]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
find_free_devnum: avoid auto-using names in /etc/mdadm.conf
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2012 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <ctype.h>
32 #include <dirent.h>
33 #include <signal.h>
34
35 int __offroot;
36
37 /*
38 * following taken from linux/blkpg.h because they aren't
39 * anywhere else and it isn't safe to #include linux/ * stuff.
40 */
41
42 #define BLKPG _IO(0x12,105)
43
44 /* The argument structure */
45 struct blkpg_ioctl_arg {
46 int op;
47 int flags;
48 int datalen;
49 void *data;
50 };
51
52 /* The subfunctions (for the op field) */
53 #define BLKPG_ADD_PARTITION 1
54 #define BLKPG_DEL_PARTITION 2
55
56 /* Sizes of name fields. Unused at present. */
57 #define BLKPG_DEVNAMELTH 64
58 #define BLKPG_VOLNAMELTH 64
59
60 /* The data structure for ADD_PARTITION and DEL_PARTITION */
61 struct blkpg_partition {
62 long long start; /* starting offset in bytes */
63 long long length; /* length in bytes */
64 int pno; /* partition number */
65 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
66 to be used in kernel messages */
67 char volname[BLKPG_VOLNAMELTH]; /* volume label */
68 };
69
70 #include "part.h"
71
72 /* Force a compilation error if condition is true */
73 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
74
75 /* Force a compilation error if condition is true, but also produce a
76 result (of value 0 and type size_t), so the expression can be used
77 e.g. in a structure initializer (or where-ever else comma expressions
78 aren't permitted). */
79 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
80
81 /*
82 * Parse a 128 bit uuid in 4 integers
83 * format is 32 hexx nibbles with options :.<space> separator
84 * If not exactly 32 hex digits are found, return 0
85 * else return 1
86 */
87 int parse_uuid(char *str, int uuid[4])
88 {
89 int hit = 0; /* number of Hex digIT */
90 int i;
91 char c;
92 for (i = 0; i < 4; i++)
93 uuid[i] = 0;
94
95 while ((c = *str++) != 0) {
96 int n;
97 if (c >= '0' && c <= '9')
98 n = c-'0';
99 else if (c >= 'a' && c <= 'f')
100 n = 10 + c - 'a';
101 else if (c >= 'A' && c <= 'F')
102 n = 10 + c - 'A';
103 else if (strchr(":. -", c))
104 continue;
105 else return 0;
106
107 if (hit<32) {
108 uuid[hit/8] <<= 4;
109 uuid[hit/8] += n;
110 }
111 hit++;
112 }
113 if (hit == 32)
114 return 1;
115 return 0;
116 }
117
118 /*
119 * Get the md version number.
120 * We use the RAID_VERSION ioctl if it is supported
121 * If not, but we have a block device with major '9', we assume
122 * 0.36.0
123 *
124 * Return version number as 24 but number - assume version parts
125 * always < 255
126 */
127
128 int md_get_version(int fd)
129 {
130 struct stat stb;
131 mdu_version_t vers;
132
133 if (fstat(fd, &stb)<0)
134 return -1;
135 if ((S_IFMT&stb.st_mode) != S_IFBLK)
136 return -1;
137
138 if (ioctl(fd, RAID_VERSION, &vers) == 0)
139 return (vers.major*10000) + (vers.minor*100) + vers.patchlevel;
140 if (errno == EACCES)
141 return -1;
142 if (major(stb.st_rdev) == MD_MAJOR)
143 return (3600);
144 return -1;
145 }
146
147 int get_linux_version()
148 {
149 struct utsname name;
150 char *cp;
151 int a = 0, b = 0,c = 0;
152 if (uname(&name) <0)
153 return -1;
154
155 cp = name.release;
156 a = strtoul(cp, &cp, 10);
157 if (*cp == '.')
158 b = strtoul(cp+1, &cp, 10);
159 if (*cp == '.')
160 c = strtoul(cp+1, &cp, 10);
161
162 return (a*1000000)+(b*1000)+c;
163 }
164
165 #ifndef MDASSEMBLE
166 int mdadm_version(char *version)
167 {
168 int a, b, c;
169 char *cp;
170
171 if (!version)
172 version = Version;
173
174 cp = strchr(version, '-');
175 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
176 return -1;
177 cp += 3;
178 a = strtoul(cp, &cp, 10);
179 if (*cp != '.')
180 return -1;
181 b = strtoul(cp+1, &cp, 10);
182 if (*cp == '.')
183 c = strtoul(cp+1, &cp, 10);
184 else
185 c = 0;
186 if (*cp != ' ' && *cp != '-')
187 return -1;
188 return (a*1000000)+(b*1000)+c;
189 }
190
191 long long parse_size(char *size)
192 {
193 /* parse 'size' which should be a number optionally
194 * followed by 'K', 'M', or 'G'.
195 * Without a suffix, K is assumed.
196 * Number returned is in sectors (half-K)
197 * -1 returned on error.
198 */
199 char *c;
200 long long s = strtoll(size, &c, 10);
201 if (s > 0) {
202 switch (*c) {
203 case 'K':
204 c++;
205 default:
206 s *= 2;
207 break;
208 case 'M':
209 c++;
210 s *= 1024 * 2;
211 break;
212 case 'G':
213 c++;
214 s *= 1024 * 1024 * 2;
215 break;
216 }
217 }
218 if (*c)
219 s = -1;
220 return s;
221 }
222
223 int parse_layout_10(char *layout)
224 {
225 int copies, rv;
226 char *cp;
227 /* Parse the layout string for raid10 */
228 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
229 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
230 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
231 copies > 200 ||
232 *cp)
233 return -1;
234 if (layout[0] == 'n')
235 rv = 256 + copies;
236 else if (layout[0] == 'o')
237 rv = 0x10000 + (copies<<8) + 1;
238 else
239 rv = 1 + (copies<<8);
240 return rv;
241 }
242
243 int parse_layout_faulty(char *layout)
244 {
245 /* Parse the layout string for 'faulty' */
246 int ln = strcspn(layout, "0123456789");
247 char *m = xstrdup(layout);
248 int mode;
249 m[ln] = 0;
250 mode = map_name(faultylayout, m);
251 if (mode == UnSet)
252 return -1;
253
254 return mode | (atoi(layout+ln)<< ModeShift);
255 }
256
257 long parse_num(char *num)
258 {
259 /* Either return a valid number, or -1 */
260 char *c;
261 long rv = strtol(num, &c, 10);
262 if (rv < 0 || *c || !num[0])
263 return -1;
264 else
265 return rv;
266 }
267 #endif
268
269 void remove_partitions(int fd)
270 {
271 /* remove partitions from this block devices.
272 * This is used for components added to an array
273 */
274 #ifdef BLKPG_DEL_PARTITION
275 struct blkpg_ioctl_arg a;
276 struct blkpg_partition p;
277
278 a.op = BLKPG_DEL_PARTITION;
279 a.data = (void*)&p;
280 a.datalen = sizeof(p);
281 a.flags = 0;
282 memset(a.data, 0, a.datalen);
283 for (p.pno = 0; p.pno < 16; p.pno++)
284 ioctl(fd, BLKPG, &a);
285 #endif
286 }
287
288 int test_partition(int fd)
289 {
290 /* Check if fd is a whole-disk or a partition.
291 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
292 * will return ENXIO on an invalid partition number.
293 */
294 struct blkpg_ioctl_arg a;
295 struct blkpg_partition p;
296 a.op = BLKPG_DEL_PARTITION;
297 a.data = (void*)&p;
298 a.datalen = sizeof(p);
299 a.flags = 0;
300 memset(a.data, 0, a.datalen);
301 p.pno = 1<<30;
302 if (ioctl(fd, BLKPG, &a) == 0)
303 /* Very unlikely, but not a partition */
304 return 0;
305 if (errno == ENXIO)
306 /* not a partition */
307 return 0;
308
309 return 1;
310 }
311
312 int test_partition_from_id(dev_t id)
313 {
314 char buf[20];
315 int fd, rv;
316
317 sprintf(buf, "%d:%d", major(id), minor(id));
318 fd = dev_open(buf, O_RDONLY);
319 if (fd < 0)
320 return -1;
321 rv = test_partition(fd);
322 close(fd);
323 return rv;
324 }
325
326 int enough(int level, int raid_disks, int layout, int clean, char *avail)
327 {
328 int copies, first;
329 int i;
330 int avail_disks = 0;
331
332 for (i = 0; i < raid_disks; i++)
333 avail_disks += !!avail[i];
334
335 switch (level) {
336 case 10:
337 /* This is the tricky one - we need to check
338 * which actual disks are present.
339 */
340 copies = (layout&255)* ((layout>>8) & 255);
341 first = 0;
342 do {
343 /* there must be one of the 'copies' form 'first' */
344 int n = copies;
345 int cnt = 0;
346 while (n--) {
347 if (avail[first])
348 cnt++;
349 first = (first+1) % raid_disks;
350 }
351 if (cnt == 0)
352 return 0;
353
354 } while (first != 0);
355 return 1;
356
357 case LEVEL_MULTIPATH:
358 return avail_disks>= 1;
359 case LEVEL_LINEAR:
360 case 0:
361 return avail_disks == raid_disks;
362 case 1:
363 return avail_disks >= 1;
364 case 4:
365 case 5:
366 if (clean)
367 return avail_disks >= raid_disks-1;
368 else
369 return avail_disks >= raid_disks;
370 case 6:
371 if (clean)
372 return avail_disks >= raid_disks-2;
373 else
374 return avail_disks >= raid_disks;
375 default:
376 return 0;
377 }
378 }
379
380 int enough_fd(int fd)
381 {
382 struct mdu_array_info_s array;
383 struct mdu_disk_info_s disk;
384 int avail_disks = 0;
385 int i, rv;
386 char *avail;
387
388 if (ioctl(fd, GET_ARRAY_INFO, &array) != 0 ||
389 array.raid_disks <= 0)
390 return 0;
391 avail = xcalloc(array.raid_disks, 1);
392 for (i = 0; i < MAX_DISKS && array.nr_disks > 0; i++) {
393 disk.number = i;
394 if (ioctl(fd, GET_DISK_INFO, &disk) != 0)
395 continue;
396 if (disk.major == 0 && disk.minor == 0)
397 continue;
398 array.nr_disks--;
399
400 if (! (disk.state & (1<<MD_DISK_SYNC)))
401 continue;
402 if (disk.raid_disk < 0 || disk.raid_disk >= array.raid_disks)
403 continue;
404 avail_disks++;
405 avail[disk.raid_disk] = 1;
406 }
407 /* This is used on an active array, so assume it is clean */
408 rv = enough(array.level, array.raid_disks, array.layout,
409 1, avail);
410 free(avail);
411 return rv;
412 }
413
414 const int uuid_zero[4] = { 0, 0, 0, 0 };
415
416 int same_uuid(int a[4], int b[4], int swapuuid)
417 {
418 if (swapuuid) {
419 /* parse uuids are hostendian.
420 * uuid's from some superblocks are big-ending
421 * if there is a difference, we need to swap..
422 */
423 unsigned char *ac = (unsigned char *)a;
424 unsigned char *bc = (unsigned char *)b;
425 int i;
426 for (i = 0; i < 16; i += 4) {
427 if (ac[i+0] != bc[i+3] ||
428 ac[i+1] != bc[i+2] ||
429 ac[i+2] != bc[i+1] ||
430 ac[i+3] != bc[i+0])
431 return 0;
432 }
433 return 1;
434 } else {
435 if (a[0]==b[0] &&
436 a[1]==b[1] &&
437 a[2]==b[2] &&
438 a[3]==b[3])
439 return 1;
440 return 0;
441 }
442 }
443
444 void copy_uuid(void *a, int b[4], int swapuuid)
445 {
446 if (swapuuid) {
447 /* parse uuids are hostendian.
448 * uuid's from some superblocks are big-ending
449 * if there is a difference, we need to swap..
450 */
451 unsigned char *ac = (unsigned char *)a;
452 unsigned char *bc = (unsigned char *)b;
453 int i;
454 for (i = 0; i < 16; i += 4) {
455 ac[i+0] = bc[i+3];
456 ac[i+1] = bc[i+2];
457 ac[i+2] = bc[i+1];
458 ac[i+3] = bc[i+0];
459 }
460 } else
461 memcpy(a, b, 16);
462 }
463
464 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
465 {
466 int i, j;
467 char uuid[16];
468 char *c = buf;
469 strcpy(c, "UUID-");
470 c += strlen(c);
471 copy_uuid(uuid, id, swap);
472 for (i = 0; i < 4; i++) {
473 if (i)
474 *c++ = sep;
475 for (j = 3; j >= 0; j--) {
476 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
477 c+= 2;
478 }
479 }
480 return buf;
481
482 }
483
484 char *fname_from_uuid(struct supertype *st, struct mdinfo *info, char *buf, char sep)
485 {
486 // dirty hack to work around an issue with super1 superblocks...
487 // super1 superblocks need swapuuid set in order for assembly to
488 // work, but can't have it set if we want this printout to match
489 // all the other uuid printouts in super1.c, so we force swapuuid
490 // to 1 to make our printout match the rest of super1
491 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 : st->ss->swapuuid, buf, sep);
492 }
493
494 #ifndef MDASSEMBLE
495 int check_ext2(int fd, char *name)
496 {
497 /*
498 * Check for an ext2fs file system.
499 * Superblock is always 1K at 1K offset
500 *
501 * s_magic is le16 at 56 == 0xEF53
502 * report mtime - le32 at 44
503 * blocks - le32 at 4
504 * logblksize - le32 at 24
505 */
506 unsigned char sb[1024];
507 time_t mtime;
508 int size, bsize;
509 if (lseek(fd, 1024,0)!= 1024)
510 return 0;
511 if (read(fd, sb, 1024)!= 1024)
512 return 0;
513 if (sb[56] != 0x53 || sb[57] != 0xef)
514 return 0;
515
516 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
517 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
518 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
519 pr_err("%s appears to contain an ext2fs file system\n",
520 name);
521 fprintf(stderr," size=%dK mtime=%s",
522 size*(1<<bsize), ctime(&mtime));
523 return 1;
524 }
525
526 int check_reiser(int fd, char *name)
527 {
528 /*
529 * superblock is at 64K
530 * size is 1024;
531 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
532 *
533 */
534 unsigned char sb[1024];
535 unsigned long size;
536 if (lseek(fd, 64*1024, 0) != 64*1024)
537 return 0;
538 if (read(fd, sb, 1024) != 1024)
539 return 0;
540 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
541 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
542 return 0;
543 pr_err("%s appears to contain a reiserfs file system\n",name);
544 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
545 fprintf(stderr, " size = %luK\n", size*4);
546
547 return 1;
548 }
549
550 int check_raid(int fd, char *name)
551 {
552 struct mdinfo info;
553 time_t crtime;
554 char *level;
555 struct supertype *st = guess_super(fd);
556
557 if (!st) return 0;
558 st->ignore_hw_compat = 1;
559 st->ss->load_super(st, fd, name);
560 /* Looks like a raid array .. */
561 pr_err("%s appears to be part of a raid array:\n",
562 name);
563 st->ss->getinfo_super(st, &info, NULL);
564 st->ss->free_super(st);
565 crtime = info.array.ctime;
566 level = map_num(pers, info.array.level);
567 if (!level) level = "-unknown-";
568 fprintf(stderr, " level=%s devices=%d ctime=%s",
569 level, info.array.raid_disks, ctime(&crtime));
570 return 1;
571 }
572
573 int ask(char *mesg)
574 {
575 char *add = "";
576 int i;
577 for (i = 0; i < 5; i++) {
578 char buf[100];
579 fprintf(stderr, "%s%s", mesg, add);
580 fflush(stderr);
581 if (fgets(buf, 100, stdin)==NULL)
582 return 0;
583 if (buf[0]=='y' || buf[0]=='Y')
584 return 1;
585 if (buf[0]=='n' || buf[0]=='N')
586 return 0;
587 add = "(y/n) ";
588 }
589 pr_err("assuming 'no'\n");
590 return 0;
591 }
592 #endif /* MDASSEMBLE */
593
594 int is_standard(char *dev, int *nump)
595 {
596 /* tests if dev is a "standard" md dev name.
597 * i.e if the last component is "/dNN" or "/mdNN",
598 * where NN is a string of digits
599 * Returns 1 if a partitionable standard,
600 * -1 if non-partitonable,
601 * 0 if not a standard name.
602 */
603 char *d = strrchr(dev, '/');
604 int type = 0;
605 int num;
606 if (!d)
607 return 0;
608 if (strncmp(d, "/d",2) == 0)
609 d += 2, type = 1; /* /dev/md/dN{pM} */
610 else if (strncmp(d, "/md_d", 5) == 0)
611 d += 5, type = 1; /* /dev/md_dN{pM} */
612 else if (strncmp(d, "/md", 3) == 0)
613 d += 3, type = -1; /* /dev/mdN */
614 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
615 d += 1, type = -1; /* /dev/md/N */
616 else
617 return 0;
618 if (!*d)
619 return 0;
620 num = atoi(d);
621 while (isdigit(*d))
622 d++;
623 if (*d)
624 return 0;
625 if (nump) *nump = num;
626
627 return type;
628 }
629
630 unsigned long calc_csum(void *super, int bytes)
631 {
632 unsigned long long newcsum = 0;
633 int i;
634 unsigned int csum;
635 unsigned int *superc = (unsigned int*) super;
636
637 for(i = 0; i < bytes/4; i++)
638 newcsum += superc[i];
639 csum = (newcsum& 0xffffffff) + (newcsum>>32);
640 #ifdef __alpha__
641 /* The in-kernel checksum calculation is always 16bit on
642 * the alpha, though it is 32 bit on i386...
643 * I wonder what it is elsewhere... (it uses an API in
644 * a way that it shouldn't).
645 */
646 csum = (csum & 0xffff) + (csum >> 16);
647 csum = (csum & 0xffff) + (csum >> 16);
648 #endif
649 return csum;
650 }
651
652 #ifndef MDASSEMBLE
653 char *human_size(long long bytes)
654 {
655 static char buf[30];
656
657 /* We convert bytes to either centi-M{ega,ibi}bytes or
658 * centi-G{igi,ibi}bytes, with appropriate rounding,
659 * and then print 1/100th of those as a decimal.
660 * We allow upto 2048Megabytes before converting to
661 * gigabytes, as that shows more precision and isn't
662 * too large a number.
663 * Terabytes are not yet handled.
664 */
665
666 if (bytes < 5000*1024)
667 buf[0] = 0;
668 else if (bytes < 2*1024LL*1024LL*1024LL) {
669 long cMiB = (bytes / ( (1LL<<20) / 200LL ) +1) /2;
670 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
671 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
672 cMiB/100 , cMiB % 100,
673 cMB/100, cMB % 100);
674 } else {
675 long cGiB = (bytes / ( (1LL<<30) / 200LL ) +1) /2;
676 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
677 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
678 cGiB/100 , cGiB % 100,
679 cGB/100, cGB % 100);
680 }
681 return buf;
682 }
683
684 char *human_size_brief(long long bytes)
685 {
686 static char buf[30];
687
688 if (bytes < 5000*1024)
689 snprintf(buf, sizeof(buf), "%ld.%02ldKiB",
690 (long)(bytes>>10), (long)(((bytes&1023)*100+512)/1024)
691 );
692 else if (bytes < 2*1024LL*1024LL*1024LL)
693 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
694 (long)(bytes>>20),
695 (long)((bytes&0xfffff)+0x100000/200)/(0x100000/100)
696 );
697 else
698 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
699 (long)(bytes>>30),
700 (long)(((bytes>>10)&0xfffff)+0x100000/200)/(0x100000/100)
701 );
702 return buf;
703 }
704
705 void print_r10_layout(int layout)
706 {
707 int near = layout & 255;
708 int far = (layout >> 8) & 255;
709 int offset = (layout&0x10000);
710 char *sep = "";
711
712 if (near != 1) {
713 printf("%s near=%d", sep, near);
714 sep = ",";
715 }
716 if (far != 1)
717 printf("%s %s=%d", sep, offset?"offset":"far", far);
718 if (near*far == 1)
719 printf("NO REDUNDANCY");
720 }
721 #endif
722
723 unsigned long long calc_array_size(int level, int raid_disks, int layout,
724 int chunksize, unsigned long long devsize)
725 {
726 if (level == 1)
727 return devsize;
728 devsize &= ~(unsigned long long)((chunksize>>9)-1);
729 return get_data_disks(level, layout, raid_disks) * devsize;
730 }
731
732 int get_data_disks(int level, int layout, int raid_disks)
733 {
734 int data_disks = 0;
735 switch (level) {
736 case 0: data_disks = raid_disks;
737 break;
738 case 1: data_disks = 1;
739 break;
740 case 4:
741 case 5: data_disks = raid_disks - 1;
742 break;
743 case 6: data_disks = raid_disks - 2;
744 break;
745 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
746 break;
747 }
748
749 return data_disks;
750 }
751
752 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
753 char *get_md_name(int dev)
754 {
755 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
756 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
757 static char devname[50];
758 struct stat stb;
759 dev_t rdev;
760 char *dn;
761
762 if (dev < 0) {
763 int mdp = get_mdp_major();
764 if (mdp < 0) return NULL;
765 rdev = makedev(mdp, (-1-dev)<<6);
766 snprintf(devname, sizeof(devname), "/dev/md/d%d", -1-dev);
767 if (stat(devname, &stb) == 0
768 && (S_IFMT&stb.st_mode) == S_IFBLK
769 && (stb.st_rdev == rdev))
770 return devname;
771 } else {
772 rdev = makedev(MD_MAJOR, dev);
773 snprintf(devname, sizeof(devname), "/dev/md%d", dev);
774 if (stat(devname, &stb) == 0
775 && (S_IFMT&stb.st_mode) == S_IFBLK
776 && (stb.st_rdev == rdev))
777 return devname;
778
779 snprintf(devname, sizeof(devname), "/dev/md/%d", dev);
780 if (stat(devname, &stb) == 0
781 && (S_IFMT&stb.st_mode) == S_IFBLK
782 && (stb.st_rdev == rdev))
783 return devname;
784 }
785 dn = map_dev(major(rdev), minor(rdev), 0);
786 if (dn)
787 return dn;
788 snprintf(devname, sizeof(devname), "/dev/.tmp.md%d", dev);
789 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
790 if (errno != EEXIST)
791 return NULL;
792
793 if (stat(devname, &stb) == 0
794 && (S_IFMT&stb.st_mode) == S_IFBLK
795 && (stb.st_rdev == rdev))
796 return devname;
797 unlink(devname);
798 return NULL;
799 }
800
801 void put_md_name(char *name)
802 {
803 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
804 unlink(name);
805 }
806
807 int find_free_devnum(int use_partitions)
808 {
809 int devnum;
810 for (devnum = 127; devnum != 128;
811 devnum = devnum ? devnum-1 : (1<<20)-1) {
812 char *dn;
813 int _devnum;
814 char nbuf[50];
815
816 _devnum = use_partitions ? (-1-devnum) : devnum;
817 if (mddev_busy(_devnum))
818 continue;
819 sprintf(nbuf, "%s%d", use_partitions?"mdp":"md", devnum);
820 if (!conf_name_is_free(nbuf))
821 continue;
822 /* make sure it is new to /dev too, at least as a
823 * non-standard */
824 dn = map_dev(dev2major(_devnum), dev2minor(_devnum), 0);
825 if (dn && ! is_standard(dn, NULL))
826 continue;
827 break;
828 }
829 if (devnum == 128)
830 return NoMdDev;
831 return use_partitions ? (-1-devnum) : devnum;
832 }
833 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
834
835 int dev_open(char *dev, int flags)
836 {
837 /* like 'open', but if 'dev' matches %d:%d, create a temp
838 * block device and open that
839 */
840 char *e;
841 int fd = -1;
842 char devname[32];
843 int major;
844 int minor;
845
846 if (!dev) return -1;
847 flags |= O_DIRECT;
848
849 major = strtoul(dev, &e, 0);
850 if (e > dev && *e == ':' && e[1] &&
851 (minor = strtoul(e+1, &e, 0)) >= 0 &&
852 *e == 0) {
853 char *path = map_dev(major, minor, 0);
854 if (path)
855 fd = open(path, flags);
856 if (fd < 0) {
857 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
858 (int)getpid(), major, minor);
859 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
860 fd = open(devname, flags);
861 unlink(devname);
862 }
863 }
864 if (fd < 0) {
865 snprintf(devname, sizeof(devname), "/tmp/.tmp.md.%d:%d:%d",
866 (int)getpid(), major, minor);
867 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
868 fd = open(devname, flags);
869 unlink(devname);
870 }
871 }
872 } else
873 fd = open(dev, flags);
874 return fd;
875 }
876
877 int open_dev_flags(int devnum, int flags)
878 {
879 char buf[20];
880
881 sprintf(buf, "%d:%d", dev2major(devnum), dev2minor(devnum));
882 return dev_open(buf, flags);
883 }
884
885 int open_dev(int devnum)
886 {
887 return open_dev_flags(devnum, O_RDONLY);
888 }
889
890 int open_dev_excl(int devnum)
891 {
892 char buf[20];
893 int i;
894 int flags = O_RDWR;
895
896 sprintf(buf, "%d:%d", dev2major(devnum), dev2minor(devnum));
897 for (i = 0 ; i < 25 ; i++) {
898 int fd = dev_open(buf, flags|O_EXCL);
899 if (fd >= 0)
900 return fd;
901 if (errno == EACCES && flags == O_RDWR) {
902 flags = O_RDONLY;
903 continue;
904 }
905 if (errno != EBUSY)
906 return fd;
907 usleep(200000);
908 }
909 return -1;
910 }
911
912 int same_dev(char *one, char *two)
913 {
914 struct stat st1, st2;
915 if (stat(one, &st1) != 0)
916 return 0;
917 if (stat(two, &st2) != 0)
918 return 0;
919 if ((st1.st_mode & S_IFMT) != S_IFBLK)
920 return 0;
921 if ((st2.st_mode & S_IFMT) != S_IFBLK)
922 return 0;
923 return st1.st_rdev == st2.st_rdev;
924 }
925
926 void wait_for(char *dev, int fd)
927 {
928 int i;
929 struct stat stb_want;
930
931 if (fstat(fd, &stb_want) != 0 ||
932 (stb_want.st_mode & S_IFMT) != S_IFBLK)
933 return;
934
935 for (i = 0 ; i < 25 ; i++) {
936 struct stat stb;
937 if (stat(dev, &stb) == 0 &&
938 (stb.st_mode & S_IFMT) == S_IFBLK &&
939 (stb.st_rdev == stb_want.st_rdev))
940 return;
941 usleep(200000);
942 }
943 if (i == 25)
944 dprintf("%s: timeout waiting for %s\n", __func__, dev);
945 }
946
947 struct superswitch *superlist[] =
948 {
949 &super0, &super1,
950 &super_ddf, &super_imsm,
951 &mbr, &gpt,
952 NULL };
953
954 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
955
956 struct supertype *super_by_fd(int fd, char **subarrayp)
957 {
958 mdu_array_info_t array;
959 int vers;
960 int minor;
961 struct supertype *st = NULL;
962 struct mdinfo *sra;
963 char *verstr;
964 char version[20];
965 int i;
966 char *subarray = NULL;
967 int container = NoMdDev;
968
969 sra = sysfs_read(fd, 0, GET_VERSION);
970
971 if (sra) {
972 vers = sra->array.major_version;
973 minor = sra->array.minor_version;
974 verstr = sra->text_version;
975 } else {
976 if (ioctl(fd, GET_ARRAY_INFO, &array))
977 array.major_version = array.minor_version = 0;
978 vers = array.major_version;
979 minor = array.minor_version;
980 verstr = "";
981 }
982
983 if (vers != -1) {
984 sprintf(version, "%d.%d", vers, minor);
985 verstr = version;
986 }
987 if (minor == -2 && is_subarray(verstr)) {
988 char *dev = verstr+1;
989
990 subarray = strchr(dev, '/');
991 if (subarray) {
992 *subarray++ = '\0';
993 subarray = xstrdup(subarray);
994 }
995 container = devname2devnum(dev);
996 if (sra)
997 sysfs_free(sra);
998 sra = sysfs_read(-1, container, GET_VERSION);
999 if (sra && sra->text_version[0])
1000 verstr = sra->text_version;
1001 else
1002 verstr = "-no-metadata-";
1003 }
1004
1005 for (i = 0; st == NULL && superlist[i] ; i++)
1006 st = superlist[i]->match_metadata_desc(verstr);
1007
1008 if (sra)
1009 sysfs_free(sra);
1010 if (st) {
1011 st->sb = NULL;
1012 if (subarrayp)
1013 *subarrayp = subarray;
1014 st->container_dev = container;
1015 st->devnum = fd2devnum(fd);
1016 } else
1017 free(subarray);
1018
1019 return st;
1020 }
1021 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
1022
1023 int dev_size_from_id(dev_t id, unsigned long long *size)
1024 {
1025 char buf[20];
1026 int fd;
1027
1028 sprintf(buf, "%d:%d", major(id), minor(id));
1029 fd = dev_open(buf, O_RDONLY);
1030 if (fd < 0)
1031 return 0;
1032 if (get_dev_size(fd, NULL, size)) {
1033 close(fd);
1034 return 1;
1035 }
1036 close(fd);
1037 return 0;
1038 }
1039
1040 struct supertype *dup_super(struct supertype *orig)
1041 {
1042 struct supertype *st;
1043
1044 if (!orig)
1045 return orig;
1046 st = xcalloc(1, sizeof(*st));
1047 st->ss = orig->ss;
1048 st->max_devs = orig->max_devs;
1049 st->minor_version = orig->minor_version;
1050 st->sb = NULL;
1051 st->info = NULL;
1052 return st;
1053 }
1054
1055 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1056 {
1057 /* try each load_super to find the best match,
1058 * and return the best superswitch
1059 */
1060 struct superswitch *ss;
1061 struct supertype *st;
1062 time_t besttime = 0;
1063 int bestsuper = -1;
1064 int i;
1065
1066 st = xcalloc(1, sizeof(*st));
1067 st->container_dev = NoMdDev;
1068
1069 for (i = 0 ; superlist[i]; i++) {
1070 int rv;
1071 ss = superlist[i];
1072 if (guess_type == guess_array && ss->add_to_super == NULL)
1073 continue;
1074 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1075 continue;
1076 memset(st, 0, sizeof(*st));
1077 st->ignore_hw_compat = 1;
1078 rv = ss->load_super(st, fd, NULL);
1079 if (rv == 0) {
1080 struct mdinfo info;
1081 st->ss->getinfo_super(st, &info, NULL);
1082 if (bestsuper == -1 ||
1083 besttime < info.array.ctime) {
1084 bestsuper = i;
1085 besttime = info.array.ctime;
1086 }
1087 ss->free_super(st);
1088 }
1089 }
1090 if (bestsuper != -1) {
1091 int rv;
1092 memset(st, 0, sizeof(*st));
1093 st->ignore_hw_compat = 1;
1094 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1095 if (rv == 0) {
1096 superlist[bestsuper]->free_super(st);
1097 st->ignore_hw_compat = 0;
1098 return st;
1099 }
1100 }
1101 free(st);
1102 return NULL;
1103 }
1104
1105 /* Return size of device in bytes */
1106 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1107 {
1108 unsigned long long ldsize;
1109 struct stat st;
1110
1111 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1112 ldsize = (unsigned long long)st.st_size;
1113 else
1114 #ifdef BLKGETSIZE64
1115 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1116 #endif
1117 {
1118 unsigned long dsize;
1119 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1120 ldsize = dsize;
1121 ldsize <<= 9;
1122 } else {
1123 if (dname)
1124 pr_err("Cannot get size of %s: %s\b",
1125 dname, strerror(errno));
1126 return 0;
1127 }
1128 }
1129 *sizep = ldsize;
1130 return 1;
1131 }
1132
1133 /* Return true if this can only be a container, not a member device.
1134 * i.e. is and md device and size is zero
1135 */
1136 int must_be_container(int fd)
1137 {
1138 unsigned long long size;
1139 if (md_get_version(fd) < 0)
1140 return 0;
1141 if (get_dev_size(fd, NULL, &size) == 0)
1142 return 1;
1143 if (size == 0)
1144 return 1;
1145 return 0;
1146 }
1147
1148 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1149 * Returns: 1 if successful
1150 * -1 for unknown partition type
1151 * 0 for other errors
1152 */
1153 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1154 {
1155 struct GPT gpt;
1156 unsigned char empty_gpt_entry[16]= {0};
1157 struct GPT_part_entry *part;
1158 char buf[512];
1159 unsigned long long curr_part_end;
1160 unsigned all_partitions, entry_size;
1161 unsigned part_nr;
1162
1163 *endofpart = 0;
1164
1165 BUILD_BUG_ON(sizeof(gpt) != 512);
1166 /* skip protective MBR */
1167 lseek(fd, 512, SEEK_SET);
1168 /* read GPT header */
1169 if (read(fd, &gpt, 512) != 512)
1170 return 0;
1171
1172 /* get the number of partition entries and the entry size */
1173 all_partitions = __le32_to_cpu(gpt.part_cnt);
1174 entry_size = __le32_to_cpu(gpt.part_size);
1175
1176 /* Check GPT signature*/
1177 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1178 return -1;
1179
1180 /* sanity checks */
1181 if (all_partitions > 1024 ||
1182 entry_size > sizeof(buf))
1183 return -1;
1184
1185 part = (struct GPT_part_entry *)buf;
1186
1187 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1188 /* read partition entry */
1189 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1190 return 0;
1191
1192 /* is this valid partition? */
1193 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1194 /* check the last lba for the current partition */
1195 curr_part_end = __le64_to_cpu(part->ending_lba);
1196 if (curr_part_end > *endofpart)
1197 *endofpart = curr_part_end;
1198 }
1199
1200 }
1201 return 1;
1202 }
1203
1204 /* Sets endofpart parameter to the last block used by the last partition on the device.
1205 * Returns: 1 if successful
1206 * -1 for unknown partition type
1207 * 0 for other errors
1208 */
1209 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1210 {
1211 struct MBR boot_sect;
1212 struct MBR_part_record *part;
1213 unsigned long long curr_part_end;
1214 unsigned part_nr;
1215 int retval = 0;
1216
1217 *endofpart = 0;
1218
1219 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1220 /* read MBR */
1221 lseek(fd, 0, 0);
1222 if (read(fd, &boot_sect, 512) != 512)
1223 goto abort;
1224
1225 /* check MBP signature */
1226 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1227 retval = 1;
1228 /* found the correct signature */
1229 part = boot_sect.parts;
1230
1231 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1232 /* check for GPT type */
1233 if (part->part_type == MBR_GPT_PARTITION_TYPE) {
1234 retval = get_gpt_last_partition_end(fd, endofpart);
1235 break;
1236 }
1237 /* check the last used lba for the current partition */
1238 curr_part_end = __le32_to_cpu(part->first_sect_lba) +
1239 __le32_to_cpu(part->blocks_num);
1240 if (curr_part_end > *endofpart)
1241 *endofpart = curr_part_end;
1242
1243 part++;
1244 }
1245 } else {
1246 /* Unknown partition table */
1247 retval = -1;
1248 }
1249 abort:
1250 return retval;
1251 }
1252
1253 int check_partitions(int fd, char *dname, unsigned long long freesize,
1254 unsigned long long size)
1255 {
1256 /*
1257 * Check where the last partition ends
1258 */
1259 unsigned long long endofpart;
1260 int ret;
1261
1262 if ((ret = get_last_partition_end(fd, &endofpart)) > 0) {
1263 /* There appears to be a partition table here */
1264 if (freesize == 0) {
1265 /* partitions will not be visible in new device */
1266 pr_err("partition table exists on %s but will be lost or\n"
1267 " meaningless after creating array\n",
1268 dname);
1269 return 1;
1270 } else if (endofpart > freesize) {
1271 /* last partition overlaps metadata */
1272 pr_err("metadata will over-write last partition on %s.\n",
1273 dname);
1274 return 1;
1275 } else if (size && endofpart > size) {
1276 /* partitions will be truncated in new device */
1277 pr_err("array size is too small to cover all partitions on %s.\n",
1278 dname);
1279 return 1;
1280 }
1281 }
1282 return 0;
1283 }
1284
1285 void get_one_disk(int mdfd, mdu_array_info_t *ainf, mdu_disk_info_t *disk)
1286 {
1287 int d;
1288
1289 ioctl(mdfd, GET_ARRAY_INFO, ainf);
1290 for (d = 0 ; d < MAX_DISKS ; d++) {
1291 if (ioctl(mdfd, GET_DISK_INFO, disk) == 0 &&
1292 (disk->major || disk->minor))
1293 return;
1294 }
1295 }
1296
1297 int open_container(int fd)
1298 {
1299 /* 'fd' is a block device. Find out if it is in use
1300 * by a container, and return an open fd on that container.
1301 */
1302 char path[256];
1303 char *e;
1304 DIR *dir;
1305 struct dirent *de;
1306 int dfd, n;
1307 char buf[200];
1308 int major, minor;
1309 struct stat st;
1310
1311 if (fstat(fd, &st) != 0)
1312 return -1;
1313 sprintf(path, "/sys/dev/block/%d:%d/holders",
1314 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1315 e = path + strlen(path);
1316
1317 dir = opendir(path);
1318 if (!dir)
1319 return -1;
1320 while ((de = readdir(dir))) {
1321 if (de->d_ino == 0)
1322 continue;
1323 if (de->d_name[0] == '.')
1324 continue;
1325 sprintf(e, "/%s/dev", de->d_name);
1326 dfd = open(path, O_RDONLY);
1327 if (dfd < 0)
1328 continue;
1329 n = read(dfd, buf, sizeof(buf));
1330 close(dfd);
1331 if (n <= 0 || (unsigned)n >= sizeof(buf))
1332 continue;
1333 buf[n] = 0;
1334 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1335 continue;
1336 sprintf(buf, "%d:%d", major, minor);
1337 dfd = dev_open(buf, O_RDONLY);
1338 if (dfd >= 0) {
1339 closedir(dir);
1340 return dfd;
1341 }
1342 }
1343 closedir(dir);
1344 return -1;
1345 }
1346
1347 struct superswitch *version_to_superswitch(char *vers)
1348 {
1349 int i;
1350
1351 for (i = 0; superlist[i]; i++) {
1352 struct superswitch *ss = superlist[i];
1353
1354 if (strcmp(vers, ss->name) == 0)
1355 return ss;
1356 }
1357
1358 return NULL;
1359 }
1360
1361 int is_container_member(struct mdstat_ent *mdstat, char *container)
1362 {
1363 if (mdstat->metadata_version == NULL ||
1364 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1365 !is_subarray(mdstat->metadata_version+9) ||
1366 strncmp(mdstat->metadata_version+10, container, strlen(container)) != 0 ||
1367 mdstat->metadata_version[10+strlen(container)] != '/')
1368 return 0;
1369
1370 return 1;
1371 }
1372
1373 int is_subarray_active(char *subarray, char *container)
1374 {
1375 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1376 struct mdstat_ent *ent;
1377
1378 for (ent = mdstat; ent; ent = ent->next)
1379 if (is_container_member(ent, container))
1380 if (strcmp(to_subarray(ent, container), subarray) == 0)
1381 break;
1382
1383 free_mdstat(mdstat);
1384
1385 return ent != NULL;
1386 }
1387
1388 /* open_subarray - opens a subarray in a container
1389 * @dev: container device name
1390 * @st: empty supertype
1391 * @quiet: block reporting errors flag
1392 *
1393 * On success returns an fd to a container and fills in *st
1394 */
1395 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1396 {
1397 struct mdinfo *mdi;
1398 struct mdinfo *info;
1399 int fd, err = 1;
1400
1401 fd = open(dev, O_RDWR|O_EXCL);
1402 if (fd < 0) {
1403 if (!quiet)
1404 pr_err("Couldn't open %s, aborting\n",
1405 dev);
1406 return -1;
1407 }
1408
1409 st->devnum = fd2devnum(fd);
1410 if (st->devnum == NoMdDev) {
1411 if (!quiet)
1412 pr_err("Failed to determine device number for %s\n",
1413 dev);
1414 goto close_fd;
1415 }
1416
1417 mdi = sysfs_read(fd, st->devnum, GET_VERSION|GET_LEVEL);
1418 if (!mdi) {
1419 if (!quiet)
1420 pr_err("Failed to read sysfs for %s\n",
1421 dev);
1422 goto close_fd;
1423 }
1424
1425 if (mdi->array.level != UnSet) {
1426 if (!quiet)
1427 pr_err("%s is not a container\n", dev);
1428 goto free_sysfs;
1429 }
1430
1431 st->ss = version_to_superswitch(mdi->text_version);
1432 if (!st->ss) {
1433 if (!quiet)
1434 pr_err("Operation not supported for %s metadata\n",
1435 mdi->text_version);
1436 goto free_sysfs;
1437 }
1438
1439 st->devname = devnum2devname(st->devnum);
1440 if (!st->devname) {
1441 if (!quiet)
1442 pr_err("Failed to allocate device name\n");
1443 goto free_sysfs;
1444 }
1445
1446 if (!st->ss->load_container) {
1447 if (!quiet)
1448 pr_err("%s is not a container\n", dev);
1449 goto free_name;
1450 }
1451
1452 if (st->ss->load_container(st, fd, NULL)) {
1453 if (!quiet)
1454 pr_err("Failed to load metadata for %s\n",
1455 dev);
1456 goto free_name;
1457 }
1458
1459 info = st->ss->container_content(st, subarray);
1460 if (!info) {
1461 if (!quiet)
1462 pr_err("Failed to find subarray-%s in %s\n",
1463 subarray, dev);
1464 goto free_super;
1465 }
1466 free(info);
1467
1468 err = 0;
1469
1470 free_super:
1471 if (err)
1472 st->ss->free_super(st);
1473 free_name:
1474 if (err)
1475 free(st->devname);
1476 free_sysfs:
1477 sysfs_free(mdi);
1478 close_fd:
1479 if (err)
1480 close(fd);
1481
1482 if (err)
1483 return -1;
1484 else
1485 return fd;
1486 }
1487
1488 int add_disk(int mdfd, struct supertype *st,
1489 struct mdinfo *sra, struct mdinfo *info)
1490 {
1491 /* Add a device to an array, in one of 2 ways. */
1492 int rv;
1493 #ifndef MDASSEMBLE
1494 if (st->ss->external) {
1495 if (info->disk.state & (1<<MD_DISK_SYNC))
1496 info->recovery_start = MaxSector;
1497 else
1498 info->recovery_start = 0;
1499 rv = sysfs_add_disk(sra, info, 0);
1500 if (! rv) {
1501 struct mdinfo *sd2;
1502 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1503 if (sd2 == info)
1504 break;
1505 if (sd2 == NULL) {
1506 sd2 = xmalloc(sizeof(*sd2));
1507 *sd2 = *info;
1508 sd2->next = sra->devs;
1509 sra->devs = sd2;
1510 }
1511 }
1512 } else
1513 #endif
1514 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1515 return rv;
1516 }
1517
1518 int remove_disk(int mdfd, struct supertype *st,
1519 struct mdinfo *sra, struct mdinfo *info)
1520 {
1521 int rv;
1522 /* Remove the disk given by 'info' from the array */
1523 #ifndef MDASSEMBLE
1524 if (st->ss->external)
1525 rv = sysfs_set_str(sra, info, "slot", "none");
1526 else
1527 #endif
1528 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1529 info->disk.minor));
1530 return rv;
1531 }
1532
1533 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1534 {
1535 /* Initialise kernel's knowledge of array.
1536 * This varies between externally managed arrays
1537 * and older kernels
1538 */
1539 int vers = md_get_version(mdfd);
1540 int rv;
1541
1542 #ifndef MDASSEMBLE
1543 if (st->ss->external)
1544 rv = sysfs_set_array(info, vers);
1545 else
1546 #endif
1547 if ((vers % 100) >= 1) { /* can use different versions */
1548 mdu_array_info_t inf;
1549 memset(&inf, 0, sizeof(inf));
1550 inf.major_version = info->array.major_version;
1551 inf.minor_version = info->array.minor_version;
1552 rv = ioctl(mdfd, SET_ARRAY_INFO, &inf);
1553 } else
1554 rv = ioctl(mdfd, SET_ARRAY_INFO, NULL);
1555 return rv;
1556 }
1557
1558 unsigned long long min_recovery_start(struct mdinfo *array)
1559 {
1560 /* find the minimum recovery_start in an array for metadata
1561 * formats that only record per-array recovery progress instead
1562 * of per-device
1563 */
1564 unsigned long long recovery_start = MaxSector;
1565 struct mdinfo *d;
1566
1567 for (d = array->devs; d; d = d->next)
1568 recovery_start = min(recovery_start, d->recovery_start);
1569
1570 return recovery_start;
1571 }
1572
1573 int mdmon_pid(int devnum)
1574 {
1575 char path[100];
1576 char pid[10];
1577 int fd;
1578 int n;
1579 char *devname = devnum2devname(devnum);
1580
1581 sprintf(path, "%s/%s.pid", MDMON_DIR, devname);
1582 free(devname);
1583
1584 fd = open(path, O_RDONLY | O_NOATIME, 0);
1585
1586 if (fd < 0)
1587 return -1;
1588 n = read(fd, pid, 9);
1589 close(fd);
1590 if (n <= 0)
1591 return -1;
1592 return atoi(pid);
1593 }
1594
1595 int mdmon_running(int devnum)
1596 {
1597 int pid = mdmon_pid(devnum);
1598 if (pid <= 0)
1599 return 0;
1600 if (kill(pid, 0) == 0)
1601 return 1;
1602 return 0;
1603 }
1604
1605 int start_mdmon(int devnum)
1606 {
1607 int i, skipped;
1608 int len;
1609 pid_t pid;
1610 int status;
1611 char pathbuf[1024];
1612 char *paths[4] = {
1613 pathbuf,
1614 "/sbin/mdmon",
1615 "mdmon",
1616 NULL
1617 };
1618
1619 if (check_env("MDADM_NO_MDMON"))
1620 return 0;
1621
1622 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1623 if (len > 0) {
1624 char *sl;
1625 pathbuf[len] = 0;
1626 sl = strrchr(pathbuf, '/');
1627 if (sl)
1628 sl++;
1629 else
1630 sl = pathbuf;
1631 strcpy(sl, "mdmon");
1632 } else
1633 pathbuf[0] = '\0';
1634
1635 switch(fork()) {
1636 case 0:
1637 /* FIXME yuk. CLOSE_EXEC?? */
1638 skipped = 0;
1639 for (i = 3; skipped < 20; i++)
1640 if (close(i) < 0)
1641 skipped++;
1642 else
1643 skipped = 0;
1644
1645 for (i = 0; paths[i]; i++)
1646 if (paths[i][0]) {
1647 if (__offroot) {
1648 execl(paths[i], "mdmon", "--offroot",
1649 devnum2devname(devnum),
1650 NULL);
1651 } else {
1652 execl(paths[i], "mdmon",
1653 devnum2devname(devnum),
1654 NULL);
1655 }
1656 }
1657 exit(1);
1658 case -1: pr_err("cannot run mdmon. "
1659 "Array remains readonly\n");
1660 return -1;
1661 default: /* parent - good */
1662 pid = wait(&status);
1663 if (pid < 0 || status != 0)
1664 return -1;
1665 }
1666 return 0;
1667 }
1668
1669 int check_env(char *name)
1670 {
1671 char *val = getenv(name);
1672
1673 if (val && atoi(val) == 1)
1674 return 1;
1675
1676 return 0;
1677 }
1678
1679 __u32 random32(void)
1680 {
1681 __u32 rv;
1682 int rfd = open("/dev/urandom", O_RDONLY);
1683 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1684 rv = random();
1685 if (rfd >= 0)
1686 close(rfd);
1687 return rv;
1688 }
1689
1690 #ifndef MDASSEMBLE
1691 int flush_metadata_updates(struct supertype *st)
1692 {
1693 int sfd;
1694 if (!st->updates) {
1695 st->update_tail = NULL;
1696 return -1;
1697 }
1698
1699 sfd = connect_monitor(devnum2devname(st->container_dev));
1700 if (sfd < 0)
1701 return -1;
1702
1703 while (st->updates) {
1704 struct metadata_update *mu = st->updates;
1705 st->updates = mu->next;
1706
1707 send_message(sfd, mu, 0);
1708 wait_reply(sfd, 0);
1709 free(mu->buf);
1710 free(mu);
1711 }
1712 ack(sfd, 0);
1713 wait_reply(sfd, 0);
1714 close(sfd);
1715 st->update_tail = NULL;
1716 return 0;
1717 }
1718
1719 void append_metadata_update(struct supertype *st, void *buf, int len)
1720 {
1721
1722 struct metadata_update *mu = xmalloc(sizeof(*mu));
1723
1724 mu->buf = buf;
1725 mu->len = len;
1726 mu->space = NULL;
1727 mu->space_list = NULL;
1728 mu->next = NULL;
1729 *st->update_tail = mu;
1730 st->update_tail = &mu->next;
1731 }
1732 #endif /* MDASSEMBLE */
1733
1734 #ifdef __TINYC__
1735 /* tinyc doesn't optimize this check in ioctl.h out ... */
1736 unsigned int __invalid_size_argument_for_IOC = 0;
1737 #endif
1738
1739 int experimental(void)
1740 {
1741 if (check_env("MDADM_EXPERIMENTAL"))
1742 return 1;
1743 else {
1744 pr_err("To use this feature MDADM_EXPERIMENTAL"
1745 " environment variable has to be defined.\n");
1746 return 0;
1747 }
1748 }
1749
1750 /* Pick all spares matching given criteria from a container
1751 * if min_size == 0 do not check size
1752 * if domlist == NULL do not check domains
1753 * if spare_group given add it to domains of each spare
1754 * metadata allows to test domains using metadata of destination array */
1755 struct mdinfo *container_choose_spares(struct supertype *st,
1756 unsigned long long min_size,
1757 struct domainlist *domlist,
1758 char *spare_group,
1759 const char *metadata, int get_one)
1760 {
1761 struct mdinfo *d, **dp, *disks = NULL;
1762
1763 /* get list of all disks in container */
1764 if (st->ss->getinfo_super_disks)
1765 disks = st->ss->getinfo_super_disks(st);
1766
1767 if (!disks)
1768 return disks;
1769 /* find spare devices on the list */
1770 dp = &disks->devs;
1771 disks->array.spare_disks = 0;
1772 while (*dp) {
1773 int found = 0;
1774 d = *dp;
1775 if (d->disk.state == 0) {
1776 /* check if size is acceptable */
1777 unsigned long long dev_size;
1778 dev_t dev = makedev(d->disk.major,d->disk.minor);
1779
1780 if (!min_size ||
1781 (dev_size_from_id(dev, &dev_size) &&
1782 dev_size >= min_size))
1783 found = 1;
1784 /* check if domain matches */
1785 if (found && domlist) {
1786 struct dev_policy *pol = devnum_policy(dev);
1787 if (spare_group)
1788 pol_add(&pol, pol_domain,
1789 spare_group, NULL);
1790 if (domain_test(domlist, pol, metadata) != 1)
1791 found = 0;
1792 dev_policy_free(pol);
1793 }
1794 }
1795 if (found) {
1796 dp = &d->next;
1797 disks->array.spare_disks++;
1798 if (get_one) {
1799 sysfs_free(*dp);
1800 d->next = NULL;
1801 }
1802 } else {
1803 *dp = d->next;
1804 d->next = NULL;
1805 sysfs_free(d);
1806 }
1807 }
1808 return disks;
1809 }
1810
1811 void *xmalloc(size_t len)
1812 {
1813 void *rv = malloc(len);
1814 char *msg;
1815 if (rv)
1816 return rv;
1817 msg = Name ": memory allocation failure - aborting\n";
1818 exit(4+!!write(2, msg, strlen(msg)));
1819 }
1820
1821 void *xrealloc(void *ptr, size_t len)
1822 {
1823 void *rv = realloc(ptr, len);
1824 char *msg;
1825 if (rv)
1826 return rv;
1827 msg = Name ": memory allocation failure - aborting\n";
1828 exit(4+!!write(2, msg, strlen(msg)));
1829 }
1830
1831 void *xcalloc(size_t num, size_t size)
1832 {
1833 void *rv = calloc(num, size);
1834 char *msg;
1835 if (rv)
1836 return rv;
1837 msg = Name ": memory allocation failure - aborting\n";
1838 exit(4+!!write(2, msg, strlen(msg)));
1839 }
1840
1841 char *xstrdup(const char *str)
1842 {
1843 char *rv = strdup(str);
1844 char *msg;
1845 if (rv)
1846 return rv;
1847 msg = Name ": memory allocation failure - aborting\n";
1848 exit(4+!!write(2, msg, strlen(msg)));
1849 }