]> git.ipfire.org Git - thirdparty/util-linux.git/blame - sys-utils/hwclock.c
docs: update year in libs docs
[thirdparty/util-linux.git] / sys-utils / hwclock.c
CommitLineData
7eda085c 1/*
68a2ade7
KZ
2 * SPDX-License-Identifier: GPL-2.0-or-later
3 *
4 * Since 7a3000f7ba548cf7d74ac77cc63fe8de228a669e (v2.30) hwclock is linked
5 * with parse_date.y from gnullib. This gnulib code is distributed with GPLv3.
6 *
7eda085c
KZ
7 *
8 * clock.c was written by Charles Hedrick, hedrick@cs.rutgers.edu, Apr 1992
9 * Modified for clock adjustments - Rob Hooft <hooft@chem.ruu.nl>, Nov 1992
10 * Improvements by Harald Koenig <koenig@nova.tat.physik.uni-tuebingen.de>
11 * and Alan Modra <alan@spri.levels.unisa.edu.au>.
12 *
13 * Major rewrite by Bryan Henderson <bryanh@giraffe-data.com>, 96.09.19.
14 * The new program is called hwclock. New features:
ef71b8f1
SK
15 *
16 * - You can set the hardware clock without also modifying the system
17 * clock.
18 * - You can read and set the clock with finer than 1 second precision.
19 * - When you set the clock, hwclock automatically refigures the drift
20 * rate, based on how far off the clock was before you set it.
7eda085c
KZ
21 *
22 * Reshuffled things, added sparc code, and re-added alpha stuff
23 * by David Mosberger <davidm@azstarnet.com>
9abb2685 24 * and Jay Estabrook <jestabro@amt.tay1.dec.com>
7eda085c
KZ
25 * and Martin Ostermann <ost@coments.rwth-aachen.de>, aeb@cwi.nl, 990212.
26 *
ef71b8f1 27 * Fix for Award 2094 bug, Dave Coffin (dcoffin@shore.net) 11/12/98
22853e4a 28 * Change of local time handling, Stefan Ring <e9725446@stud3.tuwien.ac.at>
63cccae4 29 * Change of adjtime handling, James P. Rutledge <ao112@rgfn.epcc.edu>.
66ee8158 30 *
68a2ade7 31 *
7eda085c 32 */
7eda085c
KZ
33/*
34 * Explanation of `adjusting' (Rob Hooft):
35 *
36 * The problem with my machine is that its CMOS clock is 10 seconds
37 * per day slow. With this version of clock.c, and my '/etc/rc.local'
38 * reading '/etc/clock -au' instead of '/etc/clock -u -s', this error
39 * is automatically corrected at every boot.
40 *
41 * To do this job, the program reads and writes the file '/etc/adjtime'
42 * to determine the correction, and to save its data. In this file are
43 * three numbers:
44 *
ef71b8f1
SK
45 * 1) the correction in seconds per day. (So if your clock runs 5
46 * seconds per day fast, the first number should read -5.0)
47 * 2) the number of seconds since 1/1/1970 the last time the program
48 * was used
49 * 3) the remaining part of a second which was leftover after the last
50 * adjustment
7eda085c
KZ
51 *
52 * Installation and use of this program:
53 *
ef71b8f1
SK
54 * a) create a file '/etc/adjtime' containing as the first and only
55 * line: '0.0 0 0.0'
56 * b) run 'clock -au' or 'clock -a', depending on whether your cmos is
57 * in universal or local time. This updates the second number.
58 * c) set your system time using the 'date' command.
59 * d) update your cmos time using 'clock -wu' or 'clock -w'
60 * e) replace the first number in /etc/adjtime by your correction.
61 * f) put the command 'clock -au' or 'clock -a' in your '/etc/rc.local'
7eda085c
KZ
62 */
63
7eda085c 64#include <errno.h>
63cccae4 65#include <getopt.h>
33ed2d02 66#include <limits.h>
83aa4ad7 67#include <math.h>
998f392a
SK
68#include <stdio.h>
69#include <stdlib.h>
70#include <string.h>
998f392a
SK
71#include <sys/stat.h>
72#include <sys/time.h>
73#include <time.h>
74#include <unistd.h>
7eda085c 75
998f392a 76#include "c.h"
db116df7 77#include "closestream.h"
7eda085c 78#include "nls.h"
e1f4706d 79#include "optutils.h"
9d413ecb 80#include "pathnames.h"
c7f75390 81#include "hwclock.h"
7c678f81 82#include "timeutils.h"
984a6096 83#include "env.h"
4aca5fe2 84#include "xalloc.h"
df4f1a66
KZ
85#include "path.h"
86#include "strutils.h"
7eda085c 87
88058a71
KZ
88#ifdef HAVE_LIBAUDIT
89#include <libaudit.h>
90static int hwaudit_fd = -1;
88058a71
KZ
91#endif
92
ff4e18bd
WP
93UL_DEBUG_DEFINE_MASK(hwclock);
94UL_DEBUG_DEFINE_MASKNAMES(hwclock) = UL_DEBUG_EMPTY_MASKNAMES;
95
7eda085c 96/* The struct that holds our hardware access routines */
2ba641e5 97static struct clock_ops *ur;
7eda085c 98
f196fd1a
SB
99/* Maximal clock adjustment in seconds per day.
100 (adjtime() glibc call has 2145 seconds limit on i386, so it is good enough for us as well,
101 43219 is a maximal safe value preventing exact_adjustment overflow.) */
102#define MAX_DRIFT 2145.0
103
7eda085c 104struct adjtime {
ef71b8f1
SK
105 /*
106 * This is information we keep in the adjtime file that tells us how
107 * to do drift corrections. Elements are all straight from the
108 * adjtime file, so see documentation of that file for details.
109 * Exception is <dirty>, which is an indication that what's in this
110 * structure is not what's in the disk file (because it has been
111 * updated since read from the disk file).
112 */
473ec359 113 int dirty;
ef71b8f1
SK
114 /* line 1 */
115 double drift_factor;
116 time_t last_adj_time;
117 double not_adjusted;
118 /* line 2 */
119 time_t last_calib_time;
120 /*
121 * The most recent time that we set the clock from an external
122 * authority (as opposed to just doing a drift adjustment)
123 */
124 /* line 3 */
a8775f4e 125 enum a_local_utc { UTC = 0, LOCAL, UNKNOWN } local_utc;
ef71b8f1
SK
126 /*
127 * To which time zone, local or UTC, we most recently set the
128 * hardware clock.
129 */
7eda085c
KZ
130};
131
ff4e18bd
WP
132static void hwclock_init_debug(const char *str)
133{
134 __UL_INIT_DEBUG_FROM_STRING(hwclock, HWCLOCK_DEBUG_, 0, str);
135
136 DBG(INIT, ul_debug("hwclock debug mask: 0x%04x", hwclock_debug_mask));
137 DBG(INIT, ul_debug("hwclock version: %s", PACKAGE_STRING));
138}
139
140/* FOR TESTING ONLY: inject random delays of up to 1000ms */
141static void up_to_1000ms_sleep(void)
142{
143 int usec = random() % 1000000;
144
145 DBG(RANDOM_SLEEP, ul_debug("sleeping ~%d usec", usec));
146 xusleep(usec);
147}
148
2794995a
WP
149/*
150 * time_t to timeval conversion.
151 */
152static struct timeval t2tv(time_t timet)
153{
154 struct timeval rettimeval;
155
156 rettimeval.tv_sec = timet;
157 rettimeval.tv_usec = 0;
158 return rettimeval;
159}
160
ef71b8f1
SK
161/*
162 * The difference in seconds between two times in "timeval" format.
163 */
164double time_diff(struct timeval subtrahend, struct timeval subtractor)
165{
166 return (subtrahend.tv_sec - subtractor.tv_sec)
167 + (subtrahend.tv_usec - subtractor.tv_usec) / 1E6;
7eda085c
KZ
168}
169
ef71b8f1
SK
170/*
171 * The time, in "timeval" format, which is <increment> seconds after the
172 * time <addend>. Of course, <increment> may be negative.
173 */
174static struct timeval time_inc(struct timeval addend, double increment)
175{
176 struct timeval newtime;
177
178 newtime.tv_sec = addend.tv_sec + (int)increment;
179 newtime.tv_usec = addend.tv_usec + (increment - (int)increment) * 1E6;
180
181 /*
182 * Now adjust it so that the microsecond value is between 0 and 1
183 * million.
184 */
185 if (newtime.tv_usec < 0) {
186 newtime.tv_usec += 1E6;
187 newtime.tv_sec -= 1;
188 } else if (newtime.tv_usec >= 1E6) {
189 newtime.tv_usec -= 1E6;
190 newtime.tv_sec += 1;
191 }
192 return newtime;
7eda085c
KZ
193}
194
473ec359 195static int
336f7c5f 196hw_clock_is_utc(const struct hwclock_control *ctl,
ef71b8f1
SK
197 const struct adjtime adjtime)
198{
473ec359 199 int ret;
eb63b9b8 200
336f7c5f 201 if (ctl->utc)
473ec359 202 ret = 1; /* --utc explicitly given on command line */
336f7c5f 203 else if (ctl->local_opt)
473ec359 204 ret = 0; /* --localtime explicitly given */
eb63b9b8 205 else
ef71b8f1 206 /* get info from adjtime file - default is UTC */
7894bf0f 207 ret = (adjtime.local_utc != LOCAL);
de4568f7 208 if (ctl->verbose)
eb63b9b8
KZ
209 printf(_("Assuming hardware clock is kept in %s time.\n"),
210 ret ? _("UTC") : _("local"));
211 return ret;
212}
213
ef71b8f1
SK
214/*
215 * Read the adjustment parameters out of the /etc/adjtime file.
216 *
c47a8f2a
WP
217 * Return them as the adjtime structure <*adjtime_p>. Its defaults are
218 * initialized in main().
ef71b8f1 219 */
336f7c5f
SK
220static int read_adjtime(const struct hwclock_control *ctl,
221 struct adjtime *adjtime_p)
ef71b8f1
SK
222{
223 FILE *adjfile;
ef71b8f1
SK
224 char line1[81]; /* String: first line of adjtime file */
225 char line2[81]; /* String: second line of adjtime file */
226 char line3[81]; /* String: third line of adjtime file */
ef71b8f1 227
a8775f4e 228 if (access(ctl->adj_file_name, R_OK) != 0)
c47a8f2a 229 return EXIT_SUCCESS;
eb63b9b8 230
336f7c5f 231 adjfile = fopen(ctl->adj_file_name, "r"); /* open file for reading */
ef71b8f1 232 if (adjfile == NULL) {
336f7c5f 233 warn(_("cannot open %s"), ctl->adj_file_name);
c47a8f2a 234 return EXIT_FAILURE;
eb63b9b8 235 }
7eda085c 236
ef71b8f1
SK
237 if (!fgets(line1, sizeof(line1), adjfile))
238 line1[0] = '\0'; /* In case fgets fails */
239 if (!fgets(line2, sizeof(line2), adjfile))
240 line2[0] = '\0'; /* In case fgets fails */
241 if (!fgets(line3, sizeof(line3), adjfile))
242 line3[0] = '\0'; /* In case fgets fails */
243
244 fclose(adjfile);
245
ef71b8f1
SK
246 sscanf(line1, "%lf %ld %lf",
247 &adjtime_p->drift_factor,
a8775f4e
SK
248 &adjtime_p->last_adj_time,
249 &adjtime_p->not_adjusted);
ef71b8f1 250
a8775f4e 251 sscanf(line2, "%ld", &adjtime_p->last_calib_time);
ef71b8f1
SK
252
253 if (!strcmp(line3, "UTC\n")) {
254 adjtime_p->local_utc = UTC;
255 } else if (!strcmp(line3, "LOCAL\n")) {
256 adjtime_p->local_utc = LOCAL;
257 } else {
258 adjtime_p->local_utc = UNKNOWN;
259 if (line3[0]) {
111c05d3
SK
260 warnx(_("Warning: unrecognized third line in adjtime file\n"
261 "(Expected: `UTC' or `LOCAL' or nothing.)"));
ef71b8f1
SK
262 }
263 }
7eda085c 264
de4568f7 265 if (ctl->verbose) {
ef71b8f1
SK
266 printf(_
267 ("Last drift adjustment done at %ld seconds after 1969\n"),
268 (long)adjtime_p->last_adj_time);
269 printf(_("Last calibration done at %ld seconds after 1969\n"),
270 (long)adjtime_p->last_calib_time);
271 printf(_("Hardware clock is on %s time\n"),
272 (adjtime_p->local_utc ==
273 LOCAL) ? _("local") : (adjtime_p->local_utc ==
274 UTC) ? _("UTC") : _("unknown"));
275 }
276
c47a8f2a 277 return EXIT_SUCCESS;
ef71b8f1 278}
7eda085c 279
ef71b8f1
SK
280/*
281 * Wait until the falling edge of the Hardware Clock's update flag so that
282 * any time that is read from the clock immediately after we return will be
283 * exact.
284 *
285 * The clock only has 1 second precision, so it gives the exact time only
286 * once per second, right on the falling edge of the update flag.
287 *
288 * We wait (up to one second) either blocked waiting for an rtc device or in
289 * a CPU spin loop. The former is probably not very accurate.
290 *
291 * Return 0 if it worked, nonzero if it didn't.
292 */
336f7c5f 293static int synchronize_to_clock_tick(const struct hwclock_control *ctl)
ef71b8f1 294{
63cccae4 295 int rc;
7eda085c 296
de4568f7 297 if (ctl->verbose)
ef71b8f1 298 printf(_("Waiting for clock tick...\n"));
7eda085c 299
336f7c5f 300 rc = ur->synchronize_to_clock_tick(ctl);
63cccae4 301
de4568f7 302 if (ctl->verbose) {
3b96a7ac
KZ
303 if (rc)
304 printf(_("...synchronization failed\n"));
305 else
306 printf(_("...got clock tick\n"));
307 }
63cccae4
KZ
308
309 return rc;
7eda085c
KZ
310}
311
ef71b8f1
SK
312/*
313 * Convert a time in broken down format (hours, minutes, etc.) into standard
314 * unix time (seconds into epoch). Return it as *systime_p.
315 *
316 * The broken down time is argument <tm>. This broken down time is either
317 * in local time zone or UTC, depending on value of logical argument
318 * "universal". True means it is in UTC.
319 *
320 * If the argument contains values that do not constitute a valid time, and
321 * mktime() recognizes this, return *valid_p == false and *systime_p
322 * undefined. However, mktime() sometimes goes ahead and computes a
323 * fictional time "as if" the input values were valid, e.g. if they indicate
324 * the 31st day of April, mktime() may compute the time of May 1. In such a
325 * case, we return the same fictional value mktime() does as *systime_p and
326 * return *valid_p == true.
327 */
473ec359 328static int
336f7c5f 329mktime_tz(const struct hwclock_control *ctl, struct tm tm,
473ec359 330 time_t *systime_p)
ef71b8f1 331{
473ec359
SK
332 int valid;
333
336f7c5f 334 if (ctl->universal)
12f1cdda
SK
335 *systime_p = timegm(&tm);
336 else
337 *systime_p = mktime(&tm);
338 if (*systime_p == -1) {
ef71b8f1
SK
339 /*
340 * This apparently (not specified in mktime() documentation)
341 * means the 'tm' structure does not contain valid values
342 * (however, not containing valid values does _not_ imply
343 * mktime() returns -1).
344 */
473ec359 345 valid = 0;
de4568f7 346 if (ctl->verbose)
ef71b8f1
SK
347 printf(_("Invalid values in hardware clock: "
348 "%4d/%.2d/%.2d %.2d:%.2d:%.2d\n"),
349 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
350 tm.tm_hour, tm.tm_min, tm.tm_sec);
351 } else {
473ec359 352 valid = 1;
de4568f7 353 if (ctl->verbose)
ef71b8f1
SK
354 printf(_
355 ("Hw clock time : %4d/%.2d/%.2d %.2d:%.2d:%.2d = "
356 "%ld seconds since 1969\n"), tm.tm_year + 1900,
357 tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min,
358 tm.tm_sec, (long)*systime_p);
359 }
473ec359 360 return valid;
7eda085c
KZ
361}
362
ef71b8f1
SK
363/*
364 * Read the hardware clock and return the current time via <tm> argument.
365 *
366 * Use the method indicated by <method> argument to access the hardware
367 * clock.
368 */
cdedde03 369static int
336f7c5f 370read_hardware_clock(const struct hwclock_control *ctl,
473ec359 371 int *valid_p, time_t *systime_p)
ef71b8f1
SK
372{
373 struct tm tm;
374 int err;
7eda085c 375
336f7c5f 376 err = ur->read_hardware_clock(ctl, &tm);
ef71b8f1
SK
377 if (err)
378 return err;
7eda085c 379
de4568f7 380 if (ctl->verbose)
ef71b8f1
SK
381 printf(_
382 ("Time read from Hardware Clock: %4d/%.2d/%.2d %02d:%02d:%02d\n"),
383 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour,
384 tm.tm_min, tm.tm_sec);
473ec359 385 *valid_p = mktime_tz(ctl, tm, systime_p);
cdedde03 386
ef71b8f1 387 return 0;
7eda085c
KZ
388}
389
ef71b8f1
SK
390/*
391 * Set the Hardware Clock to the time <newtime>, in local time zone or UTC,
392 * according to <universal>.
393 */
7eda085c 394static void
336f7c5f 395set_hardware_clock(const struct hwclock_control *ctl, const time_t newtime)
ef71b8f1
SK
396{
397 struct tm new_broken_time;
398 /*
399 * Time to which we will set Hardware Clock, in broken down format,
400 * in the time zone of caller's choice
401 */
402
336f7c5f 403 if (ctl->universal)
01d97194 404 gmtime_r(&newtime, &new_broken_time);
ef71b8f1 405 else
01d97194 406 localtime_r(&newtime, &new_broken_time);
7eda085c 407
de4568f7 408 if (ctl->verbose)
ef71b8f1
SK
409 printf(_("Setting Hardware Clock to %.2d:%.2d:%.2d "
410 "= %ld seconds since 1969\n"),
411 new_broken_time.tm_hour, new_broken_time.tm_min,
412 new_broken_time.tm_sec, (long)newtime);
7eda085c 413
c4b0dc3e 414 if (!ctl->testing)
336f7c5f 415 ur->set_hardware_clock(ctl, &new_broken_time);
ef71b8f1 416}
7eda085c 417
df4f1a66
KZ
418static double
419get_hardware_delay(const struct hwclock_control *ctl)
420{
421 const char *devpath, *rtcname;
422 char name[128 + 1];
423 struct path_cxt *pc;
424 int rc;
425
426 devpath = ur->get_device_path();
427 if (!devpath)
428 goto unknown;
429
430 rtcname = strrchr(devpath, '/');
431 if (!rtcname || !*(rtcname + 1))
432 goto unknown;
433 rtcname++;
434
435 pc = ul_new_path("/sys/class/rtc/%s", rtcname);
436 if (!pc)
437 goto unknown;
438 rc = ul_path_scanf(pc, "name", "%128[^\n ]", &name);
439 ul_unref_path(pc);
440
441 if (rc != 1 || !*name)
442 goto unknown;
443
444 if (ctl->verbose)
445 printf(_("RTC type: '%s'\n"), name);
446
447 /* MC146818A-compatible (x86) */
448 if (strcmp(name, "rtc_cmos") == 0)
449 return 0.5;
450
451 /* Another HW */
452 return 0;
453unknown:
454 /* Let's be backwardly compatible */
455 return 0.5;
456}
457
458
ef71b8f1
SK
459/*
460 * Set the Hardware Clock to the time "sethwtime", in local time zone or
461 * UTC, according to "universal".
462 *
463 * Wait for a fraction of a second so that "sethwtime" is the value of the
464 * Hardware Clock as of system time "refsystime", which is in the past. For
465 * example, if "sethwtime" is 14:03:05 and "refsystime" is 12:10:04.5 and
466 * the current system time is 12:10:06.0: Wait .5 seconds (to make exactly 2
467 * seconds since "refsystime") and then set the Hardware Clock to 14:03:07,
df4f1a66
KZ
468 * thus getting a precise and retroactive setting of the clock. The .5 delay is
469 * default on x86, see --delay and get_hardware_delay().
ef71b8f1
SK
470 *
471 * (Don't be confused by the fact that the system clock and the Hardware
472 * Clock differ by two hours in the above example. That's just to remind you
473 * that there are two independent time scales here).
474 *
475 * This function ought to be able to accept set times as fractional times.
476 * Idea for future enhancement.
477 */
7eda085c 478static void
336f7c5f
SK
479set_hardware_clock_exact(const struct hwclock_control *ctl,
480 const time_t sethwtime,
481 const struct timeval refsystime)
ef71b8f1 482{
ef71b8f1 483 /*
4a44a54b
CM
484 * The Hardware Clock can only be set to any integer time plus one
485 * half second. The integer time is required because there is no
486 * interface to set or get a fractional second. The additional half
487 * second is because the Hardware Clock updates to the following
488 * second precisely 500 ms (not 1 second!) after you release the
489 * divider reset (after setting the new time) - see description of
490 * DV2, DV1, DV0 in Register A in the MC146818A data sheet (and note
491 * that although that document doesn't say so, real-world code seems
492 * to expect that the SET bit in Register B functions the same way).
493 * That means that, e.g., when you set the clock to 1:02:03, it
494 * effectively really sets it to 1:02:03.5, because it will update to
495 * 1:02:04 only half a second later. Our caller passes the desired
496 * integer Hardware Clock time in sethwtime, and the corresponding
497 * system time (which may have a fractional part, and which may or may
498 * not be the same!) in refsystime. In an ideal situation, we would
499 * then apply sethwtime to the Hardware Clock at refsystime+500ms, so
500 * that when the Hardware Clock ticks forward to sethwtime+1s half a
501 * second later at refsystime+1000ms, everything is in sync. So we
502 * spin, waiting for gettimeofday() to return a time at or after that
503 * time (refsystime+500ms) up to a tolerance value, initially 1ms. If
504 * we miss that time due to being preempted for some other process,
505 * then we increase the margin a little bit (initially 1ms, doubling
506 * each time), add 1 second (or more, if needed to get a time that is
507 * in the future) to both the time for which we are waiting and the
508 * time that we will apply to the Hardware Clock, and start waiting
509 * again.
2bb3aa36 510 *
4a44a54b
CM
511 * For example, the caller requests that we set the Hardware Clock to
512 * 1:02:03, with reference time (current system time) = 6:07:08.250.
513 * We want the Hardware Clock to update to 1:02:04 at 6:07:09.250 on
514 * the system clock, and the first such update will occur 0.500
515 * seconds after we write to the Hardware Clock, so we spin until the
516 * system clock reads 6:07:08.750. If we get there, great, but let's
517 * imagine the system is so heavily loaded that our process is
518 * preempted and by the time we get to run again, the system clock
519 * reads 6:07:11.990. We now want to wait until the next xx:xx:xx.750
520 * time, which is 6:07:12.750 (4.5 seconds after the reference time),
521 * at which point we will set the Hardware Clock to 1:02:07 (4 seconds
522 * after the originally requested time). If we do that successfully,
523 * then at 6:07:13.250 (5 seconds after the reference time), the
524 * Hardware Clock will update to 1:02:08 (5 seconds after the
525 * originally requested time), and all is well thereafter.
ef71b8f1 526 */
4a44a54b
CM
527
528 time_t newhwtime = sethwtime;
529 double target_time_tolerance_secs = 0.001; /* initial value */
530 double tolerance_incr_secs = 0.001; /* initial value */
df4f1a66
KZ
531 double delay;
532 struct timeval rtc_set_delay_tv;
4a44a54b
CM
533
534 struct timeval targetsystime;
535 struct timeval nowsystime;
536 struct timeval prevsystime = refsystime;
537 double deltavstarget;
538
df4f1a66
KZ
539 if (ctl->rtc_delay != -1.0) /* --delay specified */
540 delay = ctl->rtc_delay;
541 else
542 delay = get_hardware_delay(ctl);
543
544 if (ctl->verbose)
545 printf(_("Using delay: %.6f seconds\n"), delay);
546
547 rtc_set_delay_tv.tv_sec = 0;
548 rtc_set_delay_tv.tv_usec = delay * 1E6;
549
550 timeradd(&refsystime, &rtc_set_delay_tv, &targetsystime);
4a44a54b
CM
551
552 while (1) {
553 double ticksize;
554
ff4e18bd 555 ON_DBG(RANDOM_SLEEP, up_to_1000ms_sleep());
ea0804b0 556
ef71b8f1 557 gettimeofday(&nowsystime, NULL);
4a44a54b
CM
558 deltavstarget = time_diff(nowsystime, targetsystime);
559 ticksize = time_diff(nowsystime, prevsystime);
560 prevsystime = nowsystime;
561
562 if (ticksize < 0) {
de4568f7 563 if (ctl->verbose)
4a44a54b 564 printf(_("time jumped backward %.6f seconds "
c2114018 565 "to %ld.%06ld - retargeting\n"),
b68e1f44
SK
566 ticksize, nowsystime.tv_sec,
567 nowsystime.tv_usec);
4a44a54b
CM
568 /* The retarget is handled at the end of the loop. */
569 } else if (deltavstarget < 0) {
570 /* deltavstarget < 0 if current time < target time */
ff4e18bd
WP
571 DBG(DELTA_VS_TARGET,
572 ul_debug("%ld.%06ld < %ld.%06ld (%.6f)",
573 nowsystime.tv_sec, nowsystime.tv_usec,
574 targetsystime.tv_sec,
575 targetsystime.tv_usec, deltavstarget));
4a44a54b
CM
576 continue; /* not there yet - keep spinning */
577 } else if (deltavstarget <= target_time_tolerance_secs) {
578 /* Close enough to the target time; done waiting. */
579 break;
580 } else /* (deltavstarget > target_time_tolerance_secs) */ {
581 /*
582 * We missed our window. Increase the tolerance and
583 * aim for the next opportunity.
584 */
de4568f7 585 if (ctl->verbose)
c2114018
RM
586 printf(_("missed it - %ld.%06ld is too far "
587 "past %ld.%06ld (%.6f > %.6f)\n"),
b68e1f44
SK
588 nowsystime.tv_sec,
589 nowsystime.tv_usec,
590 targetsystime.tv_sec,
591 targetsystime.tv_usec,
4a44a54b
CM
592 deltavstarget,
593 target_time_tolerance_secs);
594 target_time_tolerance_secs += tolerance_incr_secs;
595 tolerance_incr_secs *= 2;
ea0804b0 596 }
4a44a54b
CM
597
598 /*
599 * Aim for the same offset (tv_usec) within the second in
600 * either the current second (if that offset hasn't arrived
601 * yet), or the next second.
602 */
603 if (nowsystime.tv_usec < targetsystime.tv_usec)
604 targetsystime.tv_sec = nowsystime.tv_sec;
605 else
606 targetsystime.tv_sec = nowsystime.tv_sec + 1;
607 }
608
609 newhwtime = sethwtime
610 + (int)(time_diff(nowsystime, refsystime)
df4f1a66 611 - delay /* don't count this */
4a44a54b 612 + 0.5 /* for rounding */);
de4568f7 613 if (ctl->verbose)
c2114018
RM
614 printf(_("%ld.%06ld is close enough to %ld.%06ld (%.6f < %.6f)\n"
615 "Set RTC to %ld (%ld + %d; refsystime = %ld.%06ld)\n"),
b68e1f44
SK
616 nowsystime.tv_sec, nowsystime.tv_usec,
617 targetsystime.tv_sec, targetsystime.tv_usec,
4a44a54b 618 deltavstarget, target_time_tolerance_secs,
b68e1f44 619 newhwtime, sethwtime,
4a44a54b 620 (int)(newhwtime - sethwtime),
b68e1f44 621 refsystime.tv_sec, refsystime.tv_usec);
ef71b8f1 622
336f7c5f 623 set_hardware_clock(ctl, newhwtime);
7eda085c
KZ
624}
625
10191da6 626static int
88d2a1a3 627display_time(struct timeval hwctime)
ef71b8f1 628{
4111bb3a 629 char buf[ISO_BUFSIZ];
88d2a1a3 630
6cdc7b9c 631 if (strtimeval_iso(&hwctime, ISO_TIMESTAMP_DOT, buf, sizeof(buf)))
10191da6 632 return EXIT_FAILURE;
6cdc7b9c 633
88d2a1a3 634 printf("%s\n", buf);
10191da6 635 return EXIT_SUCCESS;
ef71b8f1 636}
7eda085c 637
ef71b8f1 638/*
c8f64f94 639 * Adjusts System time, sets the kernel's timezone and RTC timescale.
ef71b8f1 640 *
c8f64f94
WP
641 * The kernel warp_clock function adjusts the System time according to the
642 * tz.tz_minuteswest argument and sets PCIL (see below). At boot settimeofday(2)
643 * has one-shot access to this function as shown in the table below.
ef71b8f1 644 *
c8f64f94
WP
645 * +-------------------------------------------------------------------+
646 * | settimeofday(tv, tz) |
647 * |-------------------------------------------------------------------|
648 * | Arguments | System Time | PCIL | | warp_clock |
649 * | tv | tz | set | warped | set | firsttime | locked |
650 * |---------|---------|---------------|------|-----------|------------|
651 * | pointer | NULL | yes | no | no | 1 | no |
652 * | pointer | pointer | yes | no | no | 0 | yes |
653 * | NULL | ptr2utc | no | no | no | 0 | yes |
654 * | NULL | pointer | no | yes | yes | 0 | yes |
655 * +-------------------------------------------------------------------+
656 * ptr2utc: tz.tz_minuteswest is zero (UTC).
657 * PCIL: persistent_clock_is_local, sets the "11 minute mode" timescale.
658 * firsttime: locks the warp_clock function (initialized to 1 at boot).
d17a12a3 659 *
c8f64f94
WP
660 * +---------------------------------------------------------------------------+
661 * | op | RTC scale | settimeofday calls |
662 * |---------|-----------|-----------------------------------------------------|
663 * | systz | Local | 1) warps system time*, sets PCIL* and kernel tz |
664 * | systz | UTC | 1st) locks warp_clock* 2nd) sets kernel tz |
665 * | hctosys | Local | 1st) sets PCIL* 2nd) sets system time and kernel tz |
666 * | hctosys | UTC | 1) sets system time and kernel tz |
667 * +---------------------------------------------------------------------------+
668 * * only on first call after boot
ef71b8f1 669 */
9abb2685 670static int
88d2a1a3 671set_system_clock(const struct hwclock_control *ctl,
336f7c5f 672 const struct timeval newtime)
ef71b8f1 673{
01d97194 674 struct tm broken;
88d2a1a3
WP
675 int minuteswest;
676 int rc = 0;
404fdd2c 677 const struct timezone tz_utc = { 0 };
ef71b8f1 678
01d97194
WP
679 localtime_r(&newtime.tv_sec, &broken);
680 minuteswest = -get_gmtoff(&broken) / 60;
9abb2685 681
de4568f7 682 if (ctl->verbose) {
b44dd522
WP
683 if (ctl->hctosys && !ctl->universal)
684 printf(_("Calling settimeofday(NULL, %d) to set "
685 "persistent_clock_is_local.\n"), minuteswest);
686 if (ctl->systz && ctl->universal)
687 puts(_("Calling settimeofday(NULL, 0) "
688 "to lock the warp function."));
689 if (ctl->hctosys)
690 printf(_("Calling settimeofday(%ld.%06ld, %d)\n"),
691 newtime.tv_sec, newtime.tv_usec, minuteswest);
692 else {
693 printf(_("Calling settimeofday(NULL, %d) "), minuteswest);
694 if (ctl->universal)
695 puts(_("to set the kernel timezone."));
696 else
697 puts(_("to warp System time."));
698 }
88d2a1a3 699 }
b44dd522 700
c4b0dc3e 701 if (!ctl->testing) {
e5cb8d4d 702 const struct timezone tz = { minuteswest };
ef71b8f1 703
404fdd2c 704 if (ctl->hctosys && !ctl->universal) /* set PCIL */
e5cb8d4d 705 rc = settimeofday(NULL, &tz);
404fdd2c 706 if (ctl->systz && ctl->universal) /* lock warp_clock */
e5cb8d4d 707 rc = settimeofday(NULL, &tz_utc);
404fdd2c 708 if (!rc && ctl->hctosys)
88d2a1a3 709 rc = settimeofday(&newtime, &tz);
404fdd2c
WP
710 else if (!rc)
711 rc = settimeofday(NULL, &tz);
712
88d2a1a3
WP
713 if (rc) {
714 warn(_("settimeofday() failed"));
c47a8f2a 715 return EXIT_FAILURE;
e5cb8d4d 716 }
ef71b8f1 717 }
c47a8f2a 718 return EXIT_SUCCESS;
ef71b8f1
SK
719}
720
721/*
f276d71a
WP
722 * Refresh the last calibrated and last adjusted timestamps in <*adjtime_p>
723 * to facilitate future drift calculations based on this set point.
ef71b8f1 724 *
f276d71a
WP
725 * With the --update-drift option:
726 * Update the drift factor in <*adjtime_p> based on the fact that the
727 * Hardware Clock was just calibrated to <nowtime> and before that was
728 * set to the <hclocktime> time scale.
ef71b8f1 729 */
7eda085c 730static void
336f7c5f
SK
731adjust_drift_factor(const struct hwclock_control *ctl,
732 struct adjtime *adjtime_p,
2794995a 733 const struct timeval nowtime,
336f7c5f 734 const struct timeval hclocktime)
ef71b8f1 735{
336f7c5f 736 if (!ctl->update) {
de4568f7 737 if (ctl->verbose)
f276d71a
WP
738 printf(_("Not adjusting drift factor because the "
739 "--update-drift option was not used.\n"));
63cccae4 740 } else if (adjtime_p->last_calib_time == 0) {
de4568f7 741 if (ctl->verbose)
63cccae4
KZ
742 printf(_("Not adjusting drift factor because last "
743 "calibration time is zero,\n"
744 "so history is bad and calibration startover "
745 "is necessary.\n"));
bbb4c273 746 } else if ((hclocktime.tv_sec - adjtime_p->last_calib_time) < 4 * 60 * 60) {
de4568f7 747 if (ctl->verbose)
63cccae4 748 printf(_("Not adjusting drift factor because it has "
bbb4c273 749 "been less than four hours since the last "
63cccae4 750 "calibration.\n"));
c6ea9ef6 751 } else {
63cccae4 752 /*
f276d71a
WP
753 * At adjustment time we drift correct the hardware clock
754 * according to the contents of the adjtime file and refresh
755 * its last adjusted timestamp.
63cccae4 756 *
f276d71a
WP
757 * At calibration time we set the Hardware Clock and refresh
758 * both timestamps in <*adjtime_p>.
63cccae4 759 *
f276d71a
WP
760 * Here, with the --update-drift option, we also update the
761 * drift factor in <*adjtime_p>.
63cccae4
KZ
762 *
763 * Let us do computation in doubles. (Floats almost suffice,
764 * but 195 days + 1 second equals 195 days in floats.)
765 */
766 const double sec_per_day = 24.0 * 60.0 * 60.0;
63cccae4 767 double factor_adjust;
f196fd1a 768 double drift_factor;
2794995a 769 struct timeval last_calib;
63cccae4 770
2794995a 771 last_calib = t2tv(adjtime_p->last_calib_time);
ede32597
WP
772 /*
773 * Correction to apply to the current drift factor.
774 *
775 * Simplified: uncorrected_drift / days_since_calibration.
776 *
777 * hclocktime is fully corrected with the current drift factor.
778 * Its difference from nowtime is the missed drift correction.
779 */
2794995a
WP
780 factor_adjust = time_diff(nowtime, hclocktime) /
781 (time_diff(nowtime, last_calib) / sec_per_day);
63cccae4 782
f196fd1a 783 drift_factor = adjtime_p->drift_factor + factor_adjust;
83aa4ad7 784 if (fabs(drift_factor) > MAX_DRIFT) {
de4568f7 785 if (ctl->verbose)
f196fd1a
SB
786 printf(_("Clock drift factor was calculated as "
787 "%f seconds/day.\n"
788 "It is far too much. Resetting to zero.\n"),
789 drift_factor);
790 drift_factor = 0;
791 } else {
de4568f7 792 if (ctl->verbose)
a36a9026
WP
793 printf(_("Clock drifted %f seconds in the past "
794 "%f seconds\nin spite of a drift factor of "
f196fd1a
SB
795 "%f seconds/day.\n"
796 "Adjusting drift factor by %f seconds/day\n"),
2794995a
WP
797 time_diff(nowtime, hclocktime),
798 time_diff(nowtime, last_calib),
f196fd1a
SB
799 adjtime_p->drift_factor, factor_adjust);
800 }
801
802 adjtime_p->drift_factor = drift_factor;
63cccae4 803 }
2794995a 804 adjtime_p->last_calib_time = nowtime.tv_sec;
9abb2685 805
2794995a 806 adjtime_p->last_adj_time = nowtime.tv_sec;
9abb2685 807
63cccae4 808 adjtime_p->not_adjusted = 0;
9abb2685 809
473ec359 810 adjtime_p->dirty = 1;
7eda085c
KZ
811}
812
ef71b8f1 813/*
ede32597
WP
814 * Calculate the drift correction currently needed for the
815 * Hardware Clock based on the last time it was adjusted,
816 * and the current drift factor, as stored in the adjtime file.
ef71b8f1 817 *
ede32597 818 * The total drift adjustment needed is stored at tdrift_p.
ef71b8f1 819 *
ef71b8f1 820 */
7eda085c 821static void
336f7c5f
SK
822calculate_adjustment(const struct hwclock_control *ctl,
823 const double factor,
ef71b8f1
SK
824 const time_t last_time,
825 const double not_adjusted,
2794995a 826 const time_t systime, struct timeval *tdrift_p)
ef71b8f1
SK
827{
828 double exact_adjustment;
7eda085c 829
ef71b8f1
SK
830 exact_adjustment =
831 ((double)(systime - last_time)) * factor / (24 * 60 * 60)
832 + not_adjusted;
1030c325 833 tdrift_p->tv_sec = (time_t) floor(exact_adjustment);
2794995a
WP
834 tdrift_p->tv_usec = (exact_adjustment -
835 (double)tdrift_p->tv_sec) * 1E6;
de4568f7 836 if (ctl->verbose) {
b68e1f44
SK
837 printf(P_("Time since last adjustment is %ld second\n",
838 "Time since last adjustment is %ld seconds\n",
839 (systime - last_time)),
840 (systime - last_time));
c2114018 841 printf(_("Calculated Hardware Clock drift is %ld.%06ld seconds\n"),
b68e1f44 842 tdrift_p->tv_sec, tdrift_p->tv_usec);
ef71b8f1 843 }
7eda085c
KZ
844}
845
ef71b8f1
SK
846/*
847 * Write the contents of the <adjtime> structure to its disk file.
848 *
849 * But if the contents are clean (unchanged since read from disk), don't
850 * bother.
851 */
c4b0dc3e 852static int save_adjtime(const struct hwclock_control *ctl,
336f7c5f 853 const struct adjtime *adjtime)
ef71b8f1 854{
4aca5fe2
SK
855 char *content; /* Stuff to write to disk file */
856 FILE *fp;
ef71b8f1 857
4aca5fe2
SK
858 xasprintf(&content, "%f %ld %f\n%ld\n%s\n",
859 adjtime->drift_factor,
860 adjtime->last_adj_time,
861 adjtime->not_adjusted,
862 adjtime->last_calib_time,
863 (adjtime->local_utc == LOCAL) ? "LOCAL" : "UTC");
864
de4568f7 865 if (ctl->verbose){
c4b0dc3e
WP
866 printf(_("New %s data:\n%s"),
867 ctl->adj_file_name, content);
4aca5fe2
SK
868 }
869
c4b0dc3e
WP
870 if (!ctl->testing) {
871 fp = fopen(ctl->adj_file_name, "w");
872 if (fp == NULL) {
873 warn(_("cannot open %s"), ctl->adj_file_name);
874 return EXIT_FAILURE;
875 } else if (fputs(content, fp) < 0 || close_stream(fp) != 0) {
876 warn(_("cannot update %s"), ctl->adj_file_name);
877 return EXIT_FAILURE;
878 }
ef71b8f1 879 }
c4b0dc3e 880 return EXIT_SUCCESS;
ef71b8f1 881}
7eda085c 882
ef71b8f1
SK
883/*
884 * Do the adjustment requested, by 1) setting the Hardware Clock (if
885 * necessary), and 2) updating the last-adjusted time in the adjtime
886 * structure.
887 *
888 * Do not update anything if the Hardware Clock does not currently present a
889 * valid time.
890 *
ede32597 891 * <hclocktime> is the drift corrected time read from the Hardware Clock.
ef71b8f1 892 *
ede32597
WP
893 * <read_time> was the system time when the <hclocktime> was read, which due
894 * to computational delay could be a short time ago. It is used to define a
895 * trigger point for setting the Hardware Clock. The fractional part of the
896 * Hardware clock set time is subtracted from read_time to 'refer back', or
897 * delay, the trigger point. Fractional parts must be accounted for in this
898 * way, because the Hardware Clock can only be set to a whole second.
ef71b8f1
SK
899 *
900 * <universal>: the Hardware Clock is kept in UTC.
901 *
902 * <testing>: We are running in test mode (no updating of clock).
903 *
ef71b8f1 904 */
7eda085c 905static void
336f7c5f 906do_adjustment(const struct hwclock_control *ctl, struct adjtime *adjtime_p,
88d2a1a3 907 const struct timeval hclocktime,
336f7c5f 908 const struct timeval read_time)
ef71b8f1 909{
88d2a1a3 910 if (adjtime_p->last_adj_time == 0) {
de4568f7 911 if (ctl->verbose)
f55b4b45
KZ
912 printf(_("Not setting clock because last adjustment time is zero, "
913 "so history is bad.\n"));
83aa4ad7 914 } else if (fabs(adjtime_p->drift_factor) > MAX_DRIFT) {
de4568f7 915 if (ctl->verbose)
f55b4b45
KZ
916 printf(_("Not setting clock because drift factor %f is far too high.\n"),
917 adjtime_p->drift_factor);
ef71b8f1 918 } else {
336f7c5f 919 set_hardware_clock_exact(ctl, hclocktime.tv_sec,
2794995a 920 time_inc(read_time,
336f7c5f 921 -(hclocktime.tv_usec / 1E6)));
2794995a
WP
922 adjtime_p->last_adj_time = hclocktime.tv_sec;
923 adjtime_p->not_adjusted = 0;
473ec359 924 adjtime_p->dirty = 1;
ef71b8f1 925 }
7eda085c
KZ
926}
927
336f7c5f 928static void determine_clock_access_method(const struct hwclock_control *ctl)
ef71b8f1
SK
929{
930 ur = NULL;
7eda085c 931
88bc304b 932#ifdef USE_HWCLOCK_CMOS
336f7c5f 933 if (ctl->directisa)
ef71b8f1 934 ur = probe_for_cmos_clock();
88bc304b 935#endif
465e9973 936#ifdef __linux__
ef71b8f1 937 if (!ur)
336f7c5f 938 ur = probe_for_rtc_clock(ctl);
465e9973 939#endif
8f729d60 940 if (ur) {
de4568f7 941 if (ctl->verbose)
8f729d60 942 puts(ur->interface_name);
7eda085c 943
8f729d60 944 } else {
de4568f7 945 if (ctl->verbose)
ef71b8f1 946 printf(_("No usable clock interface found.\n"));
b3fc2a3c 947
8f729d60
SK
948 warnx(_("Cannot access the Hardware Clock via "
949 "any known method."));
b3fc2a3c 950
de4568f7
WP
951 if (!ctl->verbose)
952 warnx(_("Use the --verbose option to see the "
8f729d60
SK
953 "details of our search for an access "
954 "method."));
c47a8f2a 955 hwclock_exit(ctl, EXIT_FAILURE);
ef71b8f1 956 }
7eda085c
KZ
957}
958
c47a8f2a 959/* Do all the normal work of hwclock - read, set clock, etc. */
63cccae4 960static int
336f7c5f
SK
961manipulate_clock(const struct hwclock_control *ctl, const time_t set_time,
962 const struct timeval startup_time, struct adjtime *adjtime)
ef71b8f1 963{
ef71b8f1 964 /* The time at which we read the Hardware Clock */
4813a521 965 struct timeval read_time = { 0 };
ef71b8f1
SK
966 /*
967 * The Hardware Clock gives us a valid time, or at
968 * least something close enough to fool mktime().
969 */
473ec359 970 int hclock_valid = 0;
ef71b8f1 971 /*
ede32597 972 * Tick synchronized time read from the Hardware Clock and
1ef6feb5 973 * then drift corrected for all operations except --show.
ef71b8f1 974 */
1ef6feb5
WP
975 struct timeval hclocktime = { 0 };
976 /*
977 * hclocktime correlated to startup_time. That is, what drift
978 * corrected Hardware Clock time would have been at start up.
979 */
980 struct timeval startup_hclocktime = { 0 };
ede32597 981 /* Total Hardware Clock drift correction needed. */
226fdcf0 982 struct timeval tdrift = { 0 };
ef71b8f1 983
336f7c5f
SK
984 if ((ctl->set || ctl->systohc || ctl->adjust) &&
985 (adjtime->local_utc == UTC) != ctl->universal) {
986 adjtime->local_utc = ctl->universal ? UTC : LOCAL;
473ec359 987 adjtime->dirty = 1;
ef71b8f1 988 }
a218e2a8
WP
989 /*
990 * Negate the drift correction, because we want to 'predict' a
991 * Hardware Clock time that includes drift.
992 */
993 if (ctl->predict) {
994 hclocktime = t2tv(set_time);
995 calculate_adjustment(ctl, adjtime->drift_factor,
996 adjtime->last_adj_time,
997 adjtime->not_adjusted,
998 hclocktime.tv_sec, &tdrift);
999 hclocktime = time_inc(hclocktime, (double)
1000 -(tdrift.tv_sec + tdrift.tv_usec / 1E6));
de4568f7 1001 if (ctl->verbose) {
a218e2a8
WP
1002 printf(_ ("Target date: %ld\n"), set_time);
1003 printf(_ ("Predicted RTC: %ld\n"), hclocktime.tv_sec);
1004 }
10191da6 1005 return display_time(hclocktime);
a218e2a8 1006 }
9abb2685 1007
4ba19a2f 1008 if (ctl->systz)
404fdd2c 1009 return set_system_clock(ctl, startup_time);
4ba19a2f 1010
a218e2a8 1011 if (ur->get_permissions())
c47a8f2a 1012 return EXIT_FAILURE;
551e7034 1013
ee723d23
WP
1014 /*
1015 * Read and drift correct RTC time; except for RTC set functions
1016 * without the --update-drift option because: 1) it's not needed;
1017 * 2) it enables setting a corrupted RTC without reading it first;
1018 * 3) it significantly reduces system shutdown time.
1019 */
1020 if ( ! ((ctl->set || ctl->systohc) && !ctl->update)) {
ef71b8f1 1021 /*
ee723d23
WP
1022 * Timing critical - do not change the order of, or put
1023 * anything between the follow three statements.
1024 * Synchronization failure MUST exit, because all drift
1025 * operations are invalid without it.
ef71b8f1 1026 */
ee723d23 1027 if (synchronize_to_clock_tick(ctl))
c47a8f2a 1028 return EXIT_FAILURE;
ee723d23 1029 read_hardware_clock(ctl, &hclock_valid, &hclocktime.tv_sec);
ef71b8f1
SK
1030 gettimeofday(&read_time, NULL);
1031
88d2a1a3
WP
1032 if (!hclock_valid) {
1033 warnx(_("RTC read returned an invalid value."));
c47a8f2a 1034 return EXIT_FAILURE;
88d2a1a3 1035 }
a218e2a8
WP
1036 /*
1037 * Calculate and apply drift correction to the Hardware Clock
1038 * time for everything except --show
1039 */
1040 calculate_adjustment(ctl, adjtime->drift_factor,
1041 adjtime->last_adj_time,
1042 adjtime->not_adjusted,
1043 hclocktime.tv_sec, &tdrift);
1044 if (!ctl->show)
1045 hclocktime = time_inc(tdrift, hclocktime.tv_sec);
1ef6feb5
WP
1046
1047 startup_hclocktime =
1048 time_inc(hclocktime, time_diff(startup_time, read_time));
cdedde03 1049 }
336f7c5f 1050 if (ctl->show || ctl->get) {
10191da6 1051 return display_time(startup_hclocktime);
336f7c5f
SK
1052 } else if (ctl->set) {
1053 set_hardware_clock_exact(ctl, set_time, startup_time);
1054 if (!ctl->noadjfile)
1ef6feb5 1055 adjust_drift_factor(ctl, adjtime, t2tv(set_time),
88d2a1a3 1056 startup_hclocktime);
336f7c5f 1057 } else if (ctl->adjust) {
2794995a 1058 if (tdrift.tv_sec > 0 || tdrift.tv_sec < -1)
88d2a1a3 1059 do_adjustment(ctl, adjtime, hclocktime, read_time);
2794995a
WP
1060 else
1061 printf(_("Needed adjustment is less than one second, "
1062 "so not setting clock.\n"));
336f7c5f 1063 } else if (ctl->systohc) {
ef71b8f1
SK
1064 struct timeval nowtime, reftime;
1065 /*
1066 * We can only set_hardware_clock_exact to a
1067 * whole seconds time, so we set it with
1068 * reference to the most recent whole
1069 * seconds time.
1070 */
1071 gettimeofday(&nowtime, NULL);
1072 reftime.tv_sec = nowtime.tv_sec;
1073 reftime.tv_usec = 0;
336f7c5f
SK
1074 set_hardware_clock_exact(ctl, (time_t) reftime.tv_sec, reftime);
1075 if (!ctl->noadjfile)
1076 adjust_drift_factor(ctl, adjtime, nowtime,
88d2a1a3 1077 hclocktime);
336f7c5f 1078 } else if (ctl->hctosys) {
88d2a1a3 1079 return set_system_clock(ctl, hclocktime);
ef71b8f1 1080 }
c4b0dc3e
WP
1081 if (!ctl->noadjfile && adjtime->dirty)
1082 return save_adjtime(ctl, adjtime);
c47a8f2a 1083 return EXIT_SUCCESS;
7eda085c
KZ
1084}
1085
039a0cec
WP
1086/**
1087 * Get or set the kernel RTC driver's epoch on Alpha machines.
1088 * ISA machines are hard coded for 1900.
390c72eb 1089 */
039a0cec 1090#if defined(__linux__) && defined(__alpha__)
390c72eb 1091static void
336f7c5f 1092manipulate_epoch(const struct hwclock_control *ctl)
390c72eb 1093{
336f7c5f 1094 if (ctl->getepoch) {
ef71b8f1
SK
1095 unsigned long epoch;
1096
af68bd01 1097 if (get_epoch_rtc(ctl, &epoch))
c26ddc56 1098 warnx(_("unable to read the RTC epoch."));
ef71b8f1 1099 else
c26ddc56 1100 printf(_("The RTC epoch is set to %lu.\n"), epoch);
336f7c5f 1101 } else if (ctl->setepoch) {
f7599b4f 1102 if (!ctl->epoch_option)
c26ddc56 1103 warnx(_("--epoch is required for --setepoch."));
c4b0dc3e
WP
1104 else if (!ctl->testing)
1105 if (set_epoch_rtc(ctl))
1106 warnx(_("unable to set the RTC epoch."));
ef71b8f1 1107 }
7eda085c 1108}
039a0cec 1109#endif /* __linux__ __alpha__ */
7eda085c 1110
ef71b8f1
SK
1111static void out_version(void)
1112{
f6277500 1113 printf(UTIL_LINUX_VERSION);
63cccae4
KZ
1114}
1115
b1557fe9 1116static void __attribute__((__noreturn__))
652dcf51 1117usage(void)
ef71b8f1 1118{
02777914 1119 fputs(USAGE_HEADER, stdout);
57c45481 1120 printf(_(" %s [function] [option...]\n"), program_invocation_short_name);
02777914
WP
1121
1122 fputs(USAGE_SEPARATOR, stdout);
2b1aa087 1123 puts(_("Time clocks utility."));
02777914
WP
1124
1125 fputs(USAGE_FUNCTIONS, stdout);
1126 puts(_(" -r, --show display the RTC time"));
1127 puts(_(" --get display drift corrected RTC time"));
1128 puts(_(" --set set the RTC according to --date"));
1129 puts(_(" -s, --hctosys set the system time from the RTC"));
1130 puts(_(" -w, --systohc set the RTC from the system time"));
1131 puts(_(" --systz send timescale configurations to the kernel"));
40191b5f 1132 puts(_(" -a, --adjust adjust the RTC to account for systematic drift"));
039a0cec 1133#if defined(__linux__) && defined(__alpha__)
02777914
WP
1134 puts(_(" --getepoch display the RTC epoch"));
1135 puts(_(" --setepoch set the RTC epoch according to --epoch"));
465e9973 1136#endif
02777914
WP
1137 puts(_(" --predict predict the drifted RTC time according to --date"));
1138 fputs(USAGE_OPTIONS, stdout);
57c45481
WP
1139 puts(_(" -u, --utc the RTC timescale is UTC"));
1140 puts(_(" -l, --localtime the RTC timescale is Local"));
465e9973 1141#ifdef __linux__
3eeaef99 1142 printf(_(
02777914 1143 " -f, --rtc <file> use an alternate file to %1$s\n"), _PATH_RTC_DEV);
465e9973 1144#endif
3eeaef99 1145 printf(_(
02777914
WP
1146 " --directisa use the ISA bus instead of %1$s access\n"), _PATH_RTC_DEV);
1147 puts(_(" --date <time> date/time input for --set and --predict"));
df4f1a66 1148 puts(_(" --delay <sec> delay used when set new RTC time"));
039a0cec 1149#if defined(__linux__) && defined(__alpha__)
02777914 1150 puts(_(" --epoch <year> epoch input for --setepoch"));
039a0cec 1151#endif
02777914
WP
1152 puts(_(" --update-drift update the RTC drift factor"));
1153 printf(_(
cb8e26cc
WP
1154 " --noadjfile do not use %1$s\n"), _PATH_ADJTIME);
1155 printf(_(
02777914 1156 " --adjfile <file> use an alternate file to %1$s\n"), _PATH_ADJTIME);
de4568f7
WP
1157 puts(_(" --test dry run; implies --verbose"));
1158 puts(_(" -v, --verbose display more details"));
02777914 1159 fputs(USAGE_SEPARATOR, stdout);
f45f3ec3
RM
1160 printf(USAGE_HELP_OPTIONS(22));
1161 printf(USAGE_MAN_TAIL("hwclock(8)"));
652dcf51 1162 exit(EXIT_SUCCESS);
eb63b9b8
KZ
1163}
1164
ef71b8f1
SK
1165int main(int argc, char **argv)
1166{
df4f1a66
KZ
1167 struct hwclock_control ctl = {
1168 .show = 1, /* default op is show */
1169 .rtc_delay = -1.0 /* unspecified */
1170 };
63cccae4 1171 struct timeval startup_time;
336f7c5f 1172 struct adjtime adjtime = { 0 };
7a3000f7 1173 struct timespec when = { 0 };
ef71b8f1
SK
1174 /*
1175 * The time we started up, in seconds into the epoch, including
1176 * fractions.
1177 */
1178 time_t set_time = 0; /* Time to which user said to set Hardware Clock */
63cccae4 1179 int rc, c;
7eda085c 1180
dade002a
KZ
1181 /* Long only options. */
1182 enum {
1183 OPT_ADJFILE = CHAR_MAX + 1,
dade002a 1184 OPT_DATE,
df4f1a66 1185 OPT_DELAY,
dade002a
KZ
1186 OPT_DIRECTISA,
1187 OPT_EPOCH,
2794995a 1188 OPT_GET,
dade002a 1189 OPT_GETEPOCH,
dade002a 1190 OPT_NOADJFILE,
57415653 1191 OPT_PREDICT,
dade002a
KZ
1192 OPT_SET,
1193 OPT_SETEPOCH,
1194 OPT_SYSTZ,
f276d71a
WP
1195 OPT_TEST,
1196 OPT_UPDATE
dade002a 1197 };
33ed2d02
SK
1198
1199 static const struct option longopts[] = {
87918040
SK
1200 { "adjust", no_argument, NULL, 'a' },
1201 { "help", no_argument, NULL, 'h' },
37526942 1202 { "localtime", no_argument, NULL, 'l' },
87918040
SK
1203 { "show", no_argument, NULL, 'r' },
1204 { "hctosys", no_argument, NULL, 's' },
1205 { "utc", no_argument, NULL, 'u' },
40191b5f 1206 { "version", no_argument, NULL, 'V' },
87918040
SK
1207 { "systohc", no_argument, NULL, 'w' },
1208 { "debug", no_argument, NULL, 'D' },
ff4e18bd 1209 { "ul-debug", required_argument, NULL, 'd' },
de4568f7 1210 { "verbose", no_argument, NULL, 'v' },
87918040 1211 { "set", no_argument, NULL, OPT_SET },
039a0cec 1212#if defined(__linux__) && defined(__alpha__)
87918040
SK
1213 { "getepoch", no_argument, NULL, OPT_GETEPOCH },
1214 { "setepoch", no_argument, NULL, OPT_SETEPOCH },
039a0cec 1215 { "epoch", required_argument, NULL, OPT_EPOCH },
33ed2d02 1216#endif
87918040 1217 { "noadjfile", no_argument, NULL, OPT_NOADJFILE },
87918040
SK
1218 { "directisa", no_argument, NULL, OPT_DIRECTISA },
1219 { "test", no_argument, NULL, OPT_TEST },
1220 { "date", required_argument, NULL, OPT_DATE },
df4f1a66 1221 { "delay", required_argument, NULL, OPT_DELAY },
33ed2d02 1222#ifdef __linux__
87918040 1223 { "rtc", required_argument, NULL, 'f' },
33ed2d02 1224#endif
87918040
SK
1225 { "adjfile", required_argument, NULL, OPT_ADJFILE },
1226 { "systz", no_argument, NULL, OPT_SYSTZ },
57415653 1227 { "predict", no_argument, NULL, OPT_PREDICT },
87918040
SK
1228 { "get", no_argument, NULL, OPT_GET },
1229 { "update-drift", no_argument, NULL, OPT_UPDATE },
1230 { NULL, 0, NULL, 0 }
33ed2d02
SK
1231 };
1232
a7349ee3 1233 static const ul_excl_t excl[] = { /* rows and cols in ASCII order */
dade002a 1234 { 'a','r','s','w',
57415653 1235 OPT_GET, OPT_GETEPOCH, OPT_PREDICT,
2794995a 1236 OPT_SET, OPT_SETEPOCH, OPT_SYSTZ },
37526942 1237 { 'l', 'u' },
dade002a 1238 { OPT_ADJFILE, OPT_NOADJFILE },
f276d71a 1239 { OPT_NOADJFILE, OPT_UPDATE },
dade002a
KZ
1240 { 0 }
1241 };
1242 int excl_st[ARRAY_SIZE(excl)] = UL_EXCL_STATUS_INIT;
1243
63cccae4
KZ
1244 /* Remember what time we were invoked */
1245 gettimeofday(&startup_time, NULL);
7eda085c 1246
88058a71
KZ
1247#ifdef HAVE_LIBAUDIT
1248 hwaudit_fd = audit_open();
1249 if (hwaudit_fd < 0 && !(errno == EINVAL || errno == EPROTONOSUPPORT ||
1250 errno == EAFNOSUPPORT)) {
ef71b8f1
SK
1251 /*
1252 * You get these error codes only when the kernel doesn't
1253 * have audit compiled in.
1254 */
111c05d3 1255 warnx(_("Unable to connect to audit system"));
c47a8f2a 1256 return EXIT_FAILURE;
88058a71
KZ
1257 }
1258#endif
63cccae4 1259 setlocale(LC_ALL, "");
66ee8158 1260#ifdef LC_NUMERIC
ef71b8f1
SK
1261 /*
1262 * We need LC_CTYPE and LC_TIME and LC_MESSAGES, but must avoid
1263 * LC_NUMERIC since it gives problems when we write to /etc/adjtime.
1264 * - gqueri@mail.dotcom.fr
1265 */
63cccae4 1266 setlocale(LC_NUMERIC, "C");
66ee8158 1267#endif
63cccae4
KZ
1268 bindtextdomain(PACKAGE, LOCALEDIR);
1269 textdomain(PACKAGE);
2c308875 1270 close_stdout_atexit();
63cccae4 1271
dade002a 1272 while ((c = getopt_long(argc, argv,
ff4e18bd 1273 "hvVDd:alrsuwf:", longopts, NULL)) != -1) {
dade002a
KZ
1274
1275 err_exclusive_options(c, longopts, excl, excl_st);
1276
63cccae4
KZ
1277 switch (c) {
1278 case 'D':
de4568f7
WP
1279 warnx(_("use --verbose, --debug has been deprecated."));
1280 break;
1281 case 'v':
ff4e18bd
WP
1282 ctl.verbose = 1;
1283 break;
1284 case 'd':
1285 hwclock_init_debug(optarg);
63cccae4
KZ
1286 break;
1287 case 'a':
336f7c5f 1288 ctl.adjust = 1;
8b73ff96 1289 ctl.show = 0;
d8949aca 1290 ctl.hwaudit_on = 1;
63cccae4 1291 break;
37526942
RV
1292 case 'l':
1293 ctl.local_opt = 1; /* --localtime */
1294 break;
63cccae4 1295 case 'r':
336f7c5f 1296 ctl.show = 1;
63cccae4
KZ
1297 break;
1298 case 's':
336f7c5f 1299 ctl.hctosys = 1;
8b73ff96 1300 ctl.show = 0;
d8949aca 1301 ctl.hwaudit_on = 1;
63cccae4
KZ
1302 break;
1303 case 'u':
336f7c5f 1304 ctl.utc = 1;
63cccae4
KZ
1305 break;
1306 case 'w':
336f7c5f 1307 ctl.systohc = 1;
8b73ff96 1308 ctl.show = 0;
d8949aca 1309 ctl.hwaudit_on = 1;
63cccae4 1310 break;
33ed2d02 1311 case OPT_SET:
336f7c5f 1312 ctl.set = 1;
8b73ff96 1313 ctl.show = 0;
d8949aca 1314 ctl.hwaudit_on = 1;
63cccae4 1315 break;
039a0cec 1316#if defined(__linux__) && defined(__alpha__)
33ed2d02 1317 case OPT_GETEPOCH:
336f7c5f 1318 ctl.getepoch = 1;
8b73ff96 1319 ctl.show = 0;
63cccae4 1320 break;
33ed2d02 1321 case OPT_SETEPOCH:
336f7c5f 1322 ctl.setepoch = 1;
8b73ff96 1323 ctl.show = 0;
d8949aca 1324 ctl.hwaudit_on = 1;
63cccae4 1325 break;
039a0cec 1326 case OPT_EPOCH:
f7599b4f 1327 ctl.epoch_option = optarg; /* --epoch */
039a0cec 1328 break;
465e9973 1329#endif
33ed2d02 1330 case OPT_NOADJFILE:
336f7c5f 1331 ctl.noadjfile = 1;
63cccae4 1332 break;
33ed2d02 1333 case OPT_DIRECTISA:
336f7c5f 1334 ctl.directisa = 1;
63cccae4 1335 break;
33ed2d02 1336 case OPT_TEST:
336f7c5f 1337 ctl.testing = 1; /* --test */
ff4e18bd 1338 ctl.verbose = 1;
63cccae4 1339 break;
33ed2d02 1340 case OPT_DATE:
336f7c5f 1341 ctl.date_opt = optarg; /* --date */
63cccae4 1342 break;
df4f1a66
KZ
1343 case OPT_DELAY:
1344 ctl.rtc_delay = strtod_or_err(optarg, "invalid --delay argument");
1345 break;
33ed2d02 1346 case OPT_ADJFILE:
336f7c5f 1347 ctl.adj_file_name = optarg; /* --adjfile */
da82f6fe 1348 break;
33ed2d02 1349 case OPT_SYSTZ:
336f7c5f 1350 ctl.systz = 1; /* --systz */
8b73ff96 1351 ctl.show = 0;
2cb89055 1352 ctl.hwaudit_on = 1;
88a3372e 1353 break;
57415653
WP
1354 case OPT_PREDICT:
1355 ctl.predict = 1; /* --predict */
8b73ff96 1356 ctl.show = 0;
2e5627fa 1357 break;
2794995a 1358 case OPT_GET:
336f7c5f 1359 ctl.get = 1; /* --get */
8b73ff96 1360 ctl.show = 0;
2794995a 1361 break;
f276d71a 1362 case OPT_UPDATE:
336f7c5f 1363 ctl.update = 1; /* --update-drift */
f276d71a 1364 break;
465e9973 1365#ifdef __linux__
88681c5f 1366 case 'f':
336f7c5f 1367 ctl.rtc_dev_name = optarg; /* --rtc */
88681c5f 1368 break;
465e9973 1369#endif
2c308875 1370
de4568f7 1371 case 'V': /* --version */
2c308875 1372 print_version(EXIT_SUCCESS);
ef71b8f1 1373 case 'h': /* --help */
652dcf51 1374 usage();
657a5568 1375 default:
c47a8f2a 1376 errtryhelp(EXIT_FAILURE);
63cccae4
KZ
1377 }
1378 }
7eda085c 1379
fa5b4d45 1380 if (argc -= optind) {
657a5568 1381 warnx(_("%d too many arguments given"), argc);
c47a8f2a 1382 errtryhelp(EXIT_FAILURE);
63cccae4 1383 }
7eda085c 1384
336f7c5f
SK
1385 if (!ctl.adj_file_name)
1386 ctl.adj_file_name = _PATH_ADJTIME;
da82f6fe 1387
891b4343
WP
1388 if (ctl.update && !ctl.set && !ctl.systohc) {
1389 warnx(_("--update-drift requires --set or --systohc"));
652dcf51 1390 exit(EXIT_FAILURE);
891b4343
WP
1391 }
1392
336f7c5f 1393 if (ctl.noadjfile && !ctl.utc && !ctl.local_opt) {
111c05d3
SK
1394 warnx(_("With --noadjfile, you must specify "
1395 "either --utc or --localtime"));
652dcf51 1396 exit(EXIT_FAILURE);
63cccae4 1397 }
7eda085c 1398
336f7c5f 1399 if (ctl.set || ctl.predict) {
62f22d91 1400 if (!ctl.date_opt) {
969bffb7 1401 warnx(_("--date is required for --set or --predict"));
652dcf51 1402 exit(EXIT_FAILURE);
969bffb7 1403 }
7a3000f7
WP
1404 if (parse_date(&when, ctl.date_opt, NULL))
1405 set_time = when.tv_sec;
1406 else {
1407 warnx(_("invalid date '%s'"), ctl.date_opt);
652dcf51 1408 exit(EXIT_FAILURE);
63cccae4
KZ
1409 }
1410 }
7eda085c 1411
039a0cec 1412#if defined(__linux__) && defined(__alpha__)
336f7c5f
SK
1413 if (ctl.getepoch || ctl.setepoch) {
1414 manipulate_epoch(&ctl);
c47a8f2a 1415 hwclock_exit(&ctl, EXIT_SUCCESS);
63cccae4 1416 }
465e9973 1417#endif
63cccae4 1418
de4568f7 1419 if (ctl.verbose) {
63cccae4 1420 out_version();
e406be01
WP
1421 printf(_("System Time: %ld.%06ld\n"),
1422 startup_time.tv_sec, startup_time.tv_usec);
1423 }
111c05d3 1424
8f729d60 1425 if (!ctl.systz && !ctl.predict)
336f7c5f 1426 determine_clock_access_method(&ctl);
63cccae4 1427
336f7c5f
SK
1428 if (!ctl.noadjfile && !(ctl.systz && (ctl.utc || ctl.local_opt))) {
1429 if ((rc = read_adjtime(&ctl, &adjtime)) != 0)
1430 hwclock_exit(&ctl, rc);
1431 } else
1432 /* Avoid writing adjtime file if we don't have to. */
473ec359 1433 adjtime.dirty = 0;
336f7c5f 1434 ctl.universal = hw_clock_is_utc(&ctl, adjtime);
92931ab2 1435 rc = manipulate_clock(&ctl, set_time, startup_time, &adjtime);
c4b0dc3e
WP
1436 if (ctl.testing)
1437 puts(_("Test mode: nothing was changed."));
336f7c5f 1438 hwclock_exit(&ctl, rc);
ef71b8f1 1439 return rc; /* Not reached */
7eda085c
KZ
1440}
1441
39ff5b34 1442void
336f7c5f
SK
1443hwclock_exit(const struct hwclock_control *ctl
1444#ifndef HAVE_LIBAUDIT
1445 __attribute__((__unused__))
1446#endif
1447 , int status)
88058a71 1448{
48e7ed5e 1449#ifdef HAVE_LIBAUDIT
d8949aca 1450 if (ctl->hwaudit_on && !ctl->testing) {
88058a71 1451 audit_log_user_message(hwaudit_fd, AUDIT_USYS_CONFIG,
fbed7e09 1452 "op=change-system-time", NULL, NULL, NULL,
c47a8f2a 1453 status);
88058a71 1454 }
5b8e46f7 1455 close(hwaudit_fd);
48e7ed5e 1456#endif
88058a71
KZ
1457 exit(status);
1458}
88058a71 1459
ef71b8f1
SK
1460/*
1461 * History of this program:
1462 *
1463 * 98.08.12 BJH Version 2.4
1464 *
1465 * Don't use century byte from Hardware Clock. Add comments telling why.
1466 *
1467 * 98.06.20 BJH Version 2.3.
1468 *
1469 * Make --hctosys set the kernel timezone from TZ environment variable
1470 * and/or /usr/lib/zoneinfo. From Klaus Ripke (klaus@ripke.com).
1471 *
1472 * 98.03.05 BJH. Version 2.2.
1473 *
1474 * Add --getepoch and --setepoch.
1475 *
1476 * Fix some word length things so it works on Alpha.
1477 *
1478 * Make it work when /dev/rtc doesn't have the interrupt functions. In this
1479 * case, busywait for the top of a second instead of blocking and waiting
1480 * for the update complete interrupt.
1481 *
1482 * Fix a bunch of bugs too numerous to mention.
1483 *
1484 * 97.06.01: BJH. Version 2.1. Read and write the century byte (Byte 50) of
1485 * the ISA Hardware Clock when using direct ISA I/O. Problem discovered by
1486 * job (jei@iclnl.icl.nl).
1487 *
1488 * Use the rtc clock access method in preference to the KDGHWCLK method.
1489 * Problem discovered by Andreas Schwab <schwab@LS5.informatik.uni-dortmund.de>.
1490 *
1491 * November 1996: Version 2.0.1. Modifications by Nicolai Langfeldt
1492 * (janl@math.uio.no) to make it compile on linux 1.2 machines as well as
1493 * more recent versions of the kernel. Introduced the NO_CLOCK access method
455fe9a0 1494 * and wrote feature test code to detect absence of rtc headers.
ef71b8f1
SK
1495 *
1496 ***************************************************************************
1497 * Maintenance notes
1498 *
1499 * To compile this, you must use GNU compiler optimization (-O option) in
1500 * order to make the "extern inline" functions from asm/io.h (inb(), etc.)
1501 * compile. If you don't optimize, which means the compiler will generate no
1502 * inline functions, the references to these functions in this program will
1503 * be compiled as external references. Since you probably won't be linking
1504 * with any functions by these names, you will have unresolved external
1505 * references when you link.
1506 *
ef71b8f1
SK
1507 * Here's some info on how we must deal with the time that elapses while
1508 * this program runs: There are two major delays as we run:
1509 *
1510 * 1) Waiting up to 1 second for a transition of the Hardware Clock so
1511 * we are synchronized to the Hardware Clock.
1512 * 2) Running the "date" program to interpret the value of our --date
1513 * option.
1514 *
1515 * Reading the /etc/adjtime file is the next biggest source of delay and
1516 * uncertainty.
1517 *
1518 * The user wants to know what time it was at the moment he invoked us, not
1519 * some arbitrary time later. And in setting the clock, he is giving us the
1520 * time at the moment we are invoked, so if we set the clock some time
1521 * later, we have to add some time to that.
1522 *
1523 * So we check the system time as soon as we start up, then run "date" and
1524 * do file I/O if necessary, then wait to synchronize with a Hardware Clock
1525 * edge, then check the system time again to see how much time we spent. We
1526 * immediately read the clock then and (if appropriate) report that time,
1527 * and additionally, the delay we measured.
1528 *
1529 * If we're setting the clock to a time given by the user, we wait some more
1530 * so that the total delay is an integral number of seconds, then set the
1531 * Hardware Clock to the time the user requested plus that integral number
1532 * of seconds. N.B. The Hardware Clock can only be set in integral seconds.
1533 *
1534 * If we're setting the clock to the system clock value, we wait for the
1535 * system clock to reach the top of a second, and then set the Hardware
1536 * Clock to the system clock's value.
1537 *
1538 * Here's an interesting point about setting the Hardware Clock: On my
1539 * machine, when you set it, it sets to that precise time. But one can
1540 * imagine another clock whose update oscillator marches on a steady one
1541 * second period, so updating the clock between any two oscillator ticks is
1542 * the same as updating it right at the earlier tick. To avoid any
1543 * complications that might cause, we set the clock as soon as possible
1544 * after an oscillator tick.
1545 *
1546 * About synchronizing to the Hardware Clock when reading the time: The
1547 * precision of the Hardware Clock counters themselves is one second. You
1548 * can't read the counters and find out that is 12:01:02.5. But if you
1549 * consider the location in time of the counter's ticks as part of its
1550 * value, then its precision is as infinite as time is continuous! What I'm
1551 * saying is this: To find out the _exact_ time in the hardware clock, we
1552 * wait until the next clock tick (the next time the second counter changes)
1553 * and measure how long we had to wait. We then read the value of the clock
1554 * counters and subtract the wait time and we know precisely what time it
1555 * was when we set out to query the time.
1556 *
1557 * hwclock uses this method, and considers the Hardware Clock to have
1558 * infinite precision.
ef71b8f1 1559 */