]> git.ipfire.org Git - thirdparty/util-linux.git/blob - sys-utils/hwclock-cmos.c
sys-utils: cleanup license lines, add SPDX
[thirdparty/util-linux.git] / sys-utils / hwclock-cmos.c
1 /*
2 * SPDX-License-Identifier: GPL-2.0-or-later
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 *
10 * i386 CMOS starts out with 14 bytes clock data alpha has something
11 * similar, but with details depending on the machine type.
12 *
13 * byte 0: seconds 0-59
14 * byte 2: minutes 0-59
15 * byte 4: hours 0-23 in 24hr mode,
16 * 1-12 in 12hr mode, with high bit unset/set
17 * if am/pm.
18 * byte 6: weekday 1-7, Sunday=1
19 * byte 7: day of the month 1-31
20 * byte 8: month 1-12
21 * byte 9: year 0-99
22 *
23 * Numbers are stored in BCD/binary if bit 2 of byte 11 is unset/set The
24 * clock is in 12hr/24hr mode if bit 1 of byte 11 is unset/set The clock is
25 * undefined (being updated) if bit 7 of byte 10 is set. The clock is frozen
26 * (to be updated) by setting bit 7 of byte 11 Bit 7 of byte 14 indicates
27 * whether the CMOS clock is reliable: it is 1 if RTC power has been good
28 * since this bit was last read; it is 0 when the battery is dead and system
29 * power has been off.
30 *
31 * Avoid setting the RTC clock within 2 seconds of the day rollover that
32 * starts a new month or enters daylight saving time.
33 *
34 * The century situation is messy:
35 *
36 * Usually byte 50 (0x32) gives the century (in BCD, so 19 or 20 hex), but
37 * IBM PS/2 has (part of) a checksum there and uses byte 55 (0x37).
38 * Sometimes byte 127 (0x7f) or Bank 1, byte 0x48 gives the century. The
39 * original RTC will not access any century byte; some modern versions will.
40 * If a modern RTC or BIOS increments the century byte it may go from 0x19
41 * to 0x20, but in some buggy cases 0x1a is produced.
42 */
43 /*
44 * A struct tm has int fields
45 * tm_sec 0-59, 60 or 61 only for leap seconds
46 * tm_min 0-59
47 * tm_hour 0-23
48 * tm_mday 1-31
49 * tm_mon 0-11
50 * tm_year number of years since 1900
51 * tm_wday 0-6, 0=Sunday
52 * tm_yday 0-365
53 * tm_isdst >0: yes, 0: no, <0: unknown
54 */
55
56 #include <fcntl.h>
57 #include <stdio.h>
58 #include <string.h>
59 #include <time.h>
60 #include <unistd.h>
61
62 #include "c.h"
63 #include "nls.h"
64 #include "pathnames.h"
65
66 /* for inb, outb */
67 #ifdef HAVE_SYS_IO_H
68 # include <sys/io.h>
69 #elif defined(HAVE_ASM_IO_H)
70 # include <asm/io.h>
71 #else
72 # error "no sys/io.h or asm/io.h"
73 #endif /* HAVE_SYS_IO_H, HAVE_ASM_IO_H */
74
75 #include "hwclock.h"
76
77 #define BCD_TO_BIN(val) ((val)=((val)&15) + ((val)>>4)*10)
78 #define BIN_TO_BCD(val) ((val)=(((val)/10)<<4) + (val)%10)
79
80 #define IOPL_NOT_IMPLEMENTED -2
81
82 /*
83 * POSIX uses 1900 as epoch for a struct tm, and 1970 for a time_t.
84 */
85 #define TM_EPOCH 1900
86
87 static unsigned short clock_ctl_addr = 0x70;
88 static unsigned short clock_data_addr = 0x71;
89
90 /*
91 * Hmmh, this isn't very atomic. Maybe we should force an error instead?
92 *
93 * TODO: optimize the access to CMOS by mlockall(MCL_CURRENT) and SCHED_FIFO
94 */
95 static unsigned long atomic(unsigned long (*op) (unsigned long),
96 unsigned long arg)
97 {
98 return (*op) (arg);
99 }
100
101 /*
102 * We only want to read CMOS data, but unfortunately writing to bit 7
103 * disables (1) or enables (0) NMI; since this bit is read-only we have
104 * to guess the old status. Various docs suggest that one should disable
105 * NMI while reading/writing CMOS data, and enable it again afterwards.
106 * This would yield the sequence
107 *
108 * outb (reg | 0x80, 0x70);
109 * val = inb(0x71);
110 * outb (0x0d, 0x70); // 0x0d: random read-only location
111 *
112 * Other docs state that "any write to 0x70 should be followed by an
113 * action to 0x71 or the RTC will be left in an unknown state". Most
114 * docs say that it doesn't matter at all what one does.
115 *
116 * bit 0x80: disable NMI while reading - should we? Let us follow the
117 * kernel and not disable. Called only with 0 <= reg < 128
118 */
119
120 static inline unsigned long cmos_read(unsigned long reg)
121 {
122 outb(reg, clock_ctl_addr);
123 return inb(clock_data_addr);
124 }
125
126 static inline unsigned long cmos_write(unsigned long reg, unsigned long val)
127 {
128 outb(reg, clock_ctl_addr);
129 outb(val, clock_data_addr);
130 return 0;
131 }
132
133 static unsigned long cmos_set_time(unsigned long arg)
134 {
135 unsigned char save_control, save_freq_select, pmbit = 0;
136 struct tm tm = *(struct tm *)arg;
137
138 /*
139 * CMOS byte 10 (clock status register A) has 3 bitfields:
140 * bit 7: 1 if data invalid, update in progress (read-only bit)
141 * (this is raised 224 us before the actual update starts)
142 * 6-4 select base frequency
143 * 010: 32768 Hz time base (default)
144 * 111: reset
145 * all other combinations are manufacturer-dependent
146 * (e.g.: DS1287: 010 = start oscillator, anything else = stop)
147 * 3-0 rate selection bits for interrupt
148 * 0000 none (may stop RTC)
149 * 0001, 0010 give same frequency as 1000, 1001
150 * 0011 122 microseconds (minimum, 8192 Hz)
151 * .... each increase by 1 halves the frequency, doubles the period
152 * 1111 500 milliseconds (maximum, 2 Hz)
153 * 0110 976.562 microseconds (default 1024 Hz)
154 */
155 save_control = cmos_read(11); /* tell the clock it's being set */
156 cmos_write(11, (save_control | 0x80));
157 save_freq_select = cmos_read(10); /* stop and reset prescaler */
158 cmos_write(10, (save_freq_select | 0x70));
159
160 tm.tm_year %= 100;
161 tm.tm_mon += 1;
162 tm.tm_wday += 1;
163
164 if (!(save_control & 0x02)) { /* 12hr mode; the default is 24hr mode */
165 if (tm.tm_hour == 0)
166 tm.tm_hour = 24;
167 if (tm.tm_hour > 12) {
168 tm.tm_hour -= 12;
169 pmbit = 0x80;
170 }
171 }
172
173 if (!(save_control & 0x04)) { /* BCD mode - the default */
174 BIN_TO_BCD(tm.tm_sec);
175 BIN_TO_BCD(tm.tm_min);
176 BIN_TO_BCD(tm.tm_hour);
177 BIN_TO_BCD(tm.tm_wday);
178 BIN_TO_BCD(tm.tm_mday);
179 BIN_TO_BCD(tm.tm_mon);
180 BIN_TO_BCD(tm.tm_year);
181 }
182
183 cmos_write(0, tm.tm_sec);
184 cmos_write(2, tm.tm_min);
185 cmos_write(4, tm.tm_hour | pmbit);
186 cmos_write(6, tm.tm_wday);
187 cmos_write(7, tm.tm_mday);
188 cmos_write(8, tm.tm_mon);
189 cmos_write(9, tm.tm_year);
190
191 /*
192 * The kernel sources, linux/arch/i386/kernel/time.c, have the
193 * following comment:
194 *
195 * The following flags have to be released exactly in this order,
196 * otherwise the DS12887 (popular MC146818A clone with integrated
197 * battery and quartz) will not reset the oscillator and will not
198 * update precisely 500 ms later. You won't find this mentioned in
199 * the Dallas Semiconductor data sheets, but who believes data
200 * sheets anyway ... -- Markus Kuhn
201 */
202 cmos_write(11, save_control);
203 cmos_write(10, save_freq_select);
204 return 0;
205 }
206
207 static int hclock_read(unsigned long reg)
208 {
209 return atomic(cmos_read, reg);
210 }
211
212 static void hclock_set_time(const struct tm *tm)
213 {
214 atomic(cmos_set_time, (unsigned long)(tm));
215 }
216
217 static inline int cmos_clock_busy(void)
218 {
219 return
220 /* poll bit 7 (UIP) of Control Register A */
221 (hclock_read(10) & 0x80);
222 }
223
224 static int synchronize_to_clock_tick_cmos(const struct hwclock_control *ctl
225 __attribute__((__unused__)))
226 {
227 int i;
228
229 /*
230 * Wait for rise. Should be within a second, but in case something
231 * weird happens, we have a limit on this loop to reduce the impact
232 * of this failure.
233 */
234 for (i = 0; !cmos_clock_busy(); i++)
235 if (i >= 10000000)
236 return 1;
237
238 /* Wait for fall. Should be within 2.228 ms. */
239 for (i = 0; cmos_clock_busy(); i++)
240 if (i >= 1000000)
241 return 1;
242 return 0;
243 }
244
245 /*
246 * Read the hardware clock and return the current time via <tm> argument.
247 * Assume we have an ISA machine and read the clock directly with CPU I/O
248 * instructions.
249 *
250 * This function is not totally reliable. It takes a finite and
251 * unpredictable amount of time to execute the code below. During that time,
252 * the clock may change and we may even read an invalid value in the middle
253 * of an update. We do a few checks to minimize this possibility, but only
254 * the kernel can actually read the clock properly, since it can execute
255 * code in a short and predictable amount of time (by turning of
256 * interrupts).
257 *
258 * In practice, the chance of this function returning the wrong time is
259 * extremely remote.
260 */
261 static int read_hardware_clock_cmos(const struct hwclock_control *ctl
262 __attribute__((__unused__)), struct tm *tm)
263 {
264 unsigned char status = 0, pmbit = 0;
265
266 while (1) {
267 /*
268 * Bit 7 of Byte 10 of the Hardware Clock value is the
269 * Update In Progress (UIP) bit, which is on while and 244
270 * uS before the Hardware Clock updates itself. It updates
271 * the counters individually, so reading them during an
272 * update would produce garbage. The update takes 2mS, so we
273 * could be spinning here that long waiting for this bit to
274 * turn off.
275 *
276 * Furthermore, it is pathologically possible for us to be
277 * in this code so long that even if the UIP bit is not on
278 * at first, the clock has changed while we were running. We
279 * check for that too, and if it happens, we start over.
280 */
281 if (!cmos_clock_busy()) {
282 /* No clock update in progress, go ahead and read */
283 tm->tm_sec = hclock_read(0);
284 tm->tm_min = hclock_read(2);
285 tm->tm_hour = hclock_read(4);
286 tm->tm_wday = hclock_read(6);
287 tm->tm_mday = hclock_read(7);
288 tm->tm_mon = hclock_read(8);
289 tm->tm_year = hclock_read(9);
290 status = hclock_read(11);
291 /*
292 * Unless the clock changed while we were reading,
293 * consider this a good clock read .
294 */
295 if (tm->tm_sec == hclock_read(0))
296 break;
297 }
298 /*
299 * Yes, in theory we could have been running for 60 seconds
300 * and the above test wouldn't work!
301 */
302 }
303
304 if (!(status & 0x04)) { /* BCD mode - the default */
305 BCD_TO_BIN(tm->tm_sec);
306 BCD_TO_BIN(tm->tm_min);
307 pmbit = (tm->tm_hour & 0x80);
308 tm->tm_hour &= 0x7f;
309 BCD_TO_BIN(tm->tm_hour);
310 BCD_TO_BIN(tm->tm_wday);
311 BCD_TO_BIN(tm->tm_mday);
312 BCD_TO_BIN(tm->tm_mon);
313 BCD_TO_BIN(tm->tm_year);
314 }
315
316 /*
317 * We don't use the century byte of the Hardware Clock since we
318 * don't know its address (usually 50 or 55). Here, we follow the
319 * advice of the X/Open Base Working Group: "if century is not
320 * specified, then values in the range [69-99] refer to years in the
321 * twentieth century (1969 to 1999 inclusive), and values in the
322 * range [00-68] refer to years in the twenty-first century (2000 to
323 * 2068 inclusive)."
324 */
325 tm->tm_wday -= 1;
326 tm->tm_mon -= 1;
327 if (tm->tm_year < 69)
328 tm->tm_year += 100;
329 if (pmbit) {
330 tm->tm_hour += 12;
331 if (tm->tm_hour == 24)
332 tm->tm_hour = 0;
333 }
334
335 tm->tm_isdst = -1; /* don't know whether it's daylight */
336 return 0;
337 }
338
339 static int set_hardware_clock_cmos(const struct hwclock_control *ctl
340 __attribute__((__unused__)),
341 const struct tm *new_broken_time)
342 {
343 hclock_set_time(new_broken_time);
344 return 0;
345 }
346
347 # if defined(HAVE_IOPL)
348 static int i386_iopl(const int level)
349 {
350 return iopl(level);
351 }
352 # else
353 static int i386_iopl(const int level __attribute__ ((__unused__)))
354 {
355 extern int ioperm(unsigned long from, unsigned long num, int turn_on);
356 return ioperm(clock_ctl_addr, 2, 1);
357 }
358 # endif
359
360 static int get_permissions_cmos(void)
361 {
362 int rc;
363
364 rc = i386_iopl(3);
365 if (rc == IOPL_NOT_IMPLEMENTED) {
366 warnx(_("ISA port access is not implemented"));
367 } else if (rc != 0) {
368 warn(_("iopl() port access failed"));
369 }
370 return rc;
371 }
372
373 static const char *get_device_path(void)
374 {
375 return NULL;
376 }
377
378 static const struct clock_ops cmos_interface = {
379 N_("Using direct ISA access to the clock"),
380 get_permissions_cmos,
381 read_hardware_clock_cmos,
382 set_hardware_clock_cmos,
383 synchronize_to_clock_tick_cmos,
384 get_device_path,
385 };
386
387 /*
388 * return &cmos if cmos clock present, NULL otherwise.
389 */
390 const struct clock_ops *probe_for_cmos_clock(void)
391 {
392 return &cmos_interface;
393 }