]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: fix logic inversion in get_imsm_ord_tbl_ent()
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2007 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "mdadm.h"
21 #include "mdmon.h"
22 #include <values.h>
23 #include <scsi/sg.h>
24 #include <ctype.h>
25
26 /* MPB == Metadata Parameter Block */
27 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
28 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
29 #define MPB_VERSION_RAID0 "1.0.00"
30 #define MPB_VERSION_RAID1 "1.1.00"
31 #define MPB_VERSION_RAID5 "1.2.02"
32 #define MAX_SIGNATURE_LENGTH 32
33 #define MAX_RAID_SERIAL_LEN 16
34 #define MPB_SECTOR_CNT 418
35 #define IMSM_RESERVED_SECTORS 4096
36
37 /* Disk configuration info. */
38 #define IMSM_MAX_DEVICES 255
39 struct imsm_disk {
40 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
41 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
42 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
43 __u32 status; /* 0xF0 - 0xF3 */
44 #define SPARE_DISK 0x01 /* Spare */
45 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
46 #define FAILED_DISK 0x04 /* Permanent failure */
47 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
48
49 #define IMSM_DISK_FILLERS 5
50 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
51 };
52
53 /* RAID map configuration infos. */
54 struct imsm_map {
55 __u32 pba_of_lba0; /* start address of partition */
56 __u32 blocks_per_member;/* blocks per member */
57 __u32 num_data_stripes; /* number of data stripes */
58 __u16 blocks_per_strip;
59 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
60 #define IMSM_T_STATE_NORMAL 0
61 #define IMSM_T_STATE_UNINITIALIZED 1
62 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
63 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
64 __u8 raid_level;
65 #define IMSM_T_RAID0 0
66 #define IMSM_T_RAID1 1
67 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
68 __u8 num_members; /* number of member disks */
69 __u8 reserved[3];
70 __u32 filler[7]; /* expansion area */
71 #define IMSM_ORD_REBUILD (1 << 24)
72 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
73 * top byte contains some flags
74 */
75 } __attribute__ ((packed));
76
77 struct imsm_vol {
78 __u32 reserved[2];
79 __u8 migr_state; /* Normal or Migrating */
80 __u8 migr_type; /* Initializing, Rebuilding, ... */
81 __u8 dirty;
82 __u8 fill[1];
83 __u32 filler[5];
84 struct imsm_map map[1];
85 /* here comes another one if migr_state */
86 } __attribute__ ((packed));
87
88 struct imsm_dev {
89 __u8 volume[MAX_RAID_SERIAL_LEN];
90 __u32 size_low;
91 __u32 size_high;
92 __u32 status; /* Persistent RaidDev status */
93 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
94 #define IMSM_DEV_FILLERS 12
95 __u32 filler[IMSM_DEV_FILLERS];
96 struct imsm_vol vol;
97 } __attribute__ ((packed));
98
99 struct imsm_super {
100 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
101 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
102 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
103 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
104 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
105 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
106 __u32 attributes; /* 0x34 - 0x37 */
107 __u8 num_disks; /* 0x38 Number of configured disks */
108 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
109 __u8 error_log_pos; /* 0x3A */
110 __u8 fill[1]; /* 0x3B */
111 __u32 cache_size; /* 0x3c - 0x40 in mb */
112 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
113 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
114 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
115 #define IMSM_FILLERS 35
116 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
117 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
118 /* here comes imsm_dev[num_raid_devs] */
119 /* here comes BBM logs */
120 } __attribute__ ((packed));
121
122 #define BBM_LOG_MAX_ENTRIES 254
123
124 struct bbm_log_entry {
125 __u64 defective_block_start;
126 #define UNREADABLE 0xFFFFFFFF
127 __u32 spare_block_offset;
128 __u16 remapped_marked_count;
129 __u16 disk_ordinal;
130 } __attribute__ ((__packed__));
131
132 struct bbm_log {
133 __u32 signature; /* 0xABADB10C */
134 __u32 entry_count;
135 __u32 reserved_spare_block_count; /* 0 */
136 __u32 reserved; /* 0xFFFF */
137 __u64 first_spare_lba;
138 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
139 } __attribute__ ((__packed__));
140
141
142 #ifndef MDASSEMBLE
143 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
144 #endif
145
146 static unsigned int sector_count(__u32 bytes)
147 {
148 return ((bytes + (512-1)) & (~(512-1))) / 512;
149 }
150
151 static unsigned int mpb_sectors(struct imsm_super *mpb)
152 {
153 return sector_count(__le32_to_cpu(mpb->mpb_size));
154 }
155
156 /* internal representation of IMSM metadata */
157 struct intel_super {
158 union {
159 void *buf; /* O_DIRECT buffer for reading/writing metadata */
160 struct imsm_super *anchor; /* immovable parameters */
161 };
162 size_t len; /* size of the 'buf' allocation */
163 int updates_pending; /* count of pending updates for mdmon */
164 int creating_imsm; /* flag to indicate container creation */
165 int current_vol; /* index of raid device undergoing creation */
166 #define IMSM_MAX_RAID_DEVS 2
167 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
168 struct dl {
169 struct dl *next;
170 int index;
171 __u8 serial[MAX_RAID_SERIAL_LEN];
172 int major, minor;
173 char *devname;
174 struct imsm_disk disk;
175 int fd;
176 } *disks;
177 struct dl *add; /* list of disks to add while mdmon active */
178 struct bbm_log *bbm_log;
179 };
180
181 struct extent {
182 unsigned long long start, size;
183 };
184
185 /* definition of messages passed to imsm_process_update */
186 enum imsm_update_type {
187 update_activate_spare,
188 update_create_array,
189 update_add_disk,
190 };
191
192 struct imsm_update_activate_spare {
193 enum imsm_update_type type;
194 struct dl *dl;
195 int slot;
196 int array;
197 struct imsm_update_activate_spare *next;
198 };
199
200 struct imsm_update_create_array {
201 enum imsm_update_type type;
202 int dev_idx;
203 struct imsm_dev dev;
204 };
205
206 struct imsm_update_add_disk {
207 enum imsm_update_type type;
208 };
209
210 static int imsm_env_devname_as_serial(void)
211 {
212 char *val = getenv("IMSM_DEVNAME_AS_SERIAL");
213
214 if (val && atoi(val) == 1)
215 return 1;
216
217 return 0;
218 }
219
220
221 static struct supertype *match_metadata_desc_imsm(char *arg)
222 {
223 struct supertype *st;
224
225 if (strcmp(arg, "imsm") != 0 &&
226 strcmp(arg, "default") != 0
227 )
228 return NULL;
229
230 st = malloc(sizeof(*st));
231 memset(st, 0, sizeof(*st));
232 st->ss = &super_imsm;
233 st->max_devs = IMSM_MAX_DEVICES;
234 st->minor_version = 0;
235 st->sb = NULL;
236 return st;
237 }
238
239 static __u8 *get_imsm_version(struct imsm_super *mpb)
240 {
241 return &mpb->sig[MPB_SIG_LEN];
242 }
243
244 /* retrieve a disk directly from the anchor when the anchor is known to be
245 * up-to-date, currently only at load time
246 */
247 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
248 {
249 if (index >= mpb->num_disks)
250 return NULL;
251 return &mpb->disk[index];
252 }
253
254 /* retrieve a disk from the parsed metadata */
255 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
256 {
257 struct dl *d;
258
259 for (d = super->disks; d; d = d->next)
260 if (d->index == index)
261 return &d->disk;
262
263 return NULL;
264 }
265
266 /* generate a checksum directly from the anchor when the anchor is known to be
267 * up-to-date, currently only at load or write_super after coalescing
268 */
269 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
270 {
271 __u32 end = mpb->mpb_size / sizeof(end);
272 __u32 *p = (__u32 *) mpb;
273 __u32 sum = 0;
274
275 while (end--)
276 sum += __le32_to_cpu(*p++);
277
278 return sum - __le32_to_cpu(mpb->check_sum);
279 }
280
281 static size_t sizeof_imsm_map(struct imsm_map *map)
282 {
283 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
284 }
285
286 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
287 {
288 struct imsm_map *map = &dev->vol.map[0];
289
290 if (second_map && !dev->vol.migr_state)
291 return NULL;
292 else if (second_map) {
293 void *ptr = map;
294
295 return ptr + sizeof_imsm_map(map);
296 } else
297 return map;
298
299 }
300
301 /* return the size of the device.
302 * migr_state increases the returned size if map[0] were to be duplicated
303 */
304 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
305 {
306 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
307 sizeof_imsm_map(get_imsm_map(dev, 0));
308
309 /* migrating means an additional map */
310 if (dev->vol.migr_state)
311 size += sizeof_imsm_map(get_imsm_map(dev, 1));
312 else if (migr_state)
313 size += sizeof_imsm_map(get_imsm_map(dev, 0));
314
315 return size;
316 }
317
318 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
319 {
320 int offset;
321 int i;
322 void *_mpb = mpb;
323
324 if (index >= mpb->num_raid_devs)
325 return NULL;
326
327 /* devices start after all disks */
328 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
329
330 for (i = 0; i <= index; i++)
331 if (i == index)
332 return _mpb + offset;
333 else
334 offset += sizeof_imsm_dev(_mpb + offset, 0);
335
336 return NULL;
337 }
338
339 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
340 {
341 if (index >= super->anchor->num_raid_devs)
342 return NULL;
343 return super->dev_tbl[index];
344 }
345
346 static __u32 get_imsm_disk_idx(struct imsm_map *map, int slot)
347 {
348 __u32 *ord_tbl = &map->disk_ord_tbl[slot];
349
350 /* top byte identifies disk under rebuild
351 * why not just use the USABLE bit... oh well.
352 */
353 return __le32_to_cpu(*ord_tbl & ~(0xff << 24));
354 }
355
356 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
357 {
358 struct imsm_map *map;
359
360 if (dev->vol.migr_state)
361 map = get_imsm_map(dev, 1);
362 else
363 map = get_imsm_map(dev, 0);
364
365 return map->disk_ord_tbl[slot];
366 }
367
368 static int get_imsm_raid_level(struct imsm_map *map)
369 {
370 if (map->raid_level == 1) {
371 if (map->num_members == 2)
372 return 1;
373 else
374 return 10;
375 }
376
377 return map->raid_level;
378 }
379
380 static int cmp_extent(const void *av, const void *bv)
381 {
382 const struct extent *a = av;
383 const struct extent *b = bv;
384 if (a->start < b->start)
385 return -1;
386 if (a->start > b->start)
387 return 1;
388 return 0;
389 }
390
391 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
392 {
393 /* find a list of used extents on the given physical device */
394 struct extent *rv, *e;
395 int i, j;
396 int memberships = 0;
397
398 for (i = 0; i < super->anchor->num_raid_devs; i++) {
399 struct imsm_dev *dev = get_imsm_dev(super, i);
400 struct imsm_map *map = get_imsm_map(dev, 0);
401
402 for (j = 0; j < map->num_members; j++) {
403 __u32 index = get_imsm_disk_idx(map, j);
404
405 if (index == dl->index)
406 memberships++;
407 }
408 }
409 rv = malloc(sizeof(struct extent) * (memberships + 1));
410 if (!rv)
411 return NULL;
412 e = rv;
413
414 for (i = 0; i < super->anchor->num_raid_devs; i++) {
415 struct imsm_dev *dev = get_imsm_dev(super, i);
416 struct imsm_map *map = get_imsm_map(dev, 0);
417
418 for (j = 0; j < map->num_members; j++) {
419 __u32 index = get_imsm_disk_idx(map, j);
420
421 if (index == dl->index) {
422 e->start = __le32_to_cpu(map->pba_of_lba0);
423 e->size = __le32_to_cpu(map->blocks_per_member);
424 e++;
425 }
426 }
427 }
428 qsort(rv, memberships, sizeof(*rv), cmp_extent);
429
430 e->start = __le32_to_cpu(dl->disk.total_blocks) -
431 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
432 e->size = 0;
433 return rv;
434 }
435
436 #ifndef MDASSEMBLE
437 static void print_imsm_dev(struct imsm_dev *dev, int index)
438 {
439 __u64 sz;
440 int slot;
441 struct imsm_map *map = get_imsm_map(dev, 0);
442
443 printf("\n");
444 printf("[%s]:\n", dev->volume);
445 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
446 printf(" Members : %d\n", map->num_members);
447 for (slot = 0; slot < map->num_members; slot++)
448 if (index == get_imsm_disk_idx(map, slot))
449 break;
450 if (slot < map->num_members)
451 printf(" This Slot : %d\n", slot);
452 else
453 printf(" This Slot : ?\n");
454 sz = __le32_to_cpu(dev->size_high);
455 sz <<= 32;
456 sz += __le32_to_cpu(dev->size_low);
457 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
458 human_size(sz * 512));
459 sz = __le32_to_cpu(map->blocks_per_member);
460 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
461 human_size(sz * 512));
462 printf(" Sector Offset : %u\n",
463 __le32_to_cpu(map->pba_of_lba0));
464 printf(" Num Stripes : %u\n",
465 __le32_to_cpu(map->num_data_stripes));
466 printf(" Chunk Size : %u KiB\n",
467 __le16_to_cpu(map->blocks_per_strip) / 2);
468 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
469 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle");
470 if (dev->vol.migr_state)
471 printf(": %s", dev->vol.migr_type ? "rebuilding" : "initializing");
472 printf("\n");
473 printf(" Map State : %s", map_state_str[map->map_state]);
474 if (dev->vol.migr_state) {
475 struct imsm_map *map = get_imsm_map(dev, 1);
476 printf(", %s", map_state_str[map->map_state]);
477 }
478 printf("\n");
479 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
480 }
481
482 static void print_imsm_disk(struct imsm_super *mpb, int index)
483 {
484 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
485 char str[MAX_RAID_SERIAL_LEN];
486 __u32 s;
487 __u64 sz;
488
489 if (index < 0)
490 return;
491
492 printf("\n");
493 snprintf(str, MAX_RAID_SERIAL_LEN, "%s", disk->serial);
494 printf(" Disk%02d Serial : %s\n", index, str);
495 s = __le32_to_cpu(disk->status);
496 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
497 s&CONFIGURED_DISK ? " active" : "",
498 s&FAILED_DISK ? " failed" : "",
499 s&USABLE_DISK ? " usable" : "");
500 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
501 sz = __le32_to_cpu(disk->total_blocks) -
502 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS * mpb->num_raid_devs);
503 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
504 human_size(sz * 512));
505 }
506
507 static void examine_super_imsm(struct supertype *st, char *homehost)
508 {
509 struct intel_super *super = st->sb;
510 struct imsm_super *mpb = super->anchor;
511 char str[MAX_SIGNATURE_LENGTH];
512 int i;
513 __u32 sum;
514
515 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
516 printf(" Magic : %s\n", str);
517 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
518 printf(" Version : %s\n", get_imsm_version(mpb));
519 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
520 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
521 sum = __le32_to_cpu(mpb->check_sum);
522 printf(" Checksum : %08x %s\n", sum,
523 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
524 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
525 printf(" Disks : %d\n", mpb->num_disks);
526 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
527 print_imsm_disk(mpb, super->disks->index);
528 if (super->bbm_log) {
529 struct bbm_log *log = super->bbm_log;
530
531 printf("\n");
532 printf("Bad Block Management Log:\n");
533 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
534 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
535 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
536 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
537 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
538 }
539 for (i = 0; i < mpb->num_raid_devs; i++)
540 print_imsm_dev(__get_imsm_dev(mpb, i), super->disks->index);
541 for (i = 0; i < mpb->num_disks; i++) {
542 if (i == super->disks->index)
543 continue;
544 print_imsm_disk(mpb, i);
545 }
546 }
547
548 static void brief_examine_super_imsm(struct supertype *st)
549 {
550 printf("ARRAY /dev/imsm metadata=imsm\n");
551 }
552
553 static void detail_super_imsm(struct supertype *st, char *homehost)
554 {
555 printf("%s\n", __FUNCTION__);
556 }
557
558 static void brief_detail_super_imsm(struct supertype *st)
559 {
560 printf("%s\n", __FUNCTION__);
561 }
562 #endif
563
564 static int match_home_imsm(struct supertype *st, char *homehost)
565 {
566 printf("%s\n", __FUNCTION__);
567
568 return 0;
569 }
570
571 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
572 {
573 /* imsm does not track uuid's so just make sure we never return
574 * the same value twice to break uuid matching in Manage_subdevs
575 * FIXME what about the use of uuid's with bitmap's?
576 */
577 static int dummy_id = 0;
578
579 uuid[0] = dummy_id++;
580 }
581
582 #if 0
583 static void
584 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
585 {
586 __u8 *v = get_imsm_version(mpb);
587 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
588 char major[] = { 0, 0, 0 };
589 char minor[] = { 0 ,0, 0 };
590 char patch[] = { 0, 0, 0 };
591 char *ver_parse[] = { major, minor, patch };
592 int i, j;
593
594 i = j = 0;
595 while (*v != '\0' && v < end) {
596 if (*v != '.' && j < 2)
597 ver_parse[i][j++] = *v;
598 else {
599 i++;
600 j = 0;
601 }
602 v++;
603 }
604
605 *m = strtol(minor, NULL, 0);
606 *p = strtol(patch, NULL, 0);
607 }
608 #endif
609
610 static int imsm_level_to_layout(int level)
611 {
612 switch (level) {
613 case 0:
614 case 1:
615 return 0;
616 case 5:
617 case 6:
618 return ALGORITHM_LEFT_ASYMMETRIC;
619 case 10:
620 return 0x102; //FIXME is this correct?
621 }
622 return -1;
623 }
624
625 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
626 {
627 struct intel_super *super = st->sb;
628 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
629 struct imsm_map *map = get_imsm_map(dev, 0);
630
631 info->container_member = super->current_vol;
632 info->array.raid_disks = map->num_members;
633 info->array.level = get_imsm_raid_level(map);
634 info->array.layout = imsm_level_to_layout(info->array.level);
635 info->array.md_minor = -1;
636 info->array.ctime = 0;
637 info->array.utime = 0;
638 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip * 512);
639
640 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
641 info->component_size = __le32_to_cpu(map->blocks_per_member);
642
643 info->disk.major = 0;
644 info->disk.minor = 0;
645
646 sprintf(info->text_version, "/%s/%d",
647 devnum2devname(st->container_dev),
648 info->container_member);
649 }
650
651
652 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
653 {
654 struct intel_super *super = st->sb;
655 struct imsm_disk *disk;
656 __u32 s;
657
658 if (super->current_vol >= 0) {
659 getinfo_super_imsm_volume(st, info);
660 return;
661 }
662
663 /* Set raid_disks to zero so that Assemble will always pull in valid
664 * spares
665 */
666 info->array.raid_disks = 0;
667 info->array.level = LEVEL_CONTAINER;
668 info->array.layout = 0;
669 info->array.md_minor = -1;
670 info->array.ctime = 0; /* N/A for imsm */
671 info->array.utime = 0;
672 info->array.chunk_size = 0;
673
674 info->disk.major = 0;
675 info->disk.minor = 0;
676 info->disk.raid_disk = -1;
677 info->reshape_active = 0;
678 strcpy(info->text_version, "imsm");
679 info->disk.number = -1;
680 info->disk.state = 0;
681
682 if (super->disks) {
683 disk = &super->disks->disk;
684 info->disk.number = super->disks->index;
685 info->disk.raid_disk = super->disks->index;
686 info->data_offset = __le32_to_cpu(disk->total_blocks) -
687 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
688 info->component_size = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
689 s = __le32_to_cpu(disk->status);
690 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
691 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
692 info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
693 }
694 }
695
696 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
697 char *update, char *devname, int verbose,
698 int uuid_set, char *homehost)
699 {
700 /* FIXME */
701
702 /* For 'assemble' and 'force' we need to return non-zero if any
703 * change was made. For others, the return value is ignored.
704 * Update options are:
705 * force-one : This device looks a bit old but needs to be included,
706 * update age info appropriately.
707 * assemble: clear any 'faulty' flag to allow this device to
708 * be assembled.
709 * force-array: Array is degraded but being forced, mark it clean
710 * if that will be needed to assemble it.
711 *
712 * newdev: not used ????
713 * grow: Array has gained a new device - this is currently for
714 * linear only
715 * resync: mark as dirty so a resync will happen.
716 * name: update the name - preserving the homehost
717 *
718 * Following are not relevant for this imsm:
719 * sparc2.2 : update from old dodgey metadata
720 * super-minor: change the preferred_minor number
721 * summaries: update redundant counters.
722 * uuid: Change the uuid of the array to match watch is given
723 * homehost: update the recorded homehost
724 * _reshape_progress: record new reshape_progress position.
725 */
726 int rv = 0;
727 //struct intel_super *super = st->sb;
728 //struct imsm_super *mpb = super->mpb;
729
730 if (strcmp(update, "grow") == 0) {
731 }
732 if (strcmp(update, "resync") == 0) {
733 /* dev->vol.dirty = 1; */
734 }
735
736 /* IMSM has no concept of UUID or homehost */
737
738 return rv;
739 }
740
741 static size_t disks_to_mpb_size(int disks)
742 {
743 size_t size;
744
745 size = sizeof(struct imsm_super);
746 size += (disks - 1) * sizeof(struct imsm_disk);
747 size += 2 * sizeof(struct imsm_dev);
748 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
749 size += (4 - 2) * sizeof(struct imsm_map);
750 /* 4 possible disk_ord_tbl's */
751 size += 4 * (disks - 1) * sizeof(__u32);
752
753 return size;
754 }
755
756 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
757 {
758 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
759 return 0;
760
761 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
762 }
763
764 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
765 {
766 /*
767 * return:
768 * 0 same, or first was empty, and second was copied
769 * 1 second had wrong number
770 * 2 wrong uuid
771 * 3 wrong other info
772 */
773 struct intel_super *first = st->sb;
774 struct intel_super *sec = tst->sb;
775
776 if (!first) {
777 st->sb = tst->sb;
778 tst->sb = NULL;
779 return 0;
780 }
781
782 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
783 return 3;
784
785 /* if an anchor does not have num_raid_devs set then it is a free
786 * floating spare
787 */
788 if (first->anchor->num_raid_devs > 0 &&
789 sec->anchor->num_raid_devs > 0) {
790 if (first->anchor->family_num != sec->anchor->family_num)
791 return 3;
792 }
793
794 return 0;
795 }
796
797 static void fd2devname(int fd, char *name)
798 {
799 struct stat st;
800 char path[256];
801 char dname[100];
802 char *nm;
803 int rv;
804
805 name[0] = '\0';
806 if (fstat(fd, &st) != 0)
807 return;
808 sprintf(path, "/sys/dev/block/%d:%d",
809 major(st.st_rdev), minor(st.st_rdev));
810
811 rv = readlink(path, dname, sizeof(dname));
812 if (rv <= 0)
813 return;
814
815 dname[rv] = '\0';
816 nm = strrchr(dname, '/');
817 nm++;
818 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
819 }
820
821
822 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
823
824 static int imsm_read_serial(int fd, char *devname,
825 __u8 serial[MAX_RAID_SERIAL_LEN])
826 {
827 unsigned char scsi_serial[255];
828 int rv;
829 int rsp_len;
830 int i, cnt;
831
832 memset(scsi_serial, 0, sizeof(scsi_serial));
833
834 if (imsm_env_devname_as_serial()) {
835 char name[MAX_RAID_SERIAL_LEN];
836
837 fd2devname(fd, name);
838 strcpy((char *) serial, name);
839 return 0;
840 }
841
842 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
843
844 if (rv != 0) {
845 if (devname)
846 fprintf(stderr,
847 Name ": Failed to retrieve serial for %s\n",
848 devname);
849 return rv;
850 }
851
852 rsp_len = scsi_serial[3];
853 for (i = 0, cnt = 0; i < rsp_len; i++) {
854 if (!isspace(scsi_serial[4 + i]))
855 serial[cnt++] = scsi_serial[4 + i];
856 if (cnt == MAX_RAID_SERIAL_LEN)
857 break;
858 }
859
860 serial[MAX_RAID_SERIAL_LEN - 1] = '\0';
861
862 return 0;
863 }
864
865 static int
866 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
867 {
868 struct dl *dl;
869 struct stat stb;
870 int rv;
871 int i;
872 int alloc = 1;
873 __u8 serial[MAX_RAID_SERIAL_LEN];
874
875 rv = imsm_read_serial(fd, devname, serial);
876
877 if (rv != 0)
878 return 2;
879
880 /* check if this is a disk we have seen before. it may be a spare in
881 * super->disks while the current anchor believes it is a raid member,
882 * check if we need to update dl->index
883 */
884 for (dl = super->disks; dl; dl = dl->next)
885 if (memcmp(dl->serial, serial, MAX_RAID_SERIAL_LEN) == 0)
886 break;
887
888 if (!dl)
889 dl = malloc(sizeof(*dl));
890 else
891 alloc = 0;
892
893 if (!dl) {
894 if (devname)
895 fprintf(stderr,
896 Name ": failed to allocate disk buffer for %s\n",
897 devname);
898 return 2;
899 }
900
901 if (alloc) {
902 fstat(fd, &stb);
903 dl->major = major(stb.st_rdev);
904 dl->minor = minor(stb.st_rdev);
905 dl->next = super->disks;
906 dl->fd = keep_fd ? fd : -1;
907 dl->devname = devname ? strdup(devname) : NULL;
908 strncpy((char *) dl->serial, (char *) serial, MAX_RAID_SERIAL_LEN);
909 dl->index = -3;
910 } else if (keep_fd) {
911 close(dl->fd);
912 dl->fd = fd;
913 }
914
915 /* look up this disk's index in the current anchor */
916 for (i = 0; i < super->anchor->num_disks; i++) {
917 struct imsm_disk *disk_iter;
918
919 disk_iter = __get_imsm_disk(super->anchor, i);
920
921 if (memcmp(disk_iter->serial, dl->serial,
922 MAX_RAID_SERIAL_LEN) == 0) {
923 __u32 status;
924
925 dl->disk = *disk_iter;
926 status = __le32_to_cpu(dl->disk.status);
927 /* only set index on disks that are a member of a
928 * populated contianer, i.e. one with raid_devs
929 */
930 if (status & FAILED_DISK)
931 dl->index = -2;
932 else if (status & SPARE_DISK)
933 dl->index = -1;
934 else
935 dl->index = i;
936 break;
937 }
938 }
939
940 if (dl->index == -3) {
941 fprintf(stderr, Name ": device %x:%x with serial %s"
942 " does not belong to this container\n",
943 dl->major, dl->minor, (char *) serial);
944 return 2;
945 }
946
947 if (alloc)
948 super->disks = dl;
949
950 return 0;
951 }
952
953 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
954 {
955 memcpy(dest, src, sizeof_imsm_dev(src, 0));
956 }
957
958 static void dup_map(struct imsm_dev *dev)
959 {
960 struct imsm_map *dest = get_imsm_map(dev, 1);
961 struct imsm_map *src = get_imsm_map(dev, 0);
962
963 memcpy(dest, src, sizeof_imsm_map(src));
964 }
965
966 static int parse_raid_devices(struct intel_super *super)
967 {
968 int i;
969 struct imsm_dev *dev_new;
970 size_t len;
971
972 for (i = 0; i < super->anchor->num_raid_devs; i++) {
973 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
974
975 len = sizeof_imsm_dev(dev_iter, 1);
976 dev_new = malloc(len);
977 if (!dev_new)
978 return 1;
979 imsm_copy_dev(dev_new, dev_iter);
980 super->dev_tbl[i] = dev_new;
981 }
982
983 return 0;
984 }
985
986 /* retrieve a pointer to the bbm log which starts after all raid devices */
987 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
988 {
989 void *ptr = NULL;
990
991 if (__le32_to_cpu(mpb->bbm_log_size)) {
992 ptr = mpb;
993 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
994 }
995
996 return ptr;
997 }
998
999 static void __free_imsm(struct intel_super *super, int free_disks);
1000
1001 /* load_imsm_mpb - read matrix metadata
1002 * allocates super->mpb to be freed by free_super
1003 */
1004 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1005 {
1006 unsigned long long dsize;
1007 unsigned long long sectors;
1008 struct stat;
1009 struct imsm_super *anchor;
1010 __u32 check_sum;
1011 int rc;
1012
1013 get_dev_size(fd, NULL, &dsize);
1014
1015 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1016 if (devname)
1017 fprintf(stderr,
1018 Name ": Cannot seek to anchor block on %s: %s\n",
1019 devname, strerror(errno));
1020 return 1;
1021 }
1022
1023 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1024 if (devname)
1025 fprintf(stderr,
1026 Name ": Failed to allocate imsm anchor buffer"
1027 " on %s\n", devname);
1028 return 1;
1029 }
1030 if (read(fd, anchor, 512) != 512) {
1031 if (devname)
1032 fprintf(stderr,
1033 Name ": Cannot read anchor block on %s: %s\n",
1034 devname, strerror(errno));
1035 free(anchor);
1036 return 1;
1037 }
1038
1039 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1040 if (devname)
1041 fprintf(stderr,
1042 Name ": no IMSM anchor on %s\n", devname);
1043 free(anchor);
1044 return 2;
1045 }
1046
1047 __free_imsm(super, 0);
1048 super->len = __le32_to_cpu(anchor->mpb_size);
1049 super->len = ROUND_UP(anchor->mpb_size, 512);
1050 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1051 if (devname)
1052 fprintf(stderr,
1053 Name ": unable to allocate %zu byte mpb buffer\n",
1054 super->len);
1055 free(anchor);
1056 return 2;
1057 }
1058 memcpy(super->buf, anchor, 512);
1059
1060 sectors = mpb_sectors(anchor) - 1;
1061 free(anchor);
1062 if (!sectors) {
1063 rc = load_imsm_disk(fd, super, devname, 0);
1064 if (rc == 0)
1065 rc = parse_raid_devices(super);
1066 return rc;
1067 }
1068
1069 /* read the extended mpb */
1070 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1071 if (devname)
1072 fprintf(stderr,
1073 Name ": Cannot seek to extended mpb on %s: %s\n",
1074 devname, strerror(errno));
1075 return 1;
1076 }
1077
1078 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1079 if (devname)
1080 fprintf(stderr,
1081 Name ": Cannot read extended mpb on %s: %s\n",
1082 devname, strerror(errno));
1083 return 2;
1084 }
1085
1086 check_sum = __gen_imsm_checksum(super->anchor);
1087 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1088 if (devname)
1089 fprintf(stderr,
1090 Name ": IMSM checksum %x != %x on %s\n",
1091 check_sum, __le32_to_cpu(super->anchor->check_sum),
1092 devname);
1093 return 2;
1094 }
1095
1096 /* FIXME the BBM log is disk specific so we cannot use this global
1097 * buffer for all disks. Ok for now since we only look at the global
1098 * bbm_log_size parameter to gate assembly
1099 */
1100 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1101
1102 rc = load_imsm_disk(fd, super, devname, 0);
1103 if (rc == 0)
1104 rc = parse_raid_devices(super);
1105 return rc;
1106 }
1107
1108 static void __free_imsm_disk(struct dl *d)
1109 {
1110 if (d->fd >= 0)
1111 close(d->fd);
1112 if (d->devname)
1113 free(d->devname);
1114 free(d);
1115
1116 }
1117 static void free_imsm_disks(struct intel_super *super)
1118 {
1119 while (super->disks) {
1120 struct dl *d = super->disks;
1121
1122 super->disks = d->next;
1123 __free_imsm_disk(d);
1124 }
1125 }
1126
1127 /* free all the pieces hanging off of a super pointer */
1128 static void __free_imsm(struct intel_super *super, int free_disks)
1129 {
1130 int i;
1131
1132 if (super->buf) {
1133 free(super->buf);
1134 super->buf = NULL;
1135 }
1136 if (free_disks)
1137 free_imsm_disks(super);
1138 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1139 if (super->dev_tbl[i]) {
1140 free(super->dev_tbl[i]);
1141 super->dev_tbl[i] = NULL;
1142 }
1143 }
1144
1145 static void free_imsm(struct intel_super *super)
1146 {
1147 __free_imsm(super, 1);
1148 free(super);
1149 }
1150
1151 static void free_super_imsm(struct supertype *st)
1152 {
1153 struct intel_super *super = st->sb;
1154
1155 if (!super)
1156 return;
1157
1158 free_imsm(super);
1159 st->sb = NULL;
1160 }
1161
1162 static struct intel_super *alloc_super(int creating_imsm)
1163 {
1164 struct intel_super *super = malloc(sizeof(*super));
1165
1166 if (super) {
1167 memset(super, 0, sizeof(*super));
1168 super->creating_imsm = creating_imsm;
1169 super->current_vol = -1;
1170 }
1171
1172 return super;
1173 }
1174
1175 #ifndef MDASSEMBLE
1176 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1177 char *devname, int keep_fd)
1178 {
1179 struct mdinfo *sra;
1180 struct intel_super *super;
1181 struct mdinfo *sd, *best = NULL;
1182 __u32 bestgen = 0;
1183 __u32 gen;
1184 char nm[20];
1185 int dfd;
1186 int rv;
1187
1188 /* check if this disk is a member of an active array */
1189 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1190 if (!sra)
1191 return 1;
1192
1193 if (sra->array.major_version != -1 ||
1194 sra->array.minor_version != -2 ||
1195 strcmp(sra->text_version, "imsm") != 0)
1196 return 1;
1197
1198 super = alloc_super(0);
1199 if (!super)
1200 return 1;
1201
1202 /* find the most up to date disk in this array, skipping spares */
1203 for (sd = sra->devs; sd; sd = sd->next) {
1204 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1205 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1206 if (!dfd) {
1207 free_imsm(super);
1208 return 2;
1209 }
1210 rv = load_imsm_mpb(dfd, super, NULL);
1211 if (!keep_fd)
1212 close(dfd);
1213 if (rv == 0) {
1214 if (super->anchor->num_raid_devs == 0)
1215 gen = 0;
1216 else
1217 gen = __le32_to_cpu(super->anchor->generation_num);
1218 if (!best || gen > bestgen) {
1219 bestgen = gen;
1220 best = sd;
1221 }
1222 } else {
1223 free_imsm(super);
1224 return 2;
1225 }
1226 }
1227
1228 if (!best) {
1229 free_imsm(super);
1230 return 1;
1231 }
1232
1233 /* load the most up to date anchor */
1234 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1235 dfd = dev_open(nm, O_RDONLY);
1236 if (!dfd) {
1237 free_imsm(super);
1238 return 1;
1239 }
1240 rv = load_imsm_mpb(dfd, super, NULL);
1241 close(dfd);
1242 if (rv != 0) {
1243 free_imsm(super);
1244 return 2;
1245 }
1246
1247 /* re-parse the disk list with the current anchor */
1248 for (sd = sra->devs ; sd ; sd = sd->next) {
1249 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1250 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1251 if (!dfd) {
1252 free_imsm(super);
1253 return 2;
1254 }
1255 load_imsm_disk(dfd, super, NULL, keep_fd);
1256 if (!keep_fd)
1257 close(dfd);
1258 }
1259
1260 if (st->subarray[0]) {
1261 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1262 super->current_vol = atoi(st->subarray);
1263 else
1264 return 1;
1265 }
1266
1267 *sbp = super;
1268 st->container_dev = fd2devnum(fd);
1269 if (st->ss == NULL) {
1270 st->ss = &super_imsm;
1271 st->minor_version = 0;
1272 st->max_devs = IMSM_MAX_DEVICES;
1273 }
1274
1275 return 0;
1276 }
1277 #endif
1278
1279 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1280 {
1281 struct intel_super *super;
1282 int rv;
1283
1284 #ifndef MDASSEMBLE
1285 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1286 return 0;
1287 #endif
1288 if (st->subarray[0])
1289 return 1; /* FIXME */
1290
1291 super = alloc_super(0);
1292 if (!super) {
1293 fprintf(stderr,
1294 Name ": malloc of %zu failed.\n",
1295 sizeof(*super));
1296 return 1;
1297 }
1298
1299 rv = load_imsm_mpb(fd, super, devname);
1300
1301 if (rv) {
1302 if (devname)
1303 fprintf(stderr,
1304 Name ": Failed to load all information "
1305 "sections on %s\n", devname);
1306 free_imsm(super);
1307 return rv;
1308 }
1309
1310 st->sb = super;
1311 if (st->ss == NULL) {
1312 st->ss = &super_imsm;
1313 st->minor_version = 0;
1314 st->max_devs = IMSM_MAX_DEVICES;
1315 }
1316
1317 return 0;
1318 }
1319
1320 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1321 {
1322 if (info->level == 1)
1323 return 128;
1324 return info->chunk_size >> 9;
1325 }
1326
1327 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1328 {
1329 __u32 num_stripes;
1330
1331 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1332 if (info->level == 1)
1333 num_stripes /= 2;
1334
1335 return num_stripes;
1336 }
1337
1338 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1339 {
1340 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1341 }
1342
1343 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1344 unsigned long long size, char *name,
1345 char *homehost, int *uuid)
1346 {
1347 /* We are creating a volume inside a pre-existing container.
1348 * so st->sb is already set.
1349 */
1350 struct intel_super *super = st->sb;
1351 struct imsm_super *mpb = super->anchor;
1352 struct imsm_dev *dev;
1353 struct imsm_vol *vol;
1354 struct imsm_map *map;
1355 int idx = mpb->num_raid_devs;
1356 int i;
1357 unsigned long long array_blocks;
1358 __u32 offset = 0;
1359 size_t size_old, size_new;
1360
1361 if (mpb->num_raid_devs >= 2) {
1362 fprintf(stderr, Name": This imsm-container already has the "
1363 "maximum of 2 volumes\n");
1364 return 0;
1365 }
1366
1367 /* ensure the mpb is large enough for the new data */
1368 size_old = __le32_to_cpu(mpb->mpb_size);
1369 size_new = disks_to_mpb_size(info->nr_disks);
1370 if (size_new > size_old) {
1371 void *mpb_new;
1372 size_t size_round = ROUND_UP(size_new, 512);
1373
1374 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1375 fprintf(stderr, Name": could not allocate new mpb\n");
1376 return 0;
1377 }
1378 memcpy(mpb_new, mpb, size_old);
1379 free(mpb);
1380 mpb = mpb_new;
1381 super->anchor = mpb_new;
1382 mpb->mpb_size = __cpu_to_le32(size_new);
1383 memset(mpb_new + size_old, 0, size_round - size_old);
1384 }
1385 super->current_vol = idx;
1386 /* when creating the first raid device in this container set num_disks
1387 * to zero, i.e. delete this spare and add raid member devices in
1388 * add_to_super_imsm_volume()
1389 */
1390 if (super->current_vol == 0)
1391 mpb->num_disks = 0;
1392 sprintf(st->subarray, "%d", idx);
1393 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1394 if (!dev) {
1395 fprintf(stderr, Name": could not allocate raid device\n");
1396 return 0;
1397 }
1398 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1399 array_blocks = calc_array_size(info->level, info->raid_disks,
1400 info->layout, info->chunk_size,
1401 info->size*2);
1402 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1403 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1404 dev->status = __cpu_to_le32(0);
1405 dev->reserved_blocks = __cpu_to_le32(0);
1406 vol = &dev->vol;
1407 vol->migr_state = 0;
1408 vol->migr_type = 0;
1409 vol->dirty = 0;
1410 for (i = 0; i < idx; i++) {
1411 struct imsm_dev *prev = get_imsm_dev(super, i);
1412 struct imsm_map *pmap = get_imsm_map(prev, 0);
1413
1414 offset += __le32_to_cpu(pmap->blocks_per_member);
1415 offset += IMSM_RESERVED_SECTORS;
1416 }
1417 map = get_imsm_map(dev, 0);
1418 map->pba_of_lba0 = __cpu_to_le32(offset);
1419 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1420 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1421 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1422 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1423 IMSM_T_STATE_NORMAL;
1424
1425 if (info->level == 1 && info->raid_disks > 2) {
1426 fprintf(stderr, Name": imsm does not support more than 2 disks"
1427 "in a raid1 volume\n");
1428 return 0;
1429 }
1430 if (info->level == 10)
1431 map->raid_level = 1;
1432 else
1433 map->raid_level = info->level;
1434
1435 map->num_members = info->raid_disks;
1436 for (i = 0; i < map->num_members; i++) {
1437 /* initialized in add_to_super */
1438 map->disk_ord_tbl[i] = __cpu_to_le32(0);
1439 }
1440 mpb->num_raid_devs++;
1441 super->dev_tbl[super->current_vol] = dev;
1442
1443 return 1;
1444 }
1445
1446 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1447 unsigned long long size, char *name,
1448 char *homehost, int *uuid)
1449 {
1450 /* This is primarily called by Create when creating a new array.
1451 * We will then get add_to_super called for each component, and then
1452 * write_init_super called to write it out to each device.
1453 * For IMSM, Create can create on fresh devices or on a pre-existing
1454 * array.
1455 * To create on a pre-existing array a different method will be called.
1456 * This one is just for fresh drives.
1457 */
1458 struct intel_super *super;
1459 struct imsm_super *mpb;
1460 size_t mpb_size;
1461
1462 if (!info) {
1463 st->sb = NULL;
1464 return 0;
1465 }
1466 if (st->sb)
1467 return init_super_imsm_volume(st, info, size, name, homehost,
1468 uuid);
1469
1470 super = alloc_super(1);
1471 if (!super)
1472 return 0;
1473 mpb_size = disks_to_mpb_size(info->nr_disks);
1474 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1475 free(super);
1476 return 0;
1477 }
1478 mpb = super->buf;
1479 memset(mpb, 0, mpb_size);
1480
1481 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1482 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1483 strlen(MPB_VERSION_RAID5));
1484 mpb->mpb_size = mpb_size;
1485
1486 st->sb = super;
1487 return 1;
1488 }
1489
1490 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1491 int fd, char *devname)
1492 {
1493 struct intel_super *super = st->sb;
1494 struct imsm_super *mpb = super->anchor;
1495 struct dl *dl;
1496 struct imsm_dev *dev;
1497 struct imsm_map *map;
1498 __u32 status;
1499
1500 dev = get_imsm_dev(super, super->current_vol);
1501 map = get_imsm_map(dev, 0);
1502
1503 for (dl = super->disks; dl ; dl = dl->next)
1504 if (dl->major == dk->major &&
1505 dl->minor == dk->minor)
1506 break;
1507
1508 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1509 return;
1510
1511 /* add a pristine spare to the metadata */
1512 if (dl->index < 0) {
1513 dl->index = super->anchor->num_disks;
1514 super->anchor->num_disks++;
1515 }
1516 map->disk_ord_tbl[dk->number] = __cpu_to_le32(dl->index);
1517 status = CONFIGURED_DISK | USABLE_DISK;
1518 dl->disk.status = __cpu_to_le32(status);
1519
1520 /* if we are creating the first raid device update the family number */
1521 if (super->current_vol == 0) {
1522 __u32 sum;
1523 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
1524 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
1525
1526 *_dev = *dev;
1527 *_disk = dl->disk;
1528 sum = __gen_imsm_checksum(mpb);
1529 mpb->family_num = __cpu_to_le32(sum);
1530 }
1531 }
1532
1533 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1534 int fd, char *devname)
1535 {
1536 struct intel_super *super = st->sb;
1537 struct dl *dd;
1538 unsigned long long size;
1539 __u32 status, id;
1540 int rv;
1541 struct stat stb;
1542
1543 if (super->current_vol >= 0) {
1544 add_to_super_imsm_volume(st, dk, fd, devname);
1545 return;
1546 }
1547
1548 fstat(fd, &stb);
1549 dd = malloc(sizeof(*dd));
1550 if (!dd) {
1551 fprintf(stderr,
1552 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1553 abort();
1554 }
1555 memset(dd, 0, sizeof(*dd));
1556 dd->major = major(stb.st_rdev);
1557 dd->minor = minor(stb.st_rdev);
1558 dd->index = -1;
1559 dd->devname = devname ? strdup(devname) : NULL;
1560 dd->fd = fd;
1561 rv = imsm_read_serial(fd, devname, dd->serial);
1562 if (rv) {
1563 fprintf(stderr,
1564 Name ": failed to retrieve scsi serial, aborting\n");
1565 free(dd);
1566 abort();
1567 }
1568
1569 get_dev_size(fd, NULL, &size);
1570 size /= 512;
1571 status = USABLE_DISK | SPARE_DISK;
1572 strcpy((char *) dd->disk.serial, (char *) dd->serial);
1573 dd->disk.total_blocks = __cpu_to_le32(size);
1574 dd->disk.status = __cpu_to_le32(status);
1575 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1576 dd->disk.scsi_id = __cpu_to_le32(id);
1577 else
1578 dd->disk.scsi_id = __cpu_to_le32(0);
1579
1580 if (st->update_tail) {
1581 dd->next = super->add;
1582 super->add = dd;
1583 } else {
1584 dd->next = super->disks;
1585 super->disks = dd;
1586 }
1587 }
1588
1589 static int store_imsm_mpb(int fd, struct intel_super *super);
1590
1591 /* spare records have their own family number and do not have any defined raid
1592 * devices
1593 */
1594 static int write_super_imsm_spares(struct intel_super *super, int doclose)
1595 {
1596 struct imsm_super mpb_save;
1597 struct imsm_super *mpb = super->anchor;
1598 __u32 sum;
1599 struct dl *d;
1600
1601 mpb_save = *mpb;
1602 mpb->num_raid_devs = 0;
1603 mpb->num_disks = 1;
1604 mpb->mpb_size = sizeof(struct imsm_super);
1605 mpb->generation_num = __cpu_to_le32(1UL);
1606
1607 for (d = super->disks; d; d = d->next) {
1608 if (d->index >= 0)
1609 continue;
1610
1611 mpb->disk[0] = d->disk;
1612 sum = __gen_imsm_checksum(mpb);
1613 mpb->family_num = __cpu_to_le32(sum);
1614 sum = __gen_imsm_checksum(mpb);
1615 mpb->check_sum = __cpu_to_le32(sum);
1616
1617 if (store_imsm_mpb(d->fd, super)) {
1618 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1619 __func__, d->major, d->minor, strerror(errno));
1620 *mpb = mpb_save;
1621 return 1;
1622 }
1623 if (doclose) {
1624 close(d->fd);
1625 d->fd = -1;
1626 }
1627 }
1628
1629 *mpb = mpb_save;
1630 return 0;
1631 }
1632
1633 static int write_super_imsm(struct intel_super *super, int doclose)
1634 {
1635 struct imsm_super *mpb = super->anchor;
1636 struct dl *d;
1637 __u32 generation;
1638 __u32 sum;
1639 int spares = 0;
1640 int raid_disks = 0;
1641 int i;
1642 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
1643
1644 /* 'generation' is incremented everytime the metadata is written */
1645 generation = __le32_to_cpu(mpb->generation_num);
1646 generation++;
1647 mpb->generation_num = __cpu_to_le32(generation);
1648
1649 for (d = super->disks; d; d = d->next) {
1650 if (d->index < 0)
1651 spares++;
1652 else {
1653 raid_disks++;
1654 mpb->disk[d->index] = d->disk;
1655 mpb_size += sizeof(struct imsm_disk);
1656 }
1657 }
1658 if (raid_disks != mpb->num_disks) {
1659 fprintf(stderr, "%s: expected %d disks only found %d\n",
1660 __func__, mpb->num_disks, raid_disks);
1661 return 1;
1662 }
1663
1664 for (i = 0; i < mpb->num_raid_devs; i++) {
1665 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1666
1667 imsm_copy_dev(dev, super->dev_tbl[i]);
1668 mpb_size += sizeof_imsm_dev(dev, 0);
1669 }
1670 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
1671 mpb->mpb_size = __cpu_to_le32(mpb_size);
1672
1673 /* recalculate checksum */
1674 sum = __gen_imsm_checksum(mpb);
1675 mpb->check_sum = __cpu_to_le32(sum);
1676
1677 /* write the mpb for disks that compose raid devices */
1678 for (d = super->disks; d ; d = d->next) {
1679 if (d->index < 0)
1680 continue;
1681 if (store_imsm_mpb(d->fd, super)) {
1682 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1683 __func__, d->major, d->minor, strerror(errno));
1684 return 1;
1685 }
1686 if (doclose) {
1687 close(d->fd);
1688 d->fd = -1;
1689 }
1690 }
1691
1692 if (spares)
1693 return write_super_imsm_spares(super, doclose);
1694
1695 return 0;
1696 }
1697
1698 static int create_array(struct supertype *st)
1699 {
1700 size_t len;
1701 struct imsm_update_create_array *u;
1702 struct intel_super *super = st->sb;
1703 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1704
1705 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0);
1706 u = malloc(len);
1707 if (!u) {
1708 fprintf(stderr, "%s: failed to allocate update buffer\n",
1709 __func__);
1710 return 1;
1711 }
1712
1713 u->type = update_create_array;
1714 u->dev_idx = super->current_vol;
1715 imsm_copy_dev(&u->dev, dev);
1716 append_metadata_update(st, u, len);
1717
1718 return 0;
1719 }
1720
1721 static int add_disk(struct supertype *st)
1722 {
1723 struct intel_super *super = st->sb;
1724 size_t len;
1725 struct imsm_update_add_disk *u;
1726
1727 if (!super->add)
1728 return 0;
1729
1730 len = sizeof(*u);
1731 u = malloc(len);
1732 if (!u) {
1733 fprintf(stderr, "%s: failed to allocate update buffer\n",
1734 __func__);
1735 return 1;
1736 }
1737
1738 u->type = update_add_disk;
1739 append_metadata_update(st, u, len);
1740
1741 return 0;
1742 }
1743
1744 static int write_init_super_imsm(struct supertype *st)
1745 {
1746 if (st->update_tail) {
1747 /* queue the recently created array / added disk
1748 * as a metadata update */
1749 struct intel_super *super = st->sb;
1750 struct dl *d;
1751 int rv;
1752
1753 /* determine if we are creating a volume or adding a disk */
1754 if (super->current_vol < 0) {
1755 /* in the add disk case we are running in mdmon
1756 * context, so don't close fd's
1757 */
1758 return add_disk(st);
1759 } else
1760 rv = create_array(st);
1761
1762 for (d = super->disks; d ; d = d->next) {
1763 close(d->fd);
1764 d->fd = -1;
1765 }
1766
1767 return rv;
1768 } else
1769 return write_super_imsm(st->sb, 1);
1770 }
1771
1772 static int store_zero_imsm(struct supertype *st, int fd)
1773 {
1774 unsigned long long dsize;
1775 void *buf;
1776
1777 get_dev_size(fd, NULL, &dsize);
1778
1779 /* first block is stored on second to last sector of the disk */
1780 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
1781 return 1;
1782
1783 if (posix_memalign(&buf, 512, 512) != 0)
1784 return 1;
1785
1786 memset(buf, 0, 512);
1787 if (write(fd, buf, 512) != 512)
1788 return 1;
1789 return 0;
1790 }
1791
1792 static int validate_geometry_imsm_container(struct supertype *st, int level,
1793 int layout, int raiddisks, int chunk,
1794 unsigned long long size, char *dev,
1795 unsigned long long *freesize,
1796 int verbose)
1797 {
1798 int fd;
1799 unsigned long long ldsize;
1800
1801 if (level != LEVEL_CONTAINER)
1802 return 0;
1803 if (!dev)
1804 return 1;
1805
1806 fd = open(dev, O_RDONLY|O_EXCL, 0);
1807 if (fd < 0) {
1808 if (verbose)
1809 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
1810 dev, strerror(errno));
1811 return 0;
1812 }
1813 if (!get_dev_size(fd, dev, &ldsize)) {
1814 close(fd);
1815 return 0;
1816 }
1817 close(fd);
1818
1819 *freesize = avail_size_imsm(st, ldsize >> 9);
1820
1821 return 1;
1822 }
1823
1824 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
1825 * FIX ME add ahci details
1826 */
1827 static int validate_geometry_imsm_volume(struct supertype *st, int level,
1828 int layout, int raiddisks, int chunk,
1829 unsigned long long size, char *dev,
1830 unsigned long long *freesize,
1831 int verbose)
1832 {
1833 struct stat stb;
1834 struct intel_super *super = st->sb;
1835 struct dl *dl;
1836 unsigned long long pos = 0;
1837 unsigned long long maxsize;
1838 struct extent *e;
1839 int i;
1840
1841 if (level == LEVEL_CONTAINER)
1842 return 0;
1843
1844 if (level == 1 && raiddisks > 2) {
1845 if (verbose)
1846 fprintf(stderr, Name ": imsm does not support more "
1847 "than 2 in a raid1 configuration\n");
1848 return 0;
1849 }
1850
1851 /* We must have the container info already read in. */
1852 if (!super)
1853 return 0;
1854
1855 if (!dev) {
1856 /* General test: make sure there is space for
1857 * 'raiddisks' device extents of size 'size' at a given
1858 * offset
1859 */
1860 unsigned long long minsize = size*2 /* convert to blocks */;
1861 unsigned long long start_offset = ~0ULL;
1862 int dcnt = 0;
1863 if (minsize == 0)
1864 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1865 for (dl = super->disks; dl ; dl = dl->next) {
1866 int found = 0;
1867
1868 pos = 0;
1869 i = 0;
1870 e = get_extents(super, dl);
1871 if (!e) continue;
1872 do {
1873 unsigned long long esize;
1874 esize = e[i].start - pos;
1875 if (esize >= minsize)
1876 found = 1;
1877 if (found && start_offset == ~0ULL) {
1878 start_offset = pos;
1879 break;
1880 } else if (found && pos != start_offset) {
1881 found = 0;
1882 break;
1883 }
1884 pos = e[i].start + e[i].size;
1885 i++;
1886 } while (e[i-1].size);
1887 if (found)
1888 dcnt++;
1889 free(e);
1890 }
1891 if (dcnt < raiddisks) {
1892 if (verbose)
1893 fprintf(stderr, Name ": imsm: Not enough "
1894 "devices with space for this array "
1895 "(%d < %d)\n",
1896 dcnt, raiddisks);
1897 return 0;
1898 }
1899 return 1;
1900 }
1901 /* This device must be a member of the set */
1902 if (stat(dev, &stb) < 0)
1903 return 0;
1904 if ((S_IFMT & stb.st_mode) != S_IFBLK)
1905 return 0;
1906 for (dl = super->disks ; dl ; dl = dl->next) {
1907 if (dl->major == major(stb.st_rdev) &&
1908 dl->minor == minor(stb.st_rdev))
1909 break;
1910 }
1911 if (!dl) {
1912 if (verbose)
1913 fprintf(stderr, Name ": %s is not in the "
1914 "same imsm set\n", dev);
1915 return 0;
1916 }
1917 e = get_extents(super, dl);
1918 maxsize = 0;
1919 i = 0;
1920 if (e) do {
1921 unsigned long long esize;
1922 esize = e[i].start - pos;
1923 if (esize >= maxsize)
1924 maxsize = esize;
1925 pos = e[i].start + e[i].size;
1926 i++;
1927 } while (e[i-1].size);
1928 *freesize = maxsize;
1929
1930 return 1;
1931 }
1932
1933 int imsm_bbm_log_size(struct imsm_super *mpb)
1934 {
1935 return __le32_to_cpu(mpb->bbm_log_size);
1936 }
1937
1938 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
1939 int raiddisks, int chunk, unsigned long long size,
1940 char *dev, unsigned long long *freesize,
1941 int verbose)
1942 {
1943 int fd, cfd;
1944 struct mdinfo *sra;
1945
1946 /* if given unused devices create a container
1947 * if given given devices in a container create a member volume
1948 */
1949 if (level == LEVEL_CONTAINER) {
1950 /* Must be a fresh device to add to a container */
1951 return validate_geometry_imsm_container(st, level, layout,
1952 raiddisks, chunk, size,
1953 dev, freesize,
1954 verbose);
1955 }
1956
1957 if (st->sb) {
1958 /* creating in a given container */
1959 return validate_geometry_imsm_volume(st, level, layout,
1960 raiddisks, chunk, size,
1961 dev, freesize, verbose);
1962 }
1963
1964 /* limit creation to the following levels */
1965 if (!dev)
1966 switch (level) {
1967 case 0:
1968 case 1:
1969 case 10:
1970 case 5:
1971 break;
1972 default:
1973 return 1;
1974 }
1975
1976 /* This device needs to be a device in an 'imsm' container */
1977 fd = open(dev, O_RDONLY|O_EXCL, 0);
1978 if (fd >= 0) {
1979 if (verbose)
1980 fprintf(stderr,
1981 Name ": Cannot create this array on device %s\n",
1982 dev);
1983 close(fd);
1984 return 0;
1985 }
1986 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
1987 if (verbose)
1988 fprintf(stderr, Name ": Cannot open %s: %s\n",
1989 dev, strerror(errno));
1990 return 0;
1991 }
1992 /* Well, it is in use by someone, maybe an 'imsm' container. */
1993 cfd = open_container(fd);
1994 if (cfd < 0) {
1995 close(fd);
1996 if (verbose)
1997 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
1998 dev);
1999 return 0;
2000 }
2001 sra = sysfs_read(cfd, 0, GET_VERSION);
2002 close(fd);
2003 if (sra && sra->array.major_version == -1 &&
2004 strcmp(sra->text_version, "imsm") == 0) {
2005 /* This is a member of a imsm container. Load the container
2006 * and try to create a volume
2007 */
2008 struct intel_super *super;
2009
2010 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
2011 st->sb = super;
2012 st->container_dev = fd2devnum(cfd);
2013 close(cfd);
2014 return validate_geometry_imsm_volume(st, level, layout,
2015 raiddisks, chunk,
2016 size, dev,
2017 freesize, verbose);
2018 }
2019 close(cfd);
2020 } else /* may belong to another container */
2021 return 0;
2022
2023 return 1;
2024 }
2025
2026 static struct mdinfo *container_content_imsm(struct supertype *st)
2027 {
2028 /* Given a container loaded by load_super_imsm_all,
2029 * extract information about all the arrays into
2030 * an mdinfo tree.
2031 *
2032 * For each imsm_dev create an mdinfo, fill it in,
2033 * then look for matching devices in super->disks
2034 * and create appropriate device mdinfo.
2035 */
2036 struct intel_super *super = st->sb;
2037 struct imsm_super *mpb = super->anchor;
2038 struct mdinfo *rest = NULL;
2039 int i;
2040
2041 /* do not assemble arrays that might have bad blocks */
2042 if (imsm_bbm_log_size(super->anchor)) {
2043 fprintf(stderr, Name ": BBM log found in metadata. "
2044 "Cannot activate array(s).\n");
2045 return NULL;
2046 }
2047
2048 for (i = 0; i < mpb->num_raid_devs; i++) {
2049 struct imsm_dev *dev = get_imsm_dev(super, i);
2050 struct imsm_vol *vol = &dev->vol;
2051 struct imsm_map *map = get_imsm_map(dev, 0);
2052 struct mdinfo *this;
2053 int slot;
2054
2055 this = malloc(sizeof(*this));
2056 memset(this, 0, sizeof(*this));
2057 this->next = rest;
2058
2059 this->array.level = get_imsm_raid_level(map);
2060 this->array.raid_disks = map->num_members;
2061 this->array.layout = imsm_level_to_layout(this->array.level);
2062 this->array.md_minor = -1;
2063 this->array.ctime = 0;
2064 this->array.utime = 0;
2065 this->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
2066 this->array.state = !vol->dirty;
2067 this->container_member = i;
2068 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
2069 dev->vol.dirty || dev->vol.migr_state)
2070 this->resync_start = 0;
2071 else
2072 this->resync_start = ~0ULL;
2073
2074 strncpy(this->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2075 this->name[MAX_RAID_SERIAL_LEN] = 0;
2076
2077 sprintf(this->text_version, "/%s/%d",
2078 devnum2devname(st->container_dev),
2079 this->container_member);
2080
2081 memset(this->uuid, 0, sizeof(this->uuid));
2082
2083 this->component_size = __le32_to_cpu(map->blocks_per_member);
2084
2085 for (slot = 0 ; slot < map->num_members; slot++) {
2086 struct mdinfo *info_d;
2087 struct dl *d;
2088 int idx;
2089 int skip;
2090 __u32 s;
2091 __u32 ord;
2092
2093 skip = 0;
2094 idx = get_imsm_disk_idx(map, slot);
2095 ord = get_imsm_ord_tbl_ent(dev, slot);
2096 for (d = super->disks; d ; d = d->next)
2097 if (d->index == idx)
2098 break;
2099
2100 if (d == NULL)
2101 skip = 1;
2102
2103 s = d ? __le32_to_cpu(d->disk.status) : 0;
2104 if (s & FAILED_DISK)
2105 skip = 1;
2106 if (!(s & USABLE_DISK))
2107 skip = 1;
2108 if (ord & IMSM_ORD_REBUILD)
2109 skip = 1;
2110
2111 /*
2112 * if we skip some disks the array will be assmebled degraded;
2113 * reset resync start to avoid a dirty-degraded situation
2114 *
2115 * FIXME handle dirty degraded
2116 */
2117 if (skip && !dev->vol.dirty)
2118 this->resync_start = ~0ULL;
2119 if (skip)
2120 continue;
2121
2122 info_d = malloc(sizeof(*info_d));
2123 if (!info_d) {
2124 fprintf(stderr, Name ": failed to allocate disk"
2125 " for volume %s\n", (char *) dev->volume);
2126 free(this);
2127 this = rest;
2128 break;
2129 }
2130 memset(info_d, 0, sizeof(*info_d));
2131 info_d->next = this->devs;
2132 this->devs = info_d;
2133
2134 info_d->disk.number = d->index;
2135 info_d->disk.major = d->major;
2136 info_d->disk.minor = d->minor;
2137 info_d->disk.raid_disk = slot;
2138
2139 this->array.working_disks++;
2140
2141 info_d->events = __le32_to_cpu(mpb->generation_num);
2142 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
2143 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
2144 if (d->devname)
2145 strcpy(info_d->name, d->devname);
2146 }
2147 rest = this;
2148 }
2149
2150 return rest;
2151 }
2152
2153
2154 static int imsm_open_new(struct supertype *c, struct active_array *a,
2155 char *inst)
2156 {
2157 struct intel_super *super = c->sb;
2158 struct imsm_super *mpb = super->anchor;
2159
2160 if (atoi(inst) >= mpb->num_raid_devs) {
2161 fprintf(stderr, "%s: subarry index %d, out of range\n",
2162 __func__, atoi(inst));
2163 return -ENODEV;
2164 }
2165
2166 dprintf("imsm: open_new %s\n", inst);
2167 a->info.container_member = atoi(inst);
2168 return 0;
2169 }
2170
2171 static __u8 imsm_check_degraded(struct intel_super *super, int n, int failed)
2172 {
2173 struct imsm_dev *dev = get_imsm_dev(super, n);
2174 struct imsm_map *map = get_imsm_map(dev, 0);
2175
2176 if (!failed)
2177 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
2178 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
2179
2180 switch (get_imsm_raid_level(map)) {
2181 case 0:
2182 return IMSM_T_STATE_FAILED;
2183 break;
2184 case 1:
2185 if (failed < map->num_members)
2186 return IMSM_T_STATE_DEGRADED;
2187 else
2188 return IMSM_T_STATE_FAILED;
2189 break;
2190 case 10:
2191 {
2192 /**
2193 * check to see if any mirrors have failed,
2194 * otherwise we are degraded
2195 */
2196 int device_per_mirror = 2; /* FIXME is this always the case?
2197 * and are they always adjacent?
2198 */
2199 int failed = 0;
2200 int i;
2201
2202 for (i = 0; i < map->num_members; i++) {
2203 int idx = get_imsm_disk_idx(map, i);
2204 struct imsm_disk *disk = get_imsm_disk(super, idx);
2205
2206 if (__le32_to_cpu(disk->status) & FAILED_DISK)
2207 failed++;
2208
2209 if (failed >= device_per_mirror)
2210 return IMSM_T_STATE_FAILED;
2211
2212 /* reset 'failed' for next mirror set */
2213 if (!((i + 1) % device_per_mirror))
2214 failed = 0;
2215 }
2216
2217 return IMSM_T_STATE_DEGRADED;
2218 }
2219 case 5:
2220 if (failed < 2)
2221 return IMSM_T_STATE_DEGRADED;
2222 else
2223 return IMSM_T_STATE_FAILED;
2224 break;
2225 default:
2226 break;
2227 }
2228
2229 return map->map_state;
2230 }
2231
2232 static int imsm_count_failed(struct intel_super *super, struct imsm_map *map)
2233 {
2234 int i;
2235 int failed = 0;
2236 struct imsm_disk *disk;
2237
2238 for (i = 0; i < map->num_members; i++) {
2239 int idx = get_imsm_disk_idx(map, i);
2240
2241 disk = get_imsm_disk(super, idx);
2242 if (__le32_to_cpu(disk->status) & FAILED_DISK)
2243 failed++;
2244 else if (!(__le32_to_cpu(disk->status) & USABLE_DISK))
2245 failed++;
2246 }
2247
2248 return failed;
2249 }
2250
2251 static int imsm_set_array_state(struct active_array *a, int consistent)
2252 {
2253 int inst = a->info.container_member;
2254 struct intel_super *super = a->container->sb;
2255 struct imsm_dev *dev = get_imsm_dev(super, inst);
2256 struct imsm_map *map = get_imsm_map(dev, 0);
2257 int dirty = !consistent;
2258 int failed;
2259 __u8 map_state;
2260
2261 failed = imsm_count_failed(super, map);
2262 map_state = imsm_check_degraded(super, inst, failed);
2263
2264 if (consistent && !dev->vol.dirty &&
2265 (dev->vol.migr_state || map_state != IMSM_T_STATE_NORMAL))
2266 a->resync_start = 0ULL;
2267 if (consistent == 2 && a->resync_start != ~0ULL)
2268 consistent = 0;
2269
2270 if (a->resync_start == ~0ULL) {
2271 /* complete recovery or initial resync */
2272 if (map->map_state != map_state) {
2273 dprintf("imsm: map_state %d: %d\n",
2274 inst, map_state);
2275 map->map_state = map_state;
2276 super->updates_pending++;
2277 }
2278 if (dev->vol.migr_state) {
2279 dprintf("imsm: mark resync complete\n");
2280 dev->vol.migr_state = 0;
2281 dev->vol.migr_type = 0;
2282 super->updates_pending++;
2283 }
2284 } else if (!dev->vol.migr_state) {
2285 dprintf("imsm: mark '%s' (%llu)\n",
2286 failed ? "rebuild" : "initializing", a->resync_start);
2287 /* mark that we are rebuilding */
2288 map->map_state = failed ? map_state : IMSM_T_STATE_NORMAL;
2289 dev->vol.migr_state = 1;
2290 dev->vol.migr_type = failed ? 1 : 0;
2291 dup_map(dev);
2292 a->check_degraded = 1;
2293 super->updates_pending++;
2294 }
2295
2296 /* mark dirty / clean */
2297 if (dirty != dev->vol.dirty) {
2298 dprintf("imsm: mark '%s' (%llu)\n",
2299 dirty ? "dirty" : "clean", a->resync_start);
2300 dev->vol.dirty = dirty;
2301 super->updates_pending++;
2302 }
2303 return consistent;
2304 }
2305
2306 static void imsm_set_disk(struct active_array *a, int n, int state)
2307 {
2308 int inst = a->info.container_member;
2309 struct intel_super *super = a->container->sb;
2310 struct imsm_dev *dev = get_imsm_dev(super, inst);
2311 struct imsm_map *map = get_imsm_map(dev, 0);
2312 struct imsm_disk *disk;
2313 __u32 status;
2314 int failed = 0;
2315 int new_failure = 0;
2316
2317 if (n > map->num_members)
2318 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2319 n, map->num_members - 1);
2320
2321 if (n < 0)
2322 return;
2323
2324 dprintf("imsm: set_disk %d:%x\n", n, state);
2325
2326 disk = get_imsm_disk(super, get_imsm_disk_idx(map, n));
2327
2328 /* check for new failures */
2329 status = __le32_to_cpu(disk->status);
2330 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
2331 status |= FAILED_DISK;
2332 disk->status = __cpu_to_le32(status);
2333 new_failure = 1;
2334 super->updates_pending++;
2335 }
2336 /* check if in_sync */
2337 if ((state & DS_INSYNC) && !(status & USABLE_DISK)) {
2338 status |= USABLE_DISK;
2339 disk->status = __cpu_to_le32(status);
2340 super->updates_pending++;
2341 }
2342
2343 /* the number of failures have changed, count up 'failed' to determine
2344 * degraded / failed status
2345 */
2346 if (new_failure && map->map_state != IMSM_T_STATE_FAILED)
2347 failed = imsm_count_failed(super, map);
2348
2349 /* determine map_state based on failed or in_sync count */
2350 if (failed)
2351 map->map_state = imsm_check_degraded(super, inst, failed);
2352 else if (map->map_state == IMSM_T_STATE_DEGRADED) {
2353 struct mdinfo *d;
2354 int working = 0;
2355
2356 for (d = a->info.devs ; d ; d = d->next)
2357 if (d->curr_state & DS_INSYNC)
2358 working++;
2359
2360 if (working == a->info.array.raid_disks) {
2361 map->map_state = IMSM_T_STATE_NORMAL;
2362 dev->vol.migr_state = 0;
2363 dev->vol.migr_type = 0;
2364 super->updates_pending++;
2365 }
2366 }
2367 }
2368
2369 static int store_imsm_mpb(int fd, struct intel_super *super)
2370 {
2371 struct imsm_super *mpb = super->anchor;
2372 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2373 unsigned long long dsize;
2374 unsigned long long sectors;
2375
2376 get_dev_size(fd, NULL, &dsize);
2377
2378 if (mpb_size > 512) {
2379 /* -1 to account for anchor */
2380 sectors = mpb_sectors(mpb) - 1;
2381
2382 /* write the extended mpb to the sectors preceeding the anchor */
2383 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2384 return 1;
2385
2386 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
2387 return 1;
2388 }
2389
2390 /* first block is stored on second to last sector of the disk */
2391 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2392 return 1;
2393
2394 if (write(fd, super->buf, 512) != 512)
2395 return 1;
2396
2397 return 0;
2398 }
2399
2400 static void imsm_sync_metadata(struct supertype *container)
2401 {
2402 struct intel_super *super = container->sb;
2403
2404 if (!super->updates_pending)
2405 return;
2406
2407 write_super_imsm(super, 0);
2408
2409 super->updates_pending = 0;
2410 }
2411
2412 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
2413 {
2414 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2415 struct imsm_map *map = get_imsm_map(dev, 0);
2416 int i = get_imsm_disk_idx(map, idx);
2417 struct dl *dl;
2418
2419 for (dl = super->disks; dl; dl = dl->next)
2420 if (dl->index == i)
2421 break;
2422
2423 if (__le32_to_cpu(dl->disk.status) & FAILED_DISK)
2424 dl = NULL;
2425
2426 if (dl)
2427 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
2428
2429 return dl;
2430 }
2431
2432 static struct dl *imsm_add_spare(struct intel_super *super, int idx, struct active_array *a)
2433 {
2434 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2435 struct imsm_map *map = get_imsm_map(dev, 0);
2436 unsigned long long esize;
2437 unsigned long long pos;
2438 struct mdinfo *d;
2439 struct extent *ex;
2440 int j;
2441 int found;
2442 __u32 array_start;
2443 __u32 status;
2444 struct dl *dl;
2445
2446 for (dl = super->disks; dl; dl = dl->next) {
2447 /* If in this array, skip */
2448 for (d = a->info.devs ; d ; d = d->next)
2449 if (d->disk.major == dl->major &&
2450 d->disk.minor == dl->minor) {
2451 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2452 break;
2453 }
2454 if (d)
2455 continue;
2456
2457 /* skip marked in use or failed drives */
2458 status = __le32_to_cpu(dl->disk.status);
2459 if (status & FAILED_DISK || status & CONFIGURED_DISK) {
2460 dprintf("%x:%x status ( %s%s)\n",
2461 dl->major, dl->minor,
2462 status & FAILED_DISK ? "failed " : "",
2463 status & CONFIGURED_DISK ? "configured " : "");
2464 continue;
2465 }
2466
2467 /* Does this unused device have the requisite free space?
2468 * We need a->info.component_size sectors
2469 */
2470 ex = get_extents(super, dl);
2471 if (!ex) {
2472 dprintf("cannot get extents\n");
2473 continue;
2474 }
2475 found = 0;
2476 j = 0;
2477 pos = 0;
2478 array_start = __le32_to_cpu(map->pba_of_lba0);
2479
2480 do {
2481 /* check that we can start at pba_of_lba0 with
2482 * a->info.component_size of space
2483 */
2484 esize = ex[j].start - pos;
2485 if (array_start >= pos &&
2486 array_start + a->info.component_size < ex[j].start) {
2487 found = 1;
2488 break;
2489 }
2490 pos = ex[j].start + ex[j].size;
2491 j++;
2492
2493 } while (ex[j-1].size);
2494
2495 free(ex);
2496 if (!found) {
2497 dprintf("%x:%x does not have %llu at %d\n",
2498 dl->major, dl->minor,
2499 a->info.component_size,
2500 __le32_to_cpu(map->pba_of_lba0));
2501 /* No room */
2502 continue;
2503 } else
2504 break;
2505 }
2506
2507 return dl;
2508 }
2509
2510 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2511 struct metadata_update **updates)
2512 {
2513 /**
2514 * Find a device with unused free space and use it to replace a
2515 * failed/vacant region in an array. We replace failed regions one a
2516 * array at a time. The result is that a new spare disk will be added
2517 * to the first failed array and after the monitor has finished
2518 * propagating failures the remainder will be consumed.
2519 *
2520 * FIXME add a capability for mdmon to request spares from another
2521 * container.
2522 */
2523
2524 struct intel_super *super = a->container->sb;
2525 int inst = a->info.container_member;
2526 struct imsm_dev *dev = get_imsm_dev(super, inst);
2527 struct imsm_map *map = get_imsm_map(dev, 0);
2528 int failed = a->info.array.raid_disks;
2529 struct mdinfo *rv = NULL;
2530 struct mdinfo *d;
2531 struct mdinfo *di;
2532 struct metadata_update *mu;
2533 struct dl *dl;
2534 struct imsm_update_activate_spare *u;
2535 int num_spares = 0;
2536 int i;
2537
2538 for (d = a->info.devs ; d ; d = d->next) {
2539 if ((d->curr_state & DS_FAULTY) &&
2540 d->state_fd >= 0)
2541 /* wait for Removal to happen */
2542 return NULL;
2543 if (d->state_fd >= 0)
2544 failed--;
2545 }
2546
2547 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2548 inst, failed, a->info.array.raid_disks, a->info.array.level);
2549 if (imsm_check_degraded(super, inst, failed) != IMSM_T_STATE_DEGRADED)
2550 return NULL;
2551
2552 /* For each slot, if it is not working, find a spare */
2553 for (i = 0; i < a->info.array.raid_disks; i++) {
2554 for (d = a->info.devs ; d ; d = d->next)
2555 if (d->disk.raid_disk == i)
2556 break;
2557 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2558 if (d && (d->state_fd >= 0))
2559 continue;
2560
2561 /*
2562 * OK, this device needs recovery. Try to re-add the previous
2563 * occupant of this slot, if this fails add a new spare
2564 */
2565 dl = imsm_readd(super, i, a);
2566 if (!dl)
2567 dl = imsm_add_spare(super, i, a);
2568 if (!dl)
2569 continue;
2570
2571 /* found a usable disk with enough space */
2572 di = malloc(sizeof(*di));
2573 memset(di, 0, sizeof(*di));
2574
2575 /* dl->index will be -1 in the case we are activating a
2576 * pristine spare. imsm_process_update() will create a
2577 * new index in this case. Once a disk is found to be
2578 * failed in all member arrays it is kicked from the
2579 * metadata
2580 */
2581 di->disk.number = dl->index;
2582
2583 /* (ab)use di->devs to store a pointer to the device
2584 * we chose
2585 */
2586 di->devs = (struct mdinfo *) dl;
2587
2588 di->disk.raid_disk = i;
2589 di->disk.major = dl->major;
2590 di->disk.minor = dl->minor;
2591 di->disk.state = 0;
2592 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
2593 di->component_size = a->info.component_size;
2594 di->container_member = inst;
2595 di->next = rv;
2596 rv = di;
2597 num_spares++;
2598 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2599 i, di->data_offset);
2600
2601 break;
2602 }
2603
2604 if (!rv)
2605 /* No spares found */
2606 return rv;
2607 /* Now 'rv' has a list of devices to return.
2608 * Create a metadata_update record to update the
2609 * disk_ord_tbl for the array
2610 */
2611 mu = malloc(sizeof(*mu));
2612 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2613 mu->space = NULL;
2614 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2615 mu->next = *updates;
2616 u = (struct imsm_update_activate_spare *) mu->buf;
2617
2618 for (di = rv ; di ; di = di->next) {
2619 u->type = update_activate_spare;
2620 u->dl = (struct dl *) di->devs;
2621 di->devs = NULL;
2622 u->slot = di->disk.raid_disk;
2623 u->array = inst;
2624 u->next = u + 1;
2625 u++;
2626 }
2627 (u-1)->next = NULL;
2628 *updates = mu;
2629
2630 return rv;
2631 }
2632
2633 static int disks_overlap(struct imsm_map *m1, struct imsm_map *m2)
2634 {
2635 int i;
2636 int j;
2637 int idx;
2638
2639 for (i = 0; i < m1->num_members; i++) {
2640 idx = get_imsm_disk_idx(m1, i);
2641 for (j = 0; j < m2->num_members; j++)
2642 if (idx == get_imsm_disk_idx(m2, j))
2643 return 1;
2644 }
2645
2646 return 0;
2647 }
2648
2649 static void imsm_delete(struct intel_super *super, struct dl **dlp);
2650
2651 static void imsm_process_update(struct supertype *st,
2652 struct metadata_update *update)
2653 {
2654 /**
2655 * crack open the metadata_update envelope to find the update record
2656 * update can be one of:
2657 * update_activate_spare - a spare device has replaced a failed
2658 * device in an array, update the disk_ord_tbl. If this disk is
2659 * present in all member arrays then also clear the SPARE_DISK
2660 * flag
2661 */
2662 struct intel_super *super = st->sb;
2663 struct imsm_super *mpb = super->anchor;
2664 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2665
2666 switch (type) {
2667 case update_activate_spare: {
2668 struct imsm_update_activate_spare *u = (void *) update->buf;
2669 struct imsm_dev *dev = get_imsm_dev(super, u->array);
2670 struct imsm_map *map = get_imsm_map(dev, 0);
2671 struct active_array *a;
2672 struct imsm_disk *disk;
2673 __u32 status;
2674 struct dl *dl;
2675 unsigned int found;
2676 int victim;
2677 int i;
2678
2679 for (dl = super->disks; dl; dl = dl->next)
2680 if (dl == u->dl)
2681 break;
2682
2683 if (!dl) {
2684 fprintf(stderr, "error: imsm_activate_spare passed "
2685 "an unknown disk (index: %d serial: %s)\n",
2686 u->dl->index, u->dl->serial);
2687 return;
2688 }
2689
2690 super->updates_pending++;
2691
2692 /* adding a pristine spare, assign a new index */
2693 if (dl->index < 0) {
2694 dl->index = super->anchor->num_disks;
2695 super->anchor->num_disks++;
2696 }
2697 victim = get_imsm_disk_idx(map, u->slot);
2698 map->disk_ord_tbl[u->slot] = __cpu_to_le32(dl->index);
2699 disk = &dl->disk;
2700 status = __le32_to_cpu(disk->status);
2701 status |= CONFIGURED_DISK;
2702 status &= ~(SPARE_DISK | USABLE_DISK);
2703 disk->status = __cpu_to_le32(status);
2704
2705 /* count arrays using the victim in the metadata */
2706 found = 0;
2707 for (a = st->arrays; a ; a = a->next) {
2708 dev = get_imsm_dev(super, a->info.container_member);
2709 map = get_imsm_map(dev, 0);
2710 for (i = 0; i < map->num_members; i++)
2711 if (victim == get_imsm_disk_idx(map, i))
2712 found++;
2713 }
2714
2715 /* clear some flags if the victim is no longer being
2716 * utilized anywhere
2717 */
2718 if (!found) {
2719 struct dl **dlp;
2720 for (dlp = &super->disks; *dlp; )
2721 if ((*dlp)->index == victim)
2722 break;
2723 disk = &(*dlp)->disk;
2724 status = __le32_to_cpu(disk->status);
2725 status &= ~(CONFIGURED_DISK | USABLE_DISK);
2726 disk->status = __cpu_to_le32(status);
2727 /* We know that 'manager' isn't touching anything,
2728 * so it is safe to:
2729 */
2730 imsm_delete(super, dlp);
2731 }
2732 break;
2733 }
2734 case update_create_array: {
2735 /* someone wants to create a new array, we need to be aware of
2736 * a few races/collisions:
2737 * 1/ 'Create' called by two separate instances of mdadm
2738 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
2739 * devices that have since been assimilated via
2740 * activate_spare.
2741 * In the event this update can not be carried out mdadm will
2742 * (FIX ME) notice that its update did not take hold.
2743 */
2744 struct imsm_update_create_array *u = (void *) update->buf;
2745 struct imsm_dev *dev;
2746 struct imsm_map *map, *new_map;
2747 unsigned long long start, end;
2748 unsigned long long new_start, new_end;
2749 int i;
2750 int overlap = 0;
2751
2752 /* handle racing creates: first come first serve */
2753 if (u->dev_idx < mpb->num_raid_devs) {
2754 dprintf("%s: subarray %d already defined\n",
2755 __func__, u->dev_idx);
2756 return;
2757 }
2758
2759 /* check update is next in sequence */
2760 if (u->dev_idx != mpb->num_raid_devs) {
2761 dprintf("%s: can not create array %d expected index %d\n",
2762 __func__, u->dev_idx, mpb->num_raid_devs);
2763 return;
2764 }
2765
2766 new_map = get_imsm_map(&u->dev, 0);
2767 new_start = __le32_to_cpu(new_map->pba_of_lba0);
2768 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
2769
2770 /* handle activate_spare versus create race:
2771 * check to make sure that overlapping arrays do not include
2772 * overalpping disks
2773 */
2774 for (i = 0; i < mpb->num_raid_devs; i++) {
2775 dev = get_imsm_dev(super, i);
2776 map = get_imsm_map(dev, 0);
2777 start = __le32_to_cpu(map->pba_of_lba0);
2778 end = start + __le32_to_cpu(map->blocks_per_member);
2779 if ((new_start >= start && new_start <= end) ||
2780 (start >= new_start && start <= new_end))
2781 overlap = 1;
2782 if (overlap && disks_overlap(map, new_map)) {
2783 dprintf("%s: arrays overlap\n", __func__);
2784 return;
2785 }
2786 }
2787 /* check num_members sanity */
2788 if (new_map->num_members > mpb->num_disks) {
2789 dprintf("%s: num_disks out of range\n", __func__);
2790 return;
2791 }
2792
2793 /* check that prepare update was successful */
2794 if (!update->space) {
2795 dprintf("%s: prepare update failed\n", __func__);
2796 return;
2797 }
2798
2799 super->updates_pending++;
2800 dev = update->space;
2801 update->space = NULL;
2802 imsm_copy_dev(dev, &u->dev);
2803 super->dev_tbl[u->dev_idx] = dev;
2804 mpb->num_raid_devs++;
2805
2806 /* fix up flags, if arrays overlap then the drives can not be
2807 * spares
2808 */
2809 for (i = 0; i < map->num_members; i++) {
2810 struct imsm_disk *disk;
2811 __u32 status;
2812
2813 disk = get_imsm_disk(super, get_imsm_disk_idx(map, i));
2814 status = __le32_to_cpu(disk->status);
2815 status |= CONFIGURED_DISK;
2816 if (overlap)
2817 status &= ~SPARE_DISK;
2818 disk->status = __cpu_to_le32(status);
2819 }
2820 break;
2821 }
2822 case update_add_disk:
2823
2824 /* we may be able to repair some arrays if disks are
2825 * being added */
2826 if (super->add) {
2827 struct active_array *a;
2828 for (a = st->arrays; a; a = a->next)
2829 a->check_degraded = 1;
2830 }
2831 /* check if we can add / replace some disks in the
2832 * metadata */
2833 while (super->add) {
2834 struct dl **dlp, *dl, *al;
2835 al = super->add;
2836 super->add = al->next;
2837 for (dlp = &super->disks; *dlp ; ) {
2838 if (memcmp(al->serial, (*dlp)->serial,
2839 MAX_RAID_SERIAL_LEN) == 0) {
2840 dl = *dlp;
2841 *dlp = (*dlp)->next;
2842 __free_imsm_disk(dl);
2843 break;
2844 } else
2845 dlp = &(*dlp)->next;
2846 }
2847 al->next = super->disks;
2848 super->disks = al;
2849 }
2850
2851 break;
2852 }
2853 }
2854
2855 static void imsm_prepare_update(struct supertype *st,
2856 struct metadata_update *update)
2857 {
2858 /**
2859 * Allocate space to hold new disk entries, raid-device entries or a
2860 * new mpb if necessary. We currently maintain an mpb large enough to
2861 * hold 2 subarrays for the given number of disks. This may not be
2862 * sufficient when reshaping.
2863 *
2864 * FIX ME handle the reshape case.
2865 *
2866 * The monitor will be able to safely change super->mpb by arranging
2867 * for it to be freed in check_update_queue(). I.e. the monitor thread
2868 * will start using the new pointer and the manager can continue to use
2869 * the old value until check_update_queue() runs.
2870 */
2871 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2872
2873 switch (type) {
2874 case update_create_array: {
2875 struct imsm_update_create_array *u = (void *) update->buf;
2876 size_t len = sizeof_imsm_dev(&u->dev, 1);
2877
2878 update->space = malloc(len);
2879 break;
2880 default:
2881 break;
2882 }
2883 }
2884
2885 return;
2886 }
2887
2888 /* must be called while manager is quiesced */
2889 static void imsm_delete(struct intel_super *super, struct dl **dlp)
2890 {
2891 struct imsm_super *mpb = super->anchor;
2892 struct dl *dl = *dlp;
2893 struct dl *iter;
2894 struct imsm_dev *dev;
2895 struct imsm_map *map;
2896 int i, j;
2897
2898 dprintf("%s: deleting device %x:%x from imsm_super\n",
2899 __func__, dl->major, dl->minor);
2900
2901 /* shift all indexes down one */
2902 for (iter = super->disks; iter; iter = iter->next)
2903 if (iter->index > dl->index)
2904 iter->index--;
2905
2906 for (i = 0; i < mpb->num_raid_devs; i++) {
2907 dev = get_imsm_dev(super, i);
2908 map = get_imsm_map(dev, 0);
2909
2910 for (j = 0; j < map->num_members; j++) {
2911 int idx = get_imsm_disk_idx(map, j);
2912
2913 if (idx > dl->index)
2914 map->disk_ord_tbl[j] = __cpu_to_le32(idx - 1);
2915 }
2916 }
2917
2918 mpb->num_disks--;
2919 super->updates_pending++;
2920 *dlp = (*dlp)->next;
2921 __free_imsm_disk(dl);
2922 }
2923
2924 struct superswitch super_imsm = {
2925 #ifndef MDASSEMBLE
2926 .examine_super = examine_super_imsm,
2927 .brief_examine_super = brief_examine_super_imsm,
2928 .detail_super = detail_super_imsm,
2929 .brief_detail_super = brief_detail_super_imsm,
2930 .write_init_super = write_init_super_imsm,
2931 #endif
2932 .match_home = match_home_imsm,
2933 .uuid_from_super= uuid_from_super_imsm,
2934 .getinfo_super = getinfo_super_imsm,
2935 .update_super = update_super_imsm,
2936
2937 .avail_size = avail_size_imsm,
2938
2939 .compare_super = compare_super_imsm,
2940
2941 .load_super = load_super_imsm,
2942 .init_super = init_super_imsm,
2943 .add_to_super = add_to_super_imsm,
2944 .store_super = store_zero_imsm,
2945 .free_super = free_super_imsm,
2946 .match_metadata_desc = match_metadata_desc_imsm,
2947 .container_content = container_content_imsm,
2948
2949 .validate_geometry = validate_geometry_imsm,
2950 .external = 1,
2951
2952 /* for mdmon */
2953 .open_new = imsm_open_new,
2954 .load_super = load_super_imsm,
2955 .set_array_state= imsm_set_array_state,
2956 .set_disk = imsm_set_disk,
2957 .sync_metadata = imsm_sync_metadata,
2958 .activate_spare = imsm_activate_spare,
2959 .process_update = imsm_process_update,
2960 .prepare_update = imsm_prepare_update,
2961 };