]> git.ipfire.org Git - thirdparty/util-linux.git/blame - sys-utils/hwclock.c
hwclock: don't use uninitialized value [coverity scan]
[thirdparty/util-linux.git] / sys-utils / hwclock.c
CommitLineData
7eda085c
KZ
1/*
2 * hwclock.c
3 *
4 * clock.c was written by Charles Hedrick, hedrick@cs.rutgers.edu, Apr 1992
5 * Modified for clock adjustments - Rob Hooft <hooft@chem.ruu.nl>, Nov 1992
6 * Improvements by Harald Koenig <koenig@nova.tat.physik.uni-tuebingen.de>
7 * and Alan Modra <alan@spri.levels.unisa.edu.au>.
8 *
9 * Major rewrite by Bryan Henderson <bryanh@giraffe-data.com>, 96.09.19.
10 * The new program is called hwclock. New features:
ef71b8f1
SK
11 *
12 * - You can set the hardware clock without also modifying the system
13 * clock.
14 * - You can read and set the clock with finer than 1 second precision.
15 * - When you set the clock, hwclock automatically refigures the drift
16 * rate, based on how far off the clock was before you set it.
7eda085c
KZ
17 *
18 * Reshuffled things, added sparc code, and re-added alpha stuff
19 * by David Mosberger <davidm@azstarnet.com>
9abb2685 20 * and Jay Estabrook <jestabro@amt.tay1.dec.com>
7eda085c
KZ
21 * and Martin Ostermann <ost@coments.rwth-aachen.de>, aeb@cwi.nl, 990212.
22 *
ef71b8f1 23 * Fix for Award 2094 bug, Dave Coffin (dcoffin@shore.net) 11/12/98
22853e4a 24 * Change of local time handling, Stefan Ring <e9725446@stud3.tuwien.ac.at>
63cccae4 25 * Change of adjtime handling, James P. Rutledge <ao112@rgfn.epcc.edu>.
66ee8158
KZ
26 *
27 * Distributed under GPL
7eda085c 28 */
7eda085c
KZ
29/*
30 * Explanation of `adjusting' (Rob Hooft):
31 *
32 * The problem with my machine is that its CMOS clock is 10 seconds
33 * per day slow. With this version of clock.c, and my '/etc/rc.local'
34 * reading '/etc/clock -au' instead of '/etc/clock -u -s', this error
35 * is automatically corrected at every boot.
36 *
37 * To do this job, the program reads and writes the file '/etc/adjtime'
38 * to determine the correction, and to save its data. In this file are
39 * three numbers:
40 *
ef71b8f1
SK
41 * 1) the correction in seconds per day. (So if your clock runs 5
42 * seconds per day fast, the first number should read -5.0)
43 * 2) the number of seconds since 1/1/1970 the last time the program
44 * was used
45 * 3) the remaining part of a second which was leftover after the last
46 * adjustment
7eda085c
KZ
47 *
48 * Installation and use of this program:
49 *
ef71b8f1
SK
50 * a) create a file '/etc/adjtime' containing as the first and only
51 * line: '0.0 0 0.0'
52 * b) run 'clock -au' or 'clock -a', depending on whether your cmos is
53 * in universal or local time. This updates the second number.
54 * c) set your system time using the 'date' command.
55 * d) update your cmos time using 'clock -wu' or 'clock -w'
56 * e) replace the first number in /etc/adjtime by your correction.
57 * f) put the command 'clock -au' or 'clock -a' in your '/etc/rc.local'
7eda085c
KZ
58 */
59
7eda085c 60#include <errno.h>
63cccae4 61#include <getopt.h>
33ed2d02 62#include <limits.h>
83aa4ad7 63#include <math.h>
998f392a
SK
64#include <stdio.h>
65#include <stdlib.h>
66#include <string.h>
998f392a
SK
67#include <sys/stat.h>
68#include <sys/time.h>
69#include <time.h>
70#include <unistd.h>
7eda085c 71
998f392a 72#include "c.h"
db116df7 73#include "closestream.h"
7eda085c 74#include "nls.h"
e1f4706d 75#include "optutils.h"
9d413ecb 76#include "pathnames.h"
c7f75390 77#include "hwclock.h"
7c678f81 78#include "timeutils.h"
984a6096 79#include "env.h"
4aca5fe2 80#include "xalloc.h"
df4f1a66
KZ
81#include "path.h"
82#include "strutils.h"
7eda085c 83
88058a71
KZ
84#ifdef HAVE_LIBAUDIT
85#include <libaudit.h>
86static int hwaudit_fd = -1;
88058a71
KZ
87#endif
88
ff4e18bd
WP
89UL_DEBUG_DEFINE_MASK(hwclock);
90UL_DEBUG_DEFINE_MASKNAMES(hwclock) = UL_DEBUG_EMPTY_MASKNAMES;
91
7eda085c 92/* The struct that holds our hardware access routines */
2ba641e5 93static struct clock_ops *ur;
7eda085c 94
f196fd1a
SB
95/* Maximal clock adjustment in seconds per day.
96 (adjtime() glibc call has 2145 seconds limit on i386, so it is good enough for us as well,
97 43219 is a maximal safe value preventing exact_adjustment overflow.) */
98#define MAX_DRIFT 2145.0
99
7eda085c 100struct adjtime {
ef71b8f1
SK
101 /*
102 * This is information we keep in the adjtime file that tells us how
103 * to do drift corrections. Elements are all straight from the
104 * adjtime file, so see documentation of that file for details.
105 * Exception is <dirty>, which is an indication that what's in this
106 * structure is not what's in the disk file (because it has been
107 * updated since read from the disk file).
108 */
473ec359 109 int dirty;
ef71b8f1
SK
110 /* line 1 */
111 double drift_factor;
112 time_t last_adj_time;
113 double not_adjusted;
114 /* line 2 */
115 time_t last_calib_time;
116 /*
117 * The most recent time that we set the clock from an external
118 * authority (as opposed to just doing a drift adjustment)
119 */
120 /* line 3 */
a8775f4e 121 enum a_local_utc { UTC = 0, LOCAL, UNKNOWN } local_utc;
ef71b8f1
SK
122 /*
123 * To which time zone, local or UTC, we most recently set the
124 * hardware clock.
125 */
7eda085c
KZ
126};
127
ff4e18bd
WP
128static void hwclock_init_debug(const char *str)
129{
130 __UL_INIT_DEBUG_FROM_STRING(hwclock, HWCLOCK_DEBUG_, 0, str);
131
132 DBG(INIT, ul_debug("hwclock debug mask: 0x%04x", hwclock_debug_mask));
133 DBG(INIT, ul_debug("hwclock version: %s", PACKAGE_STRING));
134}
135
136/* FOR TESTING ONLY: inject random delays of up to 1000ms */
137static void up_to_1000ms_sleep(void)
138{
139 int usec = random() % 1000000;
140
141 DBG(RANDOM_SLEEP, ul_debug("sleeping ~%d usec", usec));
142 xusleep(usec);
143}
144
2794995a
WP
145/*
146 * time_t to timeval conversion.
147 */
148static struct timeval t2tv(time_t timet)
149{
150 struct timeval rettimeval;
151
152 rettimeval.tv_sec = timet;
153 rettimeval.tv_usec = 0;
154 return rettimeval;
155}
156
ef71b8f1
SK
157/*
158 * The difference in seconds between two times in "timeval" format.
159 */
160double time_diff(struct timeval subtrahend, struct timeval subtractor)
161{
162 return (subtrahend.tv_sec - subtractor.tv_sec)
163 + (subtrahend.tv_usec - subtractor.tv_usec) / 1E6;
7eda085c
KZ
164}
165
ef71b8f1
SK
166/*
167 * The time, in "timeval" format, which is <increment> seconds after the
168 * time <addend>. Of course, <increment> may be negative.
169 */
170static struct timeval time_inc(struct timeval addend, double increment)
171{
172 struct timeval newtime;
173
174 newtime.tv_sec = addend.tv_sec + (int)increment;
175 newtime.tv_usec = addend.tv_usec + (increment - (int)increment) * 1E6;
176
177 /*
178 * Now adjust it so that the microsecond value is between 0 and 1
179 * million.
180 */
181 if (newtime.tv_usec < 0) {
182 newtime.tv_usec += 1E6;
183 newtime.tv_sec -= 1;
184 } else if (newtime.tv_usec >= 1E6) {
185 newtime.tv_usec -= 1E6;
186 newtime.tv_sec += 1;
187 }
188 return newtime;
7eda085c
KZ
189}
190
473ec359 191static int
336f7c5f 192hw_clock_is_utc(const struct hwclock_control *ctl,
ef71b8f1
SK
193 const struct adjtime adjtime)
194{
473ec359 195 int ret;
eb63b9b8 196
336f7c5f 197 if (ctl->utc)
473ec359 198 ret = 1; /* --utc explicitly given on command line */
336f7c5f 199 else if (ctl->local_opt)
473ec359 200 ret = 0; /* --localtime explicitly given */
eb63b9b8 201 else
ef71b8f1 202 /* get info from adjtime file - default is UTC */
7894bf0f 203 ret = (adjtime.local_utc != LOCAL);
de4568f7 204 if (ctl->verbose)
eb63b9b8
KZ
205 printf(_("Assuming hardware clock is kept in %s time.\n"),
206 ret ? _("UTC") : _("local"));
207 return ret;
208}
209
ef71b8f1
SK
210/*
211 * Read the adjustment parameters out of the /etc/adjtime file.
212 *
c47a8f2a
WP
213 * Return them as the adjtime structure <*adjtime_p>. Its defaults are
214 * initialized in main().
ef71b8f1 215 */
336f7c5f
SK
216static int read_adjtime(const struct hwclock_control *ctl,
217 struct adjtime *adjtime_p)
ef71b8f1
SK
218{
219 FILE *adjfile;
ef71b8f1
SK
220 char line1[81]; /* String: first line of adjtime file */
221 char line2[81]; /* String: second line of adjtime file */
222 char line3[81]; /* String: third line of adjtime file */
ef71b8f1 223
a8775f4e 224 if (access(ctl->adj_file_name, R_OK) != 0)
c47a8f2a 225 return EXIT_SUCCESS;
eb63b9b8 226
336f7c5f 227 adjfile = fopen(ctl->adj_file_name, "r"); /* open file for reading */
ef71b8f1 228 if (adjfile == NULL) {
336f7c5f 229 warn(_("cannot open %s"), ctl->adj_file_name);
c47a8f2a 230 return EXIT_FAILURE;
eb63b9b8 231 }
7eda085c 232
ef71b8f1
SK
233 if (!fgets(line1, sizeof(line1), adjfile))
234 line1[0] = '\0'; /* In case fgets fails */
235 if (!fgets(line2, sizeof(line2), adjfile))
236 line2[0] = '\0'; /* In case fgets fails */
237 if (!fgets(line3, sizeof(line3), adjfile))
238 line3[0] = '\0'; /* In case fgets fails */
239
240 fclose(adjfile);
241
ef71b8f1
SK
242 sscanf(line1, "%lf %ld %lf",
243 &adjtime_p->drift_factor,
a8775f4e
SK
244 &adjtime_p->last_adj_time,
245 &adjtime_p->not_adjusted);
ef71b8f1 246
a8775f4e 247 sscanf(line2, "%ld", &adjtime_p->last_calib_time);
ef71b8f1
SK
248
249 if (!strcmp(line3, "UTC\n")) {
250 adjtime_p->local_utc = UTC;
251 } else if (!strcmp(line3, "LOCAL\n")) {
252 adjtime_p->local_utc = LOCAL;
253 } else {
254 adjtime_p->local_utc = UNKNOWN;
255 if (line3[0]) {
111c05d3
SK
256 warnx(_("Warning: unrecognized third line in adjtime file\n"
257 "(Expected: `UTC' or `LOCAL' or nothing.)"));
ef71b8f1
SK
258 }
259 }
7eda085c 260
de4568f7 261 if (ctl->verbose) {
ef71b8f1
SK
262 printf(_
263 ("Last drift adjustment done at %ld seconds after 1969\n"),
264 (long)adjtime_p->last_adj_time);
265 printf(_("Last calibration done at %ld seconds after 1969\n"),
266 (long)adjtime_p->last_calib_time);
267 printf(_("Hardware clock is on %s time\n"),
268 (adjtime_p->local_utc ==
269 LOCAL) ? _("local") : (adjtime_p->local_utc ==
270 UTC) ? _("UTC") : _("unknown"));
271 }
272
c47a8f2a 273 return EXIT_SUCCESS;
ef71b8f1 274}
7eda085c 275
ef71b8f1
SK
276/*
277 * Wait until the falling edge of the Hardware Clock's update flag so that
278 * any time that is read from the clock immediately after we return will be
279 * exact.
280 *
281 * The clock only has 1 second precision, so it gives the exact time only
282 * once per second, right on the falling edge of the update flag.
283 *
284 * We wait (up to one second) either blocked waiting for an rtc device or in
285 * a CPU spin loop. The former is probably not very accurate.
286 *
287 * Return 0 if it worked, nonzero if it didn't.
288 */
336f7c5f 289static int synchronize_to_clock_tick(const struct hwclock_control *ctl)
ef71b8f1 290{
63cccae4 291 int rc;
7eda085c 292
de4568f7 293 if (ctl->verbose)
ef71b8f1 294 printf(_("Waiting for clock tick...\n"));
7eda085c 295
336f7c5f 296 rc = ur->synchronize_to_clock_tick(ctl);
63cccae4 297
de4568f7 298 if (ctl->verbose) {
3b96a7ac
KZ
299 if (rc)
300 printf(_("...synchronization failed\n"));
301 else
302 printf(_("...got clock tick\n"));
303 }
63cccae4
KZ
304
305 return rc;
7eda085c
KZ
306}
307
ef71b8f1
SK
308/*
309 * Convert a time in broken down format (hours, minutes, etc.) into standard
310 * unix time (seconds into epoch). Return it as *systime_p.
311 *
312 * The broken down time is argument <tm>. This broken down time is either
313 * in local time zone or UTC, depending on value of logical argument
314 * "universal". True means it is in UTC.
315 *
316 * If the argument contains values that do not constitute a valid time, and
317 * mktime() recognizes this, return *valid_p == false and *systime_p
318 * undefined. However, mktime() sometimes goes ahead and computes a
319 * fictional time "as if" the input values were valid, e.g. if they indicate
320 * the 31st day of April, mktime() may compute the time of May 1. In such a
321 * case, we return the same fictional value mktime() does as *systime_p and
322 * return *valid_p == true.
323 */
473ec359 324static int
336f7c5f 325mktime_tz(const struct hwclock_control *ctl, struct tm tm,
473ec359 326 time_t *systime_p)
ef71b8f1 327{
473ec359
SK
328 int valid;
329
336f7c5f 330 if (ctl->universal)
12f1cdda
SK
331 *systime_p = timegm(&tm);
332 else
333 *systime_p = mktime(&tm);
334 if (*systime_p == -1) {
ef71b8f1
SK
335 /*
336 * This apparently (not specified in mktime() documentation)
337 * means the 'tm' structure does not contain valid values
338 * (however, not containing valid values does _not_ imply
339 * mktime() returns -1).
340 */
473ec359 341 valid = 0;
de4568f7 342 if (ctl->verbose)
ef71b8f1
SK
343 printf(_("Invalid values in hardware clock: "
344 "%4d/%.2d/%.2d %.2d:%.2d:%.2d\n"),
345 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
346 tm.tm_hour, tm.tm_min, tm.tm_sec);
347 } else {
473ec359 348 valid = 1;
de4568f7 349 if (ctl->verbose)
ef71b8f1
SK
350 printf(_
351 ("Hw clock time : %4d/%.2d/%.2d %.2d:%.2d:%.2d = "
352 "%ld seconds since 1969\n"), tm.tm_year + 1900,
353 tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min,
354 tm.tm_sec, (long)*systime_p);
355 }
473ec359 356 return valid;
7eda085c
KZ
357}
358
ef71b8f1
SK
359/*
360 * Read the hardware clock and return the current time via <tm> argument.
361 *
362 * Use the method indicated by <method> argument to access the hardware
363 * clock.
364 */
cdedde03 365static int
336f7c5f 366read_hardware_clock(const struct hwclock_control *ctl,
473ec359 367 int *valid_p, time_t *systime_p)
ef71b8f1
SK
368{
369 struct tm tm;
370 int err;
7eda085c 371
336f7c5f 372 err = ur->read_hardware_clock(ctl, &tm);
ef71b8f1
SK
373 if (err)
374 return err;
7eda085c 375
de4568f7 376 if (ctl->verbose)
ef71b8f1
SK
377 printf(_
378 ("Time read from Hardware Clock: %4d/%.2d/%.2d %02d:%02d:%02d\n"),
379 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour,
380 tm.tm_min, tm.tm_sec);
473ec359 381 *valid_p = mktime_tz(ctl, tm, systime_p);
cdedde03 382
ef71b8f1 383 return 0;
7eda085c
KZ
384}
385
ef71b8f1
SK
386/*
387 * Set the Hardware Clock to the time <newtime>, in local time zone or UTC,
388 * according to <universal>.
389 */
7eda085c 390static void
336f7c5f 391set_hardware_clock(const struct hwclock_control *ctl, const time_t newtime)
ef71b8f1
SK
392{
393 struct tm new_broken_time;
394 /*
395 * Time to which we will set Hardware Clock, in broken down format,
396 * in the time zone of caller's choice
397 */
398
336f7c5f 399 if (ctl->universal)
01d97194 400 gmtime_r(&newtime, &new_broken_time);
ef71b8f1 401 else
01d97194 402 localtime_r(&newtime, &new_broken_time);
7eda085c 403
de4568f7 404 if (ctl->verbose)
ef71b8f1
SK
405 printf(_("Setting Hardware Clock to %.2d:%.2d:%.2d "
406 "= %ld seconds since 1969\n"),
407 new_broken_time.tm_hour, new_broken_time.tm_min,
408 new_broken_time.tm_sec, (long)newtime);
7eda085c 409
c4b0dc3e 410 if (!ctl->testing)
336f7c5f 411 ur->set_hardware_clock(ctl, &new_broken_time);
ef71b8f1 412}
7eda085c 413
df4f1a66
KZ
414static double
415get_hardware_delay(const struct hwclock_control *ctl)
416{
417 const char *devpath, *rtcname;
418 char name[128 + 1];
419 struct path_cxt *pc;
420 int rc;
421
422 devpath = ur->get_device_path();
423 if (!devpath)
424 goto unknown;
425
426 rtcname = strrchr(devpath, '/');
427 if (!rtcname || !*(rtcname + 1))
428 goto unknown;
429 rtcname++;
430
431 pc = ul_new_path("/sys/class/rtc/%s", rtcname);
432 if (!pc)
433 goto unknown;
434 rc = ul_path_scanf(pc, "name", "%128[^\n ]", &name);
435 ul_unref_path(pc);
436
437 if (rc != 1 || !*name)
438 goto unknown;
439
440 if (ctl->verbose)
441 printf(_("RTC type: '%s'\n"), name);
442
443 /* MC146818A-compatible (x86) */
444 if (strcmp(name, "rtc_cmos") == 0)
445 return 0.5;
446
447 /* Another HW */
448 return 0;
449unknown:
450 /* Let's be backwardly compatible */
451 return 0.5;
452}
453
454
ef71b8f1
SK
455/*
456 * Set the Hardware Clock to the time "sethwtime", in local time zone or
457 * UTC, according to "universal".
458 *
459 * Wait for a fraction of a second so that "sethwtime" is the value of the
460 * Hardware Clock as of system time "refsystime", which is in the past. For
461 * example, if "sethwtime" is 14:03:05 and "refsystime" is 12:10:04.5 and
462 * the current system time is 12:10:06.0: Wait .5 seconds (to make exactly 2
463 * seconds since "refsystime") and then set the Hardware Clock to 14:03:07,
df4f1a66
KZ
464 * thus getting a precise and retroactive setting of the clock. The .5 delay is
465 * default on x86, see --delay and get_hardware_delay().
ef71b8f1
SK
466 *
467 * (Don't be confused by the fact that the system clock and the Hardware
468 * Clock differ by two hours in the above example. That's just to remind you
469 * that there are two independent time scales here).
470 *
471 * This function ought to be able to accept set times as fractional times.
472 * Idea for future enhancement.
473 */
7eda085c 474static void
336f7c5f
SK
475set_hardware_clock_exact(const struct hwclock_control *ctl,
476 const time_t sethwtime,
477 const struct timeval refsystime)
ef71b8f1 478{
ef71b8f1 479 /*
4a44a54b
CM
480 * The Hardware Clock can only be set to any integer time plus one
481 * half second. The integer time is required because there is no
482 * interface to set or get a fractional second. The additional half
483 * second is because the Hardware Clock updates to the following
484 * second precisely 500 ms (not 1 second!) after you release the
485 * divider reset (after setting the new time) - see description of
486 * DV2, DV1, DV0 in Register A in the MC146818A data sheet (and note
487 * that although that document doesn't say so, real-world code seems
488 * to expect that the SET bit in Register B functions the same way).
489 * That means that, e.g., when you set the clock to 1:02:03, it
490 * effectively really sets it to 1:02:03.5, because it will update to
491 * 1:02:04 only half a second later. Our caller passes the desired
492 * integer Hardware Clock time in sethwtime, and the corresponding
493 * system time (which may have a fractional part, and which may or may
494 * not be the same!) in refsystime. In an ideal situation, we would
495 * then apply sethwtime to the Hardware Clock at refsystime+500ms, so
496 * that when the Hardware Clock ticks forward to sethwtime+1s half a
497 * second later at refsystime+1000ms, everything is in sync. So we
498 * spin, waiting for gettimeofday() to return a time at or after that
499 * time (refsystime+500ms) up to a tolerance value, initially 1ms. If
500 * we miss that time due to being preempted for some other process,
501 * then we increase the margin a little bit (initially 1ms, doubling
502 * each time), add 1 second (or more, if needed to get a time that is
503 * in the future) to both the time for which we are waiting and the
504 * time that we will apply to the Hardware Clock, and start waiting
505 * again.
506 *
507 * For example, the caller requests that we set the Hardware Clock to
508 * 1:02:03, with reference time (current system time) = 6:07:08.250.
509 * We want the Hardware Clock to update to 1:02:04 at 6:07:09.250 on
510 * the system clock, and the first such update will occur 0.500
511 * seconds after we write to the Hardware Clock, so we spin until the
512 * system clock reads 6:07:08.750. If we get there, great, but let's
513 * imagine the system is so heavily loaded that our process is
514 * preempted and by the time we get to run again, the system clock
515 * reads 6:07:11.990. We now want to wait until the next xx:xx:xx.750
516 * time, which is 6:07:12.750 (4.5 seconds after the reference time),
517 * at which point we will set the Hardware Clock to 1:02:07 (4 seconds
518 * after the originally requested time). If we do that successfully,
519 * then at 6:07:13.250 (5 seconds after the reference time), the
520 * Hardware Clock will update to 1:02:08 (5 seconds after the
521 * originally requested time), and all is well thereafter.
ef71b8f1 522 */
4a44a54b
CM
523
524 time_t newhwtime = sethwtime;
525 double target_time_tolerance_secs = 0.001; /* initial value */
526 double tolerance_incr_secs = 0.001; /* initial value */
df4f1a66
KZ
527 double delay;
528 struct timeval rtc_set_delay_tv;
4a44a54b
CM
529
530 struct timeval targetsystime;
531 struct timeval nowsystime;
532 struct timeval prevsystime = refsystime;
533 double deltavstarget;
534
df4f1a66
KZ
535 if (ctl->rtc_delay != -1.0) /* --delay specified */
536 delay = ctl->rtc_delay;
537 else
538 delay = get_hardware_delay(ctl);
539
540 if (ctl->verbose)
541 printf(_("Using delay: %.6f seconds\n"), delay);
542
543 rtc_set_delay_tv.tv_sec = 0;
544 rtc_set_delay_tv.tv_usec = delay * 1E6;
545
546 timeradd(&refsystime, &rtc_set_delay_tv, &targetsystime);
4a44a54b
CM
547
548 while (1) {
549 double ticksize;
550
ff4e18bd 551 ON_DBG(RANDOM_SLEEP, up_to_1000ms_sleep());
ea0804b0 552
ef71b8f1 553 gettimeofday(&nowsystime, NULL);
4a44a54b
CM
554 deltavstarget = time_diff(nowsystime, targetsystime);
555 ticksize = time_diff(nowsystime, prevsystime);
556 prevsystime = nowsystime;
557
558 if (ticksize < 0) {
de4568f7 559 if (ctl->verbose)
4a44a54b 560 printf(_("time jumped backward %.6f seconds "
c2114018 561 "to %ld.%06ld - retargeting\n"),
b68e1f44
SK
562 ticksize, nowsystime.tv_sec,
563 nowsystime.tv_usec);
4a44a54b
CM
564 /* The retarget is handled at the end of the loop. */
565 } else if (deltavstarget < 0) {
566 /* deltavstarget < 0 if current time < target time */
ff4e18bd
WP
567 DBG(DELTA_VS_TARGET,
568 ul_debug("%ld.%06ld < %ld.%06ld (%.6f)",
569 nowsystime.tv_sec, nowsystime.tv_usec,
570 targetsystime.tv_sec,
571 targetsystime.tv_usec, deltavstarget));
4a44a54b
CM
572 continue; /* not there yet - keep spinning */
573 } else if (deltavstarget <= target_time_tolerance_secs) {
574 /* Close enough to the target time; done waiting. */
575 break;
576 } else /* (deltavstarget > target_time_tolerance_secs) */ {
577 /*
578 * We missed our window. Increase the tolerance and
579 * aim for the next opportunity.
580 */
de4568f7 581 if (ctl->verbose)
c2114018
RM
582 printf(_("missed it - %ld.%06ld is too far "
583 "past %ld.%06ld (%.6f > %.6f)\n"),
b68e1f44
SK
584 nowsystime.tv_sec,
585 nowsystime.tv_usec,
586 targetsystime.tv_sec,
587 targetsystime.tv_usec,
4a44a54b
CM
588 deltavstarget,
589 target_time_tolerance_secs);
590 target_time_tolerance_secs += tolerance_incr_secs;
591 tolerance_incr_secs *= 2;
ea0804b0 592 }
4a44a54b
CM
593
594 /*
595 * Aim for the same offset (tv_usec) within the second in
596 * either the current second (if that offset hasn't arrived
597 * yet), or the next second.
598 */
599 if (nowsystime.tv_usec < targetsystime.tv_usec)
600 targetsystime.tv_sec = nowsystime.tv_sec;
601 else
602 targetsystime.tv_sec = nowsystime.tv_sec + 1;
603 }
604
605 newhwtime = sethwtime
606 + (int)(time_diff(nowsystime, refsystime)
df4f1a66 607 - delay /* don't count this */
4a44a54b 608 + 0.5 /* for rounding */);
de4568f7 609 if (ctl->verbose)
c2114018
RM
610 printf(_("%ld.%06ld is close enough to %ld.%06ld (%.6f < %.6f)\n"
611 "Set RTC to %ld (%ld + %d; refsystime = %ld.%06ld)\n"),
b68e1f44
SK
612 nowsystime.tv_sec, nowsystime.tv_usec,
613 targetsystime.tv_sec, targetsystime.tv_usec,
4a44a54b 614 deltavstarget, target_time_tolerance_secs,
b68e1f44 615 newhwtime, sethwtime,
4a44a54b 616 (int)(newhwtime - sethwtime),
b68e1f44 617 refsystime.tv_sec, refsystime.tv_usec);
ef71b8f1 618
336f7c5f 619 set_hardware_clock(ctl, newhwtime);
7eda085c
KZ
620}
621
10191da6 622static int
88d2a1a3 623display_time(struct timeval hwctime)
ef71b8f1 624{
4111bb3a 625 char buf[ISO_BUFSIZ];
88d2a1a3 626
6cdc7b9c 627 if (strtimeval_iso(&hwctime, ISO_TIMESTAMP_DOT, buf, sizeof(buf)))
10191da6 628 return EXIT_FAILURE;
6cdc7b9c 629
88d2a1a3 630 printf("%s\n", buf);
10191da6 631 return EXIT_SUCCESS;
ef71b8f1 632}
7eda085c 633
ef71b8f1 634/*
c8f64f94 635 * Adjusts System time, sets the kernel's timezone and RTC timescale.
ef71b8f1 636 *
c8f64f94
WP
637 * The kernel warp_clock function adjusts the System time according to the
638 * tz.tz_minuteswest argument and sets PCIL (see below). At boot settimeofday(2)
639 * has one-shot access to this function as shown in the table below.
ef71b8f1 640 *
c8f64f94
WP
641 * +-------------------------------------------------------------------+
642 * | settimeofday(tv, tz) |
643 * |-------------------------------------------------------------------|
644 * | Arguments | System Time | PCIL | | warp_clock |
645 * | tv | tz | set | warped | set | firsttime | locked |
646 * |---------|---------|---------------|------|-----------|------------|
647 * | pointer | NULL | yes | no | no | 1 | no |
648 * | pointer | pointer | yes | no | no | 0 | yes |
649 * | NULL | ptr2utc | no | no | no | 0 | yes |
650 * | NULL | pointer | no | yes | yes | 0 | yes |
651 * +-------------------------------------------------------------------+
652 * ptr2utc: tz.tz_minuteswest is zero (UTC).
653 * PCIL: persistent_clock_is_local, sets the "11 minute mode" timescale.
654 * firsttime: locks the warp_clock function (initialized to 1 at boot).
d17a12a3 655 *
c8f64f94
WP
656 * +---------------------------------------------------------------------------+
657 * | op | RTC scale | settimeofday calls |
658 * |---------|-----------|-----------------------------------------------------|
659 * | systz | Local | 1) warps system time*, sets PCIL* and kernel tz |
660 * | systz | UTC | 1st) locks warp_clock* 2nd) sets kernel tz |
661 * | hctosys | Local | 1st) sets PCIL* 2nd) sets system time and kernel tz |
662 * | hctosys | UTC | 1) sets system time and kernel tz |
663 * +---------------------------------------------------------------------------+
664 * * only on first call after boot
ef71b8f1 665 */
9abb2685 666static int
88d2a1a3 667set_system_clock(const struct hwclock_control *ctl,
336f7c5f 668 const struct timeval newtime)
ef71b8f1 669{
01d97194 670 struct tm broken;
88d2a1a3
WP
671 int minuteswest;
672 int rc = 0;
404fdd2c 673 const struct timezone tz_utc = { 0 };
ef71b8f1 674
01d97194
WP
675 localtime_r(&newtime.tv_sec, &broken);
676 minuteswest = -get_gmtoff(&broken) / 60;
9abb2685 677
de4568f7 678 if (ctl->verbose) {
b44dd522
WP
679 if (ctl->hctosys && !ctl->universal)
680 printf(_("Calling settimeofday(NULL, %d) to set "
681 "persistent_clock_is_local.\n"), minuteswest);
682 if (ctl->systz && ctl->universal)
683 puts(_("Calling settimeofday(NULL, 0) "
684 "to lock the warp function."));
685 if (ctl->hctosys)
686 printf(_("Calling settimeofday(%ld.%06ld, %d)\n"),
687 newtime.tv_sec, newtime.tv_usec, minuteswest);
688 else {
689 printf(_("Calling settimeofday(NULL, %d) "), minuteswest);
690 if (ctl->universal)
691 puts(_("to set the kernel timezone."));
692 else
693 puts(_("to warp System time."));
694 }
88d2a1a3 695 }
b44dd522 696
c4b0dc3e 697 if (!ctl->testing) {
e5cb8d4d 698 const struct timezone tz = { minuteswest };
ef71b8f1 699
404fdd2c 700 if (ctl->hctosys && !ctl->universal) /* set PCIL */
e5cb8d4d 701 rc = settimeofday(NULL, &tz);
404fdd2c 702 if (ctl->systz && ctl->universal) /* lock warp_clock */
e5cb8d4d 703 rc = settimeofday(NULL, &tz_utc);
404fdd2c 704 if (!rc && ctl->hctosys)
88d2a1a3 705 rc = settimeofday(&newtime, &tz);
404fdd2c
WP
706 else if (!rc)
707 rc = settimeofday(NULL, &tz);
708
88d2a1a3
WP
709 if (rc) {
710 warn(_("settimeofday() failed"));
c47a8f2a 711 return EXIT_FAILURE;
e5cb8d4d 712 }
ef71b8f1 713 }
c47a8f2a 714 return EXIT_SUCCESS;
ef71b8f1
SK
715}
716
717/*
f276d71a
WP
718 * Refresh the last calibrated and last adjusted timestamps in <*adjtime_p>
719 * to facilitate future drift calculations based on this set point.
ef71b8f1 720 *
f276d71a
WP
721 * With the --update-drift option:
722 * Update the drift factor in <*adjtime_p> based on the fact that the
723 * Hardware Clock was just calibrated to <nowtime> and before that was
724 * set to the <hclocktime> time scale.
ef71b8f1 725 */
7eda085c 726static void
336f7c5f
SK
727adjust_drift_factor(const struct hwclock_control *ctl,
728 struct adjtime *adjtime_p,
2794995a 729 const struct timeval nowtime,
336f7c5f 730 const struct timeval hclocktime)
ef71b8f1 731{
336f7c5f 732 if (!ctl->update) {
de4568f7 733 if (ctl->verbose)
f276d71a
WP
734 printf(_("Not adjusting drift factor because the "
735 "--update-drift option was not used.\n"));
63cccae4 736 } else if (adjtime_p->last_calib_time == 0) {
de4568f7 737 if (ctl->verbose)
63cccae4
KZ
738 printf(_("Not adjusting drift factor because last "
739 "calibration time is zero,\n"
740 "so history is bad and calibration startover "
741 "is necessary.\n"));
bbb4c273 742 } else if ((hclocktime.tv_sec - adjtime_p->last_calib_time) < 4 * 60 * 60) {
de4568f7 743 if (ctl->verbose)
63cccae4 744 printf(_("Not adjusting drift factor because it has "
bbb4c273 745 "been less than four hours since the last "
63cccae4 746 "calibration.\n"));
c6ea9ef6 747 } else {
63cccae4 748 /*
f276d71a
WP
749 * At adjustment time we drift correct the hardware clock
750 * according to the contents of the adjtime file and refresh
751 * its last adjusted timestamp.
63cccae4 752 *
f276d71a
WP
753 * At calibration time we set the Hardware Clock and refresh
754 * both timestamps in <*adjtime_p>.
63cccae4 755 *
f276d71a
WP
756 * Here, with the --update-drift option, we also update the
757 * drift factor in <*adjtime_p>.
63cccae4
KZ
758 *
759 * Let us do computation in doubles. (Floats almost suffice,
760 * but 195 days + 1 second equals 195 days in floats.)
761 */
762 const double sec_per_day = 24.0 * 60.0 * 60.0;
63cccae4 763 double factor_adjust;
f196fd1a 764 double drift_factor;
2794995a 765 struct timeval last_calib;
63cccae4 766
2794995a 767 last_calib = t2tv(adjtime_p->last_calib_time);
ede32597
WP
768 /*
769 * Correction to apply to the current drift factor.
770 *
771 * Simplified: uncorrected_drift / days_since_calibration.
772 *
773 * hclocktime is fully corrected with the current drift factor.
774 * Its difference from nowtime is the missed drift correction.
775 */
2794995a
WP
776 factor_adjust = time_diff(nowtime, hclocktime) /
777 (time_diff(nowtime, last_calib) / sec_per_day);
63cccae4 778
f196fd1a 779 drift_factor = adjtime_p->drift_factor + factor_adjust;
83aa4ad7 780 if (fabs(drift_factor) > MAX_DRIFT) {
de4568f7 781 if (ctl->verbose)
f196fd1a
SB
782 printf(_("Clock drift factor was calculated as "
783 "%f seconds/day.\n"
784 "It is far too much. Resetting to zero.\n"),
785 drift_factor);
786 drift_factor = 0;
787 } else {
de4568f7 788 if (ctl->verbose)
a36a9026
WP
789 printf(_("Clock drifted %f seconds in the past "
790 "%f seconds\nin spite of a drift factor of "
f196fd1a
SB
791 "%f seconds/day.\n"
792 "Adjusting drift factor by %f seconds/day\n"),
2794995a
WP
793 time_diff(nowtime, hclocktime),
794 time_diff(nowtime, last_calib),
f196fd1a
SB
795 adjtime_p->drift_factor, factor_adjust);
796 }
797
798 adjtime_p->drift_factor = drift_factor;
63cccae4 799 }
2794995a 800 adjtime_p->last_calib_time = nowtime.tv_sec;
9abb2685 801
2794995a 802 adjtime_p->last_adj_time = nowtime.tv_sec;
9abb2685 803
63cccae4 804 adjtime_p->not_adjusted = 0;
9abb2685 805
473ec359 806 adjtime_p->dirty = 1;
7eda085c
KZ
807}
808
ef71b8f1 809/*
ede32597
WP
810 * Calculate the drift correction currently needed for the
811 * Hardware Clock based on the last time it was adjusted,
812 * and the current drift factor, as stored in the adjtime file.
ef71b8f1 813 *
ede32597 814 * The total drift adjustment needed is stored at tdrift_p.
ef71b8f1 815 *
ef71b8f1 816 */
7eda085c 817static void
336f7c5f
SK
818calculate_adjustment(const struct hwclock_control *ctl,
819 const double factor,
ef71b8f1
SK
820 const time_t last_time,
821 const double not_adjusted,
2794995a 822 const time_t systime, struct timeval *tdrift_p)
ef71b8f1
SK
823{
824 double exact_adjustment;
7eda085c 825
ef71b8f1
SK
826 exact_adjustment =
827 ((double)(systime - last_time)) * factor / (24 * 60 * 60)
828 + not_adjusted;
1030c325 829 tdrift_p->tv_sec = (time_t) floor(exact_adjustment);
2794995a
WP
830 tdrift_p->tv_usec = (exact_adjustment -
831 (double)tdrift_p->tv_sec) * 1E6;
de4568f7 832 if (ctl->verbose) {
b68e1f44
SK
833 printf(P_("Time since last adjustment is %ld second\n",
834 "Time since last adjustment is %ld seconds\n",
835 (systime - last_time)),
836 (systime - last_time));
c2114018 837 printf(_("Calculated Hardware Clock drift is %ld.%06ld seconds\n"),
b68e1f44 838 tdrift_p->tv_sec, tdrift_p->tv_usec);
ef71b8f1 839 }
7eda085c
KZ
840}
841
ef71b8f1
SK
842/*
843 * Write the contents of the <adjtime> structure to its disk file.
844 *
845 * But if the contents are clean (unchanged since read from disk), don't
846 * bother.
847 */
c4b0dc3e 848static int save_adjtime(const struct hwclock_control *ctl,
336f7c5f 849 const struct adjtime *adjtime)
ef71b8f1 850{
4aca5fe2
SK
851 char *content; /* Stuff to write to disk file */
852 FILE *fp;
ef71b8f1 853
4aca5fe2
SK
854 xasprintf(&content, "%f %ld %f\n%ld\n%s\n",
855 adjtime->drift_factor,
856 adjtime->last_adj_time,
857 adjtime->not_adjusted,
858 adjtime->last_calib_time,
859 (adjtime->local_utc == LOCAL) ? "LOCAL" : "UTC");
860
de4568f7 861 if (ctl->verbose){
c4b0dc3e
WP
862 printf(_("New %s data:\n%s"),
863 ctl->adj_file_name, content);
4aca5fe2
SK
864 }
865
c4b0dc3e
WP
866 if (!ctl->testing) {
867 fp = fopen(ctl->adj_file_name, "w");
868 if (fp == NULL) {
869 warn(_("cannot open %s"), ctl->adj_file_name);
870 return EXIT_FAILURE;
871 } else if (fputs(content, fp) < 0 || close_stream(fp) != 0) {
872 warn(_("cannot update %s"), ctl->adj_file_name);
873 return EXIT_FAILURE;
874 }
ef71b8f1 875 }
c4b0dc3e 876 return EXIT_SUCCESS;
ef71b8f1 877}
7eda085c 878
ef71b8f1
SK
879/*
880 * Do the adjustment requested, by 1) setting the Hardware Clock (if
881 * necessary), and 2) updating the last-adjusted time in the adjtime
882 * structure.
883 *
884 * Do not update anything if the Hardware Clock does not currently present a
885 * valid time.
886 *
ede32597 887 * <hclocktime> is the drift corrected time read from the Hardware Clock.
ef71b8f1 888 *
ede32597
WP
889 * <read_time> was the system time when the <hclocktime> was read, which due
890 * to computational delay could be a short time ago. It is used to define a
891 * trigger point for setting the Hardware Clock. The fractional part of the
892 * Hardware clock set time is subtracted from read_time to 'refer back', or
893 * delay, the trigger point. Fractional parts must be accounted for in this
894 * way, because the Hardware Clock can only be set to a whole second.
ef71b8f1
SK
895 *
896 * <universal>: the Hardware Clock is kept in UTC.
897 *
898 * <testing>: We are running in test mode (no updating of clock).
899 *
ef71b8f1 900 */
7eda085c 901static void
336f7c5f 902do_adjustment(const struct hwclock_control *ctl, struct adjtime *adjtime_p,
88d2a1a3 903 const struct timeval hclocktime,
336f7c5f 904 const struct timeval read_time)
ef71b8f1 905{
88d2a1a3 906 if (adjtime_p->last_adj_time == 0) {
de4568f7 907 if (ctl->verbose)
f55b4b45
KZ
908 printf(_("Not setting clock because last adjustment time is zero, "
909 "so history is bad.\n"));
83aa4ad7 910 } else if (fabs(adjtime_p->drift_factor) > MAX_DRIFT) {
de4568f7 911 if (ctl->verbose)
f55b4b45
KZ
912 printf(_("Not setting clock because drift factor %f is far too high.\n"),
913 adjtime_p->drift_factor);
ef71b8f1 914 } else {
336f7c5f 915 set_hardware_clock_exact(ctl, hclocktime.tv_sec,
2794995a 916 time_inc(read_time,
336f7c5f 917 -(hclocktime.tv_usec / 1E6)));
2794995a
WP
918 adjtime_p->last_adj_time = hclocktime.tv_sec;
919 adjtime_p->not_adjusted = 0;
473ec359 920 adjtime_p->dirty = 1;
ef71b8f1 921 }
7eda085c
KZ
922}
923
336f7c5f 924static void determine_clock_access_method(const struct hwclock_control *ctl)
ef71b8f1
SK
925{
926 ur = NULL;
7eda085c 927
336f7c5f 928 if (ctl->directisa)
ef71b8f1 929 ur = probe_for_cmos_clock();
465e9973 930#ifdef __linux__
ef71b8f1 931 if (!ur)
336f7c5f 932 ur = probe_for_rtc_clock(ctl);
465e9973 933#endif
8f729d60 934 if (ur) {
de4568f7 935 if (ctl->verbose)
8f729d60 936 puts(ur->interface_name);
7eda085c 937
8f729d60 938 } else {
de4568f7 939 if (ctl->verbose)
ef71b8f1 940 printf(_("No usable clock interface found.\n"));
8f729d60
SK
941 warnx(_("Cannot access the Hardware Clock via "
942 "any known method."));
de4568f7
WP
943 if (!ctl->verbose)
944 warnx(_("Use the --verbose option to see the "
8f729d60
SK
945 "details of our search for an access "
946 "method."));
c47a8f2a 947 hwclock_exit(ctl, EXIT_FAILURE);
ef71b8f1 948 }
7eda085c
KZ
949}
950
c47a8f2a 951/* Do all the normal work of hwclock - read, set clock, etc. */
63cccae4 952static int
336f7c5f
SK
953manipulate_clock(const struct hwclock_control *ctl, const time_t set_time,
954 const struct timeval startup_time, struct adjtime *adjtime)
ef71b8f1 955{
ef71b8f1 956 /* The time at which we read the Hardware Clock */
4813a521 957 struct timeval read_time = { 0 };
ef71b8f1
SK
958 /*
959 * The Hardware Clock gives us a valid time, or at
960 * least something close enough to fool mktime().
961 */
473ec359 962 int hclock_valid = 0;
ef71b8f1 963 /*
ede32597 964 * Tick synchronized time read from the Hardware Clock and
1ef6feb5 965 * then drift corrected for all operations except --show.
ef71b8f1 966 */
1ef6feb5
WP
967 struct timeval hclocktime = { 0 };
968 /*
969 * hclocktime correlated to startup_time. That is, what drift
970 * corrected Hardware Clock time would have been at start up.
971 */
972 struct timeval startup_hclocktime = { 0 };
ede32597 973 /* Total Hardware Clock drift correction needed. */
226fdcf0 974 struct timeval tdrift = { 0 };
ef71b8f1 975
336f7c5f
SK
976 if ((ctl->set || ctl->systohc || ctl->adjust) &&
977 (adjtime->local_utc == UTC) != ctl->universal) {
978 adjtime->local_utc = ctl->universal ? UTC : LOCAL;
473ec359 979 adjtime->dirty = 1;
ef71b8f1 980 }
a218e2a8
WP
981 /*
982 * Negate the drift correction, because we want to 'predict' a
983 * Hardware Clock time that includes drift.
984 */
985 if (ctl->predict) {
986 hclocktime = t2tv(set_time);
987 calculate_adjustment(ctl, adjtime->drift_factor,
988 adjtime->last_adj_time,
989 adjtime->not_adjusted,
990 hclocktime.tv_sec, &tdrift);
991 hclocktime = time_inc(hclocktime, (double)
992 -(tdrift.tv_sec + tdrift.tv_usec / 1E6));
de4568f7 993 if (ctl->verbose) {
a218e2a8
WP
994 printf(_ ("Target date: %ld\n"), set_time);
995 printf(_ ("Predicted RTC: %ld\n"), hclocktime.tv_sec);
996 }
10191da6 997 return display_time(hclocktime);
a218e2a8 998 }
9abb2685 999
4ba19a2f 1000 if (ctl->systz)
404fdd2c 1001 return set_system_clock(ctl, startup_time);
4ba19a2f 1002
a218e2a8 1003 if (ur->get_permissions())
c47a8f2a 1004 return EXIT_FAILURE;
551e7034 1005
ee723d23
WP
1006 /*
1007 * Read and drift correct RTC time; except for RTC set functions
1008 * without the --update-drift option because: 1) it's not needed;
1009 * 2) it enables setting a corrupted RTC without reading it first;
1010 * 3) it significantly reduces system shutdown time.
1011 */
1012 if ( ! ((ctl->set || ctl->systohc) && !ctl->update)) {
ef71b8f1 1013 /*
ee723d23
WP
1014 * Timing critical - do not change the order of, or put
1015 * anything between the follow three statements.
1016 * Synchronization failure MUST exit, because all drift
1017 * operations are invalid without it.
ef71b8f1 1018 */
ee723d23 1019 if (synchronize_to_clock_tick(ctl))
c47a8f2a 1020 return EXIT_FAILURE;
ee723d23 1021 read_hardware_clock(ctl, &hclock_valid, &hclocktime.tv_sec);
ef71b8f1
SK
1022 gettimeofday(&read_time, NULL);
1023
88d2a1a3
WP
1024 if (!hclock_valid) {
1025 warnx(_("RTC read returned an invalid value."));
c47a8f2a 1026 return EXIT_FAILURE;
88d2a1a3 1027 }
a218e2a8
WP
1028 /*
1029 * Calculate and apply drift correction to the Hardware Clock
1030 * time for everything except --show
1031 */
1032 calculate_adjustment(ctl, adjtime->drift_factor,
1033 adjtime->last_adj_time,
1034 adjtime->not_adjusted,
1035 hclocktime.tv_sec, &tdrift);
1036 if (!ctl->show)
1037 hclocktime = time_inc(tdrift, hclocktime.tv_sec);
1ef6feb5
WP
1038
1039 startup_hclocktime =
1040 time_inc(hclocktime, time_diff(startup_time, read_time));
cdedde03 1041 }
336f7c5f 1042 if (ctl->show || ctl->get) {
10191da6 1043 return display_time(startup_hclocktime);
336f7c5f
SK
1044 } else if (ctl->set) {
1045 set_hardware_clock_exact(ctl, set_time, startup_time);
1046 if (!ctl->noadjfile)
1ef6feb5 1047 adjust_drift_factor(ctl, adjtime, t2tv(set_time),
88d2a1a3 1048 startup_hclocktime);
336f7c5f 1049 } else if (ctl->adjust) {
2794995a 1050 if (tdrift.tv_sec > 0 || tdrift.tv_sec < -1)
88d2a1a3 1051 do_adjustment(ctl, adjtime, hclocktime, read_time);
2794995a
WP
1052 else
1053 printf(_("Needed adjustment is less than one second, "
1054 "so not setting clock.\n"));
336f7c5f 1055 } else if (ctl->systohc) {
ef71b8f1
SK
1056 struct timeval nowtime, reftime;
1057 /*
1058 * We can only set_hardware_clock_exact to a
1059 * whole seconds time, so we set it with
1060 * reference to the most recent whole
1061 * seconds time.
1062 */
1063 gettimeofday(&nowtime, NULL);
1064 reftime.tv_sec = nowtime.tv_sec;
1065 reftime.tv_usec = 0;
336f7c5f
SK
1066 set_hardware_clock_exact(ctl, (time_t) reftime.tv_sec, reftime);
1067 if (!ctl->noadjfile)
1068 adjust_drift_factor(ctl, adjtime, nowtime,
88d2a1a3 1069 hclocktime);
336f7c5f 1070 } else if (ctl->hctosys) {
88d2a1a3 1071 return set_system_clock(ctl, hclocktime);
ef71b8f1 1072 }
c4b0dc3e
WP
1073 if (!ctl->noadjfile && adjtime->dirty)
1074 return save_adjtime(ctl, adjtime);
c47a8f2a 1075 return EXIT_SUCCESS;
7eda085c
KZ
1076}
1077
039a0cec
WP
1078/**
1079 * Get or set the kernel RTC driver's epoch on Alpha machines.
1080 * ISA machines are hard coded for 1900.
390c72eb 1081 */
039a0cec 1082#if defined(__linux__) && defined(__alpha__)
390c72eb 1083static void
336f7c5f 1084manipulate_epoch(const struct hwclock_control *ctl)
390c72eb 1085{
336f7c5f 1086 if (ctl->getepoch) {
ef71b8f1
SK
1087 unsigned long epoch;
1088
af68bd01 1089 if (get_epoch_rtc(ctl, &epoch))
c26ddc56 1090 warnx(_("unable to read the RTC epoch."));
ef71b8f1 1091 else
c26ddc56 1092 printf(_("The RTC epoch is set to %lu.\n"), epoch);
336f7c5f 1093 } else if (ctl->setepoch) {
f7599b4f 1094 if (!ctl->epoch_option)
c26ddc56 1095 warnx(_("--epoch is required for --setepoch."));
c4b0dc3e
WP
1096 else if (!ctl->testing)
1097 if (set_epoch_rtc(ctl))
1098 warnx(_("unable to set the RTC epoch."));
ef71b8f1 1099 }
7eda085c 1100}
039a0cec 1101#endif /* __linux__ __alpha__ */
7eda085c 1102
ef71b8f1
SK
1103static void out_version(void)
1104{
f6277500 1105 printf(UTIL_LINUX_VERSION);
63cccae4
KZ
1106}
1107
b1557fe9 1108static void __attribute__((__noreturn__))
652dcf51 1109usage(void)
ef71b8f1 1110{
02777914 1111 fputs(USAGE_HEADER, stdout);
57c45481 1112 printf(_(" %s [function] [option...]\n"), program_invocation_short_name);
02777914
WP
1113
1114 fputs(USAGE_SEPARATOR, stdout);
2b1aa087 1115 puts(_("Time clocks utility."));
02777914
WP
1116
1117 fputs(USAGE_FUNCTIONS, stdout);
1118 puts(_(" -r, --show display the RTC time"));
1119 puts(_(" --get display drift corrected RTC time"));
1120 puts(_(" --set set the RTC according to --date"));
1121 puts(_(" -s, --hctosys set the system time from the RTC"));
1122 puts(_(" -w, --systohc set the RTC from the system time"));
1123 puts(_(" --systz send timescale configurations to the kernel"));
40191b5f 1124 puts(_(" -a, --adjust adjust the RTC to account for systematic drift"));
039a0cec 1125#if defined(__linux__) && defined(__alpha__)
02777914
WP
1126 puts(_(" --getepoch display the RTC epoch"));
1127 puts(_(" --setepoch set the RTC epoch according to --epoch"));
465e9973 1128#endif
02777914
WP
1129 puts(_(" --predict predict the drifted RTC time according to --date"));
1130 fputs(USAGE_OPTIONS, stdout);
57c45481
WP
1131 puts(_(" -u, --utc the RTC timescale is UTC"));
1132 puts(_(" -l, --localtime the RTC timescale is Local"));
465e9973 1133#ifdef __linux__
3eeaef99 1134 printf(_(
02777914 1135 " -f, --rtc <file> use an alternate file to %1$s\n"), _PATH_RTC_DEV);
465e9973 1136#endif
3eeaef99 1137 printf(_(
02777914
WP
1138 " --directisa use the ISA bus instead of %1$s access\n"), _PATH_RTC_DEV);
1139 puts(_(" --date <time> date/time input for --set and --predict"));
df4f1a66 1140 puts(_(" --delay <sec> delay used when set new RTC time"));
039a0cec 1141#if defined(__linux__) && defined(__alpha__)
02777914 1142 puts(_(" --epoch <year> epoch input for --setepoch"));
039a0cec 1143#endif
02777914
WP
1144 puts(_(" --update-drift update the RTC drift factor"));
1145 printf(_(
cb8e26cc
WP
1146 " --noadjfile do not use %1$s\n"), _PATH_ADJTIME);
1147 printf(_(
02777914 1148 " --adjfile <file> use an alternate file to %1$s\n"), _PATH_ADJTIME);
de4568f7
WP
1149 puts(_(" --test dry run; implies --verbose"));
1150 puts(_(" -v, --verbose display more details"));
02777914 1151 fputs(USAGE_SEPARATOR, stdout);
f45f3ec3
RM
1152 printf(USAGE_HELP_OPTIONS(22));
1153 printf(USAGE_MAN_TAIL("hwclock(8)"));
652dcf51 1154 exit(EXIT_SUCCESS);
eb63b9b8
KZ
1155}
1156
ef71b8f1
SK
1157int main(int argc, char **argv)
1158{
df4f1a66
KZ
1159 struct hwclock_control ctl = {
1160 .show = 1, /* default op is show */
1161 .rtc_delay = -1.0 /* unspecified */
1162 };
63cccae4 1163 struct timeval startup_time;
336f7c5f 1164 struct adjtime adjtime = { 0 };
7a3000f7 1165 struct timespec when = { 0 };
ef71b8f1
SK
1166 /*
1167 * The time we started up, in seconds into the epoch, including
1168 * fractions.
1169 */
1170 time_t set_time = 0; /* Time to which user said to set Hardware Clock */
63cccae4 1171 int rc, c;
7eda085c 1172
dade002a
KZ
1173 /* Long only options. */
1174 enum {
1175 OPT_ADJFILE = CHAR_MAX + 1,
dade002a 1176 OPT_DATE,
df4f1a66 1177 OPT_DELAY,
dade002a
KZ
1178 OPT_DIRECTISA,
1179 OPT_EPOCH,
2794995a 1180 OPT_GET,
dade002a 1181 OPT_GETEPOCH,
dade002a 1182 OPT_NOADJFILE,
57415653 1183 OPT_PREDICT,
dade002a
KZ
1184 OPT_SET,
1185 OPT_SETEPOCH,
1186 OPT_SYSTZ,
f276d71a
WP
1187 OPT_TEST,
1188 OPT_UPDATE
dade002a 1189 };
33ed2d02
SK
1190
1191 static const struct option longopts[] = {
87918040
SK
1192 { "adjust", no_argument, NULL, 'a' },
1193 { "help", no_argument, NULL, 'h' },
37526942 1194 { "localtime", no_argument, NULL, 'l' },
87918040
SK
1195 { "show", no_argument, NULL, 'r' },
1196 { "hctosys", no_argument, NULL, 's' },
1197 { "utc", no_argument, NULL, 'u' },
40191b5f 1198 { "version", no_argument, NULL, 'V' },
87918040
SK
1199 { "systohc", no_argument, NULL, 'w' },
1200 { "debug", no_argument, NULL, 'D' },
ff4e18bd 1201 { "ul-debug", required_argument, NULL, 'd' },
de4568f7 1202 { "verbose", no_argument, NULL, 'v' },
87918040 1203 { "set", no_argument, NULL, OPT_SET },
039a0cec 1204#if defined(__linux__) && defined(__alpha__)
87918040
SK
1205 { "getepoch", no_argument, NULL, OPT_GETEPOCH },
1206 { "setepoch", no_argument, NULL, OPT_SETEPOCH },
039a0cec 1207 { "epoch", required_argument, NULL, OPT_EPOCH },
33ed2d02 1208#endif
87918040 1209 { "noadjfile", no_argument, NULL, OPT_NOADJFILE },
87918040
SK
1210 { "directisa", no_argument, NULL, OPT_DIRECTISA },
1211 { "test", no_argument, NULL, OPT_TEST },
1212 { "date", required_argument, NULL, OPT_DATE },
df4f1a66 1213 { "delay", required_argument, NULL, OPT_DELAY },
33ed2d02 1214#ifdef __linux__
87918040 1215 { "rtc", required_argument, NULL, 'f' },
33ed2d02 1216#endif
87918040
SK
1217 { "adjfile", required_argument, NULL, OPT_ADJFILE },
1218 { "systz", no_argument, NULL, OPT_SYSTZ },
57415653 1219 { "predict", no_argument, NULL, OPT_PREDICT },
87918040
SK
1220 { "get", no_argument, NULL, OPT_GET },
1221 { "update-drift", no_argument, NULL, OPT_UPDATE },
1222 { NULL, 0, NULL, 0 }
33ed2d02
SK
1223 };
1224
a7349ee3 1225 static const ul_excl_t excl[] = { /* rows and cols in ASCII order */
dade002a 1226 { 'a','r','s','w',
57415653 1227 OPT_GET, OPT_GETEPOCH, OPT_PREDICT,
2794995a 1228 OPT_SET, OPT_SETEPOCH, OPT_SYSTZ },
37526942 1229 { 'l', 'u' },
dade002a 1230 { OPT_ADJFILE, OPT_NOADJFILE },
f276d71a 1231 { OPT_NOADJFILE, OPT_UPDATE },
dade002a
KZ
1232 { 0 }
1233 };
1234 int excl_st[ARRAY_SIZE(excl)] = UL_EXCL_STATUS_INIT;
1235
63cccae4
KZ
1236 /* Remember what time we were invoked */
1237 gettimeofday(&startup_time, NULL);
7eda085c 1238
88058a71
KZ
1239#ifdef HAVE_LIBAUDIT
1240 hwaudit_fd = audit_open();
1241 if (hwaudit_fd < 0 && !(errno == EINVAL || errno == EPROTONOSUPPORT ||
1242 errno == EAFNOSUPPORT)) {
ef71b8f1
SK
1243 /*
1244 * You get these error codes only when the kernel doesn't
1245 * have audit compiled in.
1246 */
111c05d3 1247 warnx(_("Unable to connect to audit system"));
c47a8f2a 1248 return EXIT_FAILURE;
88058a71
KZ
1249 }
1250#endif
63cccae4 1251 setlocale(LC_ALL, "");
66ee8158 1252#ifdef LC_NUMERIC
ef71b8f1
SK
1253 /*
1254 * We need LC_CTYPE and LC_TIME and LC_MESSAGES, but must avoid
1255 * LC_NUMERIC since it gives problems when we write to /etc/adjtime.
1256 * - gqueri@mail.dotcom.fr
1257 */
63cccae4 1258 setlocale(LC_NUMERIC, "C");
66ee8158 1259#endif
63cccae4
KZ
1260 bindtextdomain(PACKAGE, LOCALEDIR);
1261 textdomain(PACKAGE);
2c308875 1262 close_stdout_atexit();
63cccae4 1263
dade002a 1264 while ((c = getopt_long(argc, argv,
ff4e18bd 1265 "hvVDd:alrsuwf:", longopts, NULL)) != -1) {
dade002a
KZ
1266
1267 err_exclusive_options(c, longopts, excl, excl_st);
1268
63cccae4
KZ
1269 switch (c) {
1270 case 'D':
de4568f7
WP
1271 warnx(_("use --verbose, --debug has been deprecated."));
1272 break;
1273 case 'v':
ff4e18bd
WP
1274 ctl.verbose = 1;
1275 break;
1276 case 'd':
1277 hwclock_init_debug(optarg);
63cccae4
KZ
1278 break;
1279 case 'a':
336f7c5f 1280 ctl.adjust = 1;
8b73ff96 1281 ctl.show = 0;
d8949aca 1282 ctl.hwaudit_on = 1;
63cccae4 1283 break;
37526942
RV
1284 case 'l':
1285 ctl.local_opt = 1; /* --localtime */
1286 break;
63cccae4 1287 case 'r':
336f7c5f 1288 ctl.show = 1;
63cccae4
KZ
1289 break;
1290 case 's':
336f7c5f 1291 ctl.hctosys = 1;
8b73ff96 1292 ctl.show = 0;
d8949aca 1293 ctl.hwaudit_on = 1;
63cccae4
KZ
1294 break;
1295 case 'u':
336f7c5f 1296 ctl.utc = 1;
63cccae4
KZ
1297 break;
1298 case 'w':
336f7c5f 1299 ctl.systohc = 1;
8b73ff96 1300 ctl.show = 0;
d8949aca 1301 ctl.hwaudit_on = 1;
63cccae4 1302 break;
33ed2d02 1303 case OPT_SET:
336f7c5f 1304 ctl.set = 1;
8b73ff96 1305 ctl.show = 0;
d8949aca 1306 ctl.hwaudit_on = 1;
63cccae4 1307 break;
039a0cec 1308#if defined(__linux__) && defined(__alpha__)
33ed2d02 1309 case OPT_GETEPOCH:
336f7c5f 1310 ctl.getepoch = 1;
8b73ff96 1311 ctl.show = 0;
63cccae4 1312 break;
33ed2d02 1313 case OPT_SETEPOCH:
336f7c5f 1314 ctl.setepoch = 1;
8b73ff96 1315 ctl.show = 0;
d8949aca 1316 ctl.hwaudit_on = 1;
63cccae4 1317 break;
039a0cec 1318 case OPT_EPOCH:
f7599b4f 1319 ctl.epoch_option = optarg; /* --epoch */
039a0cec 1320 break;
465e9973 1321#endif
33ed2d02 1322 case OPT_NOADJFILE:
336f7c5f 1323 ctl.noadjfile = 1;
63cccae4 1324 break;
33ed2d02 1325 case OPT_DIRECTISA:
336f7c5f 1326 ctl.directisa = 1;
63cccae4 1327 break;
33ed2d02 1328 case OPT_TEST:
336f7c5f 1329 ctl.testing = 1; /* --test */
ff4e18bd 1330 ctl.verbose = 1;
63cccae4 1331 break;
33ed2d02 1332 case OPT_DATE:
336f7c5f 1333 ctl.date_opt = optarg; /* --date */
63cccae4 1334 break;
df4f1a66
KZ
1335 case OPT_DELAY:
1336 ctl.rtc_delay = strtod_or_err(optarg, "invalid --delay argument");
1337 break;
33ed2d02 1338 case OPT_ADJFILE:
336f7c5f 1339 ctl.adj_file_name = optarg; /* --adjfile */
da82f6fe 1340 break;
33ed2d02 1341 case OPT_SYSTZ:
336f7c5f 1342 ctl.systz = 1; /* --systz */
8b73ff96 1343 ctl.show = 0;
2cb89055 1344 ctl.hwaudit_on = 1;
88a3372e 1345 break;
57415653
WP
1346 case OPT_PREDICT:
1347 ctl.predict = 1; /* --predict */
8b73ff96 1348 ctl.show = 0;
2e5627fa 1349 break;
2794995a 1350 case OPT_GET:
336f7c5f 1351 ctl.get = 1; /* --get */
8b73ff96 1352 ctl.show = 0;
2794995a 1353 break;
f276d71a 1354 case OPT_UPDATE:
336f7c5f 1355 ctl.update = 1; /* --update-drift */
f276d71a 1356 break;
465e9973 1357#ifdef __linux__
88681c5f 1358 case 'f':
336f7c5f 1359 ctl.rtc_dev_name = optarg; /* --rtc */
88681c5f 1360 break;
465e9973 1361#endif
2c308875 1362
de4568f7 1363 case 'V': /* --version */
2c308875 1364 print_version(EXIT_SUCCESS);
ef71b8f1 1365 case 'h': /* --help */
652dcf51 1366 usage();
657a5568 1367 default:
c47a8f2a 1368 errtryhelp(EXIT_FAILURE);
63cccae4
KZ
1369 }
1370 }
7eda085c 1371
fa5b4d45 1372 if (argc -= optind) {
657a5568 1373 warnx(_("%d too many arguments given"), argc);
c47a8f2a 1374 errtryhelp(EXIT_FAILURE);
63cccae4 1375 }
7eda085c 1376
336f7c5f
SK
1377 if (!ctl.adj_file_name)
1378 ctl.adj_file_name = _PATH_ADJTIME;
da82f6fe 1379
891b4343
WP
1380 if (ctl.update && !ctl.set && !ctl.systohc) {
1381 warnx(_("--update-drift requires --set or --systohc"));
652dcf51 1382 exit(EXIT_FAILURE);
891b4343
WP
1383 }
1384
336f7c5f 1385 if (ctl.noadjfile && !ctl.utc && !ctl.local_opt) {
111c05d3
SK
1386 warnx(_("With --noadjfile, you must specify "
1387 "either --utc or --localtime"));
652dcf51 1388 exit(EXIT_FAILURE);
63cccae4 1389 }
7eda085c 1390
336f7c5f 1391 if (ctl.set || ctl.predict) {
62f22d91 1392 if (!ctl.date_opt) {
969bffb7 1393 warnx(_("--date is required for --set or --predict"));
652dcf51 1394 exit(EXIT_FAILURE);
969bffb7 1395 }
7a3000f7
WP
1396 if (parse_date(&when, ctl.date_opt, NULL))
1397 set_time = when.tv_sec;
1398 else {
1399 warnx(_("invalid date '%s'"), ctl.date_opt);
652dcf51 1400 exit(EXIT_FAILURE);
63cccae4
KZ
1401 }
1402 }
7eda085c 1403
039a0cec 1404#if defined(__linux__) && defined(__alpha__)
336f7c5f
SK
1405 if (ctl.getepoch || ctl.setepoch) {
1406 manipulate_epoch(&ctl);
c47a8f2a 1407 hwclock_exit(&ctl, EXIT_SUCCESS);
63cccae4 1408 }
465e9973 1409#endif
63cccae4 1410
de4568f7 1411 if (ctl.verbose) {
63cccae4 1412 out_version();
e406be01
WP
1413 printf(_("System Time: %ld.%06ld\n"),
1414 startup_time.tv_sec, startup_time.tv_usec);
1415 }
111c05d3 1416
8f729d60 1417 if (!ctl.systz && !ctl.predict)
336f7c5f 1418 determine_clock_access_method(&ctl);
63cccae4 1419
336f7c5f
SK
1420 if (!ctl.noadjfile && !(ctl.systz && (ctl.utc || ctl.local_opt))) {
1421 if ((rc = read_adjtime(&ctl, &adjtime)) != 0)
1422 hwclock_exit(&ctl, rc);
1423 } else
1424 /* Avoid writing adjtime file if we don't have to. */
473ec359 1425 adjtime.dirty = 0;
336f7c5f 1426 ctl.universal = hw_clock_is_utc(&ctl, adjtime);
92931ab2 1427 rc = manipulate_clock(&ctl, set_time, startup_time, &adjtime);
c4b0dc3e
WP
1428 if (ctl.testing)
1429 puts(_("Test mode: nothing was changed."));
336f7c5f 1430 hwclock_exit(&ctl, rc);
ef71b8f1 1431 return rc; /* Not reached */
7eda085c
KZ
1432}
1433
39ff5b34 1434void
336f7c5f
SK
1435hwclock_exit(const struct hwclock_control *ctl
1436#ifndef HAVE_LIBAUDIT
1437 __attribute__((__unused__))
1438#endif
1439 , int status)
88058a71 1440{
48e7ed5e 1441#ifdef HAVE_LIBAUDIT
d8949aca 1442 if (ctl->hwaudit_on && !ctl->testing) {
88058a71 1443 audit_log_user_message(hwaudit_fd, AUDIT_USYS_CONFIG,
fbed7e09 1444 "op=change-system-time", NULL, NULL, NULL,
c47a8f2a 1445 status);
88058a71 1446 }
5b8e46f7 1447 close(hwaudit_fd);
48e7ed5e 1448#endif
88058a71
KZ
1449 exit(status);
1450}
88058a71 1451
ef71b8f1
SK
1452/*
1453 * History of this program:
1454 *
1455 * 98.08.12 BJH Version 2.4
1456 *
1457 * Don't use century byte from Hardware Clock. Add comments telling why.
1458 *
1459 * 98.06.20 BJH Version 2.3.
1460 *
1461 * Make --hctosys set the kernel timezone from TZ environment variable
1462 * and/or /usr/lib/zoneinfo. From Klaus Ripke (klaus@ripke.com).
1463 *
1464 * 98.03.05 BJH. Version 2.2.
1465 *
1466 * Add --getepoch and --setepoch.
1467 *
1468 * Fix some word length things so it works on Alpha.
1469 *
1470 * Make it work when /dev/rtc doesn't have the interrupt functions. In this
1471 * case, busywait for the top of a second instead of blocking and waiting
1472 * for the update complete interrupt.
1473 *
1474 * Fix a bunch of bugs too numerous to mention.
1475 *
1476 * 97.06.01: BJH. Version 2.1. Read and write the century byte (Byte 50) of
1477 * the ISA Hardware Clock when using direct ISA I/O. Problem discovered by
1478 * job (jei@iclnl.icl.nl).
1479 *
1480 * Use the rtc clock access method in preference to the KDGHWCLK method.
1481 * Problem discovered by Andreas Schwab <schwab@LS5.informatik.uni-dortmund.de>.
1482 *
1483 * November 1996: Version 2.0.1. Modifications by Nicolai Langfeldt
1484 * (janl@math.uio.no) to make it compile on linux 1.2 machines as well as
1485 * more recent versions of the kernel. Introduced the NO_CLOCK access method
455fe9a0 1486 * and wrote feature test code to detect absence of rtc headers.
ef71b8f1
SK
1487 *
1488 ***************************************************************************
1489 * Maintenance notes
1490 *
1491 * To compile this, you must use GNU compiler optimization (-O option) in
1492 * order to make the "extern inline" functions from asm/io.h (inb(), etc.)
1493 * compile. If you don't optimize, which means the compiler will generate no
1494 * inline functions, the references to these functions in this program will
1495 * be compiled as external references. Since you probably won't be linking
1496 * with any functions by these names, you will have unresolved external
1497 * references when you link.
1498 *
ef71b8f1
SK
1499 * Here's some info on how we must deal with the time that elapses while
1500 * this program runs: There are two major delays as we run:
1501 *
1502 * 1) Waiting up to 1 second for a transition of the Hardware Clock so
1503 * we are synchronized to the Hardware Clock.
1504 * 2) Running the "date" program to interpret the value of our --date
1505 * option.
1506 *
1507 * Reading the /etc/adjtime file is the next biggest source of delay and
1508 * uncertainty.
1509 *
1510 * The user wants to know what time it was at the moment he invoked us, not
1511 * some arbitrary time later. And in setting the clock, he is giving us the
1512 * time at the moment we are invoked, so if we set the clock some time
1513 * later, we have to add some time to that.
1514 *
1515 * So we check the system time as soon as we start up, then run "date" and
1516 * do file I/O if necessary, then wait to synchronize with a Hardware Clock
1517 * edge, then check the system time again to see how much time we spent. We
1518 * immediately read the clock then and (if appropriate) report that time,
1519 * and additionally, the delay we measured.
1520 *
1521 * If we're setting the clock to a time given by the user, we wait some more
1522 * so that the total delay is an integral number of seconds, then set the
1523 * Hardware Clock to the time the user requested plus that integral number
1524 * of seconds. N.B. The Hardware Clock can only be set in integral seconds.
1525 *
1526 * If we're setting the clock to the system clock value, we wait for the
1527 * system clock to reach the top of a second, and then set the Hardware
1528 * Clock to the system clock's value.
1529 *
1530 * Here's an interesting point about setting the Hardware Clock: On my
1531 * machine, when you set it, it sets to that precise time. But one can
1532 * imagine another clock whose update oscillator marches on a steady one
1533 * second period, so updating the clock between any two oscillator ticks is
1534 * the same as updating it right at the earlier tick. To avoid any
1535 * complications that might cause, we set the clock as soon as possible
1536 * after an oscillator tick.
1537 *
1538 * About synchronizing to the Hardware Clock when reading the time: The
1539 * precision of the Hardware Clock counters themselves is one second. You
1540 * can't read the counters and find out that is 12:01:02.5. But if you
1541 * consider the location in time of the counter's ticks as part of its
1542 * value, then its precision is as infinite as time is continuous! What I'm
1543 * saying is this: To find out the _exact_ time in the hardware clock, we
1544 * wait until the next clock tick (the next time the second counter changes)
1545 * and measure how long we had to wait. We then read the value of the clock
1546 * counters and subtract the wait time and we know precisely what time it
1547 * was when we set out to query the time.
1548 *
1549 * hwclock uses this method, and considers the Hardware Clock to have
1550 * infinite precision.
ef71b8f1 1551 */