]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
Makefile: make the CC definition conditional
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/poll.h>
28 #include <sys/socket.h>
29 #include <sys/utsname.h>
30 #include <sys/wait.h>
31 #include <sys/un.h>
32 #include <sys/resource.h>
33 #include <sys/vfs.h>
34 #include <linux/magic.h>
35 #include <ctype.h>
36 #include <dirent.h>
37 #include <signal.h>
38 #include <dlfcn.h>
39
40
41 /*
42 * following taken from linux/blkpg.h because they aren't
43 * anywhere else and it isn't safe to #include linux/ * stuff.
44 */
45
46 #define BLKPG _IO(0x12,105)
47
48 /* The argument structure */
49 struct blkpg_ioctl_arg {
50 int op;
51 int flags;
52 int datalen;
53 void *data;
54 };
55
56 /* The subfunctions (for the op field) */
57 #define BLKPG_ADD_PARTITION 1
58 #define BLKPG_DEL_PARTITION 2
59
60 /* Sizes of name fields. Unused at present. */
61 #define BLKPG_DEVNAMELTH 64
62 #define BLKPG_VOLNAMELTH 64
63
64 /* The data structure for ADD_PARTITION and DEL_PARTITION */
65 struct blkpg_partition {
66 long long start; /* starting offset in bytes */
67 long long length; /* length in bytes */
68 int pno; /* partition number */
69 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
70 to be used in kernel messages */
71 char volname[BLKPG_VOLNAMELTH]; /* volume label */
72 };
73
74 #include "part.h"
75
76 /* Force a compilation error if condition is true */
77 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
78
79 /* Force a compilation error if condition is true, but also produce a
80 result (of value 0 and type size_t), so the expression can be used
81 e.g. in a structure initializer (or where-ever else comma expressions
82 aren't permitted). */
83 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
84
85 static int is_dlm_hooks_ready = 0;
86
87 int dlm_funs_ready(void)
88 {
89 return is_dlm_hooks_ready ? 1 : 0;
90 }
91
92 #ifndef MDASSEMBLE
93 static struct dlm_hooks *dlm_hooks = NULL;
94 struct dlm_lock_resource *dlm_lock_res = NULL;
95 static int ast_called = 0;
96
97 struct dlm_lock_resource {
98 dlm_lshandle_t *ls;
99 struct dlm_lksb lksb;
100 };
101
102 /* Using poll(2) to wait for and dispatch ASTs */
103 static int poll_for_ast(dlm_lshandle_t ls)
104 {
105 struct pollfd pfd;
106
107 pfd.fd = dlm_hooks->ls_get_fd(ls);
108 pfd.events = POLLIN;
109
110 while (!ast_called)
111 {
112 if (poll(&pfd, 1, 0) < 0)
113 {
114 perror("poll");
115 return -1;
116 }
117 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
118 }
119 ast_called = 0;
120
121 return 0;
122 }
123
124 static void dlm_ast(void *arg)
125 {
126 ast_called = 1;
127 }
128
129 static char *cluster_name = NULL;
130 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
131 int cluster_get_dlmlock(int *lockid)
132 {
133 int ret = -1;
134 char str[64];
135 int flags = LKF_NOQUEUE;
136
137 ret = get_cluster_name(&cluster_name);
138 if (ret) {
139 pr_err("The md can't get cluster name\n");
140 return -1;
141 }
142
143 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
144 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
145 if (!dlm_lock_res->ls) {
146 pr_err("%s failed to create lockspace\n", cluster_name);
147 return -ENOMEM;
148 }
149
150 /* Conversions need the lockid in the LKSB */
151 if (flags & LKF_CONVERT)
152 dlm_lock_res->lksb.sb_lkid = *lockid;
153
154 snprintf(str, 64, "bitmap%s", cluster_name);
155 /* if flags with LKF_CONVERT causes below return ENOENT which means
156 * "No such file or directory" */
157 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE, &dlm_lock_res->lksb,
158 flags, str, strlen(str), 0, dlm_ast,
159 dlm_lock_res, NULL, NULL);
160 if (ret) {
161 pr_err("error %d when get PW mode on lock %s\n", errno, str);
162 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
163 return ret;
164 }
165
166 /* Wait for it to complete */
167 poll_for_ast(dlm_lock_res->ls);
168 *lockid = dlm_lock_res->lksb.sb_lkid;
169
170 return dlm_lock_res->lksb.sb_status;
171 }
172
173 int cluster_release_dlmlock(int lockid)
174 {
175 int ret = -1;
176
177 if (!cluster_name)
178 return -1;
179
180 /* if flags with LKF_CONVERT causes below return EINVAL which means
181 * "Invalid argument" */
182 ret = dlm_hooks->ls_unlock(dlm_lock_res->ls, lockid, 0,
183 &dlm_lock_res->lksb, dlm_lock_res);
184 if (ret) {
185 pr_err("error %d happened when unlock\n", errno);
186 /* XXX make sure the lock is unlocked eventually */
187 goto out;
188 }
189
190 /* Wait for it to complete */
191 poll_for_ast(dlm_lock_res->ls);
192
193 errno = dlm_lock_res->lksb.sb_status;
194 if (errno != EUNLOCK) {
195 pr_err("error %d happened in ast when unlock lockspace\n", errno);
196 /* XXX make sure the lockspace is unlocked eventually */
197 goto out;
198 }
199
200 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
201 if (ret) {
202 pr_err("error %d happened when release lockspace\n", errno);
203 /* XXX make sure the lockspace is released eventually */
204 goto out;
205 }
206 free(dlm_lock_res);
207
208 out:
209 return ret;
210 }
211 #else
212 int cluster_get_dlmlock(int *lockid)
213 {
214 return -1;
215 }
216 int cluster_release_dlmlock(int lockid)
217 {
218 return -1;
219 }
220 #endif
221
222 /*
223 * Parse a 128 bit uuid in 4 integers
224 * format is 32 hexx nibbles with options :.<space> separator
225 * If not exactly 32 hex digits are found, return 0
226 * else return 1
227 */
228 int parse_uuid(char *str, int uuid[4])
229 {
230 int hit = 0; /* number of Hex digIT */
231 int i;
232 char c;
233 for (i = 0; i < 4; i++)
234 uuid[i] = 0;
235
236 while ((c = *str++) != 0) {
237 int n;
238 if (c >= '0' && c <= '9')
239 n = c-'0';
240 else if (c >= 'a' && c <= 'f')
241 n = 10 + c - 'a';
242 else if (c >= 'A' && c <= 'F')
243 n = 10 + c - 'A';
244 else if (strchr(":. -", c))
245 continue;
246 else return 0;
247
248 if (hit<32) {
249 uuid[hit/8] <<= 4;
250 uuid[hit/8] += n;
251 }
252 hit++;
253 }
254 if (hit == 32)
255 return 1;
256 return 0;
257 }
258
259 /*
260 * Get the md version number.
261 * We use the RAID_VERSION ioctl if it is supported
262 * If not, but we have a block device with major '9', we assume
263 * 0.36.0
264 *
265 * Return version number as 24 but number - assume version parts
266 * always < 255
267 */
268
269 int md_get_version(int fd)
270 {
271 struct stat stb;
272 mdu_version_t vers;
273
274 if (fstat(fd, &stb)<0)
275 return -1;
276 if ((S_IFMT&stb.st_mode) != S_IFBLK)
277 return -1;
278
279 if (ioctl(fd, RAID_VERSION, &vers) == 0)
280 return (vers.major*10000) + (vers.minor*100) + vers.patchlevel;
281 if (errno == EACCES)
282 return -1;
283 if (major(stb.st_rdev) == MD_MAJOR)
284 return (3600);
285 return -1;
286 }
287
288 int get_linux_version()
289 {
290 struct utsname name;
291 char *cp;
292 int a = 0, b = 0,c = 0;
293 if (uname(&name) <0)
294 return -1;
295
296 cp = name.release;
297 a = strtoul(cp, &cp, 10);
298 if (*cp == '.')
299 b = strtoul(cp+1, &cp, 10);
300 if (*cp == '.')
301 c = strtoul(cp+1, &cp, 10);
302
303 return (a*1000000)+(b*1000)+c;
304 }
305
306 #ifndef MDASSEMBLE
307 int mdadm_version(char *version)
308 {
309 int a, b, c;
310 char *cp;
311
312 if (!version)
313 version = Version;
314
315 cp = strchr(version, '-');
316 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
317 return -1;
318 cp += 3;
319 a = strtoul(cp, &cp, 10);
320 if (*cp != '.')
321 return -1;
322 b = strtoul(cp+1, &cp, 10);
323 if (*cp == '.')
324 c = strtoul(cp+1, &cp, 10);
325 else
326 c = 0;
327 if (*cp != ' ' && *cp != '-')
328 return -1;
329 return (a*1000000)+(b*1000)+c;
330 }
331
332 unsigned long long parse_size(char *size)
333 {
334 /* parse 'size' which should be a number optionally
335 * followed by 'K', 'M', or 'G'.
336 * Without a suffix, K is assumed.
337 * Number returned is in sectors (half-K)
338 * INVALID_SECTORS returned on error.
339 */
340 char *c;
341 long long s = strtoll(size, &c, 10);
342 if (s > 0) {
343 switch (*c) {
344 case 'K':
345 c++;
346 default:
347 s *= 2;
348 break;
349 case 'M':
350 c++;
351 s *= 1024 * 2;
352 break;
353 case 'G':
354 c++;
355 s *= 1024 * 1024 * 2;
356 break;
357 case 's': /* sectors */
358 c++;
359 break;
360 }
361 } else
362 s = INVALID_SECTORS;
363 if (*c)
364 s = INVALID_SECTORS;
365 return s;
366 }
367
368 int parse_layout_10(char *layout)
369 {
370 int copies, rv;
371 char *cp;
372 /* Parse the layout string for raid10 */
373 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
374 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
375 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
376 copies > 200 ||
377 *cp)
378 return -1;
379 if (layout[0] == 'n')
380 rv = 256 + copies;
381 else if (layout[0] == 'o')
382 rv = 0x10000 + (copies<<8) + 1;
383 else
384 rv = 1 + (copies<<8);
385 return rv;
386 }
387
388 int parse_layout_faulty(char *layout)
389 {
390 /* Parse the layout string for 'faulty' */
391 int ln = strcspn(layout, "0123456789");
392 char *m = xstrdup(layout);
393 int mode;
394 m[ln] = 0;
395 mode = map_name(faultylayout, m);
396 if (mode == UnSet)
397 return -1;
398
399 return mode | (atoi(layout+ln)<< ModeShift);
400 }
401
402 long parse_num(char *num)
403 {
404 /* Either return a valid number, or -1 */
405 char *c;
406 long rv = strtol(num, &c, 10);
407 if (rv < 0 || *c || !num[0])
408 return -1;
409 else
410 return rv;
411 }
412 #endif
413
414 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
415 {
416 char *dev;
417 *slot = strtoul(input, &dev, 10);
418 if (dev == input || dev[0] != ':')
419 return -1;
420 *devname = dev+1;
421 return 0;
422 }
423
424 void remove_partitions(int fd)
425 {
426 /* remove partitions from this block devices.
427 * This is used for components added to an array
428 */
429 #ifdef BLKPG_DEL_PARTITION
430 struct blkpg_ioctl_arg a;
431 struct blkpg_partition p;
432
433 a.op = BLKPG_DEL_PARTITION;
434 a.data = (void*)&p;
435 a.datalen = sizeof(p);
436 a.flags = 0;
437 memset(a.data, 0, a.datalen);
438 for (p.pno = 0; p.pno < 16; p.pno++)
439 ioctl(fd, BLKPG, &a);
440 #endif
441 }
442
443 int test_partition(int fd)
444 {
445 /* Check if fd is a whole-disk or a partition.
446 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
447 * will return ENXIO on an invalid partition number.
448 */
449 struct blkpg_ioctl_arg a;
450 struct blkpg_partition p;
451 a.op = BLKPG_DEL_PARTITION;
452 a.data = (void*)&p;
453 a.datalen = sizeof(p);
454 a.flags = 0;
455 memset(a.data, 0, a.datalen);
456 p.pno = 1<<30;
457 if (ioctl(fd, BLKPG, &a) == 0)
458 /* Very unlikely, but not a partition */
459 return 0;
460 if (errno == ENXIO || errno == ENOTTY)
461 /* not a partition */
462 return 0;
463
464 return 1;
465 }
466
467 int test_partition_from_id(dev_t id)
468 {
469 char buf[20];
470 int fd, rv;
471
472 sprintf(buf, "%d:%d", major(id), minor(id));
473 fd = dev_open(buf, O_RDONLY);
474 if (fd < 0)
475 return -1;
476 rv = test_partition(fd);
477 close(fd);
478 return rv;
479 }
480
481 int enough(int level, int raid_disks, int layout, int clean, char *avail)
482 {
483 int copies, first;
484 int i;
485 int avail_disks = 0;
486
487 for (i = 0; i < raid_disks; i++)
488 avail_disks += !!avail[i];
489
490 switch (level) {
491 case 10:
492 /* This is the tricky one - we need to check
493 * which actual disks are present.
494 */
495 copies = (layout&255)* ((layout>>8) & 255);
496 first = 0;
497 do {
498 /* there must be one of the 'copies' form 'first' */
499 int n = copies;
500 int cnt = 0;
501 int this = first;
502 while (n--) {
503 if (avail[this])
504 cnt++;
505 this = (this+1) % raid_disks;
506 }
507 if (cnt == 0)
508 return 0;
509 first = (first+(layout&255)) % raid_disks;
510 } while (first != 0);
511 return 1;
512
513 case LEVEL_MULTIPATH:
514 return avail_disks>= 1;
515 case LEVEL_LINEAR:
516 case 0:
517 return avail_disks == raid_disks;
518 case 1:
519 return avail_disks >= 1;
520 case 4:
521 if (avail_disks == raid_disks - 1 &&
522 !avail[raid_disks - 1])
523 /* If just the parity device is missing, then we
524 * have enough, even if not clean
525 */
526 return 1;
527 /* FALL THROUGH */
528 case 5:
529 if (clean)
530 return avail_disks >= raid_disks-1;
531 else
532 return avail_disks >= raid_disks;
533 case 6:
534 if (clean)
535 return avail_disks >= raid_disks-2;
536 else
537 return avail_disks >= raid_disks;
538 default:
539 return 0;
540 }
541 }
542
543 int enough_fd(int fd)
544 {
545 struct mdu_array_info_s array;
546 struct mdu_disk_info_s disk;
547 int i, rv;
548 char *avail;
549
550 if (ioctl(fd, GET_ARRAY_INFO, &array) != 0 ||
551 array.raid_disks <= 0)
552 return 0;
553 avail = xcalloc(array.raid_disks, 1);
554 for (i = 0; i < MAX_DISKS && array.nr_disks > 0; i++) {
555 disk.number = i;
556 if (ioctl(fd, GET_DISK_INFO, &disk) != 0)
557 continue;
558 if (disk.major == 0 && disk.minor == 0)
559 continue;
560 array.nr_disks--;
561
562 if (! (disk.state & (1<<MD_DISK_SYNC)))
563 continue;
564 if (disk.raid_disk < 0 || disk.raid_disk >= array.raid_disks)
565 continue;
566 avail[disk.raid_disk] = 1;
567 }
568 /* This is used on an active array, so assume it is clean */
569 rv = enough(array.level, array.raid_disks, array.layout,
570 1, avail);
571 free(avail);
572 return rv;
573 }
574
575 const int uuid_zero[4] = { 0, 0, 0, 0 };
576
577 int same_uuid(int a[4], int b[4], int swapuuid)
578 {
579 if (swapuuid) {
580 /* parse uuids are hostendian.
581 * uuid's from some superblocks are big-ending
582 * if there is a difference, we need to swap..
583 */
584 unsigned char *ac = (unsigned char *)a;
585 unsigned char *bc = (unsigned char *)b;
586 int i;
587 for (i = 0; i < 16; i += 4) {
588 if (ac[i+0] != bc[i+3] ||
589 ac[i+1] != bc[i+2] ||
590 ac[i+2] != bc[i+1] ||
591 ac[i+3] != bc[i+0])
592 return 0;
593 }
594 return 1;
595 } else {
596 if (a[0]==b[0] &&
597 a[1]==b[1] &&
598 a[2]==b[2] &&
599 a[3]==b[3])
600 return 1;
601 return 0;
602 }
603 }
604
605 void copy_uuid(void *a, int b[4], int swapuuid)
606 {
607 if (swapuuid) {
608 /* parse uuids are hostendian.
609 * uuid's from some superblocks are big-ending
610 * if there is a difference, we need to swap..
611 */
612 unsigned char *ac = (unsigned char *)a;
613 unsigned char *bc = (unsigned char *)b;
614 int i;
615 for (i = 0; i < 16; i += 4) {
616 ac[i+0] = bc[i+3];
617 ac[i+1] = bc[i+2];
618 ac[i+2] = bc[i+1];
619 ac[i+3] = bc[i+0];
620 }
621 } else
622 memcpy(a, b, 16);
623 }
624
625 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
626 {
627 int i, j;
628 char uuid[16];
629 char *c = buf;
630 strcpy(c, "UUID-");
631 c += strlen(c);
632 copy_uuid(uuid, id, swap);
633 for (i = 0; i < 4; i++) {
634 if (i)
635 *c++ = sep;
636 for (j = 3; j >= 0; j--) {
637 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
638 c+= 2;
639 }
640 }
641 return buf;
642
643 }
644
645 char *fname_from_uuid(struct supertype *st, struct mdinfo *info, char *buf, char sep)
646 {
647 // dirty hack to work around an issue with super1 superblocks...
648 // super1 superblocks need swapuuid set in order for assembly to
649 // work, but can't have it set if we want this printout to match
650 // all the other uuid printouts in super1.c, so we force swapuuid
651 // to 1 to make our printout match the rest of super1
652 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 : st->ss->swapuuid, buf, sep);
653 }
654
655 #ifndef MDASSEMBLE
656 int check_ext2(int fd, char *name)
657 {
658 /*
659 * Check for an ext2fs file system.
660 * Superblock is always 1K at 1K offset
661 *
662 * s_magic is le16 at 56 == 0xEF53
663 * report mtime - le32 at 44
664 * blocks - le32 at 4
665 * logblksize - le32 at 24
666 */
667 unsigned char sb[1024];
668 time_t mtime;
669 unsigned long long size;
670 int bsize;
671 if (lseek(fd, 1024,0)!= 1024)
672 return 0;
673 if (read(fd, sb, 1024)!= 1024)
674 return 0;
675 if (sb[56] != 0x53 || sb[57] != 0xef)
676 return 0;
677
678 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
679 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
680 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
681 size <<= bsize;
682 pr_err("%s appears to contain an ext2fs file system\n",
683 name);
684 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
685 return 1;
686 }
687
688 int check_reiser(int fd, char *name)
689 {
690 /*
691 * superblock is at 64K
692 * size is 1024;
693 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
694 *
695 */
696 unsigned char sb[1024];
697 unsigned long long size;
698 if (lseek(fd, 64*1024, 0) != 64*1024)
699 return 0;
700 if (read(fd, sb, 1024) != 1024)
701 return 0;
702 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
703 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
704 return 0;
705 pr_err("%s appears to contain a reiserfs file system\n",name);
706 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
707 cont_err("size = %lluK\n", size*4);
708
709 return 1;
710 }
711
712 int check_raid(int fd, char *name)
713 {
714 struct mdinfo info;
715 time_t crtime;
716 char *level;
717 struct supertype *st = guess_super(fd);
718
719 if (!st)
720 return 0;
721 st->ss->load_super(st, fd, name);
722 /* Looks like a raid array .. */
723 pr_err("%s appears to be part of a raid array:\n",
724 name);
725 st->ss->getinfo_super(st, &info, NULL);
726 st->ss->free_super(st);
727 crtime = info.array.ctime;
728 level = map_num(pers, info.array.level);
729 if (!level) level = "-unknown-";
730 cont_err("level=%s devices=%d ctime=%s",
731 level, info.array.raid_disks, ctime(&crtime));
732 return 1;
733 }
734
735 int ask(char *mesg)
736 {
737 char *add = "";
738 int i;
739 for (i = 0; i < 5; i++) {
740 char buf[100];
741 fprintf(stderr, "%s%s", mesg, add);
742 fflush(stderr);
743 if (fgets(buf, 100, stdin)==NULL)
744 return 0;
745 if (buf[0]=='y' || buf[0]=='Y')
746 return 1;
747 if (buf[0]=='n' || buf[0]=='N')
748 return 0;
749 add = "(y/n) ";
750 }
751 pr_err("assuming 'no'\n");
752 return 0;
753 }
754 #endif /* MDASSEMBLE */
755
756 int is_standard(char *dev, int *nump)
757 {
758 /* tests if dev is a "standard" md dev name.
759 * i.e if the last component is "/dNN" or "/mdNN",
760 * where NN is a string of digits
761 * Returns 1 if a partitionable standard,
762 * -1 if non-partitonable,
763 * 0 if not a standard name.
764 */
765 char *d = strrchr(dev, '/');
766 int type = 0;
767 int num;
768 if (!d)
769 return 0;
770 if (strncmp(d, "/d",2) == 0)
771 d += 2, type = 1; /* /dev/md/dN{pM} */
772 else if (strncmp(d, "/md_d", 5) == 0)
773 d += 5, type = 1; /* /dev/md_dN{pM} */
774 else if (strncmp(d, "/md", 3) == 0)
775 d += 3, type = -1; /* /dev/mdN */
776 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
777 d += 1, type = -1; /* /dev/md/N */
778 else
779 return 0;
780 if (!*d)
781 return 0;
782 num = atoi(d);
783 while (isdigit(*d))
784 d++;
785 if (*d)
786 return 0;
787 if (nump) *nump = num;
788
789 return type;
790 }
791
792 unsigned long calc_csum(void *super, int bytes)
793 {
794 unsigned long long newcsum = 0;
795 int i;
796 unsigned int csum;
797 unsigned int *superc = (unsigned int*) super;
798
799 for(i = 0; i < bytes/4; i++)
800 newcsum += superc[i];
801 csum = (newcsum& 0xffffffff) + (newcsum>>32);
802 #ifdef __alpha__
803 /* The in-kernel checksum calculation is always 16bit on
804 * the alpha, though it is 32 bit on i386...
805 * I wonder what it is elsewhere... (it uses an API in
806 * a way that it shouldn't).
807 */
808 csum = (csum & 0xffff) + (csum >> 16);
809 csum = (csum & 0xffff) + (csum >> 16);
810 #endif
811 return csum;
812 }
813
814 #ifndef MDASSEMBLE
815 char *human_size(long long bytes)
816 {
817 static char buf[30];
818
819 /* We convert bytes to either centi-M{ega,ibi}bytes or
820 * centi-G{igi,ibi}bytes, with appropriate rounding,
821 * and then print 1/100th of those as a decimal.
822 * We allow upto 2048Megabytes before converting to
823 * gigabytes, as that shows more precision and isn't
824 * too large a number.
825 * Terabytes are not yet handled.
826 */
827
828 if (bytes < 5000*1024)
829 buf[0] = 0;
830 else if (bytes < 2*1024LL*1024LL*1024LL) {
831 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
832 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
833 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
834 cMiB/100 , cMiB % 100,
835 cMB/100, cMB % 100);
836 } else {
837 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
838 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
839 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
840 cGiB/100 , cGiB % 100,
841 cGB/100, cGB % 100);
842 }
843 return buf;
844 }
845
846 char *human_size_brief(long long bytes, int prefix)
847 {
848 static char buf[30];
849
850 /* We convert bytes to either centi-M{ega,ibi}bytes or
851 * centi-G{igi,ibi}bytes, with appropriate rounding,
852 * and then print 1/100th of those as a decimal.
853 * We allow upto 2048Megabytes before converting to
854 * gigabytes, as that shows more precision and isn't
855 * too large a number.
856 * Terabytes are not yet handled.
857 *
858 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
859 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
860 */
861
862 if (bytes < 5000*1024)
863 buf[0] = 0;
864 else if (prefix == IEC) {
865 if (bytes < 2*1024LL*1024LL*1024LL) {
866 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
867 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
868 cMiB/100 , cMiB % 100);
869 } else {
870 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
871 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
872 cGiB/100 , cGiB % 100);
873 }
874 }
875 else if (prefix == JEDEC) {
876 if (bytes < 2*1024LL*1024LL*1024LL) {
877 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
878 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
879 cMB/100, cMB % 100);
880 } else {
881 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
882 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
883 cGB/100 , cGB % 100);
884 }
885 }
886 else
887 buf[0] = 0;
888
889 return buf;
890 }
891
892 void print_r10_layout(int layout)
893 {
894 int near = layout & 255;
895 int far = (layout >> 8) & 255;
896 int offset = (layout&0x10000);
897 char *sep = "";
898
899 if (near != 1) {
900 printf("%s near=%d", sep, near);
901 sep = ",";
902 }
903 if (far != 1)
904 printf("%s %s=%d", sep, offset?"offset":"far", far);
905 if (near*far == 1)
906 printf("NO REDUNDANCY");
907 }
908 #endif
909
910 unsigned long long calc_array_size(int level, int raid_disks, int layout,
911 int chunksize, unsigned long long devsize)
912 {
913 if (level == 1)
914 return devsize;
915 devsize &= ~(unsigned long long)((chunksize>>9)-1);
916 return get_data_disks(level, layout, raid_disks) * devsize;
917 }
918
919 int get_data_disks(int level, int layout, int raid_disks)
920 {
921 int data_disks = 0;
922 switch (level) {
923 case 0: data_disks = raid_disks;
924 break;
925 case 1: data_disks = 1;
926 break;
927 case 4:
928 case 5: data_disks = raid_disks - 1;
929 break;
930 case 6: data_disks = raid_disks - 2;
931 break;
932 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
933 break;
934 }
935
936 return data_disks;
937 }
938
939 int devnm2devid(char *devnm)
940 {
941 /* First look in /sys/block/$DEVNM/dev for %d:%d
942 * If that fails, try parsing out a number
943 */
944 char path[100];
945 char *ep;
946 int fd;
947 int mjr,mnr;
948
949 sprintf(path, "/sys/block/%s/dev", devnm);
950 fd = open(path, O_RDONLY);
951 if (fd >= 0) {
952 char buf[20];
953 int n = read(fd, buf, sizeof(buf));
954 close(fd);
955 if (n > 0)
956 buf[n] = 0;
957 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
958 return makedev(mjr, mnr);
959 }
960 if (strncmp(devnm, "md_d", 4) == 0 &&
961 isdigit(devnm[4]) &&
962 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
963 ep > devnm && *ep == 0)
964 return makedev(get_mdp_major(), mnr << MdpMinorShift);
965
966 if (strncmp(devnm, "md", 2) == 0 &&
967 isdigit(devnm[2]) &&
968 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
969 ep > devnm && *ep == 0)
970 return makedev(MD_MAJOR, mnr);
971
972 return 0;
973 }
974
975 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
976 char *get_md_name(char *devnm)
977 {
978 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
979 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
980
981 static char devname[50];
982 struct stat stb;
983 dev_t rdev = devnm2devid(devnm);
984 char *dn;
985
986 if (rdev == 0)
987 return 0;
988 if (strncmp(devnm, "md_", 3) == 0) {
989 snprintf(devname, sizeof(devname), "/dev/md/%s",
990 devnm + 3);
991 if (stat(devname, &stb) == 0
992 && (S_IFMT&stb.st_mode) == S_IFBLK
993 && (stb.st_rdev == rdev))
994 return devname;
995 }
996 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
997 if (stat(devname, &stb) == 0
998 && (S_IFMT&stb.st_mode) == S_IFBLK
999 && (stb.st_rdev == rdev))
1000 return devname;
1001
1002 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
1003 if (stat(devname, &stb) == 0
1004 && (S_IFMT&stb.st_mode) == S_IFBLK
1005 && (stb.st_rdev == rdev))
1006 return devname;
1007
1008 dn = map_dev(major(rdev), minor(rdev), 0);
1009 if (dn)
1010 return dn;
1011 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
1012 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
1013 if (errno != EEXIST)
1014 return NULL;
1015
1016 if (stat(devname, &stb) == 0
1017 && (S_IFMT&stb.st_mode) == S_IFBLK
1018 && (stb.st_rdev == rdev))
1019 return devname;
1020 unlink(devname);
1021 return NULL;
1022 }
1023
1024 void put_md_name(char *name)
1025 {
1026 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1027 unlink(name);
1028 }
1029 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
1030
1031 int get_maj_min(char *dev, int *major, int *minor)
1032 {
1033 char *e;
1034 *major = strtoul(dev, &e, 0);
1035 return (e > dev && *e == ':' && e[1] &&
1036 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1037 *e == 0);
1038 }
1039
1040 int dev_open(char *dev, int flags)
1041 {
1042 /* like 'open', but if 'dev' matches %d:%d, create a temp
1043 * block device and open that
1044 */
1045 int fd = -1;
1046 char devname[32];
1047 int major;
1048 int minor;
1049
1050 if (!dev) return -1;
1051 flags |= O_DIRECT;
1052
1053 if (get_maj_min(dev, &major, &minor)) {
1054 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1055 (int)getpid(), major, minor);
1056 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1057 fd = open(devname, flags);
1058 unlink(devname);
1059 }
1060 if (fd < 0) {
1061 /* Try /tmp as /dev appear to be read-only */
1062 snprintf(devname, sizeof(devname), "/tmp/.tmp.md.%d:%d:%d",
1063 (int)getpid(), major, minor);
1064 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1065 fd = open(devname, flags);
1066 unlink(devname);
1067 }
1068 }
1069 } else
1070 fd = open(dev, flags);
1071 return fd;
1072 }
1073
1074 int open_dev_flags(char *devnm, int flags)
1075 {
1076 int devid;
1077 char buf[20];
1078
1079 devid = devnm2devid(devnm);
1080 sprintf(buf, "%d:%d", major(devid), minor(devid));
1081 return dev_open(buf, flags);
1082 }
1083
1084 int open_dev(char *devnm)
1085 {
1086 return open_dev_flags(devnm, O_RDONLY);
1087 }
1088
1089 int open_dev_excl(char *devnm)
1090 {
1091 char buf[20];
1092 int i;
1093 int flags = O_RDWR;
1094 int devid = devnm2devid(devnm);
1095 long delay = 1000;
1096
1097 sprintf(buf, "%d:%d", major(devid), minor(devid));
1098 for (i = 0 ; i < 25 ; i++) {
1099 int fd = dev_open(buf, flags|O_EXCL);
1100 if (fd >= 0)
1101 return fd;
1102 if (errno == EACCES && flags == O_RDWR) {
1103 flags = O_RDONLY;
1104 continue;
1105 }
1106 if (errno != EBUSY)
1107 return fd;
1108 usleep(delay);
1109 if (delay < 200000)
1110 delay *= 2;
1111 }
1112 return -1;
1113 }
1114
1115 int same_dev(char *one, char *two)
1116 {
1117 struct stat st1, st2;
1118 if (stat(one, &st1) != 0)
1119 return 0;
1120 if (stat(two, &st2) != 0)
1121 return 0;
1122 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1123 return 0;
1124 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1125 return 0;
1126 return st1.st_rdev == st2.st_rdev;
1127 }
1128
1129 void wait_for(char *dev, int fd)
1130 {
1131 int i;
1132 struct stat stb_want;
1133 long delay = 1000;
1134
1135 if (fstat(fd, &stb_want) != 0 ||
1136 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1137 return;
1138
1139 for (i = 0 ; i < 25 ; i++) {
1140 struct stat stb;
1141 if (stat(dev, &stb) == 0 &&
1142 (stb.st_mode & S_IFMT) == S_IFBLK &&
1143 (stb.st_rdev == stb_want.st_rdev))
1144 return;
1145 usleep(delay);
1146 if (delay < 200000)
1147 delay *= 2;
1148 }
1149 if (i == 25)
1150 dprintf("timeout waiting for %s\n", dev);
1151 }
1152
1153 struct superswitch *superlist[] =
1154 {
1155 &super0, &super1,
1156 &super_ddf, &super_imsm,
1157 &mbr, &gpt,
1158 NULL };
1159
1160 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
1161
1162 struct supertype *super_by_fd(int fd, char **subarrayp)
1163 {
1164 mdu_array_info_t array;
1165 int vers;
1166 int minor;
1167 struct supertype *st = NULL;
1168 struct mdinfo *sra;
1169 char *verstr;
1170 char version[20];
1171 int i;
1172 char *subarray = NULL;
1173 char container[32] = "";
1174
1175 sra = sysfs_read(fd, NULL, GET_VERSION);
1176
1177 if (sra) {
1178 vers = sra->array.major_version;
1179 minor = sra->array.minor_version;
1180 verstr = sra->text_version;
1181 } else {
1182 if (ioctl(fd, GET_ARRAY_INFO, &array))
1183 array.major_version = array.minor_version = 0;
1184 vers = array.major_version;
1185 minor = array.minor_version;
1186 verstr = "";
1187 }
1188
1189 if (vers != -1) {
1190 sprintf(version, "%d.%d", vers, minor);
1191 verstr = version;
1192 }
1193 if (minor == -2 && is_subarray(verstr)) {
1194 char *dev = verstr+1;
1195
1196 subarray = strchr(dev, '/');
1197 if (subarray) {
1198 *subarray++ = '\0';
1199 subarray = xstrdup(subarray);
1200 }
1201 strcpy(container, dev);
1202 if (sra)
1203 sysfs_free(sra);
1204 sra = sysfs_read(-1, container, GET_VERSION);
1205 if (sra && sra->text_version[0])
1206 verstr = sra->text_version;
1207 else
1208 verstr = "-no-metadata-";
1209 }
1210
1211 for (i = 0; st == NULL && superlist[i] ; i++)
1212 st = superlist[i]->match_metadata_desc(verstr);
1213
1214 if (sra)
1215 sysfs_free(sra);
1216 if (st) {
1217 st->sb = NULL;
1218 if (subarrayp)
1219 *subarrayp = subarray;
1220 strcpy(st->container_devnm, container);
1221 strcpy(st->devnm, fd2devnm(fd));
1222 } else
1223 free(subarray);
1224
1225 return st;
1226 }
1227 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
1228
1229 int dev_size_from_id(dev_t id, unsigned long long *size)
1230 {
1231 char buf[20];
1232 int fd;
1233
1234 sprintf(buf, "%d:%d", major(id), minor(id));
1235 fd = dev_open(buf, O_RDONLY);
1236 if (fd < 0)
1237 return 0;
1238 if (get_dev_size(fd, NULL, size)) {
1239 close(fd);
1240 return 1;
1241 }
1242 close(fd);
1243 return 0;
1244 }
1245
1246 struct supertype *dup_super(struct supertype *orig)
1247 {
1248 struct supertype *st;
1249
1250 if (!orig)
1251 return orig;
1252 st = xcalloc(1, sizeof(*st));
1253 st->ss = orig->ss;
1254 st->max_devs = orig->max_devs;
1255 st->minor_version = orig->minor_version;
1256 st->ignore_hw_compat = orig->ignore_hw_compat;
1257 st->data_offset = orig->data_offset;
1258 st->sb = NULL;
1259 st->info = NULL;
1260 return st;
1261 }
1262
1263 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1264 {
1265 /* try each load_super to find the best match,
1266 * and return the best superswitch
1267 */
1268 struct superswitch *ss;
1269 struct supertype *st;
1270 unsigned int besttime = 0;
1271 int bestsuper = -1;
1272 int i;
1273
1274 st = xcalloc(1, sizeof(*st));
1275 st->container_devnm[0] = 0;
1276
1277 for (i = 0 ; superlist[i]; i++) {
1278 int rv;
1279 ss = superlist[i];
1280 if (guess_type == guess_array && ss->add_to_super == NULL)
1281 continue;
1282 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1283 continue;
1284 memset(st, 0, sizeof(*st));
1285 st->ignore_hw_compat = 1;
1286 rv = ss->load_super(st, fd, NULL);
1287 if (rv == 0) {
1288 struct mdinfo info;
1289 st->ss->getinfo_super(st, &info, NULL);
1290 if (bestsuper == -1 ||
1291 besttime < info.array.ctime) {
1292 bestsuper = i;
1293 besttime = info.array.ctime;
1294 }
1295 ss->free_super(st);
1296 }
1297 }
1298 if (bestsuper != -1) {
1299 int rv;
1300 memset(st, 0, sizeof(*st));
1301 st->ignore_hw_compat = 1;
1302 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1303 if (rv == 0) {
1304 superlist[bestsuper]->free_super(st);
1305 return st;
1306 }
1307 }
1308 free(st);
1309 return NULL;
1310 }
1311
1312 /* Return size of device in bytes */
1313 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1314 {
1315 unsigned long long ldsize;
1316 struct stat st;
1317
1318 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1319 ldsize = (unsigned long long)st.st_size;
1320 else
1321 #ifdef BLKGETSIZE64
1322 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1323 #endif
1324 {
1325 unsigned long dsize;
1326 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1327 ldsize = dsize;
1328 ldsize <<= 9;
1329 } else {
1330 if (dname)
1331 pr_err("Cannot get size of %s: %s\b",
1332 dname, strerror(errno));
1333 return 0;
1334 }
1335 }
1336 *sizep = ldsize;
1337 return 1;
1338 }
1339
1340 /* Return true if this can only be a container, not a member device.
1341 * i.e. is and md device and size is zero
1342 */
1343 int must_be_container(int fd)
1344 {
1345 unsigned long long size;
1346 if (md_get_version(fd) < 0)
1347 return 0;
1348 if (get_dev_size(fd, NULL, &size) == 0)
1349 return 1;
1350 if (size == 0)
1351 return 1;
1352 return 0;
1353 }
1354
1355 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1356 * Returns: 1 if successful
1357 * -1 for unknown partition type
1358 * 0 for other errors
1359 */
1360 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1361 {
1362 struct GPT gpt;
1363 unsigned char empty_gpt_entry[16]= {0};
1364 struct GPT_part_entry *part;
1365 char buf[512];
1366 unsigned long long curr_part_end;
1367 unsigned all_partitions, entry_size;
1368 unsigned part_nr;
1369
1370 *endofpart = 0;
1371
1372 BUILD_BUG_ON(sizeof(gpt) != 512);
1373 /* skip protective MBR */
1374 lseek(fd, 512, SEEK_SET);
1375 /* read GPT header */
1376 if (read(fd, &gpt, 512) != 512)
1377 return 0;
1378
1379 /* get the number of partition entries and the entry size */
1380 all_partitions = __le32_to_cpu(gpt.part_cnt);
1381 entry_size = __le32_to_cpu(gpt.part_size);
1382
1383 /* Check GPT signature*/
1384 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1385 return -1;
1386
1387 /* sanity checks */
1388 if (all_partitions > 1024 ||
1389 entry_size > sizeof(buf))
1390 return -1;
1391
1392 part = (struct GPT_part_entry *)buf;
1393
1394 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1395 /* read partition entry */
1396 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1397 return 0;
1398
1399 /* is this valid partition? */
1400 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1401 /* check the last lba for the current partition */
1402 curr_part_end = __le64_to_cpu(part->ending_lba);
1403 if (curr_part_end > *endofpart)
1404 *endofpart = curr_part_end;
1405 }
1406
1407 }
1408 return 1;
1409 }
1410
1411 /* Sets endofpart parameter to the last block used by the last partition on the device.
1412 * Returns: 1 if successful
1413 * -1 for unknown partition type
1414 * 0 for other errors
1415 */
1416 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1417 {
1418 struct MBR boot_sect;
1419 struct MBR_part_record *part;
1420 unsigned long long curr_part_end;
1421 unsigned part_nr;
1422 int retval = 0;
1423
1424 *endofpart = 0;
1425
1426 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1427 /* read MBR */
1428 lseek(fd, 0, 0);
1429 if (read(fd, &boot_sect, 512) != 512)
1430 goto abort;
1431
1432 /* check MBP signature */
1433 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1434 retval = 1;
1435 /* found the correct signature */
1436 part = boot_sect.parts;
1437
1438 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1439 /* check for GPT type */
1440 if (part->part_type == MBR_GPT_PARTITION_TYPE) {
1441 retval = get_gpt_last_partition_end(fd, endofpart);
1442 break;
1443 }
1444 /* check the last used lba for the current partition */
1445 curr_part_end = __le32_to_cpu(part->first_sect_lba) +
1446 __le32_to_cpu(part->blocks_num);
1447 if (curr_part_end > *endofpart)
1448 *endofpart = curr_part_end;
1449
1450 part++;
1451 }
1452 } else {
1453 /* Unknown partition table */
1454 retval = -1;
1455 }
1456 abort:
1457 return retval;
1458 }
1459
1460 int check_partitions(int fd, char *dname, unsigned long long freesize,
1461 unsigned long long size)
1462 {
1463 /*
1464 * Check where the last partition ends
1465 */
1466 unsigned long long endofpart;
1467 int ret;
1468
1469 if ((ret = get_last_partition_end(fd, &endofpart)) > 0) {
1470 /* There appears to be a partition table here */
1471 if (freesize == 0) {
1472 /* partitions will not be visible in new device */
1473 pr_err("partition table exists on %s but will be lost or\n"
1474 " meaningless after creating array\n",
1475 dname);
1476 return 1;
1477 } else if (endofpart > freesize) {
1478 /* last partition overlaps metadata */
1479 pr_err("metadata will over-write last partition on %s.\n",
1480 dname);
1481 return 1;
1482 } else if (size && endofpart > size) {
1483 /* partitions will be truncated in new device */
1484 pr_err("array size is too small to cover all partitions on %s.\n",
1485 dname);
1486 return 1;
1487 }
1488 }
1489 return 0;
1490 }
1491
1492 int open_container(int fd)
1493 {
1494 /* 'fd' is a block device. Find out if it is in use
1495 * by a container, and return an open fd on that container.
1496 */
1497 char path[256];
1498 char *e;
1499 DIR *dir;
1500 struct dirent *de;
1501 int dfd, n;
1502 char buf[200];
1503 int major, minor;
1504 struct stat st;
1505
1506 if (fstat(fd, &st) != 0)
1507 return -1;
1508 sprintf(path, "/sys/dev/block/%d:%d/holders",
1509 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1510 e = path + strlen(path);
1511
1512 dir = opendir(path);
1513 if (!dir)
1514 return -1;
1515 while ((de = readdir(dir))) {
1516 if (de->d_ino == 0)
1517 continue;
1518 if (de->d_name[0] == '.')
1519 continue;
1520 /* Need to make sure it is a container and not a volume */
1521 sprintf(e, "/%s/md/metadata_version", de->d_name);
1522 dfd = open(path, O_RDONLY);
1523 if (dfd < 0)
1524 continue;
1525 n = read(dfd, buf, sizeof(buf));
1526 close(dfd);
1527 if (n <= 0 || (unsigned)n >= sizeof(buf))
1528 continue;
1529 buf[n] = 0;
1530 if (strncmp(buf, "external", 8) != 0 ||
1531 n < 10 ||
1532 buf[9] == '/')
1533 continue;
1534 sprintf(e, "/%s/dev", de->d_name);
1535 dfd = open(path, O_RDONLY);
1536 if (dfd < 0)
1537 continue;
1538 n = read(dfd, buf, sizeof(buf));
1539 close(dfd);
1540 if (n <= 0 || (unsigned)n >= sizeof(buf))
1541 continue;
1542 buf[n] = 0;
1543 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1544 continue;
1545 sprintf(buf, "%d:%d", major, minor);
1546 dfd = dev_open(buf, O_RDONLY);
1547 if (dfd >= 0) {
1548 closedir(dir);
1549 return dfd;
1550 }
1551 }
1552 closedir(dir);
1553 return -1;
1554 }
1555
1556 struct superswitch *version_to_superswitch(char *vers)
1557 {
1558 int i;
1559
1560 for (i = 0; superlist[i]; i++) {
1561 struct superswitch *ss = superlist[i];
1562
1563 if (strcmp(vers, ss->name) == 0)
1564 return ss;
1565 }
1566
1567 return NULL;
1568 }
1569
1570 int metadata_container_matches(char *metadata, char *devnm)
1571 {
1572 /* Check if 'devnm' is the container named in 'metadata'
1573 * which is
1574 * /containername/componentname or
1575 * -containername/componentname
1576 */
1577 int l;
1578 if (*metadata != '/' && *metadata != '-')
1579 return 0;
1580 l = strlen(devnm);
1581 if (strncmp(metadata+1, devnm, l) != 0)
1582 return 0;
1583 if (metadata[l+1] != '/')
1584 return 0;
1585 return 1;
1586 }
1587
1588 int metadata_subdev_matches(char *metadata, char *devnm)
1589 {
1590 /* Check if 'devnm' is the subdev named in 'metadata'
1591 * which is
1592 * /containername/subdev or
1593 * -containername/subdev
1594 */
1595 char *sl;
1596 if (*metadata != '/' && *metadata != '-')
1597 return 0;
1598 sl = strchr(metadata+1, '/');
1599 if (!sl)
1600 return 0;
1601 if (strcmp(sl+1, devnm) == 0)
1602 return 1;
1603 return 0;
1604 }
1605
1606 int is_container_member(struct mdstat_ent *mdstat, char *container)
1607 {
1608 if (mdstat->metadata_version == NULL ||
1609 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1610 !metadata_container_matches(mdstat->metadata_version+9, container))
1611 return 0;
1612
1613 return 1;
1614 }
1615
1616 int is_subarray_active(char *subarray, char *container)
1617 {
1618 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1619 struct mdstat_ent *ent;
1620
1621 for (ent = mdstat; ent; ent = ent->next)
1622 if (is_container_member(ent, container))
1623 if (strcmp(to_subarray(ent, container), subarray) == 0)
1624 break;
1625
1626 free_mdstat(mdstat);
1627
1628 return ent != NULL;
1629 }
1630
1631 /* open_subarray - opens a subarray in a container
1632 * @dev: container device name
1633 * @st: empty supertype
1634 * @quiet: block reporting errors flag
1635 *
1636 * On success returns an fd to a container and fills in *st
1637 */
1638 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1639 {
1640 struct mdinfo *mdi;
1641 struct mdinfo *info;
1642 int fd, err = 1;
1643 char *_devnm;
1644
1645 fd = open(dev, O_RDWR|O_EXCL);
1646 if (fd < 0) {
1647 if (!quiet)
1648 pr_err("Couldn't open %s, aborting\n",
1649 dev);
1650 return -1;
1651 }
1652
1653 _devnm = fd2devnm(fd);
1654 if (_devnm == NULL) {
1655 if (!quiet)
1656 pr_err("Failed to determine device number for %s\n",
1657 dev);
1658 goto close_fd;
1659 }
1660 strcpy(st->devnm, _devnm);
1661
1662 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1663 if (!mdi) {
1664 if (!quiet)
1665 pr_err("Failed to read sysfs for %s\n",
1666 dev);
1667 goto close_fd;
1668 }
1669
1670 if (mdi->array.level != UnSet) {
1671 if (!quiet)
1672 pr_err("%s is not a container\n", dev);
1673 goto free_sysfs;
1674 }
1675
1676 st->ss = version_to_superswitch(mdi->text_version);
1677 if (!st->ss) {
1678 if (!quiet)
1679 pr_err("Operation not supported for %s metadata\n",
1680 mdi->text_version);
1681 goto free_sysfs;
1682 }
1683
1684 if (st->devnm[0] == 0) {
1685 if (!quiet)
1686 pr_err("Failed to allocate device name\n");
1687 goto free_sysfs;
1688 }
1689
1690 if (!st->ss->load_container) {
1691 if (!quiet)
1692 pr_err("%s is not a container\n", dev);
1693 goto free_sysfs;
1694 }
1695
1696 if (st->ss->load_container(st, fd, NULL)) {
1697 if (!quiet)
1698 pr_err("Failed to load metadata for %s\n",
1699 dev);
1700 goto free_sysfs;
1701 }
1702
1703 info = st->ss->container_content(st, subarray);
1704 if (!info) {
1705 if (!quiet)
1706 pr_err("Failed to find subarray-%s in %s\n",
1707 subarray, dev);
1708 goto free_super;
1709 }
1710 free(info);
1711
1712 err = 0;
1713
1714 free_super:
1715 if (err)
1716 st->ss->free_super(st);
1717 free_sysfs:
1718 sysfs_free(mdi);
1719 close_fd:
1720 if (err)
1721 close(fd);
1722
1723 if (err)
1724 return -1;
1725 else
1726 return fd;
1727 }
1728
1729 int add_disk(int mdfd, struct supertype *st,
1730 struct mdinfo *sra, struct mdinfo *info)
1731 {
1732 /* Add a device to an array, in one of 2 ways. */
1733 int rv;
1734 #ifndef MDASSEMBLE
1735 if (st->ss->external) {
1736 if (info->disk.state & (1<<MD_DISK_SYNC))
1737 info->recovery_start = MaxSector;
1738 else
1739 info->recovery_start = 0;
1740 rv = sysfs_add_disk(sra, info, 0);
1741 if (! rv) {
1742 struct mdinfo *sd2;
1743 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1744 if (sd2 == info)
1745 break;
1746 if (sd2 == NULL) {
1747 sd2 = xmalloc(sizeof(*sd2));
1748 *sd2 = *info;
1749 sd2->next = sra->devs;
1750 sra->devs = sd2;
1751 }
1752 }
1753 } else
1754 #endif
1755 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1756 return rv;
1757 }
1758
1759 int remove_disk(int mdfd, struct supertype *st,
1760 struct mdinfo *sra, struct mdinfo *info)
1761 {
1762 int rv;
1763 /* Remove the disk given by 'info' from the array */
1764 #ifndef MDASSEMBLE
1765 if (st->ss->external)
1766 rv = sysfs_set_str(sra, info, "slot", "none");
1767 else
1768 #endif
1769 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1770 info->disk.minor));
1771 return rv;
1772 }
1773
1774 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1775 {
1776 /* Initialise kernel's knowledge of array.
1777 * This varies between externally managed arrays
1778 * and older kernels
1779 */
1780 int vers = md_get_version(mdfd);
1781 int rv;
1782
1783 #ifndef MDASSEMBLE
1784 if (st->ss->external)
1785 rv = sysfs_set_array(info, vers);
1786 else
1787 #endif
1788 if ((vers % 100) >= 1) { /* can use different versions */
1789 mdu_array_info_t inf;
1790 memset(&inf, 0, sizeof(inf));
1791 inf.major_version = info->array.major_version;
1792 inf.minor_version = info->array.minor_version;
1793 rv = ioctl(mdfd, SET_ARRAY_INFO, &inf);
1794 } else
1795 rv = ioctl(mdfd, SET_ARRAY_INFO, NULL);
1796 return rv;
1797 }
1798
1799 unsigned long long min_recovery_start(struct mdinfo *array)
1800 {
1801 /* find the minimum recovery_start in an array for metadata
1802 * formats that only record per-array recovery progress instead
1803 * of per-device
1804 */
1805 unsigned long long recovery_start = MaxSector;
1806 struct mdinfo *d;
1807
1808 for (d = array->devs; d; d = d->next)
1809 recovery_start = min(recovery_start, d->recovery_start);
1810
1811 return recovery_start;
1812 }
1813
1814 int mdmon_pid(char *devnm)
1815 {
1816 char path[100];
1817 char pid[10];
1818 int fd;
1819 int n;
1820
1821 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1822
1823 fd = open(path, O_RDONLY | O_NOATIME, 0);
1824
1825 if (fd < 0)
1826 return -1;
1827 n = read(fd, pid, 9);
1828 close(fd);
1829 if (n <= 0)
1830 return -1;
1831 return atoi(pid);
1832 }
1833
1834 int mdmon_running(char *devnm)
1835 {
1836 int pid = mdmon_pid(devnm);
1837 if (pid <= 0)
1838 return 0;
1839 if (kill(pid, 0) == 0)
1840 return 1;
1841 return 0;
1842 }
1843
1844 int start_mdmon(char *devnm)
1845 {
1846 int i, skipped;
1847 int len;
1848 pid_t pid;
1849 int status;
1850 char pathbuf[1024];
1851 char *paths[4] = {
1852 pathbuf,
1853 BINDIR "/mdmon",
1854 "./mdmon",
1855 NULL
1856 };
1857
1858 if (check_env("MDADM_NO_MDMON"))
1859 return 0;
1860
1861 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1862 if (len > 0) {
1863 char *sl;
1864 pathbuf[len] = 0;
1865 sl = strrchr(pathbuf, '/');
1866 if (sl)
1867 sl++;
1868 else
1869 sl = pathbuf;
1870 strcpy(sl, "mdmon");
1871 } else
1872 pathbuf[0] = '\0';
1873
1874 /* First try to run systemctl */
1875 if (!check_env("MDADM_NO_SYSTEMCTL"))
1876 switch(fork()) {
1877 case 0:
1878 /* FIXME yuk. CLOSE_EXEC?? */
1879 skipped = 0;
1880 for (i = 3; skipped < 20; i++)
1881 if (close(i) < 0)
1882 skipped++;
1883 else
1884 skipped = 0;
1885
1886 /* Don't want to see error messages from
1887 * systemctl. If the service doesn't exist,
1888 * we start mdmon ourselves.
1889 */
1890 close(2);
1891 open("/dev/null", O_WRONLY);
1892 snprintf(pathbuf, sizeof(pathbuf), "mdmon@%s.service",
1893 devnm);
1894 status = execl("/usr/bin/systemctl", "systemctl",
1895 "start",
1896 pathbuf, NULL);
1897 status = execl("/bin/systemctl", "systemctl", "start",
1898 pathbuf, NULL);
1899 exit(1);
1900 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1901 return -1;
1902 default: /* parent - good */
1903 pid = wait(&status);
1904 if (pid >= 0 && status == 0)
1905 return 0;
1906 }
1907
1908 /* That failed, try running mdmon directly */
1909 switch(fork()) {
1910 case 0:
1911 /* FIXME yuk. CLOSE_EXEC?? */
1912 skipped = 0;
1913 for (i = 3; skipped < 20; i++)
1914 if (close(i) < 0)
1915 skipped++;
1916 else
1917 skipped = 0;
1918
1919 for (i = 0; paths[i]; i++)
1920 if (paths[i][0]) {
1921 execl(paths[i], paths[i],
1922 devnm, NULL);
1923 }
1924 exit(1);
1925 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1926 return -1;
1927 default: /* parent - good */
1928 pid = wait(&status);
1929 if (pid < 0 || status != 0) {
1930 pr_err("failed to launch mdmon. Array remains readonly\n");
1931 return -1;
1932 }
1933 }
1934 return 0;
1935 }
1936
1937 __u32 random32(void)
1938 {
1939 __u32 rv;
1940 int rfd = open("/dev/urandom", O_RDONLY);
1941 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1942 rv = random();
1943 if (rfd >= 0)
1944 close(rfd);
1945 return rv;
1946 }
1947
1948 #ifndef MDASSEMBLE
1949 int flush_metadata_updates(struct supertype *st)
1950 {
1951 int sfd;
1952 if (!st->updates) {
1953 st->update_tail = NULL;
1954 return -1;
1955 }
1956
1957 sfd = connect_monitor(st->container_devnm);
1958 if (sfd < 0)
1959 return -1;
1960
1961 while (st->updates) {
1962 struct metadata_update *mu = st->updates;
1963 st->updates = mu->next;
1964
1965 send_message(sfd, mu, 0);
1966 wait_reply(sfd, 0);
1967 free(mu->buf);
1968 free(mu);
1969 }
1970 ack(sfd, 0);
1971 wait_reply(sfd, 0);
1972 close(sfd);
1973 st->update_tail = NULL;
1974 return 0;
1975 }
1976
1977 void append_metadata_update(struct supertype *st, void *buf, int len)
1978 {
1979
1980 struct metadata_update *mu = xmalloc(sizeof(*mu));
1981
1982 mu->buf = buf;
1983 mu->len = len;
1984 mu->space = NULL;
1985 mu->space_list = NULL;
1986 mu->next = NULL;
1987 *st->update_tail = mu;
1988 st->update_tail = &mu->next;
1989 }
1990 #endif /* MDASSEMBLE */
1991
1992 #ifdef __TINYC__
1993 /* tinyc doesn't optimize this check in ioctl.h out ... */
1994 unsigned int __invalid_size_argument_for_IOC = 0;
1995 #endif
1996
1997 int experimental(void)
1998 {
1999 if (check_env("MDADM_EXPERIMENTAL"))
2000 return 1;
2001 else {
2002 pr_err("To use this feature MDADM_EXPERIMENTAL environment variable has to be defined.\n");
2003 return 0;
2004 }
2005 }
2006
2007 /* Pick all spares matching given criteria from a container
2008 * if min_size == 0 do not check size
2009 * if domlist == NULL do not check domains
2010 * if spare_group given add it to domains of each spare
2011 * metadata allows to test domains using metadata of destination array */
2012 struct mdinfo *container_choose_spares(struct supertype *st,
2013 unsigned long long min_size,
2014 struct domainlist *domlist,
2015 char *spare_group,
2016 const char *metadata, int get_one)
2017 {
2018 struct mdinfo *d, **dp, *disks = NULL;
2019
2020 /* get list of all disks in container */
2021 if (st->ss->getinfo_super_disks)
2022 disks = st->ss->getinfo_super_disks(st);
2023
2024 if (!disks)
2025 return disks;
2026 /* find spare devices on the list */
2027 dp = &disks->devs;
2028 disks->array.spare_disks = 0;
2029 while (*dp) {
2030 int found = 0;
2031 d = *dp;
2032 if (d->disk.state == 0) {
2033 /* check if size is acceptable */
2034 unsigned long long dev_size;
2035 dev_t dev = makedev(d->disk.major,d->disk.minor);
2036
2037 if (!min_size ||
2038 (dev_size_from_id(dev, &dev_size) &&
2039 dev_size >= min_size))
2040 found = 1;
2041 /* check if domain matches */
2042 if (found && domlist) {
2043 struct dev_policy *pol = devid_policy(dev);
2044 if (spare_group)
2045 pol_add(&pol, pol_domain,
2046 spare_group, NULL);
2047 if (domain_test(domlist, pol, metadata) != 1)
2048 found = 0;
2049 dev_policy_free(pol);
2050 }
2051 }
2052 if (found) {
2053 dp = &d->next;
2054 disks->array.spare_disks++;
2055 if (get_one) {
2056 sysfs_free(*dp);
2057 d->next = NULL;
2058 }
2059 } else {
2060 *dp = d->next;
2061 d->next = NULL;
2062 sysfs_free(d);
2063 }
2064 }
2065 return disks;
2066 }
2067
2068 /* Checks if paths point to the same device
2069 * Returns 0 if they do.
2070 * Returns 1 if they don't.
2071 * Returns -1 if something went wrong,
2072 * e.g. paths are empty or the files
2073 * they point to don't exist */
2074 int compare_paths (char* path1, char* path2)
2075 {
2076 struct stat st1,st2;
2077
2078 if (path1 == NULL || path2 == NULL)
2079 return -1;
2080 if (stat(path1,&st1) != 0)
2081 return -1;
2082 if (stat(path2,&st2) != 0)
2083 return -1;
2084 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2085 return 0;
2086 return 1;
2087 }
2088
2089 /* Make sure we can open as many devices as needed */
2090 void enable_fds(int devices)
2091 {
2092 unsigned int fds = 20 + devices;
2093 struct rlimit lim;
2094 if (getrlimit(RLIMIT_NOFILE, &lim) != 0
2095 || lim.rlim_cur >= fds)
2096 return;
2097 if (lim.rlim_max < fds)
2098 lim.rlim_max = fds;
2099 lim.rlim_cur = fds;
2100 setrlimit(RLIMIT_NOFILE, &lim);
2101 }
2102
2103 int in_initrd(void)
2104 {
2105 /* This is based on similar function in systemd. */
2106 struct statfs s;
2107 /* statfs.f_type is signed long on s390x and MIPS, causing all
2108 sorts of sign extension problems with RAMFS_MAGIC being
2109 defined as 0x858458f6 */
2110 return statfs("/", &s) >= 0 &&
2111 ((unsigned long)s.f_type == TMPFS_MAGIC ||
2112 ((unsigned long)s.f_type & 0xFFFFFFFFUL) ==
2113 ((unsigned long)RAMFS_MAGIC & 0xFFFFFFFFUL));
2114 }
2115
2116 void reopen_mddev(int mdfd)
2117 {
2118 /* Re-open without any O_EXCL, but keep
2119 * the same fd
2120 */
2121 char *devnm;
2122 int fd;
2123 devnm = fd2devnm(mdfd);
2124 close(mdfd);
2125 fd = open_dev(devnm);
2126 if (fd >= 0 && fd != mdfd)
2127 dup2(fd, mdfd);
2128 }
2129
2130 #ifndef MDASSEMBLE
2131 static struct cmap_hooks *cmap_hooks = NULL;
2132 static int is_cmap_hooks_ready = 0;
2133
2134 void set_cmap_hooks(void)
2135 {
2136 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2137 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2138 if (!cmap_hooks->cmap_handle)
2139 return;
2140
2141 cmap_hooks->initialize = dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2142 cmap_hooks->get_string = dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2143 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2144
2145 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2146 !cmap_hooks->finalize)
2147 dlclose(cmap_hooks->cmap_handle);
2148 else
2149 is_cmap_hooks_ready = 1;
2150 }
2151
2152 int get_cluster_name(char **cluster_name)
2153 {
2154 int rv = -1;
2155 cmap_handle_t handle;
2156
2157 if (!is_cmap_hooks_ready)
2158 return rv;
2159
2160 rv = cmap_hooks->initialize(&handle);
2161 if (rv != CS_OK)
2162 goto out;
2163
2164 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2165 if (rv != CS_OK) {
2166 free(*cluster_name);
2167 rv = -1;
2168 goto name_err;
2169 }
2170
2171 rv = 0;
2172 name_err:
2173 cmap_hooks->finalize(handle);
2174 out:
2175 return rv;
2176 }
2177
2178 void set_dlm_hooks(void)
2179 {
2180 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2181 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2182 if (!dlm_hooks->dlm_handle)
2183 return;
2184
2185 dlm_hooks->create_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2186 dlm_hooks->release_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2187 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2188 dlm_hooks->ls_unlock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock");
2189 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2190 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2191
2192 if (!dlm_hooks->create_lockspace || !dlm_hooks->ls_lock ||
2193 !dlm_hooks->ls_unlock || !dlm_hooks->release_lockspace ||
2194 !dlm_hooks->ls_get_fd || !dlm_hooks->dispatch)
2195 dlclose(dlm_hooks->dlm_handle);
2196 else
2197 is_dlm_hooks_ready = 1;
2198 }
2199
2200 void set_hooks(void)
2201 {
2202 set_dlm_hooks();
2203 set_cmap_hooks();
2204 }
2205 #endif