]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
GCC compile fix: remove calculation of unused variable 'reservation'
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 #define IMSM_DISK_FILLERS 4
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107 };
108
109 /* RAID map configuration infos. */
110 struct imsm_map {
111 __u32 pba_of_lba0; /* start address of partition */
112 __u32 blocks_per_member;/* blocks per member */
113 __u32 num_data_stripes; /* number of data stripes */
114 __u16 blocks_per_strip;
115 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
116 #define IMSM_T_STATE_NORMAL 0
117 #define IMSM_T_STATE_UNINITIALIZED 1
118 #define IMSM_T_STATE_DEGRADED 2
119 #define IMSM_T_STATE_FAILED 3
120 __u8 raid_level;
121 #define IMSM_T_RAID0 0
122 #define IMSM_T_RAID1 1
123 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
124 __u8 num_members; /* number of member disks */
125 __u8 num_domains; /* number of parity domains */
126 __u8 failed_disk_num; /* valid only when state is degraded */
127 __u8 ddf;
128 __u32 filler[7]; /* expansion area */
129 #define IMSM_ORD_REBUILD (1 << 24)
130 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
131 * top byte contains some flags
132 */
133 } __attribute__ ((packed));
134
135 struct imsm_vol {
136 __u32 curr_migr_unit;
137 __u32 checkpoint_id; /* id to access curr_migr_unit */
138 __u8 migr_state; /* Normal or Migrating */
139 #define MIGR_INIT 0
140 #define MIGR_REBUILD 1
141 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
142 #define MIGR_GEN_MIGR 3
143 #define MIGR_STATE_CHANGE 4
144 #define MIGR_REPAIR 5
145 __u8 migr_type; /* Initializing, Rebuilding, ... */
146 __u8 dirty;
147 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
148 __u16 verify_errors; /* number of mismatches */
149 __u16 bad_blocks; /* number of bad blocks during verify */
150 __u32 filler[4];
151 struct imsm_map map[1];
152 /* here comes another one if migr_state */
153 } __attribute__ ((packed));
154
155 struct imsm_dev {
156 __u8 volume[MAX_RAID_SERIAL_LEN];
157 __u32 size_low;
158 __u32 size_high;
159 #define DEV_BOOTABLE __cpu_to_le32(0x01)
160 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
161 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
162 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
163 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
164 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
165 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
166 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
167 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
168 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
169 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
170 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
171 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
172 __u32 status; /* Persistent RaidDev status */
173 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
174 __u8 migr_priority;
175 __u8 num_sub_vols;
176 __u8 tid;
177 __u8 cng_master_disk;
178 __u16 cache_policy;
179 __u8 cng_state;
180 __u8 cng_sub_state;
181 #define IMSM_DEV_FILLERS 10
182 __u32 filler[IMSM_DEV_FILLERS];
183 struct imsm_vol vol;
184 } __attribute__ ((packed));
185
186 struct imsm_super {
187 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
188 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
189 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
190 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
191 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
192 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
193 __u32 attributes; /* 0x34 - 0x37 */
194 __u8 num_disks; /* 0x38 Number of configured disks */
195 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
196 __u8 error_log_pos; /* 0x3A */
197 __u8 fill[1]; /* 0x3B */
198 __u32 cache_size; /* 0x3c - 0x40 in mb */
199 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
200 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
201 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
202 #define IMSM_FILLERS 35
203 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
204 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
205 /* here comes imsm_dev[num_raid_devs] */
206 /* here comes BBM logs */
207 } __attribute__ ((packed));
208
209 #define BBM_LOG_MAX_ENTRIES 254
210
211 struct bbm_log_entry {
212 __u64 defective_block_start;
213 #define UNREADABLE 0xFFFFFFFF
214 __u32 spare_block_offset;
215 __u16 remapped_marked_count;
216 __u16 disk_ordinal;
217 } __attribute__ ((__packed__));
218
219 struct bbm_log {
220 __u32 signature; /* 0xABADB10C */
221 __u32 entry_count;
222 __u32 reserved_spare_block_count; /* 0 */
223 __u32 reserved; /* 0xFFFF */
224 __u64 first_spare_lba;
225 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
226 } __attribute__ ((__packed__));
227
228
229 #ifndef MDASSEMBLE
230 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
231 #endif
232
233 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
234
235 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
236
237 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
238 * be recovered using srcMap */
239 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
240 * already been migrated and must
241 * be recovered from checkpoint area */
242 struct migr_record {
243 __u32 rec_status; /* Status used to determine how to restart
244 * migration in case it aborts
245 * in some fashion */
246 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
247 __u32 family_num; /* Family number of MPB
248 * containing the RaidDev
249 * that is migrating */
250 __u32 ascending_migr; /* True if migrating in increasing
251 * order of lbas */
252 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
253 __u32 dest_depth_per_unit; /* Num member blocks each destMap
254 * member disk
255 * advances per unit-of-operation */
256 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
257 __u32 dest_1st_member_lba; /* First member lba on first
258 * stripe of destination */
259 __u32 num_migr_units; /* Total num migration units-of-op */
260 __u32 post_migr_vol_cap; /* Size of volume after
261 * migration completes */
262 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
263 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
264 * migration ckpt record was read from
265 * (for recovered migrations) */
266 } __attribute__ ((__packed__));
267
268 static __u8 migr_type(struct imsm_dev *dev)
269 {
270 if (dev->vol.migr_type == MIGR_VERIFY &&
271 dev->status & DEV_VERIFY_AND_FIX)
272 return MIGR_REPAIR;
273 else
274 return dev->vol.migr_type;
275 }
276
277 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
278 {
279 /* for compatibility with older oroms convert MIGR_REPAIR, into
280 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
281 */
282 if (migr_type == MIGR_REPAIR) {
283 dev->vol.migr_type = MIGR_VERIFY;
284 dev->status |= DEV_VERIFY_AND_FIX;
285 } else {
286 dev->vol.migr_type = migr_type;
287 dev->status &= ~DEV_VERIFY_AND_FIX;
288 }
289 }
290
291 static unsigned int sector_count(__u32 bytes)
292 {
293 return ((bytes + (512-1)) & (~(512-1))) / 512;
294 }
295
296 static unsigned int mpb_sectors(struct imsm_super *mpb)
297 {
298 return sector_count(__le32_to_cpu(mpb->mpb_size));
299 }
300
301 struct intel_dev {
302 struct imsm_dev *dev;
303 struct intel_dev *next;
304 unsigned index;
305 };
306
307 struct intel_hba {
308 enum sys_dev_type type;
309 char *path;
310 char *pci_id;
311 struct intel_hba *next;
312 };
313
314 enum action {
315 DISK_REMOVE = 1,
316 DISK_ADD
317 };
318 /* internal representation of IMSM metadata */
319 struct intel_super {
320 union {
321 void *buf; /* O_DIRECT buffer for reading/writing metadata */
322 struct imsm_super *anchor; /* immovable parameters */
323 };
324 union {
325 void *migr_rec_buf; /* buffer for I/O operations */
326 struct migr_record *migr_rec; /* migration record */
327 };
328 size_t len; /* size of the 'buf' allocation */
329 void *next_buf; /* for realloc'ing buf from the manager */
330 size_t next_len;
331 int updates_pending; /* count of pending updates for mdmon */
332 int current_vol; /* index of raid device undergoing creation */
333 __u32 create_offset; /* common start for 'current_vol' */
334 __u32 random; /* random data for seeding new family numbers */
335 struct intel_dev *devlist;
336 struct dl {
337 struct dl *next;
338 int index;
339 __u8 serial[MAX_RAID_SERIAL_LEN];
340 int major, minor;
341 char *devname;
342 struct imsm_disk disk;
343 int fd;
344 int extent_cnt;
345 struct extent *e; /* for determining freespace @ create */
346 int raiddisk; /* slot to fill in autolayout */
347 enum action action;
348 } *disks, *current_disk;
349 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
350 active */
351 struct dl *missing; /* disks removed while we weren't looking */
352 struct bbm_log *bbm_log;
353 struct intel_hba *hba; /* device path of the raid controller for this metadata */
354 const struct imsm_orom *orom; /* platform firmware support */
355 struct intel_super *next; /* (temp) list for disambiguating family_num */
356 };
357
358 struct intel_disk {
359 struct imsm_disk disk;
360 #define IMSM_UNKNOWN_OWNER (-1)
361 int owner;
362 struct intel_disk *next;
363 };
364
365 struct extent {
366 unsigned long long start, size;
367 };
368
369 /* definitions of reshape process types */
370 enum imsm_reshape_type {
371 CH_TAKEOVER,
372 CH_MIGRATION,
373 };
374
375 /* definition of messages passed to imsm_process_update */
376 enum imsm_update_type {
377 update_activate_spare,
378 update_create_array,
379 update_kill_array,
380 update_rename_array,
381 update_add_remove_disk,
382 update_reshape_container_disks,
383 update_reshape_migration,
384 update_takeover,
385 update_general_migration_checkpoint,
386 };
387
388 struct imsm_update_activate_spare {
389 enum imsm_update_type type;
390 struct dl *dl;
391 int slot;
392 int array;
393 struct imsm_update_activate_spare *next;
394 };
395
396 struct geo_params {
397 int dev_id;
398 char *dev_name;
399 long long size;
400 int level;
401 int layout;
402 int chunksize;
403 int raid_disks;
404 };
405
406 enum takeover_direction {
407 R10_TO_R0,
408 R0_TO_R10
409 };
410 struct imsm_update_takeover {
411 enum imsm_update_type type;
412 int subarray;
413 enum takeover_direction direction;
414 };
415
416 struct imsm_update_reshape {
417 enum imsm_update_type type;
418 int old_raid_disks;
419 int new_raid_disks;
420
421 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
422 };
423
424 struct imsm_update_reshape_migration {
425 enum imsm_update_type type;
426 int old_raid_disks;
427 int new_raid_disks;
428 /* fields for array migration changes
429 */
430 int subdev;
431 int new_level;
432 int new_layout;
433 int new_chunksize;
434
435 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
436 };
437
438 struct imsm_update_general_migration_checkpoint {
439 enum imsm_update_type type;
440 __u32 curr_migr_unit;
441 };
442
443 struct disk_info {
444 __u8 serial[MAX_RAID_SERIAL_LEN];
445 };
446
447 struct imsm_update_create_array {
448 enum imsm_update_type type;
449 int dev_idx;
450 struct imsm_dev dev;
451 };
452
453 struct imsm_update_kill_array {
454 enum imsm_update_type type;
455 int dev_idx;
456 };
457
458 struct imsm_update_rename_array {
459 enum imsm_update_type type;
460 __u8 name[MAX_RAID_SERIAL_LEN];
461 int dev_idx;
462 };
463
464 struct imsm_update_add_remove_disk {
465 enum imsm_update_type type;
466 };
467
468
469 static const char *_sys_dev_type[] = {
470 [SYS_DEV_UNKNOWN] = "Unknown",
471 [SYS_DEV_SAS] = "SAS",
472 [SYS_DEV_SATA] = "SATA"
473 };
474
475 const char *get_sys_dev_type(enum sys_dev_type type)
476 {
477 if (type >= SYS_DEV_MAX)
478 type = SYS_DEV_UNKNOWN;
479
480 return _sys_dev_type[type];
481 }
482
483 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
484 {
485 struct intel_hba *result = malloc(sizeof(*result));
486 if (result) {
487 result->type = device->type;
488 result->path = strdup(device->path);
489 result->next = NULL;
490 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
491 result->pci_id++;
492 }
493 return result;
494 }
495
496 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
497 {
498 struct intel_hba *result=NULL;
499 for (result = hba; result; result = result->next) {
500 if (result->type == device->type && strcmp(result->path, device->path) == 0)
501 break;
502 }
503 return result;
504 }
505
506 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
507 {
508 struct intel_hba *hba;
509
510 /* check if disk attached to Intel HBA */
511 hba = find_intel_hba(super->hba, device);
512 if (hba != NULL)
513 return 1;
514 /* Check if HBA is already attached to super */
515 if (super->hba == NULL) {
516 super->hba = alloc_intel_hba(device);
517 return 1;
518 }
519
520 hba = super->hba;
521 /* Intel metadata allows for all disks attached to the same type HBA.
522 * Do not sypport odf HBA types mixing
523 */
524 if (device->type != hba->type)
525 return 2;
526
527 while (hba->next)
528 hba = hba->next;
529
530 hba->next = alloc_intel_hba(device);
531 return 1;
532 }
533
534 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
535 {
536 struct sys_dev *list, *elem, *prev;
537 char *disk_path;
538
539 if ((list = find_intel_devices()) == NULL)
540 return 0;
541
542 if (fd < 0)
543 disk_path = (char *) devname;
544 else
545 disk_path = diskfd_to_devpath(fd);
546
547 if (!disk_path) {
548 free_sys_dev(&list);
549 return 0;
550 }
551
552 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
553 if (path_attached_to_hba(disk_path, elem->path)) {
554 if (prev == NULL)
555 list = list->next;
556 else
557 prev->next = elem->next;
558 elem->next = NULL;
559 if (disk_path != devname)
560 free(disk_path);
561 free_sys_dev(&list);
562 return elem;
563 }
564 }
565 if (disk_path != devname)
566 free(disk_path);
567 free_sys_dev(&list);
568
569 return NULL;
570 }
571
572
573 static int find_intel_hba_capability(int fd, struct intel_super *super,
574 char *devname);
575
576 static struct supertype *match_metadata_desc_imsm(char *arg)
577 {
578 struct supertype *st;
579
580 if (strcmp(arg, "imsm") != 0 &&
581 strcmp(arg, "default") != 0
582 )
583 return NULL;
584
585 st = malloc(sizeof(*st));
586 if (!st)
587 return NULL;
588 memset(st, 0, sizeof(*st));
589 st->container_dev = NoMdDev;
590 st->ss = &super_imsm;
591 st->max_devs = IMSM_MAX_DEVICES;
592 st->minor_version = 0;
593 st->sb = NULL;
594 return st;
595 }
596
597 #ifndef MDASSEMBLE
598 static __u8 *get_imsm_version(struct imsm_super *mpb)
599 {
600 return &mpb->sig[MPB_SIG_LEN];
601 }
602 #endif
603
604 /* retrieve a disk directly from the anchor when the anchor is known to be
605 * up-to-date, currently only at load time
606 */
607 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
608 {
609 if (index >= mpb->num_disks)
610 return NULL;
611 return &mpb->disk[index];
612 }
613
614 /* retrieve the disk description based on a index of the disk
615 * in the sub-array
616 */
617 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
618 {
619 struct dl *d;
620
621 for (d = super->disks; d; d = d->next)
622 if (d->index == index)
623 return d;
624
625 return NULL;
626 }
627 /* retrieve a disk from the parsed metadata */
628 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
629 {
630 struct dl *dl;
631
632 dl = get_imsm_dl_disk(super, index);
633 if (dl)
634 return &dl->disk;
635
636 return NULL;
637 }
638
639 /* generate a checksum directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load or write_super after coalescing
641 */
642 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
643 {
644 __u32 end = mpb->mpb_size / sizeof(end);
645 __u32 *p = (__u32 *) mpb;
646 __u32 sum = 0;
647
648 while (end--) {
649 sum += __le32_to_cpu(*p);
650 p++;
651 }
652
653 return sum - __le32_to_cpu(mpb->check_sum);
654 }
655
656 static size_t sizeof_imsm_map(struct imsm_map *map)
657 {
658 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
659 }
660
661 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
662 {
663 /* A device can have 2 maps if it is in the middle of a migration.
664 * If second_map is:
665 * 0 - we return the first map
666 * 1 - we return the second map if it exists, else NULL
667 * -1 - we return the second map if it exists, else the first
668 */
669 struct imsm_map *map = &dev->vol.map[0];
670
671 if (second_map == 1 && !dev->vol.migr_state)
672 return NULL;
673 else if (second_map == 1 ||
674 (second_map < 0 && dev->vol.migr_state)) {
675 void *ptr = map;
676
677 return ptr + sizeof_imsm_map(map);
678 } else
679 return map;
680
681 }
682
683 /* return the size of the device.
684 * migr_state increases the returned size if map[0] were to be duplicated
685 */
686 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
687 {
688 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
689 sizeof_imsm_map(get_imsm_map(dev, 0));
690
691 /* migrating means an additional map */
692 if (dev->vol.migr_state)
693 size += sizeof_imsm_map(get_imsm_map(dev, 1));
694 else if (migr_state)
695 size += sizeof_imsm_map(get_imsm_map(dev, 0));
696
697 return size;
698 }
699
700 #ifndef MDASSEMBLE
701 /* retrieve disk serial number list from a metadata update */
702 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
703 {
704 void *u = update;
705 struct disk_info *inf;
706
707 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
708 sizeof_imsm_dev(&update->dev, 0);
709
710 return inf;
711 }
712 #endif
713
714 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
715 {
716 int offset;
717 int i;
718 void *_mpb = mpb;
719
720 if (index >= mpb->num_raid_devs)
721 return NULL;
722
723 /* devices start after all disks */
724 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
725
726 for (i = 0; i <= index; i++)
727 if (i == index)
728 return _mpb + offset;
729 else
730 offset += sizeof_imsm_dev(_mpb + offset, 0);
731
732 return NULL;
733 }
734
735 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
736 {
737 struct intel_dev *dv;
738
739 if (index >= super->anchor->num_raid_devs)
740 return NULL;
741 for (dv = super->devlist; dv; dv = dv->next)
742 if (dv->index == index)
743 return dv->dev;
744 return NULL;
745 }
746
747 /*
748 * for second_map:
749 * == 0 get first map
750 * == 1 get second map
751 * == -1 than get map according to the current migr_state
752 */
753 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
754 int slot,
755 int second_map)
756 {
757 struct imsm_map *map;
758
759 map = get_imsm_map(dev, second_map);
760
761 /* top byte identifies disk under rebuild */
762 return __le32_to_cpu(map->disk_ord_tbl[slot]);
763 }
764
765 #define ord_to_idx(ord) (((ord) << 8) >> 8)
766 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
767 {
768 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
769
770 return ord_to_idx(ord);
771 }
772
773 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
774 {
775 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
776 }
777
778 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
779 {
780 int slot;
781 __u32 ord;
782
783 for (slot = 0; slot < map->num_members; slot++) {
784 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
785 if (ord_to_idx(ord) == idx)
786 return slot;
787 }
788
789 return -1;
790 }
791
792 static int get_imsm_raid_level(struct imsm_map *map)
793 {
794 if (map->raid_level == 1) {
795 if (map->num_members == 2)
796 return 1;
797 else
798 return 10;
799 }
800
801 return map->raid_level;
802 }
803
804 static int cmp_extent(const void *av, const void *bv)
805 {
806 const struct extent *a = av;
807 const struct extent *b = bv;
808 if (a->start < b->start)
809 return -1;
810 if (a->start > b->start)
811 return 1;
812 return 0;
813 }
814
815 static int count_memberships(struct dl *dl, struct intel_super *super)
816 {
817 int memberships = 0;
818 int i;
819
820 for (i = 0; i < super->anchor->num_raid_devs; i++) {
821 struct imsm_dev *dev = get_imsm_dev(super, i);
822 struct imsm_map *map = get_imsm_map(dev, 0);
823
824 if (get_imsm_disk_slot(map, dl->index) >= 0)
825 memberships++;
826 }
827
828 return memberships;
829 }
830
831 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
832
833 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
834 {
835 /* find a list of used extents on the given physical device */
836 struct extent *rv, *e;
837 int i;
838 int memberships = count_memberships(dl, super);
839 __u32 reservation;
840
841 /* trim the reserved area for spares, so they can join any array
842 * regardless of whether the OROM has assigned sectors from the
843 * IMSM_RESERVED_SECTORS region
844 */
845 if (dl->index == -1)
846 reservation = imsm_min_reserved_sectors(super);
847 else
848 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
849
850 rv = malloc(sizeof(struct extent) * (memberships + 1));
851 if (!rv)
852 return NULL;
853 e = rv;
854
855 for (i = 0; i < super->anchor->num_raid_devs; i++) {
856 struct imsm_dev *dev = get_imsm_dev(super, i);
857 struct imsm_map *map = get_imsm_map(dev, 0);
858
859 if (get_imsm_disk_slot(map, dl->index) >= 0) {
860 e->start = __le32_to_cpu(map->pba_of_lba0);
861 e->size = __le32_to_cpu(map->blocks_per_member);
862 e++;
863 }
864 }
865 qsort(rv, memberships, sizeof(*rv), cmp_extent);
866
867 /* determine the start of the metadata
868 * when no raid devices are defined use the default
869 * ...otherwise allow the metadata to truncate the value
870 * as is the case with older versions of imsm
871 */
872 if (memberships) {
873 struct extent *last = &rv[memberships - 1];
874 __u32 remainder;
875
876 remainder = __le32_to_cpu(dl->disk.total_blocks) -
877 (last->start + last->size);
878 /* round down to 1k block to satisfy precision of the kernel
879 * 'size' interface
880 */
881 remainder &= ~1UL;
882 /* make sure remainder is still sane */
883 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
884 remainder = ROUND_UP(super->len, 512) >> 9;
885 if (reservation > remainder)
886 reservation = remainder;
887 }
888 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
889 e->size = 0;
890 return rv;
891 }
892
893 /* try to determine how much space is reserved for metadata from
894 * the last get_extents() entry, otherwise fallback to the
895 * default
896 */
897 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
898 {
899 struct extent *e;
900 int i;
901 __u32 rv;
902
903 /* for spares just return a minimal reservation which will grow
904 * once the spare is picked up by an array
905 */
906 if (dl->index == -1)
907 return MPB_SECTOR_CNT;
908
909 e = get_extents(super, dl);
910 if (!e)
911 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
912
913 /* scroll to last entry */
914 for (i = 0; e[i].size; i++)
915 continue;
916
917 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
918
919 free(e);
920
921 return rv;
922 }
923
924 static int is_spare(struct imsm_disk *disk)
925 {
926 return (disk->status & SPARE_DISK) == SPARE_DISK;
927 }
928
929 static int is_configured(struct imsm_disk *disk)
930 {
931 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
932 }
933
934 static int is_failed(struct imsm_disk *disk)
935 {
936 return (disk->status & FAILED_DISK) == FAILED_DISK;
937 }
938
939 /* try to determine how much space is reserved for metadata from
940 * the last get_extents() entry on the smallest active disk,
941 * otherwise fallback to the default
942 */
943 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
944 {
945 struct extent *e;
946 int i;
947 __u32 min_active, remainder;
948 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
949 struct dl *dl, *dl_min = NULL;
950
951 if (!super)
952 return rv;
953
954 min_active = 0;
955 for (dl = super->disks; dl; dl = dl->next) {
956 if (dl->index < 0)
957 continue;
958 if (dl->disk.total_blocks < min_active || min_active == 0) {
959 dl_min = dl;
960 min_active = dl->disk.total_blocks;
961 }
962 }
963 if (!dl_min)
964 return rv;
965
966 /* find last lba used by subarrays on the smallest active disk */
967 e = get_extents(super, dl_min);
968 if (!e)
969 return rv;
970 for (i = 0; e[i].size; i++)
971 continue;
972
973 remainder = min_active - e[i].start;
974 free(e);
975
976 /* to give priority to recovery we should not require full
977 IMSM_RESERVED_SECTORS from the spare */
978 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
979
980 /* if real reservation is smaller use that value */
981 return (remainder < rv) ? remainder : rv;
982 }
983
984 /* Return minimum size of a spare that can be used in this array*/
985 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
986 {
987 struct intel_super *super = st->sb;
988 struct dl *dl;
989 struct extent *e;
990 int i;
991 unsigned long long rv = 0;
992
993 if (!super)
994 return rv;
995 /* find first active disk in array */
996 dl = super->disks;
997 while (dl && (is_failed(&dl->disk) || dl->index == -1))
998 dl = dl->next;
999 if (!dl)
1000 return rv;
1001 /* find last lba used by subarrays */
1002 e = get_extents(super, dl);
1003 if (!e)
1004 return rv;
1005 for (i = 0; e[i].size; i++)
1006 continue;
1007 if (i > 0)
1008 rv = e[i-1].start + e[i-1].size;
1009 free(e);
1010
1011 /* add the amount of space needed for metadata */
1012 rv = rv + imsm_min_reserved_sectors(super);
1013
1014 return rv * 512;
1015 }
1016
1017 #ifndef MDASSEMBLE
1018 static __u64 blocks_per_migr_unit(struct intel_super *super,
1019 struct imsm_dev *dev);
1020
1021 static void print_imsm_dev(struct intel_super *super,
1022 struct imsm_dev *dev,
1023 char *uuid,
1024 int disk_idx)
1025 {
1026 __u64 sz;
1027 int slot, i;
1028 struct imsm_map *map = get_imsm_map(dev, 0);
1029 struct imsm_map *map2 = get_imsm_map(dev, 1);
1030 __u32 ord;
1031
1032 printf("\n");
1033 printf("[%.16s]:\n", dev->volume);
1034 printf(" UUID : %s\n", uuid);
1035 printf(" RAID Level : %d", get_imsm_raid_level(map));
1036 if (map2)
1037 printf(" <-- %d", get_imsm_raid_level(map2));
1038 printf("\n");
1039 printf(" Members : %d", map->num_members);
1040 if (map2)
1041 printf(" <-- %d", map2->num_members);
1042 printf("\n");
1043 printf(" Slots : [");
1044 for (i = 0; i < map->num_members; i++) {
1045 ord = get_imsm_ord_tbl_ent(dev, i, 0);
1046 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1047 }
1048 printf("]");
1049 if (map2) {
1050 printf(" <-- [");
1051 for (i = 0; i < map2->num_members; i++) {
1052 ord = get_imsm_ord_tbl_ent(dev, i, 1);
1053 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1054 }
1055 printf("]");
1056 }
1057 printf("\n");
1058 printf(" Failed disk : ");
1059 if (map->failed_disk_num == 0xff)
1060 printf("none");
1061 else
1062 printf("%i", map->failed_disk_num);
1063 printf("\n");
1064 slot = get_imsm_disk_slot(map, disk_idx);
1065 if (slot >= 0) {
1066 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
1067 printf(" This Slot : %d%s\n", slot,
1068 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1069 } else
1070 printf(" This Slot : ?\n");
1071 sz = __le32_to_cpu(dev->size_high);
1072 sz <<= 32;
1073 sz += __le32_to_cpu(dev->size_low);
1074 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1075 human_size(sz * 512));
1076 sz = __le32_to_cpu(map->blocks_per_member);
1077 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1078 human_size(sz * 512));
1079 printf(" Sector Offset : %u\n",
1080 __le32_to_cpu(map->pba_of_lba0));
1081 printf(" Num Stripes : %u\n",
1082 __le32_to_cpu(map->num_data_stripes));
1083 printf(" Chunk Size : %u KiB",
1084 __le16_to_cpu(map->blocks_per_strip) / 2);
1085 if (map2)
1086 printf(" <-- %u KiB",
1087 __le16_to_cpu(map2->blocks_per_strip) / 2);
1088 printf("\n");
1089 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1090 printf(" Migrate State : ");
1091 if (dev->vol.migr_state) {
1092 if (migr_type(dev) == MIGR_INIT)
1093 printf("initialize\n");
1094 else if (migr_type(dev) == MIGR_REBUILD)
1095 printf("rebuild\n");
1096 else if (migr_type(dev) == MIGR_VERIFY)
1097 printf("check\n");
1098 else if (migr_type(dev) == MIGR_GEN_MIGR)
1099 printf("general migration\n");
1100 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1101 printf("state change\n");
1102 else if (migr_type(dev) == MIGR_REPAIR)
1103 printf("repair\n");
1104 else
1105 printf("<unknown:%d>\n", migr_type(dev));
1106 } else
1107 printf("idle\n");
1108 printf(" Map State : %s", map_state_str[map->map_state]);
1109 if (dev->vol.migr_state) {
1110 struct imsm_map *map = get_imsm_map(dev, 1);
1111
1112 printf(" <-- %s", map_state_str[map->map_state]);
1113 printf("\n Checkpoint : %u (%llu)",
1114 __le32_to_cpu(dev->vol.curr_migr_unit),
1115 (unsigned long long)blocks_per_migr_unit(super, dev));
1116 }
1117 printf("\n");
1118 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1119 }
1120
1121 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1122 {
1123 char str[MAX_RAID_SERIAL_LEN + 1];
1124 __u64 sz;
1125
1126 if (index < -1 || !disk)
1127 return;
1128
1129 printf("\n");
1130 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1131 if (index >= 0)
1132 printf(" Disk%02d Serial : %s\n", index, str);
1133 else
1134 printf(" Disk Serial : %s\n", str);
1135 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1136 is_configured(disk) ? " active" : "",
1137 is_failed(disk) ? " failed" : "");
1138 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1139 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1140 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1141 human_size(sz * 512));
1142 }
1143
1144 static int is_gen_migration(struct imsm_dev *dev);
1145
1146 void examine_migr_rec_imsm(struct intel_super *super)
1147 {
1148 struct migr_record *migr_rec = super->migr_rec;
1149 struct imsm_super *mpb = super->anchor;
1150 int i;
1151
1152 for (i = 0; i < mpb->num_raid_devs; i++) {
1153 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1154 if (is_gen_migration(dev) == 0)
1155 continue;
1156
1157 printf("\nMigration Record Information:");
1158 if (super->disks->index > 1) {
1159 printf(" Empty\n ");
1160 printf("Examine one of first two disks in array\n");
1161 break;
1162 }
1163 printf("\n Status : ");
1164 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1165 printf("Normal\n");
1166 else
1167 printf("Contains Data\n");
1168 printf(" Current Unit : %u\n",
1169 __le32_to_cpu(migr_rec->curr_migr_unit));
1170 printf(" Family : %u\n",
1171 __le32_to_cpu(migr_rec->family_num));
1172 printf(" Ascending : %u\n",
1173 __le32_to_cpu(migr_rec->ascending_migr));
1174 printf(" Blocks Per Unit : %u\n",
1175 __le32_to_cpu(migr_rec->blocks_per_unit));
1176 printf(" Dest. Depth Per Unit : %u\n",
1177 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1178 printf(" Checkpoint Area pba : %u\n",
1179 __le32_to_cpu(migr_rec->ckpt_area_pba));
1180 printf(" First member lba : %u\n",
1181 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1182 printf(" Total Number of Units : %u\n",
1183 __le32_to_cpu(migr_rec->num_migr_units));
1184 printf(" Size of volume : %u\n",
1185 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1186 printf(" Expansion space for LBA64 : %u\n",
1187 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1188 printf(" Record was read from : %u\n",
1189 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1190
1191 break;
1192 }
1193 }
1194 #endif /* MDASSEMBLE */
1195 /*******************************************************************************
1196 * function: imsm_check_attributes
1197 * Description: Function checks if features represented by attributes flags
1198 * are supported by mdadm.
1199 * Parameters:
1200 * attributes - Attributes read from metadata
1201 * Returns:
1202 * 0 - passed attributes contains unsupported features flags
1203 * 1 - all features are supported
1204 ******************************************************************************/
1205 static int imsm_check_attributes(__u32 attributes)
1206 {
1207 int ret_val = 1;
1208 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1209
1210 not_supported &= ~MPB_ATTRIB_IGNORED;
1211
1212 not_supported &= attributes;
1213 if (not_supported) {
1214 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1215 (unsigned)__le32_to_cpu(not_supported));
1216 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1217 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1218 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1219 }
1220 if (not_supported & MPB_ATTRIB_2TB) {
1221 dprintf("\t\tMPB_ATTRIB_2TB\n");
1222 not_supported ^= MPB_ATTRIB_2TB;
1223 }
1224 if (not_supported & MPB_ATTRIB_RAID0) {
1225 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1226 not_supported ^= MPB_ATTRIB_RAID0;
1227 }
1228 if (not_supported & MPB_ATTRIB_RAID1) {
1229 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1230 not_supported ^= MPB_ATTRIB_RAID1;
1231 }
1232 if (not_supported & MPB_ATTRIB_RAID10) {
1233 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1234 not_supported ^= MPB_ATTRIB_RAID10;
1235 }
1236 if (not_supported & MPB_ATTRIB_RAID1E) {
1237 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1238 not_supported ^= MPB_ATTRIB_RAID1E;
1239 }
1240 if (not_supported & MPB_ATTRIB_RAID5) {
1241 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1242 not_supported ^= MPB_ATTRIB_RAID5;
1243 }
1244 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1245 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1246 not_supported ^= MPB_ATTRIB_RAIDCNG;
1247 }
1248 if (not_supported & MPB_ATTRIB_BBM) {
1249 dprintf("\t\tMPB_ATTRIB_BBM\n");
1250 not_supported ^= MPB_ATTRIB_BBM;
1251 }
1252 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1253 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1254 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1255 }
1256 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1257 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1258 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1259 }
1260 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1261 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1262 not_supported ^= MPB_ATTRIB_2TB_DISK;
1263 }
1264 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1265 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1266 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1267 }
1268 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1269 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1270 not_supported ^= MPB_ATTRIB_NEVER_USE;
1271 }
1272
1273 if (not_supported)
1274 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1275
1276 ret_val = 0;
1277 }
1278
1279 return ret_val;
1280 }
1281
1282 #ifndef MDASSEMBLE
1283 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1284
1285 static void examine_super_imsm(struct supertype *st, char *homehost)
1286 {
1287 struct intel_super *super = st->sb;
1288 struct imsm_super *mpb = super->anchor;
1289 char str[MAX_SIGNATURE_LENGTH];
1290 int i;
1291 struct mdinfo info;
1292 char nbuf[64];
1293 __u32 sum;
1294 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1295 struct dl *dl;
1296
1297 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1298 printf(" Magic : %s\n", str);
1299 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1300 printf(" Version : %s\n", get_imsm_version(mpb));
1301 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1302 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1303 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1304 printf(" Attributes : ");
1305 if (imsm_check_attributes(mpb->attributes))
1306 printf("All supported\n");
1307 else
1308 printf("not supported\n");
1309 getinfo_super_imsm(st, &info, NULL);
1310 fname_from_uuid(st, &info, nbuf, ':');
1311 printf(" UUID : %s\n", nbuf + 5);
1312 sum = __le32_to_cpu(mpb->check_sum);
1313 printf(" Checksum : %08x %s\n", sum,
1314 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1315 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1316 printf(" Disks : %d\n", mpb->num_disks);
1317 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1318 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1319 if (super->bbm_log) {
1320 struct bbm_log *log = super->bbm_log;
1321
1322 printf("\n");
1323 printf("Bad Block Management Log:\n");
1324 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1325 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1326 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1327 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1328 printf(" First Spare : %llx\n",
1329 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1330 }
1331 for (i = 0; i < mpb->num_raid_devs; i++) {
1332 struct mdinfo info;
1333 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1334
1335 super->current_vol = i;
1336 getinfo_super_imsm(st, &info, NULL);
1337 fname_from_uuid(st, &info, nbuf, ':');
1338 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1339 }
1340 for (i = 0; i < mpb->num_disks; i++) {
1341 if (i == super->disks->index)
1342 continue;
1343 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1344 }
1345
1346 for (dl = super->disks; dl; dl = dl->next)
1347 if (dl->index == -1)
1348 print_imsm_disk(&dl->disk, -1, reserved);
1349
1350 examine_migr_rec_imsm(super);
1351 }
1352
1353 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1354 {
1355 /* We just write a generic IMSM ARRAY entry */
1356 struct mdinfo info;
1357 char nbuf[64];
1358 struct intel_super *super = st->sb;
1359
1360 if (!super->anchor->num_raid_devs) {
1361 printf("ARRAY metadata=imsm\n");
1362 return;
1363 }
1364
1365 getinfo_super_imsm(st, &info, NULL);
1366 fname_from_uuid(st, &info, nbuf, ':');
1367 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1368 }
1369
1370 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1371 {
1372 /* We just write a generic IMSM ARRAY entry */
1373 struct mdinfo info;
1374 char nbuf[64];
1375 char nbuf1[64];
1376 struct intel_super *super = st->sb;
1377 int i;
1378
1379 if (!super->anchor->num_raid_devs)
1380 return;
1381
1382 getinfo_super_imsm(st, &info, NULL);
1383 fname_from_uuid(st, &info, nbuf, ':');
1384 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1385 struct imsm_dev *dev = get_imsm_dev(super, i);
1386
1387 super->current_vol = i;
1388 getinfo_super_imsm(st, &info, NULL);
1389 fname_from_uuid(st, &info, nbuf1, ':');
1390 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1391 dev->volume, nbuf + 5, i, nbuf1 + 5);
1392 }
1393 }
1394
1395 static void export_examine_super_imsm(struct supertype *st)
1396 {
1397 struct intel_super *super = st->sb;
1398 struct imsm_super *mpb = super->anchor;
1399 struct mdinfo info;
1400 char nbuf[64];
1401
1402 getinfo_super_imsm(st, &info, NULL);
1403 fname_from_uuid(st, &info, nbuf, ':');
1404 printf("MD_METADATA=imsm\n");
1405 printf("MD_LEVEL=container\n");
1406 printf("MD_UUID=%s\n", nbuf+5);
1407 printf("MD_DEVICES=%u\n", mpb->num_disks);
1408 }
1409
1410 static void detail_super_imsm(struct supertype *st, char *homehost)
1411 {
1412 struct mdinfo info;
1413 char nbuf[64];
1414
1415 getinfo_super_imsm(st, &info, NULL);
1416 fname_from_uuid(st, &info, nbuf, ':');
1417 printf("\n UUID : %s\n", nbuf + 5);
1418 }
1419
1420 static void brief_detail_super_imsm(struct supertype *st)
1421 {
1422 struct mdinfo info;
1423 char nbuf[64];
1424 getinfo_super_imsm(st, &info, NULL);
1425 fname_from_uuid(st, &info, nbuf, ':');
1426 printf(" UUID=%s", nbuf + 5);
1427 }
1428
1429 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1430 static void fd2devname(int fd, char *name);
1431
1432 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1433 {
1434 /* dump an unsorted list of devices attached to AHCI Intel storage
1435 * controller, as well as non-connected ports
1436 */
1437 int hba_len = strlen(hba_path) + 1;
1438 struct dirent *ent;
1439 DIR *dir;
1440 char *path = NULL;
1441 int err = 0;
1442 unsigned long port_mask = (1 << port_count) - 1;
1443
1444 if (port_count > (int)sizeof(port_mask) * 8) {
1445 if (verbose)
1446 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1447 return 2;
1448 }
1449
1450 /* scroll through /sys/dev/block looking for devices attached to
1451 * this hba
1452 */
1453 dir = opendir("/sys/dev/block");
1454 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1455 int fd;
1456 char model[64];
1457 char vendor[64];
1458 char buf[1024];
1459 int major, minor;
1460 char *device;
1461 char *c;
1462 int port;
1463 int type;
1464
1465 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1466 continue;
1467 path = devt_to_devpath(makedev(major, minor));
1468 if (!path)
1469 continue;
1470 if (!path_attached_to_hba(path, hba_path)) {
1471 free(path);
1472 path = NULL;
1473 continue;
1474 }
1475
1476 /* retrieve the scsi device type */
1477 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1478 if (verbose)
1479 fprintf(stderr, Name ": failed to allocate 'device'\n");
1480 err = 2;
1481 break;
1482 }
1483 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1484 if (load_sys(device, buf) != 0) {
1485 if (verbose)
1486 fprintf(stderr, Name ": failed to read device type for %s\n",
1487 path);
1488 err = 2;
1489 free(device);
1490 break;
1491 }
1492 type = strtoul(buf, NULL, 10);
1493
1494 /* if it's not a disk print the vendor and model */
1495 if (!(type == 0 || type == 7 || type == 14)) {
1496 vendor[0] = '\0';
1497 model[0] = '\0';
1498 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1499 if (load_sys(device, buf) == 0) {
1500 strncpy(vendor, buf, sizeof(vendor));
1501 vendor[sizeof(vendor) - 1] = '\0';
1502 c = (char *) &vendor[sizeof(vendor) - 1];
1503 while (isspace(*c) || *c == '\0')
1504 *c-- = '\0';
1505
1506 }
1507 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1508 if (load_sys(device, buf) == 0) {
1509 strncpy(model, buf, sizeof(model));
1510 model[sizeof(model) - 1] = '\0';
1511 c = (char *) &model[sizeof(model) - 1];
1512 while (isspace(*c) || *c == '\0')
1513 *c-- = '\0';
1514 }
1515
1516 if (vendor[0] && model[0])
1517 sprintf(buf, "%.64s %.64s", vendor, model);
1518 else
1519 switch (type) { /* numbers from hald/linux/device.c */
1520 case 1: sprintf(buf, "tape"); break;
1521 case 2: sprintf(buf, "printer"); break;
1522 case 3: sprintf(buf, "processor"); break;
1523 case 4:
1524 case 5: sprintf(buf, "cdrom"); break;
1525 case 6: sprintf(buf, "scanner"); break;
1526 case 8: sprintf(buf, "media_changer"); break;
1527 case 9: sprintf(buf, "comm"); break;
1528 case 12: sprintf(buf, "raid"); break;
1529 default: sprintf(buf, "unknown");
1530 }
1531 } else
1532 buf[0] = '\0';
1533 free(device);
1534
1535 /* chop device path to 'host%d' and calculate the port number */
1536 c = strchr(&path[hba_len], '/');
1537 if (!c) {
1538 if (verbose)
1539 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1540 err = 2;
1541 break;
1542 }
1543 *c = '\0';
1544 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1545 port -= host_base;
1546 else {
1547 if (verbose) {
1548 *c = '/'; /* repair the full string */
1549 fprintf(stderr, Name ": failed to determine port number for %s\n",
1550 path);
1551 }
1552 err = 2;
1553 break;
1554 }
1555
1556 /* mark this port as used */
1557 port_mask &= ~(1 << port);
1558
1559 /* print out the device information */
1560 if (buf[0]) {
1561 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1562 continue;
1563 }
1564
1565 fd = dev_open(ent->d_name, O_RDONLY);
1566 if (fd < 0)
1567 printf(" Port%d : - disk info unavailable -\n", port);
1568 else {
1569 fd2devname(fd, buf);
1570 printf(" Port%d : %s", port, buf);
1571 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1572 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1573 else
1574 printf(" ()\n");
1575 }
1576 close(fd);
1577 free(path);
1578 path = NULL;
1579 }
1580 if (path)
1581 free(path);
1582 if (dir)
1583 closedir(dir);
1584 if (err == 0) {
1585 int i;
1586
1587 for (i = 0; i < port_count; i++)
1588 if (port_mask & (1 << i))
1589 printf(" Port%d : - no device attached -\n", i);
1590 }
1591
1592 return err;
1593 }
1594
1595 static void print_found_intel_controllers(struct sys_dev *elem)
1596 {
1597 for (; elem; elem = elem->next) {
1598 fprintf(stderr, Name ": found Intel(R) ");
1599 if (elem->type == SYS_DEV_SATA)
1600 fprintf(stderr, "SATA ");
1601 else if (elem->type == SYS_DEV_SAS)
1602 fprintf(stderr, "SAS ");
1603 fprintf(stderr, "RAID controller");
1604 if (elem->pci_id)
1605 fprintf(stderr, " at %s", elem->pci_id);
1606 fprintf(stderr, ".\n");
1607 }
1608 fflush(stderr);
1609 }
1610
1611 static int ahci_get_port_count(const char *hba_path, int *port_count)
1612 {
1613 struct dirent *ent;
1614 DIR *dir;
1615 int host_base = -1;
1616
1617 *port_count = 0;
1618 if ((dir = opendir(hba_path)) == NULL)
1619 return -1;
1620
1621 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1622 int host;
1623
1624 if (sscanf(ent->d_name, "host%d", &host) != 1)
1625 continue;
1626 if (*port_count == 0)
1627 host_base = host;
1628 else if (host < host_base)
1629 host_base = host;
1630
1631 if (host + 1 > *port_count + host_base)
1632 *port_count = host + 1 - host_base;
1633 }
1634 closedir(dir);
1635 return host_base;
1636 }
1637
1638 static void print_imsm_capability(const struct imsm_orom *orom)
1639 {
1640 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1641 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1642 orom->hotfix_ver, orom->build);
1643 printf(" RAID Levels :%s%s%s%s%s\n",
1644 imsm_orom_has_raid0(orom) ? " raid0" : "",
1645 imsm_orom_has_raid1(orom) ? " raid1" : "",
1646 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1647 imsm_orom_has_raid10(orom) ? " raid10" : "",
1648 imsm_orom_has_raid5(orom) ? " raid5" : "");
1649 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1650 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1651 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1652 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1653 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1654 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1655 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1656 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1657 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1658 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1659 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1660 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1661 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1662 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1663 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1664 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1665 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1666 printf(" Max Disks : %d\n", orom->tds);
1667 printf(" Max Volumes : %d\n", orom->vpa);
1668 return;
1669 }
1670
1671 static int detail_platform_imsm(int verbose, int enumerate_only)
1672 {
1673 /* There are two components to imsm platform support, the ahci SATA
1674 * controller and the option-rom. To find the SATA controller we
1675 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1676 * controller with the Intel vendor id is present. This approach
1677 * allows mdadm to leverage the kernel's ahci detection logic, with the
1678 * caveat that if ahci.ko is not loaded mdadm will not be able to
1679 * detect platform raid capabilities. The option-rom resides in a
1680 * platform "Adapter ROM". We scan for its signature to retrieve the
1681 * platform capabilities. If raid support is disabled in the BIOS the
1682 * option-rom capability structure will not be available.
1683 */
1684 const struct imsm_orom *orom;
1685 struct sys_dev *list, *hba;
1686 int host_base = 0;
1687 int port_count = 0;
1688 int result=0;
1689
1690 if (enumerate_only) {
1691 if (check_env("IMSM_NO_PLATFORM"))
1692 return 0;
1693 list = find_intel_devices();
1694 if (!list)
1695 return 2;
1696 for (hba = list; hba; hba = hba->next) {
1697 orom = find_imsm_capability(hba->type);
1698 if (!orom) {
1699 result = 2;
1700 break;
1701 }
1702 }
1703 free_sys_dev(&list);
1704 return result;
1705 }
1706
1707 list = find_intel_devices();
1708 if (!list) {
1709 if (verbose)
1710 fprintf(stderr, Name ": no active Intel(R) RAID "
1711 "controller found.\n");
1712 free_sys_dev(&list);
1713 return 2;
1714 } else if (verbose)
1715 print_found_intel_controllers(list);
1716
1717 for (hba = list; hba; hba = hba->next) {
1718 orom = find_imsm_capability(hba->type);
1719 if (!orom)
1720 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1721 hba->path, get_sys_dev_type(hba->type));
1722 else
1723 print_imsm_capability(orom);
1724 }
1725
1726 for (hba = list; hba; hba = hba->next) {
1727 printf(" I/O Controller : %s (%s)\n",
1728 hba->path, get_sys_dev_type(hba->type));
1729
1730 if (hba->type == SYS_DEV_SATA) {
1731 host_base = ahci_get_port_count(hba->path, &port_count);
1732 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1733 if (verbose)
1734 fprintf(stderr, Name ": failed to enumerate "
1735 "ports on SATA controller at %s.", hba->pci_id);
1736 result |= 2;
1737 }
1738 }
1739 }
1740
1741 free_sys_dev(&list);
1742 return result;
1743 }
1744 #endif
1745
1746 static int match_home_imsm(struct supertype *st, char *homehost)
1747 {
1748 /* the imsm metadata format does not specify any host
1749 * identification information. We return -1 since we can never
1750 * confirm nor deny whether a given array is "meant" for this
1751 * host. We rely on compare_super and the 'family_num' fields to
1752 * exclude member disks that do not belong, and we rely on
1753 * mdadm.conf to specify the arrays that should be assembled.
1754 * Auto-assembly may still pick up "foreign" arrays.
1755 */
1756
1757 return -1;
1758 }
1759
1760 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1761 {
1762 /* The uuid returned here is used for:
1763 * uuid to put into bitmap file (Create, Grow)
1764 * uuid for backup header when saving critical section (Grow)
1765 * comparing uuids when re-adding a device into an array
1766 * In these cases the uuid required is that of the data-array,
1767 * not the device-set.
1768 * uuid to recognise same set when adding a missing device back
1769 * to an array. This is a uuid for the device-set.
1770 *
1771 * For each of these we can make do with a truncated
1772 * or hashed uuid rather than the original, as long as
1773 * everyone agrees.
1774 * In each case the uuid required is that of the data-array,
1775 * not the device-set.
1776 */
1777 /* imsm does not track uuid's so we synthesis one using sha1 on
1778 * - The signature (Which is constant for all imsm array, but no matter)
1779 * - the orig_family_num of the container
1780 * - the index number of the volume
1781 * - the 'serial' number of the volume.
1782 * Hopefully these are all constant.
1783 */
1784 struct intel_super *super = st->sb;
1785
1786 char buf[20];
1787 struct sha1_ctx ctx;
1788 struct imsm_dev *dev = NULL;
1789 __u32 family_num;
1790
1791 /* some mdadm versions failed to set ->orig_family_num, in which
1792 * case fall back to ->family_num. orig_family_num will be
1793 * fixed up with the first metadata update.
1794 */
1795 family_num = super->anchor->orig_family_num;
1796 if (family_num == 0)
1797 family_num = super->anchor->family_num;
1798 sha1_init_ctx(&ctx);
1799 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1800 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1801 if (super->current_vol >= 0)
1802 dev = get_imsm_dev(super, super->current_vol);
1803 if (dev) {
1804 __u32 vol = super->current_vol;
1805 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1806 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1807 }
1808 sha1_finish_ctx(&ctx, buf);
1809 memcpy(uuid, buf, 4*4);
1810 }
1811
1812 #if 0
1813 static void
1814 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1815 {
1816 __u8 *v = get_imsm_version(mpb);
1817 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1818 char major[] = { 0, 0, 0 };
1819 char minor[] = { 0 ,0, 0 };
1820 char patch[] = { 0, 0, 0 };
1821 char *ver_parse[] = { major, minor, patch };
1822 int i, j;
1823
1824 i = j = 0;
1825 while (*v != '\0' && v < end) {
1826 if (*v != '.' && j < 2)
1827 ver_parse[i][j++] = *v;
1828 else {
1829 i++;
1830 j = 0;
1831 }
1832 v++;
1833 }
1834
1835 *m = strtol(minor, NULL, 0);
1836 *p = strtol(patch, NULL, 0);
1837 }
1838 #endif
1839
1840 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1841 {
1842 /* migr_strip_size when repairing or initializing parity */
1843 struct imsm_map *map = get_imsm_map(dev, 0);
1844 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1845
1846 switch (get_imsm_raid_level(map)) {
1847 case 5:
1848 case 10:
1849 return chunk;
1850 default:
1851 return 128*1024 >> 9;
1852 }
1853 }
1854
1855 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1856 {
1857 /* migr_strip_size when rebuilding a degraded disk, no idea why
1858 * this is different than migr_strip_size_resync(), but it's good
1859 * to be compatible
1860 */
1861 struct imsm_map *map = get_imsm_map(dev, 1);
1862 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1863
1864 switch (get_imsm_raid_level(map)) {
1865 case 1:
1866 case 10:
1867 if (map->num_members % map->num_domains == 0)
1868 return 128*1024 >> 9;
1869 else
1870 return chunk;
1871 case 5:
1872 return max((__u32) 64*1024 >> 9, chunk);
1873 default:
1874 return 128*1024 >> 9;
1875 }
1876 }
1877
1878 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1879 {
1880 struct imsm_map *lo = get_imsm_map(dev, 0);
1881 struct imsm_map *hi = get_imsm_map(dev, 1);
1882 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1883 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1884
1885 return max((__u32) 1, hi_chunk / lo_chunk);
1886 }
1887
1888 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1889 {
1890 struct imsm_map *lo = get_imsm_map(dev, 0);
1891 int level = get_imsm_raid_level(lo);
1892
1893 if (level == 1 || level == 10) {
1894 struct imsm_map *hi = get_imsm_map(dev, 1);
1895
1896 return hi->num_domains;
1897 } else
1898 return num_stripes_per_unit_resync(dev);
1899 }
1900
1901 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1902 {
1903 /* named 'imsm_' because raid0, raid1 and raid10
1904 * counter-intuitively have the same number of data disks
1905 */
1906 struct imsm_map *map = get_imsm_map(dev, second_map);
1907
1908 switch (get_imsm_raid_level(map)) {
1909 case 0:
1910 case 1:
1911 case 10:
1912 return map->num_members;
1913 case 5:
1914 return map->num_members - 1;
1915 default:
1916 dprintf("%s: unsupported raid level\n", __func__);
1917 return 0;
1918 }
1919 }
1920
1921 static __u32 parity_segment_depth(struct imsm_dev *dev)
1922 {
1923 struct imsm_map *map = get_imsm_map(dev, 0);
1924 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1925
1926 switch(get_imsm_raid_level(map)) {
1927 case 1:
1928 case 10:
1929 return chunk * map->num_domains;
1930 case 5:
1931 return chunk * map->num_members;
1932 default:
1933 return chunk;
1934 }
1935 }
1936
1937 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1938 {
1939 struct imsm_map *map = get_imsm_map(dev, 1);
1940 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1941 __u32 strip = block / chunk;
1942
1943 switch (get_imsm_raid_level(map)) {
1944 case 1:
1945 case 10: {
1946 __u32 vol_strip = (strip * map->num_domains) + 1;
1947 __u32 vol_stripe = vol_strip / map->num_members;
1948
1949 return vol_stripe * chunk + block % chunk;
1950 } case 5: {
1951 __u32 stripe = strip / (map->num_members - 1);
1952
1953 return stripe * chunk + block % chunk;
1954 }
1955 default:
1956 return 0;
1957 }
1958 }
1959
1960 static __u64 blocks_per_migr_unit(struct intel_super *super,
1961 struct imsm_dev *dev)
1962 {
1963 /* calculate the conversion factor between per member 'blocks'
1964 * (md/{resync,rebuild}_start) and imsm migration units, return
1965 * 0 for the 'not migrating' and 'unsupported migration' cases
1966 */
1967 if (!dev->vol.migr_state)
1968 return 0;
1969
1970 switch (migr_type(dev)) {
1971 case MIGR_GEN_MIGR: {
1972 struct migr_record *migr_rec = super->migr_rec;
1973 return __le32_to_cpu(migr_rec->blocks_per_unit);
1974 }
1975 case MIGR_VERIFY:
1976 case MIGR_REPAIR:
1977 case MIGR_INIT: {
1978 struct imsm_map *map = get_imsm_map(dev, 0);
1979 __u32 stripes_per_unit;
1980 __u32 blocks_per_unit;
1981 __u32 parity_depth;
1982 __u32 migr_chunk;
1983 __u32 block_map;
1984 __u32 block_rel;
1985 __u32 segment;
1986 __u32 stripe;
1987 __u8 disks;
1988
1989 /* yes, this is really the translation of migr_units to
1990 * per-member blocks in the 'resync' case
1991 */
1992 stripes_per_unit = num_stripes_per_unit_resync(dev);
1993 migr_chunk = migr_strip_blocks_resync(dev);
1994 disks = imsm_num_data_members(dev, 0);
1995 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1996 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1997 segment = blocks_per_unit / stripe;
1998 block_rel = blocks_per_unit - segment * stripe;
1999 parity_depth = parity_segment_depth(dev);
2000 block_map = map_migr_block(dev, block_rel);
2001 return block_map + parity_depth * segment;
2002 }
2003 case MIGR_REBUILD: {
2004 __u32 stripes_per_unit;
2005 __u32 migr_chunk;
2006
2007 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2008 migr_chunk = migr_strip_blocks_rebuild(dev);
2009 return migr_chunk * stripes_per_unit;
2010 }
2011 case MIGR_STATE_CHANGE:
2012 default:
2013 return 0;
2014 }
2015 }
2016
2017 static int imsm_level_to_layout(int level)
2018 {
2019 switch (level) {
2020 case 0:
2021 case 1:
2022 return 0;
2023 case 5:
2024 case 6:
2025 return ALGORITHM_LEFT_ASYMMETRIC;
2026 case 10:
2027 return 0x102;
2028 }
2029 return UnSet;
2030 }
2031
2032 /*******************************************************************************
2033 * Function: read_imsm_migr_rec
2034 * Description: Function reads imsm migration record from last sector of disk
2035 * Parameters:
2036 * fd : disk descriptor
2037 * super : metadata info
2038 * Returns:
2039 * 0 : success,
2040 * -1 : fail
2041 ******************************************************************************/
2042 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2043 {
2044 int ret_val = -1;
2045 unsigned long long dsize;
2046
2047 get_dev_size(fd, NULL, &dsize);
2048 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2049 fprintf(stderr,
2050 Name ": Cannot seek to anchor block: %s\n",
2051 strerror(errno));
2052 goto out;
2053 }
2054 if (read(fd, super->migr_rec_buf, 512) != 512) {
2055 fprintf(stderr,
2056 Name ": Cannot read migr record block: %s\n",
2057 strerror(errno));
2058 goto out;
2059 }
2060 ret_val = 0;
2061
2062 out:
2063 return ret_val;
2064 }
2065
2066 /*******************************************************************************
2067 * Function: load_imsm_migr_rec
2068 * Description: Function reads imsm migration record (it is stored at the last
2069 * sector of disk)
2070 * Parameters:
2071 * super : imsm internal array info
2072 * info : general array info
2073 * Returns:
2074 * 0 : success
2075 * -1 : fail
2076 ******************************************************************************/
2077 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2078 {
2079 struct mdinfo *sd;
2080 struct dl *dl = NULL;
2081 char nm[30];
2082 int retval = -1;
2083 int fd = -1;
2084
2085 if (info) {
2086 for (sd = info->devs ; sd ; sd = sd->next) {
2087 /* read only from one of the first two slots */
2088 if ((sd->disk.raid_disk > 1) ||
2089 (sd->disk.raid_disk < 0))
2090 continue;
2091 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2092 fd = dev_open(nm, O_RDONLY);
2093 if (fd >= 0)
2094 break;
2095 }
2096 }
2097 if (fd < 0) {
2098 for (dl = super->disks; dl; dl = dl->next) {
2099 /* read only from one of the first two slots */
2100 if (dl->index > 1)
2101 continue;
2102 sprintf(nm, "%d:%d", dl->major, dl->minor);
2103 fd = dev_open(nm, O_RDONLY);
2104 if (fd >= 0)
2105 break;
2106 }
2107 }
2108 if (fd < 0)
2109 goto out;
2110 retval = read_imsm_migr_rec(fd, super);
2111
2112 out:
2113 if (fd >= 0)
2114 close(fd);
2115 return retval;
2116 }
2117
2118 #ifndef MDASSEMBLE
2119 /*******************************************************************************
2120 * function: imsm_create_metadata_checkpoint_update
2121 * Description: It creates update for checkpoint change.
2122 * Parameters:
2123 * super : imsm internal array info
2124 * u : pointer to prepared update
2125 * Returns:
2126 * Uptate length.
2127 * If length is equal to 0, input pointer u contains no update
2128 ******************************************************************************/
2129 static int imsm_create_metadata_checkpoint_update(
2130 struct intel_super *super,
2131 struct imsm_update_general_migration_checkpoint **u)
2132 {
2133
2134 int update_memory_size = 0;
2135
2136 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2137
2138 if (u == NULL)
2139 return 0;
2140 *u = NULL;
2141
2142 /* size of all update data without anchor */
2143 update_memory_size =
2144 sizeof(struct imsm_update_general_migration_checkpoint);
2145
2146 *u = calloc(1, update_memory_size);
2147 if (*u == NULL) {
2148 dprintf("error: cannot get memory for "
2149 "imsm_create_metadata_checkpoint_update update\n");
2150 return 0;
2151 }
2152 (*u)->type = update_general_migration_checkpoint;
2153 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2154 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2155 (*u)->curr_migr_unit);
2156
2157 return update_memory_size;
2158 }
2159
2160
2161 static void imsm_update_metadata_locally(struct supertype *st,
2162 void *buf, int len);
2163
2164 /*******************************************************************************
2165 * Function: write_imsm_migr_rec
2166 * Description: Function writes imsm migration record
2167 * (at the last sector of disk)
2168 * Parameters:
2169 * super : imsm internal array info
2170 * Returns:
2171 * 0 : success
2172 * -1 : if fail
2173 ******************************************************************************/
2174 static int write_imsm_migr_rec(struct supertype *st)
2175 {
2176 struct intel_super *super = st->sb;
2177 unsigned long long dsize;
2178 char nm[30];
2179 int fd = -1;
2180 int retval = -1;
2181 struct dl *sd;
2182 int len;
2183 struct imsm_update_general_migration_checkpoint *u;
2184
2185 for (sd = super->disks ; sd ; sd = sd->next) {
2186 /* write to 2 first slots only */
2187 if ((sd->index < 0) || (sd->index > 1))
2188 continue;
2189 sprintf(nm, "%d:%d", sd->major, sd->minor);
2190 fd = dev_open(nm, O_RDWR);
2191 if (fd < 0)
2192 continue;
2193 get_dev_size(fd, NULL, &dsize);
2194 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2195 fprintf(stderr,
2196 Name ": Cannot seek to anchor block: %s\n",
2197 strerror(errno));
2198 goto out;
2199 }
2200 if (write(fd, super->migr_rec_buf, 512) != 512) {
2201 fprintf(stderr,
2202 Name ": Cannot write migr record block: %s\n",
2203 strerror(errno));
2204 goto out;
2205 }
2206 close(fd);
2207 fd = -1;
2208 }
2209 /* update checkpoint information in metadata */
2210 len = imsm_create_metadata_checkpoint_update(super, &u);
2211
2212 if (len <= 0) {
2213 dprintf("imsm: Cannot prepare update\n");
2214 goto out;
2215 }
2216 /* update metadata locally */
2217 imsm_update_metadata_locally(st, u, len);
2218 /* and possibly remotely */
2219 if (st->update_tail) {
2220 append_metadata_update(st, u, len);
2221 /* during reshape we do all work inside metadata handler
2222 * manage_reshape(), so metadata update has to be triggered
2223 * insida it
2224 */
2225 flush_metadata_updates(st);
2226 st->update_tail = &st->updates;
2227 } else
2228 free(u);
2229
2230 retval = 0;
2231 out:
2232 if (fd >= 0)
2233 close(fd);
2234 return retval;
2235 }
2236 #endif /* MDASSEMBLE */
2237
2238 /* spare/missing disks activations are not allowe when
2239 * array/container performs reshape operation, because
2240 * all arrays in container works on the same disks set
2241 */
2242 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2243 {
2244 int rv = 0;
2245 struct intel_dev *i_dev;
2246 struct imsm_dev *dev;
2247
2248 /* check whole container
2249 */
2250 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2251 dev = i_dev->dev;
2252 if (is_gen_migration(dev)) {
2253 /* No repair during any migration in container
2254 */
2255 rv = 1;
2256 break;
2257 }
2258 }
2259 return rv;
2260 }
2261
2262 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2263 {
2264 struct intel_super *super = st->sb;
2265 struct migr_record *migr_rec = super->migr_rec;
2266 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2267 struct imsm_map *map = get_imsm_map(dev, 0);
2268 struct imsm_map *prev_map = get_imsm_map(dev, 1);
2269 struct imsm_map *map_to_analyse = map;
2270 struct dl *dl;
2271 char *devname;
2272 unsigned int component_size_alligment;
2273 int map_disks = info->array.raid_disks;
2274
2275 memset(info, 0, sizeof(*info));
2276 if (prev_map)
2277 map_to_analyse = prev_map;
2278
2279 dl = super->current_disk;
2280
2281 info->container_member = super->current_vol;
2282 info->array.raid_disks = map->num_members;
2283 info->array.level = get_imsm_raid_level(map_to_analyse);
2284 info->array.layout = imsm_level_to_layout(info->array.level);
2285 info->array.md_minor = -1;
2286 info->array.ctime = 0;
2287 info->array.utime = 0;
2288 info->array.chunk_size =
2289 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2290 info->array.state = !dev->vol.dirty;
2291 info->custom_array_size = __le32_to_cpu(dev->size_high);
2292 info->custom_array_size <<= 32;
2293 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2294 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2295
2296 if (prev_map && map->map_state == prev_map->map_state &&
2297 (migr_type(dev) == MIGR_GEN_MIGR)) {
2298 info->reshape_active = 1;
2299 info->new_level = get_imsm_raid_level(map);
2300 info->new_layout = imsm_level_to_layout(info->new_level);
2301 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2302 info->delta_disks = map->num_members - prev_map->num_members;
2303 if (info->delta_disks) {
2304 /* this needs to be applied to every array
2305 * in the container.
2306 */
2307 info->reshape_active = 2;
2308 }
2309 /* We shape information that we give to md might have to be
2310 * modify to cope with md's requirement for reshaping arrays.
2311 * For example, when reshaping a RAID0, md requires it to be
2312 * presented as a degraded RAID4.
2313 * Also if a RAID0 is migrating to a RAID5 we need to specify
2314 * the array as already being RAID5, but the 'before' layout
2315 * is a RAID4-like layout.
2316 */
2317 switch (info->array.level) {
2318 case 0:
2319 switch(info->new_level) {
2320 case 0:
2321 /* conversion is happening as RAID4 */
2322 info->array.level = 4;
2323 info->array.raid_disks += 1;
2324 break;
2325 case 5:
2326 /* conversion is happening as RAID5 */
2327 info->array.level = 5;
2328 info->array.layout = ALGORITHM_PARITY_N;
2329 info->delta_disks -= 1;
2330 break;
2331 default:
2332 /* FIXME error message */
2333 info->array.level = UnSet;
2334 break;
2335 }
2336 break;
2337 }
2338 } else {
2339 info->new_level = UnSet;
2340 info->new_layout = UnSet;
2341 info->new_chunk = info->array.chunk_size;
2342 info->delta_disks = 0;
2343 }
2344
2345 if (dl) {
2346 info->disk.major = dl->major;
2347 info->disk.minor = dl->minor;
2348 info->disk.number = dl->index;
2349 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2350 dl->index);
2351 }
2352
2353 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2354 info->component_size =
2355 __le32_to_cpu(map_to_analyse->blocks_per_member);
2356
2357 /* check component size aligment
2358 */
2359 component_size_alligment =
2360 info->component_size % (info->array.chunk_size/512);
2361
2362 if (component_size_alligment &&
2363 (info->array.level != 1) && (info->array.level != UnSet)) {
2364 dprintf("imsm: reported component size alligned from %llu ",
2365 info->component_size);
2366 info->component_size -= component_size_alligment;
2367 dprintf("to %llu (%i).\n",
2368 info->component_size, component_size_alligment);
2369 }
2370
2371 memset(info->uuid, 0, sizeof(info->uuid));
2372 info->recovery_start = MaxSector;
2373
2374 info->reshape_progress = 0;
2375 info->resync_start = MaxSector;
2376 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2377 dev->vol.dirty) &&
2378 imsm_reshape_blocks_arrays_changes(super) == 0) {
2379 info->resync_start = 0;
2380 }
2381 if (dev->vol.migr_state) {
2382 switch (migr_type(dev)) {
2383 case MIGR_REPAIR:
2384 case MIGR_INIT: {
2385 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2386 dev);
2387 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2388
2389 info->resync_start = blocks_per_unit * units;
2390 break;
2391 }
2392 case MIGR_GEN_MIGR: {
2393 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2394 dev);
2395 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2396 unsigned long long array_blocks;
2397 int used_disks;
2398
2399 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2400 (units <
2401 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2402 (super->migr_rec->rec_status ==
2403 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2404 units++;
2405
2406 info->reshape_progress = blocks_per_unit * units;
2407
2408 dprintf("IMSM: General Migration checkpoint : %llu "
2409 "(%llu) -> read reshape progress : %llu\n",
2410 (unsigned long long)units,
2411 (unsigned long long)blocks_per_unit,
2412 info->reshape_progress);
2413
2414 used_disks = imsm_num_data_members(dev, 1);
2415 if (used_disks > 0) {
2416 array_blocks = map->blocks_per_member *
2417 used_disks;
2418 /* round array size down to closest MB
2419 */
2420 info->custom_array_size = (array_blocks
2421 >> SECT_PER_MB_SHIFT)
2422 << SECT_PER_MB_SHIFT;
2423 }
2424 }
2425 case MIGR_VERIFY:
2426 /* we could emulate the checkpointing of
2427 * 'sync_action=check' migrations, but for now
2428 * we just immediately complete them
2429 */
2430 case MIGR_REBUILD:
2431 /* this is handled by container_content_imsm() */
2432 case MIGR_STATE_CHANGE:
2433 /* FIXME handle other migrations */
2434 default:
2435 /* we are not dirty, so... */
2436 info->resync_start = MaxSector;
2437 }
2438 }
2439
2440 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2441 info->name[MAX_RAID_SERIAL_LEN] = 0;
2442
2443 info->array.major_version = -1;
2444 info->array.minor_version = -2;
2445 devname = devnum2devname(st->container_dev);
2446 *info->text_version = '\0';
2447 if (devname)
2448 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2449 free(devname);
2450 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2451 uuid_from_super_imsm(st, info->uuid);
2452
2453 if (dmap) {
2454 int i, j;
2455 for (i=0; i<map_disks; i++) {
2456 dmap[i] = 0;
2457 if (i < info->array.raid_disks) {
2458 struct imsm_disk *dsk;
2459 j = get_imsm_disk_idx(dev, i, -1);
2460 dsk = get_imsm_disk(super, j);
2461 if (dsk && (dsk->status & CONFIGURED_DISK))
2462 dmap[i] = 1;
2463 }
2464 }
2465 }
2466 }
2467
2468 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2469 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2470
2471 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2472 {
2473 struct dl *d;
2474
2475 for (d = super->missing; d; d = d->next)
2476 if (d->index == index)
2477 return &d->disk;
2478 return NULL;
2479 }
2480
2481 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2482 {
2483 struct intel_super *super = st->sb;
2484 struct imsm_disk *disk;
2485 int map_disks = info->array.raid_disks;
2486 int max_enough = -1;
2487 int i;
2488 struct imsm_super *mpb;
2489
2490 if (super->current_vol >= 0) {
2491 getinfo_super_imsm_volume(st, info, map);
2492 return;
2493 }
2494 memset(info, 0, sizeof(*info));
2495
2496 /* Set raid_disks to zero so that Assemble will always pull in valid
2497 * spares
2498 */
2499 info->array.raid_disks = 0;
2500 info->array.level = LEVEL_CONTAINER;
2501 info->array.layout = 0;
2502 info->array.md_minor = -1;
2503 info->array.ctime = 0; /* N/A for imsm */
2504 info->array.utime = 0;
2505 info->array.chunk_size = 0;
2506
2507 info->disk.major = 0;
2508 info->disk.minor = 0;
2509 info->disk.raid_disk = -1;
2510 info->reshape_active = 0;
2511 info->array.major_version = -1;
2512 info->array.minor_version = -2;
2513 strcpy(info->text_version, "imsm");
2514 info->safe_mode_delay = 0;
2515 info->disk.number = -1;
2516 info->disk.state = 0;
2517 info->name[0] = 0;
2518 info->recovery_start = MaxSector;
2519 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2520
2521 /* do we have the all the insync disks that we expect? */
2522 mpb = super->anchor;
2523
2524 for (i = 0; i < mpb->num_raid_devs; i++) {
2525 struct imsm_dev *dev = get_imsm_dev(super, i);
2526 int failed, enough, j, missing = 0;
2527 struct imsm_map *map;
2528 __u8 state;
2529
2530 failed = imsm_count_failed(super, dev);
2531 state = imsm_check_degraded(super, dev, failed);
2532 map = get_imsm_map(dev, dev->vol.migr_state);
2533
2534 /* any newly missing disks?
2535 * (catches single-degraded vs double-degraded)
2536 */
2537 for (j = 0; j < map->num_members; j++) {
2538 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
2539 __u32 idx = ord_to_idx(ord);
2540
2541 if (!(ord & IMSM_ORD_REBUILD) &&
2542 get_imsm_missing(super, idx)) {
2543 missing = 1;
2544 break;
2545 }
2546 }
2547
2548 if (state == IMSM_T_STATE_FAILED)
2549 enough = -1;
2550 else if (state == IMSM_T_STATE_DEGRADED &&
2551 (state != map->map_state || missing))
2552 enough = 0;
2553 else /* we're normal, or already degraded */
2554 enough = 1;
2555
2556 /* in the missing/failed disk case check to see
2557 * if at least one array is runnable
2558 */
2559 max_enough = max(max_enough, enough);
2560 }
2561 dprintf("%s: enough: %d\n", __func__, max_enough);
2562 info->container_enough = max_enough;
2563
2564 if (super->disks) {
2565 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2566
2567 disk = &super->disks->disk;
2568 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2569 info->component_size = reserved;
2570 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2571 /* we don't change info->disk.raid_disk here because
2572 * this state will be finalized in mdmon after we have
2573 * found the 'most fresh' version of the metadata
2574 */
2575 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2576 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2577 }
2578
2579 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2580 * ->compare_super may have updated the 'num_raid_devs' field for spares
2581 */
2582 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2583 uuid_from_super_imsm(st, info->uuid);
2584 else
2585 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2586
2587 /* I don't know how to compute 'map' on imsm, so use safe default */
2588 if (map) {
2589 int i;
2590 for (i = 0; i < map_disks; i++)
2591 map[i] = 1;
2592 }
2593
2594 }
2595
2596 /* allocates memory and fills disk in mdinfo structure
2597 * for each disk in array */
2598 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2599 {
2600 struct mdinfo *mddev = NULL;
2601 struct intel_super *super = st->sb;
2602 struct imsm_disk *disk;
2603 int count = 0;
2604 struct dl *dl;
2605 if (!super || !super->disks)
2606 return NULL;
2607 dl = super->disks;
2608 mddev = malloc(sizeof(*mddev));
2609 if (!mddev) {
2610 fprintf(stderr, Name ": Failed to allocate memory.\n");
2611 return NULL;
2612 }
2613 memset(mddev, 0, sizeof(*mddev));
2614 while (dl) {
2615 struct mdinfo *tmp;
2616 disk = &dl->disk;
2617 tmp = malloc(sizeof(*tmp));
2618 if (!tmp) {
2619 fprintf(stderr, Name ": Failed to allocate memory.\n");
2620 if (mddev)
2621 sysfs_free(mddev);
2622 return NULL;
2623 }
2624 memset(tmp, 0, sizeof(*tmp));
2625 if (mddev->devs)
2626 tmp->next = mddev->devs;
2627 mddev->devs = tmp;
2628 tmp->disk.number = count++;
2629 tmp->disk.major = dl->major;
2630 tmp->disk.minor = dl->minor;
2631 tmp->disk.state = is_configured(disk) ?
2632 (1 << MD_DISK_ACTIVE) : 0;
2633 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2634 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2635 tmp->disk.raid_disk = -1;
2636 dl = dl->next;
2637 }
2638 return mddev;
2639 }
2640
2641 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2642 char *update, char *devname, int verbose,
2643 int uuid_set, char *homehost)
2644 {
2645 /* For 'assemble' and 'force' we need to return non-zero if any
2646 * change was made. For others, the return value is ignored.
2647 * Update options are:
2648 * force-one : This device looks a bit old but needs to be included,
2649 * update age info appropriately.
2650 * assemble: clear any 'faulty' flag to allow this device to
2651 * be assembled.
2652 * force-array: Array is degraded but being forced, mark it clean
2653 * if that will be needed to assemble it.
2654 *
2655 * newdev: not used ????
2656 * grow: Array has gained a new device - this is currently for
2657 * linear only
2658 * resync: mark as dirty so a resync will happen.
2659 * name: update the name - preserving the homehost
2660 * uuid: Change the uuid of the array to match watch is given
2661 *
2662 * Following are not relevant for this imsm:
2663 * sparc2.2 : update from old dodgey metadata
2664 * super-minor: change the preferred_minor number
2665 * summaries: update redundant counters.
2666 * homehost: update the recorded homehost
2667 * _reshape_progress: record new reshape_progress position.
2668 */
2669 int rv = 1;
2670 struct intel_super *super = st->sb;
2671 struct imsm_super *mpb;
2672
2673 /* we can only update container info */
2674 if (!super || super->current_vol >= 0 || !super->anchor)
2675 return 1;
2676
2677 mpb = super->anchor;
2678
2679 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2680 rv = -1;
2681 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2682 mpb->orig_family_num = *((__u32 *) info->update_private);
2683 rv = 0;
2684 } else if (strcmp(update, "uuid") == 0) {
2685 __u32 *new_family = malloc(sizeof(*new_family));
2686
2687 /* update orig_family_number with the incoming random
2688 * data, report the new effective uuid, and store the
2689 * new orig_family_num for future updates.
2690 */
2691 if (new_family) {
2692 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2693 uuid_from_super_imsm(st, info->uuid);
2694 *new_family = mpb->orig_family_num;
2695 info->update_private = new_family;
2696 rv = 0;
2697 }
2698 } else if (strcmp(update, "assemble") == 0)
2699 rv = 0;
2700 else
2701 rv = -1;
2702
2703 /* successful update? recompute checksum */
2704 if (rv == 0)
2705 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2706
2707 return rv;
2708 }
2709
2710 static size_t disks_to_mpb_size(int disks)
2711 {
2712 size_t size;
2713
2714 size = sizeof(struct imsm_super);
2715 size += (disks - 1) * sizeof(struct imsm_disk);
2716 size += 2 * sizeof(struct imsm_dev);
2717 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2718 size += (4 - 2) * sizeof(struct imsm_map);
2719 /* 4 possible disk_ord_tbl's */
2720 size += 4 * (disks - 1) * sizeof(__u32);
2721
2722 return size;
2723 }
2724
2725 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2726 {
2727 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2728 return 0;
2729
2730 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2731 }
2732
2733 static void free_devlist(struct intel_super *super)
2734 {
2735 struct intel_dev *dv;
2736
2737 while (super->devlist) {
2738 dv = super->devlist->next;
2739 free(super->devlist->dev);
2740 free(super->devlist);
2741 super->devlist = dv;
2742 }
2743 }
2744
2745 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2746 {
2747 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2748 }
2749
2750 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2751 {
2752 /*
2753 * return:
2754 * 0 same, or first was empty, and second was copied
2755 * 1 second had wrong number
2756 * 2 wrong uuid
2757 * 3 wrong other info
2758 */
2759 struct intel_super *first = st->sb;
2760 struct intel_super *sec = tst->sb;
2761
2762 if (!first) {
2763 st->sb = tst->sb;
2764 tst->sb = NULL;
2765 return 0;
2766 }
2767 /* in platform dependent environment test if the disks
2768 * use the same Intel hba
2769 */
2770 if (!check_env("IMSM_NO_PLATFORM")) {
2771 if (!first->hba || !sec->hba ||
2772 (first->hba->type != sec->hba->type)) {
2773 fprintf(stderr,
2774 "HBAs of devices does not match %s != %s\n",
2775 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2776 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2777 return 3;
2778 }
2779 }
2780
2781 /* if an anchor does not have num_raid_devs set then it is a free
2782 * floating spare
2783 */
2784 if (first->anchor->num_raid_devs > 0 &&
2785 sec->anchor->num_raid_devs > 0) {
2786 /* Determine if these disks might ever have been
2787 * related. Further disambiguation can only take place
2788 * in load_super_imsm_all
2789 */
2790 __u32 first_family = first->anchor->orig_family_num;
2791 __u32 sec_family = sec->anchor->orig_family_num;
2792
2793 if (memcmp(first->anchor->sig, sec->anchor->sig,
2794 MAX_SIGNATURE_LENGTH) != 0)
2795 return 3;
2796
2797 if (first_family == 0)
2798 first_family = first->anchor->family_num;
2799 if (sec_family == 0)
2800 sec_family = sec->anchor->family_num;
2801
2802 if (first_family != sec_family)
2803 return 3;
2804
2805 }
2806
2807
2808 /* if 'first' is a spare promote it to a populated mpb with sec's
2809 * family number
2810 */
2811 if (first->anchor->num_raid_devs == 0 &&
2812 sec->anchor->num_raid_devs > 0) {
2813 int i;
2814 struct intel_dev *dv;
2815 struct imsm_dev *dev;
2816
2817 /* we need to copy raid device info from sec if an allocation
2818 * fails here we don't associate the spare
2819 */
2820 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2821 dv = malloc(sizeof(*dv));
2822 if (!dv)
2823 break;
2824 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2825 if (!dev) {
2826 free(dv);
2827 break;
2828 }
2829 dv->dev = dev;
2830 dv->index = i;
2831 dv->next = first->devlist;
2832 first->devlist = dv;
2833 }
2834 if (i < sec->anchor->num_raid_devs) {
2835 /* allocation failure */
2836 free_devlist(first);
2837 fprintf(stderr, "imsm: failed to associate spare\n");
2838 return 3;
2839 }
2840 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2841 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2842 first->anchor->family_num = sec->anchor->family_num;
2843 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2844 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2845 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2846 }
2847
2848 return 0;
2849 }
2850
2851 static void fd2devname(int fd, char *name)
2852 {
2853 struct stat st;
2854 char path[256];
2855 char dname[PATH_MAX];
2856 char *nm;
2857 int rv;
2858
2859 name[0] = '\0';
2860 if (fstat(fd, &st) != 0)
2861 return;
2862 sprintf(path, "/sys/dev/block/%d:%d",
2863 major(st.st_rdev), minor(st.st_rdev));
2864
2865 rv = readlink(path, dname, sizeof(dname)-1);
2866 if (rv <= 0)
2867 return;
2868
2869 dname[rv] = '\0';
2870 nm = strrchr(dname, '/');
2871 nm++;
2872 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2873 }
2874
2875 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2876
2877 static int imsm_read_serial(int fd, char *devname,
2878 __u8 serial[MAX_RAID_SERIAL_LEN])
2879 {
2880 unsigned char scsi_serial[255];
2881 int rv;
2882 int rsp_len;
2883 int len;
2884 char *dest;
2885 char *src;
2886 char *rsp_buf;
2887 int i;
2888
2889 memset(scsi_serial, 0, sizeof(scsi_serial));
2890
2891 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2892
2893 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2894 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2895 fd2devname(fd, (char *) serial);
2896 return 0;
2897 }
2898
2899 if (rv != 0) {
2900 if (devname)
2901 fprintf(stderr,
2902 Name ": Failed to retrieve serial for %s\n",
2903 devname);
2904 return rv;
2905 }
2906
2907 rsp_len = scsi_serial[3];
2908 if (!rsp_len) {
2909 if (devname)
2910 fprintf(stderr,
2911 Name ": Failed to retrieve serial for %s\n",
2912 devname);
2913 return 2;
2914 }
2915 rsp_buf = (char *) &scsi_serial[4];
2916
2917 /* trim all whitespace and non-printable characters and convert
2918 * ':' to ';'
2919 */
2920 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2921 src = &rsp_buf[i];
2922 if (*src > 0x20) {
2923 /* ':' is reserved for use in placeholder serial
2924 * numbers for missing disks
2925 */
2926 if (*src == ':')
2927 *dest++ = ';';
2928 else
2929 *dest++ = *src;
2930 }
2931 }
2932 len = dest - rsp_buf;
2933 dest = rsp_buf;
2934
2935 /* truncate leading characters */
2936 if (len > MAX_RAID_SERIAL_LEN) {
2937 dest += len - MAX_RAID_SERIAL_LEN;
2938 len = MAX_RAID_SERIAL_LEN;
2939 }
2940
2941 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2942 memcpy(serial, dest, len);
2943
2944 return 0;
2945 }
2946
2947 static int serialcmp(__u8 *s1, __u8 *s2)
2948 {
2949 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2950 }
2951
2952 static void serialcpy(__u8 *dest, __u8 *src)
2953 {
2954 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2955 }
2956
2957 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2958 {
2959 struct dl *dl;
2960
2961 for (dl = super->disks; dl; dl = dl->next)
2962 if (serialcmp(dl->serial, serial) == 0)
2963 break;
2964
2965 return dl;
2966 }
2967
2968 static struct imsm_disk *
2969 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2970 {
2971 int i;
2972
2973 for (i = 0; i < mpb->num_disks; i++) {
2974 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2975
2976 if (serialcmp(disk->serial, serial) == 0) {
2977 if (idx)
2978 *idx = i;
2979 return disk;
2980 }
2981 }
2982
2983 return NULL;
2984 }
2985
2986 static int
2987 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2988 {
2989 struct imsm_disk *disk;
2990 struct dl *dl;
2991 struct stat stb;
2992 int rv;
2993 char name[40];
2994 __u8 serial[MAX_RAID_SERIAL_LEN];
2995
2996 rv = imsm_read_serial(fd, devname, serial);
2997
2998 if (rv != 0)
2999 return 2;
3000
3001 dl = calloc(1, sizeof(*dl));
3002 if (!dl) {
3003 if (devname)
3004 fprintf(stderr,
3005 Name ": failed to allocate disk buffer for %s\n",
3006 devname);
3007 return 2;
3008 }
3009
3010 fstat(fd, &stb);
3011 dl->major = major(stb.st_rdev);
3012 dl->minor = minor(stb.st_rdev);
3013 dl->next = super->disks;
3014 dl->fd = keep_fd ? fd : -1;
3015 assert(super->disks == NULL);
3016 super->disks = dl;
3017 serialcpy(dl->serial, serial);
3018 dl->index = -2;
3019 dl->e = NULL;
3020 fd2devname(fd, name);
3021 if (devname)
3022 dl->devname = strdup(devname);
3023 else
3024 dl->devname = strdup(name);
3025
3026 /* look up this disk's index in the current anchor */
3027 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3028 if (disk) {
3029 dl->disk = *disk;
3030 /* only set index on disks that are a member of a
3031 * populated contianer, i.e. one with raid_devs
3032 */
3033 if (is_failed(&dl->disk))
3034 dl->index = -2;
3035 else if (is_spare(&dl->disk))
3036 dl->index = -1;
3037 }
3038
3039 return 0;
3040 }
3041
3042 #ifndef MDASSEMBLE
3043 /* When migrating map0 contains the 'destination' state while map1
3044 * contains the current state. When not migrating map0 contains the
3045 * current state. This routine assumes that map[0].map_state is set to
3046 * the current array state before being called.
3047 *
3048 * Migration is indicated by one of the following states
3049 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3050 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3051 * map1state=unitialized)
3052 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3053 * map1state=normal)
3054 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3055 * map1state=degraded)
3056 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3057 * map1state=normal)
3058 */
3059 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3060 __u8 to_state, int migr_type)
3061 {
3062 struct imsm_map *dest;
3063 struct imsm_map *src = get_imsm_map(dev, 0);
3064
3065 dev->vol.migr_state = 1;
3066 set_migr_type(dev, migr_type);
3067 dev->vol.curr_migr_unit = 0;
3068 dest = get_imsm_map(dev, 1);
3069
3070 /* duplicate and then set the target end state in map[0] */
3071 memcpy(dest, src, sizeof_imsm_map(src));
3072 if ((migr_type == MIGR_REBUILD) ||
3073 (migr_type == MIGR_GEN_MIGR)) {
3074 __u32 ord;
3075 int i;
3076
3077 for (i = 0; i < src->num_members; i++) {
3078 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3079 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3080 }
3081 }
3082
3083 if (migr_type == MIGR_GEN_MIGR)
3084 /* Clear migration record */
3085 memset(super->migr_rec, 0, sizeof(struct migr_record));
3086
3087 src->map_state = to_state;
3088 }
3089
3090 static void end_migration(struct imsm_dev *dev, __u8 map_state)
3091 {
3092 struct imsm_map *map = get_imsm_map(dev, 0);
3093 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
3094 int i, j;
3095
3096 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3097 * completed in the last migration.
3098 *
3099 * FIXME add support for raid-level-migration
3100 */
3101 for (i = 0; i < prev->num_members; i++)
3102 for (j = 0; j < map->num_members; j++)
3103 /* during online capacity expansion
3104 * disks position can be changed if takeover is used
3105 */
3106 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3107 ord_to_idx(prev->disk_ord_tbl[i])) {
3108 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3109 break;
3110 }
3111
3112 dev->vol.migr_state = 0;
3113 set_migr_type(dev, 0);
3114 dev->vol.curr_migr_unit = 0;
3115 map->map_state = map_state;
3116 }
3117 #endif
3118
3119 static int parse_raid_devices(struct intel_super *super)
3120 {
3121 int i;
3122 struct imsm_dev *dev_new;
3123 size_t len, len_migr;
3124 size_t max_len = 0;
3125 size_t space_needed = 0;
3126 struct imsm_super *mpb = super->anchor;
3127
3128 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3129 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3130 struct intel_dev *dv;
3131
3132 len = sizeof_imsm_dev(dev_iter, 0);
3133 len_migr = sizeof_imsm_dev(dev_iter, 1);
3134 if (len_migr > len)
3135 space_needed += len_migr - len;
3136
3137 dv = malloc(sizeof(*dv));
3138 if (!dv)
3139 return 1;
3140 if (max_len < len_migr)
3141 max_len = len_migr;
3142 if (max_len > len_migr)
3143 space_needed += max_len - len_migr;
3144 dev_new = malloc(max_len);
3145 if (!dev_new) {
3146 free(dv);
3147 return 1;
3148 }
3149 imsm_copy_dev(dev_new, dev_iter);
3150 dv->dev = dev_new;
3151 dv->index = i;
3152 dv->next = super->devlist;
3153 super->devlist = dv;
3154 }
3155
3156 /* ensure that super->buf is large enough when all raid devices
3157 * are migrating
3158 */
3159 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3160 void *buf;
3161
3162 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3163 if (posix_memalign(&buf, 512, len) != 0)
3164 return 1;
3165
3166 memcpy(buf, super->buf, super->len);
3167 memset(buf + super->len, 0, len - super->len);
3168 free(super->buf);
3169 super->buf = buf;
3170 super->len = len;
3171 }
3172
3173 return 0;
3174 }
3175
3176 /* retrieve a pointer to the bbm log which starts after all raid devices */
3177 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3178 {
3179 void *ptr = NULL;
3180
3181 if (__le32_to_cpu(mpb->bbm_log_size)) {
3182 ptr = mpb;
3183 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3184 }
3185
3186 return ptr;
3187 }
3188
3189 /*******************************************************************************
3190 * Function: check_mpb_migr_compatibility
3191 * Description: Function checks for unsupported migration features:
3192 * - migration optimization area (pba_of_lba0)
3193 * - descending reshape (ascending_migr)
3194 * Parameters:
3195 * super : imsm metadata information
3196 * Returns:
3197 * 0 : migration is compatible
3198 * -1 : migration is not compatible
3199 ******************************************************************************/
3200 int check_mpb_migr_compatibility(struct intel_super *super)
3201 {
3202 struct imsm_map *map0, *map1;
3203 struct migr_record *migr_rec = super->migr_rec;
3204 int i;
3205
3206 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3207 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3208
3209 if (dev_iter &&
3210 dev_iter->vol.migr_state == 1 &&
3211 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3212 /* This device is migrating */
3213 map0 = get_imsm_map(dev_iter, 0);
3214 map1 = get_imsm_map(dev_iter, 1);
3215 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3216 /* migration optimization area was used */
3217 return -1;
3218 if (migr_rec->ascending_migr == 0
3219 && migr_rec->dest_depth_per_unit > 0)
3220 /* descending reshape not supported yet */
3221 return -1;
3222 }
3223 }
3224 return 0;
3225 }
3226
3227 static void __free_imsm(struct intel_super *super, int free_disks);
3228
3229 /* load_imsm_mpb - read matrix metadata
3230 * allocates super->mpb to be freed by free_imsm
3231 */
3232 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3233 {
3234 unsigned long long dsize;
3235 unsigned long long sectors;
3236 struct stat;
3237 struct imsm_super *anchor;
3238 __u32 check_sum;
3239
3240 get_dev_size(fd, NULL, &dsize);
3241 if (dsize < 1024) {
3242 if (devname)
3243 fprintf(stderr,
3244 Name ": %s: device to small for imsm\n",
3245 devname);
3246 return 1;
3247 }
3248
3249 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3250 if (devname)
3251 fprintf(stderr, Name
3252 ": Cannot seek to anchor block on %s: %s\n",
3253 devname, strerror(errno));
3254 return 1;
3255 }
3256
3257 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3258 if (devname)
3259 fprintf(stderr,
3260 Name ": Failed to allocate imsm anchor buffer"
3261 " on %s\n", devname);
3262 return 1;
3263 }
3264 if (read(fd, anchor, 512) != 512) {
3265 if (devname)
3266 fprintf(stderr,
3267 Name ": Cannot read anchor block on %s: %s\n",
3268 devname, strerror(errno));
3269 free(anchor);
3270 return 1;
3271 }
3272
3273 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3274 if (devname)
3275 fprintf(stderr,
3276 Name ": no IMSM anchor on %s\n", devname);
3277 free(anchor);
3278 return 2;
3279 }
3280
3281 __free_imsm(super, 0);
3282 /* reload capability and hba */
3283
3284 /* capability and hba must be updated with new super allocation */
3285 find_intel_hba_capability(fd, super, devname);
3286 super->len = ROUND_UP(anchor->mpb_size, 512);
3287 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3288 if (devname)
3289 fprintf(stderr,
3290 Name ": unable to allocate %zu byte mpb buffer\n",
3291 super->len);
3292 free(anchor);
3293 return 2;
3294 }
3295 memcpy(super->buf, anchor, 512);
3296
3297 sectors = mpb_sectors(anchor) - 1;
3298 free(anchor);
3299
3300 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3301 fprintf(stderr, Name
3302 ": %s could not allocate migr_rec buffer\n", __func__);
3303 free(super->buf);
3304 return 2;
3305 }
3306
3307 if (!sectors) {
3308 check_sum = __gen_imsm_checksum(super->anchor);
3309 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3310 if (devname)
3311 fprintf(stderr,
3312 Name ": IMSM checksum %x != %x on %s\n",
3313 check_sum,
3314 __le32_to_cpu(super->anchor->check_sum),
3315 devname);
3316 return 2;
3317 }
3318
3319 return 0;
3320 }
3321
3322 /* read the extended mpb */
3323 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3324 if (devname)
3325 fprintf(stderr,
3326 Name ": Cannot seek to extended mpb on %s: %s\n",
3327 devname, strerror(errno));
3328 return 1;
3329 }
3330
3331 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3332 if (devname)
3333 fprintf(stderr,
3334 Name ": Cannot read extended mpb on %s: %s\n",
3335 devname, strerror(errno));
3336 return 2;
3337 }
3338
3339 check_sum = __gen_imsm_checksum(super->anchor);
3340 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3341 if (devname)
3342 fprintf(stderr,
3343 Name ": IMSM checksum %x != %x on %s\n",
3344 check_sum, __le32_to_cpu(super->anchor->check_sum),
3345 devname);
3346 return 3;
3347 }
3348
3349 /* FIXME the BBM log is disk specific so we cannot use this global
3350 * buffer for all disks. Ok for now since we only look at the global
3351 * bbm_log_size parameter to gate assembly
3352 */
3353 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3354
3355 return 0;
3356 }
3357
3358 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3359
3360 static int
3361 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3362 {
3363 int err;
3364
3365 err = load_imsm_mpb(fd, super, devname);
3366 if (err)
3367 return err;
3368 err = load_imsm_disk(fd, super, devname, keep_fd);
3369 if (err)
3370 return err;
3371 err = parse_raid_devices(super);
3372
3373 return err;
3374 }
3375
3376 static void __free_imsm_disk(struct dl *d)
3377 {
3378 if (d->fd >= 0)
3379 close(d->fd);
3380 if (d->devname)
3381 free(d->devname);
3382 if (d->e)
3383 free(d->e);
3384 free(d);
3385
3386 }
3387
3388 static void free_imsm_disks(struct intel_super *super)
3389 {
3390 struct dl *d;
3391
3392 while (super->disks) {
3393 d = super->disks;
3394 super->disks = d->next;
3395 __free_imsm_disk(d);
3396 }
3397 while (super->disk_mgmt_list) {
3398 d = super->disk_mgmt_list;
3399 super->disk_mgmt_list = d->next;
3400 __free_imsm_disk(d);
3401 }
3402 while (super->missing) {
3403 d = super->missing;
3404 super->missing = d->next;
3405 __free_imsm_disk(d);
3406 }
3407
3408 }
3409
3410 /* free all the pieces hanging off of a super pointer */
3411 static void __free_imsm(struct intel_super *super, int free_disks)
3412 {
3413 struct intel_hba *elem, *next;
3414
3415 if (super->buf) {
3416 free(super->buf);
3417 super->buf = NULL;
3418 }
3419 /* unlink capability description */
3420 super->orom = NULL;
3421 if (super->migr_rec_buf) {
3422 free(super->migr_rec_buf);
3423 super->migr_rec_buf = NULL;
3424 }
3425 if (free_disks)
3426 free_imsm_disks(super);
3427 free_devlist(super);
3428 elem = super->hba;
3429 while (elem) {
3430 if (elem->path)
3431 free((void *)elem->path);
3432 next = elem->next;
3433 free(elem);
3434 elem = next;
3435 }
3436 super->hba = NULL;
3437 }
3438
3439 static void free_imsm(struct intel_super *super)
3440 {
3441 __free_imsm(super, 1);
3442 free(super);
3443 }
3444
3445 static void free_super_imsm(struct supertype *st)
3446 {
3447 struct intel_super *super = st->sb;
3448
3449 if (!super)
3450 return;
3451
3452 free_imsm(super);
3453 st->sb = NULL;
3454 }
3455
3456 static struct intel_super *alloc_super(void)
3457 {
3458 struct intel_super *super = malloc(sizeof(*super));
3459
3460 if (super) {
3461 memset(super, 0, sizeof(*super));
3462 super->current_vol = -1;
3463 super->create_offset = ~((__u32 ) 0);
3464 }
3465 return super;
3466 }
3467
3468 /*
3469 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3470 */
3471 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3472 {
3473 struct sys_dev *hba_name;
3474 int rv = 0;
3475
3476 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3477 super->orom = NULL;
3478 super->hba = NULL;
3479 return 0;
3480 }
3481 hba_name = find_disk_attached_hba(fd, NULL);
3482 if (!hba_name) {
3483 if (devname)
3484 fprintf(stderr,
3485 Name ": %s is not attached to Intel(R) RAID controller.\n",
3486 devname);
3487 return 1;
3488 }
3489 rv = attach_hba_to_super(super, hba_name);
3490 if (rv == 2) {
3491 if (devname) {
3492 struct intel_hba *hba = super->hba;
3493
3494 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3495 "controller (%s),\n"
3496 " but the container is assigned to Intel(R) "
3497 "%s RAID controller (",
3498 devname,
3499 hba_name->path,
3500 hba_name->pci_id ? : "Err!",
3501 get_sys_dev_type(hba_name->type));
3502
3503 while (hba) {
3504 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3505 if (hba->next)
3506 fprintf(stderr, ", ");
3507 hba = hba->next;
3508 }
3509
3510 fprintf(stderr, ").\n"
3511 " Mixing devices attached to different controllers "
3512 "is not allowed.\n");
3513 }
3514 free_sys_dev(&hba_name);
3515 return 2;
3516 }
3517 super->orom = find_imsm_capability(hba_name->type);
3518 free_sys_dev(&hba_name);
3519 if (!super->orom)
3520 return 3;
3521 return 0;
3522 }
3523
3524 /* find_missing - helper routine for load_super_imsm_all that identifies
3525 * disks that have disappeared from the system. This routine relies on
3526 * the mpb being uptodate, which it is at load time.
3527 */
3528 static int find_missing(struct intel_super *super)
3529 {
3530 int i;
3531 struct imsm_super *mpb = super->anchor;
3532 struct dl *dl;
3533 struct imsm_disk *disk;
3534
3535 for (i = 0; i < mpb->num_disks; i++) {
3536 disk = __get_imsm_disk(mpb, i);
3537 dl = serial_to_dl(disk->serial, super);
3538 if (dl)
3539 continue;
3540
3541 dl = malloc(sizeof(*dl));
3542 if (!dl)
3543 return 1;
3544 dl->major = 0;
3545 dl->minor = 0;
3546 dl->fd = -1;
3547 dl->devname = strdup("missing");
3548 dl->index = i;
3549 serialcpy(dl->serial, disk->serial);
3550 dl->disk = *disk;
3551 dl->e = NULL;
3552 dl->next = super->missing;
3553 super->missing = dl;
3554 }
3555
3556 return 0;
3557 }
3558
3559 #ifndef MDASSEMBLE
3560 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3561 {
3562 struct intel_disk *idisk = disk_list;
3563
3564 while (idisk) {
3565 if (serialcmp(idisk->disk.serial, serial) == 0)
3566 break;
3567 idisk = idisk->next;
3568 }
3569
3570 return idisk;
3571 }
3572
3573 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3574 struct intel_super *super,
3575 struct intel_disk **disk_list)
3576 {
3577 struct imsm_disk *d = &super->disks->disk;
3578 struct imsm_super *mpb = super->anchor;
3579 int i, j;
3580
3581 for (i = 0; i < tbl_size; i++) {
3582 struct imsm_super *tbl_mpb = table[i]->anchor;
3583 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3584
3585 if (tbl_mpb->family_num == mpb->family_num) {
3586 if (tbl_mpb->check_sum == mpb->check_sum) {
3587 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3588 __func__, super->disks->major,
3589 super->disks->minor,
3590 table[i]->disks->major,
3591 table[i]->disks->minor);
3592 break;
3593 }
3594
3595 if (((is_configured(d) && !is_configured(tbl_d)) ||
3596 is_configured(d) == is_configured(tbl_d)) &&
3597 tbl_mpb->generation_num < mpb->generation_num) {
3598 /* current version of the mpb is a
3599 * better candidate than the one in
3600 * super_table, but copy over "cross
3601 * generational" status
3602 */
3603 struct intel_disk *idisk;
3604
3605 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3606 __func__, super->disks->major,
3607 super->disks->minor,
3608 table[i]->disks->major,
3609 table[i]->disks->minor);
3610
3611 idisk = disk_list_get(tbl_d->serial, *disk_list);
3612 if (idisk && is_failed(&idisk->disk))
3613 tbl_d->status |= FAILED_DISK;
3614 break;
3615 } else {
3616 struct intel_disk *idisk;
3617 struct imsm_disk *disk;
3618
3619 /* tbl_mpb is more up to date, but copy
3620 * over cross generational status before
3621 * returning
3622 */
3623 disk = __serial_to_disk(d->serial, mpb, NULL);
3624 if (disk && is_failed(disk))
3625 d->status |= FAILED_DISK;
3626
3627 idisk = disk_list_get(d->serial, *disk_list);
3628 if (idisk) {
3629 idisk->owner = i;
3630 if (disk && is_configured(disk))
3631 idisk->disk.status |= CONFIGURED_DISK;
3632 }
3633
3634 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3635 __func__, super->disks->major,
3636 super->disks->minor,
3637 table[i]->disks->major,
3638 table[i]->disks->minor);
3639
3640 return tbl_size;
3641 }
3642 }
3643 }
3644
3645 if (i >= tbl_size)
3646 table[tbl_size++] = super;
3647 else
3648 table[i] = super;
3649
3650 /* update/extend the merged list of imsm_disk records */
3651 for (j = 0; j < mpb->num_disks; j++) {
3652 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3653 struct intel_disk *idisk;
3654
3655 idisk = disk_list_get(disk->serial, *disk_list);
3656 if (idisk) {
3657 idisk->disk.status |= disk->status;
3658 if (is_configured(&idisk->disk) ||
3659 is_failed(&idisk->disk))
3660 idisk->disk.status &= ~(SPARE_DISK);
3661 } else {
3662 idisk = calloc(1, sizeof(*idisk));
3663 if (!idisk)
3664 return -1;
3665 idisk->owner = IMSM_UNKNOWN_OWNER;
3666 idisk->disk = *disk;
3667 idisk->next = *disk_list;
3668 *disk_list = idisk;
3669 }
3670
3671 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3672 idisk->owner = i;
3673 }
3674
3675 return tbl_size;
3676 }
3677
3678 static struct intel_super *
3679 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3680 const int owner)
3681 {
3682 struct imsm_super *mpb = super->anchor;
3683 int ok_count = 0;
3684 int i;
3685
3686 for (i = 0; i < mpb->num_disks; i++) {
3687 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3688 struct intel_disk *idisk;
3689
3690 idisk = disk_list_get(disk->serial, disk_list);
3691 if (idisk) {
3692 if (idisk->owner == owner ||
3693 idisk->owner == IMSM_UNKNOWN_OWNER)
3694 ok_count++;
3695 else
3696 dprintf("%s: '%.16s' owner %d != %d\n",
3697 __func__, disk->serial, idisk->owner,
3698 owner);
3699 } else {
3700 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3701 __func__, __le32_to_cpu(mpb->family_num), i,
3702 disk->serial);
3703 break;
3704 }
3705 }
3706
3707 if (ok_count == mpb->num_disks)
3708 return super;
3709 return NULL;
3710 }
3711
3712 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3713 {
3714 struct intel_super *s;
3715
3716 for (s = super_list; s; s = s->next) {
3717 if (family_num != s->anchor->family_num)
3718 continue;
3719 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3720 __le32_to_cpu(family_num), s->disks->devname);
3721 }
3722 }
3723
3724 static struct intel_super *
3725 imsm_thunderdome(struct intel_super **super_list, int len)
3726 {
3727 struct intel_super *super_table[len];
3728 struct intel_disk *disk_list = NULL;
3729 struct intel_super *champion, *spare;
3730 struct intel_super *s, **del;
3731 int tbl_size = 0;
3732 int conflict;
3733 int i;
3734
3735 memset(super_table, 0, sizeof(super_table));
3736 for (s = *super_list; s; s = s->next)
3737 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3738
3739 for (i = 0; i < tbl_size; i++) {
3740 struct imsm_disk *d;
3741 struct intel_disk *idisk;
3742 struct imsm_super *mpb = super_table[i]->anchor;
3743
3744 s = super_table[i];
3745 d = &s->disks->disk;
3746
3747 /* 'd' must appear in merged disk list for its
3748 * configuration to be valid
3749 */
3750 idisk = disk_list_get(d->serial, disk_list);
3751 if (idisk && idisk->owner == i)
3752 s = validate_members(s, disk_list, i);
3753 else
3754 s = NULL;
3755
3756 if (!s)
3757 dprintf("%s: marking family: %#x from %d:%d offline\n",
3758 __func__, mpb->family_num,
3759 super_table[i]->disks->major,
3760 super_table[i]->disks->minor);
3761 super_table[i] = s;
3762 }
3763
3764 /* This is where the mdadm implementation differs from the Windows
3765 * driver which has no strict concept of a container. We can only
3766 * assemble one family from a container, so when returning a prodigal
3767 * array member to this system the code will not be able to disambiguate
3768 * the container contents that should be assembled ("foreign" versus
3769 * "local"). It requires user intervention to set the orig_family_num
3770 * to a new value to establish a new container. The Windows driver in
3771 * this situation fixes up the volume name in place and manages the
3772 * foreign array as an independent entity.
3773 */
3774 s = NULL;
3775 spare = NULL;
3776 conflict = 0;
3777 for (i = 0; i < tbl_size; i++) {
3778 struct intel_super *tbl_ent = super_table[i];
3779 int is_spare = 0;
3780
3781 if (!tbl_ent)
3782 continue;
3783
3784 if (tbl_ent->anchor->num_raid_devs == 0) {
3785 spare = tbl_ent;
3786 is_spare = 1;
3787 }
3788
3789 if (s && !is_spare) {
3790 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3791 conflict++;
3792 } else if (!s && !is_spare)
3793 s = tbl_ent;
3794 }
3795
3796 if (!s)
3797 s = spare;
3798 if (!s) {
3799 champion = NULL;
3800 goto out;
3801 }
3802 champion = s;
3803
3804 if (conflict)
3805 fprintf(stderr, "Chose family %#x on '%s', "
3806 "assemble conflicts to new container with '--update=uuid'\n",
3807 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3808
3809 /* collect all dl's onto 'champion', and update them to
3810 * champion's version of the status
3811 */
3812 for (s = *super_list; s; s = s->next) {
3813 struct imsm_super *mpb = champion->anchor;
3814 struct dl *dl = s->disks;
3815
3816 if (s == champion)
3817 continue;
3818
3819 for (i = 0; i < mpb->num_disks; i++) {
3820 struct imsm_disk *disk;
3821
3822 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3823 if (disk) {
3824 dl->disk = *disk;
3825 /* only set index on disks that are a member of
3826 * a populated contianer, i.e. one with
3827 * raid_devs
3828 */
3829 if (is_failed(&dl->disk))
3830 dl->index = -2;
3831 else if (is_spare(&dl->disk))
3832 dl->index = -1;
3833 break;
3834 }
3835 }
3836
3837 if (i >= mpb->num_disks) {
3838 struct intel_disk *idisk;
3839
3840 idisk = disk_list_get(dl->serial, disk_list);
3841 if (idisk && is_spare(&idisk->disk) &&
3842 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3843 dl->index = -1;
3844 else {
3845 dl->index = -2;
3846 continue;
3847 }
3848 }
3849
3850 dl->next = champion->disks;
3851 champion->disks = dl;
3852 s->disks = NULL;
3853 }
3854
3855 /* delete 'champion' from super_list */
3856 for (del = super_list; *del; ) {
3857 if (*del == champion) {
3858 *del = (*del)->next;
3859 break;
3860 } else
3861 del = &(*del)->next;
3862 }
3863 champion->next = NULL;
3864
3865 out:
3866 while (disk_list) {
3867 struct intel_disk *idisk = disk_list;
3868
3869 disk_list = disk_list->next;
3870 free(idisk);
3871 }
3872
3873 return champion;
3874 }
3875
3876 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3877 char *devname)
3878 {
3879 struct mdinfo *sra;
3880 struct intel_super *super_list = NULL;
3881 struct intel_super *super = NULL;
3882 int devnum = fd2devnum(fd);
3883 struct mdinfo *sd;
3884 int retry;
3885 int err = 0;
3886 int i;
3887
3888 /* check if 'fd' an opened container */
3889 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3890 if (!sra)
3891 return 1;
3892
3893 if (sra->array.major_version != -1 ||
3894 sra->array.minor_version != -2 ||
3895 strcmp(sra->text_version, "imsm") != 0) {
3896 err = 1;
3897 goto error;
3898 }
3899 /* load all mpbs */
3900 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3901 struct intel_super *s = alloc_super();
3902 char nm[32];
3903 int dfd;
3904 int rv;
3905
3906 err = 1;
3907 if (!s)
3908 goto error;
3909 s->next = super_list;
3910 super_list = s;
3911
3912 err = 2;
3913 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3914 dfd = dev_open(nm, O_RDWR);
3915 if (dfd < 0)
3916 goto error;
3917
3918 rv = find_intel_hba_capability(dfd, s, devname);
3919 /* no orom/efi or non-intel hba of the disk */
3920 if (rv != 0)
3921 goto error;
3922
3923 err = load_and_parse_mpb(dfd, s, NULL, 1);
3924
3925 /* retry the load if we might have raced against mdmon */
3926 if (err == 3 && mdmon_running(devnum))
3927 for (retry = 0; retry < 3; retry++) {
3928 usleep(3000);
3929 err = load_and_parse_mpb(dfd, s, NULL, 1);
3930 if (err != 3)
3931 break;
3932 }
3933 if (err)
3934 goto error;
3935 }
3936
3937 /* all mpbs enter, maybe one leaves */
3938 super = imsm_thunderdome(&super_list, i);
3939 if (!super) {
3940 err = 1;
3941 goto error;
3942 }
3943
3944 if (find_missing(super) != 0) {
3945 free_imsm(super);
3946 err = 2;
3947 goto error;
3948 }
3949
3950 /* load migration record */
3951 err = load_imsm_migr_rec(super, NULL);
3952 if (err) {
3953 err = 4;
3954 goto error;
3955 }
3956
3957 /* Check migration compatibility */
3958 if (check_mpb_migr_compatibility(super) != 0) {
3959 fprintf(stderr, Name ": Unsupported migration detected");
3960 if (devname)
3961 fprintf(stderr, " on %s\n", devname);
3962 else
3963 fprintf(stderr, " (IMSM).\n");
3964
3965 err = 5;
3966 goto error;
3967 }
3968
3969 err = 0;
3970
3971 error:
3972 while (super_list) {
3973 struct intel_super *s = super_list;
3974
3975 super_list = super_list->next;
3976 free_imsm(s);
3977 }
3978 sysfs_free(sra);
3979
3980 if (err)
3981 return err;
3982
3983 *sbp = super;
3984 st->container_dev = devnum;
3985 if (err == 0 && st->ss == NULL) {
3986 st->ss = &super_imsm;
3987 st->minor_version = 0;
3988 st->max_devs = IMSM_MAX_DEVICES;
3989 }
3990 return 0;
3991 }
3992
3993 static int load_container_imsm(struct supertype *st, int fd, char *devname)
3994 {
3995 return load_super_imsm_all(st, fd, &st->sb, devname);
3996 }
3997 #endif
3998
3999 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4000 {
4001 struct intel_super *super;
4002 int rv;
4003
4004 if (test_partition(fd))
4005 /* IMSM not allowed on partitions */
4006 return 1;
4007
4008 free_super_imsm(st);
4009
4010 super = alloc_super();
4011 if (!super) {
4012 fprintf(stderr,
4013 Name ": malloc of %zu failed.\n",
4014 sizeof(*super));
4015 return 1;
4016 }
4017 /* Load hba and capabilities if they exist.
4018 * But do not preclude loading metadata in case capabilities or hba are
4019 * non-compliant and ignore_hw_compat is set.
4020 */
4021 rv = find_intel_hba_capability(fd, super, devname);
4022 /* no orom/efi or non-intel hba of the disk */
4023 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4024 if (devname)
4025 fprintf(stderr,
4026 Name ": No OROM/EFI properties for %s\n", devname);
4027 free_imsm(super);
4028 return 2;
4029 }
4030 rv = load_and_parse_mpb(fd, super, devname, 0);
4031
4032 if (rv) {
4033 if (devname)
4034 fprintf(stderr,
4035 Name ": Failed to load all information "
4036 "sections on %s\n", devname);
4037 free_imsm(super);
4038 return rv;
4039 }
4040
4041 st->sb = super;
4042 if (st->ss == NULL) {
4043 st->ss = &super_imsm;
4044 st->minor_version = 0;
4045 st->max_devs = IMSM_MAX_DEVICES;
4046 }
4047
4048 /* load migration record */
4049 if (load_imsm_migr_rec(super, NULL) == 0) {
4050 /* Check for unsupported migration features */
4051 if (check_mpb_migr_compatibility(super) != 0) {
4052 fprintf(stderr,
4053 Name ": Unsupported migration detected");
4054 if (devname)
4055 fprintf(stderr, " on %s\n", devname);
4056 else
4057 fprintf(stderr, " (IMSM).\n");
4058 return 3;
4059 }
4060 }
4061
4062 return 0;
4063 }
4064
4065 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4066 {
4067 if (info->level == 1)
4068 return 128;
4069 return info->chunk_size >> 9;
4070 }
4071
4072 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
4073 {
4074 __u32 num_stripes;
4075
4076 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
4077 num_stripes /= num_domains;
4078
4079 return num_stripes;
4080 }
4081
4082 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4083 {
4084 if (info->level == 1)
4085 return info->size * 2;
4086 else
4087 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4088 }
4089
4090 static void imsm_update_version_info(struct intel_super *super)
4091 {
4092 /* update the version and attributes */
4093 struct imsm_super *mpb = super->anchor;
4094 char *version;
4095 struct imsm_dev *dev;
4096 struct imsm_map *map;
4097 int i;
4098
4099 for (i = 0; i < mpb->num_raid_devs; i++) {
4100 dev = get_imsm_dev(super, i);
4101 map = get_imsm_map(dev, 0);
4102 if (__le32_to_cpu(dev->size_high) > 0)
4103 mpb->attributes |= MPB_ATTRIB_2TB;
4104
4105 /* FIXME detect when an array spans a port multiplier */
4106 #if 0
4107 mpb->attributes |= MPB_ATTRIB_PM;
4108 #endif
4109
4110 if (mpb->num_raid_devs > 1 ||
4111 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4112 version = MPB_VERSION_ATTRIBS;
4113 switch (get_imsm_raid_level(map)) {
4114 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4115 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4116 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4117 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4118 }
4119 } else {
4120 if (map->num_members >= 5)
4121 version = MPB_VERSION_5OR6_DISK_ARRAY;
4122 else if (dev->status == DEV_CLONE_N_GO)
4123 version = MPB_VERSION_CNG;
4124 else if (get_imsm_raid_level(map) == 5)
4125 version = MPB_VERSION_RAID5;
4126 else if (map->num_members >= 3)
4127 version = MPB_VERSION_3OR4_DISK_ARRAY;
4128 else if (get_imsm_raid_level(map) == 1)
4129 version = MPB_VERSION_RAID1;
4130 else
4131 version = MPB_VERSION_RAID0;
4132 }
4133 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4134 }
4135 }
4136
4137 static int check_name(struct intel_super *super, char *name, int quiet)
4138 {
4139 struct imsm_super *mpb = super->anchor;
4140 char *reason = NULL;
4141 int i;
4142
4143 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4144 reason = "must be 16 characters or less";
4145
4146 for (i = 0; i < mpb->num_raid_devs; i++) {
4147 struct imsm_dev *dev = get_imsm_dev(super, i);
4148
4149 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4150 reason = "already exists";
4151 break;
4152 }
4153 }
4154
4155 if (reason && !quiet)
4156 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4157
4158 return !reason;
4159 }
4160
4161 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4162 unsigned long long size, char *name,
4163 char *homehost, int *uuid)
4164 {
4165 /* We are creating a volume inside a pre-existing container.
4166 * so st->sb is already set.
4167 */
4168 struct intel_super *super = st->sb;
4169 struct imsm_super *mpb = super->anchor;
4170 struct intel_dev *dv;
4171 struct imsm_dev *dev;
4172 struct imsm_vol *vol;
4173 struct imsm_map *map;
4174 int idx = mpb->num_raid_devs;
4175 int i;
4176 unsigned long long array_blocks;
4177 size_t size_old, size_new;
4178 __u32 num_data_stripes;
4179
4180 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4181 fprintf(stderr, Name": This imsm-container already has the "
4182 "maximum of %d volumes\n", super->orom->vpa);
4183 return 0;
4184 }
4185
4186 /* ensure the mpb is large enough for the new data */
4187 size_old = __le32_to_cpu(mpb->mpb_size);
4188 size_new = disks_to_mpb_size(info->nr_disks);
4189 if (size_new > size_old) {
4190 void *mpb_new;
4191 size_t size_round = ROUND_UP(size_new, 512);
4192
4193 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4194 fprintf(stderr, Name": could not allocate new mpb\n");
4195 return 0;
4196 }
4197 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4198 fprintf(stderr, Name
4199 ": %s could not allocate migr_rec buffer\n",
4200 __func__);
4201 free(super->buf);
4202 free(super);
4203 return 0;
4204 }
4205 memcpy(mpb_new, mpb, size_old);
4206 free(mpb);
4207 mpb = mpb_new;
4208 super->anchor = mpb_new;
4209 mpb->mpb_size = __cpu_to_le32(size_new);
4210 memset(mpb_new + size_old, 0, size_round - size_old);
4211 }
4212 super->current_vol = idx;
4213
4214 /* handle 'failed_disks' by either:
4215 * a) create dummy disk entries in the table if this the first
4216 * volume in the array. We add them here as this is the only
4217 * opportunity to add them. add_to_super_imsm_volume()
4218 * handles the non-failed disks and continues incrementing
4219 * mpb->num_disks.
4220 * b) validate that 'failed_disks' matches the current number
4221 * of missing disks if the container is populated
4222 */
4223 if (super->current_vol == 0) {
4224 mpb->num_disks = 0;
4225 for (i = 0; i < info->failed_disks; i++) {
4226 struct imsm_disk *disk;
4227
4228 mpb->num_disks++;
4229 disk = __get_imsm_disk(mpb, i);
4230 disk->status = CONFIGURED_DISK | FAILED_DISK;
4231 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4232 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4233 "missing:%d", i);
4234 }
4235 find_missing(super);
4236 } else {
4237 int missing = 0;
4238 struct dl *d;
4239
4240 for (d = super->missing; d; d = d->next)
4241 missing++;
4242 if (info->failed_disks > missing) {
4243 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4244 return 0;
4245 }
4246 }
4247
4248 if (!check_name(super, name, 0))
4249 return 0;
4250 dv = malloc(sizeof(*dv));
4251 if (!dv) {
4252 fprintf(stderr, Name ": failed to allocate device list entry\n");
4253 return 0;
4254 }
4255 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4256 if (!dev) {
4257 free(dv);
4258 fprintf(stderr, Name": could not allocate raid device\n");
4259 return 0;
4260 }
4261
4262 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4263 if (info->level == 1)
4264 array_blocks = info_to_blocks_per_member(info);
4265 else
4266 array_blocks = calc_array_size(info->level, info->raid_disks,
4267 info->layout, info->chunk_size,
4268 info->size*2);
4269 /* round array size down to closest MB */
4270 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4271
4272 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4273 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4274 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4275 vol = &dev->vol;
4276 vol->migr_state = 0;
4277 set_migr_type(dev, MIGR_INIT);
4278 vol->dirty = !info->state;
4279 vol->curr_migr_unit = 0;
4280 map = get_imsm_map(dev, 0);
4281 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
4282 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
4283 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4284 map->failed_disk_num = ~0;
4285 map->map_state = info->failed_disks ? IMSM_T_STATE_DEGRADED : IMSM_T_STATE_NORMAL;
4286 map->ddf = 1;
4287
4288 if (info->level == 1 && info->raid_disks > 2) {
4289 free(dev);
4290 free(dv);
4291 fprintf(stderr, Name": imsm does not support more than 2 disks"
4292 "in a raid1 volume\n");
4293 return 0;
4294 }
4295
4296 map->raid_level = info->level;
4297 if (info->level == 10) {
4298 map->raid_level = 1;
4299 map->num_domains = info->raid_disks / 2;
4300 } else if (info->level == 1)
4301 map->num_domains = info->raid_disks;
4302 else
4303 map->num_domains = 1;
4304
4305 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4306 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
4307
4308 map->num_members = info->raid_disks;
4309 for (i = 0; i < map->num_members; i++) {
4310 /* initialized in add_to_super */
4311 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4312 }
4313 mpb->num_raid_devs++;
4314
4315 dv->dev = dev;
4316 dv->index = super->current_vol;
4317 dv->next = super->devlist;
4318 super->devlist = dv;
4319
4320 imsm_update_version_info(super);
4321
4322 return 1;
4323 }
4324
4325 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4326 unsigned long long size, char *name,
4327 char *homehost, int *uuid)
4328 {
4329 /* This is primarily called by Create when creating a new array.
4330 * We will then get add_to_super called for each component, and then
4331 * write_init_super called to write it out to each device.
4332 * For IMSM, Create can create on fresh devices or on a pre-existing
4333 * array.
4334 * To create on a pre-existing array a different method will be called.
4335 * This one is just for fresh drives.
4336 */
4337 struct intel_super *super;
4338 struct imsm_super *mpb;
4339 size_t mpb_size;
4340 char *version;
4341
4342 if (st->sb)
4343 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4344
4345 if (info)
4346 mpb_size = disks_to_mpb_size(info->nr_disks);
4347 else
4348 mpb_size = 512;
4349
4350 super = alloc_super();
4351 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4352 free(super);
4353 super = NULL;
4354 }
4355 if (!super) {
4356 fprintf(stderr, Name
4357 ": %s could not allocate superblock\n", __func__);
4358 return 0;
4359 }
4360 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4361 fprintf(stderr, Name
4362 ": %s could not allocate migr_rec buffer\n", __func__);
4363 free(super->buf);
4364 free(super);
4365 return 0;
4366 }
4367 memset(super->buf, 0, mpb_size);
4368 mpb = super->buf;
4369 mpb->mpb_size = __cpu_to_le32(mpb_size);
4370 st->sb = super;
4371
4372 if (info == NULL) {
4373 /* zeroing superblock */
4374 return 0;
4375 }
4376
4377 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4378
4379 version = (char *) mpb->sig;
4380 strcpy(version, MPB_SIGNATURE);
4381 version += strlen(MPB_SIGNATURE);
4382 strcpy(version, MPB_VERSION_RAID0);
4383
4384 return 1;
4385 }
4386
4387 #ifndef MDASSEMBLE
4388 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4389 int fd, char *devname)
4390 {
4391 struct intel_super *super = st->sb;
4392 struct imsm_super *mpb = super->anchor;
4393 struct imsm_disk *_disk;
4394 struct imsm_dev *dev;
4395 struct imsm_map *map;
4396 struct dl *dl, *df;
4397 int slot;
4398
4399 dev = get_imsm_dev(super, super->current_vol);
4400 map = get_imsm_map(dev, 0);
4401
4402 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4403 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4404 devname);
4405 return 1;
4406 }
4407
4408 if (fd == -1) {
4409 /* we're doing autolayout so grab the pre-marked (in
4410 * validate_geometry) raid_disk
4411 */
4412 for (dl = super->disks; dl; dl = dl->next)
4413 if (dl->raiddisk == dk->raid_disk)
4414 break;
4415 } else {
4416 for (dl = super->disks; dl ; dl = dl->next)
4417 if (dl->major == dk->major &&
4418 dl->minor == dk->minor)
4419 break;
4420 }
4421
4422 if (!dl) {
4423 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4424 return 1;
4425 }
4426
4427 /* add a pristine spare to the metadata */
4428 if (dl->index < 0) {
4429 dl->index = super->anchor->num_disks;
4430 super->anchor->num_disks++;
4431 }
4432 /* Check the device has not already been added */
4433 slot = get_imsm_disk_slot(map, dl->index);
4434 if (slot >= 0 &&
4435 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4436 fprintf(stderr, Name ": %s has been included in this array twice\n",
4437 devname);
4438 return 1;
4439 }
4440 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4441 dl->disk.status = CONFIGURED_DISK;
4442
4443 /* update size of 'missing' disks to be at least as large as the
4444 * largest acitve member (we only have dummy missing disks when
4445 * creating the first volume)
4446 */
4447 if (super->current_vol == 0) {
4448 for (df = super->missing; df; df = df->next) {
4449 if (dl->disk.total_blocks > df->disk.total_blocks)
4450 df->disk.total_blocks = dl->disk.total_blocks;
4451 _disk = __get_imsm_disk(mpb, df->index);
4452 *_disk = df->disk;
4453 }
4454 }
4455
4456 /* refresh unset/failed slots to point to valid 'missing' entries */
4457 for (df = super->missing; df; df = df->next)
4458 for (slot = 0; slot < mpb->num_disks; slot++) {
4459 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4460
4461 if ((ord & IMSM_ORD_REBUILD) == 0)
4462 continue;
4463 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4464 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4465 break;
4466 }
4467
4468 /* if we are creating the first raid device update the family number */
4469 if (super->current_vol == 0) {
4470 __u32 sum;
4471 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4472
4473 _disk = __get_imsm_disk(mpb, dl->index);
4474 if (!_dev || !_disk) {
4475 fprintf(stderr, Name ": BUG mpb setup error\n");
4476 return 1;
4477 }
4478 *_dev = *dev;
4479 *_disk = dl->disk;
4480 sum = random32();
4481 sum += __gen_imsm_checksum(mpb);
4482 mpb->family_num = __cpu_to_le32(sum);
4483 mpb->orig_family_num = mpb->family_num;
4484 }
4485 super->current_disk = dl;
4486 return 0;
4487 }
4488
4489 /* mark_spare()
4490 * Function marks disk as spare and restores disk serial
4491 * in case it was previously marked as failed by takeover operation
4492 * reruns:
4493 * -1 : critical error
4494 * 0 : disk is marked as spare but serial is not set
4495 * 1 : success
4496 */
4497 int mark_spare(struct dl *disk)
4498 {
4499 __u8 serial[MAX_RAID_SERIAL_LEN];
4500 int ret_val = -1;
4501
4502 if (!disk)
4503 return ret_val;
4504
4505 ret_val = 0;
4506 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4507 /* Restore disk serial number, because takeover marks disk
4508 * as failed and adds to serial ':0' before it becomes
4509 * a spare disk.
4510 */
4511 serialcpy(disk->serial, serial);
4512 serialcpy(disk->disk.serial, serial);
4513 ret_val = 1;
4514 }
4515 disk->disk.status = SPARE_DISK;
4516 disk->index = -1;
4517
4518 return ret_val;
4519 }
4520
4521 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4522 int fd, char *devname)
4523 {
4524 struct intel_super *super = st->sb;
4525 struct dl *dd;
4526 unsigned long long size;
4527 __u32 id;
4528 int rv;
4529 struct stat stb;
4530
4531 /* If we are on an RAID enabled platform check that the disk is
4532 * attached to the raid controller.
4533 * We do not need to test disks attachment for container based additions,
4534 * they shall be already tested when container was created/assembled.
4535 */
4536 rv = find_intel_hba_capability(fd, super, devname);
4537 /* no orom/efi or non-intel hba of the disk */
4538 if (rv != 0) {
4539 dprintf("capability: %p fd: %d ret: %d\n",
4540 super->orom, fd, rv);
4541 return 1;
4542 }
4543
4544 if (super->current_vol >= 0)
4545 return add_to_super_imsm_volume(st, dk, fd, devname);
4546
4547 fstat(fd, &stb);
4548 dd = malloc(sizeof(*dd));
4549 if (!dd) {
4550 fprintf(stderr,
4551 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4552 return 1;
4553 }
4554 memset(dd, 0, sizeof(*dd));
4555 dd->major = major(stb.st_rdev);
4556 dd->minor = minor(stb.st_rdev);
4557 dd->devname = devname ? strdup(devname) : NULL;
4558 dd->fd = fd;
4559 dd->e = NULL;
4560 dd->action = DISK_ADD;
4561 rv = imsm_read_serial(fd, devname, dd->serial);
4562 if (rv) {
4563 fprintf(stderr,
4564 Name ": failed to retrieve scsi serial, aborting\n");
4565 free(dd);
4566 abort();
4567 }
4568
4569 get_dev_size(fd, NULL, &size);
4570 size /= 512;
4571 serialcpy(dd->disk.serial, dd->serial);
4572 dd->disk.total_blocks = __cpu_to_le32(size);
4573 mark_spare(dd);
4574 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4575 dd->disk.scsi_id = __cpu_to_le32(id);
4576 else
4577 dd->disk.scsi_id = __cpu_to_le32(0);
4578
4579 if (st->update_tail) {
4580 dd->next = super->disk_mgmt_list;
4581 super->disk_mgmt_list = dd;
4582 } else {
4583 dd->next = super->disks;
4584 super->disks = dd;
4585 super->updates_pending++;
4586 }
4587
4588 return 0;
4589 }
4590
4591
4592 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4593 {
4594 struct intel_super *super = st->sb;
4595 struct dl *dd;
4596
4597 /* remove from super works only in mdmon - for communication
4598 * manager - monitor. Check if communication memory buffer
4599 * is prepared.
4600 */
4601 if (!st->update_tail) {
4602 fprintf(stderr,
4603 Name ": %s shall be used in mdmon context only"
4604 "(line %d).\n", __func__, __LINE__);
4605 return 1;
4606 }
4607 dd = malloc(sizeof(*dd));
4608 if (!dd) {
4609 fprintf(stderr,
4610 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4611 return 1;
4612 }
4613 memset(dd, 0, sizeof(*dd));
4614 dd->major = dk->major;
4615 dd->minor = dk->minor;
4616 dd->fd = -1;
4617 mark_spare(dd);
4618 dd->action = DISK_REMOVE;
4619
4620 dd->next = super->disk_mgmt_list;
4621 super->disk_mgmt_list = dd;
4622
4623
4624 return 0;
4625 }
4626
4627 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4628
4629 static union {
4630 char buf[512];
4631 struct imsm_super anchor;
4632 } spare_record __attribute__ ((aligned(512)));
4633
4634 /* spare records have their own family number and do not have any defined raid
4635 * devices
4636 */
4637 static int write_super_imsm_spares(struct intel_super *super, int doclose)
4638 {
4639 struct imsm_super *mpb = super->anchor;
4640 struct imsm_super *spare = &spare_record.anchor;
4641 __u32 sum;
4642 struct dl *d;
4643
4644 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4645 spare->generation_num = __cpu_to_le32(1UL),
4646 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4647 spare->num_disks = 1,
4648 spare->num_raid_devs = 0,
4649 spare->cache_size = mpb->cache_size,
4650 spare->pwr_cycle_count = __cpu_to_le32(1),
4651
4652 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4653 MPB_SIGNATURE MPB_VERSION_RAID0);
4654
4655 for (d = super->disks; d; d = d->next) {
4656 if (d->index != -1)
4657 continue;
4658
4659 spare->disk[0] = d->disk;
4660 sum = __gen_imsm_checksum(spare);
4661 spare->family_num = __cpu_to_le32(sum);
4662 spare->orig_family_num = 0;
4663 sum = __gen_imsm_checksum(spare);
4664 spare->check_sum = __cpu_to_le32(sum);
4665
4666 if (store_imsm_mpb(d->fd, spare)) {
4667 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4668 __func__, d->major, d->minor, strerror(errno));
4669 return 1;
4670 }
4671 if (doclose) {
4672 close(d->fd);
4673 d->fd = -1;
4674 }
4675 }
4676
4677 return 0;
4678 }
4679
4680 static int write_super_imsm(struct supertype *st, int doclose)
4681 {
4682 struct intel_super *super = st->sb;
4683 struct imsm_super *mpb = super->anchor;
4684 struct dl *d;
4685 __u32 generation;
4686 __u32 sum;
4687 int spares = 0;
4688 int i;
4689 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
4690 int num_disks = 0;
4691 int clear_migration_record = 1;
4692
4693 /* 'generation' is incremented everytime the metadata is written */
4694 generation = __le32_to_cpu(mpb->generation_num);
4695 generation++;
4696 mpb->generation_num = __cpu_to_le32(generation);
4697
4698 /* fix up cases where previous mdadm releases failed to set
4699 * orig_family_num
4700 */
4701 if (mpb->orig_family_num == 0)
4702 mpb->orig_family_num = mpb->family_num;
4703
4704 for (d = super->disks; d; d = d->next) {
4705 if (d->index == -1)
4706 spares++;
4707 else {
4708 mpb->disk[d->index] = d->disk;
4709 num_disks++;
4710 }
4711 }
4712 for (d = super->missing; d; d = d->next) {
4713 mpb->disk[d->index] = d->disk;
4714 num_disks++;
4715 }
4716 mpb->num_disks = num_disks;
4717 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
4718
4719 for (i = 0; i < mpb->num_raid_devs; i++) {
4720 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
4721 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4722 if (dev && dev2) {
4723 imsm_copy_dev(dev, dev2);
4724 mpb_size += sizeof_imsm_dev(dev, 0);
4725 }
4726 if (is_gen_migration(dev2))
4727 clear_migration_record = 0;
4728 }
4729 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4730 mpb->mpb_size = __cpu_to_le32(mpb_size);
4731
4732 /* recalculate checksum */
4733 sum = __gen_imsm_checksum(mpb);
4734 mpb->check_sum = __cpu_to_le32(sum);
4735
4736 if (clear_migration_record)
4737 memset(super->migr_rec_buf, 0, 512);
4738
4739 /* write the mpb for disks that compose raid devices */
4740 for (d = super->disks; d ; d = d->next) {
4741 if (d->index < 0 || is_failed(&d->disk))
4742 continue;
4743 if (store_imsm_mpb(d->fd, mpb))
4744 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4745 __func__, d->major, d->minor, strerror(errno));
4746 if (clear_migration_record) {
4747 unsigned long long dsize;
4748
4749 get_dev_size(d->fd, NULL, &dsize);
4750 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4751 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4752 perror("Write migr_rec failed");
4753 }
4754 }
4755 if (doclose) {
4756 close(d->fd);
4757 d->fd = -1;
4758 }
4759 }
4760
4761 if (spares)
4762 return write_super_imsm_spares(super, doclose);
4763
4764 return 0;
4765 }
4766
4767
4768 static int create_array(struct supertype *st, int dev_idx)
4769 {
4770 size_t len;
4771 struct imsm_update_create_array *u;
4772 struct intel_super *super = st->sb;
4773 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4774 struct imsm_map *map = get_imsm_map(dev, 0);
4775 struct disk_info *inf;
4776 struct imsm_disk *disk;
4777 int i;
4778
4779 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4780 sizeof(*inf) * map->num_members;
4781 u = malloc(len);
4782 if (!u) {
4783 fprintf(stderr, "%s: failed to allocate update buffer\n",
4784 __func__);
4785 return 1;
4786 }
4787
4788 u->type = update_create_array;
4789 u->dev_idx = dev_idx;
4790 imsm_copy_dev(&u->dev, dev);
4791 inf = get_disk_info(u);
4792 for (i = 0; i < map->num_members; i++) {
4793 int idx = get_imsm_disk_idx(dev, i, -1);
4794
4795 disk = get_imsm_disk(super, idx);
4796 serialcpy(inf[i].serial, disk->serial);
4797 }
4798 append_metadata_update(st, u, len);
4799
4800 return 0;
4801 }
4802
4803 static int mgmt_disk(struct supertype *st)
4804 {
4805 struct intel_super *super = st->sb;
4806 size_t len;
4807 struct imsm_update_add_remove_disk *u;
4808
4809 if (!super->disk_mgmt_list)
4810 return 0;
4811
4812 len = sizeof(*u);
4813 u = malloc(len);
4814 if (!u) {
4815 fprintf(stderr, "%s: failed to allocate update buffer\n",
4816 __func__);
4817 return 1;
4818 }
4819
4820 u->type = update_add_remove_disk;
4821 append_metadata_update(st, u, len);
4822
4823 return 0;
4824 }
4825
4826 static int write_init_super_imsm(struct supertype *st)
4827 {
4828 struct intel_super *super = st->sb;
4829 int current_vol = super->current_vol;
4830
4831 /* we are done with current_vol reset it to point st at the container */
4832 super->current_vol = -1;
4833
4834 if (st->update_tail) {
4835 /* queue the recently created array / added disk
4836 * as a metadata update */
4837 int rv;
4838
4839 /* determine if we are creating a volume or adding a disk */
4840 if (current_vol < 0) {
4841 /* in the mgmt (add/remove) disk case we are running
4842 * in mdmon context, so don't close fd's
4843 */
4844 return mgmt_disk(st);
4845 } else
4846 rv = create_array(st, current_vol);
4847
4848 return rv;
4849 } else {
4850 struct dl *d;
4851 for (d = super->disks; d; d = d->next)
4852 Kill(d->devname, NULL, 0, 1, 1);
4853 return write_super_imsm(st, 1);
4854 }
4855 }
4856 #endif
4857
4858 static int store_super_imsm(struct supertype *st, int fd)
4859 {
4860 struct intel_super *super = st->sb;
4861 struct imsm_super *mpb = super ? super->anchor : NULL;
4862
4863 if (!mpb)
4864 return 1;
4865
4866 #ifndef MDASSEMBLE
4867 return store_imsm_mpb(fd, mpb);
4868 #else
4869 return 1;
4870 #endif
4871 }
4872
4873 static int imsm_bbm_log_size(struct imsm_super *mpb)
4874 {
4875 return __le32_to_cpu(mpb->bbm_log_size);
4876 }
4877
4878 #ifndef MDASSEMBLE
4879 static int validate_geometry_imsm_container(struct supertype *st, int level,
4880 int layout, int raiddisks, int chunk,
4881 unsigned long long size, char *dev,
4882 unsigned long long *freesize,
4883 int verbose)
4884 {
4885 int fd;
4886 unsigned long long ldsize;
4887 struct intel_super *super=NULL;
4888 int rv = 0;
4889
4890 if (level != LEVEL_CONTAINER)
4891 return 0;
4892 if (!dev)
4893 return 1;
4894
4895 fd = open(dev, O_RDONLY|O_EXCL, 0);
4896 if (fd < 0) {
4897 if (verbose)
4898 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4899 dev, strerror(errno));
4900 return 0;
4901 }
4902 if (!get_dev_size(fd, dev, &ldsize)) {
4903 close(fd);
4904 return 0;
4905 }
4906
4907 /* capabilities retrieve could be possible
4908 * note that there is no fd for the disks in array.
4909 */
4910 super = alloc_super();
4911 if (!super) {
4912 fprintf(stderr,
4913 Name ": malloc of %zu failed.\n",
4914 sizeof(*super));
4915 close(fd);
4916 return 0;
4917 }
4918
4919 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
4920 if (rv != 0) {
4921 #if DEBUG
4922 char str[256];
4923 fd2devname(fd, str);
4924 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4925 fd, str, super->orom, rv, raiddisks);
4926 #endif
4927 /* no orom/efi or non-intel hba of the disk */
4928 close(fd);
4929 free_imsm(super);
4930 return 0;
4931 }
4932 close(fd);
4933 if (super->orom && raiddisks > super->orom->tds) {
4934 if (verbose)
4935 fprintf(stderr, Name ": %d exceeds maximum number of"
4936 " platform supported disks: %d\n",
4937 raiddisks, super->orom->tds);
4938
4939 free_imsm(super);
4940 return 0;
4941 }
4942
4943 *freesize = avail_size_imsm(st, ldsize >> 9);
4944 free_imsm(super);
4945
4946 return 1;
4947 }
4948
4949 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4950 {
4951 const unsigned long long base_start = e[*idx].start;
4952 unsigned long long end = base_start + e[*idx].size;
4953 int i;
4954
4955 if (base_start == end)
4956 return 0;
4957
4958 *idx = *idx + 1;
4959 for (i = *idx; i < num_extents; i++) {
4960 /* extend overlapping extents */
4961 if (e[i].start >= base_start &&
4962 e[i].start <= end) {
4963 if (e[i].size == 0)
4964 return 0;
4965 if (e[i].start + e[i].size > end)
4966 end = e[i].start + e[i].size;
4967 } else if (e[i].start > end) {
4968 *idx = i;
4969 break;
4970 }
4971 }
4972
4973 return end - base_start;
4974 }
4975
4976 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4977 {
4978 /* build a composite disk with all known extents and generate a new
4979 * 'maxsize' given the "all disks in an array must share a common start
4980 * offset" constraint
4981 */
4982 struct extent *e = calloc(sum_extents, sizeof(*e));
4983 struct dl *dl;
4984 int i, j;
4985 int start_extent;
4986 unsigned long long pos;
4987 unsigned long long start = 0;
4988 unsigned long long maxsize;
4989 unsigned long reserve;
4990
4991 if (!e)
4992 return 0;
4993
4994 /* coalesce and sort all extents. also, check to see if we need to
4995 * reserve space between member arrays
4996 */
4997 j = 0;
4998 for (dl = super->disks; dl; dl = dl->next) {
4999 if (!dl->e)
5000 continue;
5001 for (i = 0; i < dl->extent_cnt; i++)
5002 e[j++] = dl->e[i];
5003 }
5004 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5005
5006 /* merge extents */
5007 i = 0;
5008 j = 0;
5009 while (i < sum_extents) {
5010 e[j].start = e[i].start;
5011 e[j].size = find_size(e, &i, sum_extents);
5012 j++;
5013 if (e[j-1].size == 0)
5014 break;
5015 }
5016
5017 pos = 0;
5018 maxsize = 0;
5019 start_extent = 0;
5020 i = 0;
5021 do {
5022 unsigned long long esize;
5023
5024 esize = e[i].start - pos;
5025 if (esize >= maxsize) {
5026 maxsize = esize;
5027 start = pos;
5028 start_extent = i;
5029 }
5030 pos = e[i].start + e[i].size;
5031 i++;
5032 } while (e[i-1].size);
5033 free(e);
5034
5035 if (maxsize == 0)
5036 return 0;
5037
5038 /* FIXME assumes volume at offset 0 is the first volume in a
5039 * container
5040 */
5041 if (start_extent > 0)
5042 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5043 else
5044 reserve = 0;
5045
5046 if (maxsize < reserve)
5047 return 0;
5048
5049 super->create_offset = ~((__u32) 0);
5050 if (start + reserve > super->create_offset)
5051 return 0; /* start overflows create_offset */
5052 super->create_offset = start + reserve;
5053
5054 return maxsize - reserve;
5055 }
5056
5057 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5058 {
5059 if (level < 0 || level == 6 || level == 4)
5060 return 0;
5061
5062 /* if we have an orom prevent invalid raid levels */
5063 if (orom)
5064 switch (level) {
5065 case 0: return imsm_orom_has_raid0(orom);
5066 case 1:
5067 if (raiddisks > 2)
5068 return imsm_orom_has_raid1e(orom);
5069 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5070 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5071 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5072 }
5073 else
5074 return 1; /* not on an Intel RAID platform so anything goes */
5075
5076 return 0;
5077 }
5078
5079 static int imsm_default_chunk(const struct imsm_orom *orom)
5080 {
5081 /* up to 512 if the plaform supports it, otherwise the platform max.
5082 * 128 if no platform detected
5083 */
5084 int fs = max(7, orom ? fls(orom->sss) : 0);
5085
5086 return min(512, (1 << fs));
5087 }
5088
5089 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
5090 static int
5091 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5092 int raiddisks, int *chunk, int verbose)
5093 {
5094 /* check/set platform and metadata limits/defaults */
5095 if (super->orom && raiddisks > super->orom->dpa) {
5096 pr_vrb(": platform supports a maximum of %d disks per array\n",
5097 super->orom->dpa);
5098 return 0;
5099 }
5100
5101 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5102 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5103 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5104 level, raiddisks, raiddisks > 1 ? "s" : "");
5105 return 0;
5106 }
5107
5108 if (chunk && (*chunk == 0 || *chunk == UnSet))
5109 *chunk = imsm_default_chunk(super->orom);
5110
5111 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5112 pr_vrb(": platform does not support a chunk size of: "
5113 "%d\n", *chunk);
5114 return 0;
5115 }
5116
5117 if (layout != imsm_level_to_layout(level)) {
5118 if (level == 5)
5119 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5120 else if (level == 10)
5121 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5122 else
5123 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5124 layout, level);
5125 return 0;
5126 }
5127 return 1;
5128 }
5129
5130 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5131 * FIX ME add ahci details
5132 */
5133 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5134 int layout, int raiddisks, int *chunk,
5135 unsigned long long size, char *dev,
5136 unsigned long long *freesize,
5137 int verbose)
5138 {
5139 struct stat stb;
5140 struct intel_super *super = st->sb;
5141 struct imsm_super *mpb = super->anchor;
5142 struct dl *dl;
5143 unsigned long long pos = 0;
5144 unsigned long long maxsize;
5145 struct extent *e;
5146 int i;
5147
5148 /* We must have the container info already read in. */
5149 if (!super)
5150 return 0;
5151
5152 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5153 fprintf(stderr, Name ": the option-rom requires all "
5154 "member disks to be a member of all volumes.\n");
5155 return 0;
5156 }
5157
5158 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5159 fprintf(stderr, Name ": RAID gemetry validation failed. "
5160 "Cannot proceed with the action(s).\n");
5161 return 0;
5162 }
5163 if (!dev) {
5164 /* General test: make sure there is space for
5165 * 'raiddisks' device extents of size 'size' at a given
5166 * offset
5167 */
5168 unsigned long long minsize = size;
5169 unsigned long long start_offset = MaxSector;
5170 int dcnt = 0;
5171 if (minsize == 0)
5172 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5173 for (dl = super->disks; dl ; dl = dl->next) {
5174 int found = 0;
5175
5176 pos = 0;
5177 i = 0;
5178 e = get_extents(super, dl);
5179 if (!e) continue;
5180 do {
5181 unsigned long long esize;
5182 esize = e[i].start - pos;
5183 if (esize >= minsize)
5184 found = 1;
5185 if (found && start_offset == MaxSector) {
5186 start_offset = pos;
5187 break;
5188 } else if (found && pos != start_offset) {
5189 found = 0;
5190 break;
5191 }
5192 pos = e[i].start + e[i].size;
5193 i++;
5194 } while (e[i-1].size);
5195 if (found)
5196 dcnt++;
5197 free(e);
5198 }
5199 if (dcnt < raiddisks) {
5200 if (verbose)
5201 fprintf(stderr, Name ": imsm: Not enough "
5202 "devices with space for this array "
5203 "(%d < %d)\n",
5204 dcnt, raiddisks);
5205 return 0;
5206 }
5207 return 1;
5208 }
5209
5210 /* This device must be a member of the set */
5211 if (stat(dev, &stb) < 0)
5212 return 0;
5213 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5214 return 0;
5215 for (dl = super->disks ; dl ; dl = dl->next) {
5216 if (dl->major == (int)major(stb.st_rdev) &&
5217 dl->minor == (int)minor(stb.st_rdev))
5218 break;
5219 }
5220 if (!dl) {
5221 if (verbose)
5222 fprintf(stderr, Name ": %s is not in the "
5223 "same imsm set\n", dev);
5224 return 0;
5225 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5226 /* If a volume is present then the current creation attempt
5227 * cannot incorporate new spares because the orom may not
5228 * understand this configuration (all member disks must be
5229 * members of each array in the container).
5230 */
5231 fprintf(stderr, Name ": %s is a spare and a volume"
5232 " is already defined for this container\n", dev);
5233 fprintf(stderr, Name ": The option-rom requires all member"
5234 " disks to be a member of all volumes\n");
5235 return 0;
5236 }
5237
5238 /* retrieve the largest free space block */
5239 e = get_extents(super, dl);
5240 maxsize = 0;
5241 i = 0;
5242 if (e) {
5243 do {
5244 unsigned long long esize;
5245
5246 esize = e[i].start - pos;
5247 if (esize >= maxsize)
5248 maxsize = esize;
5249 pos = e[i].start + e[i].size;
5250 i++;
5251 } while (e[i-1].size);
5252 dl->e = e;
5253 dl->extent_cnt = i;
5254 } else {
5255 if (verbose)
5256 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5257 dev);
5258 return 0;
5259 }
5260 if (maxsize < size) {
5261 if (verbose)
5262 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5263 dev, maxsize, size);
5264 return 0;
5265 }
5266
5267 /* count total number of extents for merge */
5268 i = 0;
5269 for (dl = super->disks; dl; dl = dl->next)
5270 if (dl->e)
5271 i += dl->extent_cnt;
5272
5273 maxsize = merge_extents(super, i);
5274 if (maxsize < size || maxsize == 0) {
5275 if (verbose)
5276 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5277 maxsize, size);
5278 return 0;
5279 }
5280
5281 *freesize = maxsize;
5282
5283 return 1;
5284 }
5285
5286 static int reserve_space(struct supertype *st, int raiddisks,
5287 unsigned long long size, int chunk,
5288 unsigned long long *freesize)
5289 {
5290 struct intel_super *super = st->sb;
5291 struct imsm_super *mpb = super->anchor;
5292 struct dl *dl;
5293 int i;
5294 int extent_cnt;
5295 struct extent *e;
5296 unsigned long long maxsize;
5297 unsigned long long minsize;
5298 int cnt;
5299 int used;
5300
5301 /* find the largest common start free region of the possible disks */
5302 used = 0;
5303 extent_cnt = 0;
5304 cnt = 0;
5305 for (dl = super->disks; dl; dl = dl->next) {
5306 dl->raiddisk = -1;
5307
5308 if (dl->index >= 0)
5309 used++;
5310
5311 /* don't activate new spares if we are orom constrained
5312 * and there is already a volume active in the container
5313 */
5314 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5315 continue;
5316
5317 e = get_extents(super, dl);
5318 if (!e)
5319 continue;
5320 for (i = 1; e[i-1].size; i++)
5321 ;
5322 dl->e = e;
5323 dl->extent_cnt = i;
5324 extent_cnt += i;
5325 cnt++;
5326 }
5327
5328 maxsize = merge_extents(super, extent_cnt);
5329 minsize = size;
5330 if (size == 0)
5331 /* chunk is in K */
5332 minsize = chunk * 2;
5333
5334 if (cnt < raiddisks ||
5335 (super->orom && used && used != raiddisks) ||
5336 maxsize < minsize ||
5337 maxsize == 0) {
5338 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5339 return 0; /* No enough free spaces large enough */
5340 }
5341
5342 if (size == 0) {
5343 size = maxsize;
5344 if (chunk) {
5345 size /= 2 * chunk;
5346 size *= 2 * chunk;
5347 }
5348 }
5349
5350 cnt = 0;
5351 for (dl = super->disks; dl; dl = dl->next)
5352 if (dl->e)
5353 dl->raiddisk = cnt++;
5354
5355 *freesize = size;
5356
5357 return 1;
5358 }
5359
5360 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
5361 int raiddisks, int *chunk, unsigned long long size,
5362 char *dev, unsigned long long *freesize,
5363 int verbose)
5364 {
5365 int fd, cfd;
5366 struct mdinfo *sra;
5367 int is_member = 0;
5368
5369 /* load capability
5370 * if given unused devices create a container
5371 * if given given devices in a container create a member volume
5372 */
5373 if (level == LEVEL_CONTAINER) {
5374 /* Must be a fresh device to add to a container */
5375 return validate_geometry_imsm_container(st, level, layout,
5376 raiddisks,
5377 chunk?*chunk:0, size,
5378 dev, freesize,
5379 verbose);
5380 }
5381
5382 if (!dev) {
5383 if (st->sb && freesize) {
5384 /* we are being asked to automatically layout a
5385 * new volume based on the current contents of
5386 * the container. If the the parameters can be
5387 * satisfied reserve_space will record the disks,
5388 * start offset, and size of the volume to be
5389 * created. add_to_super and getinfo_super
5390 * detect when autolayout is in progress.
5391 */
5392 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5393 raiddisks, chunk,
5394 verbose))
5395 return 0;
5396 return reserve_space(st, raiddisks, size,
5397 chunk?*chunk:0, freesize);
5398 }
5399 return 1;
5400 }
5401 if (st->sb) {
5402 /* creating in a given container */
5403 return validate_geometry_imsm_volume(st, level, layout,
5404 raiddisks, chunk, size,
5405 dev, freesize, verbose);
5406 }
5407
5408 /* This device needs to be a device in an 'imsm' container */
5409 fd = open(dev, O_RDONLY|O_EXCL, 0);
5410 if (fd >= 0) {
5411 if (verbose)
5412 fprintf(stderr,
5413 Name ": Cannot create this array on device %s\n",
5414 dev);
5415 close(fd);
5416 return 0;
5417 }
5418 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5419 if (verbose)
5420 fprintf(stderr, Name ": Cannot open %s: %s\n",
5421 dev, strerror(errno));
5422 return 0;
5423 }
5424 /* Well, it is in use by someone, maybe an 'imsm' container. */
5425 cfd = open_container(fd);
5426 close(fd);
5427 if (cfd < 0) {
5428 if (verbose)
5429 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5430 dev);
5431 return 0;
5432 }
5433 sra = sysfs_read(cfd, 0, GET_VERSION);
5434 if (sra && sra->array.major_version == -1 &&
5435 strcmp(sra->text_version, "imsm") == 0)
5436 is_member = 1;
5437 sysfs_free(sra);
5438 if (is_member) {
5439 /* This is a member of a imsm container. Load the container
5440 * and try to create a volume
5441 */
5442 struct intel_super *super;
5443
5444 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
5445 st->sb = super;
5446 st->container_dev = fd2devnum(cfd);
5447 close(cfd);
5448 return validate_geometry_imsm_volume(st, level, layout,
5449 raiddisks, chunk,
5450 size, dev,
5451 freesize, 1)
5452 ? 1 : -1;
5453 }
5454 }
5455
5456 if (verbose)
5457 fprintf(stderr, Name ": failed container membership check\n");
5458
5459 close(cfd);
5460 return 0;
5461 }
5462
5463 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
5464 {
5465 struct intel_super *super = st->sb;
5466
5467 if (level && *level == UnSet)
5468 *level = LEVEL_CONTAINER;
5469
5470 if (level && layout && *layout == UnSet)
5471 *layout = imsm_level_to_layout(*level);
5472
5473 if (chunk && (*chunk == UnSet || *chunk == 0))
5474 *chunk = imsm_default_chunk(super->orom);
5475 }
5476
5477 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5478
5479 static int kill_subarray_imsm(struct supertype *st)
5480 {
5481 /* remove the subarray currently referenced by ->current_vol */
5482 __u8 i;
5483 struct intel_dev **dp;
5484 struct intel_super *super = st->sb;
5485 __u8 current_vol = super->current_vol;
5486 struct imsm_super *mpb = super->anchor;
5487
5488 if (super->current_vol < 0)
5489 return 2;
5490 super->current_vol = -1; /* invalidate subarray cursor */
5491
5492 /* block deletions that would change the uuid of active subarrays
5493 *
5494 * FIXME when immutable ids are available, but note that we'll
5495 * also need to fixup the invalidated/active subarray indexes in
5496 * mdstat
5497 */
5498 for (i = 0; i < mpb->num_raid_devs; i++) {
5499 char subarray[4];
5500
5501 if (i < current_vol)
5502 continue;
5503 sprintf(subarray, "%u", i);
5504 if (is_subarray_active(subarray, st->devname)) {
5505 fprintf(stderr,
5506 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5507 current_vol, i);
5508
5509 return 2;
5510 }
5511 }
5512
5513 if (st->update_tail) {
5514 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5515
5516 if (!u)
5517 return 2;
5518 u->type = update_kill_array;
5519 u->dev_idx = current_vol;
5520 append_metadata_update(st, u, sizeof(*u));
5521
5522 return 0;
5523 }
5524
5525 for (dp = &super->devlist; *dp;)
5526 if ((*dp)->index == current_vol) {
5527 *dp = (*dp)->next;
5528 } else {
5529 handle_missing(super, (*dp)->dev);
5530 if ((*dp)->index > current_vol)
5531 (*dp)->index--;
5532 dp = &(*dp)->next;
5533 }
5534
5535 /* no more raid devices, all active components are now spares,
5536 * but of course failed are still failed
5537 */
5538 if (--mpb->num_raid_devs == 0) {
5539 struct dl *d;
5540
5541 for (d = super->disks; d; d = d->next)
5542 if (d->index > -2)
5543 mark_spare(d);
5544 }
5545
5546 super->updates_pending++;
5547
5548 return 0;
5549 }
5550
5551 static int update_subarray_imsm(struct supertype *st, char *subarray,
5552 char *update, struct mddev_ident *ident)
5553 {
5554 /* update the subarray currently referenced by ->current_vol */
5555 struct intel_super *super = st->sb;
5556 struct imsm_super *mpb = super->anchor;
5557
5558 if (strcmp(update, "name") == 0) {
5559 char *name = ident->name;
5560 char *ep;
5561 int vol;
5562
5563 if (is_subarray_active(subarray, st->devname)) {
5564 fprintf(stderr,
5565 Name ": Unable to update name of active subarray\n");
5566 return 2;
5567 }
5568
5569 if (!check_name(super, name, 0))
5570 return 2;
5571
5572 vol = strtoul(subarray, &ep, 10);
5573 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5574 return 2;
5575
5576 if (st->update_tail) {
5577 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5578
5579 if (!u)
5580 return 2;
5581 u->type = update_rename_array;
5582 u->dev_idx = vol;
5583 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5584 append_metadata_update(st, u, sizeof(*u));
5585 } else {
5586 struct imsm_dev *dev;
5587 int i;
5588
5589 dev = get_imsm_dev(super, vol);
5590 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5591 for (i = 0; i < mpb->num_raid_devs; i++) {
5592 dev = get_imsm_dev(super, i);
5593 handle_missing(super, dev);
5594 }
5595 super->updates_pending++;
5596 }
5597 } else
5598 return 2;
5599
5600 return 0;
5601 }
5602
5603 static int is_gen_migration(struct imsm_dev *dev)
5604 {
5605 if (dev == NULL)
5606 return 0;
5607
5608 if (!dev->vol.migr_state)
5609 return 0;
5610
5611 if (migr_type(dev) == MIGR_GEN_MIGR)
5612 return 1;
5613
5614 return 0;
5615 }
5616 #endif /* MDASSEMBLE */
5617
5618 static int is_rebuilding(struct imsm_dev *dev)
5619 {
5620 struct imsm_map *migr_map;
5621
5622 if (!dev->vol.migr_state)
5623 return 0;
5624
5625 if (migr_type(dev) != MIGR_REBUILD)
5626 return 0;
5627
5628 migr_map = get_imsm_map(dev, 1);
5629
5630 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5631 return 1;
5632 else
5633 return 0;
5634 }
5635
5636 static void update_recovery_start(struct intel_super *super,
5637 struct imsm_dev *dev,
5638 struct mdinfo *array)
5639 {
5640 struct mdinfo *rebuild = NULL;
5641 struct mdinfo *d;
5642 __u32 units;
5643
5644 if (!is_rebuilding(dev))
5645 return;
5646
5647 /* Find the rebuild target, but punt on the dual rebuild case */
5648 for (d = array->devs; d; d = d->next)
5649 if (d->recovery_start == 0) {
5650 if (rebuild)
5651 return;
5652 rebuild = d;
5653 }
5654
5655 if (!rebuild) {
5656 /* (?) none of the disks are marked with
5657 * IMSM_ORD_REBUILD, so assume they are missing and the
5658 * disk_ord_tbl was not correctly updated
5659 */
5660 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5661 return;
5662 }
5663
5664 units = __le32_to_cpu(dev->vol.curr_migr_unit);
5665 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
5666 }
5667
5668 #ifndef MDASSEMBLE
5669 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
5670 #endif
5671
5672 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
5673 {
5674 /* Given a container loaded by load_super_imsm_all,
5675 * extract information about all the arrays into
5676 * an mdinfo tree.
5677 * If 'subarray' is given, just extract info about that array.
5678 *
5679 * For each imsm_dev create an mdinfo, fill it in,
5680 * then look for matching devices in super->disks
5681 * and create appropriate device mdinfo.
5682 */
5683 struct intel_super *super = st->sb;
5684 struct imsm_super *mpb = super->anchor;
5685 struct mdinfo *rest = NULL;
5686 unsigned int i;
5687 int bbm_errors = 0;
5688 struct dl *d;
5689 int spare_disks = 0;
5690
5691 /* do not assemble arrays when not all attributes are supported */
5692 if (imsm_check_attributes(mpb->attributes) == 0) {
5693 fprintf(stderr, Name ": IMSM metadata loading not allowed "
5694 "due to attributes incompatibility.\n");
5695 return NULL;
5696 }
5697
5698 /* check for bad blocks */
5699 if (imsm_bbm_log_size(super->anchor))
5700 bbm_errors = 1;
5701
5702 /* count spare devices, not used in maps
5703 */
5704 for (d = super->disks; d; d = d->next)
5705 if (d->index == -1)
5706 spare_disks++;
5707
5708 for (i = 0; i < mpb->num_raid_devs; i++) {
5709 struct imsm_dev *dev;
5710 struct imsm_map *map;
5711 struct imsm_map *map2;
5712 struct mdinfo *this;
5713 int slot, chunk;
5714 char *ep;
5715
5716 if (subarray &&
5717 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5718 continue;
5719
5720 dev = get_imsm_dev(super, i);
5721 map = get_imsm_map(dev, 0);
5722 map2 = get_imsm_map(dev, 1);
5723
5724 /* do not publish arrays that are in the middle of an
5725 * unsupported migration
5726 */
5727 if (dev->vol.migr_state &&
5728 (migr_type(dev) == MIGR_STATE_CHANGE)) {
5729 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5730 " unsupported migration in progress\n",
5731 dev->volume);
5732 continue;
5733 }
5734 /* do not publish arrays that are not support by controller's
5735 * OROM/EFI
5736 */
5737
5738 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
5739 #ifndef MDASSEMBLE
5740 if (!validate_geometry_imsm_orom(super,
5741 get_imsm_raid_level(map), /* RAID level */
5742 imsm_level_to_layout(get_imsm_raid_level(map)),
5743 map->num_members, /* raid disks */
5744 &chunk,
5745 1 /* verbose */)) {
5746 fprintf(stderr, Name ": RAID gemetry validation failed. "
5747 "Cannot proceed with the action(s).\n");
5748 continue;
5749 }
5750 #endif /* MDASSEMBLE */
5751 this = malloc(sizeof(*this));
5752 if (!this) {
5753 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
5754 sizeof(*this));
5755 break;
5756 }
5757
5758 super->current_vol = i;
5759 getinfo_super_imsm_volume(st, this, NULL);
5760 this->next = rest;
5761 for (slot = 0 ; slot < map->num_members; slot++) {
5762 unsigned long long recovery_start;
5763 struct mdinfo *info_d;
5764 struct dl *d;
5765 int idx;
5766 int skip;
5767 __u32 ord;
5768
5769 skip = 0;
5770 idx = get_imsm_disk_idx(dev, slot, 0);
5771 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
5772 for (d = super->disks; d ; d = d->next)
5773 if (d->index == idx)
5774 break;
5775
5776 recovery_start = MaxSector;
5777 if (d == NULL)
5778 skip = 1;
5779 if (d && is_failed(&d->disk))
5780 skip = 1;
5781 if (ord & IMSM_ORD_REBUILD)
5782 recovery_start = 0;
5783
5784 /*
5785 * if we skip some disks the array will be assmebled degraded;
5786 * reset resync start to avoid a dirty-degraded
5787 * situation when performing the intial sync
5788 *
5789 * FIXME handle dirty degraded
5790 */
5791 if ((skip || recovery_start == 0) && !dev->vol.dirty)
5792 this->resync_start = MaxSector;
5793 if (skip)
5794 continue;
5795
5796 info_d = calloc(1, sizeof(*info_d));
5797 if (!info_d) {
5798 fprintf(stderr, Name ": failed to allocate disk"
5799 " for volume %.16s\n", dev->volume);
5800 info_d = this->devs;
5801 while (info_d) {
5802 struct mdinfo *d = info_d->next;
5803
5804 free(info_d);
5805 info_d = d;
5806 }
5807 free(this);
5808 this = rest;
5809 break;
5810 }
5811 info_d->next = this->devs;
5812 this->devs = info_d;
5813
5814 info_d->disk.number = d->index;
5815 info_d->disk.major = d->major;
5816 info_d->disk.minor = d->minor;
5817 info_d->disk.raid_disk = slot;
5818 info_d->recovery_start = recovery_start;
5819 if (map2) {
5820 if (slot < map2->num_members)
5821 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5822 else
5823 this->array.spare_disks++;
5824 } else {
5825 if (slot < map->num_members)
5826 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5827 else
5828 this->array.spare_disks++;
5829 }
5830 if (info_d->recovery_start == MaxSector)
5831 this->array.working_disks++;
5832
5833 info_d->events = __le32_to_cpu(mpb->generation_num);
5834 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5835 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
5836 }
5837 /* now that the disk list is up-to-date fixup recovery_start */
5838 update_recovery_start(super, dev, this);
5839 this->array.spare_disks += spare_disks;
5840
5841 #ifndef MDASSEMBLE
5842 /* check for reshape */
5843 if (this->reshape_active == 1)
5844 recover_backup_imsm(st, this);
5845 #endif
5846 rest = this;
5847 }
5848
5849 /* if array has bad blocks, set suitable bit in array status */
5850 if (bbm_errors)
5851 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5852
5853 return rest;
5854 }
5855
5856
5857 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
5858 {
5859 struct imsm_map *map = get_imsm_map(dev, 0);
5860
5861 if (!failed)
5862 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5863 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
5864
5865 switch (get_imsm_raid_level(map)) {
5866 case 0:
5867 return IMSM_T_STATE_FAILED;
5868 break;
5869 case 1:
5870 if (failed < map->num_members)
5871 return IMSM_T_STATE_DEGRADED;
5872 else
5873 return IMSM_T_STATE_FAILED;
5874 break;
5875 case 10:
5876 {
5877 /**
5878 * check to see if any mirrors have failed, otherwise we
5879 * are degraded. Even numbered slots are mirrored on
5880 * slot+1
5881 */
5882 int i;
5883 /* gcc -Os complains that this is unused */
5884 int insync = insync;
5885
5886 for (i = 0; i < map->num_members; i++) {
5887 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
5888 int idx = ord_to_idx(ord);
5889 struct imsm_disk *disk;
5890
5891 /* reset the potential in-sync count on even-numbered
5892 * slots. num_copies is always 2 for imsm raid10
5893 */
5894 if ((i & 1) == 0)
5895 insync = 2;
5896
5897 disk = get_imsm_disk(super, idx);
5898 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5899 insync--;
5900
5901 /* no in-sync disks left in this mirror the
5902 * array has failed
5903 */
5904 if (insync == 0)
5905 return IMSM_T_STATE_FAILED;
5906 }
5907
5908 return IMSM_T_STATE_DEGRADED;
5909 }
5910 case 5:
5911 if (failed < 2)
5912 return IMSM_T_STATE_DEGRADED;
5913 else
5914 return IMSM_T_STATE_FAILED;
5915 break;
5916 default:
5917 break;
5918 }
5919
5920 return map->map_state;
5921 }
5922
5923 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
5924 {
5925 int i;
5926 int failed = 0;
5927 struct imsm_disk *disk;
5928 struct imsm_map *map = get_imsm_map(dev, 0);
5929 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5930 __u32 ord;
5931 int idx;
5932
5933 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5934 * disks that are being rebuilt. New failures are recorded to
5935 * map[0]. So we look through all the disks we started with and
5936 * see if any failures are still present, or if any new ones
5937 * have arrived
5938 *
5939 * FIXME add support for online capacity expansion and
5940 * raid-level-migration
5941 */
5942 for (i = 0; i < prev->num_members; i++) {
5943 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5944 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5945 idx = ord_to_idx(ord);
5946
5947 disk = get_imsm_disk(super, idx);
5948 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5949 failed++;
5950 }
5951
5952 return failed;
5953 }
5954
5955 #ifndef MDASSEMBLE
5956 static int imsm_open_new(struct supertype *c, struct active_array *a,
5957 char *inst)
5958 {
5959 struct intel_super *super = c->sb;
5960 struct imsm_super *mpb = super->anchor;
5961
5962 if (atoi(inst) >= mpb->num_raid_devs) {
5963 fprintf(stderr, "%s: subarry index %d, out of range\n",
5964 __func__, atoi(inst));
5965 return -ENODEV;
5966 }
5967
5968 dprintf("imsm: open_new %s\n", inst);
5969 a->info.container_member = atoi(inst);
5970 return 0;
5971 }
5972
5973 static int is_resyncing(struct imsm_dev *dev)
5974 {
5975 struct imsm_map *migr_map;
5976
5977 if (!dev->vol.migr_state)
5978 return 0;
5979
5980 if (migr_type(dev) == MIGR_INIT ||
5981 migr_type(dev) == MIGR_REPAIR)
5982 return 1;
5983
5984 if (migr_type(dev) == MIGR_GEN_MIGR)
5985 return 0;
5986
5987 migr_map = get_imsm_map(dev, 1);
5988
5989 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5990 (dev->vol.migr_type != MIGR_GEN_MIGR))
5991 return 1;
5992 else
5993 return 0;
5994 }
5995
5996 /* return true if we recorded new information */
5997 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5998 {
5999 __u32 ord;
6000 int slot;
6001 struct imsm_map *map;
6002 char buf[MAX_RAID_SERIAL_LEN+3];
6003 unsigned int len, shift = 0;
6004
6005 /* new failures are always set in map[0] */
6006 map = get_imsm_map(dev, 0);
6007
6008 slot = get_imsm_disk_slot(map, idx);
6009 if (slot < 0)
6010 return 0;
6011
6012 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6013 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6014 return 0;
6015
6016 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6017 buf[MAX_RAID_SERIAL_LEN] = '\000';
6018 strcat(buf, ":0");
6019 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6020 shift = len - MAX_RAID_SERIAL_LEN + 1;
6021 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6022
6023 disk->status |= FAILED_DISK;
6024 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6025 if (map->failed_disk_num == 0xff)
6026 map->failed_disk_num = slot;
6027 return 1;
6028 }
6029
6030 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6031 {
6032 mark_failure(dev, disk, idx);
6033
6034 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6035 return;
6036
6037 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6038 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6039 }
6040
6041 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6042 {
6043 __u8 map_state;
6044 struct dl *dl;
6045 int failed;
6046
6047 if (!super->missing)
6048 return;
6049 failed = imsm_count_failed(super, dev);
6050 map_state = imsm_check_degraded(super, dev, failed);
6051
6052 dprintf("imsm: mark missing\n");
6053 end_migration(dev, map_state);
6054 for (dl = super->missing; dl; dl = dl->next)
6055 mark_missing(dev, &dl->disk, dl->index);
6056 super->updates_pending++;
6057 }
6058
6059 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6060 {
6061 int used_disks = imsm_num_data_members(dev, 0);
6062 unsigned long long array_blocks;
6063 struct imsm_map *map;
6064
6065 if (used_disks == 0) {
6066 /* when problems occures
6067 * return current array_blocks value
6068 */
6069 array_blocks = __le32_to_cpu(dev->size_high);
6070 array_blocks = array_blocks << 32;
6071 array_blocks += __le32_to_cpu(dev->size_low);
6072
6073 return array_blocks;
6074 }
6075
6076 /* set array size in metadata
6077 */
6078 map = get_imsm_map(dev, 0);
6079 array_blocks = map->blocks_per_member * used_disks;
6080
6081 /* round array size down to closest MB
6082 */
6083 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6084 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6085 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6086
6087 return array_blocks;
6088 }
6089
6090 static void imsm_set_disk(struct active_array *a, int n, int state);
6091
6092 static void imsm_progress_container_reshape(struct intel_super *super)
6093 {
6094 /* if no device has a migr_state, but some device has a
6095 * different number of members than the previous device, start
6096 * changing the number of devices in this device to match
6097 * previous.
6098 */
6099 struct imsm_super *mpb = super->anchor;
6100 int prev_disks = -1;
6101 int i;
6102 int copy_map_size;
6103
6104 for (i = 0; i < mpb->num_raid_devs; i++) {
6105 struct imsm_dev *dev = get_imsm_dev(super, i);
6106 struct imsm_map *map = get_imsm_map(dev, 0);
6107 struct imsm_map *map2;
6108 int prev_num_members;
6109
6110 if (dev->vol.migr_state)
6111 return;
6112
6113 if (prev_disks == -1)
6114 prev_disks = map->num_members;
6115 if (prev_disks == map->num_members)
6116 continue;
6117
6118 /* OK, this array needs to enter reshape mode.
6119 * i.e it needs a migr_state
6120 */
6121
6122 copy_map_size = sizeof_imsm_map(map);
6123 prev_num_members = map->num_members;
6124 map->num_members = prev_disks;
6125 dev->vol.migr_state = 1;
6126 dev->vol.curr_migr_unit = 0;
6127 set_migr_type(dev, MIGR_GEN_MIGR);
6128 for (i = prev_num_members;
6129 i < map->num_members; i++)
6130 set_imsm_ord_tbl_ent(map, i, i);
6131 map2 = get_imsm_map(dev, 1);
6132 /* Copy the current map */
6133 memcpy(map2, map, copy_map_size);
6134 map2->num_members = prev_num_members;
6135
6136 imsm_set_array_size(dev);
6137 super->updates_pending++;
6138 }
6139 }
6140
6141 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
6142 * states are handled in imsm_set_disk() with one exception, when a
6143 * resync is stopped due to a new failure this routine will set the
6144 * 'degraded' state for the array.
6145 */
6146 static int imsm_set_array_state(struct active_array *a, int consistent)
6147 {
6148 int inst = a->info.container_member;
6149 struct intel_super *super = a->container->sb;
6150 struct imsm_dev *dev = get_imsm_dev(super, inst);
6151 struct imsm_map *map = get_imsm_map(dev, 0);
6152 int failed = imsm_count_failed(super, dev);
6153 __u8 map_state = imsm_check_degraded(super, dev, failed);
6154 __u32 blocks_per_unit;
6155
6156 if (dev->vol.migr_state &&
6157 dev->vol.migr_type == MIGR_GEN_MIGR) {
6158 /* array state change is blocked due to reshape action
6159 * We might need to
6160 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6161 * - finish the reshape (if last_checkpoint is big and action != reshape)
6162 * - update curr_migr_unit
6163 */
6164 if (a->curr_action == reshape) {
6165 /* still reshaping, maybe update curr_migr_unit */
6166 goto mark_checkpoint;
6167 } else {
6168 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6169 /* for some reason we aborted the reshape.
6170 *
6171 * disable automatic metadata rollback
6172 * user action is required to recover process
6173 */
6174 if (0) {
6175 struct imsm_map *map2 = get_imsm_map(dev, 1);
6176 dev->vol.migr_state = 0;
6177 set_migr_type(dev, 0);
6178 dev->vol.curr_migr_unit = 0;
6179 memcpy(map, map2, sizeof_imsm_map(map2));
6180 super->updates_pending++;
6181 }
6182 }
6183 if (a->last_checkpoint >= a->info.component_size) {
6184 unsigned long long array_blocks;
6185 int used_disks;
6186 struct mdinfo *mdi;
6187
6188 used_disks = imsm_num_data_members(dev, 0);
6189 if (used_disks > 0) {
6190 array_blocks =
6191 map->blocks_per_member *
6192 used_disks;
6193 /* round array size down to closest MB
6194 */
6195 array_blocks = (array_blocks
6196 >> SECT_PER_MB_SHIFT)
6197 << SECT_PER_MB_SHIFT;
6198 a->info.custom_array_size = array_blocks;
6199 /* encourage manager to update array
6200 * size
6201 */
6202
6203 a->check_reshape = 1;
6204 }
6205 /* finalize online capacity expansion/reshape */
6206 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6207 imsm_set_disk(a,
6208 mdi->disk.raid_disk,
6209 mdi->curr_state);
6210
6211 imsm_progress_container_reshape(super);
6212 }
6213 }
6214 }
6215
6216 /* before we activate this array handle any missing disks */
6217 if (consistent == 2)
6218 handle_missing(super, dev);
6219
6220 if (consistent == 2 &&
6221 (!is_resync_complete(&a->info) ||
6222 map_state != IMSM_T_STATE_NORMAL ||
6223 dev->vol.migr_state))
6224 consistent = 0;
6225
6226 if (is_resync_complete(&a->info)) {
6227 /* complete intialization / resync,
6228 * recovery and interrupted recovery is completed in
6229 * ->set_disk
6230 */
6231 if (is_resyncing(dev)) {
6232 dprintf("imsm: mark resync done\n");
6233 end_migration(dev, map_state);
6234 super->updates_pending++;
6235 a->last_checkpoint = 0;
6236 }
6237 } else if ((!is_resyncing(dev) && !failed) &&
6238 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
6239 /* mark the start of the init process if nothing is failed */
6240 dprintf("imsm: mark resync start\n");
6241 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
6242 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
6243 else
6244 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
6245 super->updates_pending++;
6246 }
6247
6248 mark_checkpoint:
6249 /* skip checkpointing for general migration,
6250 * it is controlled in mdadm
6251 */
6252 if (is_gen_migration(dev))
6253 goto skip_mark_checkpoint;
6254
6255 /* check if we can update curr_migr_unit from resync_start, recovery_start */
6256 blocks_per_unit = blocks_per_migr_unit(super, dev);
6257 if (blocks_per_unit) {
6258 __u32 units32;
6259 __u64 units;
6260
6261 units = a->last_checkpoint / blocks_per_unit;
6262 units32 = units;
6263
6264 /* check that we did not overflow 32-bits, and that
6265 * curr_migr_unit needs updating
6266 */
6267 if (units32 == units &&
6268 units32 != 0 &&
6269 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6270 dprintf("imsm: mark checkpoint (%u)\n", units32);
6271 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6272 super->updates_pending++;
6273 }
6274 }
6275
6276 skip_mark_checkpoint:
6277 /* mark dirty / clean */
6278 if (dev->vol.dirty != !consistent) {
6279 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
6280 if (consistent)
6281 dev->vol.dirty = 0;
6282 else
6283 dev->vol.dirty = 1;
6284 super->updates_pending++;
6285 }
6286
6287 return consistent;
6288 }
6289
6290 static void imsm_set_disk(struct active_array *a, int n, int state)
6291 {
6292 int inst = a->info.container_member;
6293 struct intel_super *super = a->container->sb;
6294 struct imsm_dev *dev = get_imsm_dev(super, inst);
6295 struct imsm_map *map = get_imsm_map(dev, 0);
6296 struct imsm_disk *disk;
6297 int failed;
6298 __u32 ord;
6299 __u8 map_state;
6300
6301 if (n > map->num_members)
6302 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6303 n, map->num_members - 1);
6304
6305 if (n < 0)
6306 return;
6307
6308 dprintf("imsm: set_disk %d:%x\n", n, state);
6309
6310 ord = get_imsm_ord_tbl_ent(dev, n, -1);
6311 disk = get_imsm_disk(super, ord_to_idx(ord));
6312
6313 /* check for new failures */
6314 if (state & DS_FAULTY) {
6315 if (mark_failure(dev, disk, ord_to_idx(ord)))
6316 super->updates_pending++;
6317 }
6318
6319 /* check if in_sync */
6320 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
6321 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6322
6323 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
6324 super->updates_pending++;
6325 }
6326
6327 failed = imsm_count_failed(super, dev);
6328 map_state = imsm_check_degraded(super, dev, failed);
6329
6330 /* check if recovery complete, newly degraded, or failed */
6331 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
6332 end_migration(dev, map_state);
6333 map = get_imsm_map(dev, 0);
6334 map->failed_disk_num = ~0;
6335 super->updates_pending++;
6336 a->last_checkpoint = 0;
6337 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6338 map->map_state != map_state &&
6339 !dev->vol.migr_state) {
6340 dprintf("imsm: mark degraded\n");
6341 map->map_state = map_state;
6342 super->updates_pending++;
6343 a->last_checkpoint = 0;
6344 } else if (map_state == IMSM_T_STATE_FAILED &&
6345 map->map_state != map_state) {
6346 dprintf("imsm: mark failed\n");
6347 end_migration(dev, map_state);
6348 super->updates_pending++;
6349 a->last_checkpoint = 0;
6350 } else if (is_gen_migration(dev)) {
6351 dprintf("imsm: Detected General Migration in state: ");
6352 if (map_state == IMSM_T_STATE_NORMAL) {
6353 end_migration(dev, map_state);
6354 map = get_imsm_map(dev, 0);
6355 map->failed_disk_num = ~0;
6356 dprintf("normal\n");
6357 } else {
6358 if (map_state == IMSM_T_STATE_DEGRADED) {
6359 printf("degraded\n");
6360 end_migration(dev, map_state);
6361 } else {
6362 dprintf("failed\n");
6363 }
6364 map->map_state = map_state;
6365 }
6366 super->updates_pending++;
6367 }
6368 }
6369
6370 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
6371 {
6372 void *buf = mpb;
6373 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6374 unsigned long long dsize;
6375 unsigned long long sectors;
6376
6377 get_dev_size(fd, NULL, &dsize);
6378
6379 if (mpb_size > 512) {
6380 /* -1 to account for anchor */
6381 sectors = mpb_sectors(mpb) - 1;
6382
6383 /* write the extended mpb to the sectors preceeding the anchor */
6384 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6385 return 1;
6386
6387 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6388 != 512 * sectors)
6389 return 1;
6390 }
6391
6392 /* first block is stored on second to last sector of the disk */
6393 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
6394 return 1;
6395
6396 if (write(fd, buf, 512) != 512)
6397 return 1;
6398
6399 return 0;
6400 }
6401
6402 static void imsm_sync_metadata(struct supertype *container)
6403 {
6404 struct intel_super *super = container->sb;
6405
6406 dprintf("sync metadata: %d\n", super->updates_pending);
6407 if (!super->updates_pending)
6408 return;
6409
6410 write_super_imsm(container, 0);
6411
6412 super->updates_pending = 0;
6413 }
6414
6415 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6416 {
6417 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6418 int i = get_imsm_disk_idx(dev, idx, -1);
6419 struct dl *dl;
6420
6421 for (dl = super->disks; dl; dl = dl->next)
6422 if (dl->index == i)
6423 break;
6424
6425 if (dl && is_failed(&dl->disk))
6426 dl = NULL;
6427
6428 if (dl)
6429 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6430
6431 return dl;
6432 }
6433
6434 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
6435 struct active_array *a, int activate_new,
6436 struct mdinfo *additional_test_list)
6437 {
6438 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6439 int idx = get_imsm_disk_idx(dev, slot, -1);
6440 struct imsm_super *mpb = super->anchor;
6441 struct imsm_map *map;
6442 unsigned long long pos;
6443 struct mdinfo *d;
6444 struct extent *ex;
6445 int i, j;
6446 int found;
6447 __u32 array_start = 0;
6448 __u32 array_end = 0;
6449 struct dl *dl;
6450 struct mdinfo *test_list;
6451
6452 for (dl = super->disks; dl; dl = dl->next) {
6453 /* If in this array, skip */
6454 for (d = a->info.devs ; d ; d = d->next)
6455 if (d->state_fd >= 0 &&
6456 d->disk.major == dl->major &&
6457 d->disk.minor == dl->minor) {
6458 dprintf("%x:%x already in array\n",
6459 dl->major, dl->minor);
6460 break;
6461 }
6462 if (d)
6463 continue;
6464 test_list = additional_test_list;
6465 while (test_list) {
6466 if (test_list->disk.major == dl->major &&
6467 test_list->disk.minor == dl->minor) {
6468 dprintf("%x:%x already in additional test list\n",
6469 dl->major, dl->minor);
6470 break;
6471 }
6472 test_list = test_list->next;
6473 }
6474 if (test_list)
6475 continue;
6476
6477 /* skip in use or failed drives */
6478 if (is_failed(&dl->disk) || idx == dl->index ||
6479 dl->index == -2) {
6480 dprintf("%x:%x status (failed: %d index: %d)\n",
6481 dl->major, dl->minor, is_failed(&dl->disk), idx);
6482 continue;
6483 }
6484
6485 /* skip pure spares when we are looking for partially
6486 * assimilated drives
6487 */
6488 if (dl->index == -1 && !activate_new)
6489 continue;
6490
6491 /* Does this unused device have the requisite free space?
6492 * It needs to be able to cover all member volumes
6493 */
6494 ex = get_extents(super, dl);
6495 if (!ex) {
6496 dprintf("cannot get extents\n");
6497 continue;
6498 }
6499 for (i = 0; i < mpb->num_raid_devs; i++) {
6500 dev = get_imsm_dev(super, i);
6501 map = get_imsm_map(dev, 0);
6502
6503 /* check if this disk is already a member of
6504 * this array
6505 */
6506 if (get_imsm_disk_slot(map, dl->index) >= 0)
6507 continue;
6508
6509 found = 0;
6510 j = 0;
6511 pos = 0;
6512 array_start = __le32_to_cpu(map->pba_of_lba0);
6513 array_end = array_start +
6514 __le32_to_cpu(map->blocks_per_member) - 1;
6515
6516 do {
6517 /* check that we can start at pba_of_lba0 with
6518 * blocks_per_member of space
6519 */
6520 if (array_start >= pos && array_end < ex[j].start) {
6521 found = 1;
6522 break;
6523 }
6524 pos = ex[j].start + ex[j].size;
6525 j++;
6526 } while (ex[j-1].size);
6527
6528 if (!found)
6529 break;
6530 }
6531
6532 free(ex);
6533 if (i < mpb->num_raid_devs) {
6534 dprintf("%x:%x does not have %u to %u available\n",
6535 dl->major, dl->minor, array_start, array_end);
6536 /* No room */
6537 continue;
6538 }
6539 return dl;
6540 }
6541
6542 return dl;
6543 }
6544
6545
6546 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6547 {
6548 struct imsm_dev *dev2;
6549 struct imsm_map *map;
6550 struct dl *idisk;
6551 int slot;
6552 int idx;
6553 __u8 state;
6554
6555 dev2 = get_imsm_dev(cont->sb, dev_idx);
6556 if (dev2) {
6557 state = imsm_check_degraded(cont->sb, dev2, failed);
6558 if (state == IMSM_T_STATE_FAILED) {
6559 map = get_imsm_map(dev2, 0);
6560 if (!map)
6561 return 1;
6562 for (slot = 0; slot < map->num_members; slot++) {
6563 /*
6564 * Check if failed disks are deleted from intel
6565 * disk list or are marked to be deleted
6566 */
6567 idx = get_imsm_disk_idx(dev2, slot, -1);
6568 idisk = get_imsm_dl_disk(cont->sb, idx);
6569 /*
6570 * Do not rebuild the array if failed disks
6571 * from failed sub-array are not removed from
6572 * container.
6573 */
6574 if (idisk &&
6575 is_failed(&idisk->disk) &&
6576 (idisk->action != DISK_REMOVE))
6577 return 0;
6578 }
6579 }
6580 }
6581 return 1;
6582 }
6583
6584 static struct mdinfo *imsm_activate_spare(struct active_array *a,
6585 struct metadata_update **updates)
6586 {
6587 /**
6588 * Find a device with unused free space and use it to replace a
6589 * failed/vacant region in an array. We replace failed regions one a
6590 * array at a time. The result is that a new spare disk will be added
6591 * to the first failed array and after the monitor has finished
6592 * propagating failures the remainder will be consumed.
6593 *
6594 * FIXME add a capability for mdmon to request spares from another
6595 * container.
6596 */
6597
6598 struct intel_super *super = a->container->sb;
6599 int inst = a->info.container_member;
6600 struct imsm_dev *dev = get_imsm_dev(super, inst);
6601 struct imsm_map *map = get_imsm_map(dev, 0);
6602 int failed = a->info.array.raid_disks;
6603 struct mdinfo *rv = NULL;
6604 struct mdinfo *d;
6605 struct mdinfo *di;
6606 struct metadata_update *mu;
6607 struct dl *dl;
6608 struct imsm_update_activate_spare *u;
6609 int num_spares = 0;
6610 int i;
6611 int allowed;
6612
6613 for (d = a->info.devs ; d ; d = d->next) {
6614 if ((d->curr_state & DS_FAULTY) &&
6615 d->state_fd >= 0)
6616 /* wait for Removal to happen */
6617 return NULL;
6618 if (d->state_fd >= 0)
6619 failed--;
6620 }
6621
6622 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6623 inst, failed, a->info.array.raid_disks, a->info.array.level);
6624
6625 if (imsm_reshape_blocks_arrays_changes(super))
6626 return NULL;
6627
6628 if (a->info.array.level == 4)
6629 /* No repair for takeovered array
6630 * imsm doesn't support raid4
6631 */
6632 return NULL;
6633
6634 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
6635 return NULL;
6636
6637 /*
6638 * If there are any failed disks check state of the other volume.
6639 * Block rebuild if the another one is failed until failed disks
6640 * are removed from container.
6641 */
6642 if (failed) {
6643 dprintf("found failed disks in %.*s, check if there another"
6644 "failed sub-array.\n",
6645 MAX_RAID_SERIAL_LEN, dev->volume);
6646 /* check if states of the other volumes allow for rebuild */
6647 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6648 if (i != inst) {
6649 allowed = imsm_rebuild_allowed(a->container,
6650 i, failed);
6651 if (!allowed)
6652 return NULL;
6653 }
6654 }
6655 }
6656
6657 /* For each slot, if it is not working, find a spare */
6658 for (i = 0; i < a->info.array.raid_disks; i++) {
6659 for (d = a->info.devs ; d ; d = d->next)
6660 if (d->disk.raid_disk == i)
6661 break;
6662 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6663 if (d && (d->state_fd >= 0))
6664 continue;
6665
6666 /*
6667 * OK, this device needs recovery. Try to re-add the
6668 * previous occupant of this slot, if this fails see if
6669 * we can continue the assimilation of a spare that was
6670 * partially assimilated, finally try to activate a new
6671 * spare.
6672 */
6673 dl = imsm_readd(super, i, a);
6674 if (!dl)
6675 dl = imsm_add_spare(super, i, a, 0, rv);
6676 if (!dl)
6677 dl = imsm_add_spare(super, i, a, 1, rv);
6678 if (!dl)
6679 continue;
6680
6681 /* found a usable disk with enough space */
6682 di = malloc(sizeof(*di));
6683 if (!di)
6684 continue;
6685 memset(di, 0, sizeof(*di));
6686
6687 /* dl->index will be -1 in the case we are activating a
6688 * pristine spare. imsm_process_update() will create a
6689 * new index in this case. Once a disk is found to be
6690 * failed in all member arrays it is kicked from the
6691 * metadata
6692 */
6693 di->disk.number = dl->index;
6694
6695 /* (ab)use di->devs to store a pointer to the device
6696 * we chose
6697 */
6698 di->devs = (struct mdinfo *) dl;
6699
6700 di->disk.raid_disk = i;
6701 di->disk.major = dl->major;
6702 di->disk.minor = dl->minor;
6703 di->disk.state = 0;
6704 di->recovery_start = 0;
6705 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6706 di->component_size = a->info.component_size;
6707 di->container_member = inst;
6708 super->random = random32();
6709 di->next = rv;
6710 rv = di;
6711 num_spares++;
6712 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6713 i, di->data_offset);
6714 }
6715
6716 if (!rv)
6717 /* No spares found */
6718 return rv;
6719 /* Now 'rv' has a list of devices to return.
6720 * Create a metadata_update record to update the
6721 * disk_ord_tbl for the array
6722 */
6723 mu = malloc(sizeof(*mu));
6724 if (mu) {
6725 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6726 if (mu->buf == NULL) {
6727 free(mu);
6728 mu = NULL;
6729 }
6730 }
6731 if (!mu) {
6732 while (rv) {
6733 struct mdinfo *n = rv->next;
6734
6735 free(rv);
6736 rv = n;
6737 }
6738 return NULL;
6739 }
6740
6741 mu->space = NULL;
6742 mu->space_list = NULL;
6743 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6744 mu->next = *updates;
6745 u = (struct imsm_update_activate_spare *) mu->buf;
6746
6747 for (di = rv ; di ; di = di->next) {
6748 u->type = update_activate_spare;
6749 u->dl = (struct dl *) di->devs;
6750 di->devs = NULL;
6751 u->slot = di->disk.raid_disk;
6752 u->array = inst;
6753 u->next = u + 1;
6754 u++;
6755 }
6756 (u-1)->next = NULL;
6757 *updates = mu;
6758
6759 return rv;
6760 }
6761
6762 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
6763 {
6764 struct imsm_dev *dev = get_imsm_dev(super, idx);
6765 struct imsm_map *map = get_imsm_map(dev, 0);
6766 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6767 struct disk_info *inf = get_disk_info(u);
6768 struct imsm_disk *disk;
6769 int i;
6770 int j;
6771
6772 for (i = 0; i < map->num_members; i++) {
6773 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
6774 for (j = 0; j < new_map->num_members; j++)
6775 if (serialcmp(disk->serial, inf[j].serial) == 0)
6776 return 1;
6777 }
6778
6779 return 0;
6780 }
6781
6782
6783 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6784 {
6785 struct dl *dl = NULL;
6786 for (dl = super->disks; dl; dl = dl->next)
6787 if ((dl->major == major) && (dl->minor == minor))
6788 return dl;
6789 return NULL;
6790 }
6791
6792 static int remove_disk_super(struct intel_super *super, int major, int minor)
6793 {
6794 struct dl *prev = NULL;
6795 struct dl *dl;
6796
6797 prev = NULL;
6798 for (dl = super->disks; dl; dl = dl->next) {
6799 if ((dl->major == major) && (dl->minor == minor)) {
6800 /* remove */
6801 if (prev)
6802 prev->next = dl->next;
6803 else
6804 super->disks = dl->next;
6805 dl->next = NULL;
6806 __free_imsm_disk(dl);
6807 dprintf("%s: removed %x:%x\n",
6808 __func__, major, minor);
6809 break;
6810 }
6811 prev = dl;
6812 }
6813 return 0;
6814 }
6815
6816 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
6817
6818 static int add_remove_disk_update(struct intel_super *super)
6819 {
6820 int check_degraded = 0;
6821 struct dl *disk = NULL;
6822 /* add/remove some spares to/from the metadata/contrainer */
6823 while (super->disk_mgmt_list) {
6824 struct dl *disk_cfg;
6825
6826 disk_cfg = super->disk_mgmt_list;
6827 super->disk_mgmt_list = disk_cfg->next;
6828 disk_cfg->next = NULL;
6829
6830 if (disk_cfg->action == DISK_ADD) {
6831 disk_cfg->next = super->disks;
6832 super->disks = disk_cfg;
6833 check_degraded = 1;
6834 dprintf("%s: added %x:%x\n",
6835 __func__, disk_cfg->major,
6836 disk_cfg->minor);
6837 } else if (disk_cfg->action == DISK_REMOVE) {
6838 dprintf("Disk remove action processed: %x.%x\n",
6839 disk_cfg->major, disk_cfg->minor);
6840 disk = get_disk_super(super,
6841 disk_cfg->major,
6842 disk_cfg->minor);
6843 if (disk) {
6844 /* store action status */
6845 disk->action = DISK_REMOVE;
6846 /* remove spare disks only */
6847 if (disk->index == -1) {
6848 remove_disk_super(super,
6849 disk_cfg->major,
6850 disk_cfg->minor);
6851 }
6852 }
6853 /* release allocate disk structure */
6854 __free_imsm_disk(disk_cfg);
6855 }
6856 }
6857 return check_degraded;
6858 }
6859
6860
6861 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6862 struct intel_super *super,
6863 void ***space_list)
6864 {
6865 struct intel_dev *id;
6866 void **tofree = NULL;
6867 int ret_val = 0;
6868
6869 dprintf("apply_reshape_migration_update()\n");
6870 if ((u->subdev < 0) ||
6871 (u->subdev > 1)) {
6872 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6873 return ret_val;
6874 }
6875 if ((space_list == NULL) || (*space_list == NULL)) {
6876 dprintf("imsm: Error: Memory is not allocated\n");
6877 return ret_val;
6878 }
6879
6880 for (id = super->devlist ; id; id = id->next) {
6881 if (id->index == (unsigned)u->subdev) {
6882 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6883 struct imsm_map *map;
6884 struct imsm_dev *new_dev =
6885 (struct imsm_dev *)*space_list;
6886 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6887 int to_state;
6888 struct dl *new_disk;
6889
6890 if (new_dev == NULL)
6891 return ret_val;
6892 *space_list = **space_list;
6893 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6894 map = get_imsm_map(new_dev, 0);
6895 if (migr_map) {
6896 dprintf("imsm: Error: migration in progress");
6897 return ret_val;
6898 }
6899
6900 to_state = map->map_state;
6901 if ((u->new_level == 5) && (map->raid_level == 0)) {
6902 map->num_members++;
6903 /* this should not happen */
6904 if (u->new_disks[0] < 0) {
6905 map->failed_disk_num =
6906 map->num_members - 1;
6907 to_state = IMSM_T_STATE_DEGRADED;
6908 } else
6909 to_state = IMSM_T_STATE_NORMAL;
6910 }
6911 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
6912 if (u->new_level > -1)
6913 map->raid_level = u->new_level;
6914 migr_map = get_imsm_map(new_dev, 1);
6915 if ((u->new_level == 5) &&
6916 (migr_map->raid_level == 0)) {
6917 int ord = map->num_members - 1;
6918 migr_map->num_members--;
6919 if (u->new_disks[0] < 0)
6920 ord |= IMSM_ORD_REBUILD;
6921 set_imsm_ord_tbl_ent(map,
6922 map->num_members - 1,
6923 ord);
6924 }
6925 id->dev = new_dev;
6926 tofree = (void **)dev;
6927
6928 /* update chunk size
6929 */
6930 if (u->new_chunksize > 0)
6931 map->blocks_per_strip =
6932 __cpu_to_le16(u->new_chunksize * 2);
6933
6934 /* add disk
6935 */
6936 if ((u->new_level != 5) ||
6937 (migr_map->raid_level != 0) ||
6938 (migr_map->raid_level == map->raid_level))
6939 goto skip_disk_add;
6940
6941 if (u->new_disks[0] >= 0) {
6942 /* use passes spare
6943 */
6944 new_disk = get_disk_super(super,
6945 major(u->new_disks[0]),
6946 minor(u->new_disks[0]));
6947 dprintf("imsm: new disk for reshape is: %i:%i "
6948 "(%p, index = %i)\n",
6949 major(u->new_disks[0]),
6950 minor(u->new_disks[0]),
6951 new_disk, new_disk->index);
6952 if (new_disk == NULL)
6953 goto error_disk_add;
6954
6955 new_disk->index = map->num_members - 1;
6956 /* slot to fill in autolayout
6957 */
6958 new_disk->raiddisk = new_disk->index;
6959 new_disk->disk.status |= CONFIGURED_DISK;
6960 new_disk->disk.status &= ~SPARE_DISK;
6961 } else
6962 goto error_disk_add;
6963
6964 skip_disk_add:
6965 *tofree = *space_list;
6966 /* calculate new size
6967 */
6968 imsm_set_array_size(new_dev);
6969
6970 ret_val = 1;
6971 }
6972 }
6973
6974 if (tofree)
6975 *space_list = tofree;
6976 return ret_val;
6977
6978 error_disk_add:
6979 dprintf("Error: imsm: Cannot find disk.\n");
6980 return ret_val;
6981 }
6982
6983 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
6984 struct intel_super *super,
6985 struct active_array *active_array)
6986 {
6987 struct imsm_super *mpb = super->anchor;
6988 struct imsm_dev *dev = get_imsm_dev(super, u->array);
6989 struct imsm_map *map = get_imsm_map(dev, 0);
6990 struct imsm_map *migr_map;
6991 struct active_array *a;
6992 struct imsm_disk *disk;
6993 __u8 to_state;
6994 struct dl *dl;
6995 unsigned int found;
6996 int failed;
6997 int victim;
6998 int i;
6999 int second_map_created = 0;
7000
7001 for (; u; u = u->next) {
7002 victim = get_imsm_disk_idx(dev, u->slot, -1);
7003
7004 if (victim < 0)
7005 return 0;
7006
7007 for (dl = super->disks; dl; dl = dl->next)
7008 if (dl == u->dl)
7009 break;
7010
7011 if (!dl) {
7012 fprintf(stderr, "error: imsm_activate_spare passed "
7013 "an unknown disk (index: %d)\n",
7014 u->dl->index);
7015 return 0;
7016 }
7017
7018 /* count failures (excluding rebuilds and the victim)
7019 * to determine map[0] state
7020 */
7021 failed = 0;
7022 for (i = 0; i < map->num_members; i++) {
7023 if (i == u->slot)
7024 continue;
7025 disk = get_imsm_disk(super,
7026 get_imsm_disk_idx(dev, i, -1));
7027 if (!disk || is_failed(disk))
7028 failed++;
7029 }
7030
7031 /* adding a pristine spare, assign a new index */
7032 if (dl->index < 0) {
7033 dl->index = super->anchor->num_disks;
7034 super->anchor->num_disks++;
7035 }
7036 disk = &dl->disk;
7037 disk->status |= CONFIGURED_DISK;
7038 disk->status &= ~SPARE_DISK;
7039
7040 /* mark rebuild */
7041 to_state = imsm_check_degraded(super, dev, failed);
7042 if (!second_map_created) {
7043 second_map_created = 1;
7044 map->map_state = IMSM_T_STATE_DEGRADED;
7045 migrate(dev, super, to_state, MIGR_REBUILD);
7046 } else
7047 map->map_state = to_state;
7048 migr_map = get_imsm_map(dev, 1);
7049 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7050 set_imsm_ord_tbl_ent(migr_map, u->slot,
7051 dl->index | IMSM_ORD_REBUILD);
7052
7053 /* update the family_num to mark a new container
7054 * generation, being careful to record the existing
7055 * family_num in orig_family_num to clean up after
7056 * earlier mdadm versions that neglected to set it.
7057 */
7058 if (mpb->orig_family_num == 0)
7059 mpb->orig_family_num = mpb->family_num;
7060 mpb->family_num += super->random;
7061
7062 /* count arrays using the victim in the metadata */
7063 found = 0;
7064 for (a = active_array; a ; a = a->next) {
7065 dev = get_imsm_dev(super, a->info.container_member);
7066 map = get_imsm_map(dev, 0);
7067
7068 if (get_imsm_disk_slot(map, victim) >= 0)
7069 found++;
7070 }
7071
7072 /* delete the victim if it is no longer being
7073 * utilized anywhere
7074 */
7075 if (!found) {
7076 struct dl **dlp;
7077
7078 /* We know that 'manager' isn't touching anything,
7079 * so it is safe to delete
7080 */
7081 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
7082 if ((*dlp)->index == victim)
7083 break;
7084
7085 /* victim may be on the missing list */
7086 if (!*dlp)
7087 for (dlp = &super->missing; *dlp;
7088 dlp = &(*dlp)->next)
7089 if ((*dlp)->index == victim)
7090 break;
7091 imsm_delete(super, dlp, victim);
7092 }
7093 }
7094
7095 return 1;
7096 }
7097
7098 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7099 struct intel_super *super,
7100 void ***space_list)
7101 {
7102 struct dl *new_disk;
7103 struct intel_dev *id;
7104 int i;
7105 int delta_disks = u->new_raid_disks - u->old_raid_disks;
7106 int disk_count = u->old_raid_disks;
7107 void **tofree = NULL;
7108 int devices_to_reshape = 1;
7109 struct imsm_super *mpb = super->anchor;
7110 int ret_val = 0;
7111 unsigned int dev_id;
7112
7113 dprintf("imsm: apply_reshape_container_disks_update()\n");
7114
7115 /* enable spares to use in array */
7116 for (i = 0; i < delta_disks; i++) {
7117 new_disk = get_disk_super(super,
7118 major(u->new_disks[i]),
7119 minor(u->new_disks[i]));
7120 dprintf("imsm: new disk for reshape is: %i:%i "
7121 "(%p, index = %i)\n",
7122 major(u->new_disks[i]), minor(u->new_disks[i]),
7123 new_disk, new_disk->index);
7124 if ((new_disk == NULL) ||
7125 ((new_disk->index >= 0) &&
7126 (new_disk->index < u->old_raid_disks)))
7127 goto update_reshape_exit;
7128 new_disk->index = disk_count++;
7129 /* slot to fill in autolayout
7130 */
7131 new_disk->raiddisk = new_disk->index;
7132 new_disk->disk.status |=
7133 CONFIGURED_DISK;
7134 new_disk->disk.status &= ~SPARE_DISK;
7135 }
7136
7137 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7138 mpb->num_raid_devs);
7139 /* manage changes in volume
7140 */
7141 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
7142 void **sp = *space_list;
7143 struct imsm_dev *newdev;
7144 struct imsm_map *newmap, *oldmap;
7145
7146 for (id = super->devlist ; id; id = id->next) {
7147 if (id->index == dev_id)
7148 break;
7149 }
7150 if (id == NULL)
7151 break;
7152 if (!sp)
7153 continue;
7154 *space_list = *sp;
7155 newdev = (void*)sp;
7156 /* Copy the dev, but not (all of) the map */
7157 memcpy(newdev, id->dev, sizeof(*newdev));
7158 oldmap = get_imsm_map(id->dev, 0);
7159 newmap = get_imsm_map(newdev, 0);
7160 /* Copy the current map */
7161 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7162 /* update one device only
7163 */
7164 if (devices_to_reshape) {
7165 dprintf("imsm: modifying subdev: %i\n",
7166 id->index);
7167 devices_to_reshape--;
7168 newdev->vol.migr_state = 1;
7169 newdev->vol.curr_migr_unit = 0;
7170 set_migr_type(newdev, MIGR_GEN_MIGR);
7171 newmap->num_members = u->new_raid_disks;
7172 for (i = 0; i < delta_disks; i++) {
7173 set_imsm_ord_tbl_ent(newmap,
7174 u->old_raid_disks + i,
7175 u->old_raid_disks + i);
7176 }
7177 /* New map is correct, now need to save old map
7178 */
7179 newmap = get_imsm_map(newdev, 1);
7180 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7181
7182 imsm_set_array_size(newdev);
7183 }
7184
7185 sp = (void **)id->dev;
7186 id->dev = newdev;
7187 *sp = tofree;
7188 tofree = sp;
7189
7190 /* Clear migration record */
7191 memset(super->migr_rec, 0, sizeof(struct migr_record));
7192 }
7193 if (tofree)
7194 *space_list = tofree;
7195 ret_val = 1;
7196
7197 update_reshape_exit:
7198
7199 return ret_val;
7200 }
7201
7202 static int apply_takeover_update(struct imsm_update_takeover *u,
7203 struct intel_super *super,
7204 void ***space_list)
7205 {
7206 struct imsm_dev *dev = NULL;
7207 struct intel_dev *dv;
7208 struct imsm_dev *dev_new;
7209 struct imsm_map *map;
7210 struct dl *dm, *du;
7211 int i;
7212
7213 for (dv = super->devlist; dv; dv = dv->next)
7214 if (dv->index == (unsigned int)u->subarray) {
7215 dev = dv->dev;
7216 break;
7217 }
7218
7219 if (dev == NULL)
7220 return 0;
7221
7222 map = get_imsm_map(dev, 0);
7223
7224 if (u->direction == R10_TO_R0) {
7225 /* Number of failed disks must be half of initial disk number */
7226 if (imsm_count_failed(super, dev) != (map->num_members / 2))
7227 return 0;
7228
7229 /* iterate through devices to mark removed disks as spare */
7230 for (dm = super->disks; dm; dm = dm->next) {
7231 if (dm->disk.status & FAILED_DISK) {
7232 int idx = dm->index;
7233 /* update indexes on the disk list */
7234 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7235 the index values will end up being correct.... NB */
7236 for (du = super->disks; du; du = du->next)
7237 if (du->index > idx)
7238 du->index--;
7239 /* mark as spare disk */
7240 mark_spare(dm);
7241 }
7242 }
7243 /* update map */
7244 map->num_members = map->num_members / 2;
7245 map->map_state = IMSM_T_STATE_NORMAL;
7246 map->num_domains = 1;
7247 map->raid_level = 0;
7248 map->failed_disk_num = -1;
7249 }
7250
7251 if (u->direction == R0_TO_R10) {
7252 void **space;
7253 /* update slots in current disk list */
7254 for (dm = super->disks; dm; dm = dm->next) {
7255 if (dm->index >= 0)
7256 dm->index *= 2;
7257 }
7258 /* create new *missing* disks */
7259 for (i = 0; i < map->num_members; i++) {
7260 space = *space_list;
7261 if (!space)
7262 continue;
7263 *space_list = *space;
7264 du = (void *)space;
7265 memcpy(du, super->disks, sizeof(*du));
7266 du->fd = -1;
7267 du->minor = 0;
7268 du->major = 0;
7269 du->index = (i * 2) + 1;
7270 sprintf((char *)du->disk.serial,
7271 " MISSING_%d", du->index);
7272 sprintf((char *)du->serial,
7273 "MISSING_%d", du->index);
7274 du->next = super->missing;
7275 super->missing = du;
7276 }
7277 /* create new dev and map */
7278 space = *space_list;
7279 if (!space)
7280 return 0;
7281 *space_list = *space;
7282 dev_new = (void *)space;
7283 memcpy(dev_new, dev, sizeof(*dev));
7284 /* update new map */
7285 map = get_imsm_map(dev_new, 0);
7286 map->num_members = map->num_members * 2;
7287 map->map_state = IMSM_T_STATE_DEGRADED;
7288 map->num_domains = 2;
7289 map->raid_level = 1;
7290 /* replace dev<->dev_new */
7291 dv->dev = dev_new;
7292 }
7293 /* update disk order table */
7294 for (du = super->disks; du; du = du->next)
7295 if (du->index >= 0)
7296 set_imsm_ord_tbl_ent(map, du->index, du->index);
7297 for (du = super->missing; du; du = du->next)
7298 if (du->index >= 0) {
7299 set_imsm_ord_tbl_ent(map, du->index, du->index);
7300 mark_missing(dv->dev, &du->disk, du->index);
7301 }
7302
7303 return 1;
7304 }
7305
7306 static void imsm_process_update(struct supertype *st,
7307 struct metadata_update *update)
7308 {
7309 /**
7310 * crack open the metadata_update envelope to find the update record
7311 * update can be one of:
7312 * update_reshape_container_disks - all the arrays in the container
7313 * are being reshaped to have more devices. We need to mark
7314 * the arrays for general migration and convert selected spares
7315 * into active devices.
7316 * update_activate_spare - a spare device has replaced a failed
7317 * device in an array, update the disk_ord_tbl. If this disk is
7318 * present in all member arrays then also clear the SPARE_DISK
7319 * flag
7320 * update_create_array
7321 * update_kill_array
7322 * update_rename_array
7323 * update_add_remove_disk
7324 */
7325 struct intel_super *super = st->sb;
7326 struct imsm_super *mpb;
7327 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7328
7329 /* update requires a larger buf but the allocation failed */
7330 if (super->next_len && !super->next_buf) {
7331 super->next_len = 0;
7332 return;
7333 }
7334
7335 if (super->next_buf) {
7336 memcpy(super->next_buf, super->buf, super->len);
7337 free(super->buf);
7338 super->len = super->next_len;
7339 super->buf = super->next_buf;
7340
7341 super->next_len = 0;
7342 super->next_buf = NULL;
7343 }
7344
7345 mpb = super->anchor;
7346
7347 switch (type) {
7348 case update_general_migration_checkpoint: {
7349 struct intel_dev *id;
7350 struct imsm_update_general_migration_checkpoint *u =
7351 (void *)update->buf;
7352
7353 dprintf("imsm: process_update() "
7354 "for update_general_migration_checkpoint called\n");
7355
7356 /* find device under general migration */
7357 for (id = super->devlist ; id; id = id->next) {
7358 if (is_gen_migration(id->dev)) {
7359 id->dev->vol.curr_migr_unit =
7360 __cpu_to_le32(u->curr_migr_unit);
7361 super->updates_pending++;
7362 }
7363 }
7364 break;
7365 }
7366 case update_takeover: {
7367 struct imsm_update_takeover *u = (void *)update->buf;
7368 if (apply_takeover_update(u, super, &update->space_list)) {
7369 imsm_update_version_info(super);
7370 super->updates_pending++;
7371 }
7372 break;
7373 }
7374
7375 case update_reshape_container_disks: {
7376 struct imsm_update_reshape *u = (void *)update->buf;
7377 if (apply_reshape_container_disks_update(
7378 u, super, &update->space_list))
7379 super->updates_pending++;
7380 break;
7381 }
7382 case update_reshape_migration: {
7383 struct imsm_update_reshape_migration *u = (void *)update->buf;
7384 if (apply_reshape_migration_update(
7385 u, super, &update->space_list))
7386 super->updates_pending++;
7387 break;
7388 }
7389 case update_activate_spare: {
7390 struct imsm_update_activate_spare *u = (void *) update->buf;
7391 if (apply_update_activate_spare(u, super, st->arrays))
7392 super->updates_pending++;
7393 break;
7394 }
7395 case update_create_array: {
7396 /* someone wants to create a new array, we need to be aware of
7397 * a few races/collisions:
7398 * 1/ 'Create' called by two separate instances of mdadm
7399 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7400 * devices that have since been assimilated via
7401 * activate_spare.
7402 * In the event this update can not be carried out mdadm will
7403 * (FIX ME) notice that its update did not take hold.
7404 */
7405 struct imsm_update_create_array *u = (void *) update->buf;
7406 struct intel_dev *dv;
7407 struct imsm_dev *dev;
7408 struct imsm_map *map, *new_map;
7409 unsigned long long start, end;
7410 unsigned long long new_start, new_end;
7411 int i;
7412 struct disk_info *inf;
7413 struct dl *dl;
7414
7415 /* handle racing creates: first come first serve */
7416 if (u->dev_idx < mpb->num_raid_devs) {
7417 dprintf("%s: subarray %d already defined\n",
7418 __func__, u->dev_idx);
7419 goto create_error;
7420 }
7421
7422 /* check update is next in sequence */
7423 if (u->dev_idx != mpb->num_raid_devs) {
7424 dprintf("%s: can not create array %d expected index %d\n",
7425 __func__, u->dev_idx, mpb->num_raid_devs);
7426 goto create_error;
7427 }
7428
7429 new_map = get_imsm_map(&u->dev, 0);
7430 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7431 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
7432 inf = get_disk_info(u);
7433
7434 /* handle activate_spare versus create race:
7435 * check to make sure that overlapping arrays do not include
7436 * overalpping disks
7437 */
7438 for (i = 0; i < mpb->num_raid_devs; i++) {
7439 dev = get_imsm_dev(super, i);
7440 map = get_imsm_map(dev, 0);
7441 start = __le32_to_cpu(map->pba_of_lba0);
7442 end = start + __le32_to_cpu(map->blocks_per_member);
7443 if ((new_start >= start && new_start <= end) ||
7444 (start >= new_start && start <= new_end))
7445 /* overlap */;
7446 else
7447 continue;
7448
7449 if (disks_overlap(super, i, u)) {
7450 dprintf("%s: arrays overlap\n", __func__);
7451 goto create_error;
7452 }
7453 }
7454
7455 /* check that prepare update was successful */
7456 if (!update->space) {
7457 dprintf("%s: prepare update failed\n", __func__);
7458 goto create_error;
7459 }
7460
7461 /* check that all disks are still active before committing
7462 * changes. FIXME: could we instead handle this by creating a
7463 * degraded array? That's probably not what the user expects,
7464 * so better to drop this update on the floor.
7465 */
7466 for (i = 0; i < new_map->num_members; i++) {
7467 dl = serial_to_dl(inf[i].serial, super);
7468 if (!dl) {
7469 dprintf("%s: disk disappeared\n", __func__);
7470 goto create_error;
7471 }
7472 }
7473
7474 super->updates_pending++;
7475
7476 /* convert spares to members and fixup ord_tbl */
7477 for (i = 0; i < new_map->num_members; i++) {
7478 dl = serial_to_dl(inf[i].serial, super);
7479 if (dl->index == -1) {
7480 dl->index = mpb->num_disks;
7481 mpb->num_disks++;
7482 dl->disk.status |= CONFIGURED_DISK;
7483 dl->disk.status &= ~SPARE_DISK;
7484 }
7485 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7486 }
7487
7488 dv = update->space;
7489 dev = dv->dev;
7490 update->space = NULL;
7491 imsm_copy_dev(dev, &u->dev);
7492 dv->index = u->dev_idx;
7493 dv->next = super->devlist;
7494 super->devlist = dv;
7495 mpb->num_raid_devs++;
7496
7497 imsm_update_version_info(super);
7498 break;
7499 create_error:
7500 /* mdmon knows how to release update->space, but not
7501 * ((struct intel_dev *) update->space)->dev
7502 */
7503 if (update->space) {
7504 dv = update->space;
7505 free(dv->dev);
7506 }
7507 break;
7508 }
7509 case update_kill_array: {
7510 struct imsm_update_kill_array *u = (void *) update->buf;
7511 int victim = u->dev_idx;
7512 struct active_array *a;
7513 struct intel_dev **dp;
7514 struct imsm_dev *dev;
7515
7516 /* sanity check that we are not affecting the uuid of
7517 * active arrays, or deleting an active array
7518 *
7519 * FIXME when immutable ids are available, but note that
7520 * we'll also need to fixup the invalidated/active
7521 * subarray indexes in mdstat
7522 */
7523 for (a = st->arrays; a; a = a->next)
7524 if (a->info.container_member >= victim)
7525 break;
7526 /* by definition if mdmon is running at least one array
7527 * is active in the container, so checking
7528 * mpb->num_raid_devs is just extra paranoia
7529 */
7530 dev = get_imsm_dev(super, victim);
7531 if (a || !dev || mpb->num_raid_devs == 1) {
7532 dprintf("failed to delete subarray-%d\n", victim);
7533 break;
7534 }
7535
7536 for (dp = &super->devlist; *dp;)
7537 if ((*dp)->index == (unsigned)super->current_vol) {
7538 *dp = (*dp)->next;
7539 } else {
7540 if ((*dp)->index > (unsigned)victim)
7541 (*dp)->index--;
7542 dp = &(*dp)->next;
7543 }
7544 mpb->num_raid_devs--;
7545 super->updates_pending++;
7546 break;
7547 }
7548 case update_rename_array: {
7549 struct imsm_update_rename_array *u = (void *) update->buf;
7550 char name[MAX_RAID_SERIAL_LEN+1];
7551 int target = u->dev_idx;
7552 struct active_array *a;
7553 struct imsm_dev *dev;
7554
7555 /* sanity check that we are not affecting the uuid of
7556 * an active array
7557 */
7558 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7559 name[MAX_RAID_SERIAL_LEN] = '\0';
7560 for (a = st->arrays; a; a = a->next)
7561 if (a->info.container_member == target)
7562 break;
7563 dev = get_imsm_dev(super, u->dev_idx);
7564 if (a || !dev || !check_name(super, name, 1)) {
7565 dprintf("failed to rename subarray-%d\n", target);
7566 break;
7567 }
7568
7569 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7570 super->updates_pending++;
7571 break;
7572 }
7573 case update_add_remove_disk: {
7574 /* we may be able to repair some arrays if disks are
7575 * being added, check teh status of add_remove_disk
7576 * if discs has been added.
7577 */
7578 if (add_remove_disk_update(super)) {
7579 struct active_array *a;
7580
7581 super->updates_pending++;
7582 for (a = st->arrays; a; a = a->next)
7583 a->check_degraded = 1;
7584 }
7585 break;
7586 }
7587 default:
7588 fprintf(stderr, "error: unsuported process update type:"
7589 "(type: %d)\n", type);
7590 }
7591 }
7592
7593 static struct mdinfo *get_spares_for_grow(struct supertype *st);
7594
7595 static void imsm_prepare_update(struct supertype *st,
7596 struct metadata_update *update)
7597 {
7598 /**
7599 * Allocate space to hold new disk entries, raid-device entries or a new
7600 * mpb if necessary. The manager synchronously waits for updates to
7601 * complete in the monitor, so new mpb buffers allocated here can be
7602 * integrated by the monitor thread without worrying about live pointers
7603 * in the manager thread.
7604 */
7605 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7606 struct intel_super *super = st->sb;
7607 struct imsm_super *mpb = super->anchor;
7608 size_t buf_len;
7609 size_t len = 0;
7610
7611 switch (type) {
7612 case update_general_migration_checkpoint:
7613 dprintf("imsm: prepare_update() "
7614 "for update_general_migration_checkpoint called\n");
7615 break;
7616 case update_takeover: {
7617 struct imsm_update_takeover *u = (void *)update->buf;
7618 if (u->direction == R0_TO_R10) {
7619 void **tail = (void **)&update->space_list;
7620 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7621 struct imsm_map *map = get_imsm_map(dev, 0);
7622 int num_members = map->num_members;
7623 void *space;
7624 int size, i;
7625 int err = 0;
7626 /* allocate memory for added disks */
7627 for (i = 0; i < num_members; i++) {
7628 size = sizeof(struct dl);
7629 space = malloc(size);
7630 if (!space) {
7631 err++;
7632 break;
7633 }
7634 *tail = space;
7635 tail = space;
7636 *tail = NULL;
7637 }
7638 /* allocate memory for new device */
7639 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7640 (num_members * sizeof(__u32));
7641 space = malloc(size);
7642 if (!space)
7643 err++;
7644 else {
7645 *tail = space;
7646 tail = space;
7647 *tail = NULL;
7648 }
7649 if (!err) {
7650 len = disks_to_mpb_size(num_members * 2);
7651 } else {
7652 /* if allocation didn't success, free buffer */
7653 while (update->space_list) {
7654 void **sp = update->space_list;
7655 update->space_list = *sp;
7656 free(sp);
7657 }
7658 }
7659 }
7660
7661 break;
7662 }
7663 case update_reshape_container_disks: {
7664 /* Every raid device in the container is about to
7665 * gain some more devices, and we will enter a
7666 * reconfiguration.
7667 * So each 'imsm_map' will be bigger, and the imsm_vol
7668 * will now hold 2 of them.
7669 * Thus we need new 'struct imsm_dev' allocations sized
7670 * as sizeof_imsm_dev but with more devices in both maps.
7671 */
7672 struct imsm_update_reshape *u = (void *)update->buf;
7673 struct intel_dev *dl;
7674 void **space_tail = (void**)&update->space_list;
7675
7676 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7677
7678 for (dl = super->devlist; dl; dl = dl->next) {
7679 int size = sizeof_imsm_dev(dl->dev, 1);
7680 void *s;
7681 if (u->new_raid_disks > u->old_raid_disks)
7682 size += sizeof(__u32)*2*
7683 (u->new_raid_disks - u->old_raid_disks);
7684 s = malloc(size);
7685 if (!s)
7686 break;
7687 *space_tail = s;
7688 space_tail = s;
7689 *space_tail = NULL;
7690 }
7691
7692 len = disks_to_mpb_size(u->new_raid_disks);
7693 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7694 break;
7695 }
7696 case update_reshape_migration: {
7697 /* for migration level 0->5 we need to add disks
7698 * so the same as for container operation we will copy
7699 * device to the bigger location.
7700 * in memory prepared device and new disk area are prepared
7701 * for usage in process update
7702 */
7703 struct imsm_update_reshape_migration *u = (void *)update->buf;
7704 struct intel_dev *id;
7705 void **space_tail = (void **)&update->space_list;
7706 int size;
7707 void *s;
7708 int current_level = -1;
7709
7710 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7711
7712 /* add space for bigger array in update
7713 */
7714 for (id = super->devlist; id; id = id->next) {
7715 if (id->index == (unsigned)u->subdev) {
7716 size = sizeof_imsm_dev(id->dev, 1);
7717 if (u->new_raid_disks > u->old_raid_disks)
7718 size += sizeof(__u32)*2*
7719 (u->new_raid_disks - u->old_raid_disks);
7720 s = malloc(size);
7721 if (!s)
7722 break;
7723 *space_tail = s;
7724 space_tail = s;
7725 *space_tail = NULL;
7726 break;
7727 }
7728 }
7729 if (update->space_list == NULL)
7730 break;
7731
7732 /* add space for disk in update
7733 */
7734 size = sizeof(struct dl);
7735 s = malloc(size);
7736 if (!s) {
7737 free(update->space_list);
7738 update->space_list = NULL;
7739 break;
7740 }
7741 *space_tail = s;
7742 space_tail = s;
7743 *space_tail = NULL;
7744
7745 /* add spare device to update
7746 */
7747 for (id = super->devlist ; id; id = id->next)
7748 if (id->index == (unsigned)u->subdev) {
7749 struct imsm_dev *dev;
7750 struct imsm_map *map;
7751
7752 dev = get_imsm_dev(super, u->subdev);
7753 map = get_imsm_map(dev, 0);
7754 current_level = map->raid_level;
7755 break;
7756 }
7757 if ((u->new_level == 5) && (u->new_level != current_level)) {
7758 struct mdinfo *spares;
7759
7760 spares = get_spares_for_grow(st);
7761 if (spares) {
7762 struct dl *dl;
7763 struct mdinfo *dev;
7764
7765 dev = spares->devs;
7766 if (dev) {
7767 u->new_disks[0] =
7768 makedev(dev->disk.major,
7769 dev->disk.minor);
7770 dl = get_disk_super(super,
7771 dev->disk.major,
7772 dev->disk.minor);
7773 dl->index = u->old_raid_disks;
7774 dev = dev->next;
7775 }
7776 sysfs_free(spares);
7777 }
7778 }
7779 len = disks_to_mpb_size(u->new_raid_disks);
7780 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7781 break;
7782 }
7783 case update_create_array: {
7784 struct imsm_update_create_array *u = (void *) update->buf;
7785 struct intel_dev *dv;
7786 struct imsm_dev *dev = &u->dev;
7787 struct imsm_map *map = get_imsm_map(dev, 0);
7788 struct dl *dl;
7789 struct disk_info *inf;
7790 int i;
7791 int activate = 0;
7792
7793 inf = get_disk_info(u);
7794 len = sizeof_imsm_dev(dev, 1);
7795 /* allocate a new super->devlist entry */
7796 dv = malloc(sizeof(*dv));
7797 if (dv) {
7798 dv->dev = malloc(len);
7799 if (dv->dev)
7800 update->space = dv;
7801 else {
7802 free(dv);
7803 update->space = NULL;
7804 }
7805 }
7806
7807 /* count how many spares will be converted to members */
7808 for (i = 0; i < map->num_members; i++) {
7809 dl = serial_to_dl(inf[i].serial, super);
7810 if (!dl) {
7811 /* hmm maybe it failed?, nothing we can do about
7812 * it here
7813 */
7814 continue;
7815 }
7816 if (count_memberships(dl, super) == 0)
7817 activate++;
7818 }
7819 len += activate * sizeof(struct imsm_disk);
7820 break;
7821 default:
7822 break;
7823 }
7824 }
7825
7826 /* check if we need a larger metadata buffer */
7827 if (super->next_buf)
7828 buf_len = super->next_len;
7829 else
7830 buf_len = super->len;
7831
7832 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7833 /* ok we need a larger buf than what is currently allocated
7834 * if this allocation fails process_update will notice that
7835 * ->next_len is set and ->next_buf is NULL
7836 */
7837 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7838 if (super->next_buf)
7839 free(super->next_buf);
7840
7841 super->next_len = buf_len;
7842 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7843 memset(super->next_buf, 0, buf_len);
7844 else
7845 super->next_buf = NULL;
7846 }
7847 }
7848
7849 /* must be called while manager is quiesced */
7850 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
7851 {
7852 struct imsm_super *mpb = super->anchor;
7853 struct dl *iter;
7854 struct imsm_dev *dev;
7855 struct imsm_map *map;
7856 int i, j, num_members;
7857 __u32 ord;
7858
7859 dprintf("%s: deleting device[%d] from imsm_super\n",
7860 __func__, index);
7861
7862 /* shift all indexes down one */
7863 for (iter = super->disks; iter; iter = iter->next)
7864 if (iter->index > (int)index)
7865 iter->index--;
7866 for (iter = super->missing; iter; iter = iter->next)
7867 if (iter->index > (int)index)
7868 iter->index--;
7869
7870 for (i = 0; i < mpb->num_raid_devs; i++) {
7871 dev = get_imsm_dev(super, i);
7872 map = get_imsm_map(dev, 0);
7873 num_members = map->num_members;
7874 for (j = 0; j < num_members; j++) {
7875 /* update ord entries being careful not to propagate
7876 * ord-flags to the first map
7877 */
7878 ord = get_imsm_ord_tbl_ent(dev, j, -1);
7879
7880 if (ord_to_idx(ord) <= index)
7881 continue;
7882
7883 map = get_imsm_map(dev, 0);
7884 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7885 map = get_imsm_map(dev, 1);
7886 if (map)
7887 set_imsm_ord_tbl_ent(map, j, ord - 1);
7888 }
7889 }
7890
7891 mpb->num_disks--;
7892 super->updates_pending++;
7893 if (*dlp) {
7894 struct dl *dl = *dlp;
7895
7896 *dlp = (*dlp)->next;
7897 __free_imsm_disk(dl);
7898 }
7899 }
7900 #endif /* MDASSEMBLE */
7901 /*******************************************************************************
7902 * Function: open_backup_targets
7903 * Description: Function opens file descriptors for all devices given in
7904 * info->devs
7905 * Parameters:
7906 * info : general array info
7907 * raid_disks : number of disks
7908 * raid_fds : table of device's file descriptors
7909 * Returns:
7910 * 0 : success
7911 * -1 : fail
7912 ******************************************************************************/
7913 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7914 {
7915 struct mdinfo *sd;
7916
7917 for (sd = info->devs ; sd ; sd = sd->next) {
7918 char *dn;
7919
7920 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7921 dprintf("disk is faulty!!\n");
7922 continue;
7923 }
7924
7925 if ((sd->disk.raid_disk >= raid_disks) ||
7926 (sd->disk.raid_disk < 0))
7927 continue;
7928
7929 dn = map_dev(sd->disk.major,
7930 sd->disk.minor, 1);
7931 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7932 if (raid_fds[sd->disk.raid_disk] < 0) {
7933 fprintf(stderr, "cannot open component\n");
7934 return -1;
7935 }
7936 }
7937 return 0;
7938 }
7939
7940 #ifndef MDASSEMBLE
7941 /*******************************************************************************
7942 * Function: init_migr_record_imsm
7943 * Description: Function inits imsm migration record
7944 * Parameters:
7945 * super : imsm internal array info
7946 * dev : device under migration
7947 * info : general array info to find the smallest device
7948 * Returns:
7949 * none
7950 ******************************************************************************/
7951 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7952 struct mdinfo *info)
7953 {
7954 struct intel_super *super = st->sb;
7955 struct migr_record *migr_rec = super->migr_rec;
7956 int new_data_disks;
7957 unsigned long long dsize, dev_sectors;
7958 long long unsigned min_dev_sectors = -1LLU;
7959 struct mdinfo *sd;
7960 char nm[30];
7961 int fd;
7962 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7963 struct imsm_map *map_src = get_imsm_map(dev, 1);
7964 unsigned long long num_migr_units;
7965 unsigned long long array_blocks;
7966
7967 memset(migr_rec, 0, sizeof(struct migr_record));
7968 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
7969
7970 /* only ascending reshape supported now */
7971 migr_rec->ascending_migr = __cpu_to_le32(1);
7972
7973 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
7974 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
7975 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
7976 new_data_disks = imsm_num_data_members(dev, 0);
7977 migr_rec->blocks_per_unit =
7978 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
7979 migr_rec->dest_depth_per_unit =
7980 __cpu_to_le32(migr_rec->dest_depth_per_unit);
7981 array_blocks = info->component_size * new_data_disks;
7982 num_migr_units =
7983 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
7984
7985 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
7986 num_migr_units++;
7987 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
7988
7989 migr_rec->post_migr_vol_cap = dev->size_low;
7990 migr_rec->post_migr_vol_cap_hi = dev->size_high;
7991
7992
7993 /* Find the smallest dev */
7994 for (sd = info->devs ; sd ; sd = sd->next) {
7995 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
7996 fd = dev_open(nm, O_RDONLY);
7997 if (fd < 0)
7998 continue;
7999 get_dev_size(fd, NULL, &dsize);
8000 dev_sectors = dsize / 512;
8001 if (dev_sectors < min_dev_sectors)
8002 min_dev_sectors = dev_sectors;
8003 close(fd);
8004 }
8005 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8006 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8007
8008 write_imsm_migr_rec(st);
8009
8010 return;
8011 }
8012
8013 /*******************************************************************************
8014 * Function: save_backup_imsm
8015 * Description: Function saves critical data stripes to Migration Copy Area
8016 * and updates the current migration unit status.
8017 * Use restore_stripes() to form a destination stripe,
8018 * and to write it to the Copy Area.
8019 * Parameters:
8020 * st : supertype information
8021 * dev : imsm device that backup is saved for
8022 * info : general array info
8023 * buf : input buffer
8024 * length : length of data to backup (blocks_per_unit)
8025 * Returns:
8026 * 0 : success
8027 *, -1 : fail
8028 ******************************************************************************/
8029 int save_backup_imsm(struct supertype *st,
8030 struct imsm_dev *dev,
8031 struct mdinfo *info,
8032 void *buf,
8033 int length)
8034 {
8035 int rv = -1;
8036 struct intel_super *super = st->sb;
8037 unsigned long long *target_offsets = NULL;
8038 int *targets = NULL;
8039 int i;
8040 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8041 int new_disks = map_dest->num_members;
8042 int dest_layout = 0;
8043 int dest_chunk;
8044 unsigned long long start;
8045 int data_disks = imsm_num_data_members(dev, 0);
8046
8047 targets = malloc(new_disks * sizeof(int));
8048 if (!targets)
8049 goto abort;
8050
8051 for (i = 0; i < new_disks; i++)
8052 targets[i] = -1;
8053
8054 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8055 if (!target_offsets)
8056 goto abort;
8057
8058 start = info->reshape_progress * 512;
8059 for (i = 0; i < new_disks; i++) {
8060 target_offsets[i] = (unsigned long long)
8061 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
8062 /* move back copy area adderss, it will be moved forward
8063 * in restore_stripes() using start input variable
8064 */
8065 target_offsets[i] -= start/data_disks;
8066 }
8067
8068 if (open_backup_targets(info, new_disks, targets))
8069 goto abort;
8070
8071 dest_layout = imsm_level_to_layout(map_dest->raid_level);
8072 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8073
8074 if (restore_stripes(targets, /* list of dest devices */
8075 target_offsets, /* migration record offsets */
8076 new_disks,
8077 dest_chunk,
8078 map_dest->raid_level,
8079 dest_layout,
8080 -1, /* source backup file descriptor */
8081 0, /* input buf offset
8082 * always 0 buf is already offseted */
8083 start,
8084 length,
8085 buf) != 0) {
8086 fprintf(stderr, Name ": Error restoring stripes\n");
8087 goto abort;
8088 }
8089
8090 rv = 0;
8091
8092 abort:
8093 if (targets) {
8094 for (i = 0; i < new_disks; i++)
8095 if (targets[i] >= 0)
8096 close(targets[i]);
8097 free(targets);
8098 }
8099 free(target_offsets);
8100
8101 return rv;
8102 }
8103
8104 /*******************************************************************************
8105 * Function: save_checkpoint_imsm
8106 * Description: Function called for current unit status update
8107 * in the migration record. It writes it to disk.
8108 * Parameters:
8109 * super : imsm internal array info
8110 * info : general array info
8111 * Returns:
8112 * 0: success
8113 * 1: failure
8114 * 2: failure, means no valid migration record
8115 * / no general migration in progress /
8116 ******************************************************************************/
8117 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8118 {
8119 struct intel_super *super = st->sb;
8120 unsigned long long blocks_per_unit;
8121 unsigned long long curr_migr_unit;
8122
8123 if (load_imsm_migr_rec(super, info) != 0) {
8124 dprintf("imsm: ERROR: Cannot read migration record "
8125 "for checkpoint save.\n");
8126 return 1;
8127 }
8128
8129 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8130 if (blocks_per_unit == 0) {
8131 dprintf("imsm: no migration in progress.\n");
8132 return 2;
8133 }
8134 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8135 /* check if array is alligned to copy area
8136 * if it is not alligned, add one to current migration unit value
8137 * this can happend on array reshape finish only
8138 */
8139 if (info->reshape_progress % blocks_per_unit)
8140 curr_migr_unit++;
8141
8142 super->migr_rec->curr_migr_unit =
8143 __cpu_to_le32(curr_migr_unit);
8144 super->migr_rec->rec_status = __cpu_to_le32(state);
8145 super->migr_rec->dest_1st_member_lba =
8146 __cpu_to_le32(curr_migr_unit *
8147 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
8148 if (write_imsm_migr_rec(st) < 0) {
8149 dprintf("imsm: Cannot write migration record "
8150 "outside backup area\n");
8151 return 1;
8152 }
8153
8154 return 0;
8155 }
8156
8157 /*******************************************************************************
8158 * Function: recover_backup_imsm
8159 * Description: Function recovers critical data from the Migration Copy Area
8160 * while assembling an array.
8161 * Parameters:
8162 * super : imsm internal array info
8163 * info : general array info
8164 * Returns:
8165 * 0 : success (or there is no data to recover)
8166 * 1 : fail
8167 ******************************************************************************/
8168 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8169 {
8170 struct intel_super *super = st->sb;
8171 struct migr_record *migr_rec = super->migr_rec;
8172 struct imsm_map *map_dest = NULL;
8173 struct intel_dev *id = NULL;
8174 unsigned long long read_offset;
8175 unsigned long long write_offset;
8176 unsigned unit_len;
8177 int *targets = NULL;
8178 int new_disks, i, err;
8179 char *buf = NULL;
8180 int retval = 1;
8181 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8182 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
8183 char buffer[20];
8184 int skipped_disks = 0;
8185 int max_degradation;
8186
8187 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8188 if (err < 1)
8189 return 1;
8190
8191 /* recover data only during assemblation */
8192 if (strncmp(buffer, "inactive", 8) != 0)
8193 return 0;
8194 /* no data to recover */
8195 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8196 return 0;
8197 if (curr_migr_unit >= num_migr_units)
8198 return 1;
8199
8200 /* find device during reshape */
8201 for (id = super->devlist; id; id = id->next)
8202 if (is_gen_migration(id->dev))
8203 break;
8204 if (id == NULL)
8205 return 1;
8206
8207 map_dest = get_imsm_map(id->dev, 0);
8208 new_disks = map_dest->num_members;
8209 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
8210
8211 read_offset = (unsigned long long)
8212 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8213
8214 write_offset = ((unsigned long long)
8215 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
8216 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
8217
8218 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8219 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8220 goto abort;
8221 targets = malloc(new_disks * sizeof(int));
8222 if (!targets)
8223 goto abort;
8224
8225 open_backup_targets(info, new_disks, targets);
8226
8227 for (i = 0; i < new_disks; i++) {
8228 if (targets[i] < 0) {
8229 skipped_disks++;
8230 continue;
8231 }
8232 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8233 fprintf(stderr,
8234 Name ": Cannot seek to block: %s\n",
8235 strerror(errno));
8236 goto abort;
8237 }
8238 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
8239 fprintf(stderr,
8240 Name ": Cannot read copy area block: %s\n",
8241 strerror(errno));
8242 goto abort;
8243 }
8244 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8245 fprintf(stderr,
8246 Name ": Cannot seek to block: %s\n",
8247 strerror(errno));
8248 goto abort;
8249 }
8250 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
8251 fprintf(stderr,
8252 Name ": Cannot restore block: %s\n",
8253 strerror(errno));
8254 goto abort;
8255 }
8256 }
8257
8258 if (skipped_disks > max_degradation) {
8259 fprintf(stderr,
8260 Name ": Cannot restore data from backup."
8261 " Too many failed disks\n");
8262 goto abort;
8263 }
8264
8265 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8266 /* ignore error == 2, this can mean end of reshape here
8267 */
8268 dprintf("imsm: Cannot write checkpoint to "
8269 "migration record (UNIT_SRC_NORMAL) during restart\n");
8270 } else
8271 retval = 0;
8272
8273 abort:
8274 if (targets) {
8275 for (i = 0; i < new_disks; i++)
8276 if (targets[i])
8277 close(targets[i]);
8278 free(targets);
8279 }
8280 free(buf);
8281 return retval;
8282 }
8283
8284 static char disk_by_path[] = "/dev/disk/by-path/";
8285
8286 static const char *imsm_get_disk_controller_domain(const char *path)
8287 {
8288 char disk_path[PATH_MAX];
8289 char *drv=NULL;
8290 struct stat st;
8291
8292 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8293 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8294 if (stat(disk_path, &st) == 0) {
8295 struct sys_dev* hba;
8296 char *path=NULL;
8297
8298 path = devt_to_devpath(st.st_rdev);
8299 if (path == NULL)
8300 return "unknown";
8301 hba = find_disk_attached_hba(-1, path);
8302 if (hba && hba->type == SYS_DEV_SAS)
8303 drv = "isci";
8304 else if (hba && hba->type == SYS_DEV_SATA)
8305 drv = "ahci";
8306 else
8307 drv = "unknown";
8308 dprintf("path: %s hba: %s attached: %s\n",
8309 path, (hba) ? hba->path : "NULL", drv);
8310 free(path);
8311 if (hba)
8312 free_sys_dev(&hba);
8313 }
8314 return drv;
8315 }
8316
8317 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8318 {
8319 char subdev_name[20];
8320 struct mdstat_ent *mdstat;
8321
8322 sprintf(subdev_name, "%d", subdev);
8323 mdstat = mdstat_by_subdev(subdev_name, container);
8324 if (!mdstat)
8325 return -1;
8326
8327 *minor = mdstat->devnum;
8328 free_mdstat(mdstat);
8329 return 0;
8330 }
8331
8332 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8333 struct geo_params *geo,
8334 int *old_raid_disks)
8335 {
8336 /* currently we only support increasing the number of devices
8337 * for a container. This increases the number of device for each
8338 * member array. They must all be RAID0 or RAID5.
8339 */
8340 int ret_val = 0;
8341 struct mdinfo *info, *member;
8342 int devices_that_can_grow = 0;
8343
8344 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8345 "st->devnum = (%i)\n",
8346 st->devnum);
8347
8348 if (geo->size != -1 ||
8349 geo->level != UnSet ||
8350 geo->layout != UnSet ||
8351 geo->chunksize != 0 ||
8352 geo->raid_disks == UnSet) {
8353 dprintf("imsm: Container operation is allowed for "
8354 "raid disks number change only.\n");
8355 return ret_val;
8356 }
8357
8358 info = container_content_imsm(st, NULL);
8359 for (member = info; member; member = member->next) {
8360 int result;
8361 int minor;
8362
8363 dprintf("imsm: checking device_num: %i\n",
8364 member->container_member);
8365
8366 if (geo->raid_disks <= member->array.raid_disks) {
8367 /* we work on container for Online Capacity Expansion
8368 * only so raid_disks has to grow
8369 */
8370 dprintf("imsm: for container operation raid disks "
8371 "increase is required\n");
8372 break;
8373 }
8374
8375 if ((info->array.level != 0) &&
8376 (info->array.level != 5)) {
8377 /* we cannot use this container with other raid level
8378 */
8379 dprintf("imsm: for container operation wrong"
8380 " raid level (%i) detected\n",
8381 info->array.level);
8382 break;
8383 } else {
8384 /* check for platform support
8385 * for this raid level configuration
8386 */
8387 struct intel_super *super = st->sb;
8388 if (!is_raid_level_supported(super->orom,
8389 member->array.level,
8390 geo->raid_disks)) {
8391 dprintf("platform does not support raid%d with"
8392 " %d disk%s\n",
8393 info->array.level,
8394 geo->raid_disks,
8395 geo->raid_disks > 1 ? "s" : "");
8396 break;
8397 }
8398 /* check if component size is aligned to chunk size
8399 */
8400 if (info->component_size %
8401 (info->array.chunk_size/512)) {
8402 dprintf("Component size is not aligned to "
8403 "chunk size\n");
8404 break;
8405 }
8406 }
8407
8408 if (*old_raid_disks &&
8409 info->array.raid_disks != *old_raid_disks)
8410 break;
8411 *old_raid_disks = info->array.raid_disks;
8412
8413 /* All raid5 and raid0 volumes in container
8414 * have to be ready for Online Capacity Expansion
8415 * so they need to be assembled. We have already
8416 * checked that no recovery etc is happening.
8417 */
8418 result = imsm_find_array_minor_by_subdev(member->container_member,
8419 st->container_dev,
8420 &minor);
8421 if (result < 0) {
8422 dprintf("imsm: cannot find array\n");
8423 break;
8424 }
8425 devices_that_can_grow++;
8426 }
8427 sysfs_free(info);
8428 if (!member && devices_that_can_grow)
8429 ret_val = 1;
8430
8431 if (ret_val)
8432 dprintf("\tContainer operation allowed\n");
8433 else
8434 dprintf("\tError: %i\n", ret_val);
8435
8436 return ret_val;
8437 }
8438
8439 /* Function: get_spares_for_grow
8440 * Description: Allocates memory and creates list of spare devices
8441 * avaliable in container. Checks if spare drive size is acceptable.
8442 * Parameters: Pointer to the supertype structure
8443 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8444 * NULL if fail
8445 */
8446 static struct mdinfo *get_spares_for_grow(struct supertype *st)
8447 {
8448 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
8449 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
8450 }
8451
8452 /******************************************************************************
8453 * function: imsm_create_metadata_update_for_reshape
8454 * Function creates update for whole IMSM container.
8455 *
8456 ******************************************************************************/
8457 static int imsm_create_metadata_update_for_reshape(
8458 struct supertype *st,
8459 struct geo_params *geo,
8460 int old_raid_disks,
8461 struct imsm_update_reshape **updatep)
8462 {
8463 struct intel_super *super = st->sb;
8464 struct imsm_super *mpb = super->anchor;
8465 int update_memory_size = 0;
8466 struct imsm_update_reshape *u = NULL;
8467 struct mdinfo *spares = NULL;
8468 int i;
8469 int delta_disks = 0;
8470 struct mdinfo *dev;
8471
8472 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8473 geo->raid_disks);
8474
8475 delta_disks = geo->raid_disks - old_raid_disks;
8476
8477 /* size of all update data without anchor */
8478 update_memory_size = sizeof(struct imsm_update_reshape);
8479
8480 /* now add space for spare disks that we need to add. */
8481 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8482
8483 u = calloc(1, update_memory_size);
8484 if (u == NULL) {
8485 dprintf("error: "
8486 "cannot get memory for imsm_update_reshape update\n");
8487 return 0;
8488 }
8489 u->type = update_reshape_container_disks;
8490 u->old_raid_disks = old_raid_disks;
8491 u->new_raid_disks = geo->raid_disks;
8492
8493 /* now get spare disks list
8494 */
8495 spares = get_spares_for_grow(st);
8496
8497 if (spares == NULL
8498 || delta_disks > spares->array.spare_disks) {
8499 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8500 "for %s.\n", geo->dev_name);
8501 i = -1;
8502 goto abort;
8503 }
8504
8505 /* we have got spares
8506 * update disk list in imsm_disk list table in anchor
8507 */
8508 dprintf("imsm: %i spares are available.\n\n",
8509 spares->array.spare_disks);
8510
8511 dev = spares->devs;
8512 for (i = 0; i < delta_disks; i++) {
8513 struct dl *dl;
8514
8515 if (dev == NULL)
8516 break;
8517 u->new_disks[i] = makedev(dev->disk.major,
8518 dev->disk.minor);
8519 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
8520 dl->index = mpb->num_disks;
8521 mpb->num_disks++;
8522 dev = dev->next;
8523 }
8524
8525 abort:
8526 /* free spares
8527 */
8528 sysfs_free(spares);
8529
8530 dprintf("imsm: reshape update preparation :");
8531 if (i == delta_disks) {
8532 dprintf(" OK\n");
8533 *updatep = u;
8534 return update_memory_size;
8535 }
8536 free(u);
8537 dprintf(" Error\n");
8538
8539 return 0;
8540 }
8541
8542 /******************************************************************************
8543 * function: imsm_create_metadata_update_for_migration()
8544 * Creates update for IMSM array.
8545 *
8546 ******************************************************************************/
8547 static int imsm_create_metadata_update_for_migration(
8548 struct supertype *st,
8549 struct geo_params *geo,
8550 struct imsm_update_reshape_migration **updatep)
8551 {
8552 struct intel_super *super = st->sb;
8553 int update_memory_size = 0;
8554 struct imsm_update_reshape_migration *u = NULL;
8555 struct imsm_dev *dev;
8556 int previous_level = -1;
8557
8558 dprintf("imsm_create_metadata_update_for_migration(enter)"
8559 " New Level = %i\n", geo->level);
8560
8561 /* size of all update data without anchor */
8562 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8563
8564 u = calloc(1, update_memory_size);
8565 if (u == NULL) {
8566 dprintf("error: cannot get memory for "
8567 "imsm_create_metadata_update_for_migration\n");
8568 return 0;
8569 }
8570 u->type = update_reshape_migration;
8571 u->subdev = super->current_vol;
8572 u->new_level = geo->level;
8573 u->new_layout = geo->layout;
8574 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8575 u->new_disks[0] = -1;
8576 u->new_chunksize = -1;
8577
8578 dev = get_imsm_dev(super, u->subdev);
8579 if (dev) {
8580 struct imsm_map *map;
8581
8582 map = get_imsm_map(dev, 0);
8583 if (map) {
8584 int current_chunk_size =
8585 __le16_to_cpu(map->blocks_per_strip) / 2;
8586
8587 if (geo->chunksize != current_chunk_size) {
8588 u->new_chunksize = geo->chunksize / 1024;
8589 dprintf("imsm: "
8590 "chunk size change from %i to %i\n",
8591 current_chunk_size, u->new_chunksize);
8592 }
8593 previous_level = map->raid_level;
8594 }
8595 }
8596 if ((geo->level == 5) && (previous_level == 0)) {
8597 struct mdinfo *spares = NULL;
8598
8599 u->new_raid_disks++;
8600 spares = get_spares_for_grow(st);
8601 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8602 free(u);
8603 sysfs_free(spares);
8604 update_memory_size = 0;
8605 dprintf("error: cannot get spare device "
8606 "for requested migration");
8607 return 0;
8608 }
8609 sysfs_free(spares);
8610 }
8611 dprintf("imsm: reshape update preparation : OK\n");
8612 *updatep = u;
8613
8614 return update_memory_size;
8615 }
8616
8617 static void imsm_update_metadata_locally(struct supertype *st,
8618 void *buf, int len)
8619 {
8620 struct metadata_update mu;
8621
8622 mu.buf = buf;
8623 mu.len = len;
8624 mu.space = NULL;
8625 mu.space_list = NULL;
8626 mu.next = NULL;
8627 imsm_prepare_update(st, &mu);
8628 imsm_process_update(st, &mu);
8629
8630 while (mu.space_list) {
8631 void **space = mu.space_list;
8632 mu.space_list = *space;
8633 free(space);
8634 }
8635 }
8636
8637 /***************************************************************************
8638 * Function: imsm_analyze_change
8639 * Description: Function analyze change for single volume
8640 * and validate if transition is supported
8641 * Parameters: Geometry parameters, supertype structure
8642 * Returns: Operation type code on success, -1 if fail
8643 ****************************************************************************/
8644 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8645 struct geo_params *geo)
8646 {
8647 struct mdinfo info;
8648 int change = -1;
8649 int check_devs = 0;
8650 int chunk;
8651
8652 getinfo_super_imsm_volume(st, &info, NULL);
8653 if ((geo->level != info.array.level) &&
8654 (geo->level >= 0) &&
8655 (geo->level != UnSet)) {
8656 switch (info.array.level) {
8657 case 0:
8658 if (geo->level == 5) {
8659 change = CH_MIGRATION;
8660 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8661 fprintf(stderr,
8662 Name " Error. Requested Layout "
8663 "not supported (left-asymmetric layout "
8664 "is supported only)!\n");
8665 change = -1;
8666 goto analyse_change_exit;
8667 }
8668 check_devs = 1;
8669 }
8670 if (geo->level == 10) {
8671 change = CH_TAKEOVER;
8672 check_devs = 1;
8673 }
8674 break;
8675 case 1:
8676 if (geo->level == 0) {
8677 change = CH_TAKEOVER;
8678 check_devs = 1;
8679 }
8680 break;
8681 case 10:
8682 if (geo->level == 0) {
8683 change = CH_TAKEOVER;
8684 check_devs = 1;
8685 }
8686 break;
8687 }
8688 if (change == -1) {
8689 fprintf(stderr,
8690 Name " Error. Level Migration from %d to %d "
8691 "not supported!\n",
8692 info.array.level, geo->level);
8693 goto analyse_change_exit;
8694 }
8695 } else
8696 geo->level = info.array.level;
8697
8698 if ((geo->layout != info.array.layout)
8699 && ((geo->layout != UnSet) && (geo->layout != -1))) {
8700 change = CH_MIGRATION;
8701 if ((info.array.layout == 0)
8702 && (info.array.level == 5)
8703 && (geo->layout == 5)) {
8704 /* reshape 5 -> 4 */
8705 } else if ((info.array.layout == 5)
8706 && (info.array.level == 5)
8707 && (geo->layout == 0)) {
8708 /* reshape 4 -> 5 */
8709 geo->layout = 0;
8710 geo->level = 5;
8711 } else {
8712 fprintf(stderr,
8713 Name " Error. Layout Migration from %d to %d "
8714 "not supported!\n",
8715 info.array.layout, geo->layout);
8716 change = -1;
8717 goto analyse_change_exit;
8718 }
8719 } else
8720 geo->layout = info.array.layout;
8721
8722 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8723 && (geo->chunksize != info.array.chunk_size))
8724 change = CH_MIGRATION;
8725 else
8726 geo->chunksize = info.array.chunk_size;
8727
8728 chunk = geo->chunksize / 1024;
8729 if (!validate_geometry_imsm(st,
8730 geo->level,
8731 geo->layout,
8732 geo->raid_disks,
8733 &chunk,
8734 geo->size,
8735 0, 0, 1))
8736 change = -1;
8737
8738 if (check_devs) {
8739 struct intel_super *super = st->sb;
8740 struct imsm_super *mpb = super->anchor;
8741
8742 if (mpb->num_raid_devs > 1) {
8743 fprintf(stderr,
8744 Name " Error. Cannot perform operation on %s"
8745 "- for this operation it MUST be single "
8746 "array in container\n",
8747 geo->dev_name);
8748 change = -1;
8749 }
8750 }
8751
8752 analyse_change_exit:
8753
8754 return change;
8755 }
8756
8757 int imsm_takeover(struct supertype *st, struct geo_params *geo)
8758 {
8759 struct intel_super *super = st->sb;
8760 struct imsm_update_takeover *u;
8761
8762 u = malloc(sizeof(struct imsm_update_takeover));
8763 if (u == NULL)
8764 return 1;
8765
8766 u->type = update_takeover;
8767 u->subarray = super->current_vol;
8768
8769 /* 10->0 transition */
8770 if (geo->level == 0)
8771 u->direction = R10_TO_R0;
8772
8773 /* 0->10 transition */
8774 if (geo->level == 10)
8775 u->direction = R0_TO_R10;
8776
8777 /* update metadata locally */
8778 imsm_update_metadata_locally(st, u,
8779 sizeof(struct imsm_update_takeover));
8780 /* and possibly remotely */
8781 if (st->update_tail)
8782 append_metadata_update(st, u,
8783 sizeof(struct imsm_update_takeover));
8784 else
8785 free(u);
8786
8787 return 0;
8788 }
8789
8790 static int imsm_reshape_super(struct supertype *st, long long size, int level,
8791 int layout, int chunksize, int raid_disks,
8792 int delta_disks, char *backup, char *dev,
8793 int verbose)
8794 {
8795 int ret_val = 1;
8796 struct geo_params geo;
8797
8798 dprintf("imsm: reshape_super called.\n");
8799
8800 memset(&geo, 0, sizeof(struct geo_params));
8801
8802 geo.dev_name = dev;
8803 geo.dev_id = st->devnum;
8804 geo.size = size;
8805 geo.level = level;
8806 geo.layout = layout;
8807 geo.chunksize = chunksize;
8808 geo.raid_disks = raid_disks;
8809 if (delta_disks != UnSet)
8810 geo.raid_disks += delta_disks;
8811
8812 dprintf("\tfor level : %i\n", geo.level);
8813 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8814
8815 if (experimental() == 0)
8816 return ret_val;
8817
8818 if (st->container_dev == st->devnum) {
8819 /* On container level we can only increase number of devices. */
8820 dprintf("imsm: info: Container operation\n");
8821 int old_raid_disks = 0;
8822
8823 if (imsm_reshape_is_allowed_on_container(
8824 st, &geo, &old_raid_disks)) {
8825 struct imsm_update_reshape *u = NULL;
8826 int len;
8827
8828 len = imsm_create_metadata_update_for_reshape(
8829 st, &geo, old_raid_disks, &u);
8830
8831 if (len <= 0) {
8832 dprintf("imsm: Cannot prepare update\n");
8833 goto exit_imsm_reshape_super;
8834 }
8835
8836 ret_val = 0;
8837 /* update metadata locally */
8838 imsm_update_metadata_locally(st, u, len);
8839 /* and possibly remotely */
8840 if (st->update_tail)
8841 append_metadata_update(st, u, len);
8842 else
8843 free(u);
8844
8845 } else {
8846 fprintf(stderr, Name ": (imsm) Operation "
8847 "is not allowed on this container\n");
8848 }
8849 } else {
8850 /* On volume level we support following operations
8851 * - takeover: raid10 -> raid0; raid0 -> raid10
8852 * - chunk size migration
8853 * - migration: raid5 -> raid0; raid0 -> raid5
8854 */
8855 struct intel_super *super = st->sb;
8856 struct intel_dev *dev = super->devlist;
8857 int change, devnum;
8858 dprintf("imsm: info: Volume operation\n");
8859 /* find requested device */
8860 while (dev) {
8861 if (imsm_find_array_minor_by_subdev(
8862 dev->index, st->container_dev, &devnum) == 0
8863 && devnum == geo.dev_id)
8864 break;
8865 dev = dev->next;
8866 }
8867 if (dev == NULL) {
8868 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8869 geo.dev_name, geo.dev_id);
8870 goto exit_imsm_reshape_super;
8871 }
8872 super->current_vol = dev->index;
8873 change = imsm_analyze_change(st, &geo);
8874 switch (change) {
8875 case CH_TAKEOVER:
8876 ret_val = imsm_takeover(st, &geo);
8877 break;
8878 case CH_MIGRATION: {
8879 struct imsm_update_reshape_migration *u = NULL;
8880 int len =
8881 imsm_create_metadata_update_for_migration(
8882 st, &geo, &u);
8883 if (len < 1) {
8884 dprintf("imsm: "
8885 "Cannot prepare update\n");
8886 break;
8887 }
8888 ret_val = 0;
8889 /* update metadata locally */
8890 imsm_update_metadata_locally(st, u, len);
8891 /* and possibly remotely */
8892 if (st->update_tail)
8893 append_metadata_update(st, u, len);
8894 else
8895 free(u);
8896 }
8897 break;
8898 default:
8899 ret_val = 1;
8900 }
8901 }
8902
8903 exit_imsm_reshape_super:
8904 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8905 return ret_val;
8906 }
8907
8908 /*******************************************************************************
8909 * Function: wait_for_reshape_imsm
8910 * Description: Function writes new sync_max value and waits until
8911 * reshape process reach new position
8912 * Parameters:
8913 * sra : general array info
8914 * ndata : number of disks in new array's layout
8915 * Returns:
8916 * 0 : success,
8917 * 1 : there is no reshape in progress,
8918 * -1 : fail
8919 ******************************************************************************/
8920 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
8921 {
8922 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8923 unsigned long long completed;
8924 /* to_complete : new sync_max position */
8925 unsigned long long to_complete = sra->reshape_progress;
8926 unsigned long long position_to_set = to_complete / ndata;
8927
8928 if (fd < 0) {
8929 dprintf("imsm: wait_for_reshape_imsm() "
8930 "cannot open reshape_position\n");
8931 return 1;
8932 }
8933
8934 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8935 dprintf("imsm: wait_for_reshape_imsm() "
8936 "cannot read reshape_position (no reshape in progres)\n");
8937 close(fd);
8938 return 0;
8939 }
8940
8941 if (completed > to_complete) {
8942 dprintf("imsm: wait_for_reshape_imsm() "
8943 "wrong next position to set %llu (%llu)\n",
8944 to_complete, completed);
8945 close(fd);
8946 return -1;
8947 }
8948 dprintf("Position set: %llu\n", position_to_set);
8949 if (sysfs_set_num(sra, NULL, "sync_max",
8950 position_to_set) != 0) {
8951 dprintf("imsm: wait_for_reshape_imsm() "
8952 "cannot set reshape position to %llu\n",
8953 position_to_set);
8954 close(fd);
8955 return -1;
8956 }
8957
8958 do {
8959 char action[20];
8960 fd_set rfds;
8961 FD_ZERO(&rfds);
8962 FD_SET(fd, &rfds);
8963 select(fd+1, &rfds, NULL, NULL, NULL);
8964 if (sysfs_get_str(sra, NULL, "sync_action",
8965 action, 20) > 0 &&
8966 strncmp(action, "reshape", 7) != 0)
8967 break;
8968 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8969 dprintf("imsm: wait_for_reshape_imsm() "
8970 "cannot read reshape_position (in loop)\n");
8971 close(fd);
8972 return 1;
8973 }
8974 } while (completed < to_complete);
8975 close(fd);
8976 return 0;
8977
8978 }
8979
8980 /*******************************************************************************
8981 * Function: check_degradation_change
8982 * Description: Check that array hasn't become failed.
8983 * Parameters:
8984 * info : for sysfs access
8985 * sources : source disks descriptors
8986 * degraded: previous degradation level
8987 * Returns:
8988 * degradation level
8989 ******************************************************************************/
8990 int check_degradation_change(struct mdinfo *info,
8991 int *sources,
8992 int degraded)
8993 {
8994 unsigned long long new_degraded;
8995 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
8996 if (new_degraded != (unsigned long long)degraded) {
8997 /* check each device to ensure it is still working */
8998 struct mdinfo *sd;
8999 new_degraded = 0;
9000 for (sd = info->devs ; sd ; sd = sd->next) {
9001 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9002 continue;
9003 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9004 char sbuf[20];
9005 if (sysfs_get_str(info,
9006 sd, "state", sbuf, 20) < 0 ||
9007 strstr(sbuf, "faulty") ||
9008 strstr(sbuf, "in_sync") == NULL) {
9009 /* this device is dead */
9010 sd->disk.state = (1<<MD_DISK_FAULTY);
9011 if (sd->disk.raid_disk >= 0 &&
9012 sources[sd->disk.raid_disk] >= 0) {
9013 close(sources[
9014 sd->disk.raid_disk]);
9015 sources[sd->disk.raid_disk] =
9016 -1;
9017 }
9018 new_degraded++;
9019 }
9020 }
9021 }
9022 }
9023
9024 return new_degraded;
9025 }
9026
9027 /*******************************************************************************
9028 * Function: imsm_manage_reshape
9029 * Description: Function finds array under reshape and it manages reshape
9030 * process. It creates stripes backups (if required) and sets
9031 * checheckpoits.
9032 * Parameters:
9033 * afd : Backup handle (nattive) - not used
9034 * sra : general array info
9035 * reshape : reshape parameters - not used
9036 * st : supertype structure
9037 * blocks : size of critical section [blocks]
9038 * fds : table of source device descriptor
9039 * offsets : start of array (offest per devices)
9040 * dests : not used
9041 * destfd : table of destination device descriptor
9042 * destoffsets : table of destination offsets (per device)
9043 * Returns:
9044 * 1 : success, reshape is done
9045 * 0 : fail
9046 ******************************************************************************/
9047 static int imsm_manage_reshape(
9048 int afd, struct mdinfo *sra, struct reshape *reshape,
9049 struct supertype *st, unsigned long backup_blocks,
9050 int *fds, unsigned long long *offsets,
9051 int dests, int *destfd, unsigned long long *destoffsets)
9052 {
9053 int ret_val = 0;
9054 struct intel_super *super = st->sb;
9055 struct intel_dev *dv = NULL;
9056 struct imsm_dev *dev = NULL;
9057 struct imsm_map *map_src;
9058 int migr_vol_qan = 0;
9059 int ndata, odata; /* [bytes] */
9060 int chunk; /* [bytes] */
9061 struct migr_record *migr_rec;
9062 char *buf = NULL;
9063 unsigned int buf_size; /* [bytes] */
9064 unsigned long long max_position; /* array size [bytes] */
9065 unsigned long long next_step; /* [blocks]/[bytes] */
9066 unsigned long long old_data_stripe_length;
9067 unsigned long long start_src; /* [bytes] */
9068 unsigned long long start; /* [bytes] */
9069 unsigned long long start_buf_shift; /* [bytes] */
9070 int degraded = 0;
9071 int source_layout = 0;
9072
9073 if (!fds || !offsets || !sra)
9074 goto abort;
9075
9076 /* Find volume during the reshape */
9077 for (dv = super->devlist; dv; dv = dv->next) {
9078 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9079 && dv->dev->vol.migr_state == 1) {
9080 dev = dv->dev;
9081 migr_vol_qan++;
9082 }
9083 }
9084 /* Only one volume can migrate at the same time */
9085 if (migr_vol_qan != 1) {
9086 fprintf(stderr, Name " : %s", migr_vol_qan ?
9087 "Number of migrating volumes greater than 1\n" :
9088 "There is no volume during migrationg\n");
9089 goto abort;
9090 }
9091
9092 map_src = get_imsm_map(dev, 1);
9093 if (map_src == NULL)
9094 goto abort;
9095
9096 ndata = imsm_num_data_members(dev, 0);
9097 odata = imsm_num_data_members(dev, 1);
9098
9099 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
9100 old_data_stripe_length = odata * chunk;
9101
9102 migr_rec = super->migr_rec;
9103
9104 /* initialize migration record for start condition */
9105 if (sra->reshape_progress == 0)
9106 init_migr_record_imsm(st, dev, sra);
9107 else {
9108 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9109 dprintf("imsm: cannot restart migration when data "
9110 "are present in copy area.\n");
9111 goto abort;
9112 }
9113 }
9114
9115 /* size for data */
9116 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9117 /* extend buffer size for parity disk */
9118 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9119 /* add space for stripe aligment */
9120 buf_size += old_data_stripe_length;
9121 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9122 dprintf("imsm: Cannot allocate checpoint buffer\n");
9123 goto abort;
9124 }
9125
9126 max_position = sra->component_size * ndata;
9127 source_layout = imsm_level_to_layout(map_src->raid_level);
9128
9129 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9130 __le32_to_cpu(migr_rec->num_migr_units)) {
9131 /* current reshape position [blocks] */
9132 unsigned long long current_position =
9133 __le32_to_cpu(migr_rec->blocks_per_unit)
9134 * __le32_to_cpu(migr_rec->curr_migr_unit);
9135 unsigned long long border;
9136
9137 /* Check that array hasn't become failed.
9138 */
9139 degraded = check_degradation_change(sra, fds, degraded);
9140 if (degraded > 1) {
9141 dprintf("imsm: Abort reshape due to degradation"
9142 " level (%i)\n", degraded);
9143 goto abort;
9144 }
9145
9146 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9147
9148 if ((current_position + next_step) > max_position)
9149 next_step = max_position - current_position;
9150
9151 start = current_position * 512;
9152
9153 /* allign reading start to old geometry */
9154 start_buf_shift = start % old_data_stripe_length;
9155 start_src = start - start_buf_shift;
9156
9157 border = (start_src / odata) - (start / ndata);
9158 border /= 512;
9159 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9160 /* save critical stripes to buf
9161 * start - start address of current unit
9162 * to backup [bytes]
9163 * start_src - start address of current unit
9164 * to backup alligned to source array
9165 * [bytes]
9166 */
9167 unsigned long long next_step_filler = 0;
9168 unsigned long long copy_length = next_step * 512;
9169
9170 /* allign copy area length to stripe in old geometry */
9171 next_step_filler = ((copy_length + start_buf_shift)
9172 % old_data_stripe_length);
9173 if (next_step_filler)
9174 next_step_filler = (old_data_stripe_length
9175 - next_step_filler);
9176 dprintf("save_stripes() parameters: start = %llu,"
9177 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9178 "\tstart_in_buf_shift = %llu,"
9179 "\tnext_step_filler = %llu\n",
9180 start, start_src, copy_length,
9181 start_buf_shift, next_step_filler);
9182
9183 if (save_stripes(fds, offsets, map_src->num_members,
9184 chunk, map_src->raid_level,
9185 source_layout, 0, NULL, start_src,
9186 copy_length +
9187 next_step_filler + start_buf_shift,
9188 buf)) {
9189 dprintf("imsm: Cannot save stripes"
9190 " to buffer\n");
9191 goto abort;
9192 }
9193 /* Convert data to destination format and store it
9194 * in backup general migration area
9195 */
9196 if (save_backup_imsm(st, dev, sra,
9197 buf + start_buf_shift, copy_length)) {
9198 dprintf("imsm: Cannot save stripes to "
9199 "target devices\n");
9200 goto abort;
9201 }
9202 if (save_checkpoint_imsm(st, sra,
9203 UNIT_SRC_IN_CP_AREA)) {
9204 dprintf("imsm: Cannot write checkpoint to "
9205 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9206 goto abort;
9207 }
9208 } else {
9209 /* set next step to use whole border area */
9210 border /= next_step;
9211 if (border > 1)
9212 next_step *= border;
9213 }
9214 /* When data backed up, checkpoint stored,
9215 * kick the kernel to reshape unit of data
9216 */
9217 next_step = next_step + sra->reshape_progress;
9218 /* limit next step to array max position */
9219 if (next_step > max_position)
9220 next_step = max_position;
9221 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9222 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
9223 sra->reshape_progress = next_step;
9224
9225 /* wait until reshape finish */
9226 if (wait_for_reshape_imsm(sra, ndata) < 0) {
9227 dprintf("wait_for_reshape_imsm returned error!\n");
9228 goto abort;
9229 }
9230
9231 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9232 /* ignore error == 2, this can mean end of reshape here
9233 */
9234 dprintf("imsm: Cannot write checkpoint to "
9235 "migration record (UNIT_SRC_NORMAL)\n");
9236 goto abort;
9237 }
9238
9239 }
9240
9241 /* return '1' if done */
9242 ret_val = 1;
9243 abort:
9244 free(buf);
9245 abort_reshape(sra);
9246
9247 return ret_val;
9248 }
9249 #endif /* MDASSEMBLE */
9250
9251 struct superswitch super_imsm = {
9252 #ifndef MDASSEMBLE
9253 .examine_super = examine_super_imsm,
9254 .brief_examine_super = brief_examine_super_imsm,
9255 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9256 .export_examine_super = export_examine_super_imsm,
9257 .detail_super = detail_super_imsm,
9258 .brief_detail_super = brief_detail_super_imsm,
9259 .write_init_super = write_init_super_imsm,
9260 .validate_geometry = validate_geometry_imsm,
9261 .add_to_super = add_to_super_imsm,
9262 .remove_from_super = remove_from_super_imsm,
9263 .detail_platform = detail_platform_imsm,
9264 .kill_subarray = kill_subarray_imsm,
9265 .update_subarray = update_subarray_imsm,
9266 .load_container = load_container_imsm,
9267 .default_geometry = default_geometry_imsm,
9268 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9269 .reshape_super = imsm_reshape_super,
9270 .manage_reshape = imsm_manage_reshape,
9271 .recover_backup = recover_backup_imsm,
9272 #endif
9273 .match_home = match_home_imsm,
9274 .uuid_from_super= uuid_from_super_imsm,
9275 .getinfo_super = getinfo_super_imsm,
9276 .getinfo_super_disks = getinfo_super_disks_imsm,
9277 .update_super = update_super_imsm,
9278
9279 .avail_size = avail_size_imsm,
9280 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
9281
9282 .compare_super = compare_super_imsm,
9283
9284 .load_super = load_super_imsm,
9285 .init_super = init_super_imsm,
9286 .store_super = store_super_imsm,
9287 .free_super = free_super_imsm,
9288 .match_metadata_desc = match_metadata_desc_imsm,
9289 .container_content = container_content_imsm,
9290
9291
9292 .external = 1,
9293 .name = "imsm",
9294
9295 #ifndef MDASSEMBLE
9296 /* for mdmon */
9297 .open_new = imsm_open_new,
9298 .set_array_state= imsm_set_array_state,
9299 .set_disk = imsm_set_disk,
9300 .sync_metadata = imsm_sync_metadata,
9301 .activate_spare = imsm_activate_spare,
9302 .process_update = imsm_process_update,
9303 .prepare_update = imsm_prepare_update,
9304 #endif /* MDASSEMBLE */
9305 };