]> git.ipfire.org Git - thirdparty/util-linux.git/blob - sys-utils/lsns.c
lsns: fix ul_path_stat() error handling [coverity scan]
[thirdparty/util-linux.git] / sys-utils / lsns.c
1 /*
2 * SPDX-License-Identifier: GPL-2.0-or-later
3 *
4 * lsns(8) - list system namespaces
5 *
6 * Copyright (C) 2015 Karel Zak <kzak@redhat.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13 #include <stdio.h>
14 #include <string.h>
15 #include <getopt.h>
16 #include <stdlib.h>
17 #include <assert.h>
18 #include <dirent.h>
19 #include <unistd.h>
20 #include <sys/stat.h>
21 #include <sys/types.h>
22 #include <wchar.h>
23 #include <libsmartcols.h>
24 #include <libmount.h>
25 # include <stdbool.h>
26
27 #ifdef HAVE_LINUX_NET_NAMESPACE_H
28 # include <sys/socket.h>
29 # include <linux/netlink.h>
30 # include <linux/rtnetlink.h>
31 # include <linux/net_namespace.h>
32 #endif
33
34 #ifdef HAVE_LINUX_NSFS_H
35 # include <linux/nsfs.h>
36 # if defined(NS_GET_NSTYPE) && defined(NS_GET_OWNER_UID)
37 # define USE_NS_GET_API 1
38 # endif
39 #endif
40
41 #include "pathnames.h"
42 #include "nls.h"
43 #include "xalloc.h"
44 #include "c.h"
45 #include "list.h"
46 #include "closestream.h"
47 #include "optutils.h"
48 #include "procfs.h"
49 #include "strutils.h"
50 #include "namespace.h"
51 #include "idcache.h"
52 #include "fileutils.h"
53 #include "column-list-table.h"
54
55 #include "debug.h"
56
57 static UL_DEBUG_DEFINE_MASK(lsns);
58 UL_DEBUG_DEFINE_MASKNAMES(lsns) = UL_DEBUG_EMPTY_MASKNAMES;
59
60 #define LSNS_DEBUG_INIT (1 << 1)
61 #define LSNS_DEBUG_PROC (1 << 2)
62 #define LSNS_DEBUG_NS (1 << 3)
63 #define LSNS_DEBUG_FILTER (1 << 4)
64 #define LSNS_DEBUG_ALL 0xFFFF
65
66 #define LSNS_NETNS_UNUSABLE -2
67
68 #define DBG(m, x) __UL_DBG(lsns, LSNS_DEBUG_, m, x)
69 #define ON_DBG(m, x) __UL_DBG_CALL(lsns, LSNS_DEBUG_, m, x)
70
71 #define lsns_ioctl(fildes, request, ...) __extension__ ({ \
72 int ret = ioctl(fildes, request, ##__VA_ARGS__); \
73 if (ret == -1 && errno == ENOTTY) \
74 warnx("Unsupported ioctl %s", #request); \
75 ret; })
76
77 #define UL_DEBUG_CURRENT_MASK UL_DEBUG_MASK(lsns)
78 #include "debugobj.h"
79
80 #define EXIT_UNSUPPORTED_IOCTL 2
81
82 static struct idcache *uid_cache = NULL;
83
84 /* column IDs */
85 enum {
86 COL_NS = 0,
87 COL_TYPE,
88 COL_PATH,
89 COL_NPROCS,
90 COL_PID,
91 COL_PPID,
92 COL_COMMAND,
93 COL_UID,
94 COL_USER,
95 COL_NETNSID,
96 COL_NSFS,
97 COL_PNS, /* parent namespace */
98 COL_ONS, /* owner namespace */
99 };
100
101 /* column names */
102 struct colinfo {
103 const char *name; /* header */
104 double whint; /* width hint (N < 1 is in percent of termwidth) */
105 int flags; /* SCOLS_FL_* */
106 const char *help;
107 int json_type;
108 };
109
110 /* columns descriptions */
111 static const struct colinfo infos[] = {
112 [COL_NS] = { "NS", 10, SCOLS_FL_RIGHT, N_("namespace identifier (inode number)"), SCOLS_JSON_NUMBER },
113 [COL_TYPE] = { "TYPE", 5, 0, N_("kind of namespace") },
114 [COL_PATH] = { "PATH", 0, 0, N_("path to the namespace")},
115 [COL_NPROCS] = { "NPROCS", 5, SCOLS_FL_RIGHT, N_("number of processes in the namespace"), SCOLS_JSON_NUMBER },
116 [COL_PID] = { "PID", 5, SCOLS_FL_RIGHT, N_("lowest PID in the namespace"), SCOLS_JSON_NUMBER },
117 [COL_PPID] = { "PPID", 5, SCOLS_FL_RIGHT, N_("PPID of the PID"), SCOLS_JSON_NUMBER },
118 [COL_COMMAND] = { "COMMAND", 0, SCOLS_FL_TRUNC, N_("command line of the PID")},
119 [COL_UID] = { "UID", 0, SCOLS_FL_RIGHT, N_("UID of the PID"), SCOLS_JSON_NUMBER},
120 [COL_USER] = { "USER", 0, 0, N_("username of the PID")},
121 [COL_NETNSID] = { "NETNSID", 0, SCOLS_FL_RIGHT, N_("namespace ID as used by network subsystem")},
122 [COL_NSFS] = { "NSFS", 0, SCOLS_FL_WRAP, N_("nsfs mountpoint (usually used network subsystem)")},
123 [COL_PNS] = { "PNS", 10, SCOLS_FL_RIGHT, N_("parent namespace identifier (inode number)"), SCOLS_JSON_NUMBER },
124 [COL_ONS] = { "ONS", 10, SCOLS_FL_RIGHT, N_("owner namespace identifier (inode number)"), SCOLS_JSON_NUMBER },
125 };
126
127 static int columns[ARRAY_SIZE(infos) * 2];
128 static size_t ncolumns;
129
130 enum {
131 LSNS_ID_MNT = 0,
132 LSNS_ID_NET,
133 LSNS_ID_PID,
134 LSNS_ID_UTS,
135 LSNS_ID_IPC,
136 LSNS_ID_USER,
137 LSNS_ID_CGROUP,
138 LSNS_ID_TIME
139 };
140
141 static char *ns_names[] = {
142 [LSNS_ID_MNT] = "mnt",
143 [LSNS_ID_NET] = "net",
144 [LSNS_ID_PID] = "pid",
145 [LSNS_ID_UTS] = "uts",
146 [LSNS_ID_IPC] = "ipc",
147 [LSNS_ID_USER] = "user",
148 [LSNS_ID_CGROUP] = "cgroup",
149 [LSNS_ID_TIME] = "time"
150 };
151
152 enum {
153 RELA_PARENT,
154 RELA_OWNER,
155 MAX_RELA
156 };
157
158 struct lsns_namespace {
159 ino_t id;
160 int type; /* LSNS_* */
161 int nprocs;
162 int netnsid;
163 ino_t related_id[MAX_RELA];
164
165 struct lsns_process *proc;
166
167 struct lsns_namespace *related_ns[MAX_RELA];
168 struct libscols_line *ns_outline;
169 uid_t uid_fallback; /* refer this member if `proc' is NULL. */
170
171 struct list_head namespaces; /* lsns->processes member */
172 struct list_head processes; /* head of lsns_process *siblings */
173 };
174
175 struct lsns_process {
176 pid_t pid; /* process PID */
177 pid_t ppid; /* parent's PID */
178 pid_t tpid; /* thread group */
179 char state;
180 uid_t uid;
181
182 ino_t ns_ids[ARRAY_SIZE(ns_names)];
183 ino_t ns_pids[ARRAY_SIZE(ns_names)];
184 ino_t ns_oids[ARRAY_SIZE(ns_names)];
185
186 struct list_head ns_siblings[ARRAY_SIZE(ns_names)];
187
188 struct list_head processes; /* list of processes */
189
190 struct libscols_line *outline;
191 struct lsns_process *parent;
192
193 int netnsid;
194 };
195
196
197 enum {
198 LSNS_TREE_NONE,
199 LSNS_TREE_PROCESS,
200 LSNS_TREE_OWNER,
201 LSNS_TREE_PARENT,
202 };
203
204 struct lsns {
205 struct list_head processes;
206 struct list_head namespaces;
207
208 pid_t fltr_pid; /* filter out by PID */
209 ino_t fltr_ns; /* filter out by namespace */
210 int fltr_types[ARRAY_SIZE(ns_names)];
211 int fltr_ntypes;
212
213 unsigned int raw : 1,
214 json : 1,
215 tree : 2,
216 persist : 1,
217 no_trunc : 1,
218 no_headings: 1,
219 no_wrap : 1;
220
221 dev_t nsfs_dev;
222
223 struct libmnt_table *tab;
224 struct libscols_filter *filter;
225 };
226
227 struct netnsid_cache {
228 ino_t ino;
229 int id;
230 struct list_head netnsids;
231 };
232
233 /* "userdata" used by callback for libsmartcols filter */
234 struct filler_data {
235 struct lsns *ls;
236 struct lsns_namespace *ns;
237 struct lsns_process *proc;
238 };
239
240 static struct list_head netnsids_cache;
241
242 static int netlink_fd = -1;
243
244 static void lsns_init_debug(void)
245 {
246 __UL_INIT_DEBUG_FROM_ENV(lsns, LSNS_DEBUG_, 0, LSNS_DEBUG);
247 }
248
249 static int ns_name2type(const char *name)
250 {
251 size_t i;
252
253 for (i = 0; i < ARRAY_SIZE(ns_names); i++) {
254 if (strcmp(ns_names[i], name) == 0)
255 return i;
256 }
257 return -1;
258 }
259
260 static int column_name_to_id(const char *name, size_t namesz)
261 {
262 size_t i;
263
264 assert(name);
265
266 for (i = 0; i < ARRAY_SIZE(infos); i++) {
267 const char *cn = infos[i].name;
268
269 if (!strncasecmp(name, cn, namesz) && !*(cn + namesz))
270 return i;
271 }
272 warnx(_("unknown column: %s"), name);
273 return -1;
274 }
275
276 static int has_column(int id)
277 {
278 size_t i;
279
280 for (i = 0; i < ncolumns; i++) {
281 if (columns[i] == id)
282 return 1;
283 }
284 return 0;
285 }
286
287 static inline int get_column_id(int num)
288 {
289 assert(num >= 0);
290 assert((size_t) num < ncolumns);
291 assert(columns[num] < (int) ARRAY_SIZE(infos));
292
293 return columns[num];
294 }
295
296 static inline const struct colinfo *get_column_info(unsigned num)
297 {
298 return &infos[ get_column_id(num) ];
299 }
300
301 static int get_ns_ino(struct path_cxt *pc, const char *nsname, ino_t *ino, ino_t *pino, ino_t *oino)
302 {
303 struct stat st;
304 char path[16];
305
306 snprintf(path, sizeof(path), "ns/%s", nsname);
307
308 if (ul_path_stat(pc, &st, 0, path) != 0)
309 return -errno;
310 *ino = st.st_ino;
311
312 *pino = 0;
313 *oino = 0;
314
315 #ifdef USE_NS_GET_API
316 int fd, pfd, ofd;
317 fd = ul_path_open(pc, 0, path);
318 if (fd < 0)
319 return -errno;
320 if (strcmp(nsname, "pid") == 0 || strcmp(nsname, "user") == 0) {
321 if ((pfd = lsns_ioctl(fd, NS_GET_PARENT)) < 0) {
322 if (errno == EPERM)
323 goto user;
324 close(fd);
325 return -errno;
326 }
327 if (fstat(pfd, &st) < 0) {
328 close(pfd);
329 close(fd);
330 return -errno;
331 }
332 *pino = st.st_ino;
333 close(pfd);
334 }
335 user:
336 if ((ofd = lsns_ioctl(fd, NS_GET_USERNS)) < 0) {
337 if (errno == EPERM)
338 goto out;
339 close(fd);
340 return -errno;
341 }
342 if (fstat(ofd, &st) < 0) {
343 close(ofd);
344 close(fd);
345 return -errno;
346 }
347 *oino = st.st_ino;
348 close(ofd);
349 out:
350 close(fd);
351 #endif
352 return 0;
353 }
354
355 static int parse_proc_stat(char *line, pid_t *pid, char *state, pid_t *ppid)
356 {
357 char *p;
358 int rc;
359
360 p = strrchr(line, ')');
361 if (p == NULL ||
362 sscanf(line, "%d (", pid) != 1 ||
363 sscanf(p, ") %c %d*[^\n]", state, ppid) != 2) {
364 rc = -EINVAL;
365 goto error;
366 }
367 rc = 0;
368
369 error:
370 return rc;
371 }
372
373 #ifdef HAVE_LINUX_NET_NAMESPACE_H
374 static int netnsid_cache_find(ino_t netino, int *netnsid)
375 {
376 struct list_head *p;
377
378 list_for_each(p, &netnsids_cache) {
379 struct netnsid_cache *e = list_entry(p,
380 struct netnsid_cache,
381 netnsids);
382 if (e->ino == netino) {
383 *netnsid = e->id;
384 return 1;
385 }
386 }
387
388 return 0;
389 }
390
391 static void netnsid_cache_add(ino_t netino, int netnsid)
392 {
393 struct netnsid_cache *e;
394
395 e = xcalloc(1, sizeof(*e));
396 e->ino = netino;
397 e->id = netnsid;
398 INIT_LIST_HEAD(&e->netnsids);
399 list_add(&e->netnsids, &netnsids_cache);
400 }
401
402 static int get_netnsid_via_netlink_send_request(int target_fd)
403 {
404 unsigned char req[NLMSG_SPACE(sizeof(struct rtgenmsg))
405 + RTA_SPACE(sizeof(int32_t))];
406
407 struct nlmsghdr *nlh = (struct nlmsghdr *)req;
408 struct rtgenmsg *rt = NLMSG_DATA(req);
409 struct rtattr *rta = (struct rtattr *)
410 (req + NLMSG_SPACE(sizeof(struct rtgenmsg)));
411 int32_t *fd = RTA_DATA(rta);
412
413 nlh->nlmsg_len = sizeof(req);
414 nlh->nlmsg_flags = NLM_F_REQUEST;
415 nlh->nlmsg_type = RTM_GETNSID;
416 rt->rtgen_family = AF_UNSPEC;
417 rta->rta_type = NETNSA_FD;
418 rta->rta_len = RTA_SPACE(sizeof(int32_t));
419 *fd = target_fd;
420
421 if (send(netlink_fd, req, sizeof(req), 0) < 0)
422 return -1;
423 return 0;
424 }
425
426 static int get_netnsid_via_netlink_recv_response(int *netnsid)
427 {
428 unsigned char res[NLMSG_SPACE(sizeof(struct rtgenmsg))
429 + ((RTA_SPACE(sizeof(int32_t))
430 < RTA_SPACE(sizeof(struct nlmsgerr)))
431 ? RTA_SPACE(sizeof(struct nlmsgerr))
432 : RTA_SPACE(sizeof(int32_t)))];
433 int rtalen;
434 ssize_t reslen;
435
436 struct nlmsghdr *nlh;
437 struct rtattr *rta;
438
439 reslen = recv(netlink_fd, res, sizeof(res), 0);
440 if (reslen < 0)
441 return -1;
442
443 nlh = (struct nlmsghdr *)res;
444 if (!(NLMSG_OK(nlh, (size_t)reslen)
445 && nlh->nlmsg_type == RTM_NEWNSID))
446 return -1;
447
448 rtalen = NLMSG_PAYLOAD(nlh, sizeof(struct rtgenmsg));
449 rta = (struct rtattr *)(res + NLMSG_SPACE(sizeof(struct rtgenmsg)));
450 if (!(RTA_OK(rta, rtalen)
451 && rta->rta_type == NETNSA_NSID))
452 return -1;
453
454 *netnsid = *(int *)RTA_DATA(rta);
455
456 return 0;
457 }
458
459 static int get_netnsid_via_netlink(struct path_cxt *pc, const char *path)
460 {
461 int netnsid;
462 int target_fd;
463
464 if (netlink_fd < 0)
465 return LSNS_NETNS_UNUSABLE;
466
467 target_fd = ul_path_open(pc, O_RDONLY, path);
468 if (target_fd < 0)
469 return LSNS_NETNS_UNUSABLE;
470
471 if (get_netnsid_via_netlink_send_request(target_fd) < 0) {
472 netnsid = LSNS_NETNS_UNUSABLE;
473 goto out;
474 }
475
476 if (get_netnsid_via_netlink_recv_response(&netnsid) < 0) {
477 netnsid = LSNS_NETNS_UNUSABLE;
478 goto out;
479 }
480
481 out:
482 close(target_fd);
483 return netnsid;
484 }
485
486 static int get_netnsid(struct path_cxt *pc, ino_t netino)
487 {
488 int netnsid;
489
490 if (!netnsid_cache_find(netino, &netnsid)) {
491 netnsid = get_netnsid_via_netlink(pc, "ns/net");
492 netnsid_cache_add(netino, netnsid);
493 }
494
495 return netnsid;
496 }
497 #else
498 static int get_netnsid(struct path_cxt *pc __attribute__((__unused__)),
499 ino_t netino __attribute__((__unused__)))
500 {
501 return LSNS_NETNS_UNUSABLE;
502 }
503 #endif /* HAVE_LINUX_NET_NAMESPACE_H */
504
505 static struct lsns_namespace *add_namespace_for_nsfd(struct lsns *ls, int fd, ino_t ino);
506
507 static void read_open_ns_inos(struct lsns *ls, struct path_cxt *pc)
508 {
509 DIR *sub = NULL;
510 struct dirent *d = NULL;
511 char path[sizeof("fd/") + sizeof(stringify_value(UINT64_MAX))];
512
513 while (ul_path_next_dirent(pc, &sub, "fd", &d) == 0) {
514 uint64_t num;
515 struct stat st;
516
517 if (ul_strtou64(d->d_name, &num, 10) != 0) /* only numbers */
518 continue;
519
520 snprintf(path, sizeof(path), "fd/%ju", (uintmax_t) num);
521
522 if (ul_path_stat(pc, &st, 0, path) == 0
523 && st.st_dev == ls->nsfs_dev) {
524 int fd = ul_path_open(pc, O_RDONLY, path);
525 if (fd >= 0) {
526 add_namespace_for_nsfd(ls, fd, st.st_ino);
527 close(fd);
528 }
529 }
530 }
531 }
532
533 static int read_process(struct lsns *ls, struct path_cxt *pc)
534 {
535 struct lsns_process *p = NULL;
536 int rc = 0;
537 char buf[BUFSIZ];
538 size_t i;
539
540 p = xcalloc(1, sizeof(*p));
541 p->netnsid = LSNS_NETNS_UNUSABLE;
542
543 if (procfs_process_get_uid(pc, &p->uid) == 0)
544 add_uid(uid_cache, p->uid);
545
546 if ((rc = procfs_process_get_stat(pc, buf, sizeof(buf))) < 0)
547 goto done;
548 if ((rc = parse_proc_stat(buf, &p->pid, &p->state, &p->ppid)) < 0)
549 goto done;
550 rc = 0;
551
552 for (i = 0; i < ARRAY_SIZE(p->ns_ids); i++) {
553 INIT_LIST_HEAD(&p->ns_siblings[i]);
554
555 if (!ls->fltr_types[i])
556 continue;
557
558 rc = get_ns_ino(pc, ns_names[i], &p->ns_ids[i],
559 &p->ns_pids[i], &p->ns_oids[i]);
560 if (rc && rc != -EACCES && rc != -ENOENT)
561 goto done;
562 if (i == LSNS_ID_NET)
563 p->netnsid = get_netnsid(pc, p->ns_ids[i]);
564 rc = 0;
565 }
566
567 INIT_LIST_HEAD(&p->processes);
568
569 DBG(PROC, ul_debugobj(p, "new pid=%d", p->pid));
570 list_add_tail(&p->processes, &ls->processes);
571
572 read_open_ns_inos(ls, pc);
573 done:
574 if (rc)
575 free(p);
576 return rc;
577 }
578
579 static int read_processes(struct lsns *ls)
580 {
581 DIR *dir;
582 struct dirent *d;
583 int rc = 0;
584 struct path_cxt *pc;
585
586 DBG(PROC, ul_debug("opening /proc"));
587
588 dir = opendir(_PATH_PROC);
589 if (!dir)
590 return -errno;
591
592 pc = ul_new_path(NULL);
593 if (!pc)
594 err(EXIT_FAILURE, _("failed to alloc procfs handler"));
595
596 while ((d = xreaddir(dir))) {
597 pid_t pid = 0;
598
599 if (procfs_dirent_get_pid(d, &pid) != 0)
600 continue;
601
602 DBG(PROC, ul_debug("reading %d", (int) pid));
603 rc = procfs_process_init_path(pc, pid);
604 if (rc < 0) {
605 DBG(PROC, ul_debug("failed in reading /proc/%d", (int) pid));
606 continue;
607 }
608
609 rc = read_process(ls, pc);
610 if (rc && rc != -EACCES && rc != -ENOENT)
611 break;
612 rc = 0;
613 }
614
615 ul_unref_path(pc);
616
617 DBG(PROC, ul_debug("closing /proc"));
618 closedir(dir);
619 return rc;
620 }
621
622 static struct lsns_namespace *get_namespace(struct lsns *ls, ino_t ino)
623 {
624 struct list_head *p;
625
626 list_for_each(p, &ls->namespaces) {
627 struct lsns_namespace *ns = list_entry(p, struct lsns_namespace, namespaces);
628
629 if (ns->id == ino)
630 return ns;
631 }
632 return NULL;
633 }
634
635 static int namespace_has_process(struct lsns_namespace *ns, pid_t pid)
636 {
637 struct list_head *p;
638
639 list_for_each(p, &ns->processes) {
640 struct lsns_process *proc = list_entry(p, struct lsns_process, ns_siblings[ns->type]);
641
642 if (proc->pid == pid)
643 return 1;
644 }
645 return 0;
646 }
647
648 static struct lsns_namespace *add_namespace(struct lsns *ls, int type, ino_t ino,
649 ino_t parent_ino, ino_t owner_ino)
650 {
651 struct lsns_namespace *ns = xcalloc(1, sizeof(*ns));
652
653 if (!ns)
654 return NULL;
655
656 DBG(NS, ul_debugobj(ns, "new %s[%ju]", ns_names[type], (uintmax_t)ino));
657
658 INIT_LIST_HEAD(&ns->processes);
659 INIT_LIST_HEAD(&ns->namespaces);
660
661 ns->type = type;
662 ns->id = ino;
663 ns->related_id[RELA_PARENT] = parent_ino;
664 ns->related_id[RELA_OWNER] = owner_ino;
665
666 list_add_tail(&ns->namespaces, &ls->namespaces);
667 return ns;
668 }
669
670 static int add_process_to_namespace(struct lsns *ls, struct lsns_namespace *ns, struct lsns_process *proc)
671 {
672 struct list_head *p;
673
674 DBG(NS, ul_debugobj(ns, "add process [%p] pid=%d to %s[%ju]",
675 proc, proc->pid, ns_names[ns->type], (uintmax_t)ns->id));
676
677 list_for_each(p, &ls->processes) {
678 struct lsns_process *xproc = list_entry(p, struct lsns_process, processes);
679
680 if (xproc->pid == proc->ppid) /* my parent */
681 proc->parent = xproc;
682 else if (xproc->ppid == proc->pid) /* my child */
683 xproc->parent = proc;
684 }
685
686 list_add_tail(&proc->ns_siblings[ns->type], &ns->processes);
687 ns->nprocs++;
688
689 if (!ns->proc || ns->proc->pid > proc->pid)
690 ns->proc = proc;
691
692 return 0;
693 }
694
695 static int cmp_namespaces(struct list_head *a, struct list_head *b,
696 __attribute__((__unused__)) void *data)
697 {
698 struct lsns_namespace *xa = list_entry(a, struct lsns_namespace, namespaces),
699 *xb = list_entry(b, struct lsns_namespace, namespaces);
700
701 return cmp_numbers(xa->id, xb->id);
702 }
703
704 static int netnsid_xasputs(char **str, int netnsid)
705 {
706 if (netnsid >= 0)
707 return xasprintf(str, "%d", netnsid);
708 #ifdef NETNSA_NSID_NOT_ASSIGNED
709 if (netnsid == NETNSA_NSID_NOT_ASSIGNED)
710 return xasprintf(str, "%s", "unassigned");
711 #endif
712 return 0;
713 }
714
715 #ifdef USE_NS_GET_API
716 static int clone_type_to_lsns_type(int clone_type)
717 {
718 switch (clone_type) {
719 case CLONE_NEWNS:
720 return LSNS_ID_MNT;
721 case CLONE_NEWCGROUP:
722 return LSNS_ID_CGROUP;
723 case CLONE_NEWUTS:
724 return LSNS_ID_UTS;
725 case CLONE_NEWIPC:
726 return LSNS_ID_IPC;
727 case CLONE_NEWUSER:
728 return LSNS_ID_USER;
729 case CLONE_NEWPID:
730 return LSNS_ID_PID;
731 case CLONE_NEWNET:
732 return LSNS_ID_NET;
733 #ifdef CLONE_NEWTIME
734 case CLONE_NEWTIME:
735 return LSNS_ID_TIME;
736 #endif
737 default:
738 return -1;
739 }
740 }
741
742 static struct lsns_namespace *add_namespace_for_nsfd(struct lsns *ls, int fd, ino_t ino)
743 {
744 int fd_owner = -1, fd_parent = -1;
745 struct stat st_owner, st_parent;
746 ino_t ino_owner = 0, ino_parent = 0;
747 struct lsns_namespace *ns;
748 int clone_type, lsns_type;
749
750 clone_type = lsns_ioctl(fd, NS_GET_NSTYPE);
751 if (clone_type < 0)
752 return NULL;
753 lsns_type = clone_type_to_lsns_type(clone_type);
754 if (lsns_type < 0 || ls->fltr_types[lsns_type] == 0)
755 return NULL;
756
757 fd_owner = lsns_ioctl(fd, NS_GET_USERNS);
758 if (fd_owner < 0)
759 goto parent;
760 if (fstat(fd_owner, &st_owner) < 0)
761 goto parent;
762 ino_owner = st_owner.st_ino;
763
764 parent:
765 fd_parent = lsns_ioctl(fd, NS_GET_PARENT);
766 if (fd_parent < 0)
767 goto add_ns;
768 if (fstat(fd_parent, &st_parent) < 0)
769 goto add_ns;
770 ino_parent = st_parent.st_ino;
771
772 add_ns:
773 ns = add_namespace(ls, lsns_type, ino, ino_parent, ino_owner);
774 lsns_ioctl(fd, NS_GET_OWNER_UID, &ns->uid_fallback);
775 add_uid(uid_cache, ns->uid_fallback);
776
777 if ((lsns_type == LSNS_ID_USER || lsns_type == LSNS_ID_PID)
778 && ino_parent != ino && ino_parent != 0) {
779 ns->related_ns[RELA_PARENT] = get_namespace(ls, ino_parent);
780 if (!ns->related_ns[RELA_PARENT]) {
781 ns->related_ns[RELA_PARENT] = add_namespace_for_nsfd(ls, fd_parent, ino_parent);
782 if (ino_parent == ino_owner)
783 ns->related_ns[RELA_OWNER] = ns->related_ns[RELA_PARENT];
784 }
785 }
786
787 if (ns->related_ns[RELA_OWNER] == NULL && ino_owner != 0) {
788 ns->related_ns[RELA_OWNER] = get_namespace(ls, ino_owner);
789 if (!ns->related_ns[RELA_OWNER])
790 ns->related_ns[RELA_OWNER] = add_namespace_for_nsfd(ls, fd_owner, ino_owner);
791 }
792
793 if (fd_owner >= 0)
794 close(fd_owner);
795 if (fd_parent >= 0)
796 close(fd_parent);
797
798 return ns;
799 }
800
801 static void interpolate_missing_namespaces(struct lsns *ls, struct lsns_namespace *orphan, int rela)
802 {
803 const int cmd[MAX_RELA] = {
804 [RELA_PARENT] = NS_GET_PARENT,
805 [RELA_OWNER] = NS_GET_USERNS
806 };
807 char buf[BUFSIZ];
808 int fd_orphan, fd_missing;
809 struct stat st;
810
811 orphan->related_ns[rela] = get_namespace(ls, orphan->related_id[rela]);
812 if (orphan->related_ns[rela])
813 return;
814
815 snprintf(buf, sizeof(buf), "/proc/%d/ns/%s", orphan->proc->pid, ns_names[orphan->type]);
816 fd_orphan = open(buf, O_RDONLY);
817 if (fd_orphan < 0)
818 return;
819
820 fd_missing = lsns_ioctl(fd_orphan, cmd[rela]);
821 close(fd_orphan);
822 if (fd_missing < 0)
823 return;
824
825 if (fstat(fd_missing, &st) < 0
826 || st.st_ino != orphan->related_id[rela]) {
827 close(fd_missing);
828 return;
829 }
830
831 orphan->related_ns[rela] = add_namespace_for_nsfd(ls, fd_missing, orphan->related_id[rela]);
832 close(fd_missing);
833 }
834
835 static void read_related_namespaces(struct lsns *ls)
836 {
837 struct list_head *p;
838 struct lsns_namespace *orphan[2] = {NULL, NULL};
839 int rela;
840
841 list_for_each(p, &ls->namespaces) {
842 struct lsns_namespace *ns = list_entry(p, struct lsns_namespace, namespaces);
843 struct list_head *pp;
844 list_for_each(pp, &ls->namespaces) {
845 struct lsns_namespace *pns = list_entry(pp, struct lsns_namespace, namespaces);
846 if (ns->type == LSNS_ID_USER
847 || ns->type == LSNS_ID_PID) {
848 if (ns->related_id[RELA_PARENT] == pns->id)
849 ns->related_ns[RELA_PARENT] = pns;
850 if (ns->related_id[RELA_OWNER] == pns->id)
851 ns->related_ns[RELA_OWNER] = pns;
852 if (ns->related_ns[RELA_PARENT] && ns->related_ns[RELA_OWNER])
853 break;
854 } else {
855 if (ns->related_id[RELA_OWNER] == pns->id) {
856 ns->related_ns[RELA_OWNER] = pns;
857 break;
858 }
859 }
860 }
861
862 /* lsns scans /proc/[0-9]+ for finding namespaces.
863 * So if a namespace has no process, lsns cannot
864 * find it. Here we call it a missing namespace.
865 *
866 * If the id for a related namesspce is known but
867 * namespace for the id is not found, there must
868 * be orphan namespaces. A missing namespace is an
869 * owner or a parent of the orphan namespace.
870 */
871 for (rela = 0; rela < MAX_RELA; rela++) {
872 if (ns->related_id[rela] != 0
873 && ns->related_ns[rela] == NULL) {
874 ns->related_ns[rela] = orphan[rela];
875 orphan[rela] = ns;
876 }
877 }
878 }
879
880 for (rela = 0; rela < MAX_RELA; rela++) {
881 while (orphan[rela]) {
882 struct lsns_namespace *current = orphan[rela];
883 orphan[rela] = orphan[rela]->related_ns[rela];
884 current->related_ns[rela] = NULL;
885 interpolate_missing_namespaces(ls, current, rela);
886 }
887 }
888 }
889
890 static int read_persistent_namespaces(struct lsns *ls)
891 {
892 struct libmnt_iter *itr = mnt_new_iter(MNT_ITER_FORWARD);
893 struct libmnt_fs *fs = NULL;
894
895 while (mnt_table_next_fs(ls->tab, itr, &fs) == 0) {
896 const char *root;
897 char *p, *end = NULL;
898 ino_t ino;
899 int fd;
900
901 if (!mnt_fs_match_fstype(fs, "nsfs"))
902 continue;
903 root = mnt_fs_get_root(fs);
904 if (!root || !(p = strchr(root, '[')))
905 continue;
906
907 errno = 0;
908 ino = strtoumax(++p, &end, 10);
909 if (!end || *end != ']' || errno != 0)
910 continue;
911 if (get_namespace(ls, ino))
912 continue;
913
914 fd = open(mnt_fs_get_target(fs), O_RDONLY);
915 if (fd < 0)
916 continue;
917
918 add_namespace_for_nsfd(ls, fd, ino);
919 close(fd);
920 }
921
922 mnt_free_iter(itr);
923 return 0;
924 }
925
926 #endif /* USE_NS_GET_API */
927
928 static int read_namespaces(struct lsns *ls)
929 {
930 struct list_head *p;
931
932 DBG(NS, ul_debug("reading namespace"));
933
934 list_for_each(p, &ls->processes) {
935 size_t i;
936 struct lsns_namespace *ns;
937 struct lsns_process *proc = list_entry(p, struct lsns_process, processes);
938
939 for (i = 0; i < ARRAY_SIZE(proc->ns_ids); i++) {
940 if (proc->ns_ids[i] == 0)
941 continue;
942 if (!(ns = get_namespace(ls, proc->ns_ids[i]))) {
943 ns = add_namespace(ls, i, proc->ns_ids[i],
944 proc->ns_pids[i], proc->ns_oids[i]);
945 if (!ns)
946 return -ENOMEM;
947 }
948 add_process_to_namespace(ls, ns, proc);
949 }
950 }
951
952 #ifdef USE_NS_GET_API
953 read_persistent_namespaces(ls);
954
955 if (ls->tree == LSNS_TREE_OWNER || ls->tree == LSNS_TREE_PARENT)
956 read_related_namespaces(ls);
957 #endif
958 list_sort(&ls->namespaces, cmp_namespaces, NULL);
959
960 return 0;
961 }
962
963 static int is_nsfs_root(struct libmnt_fs *fs, void *data)
964 {
965 if (!mnt_fs_match_fstype(fs, "nsfs") || !mnt_fs_get_root(fs))
966 return 0;
967
968 return (strcmp(mnt_fs_get_root(fs), (char *)data) == 0);
969 }
970
971 static int is_path_included(const char *path_set, const char *elt,
972 const char sep)
973 {
974 size_t elt_len;
975 size_t path_set_len;
976 char *tmp;
977
978
979 tmp = strstr(path_set, elt);
980 if (!tmp)
981 return 0;
982
983 elt_len = strlen(elt);
984 path_set_len = strlen(path_set);
985
986 /* path_set includes only elt or
987 * path_set includes elt as the first element.
988 */
989 if (tmp == path_set
990 && ((path_set_len == elt_len)
991 || (path_set[elt_len] == sep)))
992 return 1;
993
994 /* path_set includes elt at the middle
995 * or as the last element.
996 */
997 if ((*(tmp - 1) == sep)
998 && ((*(tmp + elt_len) == sep)
999 || (*(tmp + elt_len) == '\0')))
1000 return 1;
1001
1002 return 0;
1003 }
1004
1005 static int nsfs_xasputs(char **str,
1006 struct lsns_namespace *ns,
1007 struct libmnt_table *tab,
1008 char sep)
1009 {
1010 struct libmnt_iter *itr = mnt_new_iter(MNT_ITER_FORWARD);
1011 char *expected_root;
1012 struct libmnt_fs *fs = NULL;
1013
1014 xasprintf(&expected_root, "%s:[%ju]", ns_names[ns->type], (uintmax_t)ns->id);
1015 *str = NULL;
1016
1017 while (mnt_table_find_next_fs(tab, itr, is_nsfs_root,
1018 expected_root, &fs) == 0) {
1019
1020 const char *tgt = mnt_fs_get_target(fs);
1021
1022 if (!*str)
1023 xasprintf(str, "%s", tgt);
1024
1025 else if (!is_path_included(*str, tgt, sep)) {
1026 char *tmp = NULL;
1027
1028 xasprintf(&tmp, "%s%c%s", *str, sep, tgt);
1029 free(*str);
1030 *str = tmp;
1031 }
1032 }
1033 free(expected_root);
1034 mnt_free_iter(itr);
1035
1036 return 1;
1037 }
1038
1039 static void fill_column(struct lsns *ls,
1040 struct lsns_namespace *ns,
1041 struct lsns_process *proc,
1042 struct libscols_line *line,
1043 size_t column_index)
1044 {
1045 char *str = NULL;
1046
1047 switch (get_column_id(column_index)) {
1048 case COL_NS:
1049 xasprintf(&str, "%ju", (uintmax_t)ns->id);
1050 break;
1051 case COL_PID:
1052 if (proc)
1053 xasprintf(&str, "%d", (int) proc->pid);
1054 break;
1055 case COL_PPID:
1056 if (proc)
1057 xasprintf(&str, "%d", (int) proc->ppid);
1058 break;
1059 case COL_TYPE:
1060 xasprintf(&str, "%s", ns_names[ns->type]);
1061 break;
1062 case COL_NPROCS:
1063 xasprintf(&str, "%d", ns->nprocs);
1064 break;
1065 case COL_COMMAND:
1066 if (!proc)
1067 break;
1068 str = pid_get_cmdline(proc->pid);
1069 if (!str)
1070 str = pid_get_cmdname(proc->pid);
1071 break;
1072 case COL_PATH:
1073 if (!proc)
1074 break;
1075 xasprintf(&str, "/proc/%d/ns/%s", (int) proc->pid, ns_names[ns->type]);
1076 break;
1077 case COL_UID:
1078 xasprintf(&str, "%d", proc? (int) proc->uid: (int) ns->uid_fallback);
1079 break;
1080 case COL_USER:
1081 xasprintf(&str, "%s", get_id(uid_cache, proc? proc->uid: ns->uid_fallback)->name);
1082 break;
1083 case COL_NETNSID:
1084 if (!proc)
1085 break;
1086 if (ns->type == LSNS_ID_NET)
1087 netnsid_xasputs(&str, proc->netnsid);
1088 break;
1089 case COL_NSFS:
1090 nsfs_xasputs(&str, ns, ls->tab, ls->no_wrap ? ',' : '\n');
1091 break;
1092 case COL_PNS:
1093 xasprintf(&str, "%ju", (uintmax_t)ns->related_id[RELA_PARENT]);
1094 break;
1095 case COL_ONS:
1096 xasprintf(&str, "%ju", (uintmax_t)ns->related_id[RELA_OWNER]);
1097 break;
1098 default:
1099 break;
1100 }
1101
1102 if (str && scols_line_refer_data(line, column_index, str) != 0)
1103 err_oom();
1104 }
1105
1106
1107 static int filter_filler_cb(
1108 struct libscols_filter *filter __attribute__((__unused__)),
1109 struct libscols_line *line,
1110 size_t column_index,
1111 void *userdata)
1112 {
1113 struct filler_data *fid = (struct filler_data *) userdata;
1114
1115 fill_column(fid->ls, fid->ns, fid->proc, line, column_index);
1116 return 0;
1117 }
1118
1119 static void add_scols_line(struct lsns *ls, struct libscols_table *table,
1120 struct lsns_namespace *ns, struct lsns_process *proc)
1121 {
1122 size_t i;
1123 struct libscols_line *line;
1124
1125 assert(ns);
1126 assert(table);
1127
1128 line = scols_table_new_line(table,
1129 (ls->tree == LSNS_TREE_PROCESS && proc) && proc->parent ? proc->parent->outline:
1130 (ls->tree == LSNS_TREE_PARENT) && ns->related_ns[RELA_PARENT] ? ns->related_ns[RELA_PARENT]->ns_outline:
1131 (ls->tree == LSNS_TREE_OWNER) && ns->related_ns[RELA_OWNER] ? ns->related_ns[RELA_OWNER]->ns_outline:
1132 NULL);
1133 if (!line) {
1134 warn(_("failed to add line to output"));
1135 return;
1136 }
1137
1138 if (ls->filter) {
1139 int status = 0;
1140 struct filler_data fid = {
1141 .ls = ls,
1142 .ns = ns,
1143 .proc = proc,
1144 };
1145
1146 scols_filter_set_filler_cb(ls->filter,
1147 filter_filler_cb, (void *) &fid);
1148
1149 if (scols_line_apply_filter(line, ls->filter, &status))
1150 err(EXIT_FAILURE, _("failed to apply filter"));
1151 if (status == 0) {
1152 struct libscols_line *x = scols_line_get_parent(line);
1153
1154 if (x)
1155 scols_line_remove_child(x, line);
1156
1157 scols_table_remove_line(table, line);
1158 return;
1159 }
1160 }
1161
1162 for (i = 0; i < ncolumns; i++) {
1163 if (scols_line_is_filled(line, i))
1164 continue;
1165 fill_column(ls, ns, proc, line, i);
1166 }
1167
1168 if (ls->tree == LSNS_TREE_OWNER || ls->tree == LSNS_TREE_PARENT)
1169 ns->ns_outline = line;
1170 else if (proc)
1171 proc->outline = line;
1172 }
1173
1174 static struct libscols_table *init_scols_table(struct lsns *ls)
1175 {
1176 struct libscols_table *tab;
1177 size_t i;
1178
1179 tab = scols_new_table();
1180 if (!tab) {
1181 warn(_("failed to initialize output table"));
1182 return NULL;
1183 }
1184
1185 scols_table_enable_raw(tab, ls->raw);
1186 scols_table_enable_json(tab, ls->json);
1187 scols_table_enable_noheadings(tab, ls->no_headings);
1188
1189 if (ls->json)
1190 scols_table_set_name(tab, "namespaces");
1191
1192 for (i = 0; i < ncolumns; i++) {
1193 const struct colinfo *col = get_column_info(i);
1194 int flags = col->flags;
1195 struct libscols_column *cl;
1196
1197 if (ls->no_trunc)
1198 flags &= ~SCOLS_FL_TRUNC;
1199 if (ls->tree == LSNS_TREE_PROCESS && get_column_id(i) == COL_COMMAND)
1200 flags |= SCOLS_FL_TREE;
1201 if (ls->no_wrap)
1202 flags &= ~SCOLS_FL_WRAP;
1203 if ((ls->tree == LSNS_TREE_OWNER || ls->tree == LSNS_TREE_PARENT)
1204 && get_column_id(i) == COL_NS) {
1205 flags |= SCOLS_FL_TREE;
1206 flags &= ~SCOLS_FL_RIGHT;
1207 }
1208
1209 cl = scols_table_new_column(tab, col->name, col->whint, flags);
1210 if (cl == NULL) {
1211 warnx(_("failed to initialize output column"));
1212 goto err;
1213 }
1214 if (ls->json || ls->filter)
1215 scols_column_set_json_type(cl, col->json_type);
1216
1217 if (!ls->no_wrap && get_column_id(i) == COL_NSFS) {
1218 scols_column_set_wrapfunc(cl,
1219 scols_wrapnl_chunksize,
1220 scols_wrapnl_nextchunk,
1221 NULL);
1222 scols_column_set_safechars(cl, "\n");
1223 }
1224 }
1225
1226 return tab;
1227 err:
1228 scols_unref_table(tab);
1229 return NULL;
1230 }
1231
1232 static void show_namespace(struct lsns *ls, struct libscols_table *tab,
1233 struct lsns_namespace *ns, struct lsns_process *proc)
1234 {
1235 /*
1236 * create a tree from owner->owned and/or parent->child relation
1237 */
1238 if (ls->tree == LSNS_TREE_OWNER
1239 && ns->related_ns[RELA_OWNER]
1240 && !ns->related_ns[RELA_OWNER]->ns_outline)
1241 show_namespace(ls, tab, ns->related_ns[RELA_OWNER], ns->related_ns[RELA_OWNER]->proc);
1242 else if (ls->tree == LSNS_TREE_PARENT) {
1243 if (ns->related_ns[RELA_PARENT]) {
1244 if (!ns->related_ns[RELA_PARENT]->ns_outline)
1245 show_namespace(ls, tab, ns->related_ns[RELA_PARENT], ns->related_ns[RELA_PARENT]->proc);
1246 }
1247 else if (ns->related_ns[RELA_OWNER] && !ns->related_ns[RELA_OWNER]->ns_outline)
1248 show_namespace(ls, tab, ns->related_ns[RELA_OWNER], ns->related_ns[RELA_OWNER]->proc);
1249 }
1250
1251 add_scols_line(ls, tab, ns, proc);
1252 }
1253
1254 static inline void add_column(int id)
1255 {
1256 if (ncolumns >= ARRAY_SIZE(columns))
1257 errx(EXIT_FAILURE, _("too many columns specified, "
1258 "the limit is %zu columns"),
1259 ARRAY_SIZE(columns) - 1);
1260 columns[ ncolumns++ ] = id;
1261 }
1262
1263 static void init_scols_filter(struct libscols_table *tb, struct libscols_filter *f)
1264 {
1265 struct libscols_iter *itr;
1266 const char *name = NULL;
1267 int nerrs = 0;
1268
1269 itr = scols_new_iter(SCOLS_ITER_FORWARD);
1270 if (!itr)
1271 err(EXIT_FAILURE, _("failed to allocate iterator"));
1272
1273 while (scols_filter_next_holder(f, itr, &name, 0) == 0) {
1274 struct libscols_column *col = scols_table_get_column_by_name(tb, name);
1275 int id = column_name_to_id(name, strlen(name));
1276 const struct colinfo *ci = id >= 0 ? &infos[id] : NULL;
1277
1278 if (!ci) {
1279 nerrs++;
1280 continue; /* report all unknown columns */
1281 }
1282 if (!col) {
1283 add_column(id);
1284 col = scols_table_new_column(tb, ci->name,
1285 ci->whint, SCOLS_FL_HIDDEN);
1286 if (!col)
1287 err(EXIT_FAILURE,_("failed to allocate output column"));
1288
1289 scols_column_set_json_type(col, ci->json_type);
1290 }
1291
1292 scols_filter_assign_column(f, itr, name, col);
1293 }
1294
1295 scols_free_iter(itr);
1296
1297 if (!nerrs)
1298 return;
1299
1300 errx(EXIT_FAILURE, _("failed to initialize filter"));
1301 }
1302
1303 static int show_namespaces(struct lsns *ls)
1304 {
1305 struct libscols_table *tab;
1306 struct list_head *p;
1307 int rc = 0;
1308
1309 tab = init_scols_table(ls);
1310 if (!tab)
1311 return -ENOMEM;
1312
1313 init_scols_filter(tab, ls->filter);
1314
1315 list_for_each(p, &ls->namespaces) {
1316 struct lsns_namespace *ns = list_entry(p, struct lsns_namespace, namespaces);
1317
1318 if (ls->fltr_pid != 0 && !namespace_has_process(ns, ls->fltr_pid))
1319 continue;
1320 if (ls->persist && ns->nprocs != 0)
1321 continue;
1322
1323 if (!ns->ns_outline)
1324 show_namespace(ls, tab, ns, ns->proc);
1325 }
1326
1327 scols_print_table(tab);
1328 scols_unref_table(tab);
1329 return rc;
1330 }
1331
1332 static void show_process(struct lsns *ls, struct libscols_table *tab,
1333 struct lsns_process *proc, struct lsns_namespace *ns)
1334 {
1335 /*
1336 * create a tree from parent->child relation, but only if the parent is
1337 * within the same namespace
1338 */
1339 if (ls->tree == LSNS_TREE_PROCESS
1340 && proc->parent
1341 && !proc->parent->outline
1342 && proc->parent->ns_ids[ns->type] == proc->ns_ids[ns->type])
1343 show_process(ls, tab, proc->parent, ns);
1344
1345 add_scols_line(ls, tab, ns, proc);
1346 }
1347
1348
1349 static int show_namespace_processes(struct lsns *ls, struct lsns_namespace *ns)
1350 {
1351 struct libscols_table *tab;
1352 struct list_head *p;
1353
1354 tab = init_scols_table(ls);
1355 if (!tab)
1356 return -ENOMEM;
1357
1358 list_for_each(p, &ns->processes) {
1359 struct lsns_process *proc = list_entry(p, struct lsns_process, ns_siblings[ns->type]);
1360
1361 if (!proc->outline)
1362 show_process(ls, tab, proc, ns);
1363 }
1364
1365
1366 scols_print_table(tab);
1367 scols_unref_table(tab);
1368 return 0;
1369 }
1370
1371 static void free_lsns_process(struct lsns_process *lsns_p)
1372 {
1373 free(lsns_p);
1374 }
1375
1376 static void free_netnsid_caches(struct netnsid_cache *cache)
1377 {
1378 free(cache);
1379 }
1380
1381 static void free_lsns_namespace(struct lsns_namespace *lsns_n)
1382 {
1383 free(lsns_n);
1384 }
1385
1386 static void free_all(struct lsns *ls)
1387 {
1388 list_free(&ls->processes, struct lsns_process, processes, free_lsns_process);
1389 list_free(&netnsids_cache, struct netnsid_cache, netnsids, free_netnsid_caches);
1390 list_free(&ls->namespaces, struct lsns_namespace, namespaces, free_lsns_namespace);
1391 }
1392
1393 static struct libscols_filter *new_filter(const char *query)
1394 {
1395 struct libscols_filter *f;
1396
1397 f = scols_new_filter(NULL);
1398 if (!f)
1399 err(EXIT_FAILURE, _("failed to allocate filter"));
1400 if (query && scols_filter_parse_string(f, query) != 0)
1401 errx(EXIT_FAILURE, _("failed to parse \"%s\": %s"), query,
1402 scols_filter_get_errmsg(f));
1403 return f;
1404 }
1405
1406 static void __attribute__((__noreturn__)) usage(void)
1407 {
1408 FILE *out = stdout;
1409
1410 fputs(USAGE_HEADER, out);
1411
1412 fprintf(out,
1413 _(" %s [options] [<namespace>]\n"), program_invocation_short_name);
1414
1415 fputs(USAGE_SEPARATOR, out);
1416 fputs(_("List system namespaces.\n"), out);
1417
1418 fputs(USAGE_OPTIONS, out);
1419 fputs(_(" -J, --json use JSON output format\n"), out);
1420 fputs(_(" -l, --list use list format output\n"), out);
1421 fputs(_(" -n, --noheadings don't print headings\n"), out);
1422 fputs(_(" -o, --output <list> define which output columns to use\n"), out);
1423 fputs(_(" --output-all output all columns\n"), out);
1424 fputs(_(" -P, --persistent namespaces without processes\n"), out);
1425 fputs(_(" -p, --task <pid> print process namespaces\n"), out);
1426 fputs(_(" -r, --raw use the raw output format\n"), out);
1427 fputs(_(" -u, --notruncate don't truncate text in columns\n"), out);
1428 fputs(_(" -W, --nowrap don't use multi-line representation\n"), out);
1429 fputs(_(" -t, --type <name> namespace type (mnt, net, ipc, user, pid, uts, cgroup, time)\n"), out);
1430 fputs(_(" -T, --tree[=<rel>] use tree format (parent, owner, or process)\n"), out);
1431
1432 fputs(USAGE_SEPARATOR, out);
1433 fputs(_(" -H, --list-columns list the available columns\n"), out);
1434 fprintf(out, USAGE_HELP_OPTIONS(24));
1435 fprintf(out, USAGE_MAN_TAIL("lsns(8)"));
1436
1437 exit(EXIT_SUCCESS);
1438 }
1439
1440 static void __attribute__((__noreturn__)) list_colunms(bool raw, bool json)
1441 {
1442 struct libscols_table *col_tb = xcolumn_list_table_new("lsns-columns", stdout, raw, json);
1443
1444 for (size_t i = 0; i < ARRAY_SIZE(infos); i++)
1445 xcolumn_list_table_append_line(col_tb, infos[i].name,
1446 infos[i].json_type, NULL,
1447 _(infos[i].help));
1448
1449 scols_print_table(col_tb);
1450 scols_unref_table(col_tb);
1451
1452 exit(EXIT_SUCCESS);
1453 }
1454
1455 static dev_t read_nsfs_dev(void)
1456 {
1457 struct stat st;
1458
1459 if (stat("/proc/self/ns/user", &st) < 0)
1460 err(EXIT_FAILURE, _("failed to do stat /proc/self/ns/user"));
1461
1462 return st.st_dev;
1463 }
1464
1465 int main(int argc, char *argv[])
1466 {
1467 struct lsns ls;
1468 int c, force_list = 0;
1469 int r = 0;
1470 char *outarg = NULL;
1471 enum {
1472 OPT_OUTPUT_ALL = CHAR_MAX + 1
1473 };
1474 static const struct option long_opts[] = {
1475 { "json", no_argument, NULL, 'J' },
1476 { "task", required_argument, NULL, 'p' },
1477 { "help", no_argument, NULL, 'h' },
1478 { "output", required_argument, NULL, 'o' },
1479 { "output-all", no_argument, NULL, OPT_OUTPUT_ALL },
1480 { "persistent", no_argument, NULL, 'P' },
1481 { "filter", required_argument, NULL, 'Q' },
1482 { "notruncate", no_argument, NULL, 'u' },
1483 { "version", no_argument, NULL, 'V' },
1484 { "noheadings", no_argument, NULL, 'n' },
1485 { "nowrap", no_argument, NULL, 'W' },
1486 { "list", no_argument, NULL, 'l' },
1487 { "raw", no_argument, NULL, 'r' },
1488 { "type", required_argument, NULL, 't' },
1489 { "tree", optional_argument, NULL, 'T' },
1490 { "list-columns", no_argument, NULL, 'H' },
1491 { NULL, 0, NULL, 0 }
1492 };
1493
1494 static const ul_excl_t excl[] = { /* rows and cols in ASCII order */
1495 { 'J','r' },
1496 { 'P','p' },
1497 { 'l','T' },
1498 { 0 }
1499 };
1500 int excl_st[ARRAY_SIZE(excl)] = UL_EXCL_STATUS_INIT;
1501 int is_net = 0;
1502
1503 setlocale(LC_ALL, "");
1504 bindtextdomain(PACKAGE, LOCALEDIR);
1505 textdomain(PACKAGE);
1506 close_stdout_atexit();
1507
1508 lsns_init_debug();
1509 memset(&ls, 0, sizeof(ls));
1510
1511 INIT_LIST_HEAD(&ls.processes);
1512 INIT_LIST_HEAD(&ls.namespaces);
1513 INIT_LIST_HEAD(&netnsids_cache);
1514
1515 while ((c = getopt_long(argc, argv,
1516 "JlPp:o:nruhVt:T::WQ:H", long_opts, NULL)) != -1) {
1517
1518 err_exclusive_options(c, long_opts, excl, excl_st);
1519
1520 switch(c) {
1521 case 'J':
1522 ls.json = 1;
1523 break;
1524 case 'l':
1525 force_list = 1;
1526 break;
1527 case 'o':
1528 outarg = optarg;
1529 break;
1530 case OPT_OUTPUT_ALL:
1531 for (ncolumns = 0; ncolumns < ARRAY_SIZE(infos); ncolumns++)
1532 columns[ncolumns] = ncolumns;
1533 break;
1534 case 'P':
1535 ls.persist = 1;
1536 break;
1537 case 'p':
1538 ls.fltr_pid = strtos32_or_err(optarg, _("invalid PID argument"));
1539 break;
1540 case 'n':
1541 ls.no_headings = 1;
1542 break;
1543 case 'r':
1544 ls.no_wrap = ls.raw = 1;
1545 break;
1546 case 'u':
1547 ls.no_trunc = 1;
1548 break;
1549 case 't':
1550 {
1551 int type = ns_name2type(optarg);
1552 if (type < 0)
1553 errx(EXIT_FAILURE, _("unknown namespace type: %s"), optarg);
1554 ls.fltr_types[type] = 1;
1555 ls.fltr_ntypes++;
1556 if (type == LSNS_ID_NET)
1557 is_net = 1;
1558 break;
1559 }
1560 case 'W':
1561 ls.no_wrap = 1;
1562 break;
1563 case 'T':
1564 ls.tree = LSNS_TREE_OWNER;
1565 if (optarg) {
1566 if (*optarg == '=')
1567 optarg++;
1568 if (strcmp (optarg, "parent") == 0)
1569 ls.tree = LSNS_TREE_PARENT;
1570 else if (strcmp (optarg, "process") == 0)
1571 ls.tree = LSNS_TREE_PROCESS;
1572 else if (strcmp (optarg, "owner") != 0)
1573 errx(EXIT_FAILURE, _("unknown tree type: %s"), optarg);
1574 }
1575 break;
1576 case 'Q':
1577 ls.filter = new_filter(optarg);
1578 break;
1579 case 'H':
1580 list_colunms(ls.raw, ls.json);
1581
1582 case 'h':
1583 usage();
1584 case 'V':
1585 print_version(EXIT_SUCCESS);
1586 default:
1587 errtryhelp(EXIT_FAILURE);
1588 }
1589 }
1590
1591 if (!ls.fltr_ntypes) {
1592 size_t i;
1593
1594 for (i = 0; i < ARRAY_SIZE(ns_names); i++)
1595 ls.fltr_types[i] = 1;
1596 }
1597
1598 if (optind < argc) {
1599 if (ls.fltr_pid)
1600 errx(EXIT_FAILURE, _("--task is mutually exclusive with <namespace>"));
1601 ls.fltr_ns = strtou64_or_err(argv[optind], _("invalid namespace argument"));
1602 if (!ls.tree && !force_list)
1603 ls.tree = LSNS_TREE_PROCESS;
1604
1605 if (!ncolumns) {
1606 columns[ncolumns++] = COL_PID;
1607 columns[ncolumns++] = COL_PPID;
1608 columns[ncolumns++] = COL_USER;
1609 columns[ncolumns++] = COL_COMMAND;
1610 }
1611 }
1612
1613 if (!ncolumns) {
1614 columns[ncolumns++] = COL_NS;
1615 columns[ncolumns++] = COL_TYPE;
1616 columns[ncolumns++] = COL_NPROCS;
1617 columns[ncolumns++] = COL_PID;
1618 columns[ncolumns++] = COL_USER;
1619 if (is_net) {
1620 columns[ncolumns++] = COL_NETNSID;
1621 columns[ncolumns++] = COL_NSFS;
1622 }
1623 columns[ncolumns++] = COL_COMMAND;
1624
1625 if (!ls.tree && !force_list)
1626 ls.tree = LSNS_TREE_PROCESS;
1627 }
1628
1629 #ifndef USE_NS_GET_API
1630 if (ls.tree && ls.tree != LSNS_TREE_PROCESS)
1631 errx(EXIT_FAILURE, _("--tree={parent|owner} is unsupported for your system"));
1632 #endif
1633 if (outarg && string_add_to_idarray(outarg, columns, ARRAY_SIZE(columns),
1634 &ncolumns, column_name_to_id) < 0)
1635 return EXIT_FAILURE;
1636
1637 scols_init_debug(0);
1638
1639 uid_cache = new_idcache();
1640 if (!uid_cache)
1641 err(EXIT_FAILURE, _("failed to allocate UID cache"));
1642
1643 #ifdef HAVE_LINUX_NET_NAMESPACE_H
1644 if (has_column(COL_NETNSID))
1645 netlink_fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
1646 #endif
1647 ls.tab = mnt_new_table_from_file(_PATH_PROC_MOUNTINFO);
1648 if (!ls.tab)
1649 err(MNT_EX_FAIL, _("failed to parse %s"), _PATH_PROC_MOUNTINFO);
1650
1651 ls.nsfs_dev = read_nsfs_dev();
1652
1653 r = read_processes(&ls);
1654 if (!r)
1655 r = read_namespaces(&ls);
1656 if (!r) {
1657 if (ls.fltr_ns) {
1658 struct lsns_namespace *ns = get_namespace(&ls, ls.fltr_ns);
1659
1660 if (!ns)
1661 errx(EXIT_FAILURE, _("not found namespace: %ju"), (uintmax_t) ls.fltr_ns);
1662 r = show_namespace_processes(&ls, ns);
1663 } else
1664 r = show_namespaces(&ls);
1665 }
1666
1667 scols_unref_filter(ls.filter);
1668 mnt_free_table(ls.tab);
1669 if (netlink_fd >= 0)
1670 close(netlink_fd);
1671 free_idcache(uid_cache);
1672
1673 free_all(&ls);
1674
1675 switch (r) {
1676 case 0: return EXIT_SUCCESS;
1677 case -ENOTTY: return EXIT_UNSUPPORTED_IOCTL;
1678 default: return EXIT_FAILURE;
1679 }
1680 }