]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
mdadm/ddf: Abort when raid disk is smaller in getinfo_super_ddf
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <sys/mman.h>
34 #include <linux/magic.h>
35 #include <poll.h>
36 #include <ctype.h>
37 #include <dirent.h>
38 #include <dlfcn.h>
39
40
41 /*
42 * following taken from linux/blkpg.h because they aren't
43 * anywhere else and it isn't safe to #include linux/ * stuff.
44 */
45
46 #define BLKPG _IO(0x12,105)
47
48 /* The argument structure */
49 struct blkpg_ioctl_arg {
50 int op;
51 int flags;
52 int datalen;
53 void *data;
54 };
55
56 /* The subfunctions (for the op field) */
57 #define BLKPG_ADD_PARTITION 1
58 #define BLKPG_DEL_PARTITION 2
59
60 /* Sizes of name fields. Unused at present. */
61 #define BLKPG_DEVNAMELTH 64
62 #define BLKPG_VOLNAMELTH 64
63
64 /* The data structure for ADD_PARTITION and DEL_PARTITION */
65 struct blkpg_partition {
66 long long start; /* starting offset in bytes */
67 long long length; /* length in bytes */
68 int pno; /* partition number */
69 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
70 to be used in kernel messages */
71 char volname[BLKPG_VOLNAMELTH]; /* volume label */
72 };
73
74 #include "part.h"
75
76 /* Force a compilation error if condition is true */
77 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
78
79 /* Force a compilation error if condition is true, but also produce a
80 result (of value 0 and type size_t), so the expression can be used
81 e.g. in a structure initializer (or where-ever else comma expressions
82 aren't permitted). */
83 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
84
85 static int is_dlm_hooks_ready = 0;
86
87 int dlm_funs_ready(void)
88 {
89 return is_dlm_hooks_ready ? 1 : 0;
90 }
91
92 static struct dlm_hooks *dlm_hooks = NULL;
93 struct dlm_lock_resource *dlm_lock_res = NULL;
94 static int ast_called = 0;
95
96 struct dlm_lock_resource {
97 dlm_lshandle_t *ls;
98 struct dlm_lksb lksb;
99 };
100
101 /* Using poll(2) to wait for and dispatch ASTs */
102 static int poll_for_ast(dlm_lshandle_t ls)
103 {
104 struct pollfd pfd;
105
106 pfd.fd = dlm_hooks->ls_get_fd(ls);
107 pfd.events = POLLIN;
108
109 while (!ast_called)
110 {
111 if (poll(&pfd, 1, 0) < 0)
112 {
113 perror("poll");
114 return -1;
115 }
116 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
117 }
118 ast_called = 0;
119
120 return 0;
121 }
122
123 static void dlm_ast(void *arg)
124 {
125 ast_called = 1;
126 }
127
128 static char *cluster_name = NULL;
129 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
130 int cluster_get_dlmlock(void)
131 {
132 int ret = -1;
133 char str[64];
134 int flags = LKF_NOQUEUE;
135 int retry_count = 0;
136
137 if (!dlm_funs_ready()) {
138 pr_err("Something wrong with dlm library\n");
139 return -1;
140 }
141
142 ret = get_cluster_name(&cluster_name);
143 if (ret) {
144 pr_err("The md can't get cluster name\n");
145 return -1;
146 }
147
148 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
149 dlm_lock_res->ls = dlm_hooks->open_lockspace(cluster_name);
150 if (!dlm_lock_res->ls) {
151 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
152 if (!dlm_lock_res->ls) {
153 pr_err("%s failed to create lockspace\n", cluster_name);
154 return -ENOMEM;
155 }
156 } else {
157 pr_err("open existed %s lockspace\n", cluster_name);
158 }
159
160 snprintf(str, 64, "bitmap%s", cluster_name);
161 retry:
162 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE,
163 &dlm_lock_res->lksb, flags, str, strlen(str),
164 0, dlm_ast, dlm_lock_res, NULL, NULL);
165 if (ret) {
166 pr_err("error %d when get PW mode on lock %s\n", errno, str);
167 /* let's try several times if EAGAIN happened */
168 if (dlm_lock_res->lksb.sb_status == EAGAIN && retry_count < 10) {
169 sleep_for(10, 0, true);
170 retry_count++;
171 goto retry;
172 }
173 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
174 return ret;
175 }
176
177 /* Wait for it to complete */
178 poll_for_ast(dlm_lock_res->ls);
179
180 if (dlm_lock_res->lksb.sb_status) {
181 pr_err("failed to lock cluster\n");
182 return -1;
183 }
184 return 1;
185 }
186
187 int cluster_release_dlmlock(void)
188 {
189 int ret = -1;
190
191 if (!cluster_name)
192 goto out;
193
194 if (!dlm_lock_res->lksb.sb_lkid)
195 goto out;
196
197 ret = dlm_hooks->ls_unlock_wait(dlm_lock_res->ls,
198 dlm_lock_res->lksb.sb_lkid, 0,
199 &dlm_lock_res->lksb);
200 if (ret) {
201 pr_err("error %d happened when unlock\n", errno);
202 /* XXX make sure the lock is unlocked eventually */
203 goto out;
204 }
205
206 /* Wait for it to complete */
207 poll_for_ast(dlm_lock_res->ls);
208
209 errno = dlm_lock_res->lksb.sb_status;
210 if (errno != EUNLOCK) {
211 pr_err("error %d happened in ast when unlock lockspace\n",
212 errno);
213 /* XXX make sure the lockspace is unlocked eventually */
214 goto out;
215 }
216
217 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
218 if (ret) {
219 pr_err("error %d happened when release lockspace\n", errno);
220 /* XXX make sure the lockspace is released eventually */
221 goto out;
222 }
223 free(dlm_lock_res);
224
225 out:
226 return ret;
227 }
228
229 int md_array_valid(int fd)
230 {
231 struct mdinfo *sra;
232 int ret;
233
234 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
235 if (sra) {
236 if (sra->array_state != ARRAY_UNKNOWN_STATE)
237 ret = 0;
238 else
239 ret = -ENODEV;
240
241 free(sra);
242 } else {
243 /*
244 * GET_ARRAY_INFO doesn't provide access to the proper state
245 * information, so fallback to a basic check for raid_disks != 0
246 */
247 ret = ioctl(fd, RAID_VERSION);
248 }
249
250 return !ret;
251 }
252
253 int md_array_active(int fd)
254 {
255 struct mdinfo *sra;
256 struct mdu_array_info_s array;
257 int ret = 0;
258
259 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
260 if (sra) {
261 if (!md_array_is_active(sra))
262 ret = -ENODEV;
263
264 free(sra);
265 } else {
266 /*
267 * GET_ARRAY_INFO doesn't provide access to the proper state
268 * information, so fallback to a basic check for raid_disks != 0
269 */
270 ret = md_get_array_info(fd, &array);
271 }
272
273 return !ret;
274 }
275
276 int md_array_is_active(struct mdinfo *info)
277 {
278 return (info->array_state != ARRAY_CLEAR &&
279 info->array_state != ARRAY_INACTIVE &&
280 info->array_state != ARRAY_UNKNOWN_STATE);
281 }
282
283 /*
284 * Get array info from the kernel. Longer term we want to deprecate the
285 * ioctl and get it from sysfs.
286 */
287 int md_get_array_info(int fd, struct mdu_array_info_s *array)
288 {
289 return ioctl(fd, GET_ARRAY_INFO, array);
290 }
291
292 /*
293 * Set array info
294 */
295 int md_set_array_info(int fd, struct mdu_array_info_s *array)
296 {
297 return ioctl(fd, SET_ARRAY_INFO, array);
298 }
299
300 /*
301 * Get disk info from the kernel.
302 */
303 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
304 {
305 return ioctl(fd, GET_DISK_INFO, disk);
306 }
307
308 int get_linux_version()
309 {
310 struct utsname name;
311 char *cp;
312 int a = 0, b = 0,c = 0;
313 if (uname(&name) <0)
314 return -1;
315
316 cp = name.release;
317 a = strtoul(cp, &cp, 10);
318 if (*cp == '.')
319 b = strtoul(cp+1, &cp, 10);
320 if (*cp == '.')
321 c = strtoul(cp+1, &cp, 10);
322
323 return (a*1000000)+(b*1000)+c;
324 }
325
326 int mdadm_version(char *version)
327 {
328 int a, b, c;
329 char *cp;
330
331 if (!version)
332 version = Version;
333
334 cp = strchr(version, '-');
335 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
336 return -1;
337 cp += 3;
338 a = strtoul(cp, &cp, 10);
339 if (*cp != '.')
340 return -1;
341 b = strtoul(cp+1, &cp, 10);
342 if (*cp == '.')
343 c = strtoul(cp+1, &cp, 10);
344 else
345 c = 0;
346 if (*cp != ' ' && *cp != '-')
347 return -1;
348 return (a*1000000)+(b*1000)+c;
349 }
350
351 unsigned long long parse_size(char *size)
352 {
353 /* parse 'size' which should be a number optionally
354 * followed by 'K', 'M'. 'G' or 'T'.
355 * Without a suffix, K is assumed.
356 * Number returned is in sectors (half-K)
357 * INVALID_SECTORS returned on error.
358 */
359 char *c;
360 long long s = strtoll(size, &c, 10);
361 if (s > 0) {
362 switch (*c) {
363 case 'K':
364 c++;
365 default:
366 s *= 2;
367 break;
368 case 'M':
369 c++;
370 s *= 1024 * 2;
371 break;
372 case 'G':
373 c++;
374 s *= 1024 * 1024 * 2;
375 break;
376 case 'T':
377 c++;
378 s *= 1024 * 1024 * 1024 * 2LL;
379 break;
380 case 's': /* sectors */
381 c++;
382 break;
383 }
384 } else
385 s = INVALID_SECTORS;
386 if (*c)
387 s = INVALID_SECTORS;
388 return s;
389 }
390
391 int is_near_layout_10(int layout)
392 {
393 int fc, fo;
394
395 fc = (layout >> 8) & 255;
396 fo = layout & (1 << 16);
397 if (fc > 1 || fo > 0)
398 return 0;
399 return 1;
400 }
401
402 int parse_layout_10(char *layout)
403 {
404 int copies, rv;
405 char *cp;
406 /* Parse the layout string for raid10 */
407 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
408 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
409 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
410 copies > 200 ||
411 *cp)
412 return -1;
413 if (layout[0] == 'n')
414 rv = 256 + copies;
415 else if (layout[0] == 'o')
416 rv = 0x10000 + (copies<<8) + 1;
417 else
418 rv = 1 + (copies<<8);
419 return rv;
420 }
421
422 int parse_layout_faulty(char *layout)
423 {
424 int ln, mode;
425 char *m;
426
427 if (!layout)
428 return -1;
429
430 /* Parse the layout string for 'faulty' */
431 ln = strcspn(layout, "0123456789");
432 m = xstrdup(layout);
433 m[ln] = 0;
434 mode = map_name(faultylayout, m);
435 free(m);
436
437 if (mode == UnSet)
438 return -1;
439
440 return mode | (atoi(layout+ln)<< ModeShift);
441 }
442
443 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
444 {
445 char *dev;
446 *slot = strtoul(input, &dev, 10);
447 if (dev == input || dev[0] != ':')
448 return -1;
449 *devname = dev+1;
450 return 0;
451 }
452
453 void remove_partitions(int fd)
454 {
455 /* remove partitions from this block devices.
456 * This is used for components added to an array
457 */
458 #ifdef BLKPG_DEL_PARTITION
459 struct blkpg_ioctl_arg a;
460 struct blkpg_partition p;
461
462 a.op = BLKPG_DEL_PARTITION;
463 a.data = (void*)&p;
464 a.datalen = sizeof(p);
465 a.flags = 0;
466 memset(a.data, 0, a.datalen);
467 for (p.pno = 0; p.pno < 16; p.pno++)
468 ioctl(fd, BLKPG, &a);
469 #endif
470 }
471
472 int test_partition(int fd)
473 {
474 /* Check if fd is a whole-disk or a partition.
475 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
476 * will return ENXIO on an invalid partition number.
477 */
478 struct blkpg_ioctl_arg a;
479 struct blkpg_partition p;
480 a.op = BLKPG_DEL_PARTITION;
481 a.data = (void*)&p;
482 a.datalen = sizeof(p);
483 a.flags = 0;
484 memset(a.data, 0, a.datalen);
485 p.pno = 1<<30;
486 if (ioctl(fd, BLKPG, &a) == 0)
487 /* Very unlikely, but not a partition */
488 return 0;
489 if (errno == ENXIO || errno == ENOTTY)
490 /* not a partition */
491 return 0;
492
493 return 1;
494 }
495
496 int test_partition_from_id(dev_t id)
497 {
498 char buf[20];
499 int fd, rv;
500
501 sprintf(buf, "%d:%d", major(id), minor(id));
502 fd = dev_open(buf, O_RDONLY);
503 if (fd < 0)
504 return -1;
505 rv = test_partition(fd);
506 close(fd);
507 return rv;
508 }
509
510 int enough(int level, int raid_disks, int layout, int clean, char *avail)
511 {
512 int copies, first;
513 int i;
514 int avail_disks = 0;
515
516 for (i = 0; i < raid_disks; i++)
517 avail_disks += !!avail[i];
518
519 switch (level) {
520 case 10:
521 /* This is the tricky one - we need to check
522 * which actual disks are present.
523 */
524 copies = (layout&255)* ((layout>>8) & 255);
525 first = 0;
526 do {
527 /* there must be one of the 'copies' form 'first' */
528 int n = copies;
529 int cnt = 0;
530 int this = first;
531 while (n--) {
532 if (avail[this])
533 cnt++;
534 this = (this+1) % raid_disks;
535 }
536 if (cnt == 0)
537 return 0;
538 first = (first+(layout&255)) % raid_disks;
539 } while (first != 0);
540 return 1;
541
542 case LEVEL_MULTIPATH:
543 return avail_disks>= 1;
544 case LEVEL_LINEAR:
545 case 0:
546 return avail_disks == raid_disks;
547 case 1:
548 return avail_disks >= 1;
549 case 4:
550 if (avail_disks == raid_disks - 1 &&
551 !avail[raid_disks - 1])
552 /* If just the parity device is missing, then we
553 * have enough, even if not clean
554 */
555 return 1;
556 /* FALL THROUGH */
557 case 5:
558 if (clean)
559 return avail_disks >= raid_disks-1;
560 else
561 return avail_disks >= raid_disks;
562 case 6:
563 if (clean)
564 return avail_disks >= raid_disks-2;
565 else
566 return avail_disks >= raid_disks;
567 default:
568 return 0;
569 }
570 }
571
572 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
573 {
574 int i, j;
575 char uuid[16];
576 char *c = buf;
577 strcpy(c, "UUID-");
578 c += strlen(c);
579 copy_uuid(uuid, id, swap);
580 for (i = 0; i < 4; i++) {
581 if (i)
582 *c++ = sep;
583 for (j = 3; j >= 0; j--) {
584 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
585 c+= 2;
586 }
587 }
588 return buf;
589
590 }
591
592 char *fname_from_uuid(struct supertype *st, struct mdinfo *info,
593 char *buf, char sep)
594 {
595 // dirty hack to work around an issue with super1 superblocks...
596 // super1 superblocks need swapuuid set in order for assembly to
597 // work, but can't have it set if we want this printout to match
598 // all the other uuid printouts in super1.c, so we force swapuuid
599 // to 1 to make our printout match the rest of super1
600 #if __BYTE_ORDER == BIG_ENDIAN
601 return __fname_from_uuid(info->uuid, 1, buf, sep);
602 #else
603 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 :
604 st->ss->swapuuid, buf, sep);
605 #endif
606 }
607
608 int check_ext2(int fd, char *name)
609 {
610 /*
611 * Check for an ext2fs file system.
612 * Superblock is always 1K at 1K offset
613 *
614 * s_magic is le16 at 56 == 0xEF53
615 * report mtime - le32 at 44
616 * blocks - le32 at 4
617 * logblksize - le32 at 24
618 */
619 unsigned char sb[1024];
620 time_t mtime;
621 unsigned long long size;
622 int bsize;
623 if (lseek(fd, 1024,0)!= 1024)
624 return 0;
625 if (read(fd, sb, 1024)!= 1024)
626 return 0;
627 if (sb[56] != 0x53 || sb[57] != 0xef)
628 return 0;
629
630 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
631 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
632 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
633 size <<= bsize;
634 pr_err("%s appears to contain an ext2fs file system\n",
635 name);
636 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
637 return 1;
638 }
639
640 int check_reiser(int fd, char *name)
641 {
642 /*
643 * superblock is at 64K
644 * size is 1024;
645 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
646 *
647 */
648 unsigned char sb[1024];
649 unsigned long long size;
650 if (lseek(fd, 64*1024, 0) != 64*1024)
651 return 0;
652 if (read(fd, sb, 1024) != 1024)
653 return 0;
654 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
655 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
656 return 0;
657 pr_err("%s appears to contain a reiserfs file system\n",name);
658 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
659 cont_err("size = %lluK\n", size*4);
660
661 return 1;
662 }
663
664 int check_raid(int fd, char *name)
665 {
666 struct mdinfo info;
667 time_t crtime;
668 char *level;
669 struct supertype *st = guess_super(fd);
670
671 if (!st)
672 return 0;
673 if (st->ss->add_to_super != NULL) {
674 st->ss->load_super(st, fd, name);
675 /* Looks like a raid array .. */
676 pr_err("%s appears to be part of a raid array:\n", name);
677 st->ss->getinfo_super(st, &info, NULL);
678 st->ss->free_super(st);
679 crtime = info.array.ctime;
680 level = map_num(pers, info.array.level);
681 if (!level)
682 level = "-unknown-";
683 cont_err("level=%s devices=%d ctime=%s",
684 level, info.array.raid_disks, ctime(&crtime));
685 } else {
686 /* Looks like GPT or MBR */
687 pr_err("partition table exists on %s\n", name);
688 }
689 return 1;
690 }
691
692 int fstat_is_blkdev(int fd, char *devname, dev_t *rdev)
693 {
694 struct stat stb;
695
696 if (fstat(fd, &stb) != 0) {
697 pr_err("fstat failed for %s: %s\n", devname, strerror(errno));
698 return 0;
699 }
700 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
701 pr_err("%s is not a block device.\n", devname);
702 return 0;
703 }
704 if (rdev)
705 *rdev = stb.st_rdev;
706 return 1;
707 }
708
709 int stat_is_blkdev(char *devname, dev_t *rdev)
710 {
711 struct stat stb;
712
713 if (stat(devname, &stb) != 0) {
714 pr_err("stat failed for %s: %s\n", devname, strerror(errno));
715 return 0;
716 }
717 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
718 pr_err("%s is not a block device.\n", devname);
719 return 0;
720 }
721 if (rdev)
722 *rdev = stb.st_rdev;
723 return 1;
724 }
725
726 int ask(char *mesg)
727 {
728 char *add = "";
729 int i;
730 for (i = 0; i < 5; i++) {
731 char buf[100];
732 fprintf(stderr, "%s%s", mesg, add);
733 fflush(stderr);
734 if (fgets(buf, 100, stdin)==NULL)
735 return 0;
736 if (buf[0]=='y' || buf[0]=='Y')
737 return 1;
738 if (buf[0]=='n' || buf[0]=='N')
739 return 0;
740 add = "(y/n) ";
741 }
742 pr_err("assuming 'no'\n");
743 return 0;
744 }
745
746 int is_standard(char *dev, int *nump)
747 {
748 /* tests if dev is a "standard" md dev name.
749 * i.e if the last component is "/dNN" or "/mdNN",
750 * where NN is a string of digits
751 * Returns 1 if a partitionable standard,
752 * -1 if non-partitonable,
753 * 0 if not a standard name.
754 */
755 char *d = strrchr(dev, '/');
756 int type = 0;
757 int num;
758 if (!d)
759 return 0;
760 if (strncmp(d, "/d",2) == 0)
761 d += 2, type = 1; /* /dev/md/dN{pM} */
762 else if (strncmp(d, "/md_d", 5) == 0)
763 d += 5, type = 1; /* /dev/md_dN{pM} */
764 else if (strncmp(d, "/md", 3) == 0)
765 d += 3, type = -1; /* /dev/mdN */
766 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
767 d += 1, type = -1; /* /dev/md/N */
768 else
769 return 0;
770 if (!*d)
771 return 0;
772 num = atoi(d);
773 while (isdigit(*d))
774 d++;
775 if (*d)
776 return 0;
777 if (nump) *nump = num;
778
779 return type;
780 }
781
782 unsigned long calc_csum(void *super, int bytes)
783 {
784 unsigned long long newcsum = 0;
785 int i;
786 unsigned int csum;
787 unsigned int *superc = (unsigned int*) super;
788
789 for(i = 0; i < bytes/4; i++)
790 newcsum += superc[i];
791 csum = (newcsum& 0xffffffff) + (newcsum>>32);
792 #ifdef __alpha__
793 /* The in-kernel checksum calculation is always 16bit on
794 * the alpha, though it is 32 bit on i386...
795 * I wonder what it is elsewhere... (it uses an API in
796 * a way that it shouldn't).
797 */
798 csum = (csum & 0xffff) + (csum >> 16);
799 csum = (csum & 0xffff) + (csum >> 16);
800 #endif
801 return csum;
802 }
803
804 char *human_size(long long bytes)
805 {
806 static char buf[47];
807
808 /* We convert bytes to either centi-M{ega,ibi}bytes,
809 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
810 * with appropriate rounding, and then print
811 * 1/100th of those as a decimal.
812 * We allow upto 2048Megabytes before converting to
813 * gigabytes and 2048Gigabytes before converting to
814 * terabytes, as that shows more precision and isn't
815 * too large a number.
816 */
817
818 if (bytes < 5000*1024)
819 buf[0] = 0;
820 else if (bytes < 2*1024LL*1024LL*1024LL) {
821 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
822 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
823 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
824 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
825 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
826 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
827 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
828 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
829 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
830 } else {
831 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
832 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
833 snprintf(buf, sizeof(buf), " (%ld.%02ld TiB %ld.%02ld TB)",
834 cTiB/100, cTiB % 100, cTB/100, cTB % 100);
835 }
836 return buf;
837 }
838
839 char *human_size_brief(long long bytes, int prefix)
840 {
841 static char buf[30];
842
843 /* We convert bytes to either centi-M{ega,ibi}bytes,
844 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
845 * with appropriate rounding, and then print
846 * 1/100th of those as a decimal.
847 * We allow upto 2048Megabytes before converting to
848 * gigabytes and 2048Gigabytes before converting to
849 * terabytes, as that shows more precision and isn't
850 * too large a number.
851 *
852 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
853 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
854 */
855
856 if (bytes < 5000*1024)
857 buf[0] = 0;
858 else if (prefix == IEC) {
859 if (bytes < 2*1024LL*1024LL*1024LL) {
860 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
861 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
862 cMiB/100, cMiB % 100);
863 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
864 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
865 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
866 cGiB/100, cGiB % 100);
867 } else {
868 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
869 snprintf(buf, sizeof(buf), "%ld.%02ldTiB",
870 cTiB/100, cTiB % 100);
871 }
872 }
873 else if (prefix == JEDEC) {
874 if (bytes < 2*1024LL*1024LL*1024LL) {
875 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
876 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
877 cMB/100, cMB % 100);
878 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
879 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
880 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
881 cGB/100, cGB % 100);
882 } else {
883 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
884 snprintf(buf, sizeof(buf), "%ld.%02ldTB",
885 cTB/100, cTB % 100);
886 }
887 }
888 else
889 buf[0] = 0;
890
891 return buf;
892 }
893
894 void print_r10_layout(int layout)
895 {
896 int near = layout & 255;
897 int far = (layout >> 8) & 255;
898 int offset = (layout&0x10000);
899 char *sep = "";
900
901 if (near != 1) {
902 printf("%s near=%d", sep, near);
903 sep = ",";
904 }
905 if (far != 1)
906 printf("%s %s=%d", sep, offset?"offset":"far", far);
907 if (near*far == 1)
908 printf("NO REDUNDANCY");
909 }
910
911 unsigned long long calc_array_size(int level, int raid_disks, int layout,
912 int chunksize, unsigned long long devsize)
913 {
914 if (level == 1)
915 return devsize;
916 devsize &= ~(unsigned long long)((chunksize>>9)-1);
917 return get_data_disks(level, layout, raid_disks) * devsize;
918 }
919
920 int get_data_disks(int level, int layout, int raid_disks)
921 {
922 int data_disks = 0;
923 switch (level) {
924 case 0: data_disks = raid_disks;
925 break;
926 case 1: data_disks = 1;
927 break;
928 case 4:
929 case 5: data_disks = raid_disks - 1;
930 break;
931 case 6: data_disks = raid_disks - 2;
932 break;
933 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
934 break;
935 }
936
937 return data_disks;
938 }
939
940 dev_t devnm2devid(char *devnm)
941 {
942 /* First look in /sys/block/$DEVNM/dev for %d:%d
943 * If that fails, try parsing out a number
944 */
945 char path[PATH_MAX];
946 char *ep;
947 int fd;
948 int mjr,mnr;
949
950 snprintf(path, sizeof(path), "/sys/block/%s/dev", devnm);
951 fd = open(path, O_RDONLY);
952 if (fd >= 0) {
953 char buf[20];
954 int n = read(fd, buf, sizeof(buf));
955 close(fd);
956 if (n > 0)
957 buf[n] = 0;
958 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
959 return makedev(mjr, mnr);
960 }
961 if (strncmp(devnm, "md_d", 4) == 0 &&
962 isdigit(devnm[4]) &&
963 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
964 ep > devnm && *ep == 0)
965 return makedev(get_mdp_major(), mnr << MdpMinorShift);
966
967 if (strncmp(devnm, "md", 2) == 0 &&
968 isdigit(devnm[2]) &&
969 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
970 ep > devnm && *ep == 0)
971 return makedev(MD_MAJOR, mnr);
972
973 return 0;
974 }
975
976 /**
977 * is_devname_numbered() - helper for numbered devname verification.
978 * @devname: path or name to check.
979 * @pref: expected devname prefix.
980 * @pref_len: prefix len.
981 */
982 static bool is_devname_numbered(const char *devname, const char *pref, const int pref_len)
983 {
984 int val;
985
986 assert(devname && pref);
987
988 if (strncmp(devname, pref, pref_len) != 0)
989 return false;
990
991 if (parse_num(&val, devname + pref_len) != 0)
992 return false;
993
994 if (val > 127)
995 return false;
996
997 return true;
998 }
999
1000 /**
1001 * is_devname_md_numbered() - check if &devname is numbered MD device (md).
1002 * @devname: path or name to check.
1003 */
1004 bool is_devname_md_numbered(const char *devname)
1005 {
1006 return is_devname_numbered(devname, DEV_NUM_PREF, DEV_NUM_PREF_LEN);
1007 }
1008
1009 /**
1010 * is_devname_md_d_numbered() - check if &devname is secondary numbered MD device (md_d).
1011 * @devname: path or name to check.
1012 */
1013 bool is_devname_md_d_numbered(const char *devname)
1014 {
1015 static const char d_dev[] = DEV_NUM_PREF "_d";
1016
1017 return is_devname_numbered(devname, d_dev, sizeof(d_dev) - 1);
1018 }
1019
1020 /**
1021 * get_md_name() - Get main dev node of the md device.
1022 * @devnm: Md device name or path.
1023 *
1024 * Function checks if the full name was passed and returns md name
1025 * if it is the MD device.
1026 *
1027 * Return: Main dev node of the md device or NULL if not found.
1028 */
1029 char *get_md_name(char *devnm)
1030 {
1031 static char devname[NAME_MAX];
1032 struct stat stb;
1033
1034 if (strncmp(devnm, "/dev/", 5) == 0)
1035 snprintf(devname, sizeof(devname), "%s", devnm);
1036 else
1037 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
1038
1039 if (!is_mddev(devname))
1040 return NULL;
1041 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK)
1042 return devname;
1043
1044 return NULL;
1045 }
1046
1047 void put_md_name(char *name)
1048 {
1049 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1050 unlink(name);
1051 }
1052
1053 int get_maj_min(char *dev, int *major, int *minor)
1054 {
1055 char *e;
1056 *major = strtoul(dev, &e, 0);
1057 return (e > dev && *e == ':' && e[1] &&
1058 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1059 *e == 0);
1060 }
1061
1062 /**
1063 * is_bit_set() - get bit value by index.
1064 * @val: value.
1065 * @index: index of the bit (LSB numbering).
1066 *
1067 * Return: bit value.
1068 */
1069 bool is_bit_set(int *val, unsigned char index)
1070 {
1071 if ((*val) & (1 << index))
1072 return true;
1073 return false;
1074 }
1075
1076 int dev_open(char *dev, int flags)
1077 {
1078 /* like 'open', but if 'dev' matches %d:%d, create a temp
1079 * block device and open that
1080 */
1081 int fd = -1;
1082 char devname[32];
1083 int major;
1084 int minor;
1085
1086 if (!dev)
1087 return -1;
1088 flags |= O_DIRECT;
1089
1090 if (get_maj_min(dev, &major, &minor)) {
1091 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1092 (int)getpid(), major, minor);
1093 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1094 fd = open(devname, flags);
1095 unlink(devname);
1096 }
1097 if (fd < 0) {
1098 /* Try /tmp as /dev appear to be read-only */
1099 snprintf(devname, sizeof(devname),
1100 "/tmp/.tmp.md.%d:%d:%d",
1101 (int)getpid(), major, minor);
1102 if (mknod(devname, S_IFBLK|0600,
1103 makedev(major, minor)) == 0) {
1104 fd = open(devname, flags);
1105 unlink(devname);
1106 }
1107 }
1108 } else
1109 fd = open(dev, flags);
1110 return fd;
1111 }
1112
1113 int open_dev_flags(char *devnm, int flags)
1114 {
1115 dev_t devid;
1116 char buf[20];
1117
1118 devid = devnm2devid(devnm);
1119 sprintf(buf, "%d:%d", major(devid), minor(devid));
1120 return dev_open(buf, flags);
1121 }
1122
1123 int open_dev(char *devnm)
1124 {
1125 return open_dev_flags(devnm, O_RDONLY);
1126 }
1127
1128 int open_dev_excl(char *devnm)
1129 {
1130 char buf[20];
1131 int i;
1132 int flags = O_RDWR;
1133 dev_t devid = devnm2devid(devnm);
1134 unsigned int delay = 1; // miliseconds
1135
1136 sprintf(buf, "%d:%d", major(devid), minor(devid));
1137 for (i = 0; i < 25; i++) {
1138 int fd = dev_open(buf, flags|O_EXCL);
1139 if (fd >= 0)
1140 return fd;
1141 if (errno == EACCES && flags == O_RDWR) {
1142 flags = O_RDONLY;
1143 continue;
1144 }
1145 if (errno != EBUSY)
1146 return fd;
1147 sleep_for(0, MSEC_TO_NSEC(delay), true);
1148 if (delay < 200)
1149 delay *= 2;
1150 }
1151 return -1;
1152 }
1153
1154 int same_dev(char *one, char *two)
1155 {
1156 struct stat st1, st2;
1157 if (stat(one, &st1) != 0)
1158 return 0;
1159 if (stat(two, &st2) != 0)
1160 return 0;
1161 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1162 return 0;
1163 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1164 return 0;
1165 return st1.st_rdev == st2.st_rdev;
1166 }
1167
1168 void wait_for(char *dev, int fd)
1169 {
1170 int i;
1171 struct stat stb_want;
1172 unsigned int delay = 1; // miliseconds
1173
1174 if (fstat(fd, &stb_want) != 0 ||
1175 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1176 return;
1177
1178 for (i = 0; i < 25; i++) {
1179 struct stat stb;
1180 if (stat(dev, &stb) == 0 &&
1181 (stb.st_mode & S_IFMT) == S_IFBLK &&
1182 (stb.st_rdev == stb_want.st_rdev))
1183 return;
1184 sleep_for(0, MSEC_TO_NSEC(delay), true);
1185 if (delay < 200)
1186 delay *= 2;
1187 }
1188 if (i == 25)
1189 pr_err("timeout waiting for %s\n", dev);
1190 }
1191
1192 struct superswitch *superlist[] =
1193 {
1194 &super0, &super1,
1195 &super_ddf, &super_imsm,
1196 &mbr, &gpt,
1197 NULL
1198 };
1199
1200 struct supertype *super_by_fd(int fd, char **subarrayp)
1201 {
1202 mdu_array_info_t array;
1203 int vers;
1204 int minor;
1205 struct supertype *st = NULL;
1206 struct mdinfo *sra;
1207 char *verstr;
1208 char version[20];
1209 int i;
1210 char *subarray = NULL;
1211 char container[32] = "";
1212 char *devnm = NULL;
1213
1214 devnm = fd2devnm(fd);
1215 if (!devnm)
1216 return NULL;
1217
1218 sra = sysfs_read(fd, NULL, GET_VERSION);
1219
1220 if (sra) {
1221 vers = sra->array.major_version;
1222 minor = sra->array.minor_version;
1223 verstr = sra->text_version;
1224 } else {
1225 if (md_get_array_info(fd, &array))
1226 array.major_version = array.minor_version = 0;
1227 vers = array.major_version;
1228 minor = array.minor_version;
1229 verstr = "";
1230 }
1231
1232 if (vers != -1) {
1233 sprintf(version, "%d.%d", vers, minor);
1234 verstr = version;
1235 }
1236 if (minor == -2 && is_subarray(verstr)) {
1237 char *dev = verstr+1;
1238
1239 subarray = strchr(dev, '/');
1240 if (subarray) {
1241 *subarray++ = '\0';
1242 subarray = xstrdup(subarray);
1243 }
1244 strcpy(container, dev);
1245 sysfs_free(sra);
1246 sra = sysfs_read(-1, container, GET_VERSION);
1247 if (sra && sra->text_version[0])
1248 verstr = sra->text_version;
1249 else
1250 verstr = "-no-metadata-";
1251 }
1252
1253 for (i = 0; st == NULL && superlist[i]; i++)
1254 st = superlist[i]->match_metadata_desc(verstr);
1255
1256 sysfs_free(sra);
1257 if (st) {
1258 st->sb = NULL;
1259 if (subarrayp)
1260 *subarrayp = subarray;
1261 strcpy(st->container_devnm, container);
1262 strncpy(st->devnm, devnm, MD_NAME_MAX - 1);
1263 } else
1264 free(subarray);
1265
1266 return st;
1267 }
1268
1269 int dev_size_from_id(dev_t id, unsigned long long *size)
1270 {
1271 char buf[20];
1272 int fd;
1273
1274 sprintf(buf, "%d:%d", major(id), minor(id));
1275 fd = dev_open(buf, O_RDONLY);
1276 if (fd < 0)
1277 return 0;
1278 if (get_dev_size(fd, NULL, size)) {
1279 close(fd);
1280 return 1;
1281 }
1282 close(fd);
1283 return 0;
1284 }
1285
1286 int dev_sector_size_from_id(dev_t id, unsigned int *size)
1287 {
1288 char buf[20];
1289 int fd;
1290
1291 sprintf(buf, "%d:%d", major(id), minor(id));
1292 fd = dev_open(buf, O_RDONLY);
1293 if (fd < 0)
1294 return 0;
1295 if (get_dev_sector_size(fd, NULL, size)) {
1296 close(fd);
1297 return 1;
1298 }
1299 close(fd);
1300 return 0;
1301 }
1302
1303 struct supertype *dup_super(struct supertype *orig)
1304 {
1305 struct supertype *st;
1306
1307 if (!orig)
1308 return orig;
1309 st = xcalloc(1, sizeof(*st));
1310 st->ss = orig->ss;
1311 st->max_devs = orig->max_devs;
1312 st->minor_version = orig->minor_version;
1313 st->ignore_hw_compat = orig->ignore_hw_compat;
1314 st->data_offset = orig->data_offset;
1315 st->sb = NULL;
1316 st->info = NULL;
1317 return st;
1318 }
1319
1320 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1321 {
1322 /* try each load_super to find the best match,
1323 * and return the best superswitch
1324 */
1325 struct superswitch *ss;
1326 struct supertype *st;
1327 unsigned int besttime = 0;
1328 int bestsuper = -1;
1329 int i;
1330
1331 st = xcalloc(1, sizeof(*st));
1332 st->container_devnm[0] = 0;
1333
1334 for (i = 0; superlist[i]; i++) {
1335 int rv;
1336 ss = superlist[i];
1337 if (guess_type == guess_array && ss->add_to_super == NULL)
1338 continue;
1339 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1340 continue;
1341 memset(st, 0, sizeof(*st));
1342 st->ignore_hw_compat = 1;
1343 rv = ss->load_super(st, fd, NULL);
1344 if (rv == 0) {
1345 struct mdinfo info;
1346 st->ss->getinfo_super(st, &info, NULL);
1347 if (bestsuper == -1 ||
1348 besttime < info.array.ctime) {
1349 bestsuper = i;
1350 besttime = info.array.ctime;
1351 }
1352 ss->free_super(st);
1353 }
1354 }
1355 if (bestsuper != -1) {
1356 int rv;
1357 memset(st, 0, sizeof(*st));
1358 st->ignore_hw_compat = 1;
1359 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1360 if (rv == 0) {
1361 superlist[bestsuper]->free_super(st);
1362 return st;
1363 }
1364 }
1365 free(st);
1366 return NULL;
1367 }
1368
1369 /* Return size of device in bytes */
1370 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1371 {
1372 unsigned long long ldsize;
1373 struct stat st;
1374
1375 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1376 ldsize = (unsigned long long)st.st_size;
1377 else
1378 #ifdef BLKGETSIZE64
1379 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1380 #endif
1381 {
1382 unsigned long dsize;
1383 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1384 ldsize = dsize;
1385 ldsize <<= 9;
1386 } else {
1387 if (dname)
1388 pr_err("Cannot get size of %s: %s\n",
1389 dname, strerror(errno));
1390 return 0;
1391 }
1392 }
1393 *sizep = ldsize;
1394 return 1;
1395 }
1396
1397 /* Return sector size of device in bytes */
1398 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1399 {
1400 unsigned int sectsize;
1401
1402 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1403 if (dname)
1404 pr_err("Cannot get sector size of %s: %s\n",
1405 dname, strerror(errno));
1406 return 0;
1407 }
1408
1409 *sectsizep = sectsize;
1410 return 1;
1411 }
1412
1413 /* Return true if this can only be a container, not a member device.
1414 * i.e. is and md device and size is zero
1415 */
1416 int must_be_container(int fd)
1417 {
1418 struct mdinfo *mdi;
1419 unsigned long long size;
1420
1421 mdi = sysfs_read(fd, NULL, GET_VERSION);
1422 if (!mdi)
1423 return 0;
1424 sysfs_free(mdi);
1425
1426 if (get_dev_size(fd, NULL, &size) == 0)
1427 return 1;
1428 if (size == 0)
1429 return 1;
1430 return 0;
1431 }
1432
1433 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1434 * Returns: 1 if successful
1435 * -1 for unknown partition type
1436 * 0 for other errors
1437 */
1438 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1439 {
1440 struct GPT gpt;
1441 unsigned char empty_gpt_entry[16]= {0};
1442 struct GPT_part_entry *part;
1443 char buf[512];
1444 unsigned long long curr_part_end;
1445 unsigned all_partitions, entry_size;
1446 unsigned part_nr;
1447 unsigned int sector_size = 0;
1448
1449 *endofpart = 0;
1450
1451 BUILD_BUG_ON(sizeof(gpt) != 512);
1452 /* skip protective MBR */
1453 if (!get_dev_sector_size(fd, NULL, &sector_size))
1454 return 0;
1455 lseek(fd, sector_size, SEEK_SET);
1456 /* read GPT header */
1457 if (read(fd, &gpt, 512) != 512)
1458 return 0;
1459
1460 /* get the number of partition entries and the entry size */
1461 all_partitions = __le32_to_cpu(gpt.part_cnt);
1462 entry_size = __le32_to_cpu(gpt.part_size);
1463
1464 /* Check GPT signature*/
1465 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1466 return -1;
1467
1468 /* sanity checks */
1469 if (all_partitions > 1024 ||
1470 entry_size > sizeof(buf))
1471 return -1;
1472
1473 part = (struct GPT_part_entry *)buf;
1474
1475 /* set offset to third block (GPT entries) */
1476 lseek(fd, sector_size*2, SEEK_SET);
1477 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1478 /* read partition entry */
1479 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1480 return 0;
1481
1482 /* is this valid partition? */
1483 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1484 /* check the last lba for the current partition */
1485 curr_part_end = __le64_to_cpu(part->ending_lba);
1486 if (curr_part_end > *endofpart)
1487 *endofpart = curr_part_end;
1488 }
1489
1490 }
1491 return 1;
1492 }
1493
1494 /* Sets endofpart parameter to the last block used by the last partition on the device.
1495 * Returns: 1 if successful
1496 * -1 for unknown partition type
1497 * 0 for other errors
1498 */
1499 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1500 {
1501 struct MBR boot_sect;
1502 unsigned long long curr_part_end;
1503 unsigned part_nr;
1504 unsigned int sector_size;
1505 int retval = 0;
1506
1507 *endofpart = 0;
1508
1509 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1510 /* read MBR */
1511 lseek(fd, 0, 0);
1512 if (read(fd, &boot_sect, 512) != 512)
1513 goto abort;
1514
1515 /* check MBP signature */
1516 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1517 retval = 1;
1518 /* found the correct signature */
1519
1520 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1521 /*
1522 * Have to make every access through boot_sect rather
1523 * than using a pointer to the partition table (or an
1524 * entry), since the entries are not properly aligned.
1525 */
1526
1527 /* check for GPT type */
1528 if (boot_sect.parts[part_nr].part_type ==
1529 MBR_GPT_PARTITION_TYPE) {
1530 retval = get_gpt_last_partition_end(fd, endofpart);
1531 break;
1532 }
1533 /* check the last used lba for the current partition */
1534 curr_part_end =
1535 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1536 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1537 if (curr_part_end > *endofpart)
1538 *endofpart = curr_part_end;
1539 }
1540 } else {
1541 /* Unknown partition table */
1542 retval = -1;
1543 }
1544 /* calculate number of 512-byte blocks */
1545 if (get_dev_sector_size(fd, NULL, &sector_size))
1546 *endofpart *= (sector_size / 512);
1547 abort:
1548 return retval;
1549 }
1550
1551 int check_partitions(int fd, char *dname, unsigned long long freesize,
1552 unsigned long long size)
1553 {
1554 /*
1555 * Check where the last partition ends
1556 */
1557 unsigned long long endofpart;
1558
1559 if (get_last_partition_end(fd, &endofpart) > 0) {
1560 /* There appears to be a partition table here */
1561 if (freesize == 0) {
1562 /* partitions will not be visible in new device */
1563 pr_err("partition table exists on %s but will be lost or\n"
1564 " meaningless after creating array\n",
1565 dname);
1566 return 1;
1567 } else if (endofpart > freesize) {
1568 /* last partition overlaps metadata */
1569 pr_err("metadata will over-write last partition on %s.\n",
1570 dname);
1571 return 1;
1572 } else if (size && endofpart > size) {
1573 /* partitions will be truncated in new device */
1574 pr_err("array size is too small to cover all partitions on %s.\n",
1575 dname);
1576 return 1;
1577 }
1578 }
1579 return 0;
1580 }
1581
1582 int open_container(int fd)
1583 {
1584 /* 'fd' is a block device. Find out if it is in use
1585 * by a container, and return an open fd on that container.
1586 */
1587 char path[288];
1588 char *e;
1589 DIR *dir;
1590 struct dirent *de;
1591 int dfd, n;
1592 char buf[200];
1593 int major, minor;
1594 struct stat st;
1595
1596 if (fstat(fd, &st) != 0)
1597 return -1;
1598 sprintf(path, "/sys/dev/block/%d:%d/holders",
1599 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1600 e = path + strlen(path);
1601
1602 dir = opendir(path);
1603 if (!dir)
1604 return -1;
1605 while ((de = readdir(dir))) {
1606 if (de->d_ino == 0)
1607 continue;
1608 if (de->d_name[0] == '.')
1609 continue;
1610 /* Need to make sure it is a container and not a volume */
1611 sprintf(e, "/%s/md/metadata_version", de->d_name);
1612 dfd = open(path, O_RDONLY);
1613 if (dfd < 0)
1614 continue;
1615 n = read(dfd, buf, sizeof(buf));
1616 close(dfd);
1617 if (n <= 0 || (unsigned)n >= sizeof(buf))
1618 continue;
1619 buf[n] = 0;
1620 if (strncmp(buf, "external", 8) != 0 ||
1621 n < 10 ||
1622 buf[9] == '/')
1623 continue;
1624 sprintf(e, "/%s/dev", de->d_name);
1625 dfd = open(path, O_RDONLY);
1626 if (dfd < 0)
1627 continue;
1628 n = read(dfd, buf, sizeof(buf));
1629 close(dfd);
1630 if (n <= 0 || (unsigned)n >= sizeof(buf))
1631 continue;
1632 buf[n] = 0;
1633 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1634 continue;
1635 sprintf(buf, "%d:%d", major, minor);
1636 dfd = dev_open(buf, O_RDONLY);
1637 if (dfd >= 0) {
1638 closedir(dir);
1639 return dfd;
1640 }
1641 }
1642 closedir(dir);
1643 return -1;
1644 }
1645
1646 struct superswitch *version_to_superswitch(char *vers)
1647 {
1648 int i;
1649
1650 for (i = 0; superlist[i]; i++) {
1651 struct superswitch *ss = superlist[i];
1652
1653 if (strcmp(vers, ss->name) == 0)
1654 return ss;
1655 }
1656
1657 return NULL;
1658 }
1659
1660 int metadata_container_matches(char *metadata, char *devnm)
1661 {
1662 /* Check if 'devnm' is the container named in 'metadata'
1663 * which is
1664 * /containername/componentname or
1665 * -containername/componentname
1666 */
1667 int l;
1668 if (*metadata != '/' && *metadata != '-')
1669 return 0;
1670 l = strlen(devnm);
1671 if (strncmp(metadata+1, devnm, l) != 0)
1672 return 0;
1673 if (metadata[l+1] != '/')
1674 return 0;
1675 return 1;
1676 }
1677
1678 int metadata_subdev_matches(char *metadata, char *devnm)
1679 {
1680 /* Check if 'devnm' is the subdev named in 'metadata'
1681 * which is
1682 * /containername/subdev or
1683 * -containername/subdev
1684 */
1685 char *sl;
1686 if (*metadata != '/' && *metadata != '-')
1687 return 0;
1688 sl = strchr(metadata+1, '/');
1689 if (!sl)
1690 return 0;
1691 if (strcmp(sl+1, devnm) == 0)
1692 return 1;
1693 return 0;
1694 }
1695
1696 int is_container_member(struct mdstat_ent *mdstat, char *container)
1697 {
1698 if (mdstat->metadata_version == NULL ||
1699 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1700 !metadata_container_matches(mdstat->metadata_version+9, container))
1701 return 0;
1702
1703 return 1;
1704 }
1705
1706 int is_subarray_active(char *subarray, char *container)
1707 {
1708 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1709 struct mdstat_ent *ent;
1710
1711 for (ent = mdstat; ent; ent = ent->next)
1712 if (is_container_member(ent, container))
1713 if (strcmp(to_subarray(ent, container), subarray) == 0)
1714 break;
1715
1716 free_mdstat(mdstat);
1717
1718 return ent != NULL;
1719 }
1720
1721 /* open_subarray - opens a subarray in a container
1722 * @dev: container device name
1723 * @st: empty supertype
1724 * @quiet: block reporting errors flag
1725 *
1726 * On success returns an fd to a container and fills in *st
1727 */
1728 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1729 {
1730 struct mdinfo *mdi;
1731 struct mdinfo *info;
1732 int fd, err = 1;
1733 char *_devnm;
1734
1735 fd = open(dev, O_RDWR|O_EXCL);
1736 if (fd < 0) {
1737 if (!quiet)
1738 pr_err("Couldn't open %s, aborting\n",
1739 dev);
1740 return -1;
1741 }
1742
1743 _devnm = fd2devnm(fd);
1744 if (_devnm == NULL) {
1745 if (!quiet)
1746 pr_err("Failed to determine device number for %s\n",
1747 dev);
1748 goto close_fd;
1749 }
1750 strcpy(st->devnm, _devnm);
1751
1752 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1753 if (!mdi) {
1754 if (!quiet)
1755 pr_err("Failed to read sysfs for %s\n",
1756 dev);
1757 goto close_fd;
1758 }
1759
1760 if (mdi->array.level != UnSet) {
1761 if (!quiet)
1762 pr_err("%s is not a container\n", dev);
1763 goto free_sysfs;
1764 }
1765
1766 st->ss = version_to_superswitch(mdi->text_version);
1767 if (!st->ss) {
1768 if (!quiet)
1769 pr_err("Operation not supported for %s metadata\n",
1770 mdi->text_version);
1771 goto free_sysfs;
1772 }
1773
1774 if (st->devnm[0] == 0) {
1775 if (!quiet)
1776 pr_err("Failed to allocate device name\n");
1777 goto free_sysfs;
1778 }
1779
1780 if (!st->ss->load_container) {
1781 if (!quiet)
1782 pr_err("%s is not a container\n", dev);
1783 goto free_sysfs;
1784 }
1785
1786 if (st->ss->load_container(st, fd, NULL)) {
1787 if (!quiet)
1788 pr_err("Failed to load metadata for %s\n",
1789 dev);
1790 goto free_sysfs;
1791 }
1792
1793 info = st->ss->container_content(st, subarray);
1794 if (!info) {
1795 if (!quiet)
1796 pr_err("Failed to find subarray-%s in %s\n",
1797 subarray, dev);
1798 goto free_super;
1799 }
1800 free(info);
1801
1802 err = 0;
1803
1804 free_super:
1805 if (err)
1806 st->ss->free_super(st);
1807 free_sysfs:
1808 sysfs_free(mdi);
1809 close_fd:
1810 if (err)
1811 close(fd);
1812
1813 if (err)
1814 return -1;
1815 else
1816 return fd;
1817 }
1818
1819 int add_disk(int mdfd, struct supertype *st,
1820 struct mdinfo *sra, struct mdinfo *info)
1821 {
1822 /* Add a device to an array, in one of 2 ways. */
1823 int rv;
1824
1825 if (st->ss->external) {
1826 if (info->disk.state & (1<<MD_DISK_SYNC))
1827 info->recovery_start = MaxSector;
1828 else
1829 info->recovery_start = 0;
1830 rv = sysfs_add_disk(sra, info, 0);
1831 if (! rv) {
1832 struct mdinfo *sd2;
1833 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1834 if (sd2 == info)
1835 break;
1836 if (sd2 == NULL) {
1837 sd2 = xmalloc(sizeof(*sd2));
1838 *sd2 = *info;
1839 sd2->next = sra->devs;
1840 sra->devs = sd2;
1841 }
1842 }
1843 } else
1844 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1845 return rv;
1846 }
1847
1848 int remove_disk(int mdfd, struct supertype *st,
1849 struct mdinfo *sra, struct mdinfo *info)
1850 {
1851 int rv;
1852
1853 /* Remove the disk given by 'info' from the array */
1854 if (st->ss->external)
1855 rv = sysfs_set_str(sra, info, "slot", "none");
1856 else
1857 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1858 info->disk.minor));
1859 return rv;
1860 }
1861
1862 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1863 {
1864 int cnt = force ? 500 : 5;
1865 int ret;
1866
1867 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1868 * outstanding IO requests to the device.
1869 * In this case, it can be helpful to wait a little while,
1870 * up to 5 seconds if 'force' is set, or 50 msec if not.
1871 */
1872 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1873 errno == EBUSY &&
1874 cnt-- > 0)
1875 sleep_for(0, MSEC_TO_NSEC(10), true);
1876
1877 return ret;
1878 }
1879
1880 int sys_hot_remove_disk(int statefd, int force)
1881 {
1882 int cnt = force ? 500 : 5;
1883 int ret;
1884
1885 while ((ret = write(statefd, "remove", 6)) == -1 &&
1886 errno == EBUSY &&
1887 cnt-- > 0)
1888 sleep_for(0, MSEC_TO_NSEC(10), true);
1889 return ret == 6 ? 0 : -1;
1890 }
1891
1892 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1893 {
1894 /* Initialise kernel's knowledge of array.
1895 * This varies between externally managed arrays
1896 * and older kernels
1897 */
1898 mdu_array_info_t inf;
1899 int rv;
1900
1901 if (st->ss->external)
1902 return sysfs_set_array(info, 9003);
1903
1904 memset(&inf, 0, sizeof(inf));
1905 inf.major_version = info->array.major_version;
1906 inf.minor_version = info->array.minor_version;
1907 rv = md_set_array_info(mdfd, &inf);
1908
1909 return rv;
1910 }
1911
1912 unsigned long long min_recovery_start(struct mdinfo *array)
1913 {
1914 /* find the minimum recovery_start in an array for metadata
1915 * formats that only record per-array recovery progress instead
1916 * of per-device
1917 */
1918 unsigned long long recovery_start = MaxSector;
1919 struct mdinfo *d;
1920
1921 for (d = array->devs; d; d = d->next)
1922 recovery_start = min(recovery_start, d->recovery_start);
1923
1924 return recovery_start;
1925 }
1926
1927 int mdmon_pid(char *devnm)
1928 {
1929 char path[100];
1930 char pid[10];
1931 int fd;
1932 int n;
1933
1934 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1935
1936 fd = open(path, O_RDONLY | O_NOATIME, 0);
1937
1938 if (fd < 0)
1939 return -1;
1940 n = read(fd, pid, 9);
1941 close(fd);
1942 if (n <= 0)
1943 return -1;
1944 return atoi(pid);
1945 }
1946
1947 int mdmon_running(char *devnm)
1948 {
1949 int pid = mdmon_pid(devnm);
1950 if (pid <= 0)
1951 return 0;
1952 if (kill(pid, 0) == 0)
1953 return 1;
1954 return 0;
1955 }
1956
1957 int start_mdmon(char *devnm)
1958 {
1959 int i;
1960 int len;
1961 pid_t pid;
1962 int status;
1963 char *prefix = in_initrd() ? "initrd-" : "";
1964 char pathbuf[1024];
1965 char *paths[4] = {
1966 pathbuf,
1967 BINDIR "/mdmon",
1968 "./mdmon",
1969 NULL
1970 };
1971
1972 if (check_env("MDADM_NO_MDMON"))
1973 return 0;
1974 if (continue_via_systemd(devnm, MDMON_SERVICE, prefix))
1975 return 0;
1976
1977 /* That failed, try running mdmon directly */
1978 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1979 if (len > 0) {
1980 char *sl;
1981 pathbuf[len] = 0;
1982 sl = strrchr(pathbuf, '/');
1983 if (sl)
1984 sl++;
1985 else
1986 sl = pathbuf;
1987 strcpy(sl, "mdmon");
1988 } else
1989 pathbuf[0] = '\0';
1990
1991 switch(fork()) {
1992 case 0:
1993 manage_fork_fds(1);
1994 for (i = 0; paths[i]; i++)
1995 if (paths[i][0]) {
1996 execl(paths[i], paths[i],
1997 devnm, NULL);
1998 }
1999 exit(1);
2000 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
2001 return -1;
2002 default: /* parent - good */
2003 pid = wait(&status);
2004 if (pid < 0 || status != 0) {
2005 pr_err("failed to launch mdmon. Array remains readonly\n");
2006 return -1;
2007 }
2008 }
2009 return 0;
2010 }
2011
2012 __u32 random32(void)
2013 {
2014 __u32 rv;
2015 int rfd = open("/dev/urandom", O_RDONLY);
2016 if (rfd < 0 || read(rfd, &rv, 4) != 4)
2017 rv = random();
2018 if (rfd >= 0)
2019 close(rfd);
2020 return rv;
2021 }
2022
2023 void random_uuid(__u8 *buf)
2024 {
2025 int fd, i, len;
2026 __u32 r[4];
2027
2028 fd = open("/dev/urandom", O_RDONLY);
2029 if (fd < 0)
2030 goto use_random;
2031 len = read(fd, buf, 16);
2032 close(fd);
2033 if (len != 16)
2034 goto use_random;
2035
2036 return;
2037
2038 use_random:
2039 for (i = 0; i < 4; i++)
2040 r[i] = random();
2041 memcpy(buf, r, 16);
2042 }
2043
2044 int flush_metadata_updates(struct supertype *st)
2045 {
2046 int sfd;
2047 if (!st->updates) {
2048 st->update_tail = NULL;
2049 return -1;
2050 }
2051
2052 sfd = connect_monitor(st->container_devnm);
2053 if (sfd < 0)
2054 return -1;
2055
2056 while (st->updates) {
2057 struct metadata_update *mu = st->updates;
2058 st->updates = mu->next;
2059
2060 send_message(sfd, mu, 0);
2061 wait_reply(sfd, 0);
2062 free(mu->buf);
2063 free(mu);
2064 }
2065 ack(sfd, 0);
2066 wait_reply(sfd, 0);
2067 close(sfd);
2068 st->update_tail = NULL;
2069 return 0;
2070 }
2071
2072 void append_metadata_update(struct supertype *st, void *buf, int len)
2073 {
2074
2075 struct metadata_update *mu = xmalloc(sizeof(*mu));
2076
2077 mu->buf = buf;
2078 mu->len = len;
2079 mu->space = NULL;
2080 mu->space_list = NULL;
2081 mu->next = NULL;
2082 *st->update_tail = mu;
2083 st->update_tail = &mu->next;
2084 }
2085
2086 #ifdef __TINYC__
2087 /* tinyc doesn't optimize this check in ioctl.h out ... */
2088 unsigned int __invalid_size_argument_for_IOC = 0;
2089 #endif
2090
2091 /* Pick all spares matching given criteria from a container
2092 * if min_size == 0 do not check size
2093 * if domlist == NULL do not check domains
2094 * if spare_group given add it to domains of each spare
2095 * metadata allows to test domains using metadata of destination array */
2096 struct mdinfo *container_choose_spares(struct supertype *st,
2097 struct spare_criteria *criteria,
2098 struct domainlist *domlist,
2099 char *spare_group,
2100 const char *metadata, int get_one)
2101 {
2102 struct mdinfo *d, **dp, *disks = NULL;
2103
2104 /* get list of all disks in container */
2105 if (st->ss->getinfo_super_disks)
2106 disks = st->ss->getinfo_super_disks(st);
2107
2108 if (!disks)
2109 return disks;
2110 /* find spare devices on the list */
2111 dp = &disks->devs;
2112 disks->array.spare_disks = 0;
2113 while (*dp) {
2114 int found = 0;
2115 d = *dp;
2116 if (d->disk.state == 0) {
2117 /* check if size is acceptable */
2118 unsigned long long dev_size;
2119 unsigned int dev_sector_size;
2120 int size_valid = 0;
2121 int sector_size_valid = 0;
2122
2123 dev_t dev = makedev(d->disk.major,d->disk.minor);
2124
2125 if (!criteria->min_size ||
2126 (dev_size_from_id(dev, &dev_size) &&
2127 dev_size >= criteria->min_size))
2128 size_valid = 1;
2129
2130 if (!criteria->sector_size ||
2131 (dev_sector_size_from_id(dev, &dev_sector_size) &&
2132 criteria->sector_size == dev_sector_size))
2133 sector_size_valid = 1;
2134
2135 found = size_valid && sector_size_valid;
2136
2137 /* check if domain matches */
2138 if (found && domlist) {
2139 struct dev_policy *pol = devid_policy(dev);
2140 if (spare_group)
2141 pol_add(&pol, pol_domain,
2142 spare_group, NULL);
2143 if (domain_test(domlist, pol, metadata) != 1)
2144 found = 0;
2145 dev_policy_free(pol);
2146 }
2147 }
2148 if (found) {
2149 dp = &d->next;
2150 disks->array.spare_disks++;
2151 if (get_one) {
2152 sysfs_free(*dp);
2153 d->next = NULL;
2154 }
2155 } else {
2156 *dp = d->next;
2157 d->next = NULL;
2158 sysfs_free(d);
2159 }
2160 }
2161 return disks;
2162 }
2163
2164 /* Checks if paths point to the same device
2165 * Returns 0 if they do.
2166 * Returns 1 if they don't.
2167 * Returns -1 if something went wrong,
2168 * e.g. paths are empty or the files
2169 * they point to don't exist */
2170 int compare_paths (char* path1, char* path2)
2171 {
2172 struct stat st1,st2;
2173
2174 if (path1 == NULL || path2 == NULL)
2175 return -1;
2176 if (stat(path1,&st1) != 0)
2177 return -1;
2178 if (stat(path2,&st2) != 0)
2179 return -1;
2180 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2181 return 0;
2182 return 1;
2183 }
2184
2185 /* Make sure we can open as many devices as needed */
2186 void enable_fds(int devices)
2187 {
2188 unsigned int fds = 20 + devices;
2189 struct rlimit lim;
2190 if (getrlimit(RLIMIT_NOFILE, &lim) != 0 || lim.rlim_cur >= fds)
2191 return;
2192 if (lim.rlim_max < fds)
2193 lim.rlim_max = fds;
2194 lim.rlim_cur = fds;
2195 setrlimit(RLIMIT_NOFILE, &lim);
2196 }
2197
2198 /* Close all opened descriptors if needed and redirect
2199 * streams to /dev/null.
2200 * For debug purposed, leave STDOUT and STDERR untouched
2201 * Returns:
2202 * 1- if any error occurred
2203 * 0- otherwise
2204 */
2205 void manage_fork_fds(int close_all)
2206 {
2207 DIR *dir;
2208 struct dirent *dirent;
2209
2210 close(0);
2211 open("/dev/null", O_RDWR);
2212
2213 #ifndef DEBUG
2214 dup2(0, 1);
2215 dup2(0, 2);
2216 #endif
2217
2218 if (close_all == 0)
2219 return;
2220
2221 dir = opendir("/proc/self/fd");
2222 if (!dir) {
2223 pr_err("Cannot open /proc/self/fd directory.\n");
2224 return;
2225 }
2226 for (dirent = readdir(dir); dirent; dirent = readdir(dir)) {
2227 int fd = -1;
2228
2229 if ((strcmp(dirent->d_name, ".") == 0) ||
2230 (strcmp(dirent->d_name, "..")) == 0)
2231 continue;
2232
2233 fd = strtol(dirent->d_name, NULL, 10);
2234 if (fd > 2)
2235 close(fd);
2236 }
2237 }
2238
2239 /* In a systemd/udev world, it is best to get systemd to
2240 * run daemon rather than running in the background.
2241 * Returns:
2242 * 1- if systemd service has been started
2243 * 0- otherwise
2244 */
2245 int continue_via_systemd(char *devnm, char *service_name, char *prefix)
2246 {
2247 int pid, status;
2248 char pathbuf[1024];
2249
2250 /* Simply return that service cannot be started */
2251 if (check_env("MDADM_NO_SYSTEMCTL"))
2252 return 0;
2253 switch (fork()) {
2254 case 0:
2255 manage_fork_fds(1);
2256 snprintf(pathbuf, sizeof(pathbuf),
2257 "%s@%s%s.service", service_name, prefix ?: "", devnm);
2258 status = execl("/usr/bin/systemctl", "systemctl", "restart",
2259 pathbuf, NULL);
2260 status = execl("/bin/systemctl", "systemctl", "restart",
2261 pathbuf, NULL);
2262 exit(1);
2263 case -1: /* Just do it ourselves. */
2264 break;
2265 default: /* parent - good */
2266 pid = wait(&status);
2267 if (pid >= 0 && status == 0)
2268 return 1;
2269 }
2270 return 0;
2271 }
2272
2273 int in_initrd(void)
2274 {
2275 return access("/etc/initrd-release", F_OK) >= 0;
2276 }
2277
2278 void reopen_mddev(int mdfd)
2279 {
2280 /* Re-open without any O_EXCL, but keep
2281 * the same fd
2282 */
2283 char *devnm;
2284 int fd;
2285 devnm = fd2devnm(mdfd);
2286 close(mdfd);
2287 fd = open_dev(devnm);
2288 if (fd >= 0 && fd != mdfd)
2289 dup2(fd, mdfd);
2290 }
2291
2292 static struct cmap_hooks *cmap_hooks = NULL;
2293 static int is_cmap_hooks_ready = 0;
2294
2295 void set_cmap_hooks(void)
2296 {
2297 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2298 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2299 if (!cmap_hooks->cmap_handle)
2300 return;
2301
2302 cmap_hooks->initialize =
2303 dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2304 cmap_hooks->get_string =
2305 dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2306 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2307
2308 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2309 !cmap_hooks->finalize)
2310 dlclose(cmap_hooks->cmap_handle);
2311 else
2312 is_cmap_hooks_ready = 1;
2313 }
2314
2315 int get_cluster_name(char **cluster_name)
2316 {
2317 int rv = -1;
2318 cmap_handle_t handle;
2319
2320 if (!is_cmap_hooks_ready)
2321 return rv;
2322
2323 rv = cmap_hooks->initialize(&handle);
2324 if (rv != CS_OK)
2325 goto out;
2326
2327 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2328 if (rv != CS_OK) {
2329 free(*cluster_name);
2330 rv = -1;
2331 goto name_err;
2332 }
2333
2334 rv = 0;
2335 name_err:
2336 cmap_hooks->finalize(handle);
2337 out:
2338 return rv;
2339 }
2340
2341 void set_dlm_hooks(void)
2342 {
2343 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2344 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2345 if (!dlm_hooks->dlm_handle)
2346 return;
2347
2348 dlm_hooks->open_lockspace =
2349 dlsym(dlm_hooks->dlm_handle, "dlm_open_lockspace");
2350 dlm_hooks->create_lockspace =
2351 dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2352 dlm_hooks->release_lockspace =
2353 dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2354 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2355 dlm_hooks->ls_unlock_wait =
2356 dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock_wait");
2357 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2358 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2359
2360 if (!dlm_hooks->open_lockspace || !dlm_hooks->create_lockspace ||
2361 !dlm_hooks->ls_lock || !dlm_hooks->ls_unlock_wait ||
2362 !dlm_hooks->release_lockspace || !dlm_hooks->ls_get_fd ||
2363 !dlm_hooks->dispatch)
2364 dlclose(dlm_hooks->dlm_handle);
2365 else
2366 is_dlm_hooks_ready = 1;
2367 }
2368
2369 void set_hooks(void)
2370 {
2371 set_dlm_hooks();
2372 set_cmap_hooks();
2373 }
2374
2375 int zero_disk_range(int fd, unsigned long long sector, size_t count)
2376 {
2377 int ret = 0;
2378 int fd_zero;
2379 void *addr = NULL;
2380 size_t written = 0;
2381 size_t len = count * 512;
2382 ssize_t n;
2383
2384 fd_zero = open("/dev/zero", O_RDONLY);
2385 if (fd_zero < 0) {
2386 pr_err("Cannot open /dev/zero\n");
2387 return -1;
2388 }
2389
2390 if (lseek64(fd, sector * 512, SEEK_SET) < 0) {
2391 ret = -errno;
2392 pr_err("Failed to seek offset for zeroing\n");
2393 goto out;
2394 }
2395
2396 addr = mmap(NULL, len, PROT_READ, MAP_PRIVATE, fd_zero, 0);
2397
2398 if (addr == MAP_FAILED) {
2399 ret = -errno;
2400 pr_err("Mapping /dev/zero failed\n");
2401 goto out;
2402 }
2403
2404 do {
2405 n = write(fd, addr + written, len - written);
2406 if (n < 0) {
2407 if (errno == EINTR)
2408 continue;
2409 ret = -errno;
2410 pr_err("Zeroing disk range failed\n");
2411 break;
2412 }
2413 written += n;
2414 } while (written != len);
2415
2416 munmap(addr, len);
2417
2418 out:
2419 close(fd_zero);
2420 return ret;
2421 }
2422
2423 /**
2424 * sleep_for() - Sleeps for specified time.
2425 * @sec: Seconds to sleep for.
2426 * @nsec: Nanoseconds to sleep for, has to be less than one second.
2427 * @wake_after_interrupt: If set, wake up if interrupted.
2428 *
2429 * Function immediately returns if error different than EINTR occurs.
2430 */
2431 void sleep_for(unsigned int sec, long nsec, bool wake_after_interrupt)
2432 {
2433 struct timespec delay = {.tv_sec = sec, .tv_nsec = nsec};
2434
2435 assert(nsec < MSEC_TO_NSEC(1000));
2436
2437 do {
2438 errno = 0;
2439 nanosleep(&delay, &delay);
2440 if (errno != 0 && errno != EINTR) {
2441 pr_err("Error sleeping for %us %ldns: %s\n", sec, nsec, strerror(errno));
2442 return;
2443 }
2444 } while (!wake_after_interrupt && errno == EINTR);
2445 }
2446
2447 /* is_directory() - Checks if directory provided by path is indeed a regular directory.
2448 * @path: directory path to be checked
2449 *
2450 * Doesn't accept symlinks.
2451 *
2452 * Return: true if is a directory, false if not
2453 */
2454 bool is_directory(const char *path)
2455 {
2456 struct stat st;
2457
2458 if (lstat(path, &st) != 0) {
2459 pr_err("%s: %s\n", strerror(errno), path);
2460 return false;
2461 }
2462
2463 if (!S_ISDIR(st.st_mode))
2464 return false;
2465
2466 return true;
2467 }
2468
2469 /*
2470 * is_file() - Checks if file provided by path is indeed a regular file.
2471 * @path: file path to be checked
2472 *
2473 * Doesn't accept symlinks.
2474 *
2475 * Return: true if is a file, false if not
2476 */
2477 bool is_file(const char *path)
2478 {
2479 struct stat st;
2480
2481 if (lstat(path, &st) != 0) {
2482 pr_err("%s: %s\n", strerror(errno), path);
2483 return false;
2484 }
2485
2486 if (!S_ISREG(st.st_mode))
2487 return false;
2488
2489 return true;
2490 }