]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
Document PPL in man md
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <sys/mman.h>
34 #include <linux/magic.h>
35 #include <poll.h>
36 #include <ctype.h>
37 #include <dirent.h>
38 #include <signal.h>
39 #include <dlfcn.h>
40
41
42 /*
43 * following taken from linux/blkpg.h because they aren't
44 * anywhere else and it isn't safe to #include linux/ * stuff.
45 */
46
47 #define BLKPG _IO(0x12,105)
48
49 /* The argument structure */
50 struct blkpg_ioctl_arg {
51 int op;
52 int flags;
53 int datalen;
54 void *data;
55 };
56
57 /* The subfunctions (for the op field) */
58 #define BLKPG_ADD_PARTITION 1
59 #define BLKPG_DEL_PARTITION 2
60
61 /* Sizes of name fields. Unused at present. */
62 #define BLKPG_DEVNAMELTH 64
63 #define BLKPG_VOLNAMELTH 64
64
65 /* The data structure for ADD_PARTITION and DEL_PARTITION */
66 struct blkpg_partition {
67 long long start; /* starting offset in bytes */
68 long long length; /* length in bytes */
69 int pno; /* partition number */
70 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
71 to be used in kernel messages */
72 char volname[BLKPG_VOLNAMELTH]; /* volume label */
73 };
74
75 #include "part.h"
76
77 /* Force a compilation error if condition is true */
78 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
79
80 /* Force a compilation error if condition is true, but also produce a
81 result (of value 0 and type size_t), so the expression can be used
82 e.g. in a structure initializer (or where-ever else comma expressions
83 aren't permitted). */
84 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
85
86 static int is_dlm_hooks_ready = 0;
87
88 int dlm_funs_ready(void)
89 {
90 return is_dlm_hooks_ready ? 1 : 0;
91 }
92
93 static struct dlm_hooks *dlm_hooks = NULL;
94 struct dlm_lock_resource *dlm_lock_res = NULL;
95 static int ast_called = 0;
96
97 struct dlm_lock_resource {
98 dlm_lshandle_t *ls;
99 struct dlm_lksb lksb;
100 };
101
102 /* Using poll(2) to wait for and dispatch ASTs */
103 static int poll_for_ast(dlm_lshandle_t ls)
104 {
105 struct pollfd pfd;
106
107 pfd.fd = dlm_hooks->ls_get_fd(ls);
108 pfd.events = POLLIN;
109
110 while (!ast_called)
111 {
112 if (poll(&pfd, 1, 0) < 0)
113 {
114 perror("poll");
115 return -1;
116 }
117 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
118 }
119 ast_called = 0;
120
121 return 0;
122 }
123
124 static void dlm_ast(void *arg)
125 {
126 ast_called = 1;
127 }
128
129 static char *cluster_name = NULL;
130 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
131 int cluster_get_dlmlock(void)
132 {
133 int ret = -1;
134 char str[64];
135 int flags = LKF_NOQUEUE;
136 int retry_count = 0;
137
138 if (!dlm_funs_ready()) {
139 pr_err("Something wrong with dlm library\n");
140 return -1;
141 }
142
143 ret = get_cluster_name(&cluster_name);
144 if (ret) {
145 pr_err("The md can't get cluster name\n");
146 return -1;
147 }
148
149 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
150 dlm_lock_res->ls = dlm_hooks->open_lockspace(cluster_name);
151 if (!dlm_lock_res->ls) {
152 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
153 if (!dlm_lock_res->ls) {
154 pr_err("%s failed to create lockspace\n", cluster_name);
155 return -ENOMEM;
156 }
157 } else {
158 pr_err("open existed %s lockspace\n", cluster_name);
159 }
160
161 snprintf(str, 64, "bitmap%s", cluster_name);
162 retry:
163 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE,
164 &dlm_lock_res->lksb, flags, str, strlen(str),
165 0, dlm_ast, dlm_lock_res, NULL, NULL);
166 if (ret) {
167 pr_err("error %d when get PW mode on lock %s\n", errno, str);
168 /* let's try several times if EAGAIN happened */
169 if (dlm_lock_res->lksb.sb_status == EAGAIN && retry_count < 10) {
170 sleep(10);
171 retry_count++;
172 goto retry;
173 }
174 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
175 return ret;
176 }
177
178 /* Wait for it to complete */
179 poll_for_ast(dlm_lock_res->ls);
180
181 if (dlm_lock_res->lksb.sb_status) {
182 pr_err("failed to lock cluster\n");
183 return -1;
184 }
185 return 1;
186 }
187
188 int cluster_release_dlmlock(void)
189 {
190 int ret = -1;
191
192 if (!cluster_name)
193 goto out;
194
195 if (!dlm_lock_res->lksb.sb_lkid)
196 goto out;
197
198 ret = dlm_hooks->ls_unlock_wait(dlm_lock_res->ls,
199 dlm_lock_res->lksb.sb_lkid, 0,
200 &dlm_lock_res->lksb);
201 if (ret) {
202 pr_err("error %d happened when unlock\n", errno);
203 /* XXX make sure the lock is unlocked eventually */
204 goto out;
205 }
206
207 /* Wait for it to complete */
208 poll_for_ast(dlm_lock_res->ls);
209
210 errno = dlm_lock_res->lksb.sb_status;
211 if (errno != EUNLOCK) {
212 pr_err("error %d happened in ast when unlock lockspace\n",
213 errno);
214 /* XXX make sure the lockspace is unlocked eventually */
215 goto out;
216 }
217
218 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
219 if (ret) {
220 pr_err("error %d happened when release lockspace\n", errno);
221 /* XXX make sure the lockspace is released eventually */
222 goto out;
223 }
224 free(dlm_lock_res);
225
226 out:
227 return ret;
228 }
229
230 int md_array_valid(int fd)
231 {
232 struct mdinfo *sra;
233 int ret;
234
235 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
236 if (sra) {
237 if (sra->array_state != ARRAY_UNKNOWN_STATE)
238 ret = 0;
239 else
240 ret = -ENODEV;
241
242 free(sra);
243 } else {
244 /*
245 * GET_ARRAY_INFO doesn't provide access to the proper state
246 * information, so fallback to a basic check for raid_disks != 0
247 */
248 ret = ioctl(fd, RAID_VERSION);
249 }
250
251 return !ret;
252 }
253
254 int md_array_active(int fd)
255 {
256 struct mdinfo *sra;
257 struct mdu_array_info_s array;
258 int ret = 0;
259
260 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
261 if (sra) {
262 if (!md_array_is_active(sra))
263 ret = -ENODEV;
264
265 free(sra);
266 } else {
267 /*
268 * GET_ARRAY_INFO doesn't provide access to the proper state
269 * information, so fallback to a basic check for raid_disks != 0
270 */
271 ret = ioctl(fd, GET_ARRAY_INFO, &array);
272 }
273
274 return !ret;
275 }
276
277 int md_array_is_active(struct mdinfo *info)
278 {
279 return (info->array_state != ARRAY_CLEAR &&
280 info->array_state != ARRAY_INACTIVE &&
281 info->array_state != ARRAY_UNKNOWN_STATE);
282 }
283
284 /*
285 * Get array info from the kernel. Longer term we want to deprecate the
286 * ioctl and get it from sysfs.
287 */
288 int md_get_array_info(int fd, struct mdu_array_info_s *array)
289 {
290 return ioctl(fd, GET_ARRAY_INFO, array);
291 }
292
293 /*
294 * Set array info
295 */
296 int md_set_array_info(int fd, struct mdu_array_info_s *array)
297 {
298 return ioctl(fd, SET_ARRAY_INFO, array);
299 }
300
301 /*
302 * Get disk info from the kernel.
303 */
304 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
305 {
306 return ioctl(fd, GET_DISK_INFO, disk);
307 }
308
309 int get_linux_version()
310 {
311 struct utsname name;
312 char *cp;
313 int a = 0, b = 0,c = 0;
314 if (uname(&name) <0)
315 return -1;
316
317 cp = name.release;
318 a = strtoul(cp, &cp, 10);
319 if (*cp == '.')
320 b = strtoul(cp+1, &cp, 10);
321 if (*cp == '.')
322 c = strtoul(cp+1, &cp, 10);
323
324 return (a*1000000)+(b*1000)+c;
325 }
326
327 int mdadm_version(char *version)
328 {
329 int a, b, c;
330 char *cp;
331
332 if (!version)
333 version = Version;
334
335 cp = strchr(version, '-');
336 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
337 return -1;
338 cp += 3;
339 a = strtoul(cp, &cp, 10);
340 if (*cp != '.')
341 return -1;
342 b = strtoul(cp+1, &cp, 10);
343 if (*cp == '.')
344 c = strtoul(cp+1, &cp, 10);
345 else
346 c = 0;
347 if (*cp != ' ' && *cp != '-')
348 return -1;
349 return (a*1000000)+(b*1000)+c;
350 }
351
352 unsigned long long parse_size(char *size)
353 {
354 /* parse 'size' which should be a number optionally
355 * followed by 'K', 'M'. 'G' or 'T'.
356 * Without a suffix, K is assumed.
357 * Number returned is in sectors (half-K)
358 * INVALID_SECTORS returned on error.
359 */
360 char *c;
361 long long s = strtoll(size, &c, 10);
362 if (s > 0) {
363 switch (*c) {
364 case 'K':
365 c++;
366 default:
367 s *= 2;
368 break;
369 case 'M':
370 c++;
371 s *= 1024 * 2;
372 break;
373 case 'G':
374 c++;
375 s *= 1024 * 1024 * 2;
376 break;
377 case 'T':
378 c++;
379 s *= 1024 * 1024 * 1024 * 2LL;
380 break;
381 case 's': /* sectors */
382 c++;
383 break;
384 }
385 } else
386 s = INVALID_SECTORS;
387 if (*c)
388 s = INVALID_SECTORS;
389 return s;
390 }
391
392 int is_near_layout_10(int layout)
393 {
394 int fc, fo;
395
396 fc = (layout >> 8) & 255;
397 fo = layout & (1 << 16);
398 if (fc > 1 || fo > 0)
399 return 0;
400 return 1;
401 }
402
403 int parse_layout_10(char *layout)
404 {
405 int copies, rv;
406 char *cp;
407 /* Parse the layout string for raid10 */
408 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
409 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
410 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
411 copies > 200 ||
412 *cp)
413 return -1;
414 if (layout[0] == 'n')
415 rv = 256 + copies;
416 else if (layout[0] == 'o')
417 rv = 0x10000 + (copies<<8) + 1;
418 else
419 rv = 1 + (copies<<8);
420 return rv;
421 }
422
423 int parse_layout_faulty(char *layout)
424 {
425 /* Parse the layout string for 'faulty' */
426 int ln = strcspn(layout, "0123456789");
427 char *m = xstrdup(layout);
428 int mode;
429 m[ln] = 0;
430 mode = map_name(faultylayout, m);
431 if (mode == UnSet)
432 return -1;
433
434 return mode | (atoi(layout+ln)<< ModeShift);
435 }
436
437 long parse_num(char *num)
438 {
439 /* Either return a valid number, or -1 */
440 char *c;
441 long rv = strtol(num, &c, 10);
442 if (rv < 0 || *c || !num[0])
443 return -1;
444 else
445 return rv;
446 }
447
448 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
449 {
450 char *dev;
451 *slot = strtoul(input, &dev, 10);
452 if (dev == input || dev[0] != ':')
453 return -1;
454 *devname = dev+1;
455 return 0;
456 }
457
458 void remove_partitions(int fd)
459 {
460 /* remove partitions from this block devices.
461 * This is used for components added to an array
462 */
463 #ifdef BLKPG_DEL_PARTITION
464 struct blkpg_ioctl_arg a;
465 struct blkpg_partition p;
466
467 a.op = BLKPG_DEL_PARTITION;
468 a.data = (void*)&p;
469 a.datalen = sizeof(p);
470 a.flags = 0;
471 memset(a.data, 0, a.datalen);
472 for (p.pno = 0; p.pno < 16; p.pno++)
473 ioctl(fd, BLKPG, &a);
474 #endif
475 }
476
477 int test_partition(int fd)
478 {
479 /* Check if fd is a whole-disk or a partition.
480 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
481 * will return ENXIO on an invalid partition number.
482 */
483 struct blkpg_ioctl_arg a;
484 struct blkpg_partition p;
485 a.op = BLKPG_DEL_PARTITION;
486 a.data = (void*)&p;
487 a.datalen = sizeof(p);
488 a.flags = 0;
489 memset(a.data, 0, a.datalen);
490 p.pno = 1<<30;
491 if (ioctl(fd, BLKPG, &a) == 0)
492 /* Very unlikely, but not a partition */
493 return 0;
494 if (errno == ENXIO || errno == ENOTTY)
495 /* not a partition */
496 return 0;
497
498 return 1;
499 }
500
501 int test_partition_from_id(dev_t id)
502 {
503 char buf[20];
504 int fd, rv;
505
506 sprintf(buf, "%d:%d", major(id), minor(id));
507 fd = dev_open(buf, O_RDONLY);
508 if (fd < 0)
509 return -1;
510 rv = test_partition(fd);
511 close(fd);
512 return rv;
513 }
514
515 int enough(int level, int raid_disks, int layout, int clean, char *avail)
516 {
517 int copies, first;
518 int i;
519 int avail_disks = 0;
520
521 for (i = 0; i < raid_disks; i++)
522 avail_disks += !!avail[i];
523
524 switch (level) {
525 case 10:
526 /* This is the tricky one - we need to check
527 * which actual disks are present.
528 */
529 copies = (layout&255)* ((layout>>8) & 255);
530 first = 0;
531 do {
532 /* there must be one of the 'copies' form 'first' */
533 int n = copies;
534 int cnt = 0;
535 int this = first;
536 while (n--) {
537 if (avail[this])
538 cnt++;
539 this = (this+1) % raid_disks;
540 }
541 if (cnt == 0)
542 return 0;
543 first = (first+(layout&255)) % raid_disks;
544 } while (first != 0);
545 return 1;
546
547 case LEVEL_MULTIPATH:
548 return avail_disks>= 1;
549 case LEVEL_LINEAR:
550 case 0:
551 return avail_disks == raid_disks;
552 case 1:
553 return avail_disks >= 1;
554 case 4:
555 if (avail_disks == raid_disks - 1 &&
556 !avail[raid_disks - 1])
557 /* If just the parity device is missing, then we
558 * have enough, even if not clean
559 */
560 return 1;
561 /* FALL THROUGH */
562 case 5:
563 if (clean)
564 return avail_disks >= raid_disks-1;
565 else
566 return avail_disks >= raid_disks;
567 case 6:
568 if (clean)
569 return avail_disks >= raid_disks-2;
570 else
571 return avail_disks >= raid_disks;
572 default:
573 return 0;
574 }
575 }
576
577 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
578 {
579 int i, j;
580 char uuid[16];
581 char *c = buf;
582 strcpy(c, "UUID-");
583 c += strlen(c);
584 copy_uuid(uuid, id, swap);
585 for (i = 0; i < 4; i++) {
586 if (i)
587 *c++ = sep;
588 for (j = 3; j >= 0; j--) {
589 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
590 c+= 2;
591 }
592 }
593 return buf;
594
595 }
596
597 char *fname_from_uuid(struct supertype *st, struct mdinfo *info,
598 char *buf, char sep)
599 {
600 // dirty hack to work around an issue with super1 superblocks...
601 // super1 superblocks need swapuuid set in order for assembly to
602 // work, but can't have it set if we want this printout to match
603 // all the other uuid printouts in super1.c, so we force swapuuid
604 // to 1 to make our printout match the rest of super1
605 #if __BYTE_ORDER == BIG_ENDIAN
606 return __fname_from_uuid(info->uuid, 1, buf, sep);
607 #else
608 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 :
609 st->ss->swapuuid, buf, sep);
610 #endif
611 }
612
613 int check_ext2(int fd, char *name)
614 {
615 /*
616 * Check for an ext2fs file system.
617 * Superblock is always 1K at 1K offset
618 *
619 * s_magic is le16 at 56 == 0xEF53
620 * report mtime - le32 at 44
621 * blocks - le32 at 4
622 * logblksize - le32 at 24
623 */
624 unsigned char sb[1024];
625 time_t mtime;
626 unsigned long long size;
627 int bsize;
628 if (lseek(fd, 1024,0)!= 1024)
629 return 0;
630 if (read(fd, sb, 1024)!= 1024)
631 return 0;
632 if (sb[56] != 0x53 || sb[57] != 0xef)
633 return 0;
634
635 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
636 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
637 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
638 size <<= bsize;
639 pr_err("%s appears to contain an ext2fs file system\n",
640 name);
641 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
642 return 1;
643 }
644
645 int check_reiser(int fd, char *name)
646 {
647 /*
648 * superblock is at 64K
649 * size is 1024;
650 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
651 *
652 */
653 unsigned char sb[1024];
654 unsigned long long size;
655 if (lseek(fd, 64*1024, 0) != 64*1024)
656 return 0;
657 if (read(fd, sb, 1024) != 1024)
658 return 0;
659 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
660 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
661 return 0;
662 pr_err("%s appears to contain a reiserfs file system\n",name);
663 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
664 cont_err("size = %lluK\n", size*4);
665
666 return 1;
667 }
668
669 int check_raid(int fd, char *name)
670 {
671 struct mdinfo info;
672 time_t crtime;
673 char *level;
674 struct supertype *st = guess_super(fd);
675
676 if (!st)
677 return 0;
678 if (st->ss->add_to_super != NULL) {
679 st->ss->load_super(st, fd, name);
680 /* Looks like a raid array .. */
681 pr_err("%s appears to be part of a raid array:\n", name);
682 st->ss->getinfo_super(st, &info, NULL);
683 st->ss->free_super(st);
684 crtime = info.array.ctime;
685 level = map_num(pers, info.array.level);
686 if (!level)
687 level = "-unknown-";
688 cont_err("level=%s devices=%d ctime=%s",
689 level, info.array.raid_disks, ctime(&crtime));
690 } else {
691 /* Looks like GPT or MBR */
692 pr_err("partition table exists on %s\n", name);
693 }
694 return 1;
695 }
696
697 int fstat_is_blkdev(int fd, char *devname, dev_t *rdev)
698 {
699 struct stat stb;
700
701 if (fstat(fd, &stb) != 0) {
702 pr_err("fstat failed for %s: %s\n", devname, strerror(errno));
703 return 0;
704 }
705 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
706 pr_err("%s is not a block device.\n", devname);
707 return 0;
708 }
709 if (rdev)
710 *rdev = stb.st_rdev;
711 return 1;
712 }
713
714 int stat_is_blkdev(char *devname, dev_t *rdev)
715 {
716 struct stat stb;
717
718 if (stat(devname, &stb) != 0) {
719 pr_err("stat failed for %s: %s\n", devname, strerror(errno));
720 return 0;
721 }
722 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
723 pr_err("%s is not a block device.\n", devname);
724 return 0;
725 }
726 if (rdev)
727 *rdev = stb.st_rdev;
728 return 1;
729 }
730
731 int ask(char *mesg)
732 {
733 char *add = "";
734 int i;
735 for (i = 0; i < 5; i++) {
736 char buf[100];
737 fprintf(stderr, "%s%s", mesg, add);
738 fflush(stderr);
739 if (fgets(buf, 100, stdin)==NULL)
740 return 0;
741 if (buf[0]=='y' || buf[0]=='Y')
742 return 1;
743 if (buf[0]=='n' || buf[0]=='N')
744 return 0;
745 add = "(y/n) ";
746 }
747 pr_err("assuming 'no'\n");
748 return 0;
749 }
750
751 int is_standard(char *dev, int *nump)
752 {
753 /* tests if dev is a "standard" md dev name.
754 * i.e if the last component is "/dNN" or "/mdNN",
755 * where NN is a string of digits
756 * Returns 1 if a partitionable standard,
757 * -1 if non-partitonable,
758 * 0 if not a standard name.
759 */
760 char *d = strrchr(dev, '/');
761 int type = 0;
762 int num;
763 if (!d)
764 return 0;
765 if (strncmp(d, "/d",2) == 0)
766 d += 2, type = 1; /* /dev/md/dN{pM} */
767 else if (strncmp(d, "/md_d", 5) == 0)
768 d += 5, type = 1; /* /dev/md_dN{pM} */
769 else if (strncmp(d, "/md", 3) == 0)
770 d += 3, type = -1; /* /dev/mdN */
771 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
772 d += 1, type = -1; /* /dev/md/N */
773 else
774 return 0;
775 if (!*d)
776 return 0;
777 num = atoi(d);
778 while (isdigit(*d))
779 d++;
780 if (*d)
781 return 0;
782 if (nump) *nump = num;
783
784 return type;
785 }
786
787 unsigned long calc_csum(void *super, int bytes)
788 {
789 unsigned long long newcsum = 0;
790 int i;
791 unsigned int csum;
792 unsigned int *superc = (unsigned int*) super;
793
794 for(i = 0; i < bytes/4; i++)
795 newcsum += superc[i];
796 csum = (newcsum& 0xffffffff) + (newcsum>>32);
797 #ifdef __alpha__
798 /* The in-kernel checksum calculation is always 16bit on
799 * the alpha, though it is 32 bit on i386...
800 * I wonder what it is elsewhere... (it uses an API in
801 * a way that it shouldn't).
802 */
803 csum = (csum & 0xffff) + (csum >> 16);
804 csum = (csum & 0xffff) + (csum >> 16);
805 #endif
806 return csum;
807 }
808
809 char *human_size(long long bytes)
810 {
811 static char buf[47];
812
813 /* We convert bytes to either centi-M{ega,ibi}bytes,
814 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
815 * with appropriate rounding, and then print
816 * 1/100th of those as a decimal.
817 * We allow upto 2048Megabytes before converting to
818 * gigabytes and 2048Gigabytes before converting to
819 * terabytes, as that shows more precision and isn't
820 * too large a number.
821 */
822
823 if (bytes < 5000*1024)
824 buf[0] = 0;
825 else if (bytes < 2*1024LL*1024LL*1024LL) {
826 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
827 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
828 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
829 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
830 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
831 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
832 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
833 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
834 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
835 } else {
836 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
837 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
838 snprintf(buf, sizeof(buf), " (%ld.%02ld TiB %ld.%02ld TB)",
839 cTiB/100, cTiB % 100, cTB/100, cTB % 100);
840 }
841 return buf;
842 }
843
844 char *human_size_brief(long long bytes, int prefix)
845 {
846 static char buf[30];
847
848 /* We convert bytes to either centi-M{ega,ibi}bytes,
849 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
850 * with appropriate rounding, and then print
851 * 1/100th of those as a decimal.
852 * We allow upto 2048Megabytes before converting to
853 * gigabytes and 2048Gigabytes before converting to
854 * terabytes, as that shows more precision and isn't
855 * too large a number.
856 *
857 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
858 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
859 */
860
861 if (bytes < 5000*1024)
862 buf[0] = 0;
863 else if (prefix == IEC) {
864 if (bytes < 2*1024LL*1024LL*1024LL) {
865 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
866 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
867 cMiB/100, cMiB % 100);
868 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
869 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
870 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
871 cGiB/100, cGiB % 100);
872 } else {
873 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
874 snprintf(buf, sizeof(buf), "%ld.%02ldTiB",
875 cTiB/100, cTiB % 100);
876 }
877 }
878 else if (prefix == JEDEC) {
879 if (bytes < 2*1024LL*1024LL*1024LL) {
880 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
881 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
882 cMB/100, cMB % 100);
883 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
884 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
885 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
886 cGB/100, cGB % 100);
887 } else {
888 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
889 snprintf(buf, sizeof(buf), "%ld.%02ldTB",
890 cTB/100, cTB % 100);
891 }
892 }
893 else
894 buf[0] = 0;
895
896 return buf;
897 }
898
899 void print_r10_layout(int layout)
900 {
901 int near = layout & 255;
902 int far = (layout >> 8) & 255;
903 int offset = (layout&0x10000);
904 char *sep = "";
905
906 if (near != 1) {
907 printf("%s near=%d", sep, near);
908 sep = ",";
909 }
910 if (far != 1)
911 printf("%s %s=%d", sep, offset?"offset":"far", far);
912 if (near*far == 1)
913 printf("NO REDUNDANCY");
914 }
915
916 unsigned long long calc_array_size(int level, int raid_disks, int layout,
917 int chunksize, unsigned long long devsize)
918 {
919 if (level == 1)
920 return devsize;
921 devsize &= ~(unsigned long long)((chunksize>>9)-1);
922 return get_data_disks(level, layout, raid_disks) * devsize;
923 }
924
925 int get_data_disks(int level, int layout, int raid_disks)
926 {
927 int data_disks = 0;
928 switch (level) {
929 case 0: data_disks = raid_disks;
930 break;
931 case 1: data_disks = 1;
932 break;
933 case 4:
934 case 5: data_disks = raid_disks - 1;
935 break;
936 case 6: data_disks = raid_disks - 2;
937 break;
938 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
939 break;
940 }
941
942 return data_disks;
943 }
944
945 dev_t devnm2devid(char *devnm)
946 {
947 /* First look in /sys/block/$DEVNM/dev for %d:%d
948 * If that fails, try parsing out a number
949 */
950 char path[100];
951 char *ep;
952 int fd;
953 int mjr,mnr;
954
955 sprintf(path, "/sys/block/%s/dev", devnm);
956 fd = open(path, O_RDONLY);
957 if (fd >= 0) {
958 char buf[20];
959 int n = read(fd, buf, sizeof(buf));
960 close(fd);
961 if (n > 0)
962 buf[n] = 0;
963 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
964 return makedev(mjr, mnr);
965 }
966 if (strncmp(devnm, "md_d", 4) == 0 &&
967 isdigit(devnm[4]) &&
968 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
969 ep > devnm && *ep == 0)
970 return makedev(get_mdp_major(), mnr << MdpMinorShift);
971
972 if (strncmp(devnm, "md", 2) == 0 &&
973 isdigit(devnm[2]) &&
974 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
975 ep > devnm && *ep == 0)
976 return makedev(MD_MAJOR, mnr);
977
978 return 0;
979 }
980
981 char *get_md_name(char *devnm)
982 {
983 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
984 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
985
986 static char devname[50];
987 struct stat stb;
988 dev_t rdev = devnm2devid(devnm);
989 char *dn;
990
991 if (rdev == 0)
992 return 0;
993 if (strncmp(devnm, "md_", 3) == 0) {
994 snprintf(devname, sizeof(devname), "/dev/md/%s",
995 devnm + 3);
996 if (stat(devname, &stb) == 0 &&
997 (S_IFMT&stb.st_mode) == S_IFBLK && (stb.st_rdev == rdev))
998 return devname;
999 }
1000 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
1001 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
1002 (stb.st_rdev == rdev))
1003 return devname;
1004
1005 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
1006 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
1007 (stb.st_rdev == rdev))
1008 return devname;
1009
1010 dn = map_dev(major(rdev), minor(rdev), 0);
1011 if (dn)
1012 return dn;
1013 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
1014 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
1015 if (errno != EEXIST)
1016 return NULL;
1017
1018 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
1019 (stb.st_rdev == rdev))
1020 return devname;
1021 unlink(devname);
1022 return NULL;
1023 }
1024
1025 void put_md_name(char *name)
1026 {
1027 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1028 unlink(name);
1029 }
1030
1031 int get_maj_min(char *dev, int *major, int *minor)
1032 {
1033 char *e;
1034 *major = strtoul(dev, &e, 0);
1035 return (e > dev && *e == ':' && e[1] &&
1036 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1037 *e == 0);
1038 }
1039
1040 int dev_open(char *dev, int flags)
1041 {
1042 /* like 'open', but if 'dev' matches %d:%d, create a temp
1043 * block device and open that
1044 */
1045 int fd = -1;
1046 char devname[32];
1047 int major;
1048 int minor;
1049
1050 if (!dev)
1051 return -1;
1052 flags |= O_DIRECT;
1053
1054 if (get_maj_min(dev, &major, &minor)) {
1055 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1056 (int)getpid(), major, minor);
1057 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1058 fd = open(devname, flags);
1059 unlink(devname);
1060 }
1061 if (fd < 0) {
1062 /* Try /tmp as /dev appear to be read-only */
1063 snprintf(devname, sizeof(devname),
1064 "/tmp/.tmp.md.%d:%d:%d",
1065 (int)getpid(), major, minor);
1066 if (mknod(devname, S_IFBLK|0600,
1067 makedev(major, minor)) == 0) {
1068 fd = open(devname, flags);
1069 unlink(devname);
1070 }
1071 }
1072 } else
1073 fd = open(dev, flags);
1074 return fd;
1075 }
1076
1077 int open_dev_flags(char *devnm, int flags)
1078 {
1079 dev_t devid;
1080 char buf[20];
1081
1082 devid = devnm2devid(devnm);
1083 sprintf(buf, "%d:%d", major(devid), minor(devid));
1084 return dev_open(buf, flags);
1085 }
1086
1087 int open_dev(char *devnm)
1088 {
1089 return open_dev_flags(devnm, O_RDONLY);
1090 }
1091
1092 int open_dev_excl(char *devnm)
1093 {
1094 char buf[20];
1095 int i;
1096 int flags = O_RDWR;
1097 dev_t devid = devnm2devid(devnm);
1098 long delay = 1000;
1099
1100 sprintf(buf, "%d:%d", major(devid), minor(devid));
1101 for (i = 0; i < 25; i++) {
1102 int fd = dev_open(buf, flags|O_EXCL);
1103 if (fd >= 0)
1104 return fd;
1105 if (errno == EACCES && flags == O_RDWR) {
1106 flags = O_RDONLY;
1107 continue;
1108 }
1109 if (errno != EBUSY)
1110 return fd;
1111 usleep(delay);
1112 if (delay < 200000)
1113 delay *= 2;
1114 }
1115 return -1;
1116 }
1117
1118 int same_dev(char *one, char *two)
1119 {
1120 struct stat st1, st2;
1121 if (stat(one, &st1) != 0)
1122 return 0;
1123 if (stat(two, &st2) != 0)
1124 return 0;
1125 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1126 return 0;
1127 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1128 return 0;
1129 return st1.st_rdev == st2.st_rdev;
1130 }
1131
1132 void wait_for(char *dev, int fd)
1133 {
1134 int i;
1135 struct stat stb_want;
1136 long delay = 1000;
1137
1138 if (fstat(fd, &stb_want) != 0 ||
1139 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1140 return;
1141
1142 for (i = 0; i < 25; i++) {
1143 struct stat stb;
1144 if (stat(dev, &stb) == 0 &&
1145 (stb.st_mode & S_IFMT) == S_IFBLK &&
1146 (stb.st_rdev == stb_want.st_rdev))
1147 return;
1148 usleep(delay);
1149 if (delay < 200000)
1150 delay *= 2;
1151 }
1152 if (i == 25)
1153 pr_err("timeout waiting for %s\n", dev);
1154 }
1155
1156 struct superswitch *superlist[] =
1157 {
1158 &super0, &super1,
1159 &super_ddf, &super_imsm,
1160 &mbr, &gpt,
1161 NULL
1162 };
1163
1164 struct supertype *super_by_fd(int fd, char **subarrayp)
1165 {
1166 mdu_array_info_t array;
1167 int vers;
1168 int minor;
1169 struct supertype *st = NULL;
1170 struct mdinfo *sra;
1171 char *verstr;
1172 char version[20];
1173 int i;
1174 char *subarray = NULL;
1175 char container[32] = "";
1176
1177 sra = sysfs_read(fd, NULL, GET_VERSION);
1178
1179 if (sra) {
1180 vers = sra->array.major_version;
1181 minor = sra->array.minor_version;
1182 verstr = sra->text_version;
1183 } else {
1184 if (md_get_array_info(fd, &array))
1185 array.major_version = array.minor_version = 0;
1186 vers = array.major_version;
1187 minor = array.minor_version;
1188 verstr = "";
1189 }
1190
1191 if (vers != -1) {
1192 sprintf(version, "%d.%d", vers, minor);
1193 verstr = version;
1194 }
1195 if (minor == -2 && is_subarray(verstr)) {
1196 char *dev = verstr+1;
1197
1198 subarray = strchr(dev, '/');
1199 if (subarray) {
1200 *subarray++ = '\0';
1201 subarray = xstrdup(subarray);
1202 }
1203 strcpy(container, dev);
1204 sysfs_free(sra);
1205 sra = sysfs_read(-1, container, GET_VERSION);
1206 if (sra && sra->text_version[0])
1207 verstr = sra->text_version;
1208 else
1209 verstr = "-no-metadata-";
1210 }
1211
1212 for (i = 0; st == NULL && superlist[i]; i++)
1213 st = superlist[i]->match_metadata_desc(verstr);
1214
1215 sysfs_free(sra);
1216 if (st) {
1217 st->sb = NULL;
1218 if (subarrayp)
1219 *subarrayp = subarray;
1220 strcpy(st->container_devnm, container);
1221 strcpy(st->devnm, fd2devnm(fd));
1222 } else
1223 free(subarray);
1224
1225 return st;
1226 }
1227
1228 int dev_size_from_id(dev_t id, unsigned long long *size)
1229 {
1230 char buf[20];
1231 int fd;
1232
1233 sprintf(buf, "%d:%d", major(id), minor(id));
1234 fd = dev_open(buf, O_RDONLY);
1235 if (fd < 0)
1236 return 0;
1237 if (get_dev_size(fd, NULL, size)) {
1238 close(fd);
1239 return 1;
1240 }
1241 close(fd);
1242 return 0;
1243 }
1244
1245 int dev_sector_size_from_id(dev_t id, unsigned int *size)
1246 {
1247 char buf[20];
1248 int fd;
1249
1250 sprintf(buf, "%d:%d", major(id), minor(id));
1251 fd = dev_open(buf, O_RDONLY);
1252 if (fd < 0)
1253 return 0;
1254 if (get_dev_sector_size(fd, NULL, size)) {
1255 close(fd);
1256 return 1;
1257 }
1258 close(fd);
1259 return 0;
1260 }
1261
1262 struct supertype *dup_super(struct supertype *orig)
1263 {
1264 struct supertype *st;
1265
1266 if (!orig)
1267 return orig;
1268 st = xcalloc(1, sizeof(*st));
1269 st->ss = orig->ss;
1270 st->max_devs = orig->max_devs;
1271 st->minor_version = orig->minor_version;
1272 st->ignore_hw_compat = orig->ignore_hw_compat;
1273 st->data_offset = orig->data_offset;
1274 st->sb = NULL;
1275 st->info = NULL;
1276 return st;
1277 }
1278
1279 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1280 {
1281 /* try each load_super to find the best match,
1282 * and return the best superswitch
1283 */
1284 struct superswitch *ss;
1285 struct supertype *st;
1286 unsigned int besttime = 0;
1287 int bestsuper = -1;
1288 int i;
1289
1290 st = xcalloc(1, sizeof(*st));
1291 st->container_devnm[0] = 0;
1292
1293 for (i = 0; superlist[i]; i++) {
1294 int rv;
1295 ss = superlist[i];
1296 if (guess_type == guess_array && ss->add_to_super == NULL)
1297 continue;
1298 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1299 continue;
1300 memset(st, 0, sizeof(*st));
1301 st->ignore_hw_compat = 1;
1302 rv = ss->load_super(st, fd, NULL);
1303 if (rv == 0) {
1304 struct mdinfo info;
1305 st->ss->getinfo_super(st, &info, NULL);
1306 if (bestsuper == -1 ||
1307 besttime < info.array.ctime) {
1308 bestsuper = i;
1309 besttime = info.array.ctime;
1310 }
1311 ss->free_super(st);
1312 }
1313 }
1314 if (bestsuper != -1) {
1315 int rv;
1316 memset(st, 0, sizeof(*st));
1317 st->ignore_hw_compat = 1;
1318 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1319 if (rv == 0) {
1320 superlist[bestsuper]->free_super(st);
1321 return st;
1322 }
1323 }
1324 free(st);
1325 return NULL;
1326 }
1327
1328 /* Return size of device in bytes */
1329 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1330 {
1331 unsigned long long ldsize;
1332 struct stat st;
1333
1334 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1335 ldsize = (unsigned long long)st.st_size;
1336 else
1337 #ifdef BLKGETSIZE64
1338 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1339 #endif
1340 {
1341 unsigned long dsize;
1342 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1343 ldsize = dsize;
1344 ldsize <<= 9;
1345 } else {
1346 if (dname)
1347 pr_err("Cannot get size of %s: %s\n",
1348 dname, strerror(errno));
1349 return 0;
1350 }
1351 }
1352 *sizep = ldsize;
1353 return 1;
1354 }
1355
1356 /* Return sector size of device in bytes */
1357 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1358 {
1359 unsigned int sectsize;
1360
1361 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1362 if (dname)
1363 pr_err("Cannot get sector size of %s: %s\n",
1364 dname, strerror(errno));
1365 return 0;
1366 }
1367
1368 *sectsizep = sectsize;
1369 return 1;
1370 }
1371
1372 /* Return true if this can only be a container, not a member device.
1373 * i.e. is and md device and size is zero
1374 */
1375 int must_be_container(int fd)
1376 {
1377 struct mdinfo *mdi;
1378 unsigned long long size;
1379
1380 mdi = sysfs_read(fd, NULL, GET_VERSION);
1381 if (!mdi)
1382 return 0;
1383 sysfs_free(mdi);
1384
1385 if (get_dev_size(fd, NULL, &size) == 0)
1386 return 1;
1387 if (size == 0)
1388 return 1;
1389 return 0;
1390 }
1391
1392 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1393 * Returns: 1 if successful
1394 * -1 for unknown partition type
1395 * 0 for other errors
1396 */
1397 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1398 {
1399 struct GPT gpt;
1400 unsigned char empty_gpt_entry[16]= {0};
1401 struct GPT_part_entry *part;
1402 char buf[512];
1403 unsigned long long curr_part_end;
1404 unsigned all_partitions, entry_size;
1405 unsigned part_nr;
1406 unsigned int sector_size = 0;
1407
1408 *endofpart = 0;
1409
1410 BUILD_BUG_ON(sizeof(gpt) != 512);
1411 /* skip protective MBR */
1412 if (!get_dev_sector_size(fd, NULL, &sector_size))
1413 return 0;
1414 lseek(fd, sector_size, SEEK_SET);
1415 /* read GPT header */
1416 if (read(fd, &gpt, 512) != 512)
1417 return 0;
1418
1419 /* get the number of partition entries and the entry size */
1420 all_partitions = __le32_to_cpu(gpt.part_cnt);
1421 entry_size = __le32_to_cpu(gpt.part_size);
1422
1423 /* Check GPT signature*/
1424 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1425 return -1;
1426
1427 /* sanity checks */
1428 if (all_partitions > 1024 ||
1429 entry_size > sizeof(buf))
1430 return -1;
1431
1432 part = (struct GPT_part_entry *)buf;
1433
1434 /* set offset to third block (GPT entries) */
1435 lseek(fd, sector_size*2, SEEK_SET);
1436 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1437 /* read partition entry */
1438 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1439 return 0;
1440
1441 /* is this valid partition? */
1442 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1443 /* check the last lba for the current partition */
1444 curr_part_end = __le64_to_cpu(part->ending_lba);
1445 if (curr_part_end > *endofpart)
1446 *endofpart = curr_part_end;
1447 }
1448
1449 }
1450 return 1;
1451 }
1452
1453 /* Sets endofpart parameter to the last block used by the last partition on the device.
1454 * Returns: 1 if successful
1455 * -1 for unknown partition type
1456 * 0 for other errors
1457 */
1458 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1459 {
1460 struct MBR boot_sect;
1461 unsigned long long curr_part_end;
1462 unsigned part_nr;
1463 unsigned int sector_size;
1464 int retval = 0;
1465
1466 *endofpart = 0;
1467
1468 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1469 /* read MBR */
1470 lseek(fd, 0, 0);
1471 if (read(fd, &boot_sect, 512) != 512)
1472 goto abort;
1473
1474 /* check MBP signature */
1475 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1476 retval = 1;
1477 /* found the correct signature */
1478
1479 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1480 /*
1481 * Have to make every access through boot_sect rather
1482 * than using a pointer to the partition table (or an
1483 * entry), since the entries are not properly aligned.
1484 */
1485
1486 /* check for GPT type */
1487 if (boot_sect.parts[part_nr].part_type ==
1488 MBR_GPT_PARTITION_TYPE) {
1489 retval = get_gpt_last_partition_end(fd, endofpart);
1490 break;
1491 }
1492 /* check the last used lba for the current partition */
1493 curr_part_end =
1494 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1495 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1496 if (curr_part_end > *endofpart)
1497 *endofpart = curr_part_end;
1498 }
1499 } else {
1500 /* Unknown partition table */
1501 retval = -1;
1502 }
1503 /* calculate number of 512-byte blocks */
1504 if (get_dev_sector_size(fd, NULL, &sector_size))
1505 *endofpart *= (sector_size / 512);
1506 abort:
1507 return retval;
1508 }
1509
1510 int check_partitions(int fd, char *dname, unsigned long long freesize,
1511 unsigned long long size)
1512 {
1513 /*
1514 * Check where the last partition ends
1515 */
1516 unsigned long long endofpart;
1517
1518 if (get_last_partition_end(fd, &endofpart) > 0) {
1519 /* There appears to be a partition table here */
1520 if (freesize == 0) {
1521 /* partitions will not be visible in new device */
1522 pr_err("partition table exists on %s but will be lost or\n"
1523 " meaningless after creating array\n",
1524 dname);
1525 return 1;
1526 } else if (endofpart > freesize) {
1527 /* last partition overlaps metadata */
1528 pr_err("metadata will over-write last partition on %s.\n",
1529 dname);
1530 return 1;
1531 } else if (size && endofpart > size) {
1532 /* partitions will be truncated in new device */
1533 pr_err("array size is too small to cover all partitions on %s.\n",
1534 dname);
1535 return 1;
1536 }
1537 }
1538 return 0;
1539 }
1540
1541 int open_container(int fd)
1542 {
1543 /* 'fd' is a block device. Find out if it is in use
1544 * by a container, and return an open fd on that container.
1545 */
1546 char path[256];
1547 char *e;
1548 DIR *dir;
1549 struct dirent *de;
1550 int dfd, n;
1551 char buf[200];
1552 int major, minor;
1553 struct stat st;
1554
1555 if (fstat(fd, &st) != 0)
1556 return -1;
1557 sprintf(path, "/sys/dev/block/%d:%d/holders",
1558 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1559 e = path + strlen(path);
1560
1561 dir = opendir(path);
1562 if (!dir)
1563 return -1;
1564 while ((de = readdir(dir))) {
1565 if (de->d_ino == 0)
1566 continue;
1567 if (de->d_name[0] == '.')
1568 continue;
1569 /* Need to make sure it is a container and not a volume */
1570 sprintf(e, "/%s/md/metadata_version", de->d_name);
1571 dfd = open(path, O_RDONLY);
1572 if (dfd < 0)
1573 continue;
1574 n = read(dfd, buf, sizeof(buf));
1575 close(dfd);
1576 if (n <= 0 || (unsigned)n >= sizeof(buf))
1577 continue;
1578 buf[n] = 0;
1579 if (strncmp(buf, "external", 8) != 0 ||
1580 n < 10 ||
1581 buf[9] == '/')
1582 continue;
1583 sprintf(e, "/%s/dev", de->d_name);
1584 dfd = open(path, O_RDONLY);
1585 if (dfd < 0)
1586 continue;
1587 n = read(dfd, buf, sizeof(buf));
1588 close(dfd);
1589 if (n <= 0 || (unsigned)n >= sizeof(buf))
1590 continue;
1591 buf[n] = 0;
1592 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1593 continue;
1594 sprintf(buf, "%d:%d", major, minor);
1595 dfd = dev_open(buf, O_RDONLY);
1596 if (dfd >= 0) {
1597 closedir(dir);
1598 return dfd;
1599 }
1600 }
1601 closedir(dir);
1602 return -1;
1603 }
1604
1605 struct superswitch *version_to_superswitch(char *vers)
1606 {
1607 int i;
1608
1609 for (i = 0; superlist[i]; i++) {
1610 struct superswitch *ss = superlist[i];
1611
1612 if (strcmp(vers, ss->name) == 0)
1613 return ss;
1614 }
1615
1616 return NULL;
1617 }
1618
1619 int metadata_container_matches(char *metadata, char *devnm)
1620 {
1621 /* Check if 'devnm' is the container named in 'metadata'
1622 * which is
1623 * /containername/componentname or
1624 * -containername/componentname
1625 */
1626 int l;
1627 if (*metadata != '/' && *metadata != '-')
1628 return 0;
1629 l = strlen(devnm);
1630 if (strncmp(metadata+1, devnm, l) != 0)
1631 return 0;
1632 if (metadata[l+1] != '/')
1633 return 0;
1634 return 1;
1635 }
1636
1637 int metadata_subdev_matches(char *metadata, char *devnm)
1638 {
1639 /* Check if 'devnm' is the subdev named in 'metadata'
1640 * which is
1641 * /containername/subdev or
1642 * -containername/subdev
1643 */
1644 char *sl;
1645 if (*metadata != '/' && *metadata != '-')
1646 return 0;
1647 sl = strchr(metadata+1, '/');
1648 if (!sl)
1649 return 0;
1650 if (strcmp(sl+1, devnm) == 0)
1651 return 1;
1652 return 0;
1653 }
1654
1655 int is_container_member(struct mdstat_ent *mdstat, char *container)
1656 {
1657 if (mdstat->metadata_version == NULL ||
1658 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1659 !metadata_container_matches(mdstat->metadata_version+9, container))
1660 return 0;
1661
1662 return 1;
1663 }
1664
1665 int is_subarray_active(char *subarray, char *container)
1666 {
1667 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1668 struct mdstat_ent *ent;
1669
1670 for (ent = mdstat; ent; ent = ent->next)
1671 if (is_container_member(ent, container))
1672 if (strcmp(to_subarray(ent, container), subarray) == 0)
1673 break;
1674
1675 free_mdstat(mdstat);
1676
1677 return ent != NULL;
1678 }
1679
1680 /* open_subarray - opens a subarray in a container
1681 * @dev: container device name
1682 * @st: empty supertype
1683 * @quiet: block reporting errors flag
1684 *
1685 * On success returns an fd to a container and fills in *st
1686 */
1687 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1688 {
1689 struct mdinfo *mdi;
1690 struct mdinfo *info;
1691 int fd, err = 1;
1692 char *_devnm;
1693
1694 fd = open(dev, O_RDWR|O_EXCL);
1695 if (fd < 0) {
1696 if (!quiet)
1697 pr_err("Couldn't open %s, aborting\n",
1698 dev);
1699 return -1;
1700 }
1701
1702 _devnm = fd2devnm(fd);
1703 if (_devnm == NULL) {
1704 if (!quiet)
1705 pr_err("Failed to determine device number for %s\n",
1706 dev);
1707 goto close_fd;
1708 }
1709 strcpy(st->devnm, _devnm);
1710
1711 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1712 if (!mdi) {
1713 if (!quiet)
1714 pr_err("Failed to read sysfs for %s\n",
1715 dev);
1716 goto close_fd;
1717 }
1718
1719 if (mdi->array.level != UnSet) {
1720 if (!quiet)
1721 pr_err("%s is not a container\n", dev);
1722 goto free_sysfs;
1723 }
1724
1725 st->ss = version_to_superswitch(mdi->text_version);
1726 if (!st->ss) {
1727 if (!quiet)
1728 pr_err("Operation not supported for %s metadata\n",
1729 mdi->text_version);
1730 goto free_sysfs;
1731 }
1732
1733 if (st->devnm[0] == 0) {
1734 if (!quiet)
1735 pr_err("Failed to allocate device name\n");
1736 goto free_sysfs;
1737 }
1738
1739 if (!st->ss->load_container) {
1740 if (!quiet)
1741 pr_err("%s is not a container\n", dev);
1742 goto free_sysfs;
1743 }
1744
1745 if (st->ss->load_container(st, fd, NULL)) {
1746 if (!quiet)
1747 pr_err("Failed to load metadata for %s\n",
1748 dev);
1749 goto free_sysfs;
1750 }
1751
1752 info = st->ss->container_content(st, subarray);
1753 if (!info) {
1754 if (!quiet)
1755 pr_err("Failed to find subarray-%s in %s\n",
1756 subarray, dev);
1757 goto free_super;
1758 }
1759 free(info);
1760
1761 err = 0;
1762
1763 free_super:
1764 if (err)
1765 st->ss->free_super(st);
1766 free_sysfs:
1767 sysfs_free(mdi);
1768 close_fd:
1769 if (err)
1770 close(fd);
1771
1772 if (err)
1773 return -1;
1774 else
1775 return fd;
1776 }
1777
1778 int add_disk(int mdfd, struct supertype *st,
1779 struct mdinfo *sra, struct mdinfo *info)
1780 {
1781 /* Add a device to an array, in one of 2 ways. */
1782 int rv;
1783
1784 if (st->ss->external) {
1785 if (info->disk.state & (1<<MD_DISK_SYNC))
1786 info->recovery_start = MaxSector;
1787 else
1788 info->recovery_start = 0;
1789 rv = sysfs_add_disk(sra, info, 0);
1790 if (! rv) {
1791 struct mdinfo *sd2;
1792 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1793 if (sd2 == info)
1794 break;
1795 if (sd2 == NULL) {
1796 sd2 = xmalloc(sizeof(*sd2));
1797 *sd2 = *info;
1798 sd2->next = sra->devs;
1799 sra->devs = sd2;
1800 }
1801 }
1802 } else
1803 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1804 return rv;
1805 }
1806
1807 int remove_disk(int mdfd, struct supertype *st,
1808 struct mdinfo *sra, struct mdinfo *info)
1809 {
1810 int rv;
1811
1812 /* Remove the disk given by 'info' from the array */
1813 if (st->ss->external)
1814 rv = sysfs_set_str(sra, info, "slot", "none");
1815 else
1816 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1817 info->disk.minor));
1818 return rv;
1819 }
1820
1821 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1822 {
1823 int cnt = force ? 500 : 5;
1824 int ret;
1825
1826 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1827 * outstanding IO requests to the device.
1828 * In this case, it can be helpful to wait a little while,
1829 * up to 5 seconds if 'force' is set, or 50 msec if not.
1830 */
1831 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1832 errno == EBUSY &&
1833 cnt-- > 0)
1834 usleep(10000);
1835
1836 return ret;
1837 }
1838
1839 int sys_hot_remove_disk(int statefd, int force)
1840 {
1841 int cnt = force ? 500 : 5;
1842 int ret;
1843
1844 while ((ret = write(statefd, "remove", 6)) == -1 &&
1845 errno == EBUSY &&
1846 cnt-- > 0)
1847 usleep(10000);
1848 return ret == 6 ? 0 : -1;
1849 }
1850
1851 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1852 {
1853 /* Initialise kernel's knowledge of array.
1854 * This varies between externally managed arrays
1855 * and older kernels
1856 */
1857 mdu_array_info_t inf;
1858 int rv;
1859
1860 if (st->ss->external)
1861 return sysfs_set_array(info, 9003);
1862
1863 memset(&inf, 0, sizeof(inf));
1864 inf.major_version = info->array.major_version;
1865 inf.minor_version = info->array.minor_version;
1866 rv = md_set_array_info(mdfd, &inf);
1867
1868 return rv;
1869 }
1870
1871 unsigned long long min_recovery_start(struct mdinfo *array)
1872 {
1873 /* find the minimum recovery_start in an array for metadata
1874 * formats that only record per-array recovery progress instead
1875 * of per-device
1876 */
1877 unsigned long long recovery_start = MaxSector;
1878 struct mdinfo *d;
1879
1880 for (d = array->devs; d; d = d->next)
1881 recovery_start = min(recovery_start, d->recovery_start);
1882
1883 return recovery_start;
1884 }
1885
1886 int mdmon_pid(char *devnm)
1887 {
1888 char path[100];
1889 char pid[10];
1890 int fd;
1891 int n;
1892
1893 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1894
1895 fd = open(path, O_RDONLY | O_NOATIME, 0);
1896
1897 if (fd < 0)
1898 return -1;
1899 n = read(fd, pid, 9);
1900 close(fd);
1901 if (n <= 0)
1902 return -1;
1903 return atoi(pid);
1904 }
1905
1906 int mdmon_running(char *devnm)
1907 {
1908 int pid = mdmon_pid(devnm);
1909 if (pid <= 0)
1910 return 0;
1911 if (kill(pid, 0) == 0)
1912 return 1;
1913 return 0;
1914 }
1915
1916 int start_mdmon(char *devnm)
1917 {
1918 int i;
1919 int len;
1920 pid_t pid;
1921 int status;
1922 char pathbuf[1024];
1923 char *paths[4] = {
1924 pathbuf,
1925 BINDIR "/mdmon",
1926 "./mdmon",
1927 NULL
1928 };
1929
1930 if (check_env("MDADM_NO_MDMON"))
1931 return 0;
1932 if (continue_via_systemd(devnm, MDMON_SERVICE))
1933 return 0;
1934
1935 /* That failed, try running mdmon directly */
1936 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1937 if (len > 0) {
1938 char *sl;
1939 pathbuf[len] = 0;
1940 sl = strrchr(pathbuf, '/');
1941 if (sl)
1942 sl++;
1943 else
1944 sl = pathbuf;
1945 strcpy(sl, "mdmon");
1946 } else
1947 pathbuf[0] = '\0';
1948
1949 switch(fork()) {
1950 case 0:
1951 manage_fork_fds(1);
1952 for (i = 0; paths[i]; i++)
1953 if (paths[i][0]) {
1954 execl(paths[i], paths[i],
1955 devnm, NULL);
1956 }
1957 exit(1);
1958 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1959 return -1;
1960 default: /* parent - good */
1961 pid = wait(&status);
1962 if (pid < 0 || status != 0) {
1963 pr_err("failed to launch mdmon. Array remains readonly\n");
1964 return -1;
1965 }
1966 }
1967 return 0;
1968 }
1969
1970 __u32 random32(void)
1971 {
1972 __u32 rv;
1973 int rfd = open("/dev/urandom", O_RDONLY);
1974 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1975 rv = random();
1976 if (rfd >= 0)
1977 close(rfd);
1978 return rv;
1979 }
1980
1981 void random_uuid(__u8 *buf)
1982 {
1983 int fd, i, len;
1984 __u32 r[4];
1985
1986 fd = open("/dev/urandom", O_RDONLY);
1987 if (fd < 0)
1988 goto use_random;
1989 len = read(fd, buf, 16);
1990 close(fd);
1991 if (len != 16)
1992 goto use_random;
1993
1994 return;
1995
1996 use_random:
1997 for (i = 0; i < 4; i++)
1998 r[i] = random();
1999 memcpy(buf, r, 16);
2000 }
2001
2002 int flush_metadata_updates(struct supertype *st)
2003 {
2004 int sfd;
2005 if (!st->updates) {
2006 st->update_tail = NULL;
2007 return -1;
2008 }
2009
2010 sfd = connect_monitor(st->container_devnm);
2011 if (sfd < 0)
2012 return -1;
2013
2014 while (st->updates) {
2015 struct metadata_update *mu = st->updates;
2016 st->updates = mu->next;
2017
2018 send_message(sfd, mu, 0);
2019 wait_reply(sfd, 0);
2020 free(mu->buf);
2021 free(mu);
2022 }
2023 ack(sfd, 0);
2024 wait_reply(sfd, 0);
2025 close(sfd);
2026 st->update_tail = NULL;
2027 return 0;
2028 }
2029
2030 void append_metadata_update(struct supertype *st, void *buf, int len)
2031 {
2032
2033 struct metadata_update *mu = xmalloc(sizeof(*mu));
2034
2035 mu->buf = buf;
2036 mu->len = len;
2037 mu->space = NULL;
2038 mu->space_list = NULL;
2039 mu->next = NULL;
2040 *st->update_tail = mu;
2041 st->update_tail = &mu->next;
2042 }
2043
2044 #ifdef __TINYC__
2045 /* tinyc doesn't optimize this check in ioctl.h out ... */
2046 unsigned int __invalid_size_argument_for_IOC = 0;
2047 #endif
2048
2049 /* Pick all spares matching given criteria from a container
2050 * if min_size == 0 do not check size
2051 * if domlist == NULL do not check domains
2052 * if spare_group given add it to domains of each spare
2053 * metadata allows to test domains using metadata of destination array */
2054 struct mdinfo *container_choose_spares(struct supertype *st,
2055 struct spare_criteria *criteria,
2056 struct domainlist *domlist,
2057 char *spare_group,
2058 const char *metadata, int get_one)
2059 {
2060 struct mdinfo *d, **dp, *disks = NULL;
2061
2062 /* get list of all disks in container */
2063 if (st->ss->getinfo_super_disks)
2064 disks = st->ss->getinfo_super_disks(st);
2065
2066 if (!disks)
2067 return disks;
2068 /* find spare devices on the list */
2069 dp = &disks->devs;
2070 disks->array.spare_disks = 0;
2071 while (*dp) {
2072 int found = 0;
2073 d = *dp;
2074 if (d->disk.state == 0) {
2075 /* check if size is acceptable */
2076 unsigned long long dev_size;
2077 unsigned int dev_sector_size;
2078 int size_valid = 0;
2079 int sector_size_valid = 0;
2080
2081 dev_t dev = makedev(d->disk.major,d->disk.minor);
2082
2083 if (!criteria->min_size ||
2084 (dev_size_from_id(dev, &dev_size) &&
2085 dev_size >= criteria->min_size))
2086 size_valid = 1;
2087
2088 if (!criteria->sector_size ||
2089 (dev_sector_size_from_id(dev, &dev_sector_size) &&
2090 criteria->sector_size == dev_sector_size))
2091 sector_size_valid = 1;
2092
2093 found = size_valid && sector_size_valid;
2094
2095 /* check if domain matches */
2096 if (found && domlist) {
2097 struct dev_policy *pol = devid_policy(dev);
2098 if (spare_group)
2099 pol_add(&pol, pol_domain,
2100 spare_group, NULL);
2101 if (domain_test(domlist, pol, metadata) != 1)
2102 found = 0;
2103 dev_policy_free(pol);
2104 }
2105 }
2106 if (found) {
2107 dp = &d->next;
2108 disks->array.spare_disks++;
2109 if (get_one) {
2110 sysfs_free(*dp);
2111 d->next = NULL;
2112 }
2113 } else {
2114 *dp = d->next;
2115 d->next = NULL;
2116 sysfs_free(d);
2117 }
2118 }
2119 return disks;
2120 }
2121
2122 /* Checks if paths point to the same device
2123 * Returns 0 if they do.
2124 * Returns 1 if they don't.
2125 * Returns -1 if something went wrong,
2126 * e.g. paths are empty or the files
2127 * they point to don't exist */
2128 int compare_paths (char* path1, char* path2)
2129 {
2130 struct stat st1,st2;
2131
2132 if (path1 == NULL || path2 == NULL)
2133 return -1;
2134 if (stat(path1,&st1) != 0)
2135 return -1;
2136 if (stat(path2,&st2) != 0)
2137 return -1;
2138 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2139 return 0;
2140 return 1;
2141 }
2142
2143 /* Make sure we can open as many devices as needed */
2144 void enable_fds(int devices)
2145 {
2146 unsigned int fds = 20 + devices;
2147 struct rlimit lim;
2148 if (getrlimit(RLIMIT_NOFILE, &lim) != 0 || lim.rlim_cur >= fds)
2149 return;
2150 if (lim.rlim_max < fds)
2151 lim.rlim_max = fds;
2152 lim.rlim_cur = fds;
2153 setrlimit(RLIMIT_NOFILE, &lim);
2154 }
2155
2156 /* Close all opened descriptors if needed and redirect
2157 * streams to /dev/null.
2158 * For debug purposed, leave STDOUT and STDERR untouched
2159 * Returns:
2160 * 1- if any error occurred
2161 * 0- otherwise
2162 */
2163 void manage_fork_fds(int close_all)
2164 {
2165 DIR *dir;
2166 struct dirent *dirent;
2167
2168 close(0);
2169 open("/dev/null", O_RDWR);
2170
2171 #ifndef DEBUG
2172 dup2(0, 1);
2173 dup2(0, 2);
2174 #endif
2175
2176 if (close_all == 0)
2177 return;
2178
2179 dir = opendir("/proc/self/fd");
2180 if (!dir) {
2181 pr_err("Cannot open /proc/self/fd directory.\n");
2182 return;
2183 }
2184 for (dirent = readdir(dir); dirent; dirent = readdir(dir)) {
2185 int fd = -1;
2186
2187 if ((strcmp(dirent->d_name, ".") == 0) ||
2188 (strcmp(dirent->d_name, "..")) == 0)
2189 continue;
2190
2191 fd = strtol(dirent->d_name, NULL, 10);
2192 if (fd > 2)
2193 close(fd);
2194 }
2195 }
2196
2197 /* In a systemd/udev world, it is best to get systemd to
2198 * run daemon rather than running in the background.
2199 * Returns:
2200 * 1- if systemd service has been started
2201 * 0- otherwise
2202 */
2203 int continue_via_systemd(char *devnm, char *service_name)
2204 {
2205 int pid, status;
2206 char pathbuf[1024];
2207
2208 /* Simply return that service cannot be started */
2209 if (check_env("MDADM_NO_SYSTEMCTL"))
2210 return 0;
2211 switch (fork()) {
2212 case 0:
2213 manage_fork_fds(1);
2214 snprintf(pathbuf, sizeof(pathbuf),
2215 "%s@%s.service", service_name, devnm);
2216 status = execl("/usr/bin/systemctl", "systemctl", "restart",
2217 pathbuf, NULL);
2218 status = execl("/bin/systemctl", "systemctl", "restart",
2219 pathbuf, NULL);
2220 exit(1);
2221 case -1: /* Just do it ourselves. */
2222 break;
2223 default: /* parent - good */
2224 pid = wait(&status);
2225 if (pid >= 0 && status == 0)
2226 return 1;
2227 }
2228 return 0;
2229 }
2230
2231 int in_initrd(void)
2232 {
2233 /* This is based on similar function in systemd. */
2234 struct statfs s;
2235 /* statfs.f_type is signed long on s390x and MIPS, causing all
2236 sorts of sign extension problems with RAMFS_MAGIC being
2237 defined as 0x858458f6 */
2238 return statfs("/", &s) >= 0 &&
2239 ((unsigned long)s.f_type == TMPFS_MAGIC ||
2240 ((unsigned long)s.f_type & 0xFFFFFFFFUL) ==
2241 ((unsigned long)RAMFS_MAGIC & 0xFFFFFFFFUL));
2242 }
2243
2244 void reopen_mddev(int mdfd)
2245 {
2246 /* Re-open without any O_EXCL, but keep
2247 * the same fd
2248 */
2249 char *devnm;
2250 int fd;
2251 devnm = fd2devnm(mdfd);
2252 close(mdfd);
2253 fd = open_dev(devnm);
2254 if (fd >= 0 && fd != mdfd)
2255 dup2(fd, mdfd);
2256 }
2257
2258 static struct cmap_hooks *cmap_hooks = NULL;
2259 static int is_cmap_hooks_ready = 0;
2260
2261 void set_cmap_hooks(void)
2262 {
2263 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2264 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2265 if (!cmap_hooks->cmap_handle)
2266 return;
2267
2268 cmap_hooks->initialize =
2269 dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2270 cmap_hooks->get_string =
2271 dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2272 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2273
2274 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2275 !cmap_hooks->finalize)
2276 dlclose(cmap_hooks->cmap_handle);
2277 else
2278 is_cmap_hooks_ready = 1;
2279 }
2280
2281 int get_cluster_name(char **cluster_name)
2282 {
2283 int rv = -1;
2284 cmap_handle_t handle;
2285
2286 if (!is_cmap_hooks_ready)
2287 return rv;
2288
2289 rv = cmap_hooks->initialize(&handle);
2290 if (rv != CS_OK)
2291 goto out;
2292
2293 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2294 if (rv != CS_OK) {
2295 free(*cluster_name);
2296 rv = -1;
2297 goto name_err;
2298 }
2299
2300 rv = 0;
2301 name_err:
2302 cmap_hooks->finalize(handle);
2303 out:
2304 return rv;
2305 }
2306
2307 void set_dlm_hooks(void)
2308 {
2309 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2310 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2311 if (!dlm_hooks->dlm_handle)
2312 return;
2313
2314 dlm_hooks->open_lockspace =
2315 dlsym(dlm_hooks->dlm_handle, "dlm_open_lockspace");
2316 dlm_hooks->create_lockspace =
2317 dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2318 dlm_hooks->release_lockspace =
2319 dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2320 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2321 dlm_hooks->ls_unlock_wait =
2322 dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock_wait");
2323 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2324 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2325
2326 if (!dlm_hooks->open_lockspace || !dlm_hooks->create_lockspace ||
2327 !dlm_hooks->ls_lock || !dlm_hooks->ls_unlock_wait ||
2328 !dlm_hooks->release_lockspace || !dlm_hooks->ls_get_fd ||
2329 !dlm_hooks->dispatch)
2330 dlclose(dlm_hooks->dlm_handle);
2331 else
2332 is_dlm_hooks_ready = 1;
2333 }
2334
2335 void set_hooks(void)
2336 {
2337 set_dlm_hooks();
2338 set_cmap_hooks();
2339 }
2340
2341 int zero_disk_range(int fd, unsigned long long sector, size_t count)
2342 {
2343 int ret = 0;
2344 int fd_zero;
2345 void *addr = NULL;
2346 size_t written = 0;
2347 size_t len = count * 512;
2348 ssize_t n;
2349
2350 fd_zero = open("/dev/zero", O_RDONLY);
2351 if (fd_zero < 0) {
2352 pr_err("Cannot open /dev/zero\n");
2353 return -1;
2354 }
2355
2356 if (lseek64(fd, sector * 512, SEEK_SET) < 0) {
2357 ret = -errno;
2358 pr_err("Failed to seek offset for zeroing\n");
2359 goto out;
2360 }
2361
2362 addr = mmap(NULL, len, PROT_READ, MAP_PRIVATE, fd_zero, 0);
2363
2364 if (addr == MAP_FAILED) {
2365 ret = -errno;
2366 pr_err("Mapping /dev/zero failed\n");
2367 goto out;
2368 }
2369
2370 do {
2371 n = write(fd, addr + written, len - written);
2372 if (n < 0) {
2373 if (errno == EINTR)
2374 continue;
2375 ret = -errno;
2376 pr_err("Zeroing disk range failed\n");
2377 break;
2378 }
2379 written += n;
2380 } while (written != len);
2381
2382 munmap(addr, len);
2383
2384 out:
2385 close(fd_zero);
2386 return ret;
2387 }