]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
Monitor, Incremental: use device policies
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <sys/mman.h>
34 #include <linux/magic.h>
35 #include <poll.h>
36 #include <ctype.h>
37 #include <dirent.h>
38 #include <dlfcn.h>
39
40
41 /*
42 * following taken from linux/blkpg.h because they aren't
43 * anywhere else and it isn't safe to #include linux/ * stuff.
44 */
45
46 #define BLKPG _IO(0x12,105)
47
48 /* The argument structure */
49 struct blkpg_ioctl_arg {
50 int op;
51 int flags;
52 int datalen;
53 void *data;
54 };
55
56 /* The subfunctions (for the op field) */
57 #define BLKPG_ADD_PARTITION 1
58 #define BLKPG_DEL_PARTITION 2
59
60 /* Sizes of name fields. Unused at present. */
61 #define BLKPG_DEVNAMELTH 64
62 #define BLKPG_VOLNAMELTH 64
63
64 /* The data structure for ADD_PARTITION and DEL_PARTITION */
65 struct blkpg_partition {
66 long long start; /* starting offset in bytes */
67 long long length; /* length in bytes */
68 int pno; /* partition number */
69 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
70 to be used in kernel messages */
71 char volname[BLKPG_VOLNAMELTH]; /* volume label */
72 };
73
74 #include "part.h"
75
76 /* Force a compilation error if condition is true */
77 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
78
79 /* Force a compilation error if condition is true, but also produce a
80 result (of value 0 and type size_t), so the expression can be used
81 e.g. in a structure initializer (or where-ever else comma expressions
82 aren't permitted). */
83 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
84
85 static int is_dlm_hooks_ready = 0;
86
87 int dlm_funs_ready(void)
88 {
89 return is_dlm_hooks_ready ? 1 : 0;
90 }
91
92 static struct dlm_hooks *dlm_hooks = NULL;
93 struct dlm_lock_resource *dlm_lock_res = NULL;
94 static int ast_called = 0;
95
96 struct dlm_lock_resource {
97 dlm_lshandle_t *ls;
98 struct dlm_lksb lksb;
99 };
100
101 /* Using poll(2) to wait for and dispatch ASTs */
102 static int poll_for_ast(dlm_lshandle_t ls)
103 {
104 struct pollfd pfd;
105
106 pfd.fd = dlm_hooks->ls_get_fd(ls);
107 pfd.events = POLLIN;
108
109 while (!ast_called)
110 {
111 if (poll(&pfd, 1, 0) < 0)
112 {
113 perror("poll");
114 return -1;
115 }
116 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
117 }
118 ast_called = 0;
119
120 return 0;
121 }
122
123 static void dlm_ast(void *arg)
124 {
125 ast_called = 1;
126 }
127
128 static char *cluster_name = NULL;
129 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
130 int cluster_get_dlmlock(void)
131 {
132 int ret = -1;
133 char str[64];
134 int flags = LKF_NOQUEUE;
135 int retry_count = 0;
136
137 if (!dlm_funs_ready()) {
138 pr_err("Something wrong with dlm library\n");
139 return -1;
140 }
141
142 ret = get_cluster_name(&cluster_name);
143 if (ret) {
144 pr_err("The md can't get cluster name\n");
145 return -1;
146 }
147
148 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
149 dlm_lock_res->ls = dlm_hooks->open_lockspace(cluster_name);
150 if (!dlm_lock_res->ls) {
151 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
152 if (!dlm_lock_res->ls) {
153 pr_err("%s failed to create lockspace\n", cluster_name);
154 return -ENOMEM;
155 }
156 } else {
157 pr_err("open existed %s lockspace\n", cluster_name);
158 }
159
160 snprintf(str, 64, "bitmap%s", cluster_name);
161 retry:
162 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE,
163 &dlm_lock_res->lksb, flags, str, strlen(str),
164 0, dlm_ast, dlm_lock_res, NULL, NULL);
165 if (ret) {
166 pr_err("error %d when get PW mode on lock %s\n", errno, str);
167 /* let's try several times if EAGAIN happened */
168 if (dlm_lock_res->lksb.sb_status == EAGAIN && retry_count < 10) {
169 sleep_for(10, 0, true);
170 retry_count++;
171 goto retry;
172 }
173 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
174 return ret;
175 }
176
177 /* Wait for it to complete */
178 poll_for_ast(dlm_lock_res->ls);
179
180 if (dlm_lock_res->lksb.sb_status) {
181 pr_err("failed to lock cluster\n");
182 return -1;
183 }
184 return 1;
185 }
186
187 int cluster_release_dlmlock(void)
188 {
189 int ret = -1;
190
191 if (!cluster_name)
192 goto out;
193
194 if (!dlm_lock_res->lksb.sb_lkid)
195 goto out;
196
197 ret = dlm_hooks->ls_unlock_wait(dlm_lock_res->ls,
198 dlm_lock_res->lksb.sb_lkid, 0,
199 &dlm_lock_res->lksb);
200 if (ret) {
201 pr_err("error %d happened when unlock\n", errno);
202 /* XXX make sure the lock is unlocked eventually */
203 goto out;
204 }
205
206 /* Wait for it to complete */
207 poll_for_ast(dlm_lock_res->ls);
208
209 errno = dlm_lock_res->lksb.sb_status;
210 if (errno != EUNLOCK) {
211 pr_err("error %d happened in ast when unlock lockspace\n",
212 errno);
213 /* XXX make sure the lockspace is unlocked eventually */
214 goto out;
215 }
216
217 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
218 if (ret) {
219 pr_err("error %d happened when release lockspace\n", errno);
220 /* XXX make sure the lockspace is released eventually */
221 goto out;
222 }
223 free(dlm_lock_res);
224
225 out:
226 return ret;
227 }
228
229 int md_array_valid(int fd)
230 {
231 struct mdinfo *sra;
232 int ret;
233
234 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
235 if (sra) {
236 if (sra->array_state != ARRAY_UNKNOWN_STATE)
237 ret = 0;
238 else
239 ret = -ENODEV;
240
241 free(sra);
242 } else {
243 /*
244 * GET_ARRAY_INFO doesn't provide access to the proper state
245 * information, so fallback to a basic check for raid_disks != 0
246 */
247 ret = ioctl(fd, RAID_VERSION);
248 }
249
250 return !ret;
251 }
252
253 int md_array_active(int fd)
254 {
255 struct mdinfo *sra;
256 struct mdu_array_info_s array;
257 int ret = 0;
258
259 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
260 if (sra) {
261 if (!md_array_is_active(sra))
262 ret = -ENODEV;
263
264 free(sra);
265 } else {
266 /*
267 * GET_ARRAY_INFO doesn't provide access to the proper state
268 * information, so fallback to a basic check for raid_disks != 0
269 */
270 ret = md_get_array_info(fd, &array);
271 }
272
273 return !ret;
274 }
275
276 int md_array_is_active(struct mdinfo *info)
277 {
278 return (info->array_state != ARRAY_CLEAR &&
279 info->array_state != ARRAY_INACTIVE &&
280 info->array_state != ARRAY_UNKNOWN_STATE);
281 }
282
283 /*
284 * Get array info from the kernel. Longer term we want to deprecate the
285 * ioctl and get it from sysfs.
286 */
287 int md_get_array_info(int fd, struct mdu_array_info_s *array)
288 {
289 return ioctl(fd, GET_ARRAY_INFO, array);
290 }
291
292 /*
293 * Set array info
294 */
295 int md_set_array_info(int fd, struct mdu_array_info_s *array)
296 {
297 return ioctl(fd, SET_ARRAY_INFO, array);
298 }
299
300 /*
301 * Get disk info from the kernel.
302 */
303 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
304 {
305 return ioctl(fd, GET_DISK_INFO, disk);
306 }
307
308 int get_linux_version()
309 {
310 struct utsname name;
311 char *cp;
312 int a = 0, b = 0,c = 0;
313 if (uname(&name) <0)
314 return -1;
315
316 cp = name.release;
317 a = strtoul(cp, &cp, 10);
318 if (*cp == '.')
319 b = strtoul(cp+1, &cp, 10);
320 if (*cp == '.')
321 c = strtoul(cp+1, &cp, 10);
322
323 return (a*1000000)+(b*1000)+c;
324 }
325
326 int mdadm_version(char *version)
327 {
328 int a, b, c;
329 char *cp;
330
331 if (!version)
332 version = Version;
333
334 cp = strchr(version, '-');
335 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
336 return -1;
337 cp += 3;
338 a = strtoul(cp, &cp, 10);
339 if (*cp != '.')
340 return -1;
341 b = strtoul(cp+1, &cp, 10);
342 if (*cp == '.')
343 c = strtoul(cp+1, &cp, 10);
344 else
345 c = 0;
346 if (*cp != ' ' && *cp != '-')
347 return -1;
348 return (a*1000000)+(b*1000)+c;
349 }
350
351 unsigned long long parse_size(char *size)
352 {
353 /* parse 'size' which should be a number optionally
354 * followed by 'K', 'M'. 'G' or 'T'.
355 * Without a suffix, K is assumed.
356 * Number returned is in sectors (half-K)
357 * INVALID_SECTORS returned on error.
358 */
359 char *c;
360 long long s = strtoll(size, &c, 10);
361 if (s > 0) {
362 switch (*c) {
363 case 'K':
364 c++;
365 default:
366 s *= 2;
367 break;
368 case 'M':
369 c++;
370 s *= 1024 * 2;
371 break;
372 case 'G':
373 c++;
374 s *= 1024 * 1024 * 2;
375 break;
376 case 'T':
377 c++;
378 s *= 1024 * 1024 * 1024 * 2LL;
379 break;
380 case 's': /* sectors */
381 c++;
382 break;
383 }
384 } else
385 s = INVALID_SECTORS;
386 if (*c)
387 s = INVALID_SECTORS;
388 return s;
389 }
390
391 int is_near_layout_10(int layout)
392 {
393 int fc, fo;
394
395 fc = (layout >> 8) & 255;
396 fo = layout & (1 << 16);
397 if (fc > 1 || fo > 0)
398 return 0;
399 return 1;
400 }
401
402 int parse_layout_10(char *layout)
403 {
404 int copies, rv;
405 char *cp;
406 /* Parse the layout string for raid10 */
407 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
408 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
409 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
410 copies > 200 ||
411 *cp)
412 return -1;
413 if (layout[0] == 'n')
414 rv = 256 + copies;
415 else if (layout[0] == 'o')
416 rv = 0x10000 + (copies<<8) + 1;
417 else
418 rv = 1 + (copies<<8);
419 return rv;
420 }
421
422 int parse_layout_faulty(char *layout)
423 {
424 int ln, mode;
425 char *m;
426
427 if (!layout)
428 return -1;
429
430 /* Parse the layout string for 'faulty' */
431 ln = strcspn(layout, "0123456789");
432 m = xstrdup(layout);
433 m[ln] = 0;
434 mode = map_name(faultylayout, m);
435 free(m);
436
437 if (mode == UnSet)
438 return -1;
439
440 return mode | (atoi(layout+ln)<< ModeShift);
441 }
442
443 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
444 {
445 char *dev;
446 *slot = strtoul(input, &dev, 10);
447 if (dev == input || dev[0] != ':')
448 return -1;
449 *devname = dev+1;
450 return 0;
451 }
452
453 void remove_partitions(int fd)
454 {
455 /* remove partitions from this block devices.
456 * This is used for components added to an array
457 */
458 #ifdef BLKPG_DEL_PARTITION
459 struct blkpg_ioctl_arg a;
460 struct blkpg_partition p;
461
462 a.op = BLKPG_DEL_PARTITION;
463 a.data = (void*)&p;
464 a.datalen = sizeof(p);
465 a.flags = 0;
466 memset(a.data, 0, a.datalen);
467 for (p.pno = 0; p.pno < 16; p.pno++)
468 ioctl(fd, BLKPG, &a);
469 #endif
470 }
471
472 int test_partition(int fd)
473 {
474 /* Check if fd is a whole-disk or a partition.
475 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
476 * will return ENXIO on an invalid partition number.
477 */
478 struct blkpg_ioctl_arg a;
479 struct blkpg_partition p;
480 a.op = BLKPG_DEL_PARTITION;
481 a.data = (void*)&p;
482 a.datalen = sizeof(p);
483 a.flags = 0;
484 memset(a.data, 0, a.datalen);
485 p.pno = 1<<30;
486 if (ioctl(fd, BLKPG, &a) == 0)
487 /* Very unlikely, but not a partition */
488 return 0;
489 if (errno == ENXIO || errno == ENOTTY)
490 /* not a partition */
491 return 0;
492
493 return 1;
494 }
495
496 int test_partition_from_id(dev_t id)
497 {
498 char buf[20];
499 int fd, rv;
500
501 sprintf(buf, "%d:%d", major(id), minor(id));
502 fd = dev_open(buf, O_RDONLY);
503 if (fd < 0)
504 return -1;
505 rv = test_partition(fd);
506 close(fd);
507 return rv;
508 }
509
510 int enough(int level, int raid_disks, int layout, int clean, char *avail)
511 {
512 int copies, first;
513 int i;
514 int avail_disks = 0;
515
516 for (i = 0; i < raid_disks; i++)
517 avail_disks += !!avail[i];
518
519 switch (level) {
520 case 10:
521 /* This is the tricky one - we need to check
522 * which actual disks are present.
523 */
524 copies = (layout&255)* ((layout>>8) & 255);
525 first = 0;
526 do {
527 /* there must be one of the 'copies' form 'first' */
528 int n = copies;
529 int cnt = 0;
530 int this = first;
531 while (n--) {
532 if (avail[this])
533 cnt++;
534 this = (this+1) % raid_disks;
535 }
536 if (cnt == 0)
537 return 0;
538 first = (first+(layout&255)) % raid_disks;
539 } while (first != 0);
540 return 1;
541
542 case LEVEL_MULTIPATH:
543 return avail_disks>= 1;
544 case LEVEL_LINEAR:
545 case 0:
546 return avail_disks == raid_disks;
547 case 1:
548 return avail_disks >= 1;
549 case 4:
550 if (avail_disks == raid_disks - 1 &&
551 !avail[raid_disks - 1])
552 /* If just the parity device is missing, then we
553 * have enough, even if not clean
554 */
555 return 1;
556 /* FALL THROUGH */
557 case 5:
558 if (clean)
559 return avail_disks >= raid_disks-1;
560 else
561 return avail_disks >= raid_disks;
562 case 6:
563 if (clean)
564 return avail_disks >= raid_disks-2;
565 else
566 return avail_disks >= raid_disks;
567 default:
568 return 0;
569 }
570 }
571
572 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
573 {
574 int i, j;
575 char uuid[16];
576 char *c = buf;
577 strcpy(c, "UUID-");
578 c += strlen(c);
579 copy_uuid(uuid, id, swap);
580 for (i = 0; i < 4; i++) {
581 if (i)
582 *c++ = sep;
583 for (j = 3; j >= 0; j--) {
584 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
585 c+= 2;
586 }
587 }
588 return buf;
589
590 }
591
592 char *fname_from_uuid(struct supertype *st, struct mdinfo *info,
593 char *buf, char sep)
594 {
595 // dirty hack to work around an issue with super1 superblocks...
596 // super1 superblocks need swapuuid set in order for assembly to
597 // work, but can't have it set if we want this printout to match
598 // all the other uuid printouts in super1.c, so we force swapuuid
599 // to 1 to make our printout match the rest of super1
600 #if __BYTE_ORDER == BIG_ENDIAN
601 return __fname_from_uuid(info->uuid, 1, buf, sep);
602 #else
603 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 :
604 st->ss->swapuuid, buf, sep);
605 #endif
606 }
607
608 int check_ext2(int fd, char *name)
609 {
610 /*
611 * Check for an ext2fs file system.
612 * Superblock is always 1K at 1K offset
613 *
614 * s_magic is le16 at 56 == 0xEF53
615 * report mtime - le32 at 44
616 * blocks - le32 at 4
617 * logblksize - le32 at 24
618 */
619 unsigned char sb[1024];
620 time_t mtime;
621 unsigned long long size;
622 int bsize;
623 if (lseek(fd, 1024,0)!= 1024)
624 return 0;
625 if (read(fd, sb, 1024)!= 1024)
626 return 0;
627 if (sb[56] != 0x53 || sb[57] != 0xef)
628 return 0;
629
630 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
631 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
632 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
633 size <<= bsize;
634 pr_err("%s appears to contain an ext2fs file system\n",
635 name);
636 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
637 return 1;
638 }
639
640 int check_reiser(int fd, char *name)
641 {
642 /*
643 * superblock is at 64K
644 * size is 1024;
645 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
646 *
647 */
648 unsigned char sb[1024];
649 unsigned long long size;
650 if (lseek(fd, 64*1024, 0) != 64*1024)
651 return 0;
652 if (read(fd, sb, 1024) != 1024)
653 return 0;
654 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
655 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
656 return 0;
657 pr_err("%s appears to contain a reiserfs file system\n",name);
658 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
659 cont_err("size = %lluK\n", size*4);
660
661 return 1;
662 }
663
664 int check_raid(int fd, char *name)
665 {
666 struct mdinfo info;
667 time_t crtime;
668 char *level;
669 struct supertype *st = guess_super(fd);
670
671 if (!st)
672 return 0;
673 if (st->ss->add_to_super != NULL) {
674 st->ss->load_super(st, fd, name);
675 /* Looks like a raid array .. */
676 pr_err("%s appears to be part of a raid array:\n", name);
677 st->ss->getinfo_super(st, &info, NULL);
678 st->ss->free_super(st);
679 crtime = info.array.ctime;
680 level = map_num(pers, info.array.level);
681 if (!level)
682 level = "-unknown-";
683 cont_err("level=%s devices=%d ctime=%s",
684 level, info.array.raid_disks, ctime(&crtime));
685 } else {
686 /* Looks like GPT or MBR */
687 pr_err("partition table exists on %s\n", name);
688 }
689 return 1;
690 }
691
692 int fstat_is_blkdev(int fd, char *devname, dev_t *rdev)
693 {
694 struct stat stb;
695
696 if (fstat(fd, &stb) != 0) {
697 pr_err("fstat failed for %s: %s\n", devname, strerror(errno));
698 return 0;
699 }
700 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
701 pr_err("%s is not a block device.\n", devname);
702 return 0;
703 }
704 if (rdev)
705 *rdev = stb.st_rdev;
706 return 1;
707 }
708
709 int stat_is_blkdev(char *devname, dev_t *rdev)
710 {
711 struct stat stb;
712
713 if (stat(devname, &stb) != 0) {
714 pr_err("stat failed for %s: %s\n", devname, strerror(errno));
715 return 0;
716 }
717 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
718 pr_err("%s is not a block device.\n", devname);
719 return 0;
720 }
721 if (rdev)
722 *rdev = stb.st_rdev;
723 return 1;
724 }
725
726 int ask(char *mesg)
727 {
728 char *add = "";
729 int i;
730 for (i = 0; i < 5; i++) {
731 char buf[100];
732 fprintf(stderr, "%s%s", mesg, add);
733 fflush(stderr);
734 if (fgets(buf, 100, stdin)==NULL)
735 return 0;
736 if (buf[0]=='y' || buf[0]=='Y')
737 return 1;
738 if (buf[0]=='n' || buf[0]=='N')
739 return 0;
740 add = "(y/n) ";
741 }
742 pr_err("assuming 'no'\n");
743 return 0;
744 }
745
746 int is_standard(char *dev, int *nump)
747 {
748 /* tests if dev is a "standard" md dev name.
749 * i.e if the last component is "/dNN" or "/mdNN",
750 * where NN is a string of digits
751 * Returns 1 if a partitionable standard,
752 * -1 if non-partitonable,
753 * 0 if not a standard name.
754 */
755 char *d = strrchr(dev, '/');
756 int type = 0;
757 int num;
758 if (!d)
759 return 0;
760 if (strncmp(d, "/d",2) == 0)
761 d += 2, type = 1; /* /dev/md/dN{pM} */
762 else if (strncmp(d, "/md_d", 5) == 0)
763 d += 5, type = 1; /* /dev/md_dN{pM} */
764 else if (strncmp(d, "/md", 3) == 0)
765 d += 3, type = -1; /* /dev/mdN */
766 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
767 d += 1, type = -1; /* /dev/md/N */
768 else
769 return 0;
770 if (!*d)
771 return 0;
772 num = atoi(d);
773 while (isdigit(*d))
774 d++;
775 if (*d)
776 return 0;
777 if (nump) *nump = num;
778
779 return type;
780 }
781
782 unsigned long calc_csum(void *super, int bytes)
783 {
784 unsigned long long newcsum = 0;
785 int i;
786 unsigned int csum;
787 unsigned int *superc = (unsigned int*) super;
788
789 for(i = 0; i < bytes/4; i++)
790 newcsum += superc[i];
791 csum = (newcsum& 0xffffffff) + (newcsum>>32);
792 #ifdef __alpha__
793 /* The in-kernel checksum calculation is always 16bit on
794 * the alpha, though it is 32 bit on i386...
795 * I wonder what it is elsewhere... (it uses an API in
796 * a way that it shouldn't).
797 */
798 csum = (csum & 0xffff) + (csum >> 16);
799 csum = (csum & 0xffff) + (csum >> 16);
800 #endif
801 return csum;
802 }
803
804 char *human_size(long long bytes)
805 {
806 static char buf[47];
807
808 /* We convert bytes to either centi-M{ega,ibi}bytes,
809 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
810 * with appropriate rounding, and then print
811 * 1/100th of those as a decimal.
812 * We allow upto 2048Megabytes before converting to
813 * gigabytes and 2048Gigabytes before converting to
814 * terabytes, as that shows more precision and isn't
815 * too large a number.
816 */
817
818 if (bytes < 5000*1024)
819 buf[0] = 0;
820 else if (bytes < 2*1024LL*1024LL*1024LL) {
821 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
822 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
823 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
824 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
825 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
826 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
827 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
828 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
829 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
830 } else {
831 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
832 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
833 snprintf(buf, sizeof(buf), " (%ld.%02ld TiB %ld.%02ld TB)",
834 cTiB/100, cTiB % 100, cTB/100, cTB % 100);
835 }
836 return buf;
837 }
838
839 char *human_size_brief(long long bytes, int prefix)
840 {
841 static char buf[30];
842
843 /* We convert bytes to either centi-M{ega,ibi}bytes,
844 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
845 * with appropriate rounding, and then print
846 * 1/100th of those as a decimal.
847 * We allow upto 2048Megabytes before converting to
848 * gigabytes and 2048Gigabytes before converting to
849 * terabytes, as that shows more precision and isn't
850 * too large a number.
851 *
852 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
853 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
854 */
855
856 if (bytes < 5000*1024)
857 buf[0] = 0;
858 else if (prefix == IEC) {
859 if (bytes < 2*1024LL*1024LL*1024LL) {
860 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
861 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
862 cMiB/100, cMiB % 100);
863 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
864 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
865 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
866 cGiB/100, cGiB % 100);
867 } else {
868 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
869 snprintf(buf, sizeof(buf), "%ld.%02ldTiB",
870 cTiB/100, cTiB % 100);
871 }
872 }
873 else if (prefix == JEDEC) {
874 if (bytes < 2*1024LL*1024LL*1024LL) {
875 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
876 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
877 cMB/100, cMB % 100);
878 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
879 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
880 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
881 cGB/100, cGB % 100);
882 } else {
883 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
884 snprintf(buf, sizeof(buf), "%ld.%02ldTB",
885 cTB/100, cTB % 100);
886 }
887 }
888 else
889 buf[0] = 0;
890
891 return buf;
892 }
893
894 void print_r10_layout(int layout)
895 {
896 int near = layout & 255;
897 int far = (layout >> 8) & 255;
898 int offset = (layout&0x10000);
899 char *sep = "";
900
901 if (near != 1) {
902 printf("%s near=%d", sep, near);
903 sep = ",";
904 }
905 if (far != 1)
906 printf("%s %s=%d", sep, offset?"offset":"far", far);
907 if (near*far == 1)
908 printf("NO REDUNDANCY");
909 }
910
911 unsigned long long calc_array_size(int level, int raid_disks, int layout,
912 int chunksize, unsigned long long devsize)
913 {
914 if (level == 1)
915 return devsize;
916 devsize &= ~(unsigned long long)((chunksize>>9)-1);
917 return get_data_disks(level, layout, raid_disks) * devsize;
918 }
919
920 int get_data_disks(int level, int layout, int raid_disks)
921 {
922 int data_disks = 0;
923 switch (level) {
924 case 0: data_disks = raid_disks;
925 break;
926 case 1: data_disks = 1;
927 break;
928 case 4:
929 case 5: data_disks = raid_disks - 1;
930 break;
931 case 6: data_disks = raid_disks - 2;
932 break;
933 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
934 break;
935 }
936
937 return data_disks;
938 }
939
940 dev_t devnm2devid(char *devnm)
941 {
942 /* First look in /sys/block/$DEVNM/dev for %d:%d
943 * If that fails, try parsing out a number
944 */
945 char path[PATH_MAX];
946 char *ep;
947 int fd;
948 int mjr,mnr;
949
950 snprintf(path, sizeof(path), "/sys/block/%s/dev", devnm);
951 fd = open(path, O_RDONLY);
952 if (fd >= 0) {
953 char buf[20];
954 int n = read(fd, buf, sizeof(buf));
955 close(fd);
956 if (n > 0)
957 buf[n] = 0;
958 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
959 return makedev(mjr, mnr);
960 }
961 if (strncmp(devnm, "md_d", 4) == 0 &&
962 isdigit(devnm[4]) &&
963 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
964 ep > devnm && *ep == 0)
965 return makedev(get_mdp_major(), mnr << MdpMinorShift);
966
967 if (strncmp(devnm, "md", 2) == 0 &&
968 isdigit(devnm[2]) &&
969 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
970 ep > devnm && *ep == 0)
971 return makedev(MD_MAJOR, mnr);
972
973 return 0;
974 }
975
976 /**
977 * is_devname_numbered() - helper for numbered devname verification.
978 * @devname: path or name to check.
979 * @pref: expected devname prefix.
980 * @pref_len: prefix len.
981 */
982 static bool is_devname_numbered(const char *devname, const char *pref, const int pref_len)
983 {
984 int val;
985
986 assert(devname && pref);
987
988 if (strncmp(devname, pref, pref_len) != 0)
989 return false;
990
991 if (parse_num(&val, devname + pref_len) != 0)
992 return false;
993
994 if (val > 127)
995 return false;
996
997 return true;
998 }
999
1000 /**
1001 * is_devname_md_numbered() - check if &devname is numbered MD device (md).
1002 * @devname: path or name to check.
1003 */
1004 bool is_devname_md_numbered(const char *devname)
1005 {
1006 return is_devname_numbered(devname, DEV_NUM_PREF, DEV_NUM_PREF_LEN);
1007 }
1008
1009 /**
1010 * is_devname_md_d_numbered() - check if &devname is secondary numbered MD device (md_d).
1011 * @devname: path or name to check.
1012 */
1013 bool is_devname_md_d_numbered(const char *devname)
1014 {
1015 static const char d_dev[] = DEV_NUM_PREF "_d";
1016
1017 return is_devname_numbered(devname, d_dev, sizeof(d_dev) - 1);
1018 }
1019
1020 /**
1021 * get_md_name() - Get main dev node of the md device.
1022 * @devnm: Md device name or path.
1023 *
1024 * Function checks if the full name was passed and returns md name
1025 * if it is the MD device.
1026 *
1027 * Return: Main dev node of the md device or NULL if not found.
1028 */
1029 char *get_md_name(char *devnm)
1030 {
1031 static char devname[NAME_MAX];
1032 struct stat stb;
1033
1034 if (strncmp(devnm, "/dev/", 5) == 0)
1035 snprintf(devname, sizeof(devname), "%s", devnm);
1036 else
1037 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
1038
1039 if (!is_mddev(devname))
1040 return NULL;
1041 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK)
1042 return devname;
1043
1044 return NULL;
1045 }
1046
1047 void put_md_name(char *name)
1048 {
1049 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1050 unlink(name);
1051 }
1052
1053 int get_maj_min(char *dev, int *major, int *minor)
1054 {
1055 char *e;
1056 *major = strtoul(dev, &e, 0);
1057 return (e > dev && *e == ':' && e[1] &&
1058 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1059 *e == 0);
1060 }
1061
1062 /**
1063 * is_bit_set() - get bit value by index.
1064 * @val: value.
1065 * @index: index of the bit (LSB numbering).
1066 *
1067 * Return: bit value.
1068 */
1069 bool is_bit_set(int *val, unsigned char index)
1070 {
1071 if ((*val) & (1 << index))
1072 return true;
1073 return false;
1074 }
1075
1076 int dev_open(char *dev, int flags)
1077 {
1078 /* like 'open', but if 'dev' matches %d:%d, create a temp
1079 * block device and open that
1080 */
1081 int fd = -1;
1082 char devname[32];
1083 int major;
1084 int minor;
1085
1086 if (!dev)
1087 return -1;
1088 flags |= O_DIRECT;
1089
1090 if (get_maj_min(dev, &major, &minor)) {
1091 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1092 (int)getpid(), major, minor);
1093 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1094 fd = open(devname, flags);
1095 unlink(devname);
1096 }
1097 if (fd < 0) {
1098 /* Try /tmp as /dev appear to be read-only */
1099 snprintf(devname, sizeof(devname),
1100 "/tmp/.tmp.md.%d:%d:%d",
1101 (int)getpid(), major, minor);
1102 if (mknod(devname, S_IFBLK|0600,
1103 makedev(major, minor)) == 0) {
1104 fd = open(devname, flags);
1105 unlink(devname);
1106 }
1107 }
1108 } else
1109 fd = open(dev, flags);
1110 return fd;
1111 }
1112
1113 int open_dev_flags(char *devnm, int flags)
1114 {
1115 dev_t devid;
1116 char buf[20];
1117
1118 devid = devnm2devid(devnm);
1119 sprintf(buf, "%d:%d", major(devid), minor(devid));
1120 return dev_open(buf, flags);
1121 }
1122
1123 int open_dev(char *devnm)
1124 {
1125 return open_dev_flags(devnm, O_RDONLY);
1126 }
1127
1128 int open_dev_excl(char *devnm)
1129 {
1130 char buf[20];
1131 int i;
1132 int flags = O_RDWR;
1133 dev_t devid = devnm2devid(devnm);
1134 unsigned int delay = 1; // miliseconds
1135
1136 sprintf(buf, "%d:%d", major(devid), minor(devid));
1137 for (i = 0; i < 25; i++) {
1138 int fd = dev_open(buf, flags|O_EXCL);
1139 if (fd >= 0)
1140 return fd;
1141 if (errno == EACCES && flags == O_RDWR) {
1142 flags = O_RDONLY;
1143 continue;
1144 }
1145 if (errno != EBUSY)
1146 return fd;
1147 sleep_for(0, MSEC_TO_NSEC(delay), true);
1148 if (delay < 200)
1149 delay *= 2;
1150 }
1151 return -1;
1152 }
1153
1154 int same_dev(char *one, char *two)
1155 {
1156 struct stat st1, st2;
1157 if (stat(one, &st1) != 0)
1158 return 0;
1159 if (stat(two, &st2) != 0)
1160 return 0;
1161 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1162 return 0;
1163 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1164 return 0;
1165 return st1.st_rdev == st2.st_rdev;
1166 }
1167
1168 void wait_for(char *dev, int fd)
1169 {
1170 int i;
1171 struct stat stb_want;
1172 unsigned int delay = 1; // miliseconds
1173
1174 if (fstat(fd, &stb_want) != 0 ||
1175 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1176 return;
1177
1178 for (i = 0; i < 25; i++) {
1179 struct stat stb;
1180 if (stat(dev, &stb) == 0 &&
1181 (stb.st_mode & S_IFMT) == S_IFBLK &&
1182 (stb.st_rdev == stb_want.st_rdev))
1183 return;
1184 sleep_for(0, MSEC_TO_NSEC(delay), true);
1185 if (delay < 200)
1186 delay *= 2;
1187 }
1188 if (i == 25)
1189 pr_err("timeout waiting for %s\n", dev);
1190 }
1191
1192 struct superswitch *superlist[] =
1193 {
1194 &super0, &super1,
1195 &super_ddf, &super_imsm,
1196 &mbr, &gpt,
1197 NULL
1198 };
1199
1200 struct supertype *super_by_fd(int fd, char **subarrayp)
1201 {
1202 mdu_array_info_t array;
1203 int vers;
1204 int minor;
1205 struct supertype *st = NULL;
1206 struct mdinfo *sra;
1207 char *verstr;
1208 char version[20];
1209 int i;
1210 char *subarray = NULL;
1211 char container[32] = "";
1212 char *devnm = NULL;
1213
1214 devnm = fd2devnm(fd);
1215 if (!devnm)
1216 return NULL;
1217
1218 sra = sysfs_read(fd, NULL, GET_VERSION);
1219
1220 if (sra) {
1221 vers = sra->array.major_version;
1222 minor = sra->array.minor_version;
1223 verstr = sra->text_version;
1224 } else {
1225 if (md_get_array_info(fd, &array))
1226 array.major_version = array.minor_version = 0;
1227 vers = array.major_version;
1228 minor = array.minor_version;
1229 verstr = "";
1230 }
1231
1232 if (vers != -1) {
1233 sprintf(version, "%d.%d", vers, minor);
1234 verstr = version;
1235 }
1236 if (minor == -2 && is_subarray(verstr)) {
1237 char *dev = verstr+1;
1238
1239 subarray = strchr(dev, '/');
1240 if (subarray) {
1241 *subarray++ = '\0';
1242 subarray = xstrdup(subarray);
1243 }
1244 strcpy(container, dev);
1245 sysfs_free(sra);
1246 sra = sysfs_read(-1, container, GET_VERSION);
1247 if (sra && sra->text_version[0])
1248 verstr = sra->text_version;
1249 else
1250 verstr = "-no-metadata-";
1251 }
1252
1253 for (i = 0; st == NULL && superlist[i]; i++)
1254 st = superlist[i]->match_metadata_desc(verstr);
1255
1256 sysfs_free(sra);
1257 if (st) {
1258 st->sb = NULL;
1259 if (subarrayp)
1260 *subarrayp = subarray;
1261 strcpy(st->container_devnm, container);
1262 strncpy(st->devnm, devnm, MD_NAME_MAX - 1);
1263 } else
1264 free(subarray);
1265
1266 return st;
1267 }
1268
1269 struct supertype *dup_super(struct supertype *orig)
1270 {
1271 struct supertype *st;
1272
1273 if (!orig)
1274 return orig;
1275 st = xcalloc(1, sizeof(*st));
1276 st->ss = orig->ss;
1277 st->max_devs = orig->max_devs;
1278 st->minor_version = orig->minor_version;
1279 st->ignore_hw_compat = orig->ignore_hw_compat;
1280 st->data_offset = orig->data_offset;
1281 st->sb = NULL;
1282 st->info = NULL;
1283 return st;
1284 }
1285
1286 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1287 {
1288 /* try each load_super to find the best match,
1289 * and return the best superswitch
1290 */
1291 struct superswitch *ss;
1292 struct supertype *st;
1293 unsigned int besttime = 0;
1294 int bestsuper = -1;
1295 int i;
1296
1297 st = xcalloc(1, sizeof(*st));
1298 st->container_devnm[0] = 0;
1299
1300 for (i = 0; superlist[i]; i++) {
1301 int rv;
1302 ss = superlist[i];
1303 if (guess_type == guess_array && ss->add_to_super == NULL)
1304 continue;
1305 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1306 continue;
1307 memset(st, 0, sizeof(*st));
1308 st->ignore_hw_compat = 1;
1309 rv = ss->load_super(st, fd, NULL);
1310 if (rv == 0) {
1311 struct mdinfo info;
1312 st->ss->getinfo_super(st, &info, NULL);
1313 if (bestsuper == -1 ||
1314 besttime < info.array.ctime) {
1315 bestsuper = i;
1316 besttime = info.array.ctime;
1317 }
1318 ss->free_super(st);
1319 }
1320 }
1321 if (bestsuper != -1) {
1322 int rv;
1323 memset(st, 0, sizeof(*st));
1324 st->ignore_hw_compat = 1;
1325 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1326 if (rv == 0) {
1327 superlist[bestsuper]->free_super(st);
1328 return st;
1329 }
1330 }
1331 free(st);
1332 return NULL;
1333 }
1334
1335 /* Return size of device in bytes */
1336 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1337 {
1338 unsigned long long ldsize;
1339 struct stat st;
1340
1341 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1342 ldsize = (unsigned long long)st.st_size;
1343 else
1344 #ifdef BLKGETSIZE64
1345 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1346 #endif
1347 {
1348 unsigned long dsize;
1349 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1350 ldsize = dsize;
1351 ldsize <<= 9;
1352 } else {
1353 if (dname)
1354 pr_err("Cannot get size of %s: %s\n",
1355 dname, strerror(errno));
1356 return 0;
1357 }
1358 }
1359 *sizep = ldsize;
1360 return 1;
1361 }
1362
1363 /* Return sector size of device in bytes */
1364 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1365 {
1366 unsigned int sectsize;
1367
1368 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1369 if (dname)
1370 pr_err("Cannot get sector size of %s: %s\n",
1371 dname, strerror(errno));
1372 return 0;
1373 }
1374
1375 *sectsizep = sectsize;
1376 return 1;
1377 }
1378
1379 /* Return true if this can only be a container, not a member device.
1380 * i.e. is and md device and size is zero
1381 */
1382 int must_be_container(int fd)
1383 {
1384 struct mdinfo *mdi;
1385 unsigned long long size;
1386
1387 mdi = sysfs_read(fd, NULL, GET_VERSION);
1388 if (!mdi)
1389 return 0;
1390 sysfs_free(mdi);
1391
1392 if (get_dev_size(fd, NULL, &size) == 0)
1393 return 1;
1394 if (size == 0)
1395 return 1;
1396 return 0;
1397 }
1398
1399 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1400 * Returns: 1 if successful
1401 * -1 for unknown partition type
1402 * 0 for other errors
1403 */
1404 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1405 {
1406 struct GPT gpt;
1407 unsigned char empty_gpt_entry[16]= {0};
1408 struct GPT_part_entry *part;
1409 char buf[512];
1410 unsigned long long curr_part_end;
1411 unsigned all_partitions, entry_size;
1412 unsigned part_nr;
1413 unsigned int sector_size = 0;
1414
1415 *endofpart = 0;
1416
1417 BUILD_BUG_ON(sizeof(gpt) != 512);
1418 /* skip protective MBR */
1419 if (!get_dev_sector_size(fd, NULL, &sector_size))
1420 return 0;
1421 lseek(fd, sector_size, SEEK_SET);
1422 /* read GPT header */
1423 if (read(fd, &gpt, 512) != 512)
1424 return 0;
1425
1426 /* get the number of partition entries and the entry size */
1427 all_partitions = __le32_to_cpu(gpt.part_cnt);
1428 entry_size = __le32_to_cpu(gpt.part_size);
1429
1430 /* Check GPT signature*/
1431 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1432 return -1;
1433
1434 /* sanity checks */
1435 if (all_partitions > 1024 ||
1436 entry_size > sizeof(buf))
1437 return -1;
1438
1439 part = (struct GPT_part_entry *)buf;
1440
1441 /* set offset to third block (GPT entries) */
1442 lseek(fd, sector_size*2, SEEK_SET);
1443 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1444 /* read partition entry */
1445 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1446 return 0;
1447
1448 /* is this valid partition? */
1449 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1450 /* check the last lba for the current partition */
1451 curr_part_end = __le64_to_cpu(part->ending_lba);
1452 if (curr_part_end > *endofpart)
1453 *endofpart = curr_part_end;
1454 }
1455
1456 }
1457 return 1;
1458 }
1459
1460 /* Sets endofpart parameter to the last block used by the last partition on the device.
1461 * Returns: 1 if successful
1462 * -1 for unknown partition type
1463 * 0 for other errors
1464 */
1465 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1466 {
1467 struct MBR boot_sect;
1468 unsigned long long curr_part_end;
1469 unsigned part_nr;
1470 unsigned int sector_size;
1471 int retval = 0;
1472
1473 *endofpart = 0;
1474
1475 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1476 /* read MBR */
1477 lseek(fd, 0, 0);
1478 if (read(fd, &boot_sect, 512) != 512)
1479 goto abort;
1480
1481 /* check MBP signature */
1482 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1483 retval = 1;
1484 /* found the correct signature */
1485
1486 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1487 /*
1488 * Have to make every access through boot_sect rather
1489 * than using a pointer to the partition table (or an
1490 * entry), since the entries are not properly aligned.
1491 */
1492
1493 /* check for GPT type */
1494 if (boot_sect.parts[part_nr].part_type ==
1495 MBR_GPT_PARTITION_TYPE) {
1496 retval = get_gpt_last_partition_end(fd, endofpart);
1497 break;
1498 }
1499 /* check the last used lba for the current partition */
1500 curr_part_end =
1501 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1502 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1503 if (curr_part_end > *endofpart)
1504 *endofpart = curr_part_end;
1505 }
1506 } else {
1507 /* Unknown partition table */
1508 retval = -1;
1509 }
1510 /* calculate number of 512-byte blocks */
1511 if (get_dev_sector_size(fd, NULL, &sector_size))
1512 *endofpart *= (sector_size / 512);
1513 abort:
1514 return retval;
1515 }
1516
1517 int check_partitions(int fd, char *dname, unsigned long long freesize,
1518 unsigned long long size)
1519 {
1520 /*
1521 * Check where the last partition ends
1522 */
1523 unsigned long long endofpart;
1524
1525 if (get_last_partition_end(fd, &endofpart) > 0) {
1526 /* There appears to be a partition table here */
1527 if (freesize == 0) {
1528 /* partitions will not be visible in new device */
1529 pr_err("partition table exists on %s but will be lost or\n"
1530 " meaningless after creating array\n",
1531 dname);
1532 return 1;
1533 } else if (endofpart > freesize) {
1534 /* last partition overlaps metadata */
1535 pr_err("metadata will over-write last partition on %s.\n",
1536 dname);
1537 return 1;
1538 } else if (size && endofpart > size) {
1539 /* partitions will be truncated in new device */
1540 pr_err("array size is too small to cover all partitions on %s.\n",
1541 dname);
1542 return 1;
1543 }
1544 }
1545 return 0;
1546 }
1547
1548 int open_container(int fd)
1549 {
1550 /* 'fd' is a block device. Find out if it is in use
1551 * by a container, and return an open fd on that container.
1552 */
1553 char path[288];
1554 char *e;
1555 DIR *dir;
1556 struct dirent *de;
1557 int dfd, n;
1558 char buf[200];
1559 int major, minor;
1560 struct stat st;
1561
1562 if (fstat(fd, &st) != 0)
1563 return -1;
1564 sprintf(path, "/sys/dev/block/%d:%d/holders",
1565 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1566 e = path + strlen(path);
1567
1568 dir = opendir(path);
1569 if (!dir)
1570 return -1;
1571 while ((de = readdir(dir))) {
1572 if (de->d_ino == 0)
1573 continue;
1574 if (de->d_name[0] == '.')
1575 continue;
1576 /* Need to make sure it is a container and not a volume */
1577 sprintf(e, "/%s/md/metadata_version", de->d_name);
1578 dfd = open(path, O_RDONLY);
1579 if (dfd < 0)
1580 continue;
1581 n = read(dfd, buf, sizeof(buf));
1582 close(dfd);
1583 if (n <= 0 || (unsigned)n >= sizeof(buf))
1584 continue;
1585 buf[n] = 0;
1586 if (strncmp(buf, "external", 8) != 0 ||
1587 n < 10 ||
1588 buf[9] == '/')
1589 continue;
1590 sprintf(e, "/%s/dev", de->d_name);
1591 dfd = open(path, O_RDONLY);
1592 if (dfd < 0)
1593 continue;
1594 n = read(dfd, buf, sizeof(buf));
1595 close(dfd);
1596 if (n <= 0 || (unsigned)n >= sizeof(buf))
1597 continue;
1598 buf[n] = 0;
1599 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1600 continue;
1601 sprintf(buf, "%d:%d", major, minor);
1602 dfd = dev_open(buf, O_RDONLY);
1603 if (dfd >= 0) {
1604 closedir(dir);
1605 return dfd;
1606 }
1607 }
1608 closedir(dir);
1609 return -1;
1610 }
1611
1612 struct superswitch *version_to_superswitch(char *vers)
1613 {
1614 int i;
1615
1616 for (i = 0; superlist[i]; i++) {
1617 struct superswitch *ss = superlist[i];
1618
1619 if (strcmp(vers, ss->name) == 0)
1620 return ss;
1621 }
1622
1623 return NULL;
1624 }
1625
1626 int metadata_container_matches(char *metadata, char *devnm)
1627 {
1628 /* Check if 'devnm' is the container named in 'metadata'
1629 * which is
1630 * /containername/componentname or
1631 * -containername/componentname
1632 */
1633 int l;
1634 if (*metadata != '/' && *metadata != '-')
1635 return 0;
1636 l = strlen(devnm);
1637 if (strncmp(metadata+1, devnm, l) != 0)
1638 return 0;
1639 if (metadata[l+1] != '/')
1640 return 0;
1641 return 1;
1642 }
1643
1644 int metadata_subdev_matches(char *metadata, char *devnm)
1645 {
1646 /* Check if 'devnm' is the subdev named in 'metadata'
1647 * which is
1648 * /containername/subdev or
1649 * -containername/subdev
1650 */
1651 char *sl;
1652 if (*metadata != '/' && *metadata != '-')
1653 return 0;
1654 sl = strchr(metadata+1, '/');
1655 if (!sl)
1656 return 0;
1657 if (strcmp(sl+1, devnm) == 0)
1658 return 1;
1659 return 0;
1660 }
1661
1662 int is_container_member(struct mdstat_ent *mdstat, char *container)
1663 {
1664 if (mdstat->metadata_version == NULL ||
1665 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1666 !metadata_container_matches(mdstat->metadata_version+9, container))
1667 return 0;
1668
1669 return 1;
1670 }
1671
1672 int is_subarray_active(char *subarray, char *container)
1673 {
1674 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1675 struct mdstat_ent *ent;
1676
1677 for (ent = mdstat; ent; ent = ent->next)
1678 if (is_container_member(ent, container))
1679 if (strcmp(to_subarray(ent, container), subarray) == 0)
1680 break;
1681
1682 free_mdstat(mdstat);
1683
1684 return ent != NULL;
1685 }
1686
1687 /* open_subarray - opens a subarray in a container
1688 * @dev: container device name
1689 * @st: empty supertype
1690 * @quiet: block reporting errors flag
1691 *
1692 * On success returns an fd to a container and fills in *st
1693 */
1694 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1695 {
1696 struct mdinfo *mdi;
1697 struct mdinfo *info;
1698 int fd, err = 1;
1699 char *_devnm;
1700
1701 fd = open(dev, O_RDWR|O_EXCL);
1702 if (fd < 0) {
1703 if (!quiet)
1704 pr_err("Couldn't open %s, aborting\n",
1705 dev);
1706 return -1;
1707 }
1708
1709 _devnm = fd2devnm(fd);
1710 if (_devnm == NULL) {
1711 if (!quiet)
1712 pr_err("Failed to determine device number for %s\n",
1713 dev);
1714 goto close_fd;
1715 }
1716 strcpy(st->devnm, _devnm);
1717
1718 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1719 if (!mdi) {
1720 if (!quiet)
1721 pr_err("Failed to read sysfs for %s\n",
1722 dev);
1723 goto close_fd;
1724 }
1725
1726 if (mdi->array.level != UnSet) {
1727 if (!quiet)
1728 pr_err("%s is not a container\n", dev);
1729 goto free_sysfs;
1730 }
1731
1732 st->ss = version_to_superswitch(mdi->text_version);
1733 if (!st->ss) {
1734 if (!quiet)
1735 pr_err("Operation not supported for %s metadata\n",
1736 mdi->text_version);
1737 goto free_sysfs;
1738 }
1739
1740 if (st->devnm[0] == 0) {
1741 if (!quiet)
1742 pr_err("Failed to allocate device name\n");
1743 goto free_sysfs;
1744 }
1745
1746 if (!st->ss->load_container) {
1747 if (!quiet)
1748 pr_err("%s is not a container\n", dev);
1749 goto free_sysfs;
1750 }
1751
1752 if (st->ss->load_container(st, fd, NULL)) {
1753 if (!quiet)
1754 pr_err("Failed to load metadata for %s\n",
1755 dev);
1756 goto free_sysfs;
1757 }
1758
1759 info = st->ss->container_content(st, subarray);
1760 if (!info) {
1761 if (!quiet)
1762 pr_err("Failed to find subarray-%s in %s\n",
1763 subarray, dev);
1764 goto free_super;
1765 }
1766 free(info);
1767
1768 err = 0;
1769
1770 free_super:
1771 if (err)
1772 st->ss->free_super(st);
1773 free_sysfs:
1774 sysfs_free(mdi);
1775 close_fd:
1776 if (err)
1777 close(fd);
1778
1779 if (err)
1780 return -1;
1781 else
1782 return fd;
1783 }
1784
1785 int add_disk(int mdfd, struct supertype *st,
1786 struct mdinfo *sra, struct mdinfo *info)
1787 {
1788 /* Add a device to an array, in one of 2 ways. */
1789 int rv;
1790
1791 if (st->ss->external) {
1792 if (info->disk.state & (1<<MD_DISK_SYNC))
1793 info->recovery_start = MaxSector;
1794 else
1795 info->recovery_start = 0;
1796 rv = sysfs_add_disk(sra, info, 0);
1797 if (! rv) {
1798 struct mdinfo *sd2;
1799 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1800 if (sd2 == info)
1801 break;
1802 if (sd2 == NULL) {
1803 sd2 = xmalloc(sizeof(*sd2));
1804 *sd2 = *info;
1805 sd2->next = sra->devs;
1806 sra->devs = sd2;
1807 }
1808 }
1809 } else
1810 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1811 return rv;
1812 }
1813
1814 int remove_disk(int mdfd, struct supertype *st,
1815 struct mdinfo *sra, struct mdinfo *info)
1816 {
1817 int rv;
1818
1819 /* Remove the disk given by 'info' from the array */
1820 if (st->ss->external)
1821 rv = sysfs_set_str(sra, info, "slot", STR_COMMON_NONE);
1822 else
1823 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1824 info->disk.minor));
1825 return rv;
1826 }
1827
1828 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1829 {
1830 int cnt = force ? 500 : 5;
1831 int ret;
1832
1833 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1834 * outstanding IO requests to the device.
1835 * In this case, it can be helpful to wait a little while,
1836 * up to 5 seconds if 'force' is set, or 50 msec if not.
1837 */
1838 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1839 errno == EBUSY &&
1840 cnt-- > 0)
1841 sleep_for(0, MSEC_TO_NSEC(10), true);
1842
1843 return ret;
1844 }
1845
1846 int sys_hot_remove_disk(int statefd, int force)
1847 {
1848 int cnt = force ? 500 : 5;
1849 int ret;
1850
1851 while ((ret = write(statefd, "remove", 6)) == -1 &&
1852 errno == EBUSY &&
1853 cnt-- > 0)
1854 sleep_for(0, MSEC_TO_NSEC(10), true);
1855 return ret == 6 ? 0 : -1;
1856 }
1857
1858 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1859 {
1860 /* Initialise kernel's knowledge of array.
1861 * This varies between externally managed arrays
1862 * and older kernels
1863 */
1864 mdu_array_info_t inf;
1865 int rv;
1866
1867 if (st->ss->external)
1868 return sysfs_set_array(info, 9003);
1869
1870 memset(&inf, 0, sizeof(inf));
1871 inf.major_version = info->array.major_version;
1872 inf.minor_version = info->array.minor_version;
1873 rv = md_set_array_info(mdfd, &inf);
1874
1875 return rv;
1876 }
1877
1878 unsigned long long min_recovery_start(struct mdinfo *array)
1879 {
1880 /* find the minimum recovery_start in an array for metadata
1881 * formats that only record per-array recovery progress instead
1882 * of per-device
1883 */
1884 unsigned long long recovery_start = MaxSector;
1885 struct mdinfo *d;
1886
1887 for (d = array->devs; d; d = d->next)
1888 recovery_start = min(recovery_start, d->recovery_start);
1889
1890 return recovery_start;
1891 }
1892
1893 int mdmon_pid(char *devnm)
1894 {
1895 char path[100];
1896 char pid[10];
1897 int fd;
1898 int n;
1899
1900 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1901
1902 fd = open(path, O_RDONLY | O_NOATIME, 0);
1903
1904 if (fd < 0)
1905 return -1;
1906 n = read(fd, pid, 9);
1907 close(fd);
1908 if (n <= 0)
1909 return -1;
1910 return atoi(pid);
1911 }
1912
1913 int mdmon_running(char *devnm)
1914 {
1915 int pid = mdmon_pid(devnm);
1916 if (pid <= 0)
1917 return 0;
1918 if (kill(pid, 0) == 0)
1919 return 1;
1920 return 0;
1921 }
1922
1923 int start_mdmon(char *devnm)
1924 {
1925 int i;
1926 int len;
1927 pid_t pid;
1928 int status;
1929 char *prefix = in_initrd() ? "initrd-" : "";
1930 char pathbuf[1024];
1931 char *paths[4] = {
1932 pathbuf,
1933 BINDIR "/mdmon",
1934 "./mdmon",
1935 NULL
1936 };
1937
1938 if (check_env("MDADM_NO_MDMON"))
1939 return 0;
1940 if (continue_via_systemd(devnm, MDMON_SERVICE, prefix))
1941 return 0;
1942
1943 /* That failed, try running mdmon directly */
1944 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1945 if (len > 0) {
1946 char *sl;
1947 pathbuf[len] = 0;
1948 sl = strrchr(pathbuf, '/');
1949 if (sl)
1950 sl++;
1951 else
1952 sl = pathbuf;
1953 strcpy(sl, "mdmon");
1954 } else
1955 pathbuf[0] = '\0';
1956
1957 switch(fork()) {
1958 case 0:
1959 manage_fork_fds(1);
1960 for (i = 0; paths[i]; i++)
1961 if (paths[i][0]) {
1962 execl(paths[i], paths[i],
1963 devnm, NULL);
1964 }
1965 exit(1);
1966 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1967 return -1;
1968 default: /* parent - good */
1969 pid = wait(&status);
1970 if (pid < 0 || status != 0) {
1971 pr_err("failed to launch mdmon. Array remains readonly\n");
1972 return -1;
1973 }
1974 }
1975 return 0;
1976 }
1977
1978 __u32 random32(void)
1979 {
1980 __u32 rv;
1981 int rfd = open("/dev/urandom", O_RDONLY);
1982 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1983 rv = random();
1984 if (rfd >= 0)
1985 close(rfd);
1986 return rv;
1987 }
1988
1989 void random_uuid(__u8 *buf)
1990 {
1991 int fd, i, len;
1992 __u32 r[4];
1993
1994 fd = open("/dev/urandom", O_RDONLY);
1995 if (fd < 0)
1996 goto use_random;
1997 len = read(fd, buf, 16);
1998 close(fd);
1999 if (len != 16)
2000 goto use_random;
2001
2002 return;
2003
2004 use_random:
2005 for (i = 0; i < 4; i++)
2006 r[i] = random();
2007 memcpy(buf, r, 16);
2008 }
2009
2010 int flush_metadata_updates(struct supertype *st)
2011 {
2012 int sfd;
2013 if (!st->updates) {
2014 st->update_tail = NULL;
2015 return -1;
2016 }
2017
2018 sfd = connect_monitor(st->container_devnm);
2019 if (sfd < 0)
2020 return -1;
2021
2022 while (st->updates) {
2023 struct metadata_update *mu = st->updates;
2024 st->updates = mu->next;
2025
2026 send_message(sfd, mu, 0);
2027 wait_reply(sfd, 0);
2028 free(mu->buf);
2029 free(mu);
2030 }
2031 ack(sfd, 0);
2032 wait_reply(sfd, 0);
2033 close(sfd);
2034 st->update_tail = NULL;
2035 return 0;
2036 }
2037
2038 void append_metadata_update(struct supertype *st, void *buf, int len)
2039 {
2040
2041 struct metadata_update *mu = xmalloc(sizeof(*mu));
2042
2043 mu->buf = buf;
2044 mu->len = len;
2045 mu->space = NULL;
2046 mu->space_list = NULL;
2047 mu->next = NULL;
2048 *st->update_tail = mu;
2049 st->update_tail = &mu->next;
2050 }
2051
2052 #ifdef __TINYC__
2053 /* tinyc doesn't optimize this check in ioctl.h out ... */
2054 unsigned int __invalid_size_argument_for_IOC = 0;
2055 #endif
2056
2057 /**
2058 * disk_fd_matches_criteria() - check if device matches spare criteria.
2059 * @st: supertype, not NULL.
2060 * @disk_fd: file descriptor of the disk.
2061 * @sc: criteria to test.
2062 *
2063 * Return: true if disk matches criteria, false otherwise.
2064 */
2065 bool disk_fd_matches_criteria(struct supertype *st, int disk_fd, struct spare_criteria *sc)
2066 {
2067 unsigned int dev_sector_size = 0;
2068 unsigned long long dev_size = 0;
2069
2070 if (!sc->criteria_set)
2071 return true;
2072
2073 if (!get_dev_size(disk_fd, NULL, &dev_size) || dev_size < sc->min_size)
2074 return false;
2075
2076 if (!get_dev_sector_size(disk_fd, NULL, &dev_sector_size) ||
2077 sc->sector_size != dev_sector_size)
2078 return false;
2079
2080 if (drive_test_and_add_policies(st, &sc->pols, disk_fd, 0))
2081 return false;
2082
2083 return true;
2084 }
2085
2086 /**
2087 * devid_matches_criteria() - check if device referenced by devid matches spare criteria.
2088 * @st: supertype, not NULL.
2089 * @devid: devid of the device to check.
2090 * @sc: criteria to test.
2091 *
2092 * Return: true if disk matches criteria, false otherwise.
2093 */
2094 bool devid_matches_criteria(struct supertype *st, dev_t devid, struct spare_criteria *sc)
2095 {
2096 char buf[NAME_MAX];
2097 bool ret;
2098 int fd;
2099
2100 if (!sc->criteria_set)
2101 return true;
2102
2103 snprintf(buf, NAME_MAX, "%d:%d", major(devid), minor(devid));
2104
2105 fd = dev_open(buf, O_RDONLY);
2106 if (!is_fd_valid(fd))
2107 return false;
2108
2109 /* Error code inherited */
2110 ret = disk_fd_matches_criteria(st, fd, sc);
2111
2112 close(fd);
2113 return ret;
2114 }
2115
2116 /* Pick all spares matching given criteria from a container
2117 * if min_size == 0 do not check size
2118 * if domlist == NULL do not check domains
2119 * if spare_group given add it to domains of each spare
2120 * metadata allows to test domains using metadata of destination array */
2121 struct mdinfo *container_choose_spares(struct supertype *st,
2122 struct spare_criteria *criteria,
2123 struct domainlist *domlist,
2124 char *spare_group,
2125 const char *metadata, int get_one)
2126 {
2127 struct mdinfo *d, **dp, *disks = NULL;
2128
2129 /* get list of all disks in container */
2130 if (st->ss->getinfo_super_disks)
2131 disks = st->ss->getinfo_super_disks(st);
2132
2133 if (!disks)
2134 return disks;
2135 /* find spare devices on the list */
2136 dp = &disks->devs;
2137 disks->array.spare_disks = 0;
2138 while (*dp) {
2139 bool found = false;
2140
2141 d = *dp;
2142 if (d->disk.state == 0) {
2143 dev_t dev = makedev(d->disk.major,d->disk.minor);
2144
2145 found = devid_matches_criteria(st, dev, criteria);
2146
2147 /* check if domain matches */
2148 if (found && domlist) {
2149 struct dev_policy *pol = devid_policy(dev);
2150 if (spare_group)
2151 pol_add(&pol, pol_domain,
2152 spare_group, NULL);
2153 if (domain_test(domlist, pol, metadata) != 1)
2154 found = false;
2155
2156 dev_policy_free(pol);
2157 }
2158 }
2159 if (found) {
2160 dp = &d->next;
2161 disks->array.spare_disks++;
2162 if (get_one) {
2163 sysfs_free(*dp);
2164 d->next = NULL;
2165 }
2166 } else {
2167 *dp = d->next;
2168 d->next = NULL;
2169 sysfs_free(d);
2170 }
2171 }
2172 return disks;
2173 }
2174
2175 /* Checks if paths point to the same device
2176 * Returns 0 if they do.
2177 * Returns 1 if they don't.
2178 * Returns -1 if something went wrong,
2179 * e.g. paths are empty or the files
2180 * they point to don't exist */
2181 int compare_paths (char* path1, char* path2)
2182 {
2183 struct stat st1,st2;
2184
2185 if (path1 == NULL || path2 == NULL)
2186 return -1;
2187 if (stat(path1,&st1) != 0)
2188 return -1;
2189 if (stat(path2,&st2) != 0)
2190 return -1;
2191 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2192 return 0;
2193 return 1;
2194 }
2195
2196 /* Make sure we can open as many devices as needed */
2197 void enable_fds(int devices)
2198 {
2199 unsigned int fds = 20 + devices;
2200 struct rlimit lim;
2201 if (getrlimit(RLIMIT_NOFILE, &lim) != 0 || lim.rlim_cur >= fds)
2202 return;
2203 if (lim.rlim_max < fds)
2204 lim.rlim_max = fds;
2205 lim.rlim_cur = fds;
2206 setrlimit(RLIMIT_NOFILE, &lim);
2207 }
2208
2209 /* Close all opened descriptors if needed and redirect
2210 * streams to /dev/null.
2211 * For debug purposed, leave STDOUT and STDERR untouched
2212 * Returns:
2213 * 1- if any error occurred
2214 * 0- otherwise
2215 */
2216 void manage_fork_fds(int close_all)
2217 {
2218 DIR *dir;
2219 struct dirent *dirent;
2220
2221 close(0);
2222 open("/dev/null", O_RDWR);
2223
2224 #ifndef DEBUG
2225 dup2(0, 1);
2226 dup2(0, 2);
2227 #endif
2228
2229 if (close_all == 0)
2230 return;
2231
2232 dir = opendir("/proc/self/fd");
2233 if (!dir) {
2234 pr_err("Cannot open /proc/self/fd directory.\n");
2235 return;
2236 }
2237 for (dirent = readdir(dir); dirent; dirent = readdir(dir)) {
2238 int fd = -1;
2239
2240 if ((strcmp(dirent->d_name, ".") == 0) ||
2241 (strcmp(dirent->d_name, "..")) == 0)
2242 continue;
2243
2244 fd = strtol(dirent->d_name, NULL, 10);
2245 if (fd > 2)
2246 close(fd);
2247 }
2248 }
2249
2250 /* In a systemd/udev world, it is best to get systemd to
2251 * run daemon rather than running in the background.
2252 * Returns:
2253 * 1- if systemd service has been started
2254 * 0- otherwise
2255 */
2256 int continue_via_systemd(char *devnm, char *service_name, char *prefix)
2257 {
2258 int pid, status;
2259 char pathbuf[1024];
2260
2261 /* Simply return that service cannot be started */
2262 if (check_env("MDADM_NO_SYSTEMCTL"))
2263 return 0;
2264 switch (fork()) {
2265 case 0:
2266 manage_fork_fds(1);
2267 snprintf(pathbuf, sizeof(pathbuf),
2268 "%s@%s%s.service", service_name, prefix ?: "", devnm);
2269 status = execl("/usr/bin/systemctl", "systemctl", "restart",
2270 pathbuf, NULL);
2271 status = execl("/bin/systemctl", "systemctl", "restart",
2272 pathbuf, NULL);
2273 exit(1);
2274 case -1: /* Just do it ourselves. */
2275 break;
2276 default: /* parent - good */
2277 pid = wait(&status);
2278 if (pid >= 0 && status == 0)
2279 return 1;
2280 }
2281 return 0;
2282 }
2283
2284 int in_initrd(void)
2285 {
2286 return access("/etc/initrd-release", F_OK) >= 0;
2287 }
2288
2289 void reopen_mddev(int mdfd)
2290 {
2291 /* Re-open without any O_EXCL, but keep
2292 * the same fd
2293 */
2294 char *devnm;
2295 int fd;
2296 devnm = fd2devnm(mdfd);
2297 close(mdfd);
2298 fd = open_dev(devnm);
2299 if (fd >= 0 && fd != mdfd)
2300 dup2(fd, mdfd);
2301 }
2302
2303 static struct cmap_hooks *cmap_hooks = NULL;
2304 static int is_cmap_hooks_ready = 0;
2305
2306 void set_cmap_hooks(void)
2307 {
2308 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2309 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2310 if (!cmap_hooks->cmap_handle)
2311 return;
2312
2313 cmap_hooks->initialize =
2314 dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2315 cmap_hooks->get_string =
2316 dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2317 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2318
2319 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2320 !cmap_hooks->finalize)
2321 dlclose(cmap_hooks->cmap_handle);
2322 else
2323 is_cmap_hooks_ready = 1;
2324 }
2325
2326 int get_cluster_name(char **cluster_name)
2327 {
2328 int rv = -1;
2329 cmap_handle_t handle;
2330
2331 if (!is_cmap_hooks_ready)
2332 return rv;
2333
2334 rv = cmap_hooks->initialize(&handle);
2335 if (rv != CS_OK)
2336 goto out;
2337
2338 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2339 if (rv != CS_OK) {
2340 free(*cluster_name);
2341 rv = -1;
2342 goto name_err;
2343 }
2344
2345 rv = 0;
2346 name_err:
2347 cmap_hooks->finalize(handle);
2348 out:
2349 return rv;
2350 }
2351
2352 void set_dlm_hooks(void)
2353 {
2354 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2355 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2356 if (!dlm_hooks->dlm_handle)
2357 return;
2358
2359 dlm_hooks->open_lockspace =
2360 dlsym(dlm_hooks->dlm_handle, "dlm_open_lockspace");
2361 dlm_hooks->create_lockspace =
2362 dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2363 dlm_hooks->release_lockspace =
2364 dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2365 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2366 dlm_hooks->ls_unlock_wait =
2367 dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock_wait");
2368 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2369 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2370
2371 if (!dlm_hooks->open_lockspace || !dlm_hooks->create_lockspace ||
2372 !dlm_hooks->ls_lock || !dlm_hooks->ls_unlock_wait ||
2373 !dlm_hooks->release_lockspace || !dlm_hooks->ls_get_fd ||
2374 !dlm_hooks->dispatch)
2375 dlclose(dlm_hooks->dlm_handle);
2376 else
2377 is_dlm_hooks_ready = 1;
2378 }
2379
2380 void set_hooks(void)
2381 {
2382 set_dlm_hooks();
2383 set_cmap_hooks();
2384 }
2385
2386 int zero_disk_range(int fd, unsigned long long sector, size_t count)
2387 {
2388 int ret = 0;
2389 int fd_zero;
2390 void *addr = NULL;
2391 size_t written = 0;
2392 size_t len = count * 512;
2393 ssize_t n;
2394
2395 fd_zero = open("/dev/zero", O_RDONLY);
2396 if (fd_zero < 0) {
2397 pr_err("Cannot open /dev/zero\n");
2398 return -1;
2399 }
2400
2401 if (lseek64(fd, sector * 512, SEEK_SET) < 0) {
2402 ret = -errno;
2403 pr_err("Failed to seek offset for zeroing\n");
2404 goto out;
2405 }
2406
2407 addr = mmap(NULL, len, PROT_READ, MAP_PRIVATE, fd_zero, 0);
2408
2409 if (addr == MAP_FAILED) {
2410 ret = -errno;
2411 pr_err("Mapping /dev/zero failed\n");
2412 goto out;
2413 }
2414
2415 do {
2416 n = write(fd, addr + written, len - written);
2417 if (n < 0) {
2418 if (errno == EINTR)
2419 continue;
2420 ret = -errno;
2421 pr_err("Zeroing disk range failed\n");
2422 break;
2423 }
2424 written += n;
2425 } while (written != len);
2426
2427 munmap(addr, len);
2428
2429 out:
2430 close(fd_zero);
2431 return ret;
2432 }
2433
2434 /**
2435 * sleep_for() - Sleeps for specified time.
2436 * @sec: Seconds to sleep for.
2437 * @nsec: Nanoseconds to sleep for, has to be less than one second.
2438 * @wake_after_interrupt: If set, wake up if interrupted.
2439 *
2440 * Function immediately returns if error different than EINTR occurs.
2441 */
2442 void sleep_for(unsigned int sec, long nsec, bool wake_after_interrupt)
2443 {
2444 struct timespec delay = {.tv_sec = sec, .tv_nsec = nsec};
2445
2446 assert(nsec < MSEC_TO_NSEC(1000));
2447
2448 do {
2449 errno = 0;
2450 nanosleep(&delay, &delay);
2451 if (errno != 0 && errno != EINTR) {
2452 pr_err("Error sleeping for %us %ldns: %s\n", sec, nsec, strerror(errno));
2453 return;
2454 }
2455 } while (!wake_after_interrupt && errno == EINTR);
2456 }
2457
2458 /* is_directory() - Checks if directory provided by path is indeed a regular directory.
2459 * @path: directory path to be checked
2460 *
2461 * Doesn't accept symlinks.
2462 *
2463 * Return: true if is a directory, false if not
2464 */
2465 bool is_directory(const char *path)
2466 {
2467 struct stat st;
2468
2469 if (lstat(path, &st) != 0) {
2470 pr_err("%s: %s\n", strerror(errno), path);
2471 return false;
2472 }
2473
2474 if (!S_ISDIR(st.st_mode))
2475 return false;
2476
2477 return true;
2478 }
2479
2480 /*
2481 * is_file() - Checks if file provided by path is indeed a regular file.
2482 * @path: file path to be checked
2483 *
2484 * Doesn't accept symlinks.
2485 *
2486 * Return: true if is a file, false if not
2487 */
2488 bool is_file(const char *path)
2489 {
2490 struct stat st;
2491
2492 if (lstat(path, &st) != 0) {
2493 pr_err("%s: %s\n", strerror(errno), path);
2494 return false;
2495 }
2496
2497 if (!S_ISREG(st.st_mode))
2498 return false;
2499
2500 return true;
2501 }