]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
* mips-opc.c (CP): New macro.
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
35997600 3 2004, 2005, 2006, 2007, 2008
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
5287ad62 28#include <limits.h>
037e8744 29#include <stdarg.h>
c19d1205 30#define NO_RELOC 0
b99bd4ef 31#include "as.h"
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
720abc60 45#define WARN_DEPRECATED 1
03b1477f 46
7ed4c4c5
NC
47#ifdef OBJ_ELF
48/* Must be at least the size of the largest unwind opcode (currently two). */
49#define ARM_OPCODE_CHUNK_SIZE 8
50
51/* This structure holds the unwinding state. */
52
53static struct
54{
c19d1205
ZW
55 symbolS * proc_start;
56 symbolS * table_entry;
57 symbolS * personality_routine;
58 int personality_index;
7ed4c4c5 59 /* The segment containing the function. */
c19d1205
ZW
60 segT saved_seg;
61 subsegT saved_subseg;
7ed4c4c5
NC
62 /* Opcodes generated from this function. */
63 unsigned char * opcodes;
c19d1205
ZW
64 int opcode_count;
65 int opcode_alloc;
7ed4c4c5 66 /* The number of bytes pushed to the stack. */
c19d1205 67 offsetT frame_size;
7ed4c4c5
NC
68 /* We don't add stack adjustment opcodes immediately so that we can merge
69 multiple adjustments. We can also omit the final adjustment
70 when using a frame pointer. */
c19d1205 71 offsetT pending_offset;
7ed4c4c5 72 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
73 hold the reg+offset to use when restoring sp from a frame pointer. */
74 offsetT fp_offset;
75 int fp_reg;
7ed4c4c5 76 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 77 unsigned fp_used:1;
7ed4c4c5 78 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 79 unsigned sp_restored:1;
7ed4c4c5
NC
80} unwind;
81
8b1ad454
NC
82/* Bit N indicates that an R_ARM_NONE relocation has been output for
83 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
84 emitted only once per section, to save unnecessary bloat. */
85static unsigned int marked_pr_dependency = 0;
86
87#endif /* OBJ_ELF */
88
4962c51a
MS
89/* Results from operand parsing worker functions. */
90
91typedef enum
92{
93 PARSE_OPERAND_SUCCESS,
94 PARSE_OPERAND_FAIL,
95 PARSE_OPERAND_FAIL_NO_BACKTRACK
96} parse_operand_result;
97
33a392fb
PB
98enum arm_float_abi
99{
100 ARM_FLOAT_ABI_HARD,
101 ARM_FLOAT_ABI_SOFTFP,
102 ARM_FLOAT_ABI_SOFT
103};
104
c19d1205 105/* Types of processor to assemble for. */
b99bd4ef
NC
106#ifndef CPU_DEFAULT
107#if defined __XSCALE__
e74cfd16 108#define CPU_DEFAULT ARM_ARCH_XSCALE
b99bd4ef
NC
109#else
110#if defined __thumb__
e74cfd16 111#define CPU_DEFAULT ARM_ARCH_V5T
b99bd4ef
NC
112#endif
113#endif
114#endif
115
116#ifndef FPU_DEFAULT
c820d418
MM
117# ifdef TE_LINUX
118# define FPU_DEFAULT FPU_ARCH_FPA
119# elif defined (TE_NetBSD)
120# ifdef OBJ_ELF
121# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
122# else
123 /* Legacy a.out format. */
124# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
125# endif
4e7fd91e
PB
126# elif defined (TE_VXWORKS)
127# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
128# else
129 /* For backwards compatibility, default to FPA. */
130# define FPU_DEFAULT FPU_ARCH_FPA
131# endif
132#endif /* ifndef FPU_DEFAULT */
b99bd4ef 133
c19d1205 134#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 135
e74cfd16
PB
136static arm_feature_set cpu_variant;
137static arm_feature_set arm_arch_used;
138static arm_feature_set thumb_arch_used;
b99bd4ef 139
b99bd4ef 140/* Flags stored in private area of BFD structure. */
c19d1205
ZW
141static int uses_apcs_26 = FALSE;
142static int atpcs = FALSE;
b34976b6
AM
143static int support_interwork = FALSE;
144static int uses_apcs_float = FALSE;
c19d1205 145static int pic_code = FALSE;
845b51d6 146static int fix_v4bx = FALSE;
03b1477f
RE
147
148/* Variables that we set while parsing command-line options. Once all
149 options have been read we re-process these values to set the real
150 assembly flags. */
e74cfd16
PB
151static const arm_feature_set *legacy_cpu = NULL;
152static const arm_feature_set *legacy_fpu = NULL;
153
154static const arm_feature_set *mcpu_cpu_opt = NULL;
155static const arm_feature_set *mcpu_fpu_opt = NULL;
156static const arm_feature_set *march_cpu_opt = NULL;
157static const arm_feature_set *march_fpu_opt = NULL;
158static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 159static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
160
161/* Constants for known architecture features. */
162static const arm_feature_set fpu_default = FPU_DEFAULT;
163static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
164static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
165static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
166static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
167static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
168static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
169static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
170static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
171
172#ifdef CPU_DEFAULT
173static const arm_feature_set cpu_default = CPU_DEFAULT;
174#endif
175
176static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
177static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
178static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
179static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
180static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
181static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
182static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
183static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
184static const arm_feature_set arm_ext_v4t_5 =
185 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
186static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
187static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
188static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
189static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
190static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
191static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
192static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
193static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
62b3e311 194static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
7e806470
PB
195static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
196static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
197static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
198static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
199static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
200static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
7e806470
PB
201static const arm_feature_set arm_ext_m =
202 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
e74cfd16
PB
203
204static const arm_feature_set arm_arch_any = ARM_ANY;
205static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
206static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
207static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
208
2d447fca
JM
209static const arm_feature_set arm_cext_iwmmxt2 =
210 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
211static const arm_feature_set arm_cext_iwmmxt =
212 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
213static const arm_feature_set arm_cext_xscale =
214 ARM_FEATURE (0, ARM_CEXT_XSCALE);
215static const arm_feature_set arm_cext_maverick =
216 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
217static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
218static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
219static const arm_feature_set fpu_vfp_ext_v1xd =
220 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
221static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
222static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
5287ad62 223static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
224static const arm_feature_set fpu_vfp_ext_d32 =
225 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
226static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
227static const arm_feature_set fpu_vfp_v3_or_neon_ext =
228 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
e74cfd16 229
33a392fb 230static int mfloat_abi_opt = -1;
e74cfd16
PB
231/* Record user cpu selection for object attributes. */
232static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
233/* Must be long enough to hold any of the names in arm_cpus. */
234static char selected_cpu_name[16];
7cc69913 235#ifdef OBJ_ELF
deeaaff8
DJ
236# ifdef EABI_DEFAULT
237static int meabi_flags = EABI_DEFAULT;
238# else
d507cf36 239static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 240# endif
e1da3f5b
PB
241
242bfd_boolean
5f4273c7 243arm_is_eabi (void)
e1da3f5b
PB
244{
245 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
246}
7cc69913 247#endif
b99bd4ef 248
b99bd4ef 249#ifdef OBJ_ELF
c19d1205 250/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
251symbolS * GOT_symbol;
252#endif
253
b99bd4ef
NC
254/* 0: assemble for ARM,
255 1: assemble for Thumb,
256 2: assemble for Thumb even though target CPU does not support thumb
257 instructions. */
258static int thumb_mode = 0;
259
c19d1205
ZW
260/* If unified_syntax is true, we are processing the new unified
261 ARM/Thumb syntax. Important differences from the old ARM mode:
262
263 - Immediate operands do not require a # prefix.
264 - Conditional affixes always appear at the end of the
265 instruction. (For backward compatibility, those instructions
266 that formerly had them in the middle, continue to accept them
267 there.)
268 - The IT instruction may appear, and if it does is validated
269 against subsequent conditional affixes. It does not generate
270 machine code.
271
272 Important differences from the old Thumb mode:
273
274 - Immediate operands do not require a # prefix.
275 - Most of the V6T2 instructions are only available in unified mode.
276 - The .N and .W suffixes are recognized and honored (it is an error
277 if they cannot be honored).
278 - All instructions set the flags if and only if they have an 's' affix.
279 - Conditional affixes may be used. They are validated against
280 preceding IT instructions. Unlike ARM mode, you cannot use a
281 conditional affix except in the scope of an IT instruction. */
282
283static bfd_boolean unified_syntax = FALSE;
b99bd4ef 284
5287ad62
JB
285enum neon_el_type
286{
dcbf9037 287 NT_invtype,
5287ad62
JB
288 NT_untyped,
289 NT_integer,
290 NT_float,
291 NT_poly,
292 NT_signed,
dcbf9037 293 NT_unsigned
5287ad62
JB
294};
295
296struct neon_type_el
297{
298 enum neon_el_type type;
299 unsigned size;
300};
301
302#define NEON_MAX_TYPE_ELS 4
303
304struct neon_type
305{
306 struct neon_type_el el[NEON_MAX_TYPE_ELS];
307 unsigned elems;
308};
309
b99bd4ef
NC
310struct arm_it
311{
c19d1205 312 const char * error;
b99bd4ef 313 unsigned long instruction;
c19d1205
ZW
314 int size;
315 int size_req;
316 int cond;
037e8744
JB
317 /* "uncond_value" is set to the value in place of the conditional field in
318 unconditional versions of the instruction, or -1 if nothing is
319 appropriate. */
320 int uncond_value;
5287ad62 321 struct neon_type vectype;
0110f2b8
PB
322 /* Set to the opcode if the instruction needs relaxation.
323 Zero if the instruction is not relaxed. */
324 unsigned long relax;
b99bd4ef
NC
325 struct
326 {
327 bfd_reloc_code_real_type type;
c19d1205
ZW
328 expressionS exp;
329 int pc_rel;
b99bd4ef 330 } reloc;
b99bd4ef 331
c19d1205
ZW
332 struct
333 {
334 unsigned reg;
ca3f61f7 335 signed int imm;
dcbf9037 336 struct neon_type_el vectype;
ca3f61f7
NC
337 unsigned present : 1; /* Operand present. */
338 unsigned isreg : 1; /* Operand was a register. */
339 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
340 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
341 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 342 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
343 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
344 instructions. This allows us to disambiguate ARM <-> vector insns. */
345 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 346 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 347 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 348 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
349 unsigned hasreloc : 1; /* Operand has relocation suffix. */
350 unsigned writeback : 1; /* Operand has trailing ! */
351 unsigned preind : 1; /* Preindexed address. */
352 unsigned postind : 1; /* Postindexed address. */
353 unsigned negative : 1; /* Index register was negated. */
354 unsigned shifted : 1; /* Shift applied to operation. */
355 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 356 } operands[6];
b99bd4ef
NC
357};
358
c19d1205 359static struct arm_it inst;
b99bd4ef
NC
360
361#define NUM_FLOAT_VALS 8
362
05d2d07e 363const char * fp_const[] =
b99bd4ef
NC
364{
365 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
366};
367
c19d1205 368/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
369#define MAX_LITTLENUMS 6
370
371LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
372
373#define FAIL (-1)
374#define SUCCESS (0)
375
376#define SUFF_S 1
377#define SUFF_D 2
378#define SUFF_E 3
379#define SUFF_P 4
380
c19d1205
ZW
381#define CP_T_X 0x00008000
382#define CP_T_Y 0x00400000
b99bd4ef 383
c19d1205
ZW
384#define CONDS_BIT 0x00100000
385#define LOAD_BIT 0x00100000
b99bd4ef
NC
386
387#define DOUBLE_LOAD_FLAG 0x00000001
388
389struct asm_cond
390{
c19d1205 391 const char * template;
b99bd4ef
NC
392 unsigned long value;
393};
394
c19d1205 395#define COND_ALWAYS 0xE
b99bd4ef 396
b99bd4ef
NC
397struct asm_psr
398{
b34976b6 399 const char *template;
b99bd4ef
NC
400 unsigned long field;
401};
402
62b3e311
PB
403struct asm_barrier_opt
404{
405 const char *template;
406 unsigned long value;
407};
408
2d2255b5 409/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
410#define SPSR_BIT (1 << 22)
411
c19d1205
ZW
412/* The individual PSR flag bits. */
413#define PSR_c (1 << 16)
414#define PSR_x (1 << 17)
415#define PSR_s (1 << 18)
416#define PSR_f (1 << 19)
b99bd4ef 417
c19d1205 418struct reloc_entry
bfae80f2 419{
c19d1205
ZW
420 char *name;
421 bfd_reloc_code_real_type reloc;
bfae80f2
RE
422};
423
5287ad62 424enum vfp_reg_pos
bfae80f2 425{
5287ad62
JB
426 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
427 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
428};
429
430enum vfp_ldstm_type
431{
432 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
433};
434
dcbf9037
JB
435/* Bits for DEFINED field in neon_typed_alias. */
436#define NTA_HASTYPE 1
437#define NTA_HASINDEX 2
438
439struct neon_typed_alias
440{
441 unsigned char defined;
442 unsigned char index;
443 struct neon_type_el eltype;
444};
445
c19d1205
ZW
446/* ARM register categories. This includes coprocessor numbers and various
447 architecture extensions' registers. */
448enum arm_reg_type
bfae80f2 449{
c19d1205
ZW
450 REG_TYPE_RN,
451 REG_TYPE_CP,
452 REG_TYPE_CN,
453 REG_TYPE_FN,
454 REG_TYPE_VFS,
455 REG_TYPE_VFD,
5287ad62 456 REG_TYPE_NQ,
037e8744 457 REG_TYPE_VFSD,
5287ad62 458 REG_TYPE_NDQ,
037e8744 459 REG_TYPE_NSDQ,
c19d1205
ZW
460 REG_TYPE_VFC,
461 REG_TYPE_MVF,
462 REG_TYPE_MVD,
463 REG_TYPE_MVFX,
464 REG_TYPE_MVDX,
465 REG_TYPE_MVAX,
466 REG_TYPE_DSPSC,
467 REG_TYPE_MMXWR,
468 REG_TYPE_MMXWC,
469 REG_TYPE_MMXWCG,
470 REG_TYPE_XSCALE,
bfae80f2
RE
471};
472
dcbf9037
JB
473/* Structure for a hash table entry for a register.
474 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
475 information which states whether a vector type or index is specified (for a
476 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
477struct reg_entry
478{
dcbf9037
JB
479 const char *name;
480 unsigned char number;
481 unsigned char type;
482 unsigned char builtin;
483 struct neon_typed_alias *neon;
6c43fab6
RE
484};
485
c19d1205
ZW
486/* Diagnostics used when we don't get a register of the expected type. */
487const char *const reg_expected_msgs[] =
488{
489 N_("ARM register expected"),
490 N_("bad or missing co-processor number"),
491 N_("co-processor register expected"),
492 N_("FPA register expected"),
493 N_("VFP single precision register expected"),
5287ad62
JB
494 N_("VFP/Neon double precision register expected"),
495 N_("Neon quad precision register expected"),
037e8744 496 N_("VFP single or double precision register expected"),
5287ad62 497 N_("Neon double or quad precision register expected"),
037e8744 498 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
499 N_("VFP system register expected"),
500 N_("Maverick MVF register expected"),
501 N_("Maverick MVD register expected"),
502 N_("Maverick MVFX register expected"),
503 N_("Maverick MVDX register expected"),
504 N_("Maverick MVAX register expected"),
505 N_("Maverick DSPSC register expected"),
506 N_("iWMMXt data register expected"),
507 N_("iWMMXt control register expected"),
508 N_("iWMMXt scalar register expected"),
509 N_("XScale accumulator register expected"),
6c43fab6
RE
510};
511
c19d1205
ZW
512/* Some well known registers that we refer to directly elsewhere. */
513#define REG_SP 13
514#define REG_LR 14
515#define REG_PC 15
404ff6b5 516
b99bd4ef
NC
517/* ARM instructions take 4bytes in the object file, Thumb instructions
518 take 2: */
c19d1205 519#define INSN_SIZE 4
b99bd4ef
NC
520
521struct asm_opcode
522{
523 /* Basic string to match. */
c19d1205
ZW
524 const char *template;
525
526 /* Parameters to instruction. */
527 unsigned char operands[8];
528
529 /* Conditional tag - see opcode_lookup. */
530 unsigned int tag : 4;
b99bd4ef
NC
531
532 /* Basic instruction code. */
c19d1205 533 unsigned int avalue : 28;
b99bd4ef 534
c19d1205
ZW
535 /* Thumb-format instruction code. */
536 unsigned int tvalue;
b99bd4ef 537
90e4755a 538 /* Which architecture variant provides this instruction. */
e74cfd16
PB
539 const arm_feature_set *avariant;
540 const arm_feature_set *tvariant;
c19d1205
ZW
541
542 /* Function to call to encode instruction in ARM format. */
543 void (* aencode) (void);
b99bd4ef 544
c19d1205
ZW
545 /* Function to call to encode instruction in Thumb format. */
546 void (* tencode) (void);
b99bd4ef
NC
547};
548
a737bd4d
NC
549/* Defines for various bits that we will want to toggle. */
550#define INST_IMMEDIATE 0x02000000
551#define OFFSET_REG 0x02000000
c19d1205 552#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
553#define SHIFT_BY_REG 0x00000010
554#define PRE_INDEX 0x01000000
555#define INDEX_UP 0x00800000
556#define WRITE_BACK 0x00200000
557#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 558#define CPSI_MMOD 0x00020000
90e4755a 559
a737bd4d
NC
560#define LITERAL_MASK 0xf000f000
561#define OPCODE_MASK 0xfe1fffff
562#define V4_STR_BIT 0x00000020
90e4755a 563
efd81785
PB
564#define T2_SUBS_PC_LR 0xf3de8f00
565
a737bd4d 566#define DATA_OP_SHIFT 21
90e4755a 567
ef8d22e6
PB
568#define T2_OPCODE_MASK 0xfe1fffff
569#define T2_DATA_OP_SHIFT 21
570
a737bd4d
NC
571/* Codes to distinguish the arithmetic instructions. */
572#define OPCODE_AND 0
573#define OPCODE_EOR 1
574#define OPCODE_SUB 2
575#define OPCODE_RSB 3
576#define OPCODE_ADD 4
577#define OPCODE_ADC 5
578#define OPCODE_SBC 6
579#define OPCODE_RSC 7
580#define OPCODE_TST 8
581#define OPCODE_TEQ 9
582#define OPCODE_CMP 10
583#define OPCODE_CMN 11
584#define OPCODE_ORR 12
585#define OPCODE_MOV 13
586#define OPCODE_BIC 14
587#define OPCODE_MVN 15
90e4755a 588
ef8d22e6
PB
589#define T2_OPCODE_AND 0
590#define T2_OPCODE_BIC 1
591#define T2_OPCODE_ORR 2
592#define T2_OPCODE_ORN 3
593#define T2_OPCODE_EOR 4
594#define T2_OPCODE_ADD 8
595#define T2_OPCODE_ADC 10
596#define T2_OPCODE_SBC 11
597#define T2_OPCODE_SUB 13
598#define T2_OPCODE_RSB 14
599
a737bd4d
NC
600#define T_OPCODE_MUL 0x4340
601#define T_OPCODE_TST 0x4200
602#define T_OPCODE_CMN 0x42c0
603#define T_OPCODE_NEG 0x4240
604#define T_OPCODE_MVN 0x43c0
90e4755a 605
a737bd4d
NC
606#define T_OPCODE_ADD_R3 0x1800
607#define T_OPCODE_SUB_R3 0x1a00
608#define T_OPCODE_ADD_HI 0x4400
609#define T_OPCODE_ADD_ST 0xb000
610#define T_OPCODE_SUB_ST 0xb080
611#define T_OPCODE_ADD_SP 0xa800
612#define T_OPCODE_ADD_PC 0xa000
613#define T_OPCODE_ADD_I8 0x3000
614#define T_OPCODE_SUB_I8 0x3800
615#define T_OPCODE_ADD_I3 0x1c00
616#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 617
a737bd4d
NC
618#define T_OPCODE_ASR_R 0x4100
619#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
620#define T_OPCODE_LSR_R 0x40c0
621#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
622#define T_OPCODE_ASR_I 0x1000
623#define T_OPCODE_LSL_I 0x0000
624#define T_OPCODE_LSR_I 0x0800
b99bd4ef 625
a737bd4d
NC
626#define T_OPCODE_MOV_I8 0x2000
627#define T_OPCODE_CMP_I8 0x2800
628#define T_OPCODE_CMP_LR 0x4280
629#define T_OPCODE_MOV_HR 0x4600
630#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 631
a737bd4d
NC
632#define T_OPCODE_LDR_PC 0x4800
633#define T_OPCODE_LDR_SP 0x9800
634#define T_OPCODE_STR_SP 0x9000
635#define T_OPCODE_LDR_IW 0x6800
636#define T_OPCODE_STR_IW 0x6000
637#define T_OPCODE_LDR_IH 0x8800
638#define T_OPCODE_STR_IH 0x8000
639#define T_OPCODE_LDR_IB 0x7800
640#define T_OPCODE_STR_IB 0x7000
641#define T_OPCODE_LDR_RW 0x5800
642#define T_OPCODE_STR_RW 0x5000
643#define T_OPCODE_LDR_RH 0x5a00
644#define T_OPCODE_STR_RH 0x5200
645#define T_OPCODE_LDR_RB 0x5c00
646#define T_OPCODE_STR_RB 0x5400
c9b604bd 647
a737bd4d
NC
648#define T_OPCODE_PUSH 0xb400
649#define T_OPCODE_POP 0xbc00
b99bd4ef 650
2fc8bdac 651#define T_OPCODE_BRANCH 0xe000
b99bd4ef 652
a737bd4d 653#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 654#define THUMB_PP_PC_LR 0x0100
c19d1205 655#define THUMB_LOAD_BIT 0x0800
53365c0d 656#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
657
658#define BAD_ARGS _("bad arguments to instruction")
659#define BAD_PC _("r15 not allowed here")
660#define BAD_COND _("instruction cannot be conditional")
661#define BAD_OVERLAP _("registers may not be the same")
662#define BAD_HIREG _("lo register required")
663#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 664#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
665#define BAD_BRANCH _("branch must be last instruction in IT block")
666#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 667#define BAD_FPU _("selected FPU does not support instruction")
c19d1205
ZW
668
669static struct hash_control *arm_ops_hsh;
670static struct hash_control *arm_cond_hsh;
671static struct hash_control *arm_shift_hsh;
672static struct hash_control *arm_psr_hsh;
62b3e311 673static struct hash_control *arm_v7m_psr_hsh;
c19d1205
ZW
674static struct hash_control *arm_reg_hsh;
675static struct hash_control *arm_reloc_hsh;
62b3e311 676static struct hash_control *arm_barrier_opt_hsh;
b99bd4ef 677
b99bd4ef
NC
678/* Stuff needed to resolve the label ambiguity
679 As:
680 ...
681 label: <insn>
682 may differ from:
683 ...
684 label:
5f4273c7 685 <insn> */
b99bd4ef
NC
686
687symbolS * last_label_seen;
b34976b6 688static int label_is_thumb_function_name = FALSE;
a737bd4d 689\f
3d0c9500
NC
690/* Literal pool structure. Held on a per-section
691 and per-sub-section basis. */
a737bd4d 692
c19d1205 693#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 694typedef struct literal_pool
b99bd4ef 695{
c19d1205
ZW
696 expressionS literals [MAX_LITERAL_POOL_SIZE];
697 unsigned int next_free_entry;
698 unsigned int id;
699 symbolS * symbol;
700 segT section;
701 subsegT sub_section;
61b5f74b 702 struct literal_pool * next;
3d0c9500 703} literal_pool;
b99bd4ef 704
3d0c9500
NC
705/* Pointer to a linked list of literal pools. */
706literal_pool * list_of_pools = NULL;
e27ec89e
PB
707
708/* State variables for IT block handling. */
709static bfd_boolean current_it_mask = 0;
710static int current_cc;
c19d1205
ZW
711\f
712/* Pure syntax. */
b99bd4ef 713
c19d1205
ZW
714/* This array holds the chars that always start a comment. If the
715 pre-processor is disabled, these aren't very useful. */
716const char comment_chars[] = "@";
3d0c9500 717
c19d1205
ZW
718/* This array holds the chars that only start a comment at the beginning of
719 a line. If the line seems to have the form '# 123 filename'
720 .line and .file directives will appear in the pre-processed output. */
721/* Note that input_file.c hand checks for '#' at the beginning of the
722 first line of the input file. This is because the compiler outputs
723 #NO_APP at the beginning of its output. */
724/* Also note that comments like this one will always work. */
725const char line_comment_chars[] = "#";
3d0c9500 726
c19d1205 727const char line_separator_chars[] = ";";
b99bd4ef 728
c19d1205
ZW
729/* Chars that can be used to separate mant
730 from exp in floating point numbers. */
731const char EXP_CHARS[] = "eE";
3d0c9500 732
c19d1205
ZW
733/* Chars that mean this number is a floating point constant. */
734/* As in 0f12.456 */
735/* or 0d1.2345e12 */
b99bd4ef 736
c19d1205 737const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 738
c19d1205
ZW
739/* Prefix characters that indicate the start of an immediate
740 value. */
741#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 742
c19d1205
ZW
743/* Separator character handling. */
744
745#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
746
747static inline int
748skip_past_char (char ** str, char c)
749{
750 if (**str == c)
751 {
752 (*str)++;
753 return SUCCESS;
3d0c9500 754 }
c19d1205
ZW
755 else
756 return FAIL;
757}
758#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 759
c19d1205
ZW
760/* Arithmetic expressions (possibly involving symbols). */
761
762/* Return TRUE if anything in the expression is a bignum. */
763
764static int
765walk_no_bignums (symbolS * sp)
766{
767 if (symbol_get_value_expression (sp)->X_op == O_big)
768 return 1;
769
770 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 771 {
c19d1205
ZW
772 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
773 || (symbol_get_value_expression (sp)->X_op_symbol
774 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
775 }
776
c19d1205 777 return 0;
3d0c9500
NC
778}
779
c19d1205
ZW
780static int in_my_get_expression = 0;
781
782/* Third argument to my_get_expression. */
783#define GE_NO_PREFIX 0
784#define GE_IMM_PREFIX 1
785#define GE_OPT_PREFIX 2
5287ad62
JB
786/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
787 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
788#define GE_OPT_PREFIX_BIG 3
a737bd4d 789
b99bd4ef 790static int
c19d1205 791my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 792{
c19d1205
ZW
793 char * save_in;
794 segT seg;
b99bd4ef 795
c19d1205
ZW
796 /* In unified syntax, all prefixes are optional. */
797 if (unified_syntax)
5287ad62
JB
798 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
799 : GE_OPT_PREFIX;
b99bd4ef 800
c19d1205 801 switch (prefix_mode)
b99bd4ef 802 {
c19d1205
ZW
803 case GE_NO_PREFIX: break;
804 case GE_IMM_PREFIX:
805 if (!is_immediate_prefix (**str))
806 {
807 inst.error = _("immediate expression requires a # prefix");
808 return FAIL;
809 }
810 (*str)++;
811 break;
812 case GE_OPT_PREFIX:
5287ad62 813 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
814 if (is_immediate_prefix (**str))
815 (*str)++;
816 break;
817 default: abort ();
818 }
b99bd4ef 819
c19d1205 820 memset (ep, 0, sizeof (expressionS));
b99bd4ef 821
c19d1205
ZW
822 save_in = input_line_pointer;
823 input_line_pointer = *str;
824 in_my_get_expression = 1;
825 seg = expression (ep);
826 in_my_get_expression = 0;
827
828 if (ep->X_op == O_illegal)
b99bd4ef 829 {
c19d1205
ZW
830 /* We found a bad expression in md_operand(). */
831 *str = input_line_pointer;
832 input_line_pointer = save_in;
833 if (inst.error == NULL)
834 inst.error = _("bad expression");
835 return 1;
836 }
b99bd4ef 837
c19d1205
ZW
838#ifdef OBJ_AOUT
839 if (seg != absolute_section
840 && seg != text_section
841 && seg != data_section
842 && seg != bss_section
843 && seg != undefined_section)
844 {
845 inst.error = _("bad segment");
846 *str = input_line_pointer;
847 input_line_pointer = save_in;
848 return 1;
b99bd4ef 849 }
c19d1205 850#endif
b99bd4ef 851
c19d1205
ZW
852 /* Get rid of any bignums now, so that we don't generate an error for which
853 we can't establish a line number later on. Big numbers are never valid
854 in instructions, which is where this routine is always called. */
5287ad62
JB
855 if (prefix_mode != GE_OPT_PREFIX_BIG
856 && (ep->X_op == O_big
857 || (ep->X_add_symbol
858 && (walk_no_bignums (ep->X_add_symbol)
859 || (ep->X_op_symbol
860 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
861 {
862 inst.error = _("invalid constant");
863 *str = input_line_pointer;
864 input_line_pointer = save_in;
865 return 1;
866 }
b99bd4ef 867
c19d1205
ZW
868 *str = input_line_pointer;
869 input_line_pointer = save_in;
870 return 0;
b99bd4ef
NC
871}
872
c19d1205
ZW
873/* Turn a string in input_line_pointer into a floating point constant
874 of type TYPE, and store the appropriate bytes in *LITP. The number
875 of LITTLENUMS emitted is stored in *SIZEP. An error message is
876 returned, or NULL on OK.
b99bd4ef 877
c19d1205
ZW
878 Note that fp constants aren't represent in the normal way on the ARM.
879 In big endian mode, things are as expected. However, in little endian
880 mode fp constants are big-endian word-wise, and little-endian byte-wise
881 within the words. For example, (double) 1.1 in big endian mode is
882 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
883 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 884
c19d1205 885 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 886
c19d1205
ZW
887char *
888md_atof (int type, char * litP, int * sizeP)
889{
890 int prec;
891 LITTLENUM_TYPE words[MAX_LITTLENUMS];
892 char *t;
893 int i;
b99bd4ef 894
c19d1205
ZW
895 switch (type)
896 {
897 case 'f':
898 case 'F':
899 case 's':
900 case 'S':
901 prec = 2;
902 break;
b99bd4ef 903
c19d1205
ZW
904 case 'd':
905 case 'D':
906 case 'r':
907 case 'R':
908 prec = 4;
909 break;
b99bd4ef 910
c19d1205
ZW
911 case 'x':
912 case 'X':
499ac353 913 prec = 5;
c19d1205 914 break;
b99bd4ef 915
c19d1205
ZW
916 case 'p':
917 case 'P':
499ac353 918 prec = 5;
c19d1205 919 break;
a737bd4d 920
c19d1205
ZW
921 default:
922 *sizeP = 0;
499ac353 923 return _("Unrecognized or unsupported floating point constant");
c19d1205 924 }
b99bd4ef 925
c19d1205
ZW
926 t = atof_ieee (input_line_pointer, type, words);
927 if (t)
928 input_line_pointer = t;
499ac353 929 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 930
c19d1205
ZW
931 if (target_big_endian)
932 {
933 for (i = 0; i < prec; i++)
934 {
499ac353
NC
935 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
936 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
937 }
938 }
939 else
940 {
e74cfd16 941 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
942 for (i = prec - 1; i >= 0; i--)
943 {
499ac353
NC
944 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
945 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
946 }
947 else
948 /* For a 4 byte float the order of elements in `words' is 1 0.
949 For an 8 byte float the order is 1 0 3 2. */
950 for (i = 0; i < prec; i += 2)
951 {
499ac353
NC
952 md_number_to_chars (litP, (valueT) words[i + 1],
953 sizeof (LITTLENUM_TYPE));
954 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
955 (valueT) words[i], sizeof (LITTLENUM_TYPE));
956 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
957 }
958 }
b99bd4ef 959
499ac353 960 return NULL;
c19d1205 961}
b99bd4ef 962
c19d1205
ZW
963/* We handle all bad expressions here, so that we can report the faulty
964 instruction in the error message. */
965void
966md_operand (expressionS * expr)
967{
968 if (in_my_get_expression)
969 expr->X_op = O_illegal;
b99bd4ef
NC
970}
971
c19d1205 972/* Immediate values. */
b99bd4ef 973
c19d1205
ZW
974/* Generic immediate-value read function for use in directives.
975 Accepts anything that 'expression' can fold to a constant.
976 *val receives the number. */
977#ifdef OBJ_ELF
978static int
979immediate_for_directive (int *val)
b99bd4ef 980{
c19d1205
ZW
981 expressionS exp;
982 exp.X_op = O_illegal;
b99bd4ef 983
c19d1205
ZW
984 if (is_immediate_prefix (*input_line_pointer))
985 {
986 input_line_pointer++;
987 expression (&exp);
988 }
b99bd4ef 989
c19d1205
ZW
990 if (exp.X_op != O_constant)
991 {
992 as_bad (_("expected #constant"));
993 ignore_rest_of_line ();
994 return FAIL;
995 }
996 *val = exp.X_add_number;
997 return SUCCESS;
b99bd4ef 998}
c19d1205 999#endif
b99bd4ef 1000
c19d1205 1001/* Register parsing. */
b99bd4ef 1002
c19d1205
ZW
1003/* Generic register parser. CCP points to what should be the
1004 beginning of a register name. If it is indeed a valid register
1005 name, advance CCP over it and return the reg_entry structure;
1006 otherwise return NULL. Does not issue diagnostics. */
1007
1008static struct reg_entry *
1009arm_reg_parse_multi (char **ccp)
b99bd4ef 1010{
c19d1205
ZW
1011 char *start = *ccp;
1012 char *p;
1013 struct reg_entry *reg;
b99bd4ef 1014
c19d1205
ZW
1015#ifdef REGISTER_PREFIX
1016 if (*start != REGISTER_PREFIX)
01cfc07f 1017 return NULL;
c19d1205
ZW
1018 start++;
1019#endif
1020#ifdef OPTIONAL_REGISTER_PREFIX
1021 if (*start == OPTIONAL_REGISTER_PREFIX)
1022 start++;
1023#endif
b99bd4ef 1024
c19d1205
ZW
1025 p = start;
1026 if (!ISALPHA (*p) || !is_name_beginner (*p))
1027 return NULL;
b99bd4ef 1028
c19d1205
ZW
1029 do
1030 p++;
1031 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1032
1033 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1034
1035 if (!reg)
1036 return NULL;
1037
1038 *ccp = p;
1039 return reg;
b99bd4ef
NC
1040}
1041
1042static int
dcbf9037
JB
1043arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1044 enum arm_reg_type type)
b99bd4ef 1045{
c19d1205
ZW
1046 /* Alternative syntaxes are accepted for a few register classes. */
1047 switch (type)
1048 {
1049 case REG_TYPE_MVF:
1050 case REG_TYPE_MVD:
1051 case REG_TYPE_MVFX:
1052 case REG_TYPE_MVDX:
1053 /* Generic coprocessor register names are allowed for these. */
79134647 1054 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1055 return reg->number;
1056 break;
69b97547 1057
c19d1205
ZW
1058 case REG_TYPE_CP:
1059 /* For backward compatibility, a bare number is valid here. */
1060 {
1061 unsigned long processor = strtoul (start, ccp, 10);
1062 if (*ccp != start && processor <= 15)
1063 return processor;
1064 }
6057a28f 1065
c19d1205
ZW
1066 case REG_TYPE_MMXWC:
1067 /* WC includes WCG. ??? I'm not sure this is true for all
1068 instructions that take WC registers. */
79134647 1069 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1070 return reg->number;
6057a28f 1071 break;
c19d1205 1072
6057a28f 1073 default:
c19d1205 1074 break;
6057a28f
NC
1075 }
1076
dcbf9037
JB
1077 return FAIL;
1078}
1079
1080/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1081 return value is the register number or FAIL. */
1082
1083static int
1084arm_reg_parse (char **ccp, enum arm_reg_type type)
1085{
1086 char *start = *ccp;
1087 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1088 int ret;
1089
1090 /* Do not allow a scalar (reg+index) to parse as a register. */
1091 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1092 return FAIL;
1093
1094 if (reg && reg->type == type)
1095 return reg->number;
1096
1097 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1098 return ret;
1099
c19d1205
ZW
1100 *ccp = start;
1101 return FAIL;
1102}
69b97547 1103
dcbf9037
JB
1104/* Parse a Neon type specifier. *STR should point at the leading '.'
1105 character. Does no verification at this stage that the type fits the opcode
1106 properly. E.g.,
1107
1108 .i32.i32.s16
1109 .s32.f32
1110 .u16
1111
1112 Can all be legally parsed by this function.
1113
1114 Fills in neon_type struct pointer with parsed information, and updates STR
1115 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1116 type, FAIL if not. */
1117
1118static int
1119parse_neon_type (struct neon_type *type, char **str)
1120{
1121 char *ptr = *str;
1122
1123 if (type)
1124 type->elems = 0;
1125
1126 while (type->elems < NEON_MAX_TYPE_ELS)
1127 {
1128 enum neon_el_type thistype = NT_untyped;
1129 unsigned thissize = -1u;
1130
1131 if (*ptr != '.')
1132 break;
1133
1134 ptr++;
1135
1136 /* Just a size without an explicit type. */
1137 if (ISDIGIT (*ptr))
1138 goto parsesize;
1139
1140 switch (TOLOWER (*ptr))
1141 {
1142 case 'i': thistype = NT_integer; break;
1143 case 'f': thistype = NT_float; break;
1144 case 'p': thistype = NT_poly; break;
1145 case 's': thistype = NT_signed; break;
1146 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1147 case 'd':
1148 thistype = NT_float;
1149 thissize = 64;
1150 ptr++;
1151 goto done;
dcbf9037
JB
1152 default:
1153 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1154 return FAIL;
1155 }
1156
1157 ptr++;
1158
1159 /* .f is an abbreviation for .f32. */
1160 if (thistype == NT_float && !ISDIGIT (*ptr))
1161 thissize = 32;
1162 else
1163 {
1164 parsesize:
1165 thissize = strtoul (ptr, &ptr, 10);
1166
1167 if (thissize != 8 && thissize != 16 && thissize != 32
1168 && thissize != 64)
1169 {
1170 as_bad (_("bad size %d in type specifier"), thissize);
1171 return FAIL;
1172 }
1173 }
1174
037e8744 1175 done:
dcbf9037
JB
1176 if (type)
1177 {
1178 type->el[type->elems].type = thistype;
1179 type->el[type->elems].size = thissize;
1180 type->elems++;
1181 }
1182 }
1183
1184 /* Empty/missing type is not a successful parse. */
1185 if (type->elems == 0)
1186 return FAIL;
1187
1188 *str = ptr;
1189
1190 return SUCCESS;
1191}
1192
1193/* Errors may be set multiple times during parsing or bit encoding
1194 (particularly in the Neon bits), but usually the earliest error which is set
1195 will be the most meaningful. Avoid overwriting it with later (cascading)
1196 errors by calling this function. */
1197
1198static void
1199first_error (const char *err)
1200{
1201 if (!inst.error)
1202 inst.error = err;
1203}
1204
1205/* Parse a single type, e.g. ".s32", leading period included. */
1206static int
1207parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1208{
1209 char *str = *ccp;
1210 struct neon_type optype;
1211
1212 if (*str == '.')
1213 {
1214 if (parse_neon_type (&optype, &str) == SUCCESS)
1215 {
1216 if (optype.elems == 1)
1217 *vectype = optype.el[0];
1218 else
1219 {
1220 first_error (_("only one type should be specified for operand"));
1221 return FAIL;
1222 }
1223 }
1224 else
1225 {
1226 first_error (_("vector type expected"));
1227 return FAIL;
1228 }
1229 }
1230 else
1231 return FAIL;
5f4273c7 1232
dcbf9037 1233 *ccp = str;
5f4273c7 1234
dcbf9037
JB
1235 return SUCCESS;
1236}
1237
1238/* Special meanings for indices (which have a range of 0-7), which will fit into
1239 a 4-bit integer. */
1240
1241#define NEON_ALL_LANES 15
1242#define NEON_INTERLEAVE_LANES 14
1243
1244/* Parse either a register or a scalar, with an optional type. Return the
1245 register number, and optionally fill in the actual type of the register
1246 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1247 type/index information in *TYPEINFO. */
1248
1249static int
1250parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1251 enum arm_reg_type *rtype,
1252 struct neon_typed_alias *typeinfo)
1253{
1254 char *str = *ccp;
1255 struct reg_entry *reg = arm_reg_parse_multi (&str);
1256 struct neon_typed_alias atype;
1257 struct neon_type_el parsetype;
1258
1259 atype.defined = 0;
1260 atype.index = -1;
1261 atype.eltype.type = NT_invtype;
1262 atype.eltype.size = -1;
1263
1264 /* Try alternate syntax for some types of register. Note these are mutually
1265 exclusive with the Neon syntax extensions. */
1266 if (reg == NULL)
1267 {
1268 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1269 if (altreg != FAIL)
1270 *ccp = str;
1271 if (typeinfo)
1272 *typeinfo = atype;
1273 return altreg;
1274 }
1275
037e8744
JB
1276 /* Undo polymorphism when a set of register types may be accepted. */
1277 if ((type == REG_TYPE_NDQ
1278 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1279 || (type == REG_TYPE_VFSD
1280 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1281 || (type == REG_TYPE_NSDQ
1282 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1283 || reg->type == REG_TYPE_NQ))
1284 || (type == REG_TYPE_MMXWC
1285 && (reg->type == REG_TYPE_MMXWCG)))
dcbf9037
JB
1286 type = reg->type;
1287
1288 if (type != reg->type)
1289 return FAIL;
1290
1291 if (reg->neon)
1292 atype = *reg->neon;
5f4273c7 1293
dcbf9037
JB
1294 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1295 {
1296 if ((atype.defined & NTA_HASTYPE) != 0)
1297 {
1298 first_error (_("can't redefine type for operand"));
1299 return FAIL;
1300 }
1301 atype.defined |= NTA_HASTYPE;
1302 atype.eltype = parsetype;
1303 }
5f4273c7 1304
dcbf9037
JB
1305 if (skip_past_char (&str, '[') == SUCCESS)
1306 {
1307 if (type != REG_TYPE_VFD)
1308 {
1309 first_error (_("only D registers may be indexed"));
1310 return FAIL;
1311 }
5f4273c7 1312
dcbf9037
JB
1313 if ((atype.defined & NTA_HASINDEX) != 0)
1314 {
1315 first_error (_("can't change index for operand"));
1316 return FAIL;
1317 }
1318
1319 atype.defined |= NTA_HASINDEX;
1320
1321 if (skip_past_char (&str, ']') == SUCCESS)
1322 atype.index = NEON_ALL_LANES;
1323 else
1324 {
1325 expressionS exp;
1326
1327 my_get_expression (&exp, &str, GE_NO_PREFIX);
1328
1329 if (exp.X_op != O_constant)
1330 {
1331 first_error (_("constant expression required"));
1332 return FAIL;
1333 }
1334
1335 if (skip_past_char (&str, ']') == FAIL)
1336 return FAIL;
1337
1338 atype.index = exp.X_add_number;
1339 }
1340 }
5f4273c7 1341
dcbf9037
JB
1342 if (typeinfo)
1343 *typeinfo = atype;
5f4273c7 1344
dcbf9037
JB
1345 if (rtype)
1346 *rtype = type;
5f4273c7 1347
dcbf9037 1348 *ccp = str;
5f4273c7 1349
dcbf9037
JB
1350 return reg->number;
1351}
1352
1353/* Like arm_reg_parse, but allow allow the following extra features:
1354 - If RTYPE is non-zero, return the (possibly restricted) type of the
1355 register (e.g. Neon double or quad reg when either has been requested).
1356 - If this is a Neon vector type with additional type information, fill
1357 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1358 This function will fault on encountering a scalar. */
dcbf9037
JB
1359
1360static int
1361arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1362 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1363{
1364 struct neon_typed_alias atype;
1365 char *str = *ccp;
1366 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1367
1368 if (reg == FAIL)
1369 return FAIL;
1370
1371 /* Do not allow a scalar (reg+index) to parse as a register. */
1372 if ((atype.defined & NTA_HASINDEX) != 0)
1373 {
1374 first_error (_("register operand expected, but got scalar"));
1375 return FAIL;
1376 }
1377
1378 if (vectype)
1379 *vectype = atype.eltype;
1380
1381 *ccp = str;
1382
1383 return reg;
1384}
1385
1386#define NEON_SCALAR_REG(X) ((X) >> 4)
1387#define NEON_SCALAR_INDEX(X) ((X) & 15)
1388
5287ad62
JB
1389/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1390 have enough information to be able to do a good job bounds-checking. So, we
1391 just do easy checks here, and do further checks later. */
1392
1393static int
dcbf9037 1394parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1395{
dcbf9037 1396 int reg;
5287ad62 1397 char *str = *ccp;
dcbf9037 1398 struct neon_typed_alias atype;
5f4273c7 1399
dcbf9037 1400 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1401
dcbf9037 1402 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1403 return FAIL;
5f4273c7 1404
dcbf9037 1405 if (atype.index == NEON_ALL_LANES)
5287ad62 1406 {
dcbf9037 1407 first_error (_("scalar must have an index"));
5287ad62
JB
1408 return FAIL;
1409 }
dcbf9037 1410 else if (atype.index >= 64 / elsize)
5287ad62 1411 {
dcbf9037 1412 first_error (_("scalar index out of range"));
5287ad62
JB
1413 return FAIL;
1414 }
5f4273c7 1415
dcbf9037
JB
1416 if (type)
1417 *type = atype.eltype;
5f4273c7 1418
5287ad62 1419 *ccp = str;
5f4273c7 1420
dcbf9037 1421 return reg * 16 + atype.index;
5287ad62
JB
1422}
1423
c19d1205
ZW
1424/* Parse an ARM register list. Returns the bitmask, or FAIL. */
1425static long
1426parse_reg_list (char ** strp)
1427{
1428 char * str = * strp;
1429 long range = 0;
1430 int another_range;
a737bd4d 1431
c19d1205
ZW
1432 /* We come back here if we get ranges concatenated by '+' or '|'. */
1433 do
6057a28f 1434 {
c19d1205 1435 another_range = 0;
a737bd4d 1436
c19d1205
ZW
1437 if (*str == '{')
1438 {
1439 int in_range = 0;
1440 int cur_reg = -1;
a737bd4d 1441
c19d1205
ZW
1442 str++;
1443 do
1444 {
1445 int reg;
6057a28f 1446
dcbf9037 1447 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1448 {
dcbf9037 1449 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1450 return FAIL;
1451 }
a737bd4d 1452
c19d1205
ZW
1453 if (in_range)
1454 {
1455 int i;
a737bd4d 1456
c19d1205
ZW
1457 if (reg <= cur_reg)
1458 {
dcbf9037 1459 first_error (_("bad range in register list"));
c19d1205
ZW
1460 return FAIL;
1461 }
40a18ebd 1462
c19d1205
ZW
1463 for (i = cur_reg + 1; i < reg; i++)
1464 {
1465 if (range & (1 << i))
1466 as_tsktsk
1467 (_("Warning: duplicated register (r%d) in register list"),
1468 i);
1469 else
1470 range |= 1 << i;
1471 }
1472 in_range = 0;
1473 }
a737bd4d 1474
c19d1205
ZW
1475 if (range & (1 << reg))
1476 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1477 reg);
1478 else if (reg <= cur_reg)
1479 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1480
c19d1205
ZW
1481 range |= 1 << reg;
1482 cur_reg = reg;
1483 }
1484 while (skip_past_comma (&str) != FAIL
1485 || (in_range = 1, *str++ == '-'));
1486 str--;
a737bd4d 1487
c19d1205
ZW
1488 if (*str++ != '}')
1489 {
dcbf9037 1490 first_error (_("missing `}'"));
c19d1205
ZW
1491 return FAIL;
1492 }
1493 }
1494 else
1495 {
1496 expressionS expr;
40a18ebd 1497
c19d1205
ZW
1498 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1499 return FAIL;
40a18ebd 1500
c19d1205
ZW
1501 if (expr.X_op == O_constant)
1502 {
1503 if (expr.X_add_number
1504 != (expr.X_add_number & 0x0000ffff))
1505 {
1506 inst.error = _("invalid register mask");
1507 return FAIL;
1508 }
a737bd4d 1509
c19d1205
ZW
1510 if ((range & expr.X_add_number) != 0)
1511 {
1512 int regno = range & expr.X_add_number;
a737bd4d 1513
c19d1205
ZW
1514 regno &= -regno;
1515 regno = (1 << regno) - 1;
1516 as_tsktsk
1517 (_("Warning: duplicated register (r%d) in register list"),
1518 regno);
1519 }
a737bd4d 1520
c19d1205
ZW
1521 range |= expr.X_add_number;
1522 }
1523 else
1524 {
1525 if (inst.reloc.type != 0)
1526 {
1527 inst.error = _("expression too complex");
1528 return FAIL;
1529 }
a737bd4d 1530
c19d1205
ZW
1531 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1532 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1533 inst.reloc.pc_rel = 0;
1534 }
1535 }
a737bd4d 1536
c19d1205
ZW
1537 if (*str == '|' || *str == '+')
1538 {
1539 str++;
1540 another_range = 1;
1541 }
a737bd4d 1542 }
c19d1205 1543 while (another_range);
a737bd4d 1544
c19d1205
ZW
1545 *strp = str;
1546 return range;
a737bd4d
NC
1547}
1548
5287ad62
JB
1549/* Types of registers in a list. */
1550
1551enum reg_list_els
1552{
1553 REGLIST_VFP_S,
1554 REGLIST_VFP_D,
1555 REGLIST_NEON_D
1556};
1557
c19d1205
ZW
1558/* Parse a VFP register list. If the string is invalid return FAIL.
1559 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1560 register. Parses registers of type ETYPE.
1561 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1562 - Q registers can be used to specify pairs of D registers
1563 - { } can be omitted from around a singleton register list
1564 FIXME: This is not implemented, as it would require backtracking in
1565 some cases, e.g.:
1566 vtbl.8 d3,d4,d5
1567 This could be done (the meaning isn't really ambiguous), but doesn't
1568 fit in well with the current parsing framework.
dcbf9037
JB
1569 - 32 D registers may be used (also true for VFPv3).
1570 FIXME: Types are ignored in these register lists, which is probably a
1571 bug. */
6057a28f 1572
c19d1205 1573static int
037e8744 1574parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1575{
037e8744 1576 char *str = *ccp;
c19d1205
ZW
1577 int base_reg;
1578 int new_base;
5287ad62
JB
1579 enum arm_reg_type regtype = 0;
1580 int max_regs = 0;
c19d1205
ZW
1581 int count = 0;
1582 int warned = 0;
1583 unsigned long mask = 0;
a737bd4d 1584 int i;
6057a28f 1585
037e8744 1586 if (*str != '{')
5287ad62
JB
1587 {
1588 inst.error = _("expecting {");
1589 return FAIL;
1590 }
6057a28f 1591
037e8744 1592 str++;
6057a28f 1593
5287ad62 1594 switch (etype)
c19d1205 1595 {
5287ad62 1596 case REGLIST_VFP_S:
c19d1205
ZW
1597 regtype = REG_TYPE_VFS;
1598 max_regs = 32;
5287ad62 1599 break;
5f4273c7 1600
5287ad62
JB
1601 case REGLIST_VFP_D:
1602 regtype = REG_TYPE_VFD;
b7fc2769 1603 break;
5f4273c7 1604
b7fc2769
JB
1605 case REGLIST_NEON_D:
1606 regtype = REG_TYPE_NDQ;
1607 break;
1608 }
1609
1610 if (etype != REGLIST_VFP_S)
1611 {
b1cc4aeb
PB
1612 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1613 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1614 {
1615 max_regs = 32;
1616 if (thumb_mode)
1617 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1618 fpu_vfp_ext_d32);
5287ad62
JB
1619 else
1620 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1621 fpu_vfp_ext_d32);
5287ad62
JB
1622 }
1623 else
1624 max_regs = 16;
c19d1205 1625 }
6057a28f 1626
c19d1205 1627 base_reg = max_regs;
a737bd4d 1628
c19d1205
ZW
1629 do
1630 {
5287ad62 1631 int setmask = 1, addregs = 1;
dcbf9037 1632
037e8744 1633 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1634
c19d1205 1635 if (new_base == FAIL)
a737bd4d 1636 {
dcbf9037 1637 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1638 return FAIL;
1639 }
5f4273c7 1640
b7fc2769
JB
1641 if (new_base >= max_regs)
1642 {
1643 first_error (_("register out of range in list"));
1644 return FAIL;
1645 }
5f4273c7 1646
5287ad62
JB
1647 /* Note: a value of 2 * n is returned for the register Q<n>. */
1648 if (regtype == REG_TYPE_NQ)
1649 {
1650 setmask = 3;
1651 addregs = 2;
1652 }
1653
c19d1205
ZW
1654 if (new_base < base_reg)
1655 base_reg = new_base;
a737bd4d 1656
5287ad62 1657 if (mask & (setmask << new_base))
c19d1205 1658 {
dcbf9037 1659 first_error (_("invalid register list"));
c19d1205 1660 return FAIL;
a737bd4d 1661 }
a737bd4d 1662
c19d1205
ZW
1663 if ((mask >> new_base) != 0 && ! warned)
1664 {
1665 as_tsktsk (_("register list not in ascending order"));
1666 warned = 1;
1667 }
0bbf2aa4 1668
5287ad62
JB
1669 mask |= setmask << new_base;
1670 count += addregs;
0bbf2aa4 1671
037e8744 1672 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1673 {
1674 int high_range;
0bbf2aa4 1675
037e8744 1676 str++;
0bbf2aa4 1677
037e8744 1678 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1679 == FAIL)
c19d1205
ZW
1680 {
1681 inst.error = gettext (reg_expected_msgs[regtype]);
1682 return FAIL;
1683 }
0bbf2aa4 1684
b7fc2769
JB
1685 if (high_range >= max_regs)
1686 {
1687 first_error (_("register out of range in list"));
1688 return FAIL;
1689 }
1690
5287ad62
JB
1691 if (regtype == REG_TYPE_NQ)
1692 high_range = high_range + 1;
1693
c19d1205
ZW
1694 if (high_range <= new_base)
1695 {
1696 inst.error = _("register range not in ascending order");
1697 return FAIL;
1698 }
0bbf2aa4 1699
5287ad62 1700 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1701 {
5287ad62 1702 if (mask & (setmask << new_base))
0bbf2aa4 1703 {
c19d1205
ZW
1704 inst.error = _("invalid register list");
1705 return FAIL;
0bbf2aa4 1706 }
c19d1205 1707
5287ad62
JB
1708 mask |= setmask << new_base;
1709 count += addregs;
0bbf2aa4 1710 }
0bbf2aa4 1711 }
0bbf2aa4 1712 }
037e8744 1713 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1714
037e8744 1715 str++;
0bbf2aa4 1716
c19d1205
ZW
1717 /* Sanity check -- should have raised a parse error above. */
1718 if (count == 0 || count > max_regs)
1719 abort ();
1720
1721 *pbase = base_reg;
1722
1723 /* Final test -- the registers must be consecutive. */
1724 mask >>= base_reg;
1725 for (i = 0; i < count; i++)
1726 {
1727 if ((mask & (1u << i)) == 0)
1728 {
1729 inst.error = _("non-contiguous register range");
1730 return FAIL;
1731 }
1732 }
1733
037e8744
JB
1734 *ccp = str;
1735
c19d1205 1736 return count;
b99bd4ef
NC
1737}
1738
dcbf9037
JB
1739/* True if two alias types are the same. */
1740
1741static int
1742neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1743{
1744 if (!a && !b)
1745 return 1;
5f4273c7 1746
dcbf9037
JB
1747 if (!a || !b)
1748 return 0;
1749
1750 if (a->defined != b->defined)
1751 return 0;
5f4273c7 1752
dcbf9037
JB
1753 if ((a->defined & NTA_HASTYPE) != 0
1754 && (a->eltype.type != b->eltype.type
1755 || a->eltype.size != b->eltype.size))
1756 return 0;
1757
1758 if ((a->defined & NTA_HASINDEX) != 0
1759 && (a->index != b->index))
1760 return 0;
5f4273c7 1761
dcbf9037
JB
1762 return 1;
1763}
1764
5287ad62
JB
1765/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1766 The base register is put in *PBASE.
dcbf9037 1767 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1768 the return value.
1769 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1770 Bits [6:5] encode the list length (minus one).
1771 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1772
5287ad62 1773#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1774#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1775#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1776
1777static int
dcbf9037
JB
1778parse_neon_el_struct_list (char **str, unsigned *pbase,
1779 struct neon_type_el *eltype)
5287ad62
JB
1780{
1781 char *ptr = *str;
1782 int base_reg = -1;
1783 int reg_incr = -1;
1784 int count = 0;
1785 int lane = -1;
1786 int leading_brace = 0;
1787 enum arm_reg_type rtype = REG_TYPE_NDQ;
1788 int addregs = 1;
1789 const char *const incr_error = "register stride must be 1 or 2";
1790 const char *const type_error = "mismatched element/structure types in list";
dcbf9037 1791 struct neon_typed_alias firsttype;
5f4273c7 1792
5287ad62
JB
1793 if (skip_past_char (&ptr, '{') == SUCCESS)
1794 leading_brace = 1;
5f4273c7 1795
5287ad62
JB
1796 do
1797 {
dcbf9037
JB
1798 struct neon_typed_alias atype;
1799 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1800
5287ad62
JB
1801 if (getreg == FAIL)
1802 {
dcbf9037 1803 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1804 return FAIL;
1805 }
5f4273c7 1806
5287ad62
JB
1807 if (base_reg == -1)
1808 {
1809 base_reg = getreg;
1810 if (rtype == REG_TYPE_NQ)
1811 {
1812 reg_incr = 1;
1813 addregs = 2;
1814 }
dcbf9037 1815 firsttype = atype;
5287ad62
JB
1816 }
1817 else if (reg_incr == -1)
1818 {
1819 reg_incr = getreg - base_reg;
1820 if (reg_incr < 1 || reg_incr > 2)
1821 {
dcbf9037 1822 first_error (_(incr_error));
5287ad62
JB
1823 return FAIL;
1824 }
1825 }
1826 else if (getreg != base_reg + reg_incr * count)
1827 {
dcbf9037
JB
1828 first_error (_(incr_error));
1829 return FAIL;
1830 }
1831
1832 if (!neon_alias_types_same (&atype, &firsttype))
1833 {
1834 first_error (_(type_error));
5287ad62
JB
1835 return FAIL;
1836 }
5f4273c7 1837
5287ad62
JB
1838 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1839 modes. */
1840 if (ptr[0] == '-')
1841 {
dcbf9037 1842 struct neon_typed_alias htype;
5287ad62
JB
1843 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1844 if (lane == -1)
1845 lane = NEON_INTERLEAVE_LANES;
1846 else if (lane != NEON_INTERLEAVE_LANES)
1847 {
dcbf9037 1848 first_error (_(type_error));
5287ad62
JB
1849 return FAIL;
1850 }
1851 if (reg_incr == -1)
1852 reg_incr = 1;
1853 else if (reg_incr != 1)
1854 {
dcbf9037 1855 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1856 return FAIL;
1857 }
1858 ptr++;
dcbf9037 1859 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1860 if (hireg == FAIL)
1861 {
dcbf9037
JB
1862 first_error (_(reg_expected_msgs[rtype]));
1863 return FAIL;
1864 }
1865 if (!neon_alias_types_same (&htype, &firsttype))
1866 {
1867 first_error (_(type_error));
5287ad62
JB
1868 return FAIL;
1869 }
1870 count += hireg + dregs - getreg;
1871 continue;
1872 }
5f4273c7 1873
5287ad62
JB
1874 /* If we're using Q registers, we can't use [] or [n] syntax. */
1875 if (rtype == REG_TYPE_NQ)
1876 {
1877 count += 2;
1878 continue;
1879 }
5f4273c7 1880
dcbf9037 1881 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1882 {
dcbf9037
JB
1883 if (lane == -1)
1884 lane = atype.index;
1885 else if (lane != atype.index)
5287ad62 1886 {
dcbf9037
JB
1887 first_error (_(type_error));
1888 return FAIL;
5287ad62
JB
1889 }
1890 }
1891 else if (lane == -1)
1892 lane = NEON_INTERLEAVE_LANES;
1893 else if (lane != NEON_INTERLEAVE_LANES)
1894 {
dcbf9037 1895 first_error (_(type_error));
5287ad62
JB
1896 return FAIL;
1897 }
1898 count++;
1899 }
1900 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 1901
5287ad62
JB
1902 /* No lane set by [x]. We must be interleaving structures. */
1903 if (lane == -1)
1904 lane = NEON_INTERLEAVE_LANES;
5f4273c7 1905
5287ad62
JB
1906 /* Sanity check. */
1907 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1908 || (count > 1 && reg_incr == -1))
1909 {
dcbf9037 1910 first_error (_("error parsing element/structure list"));
5287ad62
JB
1911 return FAIL;
1912 }
1913
1914 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1915 {
dcbf9037 1916 first_error (_("expected }"));
5287ad62
JB
1917 return FAIL;
1918 }
5f4273c7 1919
5287ad62
JB
1920 if (reg_incr == -1)
1921 reg_incr = 1;
1922
dcbf9037
JB
1923 if (eltype)
1924 *eltype = firsttype.eltype;
1925
5287ad62
JB
1926 *pbase = base_reg;
1927 *str = ptr;
5f4273c7 1928
5287ad62
JB
1929 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1930}
1931
c19d1205
ZW
1932/* Parse an explicit relocation suffix on an expression. This is
1933 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1934 arm_reloc_hsh contains no entries, so this function can only
1935 succeed if there is no () after the word. Returns -1 on error,
1936 BFD_RELOC_UNUSED if there wasn't any suffix. */
1937static int
1938parse_reloc (char **str)
b99bd4ef 1939{
c19d1205
ZW
1940 struct reloc_entry *r;
1941 char *p, *q;
b99bd4ef 1942
c19d1205
ZW
1943 if (**str != '(')
1944 return BFD_RELOC_UNUSED;
b99bd4ef 1945
c19d1205
ZW
1946 p = *str + 1;
1947 q = p;
1948
1949 while (*q && *q != ')' && *q != ',')
1950 q++;
1951 if (*q != ')')
1952 return -1;
1953
1954 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1955 return -1;
1956
1957 *str = q + 1;
1958 return r->reloc;
b99bd4ef
NC
1959}
1960
c19d1205
ZW
1961/* Directives: register aliases. */
1962
dcbf9037 1963static struct reg_entry *
c19d1205 1964insert_reg_alias (char *str, int number, int type)
b99bd4ef 1965{
c19d1205
ZW
1966 struct reg_entry *new;
1967 const char *name;
b99bd4ef 1968
c19d1205
ZW
1969 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1970 {
1971 if (new->builtin)
1972 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 1973
c19d1205
ZW
1974 /* Only warn about a redefinition if it's not defined as the
1975 same register. */
1976 else if (new->number != number || new->type != type)
1977 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 1978
d929913e 1979 return NULL;
c19d1205 1980 }
b99bd4ef 1981
c19d1205
ZW
1982 name = xstrdup (str);
1983 new = xmalloc (sizeof (struct reg_entry));
b99bd4ef 1984
c19d1205
ZW
1985 new->name = name;
1986 new->number = number;
1987 new->type = type;
1988 new->builtin = FALSE;
dcbf9037 1989 new->neon = NULL;
b99bd4ef 1990
c19d1205
ZW
1991 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1992 abort ();
5f4273c7 1993
dcbf9037
JB
1994 return new;
1995}
1996
1997static void
1998insert_neon_reg_alias (char *str, int number, int type,
1999 struct neon_typed_alias *atype)
2000{
2001 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2002
dcbf9037
JB
2003 if (!reg)
2004 {
2005 first_error (_("attempt to redefine typed alias"));
2006 return;
2007 }
5f4273c7 2008
dcbf9037
JB
2009 if (atype)
2010 {
2011 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2012 *reg->neon = *atype;
2013 }
c19d1205 2014}
b99bd4ef 2015
c19d1205 2016/* Look for the .req directive. This is of the form:
b99bd4ef 2017
c19d1205 2018 new_register_name .req existing_register_name
b99bd4ef 2019
c19d1205 2020 If we find one, or if it looks sufficiently like one that we want to
d929913e 2021 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2022
d929913e 2023static bfd_boolean
c19d1205
ZW
2024create_register_alias (char * newname, char *p)
2025{
2026 struct reg_entry *old;
2027 char *oldname, *nbuf;
2028 size_t nlen;
b99bd4ef 2029
c19d1205
ZW
2030 /* The input scrubber ensures that whitespace after the mnemonic is
2031 collapsed to single spaces. */
2032 oldname = p;
2033 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2034 return FALSE;
b99bd4ef 2035
c19d1205
ZW
2036 oldname += 6;
2037 if (*oldname == '\0')
d929913e 2038 return FALSE;
b99bd4ef 2039
c19d1205
ZW
2040 old = hash_find (arm_reg_hsh, oldname);
2041 if (!old)
b99bd4ef 2042 {
c19d1205 2043 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2044 return TRUE;
b99bd4ef
NC
2045 }
2046
c19d1205
ZW
2047 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2048 the desired alias name, and p points to its end. If not, then
2049 the desired alias name is in the global original_case_string. */
2050#ifdef TC_CASE_SENSITIVE
2051 nlen = p - newname;
2052#else
2053 newname = original_case_string;
2054 nlen = strlen (newname);
2055#endif
b99bd4ef 2056
c19d1205
ZW
2057 nbuf = alloca (nlen + 1);
2058 memcpy (nbuf, newname, nlen);
2059 nbuf[nlen] = '\0';
b99bd4ef 2060
c19d1205
ZW
2061 /* Create aliases under the new name as stated; an all-lowercase
2062 version of the new name; and an all-uppercase version of the new
2063 name. */
d929913e
NC
2064 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2065 {
2066 for (p = nbuf; *p; p++)
2067 *p = TOUPPER (*p);
c19d1205 2068
d929913e
NC
2069 if (strncmp (nbuf, newname, nlen))
2070 {
2071 /* If this attempt to create an additional alias fails, do not bother
2072 trying to create the all-lower case alias. We will fail and issue
2073 a second, duplicate error message. This situation arises when the
2074 programmer does something like:
2075 foo .req r0
2076 Foo .req r1
2077 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2078 the artificial FOO alias because it has already been created by the
d929913e
NC
2079 first .req. */
2080 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2081 return TRUE;
2082 }
c19d1205 2083
d929913e
NC
2084 for (p = nbuf; *p; p++)
2085 *p = TOLOWER (*p);
c19d1205 2086
d929913e
NC
2087 if (strncmp (nbuf, newname, nlen))
2088 insert_reg_alias (nbuf, old->number, old->type);
2089 }
c19d1205 2090
d929913e 2091 return TRUE;
b99bd4ef
NC
2092}
2093
dcbf9037
JB
2094/* Create a Neon typed/indexed register alias using directives, e.g.:
2095 X .dn d5.s32[1]
2096 Y .qn 6.s16
2097 Z .dn d7
2098 T .dn Z[0]
2099 These typed registers can be used instead of the types specified after the
2100 Neon mnemonic, so long as all operands given have types. Types can also be
2101 specified directly, e.g.:
5f4273c7 2102 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037
JB
2103
2104static int
2105create_neon_reg_alias (char *newname, char *p)
2106{
2107 enum arm_reg_type basetype;
2108 struct reg_entry *basereg;
2109 struct reg_entry mybasereg;
2110 struct neon_type ntype;
2111 struct neon_typed_alias typeinfo;
2112 char *namebuf, *nameend;
2113 int namelen;
5f4273c7 2114
dcbf9037
JB
2115 typeinfo.defined = 0;
2116 typeinfo.eltype.type = NT_invtype;
2117 typeinfo.eltype.size = -1;
2118 typeinfo.index = -1;
5f4273c7 2119
dcbf9037 2120 nameend = p;
5f4273c7 2121
dcbf9037
JB
2122 if (strncmp (p, " .dn ", 5) == 0)
2123 basetype = REG_TYPE_VFD;
2124 else if (strncmp (p, " .qn ", 5) == 0)
2125 basetype = REG_TYPE_NQ;
2126 else
2127 return 0;
5f4273c7 2128
dcbf9037 2129 p += 5;
5f4273c7 2130
dcbf9037
JB
2131 if (*p == '\0')
2132 return 0;
5f4273c7 2133
dcbf9037
JB
2134 basereg = arm_reg_parse_multi (&p);
2135
2136 if (basereg && basereg->type != basetype)
2137 {
2138 as_bad (_("bad type for register"));
2139 return 0;
2140 }
2141
2142 if (basereg == NULL)
2143 {
2144 expressionS exp;
2145 /* Try parsing as an integer. */
2146 my_get_expression (&exp, &p, GE_NO_PREFIX);
2147 if (exp.X_op != O_constant)
2148 {
2149 as_bad (_("expression must be constant"));
2150 return 0;
2151 }
2152 basereg = &mybasereg;
2153 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2154 : exp.X_add_number;
2155 basereg->neon = 0;
2156 }
2157
2158 if (basereg->neon)
2159 typeinfo = *basereg->neon;
2160
2161 if (parse_neon_type (&ntype, &p) == SUCCESS)
2162 {
2163 /* We got a type. */
2164 if (typeinfo.defined & NTA_HASTYPE)
2165 {
2166 as_bad (_("can't redefine the type of a register alias"));
2167 return 0;
2168 }
5f4273c7 2169
dcbf9037
JB
2170 typeinfo.defined |= NTA_HASTYPE;
2171 if (ntype.elems != 1)
2172 {
2173 as_bad (_("you must specify a single type only"));
2174 return 0;
2175 }
2176 typeinfo.eltype = ntype.el[0];
2177 }
5f4273c7 2178
dcbf9037
JB
2179 if (skip_past_char (&p, '[') == SUCCESS)
2180 {
2181 expressionS exp;
2182 /* We got a scalar index. */
5f4273c7 2183
dcbf9037
JB
2184 if (typeinfo.defined & NTA_HASINDEX)
2185 {
2186 as_bad (_("can't redefine the index of a scalar alias"));
2187 return 0;
2188 }
5f4273c7 2189
dcbf9037 2190 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2191
dcbf9037
JB
2192 if (exp.X_op != O_constant)
2193 {
2194 as_bad (_("scalar index must be constant"));
2195 return 0;
2196 }
5f4273c7 2197
dcbf9037
JB
2198 typeinfo.defined |= NTA_HASINDEX;
2199 typeinfo.index = exp.X_add_number;
5f4273c7 2200
dcbf9037
JB
2201 if (skip_past_char (&p, ']') == FAIL)
2202 {
2203 as_bad (_("expecting ]"));
2204 return 0;
2205 }
2206 }
2207
2208 namelen = nameend - newname;
2209 namebuf = alloca (namelen + 1);
2210 strncpy (namebuf, newname, namelen);
2211 namebuf[namelen] = '\0';
5f4273c7 2212
dcbf9037
JB
2213 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2214 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2215
dcbf9037
JB
2216 /* Insert name in all uppercase. */
2217 for (p = namebuf; *p; p++)
2218 *p = TOUPPER (*p);
5f4273c7 2219
dcbf9037
JB
2220 if (strncmp (namebuf, newname, namelen))
2221 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2222 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2223
dcbf9037
JB
2224 /* Insert name in all lowercase. */
2225 for (p = namebuf; *p; p++)
2226 *p = TOLOWER (*p);
5f4273c7 2227
dcbf9037
JB
2228 if (strncmp (namebuf, newname, namelen))
2229 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2230 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2231
dcbf9037
JB
2232 return 1;
2233}
2234
c19d1205
ZW
2235/* Should never be called, as .req goes between the alias and the
2236 register name, not at the beginning of the line. */
b99bd4ef 2237static void
c19d1205 2238s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2239{
c19d1205
ZW
2240 as_bad (_("invalid syntax for .req directive"));
2241}
b99bd4ef 2242
dcbf9037
JB
2243static void
2244s_dn (int a ATTRIBUTE_UNUSED)
2245{
2246 as_bad (_("invalid syntax for .dn directive"));
2247}
2248
2249static void
2250s_qn (int a ATTRIBUTE_UNUSED)
2251{
2252 as_bad (_("invalid syntax for .qn directive"));
2253}
2254
c19d1205
ZW
2255/* The .unreq directive deletes an alias which was previously defined
2256 by .req. For example:
b99bd4ef 2257
c19d1205
ZW
2258 my_alias .req r11
2259 .unreq my_alias */
b99bd4ef
NC
2260
2261static void
c19d1205 2262s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2263{
c19d1205
ZW
2264 char * name;
2265 char saved_char;
b99bd4ef 2266
c19d1205
ZW
2267 name = input_line_pointer;
2268
2269 while (*input_line_pointer != 0
2270 && *input_line_pointer != ' '
2271 && *input_line_pointer != '\n')
2272 ++input_line_pointer;
2273
2274 saved_char = *input_line_pointer;
2275 *input_line_pointer = 0;
2276
2277 if (!*name)
2278 as_bad (_("invalid syntax for .unreq directive"));
2279 else
2280 {
2281 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2282
2283 if (!reg)
2284 as_bad (_("unknown register alias '%s'"), name);
2285 else if (reg->builtin)
2286 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2287 name);
2288 else
2289 {
d929913e
NC
2290 char * p;
2291 char * nbuf;
2292
c19d1205
ZW
2293 hash_delete (arm_reg_hsh, name);
2294 free ((char *) reg->name);
dcbf9037
JB
2295 if (reg->neon)
2296 free (reg->neon);
c19d1205 2297 free (reg);
d929913e
NC
2298
2299 /* Also locate the all upper case and all lower case versions.
2300 Do not complain if we cannot find one or the other as it
2301 was probably deleted above. */
5f4273c7 2302
d929913e
NC
2303 nbuf = strdup (name);
2304 for (p = nbuf; *p; p++)
2305 *p = TOUPPER (*p);
2306 reg = hash_find (arm_reg_hsh, nbuf);
2307 if (reg)
2308 {
2309 hash_delete (arm_reg_hsh, nbuf);
2310 free ((char *) reg->name);
2311 if (reg->neon)
2312 free (reg->neon);
2313 free (reg);
2314 }
2315
2316 for (p = nbuf; *p; p++)
2317 *p = TOLOWER (*p);
2318 reg = hash_find (arm_reg_hsh, nbuf);
2319 if (reg)
2320 {
2321 hash_delete (arm_reg_hsh, nbuf);
2322 free ((char *) reg->name);
2323 if (reg->neon)
2324 free (reg->neon);
2325 free (reg);
2326 }
2327
2328 free (nbuf);
c19d1205
ZW
2329 }
2330 }
b99bd4ef 2331
c19d1205 2332 *input_line_pointer = saved_char;
b99bd4ef
NC
2333 demand_empty_rest_of_line ();
2334}
2335
c19d1205
ZW
2336/* Directives: Instruction set selection. */
2337
2338#ifdef OBJ_ELF
2339/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2340 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2341 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2342 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2343
2344static enum mstate mapstate = MAP_UNDEFINED;
b99bd4ef 2345
e821645d 2346void
c19d1205 2347mapping_state (enum mstate state)
b99bd4ef 2348{
a737bd4d 2349 symbolS * symbolP;
c19d1205
ZW
2350 const char * symname;
2351 int type;
b99bd4ef 2352
c19d1205
ZW
2353 if (mapstate == state)
2354 /* The mapping symbol has already been emitted.
2355 There is nothing else to do. */
2356 return;
b99bd4ef 2357
c19d1205 2358 mapstate = state;
b99bd4ef 2359
c19d1205 2360 switch (state)
b99bd4ef 2361 {
c19d1205
ZW
2362 case MAP_DATA:
2363 symname = "$d";
2364 type = BSF_NO_FLAGS;
2365 break;
2366 case MAP_ARM:
2367 symname = "$a";
2368 type = BSF_NO_FLAGS;
2369 break;
2370 case MAP_THUMB:
2371 symname = "$t";
2372 type = BSF_NO_FLAGS;
2373 break;
2374 case MAP_UNDEFINED:
2375 return;
2376 default:
2377 abort ();
2378 }
2379
2380 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2381
2382 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2383 symbol_table_insert (symbolP);
2384 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2385
2386 switch (state)
2387 {
2388 case MAP_ARM:
2389 THUMB_SET_FUNC (symbolP, 0);
2390 ARM_SET_THUMB (symbolP, 0);
2391 ARM_SET_INTERWORK (symbolP, support_interwork);
2392 break;
2393
2394 case MAP_THUMB:
2395 THUMB_SET_FUNC (symbolP, 1);
2396 ARM_SET_THUMB (symbolP, 1);
2397 ARM_SET_INTERWORK (symbolP, support_interwork);
2398 break;
2399
2400 case MAP_DATA:
2401 default:
2402 return;
2403 }
2404}
2405#else
2406#define mapping_state(x) /* nothing */
2407#endif
2408
2409/* Find the real, Thumb encoded start of a Thumb function. */
2410
2411static symbolS *
2412find_real_start (symbolS * symbolP)
2413{
2414 char * real_start;
2415 const char * name = S_GET_NAME (symbolP);
2416 symbolS * new_target;
2417
2418 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2419#define STUB_NAME ".real_start_of"
2420
2421 if (name == NULL)
2422 abort ();
2423
37f6032b
ZW
2424 /* The compiler may generate BL instructions to local labels because
2425 it needs to perform a branch to a far away location. These labels
2426 do not have a corresponding ".real_start_of" label. We check
2427 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2428 the ".real_start_of" convention for nonlocal branches. */
2429 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2430 return symbolP;
2431
37f6032b 2432 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2433 new_target = symbol_find (real_start);
2434
2435 if (new_target == NULL)
2436 {
bd3ba5d1 2437 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2438 new_target = symbolP;
2439 }
2440
c19d1205
ZW
2441 return new_target;
2442}
2443
2444static void
2445opcode_select (int width)
2446{
2447 switch (width)
2448 {
2449 case 16:
2450 if (! thumb_mode)
2451 {
e74cfd16 2452 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2453 as_bad (_("selected processor does not support THUMB opcodes"));
2454
2455 thumb_mode = 1;
2456 /* No need to force the alignment, since we will have been
2457 coming from ARM mode, which is word-aligned. */
2458 record_alignment (now_seg, 1);
2459 }
2460 mapping_state (MAP_THUMB);
2461 break;
2462
2463 case 32:
2464 if (thumb_mode)
2465 {
e74cfd16 2466 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2467 as_bad (_("selected processor does not support ARM opcodes"));
2468
2469 thumb_mode = 0;
2470
2471 if (!need_pass_2)
2472 frag_align (2, 0, 0);
2473
2474 record_alignment (now_seg, 1);
2475 }
2476 mapping_state (MAP_ARM);
2477 break;
2478
2479 default:
2480 as_bad (_("invalid instruction size selected (%d)"), width);
2481 }
2482}
2483
2484static void
2485s_arm (int ignore ATTRIBUTE_UNUSED)
2486{
2487 opcode_select (32);
2488 demand_empty_rest_of_line ();
2489}
2490
2491static void
2492s_thumb (int ignore ATTRIBUTE_UNUSED)
2493{
2494 opcode_select (16);
2495 demand_empty_rest_of_line ();
2496}
2497
2498static void
2499s_code (int unused ATTRIBUTE_UNUSED)
2500{
2501 int temp;
2502
2503 temp = get_absolute_expression ();
2504 switch (temp)
2505 {
2506 case 16:
2507 case 32:
2508 opcode_select (temp);
2509 break;
2510
2511 default:
2512 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2513 }
2514}
2515
2516static void
2517s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2518{
2519 /* If we are not already in thumb mode go into it, EVEN if
2520 the target processor does not support thumb instructions.
2521 This is used by gcc/config/arm/lib1funcs.asm for example
2522 to compile interworking support functions even if the
2523 target processor should not support interworking. */
2524 if (! thumb_mode)
2525 {
2526 thumb_mode = 2;
2527 record_alignment (now_seg, 1);
2528 }
2529
2530 demand_empty_rest_of_line ();
2531}
2532
2533static void
2534s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2535{
2536 s_thumb (0);
2537
2538 /* The following label is the name/address of the start of a Thumb function.
2539 We need to know this for the interworking support. */
2540 label_is_thumb_function_name = TRUE;
2541}
2542
2543/* Perform a .set directive, but also mark the alias as
2544 being a thumb function. */
2545
2546static void
2547s_thumb_set (int equiv)
2548{
2549 /* XXX the following is a duplicate of the code for s_set() in read.c
2550 We cannot just call that code as we need to get at the symbol that
2551 is created. */
2552 char * name;
2553 char delim;
2554 char * end_name;
2555 symbolS * symbolP;
2556
2557 /* Especial apologies for the random logic:
2558 This just grew, and could be parsed much more simply!
2559 Dean - in haste. */
2560 name = input_line_pointer;
2561 delim = get_symbol_end ();
2562 end_name = input_line_pointer;
2563 *end_name = delim;
2564
2565 if (*input_line_pointer != ',')
2566 {
2567 *end_name = 0;
2568 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2569 *end_name = delim;
2570 ignore_rest_of_line ();
2571 return;
2572 }
2573
2574 input_line_pointer++;
2575 *end_name = 0;
2576
2577 if (name[0] == '.' && name[1] == '\0')
2578 {
2579 /* XXX - this should not happen to .thumb_set. */
2580 abort ();
2581 }
2582
2583 if ((symbolP = symbol_find (name)) == NULL
2584 && (symbolP = md_undefined_symbol (name)) == NULL)
2585 {
2586#ifndef NO_LISTING
2587 /* When doing symbol listings, play games with dummy fragments living
2588 outside the normal fragment chain to record the file and line info
c19d1205 2589 for this symbol. */
b99bd4ef
NC
2590 if (listing & LISTING_SYMBOLS)
2591 {
2592 extern struct list_info_struct * listing_tail;
a737bd4d 2593 fragS * dummy_frag = xmalloc (sizeof (fragS));
b99bd4ef
NC
2594
2595 memset (dummy_frag, 0, sizeof (fragS));
2596 dummy_frag->fr_type = rs_fill;
2597 dummy_frag->line = listing_tail;
2598 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2599 dummy_frag->fr_symbol = symbolP;
2600 }
2601 else
2602#endif
2603 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2604
2605#ifdef OBJ_COFF
2606 /* "set" symbols are local unless otherwise specified. */
2607 SF_SET_LOCAL (symbolP);
2608#endif /* OBJ_COFF */
2609 } /* Make a new symbol. */
2610
2611 symbol_table_insert (symbolP);
2612
2613 * end_name = delim;
2614
2615 if (equiv
2616 && S_IS_DEFINED (symbolP)
2617 && S_GET_SEGMENT (symbolP) != reg_section)
2618 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2619
2620 pseudo_set (symbolP);
2621
2622 demand_empty_rest_of_line ();
2623
c19d1205 2624 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2625
2626 THUMB_SET_FUNC (symbolP, 1);
2627 ARM_SET_THUMB (symbolP, 1);
2628#if defined OBJ_ELF || defined OBJ_COFF
2629 ARM_SET_INTERWORK (symbolP, support_interwork);
2630#endif
2631}
2632
c19d1205 2633/* Directives: Mode selection. */
b99bd4ef 2634
c19d1205
ZW
2635/* .syntax [unified|divided] - choose the new unified syntax
2636 (same for Arm and Thumb encoding, modulo slight differences in what
2637 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2638static void
c19d1205 2639s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2640{
c19d1205
ZW
2641 char *name, delim;
2642
2643 name = input_line_pointer;
2644 delim = get_symbol_end ();
2645
2646 if (!strcasecmp (name, "unified"))
2647 unified_syntax = TRUE;
2648 else if (!strcasecmp (name, "divided"))
2649 unified_syntax = FALSE;
2650 else
2651 {
2652 as_bad (_("unrecognized syntax mode \"%s\""), name);
2653 return;
2654 }
2655 *input_line_pointer = delim;
b99bd4ef
NC
2656 demand_empty_rest_of_line ();
2657}
2658
c19d1205
ZW
2659/* Directives: sectioning and alignment. */
2660
2661/* Same as s_align_ptwo but align 0 => align 2. */
2662
b99bd4ef 2663static void
c19d1205 2664s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2665{
a737bd4d 2666 int temp;
dce323d1 2667 bfd_boolean fill_p;
c19d1205
ZW
2668 long temp_fill;
2669 long max_alignment = 15;
b99bd4ef
NC
2670
2671 temp = get_absolute_expression ();
c19d1205
ZW
2672 if (temp > max_alignment)
2673 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2674 else if (temp < 0)
b99bd4ef 2675 {
c19d1205
ZW
2676 as_bad (_("alignment negative. 0 assumed."));
2677 temp = 0;
2678 }
b99bd4ef 2679
c19d1205
ZW
2680 if (*input_line_pointer == ',')
2681 {
2682 input_line_pointer++;
2683 temp_fill = get_absolute_expression ();
dce323d1 2684 fill_p = TRUE;
b99bd4ef 2685 }
c19d1205 2686 else
dce323d1
PB
2687 {
2688 fill_p = FALSE;
2689 temp_fill = 0;
2690 }
b99bd4ef 2691
c19d1205
ZW
2692 if (!temp)
2693 temp = 2;
b99bd4ef 2694
c19d1205
ZW
2695 /* Only make a frag if we HAVE to. */
2696 if (temp && !need_pass_2)
dce323d1
PB
2697 {
2698 if (!fill_p && subseg_text_p (now_seg))
2699 frag_align_code (temp, 0);
2700 else
2701 frag_align (temp, (int) temp_fill, 0);
2702 }
c19d1205
ZW
2703 demand_empty_rest_of_line ();
2704
2705 record_alignment (now_seg, temp);
b99bd4ef
NC
2706}
2707
c19d1205
ZW
2708static void
2709s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2710{
c19d1205
ZW
2711 /* We don't support putting frags in the BSS segment, we fake it by
2712 marking in_bss, then looking at s_skip for clues. */
2713 subseg_set (bss_section, 0);
2714 demand_empty_rest_of_line ();
2715 mapping_state (MAP_DATA);
2716}
b99bd4ef 2717
c19d1205
ZW
2718static void
2719s_even (int ignore ATTRIBUTE_UNUSED)
2720{
2721 /* Never make frag if expect extra pass. */
2722 if (!need_pass_2)
2723 frag_align (1, 0, 0);
b99bd4ef 2724
c19d1205 2725 record_alignment (now_seg, 1);
b99bd4ef 2726
c19d1205 2727 demand_empty_rest_of_line ();
b99bd4ef
NC
2728}
2729
c19d1205 2730/* Directives: Literal pools. */
a737bd4d 2731
c19d1205
ZW
2732static literal_pool *
2733find_literal_pool (void)
a737bd4d 2734{
c19d1205 2735 literal_pool * pool;
a737bd4d 2736
c19d1205 2737 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2738 {
c19d1205
ZW
2739 if (pool->section == now_seg
2740 && pool->sub_section == now_subseg)
2741 break;
a737bd4d
NC
2742 }
2743
c19d1205 2744 return pool;
a737bd4d
NC
2745}
2746
c19d1205
ZW
2747static literal_pool *
2748find_or_make_literal_pool (void)
a737bd4d 2749{
c19d1205
ZW
2750 /* Next literal pool ID number. */
2751 static unsigned int latest_pool_num = 1;
2752 literal_pool * pool;
a737bd4d 2753
c19d1205 2754 pool = find_literal_pool ();
a737bd4d 2755
c19d1205 2756 if (pool == NULL)
a737bd4d 2757 {
c19d1205
ZW
2758 /* Create a new pool. */
2759 pool = xmalloc (sizeof (* pool));
2760 if (! pool)
2761 return NULL;
a737bd4d 2762
c19d1205
ZW
2763 pool->next_free_entry = 0;
2764 pool->section = now_seg;
2765 pool->sub_section = now_subseg;
2766 pool->next = list_of_pools;
2767 pool->symbol = NULL;
2768
2769 /* Add it to the list. */
2770 list_of_pools = pool;
a737bd4d 2771 }
a737bd4d 2772
c19d1205
ZW
2773 /* New pools, and emptied pools, will have a NULL symbol. */
2774 if (pool->symbol == NULL)
a737bd4d 2775 {
c19d1205
ZW
2776 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2777 (valueT) 0, &zero_address_frag);
2778 pool->id = latest_pool_num ++;
a737bd4d
NC
2779 }
2780
c19d1205
ZW
2781 /* Done. */
2782 return pool;
a737bd4d
NC
2783}
2784
c19d1205 2785/* Add the literal in the global 'inst'
5f4273c7 2786 structure to the relevant literal pool. */
b99bd4ef
NC
2787
2788static int
c19d1205 2789add_to_lit_pool (void)
b99bd4ef 2790{
c19d1205
ZW
2791 literal_pool * pool;
2792 unsigned int entry;
b99bd4ef 2793
c19d1205
ZW
2794 pool = find_or_make_literal_pool ();
2795
2796 /* Check if this literal value is already in the pool. */
2797 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 2798 {
c19d1205
ZW
2799 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2800 && (inst.reloc.exp.X_op == O_constant)
2801 && (pool->literals[entry].X_add_number
2802 == inst.reloc.exp.X_add_number)
2803 && (pool->literals[entry].X_unsigned
2804 == inst.reloc.exp.X_unsigned))
2805 break;
2806
2807 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2808 && (inst.reloc.exp.X_op == O_symbol)
2809 && (pool->literals[entry].X_add_number
2810 == inst.reloc.exp.X_add_number)
2811 && (pool->literals[entry].X_add_symbol
2812 == inst.reloc.exp.X_add_symbol)
2813 && (pool->literals[entry].X_op_symbol
2814 == inst.reloc.exp.X_op_symbol))
2815 break;
b99bd4ef
NC
2816 }
2817
c19d1205
ZW
2818 /* Do we need to create a new entry? */
2819 if (entry == pool->next_free_entry)
2820 {
2821 if (entry >= MAX_LITERAL_POOL_SIZE)
2822 {
2823 inst.error = _("literal pool overflow");
2824 return FAIL;
2825 }
2826
2827 pool->literals[entry] = inst.reloc.exp;
2828 pool->next_free_entry += 1;
2829 }
b99bd4ef 2830
c19d1205
ZW
2831 inst.reloc.exp.X_op = O_symbol;
2832 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2833 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 2834
c19d1205 2835 return SUCCESS;
b99bd4ef
NC
2836}
2837
c19d1205
ZW
2838/* Can't use symbol_new here, so have to create a symbol and then at
2839 a later date assign it a value. Thats what these functions do. */
e16bb312 2840
c19d1205
ZW
2841static void
2842symbol_locate (symbolS * symbolP,
2843 const char * name, /* It is copied, the caller can modify. */
2844 segT segment, /* Segment identifier (SEG_<something>). */
2845 valueT valu, /* Symbol value. */
2846 fragS * frag) /* Associated fragment. */
2847{
2848 unsigned int name_length;
2849 char * preserved_copy_of_name;
e16bb312 2850
c19d1205
ZW
2851 name_length = strlen (name) + 1; /* +1 for \0. */
2852 obstack_grow (&notes, name, name_length);
2853 preserved_copy_of_name = obstack_finish (&notes);
e16bb312 2854
c19d1205
ZW
2855#ifdef tc_canonicalize_symbol_name
2856 preserved_copy_of_name =
2857 tc_canonicalize_symbol_name (preserved_copy_of_name);
2858#endif
b99bd4ef 2859
c19d1205 2860 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 2861
c19d1205
ZW
2862 S_SET_SEGMENT (symbolP, segment);
2863 S_SET_VALUE (symbolP, valu);
2864 symbol_clear_list_pointers (symbolP);
b99bd4ef 2865
c19d1205 2866 symbol_set_frag (symbolP, frag);
b99bd4ef 2867
c19d1205
ZW
2868 /* Link to end of symbol chain. */
2869 {
2870 extern int symbol_table_frozen;
b99bd4ef 2871
c19d1205
ZW
2872 if (symbol_table_frozen)
2873 abort ();
2874 }
b99bd4ef 2875
c19d1205 2876 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 2877
c19d1205 2878 obj_symbol_new_hook (symbolP);
b99bd4ef 2879
c19d1205
ZW
2880#ifdef tc_symbol_new_hook
2881 tc_symbol_new_hook (symbolP);
2882#endif
2883
2884#ifdef DEBUG_SYMS
2885 verify_symbol_chain (symbol_rootP, symbol_lastP);
2886#endif /* DEBUG_SYMS */
b99bd4ef
NC
2887}
2888
b99bd4ef 2889
c19d1205
ZW
2890static void
2891s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 2892{
c19d1205
ZW
2893 unsigned int entry;
2894 literal_pool * pool;
2895 char sym_name[20];
b99bd4ef 2896
c19d1205
ZW
2897 pool = find_literal_pool ();
2898 if (pool == NULL
2899 || pool->symbol == NULL
2900 || pool->next_free_entry == 0)
2901 return;
b99bd4ef 2902
c19d1205 2903 mapping_state (MAP_DATA);
b99bd4ef 2904
c19d1205
ZW
2905 /* Align pool as you have word accesses.
2906 Only make a frag if we have to. */
2907 if (!need_pass_2)
2908 frag_align (2, 0, 0);
b99bd4ef 2909
c19d1205 2910 record_alignment (now_seg, 2);
b99bd4ef 2911
c19d1205 2912 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 2913
c19d1205
ZW
2914 symbol_locate (pool->symbol, sym_name, now_seg,
2915 (valueT) frag_now_fix (), frag_now);
2916 symbol_table_insert (pool->symbol);
b99bd4ef 2917
c19d1205 2918 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 2919
c19d1205
ZW
2920#if defined OBJ_COFF || defined OBJ_ELF
2921 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2922#endif
6c43fab6 2923
c19d1205
ZW
2924 for (entry = 0; entry < pool->next_free_entry; entry ++)
2925 /* First output the expression in the instruction to the pool. */
2926 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 2927
c19d1205
ZW
2928 /* Mark the pool as empty. */
2929 pool->next_free_entry = 0;
2930 pool->symbol = NULL;
b99bd4ef
NC
2931}
2932
c19d1205
ZW
2933#ifdef OBJ_ELF
2934/* Forward declarations for functions below, in the MD interface
2935 section. */
2936static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2937static valueT create_unwind_entry (int);
2938static void start_unwind_section (const segT, int);
2939static void add_unwind_opcode (valueT, int);
2940static void flush_pending_unwind (void);
b99bd4ef 2941
c19d1205 2942/* Directives: Data. */
b99bd4ef 2943
c19d1205
ZW
2944static void
2945s_arm_elf_cons (int nbytes)
2946{
2947 expressionS exp;
b99bd4ef 2948
c19d1205
ZW
2949#ifdef md_flush_pending_output
2950 md_flush_pending_output ();
2951#endif
b99bd4ef 2952
c19d1205 2953 if (is_it_end_of_statement ())
b99bd4ef 2954 {
c19d1205
ZW
2955 demand_empty_rest_of_line ();
2956 return;
b99bd4ef
NC
2957 }
2958
c19d1205
ZW
2959#ifdef md_cons_align
2960 md_cons_align (nbytes);
2961#endif
b99bd4ef 2962
c19d1205
ZW
2963 mapping_state (MAP_DATA);
2964 do
b99bd4ef 2965 {
c19d1205
ZW
2966 int reloc;
2967 char *base = input_line_pointer;
b99bd4ef 2968
c19d1205 2969 expression (& exp);
b99bd4ef 2970
c19d1205
ZW
2971 if (exp.X_op != O_symbol)
2972 emit_expr (&exp, (unsigned int) nbytes);
2973 else
2974 {
2975 char *before_reloc = input_line_pointer;
2976 reloc = parse_reloc (&input_line_pointer);
2977 if (reloc == -1)
2978 {
2979 as_bad (_("unrecognized relocation suffix"));
2980 ignore_rest_of_line ();
2981 return;
2982 }
2983 else if (reloc == BFD_RELOC_UNUSED)
2984 emit_expr (&exp, (unsigned int) nbytes);
2985 else
2986 {
2987 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2988 int size = bfd_get_reloc_size (howto);
b99bd4ef 2989
2fc8bdac
ZW
2990 if (reloc == BFD_RELOC_ARM_PLT32)
2991 {
2992 as_bad (_("(plt) is only valid on branch targets"));
2993 reloc = BFD_RELOC_UNUSED;
2994 size = 0;
2995 }
2996
c19d1205 2997 if (size > nbytes)
2fc8bdac 2998 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
2999 howto->name, nbytes);
3000 else
3001 {
3002 /* We've parsed an expression stopping at O_symbol.
3003 But there may be more expression left now that we
3004 have parsed the relocation marker. Parse it again.
3005 XXX Surely there is a cleaner way to do this. */
3006 char *p = input_line_pointer;
3007 int offset;
3008 char *save_buf = alloca (input_line_pointer - base);
3009 memcpy (save_buf, base, input_line_pointer - base);
3010 memmove (base + (input_line_pointer - before_reloc),
3011 base, before_reloc - base);
3012
3013 input_line_pointer = base + (input_line_pointer-before_reloc);
3014 expression (&exp);
3015 memcpy (base, save_buf, p - base);
3016
3017 offset = nbytes - size;
3018 p = frag_more ((int) nbytes);
3019 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3020 size, &exp, 0, reloc);
3021 }
3022 }
3023 }
b99bd4ef 3024 }
c19d1205 3025 while (*input_line_pointer++ == ',');
b99bd4ef 3026
c19d1205
ZW
3027 /* Put terminator back into stream. */
3028 input_line_pointer --;
3029 demand_empty_rest_of_line ();
b99bd4ef
NC
3030}
3031
b99bd4ef 3032
c19d1205 3033/* Parse a .rel31 directive. */
b99bd4ef 3034
c19d1205
ZW
3035static void
3036s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3037{
3038 expressionS exp;
3039 char *p;
3040 valueT highbit;
b99bd4ef 3041
c19d1205
ZW
3042 highbit = 0;
3043 if (*input_line_pointer == '1')
3044 highbit = 0x80000000;
3045 else if (*input_line_pointer != '0')
3046 as_bad (_("expected 0 or 1"));
b99bd4ef 3047
c19d1205
ZW
3048 input_line_pointer++;
3049 if (*input_line_pointer != ',')
3050 as_bad (_("missing comma"));
3051 input_line_pointer++;
b99bd4ef 3052
c19d1205
ZW
3053#ifdef md_flush_pending_output
3054 md_flush_pending_output ();
3055#endif
b99bd4ef 3056
c19d1205
ZW
3057#ifdef md_cons_align
3058 md_cons_align (4);
3059#endif
b99bd4ef 3060
c19d1205 3061 mapping_state (MAP_DATA);
b99bd4ef 3062
c19d1205 3063 expression (&exp);
b99bd4ef 3064
c19d1205
ZW
3065 p = frag_more (4);
3066 md_number_to_chars (p, highbit, 4);
3067 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3068 BFD_RELOC_ARM_PREL31);
b99bd4ef 3069
c19d1205 3070 demand_empty_rest_of_line ();
b99bd4ef
NC
3071}
3072
c19d1205 3073/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3074
c19d1205 3075/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3076
c19d1205
ZW
3077static void
3078s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3079{
3080 demand_empty_rest_of_line ();
3081 /* Mark the start of the function. */
3082 unwind.proc_start = expr_build_dot ();
b99bd4ef 3083
c19d1205
ZW
3084 /* Reset the rest of the unwind info. */
3085 unwind.opcode_count = 0;
3086 unwind.table_entry = NULL;
3087 unwind.personality_routine = NULL;
3088 unwind.personality_index = -1;
3089 unwind.frame_size = 0;
3090 unwind.fp_offset = 0;
3091 unwind.fp_reg = 13;
3092 unwind.fp_used = 0;
3093 unwind.sp_restored = 0;
3094}
b99bd4ef 3095
b99bd4ef 3096
c19d1205
ZW
3097/* Parse a handlerdata directive. Creates the exception handling table entry
3098 for the function. */
b99bd4ef 3099
c19d1205
ZW
3100static void
3101s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3102{
3103 demand_empty_rest_of_line ();
3104 if (unwind.table_entry)
6decc662 3105 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3106
c19d1205
ZW
3107 create_unwind_entry (1);
3108}
a737bd4d 3109
c19d1205 3110/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3111
c19d1205
ZW
3112static void
3113s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3114{
3115 long where;
3116 char *ptr;
3117 valueT val;
f02232aa 3118
c19d1205 3119 demand_empty_rest_of_line ();
f02232aa 3120
c19d1205
ZW
3121 /* Add eh table entry. */
3122 if (unwind.table_entry == NULL)
3123 val = create_unwind_entry (0);
3124 else
3125 val = 0;
f02232aa 3126
c19d1205
ZW
3127 /* Add index table entry. This is two words. */
3128 start_unwind_section (unwind.saved_seg, 1);
3129 frag_align (2, 0, 0);
3130 record_alignment (now_seg, 2);
b99bd4ef 3131
c19d1205
ZW
3132 ptr = frag_more (8);
3133 where = frag_now_fix () - 8;
f02232aa 3134
c19d1205
ZW
3135 /* Self relative offset of the function start. */
3136 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3137 BFD_RELOC_ARM_PREL31);
f02232aa 3138
c19d1205
ZW
3139 /* Indicate dependency on EHABI-defined personality routines to the
3140 linker, if it hasn't been done already. */
3141 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3142 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3143 {
5f4273c7
NC
3144 static const char *const name[] =
3145 {
3146 "__aeabi_unwind_cpp_pr0",
3147 "__aeabi_unwind_cpp_pr1",
3148 "__aeabi_unwind_cpp_pr2"
3149 };
c19d1205
ZW
3150 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3151 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3152 marked_pr_dependency |= 1 << unwind.personality_index;
3153 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3154 = marked_pr_dependency;
3155 }
f02232aa 3156
c19d1205
ZW
3157 if (val)
3158 /* Inline exception table entry. */
3159 md_number_to_chars (ptr + 4, val, 4);
3160 else
3161 /* Self relative offset of the table entry. */
3162 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3163 BFD_RELOC_ARM_PREL31);
f02232aa 3164
c19d1205
ZW
3165 /* Restore the original section. */
3166 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3167}
f02232aa 3168
f02232aa 3169
c19d1205 3170/* Parse an unwind_cantunwind directive. */
b99bd4ef 3171
c19d1205
ZW
3172static void
3173s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3174{
3175 demand_empty_rest_of_line ();
3176 if (unwind.personality_routine || unwind.personality_index != -1)
3177 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3178
c19d1205
ZW
3179 unwind.personality_index = -2;
3180}
b99bd4ef 3181
b99bd4ef 3182
c19d1205 3183/* Parse a personalityindex directive. */
b99bd4ef 3184
c19d1205
ZW
3185static void
3186s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3187{
3188 expressionS exp;
b99bd4ef 3189
c19d1205
ZW
3190 if (unwind.personality_routine || unwind.personality_index != -1)
3191 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3192
c19d1205 3193 expression (&exp);
b99bd4ef 3194
c19d1205
ZW
3195 if (exp.X_op != O_constant
3196 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3197 {
c19d1205
ZW
3198 as_bad (_("bad personality routine number"));
3199 ignore_rest_of_line ();
3200 return;
b99bd4ef
NC
3201 }
3202
c19d1205 3203 unwind.personality_index = exp.X_add_number;
b99bd4ef 3204
c19d1205
ZW
3205 demand_empty_rest_of_line ();
3206}
e16bb312 3207
e16bb312 3208
c19d1205 3209/* Parse a personality directive. */
e16bb312 3210
c19d1205
ZW
3211static void
3212s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3213{
3214 char *name, *p, c;
a737bd4d 3215
c19d1205
ZW
3216 if (unwind.personality_routine || unwind.personality_index != -1)
3217 as_bad (_("duplicate .personality directive"));
a737bd4d 3218
c19d1205
ZW
3219 name = input_line_pointer;
3220 c = get_symbol_end ();
3221 p = input_line_pointer;
3222 unwind.personality_routine = symbol_find_or_make (name);
3223 *p = c;
3224 demand_empty_rest_of_line ();
3225}
e16bb312 3226
e16bb312 3227
c19d1205 3228/* Parse a directive saving core registers. */
e16bb312 3229
c19d1205
ZW
3230static void
3231s_arm_unwind_save_core (void)
e16bb312 3232{
c19d1205
ZW
3233 valueT op;
3234 long range;
3235 int n;
e16bb312 3236
c19d1205
ZW
3237 range = parse_reg_list (&input_line_pointer);
3238 if (range == FAIL)
e16bb312 3239 {
c19d1205
ZW
3240 as_bad (_("expected register list"));
3241 ignore_rest_of_line ();
3242 return;
3243 }
e16bb312 3244
c19d1205 3245 demand_empty_rest_of_line ();
e16bb312 3246
c19d1205
ZW
3247 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3248 into .unwind_save {..., sp...}. We aren't bothered about the value of
3249 ip because it is clobbered by calls. */
3250 if (unwind.sp_restored && unwind.fp_reg == 12
3251 && (range & 0x3000) == 0x1000)
3252 {
3253 unwind.opcode_count--;
3254 unwind.sp_restored = 0;
3255 range = (range | 0x2000) & ~0x1000;
3256 unwind.pending_offset = 0;
3257 }
e16bb312 3258
01ae4198
DJ
3259 /* Pop r4-r15. */
3260 if (range & 0xfff0)
c19d1205 3261 {
01ae4198
DJ
3262 /* See if we can use the short opcodes. These pop a block of up to 8
3263 registers starting with r4, plus maybe r14. */
3264 for (n = 0; n < 8; n++)
3265 {
3266 /* Break at the first non-saved register. */
3267 if ((range & (1 << (n + 4))) == 0)
3268 break;
3269 }
3270 /* See if there are any other bits set. */
3271 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3272 {
3273 /* Use the long form. */
3274 op = 0x8000 | ((range >> 4) & 0xfff);
3275 add_unwind_opcode (op, 2);
3276 }
0dd132b6 3277 else
01ae4198
DJ
3278 {
3279 /* Use the short form. */
3280 if (range & 0x4000)
3281 op = 0xa8; /* Pop r14. */
3282 else
3283 op = 0xa0; /* Do not pop r14. */
3284 op |= (n - 1);
3285 add_unwind_opcode (op, 1);
3286 }
c19d1205 3287 }
0dd132b6 3288
c19d1205
ZW
3289 /* Pop r0-r3. */
3290 if (range & 0xf)
3291 {
3292 op = 0xb100 | (range & 0xf);
3293 add_unwind_opcode (op, 2);
0dd132b6
NC
3294 }
3295
c19d1205
ZW
3296 /* Record the number of bytes pushed. */
3297 for (n = 0; n < 16; n++)
3298 {
3299 if (range & (1 << n))
3300 unwind.frame_size += 4;
3301 }
0dd132b6
NC
3302}
3303
c19d1205
ZW
3304
3305/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3306
3307static void
c19d1205 3308s_arm_unwind_save_fpa (int reg)
b99bd4ef 3309{
c19d1205
ZW
3310 expressionS exp;
3311 int num_regs;
3312 valueT op;
b99bd4ef 3313
c19d1205
ZW
3314 /* Get Number of registers to transfer. */
3315 if (skip_past_comma (&input_line_pointer) != FAIL)
3316 expression (&exp);
3317 else
3318 exp.X_op = O_illegal;
b99bd4ef 3319
c19d1205 3320 if (exp.X_op != O_constant)
b99bd4ef 3321 {
c19d1205
ZW
3322 as_bad (_("expected , <constant>"));
3323 ignore_rest_of_line ();
b99bd4ef
NC
3324 return;
3325 }
3326
c19d1205
ZW
3327 num_regs = exp.X_add_number;
3328
3329 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3330 {
c19d1205
ZW
3331 as_bad (_("number of registers must be in the range [1:4]"));
3332 ignore_rest_of_line ();
b99bd4ef
NC
3333 return;
3334 }
3335
c19d1205 3336 demand_empty_rest_of_line ();
b99bd4ef 3337
c19d1205
ZW
3338 if (reg == 4)
3339 {
3340 /* Short form. */
3341 op = 0xb4 | (num_regs - 1);
3342 add_unwind_opcode (op, 1);
3343 }
b99bd4ef
NC
3344 else
3345 {
c19d1205
ZW
3346 /* Long form. */
3347 op = 0xc800 | (reg << 4) | (num_regs - 1);
3348 add_unwind_opcode (op, 2);
b99bd4ef 3349 }
c19d1205 3350 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3351}
3352
c19d1205 3353
fa073d69
MS
3354/* Parse a directive saving VFP registers for ARMv6 and above. */
3355
3356static void
3357s_arm_unwind_save_vfp_armv6 (void)
3358{
3359 int count;
3360 unsigned int start;
3361 valueT op;
3362 int num_vfpv3_regs = 0;
3363 int num_regs_below_16;
3364
3365 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3366 if (count == FAIL)
3367 {
3368 as_bad (_("expected register list"));
3369 ignore_rest_of_line ();
3370 return;
3371 }
3372
3373 demand_empty_rest_of_line ();
3374
3375 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3376 than FSTMX/FLDMX-style ones). */
3377
3378 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3379 if (start >= 16)
3380 num_vfpv3_regs = count;
3381 else if (start + count > 16)
3382 num_vfpv3_regs = start + count - 16;
3383
3384 if (num_vfpv3_regs > 0)
3385 {
3386 int start_offset = start > 16 ? start - 16 : 0;
3387 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3388 add_unwind_opcode (op, 2);
3389 }
3390
3391 /* Generate opcode for registers numbered in the range 0 .. 15. */
3392 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3393 assert (num_regs_below_16 + num_vfpv3_regs == count);
3394 if (num_regs_below_16 > 0)
3395 {
3396 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3397 add_unwind_opcode (op, 2);
3398 }
3399
3400 unwind.frame_size += count * 8;
3401}
3402
3403
3404/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3405
3406static void
c19d1205 3407s_arm_unwind_save_vfp (void)
b99bd4ef 3408{
c19d1205 3409 int count;
ca3f61f7 3410 unsigned int reg;
c19d1205 3411 valueT op;
b99bd4ef 3412
5287ad62 3413 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3414 if (count == FAIL)
b99bd4ef 3415 {
c19d1205
ZW
3416 as_bad (_("expected register list"));
3417 ignore_rest_of_line ();
b99bd4ef
NC
3418 return;
3419 }
3420
c19d1205 3421 demand_empty_rest_of_line ();
b99bd4ef 3422
c19d1205 3423 if (reg == 8)
b99bd4ef 3424 {
c19d1205
ZW
3425 /* Short form. */
3426 op = 0xb8 | (count - 1);
3427 add_unwind_opcode (op, 1);
b99bd4ef 3428 }
c19d1205 3429 else
b99bd4ef 3430 {
c19d1205
ZW
3431 /* Long form. */
3432 op = 0xb300 | (reg << 4) | (count - 1);
3433 add_unwind_opcode (op, 2);
b99bd4ef 3434 }
c19d1205
ZW
3435 unwind.frame_size += count * 8 + 4;
3436}
b99bd4ef 3437
b99bd4ef 3438
c19d1205
ZW
3439/* Parse a directive saving iWMMXt data registers. */
3440
3441static void
3442s_arm_unwind_save_mmxwr (void)
3443{
3444 int reg;
3445 int hi_reg;
3446 int i;
3447 unsigned mask = 0;
3448 valueT op;
b99bd4ef 3449
c19d1205
ZW
3450 if (*input_line_pointer == '{')
3451 input_line_pointer++;
b99bd4ef 3452
c19d1205 3453 do
b99bd4ef 3454 {
dcbf9037 3455 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3456
c19d1205 3457 if (reg == FAIL)
b99bd4ef 3458 {
c19d1205
ZW
3459 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3460 goto error;
b99bd4ef
NC
3461 }
3462
c19d1205
ZW
3463 if (mask >> reg)
3464 as_tsktsk (_("register list not in ascending order"));
3465 mask |= 1 << reg;
b99bd4ef 3466
c19d1205
ZW
3467 if (*input_line_pointer == '-')
3468 {
3469 input_line_pointer++;
dcbf9037 3470 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3471 if (hi_reg == FAIL)
3472 {
3473 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3474 goto error;
3475 }
3476 else if (reg >= hi_reg)
3477 {
3478 as_bad (_("bad register range"));
3479 goto error;
3480 }
3481 for (; reg < hi_reg; reg++)
3482 mask |= 1 << reg;
3483 }
3484 }
3485 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3486
c19d1205
ZW
3487 if (*input_line_pointer == '}')
3488 input_line_pointer++;
b99bd4ef 3489
c19d1205 3490 demand_empty_rest_of_line ();
b99bd4ef 3491
708587a4 3492 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3493 the list. */
3494 flush_pending_unwind ();
b99bd4ef 3495
c19d1205 3496 for (i = 0; i < 16; i++)
b99bd4ef 3497 {
c19d1205
ZW
3498 if (mask & (1 << i))
3499 unwind.frame_size += 8;
b99bd4ef
NC
3500 }
3501
c19d1205
ZW
3502 /* Attempt to combine with a previous opcode. We do this because gcc
3503 likes to output separate unwind directives for a single block of
3504 registers. */
3505 if (unwind.opcode_count > 0)
b99bd4ef 3506 {
c19d1205
ZW
3507 i = unwind.opcodes[unwind.opcode_count - 1];
3508 if ((i & 0xf8) == 0xc0)
3509 {
3510 i &= 7;
3511 /* Only merge if the blocks are contiguous. */
3512 if (i < 6)
3513 {
3514 if ((mask & 0xfe00) == (1 << 9))
3515 {
3516 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3517 unwind.opcode_count--;
3518 }
3519 }
3520 else if (i == 6 && unwind.opcode_count >= 2)
3521 {
3522 i = unwind.opcodes[unwind.opcode_count - 2];
3523 reg = i >> 4;
3524 i &= 0xf;
b99bd4ef 3525
c19d1205
ZW
3526 op = 0xffff << (reg - 1);
3527 if (reg > 0
87a1fd79 3528 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3529 {
3530 op = (1 << (reg + i + 1)) - 1;
3531 op &= ~((1 << reg) - 1);
3532 mask |= op;
3533 unwind.opcode_count -= 2;
3534 }
3535 }
3536 }
b99bd4ef
NC
3537 }
3538
c19d1205
ZW
3539 hi_reg = 15;
3540 /* We want to generate opcodes in the order the registers have been
3541 saved, ie. descending order. */
3542 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3543 {
c19d1205
ZW
3544 /* Save registers in blocks. */
3545 if (reg < 0
3546 || !(mask & (1 << reg)))
3547 {
3548 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3549 preceding block. */
c19d1205
ZW
3550 if (reg != hi_reg)
3551 {
3552 if (reg == 9)
3553 {
3554 /* Short form. */
3555 op = 0xc0 | (hi_reg - 10);
3556 add_unwind_opcode (op, 1);
3557 }
3558 else
3559 {
3560 /* Long form. */
3561 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3562 add_unwind_opcode (op, 2);
3563 }
3564 }
3565 hi_reg = reg - 1;
3566 }
b99bd4ef
NC
3567 }
3568
c19d1205
ZW
3569 return;
3570error:
3571 ignore_rest_of_line ();
b99bd4ef
NC
3572}
3573
3574static void
c19d1205 3575s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3576{
c19d1205
ZW
3577 int reg;
3578 int hi_reg;
3579 unsigned mask = 0;
3580 valueT op;
b99bd4ef 3581
c19d1205
ZW
3582 if (*input_line_pointer == '{')
3583 input_line_pointer++;
b99bd4ef 3584
c19d1205 3585 do
b99bd4ef 3586 {
dcbf9037 3587 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3588
c19d1205
ZW
3589 if (reg == FAIL)
3590 {
3591 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3592 goto error;
3593 }
b99bd4ef 3594
c19d1205
ZW
3595 reg -= 8;
3596 if (mask >> reg)
3597 as_tsktsk (_("register list not in ascending order"));
3598 mask |= 1 << reg;
b99bd4ef 3599
c19d1205
ZW
3600 if (*input_line_pointer == '-')
3601 {
3602 input_line_pointer++;
dcbf9037 3603 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3604 if (hi_reg == FAIL)
3605 {
3606 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3607 goto error;
3608 }
3609 else if (reg >= hi_reg)
3610 {
3611 as_bad (_("bad register range"));
3612 goto error;
3613 }
3614 for (; reg < hi_reg; reg++)
3615 mask |= 1 << reg;
3616 }
b99bd4ef 3617 }
c19d1205 3618 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3619
c19d1205
ZW
3620 if (*input_line_pointer == '}')
3621 input_line_pointer++;
b99bd4ef 3622
c19d1205
ZW
3623 demand_empty_rest_of_line ();
3624
708587a4 3625 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3626 the list. */
3627 flush_pending_unwind ();
b99bd4ef 3628
c19d1205 3629 for (reg = 0; reg < 16; reg++)
b99bd4ef 3630 {
c19d1205
ZW
3631 if (mask & (1 << reg))
3632 unwind.frame_size += 4;
b99bd4ef 3633 }
c19d1205
ZW
3634 op = 0xc700 | mask;
3635 add_unwind_opcode (op, 2);
3636 return;
3637error:
3638 ignore_rest_of_line ();
b99bd4ef
NC
3639}
3640
c19d1205 3641
fa073d69
MS
3642/* Parse an unwind_save directive.
3643 If the argument is non-zero, this is a .vsave directive. */
c19d1205 3644
b99bd4ef 3645static void
fa073d69 3646s_arm_unwind_save (int arch_v6)
b99bd4ef 3647{
c19d1205
ZW
3648 char *peek;
3649 struct reg_entry *reg;
3650 bfd_boolean had_brace = FALSE;
b99bd4ef 3651
c19d1205
ZW
3652 /* Figure out what sort of save we have. */
3653 peek = input_line_pointer;
b99bd4ef 3654
c19d1205 3655 if (*peek == '{')
b99bd4ef 3656 {
c19d1205
ZW
3657 had_brace = TRUE;
3658 peek++;
b99bd4ef
NC
3659 }
3660
c19d1205 3661 reg = arm_reg_parse_multi (&peek);
b99bd4ef 3662
c19d1205 3663 if (!reg)
b99bd4ef 3664 {
c19d1205
ZW
3665 as_bad (_("register expected"));
3666 ignore_rest_of_line ();
b99bd4ef
NC
3667 return;
3668 }
3669
c19d1205 3670 switch (reg->type)
b99bd4ef 3671 {
c19d1205
ZW
3672 case REG_TYPE_FN:
3673 if (had_brace)
3674 {
3675 as_bad (_("FPA .unwind_save does not take a register list"));
3676 ignore_rest_of_line ();
3677 return;
3678 }
93ac2687 3679 input_line_pointer = peek;
c19d1205 3680 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 3681 return;
c19d1205
ZW
3682
3683 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
3684 case REG_TYPE_VFD:
3685 if (arch_v6)
3686 s_arm_unwind_save_vfp_armv6 ();
3687 else
3688 s_arm_unwind_save_vfp ();
3689 return;
c19d1205
ZW
3690 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3691 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3692
3693 default:
3694 as_bad (_(".unwind_save does not support this kind of register"));
3695 ignore_rest_of_line ();
b99bd4ef 3696 }
c19d1205 3697}
b99bd4ef 3698
b99bd4ef 3699
c19d1205
ZW
3700/* Parse an unwind_movsp directive. */
3701
3702static void
3703s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3704{
3705 int reg;
3706 valueT op;
4fa3602b 3707 int offset;
c19d1205 3708
dcbf9037 3709 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 3710 if (reg == FAIL)
b99bd4ef 3711 {
c19d1205
ZW
3712 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
3713 ignore_rest_of_line ();
b99bd4ef
NC
3714 return;
3715 }
4fa3602b
PB
3716
3717 /* Optional constant. */
3718 if (skip_past_comma (&input_line_pointer) != FAIL)
3719 {
3720 if (immediate_for_directive (&offset) == FAIL)
3721 return;
3722 }
3723 else
3724 offset = 0;
3725
c19d1205 3726 demand_empty_rest_of_line ();
b99bd4ef 3727
c19d1205 3728 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 3729 {
c19d1205 3730 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
3731 return;
3732 }
3733
c19d1205
ZW
3734 if (unwind.fp_reg != REG_SP)
3735 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 3736
c19d1205
ZW
3737 /* Generate opcode to restore the value. */
3738 op = 0x90 | reg;
3739 add_unwind_opcode (op, 1);
3740
3741 /* Record the information for later. */
3742 unwind.fp_reg = reg;
4fa3602b 3743 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 3744 unwind.sp_restored = 1;
b05fe5cf
ZW
3745}
3746
c19d1205
ZW
3747/* Parse an unwind_pad directive. */
3748
b05fe5cf 3749static void
c19d1205 3750s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 3751{
c19d1205 3752 int offset;
b05fe5cf 3753
c19d1205
ZW
3754 if (immediate_for_directive (&offset) == FAIL)
3755 return;
b99bd4ef 3756
c19d1205
ZW
3757 if (offset & 3)
3758 {
3759 as_bad (_("stack increment must be multiple of 4"));
3760 ignore_rest_of_line ();
3761 return;
3762 }
b99bd4ef 3763
c19d1205
ZW
3764 /* Don't generate any opcodes, just record the details for later. */
3765 unwind.frame_size += offset;
3766 unwind.pending_offset += offset;
3767
3768 demand_empty_rest_of_line ();
3769}
3770
3771/* Parse an unwind_setfp directive. */
3772
3773static void
3774s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3775{
c19d1205
ZW
3776 int sp_reg;
3777 int fp_reg;
3778 int offset;
3779
dcbf9037 3780 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
3781 if (skip_past_comma (&input_line_pointer) == FAIL)
3782 sp_reg = FAIL;
3783 else
dcbf9037 3784 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 3785
c19d1205
ZW
3786 if (fp_reg == FAIL || sp_reg == FAIL)
3787 {
3788 as_bad (_("expected <reg>, <reg>"));
3789 ignore_rest_of_line ();
3790 return;
3791 }
b99bd4ef 3792
c19d1205
ZW
3793 /* Optional constant. */
3794 if (skip_past_comma (&input_line_pointer) != FAIL)
3795 {
3796 if (immediate_for_directive (&offset) == FAIL)
3797 return;
3798 }
3799 else
3800 offset = 0;
a737bd4d 3801
c19d1205 3802 demand_empty_rest_of_line ();
a737bd4d 3803
c19d1205 3804 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
a737bd4d 3805 {
c19d1205
ZW
3806 as_bad (_("register must be either sp or set by a previous"
3807 "unwind_movsp directive"));
3808 return;
a737bd4d
NC
3809 }
3810
c19d1205
ZW
3811 /* Don't generate any opcodes, just record the information for later. */
3812 unwind.fp_reg = fp_reg;
3813 unwind.fp_used = 1;
3814 if (sp_reg == 13)
3815 unwind.fp_offset = unwind.frame_size - offset;
3816 else
3817 unwind.fp_offset -= offset;
a737bd4d
NC
3818}
3819
c19d1205
ZW
3820/* Parse an unwind_raw directive. */
3821
3822static void
3823s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 3824{
c19d1205 3825 expressionS exp;
708587a4 3826 /* This is an arbitrary limit. */
c19d1205
ZW
3827 unsigned char op[16];
3828 int count;
a737bd4d 3829
c19d1205
ZW
3830 expression (&exp);
3831 if (exp.X_op == O_constant
3832 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 3833 {
c19d1205
ZW
3834 unwind.frame_size += exp.X_add_number;
3835 expression (&exp);
3836 }
3837 else
3838 exp.X_op = O_illegal;
a737bd4d 3839
c19d1205
ZW
3840 if (exp.X_op != O_constant)
3841 {
3842 as_bad (_("expected <offset>, <opcode>"));
3843 ignore_rest_of_line ();
3844 return;
3845 }
a737bd4d 3846
c19d1205 3847 count = 0;
a737bd4d 3848
c19d1205
ZW
3849 /* Parse the opcode. */
3850 for (;;)
3851 {
3852 if (count >= 16)
3853 {
3854 as_bad (_("unwind opcode too long"));
3855 ignore_rest_of_line ();
a737bd4d 3856 }
c19d1205 3857 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 3858 {
c19d1205
ZW
3859 as_bad (_("invalid unwind opcode"));
3860 ignore_rest_of_line ();
3861 return;
a737bd4d 3862 }
c19d1205 3863 op[count++] = exp.X_add_number;
a737bd4d 3864
c19d1205
ZW
3865 /* Parse the next byte. */
3866 if (skip_past_comma (&input_line_pointer) == FAIL)
3867 break;
a737bd4d 3868
c19d1205
ZW
3869 expression (&exp);
3870 }
b99bd4ef 3871
c19d1205
ZW
3872 /* Add the opcode bytes in reverse order. */
3873 while (count--)
3874 add_unwind_opcode (op[count], 1);
b99bd4ef 3875
c19d1205 3876 demand_empty_rest_of_line ();
b99bd4ef 3877}
ee065d83
PB
3878
3879
3880/* Parse a .eabi_attribute directive. */
3881
3882static void
3883s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3884{
104d59d1 3885 s_vendor_attribute (OBJ_ATTR_PROC);
ee065d83 3886}
8463be01 3887#endif /* OBJ_ELF */
ee065d83
PB
3888
3889static void s_arm_arch (int);
7a1d4c38 3890static void s_arm_object_arch (int);
ee065d83
PB
3891static void s_arm_cpu (int);
3892static void s_arm_fpu (int);
b99bd4ef 3893
f0927246
NC
3894#ifdef TE_PE
3895
3896static void
5f4273c7 3897pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
3898{
3899 expressionS exp;
3900
3901 do
3902 {
3903 expression (&exp);
3904 if (exp.X_op == O_symbol)
3905 exp.X_op = O_secrel;
3906
3907 emit_expr (&exp, 4);
3908 }
3909 while (*input_line_pointer++ == ',');
3910
3911 input_line_pointer--;
3912 demand_empty_rest_of_line ();
3913}
3914#endif /* TE_PE */
3915
c19d1205
ZW
3916/* This table describes all the machine specific pseudo-ops the assembler
3917 has to support. The fields are:
3918 pseudo-op name without dot
3919 function to call to execute this pseudo-op
3920 Integer arg to pass to the function. */
b99bd4ef 3921
c19d1205 3922const pseudo_typeS md_pseudo_table[] =
b99bd4ef 3923{
c19d1205
ZW
3924 /* Never called because '.req' does not start a line. */
3925 { "req", s_req, 0 },
dcbf9037
JB
3926 /* Following two are likewise never called. */
3927 { "dn", s_dn, 0 },
3928 { "qn", s_qn, 0 },
c19d1205
ZW
3929 { "unreq", s_unreq, 0 },
3930 { "bss", s_bss, 0 },
3931 { "align", s_align, 0 },
3932 { "arm", s_arm, 0 },
3933 { "thumb", s_thumb, 0 },
3934 { "code", s_code, 0 },
3935 { "force_thumb", s_force_thumb, 0 },
3936 { "thumb_func", s_thumb_func, 0 },
3937 { "thumb_set", s_thumb_set, 0 },
3938 { "even", s_even, 0 },
3939 { "ltorg", s_ltorg, 0 },
3940 { "pool", s_ltorg, 0 },
3941 { "syntax", s_syntax, 0 },
8463be01
PB
3942 { "cpu", s_arm_cpu, 0 },
3943 { "arch", s_arm_arch, 0 },
7a1d4c38 3944 { "object_arch", s_arm_object_arch, 0 },
8463be01 3945 { "fpu", s_arm_fpu, 0 },
c19d1205
ZW
3946#ifdef OBJ_ELF
3947 { "word", s_arm_elf_cons, 4 },
3948 { "long", s_arm_elf_cons, 4 },
3949 { "rel31", s_arm_rel31, 0 },
3950 { "fnstart", s_arm_unwind_fnstart, 0 },
3951 { "fnend", s_arm_unwind_fnend, 0 },
3952 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3953 { "personality", s_arm_unwind_personality, 0 },
3954 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3955 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3956 { "save", s_arm_unwind_save, 0 },
fa073d69 3957 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
3958 { "movsp", s_arm_unwind_movsp, 0 },
3959 { "pad", s_arm_unwind_pad, 0 },
3960 { "setfp", s_arm_unwind_setfp, 0 },
3961 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 3962 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
3963#else
3964 { "word", cons, 4},
f0927246
NC
3965
3966 /* These are used for dwarf. */
3967 {"2byte", cons, 2},
3968 {"4byte", cons, 4},
3969 {"8byte", cons, 8},
3970 /* These are used for dwarf2. */
3971 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3972 { "loc", dwarf2_directive_loc, 0 },
3973 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
3974#endif
3975 { "extend", float_cons, 'x' },
3976 { "ldouble", float_cons, 'x' },
3977 { "packed", float_cons, 'p' },
f0927246
NC
3978#ifdef TE_PE
3979 {"secrel32", pe_directive_secrel, 0},
3980#endif
c19d1205
ZW
3981 { 0, 0, 0 }
3982};
3983\f
3984/* Parser functions used exclusively in instruction operands. */
b99bd4ef 3985
c19d1205
ZW
3986/* Generic immediate-value read function for use in insn parsing.
3987 STR points to the beginning of the immediate (the leading #);
3988 VAL receives the value; if the value is outside [MIN, MAX]
3989 issue an error. PREFIX_OPT is true if the immediate prefix is
3990 optional. */
b99bd4ef 3991
c19d1205
ZW
3992static int
3993parse_immediate (char **str, int *val, int min, int max,
3994 bfd_boolean prefix_opt)
3995{
3996 expressionS exp;
3997 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
3998 if (exp.X_op != O_constant)
b99bd4ef 3999 {
c19d1205
ZW
4000 inst.error = _("constant expression required");
4001 return FAIL;
4002 }
b99bd4ef 4003
c19d1205
ZW
4004 if (exp.X_add_number < min || exp.X_add_number > max)
4005 {
4006 inst.error = _("immediate value out of range");
4007 return FAIL;
4008 }
b99bd4ef 4009
c19d1205
ZW
4010 *val = exp.X_add_number;
4011 return SUCCESS;
4012}
b99bd4ef 4013
5287ad62 4014/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4015 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4016 instructions. Puts the result directly in inst.operands[i]. */
4017
4018static int
4019parse_big_immediate (char **str, int i)
4020{
4021 expressionS exp;
4022 char *ptr = *str;
4023
4024 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4025
4026 if (exp.X_op == O_constant)
036dc3f7
PB
4027 {
4028 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4029 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4030 O_constant. We have to be careful not to break compilation for
4031 32-bit X_add_number, though. */
4032 if ((exp.X_add_number & ~0xffffffffl) != 0)
4033 {
4034 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4035 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4036 inst.operands[i].regisimm = 1;
4037 }
4038 }
5287ad62
JB
4039 else if (exp.X_op == O_big
4040 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4041 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4042 {
4043 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4044 /* Bignums have their least significant bits in
4045 generic_bignum[0]. Make sure we put 32 bits in imm and
4046 32 bits in reg, in a (hopefully) portable way. */
4047 assert (parts != 0);
4048 inst.operands[i].imm = 0;
4049 for (j = 0; j < parts; j++, idx++)
4050 inst.operands[i].imm |= generic_bignum[idx]
4051 << (LITTLENUM_NUMBER_OF_BITS * j);
4052 inst.operands[i].reg = 0;
4053 for (j = 0; j < parts; j++, idx++)
4054 inst.operands[i].reg |= generic_bignum[idx]
4055 << (LITTLENUM_NUMBER_OF_BITS * j);
4056 inst.operands[i].regisimm = 1;
4057 }
4058 else
4059 return FAIL;
5f4273c7 4060
5287ad62
JB
4061 *str = ptr;
4062
4063 return SUCCESS;
4064}
4065
c19d1205
ZW
4066/* Returns the pseudo-register number of an FPA immediate constant,
4067 or FAIL if there isn't a valid constant here. */
b99bd4ef 4068
c19d1205
ZW
4069static int
4070parse_fpa_immediate (char ** str)
4071{
4072 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4073 char * save_in;
4074 expressionS exp;
4075 int i;
4076 int j;
b99bd4ef 4077
c19d1205
ZW
4078 /* First try and match exact strings, this is to guarantee
4079 that some formats will work even for cross assembly. */
b99bd4ef 4080
c19d1205
ZW
4081 for (i = 0; fp_const[i]; i++)
4082 {
4083 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4084 {
c19d1205 4085 char *start = *str;
b99bd4ef 4086
c19d1205
ZW
4087 *str += strlen (fp_const[i]);
4088 if (is_end_of_line[(unsigned char) **str])
4089 return i + 8;
4090 *str = start;
4091 }
4092 }
b99bd4ef 4093
c19d1205
ZW
4094 /* Just because we didn't get a match doesn't mean that the constant
4095 isn't valid, just that it is in a format that we don't
4096 automatically recognize. Try parsing it with the standard
4097 expression routines. */
b99bd4ef 4098
c19d1205 4099 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4100
c19d1205
ZW
4101 /* Look for a raw floating point number. */
4102 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4103 && is_end_of_line[(unsigned char) *save_in])
4104 {
4105 for (i = 0; i < NUM_FLOAT_VALS; i++)
4106 {
4107 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4108 {
c19d1205
ZW
4109 if (words[j] != fp_values[i][j])
4110 break;
b99bd4ef
NC
4111 }
4112
c19d1205 4113 if (j == MAX_LITTLENUMS)
b99bd4ef 4114 {
c19d1205
ZW
4115 *str = save_in;
4116 return i + 8;
b99bd4ef
NC
4117 }
4118 }
4119 }
b99bd4ef 4120
c19d1205
ZW
4121 /* Try and parse a more complex expression, this will probably fail
4122 unless the code uses a floating point prefix (eg "0f"). */
4123 save_in = input_line_pointer;
4124 input_line_pointer = *str;
4125 if (expression (&exp) == absolute_section
4126 && exp.X_op == O_big
4127 && exp.X_add_number < 0)
4128 {
4129 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4130 Ditto for 15. */
4131 if (gen_to_words (words, 5, (long) 15) == 0)
4132 {
4133 for (i = 0; i < NUM_FLOAT_VALS; i++)
4134 {
4135 for (j = 0; j < MAX_LITTLENUMS; j++)
4136 {
4137 if (words[j] != fp_values[i][j])
4138 break;
4139 }
b99bd4ef 4140
c19d1205
ZW
4141 if (j == MAX_LITTLENUMS)
4142 {
4143 *str = input_line_pointer;
4144 input_line_pointer = save_in;
4145 return i + 8;
4146 }
4147 }
4148 }
b99bd4ef
NC
4149 }
4150
c19d1205
ZW
4151 *str = input_line_pointer;
4152 input_line_pointer = save_in;
4153 inst.error = _("invalid FPA immediate expression");
4154 return FAIL;
b99bd4ef
NC
4155}
4156
136da414
JB
4157/* Returns 1 if a number has "quarter-precision" float format
4158 0baBbbbbbc defgh000 00000000 00000000. */
4159
4160static int
4161is_quarter_float (unsigned imm)
4162{
4163 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4164 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4165}
4166
4167/* Parse an 8-bit "quarter-precision" floating point number of the form:
4168 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4169 The zero and minus-zero cases need special handling, since they can't be
4170 encoded in the "quarter-precision" float format, but can nonetheless be
4171 loaded as integer constants. */
136da414
JB
4172
4173static unsigned
4174parse_qfloat_immediate (char **ccp, int *immed)
4175{
4176 char *str = *ccp;
c96612cc 4177 char *fpnum;
136da414 4178 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4179 int found_fpchar = 0;
5f4273c7 4180
136da414 4181 skip_past_char (&str, '#');
5f4273c7 4182
c96612cc
JB
4183 /* We must not accidentally parse an integer as a floating-point number. Make
4184 sure that the value we parse is not an integer by checking for special
4185 characters '.' or 'e'.
4186 FIXME: This is a horrible hack, but doing better is tricky because type
4187 information isn't in a very usable state at parse time. */
4188 fpnum = str;
4189 skip_whitespace (fpnum);
4190
4191 if (strncmp (fpnum, "0x", 2) == 0)
4192 return FAIL;
4193 else
4194 {
4195 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4196 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4197 {
4198 found_fpchar = 1;
4199 break;
4200 }
4201
4202 if (!found_fpchar)
4203 return FAIL;
4204 }
5f4273c7 4205
136da414
JB
4206 if ((str = atof_ieee (str, 's', words)) != NULL)
4207 {
4208 unsigned fpword = 0;
4209 int i;
5f4273c7 4210
136da414
JB
4211 /* Our FP word must be 32 bits (single-precision FP). */
4212 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4213 {
4214 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4215 fpword |= words[i];
4216 }
5f4273c7 4217
c96612cc 4218 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4219 *immed = fpword;
4220 else
4221 return FAIL;
4222
4223 *ccp = str;
5f4273c7 4224
136da414
JB
4225 return SUCCESS;
4226 }
5f4273c7 4227
136da414
JB
4228 return FAIL;
4229}
4230
c19d1205
ZW
4231/* Shift operands. */
4232enum shift_kind
b99bd4ef 4233{
c19d1205
ZW
4234 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4235};
b99bd4ef 4236
c19d1205
ZW
4237struct asm_shift_name
4238{
4239 const char *name;
4240 enum shift_kind kind;
4241};
b99bd4ef 4242
c19d1205
ZW
4243/* Third argument to parse_shift. */
4244enum parse_shift_mode
4245{
4246 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4247 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4248 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4249 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4250 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4251};
b99bd4ef 4252
c19d1205
ZW
4253/* Parse a <shift> specifier on an ARM data processing instruction.
4254 This has three forms:
b99bd4ef 4255
c19d1205
ZW
4256 (LSL|LSR|ASL|ASR|ROR) Rs
4257 (LSL|LSR|ASL|ASR|ROR) #imm
4258 RRX
b99bd4ef 4259
c19d1205
ZW
4260 Note that ASL is assimilated to LSL in the instruction encoding, and
4261 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4262
c19d1205
ZW
4263static int
4264parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4265{
c19d1205
ZW
4266 const struct asm_shift_name *shift_name;
4267 enum shift_kind shift;
4268 char *s = *str;
4269 char *p = s;
4270 int reg;
b99bd4ef 4271
c19d1205
ZW
4272 for (p = *str; ISALPHA (*p); p++)
4273 ;
b99bd4ef 4274
c19d1205 4275 if (p == *str)
b99bd4ef 4276 {
c19d1205
ZW
4277 inst.error = _("shift expression expected");
4278 return FAIL;
b99bd4ef
NC
4279 }
4280
c19d1205
ZW
4281 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4282
4283 if (shift_name == NULL)
b99bd4ef 4284 {
c19d1205
ZW
4285 inst.error = _("shift expression expected");
4286 return FAIL;
b99bd4ef
NC
4287 }
4288
c19d1205 4289 shift = shift_name->kind;
b99bd4ef 4290
c19d1205
ZW
4291 switch (mode)
4292 {
4293 case NO_SHIFT_RESTRICT:
4294 case SHIFT_IMMEDIATE: break;
b99bd4ef 4295
c19d1205
ZW
4296 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4297 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4298 {
4299 inst.error = _("'LSL' or 'ASR' required");
4300 return FAIL;
4301 }
4302 break;
b99bd4ef 4303
c19d1205
ZW
4304 case SHIFT_LSL_IMMEDIATE:
4305 if (shift != SHIFT_LSL)
4306 {
4307 inst.error = _("'LSL' required");
4308 return FAIL;
4309 }
4310 break;
b99bd4ef 4311
c19d1205
ZW
4312 case SHIFT_ASR_IMMEDIATE:
4313 if (shift != SHIFT_ASR)
4314 {
4315 inst.error = _("'ASR' required");
4316 return FAIL;
4317 }
4318 break;
b99bd4ef 4319
c19d1205
ZW
4320 default: abort ();
4321 }
b99bd4ef 4322
c19d1205
ZW
4323 if (shift != SHIFT_RRX)
4324 {
4325 /* Whitespace can appear here if the next thing is a bare digit. */
4326 skip_whitespace (p);
b99bd4ef 4327
c19d1205 4328 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4329 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4330 {
4331 inst.operands[i].imm = reg;
4332 inst.operands[i].immisreg = 1;
4333 }
4334 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4335 return FAIL;
4336 }
4337 inst.operands[i].shift_kind = shift;
4338 inst.operands[i].shifted = 1;
4339 *str = p;
4340 return SUCCESS;
b99bd4ef
NC
4341}
4342
c19d1205 4343/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4344
c19d1205
ZW
4345 #<immediate>
4346 #<immediate>, <rotate>
4347 <Rm>
4348 <Rm>, <shift>
b99bd4ef 4349
c19d1205
ZW
4350 where <shift> is defined by parse_shift above, and <rotate> is a
4351 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4352 is deferred to md_apply_fix. */
b99bd4ef 4353
c19d1205
ZW
4354static int
4355parse_shifter_operand (char **str, int i)
4356{
4357 int value;
4358 expressionS expr;
b99bd4ef 4359
dcbf9037 4360 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4361 {
4362 inst.operands[i].reg = value;
4363 inst.operands[i].isreg = 1;
b99bd4ef 4364
c19d1205
ZW
4365 /* parse_shift will override this if appropriate */
4366 inst.reloc.exp.X_op = O_constant;
4367 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4368
c19d1205
ZW
4369 if (skip_past_comma (str) == FAIL)
4370 return SUCCESS;
b99bd4ef 4371
c19d1205
ZW
4372 /* Shift operation on register. */
4373 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4374 }
4375
c19d1205
ZW
4376 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4377 return FAIL;
b99bd4ef 4378
c19d1205 4379 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4380 {
c19d1205
ZW
4381 /* #x, y -- ie explicit rotation by Y. */
4382 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4383 return FAIL;
b99bd4ef 4384
c19d1205
ZW
4385 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4386 {
4387 inst.error = _("constant expression expected");
4388 return FAIL;
4389 }
b99bd4ef 4390
c19d1205
ZW
4391 value = expr.X_add_number;
4392 if (value < 0 || value > 30 || value % 2 != 0)
4393 {
4394 inst.error = _("invalid rotation");
4395 return FAIL;
4396 }
4397 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4398 {
4399 inst.error = _("invalid constant");
4400 return FAIL;
4401 }
09d92015 4402
55cf6793 4403 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4404 inst.reloc.exp.X_add_number
4405 = (((inst.reloc.exp.X_add_number << (32 - value))
4406 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4407 }
4408
c19d1205
ZW
4409 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4410 inst.reloc.pc_rel = 0;
4411 return SUCCESS;
09d92015
MM
4412}
4413
4962c51a
MS
4414/* Group relocation information. Each entry in the table contains the
4415 textual name of the relocation as may appear in assembler source
4416 and must end with a colon.
4417 Along with this textual name are the relocation codes to be used if
4418 the corresponding instruction is an ALU instruction (ADD or SUB only),
4419 an LDR, an LDRS, or an LDC. */
4420
4421struct group_reloc_table_entry
4422{
4423 const char *name;
4424 int alu_code;
4425 int ldr_code;
4426 int ldrs_code;
4427 int ldc_code;
4428};
4429
4430typedef enum
4431{
4432 /* Varieties of non-ALU group relocation. */
4433
4434 GROUP_LDR,
4435 GROUP_LDRS,
4436 GROUP_LDC
4437} group_reloc_type;
4438
4439static struct group_reloc_table_entry group_reloc_table[] =
4440 { /* Program counter relative: */
4441 { "pc_g0_nc",
4442 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4443 0, /* LDR */
4444 0, /* LDRS */
4445 0 }, /* LDC */
4446 { "pc_g0",
4447 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4448 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4449 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4450 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4451 { "pc_g1_nc",
4452 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4453 0, /* LDR */
4454 0, /* LDRS */
4455 0 }, /* LDC */
4456 { "pc_g1",
4457 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4458 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4459 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4460 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4461 { "pc_g2",
4462 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4463 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4464 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4465 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4466 /* Section base relative */
4467 { "sb_g0_nc",
4468 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4469 0, /* LDR */
4470 0, /* LDRS */
4471 0 }, /* LDC */
4472 { "sb_g0",
4473 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4474 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4475 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4476 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4477 { "sb_g1_nc",
4478 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4479 0, /* LDR */
4480 0, /* LDRS */
4481 0 }, /* LDC */
4482 { "sb_g1",
4483 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4484 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4485 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4486 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4487 { "sb_g2",
4488 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4489 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4490 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4491 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4492
4493/* Given the address of a pointer pointing to the textual name of a group
4494 relocation as may appear in assembler source, attempt to find its details
4495 in group_reloc_table. The pointer will be updated to the character after
4496 the trailing colon. On failure, FAIL will be returned; SUCCESS
4497 otherwise. On success, *entry will be updated to point at the relevant
4498 group_reloc_table entry. */
4499
4500static int
4501find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4502{
4503 unsigned int i;
4504 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4505 {
4506 int length = strlen (group_reloc_table[i].name);
4507
5f4273c7
NC
4508 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4509 && (*str)[length] == ':')
4962c51a
MS
4510 {
4511 *out = &group_reloc_table[i];
4512 *str += (length + 1);
4513 return SUCCESS;
4514 }
4515 }
4516
4517 return FAIL;
4518}
4519
4520/* Parse a <shifter_operand> for an ARM data processing instruction
4521 (as for parse_shifter_operand) where group relocations are allowed:
4522
4523 #<immediate>
4524 #<immediate>, <rotate>
4525 #:<group_reloc>:<expression>
4526 <Rm>
4527 <Rm>, <shift>
4528
4529 where <group_reloc> is one of the strings defined in group_reloc_table.
4530 The hashes are optional.
4531
4532 Everything else is as for parse_shifter_operand. */
4533
4534static parse_operand_result
4535parse_shifter_operand_group_reloc (char **str, int i)
4536{
4537 /* Determine if we have the sequence of characters #: or just :
4538 coming next. If we do, then we check for a group relocation.
4539 If we don't, punt the whole lot to parse_shifter_operand. */
4540
4541 if (((*str)[0] == '#' && (*str)[1] == ':')
4542 || (*str)[0] == ':')
4543 {
4544 struct group_reloc_table_entry *entry;
4545
4546 if ((*str)[0] == '#')
4547 (*str) += 2;
4548 else
4549 (*str)++;
4550
4551 /* Try to parse a group relocation. Anything else is an error. */
4552 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4553 {
4554 inst.error = _("unknown group relocation");
4555 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4556 }
4557
4558 /* We now have the group relocation table entry corresponding to
4559 the name in the assembler source. Next, we parse the expression. */
4560 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4561 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4562
4563 /* Record the relocation type (always the ALU variant here). */
4564 inst.reloc.type = entry->alu_code;
4565 assert (inst.reloc.type != 0);
4566
4567 return PARSE_OPERAND_SUCCESS;
4568 }
4569 else
4570 return parse_shifter_operand (str, i) == SUCCESS
4571 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4572
4573 /* Never reached. */
4574}
4575
c19d1205
ZW
4576/* Parse all forms of an ARM address expression. Information is written
4577 to inst.operands[i] and/or inst.reloc.
09d92015 4578
c19d1205 4579 Preindexed addressing (.preind=1):
09d92015 4580
c19d1205
ZW
4581 [Rn, #offset] .reg=Rn .reloc.exp=offset
4582 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4583 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4584 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4585
c19d1205 4586 These three may have a trailing ! which causes .writeback to be set also.
09d92015 4587
c19d1205 4588 Postindexed addressing (.postind=1, .writeback=1):
09d92015 4589
c19d1205
ZW
4590 [Rn], #offset .reg=Rn .reloc.exp=offset
4591 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4592 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4593 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4594
c19d1205 4595 Unindexed addressing (.preind=0, .postind=0):
09d92015 4596
c19d1205 4597 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 4598
c19d1205 4599 Other:
09d92015 4600
c19d1205
ZW
4601 [Rn]{!} shorthand for [Rn,#0]{!}
4602 =immediate .isreg=0 .reloc.exp=immediate
4603 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 4604
c19d1205
ZW
4605 It is the caller's responsibility to check for addressing modes not
4606 supported by the instruction, and to set inst.reloc.type. */
4607
4962c51a
MS
4608static parse_operand_result
4609parse_address_main (char **str, int i, int group_relocations,
4610 group_reloc_type group_type)
09d92015 4611{
c19d1205
ZW
4612 char *p = *str;
4613 int reg;
09d92015 4614
c19d1205 4615 if (skip_past_char (&p, '[') == FAIL)
09d92015 4616 {
c19d1205
ZW
4617 if (skip_past_char (&p, '=') == FAIL)
4618 {
4619 /* bare address - translate to PC-relative offset */
4620 inst.reloc.pc_rel = 1;
4621 inst.operands[i].reg = REG_PC;
4622 inst.operands[i].isreg = 1;
4623 inst.operands[i].preind = 1;
4624 }
4625 /* else a load-constant pseudo op, no special treatment needed here */
09d92015 4626
c19d1205 4627 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 4628 return PARSE_OPERAND_FAIL;
09d92015 4629
c19d1205 4630 *str = p;
4962c51a 4631 return PARSE_OPERAND_SUCCESS;
09d92015
MM
4632 }
4633
dcbf9037 4634 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 4635 {
c19d1205 4636 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 4637 return PARSE_OPERAND_FAIL;
09d92015 4638 }
c19d1205
ZW
4639 inst.operands[i].reg = reg;
4640 inst.operands[i].isreg = 1;
09d92015 4641
c19d1205 4642 if (skip_past_comma (&p) == SUCCESS)
09d92015 4643 {
c19d1205 4644 inst.operands[i].preind = 1;
09d92015 4645
c19d1205
ZW
4646 if (*p == '+') p++;
4647 else if (*p == '-') p++, inst.operands[i].negative = 1;
4648
dcbf9037 4649 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 4650 {
c19d1205
ZW
4651 inst.operands[i].imm = reg;
4652 inst.operands[i].immisreg = 1;
4653
4654 if (skip_past_comma (&p) == SUCCESS)
4655 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4656 return PARSE_OPERAND_FAIL;
c19d1205 4657 }
5287ad62
JB
4658 else if (skip_past_char (&p, ':') == SUCCESS)
4659 {
4660 /* FIXME: '@' should be used here, but it's filtered out by generic
4661 code before we get to see it here. This may be subject to
4662 change. */
4663 expressionS exp;
4664 my_get_expression (&exp, &p, GE_NO_PREFIX);
4665 if (exp.X_op != O_constant)
4666 {
4667 inst.error = _("alignment must be constant");
4962c51a 4668 return PARSE_OPERAND_FAIL;
5287ad62
JB
4669 }
4670 inst.operands[i].imm = exp.X_add_number << 8;
4671 inst.operands[i].immisalign = 1;
4672 /* Alignments are not pre-indexes. */
4673 inst.operands[i].preind = 0;
4674 }
c19d1205
ZW
4675 else
4676 {
4677 if (inst.operands[i].negative)
4678 {
4679 inst.operands[i].negative = 0;
4680 p--;
4681 }
4962c51a 4682
5f4273c7
NC
4683 if (group_relocations
4684 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
4685 {
4686 struct group_reloc_table_entry *entry;
4687
4688 /* Skip over the #: or : sequence. */
4689 if (*p == '#')
4690 p += 2;
4691 else
4692 p++;
4693
4694 /* Try to parse a group relocation. Anything else is an
4695 error. */
4696 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4697 {
4698 inst.error = _("unknown group relocation");
4699 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4700 }
4701
4702 /* We now have the group relocation table entry corresponding to
4703 the name in the assembler source. Next, we parse the
4704 expression. */
4705 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4706 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4707
4708 /* Record the relocation type. */
4709 switch (group_type)
4710 {
4711 case GROUP_LDR:
4712 inst.reloc.type = entry->ldr_code;
4713 break;
4714
4715 case GROUP_LDRS:
4716 inst.reloc.type = entry->ldrs_code;
4717 break;
4718
4719 case GROUP_LDC:
4720 inst.reloc.type = entry->ldc_code;
4721 break;
4722
4723 default:
4724 assert (0);
4725 }
4726
4727 if (inst.reloc.type == 0)
4728 {
4729 inst.error = _("this group relocation is not allowed on this instruction");
4730 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4731 }
4732 }
4733 else
4734 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4735 return PARSE_OPERAND_FAIL;
09d92015
MM
4736 }
4737 }
4738
c19d1205 4739 if (skip_past_char (&p, ']') == FAIL)
09d92015 4740 {
c19d1205 4741 inst.error = _("']' expected");
4962c51a 4742 return PARSE_OPERAND_FAIL;
09d92015
MM
4743 }
4744
c19d1205
ZW
4745 if (skip_past_char (&p, '!') == SUCCESS)
4746 inst.operands[i].writeback = 1;
09d92015 4747
c19d1205 4748 else if (skip_past_comma (&p) == SUCCESS)
09d92015 4749 {
c19d1205
ZW
4750 if (skip_past_char (&p, '{') == SUCCESS)
4751 {
4752 /* [Rn], {expr} - unindexed, with option */
4753 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 4754 0, 255, TRUE) == FAIL)
4962c51a 4755 return PARSE_OPERAND_FAIL;
09d92015 4756
c19d1205
ZW
4757 if (skip_past_char (&p, '}') == FAIL)
4758 {
4759 inst.error = _("'}' expected at end of 'option' field");
4962c51a 4760 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4761 }
4762 if (inst.operands[i].preind)
4763 {
4764 inst.error = _("cannot combine index with option");
4962c51a 4765 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4766 }
4767 *str = p;
4962c51a 4768 return PARSE_OPERAND_SUCCESS;
09d92015 4769 }
c19d1205
ZW
4770 else
4771 {
4772 inst.operands[i].postind = 1;
4773 inst.operands[i].writeback = 1;
09d92015 4774
c19d1205
ZW
4775 if (inst.operands[i].preind)
4776 {
4777 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 4778 return PARSE_OPERAND_FAIL;
c19d1205 4779 }
09d92015 4780
c19d1205
ZW
4781 if (*p == '+') p++;
4782 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 4783
dcbf9037 4784 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 4785 {
5287ad62
JB
4786 /* We might be using the immediate for alignment already. If we
4787 are, OR the register number into the low-order bits. */
4788 if (inst.operands[i].immisalign)
4789 inst.operands[i].imm |= reg;
4790 else
4791 inst.operands[i].imm = reg;
c19d1205 4792 inst.operands[i].immisreg = 1;
a737bd4d 4793
c19d1205
ZW
4794 if (skip_past_comma (&p) == SUCCESS)
4795 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4796 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4797 }
4798 else
4799 {
4800 if (inst.operands[i].negative)
4801 {
4802 inst.operands[i].negative = 0;
4803 p--;
4804 }
4805 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 4806 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4807 }
4808 }
a737bd4d
NC
4809 }
4810
c19d1205
ZW
4811 /* If at this point neither .preind nor .postind is set, we have a
4812 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4813 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4814 {
4815 inst.operands[i].preind = 1;
4816 inst.reloc.exp.X_op = O_constant;
4817 inst.reloc.exp.X_add_number = 0;
4818 }
4819 *str = p;
4962c51a
MS
4820 return PARSE_OPERAND_SUCCESS;
4821}
4822
4823static int
4824parse_address (char **str, int i)
4825{
4826 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4827 ? SUCCESS : FAIL;
4828}
4829
4830static parse_operand_result
4831parse_address_group_reloc (char **str, int i, group_reloc_type type)
4832{
4833 return parse_address_main (str, i, 1, type);
a737bd4d
NC
4834}
4835
b6895b4f
PB
4836/* Parse an operand for a MOVW or MOVT instruction. */
4837static int
4838parse_half (char **str)
4839{
4840 char * p;
5f4273c7 4841
b6895b4f
PB
4842 p = *str;
4843 skip_past_char (&p, '#');
5f4273c7 4844 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
4845 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4846 else if (strncasecmp (p, ":upper16:", 9) == 0)
4847 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4848
4849 if (inst.reloc.type != BFD_RELOC_UNUSED)
4850 {
4851 p += 9;
5f4273c7 4852 skip_whitespace (p);
b6895b4f
PB
4853 }
4854
4855 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4856 return FAIL;
4857
4858 if (inst.reloc.type == BFD_RELOC_UNUSED)
4859 {
4860 if (inst.reloc.exp.X_op != O_constant)
4861 {
4862 inst.error = _("constant expression expected");
4863 return FAIL;
4864 }
4865 if (inst.reloc.exp.X_add_number < 0
4866 || inst.reloc.exp.X_add_number > 0xffff)
4867 {
4868 inst.error = _("immediate value out of range");
4869 return FAIL;
4870 }
4871 }
4872 *str = p;
4873 return SUCCESS;
4874}
4875
c19d1205 4876/* Miscellaneous. */
a737bd4d 4877
c19d1205
ZW
4878/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4879 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4880static int
4881parse_psr (char **str)
09d92015 4882{
c19d1205
ZW
4883 char *p;
4884 unsigned long psr_field;
62b3e311
PB
4885 const struct asm_psr *psr;
4886 char *start;
09d92015 4887
c19d1205
ZW
4888 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4889 feature for ease of use and backwards compatibility. */
4890 p = *str;
62b3e311 4891 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 4892 psr_field = SPSR_BIT;
62b3e311 4893 else if (strncasecmp (p, "CPSR", 4) == 0)
c19d1205
ZW
4894 psr_field = 0;
4895 else
62b3e311
PB
4896 {
4897 start = p;
4898 do
4899 p++;
4900 while (ISALNUM (*p) || *p == '_');
4901
4902 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4903 if (!psr)
4904 return FAIL;
09d92015 4905
62b3e311
PB
4906 *str = p;
4907 return psr->field;
4908 }
09d92015 4909
62b3e311 4910 p += 4;
c19d1205
ZW
4911 if (*p == '_')
4912 {
4913 /* A suffix follows. */
c19d1205
ZW
4914 p++;
4915 start = p;
a737bd4d 4916
c19d1205
ZW
4917 do
4918 p++;
4919 while (ISALNUM (*p) || *p == '_');
a737bd4d 4920
c19d1205
ZW
4921 psr = hash_find_n (arm_psr_hsh, start, p - start);
4922 if (!psr)
4923 goto error;
a737bd4d 4924
c19d1205 4925 psr_field |= psr->field;
a737bd4d 4926 }
c19d1205 4927 else
a737bd4d 4928 {
c19d1205
ZW
4929 if (ISALNUM (*p))
4930 goto error; /* Garbage after "[CS]PSR". */
4931
4932 psr_field |= (PSR_c | PSR_f);
a737bd4d 4933 }
c19d1205
ZW
4934 *str = p;
4935 return psr_field;
a737bd4d 4936
c19d1205
ZW
4937 error:
4938 inst.error = _("flag for {c}psr instruction expected");
4939 return FAIL;
a737bd4d
NC
4940}
4941
c19d1205
ZW
4942/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4943 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 4944
c19d1205
ZW
4945static int
4946parse_cps_flags (char **str)
a737bd4d 4947{
c19d1205
ZW
4948 int val = 0;
4949 int saw_a_flag = 0;
4950 char *s = *str;
a737bd4d 4951
c19d1205
ZW
4952 for (;;)
4953 switch (*s++)
4954 {
4955 case '\0': case ',':
4956 goto done;
a737bd4d 4957
c19d1205
ZW
4958 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4959 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4960 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 4961
c19d1205
ZW
4962 default:
4963 inst.error = _("unrecognized CPS flag");
4964 return FAIL;
4965 }
a737bd4d 4966
c19d1205
ZW
4967 done:
4968 if (saw_a_flag == 0)
a737bd4d 4969 {
c19d1205
ZW
4970 inst.error = _("missing CPS flags");
4971 return FAIL;
a737bd4d 4972 }
a737bd4d 4973
c19d1205
ZW
4974 *str = s - 1;
4975 return val;
a737bd4d
NC
4976}
4977
c19d1205
ZW
4978/* Parse an endian specifier ("BE" or "LE", case insensitive);
4979 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
4980
4981static int
c19d1205 4982parse_endian_specifier (char **str)
a737bd4d 4983{
c19d1205
ZW
4984 int little_endian;
4985 char *s = *str;
a737bd4d 4986
c19d1205
ZW
4987 if (strncasecmp (s, "BE", 2))
4988 little_endian = 0;
4989 else if (strncasecmp (s, "LE", 2))
4990 little_endian = 1;
4991 else
a737bd4d 4992 {
c19d1205 4993 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
4994 return FAIL;
4995 }
4996
c19d1205 4997 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 4998 {
c19d1205 4999 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5000 return FAIL;
5001 }
5002
c19d1205
ZW
5003 *str = s + 2;
5004 return little_endian;
5005}
a737bd4d 5006
c19d1205
ZW
5007/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5008 value suitable for poking into the rotate field of an sxt or sxta
5009 instruction, or FAIL on error. */
5010
5011static int
5012parse_ror (char **str)
5013{
5014 int rot;
5015 char *s = *str;
5016
5017 if (strncasecmp (s, "ROR", 3) == 0)
5018 s += 3;
5019 else
a737bd4d 5020 {
c19d1205 5021 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5022 return FAIL;
5023 }
c19d1205
ZW
5024
5025 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5026 return FAIL;
5027
5028 switch (rot)
a737bd4d 5029 {
c19d1205
ZW
5030 case 0: *str = s; return 0x0;
5031 case 8: *str = s; return 0x1;
5032 case 16: *str = s; return 0x2;
5033 case 24: *str = s; return 0x3;
5034
5035 default:
5036 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5037 return FAIL;
5038 }
c19d1205 5039}
a737bd4d 5040
c19d1205
ZW
5041/* Parse a conditional code (from conds[] below). The value returned is in the
5042 range 0 .. 14, or FAIL. */
5043static int
5044parse_cond (char **str)
5045{
c462b453 5046 char *q;
c19d1205 5047 const struct asm_cond *c;
c462b453
PB
5048 int n;
5049 /* Condition codes are always 2 characters, so matching up to
5050 3 characters is sufficient. */
5051 char cond[3];
a737bd4d 5052
c462b453
PB
5053 q = *str;
5054 n = 0;
5055 while (ISALPHA (*q) && n < 3)
5056 {
5057 cond[n] = TOLOWER(*q);
5058 q++;
5059 n++;
5060 }
a737bd4d 5061
c462b453 5062 c = hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5063 if (!c)
a737bd4d 5064 {
c19d1205 5065 inst.error = _("condition required");
a737bd4d
NC
5066 return FAIL;
5067 }
5068
c19d1205
ZW
5069 *str = q;
5070 return c->value;
5071}
5072
62b3e311
PB
5073/* Parse an option for a barrier instruction. Returns the encoding for the
5074 option, or FAIL. */
5075static int
5076parse_barrier (char **str)
5077{
5078 char *p, *q;
5079 const struct asm_barrier_opt *o;
5080
5081 p = q = *str;
5082 while (ISALPHA (*q))
5083 q++;
5084
5085 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5086 if (!o)
5087 return FAIL;
5088
5089 *str = q;
5090 return o->value;
5091}
5092
92e90b6e
PB
5093/* Parse the operands of a table branch instruction. Similar to a memory
5094 operand. */
5095static int
5096parse_tb (char **str)
5097{
5098 char * p = *str;
5099 int reg;
5100
5101 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5102 {
5103 inst.error = _("'[' expected");
5104 return FAIL;
5105 }
92e90b6e 5106
dcbf9037 5107 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5108 {
5109 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5110 return FAIL;
5111 }
5112 inst.operands[0].reg = reg;
5113
5114 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5115 {
5116 inst.error = _("',' expected");
5117 return FAIL;
5118 }
5f4273c7 5119
dcbf9037 5120 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5121 {
5122 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5123 return FAIL;
5124 }
5125 inst.operands[0].imm = reg;
5126
5127 if (skip_past_comma (&p) == SUCCESS)
5128 {
5129 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5130 return FAIL;
5131 if (inst.reloc.exp.X_add_number != 1)
5132 {
5133 inst.error = _("invalid shift");
5134 return FAIL;
5135 }
5136 inst.operands[0].shifted = 1;
5137 }
5138
5139 if (skip_past_char (&p, ']') == FAIL)
5140 {
5141 inst.error = _("']' expected");
5142 return FAIL;
5143 }
5144 *str = p;
5145 return SUCCESS;
5146}
5147
5287ad62
JB
5148/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5149 information on the types the operands can take and how they are encoded.
037e8744
JB
5150 Up to four operands may be read; this function handles setting the
5151 ".present" field for each read operand itself.
5287ad62
JB
5152 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5153 else returns FAIL. */
5154
5155static int
5156parse_neon_mov (char **str, int *which_operand)
5157{
5158 int i = *which_operand, val;
5159 enum arm_reg_type rtype;
5160 char *ptr = *str;
dcbf9037 5161 struct neon_type_el optype;
5f4273c7 5162
dcbf9037 5163 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5164 {
5165 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5166 inst.operands[i].reg = val;
5167 inst.operands[i].isscalar = 1;
dcbf9037 5168 inst.operands[i].vectype = optype;
5287ad62
JB
5169 inst.operands[i++].present = 1;
5170
5171 if (skip_past_comma (&ptr) == FAIL)
5172 goto wanted_comma;
5f4273c7 5173
dcbf9037 5174 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5175 goto wanted_arm;
5f4273c7 5176
5287ad62
JB
5177 inst.operands[i].reg = val;
5178 inst.operands[i].isreg = 1;
5179 inst.operands[i].present = 1;
5180 }
037e8744 5181 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5182 != FAIL)
5287ad62
JB
5183 {
5184 /* Cases 0, 1, 2, 3, 5 (D only). */
5185 if (skip_past_comma (&ptr) == FAIL)
5186 goto wanted_comma;
5f4273c7 5187
5287ad62
JB
5188 inst.operands[i].reg = val;
5189 inst.operands[i].isreg = 1;
5190 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5191 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5192 inst.operands[i].isvec = 1;
dcbf9037 5193 inst.operands[i].vectype = optype;
5287ad62
JB
5194 inst.operands[i++].present = 1;
5195
dcbf9037 5196 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5197 {
037e8744
JB
5198 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5199 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5200 inst.operands[i].reg = val;
5201 inst.operands[i].isreg = 1;
037e8744 5202 inst.operands[i].present = 1;
5287ad62
JB
5203
5204 if (rtype == REG_TYPE_NQ)
5205 {
dcbf9037 5206 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5207 return FAIL;
5208 }
037e8744
JB
5209 else if (rtype != REG_TYPE_VFS)
5210 {
5211 i++;
5212 if (skip_past_comma (&ptr) == FAIL)
5213 goto wanted_comma;
5214 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5215 goto wanted_arm;
5216 inst.operands[i].reg = val;
5217 inst.operands[i].isreg = 1;
5218 inst.operands[i].present = 1;
5219 }
5287ad62 5220 }
037e8744
JB
5221 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5222 &optype)) != FAIL)
5287ad62
JB
5223 {
5224 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5225 Case 1: VMOV<c><q> <Dd>, <Dm>
5226 Case 8: VMOV.F32 <Sd>, <Sm>
5227 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5228
5229 inst.operands[i].reg = val;
5230 inst.operands[i].isreg = 1;
5231 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5232 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5233 inst.operands[i].isvec = 1;
dcbf9037 5234 inst.operands[i].vectype = optype;
5287ad62 5235 inst.operands[i].present = 1;
5f4273c7 5236
037e8744
JB
5237 if (skip_past_comma (&ptr) == SUCCESS)
5238 {
5239 /* Case 15. */
5240 i++;
5241
5242 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5243 goto wanted_arm;
5244
5245 inst.operands[i].reg = val;
5246 inst.operands[i].isreg = 1;
5247 inst.operands[i++].present = 1;
5f4273c7 5248
037e8744
JB
5249 if (skip_past_comma (&ptr) == FAIL)
5250 goto wanted_comma;
5f4273c7 5251
037e8744
JB
5252 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5253 goto wanted_arm;
5f4273c7 5254
037e8744
JB
5255 inst.operands[i].reg = val;
5256 inst.operands[i].isreg = 1;
5257 inst.operands[i++].present = 1;
5258 }
5287ad62 5259 }
4641781c
PB
5260 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5261 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5262 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5263 Case 10: VMOV.F32 <Sd>, #<imm>
5264 Case 11: VMOV.F64 <Dd>, #<imm> */
5265 inst.operands[i].immisfloat = 1;
5266 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5267 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5268 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5269 ;
5287ad62
JB
5270 else
5271 {
dcbf9037 5272 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5273 return FAIL;
5274 }
5275 }
dcbf9037 5276 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5277 {
5278 /* Cases 6, 7. */
5279 inst.operands[i].reg = val;
5280 inst.operands[i].isreg = 1;
5281 inst.operands[i++].present = 1;
5f4273c7 5282
5287ad62
JB
5283 if (skip_past_comma (&ptr) == FAIL)
5284 goto wanted_comma;
5f4273c7 5285
dcbf9037 5286 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5287 {
5288 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5289 inst.operands[i].reg = val;
5290 inst.operands[i].isscalar = 1;
5291 inst.operands[i].present = 1;
dcbf9037 5292 inst.operands[i].vectype = optype;
5287ad62 5293 }
dcbf9037 5294 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5295 {
5296 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5297 inst.operands[i].reg = val;
5298 inst.operands[i].isreg = 1;
5299 inst.operands[i++].present = 1;
5f4273c7 5300
5287ad62
JB
5301 if (skip_past_comma (&ptr) == FAIL)
5302 goto wanted_comma;
5f4273c7 5303
037e8744 5304 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5305 == FAIL)
5287ad62 5306 {
037e8744 5307 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5308 return FAIL;
5309 }
5310
5311 inst.operands[i].reg = val;
5312 inst.operands[i].isreg = 1;
037e8744
JB
5313 inst.operands[i].isvec = 1;
5314 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5315 inst.operands[i].vectype = optype;
5287ad62 5316 inst.operands[i].present = 1;
5f4273c7 5317
037e8744
JB
5318 if (rtype == REG_TYPE_VFS)
5319 {
5320 /* Case 14. */
5321 i++;
5322 if (skip_past_comma (&ptr) == FAIL)
5323 goto wanted_comma;
5324 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5325 &optype)) == FAIL)
5326 {
5327 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5328 return FAIL;
5329 }
5330 inst.operands[i].reg = val;
5331 inst.operands[i].isreg = 1;
5332 inst.operands[i].isvec = 1;
5333 inst.operands[i].issingle = 1;
5334 inst.operands[i].vectype = optype;
5335 inst.operands[i].present = 1;
5336 }
5337 }
5338 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5339 != FAIL)
5340 {
5341 /* Case 13. */
5342 inst.operands[i].reg = val;
5343 inst.operands[i].isreg = 1;
5344 inst.operands[i].isvec = 1;
5345 inst.operands[i].issingle = 1;
5346 inst.operands[i].vectype = optype;
5347 inst.operands[i++].present = 1;
5287ad62
JB
5348 }
5349 }
5350 else
5351 {
dcbf9037 5352 first_error (_("parse error"));
5287ad62
JB
5353 return FAIL;
5354 }
5355
5356 /* Successfully parsed the operands. Update args. */
5357 *which_operand = i;
5358 *str = ptr;
5359 return SUCCESS;
5360
5f4273c7 5361 wanted_comma:
dcbf9037 5362 first_error (_("expected comma"));
5287ad62 5363 return FAIL;
5f4273c7
NC
5364
5365 wanted_arm:
dcbf9037 5366 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5367 return FAIL;
5287ad62
JB
5368}
5369
c19d1205
ZW
5370/* Matcher codes for parse_operands. */
5371enum operand_parse_code
5372{
5373 OP_stop, /* end of line */
5374
5375 OP_RR, /* ARM register */
5376 OP_RRnpc, /* ARM register, not r15 */
5377 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5378 OP_RRw, /* ARM register, not r15, optional trailing ! */
5379 OP_RCP, /* Coprocessor number */
5380 OP_RCN, /* Coprocessor register */
5381 OP_RF, /* FPA register */
5382 OP_RVS, /* VFP single precision register */
5287ad62
JB
5383 OP_RVD, /* VFP double precision register (0..15) */
5384 OP_RND, /* Neon double precision register (0..31) */
5385 OP_RNQ, /* Neon quad precision register */
037e8744 5386 OP_RVSD, /* VFP single or double precision register */
5287ad62 5387 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5388 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5389 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5390 OP_RVC, /* VFP control register */
5391 OP_RMF, /* Maverick F register */
5392 OP_RMD, /* Maverick D register */
5393 OP_RMFX, /* Maverick FX register */
5394 OP_RMDX, /* Maverick DX register */
5395 OP_RMAX, /* Maverick AX register */
5396 OP_RMDS, /* Maverick DSPSC register */
5397 OP_RIWR, /* iWMMXt wR register */
5398 OP_RIWC, /* iWMMXt wC register */
5399 OP_RIWG, /* iWMMXt wCG register */
5400 OP_RXA, /* XScale accumulator register */
5401
5402 OP_REGLST, /* ARM register list */
5403 OP_VRSLST, /* VFP single-precision register list */
5404 OP_VRDLST, /* VFP double-precision register list */
037e8744 5405 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
5406 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5407 OP_NSTRLST, /* Neon element/structure list */
5408
5409 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5410 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 5411 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 5412 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 5413 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
5414 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5415 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5416 OP_VMOV, /* Neon VMOV operands. */
5417 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5418 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 5419 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
5420
5421 OP_I0, /* immediate zero */
c19d1205
ZW
5422 OP_I7, /* immediate value 0 .. 7 */
5423 OP_I15, /* 0 .. 15 */
5424 OP_I16, /* 1 .. 16 */
5287ad62 5425 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
5426 OP_I31, /* 0 .. 31 */
5427 OP_I31w, /* 0 .. 31, optional trailing ! */
5428 OP_I32, /* 1 .. 32 */
5287ad62
JB
5429 OP_I32z, /* 0 .. 32 */
5430 OP_I63, /* 0 .. 63 */
c19d1205 5431 OP_I63s, /* -64 .. 63 */
5287ad62
JB
5432 OP_I64, /* 1 .. 64 */
5433 OP_I64z, /* 0 .. 64 */
c19d1205 5434 OP_I255, /* 0 .. 255 */
c19d1205
ZW
5435
5436 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5437 OP_I7b, /* 0 .. 7 */
5438 OP_I15b, /* 0 .. 15 */
5439 OP_I31b, /* 0 .. 31 */
5440
5441 OP_SH, /* shifter operand */
4962c51a 5442 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 5443 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
5444 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5445 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5446 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
5447 OP_EXP, /* arbitrary expression */
5448 OP_EXPi, /* same, with optional immediate prefix */
5449 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 5450 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
5451
5452 OP_CPSF, /* CPS flags */
5453 OP_ENDI, /* Endianness specifier */
5454 OP_PSR, /* CPSR/SPSR mask for msr */
5455 OP_COND, /* conditional code */
92e90b6e 5456 OP_TB, /* Table branch. */
c19d1205 5457
037e8744
JB
5458 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5459 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5460
c19d1205
ZW
5461 OP_RRnpc_I0, /* ARM register or literal 0 */
5462 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5463 OP_RR_EXi, /* ARM register or expression with imm prefix */
5464 OP_RF_IF, /* FPA register or immediate */
5465 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 5466 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
5467
5468 /* Optional operands. */
5469 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5470 OP_oI31b, /* 0 .. 31 */
5287ad62 5471 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
5472 OP_oIffffb, /* 0 .. 65535 */
5473 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5474
5475 OP_oRR, /* ARM register */
5476 OP_oRRnpc, /* ARM register, not the PC */
b6702015 5477 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
5478 OP_oRND, /* Optional Neon double precision register */
5479 OP_oRNQ, /* Optional Neon quad precision register */
5480 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 5481 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
5482 OP_oSHll, /* LSL immediate */
5483 OP_oSHar, /* ASR immediate */
5484 OP_oSHllar, /* LSL or ASR immediate */
5485 OP_oROR, /* ROR 0/8/16/24 */
62b3e311 5486 OP_oBARRIER, /* Option argument for a barrier instruction. */
c19d1205
ZW
5487
5488 OP_FIRST_OPTIONAL = OP_oI7b
5489};
a737bd4d 5490
c19d1205
ZW
5491/* Generic instruction operand parser. This does no encoding and no
5492 semantic validation; it merely squirrels values away in the inst
5493 structure. Returns SUCCESS or FAIL depending on whether the
5494 specified grammar matched. */
5495static int
ca3f61f7 5496parse_operands (char *str, const unsigned char *pattern)
c19d1205
ZW
5497{
5498 unsigned const char *upat = pattern;
5499 char *backtrack_pos = 0;
5500 const char *backtrack_error = 0;
5501 int i, val, backtrack_index = 0;
5287ad62 5502 enum arm_reg_type rtype;
4962c51a 5503 parse_operand_result result;
c19d1205
ZW
5504
5505#define po_char_or_fail(chr) do { \
5506 if (skip_past_char (&str, chr) == FAIL) \
5507 goto bad_args; \
5508} while (0)
5509
dcbf9037
JB
5510#define po_reg_or_fail(regtype) do { \
5511 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5512 &inst.operands[i].vectype); \
5513 if (val == FAIL) \
5514 { \
5515 first_error (_(reg_expected_msgs[regtype])); \
5516 goto failure; \
5517 } \
5518 inst.operands[i].reg = val; \
5519 inst.operands[i].isreg = 1; \
5520 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5521 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5522 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5523 || rtype == REG_TYPE_VFD \
5524 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5525} while (0)
5526
dcbf9037
JB
5527#define po_reg_or_goto(regtype, label) do { \
5528 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5529 &inst.operands[i].vectype); \
5530 if (val == FAIL) \
5531 goto label; \
5532 \
5533 inst.operands[i].reg = val; \
5534 inst.operands[i].isreg = 1; \
5535 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5536 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5537 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5538 || rtype == REG_TYPE_VFD \
5539 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5540} while (0)
5541
5542#define po_imm_or_fail(min, max, popt) do { \
5543 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5544 goto failure; \
5545 inst.operands[i].imm = val; \
5546} while (0)
5547
dcbf9037
JB
5548#define po_scalar_or_goto(elsz, label) do { \
5549 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5550 if (val == FAIL) \
5551 goto label; \
5552 inst.operands[i].reg = val; \
5553 inst.operands[i].isscalar = 1; \
5287ad62
JB
5554} while (0)
5555
c19d1205
ZW
5556#define po_misc_or_fail(expr) do { \
5557 if (expr) \
5558 goto failure; \
5559} while (0)
5560
4962c51a
MS
5561#define po_misc_or_fail_no_backtrack(expr) do { \
5562 result = expr; \
5563 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5564 backtrack_pos = 0; \
5565 if (result != PARSE_OPERAND_SUCCESS) \
5566 goto failure; \
5567} while (0)
5568
c19d1205
ZW
5569 skip_whitespace (str);
5570
5571 for (i = 0; upat[i] != OP_stop; i++)
5572 {
5573 if (upat[i] >= OP_FIRST_OPTIONAL)
5574 {
5575 /* Remember where we are in case we need to backtrack. */
5576 assert (!backtrack_pos);
5577 backtrack_pos = str;
5578 backtrack_error = inst.error;
5579 backtrack_index = i;
5580 }
5581
b6702015 5582 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
5583 po_char_or_fail (',');
5584
5585 switch (upat[i])
5586 {
5587 /* Registers */
5588 case OP_oRRnpc:
5589 case OP_RRnpc:
5590 case OP_oRR:
5591 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5592 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5593 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5594 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5595 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5596 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
5597 case OP_oRND:
5598 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
5599 case OP_RVC:
5600 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5601 break;
5602 /* Also accept generic coprocessor regs for unknown registers. */
5603 coproc_reg:
5604 po_reg_or_fail (REG_TYPE_CN);
5605 break;
c19d1205
ZW
5606 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5607 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5608 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5609 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5610 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5611 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5612 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5613 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5614 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5615 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
5616 case OP_oRNQ:
5617 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5618 case OP_oRNDQ:
5619 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
5620 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5621 case OP_oRNSDQ:
5622 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
5623
5624 /* Neon scalar. Using an element size of 8 means that some invalid
5625 scalars are accepted here, so deal with those in later code. */
5626 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5627
5628 /* WARNING: We can expand to two operands here. This has the potential
5629 to totally confuse the backtracking mechanism! It will be OK at
5630 least as long as we don't try to use optional args as well,
5631 though. */
5632 case OP_NILO:
5633 {
5634 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
466bbf93 5635 inst.operands[i].present = 1;
5287ad62
JB
5636 i++;
5637 skip_past_comma (&str);
5638 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5639 break;
5640 one_reg_only:
5641 /* Optional register operand was omitted. Unfortunately, it's in
5642 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5643 here (this is a bit grotty). */
5644 inst.operands[i] = inst.operands[i-1];
5645 inst.operands[i-1].present = 0;
5646 break;
5647 try_imm:
036dc3f7
PB
5648 /* There's a possibility of getting a 64-bit immediate here, so
5649 we need special handling. */
5650 if (parse_big_immediate (&str, i) == FAIL)
5651 {
5652 inst.error = _("immediate value is out of range");
5653 goto failure;
5654 }
5287ad62
JB
5655 }
5656 break;
5657
5658 case OP_RNDQ_I0:
5659 {
5660 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5661 break;
5662 try_imm0:
5663 po_imm_or_fail (0, 0, TRUE);
5664 }
5665 break;
5666
037e8744
JB
5667 case OP_RVSD_I0:
5668 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5669 break;
5670
5287ad62
JB
5671 case OP_RR_RNSC:
5672 {
5673 po_scalar_or_goto (8, try_rr);
5674 break;
5675 try_rr:
5676 po_reg_or_fail (REG_TYPE_RN);
5677 }
5678 break;
5679
037e8744
JB
5680 case OP_RNSDQ_RNSC:
5681 {
5682 po_scalar_or_goto (8, try_nsdq);
5683 break;
5684 try_nsdq:
5685 po_reg_or_fail (REG_TYPE_NSDQ);
5686 }
5687 break;
5688
5287ad62
JB
5689 case OP_RNDQ_RNSC:
5690 {
5691 po_scalar_or_goto (8, try_ndq);
5692 break;
5693 try_ndq:
5694 po_reg_or_fail (REG_TYPE_NDQ);
5695 }
5696 break;
5697
5698 case OP_RND_RNSC:
5699 {
5700 po_scalar_or_goto (8, try_vfd);
5701 break;
5702 try_vfd:
5703 po_reg_or_fail (REG_TYPE_VFD);
5704 }
5705 break;
5706
5707 case OP_VMOV:
5708 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5709 not careful then bad things might happen. */
5710 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5711 break;
5712
5713 case OP_RNDQ_IMVNb:
5714 {
5715 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5716 break;
5717 try_mvnimm:
5718 /* There's a possibility of getting a 64-bit immediate here, so
5719 we need special handling. */
5720 if (parse_big_immediate (&str, i) == FAIL)
5721 {
5722 inst.error = _("immediate value is out of range");
5723 goto failure;
5724 }
5725 }
5726 break;
5727
5728 case OP_RNDQ_I63b:
5729 {
5730 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5731 break;
5732 try_shimm:
5733 po_imm_or_fail (0, 63, TRUE);
5734 }
5735 break;
c19d1205
ZW
5736
5737 case OP_RRnpcb:
5738 po_char_or_fail ('[');
5739 po_reg_or_fail (REG_TYPE_RN);
5740 po_char_or_fail (']');
5741 break;
a737bd4d 5742
c19d1205 5743 case OP_RRw:
b6702015 5744 case OP_oRRw:
c19d1205
ZW
5745 po_reg_or_fail (REG_TYPE_RN);
5746 if (skip_past_char (&str, '!') == SUCCESS)
5747 inst.operands[i].writeback = 1;
5748 break;
5749
5750 /* Immediates */
5751 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5752 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5753 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 5754 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
5755 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5756 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 5757 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 5758 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
5759 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5760 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5761 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 5762 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
5763
5764 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5765 case OP_oI7b:
5766 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5767 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5768 case OP_oI31b:
5769 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 5770 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
5771 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5772
5773 /* Immediate variants */
5774 case OP_oI255c:
5775 po_char_or_fail ('{');
5776 po_imm_or_fail (0, 255, TRUE);
5777 po_char_or_fail ('}');
5778 break;
5779
5780 case OP_I31w:
5781 /* The expression parser chokes on a trailing !, so we have
5782 to find it first and zap it. */
5783 {
5784 char *s = str;
5785 while (*s && *s != ',')
5786 s++;
5787 if (s[-1] == '!')
5788 {
5789 s[-1] = '\0';
5790 inst.operands[i].writeback = 1;
5791 }
5792 po_imm_or_fail (0, 31, TRUE);
5793 if (str == s - 1)
5794 str = s;
5795 }
5796 break;
5797
5798 /* Expressions */
5799 case OP_EXPi: EXPi:
5800 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5801 GE_OPT_PREFIX));
5802 break;
5803
5804 case OP_EXP:
5805 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5806 GE_NO_PREFIX));
5807 break;
5808
5809 case OP_EXPr: EXPr:
5810 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5811 GE_NO_PREFIX));
5812 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 5813 {
c19d1205
ZW
5814 val = parse_reloc (&str);
5815 if (val == -1)
5816 {
5817 inst.error = _("unrecognized relocation suffix");
5818 goto failure;
5819 }
5820 else if (val != BFD_RELOC_UNUSED)
5821 {
5822 inst.operands[i].imm = val;
5823 inst.operands[i].hasreloc = 1;
5824 }
a737bd4d 5825 }
c19d1205 5826 break;
a737bd4d 5827
b6895b4f
PB
5828 /* Operand for MOVW or MOVT. */
5829 case OP_HALF:
5830 po_misc_or_fail (parse_half (&str));
5831 break;
5832
c19d1205
ZW
5833 /* Register or expression */
5834 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5835 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 5836
c19d1205
ZW
5837 /* Register or immediate */
5838 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5839 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 5840
c19d1205
ZW
5841 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5842 IF:
5843 if (!is_immediate_prefix (*str))
5844 goto bad_args;
5845 str++;
5846 val = parse_fpa_immediate (&str);
5847 if (val == FAIL)
5848 goto failure;
5849 /* FPA immediates are encoded as registers 8-15.
5850 parse_fpa_immediate has already applied the offset. */
5851 inst.operands[i].reg = val;
5852 inst.operands[i].isreg = 1;
5853 break;
09d92015 5854
2d447fca
JM
5855 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
5856 I32z: po_imm_or_fail (0, 32, FALSE); break;
5857
c19d1205
ZW
5858 /* Two kinds of register */
5859 case OP_RIWR_RIWC:
5860 {
5861 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
5862 if (!rege
5863 || (rege->type != REG_TYPE_MMXWR
5864 && rege->type != REG_TYPE_MMXWC
5865 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
5866 {
5867 inst.error = _("iWMMXt data or control register expected");
5868 goto failure;
5869 }
5870 inst.operands[i].reg = rege->number;
5871 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5872 }
5873 break;
09d92015 5874
41adaa5c
JM
5875 case OP_RIWC_RIWG:
5876 {
5877 struct reg_entry *rege = arm_reg_parse_multi (&str);
5878 if (!rege
5879 || (rege->type != REG_TYPE_MMXWC
5880 && rege->type != REG_TYPE_MMXWCG))
5881 {
5882 inst.error = _("iWMMXt control register expected");
5883 goto failure;
5884 }
5885 inst.operands[i].reg = rege->number;
5886 inst.operands[i].isreg = 1;
5887 }
5888 break;
5889
c19d1205
ZW
5890 /* Misc */
5891 case OP_CPSF: val = parse_cps_flags (&str); break;
5892 case OP_ENDI: val = parse_endian_specifier (&str); break;
5893 case OP_oROR: val = parse_ror (&str); break;
5894 case OP_PSR: val = parse_psr (&str); break;
5895 case OP_COND: val = parse_cond (&str); break;
62b3e311 5896 case OP_oBARRIER:val = parse_barrier (&str); break;
c19d1205 5897
037e8744
JB
5898 case OP_RVC_PSR:
5899 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5900 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5901 break;
5902 try_psr:
5903 val = parse_psr (&str);
5904 break;
5905
5906 case OP_APSR_RR:
5907 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5908 break;
5909 try_apsr:
5910 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5911 instruction). */
5912 if (strncasecmp (str, "APSR_", 5) == 0)
5913 {
5914 unsigned found = 0;
5915 str += 5;
5916 while (found < 15)
5917 switch (*str++)
5918 {
5919 case 'c': found = (found & 1) ? 16 : found | 1; break;
5920 case 'n': found = (found & 2) ? 16 : found | 2; break;
5921 case 'z': found = (found & 4) ? 16 : found | 4; break;
5922 case 'v': found = (found & 8) ? 16 : found | 8; break;
5923 default: found = 16;
5924 }
5925 if (found != 15)
5926 goto failure;
5927 inst.operands[i].isvec = 1;
5928 }
5929 else
5930 goto failure;
5931 break;
5932
92e90b6e
PB
5933 case OP_TB:
5934 po_misc_or_fail (parse_tb (&str));
5935 break;
5936
c19d1205
ZW
5937 /* Register lists */
5938 case OP_REGLST:
5939 val = parse_reg_list (&str);
5940 if (*str == '^')
5941 {
5942 inst.operands[1].writeback = 1;
5943 str++;
5944 }
5945 break;
09d92015 5946
c19d1205 5947 case OP_VRSLST:
5287ad62 5948 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 5949 break;
09d92015 5950
c19d1205 5951 case OP_VRDLST:
5287ad62 5952 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 5953 break;
a737bd4d 5954
037e8744
JB
5955 case OP_VRSDLST:
5956 /* Allow Q registers too. */
5957 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5958 REGLIST_NEON_D);
5959 if (val == FAIL)
5960 {
5961 inst.error = NULL;
5962 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5963 REGLIST_VFP_S);
5964 inst.operands[i].issingle = 1;
5965 }
5966 break;
5967
5287ad62
JB
5968 case OP_NRDLST:
5969 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5970 REGLIST_NEON_D);
5971 break;
5972
5973 case OP_NSTRLST:
dcbf9037
JB
5974 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5975 &inst.operands[i].vectype);
5287ad62
JB
5976 break;
5977
c19d1205
ZW
5978 /* Addressing modes */
5979 case OP_ADDR:
5980 po_misc_or_fail (parse_address (&str, i));
5981 break;
09d92015 5982
4962c51a
MS
5983 case OP_ADDRGLDR:
5984 po_misc_or_fail_no_backtrack (
5985 parse_address_group_reloc (&str, i, GROUP_LDR));
5986 break;
5987
5988 case OP_ADDRGLDRS:
5989 po_misc_or_fail_no_backtrack (
5990 parse_address_group_reloc (&str, i, GROUP_LDRS));
5991 break;
5992
5993 case OP_ADDRGLDC:
5994 po_misc_or_fail_no_backtrack (
5995 parse_address_group_reloc (&str, i, GROUP_LDC));
5996 break;
5997
c19d1205
ZW
5998 case OP_SH:
5999 po_misc_or_fail (parse_shifter_operand (&str, i));
6000 break;
09d92015 6001
4962c51a
MS
6002 case OP_SHG:
6003 po_misc_or_fail_no_backtrack (
6004 parse_shifter_operand_group_reloc (&str, i));
6005 break;
6006
c19d1205
ZW
6007 case OP_oSHll:
6008 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6009 break;
09d92015 6010
c19d1205
ZW
6011 case OP_oSHar:
6012 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6013 break;
09d92015 6014
c19d1205
ZW
6015 case OP_oSHllar:
6016 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6017 break;
09d92015 6018
c19d1205 6019 default:
bd3ba5d1 6020 as_fatal (_("unhandled operand code %d"), upat[i]);
c19d1205 6021 }
09d92015 6022
c19d1205
ZW
6023 /* Various value-based sanity checks and shared operations. We
6024 do not signal immediate failures for the register constraints;
6025 this allows a syntax error to take precedence. */
6026 switch (upat[i])
6027 {
6028 case OP_oRRnpc:
6029 case OP_RRnpc:
6030 case OP_RRnpcb:
6031 case OP_RRw:
b6702015 6032 case OP_oRRw:
c19d1205
ZW
6033 case OP_RRnpc_I0:
6034 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6035 inst.error = BAD_PC;
6036 break;
09d92015 6037
c19d1205
ZW
6038 case OP_CPSF:
6039 case OP_ENDI:
6040 case OP_oROR:
6041 case OP_PSR:
037e8744 6042 case OP_RVC_PSR:
c19d1205 6043 case OP_COND:
62b3e311 6044 case OP_oBARRIER:
c19d1205
ZW
6045 case OP_REGLST:
6046 case OP_VRSLST:
6047 case OP_VRDLST:
037e8744 6048 case OP_VRSDLST:
5287ad62
JB
6049 case OP_NRDLST:
6050 case OP_NSTRLST:
c19d1205
ZW
6051 if (val == FAIL)
6052 goto failure;
6053 inst.operands[i].imm = val;
6054 break;
a737bd4d 6055
c19d1205
ZW
6056 default:
6057 break;
6058 }
09d92015 6059
c19d1205
ZW
6060 /* If we get here, this operand was successfully parsed. */
6061 inst.operands[i].present = 1;
6062 continue;
09d92015 6063
c19d1205 6064 bad_args:
09d92015 6065 inst.error = BAD_ARGS;
c19d1205
ZW
6066
6067 failure:
6068 if (!backtrack_pos)
d252fdde
PB
6069 {
6070 /* The parse routine should already have set inst.error, but set a
5f4273c7 6071 default here just in case. */
d252fdde
PB
6072 if (!inst.error)
6073 inst.error = _("syntax error");
6074 return FAIL;
6075 }
c19d1205
ZW
6076
6077 /* Do not backtrack over a trailing optional argument that
6078 absorbed some text. We will only fail again, with the
6079 'garbage following instruction' error message, which is
6080 probably less helpful than the current one. */
6081 if (backtrack_index == i && backtrack_pos != str
6082 && upat[i+1] == OP_stop)
d252fdde
PB
6083 {
6084 if (!inst.error)
6085 inst.error = _("syntax error");
6086 return FAIL;
6087 }
c19d1205
ZW
6088
6089 /* Try again, skipping the optional argument at backtrack_pos. */
6090 str = backtrack_pos;
6091 inst.error = backtrack_error;
6092 inst.operands[backtrack_index].present = 0;
6093 i = backtrack_index;
6094 backtrack_pos = 0;
09d92015 6095 }
09d92015 6096
c19d1205
ZW
6097 /* Check that we have parsed all the arguments. */
6098 if (*str != '\0' && !inst.error)
6099 inst.error = _("garbage following instruction");
09d92015 6100
c19d1205 6101 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6102}
6103
c19d1205
ZW
6104#undef po_char_or_fail
6105#undef po_reg_or_fail
6106#undef po_reg_or_goto
6107#undef po_imm_or_fail
5287ad62 6108#undef po_scalar_or_fail
c19d1205
ZW
6109\f
6110/* Shorthand macro for instruction encoding functions issuing errors. */
6111#define constraint(expr, err) do { \
6112 if (expr) \
6113 { \
6114 inst.error = err; \
6115 return; \
6116 } \
6117} while (0)
6118
6119/* Functions for operand encoding. ARM, then Thumb. */
6120
6121#define rotate_left(v, n) (v << n | v >> (32 - n))
6122
6123/* If VAL can be encoded in the immediate field of an ARM instruction,
6124 return the encoded form. Otherwise, return FAIL. */
6125
6126static unsigned int
6127encode_arm_immediate (unsigned int val)
09d92015 6128{
c19d1205
ZW
6129 unsigned int a, i;
6130
6131 for (i = 0; i < 32; i += 2)
6132 if ((a = rotate_left (val, i)) <= 0xff)
6133 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6134
6135 return FAIL;
09d92015
MM
6136}
6137
c19d1205
ZW
6138/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6139 return the encoded form. Otherwise, return FAIL. */
6140static unsigned int
6141encode_thumb32_immediate (unsigned int val)
09d92015 6142{
c19d1205 6143 unsigned int a, i;
09d92015 6144
9c3c69f2 6145 if (val <= 0xff)
c19d1205 6146 return val;
a737bd4d 6147
9c3c69f2 6148 for (i = 1; i <= 24; i++)
09d92015 6149 {
9c3c69f2
PB
6150 a = val >> i;
6151 if ((val & ~(0xff << i)) == 0)
6152 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6153 }
a737bd4d 6154
c19d1205
ZW
6155 a = val & 0xff;
6156 if (val == ((a << 16) | a))
6157 return 0x100 | a;
6158 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6159 return 0x300 | a;
09d92015 6160
c19d1205
ZW
6161 a = val & 0xff00;
6162 if (val == ((a << 16) | a))
6163 return 0x200 | (a >> 8);
a737bd4d 6164
c19d1205 6165 return FAIL;
09d92015 6166}
5287ad62 6167/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6168
6169static void
5287ad62
JB
6170encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6171{
6172 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6173 && reg > 15)
6174 {
b1cc4aeb 6175 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6176 {
6177 if (thumb_mode)
6178 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6179 fpu_vfp_ext_d32);
5287ad62
JB
6180 else
6181 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6182 fpu_vfp_ext_d32);
5287ad62
JB
6183 }
6184 else
6185 {
dcbf9037 6186 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6187 return;
6188 }
6189 }
6190
c19d1205 6191 switch (pos)
09d92015 6192 {
c19d1205
ZW
6193 case VFP_REG_Sd:
6194 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6195 break;
6196
6197 case VFP_REG_Sn:
6198 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6199 break;
6200
6201 case VFP_REG_Sm:
6202 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6203 break;
6204
5287ad62
JB
6205 case VFP_REG_Dd:
6206 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6207 break;
5f4273c7 6208
5287ad62
JB
6209 case VFP_REG_Dn:
6210 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6211 break;
5f4273c7 6212
5287ad62
JB
6213 case VFP_REG_Dm:
6214 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6215 break;
6216
c19d1205
ZW
6217 default:
6218 abort ();
09d92015 6219 }
09d92015
MM
6220}
6221
c19d1205 6222/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6223 if any, is handled by md_apply_fix. */
09d92015 6224static void
c19d1205 6225encode_arm_shift (int i)
09d92015 6226{
c19d1205
ZW
6227 if (inst.operands[i].shift_kind == SHIFT_RRX)
6228 inst.instruction |= SHIFT_ROR << 5;
6229 else
09d92015 6230 {
c19d1205
ZW
6231 inst.instruction |= inst.operands[i].shift_kind << 5;
6232 if (inst.operands[i].immisreg)
6233 {
6234 inst.instruction |= SHIFT_BY_REG;
6235 inst.instruction |= inst.operands[i].imm << 8;
6236 }
6237 else
6238 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6239 }
c19d1205 6240}
09d92015 6241
c19d1205
ZW
6242static void
6243encode_arm_shifter_operand (int i)
6244{
6245 if (inst.operands[i].isreg)
09d92015 6246 {
c19d1205
ZW
6247 inst.instruction |= inst.operands[i].reg;
6248 encode_arm_shift (i);
09d92015 6249 }
c19d1205
ZW
6250 else
6251 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6252}
6253
c19d1205 6254/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6255static void
c19d1205 6256encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6257{
c19d1205
ZW
6258 assert (inst.operands[i].isreg);
6259 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6260
c19d1205 6261 if (inst.operands[i].preind)
09d92015 6262 {
c19d1205
ZW
6263 if (is_t)
6264 {
6265 inst.error = _("instruction does not accept preindexed addressing");
6266 return;
6267 }
6268 inst.instruction |= PRE_INDEX;
6269 if (inst.operands[i].writeback)
6270 inst.instruction |= WRITE_BACK;
09d92015 6271
c19d1205
ZW
6272 }
6273 else if (inst.operands[i].postind)
6274 {
6275 assert (inst.operands[i].writeback);
6276 if (is_t)
6277 inst.instruction |= WRITE_BACK;
6278 }
6279 else /* unindexed - only for coprocessor */
09d92015 6280 {
c19d1205 6281 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6282 return;
6283 }
6284
c19d1205
ZW
6285 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6286 && (((inst.instruction & 0x000f0000) >> 16)
6287 == ((inst.instruction & 0x0000f000) >> 12)))
6288 as_warn ((inst.instruction & LOAD_BIT)
6289 ? _("destination register same as write-back base")
6290 : _("source register same as write-back base"));
09d92015
MM
6291}
6292
c19d1205
ZW
6293/* inst.operands[i] was set up by parse_address. Encode it into an
6294 ARM-format mode 2 load or store instruction. If is_t is true,
6295 reject forms that cannot be used with a T instruction (i.e. not
6296 post-indexed). */
a737bd4d 6297static void
c19d1205 6298encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6299{
c19d1205 6300 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6301
c19d1205 6302 if (inst.operands[i].immisreg)
09d92015 6303 {
c19d1205
ZW
6304 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6305 inst.instruction |= inst.operands[i].imm;
6306 if (!inst.operands[i].negative)
6307 inst.instruction |= INDEX_UP;
6308 if (inst.operands[i].shifted)
6309 {
6310 if (inst.operands[i].shift_kind == SHIFT_RRX)
6311 inst.instruction |= SHIFT_ROR << 5;
6312 else
6313 {
6314 inst.instruction |= inst.operands[i].shift_kind << 5;
6315 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6316 }
6317 }
09d92015 6318 }
c19d1205 6319 else /* immediate offset in inst.reloc */
09d92015 6320 {
c19d1205
ZW
6321 if (inst.reloc.type == BFD_RELOC_UNUSED)
6322 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 6323 }
09d92015
MM
6324}
6325
c19d1205
ZW
6326/* inst.operands[i] was set up by parse_address. Encode it into an
6327 ARM-format mode 3 load or store instruction. Reject forms that
6328 cannot be used with such instructions. If is_t is true, reject
6329 forms that cannot be used with a T instruction (i.e. not
6330 post-indexed). */
6331static void
6332encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 6333{
c19d1205 6334 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 6335 {
c19d1205
ZW
6336 inst.error = _("instruction does not accept scaled register index");
6337 return;
09d92015 6338 }
a737bd4d 6339
c19d1205 6340 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6341
c19d1205
ZW
6342 if (inst.operands[i].immisreg)
6343 {
6344 inst.instruction |= inst.operands[i].imm;
6345 if (!inst.operands[i].negative)
6346 inst.instruction |= INDEX_UP;
6347 }
6348 else /* immediate offset in inst.reloc */
6349 {
6350 inst.instruction |= HWOFFSET_IMM;
6351 if (inst.reloc.type == BFD_RELOC_UNUSED)
6352 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 6353 }
a737bd4d
NC
6354}
6355
c19d1205
ZW
6356/* inst.operands[i] was set up by parse_address. Encode it into an
6357 ARM-format instruction. Reject all forms which cannot be encoded
6358 into a coprocessor load/store instruction. If wb_ok is false,
6359 reject use of writeback; if unind_ok is false, reject use of
6360 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
6361 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6362 (in which case it is preserved). */
09d92015 6363
c19d1205
ZW
6364static int
6365encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 6366{
c19d1205 6367 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6368
c19d1205 6369 assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 6370
c19d1205 6371 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 6372 {
c19d1205
ZW
6373 assert (!inst.operands[i].writeback);
6374 if (!unind_ok)
6375 {
6376 inst.error = _("instruction does not support unindexed addressing");
6377 return FAIL;
6378 }
6379 inst.instruction |= inst.operands[i].imm;
6380 inst.instruction |= INDEX_UP;
6381 return SUCCESS;
09d92015 6382 }
a737bd4d 6383
c19d1205
ZW
6384 if (inst.operands[i].preind)
6385 inst.instruction |= PRE_INDEX;
a737bd4d 6386
c19d1205 6387 if (inst.operands[i].writeback)
09d92015 6388 {
c19d1205
ZW
6389 if (inst.operands[i].reg == REG_PC)
6390 {
6391 inst.error = _("pc may not be used with write-back");
6392 return FAIL;
6393 }
6394 if (!wb_ok)
6395 {
6396 inst.error = _("instruction does not support writeback");
6397 return FAIL;
6398 }
6399 inst.instruction |= WRITE_BACK;
09d92015 6400 }
a737bd4d 6401
c19d1205
ZW
6402 if (reloc_override)
6403 inst.reloc.type = reloc_override;
4962c51a
MS
6404 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6405 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6406 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6407 {
6408 if (thumb_mode)
6409 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6410 else
6411 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6412 }
6413
c19d1205
ZW
6414 return SUCCESS;
6415}
a737bd4d 6416
c19d1205
ZW
6417/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6418 Determine whether it can be performed with a move instruction; if
6419 it can, convert inst.instruction to that move instruction and
6420 return 1; if it can't, convert inst.instruction to a literal-pool
6421 load and return 0. If this is not a valid thing to do in the
6422 current context, set inst.error and return 1.
a737bd4d 6423
c19d1205
ZW
6424 inst.operands[i] describes the destination register. */
6425
6426static int
6427move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6428{
53365c0d
PB
6429 unsigned long tbit;
6430
6431 if (thumb_p)
6432 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6433 else
6434 tbit = LOAD_BIT;
6435
6436 if ((inst.instruction & tbit) == 0)
09d92015 6437 {
c19d1205
ZW
6438 inst.error = _("invalid pseudo operation");
6439 return 1;
09d92015 6440 }
c19d1205 6441 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
6442 {
6443 inst.error = _("constant expression expected");
c19d1205 6444 return 1;
09d92015 6445 }
c19d1205 6446 if (inst.reloc.exp.X_op == O_constant)
09d92015 6447 {
c19d1205
ZW
6448 if (thumb_p)
6449 {
53365c0d 6450 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
6451 {
6452 /* This can be done with a mov(1) instruction. */
6453 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6454 inst.instruction |= inst.reloc.exp.X_add_number;
6455 return 1;
6456 }
6457 }
6458 else
6459 {
6460 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6461 if (value != FAIL)
6462 {
6463 /* This can be done with a mov instruction. */
6464 inst.instruction &= LITERAL_MASK;
6465 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6466 inst.instruction |= value & 0xfff;
6467 return 1;
6468 }
09d92015 6469
c19d1205
ZW
6470 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6471 if (value != FAIL)
6472 {
6473 /* This can be done with a mvn instruction. */
6474 inst.instruction &= LITERAL_MASK;
6475 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6476 inst.instruction |= value & 0xfff;
6477 return 1;
6478 }
6479 }
09d92015
MM
6480 }
6481
c19d1205
ZW
6482 if (add_to_lit_pool () == FAIL)
6483 {
6484 inst.error = _("literal pool insertion failed");
6485 return 1;
6486 }
6487 inst.operands[1].reg = REG_PC;
6488 inst.operands[1].isreg = 1;
6489 inst.operands[1].preind = 1;
6490 inst.reloc.pc_rel = 1;
6491 inst.reloc.type = (thumb_p
6492 ? BFD_RELOC_ARM_THUMB_OFFSET
6493 : (mode_3
6494 ? BFD_RELOC_ARM_HWLITERAL
6495 : BFD_RELOC_ARM_LITERAL));
6496 return 0;
09d92015
MM
6497}
6498
5f4273c7 6499/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
6500 First some generics; their names are taken from the conventional
6501 bit positions for register arguments in ARM format instructions. */
09d92015 6502
a737bd4d 6503static void
c19d1205 6504do_noargs (void)
09d92015 6505{
c19d1205 6506}
a737bd4d 6507
c19d1205
ZW
6508static void
6509do_rd (void)
6510{
6511 inst.instruction |= inst.operands[0].reg << 12;
6512}
a737bd4d 6513
c19d1205
ZW
6514static void
6515do_rd_rm (void)
6516{
6517 inst.instruction |= inst.operands[0].reg << 12;
6518 inst.instruction |= inst.operands[1].reg;
6519}
09d92015 6520
c19d1205
ZW
6521static void
6522do_rd_rn (void)
6523{
6524 inst.instruction |= inst.operands[0].reg << 12;
6525 inst.instruction |= inst.operands[1].reg << 16;
6526}
a737bd4d 6527
c19d1205
ZW
6528static void
6529do_rn_rd (void)
6530{
6531 inst.instruction |= inst.operands[0].reg << 16;
6532 inst.instruction |= inst.operands[1].reg << 12;
6533}
09d92015 6534
c19d1205
ZW
6535static void
6536do_rd_rm_rn (void)
6537{
9a64e435 6538 unsigned Rn = inst.operands[2].reg;
708587a4 6539 /* Enforce restrictions on SWP instruction. */
9a64e435
PB
6540 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6541 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6542 _("Rn must not overlap other operands"));
c19d1205
ZW
6543 inst.instruction |= inst.operands[0].reg << 12;
6544 inst.instruction |= inst.operands[1].reg;
9a64e435 6545 inst.instruction |= Rn << 16;
c19d1205 6546}
09d92015 6547
c19d1205
ZW
6548static void
6549do_rd_rn_rm (void)
6550{
6551 inst.instruction |= inst.operands[0].reg << 12;
6552 inst.instruction |= inst.operands[1].reg << 16;
6553 inst.instruction |= inst.operands[2].reg;
6554}
a737bd4d 6555
c19d1205
ZW
6556static void
6557do_rm_rd_rn (void)
6558{
6559 inst.instruction |= inst.operands[0].reg;
6560 inst.instruction |= inst.operands[1].reg << 12;
6561 inst.instruction |= inst.operands[2].reg << 16;
6562}
09d92015 6563
c19d1205
ZW
6564static void
6565do_imm0 (void)
6566{
6567 inst.instruction |= inst.operands[0].imm;
6568}
09d92015 6569
c19d1205
ZW
6570static void
6571do_rd_cpaddr (void)
6572{
6573 inst.instruction |= inst.operands[0].reg << 12;
6574 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 6575}
a737bd4d 6576
c19d1205
ZW
6577/* ARM instructions, in alphabetical order by function name (except
6578 that wrapper functions appear immediately after the function they
6579 wrap). */
09d92015 6580
c19d1205
ZW
6581/* This is a pseudo-op of the form "adr rd, label" to be converted
6582 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
6583
6584static void
c19d1205 6585do_adr (void)
09d92015 6586{
c19d1205 6587 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6588
c19d1205
ZW
6589 /* Frag hacking will turn this into a sub instruction if the offset turns
6590 out to be negative. */
6591 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 6592 inst.reloc.pc_rel = 1;
2fc8bdac 6593 inst.reloc.exp.X_add_number -= 8;
c19d1205 6594}
b99bd4ef 6595
c19d1205
ZW
6596/* This is a pseudo-op of the form "adrl rd, label" to be converted
6597 into a relative address of the form:
6598 add rd, pc, #low(label-.-8)"
6599 add rd, rd, #high(label-.-8)" */
b99bd4ef 6600
c19d1205
ZW
6601static void
6602do_adrl (void)
6603{
6604 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6605
c19d1205
ZW
6606 /* Frag hacking will turn this into a sub instruction if the offset turns
6607 out to be negative. */
6608 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
6609 inst.reloc.pc_rel = 1;
6610 inst.size = INSN_SIZE * 2;
2fc8bdac 6611 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
6612}
6613
b99bd4ef 6614static void
c19d1205 6615do_arit (void)
b99bd4ef 6616{
c19d1205
ZW
6617 if (!inst.operands[1].present)
6618 inst.operands[1].reg = inst.operands[0].reg;
6619 inst.instruction |= inst.operands[0].reg << 12;
6620 inst.instruction |= inst.operands[1].reg << 16;
6621 encode_arm_shifter_operand (2);
6622}
b99bd4ef 6623
62b3e311
PB
6624static void
6625do_barrier (void)
6626{
6627 if (inst.operands[0].present)
6628 {
6629 constraint ((inst.instruction & 0xf0) != 0x40
6630 && inst.operands[0].imm != 0xf,
bd3ba5d1 6631 _("bad barrier type"));
62b3e311
PB
6632 inst.instruction |= inst.operands[0].imm;
6633 }
6634 else
6635 inst.instruction |= 0xf;
6636}
6637
c19d1205
ZW
6638static void
6639do_bfc (void)
6640{
6641 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6642 constraint (msb > 32, _("bit-field extends past end of register"));
6643 /* The instruction encoding stores the LSB and MSB,
6644 not the LSB and width. */
6645 inst.instruction |= inst.operands[0].reg << 12;
6646 inst.instruction |= inst.operands[1].imm << 7;
6647 inst.instruction |= (msb - 1) << 16;
6648}
b99bd4ef 6649
c19d1205
ZW
6650static void
6651do_bfi (void)
6652{
6653 unsigned int msb;
b99bd4ef 6654
c19d1205
ZW
6655 /* #0 in second position is alternative syntax for bfc, which is
6656 the same instruction but with REG_PC in the Rm field. */
6657 if (!inst.operands[1].isreg)
6658 inst.operands[1].reg = REG_PC;
b99bd4ef 6659
c19d1205
ZW
6660 msb = inst.operands[2].imm + inst.operands[3].imm;
6661 constraint (msb > 32, _("bit-field extends past end of register"));
6662 /* The instruction encoding stores the LSB and MSB,
6663 not the LSB and width. */
6664 inst.instruction |= inst.operands[0].reg << 12;
6665 inst.instruction |= inst.operands[1].reg;
6666 inst.instruction |= inst.operands[2].imm << 7;
6667 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
6668}
6669
b99bd4ef 6670static void
c19d1205 6671do_bfx (void)
b99bd4ef 6672{
c19d1205
ZW
6673 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6674 _("bit-field extends past end of register"));
6675 inst.instruction |= inst.operands[0].reg << 12;
6676 inst.instruction |= inst.operands[1].reg;
6677 inst.instruction |= inst.operands[2].imm << 7;
6678 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6679}
09d92015 6680
c19d1205
ZW
6681/* ARM V5 breakpoint instruction (argument parse)
6682 BKPT <16 bit unsigned immediate>
6683 Instruction is not conditional.
6684 The bit pattern given in insns[] has the COND_ALWAYS condition,
6685 and it is an error if the caller tried to override that. */
b99bd4ef 6686
c19d1205
ZW
6687static void
6688do_bkpt (void)
6689{
6690 /* Top 12 of 16 bits to bits 19:8. */
6691 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 6692
c19d1205
ZW
6693 /* Bottom 4 of 16 bits to bits 3:0. */
6694 inst.instruction |= inst.operands[0].imm & 0xf;
6695}
09d92015 6696
c19d1205
ZW
6697static void
6698encode_branch (int default_reloc)
6699{
6700 if (inst.operands[0].hasreloc)
6701 {
6702 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6703 _("the only suffix valid here is '(plt)'"));
6704 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 6705 }
b99bd4ef 6706 else
c19d1205
ZW
6707 {
6708 inst.reloc.type = default_reloc;
c19d1205 6709 }
2fc8bdac 6710 inst.reloc.pc_rel = 1;
b99bd4ef
NC
6711}
6712
b99bd4ef 6713static void
c19d1205 6714do_branch (void)
b99bd4ef 6715{
39b41c9c
PB
6716#ifdef OBJ_ELF
6717 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6718 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6719 else
6720#endif
6721 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6722}
6723
6724static void
6725do_bl (void)
6726{
6727#ifdef OBJ_ELF
6728 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6729 {
6730 if (inst.cond == COND_ALWAYS)
6731 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6732 else
6733 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6734 }
6735 else
6736#endif
6737 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 6738}
b99bd4ef 6739
c19d1205
ZW
6740/* ARM V5 branch-link-exchange instruction (argument parse)
6741 BLX <target_addr> ie BLX(1)
6742 BLX{<condition>} <Rm> ie BLX(2)
6743 Unfortunately, there are two different opcodes for this mnemonic.
6744 So, the insns[].value is not used, and the code here zaps values
6745 into inst.instruction.
6746 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 6747
c19d1205
ZW
6748static void
6749do_blx (void)
6750{
6751 if (inst.operands[0].isreg)
b99bd4ef 6752 {
c19d1205
ZW
6753 /* Arg is a register; the opcode provided by insns[] is correct.
6754 It is not illegal to do "blx pc", just useless. */
6755 if (inst.operands[0].reg == REG_PC)
6756 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 6757
c19d1205
ZW
6758 inst.instruction |= inst.operands[0].reg;
6759 }
6760 else
b99bd4ef 6761 {
c19d1205
ZW
6762 /* Arg is an address; this instruction cannot be executed
6763 conditionally, and the opcode must be adjusted. */
6764 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 6765 inst.instruction = 0xfa000000;
39b41c9c
PB
6766#ifdef OBJ_ELF
6767 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6768 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6769 else
6770#endif
6771 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 6772 }
c19d1205
ZW
6773}
6774
6775static void
6776do_bx (void)
6777{
845b51d6
PB
6778 bfd_boolean want_reloc;
6779
c19d1205
ZW
6780 if (inst.operands[0].reg == REG_PC)
6781 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 6782
c19d1205 6783 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
6784 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
6785 it is for ARMv4t or earlier. */
6786 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
6787 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
6788 want_reloc = TRUE;
6789
5ad34203 6790#ifdef OBJ_ELF
845b51d6 6791 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 6792#endif
584206db 6793 want_reloc = FALSE;
845b51d6
PB
6794
6795 if (want_reloc)
6796 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
6797}
6798
c19d1205
ZW
6799
6800/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
6801
6802static void
c19d1205 6803do_bxj (void)
a737bd4d 6804{
c19d1205
ZW
6805 if (inst.operands[0].reg == REG_PC)
6806 as_tsktsk (_("use of r15 in bxj is not really useful"));
6807
6808 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
6809}
6810
c19d1205
ZW
6811/* Co-processor data operation:
6812 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6813 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6814static void
6815do_cdp (void)
6816{
6817 inst.instruction |= inst.operands[0].reg << 8;
6818 inst.instruction |= inst.operands[1].imm << 20;
6819 inst.instruction |= inst.operands[2].reg << 12;
6820 inst.instruction |= inst.operands[3].reg << 16;
6821 inst.instruction |= inst.operands[4].reg;
6822 inst.instruction |= inst.operands[5].imm << 5;
6823}
a737bd4d
NC
6824
6825static void
c19d1205 6826do_cmp (void)
a737bd4d 6827{
c19d1205
ZW
6828 inst.instruction |= inst.operands[0].reg << 16;
6829 encode_arm_shifter_operand (1);
a737bd4d
NC
6830}
6831
c19d1205
ZW
6832/* Transfer between coprocessor and ARM registers.
6833 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6834 MRC2
6835 MCR{cond}
6836 MCR2
6837
6838 No special properties. */
09d92015
MM
6839
6840static void
c19d1205 6841do_co_reg (void)
09d92015 6842{
c19d1205
ZW
6843 inst.instruction |= inst.operands[0].reg << 8;
6844 inst.instruction |= inst.operands[1].imm << 21;
6845 inst.instruction |= inst.operands[2].reg << 12;
6846 inst.instruction |= inst.operands[3].reg << 16;
6847 inst.instruction |= inst.operands[4].reg;
6848 inst.instruction |= inst.operands[5].imm << 5;
6849}
09d92015 6850
c19d1205
ZW
6851/* Transfer between coprocessor register and pair of ARM registers.
6852 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6853 MCRR2
6854 MRRC{cond}
6855 MRRC2
b99bd4ef 6856
c19d1205 6857 Two XScale instructions are special cases of these:
09d92015 6858
c19d1205
ZW
6859 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6860 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 6861
5f4273c7 6862 Result unpredictable if Rd or Rn is R15. */
a737bd4d 6863
c19d1205
ZW
6864static void
6865do_co_reg2c (void)
6866{
6867 inst.instruction |= inst.operands[0].reg << 8;
6868 inst.instruction |= inst.operands[1].imm << 4;
6869 inst.instruction |= inst.operands[2].reg << 12;
6870 inst.instruction |= inst.operands[3].reg << 16;
6871 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
6872}
6873
c19d1205
ZW
6874static void
6875do_cpsi (void)
6876{
6877 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
6878 if (inst.operands[1].present)
6879 {
6880 inst.instruction |= CPSI_MMOD;
6881 inst.instruction |= inst.operands[1].imm;
6882 }
c19d1205 6883}
b99bd4ef 6884
62b3e311
PB
6885static void
6886do_dbg (void)
6887{
6888 inst.instruction |= inst.operands[0].imm;
6889}
6890
b99bd4ef 6891static void
c19d1205 6892do_it (void)
b99bd4ef 6893{
c19d1205
ZW
6894 /* There is no IT instruction in ARM mode. We
6895 process it but do not generate code for it. */
6896 inst.size = 0;
09d92015 6897}
b99bd4ef 6898
09d92015 6899static void
c19d1205 6900do_ldmstm (void)
ea6ef066 6901{
c19d1205
ZW
6902 int base_reg = inst.operands[0].reg;
6903 int range = inst.operands[1].imm;
ea6ef066 6904
c19d1205
ZW
6905 inst.instruction |= base_reg << 16;
6906 inst.instruction |= range;
ea6ef066 6907
c19d1205
ZW
6908 if (inst.operands[1].writeback)
6909 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 6910
c19d1205 6911 if (inst.operands[0].writeback)
ea6ef066 6912 {
c19d1205
ZW
6913 inst.instruction |= WRITE_BACK;
6914 /* Check for unpredictable uses of writeback. */
6915 if (inst.instruction & LOAD_BIT)
09d92015 6916 {
c19d1205
ZW
6917 /* Not allowed in LDM type 2. */
6918 if ((inst.instruction & LDM_TYPE_2_OR_3)
6919 && ((range & (1 << REG_PC)) == 0))
6920 as_warn (_("writeback of base register is UNPREDICTABLE"));
6921 /* Only allowed if base reg not in list for other types. */
6922 else if (range & (1 << base_reg))
6923 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6924 }
6925 else /* STM. */
6926 {
6927 /* Not allowed for type 2. */
6928 if (inst.instruction & LDM_TYPE_2_OR_3)
6929 as_warn (_("writeback of base register is UNPREDICTABLE"));
6930 /* Only allowed if base reg not in list, or first in list. */
6931 else if ((range & (1 << base_reg))
6932 && (range & ((1 << base_reg) - 1)))
6933 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 6934 }
ea6ef066 6935 }
a737bd4d
NC
6936}
6937
c19d1205
ZW
6938/* ARMv5TE load-consecutive (argument parse)
6939 Mode is like LDRH.
6940
6941 LDRccD R, mode
6942 STRccD R, mode. */
6943
a737bd4d 6944static void
c19d1205 6945do_ldrd (void)
a737bd4d 6946{
c19d1205
ZW
6947 constraint (inst.operands[0].reg % 2 != 0,
6948 _("first destination register must be even"));
6949 constraint (inst.operands[1].present
6950 && inst.operands[1].reg != inst.operands[0].reg + 1,
6951 _("can only load two consecutive registers"));
6952 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6953 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 6954
c19d1205
ZW
6955 if (!inst.operands[1].present)
6956 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 6957
c19d1205 6958 if (inst.instruction & LOAD_BIT)
a737bd4d 6959 {
c19d1205
ZW
6960 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6961 register and the first register written; we have to diagnose
6962 overlap between the base and the second register written here. */
ea6ef066 6963
c19d1205
ZW
6964 if (inst.operands[2].reg == inst.operands[1].reg
6965 && (inst.operands[2].writeback || inst.operands[2].postind))
6966 as_warn (_("base register written back, and overlaps "
6967 "second destination register"));
b05fe5cf 6968
c19d1205
ZW
6969 /* For an index-register load, the index register must not overlap the
6970 destination (even if not write-back). */
6971 else if (inst.operands[2].immisreg
ca3f61f7
NC
6972 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6973 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 6974 as_warn (_("index register overlaps destination register"));
b05fe5cf 6975 }
c19d1205
ZW
6976
6977 inst.instruction |= inst.operands[0].reg << 12;
6978 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
6979}
6980
6981static void
c19d1205 6982do_ldrex (void)
b05fe5cf 6983{
c19d1205
ZW
6984 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6985 || inst.operands[1].postind || inst.operands[1].writeback
6986 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
6987 || inst.operands[1].negative
6988 /* This can arise if the programmer has written
6989 strex rN, rM, foo
6990 or if they have mistakenly used a register name as the last
6991 operand, eg:
6992 strex rN, rM, rX
6993 It is very difficult to distinguish between these two cases
6994 because "rX" might actually be a label. ie the register
6995 name has been occluded by a symbol of the same name. So we
6996 just generate a general 'bad addressing mode' type error
6997 message and leave it up to the programmer to discover the
6998 true cause and fix their mistake. */
6999 || (inst.operands[1].reg == REG_PC),
7000 BAD_ADDR_MODE);
b05fe5cf 7001
c19d1205
ZW
7002 constraint (inst.reloc.exp.X_op != O_constant
7003 || inst.reloc.exp.X_add_number != 0,
7004 _("offset must be zero in ARM encoding"));
b05fe5cf 7005
c19d1205
ZW
7006 inst.instruction |= inst.operands[0].reg << 12;
7007 inst.instruction |= inst.operands[1].reg << 16;
7008 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7009}
7010
7011static void
c19d1205 7012do_ldrexd (void)
b05fe5cf 7013{
c19d1205
ZW
7014 constraint (inst.operands[0].reg % 2 != 0,
7015 _("even register required"));
7016 constraint (inst.operands[1].present
7017 && inst.operands[1].reg != inst.operands[0].reg + 1,
7018 _("can only load two consecutive registers"));
7019 /* If op 1 were present and equal to PC, this function wouldn't
7020 have been called in the first place. */
7021 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7022
c19d1205
ZW
7023 inst.instruction |= inst.operands[0].reg << 12;
7024 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7025}
7026
7027static void
c19d1205 7028do_ldst (void)
b05fe5cf 7029{
c19d1205
ZW
7030 inst.instruction |= inst.operands[0].reg << 12;
7031 if (!inst.operands[1].isreg)
7032 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7033 return;
c19d1205 7034 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7035}
7036
7037static void
c19d1205 7038do_ldstt (void)
b05fe5cf 7039{
c19d1205
ZW
7040 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7041 reject [Rn,...]. */
7042 if (inst.operands[1].preind)
b05fe5cf 7043 {
bd3ba5d1
NC
7044 constraint (inst.reloc.exp.X_op != O_constant
7045 || inst.reloc.exp.X_add_number != 0,
c19d1205 7046 _("this instruction requires a post-indexed address"));
b05fe5cf 7047
c19d1205
ZW
7048 inst.operands[1].preind = 0;
7049 inst.operands[1].postind = 1;
7050 inst.operands[1].writeback = 1;
b05fe5cf 7051 }
c19d1205
ZW
7052 inst.instruction |= inst.operands[0].reg << 12;
7053 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7054}
b05fe5cf 7055
c19d1205 7056/* Halfword and signed-byte load/store operations. */
b05fe5cf 7057
c19d1205
ZW
7058static void
7059do_ldstv4 (void)
7060{
7061 inst.instruction |= inst.operands[0].reg << 12;
7062 if (!inst.operands[1].isreg)
7063 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7064 return;
c19d1205 7065 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7066}
7067
7068static void
c19d1205 7069do_ldsttv4 (void)
b05fe5cf 7070{
c19d1205
ZW
7071 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7072 reject [Rn,...]. */
7073 if (inst.operands[1].preind)
b05fe5cf 7074 {
bd3ba5d1
NC
7075 constraint (inst.reloc.exp.X_op != O_constant
7076 || inst.reloc.exp.X_add_number != 0,
c19d1205 7077 _("this instruction requires a post-indexed address"));
b05fe5cf 7078
c19d1205
ZW
7079 inst.operands[1].preind = 0;
7080 inst.operands[1].postind = 1;
7081 inst.operands[1].writeback = 1;
b05fe5cf 7082 }
c19d1205
ZW
7083 inst.instruction |= inst.operands[0].reg << 12;
7084 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7085}
b05fe5cf 7086
c19d1205
ZW
7087/* Co-processor register load/store.
7088 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7089static void
7090do_lstc (void)
7091{
7092 inst.instruction |= inst.operands[0].reg << 8;
7093 inst.instruction |= inst.operands[1].reg << 12;
7094 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7095}
7096
b05fe5cf 7097static void
c19d1205 7098do_mlas (void)
b05fe5cf 7099{
8fb9d7b9 7100 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7101 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7102 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7103 && !(inst.instruction & 0x00400000))
8fb9d7b9 7104 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7105
c19d1205
ZW
7106 inst.instruction |= inst.operands[0].reg << 16;
7107 inst.instruction |= inst.operands[1].reg;
7108 inst.instruction |= inst.operands[2].reg << 8;
7109 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7110}
b05fe5cf 7111
c19d1205
ZW
7112static void
7113do_mov (void)
7114{
7115 inst.instruction |= inst.operands[0].reg << 12;
7116 encode_arm_shifter_operand (1);
7117}
b05fe5cf 7118
c19d1205
ZW
7119/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7120static void
7121do_mov16 (void)
7122{
b6895b4f
PB
7123 bfd_vma imm;
7124 bfd_boolean top;
7125
7126 top = (inst.instruction & 0x00400000) != 0;
7127 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7128 _(":lower16: not allowed this instruction"));
7129 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7130 _(":upper16: not allowed instruction"));
c19d1205 7131 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7132 if (inst.reloc.type == BFD_RELOC_UNUSED)
7133 {
7134 imm = inst.reloc.exp.X_add_number;
7135 /* The value is in two pieces: 0:11, 16:19. */
7136 inst.instruction |= (imm & 0x00000fff);
7137 inst.instruction |= (imm & 0x0000f000) << 4;
7138 }
b05fe5cf 7139}
b99bd4ef 7140
037e8744
JB
7141static void do_vfp_nsyn_opcode (const char *);
7142
7143static int
7144do_vfp_nsyn_mrs (void)
7145{
7146 if (inst.operands[0].isvec)
7147 {
7148 if (inst.operands[1].reg != 1)
7149 first_error (_("operand 1 must be FPSCR"));
7150 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7151 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7152 do_vfp_nsyn_opcode ("fmstat");
7153 }
7154 else if (inst.operands[1].isvec)
7155 do_vfp_nsyn_opcode ("fmrx");
7156 else
7157 return FAIL;
5f4273c7 7158
037e8744
JB
7159 return SUCCESS;
7160}
7161
7162static int
7163do_vfp_nsyn_msr (void)
7164{
7165 if (inst.operands[0].isvec)
7166 do_vfp_nsyn_opcode ("fmxr");
7167 else
7168 return FAIL;
7169
7170 return SUCCESS;
7171}
7172
b99bd4ef 7173static void
c19d1205 7174do_mrs (void)
b99bd4ef 7175{
037e8744
JB
7176 if (do_vfp_nsyn_mrs () == SUCCESS)
7177 return;
7178
c19d1205
ZW
7179 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7180 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7181 != (PSR_c|PSR_f),
7182 _("'CPSR' or 'SPSR' expected"));
7183 inst.instruction |= inst.operands[0].reg << 12;
7184 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7185}
b99bd4ef 7186
c19d1205
ZW
7187/* Two possible forms:
7188 "{C|S}PSR_<field>, Rm",
7189 "{C|S}PSR_f, #expression". */
b99bd4ef 7190
c19d1205
ZW
7191static void
7192do_msr (void)
7193{
037e8744
JB
7194 if (do_vfp_nsyn_msr () == SUCCESS)
7195 return;
7196
c19d1205
ZW
7197 inst.instruction |= inst.operands[0].imm;
7198 if (inst.operands[1].isreg)
7199 inst.instruction |= inst.operands[1].reg;
7200 else
b99bd4ef 7201 {
c19d1205
ZW
7202 inst.instruction |= INST_IMMEDIATE;
7203 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7204 inst.reloc.pc_rel = 0;
b99bd4ef 7205 }
b99bd4ef
NC
7206}
7207
c19d1205
ZW
7208static void
7209do_mul (void)
a737bd4d 7210{
c19d1205
ZW
7211 if (!inst.operands[2].present)
7212 inst.operands[2].reg = inst.operands[0].reg;
7213 inst.instruction |= inst.operands[0].reg << 16;
7214 inst.instruction |= inst.operands[1].reg;
7215 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 7216
8fb9d7b9
MS
7217 if (inst.operands[0].reg == inst.operands[1].reg
7218 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7219 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
7220}
7221
c19d1205
ZW
7222/* Long Multiply Parser
7223 UMULL RdLo, RdHi, Rm, Rs
7224 SMULL RdLo, RdHi, Rm, Rs
7225 UMLAL RdLo, RdHi, Rm, Rs
7226 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
7227
7228static void
c19d1205 7229do_mull (void)
b99bd4ef 7230{
c19d1205
ZW
7231 inst.instruction |= inst.operands[0].reg << 12;
7232 inst.instruction |= inst.operands[1].reg << 16;
7233 inst.instruction |= inst.operands[2].reg;
7234 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 7235
682b27ad
PB
7236 /* rdhi and rdlo must be different. */
7237 if (inst.operands[0].reg == inst.operands[1].reg)
7238 as_tsktsk (_("rdhi and rdlo must be different"));
7239
7240 /* rdhi, rdlo and rm must all be different before armv6. */
7241 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 7242 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 7243 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
7244 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7245}
b99bd4ef 7246
c19d1205
ZW
7247static void
7248do_nop (void)
7249{
7250 if (inst.operands[0].present)
7251 {
7252 /* Architectural NOP hints are CPSR sets with no bits selected. */
7253 inst.instruction &= 0xf0000000;
7254 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7255 }
b99bd4ef
NC
7256}
7257
c19d1205
ZW
7258/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7259 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7260 Condition defaults to COND_ALWAYS.
7261 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
7262
7263static void
c19d1205 7264do_pkhbt (void)
b99bd4ef 7265{
c19d1205
ZW
7266 inst.instruction |= inst.operands[0].reg << 12;
7267 inst.instruction |= inst.operands[1].reg << 16;
7268 inst.instruction |= inst.operands[2].reg;
7269 if (inst.operands[3].present)
7270 encode_arm_shift (3);
7271}
b99bd4ef 7272
c19d1205 7273/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 7274
c19d1205
ZW
7275static void
7276do_pkhtb (void)
7277{
7278 if (!inst.operands[3].present)
b99bd4ef 7279 {
c19d1205
ZW
7280 /* If the shift specifier is omitted, turn the instruction
7281 into pkhbt rd, rm, rn. */
7282 inst.instruction &= 0xfff00010;
7283 inst.instruction |= inst.operands[0].reg << 12;
7284 inst.instruction |= inst.operands[1].reg;
7285 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7286 }
7287 else
7288 {
c19d1205
ZW
7289 inst.instruction |= inst.operands[0].reg << 12;
7290 inst.instruction |= inst.operands[1].reg << 16;
7291 inst.instruction |= inst.operands[2].reg;
7292 encode_arm_shift (3);
b99bd4ef
NC
7293 }
7294}
7295
c19d1205
ZW
7296/* ARMv5TE: Preload-Cache
7297
7298 PLD <addr_mode>
7299
7300 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
7301
7302static void
c19d1205 7303do_pld (void)
b99bd4ef 7304{
c19d1205
ZW
7305 constraint (!inst.operands[0].isreg,
7306 _("'[' expected after PLD mnemonic"));
7307 constraint (inst.operands[0].postind,
7308 _("post-indexed expression used in preload instruction"));
7309 constraint (inst.operands[0].writeback,
7310 _("writeback used in preload instruction"));
7311 constraint (!inst.operands[0].preind,
7312 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
7313 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7314}
b99bd4ef 7315
62b3e311
PB
7316/* ARMv7: PLI <addr_mode> */
7317static void
7318do_pli (void)
7319{
7320 constraint (!inst.operands[0].isreg,
7321 _("'[' expected after PLI mnemonic"));
7322 constraint (inst.operands[0].postind,
7323 _("post-indexed expression used in preload instruction"));
7324 constraint (inst.operands[0].writeback,
7325 _("writeback used in preload instruction"));
7326 constraint (!inst.operands[0].preind,
7327 _("unindexed addressing used in preload instruction"));
7328 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7329 inst.instruction &= ~PRE_INDEX;
7330}
7331
c19d1205
ZW
7332static void
7333do_push_pop (void)
7334{
7335 inst.operands[1] = inst.operands[0];
7336 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7337 inst.operands[0].isreg = 1;
7338 inst.operands[0].writeback = 1;
7339 inst.operands[0].reg = REG_SP;
7340 do_ldmstm ();
7341}
b99bd4ef 7342
c19d1205
ZW
7343/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7344 word at the specified address and the following word
7345 respectively.
7346 Unconditionally executed.
7347 Error if Rn is R15. */
b99bd4ef 7348
c19d1205
ZW
7349static void
7350do_rfe (void)
7351{
7352 inst.instruction |= inst.operands[0].reg << 16;
7353 if (inst.operands[0].writeback)
7354 inst.instruction |= WRITE_BACK;
7355}
b99bd4ef 7356
c19d1205 7357/* ARM V6 ssat (argument parse). */
b99bd4ef 7358
c19d1205
ZW
7359static void
7360do_ssat (void)
7361{
7362 inst.instruction |= inst.operands[0].reg << 12;
7363 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7364 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7365
c19d1205
ZW
7366 if (inst.operands[3].present)
7367 encode_arm_shift (3);
b99bd4ef
NC
7368}
7369
c19d1205 7370/* ARM V6 usat (argument parse). */
b99bd4ef
NC
7371
7372static void
c19d1205 7373do_usat (void)
b99bd4ef 7374{
c19d1205
ZW
7375 inst.instruction |= inst.operands[0].reg << 12;
7376 inst.instruction |= inst.operands[1].imm << 16;
7377 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7378
c19d1205
ZW
7379 if (inst.operands[3].present)
7380 encode_arm_shift (3);
b99bd4ef
NC
7381}
7382
c19d1205 7383/* ARM V6 ssat16 (argument parse). */
09d92015
MM
7384
7385static void
c19d1205 7386do_ssat16 (void)
09d92015 7387{
c19d1205
ZW
7388 inst.instruction |= inst.operands[0].reg << 12;
7389 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7390 inst.instruction |= inst.operands[2].reg;
09d92015
MM
7391}
7392
c19d1205
ZW
7393static void
7394do_usat16 (void)
a737bd4d 7395{
c19d1205
ZW
7396 inst.instruction |= inst.operands[0].reg << 12;
7397 inst.instruction |= inst.operands[1].imm << 16;
7398 inst.instruction |= inst.operands[2].reg;
7399}
a737bd4d 7400
c19d1205
ZW
7401/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7402 preserving the other bits.
a737bd4d 7403
c19d1205
ZW
7404 setend <endian_specifier>, where <endian_specifier> is either
7405 BE or LE. */
a737bd4d 7406
c19d1205
ZW
7407static void
7408do_setend (void)
7409{
7410 if (inst.operands[0].imm)
7411 inst.instruction |= 0x200;
a737bd4d
NC
7412}
7413
7414static void
c19d1205 7415do_shift (void)
a737bd4d 7416{
c19d1205
ZW
7417 unsigned int Rm = (inst.operands[1].present
7418 ? inst.operands[1].reg
7419 : inst.operands[0].reg);
a737bd4d 7420
c19d1205
ZW
7421 inst.instruction |= inst.operands[0].reg << 12;
7422 inst.instruction |= Rm;
7423 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 7424 {
c19d1205
ZW
7425 inst.instruction |= inst.operands[2].reg << 8;
7426 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
7427 }
7428 else
c19d1205 7429 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
7430}
7431
09d92015 7432static void
3eb17e6b 7433do_smc (void)
09d92015 7434{
3eb17e6b 7435 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 7436 inst.reloc.pc_rel = 0;
09d92015
MM
7437}
7438
09d92015 7439static void
c19d1205 7440do_swi (void)
09d92015 7441{
c19d1205
ZW
7442 inst.reloc.type = BFD_RELOC_ARM_SWI;
7443 inst.reloc.pc_rel = 0;
09d92015
MM
7444}
7445
c19d1205
ZW
7446/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7447 SMLAxy{cond} Rd,Rm,Rs,Rn
7448 SMLAWy{cond} Rd,Rm,Rs,Rn
7449 Error if any register is R15. */
e16bb312 7450
c19d1205
ZW
7451static void
7452do_smla (void)
e16bb312 7453{
c19d1205
ZW
7454 inst.instruction |= inst.operands[0].reg << 16;
7455 inst.instruction |= inst.operands[1].reg;
7456 inst.instruction |= inst.operands[2].reg << 8;
7457 inst.instruction |= inst.operands[3].reg << 12;
7458}
a737bd4d 7459
c19d1205
ZW
7460/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7461 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7462 Error if any register is R15.
7463 Warning if Rdlo == Rdhi. */
a737bd4d 7464
c19d1205
ZW
7465static void
7466do_smlal (void)
7467{
7468 inst.instruction |= inst.operands[0].reg << 12;
7469 inst.instruction |= inst.operands[1].reg << 16;
7470 inst.instruction |= inst.operands[2].reg;
7471 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 7472
c19d1205
ZW
7473 if (inst.operands[0].reg == inst.operands[1].reg)
7474 as_tsktsk (_("rdhi and rdlo must be different"));
7475}
a737bd4d 7476
c19d1205
ZW
7477/* ARM V5E (El Segundo) signed-multiply (argument parse)
7478 SMULxy{cond} Rd,Rm,Rs
7479 Error if any register is R15. */
a737bd4d 7480
c19d1205
ZW
7481static void
7482do_smul (void)
7483{
7484 inst.instruction |= inst.operands[0].reg << 16;
7485 inst.instruction |= inst.operands[1].reg;
7486 inst.instruction |= inst.operands[2].reg << 8;
7487}
a737bd4d 7488
b6702015
PB
7489/* ARM V6 srs (argument parse). The variable fields in the encoding are
7490 the same for both ARM and Thumb-2. */
a737bd4d 7491
c19d1205
ZW
7492static void
7493do_srs (void)
7494{
b6702015
PB
7495 int reg;
7496
7497 if (inst.operands[0].present)
7498 {
7499 reg = inst.operands[0].reg;
7500 constraint (reg != 13, _("SRS base register must be r13"));
7501 }
7502 else
7503 reg = 13;
7504
7505 inst.instruction |= reg << 16;
7506 inst.instruction |= inst.operands[1].imm;
7507 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
7508 inst.instruction |= WRITE_BACK;
7509}
a737bd4d 7510
c19d1205 7511/* ARM V6 strex (argument parse). */
a737bd4d 7512
c19d1205
ZW
7513static void
7514do_strex (void)
7515{
7516 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7517 || inst.operands[2].postind || inst.operands[2].writeback
7518 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
7519 || inst.operands[2].negative
7520 /* See comment in do_ldrex(). */
7521 || (inst.operands[2].reg == REG_PC),
7522 BAD_ADDR_MODE);
a737bd4d 7523
c19d1205
ZW
7524 constraint (inst.operands[0].reg == inst.operands[1].reg
7525 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 7526
c19d1205
ZW
7527 constraint (inst.reloc.exp.X_op != O_constant
7528 || inst.reloc.exp.X_add_number != 0,
7529 _("offset must be zero in ARM encoding"));
a737bd4d 7530
c19d1205
ZW
7531 inst.instruction |= inst.operands[0].reg << 12;
7532 inst.instruction |= inst.operands[1].reg;
7533 inst.instruction |= inst.operands[2].reg << 16;
7534 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
7535}
7536
7537static void
c19d1205 7538do_strexd (void)
e16bb312 7539{
c19d1205
ZW
7540 constraint (inst.operands[1].reg % 2 != 0,
7541 _("even register required"));
7542 constraint (inst.operands[2].present
7543 && inst.operands[2].reg != inst.operands[1].reg + 1,
7544 _("can only store two consecutive registers"));
7545 /* If op 2 were present and equal to PC, this function wouldn't
7546 have been called in the first place. */
7547 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 7548
c19d1205
ZW
7549 constraint (inst.operands[0].reg == inst.operands[1].reg
7550 || inst.operands[0].reg == inst.operands[1].reg + 1
7551 || inst.operands[0].reg == inst.operands[3].reg,
7552 BAD_OVERLAP);
e16bb312 7553
c19d1205
ZW
7554 inst.instruction |= inst.operands[0].reg << 12;
7555 inst.instruction |= inst.operands[1].reg;
7556 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
7557}
7558
c19d1205
ZW
7559/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7560 extends it to 32-bits, and adds the result to a value in another
7561 register. You can specify a rotation by 0, 8, 16, or 24 bits
7562 before extracting the 16-bit value.
7563 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7564 Condition defaults to COND_ALWAYS.
7565 Error if any register uses R15. */
7566
e16bb312 7567static void
c19d1205 7568do_sxtah (void)
e16bb312 7569{
c19d1205
ZW
7570 inst.instruction |= inst.operands[0].reg << 12;
7571 inst.instruction |= inst.operands[1].reg << 16;
7572 inst.instruction |= inst.operands[2].reg;
7573 inst.instruction |= inst.operands[3].imm << 10;
7574}
e16bb312 7575
c19d1205 7576/* ARM V6 SXTH.
e16bb312 7577
c19d1205
ZW
7578 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7579 Condition defaults to COND_ALWAYS.
7580 Error if any register uses R15. */
e16bb312
NC
7581
7582static void
c19d1205 7583do_sxth (void)
e16bb312 7584{
c19d1205
ZW
7585 inst.instruction |= inst.operands[0].reg << 12;
7586 inst.instruction |= inst.operands[1].reg;
7587 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 7588}
c19d1205
ZW
7589\f
7590/* VFP instructions. In a logical order: SP variant first, monad
7591 before dyad, arithmetic then move then load/store. */
e16bb312
NC
7592
7593static void
c19d1205 7594do_vfp_sp_monadic (void)
e16bb312 7595{
5287ad62
JB
7596 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7597 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7598}
7599
7600static void
c19d1205 7601do_vfp_sp_dyadic (void)
e16bb312 7602{
5287ad62
JB
7603 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7604 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7605 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7606}
7607
7608static void
c19d1205 7609do_vfp_sp_compare_z (void)
e16bb312 7610{
5287ad62 7611 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
7612}
7613
7614static void
c19d1205 7615do_vfp_dp_sp_cvt (void)
e16bb312 7616{
5287ad62
JB
7617 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7618 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7619}
7620
7621static void
c19d1205 7622do_vfp_sp_dp_cvt (void)
e16bb312 7623{
5287ad62
JB
7624 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7625 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
7626}
7627
7628static void
c19d1205 7629do_vfp_reg_from_sp (void)
e16bb312 7630{
c19d1205 7631 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 7632 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
7633}
7634
7635static void
c19d1205 7636do_vfp_reg2_from_sp2 (void)
e16bb312 7637{
c19d1205
ZW
7638 constraint (inst.operands[2].imm != 2,
7639 _("only two consecutive VFP SP registers allowed here"));
7640 inst.instruction |= inst.operands[0].reg << 12;
7641 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 7642 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7643}
7644
7645static void
c19d1205 7646do_vfp_sp_from_reg (void)
e16bb312 7647{
5287ad62 7648 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 7649 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
7650}
7651
7652static void
c19d1205 7653do_vfp_sp2_from_reg2 (void)
e16bb312 7654{
c19d1205
ZW
7655 constraint (inst.operands[0].imm != 2,
7656 _("only two consecutive VFP SP registers allowed here"));
5287ad62 7657 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
7658 inst.instruction |= inst.operands[1].reg << 12;
7659 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
7660}
7661
7662static void
c19d1205 7663do_vfp_sp_ldst (void)
e16bb312 7664{
5287ad62 7665 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 7666 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7667}
7668
7669static void
c19d1205 7670do_vfp_dp_ldst (void)
e16bb312 7671{
5287ad62 7672 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 7673 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7674}
7675
c19d1205 7676
e16bb312 7677static void
c19d1205 7678vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7679{
c19d1205
ZW
7680 if (inst.operands[0].writeback)
7681 inst.instruction |= WRITE_BACK;
7682 else
7683 constraint (ldstm_type != VFP_LDSTMIA,
7684 _("this addressing mode requires base-register writeback"));
7685 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7686 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 7687 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
7688}
7689
7690static void
c19d1205 7691vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7692{
c19d1205 7693 int count;
e16bb312 7694
c19d1205
ZW
7695 if (inst.operands[0].writeback)
7696 inst.instruction |= WRITE_BACK;
7697 else
7698 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7699 _("this addressing mode requires base-register writeback"));
e16bb312 7700
c19d1205 7701 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7702 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 7703
c19d1205
ZW
7704 count = inst.operands[1].imm << 1;
7705 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7706 count += 1;
e16bb312 7707
c19d1205 7708 inst.instruction |= count;
e16bb312
NC
7709}
7710
7711static void
c19d1205 7712do_vfp_sp_ldstmia (void)
e16bb312 7713{
c19d1205 7714 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7715}
7716
7717static void
c19d1205 7718do_vfp_sp_ldstmdb (void)
e16bb312 7719{
c19d1205 7720 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7721}
7722
7723static void
c19d1205 7724do_vfp_dp_ldstmia (void)
e16bb312 7725{
c19d1205 7726 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7727}
7728
7729static void
c19d1205 7730do_vfp_dp_ldstmdb (void)
e16bb312 7731{
c19d1205 7732 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7733}
7734
7735static void
c19d1205 7736do_vfp_xp_ldstmia (void)
e16bb312 7737{
c19d1205
ZW
7738 vfp_dp_ldstm (VFP_LDSTMIAX);
7739}
e16bb312 7740
c19d1205
ZW
7741static void
7742do_vfp_xp_ldstmdb (void)
7743{
7744 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 7745}
5287ad62
JB
7746
7747static void
7748do_vfp_dp_rd_rm (void)
7749{
7750 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7751 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7752}
7753
7754static void
7755do_vfp_dp_rn_rd (void)
7756{
7757 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7758 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7759}
7760
7761static void
7762do_vfp_dp_rd_rn (void)
7763{
7764 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7765 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7766}
7767
7768static void
7769do_vfp_dp_rd_rn_rm (void)
7770{
7771 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7772 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7773 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7774}
7775
7776static void
7777do_vfp_dp_rd (void)
7778{
7779 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7780}
7781
7782static void
7783do_vfp_dp_rm_rd_rn (void)
7784{
7785 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7786 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7787 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7788}
7789
7790/* VFPv3 instructions. */
7791static void
7792do_vfp_sp_const (void)
7793{
7794 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
7795 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7796 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
7797}
7798
7799static void
7800do_vfp_dp_const (void)
7801{
7802 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
7803 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7804 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
7805}
7806
7807static void
7808vfp_conv (int srcsize)
7809{
7810 unsigned immbits = srcsize - inst.operands[1].imm;
7811 inst.instruction |= (immbits & 1) << 5;
7812 inst.instruction |= (immbits >> 1);
7813}
7814
7815static void
7816do_vfp_sp_conv_16 (void)
7817{
7818 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7819 vfp_conv (16);
7820}
7821
7822static void
7823do_vfp_dp_conv_16 (void)
7824{
7825 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7826 vfp_conv (16);
7827}
7828
7829static void
7830do_vfp_sp_conv_32 (void)
7831{
7832 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7833 vfp_conv (32);
7834}
7835
7836static void
7837do_vfp_dp_conv_32 (void)
7838{
7839 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7840 vfp_conv (32);
7841}
c19d1205
ZW
7842\f
7843/* FPA instructions. Also in a logical order. */
e16bb312 7844
c19d1205
ZW
7845static void
7846do_fpa_cmp (void)
7847{
7848 inst.instruction |= inst.operands[0].reg << 16;
7849 inst.instruction |= inst.operands[1].reg;
7850}
b99bd4ef
NC
7851
7852static void
c19d1205 7853do_fpa_ldmstm (void)
b99bd4ef 7854{
c19d1205
ZW
7855 inst.instruction |= inst.operands[0].reg << 12;
7856 switch (inst.operands[1].imm)
7857 {
7858 case 1: inst.instruction |= CP_T_X; break;
7859 case 2: inst.instruction |= CP_T_Y; break;
7860 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7861 case 4: break;
7862 default: abort ();
7863 }
b99bd4ef 7864
c19d1205
ZW
7865 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7866 {
7867 /* The instruction specified "ea" or "fd", so we can only accept
7868 [Rn]{!}. The instruction does not really support stacking or
7869 unstacking, so we have to emulate these by setting appropriate
7870 bits and offsets. */
7871 constraint (inst.reloc.exp.X_op != O_constant
7872 || inst.reloc.exp.X_add_number != 0,
7873 _("this instruction does not support indexing"));
b99bd4ef 7874
c19d1205
ZW
7875 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7876 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 7877
c19d1205
ZW
7878 if (!(inst.instruction & INDEX_UP))
7879 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 7880
c19d1205
ZW
7881 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7882 {
7883 inst.operands[2].preind = 0;
7884 inst.operands[2].postind = 1;
7885 }
7886 }
b99bd4ef 7887
c19d1205 7888 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 7889}
c19d1205
ZW
7890\f
7891/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 7892
c19d1205
ZW
7893static void
7894do_iwmmxt_tandorc (void)
7895{
7896 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7897}
b99bd4ef 7898
c19d1205
ZW
7899static void
7900do_iwmmxt_textrc (void)
7901{
7902 inst.instruction |= inst.operands[0].reg << 12;
7903 inst.instruction |= inst.operands[1].imm;
7904}
b99bd4ef
NC
7905
7906static void
c19d1205 7907do_iwmmxt_textrm (void)
b99bd4ef 7908{
c19d1205
ZW
7909 inst.instruction |= inst.operands[0].reg << 12;
7910 inst.instruction |= inst.operands[1].reg << 16;
7911 inst.instruction |= inst.operands[2].imm;
7912}
b99bd4ef 7913
c19d1205
ZW
7914static void
7915do_iwmmxt_tinsr (void)
7916{
7917 inst.instruction |= inst.operands[0].reg << 16;
7918 inst.instruction |= inst.operands[1].reg << 12;
7919 inst.instruction |= inst.operands[2].imm;
7920}
b99bd4ef 7921
c19d1205
ZW
7922static void
7923do_iwmmxt_tmia (void)
7924{
7925 inst.instruction |= inst.operands[0].reg << 5;
7926 inst.instruction |= inst.operands[1].reg;
7927 inst.instruction |= inst.operands[2].reg << 12;
7928}
b99bd4ef 7929
c19d1205
ZW
7930static void
7931do_iwmmxt_waligni (void)
7932{
7933 inst.instruction |= inst.operands[0].reg << 12;
7934 inst.instruction |= inst.operands[1].reg << 16;
7935 inst.instruction |= inst.operands[2].reg;
7936 inst.instruction |= inst.operands[3].imm << 20;
7937}
b99bd4ef 7938
2d447fca
JM
7939static void
7940do_iwmmxt_wmerge (void)
7941{
7942 inst.instruction |= inst.operands[0].reg << 12;
7943 inst.instruction |= inst.operands[1].reg << 16;
7944 inst.instruction |= inst.operands[2].reg;
7945 inst.instruction |= inst.operands[3].imm << 21;
7946}
7947
c19d1205
ZW
7948static void
7949do_iwmmxt_wmov (void)
7950{
7951 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7952 inst.instruction |= inst.operands[0].reg << 12;
7953 inst.instruction |= inst.operands[1].reg << 16;
7954 inst.instruction |= inst.operands[1].reg;
7955}
b99bd4ef 7956
c19d1205
ZW
7957static void
7958do_iwmmxt_wldstbh (void)
7959{
8f06b2d8 7960 int reloc;
c19d1205 7961 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
7962 if (thumb_mode)
7963 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7964 else
7965 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7966 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
7967}
7968
c19d1205
ZW
7969static void
7970do_iwmmxt_wldstw (void)
7971{
7972 /* RIWR_RIWC clears .isreg for a control register. */
7973 if (!inst.operands[0].isreg)
7974 {
7975 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7976 inst.instruction |= 0xf0000000;
7977 }
b99bd4ef 7978
c19d1205
ZW
7979 inst.instruction |= inst.operands[0].reg << 12;
7980 encode_arm_cp_address (1, TRUE, TRUE, 0);
7981}
b99bd4ef
NC
7982
7983static void
c19d1205 7984do_iwmmxt_wldstd (void)
b99bd4ef 7985{
c19d1205 7986 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
7987 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
7988 && inst.operands[1].immisreg)
7989 {
7990 inst.instruction &= ~0x1a000ff;
7991 inst.instruction |= (0xf << 28);
7992 if (inst.operands[1].preind)
7993 inst.instruction |= PRE_INDEX;
7994 if (!inst.operands[1].negative)
7995 inst.instruction |= INDEX_UP;
7996 if (inst.operands[1].writeback)
7997 inst.instruction |= WRITE_BACK;
7998 inst.instruction |= inst.operands[1].reg << 16;
7999 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8000 inst.instruction |= inst.operands[1].imm;
8001 }
8002 else
8003 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 8004}
b99bd4ef 8005
c19d1205
ZW
8006static void
8007do_iwmmxt_wshufh (void)
8008{
8009 inst.instruction |= inst.operands[0].reg << 12;
8010 inst.instruction |= inst.operands[1].reg << 16;
8011 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8012 inst.instruction |= (inst.operands[2].imm & 0x0f);
8013}
b99bd4ef 8014
c19d1205
ZW
8015static void
8016do_iwmmxt_wzero (void)
8017{
8018 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8019 inst.instruction |= inst.operands[0].reg;
8020 inst.instruction |= inst.operands[0].reg << 12;
8021 inst.instruction |= inst.operands[0].reg << 16;
8022}
2d447fca
JM
8023
8024static void
8025do_iwmmxt_wrwrwr_or_imm5 (void)
8026{
8027 if (inst.operands[2].isreg)
8028 do_rd_rn_rm ();
8029 else {
8030 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8031 _("immediate operand requires iWMMXt2"));
8032 do_rd_rn ();
8033 if (inst.operands[2].imm == 0)
8034 {
8035 switch ((inst.instruction >> 20) & 0xf)
8036 {
8037 case 4:
8038 case 5:
8039 case 6:
5f4273c7 8040 case 7:
2d447fca
JM
8041 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8042 inst.operands[2].imm = 16;
8043 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8044 break;
8045 case 8:
8046 case 9:
8047 case 10:
8048 case 11:
8049 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8050 inst.operands[2].imm = 32;
8051 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8052 break;
8053 case 12:
8054 case 13:
8055 case 14:
8056 case 15:
8057 {
8058 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8059 unsigned long wrn;
8060 wrn = (inst.instruction >> 16) & 0xf;
8061 inst.instruction &= 0xff0fff0f;
8062 inst.instruction |= wrn;
8063 /* Bail out here; the instruction is now assembled. */
8064 return;
8065 }
8066 }
8067 }
8068 /* Map 32 -> 0, etc. */
8069 inst.operands[2].imm &= 0x1f;
8070 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8071 }
8072}
c19d1205
ZW
8073\f
8074/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8075 operations first, then control, shift, and load/store. */
b99bd4ef 8076
c19d1205 8077/* Insns like "foo X,Y,Z". */
b99bd4ef 8078
c19d1205
ZW
8079static void
8080do_mav_triple (void)
8081{
8082 inst.instruction |= inst.operands[0].reg << 16;
8083 inst.instruction |= inst.operands[1].reg;
8084 inst.instruction |= inst.operands[2].reg << 12;
8085}
b99bd4ef 8086
c19d1205
ZW
8087/* Insns like "foo W,X,Y,Z".
8088 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8089
c19d1205
ZW
8090static void
8091do_mav_quad (void)
8092{
8093 inst.instruction |= inst.operands[0].reg << 5;
8094 inst.instruction |= inst.operands[1].reg << 12;
8095 inst.instruction |= inst.operands[2].reg << 16;
8096 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8097}
8098
c19d1205
ZW
8099/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8100static void
8101do_mav_dspsc (void)
a737bd4d 8102{
c19d1205
ZW
8103 inst.instruction |= inst.operands[1].reg << 12;
8104}
a737bd4d 8105
c19d1205
ZW
8106/* Maverick shift immediate instructions.
8107 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8108 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8109
c19d1205
ZW
8110static void
8111do_mav_shift (void)
8112{
8113 int imm = inst.operands[2].imm;
a737bd4d 8114
c19d1205
ZW
8115 inst.instruction |= inst.operands[0].reg << 12;
8116 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8117
c19d1205
ZW
8118 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8119 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8120 Bit 4 should be 0. */
8121 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8122
c19d1205
ZW
8123 inst.instruction |= imm;
8124}
8125\f
8126/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 8127
c19d1205
ZW
8128/* Xscale multiply-accumulate (argument parse)
8129 MIAcc acc0,Rm,Rs
8130 MIAPHcc acc0,Rm,Rs
8131 MIAxycc acc0,Rm,Rs. */
a737bd4d 8132
c19d1205
ZW
8133static void
8134do_xsc_mia (void)
8135{
8136 inst.instruction |= inst.operands[1].reg;
8137 inst.instruction |= inst.operands[2].reg << 12;
8138}
a737bd4d 8139
c19d1205 8140/* Xscale move-accumulator-register (argument parse)
a737bd4d 8141
c19d1205 8142 MARcc acc0,RdLo,RdHi. */
b99bd4ef 8143
c19d1205
ZW
8144static void
8145do_xsc_mar (void)
8146{
8147 inst.instruction |= inst.operands[1].reg << 12;
8148 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8149}
8150
c19d1205 8151/* Xscale move-register-accumulator (argument parse)
b99bd4ef 8152
c19d1205 8153 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
8154
8155static void
c19d1205 8156do_xsc_mra (void)
b99bd4ef 8157{
c19d1205
ZW
8158 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8159 inst.instruction |= inst.operands[0].reg << 12;
8160 inst.instruction |= inst.operands[1].reg << 16;
8161}
8162\f
8163/* Encoding functions relevant only to Thumb. */
b99bd4ef 8164
c19d1205
ZW
8165/* inst.operands[i] is a shifted-register operand; encode
8166 it into inst.instruction in the format used by Thumb32. */
8167
8168static void
8169encode_thumb32_shifted_operand (int i)
8170{
8171 unsigned int value = inst.reloc.exp.X_add_number;
8172 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 8173
9c3c69f2
PB
8174 constraint (inst.operands[i].immisreg,
8175 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
8176 inst.instruction |= inst.operands[i].reg;
8177 if (shift == SHIFT_RRX)
8178 inst.instruction |= SHIFT_ROR << 4;
8179 else
b99bd4ef 8180 {
c19d1205
ZW
8181 constraint (inst.reloc.exp.X_op != O_constant,
8182 _("expression too complex"));
8183
8184 constraint (value > 32
8185 || (value == 32 && (shift == SHIFT_LSL
8186 || shift == SHIFT_ROR)),
8187 _("shift expression is too large"));
8188
8189 if (value == 0)
8190 shift = SHIFT_LSL;
8191 else if (value == 32)
8192 value = 0;
8193
8194 inst.instruction |= shift << 4;
8195 inst.instruction |= (value & 0x1c) << 10;
8196 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 8197 }
c19d1205 8198}
b99bd4ef 8199
b99bd4ef 8200
c19d1205
ZW
8201/* inst.operands[i] was set up by parse_address. Encode it into a
8202 Thumb32 format load or store instruction. Reject forms that cannot
8203 be used with such instructions. If is_t is true, reject forms that
8204 cannot be used with a T instruction; if is_d is true, reject forms
8205 that cannot be used with a D instruction. */
b99bd4ef 8206
c19d1205
ZW
8207static void
8208encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8209{
8210 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8211
8212 constraint (!inst.operands[i].isreg,
53365c0d 8213 _("Instruction does not support =N addresses"));
b99bd4ef 8214
c19d1205
ZW
8215 inst.instruction |= inst.operands[i].reg << 16;
8216 if (inst.operands[i].immisreg)
b99bd4ef 8217 {
c19d1205
ZW
8218 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8219 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8220 constraint (inst.operands[i].negative,
8221 _("Thumb does not support negative register indexing"));
8222 constraint (inst.operands[i].postind,
8223 _("Thumb does not support register post-indexing"));
8224 constraint (inst.operands[i].writeback,
8225 _("Thumb does not support register indexing with writeback"));
8226 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8227 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 8228
f40d1643 8229 inst.instruction |= inst.operands[i].imm;
c19d1205 8230 if (inst.operands[i].shifted)
b99bd4ef 8231 {
c19d1205
ZW
8232 constraint (inst.reloc.exp.X_op != O_constant,
8233 _("expression too complex"));
9c3c69f2
PB
8234 constraint (inst.reloc.exp.X_add_number < 0
8235 || inst.reloc.exp.X_add_number > 3,
c19d1205 8236 _("shift out of range"));
9c3c69f2 8237 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
8238 }
8239 inst.reloc.type = BFD_RELOC_UNUSED;
8240 }
8241 else if (inst.operands[i].preind)
8242 {
8243 constraint (is_pc && inst.operands[i].writeback,
8244 _("cannot use writeback with PC-relative addressing"));
f40d1643 8245 constraint (is_t && inst.operands[i].writeback,
c19d1205
ZW
8246 _("cannot use writeback with this instruction"));
8247
8248 if (is_d)
8249 {
8250 inst.instruction |= 0x01000000;
8251 if (inst.operands[i].writeback)
8252 inst.instruction |= 0x00200000;
b99bd4ef 8253 }
c19d1205 8254 else
b99bd4ef 8255 {
c19d1205
ZW
8256 inst.instruction |= 0x00000c00;
8257 if (inst.operands[i].writeback)
8258 inst.instruction |= 0x00000100;
b99bd4ef 8259 }
c19d1205 8260 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 8261 }
c19d1205 8262 else if (inst.operands[i].postind)
b99bd4ef 8263 {
c19d1205
ZW
8264 assert (inst.operands[i].writeback);
8265 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8266 constraint (is_t, _("cannot use post-indexing with this instruction"));
8267
8268 if (is_d)
8269 inst.instruction |= 0x00200000;
8270 else
8271 inst.instruction |= 0x00000900;
8272 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8273 }
8274 else /* unindexed - only for coprocessor */
8275 inst.error = _("instruction does not accept unindexed addressing");
8276}
8277
8278/* Table of Thumb instructions which exist in both 16- and 32-bit
8279 encodings (the latter only in post-V6T2 cores). The index is the
8280 value used in the insns table below. When there is more than one
8281 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
8282 holds variant (1).
8283 Also contains several pseudo-instructions used during relaxation. */
c19d1205
ZW
8284#define T16_32_TAB \
8285 X(adc, 4140, eb400000), \
8286 X(adcs, 4140, eb500000), \
8287 X(add, 1c00, eb000000), \
8288 X(adds, 1c00, eb100000), \
0110f2b8
PB
8289 X(addi, 0000, f1000000), \
8290 X(addis, 0000, f1100000), \
8291 X(add_pc,000f, f20f0000), \
8292 X(add_sp,000d, f10d0000), \
e9f89963 8293 X(adr, 000f, f20f0000), \
c19d1205
ZW
8294 X(and, 4000, ea000000), \
8295 X(ands, 4000, ea100000), \
8296 X(asr, 1000, fa40f000), \
8297 X(asrs, 1000, fa50f000), \
0110f2b8
PB
8298 X(b, e000, f000b000), \
8299 X(bcond, d000, f0008000), \
c19d1205
ZW
8300 X(bic, 4380, ea200000), \
8301 X(bics, 4380, ea300000), \
8302 X(cmn, 42c0, eb100f00), \
8303 X(cmp, 2800, ebb00f00), \
8304 X(cpsie, b660, f3af8400), \
8305 X(cpsid, b670, f3af8600), \
8306 X(cpy, 4600, ea4f0000), \
155257ea 8307 X(dec_sp,80dd, f1ad0d00), \
c19d1205
ZW
8308 X(eor, 4040, ea800000), \
8309 X(eors, 4040, ea900000), \
0110f2b8 8310 X(inc_sp,00dd, f10d0d00), \
c19d1205
ZW
8311 X(ldmia, c800, e8900000), \
8312 X(ldr, 6800, f8500000), \
8313 X(ldrb, 7800, f8100000), \
8314 X(ldrh, 8800, f8300000), \
8315 X(ldrsb, 5600, f9100000), \
8316 X(ldrsh, 5e00, f9300000), \
0110f2b8
PB
8317 X(ldr_pc,4800, f85f0000), \
8318 X(ldr_pc2,4800, f85f0000), \
8319 X(ldr_sp,9800, f85d0000), \
c19d1205
ZW
8320 X(lsl, 0000, fa00f000), \
8321 X(lsls, 0000, fa10f000), \
8322 X(lsr, 0800, fa20f000), \
8323 X(lsrs, 0800, fa30f000), \
8324 X(mov, 2000, ea4f0000), \
8325 X(movs, 2000, ea5f0000), \
8326 X(mul, 4340, fb00f000), \
8327 X(muls, 4340, ffffffff), /* no 32b muls */ \
8328 X(mvn, 43c0, ea6f0000), \
8329 X(mvns, 43c0, ea7f0000), \
8330 X(neg, 4240, f1c00000), /* rsb #0 */ \
8331 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8332 X(orr, 4300, ea400000), \
8333 X(orrs, 4300, ea500000), \
e9f89963
PB
8334 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8335 X(push, b400, e92d0000), /* stmdb sp!,... */ \
c19d1205
ZW
8336 X(rev, ba00, fa90f080), \
8337 X(rev16, ba40, fa90f090), \
8338 X(revsh, bac0, fa90f0b0), \
8339 X(ror, 41c0, fa60f000), \
8340 X(rors, 41c0, fa70f000), \
8341 X(sbc, 4180, eb600000), \
8342 X(sbcs, 4180, eb700000), \
8343 X(stmia, c000, e8800000), \
8344 X(str, 6000, f8400000), \
8345 X(strb, 7000, f8000000), \
8346 X(strh, 8000, f8200000), \
0110f2b8 8347 X(str_sp,9000, f84d0000), \
c19d1205
ZW
8348 X(sub, 1e00, eba00000), \
8349 X(subs, 1e00, ebb00000), \
0110f2b8
PB
8350 X(subi, 8000, f1a00000), \
8351 X(subis, 8000, f1b00000), \
c19d1205
ZW
8352 X(sxtb, b240, fa4ff080), \
8353 X(sxth, b200, fa0ff080), \
8354 X(tst, 4200, ea100f00), \
8355 X(uxtb, b2c0, fa5ff080), \
8356 X(uxth, b280, fa1ff080), \
8357 X(nop, bf00, f3af8000), \
8358 X(yield, bf10, f3af8001), \
8359 X(wfe, bf20, f3af8002), \
8360 X(wfi, bf30, f3af8003), \
8361 X(sev, bf40, f3af9004), /* typo, 8004? */
8362
8363/* To catch errors in encoding functions, the codes are all offset by
8364 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8365 as 16-bit instructions. */
8366#define X(a,b,c) T_MNEM_##a
8367enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8368#undef X
8369
8370#define X(a,b,c) 0x##b
8371static const unsigned short thumb_op16[] = { T16_32_TAB };
8372#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8373#undef X
8374
8375#define X(a,b,c) 0x##c
8376static const unsigned int thumb_op32[] = { T16_32_TAB };
8377#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8378#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8379#undef X
8380#undef T16_32_TAB
8381
8382/* Thumb instruction encoders, in alphabetical order. */
8383
92e90b6e
PB
8384/* ADDW or SUBW. */
8385static void
8386do_t_add_sub_w (void)
8387{
8388 int Rd, Rn;
8389
8390 Rd = inst.operands[0].reg;
8391 Rn = inst.operands[1].reg;
8392
8393 constraint (Rd == 15, _("PC not allowed as destination"));
8394 inst.instruction |= (Rn << 16) | (Rd << 8);
8395 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8396}
8397
c19d1205
ZW
8398/* Parse an add or subtract instruction. We get here with inst.instruction
8399 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8400
8401static void
8402do_t_add_sub (void)
8403{
8404 int Rd, Rs, Rn;
8405
8406 Rd = inst.operands[0].reg;
8407 Rs = (inst.operands[1].present
8408 ? inst.operands[1].reg /* Rd, Rs, foo */
8409 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8410
8411 if (unified_syntax)
8412 {
0110f2b8
PB
8413 bfd_boolean flags;
8414 bfd_boolean narrow;
8415 int opcode;
8416
8417 flags = (inst.instruction == T_MNEM_adds
8418 || inst.instruction == T_MNEM_subs);
8419 if (flags)
8420 narrow = (current_it_mask == 0);
8421 else
8422 narrow = (current_it_mask != 0);
c19d1205 8423 if (!inst.operands[2].isreg)
b99bd4ef 8424 {
16805f35
PB
8425 int add;
8426
8427 add = (inst.instruction == T_MNEM_add
8428 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
8429 opcode = 0;
8430 if (inst.size_req != 4)
8431 {
0110f2b8
PB
8432 /* Attempt to use a narrow opcode, with relaxation if
8433 appropriate. */
8434 if (Rd == REG_SP && Rs == REG_SP && !flags)
8435 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8436 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8437 opcode = T_MNEM_add_sp;
8438 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8439 opcode = T_MNEM_add_pc;
8440 else if (Rd <= 7 && Rs <= 7 && narrow)
8441 {
8442 if (flags)
8443 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8444 else
8445 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8446 }
8447 if (opcode)
8448 {
8449 inst.instruction = THUMB_OP16(opcode);
8450 inst.instruction |= (Rd << 4) | Rs;
8451 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8452 if (inst.size_req != 2)
8453 inst.relax = opcode;
8454 }
8455 else
8456 constraint (inst.size_req == 2, BAD_HIREG);
8457 }
8458 if (inst.size_req == 4
8459 || (inst.size_req != 2 && !opcode))
8460 {
efd81785
PB
8461 if (Rd == REG_PC)
8462 {
8463 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8464 _("only SUBS PC, LR, #const allowed"));
8465 constraint (inst.reloc.exp.X_op != O_constant,
8466 _("expression too complex"));
8467 constraint (inst.reloc.exp.X_add_number < 0
8468 || inst.reloc.exp.X_add_number > 0xff,
8469 _("immediate value out of range"));
8470 inst.instruction = T2_SUBS_PC_LR
8471 | inst.reloc.exp.X_add_number;
8472 inst.reloc.type = BFD_RELOC_UNUSED;
8473 return;
8474 }
8475 else if (Rs == REG_PC)
16805f35
PB
8476 {
8477 /* Always use addw/subw. */
8478 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8479 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8480 }
8481 else
8482 {
8483 inst.instruction = THUMB_OP32 (inst.instruction);
8484 inst.instruction = (inst.instruction & 0xe1ffffff)
8485 | 0x10000000;
8486 if (flags)
8487 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8488 else
8489 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8490 }
dc4503c6
PB
8491 inst.instruction |= Rd << 8;
8492 inst.instruction |= Rs << 16;
0110f2b8 8493 }
b99bd4ef 8494 }
c19d1205
ZW
8495 else
8496 {
8497 Rn = inst.operands[2].reg;
8498 /* See if we can do this with a 16-bit instruction. */
8499 if (!inst.operands[2].shifted && inst.size_req != 4)
8500 {
e27ec89e
PB
8501 if (Rd > 7 || Rs > 7 || Rn > 7)
8502 narrow = FALSE;
8503
8504 if (narrow)
c19d1205 8505 {
e27ec89e
PB
8506 inst.instruction = ((inst.instruction == T_MNEM_adds
8507 || inst.instruction == T_MNEM_add)
c19d1205
ZW
8508 ? T_OPCODE_ADD_R3
8509 : T_OPCODE_SUB_R3);
8510 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8511 return;
8512 }
b99bd4ef 8513
7e806470 8514 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 8515 {
7e806470
PB
8516 /* Thumb-1 cores (except v6-M) require at least one high
8517 register in a narrow non flag setting add. */
8518 if (Rd > 7 || Rn > 7
8519 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
8520 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 8521 {
7e806470
PB
8522 if (Rd == Rn)
8523 {
8524 Rn = Rs;
8525 Rs = Rd;
8526 }
c19d1205
ZW
8527 inst.instruction = T_OPCODE_ADD_HI;
8528 inst.instruction |= (Rd & 8) << 4;
8529 inst.instruction |= (Rd & 7);
8530 inst.instruction |= Rn << 3;
8531 return;
8532 }
c19d1205
ZW
8533 }
8534 }
8535 /* If we get here, it can't be done in 16 bits. */
8536 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8537 _("shift must be constant"));
8538 inst.instruction = THUMB_OP32 (inst.instruction);
8539 inst.instruction |= Rd << 8;
8540 inst.instruction |= Rs << 16;
8541 encode_thumb32_shifted_operand (2);
8542 }
8543 }
8544 else
8545 {
8546 constraint (inst.instruction == T_MNEM_adds
8547 || inst.instruction == T_MNEM_subs,
8548 BAD_THUMB32);
b99bd4ef 8549
c19d1205 8550 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 8551 {
c19d1205
ZW
8552 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8553 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8554 BAD_HIREG);
8555
8556 inst.instruction = (inst.instruction == T_MNEM_add
8557 ? 0x0000 : 0x8000);
8558 inst.instruction |= (Rd << 4) | Rs;
8559 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
8560 return;
8561 }
8562
c19d1205
ZW
8563 Rn = inst.operands[2].reg;
8564 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 8565
c19d1205
ZW
8566 /* We now have Rd, Rs, and Rn set to registers. */
8567 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 8568 {
c19d1205
ZW
8569 /* Can't do this for SUB. */
8570 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8571 inst.instruction = T_OPCODE_ADD_HI;
8572 inst.instruction |= (Rd & 8) << 4;
8573 inst.instruction |= (Rd & 7);
8574 if (Rs == Rd)
8575 inst.instruction |= Rn << 3;
8576 else if (Rn == Rd)
8577 inst.instruction |= Rs << 3;
8578 else
8579 constraint (1, _("dest must overlap one source register"));
8580 }
8581 else
8582 {
8583 inst.instruction = (inst.instruction == T_MNEM_add
8584 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8585 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 8586 }
b99bd4ef 8587 }
b99bd4ef
NC
8588}
8589
c19d1205
ZW
8590static void
8591do_t_adr (void)
8592{
0110f2b8
PB
8593 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
8594 {
8595 /* Defer to section relaxation. */
8596 inst.relax = inst.instruction;
8597 inst.instruction = THUMB_OP16 (inst.instruction);
8598 inst.instruction |= inst.operands[0].reg << 4;
8599 }
8600 else if (unified_syntax && inst.size_req != 2)
e9f89963 8601 {
0110f2b8 8602 /* Generate a 32-bit opcode. */
e9f89963
PB
8603 inst.instruction = THUMB_OP32 (inst.instruction);
8604 inst.instruction |= inst.operands[0].reg << 8;
8605 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8606 inst.reloc.pc_rel = 1;
8607 }
8608 else
8609 {
0110f2b8 8610 /* Generate a 16-bit opcode. */
e9f89963
PB
8611 inst.instruction = THUMB_OP16 (inst.instruction);
8612 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8613 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8614 inst.reloc.pc_rel = 1;
b99bd4ef 8615
e9f89963
PB
8616 inst.instruction |= inst.operands[0].reg << 4;
8617 }
c19d1205 8618}
b99bd4ef 8619
c19d1205
ZW
8620/* Arithmetic instructions for which there is just one 16-bit
8621 instruction encoding, and it allows only two low registers.
8622 For maximal compatibility with ARM syntax, we allow three register
8623 operands even when Thumb-32 instructions are not available, as long
8624 as the first two are identical. For instance, both "sbc r0,r1" and
8625 "sbc r0,r0,r1" are allowed. */
b99bd4ef 8626static void
c19d1205 8627do_t_arit3 (void)
b99bd4ef 8628{
c19d1205 8629 int Rd, Rs, Rn;
b99bd4ef 8630
c19d1205
ZW
8631 Rd = inst.operands[0].reg;
8632 Rs = (inst.operands[1].present
8633 ? inst.operands[1].reg /* Rd, Rs, foo */
8634 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8635 Rn = inst.operands[2].reg;
b99bd4ef 8636
c19d1205 8637 if (unified_syntax)
b99bd4ef 8638 {
c19d1205
ZW
8639 if (!inst.operands[2].isreg)
8640 {
8641 /* For an immediate, we always generate a 32-bit opcode;
8642 section relaxation will shrink it later if possible. */
8643 inst.instruction = THUMB_OP32 (inst.instruction);
8644 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8645 inst.instruction |= Rd << 8;
8646 inst.instruction |= Rs << 16;
8647 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8648 }
8649 else
8650 {
e27ec89e
PB
8651 bfd_boolean narrow;
8652
c19d1205 8653 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8654 if (THUMB_SETS_FLAGS (inst.instruction))
8655 narrow = current_it_mask == 0;
8656 else
8657 narrow = current_it_mask != 0;
8658
8659 if (Rd > 7 || Rn > 7 || Rs > 7)
8660 narrow = FALSE;
8661 if (inst.operands[2].shifted)
8662 narrow = FALSE;
8663 if (inst.size_req == 4)
8664 narrow = FALSE;
8665
8666 if (narrow
c19d1205
ZW
8667 && Rd == Rs)
8668 {
8669 inst.instruction = THUMB_OP16 (inst.instruction);
8670 inst.instruction |= Rd;
8671 inst.instruction |= Rn << 3;
8672 return;
8673 }
b99bd4ef 8674
c19d1205
ZW
8675 /* If we get here, it can't be done in 16 bits. */
8676 constraint (inst.operands[2].shifted
8677 && inst.operands[2].immisreg,
8678 _("shift must be constant"));
8679 inst.instruction = THUMB_OP32 (inst.instruction);
8680 inst.instruction |= Rd << 8;
8681 inst.instruction |= Rs << 16;
8682 encode_thumb32_shifted_operand (2);
8683 }
a737bd4d 8684 }
c19d1205 8685 else
b99bd4ef 8686 {
c19d1205
ZW
8687 /* On its face this is a lie - the instruction does set the
8688 flags. However, the only supported mnemonic in this mode
8689 says it doesn't. */
8690 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8691
c19d1205
ZW
8692 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8693 _("unshifted register required"));
8694 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8695 constraint (Rd != Rs,
8696 _("dest and source1 must be the same register"));
a737bd4d 8697
c19d1205
ZW
8698 inst.instruction = THUMB_OP16 (inst.instruction);
8699 inst.instruction |= Rd;
8700 inst.instruction |= Rn << 3;
b99bd4ef 8701 }
a737bd4d 8702}
b99bd4ef 8703
c19d1205
ZW
8704/* Similarly, but for instructions where the arithmetic operation is
8705 commutative, so we can allow either of them to be different from
8706 the destination operand in a 16-bit instruction. For instance, all
8707 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8708 accepted. */
8709static void
8710do_t_arit3c (void)
a737bd4d 8711{
c19d1205 8712 int Rd, Rs, Rn;
b99bd4ef 8713
c19d1205
ZW
8714 Rd = inst.operands[0].reg;
8715 Rs = (inst.operands[1].present
8716 ? inst.operands[1].reg /* Rd, Rs, foo */
8717 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8718 Rn = inst.operands[2].reg;
a737bd4d 8719
c19d1205 8720 if (unified_syntax)
a737bd4d 8721 {
c19d1205 8722 if (!inst.operands[2].isreg)
b99bd4ef 8723 {
c19d1205
ZW
8724 /* For an immediate, we always generate a 32-bit opcode;
8725 section relaxation will shrink it later if possible. */
8726 inst.instruction = THUMB_OP32 (inst.instruction);
8727 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8728 inst.instruction |= Rd << 8;
8729 inst.instruction |= Rs << 16;
8730 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 8731 }
c19d1205 8732 else
a737bd4d 8733 {
e27ec89e
PB
8734 bfd_boolean narrow;
8735
c19d1205 8736 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8737 if (THUMB_SETS_FLAGS (inst.instruction))
8738 narrow = current_it_mask == 0;
8739 else
8740 narrow = current_it_mask != 0;
8741
8742 if (Rd > 7 || Rn > 7 || Rs > 7)
8743 narrow = FALSE;
8744 if (inst.operands[2].shifted)
8745 narrow = FALSE;
8746 if (inst.size_req == 4)
8747 narrow = FALSE;
8748
8749 if (narrow)
a737bd4d 8750 {
c19d1205 8751 if (Rd == Rs)
a737bd4d 8752 {
c19d1205
ZW
8753 inst.instruction = THUMB_OP16 (inst.instruction);
8754 inst.instruction |= Rd;
8755 inst.instruction |= Rn << 3;
8756 return;
a737bd4d 8757 }
c19d1205 8758 if (Rd == Rn)
a737bd4d 8759 {
c19d1205
ZW
8760 inst.instruction = THUMB_OP16 (inst.instruction);
8761 inst.instruction |= Rd;
8762 inst.instruction |= Rs << 3;
8763 return;
a737bd4d
NC
8764 }
8765 }
c19d1205
ZW
8766
8767 /* If we get here, it can't be done in 16 bits. */
8768 constraint (inst.operands[2].shifted
8769 && inst.operands[2].immisreg,
8770 _("shift must be constant"));
8771 inst.instruction = THUMB_OP32 (inst.instruction);
8772 inst.instruction |= Rd << 8;
8773 inst.instruction |= Rs << 16;
8774 encode_thumb32_shifted_operand (2);
a737bd4d 8775 }
b99bd4ef 8776 }
c19d1205
ZW
8777 else
8778 {
8779 /* On its face this is a lie - the instruction does set the
8780 flags. However, the only supported mnemonic in this mode
8781 says it doesn't. */
8782 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8783
c19d1205
ZW
8784 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8785 _("unshifted register required"));
8786 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8787
8788 inst.instruction = THUMB_OP16 (inst.instruction);
8789 inst.instruction |= Rd;
8790
8791 if (Rd == Rs)
8792 inst.instruction |= Rn << 3;
8793 else if (Rd == Rn)
8794 inst.instruction |= Rs << 3;
8795 else
8796 constraint (1, _("dest must overlap one source register"));
8797 }
a737bd4d
NC
8798}
8799
62b3e311
PB
8800static void
8801do_t_barrier (void)
8802{
8803 if (inst.operands[0].present)
8804 {
8805 constraint ((inst.instruction & 0xf0) != 0x40
8806 && inst.operands[0].imm != 0xf,
bd3ba5d1 8807 _("bad barrier type"));
62b3e311
PB
8808 inst.instruction |= inst.operands[0].imm;
8809 }
8810 else
8811 inst.instruction |= 0xf;
8812}
8813
c19d1205
ZW
8814static void
8815do_t_bfc (void)
a737bd4d 8816{
c19d1205
ZW
8817 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8818 constraint (msb > 32, _("bit-field extends past end of register"));
8819 /* The instruction encoding stores the LSB and MSB,
8820 not the LSB and width. */
8821 inst.instruction |= inst.operands[0].reg << 8;
8822 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8823 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8824 inst.instruction |= msb - 1;
b99bd4ef
NC
8825}
8826
c19d1205
ZW
8827static void
8828do_t_bfi (void)
b99bd4ef 8829{
c19d1205 8830 unsigned int msb;
b99bd4ef 8831
c19d1205
ZW
8832 /* #0 in second position is alternative syntax for bfc, which is
8833 the same instruction but with REG_PC in the Rm field. */
8834 if (!inst.operands[1].isreg)
8835 inst.operands[1].reg = REG_PC;
b99bd4ef 8836
c19d1205
ZW
8837 msb = inst.operands[2].imm + inst.operands[3].imm;
8838 constraint (msb > 32, _("bit-field extends past end of register"));
8839 /* The instruction encoding stores the LSB and MSB,
8840 not the LSB and width. */
8841 inst.instruction |= inst.operands[0].reg << 8;
8842 inst.instruction |= inst.operands[1].reg << 16;
8843 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8844 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8845 inst.instruction |= msb - 1;
b99bd4ef
NC
8846}
8847
c19d1205
ZW
8848static void
8849do_t_bfx (void)
b99bd4ef 8850{
c19d1205
ZW
8851 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8852 _("bit-field extends past end of register"));
8853 inst.instruction |= inst.operands[0].reg << 8;
8854 inst.instruction |= inst.operands[1].reg << 16;
8855 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8856 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8857 inst.instruction |= inst.operands[3].imm - 1;
8858}
b99bd4ef 8859
c19d1205
ZW
8860/* ARM V5 Thumb BLX (argument parse)
8861 BLX <target_addr> which is BLX(1)
8862 BLX <Rm> which is BLX(2)
8863 Unfortunately, there are two different opcodes for this mnemonic.
8864 So, the insns[].value is not used, and the code here zaps values
8865 into inst.instruction.
b99bd4ef 8866
c19d1205
ZW
8867 ??? How to take advantage of the additional two bits of displacement
8868 available in Thumb32 mode? Need new relocation? */
b99bd4ef 8869
c19d1205
ZW
8870static void
8871do_t_blx (void)
8872{
dfa9f0d5 8873 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8874 if (inst.operands[0].isreg)
8875 /* We have a register, so this is BLX(2). */
8876 inst.instruction |= inst.operands[0].reg << 3;
b99bd4ef
NC
8877 else
8878 {
c19d1205 8879 /* No register. This must be BLX(1). */
2fc8bdac 8880 inst.instruction = 0xf000e800;
39b41c9c
PB
8881#ifdef OBJ_ELF
8882 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8883 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8884 else
8885#endif
8886 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 8887 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8888 }
8889}
8890
c19d1205
ZW
8891static void
8892do_t_branch (void)
b99bd4ef 8893{
0110f2b8 8894 int opcode;
dfa9f0d5
PB
8895 int cond;
8896
8897 if (current_it_mask)
8898 {
8899 /* Conditional branches inside IT blocks are encoded as unconditional
8900 branches. */
8901 cond = COND_ALWAYS;
8902 /* A branch must be the last instruction in an IT block. */
8903 constraint (current_it_mask != 0x10, BAD_BRANCH);
8904 }
8905 else
8906 cond = inst.cond;
8907
8908 if (cond != COND_ALWAYS)
0110f2b8
PB
8909 opcode = T_MNEM_bcond;
8910 else
8911 opcode = inst.instruction;
8912
8913 if (unified_syntax && inst.size_req == 4)
c19d1205 8914 {
0110f2b8 8915 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 8916 if (cond == COND_ALWAYS)
0110f2b8 8917 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
8918 else
8919 {
dfa9f0d5
PB
8920 assert (cond != 0xF);
8921 inst.instruction |= cond << 22;
c19d1205
ZW
8922 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8923 }
8924 }
b99bd4ef
NC
8925 else
8926 {
0110f2b8 8927 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 8928 if (cond == COND_ALWAYS)
c19d1205
ZW
8929 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8930 else
b99bd4ef 8931 {
dfa9f0d5 8932 inst.instruction |= cond << 8;
c19d1205 8933 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 8934 }
0110f2b8
PB
8935 /* Allow section relaxation. */
8936 if (unified_syntax && inst.size_req != 2)
8937 inst.relax = opcode;
b99bd4ef 8938 }
c19d1205
ZW
8939
8940 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8941}
8942
8943static void
c19d1205 8944do_t_bkpt (void)
b99bd4ef 8945{
dfa9f0d5
PB
8946 constraint (inst.cond != COND_ALWAYS,
8947 _("instruction is always unconditional"));
c19d1205 8948 if (inst.operands[0].present)
b99bd4ef 8949 {
c19d1205
ZW
8950 constraint (inst.operands[0].imm > 255,
8951 _("immediate value out of range"));
8952 inst.instruction |= inst.operands[0].imm;
b99bd4ef 8953 }
b99bd4ef
NC
8954}
8955
8956static void
c19d1205 8957do_t_branch23 (void)
b99bd4ef 8958{
dfa9f0d5 8959 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205 8960 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
8961 inst.reloc.pc_rel = 1;
8962
c19d1205
ZW
8963 /* If the destination of the branch is a defined symbol which does not have
8964 the THUMB_FUNC attribute, then we must be calling a function which has
8965 the (interfacearm) attribute. We look for the Thumb entry point to that
8966 function and change the branch to refer to that function instead. */
8967 if ( inst.reloc.exp.X_op == O_symbol
8968 && inst.reloc.exp.X_add_symbol != NULL
8969 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8970 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8971 inst.reloc.exp.X_add_symbol =
8972 find_real_start (inst.reloc.exp.X_add_symbol);
90e4755a
RE
8973}
8974
8975static void
c19d1205 8976do_t_bx (void)
90e4755a 8977{
dfa9f0d5 8978 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8979 inst.instruction |= inst.operands[0].reg << 3;
8980 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8981 should cause the alignment to be checked once it is known. This is
8982 because BX PC only works if the instruction is word aligned. */
8983}
90e4755a 8984
c19d1205
ZW
8985static void
8986do_t_bxj (void)
8987{
dfa9f0d5 8988 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8989 if (inst.operands[0].reg == REG_PC)
8990 as_tsktsk (_("use of r15 in bxj is not really useful"));
90e4755a 8991
c19d1205 8992 inst.instruction |= inst.operands[0].reg << 16;
90e4755a
RE
8993}
8994
8995static void
c19d1205 8996do_t_clz (void)
90e4755a 8997{
c19d1205
ZW
8998 inst.instruction |= inst.operands[0].reg << 8;
8999 inst.instruction |= inst.operands[1].reg << 16;
9000 inst.instruction |= inst.operands[1].reg;
9001}
90e4755a 9002
dfa9f0d5
PB
9003static void
9004do_t_cps (void)
9005{
9006 constraint (current_it_mask, BAD_NOT_IT);
9007 inst.instruction |= inst.operands[0].imm;
9008}
9009
c19d1205
ZW
9010static void
9011do_t_cpsi (void)
9012{
dfa9f0d5 9013 constraint (current_it_mask, BAD_NOT_IT);
c19d1205 9014 if (unified_syntax
62b3e311
PB
9015 && (inst.operands[1].present || inst.size_req == 4)
9016 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 9017 {
c19d1205
ZW
9018 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9019 inst.instruction = 0xf3af8000;
9020 inst.instruction |= imod << 9;
9021 inst.instruction |= inst.operands[0].imm << 5;
9022 if (inst.operands[1].present)
9023 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 9024 }
c19d1205 9025 else
90e4755a 9026 {
62b3e311
PB
9027 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9028 && (inst.operands[0].imm & 4),
9029 _("selected processor does not support 'A' form "
9030 "of this instruction"));
9031 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
9032 _("Thumb does not support the 2-argument "
9033 "form of this instruction"));
9034 inst.instruction |= inst.operands[0].imm;
90e4755a 9035 }
90e4755a
RE
9036}
9037
c19d1205
ZW
9038/* THUMB CPY instruction (argument parse). */
9039
90e4755a 9040static void
c19d1205 9041do_t_cpy (void)
90e4755a 9042{
c19d1205 9043 if (inst.size_req == 4)
90e4755a 9044 {
c19d1205
ZW
9045 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9046 inst.instruction |= inst.operands[0].reg << 8;
9047 inst.instruction |= inst.operands[1].reg;
90e4755a 9048 }
c19d1205 9049 else
90e4755a 9050 {
c19d1205
ZW
9051 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9052 inst.instruction |= (inst.operands[0].reg & 0x7);
9053 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 9054 }
90e4755a
RE
9055}
9056
90e4755a 9057static void
25fe350b 9058do_t_cbz (void)
90e4755a 9059{
dfa9f0d5 9060 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
9061 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9062 inst.instruction |= inst.operands[0].reg;
9063 inst.reloc.pc_rel = 1;
9064 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9065}
90e4755a 9066
62b3e311
PB
9067static void
9068do_t_dbg (void)
9069{
9070 inst.instruction |= inst.operands[0].imm;
9071}
9072
9073static void
9074do_t_div (void)
9075{
9076 if (!inst.operands[1].present)
9077 inst.operands[1].reg = inst.operands[0].reg;
9078 inst.instruction |= inst.operands[0].reg << 8;
9079 inst.instruction |= inst.operands[1].reg << 16;
9080 inst.instruction |= inst.operands[2].reg;
9081}
9082
c19d1205
ZW
9083static void
9084do_t_hint (void)
9085{
9086 if (unified_syntax && inst.size_req == 4)
9087 inst.instruction = THUMB_OP32 (inst.instruction);
9088 else
9089 inst.instruction = THUMB_OP16 (inst.instruction);
9090}
90e4755a 9091
c19d1205
ZW
9092static void
9093do_t_it (void)
9094{
9095 unsigned int cond = inst.operands[0].imm;
e27ec89e 9096
dfa9f0d5 9097 constraint (current_it_mask, BAD_NOT_IT);
e27ec89e
PB
9098 current_it_mask = (inst.instruction & 0xf) | 0x10;
9099 current_cc = cond;
9100
9101 /* If the condition is a negative condition, invert the mask. */
c19d1205 9102 if ((cond & 0x1) == 0x0)
90e4755a 9103 {
c19d1205 9104 unsigned int mask = inst.instruction & 0x000f;
90e4755a 9105
c19d1205
ZW
9106 if ((mask & 0x7) == 0)
9107 /* no conversion needed */;
9108 else if ((mask & 0x3) == 0)
e27ec89e
PB
9109 mask ^= 0x8;
9110 else if ((mask & 0x1) == 0)
9111 mask ^= 0xC;
c19d1205 9112 else
e27ec89e 9113 mask ^= 0xE;
90e4755a 9114
e27ec89e
PB
9115 inst.instruction &= 0xfff0;
9116 inst.instruction |= mask;
c19d1205 9117 }
90e4755a 9118
c19d1205
ZW
9119 inst.instruction |= cond << 4;
9120}
90e4755a 9121
3c707909
PB
9122/* Helper function used for both push/pop and ldm/stm. */
9123static void
9124encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9125{
9126 bfd_boolean load;
9127
9128 load = (inst.instruction & (1 << 20)) != 0;
9129
9130 if (mask & (1 << 13))
9131 inst.error = _("SP not allowed in register list");
9132 if (load)
9133 {
9134 if (mask & (1 << 14)
9135 && mask & (1 << 15))
9136 inst.error = _("LR and PC should not both be in register list");
9137
9138 if ((mask & (1 << base)) != 0
9139 && writeback)
9140 as_warn (_("base register should not be in register list "
9141 "when written back"));
9142 }
9143 else
9144 {
9145 if (mask & (1 << 15))
9146 inst.error = _("PC not allowed in register list");
9147
9148 if (mask & (1 << base))
9149 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9150 }
9151
9152 if ((mask & (mask - 1)) == 0)
9153 {
9154 /* Single register transfers implemented as str/ldr. */
9155 if (writeback)
9156 {
9157 if (inst.instruction & (1 << 23))
9158 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9159 else
9160 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9161 }
9162 else
9163 {
9164 if (inst.instruction & (1 << 23))
9165 inst.instruction = 0x00800000; /* ia -> [base] */
9166 else
9167 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9168 }
9169
9170 inst.instruction |= 0xf8400000;
9171 if (load)
9172 inst.instruction |= 0x00100000;
9173
5f4273c7 9174 mask = ffs (mask) - 1;
3c707909
PB
9175 mask <<= 12;
9176 }
9177 else if (writeback)
9178 inst.instruction |= WRITE_BACK;
9179
9180 inst.instruction |= mask;
9181 inst.instruction |= base << 16;
9182}
9183
c19d1205
ZW
9184static void
9185do_t_ldmstm (void)
9186{
9187 /* This really doesn't seem worth it. */
9188 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9189 _("expression too complex"));
9190 constraint (inst.operands[1].writeback,
9191 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 9192
c19d1205
ZW
9193 if (unified_syntax)
9194 {
3c707909
PB
9195 bfd_boolean narrow;
9196 unsigned mask;
9197
9198 narrow = FALSE;
c19d1205
ZW
9199 /* See if we can use a 16-bit instruction. */
9200 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9201 && inst.size_req != 4
3c707909 9202 && !(inst.operands[1].imm & ~0xff))
90e4755a 9203 {
3c707909 9204 mask = 1 << inst.operands[0].reg;
90e4755a 9205
3c707909
PB
9206 if (inst.operands[0].reg <= 7
9207 && (inst.instruction == T_MNEM_stmia
9208 ? inst.operands[0].writeback
9209 : (inst.operands[0].writeback
9210 == !(inst.operands[1].imm & mask))))
90e4755a 9211 {
3c707909
PB
9212 if (inst.instruction == T_MNEM_stmia
9213 && (inst.operands[1].imm & mask)
9214 && (inst.operands[1].imm & (mask - 1)))
c19d1205
ZW
9215 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9216 inst.operands[0].reg);
3c707909
PB
9217
9218 inst.instruction = THUMB_OP16 (inst.instruction);
9219 inst.instruction |= inst.operands[0].reg << 8;
9220 inst.instruction |= inst.operands[1].imm;
9221 narrow = TRUE;
90e4755a 9222 }
3c707909
PB
9223 else if (inst.operands[0] .reg == REG_SP
9224 && inst.operands[0].writeback)
90e4755a 9225 {
3c707909
PB
9226 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9227 ? T_MNEM_push : T_MNEM_pop);
9228 inst.instruction |= inst.operands[1].imm;
9229 narrow = TRUE;
90e4755a 9230 }
3c707909
PB
9231 }
9232
9233 if (!narrow)
9234 {
c19d1205
ZW
9235 if (inst.instruction < 0xffff)
9236 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 9237
5f4273c7
NC
9238 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9239 inst.operands[0].writeback);
90e4755a
RE
9240 }
9241 }
c19d1205 9242 else
90e4755a 9243 {
c19d1205
ZW
9244 constraint (inst.operands[0].reg > 7
9245 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
9246 constraint (inst.instruction != T_MNEM_ldmia
9247 && inst.instruction != T_MNEM_stmia,
9248 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 9249 if (inst.instruction == T_MNEM_stmia)
f03698e6 9250 {
c19d1205
ZW
9251 if (!inst.operands[0].writeback)
9252 as_warn (_("this instruction will write back the base register"));
9253 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9254 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9255 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9256 inst.operands[0].reg);
f03698e6 9257 }
c19d1205 9258 else
90e4755a 9259 {
c19d1205
ZW
9260 if (!inst.operands[0].writeback
9261 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9262 as_warn (_("this instruction will write back the base register"));
9263 else if (inst.operands[0].writeback
9264 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9265 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
9266 }
9267
c19d1205
ZW
9268 inst.instruction = THUMB_OP16 (inst.instruction);
9269 inst.instruction |= inst.operands[0].reg << 8;
9270 inst.instruction |= inst.operands[1].imm;
9271 }
9272}
e28cd48c 9273
c19d1205
ZW
9274static void
9275do_t_ldrex (void)
9276{
9277 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9278 || inst.operands[1].postind || inst.operands[1].writeback
9279 || inst.operands[1].immisreg || inst.operands[1].shifted
9280 || inst.operands[1].negative,
01cfc07f 9281 BAD_ADDR_MODE);
e28cd48c 9282
c19d1205
ZW
9283 inst.instruction |= inst.operands[0].reg << 12;
9284 inst.instruction |= inst.operands[1].reg << 16;
9285 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9286}
e28cd48c 9287
c19d1205
ZW
9288static void
9289do_t_ldrexd (void)
9290{
9291 if (!inst.operands[1].present)
1cac9012 9292 {
c19d1205
ZW
9293 constraint (inst.operands[0].reg == REG_LR,
9294 _("r14 not allowed as first register "
9295 "when second register is omitted"));
9296 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 9297 }
c19d1205
ZW
9298 constraint (inst.operands[0].reg == inst.operands[1].reg,
9299 BAD_OVERLAP);
b99bd4ef 9300
c19d1205
ZW
9301 inst.instruction |= inst.operands[0].reg << 12;
9302 inst.instruction |= inst.operands[1].reg << 8;
9303 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9304}
9305
9306static void
c19d1205 9307do_t_ldst (void)
b99bd4ef 9308{
0110f2b8
PB
9309 unsigned long opcode;
9310 int Rn;
9311
9312 opcode = inst.instruction;
c19d1205 9313 if (unified_syntax)
b99bd4ef 9314 {
53365c0d
PB
9315 if (!inst.operands[1].isreg)
9316 {
9317 if (opcode <= 0xffff)
9318 inst.instruction = THUMB_OP32 (opcode);
9319 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9320 return;
9321 }
0110f2b8
PB
9322 if (inst.operands[1].isreg
9323 && !inst.operands[1].writeback
c19d1205
ZW
9324 && !inst.operands[1].shifted && !inst.operands[1].postind
9325 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
9326 && opcode <= 0xffff
9327 && inst.size_req != 4)
c19d1205 9328 {
0110f2b8
PB
9329 /* Insn may have a 16-bit form. */
9330 Rn = inst.operands[1].reg;
9331 if (inst.operands[1].immisreg)
9332 {
9333 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 9334 /* [Rn, Rik] */
0110f2b8
PB
9335 if (Rn <= 7 && inst.operands[1].imm <= 7)
9336 goto op16;
9337 }
9338 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9339 && opcode != T_MNEM_ldrsb)
9340 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9341 || (Rn == REG_SP && opcode == T_MNEM_str))
9342 {
9343 /* [Rn, #const] */
9344 if (Rn > 7)
9345 {
9346 if (Rn == REG_PC)
9347 {
9348 if (inst.reloc.pc_rel)
9349 opcode = T_MNEM_ldr_pc2;
9350 else
9351 opcode = T_MNEM_ldr_pc;
9352 }
9353 else
9354 {
9355 if (opcode == T_MNEM_ldr)
9356 opcode = T_MNEM_ldr_sp;
9357 else
9358 opcode = T_MNEM_str_sp;
9359 }
9360 inst.instruction = inst.operands[0].reg << 8;
9361 }
9362 else
9363 {
9364 inst.instruction = inst.operands[0].reg;
9365 inst.instruction |= inst.operands[1].reg << 3;
9366 }
9367 inst.instruction |= THUMB_OP16 (opcode);
9368 if (inst.size_req == 2)
9369 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9370 else
9371 inst.relax = opcode;
9372 return;
9373 }
c19d1205 9374 }
0110f2b8
PB
9375 /* Definitely a 32-bit variant. */
9376 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
9377 inst.instruction |= inst.operands[0].reg << 12;
9378 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
9379 return;
9380 }
9381
c19d1205
ZW
9382 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9383
9384 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 9385 {
c19d1205
ZW
9386 /* Only [Rn,Rm] is acceptable. */
9387 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9388 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9389 || inst.operands[1].postind || inst.operands[1].shifted
9390 || inst.operands[1].negative,
9391 _("Thumb does not support this addressing mode"));
9392 inst.instruction = THUMB_OP16 (inst.instruction);
9393 goto op16;
b99bd4ef 9394 }
5f4273c7 9395
c19d1205
ZW
9396 inst.instruction = THUMB_OP16 (inst.instruction);
9397 if (!inst.operands[1].isreg)
9398 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9399 return;
b99bd4ef 9400
c19d1205
ZW
9401 constraint (!inst.operands[1].preind
9402 || inst.operands[1].shifted
9403 || inst.operands[1].writeback,
9404 _("Thumb does not support this addressing mode"));
9405 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 9406 {
c19d1205
ZW
9407 constraint (inst.instruction & 0x0600,
9408 _("byte or halfword not valid for base register"));
9409 constraint (inst.operands[1].reg == REG_PC
9410 && !(inst.instruction & THUMB_LOAD_BIT),
9411 _("r15 based store not allowed"));
9412 constraint (inst.operands[1].immisreg,
9413 _("invalid base register for register offset"));
b99bd4ef 9414
c19d1205
ZW
9415 if (inst.operands[1].reg == REG_PC)
9416 inst.instruction = T_OPCODE_LDR_PC;
9417 else if (inst.instruction & THUMB_LOAD_BIT)
9418 inst.instruction = T_OPCODE_LDR_SP;
9419 else
9420 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 9421
c19d1205
ZW
9422 inst.instruction |= inst.operands[0].reg << 8;
9423 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9424 return;
9425 }
90e4755a 9426
c19d1205
ZW
9427 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9428 if (!inst.operands[1].immisreg)
9429 {
9430 /* Immediate offset. */
9431 inst.instruction |= inst.operands[0].reg;
9432 inst.instruction |= inst.operands[1].reg << 3;
9433 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9434 return;
9435 }
90e4755a 9436
c19d1205
ZW
9437 /* Register offset. */
9438 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9439 constraint (inst.operands[1].negative,
9440 _("Thumb does not support this addressing mode"));
90e4755a 9441
c19d1205
ZW
9442 op16:
9443 switch (inst.instruction)
9444 {
9445 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9446 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9447 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9448 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9449 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9450 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9451 case 0x5600 /* ldrsb */:
9452 case 0x5e00 /* ldrsh */: break;
9453 default: abort ();
9454 }
90e4755a 9455
c19d1205
ZW
9456 inst.instruction |= inst.operands[0].reg;
9457 inst.instruction |= inst.operands[1].reg << 3;
9458 inst.instruction |= inst.operands[1].imm << 6;
9459}
90e4755a 9460
c19d1205
ZW
9461static void
9462do_t_ldstd (void)
9463{
9464 if (!inst.operands[1].present)
b99bd4ef 9465 {
c19d1205
ZW
9466 inst.operands[1].reg = inst.operands[0].reg + 1;
9467 constraint (inst.operands[0].reg == REG_LR,
9468 _("r14 not allowed here"));
b99bd4ef 9469 }
c19d1205
ZW
9470 inst.instruction |= inst.operands[0].reg << 12;
9471 inst.instruction |= inst.operands[1].reg << 8;
9472 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
9473}
9474
c19d1205
ZW
9475static void
9476do_t_ldstt (void)
9477{
9478 inst.instruction |= inst.operands[0].reg << 12;
9479 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9480}
a737bd4d 9481
b99bd4ef 9482static void
c19d1205 9483do_t_mla (void)
b99bd4ef 9484{
c19d1205
ZW
9485 inst.instruction |= inst.operands[0].reg << 8;
9486 inst.instruction |= inst.operands[1].reg << 16;
9487 inst.instruction |= inst.operands[2].reg;
9488 inst.instruction |= inst.operands[3].reg << 12;
9489}
b99bd4ef 9490
c19d1205
ZW
9491static void
9492do_t_mlal (void)
9493{
9494 inst.instruction |= inst.operands[0].reg << 12;
9495 inst.instruction |= inst.operands[1].reg << 8;
9496 inst.instruction |= inst.operands[2].reg << 16;
9497 inst.instruction |= inst.operands[3].reg;
9498}
b99bd4ef 9499
c19d1205
ZW
9500static void
9501do_t_mov_cmp (void)
9502{
9503 if (unified_syntax)
b99bd4ef 9504 {
c19d1205
ZW
9505 int r0off = (inst.instruction == T_MNEM_mov
9506 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 9507 unsigned long opcode;
3d388997
PB
9508 bfd_boolean narrow;
9509 bfd_boolean low_regs;
9510
9511 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
0110f2b8 9512 opcode = inst.instruction;
3d388997 9513 if (current_it_mask)
0110f2b8 9514 narrow = opcode != T_MNEM_movs;
3d388997 9515 else
0110f2b8 9516 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
9517 if (inst.size_req == 4
9518 || inst.operands[1].shifted)
9519 narrow = FALSE;
9520
efd81785
PB
9521 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
9522 if (opcode == T_MNEM_movs && inst.operands[1].isreg
9523 && !inst.operands[1].shifted
9524 && inst.operands[0].reg == REG_PC
9525 && inst.operands[1].reg == REG_LR)
9526 {
9527 inst.instruction = T2_SUBS_PC_LR;
9528 return;
9529 }
9530
c19d1205
ZW
9531 if (!inst.operands[1].isreg)
9532 {
0110f2b8
PB
9533 /* Immediate operand. */
9534 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9535 narrow = 0;
9536 if (low_regs && narrow)
9537 {
9538 inst.instruction = THUMB_OP16 (opcode);
9539 inst.instruction |= inst.operands[0].reg << 8;
9540 if (inst.size_req == 2)
9541 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9542 else
9543 inst.relax = opcode;
9544 }
9545 else
9546 {
9547 inst.instruction = THUMB_OP32 (inst.instruction);
9548 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9549 inst.instruction |= inst.operands[0].reg << r0off;
9550 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9551 }
c19d1205 9552 }
728ca7c9
PB
9553 else if (inst.operands[1].shifted && inst.operands[1].immisreg
9554 && (inst.instruction == T_MNEM_mov
9555 || inst.instruction == T_MNEM_movs))
9556 {
9557 /* Register shifts are encoded as separate shift instructions. */
9558 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
9559
9560 if (current_it_mask)
9561 narrow = !flags;
9562 else
9563 narrow = flags;
9564
9565 if (inst.size_req == 4)
9566 narrow = FALSE;
9567
9568 if (!low_regs || inst.operands[1].imm > 7)
9569 narrow = FALSE;
9570
9571 if (inst.operands[0].reg != inst.operands[1].reg)
9572 narrow = FALSE;
9573
9574 switch (inst.operands[1].shift_kind)
9575 {
9576 case SHIFT_LSL:
9577 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
9578 break;
9579 case SHIFT_ASR:
9580 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
9581 break;
9582 case SHIFT_LSR:
9583 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
9584 break;
9585 case SHIFT_ROR:
9586 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
9587 break;
9588 default:
5f4273c7 9589 abort ();
728ca7c9
PB
9590 }
9591
9592 inst.instruction = opcode;
9593 if (narrow)
9594 {
9595 inst.instruction |= inst.operands[0].reg;
9596 inst.instruction |= inst.operands[1].imm << 3;
9597 }
9598 else
9599 {
9600 if (flags)
9601 inst.instruction |= CONDS_BIT;
9602
9603 inst.instruction |= inst.operands[0].reg << 8;
9604 inst.instruction |= inst.operands[1].reg << 16;
9605 inst.instruction |= inst.operands[1].imm;
9606 }
9607 }
3d388997 9608 else if (!narrow)
c19d1205 9609 {
728ca7c9
PB
9610 /* Some mov with immediate shift have narrow variants.
9611 Register shifts are handled above. */
9612 if (low_regs && inst.operands[1].shifted
9613 && (inst.instruction == T_MNEM_mov
9614 || inst.instruction == T_MNEM_movs))
9615 {
9616 if (current_it_mask)
9617 narrow = (inst.instruction == T_MNEM_mov);
9618 else
9619 narrow = (inst.instruction == T_MNEM_movs);
9620 }
9621
9622 if (narrow)
9623 {
9624 switch (inst.operands[1].shift_kind)
9625 {
9626 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9627 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9628 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9629 default: narrow = FALSE; break;
9630 }
9631 }
9632
9633 if (narrow)
9634 {
9635 inst.instruction |= inst.operands[0].reg;
9636 inst.instruction |= inst.operands[1].reg << 3;
9637 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9638 }
9639 else
9640 {
9641 inst.instruction = THUMB_OP32 (inst.instruction);
9642 inst.instruction |= inst.operands[0].reg << r0off;
9643 encode_thumb32_shifted_operand (1);
9644 }
c19d1205
ZW
9645 }
9646 else
9647 switch (inst.instruction)
9648 {
9649 case T_MNEM_mov:
9650 inst.instruction = T_OPCODE_MOV_HR;
9651 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9652 inst.instruction |= (inst.operands[0].reg & 0x7);
9653 inst.instruction |= inst.operands[1].reg << 3;
9654 break;
b99bd4ef 9655
c19d1205
ZW
9656 case T_MNEM_movs:
9657 /* We know we have low registers at this point.
9658 Generate ADD Rd, Rs, #0. */
9659 inst.instruction = T_OPCODE_ADD_I3;
9660 inst.instruction |= inst.operands[0].reg;
9661 inst.instruction |= inst.operands[1].reg << 3;
9662 break;
9663
9664 case T_MNEM_cmp:
3d388997 9665 if (low_regs)
c19d1205
ZW
9666 {
9667 inst.instruction = T_OPCODE_CMP_LR;
9668 inst.instruction |= inst.operands[0].reg;
9669 inst.instruction |= inst.operands[1].reg << 3;
9670 }
9671 else
9672 {
9673 inst.instruction = T_OPCODE_CMP_HR;
9674 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9675 inst.instruction |= (inst.operands[0].reg & 0x7);
9676 inst.instruction |= inst.operands[1].reg << 3;
9677 }
9678 break;
9679 }
b99bd4ef
NC
9680 return;
9681 }
9682
c19d1205
ZW
9683 inst.instruction = THUMB_OP16 (inst.instruction);
9684 if (inst.operands[1].isreg)
b99bd4ef 9685 {
c19d1205 9686 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
b99bd4ef 9687 {
c19d1205
ZW
9688 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9689 since a MOV instruction produces unpredictable results. */
9690 if (inst.instruction == T_OPCODE_MOV_I8)
9691 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 9692 else
c19d1205 9693 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 9694
c19d1205
ZW
9695 inst.instruction |= inst.operands[0].reg;
9696 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
9697 }
9698 else
9699 {
c19d1205
ZW
9700 if (inst.instruction == T_OPCODE_MOV_I8)
9701 inst.instruction = T_OPCODE_MOV_HR;
9702 else
9703 inst.instruction = T_OPCODE_CMP_HR;
9704 do_t_cpy ();
b99bd4ef
NC
9705 }
9706 }
c19d1205 9707 else
b99bd4ef 9708 {
c19d1205
ZW
9709 constraint (inst.operands[0].reg > 7,
9710 _("only lo regs allowed with immediate"));
9711 inst.instruction |= inst.operands[0].reg << 8;
9712 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9713 }
9714}
b99bd4ef 9715
c19d1205
ZW
9716static void
9717do_t_mov16 (void)
9718{
b6895b4f
PB
9719 bfd_vma imm;
9720 bfd_boolean top;
9721
9722 top = (inst.instruction & 0x00800000) != 0;
9723 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9724 {
9725 constraint (top, _(":lower16: not allowed this instruction"));
9726 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9727 }
9728 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9729 {
9730 constraint (!top, _(":upper16: not allowed this instruction"));
9731 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9732 }
9733
c19d1205 9734 inst.instruction |= inst.operands[0].reg << 8;
b6895b4f
PB
9735 if (inst.reloc.type == BFD_RELOC_UNUSED)
9736 {
9737 imm = inst.reloc.exp.X_add_number;
9738 inst.instruction |= (imm & 0xf000) << 4;
9739 inst.instruction |= (imm & 0x0800) << 15;
9740 inst.instruction |= (imm & 0x0700) << 4;
9741 inst.instruction |= (imm & 0x00ff);
9742 }
c19d1205 9743}
b99bd4ef 9744
c19d1205
ZW
9745static void
9746do_t_mvn_tst (void)
9747{
9748 if (unified_syntax)
9749 {
9750 int r0off = (inst.instruction == T_MNEM_mvn
9751 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
9752 bfd_boolean narrow;
9753
9754 if (inst.size_req == 4
9755 || inst.instruction > 0xffff
9756 || inst.operands[1].shifted
9757 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9758 narrow = FALSE;
9759 else if (inst.instruction == T_MNEM_cmn)
9760 narrow = TRUE;
9761 else if (THUMB_SETS_FLAGS (inst.instruction))
9762 narrow = (current_it_mask == 0);
9763 else
9764 narrow = (current_it_mask != 0);
9765
c19d1205 9766 if (!inst.operands[1].isreg)
b99bd4ef 9767 {
c19d1205
ZW
9768 /* For an immediate, we always generate a 32-bit opcode;
9769 section relaxation will shrink it later if possible. */
9770 if (inst.instruction < 0xffff)
9771 inst.instruction = THUMB_OP32 (inst.instruction);
9772 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9773 inst.instruction |= inst.operands[0].reg << r0off;
9774 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9775 }
c19d1205 9776 else
b99bd4ef 9777 {
c19d1205 9778 /* See if we can do this with a 16-bit instruction. */
3d388997 9779 if (narrow)
b99bd4ef 9780 {
c19d1205
ZW
9781 inst.instruction = THUMB_OP16 (inst.instruction);
9782 inst.instruction |= inst.operands[0].reg;
9783 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 9784 }
c19d1205 9785 else
b99bd4ef 9786 {
c19d1205
ZW
9787 constraint (inst.operands[1].shifted
9788 && inst.operands[1].immisreg,
9789 _("shift must be constant"));
9790 if (inst.instruction < 0xffff)
9791 inst.instruction = THUMB_OP32 (inst.instruction);
9792 inst.instruction |= inst.operands[0].reg << r0off;
9793 encode_thumb32_shifted_operand (1);
b99bd4ef 9794 }
b99bd4ef
NC
9795 }
9796 }
9797 else
9798 {
c19d1205
ZW
9799 constraint (inst.instruction > 0xffff
9800 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
9801 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
9802 _("unshifted register required"));
9803 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9804 BAD_HIREG);
b99bd4ef 9805
c19d1205
ZW
9806 inst.instruction = THUMB_OP16 (inst.instruction);
9807 inst.instruction |= inst.operands[0].reg;
9808 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 9809 }
b99bd4ef
NC
9810}
9811
b05fe5cf 9812static void
c19d1205 9813do_t_mrs (void)
b05fe5cf 9814{
62b3e311 9815 int flags;
037e8744
JB
9816
9817 if (do_vfp_nsyn_mrs () == SUCCESS)
9818 return;
9819
62b3e311
PB
9820 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
9821 if (flags == 0)
9822 {
7e806470 9823 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
9824 _("selected processor does not support "
9825 "requested special purpose register"));
9826 }
9827 else
9828 {
9829 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9830 _("selected processor does not support "
44bf2362 9831 "requested special purpose register"));
62b3e311
PB
9832 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9833 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
9834 _("'CPSR' or 'SPSR' expected"));
9835 }
5f4273c7 9836
c19d1205 9837 inst.instruction |= inst.operands[0].reg << 8;
62b3e311
PB
9838 inst.instruction |= (flags & SPSR_BIT) >> 2;
9839 inst.instruction |= inst.operands[1].imm & 0xff;
c19d1205 9840}
b05fe5cf 9841
c19d1205
ZW
9842static void
9843do_t_msr (void)
9844{
62b3e311
PB
9845 int flags;
9846
037e8744
JB
9847 if (do_vfp_nsyn_msr () == SUCCESS)
9848 return;
9849
c19d1205
ZW
9850 constraint (!inst.operands[1].isreg,
9851 _("Thumb encoding does not support an immediate here"));
62b3e311
PB
9852 flags = inst.operands[0].imm;
9853 if (flags & ~0xff)
9854 {
9855 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9856 _("selected processor does not support "
9857 "requested special purpose register"));
9858 }
9859 else
9860 {
7e806470 9861 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
9862 _("selected processor does not support "
9863 "requested special purpose register"));
9864 flags |= PSR_f;
9865 }
9866 inst.instruction |= (flags & SPSR_BIT) >> 2;
9867 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
9868 inst.instruction |= (flags & 0xff);
c19d1205
ZW
9869 inst.instruction |= inst.operands[1].reg << 16;
9870}
b05fe5cf 9871
c19d1205
ZW
9872static void
9873do_t_mul (void)
9874{
9875 if (!inst.operands[2].present)
9876 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 9877
c19d1205
ZW
9878 /* There is no 32-bit MULS and no 16-bit MUL. */
9879 if (unified_syntax && inst.instruction == T_MNEM_mul)
b05fe5cf 9880 {
c19d1205
ZW
9881 inst.instruction = THUMB_OP32 (inst.instruction);
9882 inst.instruction |= inst.operands[0].reg << 8;
9883 inst.instruction |= inst.operands[1].reg << 16;
9884 inst.instruction |= inst.operands[2].reg << 0;
b05fe5cf 9885 }
c19d1205 9886 else
b05fe5cf 9887 {
c19d1205
ZW
9888 constraint (!unified_syntax
9889 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
9890 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9891 BAD_HIREG);
b05fe5cf 9892
c19d1205
ZW
9893 inst.instruction = THUMB_OP16 (inst.instruction);
9894 inst.instruction |= inst.operands[0].reg;
b05fe5cf 9895
c19d1205
ZW
9896 if (inst.operands[0].reg == inst.operands[1].reg)
9897 inst.instruction |= inst.operands[2].reg << 3;
9898 else if (inst.operands[0].reg == inst.operands[2].reg)
9899 inst.instruction |= inst.operands[1].reg << 3;
9900 else
9901 constraint (1, _("dest must overlap one source register"));
9902 }
9903}
b05fe5cf 9904
c19d1205
ZW
9905static void
9906do_t_mull (void)
9907{
9908 inst.instruction |= inst.operands[0].reg << 12;
9909 inst.instruction |= inst.operands[1].reg << 8;
9910 inst.instruction |= inst.operands[2].reg << 16;
9911 inst.instruction |= inst.operands[3].reg;
b05fe5cf 9912
c19d1205
ZW
9913 if (inst.operands[0].reg == inst.operands[1].reg)
9914 as_tsktsk (_("rdhi and rdlo must be different"));
9915}
b05fe5cf 9916
c19d1205
ZW
9917static void
9918do_t_nop (void)
9919{
9920 if (unified_syntax)
9921 {
9922 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 9923 {
c19d1205
ZW
9924 inst.instruction = THUMB_OP32 (inst.instruction);
9925 inst.instruction |= inst.operands[0].imm;
9926 }
9927 else
9928 {
9929 inst.instruction = THUMB_OP16 (inst.instruction);
9930 inst.instruction |= inst.operands[0].imm << 4;
9931 }
9932 }
9933 else
9934 {
9935 constraint (inst.operands[0].present,
9936 _("Thumb does not support NOP with hints"));
9937 inst.instruction = 0x46c0;
9938 }
9939}
b05fe5cf 9940
c19d1205
ZW
9941static void
9942do_t_neg (void)
9943{
9944 if (unified_syntax)
9945 {
3d388997
PB
9946 bfd_boolean narrow;
9947
9948 if (THUMB_SETS_FLAGS (inst.instruction))
9949 narrow = (current_it_mask == 0);
9950 else
9951 narrow = (current_it_mask != 0);
9952 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9953 narrow = FALSE;
9954 if (inst.size_req == 4)
9955 narrow = FALSE;
9956
9957 if (!narrow)
c19d1205
ZW
9958 {
9959 inst.instruction = THUMB_OP32 (inst.instruction);
9960 inst.instruction |= inst.operands[0].reg << 8;
9961 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
9962 }
9963 else
9964 {
c19d1205
ZW
9965 inst.instruction = THUMB_OP16 (inst.instruction);
9966 inst.instruction |= inst.operands[0].reg;
9967 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
9968 }
9969 }
9970 else
9971 {
c19d1205
ZW
9972 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9973 BAD_HIREG);
9974 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9975
9976 inst.instruction = THUMB_OP16 (inst.instruction);
9977 inst.instruction |= inst.operands[0].reg;
9978 inst.instruction |= inst.operands[1].reg << 3;
9979 }
9980}
9981
9982static void
9983do_t_pkhbt (void)
9984{
9985 inst.instruction |= inst.operands[0].reg << 8;
9986 inst.instruction |= inst.operands[1].reg << 16;
9987 inst.instruction |= inst.operands[2].reg;
9988 if (inst.operands[3].present)
9989 {
9990 unsigned int val = inst.reloc.exp.X_add_number;
9991 constraint (inst.reloc.exp.X_op != O_constant,
9992 _("expression too complex"));
9993 inst.instruction |= (val & 0x1c) << 10;
9994 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 9995 }
c19d1205 9996}
b05fe5cf 9997
c19d1205
ZW
9998static void
9999do_t_pkhtb (void)
10000{
10001 if (!inst.operands[3].present)
10002 inst.instruction &= ~0x00000020;
10003 do_t_pkhbt ();
b05fe5cf
ZW
10004}
10005
c19d1205
ZW
10006static void
10007do_t_pld (void)
10008{
10009 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10010}
b05fe5cf 10011
c19d1205
ZW
10012static void
10013do_t_push_pop (void)
b99bd4ef 10014{
e9f89963 10015 unsigned mask;
5f4273c7 10016
c19d1205
ZW
10017 constraint (inst.operands[0].writeback,
10018 _("push/pop do not support {reglist}^"));
10019 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10020 _("expression too complex"));
b99bd4ef 10021
e9f89963
PB
10022 mask = inst.operands[0].imm;
10023 if ((mask & ~0xff) == 0)
3c707909 10024 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 10025 else if ((inst.instruction == T_MNEM_push
e9f89963 10026 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 10027 || (inst.instruction == T_MNEM_pop
e9f89963 10028 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 10029 {
c19d1205
ZW
10030 inst.instruction = THUMB_OP16 (inst.instruction);
10031 inst.instruction |= THUMB_PP_PC_LR;
3c707909 10032 inst.instruction |= mask & 0xff;
c19d1205
ZW
10033 }
10034 else if (unified_syntax)
10035 {
3c707909 10036 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 10037 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
10038 }
10039 else
10040 {
10041 inst.error = _("invalid register list to push/pop instruction");
10042 return;
10043 }
c19d1205 10044}
b99bd4ef 10045
c19d1205
ZW
10046static void
10047do_t_rbit (void)
10048{
10049 inst.instruction |= inst.operands[0].reg << 8;
10050 inst.instruction |= inst.operands[1].reg << 16;
4ecab7d4 10051 inst.instruction |= inst.operands[1].reg;
c19d1205 10052}
b99bd4ef 10053
c19d1205
ZW
10054static void
10055do_t_rev (void)
10056{
10057 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10058 && inst.size_req != 4)
10059 {
10060 inst.instruction = THUMB_OP16 (inst.instruction);
10061 inst.instruction |= inst.operands[0].reg;
10062 inst.instruction |= inst.operands[1].reg << 3;
10063 }
10064 else if (unified_syntax)
10065 {
10066 inst.instruction = THUMB_OP32 (inst.instruction);
10067 inst.instruction |= inst.operands[0].reg << 8;
10068 inst.instruction |= inst.operands[1].reg << 16;
10069 inst.instruction |= inst.operands[1].reg;
10070 }
10071 else
10072 inst.error = BAD_HIREG;
10073}
b99bd4ef 10074
c19d1205
ZW
10075static void
10076do_t_rsb (void)
10077{
10078 int Rd, Rs;
b99bd4ef 10079
c19d1205
ZW
10080 Rd = inst.operands[0].reg;
10081 Rs = (inst.operands[1].present
10082 ? inst.operands[1].reg /* Rd, Rs, foo */
10083 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 10084
c19d1205
ZW
10085 inst.instruction |= Rd << 8;
10086 inst.instruction |= Rs << 16;
10087 if (!inst.operands[2].isreg)
10088 {
026d3abb
PB
10089 bfd_boolean narrow;
10090
10091 if ((inst.instruction & 0x00100000) != 0)
10092 narrow = (current_it_mask == 0);
10093 else
10094 narrow = (current_it_mask != 0);
10095
10096 if (Rd > 7 || Rs > 7)
10097 narrow = FALSE;
10098
10099 if (inst.size_req == 4 || !unified_syntax)
10100 narrow = FALSE;
10101
10102 if (inst.reloc.exp.X_op != O_constant
10103 || inst.reloc.exp.X_add_number != 0)
10104 narrow = FALSE;
10105
10106 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10107 relaxation, but it doesn't seem worth the hassle. */
10108 if (narrow)
10109 {
10110 inst.reloc.type = BFD_RELOC_UNUSED;
10111 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10112 inst.instruction |= Rs << 3;
10113 inst.instruction |= Rd;
10114 }
10115 else
10116 {
10117 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10118 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10119 }
c19d1205
ZW
10120 }
10121 else
10122 encode_thumb32_shifted_operand (2);
10123}
b99bd4ef 10124
c19d1205
ZW
10125static void
10126do_t_setend (void)
10127{
dfa9f0d5 10128 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
10129 if (inst.operands[0].imm)
10130 inst.instruction |= 0x8;
10131}
b99bd4ef 10132
c19d1205
ZW
10133static void
10134do_t_shift (void)
10135{
10136 if (!inst.operands[1].present)
10137 inst.operands[1].reg = inst.operands[0].reg;
10138
10139 if (unified_syntax)
10140 {
3d388997
PB
10141 bfd_boolean narrow;
10142 int shift_kind;
10143
10144 switch (inst.instruction)
10145 {
10146 case T_MNEM_asr:
10147 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10148 case T_MNEM_lsl:
10149 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10150 case T_MNEM_lsr:
10151 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10152 case T_MNEM_ror:
10153 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10154 default: abort ();
10155 }
10156
10157 if (THUMB_SETS_FLAGS (inst.instruction))
10158 narrow = (current_it_mask == 0);
10159 else
10160 narrow = (current_it_mask != 0);
10161 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10162 narrow = FALSE;
10163 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10164 narrow = FALSE;
10165 if (inst.operands[2].isreg
10166 && (inst.operands[1].reg != inst.operands[0].reg
10167 || inst.operands[2].reg > 7))
10168 narrow = FALSE;
10169 if (inst.size_req == 4)
10170 narrow = FALSE;
10171
10172 if (!narrow)
c19d1205
ZW
10173 {
10174 if (inst.operands[2].isreg)
b99bd4ef 10175 {
c19d1205
ZW
10176 inst.instruction = THUMB_OP32 (inst.instruction);
10177 inst.instruction |= inst.operands[0].reg << 8;
10178 inst.instruction |= inst.operands[1].reg << 16;
10179 inst.instruction |= inst.operands[2].reg;
10180 }
10181 else
10182 {
10183 inst.operands[1].shifted = 1;
3d388997 10184 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
10185 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10186 ? T_MNEM_movs : T_MNEM_mov);
10187 inst.instruction |= inst.operands[0].reg << 8;
10188 encode_thumb32_shifted_operand (1);
10189 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10190 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
10191 }
10192 }
10193 else
10194 {
c19d1205 10195 if (inst.operands[2].isreg)
b99bd4ef 10196 {
3d388997 10197 switch (shift_kind)
b99bd4ef 10198 {
3d388997
PB
10199 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10200 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10201 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10202 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 10203 default: abort ();
b99bd4ef 10204 }
5f4273c7 10205
c19d1205
ZW
10206 inst.instruction |= inst.operands[0].reg;
10207 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
10208 }
10209 else
10210 {
3d388997 10211 switch (shift_kind)
b99bd4ef 10212 {
3d388997
PB
10213 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10214 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10215 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 10216 default: abort ();
b99bd4ef 10217 }
c19d1205
ZW
10218 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10219 inst.instruction |= inst.operands[0].reg;
10220 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10221 }
10222 }
c19d1205
ZW
10223 }
10224 else
10225 {
10226 constraint (inst.operands[0].reg > 7
10227 || inst.operands[1].reg > 7, BAD_HIREG);
10228 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 10229
c19d1205
ZW
10230 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
10231 {
10232 constraint (inst.operands[2].reg > 7, BAD_HIREG);
10233 constraint (inst.operands[0].reg != inst.operands[1].reg,
10234 _("source1 and dest must be same register"));
b99bd4ef 10235
c19d1205
ZW
10236 switch (inst.instruction)
10237 {
10238 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10239 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10240 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10241 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10242 default: abort ();
10243 }
5f4273c7 10244
c19d1205
ZW
10245 inst.instruction |= inst.operands[0].reg;
10246 inst.instruction |= inst.operands[2].reg << 3;
10247 }
10248 else
b99bd4ef 10249 {
c19d1205
ZW
10250 switch (inst.instruction)
10251 {
10252 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10253 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10254 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10255 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10256 default: abort ();
10257 }
10258 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10259 inst.instruction |= inst.operands[0].reg;
10260 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10261 }
10262 }
b99bd4ef
NC
10263}
10264
10265static void
c19d1205 10266do_t_simd (void)
b99bd4ef 10267{
c19d1205
ZW
10268 inst.instruction |= inst.operands[0].reg << 8;
10269 inst.instruction |= inst.operands[1].reg << 16;
10270 inst.instruction |= inst.operands[2].reg;
10271}
b99bd4ef 10272
c19d1205 10273static void
3eb17e6b 10274do_t_smc (void)
c19d1205
ZW
10275{
10276 unsigned int value = inst.reloc.exp.X_add_number;
10277 constraint (inst.reloc.exp.X_op != O_constant,
10278 _("expression too complex"));
10279 inst.reloc.type = BFD_RELOC_UNUSED;
10280 inst.instruction |= (value & 0xf000) >> 12;
10281 inst.instruction |= (value & 0x0ff0);
10282 inst.instruction |= (value & 0x000f) << 16;
10283}
b99bd4ef 10284
c19d1205
ZW
10285static void
10286do_t_ssat (void)
10287{
10288 inst.instruction |= inst.operands[0].reg << 8;
10289 inst.instruction |= inst.operands[1].imm - 1;
10290 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10291
c19d1205 10292 if (inst.operands[3].present)
b99bd4ef 10293 {
c19d1205
ZW
10294 constraint (inst.reloc.exp.X_op != O_constant,
10295 _("expression too complex"));
b99bd4ef 10296
c19d1205 10297 if (inst.reloc.exp.X_add_number != 0)
6189168b 10298 {
c19d1205
ZW
10299 if (inst.operands[3].shift_kind == SHIFT_ASR)
10300 inst.instruction |= 0x00200000; /* sh bit */
10301 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10302 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
6189168b 10303 }
c19d1205 10304 inst.reloc.type = BFD_RELOC_UNUSED;
6189168b 10305 }
b99bd4ef
NC
10306}
10307
0dd132b6 10308static void
c19d1205 10309do_t_ssat16 (void)
0dd132b6 10310{
c19d1205
ZW
10311 inst.instruction |= inst.operands[0].reg << 8;
10312 inst.instruction |= inst.operands[1].imm - 1;
10313 inst.instruction |= inst.operands[2].reg << 16;
10314}
0dd132b6 10315
c19d1205
ZW
10316static void
10317do_t_strex (void)
10318{
10319 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10320 || inst.operands[2].postind || inst.operands[2].writeback
10321 || inst.operands[2].immisreg || inst.operands[2].shifted
10322 || inst.operands[2].negative,
01cfc07f 10323 BAD_ADDR_MODE);
0dd132b6 10324
c19d1205
ZW
10325 inst.instruction |= inst.operands[0].reg << 8;
10326 inst.instruction |= inst.operands[1].reg << 12;
10327 inst.instruction |= inst.operands[2].reg << 16;
10328 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
10329}
10330
b99bd4ef 10331static void
c19d1205 10332do_t_strexd (void)
b99bd4ef 10333{
c19d1205
ZW
10334 if (!inst.operands[2].present)
10335 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 10336
c19d1205
ZW
10337 constraint (inst.operands[0].reg == inst.operands[1].reg
10338 || inst.operands[0].reg == inst.operands[2].reg
10339 || inst.operands[0].reg == inst.operands[3].reg
10340 || inst.operands[1].reg == inst.operands[2].reg,
10341 BAD_OVERLAP);
b99bd4ef 10342
c19d1205
ZW
10343 inst.instruction |= inst.operands[0].reg;
10344 inst.instruction |= inst.operands[1].reg << 12;
10345 inst.instruction |= inst.operands[2].reg << 8;
10346 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
10347}
10348
10349static void
c19d1205 10350do_t_sxtah (void)
b99bd4ef 10351{
c19d1205
ZW
10352 inst.instruction |= inst.operands[0].reg << 8;
10353 inst.instruction |= inst.operands[1].reg << 16;
10354 inst.instruction |= inst.operands[2].reg;
10355 inst.instruction |= inst.operands[3].imm << 4;
10356}
b99bd4ef 10357
c19d1205
ZW
10358static void
10359do_t_sxth (void)
10360{
10361 if (inst.instruction <= 0xffff && inst.size_req != 4
10362 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10363 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 10364 {
c19d1205
ZW
10365 inst.instruction = THUMB_OP16 (inst.instruction);
10366 inst.instruction |= inst.operands[0].reg;
10367 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 10368 }
c19d1205 10369 else if (unified_syntax)
b99bd4ef 10370 {
c19d1205
ZW
10371 if (inst.instruction <= 0xffff)
10372 inst.instruction = THUMB_OP32 (inst.instruction);
10373 inst.instruction |= inst.operands[0].reg << 8;
10374 inst.instruction |= inst.operands[1].reg;
10375 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 10376 }
c19d1205 10377 else
b99bd4ef 10378 {
c19d1205
ZW
10379 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10380 _("Thumb encoding does not support rotation"));
10381 constraint (1, BAD_HIREG);
b99bd4ef 10382 }
c19d1205 10383}
b99bd4ef 10384
c19d1205
ZW
10385static void
10386do_t_swi (void)
10387{
10388 inst.reloc.type = BFD_RELOC_ARM_SWI;
10389}
b99bd4ef 10390
92e90b6e
PB
10391static void
10392do_t_tb (void)
10393{
10394 int half;
10395
10396 half = (inst.instruction & 0x10) != 0;
dfa9f0d5
PB
10397 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10398 constraint (inst.operands[0].immisreg,
10399 _("instruction requires register index"));
92e90b6e
PB
10400 constraint (inst.operands[0].imm == 15,
10401 _("PC is not a valid index register"));
10402 constraint (!half && inst.operands[0].shifted,
10403 _("instruction does not allow shifted index"));
92e90b6e
PB
10404 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
10405}
10406
c19d1205
ZW
10407static void
10408do_t_usat (void)
10409{
10410 inst.instruction |= inst.operands[0].reg << 8;
10411 inst.instruction |= inst.operands[1].imm;
10412 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10413
c19d1205 10414 if (inst.operands[3].present)
b99bd4ef 10415 {
c19d1205
ZW
10416 constraint (inst.reloc.exp.X_op != O_constant,
10417 _("expression too complex"));
10418 if (inst.reloc.exp.X_add_number != 0)
10419 {
10420 if (inst.operands[3].shift_kind == SHIFT_ASR)
10421 inst.instruction |= 0x00200000; /* sh bit */
b99bd4ef 10422
c19d1205
ZW
10423 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10424 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10425 }
10426 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 10427 }
b99bd4ef
NC
10428}
10429
10430static void
c19d1205 10431do_t_usat16 (void)
b99bd4ef 10432{
c19d1205
ZW
10433 inst.instruction |= inst.operands[0].reg << 8;
10434 inst.instruction |= inst.operands[1].imm;
10435 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10436}
c19d1205 10437
5287ad62 10438/* Neon instruction encoder helpers. */
5f4273c7 10439
5287ad62 10440/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 10441
5287ad62
JB
10442/* An "invalid" code for the following tables. */
10443#define N_INV -1u
10444
10445struct neon_tab_entry
b99bd4ef 10446{
5287ad62
JB
10447 unsigned integer;
10448 unsigned float_or_poly;
10449 unsigned scalar_or_imm;
10450};
5f4273c7 10451
5287ad62
JB
10452/* Map overloaded Neon opcodes to their respective encodings. */
10453#define NEON_ENC_TAB \
10454 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10455 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10456 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10457 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10458 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10459 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10460 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10461 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10462 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10463 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10464 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10465 /* Register variants of the following two instructions are encoded as
10466 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
10467 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
10468 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
5287ad62
JB
10469 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10470 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10471 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10472 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10473 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10474 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10475 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10476 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10477 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10478 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10479 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10480 X(vshl, 0x0000400, N_INV, 0x0800510), \
10481 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10482 X(vand, 0x0000110, N_INV, 0x0800030), \
10483 X(vbic, 0x0100110, N_INV, 0x0800030), \
10484 X(veor, 0x1000110, N_INV, N_INV), \
10485 X(vorn, 0x0300110, N_INV, 0x0800010), \
10486 X(vorr, 0x0200110, N_INV, 0x0800010), \
10487 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10488 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10489 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10490 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10491 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10492 X(vst1, 0x0000000, 0x0800000, N_INV), \
10493 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10494 X(vst2, 0x0000100, 0x0800100, N_INV), \
10495 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10496 X(vst3, 0x0000200, 0x0800200, N_INV), \
10497 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10498 X(vst4, 0x0000300, 0x0800300, N_INV), \
10499 X(vmovn, 0x1b20200, N_INV, N_INV), \
10500 X(vtrn, 0x1b20080, N_INV, N_INV), \
10501 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
10502 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10503 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10504 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10505 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10506 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10507 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10508 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10509 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
10510
10511enum neon_opc
10512{
10513#define X(OPC,I,F,S) N_MNEM_##OPC
10514NEON_ENC_TAB
10515#undef X
10516};
b99bd4ef 10517
5287ad62
JB
10518static const struct neon_tab_entry neon_enc_tab[] =
10519{
10520#define X(OPC,I,F,S) { (I), (F), (S) }
10521NEON_ENC_TAB
10522#undef X
10523};
b99bd4ef 10524
5287ad62
JB
10525#define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10526#define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10527#define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10528#define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10529#define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10530#define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10531#define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10532#define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10533#define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
037e8744
JB
10534#define NEON_ENC_SINGLE(X) \
10535 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10536#define NEON_ENC_DOUBLE(X) \
10537 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 10538
037e8744
JB
10539/* Define shapes for instruction operands. The following mnemonic characters
10540 are used in this table:
5287ad62 10541
037e8744 10542 F - VFP S<n> register
5287ad62
JB
10543 D - Neon D<n> register
10544 Q - Neon Q<n> register
10545 I - Immediate
10546 S - Scalar
10547 R - ARM register
10548 L - D<n> register list
5f4273c7 10549
037e8744
JB
10550 This table is used to generate various data:
10551 - enumerations of the form NS_DDR to be used as arguments to
10552 neon_select_shape.
10553 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 10554 - a table used to drive neon_select_shape. */
b99bd4ef 10555
037e8744
JB
10556#define NEON_SHAPE_DEF \
10557 X(3, (D, D, D), DOUBLE), \
10558 X(3, (Q, Q, Q), QUAD), \
10559 X(3, (D, D, I), DOUBLE), \
10560 X(3, (Q, Q, I), QUAD), \
10561 X(3, (D, D, S), DOUBLE), \
10562 X(3, (Q, Q, S), QUAD), \
10563 X(2, (D, D), DOUBLE), \
10564 X(2, (Q, Q), QUAD), \
10565 X(2, (D, S), DOUBLE), \
10566 X(2, (Q, S), QUAD), \
10567 X(2, (D, R), DOUBLE), \
10568 X(2, (Q, R), QUAD), \
10569 X(2, (D, I), DOUBLE), \
10570 X(2, (Q, I), QUAD), \
10571 X(3, (D, L, D), DOUBLE), \
10572 X(2, (D, Q), MIXED), \
10573 X(2, (Q, D), MIXED), \
10574 X(3, (D, Q, I), MIXED), \
10575 X(3, (Q, D, I), MIXED), \
10576 X(3, (Q, D, D), MIXED), \
10577 X(3, (D, Q, Q), MIXED), \
10578 X(3, (Q, Q, D), MIXED), \
10579 X(3, (Q, D, S), MIXED), \
10580 X(3, (D, Q, S), MIXED), \
10581 X(4, (D, D, D, I), DOUBLE), \
10582 X(4, (Q, Q, Q, I), QUAD), \
10583 X(2, (F, F), SINGLE), \
10584 X(3, (F, F, F), SINGLE), \
10585 X(2, (F, I), SINGLE), \
10586 X(2, (F, D), MIXED), \
10587 X(2, (D, F), MIXED), \
10588 X(3, (F, F, I), MIXED), \
10589 X(4, (R, R, F, F), SINGLE), \
10590 X(4, (F, F, R, R), SINGLE), \
10591 X(3, (D, R, R), DOUBLE), \
10592 X(3, (R, R, D), DOUBLE), \
10593 X(2, (S, R), SINGLE), \
10594 X(2, (R, S), SINGLE), \
10595 X(2, (F, R), SINGLE), \
10596 X(2, (R, F), SINGLE)
10597
10598#define S2(A,B) NS_##A##B
10599#define S3(A,B,C) NS_##A##B##C
10600#define S4(A,B,C,D) NS_##A##B##C##D
10601
10602#define X(N, L, C) S##N L
10603
5287ad62
JB
10604enum neon_shape
10605{
037e8744
JB
10606 NEON_SHAPE_DEF,
10607 NS_NULL
5287ad62 10608};
b99bd4ef 10609
037e8744
JB
10610#undef X
10611#undef S2
10612#undef S3
10613#undef S4
10614
10615enum neon_shape_class
10616{
10617 SC_SINGLE,
10618 SC_DOUBLE,
10619 SC_QUAD,
10620 SC_MIXED
10621};
10622
10623#define X(N, L, C) SC_##C
10624
10625static enum neon_shape_class neon_shape_class[] =
10626{
10627 NEON_SHAPE_DEF
10628};
10629
10630#undef X
10631
10632enum neon_shape_el
10633{
10634 SE_F,
10635 SE_D,
10636 SE_Q,
10637 SE_I,
10638 SE_S,
10639 SE_R,
10640 SE_L
10641};
10642
10643/* Register widths of above. */
10644static unsigned neon_shape_el_size[] =
10645{
10646 32,
10647 64,
10648 128,
10649 0,
10650 32,
10651 32,
10652 0
10653};
10654
10655struct neon_shape_info
10656{
10657 unsigned els;
10658 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
10659};
10660
10661#define S2(A,B) { SE_##A, SE_##B }
10662#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10663#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10664
10665#define X(N, L, C) { N, S##N L }
10666
10667static struct neon_shape_info neon_shape_tab[] =
10668{
10669 NEON_SHAPE_DEF
10670};
10671
10672#undef X
10673#undef S2
10674#undef S3
10675#undef S4
10676
5287ad62
JB
10677/* Bit masks used in type checking given instructions.
10678 'N_EQK' means the type must be the same as (or based on in some way) the key
10679 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10680 set, various other bits can be set as well in order to modify the meaning of
10681 the type constraint. */
10682
10683enum neon_type_mask
10684{
10685 N_S8 = 0x000001,
10686 N_S16 = 0x000002,
10687 N_S32 = 0x000004,
10688 N_S64 = 0x000008,
10689 N_U8 = 0x000010,
10690 N_U16 = 0x000020,
10691 N_U32 = 0x000040,
10692 N_U64 = 0x000080,
10693 N_I8 = 0x000100,
10694 N_I16 = 0x000200,
10695 N_I32 = 0x000400,
10696 N_I64 = 0x000800,
10697 N_8 = 0x001000,
10698 N_16 = 0x002000,
10699 N_32 = 0x004000,
10700 N_64 = 0x008000,
10701 N_P8 = 0x010000,
10702 N_P16 = 0x020000,
10703 N_F32 = 0x040000,
037e8744
JB
10704 N_F64 = 0x080000,
10705 N_KEY = 0x100000, /* key element (main type specifier). */
10706 N_EQK = 0x200000, /* given operand has the same type & size as the key. */
10707 N_VFP = 0x400000, /* VFP mode: operand size must match register width. */
5287ad62
JB
10708 N_DBL = 0x000001, /* if N_EQK, this operand is twice the size. */
10709 N_HLF = 0x000002, /* if N_EQK, this operand is half the size. */
10710 N_SGN = 0x000004, /* if N_EQK, this operand is forced to be signed. */
10711 N_UNS = 0x000008, /* if N_EQK, this operand is forced to be unsigned. */
10712 N_INT = 0x000010, /* if N_EQK, this operand is forced to be integer. */
10713 N_FLT = 0x000020, /* if N_EQK, this operand is forced to be float. */
dcbf9037 10714 N_SIZ = 0x000040, /* if N_EQK, this operand is forced to be size-only. */
5287ad62 10715 N_UTYP = 0,
037e8744 10716 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
10717};
10718
dcbf9037
JB
10719#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10720
5287ad62
JB
10721#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10722#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10723#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10724#define N_SUF_32 (N_SU_32 | N_F32)
10725#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10726#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10727
10728/* Pass this as the first type argument to neon_check_type to ignore types
10729 altogether. */
10730#define N_IGNORE_TYPE (N_KEY | N_EQK)
10731
037e8744
JB
10732/* Select a "shape" for the current instruction (describing register types or
10733 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10734 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10735 function of operand parsing, so this function doesn't need to be called.
10736 Shapes should be listed in order of decreasing length. */
5287ad62
JB
10737
10738static enum neon_shape
037e8744 10739neon_select_shape (enum neon_shape shape, ...)
5287ad62 10740{
037e8744
JB
10741 va_list ap;
10742 enum neon_shape first_shape = shape;
5287ad62
JB
10743
10744 /* Fix missing optional operands. FIXME: we don't know at this point how
10745 many arguments we should have, so this makes the assumption that we have
10746 > 1. This is true of all current Neon opcodes, I think, but may not be
10747 true in the future. */
10748 if (!inst.operands[1].present)
10749 inst.operands[1] = inst.operands[0];
10750
037e8744 10751 va_start (ap, shape);
5f4273c7 10752
037e8744
JB
10753 for (; shape != NS_NULL; shape = va_arg (ap, int))
10754 {
10755 unsigned j;
10756 int matches = 1;
10757
10758 for (j = 0; j < neon_shape_tab[shape].els; j++)
10759 {
10760 if (!inst.operands[j].present)
10761 {
10762 matches = 0;
10763 break;
10764 }
10765
10766 switch (neon_shape_tab[shape].el[j])
10767 {
10768 case SE_F:
10769 if (!(inst.operands[j].isreg
10770 && inst.operands[j].isvec
10771 && inst.operands[j].issingle
10772 && !inst.operands[j].isquad))
10773 matches = 0;
10774 break;
10775
10776 case SE_D:
10777 if (!(inst.operands[j].isreg
10778 && inst.operands[j].isvec
10779 && !inst.operands[j].isquad
10780 && !inst.operands[j].issingle))
10781 matches = 0;
10782 break;
10783
10784 case SE_R:
10785 if (!(inst.operands[j].isreg
10786 && !inst.operands[j].isvec))
10787 matches = 0;
10788 break;
10789
10790 case SE_Q:
10791 if (!(inst.operands[j].isreg
10792 && inst.operands[j].isvec
10793 && inst.operands[j].isquad
10794 && !inst.operands[j].issingle))
10795 matches = 0;
10796 break;
10797
10798 case SE_I:
10799 if (!(!inst.operands[j].isreg
10800 && !inst.operands[j].isscalar))
10801 matches = 0;
10802 break;
10803
10804 case SE_S:
10805 if (!(!inst.operands[j].isreg
10806 && inst.operands[j].isscalar))
10807 matches = 0;
10808 break;
10809
10810 case SE_L:
10811 break;
10812 }
10813 }
10814 if (matches)
5287ad62 10815 break;
037e8744 10816 }
5f4273c7 10817
037e8744 10818 va_end (ap);
5287ad62 10819
037e8744
JB
10820 if (shape == NS_NULL && first_shape != NS_NULL)
10821 first_error (_("invalid instruction shape"));
5287ad62 10822
037e8744
JB
10823 return shape;
10824}
5287ad62 10825
037e8744
JB
10826/* True if SHAPE is predominantly a quadword operation (most of the time, this
10827 means the Q bit should be set). */
10828
10829static int
10830neon_quad (enum neon_shape shape)
10831{
10832 return neon_shape_class[shape] == SC_QUAD;
5287ad62 10833}
037e8744 10834
5287ad62
JB
10835static void
10836neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
10837 unsigned *g_size)
10838{
10839 /* Allow modification to be made to types which are constrained to be
10840 based on the key element, based on bits set alongside N_EQK. */
10841 if ((typebits & N_EQK) != 0)
10842 {
10843 if ((typebits & N_HLF) != 0)
10844 *g_size /= 2;
10845 else if ((typebits & N_DBL) != 0)
10846 *g_size *= 2;
10847 if ((typebits & N_SGN) != 0)
10848 *g_type = NT_signed;
10849 else if ((typebits & N_UNS) != 0)
10850 *g_type = NT_unsigned;
10851 else if ((typebits & N_INT) != 0)
10852 *g_type = NT_integer;
10853 else if ((typebits & N_FLT) != 0)
10854 *g_type = NT_float;
dcbf9037
JB
10855 else if ((typebits & N_SIZ) != 0)
10856 *g_type = NT_untyped;
5287ad62
JB
10857 }
10858}
5f4273c7 10859
5287ad62
JB
10860/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10861 operand type, i.e. the single type specified in a Neon instruction when it
10862 is the only one given. */
10863
10864static struct neon_type_el
10865neon_type_promote (struct neon_type_el *key, unsigned thisarg)
10866{
10867 struct neon_type_el dest = *key;
5f4273c7 10868
5287ad62 10869 assert ((thisarg & N_EQK) != 0);
5f4273c7 10870
5287ad62
JB
10871 neon_modify_type_size (thisarg, &dest.type, &dest.size);
10872
10873 return dest;
10874}
10875
10876/* Convert Neon type and size into compact bitmask representation. */
10877
10878static enum neon_type_mask
10879type_chk_of_el_type (enum neon_el_type type, unsigned size)
10880{
10881 switch (type)
10882 {
10883 case NT_untyped:
10884 switch (size)
10885 {
10886 case 8: return N_8;
10887 case 16: return N_16;
10888 case 32: return N_32;
10889 case 64: return N_64;
10890 default: ;
10891 }
10892 break;
10893
10894 case NT_integer:
10895 switch (size)
10896 {
10897 case 8: return N_I8;
10898 case 16: return N_I16;
10899 case 32: return N_I32;
10900 case 64: return N_I64;
10901 default: ;
10902 }
10903 break;
10904
10905 case NT_float:
037e8744
JB
10906 switch (size)
10907 {
10908 case 32: return N_F32;
10909 case 64: return N_F64;
10910 default: ;
10911 }
5287ad62
JB
10912 break;
10913
10914 case NT_poly:
10915 switch (size)
10916 {
10917 case 8: return N_P8;
10918 case 16: return N_P16;
10919 default: ;
10920 }
10921 break;
10922
10923 case NT_signed:
10924 switch (size)
10925 {
10926 case 8: return N_S8;
10927 case 16: return N_S16;
10928 case 32: return N_S32;
10929 case 64: return N_S64;
10930 default: ;
10931 }
10932 break;
10933
10934 case NT_unsigned:
10935 switch (size)
10936 {
10937 case 8: return N_U8;
10938 case 16: return N_U16;
10939 case 32: return N_U32;
10940 case 64: return N_U64;
10941 default: ;
10942 }
10943 break;
10944
10945 default: ;
10946 }
5f4273c7 10947
5287ad62
JB
10948 return N_UTYP;
10949}
10950
10951/* Convert compact Neon bitmask type representation to a type and size. Only
10952 handles the case where a single bit is set in the mask. */
10953
dcbf9037 10954static int
5287ad62
JB
10955el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
10956 enum neon_type_mask mask)
10957{
dcbf9037
JB
10958 if ((mask & N_EQK) != 0)
10959 return FAIL;
10960
5287ad62
JB
10961 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
10962 *size = 8;
dcbf9037 10963 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 10964 *size = 16;
dcbf9037 10965 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 10966 *size = 32;
037e8744 10967 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 10968 *size = 64;
dcbf9037
JB
10969 else
10970 return FAIL;
10971
5287ad62
JB
10972 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
10973 *type = NT_signed;
dcbf9037 10974 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 10975 *type = NT_unsigned;
dcbf9037 10976 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 10977 *type = NT_integer;
dcbf9037 10978 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 10979 *type = NT_untyped;
dcbf9037 10980 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 10981 *type = NT_poly;
037e8744 10982 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 10983 *type = NT_float;
dcbf9037
JB
10984 else
10985 return FAIL;
5f4273c7 10986
dcbf9037 10987 return SUCCESS;
5287ad62
JB
10988}
10989
10990/* Modify a bitmask of allowed types. This is only needed for type
10991 relaxation. */
10992
10993static unsigned
10994modify_types_allowed (unsigned allowed, unsigned mods)
10995{
10996 unsigned size;
10997 enum neon_el_type type;
10998 unsigned destmask;
10999 int i;
5f4273c7 11000
5287ad62 11001 destmask = 0;
5f4273c7 11002
5287ad62
JB
11003 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11004 {
dcbf9037
JB
11005 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
11006 {
11007 neon_modify_type_size (mods, &type, &size);
11008 destmask |= type_chk_of_el_type (type, size);
11009 }
5287ad62 11010 }
5f4273c7 11011
5287ad62
JB
11012 return destmask;
11013}
11014
11015/* Check type and return type classification.
11016 The manual states (paraphrase): If one datatype is given, it indicates the
11017 type given in:
11018 - the second operand, if there is one
11019 - the operand, if there is no second operand
11020 - the result, if there are no operands.
11021 This isn't quite good enough though, so we use a concept of a "key" datatype
11022 which is set on a per-instruction basis, which is the one which matters when
11023 only one data type is written.
11024 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 11025 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
11026
11027static struct neon_type_el
11028neon_check_type (unsigned els, enum neon_shape ns, ...)
11029{
11030 va_list ap;
11031 unsigned i, pass, key_el = 0;
11032 unsigned types[NEON_MAX_TYPE_ELS];
11033 enum neon_el_type k_type = NT_invtype;
11034 unsigned k_size = -1u;
11035 struct neon_type_el badtype = {NT_invtype, -1};
11036 unsigned key_allowed = 0;
11037
11038 /* Optional registers in Neon instructions are always (not) in operand 1.
11039 Fill in the missing operand here, if it was omitted. */
11040 if (els > 1 && !inst.operands[1].present)
11041 inst.operands[1] = inst.operands[0];
11042
11043 /* Suck up all the varargs. */
11044 va_start (ap, ns);
11045 for (i = 0; i < els; i++)
11046 {
11047 unsigned thisarg = va_arg (ap, unsigned);
11048 if (thisarg == N_IGNORE_TYPE)
11049 {
11050 va_end (ap);
11051 return badtype;
11052 }
11053 types[i] = thisarg;
11054 if ((thisarg & N_KEY) != 0)
11055 key_el = i;
11056 }
11057 va_end (ap);
11058
dcbf9037
JB
11059 if (inst.vectype.elems > 0)
11060 for (i = 0; i < els; i++)
11061 if (inst.operands[i].vectype.type != NT_invtype)
11062 {
11063 first_error (_("types specified in both the mnemonic and operands"));
11064 return badtype;
11065 }
11066
5287ad62
JB
11067 /* Duplicate inst.vectype elements here as necessary.
11068 FIXME: No idea if this is exactly the same as the ARM assembler,
11069 particularly when an insn takes one register and one non-register
11070 operand. */
11071 if (inst.vectype.elems == 1 && els > 1)
11072 {
11073 unsigned j;
11074 inst.vectype.elems = els;
11075 inst.vectype.el[key_el] = inst.vectype.el[0];
11076 for (j = 0; j < els; j++)
dcbf9037
JB
11077 if (j != key_el)
11078 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11079 types[j]);
11080 }
11081 else if (inst.vectype.elems == 0 && els > 0)
11082 {
11083 unsigned j;
11084 /* No types were given after the mnemonic, so look for types specified
11085 after each operand. We allow some flexibility here; as long as the
11086 "key" operand has a type, we can infer the others. */
11087 for (j = 0; j < els; j++)
11088 if (inst.operands[j].vectype.type != NT_invtype)
11089 inst.vectype.el[j] = inst.operands[j].vectype;
11090
11091 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 11092 {
dcbf9037
JB
11093 for (j = 0; j < els; j++)
11094 if (inst.operands[j].vectype.type == NT_invtype)
11095 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11096 types[j]);
11097 }
11098 else
11099 {
11100 first_error (_("operand types can't be inferred"));
11101 return badtype;
5287ad62
JB
11102 }
11103 }
11104 else if (inst.vectype.elems != els)
11105 {
dcbf9037 11106 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
11107 return badtype;
11108 }
11109
11110 for (pass = 0; pass < 2; pass++)
11111 {
11112 for (i = 0; i < els; i++)
11113 {
11114 unsigned thisarg = types[i];
11115 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11116 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11117 enum neon_el_type g_type = inst.vectype.el[i].type;
11118 unsigned g_size = inst.vectype.el[i].size;
11119
11120 /* Decay more-specific signed & unsigned types to sign-insensitive
11121 integer types if sign-specific variants are unavailable. */
11122 if ((g_type == NT_signed || g_type == NT_unsigned)
11123 && (types_allowed & N_SU_ALL) == 0)
11124 g_type = NT_integer;
11125
11126 /* If only untyped args are allowed, decay any more specific types to
11127 them. Some instructions only care about signs for some element
11128 sizes, so handle that properly. */
11129 if ((g_size == 8 && (types_allowed & N_8) != 0)
11130 || (g_size == 16 && (types_allowed & N_16) != 0)
11131 || (g_size == 32 && (types_allowed & N_32) != 0)
11132 || (g_size == 64 && (types_allowed & N_64) != 0))
11133 g_type = NT_untyped;
11134
11135 if (pass == 0)
11136 {
11137 if ((thisarg & N_KEY) != 0)
11138 {
11139 k_type = g_type;
11140 k_size = g_size;
11141 key_allowed = thisarg & ~N_KEY;
11142 }
11143 }
11144 else
11145 {
037e8744
JB
11146 if ((thisarg & N_VFP) != 0)
11147 {
11148 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11149 unsigned regwidth = neon_shape_el_size[regshape], match;
11150
11151 /* In VFP mode, operands must match register widths. If we
11152 have a key operand, use its width, else use the width of
11153 the current operand. */
11154 if (k_size != -1u)
11155 match = k_size;
11156 else
11157 match = g_size;
11158
11159 if (regwidth != match)
11160 {
11161 first_error (_("operand size must match register width"));
11162 return badtype;
11163 }
11164 }
5f4273c7 11165
5287ad62
JB
11166 if ((thisarg & N_EQK) == 0)
11167 {
11168 unsigned given_type = type_chk_of_el_type (g_type, g_size);
11169
11170 if ((given_type & types_allowed) == 0)
11171 {
dcbf9037 11172 first_error (_("bad type in Neon instruction"));
5287ad62
JB
11173 return badtype;
11174 }
11175 }
11176 else
11177 {
11178 enum neon_el_type mod_k_type = k_type;
11179 unsigned mod_k_size = k_size;
11180 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
11181 if (g_type != mod_k_type || g_size != mod_k_size)
11182 {
dcbf9037 11183 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
11184 return badtype;
11185 }
11186 }
11187 }
11188 }
11189 }
11190
11191 return inst.vectype.el[key_el];
11192}
11193
037e8744 11194/* Neon-style VFP instruction forwarding. */
5287ad62 11195
037e8744
JB
11196/* Thumb VFP instructions have 0xE in the condition field. */
11197
11198static void
11199do_vfp_cond_or_thumb (void)
5287ad62
JB
11200{
11201 if (thumb_mode)
037e8744 11202 inst.instruction |= 0xe0000000;
5287ad62 11203 else
037e8744 11204 inst.instruction |= inst.cond << 28;
5287ad62
JB
11205}
11206
037e8744
JB
11207/* Look up and encode a simple mnemonic, for use as a helper function for the
11208 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11209 etc. It is assumed that operand parsing has already been done, and that the
11210 operands are in the form expected by the given opcode (this isn't necessarily
11211 the same as the form in which they were parsed, hence some massaging must
11212 take place before this function is called).
11213 Checks current arch version against that in the looked-up opcode. */
5287ad62 11214
037e8744
JB
11215static void
11216do_vfp_nsyn_opcode (const char *opname)
5287ad62 11217{
037e8744 11218 const struct asm_opcode *opcode;
5f4273c7 11219
037e8744 11220 opcode = hash_find (arm_ops_hsh, opname);
5287ad62 11221
037e8744
JB
11222 if (!opcode)
11223 abort ();
5287ad62 11224
037e8744
JB
11225 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11226 thumb_mode ? *opcode->tvariant : *opcode->avariant),
11227 _(BAD_FPU));
5287ad62 11228
037e8744
JB
11229 if (thumb_mode)
11230 {
11231 inst.instruction = opcode->tvalue;
11232 opcode->tencode ();
11233 }
11234 else
11235 {
11236 inst.instruction = (inst.cond << 28) | opcode->avalue;
11237 opcode->aencode ();
11238 }
11239}
5287ad62
JB
11240
11241static void
037e8744 11242do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 11243{
037e8744
JB
11244 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11245
11246 if (rs == NS_FFF)
11247 {
11248 if (is_add)
11249 do_vfp_nsyn_opcode ("fadds");
11250 else
11251 do_vfp_nsyn_opcode ("fsubs");
11252 }
11253 else
11254 {
11255 if (is_add)
11256 do_vfp_nsyn_opcode ("faddd");
11257 else
11258 do_vfp_nsyn_opcode ("fsubd");
11259 }
11260}
11261
11262/* Check operand types to see if this is a VFP instruction, and if so call
11263 PFN (). */
11264
11265static int
11266try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11267{
11268 enum neon_shape rs;
11269 struct neon_type_el et;
11270
11271 switch (args)
11272 {
11273 case 2:
11274 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11275 et = neon_check_type (2, rs,
11276 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11277 break;
5f4273c7 11278
037e8744
JB
11279 case 3:
11280 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11281 et = neon_check_type (3, rs,
11282 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11283 break;
11284
11285 default:
11286 abort ();
11287 }
11288
11289 if (et.type != NT_invtype)
11290 {
11291 pfn (rs);
11292 return SUCCESS;
11293 }
11294 else
11295 inst.error = NULL;
11296
11297 return FAIL;
11298}
11299
11300static void
11301do_vfp_nsyn_mla_mls (enum neon_shape rs)
11302{
11303 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 11304
037e8744
JB
11305 if (rs == NS_FFF)
11306 {
11307 if (is_mla)
11308 do_vfp_nsyn_opcode ("fmacs");
11309 else
11310 do_vfp_nsyn_opcode ("fmscs");
11311 }
11312 else
11313 {
11314 if (is_mla)
11315 do_vfp_nsyn_opcode ("fmacd");
11316 else
11317 do_vfp_nsyn_opcode ("fmscd");
11318 }
11319}
11320
11321static void
11322do_vfp_nsyn_mul (enum neon_shape rs)
11323{
11324 if (rs == NS_FFF)
11325 do_vfp_nsyn_opcode ("fmuls");
11326 else
11327 do_vfp_nsyn_opcode ("fmuld");
11328}
11329
11330static void
11331do_vfp_nsyn_abs_neg (enum neon_shape rs)
11332{
11333 int is_neg = (inst.instruction & 0x80) != 0;
11334 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
11335
11336 if (rs == NS_FF)
11337 {
11338 if (is_neg)
11339 do_vfp_nsyn_opcode ("fnegs");
11340 else
11341 do_vfp_nsyn_opcode ("fabss");
11342 }
11343 else
11344 {
11345 if (is_neg)
11346 do_vfp_nsyn_opcode ("fnegd");
11347 else
11348 do_vfp_nsyn_opcode ("fabsd");
11349 }
11350}
11351
11352/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11353 insns belong to Neon, and are handled elsewhere. */
11354
11355static void
11356do_vfp_nsyn_ldm_stm (int is_dbmode)
11357{
11358 int is_ldm = (inst.instruction & (1 << 20)) != 0;
11359 if (is_ldm)
11360 {
11361 if (is_dbmode)
11362 do_vfp_nsyn_opcode ("fldmdbs");
11363 else
11364 do_vfp_nsyn_opcode ("fldmias");
11365 }
11366 else
11367 {
11368 if (is_dbmode)
11369 do_vfp_nsyn_opcode ("fstmdbs");
11370 else
11371 do_vfp_nsyn_opcode ("fstmias");
11372 }
11373}
11374
037e8744
JB
11375static void
11376do_vfp_nsyn_sqrt (void)
11377{
11378 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11379 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11380
037e8744
JB
11381 if (rs == NS_FF)
11382 do_vfp_nsyn_opcode ("fsqrts");
11383 else
11384 do_vfp_nsyn_opcode ("fsqrtd");
11385}
11386
11387static void
11388do_vfp_nsyn_div (void)
11389{
11390 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11391 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11392 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11393
037e8744
JB
11394 if (rs == NS_FFF)
11395 do_vfp_nsyn_opcode ("fdivs");
11396 else
11397 do_vfp_nsyn_opcode ("fdivd");
11398}
11399
11400static void
11401do_vfp_nsyn_nmul (void)
11402{
11403 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11404 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11405 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11406
037e8744
JB
11407 if (rs == NS_FFF)
11408 {
11409 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11410 do_vfp_sp_dyadic ();
11411 }
11412 else
11413 {
11414 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11415 do_vfp_dp_rd_rn_rm ();
11416 }
11417 do_vfp_cond_or_thumb ();
11418}
11419
11420static void
11421do_vfp_nsyn_cmp (void)
11422{
11423 if (inst.operands[1].isreg)
11424 {
11425 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11426 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11427
037e8744
JB
11428 if (rs == NS_FF)
11429 {
11430 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11431 do_vfp_sp_monadic ();
11432 }
11433 else
11434 {
11435 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11436 do_vfp_dp_rd_rm ();
11437 }
11438 }
11439 else
11440 {
11441 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11442 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11443
11444 switch (inst.instruction & 0x0fffffff)
11445 {
11446 case N_MNEM_vcmp:
11447 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11448 break;
11449 case N_MNEM_vcmpe:
11450 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11451 break;
11452 default:
11453 abort ();
11454 }
5f4273c7 11455
037e8744
JB
11456 if (rs == NS_FI)
11457 {
11458 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11459 do_vfp_sp_compare_z ();
11460 }
11461 else
11462 {
11463 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11464 do_vfp_dp_rd ();
11465 }
11466 }
11467 do_vfp_cond_or_thumb ();
11468}
11469
11470static void
11471nsyn_insert_sp (void)
11472{
11473 inst.operands[1] = inst.operands[0];
11474 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11475 inst.operands[0].reg = 13;
11476 inst.operands[0].isreg = 1;
11477 inst.operands[0].writeback = 1;
11478 inst.operands[0].present = 1;
11479}
11480
11481static void
11482do_vfp_nsyn_push (void)
11483{
11484 nsyn_insert_sp ();
11485 if (inst.operands[1].issingle)
11486 do_vfp_nsyn_opcode ("fstmdbs");
11487 else
11488 do_vfp_nsyn_opcode ("fstmdbd");
11489}
11490
11491static void
11492do_vfp_nsyn_pop (void)
11493{
11494 nsyn_insert_sp ();
11495 if (inst.operands[1].issingle)
22b5b651 11496 do_vfp_nsyn_opcode ("fldmias");
037e8744 11497 else
22b5b651 11498 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
11499}
11500
11501/* Fix up Neon data-processing instructions, ORing in the correct bits for
11502 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11503
11504static unsigned
11505neon_dp_fixup (unsigned i)
11506{
11507 if (thumb_mode)
11508 {
11509 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11510 if (i & (1 << 24))
11511 i |= 1 << 28;
5f4273c7 11512
037e8744 11513 i &= ~(1 << 24);
5f4273c7 11514
037e8744
JB
11515 i |= 0xef000000;
11516 }
11517 else
11518 i |= 0xf2000000;
5f4273c7 11519
037e8744
JB
11520 return i;
11521}
11522
11523/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11524 (0, 1, 2, 3). */
11525
11526static unsigned
11527neon_logbits (unsigned x)
11528{
11529 return ffs (x) - 4;
11530}
11531
11532#define LOW4(R) ((R) & 0xf)
11533#define HI1(R) (((R) >> 4) & 1)
11534
11535/* Encode insns with bit pattern:
11536
11537 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11538 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 11539
037e8744
JB
11540 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11541 different meaning for some instruction. */
11542
11543static void
11544neon_three_same (int isquad, int ubit, int size)
11545{
11546 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11547 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11548 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11549 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11550 inst.instruction |= LOW4 (inst.operands[2].reg);
11551 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11552 inst.instruction |= (isquad != 0) << 6;
11553 inst.instruction |= (ubit != 0) << 24;
11554 if (size != -1)
11555 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 11556
037e8744
JB
11557 inst.instruction = neon_dp_fixup (inst.instruction);
11558}
11559
11560/* Encode instructions of the form:
11561
11562 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11563 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
11564
11565 Don't write size if SIZE == -1. */
11566
11567static void
11568neon_two_same (int qbit, int ubit, int size)
11569{
11570 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11571 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11572 inst.instruction |= LOW4 (inst.operands[1].reg);
11573 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11574 inst.instruction |= (qbit != 0) << 6;
11575 inst.instruction |= (ubit != 0) << 24;
11576
11577 if (size != -1)
11578 inst.instruction |= neon_logbits (size) << 18;
11579
11580 inst.instruction = neon_dp_fixup (inst.instruction);
11581}
11582
11583/* Neon instruction encoders, in approximate order of appearance. */
11584
11585static void
11586do_neon_dyadic_i_su (void)
11587{
037e8744 11588 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11589 struct neon_type_el et = neon_check_type (3, rs,
11590 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 11591 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11592}
11593
11594static void
11595do_neon_dyadic_i64_su (void)
11596{
037e8744 11597 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11598 struct neon_type_el et = neon_check_type (3, rs,
11599 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 11600 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11601}
11602
11603static void
11604neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
11605 unsigned immbits)
11606{
11607 unsigned size = et.size >> 3;
11608 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11609 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11610 inst.instruction |= LOW4 (inst.operands[1].reg);
11611 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11612 inst.instruction |= (isquad != 0) << 6;
11613 inst.instruction |= immbits << 16;
11614 inst.instruction |= (size >> 3) << 7;
11615 inst.instruction |= (size & 0x7) << 19;
11616 if (write_ubit)
11617 inst.instruction |= (uval != 0) << 24;
11618
11619 inst.instruction = neon_dp_fixup (inst.instruction);
11620}
11621
11622static void
11623do_neon_shl_imm (void)
11624{
11625 if (!inst.operands[2].isreg)
11626 {
037e8744 11627 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
11628 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
11629 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 11630 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
11631 }
11632 else
11633 {
037e8744 11634 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11635 struct neon_type_el et = neon_check_type (3, rs,
11636 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
11637 unsigned int tmp;
11638
11639 /* VSHL/VQSHL 3-register variants have syntax such as:
11640 vshl.xx Dd, Dm, Dn
11641 whereas other 3-register operations encoded by neon_three_same have
11642 syntax like:
11643 vadd.xx Dd, Dn, Dm
11644 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
11645 here. */
11646 tmp = inst.operands[2].reg;
11647 inst.operands[2].reg = inst.operands[1].reg;
11648 inst.operands[1].reg = tmp;
5287ad62 11649 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11650 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11651 }
11652}
11653
11654static void
11655do_neon_qshl_imm (void)
11656{
11657 if (!inst.operands[2].isreg)
11658 {
037e8744 11659 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 11660 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 11661
5287ad62 11662 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 11663 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
11664 inst.operands[2].imm);
11665 }
11666 else
11667 {
037e8744 11668 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11669 struct neon_type_el et = neon_check_type (3, rs,
11670 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
11671 unsigned int tmp;
11672
11673 /* See note in do_neon_shl_imm. */
11674 tmp = inst.operands[2].reg;
11675 inst.operands[2].reg = inst.operands[1].reg;
11676 inst.operands[1].reg = tmp;
5287ad62 11677 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11678 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11679 }
11680}
11681
627907b7
JB
11682static void
11683do_neon_rshl (void)
11684{
11685 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11686 struct neon_type_el et = neon_check_type (3, rs,
11687 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11688 unsigned int tmp;
11689
11690 tmp = inst.operands[2].reg;
11691 inst.operands[2].reg = inst.operands[1].reg;
11692 inst.operands[1].reg = tmp;
11693 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11694}
11695
5287ad62
JB
11696static int
11697neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
11698{
036dc3f7
PB
11699 /* Handle .I8 pseudo-instructions. */
11700 if (size == 8)
5287ad62 11701 {
5287ad62
JB
11702 /* Unfortunately, this will make everything apart from zero out-of-range.
11703 FIXME is this the intended semantics? There doesn't seem much point in
11704 accepting .I8 if so. */
11705 immediate |= immediate << 8;
11706 size = 16;
036dc3f7
PB
11707 }
11708
11709 if (size >= 32)
11710 {
11711 if (immediate == (immediate & 0x000000ff))
11712 {
11713 *immbits = immediate;
11714 return 0x1;
11715 }
11716 else if (immediate == (immediate & 0x0000ff00))
11717 {
11718 *immbits = immediate >> 8;
11719 return 0x3;
11720 }
11721 else if (immediate == (immediate & 0x00ff0000))
11722 {
11723 *immbits = immediate >> 16;
11724 return 0x5;
11725 }
11726 else if (immediate == (immediate & 0xff000000))
11727 {
11728 *immbits = immediate >> 24;
11729 return 0x7;
11730 }
11731 if ((immediate & 0xffff) != (immediate >> 16))
11732 goto bad_immediate;
11733 immediate &= 0xffff;
5287ad62
JB
11734 }
11735
11736 if (immediate == (immediate & 0x000000ff))
11737 {
11738 *immbits = immediate;
036dc3f7 11739 return 0x9;
5287ad62
JB
11740 }
11741 else if (immediate == (immediate & 0x0000ff00))
11742 {
11743 *immbits = immediate >> 8;
036dc3f7 11744 return 0xb;
5287ad62
JB
11745 }
11746
11747 bad_immediate:
dcbf9037 11748 first_error (_("immediate value out of range"));
5287ad62
JB
11749 return FAIL;
11750}
11751
11752/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11753 A, B, C, D. */
11754
11755static int
11756neon_bits_same_in_bytes (unsigned imm)
11757{
11758 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
11759 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
11760 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
11761 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
11762}
11763
11764/* For immediate of above form, return 0bABCD. */
11765
11766static unsigned
11767neon_squash_bits (unsigned imm)
11768{
11769 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
11770 | ((imm & 0x01000000) >> 21);
11771}
11772
136da414 11773/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
11774
11775static unsigned
11776neon_qfloat_bits (unsigned imm)
11777{
136da414 11778 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
11779}
11780
11781/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11782 the instruction. *OP is passed as the initial value of the op field, and
11783 may be set to a different value depending on the constant (i.e.
11784 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 11785 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 11786 try smaller element sizes. */
5287ad62
JB
11787
11788static int
c96612cc
JB
11789neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
11790 unsigned *immbits, int *op, int size,
11791 enum neon_el_type type)
5287ad62 11792{
c96612cc
JB
11793 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
11794 float. */
11795 if (type == NT_float && !float_p)
11796 return FAIL;
11797
136da414
JB
11798 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
11799 {
11800 if (size != 32 || *op == 1)
11801 return FAIL;
11802 *immbits = neon_qfloat_bits (immlo);
11803 return 0xf;
11804 }
036dc3f7
PB
11805
11806 if (size == 64)
5287ad62 11807 {
036dc3f7
PB
11808 if (neon_bits_same_in_bytes (immhi)
11809 && neon_bits_same_in_bytes (immlo))
11810 {
11811 if (*op == 1)
11812 return FAIL;
11813 *immbits = (neon_squash_bits (immhi) << 4)
11814 | neon_squash_bits (immlo);
11815 *op = 1;
11816 return 0xe;
11817 }
11818
11819 if (immhi != immlo)
11820 return FAIL;
5287ad62 11821 }
036dc3f7
PB
11822
11823 if (size >= 32)
5287ad62 11824 {
036dc3f7
PB
11825 if (immlo == (immlo & 0x000000ff))
11826 {
11827 *immbits = immlo;
11828 return 0x0;
11829 }
11830 else if (immlo == (immlo & 0x0000ff00))
11831 {
11832 *immbits = immlo >> 8;
11833 return 0x2;
11834 }
11835 else if (immlo == (immlo & 0x00ff0000))
11836 {
11837 *immbits = immlo >> 16;
11838 return 0x4;
11839 }
11840 else if (immlo == (immlo & 0xff000000))
11841 {
11842 *immbits = immlo >> 24;
11843 return 0x6;
11844 }
11845 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
11846 {
11847 *immbits = (immlo >> 8) & 0xff;
11848 return 0xc;
11849 }
11850 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
11851 {
11852 *immbits = (immlo >> 16) & 0xff;
11853 return 0xd;
11854 }
11855
11856 if ((immlo & 0xffff) != (immlo >> 16))
11857 return FAIL;
11858 immlo &= 0xffff;
5287ad62 11859 }
036dc3f7
PB
11860
11861 if (size >= 16)
5287ad62 11862 {
036dc3f7
PB
11863 if (immlo == (immlo & 0x000000ff))
11864 {
11865 *immbits = immlo;
11866 return 0x8;
11867 }
11868 else if (immlo == (immlo & 0x0000ff00))
11869 {
11870 *immbits = immlo >> 8;
11871 return 0xa;
11872 }
11873
11874 if ((immlo & 0xff) != (immlo >> 8))
11875 return FAIL;
11876 immlo &= 0xff;
5287ad62 11877 }
036dc3f7
PB
11878
11879 if (immlo == (immlo & 0x000000ff))
5287ad62 11880 {
036dc3f7
PB
11881 /* Don't allow MVN with 8-bit immediate. */
11882 if (*op == 1)
11883 return FAIL;
11884 *immbits = immlo;
11885 return 0xe;
5287ad62 11886 }
5287ad62
JB
11887
11888 return FAIL;
11889}
11890
11891/* Write immediate bits [7:0] to the following locations:
11892
11893 |28/24|23 19|18 16|15 4|3 0|
11894 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11895
11896 This function is used by VMOV/VMVN/VORR/VBIC. */
11897
11898static void
11899neon_write_immbits (unsigned immbits)
11900{
11901 inst.instruction |= immbits & 0xf;
11902 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
11903 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
11904}
11905
11906/* Invert low-order SIZE bits of XHI:XLO. */
11907
11908static void
11909neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
11910{
11911 unsigned immlo = xlo ? *xlo : 0;
11912 unsigned immhi = xhi ? *xhi : 0;
11913
11914 switch (size)
11915 {
11916 case 8:
11917 immlo = (~immlo) & 0xff;
11918 break;
11919
11920 case 16:
11921 immlo = (~immlo) & 0xffff;
11922 break;
11923
11924 case 64:
11925 immhi = (~immhi) & 0xffffffff;
11926 /* fall through. */
11927
11928 case 32:
11929 immlo = (~immlo) & 0xffffffff;
11930 break;
11931
11932 default:
11933 abort ();
11934 }
11935
11936 if (xlo)
11937 *xlo = immlo;
11938
11939 if (xhi)
11940 *xhi = immhi;
11941}
11942
11943static void
11944do_neon_logic (void)
11945{
11946 if (inst.operands[2].present && inst.operands[2].isreg)
11947 {
037e8744 11948 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11949 neon_check_type (3, rs, N_IGNORE_TYPE);
11950 /* U bit and size field were set as part of the bitmask. */
11951 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11952 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
11953 }
11954 else
11955 {
037e8744
JB
11956 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
11957 struct neon_type_el et = neon_check_type (2, rs,
11958 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62
JB
11959 enum neon_opc opcode = inst.instruction & 0x0fffffff;
11960 unsigned immbits;
11961 int cmode;
5f4273c7 11962
5287ad62
JB
11963 if (et.type == NT_invtype)
11964 return;
5f4273c7 11965
5287ad62
JB
11966 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11967
036dc3f7
PB
11968 immbits = inst.operands[1].imm;
11969 if (et.size == 64)
11970 {
11971 /* .i64 is a pseudo-op, so the immediate must be a repeating
11972 pattern. */
11973 if (immbits != (inst.operands[1].regisimm ?
11974 inst.operands[1].reg : 0))
11975 {
11976 /* Set immbits to an invalid constant. */
11977 immbits = 0xdeadbeef;
11978 }
11979 }
11980
5287ad62
JB
11981 switch (opcode)
11982 {
11983 case N_MNEM_vbic:
036dc3f7 11984 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 11985 break;
5f4273c7 11986
5287ad62 11987 case N_MNEM_vorr:
036dc3f7 11988 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 11989 break;
5f4273c7 11990
5287ad62
JB
11991 case N_MNEM_vand:
11992 /* Pseudo-instruction for VBIC. */
5287ad62
JB
11993 neon_invert_size (&immbits, 0, et.size);
11994 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11995 break;
5f4273c7 11996
5287ad62
JB
11997 case N_MNEM_vorn:
11998 /* Pseudo-instruction for VORR. */
5287ad62
JB
11999 neon_invert_size (&immbits, 0, et.size);
12000 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12001 break;
5f4273c7 12002
5287ad62
JB
12003 default:
12004 abort ();
12005 }
12006
12007 if (cmode == FAIL)
12008 return;
12009
037e8744 12010 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12011 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12012 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12013 inst.instruction |= cmode << 8;
12014 neon_write_immbits (immbits);
5f4273c7 12015
5287ad62
JB
12016 inst.instruction = neon_dp_fixup (inst.instruction);
12017 }
12018}
12019
12020static void
12021do_neon_bitfield (void)
12022{
037e8744 12023 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 12024 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 12025 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12026}
12027
12028static void
dcbf9037
JB
12029neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12030 unsigned destbits)
5287ad62 12031{
037e8744 12032 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
12033 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12034 types | N_KEY);
5287ad62
JB
12035 if (et.type == NT_float)
12036 {
12037 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
037e8744 12038 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12039 }
12040 else
12041 {
12042 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12043 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
12044 }
12045}
12046
12047static void
12048do_neon_dyadic_if_su (void)
12049{
dcbf9037 12050 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
12051}
12052
12053static void
12054do_neon_dyadic_if_su_d (void)
12055{
12056 /* This version only allow D registers, but that constraint is enforced during
12057 operand parsing so we don't need to do anything extra here. */
dcbf9037 12058 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
12059}
12060
5287ad62
JB
12061static void
12062do_neon_dyadic_if_i_d (void)
12063{
428e3f1f
PB
12064 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12065 affected if we specify unsigned args. */
12066 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
12067}
12068
037e8744
JB
12069enum vfp_or_neon_is_neon_bits
12070{
12071 NEON_CHECK_CC = 1,
12072 NEON_CHECK_ARCH = 2
12073};
12074
12075/* Call this function if an instruction which may have belonged to the VFP or
12076 Neon instruction sets, but turned out to be a Neon instruction (due to the
12077 operand types involved, etc.). We have to check and/or fix-up a couple of
12078 things:
12079
12080 - Make sure the user hasn't attempted to make a Neon instruction
12081 conditional.
12082 - Alter the value in the condition code field if necessary.
12083 - Make sure that the arch supports Neon instructions.
12084
12085 Which of these operations take place depends on bits from enum
12086 vfp_or_neon_is_neon_bits.
12087
12088 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12089 current instruction's condition is COND_ALWAYS, the condition field is
12090 changed to inst.uncond_value. This is necessary because instructions shared
12091 between VFP and Neon may be conditional for the VFP variants only, and the
12092 unconditional Neon version must have, e.g., 0xF in the condition field. */
12093
12094static int
12095vfp_or_neon_is_neon (unsigned check)
12096{
12097 /* Conditions are always legal in Thumb mode (IT blocks). */
12098 if (!thumb_mode && (check & NEON_CHECK_CC))
12099 {
12100 if (inst.cond != COND_ALWAYS)
12101 {
12102 first_error (_(BAD_COND));
12103 return FAIL;
12104 }
12105 if (inst.uncond_value != -1)
12106 inst.instruction |= inst.uncond_value << 28;
12107 }
5f4273c7 12108
037e8744
JB
12109 if ((check & NEON_CHECK_ARCH)
12110 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12111 {
12112 first_error (_(BAD_FPU));
12113 return FAIL;
12114 }
5f4273c7 12115
037e8744
JB
12116 return SUCCESS;
12117}
12118
5287ad62
JB
12119static void
12120do_neon_addsub_if_i (void)
12121{
037e8744
JB
12122 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12123 return;
12124
12125 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12126 return;
12127
5287ad62
JB
12128 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12129 affected if we specify unsigned args. */
dcbf9037 12130 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
12131}
12132
12133/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12134 result to be:
12135 V<op> A,B (A is operand 0, B is operand 2)
12136 to mean:
12137 V<op> A,B,A
12138 not:
12139 V<op> A,B,B
12140 so handle that case specially. */
12141
12142static void
12143neon_exchange_operands (void)
12144{
12145 void *scratch = alloca (sizeof (inst.operands[0]));
12146 if (inst.operands[1].present)
12147 {
12148 /* Swap operands[1] and operands[2]. */
12149 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
12150 inst.operands[1] = inst.operands[2];
12151 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
12152 }
12153 else
12154 {
12155 inst.operands[1] = inst.operands[2];
12156 inst.operands[2] = inst.operands[0];
12157 }
12158}
12159
12160static void
12161neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12162{
12163 if (inst.operands[2].isreg)
12164 {
12165 if (invert)
12166 neon_exchange_operands ();
dcbf9037 12167 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
12168 }
12169 else
12170 {
037e8744 12171 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
12172 struct neon_type_el et = neon_check_type (2, rs,
12173 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62
JB
12174
12175 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12176 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12177 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12178 inst.instruction |= LOW4 (inst.operands[1].reg);
12179 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12180 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12181 inst.instruction |= (et.type == NT_float) << 10;
12182 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 12183
5287ad62
JB
12184 inst.instruction = neon_dp_fixup (inst.instruction);
12185 }
12186}
12187
12188static void
12189do_neon_cmp (void)
12190{
12191 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12192}
12193
12194static void
12195do_neon_cmp_inv (void)
12196{
12197 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12198}
12199
12200static void
12201do_neon_ceq (void)
12202{
12203 neon_compare (N_IF_32, N_IF_32, FALSE);
12204}
12205
12206/* For multiply instructions, we have the possibility of 16-bit or 32-bit
12207 scalars, which are encoded in 5 bits, M : Rm.
12208 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12209 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12210 index in M. */
12211
12212static unsigned
12213neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12214{
dcbf9037
JB
12215 unsigned regno = NEON_SCALAR_REG (scalar);
12216 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
12217
12218 switch (elsize)
12219 {
12220 case 16:
12221 if (regno > 7 || elno > 3)
12222 goto bad_scalar;
12223 return regno | (elno << 3);
5f4273c7 12224
5287ad62
JB
12225 case 32:
12226 if (regno > 15 || elno > 1)
12227 goto bad_scalar;
12228 return regno | (elno << 4);
12229
12230 default:
12231 bad_scalar:
dcbf9037 12232 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
12233 }
12234
12235 return 0;
12236}
12237
12238/* Encode multiply / multiply-accumulate scalar instructions. */
12239
12240static void
12241neon_mul_mac (struct neon_type_el et, int ubit)
12242{
dcbf9037
JB
12243 unsigned scalar;
12244
12245 /* Give a more helpful error message if we have an invalid type. */
12246 if (et.type == NT_invtype)
12247 return;
5f4273c7 12248
dcbf9037 12249 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
12250 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12251 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12252 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12253 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12254 inst.instruction |= LOW4 (scalar);
12255 inst.instruction |= HI1 (scalar) << 5;
12256 inst.instruction |= (et.type == NT_float) << 8;
12257 inst.instruction |= neon_logbits (et.size) << 20;
12258 inst.instruction |= (ubit != 0) << 24;
12259
12260 inst.instruction = neon_dp_fixup (inst.instruction);
12261}
12262
12263static void
12264do_neon_mac_maybe_scalar (void)
12265{
037e8744
JB
12266 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12267 return;
12268
12269 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12270 return;
12271
5287ad62
JB
12272 if (inst.operands[2].isscalar)
12273 {
037e8744 12274 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
12275 struct neon_type_el et = neon_check_type (3, rs,
12276 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
12277 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 12278 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
12279 }
12280 else
428e3f1f
PB
12281 {
12282 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12283 affected if we specify unsigned args. */
12284 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12285 }
5287ad62
JB
12286}
12287
12288static void
12289do_neon_tst (void)
12290{
037e8744 12291 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12292 struct neon_type_el et = neon_check_type (3, rs,
12293 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 12294 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
12295}
12296
12297/* VMUL with 3 registers allows the P8 type. The scalar version supports the
12298 same types as the MAC equivalents. The polynomial type for this instruction
12299 is encoded the same as the integer type. */
12300
12301static void
12302do_neon_mul (void)
12303{
037e8744
JB
12304 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
12305 return;
12306
12307 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12308 return;
12309
5287ad62
JB
12310 if (inst.operands[2].isscalar)
12311 do_neon_mac_maybe_scalar ();
12312 else
dcbf9037 12313 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
12314}
12315
12316static void
12317do_neon_qdmulh (void)
12318{
12319 if (inst.operands[2].isscalar)
12320 {
037e8744 12321 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
12322 struct neon_type_el et = neon_check_type (3, rs,
12323 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12324 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 12325 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
12326 }
12327 else
12328 {
037e8744 12329 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12330 struct neon_type_el et = neon_check_type (3, rs,
12331 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12332 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12333 /* The U bit (rounding) comes from bit mask. */
037e8744 12334 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
12335 }
12336}
12337
12338static void
12339do_neon_fcmp_absolute (void)
12340{
037e8744 12341 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12342 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12343 /* Size field comes from bit mask. */
037e8744 12344 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
12345}
12346
12347static void
12348do_neon_fcmp_absolute_inv (void)
12349{
12350 neon_exchange_operands ();
12351 do_neon_fcmp_absolute ();
12352}
12353
12354static void
12355do_neon_step (void)
12356{
037e8744 12357 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 12358 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 12359 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12360}
12361
12362static void
12363do_neon_abs_neg (void)
12364{
037e8744
JB
12365 enum neon_shape rs;
12366 struct neon_type_el et;
5f4273c7 12367
037e8744
JB
12368 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
12369 return;
12370
12371 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12372 return;
12373
12374 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12375 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 12376
5287ad62
JB
12377 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12378 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12379 inst.instruction |= LOW4 (inst.operands[1].reg);
12380 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12381 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12382 inst.instruction |= (et.type == NT_float) << 10;
12383 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 12384
5287ad62
JB
12385 inst.instruction = neon_dp_fixup (inst.instruction);
12386}
12387
12388static void
12389do_neon_sli (void)
12390{
037e8744 12391 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12392 struct neon_type_el et = neon_check_type (2, rs,
12393 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12394 int imm = inst.operands[2].imm;
12395 constraint (imm < 0 || (unsigned)imm >= et.size,
12396 _("immediate out of range for insert"));
037e8744 12397 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
12398}
12399
12400static void
12401do_neon_sri (void)
12402{
037e8744 12403 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12404 struct neon_type_el et = neon_check_type (2, rs,
12405 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12406 int imm = inst.operands[2].imm;
12407 constraint (imm < 1 || (unsigned)imm > et.size,
12408 _("immediate out of range for insert"));
037e8744 12409 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
12410}
12411
12412static void
12413do_neon_qshlu_imm (void)
12414{
037e8744 12415 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12416 struct neon_type_el et = neon_check_type (2, rs,
12417 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
12418 int imm = inst.operands[2].imm;
12419 constraint (imm < 0 || (unsigned)imm >= et.size,
12420 _("immediate out of range for shift"));
12421 /* Only encodes the 'U present' variant of the instruction.
12422 In this case, signed types have OP (bit 8) set to 0.
12423 Unsigned types have OP set to 1. */
12424 inst.instruction |= (et.type == NT_unsigned) << 8;
12425 /* The rest of the bits are the same as other immediate shifts. */
037e8744 12426 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
12427}
12428
12429static void
12430do_neon_qmovn (void)
12431{
12432 struct neon_type_el et = neon_check_type (2, NS_DQ,
12433 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12434 /* Saturating move where operands can be signed or unsigned, and the
12435 destination has the same signedness. */
12436 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12437 if (et.type == NT_unsigned)
12438 inst.instruction |= 0xc0;
12439 else
12440 inst.instruction |= 0x80;
12441 neon_two_same (0, 1, et.size / 2);
12442}
12443
12444static void
12445do_neon_qmovun (void)
12446{
12447 struct neon_type_el et = neon_check_type (2, NS_DQ,
12448 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12449 /* Saturating move with unsigned results. Operands must be signed. */
12450 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12451 neon_two_same (0, 1, et.size / 2);
12452}
12453
12454static void
12455do_neon_rshift_sat_narrow (void)
12456{
12457 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12458 or unsigned. If operands are unsigned, results must also be unsigned. */
12459 struct neon_type_el et = neon_check_type (2, NS_DQI,
12460 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12461 int imm = inst.operands[2].imm;
12462 /* This gets the bounds check, size encoding and immediate bits calculation
12463 right. */
12464 et.size /= 2;
5f4273c7 12465
5287ad62
JB
12466 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12467 VQMOVN.I<size> <Dd>, <Qm>. */
12468 if (imm == 0)
12469 {
12470 inst.operands[2].present = 0;
12471 inst.instruction = N_MNEM_vqmovn;
12472 do_neon_qmovn ();
12473 return;
12474 }
5f4273c7 12475
5287ad62
JB
12476 constraint (imm < 1 || (unsigned)imm > et.size,
12477 _("immediate out of range"));
12478 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12479}
12480
12481static void
12482do_neon_rshift_sat_narrow_u (void)
12483{
12484 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12485 or unsigned. If operands are unsigned, results must also be unsigned. */
12486 struct neon_type_el et = neon_check_type (2, NS_DQI,
12487 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12488 int imm = inst.operands[2].imm;
12489 /* This gets the bounds check, size encoding and immediate bits calculation
12490 right. */
12491 et.size /= 2;
12492
12493 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12494 VQMOVUN.I<size> <Dd>, <Qm>. */
12495 if (imm == 0)
12496 {
12497 inst.operands[2].present = 0;
12498 inst.instruction = N_MNEM_vqmovun;
12499 do_neon_qmovun ();
12500 return;
12501 }
12502
12503 constraint (imm < 1 || (unsigned)imm > et.size,
12504 _("immediate out of range"));
12505 /* FIXME: The manual is kind of unclear about what value U should have in
12506 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12507 must be 1. */
12508 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12509}
12510
12511static void
12512do_neon_movn (void)
12513{
12514 struct neon_type_el et = neon_check_type (2, NS_DQ,
12515 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12516 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12517 neon_two_same (0, 1, et.size / 2);
12518}
12519
12520static void
12521do_neon_rshift_narrow (void)
12522{
12523 struct neon_type_el et = neon_check_type (2, NS_DQI,
12524 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12525 int imm = inst.operands[2].imm;
12526 /* This gets the bounds check, size encoding and immediate bits calculation
12527 right. */
12528 et.size /= 2;
5f4273c7 12529
5287ad62
JB
12530 /* If immediate is zero then we are a pseudo-instruction for
12531 VMOVN.I<size> <Dd>, <Qm> */
12532 if (imm == 0)
12533 {
12534 inst.operands[2].present = 0;
12535 inst.instruction = N_MNEM_vmovn;
12536 do_neon_movn ();
12537 return;
12538 }
5f4273c7 12539
5287ad62
JB
12540 constraint (imm < 1 || (unsigned)imm > et.size,
12541 _("immediate out of range for narrowing operation"));
12542 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12543}
12544
12545static void
12546do_neon_shll (void)
12547{
12548 /* FIXME: Type checking when lengthening. */
12549 struct neon_type_el et = neon_check_type (2, NS_QDI,
12550 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12551 unsigned imm = inst.operands[2].imm;
12552
12553 if (imm == et.size)
12554 {
12555 /* Maximum shift variant. */
12556 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12557 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12558 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12559 inst.instruction |= LOW4 (inst.operands[1].reg);
12560 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12561 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 12562
5287ad62
JB
12563 inst.instruction = neon_dp_fixup (inst.instruction);
12564 }
12565 else
12566 {
12567 /* A more-specific type check for non-max versions. */
12568 et = neon_check_type (2, NS_QDI,
12569 N_EQK | N_DBL, N_SU_32 | N_KEY);
12570 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12571 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12572 }
12573}
12574
037e8744 12575/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
12576 the current instruction is. */
12577
12578static int
12579neon_cvt_flavour (enum neon_shape rs)
12580{
037e8744
JB
12581#define CVT_VAR(C,X,Y) \
12582 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12583 if (et.type != NT_invtype) \
12584 { \
12585 inst.error = NULL; \
12586 return (C); \
5287ad62
JB
12587 }
12588 struct neon_type_el et;
037e8744
JB
12589 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
12590 || rs == NS_FF) ? N_VFP : 0;
12591 /* The instruction versions which take an immediate take one register
12592 argument, which is extended to the width of the full register. Thus the
12593 "source" and "destination" registers must have the same width. Hack that
12594 here by making the size equal to the key (wider, in this case) operand. */
12595 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 12596
5287ad62
JB
12597 CVT_VAR (0, N_S32, N_F32);
12598 CVT_VAR (1, N_U32, N_F32);
12599 CVT_VAR (2, N_F32, N_S32);
12600 CVT_VAR (3, N_F32, N_U32);
5f4273c7 12601
037e8744 12602 whole_reg = N_VFP;
5f4273c7 12603
037e8744
JB
12604 /* VFP instructions. */
12605 CVT_VAR (4, N_F32, N_F64);
12606 CVT_VAR (5, N_F64, N_F32);
12607 CVT_VAR (6, N_S32, N_F64 | key);
12608 CVT_VAR (7, N_U32, N_F64 | key);
12609 CVT_VAR (8, N_F64 | key, N_S32);
12610 CVT_VAR (9, N_F64 | key, N_U32);
12611 /* VFP instructions with bitshift. */
12612 CVT_VAR (10, N_F32 | key, N_S16);
12613 CVT_VAR (11, N_F32 | key, N_U16);
12614 CVT_VAR (12, N_F64 | key, N_S16);
12615 CVT_VAR (13, N_F64 | key, N_U16);
12616 CVT_VAR (14, N_S16, N_F32 | key);
12617 CVT_VAR (15, N_U16, N_F32 | key);
12618 CVT_VAR (16, N_S16, N_F64 | key);
12619 CVT_VAR (17, N_U16, N_F64 | key);
5f4273c7 12620
5287ad62
JB
12621 return -1;
12622#undef CVT_VAR
12623}
12624
037e8744
JB
12625/* Neon-syntax VFP conversions. */
12626
5287ad62 12627static void
037e8744 12628do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 12629{
037e8744 12630 const char *opname = 0;
5f4273c7 12631
037e8744 12632 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 12633 {
037e8744
JB
12634 /* Conversions with immediate bitshift. */
12635 const char *enc[] =
12636 {
12637 "ftosls",
12638 "ftouls",
12639 "fsltos",
12640 "fultos",
12641 NULL,
12642 NULL,
12643 "ftosld",
12644 "ftould",
12645 "fsltod",
12646 "fultod",
12647 "fshtos",
12648 "fuhtos",
12649 "fshtod",
12650 "fuhtod",
12651 "ftoshs",
12652 "ftouhs",
12653 "ftoshd",
12654 "ftouhd"
12655 };
12656
12657 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12658 {
12659 opname = enc[flavour];
12660 constraint (inst.operands[0].reg != inst.operands[1].reg,
12661 _("operands 0 and 1 must be the same register"));
12662 inst.operands[1] = inst.operands[2];
12663 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
12664 }
5287ad62
JB
12665 }
12666 else
12667 {
037e8744
JB
12668 /* Conversions without bitshift. */
12669 const char *enc[] =
12670 {
12671 "ftosis",
12672 "ftouis",
12673 "fsitos",
12674 "fuitos",
12675 "fcvtsd",
12676 "fcvtds",
12677 "ftosid",
12678 "ftouid",
12679 "fsitod",
12680 "fuitod"
12681 };
12682
12683 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12684 opname = enc[flavour];
12685 }
12686
12687 if (opname)
12688 do_vfp_nsyn_opcode (opname);
12689}
12690
12691static void
12692do_vfp_nsyn_cvtz (void)
12693{
12694 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
12695 int flavour = neon_cvt_flavour (rs);
12696 const char *enc[] =
12697 {
12698 "ftosizs",
12699 "ftouizs",
12700 NULL,
12701 NULL,
12702 NULL,
12703 NULL,
12704 "ftosizd",
12705 "ftouizd"
12706 };
12707
12708 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
12709 do_vfp_nsyn_opcode (enc[flavour]);
12710}
12711
12712static void
12713do_neon_cvt (void)
12714{
12715 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
12716 NS_FD, NS_DF, NS_FF, NS_NULL);
12717 int flavour = neon_cvt_flavour (rs);
12718
12719 /* VFP rather than Neon conversions. */
12720 if (flavour >= 4)
12721 {
12722 do_vfp_nsyn_cvt (rs, flavour);
12723 return;
12724 }
12725
12726 switch (rs)
12727 {
12728 case NS_DDI:
12729 case NS_QQI:
12730 {
35997600
NC
12731 unsigned immbits;
12732 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12733
037e8744
JB
12734 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12735 return;
12736
12737 /* Fixed-point conversion with #0 immediate is encoded as an
12738 integer conversion. */
12739 if (inst.operands[2].present && inst.operands[2].imm == 0)
12740 goto int_encode;
35997600 12741 immbits = 32 - inst.operands[2].imm;
037e8744
JB
12742 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12743 if (flavour != -1)
12744 inst.instruction |= enctab[flavour];
12745 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12746 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12747 inst.instruction |= LOW4 (inst.operands[1].reg);
12748 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12749 inst.instruction |= neon_quad (rs) << 6;
12750 inst.instruction |= 1 << 21;
12751 inst.instruction |= immbits << 16;
12752
12753 inst.instruction = neon_dp_fixup (inst.instruction);
12754 }
12755 break;
12756
12757 case NS_DD:
12758 case NS_QQ:
12759 int_encode:
12760 {
12761 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
12762
12763 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12764
12765 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12766 return;
12767
12768 if (flavour != -1)
12769 inst.instruction |= enctab[flavour];
12770
12771 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12772 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12773 inst.instruction |= LOW4 (inst.operands[1].reg);
12774 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12775 inst.instruction |= neon_quad (rs) << 6;
12776 inst.instruction |= 2 << 18;
12777
12778 inst.instruction = neon_dp_fixup (inst.instruction);
12779 }
12780 break;
12781
12782 default:
12783 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12784 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 12785 }
5287ad62
JB
12786}
12787
12788static void
12789neon_move_immediate (void)
12790{
037e8744
JB
12791 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12792 struct neon_type_el et = neon_check_type (2, rs,
12793 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 12794 unsigned immlo, immhi = 0, immbits;
c96612cc 12795 int op, cmode, float_p;
5287ad62 12796
037e8744
JB
12797 constraint (et.type == NT_invtype,
12798 _("operand size must be specified for immediate VMOV"));
12799
5287ad62
JB
12800 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12801 op = (inst.instruction & (1 << 5)) != 0;
12802
12803 immlo = inst.operands[1].imm;
12804 if (inst.operands[1].regisimm)
12805 immhi = inst.operands[1].reg;
12806
12807 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
12808 _("immediate has bits set outside the operand size"));
12809
c96612cc
JB
12810 float_p = inst.operands[1].immisfloat;
12811
12812 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 12813 et.size, et.type)) == FAIL)
5287ad62
JB
12814 {
12815 /* Invert relevant bits only. */
12816 neon_invert_size (&immlo, &immhi, et.size);
12817 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12818 with one or the other; those cases are caught by
12819 neon_cmode_for_move_imm. */
12820 op = !op;
c96612cc
JB
12821 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
12822 &op, et.size, et.type)) == FAIL)
5287ad62 12823 {
dcbf9037 12824 first_error (_("immediate out of range"));
5287ad62
JB
12825 return;
12826 }
12827 }
12828
12829 inst.instruction &= ~(1 << 5);
12830 inst.instruction |= op << 5;
12831
12832 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12833 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 12834 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12835 inst.instruction |= cmode << 8;
12836
12837 neon_write_immbits (immbits);
12838}
12839
12840static void
12841do_neon_mvn (void)
12842{
12843 if (inst.operands[1].isreg)
12844 {
037e8744 12845 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 12846
5287ad62
JB
12847 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12848 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12849 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12850 inst.instruction |= LOW4 (inst.operands[1].reg);
12851 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12852 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12853 }
12854 else
12855 {
12856 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12857 neon_move_immediate ();
12858 }
12859
12860 inst.instruction = neon_dp_fixup (inst.instruction);
12861}
12862
12863/* Encode instructions of form:
12864
12865 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 12866 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
12867
12868static void
12869neon_mixed_length (struct neon_type_el et, unsigned size)
12870{
12871 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12872 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12873 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12874 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12875 inst.instruction |= LOW4 (inst.operands[2].reg);
12876 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12877 inst.instruction |= (et.type == NT_unsigned) << 24;
12878 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 12879
5287ad62
JB
12880 inst.instruction = neon_dp_fixup (inst.instruction);
12881}
12882
12883static void
12884do_neon_dyadic_long (void)
12885{
12886 /* FIXME: Type checking for lengthening op. */
12887 struct neon_type_el et = neon_check_type (3, NS_QDD,
12888 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
12889 neon_mixed_length (et, et.size);
12890}
12891
12892static void
12893do_neon_abal (void)
12894{
12895 struct neon_type_el et = neon_check_type (3, NS_QDD,
12896 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
12897 neon_mixed_length (et, et.size);
12898}
12899
12900static void
12901neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
12902{
12903 if (inst.operands[2].isscalar)
12904 {
dcbf9037
JB
12905 struct neon_type_el et = neon_check_type (3, NS_QDS,
12906 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
5287ad62
JB
12907 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12908 neon_mul_mac (et, et.type == NT_unsigned);
12909 }
12910 else
12911 {
12912 struct neon_type_el et = neon_check_type (3, NS_QDD,
12913 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
12914 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12915 neon_mixed_length (et, et.size);
12916 }
12917}
12918
12919static void
12920do_neon_mac_maybe_scalar_long (void)
12921{
12922 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
12923}
12924
12925static void
12926do_neon_dyadic_wide (void)
12927{
12928 struct neon_type_el et = neon_check_type (3, NS_QQD,
12929 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
12930 neon_mixed_length (et, et.size);
12931}
12932
12933static void
12934do_neon_dyadic_narrow (void)
12935{
12936 struct neon_type_el et = neon_check_type (3, NS_QDD,
12937 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
12938 /* Operand sign is unimportant, and the U bit is part of the opcode,
12939 so force the operand type to integer. */
12940 et.type = NT_integer;
5287ad62
JB
12941 neon_mixed_length (et, et.size / 2);
12942}
12943
12944static void
12945do_neon_mul_sat_scalar_long (void)
12946{
12947 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
12948}
12949
12950static void
12951do_neon_vmull (void)
12952{
12953 if (inst.operands[2].isscalar)
12954 do_neon_mac_maybe_scalar_long ();
12955 else
12956 {
12957 struct neon_type_el et = neon_check_type (3, NS_QDD,
12958 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
12959 if (et.type == NT_poly)
12960 inst.instruction = NEON_ENC_POLY (inst.instruction);
12961 else
12962 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12963 /* For polynomial encoding, size field must be 0b00 and the U bit must be
12964 zero. Should be OK as-is. */
12965 neon_mixed_length (et, et.size);
12966 }
12967}
12968
12969static void
12970do_neon_ext (void)
12971{
037e8744 12972 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
12973 struct neon_type_el et = neon_check_type (3, rs,
12974 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12975 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
12976
12977 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
12978 _("shift out of range"));
5287ad62
JB
12979 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12980 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12981 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12982 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12983 inst.instruction |= LOW4 (inst.operands[2].reg);
12984 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 12985 inst.instruction |= neon_quad (rs) << 6;
5287ad62 12986 inst.instruction |= imm << 8;
5f4273c7 12987
5287ad62
JB
12988 inst.instruction = neon_dp_fixup (inst.instruction);
12989}
12990
12991static void
12992do_neon_rev (void)
12993{
037e8744 12994 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12995 struct neon_type_el et = neon_check_type (2, rs,
12996 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12997 unsigned op = (inst.instruction >> 7) & 3;
12998 /* N (width of reversed regions) is encoded as part of the bitmask. We
12999 extract it here to check the elements to be reversed are smaller.
13000 Otherwise we'd get a reserved instruction. */
13001 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
13002 assert (elsize != 0);
13003 constraint (et.size >= elsize,
13004 _("elements must be smaller than reversal region"));
037e8744 13005 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13006}
13007
13008static void
13009do_neon_dup (void)
13010{
13011 if (inst.operands[1].isscalar)
13012 {
037e8744 13013 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
13014 struct neon_type_el et = neon_check_type (2, rs,
13015 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 13016 unsigned sizebits = et.size >> 3;
dcbf9037 13017 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 13018 int logsize = neon_logbits (et.size);
dcbf9037 13019 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
13020
13021 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
13022 return;
13023
5287ad62
JB
13024 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13025 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13026 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13027 inst.instruction |= LOW4 (dm);
13028 inst.instruction |= HI1 (dm) << 5;
037e8744 13029 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13030 inst.instruction |= x << 17;
13031 inst.instruction |= sizebits << 16;
5f4273c7 13032
5287ad62
JB
13033 inst.instruction = neon_dp_fixup (inst.instruction);
13034 }
13035 else
13036 {
037e8744
JB
13037 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
13038 struct neon_type_el et = neon_check_type (2, rs,
13039 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62
JB
13040 /* Duplicate ARM register to lanes of vector. */
13041 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
13042 switch (et.size)
13043 {
13044 case 8: inst.instruction |= 0x400000; break;
13045 case 16: inst.instruction |= 0x000020; break;
13046 case 32: inst.instruction |= 0x000000; break;
13047 default: break;
13048 }
13049 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13050 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
13051 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 13052 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
13053 /* The encoding for this instruction is identical for the ARM and Thumb
13054 variants, except for the condition field. */
037e8744 13055 do_vfp_cond_or_thumb ();
5287ad62
JB
13056 }
13057}
13058
13059/* VMOV has particularly many variations. It can be one of:
13060 0. VMOV<c><q> <Qd>, <Qm>
13061 1. VMOV<c><q> <Dd>, <Dm>
13062 (Register operations, which are VORR with Rm = Rn.)
13063 2. VMOV<c><q>.<dt> <Qd>, #<imm>
13064 3. VMOV<c><q>.<dt> <Dd>, #<imm>
13065 (Immediate loads.)
13066 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
13067 (ARM register to scalar.)
13068 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
13069 (Two ARM registers to vector.)
13070 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
13071 (Scalar to ARM register.)
13072 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
13073 (Vector to two ARM registers.)
037e8744
JB
13074 8. VMOV.F32 <Sd>, <Sm>
13075 9. VMOV.F64 <Dd>, <Dm>
13076 (VFP register moves.)
13077 10. VMOV.F32 <Sd>, #imm
13078 11. VMOV.F64 <Dd>, #imm
13079 (VFP float immediate load.)
13080 12. VMOV <Rd>, <Sm>
13081 (VFP single to ARM reg.)
13082 13. VMOV <Sd>, <Rm>
13083 (ARM reg to VFP single.)
13084 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13085 (Two ARM regs to two VFP singles.)
13086 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13087 (Two VFP singles to two ARM regs.)
5f4273c7 13088
037e8744
JB
13089 These cases can be disambiguated using neon_select_shape, except cases 1/9
13090 and 3/11 which depend on the operand type too.
5f4273c7 13091
5287ad62 13092 All the encoded bits are hardcoded by this function.
5f4273c7 13093
b7fc2769
JB
13094 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13095 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 13096
5287ad62 13097 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 13098 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
13099
13100static void
13101do_neon_mov (void)
13102{
037e8744
JB
13103 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
13104 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
13105 NS_NULL);
13106 struct neon_type_el et;
13107 const char *ldconst = 0;
5287ad62 13108
037e8744 13109 switch (rs)
5287ad62 13110 {
037e8744
JB
13111 case NS_DD: /* case 1/9. */
13112 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13113 /* It is not an error here if no type is given. */
13114 inst.error = NULL;
13115 if (et.type == NT_float && et.size == 64)
5287ad62 13116 {
037e8744
JB
13117 do_vfp_nsyn_opcode ("fcpyd");
13118 break;
5287ad62 13119 }
037e8744 13120 /* fall through. */
5287ad62 13121
037e8744
JB
13122 case NS_QQ: /* case 0/1. */
13123 {
13124 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13125 return;
13126 /* The architecture manual I have doesn't explicitly state which
13127 value the U bit should have for register->register moves, but
13128 the equivalent VORR instruction has U = 0, so do that. */
13129 inst.instruction = 0x0200110;
13130 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13131 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13132 inst.instruction |= LOW4 (inst.operands[1].reg);
13133 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13134 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13135 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13136 inst.instruction |= neon_quad (rs) << 6;
13137
13138 inst.instruction = neon_dp_fixup (inst.instruction);
13139 }
13140 break;
5f4273c7 13141
037e8744
JB
13142 case NS_DI: /* case 3/11. */
13143 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13144 inst.error = NULL;
13145 if (et.type == NT_float && et.size == 64)
5287ad62 13146 {
037e8744
JB
13147 /* case 11 (fconstd). */
13148 ldconst = "fconstd";
13149 goto encode_fconstd;
5287ad62 13150 }
037e8744
JB
13151 /* fall through. */
13152
13153 case NS_QI: /* case 2/3. */
13154 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13155 return;
13156 inst.instruction = 0x0800010;
13157 neon_move_immediate ();
13158 inst.instruction = neon_dp_fixup (inst.instruction);
5287ad62 13159 break;
5f4273c7 13160
037e8744
JB
13161 case NS_SR: /* case 4. */
13162 {
13163 unsigned bcdebits = 0;
13164 struct neon_type_el et = neon_check_type (2, NS_NULL,
13165 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13166 int logsize = neon_logbits (et.size);
13167 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
13168 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
13169
13170 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13171 _(BAD_FPU));
13172 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13173 && et.size != 32, _(BAD_FPU));
13174 constraint (et.type == NT_invtype, _("bad type for scalar"));
13175 constraint (x >= 64 / et.size, _("scalar index out of range"));
13176
13177 switch (et.size)
13178 {
13179 case 8: bcdebits = 0x8; break;
13180 case 16: bcdebits = 0x1; break;
13181 case 32: bcdebits = 0x0; break;
13182 default: ;
13183 }
13184
13185 bcdebits |= x << logsize;
13186
13187 inst.instruction = 0xe000b10;
13188 do_vfp_cond_or_thumb ();
13189 inst.instruction |= LOW4 (dn) << 16;
13190 inst.instruction |= HI1 (dn) << 7;
13191 inst.instruction |= inst.operands[1].reg << 12;
13192 inst.instruction |= (bcdebits & 3) << 5;
13193 inst.instruction |= (bcdebits >> 2) << 21;
13194 }
13195 break;
5f4273c7 13196
037e8744 13197 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 13198 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 13199 _(BAD_FPU));
b7fc2769 13200
037e8744
JB
13201 inst.instruction = 0xc400b10;
13202 do_vfp_cond_or_thumb ();
13203 inst.instruction |= LOW4 (inst.operands[0].reg);
13204 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13205 inst.instruction |= inst.operands[1].reg << 12;
13206 inst.instruction |= inst.operands[2].reg << 16;
13207 break;
5f4273c7 13208
037e8744
JB
13209 case NS_RS: /* case 6. */
13210 {
13211 struct neon_type_el et = neon_check_type (2, NS_NULL,
13212 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
13213 unsigned logsize = neon_logbits (et.size);
13214 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
13215 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
13216 unsigned abcdebits = 0;
13217
13218 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13219 _(BAD_FPU));
13220 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13221 && et.size != 32, _(BAD_FPU));
13222 constraint (et.type == NT_invtype, _("bad type for scalar"));
13223 constraint (x >= 64 / et.size, _("scalar index out of range"));
13224
13225 switch (et.size)
13226 {
13227 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
13228 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
13229 case 32: abcdebits = 0x00; break;
13230 default: ;
13231 }
13232
13233 abcdebits |= x << logsize;
13234 inst.instruction = 0xe100b10;
13235 do_vfp_cond_or_thumb ();
13236 inst.instruction |= LOW4 (dn) << 16;
13237 inst.instruction |= HI1 (dn) << 7;
13238 inst.instruction |= inst.operands[0].reg << 12;
13239 inst.instruction |= (abcdebits & 3) << 5;
13240 inst.instruction |= (abcdebits >> 2) << 21;
13241 }
13242 break;
5f4273c7 13243
037e8744
JB
13244 case NS_RRD: /* case 7 (fmrrd). */
13245 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13246 _(BAD_FPU));
13247
13248 inst.instruction = 0xc500b10;
13249 do_vfp_cond_or_thumb ();
13250 inst.instruction |= inst.operands[0].reg << 12;
13251 inst.instruction |= inst.operands[1].reg << 16;
13252 inst.instruction |= LOW4 (inst.operands[2].reg);
13253 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13254 break;
5f4273c7 13255
037e8744
JB
13256 case NS_FF: /* case 8 (fcpys). */
13257 do_vfp_nsyn_opcode ("fcpys");
13258 break;
5f4273c7 13259
037e8744
JB
13260 case NS_FI: /* case 10 (fconsts). */
13261 ldconst = "fconsts";
13262 encode_fconstd:
13263 if (is_quarter_float (inst.operands[1].imm))
5287ad62 13264 {
037e8744
JB
13265 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
13266 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
13267 }
13268 else
037e8744
JB
13269 first_error (_("immediate out of range"));
13270 break;
5f4273c7 13271
037e8744
JB
13272 case NS_RF: /* case 12 (fmrs). */
13273 do_vfp_nsyn_opcode ("fmrs");
13274 break;
5f4273c7 13275
037e8744
JB
13276 case NS_FR: /* case 13 (fmsr). */
13277 do_vfp_nsyn_opcode ("fmsr");
13278 break;
5f4273c7 13279
037e8744
JB
13280 /* The encoders for the fmrrs and fmsrr instructions expect three operands
13281 (one of which is a list), but we have parsed four. Do some fiddling to
13282 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13283 expect. */
13284 case NS_RRFF: /* case 14 (fmrrs). */
13285 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
13286 _("VFP registers must be adjacent"));
13287 inst.operands[2].imm = 2;
13288 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13289 do_vfp_nsyn_opcode ("fmrrs");
13290 break;
5f4273c7 13291
037e8744
JB
13292 case NS_FFRR: /* case 15 (fmsrr). */
13293 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
13294 _("VFP registers must be adjacent"));
13295 inst.operands[1] = inst.operands[2];
13296 inst.operands[2] = inst.operands[3];
13297 inst.operands[0].imm = 2;
13298 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13299 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 13300 break;
5f4273c7 13301
5287ad62
JB
13302 default:
13303 abort ();
13304 }
13305}
13306
13307static void
13308do_neon_rshift_round_imm (void)
13309{
037e8744 13310 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13311 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13312 int imm = inst.operands[2].imm;
13313
13314 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
13315 if (imm == 0)
13316 {
13317 inst.operands[2].present = 0;
13318 do_neon_mov ();
13319 return;
13320 }
13321
13322 constraint (imm < 1 || (unsigned)imm > et.size,
13323 _("immediate out of range for shift"));
037e8744 13324 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13325 et.size - imm);
13326}
13327
13328static void
13329do_neon_movl (void)
13330{
13331 struct neon_type_el et = neon_check_type (2, NS_QD,
13332 N_EQK | N_DBL, N_SU_32 | N_KEY);
13333 unsigned sizebits = et.size >> 3;
13334 inst.instruction |= sizebits << 19;
13335 neon_two_same (0, et.type == NT_unsigned, -1);
13336}
13337
13338static void
13339do_neon_trn (void)
13340{
037e8744 13341 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13342 struct neon_type_el et = neon_check_type (2, rs,
13343 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13344 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 13345 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13346}
13347
13348static void
13349do_neon_zip_uzp (void)
13350{
037e8744 13351 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13352 struct neon_type_el et = neon_check_type (2, rs,
13353 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13354 if (rs == NS_DD && et.size == 32)
13355 {
13356 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
13357 inst.instruction = N_MNEM_vtrn;
13358 do_neon_trn ();
13359 return;
13360 }
037e8744 13361 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13362}
13363
13364static void
13365do_neon_sat_abs_neg (void)
13366{
037e8744 13367 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13368 struct neon_type_el et = neon_check_type (2, rs,
13369 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 13370 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13371}
13372
13373static void
13374do_neon_pair_long (void)
13375{
037e8744 13376 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13377 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
13378 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
13379 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 13380 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13381}
13382
13383static void
13384do_neon_recip_est (void)
13385{
037e8744 13386 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13387 struct neon_type_el et = neon_check_type (2, rs,
13388 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
13389 inst.instruction |= (et.type == NT_float) << 8;
037e8744 13390 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13391}
13392
13393static void
13394do_neon_cls (void)
13395{
037e8744 13396 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13397 struct neon_type_el et = neon_check_type (2, rs,
13398 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 13399 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13400}
13401
13402static void
13403do_neon_clz (void)
13404{
037e8744 13405 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13406 struct neon_type_el et = neon_check_type (2, rs,
13407 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 13408 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13409}
13410
13411static void
13412do_neon_cnt (void)
13413{
037e8744 13414 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13415 struct neon_type_el et = neon_check_type (2, rs,
13416 N_EQK | N_INT, N_8 | N_KEY);
037e8744 13417 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13418}
13419
13420static void
13421do_neon_swp (void)
13422{
037e8744
JB
13423 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13424 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
13425}
13426
13427static void
13428do_neon_tbl_tbx (void)
13429{
13430 unsigned listlenbits;
dcbf9037 13431 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 13432
5287ad62
JB
13433 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
13434 {
dcbf9037 13435 first_error (_("bad list length for table lookup"));
5287ad62
JB
13436 return;
13437 }
5f4273c7 13438
5287ad62
JB
13439 listlenbits = inst.operands[1].imm - 1;
13440 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13441 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13442 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13443 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13444 inst.instruction |= LOW4 (inst.operands[2].reg);
13445 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13446 inst.instruction |= listlenbits << 8;
5f4273c7 13447
5287ad62
JB
13448 inst.instruction = neon_dp_fixup (inst.instruction);
13449}
13450
13451static void
13452do_neon_ldm_stm (void)
13453{
13454 /* P, U and L bits are part of bitmask. */
13455 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13456 unsigned offsetbits = inst.operands[1].imm * 2;
13457
037e8744
JB
13458 if (inst.operands[1].issingle)
13459 {
13460 do_vfp_nsyn_ldm_stm (is_dbmode);
13461 return;
13462 }
13463
5287ad62
JB
13464 constraint (is_dbmode && !inst.operands[0].writeback,
13465 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13466
13467 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13468 _("register list must contain at least 1 and at most 16 "
13469 "registers"));
13470
13471 inst.instruction |= inst.operands[0].reg << 16;
13472 inst.instruction |= inst.operands[0].writeback << 21;
13473 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13474 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13475
13476 inst.instruction |= offsetbits;
5f4273c7 13477
037e8744 13478 do_vfp_cond_or_thumb ();
5287ad62
JB
13479}
13480
13481static void
13482do_neon_ldr_str (void)
13483{
5287ad62 13484 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 13485
037e8744
JB
13486 if (inst.operands[0].issingle)
13487 {
cd2f129f
JB
13488 if (is_ldr)
13489 do_vfp_nsyn_opcode ("flds");
13490 else
13491 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
13492 }
13493 else
5287ad62 13494 {
cd2f129f
JB
13495 if (is_ldr)
13496 do_vfp_nsyn_opcode ("fldd");
5287ad62 13497 else
cd2f129f 13498 do_vfp_nsyn_opcode ("fstd");
5287ad62 13499 }
5287ad62
JB
13500}
13501
13502/* "interleave" version also handles non-interleaving register VLD1/VST1
13503 instructions. */
13504
13505static void
13506do_neon_ld_st_interleave (void)
13507{
037e8744 13508 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
13509 N_8 | N_16 | N_32 | N_64);
13510 unsigned alignbits = 0;
13511 unsigned idx;
13512 /* The bits in this table go:
13513 0: register stride of one (0) or two (1)
13514 1,2: register list length, minus one (1, 2, 3, 4).
13515 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13516 We use -1 for invalid entries. */
13517 const int typetable[] =
13518 {
13519 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13520 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13521 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13522 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13523 };
13524 int typebits;
13525
dcbf9037
JB
13526 if (et.type == NT_invtype)
13527 return;
13528
5287ad62
JB
13529 if (inst.operands[1].immisalign)
13530 switch (inst.operands[1].imm >> 8)
13531 {
13532 case 64: alignbits = 1; break;
13533 case 128:
13534 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13535 goto bad_alignment;
13536 alignbits = 2;
13537 break;
13538 case 256:
13539 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13540 goto bad_alignment;
13541 alignbits = 3;
13542 break;
13543 default:
13544 bad_alignment:
dcbf9037 13545 first_error (_("bad alignment"));
5287ad62
JB
13546 return;
13547 }
13548
13549 inst.instruction |= alignbits << 4;
13550 inst.instruction |= neon_logbits (et.size) << 6;
13551
13552 /* Bits [4:6] of the immediate in a list specifier encode register stride
13553 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13554 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13555 up the right value for "type" in a table based on this value and the given
13556 list style, then stick it back. */
13557 idx = ((inst.operands[0].imm >> 4) & 7)
13558 | (((inst.instruction >> 8) & 3) << 3);
13559
13560 typebits = typetable[idx];
5f4273c7 13561
5287ad62
JB
13562 constraint (typebits == -1, _("bad list type for instruction"));
13563
13564 inst.instruction &= ~0xf00;
13565 inst.instruction |= typebits << 8;
13566}
13567
13568/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13569 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13570 otherwise. The variable arguments are a list of pairs of legal (size, align)
13571 values, terminated with -1. */
13572
13573static int
13574neon_alignment_bit (int size, int align, int *do_align, ...)
13575{
13576 va_list ap;
13577 int result = FAIL, thissize, thisalign;
5f4273c7 13578
5287ad62
JB
13579 if (!inst.operands[1].immisalign)
13580 {
13581 *do_align = 0;
13582 return SUCCESS;
13583 }
5f4273c7 13584
5287ad62
JB
13585 va_start (ap, do_align);
13586
13587 do
13588 {
13589 thissize = va_arg (ap, int);
13590 if (thissize == -1)
13591 break;
13592 thisalign = va_arg (ap, int);
13593
13594 if (size == thissize && align == thisalign)
13595 result = SUCCESS;
13596 }
13597 while (result != SUCCESS);
13598
13599 va_end (ap);
13600
13601 if (result == SUCCESS)
13602 *do_align = 1;
13603 else
dcbf9037 13604 first_error (_("unsupported alignment for instruction"));
5f4273c7 13605
5287ad62
JB
13606 return result;
13607}
13608
13609static void
13610do_neon_ld_st_lane (void)
13611{
037e8744 13612 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
13613 int align_good, do_align = 0;
13614 int logsize = neon_logbits (et.size);
13615 int align = inst.operands[1].imm >> 8;
13616 int n = (inst.instruction >> 8) & 3;
13617 int max_el = 64 / et.size;
5f4273c7 13618
dcbf9037
JB
13619 if (et.type == NT_invtype)
13620 return;
5f4273c7 13621
5287ad62
JB
13622 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
13623 _("bad list length"));
13624 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
13625 _("scalar index out of range"));
13626 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
13627 && et.size == 8,
13628 _("stride of 2 unavailable when element size is 8"));
5f4273c7 13629
5287ad62
JB
13630 switch (n)
13631 {
13632 case 0: /* VLD1 / VST1. */
13633 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
13634 32, 32, -1);
13635 if (align_good == FAIL)
13636 return;
13637 if (do_align)
13638 {
13639 unsigned alignbits = 0;
13640 switch (et.size)
13641 {
13642 case 16: alignbits = 0x1; break;
13643 case 32: alignbits = 0x3; break;
13644 default: ;
13645 }
13646 inst.instruction |= alignbits << 4;
13647 }
13648 break;
13649
13650 case 1: /* VLD2 / VST2. */
13651 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
13652 32, 64, -1);
13653 if (align_good == FAIL)
13654 return;
13655 if (do_align)
13656 inst.instruction |= 1 << 4;
13657 break;
13658
13659 case 2: /* VLD3 / VST3. */
13660 constraint (inst.operands[1].immisalign,
13661 _("can't use alignment with this instruction"));
13662 break;
13663
13664 case 3: /* VLD4 / VST4. */
13665 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13666 16, 64, 32, 64, 32, 128, -1);
13667 if (align_good == FAIL)
13668 return;
13669 if (do_align)
13670 {
13671 unsigned alignbits = 0;
13672 switch (et.size)
13673 {
13674 case 8: alignbits = 0x1; break;
13675 case 16: alignbits = 0x1; break;
13676 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
13677 default: ;
13678 }
13679 inst.instruction |= alignbits << 4;
13680 }
13681 break;
13682
13683 default: ;
13684 }
13685
13686 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13687 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13688 inst.instruction |= 1 << (4 + logsize);
5f4273c7 13689
5287ad62
JB
13690 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
13691 inst.instruction |= logsize << 10;
13692}
13693
13694/* Encode single n-element structure to all lanes VLD<n> instructions. */
13695
13696static void
13697do_neon_ld_dup (void)
13698{
037e8744 13699 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
13700 int align_good, do_align = 0;
13701
dcbf9037
JB
13702 if (et.type == NT_invtype)
13703 return;
13704
5287ad62
JB
13705 switch ((inst.instruction >> 8) & 3)
13706 {
13707 case 0: /* VLD1. */
13708 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
13709 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13710 &do_align, 16, 16, 32, 32, -1);
13711 if (align_good == FAIL)
13712 return;
13713 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
13714 {
13715 case 1: break;
13716 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 13717 default: first_error (_("bad list length")); return;
5287ad62
JB
13718 }
13719 inst.instruction |= neon_logbits (et.size) << 6;
13720 break;
13721
13722 case 1: /* VLD2. */
13723 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13724 &do_align, 8, 16, 16, 32, 32, 64, -1);
13725 if (align_good == FAIL)
13726 return;
13727 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
13728 _("bad list length"));
13729 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13730 inst.instruction |= 1 << 5;
13731 inst.instruction |= neon_logbits (et.size) << 6;
13732 break;
13733
13734 case 2: /* VLD3. */
13735 constraint (inst.operands[1].immisalign,
13736 _("can't use alignment with this instruction"));
13737 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
13738 _("bad list length"));
13739 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13740 inst.instruction |= 1 << 5;
13741 inst.instruction |= neon_logbits (et.size) << 6;
13742 break;
13743
13744 case 3: /* VLD4. */
13745 {
13746 int align = inst.operands[1].imm >> 8;
13747 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13748 16, 64, 32, 64, 32, 128, -1);
13749 if (align_good == FAIL)
13750 return;
13751 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
13752 _("bad list length"));
13753 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13754 inst.instruction |= 1 << 5;
13755 if (et.size == 32 && align == 128)
13756 inst.instruction |= 0x3 << 6;
13757 else
13758 inst.instruction |= neon_logbits (et.size) << 6;
13759 }
13760 break;
13761
13762 default: ;
13763 }
13764
13765 inst.instruction |= do_align << 4;
13766}
13767
13768/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13769 apart from bits [11:4]. */
13770
13771static void
13772do_neon_ldx_stx (void)
13773{
13774 switch (NEON_LANE (inst.operands[0].imm))
13775 {
13776 case NEON_INTERLEAVE_LANES:
13777 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
13778 do_neon_ld_st_interleave ();
13779 break;
5f4273c7 13780
5287ad62
JB
13781 case NEON_ALL_LANES:
13782 inst.instruction = NEON_ENC_DUP (inst.instruction);
13783 do_neon_ld_dup ();
13784 break;
5f4273c7 13785
5287ad62
JB
13786 default:
13787 inst.instruction = NEON_ENC_LANE (inst.instruction);
13788 do_neon_ld_st_lane ();
13789 }
13790
13791 /* L bit comes from bit mask. */
13792 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13793 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13794 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 13795
5287ad62
JB
13796 if (inst.operands[1].postind)
13797 {
13798 int postreg = inst.operands[1].imm & 0xf;
13799 constraint (!inst.operands[1].immisreg,
13800 _("post-index must be a register"));
13801 constraint (postreg == 0xd || postreg == 0xf,
13802 _("bad register for post-index"));
13803 inst.instruction |= postreg;
13804 }
13805 else if (inst.operands[1].writeback)
13806 {
13807 inst.instruction |= 0xd;
13808 }
13809 else
5f4273c7
NC
13810 inst.instruction |= 0xf;
13811
5287ad62
JB
13812 if (thumb_mode)
13813 inst.instruction |= 0xf9000000;
13814 else
13815 inst.instruction |= 0xf4000000;
13816}
5287ad62
JB
13817\f
13818/* Overall per-instruction processing. */
13819
13820/* We need to be able to fix up arbitrary expressions in some statements.
13821 This is so that we can handle symbols that are an arbitrary distance from
13822 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13823 which returns part of an address in a form which will be valid for
13824 a data instruction. We do this by pushing the expression into a symbol
13825 in the expr_section, and creating a fix for that. */
13826
13827static void
13828fix_new_arm (fragS * frag,
13829 int where,
13830 short int size,
13831 expressionS * exp,
13832 int pc_rel,
13833 int reloc)
13834{
13835 fixS * new_fix;
13836
13837 switch (exp->X_op)
13838 {
13839 case O_constant:
13840 case O_symbol:
13841 case O_add:
13842 case O_subtract:
13843 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13844 break;
13845
13846 default:
13847 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13848 pc_rel, reloc);
13849 break;
13850 }
13851
13852 /* Mark whether the fix is to a THUMB instruction, or an ARM
13853 instruction. */
13854 new_fix->tc_fix_data = thumb_mode;
13855}
13856
13857/* Create a frg for an instruction requiring relaxation. */
13858static void
13859output_relax_insn (void)
13860{
13861 char * to;
13862 symbolS *sym;
0110f2b8
PB
13863 int offset;
13864
6e1cb1a6
PB
13865 /* The size of the instruction is unknown, so tie the debug info to the
13866 start of the instruction. */
13867 dwarf2_emit_insn (0);
6e1cb1a6 13868
0110f2b8
PB
13869 switch (inst.reloc.exp.X_op)
13870 {
13871 case O_symbol:
13872 sym = inst.reloc.exp.X_add_symbol;
13873 offset = inst.reloc.exp.X_add_number;
13874 break;
13875 case O_constant:
13876 sym = NULL;
13877 offset = inst.reloc.exp.X_add_number;
13878 break;
13879 default:
13880 sym = make_expr_symbol (&inst.reloc.exp);
13881 offset = 0;
13882 break;
13883 }
13884 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
13885 inst.relax, sym, offset, NULL/*offset, opcode*/);
13886 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
13887}
13888
13889/* Write a 32-bit thumb instruction to buf. */
13890static void
13891put_thumb32_insn (char * buf, unsigned long insn)
13892{
13893 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
13894 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
13895}
13896
b99bd4ef 13897static void
c19d1205 13898output_inst (const char * str)
b99bd4ef 13899{
c19d1205 13900 char * to = NULL;
b99bd4ef 13901
c19d1205 13902 if (inst.error)
b99bd4ef 13903 {
c19d1205 13904 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
13905 return;
13906 }
5f4273c7
NC
13907 if (inst.relax)
13908 {
13909 output_relax_insn ();
0110f2b8 13910 return;
5f4273c7 13911 }
c19d1205
ZW
13912 if (inst.size == 0)
13913 return;
b99bd4ef 13914
c19d1205
ZW
13915 to = frag_more (inst.size);
13916
13917 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 13918 {
c19d1205 13919 assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 13920 put_thumb32_insn (to, inst.instruction);
b99bd4ef 13921 }
c19d1205 13922 else if (inst.size > INSN_SIZE)
b99bd4ef 13923 {
c19d1205
ZW
13924 assert (inst.size == (2 * INSN_SIZE));
13925 md_number_to_chars (to, inst.instruction, INSN_SIZE);
13926 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 13927 }
c19d1205
ZW
13928 else
13929 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 13930
c19d1205
ZW
13931 if (inst.reloc.type != BFD_RELOC_UNUSED)
13932 fix_new_arm (frag_now, to - frag_now->fr_literal,
13933 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
13934 inst.reloc.type);
b99bd4ef 13935
c19d1205 13936 dwarf2_emit_insn (inst.size);
c19d1205 13937}
b99bd4ef 13938
c19d1205
ZW
13939/* Tag values used in struct asm_opcode's tag field. */
13940enum opcode_tag
13941{
13942 OT_unconditional, /* Instruction cannot be conditionalized.
13943 The ARM condition field is still 0xE. */
13944 OT_unconditionalF, /* Instruction cannot be conditionalized
13945 and carries 0xF in its ARM condition field. */
13946 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
13947 OT_csuffixF, /* Some forms of the instruction take a conditional
13948 suffix, others place 0xF where the condition field
13949 would be. */
c19d1205
ZW
13950 OT_cinfix3, /* Instruction takes a conditional infix,
13951 beginning at character index 3. (In
13952 unified mode, it becomes a suffix.) */
088fa78e
KH
13953 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
13954 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
13955 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
13956 character index 3, even in unified mode. Used for
13957 legacy instructions where suffix and infix forms
13958 may be ambiguous. */
c19d1205 13959 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 13960 suffix or an infix at character index 3. */
c19d1205
ZW
13961 OT_odd_infix_unc, /* This is the unconditional variant of an
13962 instruction that takes a conditional infix
13963 at an unusual position. In unified mode,
13964 this variant will accept a suffix. */
13965 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
13966 are the conditional variants of instructions that
13967 take conditional infixes in unusual positions.
13968 The infix appears at character index
13969 (tag - OT_odd_infix_0). These are not accepted
13970 in unified mode. */
13971};
b99bd4ef 13972
c19d1205
ZW
13973/* Subroutine of md_assemble, responsible for looking up the primary
13974 opcode from the mnemonic the user wrote. STR points to the
13975 beginning of the mnemonic.
13976
13977 This is not simply a hash table lookup, because of conditional
13978 variants. Most instructions have conditional variants, which are
13979 expressed with a _conditional affix_ to the mnemonic. If we were
13980 to encode each conditional variant as a literal string in the opcode
13981 table, it would have approximately 20,000 entries.
13982
13983 Most mnemonics take this affix as a suffix, and in unified syntax,
13984 'most' is upgraded to 'all'. However, in the divided syntax, some
13985 instructions take the affix as an infix, notably the s-variants of
13986 the arithmetic instructions. Of those instructions, all but six
13987 have the infix appear after the third character of the mnemonic.
13988
13989 Accordingly, the algorithm for looking up primary opcodes given
13990 an identifier is:
13991
13992 1. Look up the identifier in the opcode table.
13993 If we find a match, go to step U.
13994
13995 2. Look up the last two characters of the identifier in the
13996 conditions table. If we find a match, look up the first N-2
13997 characters of the identifier in the opcode table. If we
13998 find a match, go to step CE.
13999
14000 3. Look up the fourth and fifth characters of the identifier in
14001 the conditions table. If we find a match, extract those
14002 characters from the identifier, and look up the remaining
14003 characters in the opcode table. If we find a match, go
14004 to step CM.
14005
14006 4. Fail.
14007
14008 U. Examine the tag field of the opcode structure, in case this is
14009 one of the six instructions with its conditional infix in an
14010 unusual place. If it is, the tag tells us where to find the
14011 infix; look it up in the conditions table and set inst.cond
14012 accordingly. Otherwise, this is an unconditional instruction.
14013 Again set inst.cond accordingly. Return the opcode structure.
14014
14015 CE. Examine the tag field to make sure this is an instruction that
14016 should receive a conditional suffix. If it is not, fail.
14017 Otherwise, set inst.cond from the suffix we already looked up,
14018 and return the opcode structure.
14019
14020 CM. Examine the tag field to make sure this is an instruction that
14021 should receive a conditional infix after the third character.
14022 If it is not, fail. Otherwise, undo the edits to the current
14023 line of input and proceed as for case CE. */
14024
14025static const struct asm_opcode *
14026opcode_lookup (char **str)
14027{
14028 char *end, *base;
14029 char *affix;
14030 const struct asm_opcode *opcode;
14031 const struct asm_cond *cond;
e3cb604e 14032 char save[2];
267d2029 14033 bfd_boolean neon_supported;
5f4273c7 14034
267d2029 14035 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
c19d1205
ZW
14036
14037 /* Scan up to the end of the mnemonic, which must end in white space,
267d2029 14038 '.' (in unified mode, or for Neon instructions), or end of string. */
c19d1205 14039 for (base = end = *str; *end != '\0'; end++)
267d2029 14040 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
c19d1205 14041 break;
b99bd4ef 14042
c19d1205
ZW
14043 if (end == base)
14044 return 0;
b99bd4ef 14045
5287ad62 14046 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 14047 if (end[0] == '.')
b99bd4ef 14048 {
5287ad62 14049 int offset = 2;
5f4273c7 14050
267d2029
JB
14051 /* The .w and .n suffixes are only valid if the unified syntax is in
14052 use. */
14053 if (unified_syntax && end[1] == 'w')
c19d1205 14054 inst.size_req = 4;
267d2029 14055 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
14056 inst.size_req = 2;
14057 else
5287ad62
JB
14058 offset = 0;
14059
14060 inst.vectype.elems = 0;
14061
14062 *str = end + offset;
b99bd4ef 14063
5f4273c7 14064 if (end[offset] == '.')
5287ad62 14065 {
267d2029
JB
14066 /* See if we have a Neon type suffix (possible in either unified or
14067 non-unified ARM syntax mode). */
dcbf9037 14068 if (parse_neon_type (&inst.vectype, str) == FAIL)
5287ad62
JB
14069 return 0;
14070 }
14071 else if (end[offset] != '\0' && end[offset] != ' ')
14072 return 0;
b99bd4ef 14073 }
c19d1205
ZW
14074 else
14075 *str = end;
b99bd4ef 14076
c19d1205
ZW
14077 /* Look for unaffixed or special-case affixed mnemonic. */
14078 opcode = hash_find_n (arm_ops_hsh, base, end - base);
14079 if (opcode)
b99bd4ef 14080 {
c19d1205
ZW
14081 /* step U */
14082 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 14083 {
c19d1205
ZW
14084 inst.cond = COND_ALWAYS;
14085 return opcode;
b99bd4ef 14086 }
b99bd4ef 14087
c19d1205
ZW
14088 if (unified_syntax)
14089 as_warn (_("conditional infixes are deprecated in unified syntax"));
14090 affix = base + (opcode->tag - OT_odd_infix_0);
14091 cond = hash_find_n (arm_cond_hsh, affix, 2);
14092 assert (cond);
b99bd4ef 14093
c19d1205
ZW
14094 inst.cond = cond->value;
14095 return opcode;
14096 }
b99bd4ef 14097
c19d1205
ZW
14098 /* Cannot have a conditional suffix on a mnemonic of less than two
14099 characters. */
14100 if (end - base < 3)
14101 return 0;
b99bd4ef 14102
c19d1205
ZW
14103 /* Look for suffixed mnemonic. */
14104 affix = end - 2;
14105 cond = hash_find_n (arm_cond_hsh, affix, 2);
14106 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
14107 if (opcode && cond)
14108 {
14109 /* step CE */
14110 switch (opcode->tag)
14111 {
e3cb604e
PB
14112 case OT_cinfix3_legacy:
14113 /* Ignore conditional suffixes matched on infix only mnemonics. */
14114 break;
14115
c19d1205 14116 case OT_cinfix3:
088fa78e 14117 case OT_cinfix3_deprecated:
c19d1205
ZW
14118 case OT_odd_infix_unc:
14119 if (!unified_syntax)
e3cb604e 14120 return 0;
c19d1205
ZW
14121 /* else fall through */
14122
14123 case OT_csuffix:
037e8744 14124 case OT_csuffixF:
c19d1205
ZW
14125 case OT_csuf_or_in3:
14126 inst.cond = cond->value;
14127 return opcode;
14128
14129 case OT_unconditional:
14130 case OT_unconditionalF:
dfa9f0d5
PB
14131 if (thumb_mode)
14132 {
14133 inst.cond = cond->value;
14134 }
14135 else
14136 {
14137 /* delayed diagnostic */
14138 inst.error = BAD_COND;
14139 inst.cond = COND_ALWAYS;
14140 }
c19d1205 14141 return opcode;
b99bd4ef 14142
c19d1205
ZW
14143 default:
14144 return 0;
14145 }
14146 }
b99bd4ef 14147
c19d1205
ZW
14148 /* Cannot have a usual-position infix on a mnemonic of less than
14149 six characters (five would be a suffix). */
14150 if (end - base < 6)
14151 return 0;
b99bd4ef 14152
c19d1205
ZW
14153 /* Look for infixed mnemonic in the usual position. */
14154 affix = base + 3;
14155 cond = hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e
PB
14156 if (!cond)
14157 return 0;
14158
14159 memcpy (save, affix, 2);
14160 memmove (affix, affix + 2, (end - affix) - 2);
14161 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
14162 memmove (affix + 2, affix, (end - affix) - 2);
14163 memcpy (affix, save, 2);
14164
088fa78e
KH
14165 if (opcode
14166 && (opcode->tag == OT_cinfix3
14167 || opcode->tag == OT_cinfix3_deprecated
14168 || opcode->tag == OT_csuf_or_in3
14169 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 14170 {
c19d1205 14171 /* step CM */
088fa78e
KH
14172 if (unified_syntax
14173 && (opcode->tag == OT_cinfix3
14174 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
14175 as_warn (_("conditional infixes are deprecated in unified syntax"));
14176
14177 inst.cond = cond->value;
14178 return opcode;
b99bd4ef
NC
14179 }
14180
c19d1205 14181 return 0;
b99bd4ef
NC
14182}
14183
c19d1205
ZW
14184void
14185md_assemble (char *str)
b99bd4ef 14186{
c19d1205
ZW
14187 char *p = str;
14188 const struct asm_opcode * opcode;
b99bd4ef 14189
c19d1205
ZW
14190 /* Align the previous label if needed. */
14191 if (last_label_seen != NULL)
b99bd4ef 14192 {
c19d1205
ZW
14193 symbol_set_frag (last_label_seen, frag_now);
14194 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
14195 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
14196 }
14197
c19d1205
ZW
14198 memset (&inst, '\0', sizeof (inst));
14199 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 14200
c19d1205
ZW
14201 opcode = opcode_lookup (&p);
14202 if (!opcode)
b99bd4ef 14203 {
c19d1205 14204 /* It wasn't an instruction, but it might be a register alias of
dcbf9037
JB
14205 the form alias .req reg, or a Neon .dn/.qn directive. */
14206 if (!create_register_alias (str, p)
14207 && !create_neon_reg_alias (str, p))
c19d1205 14208 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 14209
b99bd4ef
NC
14210 return;
14211 }
14212
088fa78e
KH
14213 if (opcode->tag == OT_cinfix3_deprecated)
14214 as_warn (_("s suffix on comparison instruction is deprecated"));
14215
037e8744
JB
14216 /* The value which unconditional instructions should have in place of the
14217 condition field. */
14218 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
14219
c19d1205 14220 if (thumb_mode)
b99bd4ef 14221 {
e74cfd16 14222 arm_feature_set variant;
8f06b2d8
PB
14223
14224 variant = cpu_variant;
14225 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
14226 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
14227 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 14228 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
14229 if (!opcode->tvariant
14230 || (thumb_mode == 1
14231 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 14232 {
c19d1205 14233 as_bad (_("selected processor does not support `%s'"), str);
b99bd4ef
NC
14234 return;
14235 }
c19d1205
ZW
14236 if (inst.cond != COND_ALWAYS && !unified_syntax
14237 && opcode->tencode != do_t_branch)
b99bd4ef 14238 {
c19d1205 14239 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
14240 return;
14241 }
14242
076d447c
PB
14243 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2) && !inst.size_req)
14244 {
14245 /* Implicit require narrow instructions on Thumb-1. This avoids
14246 relaxation accidentally introducing Thumb-2 instructions. */
7e806470
PB
14247 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
14248 && !ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr))
076d447c
PB
14249 inst.size_req = 2;
14250 }
14251
e27ec89e
PB
14252 /* Check conditional suffixes. */
14253 if (current_it_mask)
14254 {
14255 int cond;
14256 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
dfa9f0d5
PB
14257 current_it_mask <<= 1;
14258 current_it_mask &= 0x1f;
14259 /* The BKPT instruction is unconditional even in an IT block. */
14260 if (!inst.error
14261 && cond != inst.cond && opcode->tencode != do_t_bkpt)
e27ec89e
PB
14262 {
14263 as_bad (_("incorrect condition in IT block"));
14264 return;
14265 }
e27ec89e
PB
14266 }
14267 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
14268 {
6decc662 14269 as_bad (_("thumb conditional instruction not in IT block"));
e27ec89e
PB
14270 return;
14271 }
14272
c19d1205
ZW
14273 mapping_state (MAP_THUMB);
14274 inst.instruction = opcode->tvalue;
14275
14276 if (!parse_operands (p, opcode->operands))
14277 opcode->tencode ();
14278
e27ec89e
PB
14279 /* Clear current_it_mask at the end of an IT block. */
14280 if (current_it_mask == 0x10)
14281 current_it_mask = 0;
14282
0110f2b8 14283 if (!(inst.error || inst.relax))
b99bd4ef 14284 {
c19d1205
ZW
14285 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
14286 inst.size = (inst.instruction > 0xffff ? 4 : 2);
14287 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 14288 {
c19d1205 14289 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
14290 return;
14291 }
14292 }
076d447c
PB
14293
14294 /* Something has gone badly wrong if we try to relax a fixed size
14295 instruction. */
14296 assert (inst.size_req == 0 || !inst.relax);
14297
e74cfd16
PB
14298 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14299 *opcode->tvariant);
ee065d83 14300 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 14301 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 14302 anything other than bl/blx and v6-M instructions.
ee065d83 14303 This is overly pessimistic for relaxable instructions. */
7e806470
PB
14304 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
14305 || inst.relax)
14306 && !ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr))
e74cfd16
PB
14307 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14308 arm_ext_v6t2);
c19d1205 14309 }
3e9e4fcf 14310 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 14311 {
845b51d6
PB
14312 bfd_boolean is_bx;
14313
14314 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
14315 is_bx = (opcode->aencode == do_bx);
14316
c19d1205 14317 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
14318 if (!(is_bx && fix_v4bx)
14319 && !(opcode->avariant &&
14320 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 14321 {
c19d1205
ZW
14322 as_bad (_("selected processor does not support `%s'"), str);
14323 return;
b99bd4ef 14324 }
c19d1205 14325 if (inst.size_req)
b99bd4ef 14326 {
c19d1205
ZW
14327 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
14328 return;
b99bd4ef
NC
14329 }
14330
c19d1205
ZW
14331 mapping_state (MAP_ARM);
14332 inst.instruction = opcode->avalue;
14333 if (opcode->tag == OT_unconditionalF)
14334 inst.instruction |= 0xF << 28;
14335 else
14336 inst.instruction |= inst.cond << 28;
14337 inst.size = INSN_SIZE;
14338 if (!parse_operands (p, opcode->operands))
14339 opcode->aencode ();
ee065d83
PB
14340 /* Arm mode bx is marked as both v4T and v5 because it's still required
14341 on a hypothetical non-thumb v5 core. */
845b51d6 14342 if (is_bx)
e74cfd16 14343 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 14344 else
e74cfd16
PB
14345 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
14346 *opcode->avariant);
b99bd4ef 14347 }
3e9e4fcf
JB
14348 else
14349 {
14350 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14351 "-- `%s'"), str);
14352 return;
14353 }
c19d1205
ZW
14354 output_inst (str);
14355}
b99bd4ef 14356
c19d1205
ZW
14357/* Various frobbings of labels and their addresses. */
14358
14359void
14360arm_start_line_hook (void)
14361{
14362 last_label_seen = NULL;
b99bd4ef
NC
14363}
14364
c19d1205
ZW
14365void
14366arm_frob_label (symbolS * sym)
b99bd4ef 14367{
c19d1205 14368 last_label_seen = sym;
b99bd4ef 14369
c19d1205 14370 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 14371
c19d1205
ZW
14372#if defined OBJ_COFF || defined OBJ_ELF
14373 ARM_SET_INTERWORK (sym, support_interwork);
14374#endif
b99bd4ef 14375
5f4273c7 14376 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
14377 as Thumb functions. This is because these labels, whilst
14378 they exist inside Thumb code, are not the entry points for
14379 possible ARM->Thumb calls. Also, these labels can be used
14380 as part of a computed goto or switch statement. eg gcc
14381 can generate code that looks like this:
b99bd4ef 14382
c19d1205
ZW
14383 ldr r2, [pc, .Laaa]
14384 lsl r3, r3, #2
14385 ldr r2, [r3, r2]
14386 mov pc, r2
b99bd4ef 14387
c19d1205
ZW
14388 .Lbbb: .word .Lxxx
14389 .Lccc: .word .Lyyy
14390 ..etc...
14391 .Laaa: .word Lbbb
b99bd4ef 14392
c19d1205
ZW
14393 The first instruction loads the address of the jump table.
14394 The second instruction converts a table index into a byte offset.
14395 The third instruction gets the jump address out of the table.
14396 The fourth instruction performs the jump.
b99bd4ef 14397
c19d1205
ZW
14398 If the address stored at .Laaa is that of a symbol which has the
14399 Thumb_Func bit set, then the linker will arrange for this address
14400 to have the bottom bit set, which in turn would mean that the
14401 address computation performed by the third instruction would end
14402 up with the bottom bit set. Since the ARM is capable of unaligned
14403 word loads, the instruction would then load the incorrect address
14404 out of the jump table, and chaos would ensue. */
14405 if (label_is_thumb_function_name
14406 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
14407 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 14408 {
c19d1205
ZW
14409 /* When the address of a Thumb function is taken the bottom
14410 bit of that address should be set. This will allow
14411 interworking between Arm and Thumb functions to work
14412 correctly. */
b99bd4ef 14413
c19d1205 14414 THUMB_SET_FUNC (sym, 1);
b99bd4ef 14415
c19d1205 14416 label_is_thumb_function_name = FALSE;
b99bd4ef 14417 }
07a53e5c 14418
07a53e5c 14419 dwarf2_emit_label (sym);
b99bd4ef
NC
14420}
14421
c19d1205
ZW
14422int
14423arm_data_in_code (void)
b99bd4ef 14424{
c19d1205 14425 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 14426 {
c19d1205
ZW
14427 *input_line_pointer = '/';
14428 input_line_pointer += 5;
14429 *input_line_pointer = 0;
14430 return 1;
b99bd4ef
NC
14431 }
14432
c19d1205 14433 return 0;
b99bd4ef
NC
14434}
14435
c19d1205
ZW
14436char *
14437arm_canonicalize_symbol_name (char * name)
b99bd4ef 14438{
c19d1205 14439 int len;
b99bd4ef 14440
c19d1205
ZW
14441 if (thumb_mode && (len = strlen (name)) > 5
14442 && streq (name + len - 5, "/data"))
14443 *(name + len - 5) = 0;
b99bd4ef 14444
c19d1205 14445 return name;
b99bd4ef 14446}
c19d1205
ZW
14447\f
14448/* Table of all register names defined by default. The user can
14449 define additional names with .req. Note that all register names
14450 should appear in both upper and lowercase variants. Some registers
14451 also have mixed-case names. */
b99bd4ef 14452
dcbf9037 14453#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 14454#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 14455#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
14456#define REGSET(p,t) \
14457 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14458 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14459 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14460 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
14461#define REGSETH(p,t) \
14462 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14463 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14464 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14465 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14466#define REGSET2(p,t) \
14467 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14468 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14469 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14470 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
7ed4c4c5 14471
c19d1205 14472static const struct reg_entry reg_names[] =
7ed4c4c5 14473{
c19d1205
ZW
14474 /* ARM integer registers. */
14475 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 14476
c19d1205
ZW
14477 /* ATPCS synonyms. */
14478 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14479 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14480 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 14481
c19d1205
ZW
14482 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14483 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14484 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 14485
c19d1205
ZW
14486 /* Well-known aliases. */
14487 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14488 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14489
14490 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14491 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14492
14493 /* Coprocessor numbers. */
14494 REGSET(p, CP), REGSET(P, CP),
14495
14496 /* Coprocessor register numbers. The "cr" variants are for backward
14497 compatibility. */
14498 REGSET(c, CN), REGSET(C, CN),
14499 REGSET(cr, CN), REGSET(CR, CN),
14500
14501 /* FPA registers. */
14502 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
14503 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
14504
14505 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
14506 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
14507
14508 /* VFP SP registers. */
5287ad62
JB
14509 REGSET(s,VFS), REGSET(S,VFS),
14510 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
14511
14512 /* VFP DP Registers. */
5287ad62
JB
14513 REGSET(d,VFD), REGSET(D,VFD),
14514 /* Extra Neon DP registers. */
14515 REGSETH(d,VFD), REGSETH(D,VFD),
14516
14517 /* Neon QP registers. */
14518 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
14519
14520 /* VFP control registers. */
14521 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
14522 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
14523 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
14524 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
14525 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
14526 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
14527
14528 /* Maverick DSP coprocessor registers. */
14529 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
14530 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
14531
14532 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
14533 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
14534 REGDEF(dspsc,0,DSPSC),
14535
14536 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
14537 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
14538 REGDEF(DSPSC,0,DSPSC),
14539
14540 /* iWMMXt data registers - p0, c0-15. */
14541 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
14542
14543 /* iWMMXt control registers - p1, c0-3. */
14544 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
14545 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
14546 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
14547 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
14548
14549 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14550 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
14551 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
14552 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
14553 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
14554
14555 /* XScale accumulator registers. */
14556 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
14557};
14558#undef REGDEF
14559#undef REGNUM
14560#undef REGSET
7ed4c4c5 14561
c19d1205
ZW
14562/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14563 within psr_required_here. */
14564static const struct asm_psr psrs[] =
14565{
14566 /* Backward compatibility notation. Note that "all" is no longer
14567 truly all possible PSR bits. */
14568 {"all", PSR_c | PSR_f},
14569 {"flg", PSR_f},
14570 {"ctl", PSR_c},
14571
14572 /* Individual flags. */
14573 {"f", PSR_f},
14574 {"c", PSR_c},
14575 {"x", PSR_x},
14576 {"s", PSR_s},
14577 /* Combinations of flags. */
14578 {"fs", PSR_f | PSR_s},
14579 {"fx", PSR_f | PSR_x},
14580 {"fc", PSR_f | PSR_c},
14581 {"sf", PSR_s | PSR_f},
14582 {"sx", PSR_s | PSR_x},
14583 {"sc", PSR_s | PSR_c},
14584 {"xf", PSR_x | PSR_f},
14585 {"xs", PSR_x | PSR_s},
14586 {"xc", PSR_x | PSR_c},
14587 {"cf", PSR_c | PSR_f},
14588 {"cs", PSR_c | PSR_s},
14589 {"cx", PSR_c | PSR_x},
14590 {"fsx", PSR_f | PSR_s | PSR_x},
14591 {"fsc", PSR_f | PSR_s | PSR_c},
14592 {"fxs", PSR_f | PSR_x | PSR_s},
14593 {"fxc", PSR_f | PSR_x | PSR_c},
14594 {"fcs", PSR_f | PSR_c | PSR_s},
14595 {"fcx", PSR_f | PSR_c | PSR_x},
14596 {"sfx", PSR_s | PSR_f | PSR_x},
14597 {"sfc", PSR_s | PSR_f | PSR_c},
14598 {"sxf", PSR_s | PSR_x | PSR_f},
14599 {"sxc", PSR_s | PSR_x | PSR_c},
14600 {"scf", PSR_s | PSR_c | PSR_f},
14601 {"scx", PSR_s | PSR_c | PSR_x},
14602 {"xfs", PSR_x | PSR_f | PSR_s},
14603 {"xfc", PSR_x | PSR_f | PSR_c},
14604 {"xsf", PSR_x | PSR_s | PSR_f},
14605 {"xsc", PSR_x | PSR_s | PSR_c},
14606 {"xcf", PSR_x | PSR_c | PSR_f},
14607 {"xcs", PSR_x | PSR_c | PSR_s},
14608 {"cfs", PSR_c | PSR_f | PSR_s},
14609 {"cfx", PSR_c | PSR_f | PSR_x},
14610 {"csf", PSR_c | PSR_s | PSR_f},
14611 {"csx", PSR_c | PSR_s | PSR_x},
14612 {"cxf", PSR_c | PSR_x | PSR_f},
14613 {"cxs", PSR_c | PSR_x | PSR_s},
14614 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
14615 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
14616 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
14617 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
14618 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
14619 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
14620 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
14621 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
14622 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
14623 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
14624 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
14625 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
14626 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
14627 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
14628 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
14629 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
14630 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
14631 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
14632 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
14633 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
14634 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
14635 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
14636 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
14637 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
14638};
14639
62b3e311
PB
14640/* Table of V7M psr names. */
14641static const struct asm_psr v7m_psrs[] =
14642{
2b744c99
PB
14643 {"apsr", 0 }, {"APSR", 0 },
14644 {"iapsr", 1 }, {"IAPSR", 1 },
14645 {"eapsr", 2 }, {"EAPSR", 2 },
14646 {"psr", 3 }, {"PSR", 3 },
14647 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
14648 {"ipsr", 5 }, {"IPSR", 5 },
14649 {"epsr", 6 }, {"EPSR", 6 },
14650 {"iepsr", 7 }, {"IEPSR", 7 },
14651 {"msp", 8 }, {"MSP", 8 },
14652 {"psp", 9 }, {"PSP", 9 },
14653 {"primask", 16}, {"PRIMASK", 16},
14654 {"basepri", 17}, {"BASEPRI", 17},
14655 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
14656 {"faultmask", 19}, {"FAULTMASK", 19},
14657 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
14658};
14659
c19d1205
ZW
14660/* Table of all shift-in-operand names. */
14661static const struct asm_shift_name shift_names [] =
b99bd4ef 14662{
c19d1205
ZW
14663 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
14664 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
14665 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
14666 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
14667 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
14668 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
14669};
b99bd4ef 14670
c19d1205
ZW
14671/* Table of all explicit relocation names. */
14672#ifdef OBJ_ELF
14673static struct reloc_entry reloc_names[] =
14674{
14675 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
14676 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
14677 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
14678 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
14679 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
14680 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
14681 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
14682 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
14683 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
14684 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
14685 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
14686};
14687#endif
b99bd4ef 14688
c19d1205
ZW
14689/* Table of all conditional affixes. 0xF is not defined as a condition code. */
14690static const struct asm_cond conds[] =
14691{
14692 {"eq", 0x0},
14693 {"ne", 0x1},
14694 {"cs", 0x2}, {"hs", 0x2},
14695 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14696 {"mi", 0x4},
14697 {"pl", 0x5},
14698 {"vs", 0x6},
14699 {"vc", 0x7},
14700 {"hi", 0x8},
14701 {"ls", 0x9},
14702 {"ge", 0xa},
14703 {"lt", 0xb},
14704 {"gt", 0xc},
14705 {"le", 0xd},
14706 {"al", 0xe}
14707};
bfae80f2 14708
62b3e311
PB
14709static struct asm_barrier_opt barrier_opt_names[] =
14710{
14711 { "sy", 0xf },
14712 { "un", 0x7 },
14713 { "st", 0xe },
14714 { "unst", 0x6 }
14715};
14716
c19d1205
ZW
14717/* Table of ARM-format instructions. */
14718
14719/* Macros for gluing together operand strings. N.B. In all cases
14720 other than OPS0, the trailing OP_stop comes from default
14721 zero-initialization of the unspecified elements of the array. */
14722#define OPS0() { OP_stop, }
14723#define OPS1(a) { OP_##a, }
14724#define OPS2(a,b) { OP_##a,OP_##b, }
14725#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14726#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14727#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14728#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14729
14730/* These macros abstract out the exact format of the mnemonic table and
14731 save some repeated characters. */
14732
14733/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14734#define TxCE(mnem, op, top, nops, ops, ae, te) \
14735 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 14736 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14737
14738/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14739 a T_MNEM_xyz enumerator. */
14740#define TCE(mnem, aop, top, nops, ops, ae, te) \
14741 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14742#define tCE(mnem, aop, top, nops, ops, ae, te) \
14743 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14744
14745/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14746 infix after the third character. */
14747#define TxC3(mnem, op, top, nops, ops, ae, te) \
14748 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 14749 THUMB_VARIANT, do_##ae, do_##te }
088fa78e
KH
14750#define TxC3w(mnem, op, top, nops, ops, ae, te) \
14751 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14752 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14753#define TC3(mnem, aop, top, nops, ops, ae, te) \
14754 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e
KH
14755#define TC3w(mnem, aop, top, nops, ops, ae, te) \
14756 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205
ZW
14757#define tC3(mnem, aop, top, nops, ops, ae, te) \
14758 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
088fa78e
KH
14759#define tC3w(mnem, aop, top, nops, ops, ae, te) \
14760 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
c19d1205
ZW
14761
14762/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14763 appear in the condition table. */
14764#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14765 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
1887dd22 14766 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14767
14768#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14769 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14770 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14771 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14772 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14773 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14774 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14775 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14776 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14777 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14778 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14779 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14780 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14781 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14782 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14783 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14784 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14785 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14786 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14787 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14788
14789#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14790 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14791#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14792 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14793
14794/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
14795 field is still 0xE. Many of the Thumb variants can be executed
14796 conditionally, so this is checked separately. */
c19d1205
ZW
14797#define TUE(mnem, op, top, nops, ops, ae, te) \
14798 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 14799 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14800
14801/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14802 condition code field. */
14803#define TUF(mnem, op, top, nops, ops, ae, te) \
14804 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 14805 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14806
14807/* ARM-only variants of all the above. */
6a86118a
NC
14808#define CE(mnem, op, nops, ops, ae) \
14809 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14810
14811#define C3(mnem, op, nops, ops, ae) \
14812 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14813
e3cb604e
PB
14814/* Legacy mnemonics that always have conditional infix after the third
14815 character. */
14816#define CL(mnem, op, nops, ops, ae) \
14817 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14818 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14819
8f06b2d8
PB
14820/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14821#define cCE(mnem, op, nops, ops, ae) \
14822 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14823
e3cb604e
PB
14824/* Legacy coprocessor instructions where conditional infix and conditional
14825 suffix are ambiguous. For consistency this includes all FPA instructions,
14826 not just the potentially ambiguous ones. */
14827#define cCL(mnem, op, nops, ops, ae) \
14828 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14829 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14830
14831/* Coprocessor, takes either a suffix or a position-3 infix
14832 (for an FPA corner case). */
14833#define C3E(mnem, op, nops, ops, ae) \
14834 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14835 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 14836
6a86118a
NC
14837#define xCM_(m1, m2, m3, op, nops, ops, ae) \
14838 { #m1 #m2 #m3, OPS##nops ops, \
14839 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14840 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14841
14842#define CM(m1, m2, op, nops, ops, ae) \
14843 xCM_(m1, , m2, op, nops, ops, ae), \
14844 xCM_(m1, eq, m2, op, nops, ops, ae), \
14845 xCM_(m1, ne, m2, op, nops, ops, ae), \
14846 xCM_(m1, cs, m2, op, nops, ops, ae), \
14847 xCM_(m1, hs, m2, op, nops, ops, ae), \
14848 xCM_(m1, cc, m2, op, nops, ops, ae), \
14849 xCM_(m1, ul, m2, op, nops, ops, ae), \
14850 xCM_(m1, lo, m2, op, nops, ops, ae), \
14851 xCM_(m1, mi, m2, op, nops, ops, ae), \
14852 xCM_(m1, pl, m2, op, nops, ops, ae), \
14853 xCM_(m1, vs, m2, op, nops, ops, ae), \
14854 xCM_(m1, vc, m2, op, nops, ops, ae), \
14855 xCM_(m1, hi, m2, op, nops, ops, ae), \
14856 xCM_(m1, ls, m2, op, nops, ops, ae), \
14857 xCM_(m1, ge, m2, op, nops, ops, ae), \
14858 xCM_(m1, lt, m2, op, nops, ops, ae), \
14859 xCM_(m1, gt, m2, op, nops, ops, ae), \
14860 xCM_(m1, le, m2, op, nops, ops, ae), \
14861 xCM_(m1, al, m2, op, nops, ops, ae)
14862
14863#define UE(mnem, op, nops, ops, ae) \
14864 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14865
14866#define UF(mnem, op, nops, ops, ae) \
14867 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14868
5287ad62
JB
14869/* Neon data-processing. ARM versions are unconditional with cond=0xf.
14870 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14871 use the same encoding function for each. */
14872#define NUF(mnem, op, nops, ops, enc) \
14873 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14874 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14875
14876/* Neon data processing, version which indirects through neon_enc_tab for
14877 the various overloaded versions of opcodes. */
14878#define nUF(mnem, op, nops, ops, enc) \
14879 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14880 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14881
14882/* Neon insn with conditional suffix for the ARM version, non-overloaded
14883 version. */
037e8744
JB
14884#define NCE_tag(mnem, op, nops, ops, enc, tag) \
14885 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
14886 THUMB_VARIANT, do_##enc, do_##enc }
14887
037e8744
JB
14888#define NCE(mnem, op, nops, ops, enc) \
14889 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14890
14891#define NCEF(mnem, op, nops, ops, enc) \
14892 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14893
5287ad62 14894/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744
JB
14895#define nCE_tag(mnem, op, nops, ops, enc, tag) \
14896 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
5287ad62
JB
14897 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14898
037e8744
JB
14899#define nCE(mnem, op, nops, ops, enc) \
14900 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14901
14902#define nCEF(mnem, op, nops, ops, enc) \
14903 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14904
c19d1205
ZW
14905#define do_0 0
14906
14907/* Thumb-only, unconditional. */
14908#define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
14909
c19d1205 14910static const struct asm_opcode insns[] =
bfae80f2 14911{
e74cfd16
PB
14912#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
14913#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
14914 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
14915 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
14916 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
14917 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
14918 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
14919 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
4962c51a
MS
14920 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
14921 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
c19d1205
ZW
14922 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
14923 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
14924 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
14925 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
14926 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
14927 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
14928 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
14929 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
14930
14931 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
14932 for setting PSR flag bits. They are obsolete in V6 and do not
14933 have Thumb equivalents. */
14934 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14935 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14936 CL(tstp, 110f000, 2, (RR, SH), cmp),
c19d1205 14937 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
088fa78e 14938 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
e3cb604e 14939 CL(cmpp, 150f000, 2, (RR, SH), cmp),
c19d1205 14940 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14941 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14942 CL(cmnp, 170f000, 2, (RR, SH), cmp),
c19d1205
ZW
14943
14944 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
14945 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
14946 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
14947 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
14948
4962c51a
MS
14949 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
14950 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14951 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
14952 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
c19d1205 14953
f5208ef2 14954 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14955 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14956 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
f5208ef2 14957 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14958 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14959 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14960
14961 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
c16d2bf0 14962 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
0110f2b8 14963 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
39b41c9c 14964 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 14965
c19d1205 14966 /* Pseudo ops. */
e9f89963 14967 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac
ZW
14968 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
14969 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
14970
14971 /* Thumb-compatibility pseudo ops. */
14972 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
14973 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
14974 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
14975 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
14976 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
2fc8bdac 14977 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
c19d1205
ZW
14978 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
14979 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
14980 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
14981 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
14982 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
14983 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
14984
16a4cf17
PB
14985 /* These may simplify to neg. */
14986 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
14987 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
14988
c19d1205 14989#undef THUMB_VARIANT
e74cfd16 14990#define THUMB_VARIANT &arm_ext_v6
2fc8bdac 14991 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
14992
14993 /* V1 instructions with no Thumb analogue prior to V6T2. */
14994#undef THUMB_VARIANT
e74cfd16 14995#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 14996 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14997 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14998 CL(teqp, 130f000, 2, (RR, SH), cmp),
c19d1205
ZW
14999
15000 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 15001 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 15002 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 15003 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 15004
9c3c69f2
PB
15005 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15006 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 15007
9c3c69f2
PB
15008 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15009 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
15010
15011 /* V1 instructions with no Thumb analogue at all. */
15012 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
15013 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
15014
15015 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
15016 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
15017 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
15018 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
15019 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
15020 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
15021 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
15022 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
15023
15024#undef ARM_VARIANT
e74cfd16 15025#define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
c19d1205 15026#undef THUMB_VARIANT
e74cfd16 15027#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
15028 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15029 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15030
15031#undef THUMB_VARIANT
e74cfd16 15032#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
15033 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15034 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
15035
15036 /* Generic coprocessor instructions. */
15037 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
4962c51a
MS
15038 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15039 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15040 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15041 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
15042 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15043 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15044
15045#undef ARM_VARIANT
e74cfd16 15046#define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
c19d1205
ZW
15047 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15048 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15049
15050#undef ARM_VARIANT
e74cfd16 15051#define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
7e806470
PB
15052#undef THUMB_VARIANT
15053#define THUMB_VARIANT &arm_ext_msr
037e8744
JB
15054 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
15055 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
c19d1205
ZW
15056
15057#undef ARM_VARIANT
e74cfd16 15058#define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
7e806470
PB
15059#undef THUMB_VARIANT
15060#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
15061 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15062 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15063 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15064 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15065 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15066 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15067 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15068 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15069
15070#undef ARM_VARIANT
e74cfd16 15071#define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
c19d1205 15072#undef THUMB_VARIANT
e74cfd16 15073#define THUMB_VARIANT &arm_ext_v4t
4962c51a
MS
15074 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15075 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15076 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15077 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15078 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15079 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
c19d1205
ZW
15080
15081#undef ARM_VARIANT
e74cfd16 15082#define ARM_VARIANT &arm_ext_v4t_5
c19d1205
ZW
15083 /* ARM Architecture 4T. */
15084 /* Note: bx (and blx) are required on V5, even if the processor does
15085 not support Thumb. */
15086 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
15087
15088#undef ARM_VARIANT
e74cfd16 15089#define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
c19d1205 15090#undef THUMB_VARIANT
e74cfd16 15091#define THUMB_VARIANT &arm_ext_v5t
c19d1205
ZW
15092 /* Note: blx has 2 variants; the .value coded here is for
15093 BLX(2). Only this variant has conditional execution. */
15094 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
15095 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
15096
15097#undef THUMB_VARIANT
e74cfd16 15098#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 15099 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
4962c51a
MS
15100 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15101 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15102 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15103 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
15104 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15105 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15106 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15107
15108#undef ARM_VARIANT
e74cfd16 15109#define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
c19d1205
ZW
15110 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15111 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15112 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15113 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15114
15115 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15116 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15117
15118 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15119 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15120 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15121 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15122
15123 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15124 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15125 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15126 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15127
15128 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15129 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15130
15131 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15132 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15133 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15134 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15135
15136#undef ARM_VARIANT
e74cfd16 15137#define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
c19d1205 15138 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
79d49516
PB
15139 TC3(ldrd, 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15140 TC3(strd, 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
c19d1205
ZW
15141
15142 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15143 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15144
15145#undef ARM_VARIANT
e74cfd16 15146#define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
c19d1205
ZW
15147 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
15148
15149#undef ARM_VARIANT
e74cfd16 15150#define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
c19d1205 15151#undef THUMB_VARIANT
e74cfd16 15152#define THUMB_VARIANT &arm_ext_v6
c19d1205
ZW
15153 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
15154 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
15155 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15156 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15157 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15158 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15159 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15160 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15161 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15162 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
15163
15164#undef THUMB_VARIANT
e74cfd16 15165#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 15166 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
91568d08 15167 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
c19d1205
ZW
15168 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15169 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311
PB
15170
15171 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
15172 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
15173
15174/* ARM V6 not included in V7M (eg. integer SIMD). */
15175#undef THUMB_VARIANT
15176#define THUMB_VARIANT &arm_ext_v6_notm
dfa9f0d5 15177 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c19d1205
ZW
15178 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
15179 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
15180 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15181 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15182 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15183 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15184 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15185 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15186 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15187 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15188 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15189 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15190 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15191 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15192 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15193 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15194 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15195 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15196 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15197 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15198 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15199 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15200 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15201 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15202 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15203 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15204 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15205 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15206 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15207 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15208 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15209 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15210 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15211 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15212 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15213 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15214 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15215 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15216 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15217 UF(rfeib, 9900a00, 1, (RRw), rfe),
15218 UF(rfeda, 8100a00, 1, (RRw), rfe),
15219 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15220 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15221 UF(rfefa, 9900a00, 1, (RRw), rfe),
15222 UF(rfeea, 8100a00, 1, (RRw), rfe),
15223 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15224 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15225 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15226 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15227 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15228 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15229 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15230 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15231 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
f1022c90 15232 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15233 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15234 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15235 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15236 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15237 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15238 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15239 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15240 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15241 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15242 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15243 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15244 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15245 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15246 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15247 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15248 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15249 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15250 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
b6702015
PB
15251 TUF(srsia, 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
15252 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
15253 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
15254 TUF(srsdb, 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c19d1205 15255 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
c19d1205
ZW
15256 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
15257 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15258 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
c19d1205
ZW
15259 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
15260
15261#undef ARM_VARIANT
e74cfd16 15262#define ARM_VARIANT &arm_ext_v6k
c19d1205 15263#undef THUMB_VARIANT
e74cfd16 15264#define THUMB_VARIANT &arm_ext_v6k
c19d1205
ZW
15265 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
15266 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
15267 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
15268 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
15269
ebdca51a
PB
15270#undef THUMB_VARIANT
15271#define THUMB_VARIANT &arm_ext_v6_notm
15272 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
15273 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
15274
c19d1205 15275#undef THUMB_VARIANT
e74cfd16 15276#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
15277 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15278 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
c19d1205
ZW
15279 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15280 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
c19d1205
ZW
15281 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
15282
15283#undef ARM_VARIANT
e74cfd16 15284#define ARM_VARIANT &arm_ext_v6z
3eb17e6b 15285 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205
ZW
15286
15287#undef ARM_VARIANT
e74cfd16 15288#define ARM_VARIANT &arm_ext_v6t2
c19d1205
ZW
15289 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
15290 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
15291 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15292 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15293
15294 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
b6895b4f
PB
15295 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
15296 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
401a54cf 15297 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205
ZW
15298
15299 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15300 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15301 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15302 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15303
25fe350b
MS
15304 UT(cbnz, b900, 2, (RR, EXP), t_cbz),
15305 UT(cbz, b100, 2, (RR, EXP), t_cbz),
f91e006c
PB
15306 /* ARM does not really have an IT instruction, so always allow it. */
15307#undef ARM_VARIANT
15308#define ARM_VARIANT &arm_ext_v1
c19d1205
ZW
15309 TUE(it, 0, bf08, 1, (COND), it, t_it),
15310 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
15311 TUE(ite, 0, bf04, 1, (COND), it, t_it),
15312 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
15313 TUE(itet, 0, bf06, 1, (COND), it, t_it),
15314 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
15315 TUE(itee, 0, bf02, 1, (COND), it, t_it),
15316 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
15317 TUE(itett, 0, bf07, 1, (COND), it, t_it),
15318 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
15319 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
15320 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
15321 TUE(itete, 0, bf05, 1, (COND), it, t_it),
15322 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
15323 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
15324
92e90b6e
PB
15325 /* Thumb2 only instructions. */
15326#undef ARM_VARIANT
e74cfd16 15327#define ARM_VARIANT NULL
92e90b6e
PB
15328
15329 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15330 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15331 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
15332 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
15333
62b3e311
PB
15334 /* Thumb-2 hardware division instructions (R and M profiles only). */
15335#undef THUMB_VARIANT
15336#define THUMB_VARIANT &arm_ext_div
15337 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
15338 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
15339
7e806470
PB
15340 /* ARM V6M/V7 instructions. */
15341#undef ARM_VARIANT
15342#define ARM_VARIANT &arm_ext_barrier
15343#undef THUMB_VARIANT
15344#define THUMB_VARIANT &arm_ext_barrier
15345 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
15346 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
15347 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
15348
62b3e311
PB
15349 /* ARM V7 instructions. */
15350#undef ARM_VARIANT
15351#define ARM_VARIANT &arm_ext_v7
15352#undef THUMB_VARIANT
15353#define THUMB_VARIANT &arm_ext_v7
15354 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
15355 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 15356
c19d1205 15357#undef ARM_VARIANT
e74cfd16 15358#define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
8f06b2d8
PB
15359 cCE(wfs, e200110, 1, (RR), rd),
15360 cCE(rfs, e300110, 1, (RR), rd),
15361 cCE(wfc, e400110, 1, (RR), rd),
15362 cCE(rfc, e500110, 1, (RR), rd),
15363
4962c51a
MS
15364 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
15365 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
15366 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
15367 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e 15368
4962c51a
MS
15369 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
15370 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
15371 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
15372 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e
PB
15373
15374 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
15375 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
15376 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
15377 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
15378 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
15379 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
15380 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
15381 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
15382 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
15383 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
15384 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
15385 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
15386
15387 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
15388 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
15389 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
15390 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
15391 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
15392 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
15393 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
15394 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
15395 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
15396 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
15397 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
15398 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
15399
15400 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
15401 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
15402 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
15403 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
15404 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
15405 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
15406 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
15407 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
15408 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
15409 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
15410 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
15411 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
15412
15413 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
15414 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
15415 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
15416 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
15417 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
15418 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
15419 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
15420 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
15421 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
15422 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
15423 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
15424 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
15425
15426 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
15427 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
15428 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
15429 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
15430 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
15431 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
15432 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
15433 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
15434 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
15435 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
15436 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
15437 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
15438
15439 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
15440 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
15441 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
15442 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
15443 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
15444 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
15445 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
15446 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
15447 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
15448 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
15449 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
15450 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
15451
15452 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
15453 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
15454 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
15455 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
15456 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
15457 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
15458 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
15459 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
15460 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
15461 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
15462 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
15463 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
15464
15465 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
15466 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
15467 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
15468 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
15469 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
15470 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
15471 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
15472 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
15473 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
15474 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
15475 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
15476 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
15477
15478 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
15479 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
15480 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
15481 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
15482 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
15483 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
15484 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
15485 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
15486 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
15487 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
15488 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
15489 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
15490
15491 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
15492 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
15493 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
15494 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
15495 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
15496 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
15497 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
15498 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
15499 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
15500 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
15501 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
15502 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
15503
15504 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
15505 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
15506 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
15507 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
15508 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
15509 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
15510 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
15511 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
15512 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
15513 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
15514 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
15515 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
15516
15517 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
15518 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
15519 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
15520 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
15521 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
15522 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
15523 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
15524 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
15525 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
15526 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
15527 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
15528 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
15529
15530 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
15531 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
15532 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
15533 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
15534 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
15535 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
15536 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
15537 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
15538 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
15539 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
15540 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
15541 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
15542
15543 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
15544 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
15545 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
15546 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
15547 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
15548 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
15549 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
15550 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
15551 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
15552 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
15553 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
15554 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
15555
15556 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
15557 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
15558 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
15559 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
15560 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
15561 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
15562 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
15563 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
15564 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
15565 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
15566 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
15567 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
15568
15569 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
15570 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
15571 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
15572 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
15573 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
15574 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
15575 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
15576 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
15577 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
15578 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
15579 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
15580 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
15581
15582 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
15583 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
15584 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
15585 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
15586 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
15587 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15588 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15589 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15590 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
15591 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
15592 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
15593 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
15594
15595 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
15596 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
15597 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
15598 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
15599 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
15600 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15601 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15602 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15603 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
15604 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
15605 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
15606 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
15607
15608 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
15609 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
15610 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
15611 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
15612 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
15613 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15614 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15615 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15616 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
15617 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
15618 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
15619 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
15620
15621 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
15622 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
15623 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
15624 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
15625 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
15626 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15627 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15628 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15629 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
15630 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
15631 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
15632 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
15633
15634 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
15635 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
15636 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
15637 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
15638 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
15639 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15640 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15641 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15642 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
15643 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
15644 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
15645 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
15646
15647 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
15648 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
15649 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
15650 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
15651 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
15652 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15653 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15654 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15655 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
15656 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
15657 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
15658 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
15659
15660 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
15661 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
15662 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
15663 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
15664 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
15665 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15666 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15667 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15668 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
15669 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
15670 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
15671 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
15672
15673 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
15674 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
15675 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
15676 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
15677 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
15678 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15679 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15680 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15681 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
15682 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
15683 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
15684 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
15685
15686 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
15687 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
15688 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
15689 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
15690 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
15691 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15692 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15693 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15694 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
15695 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
15696 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
15697 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
15698
15699 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
15700 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
15701 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
15702 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
15703 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
15704 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15705 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15706 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15707 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
15708 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
15709 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
15710 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
15711
15712 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15713 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15714 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15715 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15716 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15717 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15718 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15719 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15720 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15721 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15722 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15723 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15724
15725 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15726 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15727 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15728 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15729 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15730 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15731 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15732 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15733 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15734 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15735 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15736 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15737
15738 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15739 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15740 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15741 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15742 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15743 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15744 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15745 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15746 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15747 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15748 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15749 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
8f06b2d8
PB
15750
15751 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205 15752 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
8f06b2d8 15753 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205
ZW
15754 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
15755
e3cb604e
PB
15756 cCL(flts, e000110, 2, (RF, RR), rn_rd),
15757 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
15758 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
15759 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
15760 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
15761 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
15762 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
15763 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
15764 cCL(flte, e080110, 2, (RF, RR), rn_rd),
15765 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
15766 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
15767 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
b99bd4ef 15768
c19d1205
ZW
15769 /* The implementation of the FIX instruction is broken on some
15770 assemblers, in that it accepts a precision specifier as well as a
15771 rounding specifier, despite the fact that this is meaningless.
15772 To be more compatible, we accept it as well, though of course it
15773 does not set any bits. */
8f06b2d8 15774 cCE(fix, e100110, 2, (RR, RF), rd_rm),
e3cb604e
PB
15775 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
15776 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
15777 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
15778 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
15779 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
15780 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
15781 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
15782 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
15783 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
15784 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
15785 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
15786 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
bfae80f2 15787
c19d1205
ZW
15788 /* Instructions that were new with the real FPA, call them V2. */
15789#undef ARM_VARIANT
e74cfd16 15790#define ARM_VARIANT &fpu_fpa_ext_v2
8f06b2d8 15791 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
15792 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15793 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
8f06b2d8 15794 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
15795 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15796 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205
ZW
15797
15798#undef ARM_VARIANT
e74cfd16 15799#define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
c19d1205 15800 /* Moves and type conversions. */
8f06b2d8
PB
15801 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
15802 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
15803 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
15804 cCE(fmstat, ef1fa10, 0, (), noargs),
15805 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
15806 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
15807 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
15808 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15809 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
15810 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15811 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
15812 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
15813
15814 /* Memory operations. */
4962c51a
MS
15815 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15816 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
8f06b2d8
PB
15817 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15818 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15819 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15820 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15821 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15822 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15823 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15824 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15825 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15826 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15827 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15828 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15829 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15830 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15831 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15832 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 15833
c19d1205 15834 /* Monadic operations. */
8f06b2d8
PB
15835 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
15836 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
15837 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
15838
15839 /* Dyadic operations. */
8f06b2d8
PB
15840 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15841 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15842 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15843 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15844 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15845 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15846 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15847 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15848 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 15849
c19d1205 15850 /* Comparisons. */
8f06b2d8
PB
15851 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
15852 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
15853 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
15854 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 15855
c19d1205 15856#undef ARM_VARIANT
e74cfd16 15857#define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
c19d1205 15858 /* Moves and type conversions. */
5287ad62 15859 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
8f06b2d8
PB
15860 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15861 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
5287ad62
JB
15862 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
15863 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
15864 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
15865 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
8f06b2d8
PB
15866 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15867 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
15868 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15869 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15870 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15871 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205
ZW
15872
15873 /* Memory operations. */
4962c51a
MS
15874 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15875 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
8f06b2d8
PB
15876 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15877 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15878 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15879 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15880 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15881 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15882 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15883 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
b99bd4ef 15884
c19d1205 15885 /* Monadic operations. */
5287ad62
JB
15886 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15887 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15888 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
15889
15890 /* Dyadic operations. */
5287ad62
JB
15891 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15892 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15893 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15894 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15895 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15896 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15897 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15898 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15899 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 15900
c19d1205 15901 /* Comparisons. */
5287ad62
JB
15902 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15903 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
15904 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15905 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205
ZW
15906
15907#undef ARM_VARIANT
e74cfd16 15908#define ARM_VARIANT &fpu_vfp_ext_v2
8f06b2d8
PB
15909 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
15910 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
5287ad62
JB
15911 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
15912 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
15913
037e8744
JB
15914/* Instructions which may belong to either the Neon or VFP instruction sets.
15915 Individual encoder functions perform additional architecture checks. */
15916#undef ARM_VARIANT
15917#define ARM_VARIANT &fpu_vfp_ext_v1xd
15918#undef THUMB_VARIANT
15919#define THUMB_VARIANT &fpu_vfp_ext_v1xd
15920 /* These mnemonics are unique to VFP. */
15921 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
15922 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
15923 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15924 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15925 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15926 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15927 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15928 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
15929 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
15930 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
15931
15932 /* Mnemonics shared by Neon and VFP. */
15933 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
15934 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15935 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15936
15937 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15938 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15939
15940 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15941 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15942
15943 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15944 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15945 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15946 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15947 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15948 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
4962c51a
MS
15949 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15950 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744
JB
15951
15952 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
15953
15954 /* NOTE: All VMOV encoding is special-cased! */
15955 NCE(vmov, 0, 1, (VMOV), neon_mov),
15956 NCE(vmovq, 0, 1, (VMOV), neon_mov),
15957
5287ad62
JB
15958#undef THUMB_VARIANT
15959#define THUMB_VARIANT &fpu_neon_ext_v1
15960#undef ARM_VARIANT
15961#define ARM_VARIANT &fpu_neon_ext_v1
15962 /* Data processing with three registers of the same length. */
15963 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
15964 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
15965 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
15966 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15967 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15968 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15969 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15970 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15971 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15972 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
15973 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15974 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15975 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15976 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
15977 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15978 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
15979 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15980 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
15981 /* If not immediate, fall back to neon_dyadic_i64_su.
15982 shl_imm should accept I8 I16 I32 I64,
15983 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
15984 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
15985 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
15986 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
15987 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
15988 /* Logic ops, types optional & ignored. */
15989 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
15990 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
15991 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
15992 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
15993 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
15994 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
15995 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
15996 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
15997 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
15998 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
15999 /* Bitfield ops, untyped. */
16000 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16001 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16002 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16003 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16004 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16005 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16006 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
16007 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16008 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16009 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16010 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16011 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16012 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16013 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
16014 back to neon_dyadic_if_su. */
16015 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
16016 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
16017 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
16018 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
16019 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
16020 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
16021 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
16022 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 16023 /* Comparison. Type I8 I16 I32 F32. */
5287ad62
JB
16024 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
16025 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
16026 /* As above, D registers only. */
16027 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16028 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16029 /* Int and float variants, signedness unimportant. */
5287ad62 16030 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
5287ad62
JB
16031 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
16032 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
16033 /* Add/sub take types I8 I16 I32 I64 F32. */
5287ad62 16034 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
16035 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
16036 /* vtst takes sizes 8, 16, 32. */
16037 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
16038 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
16039 /* VMUL takes I8 I16 I32 F32 P8. */
037e8744 16040 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62
JB
16041 /* VQD{R}MULH takes S16 S32. */
16042 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16043 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16044 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16045 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16046 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16047 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
16048 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16049 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
16050 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16051 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16052 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16053 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
16054 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16055 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16056 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16057 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16058
16059 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 16060 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
16061 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
16062
16063 /* Data processing with two registers and a shift amount. */
16064 /* Right shifts, and variants with rounding.
16065 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
16066 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16067 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16068 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16069 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16070 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16071 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16072 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16073 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16074 /* Shift and insert. Sizes accepted 8 16 32 64. */
16075 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
16076 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
16077 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
16078 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
16079 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
16080 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
16081 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
16082 /* Right shift immediate, saturating & narrowing, with rounding variants.
16083 Types accepted S16 S32 S64 U16 U32 U64. */
16084 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16085 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16086 /* As above, unsigned. Types accepted S16 S32 S64. */
16087 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16088 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16089 /* Right shift narrowing. Types accepted I16 I32 I64. */
16090 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16091 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16092 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
16093 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
16094 /* CVT with optional immediate for fixed-point variant. */
037e8744 16095 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 16096
5287ad62
JB
16097 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
16098 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
16099
16100 /* Data processing, three registers of different lengths. */
16101 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
16102 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
16103 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
16104 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
16105 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
16106 /* If not scalar, fall back to neon_dyadic_long.
16107 Vector types as above, scalar types S16 S32 U16 U32. */
16108 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16109 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16110 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
16111 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16112 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16113 /* Dyadic, narrowing insns. Types I16 I32 I64. */
16114 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16115 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16116 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16117 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16118 /* Saturating doubling multiplies. Types S16 S32. */
16119 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16120 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16121 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16122 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
16123 S16 S32 U16 U32. */
16124 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
16125
16126 /* Extract. Size 8. */
3b8d421e
PB
16127 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
16128 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
16129
16130 /* Two registers, miscellaneous. */
16131 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
16132 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
16133 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
16134 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
16135 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
16136 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
16137 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
16138 /* Vector replicate. Sizes 8 16 32. */
16139 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
16140 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
16141 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
16142 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
16143 /* VMOVN. Types I16 I32 I64. */
16144 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
16145 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
16146 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
16147 /* VQMOVUN. Types S16 S32 S64. */
16148 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
16149 /* VZIP / VUZP. Sizes 8 16 32. */
16150 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
16151 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
16152 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
16153 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
16154 /* VQABS / VQNEG. Types S8 S16 S32. */
16155 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16156 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
16157 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16158 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
16159 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
16160 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
16161 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
16162 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
16163 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
16164 /* Reciprocal estimates. Types U32 F32. */
16165 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
16166 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
16167 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
16168 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
16169 /* VCLS. Types S8 S16 S32. */
16170 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
16171 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
16172 /* VCLZ. Types I8 I16 I32. */
16173 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
16174 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
16175 /* VCNT. Size 8. */
16176 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
16177 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
16178 /* Two address, untyped. */
16179 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
16180 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
16181 /* VTRN. Sizes 8 16 32. */
16182 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
16183 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
16184
16185 /* Table lookup. Size 8. */
16186 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16187 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16188
b7fc2769
JB
16189#undef THUMB_VARIANT
16190#define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
16191#undef ARM_VARIANT
16192#define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
5287ad62
JB
16193 /* Neon element/structure load/store. */
16194 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16195 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16196 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16197 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16198 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16199 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16200 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16201 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16202
16203#undef THUMB_VARIANT
16204#define THUMB_VARIANT &fpu_vfp_ext_v3
16205#undef ARM_VARIANT
16206#define ARM_VARIANT &fpu_vfp_ext_v3
5287ad62
JB
16207 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
16208 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
16209 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16210 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16211 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16212 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16213 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16214 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16215 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16216 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16217 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16218 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16219 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16220 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16221 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16222 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16223 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16224 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 16225
5287ad62 16226#undef THUMB_VARIANT
c19d1205 16227#undef ARM_VARIANT
e74cfd16 16228#define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
8f06b2d8
PB
16229 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16230 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16231 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16232 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16233 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16234 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16235 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
16236 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205
ZW
16237
16238#undef ARM_VARIANT
e74cfd16 16239#define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
8f06b2d8
PB
16240 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
16241 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
16242 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
16243 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
16244 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
16245 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
16246 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
16247 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
16248 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
16249 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16250 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16251 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16252 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16253 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16254 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16255 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16256 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16257 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
41adaa5c 16258 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
8f06b2d8
PB
16259 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
16260 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16261 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16262 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16263 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16264 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16265 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16266 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
16267 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
16268 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
41adaa5c 16269 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
8f06b2d8
PB
16270 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
16271 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
16272 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
16273 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
16274 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
16275 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
16276 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
16277 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16278 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16279 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16280 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16281 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16282 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16283 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16284 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16285 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16286 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
16287 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16288 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16289 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16290 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16291 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16292 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16293 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16294 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16295 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16296 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16297 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16298 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16299 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16300 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16301 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16302 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16303 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16304 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16305 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16306 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16307 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16308 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16309 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16310 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16311 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16312 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16313 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16314 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16315 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16316 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16317 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16318 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16319 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16320 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16321 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16322 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16323 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16324 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16325 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16326 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16327 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16328 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
16329 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16330 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16331 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16332 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16333 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16334 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16335 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16336 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16337 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16338 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16339 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 16340 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16341 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16342 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16343 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16344 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8
PB
16345 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16346 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16347 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16348 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16349 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16350 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
2d447fca 16351 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16352 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16353 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16354 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16355 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16356 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16357 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16358 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16359 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16360 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16361 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16362 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16363 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16364 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16365 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16366 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16367 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8
PB
16368 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16369 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16370 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16371 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16372 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16373 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16374 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16375 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16376 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16377 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16378 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16379 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16380 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16381 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16382 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
16383 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
16384 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
16385 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
16386 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
16387 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
16388 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16389 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16390 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16391 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
16392 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
16393 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
16394 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
16395 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
16396 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
16397 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16398 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16399 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16400 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16401 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 16402
2d447fca
JM
16403#undef ARM_VARIANT
16404#define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
16405 cCE(torvscb, e13f190, 1, (RR), iwmmxt_tandorc),
16406 cCE(torvsch, e53f190, 1, (RR), iwmmxt_tandorc),
16407 cCE(torvscw, e93f190, 1, (RR), iwmmxt_tandorc),
16408 cCE(wabsb, e2001c0, 2, (RIWR, RIWR), rd_rn),
16409 cCE(wabsh, e6001c0, 2, (RIWR, RIWR), rd_rn),
16410 cCE(wabsw, ea001c0, 2, (RIWR, RIWR), rd_rn),
16411 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16412 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16413 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16414 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16415 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16416 cCE(waddhc, e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16417 cCE(waddwc, ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16418 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16419 cCE(wavg4, e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16420 cCE(wavg4r, e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16421 cCE(wmaddsn, ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16422 cCE(wmaddsx, eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16423 cCE(wmaddun, ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16424 cCE(wmaddux, e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16425 cCE(wmerge, e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
16426 cCE(wmiabb, e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16427 cCE(wmiabt, e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16428 cCE(wmiatb, e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16429 cCE(wmiatt, e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16430 cCE(wmiabbn, e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16431 cCE(wmiabtn, e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16432 cCE(wmiatbn, e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16433 cCE(wmiattn, e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16434 cCE(wmiawbb, e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16435 cCE(wmiawbt, e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16436 cCE(wmiawtb, ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16437 cCE(wmiawtt, eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16438 cCE(wmiawbbn, ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16439 cCE(wmiawbtn, ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16440 cCE(wmiawtbn, ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16441 cCE(wmiawttn, ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16442 cCE(wmulsmr, ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16443 cCE(wmulumr, ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16444 cCE(wmulwumr, ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16445 cCE(wmulwsmr, ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16446 cCE(wmulwum, ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16447 cCE(wmulwsm, ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16448 cCE(wmulwl, eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16449 cCE(wqmiabb, e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16450 cCE(wqmiabt, e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16451 cCE(wqmiatb, ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16452 cCE(wqmiatt, eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16453 cCE(wqmiabbn, ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16454 cCE(wqmiabtn, ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16455 cCE(wqmiatbn, ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16456 cCE(wqmiattn, ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16457 cCE(wqmulm, e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16458 cCE(wqmulmr, e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16459 cCE(wqmulwm, ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16460 cCE(wqmulwmr, ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16461 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16462
c19d1205 16463#undef ARM_VARIANT
e74cfd16 16464#define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
4962c51a
MS
16465 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16466 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16467 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16468 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16469 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16470 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16471 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16472 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
8f06b2d8
PB
16473 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
16474 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
16475 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
16476 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
16477 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
16478 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
16479 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
16480 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
16481 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
16482 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
16483 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
16484 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
16485 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
16486 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
16487 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
16488 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
16489 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
16490 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
16491 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
16492 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
16493 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
16494 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
16495 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
16496 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
16497 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
16498 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
16499 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
16500 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
16501 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
16502 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
16503 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
16504 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
16505 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
16506 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
16507 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
16508 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
16509 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
16510 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
16511 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
16512 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
16513 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
16514 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
16515 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
16516 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
16517 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
16518 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
16519 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
16520 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
16521 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
16522 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
16523 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
16524 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
16525 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
16526 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
16527 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
16528 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
16529 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16530 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16531 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16532 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16533 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16534 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16535 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16536 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16537 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16538 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16539 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16540 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
16541};
16542#undef ARM_VARIANT
16543#undef THUMB_VARIANT
16544#undef TCE
16545#undef TCM
16546#undef TUE
16547#undef TUF
16548#undef TCC
8f06b2d8 16549#undef cCE
e3cb604e
PB
16550#undef cCL
16551#undef C3E
c19d1205
ZW
16552#undef CE
16553#undef CM
16554#undef UE
16555#undef UF
16556#undef UT
5287ad62
JB
16557#undef NUF
16558#undef nUF
16559#undef NCE
16560#undef nCE
c19d1205
ZW
16561#undef OPS0
16562#undef OPS1
16563#undef OPS2
16564#undef OPS3
16565#undef OPS4
16566#undef OPS5
16567#undef OPS6
16568#undef do_0
16569\f
16570/* MD interface: bits in the object file. */
bfae80f2 16571
c19d1205
ZW
16572/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
16573 for use in the a.out file, and stores them in the array pointed to by buf.
16574 This knows about the endian-ness of the target machine and does
16575 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
16576 2 (short) and 4 (long) Floating numbers are put out as a series of
16577 LITTLENUMS (shorts, here at least). */
b99bd4ef 16578
c19d1205
ZW
16579void
16580md_number_to_chars (char * buf, valueT val, int n)
16581{
16582 if (target_big_endian)
16583 number_to_chars_bigendian (buf, val, n);
16584 else
16585 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
16586}
16587
c19d1205
ZW
16588static valueT
16589md_chars_to_number (char * buf, int n)
bfae80f2 16590{
c19d1205
ZW
16591 valueT result = 0;
16592 unsigned char * where = (unsigned char *) buf;
bfae80f2 16593
c19d1205 16594 if (target_big_endian)
b99bd4ef 16595 {
c19d1205
ZW
16596 while (n--)
16597 {
16598 result <<= 8;
16599 result |= (*where++ & 255);
16600 }
b99bd4ef 16601 }
c19d1205 16602 else
b99bd4ef 16603 {
c19d1205
ZW
16604 while (n--)
16605 {
16606 result <<= 8;
16607 result |= (where[n] & 255);
16608 }
bfae80f2 16609 }
b99bd4ef 16610
c19d1205 16611 return result;
bfae80f2 16612}
b99bd4ef 16613
c19d1205 16614/* MD interface: Sections. */
b99bd4ef 16615
0110f2b8
PB
16616/* Estimate the size of a frag before relaxing. Assume everything fits in
16617 2 bytes. */
16618
c19d1205 16619int
0110f2b8 16620md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
16621 segT segtype ATTRIBUTE_UNUSED)
16622{
0110f2b8
PB
16623 fragp->fr_var = 2;
16624 return 2;
16625}
16626
16627/* Convert a machine dependent frag. */
16628
16629void
16630md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
16631{
16632 unsigned long insn;
16633 unsigned long old_op;
16634 char *buf;
16635 expressionS exp;
16636 fixS *fixp;
16637 int reloc_type;
16638 int pc_rel;
16639 int opcode;
16640
16641 buf = fragp->fr_literal + fragp->fr_fix;
16642
16643 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
16644 if (fragp->fr_symbol)
16645 {
0110f2b8
PB
16646 exp.X_op = O_symbol;
16647 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
16648 }
16649 else
16650 {
0110f2b8 16651 exp.X_op = O_constant;
5f4273c7 16652 }
0110f2b8
PB
16653 exp.X_add_number = fragp->fr_offset;
16654 opcode = fragp->fr_subtype;
16655 switch (opcode)
16656 {
16657 case T_MNEM_ldr_pc:
16658 case T_MNEM_ldr_pc2:
16659 case T_MNEM_ldr_sp:
16660 case T_MNEM_str_sp:
16661 case T_MNEM_ldr:
16662 case T_MNEM_ldrb:
16663 case T_MNEM_ldrh:
16664 case T_MNEM_str:
16665 case T_MNEM_strb:
16666 case T_MNEM_strh:
16667 if (fragp->fr_var == 4)
16668 {
5f4273c7 16669 insn = THUMB_OP32 (opcode);
0110f2b8
PB
16670 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
16671 {
16672 insn |= (old_op & 0x700) << 4;
16673 }
16674 else
16675 {
16676 insn |= (old_op & 7) << 12;
16677 insn |= (old_op & 0x38) << 13;
16678 }
16679 insn |= 0x00000c00;
16680 put_thumb32_insn (buf, insn);
16681 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
16682 }
16683 else
16684 {
16685 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
16686 }
16687 pc_rel = (opcode == T_MNEM_ldr_pc2);
16688 break;
16689 case T_MNEM_adr:
16690 if (fragp->fr_var == 4)
16691 {
16692 insn = THUMB_OP32 (opcode);
16693 insn |= (old_op & 0xf0) << 4;
16694 put_thumb32_insn (buf, insn);
16695 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
16696 }
16697 else
16698 {
16699 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16700 exp.X_add_number -= 4;
16701 }
16702 pc_rel = 1;
16703 break;
16704 case T_MNEM_mov:
16705 case T_MNEM_movs:
16706 case T_MNEM_cmp:
16707 case T_MNEM_cmn:
16708 if (fragp->fr_var == 4)
16709 {
16710 int r0off = (opcode == T_MNEM_mov
16711 || opcode == T_MNEM_movs) ? 0 : 8;
16712 insn = THUMB_OP32 (opcode);
16713 insn = (insn & 0xe1ffffff) | 0x10000000;
16714 insn |= (old_op & 0x700) << r0off;
16715 put_thumb32_insn (buf, insn);
16716 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16717 }
16718 else
16719 {
16720 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
16721 }
16722 pc_rel = 0;
16723 break;
16724 case T_MNEM_b:
16725 if (fragp->fr_var == 4)
16726 {
16727 insn = THUMB_OP32(opcode);
16728 put_thumb32_insn (buf, insn);
16729 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
16730 }
16731 else
16732 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
16733 pc_rel = 1;
16734 break;
16735 case T_MNEM_bcond:
16736 if (fragp->fr_var == 4)
16737 {
16738 insn = THUMB_OP32(opcode);
16739 insn |= (old_op & 0xf00) << 14;
16740 put_thumb32_insn (buf, insn);
16741 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
16742 }
16743 else
16744 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
16745 pc_rel = 1;
16746 break;
16747 case T_MNEM_add_sp:
16748 case T_MNEM_add_pc:
16749 case T_MNEM_inc_sp:
16750 case T_MNEM_dec_sp:
16751 if (fragp->fr_var == 4)
16752 {
16753 /* ??? Choose between add and addw. */
16754 insn = THUMB_OP32 (opcode);
16755 insn |= (old_op & 0xf0) << 4;
16756 put_thumb32_insn (buf, insn);
16805f35
PB
16757 if (opcode == T_MNEM_add_pc)
16758 reloc_type = BFD_RELOC_ARM_T32_IMM12;
16759 else
16760 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
16761 }
16762 else
16763 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16764 pc_rel = 0;
16765 break;
16766
16767 case T_MNEM_addi:
16768 case T_MNEM_addis:
16769 case T_MNEM_subi:
16770 case T_MNEM_subis:
16771 if (fragp->fr_var == 4)
16772 {
16773 insn = THUMB_OP32 (opcode);
16774 insn |= (old_op & 0xf0) << 4;
16775 insn |= (old_op & 0xf) << 16;
16776 put_thumb32_insn (buf, insn);
16805f35
PB
16777 if (insn & (1 << 20))
16778 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16779 else
16780 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
16781 }
16782 else
16783 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16784 pc_rel = 0;
16785 break;
16786 default:
5f4273c7 16787 abort ();
0110f2b8
PB
16788 }
16789 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
16790 reloc_type);
16791 fixp->fx_file = fragp->fr_file;
16792 fixp->fx_line = fragp->fr_line;
16793 fragp->fr_fix += fragp->fr_var;
16794}
16795
16796/* Return the size of a relaxable immediate operand instruction.
16797 SHIFT and SIZE specify the form of the allowable immediate. */
16798static int
16799relax_immediate (fragS *fragp, int size, int shift)
16800{
16801 offsetT offset;
16802 offsetT mask;
16803 offsetT low;
16804
16805 /* ??? Should be able to do better than this. */
16806 if (fragp->fr_symbol)
16807 return 4;
16808
16809 low = (1 << shift) - 1;
16810 mask = (1 << (shift + size)) - (1 << shift);
16811 offset = fragp->fr_offset;
16812 /* Force misaligned offsets to 32-bit variant. */
16813 if (offset & low)
5e77afaa 16814 return 4;
0110f2b8
PB
16815 if (offset & ~mask)
16816 return 4;
16817 return 2;
16818}
16819
5e77afaa
PB
16820/* Get the address of a symbol during relaxation. */
16821static addressT
5f4273c7 16822relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
16823{
16824 fragS *sym_frag;
16825 addressT addr;
16826 symbolS *sym;
16827
16828 sym = fragp->fr_symbol;
16829 sym_frag = symbol_get_frag (sym);
16830 know (S_GET_SEGMENT (sym) != absolute_section
16831 || sym_frag == &zero_address_frag);
16832 addr = S_GET_VALUE (sym) + fragp->fr_offset;
16833
16834 /* If frag has yet to be reached on this pass, assume it will
16835 move by STRETCH just as we did. If this is not so, it will
16836 be because some frag between grows, and that will force
16837 another pass. */
16838
16839 if (stretch != 0
16840 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
16841 {
16842 fragS *f;
16843
16844 /* Adjust stretch for any alignment frag. Note that if have
16845 been expanding the earlier code, the symbol may be
16846 defined in what appears to be an earlier frag. FIXME:
16847 This doesn't handle the fr_subtype field, which specifies
16848 a maximum number of bytes to skip when doing an
16849 alignment. */
16850 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16851 {
16852 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16853 {
16854 if (stretch < 0)
16855 stretch = - ((- stretch)
16856 & ~ ((1 << (int) f->fr_offset) - 1));
16857 else
16858 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16859 if (stretch == 0)
16860 break;
16861 }
16862 }
16863 if (f != NULL)
16864 addr += stretch;
16865 }
5e77afaa
PB
16866
16867 return addr;
16868}
16869
0110f2b8
PB
16870/* Return the size of a relaxable adr pseudo-instruction or PC-relative
16871 load. */
16872static int
5e77afaa 16873relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
16874{
16875 addressT addr;
16876 offsetT val;
16877
16878 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 16879 if (!S_IS_DEFINED (fragp->fr_symbol)
0110f2b8
PB
16880 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16881 return 4;
16882
5f4273c7 16883 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
16884 addr = fragp->fr_address + fragp->fr_fix;
16885 addr = (addr + 4) & ~3;
5e77afaa 16886 /* Force misaligned targets to 32-bit variant. */
0110f2b8 16887 if (val & 3)
5e77afaa 16888 return 4;
0110f2b8
PB
16889 val -= addr;
16890 if (val < 0 || val > 1020)
16891 return 4;
16892 return 2;
16893}
16894
16895/* Return the size of a relaxable add/sub immediate instruction. */
16896static int
16897relax_addsub (fragS *fragp, asection *sec)
16898{
16899 char *buf;
16900 int op;
16901
16902 buf = fragp->fr_literal + fragp->fr_fix;
16903 op = bfd_get_16(sec->owner, buf);
16904 if ((op & 0xf) == ((op >> 4) & 0xf))
16905 return relax_immediate (fragp, 8, 0);
16906 else
16907 return relax_immediate (fragp, 3, 0);
16908}
16909
16910
16911/* Return the size of a relaxable branch instruction. BITS is the
16912 size of the offset field in the narrow instruction. */
16913
16914static int
5e77afaa 16915relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
16916{
16917 addressT addr;
16918 offsetT val;
16919 offsetT limit;
16920
16921 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 16922 if (!S_IS_DEFINED (fragp->fr_symbol)
0110f2b8
PB
16923 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16924 return 4;
16925
5f4273c7 16926 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
16927 addr = fragp->fr_address + fragp->fr_fix + 4;
16928 val -= addr;
16929
16930 /* Offset is a signed value *2 */
16931 limit = 1 << bits;
16932 if (val >= limit || val < -limit)
16933 return 4;
16934 return 2;
16935}
16936
16937
16938/* Relax a machine dependent frag. This returns the amount by which
16939 the current size of the frag should change. */
16940
16941int
5e77afaa 16942arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
16943{
16944 int oldsize;
16945 int newsize;
16946
16947 oldsize = fragp->fr_var;
16948 switch (fragp->fr_subtype)
16949 {
16950 case T_MNEM_ldr_pc2:
5f4273c7 16951 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
16952 break;
16953 case T_MNEM_ldr_pc:
16954 case T_MNEM_ldr_sp:
16955 case T_MNEM_str_sp:
5f4273c7 16956 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
16957 break;
16958 case T_MNEM_ldr:
16959 case T_MNEM_str:
5f4273c7 16960 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
16961 break;
16962 case T_MNEM_ldrh:
16963 case T_MNEM_strh:
5f4273c7 16964 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
16965 break;
16966 case T_MNEM_ldrb:
16967 case T_MNEM_strb:
5f4273c7 16968 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
16969 break;
16970 case T_MNEM_adr:
5f4273c7 16971 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
16972 break;
16973 case T_MNEM_mov:
16974 case T_MNEM_movs:
16975 case T_MNEM_cmp:
16976 case T_MNEM_cmn:
5f4273c7 16977 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
16978 break;
16979 case T_MNEM_b:
5f4273c7 16980 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
16981 break;
16982 case T_MNEM_bcond:
5f4273c7 16983 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
16984 break;
16985 case T_MNEM_add_sp:
16986 case T_MNEM_add_pc:
16987 newsize = relax_immediate (fragp, 8, 2);
16988 break;
16989 case T_MNEM_inc_sp:
16990 case T_MNEM_dec_sp:
16991 newsize = relax_immediate (fragp, 7, 2);
16992 break;
16993 case T_MNEM_addi:
16994 case T_MNEM_addis:
16995 case T_MNEM_subi:
16996 case T_MNEM_subis:
16997 newsize = relax_addsub (fragp, sec);
16998 break;
16999 default:
5f4273c7 17000 abort ();
0110f2b8 17001 }
5e77afaa
PB
17002
17003 fragp->fr_var = newsize;
17004 /* Freeze wide instructions that are at or before the same location as
17005 in the previous pass. This avoids infinite loops.
5f4273c7
NC
17006 Don't freeze them unconditionally because targets may be artificially
17007 misaligned by the expansion of preceding frags. */
5e77afaa 17008 if (stretch <= 0 && newsize > 2)
0110f2b8 17009 {
0110f2b8 17010 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 17011 frag_wane (fragp);
0110f2b8 17012 }
5e77afaa 17013
0110f2b8 17014 return newsize - oldsize;
c19d1205 17015}
b99bd4ef 17016
c19d1205 17017/* Round up a section size to the appropriate boundary. */
b99bd4ef 17018
c19d1205
ZW
17019valueT
17020md_section_align (segT segment ATTRIBUTE_UNUSED,
17021 valueT size)
17022{
f0927246
NC
17023#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
17024 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
17025 {
17026 /* For a.out, force the section size to be aligned. If we don't do
17027 this, BFD will align it for us, but it will not write out the
17028 final bytes of the section. This may be a bug in BFD, but it is
17029 easier to fix it here since that is how the other a.out targets
17030 work. */
17031 int align;
17032
17033 align = bfd_get_section_alignment (stdoutput, segment);
17034 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
17035 }
c19d1205 17036#endif
f0927246
NC
17037
17038 return size;
bfae80f2 17039}
b99bd4ef 17040
c19d1205
ZW
17041/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
17042 of an rs_align_code fragment. */
17043
17044void
17045arm_handle_align (fragS * fragP)
bfae80f2 17046{
c19d1205
ZW
17047 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
17048 static char const thumb_noop[2] = { 0xc0, 0x46 };
17049 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
17050 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
17051
17052 int bytes, fix, noop_size;
17053 char * p;
17054 const char * noop;
bfae80f2 17055
c19d1205 17056 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
17057 return;
17058
c19d1205
ZW
17059 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
17060 p = fragP->fr_literal + fragP->fr_fix;
17061 fix = 0;
bfae80f2 17062
c19d1205
ZW
17063 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
17064 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 17065
c19d1205 17066 if (fragP->tc_frag_data)
a737bd4d 17067 {
c19d1205
ZW
17068 if (target_big_endian)
17069 noop = thumb_bigend_noop;
17070 else
17071 noop = thumb_noop;
17072 noop_size = sizeof (thumb_noop);
7ed4c4c5
NC
17073 }
17074 else
17075 {
c19d1205
ZW
17076 if (target_big_endian)
17077 noop = arm_bigend_noop;
17078 else
17079 noop = arm_noop;
17080 noop_size = sizeof (arm_noop);
7ed4c4c5 17081 }
a737bd4d 17082
c19d1205 17083 if (bytes & (noop_size - 1))
7ed4c4c5 17084 {
c19d1205
ZW
17085 fix = bytes & (noop_size - 1);
17086 memset (p, 0, fix);
17087 p += fix;
17088 bytes -= fix;
a737bd4d 17089 }
a737bd4d 17090
c19d1205 17091 while (bytes >= noop_size)
a737bd4d 17092 {
c19d1205
ZW
17093 memcpy (p, noop, noop_size);
17094 p += noop_size;
17095 bytes -= noop_size;
17096 fix += noop_size;
a737bd4d
NC
17097 }
17098
c19d1205
ZW
17099 fragP->fr_fix += fix;
17100 fragP->fr_var = noop_size;
a737bd4d
NC
17101}
17102
c19d1205
ZW
17103/* Called from md_do_align. Used to create an alignment
17104 frag in a code section. */
17105
17106void
17107arm_frag_align_code (int n, int max)
bfae80f2 17108{
c19d1205 17109 char * p;
7ed4c4c5 17110
c19d1205
ZW
17111 /* We assume that there will never be a requirement
17112 to support alignments greater than 32 bytes. */
17113 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
17114 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
bfae80f2 17115
c19d1205
ZW
17116 p = frag_var (rs_align_code,
17117 MAX_MEM_FOR_RS_ALIGN_CODE,
17118 1,
17119 (relax_substateT) max,
17120 (symbolS *) NULL,
17121 (offsetT) n,
17122 (char *) NULL);
17123 *p = 0;
17124}
bfae80f2 17125
c19d1205 17126/* Perform target specific initialisation of a frag. */
bfae80f2 17127
c19d1205
ZW
17128void
17129arm_init_frag (fragS * fragP)
17130{
17131 /* Record whether this frag is in an ARM or a THUMB area. */
17132 fragP->tc_frag_data = thumb_mode;
bfae80f2
RE
17133}
17134
c19d1205
ZW
17135#ifdef OBJ_ELF
17136/* When we change sections we need to issue a new mapping symbol. */
17137
17138void
17139arm_elf_change_section (void)
bfae80f2 17140{
c19d1205
ZW
17141 flagword flags;
17142 segment_info_type *seginfo;
bfae80f2 17143
c19d1205
ZW
17144 /* Link an unlinked unwind index table section to the .text section. */
17145 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
17146 && elf_linked_to_section (now_seg) == NULL)
17147 elf_linked_to_section (now_seg) = text_section;
17148
17149 if (!SEG_NORMAL (now_seg))
bfae80f2
RE
17150 return;
17151
c19d1205
ZW
17152 flags = bfd_get_section_flags (stdoutput, now_seg);
17153
17154 /* We can ignore sections that only contain debug info. */
17155 if ((flags & SEC_ALLOC) == 0)
17156 return;
bfae80f2 17157
c19d1205
ZW
17158 seginfo = seg_info (now_seg);
17159 mapstate = seginfo->tc_segment_info_data.mapstate;
17160 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
bfae80f2
RE
17161}
17162
c19d1205
ZW
17163int
17164arm_elf_section_type (const char * str, size_t len)
e45d0630 17165{
c19d1205
ZW
17166 if (len == 5 && strncmp (str, "exidx", 5) == 0)
17167 return SHT_ARM_EXIDX;
e45d0630 17168
c19d1205
ZW
17169 return -1;
17170}
17171\f
17172/* Code to deal with unwinding tables. */
e45d0630 17173
c19d1205 17174static void add_unwind_adjustsp (offsetT);
e45d0630 17175
5f4273c7 17176/* Generate any deferred unwind frame offset. */
e45d0630 17177
bfae80f2 17178static void
c19d1205 17179flush_pending_unwind (void)
bfae80f2 17180{
c19d1205 17181 offsetT offset;
bfae80f2 17182
c19d1205
ZW
17183 offset = unwind.pending_offset;
17184 unwind.pending_offset = 0;
17185 if (offset != 0)
17186 add_unwind_adjustsp (offset);
bfae80f2
RE
17187}
17188
c19d1205
ZW
17189/* Add an opcode to this list for this function. Two-byte opcodes should
17190 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
17191 order. */
17192
bfae80f2 17193static void
c19d1205 17194add_unwind_opcode (valueT op, int length)
bfae80f2 17195{
c19d1205
ZW
17196 /* Add any deferred stack adjustment. */
17197 if (unwind.pending_offset)
17198 flush_pending_unwind ();
bfae80f2 17199
c19d1205 17200 unwind.sp_restored = 0;
bfae80f2 17201
c19d1205 17202 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 17203 {
c19d1205
ZW
17204 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
17205 if (unwind.opcodes)
17206 unwind.opcodes = xrealloc (unwind.opcodes,
17207 unwind.opcode_alloc);
17208 else
17209 unwind.opcodes = xmalloc (unwind.opcode_alloc);
bfae80f2 17210 }
c19d1205 17211 while (length > 0)
bfae80f2 17212 {
c19d1205
ZW
17213 length--;
17214 unwind.opcodes[unwind.opcode_count] = op & 0xff;
17215 op >>= 8;
17216 unwind.opcode_count++;
bfae80f2 17217 }
bfae80f2
RE
17218}
17219
c19d1205
ZW
17220/* Add unwind opcodes to adjust the stack pointer. */
17221
bfae80f2 17222static void
c19d1205 17223add_unwind_adjustsp (offsetT offset)
bfae80f2 17224{
c19d1205 17225 valueT op;
bfae80f2 17226
c19d1205 17227 if (offset > 0x200)
bfae80f2 17228 {
c19d1205
ZW
17229 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
17230 char bytes[5];
17231 int n;
17232 valueT o;
bfae80f2 17233
c19d1205
ZW
17234 /* Long form: 0xb2, uleb128. */
17235 /* This might not fit in a word so add the individual bytes,
17236 remembering the list is built in reverse order. */
17237 o = (valueT) ((offset - 0x204) >> 2);
17238 if (o == 0)
17239 add_unwind_opcode (0, 1);
bfae80f2 17240
c19d1205
ZW
17241 /* Calculate the uleb128 encoding of the offset. */
17242 n = 0;
17243 while (o)
17244 {
17245 bytes[n] = o & 0x7f;
17246 o >>= 7;
17247 if (o)
17248 bytes[n] |= 0x80;
17249 n++;
17250 }
17251 /* Add the insn. */
17252 for (; n; n--)
17253 add_unwind_opcode (bytes[n - 1], 1);
17254 add_unwind_opcode (0xb2, 1);
17255 }
17256 else if (offset > 0x100)
bfae80f2 17257 {
c19d1205
ZW
17258 /* Two short opcodes. */
17259 add_unwind_opcode (0x3f, 1);
17260 op = (offset - 0x104) >> 2;
17261 add_unwind_opcode (op, 1);
bfae80f2 17262 }
c19d1205
ZW
17263 else if (offset > 0)
17264 {
17265 /* Short opcode. */
17266 op = (offset - 4) >> 2;
17267 add_unwind_opcode (op, 1);
17268 }
17269 else if (offset < 0)
bfae80f2 17270 {
c19d1205
ZW
17271 offset = -offset;
17272 while (offset > 0x100)
bfae80f2 17273 {
c19d1205
ZW
17274 add_unwind_opcode (0x7f, 1);
17275 offset -= 0x100;
bfae80f2 17276 }
c19d1205
ZW
17277 op = ((offset - 4) >> 2) | 0x40;
17278 add_unwind_opcode (op, 1);
bfae80f2 17279 }
bfae80f2
RE
17280}
17281
c19d1205
ZW
17282/* Finish the list of unwind opcodes for this function. */
17283static void
17284finish_unwind_opcodes (void)
bfae80f2 17285{
c19d1205 17286 valueT op;
bfae80f2 17287
c19d1205 17288 if (unwind.fp_used)
bfae80f2 17289 {
708587a4 17290 /* Adjust sp as necessary. */
c19d1205
ZW
17291 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
17292 flush_pending_unwind ();
bfae80f2 17293
c19d1205
ZW
17294 /* After restoring sp from the frame pointer. */
17295 op = 0x90 | unwind.fp_reg;
17296 add_unwind_opcode (op, 1);
17297 }
17298 else
17299 flush_pending_unwind ();
bfae80f2
RE
17300}
17301
bfae80f2 17302
c19d1205
ZW
17303/* Start an exception table entry. If idx is nonzero this is an index table
17304 entry. */
bfae80f2
RE
17305
17306static void
c19d1205 17307start_unwind_section (const segT text_seg, int idx)
bfae80f2 17308{
c19d1205
ZW
17309 const char * text_name;
17310 const char * prefix;
17311 const char * prefix_once;
17312 const char * group_name;
17313 size_t prefix_len;
17314 size_t text_len;
17315 char * sec_name;
17316 size_t sec_name_len;
17317 int type;
17318 int flags;
17319 int linkonce;
bfae80f2 17320
c19d1205 17321 if (idx)
bfae80f2 17322 {
c19d1205
ZW
17323 prefix = ELF_STRING_ARM_unwind;
17324 prefix_once = ELF_STRING_ARM_unwind_once;
17325 type = SHT_ARM_EXIDX;
bfae80f2 17326 }
c19d1205 17327 else
bfae80f2 17328 {
c19d1205
ZW
17329 prefix = ELF_STRING_ARM_unwind_info;
17330 prefix_once = ELF_STRING_ARM_unwind_info_once;
17331 type = SHT_PROGBITS;
bfae80f2
RE
17332 }
17333
c19d1205
ZW
17334 text_name = segment_name (text_seg);
17335 if (streq (text_name, ".text"))
17336 text_name = "";
17337
17338 if (strncmp (text_name, ".gnu.linkonce.t.",
17339 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 17340 {
c19d1205
ZW
17341 prefix = prefix_once;
17342 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
17343 }
17344
c19d1205
ZW
17345 prefix_len = strlen (prefix);
17346 text_len = strlen (text_name);
17347 sec_name_len = prefix_len + text_len;
17348 sec_name = xmalloc (sec_name_len + 1);
17349 memcpy (sec_name, prefix, prefix_len);
17350 memcpy (sec_name + prefix_len, text_name, text_len);
17351 sec_name[prefix_len + text_len] = '\0';
bfae80f2 17352
c19d1205
ZW
17353 flags = SHF_ALLOC;
17354 linkonce = 0;
17355 group_name = 0;
bfae80f2 17356
c19d1205
ZW
17357 /* Handle COMDAT group. */
17358 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 17359 {
c19d1205
ZW
17360 group_name = elf_group_name (text_seg);
17361 if (group_name == NULL)
17362 {
bd3ba5d1 17363 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
17364 segment_name (text_seg));
17365 ignore_rest_of_line ();
17366 return;
17367 }
17368 flags |= SHF_GROUP;
17369 linkonce = 1;
bfae80f2
RE
17370 }
17371
c19d1205 17372 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 17373
5f4273c7 17374 /* Set the section link for index tables. */
c19d1205
ZW
17375 if (idx)
17376 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
17377}
17378
bfae80f2 17379
c19d1205
ZW
17380/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
17381 personality routine data. Returns zero, or the index table value for
17382 and inline entry. */
17383
17384static valueT
17385create_unwind_entry (int have_data)
bfae80f2 17386{
c19d1205
ZW
17387 int size;
17388 addressT where;
17389 char *ptr;
17390 /* The current word of data. */
17391 valueT data;
17392 /* The number of bytes left in this word. */
17393 int n;
bfae80f2 17394
c19d1205 17395 finish_unwind_opcodes ();
bfae80f2 17396
c19d1205
ZW
17397 /* Remember the current text section. */
17398 unwind.saved_seg = now_seg;
17399 unwind.saved_subseg = now_subseg;
bfae80f2 17400
c19d1205 17401 start_unwind_section (now_seg, 0);
bfae80f2 17402
c19d1205 17403 if (unwind.personality_routine == NULL)
bfae80f2 17404 {
c19d1205
ZW
17405 if (unwind.personality_index == -2)
17406 {
17407 if (have_data)
5f4273c7 17408 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
17409 return 1; /* EXIDX_CANTUNWIND. */
17410 }
bfae80f2 17411
c19d1205
ZW
17412 /* Use a default personality routine if none is specified. */
17413 if (unwind.personality_index == -1)
17414 {
17415 if (unwind.opcode_count > 3)
17416 unwind.personality_index = 1;
17417 else
17418 unwind.personality_index = 0;
17419 }
bfae80f2 17420
c19d1205
ZW
17421 /* Space for the personality routine entry. */
17422 if (unwind.personality_index == 0)
17423 {
17424 if (unwind.opcode_count > 3)
17425 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 17426
c19d1205
ZW
17427 if (!have_data)
17428 {
17429 /* All the data is inline in the index table. */
17430 data = 0x80;
17431 n = 3;
17432 while (unwind.opcode_count > 0)
17433 {
17434 unwind.opcode_count--;
17435 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17436 n--;
17437 }
bfae80f2 17438
c19d1205
ZW
17439 /* Pad with "finish" opcodes. */
17440 while (n--)
17441 data = (data << 8) | 0xb0;
bfae80f2 17442
c19d1205
ZW
17443 return data;
17444 }
17445 size = 0;
17446 }
17447 else
17448 /* We get two opcodes "free" in the first word. */
17449 size = unwind.opcode_count - 2;
17450 }
17451 else
17452 /* An extra byte is required for the opcode count. */
17453 size = unwind.opcode_count + 1;
bfae80f2 17454
c19d1205
ZW
17455 size = (size + 3) >> 2;
17456 if (size > 0xff)
17457 as_bad (_("too many unwind opcodes"));
bfae80f2 17458
c19d1205
ZW
17459 frag_align (2, 0, 0);
17460 record_alignment (now_seg, 2);
17461 unwind.table_entry = expr_build_dot ();
17462
17463 /* Allocate the table entry. */
17464 ptr = frag_more ((size << 2) + 4);
17465 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 17466
c19d1205 17467 switch (unwind.personality_index)
bfae80f2 17468 {
c19d1205
ZW
17469 case -1:
17470 /* ??? Should this be a PLT generating relocation? */
17471 /* Custom personality routine. */
17472 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
17473 BFD_RELOC_ARM_PREL31);
bfae80f2 17474
c19d1205
ZW
17475 where += 4;
17476 ptr += 4;
bfae80f2 17477
c19d1205
ZW
17478 /* Set the first byte to the number of additional words. */
17479 data = size - 1;
17480 n = 3;
17481 break;
bfae80f2 17482
c19d1205
ZW
17483 /* ABI defined personality routines. */
17484 case 0:
17485 /* Three opcodes bytes are packed into the first word. */
17486 data = 0x80;
17487 n = 3;
17488 break;
bfae80f2 17489
c19d1205
ZW
17490 case 1:
17491 case 2:
17492 /* The size and first two opcode bytes go in the first word. */
17493 data = ((0x80 + unwind.personality_index) << 8) | size;
17494 n = 2;
17495 break;
bfae80f2 17496
c19d1205
ZW
17497 default:
17498 /* Should never happen. */
17499 abort ();
17500 }
bfae80f2 17501
c19d1205
ZW
17502 /* Pack the opcodes into words (MSB first), reversing the list at the same
17503 time. */
17504 while (unwind.opcode_count > 0)
17505 {
17506 if (n == 0)
17507 {
17508 md_number_to_chars (ptr, data, 4);
17509 ptr += 4;
17510 n = 4;
17511 data = 0;
17512 }
17513 unwind.opcode_count--;
17514 n--;
17515 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17516 }
17517
17518 /* Finish off the last word. */
17519 if (n < 4)
17520 {
17521 /* Pad with "finish" opcodes. */
17522 while (n--)
17523 data = (data << 8) | 0xb0;
17524
17525 md_number_to_chars (ptr, data, 4);
17526 }
17527
17528 if (!have_data)
17529 {
17530 /* Add an empty descriptor if there is no user-specified data. */
17531 ptr = frag_more (4);
17532 md_number_to_chars (ptr, 0, 4);
17533 }
17534
17535 return 0;
bfae80f2
RE
17536}
17537
f0927246
NC
17538
17539/* Initialize the DWARF-2 unwind information for this procedure. */
17540
17541void
17542tc_arm_frame_initial_instructions (void)
17543{
17544 cfi_add_CFA_def_cfa (REG_SP, 0);
17545}
17546#endif /* OBJ_ELF */
17547
c19d1205
ZW
17548/* Convert REGNAME to a DWARF-2 register number. */
17549
17550int
1df69f4f 17551tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 17552{
1df69f4f 17553 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
17554
17555 if (reg == FAIL)
17556 return -1;
17557
17558 return reg;
bfae80f2
RE
17559}
17560
f0927246 17561#ifdef TE_PE
c19d1205 17562void
f0927246 17563tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 17564{
f0927246 17565 expressionS expr;
bfae80f2 17566
f0927246
NC
17567 expr.X_op = O_secrel;
17568 expr.X_add_symbol = symbol;
17569 expr.X_add_number = 0;
17570 emit_expr (&expr, size);
17571}
17572#endif
bfae80f2 17573
c19d1205 17574/* MD interface: Symbol and relocation handling. */
bfae80f2 17575
2fc8bdac
ZW
17576/* Return the address within the segment that a PC-relative fixup is
17577 relative to. For ARM, PC-relative fixups applied to instructions
17578 are generally relative to the location of the fixup plus 8 bytes.
17579 Thumb branches are offset by 4, and Thumb loads relative to PC
17580 require special handling. */
bfae80f2 17581
c19d1205 17582long
2fc8bdac 17583md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 17584{
2fc8bdac
ZW
17585 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
17586
17587 /* If this is pc-relative and we are going to emit a relocation
17588 then we just want to put out any pipeline compensation that the linker
53baae48
NC
17589 will need. Otherwise we want to use the calculated base.
17590 For WinCE we skip the bias for externals as well, since this
17591 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 17592 if (fixP->fx_pcrel
2fc8bdac 17593 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
17594 || (arm_force_relocation (fixP)
17595#ifdef TE_WINCE
17596 && !S_IS_EXTERNAL (fixP->fx_addsy)
17597#endif
17598 )))
2fc8bdac 17599 base = 0;
bfae80f2 17600
c19d1205 17601 switch (fixP->fx_r_type)
bfae80f2 17602 {
2fc8bdac
ZW
17603 /* PC relative addressing on the Thumb is slightly odd as the
17604 bottom two bits of the PC are forced to zero for the
17605 calculation. This happens *after* application of the
17606 pipeline offset. However, Thumb adrl already adjusts for
17607 this, so we need not do it again. */
c19d1205 17608 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 17609 return base & ~3;
c19d1205
ZW
17610
17611 case BFD_RELOC_ARM_THUMB_OFFSET:
17612 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 17613 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 17614 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 17615 return (base + 4) & ~3;
c19d1205 17616
2fc8bdac
ZW
17617 /* Thumb branches are simply offset by +4. */
17618 case BFD_RELOC_THUMB_PCREL_BRANCH7:
17619 case BFD_RELOC_THUMB_PCREL_BRANCH9:
17620 case BFD_RELOC_THUMB_PCREL_BRANCH12:
17621 case BFD_RELOC_THUMB_PCREL_BRANCH20:
17622 case BFD_RELOC_THUMB_PCREL_BRANCH23:
17623 case BFD_RELOC_THUMB_PCREL_BRANCH25:
17624 case BFD_RELOC_THUMB_PCREL_BLX:
17625 return base + 4;
bfae80f2 17626
2fc8bdac
ZW
17627 /* ARM mode branches are offset by +8. However, the Windows CE
17628 loader expects the relocation not to take this into account. */
17629 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c
PB
17630 case BFD_RELOC_ARM_PCREL_CALL:
17631 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac
ZW
17632 case BFD_RELOC_ARM_PCREL_BLX:
17633 case BFD_RELOC_ARM_PLT32:
c19d1205 17634#ifdef TE_WINCE
5f4273c7 17635 /* When handling fixups immediately, because we have already
53baae48
NC
17636 discovered the value of a symbol, or the address of the frag involved
17637 we must account for the offset by +8, as the OS loader will never see the reloc.
17638 see fixup_segment() in write.c
17639 The S_IS_EXTERNAL test handles the case of global symbols.
17640 Those need the calculated base, not just the pipe compensation the linker will need. */
17641 if (fixP->fx_pcrel
17642 && fixP->fx_addsy != NULL
17643 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
17644 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
17645 return base + 8;
2fc8bdac 17646 return base;
c19d1205 17647#else
2fc8bdac 17648 return base + 8;
c19d1205 17649#endif
2fc8bdac
ZW
17650
17651 /* ARM mode loads relative to PC are also offset by +8. Unlike
17652 branches, the Windows CE loader *does* expect the relocation
17653 to take this into account. */
17654 case BFD_RELOC_ARM_OFFSET_IMM:
17655 case BFD_RELOC_ARM_OFFSET_IMM8:
17656 case BFD_RELOC_ARM_HWLITERAL:
17657 case BFD_RELOC_ARM_LITERAL:
17658 case BFD_RELOC_ARM_CP_OFF_IMM:
17659 return base + 8;
17660
17661
17662 /* Other PC-relative relocations are un-offset. */
17663 default:
17664 return base;
17665 }
bfae80f2
RE
17666}
17667
c19d1205
ZW
17668/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
17669 Otherwise we have no need to default values of symbols. */
17670
17671symbolS *
17672md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 17673{
c19d1205
ZW
17674#ifdef OBJ_ELF
17675 if (name[0] == '_' && name[1] == 'G'
17676 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
17677 {
17678 if (!GOT_symbol)
17679 {
17680 if (symbol_find (name))
bd3ba5d1 17681 as_bad (_("GOT already in the symbol table"));
bfae80f2 17682
c19d1205
ZW
17683 GOT_symbol = symbol_new (name, undefined_section,
17684 (valueT) 0, & zero_address_frag);
17685 }
bfae80f2 17686
c19d1205 17687 return GOT_symbol;
bfae80f2 17688 }
c19d1205 17689#endif
bfae80f2 17690
c19d1205 17691 return 0;
bfae80f2
RE
17692}
17693
55cf6793 17694/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
17695 computed as two separate immediate values, added together. We
17696 already know that this value cannot be computed by just one ARM
17697 instruction. */
17698
17699static unsigned int
17700validate_immediate_twopart (unsigned int val,
17701 unsigned int * highpart)
bfae80f2 17702{
c19d1205
ZW
17703 unsigned int a;
17704 unsigned int i;
bfae80f2 17705
c19d1205
ZW
17706 for (i = 0; i < 32; i += 2)
17707 if (((a = rotate_left (val, i)) & 0xff) != 0)
17708 {
17709 if (a & 0xff00)
17710 {
17711 if (a & ~ 0xffff)
17712 continue;
17713 * highpart = (a >> 8) | ((i + 24) << 7);
17714 }
17715 else if (a & 0xff0000)
17716 {
17717 if (a & 0xff000000)
17718 continue;
17719 * highpart = (a >> 16) | ((i + 16) << 7);
17720 }
17721 else
17722 {
17723 assert (a & 0xff000000);
17724 * highpart = (a >> 24) | ((i + 8) << 7);
17725 }
bfae80f2 17726
c19d1205
ZW
17727 return (a & 0xff) | (i << 7);
17728 }
bfae80f2 17729
c19d1205 17730 return FAIL;
bfae80f2
RE
17731}
17732
c19d1205
ZW
17733static int
17734validate_offset_imm (unsigned int val, int hwse)
17735{
17736 if ((hwse && val > 255) || val > 4095)
17737 return FAIL;
17738 return val;
17739}
bfae80f2 17740
55cf6793 17741/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
17742 negative immediate constant by altering the instruction. A bit of
17743 a hack really.
17744 MOV <-> MVN
17745 AND <-> BIC
17746 ADC <-> SBC
17747 by inverting the second operand, and
17748 ADD <-> SUB
17749 CMP <-> CMN
17750 by negating the second operand. */
bfae80f2 17751
c19d1205
ZW
17752static int
17753negate_data_op (unsigned long * instruction,
17754 unsigned long value)
bfae80f2 17755{
c19d1205
ZW
17756 int op, new_inst;
17757 unsigned long negated, inverted;
bfae80f2 17758
c19d1205
ZW
17759 negated = encode_arm_immediate (-value);
17760 inverted = encode_arm_immediate (~value);
bfae80f2 17761
c19d1205
ZW
17762 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
17763 switch (op)
bfae80f2 17764 {
c19d1205
ZW
17765 /* First negates. */
17766 case OPCODE_SUB: /* ADD <-> SUB */
17767 new_inst = OPCODE_ADD;
17768 value = negated;
17769 break;
bfae80f2 17770
c19d1205
ZW
17771 case OPCODE_ADD:
17772 new_inst = OPCODE_SUB;
17773 value = negated;
17774 break;
bfae80f2 17775
c19d1205
ZW
17776 case OPCODE_CMP: /* CMP <-> CMN */
17777 new_inst = OPCODE_CMN;
17778 value = negated;
17779 break;
bfae80f2 17780
c19d1205
ZW
17781 case OPCODE_CMN:
17782 new_inst = OPCODE_CMP;
17783 value = negated;
17784 break;
bfae80f2 17785
c19d1205
ZW
17786 /* Now Inverted ops. */
17787 case OPCODE_MOV: /* MOV <-> MVN */
17788 new_inst = OPCODE_MVN;
17789 value = inverted;
17790 break;
bfae80f2 17791
c19d1205
ZW
17792 case OPCODE_MVN:
17793 new_inst = OPCODE_MOV;
17794 value = inverted;
17795 break;
bfae80f2 17796
c19d1205
ZW
17797 case OPCODE_AND: /* AND <-> BIC */
17798 new_inst = OPCODE_BIC;
17799 value = inverted;
17800 break;
bfae80f2 17801
c19d1205
ZW
17802 case OPCODE_BIC:
17803 new_inst = OPCODE_AND;
17804 value = inverted;
17805 break;
bfae80f2 17806
c19d1205
ZW
17807 case OPCODE_ADC: /* ADC <-> SBC */
17808 new_inst = OPCODE_SBC;
17809 value = inverted;
17810 break;
bfae80f2 17811
c19d1205
ZW
17812 case OPCODE_SBC:
17813 new_inst = OPCODE_ADC;
17814 value = inverted;
17815 break;
bfae80f2 17816
c19d1205
ZW
17817 /* We cannot do anything. */
17818 default:
17819 return FAIL;
b99bd4ef
NC
17820 }
17821
c19d1205
ZW
17822 if (value == (unsigned) FAIL)
17823 return FAIL;
17824
17825 *instruction &= OPCODE_MASK;
17826 *instruction |= new_inst << DATA_OP_SHIFT;
17827 return value;
b99bd4ef
NC
17828}
17829
ef8d22e6
PB
17830/* Like negate_data_op, but for Thumb-2. */
17831
17832static unsigned int
16dd5e42 17833thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
17834{
17835 int op, new_inst;
17836 int rd;
16dd5e42 17837 unsigned int negated, inverted;
ef8d22e6
PB
17838
17839 negated = encode_thumb32_immediate (-value);
17840 inverted = encode_thumb32_immediate (~value);
17841
17842 rd = (*instruction >> 8) & 0xf;
17843 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
17844 switch (op)
17845 {
17846 /* ADD <-> SUB. Includes CMP <-> CMN. */
17847 case T2_OPCODE_SUB:
17848 new_inst = T2_OPCODE_ADD;
17849 value = negated;
17850 break;
17851
17852 case T2_OPCODE_ADD:
17853 new_inst = T2_OPCODE_SUB;
17854 value = negated;
17855 break;
17856
17857 /* ORR <-> ORN. Includes MOV <-> MVN. */
17858 case T2_OPCODE_ORR:
17859 new_inst = T2_OPCODE_ORN;
17860 value = inverted;
17861 break;
17862
17863 case T2_OPCODE_ORN:
17864 new_inst = T2_OPCODE_ORR;
17865 value = inverted;
17866 break;
17867
17868 /* AND <-> BIC. TST has no inverted equivalent. */
17869 case T2_OPCODE_AND:
17870 new_inst = T2_OPCODE_BIC;
17871 if (rd == 15)
17872 value = FAIL;
17873 else
17874 value = inverted;
17875 break;
17876
17877 case T2_OPCODE_BIC:
17878 new_inst = T2_OPCODE_AND;
17879 value = inverted;
17880 break;
17881
17882 /* ADC <-> SBC */
17883 case T2_OPCODE_ADC:
17884 new_inst = T2_OPCODE_SBC;
17885 value = inverted;
17886 break;
17887
17888 case T2_OPCODE_SBC:
17889 new_inst = T2_OPCODE_ADC;
17890 value = inverted;
17891 break;
17892
17893 /* We cannot do anything. */
17894 default:
17895 return FAIL;
17896 }
17897
16dd5e42 17898 if (value == (unsigned int)FAIL)
ef8d22e6
PB
17899 return FAIL;
17900
17901 *instruction &= T2_OPCODE_MASK;
17902 *instruction |= new_inst << T2_DATA_OP_SHIFT;
17903 return value;
17904}
17905
8f06b2d8
PB
17906/* Read a 32-bit thumb instruction from buf. */
17907static unsigned long
17908get_thumb32_insn (char * buf)
17909{
17910 unsigned long insn;
17911 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
17912 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17913
17914 return insn;
17915}
17916
a8bc6c78
PB
17917
17918/* We usually want to set the low bit on the address of thumb function
17919 symbols. In particular .word foo - . should have the low bit set.
17920 Generic code tries to fold the difference of two symbols to
17921 a constant. Prevent this and force a relocation when the first symbols
17922 is a thumb function. */
17923int
17924arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
17925{
17926 if (op == O_subtract
17927 && l->X_op == O_symbol
17928 && r->X_op == O_symbol
17929 && THUMB_IS_FUNC (l->X_add_symbol))
17930 {
17931 l->X_op = O_subtract;
17932 l->X_op_symbol = r->X_add_symbol;
17933 l->X_add_number -= r->X_add_number;
17934 return 1;
17935 }
17936 /* Process as normal. */
17937 return 0;
17938}
17939
c19d1205 17940void
55cf6793 17941md_apply_fix (fixS * fixP,
c19d1205
ZW
17942 valueT * valP,
17943 segT seg)
17944{
17945 offsetT value = * valP;
17946 offsetT newval;
17947 unsigned int newimm;
17948 unsigned long temp;
17949 int sign;
17950 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 17951
c19d1205 17952 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 17953
c19d1205 17954 /* Note whether this will delete the relocation. */
4962c51a 17955
c19d1205
ZW
17956 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
17957 fixP->fx_done = 1;
b99bd4ef 17958
adbaf948 17959 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 17960 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
17961 for emit_reloc. */
17962 value &= 0xffffffff;
17963 value ^= 0x80000000;
5f4273c7 17964 value -= 0x80000000;
adbaf948
ZW
17965
17966 *valP = value;
c19d1205 17967 fixP->fx_addnumber = value;
b99bd4ef 17968
adbaf948
ZW
17969 /* Same treatment for fixP->fx_offset. */
17970 fixP->fx_offset &= 0xffffffff;
17971 fixP->fx_offset ^= 0x80000000;
17972 fixP->fx_offset -= 0x80000000;
17973
c19d1205 17974 switch (fixP->fx_r_type)
b99bd4ef 17975 {
c19d1205
ZW
17976 case BFD_RELOC_NONE:
17977 /* This will need to go in the object file. */
17978 fixP->fx_done = 0;
17979 break;
b99bd4ef 17980
c19d1205
ZW
17981 case BFD_RELOC_ARM_IMMEDIATE:
17982 /* We claim that this fixup has been processed here,
17983 even if in fact we generate an error because we do
17984 not have a reloc for it, so tc_gen_reloc will reject it. */
17985 fixP->fx_done = 1;
b99bd4ef 17986
c19d1205
ZW
17987 if (fixP->fx_addsy
17988 && ! S_IS_DEFINED (fixP->fx_addsy))
b99bd4ef 17989 {
c19d1205
ZW
17990 as_bad_where (fixP->fx_file, fixP->fx_line,
17991 _("undefined symbol %s used as an immediate value"),
17992 S_GET_NAME (fixP->fx_addsy));
17993 break;
b99bd4ef
NC
17994 }
17995
c19d1205
ZW
17996 newimm = encode_arm_immediate (value);
17997 temp = md_chars_to_number (buf, INSN_SIZE);
17998
17999 /* If the instruction will fail, see if we can fix things up by
18000 changing the opcode. */
18001 if (newimm == (unsigned int) FAIL
18002 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 18003 {
c19d1205
ZW
18004 as_bad_where (fixP->fx_file, fixP->fx_line,
18005 _("invalid constant (%lx) after fixup"),
18006 (unsigned long) value);
18007 break;
b99bd4ef 18008 }
b99bd4ef 18009
c19d1205
ZW
18010 newimm |= (temp & 0xfffff000);
18011 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
18012 break;
b99bd4ef 18013
c19d1205
ZW
18014 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
18015 {
18016 unsigned int highpart = 0;
18017 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 18018
c19d1205
ZW
18019 newimm = encode_arm_immediate (value);
18020 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 18021
c19d1205
ZW
18022 /* If the instruction will fail, see if we can fix things up by
18023 changing the opcode. */
18024 if (newimm == (unsigned int) FAIL
18025 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
18026 {
18027 /* No ? OK - try using two ADD instructions to generate
18028 the value. */
18029 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 18030
c19d1205
ZW
18031 /* Yes - then make sure that the second instruction is
18032 also an add. */
18033 if (newimm != (unsigned int) FAIL)
18034 newinsn = temp;
18035 /* Still No ? Try using a negated value. */
18036 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
18037 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
18038 /* Otherwise - give up. */
18039 else
18040 {
18041 as_bad_where (fixP->fx_file, fixP->fx_line,
18042 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
18043 (long) value);
18044 break;
18045 }
b99bd4ef 18046
c19d1205
ZW
18047 /* Replace the first operand in the 2nd instruction (which
18048 is the PC) with the destination register. We have
18049 already added in the PC in the first instruction and we
18050 do not want to do it again. */
18051 newinsn &= ~ 0xf0000;
18052 newinsn |= ((newinsn & 0x0f000) << 4);
18053 }
b99bd4ef 18054
c19d1205
ZW
18055 newimm |= (temp & 0xfffff000);
18056 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 18057
c19d1205
ZW
18058 highpart |= (newinsn & 0xfffff000);
18059 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
18060 }
18061 break;
b99bd4ef 18062
c19d1205 18063 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
18064 if (!fixP->fx_done && seg->use_rela_p)
18065 value = 0;
18066
c19d1205
ZW
18067 case BFD_RELOC_ARM_LITERAL:
18068 sign = value >= 0;
b99bd4ef 18069
c19d1205
ZW
18070 if (value < 0)
18071 value = - value;
b99bd4ef 18072
c19d1205 18073 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 18074 {
c19d1205
ZW
18075 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
18076 as_bad_where (fixP->fx_file, fixP->fx_line,
18077 _("invalid literal constant: pool needs to be closer"));
18078 else
18079 as_bad_where (fixP->fx_file, fixP->fx_line,
18080 _("bad immediate value for offset (%ld)"),
18081 (long) value);
18082 break;
f03698e6
RE
18083 }
18084
c19d1205
ZW
18085 newval = md_chars_to_number (buf, INSN_SIZE);
18086 newval &= 0xff7ff000;
18087 newval |= value | (sign ? INDEX_UP : 0);
18088 md_number_to_chars (buf, newval, INSN_SIZE);
18089 break;
b99bd4ef 18090
c19d1205
ZW
18091 case BFD_RELOC_ARM_OFFSET_IMM8:
18092 case BFD_RELOC_ARM_HWLITERAL:
18093 sign = value >= 0;
b99bd4ef 18094
c19d1205
ZW
18095 if (value < 0)
18096 value = - value;
b99bd4ef 18097
c19d1205 18098 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 18099 {
c19d1205
ZW
18100 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
18101 as_bad_where (fixP->fx_file, fixP->fx_line,
18102 _("invalid literal constant: pool needs to be closer"));
18103 else
f9d4405b 18104 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
18105 (long) value);
18106 break;
b99bd4ef
NC
18107 }
18108
c19d1205
ZW
18109 newval = md_chars_to_number (buf, INSN_SIZE);
18110 newval &= 0xff7ff0f0;
18111 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
18112 md_number_to_chars (buf, newval, INSN_SIZE);
18113 break;
b99bd4ef 18114
c19d1205
ZW
18115 case BFD_RELOC_ARM_T32_OFFSET_U8:
18116 if (value < 0 || value > 1020 || value % 4 != 0)
18117 as_bad_where (fixP->fx_file, fixP->fx_line,
18118 _("bad immediate value for offset (%ld)"), (long) value);
18119 value /= 4;
b99bd4ef 18120
c19d1205 18121 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
18122 newval |= value;
18123 md_number_to_chars (buf+2, newval, THUMB_SIZE);
18124 break;
b99bd4ef 18125
c19d1205
ZW
18126 case BFD_RELOC_ARM_T32_OFFSET_IMM:
18127 /* This is a complicated relocation used for all varieties of Thumb32
18128 load/store instruction with immediate offset:
18129
18130 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
18131 *4, optional writeback(W)
18132 (doubleword load/store)
18133
18134 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
18135 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
18136 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
18137 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
18138 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
18139
18140 Uppercase letters indicate bits that are already encoded at
18141 this point. Lowercase letters are our problem. For the
18142 second block of instructions, the secondary opcode nybble
18143 (bits 8..11) is present, and bit 23 is zero, even if this is
18144 a PC-relative operation. */
18145 newval = md_chars_to_number (buf, THUMB_SIZE);
18146 newval <<= 16;
18147 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 18148
c19d1205 18149 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 18150 {
c19d1205
ZW
18151 /* Doubleword load/store: 8-bit offset, scaled by 4. */
18152 if (value >= 0)
18153 newval |= (1 << 23);
18154 else
18155 value = -value;
18156 if (value % 4 != 0)
18157 {
18158 as_bad_where (fixP->fx_file, fixP->fx_line,
18159 _("offset not a multiple of 4"));
18160 break;
18161 }
18162 value /= 4;
216d22bc 18163 if (value > 0xff)
c19d1205
ZW
18164 {
18165 as_bad_where (fixP->fx_file, fixP->fx_line,
18166 _("offset out of range"));
18167 break;
18168 }
18169 newval &= ~0xff;
b99bd4ef 18170 }
c19d1205 18171 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 18172 {
c19d1205
ZW
18173 /* PC-relative, 12-bit offset. */
18174 if (value >= 0)
18175 newval |= (1 << 23);
18176 else
18177 value = -value;
216d22bc 18178 if (value > 0xfff)
c19d1205
ZW
18179 {
18180 as_bad_where (fixP->fx_file, fixP->fx_line,
18181 _("offset out of range"));
18182 break;
18183 }
18184 newval &= ~0xfff;
b99bd4ef 18185 }
c19d1205 18186 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 18187 {
c19d1205
ZW
18188 /* Writeback: 8-bit, +/- offset. */
18189 if (value >= 0)
18190 newval |= (1 << 9);
18191 else
18192 value = -value;
216d22bc 18193 if (value > 0xff)
c19d1205
ZW
18194 {
18195 as_bad_where (fixP->fx_file, fixP->fx_line,
18196 _("offset out of range"));
18197 break;
18198 }
18199 newval &= ~0xff;
b99bd4ef 18200 }
c19d1205 18201 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 18202 {
c19d1205 18203 /* T-instruction: positive 8-bit offset. */
216d22bc 18204 if (value < 0 || value > 0xff)
b99bd4ef 18205 {
c19d1205
ZW
18206 as_bad_where (fixP->fx_file, fixP->fx_line,
18207 _("offset out of range"));
18208 break;
b99bd4ef 18209 }
c19d1205
ZW
18210 newval &= ~0xff;
18211 newval |= value;
b99bd4ef
NC
18212 }
18213 else
b99bd4ef 18214 {
c19d1205
ZW
18215 /* Positive 12-bit or negative 8-bit offset. */
18216 int limit;
18217 if (value >= 0)
b99bd4ef 18218 {
c19d1205
ZW
18219 newval |= (1 << 23);
18220 limit = 0xfff;
18221 }
18222 else
18223 {
18224 value = -value;
18225 limit = 0xff;
18226 }
18227 if (value > limit)
18228 {
18229 as_bad_where (fixP->fx_file, fixP->fx_line,
18230 _("offset out of range"));
18231 break;
b99bd4ef 18232 }
c19d1205 18233 newval &= ~limit;
b99bd4ef 18234 }
b99bd4ef 18235
c19d1205
ZW
18236 newval |= value;
18237 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
18238 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
18239 break;
404ff6b5 18240
c19d1205
ZW
18241 case BFD_RELOC_ARM_SHIFT_IMM:
18242 newval = md_chars_to_number (buf, INSN_SIZE);
18243 if (((unsigned long) value) > 32
18244 || (value == 32
18245 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
18246 {
18247 as_bad_where (fixP->fx_file, fixP->fx_line,
18248 _("shift expression is too large"));
18249 break;
18250 }
404ff6b5 18251
c19d1205
ZW
18252 if (value == 0)
18253 /* Shifts of zero must be done as lsl. */
18254 newval &= ~0x60;
18255 else if (value == 32)
18256 value = 0;
18257 newval &= 0xfffff07f;
18258 newval |= (value & 0x1f) << 7;
18259 md_number_to_chars (buf, newval, INSN_SIZE);
18260 break;
404ff6b5 18261
c19d1205 18262 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 18263 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 18264 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 18265 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
18266 /* We claim that this fixup has been processed here,
18267 even if in fact we generate an error because we do
18268 not have a reloc for it, so tc_gen_reloc will reject it. */
18269 fixP->fx_done = 1;
404ff6b5 18270
c19d1205
ZW
18271 if (fixP->fx_addsy
18272 && ! S_IS_DEFINED (fixP->fx_addsy))
18273 {
18274 as_bad_where (fixP->fx_file, fixP->fx_line,
18275 _("undefined symbol %s used as an immediate value"),
18276 S_GET_NAME (fixP->fx_addsy));
18277 break;
18278 }
404ff6b5 18279
c19d1205
ZW
18280 newval = md_chars_to_number (buf, THUMB_SIZE);
18281 newval <<= 16;
18282 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 18283
16805f35
PB
18284 newimm = FAIL;
18285 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18286 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
18287 {
18288 newimm = encode_thumb32_immediate (value);
18289 if (newimm == (unsigned int) FAIL)
18290 newimm = thumb32_negate_data_op (&newval, value);
18291 }
16805f35
PB
18292 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
18293 && newimm == (unsigned int) FAIL)
92e90b6e 18294 {
16805f35
PB
18295 /* Turn add/sum into addw/subw. */
18296 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18297 newval = (newval & 0xfeffffff) | 0x02000000;
18298
e9f89963
PB
18299 /* 12 bit immediate for addw/subw. */
18300 if (value < 0)
18301 {
18302 value = -value;
18303 newval ^= 0x00a00000;
18304 }
92e90b6e
PB
18305 if (value > 0xfff)
18306 newimm = (unsigned int) FAIL;
18307 else
18308 newimm = value;
18309 }
cc8a6dd0 18310
c19d1205 18311 if (newimm == (unsigned int)FAIL)
3631a3c8 18312 {
c19d1205
ZW
18313 as_bad_where (fixP->fx_file, fixP->fx_line,
18314 _("invalid constant (%lx) after fixup"),
18315 (unsigned long) value);
18316 break;
3631a3c8
NC
18317 }
18318
c19d1205
ZW
18319 newval |= (newimm & 0x800) << 15;
18320 newval |= (newimm & 0x700) << 4;
18321 newval |= (newimm & 0x0ff);
cc8a6dd0 18322
c19d1205
ZW
18323 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
18324 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
18325 break;
a737bd4d 18326
3eb17e6b 18327 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
18328 if (((unsigned long) value) > 0xffff)
18329 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 18330 _("invalid smc expression"));
2fc8bdac 18331 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
18332 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
18333 md_number_to_chars (buf, newval, INSN_SIZE);
18334 break;
a737bd4d 18335
c19d1205 18336 case BFD_RELOC_ARM_SWI:
adbaf948 18337 if (fixP->tc_fix_data != 0)
c19d1205
ZW
18338 {
18339 if (((unsigned long) value) > 0xff)
18340 as_bad_where (fixP->fx_file, fixP->fx_line,
18341 _("invalid swi expression"));
2fc8bdac 18342 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
18343 newval |= value;
18344 md_number_to_chars (buf, newval, THUMB_SIZE);
18345 }
18346 else
18347 {
18348 if (((unsigned long) value) > 0x00ffffff)
18349 as_bad_where (fixP->fx_file, fixP->fx_line,
18350 _("invalid swi expression"));
2fc8bdac 18351 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
18352 newval |= value;
18353 md_number_to_chars (buf, newval, INSN_SIZE);
18354 }
18355 break;
a737bd4d 18356
c19d1205
ZW
18357 case BFD_RELOC_ARM_MULTI:
18358 if (((unsigned long) value) > 0xffff)
18359 as_bad_where (fixP->fx_file, fixP->fx_line,
18360 _("invalid expression in load/store multiple"));
18361 newval = value | md_chars_to_number (buf, INSN_SIZE);
18362 md_number_to_chars (buf, newval, INSN_SIZE);
18363 break;
a737bd4d 18364
c19d1205 18365#ifdef OBJ_ELF
39b41c9c
PB
18366 case BFD_RELOC_ARM_PCREL_CALL:
18367 newval = md_chars_to_number (buf, INSN_SIZE);
18368 if ((newval & 0xf0000000) == 0xf0000000)
18369 temp = 1;
18370 else
18371 temp = 3;
18372 goto arm_branch_common;
18373
18374 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 18375 case BFD_RELOC_ARM_PLT32:
c19d1205 18376#endif
39b41c9c
PB
18377 case BFD_RELOC_ARM_PCREL_BRANCH:
18378 temp = 3;
18379 goto arm_branch_common;
a737bd4d 18380
39b41c9c
PB
18381 case BFD_RELOC_ARM_PCREL_BLX:
18382 temp = 1;
18383 arm_branch_common:
c19d1205 18384 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
18385 instruction, in a 24 bit, signed field. Bits 26 through 32 either
18386 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
18387 also be be clear. */
18388 if (value & temp)
c19d1205 18389 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
18390 _("misaligned branch destination"));
18391 if ((value & (offsetT)0xfe000000) != (offsetT)0
18392 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
18393 as_bad_where (fixP->fx_file, fixP->fx_line,
18394 _("branch out of range"));
a737bd4d 18395
2fc8bdac 18396 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18397 {
2fc8bdac
ZW
18398 newval = md_chars_to_number (buf, INSN_SIZE);
18399 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
18400 /* Set the H bit on BLX instructions. */
18401 if (temp == 1)
18402 {
18403 if (value & 2)
18404 newval |= 0x01000000;
18405 else
18406 newval &= ~0x01000000;
18407 }
2fc8bdac 18408 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 18409 }
c19d1205 18410 break;
a737bd4d 18411
25fe350b
MS
18412 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
18413 /* CBZ can only branch forward. */
a737bd4d 18414
738755b0
MS
18415 /* Attempts to use CBZ to branch to the next instruction
18416 (which, strictly speaking, are prohibited) will be turned into
18417 no-ops.
18418
18419 FIXME: It may be better to remove the instruction completely and
18420 perform relaxation. */
18421 if (value == -2)
2fc8bdac
ZW
18422 {
18423 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 18424 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
18425 md_number_to_chars (buf, newval, THUMB_SIZE);
18426 }
738755b0
MS
18427 else
18428 {
18429 if (value & ~0x7e)
18430 as_bad_where (fixP->fx_file, fixP->fx_line,
18431 _("branch out of range"));
18432
18433 if (fixP->fx_done || !seg->use_rela_p)
18434 {
18435 newval = md_chars_to_number (buf, THUMB_SIZE);
18436 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
18437 md_number_to_chars (buf, newval, THUMB_SIZE);
18438 }
18439 }
c19d1205 18440 break;
a737bd4d 18441
c19d1205 18442 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
18443 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
18444 as_bad_where (fixP->fx_file, fixP->fx_line,
18445 _("branch out of range"));
a737bd4d 18446
2fc8bdac
ZW
18447 if (fixP->fx_done || !seg->use_rela_p)
18448 {
18449 newval = md_chars_to_number (buf, THUMB_SIZE);
18450 newval |= (value & 0x1ff) >> 1;
18451 md_number_to_chars (buf, newval, THUMB_SIZE);
18452 }
c19d1205 18453 break;
a737bd4d 18454
c19d1205 18455 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
18456 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
18457 as_bad_where (fixP->fx_file, fixP->fx_line,
18458 _("branch out of range"));
a737bd4d 18459
2fc8bdac
ZW
18460 if (fixP->fx_done || !seg->use_rela_p)
18461 {
18462 newval = md_chars_to_number (buf, THUMB_SIZE);
18463 newval |= (value & 0xfff) >> 1;
18464 md_number_to_chars (buf, newval, THUMB_SIZE);
18465 }
c19d1205 18466 break;
a737bd4d 18467
c19d1205 18468 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac
ZW
18469 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
18470 as_bad_where (fixP->fx_file, fixP->fx_line,
18471 _("conditional branch out of range"));
404ff6b5 18472
2fc8bdac
ZW
18473 if (fixP->fx_done || !seg->use_rela_p)
18474 {
18475 offsetT newval2;
18476 addressT S, J1, J2, lo, hi;
404ff6b5 18477
2fc8bdac
ZW
18478 S = (value & 0x00100000) >> 20;
18479 J2 = (value & 0x00080000) >> 19;
18480 J1 = (value & 0x00040000) >> 18;
18481 hi = (value & 0x0003f000) >> 12;
18482 lo = (value & 0x00000ffe) >> 1;
6c43fab6 18483
2fc8bdac
ZW
18484 newval = md_chars_to_number (buf, THUMB_SIZE);
18485 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18486 newval |= (S << 10) | hi;
18487 newval2 |= (J1 << 13) | (J2 << 11) | lo;
18488 md_number_to_chars (buf, newval, THUMB_SIZE);
18489 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18490 }
c19d1205 18491 break;
6c43fab6 18492
c19d1205
ZW
18493 case BFD_RELOC_THUMB_PCREL_BLX:
18494 case BFD_RELOC_THUMB_PCREL_BRANCH23:
2fc8bdac
ZW
18495 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
18496 as_bad_where (fixP->fx_file, fixP->fx_line,
18497 _("branch out of range"));
404ff6b5 18498
2fc8bdac
ZW
18499 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
18500 /* For a BLX instruction, make sure that the relocation is rounded up
18501 to a word boundary. This follows the semantics of the instruction
18502 which specifies that bit 1 of the target address will come from bit
18503 1 of the base address. */
18504 value = (value + 1) & ~ 1;
404ff6b5 18505
2fc8bdac 18506 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18507 {
2fc8bdac
ZW
18508 offsetT newval2;
18509
18510 newval = md_chars_to_number (buf, THUMB_SIZE);
18511 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18512 newval |= (value & 0x7fffff) >> 12;
18513 newval2 |= (value & 0xfff) >> 1;
18514 md_number_to_chars (buf, newval, THUMB_SIZE);
18515 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
c19d1205 18516 }
c19d1205 18517 break;
404ff6b5 18518
c19d1205 18519 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
18520 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
18521 as_bad_where (fixP->fx_file, fixP->fx_line,
18522 _("branch out of range"));
6c43fab6 18523
2fc8bdac
ZW
18524 if (fixP->fx_done || !seg->use_rela_p)
18525 {
18526 offsetT newval2;
18527 addressT S, I1, I2, lo, hi;
6c43fab6 18528
2fc8bdac
ZW
18529 S = (value & 0x01000000) >> 24;
18530 I1 = (value & 0x00800000) >> 23;
18531 I2 = (value & 0x00400000) >> 22;
18532 hi = (value & 0x003ff000) >> 12;
18533 lo = (value & 0x00000ffe) >> 1;
6c43fab6 18534
2fc8bdac
ZW
18535 I1 = !(I1 ^ S);
18536 I2 = !(I2 ^ S);
a737bd4d 18537
2fc8bdac
ZW
18538 newval = md_chars_to_number (buf, THUMB_SIZE);
18539 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18540 newval |= (S << 10) | hi;
18541 newval2 |= (I1 << 13) | (I2 << 11) | lo;
18542 md_number_to_chars (buf, newval, THUMB_SIZE);
18543 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18544 }
18545 break;
a737bd4d 18546
2fc8bdac
ZW
18547 case BFD_RELOC_8:
18548 if (fixP->fx_done || !seg->use_rela_p)
18549 md_number_to_chars (buf, value, 1);
c19d1205 18550 break;
a737bd4d 18551
c19d1205 18552 case BFD_RELOC_16:
2fc8bdac 18553 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18554 md_number_to_chars (buf, value, 2);
c19d1205 18555 break;
a737bd4d 18556
c19d1205
ZW
18557#ifdef OBJ_ELF
18558 case BFD_RELOC_ARM_TLS_GD32:
18559 case BFD_RELOC_ARM_TLS_LE32:
18560 case BFD_RELOC_ARM_TLS_IE32:
18561 case BFD_RELOC_ARM_TLS_LDM32:
18562 case BFD_RELOC_ARM_TLS_LDO32:
18563 S_SET_THREAD_LOCAL (fixP->fx_addsy);
18564 /* fall through */
6c43fab6 18565
c19d1205
ZW
18566 case BFD_RELOC_ARM_GOT32:
18567 case BFD_RELOC_ARM_GOTOFF:
18568 case BFD_RELOC_ARM_TARGET2:
2fc8bdac
ZW
18569 if (fixP->fx_done || !seg->use_rela_p)
18570 md_number_to_chars (buf, 0, 4);
c19d1205
ZW
18571 break;
18572#endif
6c43fab6 18573
c19d1205
ZW
18574 case BFD_RELOC_RVA:
18575 case BFD_RELOC_32:
18576 case BFD_RELOC_ARM_TARGET1:
18577 case BFD_RELOC_ARM_ROSEGREL32:
18578 case BFD_RELOC_ARM_SBREL32:
18579 case BFD_RELOC_32_PCREL:
f0927246
NC
18580#ifdef TE_PE
18581 case BFD_RELOC_32_SECREL:
18582#endif
2fc8bdac 18583 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
18584#ifdef TE_WINCE
18585 /* For WinCE we only do this for pcrel fixups. */
18586 if (fixP->fx_done || fixP->fx_pcrel)
18587#endif
18588 md_number_to_chars (buf, value, 4);
c19d1205 18589 break;
6c43fab6 18590
c19d1205
ZW
18591#ifdef OBJ_ELF
18592 case BFD_RELOC_ARM_PREL31:
2fc8bdac 18593 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
18594 {
18595 newval = md_chars_to_number (buf, 4) & 0x80000000;
18596 if ((value ^ (value >> 1)) & 0x40000000)
18597 {
18598 as_bad_where (fixP->fx_file, fixP->fx_line,
18599 _("rel31 relocation overflow"));
18600 }
18601 newval |= value & 0x7fffffff;
18602 md_number_to_chars (buf, newval, 4);
18603 }
18604 break;
c19d1205 18605#endif
a737bd4d 18606
c19d1205 18607 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 18608 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
18609 if (value < -1023 || value > 1023 || (value & 3))
18610 as_bad_where (fixP->fx_file, fixP->fx_line,
18611 _("co-processor offset out of range"));
18612 cp_off_common:
18613 sign = value >= 0;
18614 if (value < 0)
18615 value = -value;
8f06b2d8
PB
18616 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18617 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18618 newval = md_chars_to_number (buf, INSN_SIZE);
18619 else
18620 newval = get_thumb32_insn (buf);
18621 newval &= 0xff7fff00;
c19d1205 18622 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
18623 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18624 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18625 md_number_to_chars (buf, newval, INSN_SIZE);
18626 else
18627 put_thumb32_insn (buf, newval);
c19d1205 18628 break;
a737bd4d 18629
c19d1205 18630 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 18631 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
18632 if (value < -255 || value > 255)
18633 as_bad_where (fixP->fx_file, fixP->fx_line,
18634 _("co-processor offset out of range"));
df7849c5 18635 value *= 4;
c19d1205 18636 goto cp_off_common;
6c43fab6 18637
c19d1205
ZW
18638 case BFD_RELOC_ARM_THUMB_OFFSET:
18639 newval = md_chars_to_number (buf, THUMB_SIZE);
18640 /* Exactly what ranges, and where the offset is inserted depends
18641 on the type of instruction, we can establish this from the
18642 top 4 bits. */
18643 switch (newval >> 12)
18644 {
18645 case 4: /* PC load. */
18646 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
18647 forced to zero for these loads; md_pcrel_from has already
18648 compensated for this. */
18649 if (value & 3)
18650 as_bad_where (fixP->fx_file, fixP->fx_line,
18651 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
18652 (((unsigned long) fixP->fx_frag->fr_address
18653 + (unsigned long) fixP->fx_where) & ~3)
18654 + (unsigned long) value);
a737bd4d 18655
c19d1205
ZW
18656 if (value & ~0x3fc)
18657 as_bad_where (fixP->fx_file, fixP->fx_line,
18658 _("invalid offset, value too big (0x%08lX)"),
18659 (long) value);
a737bd4d 18660
c19d1205
ZW
18661 newval |= value >> 2;
18662 break;
a737bd4d 18663
c19d1205
ZW
18664 case 9: /* SP load/store. */
18665 if (value & ~0x3fc)
18666 as_bad_where (fixP->fx_file, fixP->fx_line,
18667 _("invalid offset, value too big (0x%08lX)"),
18668 (long) value);
18669 newval |= value >> 2;
18670 break;
6c43fab6 18671
c19d1205
ZW
18672 case 6: /* Word load/store. */
18673 if (value & ~0x7c)
18674 as_bad_where (fixP->fx_file, fixP->fx_line,
18675 _("invalid offset, value too big (0x%08lX)"),
18676 (long) value);
18677 newval |= value << 4; /* 6 - 2. */
18678 break;
a737bd4d 18679
c19d1205
ZW
18680 case 7: /* Byte load/store. */
18681 if (value & ~0x1f)
18682 as_bad_where (fixP->fx_file, fixP->fx_line,
18683 _("invalid offset, value too big (0x%08lX)"),
18684 (long) value);
18685 newval |= value << 6;
18686 break;
a737bd4d 18687
c19d1205
ZW
18688 case 8: /* Halfword load/store. */
18689 if (value & ~0x3e)
18690 as_bad_where (fixP->fx_file, fixP->fx_line,
18691 _("invalid offset, value too big (0x%08lX)"),
18692 (long) value);
18693 newval |= value << 5; /* 6 - 1. */
18694 break;
a737bd4d 18695
c19d1205
ZW
18696 default:
18697 as_bad_where (fixP->fx_file, fixP->fx_line,
18698 "Unable to process relocation for thumb opcode: %lx",
18699 (unsigned long) newval);
18700 break;
18701 }
18702 md_number_to_chars (buf, newval, THUMB_SIZE);
18703 break;
a737bd4d 18704
c19d1205
ZW
18705 case BFD_RELOC_ARM_THUMB_ADD:
18706 /* This is a complicated relocation, since we use it for all of
18707 the following immediate relocations:
a737bd4d 18708
c19d1205
ZW
18709 3bit ADD/SUB
18710 8bit ADD/SUB
18711 9bit ADD/SUB SP word-aligned
18712 10bit ADD PC/SP word-aligned
a737bd4d 18713
c19d1205
ZW
18714 The type of instruction being processed is encoded in the
18715 instruction field:
a737bd4d 18716
c19d1205
ZW
18717 0x8000 SUB
18718 0x00F0 Rd
18719 0x000F Rs
18720 */
18721 newval = md_chars_to_number (buf, THUMB_SIZE);
18722 {
18723 int rd = (newval >> 4) & 0xf;
18724 int rs = newval & 0xf;
18725 int subtract = !!(newval & 0x8000);
a737bd4d 18726
c19d1205
ZW
18727 /* Check for HI regs, only very restricted cases allowed:
18728 Adjusting SP, and using PC or SP to get an address. */
18729 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
18730 || (rs > 7 && rs != REG_SP && rs != REG_PC))
18731 as_bad_where (fixP->fx_file, fixP->fx_line,
18732 _("invalid Hi register with immediate"));
a737bd4d 18733
c19d1205
ZW
18734 /* If value is negative, choose the opposite instruction. */
18735 if (value < 0)
18736 {
18737 value = -value;
18738 subtract = !subtract;
18739 if (value < 0)
18740 as_bad_where (fixP->fx_file, fixP->fx_line,
18741 _("immediate value out of range"));
18742 }
a737bd4d 18743
c19d1205
ZW
18744 if (rd == REG_SP)
18745 {
18746 if (value & ~0x1fc)
18747 as_bad_where (fixP->fx_file, fixP->fx_line,
18748 _("invalid immediate for stack address calculation"));
18749 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
18750 newval |= value >> 2;
18751 }
18752 else if (rs == REG_PC || rs == REG_SP)
18753 {
18754 if (subtract || value & ~0x3fc)
18755 as_bad_where (fixP->fx_file, fixP->fx_line,
18756 _("invalid immediate for address calculation (value = 0x%08lX)"),
18757 (unsigned long) value);
18758 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
18759 newval |= rd << 8;
18760 newval |= value >> 2;
18761 }
18762 else if (rs == rd)
18763 {
18764 if (value & ~0xff)
18765 as_bad_where (fixP->fx_file, fixP->fx_line,
18766 _("immediate value out of range"));
18767 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
18768 newval |= (rd << 8) | value;
18769 }
18770 else
18771 {
18772 if (value & ~0x7)
18773 as_bad_where (fixP->fx_file, fixP->fx_line,
18774 _("immediate value out of range"));
18775 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
18776 newval |= rd | (rs << 3) | (value << 6);
18777 }
18778 }
18779 md_number_to_chars (buf, newval, THUMB_SIZE);
18780 break;
a737bd4d 18781
c19d1205
ZW
18782 case BFD_RELOC_ARM_THUMB_IMM:
18783 newval = md_chars_to_number (buf, THUMB_SIZE);
18784 if (value < 0 || value > 255)
18785 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 18786 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
18787 (long) value);
18788 newval |= value;
18789 md_number_to_chars (buf, newval, THUMB_SIZE);
18790 break;
a737bd4d 18791
c19d1205
ZW
18792 case BFD_RELOC_ARM_THUMB_SHIFT:
18793 /* 5bit shift value (0..32). LSL cannot take 32. */
18794 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
18795 temp = newval & 0xf800;
18796 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
18797 as_bad_where (fixP->fx_file, fixP->fx_line,
18798 _("invalid shift value: %ld"), (long) value);
18799 /* Shifts of zero must be encoded as LSL. */
18800 if (value == 0)
18801 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
18802 /* Shifts of 32 are encoded as zero. */
18803 else if (value == 32)
18804 value = 0;
18805 newval |= value << 6;
18806 md_number_to_chars (buf, newval, THUMB_SIZE);
18807 break;
a737bd4d 18808
c19d1205
ZW
18809 case BFD_RELOC_VTABLE_INHERIT:
18810 case BFD_RELOC_VTABLE_ENTRY:
18811 fixP->fx_done = 0;
18812 return;
6c43fab6 18813
b6895b4f
PB
18814 case BFD_RELOC_ARM_MOVW:
18815 case BFD_RELOC_ARM_MOVT:
18816 case BFD_RELOC_ARM_THUMB_MOVW:
18817 case BFD_RELOC_ARM_THUMB_MOVT:
18818 if (fixP->fx_done || !seg->use_rela_p)
18819 {
18820 /* REL format relocations are limited to a 16-bit addend. */
18821 if (!fixP->fx_done)
18822 {
39623e12 18823 if (value < -0x8000 || value > 0x7fff)
b6895b4f 18824 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 18825 _("offset out of range"));
b6895b4f
PB
18826 }
18827 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
18828 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18829 {
18830 value >>= 16;
18831 }
18832
18833 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
18834 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18835 {
18836 newval = get_thumb32_insn (buf);
18837 newval &= 0xfbf08f00;
18838 newval |= (value & 0xf000) << 4;
18839 newval |= (value & 0x0800) << 15;
18840 newval |= (value & 0x0700) << 4;
18841 newval |= (value & 0x00ff);
18842 put_thumb32_insn (buf, newval);
18843 }
18844 else
18845 {
18846 newval = md_chars_to_number (buf, 4);
18847 newval &= 0xfff0f000;
18848 newval |= value & 0x0fff;
18849 newval |= (value & 0xf000) << 4;
18850 md_number_to_chars (buf, newval, 4);
18851 }
18852 }
18853 return;
18854
4962c51a
MS
18855 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18856 case BFD_RELOC_ARM_ALU_PC_G0:
18857 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18858 case BFD_RELOC_ARM_ALU_PC_G1:
18859 case BFD_RELOC_ARM_ALU_PC_G2:
18860 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18861 case BFD_RELOC_ARM_ALU_SB_G0:
18862 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18863 case BFD_RELOC_ARM_ALU_SB_G1:
18864 case BFD_RELOC_ARM_ALU_SB_G2:
18865 assert (!fixP->fx_done);
18866 if (!seg->use_rela_p)
18867 {
18868 bfd_vma insn;
18869 bfd_vma encoded_addend;
18870 bfd_vma addend_abs = abs (value);
18871
18872 /* Check that the absolute value of the addend can be
18873 expressed as an 8-bit constant plus a rotation. */
18874 encoded_addend = encode_arm_immediate (addend_abs);
18875 if (encoded_addend == (unsigned int) FAIL)
18876 as_bad_where (fixP->fx_file, fixP->fx_line,
18877 _("the offset 0x%08lX is not representable"),
495bde8e 18878 (unsigned long) addend_abs);
4962c51a
MS
18879
18880 /* Extract the instruction. */
18881 insn = md_chars_to_number (buf, INSN_SIZE);
18882
18883 /* If the addend is positive, use an ADD instruction.
18884 Otherwise use a SUB. Take care not to destroy the S bit. */
18885 insn &= 0xff1fffff;
18886 if (value < 0)
18887 insn |= 1 << 22;
18888 else
18889 insn |= 1 << 23;
18890
18891 /* Place the encoded addend into the first 12 bits of the
18892 instruction. */
18893 insn &= 0xfffff000;
18894 insn |= encoded_addend;
5f4273c7
NC
18895
18896 /* Update the instruction. */
4962c51a
MS
18897 md_number_to_chars (buf, insn, INSN_SIZE);
18898 }
18899 break;
18900
18901 case BFD_RELOC_ARM_LDR_PC_G0:
18902 case BFD_RELOC_ARM_LDR_PC_G1:
18903 case BFD_RELOC_ARM_LDR_PC_G2:
18904 case BFD_RELOC_ARM_LDR_SB_G0:
18905 case BFD_RELOC_ARM_LDR_SB_G1:
18906 case BFD_RELOC_ARM_LDR_SB_G2:
18907 assert (!fixP->fx_done);
18908 if (!seg->use_rela_p)
18909 {
18910 bfd_vma insn;
18911 bfd_vma addend_abs = abs (value);
18912
18913 /* Check that the absolute value of the addend can be
18914 encoded in 12 bits. */
18915 if (addend_abs >= 0x1000)
18916 as_bad_where (fixP->fx_file, fixP->fx_line,
18917 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 18918 (unsigned long) addend_abs);
4962c51a
MS
18919
18920 /* Extract the instruction. */
18921 insn = md_chars_to_number (buf, INSN_SIZE);
18922
18923 /* If the addend is negative, clear bit 23 of the instruction.
18924 Otherwise set it. */
18925 if (value < 0)
18926 insn &= ~(1 << 23);
18927 else
18928 insn |= 1 << 23;
18929
18930 /* Place the absolute value of the addend into the first 12 bits
18931 of the instruction. */
18932 insn &= 0xfffff000;
18933 insn |= addend_abs;
5f4273c7
NC
18934
18935 /* Update the instruction. */
4962c51a
MS
18936 md_number_to_chars (buf, insn, INSN_SIZE);
18937 }
18938 break;
18939
18940 case BFD_RELOC_ARM_LDRS_PC_G0:
18941 case BFD_RELOC_ARM_LDRS_PC_G1:
18942 case BFD_RELOC_ARM_LDRS_PC_G2:
18943 case BFD_RELOC_ARM_LDRS_SB_G0:
18944 case BFD_RELOC_ARM_LDRS_SB_G1:
18945 case BFD_RELOC_ARM_LDRS_SB_G2:
18946 assert (!fixP->fx_done);
18947 if (!seg->use_rela_p)
18948 {
18949 bfd_vma insn;
18950 bfd_vma addend_abs = abs (value);
18951
18952 /* Check that the absolute value of the addend can be
18953 encoded in 8 bits. */
18954 if (addend_abs >= 0x100)
18955 as_bad_where (fixP->fx_file, fixP->fx_line,
18956 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 18957 (unsigned long) addend_abs);
4962c51a
MS
18958
18959 /* Extract the instruction. */
18960 insn = md_chars_to_number (buf, INSN_SIZE);
18961
18962 /* If the addend is negative, clear bit 23 of the instruction.
18963 Otherwise set it. */
18964 if (value < 0)
18965 insn &= ~(1 << 23);
18966 else
18967 insn |= 1 << 23;
18968
18969 /* Place the first four bits of the absolute value of the addend
18970 into the first 4 bits of the instruction, and the remaining
18971 four into bits 8 .. 11. */
18972 insn &= 0xfffff0f0;
18973 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
18974
18975 /* Update the instruction. */
4962c51a
MS
18976 md_number_to_chars (buf, insn, INSN_SIZE);
18977 }
18978 break;
18979
18980 case BFD_RELOC_ARM_LDC_PC_G0:
18981 case BFD_RELOC_ARM_LDC_PC_G1:
18982 case BFD_RELOC_ARM_LDC_PC_G2:
18983 case BFD_RELOC_ARM_LDC_SB_G0:
18984 case BFD_RELOC_ARM_LDC_SB_G1:
18985 case BFD_RELOC_ARM_LDC_SB_G2:
18986 assert (!fixP->fx_done);
18987 if (!seg->use_rela_p)
18988 {
18989 bfd_vma insn;
18990 bfd_vma addend_abs = abs (value);
18991
18992 /* Check that the absolute value of the addend is a multiple of
18993 four and, when divided by four, fits in 8 bits. */
18994 if (addend_abs & 0x3)
18995 as_bad_where (fixP->fx_file, fixP->fx_line,
18996 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 18997 (unsigned long) addend_abs);
4962c51a
MS
18998
18999 if ((addend_abs >> 2) > 0xff)
19000 as_bad_where (fixP->fx_file, fixP->fx_line,
19001 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 19002 (unsigned long) addend_abs);
4962c51a
MS
19003
19004 /* Extract the instruction. */
19005 insn = md_chars_to_number (buf, INSN_SIZE);
19006
19007 /* If the addend is negative, clear bit 23 of the instruction.
19008 Otherwise set it. */
19009 if (value < 0)
19010 insn &= ~(1 << 23);
19011 else
19012 insn |= 1 << 23;
19013
19014 /* Place the addend (divided by four) into the first eight
19015 bits of the instruction. */
19016 insn &= 0xfffffff0;
19017 insn |= addend_abs >> 2;
5f4273c7
NC
19018
19019 /* Update the instruction. */
4962c51a
MS
19020 md_number_to_chars (buf, insn, INSN_SIZE);
19021 }
19022 break;
19023
845b51d6
PB
19024 case BFD_RELOC_ARM_V4BX:
19025 /* This will need to go in the object file. */
19026 fixP->fx_done = 0;
19027 break;
19028
c19d1205
ZW
19029 case BFD_RELOC_UNUSED:
19030 default:
19031 as_bad_where (fixP->fx_file, fixP->fx_line,
19032 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
19033 }
6c43fab6
RE
19034}
19035
c19d1205
ZW
19036/* Translate internal representation of relocation info to BFD target
19037 format. */
a737bd4d 19038
c19d1205 19039arelent *
00a97672 19040tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 19041{
c19d1205
ZW
19042 arelent * reloc;
19043 bfd_reloc_code_real_type code;
a737bd4d 19044
c19d1205 19045 reloc = xmalloc (sizeof (arelent));
a737bd4d 19046
c19d1205
ZW
19047 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
19048 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
19049 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 19050
2fc8bdac 19051 if (fixp->fx_pcrel)
00a97672
RS
19052 {
19053 if (section->use_rela_p)
19054 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
19055 else
19056 fixp->fx_offset = reloc->address;
19057 }
c19d1205 19058 reloc->addend = fixp->fx_offset;
a737bd4d 19059
c19d1205 19060 switch (fixp->fx_r_type)
a737bd4d 19061 {
c19d1205
ZW
19062 case BFD_RELOC_8:
19063 if (fixp->fx_pcrel)
19064 {
19065 code = BFD_RELOC_8_PCREL;
19066 break;
19067 }
a737bd4d 19068
c19d1205
ZW
19069 case BFD_RELOC_16:
19070 if (fixp->fx_pcrel)
19071 {
19072 code = BFD_RELOC_16_PCREL;
19073 break;
19074 }
6c43fab6 19075
c19d1205
ZW
19076 case BFD_RELOC_32:
19077 if (fixp->fx_pcrel)
19078 {
19079 code = BFD_RELOC_32_PCREL;
19080 break;
19081 }
a737bd4d 19082
b6895b4f
PB
19083 case BFD_RELOC_ARM_MOVW:
19084 if (fixp->fx_pcrel)
19085 {
19086 code = BFD_RELOC_ARM_MOVW_PCREL;
19087 break;
19088 }
19089
19090 case BFD_RELOC_ARM_MOVT:
19091 if (fixp->fx_pcrel)
19092 {
19093 code = BFD_RELOC_ARM_MOVT_PCREL;
19094 break;
19095 }
19096
19097 case BFD_RELOC_ARM_THUMB_MOVW:
19098 if (fixp->fx_pcrel)
19099 {
19100 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
19101 break;
19102 }
19103
19104 case BFD_RELOC_ARM_THUMB_MOVT:
19105 if (fixp->fx_pcrel)
19106 {
19107 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
19108 break;
19109 }
19110
c19d1205
ZW
19111 case BFD_RELOC_NONE:
19112 case BFD_RELOC_ARM_PCREL_BRANCH:
19113 case BFD_RELOC_ARM_PCREL_BLX:
19114 case BFD_RELOC_RVA:
19115 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19116 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19117 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19118 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19119 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19120 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19121 case BFD_RELOC_THUMB_PCREL_BLX:
19122 case BFD_RELOC_VTABLE_ENTRY:
19123 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
19124#ifdef TE_PE
19125 case BFD_RELOC_32_SECREL:
19126#endif
c19d1205
ZW
19127 code = fixp->fx_r_type;
19128 break;
a737bd4d 19129
c19d1205
ZW
19130 case BFD_RELOC_ARM_LITERAL:
19131 case BFD_RELOC_ARM_HWLITERAL:
19132 /* If this is called then the a literal has
19133 been referenced across a section boundary. */
19134 as_bad_where (fixp->fx_file, fixp->fx_line,
19135 _("literal referenced across section boundary"));
19136 return NULL;
a737bd4d 19137
c19d1205
ZW
19138#ifdef OBJ_ELF
19139 case BFD_RELOC_ARM_GOT32:
19140 case BFD_RELOC_ARM_GOTOFF:
19141 case BFD_RELOC_ARM_PLT32:
19142 case BFD_RELOC_ARM_TARGET1:
19143 case BFD_RELOC_ARM_ROSEGREL32:
19144 case BFD_RELOC_ARM_SBREL32:
19145 case BFD_RELOC_ARM_PREL31:
19146 case BFD_RELOC_ARM_TARGET2:
19147 case BFD_RELOC_ARM_TLS_LE32:
19148 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
19149 case BFD_RELOC_ARM_PCREL_CALL:
19150 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
19151 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19152 case BFD_RELOC_ARM_ALU_PC_G0:
19153 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19154 case BFD_RELOC_ARM_ALU_PC_G1:
19155 case BFD_RELOC_ARM_ALU_PC_G2:
19156 case BFD_RELOC_ARM_LDR_PC_G0:
19157 case BFD_RELOC_ARM_LDR_PC_G1:
19158 case BFD_RELOC_ARM_LDR_PC_G2:
19159 case BFD_RELOC_ARM_LDRS_PC_G0:
19160 case BFD_RELOC_ARM_LDRS_PC_G1:
19161 case BFD_RELOC_ARM_LDRS_PC_G2:
19162 case BFD_RELOC_ARM_LDC_PC_G0:
19163 case BFD_RELOC_ARM_LDC_PC_G1:
19164 case BFD_RELOC_ARM_LDC_PC_G2:
19165 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19166 case BFD_RELOC_ARM_ALU_SB_G0:
19167 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19168 case BFD_RELOC_ARM_ALU_SB_G1:
19169 case BFD_RELOC_ARM_ALU_SB_G2:
19170 case BFD_RELOC_ARM_LDR_SB_G0:
19171 case BFD_RELOC_ARM_LDR_SB_G1:
19172 case BFD_RELOC_ARM_LDR_SB_G2:
19173 case BFD_RELOC_ARM_LDRS_SB_G0:
19174 case BFD_RELOC_ARM_LDRS_SB_G1:
19175 case BFD_RELOC_ARM_LDRS_SB_G2:
19176 case BFD_RELOC_ARM_LDC_SB_G0:
19177 case BFD_RELOC_ARM_LDC_SB_G1:
19178 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 19179 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
19180 code = fixp->fx_r_type;
19181 break;
a737bd4d 19182
c19d1205
ZW
19183 case BFD_RELOC_ARM_TLS_GD32:
19184 case BFD_RELOC_ARM_TLS_IE32:
19185 case BFD_RELOC_ARM_TLS_LDM32:
19186 /* BFD will include the symbol's address in the addend.
19187 But we don't want that, so subtract it out again here. */
19188 if (!S_IS_COMMON (fixp->fx_addsy))
19189 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
19190 code = fixp->fx_r_type;
19191 break;
19192#endif
a737bd4d 19193
c19d1205
ZW
19194 case BFD_RELOC_ARM_IMMEDIATE:
19195 as_bad_where (fixp->fx_file, fixp->fx_line,
19196 _("internal relocation (type: IMMEDIATE) not fixed up"));
19197 return NULL;
a737bd4d 19198
c19d1205
ZW
19199 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19200 as_bad_where (fixp->fx_file, fixp->fx_line,
19201 _("ADRL used for a symbol not defined in the same file"));
19202 return NULL;
a737bd4d 19203
c19d1205 19204 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
19205 if (section->use_rela_p)
19206 {
19207 code = fixp->fx_r_type;
19208 break;
19209 }
19210
c19d1205
ZW
19211 if (fixp->fx_addsy != NULL
19212 && !S_IS_DEFINED (fixp->fx_addsy)
19213 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 19214 {
c19d1205
ZW
19215 as_bad_where (fixp->fx_file, fixp->fx_line,
19216 _("undefined local label `%s'"),
19217 S_GET_NAME (fixp->fx_addsy));
19218 return NULL;
a737bd4d
NC
19219 }
19220
c19d1205
ZW
19221 as_bad_where (fixp->fx_file, fixp->fx_line,
19222 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
19223 return NULL;
a737bd4d 19224
c19d1205
ZW
19225 default:
19226 {
19227 char * type;
6c43fab6 19228
c19d1205
ZW
19229 switch (fixp->fx_r_type)
19230 {
19231 case BFD_RELOC_NONE: type = "NONE"; break;
19232 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
19233 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 19234 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
19235 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
19236 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
19237 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
8f06b2d8 19238 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
19239 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
19240 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
19241 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
19242 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
19243 default: type = _("<unknown>"); break;
19244 }
19245 as_bad_where (fixp->fx_file, fixp->fx_line,
19246 _("cannot represent %s relocation in this object file format"),
19247 type);
19248 return NULL;
19249 }
a737bd4d 19250 }
6c43fab6 19251
c19d1205
ZW
19252#ifdef OBJ_ELF
19253 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
19254 && GOT_symbol
19255 && fixp->fx_addsy == GOT_symbol)
19256 {
19257 code = BFD_RELOC_ARM_GOTPC;
19258 reloc->addend = fixp->fx_offset = reloc->address;
19259 }
19260#endif
6c43fab6 19261
c19d1205 19262 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 19263
c19d1205
ZW
19264 if (reloc->howto == NULL)
19265 {
19266 as_bad_where (fixp->fx_file, fixp->fx_line,
19267 _("cannot represent %s relocation in this object file format"),
19268 bfd_get_reloc_code_name (code));
19269 return NULL;
19270 }
6c43fab6 19271
c19d1205
ZW
19272 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
19273 vtable entry to be used in the relocation's section offset. */
19274 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19275 reloc->address = fixp->fx_offset;
6c43fab6 19276
c19d1205 19277 return reloc;
6c43fab6
RE
19278}
19279
c19d1205 19280/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 19281
c19d1205
ZW
19282void
19283cons_fix_new_arm (fragS * frag,
19284 int where,
19285 int size,
19286 expressionS * exp)
6c43fab6 19287{
c19d1205
ZW
19288 bfd_reloc_code_real_type type;
19289 int pcrel = 0;
6c43fab6 19290
c19d1205
ZW
19291 /* Pick a reloc.
19292 FIXME: @@ Should look at CPU word size. */
19293 switch (size)
19294 {
19295 case 1:
19296 type = BFD_RELOC_8;
19297 break;
19298 case 2:
19299 type = BFD_RELOC_16;
19300 break;
19301 case 4:
19302 default:
19303 type = BFD_RELOC_32;
19304 break;
19305 case 8:
19306 type = BFD_RELOC_64;
19307 break;
19308 }
6c43fab6 19309
f0927246
NC
19310#ifdef TE_PE
19311 if (exp->X_op == O_secrel)
19312 {
19313 exp->X_op = O_symbol;
19314 type = BFD_RELOC_32_SECREL;
19315 }
19316#endif
19317
c19d1205
ZW
19318 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
19319}
6c43fab6 19320
c19d1205
ZW
19321#if defined OBJ_COFF || defined OBJ_ELF
19322void
19323arm_validate_fix (fixS * fixP)
6c43fab6 19324{
c19d1205
ZW
19325 /* If the destination of the branch is a defined symbol which does not have
19326 the THUMB_FUNC attribute, then we must be calling a function which has
19327 the (interfacearm) attribute. We look for the Thumb entry point to that
19328 function and change the branch to refer to that function instead. */
19329 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
19330 && fixP->fx_addsy != NULL
19331 && S_IS_DEFINED (fixP->fx_addsy)
19332 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 19333 {
c19d1205 19334 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 19335 }
c19d1205
ZW
19336}
19337#endif
6c43fab6 19338
c19d1205
ZW
19339int
19340arm_force_relocation (struct fix * fixp)
19341{
19342#if defined (OBJ_COFF) && defined (TE_PE)
19343 if (fixp->fx_r_type == BFD_RELOC_RVA)
19344 return 1;
19345#endif
6c43fab6 19346
c19d1205
ZW
19347 /* Resolve these relocations even if the symbol is extern or weak. */
19348 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
19349 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 19350 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 19351 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
19352 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19353 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
19354 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 19355 return 0;
a737bd4d 19356
4962c51a
MS
19357 /* Always leave these relocations for the linker. */
19358 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19359 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19360 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19361 return 1;
19362
f0291e4c
PB
19363 /* Always generate relocations against function symbols. */
19364 if (fixp->fx_r_type == BFD_RELOC_32
19365 && fixp->fx_addsy
19366 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
19367 return 1;
19368
c19d1205 19369 return generic_force_reloc (fixp);
404ff6b5
AH
19370}
19371
0ffdc86c 19372#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
19373/* Relocations against function names must be left unadjusted,
19374 so that the linker can use this information to generate interworking
19375 stubs. The MIPS version of this function
c19d1205
ZW
19376 also prevents relocations that are mips-16 specific, but I do not
19377 know why it does this.
404ff6b5 19378
c19d1205
ZW
19379 FIXME:
19380 There is one other problem that ought to be addressed here, but
19381 which currently is not: Taking the address of a label (rather
19382 than a function) and then later jumping to that address. Such
19383 addresses also ought to have their bottom bit set (assuming that
19384 they reside in Thumb code), but at the moment they will not. */
404ff6b5 19385
c19d1205
ZW
19386bfd_boolean
19387arm_fix_adjustable (fixS * fixP)
404ff6b5 19388{
c19d1205
ZW
19389 if (fixP->fx_addsy == NULL)
19390 return 1;
404ff6b5 19391
e28387c3
PB
19392 /* Preserve relocations against symbols with function type. */
19393 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
19394 return 0;
19395
c19d1205
ZW
19396 if (THUMB_IS_FUNC (fixP->fx_addsy)
19397 && fixP->fx_subsy == NULL)
19398 return 0;
a737bd4d 19399
c19d1205
ZW
19400 /* We need the symbol name for the VTABLE entries. */
19401 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
19402 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19403 return 0;
404ff6b5 19404
c19d1205
ZW
19405 /* Don't allow symbols to be discarded on GOT related relocs. */
19406 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
19407 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
19408 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
19409 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
19410 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
19411 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
19412 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
19413 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
19414 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
19415 return 0;
a737bd4d 19416
4962c51a
MS
19417 /* Similarly for group relocations. */
19418 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19419 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19420 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19421 return 0;
19422
c19d1205 19423 return 1;
a737bd4d 19424}
0ffdc86c
NC
19425#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
19426
19427#ifdef OBJ_ELF
404ff6b5 19428
c19d1205
ZW
19429const char *
19430elf32_arm_target_format (void)
404ff6b5 19431{
c19d1205
ZW
19432#ifdef TE_SYMBIAN
19433 return (target_big_endian
19434 ? "elf32-bigarm-symbian"
19435 : "elf32-littlearm-symbian");
19436#elif defined (TE_VXWORKS)
19437 return (target_big_endian
19438 ? "elf32-bigarm-vxworks"
19439 : "elf32-littlearm-vxworks");
19440#else
19441 if (target_big_endian)
19442 return "elf32-bigarm";
19443 else
19444 return "elf32-littlearm";
19445#endif
404ff6b5
AH
19446}
19447
c19d1205
ZW
19448void
19449armelf_frob_symbol (symbolS * symp,
19450 int * puntp)
404ff6b5 19451{
c19d1205
ZW
19452 elf_frob_symbol (symp, puntp);
19453}
19454#endif
404ff6b5 19455
c19d1205 19456/* MD interface: Finalization. */
a737bd4d 19457
c19d1205
ZW
19458/* A good place to do this, although this was probably not intended
19459 for this kind of use. We need to dump the literal pool before
19460 references are made to a null symbol pointer. */
a737bd4d 19461
c19d1205
ZW
19462void
19463arm_cleanup (void)
19464{
19465 literal_pool * pool;
a737bd4d 19466
c19d1205
ZW
19467 for (pool = list_of_pools; pool; pool = pool->next)
19468 {
5f4273c7 19469 /* Put it at the end of the relevant section. */
c19d1205
ZW
19470 subseg_set (pool->section, pool->sub_section);
19471#ifdef OBJ_ELF
19472 arm_elf_change_section ();
19473#endif
19474 s_ltorg (0);
19475 }
404ff6b5
AH
19476}
19477
c19d1205
ZW
19478/* Adjust the symbol table. This marks Thumb symbols as distinct from
19479 ARM ones. */
404ff6b5 19480
c19d1205
ZW
19481void
19482arm_adjust_symtab (void)
404ff6b5 19483{
c19d1205
ZW
19484#ifdef OBJ_COFF
19485 symbolS * sym;
404ff6b5 19486
c19d1205
ZW
19487 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19488 {
19489 if (ARM_IS_THUMB (sym))
19490 {
19491 if (THUMB_IS_FUNC (sym))
19492 {
19493 /* Mark the symbol as a Thumb function. */
19494 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
19495 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
19496 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 19497
c19d1205
ZW
19498 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
19499 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
19500 else
19501 as_bad (_("%s: unexpected function type: %d"),
19502 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
19503 }
19504 else switch (S_GET_STORAGE_CLASS (sym))
19505 {
19506 case C_EXT:
19507 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
19508 break;
19509 case C_STAT:
19510 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
19511 break;
19512 case C_LABEL:
19513 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
19514 break;
19515 default:
19516 /* Do nothing. */
19517 break;
19518 }
19519 }
a737bd4d 19520
c19d1205
ZW
19521 if (ARM_IS_INTERWORK (sym))
19522 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 19523 }
c19d1205
ZW
19524#endif
19525#ifdef OBJ_ELF
19526 symbolS * sym;
19527 char bind;
404ff6b5 19528
c19d1205 19529 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 19530 {
c19d1205
ZW
19531 if (ARM_IS_THUMB (sym))
19532 {
19533 elf_symbol_type * elf_sym;
404ff6b5 19534
c19d1205
ZW
19535 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
19536 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 19537
b0796911
PB
19538 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
19539 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
19540 {
19541 /* If it's a .thumb_func, declare it as so,
19542 otherwise tag label as .code 16. */
19543 if (THUMB_IS_FUNC (sym))
19544 elf_sym->internal_elf_sym.st_info =
19545 ELF_ST_INFO (bind, STT_ARM_TFUNC);
3ba67470 19546 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
19547 elf_sym->internal_elf_sym.st_info =
19548 ELF_ST_INFO (bind, STT_ARM_16BIT);
19549 }
19550 }
19551 }
19552#endif
404ff6b5
AH
19553}
19554
c19d1205 19555/* MD interface: Initialization. */
404ff6b5 19556
a737bd4d 19557static void
c19d1205 19558set_constant_flonums (void)
a737bd4d 19559{
c19d1205 19560 int i;
404ff6b5 19561
c19d1205
ZW
19562 for (i = 0; i < NUM_FLOAT_VALS; i++)
19563 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
19564 abort ();
a737bd4d 19565}
404ff6b5 19566
3e9e4fcf
JB
19567/* Auto-select Thumb mode if it's the only available instruction set for the
19568 given architecture. */
19569
19570static void
19571autoselect_thumb_from_cpu_variant (void)
19572{
19573 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
19574 opcode_select (16);
19575}
19576
c19d1205
ZW
19577void
19578md_begin (void)
a737bd4d 19579{
c19d1205
ZW
19580 unsigned mach;
19581 unsigned int i;
404ff6b5 19582
c19d1205
ZW
19583 if ( (arm_ops_hsh = hash_new ()) == NULL
19584 || (arm_cond_hsh = hash_new ()) == NULL
19585 || (arm_shift_hsh = hash_new ()) == NULL
19586 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 19587 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 19588 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
19589 || (arm_reloc_hsh = hash_new ()) == NULL
19590 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
19591 as_fatal (_("virtual memory exhausted"));
19592
19593 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
19594 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
19595 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
19596 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
19597 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
19598 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
19599 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
19600 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
62b3e311
PB
19601 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
19602 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i));
c19d1205
ZW
19603 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
19604 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
62b3e311
PB
19605 for (i = 0;
19606 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
19607 i++)
19608 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
19609 (PTR) (barrier_opt_names + i));
c19d1205
ZW
19610#ifdef OBJ_ELF
19611 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
19612 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
19613#endif
19614
19615 set_constant_flonums ();
404ff6b5 19616
c19d1205
ZW
19617 /* Set the cpu variant based on the command-line options. We prefer
19618 -mcpu= over -march= if both are set (as for GCC); and we prefer
19619 -mfpu= over any other way of setting the floating point unit.
19620 Use of legacy options with new options are faulted. */
e74cfd16 19621 if (legacy_cpu)
404ff6b5 19622 {
e74cfd16 19623 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
19624 as_bad (_("use of old and new-style options to set CPU type"));
19625
19626 mcpu_cpu_opt = legacy_cpu;
404ff6b5 19627 }
e74cfd16 19628 else if (!mcpu_cpu_opt)
c19d1205 19629 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 19630
e74cfd16 19631 if (legacy_fpu)
c19d1205 19632 {
e74cfd16 19633 if (mfpu_opt)
c19d1205 19634 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
19635
19636 mfpu_opt = legacy_fpu;
19637 }
e74cfd16 19638 else if (!mfpu_opt)
03b1477f 19639 {
c19d1205 19640#if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
19641 /* Some environments specify a default FPU. If they don't, infer it
19642 from the processor. */
e74cfd16 19643 if (mcpu_fpu_opt)
03b1477f
RE
19644 mfpu_opt = mcpu_fpu_opt;
19645 else
19646 mfpu_opt = march_fpu_opt;
39c2da32 19647#else
e74cfd16 19648 mfpu_opt = &fpu_default;
39c2da32 19649#endif
03b1477f
RE
19650 }
19651
e74cfd16 19652 if (!mfpu_opt)
03b1477f 19653 {
493cb6ef 19654 if (mcpu_cpu_opt != NULL)
e74cfd16 19655 mfpu_opt = &fpu_default;
493cb6ef 19656 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 19657 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 19658 else
e74cfd16 19659 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
19660 }
19661
ee065d83 19662#ifdef CPU_DEFAULT
e74cfd16 19663 if (!mcpu_cpu_opt)
ee065d83 19664 {
e74cfd16
PB
19665 mcpu_cpu_opt = &cpu_default;
19666 selected_cpu = cpu_default;
ee065d83 19667 }
e74cfd16
PB
19668#else
19669 if (mcpu_cpu_opt)
19670 selected_cpu = *mcpu_cpu_opt;
ee065d83 19671 else
e74cfd16 19672 mcpu_cpu_opt = &arm_arch_any;
ee065d83 19673#endif
03b1477f 19674
e74cfd16 19675 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 19676
3e9e4fcf
JB
19677 autoselect_thumb_from_cpu_variant ();
19678
e74cfd16 19679 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 19680
f17c130b 19681#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 19682 {
7cc69913
NC
19683 unsigned int flags = 0;
19684
19685#if defined OBJ_ELF
19686 flags = meabi_flags;
d507cf36
PB
19687
19688 switch (meabi_flags)
33a392fb 19689 {
d507cf36 19690 case EF_ARM_EABI_UNKNOWN:
7cc69913 19691#endif
d507cf36
PB
19692 /* Set the flags in the private structure. */
19693 if (uses_apcs_26) flags |= F_APCS26;
19694 if (support_interwork) flags |= F_INTERWORK;
19695 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 19696 if (pic_code) flags |= F_PIC;
e74cfd16 19697 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
19698 flags |= F_SOFT_FLOAT;
19699
d507cf36
PB
19700 switch (mfloat_abi_opt)
19701 {
19702 case ARM_FLOAT_ABI_SOFT:
19703 case ARM_FLOAT_ABI_SOFTFP:
19704 flags |= F_SOFT_FLOAT;
19705 break;
33a392fb 19706
d507cf36
PB
19707 case ARM_FLOAT_ABI_HARD:
19708 if (flags & F_SOFT_FLOAT)
19709 as_bad (_("hard-float conflicts with specified fpu"));
19710 break;
19711 }
03b1477f 19712
e74cfd16
PB
19713 /* Using pure-endian doubles (even if soft-float). */
19714 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 19715 flags |= F_VFP_FLOAT;
f17c130b 19716
fde78edd 19717#if defined OBJ_ELF
e74cfd16 19718 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 19719 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
19720 break;
19721
8cb51566 19722 case EF_ARM_EABI_VER4:
3a4a14e9 19723 case EF_ARM_EABI_VER5:
c19d1205 19724 /* No additional flags to set. */
d507cf36
PB
19725 break;
19726
19727 default:
19728 abort ();
19729 }
7cc69913 19730#endif
b99bd4ef
NC
19731 bfd_set_private_flags (stdoutput, flags);
19732
19733 /* We have run out flags in the COFF header to encode the
19734 status of ATPCS support, so instead we create a dummy,
c19d1205 19735 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
19736 if (atpcs)
19737 {
19738 asection * sec;
19739
19740 sec = bfd_make_section (stdoutput, ".arm.atpcs");
19741
19742 if (sec != NULL)
19743 {
19744 bfd_set_section_flags
19745 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
19746 bfd_set_section_size (stdoutput, sec, 0);
19747 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
19748 }
19749 }
7cc69913 19750 }
f17c130b 19751#endif
b99bd4ef
NC
19752
19753 /* Record the CPU type as well. */
2d447fca
JM
19754 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
19755 mach = bfd_mach_arm_iWMMXt2;
19756 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 19757 mach = bfd_mach_arm_iWMMXt;
e74cfd16 19758 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 19759 mach = bfd_mach_arm_XScale;
e74cfd16 19760 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 19761 mach = bfd_mach_arm_ep9312;
e74cfd16 19762 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 19763 mach = bfd_mach_arm_5TE;
e74cfd16 19764 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 19765 {
e74cfd16 19766 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
19767 mach = bfd_mach_arm_5T;
19768 else
19769 mach = bfd_mach_arm_5;
19770 }
e74cfd16 19771 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 19772 {
e74cfd16 19773 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
19774 mach = bfd_mach_arm_4T;
19775 else
19776 mach = bfd_mach_arm_4;
19777 }
e74cfd16 19778 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 19779 mach = bfd_mach_arm_3M;
e74cfd16
PB
19780 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
19781 mach = bfd_mach_arm_3;
19782 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
19783 mach = bfd_mach_arm_2a;
19784 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
19785 mach = bfd_mach_arm_2;
19786 else
19787 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
19788
19789 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
19790}
19791
c19d1205 19792/* Command line processing. */
b99bd4ef 19793
c19d1205
ZW
19794/* md_parse_option
19795 Invocation line includes a switch not recognized by the base assembler.
19796 See if it's a processor-specific option.
b99bd4ef 19797
c19d1205
ZW
19798 This routine is somewhat complicated by the need for backwards
19799 compatibility (since older releases of gcc can't be changed).
19800 The new options try to make the interface as compatible as
19801 possible with GCC.
b99bd4ef 19802
c19d1205 19803 New options (supported) are:
b99bd4ef 19804
c19d1205
ZW
19805 -mcpu=<cpu name> Assemble for selected processor
19806 -march=<architecture name> Assemble for selected architecture
19807 -mfpu=<fpu architecture> Assemble for selected FPU.
19808 -EB/-mbig-endian Big-endian
19809 -EL/-mlittle-endian Little-endian
19810 -k Generate PIC code
19811 -mthumb Start in Thumb mode
19812 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 19813
c19d1205 19814 For now we will also provide support for:
b99bd4ef 19815
c19d1205
ZW
19816 -mapcs-32 32-bit Program counter
19817 -mapcs-26 26-bit Program counter
19818 -macps-float Floats passed in FP registers
19819 -mapcs-reentrant Reentrant code
19820 -matpcs
19821 (sometime these will probably be replaced with -mapcs=<list of options>
19822 and -matpcs=<list of options>)
b99bd4ef 19823
c19d1205
ZW
19824 The remaining options are only supported for back-wards compatibility.
19825 Cpu variants, the arm part is optional:
19826 -m[arm]1 Currently not supported.
19827 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19828 -m[arm]3 Arm 3 processor
19829 -m[arm]6[xx], Arm 6 processors
19830 -m[arm]7[xx][t][[d]m] Arm 7 processors
19831 -m[arm]8[10] Arm 8 processors
19832 -m[arm]9[20][tdmi] Arm 9 processors
19833 -mstrongarm[110[0]] StrongARM processors
19834 -mxscale XScale processors
19835 -m[arm]v[2345[t[e]]] Arm architectures
19836 -mall All (except the ARM1)
19837 FP variants:
19838 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19839 -mfpe-old (No float load/store multiples)
19840 -mvfpxd VFP Single precision
19841 -mvfp All VFP
19842 -mno-fpu Disable all floating point instructions
b99bd4ef 19843
c19d1205
ZW
19844 The following CPU names are recognized:
19845 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19846 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19847 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19848 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19849 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19850 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19851 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 19852
c19d1205 19853 */
b99bd4ef 19854
c19d1205 19855const char * md_shortopts = "m:k";
b99bd4ef 19856
c19d1205
ZW
19857#ifdef ARM_BI_ENDIAN
19858#define OPTION_EB (OPTION_MD_BASE + 0)
19859#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 19860#else
c19d1205
ZW
19861#if TARGET_BYTES_BIG_ENDIAN
19862#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 19863#else
c19d1205
ZW
19864#define OPTION_EL (OPTION_MD_BASE + 1)
19865#endif
b99bd4ef 19866#endif
845b51d6 19867#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 19868
c19d1205 19869struct option md_longopts[] =
b99bd4ef 19870{
c19d1205
ZW
19871#ifdef OPTION_EB
19872 {"EB", no_argument, NULL, OPTION_EB},
19873#endif
19874#ifdef OPTION_EL
19875 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 19876#endif
845b51d6 19877 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
19878 {NULL, no_argument, NULL, 0}
19879};
b99bd4ef 19880
c19d1205 19881size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 19882
c19d1205 19883struct arm_option_table
b99bd4ef 19884{
c19d1205
ZW
19885 char *option; /* Option name to match. */
19886 char *help; /* Help information. */
19887 int *var; /* Variable to change. */
19888 int value; /* What to change it to. */
19889 char *deprecated; /* If non-null, print this message. */
19890};
b99bd4ef 19891
c19d1205
ZW
19892struct arm_option_table arm_opts[] =
19893{
19894 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
19895 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
19896 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19897 &support_interwork, 1, NULL},
19898 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
19899 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
19900 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
19901 1, NULL},
19902 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
19903 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
19904 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
19905 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
19906 NULL},
b99bd4ef 19907
c19d1205
ZW
19908 /* These are recognized by the assembler, but have no affect on code. */
19909 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
19910 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
e74cfd16
PB
19911 {NULL, NULL, NULL, 0, NULL}
19912};
19913
19914struct arm_legacy_option_table
19915{
19916 char *option; /* Option name to match. */
19917 const arm_feature_set **var; /* Variable to change. */
19918 const arm_feature_set value; /* What to change it to. */
19919 char *deprecated; /* If non-null, print this message. */
19920};
b99bd4ef 19921
e74cfd16
PB
19922const struct arm_legacy_option_table arm_legacy_opts[] =
19923{
c19d1205
ZW
19924 /* DON'T add any new processors to this list -- we want the whole list
19925 to go away... Add them to the processors table instead. */
e74cfd16
PB
19926 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19927 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19928 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19929 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19930 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19931 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19932 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19933 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19934 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19935 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19936 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19937 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19938 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19939 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19940 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19941 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19942 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19943 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19944 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19945 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19946 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19947 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19948 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19949 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19950 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19951 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19952 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19953 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19954 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19955 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19956 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19957 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19958 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19959 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19960 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19961 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19962 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19963 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19964 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19965 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19966 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19967 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19968 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19969 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19970 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19971 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19972 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19973 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19974 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19975 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19976 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19977 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19978 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19979 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19980 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19981 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19982 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19983 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19984 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19985 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19986 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19987 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19988 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19989 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19990 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19991 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19992 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19993 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19994 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
19995 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19996 N_("use -mcpu=strongarm110")},
e74cfd16 19997 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19998 N_("use -mcpu=strongarm1100")},
e74cfd16 19999 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 20000 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
20001 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
20002 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
20003 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 20004
c19d1205 20005 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
20006 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
20007 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
20008 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
20009 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
20010 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
20011 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
20012 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
20013 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
20014 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
20015 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
20016 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
20017 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
20018 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
20019 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
20020 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
20021 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
20022 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
20023 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 20024
c19d1205 20025 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
20026 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
20027 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
20028 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
20029 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 20030 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 20031
e74cfd16 20032 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 20033};
7ed4c4c5 20034
c19d1205 20035struct arm_cpu_option_table
7ed4c4c5 20036{
c19d1205 20037 char *name;
e74cfd16 20038 const arm_feature_set value;
c19d1205
ZW
20039 /* For some CPUs we assume an FPU unless the user explicitly sets
20040 -mfpu=... */
e74cfd16 20041 const arm_feature_set default_fpu;
ee065d83
PB
20042 /* The canonical name of the CPU, or NULL to use NAME converted to upper
20043 case. */
20044 const char *canonical_name;
c19d1205 20045};
7ed4c4c5 20046
c19d1205
ZW
20047/* This list should, at a minimum, contain all the cpu names
20048 recognized by GCC. */
e74cfd16 20049static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 20050{
ee065d83
PB
20051 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
20052 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
20053 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
20054 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
20055 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
20056 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20057 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20058 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20059 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20060 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20061 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20062 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20063 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20064 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20065 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20066 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20067 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20068 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20069 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20070 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20071 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20072 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20073 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20074 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20075 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20076 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20077 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20078 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20079 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20080 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20081 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20082 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20083 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20084 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20085 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20086 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20087 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20088 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20089 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20090 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
20091 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20092 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20093 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20094 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
20095 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20096 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
20097 /* For V5 or later processors we default to using VFP; but the user
20098 should really set the FPU type explicitly. */
ee065d83
PB
20099 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20100 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20101 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20102 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20103 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20104 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20105 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
20106 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20107 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20108 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
20109 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20110 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20111 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20112 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20113 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20114 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
20115 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20116 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20117 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20118 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
20119 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
7fac0536
NC
20120 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
20121 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
20122 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
20123 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
20124 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
20125 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
20126 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
20127 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
20128 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
20129 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
20130 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
20131 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
5287ad62
JB
20132 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20133 | FPU_NEON_EXT_V1),
15290f0a
PB
20134 NULL},
20135 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20136 | FPU_NEON_EXT_V1),
5287ad62 20137 NULL},
62b3e311
PB
20138 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
20139 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
7e806470 20140 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
c19d1205 20141 /* ??? XSCALE is really an architecture. */
ee065d83 20142 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 20143 /* ??? iwmmxt is not a processor. */
ee065d83 20144 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 20145 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 20146 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 20147 /* Maverick */
e74cfd16
PB
20148 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
20149 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 20150};
7ed4c4c5 20151
c19d1205 20152struct arm_arch_option_table
7ed4c4c5 20153{
c19d1205 20154 char *name;
e74cfd16
PB
20155 const arm_feature_set value;
20156 const arm_feature_set default_fpu;
c19d1205 20157};
7ed4c4c5 20158
c19d1205
ZW
20159/* This list should, at a minimum, contain all the architecture names
20160 recognized by GCC. */
e74cfd16 20161static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
20162{
20163 {"all", ARM_ANY, FPU_ARCH_FPA},
20164 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
20165 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
20166 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
20167 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
20168 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
20169 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
20170 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
20171 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
20172 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
20173 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
20174 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
20175 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
20176 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
20177 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
20178 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
20179 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
20180 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
20181 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
20182 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
20183 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
20184 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
20185 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
20186 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
20187 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
20188 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 20189 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
62b3e311 20190 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
20191 /* The official spelling of the ARMv7 profile variants is the dashed form.
20192 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
20193 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20194 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20195 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
20196 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20197 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20198 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c19d1205
ZW
20199 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
20200 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 20201 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 20202 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 20203};
7ed4c4c5 20204
c19d1205 20205/* ISA extensions in the co-processor space. */
e74cfd16 20206struct arm_option_cpu_value_table
c19d1205
ZW
20207{
20208 char *name;
e74cfd16 20209 const arm_feature_set value;
c19d1205 20210};
7ed4c4c5 20211
e74cfd16 20212static const struct arm_option_cpu_value_table arm_extensions[] =
c19d1205 20213{
e74cfd16
PB
20214 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
20215 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
20216 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
2d447fca 20217 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
e74cfd16 20218 {NULL, ARM_ARCH_NONE}
c19d1205 20219};
7ed4c4c5 20220
c19d1205
ZW
20221/* This list should, at a minimum, contain all the fpu names
20222 recognized by GCC. */
e74cfd16 20223static const struct arm_option_cpu_value_table arm_fpus[] =
c19d1205
ZW
20224{
20225 {"softfpa", FPU_NONE},
20226 {"fpe", FPU_ARCH_FPE},
20227 {"fpe2", FPU_ARCH_FPE},
20228 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
20229 {"fpa", FPU_ARCH_FPA},
20230 {"fpa10", FPU_ARCH_FPA},
20231 {"fpa11", FPU_ARCH_FPA},
20232 {"arm7500fe", FPU_ARCH_FPA},
20233 {"softvfp", FPU_ARCH_VFP},
20234 {"softvfp+vfp", FPU_ARCH_VFP_V2},
20235 {"vfp", FPU_ARCH_VFP_V2},
20236 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 20237 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
20238 {"vfp10", FPU_ARCH_VFP_V2},
20239 {"vfp10-r0", FPU_ARCH_VFP_V1},
20240 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
20241 {"vfpv2", FPU_ARCH_VFP_V2},
20242 {"vfpv3", FPU_ARCH_VFP_V3},
20243 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
c19d1205
ZW
20244 {"arm1020t", FPU_ARCH_VFP_V1},
20245 {"arm1020e", FPU_ARCH_VFP_V2},
20246 {"arm1136jfs", FPU_ARCH_VFP_V2},
20247 {"arm1136jf-s", FPU_ARCH_VFP_V2},
20248 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 20249 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
e74cfd16
PB
20250 {NULL, ARM_ARCH_NONE}
20251};
20252
20253struct arm_option_value_table
20254{
20255 char *name;
20256 long value;
c19d1205 20257};
7ed4c4c5 20258
e74cfd16 20259static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
20260{
20261 {"hard", ARM_FLOAT_ABI_HARD},
20262 {"softfp", ARM_FLOAT_ABI_SOFTFP},
20263 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 20264 {NULL, 0}
c19d1205 20265};
7ed4c4c5 20266
c19d1205 20267#ifdef OBJ_ELF
3a4a14e9 20268/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 20269static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
20270{
20271 {"gnu", EF_ARM_EABI_UNKNOWN},
20272 {"4", EF_ARM_EABI_VER4},
3a4a14e9 20273 {"5", EF_ARM_EABI_VER5},
e74cfd16 20274 {NULL, 0}
c19d1205
ZW
20275};
20276#endif
7ed4c4c5 20277
c19d1205
ZW
20278struct arm_long_option_table
20279{
20280 char * option; /* Substring to match. */
20281 char * help; /* Help information. */
20282 int (* func) (char * subopt); /* Function to decode sub-option. */
20283 char * deprecated; /* If non-null, print this message. */
20284};
7ed4c4c5
NC
20285
20286static int
e74cfd16 20287arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 20288{
e74cfd16
PB
20289 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
20290
20291 /* Copy the feature set, so that we can modify it. */
20292 *ext_set = **opt_p;
20293 *opt_p = ext_set;
20294
c19d1205 20295 while (str != NULL && *str != 0)
7ed4c4c5 20296 {
e74cfd16 20297 const struct arm_option_cpu_value_table * opt;
c19d1205
ZW
20298 char * ext;
20299 int optlen;
7ed4c4c5 20300
c19d1205
ZW
20301 if (*str != '+')
20302 {
20303 as_bad (_("invalid architectural extension"));
20304 return 0;
20305 }
7ed4c4c5 20306
c19d1205
ZW
20307 str++;
20308 ext = strchr (str, '+');
7ed4c4c5 20309
c19d1205
ZW
20310 if (ext != NULL)
20311 optlen = ext - str;
20312 else
20313 optlen = strlen (str);
7ed4c4c5 20314
c19d1205
ZW
20315 if (optlen == 0)
20316 {
20317 as_bad (_("missing architectural extension"));
20318 return 0;
20319 }
7ed4c4c5 20320
c19d1205
ZW
20321 for (opt = arm_extensions; opt->name != NULL; opt++)
20322 if (strncmp (opt->name, str, optlen) == 0)
20323 {
e74cfd16 20324 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
c19d1205
ZW
20325 break;
20326 }
7ed4c4c5 20327
c19d1205
ZW
20328 if (opt->name == NULL)
20329 {
5f4273c7 20330 as_bad (_("unknown architectural extension `%s'"), str);
c19d1205
ZW
20331 return 0;
20332 }
7ed4c4c5 20333
c19d1205
ZW
20334 str = ext;
20335 };
7ed4c4c5 20336
c19d1205
ZW
20337 return 1;
20338}
7ed4c4c5 20339
c19d1205
ZW
20340static int
20341arm_parse_cpu (char * str)
7ed4c4c5 20342{
e74cfd16 20343 const struct arm_cpu_option_table * opt;
c19d1205
ZW
20344 char * ext = strchr (str, '+');
20345 int optlen;
7ed4c4c5 20346
c19d1205
ZW
20347 if (ext != NULL)
20348 optlen = ext - str;
7ed4c4c5 20349 else
c19d1205 20350 optlen = strlen (str);
7ed4c4c5 20351
c19d1205 20352 if (optlen == 0)
7ed4c4c5 20353 {
c19d1205
ZW
20354 as_bad (_("missing cpu name `%s'"), str);
20355 return 0;
7ed4c4c5
NC
20356 }
20357
c19d1205
ZW
20358 for (opt = arm_cpus; opt->name != NULL; opt++)
20359 if (strncmp (opt->name, str, optlen) == 0)
20360 {
e74cfd16
PB
20361 mcpu_cpu_opt = &opt->value;
20362 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 20363 if (opt->canonical_name)
5f4273c7 20364 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
20365 else
20366 {
20367 int i;
20368 for (i = 0; i < optlen; i++)
20369 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20370 selected_cpu_name[i] = 0;
20371 }
7ed4c4c5 20372
c19d1205
ZW
20373 if (ext != NULL)
20374 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 20375
c19d1205
ZW
20376 return 1;
20377 }
7ed4c4c5 20378
c19d1205
ZW
20379 as_bad (_("unknown cpu `%s'"), str);
20380 return 0;
7ed4c4c5
NC
20381}
20382
c19d1205
ZW
20383static int
20384arm_parse_arch (char * str)
7ed4c4c5 20385{
e74cfd16 20386 const struct arm_arch_option_table *opt;
c19d1205
ZW
20387 char *ext = strchr (str, '+');
20388 int optlen;
7ed4c4c5 20389
c19d1205
ZW
20390 if (ext != NULL)
20391 optlen = ext - str;
7ed4c4c5 20392 else
c19d1205 20393 optlen = strlen (str);
7ed4c4c5 20394
c19d1205 20395 if (optlen == 0)
7ed4c4c5 20396 {
c19d1205
ZW
20397 as_bad (_("missing architecture name `%s'"), str);
20398 return 0;
7ed4c4c5
NC
20399 }
20400
c19d1205
ZW
20401 for (opt = arm_archs; opt->name != NULL; opt++)
20402 if (streq (opt->name, str))
20403 {
e74cfd16
PB
20404 march_cpu_opt = &opt->value;
20405 march_fpu_opt = &opt->default_fpu;
5f4273c7 20406 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 20407
c19d1205
ZW
20408 if (ext != NULL)
20409 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 20410
c19d1205
ZW
20411 return 1;
20412 }
20413
20414 as_bad (_("unknown architecture `%s'\n"), str);
20415 return 0;
7ed4c4c5 20416}
eb043451 20417
c19d1205
ZW
20418static int
20419arm_parse_fpu (char * str)
20420{
e74cfd16 20421 const struct arm_option_cpu_value_table * opt;
b99bd4ef 20422
c19d1205
ZW
20423 for (opt = arm_fpus; opt->name != NULL; opt++)
20424 if (streq (opt->name, str))
20425 {
e74cfd16 20426 mfpu_opt = &opt->value;
c19d1205
ZW
20427 return 1;
20428 }
b99bd4ef 20429
c19d1205
ZW
20430 as_bad (_("unknown floating point format `%s'\n"), str);
20431 return 0;
20432}
20433
20434static int
20435arm_parse_float_abi (char * str)
b99bd4ef 20436{
e74cfd16 20437 const struct arm_option_value_table * opt;
b99bd4ef 20438
c19d1205
ZW
20439 for (opt = arm_float_abis; opt->name != NULL; opt++)
20440 if (streq (opt->name, str))
20441 {
20442 mfloat_abi_opt = opt->value;
20443 return 1;
20444 }
cc8a6dd0 20445
c19d1205
ZW
20446 as_bad (_("unknown floating point abi `%s'\n"), str);
20447 return 0;
20448}
b99bd4ef 20449
c19d1205
ZW
20450#ifdef OBJ_ELF
20451static int
20452arm_parse_eabi (char * str)
20453{
e74cfd16 20454 const struct arm_option_value_table *opt;
cc8a6dd0 20455
c19d1205
ZW
20456 for (opt = arm_eabis; opt->name != NULL; opt++)
20457 if (streq (opt->name, str))
20458 {
20459 meabi_flags = opt->value;
20460 return 1;
20461 }
20462 as_bad (_("unknown EABI `%s'\n"), str);
20463 return 0;
20464}
20465#endif
cc8a6dd0 20466
c19d1205
ZW
20467struct arm_long_option_table arm_long_opts[] =
20468{
20469 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
20470 arm_parse_cpu, NULL},
20471 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
20472 arm_parse_arch, NULL},
20473 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
20474 arm_parse_fpu, NULL},
20475 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
20476 arm_parse_float_abi, NULL},
20477#ifdef OBJ_ELF
7fac0536 20478 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
20479 arm_parse_eabi, NULL},
20480#endif
20481 {NULL, NULL, 0, NULL}
20482};
cc8a6dd0 20483
c19d1205
ZW
20484int
20485md_parse_option (int c, char * arg)
20486{
20487 struct arm_option_table *opt;
e74cfd16 20488 const struct arm_legacy_option_table *fopt;
c19d1205 20489 struct arm_long_option_table *lopt;
b99bd4ef 20490
c19d1205 20491 switch (c)
b99bd4ef 20492 {
c19d1205
ZW
20493#ifdef OPTION_EB
20494 case OPTION_EB:
20495 target_big_endian = 1;
20496 break;
20497#endif
cc8a6dd0 20498
c19d1205
ZW
20499#ifdef OPTION_EL
20500 case OPTION_EL:
20501 target_big_endian = 0;
20502 break;
20503#endif
b99bd4ef 20504
845b51d6
PB
20505 case OPTION_FIX_V4BX:
20506 fix_v4bx = TRUE;
20507 break;
20508
c19d1205
ZW
20509 case 'a':
20510 /* Listing option. Just ignore these, we don't support additional
20511 ones. */
20512 return 0;
b99bd4ef 20513
c19d1205
ZW
20514 default:
20515 for (opt = arm_opts; opt->option != NULL; opt++)
20516 {
20517 if (c == opt->option[0]
20518 && ((arg == NULL && opt->option[1] == 0)
20519 || streq (arg, opt->option + 1)))
20520 {
20521#if WARN_DEPRECATED
20522 /* If the option is deprecated, tell the user. */
20523 if (opt->deprecated != NULL)
20524 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20525 arg ? arg : "", _(opt->deprecated));
20526#endif
b99bd4ef 20527
c19d1205
ZW
20528 if (opt->var != NULL)
20529 *opt->var = opt->value;
cc8a6dd0 20530
c19d1205
ZW
20531 return 1;
20532 }
20533 }
b99bd4ef 20534
e74cfd16
PB
20535 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
20536 {
20537 if (c == fopt->option[0]
20538 && ((arg == NULL && fopt->option[1] == 0)
20539 || streq (arg, fopt->option + 1)))
20540 {
20541#if WARN_DEPRECATED
20542 /* If the option is deprecated, tell the user. */
20543 if (fopt->deprecated != NULL)
20544 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20545 arg ? arg : "", _(fopt->deprecated));
20546#endif
20547
20548 if (fopt->var != NULL)
20549 *fopt->var = &fopt->value;
20550
20551 return 1;
20552 }
20553 }
20554
c19d1205
ZW
20555 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20556 {
20557 /* These options are expected to have an argument. */
20558 if (c == lopt->option[0]
20559 && arg != NULL
20560 && strncmp (arg, lopt->option + 1,
20561 strlen (lopt->option + 1)) == 0)
20562 {
20563#if WARN_DEPRECATED
20564 /* If the option is deprecated, tell the user. */
20565 if (lopt->deprecated != NULL)
20566 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
20567 _(lopt->deprecated));
20568#endif
b99bd4ef 20569
c19d1205
ZW
20570 /* Call the sup-option parser. */
20571 return lopt->func (arg + strlen (lopt->option) - 1);
20572 }
20573 }
a737bd4d 20574
c19d1205
ZW
20575 return 0;
20576 }
a394c00f 20577
c19d1205
ZW
20578 return 1;
20579}
a394c00f 20580
c19d1205
ZW
20581void
20582md_show_usage (FILE * fp)
a394c00f 20583{
c19d1205
ZW
20584 struct arm_option_table *opt;
20585 struct arm_long_option_table *lopt;
a394c00f 20586
c19d1205 20587 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 20588
c19d1205
ZW
20589 for (opt = arm_opts; opt->option != NULL; opt++)
20590 if (opt->help != NULL)
20591 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 20592
c19d1205
ZW
20593 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20594 if (lopt->help != NULL)
20595 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 20596
c19d1205
ZW
20597#ifdef OPTION_EB
20598 fprintf (fp, _("\
20599 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
20600#endif
20601
c19d1205
ZW
20602#ifdef OPTION_EL
20603 fprintf (fp, _("\
20604 -EL assemble code for a little-endian cpu\n"));
a737bd4d 20605#endif
845b51d6
PB
20606
20607 fprintf (fp, _("\
20608 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 20609}
ee065d83
PB
20610
20611
20612#ifdef OBJ_ELF
62b3e311
PB
20613typedef struct
20614{
20615 int val;
20616 arm_feature_set flags;
20617} cpu_arch_ver_table;
20618
20619/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
20620 least features first. */
20621static const cpu_arch_ver_table cpu_arch_ver[] =
20622{
20623 {1, ARM_ARCH_V4},
20624 {2, ARM_ARCH_V4T},
20625 {3, ARM_ARCH_V5},
20626 {4, ARM_ARCH_V5TE},
20627 {5, ARM_ARCH_V5TEJ},
20628 {6, ARM_ARCH_V6},
20629 {7, ARM_ARCH_V6Z},
7e806470
PB
20630 {9, ARM_ARCH_V6K},
20631 {9, ARM_ARCH_V6M},
20632 {8, ARM_ARCH_V6T2},
62b3e311
PB
20633 {10, ARM_ARCH_V7A},
20634 {10, ARM_ARCH_V7R},
20635 {10, ARM_ARCH_V7M},
20636 {0, ARM_ARCH_NONE}
20637};
20638
ee065d83
PB
20639/* Set the public EABI object attributes. */
20640static void
20641aeabi_set_public_attributes (void)
20642{
20643 int arch;
e74cfd16 20644 arm_feature_set flags;
62b3e311
PB
20645 arm_feature_set tmp;
20646 const cpu_arch_ver_table *p;
ee065d83
PB
20647
20648 /* Choose the architecture based on the capabilities of the requested cpu
20649 (if any) and/or the instructions actually used. */
e74cfd16
PB
20650 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
20651 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
20652 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
20653 /*Allow the user to override the reported architecture. */
20654 if (object_arch)
20655 {
20656 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
20657 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
20658 }
20659
62b3e311
PB
20660 tmp = flags;
20661 arch = 0;
20662 for (p = cpu_arch_ver; p->val; p++)
20663 {
20664 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
20665 {
20666 arch = p->val;
20667 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
20668 }
20669 }
ee065d83
PB
20670
20671 /* Tag_CPU_name. */
20672 if (selected_cpu_name[0])
20673 {
20674 char *p;
20675
20676 p = selected_cpu_name;
5f4273c7 20677 if (strncmp (p, "armv", 4) == 0)
ee065d83
PB
20678 {
20679 int i;
5f4273c7 20680
ee065d83
PB
20681 p += 4;
20682 for (i = 0; p[i]; i++)
20683 p[i] = TOUPPER (p[i]);
20684 }
104d59d1 20685 bfd_elf_add_proc_attr_string (stdoutput, 5, p);
ee065d83
PB
20686 }
20687 /* Tag_CPU_arch. */
104d59d1 20688 bfd_elf_add_proc_attr_int (stdoutput, 6, arch);
62b3e311
PB
20689 /* Tag_CPU_arch_profile. */
20690 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
104d59d1 20691 bfd_elf_add_proc_attr_int (stdoutput, 7, 'A');
62b3e311 20692 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
104d59d1 20693 bfd_elf_add_proc_attr_int (stdoutput, 7, 'R');
7e806470 20694 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
104d59d1 20695 bfd_elf_add_proc_attr_int (stdoutput, 7, 'M');
ee065d83 20696 /* Tag_ARM_ISA_use. */
e74cfd16 20697 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full))
104d59d1 20698 bfd_elf_add_proc_attr_int (stdoutput, 8, 1);
ee065d83 20699 /* Tag_THUMB_ISA_use. */
e74cfd16 20700 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full))
104d59d1 20701 bfd_elf_add_proc_attr_int (stdoutput, 9,
e74cfd16 20702 ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1);
ee065d83 20703 /* Tag_VFP_arch. */
b1cc4aeb
PB
20704 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_d32)
20705 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_d32))
20706 bfd_elf_add_proc_attr_int (stdoutput, 10, 4);
20707 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v3)
5287ad62 20708 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v3))
104d59d1 20709 bfd_elf_add_proc_attr_int (stdoutput, 10, 3);
5287ad62
JB
20710 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v2)
20711 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v2))
104d59d1 20712 bfd_elf_add_proc_attr_int (stdoutput, 10, 2);
5287ad62
JB
20713 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1)
20714 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1)
20715 || ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1xd)
20716 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1xd))
104d59d1 20717 bfd_elf_add_proc_attr_int (stdoutput, 10, 1);
ee065d83 20718 /* Tag_WMMX_arch. */
e74cfd16
PB
20719 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt)
20720 || ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt))
104d59d1 20721 bfd_elf_add_proc_attr_int (stdoutput, 11, 1);
5287ad62
JB
20722 /* Tag_NEON_arch. */
20723 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_neon_ext_v1)
20724 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_neon_ext_v1))
104d59d1 20725 bfd_elf_add_proc_attr_int (stdoutput, 12, 1);
ee065d83
PB
20726}
20727
104d59d1 20728/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
20729void
20730arm_md_end (void)
20731{
ee065d83
PB
20732 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20733 return;
20734
20735 aeabi_set_public_attributes ();
ee065d83 20736}
8463be01 20737#endif /* OBJ_ELF */
ee065d83
PB
20738
20739
20740/* Parse a .cpu directive. */
20741
20742static void
20743s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
20744{
e74cfd16 20745 const struct arm_cpu_option_table *opt;
ee065d83
PB
20746 char *name;
20747 char saved_char;
20748
20749 name = input_line_pointer;
5f4273c7 20750 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
20751 input_line_pointer++;
20752 saved_char = *input_line_pointer;
20753 *input_line_pointer = 0;
20754
20755 /* Skip the first "all" entry. */
20756 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
20757 if (streq (opt->name, name))
20758 {
e74cfd16
PB
20759 mcpu_cpu_opt = &opt->value;
20760 selected_cpu = opt->value;
ee065d83 20761 if (opt->canonical_name)
5f4273c7 20762 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
20763 else
20764 {
20765 int i;
20766 for (i = 0; opt->name[i]; i++)
20767 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20768 selected_cpu_name[i] = 0;
20769 }
e74cfd16 20770 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20771 *input_line_pointer = saved_char;
20772 demand_empty_rest_of_line ();
20773 return;
20774 }
20775 as_bad (_("unknown cpu `%s'"), name);
20776 *input_line_pointer = saved_char;
20777 ignore_rest_of_line ();
20778}
20779
20780
20781/* Parse a .arch directive. */
20782
20783static void
20784s_arm_arch (int ignored ATTRIBUTE_UNUSED)
20785{
e74cfd16 20786 const struct arm_arch_option_table *opt;
ee065d83
PB
20787 char saved_char;
20788 char *name;
20789
20790 name = input_line_pointer;
5f4273c7 20791 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
20792 input_line_pointer++;
20793 saved_char = *input_line_pointer;
20794 *input_line_pointer = 0;
20795
20796 /* Skip the first "all" entry. */
20797 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20798 if (streq (opt->name, name))
20799 {
e74cfd16
PB
20800 mcpu_cpu_opt = &opt->value;
20801 selected_cpu = opt->value;
5f4273c7 20802 strcpy (selected_cpu_name, opt->name);
e74cfd16 20803 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20804 *input_line_pointer = saved_char;
20805 demand_empty_rest_of_line ();
20806 return;
20807 }
20808
20809 as_bad (_("unknown architecture `%s'\n"), name);
20810 *input_line_pointer = saved_char;
20811 ignore_rest_of_line ();
20812}
20813
20814
7a1d4c38
PB
20815/* Parse a .object_arch directive. */
20816
20817static void
20818s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
20819{
20820 const struct arm_arch_option_table *opt;
20821 char saved_char;
20822 char *name;
20823
20824 name = input_line_pointer;
5f4273c7 20825 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
20826 input_line_pointer++;
20827 saved_char = *input_line_pointer;
20828 *input_line_pointer = 0;
20829
20830 /* Skip the first "all" entry. */
20831 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20832 if (streq (opt->name, name))
20833 {
20834 object_arch = &opt->value;
20835 *input_line_pointer = saved_char;
20836 demand_empty_rest_of_line ();
20837 return;
20838 }
20839
20840 as_bad (_("unknown architecture `%s'\n"), name);
20841 *input_line_pointer = saved_char;
20842 ignore_rest_of_line ();
20843}
20844
20845
ee065d83
PB
20846/* Parse a .fpu directive. */
20847
20848static void
20849s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
20850{
e74cfd16 20851 const struct arm_option_cpu_value_table *opt;
ee065d83
PB
20852 char saved_char;
20853 char *name;
20854
20855 name = input_line_pointer;
5f4273c7 20856 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
20857 input_line_pointer++;
20858 saved_char = *input_line_pointer;
20859 *input_line_pointer = 0;
5f4273c7 20860
ee065d83
PB
20861 for (opt = arm_fpus; opt->name != NULL; opt++)
20862 if (streq (opt->name, name))
20863 {
e74cfd16
PB
20864 mfpu_opt = &opt->value;
20865 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20866 *input_line_pointer = saved_char;
20867 demand_empty_rest_of_line ();
20868 return;
20869 }
20870
20871 as_bad (_("unknown floating point format `%s'\n"), name);
20872 *input_line_pointer = saved_char;
20873 ignore_rest_of_line ();
20874}
ee065d83 20875
794ba86a
DJ
20876/* Copy symbol information. */
20877void
20878arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
20879{
20880 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
20881}