malloc(sizeof(*dl));
1457 if (!dl)
1458 return 1;
1459 dl->major = 0;
1460 dl->minor = 0;
1461 dl->fd = -1;
1462 dl->devname = strdup("missing");
1463 dl->index = i;
1464 serialcpy(dl->serial, disk->serial);
1465 dl->disk = *disk;
1466 dl->next = super->missing;
1467 super->missing = dl;
1468 }
1469
1470 return 0;
1471 }
1472
1473 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1474 char *devname, int keep_fd)
1475 {
1476 struct mdinfo *sra;
1477 struct intel_super *super;
1478 struct mdinfo *sd, *best = NULL;
1479 __u32 bestgen = 0;
1480 __u32 gen;
1481 char nm[20];
1482 int dfd;
1483 int rv;
1484
1485 /* check if this disk is a member of an active array */
1486 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1487 if (!sra)
1488 return 1;
1489
1490 if (sra->array.major_version != -1 ||
1491 sra->array.minor_version != -2 ||
1492 strcmp(sra->text_version, "imsm") != 0)
1493 return 1;
1494
1495 super = alloc_super(0);
1496 if (!super)
1497 return 1;
1498
1499 /* find the most up to date disk in this array, skipping spares */
1500 for (sd = sra->devs; sd; sd = sd->next) {
1501 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1502 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1503 if (!dfd) {
1504 free_imsm(super);
1505 return 2;
1506 }
1507 rv = load_imsm_mpb(dfd, super, NULL);
1508 if (!keep_fd)
1509 close(dfd);
1510 if (rv == 0) {
1511 if (super->anchor->num_raid_devs == 0)
1512 gen = 0;
1513 else
1514 gen = __le32_to_cpu(super->anchor->generation_num);
1515 if (!best || gen > bestgen) {
1516 bestgen = gen;
1517 best = sd;
1518 }
1519 } else {
1520 free_imsm(super);
1521 return 2;
1522 }
1523 }
1524
1525 if (!best) {
1526 free_imsm(super);
1527 return 1;
1528 }
1529
1530 /* load the most up to date anchor */
1531 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1532 dfd = dev_open(nm, O_RDONLY);
1533 if (!dfd) {
1534 free_imsm(super);
1535 return 1;
1536 }
1537 rv = load_imsm_mpb(dfd, super, NULL);
1538 close(dfd);
1539 if (rv != 0) {
1540 free_imsm(super);
1541 return 2;
1542 }
1543
1544 /* re-parse the disk list with the current anchor */
1545 for (sd = sra->devs ; sd ; sd = sd->next) {
1546 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1547 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1548 if (!dfd) {
1549 free_imsm(super);
1550 return 2;
1551 }
1552 load_imsm_disk(dfd, super, NULL, keep_fd);
1553 if (!keep_fd)
1554 close(dfd);
1555 }
1556
1557
1558 if (find_missing(super) != 0) {
1559 free_imsm(super);
1560 return 2;
1561 }
1562
1563 if (st->subarray[0]) {
1564 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1565 super->current_vol = atoi(st->subarray);
1566 else
1567 return 1;
1568 }
1569
1570 *sbp = super;
1571 st->container_dev = fd2devnum(fd);
1572 if (st->ss == NULL) {
1573 st->ss = &super_imsm;
1574 st->minor_version = 0;
1575 st->max_devs = IMSM_MAX_DEVICES;
1576 }
1577 st->loaded_container = 1;
1578
1579 return 0;
1580 }
1581 #endif
1582
1583 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1584 {
1585 struct intel_super *super;
1586 int rv;
1587
1588 #ifndef MDASSEMBLE
1589 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1590 return 0;
1591 #endif
1592 if (st->subarray[0])
1593 return 1; /* FIXME */
1594
1595 super = alloc_super(0);
1596 if (!super) {
1597 fprintf(stderr,
1598 Name ": malloc of %zu failed.\n",
1599 sizeof(*super));
1600 return 1;
1601 }
1602
1603 rv = load_imsm_mpb(fd, super, devname);
1604
1605 if (rv) {
1606 if (devname)
1607 fprintf(stderr,
1608 Name ": Failed to load all information "
1609 "sections on %s\n", devname);
1610 free_imsm(super);
1611 return rv;
1612 }
1613
1614 st->sb = super;
1615 if (st->ss == NULL) {
1616 st->ss = &super_imsm;
1617 st->minor_version = 0;
1618 st->max_devs = IMSM_MAX_DEVICES;
1619 }
1620 st->loaded_container = 0;
1621
1622 return 0;
1623 }
1624
1625 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1626 {
1627 if (info->level == 1)
1628 return 128;
1629 return info->chunk_size >> 9;
1630 }
1631
1632 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1633 {
1634 __u32 num_stripes;
1635
1636 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1637 if (info->level == 1)
1638 num_stripes /= 2;
1639
1640 return num_stripes;
1641 }
1642
1643 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1644 {
1645 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1646 }
1647
1648 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1649 unsigned long long size, char *name,
1650 char *homehost, int *uuid)
1651 {
1652 /* We are creating a volume inside a pre-existing container.
1653 * so st->sb is already set.
1654 */
1655 struct intel_super *super = st->sb;
1656 struct imsm_super *mpb = super->anchor;
1657 struct imsm_dev *dev;
1658 struct imsm_vol *vol;
1659 struct imsm_map *map;
1660 int idx = mpb->num_raid_devs;
1661 int i;
1662 unsigned long long array_blocks;
1663 __u32 offset = 0;
1664 size_t size_old, size_new;
1665
1666 if (mpb->num_raid_devs >= 2) {
1667 fprintf(stderr, Name": This imsm-container already has the "
1668 "maximum of 2 volumes\n");
1669 return 0;
1670 }
1671
1672 /* ensure the mpb is large enough for the new data */
1673 size_old = __le32_to_cpu(mpb->mpb_size);
1674 size_new = disks_to_mpb_size(info->nr_disks);
1675 if (size_new > size_old) {
1676 void *mpb_new;
1677 size_t size_round = ROUND_UP(size_new, 512);
1678
1679 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1680 fprintf(stderr, Name": could not allocate new mpb\n");
1681 return 0;
1682 }
1683 memcpy(mpb_new, mpb, size_old);
1684 free(mpb);
1685 mpb = mpb_new;
1686 super->anchor = mpb_new;
1687 mpb->mpb_size = __cpu_to_le32(size_new);
1688 memset(mpb_new + size_old, 0, size_round - size_old);
1689 }
1690 super->current_vol = idx;
1691 /* when creating the first raid device in this container set num_disks
1692 * to zero, i.e. delete this spare and add raid member devices in
1693 * add_to_super_imsm_volume()
1694 */
1695 if (super->current_vol == 0)
1696 mpb->num_disks = 0;
1697 sprintf(st->subarray, "%d", idx);
1698 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1699 if (!dev) {
1700 fprintf(stderr, Name": could not allocate raid device\n");
1701 return 0;
1702 }
1703 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1704 array_blocks = calc_array_size(info->level, info->raid_disks,
1705 info->layout, info->chunk_size,
1706 info->size*2);
1707 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1708 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1709 dev->status = __cpu_to_le32(0);
1710 dev->reserved_blocks = __cpu_to_le32(0);
1711 vol = &dev->vol;
1712 vol->migr_state = 0;
1713 vol->migr_type = 0;
1714 vol->dirty = 0;
1715 vol->curr_migr_unit = 0;
1716 for (i = 0; i < idx; i++) {
1717 struct imsm_dev *prev = get_imsm_dev(super, i);
1718 struct imsm_map *pmap = get_imsm_map(prev, 0);
1719
1720 offset += __le32_to_cpu(pmap->blocks_per_member);
1721 offset += IMSM_RESERVED_SECTORS;
1722 }
1723 map = get_imsm_map(dev, 0);
1724 map->pba_of_lba0 = __cpu_to_le32(offset);
1725 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1726 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1727 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1728 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1729 IMSM_T_STATE_NORMAL;
1730
1731 if (info->level == 1 && info->raid_disks > 2) {
1732 fprintf(stderr, Name": imsm does not support more than 2 disks"
1733 "in a raid1 volume\n");
1734 return 0;
1735 }
1736 if (info->level == 10)
1737 map->raid_level = 1;
1738 else
1739 map->raid_level = info->level;
1740
1741 map->num_members = info->raid_disks;
1742 for (i = 0; i < map->num_members; i++) {
1743 /* initialized in add_to_super */
1744 set_imsm_ord_tbl_ent(map, i, 0);
1745 }
1746 mpb->num_raid_devs++;
1747 super->dev_tbl[super->current_vol] = dev;
1748
1749 return 1;
1750 }
1751
1752 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1753 unsigned long long size, char *name,
1754 char *homehost, int *uuid)
1755 {
1756 /* This is primarily called by Create when creating a new array.
1757 * We will then get add_to_super called for each component, and then
1758 * write_init_super called to write it out to each device.
1759 * For IMSM, Create can create on fresh devices or on a pre-existing
1760 * array.
1761 * To create on a pre-existing array a different method will be called.
1762 * This one is just for fresh drives.
1763 */
1764 struct intel_super *super;
1765 struct imsm_super *mpb;
1766 size_t mpb_size;
1767
1768 if (!info) {
1769 st->sb = NULL;
1770 return 0;
1771 }
1772 if (st->sb)
1773 return init_super_imsm_volume(st, info, size, name, homehost,
1774 uuid);
1775
1776 super = alloc_super(1);
1777 if (!super)
1778 return 0;
1779 mpb_size = disks_to_mpb_size(info->nr_disks);
1780 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1781 free(super);
1782 return 0;
1783 }
1784 mpb = super->buf;
1785 memset(mpb, 0, mpb_size);
1786
1787 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1788 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1789 strlen(MPB_VERSION_RAID5));
1790 mpb->mpb_size = mpb_size;
1791
1792 st->sb = super;
1793 return 1;
1794 }
1795
1796 #ifndef MDASSEMBLE
1797 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1798 int fd, char *devname)
1799 {
1800 struct intel_super *super = st->sb;
1801 struct imsm_super *mpb = super->anchor;
1802 struct dl *dl;
1803 struct imsm_dev *dev;
1804 struct imsm_map *map;
1805 __u32 status;
1806
1807 dev = get_imsm_dev(super, super->current_vol);
1808 map = get_imsm_map(dev, 0);
1809
1810 for (dl = super->disks; dl ; dl = dl->next)
1811 if (dl->major == dk->major &&
1812 dl->minor == dk->minor)
1813 break;
1814
1815 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1816 return;
1817
1818 /* add a pristine spare to the metadata */
1819 if (dl->index < 0) {
1820 dl->index = super->anchor->num_disks;
1821 super->anchor->num_disks++;
1822 }
1823 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
1824 status = CONFIGURED_DISK | USABLE_DISK;
1825 dl->disk.status = __cpu_to_le32(status);
1826
1827 /* if we are creating the first raid device update the family number */
1828 if (super->current_vol == 0) {
1829 __u32 sum;
1830 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
1831 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
1832
1833 *_dev = *dev;
1834 *_disk = dl->disk;
1835 sum = __gen_imsm_checksum(mpb);
1836 mpb->family_num = __cpu_to_le32(sum);
1837 }
1838 }
1839
1840 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1841 int fd, char *devname)
1842 {
1843 struct intel_super *super = st->sb;
1844 struct dl *dd;
1845 unsigned long long size;
1846 __u32 status, id;
1847 int rv;
1848 struct stat stb;
1849
1850 if (super->current_vol >= 0) {
1851 add_to_super_imsm_volume(st, dk, fd, devname);
1852 return;
1853 }
1854
1855 fstat(fd, &stb);
1856 dd = malloc(sizeof(*dd));
1857 if (!dd) {
1858 fprintf(stderr,
1859 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1860 abort();
1861 }
1862 memset(dd, 0, sizeof(*dd));
1863 dd->major = major(stb.st_rdev);
1864 dd->minor = minor(stb.st_rdev);
1865 dd->index = -1;
1866 dd->devname = devname ? strdup(devname) : NULL;
1867 dd->fd = fd;
1868 rv = imsm_read_serial(fd, devname, dd->serial);
1869 if (rv) {
1870 fprintf(stderr,
1871 Name ": failed to retrieve scsi serial, aborting\n");
1872 free(dd);
1873 abort();
1874 }
1875
1876 get_dev_size(fd, NULL, &size);
1877 size /= 512;
1878 status = USABLE_DISK | SPARE_DISK;
1879 serialcpy(dd->disk.serial, dd->serial);
1880 dd->disk.total_blocks = __cpu_to_le32(size);
1881 dd->disk.status = __cpu_to_le32(status);
1882 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1883 dd->disk.scsi_id = __cpu_to_le32(id);
1884 else
1885 dd->disk.scsi_id = __cpu_to_le32(0);
1886
1887 if (st->update_tail) {
1888 dd->next = super->add;
1889 super->add = dd;
1890 } else {
1891 dd->next = super->disks;
1892 super->disks = dd;
1893 }
1894 }
1895
1896 static int store_imsm_mpb(int fd, struct intel_super *super);
1897
1898 /* spare records have their own family number and do not have any defined raid
1899 * devices
1900 */
1901 static int write_super_imsm_spares(struct intel_super *super, int doclose)
1902 {
1903 struct imsm_super mpb_save;
1904 struct imsm_super *mpb = super->anchor;
1905 __u32 sum;
1906 struct dl *d;
1907
1908 mpb_save = *mpb;
1909 mpb->num_raid_devs = 0;
1910 mpb->num_disks = 1;
1911 mpb->mpb_size = sizeof(struct imsm_super);
1912 mpb->generation_num = __cpu_to_le32(1UL);
1913
1914 for (d = super->disks; d; d = d->next) {
1915 if (d->index != -1)
1916 continue;
1917
1918 mpb->disk[0] = d->disk;
1919 sum = __gen_imsm_checksum(mpb);
1920 mpb->family_num = __cpu_to_le32(sum);
1921 sum = __gen_imsm_checksum(mpb);
1922 mpb->check_sum = __cpu_to_le32(sum);
1923
1924 if (store_imsm_mpb(d->fd, super)) {
1925 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1926 __func__, d->major, d->minor, strerror(errno));
1927 *mpb = mpb_save;
1928 return 1;
1929 }
1930 if (doclose) {
1931 close(d->fd);
1932 d->fd = -1;
1933 }
1934 }
1935
1936 *mpb = mpb_save;
1937 return 0;
1938 }
1939
1940 static int write_super_imsm(struct intel_super *super, int doclose)
1941 {
1942 struct imsm_super *mpb = super->anchor;
1943 struct dl *d;
1944 __u32 generation;
1945 __u32 sum;
1946 int spares = 0;
1947 int i;
1948 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
1949
1950 /* 'generation' is incremented everytime the metadata is written */
1951 generation = __le32_to_cpu(mpb->generation_num);
1952 generation++;
1953 mpb->generation_num = __cpu_to_le32(generation);
1954
1955 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
1956 for (d = super->disks; d; d = d->next) {
1957 if (d->index == -1)
1958 spares++;
1959 else
1960 mpb->disk[d->index] = d->disk;
1961 }
1962 for (d = super->missing; d; d = d->next)
1963 mpb->disk[d->index] = d->disk;
1964
1965 for (i = 0; i < mpb->num_raid_devs; i++) {
1966 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1967
1968 imsm_copy_dev(dev, super->dev_tbl[i]);
1969 mpb_size += sizeof_imsm_dev(dev, 0);
1970 }
1971 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
1972 mpb->mpb_size = __cpu_to_le32(mpb_size);
1973
1974 /* recalculate checksum */
1975 sum = __gen_imsm_checksum(mpb);
1976 mpb->check_sum = __cpu_to_le32(sum);
1977
1978 /* write the mpb for disks that compose raid devices */
1979 for (d = super->disks; d ; d = d->next) {
1980 if (d->index < 0)
1981 continue;
1982 if (store_imsm_mpb(d->fd, super))
1983 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1984 __func__, d->major, d->minor, strerror(errno));
1985 if (doclose) {
1986 close(d->fd);
1987 d->fd = -1;
1988 }
1989 }
1990
1991 if (spares)
1992 return write_super_imsm_spares(super, doclose);
1993
1994 return 0;
1995 }
1996
1997
1998 static int create_array(struct supertype *st)
1999 {
2000 size_t len;
2001 struct imsm_update_create_array *u;
2002 struct intel_super *super = st->sb;
2003 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2004
2005 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0);
2006 u = malloc(len);
2007 if (!u) {
2008 fprintf(stderr, "%s: failed to allocate update buffer\n",
2009 __func__);
2010 return 1;
2011 }
2012
2013 u->type = update_create_array;
2014 u->dev_idx = super->current_vol;
2015 imsm_copy_dev(&u->dev, dev);
2016 append_metadata_update(st, u, len);
2017
2018 return 0;
2019 }
2020
2021 static int _add_disk(struct supertype *st)
2022 {
2023 struct intel_super *super = st->sb;
2024 size_t len;
2025 struct imsm_update_add_disk *u;
2026
2027 if (!super->add)
2028 return 0;
2029
2030 len = sizeof(*u);
2031 u = malloc(len);
2032 if (!u) {
2033 fprintf(stderr, "%s: failed to allocate update buffer\n",
2034 __func__);
2035 return 1;
2036 }
2037
2038 u->type = update_add_disk;
2039 append_metadata_update(st, u, len);
2040
2041 return 0;
2042 }
2043
2044 static int write_init_super_imsm(struct supertype *st)
2045 {
2046 if (st->update_tail) {
2047 /* queue the recently created array / added disk
2048 * as a metadata update */
2049 struct intel_super *super = st->sb;
2050 struct dl *d;
2051 int rv;
2052
2053 /* determine if we are creating a volume or adding a disk */
2054 if (super->current_vol < 0) {
2055 /* in the add disk case we are running in mdmon
2056 * context, so don't close fd's
2057 */
2058 return _add_disk(st);
2059 } else
2060 rv = create_array(st);
2061
2062 for (d = super->disks; d ; d = d->next) {
2063 close(d->fd);
2064 d->fd = -1;
2065 }
2066
2067 return rv;
2068 } else
2069 return write_super_imsm(st->sb, 1);
2070 }
2071 #endif
2072
2073 static int store_zero_imsm(struct supertype *st, int fd)
2074 {
2075 unsigned long long dsize;
2076 void *buf;
2077
2078 get_dev_size(fd, NULL, &dsize);
2079
2080 /* first block is stored on second to last sector of the disk */
2081 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2082 return 1;
2083
2084 if (posix_memalign(&buf, 512, 512) != 0)
2085 return 1;
2086
2087 memset(buf, 0, 512);
2088 if (write(fd, buf, 512) != 512)
2089 return 1;
2090 return 0;
2091 }
2092
2093 static int imsm_bbm_log_size(struct imsm_super *mpb)
2094 {
2095 return __le32_to_cpu(mpb->bbm_log_size);
2096 }
2097
2098 #ifndef MDASSEMBLE
2099 static int validate_geometry_imsm_container(struct supertype *st, int level,
2100 int layout, int raiddisks, int chunk,
2101 unsigned long long size, char *dev,
2102 unsigned long long *freesize,
2103 int verbose)
2104 {
2105 int fd;
2106 unsigned long long ldsize;
2107
2108 if (level != LEVEL_CONTAINER)
2109 return 0;
2110 if (!dev)
2111 return 1;
2112
2113 fd = open(dev, O_RDONLY|O_EXCL, 0);
2114 if (fd < 0) {
2115 if (verbose)
2116 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
2117 dev, strerror(errno));
2118 return 0;
2119 }
2120 if (!get_dev_size(fd, dev, &ldsize)) {
2121 close(fd);
2122 return 0;
2123 }
2124 close(fd);
2125
2126 *freesize = avail_size_imsm(st, ldsize >> 9);
2127
2128 return 1;
2129 }
2130
2131 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
2132 * FIX ME add ahci details
2133 */
2134 static int validate_geometry_imsm_volume(struct supertype *st, int level,
2135 int layout, int raiddisks, int chunk,
2136 unsigned long long size, char *dev,
2137 unsigned long long *freesize,
2138 int verbose)
2139 {
2140 struct stat stb;
2141 struct intel_super *super = st->sb;
2142 struct dl *dl;
2143 unsigned long long pos = 0;
2144 unsigned long long maxsize;
2145 struct extent *e;
2146 int i;
2147
2148 if (level == LEVEL_CONTAINER)
2149 return 0;
2150
2151 if (level == 1 && raiddisks > 2) {
2152 if (verbose)
2153 fprintf(stderr, Name ": imsm does not support more "
2154 "than 2 in a raid1 configuration\n");
2155 return 0;
2156 }
2157
2158 /* We must have the container info already read in. */
2159 if (!super)
2160 return 0;
2161
2162 if (!dev) {
2163 /* General test: make sure there is space for
2164 * 'raiddisks' device extents of size 'size' at a given
2165 * offset
2166 */
2167 unsigned long long minsize = size*2 /* convert to blocks */;
2168 unsigned long long start_offset = ~0ULL;
2169 int dcnt = 0;
2170 if (minsize == 0)
2171 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
2172 for (dl = super->disks; dl ; dl = dl->next) {
2173 int found = 0;
2174
2175 pos = 0;
2176 i = 0;
2177 e = get_extents(super, dl);
2178 if (!e) continue;
2179 do {
2180 unsigned long long esize;
2181 esize = e[i].start - pos;
2182 if (esize >= minsize)
2183 found = 1;
2184 if (found && start_offset == ~0ULL) {
2185 start_offset = pos;
2186 break;
2187 } else if (found && pos != start_offset) {
2188 found = 0;
2189 break;
2190 }
2191 pos = e[i].start + e[i].size;
2192 i++;
2193 } while (e[i-1].size);
2194 if (found)
2195 dcnt++;
2196 free(e);
2197 }
2198 if (dcnt < raiddisks) {
2199 if (verbose)
2200 fprintf(stderr, Name ": imsm: Not enough "
2201 "devices with space for this array "
2202 "(%d < %d)\n",
2203 dcnt, raiddisks);
2204 return 0;
2205 }
2206 return 1;
2207 }
2208 /* This device must be a member of the set */
2209 if (stat(dev, &stb) < 0)
2210 return 0;
2211 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2212 return 0;
2213 for (dl = super->disks ; dl ; dl = dl->next) {
2214 if (dl->major == major(stb.st_rdev) &&
2215 dl->minor == minor(stb.st_rdev))
2216 break;
2217 }
2218 if (!dl) {
2219 if (verbose)
2220 fprintf(stderr, Name ": %s is not in the "
2221 "same imsm set\n", dev);
2222 return 0;
2223 }
2224 e = get_extents(super, dl);
2225 maxsize = 0;
2226 i = 0;
2227 if (e) do {
2228 unsigned long long esize;
2229 esize = e[i].start - pos;
2230 if (esize >= maxsize)
2231 maxsize = esize;
2232 pos = e[i].start + e[i].size;
2233 i++;
2234 } while (e[i-1].size);
2235 *freesize = maxsize;
2236
2237 return 1;
2238 }
2239
2240 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
2241 int raiddisks, int chunk, unsigned long long size,
2242 char *dev, unsigned long long *freesize,
2243 int verbose)
2244 {
2245 int fd, cfd;
2246 struct mdinfo *sra;
2247
2248 /* if given unused devices create a container
2249 * if given given devices in a container create a member volume
2250 */
2251 if (level == LEVEL_CONTAINER) {
2252 /* Must be a fresh device to add to a container */
2253 return validate_geometry_imsm_container(st, level, layout,
2254 raiddisks, chunk, size,
2255 dev, freesize,
2256 verbose);
2257 }
2258
2259 if (st->sb) {
2260 /* creating in a given container */
2261 return validate_geometry_imsm_volume(st, level, layout,
2262 raiddisks, chunk, size,
2263 dev, freesize, verbose);
2264 }
2265
2266 /* limit creation to the following levels */
2267 if (!dev)
2268 switch (level) {
2269 case 0:
2270 case 1:
2271 case 10:
2272 case 5:
2273 break;
2274 default:
2275 return 1;
2276 }
2277
2278 /* This device needs to be a device in an 'imsm' container */
2279 fd = open(dev, O_RDONLY|O_EXCL, 0);
2280 if (fd >= 0) {
2281 if (verbose)
2282 fprintf(stderr,
2283 Name ": Cannot create this array on device %s\n",
2284 dev);
2285 close(fd);
2286 return 0;
2287 }
2288 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2289 if (verbose)
2290 fprintf(stderr, Name ": Cannot open %s: %s\n",
2291 dev, strerror(errno));
2292 return 0;
2293 }
2294 /* Well, it is in use by someone, maybe an 'imsm' container. */
2295 cfd = open_container(fd);
2296 if (cfd < 0) {
2297 close(fd);
2298 if (verbose)
2299 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
2300 dev);
2301 return 0;
2302 }
2303 sra = sysfs_read(cfd, 0, GET_VERSION);
2304 close(fd);
2305 if (sra && sra->array.major_version == -1 &&
2306 strcmp(sra->text_version, "imsm") == 0) {
2307 /* This is a member of a imsm container. Load the container
2308 * and try to create a volume
2309 */
2310 struct intel_super *super;
2311
2312 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
2313 st->sb = super;
2314 st->container_dev = fd2devnum(cfd);
2315 close(cfd);
2316 return validate_geometry_imsm_volume(st, level, layout,
2317 raiddisks, chunk,
2318 size, dev,
2319 freesize, verbose);
2320 }
2321 close(cfd);
2322 } else /* may belong to another container */
2323 return 0;
2324
2325 return 1;
2326 }
2327 #endif /* MDASSEMBLE */
2328
2329 static struct mdinfo *container_content_imsm(struct supertype *st)
2330 {
2331 /* Given a container loaded by load_super_imsm_all,
2332 * extract information about all the arrays into
2333 * an mdinfo tree.
2334 *
2335 * For each imsm_dev create an mdinfo, fill it in,
2336 * then look for matching devices in super->disks
2337 * and create appropriate device mdinfo.
2338 */
2339 struct intel_super *super = st->sb;
2340 struct imsm_super *mpb = super->anchor;
2341 struct mdinfo *rest = NULL;
2342 int i;
2343
2344 /* do not assemble arrays that might have bad blocks */
2345 if (imsm_bbm_log_size(super->anchor)) {
2346 fprintf(stderr, Name ": BBM log found in metadata. "
2347 "Cannot activate array(s).\n");
2348 return NULL;
2349 }
2350
2351 for (i = 0; i < mpb->num_raid_devs; i++) {
2352 struct imsm_dev *dev = get_imsm_dev(super, i);
2353 struct imsm_map *map = get_imsm_map(dev, 0);
2354 struct mdinfo *this;
2355 int slot;
2356
2357 this = malloc(sizeof(*this));
2358 memset(this, 0, sizeof(*this));
2359 this->next = rest;
2360
2361 super->current_vol = i;
2362 getinfo_super_imsm_volume(st, this);
2363 for (slot = 0 ; slot < map->num_members; slot++) {
2364 struct mdinfo *info_d;
2365 struct dl *d;
2366 int idx;
2367 int skip;
2368 __u32 s;
2369 __u32 ord;
2370
2371 skip = 0;
2372 idx = get_imsm_disk_idx(dev, slot);
2373 ord = get_imsm_ord_tbl_ent(dev, slot);
2374 for (d = super->disks; d ; d = d->next)
2375 if (d->index == idx)
2376 break;
2377
2378 if (d == NULL)
2379 skip = 1;
2380
2381 s = d ? __le32_to_cpu(d->disk.status) : 0;
2382 if (s & FAILED_DISK)
2383 skip = 1;
2384 if (!(s & USABLE_DISK))
2385 skip = 1;
2386 if (ord & IMSM_ORD_REBUILD)
2387 skip = 1;
2388
2389 /*
2390 * if we skip some disks the array will be assmebled degraded;
2391 * reset resync start to avoid a dirty-degraded situation
2392 *
2393 * FIXME handle dirty degraded
2394 */
2395 if (skip && !dev->vol.dirty)
2396 this->resync_start = ~0ULL;
2397 if (skip)
2398 continue;
2399
2400 info_d = malloc(sizeof(*info_d));
2401 if (!info_d) {
2402 fprintf(stderr, Name ": failed to allocate disk"
2403 " for volume %s\n", (char *) dev->volume);
2404 free(this);
2405 this = rest;
2406 break;
2407 }
2408 memset(info_d, 0, sizeof(*info_d));
2409 info_d->next = this->devs;
2410 this->devs = info_d;
2411
2412 info_d->disk.number = d->index;
2413 info_d->disk.major = d->major;
2414 info_d->disk.minor = d->minor;
2415 info_d->disk.raid_disk = slot;
2416
2417 this->array.working_disks++;
2418
2419 info_d->events = __le32_to_cpu(mpb->generation_num);
2420 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
2421 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
2422 if (d->devname)
2423 strcpy(info_d->name, d->devname);
2424 }
2425 rest = this;
2426 }
2427
2428 return rest;
2429 }
2430
2431
2432 #ifndef MDASSEMBLE
2433 static int imsm_open_new(struct supertype *c, struct active_array *a,
2434 char *inst)
2435 {
2436 struct intel_super *super = c->sb;
2437 struct imsm_super *mpb = super->anchor;
2438
2439 if (atoi(inst) >= mpb->num_raid_devs) {
2440 fprintf(stderr, "%s: subarry index %d, out of range\n",
2441 __func__, atoi(inst));
2442 return -ENODEV;
2443 }
2444
2445 dprintf("imsm: open_new %s\n", inst);
2446 a->info.container_member = atoi(inst);
2447 return 0;
2448 }
2449
2450 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
2451 {
2452 struct imsm_map *map = get_imsm_map(dev, 0);
2453
2454 if (!failed)
2455 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
2456 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
2457
2458 switch (get_imsm_raid_level(map)) {
2459 case 0:
2460 return IMSM_T_STATE_FAILED;
2461 break;
2462 case 1:
2463 if (failed < map->num_members)
2464 return IMSM_T_STATE_DEGRADED;
2465 else
2466 return IMSM_T_STATE_FAILED;
2467 break;
2468 case 10:
2469 {
2470 /**
2471 * check to see if any mirrors have failed, otherwise we
2472 * are degraded. Even numbered slots are mirrored on
2473 * slot+1
2474 */
2475 int i;
2476 /* gcc -Os complains that this is unused */
2477 int insync = insync;
2478
2479 for (i = 0; i < map->num_members; i++) {
2480 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
2481 int idx = ord_to_idx(ord);
2482 struct imsm_disk *disk;
2483
2484 /* reset the potential in-sync count on even-numbered
2485 * slots. num_copies is always 2 for imsm raid10
2486 */
2487 if ((i & 1) == 0)
2488 insync = 2;
2489
2490 disk = get_imsm_disk(super, idx);
2491 if (!disk ||
2492 __le32_to_cpu(disk->status) & FAILED_DISK ||
2493 ord & IMSM_ORD_REBUILD)
2494 insync--;
2495
2496 /* no in-sync disks left in this mirror the
2497 * array has failed
2498 */
2499 if (insync == 0)
2500 return IMSM_T_STATE_FAILED;
2501 }
2502
2503 return IMSM_T_STATE_DEGRADED;
2504 }
2505 case 5:
2506 if (failed < 2)
2507 return IMSM_T_STATE_DEGRADED;
2508 else
2509 return IMSM_T_STATE_FAILED;
2510 break;
2511 default:
2512 break;
2513 }
2514
2515 return map->map_state;
2516 }
2517
2518 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
2519 {
2520 int i;
2521 int failed = 0;
2522 struct imsm_disk *disk;
2523 struct imsm_map *map = get_imsm_map(dev, 0);
2524
2525 for (i = 0; i < map->num_members; i++) {
2526 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
2527 int idx = ord_to_idx(ord);
2528
2529 disk = get_imsm_disk(super, idx);
2530 if (!disk ||
2531 __le32_to_cpu(disk->status) & FAILED_DISK ||
2532 ord & IMSM_ORD_REBUILD)
2533 failed++;
2534 }
2535
2536 return failed;
2537 }
2538
2539 static int is_resyncing(struct imsm_dev *dev)
2540 {
2541 struct imsm_map *migr_map;
2542
2543 if (!dev->vol.migr_state)
2544 return 0;
2545
2546 if (dev->vol.migr_type == 0)
2547 return 1;
2548
2549 migr_map = get_imsm_map(dev, 1);
2550
2551 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
2552 return 1;
2553 else
2554 return 0;
2555 }
2556
2557 static int is_rebuilding(struct imsm_dev *dev)
2558 {
2559 struct imsm_map *migr_map;
2560
2561 if (!dev->vol.migr_state)
2562 return 0;
2563
2564 if (dev->vol.migr_type == 0)
2565 return 0;
2566
2567 migr_map = get_imsm_map(dev, 1);
2568
2569 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
2570 return 1;
2571 else
2572 return 0;
2573 }
2574
2575 static void mark_failure(struct imsm_disk *disk)
2576 {
2577 __u32 status = __le32_to_cpu(disk->status);
2578
2579 if (status & FAILED_DISK)
2580 return;
2581 status |= FAILED_DISK;
2582 disk->status = __cpu_to_le32(status);
2583 disk->scsi_id = __cpu_to_le32(~(__u32)0);
2584 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
2585 }
2586
2587 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
2588 * states are handled in imsm_set_disk() with one exception, when a
2589 * resync is stopped due to a new failure this routine will set the
2590 * 'degraded' state for the array.
2591 */
2592 static int imsm_set_array_state(struct active_array *a, int consistent)
2593 {
2594 int inst = a->info.container_member;
2595 struct intel_super *super = a->container->sb;
2596 struct imsm_dev *dev = get_imsm_dev(super, inst);
2597 struct imsm_map *map = get_imsm_map(dev, 0);
2598 int failed = imsm_count_failed(super, dev);
2599 __u8 map_state = imsm_check_degraded(super, dev, failed);
2600
2601 /* before we activate this array handle any missing disks */
2602 if (consistent == 2 && super->missing) {
2603 struct dl *dl;
2604
2605 dprintf("imsm: mark missing\n");
2606 end_migration(dev, map_state);
2607 for (dl = super->missing; dl; dl = dl->next)
2608 mark_failure(&dl->disk);
2609 super->updates_pending++;
2610 }
2611
2612 if (consistent == 2 &&
2613 (!is_resync_complete(a) ||
2614 map_state != IMSM_T_STATE_NORMAL ||
2615 dev->vol.migr_state))
2616 consistent = 0;
2617
2618 if (is_resync_complete(a)) {
2619 /* complete intialization / resync,
2620 * recovery is completed in ->set_disk
2621 */
2622 if (is_resyncing(dev)) {
2623 dprintf("imsm: mark resync done\n");
2624 end_migration(dev, map_state);
2625 super->updates_pending++;
2626 }
2627 } else if (!is_resyncing(dev) && !failed) {
2628 /* mark the start of the init process if nothing is failed */
2629 dprintf("imsm: mark resync start (%llu)\n", a->resync_start);
2630 map->map_state = map_state;
2631 migrate(dev, IMSM_T_STATE_NORMAL,
2632 map->map_state == IMSM_T_STATE_NORMAL);
2633 super->updates_pending++;
2634 }
2635
2636 /* check if we can update the migration checkpoint */
2637 if (dev->vol.migr_state &&
2638 __le32_to_cpu(dev->vol.curr_migr_unit) != a->resync_start) {
2639 dprintf("imsm: checkpoint migration (%llu)\n", a->resync_start);
2640 dev->vol.curr_migr_unit = __cpu_to_le32(a->resync_start);
2641 super->updates_pending++;
2642 }
2643
2644 /* mark dirty / clean */
2645 if (dev->vol.dirty != !consistent) {
2646 dprintf("imsm: mark '%s' (%llu)\n",
2647 consistent ? "clean" : "dirty", a->resync_start);
2648 if (consistent)
2649 dev->vol.dirty = 0;
2650 else
2651 dev->vol.dirty = 1;
2652 super->updates_pending++;
2653 }
2654 return consistent;
2655 }
2656
2657 static void imsm_set_disk(struct active_array *a, int n, int state)
2658 {
2659 int inst = a->info.container_member;
2660 struct intel_super *super = a->container->sb;
2661 struct imsm_dev *dev = get_imsm_dev(super, inst);
2662 struct imsm_map *map = get_imsm_map(dev, 0);
2663 struct imsm_disk *disk;
2664 int failed;
2665 __u32 status;
2666 __u32 ord;
2667 __u8 map_state;
2668
2669 if (n > map->num_members)
2670 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2671 n, map->num_members - 1);
2672
2673 if (n < 0)
2674 return;
2675
2676 dprintf("imsm: set_disk %d:%x\n", n, state);
2677
2678 ord = get_imsm_ord_tbl_ent(dev, n);
2679 disk = get_imsm_disk(super, ord_to_idx(ord));
2680
2681 /* check for new failures */
2682 status = __le32_to_cpu(disk->status);
2683 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
2684 mark_failure(disk);
2685 super->updates_pending++;
2686 }
2687
2688 /* check if in_sync */
2689 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD) {
2690 struct imsm_map *migr_map = get_imsm_map(dev, 1);
2691
2692 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
2693 super->updates_pending++;
2694 }
2695
2696 failed = imsm_count_failed(super, dev);
2697 map_state = imsm_check_degraded(super, dev, failed);
2698
2699 /* check if recovery complete, newly degraded, or failed */
2700 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
2701 end_migration(dev, map_state);
2702 super->updates_pending++;
2703 } else if (map_state == IMSM_T_STATE_DEGRADED &&
2704 map->map_state != map_state &&
2705 !dev->vol.migr_state) {
2706 dprintf("imsm: mark degraded\n");
2707 map->map_state = map_state;
2708 super->updates_pending++;
2709 } else if (map_state == IMSM_T_STATE_FAILED &&
2710 map->map_state != map_state) {
2711 dprintf("imsm: mark failed\n");
2712 end_migration(dev, map_state);
2713 super->updates_pending++;
2714 }
2715 }
2716
2717 static int store_imsm_mpb(int fd, struct intel_super *super)
2718 {
2719 struct imsm_super *mpb = super->anchor;
2720 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2721 unsigned long long dsize;
2722 unsigned long long sectors;
2723
2724 get_dev_size(fd, NULL, &dsize);
2725
2726 if (mpb_size > 512) {
2727 /* -1 to account for anchor */
2728 sectors = mpb_sectors(mpb) - 1;
2729
2730 /* write the extended mpb to the sectors preceeding the anchor */
2731 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2732 return 1;
2733
2734 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
2735 return 1;
2736 }
2737
2738 /* first block is stored on second to last sector of the disk */
2739 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2740 return 1;
2741
2742 if (write(fd, super->buf, 512) != 512)
2743 return 1;
2744
2745 return 0;
2746 }
2747
2748 static void imsm_sync_metadata(struct supertype *container)
2749 {
2750 struct intel_super *super = container->sb;
2751
2752 if (!super->updates_pending)
2753 return;
2754
2755 write_super_imsm(super, 0);
2756
2757 super->updates_pending = 0;
2758 }
2759
2760 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
2761 {
2762 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2763 int i = get_imsm_disk_idx(dev, idx);
2764 struct dl *dl;
2765
2766 for (dl = super->disks; dl; dl = dl->next)
2767 if (dl->index == i)
2768 break;
2769
2770 if (dl && __le32_to_cpu(dl->disk.status) & FAILED_DISK)
2771 dl = NULL;
2772
2773 if (dl)
2774 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
2775
2776 return dl;
2777 }
2778
2779 static struct dl *imsm_add_spare(struct intel_super *super, int slot, struct active_array *a)
2780 {
2781 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2782 int idx = get_imsm_disk_idx(dev, slot);
2783 struct imsm_map *map = get_imsm_map(dev, 0);
2784 unsigned long long esize;
2785 unsigned long long pos;
2786 struct mdinfo *d;
2787 struct extent *ex;
2788 int j;
2789 int found;
2790 __u32 array_start;
2791 __u32 status;
2792 struct dl *dl;
2793
2794 for (dl = super->disks; dl; dl = dl->next) {
2795 /* If in this array, skip */
2796 for (d = a->info.devs ; d ; d = d->next)
2797 if (d->state_fd >= 0 &&
2798 d->disk.major == dl->major &&
2799 d->disk.minor == dl->minor) {
2800 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2801 break;
2802 }
2803 if (d)
2804 continue;
2805
2806 /* skip in use or failed drives */
2807 status = __le32_to_cpu(dl->disk.status);
2808 if (status & FAILED_DISK || idx == dl->index) {
2809 dprintf("%x:%x status ( %s%s)\n",
2810 dl->major, dl->minor,
2811 status & FAILED_DISK ? "failed " : "",
2812 idx == dl->index ? "in use " : "");
2813 continue;
2814 }
2815
2816 /* Does this unused device have the requisite free space?
2817 * We need a->info.component_size sectors
2818 */
2819 ex = get_extents(super, dl);
2820 if (!ex) {
2821 dprintf("cannot get extents\n");
2822 continue;
2823 }
2824 found = 0;
2825 j = 0;
2826 pos = 0;
2827 array_start = __le32_to_cpu(map->pba_of_lba0);
2828
2829 do {
2830 /* check that we can start at pba_of_lba0 with
2831 * a->info.component_size of space
2832 */
2833 esize = ex[j].start - pos;
2834 if (array_start >= pos &&
2835 array_start + a->info.component_size < ex[j].start) {
2836 found = 1;
2837 break;
2838 }
2839 pos = ex[j].start + ex[j].size;
2840 j++;
2841
2842 } while (ex[j-1].size);
2843
2844 free(ex);
2845 if (!found) {
2846 dprintf("%x:%x does not have %llu at %d\n",
2847 dl->major, dl->minor,
2848 a->info.component_size,
2849 __le32_to_cpu(map->pba_of_lba0));
2850 /* No room */
2851 continue;
2852 } else
2853 break;
2854 }
2855
2856 return dl;
2857 }
2858
2859 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2860 struct metadata_update **updates)
2861 {
2862 /**
2863 * Find a device with unused free space and use it to replace a
2864 * failed/vacant region in an array. We replace failed regions one a
2865 * array at a time. The result is that a new spare disk will be added
2866 * to the first failed array and after the monitor has finished
2867 * propagating failures the remainder will be consumed.
2868 *
2869 * FIXME add a capability for mdmon to request spares from another
2870 * container.
2871 */
2872
2873 struct intel_super *super = a->container->sb;
2874 int inst = a->info.container_member;
2875 struct imsm_dev *dev = get_imsm_dev(super, inst);
2876 struct imsm_map *map = get_imsm_map(dev, 0);
2877 int failed = a->info.array.raid_disks;
2878 struct mdinfo *rv = NULL;
2879 struct mdinfo *d;
2880 struct mdinfo *di;
2881 struct metadata_update *mu;
2882 struct dl *dl;
2883 struct imsm_update_activate_spare *u;
2884 int num_spares = 0;
2885 int i;
2886
2887 for (d = a->info.devs ; d ; d = d->next) {
2888 if ((d->curr_state & DS_FAULTY) &&
2889 d->state_fd >= 0)
2890 /* wait for Removal to happen */
2891 return NULL;
2892 if (d->state_fd >= 0)
2893 failed--;
2894 }
2895
2896 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2897 inst, failed, a->info.array.raid_disks, a->info.array.level);
2898 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
2899 return NULL;
2900
2901 /* For each slot, if it is not working, find a spare */
2902 for (i = 0; i < a->info.array.raid_disks; i++) {
2903 for (d = a->info.devs ; d ; d = d->next)
2904 if (d->disk.raid_disk == i)
2905 break;
2906 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2907 if (d && (d->state_fd >= 0))
2908 continue;
2909
2910 /*
2911 * OK, this device needs recovery. Try to re-add the previous
2912 * occupant of this slot, if this fails add a new spare
2913 */
2914 dl = imsm_readd(super, i, a);
2915 if (!dl)
2916 dl = imsm_add_spare(super, i, a);
2917 if (!dl)
2918 continue;
2919
2920 /* found a usable disk with enough space */
2921 di = malloc(sizeof(*di));
2922 if (!di)
2923 continue;
2924 memset(di, 0, sizeof(*di));
2925
2926 /* dl->index will be -1 in the case we are activating a
2927 * pristine spare. imsm_process_update() will create a
2928 * new index in this case. Once a disk is found to be
2929 * failed in all member arrays it is kicked from the
2930 * metadata
2931 */
2932 di->disk.number = dl->index;
2933
2934 /* (ab)use di->devs to store a pointer to the device
2935 * we chose
2936 */
2937 di->devs = (struct mdinfo *) dl;
2938
2939 di->disk.raid_disk = i;
2940 di->disk.major = dl->major;
2941 di->disk.minor = dl->minor;
2942 di->disk.state = 0;
2943 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
2944 di->component_size = a->info.component_size;
2945 di->container_member = inst;
2946 di->next = rv;
2947 rv = di;
2948 num_spares++;
2949 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2950 i, di->data_offset);
2951
2952 break;
2953 }
2954
2955 if (!rv)
2956 /* No spares found */
2957 return rv;
2958 /* Now 'rv' has a list of devices to return.
2959 * Create a metadata_update record to update the
2960 * disk_ord_tbl for the array
2961 */
2962 mu = malloc(sizeof(*mu));
2963 if (mu) {
2964 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2965 if (mu->buf == NULL) {
2966 free(mu);
2967 mu = NULL;
2968 }
2969 }
2970 if (!mu) {
2971 while (rv) {
2972 struct mdinfo *n = rv->next;
2973
2974 free(rv);
2975 rv = n;
2976 }
2977 return NULL;
2978 }
2979
2980 mu->space = NULL;
2981 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2982 mu->next = *updates;
2983 u = (struct imsm_update_activate_spare *) mu->buf;
2984
2985 for (di = rv ; di ; di = di->next) {
2986 u->type = update_activate_spare;
2987 u->dl = (struct dl *) di->devs;
2988 di->devs = NULL;
2989 u->slot = di->disk.raid_disk;
2990 u->array = inst;
2991 u->next = u + 1;
2992 u++;
2993 }
2994 (u-1)->next = NULL;
2995 *updates = mu;
2996
2997 return rv;
2998 }
2999
3000 static int disks_overlap(struct imsm_dev *d1, struct imsm_dev *d2)
3001 {
3002 struct imsm_map *m1 = get_imsm_map(d1, 0);
3003 struct imsm_map *m2 = get_imsm_map(d2, 0);
3004 int i;
3005 int j;
3006 int idx;
3007
3008 for (i = 0; i < m1->num_members; i++) {
3009 idx = get_imsm_disk_idx(d1, i);
3010 for (j = 0; j < m2->num_members; j++)
3011 if (idx == get_imsm_disk_idx(d2, j))
3012 return 1;
3013 }
3014
3015 return 0;
3016 }
3017
3018 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
3019
3020 static void imsm_process_update(struct supertype *st,
3021 struct metadata_update *update)
3022 {
3023 /**
3024 * crack open the metadata_update envelope to find the update record
3025 * update can be one of:
3026 * update_activate_spare - a spare device has replaced a failed
3027 * device in an array, update the disk_ord_tbl. If this disk is
3028 * present in all member arrays then also clear the SPARE_DISK
3029 * flag
3030 */
3031 struct intel_super *super = st->sb;
3032 struct imsm_super *mpb;
3033 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
3034
3035 /* update requires a larger buf but the allocation failed */
3036 if (super->next_len && !super->next_buf) {
3037 super->next_len = 0;
3038 return;
3039 }
3040
3041 if (super->next_buf) {
3042 memcpy(super->next_buf, super->buf, super->len);
3043 free(super->buf);
3044 super->len = super->next_len;
3045 super->buf = super->next_buf;
3046
3047 super->next_len = 0;
3048 super->next_buf = NULL;
3049 }
3050
3051 mpb = super->anchor;
3052
3053 switch (type) {
3054 case update_activate_spare: {
3055 struct imsm_update_activate_spare *u = (void *) update->buf;
3056 struct imsm_dev *dev = get_imsm_dev(super, u->array);
3057 struct imsm_map *map = get_imsm_map(dev, 0);
3058 struct imsm_map *migr_map;
3059 struct active_array *a;
3060 struct imsm_disk *disk;
3061 __u32 status;
3062 __u8 to_state;
3063 struct dl *dl;
3064 unsigned int found;
3065 int failed;
3066 int victim = get_imsm_disk_idx(dev, u->slot);
3067 int i;
3068
3069 for (dl = super->disks; dl; dl = dl->next)
3070 if (dl == u->dl)
3071 break;
3072
3073 if (!dl) {
3074 fprintf(stderr, "error: imsm_activate_spare passed "
3075 "an unknown disk (index: %d)\n",
3076 u->dl->index);
3077 return;
3078 }
3079
3080 super->updates_pending++;
3081
3082 /* count failures (excluding rebuilds and the victim)
3083 * to determine map[0] state
3084 */
3085 failed = 0;
3086 for (i = 0; i < map->num_members; i++) {
3087 if (i == u->slot)
3088 continue;
3089 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
3090 if (!disk ||
3091 __le32_to_cpu(disk->status) & FAILED_DISK)
3092 failed++;
3093 }
3094
3095 /* adding a pristine spare, assign a new index */
3096 if (dl->index < 0) {
3097 dl->index = super->anchor->num_disks;
3098 super->anchor->num_disks++;
3099 }
3100 disk = &dl->disk;
3101 status = __le32_to_cpu(disk->status);
3102 status |= CONFIGURED_DISK;
3103 status &= ~SPARE_DISK;
3104 disk->status = __cpu_to_le32(status);
3105
3106 /* mark rebuild */
3107 to_state = imsm_check_degraded(super, dev, failed);
3108 map->map_state = IMSM_T_STATE_DEGRADED;
3109 migrate(dev, to_state, 1);
3110 migr_map = get_imsm_map(dev, 1);
3111 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
3112 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
3113
3114 /* count arrays using the victim in the metadata */
3115 found = 0;
3116 for (a = st->arrays; a ; a = a->next) {
3117 dev = get_imsm_dev(super, a->info.container_member);
3118 for (i = 0; i < map->num_members; i++)
3119 if (victim == get_imsm_disk_idx(dev, i))
3120 found++;
3121 }
3122
3123 /* delete the victim if it is no longer being
3124 * utilized anywhere
3125 */
3126 if (!found) {
3127 struct dl **dlp;
3128
3129 /* We know that 'manager' isn't touching anything,
3130 * so it is safe to delete
3131 */
3132 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
3133 if ((*dlp)->index == victim)
3134 break;
3135
3136 /* victim may be on the missing list */
3137 if (!*dlp)
3138 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
3139 if ((*dlp)->index == victim)
3140 break;
3141 imsm_delete(super, dlp, victim);
3142 }
3143 break;
3144 }
3145 case update_create_array: {
3146 /* someone wants to create a new array, we need to be aware of
3147 * a few races/collisions:
3148 * 1/ 'Create' called by two separate instances of mdadm
3149 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
3150 * devices that have since been assimilated via
3151 * activate_spare.
3152 * In the event this update can not be carried out mdadm will
3153 * (FIX ME) notice that its update did not take hold.
3154 */
3155 struct imsm_update_create_array *u = (void *) update->buf;
3156 struct imsm_dev *dev;
3157 struct imsm_map *map, *new_map;
3158 unsigned long long start, end;
3159 unsigned long long new_start, new_end;
3160 int i;
3161 int overlap = 0;
3162
3163 /* handle racing creates: first come first serve */
3164 if (u->dev_idx < mpb->num_raid_devs) {
3165 dprintf("%s: subarray %d already defined\n",
3166 __func__, u->dev_idx);
3167 return;
3168 }
3169
3170 /* check update is next in sequence */
3171 if (u->dev_idx != mpb->num_raid_devs) {
3172 dprintf("%s: can not create array %d expected index %d\n",
3173 __func__, u->dev_idx, mpb->num_raid_devs);
3174 return;
3175 }
3176
3177 new_map = get_imsm_map(&u->dev, 0);
3178 new_start = __le32_to_cpu(new_map->pba_of_lba0);
3179 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
3180
3181 /* handle activate_spare versus create race:
3182 * check to make sure that overlapping arrays do not include
3183 * overalpping disks
3184 */
3185 for (i = 0; i < mpb->num_raid_devs; i++) {
3186 dev = get_imsm_dev(super, i);
3187 map = get_imsm_map(dev, 0);
3188 start = __le32_to_cpu(map->pba_of_lba0);
3189 end = start + __le32_to_cpu(map->blocks_per_member);
3190 if ((new_start >= start && new_start <= end) ||
3191 (start >= new_start && start <= new_end))
3192 overlap = 1;
3193 if (overlap && disks_overlap(dev, &u->dev)) {
3194 dprintf("%s: arrays overlap\n", __func__);
3195 return;
3196 }
3197 }
3198 /* check num_members sanity */
3199 if (new_map->num_members > mpb->num_disks) {
3200 dprintf("%s: num_disks out of range\n", __func__);
3201 return;
3202 }
3203
3204 /* check that prepare update was successful */
3205 if (!update->space) {
3206 dprintf("%s: prepare update failed\n", __func__);
3207 return;
3208 }
3209
3210 super->updates_pending++;
3211 dev = update->space;
3212 map = get_imsm_map(dev, 0);
3213 update->space = NULL;
3214 imsm_copy_dev(dev, &u->dev);
3215 map = get_imsm_map(dev, 0);
3216 super->dev_tbl[u->dev_idx] = dev;
3217 mpb->num_raid_devs++;
3218
3219 /* fix up flags */
3220 for (i = 0; i < map->num_members; i++) {
3221 struct imsm_disk *disk;
3222 __u32 status;
3223
3224 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
3225 status = __le32_to_cpu(disk->status);
3226 status |= CONFIGURED_DISK;
3227 status &= ~SPARE_DISK;
3228 disk->status = __cpu_to_le32(status);
3229 }
3230 break;
3231 }
3232 case update_add_disk:
3233
3234 /* we may be able to repair some arrays if disks are
3235 * being added */
3236 if (super->add) {
3237 struct active_array *a;
3238
3239 super->updates_pending++;
3240 for (a = st->arrays; a; a = a->next)
3241 a->check_degraded = 1;
3242 }
3243 /* add some spares to the metadata */
3244 while (super->add) {
3245 struct dl *al;
3246
3247 al = super->add;
3248 super->add = al->next;
3249 al->next = super->disks;
3250 super->disks = al;
3251 dprintf("%s: added %x:%x\n",
3252 __func__, al->major, al->minor);
3253 }
3254
3255 break;
3256 }
3257 }
3258
3259 static void imsm_prepare_update(struct supertype *st,
3260 struct metadata_update *update)
3261 {
3262 /**
3263 * Allocate space to hold new disk entries, raid-device entries or a new
3264 * mpb if necessary. The manager synchronously waits for updates to
3265 * complete in the monitor, so new mpb buffers allocated here can be
3266 * integrated by the monitor thread without worrying about live pointers
3267 * in the manager thread.
3268 */
3269 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
3270 struct intel_super *super = st->sb;
3271 struct imsm_super *mpb = super->anchor;
3272 size_t buf_len;
3273 size_t len = 0;
3274
3275 switch (type) {
3276 case update_create_array: {
3277 struct imsm_update_create_array *u = (void *) update->buf;
3278
3279 len = sizeof_imsm_dev(&u->dev, 1);
3280 update->space = malloc(len);
3281 break;
3282 default:
3283 break;
3284 }
3285 }
3286
3287 /* check if we need a larger metadata buffer */
3288 if (super->next_buf)
3289 buf_len = super->next_len;
3290 else
3291 buf_len = super->len;
3292
3293 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
3294 /* ok we need a larger buf than what is currently allocated
3295 * if this allocation fails process_update will notice that
3296 * ->next_len is set and ->next_buf is NULL
3297 */
3298 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
3299 if (super->next_buf)
3300 free(super->next_buf);
3301
3302 super->next_len = buf_len;
3303 if (posix_memalign(&super->next_buf, buf_len, 512) != 0)
3304 super->next_buf = NULL;
3305 }
3306 }
3307
3308 /* must be called while manager is quiesced */
3309 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
3310 {
3311 struct imsm_super *mpb = super->anchor;
3312 struct dl *iter;
3313 struct imsm_dev *dev;
3314 struct imsm_map *map;
3315 int i, j, num_members;
3316 __u32 ord;
3317
3318 dprintf("%s: deleting device[%d] from imsm_super\n",
3319 __func__, index);
3320
3321 /* shift all indexes down one */
3322 for (iter = super->disks; iter; iter = iter->next)
3323 if (iter->index > index)
3324 iter->index--;
3325 for (iter = super->missing; iter; iter = iter->next)
3326 if (iter->index > index)
3327 iter->index--;
3328
3329 for (i = 0; i < mpb->num_raid_devs; i++) {
3330 dev = get_imsm_dev(super, i);
3331 map = get_imsm_map(dev, 0);
3332 num_members = map->num_members;
3333 for (j = 0; j < num_members; j++) {
3334 /* update ord entries being careful not to propagate
3335 * ord-flags to the first map
3336 */
3337 ord = get_imsm_ord_tbl_ent(dev, j);
3338
3339 if (ord_to_idx(ord) <= index)
3340 continue;
3341
3342 map = get_imsm_map(dev, 0);
3343 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
3344 map = get_imsm_map(dev, 1);
3345 if (map)
3346 set_imsm_ord_tbl_ent(map, j, ord - 1);
3347 }
3348 }
3349
3350 mpb->num_disks--;
3351 super->updates_pending++;
3352 if (*dlp) {
3353 struct dl *dl = *dlp;
3354
3355 *dlp = (*dlp)->next;
3356 __free_imsm_disk(dl);
3357 }
3358 }
3359 #endif /* MDASSEMBLE */
3360
3361 struct superswitch super_imsm = {
3362 #ifndef MDASSEMBLE
3363 .examine_super = examine_super_imsm,
3364 .brief_examine_super = brief_examine_super_imsm,
3365 .detail_super = detail_super_imsm,
3366 .brief_detail_super = brief_detail_super_imsm,
3367 .write_init_super = write_init_super_imsm,
3368 .validate_geometry = validate_geometry_imsm,
3369 .add_to_super = add_to_super_imsm,
3370 #endif
3371 .match_home = match_home_imsm,
3372 .uuid_from_super= uuid_from_super_imsm,
3373 .getinfo_super = getinfo_super_imsm,
3374 .update_super = update_super_imsm,
3375
3376 .avail_size = avail_size_imsm,
3377
3378 .compare_super = compare_super_imsm,
3379
3380 .load_super = load_super_imsm,
3381 .init_super = init_super_imsm,
3382 .store_super = store_zero_imsm,
3383 .free_super = free_super_imsm,
3384 .match_metadata_desc = match_metadata_desc_imsm,
3385 .container_content = container_content_imsm,
3386
3387 .external = 1,
3388
3389 #ifndef MDASSEMBLE
3390 /* for mdmon */
3391 .open_new = imsm_open_new,
3392 .load_super = load_super_imsm,
3393 .set_array_state= imsm_set_array_state,
3394 .set_disk = imsm_set_disk,
3395 .sync_metadata = imsm_sync_metadata,
3396 .activate_spare = imsm_activate_spare,
3397 .process_update = imsm_process_update,
3398 .prepare_update = imsm_prepare_update,
3399 #endif /* MDASSEMBLE */
3400 };