]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
* efi-rtdrv-ia32.c: New file.
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
ec2655a6 3 2004, 2005, 2006, 2007
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
5287ad62 28#include <limits.h>
037e8744 29#include <stdarg.h>
c19d1205 30#define NO_RELOC 0
b99bd4ef 31#include "as.h"
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
720abc60 45#define WARN_DEPRECATED 1
03b1477f 46
7ed4c4c5
NC
47#ifdef OBJ_ELF
48/* Must be at least the size of the largest unwind opcode (currently two). */
49#define ARM_OPCODE_CHUNK_SIZE 8
50
51/* This structure holds the unwinding state. */
52
53static struct
54{
c19d1205
ZW
55 symbolS * proc_start;
56 symbolS * table_entry;
57 symbolS * personality_routine;
58 int personality_index;
7ed4c4c5 59 /* The segment containing the function. */
c19d1205
ZW
60 segT saved_seg;
61 subsegT saved_subseg;
7ed4c4c5
NC
62 /* Opcodes generated from this function. */
63 unsigned char * opcodes;
c19d1205
ZW
64 int opcode_count;
65 int opcode_alloc;
7ed4c4c5 66 /* The number of bytes pushed to the stack. */
c19d1205 67 offsetT frame_size;
7ed4c4c5
NC
68 /* We don't add stack adjustment opcodes immediately so that we can merge
69 multiple adjustments. We can also omit the final adjustment
70 when using a frame pointer. */
c19d1205 71 offsetT pending_offset;
7ed4c4c5 72 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
73 hold the reg+offset to use when restoring sp from a frame pointer. */
74 offsetT fp_offset;
75 int fp_reg;
7ed4c4c5 76 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 77 unsigned fp_used:1;
7ed4c4c5 78 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 79 unsigned sp_restored:1;
7ed4c4c5
NC
80} unwind;
81
8b1ad454
NC
82/* Bit N indicates that an R_ARM_NONE relocation has been output for
83 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
84 emitted only once per section, to save unnecessary bloat. */
85static unsigned int marked_pr_dependency = 0;
86
87#endif /* OBJ_ELF */
88
4962c51a
MS
89/* Results from operand parsing worker functions. */
90
91typedef enum
92{
93 PARSE_OPERAND_SUCCESS,
94 PARSE_OPERAND_FAIL,
95 PARSE_OPERAND_FAIL_NO_BACKTRACK
96} parse_operand_result;
97
33a392fb
PB
98enum arm_float_abi
99{
100 ARM_FLOAT_ABI_HARD,
101 ARM_FLOAT_ABI_SOFTFP,
102 ARM_FLOAT_ABI_SOFT
103};
104
c19d1205 105/* Types of processor to assemble for. */
b99bd4ef
NC
106#ifndef CPU_DEFAULT
107#if defined __XSCALE__
e74cfd16 108#define CPU_DEFAULT ARM_ARCH_XSCALE
b99bd4ef
NC
109#else
110#if defined __thumb__
e74cfd16 111#define CPU_DEFAULT ARM_ARCH_V5T
b99bd4ef
NC
112#endif
113#endif
114#endif
115
116#ifndef FPU_DEFAULT
c820d418
MM
117# ifdef TE_LINUX
118# define FPU_DEFAULT FPU_ARCH_FPA
119# elif defined (TE_NetBSD)
120# ifdef OBJ_ELF
121# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
122# else
123 /* Legacy a.out format. */
124# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
125# endif
4e7fd91e
PB
126# elif defined (TE_VXWORKS)
127# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
128# else
129 /* For backwards compatibility, default to FPA. */
130# define FPU_DEFAULT FPU_ARCH_FPA
131# endif
132#endif /* ifndef FPU_DEFAULT */
b99bd4ef 133
c19d1205 134#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 135
e74cfd16
PB
136static arm_feature_set cpu_variant;
137static arm_feature_set arm_arch_used;
138static arm_feature_set thumb_arch_used;
b99bd4ef 139
b99bd4ef 140/* Flags stored in private area of BFD structure. */
c19d1205
ZW
141static int uses_apcs_26 = FALSE;
142static int atpcs = FALSE;
b34976b6
AM
143static int support_interwork = FALSE;
144static int uses_apcs_float = FALSE;
c19d1205 145static int pic_code = FALSE;
03b1477f
RE
146
147/* Variables that we set while parsing command-line options. Once all
148 options have been read we re-process these values to set the real
149 assembly flags. */
e74cfd16
PB
150static const arm_feature_set *legacy_cpu = NULL;
151static const arm_feature_set *legacy_fpu = NULL;
152
153static const arm_feature_set *mcpu_cpu_opt = NULL;
154static const arm_feature_set *mcpu_fpu_opt = NULL;
155static const arm_feature_set *march_cpu_opt = NULL;
156static const arm_feature_set *march_fpu_opt = NULL;
157static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 158static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
159
160/* Constants for known architecture features. */
161static const arm_feature_set fpu_default = FPU_DEFAULT;
162static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
163static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
164static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
165static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
166static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
167static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
168static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
169static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
170
171#ifdef CPU_DEFAULT
172static const arm_feature_set cpu_default = CPU_DEFAULT;
173#endif
174
175static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
176static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
177static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
178static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
179static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
180static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
181static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
182static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
183static const arm_feature_set arm_ext_v4t_5 =
184 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
185static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
186static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
187static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
188static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
189static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
190static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
191static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
192static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
194static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
195static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
196static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
197static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
198static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
e74cfd16
PB
199
200static const arm_feature_set arm_arch_any = ARM_ANY;
201static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
202static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
203static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
204
2d447fca
JM
205static const arm_feature_set arm_cext_iwmmxt2 =
206 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
207static const arm_feature_set arm_cext_iwmmxt =
208 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
209static const arm_feature_set arm_cext_xscale =
210 ARM_FEATURE (0, ARM_CEXT_XSCALE);
211static const arm_feature_set arm_cext_maverick =
212 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
213static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
214static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
215static const arm_feature_set fpu_vfp_ext_v1xd =
216 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
217static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
218static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
5287ad62
JB
219static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
220static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
221static const arm_feature_set fpu_vfp_v3_or_neon_ext =
222 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
e74cfd16 223
33a392fb 224static int mfloat_abi_opt = -1;
e74cfd16
PB
225/* Record user cpu selection for object attributes. */
226static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
227/* Must be long enough to hold any of the names in arm_cpus. */
228static char selected_cpu_name[16];
7cc69913 229#ifdef OBJ_ELF
deeaaff8
DJ
230# ifdef EABI_DEFAULT
231static int meabi_flags = EABI_DEFAULT;
232# else
d507cf36 233static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 234# endif
e1da3f5b
PB
235
236bfd_boolean
5f4273c7 237arm_is_eabi (void)
e1da3f5b
PB
238{
239 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
240}
7cc69913 241#endif
b99bd4ef 242
b99bd4ef 243#ifdef OBJ_ELF
c19d1205 244/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
245symbolS * GOT_symbol;
246#endif
247
b99bd4ef
NC
248/* 0: assemble for ARM,
249 1: assemble for Thumb,
250 2: assemble for Thumb even though target CPU does not support thumb
251 instructions. */
252static int thumb_mode = 0;
253
c19d1205
ZW
254/* If unified_syntax is true, we are processing the new unified
255 ARM/Thumb syntax. Important differences from the old ARM mode:
256
257 - Immediate operands do not require a # prefix.
258 - Conditional affixes always appear at the end of the
259 instruction. (For backward compatibility, those instructions
260 that formerly had them in the middle, continue to accept them
261 there.)
262 - The IT instruction may appear, and if it does is validated
263 against subsequent conditional affixes. It does not generate
264 machine code.
265
266 Important differences from the old Thumb mode:
267
268 - Immediate operands do not require a # prefix.
269 - Most of the V6T2 instructions are only available in unified mode.
270 - The .N and .W suffixes are recognized and honored (it is an error
271 if they cannot be honored).
272 - All instructions set the flags if and only if they have an 's' affix.
273 - Conditional affixes may be used. They are validated against
274 preceding IT instructions. Unlike ARM mode, you cannot use a
275 conditional affix except in the scope of an IT instruction. */
276
277static bfd_boolean unified_syntax = FALSE;
b99bd4ef 278
5287ad62
JB
279enum neon_el_type
280{
dcbf9037 281 NT_invtype,
5287ad62
JB
282 NT_untyped,
283 NT_integer,
284 NT_float,
285 NT_poly,
286 NT_signed,
dcbf9037 287 NT_unsigned
5287ad62
JB
288};
289
290struct neon_type_el
291{
292 enum neon_el_type type;
293 unsigned size;
294};
295
296#define NEON_MAX_TYPE_ELS 4
297
298struct neon_type
299{
300 struct neon_type_el el[NEON_MAX_TYPE_ELS];
301 unsigned elems;
302};
303
b99bd4ef
NC
304struct arm_it
305{
c19d1205 306 const char * error;
b99bd4ef 307 unsigned long instruction;
c19d1205
ZW
308 int size;
309 int size_req;
310 int cond;
037e8744
JB
311 /* "uncond_value" is set to the value in place of the conditional field in
312 unconditional versions of the instruction, or -1 if nothing is
313 appropriate. */
314 int uncond_value;
5287ad62 315 struct neon_type vectype;
0110f2b8
PB
316 /* Set to the opcode if the instruction needs relaxation.
317 Zero if the instruction is not relaxed. */
318 unsigned long relax;
b99bd4ef
NC
319 struct
320 {
321 bfd_reloc_code_real_type type;
c19d1205
ZW
322 expressionS exp;
323 int pc_rel;
b99bd4ef 324 } reloc;
b99bd4ef 325
c19d1205
ZW
326 struct
327 {
328 unsigned reg;
ca3f61f7 329 signed int imm;
dcbf9037 330 struct neon_type_el vectype;
ca3f61f7
NC
331 unsigned present : 1; /* Operand present. */
332 unsigned isreg : 1; /* Operand was a register. */
333 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
334 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
335 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 336 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
337 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
338 instructions. This allows us to disambiguate ARM <-> vector insns. */
339 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 340 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 341 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 342 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
343 unsigned hasreloc : 1; /* Operand has relocation suffix. */
344 unsigned writeback : 1; /* Operand has trailing ! */
345 unsigned preind : 1; /* Preindexed address. */
346 unsigned postind : 1; /* Postindexed address. */
347 unsigned negative : 1; /* Index register was negated. */
348 unsigned shifted : 1; /* Shift applied to operation. */
349 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 350 } operands[6];
b99bd4ef
NC
351};
352
c19d1205 353static struct arm_it inst;
b99bd4ef
NC
354
355#define NUM_FLOAT_VALS 8
356
05d2d07e 357const char * fp_const[] =
b99bd4ef
NC
358{
359 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
360};
361
c19d1205 362/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
363#define MAX_LITTLENUMS 6
364
365LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
366
367#define FAIL (-1)
368#define SUCCESS (0)
369
370#define SUFF_S 1
371#define SUFF_D 2
372#define SUFF_E 3
373#define SUFF_P 4
374
c19d1205
ZW
375#define CP_T_X 0x00008000
376#define CP_T_Y 0x00400000
b99bd4ef 377
c19d1205
ZW
378#define CONDS_BIT 0x00100000
379#define LOAD_BIT 0x00100000
b99bd4ef
NC
380
381#define DOUBLE_LOAD_FLAG 0x00000001
382
383struct asm_cond
384{
c19d1205 385 const char * template;
b99bd4ef
NC
386 unsigned long value;
387};
388
c19d1205 389#define COND_ALWAYS 0xE
b99bd4ef 390
b99bd4ef
NC
391struct asm_psr
392{
b34976b6 393 const char *template;
b99bd4ef
NC
394 unsigned long field;
395};
396
62b3e311
PB
397struct asm_barrier_opt
398{
399 const char *template;
400 unsigned long value;
401};
402
2d2255b5 403/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
404#define SPSR_BIT (1 << 22)
405
c19d1205
ZW
406/* The individual PSR flag bits. */
407#define PSR_c (1 << 16)
408#define PSR_x (1 << 17)
409#define PSR_s (1 << 18)
410#define PSR_f (1 << 19)
b99bd4ef 411
c19d1205 412struct reloc_entry
bfae80f2 413{
c19d1205
ZW
414 char *name;
415 bfd_reloc_code_real_type reloc;
bfae80f2
RE
416};
417
5287ad62 418enum vfp_reg_pos
bfae80f2 419{
5287ad62
JB
420 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
421 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
422};
423
424enum vfp_ldstm_type
425{
426 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
427};
428
dcbf9037
JB
429/* Bits for DEFINED field in neon_typed_alias. */
430#define NTA_HASTYPE 1
431#define NTA_HASINDEX 2
432
433struct neon_typed_alias
434{
435 unsigned char defined;
436 unsigned char index;
437 struct neon_type_el eltype;
438};
439
c19d1205
ZW
440/* ARM register categories. This includes coprocessor numbers and various
441 architecture extensions' registers. */
442enum arm_reg_type
bfae80f2 443{
c19d1205
ZW
444 REG_TYPE_RN,
445 REG_TYPE_CP,
446 REG_TYPE_CN,
447 REG_TYPE_FN,
448 REG_TYPE_VFS,
449 REG_TYPE_VFD,
5287ad62 450 REG_TYPE_NQ,
037e8744 451 REG_TYPE_VFSD,
5287ad62 452 REG_TYPE_NDQ,
037e8744 453 REG_TYPE_NSDQ,
c19d1205
ZW
454 REG_TYPE_VFC,
455 REG_TYPE_MVF,
456 REG_TYPE_MVD,
457 REG_TYPE_MVFX,
458 REG_TYPE_MVDX,
459 REG_TYPE_MVAX,
460 REG_TYPE_DSPSC,
461 REG_TYPE_MMXWR,
462 REG_TYPE_MMXWC,
463 REG_TYPE_MMXWCG,
464 REG_TYPE_XSCALE,
bfae80f2
RE
465};
466
dcbf9037
JB
467/* Structure for a hash table entry for a register.
468 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
469 information which states whether a vector type or index is specified (for a
470 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
471struct reg_entry
472{
dcbf9037
JB
473 const char *name;
474 unsigned char number;
475 unsigned char type;
476 unsigned char builtin;
477 struct neon_typed_alias *neon;
6c43fab6
RE
478};
479
c19d1205
ZW
480/* Diagnostics used when we don't get a register of the expected type. */
481const char *const reg_expected_msgs[] =
482{
483 N_("ARM register expected"),
484 N_("bad or missing co-processor number"),
485 N_("co-processor register expected"),
486 N_("FPA register expected"),
487 N_("VFP single precision register expected"),
5287ad62
JB
488 N_("VFP/Neon double precision register expected"),
489 N_("Neon quad precision register expected"),
037e8744 490 N_("VFP single or double precision register expected"),
5287ad62 491 N_("Neon double or quad precision register expected"),
037e8744 492 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
493 N_("VFP system register expected"),
494 N_("Maverick MVF register expected"),
495 N_("Maverick MVD register expected"),
496 N_("Maverick MVFX register expected"),
497 N_("Maverick MVDX register expected"),
498 N_("Maverick MVAX register expected"),
499 N_("Maverick DSPSC register expected"),
500 N_("iWMMXt data register expected"),
501 N_("iWMMXt control register expected"),
502 N_("iWMMXt scalar register expected"),
503 N_("XScale accumulator register expected"),
6c43fab6
RE
504};
505
c19d1205
ZW
506/* Some well known registers that we refer to directly elsewhere. */
507#define REG_SP 13
508#define REG_LR 14
509#define REG_PC 15
404ff6b5 510
b99bd4ef
NC
511/* ARM instructions take 4bytes in the object file, Thumb instructions
512 take 2: */
c19d1205 513#define INSN_SIZE 4
b99bd4ef
NC
514
515struct asm_opcode
516{
517 /* Basic string to match. */
c19d1205
ZW
518 const char *template;
519
520 /* Parameters to instruction. */
521 unsigned char operands[8];
522
523 /* Conditional tag - see opcode_lookup. */
524 unsigned int tag : 4;
b99bd4ef
NC
525
526 /* Basic instruction code. */
c19d1205 527 unsigned int avalue : 28;
b99bd4ef 528
c19d1205
ZW
529 /* Thumb-format instruction code. */
530 unsigned int tvalue;
b99bd4ef 531
90e4755a 532 /* Which architecture variant provides this instruction. */
e74cfd16
PB
533 const arm_feature_set *avariant;
534 const arm_feature_set *tvariant;
c19d1205
ZW
535
536 /* Function to call to encode instruction in ARM format. */
537 void (* aencode) (void);
b99bd4ef 538
c19d1205
ZW
539 /* Function to call to encode instruction in Thumb format. */
540 void (* tencode) (void);
b99bd4ef
NC
541};
542
a737bd4d
NC
543/* Defines for various bits that we will want to toggle. */
544#define INST_IMMEDIATE 0x02000000
545#define OFFSET_REG 0x02000000
c19d1205 546#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
547#define SHIFT_BY_REG 0x00000010
548#define PRE_INDEX 0x01000000
549#define INDEX_UP 0x00800000
550#define WRITE_BACK 0x00200000
551#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 552#define CPSI_MMOD 0x00020000
90e4755a 553
a737bd4d
NC
554#define LITERAL_MASK 0xf000f000
555#define OPCODE_MASK 0xfe1fffff
556#define V4_STR_BIT 0x00000020
90e4755a 557
efd81785
PB
558#define T2_SUBS_PC_LR 0xf3de8f00
559
a737bd4d 560#define DATA_OP_SHIFT 21
90e4755a 561
ef8d22e6
PB
562#define T2_OPCODE_MASK 0xfe1fffff
563#define T2_DATA_OP_SHIFT 21
564
a737bd4d
NC
565/* Codes to distinguish the arithmetic instructions. */
566#define OPCODE_AND 0
567#define OPCODE_EOR 1
568#define OPCODE_SUB 2
569#define OPCODE_RSB 3
570#define OPCODE_ADD 4
571#define OPCODE_ADC 5
572#define OPCODE_SBC 6
573#define OPCODE_RSC 7
574#define OPCODE_TST 8
575#define OPCODE_TEQ 9
576#define OPCODE_CMP 10
577#define OPCODE_CMN 11
578#define OPCODE_ORR 12
579#define OPCODE_MOV 13
580#define OPCODE_BIC 14
581#define OPCODE_MVN 15
90e4755a 582
ef8d22e6
PB
583#define T2_OPCODE_AND 0
584#define T2_OPCODE_BIC 1
585#define T2_OPCODE_ORR 2
586#define T2_OPCODE_ORN 3
587#define T2_OPCODE_EOR 4
588#define T2_OPCODE_ADD 8
589#define T2_OPCODE_ADC 10
590#define T2_OPCODE_SBC 11
591#define T2_OPCODE_SUB 13
592#define T2_OPCODE_RSB 14
593
a737bd4d
NC
594#define T_OPCODE_MUL 0x4340
595#define T_OPCODE_TST 0x4200
596#define T_OPCODE_CMN 0x42c0
597#define T_OPCODE_NEG 0x4240
598#define T_OPCODE_MVN 0x43c0
90e4755a 599
a737bd4d
NC
600#define T_OPCODE_ADD_R3 0x1800
601#define T_OPCODE_SUB_R3 0x1a00
602#define T_OPCODE_ADD_HI 0x4400
603#define T_OPCODE_ADD_ST 0xb000
604#define T_OPCODE_SUB_ST 0xb080
605#define T_OPCODE_ADD_SP 0xa800
606#define T_OPCODE_ADD_PC 0xa000
607#define T_OPCODE_ADD_I8 0x3000
608#define T_OPCODE_SUB_I8 0x3800
609#define T_OPCODE_ADD_I3 0x1c00
610#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 611
a737bd4d
NC
612#define T_OPCODE_ASR_R 0x4100
613#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
614#define T_OPCODE_LSR_R 0x40c0
615#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
616#define T_OPCODE_ASR_I 0x1000
617#define T_OPCODE_LSL_I 0x0000
618#define T_OPCODE_LSR_I 0x0800
b99bd4ef 619
a737bd4d
NC
620#define T_OPCODE_MOV_I8 0x2000
621#define T_OPCODE_CMP_I8 0x2800
622#define T_OPCODE_CMP_LR 0x4280
623#define T_OPCODE_MOV_HR 0x4600
624#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 625
a737bd4d
NC
626#define T_OPCODE_LDR_PC 0x4800
627#define T_OPCODE_LDR_SP 0x9800
628#define T_OPCODE_STR_SP 0x9000
629#define T_OPCODE_LDR_IW 0x6800
630#define T_OPCODE_STR_IW 0x6000
631#define T_OPCODE_LDR_IH 0x8800
632#define T_OPCODE_STR_IH 0x8000
633#define T_OPCODE_LDR_IB 0x7800
634#define T_OPCODE_STR_IB 0x7000
635#define T_OPCODE_LDR_RW 0x5800
636#define T_OPCODE_STR_RW 0x5000
637#define T_OPCODE_LDR_RH 0x5a00
638#define T_OPCODE_STR_RH 0x5200
639#define T_OPCODE_LDR_RB 0x5c00
640#define T_OPCODE_STR_RB 0x5400
c9b604bd 641
a737bd4d
NC
642#define T_OPCODE_PUSH 0xb400
643#define T_OPCODE_POP 0xbc00
b99bd4ef 644
2fc8bdac 645#define T_OPCODE_BRANCH 0xe000
b99bd4ef 646
a737bd4d 647#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 648#define THUMB_PP_PC_LR 0x0100
c19d1205 649#define THUMB_LOAD_BIT 0x0800
53365c0d 650#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
651
652#define BAD_ARGS _("bad arguments to instruction")
653#define BAD_PC _("r15 not allowed here")
654#define BAD_COND _("instruction cannot be conditional")
655#define BAD_OVERLAP _("registers may not be the same")
656#define BAD_HIREG _("lo register required")
657#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 658#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
659#define BAD_BRANCH _("branch must be last instruction in IT block")
660#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 661#define BAD_FPU _("selected FPU does not support instruction")
c19d1205
ZW
662
663static struct hash_control *arm_ops_hsh;
664static struct hash_control *arm_cond_hsh;
665static struct hash_control *arm_shift_hsh;
666static struct hash_control *arm_psr_hsh;
62b3e311 667static struct hash_control *arm_v7m_psr_hsh;
c19d1205
ZW
668static struct hash_control *arm_reg_hsh;
669static struct hash_control *arm_reloc_hsh;
62b3e311 670static struct hash_control *arm_barrier_opt_hsh;
b99bd4ef 671
b99bd4ef
NC
672/* Stuff needed to resolve the label ambiguity
673 As:
674 ...
675 label: <insn>
676 may differ from:
677 ...
678 label:
5f4273c7 679 <insn> */
b99bd4ef
NC
680
681symbolS * last_label_seen;
b34976b6 682static int label_is_thumb_function_name = FALSE;
a737bd4d 683\f
3d0c9500
NC
684/* Literal pool structure. Held on a per-section
685 and per-sub-section basis. */
a737bd4d 686
c19d1205 687#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 688typedef struct literal_pool
b99bd4ef 689{
c19d1205
ZW
690 expressionS literals [MAX_LITERAL_POOL_SIZE];
691 unsigned int next_free_entry;
692 unsigned int id;
693 symbolS * symbol;
694 segT section;
695 subsegT sub_section;
61b5f74b 696 struct literal_pool * next;
3d0c9500 697} literal_pool;
b99bd4ef 698
3d0c9500
NC
699/* Pointer to a linked list of literal pools. */
700literal_pool * list_of_pools = NULL;
e27ec89e
PB
701
702/* State variables for IT block handling. */
703static bfd_boolean current_it_mask = 0;
704static int current_cc;
c19d1205
ZW
705\f
706/* Pure syntax. */
b99bd4ef 707
c19d1205
ZW
708/* This array holds the chars that always start a comment. If the
709 pre-processor is disabled, these aren't very useful. */
710const char comment_chars[] = "@";
3d0c9500 711
c19d1205
ZW
712/* This array holds the chars that only start a comment at the beginning of
713 a line. If the line seems to have the form '# 123 filename'
714 .line and .file directives will appear in the pre-processed output. */
715/* Note that input_file.c hand checks for '#' at the beginning of the
716 first line of the input file. This is because the compiler outputs
717 #NO_APP at the beginning of its output. */
718/* Also note that comments like this one will always work. */
719const char line_comment_chars[] = "#";
3d0c9500 720
c19d1205 721const char line_separator_chars[] = ";";
b99bd4ef 722
c19d1205
ZW
723/* Chars that can be used to separate mant
724 from exp in floating point numbers. */
725const char EXP_CHARS[] = "eE";
3d0c9500 726
c19d1205
ZW
727/* Chars that mean this number is a floating point constant. */
728/* As in 0f12.456 */
729/* or 0d1.2345e12 */
b99bd4ef 730
c19d1205 731const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 732
c19d1205
ZW
733/* Prefix characters that indicate the start of an immediate
734 value. */
735#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 736
c19d1205
ZW
737/* Separator character handling. */
738
739#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
740
741static inline int
742skip_past_char (char ** str, char c)
743{
744 if (**str == c)
745 {
746 (*str)++;
747 return SUCCESS;
3d0c9500 748 }
c19d1205
ZW
749 else
750 return FAIL;
751}
752#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 753
c19d1205
ZW
754/* Arithmetic expressions (possibly involving symbols). */
755
756/* Return TRUE if anything in the expression is a bignum. */
757
758static int
759walk_no_bignums (symbolS * sp)
760{
761 if (symbol_get_value_expression (sp)->X_op == O_big)
762 return 1;
763
764 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 765 {
c19d1205
ZW
766 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
767 || (symbol_get_value_expression (sp)->X_op_symbol
768 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
769 }
770
c19d1205 771 return 0;
3d0c9500
NC
772}
773
c19d1205
ZW
774static int in_my_get_expression = 0;
775
776/* Third argument to my_get_expression. */
777#define GE_NO_PREFIX 0
778#define GE_IMM_PREFIX 1
779#define GE_OPT_PREFIX 2
5287ad62
JB
780/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
781 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
782#define GE_OPT_PREFIX_BIG 3
a737bd4d 783
b99bd4ef 784static int
c19d1205 785my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 786{
c19d1205
ZW
787 char * save_in;
788 segT seg;
b99bd4ef 789
c19d1205
ZW
790 /* In unified syntax, all prefixes are optional. */
791 if (unified_syntax)
5287ad62
JB
792 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
793 : GE_OPT_PREFIX;
b99bd4ef 794
c19d1205 795 switch (prefix_mode)
b99bd4ef 796 {
c19d1205
ZW
797 case GE_NO_PREFIX: break;
798 case GE_IMM_PREFIX:
799 if (!is_immediate_prefix (**str))
800 {
801 inst.error = _("immediate expression requires a # prefix");
802 return FAIL;
803 }
804 (*str)++;
805 break;
806 case GE_OPT_PREFIX:
5287ad62 807 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
808 if (is_immediate_prefix (**str))
809 (*str)++;
810 break;
811 default: abort ();
812 }
b99bd4ef 813
c19d1205 814 memset (ep, 0, sizeof (expressionS));
b99bd4ef 815
c19d1205
ZW
816 save_in = input_line_pointer;
817 input_line_pointer = *str;
818 in_my_get_expression = 1;
819 seg = expression (ep);
820 in_my_get_expression = 0;
821
822 if (ep->X_op == O_illegal)
b99bd4ef 823 {
c19d1205
ZW
824 /* We found a bad expression in md_operand(). */
825 *str = input_line_pointer;
826 input_line_pointer = save_in;
827 if (inst.error == NULL)
828 inst.error = _("bad expression");
829 return 1;
830 }
b99bd4ef 831
c19d1205
ZW
832#ifdef OBJ_AOUT
833 if (seg != absolute_section
834 && seg != text_section
835 && seg != data_section
836 && seg != bss_section
837 && seg != undefined_section)
838 {
839 inst.error = _("bad segment");
840 *str = input_line_pointer;
841 input_line_pointer = save_in;
842 return 1;
b99bd4ef 843 }
c19d1205 844#endif
b99bd4ef 845
c19d1205
ZW
846 /* Get rid of any bignums now, so that we don't generate an error for which
847 we can't establish a line number later on. Big numbers are never valid
848 in instructions, which is where this routine is always called. */
5287ad62
JB
849 if (prefix_mode != GE_OPT_PREFIX_BIG
850 && (ep->X_op == O_big
851 || (ep->X_add_symbol
852 && (walk_no_bignums (ep->X_add_symbol)
853 || (ep->X_op_symbol
854 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
855 {
856 inst.error = _("invalid constant");
857 *str = input_line_pointer;
858 input_line_pointer = save_in;
859 return 1;
860 }
b99bd4ef 861
c19d1205
ZW
862 *str = input_line_pointer;
863 input_line_pointer = save_in;
864 return 0;
b99bd4ef
NC
865}
866
c19d1205
ZW
867/* Turn a string in input_line_pointer into a floating point constant
868 of type TYPE, and store the appropriate bytes in *LITP. The number
869 of LITTLENUMS emitted is stored in *SIZEP. An error message is
870 returned, or NULL on OK.
b99bd4ef 871
c19d1205
ZW
872 Note that fp constants aren't represent in the normal way on the ARM.
873 In big endian mode, things are as expected. However, in little endian
874 mode fp constants are big-endian word-wise, and little-endian byte-wise
875 within the words. For example, (double) 1.1 in big endian mode is
876 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
877 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 878
c19d1205 879 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 880
c19d1205
ZW
881char *
882md_atof (int type, char * litP, int * sizeP)
883{
884 int prec;
885 LITTLENUM_TYPE words[MAX_LITTLENUMS];
886 char *t;
887 int i;
b99bd4ef 888
c19d1205
ZW
889 switch (type)
890 {
891 case 'f':
892 case 'F':
893 case 's':
894 case 'S':
895 prec = 2;
896 break;
b99bd4ef 897
c19d1205
ZW
898 case 'd':
899 case 'D':
900 case 'r':
901 case 'R':
902 prec = 4;
903 break;
b99bd4ef 904
c19d1205
ZW
905 case 'x':
906 case 'X':
499ac353 907 prec = 5;
c19d1205 908 break;
b99bd4ef 909
c19d1205
ZW
910 case 'p':
911 case 'P':
499ac353 912 prec = 5;
c19d1205 913 break;
a737bd4d 914
c19d1205
ZW
915 default:
916 *sizeP = 0;
499ac353 917 return _("Unrecognized or unsupported floating point constant");
c19d1205 918 }
b99bd4ef 919
c19d1205
ZW
920 t = atof_ieee (input_line_pointer, type, words);
921 if (t)
922 input_line_pointer = t;
499ac353 923 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 924
c19d1205
ZW
925 if (target_big_endian)
926 {
927 for (i = 0; i < prec; i++)
928 {
499ac353
NC
929 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
930 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
931 }
932 }
933 else
934 {
e74cfd16 935 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
936 for (i = prec - 1; i >= 0; i--)
937 {
499ac353
NC
938 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
939 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
940 }
941 else
942 /* For a 4 byte float the order of elements in `words' is 1 0.
943 For an 8 byte float the order is 1 0 3 2. */
944 for (i = 0; i < prec; i += 2)
945 {
499ac353
NC
946 md_number_to_chars (litP, (valueT) words[i + 1],
947 sizeof (LITTLENUM_TYPE));
948 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
949 (valueT) words[i], sizeof (LITTLENUM_TYPE));
950 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
951 }
952 }
b99bd4ef 953
499ac353 954 return NULL;
c19d1205 955}
b99bd4ef 956
c19d1205
ZW
957/* We handle all bad expressions here, so that we can report the faulty
958 instruction in the error message. */
959void
960md_operand (expressionS * expr)
961{
962 if (in_my_get_expression)
963 expr->X_op = O_illegal;
b99bd4ef
NC
964}
965
c19d1205 966/* Immediate values. */
b99bd4ef 967
c19d1205
ZW
968/* Generic immediate-value read function for use in directives.
969 Accepts anything that 'expression' can fold to a constant.
970 *val receives the number. */
971#ifdef OBJ_ELF
972static int
973immediate_for_directive (int *val)
b99bd4ef 974{
c19d1205
ZW
975 expressionS exp;
976 exp.X_op = O_illegal;
b99bd4ef 977
c19d1205
ZW
978 if (is_immediate_prefix (*input_line_pointer))
979 {
980 input_line_pointer++;
981 expression (&exp);
982 }
b99bd4ef 983
c19d1205
ZW
984 if (exp.X_op != O_constant)
985 {
986 as_bad (_("expected #constant"));
987 ignore_rest_of_line ();
988 return FAIL;
989 }
990 *val = exp.X_add_number;
991 return SUCCESS;
b99bd4ef 992}
c19d1205 993#endif
b99bd4ef 994
c19d1205 995/* Register parsing. */
b99bd4ef 996
c19d1205
ZW
997/* Generic register parser. CCP points to what should be the
998 beginning of a register name. If it is indeed a valid register
999 name, advance CCP over it and return the reg_entry structure;
1000 otherwise return NULL. Does not issue diagnostics. */
1001
1002static struct reg_entry *
1003arm_reg_parse_multi (char **ccp)
b99bd4ef 1004{
c19d1205
ZW
1005 char *start = *ccp;
1006 char *p;
1007 struct reg_entry *reg;
b99bd4ef 1008
c19d1205
ZW
1009#ifdef REGISTER_PREFIX
1010 if (*start != REGISTER_PREFIX)
01cfc07f 1011 return NULL;
c19d1205
ZW
1012 start++;
1013#endif
1014#ifdef OPTIONAL_REGISTER_PREFIX
1015 if (*start == OPTIONAL_REGISTER_PREFIX)
1016 start++;
1017#endif
b99bd4ef 1018
c19d1205
ZW
1019 p = start;
1020 if (!ISALPHA (*p) || !is_name_beginner (*p))
1021 return NULL;
b99bd4ef 1022
c19d1205
ZW
1023 do
1024 p++;
1025 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1026
1027 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1028
1029 if (!reg)
1030 return NULL;
1031
1032 *ccp = p;
1033 return reg;
b99bd4ef
NC
1034}
1035
1036static int
dcbf9037
JB
1037arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1038 enum arm_reg_type type)
b99bd4ef 1039{
c19d1205
ZW
1040 /* Alternative syntaxes are accepted for a few register classes. */
1041 switch (type)
1042 {
1043 case REG_TYPE_MVF:
1044 case REG_TYPE_MVD:
1045 case REG_TYPE_MVFX:
1046 case REG_TYPE_MVDX:
1047 /* Generic coprocessor register names are allowed for these. */
79134647 1048 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1049 return reg->number;
1050 break;
69b97547 1051
c19d1205
ZW
1052 case REG_TYPE_CP:
1053 /* For backward compatibility, a bare number is valid here. */
1054 {
1055 unsigned long processor = strtoul (start, ccp, 10);
1056 if (*ccp != start && processor <= 15)
1057 return processor;
1058 }
6057a28f 1059
c19d1205
ZW
1060 case REG_TYPE_MMXWC:
1061 /* WC includes WCG. ??? I'm not sure this is true for all
1062 instructions that take WC registers. */
79134647 1063 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1064 return reg->number;
6057a28f 1065 break;
c19d1205 1066
6057a28f 1067 default:
c19d1205 1068 break;
6057a28f
NC
1069 }
1070
dcbf9037
JB
1071 return FAIL;
1072}
1073
1074/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1075 return value is the register number or FAIL. */
1076
1077static int
1078arm_reg_parse (char **ccp, enum arm_reg_type type)
1079{
1080 char *start = *ccp;
1081 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1082 int ret;
1083
1084 /* Do not allow a scalar (reg+index) to parse as a register. */
1085 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1086 return FAIL;
1087
1088 if (reg && reg->type == type)
1089 return reg->number;
1090
1091 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1092 return ret;
1093
c19d1205
ZW
1094 *ccp = start;
1095 return FAIL;
1096}
69b97547 1097
dcbf9037
JB
1098/* Parse a Neon type specifier. *STR should point at the leading '.'
1099 character. Does no verification at this stage that the type fits the opcode
1100 properly. E.g.,
1101
1102 .i32.i32.s16
1103 .s32.f32
1104 .u16
1105
1106 Can all be legally parsed by this function.
1107
1108 Fills in neon_type struct pointer with parsed information, and updates STR
1109 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1110 type, FAIL if not. */
1111
1112static int
1113parse_neon_type (struct neon_type *type, char **str)
1114{
1115 char *ptr = *str;
1116
1117 if (type)
1118 type->elems = 0;
1119
1120 while (type->elems < NEON_MAX_TYPE_ELS)
1121 {
1122 enum neon_el_type thistype = NT_untyped;
1123 unsigned thissize = -1u;
1124
1125 if (*ptr != '.')
1126 break;
1127
1128 ptr++;
1129
1130 /* Just a size without an explicit type. */
1131 if (ISDIGIT (*ptr))
1132 goto parsesize;
1133
1134 switch (TOLOWER (*ptr))
1135 {
1136 case 'i': thistype = NT_integer; break;
1137 case 'f': thistype = NT_float; break;
1138 case 'p': thistype = NT_poly; break;
1139 case 's': thistype = NT_signed; break;
1140 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1141 case 'd':
1142 thistype = NT_float;
1143 thissize = 64;
1144 ptr++;
1145 goto done;
dcbf9037
JB
1146 default:
1147 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1148 return FAIL;
1149 }
1150
1151 ptr++;
1152
1153 /* .f is an abbreviation for .f32. */
1154 if (thistype == NT_float && !ISDIGIT (*ptr))
1155 thissize = 32;
1156 else
1157 {
1158 parsesize:
1159 thissize = strtoul (ptr, &ptr, 10);
1160
1161 if (thissize != 8 && thissize != 16 && thissize != 32
1162 && thissize != 64)
1163 {
1164 as_bad (_("bad size %d in type specifier"), thissize);
1165 return FAIL;
1166 }
1167 }
1168
037e8744 1169 done:
dcbf9037
JB
1170 if (type)
1171 {
1172 type->el[type->elems].type = thistype;
1173 type->el[type->elems].size = thissize;
1174 type->elems++;
1175 }
1176 }
1177
1178 /* Empty/missing type is not a successful parse. */
1179 if (type->elems == 0)
1180 return FAIL;
1181
1182 *str = ptr;
1183
1184 return SUCCESS;
1185}
1186
1187/* Errors may be set multiple times during parsing or bit encoding
1188 (particularly in the Neon bits), but usually the earliest error which is set
1189 will be the most meaningful. Avoid overwriting it with later (cascading)
1190 errors by calling this function. */
1191
1192static void
1193first_error (const char *err)
1194{
1195 if (!inst.error)
1196 inst.error = err;
1197}
1198
1199/* Parse a single type, e.g. ".s32", leading period included. */
1200static int
1201parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1202{
1203 char *str = *ccp;
1204 struct neon_type optype;
1205
1206 if (*str == '.')
1207 {
1208 if (parse_neon_type (&optype, &str) == SUCCESS)
1209 {
1210 if (optype.elems == 1)
1211 *vectype = optype.el[0];
1212 else
1213 {
1214 first_error (_("only one type should be specified for operand"));
1215 return FAIL;
1216 }
1217 }
1218 else
1219 {
1220 first_error (_("vector type expected"));
1221 return FAIL;
1222 }
1223 }
1224 else
1225 return FAIL;
5f4273c7 1226
dcbf9037 1227 *ccp = str;
5f4273c7 1228
dcbf9037
JB
1229 return SUCCESS;
1230}
1231
1232/* Special meanings for indices (which have a range of 0-7), which will fit into
1233 a 4-bit integer. */
1234
1235#define NEON_ALL_LANES 15
1236#define NEON_INTERLEAVE_LANES 14
1237
1238/* Parse either a register or a scalar, with an optional type. Return the
1239 register number, and optionally fill in the actual type of the register
1240 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1241 type/index information in *TYPEINFO. */
1242
1243static int
1244parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1245 enum arm_reg_type *rtype,
1246 struct neon_typed_alias *typeinfo)
1247{
1248 char *str = *ccp;
1249 struct reg_entry *reg = arm_reg_parse_multi (&str);
1250 struct neon_typed_alias atype;
1251 struct neon_type_el parsetype;
1252
1253 atype.defined = 0;
1254 atype.index = -1;
1255 atype.eltype.type = NT_invtype;
1256 atype.eltype.size = -1;
1257
1258 /* Try alternate syntax for some types of register. Note these are mutually
1259 exclusive with the Neon syntax extensions. */
1260 if (reg == NULL)
1261 {
1262 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1263 if (altreg != FAIL)
1264 *ccp = str;
1265 if (typeinfo)
1266 *typeinfo = atype;
1267 return altreg;
1268 }
1269
037e8744
JB
1270 /* Undo polymorphism when a set of register types may be accepted. */
1271 if ((type == REG_TYPE_NDQ
1272 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1273 || (type == REG_TYPE_VFSD
1274 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1275 || (type == REG_TYPE_NSDQ
1276 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1277 || reg->type == REG_TYPE_NQ))
1278 || (type == REG_TYPE_MMXWC
1279 && (reg->type == REG_TYPE_MMXWCG)))
dcbf9037
JB
1280 type = reg->type;
1281
1282 if (type != reg->type)
1283 return FAIL;
1284
1285 if (reg->neon)
1286 atype = *reg->neon;
5f4273c7 1287
dcbf9037
JB
1288 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1289 {
1290 if ((atype.defined & NTA_HASTYPE) != 0)
1291 {
1292 first_error (_("can't redefine type for operand"));
1293 return FAIL;
1294 }
1295 atype.defined |= NTA_HASTYPE;
1296 atype.eltype = parsetype;
1297 }
5f4273c7 1298
dcbf9037
JB
1299 if (skip_past_char (&str, '[') == SUCCESS)
1300 {
1301 if (type != REG_TYPE_VFD)
1302 {
1303 first_error (_("only D registers may be indexed"));
1304 return FAIL;
1305 }
5f4273c7 1306
dcbf9037
JB
1307 if ((atype.defined & NTA_HASINDEX) != 0)
1308 {
1309 first_error (_("can't change index for operand"));
1310 return FAIL;
1311 }
1312
1313 atype.defined |= NTA_HASINDEX;
1314
1315 if (skip_past_char (&str, ']') == SUCCESS)
1316 atype.index = NEON_ALL_LANES;
1317 else
1318 {
1319 expressionS exp;
1320
1321 my_get_expression (&exp, &str, GE_NO_PREFIX);
1322
1323 if (exp.X_op != O_constant)
1324 {
1325 first_error (_("constant expression required"));
1326 return FAIL;
1327 }
1328
1329 if (skip_past_char (&str, ']') == FAIL)
1330 return FAIL;
1331
1332 atype.index = exp.X_add_number;
1333 }
1334 }
5f4273c7 1335
dcbf9037
JB
1336 if (typeinfo)
1337 *typeinfo = atype;
5f4273c7 1338
dcbf9037
JB
1339 if (rtype)
1340 *rtype = type;
5f4273c7 1341
dcbf9037 1342 *ccp = str;
5f4273c7 1343
dcbf9037
JB
1344 return reg->number;
1345}
1346
1347/* Like arm_reg_parse, but allow allow the following extra features:
1348 - If RTYPE is non-zero, return the (possibly restricted) type of the
1349 register (e.g. Neon double or quad reg when either has been requested).
1350 - If this is a Neon vector type with additional type information, fill
1351 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1352 This function will fault on encountering a scalar. */
dcbf9037
JB
1353
1354static int
1355arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1356 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1357{
1358 struct neon_typed_alias atype;
1359 char *str = *ccp;
1360 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1361
1362 if (reg == FAIL)
1363 return FAIL;
1364
1365 /* Do not allow a scalar (reg+index) to parse as a register. */
1366 if ((atype.defined & NTA_HASINDEX) != 0)
1367 {
1368 first_error (_("register operand expected, but got scalar"));
1369 return FAIL;
1370 }
1371
1372 if (vectype)
1373 *vectype = atype.eltype;
1374
1375 *ccp = str;
1376
1377 return reg;
1378}
1379
1380#define NEON_SCALAR_REG(X) ((X) >> 4)
1381#define NEON_SCALAR_INDEX(X) ((X) & 15)
1382
5287ad62
JB
1383/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1384 have enough information to be able to do a good job bounds-checking. So, we
1385 just do easy checks here, and do further checks later. */
1386
1387static int
dcbf9037 1388parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1389{
dcbf9037 1390 int reg;
5287ad62 1391 char *str = *ccp;
dcbf9037 1392 struct neon_typed_alias atype;
5f4273c7 1393
dcbf9037 1394 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1395
dcbf9037 1396 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1397 return FAIL;
5f4273c7 1398
dcbf9037 1399 if (atype.index == NEON_ALL_LANES)
5287ad62 1400 {
dcbf9037 1401 first_error (_("scalar must have an index"));
5287ad62
JB
1402 return FAIL;
1403 }
dcbf9037 1404 else if (atype.index >= 64 / elsize)
5287ad62 1405 {
dcbf9037 1406 first_error (_("scalar index out of range"));
5287ad62
JB
1407 return FAIL;
1408 }
5f4273c7 1409
dcbf9037
JB
1410 if (type)
1411 *type = atype.eltype;
5f4273c7 1412
5287ad62 1413 *ccp = str;
5f4273c7 1414
dcbf9037 1415 return reg * 16 + atype.index;
5287ad62
JB
1416}
1417
c19d1205
ZW
1418/* Parse an ARM register list. Returns the bitmask, or FAIL. */
1419static long
1420parse_reg_list (char ** strp)
1421{
1422 char * str = * strp;
1423 long range = 0;
1424 int another_range;
a737bd4d 1425
c19d1205
ZW
1426 /* We come back here if we get ranges concatenated by '+' or '|'. */
1427 do
6057a28f 1428 {
c19d1205 1429 another_range = 0;
a737bd4d 1430
c19d1205
ZW
1431 if (*str == '{')
1432 {
1433 int in_range = 0;
1434 int cur_reg = -1;
a737bd4d 1435
c19d1205
ZW
1436 str++;
1437 do
1438 {
1439 int reg;
6057a28f 1440
dcbf9037 1441 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1442 {
dcbf9037 1443 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1444 return FAIL;
1445 }
a737bd4d 1446
c19d1205
ZW
1447 if (in_range)
1448 {
1449 int i;
a737bd4d 1450
c19d1205
ZW
1451 if (reg <= cur_reg)
1452 {
dcbf9037 1453 first_error (_("bad range in register list"));
c19d1205
ZW
1454 return FAIL;
1455 }
40a18ebd 1456
c19d1205
ZW
1457 for (i = cur_reg + 1; i < reg; i++)
1458 {
1459 if (range & (1 << i))
1460 as_tsktsk
1461 (_("Warning: duplicated register (r%d) in register list"),
1462 i);
1463 else
1464 range |= 1 << i;
1465 }
1466 in_range = 0;
1467 }
a737bd4d 1468
c19d1205
ZW
1469 if (range & (1 << reg))
1470 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1471 reg);
1472 else if (reg <= cur_reg)
1473 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1474
c19d1205
ZW
1475 range |= 1 << reg;
1476 cur_reg = reg;
1477 }
1478 while (skip_past_comma (&str) != FAIL
1479 || (in_range = 1, *str++ == '-'));
1480 str--;
a737bd4d 1481
c19d1205
ZW
1482 if (*str++ != '}')
1483 {
dcbf9037 1484 first_error (_("missing `}'"));
c19d1205
ZW
1485 return FAIL;
1486 }
1487 }
1488 else
1489 {
1490 expressionS expr;
40a18ebd 1491
c19d1205
ZW
1492 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1493 return FAIL;
40a18ebd 1494
c19d1205
ZW
1495 if (expr.X_op == O_constant)
1496 {
1497 if (expr.X_add_number
1498 != (expr.X_add_number & 0x0000ffff))
1499 {
1500 inst.error = _("invalid register mask");
1501 return FAIL;
1502 }
a737bd4d 1503
c19d1205
ZW
1504 if ((range & expr.X_add_number) != 0)
1505 {
1506 int regno = range & expr.X_add_number;
a737bd4d 1507
c19d1205
ZW
1508 regno &= -regno;
1509 regno = (1 << regno) - 1;
1510 as_tsktsk
1511 (_("Warning: duplicated register (r%d) in register list"),
1512 regno);
1513 }
a737bd4d 1514
c19d1205
ZW
1515 range |= expr.X_add_number;
1516 }
1517 else
1518 {
1519 if (inst.reloc.type != 0)
1520 {
1521 inst.error = _("expression too complex");
1522 return FAIL;
1523 }
a737bd4d 1524
c19d1205
ZW
1525 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1526 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1527 inst.reloc.pc_rel = 0;
1528 }
1529 }
a737bd4d 1530
c19d1205
ZW
1531 if (*str == '|' || *str == '+')
1532 {
1533 str++;
1534 another_range = 1;
1535 }
a737bd4d 1536 }
c19d1205 1537 while (another_range);
a737bd4d 1538
c19d1205
ZW
1539 *strp = str;
1540 return range;
a737bd4d
NC
1541}
1542
5287ad62
JB
1543/* Types of registers in a list. */
1544
1545enum reg_list_els
1546{
1547 REGLIST_VFP_S,
1548 REGLIST_VFP_D,
1549 REGLIST_NEON_D
1550};
1551
c19d1205
ZW
1552/* Parse a VFP register list. If the string is invalid return FAIL.
1553 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1554 register. Parses registers of type ETYPE.
1555 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1556 - Q registers can be used to specify pairs of D registers
1557 - { } can be omitted from around a singleton register list
1558 FIXME: This is not implemented, as it would require backtracking in
1559 some cases, e.g.:
1560 vtbl.8 d3,d4,d5
1561 This could be done (the meaning isn't really ambiguous), but doesn't
1562 fit in well with the current parsing framework.
dcbf9037
JB
1563 - 32 D registers may be used (also true for VFPv3).
1564 FIXME: Types are ignored in these register lists, which is probably a
1565 bug. */
6057a28f 1566
c19d1205 1567static int
037e8744 1568parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1569{
037e8744 1570 char *str = *ccp;
c19d1205
ZW
1571 int base_reg;
1572 int new_base;
5287ad62
JB
1573 enum arm_reg_type regtype = 0;
1574 int max_regs = 0;
c19d1205
ZW
1575 int count = 0;
1576 int warned = 0;
1577 unsigned long mask = 0;
a737bd4d 1578 int i;
6057a28f 1579
037e8744 1580 if (*str != '{')
5287ad62
JB
1581 {
1582 inst.error = _("expecting {");
1583 return FAIL;
1584 }
6057a28f 1585
037e8744 1586 str++;
6057a28f 1587
5287ad62 1588 switch (etype)
c19d1205 1589 {
5287ad62 1590 case REGLIST_VFP_S:
c19d1205
ZW
1591 regtype = REG_TYPE_VFS;
1592 max_regs = 32;
5287ad62 1593 break;
5f4273c7 1594
5287ad62
JB
1595 case REGLIST_VFP_D:
1596 regtype = REG_TYPE_VFD;
b7fc2769 1597 break;
5f4273c7 1598
b7fc2769
JB
1599 case REGLIST_NEON_D:
1600 regtype = REG_TYPE_NDQ;
1601 break;
1602 }
1603
1604 if (etype != REGLIST_VFP_S)
1605 {
5287ad62
JB
1606 /* VFPv3 allows 32 D registers. */
1607 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
1608 {
1609 max_regs = 32;
1610 if (thumb_mode)
1611 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1612 fpu_vfp_ext_v3);
1613 else
1614 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1615 fpu_vfp_ext_v3);
1616 }
1617 else
1618 max_regs = 16;
c19d1205 1619 }
6057a28f 1620
c19d1205 1621 base_reg = max_regs;
a737bd4d 1622
c19d1205
ZW
1623 do
1624 {
5287ad62 1625 int setmask = 1, addregs = 1;
dcbf9037 1626
037e8744 1627 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1628
c19d1205 1629 if (new_base == FAIL)
a737bd4d 1630 {
dcbf9037 1631 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1632 return FAIL;
1633 }
5f4273c7 1634
b7fc2769
JB
1635 if (new_base >= max_regs)
1636 {
1637 first_error (_("register out of range in list"));
1638 return FAIL;
1639 }
5f4273c7 1640
5287ad62
JB
1641 /* Note: a value of 2 * n is returned for the register Q<n>. */
1642 if (regtype == REG_TYPE_NQ)
1643 {
1644 setmask = 3;
1645 addregs = 2;
1646 }
1647
c19d1205
ZW
1648 if (new_base < base_reg)
1649 base_reg = new_base;
a737bd4d 1650
5287ad62 1651 if (mask & (setmask << new_base))
c19d1205 1652 {
dcbf9037 1653 first_error (_("invalid register list"));
c19d1205 1654 return FAIL;
a737bd4d 1655 }
a737bd4d 1656
c19d1205
ZW
1657 if ((mask >> new_base) != 0 && ! warned)
1658 {
1659 as_tsktsk (_("register list not in ascending order"));
1660 warned = 1;
1661 }
0bbf2aa4 1662
5287ad62
JB
1663 mask |= setmask << new_base;
1664 count += addregs;
0bbf2aa4 1665
037e8744 1666 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1667 {
1668 int high_range;
0bbf2aa4 1669
037e8744 1670 str++;
0bbf2aa4 1671
037e8744 1672 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1673 == FAIL)
c19d1205
ZW
1674 {
1675 inst.error = gettext (reg_expected_msgs[regtype]);
1676 return FAIL;
1677 }
0bbf2aa4 1678
b7fc2769
JB
1679 if (high_range >= max_regs)
1680 {
1681 first_error (_("register out of range in list"));
1682 return FAIL;
1683 }
1684
5287ad62
JB
1685 if (regtype == REG_TYPE_NQ)
1686 high_range = high_range + 1;
1687
c19d1205
ZW
1688 if (high_range <= new_base)
1689 {
1690 inst.error = _("register range not in ascending order");
1691 return FAIL;
1692 }
0bbf2aa4 1693
5287ad62 1694 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1695 {
5287ad62 1696 if (mask & (setmask << new_base))
0bbf2aa4 1697 {
c19d1205
ZW
1698 inst.error = _("invalid register list");
1699 return FAIL;
0bbf2aa4 1700 }
c19d1205 1701
5287ad62
JB
1702 mask |= setmask << new_base;
1703 count += addregs;
0bbf2aa4 1704 }
0bbf2aa4 1705 }
0bbf2aa4 1706 }
037e8744 1707 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1708
037e8744 1709 str++;
0bbf2aa4 1710
c19d1205
ZW
1711 /* Sanity check -- should have raised a parse error above. */
1712 if (count == 0 || count > max_regs)
1713 abort ();
1714
1715 *pbase = base_reg;
1716
1717 /* Final test -- the registers must be consecutive. */
1718 mask >>= base_reg;
1719 for (i = 0; i < count; i++)
1720 {
1721 if ((mask & (1u << i)) == 0)
1722 {
1723 inst.error = _("non-contiguous register range");
1724 return FAIL;
1725 }
1726 }
1727
037e8744
JB
1728 *ccp = str;
1729
c19d1205 1730 return count;
b99bd4ef
NC
1731}
1732
dcbf9037
JB
1733/* True if two alias types are the same. */
1734
1735static int
1736neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1737{
1738 if (!a && !b)
1739 return 1;
5f4273c7 1740
dcbf9037
JB
1741 if (!a || !b)
1742 return 0;
1743
1744 if (a->defined != b->defined)
1745 return 0;
5f4273c7 1746
dcbf9037
JB
1747 if ((a->defined & NTA_HASTYPE) != 0
1748 && (a->eltype.type != b->eltype.type
1749 || a->eltype.size != b->eltype.size))
1750 return 0;
1751
1752 if ((a->defined & NTA_HASINDEX) != 0
1753 && (a->index != b->index))
1754 return 0;
5f4273c7 1755
dcbf9037
JB
1756 return 1;
1757}
1758
5287ad62
JB
1759/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1760 The base register is put in *PBASE.
dcbf9037 1761 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1762 the return value.
1763 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1764 Bits [6:5] encode the list length (minus one).
1765 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1766
5287ad62 1767#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1768#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1769#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1770
1771static int
dcbf9037
JB
1772parse_neon_el_struct_list (char **str, unsigned *pbase,
1773 struct neon_type_el *eltype)
5287ad62
JB
1774{
1775 char *ptr = *str;
1776 int base_reg = -1;
1777 int reg_incr = -1;
1778 int count = 0;
1779 int lane = -1;
1780 int leading_brace = 0;
1781 enum arm_reg_type rtype = REG_TYPE_NDQ;
1782 int addregs = 1;
1783 const char *const incr_error = "register stride must be 1 or 2";
1784 const char *const type_error = "mismatched element/structure types in list";
dcbf9037 1785 struct neon_typed_alias firsttype;
5f4273c7 1786
5287ad62
JB
1787 if (skip_past_char (&ptr, '{') == SUCCESS)
1788 leading_brace = 1;
5f4273c7 1789
5287ad62
JB
1790 do
1791 {
dcbf9037
JB
1792 struct neon_typed_alias atype;
1793 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1794
5287ad62
JB
1795 if (getreg == FAIL)
1796 {
dcbf9037 1797 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1798 return FAIL;
1799 }
5f4273c7 1800
5287ad62
JB
1801 if (base_reg == -1)
1802 {
1803 base_reg = getreg;
1804 if (rtype == REG_TYPE_NQ)
1805 {
1806 reg_incr = 1;
1807 addregs = 2;
1808 }
dcbf9037 1809 firsttype = atype;
5287ad62
JB
1810 }
1811 else if (reg_incr == -1)
1812 {
1813 reg_incr = getreg - base_reg;
1814 if (reg_incr < 1 || reg_incr > 2)
1815 {
dcbf9037 1816 first_error (_(incr_error));
5287ad62
JB
1817 return FAIL;
1818 }
1819 }
1820 else if (getreg != base_reg + reg_incr * count)
1821 {
dcbf9037
JB
1822 first_error (_(incr_error));
1823 return FAIL;
1824 }
1825
1826 if (!neon_alias_types_same (&atype, &firsttype))
1827 {
1828 first_error (_(type_error));
5287ad62
JB
1829 return FAIL;
1830 }
5f4273c7 1831
5287ad62
JB
1832 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1833 modes. */
1834 if (ptr[0] == '-')
1835 {
dcbf9037 1836 struct neon_typed_alias htype;
5287ad62
JB
1837 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1838 if (lane == -1)
1839 lane = NEON_INTERLEAVE_LANES;
1840 else if (lane != NEON_INTERLEAVE_LANES)
1841 {
dcbf9037 1842 first_error (_(type_error));
5287ad62
JB
1843 return FAIL;
1844 }
1845 if (reg_incr == -1)
1846 reg_incr = 1;
1847 else if (reg_incr != 1)
1848 {
dcbf9037 1849 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1850 return FAIL;
1851 }
1852 ptr++;
dcbf9037 1853 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1854 if (hireg == FAIL)
1855 {
dcbf9037
JB
1856 first_error (_(reg_expected_msgs[rtype]));
1857 return FAIL;
1858 }
1859 if (!neon_alias_types_same (&htype, &firsttype))
1860 {
1861 first_error (_(type_error));
5287ad62
JB
1862 return FAIL;
1863 }
1864 count += hireg + dregs - getreg;
1865 continue;
1866 }
5f4273c7 1867
5287ad62
JB
1868 /* If we're using Q registers, we can't use [] or [n] syntax. */
1869 if (rtype == REG_TYPE_NQ)
1870 {
1871 count += 2;
1872 continue;
1873 }
5f4273c7 1874
dcbf9037 1875 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1876 {
dcbf9037
JB
1877 if (lane == -1)
1878 lane = atype.index;
1879 else if (lane != atype.index)
5287ad62 1880 {
dcbf9037
JB
1881 first_error (_(type_error));
1882 return FAIL;
5287ad62
JB
1883 }
1884 }
1885 else if (lane == -1)
1886 lane = NEON_INTERLEAVE_LANES;
1887 else if (lane != NEON_INTERLEAVE_LANES)
1888 {
dcbf9037 1889 first_error (_(type_error));
5287ad62
JB
1890 return FAIL;
1891 }
1892 count++;
1893 }
1894 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 1895
5287ad62
JB
1896 /* No lane set by [x]. We must be interleaving structures. */
1897 if (lane == -1)
1898 lane = NEON_INTERLEAVE_LANES;
5f4273c7 1899
5287ad62
JB
1900 /* Sanity check. */
1901 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1902 || (count > 1 && reg_incr == -1))
1903 {
dcbf9037 1904 first_error (_("error parsing element/structure list"));
5287ad62
JB
1905 return FAIL;
1906 }
1907
1908 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1909 {
dcbf9037 1910 first_error (_("expected }"));
5287ad62
JB
1911 return FAIL;
1912 }
5f4273c7 1913
5287ad62
JB
1914 if (reg_incr == -1)
1915 reg_incr = 1;
1916
dcbf9037
JB
1917 if (eltype)
1918 *eltype = firsttype.eltype;
1919
5287ad62
JB
1920 *pbase = base_reg;
1921 *str = ptr;
5f4273c7 1922
5287ad62
JB
1923 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1924}
1925
c19d1205
ZW
1926/* Parse an explicit relocation suffix on an expression. This is
1927 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1928 arm_reloc_hsh contains no entries, so this function can only
1929 succeed if there is no () after the word. Returns -1 on error,
1930 BFD_RELOC_UNUSED if there wasn't any suffix. */
1931static int
1932parse_reloc (char **str)
b99bd4ef 1933{
c19d1205
ZW
1934 struct reloc_entry *r;
1935 char *p, *q;
b99bd4ef 1936
c19d1205
ZW
1937 if (**str != '(')
1938 return BFD_RELOC_UNUSED;
b99bd4ef 1939
c19d1205
ZW
1940 p = *str + 1;
1941 q = p;
1942
1943 while (*q && *q != ')' && *q != ',')
1944 q++;
1945 if (*q != ')')
1946 return -1;
1947
1948 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1949 return -1;
1950
1951 *str = q + 1;
1952 return r->reloc;
b99bd4ef
NC
1953}
1954
c19d1205
ZW
1955/* Directives: register aliases. */
1956
dcbf9037 1957static struct reg_entry *
c19d1205 1958insert_reg_alias (char *str, int number, int type)
b99bd4ef 1959{
c19d1205
ZW
1960 struct reg_entry *new;
1961 const char *name;
b99bd4ef 1962
c19d1205
ZW
1963 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1964 {
1965 if (new->builtin)
1966 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 1967
c19d1205
ZW
1968 /* Only warn about a redefinition if it's not defined as the
1969 same register. */
1970 else if (new->number != number || new->type != type)
1971 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 1972
d929913e 1973 return NULL;
c19d1205 1974 }
b99bd4ef 1975
c19d1205
ZW
1976 name = xstrdup (str);
1977 new = xmalloc (sizeof (struct reg_entry));
b99bd4ef 1978
c19d1205
ZW
1979 new->name = name;
1980 new->number = number;
1981 new->type = type;
1982 new->builtin = FALSE;
dcbf9037 1983 new->neon = NULL;
b99bd4ef 1984
c19d1205
ZW
1985 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1986 abort ();
5f4273c7 1987
dcbf9037
JB
1988 return new;
1989}
1990
1991static void
1992insert_neon_reg_alias (char *str, int number, int type,
1993 struct neon_typed_alias *atype)
1994{
1995 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 1996
dcbf9037
JB
1997 if (!reg)
1998 {
1999 first_error (_("attempt to redefine typed alias"));
2000 return;
2001 }
5f4273c7 2002
dcbf9037
JB
2003 if (atype)
2004 {
2005 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2006 *reg->neon = *atype;
2007 }
c19d1205 2008}
b99bd4ef 2009
c19d1205 2010/* Look for the .req directive. This is of the form:
b99bd4ef 2011
c19d1205 2012 new_register_name .req existing_register_name
b99bd4ef 2013
c19d1205 2014 If we find one, or if it looks sufficiently like one that we want to
d929913e 2015 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2016
d929913e 2017static bfd_boolean
c19d1205
ZW
2018create_register_alias (char * newname, char *p)
2019{
2020 struct reg_entry *old;
2021 char *oldname, *nbuf;
2022 size_t nlen;
b99bd4ef 2023
c19d1205
ZW
2024 /* The input scrubber ensures that whitespace after the mnemonic is
2025 collapsed to single spaces. */
2026 oldname = p;
2027 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2028 return FALSE;
b99bd4ef 2029
c19d1205
ZW
2030 oldname += 6;
2031 if (*oldname == '\0')
d929913e 2032 return FALSE;
b99bd4ef 2033
c19d1205
ZW
2034 old = hash_find (arm_reg_hsh, oldname);
2035 if (!old)
b99bd4ef 2036 {
c19d1205 2037 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2038 return TRUE;
b99bd4ef
NC
2039 }
2040
c19d1205
ZW
2041 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2042 the desired alias name, and p points to its end. If not, then
2043 the desired alias name is in the global original_case_string. */
2044#ifdef TC_CASE_SENSITIVE
2045 nlen = p - newname;
2046#else
2047 newname = original_case_string;
2048 nlen = strlen (newname);
2049#endif
b99bd4ef 2050
c19d1205
ZW
2051 nbuf = alloca (nlen + 1);
2052 memcpy (nbuf, newname, nlen);
2053 nbuf[nlen] = '\0';
b99bd4ef 2054
c19d1205
ZW
2055 /* Create aliases under the new name as stated; an all-lowercase
2056 version of the new name; and an all-uppercase version of the new
2057 name. */
d929913e
NC
2058 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2059 {
2060 for (p = nbuf; *p; p++)
2061 *p = TOUPPER (*p);
c19d1205 2062
d929913e
NC
2063 if (strncmp (nbuf, newname, nlen))
2064 {
2065 /* If this attempt to create an additional alias fails, do not bother
2066 trying to create the all-lower case alias. We will fail and issue
2067 a second, duplicate error message. This situation arises when the
2068 programmer does something like:
2069 foo .req r0
2070 Foo .req r1
2071 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2072 the artificial FOO alias because it has already been created by the
d929913e
NC
2073 first .req. */
2074 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2075 return TRUE;
2076 }
c19d1205 2077
d929913e
NC
2078 for (p = nbuf; *p; p++)
2079 *p = TOLOWER (*p);
c19d1205 2080
d929913e
NC
2081 if (strncmp (nbuf, newname, nlen))
2082 insert_reg_alias (nbuf, old->number, old->type);
2083 }
c19d1205 2084
d929913e 2085 return TRUE;
b99bd4ef
NC
2086}
2087
dcbf9037
JB
2088/* Create a Neon typed/indexed register alias using directives, e.g.:
2089 X .dn d5.s32[1]
2090 Y .qn 6.s16
2091 Z .dn d7
2092 T .dn Z[0]
2093 These typed registers can be used instead of the types specified after the
2094 Neon mnemonic, so long as all operands given have types. Types can also be
2095 specified directly, e.g.:
5f4273c7 2096 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037
JB
2097
2098static int
2099create_neon_reg_alias (char *newname, char *p)
2100{
2101 enum arm_reg_type basetype;
2102 struct reg_entry *basereg;
2103 struct reg_entry mybasereg;
2104 struct neon_type ntype;
2105 struct neon_typed_alias typeinfo;
2106 char *namebuf, *nameend;
2107 int namelen;
5f4273c7 2108
dcbf9037
JB
2109 typeinfo.defined = 0;
2110 typeinfo.eltype.type = NT_invtype;
2111 typeinfo.eltype.size = -1;
2112 typeinfo.index = -1;
5f4273c7 2113
dcbf9037 2114 nameend = p;
5f4273c7 2115
dcbf9037
JB
2116 if (strncmp (p, " .dn ", 5) == 0)
2117 basetype = REG_TYPE_VFD;
2118 else if (strncmp (p, " .qn ", 5) == 0)
2119 basetype = REG_TYPE_NQ;
2120 else
2121 return 0;
5f4273c7 2122
dcbf9037 2123 p += 5;
5f4273c7 2124
dcbf9037
JB
2125 if (*p == '\0')
2126 return 0;
5f4273c7 2127
dcbf9037
JB
2128 basereg = arm_reg_parse_multi (&p);
2129
2130 if (basereg && basereg->type != basetype)
2131 {
2132 as_bad (_("bad type for register"));
2133 return 0;
2134 }
2135
2136 if (basereg == NULL)
2137 {
2138 expressionS exp;
2139 /* Try parsing as an integer. */
2140 my_get_expression (&exp, &p, GE_NO_PREFIX);
2141 if (exp.X_op != O_constant)
2142 {
2143 as_bad (_("expression must be constant"));
2144 return 0;
2145 }
2146 basereg = &mybasereg;
2147 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2148 : exp.X_add_number;
2149 basereg->neon = 0;
2150 }
2151
2152 if (basereg->neon)
2153 typeinfo = *basereg->neon;
2154
2155 if (parse_neon_type (&ntype, &p) == SUCCESS)
2156 {
2157 /* We got a type. */
2158 if (typeinfo.defined & NTA_HASTYPE)
2159 {
2160 as_bad (_("can't redefine the type of a register alias"));
2161 return 0;
2162 }
5f4273c7 2163
dcbf9037
JB
2164 typeinfo.defined |= NTA_HASTYPE;
2165 if (ntype.elems != 1)
2166 {
2167 as_bad (_("you must specify a single type only"));
2168 return 0;
2169 }
2170 typeinfo.eltype = ntype.el[0];
2171 }
5f4273c7 2172
dcbf9037
JB
2173 if (skip_past_char (&p, '[') == SUCCESS)
2174 {
2175 expressionS exp;
2176 /* We got a scalar index. */
5f4273c7 2177
dcbf9037
JB
2178 if (typeinfo.defined & NTA_HASINDEX)
2179 {
2180 as_bad (_("can't redefine the index of a scalar alias"));
2181 return 0;
2182 }
5f4273c7 2183
dcbf9037 2184 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2185
dcbf9037
JB
2186 if (exp.X_op != O_constant)
2187 {
2188 as_bad (_("scalar index must be constant"));
2189 return 0;
2190 }
5f4273c7 2191
dcbf9037
JB
2192 typeinfo.defined |= NTA_HASINDEX;
2193 typeinfo.index = exp.X_add_number;
5f4273c7 2194
dcbf9037
JB
2195 if (skip_past_char (&p, ']') == FAIL)
2196 {
2197 as_bad (_("expecting ]"));
2198 return 0;
2199 }
2200 }
2201
2202 namelen = nameend - newname;
2203 namebuf = alloca (namelen + 1);
2204 strncpy (namebuf, newname, namelen);
2205 namebuf[namelen] = '\0';
5f4273c7 2206
dcbf9037
JB
2207 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2208 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2209
dcbf9037
JB
2210 /* Insert name in all uppercase. */
2211 for (p = namebuf; *p; p++)
2212 *p = TOUPPER (*p);
5f4273c7 2213
dcbf9037
JB
2214 if (strncmp (namebuf, newname, namelen))
2215 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2216 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2217
dcbf9037
JB
2218 /* Insert name in all lowercase. */
2219 for (p = namebuf; *p; p++)
2220 *p = TOLOWER (*p);
5f4273c7 2221
dcbf9037
JB
2222 if (strncmp (namebuf, newname, namelen))
2223 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2224 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2225
dcbf9037
JB
2226 return 1;
2227}
2228
c19d1205
ZW
2229/* Should never be called, as .req goes between the alias and the
2230 register name, not at the beginning of the line. */
b99bd4ef 2231static void
c19d1205 2232s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2233{
c19d1205
ZW
2234 as_bad (_("invalid syntax for .req directive"));
2235}
b99bd4ef 2236
dcbf9037
JB
2237static void
2238s_dn (int a ATTRIBUTE_UNUSED)
2239{
2240 as_bad (_("invalid syntax for .dn directive"));
2241}
2242
2243static void
2244s_qn (int a ATTRIBUTE_UNUSED)
2245{
2246 as_bad (_("invalid syntax for .qn directive"));
2247}
2248
c19d1205
ZW
2249/* The .unreq directive deletes an alias which was previously defined
2250 by .req. For example:
b99bd4ef 2251
c19d1205
ZW
2252 my_alias .req r11
2253 .unreq my_alias */
b99bd4ef
NC
2254
2255static void
c19d1205 2256s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2257{
c19d1205
ZW
2258 char * name;
2259 char saved_char;
b99bd4ef 2260
c19d1205
ZW
2261 name = input_line_pointer;
2262
2263 while (*input_line_pointer != 0
2264 && *input_line_pointer != ' '
2265 && *input_line_pointer != '\n')
2266 ++input_line_pointer;
2267
2268 saved_char = *input_line_pointer;
2269 *input_line_pointer = 0;
2270
2271 if (!*name)
2272 as_bad (_("invalid syntax for .unreq directive"));
2273 else
2274 {
2275 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2276
2277 if (!reg)
2278 as_bad (_("unknown register alias '%s'"), name);
2279 else if (reg->builtin)
2280 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2281 name);
2282 else
2283 {
d929913e
NC
2284 char * p;
2285 char * nbuf;
2286
c19d1205
ZW
2287 hash_delete (arm_reg_hsh, name);
2288 free ((char *) reg->name);
dcbf9037
JB
2289 if (reg->neon)
2290 free (reg->neon);
c19d1205 2291 free (reg);
d929913e
NC
2292
2293 /* Also locate the all upper case and all lower case versions.
2294 Do not complain if we cannot find one or the other as it
2295 was probably deleted above. */
5f4273c7 2296
d929913e
NC
2297 nbuf = strdup (name);
2298 for (p = nbuf; *p; p++)
2299 *p = TOUPPER (*p);
2300 reg = hash_find (arm_reg_hsh, nbuf);
2301 if (reg)
2302 {
2303 hash_delete (arm_reg_hsh, nbuf);
2304 free ((char *) reg->name);
2305 if (reg->neon)
2306 free (reg->neon);
2307 free (reg);
2308 }
2309
2310 for (p = nbuf; *p; p++)
2311 *p = TOLOWER (*p);
2312 reg = hash_find (arm_reg_hsh, nbuf);
2313 if (reg)
2314 {
2315 hash_delete (arm_reg_hsh, nbuf);
2316 free ((char *) reg->name);
2317 if (reg->neon)
2318 free (reg->neon);
2319 free (reg);
2320 }
2321
2322 free (nbuf);
c19d1205
ZW
2323 }
2324 }
b99bd4ef 2325
c19d1205 2326 *input_line_pointer = saved_char;
b99bd4ef
NC
2327 demand_empty_rest_of_line ();
2328}
2329
c19d1205
ZW
2330/* Directives: Instruction set selection. */
2331
2332#ifdef OBJ_ELF
2333/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2334 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2335 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2336 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2337
2338static enum mstate mapstate = MAP_UNDEFINED;
b99bd4ef 2339
e821645d 2340void
c19d1205 2341mapping_state (enum mstate state)
b99bd4ef 2342{
a737bd4d 2343 symbolS * symbolP;
c19d1205
ZW
2344 const char * symname;
2345 int type;
b99bd4ef 2346
c19d1205
ZW
2347 if (mapstate == state)
2348 /* The mapping symbol has already been emitted.
2349 There is nothing else to do. */
2350 return;
b99bd4ef 2351
c19d1205 2352 mapstate = state;
b99bd4ef 2353
c19d1205 2354 switch (state)
b99bd4ef 2355 {
c19d1205
ZW
2356 case MAP_DATA:
2357 symname = "$d";
2358 type = BSF_NO_FLAGS;
2359 break;
2360 case MAP_ARM:
2361 symname = "$a";
2362 type = BSF_NO_FLAGS;
2363 break;
2364 case MAP_THUMB:
2365 symname = "$t";
2366 type = BSF_NO_FLAGS;
2367 break;
2368 case MAP_UNDEFINED:
2369 return;
2370 default:
2371 abort ();
2372 }
2373
2374 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2375
2376 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2377 symbol_table_insert (symbolP);
2378 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2379
2380 switch (state)
2381 {
2382 case MAP_ARM:
2383 THUMB_SET_FUNC (symbolP, 0);
2384 ARM_SET_THUMB (symbolP, 0);
2385 ARM_SET_INTERWORK (symbolP, support_interwork);
2386 break;
2387
2388 case MAP_THUMB:
2389 THUMB_SET_FUNC (symbolP, 1);
2390 ARM_SET_THUMB (symbolP, 1);
2391 ARM_SET_INTERWORK (symbolP, support_interwork);
2392 break;
2393
2394 case MAP_DATA:
2395 default:
2396 return;
2397 }
2398}
2399#else
2400#define mapping_state(x) /* nothing */
2401#endif
2402
2403/* Find the real, Thumb encoded start of a Thumb function. */
2404
2405static symbolS *
2406find_real_start (symbolS * symbolP)
2407{
2408 char * real_start;
2409 const char * name = S_GET_NAME (symbolP);
2410 symbolS * new_target;
2411
2412 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2413#define STUB_NAME ".real_start_of"
2414
2415 if (name == NULL)
2416 abort ();
2417
37f6032b
ZW
2418 /* The compiler may generate BL instructions to local labels because
2419 it needs to perform a branch to a far away location. These labels
2420 do not have a corresponding ".real_start_of" label. We check
2421 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2422 the ".real_start_of" convention for nonlocal branches. */
2423 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2424 return symbolP;
2425
37f6032b 2426 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2427 new_target = symbol_find (real_start);
2428
2429 if (new_target == NULL)
2430 {
bd3ba5d1 2431 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2432 new_target = symbolP;
2433 }
2434
c19d1205
ZW
2435 return new_target;
2436}
2437
2438static void
2439opcode_select (int width)
2440{
2441 switch (width)
2442 {
2443 case 16:
2444 if (! thumb_mode)
2445 {
e74cfd16 2446 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2447 as_bad (_("selected processor does not support THUMB opcodes"));
2448
2449 thumb_mode = 1;
2450 /* No need to force the alignment, since we will have been
2451 coming from ARM mode, which is word-aligned. */
2452 record_alignment (now_seg, 1);
2453 }
2454 mapping_state (MAP_THUMB);
2455 break;
2456
2457 case 32:
2458 if (thumb_mode)
2459 {
e74cfd16 2460 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2461 as_bad (_("selected processor does not support ARM opcodes"));
2462
2463 thumb_mode = 0;
2464
2465 if (!need_pass_2)
2466 frag_align (2, 0, 0);
2467
2468 record_alignment (now_seg, 1);
2469 }
2470 mapping_state (MAP_ARM);
2471 break;
2472
2473 default:
2474 as_bad (_("invalid instruction size selected (%d)"), width);
2475 }
2476}
2477
2478static void
2479s_arm (int ignore ATTRIBUTE_UNUSED)
2480{
2481 opcode_select (32);
2482 demand_empty_rest_of_line ();
2483}
2484
2485static void
2486s_thumb (int ignore ATTRIBUTE_UNUSED)
2487{
2488 opcode_select (16);
2489 demand_empty_rest_of_line ();
2490}
2491
2492static void
2493s_code (int unused ATTRIBUTE_UNUSED)
2494{
2495 int temp;
2496
2497 temp = get_absolute_expression ();
2498 switch (temp)
2499 {
2500 case 16:
2501 case 32:
2502 opcode_select (temp);
2503 break;
2504
2505 default:
2506 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2507 }
2508}
2509
2510static void
2511s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2512{
2513 /* If we are not already in thumb mode go into it, EVEN if
2514 the target processor does not support thumb instructions.
2515 This is used by gcc/config/arm/lib1funcs.asm for example
2516 to compile interworking support functions even if the
2517 target processor should not support interworking. */
2518 if (! thumb_mode)
2519 {
2520 thumb_mode = 2;
2521 record_alignment (now_seg, 1);
2522 }
2523
2524 demand_empty_rest_of_line ();
2525}
2526
2527static void
2528s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2529{
2530 s_thumb (0);
2531
2532 /* The following label is the name/address of the start of a Thumb function.
2533 We need to know this for the interworking support. */
2534 label_is_thumb_function_name = TRUE;
2535}
2536
2537/* Perform a .set directive, but also mark the alias as
2538 being a thumb function. */
2539
2540static void
2541s_thumb_set (int equiv)
2542{
2543 /* XXX the following is a duplicate of the code for s_set() in read.c
2544 We cannot just call that code as we need to get at the symbol that
2545 is created. */
2546 char * name;
2547 char delim;
2548 char * end_name;
2549 symbolS * symbolP;
2550
2551 /* Especial apologies for the random logic:
2552 This just grew, and could be parsed much more simply!
2553 Dean - in haste. */
2554 name = input_line_pointer;
2555 delim = get_symbol_end ();
2556 end_name = input_line_pointer;
2557 *end_name = delim;
2558
2559 if (*input_line_pointer != ',')
2560 {
2561 *end_name = 0;
2562 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2563 *end_name = delim;
2564 ignore_rest_of_line ();
2565 return;
2566 }
2567
2568 input_line_pointer++;
2569 *end_name = 0;
2570
2571 if (name[0] == '.' && name[1] == '\0')
2572 {
2573 /* XXX - this should not happen to .thumb_set. */
2574 abort ();
2575 }
2576
2577 if ((symbolP = symbol_find (name)) == NULL
2578 && (symbolP = md_undefined_symbol (name)) == NULL)
2579 {
2580#ifndef NO_LISTING
2581 /* When doing symbol listings, play games with dummy fragments living
2582 outside the normal fragment chain to record the file and line info
c19d1205 2583 for this symbol. */
b99bd4ef
NC
2584 if (listing & LISTING_SYMBOLS)
2585 {
2586 extern struct list_info_struct * listing_tail;
a737bd4d 2587 fragS * dummy_frag = xmalloc (sizeof (fragS));
b99bd4ef
NC
2588
2589 memset (dummy_frag, 0, sizeof (fragS));
2590 dummy_frag->fr_type = rs_fill;
2591 dummy_frag->line = listing_tail;
2592 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2593 dummy_frag->fr_symbol = symbolP;
2594 }
2595 else
2596#endif
2597 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2598
2599#ifdef OBJ_COFF
2600 /* "set" symbols are local unless otherwise specified. */
2601 SF_SET_LOCAL (symbolP);
2602#endif /* OBJ_COFF */
2603 } /* Make a new symbol. */
2604
2605 symbol_table_insert (symbolP);
2606
2607 * end_name = delim;
2608
2609 if (equiv
2610 && S_IS_DEFINED (symbolP)
2611 && S_GET_SEGMENT (symbolP) != reg_section)
2612 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2613
2614 pseudo_set (symbolP);
2615
2616 demand_empty_rest_of_line ();
2617
c19d1205 2618 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2619
2620 THUMB_SET_FUNC (symbolP, 1);
2621 ARM_SET_THUMB (symbolP, 1);
2622#if defined OBJ_ELF || defined OBJ_COFF
2623 ARM_SET_INTERWORK (symbolP, support_interwork);
2624#endif
2625}
2626
c19d1205 2627/* Directives: Mode selection. */
b99bd4ef 2628
c19d1205
ZW
2629/* .syntax [unified|divided] - choose the new unified syntax
2630 (same for Arm and Thumb encoding, modulo slight differences in what
2631 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2632static void
c19d1205 2633s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2634{
c19d1205
ZW
2635 char *name, delim;
2636
2637 name = input_line_pointer;
2638 delim = get_symbol_end ();
2639
2640 if (!strcasecmp (name, "unified"))
2641 unified_syntax = TRUE;
2642 else if (!strcasecmp (name, "divided"))
2643 unified_syntax = FALSE;
2644 else
2645 {
2646 as_bad (_("unrecognized syntax mode \"%s\""), name);
2647 return;
2648 }
2649 *input_line_pointer = delim;
b99bd4ef
NC
2650 demand_empty_rest_of_line ();
2651}
2652
c19d1205
ZW
2653/* Directives: sectioning and alignment. */
2654
2655/* Same as s_align_ptwo but align 0 => align 2. */
2656
b99bd4ef 2657static void
c19d1205 2658s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2659{
a737bd4d 2660 int temp;
dce323d1 2661 bfd_boolean fill_p;
c19d1205
ZW
2662 long temp_fill;
2663 long max_alignment = 15;
b99bd4ef
NC
2664
2665 temp = get_absolute_expression ();
c19d1205
ZW
2666 if (temp > max_alignment)
2667 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2668 else if (temp < 0)
b99bd4ef 2669 {
c19d1205
ZW
2670 as_bad (_("alignment negative. 0 assumed."));
2671 temp = 0;
2672 }
b99bd4ef 2673
c19d1205
ZW
2674 if (*input_line_pointer == ',')
2675 {
2676 input_line_pointer++;
2677 temp_fill = get_absolute_expression ();
dce323d1 2678 fill_p = TRUE;
b99bd4ef 2679 }
c19d1205 2680 else
dce323d1
PB
2681 {
2682 fill_p = FALSE;
2683 temp_fill = 0;
2684 }
b99bd4ef 2685
c19d1205
ZW
2686 if (!temp)
2687 temp = 2;
b99bd4ef 2688
c19d1205
ZW
2689 /* Only make a frag if we HAVE to. */
2690 if (temp && !need_pass_2)
dce323d1
PB
2691 {
2692 if (!fill_p && subseg_text_p (now_seg))
2693 frag_align_code (temp, 0);
2694 else
2695 frag_align (temp, (int) temp_fill, 0);
2696 }
c19d1205
ZW
2697 demand_empty_rest_of_line ();
2698
2699 record_alignment (now_seg, temp);
b99bd4ef
NC
2700}
2701
c19d1205
ZW
2702static void
2703s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2704{
c19d1205
ZW
2705 /* We don't support putting frags in the BSS segment, we fake it by
2706 marking in_bss, then looking at s_skip for clues. */
2707 subseg_set (bss_section, 0);
2708 demand_empty_rest_of_line ();
2709 mapping_state (MAP_DATA);
2710}
b99bd4ef 2711
c19d1205
ZW
2712static void
2713s_even (int ignore ATTRIBUTE_UNUSED)
2714{
2715 /* Never make frag if expect extra pass. */
2716 if (!need_pass_2)
2717 frag_align (1, 0, 0);
b99bd4ef 2718
c19d1205 2719 record_alignment (now_seg, 1);
b99bd4ef 2720
c19d1205 2721 demand_empty_rest_of_line ();
b99bd4ef
NC
2722}
2723
c19d1205 2724/* Directives: Literal pools. */
a737bd4d 2725
c19d1205
ZW
2726static literal_pool *
2727find_literal_pool (void)
a737bd4d 2728{
c19d1205 2729 literal_pool * pool;
a737bd4d 2730
c19d1205 2731 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2732 {
c19d1205
ZW
2733 if (pool->section == now_seg
2734 && pool->sub_section == now_subseg)
2735 break;
a737bd4d
NC
2736 }
2737
c19d1205 2738 return pool;
a737bd4d
NC
2739}
2740
c19d1205
ZW
2741static literal_pool *
2742find_or_make_literal_pool (void)
a737bd4d 2743{
c19d1205
ZW
2744 /* Next literal pool ID number. */
2745 static unsigned int latest_pool_num = 1;
2746 literal_pool * pool;
a737bd4d 2747
c19d1205 2748 pool = find_literal_pool ();
a737bd4d 2749
c19d1205 2750 if (pool == NULL)
a737bd4d 2751 {
c19d1205
ZW
2752 /* Create a new pool. */
2753 pool = xmalloc (sizeof (* pool));
2754 if (! pool)
2755 return NULL;
a737bd4d 2756
c19d1205
ZW
2757 pool->next_free_entry = 0;
2758 pool->section = now_seg;
2759 pool->sub_section = now_subseg;
2760 pool->next = list_of_pools;
2761 pool->symbol = NULL;
2762
2763 /* Add it to the list. */
2764 list_of_pools = pool;
a737bd4d 2765 }
a737bd4d 2766
c19d1205
ZW
2767 /* New pools, and emptied pools, will have a NULL symbol. */
2768 if (pool->symbol == NULL)
a737bd4d 2769 {
c19d1205
ZW
2770 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2771 (valueT) 0, &zero_address_frag);
2772 pool->id = latest_pool_num ++;
a737bd4d
NC
2773 }
2774
c19d1205
ZW
2775 /* Done. */
2776 return pool;
a737bd4d
NC
2777}
2778
c19d1205 2779/* Add the literal in the global 'inst'
5f4273c7 2780 structure to the relevant literal pool. */
b99bd4ef
NC
2781
2782static int
c19d1205 2783add_to_lit_pool (void)
b99bd4ef 2784{
c19d1205
ZW
2785 literal_pool * pool;
2786 unsigned int entry;
b99bd4ef 2787
c19d1205
ZW
2788 pool = find_or_make_literal_pool ();
2789
2790 /* Check if this literal value is already in the pool. */
2791 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 2792 {
c19d1205
ZW
2793 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2794 && (inst.reloc.exp.X_op == O_constant)
2795 && (pool->literals[entry].X_add_number
2796 == inst.reloc.exp.X_add_number)
2797 && (pool->literals[entry].X_unsigned
2798 == inst.reloc.exp.X_unsigned))
2799 break;
2800
2801 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2802 && (inst.reloc.exp.X_op == O_symbol)
2803 && (pool->literals[entry].X_add_number
2804 == inst.reloc.exp.X_add_number)
2805 && (pool->literals[entry].X_add_symbol
2806 == inst.reloc.exp.X_add_symbol)
2807 && (pool->literals[entry].X_op_symbol
2808 == inst.reloc.exp.X_op_symbol))
2809 break;
b99bd4ef
NC
2810 }
2811
c19d1205
ZW
2812 /* Do we need to create a new entry? */
2813 if (entry == pool->next_free_entry)
2814 {
2815 if (entry >= MAX_LITERAL_POOL_SIZE)
2816 {
2817 inst.error = _("literal pool overflow");
2818 return FAIL;
2819 }
2820
2821 pool->literals[entry] = inst.reloc.exp;
2822 pool->next_free_entry += 1;
2823 }
b99bd4ef 2824
c19d1205
ZW
2825 inst.reloc.exp.X_op = O_symbol;
2826 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2827 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 2828
c19d1205 2829 return SUCCESS;
b99bd4ef
NC
2830}
2831
c19d1205
ZW
2832/* Can't use symbol_new here, so have to create a symbol and then at
2833 a later date assign it a value. Thats what these functions do. */
e16bb312 2834
c19d1205
ZW
2835static void
2836symbol_locate (symbolS * symbolP,
2837 const char * name, /* It is copied, the caller can modify. */
2838 segT segment, /* Segment identifier (SEG_<something>). */
2839 valueT valu, /* Symbol value. */
2840 fragS * frag) /* Associated fragment. */
2841{
2842 unsigned int name_length;
2843 char * preserved_copy_of_name;
e16bb312 2844
c19d1205
ZW
2845 name_length = strlen (name) + 1; /* +1 for \0. */
2846 obstack_grow (&notes, name, name_length);
2847 preserved_copy_of_name = obstack_finish (&notes);
e16bb312 2848
c19d1205
ZW
2849#ifdef tc_canonicalize_symbol_name
2850 preserved_copy_of_name =
2851 tc_canonicalize_symbol_name (preserved_copy_of_name);
2852#endif
b99bd4ef 2853
c19d1205 2854 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 2855
c19d1205
ZW
2856 S_SET_SEGMENT (symbolP, segment);
2857 S_SET_VALUE (symbolP, valu);
2858 symbol_clear_list_pointers (symbolP);
b99bd4ef 2859
c19d1205 2860 symbol_set_frag (symbolP, frag);
b99bd4ef 2861
c19d1205
ZW
2862 /* Link to end of symbol chain. */
2863 {
2864 extern int symbol_table_frozen;
b99bd4ef 2865
c19d1205
ZW
2866 if (symbol_table_frozen)
2867 abort ();
2868 }
b99bd4ef 2869
c19d1205 2870 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 2871
c19d1205 2872 obj_symbol_new_hook (symbolP);
b99bd4ef 2873
c19d1205
ZW
2874#ifdef tc_symbol_new_hook
2875 tc_symbol_new_hook (symbolP);
2876#endif
2877
2878#ifdef DEBUG_SYMS
2879 verify_symbol_chain (symbol_rootP, symbol_lastP);
2880#endif /* DEBUG_SYMS */
b99bd4ef
NC
2881}
2882
b99bd4ef 2883
c19d1205
ZW
2884static void
2885s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 2886{
c19d1205
ZW
2887 unsigned int entry;
2888 literal_pool * pool;
2889 char sym_name[20];
b99bd4ef 2890
c19d1205
ZW
2891 pool = find_literal_pool ();
2892 if (pool == NULL
2893 || pool->symbol == NULL
2894 || pool->next_free_entry == 0)
2895 return;
b99bd4ef 2896
c19d1205 2897 mapping_state (MAP_DATA);
b99bd4ef 2898
c19d1205
ZW
2899 /* Align pool as you have word accesses.
2900 Only make a frag if we have to. */
2901 if (!need_pass_2)
2902 frag_align (2, 0, 0);
b99bd4ef 2903
c19d1205 2904 record_alignment (now_seg, 2);
b99bd4ef 2905
c19d1205 2906 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 2907
c19d1205
ZW
2908 symbol_locate (pool->symbol, sym_name, now_seg,
2909 (valueT) frag_now_fix (), frag_now);
2910 symbol_table_insert (pool->symbol);
b99bd4ef 2911
c19d1205 2912 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 2913
c19d1205
ZW
2914#if defined OBJ_COFF || defined OBJ_ELF
2915 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2916#endif
6c43fab6 2917
c19d1205
ZW
2918 for (entry = 0; entry < pool->next_free_entry; entry ++)
2919 /* First output the expression in the instruction to the pool. */
2920 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 2921
c19d1205
ZW
2922 /* Mark the pool as empty. */
2923 pool->next_free_entry = 0;
2924 pool->symbol = NULL;
b99bd4ef
NC
2925}
2926
c19d1205
ZW
2927#ifdef OBJ_ELF
2928/* Forward declarations for functions below, in the MD interface
2929 section. */
2930static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2931static valueT create_unwind_entry (int);
2932static void start_unwind_section (const segT, int);
2933static void add_unwind_opcode (valueT, int);
2934static void flush_pending_unwind (void);
b99bd4ef 2935
c19d1205 2936/* Directives: Data. */
b99bd4ef 2937
c19d1205
ZW
2938static void
2939s_arm_elf_cons (int nbytes)
2940{
2941 expressionS exp;
b99bd4ef 2942
c19d1205
ZW
2943#ifdef md_flush_pending_output
2944 md_flush_pending_output ();
2945#endif
b99bd4ef 2946
c19d1205 2947 if (is_it_end_of_statement ())
b99bd4ef 2948 {
c19d1205
ZW
2949 demand_empty_rest_of_line ();
2950 return;
b99bd4ef
NC
2951 }
2952
c19d1205
ZW
2953#ifdef md_cons_align
2954 md_cons_align (nbytes);
2955#endif
b99bd4ef 2956
c19d1205
ZW
2957 mapping_state (MAP_DATA);
2958 do
b99bd4ef 2959 {
c19d1205
ZW
2960 int reloc;
2961 char *base = input_line_pointer;
b99bd4ef 2962
c19d1205 2963 expression (& exp);
b99bd4ef 2964
c19d1205
ZW
2965 if (exp.X_op != O_symbol)
2966 emit_expr (&exp, (unsigned int) nbytes);
2967 else
2968 {
2969 char *before_reloc = input_line_pointer;
2970 reloc = parse_reloc (&input_line_pointer);
2971 if (reloc == -1)
2972 {
2973 as_bad (_("unrecognized relocation suffix"));
2974 ignore_rest_of_line ();
2975 return;
2976 }
2977 else if (reloc == BFD_RELOC_UNUSED)
2978 emit_expr (&exp, (unsigned int) nbytes);
2979 else
2980 {
2981 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2982 int size = bfd_get_reloc_size (howto);
b99bd4ef 2983
2fc8bdac
ZW
2984 if (reloc == BFD_RELOC_ARM_PLT32)
2985 {
2986 as_bad (_("(plt) is only valid on branch targets"));
2987 reloc = BFD_RELOC_UNUSED;
2988 size = 0;
2989 }
2990
c19d1205 2991 if (size > nbytes)
2fc8bdac 2992 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
2993 howto->name, nbytes);
2994 else
2995 {
2996 /* We've parsed an expression stopping at O_symbol.
2997 But there may be more expression left now that we
2998 have parsed the relocation marker. Parse it again.
2999 XXX Surely there is a cleaner way to do this. */
3000 char *p = input_line_pointer;
3001 int offset;
3002 char *save_buf = alloca (input_line_pointer - base);
3003 memcpy (save_buf, base, input_line_pointer - base);
3004 memmove (base + (input_line_pointer - before_reloc),
3005 base, before_reloc - base);
3006
3007 input_line_pointer = base + (input_line_pointer-before_reloc);
3008 expression (&exp);
3009 memcpy (base, save_buf, p - base);
3010
3011 offset = nbytes - size;
3012 p = frag_more ((int) nbytes);
3013 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3014 size, &exp, 0, reloc);
3015 }
3016 }
3017 }
b99bd4ef 3018 }
c19d1205 3019 while (*input_line_pointer++ == ',');
b99bd4ef 3020
c19d1205
ZW
3021 /* Put terminator back into stream. */
3022 input_line_pointer --;
3023 demand_empty_rest_of_line ();
b99bd4ef
NC
3024}
3025
b99bd4ef 3026
c19d1205 3027/* Parse a .rel31 directive. */
b99bd4ef 3028
c19d1205
ZW
3029static void
3030s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3031{
3032 expressionS exp;
3033 char *p;
3034 valueT highbit;
b99bd4ef 3035
c19d1205
ZW
3036 highbit = 0;
3037 if (*input_line_pointer == '1')
3038 highbit = 0x80000000;
3039 else if (*input_line_pointer != '0')
3040 as_bad (_("expected 0 or 1"));
b99bd4ef 3041
c19d1205
ZW
3042 input_line_pointer++;
3043 if (*input_line_pointer != ',')
3044 as_bad (_("missing comma"));
3045 input_line_pointer++;
b99bd4ef 3046
c19d1205
ZW
3047#ifdef md_flush_pending_output
3048 md_flush_pending_output ();
3049#endif
b99bd4ef 3050
c19d1205
ZW
3051#ifdef md_cons_align
3052 md_cons_align (4);
3053#endif
b99bd4ef 3054
c19d1205 3055 mapping_state (MAP_DATA);
b99bd4ef 3056
c19d1205 3057 expression (&exp);
b99bd4ef 3058
c19d1205
ZW
3059 p = frag_more (4);
3060 md_number_to_chars (p, highbit, 4);
3061 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3062 BFD_RELOC_ARM_PREL31);
b99bd4ef 3063
c19d1205 3064 demand_empty_rest_of_line ();
b99bd4ef
NC
3065}
3066
c19d1205 3067/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3068
c19d1205 3069/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3070
c19d1205
ZW
3071static void
3072s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3073{
3074 demand_empty_rest_of_line ();
3075 /* Mark the start of the function. */
3076 unwind.proc_start = expr_build_dot ();
b99bd4ef 3077
c19d1205
ZW
3078 /* Reset the rest of the unwind info. */
3079 unwind.opcode_count = 0;
3080 unwind.table_entry = NULL;
3081 unwind.personality_routine = NULL;
3082 unwind.personality_index = -1;
3083 unwind.frame_size = 0;
3084 unwind.fp_offset = 0;
3085 unwind.fp_reg = 13;
3086 unwind.fp_used = 0;
3087 unwind.sp_restored = 0;
3088}
b99bd4ef 3089
b99bd4ef 3090
c19d1205
ZW
3091/* Parse a handlerdata directive. Creates the exception handling table entry
3092 for the function. */
b99bd4ef 3093
c19d1205
ZW
3094static void
3095s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3096{
3097 demand_empty_rest_of_line ();
3098 if (unwind.table_entry)
6decc662 3099 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3100
c19d1205
ZW
3101 create_unwind_entry (1);
3102}
a737bd4d 3103
c19d1205 3104/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3105
c19d1205
ZW
3106static void
3107s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3108{
3109 long where;
3110 char *ptr;
3111 valueT val;
f02232aa 3112
c19d1205 3113 demand_empty_rest_of_line ();
f02232aa 3114
c19d1205
ZW
3115 /* Add eh table entry. */
3116 if (unwind.table_entry == NULL)
3117 val = create_unwind_entry (0);
3118 else
3119 val = 0;
f02232aa 3120
c19d1205
ZW
3121 /* Add index table entry. This is two words. */
3122 start_unwind_section (unwind.saved_seg, 1);
3123 frag_align (2, 0, 0);
3124 record_alignment (now_seg, 2);
b99bd4ef 3125
c19d1205
ZW
3126 ptr = frag_more (8);
3127 where = frag_now_fix () - 8;
f02232aa 3128
c19d1205
ZW
3129 /* Self relative offset of the function start. */
3130 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3131 BFD_RELOC_ARM_PREL31);
f02232aa 3132
c19d1205
ZW
3133 /* Indicate dependency on EHABI-defined personality routines to the
3134 linker, if it hasn't been done already. */
3135 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3136 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3137 {
5f4273c7
NC
3138 static const char *const name[] =
3139 {
3140 "__aeabi_unwind_cpp_pr0",
3141 "__aeabi_unwind_cpp_pr1",
3142 "__aeabi_unwind_cpp_pr2"
3143 };
c19d1205
ZW
3144 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3145 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3146 marked_pr_dependency |= 1 << unwind.personality_index;
3147 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3148 = marked_pr_dependency;
3149 }
f02232aa 3150
c19d1205
ZW
3151 if (val)
3152 /* Inline exception table entry. */
3153 md_number_to_chars (ptr + 4, val, 4);
3154 else
3155 /* Self relative offset of the table entry. */
3156 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3157 BFD_RELOC_ARM_PREL31);
f02232aa 3158
c19d1205
ZW
3159 /* Restore the original section. */
3160 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3161}
f02232aa 3162
f02232aa 3163
c19d1205 3164/* Parse an unwind_cantunwind directive. */
b99bd4ef 3165
c19d1205
ZW
3166static void
3167s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3168{
3169 demand_empty_rest_of_line ();
3170 if (unwind.personality_routine || unwind.personality_index != -1)
3171 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3172
c19d1205
ZW
3173 unwind.personality_index = -2;
3174}
b99bd4ef 3175
b99bd4ef 3176
c19d1205 3177/* Parse a personalityindex directive. */
b99bd4ef 3178
c19d1205
ZW
3179static void
3180s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3181{
3182 expressionS exp;
b99bd4ef 3183
c19d1205
ZW
3184 if (unwind.personality_routine || unwind.personality_index != -1)
3185 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3186
c19d1205 3187 expression (&exp);
b99bd4ef 3188
c19d1205
ZW
3189 if (exp.X_op != O_constant
3190 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3191 {
c19d1205
ZW
3192 as_bad (_("bad personality routine number"));
3193 ignore_rest_of_line ();
3194 return;
b99bd4ef
NC
3195 }
3196
c19d1205 3197 unwind.personality_index = exp.X_add_number;
b99bd4ef 3198
c19d1205
ZW
3199 demand_empty_rest_of_line ();
3200}
e16bb312 3201
e16bb312 3202
c19d1205 3203/* Parse a personality directive. */
e16bb312 3204
c19d1205
ZW
3205static void
3206s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3207{
3208 char *name, *p, c;
a737bd4d 3209
c19d1205
ZW
3210 if (unwind.personality_routine || unwind.personality_index != -1)
3211 as_bad (_("duplicate .personality directive"));
a737bd4d 3212
c19d1205
ZW
3213 name = input_line_pointer;
3214 c = get_symbol_end ();
3215 p = input_line_pointer;
3216 unwind.personality_routine = symbol_find_or_make (name);
3217 *p = c;
3218 demand_empty_rest_of_line ();
3219}
e16bb312 3220
e16bb312 3221
c19d1205 3222/* Parse a directive saving core registers. */
e16bb312 3223
c19d1205
ZW
3224static void
3225s_arm_unwind_save_core (void)
e16bb312 3226{
c19d1205
ZW
3227 valueT op;
3228 long range;
3229 int n;
e16bb312 3230
c19d1205
ZW
3231 range = parse_reg_list (&input_line_pointer);
3232 if (range == FAIL)
e16bb312 3233 {
c19d1205
ZW
3234 as_bad (_("expected register list"));
3235 ignore_rest_of_line ();
3236 return;
3237 }
e16bb312 3238
c19d1205 3239 demand_empty_rest_of_line ();
e16bb312 3240
c19d1205
ZW
3241 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3242 into .unwind_save {..., sp...}. We aren't bothered about the value of
3243 ip because it is clobbered by calls. */
3244 if (unwind.sp_restored && unwind.fp_reg == 12
3245 && (range & 0x3000) == 0x1000)
3246 {
3247 unwind.opcode_count--;
3248 unwind.sp_restored = 0;
3249 range = (range | 0x2000) & ~0x1000;
3250 unwind.pending_offset = 0;
3251 }
e16bb312 3252
01ae4198
DJ
3253 /* Pop r4-r15. */
3254 if (range & 0xfff0)
c19d1205 3255 {
01ae4198
DJ
3256 /* See if we can use the short opcodes. These pop a block of up to 8
3257 registers starting with r4, plus maybe r14. */
3258 for (n = 0; n < 8; n++)
3259 {
3260 /* Break at the first non-saved register. */
3261 if ((range & (1 << (n + 4))) == 0)
3262 break;
3263 }
3264 /* See if there are any other bits set. */
3265 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3266 {
3267 /* Use the long form. */
3268 op = 0x8000 | ((range >> 4) & 0xfff);
3269 add_unwind_opcode (op, 2);
3270 }
0dd132b6 3271 else
01ae4198
DJ
3272 {
3273 /* Use the short form. */
3274 if (range & 0x4000)
3275 op = 0xa8; /* Pop r14. */
3276 else
3277 op = 0xa0; /* Do not pop r14. */
3278 op |= (n - 1);
3279 add_unwind_opcode (op, 1);
3280 }
c19d1205 3281 }
0dd132b6 3282
c19d1205
ZW
3283 /* Pop r0-r3. */
3284 if (range & 0xf)
3285 {
3286 op = 0xb100 | (range & 0xf);
3287 add_unwind_opcode (op, 2);
0dd132b6
NC
3288 }
3289
c19d1205
ZW
3290 /* Record the number of bytes pushed. */
3291 for (n = 0; n < 16; n++)
3292 {
3293 if (range & (1 << n))
3294 unwind.frame_size += 4;
3295 }
0dd132b6
NC
3296}
3297
c19d1205
ZW
3298
3299/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3300
3301static void
c19d1205 3302s_arm_unwind_save_fpa (int reg)
b99bd4ef 3303{
c19d1205
ZW
3304 expressionS exp;
3305 int num_regs;
3306 valueT op;
b99bd4ef 3307
c19d1205
ZW
3308 /* Get Number of registers to transfer. */
3309 if (skip_past_comma (&input_line_pointer) != FAIL)
3310 expression (&exp);
3311 else
3312 exp.X_op = O_illegal;
b99bd4ef 3313
c19d1205 3314 if (exp.X_op != O_constant)
b99bd4ef 3315 {
c19d1205
ZW
3316 as_bad (_("expected , <constant>"));
3317 ignore_rest_of_line ();
b99bd4ef
NC
3318 return;
3319 }
3320
c19d1205
ZW
3321 num_regs = exp.X_add_number;
3322
3323 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3324 {
c19d1205
ZW
3325 as_bad (_("number of registers must be in the range [1:4]"));
3326 ignore_rest_of_line ();
b99bd4ef
NC
3327 return;
3328 }
3329
c19d1205 3330 demand_empty_rest_of_line ();
b99bd4ef 3331
c19d1205
ZW
3332 if (reg == 4)
3333 {
3334 /* Short form. */
3335 op = 0xb4 | (num_regs - 1);
3336 add_unwind_opcode (op, 1);
3337 }
b99bd4ef
NC
3338 else
3339 {
c19d1205
ZW
3340 /* Long form. */
3341 op = 0xc800 | (reg << 4) | (num_regs - 1);
3342 add_unwind_opcode (op, 2);
b99bd4ef 3343 }
c19d1205 3344 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3345}
3346
c19d1205 3347
fa073d69
MS
3348/* Parse a directive saving VFP registers for ARMv6 and above. */
3349
3350static void
3351s_arm_unwind_save_vfp_armv6 (void)
3352{
3353 int count;
3354 unsigned int start;
3355 valueT op;
3356 int num_vfpv3_regs = 0;
3357 int num_regs_below_16;
3358
3359 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3360 if (count == FAIL)
3361 {
3362 as_bad (_("expected register list"));
3363 ignore_rest_of_line ();
3364 return;
3365 }
3366
3367 demand_empty_rest_of_line ();
3368
3369 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3370 than FSTMX/FLDMX-style ones). */
3371
3372 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3373 if (start >= 16)
3374 num_vfpv3_regs = count;
3375 else if (start + count > 16)
3376 num_vfpv3_regs = start + count - 16;
3377
3378 if (num_vfpv3_regs > 0)
3379 {
3380 int start_offset = start > 16 ? start - 16 : 0;
3381 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3382 add_unwind_opcode (op, 2);
3383 }
3384
3385 /* Generate opcode for registers numbered in the range 0 .. 15. */
3386 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3387 assert (num_regs_below_16 + num_vfpv3_regs == count);
3388 if (num_regs_below_16 > 0)
3389 {
3390 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3391 add_unwind_opcode (op, 2);
3392 }
3393
3394 unwind.frame_size += count * 8;
3395}
3396
3397
3398/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3399
3400static void
c19d1205 3401s_arm_unwind_save_vfp (void)
b99bd4ef 3402{
c19d1205 3403 int count;
ca3f61f7 3404 unsigned int reg;
c19d1205 3405 valueT op;
b99bd4ef 3406
5287ad62 3407 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3408 if (count == FAIL)
b99bd4ef 3409 {
c19d1205
ZW
3410 as_bad (_("expected register list"));
3411 ignore_rest_of_line ();
b99bd4ef
NC
3412 return;
3413 }
3414
c19d1205 3415 demand_empty_rest_of_line ();
b99bd4ef 3416
c19d1205 3417 if (reg == 8)
b99bd4ef 3418 {
c19d1205
ZW
3419 /* Short form. */
3420 op = 0xb8 | (count - 1);
3421 add_unwind_opcode (op, 1);
b99bd4ef 3422 }
c19d1205 3423 else
b99bd4ef 3424 {
c19d1205
ZW
3425 /* Long form. */
3426 op = 0xb300 | (reg << 4) | (count - 1);
3427 add_unwind_opcode (op, 2);
b99bd4ef 3428 }
c19d1205
ZW
3429 unwind.frame_size += count * 8 + 4;
3430}
b99bd4ef 3431
b99bd4ef 3432
c19d1205
ZW
3433/* Parse a directive saving iWMMXt data registers. */
3434
3435static void
3436s_arm_unwind_save_mmxwr (void)
3437{
3438 int reg;
3439 int hi_reg;
3440 int i;
3441 unsigned mask = 0;
3442 valueT op;
b99bd4ef 3443
c19d1205
ZW
3444 if (*input_line_pointer == '{')
3445 input_line_pointer++;
b99bd4ef 3446
c19d1205 3447 do
b99bd4ef 3448 {
dcbf9037 3449 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3450
c19d1205 3451 if (reg == FAIL)
b99bd4ef 3452 {
c19d1205
ZW
3453 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3454 goto error;
b99bd4ef
NC
3455 }
3456
c19d1205
ZW
3457 if (mask >> reg)
3458 as_tsktsk (_("register list not in ascending order"));
3459 mask |= 1 << reg;
b99bd4ef 3460
c19d1205
ZW
3461 if (*input_line_pointer == '-')
3462 {
3463 input_line_pointer++;
dcbf9037 3464 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3465 if (hi_reg == FAIL)
3466 {
3467 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3468 goto error;
3469 }
3470 else if (reg >= hi_reg)
3471 {
3472 as_bad (_("bad register range"));
3473 goto error;
3474 }
3475 for (; reg < hi_reg; reg++)
3476 mask |= 1 << reg;
3477 }
3478 }
3479 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3480
c19d1205
ZW
3481 if (*input_line_pointer == '}')
3482 input_line_pointer++;
b99bd4ef 3483
c19d1205 3484 demand_empty_rest_of_line ();
b99bd4ef 3485
708587a4 3486 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3487 the list. */
3488 flush_pending_unwind ();
b99bd4ef 3489
c19d1205 3490 for (i = 0; i < 16; i++)
b99bd4ef 3491 {
c19d1205
ZW
3492 if (mask & (1 << i))
3493 unwind.frame_size += 8;
b99bd4ef
NC
3494 }
3495
c19d1205
ZW
3496 /* Attempt to combine with a previous opcode. We do this because gcc
3497 likes to output separate unwind directives for a single block of
3498 registers. */
3499 if (unwind.opcode_count > 0)
b99bd4ef 3500 {
c19d1205
ZW
3501 i = unwind.opcodes[unwind.opcode_count - 1];
3502 if ((i & 0xf8) == 0xc0)
3503 {
3504 i &= 7;
3505 /* Only merge if the blocks are contiguous. */
3506 if (i < 6)
3507 {
3508 if ((mask & 0xfe00) == (1 << 9))
3509 {
3510 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3511 unwind.opcode_count--;
3512 }
3513 }
3514 else if (i == 6 && unwind.opcode_count >= 2)
3515 {
3516 i = unwind.opcodes[unwind.opcode_count - 2];
3517 reg = i >> 4;
3518 i &= 0xf;
b99bd4ef 3519
c19d1205
ZW
3520 op = 0xffff << (reg - 1);
3521 if (reg > 0
87a1fd79 3522 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3523 {
3524 op = (1 << (reg + i + 1)) - 1;
3525 op &= ~((1 << reg) - 1);
3526 mask |= op;
3527 unwind.opcode_count -= 2;
3528 }
3529 }
3530 }
b99bd4ef
NC
3531 }
3532
c19d1205
ZW
3533 hi_reg = 15;
3534 /* We want to generate opcodes in the order the registers have been
3535 saved, ie. descending order. */
3536 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3537 {
c19d1205
ZW
3538 /* Save registers in blocks. */
3539 if (reg < 0
3540 || !(mask & (1 << reg)))
3541 {
3542 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3543 preceding block. */
c19d1205
ZW
3544 if (reg != hi_reg)
3545 {
3546 if (reg == 9)
3547 {
3548 /* Short form. */
3549 op = 0xc0 | (hi_reg - 10);
3550 add_unwind_opcode (op, 1);
3551 }
3552 else
3553 {
3554 /* Long form. */
3555 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3556 add_unwind_opcode (op, 2);
3557 }
3558 }
3559 hi_reg = reg - 1;
3560 }
b99bd4ef
NC
3561 }
3562
c19d1205
ZW
3563 return;
3564error:
3565 ignore_rest_of_line ();
b99bd4ef
NC
3566}
3567
3568static void
c19d1205 3569s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3570{
c19d1205
ZW
3571 int reg;
3572 int hi_reg;
3573 unsigned mask = 0;
3574 valueT op;
b99bd4ef 3575
c19d1205
ZW
3576 if (*input_line_pointer == '{')
3577 input_line_pointer++;
b99bd4ef 3578
c19d1205 3579 do
b99bd4ef 3580 {
dcbf9037 3581 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3582
c19d1205
ZW
3583 if (reg == FAIL)
3584 {
3585 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3586 goto error;
3587 }
b99bd4ef 3588
c19d1205
ZW
3589 reg -= 8;
3590 if (mask >> reg)
3591 as_tsktsk (_("register list not in ascending order"));
3592 mask |= 1 << reg;
b99bd4ef 3593
c19d1205
ZW
3594 if (*input_line_pointer == '-')
3595 {
3596 input_line_pointer++;
dcbf9037 3597 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3598 if (hi_reg == FAIL)
3599 {
3600 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3601 goto error;
3602 }
3603 else if (reg >= hi_reg)
3604 {
3605 as_bad (_("bad register range"));
3606 goto error;
3607 }
3608 for (; reg < hi_reg; reg++)
3609 mask |= 1 << reg;
3610 }
b99bd4ef 3611 }
c19d1205 3612 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3613
c19d1205
ZW
3614 if (*input_line_pointer == '}')
3615 input_line_pointer++;
b99bd4ef 3616
c19d1205
ZW
3617 demand_empty_rest_of_line ();
3618
708587a4 3619 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3620 the list. */
3621 flush_pending_unwind ();
b99bd4ef 3622
c19d1205 3623 for (reg = 0; reg < 16; reg++)
b99bd4ef 3624 {
c19d1205
ZW
3625 if (mask & (1 << reg))
3626 unwind.frame_size += 4;
b99bd4ef 3627 }
c19d1205
ZW
3628 op = 0xc700 | mask;
3629 add_unwind_opcode (op, 2);
3630 return;
3631error:
3632 ignore_rest_of_line ();
b99bd4ef
NC
3633}
3634
c19d1205 3635
fa073d69
MS
3636/* Parse an unwind_save directive.
3637 If the argument is non-zero, this is a .vsave directive. */
c19d1205 3638
b99bd4ef 3639static void
fa073d69 3640s_arm_unwind_save (int arch_v6)
b99bd4ef 3641{
c19d1205
ZW
3642 char *peek;
3643 struct reg_entry *reg;
3644 bfd_boolean had_brace = FALSE;
b99bd4ef 3645
c19d1205
ZW
3646 /* Figure out what sort of save we have. */
3647 peek = input_line_pointer;
b99bd4ef 3648
c19d1205 3649 if (*peek == '{')
b99bd4ef 3650 {
c19d1205
ZW
3651 had_brace = TRUE;
3652 peek++;
b99bd4ef
NC
3653 }
3654
c19d1205 3655 reg = arm_reg_parse_multi (&peek);
b99bd4ef 3656
c19d1205 3657 if (!reg)
b99bd4ef 3658 {
c19d1205
ZW
3659 as_bad (_("register expected"));
3660 ignore_rest_of_line ();
b99bd4ef
NC
3661 return;
3662 }
3663
c19d1205 3664 switch (reg->type)
b99bd4ef 3665 {
c19d1205
ZW
3666 case REG_TYPE_FN:
3667 if (had_brace)
3668 {
3669 as_bad (_("FPA .unwind_save does not take a register list"));
3670 ignore_rest_of_line ();
3671 return;
3672 }
3673 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 3674 return;
c19d1205
ZW
3675
3676 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
3677 case REG_TYPE_VFD:
3678 if (arch_v6)
3679 s_arm_unwind_save_vfp_armv6 ();
3680 else
3681 s_arm_unwind_save_vfp ();
3682 return;
c19d1205
ZW
3683 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3684 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3685
3686 default:
3687 as_bad (_(".unwind_save does not support this kind of register"));
3688 ignore_rest_of_line ();
b99bd4ef 3689 }
c19d1205 3690}
b99bd4ef 3691
b99bd4ef 3692
c19d1205
ZW
3693/* Parse an unwind_movsp directive. */
3694
3695static void
3696s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3697{
3698 int reg;
3699 valueT op;
4fa3602b 3700 int offset;
c19d1205 3701
dcbf9037 3702 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 3703 if (reg == FAIL)
b99bd4ef 3704 {
c19d1205
ZW
3705 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
3706 ignore_rest_of_line ();
b99bd4ef
NC
3707 return;
3708 }
4fa3602b
PB
3709
3710 /* Optional constant. */
3711 if (skip_past_comma (&input_line_pointer) != FAIL)
3712 {
3713 if (immediate_for_directive (&offset) == FAIL)
3714 return;
3715 }
3716 else
3717 offset = 0;
3718
c19d1205 3719 demand_empty_rest_of_line ();
b99bd4ef 3720
c19d1205 3721 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 3722 {
c19d1205 3723 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
3724 return;
3725 }
3726
c19d1205
ZW
3727 if (unwind.fp_reg != REG_SP)
3728 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 3729
c19d1205
ZW
3730 /* Generate opcode to restore the value. */
3731 op = 0x90 | reg;
3732 add_unwind_opcode (op, 1);
3733
3734 /* Record the information for later. */
3735 unwind.fp_reg = reg;
4fa3602b 3736 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 3737 unwind.sp_restored = 1;
b05fe5cf
ZW
3738}
3739
c19d1205
ZW
3740/* Parse an unwind_pad directive. */
3741
b05fe5cf 3742static void
c19d1205 3743s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 3744{
c19d1205 3745 int offset;
b05fe5cf 3746
c19d1205
ZW
3747 if (immediate_for_directive (&offset) == FAIL)
3748 return;
b99bd4ef 3749
c19d1205
ZW
3750 if (offset & 3)
3751 {
3752 as_bad (_("stack increment must be multiple of 4"));
3753 ignore_rest_of_line ();
3754 return;
3755 }
b99bd4ef 3756
c19d1205
ZW
3757 /* Don't generate any opcodes, just record the details for later. */
3758 unwind.frame_size += offset;
3759 unwind.pending_offset += offset;
3760
3761 demand_empty_rest_of_line ();
3762}
3763
3764/* Parse an unwind_setfp directive. */
3765
3766static void
3767s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3768{
c19d1205
ZW
3769 int sp_reg;
3770 int fp_reg;
3771 int offset;
3772
dcbf9037 3773 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
3774 if (skip_past_comma (&input_line_pointer) == FAIL)
3775 sp_reg = FAIL;
3776 else
dcbf9037 3777 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 3778
c19d1205
ZW
3779 if (fp_reg == FAIL || sp_reg == FAIL)
3780 {
3781 as_bad (_("expected <reg>, <reg>"));
3782 ignore_rest_of_line ();
3783 return;
3784 }
b99bd4ef 3785
c19d1205
ZW
3786 /* Optional constant. */
3787 if (skip_past_comma (&input_line_pointer) != FAIL)
3788 {
3789 if (immediate_for_directive (&offset) == FAIL)
3790 return;
3791 }
3792 else
3793 offset = 0;
a737bd4d 3794
c19d1205 3795 demand_empty_rest_of_line ();
a737bd4d 3796
c19d1205 3797 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
a737bd4d 3798 {
c19d1205
ZW
3799 as_bad (_("register must be either sp or set by a previous"
3800 "unwind_movsp directive"));
3801 return;
a737bd4d
NC
3802 }
3803
c19d1205
ZW
3804 /* Don't generate any opcodes, just record the information for later. */
3805 unwind.fp_reg = fp_reg;
3806 unwind.fp_used = 1;
3807 if (sp_reg == 13)
3808 unwind.fp_offset = unwind.frame_size - offset;
3809 else
3810 unwind.fp_offset -= offset;
a737bd4d
NC
3811}
3812
c19d1205
ZW
3813/* Parse an unwind_raw directive. */
3814
3815static void
3816s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 3817{
c19d1205 3818 expressionS exp;
708587a4 3819 /* This is an arbitrary limit. */
c19d1205
ZW
3820 unsigned char op[16];
3821 int count;
a737bd4d 3822
c19d1205
ZW
3823 expression (&exp);
3824 if (exp.X_op == O_constant
3825 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 3826 {
c19d1205
ZW
3827 unwind.frame_size += exp.X_add_number;
3828 expression (&exp);
3829 }
3830 else
3831 exp.X_op = O_illegal;
a737bd4d 3832
c19d1205
ZW
3833 if (exp.X_op != O_constant)
3834 {
3835 as_bad (_("expected <offset>, <opcode>"));
3836 ignore_rest_of_line ();
3837 return;
3838 }
a737bd4d 3839
c19d1205 3840 count = 0;
a737bd4d 3841
c19d1205
ZW
3842 /* Parse the opcode. */
3843 for (;;)
3844 {
3845 if (count >= 16)
3846 {
3847 as_bad (_("unwind opcode too long"));
3848 ignore_rest_of_line ();
a737bd4d 3849 }
c19d1205 3850 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 3851 {
c19d1205
ZW
3852 as_bad (_("invalid unwind opcode"));
3853 ignore_rest_of_line ();
3854 return;
a737bd4d 3855 }
c19d1205 3856 op[count++] = exp.X_add_number;
a737bd4d 3857
c19d1205
ZW
3858 /* Parse the next byte. */
3859 if (skip_past_comma (&input_line_pointer) == FAIL)
3860 break;
a737bd4d 3861
c19d1205
ZW
3862 expression (&exp);
3863 }
b99bd4ef 3864
c19d1205
ZW
3865 /* Add the opcode bytes in reverse order. */
3866 while (count--)
3867 add_unwind_opcode (op[count], 1);
b99bd4ef 3868
c19d1205 3869 demand_empty_rest_of_line ();
b99bd4ef 3870}
ee065d83
PB
3871
3872
3873/* Parse a .eabi_attribute directive. */
3874
3875static void
3876s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3877{
104d59d1 3878 s_vendor_attribute (OBJ_ATTR_PROC);
ee065d83 3879}
8463be01 3880#endif /* OBJ_ELF */
ee065d83
PB
3881
3882static void s_arm_arch (int);
7a1d4c38 3883static void s_arm_object_arch (int);
ee065d83
PB
3884static void s_arm_cpu (int);
3885static void s_arm_fpu (int);
b99bd4ef 3886
f0927246
NC
3887#ifdef TE_PE
3888
3889static void
5f4273c7 3890pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
3891{
3892 expressionS exp;
3893
3894 do
3895 {
3896 expression (&exp);
3897 if (exp.X_op == O_symbol)
3898 exp.X_op = O_secrel;
3899
3900 emit_expr (&exp, 4);
3901 }
3902 while (*input_line_pointer++ == ',');
3903
3904 input_line_pointer--;
3905 demand_empty_rest_of_line ();
3906}
3907#endif /* TE_PE */
3908
c19d1205
ZW
3909/* This table describes all the machine specific pseudo-ops the assembler
3910 has to support. The fields are:
3911 pseudo-op name without dot
3912 function to call to execute this pseudo-op
3913 Integer arg to pass to the function. */
b99bd4ef 3914
c19d1205 3915const pseudo_typeS md_pseudo_table[] =
b99bd4ef 3916{
c19d1205
ZW
3917 /* Never called because '.req' does not start a line. */
3918 { "req", s_req, 0 },
dcbf9037
JB
3919 /* Following two are likewise never called. */
3920 { "dn", s_dn, 0 },
3921 { "qn", s_qn, 0 },
c19d1205
ZW
3922 { "unreq", s_unreq, 0 },
3923 { "bss", s_bss, 0 },
3924 { "align", s_align, 0 },
3925 { "arm", s_arm, 0 },
3926 { "thumb", s_thumb, 0 },
3927 { "code", s_code, 0 },
3928 { "force_thumb", s_force_thumb, 0 },
3929 { "thumb_func", s_thumb_func, 0 },
3930 { "thumb_set", s_thumb_set, 0 },
3931 { "even", s_even, 0 },
3932 { "ltorg", s_ltorg, 0 },
3933 { "pool", s_ltorg, 0 },
3934 { "syntax", s_syntax, 0 },
8463be01
PB
3935 { "cpu", s_arm_cpu, 0 },
3936 { "arch", s_arm_arch, 0 },
7a1d4c38 3937 { "object_arch", s_arm_object_arch, 0 },
8463be01 3938 { "fpu", s_arm_fpu, 0 },
c19d1205
ZW
3939#ifdef OBJ_ELF
3940 { "word", s_arm_elf_cons, 4 },
3941 { "long", s_arm_elf_cons, 4 },
3942 { "rel31", s_arm_rel31, 0 },
3943 { "fnstart", s_arm_unwind_fnstart, 0 },
3944 { "fnend", s_arm_unwind_fnend, 0 },
3945 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3946 { "personality", s_arm_unwind_personality, 0 },
3947 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3948 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3949 { "save", s_arm_unwind_save, 0 },
fa073d69 3950 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
3951 { "movsp", s_arm_unwind_movsp, 0 },
3952 { "pad", s_arm_unwind_pad, 0 },
3953 { "setfp", s_arm_unwind_setfp, 0 },
3954 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 3955 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
3956#else
3957 { "word", cons, 4},
f0927246
NC
3958
3959 /* These are used for dwarf. */
3960 {"2byte", cons, 2},
3961 {"4byte", cons, 4},
3962 {"8byte", cons, 8},
3963 /* These are used for dwarf2. */
3964 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3965 { "loc", dwarf2_directive_loc, 0 },
3966 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
3967#endif
3968 { "extend", float_cons, 'x' },
3969 { "ldouble", float_cons, 'x' },
3970 { "packed", float_cons, 'p' },
f0927246
NC
3971#ifdef TE_PE
3972 {"secrel32", pe_directive_secrel, 0},
3973#endif
c19d1205
ZW
3974 { 0, 0, 0 }
3975};
3976\f
3977/* Parser functions used exclusively in instruction operands. */
b99bd4ef 3978
c19d1205
ZW
3979/* Generic immediate-value read function for use in insn parsing.
3980 STR points to the beginning of the immediate (the leading #);
3981 VAL receives the value; if the value is outside [MIN, MAX]
3982 issue an error. PREFIX_OPT is true if the immediate prefix is
3983 optional. */
b99bd4ef 3984
c19d1205
ZW
3985static int
3986parse_immediate (char **str, int *val, int min, int max,
3987 bfd_boolean prefix_opt)
3988{
3989 expressionS exp;
3990 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
3991 if (exp.X_op != O_constant)
b99bd4ef 3992 {
c19d1205
ZW
3993 inst.error = _("constant expression required");
3994 return FAIL;
3995 }
b99bd4ef 3996
c19d1205
ZW
3997 if (exp.X_add_number < min || exp.X_add_number > max)
3998 {
3999 inst.error = _("immediate value out of range");
4000 return FAIL;
4001 }
b99bd4ef 4002
c19d1205
ZW
4003 *val = exp.X_add_number;
4004 return SUCCESS;
4005}
b99bd4ef 4006
5287ad62 4007/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4008 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4009 instructions. Puts the result directly in inst.operands[i]. */
4010
4011static int
4012parse_big_immediate (char **str, int i)
4013{
4014 expressionS exp;
4015 char *ptr = *str;
4016
4017 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4018
4019 if (exp.X_op == O_constant)
036dc3f7
PB
4020 {
4021 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4022 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4023 O_constant. We have to be careful not to break compilation for
4024 32-bit X_add_number, though. */
4025 if ((exp.X_add_number & ~0xffffffffl) != 0)
4026 {
4027 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4028 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4029 inst.operands[i].regisimm = 1;
4030 }
4031 }
5287ad62
JB
4032 else if (exp.X_op == O_big
4033 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4034 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4035 {
4036 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4037 /* Bignums have their least significant bits in
4038 generic_bignum[0]. Make sure we put 32 bits in imm and
4039 32 bits in reg, in a (hopefully) portable way. */
4040 assert (parts != 0);
4041 inst.operands[i].imm = 0;
4042 for (j = 0; j < parts; j++, idx++)
4043 inst.operands[i].imm |= generic_bignum[idx]
4044 << (LITTLENUM_NUMBER_OF_BITS * j);
4045 inst.operands[i].reg = 0;
4046 for (j = 0; j < parts; j++, idx++)
4047 inst.operands[i].reg |= generic_bignum[idx]
4048 << (LITTLENUM_NUMBER_OF_BITS * j);
4049 inst.operands[i].regisimm = 1;
4050 }
4051 else
4052 return FAIL;
5f4273c7 4053
5287ad62
JB
4054 *str = ptr;
4055
4056 return SUCCESS;
4057}
4058
c19d1205
ZW
4059/* Returns the pseudo-register number of an FPA immediate constant,
4060 or FAIL if there isn't a valid constant here. */
b99bd4ef 4061
c19d1205
ZW
4062static int
4063parse_fpa_immediate (char ** str)
4064{
4065 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4066 char * save_in;
4067 expressionS exp;
4068 int i;
4069 int j;
b99bd4ef 4070
c19d1205
ZW
4071 /* First try and match exact strings, this is to guarantee
4072 that some formats will work even for cross assembly. */
b99bd4ef 4073
c19d1205
ZW
4074 for (i = 0; fp_const[i]; i++)
4075 {
4076 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4077 {
c19d1205 4078 char *start = *str;
b99bd4ef 4079
c19d1205
ZW
4080 *str += strlen (fp_const[i]);
4081 if (is_end_of_line[(unsigned char) **str])
4082 return i + 8;
4083 *str = start;
4084 }
4085 }
b99bd4ef 4086
c19d1205
ZW
4087 /* Just because we didn't get a match doesn't mean that the constant
4088 isn't valid, just that it is in a format that we don't
4089 automatically recognize. Try parsing it with the standard
4090 expression routines. */
b99bd4ef 4091
c19d1205 4092 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4093
c19d1205
ZW
4094 /* Look for a raw floating point number. */
4095 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4096 && is_end_of_line[(unsigned char) *save_in])
4097 {
4098 for (i = 0; i < NUM_FLOAT_VALS; i++)
4099 {
4100 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4101 {
c19d1205
ZW
4102 if (words[j] != fp_values[i][j])
4103 break;
b99bd4ef
NC
4104 }
4105
c19d1205 4106 if (j == MAX_LITTLENUMS)
b99bd4ef 4107 {
c19d1205
ZW
4108 *str = save_in;
4109 return i + 8;
b99bd4ef
NC
4110 }
4111 }
4112 }
b99bd4ef 4113
c19d1205
ZW
4114 /* Try and parse a more complex expression, this will probably fail
4115 unless the code uses a floating point prefix (eg "0f"). */
4116 save_in = input_line_pointer;
4117 input_line_pointer = *str;
4118 if (expression (&exp) == absolute_section
4119 && exp.X_op == O_big
4120 && exp.X_add_number < 0)
4121 {
4122 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4123 Ditto for 15. */
4124 if (gen_to_words (words, 5, (long) 15) == 0)
4125 {
4126 for (i = 0; i < NUM_FLOAT_VALS; i++)
4127 {
4128 for (j = 0; j < MAX_LITTLENUMS; j++)
4129 {
4130 if (words[j] != fp_values[i][j])
4131 break;
4132 }
b99bd4ef 4133
c19d1205
ZW
4134 if (j == MAX_LITTLENUMS)
4135 {
4136 *str = input_line_pointer;
4137 input_line_pointer = save_in;
4138 return i + 8;
4139 }
4140 }
4141 }
b99bd4ef
NC
4142 }
4143
c19d1205
ZW
4144 *str = input_line_pointer;
4145 input_line_pointer = save_in;
4146 inst.error = _("invalid FPA immediate expression");
4147 return FAIL;
b99bd4ef
NC
4148}
4149
136da414
JB
4150/* Returns 1 if a number has "quarter-precision" float format
4151 0baBbbbbbc defgh000 00000000 00000000. */
4152
4153static int
4154is_quarter_float (unsigned imm)
4155{
4156 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4157 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4158}
4159
4160/* Parse an 8-bit "quarter-precision" floating point number of the form:
4161 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4162 The zero and minus-zero cases need special handling, since they can't be
4163 encoded in the "quarter-precision" float format, but can nonetheless be
4164 loaded as integer constants. */
136da414
JB
4165
4166static unsigned
4167parse_qfloat_immediate (char **ccp, int *immed)
4168{
4169 char *str = *ccp;
c96612cc 4170 char *fpnum;
136da414 4171 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4172 int found_fpchar = 0;
5f4273c7 4173
136da414 4174 skip_past_char (&str, '#');
5f4273c7 4175
c96612cc
JB
4176 /* We must not accidentally parse an integer as a floating-point number. Make
4177 sure that the value we parse is not an integer by checking for special
4178 characters '.' or 'e'.
4179 FIXME: This is a horrible hack, but doing better is tricky because type
4180 information isn't in a very usable state at parse time. */
4181 fpnum = str;
4182 skip_whitespace (fpnum);
4183
4184 if (strncmp (fpnum, "0x", 2) == 0)
4185 return FAIL;
4186 else
4187 {
4188 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4189 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4190 {
4191 found_fpchar = 1;
4192 break;
4193 }
4194
4195 if (!found_fpchar)
4196 return FAIL;
4197 }
5f4273c7 4198
136da414
JB
4199 if ((str = atof_ieee (str, 's', words)) != NULL)
4200 {
4201 unsigned fpword = 0;
4202 int i;
5f4273c7 4203
136da414
JB
4204 /* Our FP word must be 32 bits (single-precision FP). */
4205 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4206 {
4207 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4208 fpword |= words[i];
4209 }
5f4273c7 4210
c96612cc 4211 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4212 *immed = fpword;
4213 else
4214 return FAIL;
4215
4216 *ccp = str;
5f4273c7 4217
136da414
JB
4218 return SUCCESS;
4219 }
5f4273c7 4220
136da414
JB
4221 return FAIL;
4222}
4223
c19d1205
ZW
4224/* Shift operands. */
4225enum shift_kind
b99bd4ef 4226{
c19d1205
ZW
4227 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4228};
b99bd4ef 4229
c19d1205
ZW
4230struct asm_shift_name
4231{
4232 const char *name;
4233 enum shift_kind kind;
4234};
b99bd4ef 4235
c19d1205
ZW
4236/* Third argument to parse_shift. */
4237enum parse_shift_mode
4238{
4239 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4240 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4241 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4242 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4243 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4244};
b99bd4ef 4245
c19d1205
ZW
4246/* Parse a <shift> specifier on an ARM data processing instruction.
4247 This has three forms:
b99bd4ef 4248
c19d1205
ZW
4249 (LSL|LSR|ASL|ASR|ROR) Rs
4250 (LSL|LSR|ASL|ASR|ROR) #imm
4251 RRX
b99bd4ef 4252
c19d1205
ZW
4253 Note that ASL is assimilated to LSL in the instruction encoding, and
4254 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4255
c19d1205
ZW
4256static int
4257parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4258{
c19d1205
ZW
4259 const struct asm_shift_name *shift_name;
4260 enum shift_kind shift;
4261 char *s = *str;
4262 char *p = s;
4263 int reg;
b99bd4ef 4264
c19d1205
ZW
4265 for (p = *str; ISALPHA (*p); p++)
4266 ;
b99bd4ef 4267
c19d1205 4268 if (p == *str)
b99bd4ef 4269 {
c19d1205
ZW
4270 inst.error = _("shift expression expected");
4271 return FAIL;
b99bd4ef
NC
4272 }
4273
c19d1205
ZW
4274 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4275
4276 if (shift_name == NULL)
b99bd4ef 4277 {
c19d1205
ZW
4278 inst.error = _("shift expression expected");
4279 return FAIL;
b99bd4ef
NC
4280 }
4281
c19d1205 4282 shift = shift_name->kind;
b99bd4ef 4283
c19d1205
ZW
4284 switch (mode)
4285 {
4286 case NO_SHIFT_RESTRICT:
4287 case SHIFT_IMMEDIATE: break;
b99bd4ef 4288
c19d1205
ZW
4289 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4290 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4291 {
4292 inst.error = _("'LSL' or 'ASR' required");
4293 return FAIL;
4294 }
4295 break;
b99bd4ef 4296
c19d1205
ZW
4297 case SHIFT_LSL_IMMEDIATE:
4298 if (shift != SHIFT_LSL)
4299 {
4300 inst.error = _("'LSL' required");
4301 return FAIL;
4302 }
4303 break;
b99bd4ef 4304
c19d1205
ZW
4305 case SHIFT_ASR_IMMEDIATE:
4306 if (shift != SHIFT_ASR)
4307 {
4308 inst.error = _("'ASR' required");
4309 return FAIL;
4310 }
4311 break;
b99bd4ef 4312
c19d1205
ZW
4313 default: abort ();
4314 }
b99bd4ef 4315
c19d1205
ZW
4316 if (shift != SHIFT_RRX)
4317 {
4318 /* Whitespace can appear here if the next thing is a bare digit. */
4319 skip_whitespace (p);
b99bd4ef 4320
c19d1205 4321 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4322 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4323 {
4324 inst.operands[i].imm = reg;
4325 inst.operands[i].immisreg = 1;
4326 }
4327 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4328 return FAIL;
4329 }
4330 inst.operands[i].shift_kind = shift;
4331 inst.operands[i].shifted = 1;
4332 *str = p;
4333 return SUCCESS;
b99bd4ef
NC
4334}
4335
c19d1205 4336/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4337
c19d1205
ZW
4338 #<immediate>
4339 #<immediate>, <rotate>
4340 <Rm>
4341 <Rm>, <shift>
b99bd4ef 4342
c19d1205
ZW
4343 where <shift> is defined by parse_shift above, and <rotate> is a
4344 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4345 is deferred to md_apply_fix. */
b99bd4ef 4346
c19d1205
ZW
4347static int
4348parse_shifter_operand (char **str, int i)
4349{
4350 int value;
4351 expressionS expr;
b99bd4ef 4352
dcbf9037 4353 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4354 {
4355 inst.operands[i].reg = value;
4356 inst.operands[i].isreg = 1;
b99bd4ef 4357
c19d1205
ZW
4358 /* parse_shift will override this if appropriate */
4359 inst.reloc.exp.X_op = O_constant;
4360 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4361
c19d1205
ZW
4362 if (skip_past_comma (str) == FAIL)
4363 return SUCCESS;
b99bd4ef 4364
c19d1205
ZW
4365 /* Shift operation on register. */
4366 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4367 }
4368
c19d1205
ZW
4369 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4370 return FAIL;
b99bd4ef 4371
c19d1205 4372 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4373 {
c19d1205
ZW
4374 /* #x, y -- ie explicit rotation by Y. */
4375 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4376 return FAIL;
b99bd4ef 4377
c19d1205
ZW
4378 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4379 {
4380 inst.error = _("constant expression expected");
4381 return FAIL;
4382 }
b99bd4ef 4383
c19d1205
ZW
4384 value = expr.X_add_number;
4385 if (value < 0 || value > 30 || value % 2 != 0)
4386 {
4387 inst.error = _("invalid rotation");
4388 return FAIL;
4389 }
4390 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4391 {
4392 inst.error = _("invalid constant");
4393 return FAIL;
4394 }
09d92015 4395
55cf6793 4396 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4397 inst.reloc.exp.X_add_number
4398 = (((inst.reloc.exp.X_add_number << (32 - value))
4399 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4400 }
4401
c19d1205
ZW
4402 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4403 inst.reloc.pc_rel = 0;
4404 return SUCCESS;
09d92015
MM
4405}
4406
4962c51a
MS
4407/* Group relocation information. Each entry in the table contains the
4408 textual name of the relocation as may appear in assembler source
4409 and must end with a colon.
4410 Along with this textual name are the relocation codes to be used if
4411 the corresponding instruction is an ALU instruction (ADD or SUB only),
4412 an LDR, an LDRS, or an LDC. */
4413
4414struct group_reloc_table_entry
4415{
4416 const char *name;
4417 int alu_code;
4418 int ldr_code;
4419 int ldrs_code;
4420 int ldc_code;
4421};
4422
4423typedef enum
4424{
4425 /* Varieties of non-ALU group relocation. */
4426
4427 GROUP_LDR,
4428 GROUP_LDRS,
4429 GROUP_LDC
4430} group_reloc_type;
4431
4432static struct group_reloc_table_entry group_reloc_table[] =
4433 { /* Program counter relative: */
4434 { "pc_g0_nc",
4435 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4436 0, /* LDR */
4437 0, /* LDRS */
4438 0 }, /* LDC */
4439 { "pc_g0",
4440 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4441 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4442 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4443 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4444 { "pc_g1_nc",
4445 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4446 0, /* LDR */
4447 0, /* LDRS */
4448 0 }, /* LDC */
4449 { "pc_g1",
4450 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4451 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4452 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4453 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4454 { "pc_g2",
4455 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4456 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4457 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4458 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4459 /* Section base relative */
4460 { "sb_g0_nc",
4461 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4462 0, /* LDR */
4463 0, /* LDRS */
4464 0 }, /* LDC */
4465 { "sb_g0",
4466 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4467 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4468 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4469 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4470 { "sb_g1_nc",
4471 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4472 0, /* LDR */
4473 0, /* LDRS */
4474 0 }, /* LDC */
4475 { "sb_g1",
4476 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4477 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4478 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4479 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4480 { "sb_g2",
4481 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4482 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4483 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4484 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4485
4486/* Given the address of a pointer pointing to the textual name of a group
4487 relocation as may appear in assembler source, attempt to find its details
4488 in group_reloc_table. The pointer will be updated to the character after
4489 the trailing colon. On failure, FAIL will be returned; SUCCESS
4490 otherwise. On success, *entry will be updated to point at the relevant
4491 group_reloc_table entry. */
4492
4493static int
4494find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4495{
4496 unsigned int i;
4497 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4498 {
4499 int length = strlen (group_reloc_table[i].name);
4500
5f4273c7
NC
4501 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4502 && (*str)[length] == ':')
4962c51a
MS
4503 {
4504 *out = &group_reloc_table[i];
4505 *str += (length + 1);
4506 return SUCCESS;
4507 }
4508 }
4509
4510 return FAIL;
4511}
4512
4513/* Parse a <shifter_operand> for an ARM data processing instruction
4514 (as for parse_shifter_operand) where group relocations are allowed:
4515
4516 #<immediate>
4517 #<immediate>, <rotate>
4518 #:<group_reloc>:<expression>
4519 <Rm>
4520 <Rm>, <shift>
4521
4522 where <group_reloc> is one of the strings defined in group_reloc_table.
4523 The hashes are optional.
4524
4525 Everything else is as for parse_shifter_operand. */
4526
4527static parse_operand_result
4528parse_shifter_operand_group_reloc (char **str, int i)
4529{
4530 /* Determine if we have the sequence of characters #: or just :
4531 coming next. If we do, then we check for a group relocation.
4532 If we don't, punt the whole lot to parse_shifter_operand. */
4533
4534 if (((*str)[0] == '#' && (*str)[1] == ':')
4535 || (*str)[0] == ':')
4536 {
4537 struct group_reloc_table_entry *entry;
4538
4539 if ((*str)[0] == '#')
4540 (*str) += 2;
4541 else
4542 (*str)++;
4543
4544 /* Try to parse a group relocation. Anything else is an error. */
4545 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4546 {
4547 inst.error = _("unknown group relocation");
4548 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4549 }
4550
4551 /* We now have the group relocation table entry corresponding to
4552 the name in the assembler source. Next, we parse the expression. */
4553 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4554 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4555
4556 /* Record the relocation type (always the ALU variant here). */
4557 inst.reloc.type = entry->alu_code;
4558 assert (inst.reloc.type != 0);
4559
4560 return PARSE_OPERAND_SUCCESS;
4561 }
4562 else
4563 return parse_shifter_operand (str, i) == SUCCESS
4564 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4565
4566 /* Never reached. */
4567}
4568
c19d1205
ZW
4569/* Parse all forms of an ARM address expression. Information is written
4570 to inst.operands[i] and/or inst.reloc.
09d92015 4571
c19d1205 4572 Preindexed addressing (.preind=1):
09d92015 4573
c19d1205
ZW
4574 [Rn, #offset] .reg=Rn .reloc.exp=offset
4575 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4576 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4577 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4578
c19d1205 4579 These three may have a trailing ! which causes .writeback to be set also.
09d92015 4580
c19d1205 4581 Postindexed addressing (.postind=1, .writeback=1):
09d92015 4582
c19d1205
ZW
4583 [Rn], #offset .reg=Rn .reloc.exp=offset
4584 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4585 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4586 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4587
c19d1205 4588 Unindexed addressing (.preind=0, .postind=0):
09d92015 4589
c19d1205 4590 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 4591
c19d1205 4592 Other:
09d92015 4593
c19d1205
ZW
4594 [Rn]{!} shorthand for [Rn,#0]{!}
4595 =immediate .isreg=0 .reloc.exp=immediate
4596 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 4597
c19d1205
ZW
4598 It is the caller's responsibility to check for addressing modes not
4599 supported by the instruction, and to set inst.reloc.type. */
4600
4962c51a
MS
4601static parse_operand_result
4602parse_address_main (char **str, int i, int group_relocations,
4603 group_reloc_type group_type)
09d92015 4604{
c19d1205
ZW
4605 char *p = *str;
4606 int reg;
09d92015 4607
c19d1205 4608 if (skip_past_char (&p, '[') == FAIL)
09d92015 4609 {
c19d1205
ZW
4610 if (skip_past_char (&p, '=') == FAIL)
4611 {
4612 /* bare address - translate to PC-relative offset */
4613 inst.reloc.pc_rel = 1;
4614 inst.operands[i].reg = REG_PC;
4615 inst.operands[i].isreg = 1;
4616 inst.operands[i].preind = 1;
4617 }
4618 /* else a load-constant pseudo op, no special treatment needed here */
09d92015 4619
c19d1205 4620 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 4621 return PARSE_OPERAND_FAIL;
09d92015 4622
c19d1205 4623 *str = p;
4962c51a 4624 return PARSE_OPERAND_SUCCESS;
09d92015
MM
4625 }
4626
dcbf9037 4627 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 4628 {
c19d1205 4629 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 4630 return PARSE_OPERAND_FAIL;
09d92015 4631 }
c19d1205
ZW
4632 inst.operands[i].reg = reg;
4633 inst.operands[i].isreg = 1;
09d92015 4634
c19d1205 4635 if (skip_past_comma (&p) == SUCCESS)
09d92015 4636 {
c19d1205 4637 inst.operands[i].preind = 1;
09d92015 4638
c19d1205
ZW
4639 if (*p == '+') p++;
4640 else if (*p == '-') p++, inst.operands[i].negative = 1;
4641
dcbf9037 4642 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 4643 {
c19d1205
ZW
4644 inst.operands[i].imm = reg;
4645 inst.operands[i].immisreg = 1;
4646
4647 if (skip_past_comma (&p) == SUCCESS)
4648 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4649 return PARSE_OPERAND_FAIL;
c19d1205 4650 }
5287ad62
JB
4651 else if (skip_past_char (&p, ':') == SUCCESS)
4652 {
4653 /* FIXME: '@' should be used here, but it's filtered out by generic
4654 code before we get to see it here. This may be subject to
4655 change. */
4656 expressionS exp;
4657 my_get_expression (&exp, &p, GE_NO_PREFIX);
4658 if (exp.X_op != O_constant)
4659 {
4660 inst.error = _("alignment must be constant");
4962c51a 4661 return PARSE_OPERAND_FAIL;
5287ad62
JB
4662 }
4663 inst.operands[i].imm = exp.X_add_number << 8;
4664 inst.operands[i].immisalign = 1;
4665 /* Alignments are not pre-indexes. */
4666 inst.operands[i].preind = 0;
4667 }
c19d1205
ZW
4668 else
4669 {
4670 if (inst.operands[i].negative)
4671 {
4672 inst.operands[i].negative = 0;
4673 p--;
4674 }
4962c51a 4675
5f4273c7
NC
4676 if (group_relocations
4677 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
4678 {
4679 struct group_reloc_table_entry *entry;
4680
4681 /* Skip over the #: or : sequence. */
4682 if (*p == '#')
4683 p += 2;
4684 else
4685 p++;
4686
4687 /* Try to parse a group relocation. Anything else is an
4688 error. */
4689 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4690 {
4691 inst.error = _("unknown group relocation");
4692 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4693 }
4694
4695 /* We now have the group relocation table entry corresponding to
4696 the name in the assembler source. Next, we parse the
4697 expression. */
4698 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4699 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4700
4701 /* Record the relocation type. */
4702 switch (group_type)
4703 {
4704 case GROUP_LDR:
4705 inst.reloc.type = entry->ldr_code;
4706 break;
4707
4708 case GROUP_LDRS:
4709 inst.reloc.type = entry->ldrs_code;
4710 break;
4711
4712 case GROUP_LDC:
4713 inst.reloc.type = entry->ldc_code;
4714 break;
4715
4716 default:
4717 assert (0);
4718 }
4719
4720 if (inst.reloc.type == 0)
4721 {
4722 inst.error = _("this group relocation is not allowed on this instruction");
4723 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4724 }
4725 }
4726 else
4727 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4728 return PARSE_OPERAND_FAIL;
09d92015
MM
4729 }
4730 }
4731
c19d1205 4732 if (skip_past_char (&p, ']') == FAIL)
09d92015 4733 {
c19d1205 4734 inst.error = _("']' expected");
4962c51a 4735 return PARSE_OPERAND_FAIL;
09d92015
MM
4736 }
4737
c19d1205
ZW
4738 if (skip_past_char (&p, '!') == SUCCESS)
4739 inst.operands[i].writeback = 1;
09d92015 4740
c19d1205 4741 else if (skip_past_comma (&p) == SUCCESS)
09d92015 4742 {
c19d1205
ZW
4743 if (skip_past_char (&p, '{') == SUCCESS)
4744 {
4745 /* [Rn], {expr} - unindexed, with option */
4746 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 4747 0, 255, TRUE) == FAIL)
4962c51a 4748 return PARSE_OPERAND_FAIL;
09d92015 4749
c19d1205
ZW
4750 if (skip_past_char (&p, '}') == FAIL)
4751 {
4752 inst.error = _("'}' expected at end of 'option' field");
4962c51a 4753 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4754 }
4755 if (inst.operands[i].preind)
4756 {
4757 inst.error = _("cannot combine index with option");
4962c51a 4758 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4759 }
4760 *str = p;
4962c51a 4761 return PARSE_OPERAND_SUCCESS;
09d92015 4762 }
c19d1205
ZW
4763 else
4764 {
4765 inst.operands[i].postind = 1;
4766 inst.operands[i].writeback = 1;
09d92015 4767
c19d1205
ZW
4768 if (inst.operands[i].preind)
4769 {
4770 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 4771 return PARSE_OPERAND_FAIL;
c19d1205 4772 }
09d92015 4773
c19d1205
ZW
4774 if (*p == '+') p++;
4775 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 4776
dcbf9037 4777 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 4778 {
5287ad62
JB
4779 /* We might be using the immediate for alignment already. If we
4780 are, OR the register number into the low-order bits. */
4781 if (inst.operands[i].immisalign)
4782 inst.operands[i].imm |= reg;
4783 else
4784 inst.operands[i].imm = reg;
c19d1205 4785 inst.operands[i].immisreg = 1;
a737bd4d 4786
c19d1205
ZW
4787 if (skip_past_comma (&p) == SUCCESS)
4788 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4789 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4790 }
4791 else
4792 {
4793 if (inst.operands[i].negative)
4794 {
4795 inst.operands[i].negative = 0;
4796 p--;
4797 }
4798 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 4799 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4800 }
4801 }
a737bd4d
NC
4802 }
4803
c19d1205
ZW
4804 /* If at this point neither .preind nor .postind is set, we have a
4805 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4806 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4807 {
4808 inst.operands[i].preind = 1;
4809 inst.reloc.exp.X_op = O_constant;
4810 inst.reloc.exp.X_add_number = 0;
4811 }
4812 *str = p;
4962c51a
MS
4813 return PARSE_OPERAND_SUCCESS;
4814}
4815
4816static int
4817parse_address (char **str, int i)
4818{
4819 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4820 ? SUCCESS : FAIL;
4821}
4822
4823static parse_operand_result
4824parse_address_group_reloc (char **str, int i, group_reloc_type type)
4825{
4826 return parse_address_main (str, i, 1, type);
a737bd4d
NC
4827}
4828
b6895b4f
PB
4829/* Parse an operand for a MOVW or MOVT instruction. */
4830static int
4831parse_half (char **str)
4832{
4833 char * p;
5f4273c7 4834
b6895b4f
PB
4835 p = *str;
4836 skip_past_char (&p, '#');
5f4273c7 4837 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
4838 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4839 else if (strncasecmp (p, ":upper16:", 9) == 0)
4840 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4841
4842 if (inst.reloc.type != BFD_RELOC_UNUSED)
4843 {
4844 p += 9;
5f4273c7 4845 skip_whitespace (p);
b6895b4f
PB
4846 }
4847
4848 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4849 return FAIL;
4850
4851 if (inst.reloc.type == BFD_RELOC_UNUSED)
4852 {
4853 if (inst.reloc.exp.X_op != O_constant)
4854 {
4855 inst.error = _("constant expression expected");
4856 return FAIL;
4857 }
4858 if (inst.reloc.exp.X_add_number < 0
4859 || inst.reloc.exp.X_add_number > 0xffff)
4860 {
4861 inst.error = _("immediate value out of range");
4862 return FAIL;
4863 }
4864 }
4865 *str = p;
4866 return SUCCESS;
4867}
4868
c19d1205 4869/* Miscellaneous. */
a737bd4d 4870
c19d1205
ZW
4871/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4872 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4873static int
4874parse_psr (char **str)
09d92015 4875{
c19d1205
ZW
4876 char *p;
4877 unsigned long psr_field;
62b3e311
PB
4878 const struct asm_psr *psr;
4879 char *start;
09d92015 4880
c19d1205
ZW
4881 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4882 feature for ease of use and backwards compatibility. */
4883 p = *str;
62b3e311 4884 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 4885 psr_field = SPSR_BIT;
62b3e311 4886 else if (strncasecmp (p, "CPSR", 4) == 0)
c19d1205
ZW
4887 psr_field = 0;
4888 else
62b3e311
PB
4889 {
4890 start = p;
4891 do
4892 p++;
4893 while (ISALNUM (*p) || *p == '_');
4894
4895 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4896 if (!psr)
4897 return FAIL;
09d92015 4898
62b3e311
PB
4899 *str = p;
4900 return psr->field;
4901 }
09d92015 4902
62b3e311 4903 p += 4;
c19d1205
ZW
4904 if (*p == '_')
4905 {
4906 /* A suffix follows. */
c19d1205
ZW
4907 p++;
4908 start = p;
a737bd4d 4909
c19d1205
ZW
4910 do
4911 p++;
4912 while (ISALNUM (*p) || *p == '_');
a737bd4d 4913
c19d1205
ZW
4914 psr = hash_find_n (arm_psr_hsh, start, p - start);
4915 if (!psr)
4916 goto error;
a737bd4d 4917
c19d1205 4918 psr_field |= psr->field;
a737bd4d 4919 }
c19d1205 4920 else
a737bd4d 4921 {
c19d1205
ZW
4922 if (ISALNUM (*p))
4923 goto error; /* Garbage after "[CS]PSR". */
4924
4925 psr_field |= (PSR_c | PSR_f);
a737bd4d 4926 }
c19d1205
ZW
4927 *str = p;
4928 return psr_field;
a737bd4d 4929
c19d1205
ZW
4930 error:
4931 inst.error = _("flag for {c}psr instruction expected");
4932 return FAIL;
a737bd4d
NC
4933}
4934
c19d1205
ZW
4935/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4936 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 4937
c19d1205
ZW
4938static int
4939parse_cps_flags (char **str)
a737bd4d 4940{
c19d1205
ZW
4941 int val = 0;
4942 int saw_a_flag = 0;
4943 char *s = *str;
a737bd4d 4944
c19d1205
ZW
4945 for (;;)
4946 switch (*s++)
4947 {
4948 case '\0': case ',':
4949 goto done;
a737bd4d 4950
c19d1205
ZW
4951 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4952 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4953 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 4954
c19d1205
ZW
4955 default:
4956 inst.error = _("unrecognized CPS flag");
4957 return FAIL;
4958 }
a737bd4d 4959
c19d1205
ZW
4960 done:
4961 if (saw_a_flag == 0)
a737bd4d 4962 {
c19d1205
ZW
4963 inst.error = _("missing CPS flags");
4964 return FAIL;
a737bd4d 4965 }
a737bd4d 4966
c19d1205
ZW
4967 *str = s - 1;
4968 return val;
a737bd4d
NC
4969}
4970
c19d1205
ZW
4971/* Parse an endian specifier ("BE" or "LE", case insensitive);
4972 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
4973
4974static int
c19d1205 4975parse_endian_specifier (char **str)
a737bd4d 4976{
c19d1205
ZW
4977 int little_endian;
4978 char *s = *str;
a737bd4d 4979
c19d1205
ZW
4980 if (strncasecmp (s, "BE", 2))
4981 little_endian = 0;
4982 else if (strncasecmp (s, "LE", 2))
4983 little_endian = 1;
4984 else
a737bd4d 4985 {
c19d1205 4986 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
4987 return FAIL;
4988 }
4989
c19d1205 4990 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 4991 {
c19d1205 4992 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
4993 return FAIL;
4994 }
4995
c19d1205
ZW
4996 *str = s + 2;
4997 return little_endian;
4998}
a737bd4d 4999
c19d1205
ZW
5000/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5001 value suitable for poking into the rotate field of an sxt or sxta
5002 instruction, or FAIL on error. */
5003
5004static int
5005parse_ror (char **str)
5006{
5007 int rot;
5008 char *s = *str;
5009
5010 if (strncasecmp (s, "ROR", 3) == 0)
5011 s += 3;
5012 else
a737bd4d 5013 {
c19d1205 5014 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5015 return FAIL;
5016 }
c19d1205
ZW
5017
5018 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5019 return FAIL;
5020
5021 switch (rot)
a737bd4d 5022 {
c19d1205
ZW
5023 case 0: *str = s; return 0x0;
5024 case 8: *str = s; return 0x1;
5025 case 16: *str = s; return 0x2;
5026 case 24: *str = s; return 0x3;
5027
5028 default:
5029 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5030 return FAIL;
5031 }
c19d1205 5032}
a737bd4d 5033
c19d1205
ZW
5034/* Parse a conditional code (from conds[] below). The value returned is in the
5035 range 0 .. 14, or FAIL. */
5036static int
5037parse_cond (char **str)
5038{
5039 char *p, *q;
5040 const struct asm_cond *c;
a737bd4d 5041
c19d1205
ZW
5042 p = q = *str;
5043 while (ISALPHA (*q))
5044 q++;
a737bd4d 5045
c19d1205
ZW
5046 c = hash_find_n (arm_cond_hsh, p, q - p);
5047 if (!c)
a737bd4d 5048 {
c19d1205 5049 inst.error = _("condition required");
a737bd4d
NC
5050 return FAIL;
5051 }
5052
c19d1205
ZW
5053 *str = q;
5054 return c->value;
5055}
5056
62b3e311
PB
5057/* Parse an option for a barrier instruction. Returns the encoding for the
5058 option, or FAIL. */
5059static int
5060parse_barrier (char **str)
5061{
5062 char *p, *q;
5063 const struct asm_barrier_opt *o;
5064
5065 p = q = *str;
5066 while (ISALPHA (*q))
5067 q++;
5068
5069 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5070 if (!o)
5071 return FAIL;
5072
5073 *str = q;
5074 return o->value;
5075}
5076
92e90b6e
PB
5077/* Parse the operands of a table branch instruction. Similar to a memory
5078 operand. */
5079static int
5080parse_tb (char **str)
5081{
5082 char * p = *str;
5083 int reg;
5084
5085 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5086 {
5087 inst.error = _("'[' expected");
5088 return FAIL;
5089 }
92e90b6e 5090
dcbf9037 5091 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5092 {
5093 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5094 return FAIL;
5095 }
5096 inst.operands[0].reg = reg;
5097
5098 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5099 {
5100 inst.error = _("',' expected");
5101 return FAIL;
5102 }
5f4273c7 5103
dcbf9037 5104 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5105 {
5106 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5107 return FAIL;
5108 }
5109 inst.operands[0].imm = reg;
5110
5111 if (skip_past_comma (&p) == SUCCESS)
5112 {
5113 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5114 return FAIL;
5115 if (inst.reloc.exp.X_add_number != 1)
5116 {
5117 inst.error = _("invalid shift");
5118 return FAIL;
5119 }
5120 inst.operands[0].shifted = 1;
5121 }
5122
5123 if (skip_past_char (&p, ']') == FAIL)
5124 {
5125 inst.error = _("']' expected");
5126 return FAIL;
5127 }
5128 *str = p;
5129 return SUCCESS;
5130}
5131
5287ad62
JB
5132/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5133 information on the types the operands can take and how they are encoded.
037e8744
JB
5134 Up to four operands may be read; this function handles setting the
5135 ".present" field for each read operand itself.
5287ad62
JB
5136 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5137 else returns FAIL. */
5138
5139static int
5140parse_neon_mov (char **str, int *which_operand)
5141{
5142 int i = *which_operand, val;
5143 enum arm_reg_type rtype;
5144 char *ptr = *str;
dcbf9037 5145 struct neon_type_el optype;
5f4273c7 5146
dcbf9037 5147 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5148 {
5149 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5150 inst.operands[i].reg = val;
5151 inst.operands[i].isscalar = 1;
dcbf9037 5152 inst.operands[i].vectype = optype;
5287ad62
JB
5153 inst.operands[i++].present = 1;
5154
5155 if (skip_past_comma (&ptr) == FAIL)
5156 goto wanted_comma;
5f4273c7 5157
dcbf9037 5158 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5159 goto wanted_arm;
5f4273c7 5160
5287ad62
JB
5161 inst.operands[i].reg = val;
5162 inst.operands[i].isreg = 1;
5163 inst.operands[i].present = 1;
5164 }
037e8744 5165 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5166 != FAIL)
5287ad62
JB
5167 {
5168 /* Cases 0, 1, 2, 3, 5 (D only). */
5169 if (skip_past_comma (&ptr) == FAIL)
5170 goto wanted_comma;
5f4273c7 5171
5287ad62
JB
5172 inst.operands[i].reg = val;
5173 inst.operands[i].isreg = 1;
5174 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5175 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5176 inst.operands[i].isvec = 1;
dcbf9037 5177 inst.operands[i].vectype = optype;
5287ad62
JB
5178 inst.operands[i++].present = 1;
5179
dcbf9037 5180 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5181 {
037e8744
JB
5182 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5183 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5184 inst.operands[i].reg = val;
5185 inst.operands[i].isreg = 1;
037e8744 5186 inst.operands[i].present = 1;
5287ad62
JB
5187
5188 if (rtype == REG_TYPE_NQ)
5189 {
dcbf9037 5190 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5191 return FAIL;
5192 }
037e8744
JB
5193 else if (rtype != REG_TYPE_VFS)
5194 {
5195 i++;
5196 if (skip_past_comma (&ptr) == FAIL)
5197 goto wanted_comma;
5198 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5199 goto wanted_arm;
5200 inst.operands[i].reg = val;
5201 inst.operands[i].isreg = 1;
5202 inst.operands[i].present = 1;
5203 }
5287ad62 5204 }
136da414 5205 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
136da414 5206 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
037e8744
JB
5207 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5208 Case 10: VMOV.F32 <Sd>, #<imm>
5209 Case 11: VMOV.F64 <Dd>, #<imm> */
c96612cc 5210 inst.operands[i].immisfloat = 1;
5287ad62 5211 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5287ad62
JB
5212 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5213 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
037e8744
JB
5214 ;
5215 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5216 &optype)) != FAIL)
5287ad62
JB
5217 {
5218 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5219 Case 1: VMOV<c><q> <Dd>, <Dm>
5220 Case 8: VMOV.F32 <Sd>, <Sm>
5221 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5222
5223 inst.operands[i].reg = val;
5224 inst.operands[i].isreg = 1;
5225 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5226 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5227 inst.operands[i].isvec = 1;
dcbf9037 5228 inst.operands[i].vectype = optype;
5287ad62 5229 inst.operands[i].present = 1;
5f4273c7 5230
037e8744
JB
5231 if (skip_past_comma (&ptr) == SUCCESS)
5232 {
5233 /* Case 15. */
5234 i++;
5235
5236 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5237 goto wanted_arm;
5238
5239 inst.operands[i].reg = val;
5240 inst.operands[i].isreg = 1;
5241 inst.operands[i++].present = 1;
5f4273c7 5242
037e8744
JB
5243 if (skip_past_comma (&ptr) == FAIL)
5244 goto wanted_comma;
5f4273c7 5245
037e8744
JB
5246 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5247 goto wanted_arm;
5f4273c7 5248
037e8744
JB
5249 inst.operands[i].reg = val;
5250 inst.operands[i].isreg = 1;
5251 inst.operands[i++].present = 1;
5252 }
5287ad62
JB
5253 }
5254 else
5255 {
dcbf9037 5256 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5257 return FAIL;
5258 }
5259 }
dcbf9037 5260 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5261 {
5262 /* Cases 6, 7. */
5263 inst.operands[i].reg = val;
5264 inst.operands[i].isreg = 1;
5265 inst.operands[i++].present = 1;
5f4273c7 5266
5287ad62
JB
5267 if (skip_past_comma (&ptr) == FAIL)
5268 goto wanted_comma;
5f4273c7 5269
dcbf9037 5270 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5271 {
5272 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5273 inst.operands[i].reg = val;
5274 inst.operands[i].isscalar = 1;
5275 inst.operands[i].present = 1;
dcbf9037 5276 inst.operands[i].vectype = optype;
5287ad62 5277 }
dcbf9037 5278 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5279 {
5280 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5281 inst.operands[i].reg = val;
5282 inst.operands[i].isreg = 1;
5283 inst.operands[i++].present = 1;
5f4273c7 5284
5287ad62
JB
5285 if (skip_past_comma (&ptr) == FAIL)
5286 goto wanted_comma;
5f4273c7 5287
037e8744 5288 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5289 == FAIL)
5287ad62 5290 {
037e8744 5291 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5292 return FAIL;
5293 }
5294
5295 inst.operands[i].reg = val;
5296 inst.operands[i].isreg = 1;
037e8744
JB
5297 inst.operands[i].isvec = 1;
5298 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5299 inst.operands[i].vectype = optype;
5287ad62 5300 inst.operands[i].present = 1;
5f4273c7 5301
037e8744
JB
5302 if (rtype == REG_TYPE_VFS)
5303 {
5304 /* Case 14. */
5305 i++;
5306 if (skip_past_comma (&ptr) == FAIL)
5307 goto wanted_comma;
5308 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5309 &optype)) == FAIL)
5310 {
5311 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5312 return FAIL;
5313 }
5314 inst.operands[i].reg = val;
5315 inst.operands[i].isreg = 1;
5316 inst.operands[i].isvec = 1;
5317 inst.operands[i].issingle = 1;
5318 inst.operands[i].vectype = optype;
5319 inst.operands[i].present = 1;
5320 }
5321 }
5322 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5323 != FAIL)
5324 {
5325 /* Case 13. */
5326 inst.operands[i].reg = val;
5327 inst.operands[i].isreg = 1;
5328 inst.operands[i].isvec = 1;
5329 inst.operands[i].issingle = 1;
5330 inst.operands[i].vectype = optype;
5331 inst.operands[i++].present = 1;
5287ad62
JB
5332 }
5333 }
5334 else
5335 {
dcbf9037 5336 first_error (_("parse error"));
5287ad62
JB
5337 return FAIL;
5338 }
5339
5340 /* Successfully parsed the operands. Update args. */
5341 *which_operand = i;
5342 *str = ptr;
5343 return SUCCESS;
5344
5f4273c7 5345 wanted_comma:
dcbf9037 5346 first_error (_("expected comma"));
5287ad62 5347 return FAIL;
5f4273c7
NC
5348
5349 wanted_arm:
dcbf9037 5350 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5351 return FAIL;
5287ad62
JB
5352}
5353
c19d1205
ZW
5354/* Matcher codes for parse_operands. */
5355enum operand_parse_code
5356{
5357 OP_stop, /* end of line */
5358
5359 OP_RR, /* ARM register */
5360 OP_RRnpc, /* ARM register, not r15 */
5361 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5362 OP_RRw, /* ARM register, not r15, optional trailing ! */
5363 OP_RCP, /* Coprocessor number */
5364 OP_RCN, /* Coprocessor register */
5365 OP_RF, /* FPA register */
5366 OP_RVS, /* VFP single precision register */
5287ad62
JB
5367 OP_RVD, /* VFP double precision register (0..15) */
5368 OP_RND, /* Neon double precision register (0..31) */
5369 OP_RNQ, /* Neon quad precision register */
037e8744 5370 OP_RVSD, /* VFP single or double precision register */
5287ad62 5371 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5372 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5373 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5374 OP_RVC, /* VFP control register */
5375 OP_RMF, /* Maverick F register */
5376 OP_RMD, /* Maverick D register */
5377 OP_RMFX, /* Maverick FX register */
5378 OP_RMDX, /* Maverick DX register */
5379 OP_RMAX, /* Maverick AX register */
5380 OP_RMDS, /* Maverick DSPSC register */
5381 OP_RIWR, /* iWMMXt wR register */
5382 OP_RIWC, /* iWMMXt wC register */
5383 OP_RIWG, /* iWMMXt wCG register */
5384 OP_RXA, /* XScale accumulator register */
5385
5386 OP_REGLST, /* ARM register list */
5387 OP_VRSLST, /* VFP single-precision register list */
5388 OP_VRDLST, /* VFP double-precision register list */
037e8744 5389 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
5390 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5391 OP_NSTRLST, /* Neon element/structure list */
5392
5393 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5394 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 5395 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 5396 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 5397 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
5398 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5399 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5400 OP_VMOV, /* Neon VMOV operands. */
5401 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5402 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 5403 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
5404
5405 OP_I0, /* immediate zero */
c19d1205
ZW
5406 OP_I7, /* immediate value 0 .. 7 */
5407 OP_I15, /* 0 .. 15 */
5408 OP_I16, /* 1 .. 16 */
5287ad62 5409 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
5410 OP_I31, /* 0 .. 31 */
5411 OP_I31w, /* 0 .. 31, optional trailing ! */
5412 OP_I32, /* 1 .. 32 */
5287ad62
JB
5413 OP_I32z, /* 0 .. 32 */
5414 OP_I63, /* 0 .. 63 */
c19d1205 5415 OP_I63s, /* -64 .. 63 */
5287ad62
JB
5416 OP_I64, /* 1 .. 64 */
5417 OP_I64z, /* 0 .. 64 */
c19d1205 5418 OP_I255, /* 0 .. 255 */
c19d1205
ZW
5419
5420 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5421 OP_I7b, /* 0 .. 7 */
5422 OP_I15b, /* 0 .. 15 */
5423 OP_I31b, /* 0 .. 31 */
5424
5425 OP_SH, /* shifter operand */
4962c51a 5426 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 5427 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
5428 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5429 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5430 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
5431 OP_EXP, /* arbitrary expression */
5432 OP_EXPi, /* same, with optional immediate prefix */
5433 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 5434 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
5435
5436 OP_CPSF, /* CPS flags */
5437 OP_ENDI, /* Endianness specifier */
5438 OP_PSR, /* CPSR/SPSR mask for msr */
5439 OP_COND, /* conditional code */
92e90b6e 5440 OP_TB, /* Table branch. */
c19d1205 5441
037e8744
JB
5442 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5443 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5444
c19d1205
ZW
5445 OP_RRnpc_I0, /* ARM register or literal 0 */
5446 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5447 OP_RR_EXi, /* ARM register or expression with imm prefix */
5448 OP_RF_IF, /* FPA register or immediate */
5449 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 5450 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
5451
5452 /* Optional operands. */
5453 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5454 OP_oI31b, /* 0 .. 31 */
5287ad62 5455 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
5456 OP_oIffffb, /* 0 .. 65535 */
5457 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5458
5459 OP_oRR, /* ARM register */
5460 OP_oRRnpc, /* ARM register, not the PC */
b6702015 5461 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
5462 OP_oRND, /* Optional Neon double precision register */
5463 OP_oRNQ, /* Optional Neon quad precision register */
5464 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 5465 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
5466 OP_oSHll, /* LSL immediate */
5467 OP_oSHar, /* ASR immediate */
5468 OP_oSHllar, /* LSL or ASR immediate */
5469 OP_oROR, /* ROR 0/8/16/24 */
62b3e311 5470 OP_oBARRIER, /* Option argument for a barrier instruction. */
c19d1205
ZW
5471
5472 OP_FIRST_OPTIONAL = OP_oI7b
5473};
a737bd4d 5474
c19d1205
ZW
5475/* Generic instruction operand parser. This does no encoding and no
5476 semantic validation; it merely squirrels values away in the inst
5477 structure. Returns SUCCESS or FAIL depending on whether the
5478 specified grammar matched. */
5479static int
ca3f61f7 5480parse_operands (char *str, const unsigned char *pattern)
c19d1205
ZW
5481{
5482 unsigned const char *upat = pattern;
5483 char *backtrack_pos = 0;
5484 const char *backtrack_error = 0;
5485 int i, val, backtrack_index = 0;
5287ad62 5486 enum arm_reg_type rtype;
4962c51a 5487 parse_operand_result result;
c19d1205
ZW
5488
5489#define po_char_or_fail(chr) do { \
5490 if (skip_past_char (&str, chr) == FAIL) \
5491 goto bad_args; \
5492} while (0)
5493
dcbf9037
JB
5494#define po_reg_or_fail(regtype) do { \
5495 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5496 &inst.operands[i].vectype); \
5497 if (val == FAIL) \
5498 { \
5499 first_error (_(reg_expected_msgs[regtype])); \
5500 goto failure; \
5501 } \
5502 inst.operands[i].reg = val; \
5503 inst.operands[i].isreg = 1; \
5504 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5505 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5506 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5507 || rtype == REG_TYPE_VFD \
5508 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5509} while (0)
5510
dcbf9037
JB
5511#define po_reg_or_goto(regtype, label) do { \
5512 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5513 &inst.operands[i].vectype); \
5514 if (val == FAIL) \
5515 goto label; \
5516 \
5517 inst.operands[i].reg = val; \
5518 inst.operands[i].isreg = 1; \
5519 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5520 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5521 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5522 || rtype == REG_TYPE_VFD \
5523 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5524} while (0)
5525
5526#define po_imm_or_fail(min, max, popt) do { \
5527 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5528 goto failure; \
5529 inst.operands[i].imm = val; \
5530} while (0)
5531
dcbf9037
JB
5532#define po_scalar_or_goto(elsz, label) do { \
5533 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5534 if (val == FAIL) \
5535 goto label; \
5536 inst.operands[i].reg = val; \
5537 inst.operands[i].isscalar = 1; \
5287ad62
JB
5538} while (0)
5539
c19d1205
ZW
5540#define po_misc_or_fail(expr) do { \
5541 if (expr) \
5542 goto failure; \
5543} while (0)
5544
4962c51a
MS
5545#define po_misc_or_fail_no_backtrack(expr) do { \
5546 result = expr; \
5547 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5548 backtrack_pos = 0; \
5549 if (result != PARSE_OPERAND_SUCCESS) \
5550 goto failure; \
5551} while (0)
5552
c19d1205
ZW
5553 skip_whitespace (str);
5554
5555 for (i = 0; upat[i] != OP_stop; i++)
5556 {
5557 if (upat[i] >= OP_FIRST_OPTIONAL)
5558 {
5559 /* Remember where we are in case we need to backtrack. */
5560 assert (!backtrack_pos);
5561 backtrack_pos = str;
5562 backtrack_error = inst.error;
5563 backtrack_index = i;
5564 }
5565
b6702015 5566 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
5567 po_char_or_fail (',');
5568
5569 switch (upat[i])
5570 {
5571 /* Registers */
5572 case OP_oRRnpc:
5573 case OP_RRnpc:
5574 case OP_oRR:
5575 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5576 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5577 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5578 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5579 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5580 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
5581 case OP_oRND:
5582 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
5583 case OP_RVC:
5584 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5585 break;
5586 /* Also accept generic coprocessor regs for unknown registers. */
5587 coproc_reg:
5588 po_reg_or_fail (REG_TYPE_CN);
5589 break;
c19d1205
ZW
5590 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5591 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5592 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5593 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5594 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5595 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5596 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5597 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5598 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5599 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
5600 case OP_oRNQ:
5601 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5602 case OP_oRNDQ:
5603 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
5604 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5605 case OP_oRNSDQ:
5606 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
5607
5608 /* Neon scalar. Using an element size of 8 means that some invalid
5609 scalars are accepted here, so deal with those in later code. */
5610 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5611
5612 /* WARNING: We can expand to two operands here. This has the potential
5613 to totally confuse the backtracking mechanism! It will be OK at
5614 least as long as we don't try to use optional args as well,
5615 though. */
5616 case OP_NILO:
5617 {
5618 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
466bbf93 5619 inst.operands[i].present = 1;
5287ad62
JB
5620 i++;
5621 skip_past_comma (&str);
5622 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5623 break;
5624 one_reg_only:
5625 /* Optional register operand was omitted. Unfortunately, it's in
5626 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5627 here (this is a bit grotty). */
5628 inst.operands[i] = inst.operands[i-1];
5629 inst.operands[i-1].present = 0;
5630 break;
5631 try_imm:
036dc3f7
PB
5632 /* There's a possibility of getting a 64-bit immediate here, so
5633 we need special handling. */
5634 if (parse_big_immediate (&str, i) == FAIL)
5635 {
5636 inst.error = _("immediate value is out of range");
5637 goto failure;
5638 }
5287ad62
JB
5639 }
5640 break;
5641
5642 case OP_RNDQ_I0:
5643 {
5644 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5645 break;
5646 try_imm0:
5647 po_imm_or_fail (0, 0, TRUE);
5648 }
5649 break;
5650
037e8744
JB
5651 case OP_RVSD_I0:
5652 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5653 break;
5654
5287ad62
JB
5655 case OP_RR_RNSC:
5656 {
5657 po_scalar_or_goto (8, try_rr);
5658 break;
5659 try_rr:
5660 po_reg_or_fail (REG_TYPE_RN);
5661 }
5662 break;
5663
037e8744
JB
5664 case OP_RNSDQ_RNSC:
5665 {
5666 po_scalar_or_goto (8, try_nsdq);
5667 break;
5668 try_nsdq:
5669 po_reg_or_fail (REG_TYPE_NSDQ);
5670 }
5671 break;
5672
5287ad62
JB
5673 case OP_RNDQ_RNSC:
5674 {
5675 po_scalar_or_goto (8, try_ndq);
5676 break;
5677 try_ndq:
5678 po_reg_or_fail (REG_TYPE_NDQ);
5679 }
5680 break;
5681
5682 case OP_RND_RNSC:
5683 {
5684 po_scalar_or_goto (8, try_vfd);
5685 break;
5686 try_vfd:
5687 po_reg_or_fail (REG_TYPE_VFD);
5688 }
5689 break;
5690
5691 case OP_VMOV:
5692 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5693 not careful then bad things might happen. */
5694 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5695 break;
5696
5697 case OP_RNDQ_IMVNb:
5698 {
5699 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5700 break;
5701 try_mvnimm:
5702 /* There's a possibility of getting a 64-bit immediate here, so
5703 we need special handling. */
5704 if (parse_big_immediate (&str, i) == FAIL)
5705 {
5706 inst.error = _("immediate value is out of range");
5707 goto failure;
5708 }
5709 }
5710 break;
5711
5712 case OP_RNDQ_I63b:
5713 {
5714 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5715 break;
5716 try_shimm:
5717 po_imm_or_fail (0, 63, TRUE);
5718 }
5719 break;
c19d1205
ZW
5720
5721 case OP_RRnpcb:
5722 po_char_or_fail ('[');
5723 po_reg_or_fail (REG_TYPE_RN);
5724 po_char_or_fail (']');
5725 break;
a737bd4d 5726
c19d1205 5727 case OP_RRw:
b6702015 5728 case OP_oRRw:
c19d1205
ZW
5729 po_reg_or_fail (REG_TYPE_RN);
5730 if (skip_past_char (&str, '!') == SUCCESS)
5731 inst.operands[i].writeback = 1;
5732 break;
5733
5734 /* Immediates */
5735 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5736 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5737 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 5738 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
5739 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5740 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 5741 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 5742 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
5743 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5744 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5745 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 5746 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
5747
5748 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5749 case OP_oI7b:
5750 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5751 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5752 case OP_oI31b:
5753 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 5754 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
5755 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5756
5757 /* Immediate variants */
5758 case OP_oI255c:
5759 po_char_or_fail ('{');
5760 po_imm_or_fail (0, 255, TRUE);
5761 po_char_or_fail ('}');
5762 break;
5763
5764 case OP_I31w:
5765 /* The expression parser chokes on a trailing !, so we have
5766 to find it first and zap it. */
5767 {
5768 char *s = str;
5769 while (*s && *s != ',')
5770 s++;
5771 if (s[-1] == '!')
5772 {
5773 s[-1] = '\0';
5774 inst.operands[i].writeback = 1;
5775 }
5776 po_imm_or_fail (0, 31, TRUE);
5777 if (str == s - 1)
5778 str = s;
5779 }
5780 break;
5781
5782 /* Expressions */
5783 case OP_EXPi: EXPi:
5784 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5785 GE_OPT_PREFIX));
5786 break;
5787
5788 case OP_EXP:
5789 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5790 GE_NO_PREFIX));
5791 break;
5792
5793 case OP_EXPr: EXPr:
5794 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5795 GE_NO_PREFIX));
5796 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 5797 {
c19d1205
ZW
5798 val = parse_reloc (&str);
5799 if (val == -1)
5800 {
5801 inst.error = _("unrecognized relocation suffix");
5802 goto failure;
5803 }
5804 else if (val != BFD_RELOC_UNUSED)
5805 {
5806 inst.operands[i].imm = val;
5807 inst.operands[i].hasreloc = 1;
5808 }
a737bd4d 5809 }
c19d1205 5810 break;
a737bd4d 5811
b6895b4f
PB
5812 /* Operand for MOVW or MOVT. */
5813 case OP_HALF:
5814 po_misc_or_fail (parse_half (&str));
5815 break;
5816
c19d1205
ZW
5817 /* Register or expression */
5818 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5819 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 5820
c19d1205
ZW
5821 /* Register or immediate */
5822 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5823 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 5824
c19d1205
ZW
5825 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5826 IF:
5827 if (!is_immediate_prefix (*str))
5828 goto bad_args;
5829 str++;
5830 val = parse_fpa_immediate (&str);
5831 if (val == FAIL)
5832 goto failure;
5833 /* FPA immediates are encoded as registers 8-15.
5834 parse_fpa_immediate has already applied the offset. */
5835 inst.operands[i].reg = val;
5836 inst.operands[i].isreg = 1;
5837 break;
09d92015 5838
2d447fca
JM
5839 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
5840 I32z: po_imm_or_fail (0, 32, FALSE); break;
5841
c19d1205
ZW
5842 /* Two kinds of register */
5843 case OP_RIWR_RIWC:
5844 {
5845 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
5846 if (!rege
5847 || (rege->type != REG_TYPE_MMXWR
5848 && rege->type != REG_TYPE_MMXWC
5849 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
5850 {
5851 inst.error = _("iWMMXt data or control register expected");
5852 goto failure;
5853 }
5854 inst.operands[i].reg = rege->number;
5855 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5856 }
5857 break;
09d92015 5858
41adaa5c
JM
5859 case OP_RIWC_RIWG:
5860 {
5861 struct reg_entry *rege = arm_reg_parse_multi (&str);
5862 if (!rege
5863 || (rege->type != REG_TYPE_MMXWC
5864 && rege->type != REG_TYPE_MMXWCG))
5865 {
5866 inst.error = _("iWMMXt control register expected");
5867 goto failure;
5868 }
5869 inst.operands[i].reg = rege->number;
5870 inst.operands[i].isreg = 1;
5871 }
5872 break;
5873
c19d1205
ZW
5874 /* Misc */
5875 case OP_CPSF: val = parse_cps_flags (&str); break;
5876 case OP_ENDI: val = parse_endian_specifier (&str); break;
5877 case OP_oROR: val = parse_ror (&str); break;
5878 case OP_PSR: val = parse_psr (&str); break;
5879 case OP_COND: val = parse_cond (&str); break;
62b3e311 5880 case OP_oBARRIER:val = parse_barrier (&str); break;
c19d1205 5881
037e8744
JB
5882 case OP_RVC_PSR:
5883 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5884 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5885 break;
5886 try_psr:
5887 val = parse_psr (&str);
5888 break;
5889
5890 case OP_APSR_RR:
5891 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5892 break;
5893 try_apsr:
5894 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5895 instruction). */
5896 if (strncasecmp (str, "APSR_", 5) == 0)
5897 {
5898 unsigned found = 0;
5899 str += 5;
5900 while (found < 15)
5901 switch (*str++)
5902 {
5903 case 'c': found = (found & 1) ? 16 : found | 1; break;
5904 case 'n': found = (found & 2) ? 16 : found | 2; break;
5905 case 'z': found = (found & 4) ? 16 : found | 4; break;
5906 case 'v': found = (found & 8) ? 16 : found | 8; break;
5907 default: found = 16;
5908 }
5909 if (found != 15)
5910 goto failure;
5911 inst.operands[i].isvec = 1;
5912 }
5913 else
5914 goto failure;
5915 break;
5916
92e90b6e
PB
5917 case OP_TB:
5918 po_misc_or_fail (parse_tb (&str));
5919 break;
5920
c19d1205
ZW
5921 /* Register lists */
5922 case OP_REGLST:
5923 val = parse_reg_list (&str);
5924 if (*str == '^')
5925 {
5926 inst.operands[1].writeback = 1;
5927 str++;
5928 }
5929 break;
09d92015 5930
c19d1205 5931 case OP_VRSLST:
5287ad62 5932 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 5933 break;
09d92015 5934
c19d1205 5935 case OP_VRDLST:
5287ad62 5936 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 5937 break;
a737bd4d 5938
037e8744
JB
5939 case OP_VRSDLST:
5940 /* Allow Q registers too. */
5941 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5942 REGLIST_NEON_D);
5943 if (val == FAIL)
5944 {
5945 inst.error = NULL;
5946 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5947 REGLIST_VFP_S);
5948 inst.operands[i].issingle = 1;
5949 }
5950 break;
5951
5287ad62
JB
5952 case OP_NRDLST:
5953 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5954 REGLIST_NEON_D);
5955 break;
5956
5957 case OP_NSTRLST:
dcbf9037
JB
5958 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5959 &inst.operands[i].vectype);
5287ad62
JB
5960 break;
5961
c19d1205
ZW
5962 /* Addressing modes */
5963 case OP_ADDR:
5964 po_misc_or_fail (parse_address (&str, i));
5965 break;
09d92015 5966
4962c51a
MS
5967 case OP_ADDRGLDR:
5968 po_misc_or_fail_no_backtrack (
5969 parse_address_group_reloc (&str, i, GROUP_LDR));
5970 break;
5971
5972 case OP_ADDRGLDRS:
5973 po_misc_or_fail_no_backtrack (
5974 parse_address_group_reloc (&str, i, GROUP_LDRS));
5975 break;
5976
5977 case OP_ADDRGLDC:
5978 po_misc_or_fail_no_backtrack (
5979 parse_address_group_reloc (&str, i, GROUP_LDC));
5980 break;
5981
c19d1205
ZW
5982 case OP_SH:
5983 po_misc_or_fail (parse_shifter_operand (&str, i));
5984 break;
09d92015 5985
4962c51a
MS
5986 case OP_SHG:
5987 po_misc_or_fail_no_backtrack (
5988 parse_shifter_operand_group_reloc (&str, i));
5989 break;
5990
c19d1205
ZW
5991 case OP_oSHll:
5992 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
5993 break;
09d92015 5994
c19d1205
ZW
5995 case OP_oSHar:
5996 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
5997 break;
09d92015 5998
c19d1205
ZW
5999 case OP_oSHllar:
6000 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6001 break;
09d92015 6002
c19d1205 6003 default:
bd3ba5d1 6004 as_fatal (_("unhandled operand code %d"), upat[i]);
c19d1205 6005 }
09d92015 6006
c19d1205
ZW
6007 /* Various value-based sanity checks and shared operations. We
6008 do not signal immediate failures for the register constraints;
6009 this allows a syntax error to take precedence. */
6010 switch (upat[i])
6011 {
6012 case OP_oRRnpc:
6013 case OP_RRnpc:
6014 case OP_RRnpcb:
6015 case OP_RRw:
b6702015 6016 case OP_oRRw:
c19d1205
ZW
6017 case OP_RRnpc_I0:
6018 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6019 inst.error = BAD_PC;
6020 break;
09d92015 6021
c19d1205
ZW
6022 case OP_CPSF:
6023 case OP_ENDI:
6024 case OP_oROR:
6025 case OP_PSR:
037e8744 6026 case OP_RVC_PSR:
c19d1205 6027 case OP_COND:
62b3e311 6028 case OP_oBARRIER:
c19d1205
ZW
6029 case OP_REGLST:
6030 case OP_VRSLST:
6031 case OP_VRDLST:
037e8744 6032 case OP_VRSDLST:
5287ad62
JB
6033 case OP_NRDLST:
6034 case OP_NSTRLST:
c19d1205
ZW
6035 if (val == FAIL)
6036 goto failure;
6037 inst.operands[i].imm = val;
6038 break;
a737bd4d 6039
c19d1205
ZW
6040 default:
6041 break;
6042 }
09d92015 6043
c19d1205
ZW
6044 /* If we get here, this operand was successfully parsed. */
6045 inst.operands[i].present = 1;
6046 continue;
09d92015 6047
c19d1205 6048 bad_args:
09d92015 6049 inst.error = BAD_ARGS;
c19d1205
ZW
6050
6051 failure:
6052 if (!backtrack_pos)
d252fdde
PB
6053 {
6054 /* The parse routine should already have set inst.error, but set a
5f4273c7 6055 default here just in case. */
d252fdde
PB
6056 if (!inst.error)
6057 inst.error = _("syntax error");
6058 return FAIL;
6059 }
c19d1205
ZW
6060
6061 /* Do not backtrack over a trailing optional argument that
6062 absorbed some text. We will only fail again, with the
6063 'garbage following instruction' error message, which is
6064 probably less helpful than the current one. */
6065 if (backtrack_index == i && backtrack_pos != str
6066 && upat[i+1] == OP_stop)
d252fdde
PB
6067 {
6068 if (!inst.error)
6069 inst.error = _("syntax error");
6070 return FAIL;
6071 }
c19d1205
ZW
6072
6073 /* Try again, skipping the optional argument at backtrack_pos. */
6074 str = backtrack_pos;
6075 inst.error = backtrack_error;
6076 inst.operands[backtrack_index].present = 0;
6077 i = backtrack_index;
6078 backtrack_pos = 0;
09d92015 6079 }
09d92015 6080
c19d1205
ZW
6081 /* Check that we have parsed all the arguments. */
6082 if (*str != '\0' && !inst.error)
6083 inst.error = _("garbage following instruction");
09d92015 6084
c19d1205 6085 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6086}
6087
c19d1205
ZW
6088#undef po_char_or_fail
6089#undef po_reg_or_fail
6090#undef po_reg_or_goto
6091#undef po_imm_or_fail
5287ad62 6092#undef po_scalar_or_fail
c19d1205
ZW
6093\f
6094/* Shorthand macro for instruction encoding functions issuing errors. */
6095#define constraint(expr, err) do { \
6096 if (expr) \
6097 { \
6098 inst.error = err; \
6099 return; \
6100 } \
6101} while (0)
6102
6103/* Functions for operand encoding. ARM, then Thumb. */
6104
6105#define rotate_left(v, n) (v << n | v >> (32 - n))
6106
6107/* If VAL can be encoded in the immediate field of an ARM instruction,
6108 return the encoded form. Otherwise, return FAIL. */
6109
6110static unsigned int
6111encode_arm_immediate (unsigned int val)
09d92015 6112{
c19d1205
ZW
6113 unsigned int a, i;
6114
6115 for (i = 0; i < 32; i += 2)
6116 if ((a = rotate_left (val, i)) <= 0xff)
6117 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6118
6119 return FAIL;
09d92015
MM
6120}
6121
c19d1205
ZW
6122/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6123 return the encoded form. Otherwise, return FAIL. */
6124static unsigned int
6125encode_thumb32_immediate (unsigned int val)
09d92015 6126{
c19d1205 6127 unsigned int a, i;
09d92015 6128
9c3c69f2 6129 if (val <= 0xff)
c19d1205 6130 return val;
a737bd4d 6131
9c3c69f2 6132 for (i = 1; i <= 24; i++)
09d92015 6133 {
9c3c69f2
PB
6134 a = val >> i;
6135 if ((val & ~(0xff << i)) == 0)
6136 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6137 }
a737bd4d 6138
c19d1205
ZW
6139 a = val & 0xff;
6140 if (val == ((a << 16) | a))
6141 return 0x100 | a;
6142 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6143 return 0x300 | a;
09d92015 6144
c19d1205
ZW
6145 a = val & 0xff00;
6146 if (val == ((a << 16) | a))
6147 return 0x200 | (a >> 8);
a737bd4d 6148
c19d1205 6149 return FAIL;
09d92015 6150}
5287ad62 6151/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6152
6153static void
5287ad62
JB
6154encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6155{
6156 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6157 && reg > 15)
6158 {
6159 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
6160 {
6161 if (thumb_mode)
6162 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6163 fpu_vfp_ext_v3);
6164 else
6165 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6166 fpu_vfp_ext_v3);
6167 }
6168 else
6169 {
dcbf9037 6170 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6171 return;
6172 }
6173 }
6174
c19d1205 6175 switch (pos)
09d92015 6176 {
c19d1205
ZW
6177 case VFP_REG_Sd:
6178 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6179 break;
6180
6181 case VFP_REG_Sn:
6182 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6183 break;
6184
6185 case VFP_REG_Sm:
6186 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6187 break;
6188
5287ad62
JB
6189 case VFP_REG_Dd:
6190 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6191 break;
5f4273c7 6192
5287ad62
JB
6193 case VFP_REG_Dn:
6194 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6195 break;
5f4273c7 6196
5287ad62
JB
6197 case VFP_REG_Dm:
6198 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6199 break;
6200
c19d1205
ZW
6201 default:
6202 abort ();
09d92015 6203 }
09d92015
MM
6204}
6205
c19d1205 6206/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6207 if any, is handled by md_apply_fix. */
09d92015 6208static void
c19d1205 6209encode_arm_shift (int i)
09d92015 6210{
c19d1205
ZW
6211 if (inst.operands[i].shift_kind == SHIFT_RRX)
6212 inst.instruction |= SHIFT_ROR << 5;
6213 else
09d92015 6214 {
c19d1205
ZW
6215 inst.instruction |= inst.operands[i].shift_kind << 5;
6216 if (inst.operands[i].immisreg)
6217 {
6218 inst.instruction |= SHIFT_BY_REG;
6219 inst.instruction |= inst.operands[i].imm << 8;
6220 }
6221 else
6222 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6223 }
c19d1205 6224}
09d92015 6225
c19d1205
ZW
6226static void
6227encode_arm_shifter_operand (int i)
6228{
6229 if (inst.operands[i].isreg)
09d92015 6230 {
c19d1205
ZW
6231 inst.instruction |= inst.operands[i].reg;
6232 encode_arm_shift (i);
09d92015 6233 }
c19d1205
ZW
6234 else
6235 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6236}
6237
c19d1205 6238/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6239static void
c19d1205 6240encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6241{
c19d1205
ZW
6242 assert (inst.operands[i].isreg);
6243 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6244
c19d1205 6245 if (inst.operands[i].preind)
09d92015 6246 {
c19d1205
ZW
6247 if (is_t)
6248 {
6249 inst.error = _("instruction does not accept preindexed addressing");
6250 return;
6251 }
6252 inst.instruction |= PRE_INDEX;
6253 if (inst.operands[i].writeback)
6254 inst.instruction |= WRITE_BACK;
09d92015 6255
c19d1205
ZW
6256 }
6257 else if (inst.operands[i].postind)
6258 {
6259 assert (inst.operands[i].writeback);
6260 if (is_t)
6261 inst.instruction |= WRITE_BACK;
6262 }
6263 else /* unindexed - only for coprocessor */
09d92015 6264 {
c19d1205 6265 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6266 return;
6267 }
6268
c19d1205
ZW
6269 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6270 && (((inst.instruction & 0x000f0000) >> 16)
6271 == ((inst.instruction & 0x0000f000) >> 12)))
6272 as_warn ((inst.instruction & LOAD_BIT)
6273 ? _("destination register same as write-back base")
6274 : _("source register same as write-back base"));
09d92015
MM
6275}
6276
c19d1205
ZW
6277/* inst.operands[i] was set up by parse_address. Encode it into an
6278 ARM-format mode 2 load or store instruction. If is_t is true,
6279 reject forms that cannot be used with a T instruction (i.e. not
6280 post-indexed). */
a737bd4d 6281static void
c19d1205 6282encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6283{
c19d1205 6284 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6285
c19d1205 6286 if (inst.operands[i].immisreg)
09d92015 6287 {
c19d1205
ZW
6288 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6289 inst.instruction |= inst.operands[i].imm;
6290 if (!inst.operands[i].negative)
6291 inst.instruction |= INDEX_UP;
6292 if (inst.operands[i].shifted)
6293 {
6294 if (inst.operands[i].shift_kind == SHIFT_RRX)
6295 inst.instruction |= SHIFT_ROR << 5;
6296 else
6297 {
6298 inst.instruction |= inst.operands[i].shift_kind << 5;
6299 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6300 }
6301 }
09d92015 6302 }
c19d1205 6303 else /* immediate offset in inst.reloc */
09d92015 6304 {
c19d1205
ZW
6305 if (inst.reloc.type == BFD_RELOC_UNUSED)
6306 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 6307 }
09d92015
MM
6308}
6309
c19d1205
ZW
6310/* inst.operands[i] was set up by parse_address. Encode it into an
6311 ARM-format mode 3 load or store instruction. Reject forms that
6312 cannot be used with such instructions. If is_t is true, reject
6313 forms that cannot be used with a T instruction (i.e. not
6314 post-indexed). */
6315static void
6316encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 6317{
c19d1205 6318 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 6319 {
c19d1205
ZW
6320 inst.error = _("instruction does not accept scaled register index");
6321 return;
09d92015 6322 }
a737bd4d 6323
c19d1205 6324 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6325
c19d1205
ZW
6326 if (inst.operands[i].immisreg)
6327 {
6328 inst.instruction |= inst.operands[i].imm;
6329 if (!inst.operands[i].negative)
6330 inst.instruction |= INDEX_UP;
6331 }
6332 else /* immediate offset in inst.reloc */
6333 {
6334 inst.instruction |= HWOFFSET_IMM;
6335 if (inst.reloc.type == BFD_RELOC_UNUSED)
6336 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 6337 }
a737bd4d
NC
6338}
6339
c19d1205
ZW
6340/* inst.operands[i] was set up by parse_address. Encode it into an
6341 ARM-format instruction. Reject all forms which cannot be encoded
6342 into a coprocessor load/store instruction. If wb_ok is false,
6343 reject use of writeback; if unind_ok is false, reject use of
6344 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
6345 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6346 (in which case it is preserved). */
09d92015 6347
c19d1205
ZW
6348static int
6349encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 6350{
c19d1205 6351 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6352
c19d1205 6353 assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 6354
c19d1205 6355 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 6356 {
c19d1205
ZW
6357 assert (!inst.operands[i].writeback);
6358 if (!unind_ok)
6359 {
6360 inst.error = _("instruction does not support unindexed addressing");
6361 return FAIL;
6362 }
6363 inst.instruction |= inst.operands[i].imm;
6364 inst.instruction |= INDEX_UP;
6365 return SUCCESS;
09d92015 6366 }
a737bd4d 6367
c19d1205
ZW
6368 if (inst.operands[i].preind)
6369 inst.instruction |= PRE_INDEX;
a737bd4d 6370
c19d1205 6371 if (inst.operands[i].writeback)
09d92015 6372 {
c19d1205
ZW
6373 if (inst.operands[i].reg == REG_PC)
6374 {
6375 inst.error = _("pc may not be used with write-back");
6376 return FAIL;
6377 }
6378 if (!wb_ok)
6379 {
6380 inst.error = _("instruction does not support writeback");
6381 return FAIL;
6382 }
6383 inst.instruction |= WRITE_BACK;
09d92015 6384 }
a737bd4d 6385
c19d1205
ZW
6386 if (reloc_override)
6387 inst.reloc.type = reloc_override;
4962c51a
MS
6388 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6389 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6390 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6391 {
6392 if (thumb_mode)
6393 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6394 else
6395 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6396 }
6397
c19d1205
ZW
6398 return SUCCESS;
6399}
a737bd4d 6400
c19d1205
ZW
6401/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6402 Determine whether it can be performed with a move instruction; if
6403 it can, convert inst.instruction to that move instruction and
6404 return 1; if it can't, convert inst.instruction to a literal-pool
6405 load and return 0. If this is not a valid thing to do in the
6406 current context, set inst.error and return 1.
a737bd4d 6407
c19d1205
ZW
6408 inst.operands[i] describes the destination register. */
6409
6410static int
6411move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6412{
53365c0d
PB
6413 unsigned long tbit;
6414
6415 if (thumb_p)
6416 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6417 else
6418 tbit = LOAD_BIT;
6419
6420 if ((inst.instruction & tbit) == 0)
09d92015 6421 {
c19d1205
ZW
6422 inst.error = _("invalid pseudo operation");
6423 return 1;
09d92015 6424 }
c19d1205 6425 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
6426 {
6427 inst.error = _("constant expression expected");
c19d1205 6428 return 1;
09d92015 6429 }
c19d1205 6430 if (inst.reloc.exp.X_op == O_constant)
09d92015 6431 {
c19d1205
ZW
6432 if (thumb_p)
6433 {
53365c0d 6434 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
6435 {
6436 /* This can be done with a mov(1) instruction. */
6437 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6438 inst.instruction |= inst.reloc.exp.X_add_number;
6439 return 1;
6440 }
6441 }
6442 else
6443 {
6444 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6445 if (value != FAIL)
6446 {
6447 /* This can be done with a mov instruction. */
6448 inst.instruction &= LITERAL_MASK;
6449 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6450 inst.instruction |= value & 0xfff;
6451 return 1;
6452 }
09d92015 6453
c19d1205
ZW
6454 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6455 if (value != FAIL)
6456 {
6457 /* This can be done with a mvn instruction. */
6458 inst.instruction &= LITERAL_MASK;
6459 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6460 inst.instruction |= value & 0xfff;
6461 return 1;
6462 }
6463 }
09d92015
MM
6464 }
6465
c19d1205
ZW
6466 if (add_to_lit_pool () == FAIL)
6467 {
6468 inst.error = _("literal pool insertion failed");
6469 return 1;
6470 }
6471 inst.operands[1].reg = REG_PC;
6472 inst.operands[1].isreg = 1;
6473 inst.operands[1].preind = 1;
6474 inst.reloc.pc_rel = 1;
6475 inst.reloc.type = (thumb_p
6476 ? BFD_RELOC_ARM_THUMB_OFFSET
6477 : (mode_3
6478 ? BFD_RELOC_ARM_HWLITERAL
6479 : BFD_RELOC_ARM_LITERAL));
6480 return 0;
09d92015
MM
6481}
6482
5f4273c7 6483/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
6484 First some generics; their names are taken from the conventional
6485 bit positions for register arguments in ARM format instructions. */
09d92015 6486
a737bd4d 6487static void
c19d1205 6488do_noargs (void)
09d92015 6489{
c19d1205 6490}
a737bd4d 6491
c19d1205
ZW
6492static void
6493do_rd (void)
6494{
6495 inst.instruction |= inst.operands[0].reg << 12;
6496}
a737bd4d 6497
c19d1205
ZW
6498static void
6499do_rd_rm (void)
6500{
6501 inst.instruction |= inst.operands[0].reg << 12;
6502 inst.instruction |= inst.operands[1].reg;
6503}
09d92015 6504
c19d1205
ZW
6505static void
6506do_rd_rn (void)
6507{
6508 inst.instruction |= inst.operands[0].reg << 12;
6509 inst.instruction |= inst.operands[1].reg << 16;
6510}
a737bd4d 6511
c19d1205
ZW
6512static void
6513do_rn_rd (void)
6514{
6515 inst.instruction |= inst.operands[0].reg << 16;
6516 inst.instruction |= inst.operands[1].reg << 12;
6517}
09d92015 6518
c19d1205
ZW
6519static void
6520do_rd_rm_rn (void)
6521{
9a64e435 6522 unsigned Rn = inst.operands[2].reg;
708587a4 6523 /* Enforce restrictions on SWP instruction. */
9a64e435
PB
6524 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6525 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6526 _("Rn must not overlap other operands"));
c19d1205
ZW
6527 inst.instruction |= inst.operands[0].reg << 12;
6528 inst.instruction |= inst.operands[1].reg;
9a64e435 6529 inst.instruction |= Rn << 16;
c19d1205 6530}
09d92015 6531
c19d1205
ZW
6532static void
6533do_rd_rn_rm (void)
6534{
6535 inst.instruction |= inst.operands[0].reg << 12;
6536 inst.instruction |= inst.operands[1].reg << 16;
6537 inst.instruction |= inst.operands[2].reg;
6538}
a737bd4d 6539
c19d1205
ZW
6540static void
6541do_rm_rd_rn (void)
6542{
6543 inst.instruction |= inst.operands[0].reg;
6544 inst.instruction |= inst.operands[1].reg << 12;
6545 inst.instruction |= inst.operands[2].reg << 16;
6546}
09d92015 6547
c19d1205
ZW
6548static void
6549do_imm0 (void)
6550{
6551 inst.instruction |= inst.operands[0].imm;
6552}
09d92015 6553
c19d1205
ZW
6554static void
6555do_rd_cpaddr (void)
6556{
6557 inst.instruction |= inst.operands[0].reg << 12;
6558 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 6559}
a737bd4d 6560
c19d1205
ZW
6561/* ARM instructions, in alphabetical order by function name (except
6562 that wrapper functions appear immediately after the function they
6563 wrap). */
09d92015 6564
c19d1205
ZW
6565/* This is a pseudo-op of the form "adr rd, label" to be converted
6566 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
6567
6568static void
c19d1205 6569do_adr (void)
09d92015 6570{
c19d1205 6571 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6572
c19d1205
ZW
6573 /* Frag hacking will turn this into a sub instruction if the offset turns
6574 out to be negative. */
6575 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 6576 inst.reloc.pc_rel = 1;
2fc8bdac 6577 inst.reloc.exp.X_add_number -= 8;
c19d1205 6578}
b99bd4ef 6579
c19d1205
ZW
6580/* This is a pseudo-op of the form "adrl rd, label" to be converted
6581 into a relative address of the form:
6582 add rd, pc, #low(label-.-8)"
6583 add rd, rd, #high(label-.-8)" */
b99bd4ef 6584
c19d1205
ZW
6585static void
6586do_adrl (void)
6587{
6588 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6589
c19d1205
ZW
6590 /* Frag hacking will turn this into a sub instruction if the offset turns
6591 out to be negative. */
6592 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
6593 inst.reloc.pc_rel = 1;
6594 inst.size = INSN_SIZE * 2;
2fc8bdac 6595 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
6596}
6597
b99bd4ef 6598static void
c19d1205 6599do_arit (void)
b99bd4ef 6600{
c19d1205
ZW
6601 if (!inst.operands[1].present)
6602 inst.operands[1].reg = inst.operands[0].reg;
6603 inst.instruction |= inst.operands[0].reg << 12;
6604 inst.instruction |= inst.operands[1].reg << 16;
6605 encode_arm_shifter_operand (2);
6606}
b99bd4ef 6607
62b3e311
PB
6608static void
6609do_barrier (void)
6610{
6611 if (inst.operands[0].present)
6612 {
6613 constraint ((inst.instruction & 0xf0) != 0x40
6614 && inst.operands[0].imm != 0xf,
bd3ba5d1 6615 _("bad barrier type"));
62b3e311
PB
6616 inst.instruction |= inst.operands[0].imm;
6617 }
6618 else
6619 inst.instruction |= 0xf;
6620}
6621
c19d1205
ZW
6622static void
6623do_bfc (void)
6624{
6625 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6626 constraint (msb > 32, _("bit-field extends past end of register"));
6627 /* The instruction encoding stores the LSB and MSB,
6628 not the LSB and width. */
6629 inst.instruction |= inst.operands[0].reg << 12;
6630 inst.instruction |= inst.operands[1].imm << 7;
6631 inst.instruction |= (msb - 1) << 16;
6632}
b99bd4ef 6633
c19d1205
ZW
6634static void
6635do_bfi (void)
6636{
6637 unsigned int msb;
b99bd4ef 6638
c19d1205
ZW
6639 /* #0 in second position is alternative syntax for bfc, which is
6640 the same instruction but with REG_PC in the Rm field. */
6641 if (!inst.operands[1].isreg)
6642 inst.operands[1].reg = REG_PC;
b99bd4ef 6643
c19d1205
ZW
6644 msb = inst.operands[2].imm + inst.operands[3].imm;
6645 constraint (msb > 32, _("bit-field extends past end of register"));
6646 /* The instruction encoding stores the LSB and MSB,
6647 not the LSB and width. */
6648 inst.instruction |= inst.operands[0].reg << 12;
6649 inst.instruction |= inst.operands[1].reg;
6650 inst.instruction |= inst.operands[2].imm << 7;
6651 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
6652}
6653
b99bd4ef 6654static void
c19d1205 6655do_bfx (void)
b99bd4ef 6656{
c19d1205
ZW
6657 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6658 _("bit-field extends past end of register"));
6659 inst.instruction |= inst.operands[0].reg << 12;
6660 inst.instruction |= inst.operands[1].reg;
6661 inst.instruction |= inst.operands[2].imm << 7;
6662 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6663}
09d92015 6664
c19d1205
ZW
6665/* ARM V5 breakpoint instruction (argument parse)
6666 BKPT <16 bit unsigned immediate>
6667 Instruction is not conditional.
6668 The bit pattern given in insns[] has the COND_ALWAYS condition,
6669 and it is an error if the caller tried to override that. */
b99bd4ef 6670
c19d1205
ZW
6671static void
6672do_bkpt (void)
6673{
6674 /* Top 12 of 16 bits to bits 19:8. */
6675 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 6676
c19d1205
ZW
6677 /* Bottom 4 of 16 bits to bits 3:0. */
6678 inst.instruction |= inst.operands[0].imm & 0xf;
6679}
09d92015 6680
c19d1205
ZW
6681static void
6682encode_branch (int default_reloc)
6683{
6684 if (inst.operands[0].hasreloc)
6685 {
6686 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6687 _("the only suffix valid here is '(plt)'"));
6688 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 6689 }
b99bd4ef 6690 else
c19d1205
ZW
6691 {
6692 inst.reloc.type = default_reloc;
c19d1205 6693 }
2fc8bdac 6694 inst.reloc.pc_rel = 1;
b99bd4ef
NC
6695}
6696
b99bd4ef 6697static void
c19d1205 6698do_branch (void)
b99bd4ef 6699{
39b41c9c
PB
6700#ifdef OBJ_ELF
6701 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6702 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6703 else
6704#endif
6705 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6706}
6707
6708static void
6709do_bl (void)
6710{
6711#ifdef OBJ_ELF
6712 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6713 {
6714 if (inst.cond == COND_ALWAYS)
6715 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6716 else
6717 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6718 }
6719 else
6720#endif
6721 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 6722}
b99bd4ef 6723
c19d1205
ZW
6724/* ARM V5 branch-link-exchange instruction (argument parse)
6725 BLX <target_addr> ie BLX(1)
6726 BLX{<condition>} <Rm> ie BLX(2)
6727 Unfortunately, there are two different opcodes for this mnemonic.
6728 So, the insns[].value is not used, and the code here zaps values
6729 into inst.instruction.
6730 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 6731
c19d1205
ZW
6732static void
6733do_blx (void)
6734{
6735 if (inst.operands[0].isreg)
b99bd4ef 6736 {
c19d1205
ZW
6737 /* Arg is a register; the opcode provided by insns[] is correct.
6738 It is not illegal to do "blx pc", just useless. */
6739 if (inst.operands[0].reg == REG_PC)
6740 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 6741
c19d1205
ZW
6742 inst.instruction |= inst.operands[0].reg;
6743 }
6744 else
b99bd4ef 6745 {
c19d1205
ZW
6746 /* Arg is an address; this instruction cannot be executed
6747 conditionally, and the opcode must be adjusted. */
6748 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 6749 inst.instruction = 0xfa000000;
39b41c9c
PB
6750#ifdef OBJ_ELF
6751 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6752 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6753 else
6754#endif
6755 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 6756 }
c19d1205
ZW
6757}
6758
6759static void
6760do_bx (void)
6761{
6762 if (inst.operands[0].reg == REG_PC)
6763 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 6764
c19d1205 6765 inst.instruction |= inst.operands[0].reg;
09d92015
MM
6766}
6767
c19d1205
ZW
6768
6769/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
6770
6771static void
c19d1205 6772do_bxj (void)
a737bd4d 6773{
c19d1205
ZW
6774 if (inst.operands[0].reg == REG_PC)
6775 as_tsktsk (_("use of r15 in bxj is not really useful"));
6776
6777 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
6778}
6779
c19d1205
ZW
6780/* Co-processor data operation:
6781 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6782 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6783static void
6784do_cdp (void)
6785{
6786 inst.instruction |= inst.operands[0].reg << 8;
6787 inst.instruction |= inst.operands[1].imm << 20;
6788 inst.instruction |= inst.operands[2].reg << 12;
6789 inst.instruction |= inst.operands[3].reg << 16;
6790 inst.instruction |= inst.operands[4].reg;
6791 inst.instruction |= inst.operands[5].imm << 5;
6792}
a737bd4d
NC
6793
6794static void
c19d1205 6795do_cmp (void)
a737bd4d 6796{
c19d1205
ZW
6797 inst.instruction |= inst.operands[0].reg << 16;
6798 encode_arm_shifter_operand (1);
a737bd4d
NC
6799}
6800
c19d1205
ZW
6801/* Transfer between coprocessor and ARM registers.
6802 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6803 MRC2
6804 MCR{cond}
6805 MCR2
6806
6807 No special properties. */
09d92015
MM
6808
6809static void
c19d1205 6810do_co_reg (void)
09d92015 6811{
c19d1205
ZW
6812 inst.instruction |= inst.operands[0].reg << 8;
6813 inst.instruction |= inst.operands[1].imm << 21;
6814 inst.instruction |= inst.operands[2].reg << 12;
6815 inst.instruction |= inst.operands[3].reg << 16;
6816 inst.instruction |= inst.operands[4].reg;
6817 inst.instruction |= inst.operands[5].imm << 5;
6818}
09d92015 6819
c19d1205
ZW
6820/* Transfer between coprocessor register and pair of ARM registers.
6821 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6822 MCRR2
6823 MRRC{cond}
6824 MRRC2
b99bd4ef 6825
c19d1205 6826 Two XScale instructions are special cases of these:
09d92015 6827
c19d1205
ZW
6828 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6829 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 6830
5f4273c7 6831 Result unpredictable if Rd or Rn is R15. */
a737bd4d 6832
c19d1205
ZW
6833static void
6834do_co_reg2c (void)
6835{
6836 inst.instruction |= inst.operands[0].reg << 8;
6837 inst.instruction |= inst.operands[1].imm << 4;
6838 inst.instruction |= inst.operands[2].reg << 12;
6839 inst.instruction |= inst.operands[3].reg << 16;
6840 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
6841}
6842
c19d1205
ZW
6843static void
6844do_cpsi (void)
6845{
6846 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
6847 if (inst.operands[1].present)
6848 {
6849 inst.instruction |= CPSI_MMOD;
6850 inst.instruction |= inst.operands[1].imm;
6851 }
c19d1205 6852}
b99bd4ef 6853
62b3e311
PB
6854static void
6855do_dbg (void)
6856{
6857 inst.instruction |= inst.operands[0].imm;
6858}
6859
b99bd4ef 6860static void
c19d1205 6861do_it (void)
b99bd4ef 6862{
c19d1205
ZW
6863 /* There is no IT instruction in ARM mode. We
6864 process it but do not generate code for it. */
6865 inst.size = 0;
09d92015 6866}
b99bd4ef 6867
09d92015 6868static void
c19d1205 6869do_ldmstm (void)
ea6ef066 6870{
c19d1205
ZW
6871 int base_reg = inst.operands[0].reg;
6872 int range = inst.operands[1].imm;
ea6ef066 6873
c19d1205
ZW
6874 inst.instruction |= base_reg << 16;
6875 inst.instruction |= range;
ea6ef066 6876
c19d1205
ZW
6877 if (inst.operands[1].writeback)
6878 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 6879
c19d1205 6880 if (inst.operands[0].writeback)
ea6ef066 6881 {
c19d1205
ZW
6882 inst.instruction |= WRITE_BACK;
6883 /* Check for unpredictable uses of writeback. */
6884 if (inst.instruction & LOAD_BIT)
09d92015 6885 {
c19d1205
ZW
6886 /* Not allowed in LDM type 2. */
6887 if ((inst.instruction & LDM_TYPE_2_OR_3)
6888 && ((range & (1 << REG_PC)) == 0))
6889 as_warn (_("writeback of base register is UNPREDICTABLE"));
6890 /* Only allowed if base reg not in list for other types. */
6891 else if (range & (1 << base_reg))
6892 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6893 }
6894 else /* STM. */
6895 {
6896 /* Not allowed for type 2. */
6897 if (inst.instruction & LDM_TYPE_2_OR_3)
6898 as_warn (_("writeback of base register is UNPREDICTABLE"));
6899 /* Only allowed if base reg not in list, or first in list. */
6900 else if ((range & (1 << base_reg))
6901 && (range & ((1 << base_reg) - 1)))
6902 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 6903 }
ea6ef066 6904 }
a737bd4d
NC
6905}
6906
c19d1205
ZW
6907/* ARMv5TE load-consecutive (argument parse)
6908 Mode is like LDRH.
6909
6910 LDRccD R, mode
6911 STRccD R, mode. */
6912
a737bd4d 6913static void
c19d1205 6914do_ldrd (void)
a737bd4d 6915{
c19d1205
ZW
6916 constraint (inst.operands[0].reg % 2 != 0,
6917 _("first destination register must be even"));
6918 constraint (inst.operands[1].present
6919 && inst.operands[1].reg != inst.operands[0].reg + 1,
6920 _("can only load two consecutive registers"));
6921 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6922 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 6923
c19d1205
ZW
6924 if (!inst.operands[1].present)
6925 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 6926
c19d1205 6927 if (inst.instruction & LOAD_BIT)
a737bd4d 6928 {
c19d1205
ZW
6929 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6930 register and the first register written; we have to diagnose
6931 overlap between the base and the second register written here. */
ea6ef066 6932
c19d1205
ZW
6933 if (inst.operands[2].reg == inst.operands[1].reg
6934 && (inst.operands[2].writeback || inst.operands[2].postind))
6935 as_warn (_("base register written back, and overlaps "
6936 "second destination register"));
b05fe5cf 6937
c19d1205
ZW
6938 /* For an index-register load, the index register must not overlap the
6939 destination (even if not write-back). */
6940 else if (inst.operands[2].immisreg
ca3f61f7
NC
6941 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6942 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 6943 as_warn (_("index register overlaps destination register"));
b05fe5cf 6944 }
c19d1205
ZW
6945
6946 inst.instruction |= inst.operands[0].reg << 12;
6947 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
6948}
6949
6950static void
c19d1205 6951do_ldrex (void)
b05fe5cf 6952{
c19d1205
ZW
6953 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6954 || inst.operands[1].postind || inst.operands[1].writeback
6955 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
6956 || inst.operands[1].negative
6957 /* This can arise if the programmer has written
6958 strex rN, rM, foo
6959 or if they have mistakenly used a register name as the last
6960 operand, eg:
6961 strex rN, rM, rX
6962 It is very difficult to distinguish between these two cases
6963 because "rX" might actually be a label. ie the register
6964 name has been occluded by a symbol of the same name. So we
6965 just generate a general 'bad addressing mode' type error
6966 message and leave it up to the programmer to discover the
6967 true cause and fix their mistake. */
6968 || (inst.operands[1].reg == REG_PC),
6969 BAD_ADDR_MODE);
b05fe5cf 6970
c19d1205
ZW
6971 constraint (inst.reloc.exp.X_op != O_constant
6972 || inst.reloc.exp.X_add_number != 0,
6973 _("offset must be zero in ARM encoding"));
b05fe5cf 6974
c19d1205
ZW
6975 inst.instruction |= inst.operands[0].reg << 12;
6976 inst.instruction |= inst.operands[1].reg << 16;
6977 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
6978}
6979
6980static void
c19d1205 6981do_ldrexd (void)
b05fe5cf 6982{
c19d1205
ZW
6983 constraint (inst.operands[0].reg % 2 != 0,
6984 _("even register required"));
6985 constraint (inst.operands[1].present
6986 && inst.operands[1].reg != inst.operands[0].reg + 1,
6987 _("can only load two consecutive registers"));
6988 /* If op 1 were present and equal to PC, this function wouldn't
6989 have been called in the first place. */
6990 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 6991
c19d1205
ZW
6992 inst.instruction |= inst.operands[0].reg << 12;
6993 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
6994}
6995
6996static void
c19d1205 6997do_ldst (void)
b05fe5cf 6998{
c19d1205
ZW
6999 inst.instruction |= inst.operands[0].reg << 12;
7000 if (!inst.operands[1].isreg)
7001 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7002 return;
c19d1205 7003 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7004}
7005
7006static void
c19d1205 7007do_ldstt (void)
b05fe5cf 7008{
c19d1205
ZW
7009 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7010 reject [Rn,...]. */
7011 if (inst.operands[1].preind)
b05fe5cf 7012 {
bd3ba5d1
NC
7013 constraint (inst.reloc.exp.X_op != O_constant
7014 || inst.reloc.exp.X_add_number != 0,
c19d1205 7015 _("this instruction requires a post-indexed address"));
b05fe5cf 7016
c19d1205
ZW
7017 inst.operands[1].preind = 0;
7018 inst.operands[1].postind = 1;
7019 inst.operands[1].writeback = 1;
b05fe5cf 7020 }
c19d1205
ZW
7021 inst.instruction |= inst.operands[0].reg << 12;
7022 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7023}
b05fe5cf 7024
c19d1205 7025/* Halfword and signed-byte load/store operations. */
b05fe5cf 7026
c19d1205
ZW
7027static void
7028do_ldstv4 (void)
7029{
7030 inst.instruction |= inst.operands[0].reg << 12;
7031 if (!inst.operands[1].isreg)
7032 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7033 return;
c19d1205 7034 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7035}
7036
7037static void
c19d1205 7038do_ldsttv4 (void)
b05fe5cf 7039{
c19d1205
ZW
7040 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7041 reject [Rn,...]. */
7042 if (inst.operands[1].preind)
b05fe5cf 7043 {
bd3ba5d1
NC
7044 constraint (inst.reloc.exp.X_op != O_constant
7045 || inst.reloc.exp.X_add_number != 0,
c19d1205 7046 _("this instruction requires a post-indexed address"));
b05fe5cf 7047
c19d1205
ZW
7048 inst.operands[1].preind = 0;
7049 inst.operands[1].postind = 1;
7050 inst.operands[1].writeback = 1;
b05fe5cf 7051 }
c19d1205
ZW
7052 inst.instruction |= inst.operands[0].reg << 12;
7053 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7054}
b05fe5cf 7055
c19d1205
ZW
7056/* Co-processor register load/store.
7057 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7058static void
7059do_lstc (void)
7060{
7061 inst.instruction |= inst.operands[0].reg << 8;
7062 inst.instruction |= inst.operands[1].reg << 12;
7063 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7064}
7065
b05fe5cf 7066static void
c19d1205 7067do_mlas (void)
b05fe5cf 7068{
8fb9d7b9 7069 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7070 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7071 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7072 && !(inst.instruction & 0x00400000))
8fb9d7b9 7073 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7074
c19d1205
ZW
7075 inst.instruction |= inst.operands[0].reg << 16;
7076 inst.instruction |= inst.operands[1].reg;
7077 inst.instruction |= inst.operands[2].reg << 8;
7078 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7079}
b05fe5cf 7080
c19d1205
ZW
7081static void
7082do_mov (void)
7083{
7084 inst.instruction |= inst.operands[0].reg << 12;
7085 encode_arm_shifter_operand (1);
7086}
b05fe5cf 7087
c19d1205
ZW
7088/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7089static void
7090do_mov16 (void)
7091{
b6895b4f
PB
7092 bfd_vma imm;
7093 bfd_boolean top;
7094
7095 top = (inst.instruction & 0x00400000) != 0;
7096 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7097 _(":lower16: not allowed this instruction"));
7098 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7099 _(":upper16: not allowed instruction"));
c19d1205 7100 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7101 if (inst.reloc.type == BFD_RELOC_UNUSED)
7102 {
7103 imm = inst.reloc.exp.X_add_number;
7104 /* The value is in two pieces: 0:11, 16:19. */
7105 inst.instruction |= (imm & 0x00000fff);
7106 inst.instruction |= (imm & 0x0000f000) << 4;
7107 }
b05fe5cf 7108}
b99bd4ef 7109
037e8744
JB
7110static void do_vfp_nsyn_opcode (const char *);
7111
7112static int
7113do_vfp_nsyn_mrs (void)
7114{
7115 if (inst.operands[0].isvec)
7116 {
7117 if (inst.operands[1].reg != 1)
7118 first_error (_("operand 1 must be FPSCR"));
7119 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7120 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7121 do_vfp_nsyn_opcode ("fmstat");
7122 }
7123 else if (inst.operands[1].isvec)
7124 do_vfp_nsyn_opcode ("fmrx");
7125 else
7126 return FAIL;
5f4273c7 7127
037e8744
JB
7128 return SUCCESS;
7129}
7130
7131static int
7132do_vfp_nsyn_msr (void)
7133{
7134 if (inst.operands[0].isvec)
7135 do_vfp_nsyn_opcode ("fmxr");
7136 else
7137 return FAIL;
7138
7139 return SUCCESS;
7140}
7141
b99bd4ef 7142static void
c19d1205 7143do_mrs (void)
b99bd4ef 7144{
037e8744
JB
7145 if (do_vfp_nsyn_mrs () == SUCCESS)
7146 return;
7147
c19d1205
ZW
7148 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7149 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7150 != (PSR_c|PSR_f),
7151 _("'CPSR' or 'SPSR' expected"));
7152 inst.instruction |= inst.operands[0].reg << 12;
7153 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7154}
b99bd4ef 7155
c19d1205
ZW
7156/* Two possible forms:
7157 "{C|S}PSR_<field>, Rm",
7158 "{C|S}PSR_f, #expression". */
b99bd4ef 7159
c19d1205
ZW
7160static void
7161do_msr (void)
7162{
037e8744
JB
7163 if (do_vfp_nsyn_msr () == SUCCESS)
7164 return;
7165
c19d1205
ZW
7166 inst.instruction |= inst.operands[0].imm;
7167 if (inst.operands[1].isreg)
7168 inst.instruction |= inst.operands[1].reg;
7169 else
b99bd4ef 7170 {
c19d1205
ZW
7171 inst.instruction |= INST_IMMEDIATE;
7172 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7173 inst.reloc.pc_rel = 0;
b99bd4ef 7174 }
b99bd4ef
NC
7175}
7176
c19d1205
ZW
7177static void
7178do_mul (void)
a737bd4d 7179{
c19d1205
ZW
7180 if (!inst.operands[2].present)
7181 inst.operands[2].reg = inst.operands[0].reg;
7182 inst.instruction |= inst.operands[0].reg << 16;
7183 inst.instruction |= inst.operands[1].reg;
7184 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 7185
8fb9d7b9
MS
7186 if (inst.operands[0].reg == inst.operands[1].reg
7187 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7188 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
7189}
7190
c19d1205
ZW
7191/* Long Multiply Parser
7192 UMULL RdLo, RdHi, Rm, Rs
7193 SMULL RdLo, RdHi, Rm, Rs
7194 UMLAL RdLo, RdHi, Rm, Rs
7195 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
7196
7197static void
c19d1205 7198do_mull (void)
b99bd4ef 7199{
c19d1205
ZW
7200 inst.instruction |= inst.operands[0].reg << 12;
7201 inst.instruction |= inst.operands[1].reg << 16;
7202 inst.instruction |= inst.operands[2].reg;
7203 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 7204
682b27ad
PB
7205 /* rdhi and rdlo must be different. */
7206 if (inst.operands[0].reg == inst.operands[1].reg)
7207 as_tsktsk (_("rdhi and rdlo must be different"));
7208
7209 /* rdhi, rdlo and rm must all be different before armv6. */
7210 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 7211 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 7212 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
7213 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7214}
b99bd4ef 7215
c19d1205
ZW
7216static void
7217do_nop (void)
7218{
7219 if (inst.operands[0].present)
7220 {
7221 /* Architectural NOP hints are CPSR sets with no bits selected. */
7222 inst.instruction &= 0xf0000000;
7223 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7224 }
b99bd4ef
NC
7225}
7226
c19d1205
ZW
7227/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7228 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7229 Condition defaults to COND_ALWAYS.
7230 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
7231
7232static void
c19d1205 7233do_pkhbt (void)
b99bd4ef 7234{
c19d1205
ZW
7235 inst.instruction |= inst.operands[0].reg << 12;
7236 inst.instruction |= inst.operands[1].reg << 16;
7237 inst.instruction |= inst.operands[2].reg;
7238 if (inst.operands[3].present)
7239 encode_arm_shift (3);
7240}
b99bd4ef 7241
c19d1205 7242/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 7243
c19d1205
ZW
7244static void
7245do_pkhtb (void)
7246{
7247 if (!inst.operands[3].present)
b99bd4ef 7248 {
c19d1205
ZW
7249 /* If the shift specifier is omitted, turn the instruction
7250 into pkhbt rd, rm, rn. */
7251 inst.instruction &= 0xfff00010;
7252 inst.instruction |= inst.operands[0].reg << 12;
7253 inst.instruction |= inst.operands[1].reg;
7254 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7255 }
7256 else
7257 {
c19d1205
ZW
7258 inst.instruction |= inst.operands[0].reg << 12;
7259 inst.instruction |= inst.operands[1].reg << 16;
7260 inst.instruction |= inst.operands[2].reg;
7261 encode_arm_shift (3);
b99bd4ef
NC
7262 }
7263}
7264
c19d1205
ZW
7265/* ARMv5TE: Preload-Cache
7266
7267 PLD <addr_mode>
7268
7269 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
7270
7271static void
c19d1205 7272do_pld (void)
b99bd4ef 7273{
c19d1205
ZW
7274 constraint (!inst.operands[0].isreg,
7275 _("'[' expected after PLD mnemonic"));
7276 constraint (inst.operands[0].postind,
7277 _("post-indexed expression used in preload instruction"));
7278 constraint (inst.operands[0].writeback,
7279 _("writeback used in preload instruction"));
7280 constraint (!inst.operands[0].preind,
7281 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
7282 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7283}
b99bd4ef 7284
62b3e311
PB
7285/* ARMv7: PLI <addr_mode> */
7286static void
7287do_pli (void)
7288{
7289 constraint (!inst.operands[0].isreg,
7290 _("'[' expected after PLI mnemonic"));
7291 constraint (inst.operands[0].postind,
7292 _("post-indexed expression used in preload instruction"));
7293 constraint (inst.operands[0].writeback,
7294 _("writeback used in preload instruction"));
7295 constraint (!inst.operands[0].preind,
7296 _("unindexed addressing used in preload instruction"));
7297 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7298 inst.instruction &= ~PRE_INDEX;
7299}
7300
c19d1205
ZW
7301static void
7302do_push_pop (void)
7303{
7304 inst.operands[1] = inst.operands[0];
7305 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7306 inst.operands[0].isreg = 1;
7307 inst.operands[0].writeback = 1;
7308 inst.operands[0].reg = REG_SP;
7309 do_ldmstm ();
7310}
b99bd4ef 7311
c19d1205
ZW
7312/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7313 word at the specified address and the following word
7314 respectively.
7315 Unconditionally executed.
7316 Error if Rn is R15. */
b99bd4ef 7317
c19d1205
ZW
7318static void
7319do_rfe (void)
7320{
7321 inst.instruction |= inst.operands[0].reg << 16;
7322 if (inst.operands[0].writeback)
7323 inst.instruction |= WRITE_BACK;
7324}
b99bd4ef 7325
c19d1205 7326/* ARM V6 ssat (argument parse). */
b99bd4ef 7327
c19d1205
ZW
7328static void
7329do_ssat (void)
7330{
7331 inst.instruction |= inst.operands[0].reg << 12;
7332 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7333 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7334
c19d1205
ZW
7335 if (inst.operands[3].present)
7336 encode_arm_shift (3);
b99bd4ef
NC
7337}
7338
c19d1205 7339/* ARM V6 usat (argument parse). */
b99bd4ef
NC
7340
7341static void
c19d1205 7342do_usat (void)
b99bd4ef 7343{
c19d1205
ZW
7344 inst.instruction |= inst.operands[0].reg << 12;
7345 inst.instruction |= inst.operands[1].imm << 16;
7346 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7347
c19d1205
ZW
7348 if (inst.operands[3].present)
7349 encode_arm_shift (3);
b99bd4ef
NC
7350}
7351
c19d1205 7352/* ARM V6 ssat16 (argument parse). */
09d92015
MM
7353
7354static void
c19d1205 7355do_ssat16 (void)
09d92015 7356{
c19d1205
ZW
7357 inst.instruction |= inst.operands[0].reg << 12;
7358 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7359 inst.instruction |= inst.operands[2].reg;
09d92015
MM
7360}
7361
c19d1205
ZW
7362static void
7363do_usat16 (void)
a737bd4d 7364{
c19d1205
ZW
7365 inst.instruction |= inst.operands[0].reg << 12;
7366 inst.instruction |= inst.operands[1].imm << 16;
7367 inst.instruction |= inst.operands[2].reg;
7368}
a737bd4d 7369
c19d1205
ZW
7370/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7371 preserving the other bits.
a737bd4d 7372
c19d1205
ZW
7373 setend <endian_specifier>, where <endian_specifier> is either
7374 BE or LE. */
a737bd4d 7375
c19d1205
ZW
7376static void
7377do_setend (void)
7378{
7379 if (inst.operands[0].imm)
7380 inst.instruction |= 0x200;
a737bd4d
NC
7381}
7382
7383static void
c19d1205 7384do_shift (void)
a737bd4d 7385{
c19d1205
ZW
7386 unsigned int Rm = (inst.operands[1].present
7387 ? inst.operands[1].reg
7388 : inst.operands[0].reg);
a737bd4d 7389
c19d1205
ZW
7390 inst.instruction |= inst.operands[0].reg << 12;
7391 inst.instruction |= Rm;
7392 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 7393 {
c19d1205
ZW
7394 inst.instruction |= inst.operands[2].reg << 8;
7395 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
7396 }
7397 else
c19d1205 7398 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
7399}
7400
09d92015 7401static void
3eb17e6b 7402do_smc (void)
09d92015 7403{
3eb17e6b 7404 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 7405 inst.reloc.pc_rel = 0;
09d92015
MM
7406}
7407
09d92015 7408static void
c19d1205 7409do_swi (void)
09d92015 7410{
c19d1205
ZW
7411 inst.reloc.type = BFD_RELOC_ARM_SWI;
7412 inst.reloc.pc_rel = 0;
09d92015
MM
7413}
7414
c19d1205
ZW
7415/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7416 SMLAxy{cond} Rd,Rm,Rs,Rn
7417 SMLAWy{cond} Rd,Rm,Rs,Rn
7418 Error if any register is R15. */
e16bb312 7419
c19d1205
ZW
7420static void
7421do_smla (void)
e16bb312 7422{
c19d1205
ZW
7423 inst.instruction |= inst.operands[0].reg << 16;
7424 inst.instruction |= inst.operands[1].reg;
7425 inst.instruction |= inst.operands[2].reg << 8;
7426 inst.instruction |= inst.operands[3].reg << 12;
7427}
a737bd4d 7428
c19d1205
ZW
7429/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7430 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7431 Error if any register is R15.
7432 Warning if Rdlo == Rdhi. */
a737bd4d 7433
c19d1205
ZW
7434static void
7435do_smlal (void)
7436{
7437 inst.instruction |= inst.operands[0].reg << 12;
7438 inst.instruction |= inst.operands[1].reg << 16;
7439 inst.instruction |= inst.operands[2].reg;
7440 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 7441
c19d1205
ZW
7442 if (inst.operands[0].reg == inst.operands[1].reg)
7443 as_tsktsk (_("rdhi and rdlo must be different"));
7444}
a737bd4d 7445
c19d1205
ZW
7446/* ARM V5E (El Segundo) signed-multiply (argument parse)
7447 SMULxy{cond} Rd,Rm,Rs
7448 Error if any register is R15. */
a737bd4d 7449
c19d1205
ZW
7450static void
7451do_smul (void)
7452{
7453 inst.instruction |= inst.operands[0].reg << 16;
7454 inst.instruction |= inst.operands[1].reg;
7455 inst.instruction |= inst.operands[2].reg << 8;
7456}
a737bd4d 7457
b6702015
PB
7458/* ARM V6 srs (argument parse). The variable fields in the encoding are
7459 the same for both ARM and Thumb-2. */
a737bd4d 7460
c19d1205
ZW
7461static void
7462do_srs (void)
7463{
b6702015
PB
7464 int reg;
7465
7466 if (inst.operands[0].present)
7467 {
7468 reg = inst.operands[0].reg;
7469 constraint (reg != 13, _("SRS base register must be r13"));
7470 }
7471 else
7472 reg = 13;
7473
7474 inst.instruction |= reg << 16;
7475 inst.instruction |= inst.operands[1].imm;
7476 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
7477 inst.instruction |= WRITE_BACK;
7478}
a737bd4d 7479
c19d1205 7480/* ARM V6 strex (argument parse). */
a737bd4d 7481
c19d1205
ZW
7482static void
7483do_strex (void)
7484{
7485 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7486 || inst.operands[2].postind || inst.operands[2].writeback
7487 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
7488 || inst.operands[2].negative
7489 /* See comment in do_ldrex(). */
7490 || (inst.operands[2].reg == REG_PC),
7491 BAD_ADDR_MODE);
a737bd4d 7492
c19d1205
ZW
7493 constraint (inst.operands[0].reg == inst.operands[1].reg
7494 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 7495
c19d1205
ZW
7496 constraint (inst.reloc.exp.X_op != O_constant
7497 || inst.reloc.exp.X_add_number != 0,
7498 _("offset must be zero in ARM encoding"));
a737bd4d 7499
c19d1205
ZW
7500 inst.instruction |= inst.operands[0].reg << 12;
7501 inst.instruction |= inst.operands[1].reg;
7502 inst.instruction |= inst.operands[2].reg << 16;
7503 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
7504}
7505
7506static void
c19d1205 7507do_strexd (void)
e16bb312 7508{
c19d1205
ZW
7509 constraint (inst.operands[1].reg % 2 != 0,
7510 _("even register required"));
7511 constraint (inst.operands[2].present
7512 && inst.operands[2].reg != inst.operands[1].reg + 1,
7513 _("can only store two consecutive registers"));
7514 /* If op 2 were present and equal to PC, this function wouldn't
7515 have been called in the first place. */
7516 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 7517
c19d1205
ZW
7518 constraint (inst.operands[0].reg == inst.operands[1].reg
7519 || inst.operands[0].reg == inst.operands[1].reg + 1
7520 || inst.operands[0].reg == inst.operands[3].reg,
7521 BAD_OVERLAP);
e16bb312 7522
c19d1205
ZW
7523 inst.instruction |= inst.operands[0].reg << 12;
7524 inst.instruction |= inst.operands[1].reg;
7525 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
7526}
7527
c19d1205
ZW
7528/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7529 extends it to 32-bits, and adds the result to a value in another
7530 register. You can specify a rotation by 0, 8, 16, or 24 bits
7531 before extracting the 16-bit value.
7532 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7533 Condition defaults to COND_ALWAYS.
7534 Error if any register uses R15. */
7535
e16bb312 7536static void
c19d1205 7537do_sxtah (void)
e16bb312 7538{
c19d1205
ZW
7539 inst.instruction |= inst.operands[0].reg << 12;
7540 inst.instruction |= inst.operands[1].reg << 16;
7541 inst.instruction |= inst.operands[2].reg;
7542 inst.instruction |= inst.operands[3].imm << 10;
7543}
e16bb312 7544
c19d1205 7545/* ARM V6 SXTH.
e16bb312 7546
c19d1205
ZW
7547 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7548 Condition defaults to COND_ALWAYS.
7549 Error if any register uses R15. */
e16bb312
NC
7550
7551static void
c19d1205 7552do_sxth (void)
e16bb312 7553{
c19d1205
ZW
7554 inst.instruction |= inst.operands[0].reg << 12;
7555 inst.instruction |= inst.operands[1].reg;
7556 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 7557}
c19d1205
ZW
7558\f
7559/* VFP instructions. In a logical order: SP variant first, monad
7560 before dyad, arithmetic then move then load/store. */
e16bb312
NC
7561
7562static void
c19d1205 7563do_vfp_sp_monadic (void)
e16bb312 7564{
5287ad62
JB
7565 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7566 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7567}
7568
7569static void
c19d1205 7570do_vfp_sp_dyadic (void)
e16bb312 7571{
5287ad62
JB
7572 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7573 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7574 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7575}
7576
7577static void
c19d1205 7578do_vfp_sp_compare_z (void)
e16bb312 7579{
5287ad62 7580 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
7581}
7582
7583static void
c19d1205 7584do_vfp_dp_sp_cvt (void)
e16bb312 7585{
5287ad62
JB
7586 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7587 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7588}
7589
7590static void
c19d1205 7591do_vfp_sp_dp_cvt (void)
e16bb312 7592{
5287ad62
JB
7593 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7594 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
7595}
7596
7597static void
c19d1205 7598do_vfp_reg_from_sp (void)
e16bb312 7599{
c19d1205 7600 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 7601 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
7602}
7603
7604static void
c19d1205 7605do_vfp_reg2_from_sp2 (void)
e16bb312 7606{
c19d1205
ZW
7607 constraint (inst.operands[2].imm != 2,
7608 _("only two consecutive VFP SP registers allowed here"));
7609 inst.instruction |= inst.operands[0].reg << 12;
7610 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 7611 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7612}
7613
7614static void
c19d1205 7615do_vfp_sp_from_reg (void)
e16bb312 7616{
5287ad62 7617 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 7618 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
7619}
7620
7621static void
c19d1205 7622do_vfp_sp2_from_reg2 (void)
e16bb312 7623{
c19d1205
ZW
7624 constraint (inst.operands[0].imm != 2,
7625 _("only two consecutive VFP SP registers allowed here"));
5287ad62 7626 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
7627 inst.instruction |= inst.operands[1].reg << 12;
7628 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
7629}
7630
7631static void
c19d1205 7632do_vfp_sp_ldst (void)
e16bb312 7633{
5287ad62 7634 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 7635 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7636}
7637
7638static void
c19d1205 7639do_vfp_dp_ldst (void)
e16bb312 7640{
5287ad62 7641 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 7642 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7643}
7644
c19d1205 7645
e16bb312 7646static void
c19d1205 7647vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7648{
c19d1205
ZW
7649 if (inst.operands[0].writeback)
7650 inst.instruction |= WRITE_BACK;
7651 else
7652 constraint (ldstm_type != VFP_LDSTMIA,
7653 _("this addressing mode requires base-register writeback"));
7654 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7655 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 7656 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
7657}
7658
7659static void
c19d1205 7660vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7661{
c19d1205 7662 int count;
e16bb312 7663
c19d1205
ZW
7664 if (inst.operands[0].writeback)
7665 inst.instruction |= WRITE_BACK;
7666 else
7667 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7668 _("this addressing mode requires base-register writeback"));
e16bb312 7669
c19d1205 7670 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7671 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 7672
c19d1205
ZW
7673 count = inst.operands[1].imm << 1;
7674 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7675 count += 1;
e16bb312 7676
c19d1205 7677 inst.instruction |= count;
e16bb312
NC
7678}
7679
7680static void
c19d1205 7681do_vfp_sp_ldstmia (void)
e16bb312 7682{
c19d1205 7683 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7684}
7685
7686static void
c19d1205 7687do_vfp_sp_ldstmdb (void)
e16bb312 7688{
c19d1205 7689 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7690}
7691
7692static void
c19d1205 7693do_vfp_dp_ldstmia (void)
e16bb312 7694{
c19d1205 7695 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7696}
7697
7698static void
c19d1205 7699do_vfp_dp_ldstmdb (void)
e16bb312 7700{
c19d1205 7701 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7702}
7703
7704static void
c19d1205 7705do_vfp_xp_ldstmia (void)
e16bb312 7706{
c19d1205
ZW
7707 vfp_dp_ldstm (VFP_LDSTMIAX);
7708}
e16bb312 7709
c19d1205
ZW
7710static void
7711do_vfp_xp_ldstmdb (void)
7712{
7713 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 7714}
5287ad62
JB
7715
7716static void
7717do_vfp_dp_rd_rm (void)
7718{
7719 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7720 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7721}
7722
7723static void
7724do_vfp_dp_rn_rd (void)
7725{
7726 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7727 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7728}
7729
7730static void
7731do_vfp_dp_rd_rn (void)
7732{
7733 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7734 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7735}
7736
7737static void
7738do_vfp_dp_rd_rn_rm (void)
7739{
7740 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7741 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7742 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7743}
7744
7745static void
7746do_vfp_dp_rd (void)
7747{
7748 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7749}
7750
7751static void
7752do_vfp_dp_rm_rd_rn (void)
7753{
7754 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7755 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7756 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7757}
7758
7759/* VFPv3 instructions. */
7760static void
7761do_vfp_sp_const (void)
7762{
7763 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
7764 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7765 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
7766}
7767
7768static void
7769do_vfp_dp_const (void)
7770{
7771 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
7772 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7773 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
7774}
7775
7776static void
7777vfp_conv (int srcsize)
7778{
7779 unsigned immbits = srcsize - inst.operands[1].imm;
7780 inst.instruction |= (immbits & 1) << 5;
7781 inst.instruction |= (immbits >> 1);
7782}
7783
7784static void
7785do_vfp_sp_conv_16 (void)
7786{
7787 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7788 vfp_conv (16);
7789}
7790
7791static void
7792do_vfp_dp_conv_16 (void)
7793{
7794 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7795 vfp_conv (16);
7796}
7797
7798static void
7799do_vfp_sp_conv_32 (void)
7800{
7801 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7802 vfp_conv (32);
7803}
7804
7805static void
7806do_vfp_dp_conv_32 (void)
7807{
7808 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7809 vfp_conv (32);
7810}
c19d1205
ZW
7811\f
7812/* FPA instructions. Also in a logical order. */
e16bb312 7813
c19d1205
ZW
7814static void
7815do_fpa_cmp (void)
7816{
7817 inst.instruction |= inst.operands[0].reg << 16;
7818 inst.instruction |= inst.operands[1].reg;
7819}
b99bd4ef
NC
7820
7821static void
c19d1205 7822do_fpa_ldmstm (void)
b99bd4ef 7823{
c19d1205
ZW
7824 inst.instruction |= inst.operands[0].reg << 12;
7825 switch (inst.operands[1].imm)
7826 {
7827 case 1: inst.instruction |= CP_T_X; break;
7828 case 2: inst.instruction |= CP_T_Y; break;
7829 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7830 case 4: break;
7831 default: abort ();
7832 }
b99bd4ef 7833
c19d1205
ZW
7834 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7835 {
7836 /* The instruction specified "ea" or "fd", so we can only accept
7837 [Rn]{!}. The instruction does not really support stacking or
7838 unstacking, so we have to emulate these by setting appropriate
7839 bits and offsets. */
7840 constraint (inst.reloc.exp.X_op != O_constant
7841 || inst.reloc.exp.X_add_number != 0,
7842 _("this instruction does not support indexing"));
b99bd4ef 7843
c19d1205
ZW
7844 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7845 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 7846
c19d1205
ZW
7847 if (!(inst.instruction & INDEX_UP))
7848 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 7849
c19d1205
ZW
7850 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7851 {
7852 inst.operands[2].preind = 0;
7853 inst.operands[2].postind = 1;
7854 }
7855 }
b99bd4ef 7856
c19d1205 7857 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 7858}
c19d1205
ZW
7859\f
7860/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 7861
c19d1205
ZW
7862static void
7863do_iwmmxt_tandorc (void)
7864{
7865 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7866}
b99bd4ef 7867
c19d1205
ZW
7868static void
7869do_iwmmxt_textrc (void)
7870{
7871 inst.instruction |= inst.operands[0].reg << 12;
7872 inst.instruction |= inst.operands[1].imm;
7873}
b99bd4ef
NC
7874
7875static void
c19d1205 7876do_iwmmxt_textrm (void)
b99bd4ef 7877{
c19d1205
ZW
7878 inst.instruction |= inst.operands[0].reg << 12;
7879 inst.instruction |= inst.operands[1].reg << 16;
7880 inst.instruction |= inst.operands[2].imm;
7881}
b99bd4ef 7882
c19d1205
ZW
7883static void
7884do_iwmmxt_tinsr (void)
7885{
7886 inst.instruction |= inst.operands[0].reg << 16;
7887 inst.instruction |= inst.operands[1].reg << 12;
7888 inst.instruction |= inst.operands[2].imm;
7889}
b99bd4ef 7890
c19d1205
ZW
7891static void
7892do_iwmmxt_tmia (void)
7893{
7894 inst.instruction |= inst.operands[0].reg << 5;
7895 inst.instruction |= inst.operands[1].reg;
7896 inst.instruction |= inst.operands[2].reg << 12;
7897}
b99bd4ef 7898
c19d1205
ZW
7899static void
7900do_iwmmxt_waligni (void)
7901{
7902 inst.instruction |= inst.operands[0].reg << 12;
7903 inst.instruction |= inst.operands[1].reg << 16;
7904 inst.instruction |= inst.operands[2].reg;
7905 inst.instruction |= inst.operands[3].imm << 20;
7906}
b99bd4ef 7907
2d447fca
JM
7908static void
7909do_iwmmxt_wmerge (void)
7910{
7911 inst.instruction |= inst.operands[0].reg << 12;
7912 inst.instruction |= inst.operands[1].reg << 16;
7913 inst.instruction |= inst.operands[2].reg;
7914 inst.instruction |= inst.operands[3].imm << 21;
7915}
7916
c19d1205
ZW
7917static void
7918do_iwmmxt_wmov (void)
7919{
7920 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7921 inst.instruction |= inst.operands[0].reg << 12;
7922 inst.instruction |= inst.operands[1].reg << 16;
7923 inst.instruction |= inst.operands[1].reg;
7924}
b99bd4ef 7925
c19d1205
ZW
7926static void
7927do_iwmmxt_wldstbh (void)
7928{
8f06b2d8 7929 int reloc;
c19d1205 7930 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
7931 if (thumb_mode)
7932 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7933 else
7934 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7935 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
7936}
7937
c19d1205
ZW
7938static void
7939do_iwmmxt_wldstw (void)
7940{
7941 /* RIWR_RIWC clears .isreg for a control register. */
7942 if (!inst.operands[0].isreg)
7943 {
7944 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7945 inst.instruction |= 0xf0000000;
7946 }
b99bd4ef 7947
c19d1205
ZW
7948 inst.instruction |= inst.operands[0].reg << 12;
7949 encode_arm_cp_address (1, TRUE, TRUE, 0);
7950}
b99bd4ef
NC
7951
7952static void
c19d1205 7953do_iwmmxt_wldstd (void)
b99bd4ef 7954{
c19d1205 7955 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
7956 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
7957 && inst.operands[1].immisreg)
7958 {
7959 inst.instruction &= ~0x1a000ff;
7960 inst.instruction |= (0xf << 28);
7961 if (inst.operands[1].preind)
7962 inst.instruction |= PRE_INDEX;
7963 if (!inst.operands[1].negative)
7964 inst.instruction |= INDEX_UP;
7965 if (inst.operands[1].writeback)
7966 inst.instruction |= WRITE_BACK;
7967 inst.instruction |= inst.operands[1].reg << 16;
7968 inst.instruction |= inst.reloc.exp.X_add_number << 4;
7969 inst.instruction |= inst.operands[1].imm;
7970 }
7971 else
7972 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 7973}
b99bd4ef 7974
c19d1205
ZW
7975static void
7976do_iwmmxt_wshufh (void)
7977{
7978 inst.instruction |= inst.operands[0].reg << 12;
7979 inst.instruction |= inst.operands[1].reg << 16;
7980 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
7981 inst.instruction |= (inst.operands[2].imm & 0x0f);
7982}
b99bd4ef 7983
c19d1205
ZW
7984static void
7985do_iwmmxt_wzero (void)
7986{
7987 /* WZERO reg is an alias for WANDN reg, reg, reg. */
7988 inst.instruction |= inst.operands[0].reg;
7989 inst.instruction |= inst.operands[0].reg << 12;
7990 inst.instruction |= inst.operands[0].reg << 16;
7991}
2d447fca
JM
7992
7993static void
7994do_iwmmxt_wrwrwr_or_imm5 (void)
7995{
7996 if (inst.operands[2].isreg)
7997 do_rd_rn_rm ();
7998 else {
7999 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8000 _("immediate operand requires iWMMXt2"));
8001 do_rd_rn ();
8002 if (inst.operands[2].imm == 0)
8003 {
8004 switch ((inst.instruction >> 20) & 0xf)
8005 {
8006 case 4:
8007 case 5:
8008 case 6:
5f4273c7 8009 case 7:
2d447fca
JM
8010 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8011 inst.operands[2].imm = 16;
8012 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8013 break;
8014 case 8:
8015 case 9:
8016 case 10:
8017 case 11:
8018 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8019 inst.operands[2].imm = 32;
8020 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8021 break;
8022 case 12:
8023 case 13:
8024 case 14:
8025 case 15:
8026 {
8027 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8028 unsigned long wrn;
8029 wrn = (inst.instruction >> 16) & 0xf;
8030 inst.instruction &= 0xff0fff0f;
8031 inst.instruction |= wrn;
8032 /* Bail out here; the instruction is now assembled. */
8033 return;
8034 }
8035 }
8036 }
8037 /* Map 32 -> 0, etc. */
8038 inst.operands[2].imm &= 0x1f;
8039 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8040 }
8041}
c19d1205
ZW
8042\f
8043/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8044 operations first, then control, shift, and load/store. */
b99bd4ef 8045
c19d1205 8046/* Insns like "foo X,Y,Z". */
b99bd4ef 8047
c19d1205
ZW
8048static void
8049do_mav_triple (void)
8050{
8051 inst.instruction |= inst.operands[0].reg << 16;
8052 inst.instruction |= inst.operands[1].reg;
8053 inst.instruction |= inst.operands[2].reg << 12;
8054}
b99bd4ef 8055
c19d1205
ZW
8056/* Insns like "foo W,X,Y,Z".
8057 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8058
c19d1205
ZW
8059static void
8060do_mav_quad (void)
8061{
8062 inst.instruction |= inst.operands[0].reg << 5;
8063 inst.instruction |= inst.operands[1].reg << 12;
8064 inst.instruction |= inst.operands[2].reg << 16;
8065 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8066}
8067
c19d1205
ZW
8068/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8069static void
8070do_mav_dspsc (void)
a737bd4d 8071{
c19d1205
ZW
8072 inst.instruction |= inst.operands[1].reg << 12;
8073}
a737bd4d 8074
c19d1205
ZW
8075/* Maverick shift immediate instructions.
8076 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8077 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8078
c19d1205
ZW
8079static void
8080do_mav_shift (void)
8081{
8082 int imm = inst.operands[2].imm;
a737bd4d 8083
c19d1205
ZW
8084 inst.instruction |= inst.operands[0].reg << 12;
8085 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8086
c19d1205
ZW
8087 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8088 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8089 Bit 4 should be 0. */
8090 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8091
c19d1205
ZW
8092 inst.instruction |= imm;
8093}
8094\f
8095/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 8096
c19d1205
ZW
8097/* Xscale multiply-accumulate (argument parse)
8098 MIAcc acc0,Rm,Rs
8099 MIAPHcc acc0,Rm,Rs
8100 MIAxycc acc0,Rm,Rs. */
a737bd4d 8101
c19d1205
ZW
8102static void
8103do_xsc_mia (void)
8104{
8105 inst.instruction |= inst.operands[1].reg;
8106 inst.instruction |= inst.operands[2].reg << 12;
8107}
a737bd4d 8108
c19d1205 8109/* Xscale move-accumulator-register (argument parse)
a737bd4d 8110
c19d1205 8111 MARcc acc0,RdLo,RdHi. */
b99bd4ef 8112
c19d1205
ZW
8113static void
8114do_xsc_mar (void)
8115{
8116 inst.instruction |= inst.operands[1].reg << 12;
8117 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8118}
8119
c19d1205 8120/* Xscale move-register-accumulator (argument parse)
b99bd4ef 8121
c19d1205 8122 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
8123
8124static void
c19d1205 8125do_xsc_mra (void)
b99bd4ef 8126{
c19d1205
ZW
8127 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8128 inst.instruction |= inst.operands[0].reg << 12;
8129 inst.instruction |= inst.operands[1].reg << 16;
8130}
8131\f
8132/* Encoding functions relevant only to Thumb. */
b99bd4ef 8133
c19d1205
ZW
8134/* inst.operands[i] is a shifted-register operand; encode
8135 it into inst.instruction in the format used by Thumb32. */
8136
8137static void
8138encode_thumb32_shifted_operand (int i)
8139{
8140 unsigned int value = inst.reloc.exp.X_add_number;
8141 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 8142
9c3c69f2
PB
8143 constraint (inst.operands[i].immisreg,
8144 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
8145 inst.instruction |= inst.operands[i].reg;
8146 if (shift == SHIFT_RRX)
8147 inst.instruction |= SHIFT_ROR << 4;
8148 else
b99bd4ef 8149 {
c19d1205
ZW
8150 constraint (inst.reloc.exp.X_op != O_constant,
8151 _("expression too complex"));
8152
8153 constraint (value > 32
8154 || (value == 32 && (shift == SHIFT_LSL
8155 || shift == SHIFT_ROR)),
8156 _("shift expression is too large"));
8157
8158 if (value == 0)
8159 shift = SHIFT_LSL;
8160 else if (value == 32)
8161 value = 0;
8162
8163 inst.instruction |= shift << 4;
8164 inst.instruction |= (value & 0x1c) << 10;
8165 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 8166 }
c19d1205 8167}
b99bd4ef 8168
b99bd4ef 8169
c19d1205
ZW
8170/* inst.operands[i] was set up by parse_address. Encode it into a
8171 Thumb32 format load or store instruction. Reject forms that cannot
8172 be used with such instructions. If is_t is true, reject forms that
8173 cannot be used with a T instruction; if is_d is true, reject forms
8174 that cannot be used with a D instruction. */
b99bd4ef 8175
c19d1205
ZW
8176static void
8177encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8178{
8179 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8180
8181 constraint (!inst.operands[i].isreg,
53365c0d 8182 _("Instruction does not support =N addresses"));
b99bd4ef 8183
c19d1205
ZW
8184 inst.instruction |= inst.operands[i].reg << 16;
8185 if (inst.operands[i].immisreg)
b99bd4ef 8186 {
c19d1205
ZW
8187 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8188 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8189 constraint (inst.operands[i].negative,
8190 _("Thumb does not support negative register indexing"));
8191 constraint (inst.operands[i].postind,
8192 _("Thumb does not support register post-indexing"));
8193 constraint (inst.operands[i].writeback,
8194 _("Thumb does not support register indexing with writeback"));
8195 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8196 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 8197
f40d1643 8198 inst.instruction |= inst.operands[i].imm;
c19d1205 8199 if (inst.operands[i].shifted)
b99bd4ef 8200 {
c19d1205
ZW
8201 constraint (inst.reloc.exp.X_op != O_constant,
8202 _("expression too complex"));
9c3c69f2
PB
8203 constraint (inst.reloc.exp.X_add_number < 0
8204 || inst.reloc.exp.X_add_number > 3,
c19d1205 8205 _("shift out of range"));
9c3c69f2 8206 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
8207 }
8208 inst.reloc.type = BFD_RELOC_UNUSED;
8209 }
8210 else if (inst.operands[i].preind)
8211 {
8212 constraint (is_pc && inst.operands[i].writeback,
8213 _("cannot use writeback with PC-relative addressing"));
f40d1643 8214 constraint (is_t && inst.operands[i].writeback,
c19d1205
ZW
8215 _("cannot use writeback with this instruction"));
8216
8217 if (is_d)
8218 {
8219 inst.instruction |= 0x01000000;
8220 if (inst.operands[i].writeback)
8221 inst.instruction |= 0x00200000;
b99bd4ef 8222 }
c19d1205 8223 else
b99bd4ef 8224 {
c19d1205
ZW
8225 inst.instruction |= 0x00000c00;
8226 if (inst.operands[i].writeback)
8227 inst.instruction |= 0x00000100;
b99bd4ef 8228 }
c19d1205 8229 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 8230 }
c19d1205 8231 else if (inst.operands[i].postind)
b99bd4ef 8232 {
c19d1205
ZW
8233 assert (inst.operands[i].writeback);
8234 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8235 constraint (is_t, _("cannot use post-indexing with this instruction"));
8236
8237 if (is_d)
8238 inst.instruction |= 0x00200000;
8239 else
8240 inst.instruction |= 0x00000900;
8241 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8242 }
8243 else /* unindexed - only for coprocessor */
8244 inst.error = _("instruction does not accept unindexed addressing");
8245}
8246
8247/* Table of Thumb instructions which exist in both 16- and 32-bit
8248 encodings (the latter only in post-V6T2 cores). The index is the
8249 value used in the insns table below. When there is more than one
8250 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
8251 holds variant (1).
8252 Also contains several pseudo-instructions used during relaxation. */
c19d1205
ZW
8253#define T16_32_TAB \
8254 X(adc, 4140, eb400000), \
8255 X(adcs, 4140, eb500000), \
8256 X(add, 1c00, eb000000), \
8257 X(adds, 1c00, eb100000), \
0110f2b8
PB
8258 X(addi, 0000, f1000000), \
8259 X(addis, 0000, f1100000), \
8260 X(add_pc,000f, f20f0000), \
8261 X(add_sp,000d, f10d0000), \
e9f89963 8262 X(adr, 000f, f20f0000), \
c19d1205
ZW
8263 X(and, 4000, ea000000), \
8264 X(ands, 4000, ea100000), \
8265 X(asr, 1000, fa40f000), \
8266 X(asrs, 1000, fa50f000), \
0110f2b8
PB
8267 X(b, e000, f000b000), \
8268 X(bcond, d000, f0008000), \
c19d1205
ZW
8269 X(bic, 4380, ea200000), \
8270 X(bics, 4380, ea300000), \
8271 X(cmn, 42c0, eb100f00), \
8272 X(cmp, 2800, ebb00f00), \
8273 X(cpsie, b660, f3af8400), \
8274 X(cpsid, b670, f3af8600), \
8275 X(cpy, 4600, ea4f0000), \
155257ea 8276 X(dec_sp,80dd, f1ad0d00), \
c19d1205
ZW
8277 X(eor, 4040, ea800000), \
8278 X(eors, 4040, ea900000), \
0110f2b8 8279 X(inc_sp,00dd, f10d0d00), \
c19d1205
ZW
8280 X(ldmia, c800, e8900000), \
8281 X(ldr, 6800, f8500000), \
8282 X(ldrb, 7800, f8100000), \
8283 X(ldrh, 8800, f8300000), \
8284 X(ldrsb, 5600, f9100000), \
8285 X(ldrsh, 5e00, f9300000), \
0110f2b8
PB
8286 X(ldr_pc,4800, f85f0000), \
8287 X(ldr_pc2,4800, f85f0000), \
8288 X(ldr_sp,9800, f85d0000), \
c19d1205
ZW
8289 X(lsl, 0000, fa00f000), \
8290 X(lsls, 0000, fa10f000), \
8291 X(lsr, 0800, fa20f000), \
8292 X(lsrs, 0800, fa30f000), \
8293 X(mov, 2000, ea4f0000), \
8294 X(movs, 2000, ea5f0000), \
8295 X(mul, 4340, fb00f000), \
8296 X(muls, 4340, ffffffff), /* no 32b muls */ \
8297 X(mvn, 43c0, ea6f0000), \
8298 X(mvns, 43c0, ea7f0000), \
8299 X(neg, 4240, f1c00000), /* rsb #0 */ \
8300 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8301 X(orr, 4300, ea400000), \
8302 X(orrs, 4300, ea500000), \
e9f89963
PB
8303 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8304 X(push, b400, e92d0000), /* stmdb sp!,... */ \
c19d1205
ZW
8305 X(rev, ba00, fa90f080), \
8306 X(rev16, ba40, fa90f090), \
8307 X(revsh, bac0, fa90f0b0), \
8308 X(ror, 41c0, fa60f000), \
8309 X(rors, 41c0, fa70f000), \
8310 X(sbc, 4180, eb600000), \
8311 X(sbcs, 4180, eb700000), \
8312 X(stmia, c000, e8800000), \
8313 X(str, 6000, f8400000), \
8314 X(strb, 7000, f8000000), \
8315 X(strh, 8000, f8200000), \
0110f2b8 8316 X(str_sp,9000, f84d0000), \
c19d1205
ZW
8317 X(sub, 1e00, eba00000), \
8318 X(subs, 1e00, ebb00000), \
0110f2b8
PB
8319 X(subi, 8000, f1a00000), \
8320 X(subis, 8000, f1b00000), \
c19d1205
ZW
8321 X(sxtb, b240, fa4ff080), \
8322 X(sxth, b200, fa0ff080), \
8323 X(tst, 4200, ea100f00), \
8324 X(uxtb, b2c0, fa5ff080), \
8325 X(uxth, b280, fa1ff080), \
8326 X(nop, bf00, f3af8000), \
8327 X(yield, bf10, f3af8001), \
8328 X(wfe, bf20, f3af8002), \
8329 X(wfi, bf30, f3af8003), \
8330 X(sev, bf40, f3af9004), /* typo, 8004? */
8331
8332/* To catch errors in encoding functions, the codes are all offset by
8333 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8334 as 16-bit instructions. */
8335#define X(a,b,c) T_MNEM_##a
8336enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8337#undef X
8338
8339#define X(a,b,c) 0x##b
8340static const unsigned short thumb_op16[] = { T16_32_TAB };
8341#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8342#undef X
8343
8344#define X(a,b,c) 0x##c
8345static const unsigned int thumb_op32[] = { T16_32_TAB };
8346#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8347#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8348#undef X
8349#undef T16_32_TAB
8350
8351/* Thumb instruction encoders, in alphabetical order. */
8352
92e90b6e
PB
8353/* ADDW or SUBW. */
8354static void
8355do_t_add_sub_w (void)
8356{
8357 int Rd, Rn;
8358
8359 Rd = inst.operands[0].reg;
8360 Rn = inst.operands[1].reg;
8361
8362 constraint (Rd == 15, _("PC not allowed as destination"));
8363 inst.instruction |= (Rn << 16) | (Rd << 8);
8364 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8365}
8366
c19d1205
ZW
8367/* Parse an add or subtract instruction. We get here with inst.instruction
8368 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8369
8370static void
8371do_t_add_sub (void)
8372{
8373 int Rd, Rs, Rn;
8374
8375 Rd = inst.operands[0].reg;
8376 Rs = (inst.operands[1].present
8377 ? inst.operands[1].reg /* Rd, Rs, foo */
8378 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8379
8380 if (unified_syntax)
8381 {
0110f2b8
PB
8382 bfd_boolean flags;
8383 bfd_boolean narrow;
8384 int opcode;
8385
8386 flags = (inst.instruction == T_MNEM_adds
8387 || inst.instruction == T_MNEM_subs);
8388 if (flags)
8389 narrow = (current_it_mask == 0);
8390 else
8391 narrow = (current_it_mask != 0);
c19d1205 8392 if (!inst.operands[2].isreg)
b99bd4ef 8393 {
16805f35
PB
8394 int add;
8395
8396 add = (inst.instruction == T_MNEM_add
8397 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
8398 opcode = 0;
8399 if (inst.size_req != 4)
8400 {
0110f2b8
PB
8401 /* Attempt to use a narrow opcode, with relaxation if
8402 appropriate. */
8403 if (Rd == REG_SP && Rs == REG_SP && !flags)
8404 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8405 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8406 opcode = T_MNEM_add_sp;
8407 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8408 opcode = T_MNEM_add_pc;
8409 else if (Rd <= 7 && Rs <= 7 && narrow)
8410 {
8411 if (flags)
8412 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8413 else
8414 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8415 }
8416 if (opcode)
8417 {
8418 inst.instruction = THUMB_OP16(opcode);
8419 inst.instruction |= (Rd << 4) | Rs;
8420 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8421 if (inst.size_req != 2)
8422 inst.relax = opcode;
8423 }
8424 else
8425 constraint (inst.size_req == 2, BAD_HIREG);
8426 }
8427 if (inst.size_req == 4
8428 || (inst.size_req != 2 && !opcode))
8429 {
efd81785
PB
8430 if (Rd == REG_PC)
8431 {
8432 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8433 _("only SUBS PC, LR, #const allowed"));
8434 constraint (inst.reloc.exp.X_op != O_constant,
8435 _("expression too complex"));
8436 constraint (inst.reloc.exp.X_add_number < 0
8437 || inst.reloc.exp.X_add_number > 0xff,
8438 _("immediate value out of range"));
8439 inst.instruction = T2_SUBS_PC_LR
8440 | inst.reloc.exp.X_add_number;
8441 inst.reloc.type = BFD_RELOC_UNUSED;
8442 return;
8443 }
8444 else if (Rs == REG_PC)
16805f35
PB
8445 {
8446 /* Always use addw/subw. */
8447 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8448 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8449 }
8450 else
8451 {
8452 inst.instruction = THUMB_OP32 (inst.instruction);
8453 inst.instruction = (inst.instruction & 0xe1ffffff)
8454 | 0x10000000;
8455 if (flags)
8456 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8457 else
8458 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8459 }
dc4503c6
PB
8460 inst.instruction |= Rd << 8;
8461 inst.instruction |= Rs << 16;
0110f2b8 8462 }
b99bd4ef 8463 }
c19d1205
ZW
8464 else
8465 {
8466 Rn = inst.operands[2].reg;
8467 /* See if we can do this with a 16-bit instruction. */
8468 if (!inst.operands[2].shifted && inst.size_req != 4)
8469 {
e27ec89e
PB
8470 if (Rd > 7 || Rs > 7 || Rn > 7)
8471 narrow = FALSE;
8472
8473 if (narrow)
c19d1205 8474 {
e27ec89e
PB
8475 inst.instruction = ((inst.instruction == T_MNEM_adds
8476 || inst.instruction == T_MNEM_add)
c19d1205
ZW
8477 ? T_OPCODE_ADD_R3
8478 : T_OPCODE_SUB_R3);
8479 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8480 return;
8481 }
b99bd4ef 8482
c19d1205
ZW
8483 if (inst.instruction == T_MNEM_add)
8484 {
8485 if (Rd == Rs)
8486 {
8487 inst.instruction = T_OPCODE_ADD_HI;
8488 inst.instruction |= (Rd & 8) << 4;
8489 inst.instruction |= (Rd & 7);
8490 inst.instruction |= Rn << 3;
8491 return;
8492 }
8493 /* ... because addition is commutative! */
8494 else if (Rd == Rn)
8495 {
8496 inst.instruction = T_OPCODE_ADD_HI;
8497 inst.instruction |= (Rd & 8) << 4;
8498 inst.instruction |= (Rd & 7);
8499 inst.instruction |= Rs << 3;
8500 return;
8501 }
8502 }
8503 }
8504 /* If we get here, it can't be done in 16 bits. */
8505 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8506 _("shift must be constant"));
8507 inst.instruction = THUMB_OP32 (inst.instruction);
8508 inst.instruction |= Rd << 8;
8509 inst.instruction |= Rs << 16;
8510 encode_thumb32_shifted_operand (2);
8511 }
8512 }
8513 else
8514 {
8515 constraint (inst.instruction == T_MNEM_adds
8516 || inst.instruction == T_MNEM_subs,
8517 BAD_THUMB32);
b99bd4ef 8518
c19d1205 8519 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 8520 {
c19d1205
ZW
8521 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8522 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8523 BAD_HIREG);
8524
8525 inst.instruction = (inst.instruction == T_MNEM_add
8526 ? 0x0000 : 0x8000);
8527 inst.instruction |= (Rd << 4) | Rs;
8528 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
8529 return;
8530 }
8531
c19d1205
ZW
8532 Rn = inst.operands[2].reg;
8533 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 8534
c19d1205
ZW
8535 /* We now have Rd, Rs, and Rn set to registers. */
8536 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 8537 {
c19d1205
ZW
8538 /* Can't do this for SUB. */
8539 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8540 inst.instruction = T_OPCODE_ADD_HI;
8541 inst.instruction |= (Rd & 8) << 4;
8542 inst.instruction |= (Rd & 7);
8543 if (Rs == Rd)
8544 inst.instruction |= Rn << 3;
8545 else if (Rn == Rd)
8546 inst.instruction |= Rs << 3;
8547 else
8548 constraint (1, _("dest must overlap one source register"));
8549 }
8550 else
8551 {
8552 inst.instruction = (inst.instruction == T_MNEM_add
8553 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8554 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 8555 }
b99bd4ef 8556 }
b99bd4ef
NC
8557}
8558
c19d1205
ZW
8559static void
8560do_t_adr (void)
8561{
0110f2b8
PB
8562 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
8563 {
8564 /* Defer to section relaxation. */
8565 inst.relax = inst.instruction;
8566 inst.instruction = THUMB_OP16 (inst.instruction);
8567 inst.instruction |= inst.operands[0].reg << 4;
8568 }
8569 else if (unified_syntax && inst.size_req != 2)
e9f89963 8570 {
0110f2b8 8571 /* Generate a 32-bit opcode. */
e9f89963
PB
8572 inst.instruction = THUMB_OP32 (inst.instruction);
8573 inst.instruction |= inst.operands[0].reg << 8;
8574 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8575 inst.reloc.pc_rel = 1;
8576 }
8577 else
8578 {
0110f2b8 8579 /* Generate a 16-bit opcode. */
e9f89963
PB
8580 inst.instruction = THUMB_OP16 (inst.instruction);
8581 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8582 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8583 inst.reloc.pc_rel = 1;
b99bd4ef 8584
e9f89963
PB
8585 inst.instruction |= inst.operands[0].reg << 4;
8586 }
c19d1205 8587}
b99bd4ef 8588
c19d1205
ZW
8589/* Arithmetic instructions for which there is just one 16-bit
8590 instruction encoding, and it allows only two low registers.
8591 For maximal compatibility with ARM syntax, we allow three register
8592 operands even when Thumb-32 instructions are not available, as long
8593 as the first two are identical. For instance, both "sbc r0,r1" and
8594 "sbc r0,r0,r1" are allowed. */
b99bd4ef 8595static void
c19d1205 8596do_t_arit3 (void)
b99bd4ef 8597{
c19d1205 8598 int Rd, Rs, Rn;
b99bd4ef 8599
c19d1205
ZW
8600 Rd = inst.operands[0].reg;
8601 Rs = (inst.operands[1].present
8602 ? inst.operands[1].reg /* Rd, Rs, foo */
8603 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8604 Rn = inst.operands[2].reg;
b99bd4ef 8605
c19d1205 8606 if (unified_syntax)
b99bd4ef 8607 {
c19d1205
ZW
8608 if (!inst.operands[2].isreg)
8609 {
8610 /* For an immediate, we always generate a 32-bit opcode;
8611 section relaxation will shrink it later if possible. */
8612 inst.instruction = THUMB_OP32 (inst.instruction);
8613 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8614 inst.instruction |= Rd << 8;
8615 inst.instruction |= Rs << 16;
8616 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8617 }
8618 else
8619 {
e27ec89e
PB
8620 bfd_boolean narrow;
8621
c19d1205 8622 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8623 if (THUMB_SETS_FLAGS (inst.instruction))
8624 narrow = current_it_mask == 0;
8625 else
8626 narrow = current_it_mask != 0;
8627
8628 if (Rd > 7 || Rn > 7 || Rs > 7)
8629 narrow = FALSE;
8630 if (inst.operands[2].shifted)
8631 narrow = FALSE;
8632 if (inst.size_req == 4)
8633 narrow = FALSE;
8634
8635 if (narrow
c19d1205
ZW
8636 && Rd == Rs)
8637 {
8638 inst.instruction = THUMB_OP16 (inst.instruction);
8639 inst.instruction |= Rd;
8640 inst.instruction |= Rn << 3;
8641 return;
8642 }
b99bd4ef 8643
c19d1205
ZW
8644 /* If we get here, it can't be done in 16 bits. */
8645 constraint (inst.operands[2].shifted
8646 && inst.operands[2].immisreg,
8647 _("shift must be constant"));
8648 inst.instruction = THUMB_OP32 (inst.instruction);
8649 inst.instruction |= Rd << 8;
8650 inst.instruction |= Rs << 16;
8651 encode_thumb32_shifted_operand (2);
8652 }
a737bd4d 8653 }
c19d1205 8654 else
b99bd4ef 8655 {
c19d1205
ZW
8656 /* On its face this is a lie - the instruction does set the
8657 flags. However, the only supported mnemonic in this mode
8658 says it doesn't. */
8659 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8660
c19d1205
ZW
8661 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8662 _("unshifted register required"));
8663 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8664 constraint (Rd != Rs,
8665 _("dest and source1 must be the same register"));
a737bd4d 8666
c19d1205
ZW
8667 inst.instruction = THUMB_OP16 (inst.instruction);
8668 inst.instruction |= Rd;
8669 inst.instruction |= Rn << 3;
b99bd4ef 8670 }
a737bd4d 8671}
b99bd4ef 8672
c19d1205
ZW
8673/* Similarly, but for instructions where the arithmetic operation is
8674 commutative, so we can allow either of them to be different from
8675 the destination operand in a 16-bit instruction. For instance, all
8676 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8677 accepted. */
8678static void
8679do_t_arit3c (void)
a737bd4d 8680{
c19d1205 8681 int Rd, Rs, Rn;
b99bd4ef 8682
c19d1205
ZW
8683 Rd = inst.operands[0].reg;
8684 Rs = (inst.operands[1].present
8685 ? inst.operands[1].reg /* Rd, Rs, foo */
8686 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8687 Rn = inst.operands[2].reg;
a737bd4d 8688
c19d1205 8689 if (unified_syntax)
a737bd4d 8690 {
c19d1205 8691 if (!inst.operands[2].isreg)
b99bd4ef 8692 {
c19d1205
ZW
8693 /* For an immediate, we always generate a 32-bit opcode;
8694 section relaxation will shrink it later if possible. */
8695 inst.instruction = THUMB_OP32 (inst.instruction);
8696 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8697 inst.instruction |= Rd << 8;
8698 inst.instruction |= Rs << 16;
8699 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 8700 }
c19d1205 8701 else
a737bd4d 8702 {
e27ec89e
PB
8703 bfd_boolean narrow;
8704
c19d1205 8705 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8706 if (THUMB_SETS_FLAGS (inst.instruction))
8707 narrow = current_it_mask == 0;
8708 else
8709 narrow = current_it_mask != 0;
8710
8711 if (Rd > 7 || Rn > 7 || Rs > 7)
8712 narrow = FALSE;
8713 if (inst.operands[2].shifted)
8714 narrow = FALSE;
8715 if (inst.size_req == 4)
8716 narrow = FALSE;
8717
8718 if (narrow)
a737bd4d 8719 {
c19d1205 8720 if (Rd == Rs)
a737bd4d 8721 {
c19d1205
ZW
8722 inst.instruction = THUMB_OP16 (inst.instruction);
8723 inst.instruction |= Rd;
8724 inst.instruction |= Rn << 3;
8725 return;
a737bd4d 8726 }
c19d1205 8727 if (Rd == Rn)
a737bd4d 8728 {
c19d1205
ZW
8729 inst.instruction = THUMB_OP16 (inst.instruction);
8730 inst.instruction |= Rd;
8731 inst.instruction |= Rs << 3;
8732 return;
a737bd4d
NC
8733 }
8734 }
c19d1205
ZW
8735
8736 /* If we get here, it can't be done in 16 bits. */
8737 constraint (inst.operands[2].shifted
8738 && inst.operands[2].immisreg,
8739 _("shift must be constant"));
8740 inst.instruction = THUMB_OP32 (inst.instruction);
8741 inst.instruction |= Rd << 8;
8742 inst.instruction |= Rs << 16;
8743 encode_thumb32_shifted_operand (2);
a737bd4d 8744 }
b99bd4ef 8745 }
c19d1205
ZW
8746 else
8747 {
8748 /* On its face this is a lie - the instruction does set the
8749 flags. However, the only supported mnemonic in this mode
8750 says it doesn't. */
8751 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8752
c19d1205
ZW
8753 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8754 _("unshifted register required"));
8755 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8756
8757 inst.instruction = THUMB_OP16 (inst.instruction);
8758 inst.instruction |= Rd;
8759
8760 if (Rd == Rs)
8761 inst.instruction |= Rn << 3;
8762 else if (Rd == Rn)
8763 inst.instruction |= Rs << 3;
8764 else
8765 constraint (1, _("dest must overlap one source register"));
8766 }
a737bd4d
NC
8767}
8768
62b3e311
PB
8769static void
8770do_t_barrier (void)
8771{
8772 if (inst.operands[0].present)
8773 {
8774 constraint ((inst.instruction & 0xf0) != 0x40
8775 && inst.operands[0].imm != 0xf,
bd3ba5d1 8776 _("bad barrier type"));
62b3e311
PB
8777 inst.instruction |= inst.operands[0].imm;
8778 }
8779 else
8780 inst.instruction |= 0xf;
8781}
8782
c19d1205
ZW
8783static void
8784do_t_bfc (void)
a737bd4d 8785{
c19d1205
ZW
8786 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8787 constraint (msb > 32, _("bit-field extends past end of register"));
8788 /* The instruction encoding stores the LSB and MSB,
8789 not the LSB and width. */
8790 inst.instruction |= inst.operands[0].reg << 8;
8791 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8792 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8793 inst.instruction |= msb - 1;
b99bd4ef
NC
8794}
8795
c19d1205
ZW
8796static void
8797do_t_bfi (void)
b99bd4ef 8798{
c19d1205 8799 unsigned int msb;
b99bd4ef 8800
c19d1205
ZW
8801 /* #0 in second position is alternative syntax for bfc, which is
8802 the same instruction but with REG_PC in the Rm field. */
8803 if (!inst.operands[1].isreg)
8804 inst.operands[1].reg = REG_PC;
b99bd4ef 8805
c19d1205
ZW
8806 msb = inst.operands[2].imm + inst.operands[3].imm;
8807 constraint (msb > 32, _("bit-field extends past end of register"));
8808 /* The instruction encoding stores the LSB and MSB,
8809 not the LSB and width. */
8810 inst.instruction |= inst.operands[0].reg << 8;
8811 inst.instruction |= inst.operands[1].reg << 16;
8812 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8813 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8814 inst.instruction |= msb - 1;
b99bd4ef
NC
8815}
8816
c19d1205
ZW
8817static void
8818do_t_bfx (void)
b99bd4ef 8819{
c19d1205
ZW
8820 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8821 _("bit-field extends past end of register"));
8822 inst.instruction |= inst.operands[0].reg << 8;
8823 inst.instruction |= inst.operands[1].reg << 16;
8824 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8825 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8826 inst.instruction |= inst.operands[3].imm - 1;
8827}
b99bd4ef 8828
c19d1205
ZW
8829/* ARM V5 Thumb BLX (argument parse)
8830 BLX <target_addr> which is BLX(1)
8831 BLX <Rm> which is BLX(2)
8832 Unfortunately, there are two different opcodes for this mnemonic.
8833 So, the insns[].value is not used, and the code here zaps values
8834 into inst.instruction.
b99bd4ef 8835
c19d1205
ZW
8836 ??? How to take advantage of the additional two bits of displacement
8837 available in Thumb32 mode? Need new relocation? */
b99bd4ef 8838
c19d1205
ZW
8839static void
8840do_t_blx (void)
8841{
dfa9f0d5 8842 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8843 if (inst.operands[0].isreg)
8844 /* We have a register, so this is BLX(2). */
8845 inst.instruction |= inst.operands[0].reg << 3;
b99bd4ef
NC
8846 else
8847 {
c19d1205 8848 /* No register. This must be BLX(1). */
2fc8bdac 8849 inst.instruction = 0xf000e800;
39b41c9c
PB
8850#ifdef OBJ_ELF
8851 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8852 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8853 else
8854#endif
8855 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 8856 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8857 }
8858}
8859
c19d1205
ZW
8860static void
8861do_t_branch (void)
b99bd4ef 8862{
0110f2b8 8863 int opcode;
dfa9f0d5
PB
8864 int cond;
8865
8866 if (current_it_mask)
8867 {
8868 /* Conditional branches inside IT blocks are encoded as unconditional
8869 branches. */
8870 cond = COND_ALWAYS;
8871 /* A branch must be the last instruction in an IT block. */
8872 constraint (current_it_mask != 0x10, BAD_BRANCH);
8873 }
8874 else
8875 cond = inst.cond;
8876
8877 if (cond != COND_ALWAYS)
0110f2b8
PB
8878 opcode = T_MNEM_bcond;
8879 else
8880 opcode = inst.instruction;
8881
8882 if (unified_syntax && inst.size_req == 4)
c19d1205 8883 {
0110f2b8 8884 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 8885 if (cond == COND_ALWAYS)
0110f2b8 8886 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
8887 else
8888 {
dfa9f0d5
PB
8889 assert (cond != 0xF);
8890 inst.instruction |= cond << 22;
c19d1205
ZW
8891 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8892 }
8893 }
b99bd4ef
NC
8894 else
8895 {
0110f2b8 8896 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 8897 if (cond == COND_ALWAYS)
c19d1205
ZW
8898 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8899 else
b99bd4ef 8900 {
dfa9f0d5 8901 inst.instruction |= cond << 8;
c19d1205 8902 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 8903 }
0110f2b8
PB
8904 /* Allow section relaxation. */
8905 if (unified_syntax && inst.size_req != 2)
8906 inst.relax = opcode;
b99bd4ef 8907 }
c19d1205
ZW
8908
8909 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8910}
8911
8912static void
c19d1205 8913do_t_bkpt (void)
b99bd4ef 8914{
dfa9f0d5
PB
8915 constraint (inst.cond != COND_ALWAYS,
8916 _("instruction is always unconditional"));
c19d1205 8917 if (inst.operands[0].present)
b99bd4ef 8918 {
c19d1205
ZW
8919 constraint (inst.operands[0].imm > 255,
8920 _("immediate value out of range"));
8921 inst.instruction |= inst.operands[0].imm;
b99bd4ef 8922 }
b99bd4ef
NC
8923}
8924
8925static void
c19d1205 8926do_t_branch23 (void)
b99bd4ef 8927{
dfa9f0d5 8928 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205 8929 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
8930 inst.reloc.pc_rel = 1;
8931
c19d1205
ZW
8932 /* If the destination of the branch is a defined symbol which does not have
8933 the THUMB_FUNC attribute, then we must be calling a function which has
8934 the (interfacearm) attribute. We look for the Thumb entry point to that
8935 function and change the branch to refer to that function instead. */
8936 if ( inst.reloc.exp.X_op == O_symbol
8937 && inst.reloc.exp.X_add_symbol != NULL
8938 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8939 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8940 inst.reloc.exp.X_add_symbol =
8941 find_real_start (inst.reloc.exp.X_add_symbol);
90e4755a
RE
8942}
8943
8944static void
c19d1205 8945do_t_bx (void)
90e4755a 8946{
dfa9f0d5 8947 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8948 inst.instruction |= inst.operands[0].reg << 3;
8949 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8950 should cause the alignment to be checked once it is known. This is
8951 because BX PC only works if the instruction is word aligned. */
8952}
90e4755a 8953
c19d1205
ZW
8954static void
8955do_t_bxj (void)
8956{
dfa9f0d5 8957 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8958 if (inst.operands[0].reg == REG_PC)
8959 as_tsktsk (_("use of r15 in bxj is not really useful"));
90e4755a 8960
c19d1205 8961 inst.instruction |= inst.operands[0].reg << 16;
90e4755a
RE
8962}
8963
8964static void
c19d1205 8965do_t_clz (void)
90e4755a 8966{
c19d1205
ZW
8967 inst.instruction |= inst.operands[0].reg << 8;
8968 inst.instruction |= inst.operands[1].reg << 16;
8969 inst.instruction |= inst.operands[1].reg;
8970}
90e4755a 8971
dfa9f0d5
PB
8972static void
8973do_t_cps (void)
8974{
8975 constraint (current_it_mask, BAD_NOT_IT);
8976 inst.instruction |= inst.operands[0].imm;
8977}
8978
c19d1205
ZW
8979static void
8980do_t_cpsi (void)
8981{
dfa9f0d5 8982 constraint (current_it_mask, BAD_NOT_IT);
c19d1205 8983 if (unified_syntax
62b3e311
PB
8984 && (inst.operands[1].present || inst.size_req == 4)
8985 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 8986 {
c19d1205
ZW
8987 unsigned int imod = (inst.instruction & 0x0030) >> 4;
8988 inst.instruction = 0xf3af8000;
8989 inst.instruction |= imod << 9;
8990 inst.instruction |= inst.operands[0].imm << 5;
8991 if (inst.operands[1].present)
8992 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 8993 }
c19d1205 8994 else
90e4755a 8995 {
62b3e311
PB
8996 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
8997 && (inst.operands[0].imm & 4),
8998 _("selected processor does not support 'A' form "
8999 "of this instruction"));
9000 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
9001 _("Thumb does not support the 2-argument "
9002 "form of this instruction"));
9003 inst.instruction |= inst.operands[0].imm;
90e4755a 9004 }
90e4755a
RE
9005}
9006
c19d1205
ZW
9007/* THUMB CPY instruction (argument parse). */
9008
90e4755a 9009static void
c19d1205 9010do_t_cpy (void)
90e4755a 9011{
c19d1205 9012 if (inst.size_req == 4)
90e4755a 9013 {
c19d1205
ZW
9014 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9015 inst.instruction |= inst.operands[0].reg << 8;
9016 inst.instruction |= inst.operands[1].reg;
90e4755a 9017 }
c19d1205 9018 else
90e4755a 9019 {
c19d1205
ZW
9020 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9021 inst.instruction |= (inst.operands[0].reg & 0x7);
9022 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 9023 }
90e4755a
RE
9024}
9025
90e4755a 9026static void
25fe350b 9027do_t_cbz (void)
90e4755a 9028{
dfa9f0d5 9029 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
9030 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9031 inst.instruction |= inst.operands[0].reg;
9032 inst.reloc.pc_rel = 1;
9033 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9034}
90e4755a 9035
62b3e311
PB
9036static void
9037do_t_dbg (void)
9038{
9039 inst.instruction |= inst.operands[0].imm;
9040}
9041
9042static void
9043do_t_div (void)
9044{
9045 if (!inst.operands[1].present)
9046 inst.operands[1].reg = inst.operands[0].reg;
9047 inst.instruction |= inst.operands[0].reg << 8;
9048 inst.instruction |= inst.operands[1].reg << 16;
9049 inst.instruction |= inst.operands[2].reg;
9050}
9051
c19d1205
ZW
9052static void
9053do_t_hint (void)
9054{
9055 if (unified_syntax && inst.size_req == 4)
9056 inst.instruction = THUMB_OP32 (inst.instruction);
9057 else
9058 inst.instruction = THUMB_OP16 (inst.instruction);
9059}
90e4755a 9060
c19d1205
ZW
9061static void
9062do_t_it (void)
9063{
9064 unsigned int cond = inst.operands[0].imm;
e27ec89e 9065
dfa9f0d5 9066 constraint (current_it_mask, BAD_NOT_IT);
e27ec89e
PB
9067 current_it_mask = (inst.instruction & 0xf) | 0x10;
9068 current_cc = cond;
9069
9070 /* If the condition is a negative condition, invert the mask. */
c19d1205 9071 if ((cond & 0x1) == 0x0)
90e4755a 9072 {
c19d1205 9073 unsigned int mask = inst.instruction & 0x000f;
90e4755a 9074
c19d1205
ZW
9075 if ((mask & 0x7) == 0)
9076 /* no conversion needed */;
9077 else if ((mask & 0x3) == 0)
e27ec89e
PB
9078 mask ^= 0x8;
9079 else if ((mask & 0x1) == 0)
9080 mask ^= 0xC;
c19d1205 9081 else
e27ec89e 9082 mask ^= 0xE;
90e4755a 9083
e27ec89e
PB
9084 inst.instruction &= 0xfff0;
9085 inst.instruction |= mask;
c19d1205 9086 }
90e4755a 9087
c19d1205
ZW
9088 inst.instruction |= cond << 4;
9089}
90e4755a 9090
3c707909
PB
9091/* Helper function used for both push/pop and ldm/stm. */
9092static void
9093encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9094{
9095 bfd_boolean load;
9096
9097 load = (inst.instruction & (1 << 20)) != 0;
9098
9099 if (mask & (1 << 13))
9100 inst.error = _("SP not allowed in register list");
9101 if (load)
9102 {
9103 if (mask & (1 << 14)
9104 && mask & (1 << 15))
9105 inst.error = _("LR and PC should not both be in register list");
9106
9107 if ((mask & (1 << base)) != 0
9108 && writeback)
9109 as_warn (_("base register should not be in register list "
9110 "when written back"));
9111 }
9112 else
9113 {
9114 if (mask & (1 << 15))
9115 inst.error = _("PC not allowed in register list");
9116
9117 if (mask & (1 << base))
9118 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9119 }
9120
9121 if ((mask & (mask - 1)) == 0)
9122 {
9123 /* Single register transfers implemented as str/ldr. */
9124 if (writeback)
9125 {
9126 if (inst.instruction & (1 << 23))
9127 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9128 else
9129 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9130 }
9131 else
9132 {
9133 if (inst.instruction & (1 << 23))
9134 inst.instruction = 0x00800000; /* ia -> [base] */
9135 else
9136 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9137 }
9138
9139 inst.instruction |= 0xf8400000;
9140 if (load)
9141 inst.instruction |= 0x00100000;
9142
5f4273c7 9143 mask = ffs (mask) - 1;
3c707909
PB
9144 mask <<= 12;
9145 }
9146 else if (writeback)
9147 inst.instruction |= WRITE_BACK;
9148
9149 inst.instruction |= mask;
9150 inst.instruction |= base << 16;
9151}
9152
c19d1205
ZW
9153static void
9154do_t_ldmstm (void)
9155{
9156 /* This really doesn't seem worth it. */
9157 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9158 _("expression too complex"));
9159 constraint (inst.operands[1].writeback,
9160 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 9161
c19d1205
ZW
9162 if (unified_syntax)
9163 {
3c707909
PB
9164 bfd_boolean narrow;
9165 unsigned mask;
9166
9167 narrow = FALSE;
c19d1205
ZW
9168 /* See if we can use a 16-bit instruction. */
9169 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9170 && inst.size_req != 4
3c707909 9171 && !(inst.operands[1].imm & ~0xff))
90e4755a 9172 {
3c707909 9173 mask = 1 << inst.operands[0].reg;
90e4755a 9174
3c707909
PB
9175 if (inst.operands[0].reg <= 7
9176 && (inst.instruction == T_MNEM_stmia
9177 ? inst.operands[0].writeback
9178 : (inst.operands[0].writeback
9179 == !(inst.operands[1].imm & mask))))
90e4755a 9180 {
3c707909
PB
9181 if (inst.instruction == T_MNEM_stmia
9182 && (inst.operands[1].imm & mask)
9183 && (inst.operands[1].imm & (mask - 1)))
c19d1205
ZW
9184 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9185 inst.operands[0].reg);
3c707909
PB
9186
9187 inst.instruction = THUMB_OP16 (inst.instruction);
9188 inst.instruction |= inst.operands[0].reg << 8;
9189 inst.instruction |= inst.operands[1].imm;
9190 narrow = TRUE;
90e4755a 9191 }
3c707909
PB
9192 else if (inst.operands[0] .reg == REG_SP
9193 && inst.operands[0].writeback)
90e4755a 9194 {
3c707909
PB
9195 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9196 ? T_MNEM_push : T_MNEM_pop);
9197 inst.instruction |= inst.operands[1].imm;
9198 narrow = TRUE;
90e4755a 9199 }
3c707909
PB
9200 }
9201
9202 if (!narrow)
9203 {
c19d1205
ZW
9204 if (inst.instruction < 0xffff)
9205 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 9206
5f4273c7
NC
9207 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9208 inst.operands[0].writeback);
90e4755a
RE
9209 }
9210 }
c19d1205 9211 else
90e4755a 9212 {
c19d1205
ZW
9213 constraint (inst.operands[0].reg > 7
9214 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
9215 constraint (inst.instruction != T_MNEM_ldmia
9216 && inst.instruction != T_MNEM_stmia,
9217 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 9218 if (inst.instruction == T_MNEM_stmia)
f03698e6 9219 {
c19d1205
ZW
9220 if (!inst.operands[0].writeback)
9221 as_warn (_("this instruction will write back the base register"));
9222 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9223 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9224 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9225 inst.operands[0].reg);
f03698e6 9226 }
c19d1205 9227 else
90e4755a 9228 {
c19d1205
ZW
9229 if (!inst.operands[0].writeback
9230 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9231 as_warn (_("this instruction will write back the base register"));
9232 else if (inst.operands[0].writeback
9233 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9234 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
9235 }
9236
c19d1205
ZW
9237 inst.instruction = THUMB_OP16 (inst.instruction);
9238 inst.instruction |= inst.operands[0].reg << 8;
9239 inst.instruction |= inst.operands[1].imm;
9240 }
9241}
e28cd48c 9242
c19d1205
ZW
9243static void
9244do_t_ldrex (void)
9245{
9246 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9247 || inst.operands[1].postind || inst.operands[1].writeback
9248 || inst.operands[1].immisreg || inst.operands[1].shifted
9249 || inst.operands[1].negative,
01cfc07f 9250 BAD_ADDR_MODE);
e28cd48c 9251
c19d1205
ZW
9252 inst.instruction |= inst.operands[0].reg << 12;
9253 inst.instruction |= inst.operands[1].reg << 16;
9254 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9255}
e28cd48c 9256
c19d1205
ZW
9257static void
9258do_t_ldrexd (void)
9259{
9260 if (!inst.operands[1].present)
1cac9012 9261 {
c19d1205
ZW
9262 constraint (inst.operands[0].reg == REG_LR,
9263 _("r14 not allowed as first register "
9264 "when second register is omitted"));
9265 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 9266 }
c19d1205
ZW
9267 constraint (inst.operands[0].reg == inst.operands[1].reg,
9268 BAD_OVERLAP);
b99bd4ef 9269
c19d1205
ZW
9270 inst.instruction |= inst.operands[0].reg << 12;
9271 inst.instruction |= inst.operands[1].reg << 8;
9272 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9273}
9274
9275static void
c19d1205 9276do_t_ldst (void)
b99bd4ef 9277{
0110f2b8
PB
9278 unsigned long opcode;
9279 int Rn;
9280
9281 opcode = inst.instruction;
c19d1205 9282 if (unified_syntax)
b99bd4ef 9283 {
53365c0d
PB
9284 if (!inst.operands[1].isreg)
9285 {
9286 if (opcode <= 0xffff)
9287 inst.instruction = THUMB_OP32 (opcode);
9288 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9289 return;
9290 }
0110f2b8
PB
9291 if (inst.operands[1].isreg
9292 && !inst.operands[1].writeback
c19d1205
ZW
9293 && !inst.operands[1].shifted && !inst.operands[1].postind
9294 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
9295 && opcode <= 0xffff
9296 && inst.size_req != 4)
c19d1205 9297 {
0110f2b8
PB
9298 /* Insn may have a 16-bit form. */
9299 Rn = inst.operands[1].reg;
9300 if (inst.operands[1].immisreg)
9301 {
9302 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 9303 /* [Rn, Rik] */
0110f2b8
PB
9304 if (Rn <= 7 && inst.operands[1].imm <= 7)
9305 goto op16;
9306 }
9307 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9308 && opcode != T_MNEM_ldrsb)
9309 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9310 || (Rn == REG_SP && opcode == T_MNEM_str))
9311 {
9312 /* [Rn, #const] */
9313 if (Rn > 7)
9314 {
9315 if (Rn == REG_PC)
9316 {
9317 if (inst.reloc.pc_rel)
9318 opcode = T_MNEM_ldr_pc2;
9319 else
9320 opcode = T_MNEM_ldr_pc;
9321 }
9322 else
9323 {
9324 if (opcode == T_MNEM_ldr)
9325 opcode = T_MNEM_ldr_sp;
9326 else
9327 opcode = T_MNEM_str_sp;
9328 }
9329 inst.instruction = inst.operands[0].reg << 8;
9330 }
9331 else
9332 {
9333 inst.instruction = inst.operands[0].reg;
9334 inst.instruction |= inst.operands[1].reg << 3;
9335 }
9336 inst.instruction |= THUMB_OP16 (opcode);
9337 if (inst.size_req == 2)
9338 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9339 else
9340 inst.relax = opcode;
9341 return;
9342 }
c19d1205 9343 }
0110f2b8
PB
9344 /* Definitely a 32-bit variant. */
9345 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
9346 inst.instruction |= inst.operands[0].reg << 12;
9347 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
9348 return;
9349 }
9350
c19d1205
ZW
9351 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9352
9353 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 9354 {
c19d1205
ZW
9355 /* Only [Rn,Rm] is acceptable. */
9356 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9357 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9358 || inst.operands[1].postind || inst.operands[1].shifted
9359 || inst.operands[1].negative,
9360 _("Thumb does not support this addressing mode"));
9361 inst.instruction = THUMB_OP16 (inst.instruction);
9362 goto op16;
b99bd4ef 9363 }
5f4273c7 9364
c19d1205
ZW
9365 inst.instruction = THUMB_OP16 (inst.instruction);
9366 if (!inst.operands[1].isreg)
9367 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9368 return;
b99bd4ef 9369
c19d1205
ZW
9370 constraint (!inst.operands[1].preind
9371 || inst.operands[1].shifted
9372 || inst.operands[1].writeback,
9373 _("Thumb does not support this addressing mode"));
9374 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 9375 {
c19d1205
ZW
9376 constraint (inst.instruction & 0x0600,
9377 _("byte or halfword not valid for base register"));
9378 constraint (inst.operands[1].reg == REG_PC
9379 && !(inst.instruction & THUMB_LOAD_BIT),
9380 _("r15 based store not allowed"));
9381 constraint (inst.operands[1].immisreg,
9382 _("invalid base register for register offset"));
b99bd4ef 9383
c19d1205
ZW
9384 if (inst.operands[1].reg == REG_PC)
9385 inst.instruction = T_OPCODE_LDR_PC;
9386 else if (inst.instruction & THUMB_LOAD_BIT)
9387 inst.instruction = T_OPCODE_LDR_SP;
9388 else
9389 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 9390
c19d1205
ZW
9391 inst.instruction |= inst.operands[0].reg << 8;
9392 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9393 return;
9394 }
90e4755a 9395
c19d1205
ZW
9396 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9397 if (!inst.operands[1].immisreg)
9398 {
9399 /* Immediate offset. */
9400 inst.instruction |= inst.operands[0].reg;
9401 inst.instruction |= inst.operands[1].reg << 3;
9402 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9403 return;
9404 }
90e4755a 9405
c19d1205
ZW
9406 /* Register offset. */
9407 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9408 constraint (inst.operands[1].negative,
9409 _("Thumb does not support this addressing mode"));
90e4755a 9410
c19d1205
ZW
9411 op16:
9412 switch (inst.instruction)
9413 {
9414 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9415 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9416 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9417 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9418 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9419 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9420 case 0x5600 /* ldrsb */:
9421 case 0x5e00 /* ldrsh */: break;
9422 default: abort ();
9423 }
90e4755a 9424
c19d1205
ZW
9425 inst.instruction |= inst.operands[0].reg;
9426 inst.instruction |= inst.operands[1].reg << 3;
9427 inst.instruction |= inst.operands[1].imm << 6;
9428}
90e4755a 9429
c19d1205
ZW
9430static void
9431do_t_ldstd (void)
9432{
9433 if (!inst.operands[1].present)
b99bd4ef 9434 {
c19d1205
ZW
9435 inst.operands[1].reg = inst.operands[0].reg + 1;
9436 constraint (inst.operands[0].reg == REG_LR,
9437 _("r14 not allowed here"));
b99bd4ef 9438 }
c19d1205
ZW
9439 inst.instruction |= inst.operands[0].reg << 12;
9440 inst.instruction |= inst.operands[1].reg << 8;
9441 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
9442}
9443
c19d1205
ZW
9444static void
9445do_t_ldstt (void)
9446{
9447 inst.instruction |= inst.operands[0].reg << 12;
9448 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9449}
a737bd4d 9450
b99bd4ef 9451static void
c19d1205 9452do_t_mla (void)
b99bd4ef 9453{
c19d1205
ZW
9454 inst.instruction |= inst.operands[0].reg << 8;
9455 inst.instruction |= inst.operands[1].reg << 16;
9456 inst.instruction |= inst.operands[2].reg;
9457 inst.instruction |= inst.operands[3].reg << 12;
9458}
b99bd4ef 9459
c19d1205
ZW
9460static void
9461do_t_mlal (void)
9462{
9463 inst.instruction |= inst.operands[0].reg << 12;
9464 inst.instruction |= inst.operands[1].reg << 8;
9465 inst.instruction |= inst.operands[2].reg << 16;
9466 inst.instruction |= inst.operands[3].reg;
9467}
b99bd4ef 9468
c19d1205
ZW
9469static void
9470do_t_mov_cmp (void)
9471{
9472 if (unified_syntax)
b99bd4ef 9473 {
c19d1205
ZW
9474 int r0off = (inst.instruction == T_MNEM_mov
9475 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 9476 unsigned long opcode;
3d388997
PB
9477 bfd_boolean narrow;
9478 bfd_boolean low_regs;
9479
9480 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
0110f2b8 9481 opcode = inst.instruction;
3d388997 9482 if (current_it_mask)
0110f2b8 9483 narrow = opcode != T_MNEM_movs;
3d388997 9484 else
0110f2b8 9485 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
9486 if (inst.size_req == 4
9487 || inst.operands[1].shifted)
9488 narrow = FALSE;
9489
efd81785
PB
9490 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
9491 if (opcode == T_MNEM_movs && inst.operands[1].isreg
9492 && !inst.operands[1].shifted
9493 && inst.operands[0].reg == REG_PC
9494 && inst.operands[1].reg == REG_LR)
9495 {
9496 inst.instruction = T2_SUBS_PC_LR;
9497 return;
9498 }
9499
c19d1205
ZW
9500 if (!inst.operands[1].isreg)
9501 {
0110f2b8
PB
9502 /* Immediate operand. */
9503 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9504 narrow = 0;
9505 if (low_regs && narrow)
9506 {
9507 inst.instruction = THUMB_OP16 (opcode);
9508 inst.instruction |= inst.operands[0].reg << 8;
9509 if (inst.size_req == 2)
9510 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9511 else
9512 inst.relax = opcode;
9513 }
9514 else
9515 {
9516 inst.instruction = THUMB_OP32 (inst.instruction);
9517 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9518 inst.instruction |= inst.operands[0].reg << r0off;
9519 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9520 }
c19d1205 9521 }
728ca7c9
PB
9522 else if (inst.operands[1].shifted && inst.operands[1].immisreg
9523 && (inst.instruction == T_MNEM_mov
9524 || inst.instruction == T_MNEM_movs))
9525 {
9526 /* Register shifts are encoded as separate shift instructions. */
9527 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
9528
9529 if (current_it_mask)
9530 narrow = !flags;
9531 else
9532 narrow = flags;
9533
9534 if (inst.size_req == 4)
9535 narrow = FALSE;
9536
9537 if (!low_regs || inst.operands[1].imm > 7)
9538 narrow = FALSE;
9539
9540 if (inst.operands[0].reg != inst.operands[1].reg)
9541 narrow = FALSE;
9542
9543 switch (inst.operands[1].shift_kind)
9544 {
9545 case SHIFT_LSL:
9546 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
9547 break;
9548 case SHIFT_ASR:
9549 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
9550 break;
9551 case SHIFT_LSR:
9552 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
9553 break;
9554 case SHIFT_ROR:
9555 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
9556 break;
9557 default:
5f4273c7 9558 abort ();
728ca7c9
PB
9559 }
9560
9561 inst.instruction = opcode;
9562 if (narrow)
9563 {
9564 inst.instruction |= inst.operands[0].reg;
9565 inst.instruction |= inst.operands[1].imm << 3;
9566 }
9567 else
9568 {
9569 if (flags)
9570 inst.instruction |= CONDS_BIT;
9571
9572 inst.instruction |= inst.operands[0].reg << 8;
9573 inst.instruction |= inst.operands[1].reg << 16;
9574 inst.instruction |= inst.operands[1].imm;
9575 }
9576 }
3d388997 9577 else if (!narrow)
c19d1205 9578 {
728ca7c9
PB
9579 /* Some mov with immediate shift have narrow variants.
9580 Register shifts are handled above. */
9581 if (low_regs && inst.operands[1].shifted
9582 && (inst.instruction == T_MNEM_mov
9583 || inst.instruction == T_MNEM_movs))
9584 {
9585 if (current_it_mask)
9586 narrow = (inst.instruction == T_MNEM_mov);
9587 else
9588 narrow = (inst.instruction == T_MNEM_movs);
9589 }
9590
9591 if (narrow)
9592 {
9593 switch (inst.operands[1].shift_kind)
9594 {
9595 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9596 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9597 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9598 default: narrow = FALSE; break;
9599 }
9600 }
9601
9602 if (narrow)
9603 {
9604 inst.instruction |= inst.operands[0].reg;
9605 inst.instruction |= inst.operands[1].reg << 3;
9606 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9607 }
9608 else
9609 {
9610 inst.instruction = THUMB_OP32 (inst.instruction);
9611 inst.instruction |= inst.operands[0].reg << r0off;
9612 encode_thumb32_shifted_operand (1);
9613 }
c19d1205
ZW
9614 }
9615 else
9616 switch (inst.instruction)
9617 {
9618 case T_MNEM_mov:
9619 inst.instruction = T_OPCODE_MOV_HR;
9620 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9621 inst.instruction |= (inst.operands[0].reg & 0x7);
9622 inst.instruction |= inst.operands[1].reg << 3;
9623 break;
b99bd4ef 9624
c19d1205
ZW
9625 case T_MNEM_movs:
9626 /* We know we have low registers at this point.
9627 Generate ADD Rd, Rs, #0. */
9628 inst.instruction = T_OPCODE_ADD_I3;
9629 inst.instruction |= inst.operands[0].reg;
9630 inst.instruction |= inst.operands[1].reg << 3;
9631 break;
9632
9633 case T_MNEM_cmp:
3d388997 9634 if (low_regs)
c19d1205
ZW
9635 {
9636 inst.instruction = T_OPCODE_CMP_LR;
9637 inst.instruction |= inst.operands[0].reg;
9638 inst.instruction |= inst.operands[1].reg << 3;
9639 }
9640 else
9641 {
9642 inst.instruction = T_OPCODE_CMP_HR;
9643 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9644 inst.instruction |= (inst.operands[0].reg & 0x7);
9645 inst.instruction |= inst.operands[1].reg << 3;
9646 }
9647 break;
9648 }
b99bd4ef
NC
9649 return;
9650 }
9651
c19d1205
ZW
9652 inst.instruction = THUMB_OP16 (inst.instruction);
9653 if (inst.operands[1].isreg)
b99bd4ef 9654 {
c19d1205 9655 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
b99bd4ef 9656 {
c19d1205
ZW
9657 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9658 since a MOV instruction produces unpredictable results. */
9659 if (inst.instruction == T_OPCODE_MOV_I8)
9660 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 9661 else
c19d1205 9662 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 9663
c19d1205
ZW
9664 inst.instruction |= inst.operands[0].reg;
9665 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
9666 }
9667 else
9668 {
c19d1205
ZW
9669 if (inst.instruction == T_OPCODE_MOV_I8)
9670 inst.instruction = T_OPCODE_MOV_HR;
9671 else
9672 inst.instruction = T_OPCODE_CMP_HR;
9673 do_t_cpy ();
b99bd4ef
NC
9674 }
9675 }
c19d1205 9676 else
b99bd4ef 9677 {
c19d1205
ZW
9678 constraint (inst.operands[0].reg > 7,
9679 _("only lo regs allowed with immediate"));
9680 inst.instruction |= inst.operands[0].reg << 8;
9681 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9682 }
9683}
b99bd4ef 9684
c19d1205
ZW
9685static void
9686do_t_mov16 (void)
9687{
b6895b4f
PB
9688 bfd_vma imm;
9689 bfd_boolean top;
9690
9691 top = (inst.instruction & 0x00800000) != 0;
9692 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9693 {
9694 constraint (top, _(":lower16: not allowed this instruction"));
9695 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9696 }
9697 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9698 {
9699 constraint (!top, _(":upper16: not allowed this instruction"));
9700 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9701 }
9702
c19d1205 9703 inst.instruction |= inst.operands[0].reg << 8;
b6895b4f
PB
9704 if (inst.reloc.type == BFD_RELOC_UNUSED)
9705 {
9706 imm = inst.reloc.exp.X_add_number;
9707 inst.instruction |= (imm & 0xf000) << 4;
9708 inst.instruction |= (imm & 0x0800) << 15;
9709 inst.instruction |= (imm & 0x0700) << 4;
9710 inst.instruction |= (imm & 0x00ff);
9711 }
c19d1205 9712}
b99bd4ef 9713
c19d1205
ZW
9714static void
9715do_t_mvn_tst (void)
9716{
9717 if (unified_syntax)
9718 {
9719 int r0off = (inst.instruction == T_MNEM_mvn
9720 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
9721 bfd_boolean narrow;
9722
9723 if (inst.size_req == 4
9724 || inst.instruction > 0xffff
9725 || inst.operands[1].shifted
9726 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9727 narrow = FALSE;
9728 else if (inst.instruction == T_MNEM_cmn)
9729 narrow = TRUE;
9730 else if (THUMB_SETS_FLAGS (inst.instruction))
9731 narrow = (current_it_mask == 0);
9732 else
9733 narrow = (current_it_mask != 0);
9734
c19d1205 9735 if (!inst.operands[1].isreg)
b99bd4ef 9736 {
c19d1205
ZW
9737 /* For an immediate, we always generate a 32-bit opcode;
9738 section relaxation will shrink it later if possible. */
9739 if (inst.instruction < 0xffff)
9740 inst.instruction = THUMB_OP32 (inst.instruction);
9741 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9742 inst.instruction |= inst.operands[0].reg << r0off;
9743 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9744 }
c19d1205 9745 else
b99bd4ef 9746 {
c19d1205 9747 /* See if we can do this with a 16-bit instruction. */
3d388997 9748 if (narrow)
b99bd4ef 9749 {
c19d1205
ZW
9750 inst.instruction = THUMB_OP16 (inst.instruction);
9751 inst.instruction |= inst.operands[0].reg;
9752 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 9753 }
c19d1205 9754 else
b99bd4ef 9755 {
c19d1205
ZW
9756 constraint (inst.operands[1].shifted
9757 && inst.operands[1].immisreg,
9758 _("shift must be constant"));
9759 if (inst.instruction < 0xffff)
9760 inst.instruction = THUMB_OP32 (inst.instruction);
9761 inst.instruction |= inst.operands[0].reg << r0off;
9762 encode_thumb32_shifted_operand (1);
b99bd4ef 9763 }
b99bd4ef
NC
9764 }
9765 }
9766 else
9767 {
c19d1205
ZW
9768 constraint (inst.instruction > 0xffff
9769 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
9770 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
9771 _("unshifted register required"));
9772 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9773 BAD_HIREG);
b99bd4ef 9774
c19d1205
ZW
9775 inst.instruction = THUMB_OP16 (inst.instruction);
9776 inst.instruction |= inst.operands[0].reg;
9777 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 9778 }
b99bd4ef
NC
9779}
9780
b05fe5cf 9781static void
c19d1205 9782do_t_mrs (void)
b05fe5cf 9783{
62b3e311 9784 int flags;
037e8744
JB
9785
9786 if (do_vfp_nsyn_mrs () == SUCCESS)
9787 return;
9788
62b3e311
PB
9789 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
9790 if (flags == 0)
9791 {
9792 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9793 _("selected processor does not support "
9794 "requested special purpose register"));
9795 }
9796 else
9797 {
9798 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9799 _("selected processor does not support "
9800 "requested special purpose register %x"));
9801 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9802 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
9803 _("'CPSR' or 'SPSR' expected"));
9804 }
5f4273c7 9805
c19d1205 9806 inst.instruction |= inst.operands[0].reg << 8;
62b3e311
PB
9807 inst.instruction |= (flags & SPSR_BIT) >> 2;
9808 inst.instruction |= inst.operands[1].imm & 0xff;
c19d1205 9809}
b05fe5cf 9810
c19d1205
ZW
9811static void
9812do_t_msr (void)
9813{
62b3e311
PB
9814 int flags;
9815
037e8744
JB
9816 if (do_vfp_nsyn_msr () == SUCCESS)
9817 return;
9818
c19d1205
ZW
9819 constraint (!inst.operands[1].isreg,
9820 _("Thumb encoding does not support an immediate here"));
62b3e311
PB
9821 flags = inst.operands[0].imm;
9822 if (flags & ~0xff)
9823 {
9824 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9825 _("selected processor does not support "
9826 "requested special purpose register"));
9827 }
9828 else
9829 {
9830 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9831 _("selected processor does not support "
9832 "requested special purpose register"));
9833 flags |= PSR_f;
9834 }
9835 inst.instruction |= (flags & SPSR_BIT) >> 2;
9836 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
9837 inst.instruction |= (flags & 0xff);
c19d1205
ZW
9838 inst.instruction |= inst.operands[1].reg << 16;
9839}
b05fe5cf 9840
c19d1205
ZW
9841static void
9842do_t_mul (void)
9843{
9844 if (!inst.operands[2].present)
9845 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 9846
c19d1205
ZW
9847 /* There is no 32-bit MULS and no 16-bit MUL. */
9848 if (unified_syntax && inst.instruction == T_MNEM_mul)
b05fe5cf 9849 {
c19d1205
ZW
9850 inst.instruction = THUMB_OP32 (inst.instruction);
9851 inst.instruction |= inst.operands[0].reg << 8;
9852 inst.instruction |= inst.operands[1].reg << 16;
9853 inst.instruction |= inst.operands[2].reg << 0;
b05fe5cf 9854 }
c19d1205 9855 else
b05fe5cf 9856 {
c19d1205
ZW
9857 constraint (!unified_syntax
9858 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
9859 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9860 BAD_HIREG);
b05fe5cf 9861
c19d1205
ZW
9862 inst.instruction = THUMB_OP16 (inst.instruction);
9863 inst.instruction |= inst.operands[0].reg;
b05fe5cf 9864
c19d1205
ZW
9865 if (inst.operands[0].reg == inst.operands[1].reg)
9866 inst.instruction |= inst.operands[2].reg << 3;
9867 else if (inst.operands[0].reg == inst.operands[2].reg)
9868 inst.instruction |= inst.operands[1].reg << 3;
9869 else
9870 constraint (1, _("dest must overlap one source register"));
9871 }
9872}
b05fe5cf 9873
c19d1205
ZW
9874static void
9875do_t_mull (void)
9876{
9877 inst.instruction |= inst.operands[0].reg << 12;
9878 inst.instruction |= inst.operands[1].reg << 8;
9879 inst.instruction |= inst.operands[2].reg << 16;
9880 inst.instruction |= inst.operands[3].reg;
b05fe5cf 9881
c19d1205
ZW
9882 if (inst.operands[0].reg == inst.operands[1].reg)
9883 as_tsktsk (_("rdhi and rdlo must be different"));
9884}
b05fe5cf 9885
c19d1205
ZW
9886static void
9887do_t_nop (void)
9888{
9889 if (unified_syntax)
9890 {
9891 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 9892 {
c19d1205
ZW
9893 inst.instruction = THUMB_OP32 (inst.instruction);
9894 inst.instruction |= inst.operands[0].imm;
9895 }
9896 else
9897 {
9898 inst.instruction = THUMB_OP16 (inst.instruction);
9899 inst.instruction |= inst.operands[0].imm << 4;
9900 }
9901 }
9902 else
9903 {
9904 constraint (inst.operands[0].present,
9905 _("Thumb does not support NOP with hints"));
9906 inst.instruction = 0x46c0;
9907 }
9908}
b05fe5cf 9909
c19d1205
ZW
9910static void
9911do_t_neg (void)
9912{
9913 if (unified_syntax)
9914 {
3d388997
PB
9915 bfd_boolean narrow;
9916
9917 if (THUMB_SETS_FLAGS (inst.instruction))
9918 narrow = (current_it_mask == 0);
9919 else
9920 narrow = (current_it_mask != 0);
9921 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9922 narrow = FALSE;
9923 if (inst.size_req == 4)
9924 narrow = FALSE;
9925
9926 if (!narrow)
c19d1205
ZW
9927 {
9928 inst.instruction = THUMB_OP32 (inst.instruction);
9929 inst.instruction |= inst.operands[0].reg << 8;
9930 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
9931 }
9932 else
9933 {
c19d1205
ZW
9934 inst.instruction = THUMB_OP16 (inst.instruction);
9935 inst.instruction |= inst.operands[0].reg;
9936 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
9937 }
9938 }
9939 else
9940 {
c19d1205
ZW
9941 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9942 BAD_HIREG);
9943 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9944
9945 inst.instruction = THUMB_OP16 (inst.instruction);
9946 inst.instruction |= inst.operands[0].reg;
9947 inst.instruction |= inst.operands[1].reg << 3;
9948 }
9949}
9950
9951static void
9952do_t_pkhbt (void)
9953{
9954 inst.instruction |= inst.operands[0].reg << 8;
9955 inst.instruction |= inst.operands[1].reg << 16;
9956 inst.instruction |= inst.operands[2].reg;
9957 if (inst.operands[3].present)
9958 {
9959 unsigned int val = inst.reloc.exp.X_add_number;
9960 constraint (inst.reloc.exp.X_op != O_constant,
9961 _("expression too complex"));
9962 inst.instruction |= (val & 0x1c) << 10;
9963 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 9964 }
c19d1205 9965}
b05fe5cf 9966
c19d1205
ZW
9967static void
9968do_t_pkhtb (void)
9969{
9970 if (!inst.operands[3].present)
9971 inst.instruction &= ~0x00000020;
9972 do_t_pkhbt ();
b05fe5cf
ZW
9973}
9974
c19d1205
ZW
9975static void
9976do_t_pld (void)
9977{
9978 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
9979}
b05fe5cf 9980
c19d1205
ZW
9981static void
9982do_t_push_pop (void)
b99bd4ef 9983{
e9f89963 9984 unsigned mask;
5f4273c7 9985
c19d1205
ZW
9986 constraint (inst.operands[0].writeback,
9987 _("push/pop do not support {reglist}^"));
9988 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9989 _("expression too complex"));
b99bd4ef 9990
e9f89963
PB
9991 mask = inst.operands[0].imm;
9992 if ((mask & ~0xff) == 0)
3c707909 9993 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 9994 else if ((inst.instruction == T_MNEM_push
e9f89963 9995 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 9996 || (inst.instruction == T_MNEM_pop
e9f89963 9997 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 9998 {
c19d1205
ZW
9999 inst.instruction = THUMB_OP16 (inst.instruction);
10000 inst.instruction |= THUMB_PP_PC_LR;
3c707909 10001 inst.instruction |= mask & 0xff;
c19d1205
ZW
10002 }
10003 else if (unified_syntax)
10004 {
3c707909 10005 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 10006 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
10007 }
10008 else
10009 {
10010 inst.error = _("invalid register list to push/pop instruction");
10011 return;
10012 }
c19d1205 10013}
b99bd4ef 10014
c19d1205
ZW
10015static void
10016do_t_rbit (void)
10017{
10018 inst.instruction |= inst.operands[0].reg << 8;
10019 inst.instruction |= inst.operands[1].reg << 16;
10020}
b99bd4ef 10021
c19d1205
ZW
10022static void
10023do_t_rev (void)
10024{
10025 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10026 && inst.size_req != 4)
10027 {
10028 inst.instruction = THUMB_OP16 (inst.instruction);
10029 inst.instruction |= inst.operands[0].reg;
10030 inst.instruction |= inst.operands[1].reg << 3;
10031 }
10032 else if (unified_syntax)
10033 {
10034 inst.instruction = THUMB_OP32 (inst.instruction);
10035 inst.instruction |= inst.operands[0].reg << 8;
10036 inst.instruction |= inst.operands[1].reg << 16;
10037 inst.instruction |= inst.operands[1].reg;
10038 }
10039 else
10040 inst.error = BAD_HIREG;
10041}
b99bd4ef 10042
c19d1205
ZW
10043static void
10044do_t_rsb (void)
10045{
10046 int Rd, Rs;
b99bd4ef 10047
c19d1205
ZW
10048 Rd = inst.operands[0].reg;
10049 Rs = (inst.operands[1].present
10050 ? inst.operands[1].reg /* Rd, Rs, foo */
10051 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 10052
c19d1205
ZW
10053 inst.instruction |= Rd << 8;
10054 inst.instruction |= Rs << 16;
10055 if (!inst.operands[2].isreg)
10056 {
026d3abb
PB
10057 bfd_boolean narrow;
10058
10059 if ((inst.instruction & 0x00100000) != 0)
10060 narrow = (current_it_mask == 0);
10061 else
10062 narrow = (current_it_mask != 0);
10063
10064 if (Rd > 7 || Rs > 7)
10065 narrow = FALSE;
10066
10067 if (inst.size_req == 4 || !unified_syntax)
10068 narrow = FALSE;
10069
10070 if (inst.reloc.exp.X_op != O_constant
10071 || inst.reloc.exp.X_add_number != 0)
10072 narrow = FALSE;
10073
10074 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10075 relaxation, but it doesn't seem worth the hassle. */
10076 if (narrow)
10077 {
10078 inst.reloc.type = BFD_RELOC_UNUSED;
10079 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10080 inst.instruction |= Rs << 3;
10081 inst.instruction |= Rd;
10082 }
10083 else
10084 {
10085 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10086 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10087 }
c19d1205
ZW
10088 }
10089 else
10090 encode_thumb32_shifted_operand (2);
10091}
b99bd4ef 10092
c19d1205
ZW
10093static void
10094do_t_setend (void)
10095{
dfa9f0d5 10096 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
10097 if (inst.operands[0].imm)
10098 inst.instruction |= 0x8;
10099}
b99bd4ef 10100
c19d1205
ZW
10101static void
10102do_t_shift (void)
10103{
10104 if (!inst.operands[1].present)
10105 inst.operands[1].reg = inst.operands[0].reg;
10106
10107 if (unified_syntax)
10108 {
3d388997
PB
10109 bfd_boolean narrow;
10110 int shift_kind;
10111
10112 switch (inst.instruction)
10113 {
10114 case T_MNEM_asr:
10115 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10116 case T_MNEM_lsl:
10117 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10118 case T_MNEM_lsr:
10119 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10120 case T_MNEM_ror:
10121 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10122 default: abort ();
10123 }
10124
10125 if (THUMB_SETS_FLAGS (inst.instruction))
10126 narrow = (current_it_mask == 0);
10127 else
10128 narrow = (current_it_mask != 0);
10129 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10130 narrow = FALSE;
10131 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10132 narrow = FALSE;
10133 if (inst.operands[2].isreg
10134 && (inst.operands[1].reg != inst.operands[0].reg
10135 || inst.operands[2].reg > 7))
10136 narrow = FALSE;
10137 if (inst.size_req == 4)
10138 narrow = FALSE;
10139
10140 if (!narrow)
c19d1205
ZW
10141 {
10142 if (inst.operands[2].isreg)
b99bd4ef 10143 {
c19d1205
ZW
10144 inst.instruction = THUMB_OP32 (inst.instruction);
10145 inst.instruction |= inst.operands[0].reg << 8;
10146 inst.instruction |= inst.operands[1].reg << 16;
10147 inst.instruction |= inst.operands[2].reg;
10148 }
10149 else
10150 {
10151 inst.operands[1].shifted = 1;
3d388997 10152 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
10153 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10154 ? T_MNEM_movs : T_MNEM_mov);
10155 inst.instruction |= inst.operands[0].reg << 8;
10156 encode_thumb32_shifted_operand (1);
10157 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10158 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
10159 }
10160 }
10161 else
10162 {
c19d1205 10163 if (inst.operands[2].isreg)
b99bd4ef 10164 {
3d388997 10165 switch (shift_kind)
b99bd4ef 10166 {
3d388997
PB
10167 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10168 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10169 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10170 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 10171 default: abort ();
b99bd4ef 10172 }
5f4273c7 10173
c19d1205
ZW
10174 inst.instruction |= inst.operands[0].reg;
10175 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
10176 }
10177 else
10178 {
3d388997 10179 switch (shift_kind)
b99bd4ef 10180 {
3d388997
PB
10181 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10182 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10183 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 10184 default: abort ();
b99bd4ef 10185 }
c19d1205
ZW
10186 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10187 inst.instruction |= inst.operands[0].reg;
10188 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10189 }
10190 }
c19d1205
ZW
10191 }
10192 else
10193 {
10194 constraint (inst.operands[0].reg > 7
10195 || inst.operands[1].reg > 7, BAD_HIREG);
10196 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 10197
c19d1205
ZW
10198 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
10199 {
10200 constraint (inst.operands[2].reg > 7, BAD_HIREG);
10201 constraint (inst.operands[0].reg != inst.operands[1].reg,
10202 _("source1 and dest must be same register"));
b99bd4ef 10203
c19d1205
ZW
10204 switch (inst.instruction)
10205 {
10206 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10207 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10208 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10209 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10210 default: abort ();
10211 }
5f4273c7 10212
c19d1205
ZW
10213 inst.instruction |= inst.operands[0].reg;
10214 inst.instruction |= inst.operands[2].reg << 3;
10215 }
10216 else
b99bd4ef 10217 {
c19d1205
ZW
10218 switch (inst.instruction)
10219 {
10220 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10221 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10222 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10223 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10224 default: abort ();
10225 }
10226 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10227 inst.instruction |= inst.operands[0].reg;
10228 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10229 }
10230 }
b99bd4ef
NC
10231}
10232
10233static void
c19d1205 10234do_t_simd (void)
b99bd4ef 10235{
c19d1205
ZW
10236 inst.instruction |= inst.operands[0].reg << 8;
10237 inst.instruction |= inst.operands[1].reg << 16;
10238 inst.instruction |= inst.operands[2].reg;
10239}
b99bd4ef 10240
c19d1205 10241static void
3eb17e6b 10242do_t_smc (void)
c19d1205
ZW
10243{
10244 unsigned int value = inst.reloc.exp.X_add_number;
10245 constraint (inst.reloc.exp.X_op != O_constant,
10246 _("expression too complex"));
10247 inst.reloc.type = BFD_RELOC_UNUSED;
10248 inst.instruction |= (value & 0xf000) >> 12;
10249 inst.instruction |= (value & 0x0ff0);
10250 inst.instruction |= (value & 0x000f) << 16;
10251}
b99bd4ef 10252
c19d1205
ZW
10253static void
10254do_t_ssat (void)
10255{
10256 inst.instruction |= inst.operands[0].reg << 8;
10257 inst.instruction |= inst.operands[1].imm - 1;
10258 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10259
c19d1205 10260 if (inst.operands[3].present)
b99bd4ef 10261 {
c19d1205
ZW
10262 constraint (inst.reloc.exp.X_op != O_constant,
10263 _("expression too complex"));
b99bd4ef 10264
c19d1205 10265 if (inst.reloc.exp.X_add_number != 0)
6189168b 10266 {
c19d1205
ZW
10267 if (inst.operands[3].shift_kind == SHIFT_ASR)
10268 inst.instruction |= 0x00200000; /* sh bit */
10269 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10270 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
6189168b 10271 }
c19d1205 10272 inst.reloc.type = BFD_RELOC_UNUSED;
6189168b 10273 }
b99bd4ef
NC
10274}
10275
0dd132b6 10276static void
c19d1205 10277do_t_ssat16 (void)
0dd132b6 10278{
c19d1205
ZW
10279 inst.instruction |= inst.operands[0].reg << 8;
10280 inst.instruction |= inst.operands[1].imm - 1;
10281 inst.instruction |= inst.operands[2].reg << 16;
10282}
0dd132b6 10283
c19d1205
ZW
10284static void
10285do_t_strex (void)
10286{
10287 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10288 || inst.operands[2].postind || inst.operands[2].writeback
10289 || inst.operands[2].immisreg || inst.operands[2].shifted
10290 || inst.operands[2].negative,
01cfc07f 10291 BAD_ADDR_MODE);
0dd132b6 10292
c19d1205
ZW
10293 inst.instruction |= inst.operands[0].reg << 8;
10294 inst.instruction |= inst.operands[1].reg << 12;
10295 inst.instruction |= inst.operands[2].reg << 16;
10296 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
10297}
10298
b99bd4ef 10299static void
c19d1205 10300do_t_strexd (void)
b99bd4ef 10301{
c19d1205
ZW
10302 if (!inst.operands[2].present)
10303 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 10304
c19d1205
ZW
10305 constraint (inst.operands[0].reg == inst.operands[1].reg
10306 || inst.operands[0].reg == inst.operands[2].reg
10307 || inst.operands[0].reg == inst.operands[3].reg
10308 || inst.operands[1].reg == inst.operands[2].reg,
10309 BAD_OVERLAP);
b99bd4ef 10310
c19d1205
ZW
10311 inst.instruction |= inst.operands[0].reg;
10312 inst.instruction |= inst.operands[1].reg << 12;
10313 inst.instruction |= inst.operands[2].reg << 8;
10314 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
10315}
10316
10317static void
c19d1205 10318do_t_sxtah (void)
b99bd4ef 10319{
c19d1205
ZW
10320 inst.instruction |= inst.operands[0].reg << 8;
10321 inst.instruction |= inst.operands[1].reg << 16;
10322 inst.instruction |= inst.operands[2].reg;
10323 inst.instruction |= inst.operands[3].imm << 4;
10324}
b99bd4ef 10325
c19d1205
ZW
10326static void
10327do_t_sxth (void)
10328{
10329 if (inst.instruction <= 0xffff && inst.size_req != 4
10330 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10331 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 10332 {
c19d1205
ZW
10333 inst.instruction = THUMB_OP16 (inst.instruction);
10334 inst.instruction |= inst.operands[0].reg;
10335 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 10336 }
c19d1205 10337 else if (unified_syntax)
b99bd4ef 10338 {
c19d1205
ZW
10339 if (inst.instruction <= 0xffff)
10340 inst.instruction = THUMB_OP32 (inst.instruction);
10341 inst.instruction |= inst.operands[0].reg << 8;
10342 inst.instruction |= inst.operands[1].reg;
10343 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 10344 }
c19d1205 10345 else
b99bd4ef 10346 {
c19d1205
ZW
10347 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10348 _("Thumb encoding does not support rotation"));
10349 constraint (1, BAD_HIREG);
b99bd4ef 10350 }
c19d1205 10351}
b99bd4ef 10352
c19d1205
ZW
10353static void
10354do_t_swi (void)
10355{
10356 inst.reloc.type = BFD_RELOC_ARM_SWI;
10357}
b99bd4ef 10358
92e90b6e
PB
10359static void
10360do_t_tb (void)
10361{
10362 int half;
10363
10364 half = (inst.instruction & 0x10) != 0;
dfa9f0d5
PB
10365 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10366 constraint (inst.operands[0].immisreg,
10367 _("instruction requires register index"));
92e90b6e
PB
10368 constraint (inst.operands[0].imm == 15,
10369 _("PC is not a valid index register"));
10370 constraint (!half && inst.operands[0].shifted,
10371 _("instruction does not allow shifted index"));
92e90b6e
PB
10372 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
10373}
10374
c19d1205
ZW
10375static void
10376do_t_usat (void)
10377{
10378 inst.instruction |= inst.operands[0].reg << 8;
10379 inst.instruction |= inst.operands[1].imm;
10380 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10381
c19d1205 10382 if (inst.operands[3].present)
b99bd4ef 10383 {
c19d1205
ZW
10384 constraint (inst.reloc.exp.X_op != O_constant,
10385 _("expression too complex"));
10386 if (inst.reloc.exp.X_add_number != 0)
10387 {
10388 if (inst.operands[3].shift_kind == SHIFT_ASR)
10389 inst.instruction |= 0x00200000; /* sh bit */
b99bd4ef 10390
c19d1205
ZW
10391 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10392 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10393 }
10394 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 10395 }
b99bd4ef
NC
10396}
10397
10398static void
c19d1205 10399do_t_usat16 (void)
b99bd4ef 10400{
c19d1205
ZW
10401 inst.instruction |= inst.operands[0].reg << 8;
10402 inst.instruction |= inst.operands[1].imm;
10403 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10404}
c19d1205 10405
5287ad62 10406/* Neon instruction encoder helpers. */
5f4273c7 10407
5287ad62 10408/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 10409
5287ad62
JB
10410/* An "invalid" code for the following tables. */
10411#define N_INV -1u
10412
10413struct neon_tab_entry
b99bd4ef 10414{
5287ad62
JB
10415 unsigned integer;
10416 unsigned float_or_poly;
10417 unsigned scalar_or_imm;
10418};
5f4273c7 10419
5287ad62
JB
10420/* Map overloaded Neon opcodes to their respective encodings. */
10421#define NEON_ENC_TAB \
10422 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10423 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10424 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10425 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10426 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10427 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10428 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10429 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10430 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10431 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10432 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10433 /* Register variants of the following two instructions are encoded as
10434 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
10435 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
10436 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
5287ad62
JB
10437 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10438 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10439 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10440 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10441 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10442 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10443 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10444 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10445 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10446 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10447 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10448 X(vshl, 0x0000400, N_INV, 0x0800510), \
10449 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10450 X(vand, 0x0000110, N_INV, 0x0800030), \
10451 X(vbic, 0x0100110, N_INV, 0x0800030), \
10452 X(veor, 0x1000110, N_INV, N_INV), \
10453 X(vorn, 0x0300110, N_INV, 0x0800010), \
10454 X(vorr, 0x0200110, N_INV, 0x0800010), \
10455 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10456 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10457 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10458 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10459 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10460 X(vst1, 0x0000000, 0x0800000, N_INV), \
10461 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10462 X(vst2, 0x0000100, 0x0800100, N_INV), \
10463 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10464 X(vst3, 0x0000200, 0x0800200, N_INV), \
10465 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10466 X(vst4, 0x0000300, 0x0800300, N_INV), \
10467 X(vmovn, 0x1b20200, N_INV, N_INV), \
10468 X(vtrn, 0x1b20080, N_INV, N_INV), \
10469 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
10470 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10471 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10472 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10473 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10474 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10475 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10476 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10477 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
10478
10479enum neon_opc
10480{
10481#define X(OPC,I,F,S) N_MNEM_##OPC
10482NEON_ENC_TAB
10483#undef X
10484};
b99bd4ef 10485
5287ad62
JB
10486static const struct neon_tab_entry neon_enc_tab[] =
10487{
10488#define X(OPC,I,F,S) { (I), (F), (S) }
10489NEON_ENC_TAB
10490#undef X
10491};
b99bd4ef 10492
5287ad62
JB
10493#define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10494#define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10495#define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10496#define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10497#define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10498#define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10499#define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10500#define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10501#define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
037e8744
JB
10502#define NEON_ENC_SINGLE(X) \
10503 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10504#define NEON_ENC_DOUBLE(X) \
10505 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 10506
037e8744
JB
10507/* Define shapes for instruction operands. The following mnemonic characters
10508 are used in this table:
5287ad62 10509
037e8744 10510 F - VFP S<n> register
5287ad62
JB
10511 D - Neon D<n> register
10512 Q - Neon Q<n> register
10513 I - Immediate
10514 S - Scalar
10515 R - ARM register
10516 L - D<n> register list
5f4273c7 10517
037e8744
JB
10518 This table is used to generate various data:
10519 - enumerations of the form NS_DDR to be used as arguments to
10520 neon_select_shape.
10521 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 10522 - a table used to drive neon_select_shape. */
b99bd4ef 10523
037e8744
JB
10524#define NEON_SHAPE_DEF \
10525 X(3, (D, D, D), DOUBLE), \
10526 X(3, (Q, Q, Q), QUAD), \
10527 X(3, (D, D, I), DOUBLE), \
10528 X(3, (Q, Q, I), QUAD), \
10529 X(3, (D, D, S), DOUBLE), \
10530 X(3, (Q, Q, S), QUAD), \
10531 X(2, (D, D), DOUBLE), \
10532 X(2, (Q, Q), QUAD), \
10533 X(2, (D, S), DOUBLE), \
10534 X(2, (Q, S), QUAD), \
10535 X(2, (D, R), DOUBLE), \
10536 X(2, (Q, R), QUAD), \
10537 X(2, (D, I), DOUBLE), \
10538 X(2, (Q, I), QUAD), \
10539 X(3, (D, L, D), DOUBLE), \
10540 X(2, (D, Q), MIXED), \
10541 X(2, (Q, D), MIXED), \
10542 X(3, (D, Q, I), MIXED), \
10543 X(3, (Q, D, I), MIXED), \
10544 X(3, (Q, D, D), MIXED), \
10545 X(3, (D, Q, Q), MIXED), \
10546 X(3, (Q, Q, D), MIXED), \
10547 X(3, (Q, D, S), MIXED), \
10548 X(3, (D, Q, S), MIXED), \
10549 X(4, (D, D, D, I), DOUBLE), \
10550 X(4, (Q, Q, Q, I), QUAD), \
10551 X(2, (F, F), SINGLE), \
10552 X(3, (F, F, F), SINGLE), \
10553 X(2, (F, I), SINGLE), \
10554 X(2, (F, D), MIXED), \
10555 X(2, (D, F), MIXED), \
10556 X(3, (F, F, I), MIXED), \
10557 X(4, (R, R, F, F), SINGLE), \
10558 X(4, (F, F, R, R), SINGLE), \
10559 X(3, (D, R, R), DOUBLE), \
10560 X(3, (R, R, D), DOUBLE), \
10561 X(2, (S, R), SINGLE), \
10562 X(2, (R, S), SINGLE), \
10563 X(2, (F, R), SINGLE), \
10564 X(2, (R, F), SINGLE)
10565
10566#define S2(A,B) NS_##A##B
10567#define S3(A,B,C) NS_##A##B##C
10568#define S4(A,B,C,D) NS_##A##B##C##D
10569
10570#define X(N, L, C) S##N L
10571
5287ad62
JB
10572enum neon_shape
10573{
037e8744
JB
10574 NEON_SHAPE_DEF,
10575 NS_NULL
5287ad62 10576};
b99bd4ef 10577
037e8744
JB
10578#undef X
10579#undef S2
10580#undef S3
10581#undef S4
10582
10583enum neon_shape_class
10584{
10585 SC_SINGLE,
10586 SC_DOUBLE,
10587 SC_QUAD,
10588 SC_MIXED
10589};
10590
10591#define X(N, L, C) SC_##C
10592
10593static enum neon_shape_class neon_shape_class[] =
10594{
10595 NEON_SHAPE_DEF
10596};
10597
10598#undef X
10599
10600enum neon_shape_el
10601{
10602 SE_F,
10603 SE_D,
10604 SE_Q,
10605 SE_I,
10606 SE_S,
10607 SE_R,
10608 SE_L
10609};
10610
10611/* Register widths of above. */
10612static unsigned neon_shape_el_size[] =
10613{
10614 32,
10615 64,
10616 128,
10617 0,
10618 32,
10619 32,
10620 0
10621};
10622
10623struct neon_shape_info
10624{
10625 unsigned els;
10626 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
10627};
10628
10629#define S2(A,B) { SE_##A, SE_##B }
10630#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10631#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10632
10633#define X(N, L, C) { N, S##N L }
10634
10635static struct neon_shape_info neon_shape_tab[] =
10636{
10637 NEON_SHAPE_DEF
10638};
10639
10640#undef X
10641#undef S2
10642#undef S3
10643#undef S4
10644
5287ad62
JB
10645/* Bit masks used in type checking given instructions.
10646 'N_EQK' means the type must be the same as (or based on in some way) the key
10647 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10648 set, various other bits can be set as well in order to modify the meaning of
10649 the type constraint. */
10650
10651enum neon_type_mask
10652{
10653 N_S8 = 0x000001,
10654 N_S16 = 0x000002,
10655 N_S32 = 0x000004,
10656 N_S64 = 0x000008,
10657 N_U8 = 0x000010,
10658 N_U16 = 0x000020,
10659 N_U32 = 0x000040,
10660 N_U64 = 0x000080,
10661 N_I8 = 0x000100,
10662 N_I16 = 0x000200,
10663 N_I32 = 0x000400,
10664 N_I64 = 0x000800,
10665 N_8 = 0x001000,
10666 N_16 = 0x002000,
10667 N_32 = 0x004000,
10668 N_64 = 0x008000,
10669 N_P8 = 0x010000,
10670 N_P16 = 0x020000,
10671 N_F32 = 0x040000,
037e8744
JB
10672 N_F64 = 0x080000,
10673 N_KEY = 0x100000, /* key element (main type specifier). */
10674 N_EQK = 0x200000, /* given operand has the same type & size as the key. */
10675 N_VFP = 0x400000, /* VFP mode: operand size must match register width. */
5287ad62
JB
10676 N_DBL = 0x000001, /* if N_EQK, this operand is twice the size. */
10677 N_HLF = 0x000002, /* if N_EQK, this operand is half the size. */
10678 N_SGN = 0x000004, /* if N_EQK, this operand is forced to be signed. */
10679 N_UNS = 0x000008, /* if N_EQK, this operand is forced to be unsigned. */
10680 N_INT = 0x000010, /* if N_EQK, this operand is forced to be integer. */
10681 N_FLT = 0x000020, /* if N_EQK, this operand is forced to be float. */
dcbf9037 10682 N_SIZ = 0x000040, /* if N_EQK, this operand is forced to be size-only. */
5287ad62 10683 N_UTYP = 0,
037e8744 10684 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
10685};
10686
dcbf9037
JB
10687#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10688
5287ad62
JB
10689#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10690#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10691#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10692#define N_SUF_32 (N_SU_32 | N_F32)
10693#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10694#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10695
10696/* Pass this as the first type argument to neon_check_type to ignore types
10697 altogether. */
10698#define N_IGNORE_TYPE (N_KEY | N_EQK)
10699
037e8744
JB
10700/* Select a "shape" for the current instruction (describing register types or
10701 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10702 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10703 function of operand parsing, so this function doesn't need to be called.
10704 Shapes should be listed in order of decreasing length. */
5287ad62
JB
10705
10706static enum neon_shape
037e8744 10707neon_select_shape (enum neon_shape shape, ...)
5287ad62 10708{
037e8744
JB
10709 va_list ap;
10710 enum neon_shape first_shape = shape;
5287ad62
JB
10711
10712 /* Fix missing optional operands. FIXME: we don't know at this point how
10713 many arguments we should have, so this makes the assumption that we have
10714 > 1. This is true of all current Neon opcodes, I think, but may not be
10715 true in the future. */
10716 if (!inst.operands[1].present)
10717 inst.operands[1] = inst.operands[0];
10718
037e8744 10719 va_start (ap, shape);
5f4273c7 10720
037e8744
JB
10721 for (; shape != NS_NULL; shape = va_arg (ap, int))
10722 {
10723 unsigned j;
10724 int matches = 1;
10725
10726 for (j = 0; j < neon_shape_tab[shape].els; j++)
10727 {
10728 if (!inst.operands[j].present)
10729 {
10730 matches = 0;
10731 break;
10732 }
10733
10734 switch (neon_shape_tab[shape].el[j])
10735 {
10736 case SE_F:
10737 if (!(inst.operands[j].isreg
10738 && inst.operands[j].isvec
10739 && inst.operands[j].issingle
10740 && !inst.operands[j].isquad))
10741 matches = 0;
10742 break;
10743
10744 case SE_D:
10745 if (!(inst.operands[j].isreg
10746 && inst.operands[j].isvec
10747 && !inst.operands[j].isquad
10748 && !inst.operands[j].issingle))
10749 matches = 0;
10750 break;
10751
10752 case SE_R:
10753 if (!(inst.operands[j].isreg
10754 && !inst.operands[j].isvec))
10755 matches = 0;
10756 break;
10757
10758 case SE_Q:
10759 if (!(inst.operands[j].isreg
10760 && inst.operands[j].isvec
10761 && inst.operands[j].isquad
10762 && !inst.operands[j].issingle))
10763 matches = 0;
10764 break;
10765
10766 case SE_I:
10767 if (!(!inst.operands[j].isreg
10768 && !inst.operands[j].isscalar))
10769 matches = 0;
10770 break;
10771
10772 case SE_S:
10773 if (!(!inst.operands[j].isreg
10774 && inst.operands[j].isscalar))
10775 matches = 0;
10776 break;
10777
10778 case SE_L:
10779 break;
10780 }
10781 }
10782 if (matches)
5287ad62 10783 break;
037e8744 10784 }
5f4273c7 10785
037e8744 10786 va_end (ap);
5287ad62 10787
037e8744
JB
10788 if (shape == NS_NULL && first_shape != NS_NULL)
10789 first_error (_("invalid instruction shape"));
5287ad62 10790
037e8744
JB
10791 return shape;
10792}
5287ad62 10793
037e8744
JB
10794/* True if SHAPE is predominantly a quadword operation (most of the time, this
10795 means the Q bit should be set). */
10796
10797static int
10798neon_quad (enum neon_shape shape)
10799{
10800 return neon_shape_class[shape] == SC_QUAD;
5287ad62 10801}
037e8744 10802
5287ad62
JB
10803static void
10804neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
10805 unsigned *g_size)
10806{
10807 /* Allow modification to be made to types which are constrained to be
10808 based on the key element, based on bits set alongside N_EQK. */
10809 if ((typebits & N_EQK) != 0)
10810 {
10811 if ((typebits & N_HLF) != 0)
10812 *g_size /= 2;
10813 else if ((typebits & N_DBL) != 0)
10814 *g_size *= 2;
10815 if ((typebits & N_SGN) != 0)
10816 *g_type = NT_signed;
10817 else if ((typebits & N_UNS) != 0)
10818 *g_type = NT_unsigned;
10819 else if ((typebits & N_INT) != 0)
10820 *g_type = NT_integer;
10821 else if ((typebits & N_FLT) != 0)
10822 *g_type = NT_float;
dcbf9037
JB
10823 else if ((typebits & N_SIZ) != 0)
10824 *g_type = NT_untyped;
5287ad62
JB
10825 }
10826}
5f4273c7 10827
5287ad62
JB
10828/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10829 operand type, i.e. the single type specified in a Neon instruction when it
10830 is the only one given. */
10831
10832static struct neon_type_el
10833neon_type_promote (struct neon_type_el *key, unsigned thisarg)
10834{
10835 struct neon_type_el dest = *key;
5f4273c7 10836
5287ad62 10837 assert ((thisarg & N_EQK) != 0);
5f4273c7 10838
5287ad62
JB
10839 neon_modify_type_size (thisarg, &dest.type, &dest.size);
10840
10841 return dest;
10842}
10843
10844/* Convert Neon type and size into compact bitmask representation. */
10845
10846static enum neon_type_mask
10847type_chk_of_el_type (enum neon_el_type type, unsigned size)
10848{
10849 switch (type)
10850 {
10851 case NT_untyped:
10852 switch (size)
10853 {
10854 case 8: return N_8;
10855 case 16: return N_16;
10856 case 32: return N_32;
10857 case 64: return N_64;
10858 default: ;
10859 }
10860 break;
10861
10862 case NT_integer:
10863 switch (size)
10864 {
10865 case 8: return N_I8;
10866 case 16: return N_I16;
10867 case 32: return N_I32;
10868 case 64: return N_I64;
10869 default: ;
10870 }
10871 break;
10872
10873 case NT_float:
037e8744
JB
10874 switch (size)
10875 {
10876 case 32: return N_F32;
10877 case 64: return N_F64;
10878 default: ;
10879 }
5287ad62
JB
10880 break;
10881
10882 case NT_poly:
10883 switch (size)
10884 {
10885 case 8: return N_P8;
10886 case 16: return N_P16;
10887 default: ;
10888 }
10889 break;
10890
10891 case NT_signed:
10892 switch (size)
10893 {
10894 case 8: return N_S8;
10895 case 16: return N_S16;
10896 case 32: return N_S32;
10897 case 64: return N_S64;
10898 default: ;
10899 }
10900 break;
10901
10902 case NT_unsigned:
10903 switch (size)
10904 {
10905 case 8: return N_U8;
10906 case 16: return N_U16;
10907 case 32: return N_U32;
10908 case 64: return N_U64;
10909 default: ;
10910 }
10911 break;
10912
10913 default: ;
10914 }
5f4273c7 10915
5287ad62
JB
10916 return N_UTYP;
10917}
10918
10919/* Convert compact Neon bitmask type representation to a type and size. Only
10920 handles the case where a single bit is set in the mask. */
10921
dcbf9037 10922static int
5287ad62
JB
10923el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
10924 enum neon_type_mask mask)
10925{
dcbf9037
JB
10926 if ((mask & N_EQK) != 0)
10927 return FAIL;
10928
5287ad62
JB
10929 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
10930 *size = 8;
dcbf9037 10931 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 10932 *size = 16;
dcbf9037 10933 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 10934 *size = 32;
037e8744 10935 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 10936 *size = 64;
dcbf9037
JB
10937 else
10938 return FAIL;
10939
5287ad62
JB
10940 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
10941 *type = NT_signed;
dcbf9037 10942 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 10943 *type = NT_unsigned;
dcbf9037 10944 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 10945 *type = NT_integer;
dcbf9037 10946 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 10947 *type = NT_untyped;
dcbf9037 10948 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 10949 *type = NT_poly;
037e8744 10950 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 10951 *type = NT_float;
dcbf9037
JB
10952 else
10953 return FAIL;
5f4273c7 10954
dcbf9037 10955 return SUCCESS;
5287ad62
JB
10956}
10957
10958/* Modify a bitmask of allowed types. This is only needed for type
10959 relaxation. */
10960
10961static unsigned
10962modify_types_allowed (unsigned allowed, unsigned mods)
10963{
10964 unsigned size;
10965 enum neon_el_type type;
10966 unsigned destmask;
10967 int i;
5f4273c7 10968
5287ad62 10969 destmask = 0;
5f4273c7 10970
5287ad62
JB
10971 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
10972 {
dcbf9037
JB
10973 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
10974 {
10975 neon_modify_type_size (mods, &type, &size);
10976 destmask |= type_chk_of_el_type (type, size);
10977 }
5287ad62 10978 }
5f4273c7 10979
5287ad62
JB
10980 return destmask;
10981}
10982
10983/* Check type and return type classification.
10984 The manual states (paraphrase): If one datatype is given, it indicates the
10985 type given in:
10986 - the second operand, if there is one
10987 - the operand, if there is no second operand
10988 - the result, if there are no operands.
10989 This isn't quite good enough though, so we use a concept of a "key" datatype
10990 which is set on a per-instruction basis, which is the one which matters when
10991 only one data type is written.
10992 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 10993 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
10994
10995static struct neon_type_el
10996neon_check_type (unsigned els, enum neon_shape ns, ...)
10997{
10998 va_list ap;
10999 unsigned i, pass, key_el = 0;
11000 unsigned types[NEON_MAX_TYPE_ELS];
11001 enum neon_el_type k_type = NT_invtype;
11002 unsigned k_size = -1u;
11003 struct neon_type_el badtype = {NT_invtype, -1};
11004 unsigned key_allowed = 0;
11005
11006 /* Optional registers in Neon instructions are always (not) in operand 1.
11007 Fill in the missing operand here, if it was omitted. */
11008 if (els > 1 && !inst.operands[1].present)
11009 inst.operands[1] = inst.operands[0];
11010
11011 /* Suck up all the varargs. */
11012 va_start (ap, ns);
11013 for (i = 0; i < els; i++)
11014 {
11015 unsigned thisarg = va_arg (ap, unsigned);
11016 if (thisarg == N_IGNORE_TYPE)
11017 {
11018 va_end (ap);
11019 return badtype;
11020 }
11021 types[i] = thisarg;
11022 if ((thisarg & N_KEY) != 0)
11023 key_el = i;
11024 }
11025 va_end (ap);
11026
dcbf9037
JB
11027 if (inst.vectype.elems > 0)
11028 for (i = 0; i < els; i++)
11029 if (inst.operands[i].vectype.type != NT_invtype)
11030 {
11031 first_error (_("types specified in both the mnemonic and operands"));
11032 return badtype;
11033 }
11034
5287ad62
JB
11035 /* Duplicate inst.vectype elements here as necessary.
11036 FIXME: No idea if this is exactly the same as the ARM assembler,
11037 particularly when an insn takes one register and one non-register
11038 operand. */
11039 if (inst.vectype.elems == 1 && els > 1)
11040 {
11041 unsigned j;
11042 inst.vectype.elems = els;
11043 inst.vectype.el[key_el] = inst.vectype.el[0];
11044 for (j = 0; j < els; j++)
dcbf9037
JB
11045 if (j != key_el)
11046 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11047 types[j]);
11048 }
11049 else if (inst.vectype.elems == 0 && els > 0)
11050 {
11051 unsigned j;
11052 /* No types were given after the mnemonic, so look for types specified
11053 after each operand. We allow some flexibility here; as long as the
11054 "key" operand has a type, we can infer the others. */
11055 for (j = 0; j < els; j++)
11056 if (inst.operands[j].vectype.type != NT_invtype)
11057 inst.vectype.el[j] = inst.operands[j].vectype;
11058
11059 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 11060 {
dcbf9037
JB
11061 for (j = 0; j < els; j++)
11062 if (inst.operands[j].vectype.type == NT_invtype)
11063 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11064 types[j]);
11065 }
11066 else
11067 {
11068 first_error (_("operand types can't be inferred"));
11069 return badtype;
5287ad62
JB
11070 }
11071 }
11072 else if (inst.vectype.elems != els)
11073 {
dcbf9037 11074 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
11075 return badtype;
11076 }
11077
11078 for (pass = 0; pass < 2; pass++)
11079 {
11080 for (i = 0; i < els; i++)
11081 {
11082 unsigned thisarg = types[i];
11083 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11084 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11085 enum neon_el_type g_type = inst.vectype.el[i].type;
11086 unsigned g_size = inst.vectype.el[i].size;
11087
11088 /* Decay more-specific signed & unsigned types to sign-insensitive
11089 integer types if sign-specific variants are unavailable. */
11090 if ((g_type == NT_signed || g_type == NT_unsigned)
11091 && (types_allowed & N_SU_ALL) == 0)
11092 g_type = NT_integer;
11093
11094 /* If only untyped args are allowed, decay any more specific types to
11095 them. Some instructions only care about signs for some element
11096 sizes, so handle that properly. */
11097 if ((g_size == 8 && (types_allowed & N_8) != 0)
11098 || (g_size == 16 && (types_allowed & N_16) != 0)
11099 || (g_size == 32 && (types_allowed & N_32) != 0)
11100 || (g_size == 64 && (types_allowed & N_64) != 0))
11101 g_type = NT_untyped;
11102
11103 if (pass == 0)
11104 {
11105 if ((thisarg & N_KEY) != 0)
11106 {
11107 k_type = g_type;
11108 k_size = g_size;
11109 key_allowed = thisarg & ~N_KEY;
11110 }
11111 }
11112 else
11113 {
037e8744
JB
11114 if ((thisarg & N_VFP) != 0)
11115 {
11116 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11117 unsigned regwidth = neon_shape_el_size[regshape], match;
11118
11119 /* In VFP mode, operands must match register widths. If we
11120 have a key operand, use its width, else use the width of
11121 the current operand. */
11122 if (k_size != -1u)
11123 match = k_size;
11124 else
11125 match = g_size;
11126
11127 if (regwidth != match)
11128 {
11129 first_error (_("operand size must match register width"));
11130 return badtype;
11131 }
11132 }
5f4273c7 11133
5287ad62
JB
11134 if ((thisarg & N_EQK) == 0)
11135 {
11136 unsigned given_type = type_chk_of_el_type (g_type, g_size);
11137
11138 if ((given_type & types_allowed) == 0)
11139 {
dcbf9037 11140 first_error (_("bad type in Neon instruction"));
5287ad62
JB
11141 return badtype;
11142 }
11143 }
11144 else
11145 {
11146 enum neon_el_type mod_k_type = k_type;
11147 unsigned mod_k_size = k_size;
11148 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
11149 if (g_type != mod_k_type || g_size != mod_k_size)
11150 {
dcbf9037 11151 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
11152 return badtype;
11153 }
11154 }
11155 }
11156 }
11157 }
11158
11159 return inst.vectype.el[key_el];
11160}
11161
037e8744 11162/* Neon-style VFP instruction forwarding. */
5287ad62 11163
037e8744
JB
11164/* Thumb VFP instructions have 0xE in the condition field. */
11165
11166static void
11167do_vfp_cond_or_thumb (void)
5287ad62
JB
11168{
11169 if (thumb_mode)
037e8744 11170 inst.instruction |= 0xe0000000;
5287ad62 11171 else
037e8744 11172 inst.instruction |= inst.cond << 28;
5287ad62
JB
11173}
11174
037e8744
JB
11175/* Look up and encode a simple mnemonic, for use as a helper function for the
11176 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11177 etc. It is assumed that operand parsing has already been done, and that the
11178 operands are in the form expected by the given opcode (this isn't necessarily
11179 the same as the form in which they were parsed, hence some massaging must
11180 take place before this function is called).
11181 Checks current arch version against that in the looked-up opcode. */
5287ad62 11182
037e8744
JB
11183static void
11184do_vfp_nsyn_opcode (const char *opname)
5287ad62 11185{
037e8744 11186 const struct asm_opcode *opcode;
5f4273c7 11187
037e8744 11188 opcode = hash_find (arm_ops_hsh, opname);
5287ad62 11189
037e8744
JB
11190 if (!opcode)
11191 abort ();
5287ad62 11192
037e8744
JB
11193 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11194 thumb_mode ? *opcode->tvariant : *opcode->avariant),
11195 _(BAD_FPU));
5287ad62 11196
037e8744
JB
11197 if (thumb_mode)
11198 {
11199 inst.instruction = opcode->tvalue;
11200 opcode->tencode ();
11201 }
11202 else
11203 {
11204 inst.instruction = (inst.cond << 28) | opcode->avalue;
11205 opcode->aencode ();
11206 }
11207}
5287ad62
JB
11208
11209static void
037e8744 11210do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 11211{
037e8744
JB
11212 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11213
11214 if (rs == NS_FFF)
11215 {
11216 if (is_add)
11217 do_vfp_nsyn_opcode ("fadds");
11218 else
11219 do_vfp_nsyn_opcode ("fsubs");
11220 }
11221 else
11222 {
11223 if (is_add)
11224 do_vfp_nsyn_opcode ("faddd");
11225 else
11226 do_vfp_nsyn_opcode ("fsubd");
11227 }
11228}
11229
11230/* Check operand types to see if this is a VFP instruction, and if so call
11231 PFN (). */
11232
11233static int
11234try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11235{
11236 enum neon_shape rs;
11237 struct neon_type_el et;
11238
11239 switch (args)
11240 {
11241 case 2:
11242 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11243 et = neon_check_type (2, rs,
11244 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11245 break;
5f4273c7 11246
037e8744
JB
11247 case 3:
11248 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11249 et = neon_check_type (3, rs,
11250 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11251 break;
11252
11253 default:
11254 abort ();
11255 }
11256
11257 if (et.type != NT_invtype)
11258 {
11259 pfn (rs);
11260 return SUCCESS;
11261 }
11262 else
11263 inst.error = NULL;
11264
11265 return FAIL;
11266}
11267
11268static void
11269do_vfp_nsyn_mla_mls (enum neon_shape rs)
11270{
11271 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 11272
037e8744
JB
11273 if (rs == NS_FFF)
11274 {
11275 if (is_mla)
11276 do_vfp_nsyn_opcode ("fmacs");
11277 else
11278 do_vfp_nsyn_opcode ("fmscs");
11279 }
11280 else
11281 {
11282 if (is_mla)
11283 do_vfp_nsyn_opcode ("fmacd");
11284 else
11285 do_vfp_nsyn_opcode ("fmscd");
11286 }
11287}
11288
11289static void
11290do_vfp_nsyn_mul (enum neon_shape rs)
11291{
11292 if (rs == NS_FFF)
11293 do_vfp_nsyn_opcode ("fmuls");
11294 else
11295 do_vfp_nsyn_opcode ("fmuld");
11296}
11297
11298static void
11299do_vfp_nsyn_abs_neg (enum neon_shape rs)
11300{
11301 int is_neg = (inst.instruction & 0x80) != 0;
11302 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
11303
11304 if (rs == NS_FF)
11305 {
11306 if (is_neg)
11307 do_vfp_nsyn_opcode ("fnegs");
11308 else
11309 do_vfp_nsyn_opcode ("fabss");
11310 }
11311 else
11312 {
11313 if (is_neg)
11314 do_vfp_nsyn_opcode ("fnegd");
11315 else
11316 do_vfp_nsyn_opcode ("fabsd");
11317 }
11318}
11319
11320/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11321 insns belong to Neon, and are handled elsewhere. */
11322
11323static void
11324do_vfp_nsyn_ldm_stm (int is_dbmode)
11325{
11326 int is_ldm = (inst.instruction & (1 << 20)) != 0;
11327 if (is_ldm)
11328 {
11329 if (is_dbmode)
11330 do_vfp_nsyn_opcode ("fldmdbs");
11331 else
11332 do_vfp_nsyn_opcode ("fldmias");
11333 }
11334 else
11335 {
11336 if (is_dbmode)
11337 do_vfp_nsyn_opcode ("fstmdbs");
11338 else
11339 do_vfp_nsyn_opcode ("fstmias");
11340 }
11341}
11342
037e8744
JB
11343static void
11344do_vfp_nsyn_sqrt (void)
11345{
11346 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11347 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11348
037e8744
JB
11349 if (rs == NS_FF)
11350 do_vfp_nsyn_opcode ("fsqrts");
11351 else
11352 do_vfp_nsyn_opcode ("fsqrtd");
11353}
11354
11355static void
11356do_vfp_nsyn_div (void)
11357{
11358 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11359 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11360 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11361
037e8744
JB
11362 if (rs == NS_FFF)
11363 do_vfp_nsyn_opcode ("fdivs");
11364 else
11365 do_vfp_nsyn_opcode ("fdivd");
11366}
11367
11368static void
11369do_vfp_nsyn_nmul (void)
11370{
11371 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11372 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11373 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11374
037e8744
JB
11375 if (rs == NS_FFF)
11376 {
11377 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11378 do_vfp_sp_dyadic ();
11379 }
11380 else
11381 {
11382 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11383 do_vfp_dp_rd_rn_rm ();
11384 }
11385 do_vfp_cond_or_thumb ();
11386}
11387
11388static void
11389do_vfp_nsyn_cmp (void)
11390{
11391 if (inst.operands[1].isreg)
11392 {
11393 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11394 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11395
037e8744
JB
11396 if (rs == NS_FF)
11397 {
11398 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11399 do_vfp_sp_monadic ();
11400 }
11401 else
11402 {
11403 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11404 do_vfp_dp_rd_rm ();
11405 }
11406 }
11407 else
11408 {
11409 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11410 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11411
11412 switch (inst.instruction & 0x0fffffff)
11413 {
11414 case N_MNEM_vcmp:
11415 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11416 break;
11417 case N_MNEM_vcmpe:
11418 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11419 break;
11420 default:
11421 abort ();
11422 }
5f4273c7 11423
037e8744
JB
11424 if (rs == NS_FI)
11425 {
11426 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11427 do_vfp_sp_compare_z ();
11428 }
11429 else
11430 {
11431 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11432 do_vfp_dp_rd ();
11433 }
11434 }
11435 do_vfp_cond_or_thumb ();
11436}
11437
11438static void
11439nsyn_insert_sp (void)
11440{
11441 inst.operands[1] = inst.operands[0];
11442 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11443 inst.operands[0].reg = 13;
11444 inst.operands[0].isreg = 1;
11445 inst.operands[0].writeback = 1;
11446 inst.operands[0].present = 1;
11447}
11448
11449static void
11450do_vfp_nsyn_push (void)
11451{
11452 nsyn_insert_sp ();
11453 if (inst.operands[1].issingle)
11454 do_vfp_nsyn_opcode ("fstmdbs");
11455 else
11456 do_vfp_nsyn_opcode ("fstmdbd");
11457}
11458
11459static void
11460do_vfp_nsyn_pop (void)
11461{
11462 nsyn_insert_sp ();
11463 if (inst.operands[1].issingle)
22b5b651 11464 do_vfp_nsyn_opcode ("fldmias");
037e8744 11465 else
22b5b651 11466 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
11467}
11468
11469/* Fix up Neon data-processing instructions, ORing in the correct bits for
11470 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11471
11472static unsigned
11473neon_dp_fixup (unsigned i)
11474{
11475 if (thumb_mode)
11476 {
11477 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11478 if (i & (1 << 24))
11479 i |= 1 << 28;
5f4273c7 11480
037e8744 11481 i &= ~(1 << 24);
5f4273c7 11482
037e8744
JB
11483 i |= 0xef000000;
11484 }
11485 else
11486 i |= 0xf2000000;
5f4273c7 11487
037e8744
JB
11488 return i;
11489}
11490
11491/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11492 (0, 1, 2, 3). */
11493
11494static unsigned
11495neon_logbits (unsigned x)
11496{
11497 return ffs (x) - 4;
11498}
11499
11500#define LOW4(R) ((R) & 0xf)
11501#define HI1(R) (((R) >> 4) & 1)
11502
11503/* Encode insns with bit pattern:
11504
11505 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11506 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 11507
037e8744
JB
11508 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11509 different meaning for some instruction. */
11510
11511static void
11512neon_three_same (int isquad, int ubit, int size)
11513{
11514 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11515 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11516 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11517 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11518 inst.instruction |= LOW4 (inst.operands[2].reg);
11519 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11520 inst.instruction |= (isquad != 0) << 6;
11521 inst.instruction |= (ubit != 0) << 24;
11522 if (size != -1)
11523 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 11524
037e8744
JB
11525 inst.instruction = neon_dp_fixup (inst.instruction);
11526}
11527
11528/* Encode instructions of the form:
11529
11530 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11531 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
11532
11533 Don't write size if SIZE == -1. */
11534
11535static void
11536neon_two_same (int qbit, int ubit, int size)
11537{
11538 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11539 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11540 inst.instruction |= LOW4 (inst.operands[1].reg);
11541 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11542 inst.instruction |= (qbit != 0) << 6;
11543 inst.instruction |= (ubit != 0) << 24;
11544
11545 if (size != -1)
11546 inst.instruction |= neon_logbits (size) << 18;
11547
11548 inst.instruction = neon_dp_fixup (inst.instruction);
11549}
11550
11551/* Neon instruction encoders, in approximate order of appearance. */
11552
11553static void
11554do_neon_dyadic_i_su (void)
11555{
037e8744 11556 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11557 struct neon_type_el et = neon_check_type (3, rs,
11558 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 11559 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11560}
11561
11562static void
11563do_neon_dyadic_i64_su (void)
11564{
037e8744 11565 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11566 struct neon_type_el et = neon_check_type (3, rs,
11567 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 11568 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11569}
11570
11571static void
11572neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
11573 unsigned immbits)
11574{
11575 unsigned size = et.size >> 3;
11576 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11577 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11578 inst.instruction |= LOW4 (inst.operands[1].reg);
11579 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11580 inst.instruction |= (isquad != 0) << 6;
11581 inst.instruction |= immbits << 16;
11582 inst.instruction |= (size >> 3) << 7;
11583 inst.instruction |= (size & 0x7) << 19;
11584 if (write_ubit)
11585 inst.instruction |= (uval != 0) << 24;
11586
11587 inst.instruction = neon_dp_fixup (inst.instruction);
11588}
11589
11590static void
11591do_neon_shl_imm (void)
11592{
11593 if (!inst.operands[2].isreg)
11594 {
037e8744 11595 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
11596 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
11597 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 11598 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
11599 }
11600 else
11601 {
037e8744 11602 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11603 struct neon_type_el et = neon_check_type (3, rs,
11604 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
11605 unsigned int tmp;
11606
11607 /* VSHL/VQSHL 3-register variants have syntax such as:
11608 vshl.xx Dd, Dm, Dn
11609 whereas other 3-register operations encoded by neon_three_same have
11610 syntax like:
11611 vadd.xx Dd, Dn, Dm
11612 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
11613 here. */
11614 tmp = inst.operands[2].reg;
11615 inst.operands[2].reg = inst.operands[1].reg;
11616 inst.operands[1].reg = tmp;
5287ad62 11617 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11618 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11619 }
11620}
11621
11622static void
11623do_neon_qshl_imm (void)
11624{
11625 if (!inst.operands[2].isreg)
11626 {
037e8744 11627 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 11628 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 11629
5287ad62 11630 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 11631 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
11632 inst.operands[2].imm);
11633 }
11634 else
11635 {
037e8744 11636 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11637 struct neon_type_el et = neon_check_type (3, rs,
11638 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
11639 unsigned int tmp;
11640
11641 /* See note in do_neon_shl_imm. */
11642 tmp = inst.operands[2].reg;
11643 inst.operands[2].reg = inst.operands[1].reg;
11644 inst.operands[1].reg = tmp;
5287ad62 11645 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11646 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11647 }
11648}
11649
627907b7
JB
11650static void
11651do_neon_rshl (void)
11652{
11653 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11654 struct neon_type_el et = neon_check_type (3, rs,
11655 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11656 unsigned int tmp;
11657
11658 tmp = inst.operands[2].reg;
11659 inst.operands[2].reg = inst.operands[1].reg;
11660 inst.operands[1].reg = tmp;
11661 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11662}
11663
5287ad62
JB
11664static int
11665neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
11666{
036dc3f7
PB
11667 /* Handle .I8 pseudo-instructions. */
11668 if (size == 8)
5287ad62 11669 {
5287ad62
JB
11670 /* Unfortunately, this will make everything apart from zero out-of-range.
11671 FIXME is this the intended semantics? There doesn't seem much point in
11672 accepting .I8 if so. */
11673 immediate |= immediate << 8;
11674 size = 16;
036dc3f7
PB
11675 }
11676
11677 if (size >= 32)
11678 {
11679 if (immediate == (immediate & 0x000000ff))
11680 {
11681 *immbits = immediate;
11682 return 0x1;
11683 }
11684 else if (immediate == (immediate & 0x0000ff00))
11685 {
11686 *immbits = immediate >> 8;
11687 return 0x3;
11688 }
11689 else if (immediate == (immediate & 0x00ff0000))
11690 {
11691 *immbits = immediate >> 16;
11692 return 0x5;
11693 }
11694 else if (immediate == (immediate & 0xff000000))
11695 {
11696 *immbits = immediate >> 24;
11697 return 0x7;
11698 }
11699 if ((immediate & 0xffff) != (immediate >> 16))
11700 goto bad_immediate;
11701 immediate &= 0xffff;
5287ad62
JB
11702 }
11703
11704 if (immediate == (immediate & 0x000000ff))
11705 {
11706 *immbits = immediate;
036dc3f7 11707 return 0x9;
5287ad62
JB
11708 }
11709 else if (immediate == (immediate & 0x0000ff00))
11710 {
11711 *immbits = immediate >> 8;
036dc3f7 11712 return 0xb;
5287ad62
JB
11713 }
11714
11715 bad_immediate:
dcbf9037 11716 first_error (_("immediate value out of range"));
5287ad62
JB
11717 return FAIL;
11718}
11719
11720/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11721 A, B, C, D. */
11722
11723static int
11724neon_bits_same_in_bytes (unsigned imm)
11725{
11726 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
11727 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
11728 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
11729 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
11730}
11731
11732/* For immediate of above form, return 0bABCD. */
11733
11734static unsigned
11735neon_squash_bits (unsigned imm)
11736{
11737 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
11738 | ((imm & 0x01000000) >> 21);
11739}
11740
136da414 11741/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
11742
11743static unsigned
11744neon_qfloat_bits (unsigned imm)
11745{
136da414 11746 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
11747}
11748
11749/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11750 the instruction. *OP is passed as the initial value of the op field, and
11751 may be set to a different value depending on the constant (i.e.
11752 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 11753 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 11754 try smaller element sizes. */
5287ad62
JB
11755
11756static int
c96612cc
JB
11757neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
11758 unsigned *immbits, int *op, int size,
11759 enum neon_el_type type)
5287ad62 11760{
c96612cc
JB
11761 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
11762 float. */
11763 if (type == NT_float && !float_p)
11764 return FAIL;
11765
136da414
JB
11766 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
11767 {
11768 if (size != 32 || *op == 1)
11769 return FAIL;
11770 *immbits = neon_qfloat_bits (immlo);
11771 return 0xf;
11772 }
036dc3f7
PB
11773
11774 if (size == 64)
5287ad62 11775 {
036dc3f7
PB
11776 if (neon_bits_same_in_bytes (immhi)
11777 && neon_bits_same_in_bytes (immlo))
11778 {
11779 if (*op == 1)
11780 return FAIL;
11781 *immbits = (neon_squash_bits (immhi) << 4)
11782 | neon_squash_bits (immlo);
11783 *op = 1;
11784 return 0xe;
11785 }
11786
11787 if (immhi != immlo)
11788 return FAIL;
5287ad62 11789 }
036dc3f7
PB
11790
11791 if (size >= 32)
5287ad62 11792 {
036dc3f7
PB
11793 if (immlo == (immlo & 0x000000ff))
11794 {
11795 *immbits = immlo;
11796 return 0x0;
11797 }
11798 else if (immlo == (immlo & 0x0000ff00))
11799 {
11800 *immbits = immlo >> 8;
11801 return 0x2;
11802 }
11803 else if (immlo == (immlo & 0x00ff0000))
11804 {
11805 *immbits = immlo >> 16;
11806 return 0x4;
11807 }
11808 else if (immlo == (immlo & 0xff000000))
11809 {
11810 *immbits = immlo >> 24;
11811 return 0x6;
11812 }
11813 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
11814 {
11815 *immbits = (immlo >> 8) & 0xff;
11816 return 0xc;
11817 }
11818 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
11819 {
11820 *immbits = (immlo >> 16) & 0xff;
11821 return 0xd;
11822 }
11823
11824 if ((immlo & 0xffff) != (immlo >> 16))
11825 return FAIL;
11826 immlo &= 0xffff;
5287ad62 11827 }
036dc3f7
PB
11828
11829 if (size >= 16)
5287ad62 11830 {
036dc3f7
PB
11831 if (immlo == (immlo & 0x000000ff))
11832 {
11833 *immbits = immlo;
11834 return 0x8;
11835 }
11836 else if (immlo == (immlo & 0x0000ff00))
11837 {
11838 *immbits = immlo >> 8;
11839 return 0xa;
11840 }
11841
11842 if ((immlo & 0xff) != (immlo >> 8))
11843 return FAIL;
11844 immlo &= 0xff;
5287ad62 11845 }
036dc3f7
PB
11846
11847 if (immlo == (immlo & 0x000000ff))
5287ad62 11848 {
036dc3f7
PB
11849 /* Don't allow MVN with 8-bit immediate. */
11850 if (*op == 1)
11851 return FAIL;
11852 *immbits = immlo;
11853 return 0xe;
5287ad62 11854 }
5287ad62
JB
11855
11856 return FAIL;
11857}
11858
11859/* Write immediate bits [7:0] to the following locations:
11860
11861 |28/24|23 19|18 16|15 4|3 0|
11862 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11863
11864 This function is used by VMOV/VMVN/VORR/VBIC. */
11865
11866static void
11867neon_write_immbits (unsigned immbits)
11868{
11869 inst.instruction |= immbits & 0xf;
11870 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
11871 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
11872}
11873
11874/* Invert low-order SIZE bits of XHI:XLO. */
11875
11876static void
11877neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
11878{
11879 unsigned immlo = xlo ? *xlo : 0;
11880 unsigned immhi = xhi ? *xhi : 0;
11881
11882 switch (size)
11883 {
11884 case 8:
11885 immlo = (~immlo) & 0xff;
11886 break;
11887
11888 case 16:
11889 immlo = (~immlo) & 0xffff;
11890 break;
11891
11892 case 64:
11893 immhi = (~immhi) & 0xffffffff;
11894 /* fall through. */
11895
11896 case 32:
11897 immlo = (~immlo) & 0xffffffff;
11898 break;
11899
11900 default:
11901 abort ();
11902 }
11903
11904 if (xlo)
11905 *xlo = immlo;
11906
11907 if (xhi)
11908 *xhi = immhi;
11909}
11910
11911static void
11912do_neon_logic (void)
11913{
11914 if (inst.operands[2].present && inst.operands[2].isreg)
11915 {
037e8744 11916 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11917 neon_check_type (3, rs, N_IGNORE_TYPE);
11918 /* U bit and size field were set as part of the bitmask. */
11919 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11920 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
11921 }
11922 else
11923 {
037e8744
JB
11924 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
11925 struct neon_type_el et = neon_check_type (2, rs,
11926 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62
JB
11927 enum neon_opc opcode = inst.instruction & 0x0fffffff;
11928 unsigned immbits;
11929 int cmode;
5f4273c7 11930
5287ad62
JB
11931 if (et.type == NT_invtype)
11932 return;
5f4273c7 11933
5287ad62
JB
11934 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11935
036dc3f7
PB
11936 immbits = inst.operands[1].imm;
11937 if (et.size == 64)
11938 {
11939 /* .i64 is a pseudo-op, so the immediate must be a repeating
11940 pattern. */
11941 if (immbits != (inst.operands[1].regisimm ?
11942 inst.operands[1].reg : 0))
11943 {
11944 /* Set immbits to an invalid constant. */
11945 immbits = 0xdeadbeef;
11946 }
11947 }
11948
5287ad62
JB
11949 switch (opcode)
11950 {
11951 case N_MNEM_vbic:
036dc3f7 11952 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 11953 break;
5f4273c7 11954
5287ad62 11955 case N_MNEM_vorr:
036dc3f7 11956 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 11957 break;
5f4273c7 11958
5287ad62
JB
11959 case N_MNEM_vand:
11960 /* Pseudo-instruction for VBIC. */
5287ad62
JB
11961 neon_invert_size (&immbits, 0, et.size);
11962 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11963 break;
5f4273c7 11964
5287ad62
JB
11965 case N_MNEM_vorn:
11966 /* Pseudo-instruction for VORR. */
5287ad62
JB
11967 neon_invert_size (&immbits, 0, et.size);
11968 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11969 break;
5f4273c7 11970
5287ad62
JB
11971 default:
11972 abort ();
11973 }
11974
11975 if (cmode == FAIL)
11976 return;
11977
037e8744 11978 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
11979 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11980 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11981 inst.instruction |= cmode << 8;
11982 neon_write_immbits (immbits);
5f4273c7 11983
5287ad62
JB
11984 inst.instruction = neon_dp_fixup (inst.instruction);
11985 }
11986}
11987
11988static void
11989do_neon_bitfield (void)
11990{
037e8744 11991 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 11992 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 11993 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
11994}
11995
11996static void
dcbf9037
JB
11997neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
11998 unsigned destbits)
5287ad62 11999{
037e8744 12000 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
12001 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12002 types | N_KEY);
5287ad62
JB
12003 if (et.type == NT_float)
12004 {
12005 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
037e8744 12006 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12007 }
12008 else
12009 {
12010 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12011 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
12012 }
12013}
12014
12015static void
12016do_neon_dyadic_if_su (void)
12017{
dcbf9037 12018 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
12019}
12020
12021static void
12022do_neon_dyadic_if_su_d (void)
12023{
12024 /* This version only allow D registers, but that constraint is enforced during
12025 operand parsing so we don't need to do anything extra here. */
dcbf9037 12026 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
12027}
12028
5287ad62
JB
12029static void
12030do_neon_dyadic_if_i_d (void)
12031{
428e3f1f
PB
12032 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12033 affected if we specify unsigned args. */
12034 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
12035}
12036
037e8744
JB
12037enum vfp_or_neon_is_neon_bits
12038{
12039 NEON_CHECK_CC = 1,
12040 NEON_CHECK_ARCH = 2
12041};
12042
12043/* Call this function if an instruction which may have belonged to the VFP or
12044 Neon instruction sets, but turned out to be a Neon instruction (due to the
12045 operand types involved, etc.). We have to check and/or fix-up a couple of
12046 things:
12047
12048 - Make sure the user hasn't attempted to make a Neon instruction
12049 conditional.
12050 - Alter the value in the condition code field if necessary.
12051 - Make sure that the arch supports Neon instructions.
12052
12053 Which of these operations take place depends on bits from enum
12054 vfp_or_neon_is_neon_bits.
12055
12056 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12057 current instruction's condition is COND_ALWAYS, the condition field is
12058 changed to inst.uncond_value. This is necessary because instructions shared
12059 between VFP and Neon may be conditional for the VFP variants only, and the
12060 unconditional Neon version must have, e.g., 0xF in the condition field. */
12061
12062static int
12063vfp_or_neon_is_neon (unsigned check)
12064{
12065 /* Conditions are always legal in Thumb mode (IT blocks). */
12066 if (!thumb_mode && (check & NEON_CHECK_CC))
12067 {
12068 if (inst.cond != COND_ALWAYS)
12069 {
12070 first_error (_(BAD_COND));
12071 return FAIL;
12072 }
12073 if (inst.uncond_value != -1)
12074 inst.instruction |= inst.uncond_value << 28;
12075 }
5f4273c7 12076
037e8744
JB
12077 if ((check & NEON_CHECK_ARCH)
12078 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12079 {
12080 first_error (_(BAD_FPU));
12081 return FAIL;
12082 }
5f4273c7 12083
037e8744
JB
12084 return SUCCESS;
12085}
12086
5287ad62
JB
12087static void
12088do_neon_addsub_if_i (void)
12089{
037e8744
JB
12090 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12091 return;
12092
12093 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12094 return;
12095
5287ad62
JB
12096 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12097 affected if we specify unsigned args. */
dcbf9037 12098 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
12099}
12100
12101/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12102 result to be:
12103 V<op> A,B (A is operand 0, B is operand 2)
12104 to mean:
12105 V<op> A,B,A
12106 not:
12107 V<op> A,B,B
12108 so handle that case specially. */
12109
12110static void
12111neon_exchange_operands (void)
12112{
12113 void *scratch = alloca (sizeof (inst.operands[0]));
12114 if (inst.operands[1].present)
12115 {
12116 /* Swap operands[1] and operands[2]. */
12117 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
12118 inst.operands[1] = inst.operands[2];
12119 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
12120 }
12121 else
12122 {
12123 inst.operands[1] = inst.operands[2];
12124 inst.operands[2] = inst.operands[0];
12125 }
12126}
12127
12128static void
12129neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12130{
12131 if (inst.operands[2].isreg)
12132 {
12133 if (invert)
12134 neon_exchange_operands ();
dcbf9037 12135 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
12136 }
12137 else
12138 {
037e8744 12139 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
12140 struct neon_type_el et = neon_check_type (2, rs,
12141 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62
JB
12142
12143 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12144 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12145 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12146 inst.instruction |= LOW4 (inst.operands[1].reg);
12147 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12148 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12149 inst.instruction |= (et.type == NT_float) << 10;
12150 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 12151
5287ad62
JB
12152 inst.instruction = neon_dp_fixup (inst.instruction);
12153 }
12154}
12155
12156static void
12157do_neon_cmp (void)
12158{
12159 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12160}
12161
12162static void
12163do_neon_cmp_inv (void)
12164{
12165 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12166}
12167
12168static void
12169do_neon_ceq (void)
12170{
12171 neon_compare (N_IF_32, N_IF_32, FALSE);
12172}
12173
12174/* For multiply instructions, we have the possibility of 16-bit or 32-bit
12175 scalars, which are encoded in 5 bits, M : Rm.
12176 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12177 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12178 index in M. */
12179
12180static unsigned
12181neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12182{
dcbf9037
JB
12183 unsigned regno = NEON_SCALAR_REG (scalar);
12184 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
12185
12186 switch (elsize)
12187 {
12188 case 16:
12189 if (regno > 7 || elno > 3)
12190 goto bad_scalar;
12191 return regno | (elno << 3);
5f4273c7 12192
5287ad62
JB
12193 case 32:
12194 if (regno > 15 || elno > 1)
12195 goto bad_scalar;
12196 return regno | (elno << 4);
12197
12198 default:
12199 bad_scalar:
dcbf9037 12200 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
12201 }
12202
12203 return 0;
12204}
12205
12206/* Encode multiply / multiply-accumulate scalar instructions. */
12207
12208static void
12209neon_mul_mac (struct neon_type_el et, int ubit)
12210{
dcbf9037
JB
12211 unsigned scalar;
12212
12213 /* Give a more helpful error message if we have an invalid type. */
12214 if (et.type == NT_invtype)
12215 return;
5f4273c7 12216
dcbf9037 12217 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
12218 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12219 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12220 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12221 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12222 inst.instruction |= LOW4 (scalar);
12223 inst.instruction |= HI1 (scalar) << 5;
12224 inst.instruction |= (et.type == NT_float) << 8;
12225 inst.instruction |= neon_logbits (et.size) << 20;
12226 inst.instruction |= (ubit != 0) << 24;
12227
12228 inst.instruction = neon_dp_fixup (inst.instruction);
12229}
12230
12231static void
12232do_neon_mac_maybe_scalar (void)
12233{
037e8744
JB
12234 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12235 return;
12236
12237 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12238 return;
12239
5287ad62
JB
12240 if (inst.operands[2].isscalar)
12241 {
037e8744 12242 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
12243 struct neon_type_el et = neon_check_type (3, rs,
12244 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
12245 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 12246 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
12247 }
12248 else
428e3f1f
PB
12249 {
12250 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12251 affected if we specify unsigned args. */
12252 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12253 }
5287ad62
JB
12254}
12255
12256static void
12257do_neon_tst (void)
12258{
037e8744 12259 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12260 struct neon_type_el et = neon_check_type (3, rs,
12261 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 12262 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
12263}
12264
12265/* VMUL with 3 registers allows the P8 type. The scalar version supports the
12266 same types as the MAC equivalents. The polynomial type for this instruction
12267 is encoded the same as the integer type. */
12268
12269static void
12270do_neon_mul (void)
12271{
037e8744
JB
12272 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
12273 return;
12274
12275 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12276 return;
12277
5287ad62
JB
12278 if (inst.operands[2].isscalar)
12279 do_neon_mac_maybe_scalar ();
12280 else
dcbf9037 12281 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
12282}
12283
12284static void
12285do_neon_qdmulh (void)
12286{
12287 if (inst.operands[2].isscalar)
12288 {
037e8744 12289 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
12290 struct neon_type_el et = neon_check_type (3, rs,
12291 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12292 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 12293 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
12294 }
12295 else
12296 {
037e8744 12297 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12298 struct neon_type_el et = neon_check_type (3, rs,
12299 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12300 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12301 /* The U bit (rounding) comes from bit mask. */
037e8744 12302 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
12303 }
12304}
12305
12306static void
12307do_neon_fcmp_absolute (void)
12308{
037e8744 12309 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12310 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12311 /* Size field comes from bit mask. */
037e8744 12312 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
12313}
12314
12315static void
12316do_neon_fcmp_absolute_inv (void)
12317{
12318 neon_exchange_operands ();
12319 do_neon_fcmp_absolute ();
12320}
12321
12322static void
12323do_neon_step (void)
12324{
037e8744 12325 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 12326 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 12327 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12328}
12329
12330static void
12331do_neon_abs_neg (void)
12332{
037e8744
JB
12333 enum neon_shape rs;
12334 struct neon_type_el et;
5f4273c7 12335
037e8744
JB
12336 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
12337 return;
12338
12339 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12340 return;
12341
12342 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12343 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 12344
5287ad62
JB
12345 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12346 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12347 inst.instruction |= LOW4 (inst.operands[1].reg);
12348 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12349 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12350 inst.instruction |= (et.type == NT_float) << 10;
12351 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 12352
5287ad62
JB
12353 inst.instruction = neon_dp_fixup (inst.instruction);
12354}
12355
12356static void
12357do_neon_sli (void)
12358{
037e8744 12359 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12360 struct neon_type_el et = neon_check_type (2, rs,
12361 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12362 int imm = inst.operands[2].imm;
12363 constraint (imm < 0 || (unsigned)imm >= et.size,
12364 _("immediate out of range for insert"));
037e8744 12365 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
12366}
12367
12368static void
12369do_neon_sri (void)
12370{
037e8744 12371 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12372 struct neon_type_el et = neon_check_type (2, rs,
12373 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12374 int imm = inst.operands[2].imm;
12375 constraint (imm < 1 || (unsigned)imm > et.size,
12376 _("immediate out of range for insert"));
037e8744 12377 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
12378}
12379
12380static void
12381do_neon_qshlu_imm (void)
12382{
037e8744 12383 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12384 struct neon_type_el et = neon_check_type (2, rs,
12385 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
12386 int imm = inst.operands[2].imm;
12387 constraint (imm < 0 || (unsigned)imm >= et.size,
12388 _("immediate out of range for shift"));
12389 /* Only encodes the 'U present' variant of the instruction.
12390 In this case, signed types have OP (bit 8) set to 0.
12391 Unsigned types have OP set to 1. */
12392 inst.instruction |= (et.type == NT_unsigned) << 8;
12393 /* The rest of the bits are the same as other immediate shifts. */
037e8744 12394 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
12395}
12396
12397static void
12398do_neon_qmovn (void)
12399{
12400 struct neon_type_el et = neon_check_type (2, NS_DQ,
12401 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12402 /* Saturating move where operands can be signed or unsigned, and the
12403 destination has the same signedness. */
12404 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12405 if (et.type == NT_unsigned)
12406 inst.instruction |= 0xc0;
12407 else
12408 inst.instruction |= 0x80;
12409 neon_two_same (0, 1, et.size / 2);
12410}
12411
12412static void
12413do_neon_qmovun (void)
12414{
12415 struct neon_type_el et = neon_check_type (2, NS_DQ,
12416 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12417 /* Saturating move with unsigned results. Operands must be signed. */
12418 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12419 neon_two_same (0, 1, et.size / 2);
12420}
12421
12422static void
12423do_neon_rshift_sat_narrow (void)
12424{
12425 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12426 or unsigned. If operands are unsigned, results must also be unsigned. */
12427 struct neon_type_el et = neon_check_type (2, NS_DQI,
12428 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12429 int imm = inst.operands[2].imm;
12430 /* This gets the bounds check, size encoding and immediate bits calculation
12431 right. */
12432 et.size /= 2;
5f4273c7 12433
5287ad62
JB
12434 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12435 VQMOVN.I<size> <Dd>, <Qm>. */
12436 if (imm == 0)
12437 {
12438 inst.operands[2].present = 0;
12439 inst.instruction = N_MNEM_vqmovn;
12440 do_neon_qmovn ();
12441 return;
12442 }
5f4273c7 12443
5287ad62
JB
12444 constraint (imm < 1 || (unsigned)imm > et.size,
12445 _("immediate out of range"));
12446 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12447}
12448
12449static void
12450do_neon_rshift_sat_narrow_u (void)
12451{
12452 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12453 or unsigned. If operands are unsigned, results must also be unsigned. */
12454 struct neon_type_el et = neon_check_type (2, NS_DQI,
12455 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12456 int imm = inst.operands[2].imm;
12457 /* This gets the bounds check, size encoding and immediate bits calculation
12458 right. */
12459 et.size /= 2;
12460
12461 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12462 VQMOVUN.I<size> <Dd>, <Qm>. */
12463 if (imm == 0)
12464 {
12465 inst.operands[2].present = 0;
12466 inst.instruction = N_MNEM_vqmovun;
12467 do_neon_qmovun ();
12468 return;
12469 }
12470
12471 constraint (imm < 1 || (unsigned)imm > et.size,
12472 _("immediate out of range"));
12473 /* FIXME: The manual is kind of unclear about what value U should have in
12474 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12475 must be 1. */
12476 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12477}
12478
12479static void
12480do_neon_movn (void)
12481{
12482 struct neon_type_el et = neon_check_type (2, NS_DQ,
12483 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12484 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12485 neon_two_same (0, 1, et.size / 2);
12486}
12487
12488static void
12489do_neon_rshift_narrow (void)
12490{
12491 struct neon_type_el et = neon_check_type (2, NS_DQI,
12492 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12493 int imm = inst.operands[2].imm;
12494 /* This gets the bounds check, size encoding and immediate bits calculation
12495 right. */
12496 et.size /= 2;
5f4273c7 12497
5287ad62
JB
12498 /* If immediate is zero then we are a pseudo-instruction for
12499 VMOVN.I<size> <Dd>, <Qm> */
12500 if (imm == 0)
12501 {
12502 inst.operands[2].present = 0;
12503 inst.instruction = N_MNEM_vmovn;
12504 do_neon_movn ();
12505 return;
12506 }
5f4273c7 12507
5287ad62
JB
12508 constraint (imm < 1 || (unsigned)imm > et.size,
12509 _("immediate out of range for narrowing operation"));
12510 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12511}
12512
12513static void
12514do_neon_shll (void)
12515{
12516 /* FIXME: Type checking when lengthening. */
12517 struct neon_type_el et = neon_check_type (2, NS_QDI,
12518 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12519 unsigned imm = inst.operands[2].imm;
12520
12521 if (imm == et.size)
12522 {
12523 /* Maximum shift variant. */
12524 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12525 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12526 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12527 inst.instruction |= LOW4 (inst.operands[1].reg);
12528 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12529 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 12530
5287ad62
JB
12531 inst.instruction = neon_dp_fixup (inst.instruction);
12532 }
12533 else
12534 {
12535 /* A more-specific type check for non-max versions. */
12536 et = neon_check_type (2, NS_QDI,
12537 N_EQK | N_DBL, N_SU_32 | N_KEY);
12538 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12539 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12540 }
12541}
12542
037e8744 12543/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
12544 the current instruction is. */
12545
12546static int
12547neon_cvt_flavour (enum neon_shape rs)
12548{
037e8744
JB
12549#define CVT_VAR(C,X,Y) \
12550 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12551 if (et.type != NT_invtype) \
12552 { \
12553 inst.error = NULL; \
12554 return (C); \
5287ad62
JB
12555 }
12556 struct neon_type_el et;
037e8744
JB
12557 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
12558 || rs == NS_FF) ? N_VFP : 0;
12559 /* The instruction versions which take an immediate take one register
12560 argument, which is extended to the width of the full register. Thus the
12561 "source" and "destination" registers must have the same width. Hack that
12562 here by making the size equal to the key (wider, in this case) operand. */
12563 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 12564
5287ad62
JB
12565 CVT_VAR (0, N_S32, N_F32);
12566 CVT_VAR (1, N_U32, N_F32);
12567 CVT_VAR (2, N_F32, N_S32);
12568 CVT_VAR (3, N_F32, N_U32);
5f4273c7 12569
037e8744 12570 whole_reg = N_VFP;
5f4273c7 12571
037e8744
JB
12572 /* VFP instructions. */
12573 CVT_VAR (4, N_F32, N_F64);
12574 CVT_VAR (5, N_F64, N_F32);
12575 CVT_VAR (6, N_S32, N_F64 | key);
12576 CVT_VAR (7, N_U32, N_F64 | key);
12577 CVT_VAR (8, N_F64 | key, N_S32);
12578 CVT_VAR (9, N_F64 | key, N_U32);
12579 /* VFP instructions with bitshift. */
12580 CVT_VAR (10, N_F32 | key, N_S16);
12581 CVT_VAR (11, N_F32 | key, N_U16);
12582 CVT_VAR (12, N_F64 | key, N_S16);
12583 CVT_VAR (13, N_F64 | key, N_U16);
12584 CVT_VAR (14, N_S16, N_F32 | key);
12585 CVT_VAR (15, N_U16, N_F32 | key);
12586 CVT_VAR (16, N_S16, N_F64 | key);
12587 CVT_VAR (17, N_U16, N_F64 | key);
5f4273c7 12588
5287ad62
JB
12589 return -1;
12590#undef CVT_VAR
12591}
12592
037e8744
JB
12593/* Neon-syntax VFP conversions. */
12594
5287ad62 12595static void
037e8744 12596do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 12597{
037e8744 12598 const char *opname = 0;
5f4273c7 12599
037e8744 12600 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 12601 {
037e8744
JB
12602 /* Conversions with immediate bitshift. */
12603 const char *enc[] =
12604 {
12605 "ftosls",
12606 "ftouls",
12607 "fsltos",
12608 "fultos",
12609 NULL,
12610 NULL,
12611 "ftosld",
12612 "ftould",
12613 "fsltod",
12614 "fultod",
12615 "fshtos",
12616 "fuhtos",
12617 "fshtod",
12618 "fuhtod",
12619 "ftoshs",
12620 "ftouhs",
12621 "ftoshd",
12622 "ftouhd"
12623 };
12624
12625 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12626 {
12627 opname = enc[flavour];
12628 constraint (inst.operands[0].reg != inst.operands[1].reg,
12629 _("operands 0 and 1 must be the same register"));
12630 inst.operands[1] = inst.operands[2];
12631 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
12632 }
5287ad62
JB
12633 }
12634 else
12635 {
037e8744
JB
12636 /* Conversions without bitshift. */
12637 const char *enc[] =
12638 {
12639 "ftosis",
12640 "ftouis",
12641 "fsitos",
12642 "fuitos",
12643 "fcvtsd",
12644 "fcvtds",
12645 "ftosid",
12646 "ftouid",
12647 "fsitod",
12648 "fuitod"
12649 };
12650
12651 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12652 opname = enc[flavour];
12653 }
12654
12655 if (opname)
12656 do_vfp_nsyn_opcode (opname);
12657}
12658
12659static void
12660do_vfp_nsyn_cvtz (void)
12661{
12662 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
12663 int flavour = neon_cvt_flavour (rs);
12664 const char *enc[] =
12665 {
12666 "ftosizs",
12667 "ftouizs",
12668 NULL,
12669 NULL,
12670 NULL,
12671 NULL,
12672 "ftosizd",
12673 "ftouizd"
12674 };
12675
12676 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
12677 do_vfp_nsyn_opcode (enc[flavour]);
12678}
12679
12680static void
12681do_neon_cvt (void)
12682{
12683 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
12684 NS_FD, NS_DF, NS_FF, NS_NULL);
12685 int flavour = neon_cvt_flavour (rs);
12686
12687 /* VFP rather than Neon conversions. */
12688 if (flavour >= 4)
12689 {
12690 do_vfp_nsyn_cvt (rs, flavour);
12691 return;
12692 }
12693
12694 switch (rs)
12695 {
12696 case NS_DDI:
12697 case NS_QQI:
12698 {
12699 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12700 return;
12701
12702 /* Fixed-point conversion with #0 immediate is encoded as an
12703 integer conversion. */
12704 if (inst.operands[2].present && inst.operands[2].imm == 0)
12705 goto int_encode;
12706 unsigned immbits = 32 - inst.operands[2].imm;
12707 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12708 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12709 if (flavour != -1)
12710 inst.instruction |= enctab[flavour];
12711 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12712 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12713 inst.instruction |= LOW4 (inst.operands[1].reg);
12714 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12715 inst.instruction |= neon_quad (rs) << 6;
12716 inst.instruction |= 1 << 21;
12717 inst.instruction |= immbits << 16;
12718
12719 inst.instruction = neon_dp_fixup (inst.instruction);
12720 }
12721 break;
12722
12723 case NS_DD:
12724 case NS_QQ:
12725 int_encode:
12726 {
12727 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
12728
12729 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12730
12731 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12732 return;
12733
12734 if (flavour != -1)
12735 inst.instruction |= enctab[flavour];
12736
12737 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12738 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12739 inst.instruction |= LOW4 (inst.operands[1].reg);
12740 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12741 inst.instruction |= neon_quad (rs) << 6;
12742 inst.instruction |= 2 << 18;
12743
12744 inst.instruction = neon_dp_fixup (inst.instruction);
12745 }
12746 break;
12747
12748 default:
12749 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12750 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 12751 }
5287ad62
JB
12752}
12753
12754static void
12755neon_move_immediate (void)
12756{
037e8744
JB
12757 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12758 struct neon_type_el et = neon_check_type (2, rs,
12759 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 12760 unsigned immlo, immhi = 0, immbits;
c96612cc 12761 int op, cmode, float_p;
5287ad62 12762
037e8744
JB
12763 constraint (et.type == NT_invtype,
12764 _("operand size must be specified for immediate VMOV"));
12765
5287ad62
JB
12766 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12767 op = (inst.instruction & (1 << 5)) != 0;
12768
12769 immlo = inst.operands[1].imm;
12770 if (inst.operands[1].regisimm)
12771 immhi = inst.operands[1].reg;
12772
12773 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
12774 _("immediate has bits set outside the operand size"));
12775
c96612cc
JB
12776 float_p = inst.operands[1].immisfloat;
12777
12778 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 12779 et.size, et.type)) == FAIL)
5287ad62
JB
12780 {
12781 /* Invert relevant bits only. */
12782 neon_invert_size (&immlo, &immhi, et.size);
12783 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12784 with one or the other; those cases are caught by
12785 neon_cmode_for_move_imm. */
12786 op = !op;
c96612cc
JB
12787 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
12788 &op, et.size, et.type)) == FAIL)
5287ad62 12789 {
dcbf9037 12790 first_error (_("immediate out of range"));
5287ad62
JB
12791 return;
12792 }
12793 }
12794
12795 inst.instruction &= ~(1 << 5);
12796 inst.instruction |= op << 5;
12797
12798 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12799 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 12800 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12801 inst.instruction |= cmode << 8;
12802
12803 neon_write_immbits (immbits);
12804}
12805
12806static void
12807do_neon_mvn (void)
12808{
12809 if (inst.operands[1].isreg)
12810 {
037e8744 12811 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 12812
5287ad62
JB
12813 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12814 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12815 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12816 inst.instruction |= LOW4 (inst.operands[1].reg);
12817 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12818 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12819 }
12820 else
12821 {
12822 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12823 neon_move_immediate ();
12824 }
12825
12826 inst.instruction = neon_dp_fixup (inst.instruction);
12827}
12828
12829/* Encode instructions of form:
12830
12831 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 12832 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
12833
12834static void
12835neon_mixed_length (struct neon_type_el et, unsigned size)
12836{
12837 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12838 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12839 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12840 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12841 inst.instruction |= LOW4 (inst.operands[2].reg);
12842 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12843 inst.instruction |= (et.type == NT_unsigned) << 24;
12844 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 12845
5287ad62
JB
12846 inst.instruction = neon_dp_fixup (inst.instruction);
12847}
12848
12849static void
12850do_neon_dyadic_long (void)
12851{
12852 /* FIXME: Type checking for lengthening op. */
12853 struct neon_type_el et = neon_check_type (3, NS_QDD,
12854 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
12855 neon_mixed_length (et, et.size);
12856}
12857
12858static void
12859do_neon_abal (void)
12860{
12861 struct neon_type_el et = neon_check_type (3, NS_QDD,
12862 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
12863 neon_mixed_length (et, et.size);
12864}
12865
12866static void
12867neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
12868{
12869 if (inst.operands[2].isscalar)
12870 {
dcbf9037
JB
12871 struct neon_type_el et = neon_check_type (3, NS_QDS,
12872 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
5287ad62
JB
12873 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12874 neon_mul_mac (et, et.type == NT_unsigned);
12875 }
12876 else
12877 {
12878 struct neon_type_el et = neon_check_type (3, NS_QDD,
12879 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
12880 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12881 neon_mixed_length (et, et.size);
12882 }
12883}
12884
12885static void
12886do_neon_mac_maybe_scalar_long (void)
12887{
12888 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
12889}
12890
12891static void
12892do_neon_dyadic_wide (void)
12893{
12894 struct neon_type_el et = neon_check_type (3, NS_QQD,
12895 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
12896 neon_mixed_length (et, et.size);
12897}
12898
12899static void
12900do_neon_dyadic_narrow (void)
12901{
12902 struct neon_type_el et = neon_check_type (3, NS_QDD,
12903 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
12904 /* Operand sign is unimportant, and the U bit is part of the opcode,
12905 so force the operand type to integer. */
12906 et.type = NT_integer;
5287ad62
JB
12907 neon_mixed_length (et, et.size / 2);
12908}
12909
12910static void
12911do_neon_mul_sat_scalar_long (void)
12912{
12913 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
12914}
12915
12916static void
12917do_neon_vmull (void)
12918{
12919 if (inst.operands[2].isscalar)
12920 do_neon_mac_maybe_scalar_long ();
12921 else
12922 {
12923 struct neon_type_el et = neon_check_type (3, NS_QDD,
12924 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
12925 if (et.type == NT_poly)
12926 inst.instruction = NEON_ENC_POLY (inst.instruction);
12927 else
12928 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12929 /* For polynomial encoding, size field must be 0b00 and the U bit must be
12930 zero. Should be OK as-is. */
12931 neon_mixed_length (et, et.size);
12932 }
12933}
12934
12935static void
12936do_neon_ext (void)
12937{
037e8744 12938 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
12939 struct neon_type_el et = neon_check_type (3, rs,
12940 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12941 unsigned imm = (inst.operands[3].imm * et.size) / 8;
3b8d421e 12942 constraint (imm >= (neon_quad (rs) ? 16 : 8), _("shift out of range"));
5287ad62
JB
12943 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12944 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12945 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12946 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12947 inst.instruction |= LOW4 (inst.operands[2].reg);
12948 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 12949 inst.instruction |= neon_quad (rs) << 6;
5287ad62 12950 inst.instruction |= imm << 8;
5f4273c7 12951
5287ad62
JB
12952 inst.instruction = neon_dp_fixup (inst.instruction);
12953}
12954
12955static void
12956do_neon_rev (void)
12957{
037e8744 12958 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12959 struct neon_type_el et = neon_check_type (2, rs,
12960 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12961 unsigned op = (inst.instruction >> 7) & 3;
12962 /* N (width of reversed regions) is encoded as part of the bitmask. We
12963 extract it here to check the elements to be reversed are smaller.
12964 Otherwise we'd get a reserved instruction. */
12965 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
12966 assert (elsize != 0);
12967 constraint (et.size >= elsize,
12968 _("elements must be smaller than reversal region"));
037e8744 12969 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
12970}
12971
12972static void
12973do_neon_dup (void)
12974{
12975 if (inst.operands[1].isscalar)
12976 {
037e8744 12977 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
12978 struct neon_type_el et = neon_check_type (2, rs,
12979 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 12980 unsigned sizebits = et.size >> 3;
dcbf9037 12981 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 12982 int logsize = neon_logbits (et.size);
dcbf9037 12983 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
12984
12985 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
12986 return;
12987
5287ad62
JB
12988 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12989 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12990 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12991 inst.instruction |= LOW4 (dm);
12992 inst.instruction |= HI1 (dm) << 5;
037e8744 12993 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12994 inst.instruction |= x << 17;
12995 inst.instruction |= sizebits << 16;
5f4273c7 12996
5287ad62
JB
12997 inst.instruction = neon_dp_fixup (inst.instruction);
12998 }
12999 else
13000 {
037e8744
JB
13001 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
13002 struct neon_type_el et = neon_check_type (2, rs,
13003 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62
JB
13004 /* Duplicate ARM register to lanes of vector. */
13005 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
13006 switch (et.size)
13007 {
13008 case 8: inst.instruction |= 0x400000; break;
13009 case 16: inst.instruction |= 0x000020; break;
13010 case 32: inst.instruction |= 0x000000; break;
13011 default: break;
13012 }
13013 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13014 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
13015 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 13016 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
13017 /* The encoding for this instruction is identical for the ARM and Thumb
13018 variants, except for the condition field. */
037e8744 13019 do_vfp_cond_or_thumb ();
5287ad62
JB
13020 }
13021}
13022
13023/* VMOV has particularly many variations. It can be one of:
13024 0. VMOV<c><q> <Qd>, <Qm>
13025 1. VMOV<c><q> <Dd>, <Dm>
13026 (Register operations, which are VORR with Rm = Rn.)
13027 2. VMOV<c><q>.<dt> <Qd>, #<imm>
13028 3. VMOV<c><q>.<dt> <Dd>, #<imm>
13029 (Immediate loads.)
13030 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
13031 (ARM register to scalar.)
13032 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
13033 (Two ARM registers to vector.)
13034 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
13035 (Scalar to ARM register.)
13036 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
13037 (Vector to two ARM registers.)
037e8744
JB
13038 8. VMOV.F32 <Sd>, <Sm>
13039 9. VMOV.F64 <Dd>, <Dm>
13040 (VFP register moves.)
13041 10. VMOV.F32 <Sd>, #imm
13042 11. VMOV.F64 <Dd>, #imm
13043 (VFP float immediate load.)
13044 12. VMOV <Rd>, <Sm>
13045 (VFP single to ARM reg.)
13046 13. VMOV <Sd>, <Rm>
13047 (ARM reg to VFP single.)
13048 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13049 (Two ARM regs to two VFP singles.)
13050 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13051 (Two VFP singles to two ARM regs.)
5f4273c7 13052
037e8744
JB
13053 These cases can be disambiguated using neon_select_shape, except cases 1/9
13054 and 3/11 which depend on the operand type too.
5f4273c7 13055
5287ad62 13056 All the encoded bits are hardcoded by this function.
5f4273c7 13057
b7fc2769
JB
13058 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13059 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 13060
5287ad62 13061 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 13062 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
13063
13064static void
13065do_neon_mov (void)
13066{
037e8744
JB
13067 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
13068 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
13069 NS_NULL);
13070 struct neon_type_el et;
13071 const char *ldconst = 0;
5287ad62 13072
037e8744 13073 switch (rs)
5287ad62 13074 {
037e8744
JB
13075 case NS_DD: /* case 1/9. */
13076 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13077 /* It is not an error here if no type is given. */
13078 inst.error = NULL;
13079 if (et.type == NT_float && et.size == 64)
5287ad62 13080 {
037e8744
JB
13081 do_vfp_nsyn_opcode ("fcpyd");
13082 break;
5287ad62 13083 }
037e8744 13084 /* fall through. */
5287ad62 13085
037e8744
JB
13086 case NS_QQ: /* case 0/1. */
13087 {
13088 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13089 return;
13090 /* The architecture manual I have doesn't explicitly state which
13091 value the U bit should have for register->register moves, but
13092 the equivalent VORR instruction has U = 0, so do that. */
13093 inst.instruction = 0x0200110;
13094 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13095 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13096 inst.instruction |= LOW4 (inst.operands[1].reg);
13097 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13098 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13099 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13100 inst.instruction |= neon_quad (rs) << 6;
13101
13102 inst.instruction = neon_dp_fixup (inst.instruction);
13103 }
13104 break;
5f4273c7 13105
037e8744
JB
13106 case NS_DI: /* case 3/11. */
13107 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13108 inst.error = NULL;
13109 if (et.type == NT_float && et.size == 64)
5287ad62 13110 {
037e8744
JB
13111 /* case 11 (fconstd). */
13112 ldconst = "fconstd";
13113 goto encode_fconstd;
5287ad62 13114 }
037e8744
JB
13115 /* fall through. */
13116
13117 case NS_QI: /* case 2/3. */
13118 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13119 return;
13120 inst.instruction = 0x0800010;
13121 neon_move_immediate ();
13122 inst.instruction = neon_dp_fixup (inst.instruction);
5287ad62 13123 break;
5f4273c7 13124
037e8744
JB
13125 case NS_SR: /* case 4. */
13126 {
13127 unsigned bcdebits = 0;
13128 struct neon_type_el et = neon_check_type (2, NS_NULL,
13129 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13130 int logsize = neon_logbits (et.size);
13131 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
13132 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
13133
13134 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13135 _(BAD_FPU));
13136 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13137 && et.size != 32, _(BAD_FPU));
13138 constraint (et.type == NT_invtype, _("bad type for scalar"));
13139 constraint (x >= 64 / et.size, _("scalar index out of range"));
13140
13141 switch (et.size)
13142 {
13143 case 8: bcdebits = 0x8; break;
13144 case 16: bcdebits = 0x1; break;
13145 case 32: bcdebits = 0x0; break;
13146 default: ;
13147 }
13148
13149 bcdebits |= x << logsize;
13150
13151 inst.instruction = 0xe000b10;
13152 do_vfp_cond_or_thumb ();
13153 inst.instruction |= LOW4 (dn) << 16;
13154 inst.instruction |= HI1 (dn) << 7;
13155 inst.instruction |= inst.operands[1].reg << 12;
13156 inst.instruction |= (bcdebits & 3) << 5;
13157 inst.instruction |= (bcdebits >> 2) << 21;
13158 }
13159 break;
5f4273c7 13160
037e8744 13161 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 13162 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 13163 _(BAD_FPU));
b7fc2769 13164
037e8744
JB
13165 inst.instruction = 0xc400b10;
13166 do_vfp_cond_or_thumb ();
13167 inst.instruction |= LOW4 (inst.operands[0].reg);
13168 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13169 inst.instruction |= inst.operands[1].reg << 12;
13170 inst.instruction |= inst.operands[2].reg << 16;
13171 break;
5f4273c7 13172
037e8744
JB
13173 case NS_RS: /* case 6. */
13174 {
13175 struct neon_type_el et = neon_check_type (2, NS_NULL,
13176 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
13177 unsigned logsize = neon_logbits (et.size);
13178 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
13179 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
13180 unsigned abcdebits = 0;
13181
13182 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13183 _(BAD_FPU));
13184 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13185 && et.size != 32, _(BAD_FPU));
13186 constraint (et.type == NT_invtype, _("bad type for scalar"));
13187 constraint (x >= 64 / et.size, _("scalar index out of range"));
13188
13189 switch (et.size)
13190 {
13191 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
13192 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
13193 case 32: abcdebits = 0x00; break;
13194 default: ;
13195 }
13196
13197 abcdebits |= x << logsize;
13198 inst.instruction = 0xe100b10;
13199 do_vfp_cond_or_thumb ();
13200 inst.instruction |= LOW4 (dn) << 16;
13201 inst.instruction |= HI1 (dn) << 7;
13202 inst.instruction |= inst.operands[0].reg << 12;
13203 inst.instruction |= (abcdebits & 3) << 5;
13204 inst.instruction |= (abcdebits >> 2) << 21;
13205 }
13206 break;
5f4273c7 13207
037e8744
JB
13208 case NS_RRD: /* case 7 (fmrrd). */
13209 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13210 _(BAD_FPU));
13211
13212 inst.instruction = 0xc500b10;
13213 do_vfp_cond_or_thumb ();
13214 inst.instruction |= inst.operands[0].reg << 12;
13215 inst.instruction |= inst.operands[1].reg << 16;
13216 inst.instruction |= LOW4 (inst.operands[2].reg);
13217 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13218 break;
5f4273c7 13219
037e8744
JB
13220 case NS_FF: /* case 8 (fcpys). */
13221 do_vfp_nsyn_opcode ("fcpys");
13222 break;
5f4273c7 13223
037e8744
JB
13224 case NS_FI: /* case 10 (fconsts). */
13225 ldconst = "fconsts";
13226 encode_fconstd:
13227 if (is_quarter_float (inst.operands[1].imm))
5287ad62 13228 {
037e8744
JB
13229 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
13230 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
13231 }
13232 else
037e8744
JB
13233 first_error (_("immediate out of range"));
13234 break;
5f4273c7 13235
037e8744
JB
13236 case NS_RF: /* case 12 (fmrs). */
13237 do_vfp_nsyn_opcode ("fmrs");
13238 break;
5f4273c7 13239
037e8744
JB
13240 case NS_FR: /* case 13 (fmsr). */
13241 do_vfp_nsyn_opcode ("fmsr");
13242 break;
5f4273c7 13243
037e8744
JB
13244 /* The encoders for the fmrrs and fmsrr instructions expect three operands
13245 (one of which is a list), but we have parsed four. Do some fiddling to
13246 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13247 expect. */
13248 case NS_RRFF: /* case 14 (fmrrs). */
13249 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
13250 _("VFP registers must be adjacent"));
13251 inst.operands[2].imm = 2;
13252 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13253 do_vfp_nsyn_opcode ("fmrrs");
13254 break;
5f4273c7 13255
037e8744
JB
13256 case NS_FFRR: /* case 15 (fmsrr). */
13257 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
13258 _("VFP registers must be adjacent"));
13259 inst.operands[1] = inst.operands[2];
13260 inst.operands[2] = inst.operands[3];
13261 inst.operands[0].imm = 2;
13262 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13263 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 13264 break;
5f4273c7 13265
5287ad62
JB
13266 default:
13267 abort ();
13268 }
13269}
13270
13271static void
13272do_neon_rshift_round_imm (void)
13273{
037e8744 13274 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13275 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13276 int imm = inst.operands[2].imm;
13277
13278 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
13279 if (imm == 0)
13280 {
13281 inst.operands[2].present = 0;
13282 do_neon_mov ();
13283 return;
13284 }
13285
13286 constraint (imm < 1 || (unsigned)imm > et.size,
13287 _("immediate out of range for shift"));
037e8744 13288 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13289 et.size - imm);
13290}
13291
13292static void
13293do_neon_movl (void)
13294{
13295 struct neon_type_el et = neon_check_type (2, NS_QD,
13296 N_EQK | N_DBL, N_SU_32 | N_KEY);
13297 unsigned sizebits = et.size >> 3;
13298 inst.instruction |= sizebits << 19;
13299 neon_two_same (0, et.type == NT_unsigned, -1);
13300}
13301
13302static void
13303do_neon_trn (void)
13304{
037e8744 13305 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13306 struct neon_type_el et = neon_check_type (2, rs,
13307 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13308 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 13309 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13310}
13311
13312static void
13313do_neon_zip_uzp (void)
13314{
037e8744 13315 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13316 struct neon_type_el et = neon_check_type (2, rs,
13317 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13318 if (rs == NS_DD && et.size == 32)
13319 {
13320 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
13321 inst.instruction = N_MNEM_vtrn;
13322 do_neon_trn ();
13323 return;
13324 }
037e8744 13325 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13326}
13327
13328static void
13329do_neon_sat_abs_neg (void)
13330{
037e8744 13331 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13332 struct neon_type_el et = neon_check_type (2, rs,
13333 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 13334 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13335}
13336
13337static void
13338do_neon_pair_long (void)
13339{
037e8744 13340 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13341 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
13342 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
13343 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 13344 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13345}
13346
13347static void
13348do_neon_recip_est (void)
13349{
037e8744 13350 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13351 struct neon_type_el et = neon_check_type (2, rs,
13352 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
13353 inst.instruction |= (et.type == NT_float) << 8;
037e8744 13354 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13355}
13356
13357static void
13358do_neon_cls (void)
13359{
037e8744 13360 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13361 struct neon_type_el et = neon_check_type (2, rs,
13362 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 13363 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13364}
13365
13366static void
13367do_neon_clz (void)
13368{
037e8744 13369 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13370 struct neon_type_el et = neon_check_type (2, rs,
13371 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 13372 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13373}
13374
13375static void
13376do_neon_cnt (void)
13377{
037e8744 13378 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13379 struct neon_type_el et = neon_check_type (2, rs,
13380 N_EQK | N_INT, N_8 | N_KEY);
037e8744 13381 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13382}
13383
13384static void
13385do_neon_swp (void)
13386{
037e8744
JB
13387 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13388 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
13389}
13390
13391static void
13392do_neon_tbl_tbx (void)
13393{
13394 unsigned listlenbits;
dcbf9037 13395 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 13396
5287ad62
JB
13397 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
13398 {
dcbf9037 13399 first_error (_("bad list length for table lookup"));
5287ad62
JB
13400 return;
13401 }
5f4273c7 13402
5287ad62
JB
13403 listlenbits = inst.operands[1].imm - 1;
13404 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13405 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13406 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13407 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13408 inst.instruction |= LOW4 (inst.operands[2].reg);
13409 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13410 inst.instruction |= listlenbits << 8;
5f4273c7 13411
5287ad62
JB
13412 inst.instruction = neon_dp_fixup (inst.instruction);
13413}
13414
13415static void
13416do_neon_ldm_stm (void)
13417{
13418 /* P, U and L bits are part of bitmask. */
13419 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13420 unsigned offsetbits = inst.operands[1].imm * 2;
13421
037e8744
JB
13422 if (inst.operands[1].issingle)
13423 {
13424 do_vfp_nsyn_ldm_stm (is_dbmode);
13425 return;
13426 }
13427
5287ad62
JB
13428 constraint (is_dbmode && !inst.operands[0].writeback,
13429 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13430
13431 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13432 _("register list must contain at least 1 and at most 16 "
13433 "registers"));
13434
13435 inst.instruction |= inst.operands[0].reg << 16;
13436 inst.instruction |= inst.operands[0].writeback << 21;
13437 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13438 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13439
13440 inst.instruction |= offsetbits;
5f4273c7 13441
037e8744 13442 do_vfp_cond_or_thumb ();
5287ad62
JB
13443}
13444
13445static void
13446do_neon_ldr_str (void)
13447{
5287ad62 13448 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 13449
037e8744
JB
13450 if (inst.operands[0].issingle)
13451 {
cd2f129f
JB
13452 if (is_ldr)
13453 do_vfp_nsyn_opcode ("flds");
13454 else
13455 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
13456 }
13457 else
5287ad62 13458 {
cd2f129f
JB
13459 if (is_ldr)
13460 do_vfp_nsyn_opcode ("fldd");
5287ad62 13461 else
cd2f129f 13462 do_vfp_nsyn_opcode ("fstd");
5287ad62 13463 }
5287ad62
JB
13464}
13465
13466/* "interleave" version also handles non-interleaving register VLD1/VST1
13467 instructions. */
13468
13469static void
13470do_neon_ld_st_interleave (void)
13471{
037e8744 13472 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
13473 N_8 | N_16 | N_32 | N_64);
13474 unsigned alignbits = 0;
13475 unsigned idx;
13476 /* The bits in this table go:
13477 0: register stride of one (0) or two (1)
13478 1,2: register list length, minus one (1, 2, 3, 4).
13479 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13480 We use -1 for invalid entries. */
13481 const int typetable[] =
13482 {
13483 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13484 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13485 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13486 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13487 };
13488 int typebits;
13489
dcbf9037
JB
13490 if (et.type == NT_invtype)
13491 return;
13492
5287ad62
JB
13493 if (inst.operands[1].immisalign)
13494 switch (inst.operands[1].imm >> 8)
13495 {
13496 case 64: alignbits = 1; break;
13497 case 128:
13498 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13499 goto bad_alignment;
13500 alignbits = 2;
13501 break;
13502 case 256:
13503 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13504 goto bad_alignment;
13505 alignbits = 3;
13506 break;
13507 default:
13508 bad_alignment:
dcbf9037 13509 first_error (_("bad alignment"));
5287ad62
JB
13510 return;
13511 }
13512
13513 inst.instruction |= alignbits << 4;
13514 inst.instruction |= neon_logbits (et.size) << 6;
13515
13516 /* Bits [4:6] of the immediate in a list specifier encode register stride
13517 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13518 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13519 up the right value for "type" in a table based on this value and the given
13520 list style, then stick it back. */
13521 idx = ((inst.operands[0].imm >> 4) & 7)
13522 | (((inst.instruction >> 8) & 3) << 3);
13523
13524 typebits = typetable[idx];
5f4273c7 13525
5287ad62
JB
13526 constraint (typebits == -1, _("bad list type for instruction"));
13527
13528 inst.instruction &= ~0xf00;
13529 inst.instruction |= typebits << 8;
13530}
13531
13532/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13533 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13534 otherwise. The variable arguments are a list of pairs of legal (size, align)
13535 values, terminated with -1. */
13536
13537static int
13538neon_alignment_bit (int size, int align, int *do_align, ...)
13539{
13540 va_list ap;
13541 int result = FAIL, thissize, thisalign;
5f4273c7 13542
5287ad62
JB
13543 if (!inst.operands[1].immisalign)
13544 {
13545 *do_align = 0;
13546 return SUCCESS;
13547 }
5f4273c7 13548
5287ad62
JB
13549 va_start (ap, do_align);
13550
13551 do
13552 {
13553 thissize = va_arg (ap, int);
13554 if (thissize == -1)
13555 break;
13556 thisalign = va_arg (ap, int);
13557
13558 if (size == thissize && align == thisalign)
13559 result = SUCCESS;
13560 }
13561 while (result != SUCCESS);
13562
13563 va_end (ap);
13564
13565 if (result == SUCCESS)
13566 *do_align = 1;
13567 else
dcbf9037 13568 first_error (_("unsupported alignment for instruction"));
5f4273c7 13569
5287ad62
JB
13570 return result;
13571}
13572
13573static void
13574do_neon_ld_st_lane (void)
13575{
037e8744 13576 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
13577 int align_good, do_align = 0;
13578 int logsize = neon_logbits (et.size);
13579 int align = inst.operands[1].imm >> 8;
13580 int n = (inst.instruction >> 8) & 3;
13581 int max_el = 64 / et.size;
5f4273c7 13582
dcbf9037
JB
13583 if (et.type == NT_invtype)
13584 return;
5f4273c7 13585
5287ad62
JB
13586 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
13587 _("bad list length"));
13588 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
13589 _("scalar index out of range"));
13590 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
13591 && et.size == 8,
13592 _("stride of 2 unavailable when element size is 8"));
5f4273c7 13593
5287ad62
JB
13594 switch (n)
13595 {
13596 case 0: /* VLD1 / VST1. */
13597 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
13598 32, 32, -1);
13599 if (align_good == FAIL)
13600 return;
13601 if (do_align)
13602 {
13603 unsigned alignbits = 0;
13604 switch (et.size)
13605 {
13606 case 16: alignbits = 0x1; break;
13607 case 32: alignbits = 0x3; break;
13608 default: ;
13609 }
13610 inst.instruction |= alignbits << 4;
13611 }
13612 break;
13613
13614 case 1: /* VLD2 / VST2. */
13615 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
13616 32, 64, -1);
13617 if (align_good == FAIL)
13618 return;
13619 if (do_align)
13620 inst.instruction |= 1 << 4;
13621 break;
13622
13623 case 2: /* VLD3 / VST3. */
13624 constraint (inst.operands[1].immisalign,
13625 _("can't use alignment with this instruction"));
13626 break;
13627
13628 case 3: /* VLD4 / VST4. */
13629 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13630 16, 64, 32, 64, 32, 128, -1);
13631 if (align_good == FAIL)
13632 return;
13633 if (do_align)
13634 {
13635 unsigned alignbits = 0;
13636 switch (et.size)
13637 {
13638 case 8: alignbits = 0x1; break;
13639 case 16: alignbits = 0x1; break;
13640 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
13641 default: ;
13642 }
13643 inst.instruction |= alignbits << 4;
13644 }
13645 break;
13646
13647 default: ;
13648 }
13649
13650 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13651 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13652 inst.instruction |= 1 << (4 + logsize);
5f4273c7 13653
5287ad62
JB
13654 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
13655 inst.instruction |= logsize << 10;
13656}
13657
13658/* Encode single n-element structure to all lanes VLD<n> instructions. */
13659
13660static void
13661do_neon_ld_dup (void)
13662{
037e8744 13663 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
13664 int align_good, do_align = 0;
13665
dcbf9037
JB
13666 if (et.type == NT_invtype)
13667 return;
13668
5287ad62
JB
13669 switch ((inst.instruction >> 8) & 3)
13670 {
13671 case 0: /* VLD1. */
13672 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
13673 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13674 &do_align, 16, 16, 32, 32, -1);
13675 if (align_good == FAIL)
13676 return;
13677 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
13678 {
13679 case 1: break;
13680 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 13681 default: first_error (_("bad list length")); return;
5287ad62
JB
13682 }
13683 inst.instruction |= neon_logbits (et.size) << 6;
13684 break;
13685
13686 case 1: /* VLD2. */
13687 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13688 &do_align, 8, 16, 16, 32, 32, 64, -1);
13689 if (align_good == FAIL)
13690 return;
13691 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
13692 _("bad list length"));
13693 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13694 inst.instruction |= 1 << 5;
13695 inst.instruction |= neon_logbits (et.size) << 6;
13696 break;
13697
13698 case 2: /* VLD3. */
13699 constraint (inst.operands[1].immisalign,
13700 _("can't use alignment with this instruction"));
13701 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
13702 _("bad list length"));
13703 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13704 inst.instruction |= 1 << 5;
13705 inst.instruction |= neon_logbits (et.size) << 6;
13706 break;
13707
13708 case 3: /* VLD4. */
13709 {
13710 int align = inst.operands[1].imm >> 8;
13711 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13712 16, 64, 32, 64, 32, 128, -1);
13713 if (align_good == FAIL)
13714 return;
13715 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
13716 _("bad list length"));
13717 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13718 inst.instruction |= 1 << 5;
13719 if (et.size == 32 && align == 128)
13720 inst.instruction |= 0x3 << 6;
13721 else
13722 inst.instruction |= neon_logbits (et.size) << 6;
13723 }
13724 break;
13725
13726 default: ;
13727 }
13728
13729 inst.instruction |= do_align << 4;
13730}
13731
13732/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13733 apart from bits [11:4]. */
13734
13735static void
13736do_neon_ldx_stx (void)
13737{
13738 switch (NEON_LANE (inst.operands[0].imm))
13739 {
13740 case NEON_INTERLEAVE_LANES:
13741 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
13742 do_neon_ld_st_interleave ();
13743 break;
5f4273c7 13744
5287ad62
JB
13745 case NEON_ALL_LANES:
13746 inst.instruction = NEON_ENC_DUP (inst.instruction);
13747 do_neon_ld_dup ();
13748 break;
5f4273c7 13749
5287ad62
JB
13750 default:
13751 inst.instruction = NEON_ENC_LANE (inst.instruction);
13752 do_neon_ld_st_lane ();
13753 }
13754
13755 /* L bit comes from bit mask. */
13756 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13757 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13758 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 13759
5287ad62
JB
13760 if (inst.operands[1].postind)
13761 {
13762 int postreg = inst.operands[1].imm & 0xf;
13763 constraint (!inst.operands[1].immisreg,
13764 _("post-index must be a register"));
13765 constraint (postreg == 0xd || postreg == 0xf,
13766 _("bad register for post-index"));
13767 inst.instruction |= postreg;
13768 }
13769 else if (inst.operands[1].writeback)
13770 {
13771 inst.instruction |= 0xd;
13772 }
13773 else
5f4273c7
NC
13774 inst.instruction |= 0xf;
13775
5287ad62
JB
13776 if (thumb_mode)
13777 inst.instruction |= 0xf9000000;
13778 else
13779 inst.instruction |= 0xf4000000;
13780}
5287ad62
JB
13781\f
13782/* Overall per-instruction processing. */
13783
13784/* We need to be able to fix up arbitrary expressions in some statements.
13785 This is so that we can handle symbols that are an arbitrary distance from
13786 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13787 which returns part of an address in a form which will be valid for
13788 a data instruction. We do this by pushing the expression into a symbol
13789 in the expr_section, and creating a fix for that. */
13790
13791static void
13792fix_new_arm (fragS * frag,
13793 int where,
13794 short int size,
13795 expressionS * exp,
13796 int pc_rel,
13797 int reloc)
13798{
13799 fixS * new_fix;
13800
13801 switch (exp->X_op)
13802 {
13803 case O_constant:
13804 case O_symbol:
13805 case O_add:
13806 case O_subtract:
13807 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13808 break;
13809
13810 default:
13811 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13812 pc_rel, reloc);
13813 break;
13814 }
13815
13816 /* Mark whether the fix is to a THUMB instruction, or an ARM
13817 instruction. */
13818 new_fix->tc_fix_data = thumb_mode;
13819}
13820
13821/* Create a frg for an instruction requiring relaxation. */
13822static void
13823output_relax_insn (void)
13824{
13825 char * to;
13826 symbolS *sym;
0110f2b8
PB
13827 int offset;
13828
6e1cb1a6
PB
13829 /* The size of the instruction is unknown, so tie the debug info to the
13830 start of the instruction. */
13831 dwarf2_emit_insn (0);
6e1cb1a6 13832
0110f2b8
PB
13833 switch (inst.reloc.exp.X_op)
13834 {
13835 case O_symbol:
13836 sym = inst.reloc.exp.X_add_symbol;
13837 offset = inst.reloc.exp.X_add_number;
13838 break;
13839 case O_constant:
13840 sym = NULL;
13841 offset = inst.reloc.exp.X_add_number;
13842 break;
13843 default:
13844 sym = make_expr_symbol (&inst.reloc.exp);
13845 offset = 0;
13846 break;
13847 }
13848 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
13849 inst.relax, sym, offset, NULL/*offset, opcode*/);
13850 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
13851}
13852
13853/* Write a 32-bit thumb instruction to buf. */
13854static void
13855put_thumb32_insn (char * buf, unsigned long insn)
13856{
13857 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
13858 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
13859}
13860
b99bd4ef 13861static void
c19d1205 13862output_inst (const char * str)
b99bd4ef 13863{
c19d1205 13864 char * to = NULL;
b99bd4ef 13865
c19d1205 13866 if (inst.error)
b99bd4ef 13867 {
c19d1205 13868 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
13869 return;
13870 }
5f4273c7
NC
13871 if (inst.relax)
13872 {
13873 output_relax_insn ();
0110f2b8 13874 return;
5f4273c7 13875 }
c19d1205
ZW
13876 if (inst.size == 0)
13877 return;
b99bd4ef 13878
c19d1205
ZW
13879 to = frag_more (inst.size);
13880
13881 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 13882 {
c19d1205 13883 assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 13884 put_thumb32_insn (to, inst.instruction);
b99bd4ef 13885 }
c19d1205 13886 else if (inst.size > INSN_SIZE)
b99bd4ef 13887 {
c19d1205
ZW
13888 assert (inst.size == (2 * INSN_SIZE));
13889 md_number_to_chars (to, inst.instruction, INSN_SIZE);
13890 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 13891 }
c19d1205
ZW
13892 else
13893 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 13894
c19d1205
ZW
13895 if (inst.reloc.type != BFD_RELOC_UNUSED)
13896 fix_new_arm (frag_now, to - frag_now->fr_literal,
13897 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
13898 inst.reloc.type);
b99bd4ef 13899
c19d1205 13900 dwarf2_emit_insn (inst.size);
c19d1205 13901}
b99bd4ef 13902
c19d1205
ZW
13903/* Tag values used in struct asm_opcode's tag field. */
13904enum opcode_tag
13905{
13906 OT_unconditional, /* Instruction cannot be conditionalized.
13907 The ARM condition field is still 0xE. */
13908 OT_unconditionalF, /* Instruction cannot be conditionalized
13909 and carries 0xF in its ARM condition field. */
13910 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
13911 OT_csuffixF, /* Some forms of the instruction take a conditional
13912 suffix, others place 0xF where the condition field
13913 would be. */
c19d1205
ZW
13914 OT_cinfix3, /* Instruction takes a conditional infix,
13915 beginning at character index 3. (In
13916 unified mode, it becomes a suffix.) */
088fa78e
KH
13917 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
13918 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
13919 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
13920 character index 3, even in unified mode. Used for
13921 legacy instructions where suffix and infix forms
13922 may be ambiguous. */
c19d1205 13923 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 13924 suffix or an infix at character index 3. */
c19d1205
ZW
13925 OT_odd_infix_unc, /* This is the unconditional variant of an
13926 instruction that takes a conditional infix
13927 at an unusual position. In unified mode,
13928 this variant will accept a suffix. */
13929 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
13930 are the conditional variants of instructions that
13931 take conditional infixes in unusual positions.
13932 The infix appears at character index
13933 (tag - OT_odd_infix_0). These are not accepted
13934 in unified mode. */
13935};
b99bd4ef 13936
c19d1205
ZW
13937/* Subroutine of md_assemble, responsible for looking up the primary
13938 opcode from the mnemonic the user wrote. STR points to the
13939 beginning of the mnemonic.
13940
13941 This is not simply a hash table lookup, because of conditional
13942 variants. Most instructions have conditional variants, which are
13943 expressed with a _conditional affix_ to the mnemonic. If we were
13944 to encode each conditional variant as a literal string in the opcode
13945 table, it would have approximately 20,000 entries.
13946
13947 Most mnemonics take this affix as a suffix, and in unified syntax,
13948 'most' is upgraded to 'all'. However, in the divided syntax, some
13949 instructions take the affix as an infix, notably the s-variants of
13950 the arithmetic instructions. Of those instructions, all but six
13951 have the infix appear after the third character of the mnemonic.
13952
13953 Accordingly, the algorithm for looking up primary opcodes given
13954 an identifier is:
13955
13956 1. Look up the identifier in the opcode table.
13957 If we find a match, go to step U.
13958
13959 2. Look up the last two characters of the identifier in the
13960 conditions table. If we find a match, look up the first N-2
13961 characters of the identifier in the opcode table. If we
13962 find a match, go to step CE.
13963
13964 3. Look up the fourth and fifth characters of the identifier in
13965 the conditions table. If we find a match, extract those
13966 characters from the identifier, and look up the remaining
13967 characters in the opcode table. If we find a match, go
13968 to step CM.
13969
13970 4. Fail.
13971
13972 U. Examine the tag field of the opcode structure, in case this is
13973 one of the six instructions with its conditional infix in an
13974 unusual place. If it is, the tag tells us where to find the
13975 infix; look it up in the conditions table and set inst.cond
13976 accordingly. Otherwise, this is an unconditional instruction.
13977 Again set inst.cond accordingly. Return the opcode structure.
13978
13979 CE. Examine the tag field to make sure this is an instruction that
13980 should receive a conditional suffix. If it is not, fail.
13981 Otherwise, set inst.cond from the suffix we already looked up,
13982 and return the opcode structure.
13983
13984 CM. Examine the tag field to make sure this is an instruction that
13985 should receive a conditional infix after the third character.
13986 If it is not, fail. Otherwise, undo the edits to the current
13987 line of input and proceed as for case CE. */
13988
13989static const struct asm_opcode *
13990opcode_lookup (char **str)
13991{
13992 char *end, *base;
13993 char *affix;
13994 const struct asm_opcode *opcode;
13995 const struct asm_cond *cond;
e3cb604e 13996 char save[2];
267d2029 13997 bfd_boolean neon_supported;
5f4273c7 13998
267d2029 13999 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
c19d1205
ZW
14000
14001 /* Scan up to the end of the mnemonic, which must end in white space,
267d2029 14002 '.' (in unified mode, or for Neon instructions), or end of string. */
c19d1205 14003 for (base = end = *str; *end != '\0'; end++)
267d2029 14004 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
c19d1205 14005 break;
b99bd4ef 14006
c19d1205
ZW
14007 if (end == base)
14008 return 0;
b99bd4ef 14009
5287ad62 14010 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 14011 if (end[0] == '.')
b99bd4ef 14012 {
5287ad62 14013 int offset = 2;
5f4273c7 14014
267d2029
JB
14015 /* The .w and .n suffixes are only valid if the unified syntax is in
14016 use. */
14017 if (unified_syntax && end[1] == 'w')
c19d1205 14018 inst.size_req = 4;
267d2029 14019 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
14020 inst.size_req = 2;
14021 else
5287ad62
JB
14022 offset = 0;
14023
14024 inst.vectype.elems = 0;
14025
14026 *str = end + offset;
b99bd4ef 14027
5f4273c7 14028 if (end[offset] == '.')
5287ad62 14029 {
267d2029
JB
14030 /* See if we have a Neon type suffix (possible in either unified or
14031 non-unified ARM syntax mode). */
dcbf9037 14032 if (parse_neon_type (&inst.vectype, str) == FAIL)
5287ad62
JB
14033 return 0;
14034 }
14035 else if (end[offset] != '\0' && end[offset] != ' ')
14036 return 0;
b99bd4ef 14037 }
c19d1205
ZW
14038 else
14039 *str = end;
b99bd4ef 14040
c19d1205
ZW
14041 /* Look for unaffixed or special-case affixed mnemonic. */
14042 opcode = hash_find_n (arm_ops_hsh, base, end - base);
14043 if (opcode)
b99bd4ef 14044 {
c19d1205
ZW
14045 /* step U */
14046 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 14047 {
c19d1205
ZW
14048 inst.cond = COND_ALWAYS;
14049 return opcode;
b99bd4ef 14050 }
b99bd4ef 14051
c19d1205
ZW
14052 if (unified_syntax)
14053 as_warn (_("conditional infixes are deprecated in unified syntax"));
14054 affix = base + (opcode->tag - OT_odd_infix_0);
14055 cond = hash_find_n (arm_cond_hsh, affix, 2);
14056 assert (cond);
b99bd4ef 14057
c19d1205
ZW
14058 inst.cond = cond->value;
14059 return opcode;
14060 }
b99bd4ef 14061
c19d1205
ZW
14062 /* Cannot have a conditional suffix on a mnemonic of less than two
14063 characters. */
14064 if (end - base < 3)
14065 return 0;
b99bd4ef 14066
c19d1205
ZW
14067 /* Look for suffixed mnemonic. */
14068 affix = end - 2;
14069 cond = hash_find_n (arm_cond_hsh, affix, 2);
14070 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
14071 if (opcode && cond)
14072 {
14073 /* step CE */
14074 switch (opcode->tag)
14075 {
e3cb604e
PB
14076 case OT_cinfix3_legacy:
14077 /* Ignore conditional suffixes matched on infix only mnemonics. */
14078 break;
14079
c19d1205 14080 case OT_cinfix3:
088fa78e 14081 case OT_cinfix3_deprecated:
c19d1205
ZW
14082 case OT_odd_infix_unc:
14083 if (!unified_syntax)
e3cb604e 14084 return 0;
c19d1205
ZW
14085 /* else fall through */
14086
14087 case OT_csuffix:
037e8744 14088 case OT_csuffixF:
c19d1205
ZW
14089 case OT_csuf_or_in3:
14090 inst.cond = cond->value;
14091 return opcode;
14092
14093 case OT_unconditional:
14094 case OT_unconditionalF:
dfa9f0d5
PB
14095 if (thumb_mode)
14096 {
14097 inst.cond = cond->value;
14098 }
14099 else
14100 {
14101 /* delayed diagnostic */
14102 inst.error = BAD_COND;
14103 inst.cond = COND_ALWAYS;
14104 }
c19d1205 14105 return opcode;
b99bd4ef 14106
c19d1205
ZW
14107 default:
14108 return 0;
14109 }
14110 }
b99bd4ef 14111
c19d1205
ZW
14112 /* Cannot have a usual-position infix on a mnemonic of less than
14113 six characters (five would be a suffix). */
14114 if (end - base < 6)
14115 return 0;
b99bd4ef 14116
c19d1205
ZW
14117 /* Look for infixed mnemonic in the usual position. */
14118 affix = base + 3;
14119 cond = hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e
PB
14120 if (!cond)
14121 return 0;
14122
14123 memcpy (save, affix, 2);
14124 memmove (affix, affix + 2, (end - affix) - 2);
14125 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
14126 memmove (affix + 2, affix, (end - affix) - 2);
14127 memcpy (affix, save, 2);
14128
088fa78e
KH
14129 if (opcode
14130 && (opcode->tag == OT_cinfix3
14131 || opcode->tag == OT_cinfix3_deprecated
14132 || opcode->tag == OT_csuf_or_in3
14133 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 14134 {
c19d1205 14135 /* step CM */
088fa78e
KH
14136 if (unified_syntax
14137 && (opcode->tag == OT_cinfix3
14138 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
14139 as_warn (_("conditional infixes are deprecated in unified syntax"));
14140
14141 inst.cond = cond->value;
14142 return opcode;
b99bd4ef
NC
14143 }
14144
c19d1205 14145 return 0;
b99bd4ef
NC
14146}
14147
c19d1205
ZW
14148void
14149md_assemble (char *str)
b99bd4ef 14150{
c19d1205
ZW
14151 char *p = str;
14152 const struct asm_opcode * opcode;
b99bd4ef 14153
c19d1205
ZW
14154 /* Align the previous label if needed. */
14155 if (last_label_seen != NULL)
b99bd4ef 14156 {
c19d1205
ZW
14157 symbol_set_frag (last_label_seen, frag_now);
14158 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
14159 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
14160 }
14161
c19d1205
ZW
14162 memset (&inst, '\0', sizeof (inst));
14163 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 14164
c19d1205
ZW
14165 opcode = opcode_lookup (&p);
14166 if (!opcode)
b99bd4ef 14167 {
c19d1205 14168 /* It wasn't an instruction, but it might be a register alias of
dcbf9037
JB
14169 the form alias .req reg, or a Neon .dn/.qn directive. */
14170 if (!create_register_alias (str, p)
14171 && !create_neon_reg_alias (str, p))
c19d1205 14172 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 14173
b99bd4ef
NC
14174 return;
14175 }
14176
088fa78e
KH
14177 if (opcode->tag == OT_cinfix3_deprecated)
14178 as_warn (_("s suffix on comparison instruction is deprecated"));
14179
037e8744
JB
14180 /* The value which unconditional instructions should have in place of the
14181 condition field. */
14182 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
14183
c19d1205 14184 if (thumb_mode)
b99bd4ef 14185 {
e74cfd16 14186 arm_feature_set variant;
8f06b2d8
PB
14187
14188 variant = cpu_variant;
14189 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
14190 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
14191 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 14192 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
14193 if (!opcode->tvariant
14194 || (thumb_mode == 1
14195 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 14196 {
c19d1205 14197 as_bad (_("selected processor does not support `%s'"), str);
b99bd4ef
NC
14198 return;
14199 }
c19d1205
ZW
14200 if (inst.cond != COND_ALWAYS && !unified_syntax
14201 && opcode->tencode != do_t_branch)
b99bd4ef 14202 {
c19d1205 14203 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
14204 return;
14205 }
14206
076d447c
PB
14207 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2) && !inst.size_req)
14208 {
14209 /* Implicit require narrow instructions on Thumb-1. This avoids
14210 relaxation accidentally introducing Thumb-2 instructions. */
14211 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23)
14212 inst.size_req = 2;
14213 }
14214
e27ec89e
PB
14215 /* Check conditional suffixes. */
14216 if (current_it_mask)
14217 {
14218 int cond;
14219 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
dfa9f0d5
PB
14220 current_it_mask <<= 1;
14221 current_it_mask &= 0x1f;
14222 /* The BKPT instruction is unconditional even in an IT block. */
14223 if (!inst.error
14224 && cond != inst.cond && opcode->tencode != do_t_bkpt)
e27ec89e
PB
14225 {
14226 as_bad (_("incorrect condition in IT block"));
14227 return;
14228 }
e27ec89e
PB
14229 }
14230 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
14231 {
6decc662 14232 as_bad (_("thumb conditional instruction not in IT block"));
e27ec89e
PB
14233 return;
14234 }
14235
c19d1205
ZW
14236 mapping_state (MAP_THUMB);
14237 inst.instruction = opcode->tvalue;
14238
14239 if (!parse_operands (p, opcode->operands))
14240 opcode->tencode ();
14241
e27ec89e
PB
14242 /* Clear current_it_mask at the end of an IT block. */
14243 if (current_it_mask == 0x10)
14244 current_it_mask = 0;
14245
0110f2b8 14246 if (!(inst.error || inst.relax))
b99bd4ef 14247 {
c19d1205
ZW
14248 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
14249 inst.size = (inst.instruction > 0xffff ? 4 : 2);
14250 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 14251 {
c19d1205 14252 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
14253 return;
14254 }
14255 }
076d447c
PB
14256
14257 /* Something has gone badly wrong if we try to relax a fixed size
14258 instruction. */
14259 assert (inst.size_req == 0 || !inst.relax);
14260
e74cfd16
PB
14261 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14262 *opcode->tvariant);
ee065d83 14263 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 14264 set those bits when Thumb-2 32-bit instructions are seen. ie.
ee065d83
PB
14265 anything other than bl/blx.
14266 This is overly pessimistic for relaxable instructions. */
14267 if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
14268 || inst.relax)
e74cfd16
PB
14269 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14270 arm_ext_v6t2);
c19d1205 14271 }
3e9e4fcf 14272 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
14273 {
14274 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
14275 if (!opcode->avariant ||
14276 !ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
b99bd4ef 14277 {
c19d1205
ZW
14278 as_bad (_("selected processor does not support `%s'"), str);
14279 return;
b99bd4ef 14280 }
c19d1205 14281 if (inst.size_req)
b99bd4ef 14282 {
c19d1205
ZW
14283 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
14284 return;
b99bd4ef
NC
14285 }
14286
c19d1205
ZW
14287 mapping_state (MAP_ARM);
14288 inst.instruction = opcode->avalue;
14289 if (opcode->tag == OT_unconditionalF)
14290 inst.instruction |= 0xF << 28;
14291 else
14292 inst.instruction |= inst.cond << 28;
14293 inst.size = INSN_SIZE;
14294 if (!parse_operands (p, opcode->operands))
14295 opcode->aencode ();
ee065d83
PB
14296 /* Arm mode bx is marked as both v4T and v5 because it's still required
14297 on a hypothetical non-thumb v5 core. */
e74cfd16
PB
14298 if (ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v4t)
14299 || ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v5))
14300 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 14301 else
e74cfd16
PB
14302 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
14303 *opcode->avariant);
b99bd4ef 14304 }
3e9e4fcf
JB
14305 else
14306 {
14307 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14308 "-- `%s'"), str);
14309 return;
14310 }
c19d1205
ZW
14311 output_inst (str);
14312}
b99bd4ef 14313
c19d1205
ZW
14314/* Various frobbings of labels and their addresses. */
14315
14316void
14317arm_start_line_hook (void)
14318{
14319 last_label_seen = NULL;
b99bd4ef
NC
14320}
14321
c19d1205
ZW
14322void
14323arm_frob_label (symbolS * sym)
b99bd4ef 14324{
c19d1205 14325 last_label_seen = sym;
b99bd4ef 14326
c19d1205 14327 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 14328
c19d1205
ZW
14329#if defined OBJ_COFF || defined OBJ_ELF
14330 ARM_SET_INTERWORK (sym, support_interwork);
14331#endif
b99bd4ef 14332
5f4273c7 14333 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
14334 as Thumb functions. This is because these labels, whilst
14335 they exist inside Thumb code, are not the entry points for
14336 possible ARM->Thumb calls. Also, these labels can be used
14337 as part of a computed goto or switch statement. eg gcc
14338 can generate code that looks like this:
b99bd4ef 14339
c19d1205
ZW
14340 ldr r2, [pc, .Laaa]
14341 lsl r3, r3, #2
14342 ldr r2, [r3, r2]
14343 mov pc, r2
b99bd4ef 14344
c19d1205
ZW
14345 .Lbbb: .word .Lxxx
14346 .Lccc: .word .Lyyy
14347 ..etc...
14348 .Laaa: .word Lbbb
b99bd4ef 14349
c19d1205
ZW
14350 The first instruction loads the address of the jump table.
14351 The second instruction converts a table index into a byte offset.
14352 The third instruction gets the jump address out of the table.
14353 The fourth instruction performs the jump.
b99bd4ef 14354
c19d1205
ZW
14355 If the address stored at .Laaa is that of a symbol which has the
14356 Thumb_Func bit set, then the linker will arrange for this address
14357 to have the bottom bit set, which in turn would mean that the
14358 address computation performed by the third instruction would end
14359 up with the bottom bit set. Since the ARM is capable of unaligned
14360 word loads, the instruction would then load the incorrect address
14361 out of the jump table, and chaos would ensue. */
14362 if (label_is_thumb_function_name
14363 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
14364 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 14365 {
c19d1205
ZW
14366 /* When the address of a Thumb function is taken the bottom
14367 bit of that address should be set. This will allow
14368 interworking between Arm and Thumb functions to work
14369 correctly. */
b99bd4ef 14370
c19d1205 14371 THUMB_SET_FUNC (sym, 1);
b99bd4ef 14372
c19d1205 14373 label_is_thumb_function_name = FALSE;
b99bd4ef 14374 }
07a53e5c 14375
07a53e5c 14376 dwarf2_emit_label (sym);
b99bd4ef
NC
14377}
14378
c19d1205
ZW
14379int
14380arm_data_in_code (void)
b99bd4ef 14381{
c19d1205 14382 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 14383 {
c19d1205
ZW
14384 *input_line_pointer = '/';
14385 input_line_pointer += 5;
14386 *input_line_pointer = 0;
14387 return 1;
b99bd4ef
NC
14388 }
14389
c19d1205 14390 return 0;
b99bd4ef
NC
14391}
14392
c19d1205
ZW
14393char *
14394arm_canonicalize_symbol_name (char * name)
b99bd4ef 14395{
c19d1205 14396 int len;
b99bd4ef 14397
c19d1205
ZW
14398 if (thumb_mode && (len = strlen (name)) > 5
14399 && streq (name + len - 5, "/data"))
14400 *(name + len - 5) = 0;
b99bd4ef 14401
c19d1205 14402 return name;
b99bd4ef 14403}
c19d1205
ZW
14404\f
14405/* Table of all register names defined by default. The user can
14406 define additional names with .req. Note that all register names
14407 should appear in both upper and lowercase variants. Some registers
14408 also have mixed-case names. */
b99bd4ef 14409
dcbf9037 14410#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 14411#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 14412#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
14413#define REGSET(p,t) \
14414 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14415 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14416 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14417 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
14418#define REGSETH(p,t) \
14419 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14420 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14421 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14422 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14423#define REGSET2(p,t) \
14424 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14425 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14426 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14427 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
7ed4c4c5 14428
c19d1205 14429static const struct reg_entry reg_names[] =
7ed4c4c5 14430{
c19d1205
ZW
14431 /* ARM integer registers. */
14432 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 14433
c19d1205
ZW
14434 /* ATPCS synonyms. */
14435 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14436 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14437 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 14438
c19d1205
ZW
14439 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14440 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14441 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 14442
c19d1205
ZW
14443 /* Well-known aliases. */
14444 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14445 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14446
14447 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14448 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14449
14450 /* Coprocessor numbers. */
14451 REGSET(p, CP), REGSET(P, CP),
14452
14453 /* Coprocessor register numbers. The "cr" variants are for backward
14454 compatibility. */
14455 REGSET(c, CN), REGSET(C, CN),
14456 REGSET(cr, CN), REGSET(CR, CN),
14457
14458 /* FPA registers. */
14459 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
14460 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
14461
14462 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
14463 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
14464
14465 /* VFP SP registers. */
5287ad62
JB
14466 REGSET(s,VFS), REGSET(S,VFS),
14467 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
14468
14469 /* VFP DP Registers. */
5287ad62
JB
14470 REGSET(d,VFD), REGSET(D,VFD),
14471 /* Extra Neon DP registers. */
14472 REGSETH(d,VFD), REGSETH(D,VFD),
14473
14474 /* Neon QP registers. */
14475 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
14476
14477 /* VFP control registers. */
14478 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
14479 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
14480 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
14481 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
14482 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
14483 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
14484
14485 /* Maverick DSP coprocessor registers. */
14486 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
14487 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
14488
14489 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
14490 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
14491 REGDEF(dspsc,0,DSPSC),
14492
14493 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
14494 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
14495 REGDEF(DSPSC,0,DSPSC),
14496
14497 /* iWMMXt data registers - p0, c0-15. */
14498 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
14499
14500 /* iWMMXt control registers - p1, c0-3. */
14501 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
14502 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
14503 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
14504 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
14505
14506 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14507 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
14508 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
14509 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
14510 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
14511
14512 /* XScale accumulator registers. */
14513 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
14514};
14515#undef REGDEF
14516#undef REGNUM
14517#undef REGSET
7ed4c4c5 14518
c19d1205
ZW
14519/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14520 within psr_required_here. */
14521static const struct asm_psr psrs[] =
14522{
14523 /* Backward compatibility notation. Note that "all" is no longer
14524 truly all possible PSR bits. */
14525 {"all", PSR_c | PSR_f},
14526 {"flg", PSR_f},
14527 {"ctl", PSR_c},
14528
14529 /* Individual flags. */
14530 {"f", PSR_f},
14531 {"c", PSR_c},
14532 {"x", PSR_x},
14533 {"s", PSR_s},
14534 /* Combinations of flags. */
14535 {"fs", PSR_f | PSR_s},
14536 {"fx", PSR_f | PSR_x},
14537 {"fc", PSR_f | PSR_c},
14538 {"sf", PSR_s | PSR_f},
14539 {"sx", PSR_s | PSR_x},
14540 {"sc", PSR_s | PSR_c},
14541 {"xf", PSR_x | PSR_f},
14542 {"xs", PSR_x | PSR_s},
14543 {"xc", PSR_x | PSR_c},
14544 {"cf", PSR_c | PSR_f},
14545 {"cs", PSR_c | PSR_s},
14546 {"cx", PSR_c | PSR_x},
14547 {"fsx", PSR_f | PSR_s | PSR_x},
14548 {"fsc", PSR_f | PSR_s | PSR_c},
14549 {"fxs", PSR_f | PSR_x | PSR_s},
14550 {"fxc", PSR_f | PSR_x | PSR_c},
14551 {"fcs", PSR_f | PSR_c | PSR_s},
14552 {"fcx", PSR_f | PSR_c | PSR_x},
14553 {"sfx", PSR_s | PSR_f | PSR_x},
14554 {"sfc", PSR_s | PSR_f | PSR_c},
14555 {"sxf", PSR_s | PSR_x | PSR_f},
14556 {"sxc", PSR_s | PSR_x | PSR_c},
14557 {"scf", PSR_s | PSR_c | PSR_f},
14558 {"scx", PSR_s | PSR_c | PSR_x},
14559 {"xfs", PSR_x | PSR_f | PSR_s},
14560 {"xfc", PSR_x | PSR_f | PSR_c},
14561 {"xsf", PSR_x | PSR_s | PSR_f},
14562 {"xsc", PSR_x | PSR_s | PSR_c},
14563 {"xcf", PSR_x | PSR_c | PSR_f},
14564 {"xcs", PSR_x | PSR_c | PSR_s},
14565 {"cfs", PSR_c | PSR_f | PSR_s},
14566 {"cfx", PSR_c | PSR_f | PSR_x},
14567 {"csf", PSR_c | PSR_s | PSR_f},
14568 {"csx", PSR_c | PSR_s | PSR_x},
14569 {"cxf", PSR_c | PSR_x | PSR_f},
14570 {"cxs", PSR_c | PSR_x | PSR_s},
14571 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
14572 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
14573 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
14574 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
14575 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
14576 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
14577 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
14578 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
14579 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
14580 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
14581 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
14582 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
14583 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
14584 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
14585 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
14586 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
14587 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
14588 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
14589 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
14590 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
14591 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
14592 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
14593 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
14594 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
14595};
14596
62b3e311
PB
14597/* Table of V7M psr names. */
14598static const struct asm_psr v7m_psrs[] =
14599{
2b744c99
PB
14600 {"apsr", 0 }, {"APSR", 0 },
14601 {"iapsr", 1 }, {"IAPSR", 1 },
14602 {"eapsr", 2 }, {"EAPSR", 2 },
14603 {"psr", 3 }, {"PSR", 3 },
14604 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
14605 {"ipsr", 5 }, {"IPSR", 5 },
14606 {"epsr", 6 }, {"EPSR", 6 },
14607 {"iepsr", 7 }, {"IEPSR", 7 },
14608 {"msp", 8 }, {"MSP", 8 },
14609 {"psp", 9 }, {"PSP", 9 },
14610 {"primask", 16}, {"PRIMASK", 16},
14611 {"basepri", 17}, {"BASEPRI", 17},
14612 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
14613 {"faultmask", 19}, {"FAULTMASK", 19},
14614 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
14615};
14616
c19d1205
ZW
14617/* Table of all shift-in-operand names. */
14618static const struct asm_shift_name shift_names [] =
b99bd4ef 14619{
c19d1205
ZW
14620 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
14621 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
14622 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
14623 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
14624 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
14625 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
14626};
b99bd4ef 14627
c19d1205
ZW
14628/* Table of all explicit relocation names. */
14629#ifdef OBJ_ELF
14630static struct reloc_entry reloc_names[] =
14631{
14632 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
14633 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
14634 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
14635 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
14636 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
14637 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
14638 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
14639 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
14640 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
14641 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
14642 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
14643};
14644#endif
b99bd4ef 14645
c19d1205
ZW
14646/* Table of all conditional affixes. 0xF is not defined as a condition code. */
14647static const struct asm_cond conds[] =
14648{
14649 {"eq", 0x0},
14650 {"ne", 0x1},
14651 {"cs", 0x2}, {"hs", 0x2},
14652 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14653 {"mi", 0x4},
14654 {"pl", 0x5},
14655 {"vs", 0x6},
14656 {"vc", 0x7},
14657 {"hi", 0x8},
14658 {"ls", 0x9},
14659 {"ge", 0xa},
14660 {"lt", 0xb},
14661 {"gt", 0xc},
14662 {"le", 0xd},
14663 {"al", 0xe}
14664};
bfae80f2 14665
62b3e311
PB
14666static struct asm_barrier_opt barrier_opt_names[] =
14667{
14668 { "sy", 0xf },
14669 { "un", 0x7 },
14670 { "st", 0xe },
14671 { "unst", 0x6 }
14672};
14673
c19d1205
ZW
14674/* Table of ARM-format instructions. */
14675
14676/* Macros for gluing together operand strings. N.B. In all cases
14677 other than OPS0, the trailing OP_stop comes from default
14678 zero-initialization of the unspecified elements of the array. */
14679#define OPS0() { OP_stop, }
14680#define OPS1(a) { OP_##a, }
14681#define OPS2(a,b) { OP_##a,OP_##b, }
14682#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14683#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14684#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14685#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14686
14687/* These macros abstract out the exact format of the mnemonic table and
14688 save some repeated characters. */
14689
14690/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14691#define TxCE(mnem, op, top, nops, ops, ae, te) \
14692 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 14693 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14694
14695/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14696 a T_MNEM_xyz enumerator. */
14697#define TCE(mnem, aop, top, nops, ops, ae, te) \
14698 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14699#define tCE(mnem, aop, top, nops, ops, ae, te) \
14700 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14701
14702/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14703 infix after the third character. */
14704#define TxC3(mnem, op, top, nops, ops, ae, te) \
14705 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 14706 THUMB_VARIANT, do_##ae, do_##te }
088fa78e
KH
14707#define TxC3w(mnem, op, top, nops, ops, ae, te) \
14708 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14709 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14710#define TC3(mnem, aop, top, nops, ops, ae, te) \
14711 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e
KH
14712#define TC3w(mnem, aop, top, nops, ops, ae, te) \
14713 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205
ZW
14714#define tC3(mnem, aop, top, nops, ops, ae, te) \
14715 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
088fa78e
KH
14716#define tC3w(mnem, aop, top, nops, ops, ae, te) \
14717 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
c19d1205
ZW
14718
14719/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14720 appear in the condition table. */
14721#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14722 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
1887dd22 14723 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14724
14725#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14726 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14727 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14728 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14729 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14730 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14731 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14732 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14733 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14734 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14735 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14736 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14737 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14738 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14739 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14740 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14741 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14742 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14743 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14744 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14745
14746#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14747 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14748#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14749 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14750
14751/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
14752 field is still 0xE. Many of the Thumb variants can be executed
14753 conditionally, so this is checked separately. */
c19d1205
ZW
14754#define TUE(mnem, op, top, nops, ops, ae, te) \
14755 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 14756 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14757
14758/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14759 condition code field. */
14760#define TUF(mnem, op, top, nops, ops, ae, te) \
14761 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 14762 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14763
14764/* ARM-only variants of all the above. */
6a86118a
NC
14765#define CE(mnem, op, nops, ops, ae) \
14766 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14767
14768#define C3(mnem, op, nops, ops, ae) \
14769 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14770
e3cb604e
PB
14771/* Legacy mnemonics that always have conditional infix after the third
14772 character. */
14773#define CL(mnem, op, nops, ops, ae) \
14774 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14775 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14776
8f06b2d8
PB
14777/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14778#define cCE(mnem, op, nops, ops, ae) \
14779 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14780
e3cb604e
PB
14781/* Legacy coprocessor instructions where conditional infix and conditional
14782 suffix are ambiguous. For consistency this includes all FPA instructions,
14783 not just the potentially ambiguous ones. */
14784#define cCL(mnem, op, nops, ops, ae) \
14785 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14786 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14787
14788/* Coprocessor, takes either a suffix or a position-3 infix
14789 (for an FPA corner case). */
14790#define C3E(mnem, op, nops, ops, ae) \
14791 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14792 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 14793
6a86118a
NC
14794#define xCM_(m1, m2, m3, op, nops, ops, ae) \
14795 { #m1 #m2 #m3, OPS##nops ops, \
14796 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14797 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14798
14799#define CM(m1, m2, op, nops, ops, ae) \
14800 xCM_(m1, , m2, op, nops, ops, ae), \
14801 xCM_(m1, eq, m2, op, nops, ops, ae), \
14802 xCM_(m1, ne, m2, op, nops, ops, ae), \
14803 xCM_(m1, cs, m2, op, nops, ops, ae), \
14804 xCM_(m1, hs, m2, op, nops, ops, ae), \
14805 xCM_(m1, cc, m2, op, nops, ops, ae), \
14806 xCM_(m1, ul, m2, op, nops, ops, ae), \
14807 xCM_(m1, lo, m2, op, nops, ops, ae), \
14808 xCM_(m1, mi, m2, op, nops, ops, ae), \
14809 xCM_(m1, pl, m2, op, nops, ops, ae), \
14810 xCM_(m1, vs, m2, op, nops, ops, ae), \
14811 xCM_(m1, vc, m2, op, nops, ops, ae), \
14812 xCM_(m1, hi, m2, op, nops, ops, ae), \
14813 xCM_(m1, ls, m2, op, nops, ops, ae), \
14814 xCM_(m1, ge, m2, op, nops, ops, ae), \
14815 xCM_(m1, lt, m2, op, nops, ops, ae), \
14816 xCM_(m1, gt, m2, op, nops, ops, ae), \
14817 xCM_(m1, le, m2, op, nops, ops, ae), \
14818 xCM_(m1, al, m2, op, nops, ops, ae)
14819
14820#define UE(mnem, op, nops, ops, ae) \
14821 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14822
14823#define UF(mnem, op, nops, ops, ae) \
14824 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14825
5287ad62
JB
14826/* Neon data-processing. ARM versions are unconditional with cond=0xf.
14827 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14828 use the same encoding function for each. */
14829#define NUF(mnem, op, nops, ops, enc) \
14830 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14831 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14832
14833/* Neon data processing, version which indirects through neon_enc_tab for
14834 the various overloaded versions of opcodes. */
14835#define nUF(mnem, op, nops, ops, enc) \
14836 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14837 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14838
14839/* Neon insn with conditional suffix for the ARM version, non-overloaded
14840 version. */
037e8744
JB
14841#define NCE_tag(mnem, op, nops, ops, enc, tag) \
14842 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
14843 THUMB_VARIANT, do_##enc, do_##enc }
14844
037e8744
JB
14845#define NCE(mnem, op, nops, ops, enc) \
14846 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14847
14848#define NCEF(mnem, op, nops, ops, enc) \
14849 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14850
5287ad62 14851/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744
JB
14852#define nCE_tag(mnem, op, nops, ops, enc, tag) \
14853 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
5287ad62
JB
14854 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14855
037e8744
JB
14856#define nCE(mnem, op, nops, ops, enc) \
14857 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14858
14859#define nCEF(mnem, op, nops, ops, enc) \
14860 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14861
c19d1205
ZW
14862#define do_0 0
14863
14864/* Thumb-only, unconditional. */
14865#define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
14866
c19d1205 14867static const struct asm_opcode insns[] =
bfae80f2 14868{
e74cfd16
PB
14869#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
14870#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
14871 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
14872 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
14873 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
14874 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
14875 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
14876 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
4962c51a
MS
14877 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
14878 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
c19d1205
ZW
14879 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
14880 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
14881 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
14882 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
14883 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
14884 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
14885 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
14886 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
14887
14888 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
14889 for setting PSR flag bits. They are obsolete in V6 and do not
14890 have Thumb equivalents. */
14891 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14892 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14893 CL(tstp, 110f000, 2, (RR, SH), cmp),
c19d1205 14894 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
088fa78e 14895 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
e3cb604e 14896 CL(cmpp, 150f000, 2, (RR, SH), cmp),
c19d1205 14897 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14898 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14899 CL(cmnp, 170f000, 2, (RR, SH), cmp),
c19d1205
ZW
14900
14901 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
14902 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
14903 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
14904 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
14905
4962c51a
MS
14906 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
14907 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14908 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
14909 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
c19d1205 14910
f5208ef2 14911 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14912 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14913 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
f5208ef2 14914 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14915 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14916 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14917
14918 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
c16d2bf0 14919 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
0110f2b8 14920 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
39b41c9c 14921 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 14922
c19d1205 14923 /* Pseudo ops. */
e9f89963 14924 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac
ZW
14925 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
14926 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
14927
14928 /* Thumb-compatibility pseudo ops. */
14929 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
14930 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
14931 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
14932 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
14933 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
2fc8bdac 14934 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
c19d1205
ZW
14935 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
14936 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
14937 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
14938 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
14939 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
14940 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
14941
16a4cf17
PB
14942 /* These may simplify to neg. */
14943 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
14944 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
14945
c19d1205 14946#undef THUMB_VARIANT
e74cfd16 14947#define THUMB_VARIANT &arm_ext_v6
2fc8bdac 14948 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
14949
14950 /* V1 instructions with no Thumb analogue prior to V6T2. */
14951#undef THUMB_VARIANT
e74cfd16 14952#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 14953 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14954 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14955 CL(teqp, 130f000, 2, (RR, SH), cmp),
c19d1205
ZW
14956
14957 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 14958 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 14959 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 14960 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 14961
9c3c69f2
PB
14962 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14963 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 14964
9c3c69f2
PB
14965 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14966 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14967
14968 /* V1 instructions with no Thumb analogue at all. */
14969 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
14970 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
14971
14972 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
14973 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
14974 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
14975 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
14976 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
14977 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
14978 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
14979 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
14980
14981#undef ARM_VARIANT
e74cfd16 14982#define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
c19d1205 14983#undef THUMB_VARIANT
e74cfd16 14984#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
14985 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14986 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14987
14988#undef THUMB_VARIANT
e74cfd16 14989#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
14990 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
14991 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
14992
14993 /* Generic coprocessor instructions. */
14994 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
4962c51a
MS
14995 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14996 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14997 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14998 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
14999 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15000 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15001
15002#undef ARM_VARIANT
e74cfd16 15003#define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
c19d1205
ZW
15004 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15005 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15006
15007#undef ARM_VARIANT
e74cfd16 15008#define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
037e8744
JB
15009 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
15010 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
c19d1205
ZW
15011
15012#undef ARM_VARIANT
e74cfd16 15013#define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
c19d1205
ZW
15014 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15015 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15016 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15017 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15018 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15019 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15020 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15021 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15022
15023#undef ARM_VARIANT
e74cfd16 15024#define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
c19d1205 15025#undef THUMB_VARIANT
e74cfd16 15026#define THUMB_VARIANT &arm_ext_v4t
4962c51a
MS
15027 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15028 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15029 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15030 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15031 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15032 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
c19d1205
ZW
15033
15034#undef ARM_VARIANT
e74cfd16 15035#define ARM_VARIANT &arm_ext_v4t_5
c19d1205
ZW
15036 /* ARM Architecture 4T. */
15037 /* Note: bx (and blx) are required on V5, even if the processor does
15038 not support Thumb. */
15039 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
15040
15041#undef ARM_VARIANT
e74cfd16 15042#define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
c19d1205 15043#undef THUMB_VARIANT
e74cfd16 15044#define THUMB_VARIANT &arm_ext_v5t
c19d1205
ZW
15045 /* Note: blx has 2 variants; the .value coded here is for
15046 BLX(2). Only this variant has conditional execution. */
15047 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
15048 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
15049
15050#undef THUMB_VARIANT
e74cfd16 15051#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 15052 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
4962c51a
MS
15053 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15054 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15055 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15056 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
15057 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15058 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15059 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15060
15061#undef ARM_VARIANT
e74cfd16 15062#define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
c19d1205
ZW
15063 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15064 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15065 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15066 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15067
15068 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15069 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15070
15071 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15072 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15073 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15074 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15075
15076 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15077 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15078 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15079 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15080
15081 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15082 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15083
15084 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15085 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15086 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15087 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15088
15089#undef ARM_VARIANT
e74cfd16 15090#define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
c19d1205 15091 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
79d49516
PB
15092 TC3(ldrd, 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15093 TC3(strd, 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
c19d1205
ZW
15094
15095 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15096 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15097
15098#undef ARM_VARIANT
e74cfd16 15099#define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
c19d1205
ZW
15100 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
15101
15102#undef ARM_VARIANT
e74cfd16 15103#define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
c19d1205 15104#undef THUMB_VARIANT
e74cfd16 15105#define THUMB_VARIANT &arm_ext_v6
c19d1205
ZW
15106 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
15107 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
15108 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15109 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15110 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15111 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15112 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15113 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15114 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15115 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
15116
15117#undef THUMB_VARIANT
e74cfd16 15118#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 15119 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
91568d08 15120 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
c19d1205
ZW
15121 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15122 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311
PB
15123
15124 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
15125 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
15126
15127/* ARM V6 not included in V7M (eg. integer SIMD). */
15128#undef THUMB_VARIANT
15129#define THUMB_VARIANT &arm_ext_v6_notm
dfa9f0d5 15130 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c19d1205
ZW
15131 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
15132 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
15133 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15134 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15135 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15136 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15137 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15138 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15139 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15140 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15141 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15142 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15143 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15144 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15145 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15146 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15147 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15148 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15149 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15150 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15151 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15152 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15153 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15154 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15155 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15156 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15157 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15158 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15159 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15160 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15161 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15162 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15163 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15164 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15165 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15166 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15167 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15168 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15169 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15170 UF(rfeib, 9900a00, 1, (RRw), rfe),
15171 UF(rfeda, 8100a00, 1, (RRw), rfe),
15172 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15173 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15174 UF(rfefa, 9900a00, 1, (RRw), rfe),
15175 UF(rfeea, 8100a00, 1, (RRw), rfe),
15176 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15177 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15178 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15179 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15180 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15181 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15182 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15183 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15184 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
f1022c90 15185 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15186 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15187 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15188 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15189 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15190 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15191 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15192 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15193 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15194 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15195 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15196 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15197 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15198 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15199 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15200 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15201 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15202 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15203 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
b6702015
PB
15204 TUF(srsia, 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
15205 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
15206 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
15207 TUF(srsdb, 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c19d1205 15208 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
c19d1205
ZW
15209 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
15210 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15211 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
c19d1205
ZW
15212 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
15213
15214#undef ARM_VARIANT
e74cfd16 15215#define ARM_VARIANT &arm_ext_v6k
c19d1205 15216#undef THUMB_VARIANT
e74cfd16 15217#define THUMB_VARIANT &arm_ext_v6k
c19d1205
ZW
15218 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
15219 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
15220 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
15221 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
15222
ebdca51a
PB
15223#undef THUMB_VARIANT
15224#define THUMB_VARIANT &arm_ext_v6_notm
15225 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
15226 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
15227
c19d1205 15228#undef THUMB_VARIANT
e74cfd16 15229#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
15230 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15231 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
c19d1205
ZW
15232 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15233 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
c19d1205
ZW
15234 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
15235
15236#undef ARM_VARIANT
e74cfd16 15237#define ARM_VARIANT &arm_ext_v6z
3eb17e6b 15238 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205
ZW
15239
15240#undef ARM_VARIANT
e74cfd16 15241#define ARM_VARIANT &arm_ext_v6t2
c19d1205
ZW
15242 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
15243 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
15244 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15245 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15246
15247 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
b6895b4f
PB
15248 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
15249 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
401a54cf 15250 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205
ZW
15251
15252 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15253 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15254 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15255 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15256
25fe350b
MS
15257 UT(cbnz, b900, 2, (RR, EXP), t_cbz),
15258 UT(cbz, b100, 2, (RR, EXP), t_cbz),
f91e006c
PB
15259 /* ARM does not really have an IT instruction, so always allow it. */
15260#undef ARM_VARIANT
15261#define ARM_VARIANT &arm_ext_v1
c19d1205
ZW
15262 TUE(it, 0, bf08, 1, (COND), it, t_it),
15263 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
15264 TUE(ite, 0, bf04, 1, (COND), it, t_it),
15265 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
15266 TUE(itet, 0, bf06, 1, (COND), it, t_it),
15267 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
15268 TUE(itee, 0, bf02, 1, (COND), it, t_it),
15269 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
15270 TUE(itett, 0, bf07, 1, (COND), it, t_it),
15271 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
15272 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
15273 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
15274 TUE(itete, 0, bf05, 1, (COND), it, t_it),
15275 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
15276 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
15277
92e90b6e
PB
15278 /* Thumb2 only instructions. */
15279#undef ARM_VARIANT
e74cfd16 15280#define ARM_VARIANT NULL
92e90b6e
PB
15281
15282 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15283 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15284 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
15285 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
15286
62b3e311
PB
15287 /* Thumb-2 hardware division instructions (R and M profiles only). */
15288#undef THUMB_VARIANT
15289#define THUMB_VARIANT &arm_ext_div
15290 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
15291 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
15292
15293 /* ARM V7 instructions. */
15294#undef ARM_VARIANT
15295#define ARM_VARIANT &arm_ext_v7
15296#undef THUMB_VARIANT
15297#define THUMB_VARIANT &arm_ext_v7
15298 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
15299 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
15300 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
15301 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
15302 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
15303
c19d1205 15304#undef ARM_VARIANT
e74cfd16 15305#define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
8f06b2d8
PB
15306 cCE(wfs, e200110, 1, (RR), rd),
15307 cCE(rfs, e300110, 1, (RR), rd),
15308 cCE(wfc, e400110, 1, (RR), rd),
15309 cCE(rfc, e500110, 1, (RR), rd),
15310
4962c51a
MS
15311 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
15312 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
15313 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
15314 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e 15315
4962c51a
MS
15316 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
15317 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
15318 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
15319 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e
PB
15320
15321 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
15322 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
15323 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
15324 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
15325 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
15326 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
15327 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
15328 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
15329 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
15330 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
15331 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
15332 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
15333
15334 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
15335 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
15336 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
15337 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
15338 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
15339 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
15340 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
15341 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
15342 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
15343 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
15344 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
15345 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
15346
15347 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
15348 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
15349 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
15350 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
15351 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
15352 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
15353 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
15354 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
15355 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
15356 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
15357 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
15358 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
15359
15360 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
15361 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
15362 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
15363 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
15364 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
15365 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
15366 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
15367 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
15368 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
15369 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
15370 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
15371 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
15372
15373 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
15374 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
15375 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
15376 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
15377 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
15378 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
15379 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
15380 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
15381 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
15382 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
15383 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
15384 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
15385
15386 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
15387 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
15388 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
15389 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
15390 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
15391 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
15392 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
15393 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
15394 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
15395 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
15396 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
15397 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
15398
15399 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
15400 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
15401 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
15402 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
15403 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
15404 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
15405 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
15406 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
15407 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
15408 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
15409 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
15410 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
15411
15412 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
15413 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
15414 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
15415 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
15416 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
15417 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
15418 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
15419 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
15420 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
15421 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
15422 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
15423 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
15424
15425 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
15426 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
15427 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
15428 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
15429 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
15430 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
15431 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
15432 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
15433 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
15434 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
15435 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
15436 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
15437
15438 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
15439 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
15440 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
15441 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
15442 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
15443 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
15444 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
15445 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
15446 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
15447 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
15448 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
15449 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
15450
15451 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
15452 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
15453 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
15454 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
15455 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
15456 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
15457 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
15458 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
15459 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
15460 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
15461 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
15462 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
15463
15464 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
15465 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
15466 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
15467 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
15468 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
15469 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
15470 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
15471 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
15472 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
15473 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
15474 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
15475 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
15476
15477 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
15478 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
15479 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
15480 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
15481 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
15482 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
15483 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
15484 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
15485 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
15486 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
15487 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
15488 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
15489
15490 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
15491 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
15492 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
15493 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
15494 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
15495 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
15496 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
15497 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
15498 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
15499 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
15500 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
15501 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
15502
15503 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
15504 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
15505 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
15506 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
15507 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
15508 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
15509 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
15510 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
15511 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
15512 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
15513 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
15514 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
15515
15516 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
15517 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
15518 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
15519 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
15520 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
15521 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
15522 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
15523 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
15524 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
15525 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
15526 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
15527 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
15528
15529 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
15530 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
15531 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
15532 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
15533 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
15534 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15535 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15536 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15537 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
15538 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
15539 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
15540 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
15541
15542 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
15543 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
15544 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
15545 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
15546 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
15547 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15548 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15549 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15550 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
15551 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
15552 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
15553 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
15554
15555 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
15556 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
15557 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
15558 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
15559 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
15560 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15561 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15562 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15563 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
15564 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
15565 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
15566 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
15567
15568 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
15569 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
15570 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
15571 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
15572 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
15573 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15574 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15575 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15576 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
15577 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
15578 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
15579 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
15580
15581 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
15582 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
15583 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
15584 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
15585 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
15586 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15587 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15588 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15589 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
15590 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
15591 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
15592 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
15593
15594 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
15595 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
15596 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
15597 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
15598 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
15599 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15600 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15601 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15602 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
15603 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
15604 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
15605 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
15606
15607 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
15608 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
15609 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
15610 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
15611 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
15612 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15613 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15614 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15615 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
15616 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
15617 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
15618 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
15619
15620 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
15621 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
15622 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
15623 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
15624 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
15625 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15626 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15627 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15628 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
15629 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
15630 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
15631 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
15632
15633 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
15634 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
15635 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
15636 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
15637 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
15638 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15639 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15640 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15641 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
15642 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
15643 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
15644 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
15645
15646 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
15647 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
15648 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
15649 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
15650 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
15651 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15652 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15653 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15654 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
15655 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
15656 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
15657 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
15658
15659 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15660 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15661 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15662 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15663 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15664 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15665 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15666 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15667 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15668 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15669 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15670 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15671
15672 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15673 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15674 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15675 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15676 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15677 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15678 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15679 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15680 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15681 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15682 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15683 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15684
15685 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15686 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15687 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15688 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15689 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15690 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15691 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15692 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15693 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15694 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15695 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15696 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
8f06b2d8
PB
15697
15698 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205 15699 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
8f06b2d8 15700 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205
ZW
15701 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
15702
e3cb604e
PB
15703 cCL(flts, e000110, 2, (RF, RR), rn_rd),
15704 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
15705 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
15706 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
15707 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
15708 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
15709 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
15710 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
15711 cCL(flte, e080110, 2, (RF, RR), rn_rd),
15712 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
15713 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
15714 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
b99bd4ef 15715
c19d1205
ZW
15716 /* The implementation of the FIX instruction is broken on some
15717 assemblers, in that it accepts a precision specifier as well as a
15718 rounding specifier, despite the fact that this is meaningless.
15719 To be more compatible, we accept it as well, though of course it
15720 does not set any bits. */
8f06b2d8 15721 cCE(fix, e100110, 2, (RR, RF), rd_rm),
e3cb604e
PB
15722 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
15723 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
15724 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
15725 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
15726 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
15727 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
15728 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
15729 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
15730 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
15731 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
15732 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
15733 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
bfae80f2 15734
c19d1205
ZW
15735 /* Instructions that were new with the real FPA, call them V2. */
15736#undef ARM_VARIANT
e74cfd16 15737#define ARM_VARIANT &fpu_fpa_ext_v2
8f06b2d8 15738 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
15739 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15740 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
8f06b2d8 15741 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
15742 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15743 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205
ZW
15744
15745#undef ARM_VARIANT
e74cfd16 15746#define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
c19d1205 15747 /* Moves and type conversions. */
8f06b2d8
PB
15748 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
15749 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
15750 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
15751 cCE(fmstat, ef1fa10, 0, (), noargs),
15752 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
15753 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
15754 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
15755 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15756 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
15757 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15758 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
15759 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
15760
15761 /* Memory operations. */
4962c51a
MS
15762 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15763 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
8f06b2d8
PB
15764 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15765 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15766 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15767 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15768 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15769 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15770 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15771 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15772 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15773 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15774 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15775 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15776 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15777 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15778 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15779 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 15780
c19d1205 15781 /* Monadic operations. */
8f06b2d8
PB
15782 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
15783 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
15784 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
15785
15786 /* Dyadic operations. */
8f06b2d8
PB
15787 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15788 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15789 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15790 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15791 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15792 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15793 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15794 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15795 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 15796
c19d1205 15797 /* Comparisons. */
8f06b2d8
PB
15798 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
15799 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
15800 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
15801 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 15802
c19d1205 15803#undef ARM_VARIANT
e74cfd16 15804#define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
c19d1205 15805 /* Moves and type conversions. */
5287ad62 15806 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
8f06b2d8
PB
15807 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15808 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
5287ad62
JB
15809 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
15810 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
15811 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
15812 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
8f06b2d8
PB
15813 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15814 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
15815 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15816 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15817 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15818 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205
ZW
15819
15820 /* Memory operations. */
4962c51a
MS
15821 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15822 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
8f06b2d8
PB
15823 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15824 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15825 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15826 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15827 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15828 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15829 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15830 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
b99bd4ef 15831
c19d1205 15832 /* Monadic operations. */
5287ad62
JB
15833 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15834 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15835 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
15836
15837 /* Dyadic operations. */
5287ad62
JB
15838 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15839 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15840 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15841 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15842 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15843 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15844 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15845 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15846 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 15847
c19d1205 15848 /* Comparisons. */
5287ad62
JB
15849 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15850 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
15851 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15852 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205
ZW
15853
15854#undef ARM_VARIANT
e74cfd16 15855#define ARM_VARIANT &fpu_vfp_ext_v2
8f06b2d8
PB
15856 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
15857 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
5287ad62
JB
15858 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
15859 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
15860
037e8744
JB
15861/* Instructions which may belong to either the Neon or VFP instruction sets.
15862 Individual encoder functions perform additional architecture checks. */
15863#undef ARM_VARIANT
15864#define ARM_VARIANT &fpu_vfp_ext_v1xd
15865#undef THUMB_VARIANT
15866#define THUMB_VARIANT &fpu_vfp_ext_v1xd
15867 /* These mnemonics are unique to VFP. */
15868 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
15869 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
15870 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15871 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15872 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15873 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15874 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15875 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
15876 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
15877 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
15878
15879 /* Mnemonics shared by Neon and VFP. */
15880 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
15881 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15882 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15883
15884 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15885 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15886
15887 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15888 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15889
15890 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15891 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15892 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15893 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15894 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15895 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
4962c51a
MS
15896 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15897 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744
JB
15898
15899 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
15900
15901 /* NOTE: All VMOV encoding is special-cased! */
15902 NCE(vmov, 0, 1, (VMOV), neon_mov),
15903 NCE(vmovq, 0, 1, (VMOV), neon_mov),
15904
5287ad62
JB
15905#undef THUMB_VARIANT
15906#define THUMB_VARIANT &fpu_neon_ext_v1
15907#undef ARM_VARIANT
15908#define ARM_VARIANT &fpu_neon_ext_v1
15909 /* Data processing with three registers of the same length. */
15910 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
15911 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
15912 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
15913 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15914 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15915 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15916 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15917 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15918 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15919 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
15920 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15921 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15922 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15923 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
15924 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15925 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
15926 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15927 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
15928 /* If not immediate, fall back to neon_dyadic_i64_su.
15929 shl_imm should accept I8 I16 I32 I64,
15930 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
15931 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
15932 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
15933 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
15934 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
15935 /* Logic ops, types optional & ignored. */
15936 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
15937 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
15938 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
15939 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
15940 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
15941 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
15942 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
15943 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
15944 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
15945 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
15946 /* Bitfield ops, untyped. */
15947 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15948 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15949 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15950 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15951 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15952 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15953 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
15954 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15955 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15956 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15957 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15958 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15959 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15960 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
15961 back to neon_dyadic_if_su. */
15962 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15963 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15964 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15965 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15966 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15967 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15968 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15969 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 15970 /* Comparison. Type I8 I16 I32 F32. */
5287ad62
JB
15971 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
15972 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
15973 /* As above, D registers only. */
15974 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15975 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15976 /* Int and float variants, signedness unimportant. */
5287ad62 15977 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
5287ad62
JB
15978 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
15979 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
15980 /* Add/sub take types I8 I16 I32 I64 F32. */
5287ad62 15981 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
15982 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
15983 /* vtst takes sizes 8, 16, 32. */
15984 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
15985 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
15986 /* VMUL takes I8 I16 I32 F32 P8. */
037e8744 15987 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62
JB
15988 /* VQD{R}MULH takes S16 S32. */
15989 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15990 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15991 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15992 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15993 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15994 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
15995 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15996 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
15997 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15998 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
15999 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16000 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
16001 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16002 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16003 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16004 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16005
16006 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 16007 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
16008 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
16009
16010 /* Data processing with two registers and a shift amount. */
16011 /* Right shifts, and variants with rounding.
16012 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
16013 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16014 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16015 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16016 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16017 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16018 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16019 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16020 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16021 /* Shift and insert. Sizes accepted 8 16 32 64. */
16022 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
16023 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
16024 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
16025 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
16026 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
16027 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
16028 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
16029 /* Right shift immediate, saturating & narrowing, with rounding variants.
16030 Types accepted S16 S32 S64 U16 U32 U64. */
16031 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16032 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16033 /* As above, unsigned. Types accepted S16 S32 S64. */
16034 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16035 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16036 /* Right shift narrowing. Types accepted I16 I32 I64. */
16037 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16038 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16039 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
16040 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
16041 /* CVT with optional immediate for fixed-point variant. */
037e8744 16042 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 16043
5287ad62
JB
16044 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
16045 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
16046
16047 /* Data processing, three registers of different lengths. */
16048 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
16049 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
16050 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
16051 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
16052 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
16053 /* If not scalar, fall back to neon_dyadic_long.
16054 Vector types as above, scalar types S16 S32 U16 U32. */
16055 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16056 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16057 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
16058 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16059 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16060 /* Dyadic, narrowing insns. Types I16 I32 I64. */
16061 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16062 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16063 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16064 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16065 /* Saturating doubling multiplies. Types S16 S32. */
16066 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16067 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16068 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16069 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
16070 S16 S32 U16 U32. */
16071 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
16072
16073 /* Extract. Size 8. */
3b8d421e
PB
16074 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
16075 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
16076
16077 /* Two registers, miscellaneous. */
16078 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
16079 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
16080 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
16081 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
16082 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
16083 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
16084 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
16085 /* Vector replicate. Sizes 8 16 32. */
16086 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
16087 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
16088 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
16089 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
16090 /* VMOVN. Types I16 I32 I64. */
16091 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
16092 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
16093 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
16094 /* VQMOVUN. Types S16 S32 S64. */
16095 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
16096 /* VZIP / VUZP. Sizes 8 16 32. */
16097 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
16098 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
16099 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
16100 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
16101 /* VQABS / VQNEG. Types S8 S16 S32. */
16102 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16103 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
16104 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16105 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
16106 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
16107 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
16108 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
16109 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
16110 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
16111 /* Reciprocal estimates. Types U32 F32. */
16112 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
16113 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
16114 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
16115 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
16116 /* VCLS. Types S8 S16 S32. */
16117 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
16118 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
16119 /* VCLZ. Types I8 I16 I32. */
16120 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
16121 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
16122 /* VCNT. Size 8. */
16123 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
16124 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
16125 /* Two address, untyped. */
16126 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
16127 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
16128 /* VTRN. Sizes 8 16 32. */
16129 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
16130 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
16131
16132 /* Table lookup. Size 8. */
16133 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16134 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16135
b7fc2769
JB
16136#undef THUMB_VARIANT
16137#define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
16138#undef ARM_VARIANT
16139#define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
5287ad62
JB
16140 /* Neon element/structure load/store. */
16141 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16142 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16143 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16144 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16145 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16146 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16147 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16148 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16149
16150#undef THUMB_VARIANT
16151#define THUMB_VARIANT &fpu_vfp_ext_v3
16152#undef ARM_VARIANT
16153#define ARM_VARIANT &fpu_vfp_ext_v3
5287ad62
JB
16154 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
16155 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
16156 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16157 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16158 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16159 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16160 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16161 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16162 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16163 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16164 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16165 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16166 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16167 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16168 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16169 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16170 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16171 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 16172
5287ad62 16173#undef THUMB_VARIANT
c19d1205 16174#undef ARM_VARIANT
e74cfd16 16175#define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
8f06b2d8
PB
16176 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16177 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16178 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16179 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16180 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16181 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16182 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
16183 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205
ZW
16184
16185#undef ARM_VARIANT
e74cfd16 16186#define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
8f06b2d8
PB
16187 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
16188 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
16189 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
16190 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
16191 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
16192 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
16193 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
16194 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
16195 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
16196 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16197 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16198 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16199 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16200 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16201 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16202 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16203 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16204 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
41adaa5c 16205 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
8f06b2d8
PB
16206 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
16207 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16208 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16209 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16210 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16211 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16212 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16213 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
16214 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
16215 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
41adaa5c 16216 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
8f06b2d8
PB
16217 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
16218 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
16219 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
16220 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
16221 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
16222 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
16223 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
16224 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16225 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16226 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16227 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16228 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16229 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16230 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16231 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16232 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16233 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
16234 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16235 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16236 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16237 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16238 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16239 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16240 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16241 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16242 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16243 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16244 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16245 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16246 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16247 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16248 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16249 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16250 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16251 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16252 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16253 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16254 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16255 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16256 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16257 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16258 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16259 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16260 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16261 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16262 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16263 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16264 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16265 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16266 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16267 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16268 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16269 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16270 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16271 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16272 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16273 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16274 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16275 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
16276 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16277 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16278 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16279 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16280 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16281 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16282 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16283 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16284 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16285 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16286 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 16287 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16288 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16289 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16290 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16291 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8
PB
16292 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16293 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16294 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16295 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16296 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16297 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
2d447fca 16298 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16299 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16300 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16301 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16302 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16303 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16304 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16305 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16306 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16307 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16308 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16309 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16310 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16311 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16312 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16313 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16314 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8
PB
16315 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16316 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16317 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16318 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16319 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16320 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16321 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16322 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16323 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16324 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16325 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16326 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16327 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16328 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16329 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
16330 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
16331 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
16332 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
16333 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
16334 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
16335 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16336 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16337 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16338 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
16339 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
16340 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
16341 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
16342 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
16343 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
16344 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16345 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16346 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16347 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16348 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 16349
2d447fca
JM
16350#undef ARM_VARIANT
16351#define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
16352 cCE(torvscb, e13f190, 1, (RR), iwmmxt_tandorc),
16353 cCE(torvsch, e53f190, 1, (RR), iwmmxt_tandorc),
16354 cCE(torvscw, e93f190, 1, (RR), iwmmxt_tandorc),
16355 cCE(wabsb, e2001c0, 2, (RIWR, RIWR), rd_rn),
16356 cCE(wabsh, e6001c0, 2, (RIWR, RIWR), rd_rn),
16357 cCE(wabsw, ea001c0, 2, (RIWR, RIWR), rd_rn),
16358 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16359 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16360 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16361 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16362 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16363 cCE(waddhc, e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16364 cCE(waddwc, ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16365 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16366 cCE(wavg4, e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16367 cCE(wavg4r, e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16368 cCE(wmaddsn, ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16369 cCE(wmaddsx, eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16370 cCE(wmaddun, ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16371 cCE(wmaddux, e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16372 cCE(wmerge, e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
16373 cCE(wmiabb, e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16374 cCE(wmiabt, e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16375 cCE(wmiatb, e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16376 cCE(wmiatt, e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16377 cCE(wmiabbn, e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16378 cCE(wmiabtn, e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16379 cCE(wmiatbn, e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16380 cCE(wmiattn, e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16381 cCE(wmiawbb, e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16382 cCE(wmiawbt, e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16383 cCE(wmiawtb, ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16384 cCE(wmiawtt, eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16385 cCE(wmiawbbn, ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16386 cCE(wmiawbtn, ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16387 cCE(wmiawtbn, ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16388 cCE(wmiawttn, ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16389 cCE(wmulsmr, ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16390 cCE(wmulumr, ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16391 cCE(wmulwumr, ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16392 cCE(wmulwsmr, ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16393 cCE(wmulwum, ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16394 cCE(wmulwsm, ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16395 cCE(wmulwl, eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16396 cCE(wqmiabb, e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16397 cCE(wqmiabt, e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16398 cCE(wqmiatb, ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16399 cCE(wqmiatt, eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16400 cCE(wqmiabbn, ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16401 cCE(wqmiabtn, ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16402 cCE(wqmiatbn, ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16403 cCE(wqmiattn, ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16404 cCE(wqmulm, e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16405 cCE(wqmulmr, e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16406 cCE(wqmulwm, ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16407 cCE(wqmulwmr, ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16408 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16409
c19d1205 16410#undef ARM_VARIANT
e74cfd16 16411#define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
4962c51a
MS
16412 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16413 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16414 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16415 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16416 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16417 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16418 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16419 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
8f06b2d8
PB
16420 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
16421 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
16422 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
16423 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
16424 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
16425 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
16426 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
16427 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
16428 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
16429 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
16430 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
16431 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
16432 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
16433 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
16434 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
16435 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
16436 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
16437 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
16438 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
16439 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
16440 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
16441 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
16442 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
16443 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
16444 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
16445 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
16446 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
16447 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
16448 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
16449 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
16450 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
16451 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
16452 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
16453 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
16454 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
16455 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
16456 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
16457 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
16458 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
16459 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
16460 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
16461 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
16462 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
16463 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
16464 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
16465 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
16466 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
16467 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
16468 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
16469 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
16470 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
16471 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
16472 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
16473 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
16474 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
16475 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
16476 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16477 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16478 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16479 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16480 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16481 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16482 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16483 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16484 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16485 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16486 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16487 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
16488};
16489#undef ARM_VARIANT
16490#undef THUMB_VARIANT
16491#undef TCE
16492#undef TCM
16493#undef TUE
16494#undef TUF
16495#undef TCC
8f06b2d8 16496#undef cCE
e3cb604e
PB
16497#undef cCL
16498#undef C3E
c19d1205
ZW
16499#undef CE
16500#undef CM
16501#undef UE
16502#undef UF
16503#undef UT
5287ad62
JB
16504#undef NUF
16505#undef nUF
16506#undef NCE
16507#undef nCE
c19d1205
ZW
16508#undef OPS0
16509#undef OPS1
16510#undef OPS2
16511#undef OPS3
16512#undef OPS4
16513#undef OPS5
16514#undef OPS6
16515#undef do_0
16516\f
16517/* MD interface: bits in the object file. */
bfae80f2 16518
c19d1205
ZW
16519/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
16520 for use in the a.out file, and stores them in the array pointed to by buf.
16521 This knows about the endian-ness of the target machine and does
16522 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
16523 2 (short) and 4 (long) Floating numbers are put out as a series of
16524 LITTLENUMS (shorts, here at least). */
b99bd4ef 16525
c19d1205
ZW
16526void
16527md_number_to_chars (char * buf, valueT val, int n)
16528{
16529 if (target_big_endian)
16530 number_to_chars_bigendian (buf, val, n);
16531 else
16532 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
16533}
16534
c19d1205
ZW
16535static valueT
16536md_chars_to_number (char * buf, int n)
bfae80f2 16537{
c19d1205
ZW
16538 valueT result = 0;
16539 unsigned char * where = (unsigned char *) buf;
bfae80f2 16540
c19d1205 16541 if (target_big_endian)
b99bd4ef 16542 {
c19d1205
ZW
16543 while (n--)
16544 {
16545 result <<= 8;
16546 result |= (*where++ & 255);
16547 }
b99bd4ef 16548 }
c19d1205 16549 else
b99bd4ef 16550 {
c19d1205
ZW
16551 while (n--)
16552 {
16553 result <<= 8;
16554 result |= (where[n] & 255);
16555 }
bfae80f2 16556 }
b99bd4ef 16557
c19d1205 16558 return result;
bfae80f2 16559}
b99bd4ef 16560
c19d1205 16561/* MD interface: Sections. */
b99bd4ef 16562
0110f2b8
PB
16563/* Estimate the size of a frag before relaxing. Assume everything fits in
16564 2 bytes. */
16565
c19d1205 16566int
0110f2b8 16567md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
16568 segT segtype ATTRIBUTE_UNUSED)
16569{
0110f2b8
PB
16570 fragp->fr_var = 2;
16571 return 2;
16572}
16573
16574/* Convert a machine dependent frag. */
16575
16576void
16577md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
16578{
16579 unsigned long insn;
16580 unsigned long old_op;
16581 char *buf;
16582 expressionS exp;
16583 fixS *fixp;
16584 int reloc_type;
16585 int pc_rel;
16586 int opcode;
16587
16588 buf = fragp->fr_literal + fragp->fr_fix;
16589
16590 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
16591 if (fragp->fr_symbol)
16592 {
0110f2b8
PB
16593 exp.X_op = O_symbol;
16594 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
16595 }
16596 else
16597 {
0110f2b8 16598 exp.X_op = O_constant;
5f4273c7 16599 }
0110f2b8
PB
16600 exp.X_add_number = fragp->fr_offset;
16601 opcode = fragp->fr_subtype;
16602 switch (opcode)
16603 {
16604 case T_MNEM_ldr_pc:
16605 case T_MNEM_ldr_pc2:
16606 case T_MNEM_ldr_sp:
16607 case T_MNEM_str_sp:
16608 case T_MNEM_ldr:
16609 case T_MNEM_ldrb:
16610 case T_MNEM_ldrh:
16611 case T_MNEM_str:
16612 case T_MNEM_strb:
16613 case T_MNEM_strh:
16614 if (fragp->fr_var == 4)
16615 {
5f4273c7 16616 insn = THUMB_OP32 (opcode);
0110f2b8
PB
16617 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
16618 {
16619 insn |= (old_op & 0x700) << 4;
16620 }
16621 else
16622 {
16623 insn |= (old_op & 7) << 12;
16624 insn |= (old_op & 0x38) << 13;
16625 }
16626 insn |= 0x00000c00;
16627 put_thumb32_insn (buf, insn);
16628 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
16629 }
16630 else
16631 {
16632 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
16633 }
16634 pc_rel = (opcode == T_MNEM_ldr_pc2);
16635 break;
16636 case T_MNEM_adr:
16637 if (fragp->fr_var == 4)
16638 {
16639 insn = THUMB_OP32 (opcode);
16640 insn |= (old_op & 0xf0) << 4;
16641 put_thumb32_insn (buf, insn);
16642 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
16643 }
16644 else
16645 {
16646 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16647 exp.X_add_number -= 4;
16648 }
16649 pc_rel = 1;
16650 break;
16651 case T_MNEM_mov:
16652 case T_MNEM_movs:
16653 case T_MNEM_cmp:
16654 case T_MNEM_cmn:
16655 if (fragp->fr_var == 4)
16656 {
16657 int r0off = (opcode == T_MNEM_mov
16658 || opcode == T_MNEM_movs) ? 0 : 8;
16659 insn = THUMB_OP32 (opcode);
16660 insn = (insn & 0xe1ffffff) | 0x10000000;
16661 insn |= (old_op & 0x700) << r0off;
16662 put_thumb32_insn (buf, insn);
16663 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16664 }
16665 else
16666 {
16667 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
16668 }
16669 pc_rel = 0;
16670 break;
16671 case T_MNEM_b:
16672 if (fragp->fr_var == 4)
16673 {
16674 insn = THUMB_OP32(opcode);
16675 put_thumb32_insn (buf, insn);
16676 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
16677 }
16678 else
16679 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
16680 pc_rel = 1;
16681 break;
16682 case T_MNEM_bcond:
16683 if (fragp->fr_var == 4)
16684 {
16685 insn = THUMB_OP32(opcode);
16686 insn |= (old_op & 0xf00) << 14;
16687 put_thumb32_insn (buf, insn);
16688 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
16689 }
16690 else
16691 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
16692 pc_rel = 1;
16693 break;
16694 case T_MNEM_add_sp:
16695 case T_MNEM_add_pc:
16696 case T_MNEM_inc_sp:
16697 case T_MNEM_dec_sp:
16698 if (fragp->fr_var == 4)
16699 {
16700 /* ??? Choose between add and addw. */
16701 insn = THUMB_OP32 (opcode);
16702 insn |= (old_op & 0xf0) << 4;
16703 put_thumb32_insn (buf, insn);
16805f35
PB
16704 if (opcode == T_MNEM_add_pc)
16705 reloc_type = BFD_RELOC_ARM_T32_IMM12;
16706 else
16707 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
16708 }
16709 else
16710 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16711 pc_rel = 0;
16712 break;
16713
16714 case T_MNEM_addi:
16715 case T_MNEM_addis:
16716 case T_MNEM_subi:
16717 case T_MNEM_subis:
16718 if (fragp->fr_var == 4)
16719 {
16720 insn = THUMB_OP32 (opcode);
16721 insn |= (old_op & 0xf0) << 4;
16722 insn |= (old_op & 0xf) << 16;
16723 put_thumb32_insn (buf, insn);
16805f35
PB
16724 if (insn & (1 << 20))
16725 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16726 else
16727 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
16728 }
16729 else
16730 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16731 pc_rel = 0;
16732 break;
16733 default:
5f4273c7 16734 abort ();
0110f2b8
PB
16735 }
16736 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
16737 reloc_type);
16738 fixp->fx_file = fragp->fr_file;
16739 fixp->fx_line = fragp->fr_line;
16740 fragp->fr_fix += fragp->fr_var;
16741}
16742
16743/* Return the size of a relaxable immediate operand instruction.
16744 SHIFT and SIZE specify the form of the allowable immediate. */
16745static int
16746relax_immediate (fragS *fragp, int size, int shift)
16747{
16748 offsetT offset;
16749 offsetT mask;
16750 offsetT low;
16751
16752 /* ??? Should be able to do better than this. */
16753 if (fragp->fr_symbol)
16754 return 4;
16755
16756 low = (1 << shift) - 1;
16757 mask = (1 << (shift + size)) - (1 << shift);
16758 offset = fragp->fr_offset;
16759 /* Force misaligned offsets to 32-bit variant. */
16760 if (offset & low)
5e77afaa 16761 return 4;
0110f2b8
PB
16762 if (offset & ~mask)
16763 return 4;
16764 return 2;
16765}
16766
5e77afaa
PB
16767/* Get the address of a symbol during relaxation. */
16768static addressT
5f4273c7 16769relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
16770{
16771 fragS *sym_frag;
16772 addressT addr;
16773 symbolS *sym;
16774
16775 sym = fragp->fr_symbol;
16776 sym_frag = symbol_get_frag (sym);
16777 know (S_GET_SEGMENT (sym) != absolute_section
16778 || sym_frag == &zero_address_frag);
16779 addr = S_GET_VALUE (sym) + fragp->fr_offset;
16780
16781 /* If frag has yet to be reached on this pass, assume it will
16782 move by STRETCH just as we did. If this is not so, it will
16783 be because some frag between grows, and that will force
16784 another pass. */
16785
16786 if (stretch != 0
16787 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
16788 {
16789 fragS *f;
16790
16791 /* Adjust stretch for any alignment frag. Note that if have
16792 been expanding the earlier code, the symbol may be
16793 defined in what appears to be an earlier frag. FIXME:
16794 This doesn't handle the fr_subtype field, which specifies
16795 a maximum number of bytes to skip when doing an
16796 alignment. */
16797 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16798 {
16799 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16800 {
16801 if (stretch < 0)
16802 stretch = - ((- stretch)
16803 & ~ ((1 << (int) f->fr_offset) - 1));
16804 else
16805 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16806 if (stretch == 0)
16807 break;
16808 }
16809 }
16810 if (f != NULL)
16811 addr += stretch;
16812 }
5e77afaa
PB
16813
16814 return addr;
16815}
16816
0110f2b8
PB
16817/* Return the size of a relaxable adr pseudo-instruction or PC-relative
16818 load. */
16819static int
5e77afaa 16820relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
16821{
16822 addressT addr;
16823 offsetT val;
16824
16825 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 16826 if (!S_IS_DEFINED (fragp->fr_symbol)
0110f2b8
PB
16827 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16828 return 4;
16829
5f4273c7 16830 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
16831 addr = fragp->fr_address + fragp->fr_fix;
16832 addr = (addr + 4) & ~3;
5e77afaa 16833 /* Force misaligned targets to 32-bit variant. */
0110f2b8 16834 if (val & 3)
5e77afaa 16835 return 4;
0110f2b8
PB
16836 val -= addr;
16837 if (val < 0 || val > 1020)
16838 return 4;
16839 return 2;
16840}
16841
16842/* Return the size of a relaxable add/sub immediate instruction. */
16843static int
16844relax_addsub (fragS *fragp, asection *sec)
16845{
16846 char *buf;
16847 int op;
16848
16849 buf = fragp->fr_literal + fragp->fr_fix;
16850 op = bfd_get_16(sec->owner, buf);
16851 if ((op & 0xf) == ((op >> 4) & 0xf))
16852 return relax_immediate (fragp, 8, 0);
16853 else
16854 return relax_immediate (fragp, 3, 0);
16855}
16856
16857
16858/* Return the size of a relaxable branch instruction. BITS is the
16859 size of the offset field in the narrow instruction. */
16860
16861static int
5e77afaa 16862relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
16863{
16864 addressT addr;
16865 offsetT val;
16866 offsetT limit;
16867
16868 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 16869 if (!S_IS_DEFINED (fragp->fr_symbol)
0110f2b8
PB
16870 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16871 return 4;
16872
5f4273c7 16873 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
16874 addr = fragp->fr_address + fragp->fr_fix + 4;
16875 val -= addr;
16876
16877 /* Offset is a signed value *2 */
16878 limit = 1 << bits;
16879 if (val >= limit || val < -limit)
16880 return 4;
16881 return 2;
16882}
16883
16884
16885/* Relax a machine dependent frag. This returns the amount by which
16886 the current size of the frag should change. */
16887
16888int
5e77afaa 16889arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
16890{
16891 int oldsize;
16892 int newsize;
16893
16894 oldsize = fragp->fr_var;
16895 switch (fragp->fr_subtype)
16896 {
16897 case T_MNEM_ldr_pc2:
5f4273c7 16898 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
16899 break;
16900 case T_MNEM_ldr_pc:
16901 case T_MNEM_ldr_sp:
16902 case T_MNEM_str_sp:
5f4273c7 16903 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
16904 break;
16905 case T_MNEM_ldr:
16906 case T_MNEM_str:
5f4273c7 16907 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
16908 break;
16909 case T_MNEM_ldrh:
16910 case T_MNEM_strh:
5f4273c7 16911 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
16912 break;
16913 case T_MNEM_ldrb:
16914 case T_MNEM_strb:
5f4273c7 16915 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
16916 break;
16917 case T_MNEM_adr:
5f4273c7 16918 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
16919 break;
16920 case T_MNEM_mov:
16921 case T_MNEM_movs:
16922 case T_MNEM_cmp:
16923 case T_MNEM_cmn:
5f4273c7 16924 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
16925 break;
16926 case T_MNEM_b:
5f4273c7 16927 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
16928 break;
16929 case T_MNEM_bcond:
5f4273c7 16930 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
16931 break;
16932 case T_MNEM_add_sp:
16933 case T_MNEM_add_pc:
16934 newsize = relax_immediate (fragp, 8, 2);
16935 break;
16936 case T_MNEM_inc_sp:
16937 case T_MNEM_dec_sp:
16938 newsize = relax_immediate (fragp, 7, 2);
16939 break;
16940 case T_MNEM_addi:
16941 case T_MNEM_addis:
16942 case T_MNEM_subi:
16943 case T_MNEM_subis:
16944 newsize = relax_addsub (fragp, sec);
16945 break;
16946 default:
5f4273c7 16947 abort ();
0110f2b8 16948 }
5e77afaa
PB
16949
16950 fragp->fr_var = newsize;
16951 /* Freeze wide instructions that are at or before the same location as
16952 in the previous pass. This avoids infinite loops.
5f4273c7
NC
16953 Don't freeze them unconditionally because targets may be artificially
16954 misaligned by the expansion of preceding frags. */
5e77afaa 16955 if (stretch <= 0 && newsize > 2)
0110f2b8 16956 {
0110f2b8 16957 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 16958 frag_wane (fragp);
0110f2b8 16959 }
5e77afaa 16960
0110f2b8 16961 return newsize - oldsize;
c19d1205 16962}
b99bd4ef 16963
c19d1205 16964/* Round up a section size to the appropriate boundary. */
b99bd4ef 16965
c19d1205
ZW
16966valueT
16967md_section_align (segT segment ATTRIBUTE_UNUSED,
16968 valueT size)
16969{
f0927246
NC
16970#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
16971 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
16972 {
16973 /* For a.out, force the section size to be aligned. If we don't do
16974 this, BFD will align it for us, but it will not write out the
16975 final bytes of the section. This may be a bug in BFD, but it is
16976 easier to fix it here since that is how the other a.out targets
16977 work. */
16978 int align;
16979
16980 align = bfd_get_section_alignment (stdoutput, segment);
16981 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
16982 }
c19d1205 16983#endif
f0927246
NC
16984
16985 return size;
bfae80f2 16986}
b99bd4ef 16987
c19d1205
ZW
16988/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
16989 of an rs_align_code fragment. */
16990
16991void
16992arm_handle_align (fragS * fragP)
bfae80f2 16993{
c19d1205
ZW
16994 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
16995 static char const thumb_noop[2] = { 0xc0, 0x46 };
16996 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
16997 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
16998
16999 int bytes, fix, noop_size;
17000 char * p;
17001 const char * noop;
bfae80f2 17002
c19d1205 17003 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
17004 return;
17005
c19d1205
ZW
17006 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
17007 p = fragP->fr_literal + fragP->fr_fix;
17008 fix = 0;
bfae80f2 17009
c19d1205
ZW
17010 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
17011 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 17012
c19d1205 17013 if (fragP->tc_frag_data)
a737bd4d 17014 {
c19d1205
ZW
17015 if (target_big_endian)
17016 noop = thumb_bigend_noop;
17017 else
17018 noop = thumb_noop;
17019 noop_size = sizeof (thumb_noop);
7ed4c4c5
NC
17020 }
17021 else
17022 {
c19d1205
ZW
17023 if (target_big_endian)
17024 noop = arm_bigend_noop;
17025 else
17026 noop = arm_noop;
17027 noop_size = sizeof (arm_noop);
7ed4c4c5 17028 }
a737bd4d 17029
c19d1205 17030 if (bytes & (noop_size - 1))
7ed4c4c5 17031 {
c19d1205
ZW
17032 fix = bytes & (noop_size - 1);
17033 memset (p, 0, fix);
17034 p += fix;
17035 bytes -= fix;
a737bd4d 17036 }
a737bd4d 17037
c19d1205 17038 while (bytes >= noop_size)
a737bd4d 17039 {
c19d1205
ZW
17040 memcpy (p, noop, noop_size);
17041 p += noop_size;
17042 bytes -= noop_size;
17043 fix += noop_size;
a737bd4d
NC
17044 }
17045
c19d1205
ZW
17046 fragP->fr_fix += fix;
17047 fragP->fr_var = noop_size;
a737bd4d
NC
17048}
17049
c19d1205
ZW
17050/* Called from md_do_align. Used to create an alignment
17051 frag in a code section. */
17052
17053void
17054arm_frag_align_code (int n, int max)
bfae80f2 17055{
c19d1205 17056 char * p;
7ed4c4c5 17057
c19d1205
ZW
17058 /* We assume that there will never be a requirement
17059 to support alignments greater than 32 bytes. */
17060 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
17061 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
bfae80f2 17062
c19d1205
ZW
17063 p = frag_var (rs_align_code,
17064 MAX_MEM_FOR_RS_ALIGN_CODE,
17065 1,
17066 (relax_substateT) max,
17067 (symbolS *) NULL,
17068 (offsetT) n,
17069 (char *) NULL);
17070 *p = 0;
17071}
bfae80f2 17072
c19d1205 17073/* Perform target specific initialisation of a frag. */
bfae80f2 17074
c19d1205
ZW
17075void
17076arm_init_frag (fragS * fragP)
17077{
17078 /* Record whether this frag is in an ARM or a THUMB area. */
17079 fragP->tc_frag_data = thumb_mode;
bfae80f2
RE
17080}
17081
c19d1205
ZW
17082#ifdef OBJ_ELF
17083/* When we change sections we need to issue a new mapping symbol. */
17084
17085void
17086arm_elf_change_section (void)
bfae80f2 17087{
c19d1205
ZW
17088 flagword flags;
17089 segment_info_type *seginfo;
bfae80f2 17090
c19d1205
ZW
17091 /* Link an unlinked unwind index table section to the .text section. */
17092 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
17093 && elf_linked_to_section (now_seg) == NULL)
17094 elf_linked_to_section (now_seg) = text_section;
17095
17096 if (!SEG_NORMAL (now_seg))
bfae80f2
RE
17097 return;
17098
c19d1205
ZW
17099 flags = bfd_get_section_flags (stdoutput, now_seg);
17100
17101 /* We can ignore sections that only contain debug info. */
17102 if ((flags & SEC_ALLOC) == 0)
17103 return;
bfae80f2 17104
c19d1205
ZW
17105 seginfo = seg_info (now_seg);
17106 mapstate = seginfo->tc_segment_info_data.mapstate;
17107 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
bfae80f2
RE
17108}
17109
c19d1205
ZW
17110int
17111arm_elf_section_type (const char * str, size_t len)
e45d0630 17112{
c19d1205
ZW
17113 if (len == 5 && strncmp (str, "exidx", 5) == 0)
17114 return SHT_ARM_EXIDX;
e45d0630 17115
c19d1205
ZW
17116 return -1;
17117}
17118\f
17119/* Code to deal with unwinding tables. */
e45d0630 17120
c19d1205 17121static void add_unwind_adjustsp (offsetT);
e45d0630 17122
5f4273c7 17123/* Generate any deferred unwind frame offset. */
e45d0630 17124
bfae80f2 17125static void
c19d1205 17126flush_pending_unwind (void)
bfae80f2 17127{
c19d1205 17128 offsetT offset;
bfae80f2 17129
c19d1205
ZW
17130 offset = unwind.pending_offset;
17131 unwind.pending_offset = 0;
17132 if (offset != 0)
17133 add_unwind_adjustsp (offset);
bfae80f2
RE
17134}
17135
c19d1205
ZW
17136/* Add an opcode to this list for this function. Two-byte opcodes should
17137 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
17138 order. */
17139
bfae80f2 17140static void
c19d1205 17141add_unwind_opcode (valueT op, int length)
bfae80f2 17142{
c19d1205
ZW
17143 /* Add any deferred stack adjustment. */
17144 if (unwind.pending_offset)
17145 flush_pending_unwind ();
bfae80f2 17146
c19d1205 17147 unwind.sp_restored = 0;
bfae80f2 17148
c19d1205 17149 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 17150 {
c19d1205
ZW
17151 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
17152 if (unwind.opcodes)
17153 unwind.opcodes = xrealloc (unwind.opcodes,
17154 unwind.opcode_alloc);
17155 else
17156 unwind.opcodes = xmalloc (unwind.opcode_alloc);
bfae80f2 17157 }
c19d1205 17158 while (length > 0)
bfae80f2 17159 {
c19d1205
ZW
17160 length--;
17161 unwind.opcodes[unwind.opcode_count] = op & 0xff;
17162 op >>= 8;
17163 unwind.opcode_count++;
bfae80f2 17164 }
bfae80f2
RE
17165}
17166
c19d1205
ZW
17167/* Add unwind opcodes to adjust the stack pointer. */
17168
bfae80f2 17169static void
c19d1205 17170add_unwind_adjustsp (offsetT offset)
bfae80f2 17171{
c19d1205 17172 valueT op;
bfae80f2 17173
c19d1205 17174 if (offset > 0x200)
bfae80f2 17175 {
c19d1205
ZW
17176 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
17177 char bytes[5];
17178 int n;
17179 valueT o;
bfae80f2 17180
c19d1205
ZW
17181 /* Long form: 0xb2, uleb128. */
17182 /* This might not fit in a word so add the individual bytes,
17183 remembering the list is built in reverse order. */
17184 o = (valueT) ((offset - 0x204) >> 2);
17185 if (o == 0)
17186 add_unwind_opcode (0, 1);
bfae80f2 17187
c19d1205
ZW
17188 /* Calculate the uleb128 encoding of the offset. */
17189 n = 0;
17190 while (o)
17191 {
17192 bytes[n] = o & 0x7f;
17193 o >>= 7;
17194 if (o)
17195 bytes[n] |= 0x80;
17196 n++;
17197 }
17198 /* Add the insn. */
17199 for (; n; n--)
17200 add_unwind_opcode (bytes[n - 1], 1);
17201 add_unwind_opcode (0xb2, 1);
17202 }
17203 else if (offset > 0x100)
bfae80f2 17204 {
c19d1205
ZW
17205 /* Two short opcodes. */
17206 add_unwind_opcode (0x3f, 1);
17207 op = (offset - 0x104) >> 2;
17208 add_unwind_opcode (op, 1);
bfae80f2 17209 }
c19d1205
ZW
17210 else if (offset > 0)
17211 {
17212 /* Short opcode. */
17213 op = (offset - 4) >> 2;
17214 add_unwind_opcode (op, 1);
17215 }
17216 else if (offset < 0)
bfae80f2 17217 {
c19d1205
ZW
17218 offset = -offset;
17219 while (offset > 0x100)
bfae80f2 17220 {
c19d1205
ZW
17221 add_unwind_opcode (0x7f, 1);
17222 offset -= 0x100;
bfae80f2 17223 }
c19d1205
ZW
17224 op = ((offset - 4) >> 2) | 0x40;
17225 add_unwind_opcode (op, 1);
bfae80f2 17226 }
bfae80f2
RE
17227}
17228
c19d1205
ZW
17229/* Finish the list of unwind opcodes for this function. */
17230static void
17231finish_unwind_opcodes (void)
bfae80f2 17232{
c19d1205 17233 valueT op;
bfae80f2 17234
c19d1205 17235 if (unwind.fp_used)
bfae80f2 17236 {
708587a4 17237 /* Adjust sp as necessary. */
c19d1205
ZW
17238 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
17239 flush_pending_unwind ();
bfae80f2 17240
c19d1205
ZW
17241 /* After restoring sp from the frame pointer. */
17242 op = 0x90 | unwind.fp_reg;
17243 add_unwind_opcode (op, 1);
17244 }
17245 else
17246 flush_pending_unwind ();
bfae80f2
RE
17247}
17248
bfae80f2 17249
c19d1205
ZW
17250/* Start an exception table entry. If idx is nonzero this is an index table
17251 entry. */
bfae80f2
RE
17252
17253static void
c19d1205 17254start_unwind_section (const segT text_seg, int idx)
bfae80f2 17255{
c19d1205
ZW
17256 const char * text_name;
17257 const char * prefix;
17258 const char * prefix_once;
17259 const char * group_name;
17260 size_t prefix_len;
17261 size_t text_len;
17262 char * sec_name;
17263 size_t sec_name_len;
17264 int type;
17265 int flags;
17266 int linkonce;
bfae80f2 17267
c19d1205 17268 if (idx)
bfae80f2 17269 {
c19d1205
ZW
17270 prefix = ELF_STRING_ARM_unwind;
17271 prefix_once = ELF_STRING_ARM_unwind_once;
17272 type = SHT_ARM_EXIDX;
bfae80f2 17273 }
c19d1205 17274 else
bfae80f2 17275 {
c19d1205
ZW
17276 prefix = ELF_STRING_ARM_unwind_info;
17277 prefix_once = ELF_STRING_ARM_unwind_info_once;
17278 type = SHT_PROGBITS;
bfae80f2
RE
17279 }
17280
c19d1205
ZW
17281 text_name = segment_name (text_seg);
17282 if (streq (text_name, ".text"))
17283 text_name = "";
17284
17285 if (strncmp (text_name, ".gnu.linkonce.t.",
17286 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 17287 {
c19d1205
ZW
17288 prefix = prefix_once;
17289 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
17290 }
17291
c19d1205
ZW
17292 prefix_len = strlen (prefix);
17293 text_len = strlen (text_name);
17294 sec_name_len = prefix_len + text_len;
17295 sec_name = xmalloc (sec_name_len + 1);
17296 memcpy (sec_name, prefix, prefix_len);
17297 memcpy (sec_name + prefix_len, text_name, text_len);
17298 sec_name[prefix_len + text_len] = '\0';
bfae80f2 17299
c19d1205
ZW
17300 flags = SHF_ALLOC;
17301 linkonce = 0;
17302 group_name = 0;
bfae80f2 17303
c19d1205
ZW
17304 /* Handle COMDAT group. */
17305 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 17306 {
c19d1205
ZW
17307 group_name = elf_group_name (text_seg);
17308 if (group_name == NULL)
17309 {
bd3ba5d1 17310 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
17311 segment_name (text_seg));
17312 ignore_rest_of_line ();
17313 return;
17314 }
17315 flags |= SHF_GROUP;
17316 linkonce = 1;
bfae80f2
RE
17317 }
17318
c19d1205 17319 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 17320
5f4273c7 17321 /* Set the section link for index tables. */
c19d1205
ZW
17322 if (idx)
17323 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
17324}
17325
bfae80f2 17326
c19d1205
ZW
17327/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
17328 personality routine data. Returns zero, or the index table value for
17329 and inline entry. */
17330
17331static valueT
17332create_unwind_entry (int have_data)
bfae80f2 17333{
c19d1205
ZW
17334 int size;
17335 addressT where;
17336 char *ptr;
17337 /* The current word of data. */
17338 valueT data;
17339 /* The number of bytes left in this word. */
17340 int n;
bfae80f2 17341
c19d1205 17342 finish_unwind_opcodes ();
bfae80f2 17343
c19d1205
ZW
17344 /* Remember the current text section. */
17345 unwind.saved_seg = now_seg;
17346 unwind.saved_subseg = now_subseg;
bfae80f2 17347
c19d1205 17348 start_unwind_section (now_seg, 0);
bfae80f2 17349
c19d1205 17350 if (unwind.personality_routine == NULL)
bfae80f2 17351 {
c19d1205
ZW
17352 if (unwind.personality_index == -2)
17353 {
17354 if (have_data)
5f4273c7 17355 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
17356 return 1; /* EXIDX_CANTUNWIND. */
17357 }
bfae80f2 17358
c19d1205
ZW
17359 /* Use a default personality routine if none is specified. */
17360 if (unwind.personality_index == -1)
17361 {
17362 if (unwind.opcode_count > 3)
17363 unwind.personality_index = 1;
17364 else
17365 unwind.personality_index = 0;
17366 }
bfae80f2 17367
c19d1205
ZW
17368 /* Space for the personality routine entry. */
17369 if (unwind.personality_index == 0)
17370 {
17371 if (unwind.opcode_count > 3)
17372 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 17373
c19d1205
ZW
17374 if (!have_data)
17375 {
17376 /* All the data is inline in the index table. */
17377 data = 0x80;
17378 n = 3;
17379 while (unwind.opcode_count > 0)
17380 {
17381 unwind.opcode_count--;
17382 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17383 n--;
17384 }
bfae80f2 17385
c19d1205
ZW
17386 /* Pad with "finish" opcodes. */
17387 while (n--)
17388 data = (data << 8) | 0xb0;
bfae80f2 17389
c19d1205
ZW
17390 return data;
17391 }
17392 size = 0;
17393 }
17394 else
17395 /* We get two opcodes "free" in the first word. */
17396 size = unwind.opcode_count - 2;
17397 }
17398 else
17399 /* An extra byte is required for the opcode count. */
17400 size = unwind.opcode_count + 1;
bfae80f2 17401
c19d1205
ZW
17402 size = (size + 3) >> 2;
17403 if (size > 0xff)
17404 as_bad (_("too many unwind opcodes"));
bfae80f2 17405
c19d1205
ZW
17406 frag_align (2, 0, 0);
17407 record_alignment (now_seg, 2);
17408 unwind.table_entry = expr_build_dot ();
17409
17410 /* Allocate the table entry. */
17411 ptr = frag_more ((size << 2) + 4);
17412 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 17413
c19d1205 17414 switch (unwind.personality_index)
bfae80f2 17415 {
c19d1205
ZW
17416 case -1:
17417 /* ??? Should this be a PLT generating relocation? */
17418 /* Custom personality routine. */
17419 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
17420 BFD_RELOC_ARM_PREL31);
bfae80f2 17421
c19d1205
ZW
17422 where += 4;
17423 ptr += 4;
bfae80f2 17424
c19d1205
ZW
17425 /* Set the first byte to the number of additional words. */
17426 data = size - 1;
17427 n = 3;
17428 break;
bfae80f2 17429
c19d1205
ZW
17430 /* ABI defined personality routines. */
17431 case 0:
17432 /* Three opcodes bytes are packed into the first word. */
17433 data = 0x80;
17434 n = 3;
17435 break;
bfae80f2 17436
c19d1205
ZW
17437 case 1:
17438 case 2:
17439 /* The size and first two opcode bytes go in the first word. */
17440 data = ((0x80 + unwind.personality_index) << 8) | size;
17441 n = 2;
17442 break;
bfae80f2 17443
c19d1205
ZW
17444 default:
17445 /* Should never happen. */
17446 abort ();
17447 }
bfae80f2 17448
c19d1205
ZW
17449 /* Pack the opcodes into words (MSB first), reversing the list at the same
17450 time. */
17451 while (unwind.opcode_count > 0)
17452 {
17453 if (n == 0)
17454 {
17455 md_number_to_chars (ptr, data, 4);
17456 ptr += 4;
17457 n = 4;
17458 data = 0;
17459 }
17460 unwind.opcode_count--;
17461 n--;
17462 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17463 }
17464
17465 /* Finish off the last word. */
17466 if (n < 4)
17467 {
17468 /* Pad with "finish" opcodes. */
17469 while (n--)
17470 data = (data << 8) | 0xb0;
17471
17472 md_number_to_chars (ptr, data, 4);
17473 }
17474
17475 if (!have_data)
17476 {
17477 /* Add an empty descriptor if there is no user-specified data. */
17478 ptr = frag_more (4);
17479 md_number_to_chars (ptr, 0, 4);
17480 }
17481
17482 return 0;
bfae80f2
RE
17483}
17484
f0927246
NC
17485
17486/* Initialize the DWARF-2 unwind information for this procedure. */
17487
17488void
17489tc_arm_frame_initial_instructions (void)
17490{
17491 cfi_add_CFA_def_cfa (REG_SP, 0);
17492}
17493#endif /* OBJ_ELF */
17494
c19d1205
ZW
17495/* Convert REGNAME to a DWARF-2 register number. */
17496
17497int
1df69f4f 17498tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 17499{
1df69f4f 17500 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
17501
17502 if (reg == FAIL)
17503 return -1;
17504
17505 return reg;
bfae80f2
RE
17506}
17507
f0927246 17508#ifdef TE_PE
c19d1205 17509void
f0927246 17510tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 17511{
f0927246 17512 expressionS expr;
bfae80f2 17513
f0927246
NC
17514 expr.X_op = O_secrel;
17515 expr.X_add_symbol = symbol;
17516 expr.X_add_number = 0;
17517 emit_expr (&expr, size);
17518}
17519#endif
bfae80f2 17520
c19d1205 17521/* MD interface: Symbol and relocation handling. */
bfae80f2 17522
2fc8bdac
ZW
17523/* Return the address within the segment that a PC-relative fixup is
17524 relative to. For ARM, PC-relative fixups applied to instructions
17525 are generally relative to the location of the fixup plus 8 bytes.
17526 Thumb branches are offset by 4, and Thumb loads relative to PC
17527 require special handling. */
bfae80f2 17528
c19d1205 17529long
2fc8bdac 17530md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 17531{
2fc8bdac
ZW
17532 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
17533
17534 /* If this is pc-relative and we are going to emit a relocation
17535 then we just want to put out any pipeline compensation that the linker
53baae48
NC
17536 will need. Otherwise we want to use the calculated base.
17537 For WinCE we skip the bias for externals as well, since this
17538 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 17539 if (fixP->fx_pcrel
2fc8bdac 17540 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
17541 || (arm_force_relocation (fixP)
17542#ifdef TE_WINCE
17543 && !S_IS_EXTERNAL (fixP->fx_addsy)
17544#endif
17545 )))
2fc8bdac 17546 base = 0;
bfae80f2 17547
c19d1205 17548 switch (fixP->fx_r_type)
bfae80f2 17549 {
2fc8bdac
ZW
17550 /* PC relative addressing on the Thumb is slightly odd as the
17551 bottom two bits of the PC are forced to zero for the
17552 calculation. This happens *after* application of the
17553 pipeline offset. However, Thumb adrl already adjusts for
17554 this, so we need not do it again. */
c19d1205 17555 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 17556 return base & ~3;
c19d1205
ZW
17557
17558 case BFD_RELOC_ARM_THUMB_OFFSET:
17559 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 17560 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 17561 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 17562 return (base + 4) & ~3;
c19d1205 17563
2fc8bdac
ZW
17564 /* Thumb branches are simply offset by +4. */
17565 case BFD_RELOC_THUMB_PCREL_BRANCH7:
17566 case BFD_RELOC_THUMB_PCREL_BRANCH9:
17567 case BFD_RELOC_THUMB_PCREL_BRANCH12:
17568 case BFD_RELOC_THUMB_PCREL_BRANCH20:
17569 case BFD_RELOC_THUMB_PCREL_BRANCH23:
17570 case BFD_RELOC_THUMB_PCREL_BRANCH25:
17571 case BFD_RELOC_THUMB_PCREL_BLX:
17572 return base + 4;
bfae80f2 17573
2fc8bdac
ZW
17574 /* ARM mode branches are offset by +8. However, the Windows CE
17575 loader expects the relocation not to take this into account. */
17576 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c
PB
17577 case BFD_RELOC_ARM_PCREL_CALL:
17578 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac
ZW
17579 case BFD_RELOC_ARM_PCREL_BLX:
17580 case BFD_RELOC_ARM_PLT32:
c19d1205 17581#ifdef TE_WINCE
5f4273c7 17582 /* When handling fixups immediately, because we have already
53baae48
NC
17583 discovered the value of a symbol, or the address of the frag involved
17584 we must account for the offset by +8, as the OS loader will never see the reloc.
17585 see fixup_segment() in write.c
17586 The S_IS_EXTERNAL test handles the case of global symbols.
17587 Those need the calculated base, not just the pipe compensation the linker will need. */
17588 if (fixP->fx_pcrel
17589 && fixP->fx_addsy != NULL
17590 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
17591 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
17592 return base + 8;
2fc8bdac 17593 return base;
c19d1205 17594#else
2fc8bdac 17595 return base + 8;
c19d1205 17596#endif
2fc8bdac
ZW
17597
17598 /* ARM mode loads relative to PC are also offset by +8. Unlike
17599 branches, the Windows CE loader *does* expect the relocation
17600 to take this into account. */
17601 case BFD_RELOC_ARM_OFFSET_IMM:
17602 case BFD_RELOC_ARM_OFFSET_IMM8:
17603 case BFD_RELOC_ARM_HWLITERAL:
17604 case BFD_RELOC_ARM_LITERAL:
17605 case BFD_RELOC_ARM_CP_OFF_IMM:
17606 return base + 8;
17607
17608
17609 /* Other PC-relative relocations are un-offset. */
17610 default:
17611 return base;
17612 }
bfae80f2
RE
17613}
17614
c19d1205
ZW
17615/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
17616 Otherwise we have no need to default values of symbols. */
17617
17618symbolS *
17619md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 17620{
c19d1205
ZW
17621#ifdef OBJ_ELF
17622 if (name[0] == '_' && name[1] == 'G'
17623 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
17624 {
17625 if (!GOT_symbol)
17626 {
17627 if (symbol_find (name))
bd3ba5d1 17628 as_bad (_("GOT already in the symbol table"));
bfae80f2 17629
c19d1205
ZW
17630 GOT_symbol = symbol_new (name, undefined_section,
17631 (valueT) 0, & zero_address_frag);
17632 }
bfae80f2 17633
c19d1205 17634 return GOT_symbol;
bfae80f2 17635 }
c19d1205 17636#endif
bfae80f2 17637
c19d1205 17638 return 0;
bfae80f2
RE
17639}
17640
55cf6793 17641/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
17642 computed as two separate immediate values, added together. We
17643 already know that this value cannot be computed by just one ARM
17644 instruction. */
17645
17646static unsigned int
17647validate_immediate_twopart (unsigned int val,
17648 unsigned int * highpart)
bfae80f2 17649{
c19d1205
ZW
17650 unsigned int a;
17651 unsigned int i;
bfae80f2 17652
c19d1205
ZW
17653 for (i = 0; i < 32; i += 2)
17654 if (((a = rotate_left (val, i)) & 0xff) != 0)
17655 {
17656 if (a & 0xff00)
17657 {
17658 if (a & ~ 0xffff)
17659 continue;
17660 * highpart = (a >> 8) | ((i + 24) << 7);
17661 }
17662 else if (a & 0xff0000)
17663 {
17664 if (a & 0xff000000)
17665 continue;
17666 * highpart = (a >> 16) | ((i + 16) << 7);
17667 }
17668 else
17669 {
17670 assert (a & 0xff000000);
17671 * highpart = (a >> 24) | ((i + 8) << 7);
17672 }
bfae80f2 17673
c19d1205
ZW
17674 return (a & 0xff) | (i << 7);
17675 }
bfae80f2 17676
c19d1205 17677 return FAIL;
bfae80f2
RE
17678}
17679
c19d1205
ZW
17680static int
17681validate_offset_imm (unsigned int val, int hwse)
17682{
17683 if ((hwse && val > 255) || val > 4095)
17684 return FAIL;
17685 return val;
17686}
bfae80f2 17687
55cf6793 17688/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
17689 negative immediate constant by altering the instruction. A bit of
17690 a hack really.
17691 MOV <-> MVN
17692 AND <-> BIC
17693 ADC <-> SBC
17694 by inverting the second operand, and
17695 ADD <-> SUB
17696 CMP <-> CMN
17697 by negating the second operand. */
bfae80f2 17698
c19d1205
ZW
17699static int
17700negate_data_op (unsigned long * instruction,
17701 unsigned long value)
bfae80f2 17702{
c19d1205
ZW
17703 int op, new_inst;
17704 unsigned long negated, inverted;
bfae80f2 17705
c19d1205
ZW
17706 negated = encode_arm_immediate (-value);
17707 inverted = encode_arm_immediate (~value);
bfae80f2 17708
c19d1205
ZW
17709 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
17710 switch (op)
bfae80f2 17711 {
c19d1205
ZW
17712 /* First negates. */
17713 case OPCODE_SUB: /* ADD <-> SUB */
17714 new_inst = OPCODE_ADD;
17715 value = negated;
17716 break;
bfae80f2 17717
c19d1205
ZW
17718 case OPCODE_ADD:
17719 new_inst = OPCODE_SUB;
17720 value = negated;
17721 break;
bfae80f2 17722
c19d1205
ZW
17723 case OPCODE_CMP: /* CMP <-> CMN */
17724 new_inst = OPCODE_CMN;
17725 value = negated;
17726 break;
bfae80f2 17727
c19d1205
ZW
17728 case OPCODE_CMN:
17729 new_inst = OPCODE_CMP;
17730 value = negated;
17731 break;
bfae80f2 17732
c19d1205
ZW
17733 /* Now Inverted ops. */
17734 case OPCODE_MOV: /* MOV <-> MVN */
17735 new_inst = OPCODE_MVN;
17736 value = inverted;
17737 break;
bfae80f2 17738
c19d1205
ZW
17739 case OPCODE_MVN:
17740 new_inst = OPCODE_MOV;
17741 value = inverted;
17742 break;
bfae80f2 17743
c19d1205
ZW
17744 case OPCODE_AND: /* AND <-> BIC */
17745 new_inst = OPCODE_BIC;
17746 value = inverted;
17747 break;
bfae80f2 17748
c19d1205
ZW
17749 case OPCODE_BIC:
17750 new_inst = OPCODE_AND;
17751 value = inverted;
17752 break;
bfae80f2 17753
c19d1205
ZW
17754 case OPCODE_ADC: /* ADC <-> SBC */
17755 new_inst = OPCODE_SBC;
17756 value = inverted;
17757 break;
bfae80f2 17758
c19d1205
ZW
17759 case OPCODE_SBC:
17760 new_inst = OPCODE_ADC;
17761 value = inverted;
17762 break;
bfae80f2 17763
c19d1205
ZW
17764 /* We cannot do anything. */
17765 default:
17766 return FAIL;
b99bd4ef
NC
17767 }
17768
c19d1205
ZW
17769 if (value == (unsigned) FAIL)
17770 return FAIL;
17771
17772 *instruction &= OPCODE_MASK;
17773 *instruction |= new_inst << DATA_OP_SHIFT;
17774 return value;
b99bd4ef
NC
17775}
17776
ef8d22e6
PB
17777/* Like negate_data_op, but for Thumb-2. */
17778
17779static unsigned int
16dd5e42 17780thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
17781{
17782 int op, new_inst;
17783 int rd;
16dd5e42 17784 unsigned int negated, inverted;
ef8d22e6
PB
17785
17786 negated = encode_thumb32_immediate (-value);
17787 inverted = encode_thumb32_immediate (~value);
17788
17789 rd = (*instruction >> 8) & 0xf;
17790 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
17791 switch (op)
17792 {
17793 /* ADD <-> SUB. Includes CMP <-> CMN. */
17794 case T2_OPCODE_SUB:
17795 new_inst = T2_OPCODE_ADD;
17796 value = negated;
17797 break;
17798
17799 case T2_OPCODE_ADD:
17800 new_inst = T2_OPCODE_SUB;
17801 value = negated;
17802 break;
17803
17804 /* ORR <-> ORN. Includes MOV <-> MVN. */
17805 case T2_OPCODE_ORR:
17806 new_inst = T2_OPCODE_ORN;
17807 value = inverted;
17808 break;
17809
17810 case T2_OPCODE_ORN:
17811 new_inst = T2_OPCODE_ORR;
17812 value = inverted;
17813 break;
17814
17815 /* AND <-> BIC. TST has no inverted equivalent. */
17816 case T2_OPCODE_AND:
17817 new_inst = T2_OPCODE_BIC;
17818 if (rd == 15)
17819 value = FAIL;
17820 else
17821 value = inverted;
17822 break;
17823
17824 case T2_OPCODE_BIC:
17825 new_inst = T2_OPCODE_AND;
17826 value = inverted;
17827 break;
17828
17829 /* ADC <-> SBC */
17830 case T2_OPCODE_ADC:
17831 new_inst = T2_OPCODE_SBC;
17832 value = inverted;
17833 break;
17834
17835 case T2_OPCODE_SBC:
17836 new_inst = T2_OPCODE_ADC;
17837 value = inverted;
17838 break;
17839
17840 /* We cannot do anything. */
17841 default:
17842 return FAIL;
17843 }
17844
16dd5e42 17845 if (value == (unsigned int)FAIL)
ef8d22e6
PB
17846 return FAIL;
17847
17848 *instruction &= T2_OPCODE_MASK;
17849 *instruction |= new_inst << T2_DATA_OP_SHIFT;
17850 return value;
17851}
17852
8f06b2d8
PB
17853/* Read a 32-bit thumb instruction from buf. */
17854static unsigned long
17855get_thumb32_insn (char * buf)
17856{
17857 unsigned long insn;
17858 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
17859 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17860
17861 return insn;
17862}
17863
a8bc6c78
PB
17864
17865/* We usually want to set the low bit on the address of thumb function
17866 symbols. In particular .word foo - . should have the low bit set.
17867 Generic code tries to fold the difference of two symbols to
17868 a constant. Prevent this and force a relocation when the first symbols
17869 is a thumb function. */
17870int
17871arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
17872{
17873 if (op == O_subtract
17874 && l->X_op == O_symbol
17875 && r->X_op == O_symbol
17876 && THUMB_IS_FUNC (l->X_add_symbol))
17877 {
17878 l->X_op = O_subtract;
17879 l->X_op_symbol = r->X_add_symbol;
17880 l->X_add_number -= r->X_add_number;
17881 return 1;
17882 }
17883 /* Process as normal. */
17884 return 0;
17885}
17886
c19d1205 17887void
55cf6793 17888md_apply_fix (fixS * fixP,
c19d1205
ZW
17889 valueT * valP,
17890 segT seg)
17891{
17892 offsetT value = * valP;
17893 offsetT newval;
17894 unsigned int newimm;
17895 unsigned long temp;
17896 int sign;
17897 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 17898
c19d1205 17899 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 17900
c19d1205 17901 /* Note whether this will delete the relocation. */
4962c51a 17902
c19d1205
ZW
17903 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
17904 fixP->fx_done = 1;
b99bd4ef 17905
adbaf948 17906 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 17907 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
17908 for emit_reloc. */
17909 value &= 0xffffffff;
17910 value ^= 0x80000000;
5f4273c7 17911 value -= 0x80000000;
adbaf948
ZW
17912
17913 *valP = value;
c19d1205 17914 fixP->fx_addnumber = value;
b99bd4ef 17915
adbaf948
ZW
17916 /* Same treatment for fixP->fx_offset. */
17917 fixP->fx_offset &= 0xffffffff;
17918 fixP->fx_offset ^= 0x80000000;
17919 fixP->fx_offset -= 0x80000000;
17920
c19d1205 17921 switch (fixP->fx_r_type)
b99bd4ef 17922 {
c19d1205
ZW
17923 case BFD_RELOC_NONE:
17924 /* This will need to go in the object file. */
17925 fixP->fx_done = 0;
17926 break;
b99bd4ef 17927
c19d1205
ZW
17928 case BFD_RELOC_ARM_IMMEDIATE:
17929 /* We claim that this fixup has been processed here,
17930 even if in fact we generate an error because we do
17931 not have a reloc for it, so tc_gen_reloc will reject it. */
17932 fixP->fx_done = 1;
b99bd4ef 17933
c19d1205
ZW
17934 if (fixP->fx_addsy
17935 && ! S_IS_DEFINED (fixP->fx_addsy))
b99bd4ef 17936 {
c19d1205
ZW
17937 as_bad_where (fixP->fx_file, fixP->fx_line,
17938 _("undefined symbol %s used as an immediate value"),
17939 S_GET_NAME (fixP->fx_addsy));
17940 break;
b99bd4ef
NC
17941 }
17942
c19d1205
ZW
17943 newimm = encode_arm_immediate (value);
17944 temp = md_chars_to_number (buf, INSN_SIZE);
17945
17946 /* If the instruction will fail, see if we can fix things up by
17947 changing the opcode. */
17948 if (newimm == (unsigned int) FAIL
17949 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 17950 {
c19d1205
ZW
17951 as_bad_where (fixP->fx_file, fixP->fx_line,
17952 _("invalid constant (%lx) after fixup"),
17953 (unsigned long) value);
17954 break;
b99bd4ef 17955 }
b99bd4ef 17956
c19d1205
ZW
17957 newimm |= (temp & 0xfffff000);
17958 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
17959 break;
b99bd4ef 17960
c19d1205
ZW
17961 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
17962 {
17963 unsigned int highpart = 0;
17964 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 17965
c19d1205
ZW
17966 newimm = encode_arm_immediate (value);
17967 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 17968
c19d1205
ZW
17969 /* If the instruction will fail, see if we can fix things up by
17970 changing the opcode. */
17971 if (newimm == (unsigned int) FAIL
17972 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
17973 {
17974 /* No ? OK - try using two ADD instructions to generate
17975 the value. */
17976 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 17977
c19d1205
ZW
17978 /* Yes - then make sure that the second instruction is
17979 also an add. */
17980 if (newimm != (unsigned int) FAIL)
17981 newinsn = temp;
17982 /* Still No ? Try using a negated value. */
17983 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
17984 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
17985 /* Otherwise - give up. */
17986 else
17987 {
17988 as_bad_where (fixP->fx_file, fixP->fx_line,
17989 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
17990 (long) value);
17991 break;
17992 }
b99bd4ef 17993
c19d1205
ZW
17994 /* Replace the first operand in the 2nd instruction (which
17995 is the PC) with the destination register. We have
17996 already added in the PC in the first instruction and we
17997 do not want to do it again. */
17998 newinsn &= ~ 0xf0000;
17999 newinsn |= ((newinsn & 0x0f000) << 4);
18000 }
b99bd4ef 18001
c19d1205
ZW
18002 newimm |= (temp & 0xfffff000);
18003 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 18004
c19d1205
ZW
18005 highpart |= (newinsn & 0xfffff000);
18006 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
18007 }
18008 break;
b99bd4ef 18009
c19d1205 18010 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
18011 if (!fixP->fx_done && seg->use_rela_p)
18012 value = 0;
18013
c19d1205
ZW
18014 case BFD_RELOC_ARM_LITERAL:
18015 sign = value >= 0;
b99bd4ef 18016
c19d1205
ZW
18017 if (value < 0)
18018 value = - value;
b99bd4ef 18019
c19d1205 18020 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 18021 {
c19d1205
ZW
18022 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
18023 as_bad_where (fixP->fx_file, fixP->fx_line,
18024 _("invalid literal constant: pool needs to be closer"));
18025 else
18026 as_bad_where (fixP->fx_file, fixP->fx_line,
18027 _("bad immediate value for offset (%ld)"),
18028 (long) value);
18029 break;
f03698e6
RE
18030 }
18031
c19d1205
ZW
18032 newval = md_chars_to_number (buf, INSN_SIZE);
18033 newval &= 0xff7ff000;
18034 newval |= value | (sign ? INDEX_UP : 0);
18035 md_number_to_chars (buf, newval, INSN_SIZE);
18036 break;
b99bd4ef 18037
c19d1205
ZW
18038 case BFD_RELOC_ARM_OFFSET_IMM8:
18039 case BFD_RELOC_ARM_HWLITERAL:
18040 sign = value >= 0;
b99bd4ef 18041
c19d1205
ZW
18042 if (value < 0)
18043 value = - value;
b99bd4ef 18044
c19d1205 18045 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 18046 {
c19d1205
ZW
18047 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
18048 as_bad_where (fixP->fx_file, fixP->fx_line,
18049 _("invalid literal constant: pool needs to be closer"));
18050 else
f9d4405b 18051 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
18052 (long) value);
18053 break;
b99bd4ef
NC
18054 }
18055
c19d1205
ZW
18056 newval = md_chars_to_number (buf, INSN_SIZE);
18057 newval &= 0xff7ff0f0;
18058 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
18059 md_number_to_chars (buf, newval, INSN_SIZE);
18060 break;
b99bd4ef 18061
c19d1205
ZW
18062 case BFD_RELOC_ARM_T32_OFFSET_U8:
18063 if (value < 0 || value > 1020 || value % 4 != 0)
18064 as_bad_where (fixP->fx_file, fixP->fx_line,
18065 _("bad immediate value for offset (%ld)"), (long) value);
18066 value /= 4;
b99bd4ef 18067
c19d1205 18068 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
18069 newval |= value;
18070 md_number_to_chars (buf+2, newval, THUMB_SIZE);
18071 break;
b99bd4ef 18072
c19d1205
ZW
18073 case BFD_RELOC_ARM_T32_OFFSET_IMM:
18074 /* This is a complicated relocation used for all varieties of Thumb32
18075 load/store instruction with immediate offset:
18076
18077 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
18078 *4, optional writeback(W)
18079 (doubleword load/store)
18080
18081 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
18082 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
18083 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
18084 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
18085 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
18086
18087 Uppercase letters indicate bits that are already encoded at
18088 this point. Lowercase letters are our problem. For the
18089 second block of instructions, the secondary opcode nybble
18090 (bits 8..11) is present, and bit 23 is zero, even if this is
18091 a PC-relative operation. */
18092 newval = md_chars_to_number (buf, THUMB_SIZE);
18093 newval <<= 16;
18094 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 18095
c19d1205 18096 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 18097 {
c19d1205
ZW
18098 /* Doubleword load/store: 8-bit offset, scaled by 4. */
18099 if (value >= 0)
18100 newval |= (1 << 23);
18101 else
18102 value = -value;
18103 if (value % 4 != 0)
18104 {
18105 as_bad_where (fixP->fx_file, fixP->fx_line,
18106 _("offset not a multiple of 4"));
18107 break;
18108 }
18109 value /= 4;
216d22bc 18110 if (value > 0xff)
c19d1205
ZW
18111 {
18112 as_bad_where (fixP->fx_file, fixP->fx_line,
18113 _("offset out of range"));
18114 break;
18115 }
18116 newval &= ~0xff;
b99bd4ef 18117 }
c19d1205 18118 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 18119 {
c19d1205
ZW
18120 /* PC-relative, 12-bit offset. */
18121 if (value >= 0)
18122 newval |= (1 << 23);
18123 else
18124 value = -value;
216d22bc 18125 if (value > 0xfff)
c19d1205
ZW
18126 {
18127 as_bad_where (fixP->fx_file, fixP->fx_line,
18128 _("offset out of range"));
18129 break;
18130 }
18131 newval &= ~0xfff;
b99bd4ef 18132 }
c19d1205 18133 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 18134 {
c19d1205
ZW
18135 /* Writeback: 8-bit, +/- offset. */
18136 if (value >= 0)
18137 newval |= (1 << 9);
18138 else
18139 value = -value;
216d22bc 18140 if (value > 0xff)
c19d1205
ZW
18141 {
18142 as_bad_where (fixP->fx_file, fixP->fx_line,
18143 _("offset out of range"));
18144 break;
18145 }
18146 newval &= ~0xff;
b99bd4ef 18147 }
c19d1205 18148 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 18149 {
c19d1205 18150 /* T-instruction: positive 8-bit offset. */
216d22bc 18151 if (value < 0 || value > 0xff)
b99bd4ef 18152 {
c19d1205
ZW
18153 as_bad_where (fixP->fx_file, fixP->fx_line,
18154 _("offset out of range"));
18155 break;
b99bd4ef 18156 }
c19d1205
ZW
18157 newval &= ~0xff;
18158 newval |= value;
b99bd4ef
NC
18159 }
18160 else
b99bd4ef 18161 {
c19d1205
ZW
18162 /* Positive 12-bit or negative 8-bit offset. */
18163 int limit;
18164 if (value >= 0)
b99bd4ef 18165 {
c19d1205
ZW
18166 newval |= (1 << 23);
18167 limit = 0xfff;
18168 }
18169 else
18170 {
18171 value = -value;
18172 limit = 0xff;
18173 }
18174 if (value > limit)
18175 {
18176 as_bad_where (fixP->fx_file, fixP->fx_line,
18177 _("offset out of range"));
18178 break;
b99bd4ef 18179 }
c19d1205 18180 newval &= ~limit;
b99bd4ef 18181 }
b99bd4ef 18182
c19d1205
ZW
18183 newval |= value;
18184 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
18185 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
18186 break;
404ff6b5 18187
c19d1205
ZW
18188 case BFD_RELOC_ARM_SHIFT_IMM:
18189 newval = md_chars_to_number (buf, INSN_SIZE);
18190 if (((unsigned long) value) > 32
18191 || (value == 32
18192 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
18193 {
18194 as_bad_where (fixP->fx_file, fixP->fx_line,
18195 _("shift expression is too large"));
18196 break;
18197 }
404ff6b5 18198
c19d1205
ZW
18199 if (value == 0)
18200 /* Shifts of zero must be done as lsl. */
18201 newval &= ~0x60;
18202 else if (value == 32)
18203 value = 0;
18204 newval &= 0xfffff07f;
18205 newval |= (value & 0x1f) << 7;
18206 md_number_to_chars (buf, newval, INSN_SIZE);
18207 break;
404ff6b5 18208
c19d1205 18209 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 18210 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 18211 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 18212 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
18213 /* We claim that this fixup has been processed here,
18214 even if in fact we generate an error because we do
18215 not have a reloc for it, so tc_gen_reloc will reject it. */
18216 fixP->fx_done = 1;
404ff6b5 18217
c19d1205
ZW
18218 if (fixP->fx_addsy
18219 && ! S_IS_DEFINED (fixP->fx_addsy))
18220 {
18221 as_bad_where (fixP->fx_file, fixP->fx_line,
18222 _("undefined symbol %s used as an immediate value"),
18223 S_GET_NAME (fixP->fx_addsy));
18224 break;
18225 }
404ff6b5 18226
c19d1205
ZW
18227 newval = md_chars_to_number (buf, THUMB_SIZE);
18228 newval <<= 16;
18229 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 18230
16805f35
PB
18231 newimm = FAIL;
18232 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18233 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
18234 {
18235 newimm = encode_thumb32_immediate (value);
18236 if (newimm == (unsigned int) FAIL)
18237 newimm = thumb32_negate_data_op (&newval, value);
18238 }
16805f35
PB
18239 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
18240 && newimm == (unsigned int) FAIL)
92e90b6e 18241 {
16805f35
PB
18242 /* Turn add/sum into addw/subw. */
18243 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18244 newval = (newval & 0xfeffffff) | 0x02000000;
18245
e9f89963
PB
18246 /* 12 bit immediate for addw/subw. */
18247 if (value < 0)
18248 {
18249 value = -value;
18250 newval ^= 0x00a00000;
18251 }
92e90b6e
PB
18252 if (value > 0xfff)
18253 newimm = (unsigned int) FAIL;
18254 else
18255 newimm = value;
18256 }
cc8a6dd0 18257
c19d1205 18258 if (newimm == (unsigned int)FAIL)
3631a3c8 18259 {
c19d1205
ZW
18260 as_bad_where (fixP->fx_file, fixP->fx_line,
18261 _("invalid constant (%lx) after fixup"),
18262 (unsigned long) value);
18263 break;
3631a3c8
NC
18264 }
18265
c19d1205
ZW
18266 newval |= (newimm & 0x800) << 15;
18267 newval |= (newimm & 0x700) << 4;
18268 newval |= (newimm & 0x0ff);
cc8a6dd0 18269
c19d1205
ZW
18270 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
18271 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
18272 break;
a737bd4d 18273
3eb17e6b 18274 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
18275 if (((unsigned long) value) > 0xffff)
18276 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 18277 _("invalid smc expression"));
2fc8bdac 18278 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
18279 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
18280 md_number_to_chars (buf, newval, INSN_SIZE);
18281 break;
a737bd4d 18282
c19d1205 18283 case BFD_RELOC_ARM_SWI:
adbaf948 18284 if (fixP->tc_fix_data != 0)
c19d1205
ZW
18285 {
18286 if (((unsigned long) value) > 0xff)
18287 as_bad_where (fixP->fx_file, fixP->fx_line,
18288 _("invalid swi expression"));
2fc8bdac 18289 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
18290 newval |= value;
18291 md_number_to_chars (buf, newval, THUMB_SIZE);
18292 }
18293 else
18294 {
18295 if (((unsigned long) value) > 0x00ffffff)
18296 as_bad_where (fixP->fx_file, fixP->fx_line,
18297 _("invalid swi expression"));
2fc8bdac 18298 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
18299 newval |= value;
18300 md_number_to_chars (buf, newval, INSN_SIZE);
18301 }
18302 break;
a737bd4d 18303
c19d1205
ZW
18304 case BFD_RELOC_ARM_MULTI:
18305 if (((unsigned long) value) > 0xffff)
18306 as_bad_where (fixP->fx_file, fixP->fx_line,
18307 _("invalid expression in load/store multiple"));
18308 newval = value | md_chars_to_number (buf, INSN_SIZE);
18309 md_number_to_chars (buf, newval, INSN_SIZE);
18310 break;
a737bd4d 18311
c19d1205 18312#ifdef OBJ_ELF
39b41c9c
PB
18313 case BFD_RELOC_ARM_PCREL_CALL:
18314 newval = md_chars_to_number (buf, INSN_SIZE);
18315 if ((newval & 0xf0000000) == 0xf0000000)
18316 temp = 1;
18317 else
18318 temp = 3;
18319 goto arm_branch_common;
18320
18321 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 18322 case BFD_RELOC_ARM_PLT32:
c19d1205 18323#endif
39b41c9c
PB
18324 case BFD_RELOC_ARM_PCREL_BRANCH:
18325 temp = 3;
18326 goto arm_branch_common;
a737bd4d 18327
39b41c9c
PB
18328 case BFD_RELOC_ARM_PCREL_BLX:
18329 temp = 1;
18330 arm_branch_common:
c19d1205 18331 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
18332 instruction, in a 24 bit, signed field. Bits 26 through 32 either
18333 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
18334 also be be clear. */
18335 if (value & temp)
c19d1205 18336 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
18337 _("misaligned branch destination"));
18338 if ((value & (offsetT)0xfe000000) != (offsetT)0
18339 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
18340 as_bad_where (fixP->fx_file, fixP->fx_line,
18341 _("branch out of range"));
a737bd4d 18342
2fc8bdac 18343 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18344 {
2fc8bdac
ZW
18345 newval = md_chars_to_number (buf, INSN_SIZE);
18346 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
18347 /* Set the H bit on BLX instructions. */
18348 if (temp == 1)
18349 {
18350 if (value & 2)
18351 newval |= 0x01000000;
18352 else
18353 newval &= ~0x01000000;
18354 }
2fc8bdac 18355 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 18356 }
c19d1205 18357 break;
a737bd4d 18358
25fe350b
MS
18359 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
18360 /* CBZ can only branch forward. */
a737bd4d 18361
738755b0
MS
18362 /* Attempts to use CBZ to branch to the next instruction
18363 (which, strictly speaking, are prohibited) will be turned into
18364 no-ops.
18365
18366 FIXME: It may be better to remove the instruction completely and
18367 perform relaxation. */
18368 if (value == -2)
2fc8bdac
ZW
18369 {
18370 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 18371 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
18372 md_number_to_chars (buf, newval, THUMB_SIZE);
18373 }
738755b0
MS
18374 else
18375 {
18376 if (value & ~0x7e)
18377 as_bad_where (fixP->fx_file, fixP->fx_line,
18378 _("branch out of range"));
18379
18380 if (fixP->fx_done || !seg->use_rela_p)
18381 {
18382 newval = md_chars_to_number (buf, THUMB_SIZE);
18383 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
18384 md_number_to_chars (buf, newval, THUMB_SIZE);
18385 }
18386 }
c19d1205 18387 break;
a737bd4d 18388
c19d1205 18389 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
18390 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
18391 as_bad_where (fixP->fx_file, fixP->fx_line,
18392 _("branch out of range"));
a737bd4d 18393
2fc8bdac
ZW
18394 if (fixP->fx_done || !seg->use_rela_p)
18395 {
18396 newval = md_chars_to_number (buf, THUMB_SIZE);
18397 newval |= (value & 0x1ff) >> 1;
18398 md_number_to_chars (buf, newval, THUMB_SIZE);
18399 }
c19d1205 18400 break;
a737bd4d 18401
c19d1205 18402 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
18403 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
18404 as_bad_where (fixP->fx_file, fixP->fx_line,
18405 _("branch out of range"));
a737bd4d 18406
2fc8bdac
ZW
18407 if (fixP->fx_done || !seg->use_rela_p)
18408 {
18409 newval = md_chars_to_number (buf, THUMB_SIZE);
18410 newval |= (value & 0xfff) >> 1;
18411 md_number_to_chars (buf, newval, THUMB_SIZE);
18412 }
c19d1205 18413 break;
a737bd4d 18414
c19d1205 18415 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac
ZW
18416 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
18417 as_bad_where (fixP->fx_file, fixP->fx_line,
18418 _("conditional branch out of range"));
404ff6b5 18419
2fc8bdac
ZW
18420 if (fixP->fx_done || !seg->use_rela_p)
18421 {
18422 offsetT newval2;
18423 addressT S, J1, J2, lo, hi;
404ff6b5 18424
2fc8bdac
ZW
18425 S = (value & 0x00100000) >> 20;
18426 J2 = (value & 0x00080000) >> 19;
18427 J1 = (value & 0x00040000) >> 18;
18428 hi = (value & 0x0003f000) >> 12;
18429 lo = (value & 0x00000ffe) >> 1;
6c43fab6 18430
2fc8bdac
ZW
18431 newval = md_chars_to_number (buf, THUMB_SIZE);
18432 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18433 newval |= (S << 10) | hi;
18434 newval2 |= (J1 << 13) | (J2 << 11) | lo;
18435 md_number_to_chars (buf, newval, THUMB_SIZE);
18436 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18437 }
c19d1205 18438 break;
6c43fab6 18439
c19d1205
ZW
18440 case BFD_RELOC_THUMB_PCREL_BLX:
18441 case BFD_RELOC_THUMB_PCREL_BRANCH23:
2fc8bdac
ZW
18442 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
18443 as_bad_where (fixP->fx_file, fixP->fx_line,
18444 _("branch out of range"));
404ff6b5 18445
2fc8bdac
ZW
18446 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
18447 /* For a BLX instruction, make sure that the relocation is rounded up
18448 to a word boundary. This follows the semantics of the instruction
18449 which specifies that bit 1 of the target address will come from bit
18450 1 of the base address. */
18451 value = (value + 1) & ~ 1;
404ff6b5 18452
2fc8bdac 18453 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18454 {
2fc8bdac
ZW
18455 offsetT newval2;
18456
18457 newval = md_chars_to_number (buf, THUMB_SIZE);
18458 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18459 newval |= (value & 0x7fffff) >> 12;
18460 newval2 |= (value & 0xfff) >> 1;
18461 md_number_to_chars (buf, newval, THUMB_SIZE);
18462 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
c19d1205 18463 }
c19d1205 18464 break;
404ff6b5 18465
c19d1205 18466 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
18467 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
18468 as_bad_where (fixP->fx_file, fixP->fx_line,
18469 _("branch out of range"));
6c43fab6 18470
2fc8bdac
ZW
18471 if (fixP->fx_done || !seg->use_rela_p)
18472 {
18473 offsetT newval2;
18474 addressT S, I1, I2, lo, hi;
6c43fab6 18475
2fc8bdac
ZW
18476 S = (value & 0x01000000) >> 24;
18477 I1 = (value & 0x00800000) >> 23;
18478 I2 = (value & 0x00400000) >> 22;
18479 hi = (value & 0x003ff000) >> 12;
18480 lo = (value & 0x00000ffe) >> 1;
6c43fab6 18481
2fc8bdac
ZW
18482 I1 = !(I1 ^ S);
18483 I2 = !(I2 ^ S);
a737bd4d 18484
2fc8bdac
ZW
18485 newval = md_chars_to_number (buf, THUMB_SIZE);
18486 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18487 newval |= (S << 10) | hi;
18488 newval2 |= (I1 << 13) | (I2 << 11) | lo;
18489 md_number_to_chars (buf, newval, THUMB_SIZE);
18490 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18491 }
18492 break;
a737bd4d 18493
2fc8bdac
ZW
18494 case BFD_RELOC_8:
18495 if (fixP->fx_done || !seg->use_rela_p)
18496 md_number_to_chars (buf, value, 1);
c19d1205 18497 break;
a737bd4d 18498
c19d1205 18499 case BFD_RELOC_16:
2fc8bdac 18500 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18501 md_number_to_chars (buf, value, 2);
c19d1205 18502 break;
a737bd4d 18503
c19d1205
ZW
18504#ifdef OBJ_ELF
18505 case BFD_RELOC_ARM_TLS_GD32:
18506 case BFD_RELOC_ARM_TLS_LE32:
18507 case BFD_RELOC_ARM_TLS_IE32:
18508 case BFD_RELOC_ARM_TLS_LDM32:
18509 case BFD_RELOC_ARM_TLS_LDO32:
18510 S_SET_THREAD_LOCAL (fixP->fx_addsy);
18511 /* fall through */
6c43fab6 18512
c19d1205
ZW
18513 case BFD_RELOC_ARM_GOT32:
18514 case BFD_RELOC_ARM_GOTOFF:
18515 case BFD_RELOC_ARM_TARGET2:
2fc8bdac
ZW
18516 if (fixP->fx_done || !seg->use_rela_p)
18517 md_number_to_chars (buf, 0, 4);
c19d1205
ZW
18518 break;
18519#endif
6c43fab6 18520
c19d1205
ZW
18521 case BFD_RELOC_RVA:
18522 case BFD_RELOC_32:
18523 case BFD_RELOC_ARM_TARGET1:
18524 case BFD_RELOC_ARM_ROSEGREL32:
18525 case BFD_RELOC_ARM_SBREL32:
18526 case BFD_RELOC_32_PCREL:
f0927246
NC
18527#ifdef TE_PE
18528 case BFD_RELOC_32_SECREL:
18529#endif
2fc8bdac 18530 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
18531#ifdef TE_WINCE
18532 /* For WinCE we only do this for pcrel fixups. */
18533 if (fixP->fx_done || fixP->fx_pcrel)
18534#endif
18535 md_number_to_chars (buf, value, 4);
c19d1205 18536 break;
6c43fab6 18537
c19d1205
ZW
18538#ifdef OBJ_ELF
18539 case BFD_RELOC_ARM_PREL31:
2fc8bdac 18540 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
18541 {
18542 newval = md_chars_to_number (buf, 4) & 0x80000000;
18543 if ((value ^ (value >> 1)) & 0x40000000)
18544 {
18545 as_bad_where (fixP->fx_file, fixP->fx_line,
18546 _("rel31 relocation overflow"));
18547 }
18548 newval |= value & 0x7fffffff;
18549 md_number_to_chars (buf, newval, 4);
18550 }
18551 break;
c19d1205 18552#endif
a737bd4d 18553
c19d1205 18554 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 18555 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
18556 if (value < -1023 || value > 1023 || (value & 3))
18557 as_bad_where (fixP->fx_file, fixP->fx_line,
18558 _("co-processor offset out of range"));
18559 cp_off_common:
18560 sign = value >= 0;
18561 if (value < 0)
18562 value = -value;
8f06b2d8
PB
18563 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18564 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18565 newval = md_chars_to_number (buf, INSN_SIZE);
18566 else
18567 newval = get_thumb32_insn (buf);
18568 newval &= 0xff7fff00;
c19d1205 18569 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
18570 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18571 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18572 md_number_to_chars (buf, newval, INSN_SIZE);
18573 else
18574 put_thumb32_insn (buf, newval);
c19d1205 18575 break;
a737bd4d 18576
c19d1205 18577 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 18578 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
18579 if (value < -255 || value > 255)
18580 as_bad_where (fixP->fx_file, fixP->fx_line,
18581 _("co-processor offset out of range"));
df7849c5 18582 value *= 4;
c19d1205 18583 goto cp_off_common;
6c43fab6 18584
c19d1205
ZW
18585 case BFD_RELOC_ARM_THUMB_OFFSET:
18586 newval = md_chars_to_number (buf, THUMB_SIZE);
18587 /* Exactly what ranges, and where the offset is inserted depends
18588 on the type of instruction, we can establish this from the
18589 top 4 bits. */
18590 switch (newval >> 12)
18591 {
18592 case 4: /* PC load. */
18593 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
18594 forced to zero for these loads; md_pcrel_from has already
18595 compensated for this. */
18596 if (value & 3)
18597 as_bad_where (fixP->fx_file, fixP->fx_line,
18598 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
18599 (((unsigned long) fixP->fx_frag->fr_address
18600 + (unsigned long) fixP->fx_where) & ~3)
18601 + (unsigned long) value);
a737bd4d 18602
c19d1205
ZW
18603 if (value & ~0x3fc)
18604 as_bad_where (fixP->fx_file, fixP->fx_line,
18605 _("invalid offset, value too big (0x%08lX)"),
18606 (long) value);
a737bd4d 18607
c19d1205
ZW
18608 newval |= value >> 2;
18609 break;
a737bd4d 18610
c19d1205
ZW
18611 case 9: /* SP load/store. */
18612 if (value & ~0x3fc)
18613 as_bad_where (fixP->fx_file, fixP->fx_line,
18614 _("invalid offset, value too big (0x%08lX)"),
18615 (long) value);
18616 newval |= value >> 2;
18617 break;
6c43fab6 18618
c19d1205
ZW
18619 case 6: /* Word load/store. */
18620 if (value & ~0x7c)
18621 as_bad_where (fixP->fx_file, fixP->fx_line,
18622 _("invalid offset, value too big (0x%08lX)"),
18623 (long) value);
18624 newval |= value << 4; /* 6 - 2. */
18625 break;
a737bd4d 18626
c19d1205
ZW
18627 case 7: /* Byte load/store. */
18628 if (value & ~0x1f)
18629 as_bad_where (fixP->fx_file, fixP->fx_line,
18630 _("invalid offset, value too big (0x%08lX)"),
18631 (long) value);
18632 newval |= value << 6;
18633 break;
a737bd4d 18634
c19d1205
ZW
18635 case 8: /* Halfword load/store. */
18636 if (value & ~0x3e)
18637 as_bad_where (fixP->fx_file, fixP->fx_line,
18638 _("invalid offset, value too big (0x%08lX)"),
18639 (long) value);
18640 newval |= value << 5; /* 6 - 1. */
18641 break;
a737bd4d 18642
c19d1205
ZW
18643 default:
18644 as_bad_where (fixP->fx_file, fixP->fx_line,
18645 "Unable to process relocation for thumb opcode: %lx",
18646 (unsigned long) newval);
18647 break;
18648 }
18649 md_number_to_chars (buf, newval, THUMB_SIZE);
18650 break;
a737bd4d 18651
c19d1205
ZW
18652 case BFD_RELOC_ARM_THUMB_ADD:
18653 /* This is a complicated relocation, since we use it for all of
18654 the following immediate relocations:
a737bd4d 18655
c19d1205
ZW
18656 3bit ADD/SUB
18657 8bit ADD/SUB
18658 9bit ADD/SUB SP word-aligned
18659 10bit ADD PC/SP word-aligned
a737bd4d 18660
c19d1205
ZW
18661 The type of instruction being processed is encoded in the
18662 instruction field:
a737bd4d 18663
c19d1205
ZW
18664 0x8000 SUB
18665 0x00F0 Rd
18666 0x000F Rs
18667 */
18668 newval = md_chars_to_number (buf, THUMB_SIZE);
18669 {
18670 int rd = (newval >> 4) & 0xf;
18671 int rs = newval & 0xf;
18672 int subtract = !!(newval & 0x8000);
a737bd4d 18673
c19d1205
ZW
18674 /* Check for HI regs, only very restricted cases allowed:
18675 Adjusting SP, and using PC or SP to get an address. */
18676 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
18677 || (rs > 7 && rs != REG_SP && rs != REG_PC))
18678 as_bad_where (fixP->fx_file, fixP->fx_line,
18679 _("invalid Hi register with immediate"));
a737bd4d 18680
c19d1205
ZW
18681 /* If value is negative, choose the opposite instruction. */
18682 if (value < 0)
18683 {
18684 value = -value;
18685 subtract = !subtract;
18686 if (value < 0)
18687 as_bad_where (fixP->fx_file, fixP->fx_line,
18688 _("immediate value out of range"));
18689 }
a737bd4d 18690
c19d1205
ZW
18691 if (rd == REG_SP)
18692 {
18693 if (value & ~0x1fc)
18694 as_bad_where (fixP->fx_file, fixP->fx_line,
18695 _("invalid immediate for stack address calculation"));
18696 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
18697 newval |= value >> 2;
18698 }
18699 else if (rs == REG_PC || rs == REG_SP)
18700 {
18701 if (subtract || value & ~0x3fc)
18702 as_bad_where (fixP->fx_file, fixP->fx_line,
18703 _("invalid immediate for address calculation (value = 0x%08lX)"),
18704 (unsigned long) value);
18705 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
18706 newval |= rd << 8;
18707 newval |= value >> 2;
18708 }
18709 else if (rs == rd)
18710 {
18711 if (value & ~0xff)
18712 as_bad_where (fixP->fx_file, fixP->fx_line,
18713 _("immediate value out of range"));
18714 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
18715 newval |= (rd << 8) | value;
18716 }
18717 else
18718 {
18719 if (value & ~0x7)
18720 as_bad_where (fixP->fx_file, fixP->fx_line,
18721 _("immediate value out of range"));
18722 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
18723 newval |= rd | (rs << 3) | (value << 6);
18724 }
18725 }
18726 md_number_to_chars (buf, newval, THUMB_SIZE);
18727 break;
a737bd4d 18728
c19d1205
ZW
18729 case BFD_RELOC_ARM_THUMB_IMM:
18730 newval = md_chars_to_number (buf, THUMB_SIZE);
18731 if (value < 0 || value > 255)
18732 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 18733 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
18734 (long) value);
18735 newval |= value;
18736 md_number_to_chars (buf, newval, THUMB_SIZE);
18737 break;
a737bd4d 18738
c19d1205
ZW
18739 case BFD_RELOC_ARM_THUMB_SHIFT:
18740 /* 5bit shift value (0..32). LSL cannot take 32. */
18741 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
18742 temp = newval & 0xf800;
18743 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
18744 as_bad_where (fixP->fx_file, fixP->fx_line,
18745 _("invalid shift value: %ld"), (long) value);
18746 /* Shifts of zero must be encoded as LSL. */
18747 if (value == 0)
18748 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
18749 /* Shifts of 32 are encoded as zero. */
18750 else if (value == 32)
18751 value = 0;
18752 newval |= value << 6;
18753 md_number_to_chars (buf, newval, THUMB_SIZE);
18754 break;
a737bd4d 18755
c19d1205
ZW
18756 case BFD_RELOC_VTABLE_INHERIT:
18757 case BFD_RELOC_VTABLE_ENTRY:
18758 fixP->fx_done = 0;
18759 return;
6c43fab6 18760
b6895b4f
PB
18761 case BFD_RELOC_ARM_MOVW:
18762 case BFD_RELOC_ARM_MOVT:
18763 case BFD_RELOC_ARM_THUMB_MOVW:
18764 case BFD_RELOC_ARM_THUMB_MOVT:
18765 if (fixP->fx_done || !seg->use_rela_p)
18766 {
18767 /* REL format relocations are limited to a 16-bit addend. */
18768 if (!fixP->fx_done)
18769 {
18770 if (value < -0x1000 || value > 0xffff)
18771 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 18772 _("offset out of range"));
b6895b4f
PB
18773 }
18774 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
18775 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18776 {
18777 value >>= 16;
18778 }
18779
18780 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
18781 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18782 {
18783 newval = get_thumb32_insn (buf);
18784 newval &= 0xfbf08f00;
18785 newval |= (value & 0xf000) << 4;
18786 newval |= (value & 0x0800) << 15;
18787 newval |= (value & 0x0700) << 4;
18788 newval |= (value & 0x00ff);
18789 put_thumb32_insn (buf, newval);
18790 }
18791 else
18792 {
18793 newval = md_chars_to_number (buf, 4);
18794 newval &= 0xfff0f000;
18795 newval |= value & 0x0fff;
18796 newval |= (value & 0xf000) << 4;
18797 md_number_to_chars (buf, newval, 4);
18798 }
18799 }
18800 return;
18801
4962c51a
MS
18802 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18803 case BFD_RELOC_ARM_ALU_PC_G0:
18804 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18805 case BFD_RELOC_ARM_ALU_PC_G1:
18806 case BFD_RELOC_ARM_ALU_PC_G2:
18807 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18808 case BFD_RELOC_ARM_ALU_SB_G0:
18809 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18810 case BFD_RELOC_ARM_ALU_SB_G1:
18811 case BFD_RELOC_ARM_ALU_SB_G2:
18812 assert (!fixP->fx_done);
18813 if (!seg->use_rela_p)
18814 {
18815 bfd_vma insn;
18816 bfd_vma encoded_addend;
18817 bfd_vma addend_abs = abs (value);
18818
18819 /* Check that the absolute value of the addend can be
18820 expressed as an 8-bit constant plus a rotation. */
18821 encoded_addend = encode_arm_immediate (addend_abs);
18822 if (encoded_addend == (unsigned int) FAIL)
18823 as_bad_where (fixP->fx_file, fixP->fx_line,
18824 _("the offset 0x%08lX is not representable"),
495bde8e 18825 (unsigned long) addend_abs);
4962c51a
MS
18826
18827 /* Extract the instruction. */
18828 insn = md_chars_to_number (buf, INSN_SIZE);
18829
18830 /* If the addend is positive, use an ADD instruction.
18831 Otherwise use a SUB. Take care not to destroy the S bit. */
18832 insn &= 0xff1fffff;
18833 if (value < 0)
18834 insn |= 1 << 22;
18835 else
18836 insn |= 1 << 23;
18837
18838 /* Place the encoded addend into the first 12 bits of the
18839 instruction. */
18840 insn &= 0xfffff000;
18841 insn |= encoded_addend;
5f4273c7
NC
18842
18843 /* Update the instruction. */
4962c51a
MS
18844 md_number_to_chars (buf, insn, INSN_SIZE);
18845 }
18846 break;
18847
18848 case BFD_RELOC_ARM_LDR_PC_G0:
18849 case BFD_RELOC_ARM_LDR_PC_G1:
18850 case BFD_RELOC_ARM_LDR_PC_G2:
18851 case BFD_RELOC_ARM_LDR_SB_G0:
18852 case BFD_RELOC_ARM_LDR_SB_G1:
18853 case BFD_RELOC_ARM_LDR_SB_G2:
18854 assert (!fixP->fx_done);
18855 if (!seg->use_rela_p)
18856 {
18857 bfd_vma insn;
18858 bfd_vma addend_abs = abs (value);
18859
18860 /* Check that the absolute value of the addend can be
18861 encoded in 12 bits. */
18862 if (addend_abs >= 0x1000)
18863 as_bad_where (fixP->fx_file, fixP->fx_line,
18864 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 18865 (unsigned long) addend_abs);
4962c51a
MS
18866
18867 /* Extract the instruction. */
18868 insn = md_chars_to_number (buf, INSN_SIZE);
18869
18870 /* If the addend is negative, clear bit 23 of the instruction.
18871 Otherwise set it. */
18872 if (value < 0)
18873 insn &= ~(1 << 23);
18874 else
18875 insn |= 1 << 23;
18876
18877 /* Place the absolute value of the addend into the first 12 bits
18878 of the instruction. */
18879 insn &= 0xfffff000;
18880 insn |= addend_abs;
5f4273c7
NC
18881
18882 /* Update the instruction. */
4962c51a
MS
18883 md_number_to_chars (buf, insn, INSN_SIZE);
18884 }
18885 break;
18886
18887 case BFD_RELOC_ARM_LDRS_PC_G0:
18888 case BFD_RELOC_ARM_LDRS_PC_G1:
18889 case BFD_RELOC_ARM_LDRS_PC_G2:
18890 case BFD_RELOC_ARM_LDRS_SB_G0:
18891 case BFD_RELOC_ARM_LDRS_SB_G1:
18892 case BFD_RELOC_ARM_LDRS_SB_G2:
18893 assert (!fixP->fx_done);
18894 if (!seg->use_rela_p)
18895 {
18896 bfd_vma insn;
18897 bfd_vma addend_abs = abs (value);
18898
18899 /* Check that the absolute value of the addend can be
18900 encoded in 8 bits. */
18901 if (addend_abs >= 0x100)
18902 as_bad_where (fixP->fx_file, fixP->fx_line,
18903 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 18904 (unsigned long) addend_abs);
4962c51a
MS
18905
18906 /* Extract the instruction. */
18907 insn = md_chars_to_number (buf, INSN_SIZE);
18908
18909 /* If the addend is negative, clear bit 23 of the instruction.
18910 Otherwise set it. */
18911 if (value < 0)
18912 insn &= ~(1 << 23);
18913 else
18914 insn |= 1 << 23;
18915
18916 /* Place the first four bits of the absolute value of the addend
18917 into the first 4 bits of the instruction, and the remaining
18918 four into bits 8 .. 11. */
18919 insn &= 0xfffff0f0;
18920 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
18921
18922 /* Update the instruction. */
4962c51a
MS
18923 md_number_to_chars (buf, insn, INSN_SIZE);
18924 }
18925 break;
18926
18927 case BFD_RELOC_ARM_LDC_PC_G0:
18928 case BFD_RELOC_ARM_LDC_PC_G1:
18929 case BFD_RELOC_ARM_LDC_PC_G2:
18930 case BFD_RELOC_ARM_LDC_SB_G0:
18931 case BFD_RELOC_ARM_LDC_SB_G1:
18932 case BFD_RELOC_ARM_LDC_SB_G2:
18933 assert (!fixP->fx_done);
18934 if (!seg->use_rela_p)
18935 {
18936 bfd_vma insn;
18937 bfd_vma addend_abs = abs (value);
18938
18939 /* Check that the absolute value of the addend is a multiple of
18940 four and, when divided by four, fits in 8 bits. */
18941 if (addend_abs & 0x3)
18942 as_bad_where (fixP->fx_file, fixP->fx_line,
18943 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 18944 (unsigned long) addend_abs);
4962c51a
MS
18945
18946 if ((addend_abs >> 2) > 0xff)
18947 as_bad_where (fixP->fx_file, fixP->fx_line,
18948 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 18949 (unsigned long) addend_abs);
4962c51a
MS
18950
18951 /* Extract the instruction. */
18952 insn = md_chars_to_number (buf, INSN_SIZE);
18953
18954 /* If the addend is negative, clear bit 23 of the instruction.
18955 Otherwise set it. */
18956 if (value < 0)
18957 insn &= ~(1 << 23);
18958 else
18959 insn |= 1 << 23;
18960
18961 /* Place the addend (divided by four) into the first eight
18962 bits of the instruction. */
18963 insn &= 0xfffffff0;
18964 insn |= addend_abs >> 2;
5f4273c7
NC
18965
18966 /* Update the instruction. */
4962c51a
MS
18967 md_number_to_chars (buf, insn, INSN_SIZE);
18968 }
18969 break;
18970
c19d1205
ZW
18971 case BFD_RELOC_UNUSED:
18972 default:
18973 as_bad_where (fixP->fx_file, fixP->fx_line,
18974 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
18975 }
6c43fab6
RE
18976}
18977
c19d1205
ZW
18978/* Translate internal representation of relocation info to BFD target
18979 format. */
a737bd4d 18980
c19d1205 18981arelent *
00a97672 18982tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 18983{
c19d1205
ZW
18984 arelent * reloc;
18985 bfd_reloc_code_real_type code;
a737bd4d 18986
c19d1205 18987 reloc = xmalloc (sizeof (arelent));
a737bd4d 18988
c19d1205
ZW
18989 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
18990 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18991 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 18992
2fc8bdac 18993 if (fixp->fx_pcrel)
00a97672
RS
18994 {
18995 if (section->use_rela_p)
18996 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
18997 else
18998 fixp->fx_offset = reloc->address;
18999 }
c19d1205 19000 reloc->addend = fixp->fx_offset;
a737bd4d 19001
c19d1205 19002 switch (fixp->fx_r_type)
a737bd4d 19003 {
c19d1205
ZW
19004 case BFD_RELOC_8:
19005 if (fixp->fx_pcrel)
19006 {
19007 code = BFD_RELOC_8_PCREL;
19008 break;
19009 }
a737bd4d 19010
c19d1205
ZW
19011 case BFD_RELOC_16:
19012 if (fixp->fx_pcrel)
19013 {
19014 code = BFD_RELOC_16_PCREL;
19015 break;
19016 }
6c43fab6 19017
c19d1205
ZW
19018 case BFD_RELOC_32:
19019 if (fixp->fx_pcrel)
19020 {
19021 code = BFD_RELOC_32_PCREL;
19022 break;
19023 }
a737bd4d 19024
b6895b4f
PB
19025 case BFD_RELOC_ARM_MOVW:
19026 if (fixp->fx_pcrel)
19027 {
19028 code = BFD_RELOC_ARM_MOVW_PCREL;
19029 break;
19030 }
19031
19032 case BFD_RELOC_ARM_MOVT:
19033 if (fixp->fx_pcrel)
19034 {
19035 code = BFD_RELOC_ARM_MOVT_PCREL;
19036 break;
19037 }
19038
19039 case BFD_RELOC_ARM_THUMB_MOVW:
19040 if (fixp->fx_pcrel)
19041 {
19042 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
19043 break;
19044 }
19045
19046 case BFD_RELOC_ARM_THUMB_MOVT:
19047 if (fixp->fx_pcrel)
19048 {
19049 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
19050 break;
19051 }
19052
c19d1205
ZW
19053 case BFD_RELOC_NONE:
19054 case BFD_RELOC_ARM_PCREL_BRANCH:
19055 case BFD_RELOC_ARM_PCREL_BLX:
19056 case BFD_RELOC_RVA:
19057 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19058 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19059 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19060 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19061 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19062 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19063 case BFD_RELOC_THUMB_PCREL_BLX:
19064 case BFD_RELOC_VTABLE_ENTRY:
19065 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
19066#ifdef TE_PE
19067 case BFD_RELOC_32_SECREL:
19068#endif
c19d1205
ZW
19069 code = fixp->fx_r_type;
19070 break;
a737bd4d 19071
c19d1205
ZW
19072 case BFD_RELOC_ARM_LITERAL:
19073 case BFD_RELOC_ARM_HWLITERAL:
19074 /* If this is called then the a literal has
19075 been referenced across a section boundary. */
19076 as_bad_where (fixp->fx_file, fixp->fx_line,
19077 _("literal referenced across section boundary"));
19078 return NULL;
a737bd4d 19079
c19d1205
ZW
19080#ifdef OBJ_ELF
19081 case BFD_RELOC_ARM_GOT32:
19082 case BFD_RELOC_ARM_GOTOFF:
19083 case BFD_RELOC_ARM_PLT32:
19084 case BFD_RELOC_ARM_TARGET1:
19085 case BFD_RELOC_ARM_ROSEGREL32:
19086 case BFD_RELOC_ARM_SBREL32:
19087 case BFD_RELOC_ARM_PREL31:
19088 case BFD_RELOC_ARM_TARGET2:
19089 case BFD_RELOC_ARM_TLS_LE32:
19090 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
19091 case BFD_RELOC_ARM_PCREL_CALL:
19092 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
19093 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19094 case BFD_RELOC_ARM_ALU_PC_G0:
19095 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19096 case BFD_RELOC_ARM_ALU_PC_G1:
19097 case BFD_RELOC_ARM_ALU_PC_G2:
19098 case BFD_RELOC_ARM_LDR_PC_G0:
19099 case BFD_RELOC_ARM_LDR_PC_G1:
19100 case BFD_RELOC_ARM_LDR_PC_G2:
19101 case BFD_RELOC_ARM_LDRS_PC_G0:
19102 case BFD_RELOC_ARM_LDRS_PC_G1:
19103 case BFD_RELOC_ARM_LDRS_PC_G2:
19104 case BFD_RELOC_ARM_LDC_PC_G0:
19105 case BFD_RELOC_ARM_LDC_PC_G1:
19106 case BFD_RELOC_ARM_LDC_PC_G2:
19107 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19108 case BFD_RELOC_ARM_ALU_SB_G0:
19109 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19110 case BFD_RELOC_ARM_ALU_SB_G1:
19111 case BFD_RELOC_ARM_ALU_SB_G2:
19112 case BFD_RELOC_ARM_LDR_SB_G0:
19113 case BFD_RELOC_ARM_LDR_SB_G1:
19114 case BFD_RELOC_ARM_LDR_SB_G2:
19115 case BFD_RELOC_ARM_LDRS_SB_G0:
19116 case BFD_RELOC_ARM_LDRS_SB_G1:
19117 case BFD_RELOC_ARM_LDRS_SB_G2:
19118 case BFD_RELOC_ARM_LDC_SB_G0:
19119 case BFD_RELOC_ARM_LDC_SB_G1:
19120 case BFD_RELOC_ARM_LDC_SB_G2:
c19d1205
ZW
19121 code = fixp->fx_r_type;
19122 break;
a737bd4d 19123
c19d1205
ZW
19124 case BFD_RELOC_ARM_TLS_GD32:
19125 case BFD_RELOC_ARM_TLS_IE32:
19126 case BFD_RELOC_ARM_TLS_LDM32:
19127 /* BFD will include the symbol's address in the addend.
19128 But we don't want that, so subtract it out again here. */
19129 if (!S_IS_COMMON (fixp->fx_addsy))
19130 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
19131 code = fixp->fx_r_type;
19132 break;
19133#endif
a737bd4d 19134
c19d1205
ZW
19135 case BFD_RELOC_ARM_IMMEDIATE:
19136 as_bad_where (fixp->fx_file, fixp->fx_line,
19137 _("internal relocation (type: IMMEDIATE) not fixed up"));
19138 return NULL;
a737bd4d 19139
c19d1205
ZW
19140 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19141 as_bad_where (fixp->fx_file, fixp->fx_line,
19142 _("ADRL used for a symbol not defined in the same file"));
19143 return NULL;
a737bd4d 19144
c19d1205 19145 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
19146 if (section->use_rela_p)
19147 {
19148 code = fixp->fx_r_type;
19149 break;
19150 }
19151
c19d1205
ZW
19152 if (fixp->fx_addsy != NULL
19153 && !S_IS_DEFINED (fixp->fx_addsy)
19154 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 19155 {
c19d1205
ZW
19156 as_bad_where (fixp->fx_file, fixp->fx_line,
19157 _("undefined local label `%s'"),
19158 S_GET_NAME (fixp->fx_addsy));
19159 return NULL;
a737bd4d
NC
19160 }
19161
c19d1205
ZW
19162 as_bad_where (fixp->fx_file, fixp->fx_line,
19163 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
19164 return NULL;
a737bd4d 19165
c19d1205
ZW
19166 default:
19167 {
19168 char * type;
6c43fab6 19169
c19d1205
ZW
19170 switch (fixp->fx_r_type)
19171 {
19172 case BFD_RELOC_NONE: type = "NONE"; break;
19173 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
19174 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 19175 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
19176 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
19177 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
19178 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
8f06b2d8 19179 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
19180 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
19181 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
19182 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
19183 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
19184 default: type = _("<unknown>"); break;
19185 }
19186 as_bad_where (fixp->fx_file, fixp->fx_line,
19187 _("cannot represent %s relocation in this object file format"),
19188 type);
19189 return NULL;
19190 }
a737bd4d 19191 }
6c43fab6 19192
c19d1205
ZW
19193#ifdef OBJ_ELF
19194 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
19195 && GOT_symbol
19196 && fixp->fx_addsy == GOT_symbol)
19197 {
19198 code = BFD_RELOC_ARM_GOTPC;
19199 reloc->addend = fixp->fx_offset = reloc->address;
19200 }
19201#endif
6c43fab6 19202
c19d1205 19203 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 19204
c19d1205
ZW
19205 if (reloc->howto == NULL)
19206 {
19207 as_bad_where (fixp->fx_file, fixp->fx_line,
19208 _("cannot represent %s relocation in this object file format"),
19209 bfd_get_reloc_code_name (code));
19210 return NULL;
19211 }
6c43fab6 19212
c19d1205
ZW
19213 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
19214 vtable entry to be used in the relocation's section offset. */
19215 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19216 reloc->address = fixp->fx_offset;
6c43fab6 19217
c19d1205 19218 return reloc;
6c43fab6
RE
19219}
19220
c19d1205 19221/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 19222
c19d1205
ZW
19223void
19224cons_fix_new_arm (fragS * frag,
19225 int where,
19226 int size,
19227 expressionS * exp)
6c43fab6 19228{
c19d1205
ZW
19229 bfd_reloc_code_real_type type;
19230 int pcrel = 0;
6c43fab6 19231
c19d1205
ZW
19232 /* Pick a reloc.
19233 FIXME: @@ Should look at CPU word size. */
19234 switch (size)
19235 {
19236 case 1:
19237 type = BFD_RELOC_8;
19238 break;
19239 case 2:
19240 type = BFD_RELOC_16;
19241 break;
19242 case 4:
19243 default:
19244 type = BFD_RELOC_32;
19245 break;
19246 case 8:
19247 type = BFD_RELOC_64;
19248 break;
19249 }
6c43fab6 19250
f0927246
NC
19251#ifdef TE_PE
19252 if (exp->X_op == O_secrel)
19253 {
19254 exp->X_op = O_symbol;
19255 type = BFD_RELOC_32_SECREL;
19256 }
19257#endif
19258
c19d1205
ZW
19259 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
19260}
6c43fab6 19261
c19d1205
ZW
19262#if defined OBJ_COFF || defined OBJ_ELF
19263void
19264arm_validate_fix (fixS * fixP)
6c43fab6 19265{
c19d1205
ZW
19266 /* If the destination of the branch is a defined symbol which does not have
19267 the THUMB_FUNC attribute, then we must be calling a function which has
19268 the (interfacearm) attribute. We look for the Thumb entry point to that
19269 function and change the branch to refer to that function instead. */
19270 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
19271 && fixP->fx_addsy != NULL
19272 && S_IS_DEFINED (fixP->fx_addsy)
19273 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 19274 {
c19d1205 19275 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 19276 }
c19d1205
ZW
19277}
19278#endif
6c43fab6 19279
c19d1205
ZW
19280int
19281arm_force_relocation (struct fix * fixp)
19282{
19283#if defined (OBJ_COFF) && defined (TE_PE)
19284 if (fixp->fx_r_type == BFD_RELOC_RVA)
19285 return 1;
19286#endif
6c43fab6 19287
c19d1205
ZW
19288 /* Resolve these relocations even if the symbol is extern or weak. */
19289 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
19290 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 19291 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 19292 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
19293 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19294 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
19295 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 19296 return 0;
a737bd4d 19297
4962c51a
MS
19298 /* Always leave these relocations for the linker. */
19299 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19300 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19301 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19302 return 1;
19303
f0291e4c
PB
19304 /* Always generate relocations against function symbols. */
19305 if (fixp->fx_r_type == BFD_RELOC_32
19306 && fixp->fx_addsy
19307 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
19308 return 1;
19309
c19d1205 19310 return generic_force_reloc (fixp);
404ff6b5
AH
19311}
19312
0ffdc86c 19313#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
19314/* Relocations against function names must be left unadjusted,
19315 so that the linker can use this information to generate interworking
19316 stubs. The MIPS version of this function
c19d1205
ZW
19317 also prevents relocations that are mips-16 specific, but I do not
19318 know why it does this.
404ff6b5 19319
c19d1205
ZW
19320 FIXME:
19321 There is one other problem that ought to be addressed here, but
19322 which currently is not: Taking the address of a label (rather
19323 than a function) and then later jumping to that address. Such
19324 addresses also ought to have their bottom bit set (assuming that
19325 they reside in Thumb code), but at the moment they will not. */
404ff6b5 19326
c19d1205
ZW
19327bfd_boolean
19328arm_fix_adjustable (fixS * fixP)
404ff6b5 19329{
c19d1205
ZW
19330 if (fixP->fx_addsy == NULL)
19331 return 1;
404ff6b5 19332
e28387c3
PB
19333 /* Preserve relocations against symbols with function type. */
19334 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
19335 return 0;
19336
c19d1205
ZW
19337 if (THUMB_IS_FUNC (fixP->fx_addsy)
19338 && fixP->fx_subsy == NULL)
19339 return 0;
a737bd4d 19340
c19d1205
ZW
19341 /* We need the symbol name for the VTABLE entries. */
19342 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
19343 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19344 return 0;
404ff6b5 19345
c19d1205
ZW
19346 /* Don't allow symbols to be discarded on GOT related relocs. */
19347 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
19348 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
19349 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
19350 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
19351 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
19352 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
19353 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
19354 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
19355 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
19356 return 0;
a737bd4d 19357
4962c51a
MS
19358 /* Similarly for group relocations. */
19359 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19360 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19361 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19362 return 0;
19363
c19d1205 19364 return 1;
a737bd4d 19365}
0ffdc86c
NC
19366#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
19367
19368#ifdef OBJ_ELF
404ff6b5 19369
c19d1205
ZW
19370const char *
19371elf32_arm_target_format (void)
404ff6b5 19372{
c19d1205
ZW
19373#ifdef TE_SYMBIAN
19374 return (target_big_endian
19375 ? "elf32-bigarm-symbian"
19376 : "elf32-littlearm-symbian");
19377#elif defined (TE_VXWORKS)
19378 return (target_big_endian
19379 ? "elf32-bigarm-vxworks"
19380 : "elf32-littlearm-vxworks");
19381#else
19382 if (target_big_endian)
19383 return "elf32-bigarm";
19384 else
19385 return "elf32-littlearm";
19386#endif
404ff6b5
AH
19387}
19388
c19d1205
ZW
19389void
19390armelf_frob_symbol (symbolS * symp,
19391 int * puntp)
404ff6b5 19392{
c19d1205
ZW
19393 elf_frob_symbol (symp, puntp);
19394}
19395#endif
404ff6b5 19396
c19d1205 19397/* MD interface: Finalization. */
a737bd4d 19398
c19d1205
ZW
19399/* A good place to do this, although this was probably not intended
19400 for this kind of use. We need to dump the literal pool before
19401 references are made to a null symbol pointer. */
a737bd4d 19402
c19d1205
ZW
19403void
19404arm_cleanup (void)
19405{
19406 literal_pool * pool;
a737bd4d 19407
c19d1205
ZW
19408 for (pool = list_of_pools; pool; pool = pool->next)
19409 {
5f4273c7 19410 /* Put it at the end of the relevant section. */
c19d1205
ZW
19411 subseg_set (pool->section, pool->sub_section);
19412#ifdef OBJ_ELF
19413 arm_elf_change_section ();
19414#endif
19415 s_ltorg (0);
19416 }
404ff6b5
AH
19417}
19418
c19d1205
ZW
19419/* Adjust the symbol table. This marks Thumb symbols as distinct from
19420 ARM ones. */
404ff6b5 19421
c19d1205
ZW
19422void
19423arm_adjust_symtab (void)
404ff6b5 19424{
c19d1205
ZW
19425#ifdef OBJ_COFF
19426 symbolS * sym;
404ff6b5 19427
c19d1205
ZW
19428 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19429 {
19430 if (ARM_IS_THUMB (sym))
19431 {
19432 if (THUMB_IS_FUNC (sym))
19433 {
19434 /* Mark the symbol as a Thumb function. */
19435 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
19436 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
19437 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 19438
c19d1205
ZW
19439 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
19440 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
19441 else
19442 as_bad (_("%s: unexpected function type: %d"),
19443 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
19444 }
19445 else switch (S_GET_STORAGE_CLASS (sym))
19446 {
19447 case C_EXT:
19448 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
19449 break;
19450 case C_STAT:
19451 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
19452 break;
19453 case C_LABEL:
19454 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
19455 break;
19456 default:
19457 /* Do nothing. */
19458 break;
19459 }
19460 }
a737bd4d 19461
c19d1205
ZW
19462 if (ARM_IS_INTERWORK (sym))
19463 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 19464 }
c19d1205
ZW
19465#endif
19466#ifdef OBJ_ELF
19467 symbolS * sym;
19468 char bind;
404ff6b5 19469
c19d1205 19470 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 19471 {
c19d1205
ZW
19472 if (ARM_IS_THUMB (sym))
19473 {
19474 elf_symbol_type * elf_sym;
404ff6b5 19475
c19d1205
ZW
19476 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
19477 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 19478
b0796911
PB
19479 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
19480 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
19481 {
19482 /* If it's a .thumb_func, declare it as so,
19483 otherwise tag label as .code 16. */
19484 if (THUMB_IS_FUNC (sym))
19485 elf_sym->internal_elf_sym.st_info =
19486 ELF_ST_INFO (bind, STT_ARM_TFUNC);
3ba67470 19487 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
19488 elf_sym->internal_elf_sym.st_info =
19489 ELF_ST_INFO (bind, STT_ARM_16BIT);
19490 }
19491 }
19492 }
19493#endif
404ff6b5
AH
19494}
19495
c19d1205 19496/* MD interface: Initialization. */
404ff6b5 19497
a737bd4d 19498static void
c19d1205 19499set_constant_flonums (void)
a737bd4d 19500{
c19d1205 19501 int i;
404ff6b5 19502
c19d1205
ZW
19503 for (i = 0; i < NUM_FLOAT_VALS; i++)
19504 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
19505 abort ();
a737bd4d 19506}
404ff6b5 19507
3e9e4fcf
JB
19508/* Auto-select Thumb mode if it's the only available instruction set for the
19509 given architecture. */
19510
19511static void
19512autoselect_thumb_from_cpu_variant (void)
19513{
19514 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
19515 opcode_select (16);
19516}
19517
c19d1205
ZW
19518void
19519md_begin (void)
a737bd4d 19520{
c19d1205
ZW
19521 unsigned mach;
19522 unsigned int i;
404ff6b5 19523
c19d1205
ZW
19524 if ( (arm_ops_hsh = hash_new ()) == NULL
19525 || (arm_cond_hsh = hash_new ()) == NULL
19526 || (arm_shift_hsh = hash_new ()) == NULL
19527 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 19528 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 19529 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
19530 || (arm_reloc_hsh = hash_new ()) == NULL
19531 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
19532 as_fatal (_("virtual memory exhausted"));
19533
19534 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
19535 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
19536 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
19537 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
19538 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
19539 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
19540 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
19541 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
62b3e311
PB
19542 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
19543 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i));
c19d1205
ZW
19544 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
19545 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
62b3e311
PB
19546 for (i = 0;
19547 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
19548 i++)
19549 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
19550 (PTR) (barrier_opt_names + i));
c19d1205
ZW
19551#ifdef OBJ_ELF
19552 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
19553 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
19554#endif
19555
19556 set_constant_flonums ();
404ff6b5 19557
c19d1205
ZW
19558 /* Set the cpu variant based on the command-line options. We prefer
19559 -mcpu= over -march= if both are set (as for GCC); and we prefer
19560 -mfpu= over any other way of setting the floating point unit.
19561 Use of legacy options with new options are faulted. */
e74cfd16 19562 if (legacy_cpu)
404ff6b5 19563 {
e74cfd16 19564 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
19565 as_bad (_("use of old and new-style options to set CPU type"));
19566
19567 mcpu_cpu_opt = legacy_cpu;
404ff6b5 19568 }
e74cfd16 19569 else if (!mcpu_cpu_opt)
c19d1205 19570 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 19571
e74cfd16 19572 if (legacy_fpu)
c19d1205 19573 {
e74cfd16 19574 if (mfpu_opt)
c19d1205 19575 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
19576
19577 mfpu_opt = legacy_fpu;
19578 }
e74cfd16 19579 else if (!mfpu_opt)
03b1477f 19580 {
c19d1205 19581#if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
19582 /* Some environments specify a default FPU. If they don't, infer it
19583 from the processor. */
e74cfd16 19584 if (mcpu_fpu_opt)
03b1477f
RE
19585 mfpu_opt = mcpu_fpu_opt;
19586 else
19587 mfpu_opt = march_fpu_opt;
39c2da32 19588#else
e74cfd16 19589 mfpu_opt = &fpu_default;
39c2da32 19590#endif
03b1477f
RE
19591 }
19592
e74cfd16 19593 if (!mfpu_opt)
03b1477f 19594 {
493cb6ef 19595 if (mcpu_cpu_opt != NULL)
e74cfd16 19596 mfpu_opt = &fpu_default;
493cb6ef 19597 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 19598 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 19599 else
e74cfd16 19600 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
19601 }
19602
ee065d83 19603#ifdef CPU_DEFAULT
e74cfd16 19604 if (!mcpu_cpu_opt)
ee065d83 19605 {
e74cfd16
PB
19606 mcpu_cpu_opt = &cpu_default;
19607 selected_cpu = cpu_default;
ee065d83 19608 }
e74cfd16
PB
19609#else
19610 if (mcpu_cpu_opt)
19611 selected_cpu = *mcpu_cpu_opt;
ee065d83 19612 else
e74cfd16 19613 mcpu_cpu_opt = &arm_arch_any;
ee065d83 19614#endif
03b1477f 19615
e74cfd16 19616 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 19617
3e9e4fcf
JB
19618 autoselect_thumb_from_cpu_variant ();
19619
e74cfd16 19620 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 19621
f17c130b 19622#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 19623 {
7cc69913
NC
19624 unsigned int flags = 0;
19625
19626#if defined OBJ_ELF
19627 flags = meabi_flags;
d507cf36
PB
19628
19629 switch (meabi_flags)
33a392fb 19630 {
d507cf36 19631 case EF_ARM_EABI_UNKNOWN:
7cc69913 19632#endif
d507cf36
PB
19633 /* Set the flags in the private structure. */
19634 if (uses_apcs_26) flags |= F_APCS26;
19635 if (support_interwork) flags |= F_INTERWORK;
19636 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 19637 if (pic_code) flags |= F_PIC;
e74cfd16 19638 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
19639 flags |= F_SOFT_FLOAT;
19640
d507cf36
PB
19641 switch (mfloat_abi_opt)
19642 {
19643 case ARM_FLOAT_ABI_SOFT:
19644 case ARM_FLOAT_ABI_SOFTFP:
19645 flags |= F_SOFT_FLOAT;
19646 break;
33a392fb 19647
d507cf36
PB
19648 case ARM_FLOAT_ABI_HARD:
19649 if (flags & F_SOFT_FLOAT)
19650 as_bad (_("hard-float conflicts with specified fpu"));
19651 break;
19652 }
03b1477f 19653
e74cfd16
PB
19654 /* Using pure-endian doubles (even if soft-float). */
19655 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 19656 flags |= F_VFP_FLOAT;
f17c130b 19657
fde78edd 19658#if defined OBJ_ELF
e74cfd16 19659 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 19660 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
19661 break;
19662
8cb51566 19663 case EF_ARM_EABI_VER4:
3a4a14e9 19664 case EF_ARM_EABI_VER5:
c19d1205 19665 /* No additional flags to set. */
d507cf36
PB
19666 break;
19667
19668 default:
19669 abort ();
19670 }
7cc69913 19671#endif
b99bd4ef
NC
19672 bfd_set_private_flags (stdoutput, flags);
19673
19674 /* We have run out flags in the COFF header to encode the
19675 status of ATPCS support, so instead we create a dummy,
c19d1205 19676 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
19677 if (atpcs)
19678 {
19679 asection * sec;
19680
19681 sec = bfd_make_section (stdoutput, ".arm.atpcs");
19682
19683 if (sec != NULL)
19684 {
19685 bfd_set_section_flags
19686 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
19687 bfd_set_section_size (stdoutput, sec, 0);
19688 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
19689 }
19690 }
7cc69913 19691 }
f17c130b 19692#endif
b99bd4ef
NC
19693
19694 /* Record the CPU type as well. */
2d447fca
JM
19695 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
19696 mach = bfd_mach_arm_iWMMXt2;
19697 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 19698 mach = bfd_mach_arm_iWMMXt;
e74cfd16 19699 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 19700 mach = bfd_mach_arm_XScale;
e74cfd16 19701 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 19702 mach = bfd_mach_arm_ep9312;
e74cfd16 19703 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 19704 mach = bfd_mach_arm_5TE;
e74cfd16 19705 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 19706 {
e74cfd16 19707 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
19708 mach = bfd_mach_arm_5T;
19709 else
19710 mach = bfd_mach_arm_5;
19711 }
e74cfd16 19712 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 19713 {
e74cfd16 19714 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
19715 mach = bfd_mach_arm_4T;
19716 else
19717 mach = bfd_mach_arm_4;
19718 }
e74cfd16 19719 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 19720 mach = bfd_mach_arm_3M;
e74cfd16
PB
19721 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
19722 mach = bfd_mach_arm_3;
19723 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
19724 mach = bfd_mach_arm_2a;
19725 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
19726 mach = bfd_mach_arm_2;
19727 else
19728 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
19729
19730 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
19731}
19732
c19d1205 19733/* Command line processing. */
b99bd4ef 19734
c19d1205
ZW
19735/* md_parse_option
19736 Invocation line includes a switch not recognized by the base assembler.
19737 See if it's a processor-specific option.
b99bd4ef 19738
c19d1205
ZW
19739 This routine is somewhat complicated by the need for backwards
19740 compatibility (since older releases of gcc can't be changed).
19741 The new options try to make the interface as compatible as
19742 possible with GCC.
b99bd4ef 19743
c19d1205 19744 New options (supported) are:
b99bd4ef 19745
c19d1205
ZW
19746 -mcpu=<cpu name> Assemble for selected processor
19747 -march=<architecture name> Assemble for selected architecture
19748 -mfpu=<fpu architecture> Assemble for selected FPU.
19749 -EB/-mbig-endian Big-endian
19750 -EL/-mlittle-endian Little-endian
19751 -k Generate PIC code
19752 -mthumb Start in Thumb mode
19753 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 19754
c19d1205 19755 For now we will also provide support for:
b99bd4ef 19756
c19d1205
ZW
19757 -mapcs-32 32-bit Program counter
19758 -mapcs-26 26-bit Program counter
19759 -macps-float Floats passed in FP registers
19760 -mapcs-reentrant Reentrant code
19761 -matpcs
19762 (sometime these will probably be replaced with -mapcs=<list of options>
19763 and -matpcs=<list of options>)
b99bd4ef 19764
c19d1205
ZW
19765 The remaining options are only supported for back-wards compatibility.
19766 Cpu variants, the arm part is optional:
19767 -m[arm]1 Currently not supported.
19768 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19769 -m[arm]3 Arm 3 processor
19770 -m[arm]6[xx], Arm 6 processors
19771 -m[arm]7[xx][t][[d]m] Arm 7 processors
19772 -m[arm]8[10] Arm 8 processors
19773 -m[arm]9[20][tdmi] Arm 9 processors
19774 -mstrongarm[110[0]] StrongARM processors
19775 -mxscale XScale processors
19776 -m[arm]v[2345[t[e]]] Arm architectures
19777 -mall All (except the ARM1)
19778 FP variants:
19779 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19780 -mfpe-old (No float load/store multiples)
19781 -mvfpxd VFP Single precision
19782 -mvfp All VFP
19783 -mno-fpu Disable all floating point instructions
b99bd4ef 19784
c19d1205
ZW
19785 The following CPU names are recognized:
19786 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19787 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19788 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19789 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19790 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19791 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19792 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 19793
c19d1205 19794 */
b99bd4ef 19795
c19d1205 19796const char * md_shortopts = "m:k";
b99bd4ef 19797
c19d1205
ZW
19798#ifdef ARM_BI_ENDIAN
19799#define OPTION_EB (OPTION_MD_BASE + 0)
19800#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 19801#else
c19d1205
ZW
19802#if TARGET_BYTES_BIG_ENDIAN
19803#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 19804#else
c19d1205
ZW
19805#define OPTION_EL (OPTION_MD_BASE + 1)
19806#endif
b99bd4ef 19807#endif
b99bd4ef 19808
c19d1205 19809struct option md_longopts[] =
b99bd4ef 19810{
c19d1205
ZW
19811#ifdef OPTION_EB
19812 {"EB", no_argument, NULL, OPTION_EB},
19813#endif
19814#ifdef OPTION_EL
19815 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 19816#endif
c19d1205
ZW
19817 {NULL, no_argument, NULL, 0}
19818};
b99bd4ef 19819
c19d1205 19820size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 19821
c19d1205 19822struct arm_option_table
b99bd4ef 19823{
c19d1205
ZW
19824 char *option; /* Option name to match. */
19825 char *help; /* Help information. */
19826 int *var; /* Variable to change. */
19827 int value; /* What to change it to. */
19828 char *deprecated; /* If non-null, print this message. */
19829};
b99bd4ef 19830
c19d1205
ZW
19831struct arm_option_table arm_opts[] =
19832{
19833 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
19834 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
19835 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19836 &support_interwork, 1, NULL},
19837 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
19838 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
19839 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
19840 1, NULL},
19841 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
19842 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
19843 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
19844 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
19845 NULL},
b99bd4ef 19846
c19d1205
ZW
19847 /* These are recognized by the assembler, but have no affect on code. */
19848 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
19849 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
e74cfd16
PB
19850 {NULL, NULL, NULL, 0, NULL}
19851};
19852
19853struct arm_legacy_option_table
19854{
19855 char *option; /* Option name to match. */
19856 const arm_feature_set **var; /* Variable to change. */
19857 const arm_feature_set value; /* What to change it to. */
19858 char *deprecated; /* If non-null, print this message. */
19859};
b99bd4ef 19860
e74cfd16
PB
19861const struct arm_legacy_option_table arm_legacy_opts[] =
19862{
c19d1205
ZW
19863 /* DON'T add any new processors to this list -- we want the whole list
19864 to go away... Add them to the processors table instead. */
e74cfd16
PB
19865 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19866 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19867 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19868 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19869 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19870 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19871 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19872 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19873 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19874 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19875 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19876 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19877 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19878 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19879 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19880 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19881 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19882 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19883 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19884 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19885 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19886 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19887 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19888 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19889 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19890 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19891 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19892 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19893 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19894 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19895 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19896 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19897 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19898 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19899 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19900 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19901 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19902 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19903 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19904 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19905 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19906 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19907 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19908 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19909 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19910 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19911 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19912 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19913 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19914 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19915 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19916 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19917 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19918 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19919 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19920 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19921 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19922 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19923 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19924 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19925 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19926 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19927 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19928 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19929 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19930 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19931 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19932 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19933 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
19934 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19935 N_("use -mcpu=strongarm110")},
e74cfd16 19936 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19937 N_("use -mcpu=strongarm1100")},
e74cfd16 19938 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19939 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
19940 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
19941 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
19942 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 19943
c19d1205 19944 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
19945 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19946 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19947 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19948 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19949 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19950 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19951 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19952 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19953 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19954 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19955 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19956 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19957 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19958 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19959 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19960 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19961 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19962 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 19963
c19d1205 19964 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
19965 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
19966 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
19967 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
19968 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 19969 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 19970
e74cfd16 19971 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 19972};
7ed4c4c5 19973
c19d1205 19974struct arm_cpu_option_table
7ed4c4c5 19975{
c19d1205 19976 char *name;
e74cfd16 19977 const arm_feature_set value;
c19d1205
ZW
19978 /* For some CPUs we assume an FPU unless the user explicitly sets
19979 -mfpu=... */
e74cfd16 19980 const arm_feature_set default_fpu;
ee065d83
PB
19981 /* The canonical name of the CPU, or NULL to use NAME converted to upper
19982 case. */
19983 const char *canonical_name;
c19d1205 19984};
7ed4c4c5 19985
c19d1205
ZW
19986/* This list should, at a minimum, contain all the cpu names
19987 recognized by GCC. */
e74cfd16 19988static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 19989{
ee065d83
PB
19990 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
19991 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
19992 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
19993 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19994 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19995 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19996 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19997 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19998 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19999 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20000 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20001 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20002 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20003 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20004 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20005 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20006 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20007 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20008 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20009 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20010 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20011 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20012 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20013 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20014 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20015 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20016 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20017 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20018 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20019 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20020 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20021 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20022 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20023 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20024 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20025 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20026 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20027 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20028 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20029 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
20030 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20031 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20032 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20033 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
c19d1205
ZW
20034 /* For V5 or later processors we default to using VFP; but the user
20035 should really set the FPU type explicitly. */
ee065d83
PB
20036 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20037 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20038 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20039 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20040 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20041 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20042 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
20043 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20044 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20045 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
20046 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20047 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20048 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20049 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20050 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20051 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
20052 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20053 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20054 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20055 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
20056 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20057 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
20058 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
20059 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
20060 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
20061 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
20062 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
20063 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
20064 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
20065 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
20066 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
5287ad62
JB
20067 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20068 | FPU_NEON_EXT_V1),
20069 NULL},
62b3e311
PB
20070 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
20071 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
c19d1205 20072 /* ??? XSCALE is really an architecture. */
ee065d83 20073 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 20074 /* ??? iwmmxt is not a processor. */
ee065d83 20075 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 20076 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 20077 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 20078 /* Maverick */
e74cfd16
PB
20079 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
20080 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 20081};
7ed4c4c5 20082
c19d1205 20083struct arm_arch_option_table
7ed4c4c5 20084{
c19d1205 20085 char *name;
e74cfd16
PB
20086 const arm_feature_set value;
20087 const arm_feature_set default_fpu;
c19d1205 20088};
7ed4c4c5 20089
c19d1205
ZW
20090/* This list should, at a minimum, contain all the architecture names
20091 recognized by GCC. */
e74cfd16 20092static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
20093{
20094 {"all", ARM_ANY, FPU_ARCH_FPA},
20095 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
20096 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
20097 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
20098 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
20099 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
20100 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
20101 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
20102 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
20103 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
20104 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
20105 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
20106 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
20107 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
20108 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
20109 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
20110 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
20111 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
20112 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
20113 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
20114 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
20115 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
20116 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
20117 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
20118 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
20119 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
62b3e311 20120 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
20121 /* The official spelling of the ARMv7 profile variants is the dashed form.
20122 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
20123 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20124 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20125 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
20126 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20127 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20128 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c19d1205
ZW
20129 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
20130 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 20131 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 20132 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 20133};
7ed4c4c5 20134
c19d1205 20135/* ISA extensions in the co-processor space. */
e74cfd16 20136struct arm_option_cpu_value_table
c19d1205
ZW
20137{
20138 char *name;
e74cfd16 20139 const arm_feature_set value;
c19d1205 20140};
7ed4c4c5 20141
e74cfd16 20142static const struct arm_option_cpu_value_table arm_extensions[] =
c19d1205 20143{
e74cfd16
PB
20144 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
20145 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
20146 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
2d447fca 20147 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
e74cfd16 20148 {NULL, ARM_ARCH_NONE}
c19d1205 20149};
7ed4c4c5 20150
c19d1205
ZW
20151/* This list should, at a minimum, contain all the fpu names
20152 recognized by GCC. */
e74cfd16 20153static const struct arm_option_cpu_value_table arm_fpus[] =
c19d1205
ZW
20154{
20155 {"softfpa", FPU_NONE},
20156 {"fpe", FPU_ARCH_FPE},
20157 {"fpe2", FPU_ARCH_FPE},
20158 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
20159 {"fpa", FPU_ARCH_FPA},
20160 {"fpa10", FPU_ARCH_FPA},
20161 {"fpa11", FPU_ARCH_FPA},
20162 {"arm7500fe", FPU_ARCH_FPA},
20163 {"softvfp", FPU_ARCH_VFP},
20164 {"softvfp+vfp", FPU_ARCH_VFP_V2},
20165 {"vfp", FPU_ARCH_VFP_V2},
20166 {"vfp9", FPU_ARCH_VFP_V2},
5287ad62 20167 {"vfp3", FPU_ARCH_VFP_V3},
c19d1205
ZW
20168 {"vfp10", FPU_ARCH_VFP_V2},
20169 {"vfp10-r0", FPU_ARCH_VFP_V1},
20170 {"vfpxd", FPU_ARCH_VFP_V1xD},
20171 {"arm1020t", FPU_ARCH_VFP_V1},
20172 {"arm1020e", FPU_ARCH_VFP_V2},
20173 {"arm1136jfs", FPU_ARCH_VFP_V2},
20174 {"arm1136jf-s", FPU_ARCH_VFP_V2},
20175 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 20176 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
e74cfd16
PB
20177 {NULL, ARM_ARCH_NONE}
20178};
20179
20180struct arm_option_value_table
20181{
20182 char *name;
20183 long value;
c19d1205 20184};
7ed4c4c5 20185
e74cfd16 20186static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
20187{
20188 {"hard", ARM_FLOAT_ABI_HARD},
20189 {"softfp", ARM_FLOAT_ABI_SOFTFP},
20190 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 20191 {NULL, 0}
c19d1205 20192};
7ed4c4c5 20193
c19d1205 20194#ifdef OBJ_ELF
3a4a14e9 20195/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 20196static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
20197{
20198 {"gnu", EF_ARM_EABI_UNKNOWN},
20199 {"4", EF_ARM_EABI_VER4},
3a4a14e9 20200 {"5", EF_ARM_EABI_VER5},
e74cfd16 20201 {NULL, 0}
c19d1205
ZW
20202};
20203#endif
7ed4c4c5 20204
c19d1205
ZW
20205struct arm_long_option_table
20206{
20207 char * option; /* Substring to match. */
20208 char * help; /* Help information. */
20209 int (* func) (char * subopt); /* Function to decode sub-option. */
20210 char * deprecated; /* If non-null, print this message. */
20211};
7ed4c4c5
NC
20212
20213static int
e74cfd16 20214arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 20215{
e74cfd16
PB
20216 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
20217
20218 /* Copy the feature set, so that we can modify it. */
20219 *ext_set = **opt_p;
20220 *opt_p = ext_set;
20221
c19d1205 20222 while (str != NULL && *str != 0)
7ed4c4c5 20223 {
e74cfd16 20224 const struct arm_option_cpu_value_table * opt;
c19d1205
ZW
20225 char * ext;
20226 int optlen;
7ed4c4c5 20227
c19d1205
ZW
20228 if (*str != '+')
20229 {
20230 as_bad (_("invalid architectural extension"));
20231 return 0;
20232 }
7ed4c4c5 20233
c19d1205
ZW
20234 str++;
20235 ext = strchr (str, '+');
7ed4c4c5 20236
c19d1205
ZW
20237 if (ext != NULL)
20238 optlen = ext - str;
20239 else
20240 optlen = strlen (str);
7ed4c4c5 20241
c19d1205
ZW
20242 if (optlen == 0)
20243 {
20244 as_bad (_("missing architectural extension"));
20245 return 0;
20246 }
7ed4c4c5 20247
c19d1205
ZW
20248 for (opt = arm_extensions; opt->name != NULL; opt++)
20249 if (strncmp (opt->name, str, optlen) == 0)
20250 {
e74cfd16 20251 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
c19d1205
ZW
20252 break;
20253 }
7ed4c4c5 20254
c19d1205
ZW
20255 if (opt->name == NULL)
20256 {
5f4273c7 20257 as_bad (_("unknown architectural extension `%s'"), str);
c19d1205
ZW
20258 return 0;
20259 }
7ed4c4c5 20260
c19d1205
ZW
20261 str = ext;
20262 };
7ed4c4c5 20263
c19d1205
ZW
20264 return 1;
20265}
7ed4c4c5 20266
c19d1205
ZW
20267static int
20268arm_parse_cpu (char * str)
7ed4c4c5 20269{
e74cfd16 20270 const struct arm_cpu_option_table * opt;
c19d1205
ZW
20271 char * ext = strchr (str, '+');
20272 int optlen;
7ed4c4c5 20273
c19d1205
ZW
20274 if (ext != NULL)
20275 optlen = ext - str;
7ed4c4c5 20276 else
c19d1205 20277 optlen = strlen (str);
7ed4c4c5 20278
c19d1205 20279 if (optlen == 0)
7ed4c4c5 20280 {
c19d1205
ZW
20281 as_bad (_("missing cpu name `%s'"), str);
20282 return 0;
7ed4c4c5
NC
20283 }
20284
c19d1205
ZW
20285 for (opt = arm_cpus; opt->name != NULL; opt++)
20286 if (strncmp (opt->name, str, optlen) == 0)
20287 {
e74cfd16
PB
20288 mcpu_cpu_opt = &opt->value;
20289 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 20290 if (opt->canonical_name)
5f4273c7 20291 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
20292 else
20293 {
20294 int i;
20295 for (i = 0; i < optlen; i++)
20296 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20297 selected_cpu_name[i] = 0;
20298 }
7ed4c4c5 20299
c19d1205
ZW
20300 if (ext != NULL)
20301 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 20302
c19d1205
ZW
20303 return 1;
20304 }
7ed4c4c5 20305
c19d1205
ZW
20306 as_bad (_("unknown cpu `%s'"), str);
20307 return 0;
7ed4c4c5
NC
20308}
20309
c19d1205
ZW
20310static int
20311arm_parse_arch (char * str)
7ed4c4c5 20312{
e74cfd16 20313 const struct arm_arch_option_table *opt;
c19d1205
ZW
20314 char *ext = strchr (str, '+');
20315 int optlen;
7ed4c4c5 20316
c19d1205
ZW
20317 if (ext != NULL)
20318 optlen = ext - str;
7ed4c4c5 20319 else
c19d1205 20320 optlen = strlen (str);
7ed4c4c5 20321
c19d1205 20322 if (optlen == 0)
7ed4c4c5 20323 {
c19d1205
ZW
20324 as_bad (_("missing architecture name `%s'"), str);
20325 return 0;
7ed4c4c5
NC
20326 }
20327
c19d1205
ZW
20328 for (opt = arm_archs; opt->name != NULL; opt++)
20329 if (streq (opt->name, str))
20330 {
e74cfd16
PB
20331 march_cpu_opt = &opt->value;
20332 march_fpu_opt = &opt->default_fpu;
5f4273c7 20333 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 20334
c19d1205
ZW
20335 if (ext != NULL)
20336 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 20337
c19d1205
ZW
20338 return 1;
20339 }
20340
20341 as_bad (_("unknown architecture `%s'\n"), str);
20342 return 0;
7ed4c4c5 20343}
eb043451 20344
c19d1205
ZW
20345static int
20346arm_parse_fpu (char * str)
20347{
e74cfd16 20348 const struct arm_option_cpu_value_table * opt;
b99bd4ef 20349
c19d1205
ZW
20350 for (opt = arm_fpus; opt->name != NULL; opt++)
20351 if (streq (opt->name, str))
20352 {
e74cfd16 20353 mfpu_opt = &opt->value;
c19d1205
ZW
20354 return 1;
20355 }
b99bd4ef 20356
c19d1205
ZW
20357 as_bad (_("unknown floating point format `%s'\n"), str);
20358 return 0;
20359}
20360
20361static int
20362arm_parse_float_abi (char * str)
b99bd4ef 20363{
e74cfd16 20364 const struct arm_option_value_table * opt;
b99bd4ef 20365
c19d1205
ZW
20366 for (opt = arm_float_abis; opt->name != NULL; opt++)
20367 if (streq (opt->name, str))
20368 {
20369 mfloat_abi_opt = opt->value;
20370 return 1;
20371 }
cc8a6dd0 20372
c19d1205
ZW
20373 as_bad (_("unknown floating point abi `%s'\n"), str);
20374 return 0;
20375}
b99bd4ef 20376
c19d1205
ZW
20377#ifdef OBJ_ELF
20378static int
20379arm_parse_eabi (char * str)
20380{
e74cfd16 20381 const struct arm_option_value_table *opt;
cc8a6dd0 20382
c19d1205
ZW
20383 for (opt = arm_eabis; opt->name != NULL; opt++)
20384 if (streq (opt->name, str))
20385 {
20386 meabi_flags = opt->value;
20387 return 1;
20388 }
20389 as_bad (_("unknown EABI `%s'\n"), str);
20390 return 0;
20391}
20392#endif
cc8a6dd0 20393
c19d1205
ZW
20394struct arm_long_option_table arm_long_opts[] =
20395{
20396 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
20397 arm_parse_cpu, NULL},
20398 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
20399 arm_parse_arch, NULL},
20400 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
20401 arm_parse_fpu, NULL},
20402 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
20403 arm_parse_float_abi, NULL},
20404#ifdef OBJ_ELF
20405 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
20406 arm_parse_eabi, NULL},
20407#endif
20408 {NULL, NULL, 0, NULL}
20409};
cc8a6dd0 20410
c19d1205
ZW
20411int
20412md_parse_option (int c, char * arg)
20413{
20414 struct arm_option_table *opt;
e74cfd16 20415 const struct arm_legacy_option_table *fopt;
c19d1205 20416 struct arm_long_option_table *lopt;
b99bd4ef 20417
c19d1205 20418 switch (c)
b99bd4ef 20419 {
c19d1205
ZW
20420#ifdef OPTION_EB
20421 case OPTION_EB:
20422 target_big_endian = 1;
20423 break;
20424#endif
cc8a6dd0 20425
c19d1205
ZW
20426#ifdef OPTION_EL
20427 case OPTION_EL:
20428 target_big_endian = 0;
20429 break;
20430#endif
b99bd4ef 20431
c19d1205
ZW
20432 case 'a':
20433 /* Listing option. Just ignore these, we don't support additional
20434 ones. */
20435 return 0;
b99bd4ef 20436
c19d1205
ZW
20437 default:
20438 for (opt = arm_opts; opt->option != NULL; opt++)
20439 {
20440 if (c == opt->option[0]
20441 && ((arg == NULL && opt->option[1] == 0)
20442 || streq (arg, opt->option + 1)))
20443 {
20444#if WARN_DEPRECATED
20445 /* If the option is deprecated, tell the user. */
20446 if (opt->deprecated != NULL)
20447 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20448 arg ? arg : "", _(opt->deprecated));
20449#endif
b99bd4ef 20450
c19d1205
ZW
20451 if (opt->var != NULL)
20452 *opt->var = opt->value;
cc8a6dd0 20453
c19d1205
ZW
20454 return 1;
20455 }
20456 }
b99bd4ef 20457
e74cfd16
PB
20458 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
20459 {
20460 if (c == fopt->option[0]
20461 && ((arg == NULL && fopt->option[1] == 0)
20462 || streq (arg, fopt->option + 1)))
20463 {
20464#if WARN_DEPRECATED
20465 /* If the option is deprecated, tell the user. */
20466 if (fopt->deprecated != NULL)
20467 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20468 arg ? arg : "", _(fopt->deprecated));
20469#endif
20470
20471 if (fopt->var != NULL)
20472 *fopt->var = &fopt->value;
20473
20474 return 1;
20475 }
20476 }
20477
c19d1205
ZW
20478 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20479 {
20480 /* These options are expected to have an argument. */
20481 if (c == lopt->option[0]
20482 && arg != NULL
20483 && strncmp (arg, lopt->option + 1,
20484 strlen (lopt->option + 1)) == 0)
20485 {
20486#if WARN_DEPRECATED
20487 /* If the option is deprecated, tell the user. */
20488 if (lopt->deprecated != NULL)
20489 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
20490 _(lopt->deprecated));
20491#endif
b99bd4ef 20492
c19d1205
ZW
20493 /* Call the sup-option parser. */
20494 return lopt->func (arg + strlen (lopt->option) - 1);
20495 }
20496 }
a737bd4d 20497
c19d1205
ZW
20498 return 0;
20499 }
a394c00f 20500
c19d1205
ZW
20501 return 1;
20502}
a394c00f 20503
c19d1205
ZW
20504void
20505md_show_usage (FILE * fp)
a394c00f 20506{
c19d1205
ZW
20507 struct arm_option_table *opt;
20508 struct arm_long_option_table *lopt;
a394c00f 20509
c19d1205 20510 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 20511
c19d1205
ZW
20512 for (opt = arm_opts; opt->option != NULL; opt++)
20513 if (opt->help != NULL)
20514 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 20515
c19d1205
ZW
20516 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20517 if (lopt->help != NULL)
20518 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 20519
c19d1205
ZW
20520#ifdef OPTION_EB
20521 fprintf (fp, _("\
20522 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
20523#endif
20524
c19d1205
ZW
20525#ifdef OPTION_EL
20526 fprintf (fp, _("\
20527 -EL assemble code for a little-endian cpu\n"));
a737bd4d 20528#endif
c19d1205 20529}
ee065d83
PB
20530
20531
20532#ifdef OBJ_ELF
62b3e311
PB
20533typedef struct
20534{
20535 int val;
20536 arm_feature_set flags;
20537} cpu_arch_ver_table;
20538
20539/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
20540 least features first. */
20541static const cpu_arch_ver_table cpu_arch_ver[] =
20542{
20543 {1, ARM_ARCH_V4},
20544 {2, ARM_ARCH_V4T},
20545 {3, ARM_ARCH_V5},
20546 {4, ARM_ARCH_V5TE},
20547 {5, ARM_ARCH_V5TEJ},
20548 {6, ARM_ARCH_V6},
20549 {7, ARM_ARCH_V6Z},
20550 {8, ARM_ARCH_V6K},
20551 {9, ARM_ARCH_V6T2},
20552 {10, ARM_ARCH_V7A},
20553 {10, ARM_ARCH_V7R},
20554 {10, ARM_ARCH_V7M},
20555 {0, ARM_ARCH_NONE}
20556};
20557
ee065d83
PB
20558/* Set the public EABI object attributes. */
20559static void
20560aeabi_set_public_attributes (void)
20561{
20562 int arch;
e74cfd16 20563 arm_feature_set flags;
62b3e311
PB
20564 arm_feature_set tmp;
20565 const cpu_arch_ver_table *p;
ee065d83
PB
20566
20567 /* Choose the architecture based on the capabilities of the requested cpu
20568 (if any) and/or the instructions actually used. */
e74cfd16
PB
20569 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
20570 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
20571 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
20572 /*Allow the user to override the reported architecture. */
20573 if (object_arch)
20574 {
20575 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
20576 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
20577 }
20578
62b3e311
PB
20579 tmp = flags;
20580 arch = 0;
20581 for (p = cpu_arch_ver; p->val; p++)
20582 {
20583 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
20584 {
20585 arch = p->val;
20586 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
20587 }
20588 }
ee065d83
PB
20589
20590 /* Tag_CPU_name. */
20591 if (selected_cpu_name[0])
20592 {
20593 char *p;
20594
20595 p = selected_cpu_name;
5f4273c7 20596 if (strncmp (p, "armv", 4) == 0)
ee065d83
PB
20597 {
20598 int i;
5f4273c7 20599
ee065d83
PB
20600 p += 4;
20601 for (i = 0; p[i]; i++)
20602 p[i] = TOUPPER (p[i]);
20603 }
104d59d1 20604 bfd_elf_add_proc_attr_string (stdoutput, 5, p);
ee065d83
PB
20605 }
20606 /* Tag_CPU_arch. */
104d59d1 20607 bfd_elf_add_proc_attr_int (stdoutput, 6, arch);
62b3e311
PB
20608 /* Tag_CPU_arch_profile. */
20609 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
104d59d1 20610 bfd_elf_add_proc_attr_int (stdoutput, 7, 'A');
62b3e311 20611 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
104d59d1 20612 bfd_elf_add_proc_attr_int (stdoutput, 7, 'R');
62b3e311 20613 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m))
104d59d1 20614 bfd_elf_add_proc_attr_int (stdoutput, 7, 'M');
ee065d83 20615 /* Tag_ARM_ISA_use. */
e74cfd16 20616 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full))
104d59d1 20617 bfd_elf_add_proc_attr_int (stdoutput, 8, 1);
ee065d83 20618 /* Tag_THUMB_ISA_use. */
e74cfd16 20619 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full))
104d59d1 20620 bfd_elf_add_proc_attr_int (stdoutput, 9,
e74cfd16 20621 ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1);
ee065d83 20622 /* Tag_VFP_arch. */
5287ad62
JB
20623 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v3)
20624 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v3))
104d59d1 20625 bfd_elf_add_proc_attr_int (stdoutput, 10, 3);
5287ad62
JB
20626 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v2)
20627 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v2))
104d59d1 20628 bfd_elf_add_proc_attr_int (stdoutput, 10, 2);
5287ad62
JB
20629 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1)
20630 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1)
20631 || ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1xd)
20632 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1xd))
104d59d1 20633 bfd_elf_add_proc_attr_int (stdoutput, 10, 1);
ee065d83 20634 /* Tag_WMMX_arch. */
e74cfd16
PB
20635 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt)
20636 || ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt))
104d59d1 20637 bfd_elf_add_proc_attr_int (stdoutput, 11, 1);
5287ad62
JB
20638 /* Tag_NEON_arch. */
20639 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_neon_ext_v1)
20640 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_neon_ext_v1))
104d59d1 20641 bfd_elf_add_proc_attr_int (stdoutput, 12, 1);
ee065d83
PB
20642}
20643
104d59d1 20644/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
20645void
20646arm_md_end (void)
20647{
ee065d83
PB
20648 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20649 return;
20650
20651 aeabi_set_public_attributes ();
ee065d83 20652}
8463be01 20653#endif /* OBJ_ELF */
ee065d83
PB
20654
20655
20656/* Parse a .cpu directive. */
20657
20658static void
20659s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
20660{
e74cfd16 20661 const struct arm_cpu_option_table *opt;
ee065d83
PB
20662 char *name;
20663 char saved_char;
20664
20665 name = input_line_pointer;
5f4273c7 20666 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
20667 input_line_pointer++;
20668 saved_char = *input_line_pointer;
20669 *input_line_pointer = 0;
20670
20671 /* Skip the first "all" entry. */
20672 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
20673 if (streq (opt->name, name))
20674 {
e74cfd16
PB
20675 mcpu_cpu_opt = &opt->value;
20676 selected_cpu = opt->value;
ee065d83 20677 if (opt->canonical_name)
5f4273c7 20678 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
20679 else
20680 {
20681 int i;
20682 for (i = 0; opt->name[i]; i++)
20683 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20684 selected_cpu_name[i] = 0;
20685 }
e74cfd16 20686 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20687 *input_line_pointer = saved_char;
20688 demand_empty_rest_of_line ();
20689 return;
20690 }
20691 as_bad (_("unknown cpu `%s'"), name);
20692 *input_line_pointer = saved_char;
20693 ignore_rest_of_line ();
20694}
20695
20696
20697/* Parse a .arch directive. */
20698
20699static void
20700s_arm_arch (int ignored ATTRIBUTE_UNUSED)
20701{
e74cfd16 20702 const struct arm_arch_option_table *opt;
ee065d83
PB
20703 char saved_char;
20704 char *name;
20705
20706 name = input_line_pointer;
5f4273c7 20707 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
20708 input_line_pointer++;
20709 saved_char = *input_line_pointer;
20710 *input_line_pointer = 0;
20711
20712 /* Skip the first "all" entry. */
20713 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20714 if (streq (opt->name, name))
20715 {
e74cfd16
PB
20716 mcpu_cpu_opt = &opt->value;
20717 selected_cpu = opt->value;
5f4273c7 20718 strcpy (selected_cpu_name, opt->name);
e74cfd16 20719 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20720 *input_line_pointer = saved_char;
20721 demand_empty_rest_of_line ();
20722 return;
20723 }
20724
20725 as_bad (_("unknown architecture `%s'\n"), name);
20726 *input_line_pointer = saved_char;
20727 ignore_rest_of_line ();
20728}
20729
20730
7a1d4c38
PB
20731/* Parse a .object_arch directive. */
20732
20733static void
20734s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
20735{
20736 const struct arm_arch_option_table *opt;
20737 char saved_char;
20738 char *name;
20739
20740 name = input_line_pointer;
5f4273c7 20741 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
20742 input_line_pointer++;
20743 saved_char = *input_line_pointer;
20744 *input_line_pointer = 0;
20745
20746 /* Skip the first "all" entry. */
20747 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20748 if (streq (opt->name, name))
20749 {
20750 object_arch = &opt->value;
20751 *input_line_pointer = saved_char;
20752 demand_empty_rest_of_line ();
20753 return;
20754 }
20755
20756 as_bad (_("unknown architecture `%s'\n"), name);
20757 *input_line_pointer = saved_char;
20758 ignore_rest_of_line ();
20759}
20760
20761
ee065d83
PB
20762/* Parse a .fpu directive. */
20763
20764static void
20765s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
20766{
e74cfd16 20767 const struct arm_option_cpu_value_table *opt;
ee065d83
PB
20768 char saved_char;
20769 char *name;
20770
20771 name = input_line_pointer;
5f4273c7 20772 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
20773 input_line_pointer++;
20774 saved_char = *input_line_pointer;
20775 *input_line_pointer = 0;
5f4273c7 20776
ee065d83
PB
20777 for (opt = arm_fpus; opt->name != NULL; opt++)
20778 if (streq (opt->name, name))
20779 {
e74cfd16
PB
20780 mfpu_opt = &opt->value;
20781 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20782 *input_line_pointer = saved_char;
20783 demand_empty_rest_of_line ();
20784 return;
20785 }
20786
20787 as_bad (_("unknown floating point format `%s'\n"), name);
20788 *input_line_pointer = saved_char;
20789 ignore_rest_of_line ();
20790}
ee065d83 20791
794ba86a
DJ
20792/* Copy symbol information. */
20793void
20794arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
20795{
20796 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
20797}