]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-tdep.c
2007-01-28 Manuel Lauss <slauss@resi.at>
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5ae96ec1 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c
SS
23
24#include "defs.h"
acd5c798
MK
25#include "arch-utils.h"
26#include "command.h"
27#include "dummy-frame.h"
6405b0a6 28#include "dwarf2-frame.h"
acd5c798
MK
29#include "doublest.h"
30#include "floatformat.h"
c906108c 31#include "frame.h"
acd5c798
MK
32#include "frame-base.h"
33#include "frame-unwind.h"
c906108c 34#include "inferior.h"
acd5c798 35#include "gdbcmd.h"
c906108c 36#include "gdbcore.h"
dfe01d39 37#include "objfiles.h"
acd5c798
MK
38#include "osabi.h"
39#include "regcache.h"
40#include "reggroups.h"
473f17b0 41#include "regset.h"
c0d1d883 42#include "symfile.h"
c906108c 43#include "symtab.h"
acd5c798 44#include "target.h"
fd0407d6 45#include "value.h"
a89aa300 46#include "dis-asm.h"
acd5c798 47
3d261580 48#include "gdb_assert.h"
acd5c798 49#include "gdb_string.h"
3d261580 50
d2a7c97a 51#include "i386-tdep.h"
61113f8b 52#include "i387-tdep.h"
d2a7c97a 53
c4fc7f1b 54/* Register names. */
c40e1eab 55
fc633446
MK
56static char *i386_register_names[] =
57{
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69};
70
1cb97e17 71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 72
c4fc7f1b 73/* Register names for MMX pseudo-registers. */
28fc6740
AC
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab 80
1cb97e17 81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 82
28fc6740 83static int
5716833c 84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 85{
5716833c
MK
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
92}
93
5716833c 94/* SSE register? */
23a34459 95
5716833c
MK
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 98{
5716833c
MK
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
23a34459
AC
111}
112
5716833c
MK
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 115{
5716833c
MK
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
23a34459
AC
128}
129
5716833c
MK
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register? */
23a34459
AC
135
136int
5716833c 137i386_fp_regnum_p (int regnum)
23a34459 138{
5716833c
MK
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
143}
144
145int
5716833c 146i386_fpc_regnum_p (int regnum)
23a34459 147{
5716833c
MK
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
152}
153
30b0e2d8 154/* Return the name of register REGNUM. */
fc633446 155
fa88f677 156const char *
30b0e2d8 157i386_register_name (int regnum)
fc633446 158{
30b0e2d8
MK
159 if (i386_mmx_regnum_p (current_gdbarch, regnum))
160 return i386_mmx_names[regnum - I387_MM0_REGNUM];
fc633446 161
30b0e2d8
MK
162 if (regnum >= 0 && regnum < i386_num_register_names)
163 return i386_register_names[regnum];
70913449 164
c40e1eab 165 return NULL;
fc633446
MK
166}
167
c4fc7f1b 168/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
169 number used by GDB. */
170
8201327c 171static int
c4fc7f1b 172i386_dbx_reg_to_regnum (int reg)
85540d8c 173{
c4fc7f1b
MK
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
85540d8c
MK
177 if (reg >= 0 && reg <= 7)
178 {
9872ad24
JB
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
85540d8c
MK
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
5716833c 190 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
5716833c 195 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
5716833c 200 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205}
206
c4fc7f1b
MK
207/* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
85540d8c 209
8201327c 210static int
c4fc7f1b 211i386_svr4_reg_to_regnum (int reg)
85540d8c 212{
c4fc7f1b
MK
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
acd5c798 220 /* General-purpose registers. */
85540d8c
MK
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
5716833c 226 return reg - 11 + I387_ST0_REGNUM;
85540d8c 227 }
c6f4c129 228 else if (reg >= 21 && reg <= 36)
85540d8c 229 {
c4fc7f1b
MK
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
85540d8c
MK
232 }
233
c6f4c129
JB
234 switch (reg)
235 {
236 case 37: return I387_FCTRL_REGNUM;
237 case 38: return I387_FSTAT_REGNUM;
238 case 39: return I387_MXCSR_REGNUM;
239 case 40: return I386_ES_REGNUM;
240 case 41: return I386_CS_REGNUM;
241 case 42: return I386_SS_REGNUM;
242 case 43: return I386_DS_REGNUM;
243 case 44: return I386_FS_REGNUM;
244 case 45: return I386_GS_REGNUM;
245 }
246
85540d8c
MK
247 /* This will hopefully provoke a warning. */
248 return NUM_REGS + NUM_PSEUDO_REGS;
249}
5716833c
MK
250
251#undef I387_ST0_REGNUM
252#undef I387_MM0_REGNUM
253#undef I387_NUM_XMM_REGS
fc338970 254\f
917317f4 255
fc338970
MK
256/* This is the variable that is set with "set disassembly-flavor", and
257 its legitimate values. */
53904c9e
AC
258static const char att_flavor[] = "att";
259static const char intel_flavor[] = "intel";
260static const char *valid_flavors[] =
c5aa993b 261{
c906108c
SS
262 att_flavor,
263 intel_flavor,
264 NULL
265};
53904c9e 266static const char *disassembly_flavor = att_flavor;
acd5c798 267\f
c906108c 268
acd5c798
MK
269/* Use the program counter to determine the contents and size of a
270 breakpoint instruction. Return a pointer to a string of bytes that
271 encode a breakpoint instruction, store the length of the string in
272 *LEN and optionally adjust *PC to point to the correct memory
273 location for inserting the breakpoint.
c906108c 274
acd5c798
MK
275 On the i386 we have a single breakpoint that fits in a single byte
276 and can be inserted anywhere.
c906108c 277
acd5c798 278 This function is 64-bit safe. */
63c0089f
MK
279
280static const gdb_byte *
acd5c798 281i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 282{
63c0089f
MK
283 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
284
acd5c798
MK
285 *len = sizeof (break_insn);
286 return break_insn;
c906108c 287}
fc338970 288\f
acd5c798
MK
289#ifdef I386_REGNO_TO_SYMMETRY
290#error "The Sequent Symmetry is no longer supported."
291#endif
c906108c 292
acd5c798
MK
293/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
294 and %esp "belong" to the calling function. Therefore these
295 registers should be saved if they're going to be modified. */
c906108c 296
acd5c798
MK
297/* The maximum number of saved registers. This should include all
298 registers mentioned above, and %eip. */
a3386186 299#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
300
301struct i386_frame_cache
c906108c 302{
acd5c798
MK
303 /* Base address. */
304 CORE_ADDR base;
772562f8 305 LONGEST sp_offset;
acd5c798
MK
306 CORE_ADDR pc;
307
fd13a04a
AC
308 /* Saved registers. */
309 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 310 CORE_ADDR saved_sp;
92dd43fa 311 int stack_align;
acd5c798
MK
312 int pc_in_eax;
313
314 /* Stack space reserved for local variables. */
315 long locals;
316};
317
318/* Allocate and initialize a frame cache. */
319
320static struct i386_frame_cache *
fd13a04a 321i386_alloc_frame_cache (void)
acd5c798
MK
322{
323 struct i386_frame_cache *cache;
324 int i;
325
326 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
327
328 /* Base address. */
329 cache->base = 0;
330 cache->sp_offset = -4;
331 cache->pc = 0;
332
fd13a04a
AC
333 /* Saved registers. We initialize these to -1 since zero is a valid
334 offset (that's where %ebp is supposed to be stored). */
335 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
336 cache->saved_regs[i] = -1;
acd5c798 337 cache->saved_sp = 0;
92dd43fa 338 cache->stack_align = 0;
acd5c798
MK
339 cache->pc_in_eax = 0;
340
341 /* Frameless until proven otherwise. */
342 cache->locals = -1;
343
344 return cache;
345}
c906108c 346
acd5c798
MK
347/* If the instruction at PC is a jump, return the address of its
348 target. Otherwise, return PC. */
c906108c 349
acd5c798
MK
350static CORE_ADDR
351i386_follow_jump (CORE_ADDR pc)
352{
63c0089f 353 gdb_byte op;
acd5c798
MK
354 long delta = 0;
355 int data16 = 0;
c906108c 356
24a2a654 357 read_memory_nobpt (pc, &op, 1);
acd5c798 358 if (op == 0x66)
c906108c 359 {
c906108c 360 data16 = 1;
acd5c798 361 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
362 }
363
acd5c798 364 switch (op)
c906108c
SS
365 {
366 case 0xe9:
fc338970 367 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
368 if (data16)
369 {
acd5c798 370 delta = read_memory_integer (pc + 2, 2);
c906108c 371
fc338970
MK
372 /* Include the size of the jmp instruction (including the
373 0x66 prefix). */
acd5c798 374 delta += 4;
c906108c
SS
375 }
376 else
377 {
acd5c798 378 delta = read_memory_integer (pc + 1, 4);
c906108c 379
acd5c798
MK
380 /* Include the size of the jmp instruction. */
381 delta += 5;
c906108c
SS
382 }
383 break;
384 case 0xeb:
fc338970 385 /* Relative jump, disp8 (ignore data16). */
acd5c798 386 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 387
acd5c798 388 delta += data16 + 2;
c906108c
SS
389 break;
390 }
c906108c 391
acd5c798
MK
392 return pc + delta;
393}
fc338970 394
acd5c798
MK
395/* Check whether PC points at a prologue for a function returning a
396 structure or union. If so, it updates CACHE and returns the
397 address of the first instruction after the code sequence that
398 removes the "hidden" argument from the stack or CURRENT_PC,
399 whichever is smaller. Otherwise, return PC. */
c906108c 400
acd5c798
MK
401static CORE_ADDR
402i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
403 struct i386_frame_cache *cache)
c906108c 404{
acd5c798
MK
405 /* Functions that return a structure or union start with:
406
407 popl %eax 0x58
408 xchgl %eax, (%esp) 0x87 0x04 0x24
409 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
410
411 (the System V compiler puts out the second `xchg' instruction,
412 and the assembler doesn't try to optimize it, so the 'sib' form
413 gets generated). This sequence is used to get the address of the
414 return buffer for a function that returns a structure. */
63c0089f
MK
415 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
416 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
417 gdb_byte buf[4];
418 gdb_byte op;
c906108c 419
acd5c798
MK
420 if (current_pc <= pc)
421 return pc;
422
24a2a654 423 read_memory_nobpt (pc, &op, 1);
c906108c 424
acd5c798
MK
425 if (op != 0x58) /* popl %eax */
426 return pc;
c906108c 427
24a2a654 428 read_memory_nobpt (pc + 1, buf, 4);
acd5c798
MK
429 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
430 return pc;
c906108c 431
acd5c798 432 if (current_pc == pc)
c906108c 433 {
acd5c798
MK
434 cache->sp_offset += 4;
435 return current_pc;
c906108c
SS
436 }
437
acd5c798 438 if (current_pc == pc + 1)
c906108c 439 {
acd5c798
MK
440 cache->pc_in_eax = 1;
441 return current_pc;
442 }
443
444 if (buf[1] == proto1[1])
445 return pc + 4;
446 else
447 return pc + 5;
448}
449
450static CORE_ADDR
451i386_skip_probe (CORE_ADDR pc)
452{
453 /* A function may start with
fc338970 454
acd5c798
MK
455 pushl constant
456 call _probe
457 addl $4, %esp
fc338970 458
acd5c798
MK
459 followed by
460
461 pushl %ebp
fc338970 462
acd5c798 463 etc. */
63c0089f
MK
464 gdb_byte buf[8];
465 gdb_byte op;
fc338970 466
24a2a654 467 read_memory_nobpt (pc, &op, 1);
acd5c798
MK
468
469 if (op == 0x68 || op == 0x6a)
470 {
471 int delta;
c906108c 472
acd5c798
MK
473 /* Skip past the `pushl' instruction; it has either a one-byte or a
474 four-byte operand, depending on the opcode. */
c906108c 475 if (op == 0x68)
acd5c798 476 delta = 5;
c906108c 477 else
acd5c798 478 delta = 2;
c906108c 479
acd5c798
MK
480 /* Read the following 8 bytes, which should be `call _probe' (6
481 bytes) followed by `addl $4,%esp' (2 bytes). */
482 read_memory (pc + delta, buf, sizeof (buf));
c906108c 483 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 484 pc += delta + sizeof (buf);
c906108c
SS
485 }
486
acd5c798
MK
487 return pc;
488}
489
92dd43fa
MK
490/* GCC 4.1 and later, can put code in the prologue to realign the
491 stack pointer. Check whether PC points to such code, and update
492 CACHE accordingly. Return the first instruction after the code
493 sequence or CURRENT_PC, whichever is smaller. If we don't
494 recognize the code, return PC. */
495
496static CORE_ADDR
497i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
498 struct i386_frame_cache *cache)
499{
92a56b20
JB
500 /* The register used by the compiler to perform the stack re-alignment
501 is, in order of preference, either %ecx, %edx, or %eax. GCC should
502 never use %ebx as it always treats it as callee-saved, whereas
503 the compiler can only use caller-saved registers. */
ade52156 504 static const gdb_byte insns_ecx[10] = {
92dd43fa
MK
505 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
506 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
507 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
508 };
ade52156
JB
509 static const gdb_byte insns_edx[10] = {
510 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
511 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
512 0xff, 0x72, 0xfc /* pushl -4(%edx) */
513 };
514 static const gdb_byte insns_eax[10] = {
515 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
516 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
517 0xff, 0x70, 0xfc /* pushl -4(%eax) */
518 };
92dd43fa
MK
519 gdb_byte buf[10];
520
521 if (target_read_memory (pc, buf, sizeof buf)
ade52156
JB
522 || (memcmp (buf, insns_ecx, sizeof buf) != 0
523 && memcmp (buf, insns_edx, sizeof buf) != 0
524 && memcmp (buf, insns_eax, sizeof buf) != 0))
92dd43fa
MK
525 return pc;
526
527 if (current_pc > pc + 4)
528 cache->stack_align = 1;
529
530 return min (pc + 10, current_pc);
531}
532
37bdc87e
MK
533/* Maximum instruction length we need to handle. */
534#define I386_MAX_INSN_LEN 6
535
536/* Instruction description. */
537struct i386_insn
538{
539 size_t len;
63c0089f
MK
540 gdb_byte insn[I386_MAX_INSN_LEN];
541 gdb_byte mask[I386_MAX_INSN_LEN];
37bdc87e
MK
542};
543
544/* Search for the instruction at PC in the list SKIP_INSNS. Return
545 the first instruction description that matches. Otherwise, return
546 NULL. */
547
548static struct i386_insn *
549i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
550{
551 struct i386_insn *insn;
63c0089f 552 gdb_byte op;
37bdc87e 553
24a2a654 554 read_memory_nobpt (pc, &op, 1);
37bdc87e
MK
555
556 for (insn = skip_insns; insn->len > 0; insn++)
557 {
558 if ((op & insn->mask[0]) == insn->insn[0])
559 {
613e8135
MK
560 gdb_byte buf[I386_MAX_INSN_LEN - 1];
561 int insn_matched = 1;
37bdc87e
MK
562 size_t i;
563
564 gdb_assert (insn->len > 1);
565 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
566
24a2a654 567 read_memory_nobpt (pc + 1, buf, insn->len - 1);
37bdc87e
MK
568 for (i = 1; i < insn->len; i++)
569 {
570 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 571 insn_matched = 0;
37bdc87e 572 }
613e8135
MK
573
574 if (insn_matched)
575 return insn;
37bdc87e
MK
576 }
577 }
578
579 return NULL;
580}
581
582/* Some special instructions that might be migrated by GCC into the
583 part of the prologue that sets up the new stack frame. Because the
584 stack frame hasn't been setup yet, no registers have been saved
585 yet, and only the scratch registers %eax, %ecx and %edx can be
586 touched. */
587
588struct i386_insn i386_frame_setup_skip_insns[] =
589{
590 /* Check for `movb imm8, r' and `movl imm32, r'.
591
592 ??? Should we handle 16-bit operand-sizes here? */
593
594 /* `movb imm8, %al' and `movb imm8, %ah' */
595 /* `movb imm8, %cl' and `movb imm8, %ch' */
596 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
597 /* `movb imm8, %dl' and `movb imm8, %dh' */
598 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
599 /* `movl imm32, %eax' and `movl imm32, %ecx' */
600 { 5, { 0xb8 }, { 0xfe } },
601 /* `movl imm32, %edx' */
602 { 5, { 0xba }, { 0xff } },
603
604 /* Check for `mov imm32, r32'. Note that there is an alternative
605 encoding for `mov m32, %eax'.
606
607 ??? Should we handle SIB adressing here?
608 ??? Should we handle 16-bit operand-sizes here? */
609
610 /* `movl m32, %eax' */
611 { 5, { 0xa1 }, { 0xff } },
612 /* `movl m32, %eax' and `mov; m32, %ecx' */
613 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
614 /* `movl m32, %edx' */
615 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
616
617 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
618 Because of the symmetry, there are actually two ways to encode
619 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
620 opcode bytes 0x31 and 0x33 for `xorl'. */
621
622 /* `subl %eax, %eax' */
623 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
624 /* `subl %ecx, %ecx' */
625 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
626 /* `subl %edx, %edx' */
627 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
628 /* `xorl %eax, %eax' */
629 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
630 /* `xorl %ecx, %ecx' */
631 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
632 /* `xorl %edx, %edx' */
633 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
634 { 0 }
635};
636
acd5c798
MK
637/* Check whether PC points at a code that sets up a new stack frame.
638 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
639 instruction after the sequence that sets up the frame or LIMIT,
640 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
641
642static CORE_ADDR
37bdc87e 643i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
644 struct i386_frame_cache *cache)
645{
37bdc87e 646 struct i386_insn *insn;
63c0089f 647 gdb_byte op;
26604a34 648 int skip = 0;
acd5c798 649
37bdc87e
MK
650 if (limit <= pc)
651 return limit;
acd5c798 652
24a2a654 653 read_memory_nobpt (pc, &op, 1);
acd5c798 654
c906108c 655 if (op == 0x55) /* pushl %ebp */
c5aa993b 656 {
acd5c798
MK
657 /* Take into account that we've executed the `pushl %ebp' that
658 starts this instruction sequence. */
fd13a04a 659 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 660 cache->sp_offset += 4;
37bdc87e 661 pc++;
acd5c798
MK
662
663 /* If that's all, return now. */
37bdc87e
MK
664 if (limit <= pc)
665 return limit;
26604a34 666
b4632131 667 /* Check for some special instructions that might be migrated by
37bdc87e
MK
668 GCC into the prologue and skip them. At this point in the
669 prologue, code should only touch the scratch registers %eax,
670 %ecx and %edx, so while the number of posibilities is sheer,
671 it is limited.
5daa5b4e 672
26604a34
MK
673 Make sure we only skip these instructions if we later see the
674 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 675 while (pc + skip < limit)
26604a34 676 {
37bdc87e
MK
677 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
678 if (insn == NULL)
679 break;
b4632131 680
37bdc87e 681 skip += insn->len;
26604a34
MK
682 }
683
37bdc87e
MK
684 /* If that's all, return now. */
685 if (limit <= pc + skip)
686 return limit;
687
24a2a654 688 read_memory_nobpt (pc + skip, &op, 1);
37bdc87e 689
26604a34 690 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 691 switch (op)
c906108c
SS
692 {
693 case 0x8b:
37bdc87e
MK
694 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
695 return pc;
c906108c
SS
696 break;
697 case 0x89:
37bdc87e
MK
698 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
699 return pc;
c906108c
SS
700 break;
701 default:
37bdc87e 702 return pc;
c906108c 703 }
acd5c798 704
26604a34
MK
705 /* OK, we actually have a frame. We just don't know how large
706 it is yet. Set its size to zero. We'll adjust it if
707 necessary. We also now commit to skipping the special
708 instructions mentioned before. */
acd5c798 709 cache->locals = 0;
37bdc87e 710 pc += (skip + 2);
acd5c798
MK
711
712 /* If that's all, return now. */
37bdc87e
MK
713 if (limit <= pc)
714 return limit;
acd5c798 715
fc338970
MK
716 /* Check for stack adjustment
717
acd5c798 718 subl $XXX, %esp
fc338970 719
fd35795f 720 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 721 reg, so we don't have to worry about a data16 prefix. */
24a2a654 722 read_memory_nobpt (pc, &op, 1);
c906108c
SS
723 if (op == 0x83)
724 {
fd35795f 725 /* `subl' with 8-bit immediate. */
37bdc87e 726 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 727 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 728 return pc;
acd5c798 729
37bdc87e
MK
730 /* `subl' with signed 8-bit immediate (though it wouldn't
731 make sense to be negative). */
732 cache->locals = read_memory_integer (pc + 2, 1);
733 return pc + 3;
c906108c
SS
734 }
735 else if (op == 0x81)
736 {
fd35795f 737 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 738 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 739 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 740 return pc;
acd5c798 741
fd35795f 742 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
743 cache->locals = read_memory_integer (pc + 2, 4);
744 return pc + 6;
c906108c
SS
745 }
746 else
747 {
acd5c798 748 /* Some instruction other than `subl'. */
37bdc87e 749 return pc;
c906108c
SS
750 }
751 }
37bdc87e 752 else if (op == 0xc8) /* enter */
c906108c 753 {
acd5c798
MK
754 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
755 return pc + 4;
c906108c 756 }
21d0e8a4 757
acd5c798 758 return pc;
21d0e8a4
MK
759}
760
acd5c798
MK
761/* Check whether PC points at code that saves registers on the stack.
762 If so, it updates CACHE and returns the address of the first
763 instruction after the register saves or CURRENT_PC, whichever is
764 smaller. Otherwise, return PC. */
6bff26de
MK
765
766static CORE_ADDR
acd5c798
MK
767i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
768 struct i386_frame_cache *cache)
6bff26de 769{
99ab4326 770 CORE_ADDR offset = 0;
63c0089f 771 gdb_byte op;
99ab4326 772 int i;
c0d1d883 773
99ab4326
MK
774 if (cache->locals > 0)
775 offset -= cache->locals;
776 for (i = 0; i < 8 && pc < current_pc; i++)
777 {
24a2a654 778 read_memory_nobpt (pc, &op, 1);
99ab4326
MK
779 if (op < 0x50 || op > 0x57)
780 break;
0d17c81d 781
99ab4326
MK
782 offset -= 4;
783 cache->saved_regs[op - 0x50] = offset;
784 cache->sp_offset += 4;
785 pc++;
6bff26de
MK
786 }
787
acd5c798 788 return pc;
22797942
AC
789}
790
acd5c798
MK
791/* Do a full analysis of the prologue at PC and update CACHE
792 accordingly. Bail out early if CURRENT_PC is reached. Return the
793 address where the analysis stopped.
ed84f6c1 794
fc338970
MK
795 We handle these cases:
796
797 The startup sequence can be at the start of the function, or the
798 function can start with a branch to startup code at the end.
799
800 %ebp can be set up with either the 'enter' instruction, or "pushl
801 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
802 once used in the System V compiler).
803
804 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
805 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
806 16-bit unsigned argument for space to allocate, and the 'addl'
807 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
808
809 Next, the registers used by this function are pushed. With the
810 System V compiler they will always be in the order: %edi, %esi,
811 %ebx (and sometimes a harmless bug causes it to also save but not
812 restore %eax); however, the code below is willing to see the pushes
813 in any order, and will handle up to 8 of them.
814
815 If the setup sequence is at the end of the function, then the next
816 instruction will be a branch back to the start. */
c906108c 817
acd5c798
MK
818static CORE_ADDR
819i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
820 struct i386_frame_cache *cache)
c906108c 821{
acd5c798
MK
822 pc = i386_follow_jump (pc);
823 pc = i386_analyze_struct_return (pc, current_pc, cache);
824 pc = i386_skip_probe (pc);
92dd43fa 825 pc = i386_analyze_stack_align (pc, current_pc, cache);
acd5c798
MK
826 pc = i386_analyze_frame_setup (pc, current_pc, cache);
827 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
828}
829
fc338970 830/* Return PC of first real instruction. */
c906108c 831
3a1e71e3 832static CORE_ADDR
acd5c798 833i386_skip_prologue (CORE_ADDR start_pc)
c906108c 834{
63c0089f 835 static gdb_byte pic_pat[6] =
acd5c798
MK
836 {
837 0xe8, 0, 0, 0, 0, /* call 0x0 */
838 0x5b, /* popl %ebx */
c5aa993b 839 };
acd5c798
MK
840 struct i386_frame_cache cache;
841 CORE_ADDR pc;
63c0089f 842 gdb_byte op;
acd5c798 843 int i;
c5aa993b 844
acd5c798
MK
845 cache.locals = -1;
846 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
847 if (cache.locals < 0)
848 return start_pc;
c5aa993b 849
acd5c798 850 /* Found valid frame setup. */
c906108c 851
fc338970
MK
852 /* The native cc on SVR4 in -K PIC mode inserts the following code
853 to get the address of the global offset table (GOT) into register
acd5c798
MK
854 %ebx:
855
fc338970
MK
856 call 0x0
857 popl %ebx
858 movl %ebx,x(%ebp) (optional)
859 addl y,%ebx
860
c906108c
SS
861 This code is with the rest of the prologue (at the end of the
862 function), so we have to skip it to get to the first real
863 instruction at the start of the function. */
c5aa993b 864
c906108c
SS
865 for (i = 0; i < 6; i++)
866 {
24a2a654 867 read_memory_nobpt (pc + i, &op, 1);
c5aa993b 868 if (pic_pat[i] != op)
c906108c
SS
869 break;
870 }
871 if (i == 6)
872 {
acd5c798
MK
873 int delta = 6;
874
24a2a654 875 read_memory_nobpt (pc + delta, &op, 1);
c906108c 876
c5aa993b 877 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 878 {
acd5c798
MK
879 op = read_memory_unsigned_integer (pc + delta + 1, 1);
880
fc338970 881 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 882 delta += 3;
fc338970 883 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 884 delta += 6;
fc338970 885 else /* Unexpected instruction. */
acd5c798
MK
886 delta = 0;
887
24a2a654 888 read_memory_nobpt (pc + delta, &op, 1);
c906108c 889 }
acd5c798 890
c5aa993b 891 /* addl y,%ebx */
acd5c798 892 if (delta > 0 && op == 0x81
d5d6fca5 893 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
c906108c 894 {
acd5c798 895 pc += delta + 6;
c906108c
SS
896 }
897 }
c5aa993b 898
e63bbc88
MK
899 /* If the function starts with a branch (to startup code at the end)
900 the last instruction should bring us back to the first
901 instruction of the real code. */
902 if (i386_follow_jump (start_pc) != start_pc)
903 pc = i386_follow_jump (pc);
904
905 return pc;
c906108c
SS
906}
907
acd5c798 908/* This function is 64-bit safe. */
93924b6b 909
acd5c798
MK
910static CORE_ADDR
911i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 912{
63c0089f 913 gdb_byte buf[8];
acd5c798
MK
914
915 frame_unwind_register (next_frame, PC_REGNUM, buf);
916 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 917}
acd5c798 918\f
93924b6b 919
acd5c798 920/* Normal frames. */
c5aa993b 921
acd5c798
MK
922static struct i386_frame_cache *
923i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 924{
acd5c798 925 struct i386_frame_cache *cache;
63c0089f 926 gdb_byte buf[4];
acd5c798
MK
927 int i;
928
929 if (*this_cache)
930 return *this_cache;
931
fd13a04a 932 cache = i386_alloc_frame_cache ();
acd5c798
MK
933 *this_cache = cache;
934
935 /* In principle, for normal frames, %ebp holds the frame pointer,
936 which holds the base address for the current stack frame.
937 However, for functions that don't need it, the frame pointer is
938 optional. For these "frameless" functions the frame pointer is
939 actually the frame pointer of the calling frame. Signal
940 trampolines are just a special case of a "frameless" function.
941 They (usually) share their frame pointer with the frame that was
942 in progress when the signal occurred. */
943
944 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
945 cache->base = extract_unsigned_integer (buf, 4);
946 if (cache->base == 0)
947 return cache;
948
949 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 950 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
951
952 cache->pc = frame_func_unwind (next_frame);
953 if (cache->pc != 0)
954 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
955
92dd43fa
MK
956 if (cache->stack_align)
957 {
958 /* Saved stack pointer has been saved in %ecx. */
959 frame_unwind_register (next_frame, I386_ECX_REGNUM, buf);
960 cache->saved_sp = extract_unsigned_integer(buf, 4);
961 }
962
acd5c798
MK
963 if (cache->locals < 0)
964 {
965 /* We didn't find a valid frame, which means that CACHE->base
966 currently holds the frame pointer for our calling frame. If
967 we're at the start of a function, or somewhere half-way its
968 prologue, the function's frame probably hasn't been fully
969 setup yet. Try to reconstruct the base address for the stack
970 frame by looking at the stack pointer. For truly "frameless"
971 functions this might work too. */
972
92dd43fa
MK
973 if (cache->stack_align)
974 {
975 /* We're halfway aligning the stack. */
976 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
977 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
978
979 /* This will be added back below. */
980 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
981 }
982 else
983 {
984 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
985 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
986 }
acd5c798
MK
987 }
988
989 /* Now that we have the base address for the stack frame we can
990 calculate the value of %esp in the calling frame. */
92dd43fa
MK
991 if (cache->saved_sp == 0)
992 cache->saved_sp = cache->base + 8;
a7769679 993
acd5c798
MK
994 /* Adjust all the saved registers such that they contain addresses
995 instead of offsets. */
996 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
997 if (cache->saved_regs[i] != -1)
998 cache->saved_regs[i] += cache->base;
acd5c798
MK
999
1000 return cache;
a7769679
MK
1001}
1002
3a1e71e3 1003static void
acd5c798
MK
1004i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
1005 struct frame_id *this_id)
c906108c 1006{
acd5c798
MK
1007 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1008
1009 /* This marks the outermost frame. */
1010 if (cache->base == 0)
1011 return;
1012
3e210248 1013 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1014 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1015}
1016
1017static void
1018i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1019 int regnum, int *optimizedp,
1020 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1021 int *realnump, gdb_byte *valuep)
acd5c798
MK
1022{
1023 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1024
1025 gdb_assert (regnum >= 0);
1026
1027 /* The System V ABI says that:
1028
1029 "The flags register contains the system flags, such as the
1030 direction flag and the carry flag. The direction flag must be
1031 set to the forward (that is, zero) direction before entry and
1032 upon exit from a function. Other user flags have no specified
1033 role in the standard calling sequence and are not preserved."
1034
1035 To guarantee the "upon exit" part of that statement we fake a
1036 saved flags register that has its direction flag cleared.
1037
1038 Note that GCC doesn't seem to rely on the fact that the direction
1039 flag is cleared after a function return; it always explicitly
1040 clears the flag before operations where it matters.
1041
1042 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1043 right thing to do. The way we fake the flags register here makes
1044 it impossible to change it. */
1045
1046 if (regnum == I386_EFLAGS_REGNUM)
1047 {
1048 *optimizedp = 0;
1049 *lvalp = not_lval;
1050 *addrp = 0;
1051 *realnump = -1;
1052 if (valuep)
1053 {
1054 ULONGEST val;
c5aa993b 1055
acd5c798 1056 /* Clear the direction flag. */
f837910f
MK
1057 val = frame_unwind_register_unsigned (next_frame,
1058 I386_EFLAGS_REGNUM);
acd5c798
MK
1059 val &= ~(1 << 10);
1060 store_unsigned_integer (valuep, 4, val);
1061 }
1062
1063 return;
1064 }
1211c4e4 1065
acd5c798 1066 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 1067 {
00b25ff3
AC
1068 *optimizedp = 0;
1069 *lvalp = lval_register;
1070 *addrp = 0;
1071 *realnump = I386_EAX_REGNUM;
1072 if (valuep)
1073 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1074 return;
1075 }
1076
1077 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1078 {
1079 *optimizedp = 0;
1080 *lvalp = not_lval;
1081 *addrp = 0;
1082 *realnump = -1;
1083 if (valuep)
c906108c 1084 {
acd5c798
MK
1085 /* Store the value. */
1086 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 1087 }
acd5c798 1088 return;
c906108c 1089 }
acd5c798 1090
fd13a04a
AC
1091 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1092 {
1093 *optimizedp = 0;
1094 *lvalp = lval_memory;
1095 *addrp = cache->saved_regs[regnum];
1096 *realnump = -1;
1097 if (valuep)
1098 {
1099 /* Read the value in from memory. */
1100 read_memory (*addrp, valuep,
1101 register_size (current_gdbarch, regnum));
1102 }
1103 return;
1104 }
1105
00b25ff3
AC
1106 *optimizedp = 0;
1107 *lvalp = lval_register;
1108 *addrp = 0;
1109 *realnump = regnum;
1110 if (valuep)
1111 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1112}
1113
1114static const struct frame_unwind i386_frame_unwind =
1115{
1116 NORMAL_FRAME,
1117 i386_frame_this_id,
1118 i386_frame_prev_register
1119};
1120
1121static const struct frame_unwind *
336d1bba 1122i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
1123{
1124 return &i386_frame_unwind;
1125}
1126\f
1127
1128/* Signal trampolines. */
1129
1130static struct i386_frame_cache *
1131i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1132{
1133 struct i386_frame_cache *cache;
1134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1135 CORE_ADDR addr;
63c0089f 1136 gdb_byte buf[4];
acd5c798
MK
1137
1138 if (*this_cache)
1139 return *this_cache;
1140
fd13a04a 1141 cache = i386_alloc_frame_cache ();
acd5c798
MK
1142
1143 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1144 cache->base = extract_unsigned_integer (buf, 4) - 4;
1145
1146 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
1147 if (tdep->sc_reg_offset)
1148 {
1149 int i;
1150
1151 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1152
1153 for (i = 0; i < tdep->sc_num_regs; i++)
1154 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1155 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1156 }
1157 else
1158 {
fd13a04a
AC
1159 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1160 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1161 }
acd5c798
MK
1162
1163 *this_cache = cache;
1164 return cache;
1165}
1166
1167static void
1168i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1169 struct frame_id *this_id)
1170{
1171 struct i386_frame_cache *cache =
1172 i386_sigtramp_frame_cache (next_frame, this_cache);
1173
3e210248 1174 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1175 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1176}
1177
1178static void
1179i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1180 void **this_cache,
1181 int regnum, int *optimizedp,
1182 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1183 int *realnump, gdb_byte *valuep)
acd5c798
MK
1184{
1185 /* Make sure we've initialized the cache. */
1186 i386_sigtramp_frame_cache (next_frame, this_cache);
1187
1188 i386_frame_prev_register (next_frame, this_cache, regnum,
1189 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1190}
c0d1d883 1191
acd5c798
MK
1192static const struct frame_unwind i386_sigtramp_frame_unwind =
1193{
1194 SIGTRAMP_FRAME,
1195 i386_sigtramp_frame_this_id,
1196 i386_sigtramp_frame_prev_register
1197};
1198
1199static const struct frame_unwind *
336d1bba 1200i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1201{
911bc6ee 1202 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1203
911bc6ee
MK
1204 /* We shouldn't even bother if we don't have a sigcontext_addr
1205 handler. */
1206 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1207 return NULL;
1208
911bc6ee
MK
1209 if (tdep->sigtramp_p != NULL)
1210 {
1211 if (tdep->sigtramp_p (next_frame))
1212 return &i386_sigtramp_frame_unwind;
1213 }
1214
1215 if (tdep->sigtramp_start != 0)
1216 {
1217 CORE_ADDR pc = frame_pc_unwind (next_frame);
1218
1219 gdb_assert (tdep->sigtramp_end != 0);
1220 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1221 return &i386_sigtramp_frame_unwind;
1222 }
acd5c798
MK
1223
1224 return NULL;
1225}
1226\f
1227
1228static CORE_ADDR
1229i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1230{
1231 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1232
1233 return cache->base;
1234}
1235
1236static const struct frame_base i386_frame_base =
1237{
1238 &i386_frame_unwind,
1239 i386_frame_base_address,
1240 i386_frame_base_address,
1241 i386_frame_base_address
1242};
1243
acd5c798
MK
1244static struct frame_id
1245i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1246{
63c0089f 1247 gdb_byte buf[4];
acd5c798
MK
1248 CORE_ADDR fp;
1249
1250 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1251 fp = extract_unsigned_integer (buf, 4);
1252
3e210248 1253 /* See the end of i386_push_dummy_call. */
acd5c798 1254 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1255}
fc338970 1256\f
c906108c 1257
fc338970
MK
1258/* Figure out where the longjmp will land. Slurp the args out of the
1259 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1260 structure from which we extract the address that we will land at.
28bcfd30 1261 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1262 success.
1263
1264 This function is 64-bit safe. */
c906108c 1265
8201327c
MK
1266static int
1267i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1268{
63c0089f 1269 gdb_byte buf[8];
c906108c 1270 CORE_ADDR sp, jb_addr;
8201327c 1271 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1272 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1273
8201327c
MK
1274 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1275 longjmp will land. */
1276 if (jb_pc_offset == -1)
c906108c
SS
1277 return 0;
1278
f837910f
MK
1279 /* Don't use I386_ESP_REGNUM here, since this function is also used
1280 for AMD64. */
1281 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1282 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1283 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1284 return 0;
1285
f837910f 1286 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1287 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1288 return 0;
c906108c 1289
f9d3c2a8 1290 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1291 return 1;
1292}
fc338970 1293\f
c906108c 1294
3a1e71e3 1295static CORE_ADDR
7d9b040b 1296i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1297 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1298 struct value **args, CORE_ADDR sp, int struct_return,
1299 CORE_ADDR struct_addr)
22f8ba57 1300{
63c0089f 1301 gdb_byte buf[4];
acd5c798
MK
1302 int i;
1303
1304 /* Push arguments in reverse order. */
1305 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1306 {
4754a64e 1307 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798
MK
1308
1309 /* The System V ABI says that:
1310
1311 "An argument's size is increased, if necessary, to make it a
1312 multiple of [32-bit] words. This may require tail padding,
1313 depending on the size of the argument."
1314
cf913f37 1315 This makes sure the stack stays word-aligned. */
acd5c798 1316 sp -= (len + 3) & ~3;
46615f07 1317 write_memory (sp, value_contents_all (args[i]), len);
acd5c798 1318 }
22f8ba57 1319
acd5c798
MK
1320 /* Push value address. */
1321 if (struct_return)
1322 {
22f8ba57 1323 sp -= 4;
fbd9dcd3 1324 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1325 write_memory (sp, buf, 4);
1326 }
1327
acd5c798
MK
1328 /* Store return address. */
1329 sp -= 4;
6a65450a 1330 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1331 write_memory (sp, buf, 4);
1332
1333 /* Finally, update the stack pointer... */
1334 store_unsigned_integer (buf, 4, sp);
1335 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1336
1337 /* ...and fake a frame pointer. */
1338 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1339
3e210248
AC
1340 /* MarkK wrote: This "+ 8" is all over the place:
1341 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1342 i386_unwind_dummy_id). It's there, since all frame unwinders for
1343 a given target have to agree (within a certain margin) on the
fd35795f 1344 definition of the stack address of a frame. Otherwise
3e210248
AC
1345 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1346 stack address *before* the function call as a frame's CFA. On
1347 the i386, when %ebp is used as a frame pointer, the offset
1348 between the contents %ebp and the CFA as defined by GCC. */
1349 return sp + 8;
22f8ba57
MK
1350}
1351
1a309862
MK
1352/* These registers are used for returning integers (and on some
1353 targets also for returning `struct' and `union' values when their
ef9dff19 1354 size and alignment match an integer type). */
acd5c798
MK
1355#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1356#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1357
c5e656c1
MK
1358/* Read, for architecture GDBARCH, a function return value of TYPE
1359 from REGCACHE, and copy that into VALBUF. */
1a309862 1360
3a1e71e3 1361static void
c5e656c1 1362i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1363 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1364{
c5e656c1 1365 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1366 int len = TYPE_LENGTH (type);
63c0089f 1367 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1368
1e8d0a7b 1369 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1370 {
5716833c 1371 if (tdep->st0_regnum < 0)
1a309862 1372 {
8a3fe4f8 1373 warning (_("Cannot find floating-point return value."));
1a309862 1374 memset (valbuf, 0, len);
ef9dff19 1375 return;
1a309862
MK
1376 }
1377
c6ba6f0d
MK
1378 /* Floating-point return values can be found in %st(0). Convert
1379 its contents to the desired type. This is probably not
1380 exactly how it would happen on the target itself, but it is
1381 the best we can do. */
acd5c798 1382 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1383 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1384 }
1385 else
c5aa993b 1386 {
f837910f
MK
1387 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1388 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1389
1390 if (len <= low_size)
00f8375e 1391 {
0818c12a 1392 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1393 memcpy (valbuf, buf, len);
1394 }
d4f3574e
SS
1395 else if (len <= (low_size + high_size))
1396 {
0818c12a 1397 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1398 memcpy (valbuf, buf, low_size);
0818c12a 1399 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1400 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1401 }
1402 else
8e65ff28 1403 internal_error (__FILE__, __LINE__,
e2e0b3e5 1404 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1405 }
1406}
1407
c5e656c1
MK
1408/* Write, for architecture GDBARCH, a function return value of TYPE
1409 from VALBUF into REGCACHE. */
ef9dff19 1410
3a1e71e3 1411static void
c5e656c1 1412i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1413 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1414{
c5e656c1 1415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1416 int len = TYPE_LENGTH (type);
1417
5716833c
MK
1418 /* Define I387_ST0_REGNUM such that we use the proper definitions
1419 for the architecture. */
1420#define I387_ST0_REGNUM I386_ST0_REGNUM
1421
1e8d0a7b 1422 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1423 {
3d7f4f49 1424 ULONGEST fstat;
63c0089f 1425 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1426
5716833c 1427 if (tdep->st0_regnum < 0)
ef9dff19 1428 {
8a3fe4f8 1429 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1430 return;
1431 }
1432
635b0cc1
MK
1433 /* Returning floating-point values is a bit tricky. Apart from
1434 storing the return value in %st(0), we have to simulate the
1435 state of the FPU at function return point. */
1436
c6ba6f0d
MK
1437 /* Convert the value found in VALBUF to the extended
1438 floating-point format used by the FPU. This is probably
1439 not exactly how it would happen on the target itself, but
1440 it is the best we can do. */
1441 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1442 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1443
635b0cc1
MK
1444 /* Set the top of the floating-point register stack to 7. The
1445 actual value doesn't really matter, but 7 is what a normal
1446 function return would end up with if the program started out
1447 with a freshly initialized FPU. */
5716833c 1448 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1449 fstat |= (7 << 11);
5716833c 1450 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1451
635b0cc1
MK
1452 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1453 the floating-point register stack to 7, the appropriate value
1454 for the tag word is 0x3fff. */
5716833c 1455 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1456 }
1457 else
1458 {
f837910f
MK
1459 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1460 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1461
1462 if (len <= low_size)
3d7f4f49 1463 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1464 else if (len <= (low_size + high_size))
1465 {
3d7f4f49
MK
1466 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1467 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1468 len - low_size, valbuf + low_size);
ef9dff19
MK
1469 }
1470 else
8e65ff28 1471 internal_error (__FILE__, __LINE__,
e2e0b3e5 1472 _("Cannot store return value of %d bytes long."), len);
ef9dff19 1473 }
5716833c
MK
1474
1475#undef I387_ST0_REGNUM
ef9dff19 1476}
fc338970 1477\f
ef9dff19 1478
8201327c
MK
1479/* This is the variable that is set with "set struct-convention", and
1480 its legitimate values. */
1481static const char default_struct_convention[] = "default";
1482static const char pcc_struct_convention[] = "pcc";
1483static const char reg_struct_convention[] = "reg";
1484static const char *valid_conventions[] =
1485{
1486 default_struct_convention,
1487 pcc_struct_convention,
1488 reg_struct_convention,
1489 NULL
1490};
1491static const char *struct_convention = default_struct_convention;
1492
0e4377e1
JB
1493/* Return non-zero if TYPE, which is assumed to be a structure,
1494 a union type, or an array type, should be returned in registers
1495 for architecture GDBARCH. */
c5e656c1 1496
8201327c 1497static int
c5e656c1 1498i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1499{
c5e656c1
MK
1500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1501 enum type_code code = TYPE_CODE (type);
1502 int len = TYPE_LENGTH (type);
8201327c 1503
0e4377e1
JB
1504 gdb_assert (code == TYPE_CODE_STRUCT
1505 || code == TYPE_CODE_UNION
1506 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
1507
1508 if (struct_convention == pcc_struct_convention
1509 || (struct_convention == default_struct_convention
1510 && tdep->struct_return == pcc_struct_return))
1511 return 0;
1512
9edde48e
MK
1513 /* Structures consisting of a single `float', `double' or 'long
1514 double' member are returned in %st(0). */
1515 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1516 {
1517 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1518 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1519 return (len == 4 || len == 8 || len == 12);
1520 }
1521
c5e656c1
MK
1522 return (len == 1 || len == 2 || len == 4 || len == 8);
1523}
1524
1525/* Determine, for architecture GDBARCH, how a return value of TYPE
1526 should be returned. If it is supposed to be returned in registers,
1527 and READBUF is non-zero, read the appropriate value from REGCACHE,
1528 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1529 from WRITEBUF into REGCACHE. */
1530
1531static enum return_value_convention
1532i386_return_value (struct gdbarch *gdbarch, struct type *type,
42835c2b
MK
1533 struct regcache *regcache, gdb_byte *readbuf,
1534 const gdb_byte *writebuf)
c5e656c1
MK
1535{
1536 enum type_code code = TYPE_CODE (type);
1537
0e4377e1
JB
1538 if ((code == TYPE_CODE_STRUCT
1539 || code == TYPE_CODE_UNION
1540 || code == TYPE_CODE_ARRAY)
c5e656c1 1541 && !i386_reg_struct_return_p (gdbarch, type))
31db7b6c
MK
1542 {
1543 /* The System V ABI says that:
1544
1545 "A function that returns a structure or union also sets %eax
1546 to the value of the original address of the caller's area
1547 before it returns. Thus when the caller receives control
1548 again, the address of the returned object resides in register
1549 %eax and can be used to access the object."
1550
1551 So the ABI guarantees that we can always find the return
1552 value just after the function has returned. */
1553
0e4377e1
JB
1554 /* Note that the ABI doesn't mention functions returning arrays,
1555 which is something possible in certain languages such as Ada.
1556 In this case, the value is returned as if it was wrapped in
1557 a record, so the convention applied to records also applies
1558 to arrays. */
1559
31db7b6c
MK
1560 if (readbuf)
1561 {
1562 ULONGEST addr;
1563
1564 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1565 read_memory (addr, readbuf, TYPE_LENGTH (type));
1566 }
1567
1568 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1569 }
c5e656c1
MK
1570
1571 /* This special case is for structures consisting of a single
9edde48e
MK
1572 `float', `double' or 'long double' member. These structures are
1573 returned in %st(0). For these structures, we call ourselves
1574 recursively, changing TYPE into the type of the first member of
1575 the structure. Since that should work for all structures that
1576 have only one member, we don't bother to check the member's type
1577 here. */
c5e656c1
MK
1578 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1579 {
1580 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1581 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1582 }
1583
1584 if (readbuf)
1585 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1586 if (writebuf)
1587 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1588
c5e656c1 1589 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1590}
1591\f
1592
5ae96ec1
MK
1593/* Type for %eflags. */
1594struct type *i386_eflags_type;
1595
21b4b2f2 1596/* Types for the MMX and SSE registers. */
5ae96ec1
MK
1597struct type *i386_mmx_type;
1598struct type *i386_sse_type;
878d9193 1599struct type *i386_mxcsr_type;
5ae96ec1
MK
1600
1601/* Construct types for ISA-specific registers. */
1602static void
1603i386_init_types (void)
1604{
1605 struct type *type;
1606
1607 type = init_flags_type ("builtin_type_i386_eflags", 4);
1608 append_flags_type_flag (type, 0, "CF");
1609 append_flags_type_flag (type, 1, NULL);
1610 append_flags_type_flag (type, 2, "PF");
1611 append_flags_type_flag (type, 4, "AF");
1612 append_flags_type_flag (type, 6, "ZF");
1613 append_flags_type_flag (type, 7, "SF");
1614 append_flags_type_flag (type, 8, "TF");
1615 append_flags_type_flag (type, 9, "IF");
1616 append_flags_type_flag (type, 10, "DF");
1617 append_flags_type_flag (type, 11, "OF");
1618 append_flags_type_flag (type, 14, "NT");
1619 append_flags_type_flag (type, 16, "RF");
1620 append_flags_type_flag (type, 17, "VM");
1621 append_flags_type_flag (type, 18, "AC");
1622 append_flags_type_flag (type, 19, "VIF");
1623 append_flags_type_flag (type, 20, "VIP");
1624 append_flags_type_flag (type, 21, "ID");
1625 i386_eflags_type = type;
21b4b2f2 1626
21b4b2f2
JB
1627 /* The type we're building is this: */
1628#if 0
5ae96ec1 1629 union __gdb_builtin_type_vec64i
21b4b2f2
JB
1630 {
1631 int64_t uint64;
1632 int32_t v2_int32[2];
1633 int16_t v4_int16[4];
1634 int8_t v8_int8[8];
1635 };
1636#endif
1637
5ae96ec1
MK
1638 type = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1639 append_composite_type_field (type, "uint64", builtin_type_int64);
1640 append_composite_type_field (type, "v2_int32", builtin_type_v2_int32);
1641 append_composite_type_field (type, "v4_int16", builtin_type_v4_int16);
1642 append_composite_type_field (type, "v8_int8", builtin_type_v8_int8);
1643 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1644 TYPE_NAME (type) = "builtin_type_vec64i";
1645 i386_mmx_type = type;
21b4b2f2 1646
5ae96ec1
MK
1647 /* The type we're building is this: */
1648#if 0
1649 union __gdb_builtin_type_vec128i
1650 {
1651 int128_t uint128;
1652 int64_t v2_int64[2];
1653 int32_t v4_int32[4];
1654 int16_t v8_int16[8];
1655 int8_t v16_int8[16];
1656 double v2_double[2];
1657 float v4_float[4];
1658 };
1659#endif
21b4b2f2 1660
5ae96ec1
MK
1661 type = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1662 append_composite_type_field (type, "v4_float", builtin_type_v4_float);
1663 append_composite_type_field (type, "v2_double", builtin_type_v2_double);
1664 append_composite_type_field (type, "v16_int8", builtin_type_v16_int8);
1665 append_composite_type_field (type, "v8_int16", builtin_type_v8_int16);
1666 append_composite_type_field (type, "v4_int32", builtin_type_v4_int32);
1667 append_composite_type_field (type, "v2_int64", builtin_type_v2_int64);
1668 append_composite_type_field (type, "uint128", builtin_type_int128);
1669 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1670 TYPE_NAME (type) = "builtin_type_vec128i";
1671 i386_sse_type = type;
878d9193
MK
1672
1673 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1674 append_flags_type_flag (type, 0, "IE");
1675 append_flags_type_flag (type, 1, "DE");
1676 append_flags_type_flag (type, 2, "ZE");
1677 append_flags_type_flag (type, 3, "OE");
1678 append_flags_type_flag (type, 4, "UE");
1679 append_flags_type_flag (type, 5, "PE");
1680 append_flags_type_flag (type, 6, "DAZ");
1681 append_flags_type_flag (type, 7, "IM");
1682 append_flags_type_flag (type, 8, "DM");
1683 append_flags_type_flag (type, 9, "ZM");
1684 append_flags_type_flag (type, 10, "OM");
1685 append_flags_type_flag (type, 11, "UM");
1686 append_flags_type_flag (type, 12, "PM");
1687 append_flags_type_flag (type, 15, "FZ");
1688 i386_mxcsr_type = type;
21b4b2f2
JB
1689}
1690
d7a0d72c
MK
1691/* Return the GDB type object for the "standard" data type of data in
1692 register REGNUM. Perhaps %esi and %edi should go here, but
1693 potentially they could be used for things other than address. */
1694
3a1e71e3 1695static struct type *
4e259f09 1696i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1697{
ab533587
MK
1698 if (regnum == I386_EIP_REGNUM)
1699 return builtin_type_void_func_ptr;
1700
5ae96ec1
MK
1701 if (regnum == I386_EFLAGS_REGNUM)
1702 return i386_eflags_type;
1703
ab533587
MK
1704 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1705 return builtin_type_void_data_ptr;
d7a0d72c 1706
23a34459 1707 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1708 return builtin_type_i387_ext;
d7a0d72c 1709
878d9193
MK
1710 if (i386_mmx_regnum_p (gdbarch, regnum))
1711 return i386_mmx_type;
1712
5716833c 1713 if (i386_sse_regnum_p (gdbarch, regnum))
5ae96ec1 1714 return i386_sse_type;
d7a0d72c 1715
878d9193
MK
1716#define I387_ST0_REGNUM I386_ST0_REGNUM
1717#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
1718
1719 if (regnum == I387_MXCSR_REGNUM)
1720 return i386_mxcsr_type;
1721
1722#undef I387_ST0_REGNUM
1723#undef I387_NUM_XMM_REGS
28fc6740 1724
d7a0d72c
MK
1725 return builtin_type_int;
1726}
1727
28fc6740 1728/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1729 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1730
1731static int
c86c27af 1732i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1733{
5716833c
MK
1734 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1735 int mmxreg, fpreg;
28fc6740
AC
1736 ULONGEST fstat;
1737 int tos;
c86c27af 1738
5716833c
MK
1739 /* Define I387_ST0_REGNUM such that we use the proper definitions
1740 for REGCACHE's architecture. */
1741#define I387_ST0_REGNUM tdep->st0_regnum
1742
1743 mmxreg = regnum - tdep->mm0_regnum;
1744 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1745 tos = (fstat >> 11) & 0x7;
5716833c
MK
1746 fpreg = (mmxreg + tos) % 8;
1747
1748 return (I387_ST0_REGNUM + fpreg);
c86c27af 1749
5716833c 1750#undef I387_ST0_REGNUM
28fc6740
AC
1751}
1752
1753static void
1754i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1755 int regnum, gdb_byte *buf)
28fc6740 1756{
5716833c 1757 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1758 {
63c0089f 1759 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1760 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1761
28fc6740 1762 /* Extract (always little endian). */
c86c27af 1763 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1764 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1765 }
1766 else
1767 regcache_raw_read (regcache, regnum, buf);
1768}
1769
1770static void
1771i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1772 int regnum, const gdb_byte *buf)
28fc6740 1773{
5716833c 1774 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1775 {
63c0089f 1776 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1777 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1778
28fc6740
AC
1779 /* Read ... */
1780 regcache_raw_read (regcache, fpnum, mmx_buf);
1781 /* ... Modify ... (always little endian). */
f837910f 1782 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1783 /* ... Write. */
1784 regcache_raw_write (regcache, fpnum, mmx_buf);
1785 }
1786 else
1787 regcache_raw_write (regcache, regnum, buf);
1788}
ff2e87ac
AC
1789\f
1790
ff2e87ac
AC
1791/* Return the register number of the register allocated by GCC after
1792 REGNUM, or -1 if there is no such register. */
1793
1794static int
1795i386_next_regnum (int regnum)
1796{
1797 /* GCC allocates the registers in the order:
1798
1799 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1800
1801 Since storing a variable in %esp doesn't make any sense we return
1802 -1 for %ebp and for %esp itself. */
1803 static int next_regnum[] =
1804 {
1805 I386_EDX_REGNUM, /* Slot for %eax. */
1806 I386_EBX_REGNUM, /* Slot for %ecx. */
1807 I386_ECX_REGNUM, /* Slot for %edx. */
1808 I386_ESI_REGNUM, /* Slot for %ebx. */
1809 -1, -1, /* Slots for %esp and %ebp. */
1810 I386_EDI_REGNUM, /* Slot for %esi. */
1811 I386_EBP_REGNUM /* Slot for %edi. */
1812 };
1813
de5b9bb9 1814 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1815 return next_regnum[regnum];
28fc6740 1816
ff2e87ac
AC
1817 return -1;
1818}
1819
1820/* Return nonzero if a value of type TYPE stored in register REGNUM
1821 needs any special handling. */
d7a0d72c 1822
3a1e71e3 1823static int
ff2e87ac 1824i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1825{
de5b9bb9
MK
1826 int len = TYPE_LENGTH (type);
1827
ff2e87ac
AC
1828 /* Values may be spread across multiple registers. Most debugging
1829 formats aren't expressive enough to specify the locations, so
1830 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1831 have a length that is a multiple of the word size, since GCC
1832 doesn't seem to put any other types into registers. */
1833 if (len > 4 && len % 4 == 0)
1834 {
1835 int last_regnum = regnum;
1836
1837 while (len > 4)
1838 {
1839 last_regnum = i386_next_regnum (last_regnum);
1840 len -= 4;
1841 }
1842
1843 if (last_regnum != -1)
1844 return 1;
1845 }
ff2e87ac 1846
23a34459 1847 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1848}
1849
ff2e87ac
AC
1850/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1851 return its contents in TO. */
ac27f131 1852
3a1e71e3 1853static void
ff2e87ac 1854i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 1855 struct type *type, gdb_byte *to)
ac27f131 1856{
de5b9bb9 1857 int len = TYPE_LENGTH (type);
de5b9bb9 1858
ff2e87ac
AC
1859 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1860 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1861
ff2e87ac 1862 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1863 {
d532c08f
MK
1864 i387_register_to_value (frame, regnum, type, to);
1865 return;
8d7f6b4a 1866 }
ff2e87ac 1867
fd35795f 1868 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1869
1870 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1871
de5b9bb9
MK
1872 while (len > 0)
1873 {
1874 gdb_assert (regnum != -1);
1875 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1876
42835c2b 1877 get_frame_register (frame, regnum, to);
de5b9bb9
MK
1878 regnum = i386_next_regnum (regnum);
1879 len -= 4;
42835c2b 1880 to += 4;
de5b9bb9 1881 }
ac27f131
MK
1882}
1883
ff2e87ac
AC
1884/* Write the contents FROM of a value of type TYPE into register
1885 REGNUM in frame FRAME. */
ac27f131 1886
3a1e71e3 1887static void
ff2e87ac 1888i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 1889 struct type *type, const gdb_byte *from)
ac27f131 1890{
de5b9bb9 1891 int len = TYPE_LENGTH (type);
de5b9bb9 1892
ff2e87ac 1893 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1894 {
d532c08f
MK
1895 i387_value_to_register (frame, regnum, type, from);
1896 return;
1897 }
3d261580 1898
fd35795f 1899 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1900
1901 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1902
de5b9bb9
MK
1903 while (len > 0)
1904 {
1905 gdb_assert (regnum != -1);
1906 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1907
42835c2b 1908 put_frame_register (frame, regnum, from);
de5b9bb9
MK
1909 regnum = i386_next_regnum (regnum);
1910 len -= 4;
42835c2b 1911 from += 4;
de5b9bb9 1912 }
ac27f131 1913}
ff2e87ac 1914\f
7fdafb5a
MK
1915/* Supply register REGNUM from the buffer specified by GREGS and LEN
1916 in the general-purpose register set REGSET to register cache
1917 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 1918
20187ed5 1919void
473f17b0
MK
1920i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1921 int regnum, const void *gregs, size_t len)
1922{
9ea75c57 1923 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1924 const gdb_byte *regs = gregs;
473f17b0
MK
1925 int i;
1926
1927 gdb_assert (len == tdep->sizeof_gregset);
1928
1929 for (i = 0; i < tdep->gregset_num_regs; i++)
1930 {
1931 if ((regnum == i || regnum == -1)
1932 && tdep->gregset_reg_offset[i] != -1)
1933 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1934 }
1935}
1936
7fdafb5a
MK
1937/* Collect register REGNUM from the register cache REGCACHE and store
1938 it in the buffer specified by GREGS and LEN as described by the
1939 general-purpose register set REGSET. If REGNUM is -1, do this for
1940 all registers in REGSET. */
1941
1942void
1943i386_collect_gregset (const struct regset *regset,
1944 const struct regcache *regcache,
1945 int regnum, void *gregs, size_t len)
1946{
1947 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1948 gdb_byte *regs = gregs;
7fdafb5a
MK
1949 int i;
1950
1951 gdb_assert (len == tdep->sizeof_gregset);
1952
1953 for (i = 0; i < tdep->gregset_num_regs; i++)
1954 {
1955 if ((regnum == i || regnum == -1)
1956 && tdep->gregset_reg_offset[i] != -1)
1957 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1958 }
1959}
1960
1961/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1962 in the floating-point register set REGSET to register cache
1963 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
1964
1965static void
1966i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1967 int regnum, const void *fpregs, size_t len)
1968{
9ea75c57 1969 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 1970
66a72d25
MK
1971 if (len == I387_SIZEOF_FXSAVE)
1972 {
1973 i387_supply_fxsave (regcache, regnum, fpregs);
1974 return;
1975 }
1976
473f17b0
MK
1977 gdb_assert (len == tdep->sizeof_fpregset);
1978 i387_supply_fsave (regcache, regnum, fpregs);
1979}
8446b36a 1980
2f305df1
MK
1981/* Collect register REGNUM from the register cache REGCACHE and store
1982 it in the buffer specified by FPREGS and LEN as described by the
1983 floating-point register set REGSET. If REGNUM is -1, do this for
1984 all registers in REGSET. */
7fdafb5a
MK
1985
1986static void
1987i386_collect_fpregset (const struct regset *regset,
1988 const struct regcache *regcache,
1989 int regnum, void *fpregs, size_t len)
1990{
1991 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1992
1993 if (len == I387_SIZEOF_FXSAVE)
1994 {
1995 i387_collect_fxsave (regcache, regnum, fpregs);
1996 return;
1997 }
1998
1999 gdb_assert (len == tdep->sizeof_fpregset);
2000 i387_collect_fsave (regcache, regnum, fpregs);
2001}
2002
8446b36a
MK
2003/* Return the appropriate register set for the core section identified
2004 by SECT_NAME and SECT_SIZE. */
2005
2006const struct regset *
2007i386_regset_from_core_section (struct gdbarch *gdbarch,
2008 const char *sect_name, size_t sect_size)
2009{
2010 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2011
2012 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2013 {
2014 if (tdep->gregset == NULL)
7fdafb5a
MK
2015 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2016 i386_collect_gregset);
8446b36a
MK
2017 return tdep->gregset;
2018 }
2019
66a72d25
MK
2020 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2021 || (strcmp (sect_name, ".reg-xfp") == 0
2022 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
2023 {
2024 if (tdep->fpregset == NULL)
7fdafb5a
MK
2025 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2026 i386_collect_fpregset);
8446b36a
MK
2027 return tdep->fpregset;
2028 }
2029
2030 return NULL;
2031}
473f17b0 2032\f
fc338970 2033
c906108c 2034#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
2035/* SunPRO encodes the static variables. This is not related to C++
2036 mangling, it is done for C too. */
c906108c
SS
2037
2038char *
fba45db2 2039sunpro_static_transform_name (char *name)
c906108c
SS
2040{
2041 char *p;
2042 if (IS_STATIC_TRANSFORM_NAME (name))
2043 {
fc338970
MK
2044 /* For file-local statics there will be a period, a bunch of
2045 junk (the contents of which match a string given in the
c5aa993b
JM
2046 N_OPT), a period and the name. For function-local statics
2047 there will be a bunch of junk (which seems to change the
2048 second character from 'A' to 'B'), a period, the name of the
2049 function, and the name. So just skip everything before the
2050 last period. */
c906108c
SS
2051 p = strrchr (name, '.');
2052 if (p != NULL)
2053 name = p + 1;
2054 }
2055 return name;
2056}
2057#endif /* STATIC_TRANSFORM_NAME */
fc338970 2058\f
c906108c 2059
fc338970 2060/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
2061
2062CORE_ADDR
1cce71eb 2063i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 2064{
fc338970 2065 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 2066 {
c5aa993b 2067 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 2068 struct minimal_symbol *indsym =
fc338970 2069 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2070 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2071
c5aa993b 2072 if (symname)
c906108c 2073 {
c5aa993b
JM
2074 if (strncmp (symname, "__imp_", 6) == 0
2075 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
2076 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2077 }
2078 }
fc338970 2079 return 0; /* Not a trampoline. */
c906108c 2080}
fc338970
MK
2081\f
2082
377d9ebd 2083/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 2084 sigtramp routine. */
8201327c
MK
2085
2086static int
911bc6ee 2087i386_sigtramp_p (struct frame_info *next_frame)
8201327c 2088{
911bc6ee
MK
2089 CORE_ADDR pc = frame_pc_unwind (next_frame);
2090 char *name;
2091
2092 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2093 return (name && strcmp ("_sigtramp", name) == 0);
2094}
2095\f
2096
fc338970
MK
2097/* We have two flavours of disassembly. The machinery on this page
2098 deals with switching between those. */
c906108c
SS
2099
2100static int
a89aa300 2101i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 2102{
5e3397bb
MK
2103 gdb_assert (disassembly_flavor == att_flavor
2104 || disassembly_flavor == intel_flavor);
2105
2106 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2107 constified, cast to prevent a compiler warning. */
2108 info->disassembler_options = (char *) disassembly_flavor;
2109 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
2110
2111 return print_insn_i386 (pc, info);
7a292a7a 2112}
fc338970 2113\f
3ce1502b 2114
8201327c
MK
2115/* There are a few i386 architecture variants that differ only
2116 slightly from the generic i386 target. For now, we don't give them
2117 their own source file, but include them here. As a consequence,
2118 they'll always be included. */
3ce1502b 2119
8201327c 2120/* System V Release 4 (SVR4). */
3ce1502b 2121
377d9ebd 2122/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
2123 sigtramp routine. */
2124
8201327c 2125static int
911bc6ee 2126i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 2127{
911bc6ee
MK
2128 CORE_ADDR pc = frame_pc_unwind (next_frame);
2129 char *name;
2130
acd5c798
MK
2131 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2132 currently unknown. */
911bc6ee 2133 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2134 return (name && (strcmp ("_sigreturn", name) == 0
2135 || strcmp ("_sigacthandler", name) == 0
2136 || strcmp ("sigvechandler", name) == 0));
2137}
d2a7c97a 2138
acd5c798
MK
2139/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2140 routine, return the address of the associated sigcontext (ucontext)
2141 structure. */
3ce1502b 2142
3a1e71e3 2143static CORE_ADDR
acd5c798 2144i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 2145{
63c0089f 2146 gdb_byte buf[4];
acd5c798 2147 CORE_ADDR sp;
3ce1502b 2148
acd5c798
MK
2149 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2150 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 2151
acd5c798 2152 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
2153}
2154\f
3ce1502b 2155
8201327c 2156/* Generic ELF. */
d2a7c97a 2157
8201327c
MK
2158void
2159i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2160{
c4fc7f1b
MK
2161 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2162 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2163}
3ce1502b 2164
8201327c 2165/* System V Release 4 (SVR4). */
3ce1502b 2166
8201327c
MK
2167void
2168i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2169{
2170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2171
8201327c
MK
2172 /* System V Release 4 uses ELF. */
2173 i386_elf_init_abi (info, gdbarch);
3ce1502b 2174
dfe01d39 2175 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2176 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2177
911bc6ee 2178 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2179 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2180 tdep->sc_pc_offset = 36 + 14 * 4;
2181 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2182
8201327c 2183 tdep->jb_pc_offset = 20;
3ce1502b
MK
2184}
2185
8201327c 2186/* DJGPP. */
3ce1502b 2187
3a1e71e3 2188static void
8201327c 2189i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2190{
8201327c 2191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2192
911bc6ee
MK
2193 /* DJGPP doesn't have any special frames for signal handlers. */
2194 tdep->sigtramp_p = NULL;
3ce1502b 2195
8201327c 2196 tdep->jb_pc_offset = 36;
3ce1502b
MK
2197}
2198
8201327c 2199/* NetWare. */
3ce1502b 2200
3a1e71e3 2201static void
8201327c 2202i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2203{
8201327c 2204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2205
8201327c 2206 tdep->jb_pc_offset = 24;
d2a7c97a 2207}
8201327c 2208\f
2acceee2 2209
38c968cf
AC
2210/* i386 register groups. In addition to the normal groups, add "mmx"
2211 and "sse". */
2212
2213static struct reggroup *i386_sse_reggroup;
2214static struct reggroup *i386_mmx_reggroup;
2215
2216static void
2217i386_init_reggroups (void)
2218{
2219 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2220 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2221}
2222
2223static void
2224i386_add_reggroups (struct gdbarch *gdbarch)
2225{
2226 reggroup_add (gdbarch, i386_sse_reggroup);
2227 reggroup_add (gdbarch, i386_mmx_reggroup);
2228 reggroup_add (gdbarch, general_reggroup);
2229 reggroup_add (gdbarch, float_reggroup);
2230 reggroup_add (gdbarch, all_reggroup);
2231 reggroup_add (gdbarch, save_reggroup);
2232 reggroup_add (gdbarch, restore_reggroup);
2233 reggroup_add (gdbarch, vector_reggroup);
2234 reggroup_add (gdbarch, system_reggroup);
2235}
2236
2237int
2238i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2239 struct reggroup *group)
2240{
5716833c
MK
2241 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2242 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
2243 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2244 || i386_fpc_regnum_p (regnum));
5716833c 2245 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2246
38c968cf
AC
2247 if (group == i386_mmx_reggroup)
2248 return mmx_regnum_p;
2249 if (group == i386_sse_reggroup)
2250 return sse_regnum_p;
2251 if (group == vector_reggroup)
2252 return (mmx_regnum_p || sse_regnum_p);
2253 if (group == float_reggroup)
2254 return fp_regnum_p;
2255 if (group == general_reggroup)
2256 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2257
38c968cf
AC
2258 return default_register_reggroup_p (gdbarch, regnum, group);
2259}
38c968cf 2260\f
acd5c798 2261
f837910f
MK
2262/* Get the ARGIth function argument for the current function. */
2263
42c466d7 2264static CORE_ADDR
143985b7
AF
2265i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2266 struct type *type)
2267{
f837910f
MK
2268 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2269 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2270}
2271
2272\f
3a1e71e3 2273static struct gdbarch *
a62cc96e
AC
2274i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2275{
cd3c07fc 2276 struct gdbarch_tdep *tdep;
a62cc96e
AC
2277 struct gdbarch *gdbarch;
2278
4be87837
DJ
2279 /* If there is already a candidate, use it. */
2280 arches = gdbarch_list_lookup_by_info (arches, &info);
2281 if (arches != NULL)
2282 return arches->gdbarch;
a62cc96e
AC
2283
2284 /* Allocate space for the new architecture. */
2285 tdep = XMALLOC (struct gdbarch_tdep);
2286 gdbarch = gdbarch_alloc (&info, tdep);
2287
473f17b0
MK
2288 /* General-purpose registers. */
2289 tdep->gregset = NULL;
2290 tdep->gregset_reg_offset = NULL;
2291 tdep->gregset_num_regs = I386_NUM_GREGS;
2292 tdep->sizeof_gregset = 0;
2293
2294 /* Floating-point registers. */
2295 tdep->fpregset = NULL;
2296 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2297
5716833c 2298 /* The default settings include the FPU registers, the MMX registers
fd35795f 2299 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2300 by adjusting the members `st0_regnum', `mm0_regnum' and
2301 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2302 will show up in the output of "info all-registers". Ideally we
2303 should try to autodetect whether they are available, such that we
2304 can prevent "info all-registers" from displaying registers that
2305 aren't available.
2306
2307 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2308 [the SSE registers] always (even when they don't exist) or never
2309 showing them to the user (even when they do exist), I prefer the
2310 former over the latter. */
2311
2312 tdep->st0_regnum = I386_ST0_REGNUM;
2313
2314 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2315 calculating the register number for %mm0 until we know the number
5716833c
MK
2316 of raw registers. */
2317 tdep->mm0_regnum = 0;
2318
2319 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2320 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2321
8201327c
MK
2322 tdep->jb_pc_offset = -1;
2323 tdep->struct_return = pcc_struct_return;
8201327c
MK
2324 tdep->sigtramp_start = 0;
2325 tdep->sigtramp_end = 0;
911bc6ee 2326 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2327 tdep->sigcontext_addr = NULL;
a3386186 2328 tdep->sc_reg_offset = NULL;
8201327c 2329 tdep->sc_pc_offset = -1;
21d0e8a4 2330 tdep->sc_sp_offset = -1;
8201327c 2331
896fb97d
MK
2332 /* The format used for `long double' on almost all i386 targets is
2333 the i387 extended floating-point format. In fact, of all targets
2334 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2335 on having a `long double' that's not `long' at all. */
2336 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 2337
66da5fd8 2338 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2339 bits, a `long double' actually takes up 96, probably to enforce
2340 alignment. */
2341 set_gdbarch_long_double_bit (gdbarch, 96);
2342
49ed40de
KB
2343 /* The default ABI includes general-purpose registers,
2344 floating-point registers, and the SSE registers. */
2345 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2346 set_gdbarch_register_name (gdbarch, i386_register_name);
2347 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2348
acd5c798
MK
2349 /* Register numbers of various important registers. */
2350 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2351 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2352 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2353 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2354
c4fc7f1b
MK
2355 /* NOTE: kettenis/20040418: GCC does have two possible register
2356 numbering schemes on the i386: dbx and SVR4. These schemes
2357 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2358 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2359 dbx_register_map[] and svr4_dbx_register_map in
2360 gcc/config/i386.c. GCC also defines a third numbering scheme in
2361 gcc/config/i386.c, which it designates as the "default" register
2362 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2363 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2364 amd64-tdep.c.
2365
2366 Currently, each GCC i386 target always uses the same register
2367 numbering scheme across all its supported debugging formats
2368 i.e. SDB (COFF), stabs and DWARF 2. This is because
2369 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2370 DBX_REGISTER_NUMBER macro which is defined by each target's
2371 respective config header in a manner independent of the requested
2372 output debugging format.
2373
2374 This does not match the arrangement below, which presumes that
2375 the SDB and stabs numbering schemes differ from the DWARF and
2376 DWARF 2 ones. The reason for this arrangement is that it is
2377 likely to get the numbering scheme for the target's
2378 default/native debug format right. For targets where GCC is the
2379 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2380 targets where the native toolchain uses a different numbering
2381 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2382 the defaults below will have to be overridden, like
2383 i386_elf_init_abi() does. */
c4fc7f1b
MK
2384
2385 /* Use the dbx register numbering scheme for stabs and COFF. */
2386 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2387 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2388
2389 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2390 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2391 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e
MK
2392
2393 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2394 be in use on any of the supported i386 targets. */
2395
61113f8b
MK
2396 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2397
8201327c 2398 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2399
a62cc96e 2400 /* Call dummy code. */
acd5c798 2401 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2402
ff2e87ac
AC
2403 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2404 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2405 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2406
c5e656c1 2407 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2408
93924b6b
MK
2409 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2410
2411 /* Stack grows downward. */
2412 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2413
2414 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2415 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2416
42fdc8df 2417 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2418
28fc6740 2419 /* Wire in the MMX registers. */
0f751ff2 2420 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2421 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2422 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2423
5e3397bb
MK
2424 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2425
acd5c798 2426 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2427
2428 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2429
38c968cf
AC
2430 /* Add the i386 register groups. */
2431 i386_add_reggroups (gdbarch);
2432 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2433
143985b7
AF
2434 /* Helper for function argument information. */
2435 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2436
6405b0a6 2437 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2438 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2439
acd5c798 2440 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2441
3ce1502b 2442 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2443 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2444
336d1bba
AC
2445 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2446 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2447
8446b36a
MK
2448 /* If we have a register mapping, enable the generic core file
2449 support, unless it has already been enabled. */
2450 if (tdep->gregset_reg_offset
2451 && !gdbarch_regset_from_core_section_p (gdbarch))
2452 set_gdbarch_regset_from_core_section (gdbarch,
2453 i386_regset_from_core_section);
2454
5716833c
MK
2455 /* Unless support for MMX has been disabled, make %mm0 the first
2456 pseudo-register. */
2457 if (tdep->mm0_regnum == 0)
2458 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2459
a62cc96e
AC
2460 return gdbarch;
2461}
2462
8201327c
MK
2463static enum gdb_osabi
2464i386_coff_osabi_sniffer (bfd *abfd)
2465{
762c5349
MK
2466 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2467 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2468 return GDB_OSABI_GO32;
2469
2470 return GDB_OSABI_UNKNOWN;
2471}
2472
2473static enum gdb_osabi
2474i386_nlm_osabi_sniffer (bfd *abfd)
2475{
2476 return GDB_OSABI_NETWARE;
2477}
2478\f
2479
28e9e0f0
MK
2480/* Provide a prototype to silence -Wmissing-prototypes. */
2481void _initialize_i386_tdep (void);
2482
c906108c 2483void
fba45db2 2484_initialize_i386_tdep (void)
c906108c 2485{
a62cc96e
AC
2486 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2487
fc338970 2488 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
2489 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2490 &disassembly_flavor, _("\
2491Set the disassembly flavor."), _("\
2492Show the disassembly flavor."), _("\
2493The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2494 NULL,
2495 NULL, /* FIXME: i18n: */
2496 &setlist, &showlist);
8201327c
MK
2497
2498 /* Add the variable that controls the convention for returning
2499 structs. */
7ab04401
AC
2500 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2501 &struct_convention, _("\
2502Set the convention for returning small structs."), _("\
2503Show the convention for returning small structs."), _("\
2504Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2505is \"default\"."),
2506 NULL,
2507 NULL, /* FIXME: i18n: */
2508 &setlist, &showlist);
8201327c
MK
2509
2510 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2511 i386_coff_osabi_sniffer);
2512 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2513 i386_nlm_osabi_sniffer);
2514
05816f70 2515 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2516 i386_svr4_init_abi);
05816f70 2517 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2518 i386_go32_init_abi);
05816f70 2519 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 2520 i386_nw_init_abi);
38c968cf 2521
5ae96ec1 2522 /* Initialize the i386-specific register groups & types. */
38c968cf 2523 i386_init_reggroups ();
5ae96ec1 2524 i386_init_types();
c906108c 2525}