]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: auto layout
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54 #define MPB_SECTOR_CNT 418
55 #define IMSM_RESERVED_SECTORS 4096
56
57 /* Disk configuration info. */
58 #define IMSM_MAX_DEVICES 255
59 struct imsm_disk {
60 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
61 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
62 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
63 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
64 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
65 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
66 #define USABLE_DISK __cpu_to_le32(0x08) /* Fully usable unless FAILED_DISK is set */
67 __u32 status; /* 0xF0 - 0xF3 */
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69 #define IMSM_DISK_FILLERS 4
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71 };
72
73 /* RAID map configuration infos. */
74 struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80 #define IMSM_T_STATE_NORMAL 0
81 #define IMSM_T_STATE_UNINITIALIZED 1
82 #define IMSM_T_STATE_DEGRADED 2
83 #define IMSM_T_STATE_FAILED 3
84 __u8 raid_level;
85 #define IMSM_T_RAID0 0
86 #define IMSM_T_RAID1 1
87 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
91 __u8 reserved[1];
92 __u32 filler[7]; /* expansion area */
93 #define IMSM_ORD_REBUILD (1 << 24)
94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
95 * top byte contains some flags
96 */
97 } __attribute__ ((packed));
98
99 struct imsm_vol {
100 __u32 curr_migr_unit;
101 __u32 checkpoint_id; /* id to access curr_migr_unit */
102 __u8 migr_state; /* Normal or Migrating */
103 #define MIGR_INIT 0
104 #define MIGR_REBUILD 1
105 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106 #define MIGR_GEN_MIGR 3
107 #define MIGR_STATE_CHANGE 4
108 __u8 migr_type; /* Initializing, Rebuilding, ... */
109 __u8 dirty;
110 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
111 __u16 verify_errors; /* number of mismatches */
112 __u16 bad_blocks; /* number of bad blocks during verify */
113 __u32 filler[4];
114 struct imsm_map map[1];
115 /* here comes another one if migr_state */
116 } __attribute__ ((packed));
117
118 struct imsm_dev {
119 __u8 volume[MAX_RAID_SERIAL_LEN];
120 __u32 size_low;
121 __u32 size_high;
122 #define DEV_BOOTABLE __cpu_to_le32(0x01)
123 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
124 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
125 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
126 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
127 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
128 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
129 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
130 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
131 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
132 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
133 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
134 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
135 __u32 status; /* Persistent RaidDev status */
136 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
137 __u8 migr_priority;
138 __u8 num_sub_vols;
139 __u8 tid;
140 __u8 cng_master_disk;
141 __u16 cache_policy;
142 __u8 cng_state;
143 __u8 cng_sub_state;
144 #define IMSM_DEV_FILLERS 10
145 __u32 filler[IMSM_DEV_FILLERS];
146 struct imsm_vol vol;
147 } __attribute__ ((packed));
148
149 struct imsm_super {
150 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
151 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
152 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
153 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
154 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
155 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
156 __u32 attributes; /* 0x34 - 0x37 */
157 __u8 num_disks; /* 0x38 Number of configured disks */
158 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
159 __u8 error_log_pos; /* 0x3A */
160 __u8 fill[1]; /* 0x3B */
161 __u32 cache_size; /* 0x3c - 0x40 in mb */
162 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
163 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
164 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
165 #define IMSM_FILLERS 35
166 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
167 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
168 /* here comes imsm_dev[num_raid_devs] */
169 /* here comes BBM logs */
170 } __attribute__ ((packed));
171
172 #define BBM_LOG_MAX_ENTRIES 254
173
174 struct bbm_log_entry {
175 __u64 defective_block_start;
176 #define UNREADABLE 0xFFFFFFFF
177 __u32 spare_block_offset;
178 __u16 remapped_marked_count;
179 __u16 disk_ordinal;
180 } __attribute__ ((__packed__));
181
182 struct bbm_log {
183 __u32 signature; /* 0xABADB10C */
184 __u32 entry_count;
185 __u32 reserved_spare_block_count; /* 0 */
186 __u32 reserved; /* 0xFFFF */
187 __u64 first_spare_lba;
188 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
189 } __attribute__ ((__packed__));
190
191
192 #ifndef MDASSEMBLE
193 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
194 #endif
195
196 static unsigned int sector_count(__u32 bytes)
197 {
198 return ((bytes + (512-1)) & (~(512-1))) / 512;
199 }
200
201 static unsigned int mpb_sectors(struct imsm_super *mpb)
202 {
203 return sector_count(__le32_to_cpu(mpb->mpb_size));
204 }
205
206 struct intel_dev {
207 struct imsm_dev *dev;
208 struct intel_dev *next;
209 int index;
210 };
211
212 /* internal representation of IMSM metadata */
213 struct intel_super {
214 union {
215 void *buf; /* O_DIRECT buffer for reading/writing metadata */
216 struct imsm_super *anchor; /* immovable parameters */
217 };
218 size_t len; /* size of the 'buf' allocation */
219 void *next_buf; /* for realloc'ing buf from the manager */
220 size_t next_len;
221 int updates_pending; /* count of pending updates for mdmon */
222 int creating_imsm; /* flag to indicate container creation */
223 int current_vol; /* index of raid device undergoing creation */
224 __u32 create_offset; /* common start for 'current_vol' */
225 struct intel_dev *devlist;
226 struct dl {
227 struct dl *next;
228 int index;
229 __u8 serial[MAX_RAID_SERIAL_LEN];
230 int major, minor;
231 char *devname;
232 struct imsm_disk disk;
233 int fd;
234 int extent_cnt;
235 struct extent *e; /* for determining freespace @ create */
236 int raiddisk; /* slot to fill in autolayout */
237 } *disks;
238 struct dl *add; /* list of disks to add while mdmon active */
239 struct dl *missing; /* disks removed while we weren't looking */
240 struct bbm_log *bbm_log;
241 const char *hba; /* device path of the raid controller for this metadata */
242 const struct imsm_orom *orom; /* platform firmware support */
243 };
244
245 struct extent {
246 unsigned long long start, size;
247 };
248
249 /* definition of messages passed to imsm_process_update */
250 enum imsm_update_type {
251 update_activate_spare,
252 update_create_array,
253 update_add_disk,
254 };
255
256 struct imsm_update_activate_spare {
257 enum imsm_update_type type;
258 struct dl *dl;
259 int slot;
260 int array;
261 struct imsm_update_activate_spare *next;
262 };
263
264 struct disk_info {
265 __u8 serial[MAX_RAID_SERIAL_LEN];
266 };
267
268 struct imsm_update_create_array {
269 enum imsm_update_type type;
270 int dev_idx;
271 struct imsm_dev dev;
272 };
273
274 struct imsm_update_add_disk {
275 enum imsm_update_type type;
276 };
277
278 static struct supertype *match_metadata_desc_imsm(char *arg)
279 {
280 struct supertype *st;
281
282 if (strcmp(arg, "imsm") != 0 &&
283 strcmp(arg, "default") != 0
284 )
285 return NULL;
286
287 st = malloc(sizeof(*st));
288 memset(st, 0, sizeof(*st));
289 st->ss = &super_imsm;
290 st->max_devs = IMSM_MAX_DEVICES;
291 st->minor_version = 0;
292 st->sb = NULL;
293 return st;
294 }
295
296 #ifndef MDASSEMBLE
297 static __u8 *get_imsm_version(struct imsm_super *mpb)
298 {
299 return &mpb->sig[MPB_SIG_LEN];
300 }
301 #endif
302
303 /* retrieve a disk directly from the anchor when the anchor is known to be
304 * up-to-date, currently only at load time
305 */
306 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
307 {
308 if (index >= mpb->num_disks)
309 return NULL;
310 return &mpb->disk[index];
311 }
312
313 #ifndef MDASSEMBLE
314 /* retrieve a disk from the parsed metadata */
315 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
316 {
317 struct dl *d;
318
319 for (d = super->disks; d; d = d->next)
320 if (d->index == index)
321 return &d->disk;
322
323 return NULL;
324 }
325 #endif
326
327 /* generate a checksum directly from the anchor when the anchor is known to be
328 * up-to-date, currently only at load or write_super after coalescing
329 */
330 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
331 {
332 __u32 end = mpb->mpb_size / sizeof(end);
333 __u32 *p = (__u32 *) mpb;
334 __u32 sum = 0;
335
336 while (end--) {
337 sum += __le32_to_cpu(*p);
338 p++;
339 }
340
341 return sum - __le32_to_cpu(mpb->check_sum);
342 }
343
344 static size_t sizeof_imsm_map(struct imsm_map *map)
345 {
346 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
347 }
348
349 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
350 {
351 struct imsm_map *map = &dev->vol.map[0];
352
353 if (second_map && !dev->vol.migr_state)
354 return NULL;
355 else if (second_map) {
356 void *ptr = map;
357
358 return ptr + sizeof_imsm_map(map);
359 } else
360 return map;
361
362 }
363
364 /* return the size of the device.
365 * migr_state increases the returned size if map[0] were to be duplicated
366 */
367 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
368 {
369 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
370 sizeof_imsm_map(get_imsm_map(dev, 0));
371
372 /* migrating means an additional map */
373 if (dev->vol.migr_state)
374 size += sizeof_imsm_map(get_imsm_map(dev, 1));
375 else if (migr_state)
376 size += sizeof_imsm_map(get_imsm_map(dev, 0));
377
378 return size;
379 }
380
381 #ifndef MDASSEMBLE
382 /* retrieve disk serial number list from a metadata update */
383 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
384 {
385 void *u = update;
386 struct disk_info *inf;
387
388 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
389 sizeof_imsm_dev(&update->dev, 0);
390
391 return inf;
392 }
393 #endif
394
395 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
396 {
397 int offset;
398 int i;
399 void *_mpb = mpb;
400
401 if (index >= mpb->num_raid_devs)
402 return NULL;
403
404 /* devices start after all disks */
405 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
406
407 for (i = 0; i <= index; i++)
408 if (i == index)
409 return _mpb + offset;
410 else
411 offset += sizeof_imsm_dev(_mpb + offset, 0);
412
413 return NULL;
414 }
415
416 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
417 {
418 struct intel_dev *dv;
419
420 if (index >= super->anchor->num_raid_devs)
421 return NULL;
422 for (dv = super->devlist; dv; dv = dv->next)
423 if (dv->index == index)
424 return dv->dev;
425 return NULL;
426 }
427
428 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
429 {
430 struct imsm_map *map;
431
432 if (dev->vol.migr_state)
433 map = get_imsm_map(dev, 1);
434 else
435 map = get_imsm_map(dev, 0);
436
437 /* top byte identifies disk under rebuild */
438 return __le32_to_cpu(map->disk_ord_tbl[slot]);
439 }
440
441 #define ord_to_idx(ord) (((ord) << 8) >> 8)
442 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
443 {
444 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
445
446 return ord_to_idx(ord);
447 }
448
449 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
450 {
451 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
452 }
453
454 static int get_imsm_disk_slot(struct imsm_map *map, int idx)
455 {
456 int slot;
457 __u32 ord;
458
459 for (slot = 0; slot < map->num_members; slot++) {
460 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
461 if (ord_to_idx(ord) == idx)
462 return slot;
463 }
464
465 return -1;
466 }
467
468 static int get_imsm_raid_level(struct imsm_map *map)
469 {
470 if (map->raid_level == 1) {
471 if (map->num_members == 2)
472 return 1;
473 else
474 return 10;
475 }
476
477 return map->raid_level;
478 }
479
480 static int cmp_extent(const void *av, const void *bv)
481 {
482 const struct extent *a = av;
483 const struct extent *b = bv;
484 if (a->start < b->start)
485 return -1;
486 if (a->start > b->start)
487 return 1;
488 return 0;
489 }
490
491 static int count_memberships(struct dl *dl, struct intel_super *super)
492 {
493 int memberships = 0;
494 int i;
495
496 for (i = 0; i < super->anchor->num_raid_devs; i++) {
497 struct imsm_dev *dev = get_imsm_dev(super, i);
498 struct imsm_map *map = get_imsm_map(dev, 0);
499
500 if (get_imsm_disk_slot(map, dl->index) >= 0)
501 memberships++;
502 }
503
504 return memberships;
505 }
506
507 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
508 {
509 /* find a list of used extents on the given physical device */
510 struct extent *rv, *e;
511 int i;
512 int memberships = count_memberships(dl, super);
513 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
514
515 rv = malloc(sizeof(struct extent) * (memberships + 1));
516 if (!rv)
517 return NULL;
518 e = rv;
519
520 for (i = 0; i < super->anchor->num_raid_devs; i++) {
521 struct imsm_dev *dev = get_imsm_dev(super, i);
522 struct imsm_map *map = get_imsm_map(dev, 0);
523
524 if (get_imsm_disk_slot(map, dl->index) >= 0) {
525 e->start = __le32_to_cpu(map->pba_of_lba0);
526 e->size = __le32_to_cpu(map->blocks_per_member);
527 e++;
528 }
529 }
530 qsort(rv, memberships, sizeof(*rv), cmp_extent);
531
532 /* determine the start of the metadata
533 * when no raid devices are defined use the default
534 * ...otherwise allow the metadata to truncate the value
535 * as is the case with older versions of imsm
536 */
537 if (memberships) {
538 struct extent *last = &rv[memberships - 1];
539 __u32 remainder;
540
541 remainder = __le32_to_cpu(dl->disk.total_blocks) -
542 (last->start + last->size);
543 /* round down to 1k block to satisfy precision of the kernel
544 * 'size' interface
545 */
546 remainder &= ~1UL;
547 /* make sure remainder is still sane */
548 if (remainder < ROUND_UP(super->len, 512) >> 9)
549 remainder = ROUND_UP(super->len, 512) >> 9;
550 if (reservation > remainder)
551 reservation = remainder;
552 }
553 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
554 e->size = 0;
555 return rv;
556 }
557
558 /* try to determine how much space is reserved for metadata from
559 * the last get_extents() entry, otherwise fallback to the
560 * default
561 */
562 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
563 {
564 struct extent *e;
565 int i;
566 __u32 rv;
567
568 /* for spares just return a minimal reservation which will grow
569 * once the spare is picked up by an array
570 */
571 if (dl->index == -1)
572 return MPB_SECTOR_CNT;
573
574 e = get_extents(super, dl);
575 if (!e)
576 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
577
578 /* scroll to last entry */
579 for (i = 0; e[i].size; i++)
580 continue;
581
582 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
583
584 free(e);
585
586 return rv;
587 }
588
589 #ifndef MDASSEMBLE
590 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
591 {
592 __u64 sz;
593 int slot;
594 struct imsm_map *map = get_imsm_map(dev, 0);
595 __u32 ord;
596
597 printf("\n");
598 printf("[%.16s]:\n", dev->volume);
599 printf(" UUID : %s\n", uuid);
600 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
601 printf(" Members : %d\n", map->num_members);
602 slot = get_imsm_disk_slot(map, disk_idx);
603 if (slot >= 0) {
604 ord = get_imsm_ord_tbl_ent(dev, slot);
605 printf(" This Slot : %d%s\n", slot,
606 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
607 } else
608 printf(" This Slot : ?\n");
609 sz = __le32_to_cpu(dev->size_high);
610 sz <<= 32;
611 sz += __le32_to_cpu(dev->size_low);
612 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
613 human_size(sz * 512));
614 sz = __le32_to_cpu(map->blocks_per_member);
615 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
616 human_size(sz * 512));
617 printf(" Sector Offset : %u\n",
618 __le32_to_cpu(map->pba_of_lba0));
619 printf(" Num Stripes : %u\n",
620 __le32_to_cpu(map->num_data_stripes));
621 printf(" Chunk Size : %u KiB\n",
622 __le16_to_cpu(map->blocks_per_strip) / 2);
623 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
624 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle");
625 if (dev->vol.migr_state)
626 printf(": %s", dev->vol.migr_type ? "rebuilding" : "initializing");
627 printf("\n");
628 printf(" Map State : %s", map_state_str[map->map_state]);
629 if (dev->vol.migr_state) {
630 struct imsm_map *map = get_imsm_map(dev, 1);
631 printf(" <-- %s", map_state_str[map->map_state]);
632 }
633 printf("\n");
634 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
635 }
636
637 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
638 {
639 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
640 char str[MAX_RAID_SERIAL_LEN + 1];
641 __u32 s;
642 __u64 sz;
643
644 if (index < 0)
645 return;
646
647 printf("\n");
648 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
649 printf(" Disk%02d Serial : %s\n", index, str);
650 s = disk->status;
651 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
652 s&CONFIGURED_DISK ? " active" : "",
653 s&FAILED_DISK ? " failed" : "",
654 s&USABLE_DISK ? " usable" : "");
655 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
656 sz = __le32_to_cpu(disk->total_blocks) - reserved;
657 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
658 human_size(sz * 512));
659 }
660
661 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
662
663 static void examine_super_imsm(struct supertype *st, char *homehost)
664 {
665 struct intel_super *super = st->sb;
666 struct imsm_super *mpb = super->anchor;
667 char str[MAX_SIGNATURE_LENGTH];
668 int i;
669 struct mdinfo info;
670 char nbuf[64];
671 __u32 sum;
672 __u32 reserved = imsm_reserved_sectors(super, super->disks);
673
674
675 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
676 printf(" Magic : %s\n", str);
677 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
678 printf(" Version : %s\n", get_imsm_version(mpb));
679 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
680 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
681 getinfo_super_imsm(st, &info);
682 fname_from_uuid(st, &info, nbuf,'-');
683 printf(" UUID : %s\n", nbuf + 5);
684 sum = __le32_to_cpu(mpb->check_sum);
685 printf(" Checksum : %08x %s\n", sum,
686 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
687 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
688 printf(" Disks : %d\n", mpb->num_disks);
689 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
690 print_imsm_disk(mpb, super->disks->index, reserved);
691 if (super->bbm_log) {
692 struct bbm_log *log = super->bbm_log;
693
694 printf("\n");
695 printf("Bad Block Management Log:\n");
696 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
697 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
698 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
699 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
700 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
701 }
702 for (i = 0; i < mpb->num_raid_devs; i++) {
703 struct mdinfo info;
704 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
705
706 super->current_vol = i;
707 getinfo_super_imsm(st, &info);
708 fname_from_uuid(st, &info, nbuf, '-');
709 print_imsm_dev(dev, nbuf + 5, super->disks->index);
710 }
711 for (i = 0; i < mpb->num_disks; i++) {
712 if (i == super->disks->index)
713 continue;
714 print_imsm_disk(mpb, i, reserved);
715 }
716 }
717
718 static void brief_examine_super_imsm(struct supertype *st)
719 {
720 /* We just write a generic IMSM ARRAY entry */
721 struct mdinfo info;
722 char nbuf[64];
723 char nbuf1[64];
724 struct intel_super *super = st->sb;
725 int i;
726
727 if (!super->anchor->num_raid_devs)
728 return;
729
730 getinfo_super_imsm(st, &info);
731 fname_from_uuid(st, &info, nbuf,'-');
732 printf("ARRAY metadata=imsm auto=md UUID=%s\n", nbuf + 5);
733 for (i = 0; i < super->anchor->num_raid_devs; i++) {
734 struct imsm_dev *dev = get_imsm_dev(super, i);
735
736 super->current_vol = i;
737 getinfo_super_imsm(st, &info);
738 fname_from_uuid(st, &info, nbuf1,'-');
739 printf("ARRAY /dev/md/%.16s container=%s\n"
740 " member=%d auto=mdp UUID=%s\n",
741 dev->volume, nbuf + 5, i, nbuf1 + 5);
742 }
743 }
744
745 static void detail_super_imsm(struct supertype *st, char *homehost)
746 {
747 struct mdinfo info;
748 char nbuf[64];
749
750 getinfo_super_imsm(st, &info);
751 fname_from_uuid(st, &info, nbuf,'-');
752 printf("\n UUID : %s\n", nbuf + 5);
753 }
754
755 static void brief_detail_super_imsm(struct supertype *st)
756 {
757 struct mdinfo info;
758 char nbuf[64];
759 getinfo_super_imsm(st, &info);
760 fname_from_uuid(st, &info, nbuf,'-');
761 printf(" UUID=%s", nbuf + 5);
762 }
763
764 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
765 static void fd2devname(int fd, char *name);
766
767 static int imsm_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
768 {
769 /* dump an unsorted list of devices attached to ahci, as well as
770 * non-connected ports
771 */
772 int hba_len = strlen(hba_path) + 1;
773 struct dirent *ent;
774 DIR *dir;
775 char *path = NULL;
776 int err = 0;
777 unsigned long port_mask = (1 << port_count) - 1;
778
779 if (port_count > sizeof(port_mask) * 8) {
780 if (verbose)
781 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
782 return 2;
783 }
784
785 /* scroll through /sys/dev/block looking for devices attached to
786 * this hba
787 */
788 dir = opendir("/sys/dev/block");
789 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
790 int fd;
791 char model[64];
792 char vendor[64];
793 char buf[1024];
794 int major, minor;
795 char *device;
796 char *c;
797 int port;
798 int type;
799
800 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
801 continue;
802 path = devt_to_devpath(makedev(major, minor));
803 if (!path)
804 continue;
805 if (!path_attached_to_hba(path, hba_path)) {
806 free(path);
807 path = NULL;
808 continue;
809 }
810
811 /* retrieve the scsi device type */
812 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
813 if (verbose)
814 fprintf(stderr, Name ": failed to allocate 'device'\n");
815 err = 2;
816 break;
817 }
818 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
819 if (load_sys(device, buf) != 0) {
820 if (verbose)
821 fprintf(stderr, Name ": failed to read device type for %s\n",
822 path);
823 err = 2;
824 free(device);
825 break;
826 }
827 type = strtoul(buf, NULL, 10);
828
829 /* if it's not a disk print the vendor and model */
830 if (!(type == 0 || type == 7 || type == 14)) {
831 vendor[0] = '\0';
832 model[0] = '\0';
833 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
834 if (load_sys(device, buf) == 0) {
835 strncpy(vendor, buf, sizeof(vendor));
836 vendor[sizeof(vendor) - 1] = '\0';
837 c = (char *) &vendor[sizeof(vendor) - 1];
838 while (isspace(*c) || *c == '\0')
839 *c-- = '\0';
840
841 }
842 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
843 if (load_sys(device, buf) == 0) {
844 strncpy(model, buf, sizeof(model));
845 model[sizeof(model) - 1] = '\0';
846 c = (char *) &model[sizeof(model) - 1];
847 while (isspace(*c) || *c == '\0')
848 *c-- = '\0';
849 }
850
851 if (vendor[0] && model[0])
852 sprintf(buf, "%.64s %.64s", vendor, model);
853 else
854 switch (type) { /* numbers from hald/linux/device.c */
855 case 1: sprintf(buf, "tape"); break;
856 case 2: sprintf(buf, "printer"); break;
857 case 3: sprintf(buf, "processor"); break;
858 case 4:
859 case 5: sprintf(buf, "cdrom"); break;
860 case 6: sprintf(buf, "scanner"); break;
861 case 8: sprintf(buf, "media_changer"); break;
862 case 9: sprintf(buf, "comm"); break;
863 case 12: sprintf(buf, "raid"); break;
864 default: sprintf(buf, "unknown");
865 }
866 } else
867 buf[0] = '\0';
868 free(device);
869
870 /* chop device path to 'host%d' and calculate the port number */
871 c = strchr(&path[hba_len], '/');
872 *c = '\0';
873 if (sscanf(&path[hba_len], "host%d", &port) == 1)
874 port -= host_base;
875 else {
876 if (verbose) {
877 *c = '/'; /* repair the full string */
878 fprintf(stderr, Name ": failed to determine port number for %s\n",
879 path);
880 }
881 err = 2;
882 break;
883 }
884
885 /* mark this port as used */
886 port_mask &= ~(1 << port);
887
888 /* print out the device information */
889 if (buf[0]) {
890 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
891 continue;
892 }
893
894 fd = dev_open(ent->d_name, O_RDONLY);
895 if (fd < 0)
896 printf(" Port%d : - disk info unavailable -\n", port);
897 else {
898 fd2devname(fd, buf);
899 printf(" Port%d : %s", port, buf);
900 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
901 printf(" (%s)\n", buf);
902 else
903 printf("()\n");
904 }
905 close(fd);
906 free(path);
907 path = NULL;
908 }
909 if (path)
910 free(path);
911 if (dir)
912 closedir(dir);
913 if (err == 0) {
914 int i;
915
916 for (i = 0; i < port_count; i++)
917 if (port_mask & (1 << i))
918 printf(" Port%d : - no device attached -\n", i);
919 }
920
921 return err;
922 }
923
924 static int detail_platform_imsm(int verbose, int enumerate_only)
925 {
926 /* There are two components to imsm platform support, the ahci SATA
927 * controller and the option-rom. To find the SATA controller we
928 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
929 * controller with the Intel vendor id is present. This approach
930 * allows mdadm to leverage the kernel's ahci detection logic, with the
931 * caveat that if ahci.ko is not loaded mdadm will not be able to
932 * detect platform raid capabilities. The option-rom resides in a
933 * platform "Adapter ROM". We scan for its signature to retrieve the
934 * platform capabilities. If raid support is disabled in the BIOS the
935 * option-rom capability structure will not be available.
936 */
937 const struct imsm_orom *orom;
938 struct sys_dev *list, *hba;
939 DIR *dir;
940 struct dirent *ent;
941 const char *hba_path;
942 int host_base = 0;
943 int port_count = 0;
944
945 if (enumerate_only) {
946 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
947 return 0;
948 return 2;
949 }
950
951 list = find_driver_devices("pci", "ahci");
952 for (hba = list; hba; hba = hba->next)
953 if (devpath_to_vendor(hba->path) == 0x8086)
954 break;
955
956 if (!hba) {
957 if (verbose)
958 fprintf(stderr, Name ": unable to find active ahci controller\n");
959 free_sys_dev(&list);
960 return 2;
961 } else if (verbose)
962 fprintf(stderr, Name ": found Intel SATA AHCI Controller\n");
963 hba_path = hba->path;
964 hba->path = NULL;
965 free_sys_dev(&list);
966
967 orom = find_imsm_orom();
968 if (!orom) {
969 if (verbose)
970 fprintf(stderr, Name ": imsm option-rom not found\n");
971 return 2;
972 }
973
974 printf(" Platform : Intel(R) Matrix Storage Manager\n");
975 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
976 orom->hotfix_ver, orom->build);
977 printf(" RAID Levels :%s%s%s%s%s\n",
978 imsm_orom_has_raid0(orom) ? " raid0" : "",
979 imsm_orom_has_raid1(orom) ? " raid1" : "",
980 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
981 imsm_orom_has_raid10(orom) ? " raid10" : "",
982 imsm_orom_has_raid5(orom) ? " raid5" : "");
983 printf(" Max Disks : %d\n", orom->tds);
984 printf(" Max Volumes : %d\n", orom->vpa);
985 printf(" I/O Controller : %s\n", hba_path);
986
987 /* find the smallest scsi host number to determine a port number base */
988 dir = opendir(hba_path);
989 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
990 int host;
991
992 if (sscanf(ent->d_name, "host%d", &host) != 1)
993 continue;
994 if (port_count == 0)
995 host_base = host;
996 else if (host < host_base)
997 host_base = host;
998
999 if (host + 1 > port_count + host_base)
1000 port_count = host + 1 - host_base;
1001
1002 }
1003 if (dir)
1004 closedir(dir);
1005
1006 if (!port_count || imsm_enumerate_ports(hba_path, port_count,
1007 host_base, verbose) != 0) {
1008 if (verbose)
1009 fprintf(stderr, Name ": failed to enumerate ports\n");
1010 return 2;
1011 }
1012
1013 return 0;
1014 }
1015 #endif
1016
1017 static int match_home_imsm(struct supertype *st, char *homehost)
1018 {
1019 /* the imsm metadata format does not specify any host
1020 * identification information. We return -1 since we can never
1021 * confirm nor deny whether a given array is "meant" for this
1022 * host. We rely on compare_super and the 'family_num' field to
1023 * exclude member disks that do not belong, and we rely on
1024 * mdadm.conf to specify the arrays that should be assembled.
1025 * Auto-assembly may still pick up "foreign" arrays.
1026 */
1027
1028 return -1;
1029 }
1030
1031 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1032 {
1033 /* The uuid returned here is used for:
1034 * uuid to put into bitmap file (Create, Grow)
1035 * uuid for backup header when saving critical section (Grow)
1036 * comparing uuids when re-adding a device into an array
1037 * In these cases the uuid required is that of the data-array,
1038 * not the device-set.
1039 * uuid to recognise same set when adding a missing device back
1040 * to an array. This is a uuid for the device-set.
1041 *
1042 * For each of these we can make do with a truncated
1043 * or hashed uuid rather than the original, as long as
1044 * everyone agrees.
1045 * In each case the uuid required is that of the data-array,
1046 * not the device-set.
1047 */
1048 /* imsm does not track uuid's so we synthesis one using sha1 on
1049 * - The signature (Which is constant for all imsm array, but no matter)
1050 * - the family_num of the container
1051 * - the index number of the volume
1052 * - the 'serial' number of the volume.
1053 * Hopefully these are all constant.
1054 */
1055 struct intel_super *super = st->sb;
1056
1057 char buf[20];
1058 struct sha1_ctx ctx;
1059 struct imsm_dev *dev = NULL;
1060
1061 sha1_init_ctx(&ctx);
1062 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1063 sha1_process_bytes(&super->anchor->family_num, sizeof(__u32), &ctx);
1064 if (super->current_vol >= 0)
1065 dev = get_imsm_dev(super, super->current_vol);
1066 if (dev) {
1067 __u32 vol = super->current_vol;
1068 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1069 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1070 }
1071 sha1_finish_ctx(&ctx, buf);
1072 memcpy(uuid, buf, 4*4);
1073 }
1074
1075 #if 0
1076 static void
1077 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1078 {
1079 __u8 *v = get_imsm_version(mpb);
1080 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1081 char major[] = { 0, 0, 0 };
1082 char minor[] = { 0 ,0, 0 };
1083 char patch[] = { 0, 0, 0 };
1084 char *ver_parse[] = { major, minor, patch };
1085 int i, j;
1086
1087 i = j = 0;
1088 while (*v != '\0' && v < end) {
1089 if (*v != '.' && j < 2)
1090 ver_parse[i][j++] = *v;
1091 else {
1092 i++;
1093 j = 0;
1094 }
1095 v++;
1096 }
1097
1098 *m = strtol(minor, NULL, 0);
1099 *p = strtol(patch, NULL, 0);
1100 }
1101 #endif
1102
1103 static int imsm_level_to_layout(int level)
1104 {
1105 switch (level) {
1106 case 0:
1107 case 1:
1108 return 0;
1109 case 5:
1110 case 6:
1111 return ALGORITHM_LEFT_ASYMMETRIC;
1112 case 10:
1113 return 0x102;
1114 }
1115 return UnSet;
1116 }
1117
1118 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
1119 {
1120 struct intel_super *super = st->sb;
1121 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1122 struct imsm_map *map = get_imsm_map(dev, 0);
1123 struct dl *dl;
1124
1125 for (dl = super->disks; dl; dl = dl->next)
1126 if (dl->raiddisk == info->disk.raid_disk)
1127 break;
1128 info->container_member = super->current_vol;
1129 info->array.raid_disks = map->num_members;
1130 info->array.level = get_imsm_raid_level(map);
1131 info->array.layout = imsm_level_to_layout(info->array.level);
1132 info->array.md_minor = -1;
1133 info->array.ctime = 0;
1134 info->array.utime = 0;
1135 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1136 info->array.state = !dev->vol.dirty;
1137
1138 info->disk.major = 0;
1139 info->disk.minor = 0;
1140 if (dl) {
1141 info->disk.major = dl->major;
1142 info->disk.minor = dl->minor;
1143 }
1144
1145 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
1146 info->component_size = __le32_to_cpu(map->blocks_per_member);
1147 memset(info->uuid, 0, sizeof(info->uuid));
1148
1149 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
1150 info->resync_start = 0;
1151 else if (dev->vol.migr_state)
1152 info->resync_start = __le32_to_cpu(dev->vol.curr_migr_unit);
1153 else
1154 info->resync_start = ~0ULL;
1155
1156 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1157 info->name[MAX_RAID_SERIAL_LEN] = 0;
1158
1159 info->array.major_version = -1;
1160 info->array.minor_version = -2;
1161 sprintf(info->text_version, "/%s/%d",
1162 devnum2devname(st->container_dev),
1163 info->container_member);
1164 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
1165 uuid_from_super_imsm(st, info->uuid);
1166 }
1167
1168 /* check the config file to see if we can return a real uuid for this spare */
1169 static void fixup_container_spare_uuid(struct mdinfo *inf)
1170 {
1171 struct mddev_ident_s *array_list;
1172
1173 if (inf->array.level != LEVEL_CONTAINER ||
1174 memcmp(inf->uuid, uuid_match_any, sizeof(int[4])) != 0)
1175 return;
1176
1177 array_list = conf_get_ident(NULL);
1178
1179 for (; array_list; array_list = array_list->next) {
1180 if (array_list->uuid_set) {
1181 struct supertype *_sst; /* spare supertype */
1182 struct supertype *_cst; /* container supertype */
1183
1184 _cst = array_list->st;
1185 _sst = _cst->ss->match_metadata_desc(inf->text_version);
1186 if (_sst) {
1187 memcpy(inf->uuid, array_list->uuid, sizeof(int[4]));
1188 free(_sst);
1189 break;
1190 }
1191 }
1192 }
1193 }
1194
1195 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
1196 {
1197 struct intel_super *super = st->sb;
1198 struct imsm_disk *disk;
1199 __u32 s;
1200
1201 if (super->current_vol >= 0) {
1202 getinfo_super_imsm_volume(st, info);
1203 return;
1204 }
1205
1206 /* Set raid_disks to zero so that Assemble will always pull in valid
1207 * spares
1208 */
1209 info->array.raid_disks = 0;
1210 info->array.level = LEVEL_CONTAINER;
1211 info->array.layout = 0;
1212 info->array.md_minor = -1;
1213 info->array.ctime = 0; /* N/A for imsm */
1214 info->array.utime = 0;
1215 info->array.chunk_size = 0;
1216
1217 info->disk.major = 0;
1218 info->disk.minor = 0;
1219 info->disk.raid_disk = -1;
1220 info->reshape_active = 0;
1221 info->array.major_version = -1;
1222 info->array.minor_version = -2;
1223 strcpy(info->text_version, "imsm");
1224 info->safe_mode_delay = 0;
1225 info->disk.number = -1;
1226 info->disk.state = 0;
1227 info->name[0] = 0;
1228
1229 if (super->disks) {
1230 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1231
1232 disk = &super->disks->disk;
1233 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1234 info->component_size = reserved;
1235 s = disk->status;
1236 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
1237 /* we don't change info->disk.raid_disk here because
1238 * this state will be finalized in mdmon after we have
1239 * found the 'most fresh' version of the metadata
1240 */
1241 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
1242 info->disk.state |= s & SPARE_DISK ? 0 : (1 << MD_DISK_SYNC);
1243 }
1244
1245 /* only call uuid_from_super_imsm when this disk is part of a populated container,
1246 * ->compare_super may have updated the 'num_raid_devs' field for spares
1247 */
1248 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
1249 uuid_from_super_imsm(st, info->uuid);
1250 else {
1251 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
1252 fixup_container_spare_uuid(info);
1253 }
1254 }
1255
1256 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
1257 char *update, char *devname, int verbose,
1258 int uuid_set, char *homehost)
1259 {
1260 /* FIXME */
1261
1262 /* For 'assemble' and 'force' we need to return non-zero if any
1263 * change was made. For others, the return value is ignored.
1264 * Update options are:
1265 * force-one : This device looks a bit old but needs to be included,
1266 * update age info appropriately.
1267 * assemble: clear any 'faulty' flag to allow this device to
1268 * be assembled.
1269 * force-array: Array is degraded but being forced, mark it clean
1270 * if that will be needed to assemble it.
1271 *
1272 * newdev: not used ????
1273 * grow: Array has gained a new device - this is currently for
1274 * linear only
1275 * resync: mark as dirty so a resync will happen.
1276 * name: update the name - preserving the homehost
1277 *
1278 * Following are not relevant for this imsm:
1279 * sparc2.2 : update from old dodgey metadata
1280 * super-minor: change the preferred_minor number
1281 * summaries: update redundant counters.
1282 * uuid: Change the uuid of the array to match watch is given
1283 * homehost: update the recorded homehost
1284 * _reshape_progress: record new reshape_progress position.
1285 */
1286 int rv = 0;
1287 //struct intel_super *super = st->sb;
1288 //struct imsm_super *mpb = super->mpb;
1289
1290 if (strcmp(update, "grow") == 0) {
1291 }
1292 if (strcmp(update, "resync") == 0) {
1293 /* dev->vol.dirty = 1; */
1294 }
1295
1296 /* IMSM has no concept of UUID or homehost */
1297
1298 return rv;
1299 }
1300
1301 static size_t disks_to_mpb_size(int disks)
1302 {
1303 size_t size;
1304
1305 size = sizeof(struct imsm_super);
1306 size += (disks - 1) * sizeof(struct imsm_disk);
1307 size += 2 * sizeof(struct imsm_dev);
1308 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
1309 size += (4 - 2) * sizeof(struct imsm_map);
1310 /* 4 possible disk_ord_tbl's */
1311 size += 4 * (disks - 1) * sizeof(__u32);
1312
1313 return size;
1314 }
1315
1316 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
1317 {
1318 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
1319 return 0;
1320
1321 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
1322 }
1323
1324 static void free_devlist(struct intel_super *super)
1325 {
1326 struct intel_dev *dv;
1327
1328 while (super->devlist) {
1329 dv = super->devlist->next;
1330 free(super->devlist->dev);
1331 free(super->devlist);
1332 super->devlist = dv;
1333 }
1334 }
1335
1336 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1337 {
1338 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1339 }
1340
1341 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
1342 {
1343 /*
1344 * return:
1345 * 0 same, or first was empty, and second was copied
1346 * 1 second had wrong number
1347 * 2 wrong uuid
1348 * 3 wrong other info
1349 */
1350 struct intel_super *first = st->sb;
1351 struct intel_super *sec = tst->sb;
1352
1353 if (!first) {
1354 st->sb = tst->sb;
1355 tst->sb = NULL;
1356 return 0;
1357 }
1358
1359 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
1360 return 3;
1361
1362 /* if an anchor does not have num_raid_devs set then it is a free
1363 * floating spare
1364 */
1365 if (first->anchor->num_raid_devs > 0 &&
1366 sec->anchor->num_raid_devs > 0) {
1367 if (first->anchor->family_num != sec->anchor->family_num)
1368 return 3;
1369 }
1370
1371 /* if 'first' is a spare promote it to a populated mpb with sec's
1372 * family number
1373 */
1374 if (first->anchor->num_raid_devs == 0 &&
1375 sec->anchor->num_raid_devs > 0) {
1376 int i;
1377 struct intel_dev *dv;
1378 struct imsm_dev *dev;
1379
1380 /* we need to copy raid device info from sec if an allocation
1381 * fails here we don't associate the spare
1382 */
1383 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
1384 dv = malloc(sizeof(*dv));
1385 if (!dv)
1386 break;
1387 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
1388 if (!dev) {
1389 free(dv);
1390 break;
1391 }
1392 dv->dev = dev;
1393 dv->index = i;
1394 dv->next = first->devlist;
1395 first->devlist = dv;
1396 }
1397 if (i <= sec->anchor->num_raid_devs) {
1398 /* allocation failure */
1399 free_devlist(first);
1400 fprintf(stderr, "imsm: failed to associate spare\n");
1401 return 3;
1402 }
1403 for (i = 0; i < sec->anchor->num_raid_devs; i++)
1404 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
1405
1406 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
1407 first->anchor->family_num = sec->anchor->family_num;
1408 }
1409
1410 return 0;
1411 }
1412
1413 static void fd2devname(int fd, char *name)
1414 {
1415 struct stat st;
1416 char path[256];
1417 char dname[100];
1418 char *nm;
1419 int rv;
1420
1421 name[0] = '\0';
1422 if (fstat(fd, &st) != 0)
1423 return;
1424 sprintf(path, "/sys/dev/block/%d:%d",
1425 major(st.st_rdev), minor(st.st_rdev));
1426
1427 rv = readlink(path, dname, sizeof(dname));
1428 if (rv <= 0)
1429 return;
1430
1431 dname[rv] = '\0';
1432 nm = strrchr(dname, '/');
1433 nm++;
1434 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1435 }
1436
1437
1438 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1439
1440 static int imsm_read_serial(int fd, char *devname,
1441 __u8 serial[MAX_RAID_SERIAL_LEN])
1442 {
1443 unsigned char scsi_serial[255];
1444 int rv;
1445 int rsp_len;
1446 int len;
1447 char *c, *rsp_buf;
1448
1449 memset(scsi_serial, 0, sizeof(scsi_serial));
1450
1451 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1452
1453 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
1454 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1455 fd2devname(fd, (char *) serial);
1456 return 0;
1457 }
1458
1459 if (rv != 0) {
1460 if (devname)
1461 fprintf(stderr,
1462 Name ": Failed to retrieve serial for %s\n",
1463 devname);
1464 return rv;
1465 }
1466
1467 /* trim leading whitespace */
1468 rsp_len = scsi_serial[3];
1469 if (!rsp_len) {
1470 if (devname)
1471 fprintf(stderr,
1472 Name ": Failed to retrieve serial for %s\n",
1473 devname);
1474 return 2;
1475 }
1476 rsp_buf = (char *) &scsi_serial[4];
1477 c = rsp_buf;
1478 while (isspace(*c))
1479 c++;
1480
1481 /* truncate len to the end of rsp_buf if necessary */
1482 if (c + MAX_RAID_SERIAL_LEN > rsp_buf + rsp_len)
1483 len = rsp_len - (c - rsp_buf);
1484 else
1485 len = MAX_RAID_SERIAL_LEN;
1486
1487 /* initialize the buffer and copy rsp_buf characters */
1488 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1489 memcpy(serial, c, len);
1490
1491 /* trim trailing whitespace starting with the last character copied */
1492 c = (char *) &serial[len - 1];
1493 while (isspace(*c) || *c == '\0')
1494 *c-- = '\0';
1495
1496 return 0;
1497 }
1498
1499 static int serialcmp(__u8 *s1, __u8 *s2)
1500 {
1501 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1502 }
1503
1504 static void serialcpy(__u8 *dest, __u8 *src)
1505 {
1506 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1507 }
1508
1509 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
1510 {
1511 struct dl *dl;
1512
1513 for (dl = super->disks; dl; dl = dl->next)
1514 if (serialcmp(dl->serial, serial) == 0)
1515 break;
1516
1517 return dl;
1518 }
1519
1520 static int
1521 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1522 {
1523 struct dl *dl;
1524 struct stat stb;
1525 int rv;
1526 int i;
1527 int alloc = 1;
1528 __u8 serial[MAX_RAID_SERIAL_LEN];
1529
1530 rv = imsm_read_serial(fd, devname, serial);
1531
1532 if (rv != 0)
1533 return 2;
1534
1535 /* check if this is a disk we have seen before. it may be a spare in
1536 * super->disks while the current anchor believes it is a raid member,
1537 * check if we need to update dl->index
1538 */
1539 dl = serial_to_dl(serial, super);
1540 if (!dl)
1541 dl = malloc(sizeof(*dl));
1542 else
1543 alloc = 0;
1544
1545 if (!dl) {
1546 if (devname)
1547 fprintf(stderr,
1548 Name ": failed to allocate disk buffer for %s\n",
1549 devname);
1550 return 2;
1551 }
1552
1553 if (alloc) {
1554 fstat(fd, &stb);
1555 dl->major = major(stb.st_rdev);
1556 dl->minor = minor(stb.st_rdev);
1557 dl->next = super->disks;
1558 dl->fd = keep_fd ? fd : -1;
1559 dl->devname = devname ? strdup(devname) : NULL;
1560 serialcpy(dl->serial, serial);
1561 dl->index = -2;
1562 dl->e = NULL;
1563 } else if (keep_fd) {
1564 close(dl->fd);
1565 dl->fd = fd;
1566 }
1567
1568 /* look up this disk's index in the current anchor */
1569 for (i = 0; i < super->anchor->num_disks; i++) {
1570 struct imsm_disk *disk_iter;
1571
1572 disk_iter = __get_imsm_disk(super->anchor, i);
1573
1574 if (serialcmp(disk_iter->serial, dl->serial) == 0) {
1575 dl->disk = *disk_iter;
1576 /* only set index on disks that are a member of a
1577 * populated contianer, i.e. one with raid_devs
1578 */
1579 if (dl->disk.status & FAILED_DISK)
1580 dl->index = -2;
1581 else if (dl->disk.status & SPARE_DISK)
1582 dl->index = -1;
1583 else
1584 dl->index = i;
1585
1586 break;
1587 }
1588 }
1589
1590 /* no match, maybe a stale failed drive */
1591 if (i == super->anchor->num_disks && dl->index >= 0) {
1592 dl->disk = *__get_imsm_disk(super->anchor, dl->index);
1593 if (dl->disk.status & FAILED_DISK)
1594 dl->index = -2;
1595 }
1596
1597 if (alloc)
1598 super->disks = dl;
1599
1600 return 0;
1601 }
1602
1603 #ifndef MDASSEMBLE
1604 /* When migrating map0 contains the 'destination' state while map1
1605 * contains the current state. When not migrating map0 contains the
1606 * current state. This routine assumes that map[0].map_state is set to
1607 * the current array state before being called.
1608 *
1609 * Migration is indicated by one of the following states
1610 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
1611 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
1612 * map1state=unitialized)
1613 * 3/ Verify (Resync) (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
1614 * map1state=normal)
1615 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
1616 * map1state=degraded)
1617 */
1618 static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
1619 {
1620 struct imsm_map *dest;
1621 struct imsm_map *src = get_imsm_map(dev, 0);
1622
1623 dev->vol.migr_state = 1;
1624 dev->vol.migr_type = migr_type;
1625 dev->vol.curr_migr_unit = 0;
1626 dest = get_imsm_map(dev, 1);
1627
1628 /* duplicate and then set the target end state in map[0] */
1629 memcpy(dest, src, sizeof_imsm_map(src));
1630 if (migr_type == MIGR_REBUILD) {
1631 __u32 ord;
1632 int i;
1633
1634 for (i = 0; i < src->num_members; i++) {
1635 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
1636 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
1637 }
1638 }
1639
1640 src->map_state = to_state;
1641 }
1642
1643 static void end_migration(struct imsm_dev *dev, __u8 map_state)
1644 {
1645 struct imsm_map *map = get_imsm_map(dev, 0);
1646 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
1647 int i;
1648
1649 /* merge any IMSM_ORD_REBUILD bits that were not successfully
1650 * completed in the last migration.
1651 *
1652 * FIXME add support for online capacity expansion and
1653 * raid-level-migration
1654 */
1655 for (i = 0; i < prev->num_members; i++)
1656 map->disk_ord_tbl[i] |= prev->disk_ord_tbl[i];
1657
1658 dev->vol.migr_state = 0;
1659 dev->vol.curr_migr_unit = 0;
1660 map->map_state = map_state;
1661 }
1662 #endif
1663
1664 static int parse_raid_devices(struct intel_super *super)
1665 {
1666 int i;
1667 struct imsm_dev *dev_new;
1668 size_t len, len_migr;
1669 size_t space_needed = 0;
1670 struct imsm_super *mpb = super->anchor;
1671
1672 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1673 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
1674 struct intel_dev *dv;
1675
1676 len = sizeof_imsm_dev(dev_iter, 0);
1677 len_migr = sizeof_imsm_dev(dev_iter, 1);
1678 if (len_migr > len)
1679 space_needed += len_migr - len;
1680
1681 dv = malloc(sizeof(*dv));
1682 if (!dv)
1683 return 1;
1684 dev_new = malloc(len_migr);
1685 if (!dev_new) {
1686 free(dv);
1687 return 1;
1688 }
1689 imsm_copy_dev(dev_new, dev_iter);
1690 dv->dev = dev_new;
1691 dv->index = i;
1692 dv->next = super->devlist;
1693 super->devlist = dv;
1694 }
1695
1696 /* ensure that super->buf is large enough when all raid devices
1697 * are migrating
1698 */
1699 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1700 void *buf;
1701
1702 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1703 if (posix_memalign(&buf, 512, len) != 0)
1704 return 1;
1705
1706 memcpy(buf, super->buf, len);
1707 free(super->buf);
1708 super->buf = buf;
1709 super->len = len;
1710 }
1711
1712 return 0;
1713 }
1714
1715 /* retrieve a pointer to the bbm log which starts after all raid devices */
1716 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1717 {
1718 void *ptr = NULL;
1719
1720 if (__le32_to_cpu(mpb->bbm_log_size)) {
1721 ptr = mpb;
1722 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1723 }
1724
1725 return ptr;
1726 }
1727
1728 static void __free_imsm(struct intel_super *super, int free_disks);
1729
1730 /* load_imsm_mpb - read matrix metadata
1731 * allocates super->mpb to be freed by free_super
1732 */
1733 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1734 {
1735 unsigned long long dsize;
1736 unsigned long long sectors;
1737 struct stat;
1738 struct imsm_super *anchor;
1739 __u32 check_sum;
1740 int rc;
1741
1742 get_dev_size(fd, NULL, &dsize);
1743
1744 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1745 if (devname)
1746 fprintf(stderr,
1747 Name ": Cannot seek to anchor block on %s: %s\n",
1748 devname, strerror(errno));
1749 return 1;
1750 }
1751
1752 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1753 if (devname)
1754 fprintf(stderr,
1755 Name ": Failed to allocate imsm anchor buffer"
1756 " on %s\n", devname);
1757 return 1;
1758 }
1759 if (read(fd, anchor, 512) != 512) {
1760 if (devname)
1761 fprintf(stderr,
1762 Name ": Cannot read anchor block on %s: %s\n",
1763 devname, strerror(errno));
1764 free(anchor);
1765 return 1;
1766 }
1767
1768 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1769 if (devname)
1770 fprintf(stderr,
1771 Name ": no IMSM anchor on %s\n", devname);
1772 free(anchor);
1773 return 2;
1774 }
1775
1776 __free_imsm(super, 0);
1777 super->len = ROUND_UP(anchor->mpb_size, 512);
1778 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1779 if (devname)
1780 fprintf(stderr,
1781 Name ": unable to allocate %zu byte mpb buffer\n",
1782 super->len);
1783 free(anchor);
1784 return 2;
1785 }
1786 memcpy(super->buf, anchor, 512);
1787
1788 sectors = mpb_sectors(anchor) - 1;
1789 free(anchor);
1790 if (!sectors) {
1791 check_sum = __gen_imsm_checksum(super->anchor);
1792 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1793 if (devname)
1794 fprintf(stderr,
1795 Name ": IMSM checksum %x != %x on %s\n",
1796 check_sum,
1797 __le32_to_cpu(super->anchor->check_sum),
1798 devname);
1799 return 2;
1800 }
1801
1802 rc = load_imsm_disk(fd, super, devname, 0);
1803 if (rc == 0)
1804 rc = parse_raid_devices(super);
1805 return rc;
1806 }
1807
1808 /* read the extended mpb */
1809 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1810 if (devname)
1811 fprintf(stderr,
1812 Name ": Cannot seek to extended mpb on %s: %s\n",
1813 devname, strerror(errno));
1814 return 1;
1815 }
1816
1817 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1818 if (devname)
1819 fprintf(stderr,
1820 Name ": Cannot read extended mpb on %s: %s\n",
1821 devname, strerror(errno));
1822 return 2;
1823 }
1824
1825 check_sum = __gen_imsm_checksum(super->anchor);
1826 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1827 if (devname)
1828 fprintf(stderr,
1829 Name ": IMSM checksum %x != %x on %s\n",
1830 check_sum, __le32_to_cpu(super->anchor->check_sum),
1831 devname);
1832 return 3;
1833 }
1834
1835 /* FIXME the BBM log is disk specific so we cannot use this global
1836 * buffer for all disks. Ok for now since we only look at the global
1837 * bbm_log_size parameter to gate assembly
1838 */
1839 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1840
1841 rc = load_imsm_disk(fd, super, devname, 0);
1842 if (rc == 0)
1843 rc = parse_raid_devices(super);
1844
1845 return rc;
1846 }
1847
1848 static void __free_imsm_disk(struct dl *d)
1849 {
1850 if (d->fd >= 0)
1851 close(d->fd);
1852 if (d->devname)
1853 free(d->devname);
1854 if (d->e)
1855 free(d->e);
1856 free(d);
1857
1858 }
1859 static void free_imsm_disks(struct intel_super *super)
1860 {
1861 struct dl *d;
1862
1863 while (super->disks) {
1864 d = super->disks;
1865 super->disks = d->next;
1866 __free_imsm_disk(d);
1867 }
1868 while (super->missing) {
1869 d = super->missing;
1870 super->missing = d->next;
1871 __free_imsm_disk(d);
1872 }
1873
1874 }
1875
1876 /* free all the pieces hanging off of a super pointer */
1877 static void __free_imsm(struct intel_super *super, int free_disks)
1878 {
1879 if (super->buf) {
1880 free(super->buf);
1881 super->buf = NULL;
1882 }
1883 if (free_disks)
1884 free_imsm_disks(super);
1885 free_devlist(super);
1886 if (super->hba) {
1887 free((void *) super->hba);
1888 super->hba = NULL;
1889 }
1890 }
1891
1892 static void free_imsm(struct intel_super *super)
1893 {
1894 __free_imsm(super, 1);
1895 free(super);
1896 }
1897
1898 static void free_super_imsm(struct supertype *st)
1899 {
1900 struct intel_super *super = st->sb;
1901
1902 if (!super)
1903 return;
1904
1905 free_imsm(super);
1906 st->sb = NULL;
1907 }
1908
1909 static struct intel_super *alloc_super(int creating_imsm)
1910 {
1911 struct intel_super *super = malloc(sizeof(*super));
1912
1913 if (super) {
1914 memset(super, 0, sizeof(*super));
1915 super->creating_imsm = creating_imsm;
1916 super->current_vol = -1;
1917 super->create_offset = ~((__u32 ) 0);
1918 if (!check_env("IMSM_NO_PLATFORM"))
1919 super->orom = find_imsm_orom();
1920 if (super->orom && !check_env("IMSM_TEST_OROM")) {
1921 struct sys_dev *list, *ent;
1922
1923 /* find the first intel ahci controller */
1924 list = find_driver_devices("pci", "ahci");
1925 for (ent = list; ent; ent = ent->next)
1926 if (devpath_to_vendor(ent->path) == 0x8086)
1927 break;
1928 if (ent) {
1929 super->hba = ent->path;
1930 ent->path = NULL;
1931 }
1932 free_sys_dev(&list);
1933 }
1934 }
1935
1936 return super;
1937 }
1938
1939 #ifndef MDASSEMBLE
1940 /* find_missing - helper routine for load_super_imsm_all that identifies
1941 * disks that have disappeared from the system. This routine relies on
1942 * the mpb being uptodate, which it is at load time.
1943 */
1944 static int find_missing(struct intel_super *super)
1945 {
1946 int i;
1947 struct imsm_super *mpb = super->anchor;
1948 struct dl *dl;
1949 struct imsm_disk *disk;
1950
1951 for (i = 0; i < mpb->num_disks; i++) {
1952 disk = __get_imsm_disk(mpb, i);
1953 dl = serial_to_dl(disk->serial, super);
1954 if (dl)
1955 continue;
1956
1957 dl = malloc(sizeof(*dl));
1958 if (!dl)
1959 return 1;
1960 dl->major = 0;
1961 dl->minor = 0;
1962 dl->fd = -1;
1963 dl->devname = strdup("missing");
1964 dl->index = i;
1965 serialcpy(dl->serial, disk->serial);
1966 dl->disk = *disk;
1967 dl->e = NULL;
1968 dl->next = super->missing;
1969 super->missing = dl;
1970 }
1971
1972 return 0;
1973 }
1974
1975 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1976 char *devname, int keep_fd)
1977 {
1978 struct mdinfo *sra;
1979 struct intel_super *super;
1980 struct mdinfo *sd, *best = NULL;
1981 __u32 bestgen = 0;
1982 __u32 gen;
1983 char nm[20];
1984 int dfd;
1985 int rv;
1986 int devnum = fd2devnum(fd);
1987 int retry;
1988 enum sysfs_read_flags flags;
1989
1990 flags = GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE;
1991 if (mdmon_running(devnum))
1992 flags |= SKIP_GONE_DEVS;
1993
1994 /* check if 'fd' an opened container */
1995 sra = sysfs_read(fd, 0, flags);
1996 if (!sra)
1997 return 1;
1998
1999 if (sra->array.major_version != -1 ||
2000 sra->array.minor_version != -2 ||
2001 strcmp(sra->text_version, "imsm") != 0)
2002 return 1;
2003
2004 super = alloc_super(0);
2005 if (!super)
2006 return 1;
2007
2008 /* find the most up to date disk in this array, skipping spares */
2009 for (sd = sra->devs; sd; sd = sd->next) {
2010 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2011 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
2012 if (dfd < 0) {
2013 free_imsm(super);
2014 return 2;
2015 }
2016 rv = load_imsm_mpb(dfd, super, NULL);
2017
2018 /* retry the load if we might have raced against mdmon */
2019 if (rv == 3 && mdmon_running(devnum))
2020 for (retry = 0; retry < 3; retry++) {
2021 usleep(3000);
2022 rv = load_imsm_mpb(dfd, super, NULL);
2023 if (rv != 3)
2024 break;
2025 }
2026 if (!keep_fd)
2027 close(dfd);
2028 if (rv == 0) {
2029 if (super->anchor->num_raid_devs == 0)
2030 gen = 0;
2031 else
2032 gen = __le32_to_cpu(super->anchor->generation_num);
2033 if (!best || gen > bestgen) {
2034 bestgen = gen;
2035 best = sd;
2036 }
2037 } else {
2038 free_imsm(super);
2039 return rv;
2040 }
2041 }
2042
2043 if (!best) {
2044 free_imsm(super);
2045 return 1;
2046 }
2047
2048 /* load the most up to date anchor */
2049 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2050 dfd = dev_open(nm, O_RDONLY);
2051 if (dfd < 0) {
2052 free_imsm(super);
2053 return 1;
2054 }
2055 rv = load_imsm_mpb(dfd, super, NULL);
2056 close(dfd);
2057 if (rv != 0) {
2058 free_imsm(super);
2059 return 2;
2060 }
2061
2062 /* re-parse the disk list with the current anchor */
2063 for (sd = sra->devs ; sd ; sd = sd->next) {
2064 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2065 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2066 if (dfd < 0) {
2067 free_imsm(super);
2068 return 2;
2069 }
2070 load_imsm_disk(dfd, super, NULL, keep_fd);
2071 if (!keep_fd)
2072 close(dfd);
2073 }
2074
2075
2076 if (find_missing(super) != 0) {
2077 free_imsm(super);
2078 return 2;
2079 }
2080
2081 if (st->subarray[0]) {
2082 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2083 super->current_vol = atoi(st->subarray);
2084 else
2085 return 1;
2086 }
2087
2088 *sbp = super;
2089 st->container_dev = devnum;
2090 if (st->ss == NULL) {
2091 st->ss = &super_imsm;
2092 st->minor_version = 0;
2093 st->max_devs = IMSM_MAX_DEVICES;
2094 }
2095 st->loaded_container = 1;
2096
2097 return 0;
2098 }
2099 #endif
2100
2101 static int load_super_imsm(struct supertype *st, int fd, char *devname)
2102 {
2103 struct intel_super *super;
2104 int rv;
2105
2106 #ifndef MDASSEMBLE
2107 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
2108 return 0;
2109 #endif
2110 if (st->subarray[0])
2111 return 1; /* FIXME */
2112
2113 super = alloc_super(0);
2114 if (!super) {
2115 fprintf(stderr,
2116 Name ": malloc of %zu failed.\n",
2117 sizeof(*super));
2118 return 1;
2119 }
2120
2121 rv = load_imsm_mpb(fd, super, devname);
2122
2123 if (rv) {
2124 if (devname)
2125 fprintf(stderr,
2126 Name ": Failed to load all information "
2127 "sections on %s\n", devname);
2128 free_imsm(super);
2129 return rv;
2130 }
2131
2132 st->sb = super;
2133 if (st->ss == NULL) {
2134 st->ss = &super_imsm;
2135 st->minor_version = 0;
2136 st->max_devs = IMSM_MAX_DEVICES;
2137 }
2138 st->loaded_container = 0;
2139
2140 return 0;
2141 }
2142
2143 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
2144 {
2145 if (info->level == 1)
2146 return 128;
2147 return info->chunk_size >> 9;
2148 }
2149
2150 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
2151 {
2152 __u32 num_stripes;
2153
2154 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
2155 if (info->level == 1)
2156 num_stripes /= 2;
2157
2158 return num_stripes;
2159 }
2160
2161 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
2162 {
2163 if (info->level == 1)
2164 return info->size * 2;
2165 else
2166 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
2167 }
2168
2169 static void imsm_update_version_info(struct intel_super *super)
2170 {
2171 /* update the version and attributes */
2172 struct imsm_super *mpb = super->anchor;
2173 char *version;
2174 struct imsm_dev *dev;
2175 struct imsm_map *map;
2176 int i;
2177
2178 for (i = 0; i < mpb->num_raid_devs; i++) {
2179 dev = get_imsm_dev(super, i);
2180 map = get_imsm_map(dev, 0);
2181 if (__le32_to_cpu(dev->size_high) > 0)
2182 mpb->attributes |= MPB_ATTRIB_2TB;
2183
2184 /* FIXME detect when an array spans a port multiplier */
2185 #if 0
2186 mpb->attributes |= MPB_ATTRIB_PM;
2187 #endif
2188
2189 if (mpb->num_raid_devs > 1 ||
2190 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
2191 version = MPB_VERSION_ATTRIBS;
2192 switch (get_imsm_raid_level(map)) {
2193 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
2194 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
2195 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
2196 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
2197 }
2198 } else {
2199 if (map->num_members >= 5)
2200 version = MPB_VERSION_5OR6_DISK_ARRAY;
2201 else if (dev->status == DEV_CLONE_N_GO)
2202 version = MPB_VERSION_CNG;
2203 else if (get_imsm_raid_level(map) == 5)
2204 version = MPB_VERSION_RAID5;
2205 else if (map->num_members >= 3)
2206 version = MPB_VERSION_3OR4_DISK_ARRAY;
2207 else if (get_imsm_raid_level(map) == 1)
2208 version = MPB_VERSION_RAID1;
2209 else
2210 version = MPB_VERSION_RAID0;
2211 }
2212 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
2213 }
2214 }
2215
2216 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
2217 unsigned long long size, char *name,
2218 char *homehost, int *uuid)
2219 {
2220 /* We are creating a volume inside a pre-existing container.
2221 * so st->sb is already set.
2222 */
2223 struct intel_super *super = st->sb;
2224 struct imsm_super *mpb = super->anchor;
2225 struct intel_dev *dv;
2226 struct imsm_dev *dev;
2227 struct imsm_vol *vol;
2228 struct imsm_map *map;
2229 int idx = mpb->num_raid_devs;
2230 int i;
2231 unsigned long long array_blocks;
2232 size_t size_old, size_new;
2233
2234 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
2235 fprintf(stderr, Name": This imsm-container already has the "
2236 "maximum of %d volumes\n", super->orom->vpa);
2237 return 0;
2238 }
2239
2240 /* ensure the mpb is large enough for the new data */
2241 size_old = __le32_to_cpu(mpb->mpb_size);
2242 size_new = disks_to_mpb_size(info->nr_disks);
2243 if (size_new > size_old) {
2244 void *mpb_new;
2245 size_t size_round = ROUND_UP(size_new, 512);
2246
2247 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
2248 fprintf(stderr, Name": could not allocate new mpb\n");
2249 return 0;
2250 }
2251 memcpy(mpb_new, mpb, size_old);
2252 free(mpb);
2253 mpb = mpb_new;
2254 super->anchor = mpb_new;
2255 mpb->mpb_size = __cpu_to_le32(size_new);
2256 memset(mpb_new + size_old, 0, size_round - size_old);
2257 }
2258 super->current_vol = idx;
2259 /* when creating the first raid device in this container set num_disks
2260 * to zero, i.e. delete this spare and add raid member devices in
2261 * add_to_super_imsm_volume()
2262 */
2263 if (super->current_vol == 0)
2264 mpb->num_disks = 0;
2265
2266 for (i = 0; i < super->current_vol; i++) {
2267 dev = get_imsm_dev(super, i);
2268 if (strncmp((char *) dev->volume, name,
2269 MAX_RAID_SERIAL_LEN) == 0) {
2270 fprintf(stderr, Name": '%s' is already defined for this container\n",
2271 name);
2272 return 0;
2273 }
2274 }
2275
2276 sprintf(st->subarray, "%d", idx);
2277 dv = malloc(sizeof(*dv));
2278 if (!dv) {
2279 fprintf(stderr, Name ": failed to allocate device list entry\n");
2280 return 0;
2281 }
2282 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
2283 if (!dev) {
2284 free(dv);
2285 fprintf(stderr, Name": could not allocate raid device\n");
2286 return 0;
2287 }
2288 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
2289 if (info->level == 1)
2290 array_blocks = info_to_blocks_per_member(info);
2291 else
2292 array_blocks = calc_array_size(info->level, info->raid_disks,
2293 info->layout, info->chunk_size,
2294 info->size*2);
2295 dev->size_low = __cpu_to_le32((__u32) array_blocks);
2296 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
2297 dev->status = __cpu_to_le32(0);
2298 dev->reserved_blocks = __cpu_to_le32(0);
2299 vol = &dev->vol;
2300 vol->migr_state = 0;
2301 vol->migr_type = MIGR_INIT;
2302 vol->dirty = 0;
2303 vol->curr_migr_unit = 0;
2304 map = get_imsm_map(dev, 0);
2305 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
2306 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
2307 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
2308 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
2309 map->failed_disk_num = ~0;
2310 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
2311 IMSM_T_STATE_NORMAL;
2312
2313 if (info->level == 1 && info->raid_disks > 2) {
2314 fprintf(stderr, Name": imsm does not support more than 2 disks"
2315 "in a raid1 volume\n");
2316 return 0;
2317 }
2318 if (info->level == 10) {
2319 map->raid_level = 1;
2320 map->num_domains = info->raid_disks / 2;
2321 } else {
2322 map->raid_level = info->level;
2323 map->num_domains = !!map->raid_level;
2324 }
2325
2326 map->num_members = info->raid_disks;
2327 for (i = 0; i < map->num_members; i++) {
2328 /* initialized in add_to_super */
2329 set_imsm_ord_tbl_ent(map, i, 0);
2330 }
2331 mpb->num_raid_devs++;
2332
2333 dv->dev = dev;
2334 dv->index = super->current_vol;
2335 dv->next = super->devlist;
2336 super->devlist = dv;
2337
2338 imsm_update_version_info(super);
2339
2340 return 1;
2341 }
2342
2343 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
2344 unsigned long long size, char *name,
2345 char *homehost, int *uuid)
2346 {
2347 /* This is primarily called by Create when creating a new array.
2348 * We will then get add_to_super called for each component, and then
2349 * write_init_super called to write it out to each device.
2350 * For IMSM, Create can create on fresh devices or on a pre-existing
2351 * array.
2352 * To create on a pre-existing array a different method will be called.
2353 * This one is just for fresh drives.
2354 */
2355 struct intel_super *super;
2356 struct imsm_super *mpb;
2357 size_t mpb_size;
2358 char *version;
2359
2360 if (!info) {
2361 st->sb = NULL;
2362 return 0;
2363 }
2364 if (st->sb)
2365 return init_super_imsm_volume(st, info, size, name, homehost,
2366 uuid);
2367
2368 super = alloc_super(1);
2369 if (!super)
2370 return 0;
2371 mpb_size = disks_to_mpb_size(info->nr_disks);
2372 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
2373 free(super);
2374 return 0;
2375 }
2376 mpb = super->buf;
2377 memset(mpb, 0, mpb_size);
2378
2379 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
2380
2381 version = (char *) mpb->sig;
2382 strcpy(version, MPB_SIGNATURE);
2383 version += strlen(MPB_SIGNATURE);
2384 strcpy(version, MPB_VERSION_RAID0);
2385 mpb->mpb_size = mpb_size;
2386
2387 st->sb = super;
2388 return 1;
2389 }
2390
2391 #ifndef MDASSEMBLE
2392 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
2393 int fd, char *devname)
2394 {
2395 struct intel_super *super = st->sb;
2396 struct imsm_super *mpb = super->anchor;
2397 struct dl *dl;
2398 struct imsm_dev *dev;
2399 struct imsm_map *map;
2400
2401 dev = get_imsm_dev(super, super->current_vol);
2402 map = get_imsm_map(dev, 0);
2403
2404 if (! (dk->state & (1<<MD_DISK_SYNC))) {
2405 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
2406 devname);
2407 return 1;
2408 }
2409
2410 if (fd == -1) {
2411 /* we're doing autolayout so grab the pre-marked (in
2412 * validate_geometry) raid_disk
2413 */
2414 for (dl = super->disks; dl; dl = dl->next)
2415 if (dl->raiddisk == dk->raid_disk)
2416 break;
2417 } else {
2418 for (dl = super->disks; dl ; dl = dl->next)
2419 if (dl->major == dk->major &&
2420 dl->minor == dk->minor)
2421 break;
2422 }
2423
2424 if (!dl) {
2425 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
2426 return 1;
2427 }
2428
2429 /* add a pristine spare to the metadata */
2430 if (dl->index < 0) {
2431 dl->index = super->anchor->num_disks;
2432 super->anchor->num_disks++;
2433 }
2434 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
2435 dl->disk.status = CONFIGURED_DISK | USABLE_DISK;
2436
2437 /* if we are creating the first raid device update the family number */
2438 if (super->current_vol == 0) {
2439 __u32 sum;
2440 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
2441 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
2442
2443 *_dev = *dev;
2444 *_disk = dl->disk;
2445 sum = __gen_imsm_checksum(mpb);
2446 mpb->family_num = __cpu_to_le32(sum);
2447 }
2448
2449 return 0;
2450 }
2451
2452 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
2453 int fd, char *devname)
2454 {
2455 struct intel_super *super = st->sb;
2456 struct dl *dd;
2457 unsigned long long size;
2458 __u32 id;
2459 int rv;
2460 struct stat stb;
2461
2462 /* if we are on an RAID enabled platform check that the disk is
2463 * attached to the raid controller
2464 */
2465 if (super->hba && !disk_attached_to_hba(fd, super->hba)) {
2466 fprintf(stderr,
2467 Name ": %s is not attached to the raid controller: %s\n",
2468 devname ? : "disk", super->hba);
2469 return 1;
2470 }
2471
2472 if (super->current_vol >= 0)
2473 return add_to_super_imsm_volume(st, dk, fd, devname);
2474
2475 fstat(fd, &stb);
2476 dd = malloc(sizeof(*dd));
2477 if (!dd) {
2478 fprintf(stderr,
2479 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
2480 return 1;
2481 }
2482 memset(dd, 0, sizeof(*dd));
2483 dd->major = major(stb.st_rdev);
2484 dd->minor = minor(stb.st_rdev);
2485 dd->index = -1;
2486 dd->devname = devname ? strdup(devname) : NULL;
2487 dd->fd = fd;
2488 dd->e = NULL;
2489 rv = imsm_read_serial(fd, devname, dd->serial);
2490 if (rv) {
2491 fprintf(stderr,
2492 Name ": failed to retrieve scsi serial, aborting\n");
2493 free(dd);
2494 abort();
2495 }
2496
2497 get_dev_size(fd, NULL, &size);
2498 size /= 512;
2499 serialcpy(dd->disk.serial, dd->serial);
2500 dd->disk.total_blocks = __cpu_to_le32(size);
2501 dd->disk.status = USABLE_DISK | SPARE_DISK;
2502 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
2503 dd->disk.scsi_id = __cpu_to_le32(id);
2504 else
2505 dd->disk.scsi_id = __cpu_to_le32(0);
2506
2507 if (st->update_tail) {
2508 dd->next = super->add;
2509 super->add = dd;
2510 } else {
2511 dd->next = super->disks;
2512 super->disks = dd;
2513 }
2514
2515 return 0;
2516 }
2517
2518 static int store_imsm_mpb(int fd, struct intel_super *super);
2519
2520 /* spare records have their own family number and do not have any defined raid
2521 * devices
2522 */
2523 static int write_super_imsm_spares(struct intel_super *super, int doclose)
2524 {
2525 struct imsm_super mpb_save;
2526 struct imsm_super *mpb = super->anchor;
2527 __u32 sum;
2528 struct dl *d;
2529
2530 mpb_save = *mpb;
2531 mpb->num_raid_devs = 0;
2532 mpb->num_disks = 1;
2533 mpb->mpb_size = sizeof(struct imsm_super);
2534 mpb->generation_num = __cpu_to_le32(1UL);
2535
2536 for (d = super->disks; d; d = d->next) {
2537 if (d->index != -1)
2538 continue;
2539
2540 mpb->disk[0] = d->disk;
2541 sum = __gen_imsm_checksum(mpb);
2542 mpb->family_num = __cpu_to_le32(sum);
2543 sum = __gen_imsm_checksum(mpb);
2544 mpb->check_sum = __cpu_to_le32(sum);
2545
2546 if (store_imsm_mpb(d->fd, super)) {
2547 fprintf(stderr, "%s: failed for device %d:%d %s\n",
2548 __func__, d->major, d->minor, strerror(errno));
2549 *mpb = mpb_save;
2550 return 1;
2551 }
2552 if (doclose) {
2553 close(d->fd);
2554 d->fd = -1;
2555 }
2556 }
2557
2558 *mpb = mpb_save;
2559 return 0;
2560 }
2561
2562 static int write_super_imsm(struct intel_super *super, int doclose)
2563 {
2564 struct imsm_super *mpb = super->anchor;
2565 struct dl *d;
2566 __u32 generation;
2567 __u32 sum;
2568 int spares = 0;
2569 int i;
2570 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
2571
2572 /* 'generation' is incremented everytime the metadata is written */
2573 generation = __le32_to_cpu(mpb->generation_num);
2574 generation++;
2575 mpb->generation_num = __cpu_to_le32(generation);
2576
2577 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
2578 for (d = super->disks; d; d = d->next) {
2579 if (d->index == -1)
2580 spares++;
2581 else
2582 mpb->disk[d->index] = d->disk;
2583 }
2584 for (d = super->missing; d; d = d->next)
2585 mpb->disk[d->index] = d->disk;
2586
2587 for (i = 0; i < mpb->num_raid_devs; i++) {
2588 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2589
2590 imsm_copy_dev(dev, get_imsm_dev(super, i));
2591 mpb_size += sizeof_imsm_dev(dev, 0);
2592 }
2593 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
2594 mpb->mpb_size = __cpu_to_le32(mpb_size);
2595
2596 /* recalculate checksum */
2597 sum = __gen_imsm_checksum(mpb);
2598 mpb->check_sum = __cpu_to_le32(sum);
2599
2600 /* write the mpb for disks that compose raid devices */
2601 for (d = super->disks; d ; d = d->next) {
2602 if (d->index < 0)
2603 continue;
2604 if (store_imsm_mpb(d->fd, super))
2605 fprintf(stderr, "%s: failed for device %d:%d %s\n",
2606 __func__, d->major, d->minor, strerror(errno));
2607 if (doclose) {
2608 close(d->fd);
2609 d->fd = -1;
2610 }
2611 }
2612
2613 if (spares)
2614 return write_super_imsm_spares(super, doclose);
2615
2616 return 0;
2617 }
2618
2619
2620 static int create_array(struct supertype *st)
2621 {
2622 size_t len;
2623 struct imsm_update_create_array *u;
2624 struct intel_super *super = st->sb;
2625 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2626 struct imsm_map *map = get_imsm_map(dev, 0);
2627 struct disk_info *inf;
2628 struct imsm_disk *disk;
2629 int i;
2630 int idx;
2631
2632 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
2633 sizeof(*inf) * map->num_members;
2634 u = malloc(len);
2635 if (!u) {
2636 fprintf(stderr, "%s: failed to allocate update buffer\n",
2637 __func__);
2638 return 1;
2639 }
2640
2641 u->type = update_create_array;
2642 u->dev_idx = super->current_vol;
2643 imsm_copy_dev(&u->dev, dev);
2644 inf = get_disk_info(u);
2645 for (i = 0; i < map->num_members; i++) {
2646 idx = get_imsm_disk_idx(dev, i);
2647 disk = get_imsm_disk(super, idx);
2648 serialcpy(inf[i].serial, disk->serial);
2649 }
2650 append_metadata_update(st, u, len);
2651
2652 return 0;
2653 }
2654
2655 static int _add_disk(struct supertype *st)
2656 {
2657 struct intel_super *super = st->sb;
2658 size_t len;
2659 struct imsm_update_add_disk *u;
2660
2661 if (!super->add)
2662 return 0;
2663
2664 len = sizeof(*u);
2665 u = malloc(len);
2666 if (!u) {
2667 fprintf(stderr, "%s: failed to allocate update buffer\n",
2668 __func__);
2669 return 1;
2670 }
2671
2672 u->type = update_add_disk;
2673 append_metadata_update(st, u, len);
2674
2675 return 0;
2676 }
2677
2678 static int write_init_super_imsm(struct supertype *st)
2679 {
2680 if (st->update_tail) {
2681 /* queue the recently created array / added disk
2682 * as a metadata update */
2683 struct intel_super *super = st->sb;
2684 struct dl *d;
2685 int rv;
2686
2687 /* determine if we are creating a volume or adding a disk */
2688 if (super->current_vol < 0) {
2689 /* in the add disk case we are running in mdmon
2690 * context, so don't close fd's
2691 */
2692 return _add_disk(st);
2693 } else
2694 rv = create_array(st);
2695
2696 for (d = super->disks; d ; d = d->next) {
2697 close(d->fd);
2698 d->fd = -1;
2699 }
2700
2701 return rv;
2702 } else
2703 return write_super_imsm(st->sb, 1);
2704 }
2705 #endif
2706
2707 static int store_zero_imsm(struct supertype *st, int fd)
2708 {
2709 unsigned long long dsize;
2710 void *buf;
2711
2712 get_dev_size(fd, NULL, &dsize);
2713
2714 /* first block is stored on second to last sector of the disk */
2715 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2716 return 1;
2717
2718 if (posix_memalign(&buf, 512, 512) != 0)
2719 return 1;
2720
2721 memset(buf, 0, 512);
2722 if (write(fd, buf, 512) != 512)
2723 return 1;
2724 return 0;
2725 }
2726
2727 static int imsm_bbm_log_size(struct imsm_super *mpb)
2728 {
2729 return __le32_to_cpu(mpb->bbm_log_size);
2730 }
2731
2732 #ifndef MDASSEMBLE
2733 static int validate_geometry_imsm_container(struct supertype *st, int level,
2734 int layout, int raiddisks, int chunk,
2735 unsigned long long size, char *dev,
2736 unsigned long long *freesize,
2737 int verbose)
2738 {
2739 int fd;
2740 unsigned long long ldsize;
2741 const struct imsm_orom *orom;
2742
2743 if (level != LEVEL_CONTAINER)
2744 return 0;
2745 if (!dev)
2746 return 1;
2747
2748 if (check_env("IMSM_NO_PLATFORM"))
2749 orom = NULL;
2750 else
2751 orom = find_imsm_orom();
2752 if (orom && raiddisks > orom->tds) {
2753 if (verbose)
2754 fprintf(stderr, Name ": %d exceeds maximum number of"
2755 " platform supported disks: %d\n",
2756 raiddisks, orom->tds);
2757 return 0;
2758 }
2759
2760 fd = open(dev, O_RDONLY|O_EXCL, 0);
2761 if (fd < 0) {
2762 if (verbose)
2763 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
2764 dev, strerror(errno));
2765 return 0;
2766 }
2767 if (!get_dev_size(fd, dev, &ldsize)) {
2768 close(fd);
2769 return 0;
2770 }
2771 close(fd);
2772
2773 *freesize = avail_size_imsm(st, ldsize >> 9);
2774
2775 return 1;
2776 }
2777
2778 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
2779 {
2780 const unsigned long long base_start = e[*idx].start;
2781 unsigned long long end = base_start + e[*idx].size;
2782 int i;
2783
2784 if (base_start == end)
2785 return 0;
2786
2787 *idx = *idx + 1;
2788 for (i = *idx; i < num_extents; i++) {
2789 /* extend overlapping extents */
2790 if (e[i].start >= base_start &&
2791 e[i].start <= end) {
2792 if (e[i].size == 0)
2793 return 0;
2794 if (e[i].start + e[i].size > end)
2795 end = e[i].start + e[i].size;
2796 } else if (e[i].start > end) {
2797 *idx = i;
2798 break;
2799 }
2800 }
2801
2802 return end - base_start;
2803 }
2804
2805 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
2806 {
2807 /* build a composite disk with all known extents and generate a new
2808 * 'maxsize' given the "all disks in an array must share a common start
2809 * offset" constraint
2810 */
2811 struct extent *e = calloc(sum_extents, sizeof(*e));
2812 struct dl *dl;
2813 int i, j;
2814 int start_extent;
2815 unsigned long long pos;
2816 unsigned long long start;
2817 unsigned long long maxsize;
2818 unsigned long reserve;
2819
2820 if (!e)
2821 return ~0ULL; /* error */
2822
2823 /* coalesce and sort all extents. also, check to see if we need to
2824 * reserve space between member arrays
2825 */
2826 j = 0;
2827 for (dl = super->disks; dl; dl = dl->next) {
2828 if (!dl->e)
2829 continue;
2830 for (i = 0; i < dl->extent_cnt; i++)
2831 e[j++] = dl->e[i];
2832 }
2833 qsort(e, sum_extents, sizeof(*e), cmp_extent);
2834
2835 /* merge extents */
2836 i = 0;
2837 j = 0;
2838 while (i < sum_extents) {
2839 e[j].start = e[i].start;
2840 e[j].size = find_size(e, &i, sum_extents);
2841 j++;
2842 if (e[j-1].size == 0)
2843 break;
2844 }
2845
2846 pos = 0;
2847 maxsize = 0;
2848 start_extent = 0;
2849 i = 0;
2850 do {
2851 unsigned long long esize;
2852
2853 esize = e[i].start - pos;
2854 if (esize >= maxsize) {
2855 maxsize = esize;
2856 start = pos;
2857 start_extent = i;
2858 }
2859 pos = e[i].start + e[i].size;
2860 i++;
2861 } while (e[i-1].size);
2862 free(e);
2863
2864 if (start_extent > 0)
2865 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
2866 else
2867 reserve = 0;
2868
2869 if (maxsize < reserve)
2870 return ~0ULL;
2871
2872 super->create_offset = ~((__u32) 0);
2873 if (start + reserve > super->create_offset)
2874 return ~0ULL; /* start overflows create_offset */
2875 super->create_offset = start + reserve;
2876
2877 return maxsize - reserve;
2878 }
2879
2880 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
2881 {
2882 if (level < 0 || level == 6 || level == 4)
2883 return 0;
2884
2885 /* if we have an orom prevent invalid raid levels */
2886 if (orom)
2887 switch (level) {
2888 case 0: return imsm_orom_has_raid0(orom);
2889 case 1:
2890 if (raiddisks > 2)
2891 return imsm_orom_has_raid1e(orom);
2892 return imsm_orom_has_raid1(orom) && raiddisks == 2;
2893 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
2894 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
2895 }
2896 else
2897 return 1; /* not on an Intel RAID platform so anything goes */
2898
2899 return 0;
2900 }
2901
2902 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
2903 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
2904 * FIX ME add ahci details
2905 */
2906 static int validate_geometry_imsm_volume(struct supertype *st, int level,
2907 int layout, int raiddisks, int chunk,
2908 unsigned long long size, char *dev,
2909 unsigned long long *freesize,
2910 int verbose)
2911 {
2912 struct stat stb;
2913 struct intel_super *super = st->sb;
2914 struct imsm_super *mpb = super->anchor;
2915 struct dl *dl;
2916 unsigned long long pos = 0;
2917 unsigned long long maxsize;
2918 struct extent *e;
2919 int i;
2920
2921 /* We must have the container info already read in. */
2922 if (!super)
2923 return 0;
2924
2925 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
2926 pr_vrb(": platform does not support raid%d with %d disk%s\n",
2927 level, raiddisks, raiddisks > 1 ? "s" : "");
2928 return 0;
2929 }
2930 if (super->orom && level != 1 &&
2931 !imsm_orom_has_chunk(super->orom, chunk)) {
2932 pr_vrb(": platform does not support a chunk size of: %d\n", chunk);
2933 return 0;
2934 }
2935 if (layout != imsm_level_to_layout(level)) {
2936 if (level == 5)
2937 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
2938 else if (level == 10)
2939 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
2940 else
2941 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
2942 layout, level);
2943 return 0;
2944 }
2945
2946 if (!dev) {
2947 /* General test: make sure there is space for
2948 * 'raiddisks' device extents of size 'size' at a given
2949 * offset
2950 */
2951 unsigned long long minsize = size;
2952 unsigned long long start_offset = ~0ULL;
2953 int dcnt = 0;
2954 if (minsize == 0)
2955 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
2956 for (dl = super->disks; dl ; dl = dl->next) {
2957 int found = 0;
2958
2959 pos = 0;
2960 i = 0;
2961 e = get_extents(super, dl);
2962 if (!e) continue;
2963 do {
2964 unsigned long long esize;
2965 esize = e[i].start - pos;
2966 if (esize >= minsize)
2967 found = 1;
2968 if (found && start_offset == ~0ULL) {
2969 start_offset = pos;
2970 break;
2971 } else if (found && pos != start_offset) {
2972 found = 0;
2973 break;
2974 }
2975 pos = e[i].start + e[i].size;
2976 i++;
2977 } while (e[i-1].size);
2978 if (found)
2979 dcnt++;
2980 free(e);
2981 }
2982 if (dcnt < raiddisks) {
2983 if (verbose)
2984 fprintf(stderr, Name ": imsm: Not enough "
2985 "devices with space for this array "
2986 "(%d < %d)\n",
2987 dcnt, raiddisks);
2988 return 0;
2989 }
2990 return 1;
2991 }
2992
2993 /* This device must be a member of the set */
2994 if (stat(dev, &stb) < 0)
2995 return 0;
2996 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2997 return 0;
2998 for (dl = super->disks ; dl ; dl = dl->next) {
2999 if (dl->major == major(stb.st_rdev) &&
3000 dl->minor == minor(stb.st_rdev))
3001 break;
3002 }
3003 if (!dl) {
3004 if (verbose)
3005 fprintf(stderr, Name ": %s is not in the "
3006 "same imsm set\n", dev);
3007 return 0;
3008 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
3009 /* If a volume is present then the current creation attempt
3010 * cannot incorporate new spares because the orom may not
3011 * understand this configuration (all member disks must be
3012 * members of each array in the container).
3013 */
3014 fprintf(stderr, Name ": %s is a spare and a volume"
3015 " is already defined for this container\n", dev);
3016 fprintf(stderr, Name ": The option-rom requires all member"
3017 " disks to be a member of all volumes\n");
3018 return 0;
3019 }
3020
3021 /* retrieve the largest free space block */
3022 e = get_extents(super, dl);
3023 maxsize = 0;
3024 i = 0;
3025 if (e) {
3026 do {
3027 unsigned long long esize;
3028
3029 esize = e[i].start - pos;
3030 if (esize >= maxsize)
3031 maxsize = esize;
3032 pos = e[i].start + e[i].size;
3033 i++;
3034 } while (e[i-1].size);
3035 dl->e = e;
3036 dl->extent_cnt = i;
3037 } else {
3038 if (verbose)
3039 fprintf(stderr, Name ": unable to determine free space for: %s\n",
3040 dev);
3041 return 0;
3042 }
3043 if (maxsize < size) {
3044 if (verbose)
3045 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
3046 dev, maxsize, size);
3047 return 0;
3048 }
3049
3050 /* count total number of extents for merge */
3051 i = 0;
3052 for (dl = super->disks; dl; dl = dl->next)
3053 if (dl->e)
3054 i += dl->extent_cnt;
3055
3056 maxsize = merge_extents(super, i);
3057 if (maxsize < size) {
3058 if (verbose)
3059 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
3060 maxsize, size);
3061 return 0;
3062 } else if (maxsize == ~0ULL) {
3063 if (verbose)
3064 fprintf(stderr, Name ": failed to merge %d extents\n", i);
3065 return 0;
3066 }
3067
3068 *freesize = maxsize;
3069
3070 return 1;
3071 }
3072
3073 static int reserve_space(struct supertype *st, int raiddisks,
3074 unsigned long long size, int chunk,
3075 unsigned long long *freesize)
3076 {
3077 struct intel_super *super = st->sb;
3078 struct imsm_super *mpb = super->anchor;
3079 struct dl *dl;
3080 int i;
3081 int extent_cnt;
3082 struct extent *e;
3083 unsigned long long maxsize;
3084 unsigned long long minsize;
3085 int cnt;
3086 int used;
3087
3088 /* find the largest common start free region of the possible disks */
3089 used = 0;
3090 extent_cnt = 0;
3091 cnt = 0;
3092 for (dl = super->disks; dl; dl = dl->next) {
3093 dl->raiddisk = -1;
3094
3095 if (dl->index >= 0)
3096 used++;
3097
3098 /* don't activate new spares if we are orom constrained
3099 * and there is already a volume active in the container
3100 */
3101 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
3102 continue;
3103
3104 e = get_extents(super, dl);
3105 if (!e)
3106 continue;
3107 for (i = 1; e[i-1].size; i++)
3108 ;
3109 dl->e = e;
3110 dl->extent_cnt = i;
3111 extent_cnt += i;
3112 cnt++;
3113 }
3114
3115 maxsize = merge_extents(super, extent_cnt);
3116 minsize = size;
3117 if (size == 0)
3118 minsize = chunk;
3119
3120 if (cnt < raiddisks ||
3121 (super->orom && used && used != raiddisks) ||
3122 maxsize < minsize) {
3123 fprintf(stderr, Name ": not enough devices with space to create array.\n");
3124 return 0; /* No enough free spaces large enough */
3125 }
3126
3127 if (size == 0) {
3128 size = maxsize;
3129 if (chunk) {
3130 size /= chunk;
3131 size *= chunk;
3132 }
3133 }
3134
3135 cnt = 0;
3136 for (dl = super->disks; dl; dl = dl->next)
3137 if (dl->e)
3138 dl->raiddisk = cnt++;
3139
3140 *freesize = size;
3141
3142 return 1;
3143 }
3144
3145 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
3146 int raiddisks, int chunk, unsigned long long size,
3147 char *dev, unsigned long long *freesize,
3148 int verbose)
3149 {
3150 int fd, cfd;
3151 struct mdinfo *sra;
3152
3153 /* if given unused devices create a container
3154 * if given given devices in a container create a member volume
3155 */
3156 if (level == LEVEL_CONTAINER) {
3157 /* Must be a fresh device to add to a container */
3158 return validate_geometry_imsm_container(st, level, layout,
3159 raiddisks, chunk, size,
3160 dev, freesize,
3161 verbose);
3162 }
3163
3164 if (!dev) {
3165 if (st->sb && freesize) {
3166 /* we are being asked to automatically layout a
3167 * new volume based on the current contents of
3168 * the container. If the the parameters can be
3169 * satisfied reserve_space will record the disks,
3170 * start offset, and size of the volume to be
3171 * created. add_to_super and getinfo_super
3172 * detect when autolayout is in progress.
3173 */
3174 return reserve_space(st, raiddisks, size, chunk, freesize);
3175 }
3176 return 1;
3177 }
3178 if (st->sb) {
3179 /* creating in a given container */
3180 return validate_geometry_imsm_volume(st, level, layout,
3181 raiddisks, chunk, size,
3182 dev, freesize, verbose);
3183 }
3184
3185 /* limit creation to the following levels */
3186 if (!dev)
3187 switch (level) {
3188 case 0:
3189 case 1:
3190 case 10:
3191 case 5:
3192 break;
3193 default:
3194 return 1;
3195 }
3196
3197 /* This device needs to be a device in an 'imsm' container */
3198 fd = open(dev, O_RDONLY|O_EXCL, 0);
3199 if (fd >= 0) {
3200 if (verbose)
3201 fprintf(stderr,
3202 Name ": Cannot create this array on device %s\n",
3203 dev);
3204 close(fd);
3205 return 0;
3206 }
3207 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
3208 if (verbose)
3209 fprintf(stderr, Name ": Cannot open %s: %s\n",
3210 dev, strerror(errno));
3211 return 0;
3212 }
3213 /* Well, it is in use by someone, maybe an 'imsm' container. */
3214 cfd = open_container(fd);
3215 if (cfd < 0) {
3216 close(fd);
3217 if (verbose)
3218 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
3219 dev);
3220 return 0;
3221 }
3222 sra = sysfs_read(cfd, 0, GET_VERSION);
3223 close(fd);
3224 if (sra && sra->array.major_version == -1 &&
3225 strcmp(sra->text_version, "imsm") == 0) {
3226 /* This is a member of a imsm container. Load the container
3227 * and try to create a volume
3228 */
3229 struct intel_super *super;
3230
3231 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
3232 st->sb = super;
3233 st->container_dev = fd2devnum(cfd);
3234 close(cfd);
3235 return validate_geometry_imsm_volume(st, level, layout,
3236 raiddisks, chunk,
3237 size, dev,
3238 freesize, verbose);
3239 }
3240 close(cfd);
3241 } else /* may belong to another container */
3242 return 0;
3243
3244 return 1;
3245 }
3246 #endif /* MDASSEMBLE */
3247
3248 static struct mdinfo *container_content_imsm(struct supertype *st)
3249 {
3250 /* Given a container loaded by load_super_imsm_all,
3251 * extract information about all the arrays into
3252 * an mdinfo tree.
3253 *
3254 * For each imsm_dev create an mdinfo, fill it in,
3255 * then look for matching devices in super->disks
3256 * and create appropriate device mdinfo.
3257 */
3258 struct intel_super *super = st->sb;
3259 struct imsm_super *mpb = super->anchor;
3260 struct mdinfo *rest = NULL;
3261 int i;
3262
3263 /* do not assemble arrays that might have bad blocks */
3264 if (imsm_bbm_log_size(super->anchor)) {
3265 fprintf(stderr, Name ": BBM log found in metadata. "
3266 "Cannot activate array(s).\n");
3267 return NULL;
3268 }
3269
3270 for (i = 0; i < mpb->num_raid_devs; i++) {
3271 struct imsm_dev *dev = get_imsm_dev(super, i);
3272 struct imsm_map *map = get_imsm_map(dev, 0);
3273 struct mdinfo *this;
3274 int slot;
3275
3276 this = malloc(sizeof(*this));
3277 memset(this, 0, sizeof(*this));
3278 this->next = rest;
3279
3280 super->current_vol = i;
3281 getinfo_super_imsm_volume(st, this);
3282 for (slot = 0 ; slot < map->num_members; slot++) {
3283 struct mdinfo *info_d;
3284 struct dl *d;
3285 int idx;
3286 int skip;
3287 __u32 s;
3288 __u32 ord;
3289
3290 skip = 0;
3291 idx = get_imsm_disk_idx(dev, slot);
3292 ord = get_imsm_ord_tbl_ent(dev, slot);
3293 for (d = super->disks; d ; d = d->next)
3294 if (d->index == idx)
3295 break;
3296
3297 if (d == NULL)
3298 skip = 1;
3299
3300 s = d ? d->disk.status : 0;
3301 if (s & FAILED_DISK)
3302 skip = 1;
3303 if (!(s & USABLE_DISK))
3304 skip = 1;
3305 if (ord & IMSM_ORD_REBUILD)
3306 skip = 1;
3307
3308 /*
3309 * if we skip some disks the array will be assmebled degraded;
3310 * reset resync start to avoid a dirty-degraded situation
3311 *
3312 * FIXME handle dirty degraded
3313 */
3314 if (skip && !dev->vol.dirty)
3315 this->resync_start = ~0ULL;
3316 if (skip)
3317 continue;
3318
3319 info_d = malloc(sizeof(*info_d));
3320 if (!info_d) {
3321 fprintf(stderr, Name ": failed to allocate disk"
3322 " for volume %s\n", (char *) dev->volume);
3323 free(this);
3324 this = rest;
3325 break;
3326 }
3327 memset(info_d, 0, sizeof(*info_d));
3328 info_d->next = this->devs;
3329 this->devs = info_d;
3330
3331 info_d->disk.number = d->index;
3332 info_d->disk.major = d->major;
3333 info_d->disk.minor = d->minor;
3334 info_d->disk.raid_disk = slot;
3335
3336 this->array.working_disks++;
3337
3338 info_d->events = __le32_to_cpu(mpb->generation_num);
3339 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
3340 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
3341 if (d->devname)
3342 strcpy(info_d->name, d->devname);
3343 }
3344 rest = this;
3345 }
3346
3347 return rest;
3348 }
3349
3350
3351 #ifndef MDASSEMBLE
3352 static int imsm_open_new(struct supertype *c, struct active_array *a,
3353 char *inst)
3354 {
3355 struct intel_super *super = c->sb;
3356 struct imsm_super *mpb = super->anchor;
3357
3358 if (atoi(inst) >= mpb->num_raid_devs) {
3359 fprintf(stderr, "%s: subarry index %d, out of range\n",
3360 __func__, atoi(inst));
3361 return -ENODEV;
3362 }
3363
3364 dprintf("imsm: open_new %s\n", inst);
3365 a->info.container_member = atoi(inst);
3366 return 0;
3367 }
3368
3369 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
3370 {
3371 struct imsm_map *map = get_imsm_map(dev, 0);
3372
3373 if (!failed)
3374 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3375 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
3376
3377 switch (get_imsm_raid_level(map)) {
3378 case 0:
3379 return IMSM_T_STATE_FAILED;
3380 break;
3381 case 1:
3382 if (failed < map->num_members)
3383 return IMSM_T_STATE_DEGRADED;
3384 else
3385 return IMSM_T_STATE_FAILED;
3386 break;
3387 case 10:
3388 {
3389 /**
3390 * check to see if any mirrors have failed, otherwise we
3391 * are degraded. Even numbered slots are mirrored on
3392 * slot+1
3393 */
3394 int i;
3395 /* gcc -Os complains that this is unused */
3396 int insync = insync;
3397
3398 for (i = 0; i < map->num_members; i++) {
3399 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
3400 int idx = ord_to_idx(ord);
3401 struct imsm_disk *disk;
3402
3403 /* reset the potential in-sync count on even-numbered
3404 * slots. num_copies is always 2 for imsm raid10
3405 */
3406 if ((i & 1) == 0)
3407 insync = 2;
3408
3409 disk = get_imsm_disk(super, idx);
3410 if (!disk || disk->status & FAILED_DISK ||
3411 ord & IMSM_ORD_REBUILD)
3412 insync--;
3413
3414 /* no in-sync disks left in this mirror the
3415 * array has failed
3416 */
3417 if (insync == 0)
3418 return IMSM_T_STATE_FAILED;
3419 }
3420
3421 return IMSM_T_STATE_DEGRADED;
3422 }
3423 case 5:
3424 if (failed < 2)
3425 return IMSM_T_STATE_DEGRADED;
3426 else
3427 return IMSM_T_STATE_FAILED;
3428 break;
3429 default:
3430 break;
3431 }
3432
3433 return map->map_state;
3434 }
3435
3436 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
3437 {
3438 int i;
3439 int failed = 0;
3440 struct imsm_disk *disk;
3441 struct imsm_map *map = get_imsm_map(dev, 0);
3442 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
3443 __u32 ord;
3444 int idx;
3445
3446 /* at the beginning of migration we set IMSM_ORD_REBUILD on
3447 * disks that are being rebuilt. New failures are recorded to
3448 * map[0]. So we look through all the disks we started with and
3449 * see if any failures are still present, or if any new ones
3450 * have arrived
3451 *
3452 * FIXME add support for online capacity expansion and
3453 * raid-level-migration
3454 */
3455 for (i = 0; i < prev->num_members; i++) {
3456 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
3457 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
3458 idx = ord_to_idx(ord);
3459
3460 disk = get_imsm_disk(super, idx);
3461 if (!disk || disk->status & FAILED_DISK ||
3462 ord & IMSM_ORD_REBUILD)
3463 failed++;
3464 }
3465
3466 return failed;
3467 }
3468
3469 static int is_resyncing(struct imsm_dev *dev)
3470 {
3471 struct imsm_map *migr_map;
3472
3473 if (!dev->vol.migr_state)
3474 return 0;
3475
3476 if (dev->vol.migr_type == MIGR_INIT)
3477 return 1;
3478
3479 migr_map = get_imsm_map(dev, 1);
3480
3481 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
3482 return 1;
3483 else
3484 return 0;
3485 }
3486
3487 static int is_rebuilding(struct imsm_dev *dev)
3488 {
3489 struct imsm_map *migr_map;
3490
3491 if (!dev->vol.migr_state)
3492 return 0;
3493
3494 if (dev->vol.migr_type != MIGR_REBUILD)
3495 return 0;
3496
3497 migr_map = get_imsm_map(dev, 1);
3498
3499 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
3500 return 1;
3501 else
3502 return 0;
3503 }
3504
3505 /* return true if we recorded new information */
3506 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
3507 {
3508 __u32 ord;
3509 int slot;
3510 struct imsm_map *map;
3511
3512 /* new failures are always set in map[0] */
3513 map = get_imsm_map(dev, 0);
3514
3515 slot = get_imsm_disk_slot(map, idx);
3516 if (slot < 0)
3517 return 0;
3518
3519 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
3520 if ((disk->status & FAILED_DISK) && (ord & IMSM_ORD_REBUILD))
3521 return 0;
3522
3523 disk->status |= FAILED_DISK;
3524 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
3525 if (map->failed_disk_num == ~0)
3526 map->failed_disk_num = slot;
3527 return 1;
3528 }
3529
3530 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
3531 {
3532 mark_failure(dev, disk, idx);
3533
3534 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
3535 return;
3536
3537 disk->scsi_id = __cpu_to_le32(~(__u32)0);
3538 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
3539 }
3540
3541 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
3542 * states are handled in imsm_set_disk() with one exception, when a
3543 * resync is stopped due to a new failure this routine will set the
3544 * 'degraded' state for the array.
3545 */
3546 static int imsm_set_array_state(struct active_array *a, int consistent)
3547 {
3548 int inst = a->info.container_member;
3549 struct intel_super *super = a->container->sb;
3550 struct imsm_dev *dev = get_imsm_dev(super, inst);
3551 struct imsm_map *map = get_imsm_map(dev, 0);
3552 int failed = imsm_count_failed(super, dev);
3553 __u8 map_state = imsm_check_degraded(super, dev, failed);
3554
3555 /* before we activate this array handle any missing disks */
3556 if (consistent == 2 && super->missing) {
3557 struct dl *dl;
3558
3559 dprintf("imsm: mark missing\n");
3560 end_migration(dev, map_state);
3561 for (dl = super->missing; dl; dl = dl->next)
3562 mark_missing(dev, &dl->disk, dl->index);
3563 super->updates_pending++;
3564 }
3565
3566 if (consistent == 2 &&
3567 (!is_resync_complete(a) ||
3568 map_state != IMSM_T_STATE_NORMAL ||
3569 dev->vol.migr_state))
3570 consistent = 0;
3571
3572 if (is_resync_complete(a)) {
3573 /* complete intialization / resync,
3574 * recovery and interrupted recovery is completed in
3575 * ->set_disk
3576 */
3577 if (is_resyncing(dev)) {
3578 dprintf("imsm: mark resync done\n");
3579 end_migration(dev, map_state);
3580 super->updates_pending++;
3581 }
3582 } else if (!is_resyncing(dev) && !failed) {
3583 /* mark the start of the init process if nothing is failed */
3584 dprintf("imsm: mark resync start (%llu)\n", a->resync_start);
3585 if (map->map_state == IMSM_T_STATE_NORMAL)
3586 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REBUILD);
3587 else
3588 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
3589 super->updates_pending++;
3590 }
3591
3592 /* check if we can update the migration checkpoint */
3593 if (dev->vol.migr_state &&
3594 __le32_to_cpu(dev->vol.curr_migr_unit) != a->resync_start) {
3595 dprintf("imsm: checkpoint migration (%llu)\n", a->resync_start);
3596 dev->vol.curr_migr_unit = __cpu_to_le32(a->resync_start);
3597 super->updates_pending++;
3598 }
3599
3600 /* mark dirty / clean */
3601 if (dev->vol.dirty != !consistent) {
3602 dprintf("imsm: mark '%s' (%llu)\n",
3603 consistent ? "clean" : "dirty", a->resync_start);
3604 if (consistent)
3605 dev->vol.dirty = 0;
3606 else
3607 dev->vol.dirty = 1;
3608 super->updates_pending++;
3609 }
3610 return consistent;
3611 }
3612
3613 static void imsm_set_disk(struct active_array *a, int n, int state)
3614 {
3615 int inst = a->info.container_member;
3616 struct intel_super *super = a->container->sb;
3617 struct imsm_dev *dev = get_imsm_dev(super, inst);
3618 struct imsm_map *map = get_imsm_map(dev, 0);
3619 struct imsm_disk *disk;
3620 int failed;
3621 __u32 ord;
3622 __u8 map_state;
3623
3624 if (n > map->num_members)
3625 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
3626 n, map->num_members - 1);
3627
3628 if (n < 0)
3629 return;
3630
3631 dprintf("imsm: set_disk %d:%x\n", n, state);
3632
3633 ord = get_imsm_ord_tbl_ent(dev, n);
3634 disk = get_imsm_disk(super, ord_to_idx(ord));
3635
3636 /* check for new failures */
3637 if (state & DS_FAULTY) {
3638 if (mark_failure(dev, disk, ord_to_idx(ord)))
3639 super->updates_pending++;
3640 }
3641
3642 /* check if in_sync */
3643 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
3644 struct imsm_map *migr_map = get_imsm_map(dev, 1);
3645
3646 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
3647 super->updates_pending++;
3648 }
3649
3650 failed = imsm_count_failed(super, dev);
3651 map_state = imsm_check_degraded(super, dev, failed);
3652
3653 /* check if recovery complete, newly degraded, or failed */
3654 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
3655 end_migration(dev, map_state);
3656 map = get_imsm_map(dev, 0);
3657 map->failed_disk_num = ~0;
3658 super->updates_pending++;
3659 } else if (map_state == IMSM_T_STATE_DEGRADED &&
3660 map->map_state != map_state &&
3661 !dev->vol.migr_state) {
3662 dprintf("imsm: mark degraded\n");
3663 map->map_state = map_state;
3664 super->updates_pending++;
3665 } else if (map_state == IMSM_T_STATE_FAILED &&
3666 map->map_state != map_state) {
3667 dprintf("imsm: mark failed\n");
3668 end_migration(dev, map_state);
3669 super->updates_pending++;
3670 }
3671 }
3672
3673 static int store_imsm_mpb(int fd, struct intel_super *super)
3674 {
3675 struct imsm_super *mpb = super->anchor;
3676 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
3677 unsigned long long dsize;
3678 unsigned long long sectors;
3679
3680 get_dev_size(fd, NULL, &dsize);
3681
3682 if (mpb_size > 512) {
3683 /* -1 to account for anchor */
3684 sectors = mpb_sectors(mpb) - 1;
3685
3686 /* write the extended mpb to the sectors preceeding the anchor */
3687 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
3688 return 1;
3689
3690 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
3691 return 1;
3692 }
3693
3694 /* first block is stored on second to last sector of the disk */
3695 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
3696 return 1;
3697
3698 if (write(fd, super->buf, 512) != 512)
3699 return 1;
3700
3701 return 0;
3702 }
3703
3704 static void imsm_sync_metadata(struct supertype *container)
3705 {
3706 struct intel_super *super = container->sb;
3707
3708 if (!super->updates_pending)
3709 return;
3710
3711 write_super_imsm(super, 0);
3712
3713 super->updates_pending = 0;
3714 }
3715
3716 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
3717 {
3718 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
3719 int i = get_imsm_disk_idx(dev, idx);
3720 struct dl *dl;
3721
3722 for (dl = super->disks; dl; dl = dl->next)
3723 if (dl->index == i)
3724 break;
3725
3726 if (dl && dl->disk.status & FAILED_DISK)
3727 dl = NULL;
3728
3729 if (dl)
3730 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
3731
3732 return dl;
3733 }
3734
3735 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
3736 struct active_array *a, int activate_new)
3737 {
3738 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
3739 int idx = get_imsm_disk_idx(dev, slot);
3740 struct imsm_super *mpb = super->anchor;
3741 struct imsm_map *map;
3742 unsigned long long esize;
3743 unsigned long long pos;
3744 struct mdinfo *d;
3745 struct extent *ex;
3746 int i, j;
3747 int found;
3748 __u32 array_start;
3749 __u32 blocks;
3750 struct dl *dl;
3751
3752 for (dl = super->disks; dl; dl = dl->next) {
3753 /* If in this array, skip */
3754 for (d = a->info.devs ; d ; d = d->next)
3755 if (d->state_fd >= 0 &&
3756 d->disk.major == dl->major &&
3757 d->disk.minor == dl->minor) {
3758 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3759 break;
3760 }
3761 if (d)
3762 continue;
3763
3764 /* skip in use or failed drives */
3765 if (dl->disk.status & FAILED_DISK || idx == dl->index ||
3766 dl->index == -2) {
3767 dprintf("%x:%x status (failed: %d index: %d)\n",
3768 dl->major, dl->minor,
3769 (dl->disk.status & FAILED_DISK) == FAILED_DISK, idx);
3770 continue;
3771 }
3772
3773 /* skip pure spares when we are looking for partially
3774 * assimilated drives
3775 */
3776 if (dl->index == -1 && !activate_new)
3777 continue;
3778
3779 /* Does this unused device have the requisite free space?
3780 * It needs to be able to cover all member volumes
3781 */
3782 ex = get_extents(super, dl);
3783 if (!ex) {
3784 dprintf("cannot get extents\n");
3785 continue;
3786 }
3787 for (i = 0; i < mpb->num_raid_devs; i++) {
3788 dev = get_imsm_dev(super, i);
3789 map = get_imsm_map(dev, 0);
3790
3791 /* check if this disk is already a member of
3792 * this array
3793 */
3794 if (get_imsm_disk_slot(map, dl->index) >= 0)
3795 continue;
3796
3797 found = 0;
3798 j = 0;
3799 pos = 0;
3800 array_start = __le32_to_cpu(map->pba_of_lba0);
3801 blocks = __le32_to_cpu(map->blocks_per_member);
3802
3803 do {
3804 /* check that we can start at pba_of_lba0 with
3805 * blocks_per_member of space
3806 */
3807 esize = ex[j].start - pos;
3808 if (array_start >= pos &&
3809 array_start + blocks < ex[j].start) {
3810 found = 1;
3811 break;
3812 }
3813 pos = ex[j].start + ex[j].size;
3814 j++;
3815 } while (ex[j-1].size);
3816
3817 if (!found)
3818 break;
3819 }
3820
3821 free(ex);
3822 if (i < mpb->num_raid_devs) {
3823 dprintf("%x:%x does not have %u at %u\n",
3824 dl->major, dl->minor,
3825 blocks, array_start);
3826 /* No room */
3827 continue;
3828 }
3829 return dl;
3830 }
3831
3832 return dl;
3833 }
3834
3835 static struct mdinfo *imsm_activate_spare(struct active_array *a,
3836 struct metadata_update **updates)
3837 {
3838 /**
3839 * Find a device with unused free space and use it to replace a
3840 * failed/vacant region in an array. We replace failed regions one a
3841 * array at a time. The result is that a new spare disk will be added
3842 * to the first failed array and after the monitor has finished
3843 * propagating failures the remainder will be consumed.
3844 *
3845 * FIXME add a capability for mdmon to request spares from another
3846 * container.
3847 */
3848
3849 struct intel_super *super = a->container->sb;
3850 int inst = a->info.container_member;
3851 struct imsm_dev *dev = get_imsm_dev(super, inst);
3852 struct imsm_map *map = get_imsm_map(dev, 0);
3853 int failed = a->info.array.raid_disks;
3854 struct mdinfo *rv = NULL;
3855 struct mdinfo *d;
3856 struct mdinfo *di;
3857 struct metadata_update *mu;
3858 struct dl *dl;
3859 struct imsm_update_activate_spare *u;
3860 int num_spares = 0;
3861 int i;
3862
3863 for (d = a->info.devs ; d ; d = d->next) {
3864 if ((d->curr_state & DS_FAULTY) &&
3865 d->state_fd >= 0)
3866 /* wait for Removal to happen */
3867 return NULL;
3868 if (d->state_fd >= 0)
3869 failed--;
3870 }
3871
3872 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
3873 inst, failed, a->info.array.raid_disks, a->info.array.level);
3874 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
3875 return NULL;
3876
3877 /* For each slot, if it is not working, find a spare */
3878 for (i = 0; i < a->info.array.raid_disks; i++) {
3879 for (d = a->info.devs ; d ; d = d->next)
3880 if (d->disk.raid_disk == i)
3881 break;
3882 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3883 if (d && (d->state_fd >= 0))
3884 continue;
3885
3886 /*
3887 * OK, this device needs recovery. Try to re-add the
3888 * previous occupant of this slot, if this fails see if
3889 * we can continue the assimilation of a spare that was
3890 * partially assimilated, finally try to activate a new
3891 * spare.
3892 */
3893 dl = imsm_readd(super, i, a);
3894 if (!dl)
3895 dl = imsm_add_spare(super, i, a, 0);
3896 if (!dl)
3897 dl = imsm_add_spare(super, i, a, 1);
3898 if (!dl)
3899 continue;
3900
3901 /* found a usable disk with enough space */
3902 di = malloc(sizeof(*di));
3903 if (!di)
3904 continue;
3905 memset(di, 0, sizeof(*di));
3906
3907 /* dl->index will be -1 in the case we are activating a
3908 * pristine spare. imsm_process_update() will create a
3909 * new index in this case. Once a disk is found to be
3910 * failed in all member arrays it is kicked from the
3911 * metadata
3912 */
3913 di->disk.number = dl->index;
3914
3915 /* (ab)use di->devs to store a pointer to the device
3916 * we chose
3917 */
3918 di->devs = (struct mdinfo *) dl;
3919
3920 di->disk.raid_disk = i;
3921 di->disk.major = dl->major;
3922 di->disk.minor = dl->minor;
3923 di->disk.state = 0;
3924 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
3925 di->component_size = a->info.component_size;
3926 di->container_member = inst;
3927 di->next = rv;
3928 rv = di;
3929 num_spares++;
3930 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3931 i, di->data_offset);
3932
3933 break;
3934 }
3935
3936 if (!rv)
3937 /* No spares found */
3938 return rv;
3939 /* Now 'rv' has a list of devices to return.
3940 * Create a metadata_update record to update the
3941 * disk_ord_tbl for the array
3942 */
3943 mu = malloc(sizeof(*mu));
3944 if (mu) {
3945 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
3946 if (mu->buf == NULL) {
3947 free(mu);
3948 mu = NULL;
3949 }
3950 }
3951 if (!mu) {
3952 while (rv) {
3953 struct mdinfo *n = rv->next;
3954
3955 free(rv);
3956 rv = n;
3957 }
3958 return NULL;
3959 }
3960
3961 mu->space = NULL;
3962 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
3963 mu->next = *updates;
3964 u = (struct imsm_update_activate_spare *) mu->buf;
3965
3966 for (di = rv ; di ; di = di->next) {
3967 u->type = update_activate_spare;
3968 u->dl = (struct dl *) di->devs;
3969 di->devs = NULL;
3970 u->slot = di->disk.raid_disk;
3971 u->array = inst;
3972 u->next = u + 1;
3973 u++;
3974 }
3975 (u-1)->next = NULL;
3976 *updates = mu;
3977
3978 return rv;
3979 }
3980
3981 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
3982 {
3983 struct imsm_dev *dev = get_imsm_dev(super, idx);
3984 struct imsm_map *map = get_imsm_map(dev, 0);
3985 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
3986 struct disk_info *inf = get_disk_info(u);
3987 struct imsm_disk *disk;
3988 int i;
3989 int j;
3990
3991 for (i = 0; i < map->num_members; i++) {
3992 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
3993 for (j = 0; j < new_map->num_members; j++)
3994 if (serialcmp(disk->serial, inf[j].serial) == 0)
3995 return 1;
3996 }
3997
3998 return 0;
3999 }
4000
4001 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
4002
4003 static void imsm_process_update(struct supertype *st,
4004 struct metadata_update *update)
4005 {
4006 /**
4007 * crack open the metadata_update envelope to find the update record
4008 * update can be one of:
4009 * update_activate_spare - a spare device has replaced a failed
4010 * device in an array, update the disk_ord_tbl. If this disk is
4011 * present in all member arrays then also clear the SPARE_DISK
4012 * flag
4013 */
4014 struct intel_super *super = st->sb;
4015 struct imsm_super *mpb;
4016 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4017
4018 /* update requires a larger buf but the allocation failed */
4019 if (super->next_len && !super->next_buf) {
4020 super->next_len = 0;
4021 return;
4022 }
4023
4024 if (super->next_buf) {
4025 memcpy(super->next_buf, super->buf, super->len);
4026 free(super->buf);
4027 super->len = super->next_len;
4028 super->buf = super->next_buf;
4029
4030 super->next_len = 0;
4031 super->next_buf = NULL;
4032 }
4033
4034 mpb = super->anchor;
4035
4036 switch (type) {
4037 case update_activate_spare: {
4038 struct imsm_update_activate_spare *u = (void *) update->buf;
4039 struct imsm_dev *dev = get_imsm_dev(super, u->array);
4040 struct imsm_map *map = get_imsm_map(dev, 0);
4041 struct imsm_map *migr_map;
4042 struct active_array *a;
4043 struct imsm_disk *disk;
4044 __u8 to_state;
4045 struct dl *dl;
4046 unsigned int found;
4047 int failed;
4048 int victim = get_imsm_disk_idx(dev, u->slot);
4049 int i;
4050
4051 for (dl = super->disks; dl; dl = dl->next)
4052 if (dl == u->dl)
4053 break;
4054
4055 if (!dl) {
4056 fprintf(stderr, "error: imsm_activate_spare passed "
4057 "an unknown disk (index: %d)\n",
4058 u->dl->index);
4059 return;
4060 }
4061
4062 super->updates_pending++;
4063
4064 /* count failures (excluding rebuilds and the victim)
4065 * to determine map[0] state
4066 */
4067 failed = 0;
4068 for (i = 0; i < map->num_members; i++) {
4069 if (i == u->slot)
4070 continue;
4071 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4072 if (!disk || disk->status & FAILED_DISK)
4073 failed++;
4074 }
4075
4076 /* adding a pristine spare, assign a new index */
4077 if (dl->index < 0) {
4078 dl->index = super->anchor->num_disks;
4079 super->anchor->num_disks++;
4080 }
4081 disk = &dl->disk;
4082 disk->status |= CONFIGURED_DISK;
4083 disk->status &= ~SPARE_DISK;
4084
4085 /* mark rebuild */
4086 to_state = imsm_check_degraded(super, dev, failed);
4087 map->map_state = IMSM_T_STATE_DEGRADED;
4088 migrate(dev, to_state, MIGR_REBUILD);
4089 migr_map = get_imsm_map(dev, 1);
4090 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
4091 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
4092
4093 /* count arrays using the victim in the metadata */
4094 found = 0;
4095 for (a = st->arrays; a ; a = a->next) {
4096 dev = get_imsm_dev(super, a->info.container_member);
4097 map = get_imsm_map(dev, 0);
4098
4099 if (get_imsm_disk_slot(map, victim) >= 0)
4100 found++;
4101 }
4102
4103 /* delete the victim if it is no longer being
4104 * utilized anywhere
4105 */
4106 if (!found) {
4107 struct dl **dlp;
4108
4109 /* We know that 'manager' isn't touching anything,
4110 * so it is safe to delete
4111 */
4112 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
4113 if ((*dlp)->index == victim)
4114 break;
4115
4116 /* victim may be on the missing list */
4117 if (!*dlp)
4118 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
4119 if ((*dlp)->index == victim)
4120 break;
4121 imsm_delete(super, dlp, victim);
4122 }
4123 break;
4124 }
4125 case update_create_array: {
4126 /* someone wants to create a new array, we need to be aware of
4127 * a few races/collisions:
4128 * 1/ 'Create' called by two separate instances of mdadm
4129 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
4130 * devices that have since been assimilated via
4131 * activate_spare.
4132 * In the event this update can not be carried out mdadm will
4133 * (FIX ME) notice that its update did not take hold.
4134 */
4135 struct imsm_update_create_array *u = (void *) update->buf;
4136 struct intel_dev *dv;
4137 struct imsm_dev *dev;
4138 struct imsm_map *map, *new_map;
4139 unsigned long long start, end;
4140 unsigned long long new_start, new_end;
4141 int i;
4142 struct disk_info *inf;
4143 struct dl *dl;
4144
4145 /* handle racing creates: first come first serve */
4146 if (u->dev_idx < mpb->num_raid_devs) {
4147 dprintf("%s: subarray %d already defined\n",
4148 __func__, u->dev_idx);
4149 goto create_error;
4150 }
4151
4152 /* check update is next in sequence */
4153 if (u->dev_idx != mpb->num_raid_devs) {
4154 dprintf("%s: can not create array %d expected index %d\n",
4155 __func__, u->dev_idx, mpb->num_raid_devs);
4156 goto create_error;
4157 }
4158
4159 new_map = get_imsm_map(&u->dev, 0);
4160 new_start = __le32_to_cpu(new_map->pba_of_lba0);
4161 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
4162 inf = get_disk_info(u);
4163
4164 /* handle activate_spare versus create race:
4165 * check to make sure that overlapping arrays do not include
4166 * overalpping disks
4167 */
4168 for (i = 0; i < mpb->num_raid_devs; i++) {
4169 dev = get_imsm_dev(super, i);
4170 map = get_imsm_map(dev, 0);
4171 start = __le32_to_cpu(map->pba_of_lba0);
4172 end = start + __le32_to_cpu(map->blocks_per_member);
4173 if ((new_start >= start && new_start <= end) ||
4174 (start >= new_start && start <= new_end))
4175 /* overlap */;
4176 else
4177 continue;
4178
4179 if (disks_overlap(super, i, u)) {
4180 dprintf("%s: arrays overlap\n", __func__);
4181 goto create_error;
4182 }
4183 }
4184
4185 /* check that prepare update was successful */
4186 if (!update->space) {
4187 dprintf("%s: prepare update failed\n", __func__);
4188 goto create_error;
4189 }
4190
4191 /* check that all disks are still active before committing
4192 * changes. FIXME: could we instead handle this by creating a
4193 * degraded array? That's probably not what the user expects,
4194 * so better to drop this update on the floor.
4195 */
4196 for (i = 0; i < new_map->num_members; i++) {
4197 dl = serial_to_dl(inf[i].serial, super);
4198 if (!dl) {
4199 dprintf("%s: disk disappeared\n", __func__);
4200 goto create_error;
4201 }
4202 }
4203
4204 super->updates_pending++;
4205
4206 /* convert spares to members and fixup ord_tbl */
4207 for (i = 0; i < new_map->num_members; i++) {
4208 dl = serial_to_dl(inf[i].serial, super);
4209 if (dl->index == -1) {
4210 dl->index = mpb->num_disks;
4211 mpb->num_disks++;
4212 dl->disk.status |= CONFIGURED_DISK;
4213 dl->disk.status &= ~SPARE_DISK;
4214 }
4215 set_imsm_ord_tbl_ent(new_map, i, dl->index);
4216 }
4217
4218 dv = update->space;
4219 dev = dv->dev;
4220 update->space = NULL;
4221 imsm_copy_dev(dev, &u->dev);
4222 dv->index = u->dev_idx;
4223 dv->next = super->devlist;
4224 super->devlist = dv;
4225 mpb->num_raid_devs++;
4226
4227 imsm_update_version_info(super);
4228 break;
4229 create_error:
4230 /* mdmon knows how to release update->space, but not
4231 * ((struct intel_dev *) update->space)->dev
4232 */
4233 if (update->space) {
4234 dv = update->space;
4235 free(dv->dev);
4236 }
4237 break;
4238 }
4239 case update_add_disk:
4240
4241 /* we may be able to repair some arrays if disks are
4242 * being added */
4243 if (super->add) {
4244 struct active_array *a;
4245
4246 super->updates_pending++;
4247 for (a = st->arrays; a; a = a->next)
4248 a->check_degraded = 1;
4249 }
4250 /* add some spares to the metadata */
4251 while (super->add) {
4252 struct dl *al;
4253
4254 al = super->add;
4255 super->add = al->next;
4256 al->next = super->disks;
4257 super->disks = al;
4258 dprintf("%s: added %x:%x\n",
4259 __func__, al->major, al->minor);
4260 }
4261
4262 break;
4263 }
4264 }
4265
4266 static void imsm_prepare_update(struct supertype *st,
4267 struct metadata_update *update)
4268 {
4269 /**
4270 * Allocate space to hold new disk entries, raid-device entries or a new
4271 * mpb if necessary. The manager synchronously waits for updates to
4272 * complete in the monitor, so new mpb buffers allocated here can be
4273 * integrated by the monitor thread without worrying about live pointers
4274 * in the manager thread.
4275 */
4276 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4277 struct intel_super *super = st->sb;
4278 struct imsm_super *mpb = super->anchor;
4279 size_t buf_len;
4280 size_t len = 0;
4281
4282 switch (type) {
4283 case update_create_array: {
4284 struct imsm_update_create_array *u = (void *) update->buf;
4285 struct intel_dev *dv;
4286 struct imsm_dev *dev = &u->dev;
4287 struct imsm_map *map = get_imsm_map(dev, 0);
4288 struct dl *dl;
4289 struct disk_info *inf;
4290 int i;
4291 int activate = 0;
4292
4293 inf = get_disk_info(u);
4294 len = sizeof_imsm_dev(dev, 1);
4295 /* allocate a new super->devlist entry */
4296 dv = malloc(sizeof(*dv));
4297 if (dv) {
4298 dv->dev = malloc(len);
4299 if (dv->dev)
4300 update->space = dv;
4301 else {
4302 free(dv);
4303 update->space = NULL;
4304 }
4305 }
4306
4307 /* count how many spares will be converted to members */
4308 for (i = 0; i < map->num_members; i++) {
4309 dl = serial_to_dl(inf[i].serial, super);
4310 if (!dl) {
4311 /* hmm maybe it failed?, nothing we can do about
4312 * it here
4313 */
4314 continue;
4315 }
4316 if (count_memberships(dl, super) == 0)
4317 activate++;
4318 }
4319 len += activate * sizeof(struct imsm_disk);
4320 break;
4321 default:
4322 break;
4323 }
4324 }
4325
4326 /* check if we need a larger metadata buffer */
4327 if (super->next_buf)
4328 buf_len = super->next_len;
4329 else
4330 buf_len = super->len;
4331
4332 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
4333 /* ok we need a larger buf than what is currently allocated
4334 * if this allocation fails process_update will notice that
4335 * ->next_len is set and ->next_buf is NULL
4336 */
4337 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
4338 if (super->next_buf)
4339 free(super->next_buf);
4340
4341 super->next_len = buf_len;
4342 if (posix_memalign(&super->next_buf, 512, buf_len) != 0)
4343 super->next_buf = NULL;
4344 }
4345 }
4346
4347 /* must be called while manager is quiesced */
4348 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
4349 {
4350 struct imsm_super *mpb = super->anchor;
4351 struct dl *iter;
4352 struct imsm_dev *dev;
4353 struct imsm_map *map;
4354 int i, j, num_members;
4355 __u32 ord;
4356
4357 dprintf("%s: deleting device[%d] from imsm_super\n",
4358 __func__, index);
4359
4360 /* shift all indexes down one */
4361 for (iter = super->disks; iter; iter = iter->next)
4362 if (iter->index > index)
4363 iter->index--;
4364 for (iter = super->missing; iter; iter = iter->next)
4365 if (iter->index > index)
4366 iter->index--;
4367
4368 for (i = 0; i < mpb->num_raid_devs; i++) {
4369 dev = get_imsm_dev(super, i);
4370 map = get_imsm_map(dev, 0);
4371 num_members = map->num_members;
4372 for (j = 0; j < num_members; j++) {
4373 /* update ord entries being careful not to propagate
4374 * ord-flags to the first map
4375 */
4376 ord = get_imsm_ord_tbl_ent(dev, j);
4377
4378 if (ord_to_idx(ord) <= index)
4379 continue;
4380
4381 map = get_imsm_map(dev, 0);
4382 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
4383 map = get_imsm_map(dev, 1);
4384 if (map)
4385 set_imsm_ord_tbl_ent(map, j, ord - 1);
4386 }
4387 }
4388
4389 mpb->num_disks--;
4390 super->updates_pending++;
4391 if (*dlp) {
4392 struct dl *dl = *dlp;
4393
4394 *dlp = (*dlp)->next;
4395 __free_imsm_disk(dl);
4396 }
4397 }
4398 #endif /* MDASSEMBLE */
4399
4400 struct superswitch super_imsm = {
4401 #ifndef MDASSEMBLE
4402 .examine_super = examine_super_imsm,
4403 .brief_examine_super = brief_examine_super_imsm,
4404 .detail_super = detail_super_imsm,
4405 .brief_detail_super = brief_detail_super_imsm,
4406 .write_init_super = write_init_super_imsm,
4407 .validate_geometry = validate_geometry_imsm,
4408 .add_to_super = add_to_super_imsm,
4409 .detail_platform = detail_platform_imsm,
4410 #endif
4411 .match_home = match_home_imsm,
4412 .uuid_from_super= uuid_from_super_imsm,
4413 .getinfo_super = getinfo_super_imsm,
4414 .update_super = update_super_imsm,
4415
4416 .avail_size = avail_size_imsm,
4417
4418 .compare_super = compare_super_imsm,
4419
4420 .load_super = load_super_imsm,
4421 .init_super = init_super_imsm,
4422 .store_super = store_zero_imsm,
4423 .free_super = free_super_imsm,
4424 .match_metadata_desc = match_metadata_desc_imsm,
4425 .container_content = container_content_imsm,
4426 .default_layout = imsm_level_to_layout,
4427
4428 .external = 1,
4429 .name = "imsm",
4430
4431 #ifndef MDASSEMBLE
4432 /* for mdmon */
4433 .open_new = imsm_open_new,
4434 .load_super = load_super_imsm,
4435 .set_array_state= imsm_set_array_state,
4436 .set_disk = imsm_set_disk,
4437 .sync_metadata = imsm_sync_metadata,
4438 .activate_spare = imsm_activate_spare,
4439 .process_update = imsm_process_update,
4440 .prepare_update = imsm_prepare_update,
4441 #endif /* MDASSEMBLE */
4442 };