]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-tdep.c
Based on a previous patch form Michal Ludvig:
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
197e01b6 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4754a64e 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
931aecf5 5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c
SS
23
24#include "defs.h"
acd5c798
MK
25#include "arch-utils.h"
26#include "command.h"
27#include "dummy-frame.h"
6405b0a6 28#include "dwarf2-frame.h"
acd5c798
MK
29#include "doublest.h"
30#include "floatformat.h"
c906108c 31#include "frame.h"
acd5c798
MK
32#include "frame-base.h"
33#include "frame-unwind.h"
c906108c 34#include "inferior.h"
acd5c798 35#include "gdbcmd.h"
c906108c 36#include "gdbcore.h"
dfe01d39 37#include "objfiles.h"
acd5c798
MK
38#include "osabi.h"
39#include "regcache.h"
40#include "reggroups.h"
473f17b0 41#include "regset.h"
c0d1d883 42#include "symfile.h"
c906108c 43#include "symtab.h"
acd5c798 44#include "target.h"
fd0407d6 45#include "value.h"
a89aa300 46#include "dis-asm.h"
acd5c798 47
3d261580 48#include "gdb_assert.h"
acd5c798 49#include "gdb_string.h"
3d261580 50
d2a7c97a 51#include "i386-tdep.h"
61113f8b 52#include "i387-tdep.h"
d2a7c97a 53
c4fc7f1b 54/* Register names. */
c40e1eab 55
fc633446
MK
56static char *i386_register_names[] =
57{
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69};
70
1cb97e17 71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 72
c4fc7f1b 73/* Register names for MMX pseudo-registers. */
28fc6740
AC
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab 80
1cb97e17 81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 82
28fc6740 83static int
5716833c 84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 85{
5716833c
MK
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
92}
93
5716833c 94/* SSE register? */
23a34459 95
5716833c
MK
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 98{
5716833c
MK
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
23a34459
AC
111}
112
5716833c
MK
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 115{
5716833c
MK
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
23a34459
AC
128}
129
5716833c
MK
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register? */
23a34459
AC
135
136int
5716833c 137i386_fp_regnum_p (int regnum)
23a34459 138{
5716833c
MK
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
143}
144
145int
5716833c 146i386_fpc_regnum_p (int regnum)
23a34459 147{
5716833c
MK
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
152}
153
30b0e2d8 154/* Return the name of register REGNUM. */
fc633446 155
fa88f677 156const char *
30b0e2d8 157i386_register_name (int regnum)
fc633446 158{
30b0e2d8
MK
159 if (i386_mmx_regnum_p (current_gdbarch, regnum))
160 return i386_mmx_names[regnum - I387_MM0_REGNUM];
fc633446 161
30b0e2d8
MK
162 if (regnum >= 0 && regnum < i386_num_register_names)
163 return i386_register_names[regnum];
70913449 164
c40e1eab 165 return NULL;
fc633446
MK
166}
167
c4fc7f1b 168/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
169 number used by GDB. */
170
8201327c 171static int
c4fc7f1b 172i386_dbx_reg_to_regnum (int reg)
85540d8c 173{
c4fc7f1b
MK
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
85540d8c
MK
177 if (reg >= 0 && reg <= 7)
178 {
9872ad24
JB
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
85540d8c
MK
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
5716833c 190 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
5716833c 195 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
5716833c 200 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205}
206
c4fc7f1b
MK
207/* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
85540d8c 209
8201327c 210static int
c4fc7f1b 211i386_svr4_reg_to_regnum (int reg)
85540d8c 212{
c4fc7f1b
MK
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
acd5c798 220 /* General-purpose registers. */
85540d8c
MK
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
5716833c 226 return reg - 11 + I387_ST0_REGNUM;
85540d8c 227 }
c6f4c129 228 else if (reg >= 21 && reg <= 36)
85540d8c 229 {
c4fc7f1b
MK
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
85540d8c
MK
232 }
233
c6f4c129
JB
234 switch (reg)
235 {
236 case 37: return I387_FCTRL_REGNUM;
237 case 38: return I387_FSTAT_REGNUM;
238 case 39: return I387_MXCSR_REGNUM;
239 case 40: return I386_ES_REGNUM;
240 case 41: return I386_CS_REGNUM;
241 case 42: return I386_SS_REGNUM;
242 case 43: return I386_DS_REGNUM;
243 case 44: return I386_FS_REGNUM;
244 case 45: return I386_GS_REGNUM;
245 }
246
85540d8c
MK
247 /* This will hopefully provoke a warning. */
248 return NUM_REGS + NUM_PSEUDO_REGS;
249}
5716833c
MK
250
251#undef I387_ST0_REGNUM
252#undef I387_MM0_REGNUM
253#undef I387_NUM_XMM_REGS
fc338970 254\f
917317f4 255
fc338970
MK
256/* This is the variable that is set with "set disassembly-flavor", and
257 its legitimate values. */
53904c9e
AC
258static const char att_flavor[] = "att";
259static const char intel_flavor[] = "intel";
260static const char *valid_flavors[] =
c5aa993b 261{
c906108c
SS
262 att_flavor,
263 intel_flavor,
264 NULL
265};
53904c9e 266static const char *disassembly_flavor = att_flavor;
acd5c798 267\f
c906108c 268
acd5c798
MK
269/* Use the program counter to determine the contents and size of a
270 breakpoint instruction. Return a pointer to a string of bytes that
271 encode a breakpoint instruction, store the length of the string in
272 *LEN and optionally adjust *PC to point to the correct memory
273 location for inserting the breakpoint.
c906108c 274
acd5c798
MK
275 On the i386 we have a single breakpoint that fits in a single byte
276 and can be inserted anywhere.
c906108c 277
acd5c798 278 This function is 64-bit safe. */
63c0089f
MK
279
280static const gdb_byte *
acd5c798 281i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 282{
63c0089f
MK
283 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
284
acd5c798
MK
285 *len = sizeof (break_insn);
286 return break_insn;
c906108c 287}
fc338970 288\f
acd5c798
MK
289#ifdef I386_REGNO_TO_SYMMETRY
290#error "The Sequent Symmetry is no longer supported."
291#endif
c906108c 292
acd5c798
MK
293/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
294 and %esp "belong" to the calling function. Therefore these
295 registers should be saved if they're going to be modified. */
c906108c 296
acd5c798
MK
297/* The maximum number of saved registers. This should include all
298 registers mentioned above, and %eip. */
a3386186 299#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
300
301struct i386_frame_cache
c906108c 302{
acd5c798
MK
303 /* Base address. */
304 CORE_ADDR base;
772562f8 305 LONGEST sp_offset;
acd5c798
MK
306 CORE_ADDR pc;
307
fd13a04a
AC
308 /* Saved registers. */
309 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798
MK
310 CORE_ADDR saved_sp;
311 int pc_in_eax;
312
313 /* Stack space reserved for local variables. */
314 long locals;
315};
316
317/* Allocate and initialize a frame cache. */
318
319static struct i386_frame_cache *
fd13a04a 320i386_alloc_frame_cache (void)
acd5c798
MK
321{
322 struct i386_frame_cache *cache;
323 int i;
324
325 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
326
327 /* Base address. */
328 cache->base = 0;
329 cache->sp_offset = -4;
330 cache->pc = 0;
331
fd13a04a
AC
332 /* Saved registers. We initialize these to -1 since zero is a valid
333 offset (that's where %ebp is supposed to be stored). */
334 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
335 cache->saved_regs[i] = -1;
acd5c798
MK
336 cache->saved_sp = 0;
337 cache->pc_in_eax = 0;
338
339 /* Frameless until proven otherwise. */
340 cache->locals = -1;
341
342 return cache;
343}
c906108c 344
acd5c798
MK
345/* If the instruction at PC is a jump, return the address of its
346 target. Otherwise, return PC. */
c906108c 347
acd5c798
MK
348static CORE_ADDR
349i386_follow_jump (CORE_ADDR pc)
350{
63c0089f 351 gdb_byte op;
acd5c798
MK
352 long delta = 0;
353 int data16 = 0;
c906108c 354
acd5c798
MK
355 op = read_memory_unsigned_integer (pc, 1);
356 if (op == 0x66)
c906108c 357 {
c906108c 358 data16 = 1;
acd5c798 359 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
360 }
361
acd5c798 362 switch (op)
c906108c
SS
363 {
364 case 0xe9:
fc338970 365 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
366 if (data16)
367 {
acd5c798 368 delta = read_memory_integer (pc + 2, 2);
c906108c 369
fc338970
MK
370 /* Include the size of the jmp instruction (including the
371 0x66 prefix). */
acd5c798 372 delta += 4;
c906108c
SS
373 }
374 else
375 {
acd5c798 376 delta = read_memory_integer (pc + 1, 4);
c906108c 377
acd5c798
MK
378 /* Include the size of the jmp instruction. */
379 delta += 5;
c906108c
SS
380 }
381 break;
382 case 0xeb:
fc338970 383 /* Relative jump, disp8 (ignore data16). */
acd5c798 384 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 385
acd5c798 386 delta += data16 + 2;
c906108c
SS
387 break;
388 }
c906108c 389
acd5c798
MK
390 return pc + delta;
391}
fc338970 392
acd5c798
MK
393/* Check whether PC points at a prologue for a function returning a
394 structure or union. If so, it updates CACHE and returns the
395 address of the first instruction after the code sequence that
396 removes the "hidden" argument from the stack or CURRENT_PC,
397 whichever is smaller. Otherwise, return PC. */
c906108c 398
acd5c798
MK
399static CORE_ADDR
400i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
401 struct i386_frame_cache *cache)
c906108c 402{
acd5c798
MK
403 /* Functions that return a structure or union start with:
404
405 popl %eax 0x58
406 xchgl %eax, (%esp) 0x87 0x04 0x24
407 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
408
409 (the System V compiler puts out the second `xchg' instruction,
410 and the assembler doesn't try to optimize it, so the 'sib' form
411 gets generated). This sequence is used to get the address of the
412 return buffer for a function that returns a structure. */
63c0089f
MK
413 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
414 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
415 gdb_byte buf[4];
416 gdb_byte op;
c906108c 417
acd5c798
MK
418 if (current_pc <= pc)
419 return pc;
420
421 op = read_memory_unsigned_integer (pc, 1);
c906108c 422
acd5c798
MK
423 if (op != 0x58) /* popl %eax */
424 return pc;
c906108c 425
acd5c798
MK
426 read_memory (pc + 1, buf, 4);
427 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
428 return pc;
c906108c 429
acd5c798 430 if (current_pc == pc)
c906108c 431 {
acd5c798
MK
432 cache->sp_offset += 4;
433 return current_pc;
c906108c
SS
434 }
435
acd5c798 436 if (current_pc == pc + 1)
c906108c 437 {
acd5c798
MK
438 cache->pc_in_eax = 1;
439 return current_pc;
440 }
441
442 if (buf[1] == proto1[1])
443 return pc + 4;
444 else
445 return pc + 5;
446}
447
448static CORE_ADDR
449i386_skip_probe (CORE_ADDR pc)
450{
451 /* A function may start with
fc338970 452
acd5c798
MK
453 pushl constant
454 call _probe
455 addl $4, %esp
fc338970 456
acd5c798
MK
457 followed by
458
459 pushl %ebp
fc338970 460
acd5c798 461 etc. */
63c0089f
MK
462 gdb_byte buf[8];
463 gdb_byte op;
fc338970 464
acd5c798
MK
465 op = read_memory_unsigned_integer (pc, 1);
466
467 if (op == 0x68 || op == 0x6a)
468 {
469 int delta;
c906108c 470
acd5c798
MK
471 /* Skip past the `pushl' instruction; it has either a one-byte or a
472 four-byte operand, depending on the opcode. */
c906108c 473 if (op == 0x68)
acd5c798 474 delta = 5;
c906108c 475 else
acd5c798 476 delta = 2;
c906108c 477
acd5c798
MK
478 /* Read the following 8 bytes, which should be `call _probe' (6
479 bytes) followed by `addl $4,%esp' (2 bytes). */
480 read_memory (pc + delta, buf, sizeof (buf));
c906108c 481 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 482 pc += delta + sizeof (buf);
c906108c
SS
483 }
484
acd5c798
MK
485 return pc;
486}
487
37bdc87e
MK
488/* Maximum instruction length we need to handle. */
489#define I386_MAX_INSN_LEN 6
490
491/* Instruction description. */
492struct i386_insn
493{
494 size_t len;
63c0089f
MK
495 gdb_byte insn[I386_MAX_INSN_LEN];
496 gdb_byte mask[I386_MAX_INSN_LEN];
37bdc87e
MK
497};
498
499/* Search for the instruction at PC in the list SKIP_INSNS. Return
500 the first instruction description that matches. Otherwise, return
501 NULL. */
502
503static struct i386_insn *
504i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
505{
506 struct i386_insn *insn;
63c0089f 507 gdb_byte op;
37bdc87e
MK
508
509 op = read_memory_unsigned_integer (pc, 1);
510
511 for (insn = skip_insns; insn->len > 0; insn++)
512 {
513 if ((op & insn->mask[0]) == insn->insn[0])
514 {
613e8135
MK
515 gdb_byte buf[I386_MAX_INSN_LEN - 1];
516 int insn_matched = 1;
37bdc87e
MK
517 size_t i;
518
519 gdb_assert (insn->len > 1);
520 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
521
522 read_memory (pc + 1, buf, insn->len - 1);
523 for (i = 1; i < insn->len; i++)
524 {
525 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 526 insn_matched = 0;
37bdc87e 527 }
613e8135
MK
528
529 if (insn_matched)
530 return insn;
37bdc87e
MK
531 }
532 }
533
534 return NULL;
535}
536
537/* Some special instructions that might be migrated by GCC into the
538 part of the prologue that sets up the new stack frame. Because the
539 stack frame hasn't been setup yet, no registers have been saved
540 yet, and only the scratch registers %eax, %ecx and %edx can be
541 touched. */
542
543struct i386_insn i386_frame_setup_skip_insns[] =
544{
545 /* Check for `movb imm8, r' and `movl imm32, r'.
546
547 ??? Should we handle 16-bit operand-sizes here? */
548
549 /* `movb imm8, %al' and `movb imm8, %ah' */
550 /* `movb imm8, %cl' and `movb imm8, %ch' */
551 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
552 /* `movb imm8, %dl' and `movb imm8, %dh' */
553 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
554 /* `movl imm32, %eax' and `movl imm32, %ecx' */
555 { 5, { 0xb8 }, { 0xfe } },
556 /* `movl imm32, %edx' */
557 { 5, { 0xba }, { 0xff } },
558
559 /* Check for `mov imm32, r32'. Note that there is an alternative
560 encoding for `mov m32, %eax'.
561
562 ??? Should we handle SIB adressing here?
563 ??? Should we handle 16-bit operand-sizes here? */
564
565 /* `movl m32, %eax' */
566 { 5, { 0xa1 }, { 0xff } },
567 /* `movl m32, %eax' and `mov; m32, %ecx' */
568 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
569 /* `movl m32, %edx' */
570 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
571
572 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
573 Because of the symmetry, there are actually two ways to encode
574 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
575 opcode bytes 0x31 and 0x33 for `xorl'. */
576
577 /* `subl %eax, %eax' */
578 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
579 /* `subl %ecx, %ecx' */
580 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
581 /* `subl %edx, %edx' */
582 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
583 /* `xorl %eax, %eax' */
584 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
585 /* `xorl %ecx, %ecx' */
586 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
587 /* `xorl %edx, %edx' */
588 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
589 { 0 }
590};
591
acd5c798
MK
592/* Check whether PC points at a code that sets up a new stack frame.
593 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
594 instruction after the sequence that sets up the frame or LIMIT,
595 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
596
597static CORE_ADDR
37bdc87e 598i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
599 struct i386_frame_cache *cache)
600{
37bdc87e 601 struct i386_insn *insn;
63c0089f 602 gdb_byte op;
26604a34 603 int skip = 0;
acd5c798 604
37bdc87e
MK
605 if (limit <= pc)
606 return limit;
acd5c798
MK
607
608 op = read_memory_unsigned_integer (pc, 1);
609
c906108c 610 if (op == 0x55) /* pushl %ebp */
c5aa993b 611 {
acd5c798
MK
612 /* Take into account that we've executed the `pushl %ebp' that
613 starts this instruction sequence. */
fd13a04a 614 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 615 cache->sp_offset += 4;
37bdc87e 616 pc++;
acd5c798
MK
617
618 /* If that's all, return now. */
37bdc87e
MK
619 if (limit <= pc)
620 return limit;
26604a34 621
b4632131 622 /* Check for some special instructions that might be migrated by
37bdc87e
MK
623 GCC into the prologue and skip them. At this point in the
624 prologue, code should only touch the scratch registers %eax,
625 %ecx and %edx, so while the number of posibilities is sheer,
626 it is limited.
5daa5b4e 627
26604a34
MK
628 Make sure we only skip these instructions if we later see the
629 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 630 while (pc + skip < limit)
26604a34 631 {
37bdc87e
MK
632 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
633 if (insn == NULL)
634 break;
b4632131 635
37bdc87e 636 skip += insn->len;
26604a34
MK
637 }
638
37bdc87e
MK
639 /* If that's all, return now. */
640 if (limit <= pc + skip)
641 return limit;
642
643 op = read_memory_unsigned_integer (pc + skip, 1);
644
26604a34 645 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 646 switch (op)
c906108c
SS
647 {
648 case 0x8b:
37bdc87e
MK
649 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
650 return pc;
c906108c
SS
651 break;
652 case 0x89:
37bdc87e
MK
653 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
654 return pc;
c906108c
SS
655 break;
656 default:
37bdc87e 657 return pc;
c906108c 658 }
acd5c798 659
26604a34
MK
660 /* OK, we actually have a frame. We just don't know how large
661 it is yet. Set its size to zero. We'll adjust it if
662 necessary. We also now commit to skipping the special
663 instructions mentioned before. */
acd5c798 664 cache->locals = 0;
37bdc87e 665 pc += (skip + 2);
acd5c798
MK
666
667 /* If that's all, return now. */
37bdc87e
MK
668 if (limit <= pc)
669 return limit;
acd5c798 670
fc338970
MK
671 /* Check for stack adjustment
672
acd5c798 673 subl $XXX, %esp
fc338970 674
fd35795f 675 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 676 reg, so we don't have to worry about a data16 prefix. */
37bdc87e 677 op = read_memory_unsigned_integer (pc, 1);
c906108c
SS
678 if (op == 0x83)
679 {
fd35795f 680 /* `subl' with 8-bit immediate. */
37bdc87e 681 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 682 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 683 return pc;
acd5c798 684
37bdc87e
MK
685 /* `subl' with signed 8-bit immediate (though it wouldn't
686 make sense to be negative). */
687 cache->locals = read_memory_integer (pc + 2, 1);
688 return pc + 3;
c906108c
SS
689 }
690 else if (op == 0x81)
691 {
fd35795f 692 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 693 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 694 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 695 return pc;
acd5c798 696
fd35795f 697 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
698 cache->locals = read_memory_integer (pc + 2, 4);
699 return pc + 6;
c906108c
SS
700 }
701 else
702 {
acd5c798 703 /* Some instruction other than `subl'. */
37bdc87e 704 return pc;
c906108c
SS
705 }
706 }
37bdc87e 707 else if (op == 0xc8) /* enter */
c906108c 708 {
acd5c798
MK
709 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
710 return pc + 4;
c906108c 711 }
21d0e8a4 712
acd5c798 713 return pc;
21d0e8a4
MK
714}
715
acd5c798
MK
716/* Check whether PC points at code that saves registers on the stack.
717 If so, it updates CACHE and returns the address of the first
718 instruction after the register saves or CURRENT_PC, whichever is
719 smaller. Otherwise, return PC. */
6bff26de
MK
720
721static CORE_ADDR
acd5c798
MK
722i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
723 struct i386_frame_cache *cache)
6bff26de 724{
99ab4326 725 CORE_ADDR offset = 0;
63c0089f 726 gdb_byte op;
99ab4326 727 int i;
c0d1d883 728
99ab4326
MK
729 if (cache->locals > 0)
730 offset -= cache->locals;
731 for (i = 0; i < 8 && pc < current_pc; i++)
732 {
733 op = read_memory_unsigned_integer (pc, 1);
734 if (op < 0x50 || op > 0x57)
735 break;
0d17c81d 736
99ab4326
MK
737 offset -= 4;
738 cache->saved_regs[op - 0x50] = offset;
739 cache->sp_offset += 4;
740 pc++;
6bff26de
MK
741 }
742
acd5c798 743 return pc;
22797942
AC
744}
745
acd5c798
MK
746/* Do a full analysis of the prologue at PC and update CACHE
747 accordingly. Bail out early if CURRENT_PC is reached. Return the
748 address where the analysis stopped.
ed84f6c1 749
fc338970
MK
750 We handle these cases:
751
752 The startup sequence can be at the start of the function, or the
753 function can start with a branch to startup code at the end.
754
755 %ebp can be set up with either the 'enter' instruction, or "pushl
756 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
757 once used in the System V compiler).
758
759 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
760 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
761 16-bit unsigned argument for space to allocate, and the 'addl'
762 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
763
764 Next, the registers used by this function are pushed. With the
765 System V compiler they will always be in the order: %edi, %esi,
766 %ebx (and sometimes a harmless bug causes it to also save but not
767 restore %eax); however, the code below is willing to see the pushes
768 in any order, and will handle up to 8 of them.
769
770 If the setup sequence is at the end of the function, then the next
771 instruction will be a branch back to the start. */
c906108c 772
acd5c798
MK
773static CORE_ADDR
774i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
775 struct i386_frame_cache *cache)
c906108c 776{
acd5c798
MK
777 pc = i386_follow_jump (pc);
778 pc = i386_analyze_struct_return (pc, current_pc, cache);
779 pc = i386_skip_probe (pc);
780 pc = i386_analyze_frame_setup (pc, current_pc, cache);
781 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
782}
783
fc338970 784/* Return PC of first real instruction. */
c906108c 785
3a1e71e3 786static CORE_ADDR
acd5c798 787i386_skip_prologue (CORE_ADDR start_pc)
c906108c 788{
63c0089f 789 static gdb_byte pic_pat[6] =
acd5c798
MK
790 {
791 0xe8, 0, 0, 0, 0, /* call 0x0 */
792 0x5b, /* popl %ebx */
c5aa993b 793 };
acd5c798
MK
794 struct i386_frame_cache cache;
795 CORE_ADDR pc;
63c0089f 796 gdb_byte op;
acd5c798 797 int i;
c5aa993b 798
acd5c798
MK
799 cache.locals = -1;
800 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
801 if (cache.locals < 0)
802 return start_pc;
c5aa993b 803
acd5c798 804 /* Found valid frame setup. */
c906108c 805
fc338970
MK
806 /* The native cc on SVR4 in -K PIC mode inserts the following code
807 to get the address of the global offset table (GOT) into register
acd5c798
MK
808 %ebx:
809
fc338970
MK
810 call 0x0
811 popl %ebx
812 movl %ebx,x(%ebp) (optional)
813 addl y,%ebx
814
c906108c
SS
815 This code is with the rest of the prologue (at the end of the
816 function), so we have to skip it to get to the first real
817 instruction at the start of the function. */
c5aa993b 818
c906108c
SS
819 for (i = 0; i < 6; i++)
820 {
acd5c798 821 op = read_memory_unsigned_integer (pc + i, 1);
c5aa993b 822 if (pic_pat[i] != op)
c906108c
SS
823 break;
824 }
825 if (i == 6)
826 {
acd5c798
MK
827 int delta = 6;
828
829 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 830
c5aa993b 831 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 832 {
acd5c798
MK
833 op = read_memory_unsigned_integer (pc + delta + 1, 1);
834
fc338970 835 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 836 delta += 3;
fc338970 837 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 838 delta += 6;
fc338970 839 else /* Unexpected instruction. */
acd5c798
MK
840 delta = 0;
841
842 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 843 }
acd5c798 844
c5aa993b 845 /* addl y,%ebx */
acd5c798
MK
846 if (delta > 0 && op == 0x81
847 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 848 {
acd5c798 849 pc += delta + 6;
c906108c
SS
850 }
851 }
c5aa993b 852
e63bbc88
MK
853 /* If the function starts with a branch (to startup code at the end)
854 the last instruction should bring us back to the first
855 instruction of the real code. */
856 if (i386_follow_jump (start_pc) != start_pc)
857 pc = i386_follow_jump (pc);
858
859 return pc;
c906108c
SS
860}
861
acd5c798 862/* This function is 64-bit safe. */
93924b6b 863
acd5c798
MK
864static CORE_ADDR
865i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 866{
63c0089f 867 gdb_byte buf[8];
acd5c798
MK
868
869 frame_unwind_register (next_frame, PC_REGNUM, buf);
870 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 871}
acd5c798 872\f
93924b6b 873
acd5c798 874/* Normal frames. */
c5aa993b 875
acd5c798
MK
876static struct i386_frame_cache *
877i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 878{
acd5c798 879 struct i386_frame_cache *cache;
63c0089f 880 gdb_byte buf[4];
acd5c798
MK
881 int i;
882
883 if (*this_cache)
884 return *this_cache;
885
fd13a04a 886 cache = i386_alloc_frame_cache ();
acd5c798
MK
887 *this_cache = cache;
888
889 /* In principle, for normal frames, %ebp holds the frame pointer,
890 which holds the base address for the current stack frame.
891 However, for functions that don't need it, the frame pointer is
892 optional. For these "frameless" functions the frame pointer is
893 actually the frame pointer of the calling frame. Signal
894 trampolines are just a special case of a "frameless" function.
895 They (usually) share their frame pointer with the frame that was
896 in progress when the signal occurred. */
897
898 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
899 cache->base = extract_unsigned_integer (buf, 4);
900 if (cache->base == 0)
901 return cache;
902
903 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 904 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
905
906 cache->pc = frame_func_unwind (next_frame);
907 if (cache->pc != 0)
908 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
909
910 if (cache->locals < 0)
911 {
912 /* We didn't find a valid frame, which means that CACHE->base
913 currently holds the frame pointer for our calling frame. If
914 we're at the start of a function, or somewhere half-way its
915 prologue, the function's frame probably hasn't been fully
916 setup yet. Try to reconstruct the base address for the stack
917 frame by looking at the stack pointer. For truly "frameless"
918 functions this might work too. */
919
920 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
921 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
922 }
923
924 /* Now that we have the base address for the stack frame we can
925 calculate the value of %esp in the calling frame. */
926 cache->saved_sp = cache->base + 8;
a7769679 927
acd5c798
MK
928 /* Adjust all the saved registers such that they contain addresses
929 instead of offsets. */
930 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
931 if (cache->saved_regs[i] != -1)
932 cache->saved_regs[i] += cache->base;
acd5c798
MK
933
934 return cache;
a7769679
MK
935}
936
3a1e71e3 937static void
acd5c798
MK
938i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
939 struct frame_id *this_id)
c906108c 940{
acd5c798
MK
941 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
942
943 /* This marks the outermost frame. */
944 if (cache->base == 0)
945 return;
946
3e210248 947 /* See the end of i386_push_dummy_call. */
acd5c798
MK
948 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
949}
950
951static void
952i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
953 int regnum, int *optimizedp,
954 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 955 int *realnump, gdb_byte *valuep)
acd5c798
MK
956{
957 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
958
959 gdb_assert (regnum >= 0);
960
961 /* The System V ABI says that:
962
963 "The flags register contains the system flags, such as the
964 direction flag and the carry flag. The direction flag must be
965 set to the forward (that is, zero) direction before entry and
966 upon exit from a function. Other user flags have no specified
967 role in the standard calling sequence and are not preserved."
968
969 To guarantee the "upon exit" part of that statement we fake a
970 saved flags register that has its direction flag cleared.
971
972 Note that GCC doesn't seem to rely on the fact that the direction
973 flag is cleared after a function return; it always explicitly
974 clears the flag before operations where it matters.
975
976 FIXME: kettenis/20030316: I'm not quite sure whether this is the
977 right thing to do. The way we fake the flags register here makes
978 it impossible to change it. */
979
980 if (regnum == I386_EFLAGS_REGNUM)
981 {
982 *optimizedp = 0;
983 *lvalp = not_lval;
984 *addrp = 0;
985 *realnump = -1;
986 if (valuep)
987 {
988 ULONGEST val;
c5aa993b 989
acd5c798 990 /* Clear the direction flag. */
f837910f
MK
991 val = frame_unwind_register_unsigned (next_frame,
992 I386_EFLAGS_REGNUM);
acd5c798
MK
993 val &= ~(1 << 10);
994 store_unsigned_integer (valuep, 4, val);
995 }
996
997 return;
998 }
1211c4e4 999
acd5c798 1000 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 1001 {
00b25ff3
AC
1002 *optimizedp = 0;
1003 *lvalp = lval_register;
1004 *addrp = 0;
1005 *realnump = I386_EAX_REGNUM;
1006 if (valuep)
1007 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1008 return;
1009 }
1010
1011 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1012 {
1013 *optimizedp = 0;
1014 *lvalp = not_lval;
1015 *addrp = 0;
1016 *realnump = -1;
1017 if (valuep)
c906108c 1018 {
acd5c798
MK
1019 /* Store the value. */
1020 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 1021 }
acd5c798 1022 return;
c906108c 1023 }
acd5c798 1024
fd13a04a
AC
1025 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1026 {
1027 *optimizedp = 0;
1028 *lvalp = lval_memory;
1029 *addrp = cache->saved_regs[regnum];
1030 *realnump = -1;
1031 if (valuep)
1032 {
1033 /* Read the value in from memory. */
1034 read_memory (*addrp, valuep,
1035 register_size (current_gdbarch, regnum));
1036 }
1037 return;
1038 }
1039
00b25ff3
AC
1040 *optimizedp = 0;
1041 *lvalp = lval_register;
1042 *addrp = 0;
1043 *realnump = regnum;
1044 if (valuep)
1045 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1046}
1047
1048static const struct frame_unwind i386_frame_unwind =
1049{
1050 NORMAL_FRAME,
1051 i386_frame_this_id,
1052 i386_frame_prev_register
1053};
1054
1055static const struct frame_unwind *
336d1bba 1056i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
1057{
1058 return &i386_frame_unwind;
1059}
1060\f
1061
1062/* Signal trampolines. */
1063
1064static struct i386_frame_cache *
1065i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1066{
1067 struct i386_frame_cache *cache;
1068 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1069 CORE_ADDR addr;
63c0089f 1070 gdb_byte buf[4];
acd5c798
MK
1071
1072 if (*this_cache)
1073 return *this_cache;
1074
fd13a04a 1075 cache = i386_alloc_frame_cache ();
acd5c798
MK
1076
1077 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1078 cache->base = extract_unsigned_integer (buf, 4) - 4;
1079
1080 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
1081 if (tdep->sc_reg_offset)
1082 {
1083 int i;
1084
1085 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1086
1087 for (i = 0; i < tdep->sc_num_regs; i++)
1088 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1089 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1090 }
1091 else
1092 {
fd13a04a
AC
1093 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1094 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1095 }
acd5c798
MK
1096
1097 *this_cache = cache;
1098 return cache;
1099}
1100
1101static void
1102i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1103 struct frame_id *this_id)
1104{
1105 struct i386_frame_cache *cache =
1106 i386_sigtramp_frame_cache (next_frame, this_cache);
1107
3e210248 1108 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1109 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1110}
1111
1112static void
1113i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1114 void **this_cache,
1115 int regnum, int *optimizedp,
1116 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1117 int *realnump, gdb_byte *valuep)
acd5c798
MK
1118{
1119 /* Make sure we've initialized the cache. */
1120 i386_sigtramp_frame_cache (next_frame, this_cache);
1121
1122 i386_frame_prev_register (next_frame, this_cache, regnum,
1123 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1124}
c0d1d883 1125
acd5c798
MK
1126static const struct frame_unwind i386_sigtramp_frame_unwind =
1127{
1128 SIGTRAMP_FRAME,
1129 i386_sigtramp_frame_this_id,
1130 i386_sigtramp_frame_prev_register
1131};
1132
1133static const struct frame_unwind *
336d1bba 1134i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1135{
911bc6ee 1136 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1137
911bc6ee
MK
1138 /* We shouldn't even bother if we don't have a sigcontext_addr
1139 handler. */
1140 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1141 return NULL;
1142
911bc6ee
MK
1143 if (tdep->sigtramp_p != NULL)
1144 {
1145 if (tdep->sigtramp_p (next_frame))
1146 return &i386_sigtramp_frame_unwind;
1147 }
1148
1149 if (tdep->sigtramp_start != 0)
1150 {
1151 CORE_ADDR pc = frame_pc_unwind (next_frame);
1152
1153 gdb_assert (tdep->sigtramp_end != 0);
1154 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1155 return &i386_sigtramp_frame_unwind;
1156 }
acd5c798
MK
1157
1158 return NULL;
1159}
1160\f
1161
1162static CORE_ADDR
1163i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1164{
1165 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1166
1167 return cache->base;
1168}
1169
1170static const struct frame_base i386_frame_base =
1171{
1172 &i386_frame_unwind,
1173 i386_frame_base_address,
1174 i386_frame_base_address,
1175 i386_frame_base_address
1176};
1177
acd5c798
MK
1178static struct frame_id
1179i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1180{
63c0089f 1181 gdb_byte buf[4];
acd5c798
MK
1182 CORE_ADDR fp;
1183
1184 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1185 fp = extract_unsigned_integer (buf, 4);
1186
3e210248 1187 /* See the end of i386_push_dummy_call. */
acd5c798 1188 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1189}
fc338970 1190\f
c906108c 1191
fc338970
MK
1192/* Figure out where the longjmp will land. Slurp the args out of the
1193 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1194 structure from which we extract the address that we will land at.
28bcfd30 1195 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1196 success.
1197
1198 This function is 64-bit safe. */
c906108c 1199
8201327c
MK
1200static int
1201i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1202{
63c0089f 1203 gdb_byte buf[8];
c906108c 1204 CORE_ADDR sp, jb_addr;
8201327c 1205 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1206 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1207
8201327c
MK
1208 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1209 longjmp will land. */
1210 if (jb_pc_offset == -1)
c906108c
SS
1211 return 0;
1212
f837910f
MK
1213 /* Don't use I386_ESP_REGNUM here, since this function is also used
1214 for AMD64. */
1215 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1216 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1217 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1218 return 0;
1219
f837910f 1220 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1221 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1222 return 0;
c906108c 1223
f9d3c2a8 1224 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1225 return 1;
1226}
fc338970 1227\f
c906108c 1228
3a1e71e3 1229static CORE_ADDR
7d9b040b 1230i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1231 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1232 struct value **args, CORE_ADDR sp, int struct_return,
1233 CORE_ADDR struct_addr)
22f8ba57 1234{
63c0089f 1235 gdb_byte buf[4];
acd5c798
MK
1236 int i;
1237
1238 /* Push arguments in reverse order. */
1239 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1240 {
4754a64e 1241 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798
MK
1242
1243 /* The System V ABI says that:
1244
1245 "An argument's size is increased, if necessary, to make it a
1246 multiple of [32-bit] words. This may require tail padding,
1247 depending on the size of the argument."
1248
1249 This makes sure the stack says word-aligned. */
1250 sp -= (len + 3) & ~3;
46615f07 1251 write_memory (sp, value_contents_all (args[i]), len);
acd5c798 1252 }
22f8ba57 1253
acd5c798
MK
1254 /* Push value address. */
1255 if (struct_return)
1256 {
22f8ba57 1257 sp -= 4;
fbd9dcd3 1258 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1259 write_memory (sp, buf, 4);
1260 }
1261
acd5c798
MK
1262 /* Store return address. */
1263 sp -= 4;
6a65450a 1264 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1265 write_memory (sp, buf, 4);
1266
1267 /* Finally, update the stack pointer... */
1268 store_unsigned_integer (buf, 4, sp);
1269 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1270
1271 /* ...and fake a frame pointer. */
1272 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1273
3e210248
AC
1274 /* MarkK wrote: This "+ 8" is all over the place:
1275 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1276 i386_unwind_dummy_id). It's there, since all frame unwinders for
1277 a given target have to agree (within a certain margin) on the
fd35795f 1278 definition of the stack address of a frame. Otherwise
3e210248
AC
1279 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1280 stack address *before* the function call as a frame's CFA. On
1281 the i386, when %ebp is used as a frame pointer, the offset
1282 between the contents %ebp and the CFA as defined by GCC. */
1283 return sp + 8;
22f8ba57
MK
1284}
1285
1a309862
MK
1286/* These registers are used for returning integers (and on some
1287 targets also for returning `struct' and `union' values when their
ef9dff19 1288 size and alignment match an integer type). */
acd5c798
MK
1289#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1290#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1291
c5e656c1
MK
1292/* Read, for architecture GDBARCH, a function return value of TYPE
1293 from REGCACHE, and copy that into VALBUF. */
1a309862 1294
3a1e71e3 1295static void
c5e656c1 1296i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1297 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1298{
c5e656c1 1299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1300 int len = TYPE_LENGTH (type);
63c0089f 1301 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1302
1e8d0a7b 1303 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1304 {
5716833c 1305 if (tdep->st0_regnum < 0)
1a309862 1306 {
8a3fe4f8 1307 warning (_("Cannot find floating-point return value."));
1a309862 1308 memset (valbuf, 0, len);
ef9dff19 1309 return;
1a309862
MK
1310 }
1311
c6ba6f0d
MK
1312 /* Floating-point return values can be found in %st(0). Convert
1313 its contents to the desired type. This is probably not
1314 exactly how it would happen on the target itself, but it is
1315 the best we can do. */
acd5c798 1316 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1317 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1318 }
1319 else
c5aa993b 1320 {
f837910f
MK
1321 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1322 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1323
1324 if (len <= low_size)
00f8375e 1325 {
0818c12a 1326 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1327 memcpy (valbuf, buf, len);
1328 }
d4f3574e
SS
1329 else if (len <= (low_size + high_size))
1330 {
0818c12a 1331 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1332 memcpy (valbuf, buf, low_size);
0818c12a 1333 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1334 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1335 }
1336 else
8e65ff28 1337 internal_error (__FILE__, __LINE__,
e2e0b3e5 1338 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1339 }
1340}
1341
c5e656c1
MK
1342/* Write, for architecture GDBARCH, a function return value of TYPE
1343 from VALBUF into REGCACHE. */
ef9dff19 1344
3a1e71e3 1345static void
c5e656c1 1346i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1347 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1348{
c5e656c1 1349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1350 int len = TYPE_LENGTH (type);
1351
5716833c
MK
1352 /* Define I387_ST0_REGNUM such that we use the proper definitions
1353 for the architecture. */
1354#define I387_ST0_REGNUM I386_ST0_REGNUM
1355
1e8d0a7b 1356 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1357 {
3d7f4f49 1358 ULONGEST fstat;
63c0089f 1359 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1360
5716833c 1361 if (tdep->st0_regnum < 0)
ef9dff19 1362 {
8a3fe4f8 1363 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1364 return;
1365 }
1366
635b0cc1
MK
1367 /* Returning floating-point values is a bit tricky. Apart from
1368 storing the return value in %st(0), we have to simulate the
1369 state of the FPU at function return point. */
1370
c6ba6f0d
MK
1371 /* Convert the value found in VALBUF to the extended
1372 floating-point format used by the FPU. This is probably
1373 not exactly how it would happen on the target itself, but
1374 it is the best we can do. */
1375 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1376 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1377
635b0cc1
MK
1378 /* Set the top of the floating-point register stack to 7. The
1379 actual value doesn't really matter, but 7 is what a normal
1380 function return would end up with if the program started out
1381 with a freshly initialized FPU. */
5716833c 1382 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1383 fstat |= (7 << 11);
5716833c 1384 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1385
635b0cc1
MK
1386 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1387 the floating-point register stack to 7, the appropriate value
1388 for the tag word is 0x3fff. */
5716833c 1389 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1390 }
1391 else
1392 {
f837910f
MK
1393 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1394 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1395
1396 if (len <= low_size)
3d7f4f49 1397 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1398 else if (len <= (low_size + high_size))
1399 {
3d7f4f49
MK
1400 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1401 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1402 len - low_size, valbuf + low_size);
ef9dff19
MK
1403 }
1404 else
8e65ff28 1405 internal_error (__FILE__, __LINE__,
e2e0b3e5 1406 _("Cannot store return value of %d bytes long."), len);
ef9dff19 1407 }
5716833c
MK
1408
1409#undef I387_ST0_REGNUM
ef9dff19 1410}
fc338970 1411\f
ef9dff19 1412
8201327c
MK
1413/* This is the variable that is set with "set struct-convention", and
1414 its legitimate values. */
1415static const char default_struct_convention[] = "default";
1416static const char pcc_struct_convention[] = "pcc";
1417static const char reg_struct_convention[] = "reg";
1418static const char *valid_conventions[] =
1419{
1420 default_struct_convention,
1421 pcc_struct_convention,
1422 reg_struct_convention,
1423 NULL
1424};
1425static const char *struct_convention = default_struct_convention;
1426
0e4377e1
JB
1427/* Return non-zero if TYPE, which is assumed to be a structure,
1428 a union type, or an array type, should be returned in registers
1429 for architecture GDBARCH. */
c5e656c1 1430
8201327c 1431static int
c5e656c1 1432i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1433{
c5e656c1
MK
1434 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1435 enum type_code code = TYPE_CODE (type);
1436 int len = TYPE_LENGTH (type);
8201327c 1437
0e4377e1
JB
1438 gdb_assert (code == TYPE_CODE_STRUCT
1439 || code == TYPE_CODE_UNION
1440 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
1441
1442 if (struct_convention == pcc_struct_convention
1443 || (struct_convention == default_struct_convention
1444 && tdep->struct_return == pcc_struct_return))
1445 return 0;
1446
9edde48e
MK
1447 /* Structures consisting of a single `float', `double' or 'long
1448 double' member are returned in %st(0). */
1449 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1450 {
1451 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1452 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1453 return (len == 4 || len == 8 || len == 12);
1454 }
1455
c5e656c1
MK
1456 return (len == 1 || len == 2 || len == 4 || len == 8);
1457}
1458
1459/* Determine, for architecture GDBARCH, how a return value of TYPE
1460 should be returned. If it is supposed to be returned in registers,
1461 and READBUF is non-zero, read the appropriate value from REGCACHE,
1462 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1463 from WRITEBUF into REGCACHE. */
1464
1465static enum return_value_convention
1466i386_return_value (struct gdbarch *gdbarch, struct type *type,
42835c2b
MK
1467 struct regcache *regcache, gdb_byte *readbuf,
1468 const gdb_byte *writebuf)
c5e656c1
MK
1469{
1470 enum type_code code = TYPE_CODE (type);
1471
0e4377e1
JB
1472 if ((code == TYPE_CODE_STRUCT
1473 || code == TYPE_CODE_UNION
1474 || code == TYPE_CODE_ARRAY)
c5e656c1 1475 && !i386_reg_struct_return_p (gdbarch, type))
31db7b6c
MK
1476 {
1477 /* The System V ABI says that:
1478
1479 "A function that returns a structure or union also sets %eax
1480 to the value of the original address of the caller's area
1481 before it returns. Thus when the caller receives control
1482 again, the address of the returned object resides in register
1483 %eax and can be used to access the object."
1484
1485 So the ABI guarantees that we can always find the return
1486 value just after the function has returned. */
1487
0e4377e1
JB
1488 /* Note that the ABI doesn't mention functions returning arrays,
1489 which is something possible in certain languages such as Ada.
1490 In this case, the value is returned as if it was wrapped in
1491 a record, so the convention applied to records also applies
1492 to arrays. */
1493
31db7b6c
MK
1494 if (readbuf)
1495 {
1496 ULONGEST addr;
1497
1498 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1499 read_memory (addr, readbuf, TYPE_LENGTH (type));
1500 }
1501
1502 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1503 }
c5e656c1
MK
1504
1505 /* This special case is for structures consisting of a single
9edde48e
MK
1506 `float', `double' or 'long double' member. These structures are
1507 returned in %st(0). For these structures, we call ourselves
1508 recursively, changing TYPE into the type of the first member of
1509 the structure. Since that should work for all structures that
1510 have only one member, we don't bother to check the member's type
1511 here. */
c5e656c1
MK
1512 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1513 {
1514 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1515 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1516 }
1517
1518 if (readbuf)
1519 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1520 if (writebuf)
1521 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1522
c5e656c1 1523 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1524}
1525\f
1526
21b4b2f2
JB
1527/* Types for the MMX and SSE registers. */
1528static struct type *i386_mmx_type;
1529static struct type *i386_sse_type;
1530
1531/* Construct the type for MMX registers. */
1532static struct type *
1533i386_build_mmx_type (void)
1534{
1535 /* The type we're building is this: */
1536#if 0
1537 union __gdb_builtin_type_vec64i
1538 {
1539 int64_t uint64;
1540 int32_t v2_int32[2];
1541 int16_t v4_int16[4];
1542 int8_t v8_int8[8];
1543 };
1544#endif
1545
1546 if (! i386_mmx_type)
1547 {
1548 struct type *t;
1549
1550 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1551 append_composite_type_field (t, "uint64", builtin_type_int64);
1552 append_composite_type_field (t, "v2_int32", builtin_type_v2_int32);
1553 append_composite_type_field (t, "v4_int16", builtin_type_v4_int16);
1554 append_composite_type_field (t, "v8_int8", builtin_type_v8_int8);
1555
1556 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1557 TYPE_NAME (t) = "builtin_type_vec64i";
1558
1559 i386_mmx_type = t;
1560 }
1561
1562 return i386_mmx_type;
1563}
1564
1565/* Construct the type for SSE registers. */
1566static struct type *
1567i386_build_sse_type (void)
1568{
1569 if (! i386_sse_type)
1570 {
1571 struct type *t;
1572
1573 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1574 append_composite_type_field (t, "v4_float", builtin_type_v4_float);
1575 append_composite_type_field (t, "v2_double", builtin_type_v2_double);
1576 append_composite_type_field (t, "v16_int8", builtin_type_v16_int8);
1577 append_composite_type_field (t, "v8_int16", builtin_type_v8_int16);
1578 append_composite_type_field (t, "v4_int32", builtin_type_v4_int32);
1579 append_composite_type_field (t, "v2_int64", builtin_type_v2_int64);
1580 append_composite_type_field (t, "uint128", builtin_type_int128);
1581
1582 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1583 TYPE_NAME (t) = "builtin_type_vec128i";
1584
1585 i386_sse_type = t;
1586 }
1587
1588 return i386_sse_type;
1589}
1590
d7a0d72c
MK
1591/* Return the GDB type object for the "standard" data type of data in
1592 register REGNUM. Perhaps %esi and %edi should go here, but
1593 potentially they could be used for things other than address. */
1594
3a1e71e3 1595static struct type *
4e259f09 1596i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1597{
ab533587
MK
1598 if (regnum == I386_EIP_REGNUM)
1599 return builtin_type_void_func_ptr;
1600
1601 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1602 return builtin_type_void_data_ptr;
d7a0d72c 1603
23a34459 1604 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1605 return builtin_type_i387_ext;
d7a0d72c 1606
5716833c 1607 if (i386_sse_regnum_p (gdbarch, regnum))
21b4b2f2 1608 return i386_build_sse_type ();
d7a0d72c 1609
5716833c 1610 if (i386_mmx_regnum_p (gdbarch, regnum))
21b4b2f2 1611 return i386_build_mmx_type ();
28fc6740 1612
d7a0d72c
MK
1613 return builtin_type_int;
1614}
1615
28fc6740 1616/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1617 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1618
1619static int
c86c27af 1620i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1621{
5716833c
MK
1622 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1623 int mmxreg, fpreg;
28fc6740
AC
1624 ULONGEST fstat;
1625 int tos;
c86c27af 1626
5716833c
MK
1627 /* Define I387_ST0_REGNUM such that we use the proper definitions
1628 for REGCACHE's architecture. */
1629#define I387_ST0_REGNUM tdep->st0_regnum
1630
1631 mmxreg = regnum - tdep->mm0_regnum;
1632 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1633 tos = (fstat >> 11) & 0x7;
5716833c
MK
1634 fpreg = (mmxreg + tos) % 8;
1635
1636 return (I387_ST0_REGNUM + fpreg);
c86c27af 1637
5716833c 1638#undef I387_ST0_REGNUM
28fc6740
AC
1639}
1640
1641static void
1642i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1643 int regnum, gdb_byte *buf)
28fc6740 1644{
5716833c 1645 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1646 {
63c0089f 1647 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1648 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1649
28fc6740 1650 /* Extract (always little endian). */
c86c27af 1651 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1652 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1653 }
1654 else
1655 regcache_raw_read (regcache, regnum, buf);
1656}
1657
1658static void
1659i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1660 int regnum, const gdb_byte *buf)
28fc6740 1661{
5716833c 1662 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1663 {
63c0089f 1664 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1665 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1666
28fc6740
AC
1667 /* Read ... */
1668 regcache_raw_read (regcache, fpnum, mmx_buf);
1669 /* ... Modify ... (always little endian). */
f837910f 1670 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1671 /* ... Write. */
1672 regcache_raw_write (regcache, fpnum, mmx_buf);
1673 }
1674 else
1675 regcache_raw_write (regcache, regnum, buf);
1676}
ff2e87ac
AC
1677\f
1678
ff2e87ac
AC
1679/* Return the register number of the register allocated by GCC after
1680 REGNUM, or -1 if there is no such register. */
1681
1682static int
1683i386_next_regnum (int regnum)
1684{
1685 /* GCC allocates the registers in the order:
1686
1687 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1688
1689 Since storing a variable in %esp doesn't make any sense we return
1690 -1 for %ebp and for %esp itself. */
1691 static int next_regnum[] =
1692 {
1693 I386_EDX_REGNUM, /* Slot for %eax. */
1694 I386_EBX_REGNUM, /* Slot for %ecx. */
1695 I386_ECX_REGNUM, /* Slot for %edx. */
1696 I386_ESI_REGNUM, /* Slot for %ebx. */
1697 -1, -1, /* Slots for %esp and %ebp. */
1698 I386_EDI_REGNUM, /* Slot for %esi. */
1699 I386_EBP_REGNUM /* Slot for %edi. */
1700 };
1701
de5b9bb9 1702 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1703 return next_regnum[regnum];
28fc6740 1704
ff2e87ac
AC
1705 return -1;
1706}
1707
1708/* Return nonzero if a value of type TYPE stored in register REGNUM
1709 needs any special handling. */
d7a0d72c 1710
3a1e71e3 1711static int
ff2e87ac 1712i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1713{
de5b9bb9
MK
1714 int len = TYPE_LENGTH (type);
1715
ff2e87ac
AC
1716 /* Values may be spread across multiple registers. Most debugging
1717 formats aren't expressive enough to specify the locations, so
1718 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1719 have a length that is a multiple of the word size, since GCC
1720 doesn't seem to put any other types into registers. */
1721 if (len > 4 && len % 4 == 0)
1722 {
1723 int last_regnum = regnum;
1724
1725 while (len > 4)
1726 {
1727 last_regnum = i386_next_regnum (last_regnum);
1728 len -= 4;
1729 }
1730
1731 if (last_regnum != -1)
1732 return 1;
1733 }
ff2e87ac 1734
23a34459 1735 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1736}
1737
ff2e87ac
AC
1738/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1739 return its contents in TO. */
ac27f131 1740
3a1e71e3 1741static void
ff2e87ac 1742i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 1743 struct type *type, gdb_byte *to)
ac27f131 1744{
de5b9bb9 1745 int len = TYPE_LENGTH (type);
de5b9bb9 1746
ff2e87ac
AC
1747 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1748 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1749
ff2e87ac 1750 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1751 {
d532c08f
MK
1752 i387_register_to_value (frame, regnum, type, to);
1753 return;
8d7f6b4a 1754 }
ff2e87ac 1755
fd35795f 1756 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1757
1758 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1759
de5b9bb9
MK
1760 while (len > 0)
1761 {
1762 gdb_assert (regnum != -1);
1763 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1764
42835c2b 1765 get_frame_register (frame, regnum, to);
de5b9bb9
MK
1766 regnum = i386_next_regnum (regnum);
1767 len -= 4;
42835c2b 1768 to += 4;
de5b9bb9 1769 }
ac27f131
MK
1770}
1771
ff2e87ac
AC
1772/* Write the contents FROM of a value of type TYPE into register
1773 REGNUM in frame FRAME. */
ac27f131 1774
3a1e71e3 1775static void
ff2e87ac 1776i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 1777 struct type *type, const gdb_byte *from)
ac27f131 1778{
de5b9bb9 1779 int len = TYPE_LENGTH (type);
de5b9bb9 1780
ff2e87ac 1781 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1782 {
d532c08f
MK
1783 i387_value_to_register (frame, regnum, type, from);
1784 return;
1785 }
3d261580 1786
fd35795f 1787 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1788
1789 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1790
de5b9bb9
MK
1791 while (len > 0)
1792 {
1793 gdb_assert (regnum != -1);
1794 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1795
42835c2b 1796 put_frame_register (frame, regnum, from);
de5b9bb9
MK
1797 regnum = i386_next_regnum (regnum);
1798 len -= 4;
42835c2b 1799 from += 4;
de5b9bb9 1800 }
ac27f131 1801}
ff2e87ac 1802\f
7fdafb5a
MK
1803/* Supply register REGNUM from the buffer specified by GREGS and LEN
1804 in the general-purpose register set REGSET to register cache
1805 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 1806
20187ed5 1807void
473f17b0
MK
1808i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1809 int regnum, const void *gregs, size_t len)
1810{
9ea75c57 1811 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1812 const gdb_byte *regs = gregs;
473f17b0
MK
1813 int i;
1814
1815 gdb_assert (len == tdep->sizeof_gregset);
1816
1817 for (i = 0; i < tdep->gregset_num_regs; i++)
1818 {
1819 if ((regnum == i || regnum == -1)
1820 && tdep->gregset_reg_offset[i] != -1)
1821 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1822 }
1823}
1824
7fdafb5a
MK
1825/* Collect register REGNUM from the register cache REGCACHE and store
1826 it in the buffer specified by GREGS and LEN as described by the
1827 general-purpose register set REGSET. If REGNUM is -1, do this for
1828 all registers in REGSET. */
1829
1830void
1831i386_collect_gregset (const struct regset *regset,
1832 const struct regcache *regcache,
1833 int regnum, void *gregs, size_t len)
1834{
1835 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1836 gdb_byte *regs = gregs;
7fdafb5a
MK
1837 int i;
1838
1839 gdb_assert (len == tdep->sizeof_gregset);
1840
1841 for (i = 0; i < tdep->gregset_num_regs; i++)
1842 {
1843 if ((regnum == i || regnum == -1)
1844 && tdep->gregset_reg_offset[i] != -1)
1845 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1846 }
1847}
1848
1849/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1850 in the floating-point register set REGSET to register cache
1851 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
1852
1853static void
1854i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1855 int regnum, const void *fpregs, size_t len)
1856{
9ea75c57 1857 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 1858
66a72d25
MK
1859 if (len == I387_SIZEOF_FXSAVE)
1860 {
1861 i387_supply_fxsave (regcache, regnum, fpregs);
1862 return;
1863 }
1864
473f17b0
MK
1865 gdb_assert (len == tdep->sizeof_fpregset);
1866 i387_supply_fsave (regcache, regnum, fpregs);
1867}
8446b36a 1868
2f305df1
MK
1869/* Collect register REGNUM from the register cache REGCACHE and store
1870 it in the buffer specified by FPREGS and LEN as described by the
1871 floating-point register set REGSET. If REGNUM is -1, do this for
1872 all registers in REGSET. */
7fdafb5a
MK
1873
1874static void
1875i386_collect_fpregset (const struct regset *regset,
1876 const struct regcache *regcache,
1877 int regnum, void *fpregs, size_t len)
1878{
1879 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1880
1881 if (len == I387_SIZEOF_FXSAVE)
1882 {
1883 i387_collect_fxsave (regcache, regnum, fpregs);
1884 return;
1885 }
1886
1887 gdb_assert (len == tdep->sizeof_fpregset);
1888 i387_collect_fsave (regcache, regnum, fpregs);
1889}
1890
8446b36a
MK
1891/* Return the appropriate register set for the core section identified
1892 by SECT_NAME and SECT_SIZE. */
1893
1894const struct regset *
1895i386_regset_from_core_section (struct gdbarch *gdbarch,
1896 const char *sect_name, size_t sect_size)
1897{
1898 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1899
1900 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1901 {
1902 if (tdep->gregset == NULL)
7fdafb5a
MK
1903 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1904 i386_collect_gregset);
8446b36a
MK
1905 return tdep->gregset;
1906 }
1907
66a72d25
MK
1908 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1909 || (strcmp (sect_name, ".reg-xfp") == 0
1910 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
1911 {
1912 if (tdep->fpregset == NULL)
7fdafb5a
MK
1913 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1914 i386_collect_fpregset);
8446b36a
MK
1915 return tdep->fpregset;
1916 }
1917
1918 return NULL;
1919}
473f17b0 1920\f
fc338970 1921
c906108c 1922#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1923/* SunPRO encodes the static variables. This is not related to C++
1924 mangling, it is done for C too. */
c906108c
SS
1925
1926char *
fba45db2 1927sunpro_static_transform_name (char *name)
c906108c
SS
1928{
1929 char *p;
1930 if (IS_STATIC_TRANSFORM_NAME (name))
1931 {
fc338970
MK
1932 /* For file-local statics there will be a period, a bunch of
1933 junk (the contents of which match a string given in the
c5aa993b
JM
1934 N_OPT), a period and the name. For function-local statics
1935 there will be a bunch of junk (which seems to change the
1936 second character from 'A' to 'B'), a period, the name of the
1937 function, and the name. So just skip everything before the
1938 last period. */
c906108c
SS
1939 p = strrchr (name, '.');
1940 if (p != NULL)
1941 name = p + 1;
1942 }
1943 return name;
1944}
1945#endif /* STATIC_TRANSFORM_NAME */
fc338970 1946\f
c906108c 1947
fc338970 1948/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1949
1950CORE_ADDR
1cce71eb 1951i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1952{
fc338970 1953 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1954 {
c5aa993b 1955 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1956 struct minimal_symbol *indsym =
fc338970 1957 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 1958 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 1959
c5aa993b 1960 if (symname)
c906108c 1961 {
c5aa993b
JM
1962 if (strncmp (symname, "__imp_", 6) == 0
1963 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1964 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1965 }
1966 }
fc338970 1967 return 0; /* Not a trampoline. */
c906108c 1968}
fc338970
MK
1969\f
1970
377d9ebd 1971/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 1972 sigtramp routine. */
8201327c
MK
1973
1974static int
911bc6ee 1975i386_sigtramp_p (struct frame_info *next_frame)
8201327c 1976{
911bc6ee
MK
1977 CORE_ADDR pc = frame_pc_unwind (next_frame);
1978 char *name;
1979
1980 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1981 return (name && strcmp ("_sigtramp", name) == 0);
1982}
1983\f
1984
fc338970
MK
1985/* We have two flavours of disassembly. The machinery on this page
1986 deals with switching between those. */
c906108c
SS
1987
1988static int
a89aa300 1989i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 1990{
5e3397bb
MK
1991 gdb_assert (disassembly_flavor == att_flavor
1992 || disassembly_flavor == intel_flavor);
1993
1994 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1995 constified, cast to prevent a compiler warning. */
1996 info->disassembler_options = (char *) disassembly_flavor;
1997 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1998
1999 return print_insn_i386 (pc, info);
7a292a7a 2000}
fc338970 2001\f
3ce1502b 2002
8201327c
MK
2003/* There are a few i386 architecture variants that differ only
2004 slightly from the generic i386 target. For now, we don't give them
2005 their own source file, but include them here. As a consequence,
2006 they'll always be included. */
3ce1502b 2007
8201327c 2008/* System V Release 4 (SVR4). */
3ce1502b 2009
377d9ebd 2010/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
2011 sigtramp routine. */
2012
8201327c 2013static int
911bc6ee 2014i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 2015{
911bc6ee
MK
2016 CORE_ADDR pc = frame_pc_unwind (next_frame);
2017 char *name;
2018
acd5c798
MK
2019 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2020 currently unknown. */
911bc6ee 2021 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2022 return (name && (strcmp ("_sigreturn", name) == 0
2023 || strcmp ("_sigacthandler", name) == 0
2024 || strcmp ("sigvechandler", name) == 0));
2025}
d2a7c97a 2026
acd5c798
MK
2027/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2028 routine, return the address of the associated sigcontext (ucontext)
2029 structure. */
3ce1502b 2030
3a1e71e3 2031static CORE_ADDR
acd5c798 2032i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 2033{
63c0089f 2034 gdb_byte buf[4];
acd5c798 2035 CORE_ADDR sp;
3ce1502b 2036
acd5c798
MK
2037 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2038 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 2039
acd5c798 2040 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
2041}
2042\f
3ce1502b 2043
8201327c 2044/* Generic ELF. */
d2a7c97a 2045
8201327c
MK
2046void
2047i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2048{
c4fc7f1b
MK
2049 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2050 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2051}
3ce1502b 2052
8201327c 2053/* System V Release 4 (SVR4). */
3ce1502b 2054
8201327c
MK
2055void
2056i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2057{
2058 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2059
8201327c
MK
2060 /* System V Release 4 uses ELF. */
2061 i386_elf_init_abi (info, gdbarch);
3ce1502b 2062
dfe01d39 2063 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2064 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2065
911bc6ee 2066 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2067 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2068 tdep->sc_pc_offset = 36 + 14 * 4;
2069 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2070
8201327c 2071 tdep->jb_pc_offset = 20;
3ce1502b
MK
2072}
2073
8201327c 2074/* DJGPP. */
3ce1502b 2075
3a1e71e3 2076static void
8201327c 2077i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2078{
8201327c 2079 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2080
911bc6ee
MK
2081 /* DJGPP doesn't have any special frames for signal handlers. */
2082 tdep->sigtramp_p = NULL;
3ce1502b 2083
8201327c 2084 tdep->jb_pc_offset = 36;
3ce1502b
MK
2085}
2086
8201327c 2087/* NetWare. */
3ce1502b 2088
3a1e71e3 2089static void
8201327c 2090i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2091{
8201327c 2092 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2093
8201327c 2094 tdep->jb_pc_offset = 24;
d2a7c97a 2095}
8201327c 2096\f
2acceee2 2097
38c968cf
AC
2098/* i386 register groups. In addition to the normal groups, add "mmx"
2099 and "sse". */
2100
2101static struct reggroup *i386_sse_reggroup;
2102static struct reggroup *i386_mmx_reggroup;
2103
2104static void
2105i386_init_reggroups (void)
2106{
2107 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2108 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2109}
2110
2111static void
2112i386_add_reggroups (struct gdbarch *gdbarch)
2113{
2114 reggroup_add (gdbarch, i386_sse_reggroup);
2115 reggroup_add (gdbarch, i386_mmx_reggroup);
2116 reggroup_add (gdbarch, general_reggroup);
2117 reggroup_add (gdbarch, float_reggroup);
2118 reggroup_add (gdbarch, all_reggroup);
2119 reggroup_add (gdbarch, save_reggroup);
2120 reggroup_add (gdbarch, restore_reggroup);
2121 reggroup_add (gdbarch, vector_reggroup);
2122 reggroup_add (gdbarch, system_reggroup);
2123}
2124
2125int
2126i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2127 struct reggroup *group)
2128{
5716833c
MK
2129 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2130 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
2131 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2132 || i386_fpc_regnum_p (regnum));
5716833c 2133 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2134
38c968cf
AC
2135 if (group == i386_mmx_reggroup)
2136 return mmx_regnum_p;
2137 if (group == i386_sse_reggroup)
2138 return sse_regnum_p;
2139 if (group == vector_reggroup)
2140 return (mmx_regnum_p || sse_regnum_p);
2141 if (group == float_reggroup)
2142 return fp_regnum_p;
2143 if (group == general_reggroup)
2144 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2145
38c968cf
AC
2146 return default_register_reggroup_p (gdbarch, regnum, group);
2147}
38c968cf 2148\f
acd5c798 2149
f837910f
MK
2150/* Get the ARGIth function argument for the current function. */
2151
42c466d7 2152static CORE_ADDR
143985b7
AF
2153i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2154 struct type *type)
2155{
f837910f
MK
2156 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2157 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2158}
2159
2160\f
3a1e71e3 2161static struct gdbarch *
a62cc96e
AC
2162i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2163{
cd3c07fc 2164 struct gdbarch_tdep *tdep;
a62cc96e
AC
2165 struct gdbarch *gdbarch;
2166
4be87837
DJ
2167 /* If there is already a candidate, use it. */
2168 arches = gdbarch_list_lookup_by_info (arches, &info);
2169 if (arches != NULL)
2170 return arches->gdbarch;
a62cc96e
AC
2171
2172 /* Allocate space for the new architecture. */
2173 tdep = XMALLOC (struct gdbarch_tdep);
2174 gdbarch = gdbarch_alloc (&info, tdep);
2175
473f17b0
MK
2176 /* General-purpose registers. */
2177 tdep->gregset = NULL;
2178 tdep->gregset_reg_offset = NULL;
2179 tdep->gregset_num_regs = I386_NUM_GREGS;
2180 tdep->sizeof_gregset = 0;
2181
2182 /* Floating-point registers. */
2183 tdep->fpregset = NULL;
2184 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2185
5716833c 2186 /* The default settings include the FPU registers, the MMX registers
fd35795f 2187 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2188 by adjusting the members `st0_regnum', `mm0_regnum' and
2189 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2190 will show up in the output of "info all-registers". Ideally we
2191 should try to autodetect whether they are available, such that we
2192 can prevent "info all-registers" from displaying registers that
2193 aren't available.
2194
2195 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2196 [the SSE registers] always (even when they don't exist) or never
2197 showing them to the user (even when they do exist), I prefer the
2198 former over the latter. */
2199
2200 tdep->st0_regnum = I386_ST0_REGNUM;
2201
2202 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2203 calculating the register number for %mm0 until we know the number
5716833c
MK
2204 of raw registers. */
2205 tdep->mm0_regnum = 0;
2206
2207 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2208 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2209
8201327c
MK
2210 tdep->jb_pc_offset = -1;
2211 tdep->struct_return = pcc_struct_return;
8201327c
MK
2212 tdep->sigtramp_start = 0;
2213 tdep->sigtramp_end = 0;
911bc6ee 2214 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2215 tdep->sigcontext_addr = NULL;
a3386186 2216 tdep->sc_reg_offset = NULL;
8201327c 2217 tdep->sc_pc_offset = -1;
21d0e8a4 2218 tdep->sc_sp_offset = -1;
8201327c 2219
896fb97d
MK
2220 /* The format used for `long double' on almost all i386 targets is
2221 the i387 extended floating-point format. In fact, of all targets
2222 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2223 on having a `long double' that's not `long' at all. */
2224 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 2225
66da5fd8 2226 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2227 bits, a `long double' actually takes up 96, probably to enforce
2228 alignment. */
2229 set_gdbarch_long_double_bit (gdbarch, 96);
2230
49ed40de
KB
2231 /* The default ABI includes general-purpose registers,
2232 floating-point registers, and the SSE registers. */
2233 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2234 set_gdbarch_register_name (gdbarch, i386_register_name);
2235 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2236
acd5c798
MK
2237 /* Register numbers of various important registers. */
2238 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2239 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2240 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2241 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2242
c4fc7f1b
MK
2243 /* NOTE: kettenis/20040418: GCC does have two possible register
2244 numbering schemes on the i386: dbx and SVR4. These schemes
2245 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2246 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2247 dbx_register_map[] and svr4_dbx_register_map in
2248 gcc/config/i386.c. GCC also defines a third numbering scheme in
2249 gcc/config/i386.c, which it designates as the "default" register
2250 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2251 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2252 amd64-tdep.c.
2253
2254 Currently, each GCC i386 target always uses the same register
2255 numbering scheme across all its supported debugging formats
2256 i.e. SDB (COFF), stabs and DWARF 2. This is because
2257 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2258 DBX_REGISTER_NUMBER macro which is defined by each target's
2259 respective config header in a manner independent of the requested
2260 output debugging format.
2261
2262 This does not match the arrangement below, which presumes that
2263 the SDB and stabs numbering schemes differ from the DWARF and
2264 DWARF 2 ones. The reason for this arrangement is that it is
2265 likely to get the numbering scheme for the target's
2266 default/native debug format right. For targets where GCC is the
2267 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2268 targets where the native toolchain uses a different numbering
2269 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2270 the defaults below will have to be overridden, like
2271 i386_elf_init_abi() does. */
c4fc7f1b
MK
2272
2273 /* Use the dbx register numbering scheme for stabs and COFF. */
2274 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2275 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2276
2277 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2278 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2279 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e
MK
2280
2281 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2282 be in use on any of the supported i386 targets. */
2283
61113f8b
MK
2284 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2285
8201327c 2286 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2287
a62cc96e 2288 /* Call dummy code. */
acd5c798 2289 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2290
ff2e87ac
AC
2291 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2292 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2293 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2294
c5e656c1 2295 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2296
93924b6b
MK
2297 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2298
2299 /* Stack grows downward. */
2300 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2301
2302 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2303 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2304
42fdc8df 2305 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2306
28fc6740 2307 /* Wire in the MMX registers. */
0f751ff2 2308 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2309 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2310 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2311
5e3397bb
MK
2312 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2313
acd5c798 2314 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2315
2316 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2317
38c968cf
AC
2318 /* Add the i386 register groups. */
2319 i386_add_reggroups (gdbarch);
2320 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2321
143985b7
AF
2322 /* Helper for function argument information. */
2323 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2324
6405b0a6 2325 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2326 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2327
acd5c798 2328 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2329
3ce1502b 2330 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2331 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2332
336d1bba
AC
2333 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2334 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2335
8446b36a
MK
2336 /* If we have a register mapping, enable the generic core file
2337 support, unless it has already been enabled. */
2338 if (tdep->gregset_reg_offset
2339 && !gdbarch_regset_from_core_section_p (gdbarch))
2340 set_gdbarch_regset_from_core_section (gdbarch,
2341 i386_regset_from_core_section);
2342
5716833c
MK
2343 /* Unless support for MMX has been disabled, make %mm0 the first
2344 pseudo-register. */
2345 if (tdep->mm0_regnum == 0)
2346 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2347
a62cc96e
AC
2348 return gdbarch;
2349}
2350
8201327c
MK
2351static enum gdb_osabi
2352i386_coff_osabi_sniffer (bfd *abfd)
2353{
762c5349
MK
2354 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2355 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2356 return GDB_OSABI_GO32;
2357
2358 return GDB_OSABI_UNKNOWN;
2359}
2360
2361static enum gdb_osabi
2362i386_nlm_osabi_sniffer (bfd *abfd)
2363{
2364 return GDB_OSABI_NETWARE;
2365}
2366\f
2367
28e9e0f0
MK
2368/* Provide a prototype to silence -Wmissing-prototypes. */
2369void _initialize_i386_tdep (void);
2370
c906108c 2371void
fba45db2 2372_initialize_i386_tdep (void)
c906108c 2373{
a62cc96e
AC
2374 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2375
fc338970 2376 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
2377 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2378 &disassembly_flavor, _("\
2379Set the disassembly flavor."), _("\
2380Show the disassembly flavor."), _("\
2381The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2382 NULL,
2383 NULL, /* FIXME: i18n: */
2384 &setlist, &showlist);
8201327c
MK
2385
2386 /* Add the variable that controls the convention for returning
2387 structs. */
7ab04401
AC
2388 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2389 &struct_convention, _("\
2390Set the convention for returning small structs."), _("\
2391Show the convention for returning small structs."), _("\
2392Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2393is \"default\"."),
2394 NULL,
2395 NULL, /* FIXME: i18n: */
2396 &setlist, &showlist);
8201327c
MK
2397
2398 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2399 i386_coff_osabi_sniffer);
2400 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2401 i386_nlm_osabi_sniffer);
2402
05816f70 2403 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2404 i386_svr4_init_abi);
05816f70 2405 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2406 i386_go32_init_abi);
05816f70 2407 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 2408 i386_nw_init_abi);
38c968cf
AC
2409
2410 /* Initialize the i386 specific register groups. */
2411 i386_init_reggroups ();
c906108c 2412}