]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
util: md_array_valid(): Introduce md_array_valid() helper
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <linux/magic.h>
34 #include <poll.h>
35 #include <ctype.h>
36 #include <dirent.h>
37 #include <signal.h>
38 #include <dlfcn.h>
39
40
41 /*
42 * following taken from linux/blkpg.h because they aren't
43 * anywhere else and it isn't safe to #include linux/ * stuff.
44 */
45
46 #define BLKPG _IO(0x12,105)
47
48 /* The argument structure */
49 struct blkpg_ioctl_arg {
50 int op;
51 int flags;
52 int datalen;
53 void *data;
54 };
55
56 /* The subfunctions (for the op field) */
57 #define BLKPG_ADD_PARTITION 1
58 #define BLKPG_DEL_PARTITION 2
59
60 /* Sizes of name fields. Unused at present. */
61 #define BLKPG_DEVNAMELTH 64
62 #define BLKPG_VOLNAMELTH 64
63
64 /* The data structure for ADD_PARTITION and DEL_PARTITION */
65 struct blkpg_partition {
66 long long start; /* starting offset in bytes */
67 long long length; /* length in bytes */
68 int pno; /* partition number */
69 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
70 to be used in kernel messages */
71 char volname[BLKPG_VOLNAMELTH]; /* volume label */
72 };
73
74 #include "part.h"
75
76 /* Force a compilation error if condition is true */
77 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
78
79 /* Force a compilation error if condition is true, but also produce a
80 result (of value 0 and type size_t), so the expression can be used
81 e.g. in a structure initializer (or where-ever else comma expressions
82 aren't permitted). */
83 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
84
85 static int is_dlm_hooks_ready = 0;
86
87 int dlm_funs_ready(void)
88 {
89 return is_dlm_hooks_ready ? 1 : 0;
90 }
91
92 static struct dlm_hooks *dlm_hooks = NULL;
93 struct dlm_lock_resource *dlm_lock_res = NULL;
94 static int ast_called = 0;
95
96 struct dlm_lock_resource {
97 dlm_lshandle_t *ls;
98 struct dlm_lksb lksb;
99 };
100
101 /* Using poll(2) to wait for and dispatch ASTs */
102 static int poll_for_ast(dlm_lshandle_t ls)
103 {
104 struct pollfd pfd;
105
106 pfd.fd = dlm_hooks->ls_get_fd(ls);
107 pfd.events = POLLIN;
108
109 while (!ast_called)
110 {
111 if (poll(&pfd, 1, 0) < 0)
112 {
113 perror("poll");
114 return -1;
115 }
116 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
117 }
118 ast_called = 0;
119
120 return 0;
121 }
122
123 static void dlm_ast(void *arg)
124 {
125 ast_called = 1;
126 }
127
128 static char *cluster_name = NULL;
129 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
130 int cluster_get_dlmlock(int *lockid)
131 {
132 int ret = -1;
133 char str[64];
134 int flags = LKF_NOQUEUE;
135
136 ret = get_cluster_name(&cluster_name);
137 if (ret) {
138 pr_err("The md can't get cluster name\n");
139 return -1;
140 }
141
142 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
143 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
144 if (!dlm_lock_res->ls) {
145 pr_err("%s failed to create lockspace\n", cluster_name);
146 return -ENOMEM;
147 }
148
149 snprintf(str, 64, "bitmap%s", cluster_name);
150 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE, &dlm_lock_res->lksb,
151 flags, str, strlen(str), 0, dlm_ast,
152 dlm_lock_res, NULL, NULL);
153 if (ret) {
154 pr_err("error %d when get PW mode on lock %s\n", errno, str);
155 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
156 return ret;
157 }
158
159 /* Wait for it to complete */
160 poll_for_ast(dlm_lock_res->ls);
161 *lockid = dlm_lock_res->lksb.sb_lkid;
162
163 return dlm_lock_res->lksb.sb_status;
164 }
165
166 int cluster_release_dlmlock(int lockid)
167 {
168 int ret = -1;
169
170 if (!cluster_name)
171 return -1;
172
173 ret = dlm_hooks->ls_unlock(dlm_lock_res->ls, lockid, 0,
174 &dlm_lock_res->lksb, dlm_lock_res);
175 if (ret) {
176 pr_err("error %d happened when unlock\n", errno);
177 /* XXX make sure the lock is unlocked eventually */
178 goto out;
179 }
180
181 /* Wait for it to complete */
182 poll_for_ast(dlm_lock_res->ls);
183
184 errno = dlm_lock_res->lksb.sb_status;
185 if (errno != EUNLOCK) {
186 pr_err("error %d happened in ast when unlock lockspace\n", errno);
187 /* XXX make sure the lockspace is unlocked eventually */
188 goto out;
189 }
190
191 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
192 if (ret) {
193 pr_err("error %d happened when release lockspace\n", errno);
194 /* XXX make sure the lockspace is released eventually */
195 goto out;
196 }
197 free(dlm_lock_res);
198
199 out:
200 return ret;
201 }
202
203 int md_array_valid(int fd)
204 {
205 struct mdinfo *sra;
206 int ret;
207
208 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
209 if (sra) {
210 if (sra->array_state != ARRAY_UNKNOWN_STATE)
211 ret = 0;
212 else
213 ret = -ENODEV;
214
215 free(sra);
216 } else {
217 /*
218 * GET_ARRAY_INFO doesn't provide access to the proper state
219 * information, so fallback to a basic check for raid_disks != 0
220 */
221 ret = ioctl(fd, RAID_VERSION);
222 }
223
224 return !ret;
225 }
226
227 int md_array_active(int fd)
228 {
229 struct mdinfo *sra;
230 struct mdu_array_info_s array;
231 int ret;
232
233 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
234 if (sra) {
235 if (sra->array_state != ARRAY_CLEAR &&
236 sra->array_state != ARRAY_INACTIVE &&
237 sra->array_state != ARRAY_UNKNOWN_STATE)
238 ret = 0;
239 else
240 ret = -ENODEV;
241
242 free(sra);
243 } else {
244 /*
245 * GET_ARRAY_INFO doesn't provide access to the proper state
246 * information, so fallback to a basic check for raid_disks != 0
247 */
248 ret = ioctl(fd, GET_ARRAY_INFO, &array);
249 }
250
251 return !ret;
252 }
253
254 /*
255 * Get array info from the kernel. Longer term we want to deprecate the
256 * ioctl and get it from sysfs.
257 */
258 int md_get_array_info(int fd, struct mdu_array_info_s *array)
259 {
260 return ioctl(fd, GET_ARRAY_INFO, array);
261 }
262
263 /*
264 * Set array info
265 */
266 int md_set_array_info(int fd, struct mdu_array_info_s *array)
267 {
268 return ioctl(fd, SET_ARRAY_INFO, array);
269 }
270
271 /*
272 * Get disk info from the kernel.
273 */
274 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
275 {
276 return ioctl(fd, GET_DISK_INFO, disk);
277 }
278
279 /*
280 * Parse a 128 bit uuid in 4 integers
281 * format is 32 hexx nibbles with options :.<space> separator
282 * If not exactly 32 hex digits are found, return 0
283 * else return 1
284 */
285 int parse_uuid(char *str, int uuid[4])
286 {
287 int hit = 0; /* number of Hex digIT */
288 int i;
289 char c;
290 for (i = 0; i < 4; i++)
291 uuid[i] = 0;
292
293 while ((c = *str++) != 0) {
294 int n;
295 if (c >= '0' && c <= '9')
296 n = c-'0';
297 else if (c >= 'a' && c <= 'f')
298 n = 10 + c - 'a';
299 else if (c >= 'A' && c <= 'F')
300 n = 10 + c - 'A';
301 else if (strchr(":. -", c))
302 continue;
303 else return 0;
304
305 if (hit<32) {
306 uuid[hit/8] <<= 4;
307 uuid[hit/8] += n;
308 }
309 hit++;
310 }
311 if (hit == 32)
312 return 1;
313 return 0;
314 }
315
316 int get_linux_version()
317 {
318 struct utsname name;
319 char *cp;
320 int a = 0, b = 0,c = 0;
321 if (uname(&name) <0)
322 return -1;
323
324 cp = name.release;
325 a = strtoul(cp, &cp, 10);
326 if (*cp == '.')
327 b = strtoul(cp+1, &cp, 10);
328 if (*cp == '.')
329 c = strtoul(cp+1, &cp, 10);
330
331 return (a*1000000)+(b*1000)+c;
332 }
333
334 int mdadm_version(char *version)
335 {
336 int a, b, c;
337 char *cp;
338
339 if (!version)
340 version = Version;
341
342 cp = strchr(version, '-');
343 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
344 return -1;
345 cp += 3;
346 a = strtoul(cp, &cp, 10);
347 if (*cp != '.')
348 return -1;
349 b = strtoul(cp+1, &cp, 10);
350 if (*cp == '.')
351 c = strtoul(cp+1, &cp, 10);
352 else
353 c = 0;
354 if (*cp != ' ' && *cp != '-')
355 return -1;
356 return (a*1000000)+(b*1000)+c;
357 }
358
359 unsigned long long parse_size(char *size)
360 {
361 /* parse 'size' which should be a number optionally
362 * followed by 'K', 'M', or 'G'.
363 * Without a suffix, K is assumed.
364 * Number returned is in sectors (half-K)
365 * INVALID_SECTORS returned on error.
366 */
367 char *c;
368 long long s = strtoll(size, &c, 10);
369 if (s > 0) {
370 switch (*c) {
371 case 'K':
372 c++;
373 default:
374 s *= 2;
375 break;
376 case 'M':
377 c++;
378 s *= 1024 * 2;
379 break;
380 case 'G':
381 c++;
382 s *= 1024 * 1024 * 2;
383 break;
384 case 's': /* sectors */
385 c++;
386 break;
387 }
388 } else
389 s = INVALID_SECTORS;
390 if (*c)
391 s = INVALID_SECTORS;
392 return s;
393 }
394
395 int parse_layout_10(char *layout)
396 {
397 int copies, rv;
398 char *cp;
399 /* Parse the layout string for raid10 */
400 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
401 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
402 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
403 copies > 200 ||
404 *cp)
405 return -1;
406 if (layout[0] == 'n')
407 rv = 256 + copies;
408 else if (layout[0] == 'o')
409 rv = 0x10000 + (copies<<8) + 1;
410 else
411 rv = 1 + (copies<<8);
412 return rv;
413 }
414
415 int parse_layout_faulty(char *layout)
416 {
417 /* Parse the layout string for 'faulty' */
418 int ln = strcspn(layout, "0123456789");
419 char *m = xstrdup(layout);
420 int mode;
421 m[ln] = 0;
422 mode = map_name(faultylayout, m);
423 if (mode == UnSet)
424 return -1;
425
426 return mode | (atoi(layout+ln)<< ModeShift);
427 }
428
429 long parse_num(char *num)
430 {
431 /* Either return a valid number, or -1 */
432 char *c;
433 long rv = strtol(num, &c, 10);
434 if (rv < 0 || *c || !num[0])
435 return -1;
436 else
437 return rv;
438 }
439
440 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
441 {
442 char *dev;
443 *slot = strtoul(input, &dev, 10);
444 if (dev == input || dev[0] != ':')
445 return -1;
446 *devname = dev+1;
447 return 0;
448 }
449
450 void remove_partitions(int fd)
451 {
452 /* remove partitions from this block devices.
453 * This is used for components added to an array
454 */
455 #ifdef BLKPG_DEL_PARTITION
456 struct blkpg_ioctl_arg a;
457 struct blkpg_partition p;
458
459 a.op = BLKPG_DEL_PARTITION;
460 a.data = (void*)&p;
461 a.datalen = sizeof(p);
462 a.flags = 0;
463 memset(a.data, 0, a.datalen);
464 for (p.pno = 0; p.pno < 16; p.pno++)
465 ioctl(fd, BLKPG, &a);
466 #endif
467 }
468
469 int test_partition(int fd)
470 {
471 /* Check if fd is a whole-disk or a partition.
472 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
473 * will return ENXIO on an invalid partition number.
474 */
475 struct blkpg_ioctl_arg a;
476 struct blkpg_partition p;
477 a.op = BLKPG_DEL_PARTITION;
478 a.data = (void*)&p;
479 a.datalen = sizeof(p);
480 a.flags = 0;
481 memset(a.data, 0, a.datalen);
482 p.pno = 1<<30;
483 if (ioctl(fd, BLKPG, &a) == 0)
484 /* Very unlikely, but not a partition */
485 return 0;
486 if (errno == ENXIO || errno == ENOTTY)
487 /* not a partition */
488 return 0;
489
490 return 1;
491 }
492
493 int test_partition_from_id(dev_t id)
494 {
495 char buf[20];
496 int fd, rv;
497
498 sprintf(buf, "%d:%d", major(id), minor(id));
499 fd = dev_open(buf, O_RDONLY);
500 if (fd < 0)
501 return -1;
502 rv = test_partition(fd);
503 close(fd);
504 return rv;
505 }
506
507 int enough(int level, int raid_disks, int layout, int clean, char *avail)
508 {
509 int copies, first;
510 int i;
511 int avail_disks = 0;
512
513 for (i = 0; i < raid_disks; i++)
514 avail_disks += !!avail[i];
515
516 switch (level) {
517 case 10:
518 /* This is the tricky one - we need to check
519 * which actual disks are present.
520 */
521 copies = (layout&255)* ((layout>>8) & 255);
522 first = 0;
523 do {
524 /* there must be one of the 'copies' form 'first' */
525 int n = copies;
526 int cnt = 0;
527 int this = first;
528 while (n--) {
529 if (avail[this])
530 cnt++;
531 this = (this+1) % raid_disks;
532 }
533 if (cnt == 0)
534 return 0;
535 first = (first+(layout&255)) % raid_disks;
536 } while (first != 0);
537 return 1;
538
539 case LEVEL_MULTIPATH:
540 return avail_disks>= 1;
541 case LEVEL_LINEAR:
542 case 0:
543 return avail_disks == raid_disks;
544 case 1:
545 return avail_disks >= 1;
546 case 4:
547 if (avail_disks == raid_disks - 1 &&
548 !avail[raid_disks - 1])
549 /* If just the parity device is missing, then we
550 * have enough, even if not clean
551 */
552 return 1;
553 /* FALL THROUGH */
554 case 5:
555 if (clean)
556 return avail_disks >= raid_disks-1;
557 else
558 return avail_disks >= raid_disks;
559 case 6:
560 if (clean)
561 return avail_disks >= raid_disks-2;
562 else
563 return avail_disks >= raid_disks;
564 default:
565 return 0;
566 }
567 }
568
569 const int uuid_zero[4] = { 0, 0, 0, 0 };
570
571 int same_uuid(int a[4], int b[4], int swapuuid)
572 {
573 if (swapuuid) {
574 /* parse uuids are hostendian.
575 * uuid's from some superblocks are big-ending
576 * if there is a difference, we need to swap..
577 */
578 unsigned char *ac = (unsigned char *)a;
579 unsigned char *bc = (unsigned char *)b;
580 int i;
581 for (i = 0; i < 16; i += 4) {
582 if (ac[i+0] != bc[i+3] ||
583 ac[i+1] != bc[i+2] ||
584 ac[i+2] != bc[i+1] ||
585 ac[i+3] != bc[i+0])
586 return 0;
587 }
588 return 1;
589 } else {
590 if (a[0]==b[0] &&
591 a[1]==b[1] &&
592 a[2]==b[2] &&
593 a[3]==b[3])
594 return 1;
595 return 0;
596 }
597 }
598
599 void copy_uuid(void *a, int b[4], int swapuuid)
600 {
601 if (swapuuid) {
602 /* parse uuids are hostendian.
603 * uuid's from some superblocks are big-ending
604 * if there is a difference, we need to swap..
605 */
606 unsigned char *ac = (unsigned char *)a;
607 unsigned char *bc = (unsigned char *)b;
608 int i;
609 for (i = 0; i < 16; i += 4) {
610 ac[i+0] = bc[i+3];
611 ac[i+1] = bc[i+2];
612 ac[i+2] = bc[i+1];
613 ac[i+3] = bc[i+0];
614 }
615 } else
616 memcpy(a, b, 16);
617 }
618
619 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
620 {
621 int i, j;
622 char uuid[16];
623 char *c = buf;
624 strcpy(c, "UUID-");
625 c += strlen(c);
626 copy_uuid(uuid, id, swap);
627 for (i = 0; i < 4; i++) {
628 if (i)
629 *c++ = sep;
630 for (j = 3; j >= 0; j--) {
631 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
632 c+= 2;
633 }
634 }
635 return buf;
636
637 }
638
639 char *fname_from_uuid(struct supertype *st, struct mdinfo *info, char *buf, char sep)
640 {
641 // dirty hack to work around an issue with super1 superblocks...
642 // super1 superblocks need swapuuid set in order for assembly to
643 // work, but can't have it set if we want this printout to match
644 // all the other uuid printouts in super1.c, so we force swapuuid
645 // to 1 to make our printout match the rest of super1
646 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 : st->ss->swapuuid, buf, sep);
647 }
648
649 int check_ext2(int fd, char *name)
650 {
651 /*
652 * Check for an ext2fs file system.
653 * Superblock is always 1K at 1K offset
654 *
655 * s_magic is le16 at 56 == 0xEF53
656 * report mtime - le32 at 44
657 * blocks - le32 at 4
658 * logblksize - le32 at 24
659 */
660 unsigned char sb[1024];
661 time_t mtime;
662 unsigned long long size;
663 int bsize;
664 if (lseek(fd, 1024,0)!= 1024)
665 return 0;
666 if (read(fd, sb, 1024)!= 1024)
667 return 0;
668 if (sb[56] != 0x53 || sb[57] != 0xef)
669 return 0;
670
671 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
672 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
673 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
674 size <<= bsize;
675 pr_err("%s appears to contain an ext2fs file system\n",
676 name);
677 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
678 return 1;
679 }
680
681 int check_reiser(int fd, char *name)
682 {
683 /*
684 * superblock is at 64K
685 * size is 1024;
686 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
687 *
688 */
689 unsigned char sb[1024];
690 unsigned long long size;
691 if (lseek(fd, 64*1024, 0) != 64*1024)
692 return 0;
693 if (read(fd, sb, 1024) != 1024)
694 return 0;
695 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
696 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
697 return 0;
698 pr_err("%s appears to contain a reiserfs file system\n",name);
699 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
700 cont_err("size = %lluK\n", size*4);
701
702 return 1;
703 }
704
705 int check_raid(int fd, char *name)
706 {
707 struct mdinfo info;
708 time_t crtime;
709 char *level;
710 struct supertype *st = guess_super(fd);
711
712 if (!st)
713 return 0;
714 if (st->ss->add_to_super != NULL) {
715 st->ss->load_super(st, fd, name);
716 /* Looks like a raid array .. */
717 pr_err("%s appears to be part of a raid array:\n", name);
718 st->ss->getinfo_super(st, &info, NULL);
719 st->ss->free_super(st);
720 crtime = info.array.ctime;
721 level = map_num(pers, info.array.level);
722 if (!level)
723 level = "-unknown-";
724 cont_err("level=%s devices=%d ctime=%s",
725 level, info.array.raid_disks, ctime(&crtime));
726 } else {
727 /* Looks like GPT or MBR */
728 pr_err("partition table exists on %s\n", name);
729 }
730 return 1;
731 }
732
733 int ask(char *mesg)
734 {
735 char *add = "";
736 int i;
737 for (i = 0; i < 5; i++) {
738 char buf[100];
739 fprintf(stderr, "%s%s", mesg, add);
740 fflush(stderr);
741 if (fgets(buf, 100, stdin)==NULL)
742 return 0;
743 if (buf[0]=='y' || buf[0]=='Y')
744 return 1;
745 if (buf[0]=='n' || buf[0]=='N')
746 return 0;
747 add = "(y/n) ";
748 }
749 pr_err("assuming 'no'\n");
750 return 0;
751 }
752
753 int is_standard(char *dev, int *nump)
754 {
755 /* tests if dev is a "standard" md dev name.
756 * i.e if the last component is "/dNN" or "/mdNN",
757 * where NN is a string of digits
758 * Returns 1 if a partitionable standard,
759 * -1 if non-partitonable,
760 * 0 if not a standard name.
761 */
762 char *d = strrchr(dev, '/');
763 int type = 0;
764 int num;
765 if (!d)
766 return 0;
767 if (strncmp(d, "/d",2) == 0)
768 d += 2, type = 1; /* /dev/md/dN{pM} */
769 else if (strncmp(d, "/md_d", 5) == 0)
770 d += 5, type = 1; /* /dev/md_dN{pM} */
771 else if (strncmp(d, "/md", 3) == 0)
772 d += 3, type = -1; /* /dev/mdN */
773 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
774 d += 1, type = -1; /* /dev/md/N */
775 else
776 return 0;
777 if (!*d)
778 return 0;
779 num = atoi(d);
780 while (isdigit(*d))
781 d++;
782 if (*d)
783 return 0;
784 if (nump) *nump = num;
785
786 return type;
787 }
788
789 unsigned long calc_csum(void *super, int bytes)
790 {
791 unsigned long long newcsum = 0;
792 int i;
793 unsigned int csum;
794 unsigned int *superc = (unsigned int*) super;
795
796 for(i = 0; i < bytes/4; i++)
797 newcsum += superc[i];
798 csum = (newcsum& 0xffffffff) + (newcsum>>32);
799 #ifdef __alpha__
800 /* The in-kernel checksum calculation is always 16bit on
801 * the alpha, though it is 32 bit on i386...
802 * I wonder what it is elsewhere... (it uses an API in
803 * a way that it shouldn't).
804 */
805 csum = (csum & 0xffff) + (csum >> 16);
806 csum = (csum & 0xffff) + (csum >> 16);
807 #endif
808 return csum;
809 }
810
811 char *human_size(long long bytes)
812 {
813 static char buf[47];
814
815 /* We convert bytes to either centi-M{ega,ibi}bytes or
816 * centi-G{igi,ibi}bytes, with appropriate rounding,
817 * and then print 1/100th of those as a decimal.
818 * We allow upto 2048Megabytes before converting to
819 * gigabytes, as that shows more precision and isn't
820 * too large a number.
821 * Terabytes are not yet handled.
822 */
823
824 if (bytes < 5000*1024)
825 buf[0] = 0;
826 else if (bytes < 2*1024LL*1024LL*1024LL) {
827 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
828 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
829 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
830 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
831 } else {
832 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
833 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
834 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
835 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
836 }
837 return buf;
838 }
839
840 char *human_size_brief(long long bytes, int prefix)
841 {
842 static char buf[30];
843
844 /* We convert bytes to either centi-M{ega,ibi}bytes or
845 * centi-G{igi,ibi}bytes, with appropriate rounding,
846 * and then print 1/100th of those as a decimal.
847 * We allow upto 2048Megabytes before converting to
848 * gigabytes, as that shows more precision and isn't
849 * too large a number.
850 * Terabytes are not yet handled.
851 *
852 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
853 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
854 */
855
856 if (bytes < 5000*1024)
857 buf[0] = 0;
858 else if (prefix == IEC) {
859 if (bytes < 2*1024LL*1024LL*1024LL) {
860 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
861 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
862 cMiB/100, cMiB % 100);
863 } else {
864 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
865 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
866 cGiB/100, cGiB % 100);
867 }
868 }
869 else if (prefix == JEDEC) {
870 if (bytes < 2*1024LL*1024LL*1024LL) {
871 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
872 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
873 cMB/100, cMB % 100);
874 } else {
875 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
876 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
877 cGB/100, cGB % 100);
878 }
879 }
880 else
881 buf[0] = 0;
882
883 return buf;
884 }
885
886 void print_r10_layout(int layout)
887 {
888 int near = layout & 255;
889 int far = (layout >> 8) & 255;
890 int offset = (layout&0x10000);
891 char *sep = "";
892
893 if (near != 1) {
894 printf("%s near=%d", sep, near);
895 sep = ",";
896 }
897 if (far != 1)
898 printf("%s %s=%d", sep, offset?"offset":"far", far);
899 if (near*far == 1)
900 printf("NO REDUNDANCY");
901 }
902
903 unsigned long long calc_array_size(int level, int raid_disks, int layout,
904 int chunksize, unsigned long long devsize)
905 {
906 if (level == 1)
907 return devsize;
908 devsize &= ~(unsigned long long)((chunksize>>9)-1);
909 return get_data_disks(level, layout, raid_disks) * devsize;
910 }
911
912 int get_data_disks(int level, int layout, int raid_disks)
913 {
914 int data_disks = 0;
915 switch (level) {
916 case 0: data_disks = raid_disks;
917 break;
918 case 1: data_disks = 1;
919 break;
920 case 4:
921 case 5: data_disks = raid_disks - 1;
922 break;
923 case 6: data_disks = raid_disks - 2;
924 break;
925 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
926 break;
927 }
928
929 return data_disks;
930 }
931
932 dev_t devnm2devid(char *devnm)
933 {
934 /* First look in /sys/block/$DEVNM/dev for %d:%d
935 * If that fails, try parsing out a number
936 */
937 char path[100];
938 char *ep;
939 int fd;
940 int mjr,mnr;
941
942 sprintf(path, "/sys/block/%s/dev", devnm);
943 fd = open(path, O_RDONLY);
944 if (fd >= 0) {
945 char buf[20];
946 int n = read(fd, buf, sizeof(buf));
947 close(fd);
948 if (n > 0)
949 buf[n] = 0;
950 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
951 return makedev(mjr, mnr);
952 }
953 if (strncmp(devnm, "md_d", 4) == 0 &&
954 isdigit(devnm[4]) &&
955 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
956 ep > devnm && *ep == 0)
957 return makedev(get_mdp_major(), mnr << MdpMinorShift);
958
959 if (strncmp(devnm, "md", 2) == 0 &&
960 isdigit(devnm[2]) &&
961 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
962 ep > devnm && *ep == 0)
963 return makedev(MD_MAJOR, mnr);
964
965 return 0;
966 }
967
968 char *get_md_name(char *devnm)
969 {
970 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
971 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
972
973 static char devname[50];
974 struct stat stb;
975 dev_t rdev = devnm2devid(devnm);
976 char *dn;
977
978 if (rdev == 0)
979 return 0;
980 if (strncmp(devnm, "md_", 3) == 0) {
981 snprintf(devname, sizeof(devname), "/dev/md/%s",
982 devnm + 3);
983 if (stat(devname, &stb) == 0
984 && (S_IFMT&stb.st_mode) == S_IFBLK
985 && (stb.st_rdev == rdev))
986 return devname;
987 }
988 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
989 if (stat(devname, &stb) == 0
990 && (S_IFMT&stb.st_mode) == S_IFBLK
991 && (stb.st_rdev == rdev))
992 return devname;
993
994 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
995 if (stat(devname, &stb) == 0
996 && (S_IFMT&stb.st_mode) == S_IFBLK
997 && (stb.st_rdev == rdev))
998 return devname;
999
1000 dn = map_dev(major(rdev), minor(rdev), 0);
1001 if (dn)
1002 return dn;
1003 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
1004 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
1005 if (errno != EEXIST)
1006 return NULL;
1007
1008 if (stat(devname, &stb) == 0
1009 && (S_IFMT&stb.st_mode) == S_IFBLK
1010 && (stb.st_rdev == rdev))
1011 return devname;
1012 unlink(devname);
1013 return NULL;
1014 }
1015
1016 void put_md_name(char *name)
1017 {
1018 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1019 unlink(name);
1020 }
1021
1022 int get_maj_min(char *dev, int *major, int *minor)
1023 {
1024 char *e;
1025 *major = strtoul(dev, &e, 0);
1026 return (e > dev && *e == ':' && e[1] &&
1027 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1028 *e == 0);
1029 }
1030
1031 int dev_open(char *dev, int flags)
1032 {
1033 /* like 'open', but if 'dev' matches %d:%d, create a temp
1034 * block device and open that
1035 */
1036 int fd = -1;
1037 char devname[32];
1038 int major;
1039 int minor;
1040
1041 if (!dev)
1042 return -1;
1043 flags |= O_DIRECT;
1044
1045 if (get_maj_min(dev, &major, &minor)) {
1046 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1047 (int)getpid(), major, minor);
1048 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1049 fd = open(devname, flags);
1050 unlink(devname);
1051 }
1052 if (fd < 0) {
1053 /* Try /tmp as /dev appear to be read-only */
1054 snprintf(devname, sizeof(devname), "/tmp/.tmp.md.%d:%d:%d",
1055 (int)getpid(), major, minor);
1056 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1057 fd = open(devname, flags);
1058 unlink(devname);
1059 }
1060 }
1061 } else
1062 fd = open(dev, flags);
1063 return fd;
1064 }
1065
1066 int open_dev_flags(char *devnm, int flags)
1067 {
1068 dev_t devid;
1069 char buf[20];
1070
1071 devid = devnm2devid(devnm);
1072 sprintf(buf, "%d:%d", major(devid), minor(devid));
1073 return dev_open(buf, flags);
1074 }
1075
1076 int open_dev(char *devnm)
1077 {
1078 return open_dev_flags(devnm, O_RDONLY);
1079 }
1080
1081 int open_dev_excl(char *devnm)
1082 {
1083 char buf[20];
1084 int i;
1085 int flags = O_RDWR;
1086 dev_t devid = devnm2devid(devnm);
1087 long delay = 1000;
1088
1089 sprintf(buf, "%d:%d", major(devid), minor(devid));
1090 for (i = 0; i < 25; i++) {
1091 int fd = dev_open(buf, flags|O_EXCL);
1092 if (fd >= 0)
1093 return fd;
1094 if (errno == EACCES && flags == O_RDWR) {
1095 flags = O_RDONLY;
1096 continue;
1097 }
1098 if (errno != EBUSY)
1099 return fd;
1100 usleep(delay);
1101 if (delay < 200000)
1102 delay *= 2;
1103 }
1104 return -1;
1105 }
1106
1107 int same_dev(char *one, char *two)
1108 {
1109 struct stat st1, st2;
1110 if (stat(one, &st1) != 0)
1111 return 0;
1112 if (stat(two, &st2) != 0)
1113 return 0;
1114 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1115 return 0;
1116 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1117 return 0;
1118 return st1.st_rdev == st2.st_rdev;
1119 }
1120
1121 void wait_for(char *dev, int fd)
1122 {
1123 int i;
1124 struct stat stb_want;
1125 long delay = 1000;
1126
1127 if (fstat(fd, &stb_want) != 0 ||
1128 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1129 return;
1130
1131 for (i = 0; i < 25; i++) {
1132 struct stat stb;
1133 if (stat(dev, &stb) == 0 &&
1134 (stb.st_mode & S_IFMT) == S_IFBLK &&
1135 (stb.st_rdev == stb_want.st_rdev))
1136 return;
1137 usleep(delay);
1138 if (delay < 200000)
1139 delay *= 2;
1140 }
1141 if (i == 25)
1142 dprintf("timeout waiting for %s\n", dev);
1143 }
1144
1145 struct superswitch *superlist[] =
1146 {
1147 &super0, &super1,
1148 &super_ddf, &super_imsm,
1149 &mbr, &gpt,
1150 NULL
1151 };
1152
1153 struct supertype *super_by_fd(int fd, char **subarrayp)
1154 {
1155 mdu_array_info_t array;
1156 int vers;
1157 int minor;
1158 struct supertype *st = NULL;
1159 struct mdinfo *sra;
1160 char *verstr;
1161 char version[20];
1162 int i;
1163 char *subarray = NULL;
1164 char container[32] = "";
1165
1166 sra = sysfs_read(fd, NULL, GET_VERSION);
1167
1168 if (sra) {
1169 vers = sra->array.major_version;
1170 minor = sra->array.minor_version;
1171 verstr = sra->text_version;
1172 } else {
1173 if (md_get_array_info(fd, &array))
1174 array.major_version = array.minor_version = 0;
1175 vers = array.major_version;
1176 minor = array.minor_version;
1177 verstr = "";
1178 }
1179
1180 if (vers != -1) {
1181 sprintf(version, "%d.%d", vers, minor);
1182 verstr = version;
1183 }
1184 if (minor == -2 && is_subarray(verstr)) {
1185 char *dev = verstr+1;
1186
1187 subarray = strchr(dev, '/');
1188 if (subarray) {
1189 *subarray++ = '\0';
1190 subarray = xstrdup(subarray);
1191 }
1192 strcpy(container, dev);
1193 sysfs_free(sra);
1194 sra = sysfs_read(-1, container, GET_VERSION);
1195 if (sra && sra->text_version[0])
1196 verstr = sra->text_version;
1197 else
1198 verstr = "-no-metadata-";
1199 }
1200
1201 for (i = 0; st == NULL && superlist[i]; i++)
1202 st = superlist[i]->match_metadata_desc(verstr);
1203
1204 sysfs_free(sra);
1205 if (st) {
1206 st->sb = NULL;
1207 if (subarrayp)
1208 *subarrayp = subarray;
1209 strcpy(st->container_devnm, container);
1210 strcpy(st->devnm, fd2devnm(fd));
1211 } else
1212 free(subarray);
1213
1214 return st;
1215 }
1216
1217 int dev_size_from_id(dev_t id, unsigned long long *size)
1218 {
1219 char buf[20];
1220 int fd;
1221
1222 sprintf(buf, "%d:%d", major(id), minor(id));
1223 fd = dev_open(buf, O_RDONLY);
1224 if (fd < 0)
1225 return 0;
1226 if (get_dev_size(fd, NULL, size)) {
1227 close(fd);
1228 return 1;
1229 }
1230 close(fd);
1231 return 0;
1232 }
1233
1234 struct supertype *dup_super(struct supertype *orig)
1235 {
1236 struct supertype *st;
1237
1238 if (!orig)
1239 return orig;
1240 st = xcalloc(1, sizeof(*st));
1241 st->ss = orig->ss;
1242 st->max_devs = orig->max_devs;
1243 st->minor_version = orig->minor_version;
1244 st->ignore_hw_compat = orig->ignore_hw_compat;
1245 st->data_offset = orig->data_offset;
1246 st->sb = NULL;
1247 st->info = NULL;
1248 return st;
1249 }
1250
1251 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1252 {
1253 /* try each load_super to find the best match,
1254 * and return the best superswitch
1255 */
1256 struct superswitch *ss;
1257 struct supertype *st;
1258 unsigned int besttime = 0;
1259 int bestsuper = -1;
1260 int i;
1261
1262 st = xcalloc(1, sizeof(*st));
1263 st->container_devnm[0] = 0;
1264
1265 for (i = 0; superlist[i]; i++) {
1266 int rv;
1267 ss = superlist[i];
1268 if (guess_type == guess_array && ss->add_to_super == NULL)
1269 continue;
1270 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1271 continue;
1272 memset(st, 0, sizeof(*st));
1273 st->ignore_hw_compat = 1;
1274 rv = ss->load_super(st, fd, NULL);
1275 if (rv == 0) {
1276 struct mdinfo info;
1277 st->ss->getinfo_super(st, &info, NULL);
1278 if (bestsuper == -1 ||
1279 besttime < info.array.ctime) {
1280 bestsuper = i;
1281 besttime = info.array.ctime;
1282 }
1283 ss->free_super(st);
1284 }
1285 }
1286 if (bestsuper != -1) {
1287 int rv;
1288 memset(st, 0, sizeof(*st));
1289 st->ignore_hw_compat = 1;
1290 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1291 if (rv == 0) {
1292 superlist[bestsuper]->free_super(st);
1293 return st;
1294 }
1295 }
1296 free(st);
1297 return NULL;
1298 }
1299
1300 /* Return size of device in bytes */
1301 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1302 {
1303 unsigned long long ldsize;
1304 struct stat st;
1305
1306 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1307 ldsize = (unsigned long long)st.st_size;
1308 else
1309 #ifdef BLKGETSIZE64
1310 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1311 #endif
1312 {
1313 unsigned long dsize;
1314 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1315 ldsize = dsize;
1316 ldsize <<= 9;
1317 } else {
1318 if (dname)
1319 pr_err("Cannot get size of %s: %s\n",
1320 dname, strerror(errno));
1321 return 0;
1322 }
1323 }
1324 *sizep = ldsize;
1325 return 1;
1326 }
1327
1328 /* Return sector size of device in bytes */
1329 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1330 {
1331 unsigned int sectsize;
1332
1333 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1334 if (dname)
1335 pr_err("Cannot get sector size of %s: %s\n",
1336 dname, strerror(errno));
1337 return 0;
1338 }
1339
1340 *sectsizep = sectsize;
1341 return 1;
1342 }
1343
1344 /* Return true if this can only be a container, not a member device.
1345 * i.e. is and md device and size is zero
1346 */
1347 int must_be_container(int fd)
1348 {
1349 struct mdinfo *mdi;
1350 unsigned long long size;
1351
1352 mdi = sysfs_read(fd, NULL, GET_VERSION);
1353 if (!mdi)
1354 return 0;
1355 sysfs_free(mdi);
1356
1357 if (get_dev_size(fd, NULL, &size) == 0)
1358 return 1;
1359 if (size == 0)
1360 return 1;
1361 return 0;
1362 }
1363
1364 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1365 * Returns: 1 if successful
1366 * -1 for unknown partition type
1367 * 0 for other errors
1368 */
1369 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1370 {
1371 struct GPT gpt;
1372 unsigned char empty_gpt_entry[16]= {0};
1373 struct GPT_part_entry *part;
1374 char buf[512];
1375 unsigned long long curr_part_end;
1376 unsigned all_partitions, entry_size;
1377 unsigned part_nr;
1378 unsigned int sector_size = 0;
1379
1380 *endofpart = 0;
1381
1382 BUILD_BUG_ON(sizeof(gpt) != 512);
1383 /* skip protective MBR */
1384 if (!get_dev_sector_size(fd, NULL, &sector_size))
1385 return 0;
1386 lseek(fd, sector_size, SEEK_SET);
1387 /* read GPT header */
1388 if (read(fd, &gpt, 512) != 512)
1389 return 0;
1390
1391 /* get the number of partition entries and the entry size */
1392 all_partitions = __le32_to_cpu(gpt.part_cnt);
1393 entry_size = __le32_to_cpu(gpt.part_size);
1394
1395 /* Check GPT signature*/
1396 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1397 return -1;
1398
1399 /* sanity checks */
1400 if (all_partitions > 1024 ||
1401 entry_size > sizeof(buf))
1402 return -1;
1403
1404 part = (struct GPT_part_entry *)buf;
1405
1406 /* set offset to third block (GPT entries) */
1407 lseek(fd, sector_size*2, SEEK_SET);
1408 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1409 /* read partition entry */
1410 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1411 return 0;
1412
1413 /* is this valid partition? */
1414 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1415 /* check the last lba for the current partition */
1416 curr_part_end = __le64_to_cpu(part->ending_lba);
1417 if (curr_part_end > *endofpart)
1418 *endofpart = curr_part_end;
1419 }
1420
1421 }
1422 return 1;
1423 }
1424
1425 /* Sets endofpart parameter to the last block used by the last partition on the device.
1426 * Returns: 1 if successful
1427 * -1 for unknown partition type
1428 * 0 for other errors
1429 */
1430 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1431 {
1432 struct MBR boot_sect;
1433 unsigned long long curr_part_end;
1434 unsigned part_nr;
1435 unsigned int sector_size;
1436 int retval = 0;
1437
1438 *endofpart = 0;
1439
1440 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1441 /* read MBR */
1442 lseek(fd, 0, 0);
1443 if (read(fd, &boot_sect, 512) != 512)
1444 goto abort;
1445
1446 /* check MBP signature */
1447 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1448 retval = 1;
1449 /* found the correct signature */
1450
1451 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1452 /*
1453 * Have to make every access through boot_sect rather
1454 * than using a pointer to the partition table (or an
1455 * entry), since the entries are not properly aligned.
1456 */
1457
1458 /* check for GPT type */
1459 if (boot_sect.parts[part_nr].part_type ==
1460 MBR_GPT_PARTITION_TYPE) {
1461 retval = get_gpt_last_partition_end(fd, endofpart);
1462 break;
1463 }
1464 /* check the last used lba for the current partition */
1465 curr_part_end =
1466 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1467 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1468 if (curr_part_end > *endofpart)
1469 *endofpart = curr_part_end;
1470 }
1471 } else {
1472 /* Unknown partition table */
1473 retval = -1;
1474 }
1475 /* calculate number of 512-byte blocks */
1476 if (get_dev_sector_size(fd, NULL, &sector_size))
1477 *endofpart *= (sector_size / 512);
1478 abort:
1479 return retval;
1480 }
1481
1482 int check_partitions(int fd, char *dname, unsigned long long freesize,
1483 unsigned long long size)
1484 {
1485 /*
1486 * Check where the last partition ends
1487 */
1488 unsigned long long endofpart;
1489
1490 if (get_last_partition_end(fd, &endofpart) > 0) {
1491 /* There appears to be a partition table here */
1492 if (freesize == 0) {
1493 /* partitions will not be visible in new device */
1494 pr_err("partition table exists on %s but will be lost or\n"
1495 " meaningless after creating array\n",
1496 dname);
1497 return 1;
1498 } else if (endofpart > freesize) {
1499 /* last partition overlaps metadata */
1500 pr_err("metadata will over-write last partition on %s.\n",
1501 dname);
1502 return 1;
1503 } else if (size && endofpart > size) {
1504 /* partitions will be truncated in new device */
1505 pr_err("array size is too small to cover all partitions on %s.\n",
1506 dname);
1507 return 1;
1508 }
1509 }
1510 return 0;
1511 }
1512
1513 int open_container(int fd)
1514 {
1515 /* 'fd' is a block device. Find out if it is in use
1516 * by a container, and return an open fd on that container.
1517 */
1518 char path[256];
1519 char *e;
1520 DIR *dir;
1521 struct dirent *de;
1522 int dfd, n;
1523 char buf[200];
1524 int major, minor;
1525 struct stat st;
1526
1527 if (fstat(fd, &st) != 0)
1528 return -1;
1529 sprintf(path, "/sys/dev/block/%d:%d/holders",
1530 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1531 e = path + strlen(path);
1532
1533 dir = opendir(path);
1534 if (!dir)
1535 return -1;
1536 while ((de = readdir(dir))) {
1537 if (de->d_ino == 0)
1538 continue;
1539 if (de->d_name[0] == '.')
1540 continue;
1541 /* Need to make sure it is a container and not a volume */
1542 sprintf(e, "/%s/md/metadata_version", de->d_name);
1543 dfd = open(path, O_RDONLY);
1544 if (dfd < 0)
1545 continue;
1546 n = read(dfd, buf, sizeof(buf));
1547 close(dfd);
1548 if (n <= 0 || (unsigned)n >= sizeof(buf))
1549 continue;
1550 buf[n] = 0;
1551 if (strncmp(buf, "external", 8) != 0 ||
1552 n < 10 ||
1553 buf[9] == '/')
1554 continue;
1555 sprintf(e, "/%s/dev", de->d_name);
1556 dfd = open(path, O_RDONLY);
1557 if (dfd < 0)
1558 continue;
1559 n = read(dfd, buf, sizeof(buf));
1560 close(dfd);
1561 if (n <= 0 || (unsigned)n >= sizeof(buf))
1562 continue;
1563 buf[n] = 0;
1564 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1565 continue;
1566 sprintf(buf, "%d:%d", major, minor);
1567 dfd = dev_open(buf, O_RDONLY);
1568 if (dfd >= 0) {
1569 closedir(dir);
1570 return dfd;
1571 }
1572 }
1573 closedir(dir);
1574 return -1;
1575 }
1576
1577 struct superswitch *version_to_superswitch(char *vers)
1578 {
1579 int i;
1580
1581 for (i = 0; superlist[i]; i++) {
1582 struct superswitch *ss = superlist[i];
1583
1584 if (strcmp(vers, ss->name) == 0)
1585 return ss;
1586 }
1587
1588 return NULL;
1589 }
1590
1591 int metadata_container_matches(char *metadata, char *devnm)
1592 {
1593 /* Check if 'devnm' is the container named in 'metadata'
1594 * which is
1595 * /containername/componentname or
1596 * -containername/componentname
1597 */
1598 int l;
1599 if (*metadata != '/' && *metadata != '-')
1600 return 0;
1601 l = strlen(devnm);
1602 if (strncmp(metadata+1, devnm, l) != 0)
1603 return 0;
1604 if (metadata[l+1] != '/')
1605 return 0;
1606 return 1;
1607 }
1608
1609 int metadata_subdev_matches(char *metadata, char *devnm)
1610 {
1611 /* Check if 'devnm' is the subdev named in 'metadata'
1612 * which is
1613 * /containername/subdev or
1614 * -containername/subdev
1615 */
1616 char *sl;
1617 if (*metadata != '/' && *metadata != '-')
1618 return 0;
1619 sl = strchr(metadata+1, '/');
1620 if (!sl)
1621 return 0;
1622 if (strcmp(sl+1, devnm) == 0)
1623 return 1;
1624 return 0;
1625 }
1626
1627 int is_container_member(struct mdstat_ent *mdstat, char *container)
1628 {
1629 if (mdstat->metadata_version == NULL ||
1630 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1631 !metadata_container_matches(mdstat->metadata_version+9, container))
1632 return 0;
1633
1634 return 1;
1635 }
1636
1637 int is_subarray_active(char *subarray, char *container)
1638 {
1639 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1640 struct mdstat_ent *ent;
1641
1642 for (ent = mdstat; ent; ent = ent->next)
1643 if (is_container_member(ent, container))
1644 if (strcmp(to_subarray(ent, container), subarray) == 0)
1645 break;
1646
1647 free_mdstat(mdstat);
1648
1649 return ent != NULL;
1650 }
1651
1652 /* open_subarray - opens a subarray in a container
1653 * @dev: container device name
1654 * @st: empty supertype
1655 * @quiet: block reporting errors flag
1656 *
1657 * On success returns an fd to a container and fills in *st
1658 */
1659 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1660 {
1661 struct mdinfo *mdi;
1662 struct mdinfo *info;
1663 int fd, err = 1;
1664 char *_devnm;
1665
1666 fd = open(dev, O_RDWR|O_EXCL);
1667 if (fd < 0) {
1668 if (!quiet)
1669 pr_err("Couldn't open %s, aborting\n",
1670 dev);
1671 return -1;
1672 }
1673
1674 _devnm = fd2devnm(fd);
1675 if (_devnm == NULL) {
1676 if (!quiet)
1677 pr_err("Failed to determine device number for %s\n",
1678 dev);
1679 goto close_fd;
1680 }
1681 strcpy(st->devnm, _devnm);
1682
1683 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1684 if (!mdi) {
1685 if (!quiet)
1686 pr_err("Failed to read sysfs for %s\n",
1687 dev);
1688 goto close_fd;
1689 }
1690
1691 if (mdi->array.level != UnSet) {
1692 if (!quiet)
1693 pr_err("%s is not a container\n", dev);
1694 goto free_sysfs;
1695 }
1696
1697 st->ss = version_to_superswitch(mdi->text_version);
1698 if (!st->ss) {
1699 if (!quiet)
1700 pr_err("Operation not supported for %s metadata\n",
1701 mdi->text_version);
1702 goto free_sysfs;
1703 }
1704
1705 if (st->devnm[0] == 0) {
1706 if (!quiet)
1707 pr_err("Failed to allocate device name\n");
1708 goto free_sysfs;
1709 }
1710
1711 if (!st->ss->load_container) {
1712 if (!quiet)
1713 pr_err("%s is not a container\n", dev);
1714 goto free_sysfs;
1715 }
1716
1717 if (st->ss->load_container(st, fd, NULL)) {
1718 if (!quiet)
1719 pr_err("Failed to load metadata for %s\n",
1720 dev);
1721 goto free_sysfs;
1722 }
1723
1724 info = st->ss->container_content(st, subarray);
1725 if (!info) {
1726 if (!quiet)
1727 pr_err("Failed to find subarray-%s in %s\n",
1728 subarray, dev);
1729 goto free_super;
1730 }
1731 free(info);
1732
1733 err = 0;
1734
1735 free_super:
1736 if (err)
1737 st->ss->free_super(st);
1738 free_sysfs:
1739 sysfs_free(mdi);
1740 close_fd:
1741 if (err)
1742 close(fd);
1743
1744 if (err)
1745 return -1;
1746 else
1747 return fd;
1748 }
1749
1750 int add_disk(int mdfd, struct supertype *st,
1751 struct mdinfo *sra, struct mdinfo *info)
1752 {
1753 /* Add a device to an array, in one of 2 ways. */
1754 int rv;
1755
1756 if (st->ss->external) {
1757 if (info->disk.state & (1<<MD_DISK_SYNC))
1758 info->recovery_start = MaxSector;
1759 else
1760 info->recovery_start = 0;
1761 rv = sysfs_add_disk(sra, info, 0);
1762 if (! rv) {
1763 struct mdinfo *sd2;
1764 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1765 if (sd2 == info)
1766 break;
1767 if (sd2 == NULL) {
1768 sd2 = xmalloc(sizeof(*sd2));
1769 *sd2 = *info;
1770 sd2->next = sra->devs;
1771 sra->devs = sd2;
1772 }
1773 }
1774 } else
1775 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1776 return rv;
1777 }
1778
1779 int remove_disk(int mdfd, struct supertype *st,
1780 struct mdinfo *sra, struct mdinfo *info)
1781 {
1782 int rv;
1783
1784 /* Remove the disk given by 'info' from the array */
1785 if (st->ss->external)
1786 rv = sysfs_set_str(sra, info, "slot", "none");
1787 else
1788 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1789 info->disk.minor));
1790 return rv;
1791 }
1792
1793 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1794 {
1795 int cnt = force ? 500 : 5;
1796 int ret;
1797
1798 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1799 * outstanding IO requests to the device.
1800 * In this case, it can be helpful to wait a little while,
1801 * up to 5 seconds if 'force' is set, or 50 msec if not.
1802 */
1803 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1804 errno == EBUSY &&
1805 cnt-- > 0)
1806 usleep(10000);
1807
1808 return ret;
1809 }
1810
1811 int sys_hot_remove_disk(int statefd, int force)
1812 {
1813 int cnt = force ? 500 : 5;
1814 int ret;
1815
1816 while ((ret = write(statefd, "remove", 6)) == -1 &&
1817 errno == EBUSY &&
1818 cnt-- > 0)
1819 usleep(10000);
1820 return ret == 6 ? 0 : -1;
1821 }
1822
1823 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1824 {
1825 /* Initialise kernel's knowledge of array.
1826 * This varies between externally managed arrays
1827 * and older kernels
1828 */
1829 mdu_array_info_t inf;
1830 int rv;
1831
1832 if (st->ss->external)
1833 return sysfs_set_array(info, 9003);
1834
1835 memset(&inf, 0, sizeof(inf));
1836 inf.major_version = info->array.major_version;
1837 inf.minor_version = info->array.minor_version;
1838 rv = md_set_array_info(mdfd, &inf);
1839
1840 return rv;
1841 }
1842
1843 unsigned long long min_recovery_start(struct mdinfo *array)
1844 {
1845 /* find the minimum recovery_start in an array for metadata
1846 * formats that only record per-array recovery progress instead
1847 * of per-device
1848 */
1849 unsigned long long recovery_start = MaxSector;
1850 struct mdinfo *d;
1851
1852 for (d = array->devs; d; d = d->next)
1853 recovery_start = min(recovery_start, d->recovery_start);
1854
1855 return recovery_start;
1856 }
1857
1858 int mdmon_pid(char *devnm)
1859 {
1860 char path[100];
1861 char pid[10];
1862 int fd;
1863 int n;
1864
1865 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1866
1867 fd = open(path, O_RDONLY | O_NOATIME, 0);
1868
1869 if (fd < 0)
1870 return -1;
1871 n = read(fd, pid, 9);
1872 close(fd);
1873 if (n <= 0)
1874 return -1;
1875 return atoi(pid);
1876 }
1877
1878 int mdmon_running(char *devnm)
1879 {
1880 int pid = mdmon_pid(devnm);
1881 if (pid <= 0)
1882 return 0;
1883 if (kill(pid, 0) == 0)
1884 return 1;
1885 return 0;
1886 }
1887
1888 int start_mdmon(char *devnm)
1889 {
1890 int i, skipped;
1891 int len;
1892 pid_t pid;
1893 int status;
1894 char pathbuf[1024];
1895 char *paths[4] = {
1896 pathbuf,
1897 BINDIR "/mdmon",
1898 "./mdmon",
1899 NULL
1900 };
1901
1902 if (check_env("MDADM_NO_MDMON"))
1903 return 0;
1904
1905 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1906 if (len > 0) {
1907 char *sl;
1908 pathbuf[len] = 0;
1909 sl = strrchr(pathbuf, '/');
1910 if (sl)
1911 sl++;
1912 else
1913 sl = pathbuf;
1914 strcpy(sl, "mdmon");
1915 } else
1916 pathbuf[0] = '\0';
1917
1918 /* First try to run systemctl */
1919 if (!check_env("MDADM_NO_SYSTEMCTL"))
1920 switch(fork()) {
1921 case 0:
1922 /* FIXME yuk. CLOSE_EXEC?? */
1923 skipped = 0;
1924 for (i = 3; skipped < 20; i++)
1925 if (close(i) < 0)
1926 skipped++;
1927 else
1928 skipped = 0;
1929
1930 /* Don't want to see error messages from
1931 * systemctl. If the service doesn't exist,
1932 * we start mdmon ourselves.
1933 */
1934 close(2);
1935 open("/dev/null", O_WRONLY);
1936 snprintf(pathbuf, sizeof(pathbuf), "mdmon@%s.service",
1937 devnm);
1938 status = execl("/usr/bin/systemctl", "systemctl",
1939 "start",
1940 pathbuf, NULL);
1941 status = execl("/bin/systemctl", "systemctl", "start",
1942 pathbuf, NULL);
1943 exit(1);
1944 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1945 return -1;
1946 default: /* parent - good */
1947 pid = wait(&status);
1948 if (pid >= 0 && status == 0)
1949 return 0;
1950 }
1951
1952 /* That failed, try running mdmon directly */
1953 switch(fork()) {
1954 case 0:
1955 /* FIXME yuk. CLOSE_EXEC?? */
1956 skipped = 0;
1957 for (i = 3; skipped < 20; i++)
1958 if (close(i) < 0)
1959 skipped++;
1960 else
1961 skipped = 0;
1962
1963 for (i = 0; paths[i]; i++)
1964 if (paths[i][0]) {
1965 execl(paths[i], paths[i],
1966 devnm, NULL);
1967 }
1968 exit(1);
1969 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1970 return -1;
1971 default: /* parent - good */
1972 pid = wait(&status);
1973 if (pid < 0 || status != 0) {
1974 pr_err("failed to launch mdmon. Array remains readonly\n");
1975 return -1;
1976 }
1977 }
1978 return 0;
1979 }
1980
1981 __u32 random32(void)
1982 {
1983 __u32 rv;
1984 int rfd = open("/dev/urandom", O_RDONLY);
1985 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1986 rv = random();
1987 if (rfd >= 0)
1988 close(rfd);
1989 return rv;
1990 }
1991
1992 void random_uuid(__u8 *buf)
1993 {
1994 int fd, i, len;
1995 __u32 r[4];
1996
1997 fd = open("/dev/urandom", O_RDONLY);
1998 if (fd < 0)
1999 goto use_random;
2000 len = read(fd, buf, 16);
2001 close(fd);
2002 if (len != 16)
2003 goto use_random;
2004
2005 return;
2006
2007 use_random:
2008 for (i = 0; i < 4; i++)
2009 r[i] = random();
2010 memcpy(buf, r, 16);
2011 }
2012
2013 int flush_metadata_updates(struct supertype *st)
2014 {
2015 int sfd;
2016 if (!st->updates) {
2017 st->update_tail = NULL;
2018 return -1;
2019 }
2020
2021 sfd = connect_monitor(st->container_devnm);
2022 if (sfd < 0)
2023 return -1;
2024
2025 while (st->updates) {
2026 struct metadata_update *mu = st->updates;
2027 st->updates = mu->next;
2028
2029 send_message(sfd, mu, 0);
2030 wait_reply(sfd, 0);
2031 free(mu->buf);
2032 free(mu);
2033 }
2034 ack(sfd, 0);
2035 wait_reply(sfd, 0);
2036 close(sfd);
2037 st->update_tail = NULL;
2038 return 0;
2039 }
2040
2041 void append_metadata_update(struct supertype *st, void *buf, int len)
2042 {
2043
2044 struct metadata_update *mu = xmalloc(sizeof(*mu));
2045
2046 mu->buf = buf;
2047 mu->len = len;
2048 mu->space = NULL;
2049 mu->space_list = NULL;
2050 mu->next = NULL;
2051 *st->update_tail = mu;
2052 st->update_tail = &mu->next;
2053 }
2054
2055 #ifdef __TINYC__
2056 /* tinyc doesn't optimize this check in ioctl.h out ... */
2057 unsigned int __invalid_size_argument_for_IOC = 0;
2058 #endif
2059
2060 int experimental(void)
2061 {
2062 if (check_env("MDADM_EXPERIMENTAL"))
2063 return 1;
2064 else {
2065 pr_err("To use this feature MDADM_EXPERIMENTAL environment variable has to be defined.\n");
2066 return 0;
2067 }
2068 }
2069
2070 /* Pick all spares matching given criteria from a container
2071 * if min_size == 0 do not check size
2072 * if domlist == NULL do not check domains
2073 * if spare_group given add it to domains of each spare
2074 * metadata allows to test domains using metadata of destination array */
2075 struct mdinfo *container_choose_spares(struct supertype *st,
2076 unsigned long long min_size,
2077 struct domainlist *domlist,
2078 char *spare_group,
2079 const char *metadata, int get_one)
2080 {
2081 struct mdinfo *d, **dp, *disks = NULL;
2082
2083 /* get list of all disks in container */
2084 if (st->ss->getinfo_super_disks)
2085 disks = st->ss->getinfo_super_disks(st);
2086
2087 if (!disks)
2088 return disks;
2089 /* find spare devices on the list */
2090 dp = &disks->devs;
2091 disks->array.spare_disks = 0;
2092 while (*dp) {
2093 int found = 0;
2094 d = *dp;
2095 if (d->disk.state == 0) {
2096 /* check if size is acceptable */
2097 unsigned long long dev_size;
2098 dev_t dev = makedev(d->disk.major,d->disk.minor);
2099
2100 if (!min_size ||
2101 (dev_size_from_id(dev, &dev_size) &&
2102 dev_size >= min_size))
2103 found = 1;
2104 /* check if domain matches */
2105 if (found && domlist) {
2106 struct dev_policy *pol = devid_policy(dev);
2107 if (spare_group)
2108 pol_add(&pol, pol_domain,
2109 spare_group, NULL);
2110 if (domain_test(domlist, pol, metadata) != 1)
2111 found = 0;
2112 dev_policy_free(pol);
2113 }
2114 }
2115 if (found) {
2116 dp = &d->next;
2117 disks->array.spare_disks++;
2118 if (get_one) {
2119 sysfs_free(*dp);
2120 d->next = NULL;
2121 }
2122 } else {
2123 *dp = d->next;
2124 d->next = NULL;
2125 sysfs_free(d);
2126 }
2127 }
2128 return disks;
2129 }
2130
2131 /* Checks if paths point to the same device
2132 * Returns 0 if they do.
2133 * Returns 1 if they don't.
2134 * Returns -1 if something went wrong,
2135 * e.g. paths are empty or the files
2136 * they point to don't exist */
2137 int compare_paths (char* path1, char* path2)
2138 {
2139 struct stat st1,st2;
2140
2141 if (path1 == NULL || path2 == NULL)
2142 return -1;
2143 if (stat(path1,&st1) != 0)
2144 return -1;
2145 if (stat(path2,&st2) != 0)
2146 return -1;
2147 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2148 return 0;
2149 return 1;
2150 }
2151
2152 /* Make sure we can open as many devices as needed */
2153 void enable_fds(int devices)
2154 {
2155 unsigned int fds = 20 + devices;
2156 struct rlimit lim;
2157 if (getrlimit(RLIMIT_NOFILE, &lim) != 0
2158 || lim.rlim_cur >= fds)
2159 return;
2160 if (lim.rlim_max < fds)
2161 lim.rlim_max = fds;
2162 lim.rlim_cur = fds;
2163 setrlimit(RLIMIT_NOFILE, &lim);
2164 }
2165
2166 int in_initrd(void)
2167 {
2168 /* This is based on similar function in systemd. */
2169 struct statfs s;
2170 /* statfs.f_type is signed long on s390x and MIPS, causing all
2171 sorts of sign extension problems with RAMFS_MAGIC being
2172 defined as 0x858458f6 */
2173 return statfs("/", &s) >= 0 &&
2174 ((unsigned long)s.f_type == TMPFS_MAGIC ||
2175 ((unsigned long)s.f_type & 0xFFFFFFFFUL) ==
2176 ((unsigned long)RAMFS_MAGIC & 0xFFFFFFFFUL));
2177 }
2178
2179 void reopen_mddev(int mdfd)
2180 {
2181 /* Re-open without any O_EXCL, but keep
2182 * the same fd
2183 */
2184 char *devnm;
2185 int fd;
2186 devnm = fd2devnm(mdfd);
2187 close(mdfd);
2188 fd = open_dev(devnm);
2189 if (fd >= 0 && fd != mdfd)
2190 dup2(fd, mdfd);
2191 }
2192
2193 static struct cmap_hooks *cmap_hooks = NULL;
2194 static int is_cmap_hooks_ready = 0;
2195
2196 void set_cmap_hooks(void)
2197 {
2198 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2199 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2200 if (!cmap_hooks->cmap_handle)
2201 return;
2202
2203 cmap_hooks->initialize = dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2204 cmap_hooks->get_string = dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2205 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2206
2207 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2208 !cmap_hooks->finalize)
2209 dlclose(cmap_hooks->cmap_handle);
2210 else
2211 is_cmap_hooks_ready = 1;
2212 }
2213
2214 int get_cluster_name(char **cluster_name)
2215 {
2216 int rv = -1;
2217 cmap_handle_t handle;
2218
2219 if (!is_cmap_hooks_ready)
2220 return rv;
2221
2222 rv = cmap_hooks->initialize(&handle);
2223 if (rv != CS_OK)
2224 goto out;
2225
2226 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2227 if (rv != CS_OK) {
2228 free(*cluster_name);
2229 rv = -1;
2230 goto name_err;
2231 }
2232
2233 rv = 0;
2234 name_err:
2235 cmap_hooks->finalize(handle);
2236 out:
2237 return rv;
2238 }
2239
2240 void set_dlm_hooks(void)
2241 {
2242 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2243 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2244 if (!dlm_hooks->dlm_handle)
2245 return;
2246
2247 dlm_hooks->create_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2248 dlm_hooks->release_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2249 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2250 dlm_hooks->ls_unlock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock");
2251 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2252 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2253
2254 if (!dlm_hooks->create_lockspace || !dlm_hooks->ls_lock ||
2255 !dlm_hooks->ls_unlock || !dlm_hooks->release_lockspace ||
2256 !dlm_hooks->ls_get_fd || !dlm_hooks->dispatch)
2257 dlclose(dlm_hooks->dlm_handle);
2258 else
2259 is_dlm_hooks_ready = 1;
2260 }
2261
2262 void set_hooks(void)
2263 {
2264 set_dlm_hooks();
2265 set_cmap_hooks();
2266 }