]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-tdep.c
* hppa.h (pa_opcodes): Use cM and cX instead of cm and cx,
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4754a64e 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
931aecf5 5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
acd5c798
MK
25#include "arch-utils.h"
26#include "command.h"
27#include "dummy-frame.h"
6405b0a6 28#include "dwarf2-frame.h"
acd5c798
MK
29#include "doublest.h"
30#include "floatformat.h"
c906108c 31#include "frame.h"
acd5c798
MK
32#include "frame-base.h"
33#include "frame-unwind.h"
c906108c 34#include "inferior.h"
acd5c798 35#include "gdbcmd.h"
c906108c 36#include "gdbcore.h"
dfe01d39 37#include "objfiles.h"
acd5c798
MK
38#include "osabi.h"
39#include "regcache.h"
40#include "reggroups.h"
473f17b0 41#include "regset.h"
c0d1d883 42#include "symfile.h"
c906108c 43#include "symtab.h"
acd5c798 44#include "target.h"
fd0407d6 45#include "value.h"
a89aa300 46#include "dis-asm.h"
acd5c798 47
3d261580 48#include "gdb_assert.h"
acd5c798 49#include "gdb_string.h"
3d261580 50
d2a7c97a 51#include "i386-tdep.h"
61113f8b 52#include "i387-tdep.h"
d2a7c97a 53
c4fc7f1b 54/* Register names. */
c40e1eab 55
fc633446
MK
56static char *i386_register_names[] =
57{
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69};
70
1cb97e17 71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 72
c4fc7f1b 73/* Register names for MMX pseudo-registers. */
28fc6740
AC
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab 80
1cb97e17 81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 82
28fc6740 83static int
5716833c 84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 85{
5716833c
MK
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
92}
93
5716833c 94/* SSE register? */
23a34459 95
5716833c
MK
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 98{
5716833c
MK
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
23a34459
AC
111}
112
5716833c
MK
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 115{
5716833c
MK
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
23a34459
AC
128}
129
5716833c
MK
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register? */
23a34459
AC
135
136int
5716833c 137i386_fp_regnum_p (int regnum)
23a34459 138{
5716833c
MK
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
143}
144
145int
5716833c 146i386_fpc_regnum_p (int regnum)
23a34459 147{
5716833c
MK
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
152}
153
30b0e2d8 154/* Return the name of register REGNUM. */
fc633446 155
fa88f677 156const char *
30b0e2d8 157i386_register_name (int regnum)
fc633446 158{
30b0e2d8
MK
159 if (i386_mmx_regnum_p (current_gdbarch, regnum))
160 return i386_mmx_names[regnum - I387_MM0_REGNUM];
fc633446 161
30b0e2d8
MK
162 if (regnum >= 0 && regnum < i386_num_register_names)
163 return i386_register_names[regnum];
70913449 164
c40e1eab 165 return NULL;
fc633446
MK
166}
167
c4fc7f1b 168/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
169 number used by GDB. */
170
8201327c 171static int
c4fc7f1b 172i386_dbx_reg_to_regnum (int reg)
85540d8c 173{
c4fc7f1b
MK
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
85540d8c
MK
177 if (reg >= 0 && reg <= 7)
178 {
9872ad24
JB
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
85540d8c
MK
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
5716833c 190 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
5716833c 195 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
5716833c 200 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205}
206
c4fc7f1b
MK
207/* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
85540d8c 209
8201327c 210static int
c4fc7f1b 211i386_svr4_reg_to_regnum (int reg)
85540d8c 212{
c4fc7f1b
MK
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
acd5c798 220 /* General-purpose registers. */
85540d8c
MK
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
5716833c 226 return reg - 11 + I387_ST0_REGNUM;
85540d8c
MK
227 }
228 else if (reg >= 21)
229 {
c4fc7f1b
MK
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
85540d8c
MK
232 }
233
234 /* This will hopefully provoke a warning. */
235 return NUM_REGS + NUM_PSEUDO_REGS;
236}
5716833c
MK
237
238#undef I387_ST0_REGNUM
239#undef I387_MM0_REGNUM
240#undef I387_NUM_XMM_REGS
fc338970 241\f
917317f4 242
fc338970
MK
243/* This is the variable that is set with "set disassembly-flavor", and
244 its legitimate values. */
53904c9e
AC
245static const char att_flavor[] = "att";
246static const char intel_flavor[] = "intel";
247static const char *valid_flavors[] =
c5aa993b 248{
c906108c
SS
249 att_flavor,
250 intel_flavor,
251 NULL
252};
53904c9e 253static const char *disassembly_flavor = att_flavor;
acd5c798 254\f
c906108c 255
acd5c798
MK
256/* Use the program counter to determine the contents and size of a
257 breakpoint instruction. Return a pointer to a string of bytes that
258 encode a breakpoint instruction, store the length of the string in
259 *LEN and optionally adjust *PC to point to the correct memory
260 location for inserting the breakpoint.
c906108c 261
acd5c798
MK
262 On the i386 we have a single breakpoint that fits in a single byte
263 and can be inserted anywhere.
c906108c 264
acd5c798 265 This function is 64-bit safe. */
63c0089f
MK
266
267static const gdb_byte *
acd5c798 268i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 269{
63c0089f
MK
270 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
271
acd5c798
MK
272 *len = sizeof (break_insn);
273 return break_insn;
c906108c 274}
fc338970 275\f
acd5c798
MK
276#ifdef I386_REGNO_TO_SYMMETRY
277#error "The Sequent Symmetry is no longer supported."
278#endif
c906108c 279
acd5c798
MK
280/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
281 and %esp "belong" to the calling function. Therefore these
282 registers should be saved if they're going to be modified. */
c906108c 283
acd5c798
MK
284/* The maximum number of saved registers. This should include all
285 registers mentioned above, and %eip. */
a3386186 286#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
287
288struct i386_frame_cache
c906108c 289{
acd5c798
MK
290 /* Base address. */
291 CORE_ADDR base;
292 CORE_ADDR sp_offset;
293 CORE_ADDR pc;
294
fd13a04a
AC
295 /* Saved registers. */
296 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798
MK
297 CORE_ADDR saved_sp;
298 int pc_in_eax;
299
300 /* Stack space reserved for local variables. */
301 long locals;
302};
303
304/* Allocate and initialize a frame cache. */
305
306static struct i386_frame_cache *
fd13a04a 307i386_alloc_frame_cache (void)
acd5c798
MK
308{
309 struct i386_frame_cache *cache;
310 int i;
311
312 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
313
314 /* Base address. */
315 cache->base = 0;
316 cache->sp_offset = -4;
317 cache->pc = 0;
318
fd13a04a
AC
319 /* Saved registers. We initialize these to -1 since zero is a valid
320 offset (that's where %ebp is supposed to be stored). */
321 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
322 cache->saved_regs[i] = -1;
acd5c798
MK
323 cache->saved_sp = 0;
324 cache->pc_in_eax = 0;
325
326 /* Frameless until proven otherwise. */
327 cache->locals = -1;
328
329 return cache;
330}
c906108c 331
acd5c798
MK
332/* If the instruction at PC is a jump, return the address of its
333 target. Otherwise, return PC. */
c906108c 334
acd5c798
MK
335static CORE_ADDR
336i386_follow_jump (CORE_ADDR pc)
337{
63c0089f 338 gdb_byte op;
acd5c798
MK
339 long delta = 0;
340 int data16 = 0;
c906108c 341
acd5c798
MK
342 op = read_memory_unsigned_integer (pc, 1);
343 if (op == 0x66)
c906108c 344 {
c906108c 345 data16 = 1;
acd5c798 346 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
347 }
348
acd5c798 349 switch (op)
c906108c
SS
350 {
351 case 0xe9:
fc338970 352 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
353 if (data16)
354 {
acd5c798 355 delta = read_memory_integer (pc + 2, 2);
c906108c 356
fc338970
MK
357 /* Include the size of the jmp instruction (including the
358 0x66 prefix). */
acd5c798 359 delta += 4;
c906108c
SS
360 }
361 else
362 {
acd5c798 363 delta = read_memory_integer (pc + 1, 4);
c906108c 364
acd5c798
MK
365 /* Include the size of the jmp instruction. */
366 delta += 5;
c906108c
SS
367 }
368 break;
369 case 0xeb:
fc338970 370 /* Relative jump, disp8 (ignore data16). */
acd5c798 371 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 372
acd5c798 373 delta += data16 + 2;
c906108c
SS
374 break;
375 }
c906108c 376
acd5c798
MK
377 return pc + delta;
378}
fc338970 379
acd5c798
MK
380/* Check whether PC points at a prologue for a function returning a
381 structure or union. If so, it updates CACHE and returns the
382 address of the first instruction after the code sequence that
383 removes the "hidden" argument from the stack or CURRENT_PC,
384 whichever is smaller. Otherwise, return PC. */
c906108c 385
acd5c798
MK
386static CORE_ADDR
387i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
388 struct i386_frame_cache *cache)
c906108c 389{
acd5c798
MK
390 /* Functions that return a structure or union start with:
391
392 popl %eax 0x58
393 xchgl %eax, (%esp) 0x87 0x04 0x24
394 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
395
396 (the System V compiler puts out the second `xchg' instruction,
397 and the assembler doesn't try to optimize it, so the 'sib' form
398 gets generated). This sequence is used to get the address of the
399 return buffer for a function that returns a structure. */
63c0089f
MK
400 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
401 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
402 gdb_byte buf[4];
403 gdb_byte op;
c906108c 404
acd5c798
MK
405 if (current_pc <= pc)
406 return pc;
407
408 op = read_memory_unsigned_integer (pc, 1);
c906108c 409
acd5c798
MK
410 if (op != 0x58) /* popl %eax */
411 return pc;
c906108c 412
acd5c798
MK
413 read_memory (pc + 1, buf, 4);
414 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
415 return pc;
c906108c 416
acd5c798 417 if (current_pc == pc)
c906108c 418 {
acd5c798
MK
419 cache->sp_offset += 4;
420 return current_pc;
c906108c
SS
421 }
422
acd5c798 423 if (current_pc == pc + 1)
c906108c 424 {
acd5c798
MK
425 cache->pc_in_eax = 1;
426 return current_pc;
427 }
428
429 if (buf[1] == proto1[1])
430 return pc + 4;
431 else
432 return pc + 5;
433}
434
435static CORE_ADDR
436i386_skip_probe (CORE_ADDR pc)
437{
438 /* A function may start with
fc338970 439
acd5c798
MK
440 pushl constant
441 call _probe
442 addl $4, %esp
fc338970 443
acd5c798
MK
444 followed by
445
446 pushl %ebp
fc338970 447
acd5c798 448 etc. */
63c0089f
MK
449 gdb_byte buf[8];
450 gdb_byte op;
fc338970 451
acd5c798
MK
452 op = read_memory_unsigned_integer (pc, 1);
453
454 if (op == 0x68 || op == 0x6a)
455 {
456 int delta;
c906108c 457
acd5c798
MK
458 /* Skip past the `pushl' instruction; it has either a one-byte or a
459 four-byte operand, depending on the opcode. */
c906108c 460 if (op == 0x68)
acd5c798 461 delta = 5;
c906108c 462 else
acd5c798 463 delta = 2;
c906108c 464
acd5c798
MK
465 /* Read the following 8 bytes, which should be `call _probe' (6
466 bytes) followed by `addl $4,%esp' (2 bytes). */
467 read_memory (pc + delta, buf, sizeof (buf));
c906108c 468 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 469 pc += delta + sizeof (buf);
c906108c
SS
470 }
471
acd5c798
MK
472 return pc;
473}
474
37bdc87e
MK
475/* Maximum instruction length we need to handle. */
476#define I386_MAX_INSN_LEN 6
477
478/* Instruction description. */
479struct i386_insn
480{
481 size_t len;
63c0089f
MK
482 gdb_byte insn[I386_MAX_INSN_LEN];
483 gdb_byte mask[I386_MAX_INSN_LEN];
37bdc87e
MK
484};
485
486/* Search for the instruction at PC in the list SKIP_INSNS. Return
487 the first instruction description that matches. Otherwise, return
488 NULL. */
489
490static struct i386_insn *
491i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
492{
493 struct i386_insn *insn;
63c0089f 494 gdb_byte op;
37bdc87e
MK
495
496 op = read_memory_unsigned_integer (pc, 1);
497
498 for (insn = skip_insns; insn->len > 0; insn++)
499 {
500 if ((op & insn->mask[0]) == insn->insn[0])
501 {
502 unsigned char buf[I386_MAX_INSN_LEN - 1];
503 size_t i;
504
505 gdb_assert (insn->len > 1);
506 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
507
508 read_memory (pc + 1, buf, insn->len - 1);
509 for (i = 1; i < insn->len; i++)
510 {
511 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
512 break;
513
514 return insn;
515 }
516 }
517 }
518
519 return NULL;
520}
521
522/* Some special instructions that might be migrated by GCC into the
523 part of the prologue that sets up the new stack frame. Because the
524 stack frame hasn't been setup yet, no registers have been saved
525 yet, and only the scratch registers %eax, %ecx and %edx can be
526 touched. */
527
528struct i386_insn i386_frame_setup_skip_insns[] =
529{
530 /* Check for `movb imm8, r' and `movl imm32, r'.
531
532 ??? Should we handle 16-bit operand-sizes here? */
533
534 /* `movb imm8, %al' and `movb imm8, %ah' */
535 /* `movb imm8, %cl' and `movb imm8, %ch' */
536 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
537 /* `movb imm8, %dl' and `movb imm8, %dh' */
538 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
539 /* `movl imm32, %eax' and `movl imm32, %ecx' */
540 { 5, { 0xb8 }, { 0xfe } },
541 /* `movl imm32, %edx' */
542 { 5, { 0xba }, { 0xff } },
543
544 /* Check for `mov imm32, r32'. Note that there is an alternative
545 encoding for `mov m32, %eax'.
546
547 ??? Should we handle SIB adressing here?
548 ??? Should we handle 16-bit operand-sizes here? */
549
550 /* `movl m32, %eax' */
551 { 5, { 0xa1 }, { 0xff } },
552 /* `movl m32, %eax' and `mov; m32, %ecx' */
553 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
554 /* `movl m32, %edx' */
555 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
556
557 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
558 Because of the symmetry, there are actually two ways to encode
559 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
560 opcode bytes 0x31 and 0x33 for `xorl'. */
561
562 /* `subl %eax, %eax' */
563 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
564 /* `subl %ecx, %ecx' */
565 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
566 /* `subl %edx, %edx' */
567 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
568 /* `xorl %eax, %eax' */
569 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
570 /* `xorl %ecx, %ecx' */
571 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
572 /* `xorl %edx, %edx' */
573 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
574 { 0 }
575};
576
acd5c798
MK
577/* Check whether PC points at a code that sets up a new stack frame.
578 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
579 instruction after the sequence that sets up the frame or LIMIT,
580 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
581
582static CORE_ADDR
37bdc87e 583i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
584 struct i386_frame_cache *cache)
585{
37bdc87e 586 struct i386_insn *insn;
63c0089f 587 gdb_byte op;
26604a34 588 int skip = 0;
acd5c798 589
37bdc87e
MK
590 if (limit <= pc)
591 return limit;
acd5c798
MK
592
593 op = read_memory_unsigned_integer (pc, 1);
594
c906108c 595 if (op == 0x55) /* pushl %ebp */
c5aa993b 596 {
acd5c798
MK
597 /* Take into account that we've executed the `pushl %ebp' that
598 starts this instruction sequence. */
fd13a04a 599 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 600 cache->sp_offset += 4;
37bdc87e 601 pc++;
acd5c798
MK
602
603 /* If that's all, return now. */
37bdc87e
MK
604 if (limit <= pc)
605 return limit;
26604a34 606
b4632131 607 /* Check for some special instructions that might be migrated by
37bdc87e
MK
608 GCC into the prologue and skip them. At this point in the
609 prologue, code should only touch the scratch registers %eax,
610 %ecx and %edx, so while the number of posibilities is sheer,
611 it is limited.
5daa5b4e 612
26604a34
MK
613 Make sure we only skip these instructions if we later see the
614 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 615 while (pc + skip < limit)
26604a34 616 {
37bdc87e
MK
617 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
618 if (insn == NULL)
619 break;
b4632131 620
37bdc87e 621 skip += insn->len;
26604a34
MK
622 }
623
37bdc87e
MK
624 /* If that's all, return now. */
625 if (limit <= pc + skip)
626 return limit;
627
628 op = read_memory_unsigned_integer (pc + skip, 1);
629
26604a34 630 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 631 switch (op)
c906108c
SS
632 {
633 case 0x8b:
37bdc87e
MK
634 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
635 return pc;
c906108c
SS
636 break;
637 case 0x89:
37bdc87e
MK
638 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
639 return pc;
c906108c
SS
640 break;
641 default:
37bdc87e 642 return pc;
c906108c 643 }
acd5c798 644
26604a34
MK
645 /* OK, we actually have a frame. We just don't know how large
646 it is yet. Set its size to zero. We'll adjust it if
647 necessary. We also now commit to skipping the special
648 instructions mentioned before. */
acd5c798 649 cache->locals = 0;
37bdc87e 650 pc += (skip + 2);
acd5c798
MK
651
652 /* If that's all, return now. */
37bdc87e
MK
653 if (limit <= pc)
654 return limit;
acd5c798 655
fc338970
MK
656 /* Check for stack adjustment
657
acd5c798 658 subl $XXX, %esp
fc338970 659
fd35795f 660 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 661 reg, so we don't have to worry about a data16 prefix. */
37bdc87e 662 op = read_memory_unsigned_integer (pc, 1);
c906108c
SS
663 if (op == 0x83)
664 {
fd35795f 665 /* `subl' with 8-bit immediate. */
37bdc87e 666 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 667 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 668 return pc;
acd5c798 669
37bdc87e
MK
670 /* `subl' with signed 8-bit immediate (though it wouldn't
671 make sense to be negative). */
672 cache->locals = read_memory_integer (pc + 2, 1);
673 return pc + 3;
c906108c
SS
674 }
675 else if (op == 0x81)
676 {
fd35795f 677 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 678 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 679 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 680 return pc;
acd5c798 681
fd35795f 682 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
683 cache->locals = read_memory_integer (pc + 2, 4);
684 return pc + 6;
c906108c
SS
685 }
686 else
687 {
acd5c798 688 /* Some instruction other than `subl'. */
37bdc87e 689 return pc;
c906108c
SS
690 }
691 }
37bdc87e 692 else if (op == 0xc8) /* enter */
c906108c 693 {
acd5c798
MK
694 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
695 return pc + 4;
c906108c 696 }
21d0e8a4 697
acd5c798 698 return pc;
21d0e8a4
MK
699}
700
acd5c798
MK
701/* Check whether PC points at code that saves registers on the stack.
702 If so, it updates CACHE and returns the address of the first
703 instruction after the register saves or CURRENT_PC, whichever is
704 smaller. Otherwise, return PC. */
6bff26de
MK
705
706static CORE_ADDR
acd5c798
MK
707i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
708 struct i386_frame_cache *cache)
6bff26de 709{
99ab4326 710 CORE_ADDR offset = 0;
63c0089f 711 gdb_byte op;
99ab4326 712 int i;
c0d1d883 713
99ab4326
MK
714 if (cache->locals > 0)
715 offset -= cache->locals;
716 for (i = 0; i < 8 && pc < current_pc; i++)
717 {
718 op = read_memory_unsigned_integer (pc, 1);
719 if (op < 0x50 || op > 0x57)
720 break;
0d17c81d 721
99ab4326
MK
722 offset -= 4;
723 cache->saved_regs[op - 0x50] = offset;
724 cache->sp_offset += 4;
725 pc++;
6bff26de
MK
726 }
727
acd5c798 728 return pc;
22797942
AC
729}
730
acd5c798
MK
731/* Do a full analysis of the prologue at PC and update CACHE
732 accordingly. Bail out early if CURRENT_PC is reached. Return the
733 address where the analysis stopped.
ed84f6c1 734
fc338970
MK
735 We handle these cases:
736
737 The startup sequence can be at the start of the function, or the
738 function can start with a branch to startup code at the end.
739
740 %ebp can be set up with either the 'enter' instruction, or "pushl
741 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
742 once used in the System V compiler).
743
744 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
745 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
746 16-bit unsigned argument for space to allocate, and the 'addl'
747 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
748
749 Next, the registers used by this function are pushed. With the
750 System V compiler they will always be in the order: %edi, %esi,
751 %ebx (and sometimes a harmless bug causes it to also save but not
752 restore %eax); however, the code below is willing to see the pushes
753 in any order, and will handle up to 8 of them.
754
755 If the setup sequence is at the end of the function, then the next
756 instruction will be a branch back to the start. */
c906108c 757
acd5c798
MK
758static CORE_ADDR
759i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
760 struct i386_frame_cache *cache)
c906108c 761{
acd5c798
MK
762 pc = i386_follow_jump (pc);
763 pc = i386_analyze_struct_return (pc, current_pc, cache);
764 pc = i386_skip_probe (pc);
765 pc = i386_analyze_frame_setup (pc, current_pc, cache);
766 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
767}
768
fc338970 769/* Return PC of first real instruction. */
c906108c 770
3a1e71e3 771static CORE_ADDR
acd5c798 772i386_skip_prologue (CORE_ADDR start_pc)
c906108c 773{
63c0089f 774 static gdb_byte pic_pat[6] =
acd5c798
MK
775 {
776 0xe8, 0, 0, 0, 0, /* call 0x0 */
777 0x5b, /* popl %ebx */
c5aa993b 778 };
acd5c798
MK
779 struct i386_frame_cache cache;
780 CORE_ADDR pc;
63c0089f 781 gdb_byte op;
acd5c798 782 int i;
c5aa993b 783
acd5c798
MK
784 cache.locals = -1;
785 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
786 if (cache.locals < 0)
787 return start_pc;
c5aa993b 788
acd5c798 789 /* Found valid frame setup. */
c906108c 790
fc338970
MK
791 /* The native cc on SVR4 in -K PIC mode inserts the following code
792 to get the address of the global offset table (GOT) into register
acd5c798
MK
793 %ebx:
794
fc338970
MK
795 call 0x0
796 popl %ebx
797 movl %ebx,x(%ebp) (optional)
798 addl y,%ebx
799
c906108c
SS
800 This code is with the rest of the prologue (at the end of the
801 function), so we have to skip it to get to the first real
802 instruction at the start of the function. */
c5aa993b 803
c906108c
SS
804 for (i = 0; i < 6; i++)
805 {
acd5c798 806 op = read_memory_unsigned_integer (pc + i, 1);
c5aa993b 807 if (pic_pat[i] != op)
c906108c
SS
808 break;
809 }
810 if (i == 6)
811 {
acd5c798
MK
812 int delta = 6;
813
814 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 815
c5aa993b 816 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 817 {
acd5c798
MK
818 op = read_memory_unsigned_integer (pc + delta + 1, 1);
819
fc338970 820 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 821 delta += 3;
fc338970 822 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 823 delta += 6;
fc338970 824 else /* Unexpected instruction. */
acd5c798
MK
825 delta = 0;
826
827 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 828 }
acd5c798 829
c5aa993b 830 /* addl y,%ebx */
acd5c798
MK
831 if (delta > 0 && op == 0x81
832 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 833 {
acd5c798 834 pc += delta + 6;
c906108c
SS
835 }
836 }
c5aa993b 837
e63bbc88
MK
838 /* If the function starts with a branch (to startup code at the end)
839 the last instruction should bring us back to the first
840 instruction of the real code. */
841 if (i386_follow_jump (start_pc) != start_pc)
842 pc = i386_follow_jump (pc);
843
844 return pc;
c906108c
SS
845}
846
acd5c798 847/* This function is 64-bit safe. */
93924b6b 848
acd5c798
MK
849static CORE_ADDR
850i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 851{
63c0089f 852 gdb_byte buf[8];
acd5c798
MK
853
854 frame_unwind_register (next_frame, PC_REGNUM, buf);
855 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 856}
acd5c798 857\f
93924b6b 858
acd5c798 859/* Normal frames. */
c5aa993b 860
acd5c798
MK
861static struct i386_frame_cache *
862i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 863{
acd5c798 864 struct i386_frame_cache *cache;
63c0089f 865 gdb_byte buf[4];
acd5c798
MK
866 int i;
867
868 if (*this_cache)
869 return *this_cache;
870
fd13a04a 871 cache = i386_alloc_frame_cache ();
acd5c798
MK
872 *this_cache = cache;
873
874 /* In principle, for normal frames, %ebp holds the frame pointer,
875 which holds the base address for the current stack frame.
876 However, for functions that don't need it, the frame pointer is
877 optional. For these "frameless" functions the frame pointer is
878 actually the frame pointer of the calling frame. Signal
879 trampolines are just a special case of a "frameless" function.
880 They (usually) share their frame pointer with the frame that was
881 in progress when the signal occurred. */
882
883 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
884 cache->base = extract_unsigned_integer (buf, 4);
885 if (cache->base == 0)
886 return cache;
887
888 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 889 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
890
891 cache->pc = frame_func_unwind (next_frame);
892 if (cache->pc != 0)
893 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
894
895 if (cache->locals < 0)
896 {
897 /* We didn't find a valid frame, which means that CACHE->base
898 currently holds the frame pointer for our calling frame. If
899 we're at the start of a function, or somewhere half-way its
900 prologue, the function's frame probably hasn't been fully
901 setup yet. Try to reconstruct the base address for the stack
902 frame by looking at the stack pointer. For truly "frameless"
903 functions this might work too. */
904
905 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
906 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
907 }
908
909 /* Now that we have the base address for the stack frame we can
910 calculate the value of %esp in the calling frame. */
911 cache->saved_sp = cache->base + 8;
a7769679 912
acd5c798
MK
913 /* Adjust all the saved registers such that they contain addresses
914 instead of offsets. */
915 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
916 if (cache->saved_regs[i] != -1)
917 cache->saved_regs[i] += cache->base;
acd5c798
MK
918
919 return cache;
a7769679
MK
920}
921
3a1e71e3 922static void
acd5c798
MK
923i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
924 struct frame_id *this_id)
c906108c 925{
acd5c798
MK
926 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
927
928 /* This marks the outermost frame. */
929 if (cache->base == 0)
930 return;
931
3e210248 932 /* See the end of i386_push_dummy_call. */
acd5c798
MK
933 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
934}
935
936static void
937i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
938 int regnum, int *optimizedp,
939 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 940 int *realnump, gdb_byte *valuep)
acd5c798
MK
941{
942 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
943
944 gdb_assert (regnum >= 0);
945
946 /* The System V ABI says that:
947
948 "The flags register contains the system flags, such as the
949 direction flag and the carry flag. The direction flag must be
950 set to the forward (that is, zero) direction before entry and
951 upon exit from a function. Other user flags have no specified
952 role in the standard calling sequence and are not preserved."
953
954 To guarantee the "upon exit" part of that statement we fake a
955 saved flags register that has its direction flag cleared.
956
957 Note that GCC doesn't seem to rely on the fact that the direction
958 flag is cleared after a function return; it always explicitly
959 clears the flag before operations where it matters.
960
961 FIXME: kettenis/20030316: I'm not quite sure whether this is the
962 right thing to do. The way we fake the flags register here makes
963 it impossible to change it. */
964
965 if (regnum == I386_EFLAGS_REGNUM)
966 {
967 *optimizedp = 0;
968 *lvalp = not_lval;
969 *addrp = 0;
970 *realnump = -1;
971 if (valuep)
972 {
973 ULONGEST val;
c5aa993b 974
acd5c798 975 /* Clear the direction flag. */
f837910f
MK
976 val = frame_unwind_register_unsigned (next_frame,
977 I386_EFLAGS_REGNUM);
acd5c798
MK
978 val &= ~(1 << 10);
979 store_unsigned_integer (valuep, 4, val);
980 }
981
982 return;
983 }
1211c4e4 984
acd5c798 985 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 986 {
00b25ff3
AC
987 *optimizedp = 0;
988 *lvalp = lval_register;
989 *addrp = 0;
990 *realnump = I386_EAX_REGNUM;
991 if (valuep)
992 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
993 return;
994 }
995
996 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
997 {
998 *optimizedp = 0;
999 *lvalp = not_lval;
1000 *addrp = 0;
1001 *realnump = -1;
1002 if (valuep)
c906108c 1003 {
acd5c798
MK
1004 /* Store the value. */
1005 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 1006 }
acd5c798 1007 return;
c906108c 1008 }
acd5c798 1009
fd13a04a
AC
1010 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1011 {
1012 *optimizedp = 0;
1013 *lvalp = lval_memory;
1014 *addrp = cache->saved_regs[regnum];
1015 *realnump = -1;
1016 if (valuep)
1017 {
1018 /* Read the value in from memory. */
1019 read_memory (*addrp, valuep,
1020 register_size (current_gdbarch, regnum));
1021 }
1022 return;
1023 }
1024
00b25ff3
AC
1025 *optimizedp = 0;
1026 *lvalp = lval_register;
1027 *addrp = 0;
1028 *realnump = regnum;
1029 if (valuep)
1030 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1031}
1032
1033static const struct frame_unwind i386_frame_unwind =
1034{
1035 NORMAL_FRAME,
1036 i386_frame_this_id,
1037 i386_frame_prev_register
1038};
1039
1040static const struct frame_unwind *
336d1bba 1041i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
1042{
1043 return &i386_frame_unwind;
1044}
1045\f
1046
1047/* Signal trampolines. */
1048
1049static struct i386_frame_cache *
1050i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1051{
1052 struct i386_frame_cache *cache;
1053 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1054 CORE_ADDR addr;
63c0089f 1055 gdb_byte buf[4];
acd5c798
MK
1056
1057 if (*this_cache)
1058 return *this_cache;
1059
fd13a04a 1060 cache = i386_alloc_frame_cache ();
acd5c798
MK
1061
1062 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1063 cache->base = extract_unsigned_integer (buf, 4) - 4;
1064
1065 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
1066 if (tdep->sc_reg_offset)
1067 {
1068 int i;
1069
1070 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1071
1072 for (i = 0; i < tdep->sc_num_regs; i++)
1073 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1074 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1075 }
1076 else
1077 {
fd13a04a
AC
1078 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1079 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1080 }
acd5c798
MK
1081
1082 *this_cache = cache;
1083 return cache;
1084}
1085
1086static void
1087i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1088 struct frame_id *this_id)
1089{
1090 struct i386_frame_cache *cache =
1091 i386_sigtramp_frame_cache (next_frame, this_cache);
1092
3e210248 1093 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1094 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1095}
1096
1097static void
1098i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1099 void **this_cache,
1100 int regnum, int *optimizedp,
1101 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1102 int *realnump, gdb_byte *valuep)
acd5c798
MK
1103{
1104 /* Make sure we've initialized the cache. */
1105 i386_sigtramp_frame_cache (next_frame, this_cache);
1106
1107 i386_frame_prev_register (next_frame, this_cache, regnum,
1108 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1109}
c0d1d883 1110
acd5c798
MK
1111static const struct frame_unwind i386_sigtramp_frame_unwind =
1112{
1113 SIGTRAMP_FRAME,
1114 i386_sigtramp_frame_this_id,
1115 i386_sigtramp_frame_prev_register
1116};
1117
1118static const struct frame_unwind *
336d1bba 1119i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1120{
911bc6ee 1121 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1122
911bc6ee
MK
1123 /* We shouldn't even bother if we don't have a sigcontext_addr
1124 handler. */
1125 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1126 return NULL;
1127
911bc6ee
MK
1128 if (tdep->sigtramp_p != NULL)
1129 {
1130 if (tdep->sigtramp_p (next_frame))
1131 return &i386_sigtramp_frame_unwind;
1132 }
1133
1134 if (tdep->sigtramp_start != 0)
1135 {
1136 CORE_ADDR pc = frame_pc_unwind (next_frame);
1137
1138 gdb_assert (tdep->sigtramp_end != 0);
1139 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1140 return &i386_sigtramp_frame_unwind;
1141 }
acd5c798
MK
1142
1143 return NULL;
1144}
1145\f
1146
1147static CORE_ADDR
1148i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1149{
1150 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1151
1152 return cache->base;
1153}
1154
1155static const struct frame_base i386_frame_base =
1156{
1157 &i386_frame_unwind,
1158 i386_frame_base_address,
1159 i386_frame_base_address,
1160 i386_frame_base_address
1161};
1162
acd5c798
MK
1163static struct frame_id
1164i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1165{
63c0089f 1166 gdb_byte buf[4];
acd5c798
MK
1167 CORE_ADDR fp;
1168
1169 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1170 fp = extract_unsigned_integer (buf, 4);
1171
3e210248 1172 /* See the end of i386_push_dummy_call. */
acd5c798 1173 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1174}
fc338970 1175\f
c906108c 1176
fc338970
MK
1177/* Figure out where the longjmp will land. Slurp the args out of the
1178 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1179 structure from which we extract the address that we will land at.
28bcfd30 1180 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1181 success.
1182
1183 This function is 64-bit safe. */
c906108c 1184
8201327c
MK
1185static int
1186i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1187{
63c0089f 1188 gdb_byte buf[8];
c906108c 1189 CORE_ADDR sp, jb_addr;
8201327c 1190 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1191 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1192
8201327c
MK
1193 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1194 longjmp will land. */
1195 if (jb_pc_offset == -1)
c906108c
SS
1196 return 0;
1197
f837910f
MK
1198 /* Don't use I386_ESP_REGNUM here, since this function is also used
1199 for AMD64. */
1200 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1201 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1202 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1203 return 0;
1204
f837910f 1205 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1206 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1207 return 0;
c906108c 1208
f9d3c2a8 1209 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1210 return 1;
1211}
fc338970 1212\f
c906108c 1213
3a1e71e3 1214static CORE_ADDR
7d9b040b 1215i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1216 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1217 struct value **args, CORE_ADDR sp, int struct_return,
1218 CORE_ADDR struct_addr)
22f8ba57 1219{
63c0089f 1220 gdb_byte buf[4];
acd5c798
MK
1221 int i;
1222
1223 /* Push arguments in reverse order. */
1224 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1225 {
4754a64e 1226 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798
MK
1227
1228 /* The System V ABI says that:
1229
1230 "An argument's size is increased, if necessary, to make it a
1231 multiple of [32-bit] words. This may require tail padding,
1232 depending on the size of the argument."
1233
1234 This makes sure the stack says word-aligned. */
1235 sp -= (len + 3) & ~3;
46615f07 1236 write_memory (sp, value_contents_all (args[i]), len);
acd5c798 1237 }
22f8ba57 1238
acd5c798
MK
1239 /* Push value address. */
1240 if (struct_return)
1241 {
22f8ba57 1242 sp -= 4;
fbd9dcd3 1243 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1244 write_memory (sp, buf, 4);
1245 }
1246
acd5c798
MK
1247 /* Store return address. */
1248 sp -= 4;
6a65450a 1249 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1250 write_memory (sp, buf, 4);
1251
1252 /* Finally, update the stack pointer... */
1253 store_unsigned_integer (buf, 4, sp);
1254 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1255
1256 /* ...and fake a frame pointer. */
1257 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1258
3e210248
AC
1259 /* MarkK wrote: This "+ 8" is all over the place:
1260 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1261 i386_unwind_dummy_id). It's there, since all frame unwinders for
1262 a given target have to agree (within a certain margin) on the
fd35795f 1263 definition of the stack address of a frame. Otherwise
3e210248
AC
1264 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1265 stack address *before* the function call as a frame's CFA. On
1266 the i386, when %ebp is used as a frame pointer, the offset
1267 between the contents %ebp and the CFA as defined by GCC. */
1268 return sp + 8;
22f8ba57
MK
1269}
1270
1a309862
MK
1271/* These registers are used for returning integers (and on some
1272 targets also for returning `struct' and `union' values when their
ef9dff19 1273 size and alignment match an integer type). */
acd5c798
MK
1274#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1275#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1276
c5e656c1
MK
1277/* Read, for architecture GDBARCH, a function return value of TYPE
1278 from REGCACHE, and copy that into VALBUF. */
1a309862 1279
3a1e71e3 1280static void
c5e656c1 1281i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1282 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1283{
c5e656c1 1284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1285 int len = TYPE_LENGTH (type);
63c0089f 1286 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1287
1e8d0a7b 1288 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1289 {
5716833c 1290 if (tdep->st0_regnum < 0)
1a309862 1291 {
8a3fe4f8 1292 warning (_("Cannot find floating-point return value."));
1a309862 1293 memset (valbuf, 0, len);
ef9dff19 1294 return;
1a309862
MK
1295 }
1296
c6ba6f0d
MK
1297 /* Floating-point return values can be found in %st(0). Convert
1298 its contents to the desired type. This is probably not
1299 exactly how it would happen on the target itself, but it is
1300 the best we can do. */
acd5c798 1301 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1302 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1303 }
1304 else
c5aa993b 1305 {
f837910f
MK
1306 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1307 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1308
1309 if (len <= low_size)
00f8375e 1310 {
0818c12a 1311 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1312 memcpy (valbuf, buf, len);
1313 }
d4f3574e
SS
1314 else if (len <= (low_size + high_size))
1315 {
0818c12a 1316 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1317 memcpy (valbuf, buf, low_size);
0818c12a 1318 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1319 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1320 }
1321 else
8e65ff28 1322 internal_error (__FILE__, __LINE__,
e2e0b3e5 1323 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1324 }
1325}
1326
c5e656c1
MK
1327/* Write, for architecture GDBARCH, a function return value of TYPE
1328 from VALBUF into REGCACHE. */
ef9dff19 1329
3a1e71e3 1330static void
c5e656c1 1331i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1332 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1333{
c5e656c1 1334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1335 int len = TYPE_LENGTH (type);
1336
5716833c
MK
1337 /* Define I387_ST0_REGNUM such that we use the proper definitions
1338 for the architecture. */
1339#define I387_ST0_REGNUM I386_ST0_REGNUM
1340
1e8d0a7b 1341 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1342 {
3d7f4f49 1343 ULONGEST fstat;
63c0089f 1344 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1345
5716833c 1346 if (tdep->st0_regnum < 0)
ef9dff19 1347 {
8a3fe4f8 1348 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1349 return;
1350 }
1351
635b0cc1
MK
1352 /* Returning floating-point values is a bit tricky. Apart from
1353 storing the return value in %st(0), we have to simulate the
1354 state of the FPU at function return point. */
1355
c6ba6f0d
MK
1356 /* Convert the value found in VALBUF to the extended
1357 floating-point format used by the FPU. This is probably
1358 not exactly how it would happen on the target itself, but
1359 it is the best we can do. */
1360 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1361 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1362
635b0cc1
MK
1363 /* Set the top of the floating-point register stack to 7. The
1364 actual value doesn't really matter, but 7 is what a normal
1365 function return would end up with if the program started out
1366 with a freshly initialized FPU. */
5716833c 1367 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1368 fstat |= (7 << 11);
5716833c 1369 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1370
635b0cc1
MK
1371 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1372 the floating-point register stack to 7, the appropriate value
1373 for the tag word is 0x3fff. */
5716833c 1374 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1375 }
1376 else
1377 {
f837910f
MK
1378 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1379 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1380
1381 if (len <= low_size)
3d7f4f49 1382 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1383 else if (len <= (low_size + high_size))
1384 {
3d7f4f49
MK
1385 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1386 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1387 len - low_size, valbuf + low_size);
ef9dff19
MK
1388 }
1389 else
8e65ff28 1390 internal_error (__FILE__, __LINE__,
e2e0b3e5 1391 _("Cannot store return value of %d bytes long."), len);
ef9dff19 1392 }
5716833c
MK
1393
1394#undef I387_ST0_REGNUM
ef9dff19 1395}
fc338970 1396\f
ef9dff19 1397
8201327c
MK
1398/* This is the variable that is set with "set struct-convention", and
1399 its legitimate values. */
1400static const char default_struct_convention[] = "default";
1401static const char pcc_struct_convention[] = "pcc";
1402static const char reg_struct_convention[] = "reg";
1403static const char *valid_conventions[] =
1404{
1405 default_struct_convention,
1406 pcc_struct_convention,
1407 reg_struct_convention,
1408 NULL
1409};
1410static const char *struct_convention = default_struct_convention;
1411
c5e656c1
MK
1412/* Return non-zero if TYPE, which is assumed to be a structure or
1413 union type, should be returned in registers for architecture
1414 GDBARCH. */
1415
8201327c 1416static int
c5e656c1 1417i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1418{
c5e656c1
MK
1419 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1420 enum type_code code = TYPE_CODE (type);
1421 int len = TYPE_LENGTH (type);
8201327c 1422
c5e656c1
MK
1423 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1424
1425 if (struct_convention == pcc_struct_convention
1426 || (struct_convention == default_struct_convention
1427 && tdep->struct_return == pcc_struct_return))
1428 return 0;
1429
1430 return (len == 1 || len == 2 || len == 4 || len == 8);
1431}
1432
1433/* Determine, for architecture GDBARCH, how a return value of TYPE
1434 should be returned. If it is supposed to be returned in registers,
1435 and READBUF is non-zero, read the appropriate value from REGCACHE,
1436 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1437 from WRITEBUF into REGCACHE. */
1438
1439static enum return_value_convention
1440i386_return_value (struct gdbarch *gdbarch, struct type *type,
42835c2b
MK
1441 struct regcache *regcache, gdb_byte *readbuf,
1442 const gdb_byte *writebuf)
c5e656c1
MK
1443{
1444 enum type_code code = TYPE_CODE (type);
1445
1446 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1447 && !i386_reg_struct_return_p (gdbarch, type))
31db7b6c
MK
1448 {
1449 /* The System V ABI says that:
1450
1451 "A function that returns a structure or union also sets %eax
1452 to the value of the original address of the caller's area
1453 before it returns. Thus when the caller receives control
1454 again, the address of the returned object resides in register
1455 %eax and can be used to access the object."
1456
1457 So the ABI guarantees that we can always find the return
1458 value just after the function has returned. */
1459
1460 if (readbuf)
1461 {
1462 ULONGEST addr;
1463
1464 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1465 read_memory (addr, readbuf, TYPE_LENGTH (type));
1466 }
1467
1468 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1469 }
c5e656c1
MK
1470
1471 /* This special case is for structures consisting of a single
1472 `float' or `double' member. These structures are returned in
1473 %st(0). For these structures, we call ourselves recursively,
1474 changing TYPE into the type of the first member of the structure.
1475 Since that should work for all structures that have only one
1476 member, we don't bother to check the member's type here. */
1477 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1478 {
1479 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1480 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1481 }
1482
1483 if (readbuf)
1484 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1485 if (writebuf)
1486 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1487
c5e656c1 1488 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1489}
1490\f
1491
21b4b2f2
JB
1492/* Types for the MMX and SSE registers. */
1493static struct type *i386_mmx_type;
1494static struct type *i386_sse_type;
1495
1496/* Construct the type for MMX registers. */
1497static struct type *
1498i386_build_mmx_type (void)
1499{
1500 /* The type we're building is this: */
1501#if 0
1502 union __gdb_builtin_type_vec64i
1503 {
1504 int64_t uint64;
1505 int32_t v2_int32[2];
1506 int16_t v4_int16[4];
1507 int8_t v8_int8[8];
1508 };
1509#endif
1510
1511 if (! i386_mmx_type)
1512 {
1513 struct type *t;
1514
1515 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1516 append_composite_type_field (t, "uint64", builtin_type_int64);
1517 append_composite_type_field (t, "v2_int32", builtin_type_v2_int32);
1518 append_composite_type_field (t, "v4_int16", builtin_type_v4_int16);
1519 append_composite_type_field (t, "v8_int8", builtin_type_v8_int8);
1520
1521 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1522 TYPE_NAME (t) = "builtin_type_vec64i";
1523
1524 i386_mmx_type = t;
1525 }
1526
1527 return i386_mmx_type;
1528}
1529
1530/* Construct the type for SSE registers. */
1531static struct type *
1532i386_build_sse_type (void)
1533{
1534 if (! i386_sse_type)
1535 {
1536 struct type *t;
1537
1538 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1539 append_composite_type_field (t, "v4_float", builtin_type_v4_float);
1540 append_composite_type_field (t, "v2_double", builtin_type_v2_double);
1541 append_composite_type_field (t, "v16_int8", builtin_type_v16_int8);
1542 append_composite_type_field (t, "v8_int16", builtin_type_v8_int16);
1543 append_composite_type_field (t, "v4_int32", builtin_type_v4_int32);
1544 append_composite_type_field (t, "v2_int64", builtin_type_v2_int64);
1545 append_composite_type_field (t, "uint128", builtin_type_int128);
1546
1547 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1548 TYPE_NAME (t) = "builtin_type_vec128i";
1549
1550 i386_sse_type = t;
1551 }
1552
1553 return i386_sse_type;
1554}
1555
d7a0d72c
MK
1556/* Return the GDB type object for the "standard" data type of data in
1557 register REGNUM. Perhaps %esi and %edi should go here, but
1558 potentially they could be used for things other than address. */
1559
3a1e71e3 1560static struct type *
4e259f09 1561i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1562{
acd5c798
MK
1563 if (regnum == I386_EIP_REGNUM
1564 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
d7a0d72c
MK
1565 return lookup_pointer_type (builtin_type_void);
1566
23a34459 1567 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1568 return builtin_type_i387_ext;
d7a0d72c 1569
5716833c 1570 if (i386_sse_regnum_p (gdbarch, regnum))
21b4b2f2 1571 return i386_build_sse_type ();
d7a0d72c 1572
5716833c 1573 if (i386_mmx_regnum_p (gdbarch, regnum))
21b4b2f2 1574 return i386_build_mmx_type ();
28fc6740 1575
d7a0d72c
MK
1576 return builtin_type_int;
1577}
1578
28fc6740 1579/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1580 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1581
1582static int
c86c27af 1583i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1584{
5716833c
MK
1585 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1586 int mmxreg, fpreg;
28fc6740
AC
1587 ULONGEST fstat;
1588 int tos;
c86c27af 1589
5716833c
MK
1590 /* Define I387_ST0_REGNUM such that we use the proper definitions
1591 for REGCACHE's architecture. */
1592#define I387_ST0_REGNUM tdep->st0_regnum
1593
1594 mmxreg = regnum - tdep->mm0_regnum;
1595 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1596 tos = (fstat >> 11) & 0x7;
5716833c
MK
1597 fpreg = (mmxreg + tos) % 8;
1598
1599 return (I387_ST0_REGNUM + fpreg);
c86c27af 1600
5716833c 1601#undef I387_ST0_REGNUM
28fc6740
AC
1602}
1603
1604static void
1605i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1606 int regnum, gdb_byte *buf)
28fc6740 1607{
5716833c 1608 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1609 {
63c0089f 1610 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1611 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1612
28fc6740 1613 /* Extract (always little endian). */
c86c27af 1614 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1615 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1616 }
1617 else
1618 regcache_raw_read (regcache, regnum, buf);
1619}
1620
1621static void
1622i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1623 int regnum, const gdb_byte *buf)
28fc6740 1624{
5716833c 1625 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1626 {
63c0089f 1627 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1628 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1629
28fc6740
AC
1630 /* Read ... */
1631 regcache_raw_read (regcache, fpnum, mmx_buf);
1632 /* ... Modify ... (always little endian). */
f837910f 1633 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1634 /* ... Write. */
1635 regcache_raw_write (regcache, fpnum, mmx_buf);
1636 }
1637 else
1638 regcache_raw_write (regcache, regnum, buf);
1639}
ff2e87ac
AC
1640\f
1641
ff2e87ac
AC
1642/* Return the register number of the register allocated by GCC after
1643 REGNUM, or -1 if there is no such register. */
1644
1645static int
1646i386_next_regnum (int regnum)
1647{
1648 /* GCC allocates the registers in the order:
1649
1650 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1651
1652 Since storing a variable in %esp doesn't make any sense we return
1653 -1 for %ebp and for %esp itself. */
1654 static int next_regnum[] =
1655 {
1656 I386_EDX_REGNUM, /* Slot for %eax. */
1657 I386_EBX_REGNUM, /* Slot for %ecx. */
1658 I386_ECX_REGNUM, /* Slot for %edx. */
1659 I386_ESI_REGNUM, /* Slot for %ebx. */
1660 -1, -1, /* Slots for %esp and %ebp. */
1661 I386_EDI_REGNUM, /* Slot for %esi. */
1662 I386_EBP_REGNUM /* Slot for %edi. */
1663 };
1664
de5b9bb9 1665 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1666 return next_regnum[regnum];
28fc6740 1667
ff2e87ac
AC
1668 return -1;
1669}
1670
1671/* Return nonzero if a value of type TYPE stored in register REGNUM
1672 needs any special handling. */
d7a0d72c 1673
3a1e71e3 1674static int
ff2e87ac 1675i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1676{
de5b9bb9
MK
1677 int len = TYPE_LENGTH (type);
1678
ff2e87ac
AC
1679 /* Values may be spread across multiple registers. Most debugging
1680 formats aren't expressive enough to specify the locations, so
1681 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1682 have a length that is a multiple of the word size, since GCC
1683 doesn't seem to put any other types into registers. */
1684 if (len > 4 && len % 4 == 0)
1685 {
1686 int last_regnum = regnum;
1687
1688 while (len > 4)
1689 {
1690 last_regnum = i386_next_regnum (last_regnum);
1691 len -= 4;
1692 }
1693
1694 if (last_regnum != -1)
1695 return 1;
1696 }
ff2e87ac 1697
23a34459 1698 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1699}
1700
ff2e87ac
AC
1701/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1702 return its contents in TO. */
ac27f131 1703
3a1e71e3 1704static void
ff2e87ac 1705i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 1706 struct type *type, gdb_byte *to)
ac27f131 1707{
de5b9bb9 1708 int len = TYPE_LENGTH (type);
de5b9bb9 1709
ff2e87ac
AC
1710 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1711 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1712
ff2e87ac 1713 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1714 {
d532c08f
MK
1715 i387_register_to_value (frame, regnum, type, to);
1716 return;
8d7f6b4a 1717 }
ff2e87ac 1718
fd35795f 1719 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1720
1721 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1722
de5b9bb9
MK
1723 while (len > 0)
1724 {
1725 gdb_assert (regnum != -1);
1726 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1727
42835c2b 1728 get_frame_register (frame, regnum, to);
de5b9bb9
MK
1729 regnum = i386_next_regnum (regnum);
1730 len -= 4;
42835c2b 1731 to += 4;
de5b9bb9 1732 }
ac27f131
MK
1733}
1734
ff2e87ac
AC
1735/* Write the contents FROM of a value of type TYPE into register
1736 REGNUM in frame FRAME. */
ac27f131 1737
3a1e71e3 1738static void
ff2e87ac 1739i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 1740 struct type *type, const gdb_byte *from)
ac27f131 1741{
de5b9bb9 1742 int len = TYPE_LENGTH (type);
de5b9bb9 1743
ff2e87ac 1744 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1745 {
d532c08f
MK
1746 i387_value_to_register (frame, regnum, type, from);
1747 return;
1748 }
3d261580 1749
fd35795f 1750 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1751
1752 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1753
de5b9bb9
MK
1754 while (len > 0)
1755 {
1756 gdb_assert (regnum != -1);
1757 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1758
42835c2b 1759 put_frame_register (frame, regnum, from);
de5b9bb9
MK
1760 regnum = i386_next_regnum (regnum);
1761 len -= 4;
42835c2b 1762 from += 4;
de5b9bb9 1763 }
ac27f131 1764}
ff2e87ac 1765\f
7fdafb5a
MK
1766/* Supply register REGNUM from the buffer specified by GREGS and LEN
1767 in the general-purpose register set REGSET to register cache
1768 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 1769
20187ed5 1770void
473f17b0
MK
1771i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1772 int regnum, const void *gregs, size_t len)
1773{
9ea75c57 1774 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1775 const gdb_byte *regs = gregs;
473f17b0
MK
1776 int i;
1777
1778 gdb_assert (len == tdep->sizeof_gregset);
1779
1780 for (i = 0; i < tdep->gregset_num_regs; i++)
1781 {
1782 if ((regnum == i || regnum == -1)
1783 && tdep->gregset_reg_offset[i] != -1)
1784 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1785 }
1786}
1787
7fdafb5a
MK
1788/* Collect register REGNUM from the register cache REGCACHE and store
1789 it in the buffer specified by GREGS and LEN as described by the
1790 general-purpose register set REGSET. If REGNUM is -1, do this for
1791 all registers in REGSET. */
1792
1793void
1794i386_collect_gregset (const struct regset *regset,
1795 const struct regcache *regcache,
1796 int regnum, void *gregs, size_t len)
1797{
1798 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1799 gdb_byte *regs = gregs;
7fdafb5a
MK
1800 int i;
1801
1802 gdb_assert (len == tdep->sizeof_gregset);
1803
1804 for (i = 0; i < tdep->gregset_num_regs; i++)
1805 {
1806 if ((regnum == i || regnum == -1)
1807 && tdep->gregset_reg_offset[i] != -1)
1808 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1809 }
1810}
1811
1812/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1813 in the floating-point register set REGSET to register cache
1814 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
1815
1816static void
1817i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1818 int regnum, const void *fpregs, size_t len)
1819{
9ea75c57 1820 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 1821
66a72d25
MK
1822 if (len == I387_SIZEOF_FXSAVE)
1823 {
1824 i387_supply_fxsave (regcache, regnum, fpregs);
1825 return;
1826 }
1827
473f17b0
MK
1828 gdb_assert (len == tdep->sizeof_fpregset);
1829 i387_supply_fsave (regcache, regnum, fpregs);
1830}
8446b36a 1831
2f305df1
MK
1832/* Collect register REGNUM from the register cache REGCACHE and store
1833 it in the buffer specified by FPREGS and LEN as described by the
1834 floating-point register set REGSET. If REGNUM is -1, do this for
1835 all registers in REGSET. */
7fdafb5a
MK
1836
1837static void
1838i386_collect_fpregset (const struct regset *regset,
1839 const struct regcache *regcache,
1840 int regnum, void *fpregs, size_t len)
1841{
1842 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1843
1844 if (len == I387_SIZEOF_FXSAVE)
1845 {
1846 i387_collect_fxsave (regcache, regnum, fpregs);
1847 return;
1848 }
1849
1850 gdb_assert (len == tdep->sizeof_fpregset);
1851 i387_collect_fsave (regcache, regnum, fpregs);
1852}
1853
8446b36a
MK
1854/* Return the appropriate register set for the core section identified
1855 by SECT_NAME and SECT_SIZE. */
1856
1857const struct regset *
1858i386_regset_from_core_section (struct gdbarch *gdbarch,
1859 const char *sect_name, size_t sect_size)
1860{
1861 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1862
1863 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1864 {
1865 if (tdep->gregset == NULL)
7fdafb5a
MK
1866 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1867 i386_collect_gregset);
8446b36a
MK
1868 return tdep->gregset;
1869 }
1870
66a72d25
MK
1871 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1872 || (strcmp (sect_name, ".reg-xfp") == 0
1873 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
1874 {
1875 if (tdep->fpregset == NULL)
7fdafb5a
MK
1876 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1877 i386_collect_fpregset);
8446b36a
MK
1878 return tdep->fpregset;
1879 }
1880
1881 return NULL;
1882}
473f17b0 1883\f
fc338970 1884
c906108c 1885#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1886/* SunPRO encodes the static variables. This is not related to C++
1887 mangling, it is done for C too. */
c906108c
SS
1888
1889char *
fba45db2 1890sunpro_static_transform_name (char *name)
c906108c
SS
1891{
1892 char *p;
1893 if (IS_STATIC_TRANSFORM_NAME (name))
1894 {
fc338970
MK
1895 /* For file-local statics there will be a period, a bunch of
1896 junk (the contents of which match a string given in the
c5aa993b
JM
1897 N_OPT), a period and the name. For function-local statics
1898 there will be a bunch of junk (which seems to change the
1899 second character from 'A' to 'B'), a period, the name of the
1900 function, and the name. So just skip everything before the
1901 last period. */
c906108c
SS
1902 p = strrchr (name, '.');
1903 if (p != NULL)
1904 name = p + 1;
1905 }
1906 return name;
1907}
1908#endif /* STATIC_TRANSFORM_NAME */
fc338970 1909\f
c906108c 1910
fc338970 1911/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1912
1913CORE_ADDR
1cce71eb 1914i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1915{
fc338970 1916 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1917 {
c5aa993b 1918 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1919 struct minimal_symbol *indsym =
fc338970 1920 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 1921 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 1922
c5aa993b 1923 if (symname)
c906108c 1924 {
c5aa993b
JM
1925 if (strncmp (symname, "__imp_", 6) == 0
1926 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1927 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1928 }
1929 }
fc338970 1930 return 0; /* Not a trampoline. */
c906108c 1931}
fc338970
MK
1932\f
1933
377d9ebd 1934/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 1935 sigtramp routine. */
8201327c
MK
1936
1937static int
911bc6ee 1938i386_sigtramp_p (struct frame_info *next_frame)
8201327c 1939{
911bc6ee
MK
1940 CORE_ADDR pc = frame_pc_unwind (next_frame);
1941 char *name;
1942
1943 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1944 return (name && strcmp ("_sigtramp", name) == 0);
1945}
1946\f
1947
fc338970
MK
1948/* We have two flavours of disassembly. The machinery on this page
1949 deals with switching between those. */
c906108c
SS
1950
1951static int
a89aa300 1952i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 1953{
5e3397bb
MK
1954 gdb_assert (disassembly_flavor == att_flavor
1955 || disassembly_flavor == intel_flavor);
1956
1957 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1958 constified, cast to prevent a compiler warning. */
1959 info->disassembler_options = (char *) disassembly_flavor;
1960 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1961
1962 return print_insn_i386 (pc, info);
7a292a7a 1963}
fc338970 1964\f
3ce1502b 1965
8201327c
MK
1966/* There are a few i386 architecture variants that differ only
1967 slightly from the generic i386 target. For now, we don't give them
1968 their own source file, but include them here. As a consequence,
1969 they'll always be included. */
3ce1502b 1970
8201327c 1971/* System V Release 4 (SVR4). */
3ce1502b 1972
377d9ebd 1973/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
1974 sigtramp routine. */
1975
8201327c 1976static int
911bc6ee 1977i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 1978{
911bc6ee
MK
1979 CORE_ADDR pc = frame_pc_unwind (next_frame);
1980 char *name;
1981
acd5c798
MK
1982 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1983 currently unknown. */
911bc6ee 1984 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1985 return (name && (strcmp ("_sigreturn", name) == 0
1986 || strcmp ("_sigacthandler", name) == 0
1987 || strcmp ("sigvechandler", name) == 0));
1988}
d2a7c97a 1989
acd5c798
MK
1990/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1991 routine, return the address of the associated sigcontext (ucontext)
1992 structure. */
3ce1502b 1993
3a1e71e3 1994static CORE_ADDR
acd5c798 1995i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 1996{
63c0089f 1997 gdb_byte buf[4];
acd5c798 1998 CORE_ADDR sp;
3ce1502b 1999
acd5c798
MK
2000 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2001 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 2002
acd5c798 2003 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
2004}
2005\f
3ce1502b 2006
8201327c 2007/* Generic ELF. */
d2a7c97a 2008
8201327c
MK
2009void
2010i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2011{
c4fc7f1b
MK
2012 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2013 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2014}
3ce1502b 2015
8201327c 2016/* System V Release 4 (SVR4). */
3ce1502b 2017
8201327c
MK
2018void
2019i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2020{
2021 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2022
8201327c
MK
2023 /* System V Release 4 uses ELF. */
2024 i386_elf_init_abi (info, gdbarch);
3ce1502b 2025
dfe01d39 2026 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2027 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2028
911bc6ee 2029 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2030 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2031 tdep->sc_pc_offset = 36 + 14 * 4;
2032 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2033
8201327c 2034 tdep->jb_pc_offset = 20;
3ce1502b
MK
2035}
2036
8201327c 2037/* DJGPP. */
3ce1502b 2038
3a1e71e3 2039static void
8201327c 2040i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2041{
8201327c 2042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2043
911bc6ee
MK
2044 /* DJGPP doesn't have any special frames for signal handlers. */
2045 tdep->sigtramp_p = NULL;
3ce1502b 2046
8201327c 2047 tdep->jb_pc_offset = 36;
3ce1502b
MK
2048}
2049
8201327c 2050/* NetWare. */
3ce1502b 2051
3a1e71e3 2052static void
8201327c 2053i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2054{
8201327c 2055 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2056
8201327c 2057 tdep->jb_pc_offset = 24;
d2a7c97a 2058}
8201327c 2059\f
2acceee2 2060
38c968cf
AC
2061/* i386 register groups. In addition to the normal groups, add "mmx"
2062 and "sse". */
2063
2064static struct reggroup *i386_sse_reggroup;
2065static struct reggroup *i386_mmx_reggroup;
2066
2067static void
2068i386_init_reggroups (void)
2069{
2070 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2071 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2072}
2073
2074static void
2075i386_add_reggroups (struct gdbarch *gdbarch)
2076{
2077 reggroup_add (gdbarch, i386_sse_reggroup);
2078 reggroup_add (gdbarch, i386_mmx_reggroup);
2079 reggroup_add (gdbarch, general_reggroup);
2080 reggroup_add (gdbarch, float_reggroup);
2081 reggroup_add (gdbarch, all_reggroup);
2082 reggroup_add (gdbarch, save_reggroup);
2083 reggroup_add (gdbarch, restore_reggroup);
2084 reggroup_add (gdbarch, vector_reggroup);
2085 reggroup_add (gdbarch, system_reggroup);
2086}
2087
2088int
2089i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2090 struct reggroup *group)
2091{
5716833c
MK
2092 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2093 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
2094 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2095 || i386_fpc_regnum_p (regnum));
5716833c 2096 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2097
38c968cf
AC
2098 if (group == i386_mmx_reggroup)
2099 return mmx_regnum_p;
2100 if (group == i386_sse_reggroup)
2101 return sse_regnum_p;
2102 if (group == vector_reggroup)
2103 return (mmx_regnum_p || sse_regnum_p);
2104 if (group == float_reggroup)
2105 return fp_regnum_p;
2106 if (group == general_reggroup)
2107 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2108
38c968cf
AC
2109 return default_register_reggroup_p (gdbarch, regnum, group);
2110}
38c968cf 2111\f
acd5c798 2112
f837910f
MK
2113/* Get the ARGIth function argument for the current function. */
2114
42c466d7 2115static CORE_ADDR
143985b7
AF
2116i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2117 struct type *type)
2118{
f837910f
MK
2119 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2120 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2121}
2122
2123\f
3a1e71e3 2124static struct gdbarch *
a62cc96e
AC
2125i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2126{
cd3c07fc 2127 struct gdbarch_tdep *tdep;
a62cc96e
AC
2128 struct gdbarch *gdbarch;
2129
4be87837
DJ
2130 /* If there is already a candidate, use it. */
2131 arches = gdbarch_list_lookup_by_info (arches, &info);
2132 if (arches != NULL)
2133 return arches->gdbarch;
a62cc96e
AC
2134
2135 /* Allocate space for the new architecture. */
2136 tdep = XMALLOC (struct gdbarch_tdep);
2137 gdbarch = gdbarch_alloc (&info, tdep);
2138
473f17b0
MK
2139 /* General-purpose registers. */
2140 tdep->gregset = NULL;
2141 tdep->gregset_reg_offset = NULL;
2142 tdep->gregset_num_regs = I386_NUM_GREGS;
2143 tdep->sizeof_gregset = 0;
2144
2145 /* Floating-point registers. */
2146 tdep->fpregset = NULL;
2147 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2148
5716833c 2149 /* The default settings include the FPU registers, the MMX registers
fd35795f 2150 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2151 by adjusting the members `st0_regnum', `mm0_regnum' and
2152 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2153 will show up in the output of "info all-registers". Ideally we
2154 should try to autodetect whether they are available, such that we
2155 can prevent "info all-registers" from displaying registers that
2156 aren't available.
2157
2158 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2159 [the SSE registers] always (even when they don't exist) or never
2160 showing them to the user (even when they do exist), I prefer the
2161 former over the latter. */
2162
2163 tdep->st0_regnum = I386_ST0_REGNUM;
2164
2165 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2166 calculating the register number for %mm0 until we know the number
5716833c
MK
2167 of raw registers. */
2168 tdep->mm0_regnum = 0;
2169
2170 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2171 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2172
8201327c
MK
2173 tdep->jb_pc_offset = -1;
2174 tdep->struct_return = pcc_struct_return;
8201327c
MK
2175 tdep->sigtramp_start = 0;
2176 tdep->sigtramp_end = 0;
911bc6ee 2177 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2178 tdep->sigcontext_addr = NULL;
a3386186 2179 tdep->sc_reg_offset = NULL;
8201327c 2180 tdep->sc_pc_offset = -1;
21d0e8a4 2181 tdep->sc_sp_offset = -1;
8201327c 2182
896fb97d
MK
2183 /* The format used for `long double' on almost all i386 targets is
2184 the i387 extended floating-point format. In fact, of all targets
2185 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2186 on having a `long double' that's not `long' at all. */
2187 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 2188
66da5fd8 2189 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2190 bits, a `long double' actually takes up 96, probably to enforce
2191 alignment. */
2192 set_gdbarch_long_double_bit (gdbarch, 96);
2193
49ed40de
KB
2194 /* The default ABI includes general-purpose registers,
2195 floating-point registers, and the SSE registers. */
2196 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2197 set_gdbarch_register_name (gdbarch, i386_register_name);
2198 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2199
acd5c798
MK
2200 /* Register numbers of various important registers. */
2201 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2202 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2203 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2204 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2205
c4fc7f1b
MK
2206 /* NOTE: kettenis/20040418: GCC does have two possible register
2207 numbering schemes on the i386: dbx and SVR4. These schemes
2208 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2209 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2210 dbx_register_map[] and svr4_dbx_register_map in
2211 gcc/config/i386.c. GCC also defines a third numbering scheme in
2212 gcc/config/i386.c, which it designates as the "default" register
2213 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2214 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2215 amd64-tdep.c.
2216
2217 Currently, each GCC i386 target always uses the same register
2218 numbering scheme across all its supported debugging formats
2219 i.e. SDB (COFF), stabs and DWARF 2. This is because
2220 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2221 DBX_REGISTER_NUMBER macro which is defined by each target's
2222 respective config header in a manner independent of the requested
2223 output debugging format.
2224
2225 This does not match the arrangement below, which presumes that
2226 the SDB and stabs numbering schemes differ from the DWARF and
2227 DWARF 2 ones. The reason for this arrangement is that it is
2228 likely to get the numbering scheme for the target's
2229 default/native debug format right. For targets where GCC is the
2230 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2231 targets where the native toolchain uses a different numbering
2232 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2233 the defaults below will have to be overridden, like
2234 i386_elf_init_abi() does. */
c4fc7f1b
MK
2235
2236 /* Use the dbx register numbering scheme for stabs and COFF. */
2237 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2238 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2239
2240 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2241 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2242 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e
MK
2243
2244 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2245 be in use on any of the supported i386 targets. */
2246
61113f8b
MK
2247 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2248
8201327c 2249 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2250
a62cc96e 2251 /* Call dummy code. */
acd5c798 2252 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2253
ff2e87ac
AC
2254 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2255 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2256 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2257
c5e656c1 2258 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2259
93924b6b
MK
2260 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2261
2262 /* Stack grows downward. */
2263 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2264
2265 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2266 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2267
42fdc8df 2268 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2269
28fc6740 2270 /* Wire in the MMX registers. */
0f751ff2 2271 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2272 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2273 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2274
5e3397bb
MK
2275 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2276
acd5c798 2277 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2278
2279 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2280
38c968cf
AC
2281 /* Add the i386 register groups. */
2282 i386_add_reggroups (gdbarch);
2283 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2284
143985b7
AF
2285 /* Helper for function argument information. */
2286 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2287
6405b0a6 2288 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2289 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2290
acd5c798 2291 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2292
3ce1502b 2293 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2294 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2295
336d1bba
AC
2296 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2297 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2298
8446b36a
MK
2299 /* If we have a register mapping, enable the generic core file
2300 support, unless it has already been enabled. */
2301 if (tdep->gregset_reg_offset
2302 && !gdbarch_regset_from_core_section_p (gdbarch))
2303 set_gdbarch_regset_from_core_section (gdbarch,
2304 i386_regset_from_core_section);
2305
5716833c
MK
2306 /* Unless support for MMX has been disabled, make %mm0 the first
2307 pseudo-register. */
2308 if (tdep->mm0_regnum == 0)
2309 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2310
a62cc96e
AC
2311 return gdbarch;
2312}
2313
8201327c
MK
2314static enum gdb_osabi
2315i386_coff_osabi_sniffer (bfd *abfd)
2316{
762c5349
MK
2317 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2318 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2319 return GDB_OSABI_GO32;
2320
2321 return GDB_OSABI_UNKNOWN;
2322}
2323
2324static enum gdb_osabi
2325i386_nlm_osabi_sniffer (bfd *abfd)
2326{
2327 return GDB_OSABI_NETWARE;
2328}
2329\f
2330
28e9e0f0
MK
2331/* Provide a prototype to silence -Wmissing-prototypes. */
2332void _initialize_i386_tdep (void);
2333
c906108c 2334void
fba45db2 2335_initialize_i386_tdep (void)
c906108c 2336{
a62cc96e
AC
2337 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2338
fc338970 2339 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
2340 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2341 &disassembly_flavor, _("\
2342Set the disassembly flavor."), _("\
2343Show the disassembly flavor."), _("\
2344The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2345 NULL,
2346 NULL, /* FIXME: i18n: */
2347 &setlist, &showlist);
8201327c
MK
2348
2349 /* Add the variable that controls the convention for returning
2350 structs. */
7ab04401
AC
2351 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2352 &struct_convention, _("\
2353Set the convention for returning small structs."), _("\
2354Show the convention for returning small structs."), _("\
2355Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2356is \"default\"."),
2357 NULL,
2358 NULL, /* FIXME: i18n: */
2359 &setlist, &showlist);
8201327c
MK
2360
2361 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2362 i386_coff_osabi_sniffer);
2363 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2364 i386_nlm_osabi_sniffer);
2365
05816f70 2366 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2367 i386_svr4_init_abi);
05816f70 2368 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2369 i386_go32_init_abi);
05816f70 2370 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 2371 i386_nw_init_abi);
38c968cf
AC
2372
2373 /* Initialize the i386 specific register groups. */
2374 i386_init_reggroups ();
c906108c 2375}