]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/arm-tdep.c
import strstr and strerror modules
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
28e7fd62 3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
0baeab03
PA
20#include "defs.h"
21
0963b4bd 22#include <ctype.h> /* XXX for isupper (). */
34e8f22d 23
c906108c
SS
24#include "frame.h"
25#include "inferior.h"
26#include "gdbcmd.h"
27#include "gdbcore.h"
c906108c 28#include "gdb_string.h"
0963b4bd 29#include "dis-asm.h" /* For register styles. */
4e052eda 30#include "regcache.h"
54483882 31#include "reggroups.h"
d16aafd8 32#include "doublest.h"
fd0407d6 33#include "value.h"
34e8f22d 34#include "arch-utils.h"
4be87837 35#include "osabi.h"
eb5492fa
DJ
36#include "frame-unwind.h"
37#include "frame-base.h"
38#include "trad-frame.h"
842e1f1e
DJ
39#include "objfiles.h"
40#include "dwarf2-frame.h"
e4c16157 41#include "gdbtypes.h"
29d73ae4 42#include "prologue-value.h"
25f8c692 43#include "remote.h"
123dc839
DJ
44#include "target-descriptions.h"
45#include "user-regs.h"
0e9e9abd 46#include "observer.h"
34e8f22d
RE
47
48#include "arm-tdep.h"
26216b98 49#include "gdb/sim-arm.h"
34e8f22d 50
082fc60d
RE
51#include "elf-bfd.h"
52#include "coff/internal.h"
97e03143 53#include "elf/arm.h"
c906108c 54
26216b98 55#include "gdb_assert.h"
60c5725c 56#include "vec.h"
26216b98 57
72508ac0 58#include "record.h"
d02ed0bb 59#include "record-full.h"
72508ac0 60
9779414d 61#include "features/arm-with-m.c"
25f8c692 62#include "features/arm-with-m-fpa-layout.c"
3184d3f9 63#include "features/arm-with-m-vfp-d16.c"
ef7e8358
UW
64#include "features/arm-with-iwmmxt.c"
65#include "features/arm-with-vfpv2.c"
66#include "features/arm-with-vfpv3.c"
67#include "features/arm-with-neon.c"
9779414d 68
6529d2dd
AC
69static int arm_debug;
70
082fc60d
RE
71/* Macros for setting and testing a bit in a minimal symbol that marks
72 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 73 is used for this purpose.
082fc60d
RE
74
75 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 76 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d 77
0963b4bd 78#define MSYMBOL_SET_SPECIAL(msym) \
b887350f 79 MSYMBOL_TARGET_FLAG_1 (msym) = 1
082fc60d
RE
80
81#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 82 MSYMBOL_TARGET_FLAG_1 (msym)
082fc60d 83
60c5725c
DJ
84/* Per-objfile data used for mapping symbols. */
85static const struct objfile_data *arm_objfile_data_key;
86
87struct arm_mapping_symbol
88{
89 bfd_vma value;
90 char type;
91};
92typedef struct arm_mapping_symbol arm_mapping_symbol_s;
93DEF_VEC_O(arm_mapping_symbol_s);
94
95struct arm_per_objfile
96{
97 VEC(arm_mapping_symbol_s) **section_maps;
98};
99
afd7eef0
RE
100/* The list of available "set arm ..." and "show arm ..." commands. */
101static struct cmd_list_element *setarmcmdlist = NULL;
102static struct cmd_list_element *showarmcmdlist = NULL;
103
fd50bc42
RE
104/* The type of floating-point to use. Keep this in sync with enum
105 arm_float_model, and the help string in _initialize_arm_tdep. */
40478521 106static const char *const fp_model_strings[] =
fd50bc42
RE
107{
108 "auto",
109 "softfpa",
110 "fpa",
111 "softvfp",
28e97307
DJ
112 "vfp",
113 NULL
fd50bc42
RE
114};
115
116/* A variable that can be configured by the user. */
117static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
118static const char *current_fp_model = "auto";
119
28e97307 120/* The ABI to use. Keep this in sync with arm_abi_kind. */
40478521 121static const char *const arm_abi_strings[] =
28e97307
DJ
122{
123 "auto",
124 "APCS",
125 "AAPCS",
126 NULL
127};
128
129/* A variable that can be configured by the user. */
130static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
131static const char *arm_abi_string = "auto";
132
0428b8f5 133/* The execution mode to assume. */
40478521 134static const char *const arm_mode_strings[] =
0428b8f5
DJ
135 {
136 "auto",
137 "arm",
68770265
MGD
138 "thumb",
139 NULL
0428b8f5
DJ
140 };
141
142static const char *arm_fallback_mode_string = "auto";
143static const char *arm_force_mode_string = "auto";
144
18819fa6
UW
145/* Internal override of the execution mode. -1 means no override,
146 0 means override to ARM mode, 1 means override to Thumb mode.
147 The effect is the same as if arm_force_mode has been set by the
148 user (except the internal override has precedence over a user's
149 arm_force_mode override). */
150static int arm_override_mode = -1;
151
94c30b78 152/* Number of different reg name sets (options). */
afd7eef0 153static int num_disassembly_options;
bc90b915 154
f32bf4a4
YQ
155/* The standard register names, and all the valid aliases for them. Note
156 that `fp', `sp' and `pc' are not added in this alias list, because they
157 have been added as builtin user registers in
158 std-regs.c:_initialize_frame_reg. */
123dc839
DJ
159static const struct
160{
161 const char *name;
162 int regnum;
163} arm_register_aliases[] = {
164 /* Basic register numbers. */
165 { "r0", 0 },
166 { "r1", 1 },
167 { "r2", 2 },
168 { "r3", 3 },
169 { "r4", 4 },
170 { "r5", 5 },
171 { "r6", 6 },
172 { "r7", 7 },
173 { "r8", 8 },
174 { "r9", 9 },
175 { "r10", 10 },
176 { "r11", 11 },
177 { "r12", 12 },
178 { "r13", 13 },
179 { "r14", 14 },
180 { "r15", 15 },
181 /* Synonyms (argument and variable registers). */
182 { "a1", 0 },
183 { "a2", 1 },
184 { "a3", 2 },
185 { "a4", 3 },
186 { "v1", 4 },
187 { "v2", 5 },
188 { "v3", 6 },
189 { "v4", 7 },
190 { "v5", 8 },
191 { "v6", 9 },
192 { "v7", 10 },
193 { "v8", 11 },
194 /* Other platform-specific names for r9. */
195 { "sb", 9 },
196 { "tr", 9 },
197 /* Special names. */
198 { "ip", 12 },
123dc839 199 { "lr", 14 },
123dc839
DJ
200 /* Names used by GCC (not listed in the ARM EABI). */
201 { "sl", 10 },
123dc839
DJ
202 /* A special name from the older ATPCS. */
203 { "wr", 7 },
204};
bc90b915 205
123dc839 206static const char *const arm_register_names[] =
da59e081
JM
207{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
208 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
209 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
210 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
211 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
212 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 213 "fps", "cpsr" }; /* 24 25 */
ed9a39eb 214
afd7eef0
RE
215/* Valid register name styles. */
216static const char **valid_disassembly_styles;
ed9a39eb 217
afd7eef0
RE
218/* Disassembly style to use. Default to "std" register names. */
219static const char *disassembly_style;
96baa820 220
ed9a39eb 221/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
222 style. */
223static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 224 struct cmd_list_element *);
afd7eef0 225static void set_disassembly_style (void);
ed9a39eb 226
b508a996 227static void convert_from_extended (const struct floatformat *, const void *,
be8626e0 228 void *, int);
b508a996 229static void convert_to_extended (const struct floatformat *, void *,
be8626e0 230 const void *, int);
ed9a39eb 231
05d1431c
PA
232static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch,
233 struct regcache *regcache,
234 int regnum, gdb_byte *buf);
58d6951d
DJ
235static void arm_neon_quad_write (struct gdbarch *gdbarch,
236 struct regcache *regcache,
237 int regnum, const gdb_byte *buf);
238
db24da6d
YQ
239static int thumb_insn_size (unsigned short inst1);
240
9b8d791a 241struct arm_prologue_cache
c3b4394c 242{
eb5492fa
DJ
243 /* The stack pointer at the time this frame was created; i.e. the
244 caller's stack pointer when this function was called. It is used
245 to identify this frame. */
246 CORE_ADDR prev_sp;
247
4be43953
DJ
248 /* The frame base for this frame is just prev_sp - frame size.
249 FRAMESIZE is the distance from the frame pointer to the
250 initial stack pointer. */
eb5492fa 251
c3b4394c 252 int framesize;
eb5492fa
DJ
253
254 /* The register used to hold the frame pointer for this frame. */
c3b4394c 255 int framereg;
eb5492fa
DJ
256
257 /* Saved register offsets. */
258 struct trad_frame_saved_reg *saved_regs;
c3b4394c 259};
ed9a39eb 260
0d39a070
DJ
261static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
262 CORE_ADDR prologue_start,
263 CORE_ADDR prologue_end,
264 struct arm_prologue_cache *cache);
265
cca44b1b
JB
266/* Architecture version for displaced stepping. This effects the behaviour of
267 certain instructions, and really should not be hard-wired. */
268
269#define DISPLACED_STEPPING_ARCH_VERSION 5
270
bc90b915
FN
271/* Addresses for calling Thumb functions have the bit 0 set.
272 Here are some macros to test, set, or clear bit 0 of addresses. */
273#define IS_THUMB_ADDR(addr) ((addr) & 1)
274#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
275#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
276
94c30b78 277/* Set to true if the 32-bit mode is in use. */
c906108c
SS
278
279int arm_apcs_32 = 1;
280
9779414d
DJ
281/* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
282
478fd957 283int
9779414d
DJ
284arm_psr_thumb_bit (struct gdbarch *gdbarch)
285{
286 if (gdbarch_tdep (gdbarch)->is_m)
287 return XPSR_T;
288 else
289 return CPSR_T;
290}
291
b39cc962
DJ
292/* Determine if FRAME is executing in Thumb mode. */
293
25b41d01 294int
b39cc962
DJ
295arm_frame_is_thumb (struct frame_info *frame)
296{
297 CORE_ADDR cpsr;
9779414d 298 ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
b39cc962
DJ
299
300 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
301 directly (from a signal frame or dummy frame) or by interpreting
302 the saved LR (from a prologue or DWARF frame). So consult it and
303 trust the unwinders. */
304 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
305
9779414d 306 return (cpsr & t_bit) != 0;
b39cc962
DJ
307}
308
60c5725c
DJ
309/* Callback for VEC_lower_bound. */
310
311static inline int
312arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
313 const struct arm_mapping_symbol *rhs)
314{
315 return lhs->value < rhs->value;
316}
317
f9d67f43
DJ
318/* Search for the mapping symbol covering MEMADDR. If one is found,
319 return its type. Otherwise, return 0. If START is non-NULL,
320 set *START to the location of the mapping symbol. */
c906108c 321
f9d67f43
DJ
322static char
323arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
c906108c 324{
60c5725c 325 struct obj_section *sec;
0428b8f5 326
60c5725c
DJ
327 /* If there are mapping symbols, consult them. */
328 sec = find_pc_section (memaddr);
329 if (sec != NULL)
330 {
331 struct arm_per_objfile *data;
332 VEC(arm_mapping_symbol_s) *map;
aded6f54
PA
333 struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
334 0 };
60c5725c
DJ
335 unsigned int idx;
336
337 data = objfile_data (sec->objfile, arm_objfile_data_key);
338 if (data != NULL)
339 {
340 map = data->section_maps[sec->the_bfd_section->index];
341 if (!VEC_empty (arm_mapping_symbol_s, map))
342 {
343 struct arm_mapping_symbol *map_sym;
344
345 idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
346 arm_compare_mapping_symbols);
347
348 /* VEC_lower_bound finds the earliest ordered insertion
349 point. If the following symbol starts at this exact
350 address, we use that; otherwise, the preceding
351 mapping symbol covers this address. */
352 if (idx < VEC_length (arm_mapping_symbol_s, map))
353 {
354 map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
355 if (map_sym->value == map_key.value)
f9d67f43
DJ
356 {
357 if (start)
358 *start = map_sym->value + obj_section_addr (sec);
359 return map_sym->type;
360 }
60c5725c
DJ
361 }
362
363 if (idx > 0)
364 {
365 map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
f9d67f43
DJ
366 if (start)
367 *start = map_sym->value + obj_section_addr (sec);
368 return map_sym->type;
60c5725c
DJ
369 }
370 }
371 }
372 }
373
f9d67f43
DJ
374 return 0;
375}
376
377/* Determine if the program counter specified in MEMADDR is in a Thumb
378 function. This function should be called for addresses unrelated to
379 any executing frame; otherwise, prefer arm_frame_is_thumb. */
380
e3039479 381int
9779414d 382arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
f9d67f43 383{
7cbd4a93 384 struct bound_minimal_symbol sym;
f9d67f43 385 char type;
a42244db
YQ
386 struct displaced_step_closure* dsc
387 = get_displaced_step_closure_by_addr(memaddr);
388
389 /* If checking the mode of displaced instruction in copy area, the mode
390 should be determined by instruction on the original address. */
391 if (dsc)
392 {
393 if (debug_displaced)
394 fprintf_unfiltered (gdb_stdlog,
395 "displaced: check mode of %.8lx instead of %.8lx\n",
396 (unsigned long) dsc->insn_addr,
397 (unsigned long) memaddr);
398 memaddr = dsc->insn_addr;
399 }
f9d67f43
DJ
400
401 /* If bit 0 of the address is set, assume this is a Thumb address. */
402 if (IS_THUMB_ADDR (memaddr))
403 return 1;
404
18819fa6
UW
405 /* Respect internal mode override if active. */
406 if (arm_override_mode != -1)
407 return arm_override_mode;
408
f9d67f43
DJ
409 /* If the user wants to override the symbol table, let him. */
410 if (strcmp (arm_force_mode_string, "arm") == 0)
411 return 0;
412 if (strcmp (arm_force_mode_string, "thumb") == 0)
413 return 1;
414
9779414d
DJ
415 /* ARM v6-M and v7-M are always in Thumb mode. */
416 if (gdbarch_tdep (gdbarch)->is_m)
417 return 1;
418
f9d67f43
DJ
419 /* If there are mapping symbols, consult them. */
420 type = arm_find_mapping_symbol (memaddr, NULL);
421 if (type)
422 return type == 't';
423
ed9a39eb 424 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c 425 sym = lookup_minimal_symbol_by_pc (memaddr);
7cbd4a93
TT
426 if (sym.minsym)
427 return (MSYMBOL_IS_SPECIAL (sym.minsym));
0428b8f5
DJ
428
429 /* If the user wants to override the fallback mode, let them. */
430 if (strcmp (arm_fallback_mode_string, "arm") == 0)
431 return 0;
432 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
433 return 1;
434
435 /* If we couldn't find any symbol, but we're talking to a running
436 target, then trust the current value of $cpsr. This lets
437 "display/i $pc" always show the correct mode (though if there is
438 a symbol table we will not reach here, so it still may not be
18819fa6 439 displayed in the mode it will be executed). */
0428b8f5 440 if (target_has_registers)
18819fa6 441 return arm_frame_is_thumb (get_current_frame ());
0428b8f5
DJ
442
443 /* Otherwise we're out of luck; we assume ARM. */
444 return 0;
c906108c
SS
445}
446
181c1381 447/* Remove useless bits from addresses in a running program. */
34e8f22d 448static CORE_ADDR
24568a2c 449arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
c906108c 450{
2ae28aa9
YQ
451 /* On M-profile devices, do not strip the low bit from EXC_RETURN
452 (the magic exception return address). */
453 if (gdbarch_tdep (gdbarch)->is_m
454 && (val & 0xfffffff0) == 0xfffffff0)
455 return val;
456
a3a2ee65 457 if (arm_apcs_32)
dd6be234 458 return UNMAKE_THUMB_ADDR (val);
c906108c 459 else
a3a2ee65 460 return (val & 0x03fffffc);
c906108c
SS
461}
462
0d39a070 463/* Return 1 if PC is the start of a compiler helper function which
e0634ccf
UW
464 can be safely ignored during prologue skipping. IS_THUMB is true
465 if the function is known to be a Thumb function due to the way it
466 is being called. */
0d39a070 467static int
e0634ccf 468skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
0d39a070 469{
e0634ccf 470 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7cbd4a93 471 struct bound_minimal_symbol msym;
0d39a070
DJ
472
473 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93
TT
474 if (msym.minsym != NULL
475 && SYMBOL_VALUE_ADDRESS (msym.minsym) == pc
476 && SYMBOL_LINKAGE_NAME (msym.minsym) != NULL)
e0634ccf 477 {
7cbd4a93 478 const char *name = SYMBOL_LINKAGE_NAME (msym.minsym);
0d39a070 479
e0634ccf
UW
480 /* The GNU linker's Thumb call stub to foo is named
481 __foo_from_thumb. */
482 if (strstr (name, "_from_thumb") != NULL)
483 name += 2;
0d39a070 484
e0634ccf
UW
485 /* On soft-float targets, __truncdfsf2 is called to convert promoted
486 arguments to their argument types in non-prototyped
487 functions. */
488 if (strncmp (name, "__truncdfsf2", strlen ("__truncdfsf2")) == 0)
489 return 1;
490 if (strncmp (name, "__aeabi_d2f", strlen ("__aeabi_d2f")) == 0)
491 return 1;
0d39a070 492
e0634ccf
UW
493 /* Internal functions related to thread-local storage. */
494 if (strncmp (name, "__tls_get_addr", strlen ("__tls_get_addr")) == 0)
495 return 1;
496 if (strncmp (name, "__aeabi_read_tp", strlen ("__aeabi_read_tp")) == 0)
497 return 1;
498 }
499 else
500 {
501 /* If we run against a stripped glibc, we may be unable to identify
502 special functions by name. Check for one important case,
503 __aeabi_read_tp, by comparing the *code* against the default
504 implementation (this is hand-written ARM assembler in glibc). */
505
506 if (!is_thumb
507 && read_memory_unsigned_integer (pc, 4, byte_order_for_code)
508 == 0xe3e00a0f /* mov r0, #0xffff0fff */
509 && read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code)
510 == 0xe240f01f) /* sub pc, r0, #31 */
511 return 1;
512 }
ec3d575a 513
0d39a070
DJ
514 return 0;
515}
516
517/* Support routines for instruction parsing. */
518#define submask(x) ((1L << ((x) + 1)) - 1)
519#define bit(obj,st) (((obj) >> (st)) & 1)
520#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
521#define sbits(obj,st,fn) \
522 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
523#define BranchDest(addr,instr) \
9991b207 524 ((CORE_ADDR) (((unsigned long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
0d39a070 525
621c6d5b
YQ
526/* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
527 the first 16-bit of instruction, and INSN2 is the second 16-bit of
528 instruction. */
529#define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
530 ((bits ((insn1), 0, 3) << 12) \
531 | (bits ((insn1), 10, 10) << 11) \
532 | (bits ((insn2), 12, 14) << 8) \
533 | bits ((insn2), 0, 7))
534
535/* Extract the immediate from instruction movw/movt of encoding A. INSN is
536 the 32-bit instruction. */
537#define EXTRACT_MOVW_MOVT_IMM_A(insn) \
538 ((bits ((insn), 16, 19) << 12) \
539 | bits ((insn), 0, 11))
540
ec3d575a
UW
541/* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
542
543static unsigned int
544thumb_expand_immediate (unsigned int imm)
545{
546 unsigned int count = imm >> 7;
547
548 if (count < 8)
549 switch (count / 2)
550 {
551 case 0:
552 return imm & 0xff;
553 case 1:
554 return (imm & 0xff) | ((imm & 0xff) << 16);
555 case 2:
556 return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
557 case 3:
558 return (imm & 0xff) | ((imm & 0xff) << 8)
559 | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
560 }
561
562 return (0x80 | (imm & 0x7f)) << (32 - count);
563}
564
565/* Return 1 if the 16-bit Thumb instruction INST might change
566 control flow, 0 otherwise. */
567
568static int
569thumb_instruction_changes_pc (unsigned short inst)
570{
571 if ((inst & 0xff00) == 0xbd00) /* pop {rlist, pc} */
572 return 1;
573
574 if ((inst & 0xf000) == 0xd000) /* conditional branch */
575 return 1;
576
577 if ((inst & 0xf800) == 0xe000) /* unconditional branch */
578 return 1;
579
580 if ((inst & 0xff00) == 0x4700) /* bx REG, blx REG */
581 return 1;
582
ad8b5167
UW
583 if ((inst & 0xff87) == 0x4687) /* mov pc, REG */
584 return 1;
585
ec3d575a
UW
586 if ((inst & 0xf500) == 0xb100) /* CBNZ or CBZ. */
587 return 1;
588
589 return 0;
590}
591
592/* Return 1 if the 32-bit Thumb instruction in INST1 and INST2
593 might change control flow, 0 otherwise. */
594
595static int
596thumb2_instruction_changes_pc (unsigned short inst1, unsigned short inst2)
597{
598 if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000)
599 {
600 /* Branches and miscellaneous control instructions. */
601
602 if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000)
603 {
604 /* B, BL, BLX. */
605 return 1;
606 }
607 else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00)
608 {
609 /* SUBS PC, LR, #imm8. */
610 return 1;
611 }
612 else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380)
613 {
614 /* Conditional branch. */
615 return 1;
616 }
617
618 return 0;
619 }
620
621 if ((inst1 & 0xfe50) == 0xe810)
622 {
623 /* Load multiple or RFE. */
624
625 if (bit (inst1, 7) && !bit (inst1, 8))
626 {
627 /* LDMIA or POP */
628 if (bit (inst2, 15))
629 return 1;
630 }
631 else if (!bit (inst1, 7) && bit (inst1, 8))
632 {
633 /* LDMDB */
634 if (bit (inst2, 15))
635 return 1;
636 }
637 else if (bit (inst1, 7) && bit (inst1, 8))
638 {
639 /* RFEIA */
640 return 1;
641 }
642 else if (!bit (inst1, 7) && !bit (inst1, 8))
643 {
644 /* RFEDB */
645 return 1;
646 }
647
648 return 0;
649 }
650
651 if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00)
652 {
653 /* MOV PC or MOVS PC. */
654 return 1;
655 }
656
657 if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000)
658 {
659 /* LDR PC. */
660 if (bits (inst1, 0, 3) == 15)
661 return 1;
662 if (bit (inst1, 7))
663 return 1;
664 if (bit (inst2, 11))
665 return 1;
666 if ((inst2 & 0x0fc0) == 0x0000)
667 return 1;
668
669 return 0;
670 }
671
672 if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000)
673 {
674 /* TBB. */
675 return 1;
676 }
677
678 if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010)
679 {
680 /* TBH. */
681 return 1;
682 }
683
684 return 0;
685}
686
29d73ae4
DJ
687/* Analyze a Thumb prologue, looking for a recognizable stack frame
688 and frame pointer. Scan until we encounter a store that could
0d39a070
DJ
689 clobber the stack frame unexpectedly, or an unknown instruction.
690 Return the last address which is definitely safe to skip for an
691 initial breakpoint. */
c906108c
SS
692
693static CORE_ADDR
29d73ae4
DJ
694thumb_analyze_prologue (struct gdbarch *gdbarch,
695 CORE_ADDR start, CORE_ADDR limit,
696 struct arm_prologue_cache *cache)
c906108c 697{
0d39a070 698 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e17a4113 699 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
29d73ae4
DJ
700 int i;
701 pv_t regs[16];
702 struct pv_area *stack;
703 struct cleanup *back_to;
704 CORE_ADDR offset;
ec3d575a 705 CORE_ADDR unrecognized_pc = 0;
da3c6d4a 706
29d73ae4
DJ
707 for (i = 0; i < 16; i++)
708 regs[i] = pv_register (i, 0);
55f960e1 709 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
29d73ae4
DJ
710 back_to = make_cleanup_free_pv_area (stack);
711
29d73ae4 712 while (start < limit)
c906108c 713 {
29d73ae4
DJ
714 unsigned short insn;
715
e17a4113 716 insn = read_memory_unsigned_integer (start, 2, byte_order_for_code);
9d4fde75 717
94c30b78 718 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 719 {
29d73ae4
DJ
720 int regno;
721 int mask;
4be43953
DJ
722
723 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
724 break;
29d73ae4
DJ
725
726 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
727 whether to save LR (R14). */
728 mask = (insn & 0xff) | ((insn & 0x100) << 6);
729
730 /* Calculate offsets of saved R0-R7 and LR. */
731 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
732 if (mask & (1 << regno))
733 {
29d73ae4
DJ
734 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
735 -4);
736 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
737 }
da59e081 738 }
da3c6d4a
MS
739 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
740 sub sp, #simm */
da59e081 741 {
29d73ae4
DJ
742 offset = (insn & 0x7f) << 2; /* get scaled offset */
743 if (insn & 0x80) /* Check for SUB. */
744 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
745 -offset);
da59e081 746 else
29d73ae4
DJ
747 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
748 offset);
da59e081 749 }
0d39a070
DJ
750 else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
751 regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
752 (insn & 0xff) << 2);
753 else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
754 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
755 regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
756 bits (insn, 6, 8));
757 else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
758 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
759 regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
760 bits (insn, 0, 7));
761 else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
762 && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
763 && pv_is_constant (regs[bits (insn, 3, 5)]))
764 regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
765 regs[bits (insn, 6, 8)]);
766 else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
767 && pv_is_constant (regs[bits (insn, 3, 6)]))
768 {
769 int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
770 int rm = bits (insn, 3, 6);
771 regs[rd] = pv_add (regs[rd], regs[rm]);
772 }
29d73ae4 773 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 774 {
29d73ae4
DJ
775 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
776 int src_reg = (insn & 0x78) >> 3;
777 regs[dst_reg] = regs[src_reg];
da59e081 778 }
29d73ae4 779 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 780 {
29d73ae4
DJ
781 /* Handle stores to the stack. Normally pushes are used,
782 but with GCC -mtpcs-frame, there may be other stores
783 in the prologue to create the frame. */
784 int regno = (insn >> 8) & 0x7;
785 pv_t addr;
786
787 offset = (insn & 0xff) << 2;
788 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
789
790 if (pv_area_store_would_trash (stack, addr))
791 break;
792
793 pv_area_store (stack, addr, 4, regs[regno]);
da59e081 794 }
0d39a070
DJ
795 else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
796 {
797 int rd = bits (insn, 0, 2);
798 int rn = bits (insn, 3, 5);
799 pv_t addr;
800
801 offset = bits (insn, 6, 10) << 2;
802 addr = pv_add_constant (regs[rn], offset);
803
804 if (pv_area_store_would_trash (stack, addr))
805 break;
806
807 pv_area_store (stack, addr, 4, regs[rd]);
808 }
809 else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
810 || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
811 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
812 /* Ignore stores of argument registers to the stack. */
813 ;
814 else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
815 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
816 /* Ignore block loads from the stack, potentially copying
817 parameters from memory. */
818 ;
819 else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
820 || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
821 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
822 /* Similarly ignore single loads from the stack. */
823 ;
824 else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
825 || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
826 /* Skip register copies, i.e. saves to another register
827 instead of the stack. */
828 ;
829 else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
830 /* Recognize constant loads; even with small stacks these are necessary
831 on Thumb. */
832 regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
833 else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
834 {
835 /* Constant pool loads, for the same reason. */
836 unsigned int constant;
837 CORE_ADDR loc;
838
839 loc = start + 4 + bits (insn, 0, 7) * 4;
840 constant = read_memory_unsigned_integer (loc, 4, byte_order);
841 regs[bits (insn, 8, 10)] = pv_constant (constant);
842 }
db24da6d 843 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */
0d39a070 844 {
0d39a070
DJ
845 unsigned short inst2;
846
847 inst2 = read_memory_unsigned_integer (start + 2, 2,
848 byte_order_for_code);
849
850 if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
851 {
852 /* BL, BLX. Allow some special function calls when
853 skipping the prologue; GCC generates these before
854 storing arguments to the stack. */
855 CORE_ADDR nextpc;
856 int j1, j2, imm1, imm2;
857
858 imm1 = sbits (insn, 0, 10);
859 imm2 = bits (inst2, 0, 10);
860 j1 = bit (inst2, 13);
861 j2 = bit (inst2, 11);
862
863 offset = ((imm1 << 12) + (imm2 << 1));
864 offset ^= ((!j2) << 22) | ((!j1) << 23);
865
866 nextpc = start + 4 + offset;
867 /* For BLX make sure to clear the low bits. */
868 if (bit (inst2, 12) == 0)
869 nextpc = nextpc & 0xfffffffc;
870
e0634ccf
UW
871 if (!skip_prologue_function (gdbarch, nextpc,
872 bit (inst2, 12) != 0))
0d39a070
DJ
873 break;
874 }
ec3d575a 875
0963b4bd
MS
876 else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
877 { registers } */
ec3d575a
UW
878 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
879 {
880 pv_t addr = regs[bits (insn, 0, 3)];
881 int regno;
882
883 if (pv_area_store_would_trash (stack, addr))
884 break;
885
886 /* Calculate offsets of saved registers. */
887 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
888 if (inst2 & (1 << regno))
889 {
890 addr = pv_add_constant (addr, -4);
891 pv_area_store (stack, addr, 4, regs[regno]);
892 }
893
894 if (insn & 0x0020)
895 regs[bits (insn, 0, 3)] = addr;
896 }
897
0963b4bd
MS
898 else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
899 [Rn, #+/-imm]{!} */
ec3d575a
UW
900 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
901 {
902 int regno1 = bits (inst2, 12, 15);
903 int regno2 = bits (inst2, 8, 11);
904 pv_t addr = regs[bits (insn, 0, 3)];
905
906 offset = inst2 & 0xff;
907 if (insn & 0x0080)
908 addr = pv_add_constant (addr, offset);
909 else
910 addr = pv_add_constant (addr, -offset);
911
912 if (pv_area_store_would_trash (stack, addr))
913 break;
914
915 pv_area_store (stack, addr, 4, regs[regno1]);
916 pv_area_store (stack, pv_add_constant (addr, 4),
917 4, regs[regno2]);
918
919 if (insn & 0x0020)
920 regs[bits (insn, 0, 3)] = addr;
921 }
922
923 else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
924 && (inst2 & 0x0c00) == 0x0c00
925 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
926 {
927 int regno = bits (inst2, 12, 15);
928 pv_t addr = regs[bits (insn, 0, 3)];
929
930 offset = inst2 & 0xff;
931 if (inst2 & 0x0200)
932 addr = pv_add_constant (addr, offset);
933 else
934 addr = pv_add_constant (addr, -offset);
935
936 if (pv_area_store_would_trash (stack, addr))
937 break;
938
939 pv_area_store (stack, addr, 4, regs[regno]);
940
941 if (inst2 & 0x0100)
942 regs[bits (insn, 0, 3)] = addr;
943 }
944
945 else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
946 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
947 {
948 int regno = bits (inst2, 12, 15);
949 pv_t addr;
950
951 offset = inst2 & 0xfff;
952 addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
953
954 if (pv_area_store_would_trash (stack, addr))
955 break;
956
957 pv_area_store (stack, addr, 4, regs[regno]);
958 }
959
960 else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
0d39a070 961 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 962 /* Ignore stores of argument registers to the stack. */
0d39a070 963 ;
ec3d575a
UW
964
965 else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
966 && (inst2 & 0x0d00) == 0x0c00
0d39a070 967 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 968 /* Ignore stores of argument registers to the stack. */
0d39a070 969 ;
ec3d575a 970
0963b4bd
MS
971 else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
972 { registers } */
ec3d575a
UW
973 && (inst2 & 0x8000) == 0x0000
974 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
975 /* Ignore block loads from the stack, potentially copying
976 parameters from memory. */
0d39a070 977 ;
ec3d575a 978
0963b4bd
MS
979 else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
980 [Rn, #+/-imm] */
0d39a070 981 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 982 /* Similarly ignore dual loads from the stack. */
0d39a070 983 ;
ec3d575a
UW
984
985 else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
986 && (inst2 & 0x0d00) == 0x0c00
0d39a070 987 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 988 /* Similarly ignore single loads from the stack. */
0d39a070 989 ;
ec3d575a
UW
990
991 else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
0d39a070 992 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 993 /* Similarly ignore single loads from the stack. */
0d39a070 994 ;
ec3d575a
UW
995
996 else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
997 && (inst2 & 0x8000) == 0x0000)
998 {
999 unsigned int imm = ((bits (insn, 10, 10) << 11)
1000 | (bits (inst2, 12, 14) << 8)
1001 | bits (inst2, 0, 7));
1002
1003 regs[bits (inst2, 8, 11)]
1004 = pv_add_constant (regs[bits (insn, 0, 3)],
1005 thumb_expand_immediate (imm));
1006 }
1007
1008 else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
1009 && (inst2 & 0x8000) == 0x0000)
0d39a070 1010 {
ec3d575a
UW
1011 unsigned int imm = ((bits (insn, 10, 10) << 11)
1012 | (bits (inst2, 12, 14) << 8)
1013 | bits (inst2, 0, 7));
1014
1015 regs[bits (inst2, 8, 11)]
1016 = pv_add_constant (regs[bits (insn, 0, 3)], imm);
1017 }
1018
1019 else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
1020 && (inst2 & 0x8000) == 0x0000)
1021 {
1022 unsigned int imm = ((bits (insn, 10, 10) << 11)
1023 | (bits (inst2, 12, 14) << 8)
1024 | bits (inst2, 0, 7));
1025
1026 regs[bits (inst2, 8, 11)]
1027 = pv_add_constant (regs[bits (insn, 0, 3)],
1028 - (CORE_ADDR) thumb_expand_immediate (imm));
1029 }
1030
1031 else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
1032 && (inst2 & 0x8000) == 0x0000)
1033 {
1034 unsigned int imm = ((bits (insn, 10, 10) << 11)
1035 | (bits (inst2, 12, 14) << 8)
1036 | bits (inst2, 0, 7));
1037
1038 regs[bits (inst2, 8, 11)]
1039 = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
1040 }
1041
1042 else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
1043 {
1044 unsigned int imm = ((bits (insn, 10, 10) << 11)
1045 | (bits (inst2, 12, 14) << 8)
1046 | bits (inst2, 0, 7));
1047
1048 regs[bits (inst2, 8, 11)]
1049 = pv_constant (thumb_expand_immediate (imm));
1050 }
1051
1052 else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
1053 {
621c6d5b
YQ
1054 unsigned int imm
1055 = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
ec3d575a
UW
1056
1057 regs[bits (inst2, 8, 11)] = pv_constant (imm);
1058 }
1059
1060 else if (insn == 0xea5f /* mov.w Rd,Rm */
1061 && (inst2 & 0xf0f0) == 0)
1062 {
1063 int dst_reg = (inst2 & 0x0f00) >> 8;
1064 int src_reg = inst2 & 0xf;
1065 regs[dst_reg] = regs[src_reg];
1066 }
1067
1068 else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1069 {
1070 /* Constant pool loads. */
1071 unsigned int constant;
1072 CORE_ADDR loc;
1073
1074 offset = bits (insn, 0, 11);
1075 if (insn & 0x0080)
1076 loc = start + 4 + offset;
1077 else
1078 loc = start + 4 - offset;
1079
1080 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1081 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1082 }
1083
1084 else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1085 {
1086 /* Constant pool loads. */
1087 unsigned int constant;
1088 CORE_ADDR loc;
1089
1090 offset = bits (insn, 0, 7) << 2;
1091 if (insn & 0x0080)
1092 loc = start + 4 + offset;
1093 else
1094 loc = start + 4 - offset;
1095
1096 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1097 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1098
1099 constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
1100 regs[bits (inst2, 8, 11)] = pv_constant (constant);
1101 }
1102
1103 else if (thumb2_instruction_changes_pc (insn, inst2))
1104 {
1105 /* Don't scan past anything that might change control flow. */
0d39a070
DJ
1106 break;
1107 }
ec3d575a
UW
1108 else
1109 {
1110 /* The optimizer might shove anything into the prologue,
1111 so we just skip what we don't recognize. */
1112 unrecognized_pc = start;
1113 }
0d39a070
DJ
1114
1115 start += 2;
1116 }
ec3d575a 1117 else if (thumb_instruction_changes_pc (insn))
3d74b771 1118 {
ec3d575a 1119 /* Don't scan past anything that might change control flow. */
da3c6d4a 1120 break;
3d74b771 1121 }
ec3d575a
UW
1122 else
1123 {
1124 /* The optimizer might shove anything into the prologue,
1125 so we just skip what we don't recognize. */
1126 unrecognized_pc = start;
1127 }
29d73ae4
DJ
1128
1129 start += 2;
c906108c
SS
1130 }
1131
0d39a070
DJ
1132 if (arm_debug)
1133 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1134 paddress (gdbarch, start));
1135
ec3d575a
UW
1136 if (unrecognized_pc == 0)
1137 unrecognized_pc = start;
1138
29d73ae4
DJ
1139 if (cache == NULL)
1140 {
1141 do_cleanups (back_to);
ec3d575a 1142 return unrecognized_pc;
29d73ae4
DJ
1143 }
1144
29d73ae4
DJ
1145 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1146 {
1147 /* Frame pointer is fp. Frame size is constant. */
1148 cache->framereg = ARM_FP_REGNUM;
1149 cache->framesize = -regs[ARM_FP_REGNUM].k;
1150 }
1151 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
1152 {
1153 /* Frame pointer is r7. Frame size is constant. */
1154 cache->framereg = THUMB_FP_REGNUM;
1155 cache->framesize = -regs[THUMB_FP_REGNUM].k;
1156 }
72a2e3dc 1157 else
29d73ae4
DJ
1158 {
1159 /* Try the stack pointer... this is a bit desperate. */
1160 cache->framereg = ARM_SP_REGNUM;
1161 cache->framesize = -regs[ARM_SP_REGNUM].k;
1162 }
29d73ae4
DJ
1163
1164 for (i = 0; i < 16; i++)
1165 if (pv_area_find_reg (stack, gdbarch, i, &offset))
1166 cache->saved_regs[i].addr = offset;
1167
1168 do_cleanups (back_to);
ec3d575a 1169 return unrecognized_pc;
c906108c
SS
1170}
1171
621c6d5b
YQ
1172
1173/* Try to analyze the instructions starting from PC, which load symbol
1174 __stack_chk_guard. Return the address of instruction after loading this
1175 symbol, set the dest register number to *BASEREG, and set the size of
1176 instructions for loading symbol in OFFSET. Return 0 if instructions are
1177 not recognized. */
1178
1179static CORE_ADDR
1180arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
1181 unsigned int *destreg, int *offset)
1182{
1183 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1184 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1185 unsigned int low, high, address;
1186
1187 address = 0;
1188 if (is_thumb)
1189 {
1190 unsigned short insn1
1191 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
1192
1193 if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
1194 {
1195 *destreg = bits (insn1, 8, 10);
1196 *offset = 2;
1197 address = bits (insn1, 0, 7);
1198 }
1199 else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
1200 {
1201 unsigned short insn2
1202 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
1203
1204 low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1205
1206 insn1
1207 = read_memory_unsigned_integer (pc + 4, 2, byte_order_for_code);
1208 insn2
1209 = read_memory_unsigned_integer (pc + 6, 2, byte_order_for_code);
1210
1211 /* movt Rd, #const */
1212 if ((insn1 & 0xfbc0) == 0xf2c0)
1213 {
1214 high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1215 *destreg = bits (insn2, 8, 11);
1216 *offset = 8;
1217 address = (high << 16 | low);
1218 }
1219 }
1220 }
1221 else
1222 {
2e9e421f
UW
1223 unsigned int insn
1224 = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
1225
1226 if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, #immed */
1227 {
1228 address = bits (insn, 0, 11);
1229 *destreg = bits (insn, 12, 15);
1230 *offset = 4;
1231 }
1232 else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1233 {
1234 low = EXTRACT_MOVW_MOVT_IMM_A (insn);
1235
1236 insn
1237 = read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code);
1238
1239 if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1240 {
1241 high = EXTRACT_MOVW_MOVT_IMM_A (insn);
1242 *destreg = bits (insn, 12, 15);
1243 *offset = 8;
1244 address = (high << 16 | low);
1245 }
1246 }
621c6d5b
YQ
1247 }
1248
1249 return address;
1250}
1251
1252/* Try to skip a sequence of instructions used for stack protector. If PC
0963b4bd
MS
1253 points to the first instruction of this sequence, return the address of
1254 first instruction after this sequence, otherwise, return original PC.
621c6d5b
YQ
1255
1256 On arm, this sequence of instructions is composed of mainly three steps,
1257 Step 1: load symbol __stack_chk_guard,
1258 Step 2: load from address of __stack_chk_guard,
1259 Step 3: store it to somewhere else.
1260
1261 Usually, instructions on step 2 and step 3 are the same on various ARM
1262 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1263 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1264 instructions in step 1 vary from different ARM architectures. On ARMv7,
1265 they are,
1266
1267 movw Rn, #:lower16:__stack_chk_guard
1268 movt Rn, #:upper16:__stack_chk_guard
1269
1270 On ARMv5t, it is,
1271
1272 ldr Rn, .Label
1273 ....
1274 .Lable:
1275 .word __stack_chk_guard
1276
1277 Since ldr/str is a very popular instruction, we can't use them as
1278 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1279 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1280 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1281
1282static CORE_ADDR
1283arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
1284{
1285 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
22e048c9 1286 unsigned int basereg;
7cbd4a93 1287 struct bound_minimal_symbol stack_chk_guard;
621c6d5b
YQ
1288 int offset;
1289 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1290 CORE_ADDR addr;
1291
1292 /* Try to parse the instructions in Step 1. */
1293 addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
1294 &basereg, &offset);
1295 if (!addr)
1296 return pc;
1297
1298 stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
1299 /* If name of symbol doesn't start with '__stack_chk_guard', this
1300 instruction sequence is not for stack protector. If symbol is
1301 removed, we conservatively think this sequence is for stack protector. */
7cbd4a93
TT
1302 if (stack_chk_guard.minsym
1303 && strncmp (SYMBOL_LINKAGE_NAME (stack_chk_guard.minsym),
1304 "__stack_chk_guard",
c1c2ab58 1305 strlen ("__stack_chk_guard")) != 0)
621c6d5b
YQ
1306 return pc;
1307
1308 if (is_thumb)
1309 {
1310 unsigned int destreg;
1311 unsigned short insn
1312 = read_memory_unsigned_integer (pc + offset, 2, byte_order_for_code);
1313
1314 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1315 if ((insn & 0xf800) != 0x6800)
1316 return pc;
1317 if (bits (insn, 3, 5) != basereg)
1318 return pc;
1319 destreg = bits (insn, 0, 2);
1320
1321 insn = read_memory_unsigned_integer (pc + offset + 2, 2,
1322 byte_order_for_code);
1323 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1324 if ((insn & 0xf800) != 0x6000)
1325 return pc;
1326 if (destreg != bits (insn, 0, 2))
1327 return pc;
1328 }
1329 else
1330 {
1331 unsigned int destreg;
1332 unsigned int insn
1333 = read_memory_unsigned_integer (pc + offset, 4, byte_order_for_code);
1334
1335 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1336 if ((insn & 0x0e500000) != 0x04100000)
1337 return pc;
1338 if (bits (insn, 16, 19) != basereg)
1339 return pc;
1340 destreg = bits (insn, 12, 15);
1341 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
1342 insn = read_memory_unsigned_integer (pc + offset + 4,
1343 4, byte_order_for_code);
1344 if ((insn & 0x0e500000) != 0x04000000)
1345 return pc;
1346 if (bits (insn, 12, 15) != destreg)
1347 return pc;
1348 }
1349 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1350 on arm. */
1351 if (is_thumb)
1352 return pc + offset + 4;
1353 else
1354 return pc + offset + 8;
1355}
1356
da3c6d4a
MS
1357/* Advance the PC across any function entry prologue instructions to
1358 reach some "real" code.
34e8f22d
RE
1359
1360 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 1361 prologue:
c906108c 1362
c5aa993b
JM
1363 mov ip, sp
1364 [stmfd sp!, {a1,a2,a3,a4}]
1365 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
1366 [stfe f7, [sp, #-12]!]
1367 [stfe f6, [sp, #-12]!]
1368 [stfe f5, [sp, #-12]!]
1369 [stfe f4, [sp, #-12]!]
0963b4bd 1370 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
c906108c 1371
34e8f22d 1372static CORE_ADDR
6093d2eb 1373arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1374{
e17a4113 1375 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
c906108c
SS
1376 unsigned long inst;
1377 CORE_ADDR skip_pc;
a89fea3c 1378 CORE_ADDR func_addr, limit_pc;
c906108c 1379
a89fea3c
JL
1380 /* See if we can determine the end of the prologue via the symbol table.
1381 If so, then return either PC, or the PC after the prologue, whichever
1382 is greater. */
1383 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
c906108c 1384 {
d80b854b
UW
1385 CORE_ADDR post_prologue_pc
1386 = skip_prologue_using_sal (gdbarch, func_addr);
0d39a070
DJ
1387 struct symtab *s = find_pc_symtab (func_addr);
1388
621c6d5b
YQ
1389 if (post_prologue_pc)
1390 post_prologue_pc
1391 = arm_skip_stack_protector (post_prologue_pc, gdbarch);
1392
1393
0d39a070
DJ
1394 /* GCC always emits a line note before the prologue and another
1395 one after, even if the two are at the same address or on the
1396 same line. Take advantage of this so that we do not need to
1397 know every instruction that might appear in the prologue. We
1398 will have producer information for most binaries; if it is
1399 missing (e.g. for -gstabs), assuming the GNU tools. */
1400 if (post_prologue_pc
1401 && (s == NULL
1402 || s->producer == NULL
9ead7ae4
KB
1403 || strncmp (s->producer, "GNU ", sizeof ("GNU ") - 1) == 0
1404 || strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
0d39a070
DJ
1405 return post_prologue_pc;
1406
a89fea3c 1407 if (post_prologue_pc != 0)
0d39a070
DJ
1408 {
1409 CORE_ADDR analyzed_limit;
1410
1411 /* For non-GCC compilers, make sure the entire line is an
1412 acceptable prologue; GDB will round this function's
1413 return value up to the end of the following line so we
1414 can not skip just part of a line (and we do not want to).
1415
1416 RealView does not treat the prologue specially, but does
1417 associate prologue code with the opening brace; so this
1418 lets us skip the first line if we think it is the opening
1419 brace. */
9779414d 1420 if (arm_pc_is_thumb (gdbarch, func_addr))
0d39a070
DJ
1421 analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
1422 post_prologue_pc, NULL);
1423 else
1424 analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
1425 post_prologue_pc, NULL);
1426
1427 if (analyzed_limit != post_prologue_pc)
1428 return func_addr;
1429
1430 return post_prologue_pc;
1431 }
c906108c
SS
1432 }
1433
a89fea3c
JL
1434 /* Can't determine prologue from the symbol table, need to examine
1435 instructions. */
c906108c 1436
a89fea3c
JL
1437 /* Find an upper limit on the function prologue using the debug
1438 information. If the debug information could not be used to provide
1439 that bound, then use an arbitrary large number as the upper bound. */
0963b4bd 1440 /* Like arm_scan_prologue, stop no later than pc + 64. */
d80b854b 1441 limit_pc = skip_prologue_using_sal (gdbarch, pc);
a89fea3c
JL
1442 if (limit_pc == 0)
1443 limit_pc = pc + 64; /* Magic. */
1444
c906108c 1445
29d73ae4 1446 /* Check if this is Thumb code. */
9779414d 1447 if (arm_pc_is_thumb (gdbarch, pc))
a89fea3c 1448 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
29d73ae4 1449
a89fea3c 1450 for (skip_pc = pc; skip_pc < limit_pc; skip_pc += 4)
f43845b3 1451 {
e17a4113 1452 inst = read_memory_unsigned_integer (skip_pc, 4, byte_order_for_code);
9d4fde75 1453
b8d5e71d
MS
1454 /* "mov ip, sp" is no longer a required part of the prologue. */
1455 if (inst == 0xe1a0c00d) /* mov ip, sp */
1456 continue;
c906108c 1457
28cd8767
JG
1458 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
1459 continue;
1460
1461 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
1462 continue;
1463
b8d5e71d
MS
1464 /* Some prologues begin with "str lr, [sp, #-4]!". */
1465 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
1466 continue;
c906108c 1467
b8d5e71d
MS
1468 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
1469 continue;
c906108c 1470
b8d5e71d
MS
1471 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
1472 continue;
11d3b27d 1473
b8d5e71d
MS
1474 /* Any insns after this point may float into the code, if it makes
1475 for better instruction scheduling, so we skip them only if we
1476 find them, but still consider the function to be frame-ful. */
f43845b3 1477
b8d5e71d
MS
1478 /* We may have either one sfmfd instruction here, or several stfe
1479 insns, depending on the version of floating point code we
1480 support. */
1481 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
1482 continue;
1483
1484 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
1485 continue;
1486
1487 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
1488 continue;
1489
1490 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
1491 continue;
1492
f8bf5763
PM
1493 if ((inst & 0xffffc000) == 0xe54b0000 /* strb r(0123),[r11,#-nn] */
1494 || (inst & 0xffffc0f0) == 0xe14b00b0 /* strh r(0123),[r11,#-nn] */
1495 || (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
b8d5e71d
MS
1496 continue;
1497
f8bf5763
PM
1498 if ((inst & 0xffffc000) == 0xe5cd0000 /* strb r(0123),[sp,#nn] */
1499 || (inst & 0xffffc0f0) == 0xe1cd00b0 /* strh r(0123),[sp,#nn] */
1500 || (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
b8d5e71d
MS
1501 continue;
1502
1503 /* Un-recognized instruction; stop scanning. */
1504 break;
f43845b3 1505 }
c906108c 1506
0963b4bd 1507 return skip_pc; /* End of prologue. */
c906108c 1508}
94c30b78 1509
c5aa993b 1510/* *INDENT-OFF* */
c906108c
SS
1511/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1512 This function decodes a Thumb function prologue to determine:
1513 1) the size of the stack frame
1514 2) which registers are saved on it
1515 3) the offsets of saved regs
1516 4) the offset from the stack pointer to the frame pointer
c906108c 1517
da59e081
JM
1518 A typical Thumb function prologue would create this stack frame
1519 (offsets relative to FP)
c906108c
SS
1520 old SP -> 24 stack parameters
1521 20 LR
1522 16 R7
1523 R7 -> 0 local variables (16 bytes)
1524 SP -> -12 additional stack space (12 bytes)
1525 The frame size would thus be 36 bytes, and the frame offset would be
0963b4bd 1526 12 bytes. The frame register is R7.
da59e081 1527
da3c6d4a
MS
1528 The comments for thumb_skip_prolog() describe the algorithm we use
1529 to detect the end of the prolog. */
c5aa993b
JM
1530/* *INDENT-ON* */
1531
c906108c 1532static void
be8626e0 1533thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
b39cc962 1534 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
c906108c
SS
1535{
1536 CORE_ADDR prologue_start;
1537 CORE_ADDR prologue_end;
c906108c 1538
b39cc962
DJ
1539 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1540 &prologue_end))
c906108c 1541 {
ec3d575a
UW
1542 /* See comment in arm_scan_prologue for an explanation of
1543 this heuristics. */
1544 if (prologue_end > prologue_start + 64)
1545 {
1546 prologue_end = prologue_start + 64;
1547 }
c906108c
SS
1548 }
1549 else
f7060f85
DJ
1550 /* We're in the boondocks: we have no idea where the start of the
1551 function is. */
1552 return;
c906108c 1553
eb5492fa 1554 prologue_end = min (prologue_end, prev_pc);
c906108c 1555
be8626e0 1556 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
c906108c
SS
1557}
1558
0d39a070 1559/* Return 1 if THIS_INSTR might change control flow, 0 otherwise. */
c906108c 1560
0d39a070
DJ
1561static int
1562arm_instruction_changes_pc (uint32_t this_instr)
c906108c 1563{
0d39a070
DJ
1564 if (bits (this_instr, 28, 31) == INST_NV)
1565 /* Unconditional instructions. */
1566 switch (bits (this_instr, 24, 27))
1567 {
1568 case 0xa:
1569 case 0xb:
1570 /* Branch with Link and change to Thumb. */
1571 return 1;
1572 case 0xc:
1573 case 0xd:
1574 case 0xe:
1575 /* Coprocessor register transfer. */
1576 if (bits (this_instr, 12, 15) == 15)
1577 error (_("Invalid update to pc in instruction"));
1578 return 0;
1579 default:
1580 return 0;
1581 }
1582 else
1583 switch (bits (this_instr, 25, 27))
1584 {
1585 case 0x0:
1586 if (bits (this_instr, 23, 24) == 2 && bit (this_instr, 20) == 0)
1587 {
1588 /* Multiplies and extra load/stores. */
1589 if (bit (this_instr, 4) == 1 && bit (this_instr, 7) == 1)
1590 /* Neither multiplies nor extension load/stores are allowed
1591 to modify PC. */
1592 return 0;
1593
1594 /* Otherwise, miscellaneous instructions. */
1595
1596 /* BX <reg>, BXJ <reg>, BLX <reg> */
1597 if (bits (this_instr, 4, 27) == 0x12fff1
1598 || bits (this_instr, 4, 27) == 0x12fff2
1599 || bits (this_instr, 4, 27) == 0x12fff3)
1600 return 1;
1601
1602 /* Other miscellaneous instructions are unpredictable if they
1603 modify PC. */
1604 return 0;
1605 }
1606 /* Data processing instruction. Fall through. */
c906108c 1607
0d39a070
DJ
1608 case 0x1:
1609 if (bits (this_instr, 12, 15) == 15)
1610 return 1;
1611 else
1612 return 0;
c906108c 1613
0d39a070
DJ
1614 case 0x2:
1615 case 0x3:
1616 /* Media instructions and architecturally undefined instructions. */
1617 if (bits (this_instr, 25, 27) == 3 && bit (this_instr, 4) == 1)
1618 return 0;
c906108c 1619
0d39a070
DJ
1620 /* Stores. */
1621 if (bit (this_instr, 20) == 0)
1622 return 0;
2a451106 1623
0d39a070
DJ
1624 /* Loads. */
1625 if (bits (this_instr, 12, 15) == ARM_PC_REGNUM)
1626 return 1;
1627 else
1628 return 0;
2a451106 1629
0d39a070
DJ
1630 case 0x4:
1631 /* Load/store multiple. */
1632 if (bit (this_instr, 20) == 1 && bit (this_instr, 15) == 1)
1633 return 1;
1634 else
1635 return 0;
2a451106 1636
0d39a070
DJ
1637 case 0x5:
1638 /* Branch and branch with link. */
1639 return 1;
2a451106 1640
0d39a070
DJ
1641 case 0x6:
1642 case 0x7:
1643 /* Coprocessor transfers or SWIs can not affect PC. */
1644 return 0;
eb5492fa 1645
0d39a070 1646 default:
9b20d036 1647 internal_error (__FILE__, __LINE__, _("bad value in switch"));
0d39a070
DJ
1648 }
1649}
c906108c 1650
0d39a070
DJ
1651/* Analyze an ARM mode prologue starting at PROLOGUE_START and
1652 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1653 fill it in. Return the first address not recognized as a prologue
1654 instruction.
eb5492fa 1655
0d39a070
DJ
1656 We recognize all the instructions typically found in ARM prologues,
1657 plus harmless instructions which can be skipped (either for analysis
1658 purposes, or a more restrictive set that can be skipped when finding
1659 the end of the prologue). */
1660
1661static CORE_ADDR
1662arm_analyze_prologue (struct gdbarch *gdbarch,
1663 CORE_ADDR prologue_start, CORE_ADDR prologue_end,
1664 struct arm_prologue_cache *cache)
1665{
1666 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1667 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1668 int regno;
1669 CORE_ADDR offset, current_pc;
1670 pv_t regs[ARM_FPS_REGNUM];
1671 struct pv_area *stack;
1672 struct cleanup *back_to;
1673 int framereg, framesize;
1674 CORE_ADDR unrecognized_pc = 0;
1675
1676 /* Search the prologue looking for instructions that set up the
96baa820 1677 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 1678
96baa820
JM
1679 Be careful, however, and if it doesn't look like a prologue,
1680 don't try to scan it. If, for instance, a frameless function
1681 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 1682 a frame, which will confuse stack traceback, as well as "finish"
96baa820 1683 and other operations that rely on a knowledge of the stack
0d39a070 1684 traceback. */
d4473757 1685
4be43953
DJ
1686 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1687 regs[regno] = pv_register (regno, 0);
55f960e1 1688 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
4be43953
DJ
1689 back_to = make_cleanup_free_pv_area (stack);
1690
94c30b78
MS
1691 for (current_pc = prologue_start;
1692 current_pc < prologue_end;
f43845b3 1693 current_pc += 4)
96baa820 1694 {
e17a4113
UW
1695 unsigned int insn
1696 = read_memory_unsigned_integer (current_pc, 4, byte_order_for_code);
9d4fde75 1697
94c30b78 1698 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 1699 {
4be43953 1700 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
28cd8767
JG
1701 continue;
1702 }
0d39a070
DJ
1703 else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
1704 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
28cd8767
JG
1705 {
1706 unsigned imm = insn & 0xff; /* immediate value */
1707 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
0d39a070 1708 int rd = bits (insn, 12, 15);
28cd8767 1709 imm = (imm >> rot) | (imm << (32 - rot));
0d39a070 1710 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
28cd8767
JG
1711 continue;
1712 }
0d39a070
DJ
1713 else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
1714 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
28cd8767
JG
1715 {
1716 unsigned imm = insn & 0xff; /* immediate value */
1717 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
0d39a070 1718 int rd = bits (insn, 12, 15);
28cd8767 1719 imm = (imm >> rot) | (imm << (32 - rot));
0d39a070 1720 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
f43845b3
MS
1721 continue;
1722 }
0963b4bd
MS
1723 else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
1724 [sp, #-4]! */
f43845b3 1725 {
4be43953
DJ
1726 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1727 break;
1728 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
0d39a070
DJ
1729 pv_area_store (stack, regs[ARM_SP_REGNUM], 4,
1730 regs[bits (insn, 12, 15)]);
f43845b3
MS
1731 continue;
1732 }
1733 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
1734 /* stmfd sp!, {..., fp, ip, lr, pc}
1735 or
1736 stmfd sp!, {a1, a2, a3, a4} */
c906108c 1737 {
d4473757 1738 int mask = insn & 0xffff;
ed9a39eb 1739
4be43953
DJ
1740 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1741 break;
1742
94c30b78 1743 /* Calculate offsets of saved registers. */
34e8f22d 1744 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
1745 if (mask & (1 << regno))
1746 {
0963b4bd
MS
1747 regs[ARM_SP_REGNUM]
1748 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
4be43953 1749 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
d4473757
KB
1750 }
1751 }
0d39a070
DJ
1752 else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
1753 || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
f8bf5763 1754 || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
b8d5e71d
MS
1755 {
1756 /* No need to add this to saved_regs -- it's just an arg reg. */
1757 continue;
1758 }
0d39a070
DJ
1759 else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
1760 || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
f8bf5763 1761 || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
1762 {
1763 /* No need to add this to saved_regs -- it's just an arg reg. */
1764 continue;
1765 }
0963b4bd
MS
1766 else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
1767 { registers } */
0d39a070
DJ
1768 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1769 {
1770 /* No need to add this to saved_regs -- it's just arg regs. */
1771 continue;
1772 }
d4473757
KB
1773 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
1774 {
94c30b78
MS
1775 unsigned imm = insn & 0xff; /* immediate value */
1776 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 1777 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 1778 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
d4473757
KB
1779 }
1780 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
1781 {
94c30b78
MS
1782 unsigned imm = insn & 0xff; /* immediate value */
1783 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 1784 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 1785 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
d4473757 1786 }
0963b4bd
MS
1787 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
1788 [sp, -#c]! */
2af46ca0 1789 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757 1790 {
4be43953
DJ
1791 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1792 break;
1793
1794 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
34e8f22d 1795 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
4be43953 1796 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
d4473757 1797 }
0963b4bd
MS
1798 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
1799 [sp!] */
2af46ca0 1800 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757
KB
1801 {
1802 int n_saved_fp_regs;
1803 unsigned int fp_start_reg, fp_bound_reg;
1804
4be43953
DJ
1805 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1806 break;
1807
94c30b78 1808 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 1809 {
d4473757
KB
1810 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1811 n_saved_fp_regs = 3;
1812 else
1813 n_saved_fp_regs = 1;
96baa820 1814 }
d4473757 1815 else
96baa820 1816 {
d4473757
KB
1817 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1818 n_saved_fp_regs = 2;
1819 else
1820 n_saved_fp_regs = 4;
96baa820 1821 }
d4473757 1822
34e8f22d 1823 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
1824 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
1825 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820 1826 {
4be43953
DJ
1827 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1828 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
1829 regs[fp_start_reg++]);
96baa820 1830 }
c906108c 1831 }
0d39a070
DJ
1832 else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
1833 {
1834 /* Allow some special function calls when skipping the
1835 prologue; GCC generates these before storing arguments to
1836 the stack. */
1837 CORE_ADDR dest = BranchDest (current_pc, insn);
1838
e0634ccf 1839 if (skip_prologue_function (gdbarch, dest, 0))
0d39a070
DJ
1840 continue;
1841 else
1842 break;
1843 }
d4473757 1844 else if ((insn & 0xf0000000) != 0xe0000000)
0963b4bd 1845 break; /* Condition not true, exit early. */
0d39a070
DJ
1846 else if (arm_instruction_changes_pc (insn))
1847 /* Don't scan past anything that might change control flow. */
1848 break;
d19f7eee
UW
1849 else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */
1850 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1851 /* Ignore block loads from the stack, potentially copying
1852 parameters from memory. */
1853 continue;
1854 else if ((insn & 0xfc500000) == 0xe4100000
1855 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1856 /* Similarly ignore single loads from the stack. */
1857 continue;
0d39a070
DJ
1858 else if ((insn & 0xffff0ff0) == 0xe1a00000)
1859 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
1860 register instead of the stack. */
d4473757 1861 continue;
0d39a070
DJ
1862 else
1863 {
1864 /* The optimizer might shove anything into the prologue,
1865 so we just skip what we don't recognize. */
1866 unrecognized_pc = current_pc;
1867 continue;
1868 }
c906108c
SS
1869 }
1870
0d39a070
DJ
1871 if (unrecognized_pc == 0)
1872 unrecognized_pc = current_pc;
1873
4be43953
DJ
1874 /* The frame size is just the distance from the frame register
1875 to the original stack pointer. */
1876 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1877 {
1878 /* Frame pointer is fp. */
0d39a070
DJ
1879 framereg = ARM_FP_REGNUM;
1880 framesize = -regs[ARM_FP_REGNUM].k;
4be43953 1881 }
72a2e3dc 1882 else
4be43953
DJ
1883 {
1884 /* Try the stack pointer... this is a bit desperate. */
0d39a070
DJ
1885 framereg = ARM_SP_REGNUM;
1886 framesize = -regs[ARM_SP_REGNUM].k;
4be43953 1887 }
4be43953 1888
0d39a070
DJ
1889 if (cache)
1890 {
1891 cache->framereg = framereg;
1892 cache->framesize = framesize;
1893
1894 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1895 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
1896 cache->saved_regs[regno].addr = offset;
1897 }
1898
1899 if (arm_debug)
1900 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1901 paddress (gdbarch, unrecognized_pc));
4be43953
DJ
1902
1903 do_cleanups (back_to);
0d39a070
DJ
1904 return unrecognized_pc;
1905}
1906
1907static void
1908arm_scan_prologue (struct frame_info *this_frame,
1909 struct arm_prologue_cache *cache)
1910{
1911 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1912 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1913 int regno;
1914 CORE_ADDR prologue_start, prologue_end, current_pc;
1915 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1916 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1917 pv_t regs[ARM_FPS_REGNUM];
1918 struct pv_area *stack;
1919 struct cleanup *back_to;
1920 CORE_ADDR offset;
1921
1922 /* Assume there is no frame until proven otherwise. */
1923 cache->framereg = ARM_SP_REGNUM;
1924 cache->framesize = 0;
1925
1926 /* Check for Thumb prologue. */
1927 if (arm_frame_is_thumb (this_frame))
1928 {
1929 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
1930 return;
1931 }
1932
1933 /* Find the function prologue. If we can't find the function in
1934 the symbol table, peek in the stack frame to find the PC. */
1935 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1936 &prologue_end))
1937 {
1938 /* One way to find the end of the prologue (which works well
1939 for unoptimized code) is to do the following:
1940
1941 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
1942
1943 if (sal.line == 0)
1944 prologue_end = prev_pc;
1945 else if (sal.end < prologue_end)
1946 prologue_end = sal.end;
1947
1948 This mechanism is very accurate so long as the optimizer
1949 doesn't move any instructions from the function body into the
1950 prologue. If this happens, sal.end will be the last
1951 instruction in the first hunk of prologue code just before
1952 the first instruction that the scheduler has moved from
1953 the body to the prologue.
1954
1955 In order to make sure that we scan all of the prologue
1956 instructions, we use a slightly less accurate mechanism which
1957 may scan more than necessary. To help compensate for this
1958 lack of accuracy, the prologue scanning loop below contains
1959 several clauses which'll cause the loop to terminate early if
1960 an implausible prologue instruction is encountered.
1961
1962 The expression
1963
1964 prologue_start + 64
1965
1966 is a suitable endpoint since it accounts for the largest
1967 possible prologue plus up to five instructions inserted by
1968 the scheduler. */
1969
1970 if (prologue_end > prologue_start + 64)
1971 {
1972 prologue_end = prologue_start + 64; /* See above. */
1973 }
1974 }
1975 else
1976 {
1977 /* We have no symbol information. Our only option is to assume this
1978 function has a standard stack frame and the normal frame register.
1979 Then, we can find the value of our frame pointer on entrance to
1980 the callee (or at the present moment if this is the innermost frame).
1981 The value stored there should be the address of the stmfd + 8. */
1982 CORE_ADDR frame_loc;
1983 LONGEST return_value;
1984
1985 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
1986 if (!safe_read_memory_integer (frame_loc, 4, byte_order, &return_value))
1987 return;
1988 else
1989 {
1990 prologue_start = gdbarch_addr_bits_remove
1991 (gdbarch, return_value) - 8;
1992 prologue_end = prologue_start + 64; /* See above. */
1993 }
1994 }
1995
1996 if (prev_pc < prologue_end)
1997 prologue_end = prev_pc;
1998
1999 arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
c906108c
SS
2000}
2001
eb5492fa 2002static struct arm_prologue_cache *
a262aec2 2003arm_make_prologue_cache (struct frame_info *this_frame)
c906108c 2004{
eb5492fa
DJ
2005 int reg;
2006 struct arm_prologue_cache *cache;
2007 CORE_ADDR unwound_fp;
c5aa993b 2008
35d5d4ee 2009 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
a262aec2 2010 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 2011
a262aec2 2012 arm_scan_prologue (this_frame, cache);
848cfffb 2013
a262aec2 2014 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
eb5492fa
DJ
2015 if (unwound_fp == 0)
2016 return cache;
c906108c 2017
4be43953 2018 cache->prev_sp = unwound_fp + cache->framesize;
c906108c 2019
eb5492fa
DJ
2020 /* Calculate actual addresses of saved registers using offsets
2021 determined by arm_scan_prologue. */
a262aec2 2022 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
e28a332c 2023 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
2024 cache->saved_regs[reg].addr += cache->prev_sp;
2025
2026 return cache;
c906108c
SS
2027}
2028
eb5492fa
DJ
2029/* Our frame ID for a normal frame is the current function's starting PC
2030 and the caller's SP when we were called. */
c906108c 2031
148754e5 2032static void
a262aec2 2033arm_prologue_this_id (struct frame_info *this_frame,
eb5492fa
DJ
2034 void **this_cache,
2035 struct frame_id *this_id)
c906108c 2036{
eb5492fa
DJ
2037 struct arm_prologue_cache *cache;
2038 struct frame_id id;
2c404490 2039 CORE_ADDR pc, func;
f079148d 2040
eb5492fa 2041 if (*this_cache == NULL)
a262aec2 2042 *this_cache = arm_make_prologue_cache (this_frame);
eb5492fa 2043 cache = *this_cache;
2a451106 2044
2c404490
DJ
2045 /* This is meant to halt the backtrace at "_start". */
2046 pc = get_frame_pc (this_frame);
2047 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
eb5492fa 2048 return;
5a203e44 2049
eb5492fa
DJ
2050 /* If we've hit a wall, stop. */
2051 if (cache->prev_sp == 0)
2052 return;
24de872b 2053
0e9e9abd
UW
2054 /* Use function start address as part of the frame ID. If we cannot
2055 identify the start address (due to missing symbol information),
2056 fall back to just using the current PC. */
2c404490 2057 func = get_frame_func (this_frame);
0e9e9abd
UW
2058 if (!func)
2059 func = pc;
2060
eb5492fa 2061 id = frame_id_build (cache->prev_sp, func);
eb5492fa 2062 *this_id = id;
c906108c
SS
2063}
2064
a262aec2
DJ
2065static struct value *
2066arm_prologue_prev_register (struct frame_info *this_frame,
eb5492fa 2067 void **this_cache,
a262aec2 2068 int prev_regnum)
24de872b 2069{
24568a2c 2070 struct gdbarch *gdbarch = get_frame_arch (this_frame);
24de872b
DJ
2071 struct arm_prologue_cache *cache;
2072
eb5492fa 2073 if (*this_cache == NULL)
a262aec2 2074 *this_cache = arm_make_prologue_cache (this_frame);
eb5492fa 2075 cache = *this_cache;
24de872b 2076
eb5492fa 2077 /* If we are asked to unwind the PC, then we need to return the LR
b39cc962
DJ
2078 instead. The prologue may save PC, but it will point into this
2079 frame's prologue, not the next frame's resume location. Also
2080 strip the saved T bit. A valid LR may have the low bit set, but
2081 a valid PC never does. */
eb5492fa 2082 if (prev_regnum == ARM_PC_REGNUM)
b39cc962
DJ
2083 {
2084 CORE_ADDR lr;
2085
2086 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
2087 return frame_unwind_got_constant (this_frame, prev_regnum,
24568a2c 2088 arm_addr_bits_remove (gdbarch, lr));
b39cc962 2089 }
24de872b 2090
eb5492fa 2091 /* SP is generally not saved to the stack, but this frame is
a262aec2 2092 identified by the next frame's stack pointer at the time of the call.
eb5492fa
DJ
2093 The value was already reconstructed into PREV_SP. */
2094 if (prev_regnum == ARM_SP_REGNUM)
a262aec2 2095 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
eb5492fa 2096
b39cc962
DJ
2097 /* The CPSR may have been changed by the call instruction and by the
2098 called function. The only bit we can reconstruct is the T bit,
2099 by checking the low bit of LR as of the call. This is a reliable
2100 indicator of Thumb-ness except for some ARM v4T pre-interworking
2101 Thumb code, which could get away with a clear low bit as long as
2102 the called function did not use bx. Guess that all other
2103 bits are unchanged; the condition flags are presumably lost,
2104 but the processor status is likely valid. */
2105 if (prev_regnum == ARM_PS_REGNUM)
2106 {
2107 CORE_ADDR lr, cpsr;
9779414d 2108 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
b39cc962
DJ
2109
2110 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
2111 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
2112 if (IS_THUMB_ADDR (lr))
9779414d 2113 cpsr |= t_bit;
b39cc962 2114 else
9779414d 2115 cpsr &= ~t_bit;
b39cc962
DJ
2116 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
2117 }
2118
a262aec2
DJ
2119 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
2120 prev_regnum);
eb5492fa
DJ
2121}
2122
2123struct frame_unwind arm_prologue_unwind = {
2124 NORMAL_FRAME,
8fbca658 2125 default_frame_unwind_stop_reason,
eb5492fa 2126 arm_prologue_this_id,
a262aec2
DJ
2127 arm_prologue_prev_register,
2128 NULL,
2129 default_frame_sniffer
eb5492fa
DJ
2130};
2131
0e9e9abd
UW
2132/* Maintain a list of ARM exception table entries per objfile, similar to the
2133 list of mapping symbols. We only cache entries for standard ARM-defined
2134 personality routines; the cache will contain only the frame unwinding
2135 instructions associated with the entry (not the descriptors). */
2136
2137static const struct objfile_data *arm_exidx_data_key;
2138
2139struct arm_exidx_entry
2140{
2141 bfd_vma addr;
2142 gdb_byte *entry;
2143};
2144typedef struct arm_exidx_entry arm_exidx_entry_s;
2145DEF_VEC_O(arm_exidx_entry_s);
2146
2147struct arm_exidx_data
2148{
2149 VEC(arm_exidx_entry_s) **section_maps;
2150};
2151
2152static void
2153arm_exidx_data_free (struct objfile *objfile, void *arg)
2154{
2155 struct arm_exidx_data *data = arg;
2156 unsigned int i;
2157
2158 for (i = 0; i < objfile->obfd->section_count; i++)
2159 VEC_free (arm_exidx_entry_s, data->section_maps[i]);
2160}
2161
2162static inline int
2163arm_compare_exidx_entries (const struct arm_exidx_entry *lhs,
2164 const struct arm_exidx_entry *rhs)
2165{
2166 return lhs->addr < rhs->addr;
2167}
2168
2169static struct obj_section *
2170arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
2171{
2172 struct obj_section *osect;
2173
2174 ALL_OBJFILE_OSECTIONS (objfile, osect)
2175 if (bfd_get_section_flags (objfile->obfd,
2176 osect->the_bfd_section) & SEC_ALLOC)
2177 {
2178 bfd_vma start, size;
2179 start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section);
2180 size = bfd_get_section_size (osect->the_bfd_section);
2181
2182 if (start <= vma && vma < start + size)
2183 return osect;
2184 }
2185
2186 return NULL;
2187}
2188
2189/* Parse contents of exception table and exception index sections
2190 of OBJFILE, and fill in the exception table entry cache.
2191
2192 For each entry that refers to a standard ARM-defined personality
2193 routine, extract the frame unwinding instructions (from either
2194 the index or the table section). The unwinding instructions
2195 are normalized by:
2196 - extracting them from the rest of the table data
2197 - converting to host endianness
2198 - appending the implicit 0xb0 ("Finish") code
2199
2200 The extracted and normalized instructions are stored for later
2201 retrieval by the arm_find_exidx_entry routine. */
2202
2203static void
2204arm_exidx_new_objfile (struct objfile *objfile)
2205{
3bb47e8b 2206 struct cleanup *cleanups;
0e9e9abd
UW
2207 struct arm_exidx_data *data;
2208 asection *exidx, *extab;
2209 bfd_vma exidx_vma = 0, extab_vma = 0;
2210 bfd_size_type exidx_size = 0, extab_size = 0;
2211 gdb_byte *exidx_data = NULL, *extab_data = NULL;
2212 LONGEST i;
2213
2214 /* If we've already touched this file, do nothing. */
2215 if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL)
2216 return;
3bb47e8b 2217 cleanups = make_cleanup (null_cleanup, NULL);
0e9e9abd
UW
2218
2219 /* Read contents of exception table and index. */
2220 exidx = bfd_get_section_by_name (objfile->obfd, ".ARM.exidx");
2221 if (exidx)
2222 {
2223 exidx_vma = bfd_section_vma (objfile->obfd, exidx);
2224 exidx_size = bfd_get_section_size (exidx);
2225 exidx_data = xmalloc (exidx_size);
2226 make_cleanup (xfree, exidx_data);
2227
2228 if (!bfd_get_section_contents (objfile->obfd, exidx,
2229 exidx_data, 0, exidx_size))
2230 {
2231 do_cleanups (cleanups);
2232 return;
2233 }
2234 }
2235
2236 extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
2237 if (extab)
2238 {
2239 extab_vma = bfd_section_vma (objfile->obfd, extab);
2240 extab_size = bfd_get_section_size (extab);
2241 extab_data = xmalloc (extab_size);
2242 make_cleanup (xfree, extab_data);
2243
2244 if (!bfd_get_section_contents (objfile->obfd, extab,
2245 extab_data, 0, extab_size))
2246 {
2247 do_cleanups (cleanups);
2248 return;
2249 }
2250 }
2251
2252 /* Allocate exception table data structure. */
2253 data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data);
2254 set_objfile_data (objfile, arm_exidx_data_key, data);
2255 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
2256 objfile->obfd->section_count,
2257 VEC(arm_exidx_entry_s) *);
2258
2259 /* Fill in exception table. */
2260 for (i = 0; i < exidx_size / 8; i++)
2261 {
2262 struct arm_exidx_entry new_exidx_entry;
2263 bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8);
2264 bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4);
2265 bfd_vma addr = 0, word = 0;
2266 int n_bytes = 0, n_words = 0;
2267 struct obj_section *sec;
2268 gdb_byte *entry = NULL;
2269
2270 /* Extract address of start of function. */
2271 idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2272 idx += exidx_vma + i * 8;
2273
2274 /* Find section containing function and compute section offset. */
2275 sec = arm_obj_section_from_vma (objfile, idx);
2276 if (sec == NULL)
2277 continue;
2278 idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section);
2279
2280 /* Determine address of exception table entry. */
2281 if (val == 1)
2282 {
2283 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2284 }
2285 else if ((val & 0xff000000) == 0x80000000)
2286 {
2287 /* Exception table entry embedded in .ARM.exidx
2288 -- must be short form. */
2289 word = val;
2290 n_bytes = 3;
2291 }
2292 else if (!(val & 0x80000000))
2293 {
2294 /* Exception table entry in .ARM.extab. */
2295 addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2296 addr += exidx_vma + i * 8 + 4;
2297
2298 if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size)
2299 {
2300 word = bfd_h_get_32 (objfile->obfd,
2301 extab_data + addr - extab_vma);
2302 addr += 4;
2303
2304 if ((word & 0xff000000) == 0x80000000)
2305 {
2306 /* Short form. */
2307 n_bytes = 3;
2308 }
2309 else if ((word & 0xff000000) == 0x81000000
2310 || (word & 0xff000000) == 0x82000000)
2311 {
2312 /* Long form. */
2313 n_bytes = 2;
2314 n_words = ((word >> 16) & 0xff);
2315 }
2316 else if (!(word & 0x80000000))
2317 {
2318 bfd_vma pers;
2319 struct obj_section *pers_sec;
2320 int gnu_personality = 0;
2321
2322 /* Custom personality routine. */
2323 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2324 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
2325
2326 /* Check whether we've got one of the variants of the
2327 GNU personality routines. */
2328 pers_sec = arm_obj_section_from_vma (objfile, pers);
2329 if (pers_sec)
2330 {
2331 static const char *personality[] =
2332 {
2333 "__gcc_personality_v0",
2334 "__gxx_personality_v0",
2335 "__gcj_personality_v0",
2336 "__gnu_objc_personality_v0",
2337 NULL
2338 };
2339
2340 CORE_ADDR pc = pers + obj_section_offset (pers_sec);
2341 int k;
2342
2343 for (k = 0; personality[k]; k++)
2344 if (lookup_minimal_symbol_by_pc_name
2345 (pc, personality[k], objfile))
2346 {
2347 gnu_personality = 1;
2348 break;
2349 }
2350 }
2351
2352 /* If so, the next word contains a word count in the high
2353 byte, followed by the same unwind instructions as the
2354 pre-defined forms. */
2355 if (gnu_personality
2356 && addr + 4 <= extab_vma + extab_size)
2357 {
2358 word = bfd_h_get_32 (objfile->obfd,
2359 extab_data + addr - extab_vma);
2360 addr += 4;
2361 n_bytes = 3;
2362 n_words = ((word >> 24) & 0xff);
2363 }
2364 }
2365 }
2366 }
2367
2368 /* Sanity check address. */
2369 if (n_words)
2370 if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size)
2371 n_words = n_bytes = 0;
2372
2373 /* The unwind instructions reside in WORD (only the N_BYTES least
2374 significant bytes are valid), followed by N_WORDS words in the
2375 extab section starting at ADDR. */
2376 if (n_bytes || n_words)
2377 {
2378 gdb_byte *p = entry = obstack_alloc (&objfile->objfile_obstack,
2379 n_bytes + n_words * 4 + 1);
2380
2381 while (n_bytes--)
2382 *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
2383
2384 while (n_words--)
2385 {
2386 word = bfd_h_get_32 (objfile->obfd,
2387 extab_data + addr - extab_vma);
2388 addr += 4;
2389
2390 *p++ = (gdb_byte) ((word >> 24) & 0xff);
2391 *p++ = (gdb_byte) ((word >> 16) & 0xff);
2392 *p++ = (gdb_byte) ((word >> 8) & 0xff);
2393 *p++ = (gdb_byte) (word & 0xff);
2394 }
2395
2396 /* Implied "Finish" to terminate the list. */
2397 *p++ = 0xb0;
2398 }
2399
2400 /* Push entry onto vector. They are guaranteed to always
2401 appear in order of increasing addresses. */
2402 new_exidx_entry.addr = idx;
2403 new_exidx_entry.entry = entry;
2404 VEC_safe_push (arm_exidx_entry_s,
2405 data->section_maps[sec->the_bfd_section->index],
2406 &new_exidx_entry);
2407 }
2408
2409 do_cleanups (cleanups);
2410}
2411
2412/* Search for the exception table entry covering MEMADDR. If one is found,
2413 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2414 set *START to the start of the region covered by this entry. */
2415
2416static gdb_byte *
2417arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
2418{
2419 struct obj_section *sec;
2420
2421 sec = find_pc_section (memaddr);
2422 if (sec != NULL)
2423 {
2424 struct arm_exidx_data *data;
2425 VEC(arm_exidx_entry_s) *map;
2426 struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
2427 unsigned int idx;
2428
2429 data = objfile_data (sec->objfile, arm_exidx_data_key);
2430 if (data != NULL)
2431 {
2432 map = data->section_maps[sec->the_bfd_section->index];
2433 if (!VEC_empty (arm_exidx_entry_s, map))
2434 {
2435 struct arm_exidx_entry *map_sym;
2436
2437 idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key,
2438 arm_compare_exidx_entries);
2439
2440 /* VEC_lower_bound finds the earliest ordered insertion
2441 point. If the following symbol starts at this exact
2442 address, we use that; otherwise, the preceding
2443 exception table entry covers this address. */
2444 if (idx < VEC_length (arm_exidx_entry_s, map))
2445 {
2446 map_sym = VEC_index (arm_exidx_entry_s, map, idx);
2447 if (map_sym->addr == map_key.addr)
2448 {
2449 if (start)
2450 *start = map_sym->addr + obj_section_addr (sec);
2451 return map_sym->entry;
2452 }
2453 }
2454
2455 if (idx > 0)
2456 {
2457 map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1);
2458 if (start)
2459 *start = map_sym->addr + obj_section_addr (sec);
2460 return map_sym->entry;
2461 }
2462 }
2463 }
2464 }
2465
2466 return NULL;
2467}
2468
2469/* Given the current frame THIS_FRAME, and its associated frame unwinding
2470 instruction list from the ARM exception table entry ENTRY, allocate and
2471 return a prologue cache structure describing how to unwind this frame.
2472
2473 Return NULL if the unwinding instruction list contains a "spare",
2474 "reserved" or "refuse to unwind" instruction as defined in section
2475 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2476 for the ARM Architecture" document. */
2477
2478static struct arm_prologue_cache *
2479arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
2480{
2481 CORE_ADDR vsp = 0;
2482 int vsp_valid = 0;
2483
2484 struct arm_prologue_cache *cache;
2485 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2486 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2487
2488 for (;;)
2489 {
2490 gdb_byte insn;
2491
2492 /* Whenever we reload SP, we actually have to retrieve its
2493 actual value in the current frame. */
2494 if (!vsp_valid)
2495 {
2496 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2497 {
2498 int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2499 vsp = get_frame_register_unsigned (this_frame, reg);
2500 }
2501 else
2502 {
2503 CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
2504 vsp = get_frame_memory_unsigned (this_frame, addr, 4);
2505 }
2506
2507 vsp_valid = 1;
2508 }
2509
2510 /* Decode next unwind instruction. */
2511 insn = *entry++;
2512
2513 if ((insn & 0xc0) == 0)
2514 {
2515 int offset = insn & 0x3f;
2516 vsp += (offset << 2) + 4;
2517 }
2518 else if ((insn & 0xc0) == 0x40)
2519 {
2520 int offset = insn & 0x3f;
2521 vsp -= (offset << 2) + 4;
2522 }
2523 else if ((insn & 0xf0) == 0x80)
2524 {
2525 int mask = ((insn & 0xf) << 8) | *entry++;
2526 int i;
2527
2528 /* The special case of an all-zero mask identifies
2529 "Refuse to unwind". We return NULL to fall back
2530 to the prologue analyzer. */
2531 if (mask == 0)
2532 return NULL;
2533
2534 /* Pop registers r4..r15 under mask. */
2535 for (i = 0; i < 12; i++)
2536 if (mask & (1 << i))
2537 {
2538 cache->saved_regs[4 + i].addr = vsp;
2539 vsp += 4;
2540 }
2541
2542 /* Special-case popping SP -- we need to reload vsp. */
2543 if (mask & (1 << (ARM_SP_REGNUM - 4)))
2544 vsp_valid = 0;
2545 }
2546 else if ((insn & 0xf0) == 0x90)
2547 {
2548 int reg = insn & 0xf;
2549
2550 /* Reserved cases. */
2551 if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
2552 return NULL;
2553
2554 /* Set SP from another register and mark VSP for reload. */
2555 cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
2556 vsp_valid = 0;
2557 }
2558 else if ((insn & 0xf0) == 0xa0)
2559 {
2560 int count = insn & 0x7;
2561 int pop_lr = (insn & 0x8) != 0;
2562 int i;
2563
2564 /* Pop r4..r[4+count]. */
2565 for (i = 0; i <= count; i++)
2566 {
2567 cache->saved_regs[4 + i].addr = vsp;
2568 vsp += 4;
2569 }
2570
2571 /* If indicated by flag, pop LR as well. */
2572 if (pop_lr)
2573 {
2574 cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
2575 vsp += 4;
2576 }
2577 }
2578 else if (insn == 0xb0)
2579 {
2580 /* We could only have updated PC by popping into it; if so, it
2581 will show up as address. Otherwise, copy LR into PC. */
2582 if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
2583 cache->saved_regs[ARM_PC_REGNUM]
2584 = cache->saved_regs[ARM_LR_REGNUM];
2585
2586 /* We're done. */
2587 break;
2588 }
2589 else if (insn == 0xb1)
2590 {
2591 int mask = *entry++;
2592 int i;
2593
2594 /* All-zero mask and mask >= 16 is "spare". */
2595 if (mask == 0 || mask >= 16)
2596 return NULL;
2597
2598 /* Pop r0..r3 under mask. */
2599 for (i = 0; i < 4; i++)
2600 if (mask & (1 << i))
2601 {
2602 cache->saved_regs[i].addr = vsp;
2603 vsp += 4;
2604 }
2605 }
2606 else if (insn == 0xb2)
2607 {
2608 ULONGEST offset = 0;
2609 unsigned shift = 0;
2610
2611 do
2612 {
2613 offset |= (*entry & 0x7f) << shift;
2614 shift += 7;
2615 }
2616 while (*entry++ & 0x80);
2617
2618 vsp += 0x204 + (offset << 2);
2619 }
2620 else if (insn == 0xb3)
2621 {
2622 int start = *entry >> 4;
2623 int count = (*entry++) & 0xf;
2624 int i;
2625
2626 /* Only registers D0..D15 are valid here. */
2627 if (start + count >= 16)
2628 return NULL;
2629
2630 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2631 for (i = 0; i <= count; i++)
2632 {
2633 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2634 vsp += 8;
2635 }
2636
2637 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2638 vsp += 4;
2639 }
2640 else if ((insn & 0xf8) == 0xb8)
2641 {
2642 int count = insn & 0x7;
2643 int i;
2644
2645 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2646 for (i = 0; i <= count; i++)
2647 {
2648 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2649 vsp += 8;
2650 }
2651
2652 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2653 vsp += 4;
2654 }
2655 else if (insn == 0xc6)
2656 {
2657 int start = *entry >> 4;
2658 int count = (*entry++) & 0xf;
2659 int i;
2660
2661 /* Only registers WR0..WR15 are valid. */
2662 if (start + count >= 16)
2663 return NULL;
2664
2665 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2666 for (i = 0; i <= count; i++)
2667 {
2668 cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
2669 vsp += 8;
2670 }
2671 }
2672 else if (insn == 0xc7)
2673 {
2674 int mask = *entry++;
2675 int i;
2676
2677 /* All-zero mask and mask >= 16 is "spare". */
2678 if (mask == 0 || mask >= 16)
2679 return NULL;
2680
2681 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
2682 for (i = 0; i < 4; i++)
2683 if (mask & (1 << i))
2684 {
2685 cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
2686 vsp += 4;
2687 }
2688 }
2689 else if ((insn & 0xf8) == 0xc0)
2690 {
2691 int count = insn & 0x7;
2692 int i;
2693
2694 /* Pop iwmmx registers WR[10]..WR[10+count]. */
2695 for (i = 0; i <= count; i++)
2696 {
2697 cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
2698 vsp += 8;
2699 }
2700 }
2701 else if (insn == 0xc8)
2702 {
2703 int start = *entry >> 4;
2704 int count = (*entry++) & 0xf;
2705 int i;
2706
2707 /* Only registers D0..D31 are valid. */
2708 if (start + count >= 16)
2709 return NULL;
2710
2711 /* Pop VFP double-precision registers
2712 D[16+start]..D[16+start+count]. */
2713 for (i = 0; i <= count; i++)
2714 {
2715 cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
2716 vsp += 8;
2717 }
2718 }
2719 else if (insn == 0xc9)
2720 {
2721 int start = *entry >> 4;
2722 int count = (*entry++) & 0xf;
2723 int i;
2724
2725 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2726 for (i = 0; i <= count; i++)
2727 {
2728 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2729 vsp += 8;
2730 }
2731 }
2732 else if ((insn & 0xf8) == 0xd0)
2733 {
2734 int count = insn & 0x7;
2735 int i;
2736
2737 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2738 for (i = 0; i <= count; i++)
2739 {
2740 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2741 vsp += 8;
2742 }
2743 }
2744 else
2745 {
2746 /* Everything else is "spare". */
2747 return NULL;
2748 }
2749 }
2750
2751 /* If we restore SP from a register, assume this was the frame register.
2752 Otherwise just fall back to SP as frame register. */
2753 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2754 cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2755 else
2756 cache->framereg = ARM_SP_REGNUM;
2757
2758 /* Determine offset to previous frame. */
2759 cache->framesize
2760 = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
2761
2762 /* We already got the previous SP. */
2763 cache->prev_sp = vsp;
2764
2765 return cache;
2766}
2767
2768/* Unwinding via ARM exception table entries. Note that the sniffer
2769 already computes a filled-in prologue cache, which is then used
2770 with the same arm_prologue_this_id and arm_prologue_prev_register
2771 routines also used for prologue-parsing based unwinding. */
2772
2773static int
2774arm_exidx_unwind_sniffer (const struct frame_unwind *self,
2775 struct frame_info *this_frame,
2776 void **this_prologue_cache)
2777{
2778 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2779 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2780 CORE_ADDR addr_in_block, exidx_region, func_start;
2781 struct arm_prologue_cache *cache;
2782 gdb_byte *entry;
2783
2784 /* See if we have an ARM exception table entry covering this address. */
2785 addr_in_block = get_frame_address_in_block (this_frame);
2786 entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
2787 if (!entry)
2788 return 0;
2789
2790 /* The ARM exception table does not describe unwind information
2791 for arbitrary PC values, but is guaranteed to be correct only
2792 at call sites. We have to decide here whether we want to use
2793 ARM exception table information for this frame, or fall back
2794 to using prologue parsing. (Note that if we have DWARF CFI,
2795 this sniffer isn't even called -- CFI is always preferred.)
2796
2797 Before we make this decision, however, we check whether we
2798 actually have *symbol* information for the current frame.
2799 If not, prologue parsing would not work anyway, so we might
2800 as well use the exception table and hope for the best. */
2801 if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
2802 {
2803 int exc_valid = 0;
2804
2805 /* If the next frame is "normal", we are at a call site in this
2806 frame, so exception information is guaranteed to be valid. */
2807 if (get_next_frame (this_frame)
2808 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
2809 exc_valid = 1;
2810
2811 /* We also assume exception information is valid if we're currently
2812 blocked in a system call. The system library is supposed to
2813 ensure this, so that e.g. pthread cancellation works. */
2814 if (arm_frame_is_thumb (this_frame))
2815 {
2816 LONGEST insn;
2817
2818 if (safe_read_memory_integer (get_frame_pc (this_frame) - 2, 2,
2819 byte_order_for_code, &insn)
2820 && (insn & 0xff00) == 0xdf00 /* svc */)
2821 exc_valid = 1;
2822 }
2823 else
2824 {
2825 LONGEST insn;
2826
2827 if (safe_read_memory_integer (get_frame_pc (this_frame) - 4, 4,
2828 byte_order_for_code, &insn)
2829 && (insn & 0x0f000000) == 0x0f000000 /* svc */)
2830 exc_valid = 1;
2831 }
2832
2833 /* Bail out if we don't know that exception information is valid. */
2834 if (!exc_valid)
2835 return 0;
2836
2837 /* The ARM exception index does not mark the *end* of the region
2838 covered by the entry, and some functions will not have any entry.
2839 To correctly recognize the end of the covered region, the linker
2840 should have inserted dummy records with a CANTUNWIND marker.
2841
2842 Unfortunately, current versions of GNU ld do not reliably do
2843 this, and thus we may have found an incorrect entry above.
2844 As a (temporary) sanity check, we only use the entry if it
2845 lies *within* the bounds of the function. Note that this check
2846 might reject perfectly valid entries that just happen to cover
2847 multiple functions; therefore this check ought to be removed
2848 once the linker is fixed. */
2849 if (func_start > exidx_region)
2850 return 0;
2851 }
2852
2853 /* Decode the list of unwinding instructions into a prologue cache.
2854 Note that this may fail due to e.g. a "refuse to unwind" code. */
2855 cache = arm_exidx_fill_cache (this_frame, entry);
2856 if (!cache)
2857 return 0;
2858
2859 *this_prologue_cache = cache;
2860 return 1;
2861}
2862
2863struct frame_unwind arm_exidx_unwind = {
2864 NORMAL_FRAME,
8fbca658 2865 default_frame_unwind_stop_reason,
0e9e9abd
UW
2866 arm_prologue_this_id,
2867 arm_prologue_prev_register,
2868 NULL,
2869 arm_exidx_unwind_sniffer
2870};
2871
909cf6ea 2872static struct arm_prologue_cache *
a262aec2 2873arm_make_stub_cache (struct frame_info *this_frame)
909cf6ea 2874{
909cf6ea 2875 struct arm_prologue_cache *cache;
909cf6ea 2876
35d5d4ee 2877 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
a262aec2 2878 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
909cf6ea 2879
a262aec2 2880 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
909cf6ea
DJ
2881
2882 return cache;
2883}
2884
2885/* Our frame ID for a stub frame is the current SP and LR. */
2886
2887static void
a262aec2 2888arm_stub_this_id (struct frame_info *this_frame,
909cf6ea
DJ
2889 void **this_cache,
2890 struct frame_id *this_id)
2891{
2892 struct arm_prologue_cache *cache;
2893
2894 if (*this_cache == NULL)
a262aec2 2895 *this_cache = arm_make_stub_cache (this_frame);
909cf6ea
DJ
2896 cache = *this_cache;
2897
a262aec2 2898 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
909cf6ea
DJ
2899}
2900
a262aec2
DJ
2901static int
2902arm_stub_unwind_sniffer (const struct frame_unwind *self,
2903 struct frame_info *this_frame,
2904 void **this_prologue_cache)
909cf6ea 2905{
93d42b30 2906 CORE_ADDR addr_in_block;
948f8e3d 2907 gdb_byte dummy[4];
909cf6ea 2908
a262aec2 2909 addr_in_block = get_frame_address_in_block (this_frame);
3e5d3a5a 2910 if (in_plt_section (addr_in_block)
fc36e839
DE
2911 /* We also use the stub winder if the target memory is unreadable
2912 to avoid having the prologue unwinder trying to read it. */
a262aec2
DJ
2913 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2914 return 1;
909cf6ea 2915
a262aec2 2916 return 0;
909cf6ea
DJ
2917}
2918
a262aec2
DJ
2919struct frame_unwind arm_stub_unwind = {
2920 NORMAL_FRAME,
8fbca658 2921 default_frame_unwind_stop_reason,
a262aec2
DJ
2922 arm_stub_this_id,
2923 arm_prologue_prev_register,
2924 NULL,
2925 arm_stub_unwind_sniffer
2926};
2927
2ae28aa9
YQ
2928/* Put here the code to store, into CACHE->saved_regs, the addresses
2929 of the saved registers of frame described by THIS_FRAME. CACHE is
2930 returned. */
2931
2932static struct arm_prologue_cache *
2933arm_m_exception_cache (struct frame_info *this_frame)
2934{
2935 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2936 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2937 struct arm_prologue_cache *cache;
2938 CORE_ADDR unwound_sp;
2939 LONGEST xpsr;
2940
2941 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2942 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2943
2944 unwound_sp = get_frame_register_unsigned (this_frame,
2945 ARM_SP_REGNUM);
2946
2947 /* The hardware saves eight 32-bit words, comprising xPSR,
2948 ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in
2949 "B1.5.6 Exception entry behavior" in
2950 "ARMv7-M Architecture Reference Manual". */
2951 cache->saved_regs[0].addr = unwound_sp;
2952 cache->saved_regs[1].addr = unwound_sp + 4;
2953 cache->saved_regs[2].addr = unwound_sp + 8;
2954 cache->saved_regs[3].addr = unwound_sp + 12;
2955 cache->saved_regs[12].addr = unwound_sp + 16;
2956 cache->saved_regs[14].addr = unwound_sp + 20;
2957 cache->saved_regs[15].addr = unwound_sp + 24;
2958 cache->saved_regs[ARM_PS_REGNUM].addr = unwound_sp + 28;
2959
2960 /* If bit 9 of the saved xPSR is set, then there is a four-byte
2961 aligner between the top of the 32-byte stack frame and the
2962 previous context's stack pointer. */
2963 cache->prev_sp = unwound_sp + 32;
2964 if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr)
2965 && (xpsr & (1 << 9)) != 0)
2966 cache->prev_sp += 4;
2967
2968 return cache;
2969}
2970
2971/* Implementation of function hook 'this_id' in
2972 'struct frame_uwnind'. */
2973
2974static void
2975arm_m_exception_this_id (struct frame_info *this_frame,
2976 void **this_cache,
2977 struct frame_id *this_id)
2978{
2979 struct arm_prologue_cache *cache;
2980
2981 if (*this_cache == NULL)
2982 *this_cache = arm_m_exception_cache (this_frame);
2983 cache = *this_cache;
2984
2985 /* Our frame ID for a stub frame is the current SP and LR. */
2986 *this_id = frame_id_build (cache->prev_sp,
2987 get_frame_pc (this_frame));
2988}
2989
2990/* Implementation of function hook 'prev_register' in
2991 'struct frame_uwnind'. */
2992
2993static struct value *
2994arm_m_exception_prev_register (struct frame_info *this_frame,
2995 void **this_cache,
2996 int prev_regnum)
2997{
2998 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2999 struct arm_prologue_cache *cache;
3000
3001 if (*this_cache == NULL)
3002 *this_cache = arm_m_exception_cache (this_frame);
3003 cache = *this_cache;
3004
3005 /* The value was already reconstructed into PREV_SP. */
3006 if (prev_regnum == ARM_SP_REGNUM)
3007 return frame_unwind_got_constant (this_frame, prev_regnum,
3008 cache->prev_sp);
3009
3010 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
3011 prev_regnum);
3012}
3013
3014/* Implementation of function hook 'sniffer' in
3015 'struct frame_uwnind'. */
3016
3017static int
3018arm_m_exception_unwind_sniffer (const struct frame_unwind *self,
3019 struct frame_info *this_frame,
3020 void **this_prologue_cache)
3021{
3022 CORE_ADDR this_pc = get_frame_pc (this_frame);
3023
3024 /* No need to check is_m; this sniffer is only registered for
3025 M-profile architectures. */
3026
3027 /* Exception frames return to one of these magic PCs. Other values
3028 are not defined as of v7-M. See details in "B1.5.8 Exception
3029 return behavior" in "ARMv7-M Architecture Reference Manual". */
3030 if (this_pc == 0xfffffff1 || this_pc == 0xfffffff9
3031 || this_pc == 0xfffffffd)
3032 return 1;
3033
3034 return 0;
3035}
3036
3037/* Frame unwinder for M-profile exceptions. */
3038
3039struct frame_unwind arm_m_exception_unwind =
3040{
3041 SIGTRAMP_FRAME,
3042 default_frame_unwind_stop_reason,
3043 arm_m_exception_this_id,
3044 arm_m_exception_prev_register,
3045 NULL,
3046 arm_m_exception_unwind_sniffer
3047};
3048
24de872b 3049static CORE_ADDR
a262aec2 3050arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
24de872b
DJ
3051{
3052 struct arm_prologue_cache *cache;
3053
eb5492fa 3054 if (*this_cache == NULL)
a262aec2 3055 *this_cache = arm_make_prologue_cache (this_frame);
eb5492fa
DJ
3056 cache = *this_cache;
3057
4be43953 3058 return cache->prev_sp - cache->framesize;
24de872b
DJ
3059}
3060
eb5492fa
DJ
3061struct frame_base arm_normal_base = {
3062 &arm_prologue_unwind,
3063 arm_normal_frame_base,
3064 arm_normal_frame_base,
3065 arm_normal_frame_base
3066};
3067
a262aec2 3068/* Assuming THIS_FRAME is a dummy, return the frame ID of that
eb5492fa
DJ
3069 dummy frame. The frame ID's base needs to match the TOS value
3070 saved by save_dummy_frame_tos() and returned from
3071 arm_push_dummy_call, and the PC needs to match the dummy frame's
3072 breakpoint. */
c906108c 3073
eb5492fa 3074static struct frame_id
a262aec2 3075arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c906108c 3076{
0963b4bd
MS
3077 return frame_id_build (get_frame_register_unsigned (this_frame,
3078 ARM_SP_REGNUM),
a262aec2 3079 get_frame_pc (this_frame));
eb5492fa 3080}
c3b4394c 3081
eb5492fa
DJ
3082/* Given THIS_FRAME, find the previous frame's resume PC (which will
3083 be used to construct the previous frame's ID, after looking up the
3084 containing function). */
c3b4394c 3085
eb5492fa
DJ
3086static CORE_ADDR
3087arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
3088{
3089 CORE_ADDR pc;
3090 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
24568a2c 3091 return arm_addr_bits_remove (gdbarch, pc);
eb5492fa
DJ
3092}
3093
3094static CORE_ADDR
3095arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
3096{
3097 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
3098}
3099
b39cc962
DJ
3100static struct value *
3101arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
3102 int regnum)
3103{
24568a2c 3104 struct gdbarch * gdbarch = get_frame_arch (this_frame);
b39cc962 3105 CORE_ADDR lr, cpsr;
9779414d 3106 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
b39cc962
DJ
3107
3108 switch (regnum)
3109 {
3110 case ARM_PC_REGNUM:
3111 /* The PC is normally copied from the return column, which
3112 describes saves of LR. However, that version may have an
3113 extra bit set to indicate Thumb state. The bit is not
3114 part of the PC. */
3115 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3116 return frame_unwind_got_constant (this_frame, regnum,
24568a2c 3117 arm_addr_bits_remove (gdbarch, lr));
b39cc962
DJ
3118
3119 case ARM_PS_REGNUM:
3120 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
ca38c58e 3121 cpsr = get_frame_register_unsigned (this_frame, regnum);
b39cc962
DJ
3122 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3123 if (IS_THUMB_ADDR (lr))
9779414d 3124 cpsr |= t_bit;
b39cc962 3125 else
9779414d 3126 cpsr &= ~t_bit;
ca38c58e 3127 return frame_unwind_got_constant (this_frame, regnum, cpsr);
b39cc962
DJ
3128
3129 default:
3130 internal_error (__FILE__, __LINE__,
3131 _("Unexpected register %d"), regnum);
3132 }
3133}
3134
3135static void
3136arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3137 struct dwarf2_frame_state_reg *reg,
3138 struct frame_info *this_frame)
3139{
3140 switch (regnum)
3141 {
3142 case ARM_PC_REGNUM:
3143 case ARM_PS_REGNUM:
3144 reg->how = DWARF2_FRAME_REG_FN;
3145 reg->loc.fn = arm_dwarf2_prev_register;
3146 break;
3147 case ARM_SP_REGNUM:
3148 reg->how = DWARF2_FRAME_REG_CFA;
3149 break;
3150 }
3151}
3152
4024ca99
UW
3153/* Return true if we are in the function's epilogue, i.e. after the
3154 instruction that destroyed the function's stack frame. */
3155
3156static int
3157thumb_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3158{
3159 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3160 unsigned int insn, insn2;
3161 int found_return = 0, found_stack_adjust = 0;
3162 CORE_ADDR func_start, func_end;
3163 CORE_ADDR scan_pc;
3164 gdb_byte buf[4];
3165
3166 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3167 return 0;
3168
3169 /* The epilogue is a sequence of instructions along the following lines:
3170
3171 - add stack frame size to SP or FP
3172 - [if frame pointer used] restore SP from FP
3173 - restore registers from SP [may include PC]
3174 - a return-type instruction [if PC wasn't already restored]
3175
3176 In a first pass, we scan forward from the current PC and verify the
3177 instructions we find as compatible with this sequence, ending in a
3178 return instruction.
3179
3180 However, this is not sufficient to distinguish indirect function calls
3181 within a function from indirect tail calls in the epilogue in some cases.
3182 Therefore, if we didn't already find any SP-changing instruction during
3183 forward scan, we add a backward scanning heuristic to ensure we actually
3184 are in the epilogue. */
3185
3186 scan_pc = pc;
3187 while (scan_pc < func_end && !found_return)
3188 {
3189 if (target_read_memory (scan_pc, buf, 2))
3190 break;
3191
3192 scan_pc += 2;
3193 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3194
3195 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
3196 found_return = 1;
3197 else if (insn == 0x46f7) /* mov pc, lr */
3198 found_return = 1;
3199 else if (insn == 0x46bd) /* mov sp, r7 */
3200 found_stack_adjust = 1;
3201 else if ((insn & 0xff00) == 0xb000) /* add sp, imm or sub sp, imm */
3202 found_stack_adjust = 1;
3203 else if ((insn & 0xfe00) == 0xbc00) /* pop <registers> */
3204 {
3205 found_stack_adjust = 1;
3206 if (insn & 0x0100) /* <registers> include PC. */
3207 found_return = 1;
3208 }
db24da6d 3209 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */
4024ca99
UW
3210 {
3211 if (target_read_memory (scan_pc, buf, 2))
3212 break;
3213
3214 scan_pc += 2;
3215 insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
3216
3217 if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3218 {
3219 found_stack_adjust = 1;
3220 if (insn2 & 0x8000) /* <registers> include PC. */
3221 found_return = 1;
3222 }
3223 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3224 && (insn2 & 0x0fff) == 0x0b04)
3225 {
3226 found_stack_adjust = 1;
3227 if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
3228 found_return = 1;
3229 }
3230 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3231 && (insn2 & 0x0e00) == 0x0a00)
3232 found_stack_adjust = 1;
3233 else
3234 break;
3235 }
3236 else
3237 break;
3238 }
3239
3240 if (!found_return)
3241 return 0;
3242
3243 /* Since any instruction in the epilogue sequence, with the possible
3244 exception of return itself, updates the stack pointer, we need to
3245 scan backwards for at most one instruction. Try either a 16-bit or
3246 a 32-bit instruction. This is just a heuristic, so we do not worry
0963b4bd 3247 too much about false positives. */
4024ca99
UW
3248
3249 if (!found_stack_adjust)
3250 {
3251 if (pc - 4 < func_start)
3252 return 0;
3253 if (target_read_memory (pc - 4, buf, 4))
3254 return 0;
3255
3256 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3257 insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
3258
3259 if (insn2 == 0x46bd) /* mov sp, r7 */
3260 found_stack_adjust = 1;
3261 else if ((insn2 & 0xff00) == 0xb000) /* add sp, imm or sub sp, imm */
3262 found_stack_adjust = 1;
3263 else if ((insn2 & 0xff00) == 0xbc00) /* pop <registers> without PC */
3264 found_stack_adjust = 1;
3265 else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3266 found_stack_adjust = 1;
3267 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3268 && (insn2 & 0x0fff) == 0x0b04)
3269 found_stack_adjust = 1;
3270 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3271 && (insn2 & 0x0e00) == 0x0a00)
3272 found_stack_adjust = 1;
3273 }
3274
3275 return found_stack_adjust;
3276}
3277
3278/* Return true if we are in the function's epilogue, i.e. after the
3279 instruction that destroyed the function's stack frame. */
3280
3281static int
3282arm_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3283{
3284 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3285 unsigned int insn;
3286 int found_return, found_stack_adjust;
3287 CORE_ADDR func_start, func_end;
3288
3289 if (arm_pc_is_thumb (gdbarch, pc))
3290 return thumb_in_function_epilogue_p (gdbarch, pc);
3291
3292 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3293 return 0;
3294
3295 /* We are in the epilogue if the previous instruction was a stack
3296 adjustment and the next instruction is a possible return (bx, mov
3297 pc, or pop). We could have to scan backwards to find the stack
3298 adjustment, or forwards to find the return, but this is a decent
3299 approximation. First scan forwards. */
3300
3301 found_return = 0;
3302 insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
3303 if (bits (insn, 28, 31) != INST_NV)
3304 {
3305 if ((insn & 0x0ffffff0) == 0x012fff10)
3306 /* BX. */
3307 found_return = 1;
3308 else if ((insn & 0x0ffffff0) == 0x01a0f000)
3309 /* MOV PC. */
3310 found_return = 1;
3311 else if ((insn & 0x0fff0000) == 0x08bd0000
3312 && (insn & 0x0000c000) != 0)
3313 /* POP (LDMIA), including PC or LR. */
3314 found_return = 1;
3315 }
3316
3317 if (!found_return)
3318 return 0;
3319
3320 /* Scan backwards. This is just a heuristic, so do not worry about
3321 false positives from mode changes. */
3322
3323 if (pc < func_start + 4)
3324 return 0;
3325
73c964d6 3326 found_stack_adjust = 0;
4024ca99
UW
3327 insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
3328 if (bits (insn, 28, 31) != INST_NV)
3329 {
3330 if ((insn & 0x0df0f000) == 0x0080d000)
3331 /* ADD SP (register or immediate). */
3332 found_stack_adjust = 1;
3333 else if ((insn & 0x0df0f000) == 0x0040d000)
3334 /* SUB SP (register or immediate). */
3335 found_stack_adjust = 1;
3336 else if ((insn & 0x0ffffff0) == 0x01a0d000)
3337 /* MOV SP. */
77bc0675 3338 found_stack_adjust = 1;
4024ca99
UW
3339 else if ((insn & 0x0fff0000) == 0x08bd0000)
3340 /* POP (LDMIA). */
3341 found_stack_adjust = 1;
fc51cce1
MGD
3342 else if ((insn & 0x0fff0000) == 0x049d0000)
3343 /* POP of a single register. */
3344 found_stack_adjust = 1;
4024ca99
UW
3345 }
3346
3347 if (found_stack_adjust)
3348 return 1;
3349
3350 return 0;
3351}
3352
3353
2dd604e7
RE
3354/* When arguments must be pushed onto the stack, they go on in reverse
3355 order. The code below implements a FILO (stack) to do this. */
3356
3357struct stack_item
3358{
3359 int len;
3360 struct stack_item *prev;
3361 void *data;
3362};
3363
3364static struct stack_item *
8c6363cf 3365push_stack_item (struct stack_item *prev, const void *contents, int len)
2dd604e7
RE
3366{
3367 struct stack_item *si;
3368 si = xmalloc (sizeof (struct stack_item));
226c7fbc 3369 si->data = xmalloc (len);
2dd604e7
RE
3370 si->len = len;
3371 si->prev = prev;
3372 memcpy (si->data, contents, len);
3373 return si;
3374}
3375
3376static struct stack_item *
3377pop_stack_item (struct stack_item *si)
3378{
3379 struct stack_item *dead = si;
3380 si = si->prev;
3381 xfree (dead->data);
3382 xfree (dead);
3383 return si;
3384}
3385
2af48f68
PB
3386
3387/* Return the alignment (in bytes) of the given type. */
3388
3389static int
3390arm_type_align (struct type *t)
3391{
3392 int n;
3393 int align;
3394 int falign;
3395
3396 t = check_typedef (t);
3397 switch (TYPE_CODE (t))
3398 {
3399 default:
3400 /* Should never happen. */
3401 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
3402 return 4;
3403
3404 case TYPE_CODE_PTR:
3405 case TYPE_CODE_ENUM:
3406 case TYPE_CODE_INT:
3407 case TYPE_CODE_FLT:
3408 case TYPE_CODE_SET:
3409 case TYPE_CODE_RANGE:
2af48f68
PB
3410 case TYPE_CODE_REF:
3411 case TYPE_CODE_CHAR:
3412 case TYPE_CODE_BOOL:
3413 return TYPE_LENGTH (t);
3414
3415 case TYPE_CODE_ARRAY:
3416 case TYPE_CODE_COMPLEX:
3417 /* TODO: What about vector types? */
3418 return arm_type_align (TYPE_TARGET_TYPE (t));
3419
3420 case TYPE_CODE_STRUCT:
3421 case TYPE_CODE_UNION:
3422 align = 1;
3423 for (n = 0; n < TYPE_NFIELDS (t); n++)
3424 {
3425 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
3426 if (falign > align)
3427 align = falign;
3428 }
3429 return align;
3430 }
3431}
3432
90445bd3
DJ
3433/* Possible base types for a candidate for passing and returning in
3434 VFP registers. */
3435
3436enum arm_vfp_cprc_base_type
3437{
3438 VFP_CPRC_UNKNOWN,
3439 VFP_CPRC_SINGLE,
3440 VFP_CPRC_DOUBLE,
3441 VFP_CPRC_VEC64,
3442 VFP_CPRC_VEC128
3443};
3444
3445/* The length of one element of base type B. */
3446
3447static unsigned
3448arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
3449{
3450 switch (b)
3451 {
3452 case VFP_CPRC_SINGLE:
3453 return 4;
3454 case VFP_CPRC_DOUBLE:
3455 return 8;
3456 case VFP_CPRC_VEC64:
3457 return 8;
3458 case VFP_CPRC_VEC128:
3459 return 16;
3460 default:
3461 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3462 (int) b);
3463 }
3464}
3465
3466/* The character ('s', 'd' or 'q') for the type of VFP register used
3467 for passing base type B. */
3468
3469static int
3470arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
3471{
3472 switch (b)
3473 {
3474 case VFP_CPRC_SINGLE:
3475 return 's';
3476 case VFP_CPRC_DOUBLE:
3477 return 'd';
3478 case VFP_CPRC_VEC64:
3479 return 'd';
3480 case VFP_CPRC_VEC128:
3481 return 'q';
3482 default:
3483 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3484 (int) b);
3485 }
3486}
3487
3488/* Determine whether T may be part of a candidate for passing and
3489 returning in VFP registers, ignoring the limit on the total number
3490 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
3491 classification of the first valid component found; if it is not
3492 VFP_CPRC_UNKNOWN, all components must have the same classification
3493 as *BASE_TYPE. If it is found that T contains a type not permitted
3494 for passing and returning in VFP registers, a type differently
3495 classified from *BASE_TYPE, or two types differently classified
3496 from each other, return -1, otherwise return the total number of
3497 base-type elements found (possibly 0 in an empty structure or
3498 array). Vectors and complex types are not currently supported,
3499 matching the generic AAPCS support. */
3500
3501static int
3502arm_vfp_cprc_sub_candidate (struct type *t,
3503 enum arm_vfp_cprc_base_type *base_type)
3504{
3505 t = check_typedef (t);
3506 switch (TYPE_CODE (t))
3507 {
3508 case TYPE_CODE_FLT:
3509 switch (TYPE_LENGTH (t))
3510 {
3511 case 4:
3512 if (*base_type == VFP_CPRC_UNKNOWN)
3513 *base_type = VFP_CPRC_SINGLE;
3514 else if (*base_type != VFP_CPRC_SINGLE)
3515 return -1;
3516 return 1;
3517
3518 case 8:
3519 if (*base_type == VFP_CPRC_UNKNOWN)
3520 *base_type = VFP_CPRC_DOUBLE;
3521 else if (*base_type != VFP_CPRC_DOUBLE)
3522 return -1;
3523 return 1;
3524
3525 default:
3526 return -1;
3527 }
3528 break;
3529
3530 case TYPE_CODE_ARRAY:
3531 {
3532 int count;
3533 unsigned unitlen;
3534 count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t), base_type);
3535 if (count == -1)
3536 return -1;
3537 if (TYPE_LENGTH (t) == 0)
3538 {
3539 gdb_assert (count == 0);
3540 return 0;
3541 }
3542 else if (count == 0)
3543 return -1;
3544 unitlen = arm_vfp_cprc_unit_length (*base_type);
3545 gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
3546 return TYPE_LENGTH (t) / unitlen;
3547 }
3548 break;
3549
3550 case TYPE_CODE_STRUCT:
3551 {
3552 int count = 0;
3553 unsigned unitlen;
3554 int i;
3555 for (i = 0; i < TYPE_NFIELDS (t); i++)
3556 {
3557 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3558 base_type);
3559 if (sub_count == -1)
3560 return -1;
3561 count += sub_count;
3562 }
3563 if (TYPE_LENGTH (t) == 0)
3564 {
3565 gdb_assert (count == 0);
3566 return 0;
3567 }
3568 else if (count == 0)
3569 return -1;
3570 unitlen = arm_vfp_cprc_unit_length (*base_type);
3571 if (TYPE_LENGTH (t) != unitlen * count)
3572 return -1;
3573 return count;
3574 }
3575
3576 case TYPE_CODE_UNION:
3577 {
3578 int count = 0;
3579 unsigned unitlen;
3580 int i;
3581 for (i = 0; i < TYPE_NFIELDS (t); i++)
3582 {
3583 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3584 base_type);
3585 if (sub_count == -1)
3586 return -1;
3587 count = (count > sub_count ? count : sub_count);
3588 }
3589 if (TYPE_LENGTH (t) == 0)
3590 {
3591 gdb_assert (count == 0);
3592 return 0;
3593 }
3594 else if (count == 0)
3595 return -1;
3596 unitlen = arm_vfp_cprc_unit_length (*base_type);
3597 if (TYPE_LENGTH (t) != unitlen * count)
3598 return -1;
3599 return count;
3600 }
3601
3602 default:
3603 break;
3604 }
3605
3606 return -1;
3607}
3608
3609/* Determine whether T is a VFP co-processor register candidate (CPRC)
3610 if passed to or returned from a non-variadic function with the VFP
3611 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
3612 *BASE_TYPE to the base type for T and *COUNT to the number of
3613 elements of that base type before returning. */
3614
3615static int
3616arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
3617 int *count)
3618{
3619 enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
3620 int c = arm_vfp_cprc_sub_candidate (t, &b);
3621 if (c <= 0 || c > 4)
3622 return 0;
3623 *base_type = b;
3624 *count = c;
3625 return 1;
3626}
3627
3628/* Return 1 if the VFP ABI should be used for passing arguments to and
3629 returning values from a function of type FUNC_TYPE, 0
3630 otherwise. */
3631
3632static int
3633arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
3634{
3635 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3636 /* Variadic functions always use the base ABI. Assume that functions
3637 without debug info are not variadic. */
3638 if (func_type && TYPE_VARARGS (check_typedef (func_type)))
3639 return 0;
3640 /* The VFP ABI is only supported as a variant of AAPCS. */
3641 if (tdep->arm_abi != ARM_ABI_AAPCS)
3642 return 0;
3643 return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
3644}
3645
3646/* We currently only support passing parameters in integer registers, which
3647 conforms with GCC's default model, and VFP argument passing following
3648 the VFP variant of AAPCS. Several other variants exist and
2dd604e7
RE
3649 we should probably support some of them based on the selected ABI. */
3650
3651static CORE_ADDR
7d9b040b 3652arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
3653 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3654 struct value **args, CORE_ADDR sp, int struct_return,
3655 CORE_ADDR struct_addr)
2dd604e7 3656{
e17a4113 3657 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2dd604e7
RE
3658 int argnum;
3659 int argreg;
3660 int nstack;
3661 struct stack_item *si = NULL;
90445bd3
DJ
3662 int use_vfp_abi;
3663 struct type *ftype;
3664 unsigned vfp_regs_free = (1 << 16) - 1;
3665
3666 /* Determine the type of this function and whether the VFP ABI
3667 applies. */
3668 ftype = check_typedef (value_type (function));
3669 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
3670 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
3671 use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
2dd604e7 3672
6a65450a
AC
3673 /* Set the return address. For the ARM, the return breakpoint is
3674 always at BP_ADDR. */
9779414d 3675 if (arm_pc_is_thumb (gdbarch, bp_addr))
9dca5578 3676 bp_addr |= 1;
6a65450a 3677 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
3678
3679 /* Walk through the list of args and determine how large a temporary
3680 stack is required. Need to take care here as structs may be
7a9dd1b2 3681 passed on the stack, and we have to push them. */
2dd604e7
RE
3682 nstack = 0;
3683
3684 argreg = ARM_A1_REGNUM;
3685 nstack = 0;
3686
2dd604e7
RE
3687 /* The struct_return pointer occupies the first parameter
3688 passing register. */
3689 if (struct_return)
3690 {
3691 if (arm_debug)
5af949e3 3692 fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
2af46ca0 3693 gdbarch_register_name (gdbarch, argreg),
5af949e3 3694 paddress (gdbarch, struct_addr));
2dd604e7
RE
3695 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
3696 argreg++;
3697 }
3698
3699 for (argnum = 0; argnum < nargs; argnum++)
3700 {
3701 int len;
3702 struct type *arg_type;
3703 struct type *target_type;
3704 enum type_code typecode;
8c6363cf 3705 const bfd_byte *val;
2af48f68 3706 int align;
90445bd3
DJ
3707 enum arm_vfp_cprc_base_type vfp_base_type;
3708 int vfp_base_count;
3709 int may_use_core_reg = 1;
2dd604e7 3710
df407dfe 3711 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
3712 len = TYPE_LENGTH (arg_type);
3713 target_type = TYPE_TARGET_TYPE (arg_type);
3714 typecode = TYPE_CODE (arg_type);
8c6363cf 3715 val = value_contents (args[argnum]);
2dd604e7 3716
2af48f68
PB
3717 align = arm_type_align (arg_type);
3718 /* Round alignment up to a whole number of words. */
3719 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
3720 /* Different ABIs have different maximum alignments. */
3721 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
3722 {
3723 /* The APCS ABI only requires word alignment. */
3724 align = INT_REGISTER_SIZE;
3725 }
3726 else
3727 {
3728 /* The AAPCS requires at most doubleword alignment. */
3729 if (align > INT_REGISTER_SIZE * 2)
3730 align = INT_REGISTER_SIZE * 2;
3731 }
3732
90445bd3
DJ
3733 if (use_vfp_abi
3734 && arm_vfp_call_candidate (arg_type, &vfp_base_type,
3735 &vfp_base_count))
3736 {
3737 int regno;
3738 int unit_length;
3739 int shift;
3740 unsigned mask;
3741
3742 /* Because this is a CPRC it cannot go in a core register or
3743 cause a core register to be skipped for alignment.
3744 Either it goes in VFP registers and the rest of this loop
3745 iteration is skipped for this argument, or it goes on the
3746 stack (and the stack alignment code is correct for this
3747 case). */
3748 may_use_core_reg = 0;
3749
3750 unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
3751 shift = unit_length / 4;
3752 mask = (1 << (shift * vfp_base_count)) - 1;
3753 for (regno = 0; regno < 16; regno += shift)
3754 if (((vfp_regs_free >> regno) & mask) == mask)
3755 break;
3756
3757 if (regno < 16)
3758 {
3759 int reg_char;
3760 int reg_scaled;
3761 int i;
3762
3763 vfp_regs_free &= ~(mask << regno);
3764 reg_scaled = regno / shift;
3765 reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
3766 for (i = 0; i < vfp_base_count; i++)
3767 {
3768 char name_buf[4];
3769 int regnum;
58d6951d
DJ
3770 if (reg_char == 'q')
3771 arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
90445bd3 3772 val + i * unit_length);
58d6951d
DJ
3773 else
3774 {
8c042590
PM
3775 xsnprintf (name_buf, sizeof (name_buf), "%c%d",
3776 reg_char, reg_scaled + i);
58d6951d
DJ
3777 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
3778 strlen (name_buf));
3779 regcache_cooked_write (regcache, regnum,
3780 val + i * unit_length);
3781 }
90445bd3
DJ
3782 }
3783 continue;
3784 }
3785 else
3786 {
3787 /* This CPRC could not go in VFP registers, so all VFP
3788 registers are now marked as used. */
3789 vfp_regs_free = 0;
3790 }
3791 }
3792
2af48f68
PB
3793 /* Push stack padding for dowubleword alignment. */
3794 if (nstack & (align - 1))
3795 {
3796 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3797 nstack += INT_REGISTER_SIZE;
3798 }
3799
3800 /* Doubleword aligned quantities must go in even register pairs. */
90445bd3
DJ
3801 if (may_use_core_reg
3802 && argreg <= ARM_LAST_ARG_REGNUM
2af48f68
PB
3803 && align > INT_REGISTER_SIZE
3804 && argreg & 1)
3805 argreg++;
3806
2dd604e7
RE
3807 /* If the argument is a pointer to a function, and it is a
3808 Thumb function, create a LOCAL copy of the value and set
3809 the THUMB bit in it. */
3810 if (TYPE_CODE_PTR == typecode
3811 && target_type != NULL
f96b8fa0 3812 && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
2dd604e7 3813 {
e17a4113 3814 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
9779414d 3815 if (arm_pc_is_thumb (gdbarch, regval))
2dd604e7 3816 {
8c6363cf
TT
3817 bfd_byte *copy = alloca (len);
3818 store_unsigned_integer (copy, len, byte_order,
e17a4113 3819 MAKE_THUMB_ADDR (regval));
8c6363cf 3820 val = copy;
2dd604e7
RE
3821 }
3822 }
3823
3824 /* Copy the argument to general registers or the stack in
3825 register-sized pieces. Large arguments are split between
3826 registers and stack. */
3827 while (len > 0)
3828 {
f0c9063c 3829 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
2dd604e7 3830
90445bd3 3831 if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
2dd604e7
RE
3832 {
3833 /* The argument is being passed in a general purpose
3834 register. */
e17a4113
UW
3835 CORE_ADDR regval
3836 = extract_unsigned_integer (val, partial_len, byte_order);
3837 if (byte_order == BFD_ENDIAN_BIG)
8bf8793c 3838 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
2dd604e7
RE
3839 if (arm_debug)
3840 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
c9f4d572
UW
3841 argnum,
3842 gdbarch_register_name
2af46ca0 3843 (gdbarch, argreg),
f0c9063c 3844 phex (regval, INT_REGISTER_SIZE));
2dd604e7
RE
3845 regcache_cooked_write_unsigned (regcache, argreg, regval);
3846 argreg++;
3847 }
3848 else
3849 {
3850 /* Push the arguments onto the stack. */
3851 if (arm_debug)
3852 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
3853 argnum, nstack);
f0c9063c
UW
3854 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3855 nstack += INT_REGISTER_SIZE;
2dd604e7
RE
3856 }
3857
3858 len -= partial_len;
3859 val += partial_len;
3860 }
3861 }
3862 /* If we have an odd number of words to push, then decrement the stack
3863 by one word now, so first stack argument will be dword aligned. */
3864 if (nstack & 4)
3865 sp -= 4;
3866
3867 while (si)
3868 {
3869 sp -= si->len;
3870 write_memory (sp, si->data, si->len);
3871 si = pop_stack_item (si);
3872 }
3873
3874 /* Finally, update teh SP register. */
3875 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
3876
3877 return sp;
3878}
3879
f53f0d0b
PB
3880
3881/* Always align the frame to an 8-byte boundary. This is required on
3882 some platforms and harmless on the rest. */
3883
3884static CORE_ADDR
3885arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3886{
3887 /* Align the stack to eight bytes. */
3888 return sp & ~ (CORE_ADDR) 7;
3889}
3890
c906108c 3891static void
12b27276 3892print_fpu_flags (struct ui_file *file, int flags)
c906108c 3893{
c5aa993b 3894 if (flags & (1 << 0))
12b27276 3895 fputs_filtered ("IVO ", file);
c5aa993b 3896 if (flags & (1 << 1))
12b27276 3897 fputs_filtered ("DVZ ", file);
c5aa993b 3898 if (flags & (1 << 2))
12b27276 3899 fputs_filtered ("OFL ", file);
c5aa993b 3900 if (flags & (1 << 3))
12b27276 3901 fputs_filtered ("UFL ", file);
c5aa993b 3902 if (flags & (1 << 4))
12b27276
WN
3903 fputs_filtered ("INX ", file);
3904 fputc_filtered ('\n', file);
c906108c
SS
3905}
3906
5e74b15c
RE
3907/* Print interesting information about the floating point processor
3908 (if present) or emulator. */
34e8f22d 3909static void
d855c300 3910arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 3911 struct frame_info *frame, const char *args)
c906108c 3912{
9c9acae0 3913 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
c5aa993b
JM
3914 int type;
3915
3916 type = (status >> 24) & 127;
edefbb7c 3917 if (status & (1 << 31))
12b27276 3918 fprintf_filtered (file, _("Hardware FPU type %d\n"), type);
edefbb7c 3919 else
12b27276 3920 fprintf_filtered (file, _("Software FPU type %d\n"), type);
edefbb7c 3921 /* i18n: [floating point unit] mask */
12b27276
WN
3922 fputs_filtered (_("mask: "), file);
3923 print_fpu_flags (file, status >> 16);
edefbb7c 3924 /* i18n: [floating point unit] flags */
12b27276
WN
3925 fputs_filtered (_("flags: "), file);
3926 print_fpu_flags (file, status);
c906108c
SS
3927}
3928
27067745
UW
3929/* Construct the ARM extended floating point type. */
3930static struct type *
3931arm_ext_type (struct gdbarch *gdbarch)
3932{
3933 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3934
3935 if (!tdep->arm_ext_type)
3936 tdep->arm_ext_type
e9bb382b 3937 = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
27067745
UW
3938 floatformats_arm_ext);
3939
3940 return tdep->arm_ext_type;
3941}
3942
58d6951d
DJ
3943static struct type *
3944arm_neon_double_type (struct gdbarch *gdbarch)
3945{
3946 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3947
3948 if (tdep->neon_double_type == NULL)
3949 {
3950 struct type *t, *elem;
3951
3952 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
3953 TYPE_CODE_UNION);
3954 elem = builtin_type (gdbarch)->builtin_uint8;
3955 append_composite_type_field (t, "u8", init_vector_type (elem, 8));
3956 elem = builtin_type (gdbarch)->builtin_uint16;
3957 append_composite_type_field (t, "u16", init_vector_type (elem, 4));
3958 elem = builtin_type (gdbarch)->builtin_uint32;
3959 append_composite_type_field (t, "u32", init_vector_type (elem, 2));
3960 elem = builtin_type (gdbarch)->builtin_uint64;
3961 append_composite_type_field (t, "u64", elem);
3962 elem = builtin_type (gdbarch)->builtin_float;
3963 append_composite_type_field (t, "f32", init_vector_type (elem, 2));
3964 elem = builtin_type (gdbarch)->builtin_double;
3965 append_composite_type_field (t, "f64", elem);
3966
3967 TYPE_VECTOR (t) = 1;
3968 TYPE_NAME (t) = "neon_d";
3969 tdep->neon_double_type = t;
3970 }
3971
3972 return tdep->neon_double_type;
3973}
3974
3975/* FIXME: The vector types are not correctly ordered on big-endian
3976 targets. Just as s0 is the low bits of d0, d0[0] is also the low
3977 bits of d0 - regardless of what unit size is being held in d0. So
3978 the offset of the first uint8 in d0 is 7, but the offset of the
3979 first float is 4. This code works as-is for little-endian
3980 targets. */
3981
3982static struct type *
3983arm_neon_quad_type (struct gdbarch *gdbarch)
3984{
3985 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3986
3987 if (tdep->neon_quad_type == NULL)
3988 {
3989 struct type *t, *elem;
3990
3991 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
3992 TYPE_CODE_UNION);
3993 elem = builtin_type (gdbarch)->builtin_uint8;
3994 append_composite_type_field (t, "u8", init_vector_type (elem, 16));
3995 elem = builtin_type (gdbarch)->builtin_uint16;
3996 append_composite_type_field (t, "u16", init_vector_type (elem, 8));
3997 elem = builtin_type (gdbarch)->builtin_uint32;
3998 append_composite_type_field (t, "u32", init_vector_type (elem, 4));
3999 elem = builtin_type (gdbarch)->builtin_uint64;
4000 append_composite_type_field (t, "u64", init_vector_type (elem, 2));
4001 elem = builtin_type (gdbarch)->builtin_float;
4002 append_composite_type_field (t, "f32", init_vector_type (elem, 4));
4003 elem = builtin_type (gdbarch)->builtin_double;
4004 append_composite_type_field (t, "f64", init_vector_type (elem, 2));
4005
4006 TYPE_VECTOR (t) = 1;
4007 TYPE_NAME (t) = "neon_q";
4008 tdep->neon_quad_type = t;
4009 }
4010
4011 return tdep->neon_quad_type;
4012}
4013
34e8f22d
RE
4014/* Return the GDB type object for the "standard" data type of data in
4015 register N. */
4016
4017static struct type *
7a5ea0d4 4018arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 4019{
58d6951d
DJ
4020 int num_regs = gdbarch_num_regs (gdbarch);
4021
4022 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
4023 && regnum >= num_regs && regnum < num_regs + 32)
4024 return builtin_type (gdbarch)->builtin_float;
4025
4026 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
4027 && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
4028 return arm_neon_quad_type (gdbarch);
4029
4030 /* If the target description has register information, we are only
4031 in this function so that we can override the types of
4032 double-precision registers for NEON. */
4033 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
4034 {
4035 struct type *t = tdesc_register_type (gdbarch, regnum);
4036
4037 if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
4038 && TYPE_CODE (t) == TYPE_CODE_FLT
4039 && gdbarch_tdep (gdbarch)->have_neon)
4040 return arm_neon_double_type (gdbarch);
4041 else
4042 return t;
4043 }
4044
34e8f22d 4045 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
58d6951d
DJ
4046 {
4047 if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
4048 return builtin_type (gdbarch)->builtin_void;
4049
4050 return arm_ext_type (gdbarch);
4051 }
e4c16157 4052 else if (regnum == ARM_SP_REGNUM)
0dfff4cb 4053 return builtin_type (gdbarch)->builtin_data_ptr;
e4c16157 4054 else if (regnum == ARM_PC_REGNUM)
0dfff4cb 4055 return builtin_type (gdbarch)->builtin_func_ptr;
ff6f572f
DJ
4056 else if (regnum >= ARRAY_SIZE (arm_register_names))
4057 /* These registers are only supported on targets which supply
4058 an XML description. */
df4df182 4059 return builtin_type (gdbarch)->builtin_int0;
032758dc 4060 else
df4df182 4061 return builtin_type (gdbarch)->builtin_uint32;
032758dc
AC
4062}
4063
ff6f572f
DJ
4064/* Map a DWARF register REGNUM onto the appropriate GDB register
4065 number. */
4066
4067static int
d3f73121 4068arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
ff6f572f
DJ
4069{
4070 /* Core integer regs. */
4071 if (reg >= 0 && reg <= 15)
4072 return reg;
4073
4074 /* Legacy FPA encoding. These were once used in a way which
4075 overlapped with VFP register numbering, so their use is
4076 discouraged, but GDB doesn't support the ARM toolchain
4077 which used them for VFP. */
4078 if (reg >= 16 && reg <= 23)
4079 return ARM_F0_REGNUM + reg - 16;
4080
4081 /* New assignments for the FPA registers. */
4082 if (reg >= 96 && reg <= 103)
4083 return ARM_F0_REGNUM + reg - 96;
4084
4085 /* WMMX register assignments. */
4086 if (reg >= 104 && reg <= 111)
4087 return ARM_WCGR0_REGNUM + reg - 104;
4088
4089 if (reg >= 112 && reg <= 127)
4090 return ARM_WR0_REGNUM + reg - 112;
4091
4092 if (reg >= 192 && reg <= 199)
4093 return ARM_WC0_REGNUM + reg - 192;
4094
58d6951d
DJ
4095 /* VFP v2 registers. A double precision value is actually
4096 in d1 rather than s2, but the ABI only defines numbering
4097 for the single precision registers. This will "just work"
4098 in GDB for little endian targets (we'll read eight bytes,
4099 starting in s0 and then progressing to s1), but will be
4100 reversed on big endian targets with VFP. This won't
4101 be a problem for the new Neon quad registers; you're supposed
4102 to use DW_OP_piece for those. */
4103 if (reg >= 64 && reg <= 95)
4104 {
4105 char name_buf[4];
4106
8c042590 4107 xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64);
58d6951d
DJ
4108 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4109 strlen (name_buf));
4110 }
4111
4112 /* VFP v3 / Neon registers. This range is also used for VFP v2
4113 registers, except that it now describes d0 instead of s0. */
4114 if (reg >= 256 && reg <= 287)
4115 {
4116 char name_buf[4];
4117
8c042590 4118 xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256);
58d6951d
DJ
4119 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4120 strlen (name_buf));
4121 }
4122
ff6f572f
DJ
4123 return -1;
4124}
4125
26216b98
AC
4126/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
4127static int
e7faf938 4128arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
26216b98
AC
4129{
4130 int reg = regnum;
e7faf938 4131 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
26216b98 4132
ff6f572f
DJ
4133 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
4134 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
4135
4136 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
4137 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
4138
4139 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
4140 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
4141
26216b98
AC
4142 if (reg < NUM_GREGS)
4143 return SIM_ARM_R0_REGNUM + reg;
4144 reg -= NUM_GREGS;
4145
4146 if (reg < NUM_FREGS)
4147 return SIM_ARM_FP0_REGNUM + reg;
4148 reg -= NUM_FREGS;
4149
4150 if (reg < NUM_SREGS)
4151 return SIM_ARM_FPS_REGNUM + reg;
4152 reg -= NUM_SREGS;
4153
edefbb7c 4154 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 4155}
34e8f22d 4156
a37b3cc0
AC
4157/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
4158 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
4159 It is thought that this is is the floating-point register format on
4160 little-endian systems. */
c906108c 4161
ed9a39eb 4162static void
b508a996 4163convert_from_extended (const struct floatformat *fmt, const void *ptr,
be8626e0 4164 void *dbl, int endianess)
c906108c 4165{
a37b3cc0 4166 DOUBLEST d;
be8626e0
MD
4167
4168 if (endianess == BFD_ENDIAN_BIG)
a37b3cc0
AC
4169 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
4170 else
4171 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
4172 ptr, &d);
b508a996 4173 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
4174}
4175
34e8f22d 4176static void
be8626e0
MD
4177convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
4178 int endianess)
c906108c 4179{
a37b3cc0 4180 DOUBLEST d;
be8626e0 4181
b508a996 4182 floatformat_to_doublest (fmt, ptr, &d);
be8626e0 4183 if (endianess == BFD_ENDIAN_BIG)
a37b3cc0
AC
4184 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
4185 else
4186 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
4187 &d, dbl);
c906108c 4188}
ed9a39eb 4189
c906108c 4190static int
ed9a39eb 4191condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
4192{
4193 if (cond == INST_AL || cond == INST_NV)
4194 return 1;
4195
4196 switch (cond)
4197 {
4198 case INST_EQ:
4199 return ((status_reg & FLAG_Z) != 0);
4200 case INST_NE:
4201 return ((status_reg & FLAG_Z) == 0);
4202 case INST_CS:
4203 return ((status_reg & FLAG_C) != 0);
4204 case INST_CC:
4205 return ((status_reg & FLAG_C) == 0);
4206 case INST_MI:
4207 return ((status_reg & FLAG_N) != 0);
4208 case INST_PL:
4209 return ((status_reg & FLAG_N) == 0);
4210 case INST_VS:
4211 return ((status_reg & FLAG_V) != 0);
4212 case INST_VC:
4213 return ((status_reg & FLAG_V) == 0);
4214 case INST_HI:
4215 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
4216 case INST_LS:
4217 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
4218 case INST_GE:
4219 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
4220 case INST_LT:
4221 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
4222 case INST_GT:
f8bf5763
PM
4223 return (((status_reg & FLAG_Z) == 0)
4224 && (((status_reg & FLAG_N) == 0)
4225 == ((status_reg & FLAG_V) == 0)));
c906108c 4226 case INST_LE:
f8bf5763
PM
4227 return (((status_reg & FLAG_Z) != 0)
4228 || (((status_reg & FLAG_N) == 0)
4229 != ((status_reg & FLAG_V) == 0)));
c906108c
SS
4230 }
4231 return 1;
4232}
4233
c906108c 4234static unsigned long
0b1b3e42
UW
4235shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
4236 unsigned long pc_val, unsigned long status_reg)
c906108c
SS
4237{
4238 unsigned long res, shift;
4239 int rm = bits (inst, 0, 3);
4240 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
4241
4242 if (bit (inst, 4))
c906108c
SS
4243 {
4244 int rs = bits (inst, 8, 11);
0b1b3e42
UW
4245 shift = (rs == 15 ? pc_val + 8
4246 : get_frame_register_unsigned (frame, rs)) & 0xFF;
c906108c
SS
4247 }
4248 else
4249 shift = bits (inst, 7, 11);
c5aa993b 4250
bf9f652a 4251 res = (rm == ARM_PC_REGNUM
0d39a070 4252 ? (pc_val + (bit (inst, 4) ? 12 : 8))
0b1b3e42 4253 : get_frame_register_unsigned (frame, rm));
c906108c
SS
4254
4255 switch (shifttype)
4256 {
c5aa993b 4257 case 0: /* LSL */
c906108c
SS
4258 res = shift >= 32 ? 0 : res << shift;
4259 break;
c5aa993b
JM
4260
4261 case 1: /* LSR */
c906108c
SS
4262 res = shift >= 32 ? 0 : res >> shift;
4263 break;
4264
c5aa993b
JM
4265 case 2: /* ASR */
4266 if (shift >= 32)
4267 shift = 31;
c906108c
SS
4268 res = ((res & 0x80000000L)
4269 ? ~((~res) >> shift) : res >> shift);
4270 break;
4271
c5aa993b 4272 case 3: /* ROR/RRX */
c906108c
SS
4273 shift &= 31;
4274 if (shift == 0)
4275 res = (res >> 1) | (carry ? 0x80000000L : 0);
4276 else
c5aa993b 4277 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
4278 break;
4279 }
4280
4281 return res & 0xffffffff;
4282}
4283
c906108c
SS
4284/* Return number of 1-bits in VAL. */
4285
4286static int
ed9a39eb 4287bitcount (unsigned long val)
c906108c
SS
4288{
4289 int nbits;
4290 for (nbits = 0; val != 0; nbits++)
0963b4bd 4291 val &= val - 1; /* Delete rightmost 1-bit in val. */
c906108c
SS
4292 return nbits;
4293}
4294
177321bd
DJ
4295/* Return the size in bytes of the complete Thumb instruction whose
4296 first halfword is INST1. */
4297
4298static int
4299thumb_insn_size (unsigned short inst1)
4300{
4301 if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0)
4302 return 4;
4303 else
4304 return 2;
4305}
4306
4307static int
4308thumb_advance_itstate (unsigned int itstate)
4309{
4310 /* Preserve IT[7:5], the first three bits of the condition. Shift
4311 the upcoming condition flags left by one bit. */
4312 itstate = (itstate & 0xe0) | ((itstate << 1) & 0x1f);
4313
4314 /* If we have finished the IT block, clear the state. */
4315 if ((itstate & 0x0f) == 0)
4316 itstate = 0;
4317
4318 return itstate;
4319}
4320
4321/* Find the next PC after the current instruction executes. In some
4322 cases we can not statically determine the answer (see the IT state
4323 handling in this function); in that case, a breakpoint may be
4324 inserted in addition to the returned PC, which will be used to set
4325 another breakpoint by our caller. */
4326
ad527d2e 4327static CORE_ADDR
18819fa6 4328thumb_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc)
c906108c 4329{
2af46ca0 4330 struct gdbarch *gdbarch = get_frame_arch (frame);
177321bd 4331 struct address_space *aspace = get_frame_address_space (frame);
e17a4113
UW
4332 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4333 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
c5aa993b 4334 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
e17a4113 4335 unsigned short inst1;
0963b4bd 4336 CORE_ADDR nextpc = pc + 2; /* Default is next instruction. */
c906108c 4337 unsigned long offset;
177321bd 4338 ULONGEST status, itstate;
c906108c 4339
50e98be4
DJ
4340 nextpc = MAKE_THUMB_ADDR (nextpc);
4341 pc_val = MAKE_THUMB_ADDR (pc_val);
4342
e17a4113 4343 inst1 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
9d4fde75 4344
9dca5578
DJ
4345 /* Thumb-2 conditional execution support. There are eight bits in
4346 the CPSR which describe conditional execution state. Once
4347 reconstructed (they're in a funny order), the low five bits
4348 describe the low bit of the condition for each instruction and
4349 how many instructions remain. The high three bits describe the
4350 base condition. One of the low four bits will be set if an IT
4351 block is active. These bits read as zero on earlier
4352 processors. */
4353 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
177321bd 4354 itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3);
9dca5578 4355
177321bd
DJ
4356 /* If-Then handling. On GNU/Linux, where this routine is used, we
4357 use an undefined instruction as a breakpoint. Unlike BKPT, IT
4358 can disable execution of the undefined instruction. So we might
4359 miss the breakpoint if we set it on a skipped conditional
4360 instruction. Because conditional instructions can change the
4361 flags, affecting the execution of further instructions, we may
4362 need to set two breakpoints. */
9dca5578 4363
177321bd
DJ
4364 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint != NULL)
4365 {
4366 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4367 {
4368 /* An IT instruction. Because this instruction does not
4369 modify the flags, we can accurately predict the next
4370 executed instruction. */
4371 itstate = inst1 & 0x00ff;
4372 pc += thumb_insn_size (inst1);
4373
4374 while (itstate != 0 && ! condition_true (itstate >> 4, status))
4375 {
0963b4bd
MS
4376 inst1 = read_memory_unsigned_integer (pc, 2,
4377 byte_order_for_code);
177321bd
DJ
4378 pc += thumb_insn_size (inst1);
4379 itstate = thumb_advance_itstate (itstate);
4380 }
4381
50e98be4 4382 return MAKE_THUMB_ADDR (pc);
177321bd
DJ
4383 }
4384 else if (itstate != 0)
4385 {
4386 /* We are in a conditional block. Check the condition. */
4387 if (! condition_true (itstate >> 4, status))
4388 {
4389 /* Advance to the next executed instruction. */
4390 pc += thumb_insn_size (inst1);
4391 itstate = thumb_advance_itstate (itstate);
4392
4393 while (itstate != 0 && ! condition_true (itstate >> 4, status))
4394 {
0963b4bd
MS
4395 inst1 = read_memory_unsigned_integer (pc, 2,
4396 byte_order_for_code);
177321bd
DJ
4397 pc += thumb_insn_size (inst1);
4398 itstate = thumb_advance_itstate (itstate);
4399 }
4400
50e98be4 4401 return MAKE_THUMB_ADDR (pc);
177321bd
DJ
4402 }
4403 else if ((itstate & 0x0f) == 0x08)
4404 {
4405 /* This is the last instruction of the conditional
4406 block, and it is executed. We can handle it normally
4407 because the following instruction is not conditional,
4408 and we must handle it normally because it is
4409 permitted to branch. Fall through. */
4410 }
4411 else
4412 {
4413 int cond_negated;
4414
4415 /* There are conditional instructions after this one.
4416 If this instruction modifies the flags, then we can
4417 not predict what the next executed instruction will
4418 be. Fortunately, this instruction is architecturally
4419 forbidden to branch; we know it will fall through.
4420 Start by skipping past it. */
4421 pc += thumb_insn_size (inst1);
4422 itstate = thumb_advance_itstate (itstate);
4423
4424 /* Set a breakpoint on the following instruction. */
4425 gdb_assert ((itstate & 0x0f) != 0);
18819fa6
UW
4426 arm_insert_single_step_breakpoint (gdbarch, aspace,
4427 MAKE_THUMB_ADDR (pc));
177321bd
DJ
4428 cond_negated = (itstate >> 4) & 1;
4429
4430 /* Skip all following instructions with the same
4431 condition. If there is a later instruction in the IT
4432 block with the opposite condition, set the other
4433 breakpoint there. If not, then set a breakpoint on
4434 the instruction after the IT block. */
4435 do
4436 {
0963b4bd
MS
4437 inst1 = read_memory_unsigned_integer (pc, 2,
4438 byte_order_for_code);
177321bd
DJ
4439 pc += thumb_insn_size (inst1);
4440 itstate = thumb_advance_itstate (itstate);
4441 }
4442 while (itstate != 0 && ((itstate >> 4) & 1) == cond_negated);
4443
50e98be4 4444 return MAKE_THUMB_ADDR (pc);
177321bd
DJ
4445 }
4446 }
4447 }
4448 else if (itstate & 0x0f)
9dca5578
DJ
4449 {
4450 /* We are in a conditional block. Check the condition. */
177321bd 4451 int cond = itstate >> 4;
9dca5578
DJ
4452
4453 if (! condition_true (cond, status))
db24da6d
YQ
4454 /* Advance to the next instruction. All the 32-bit
4455 instructions share a common prefix. */
4456 return MAKE_THUMB_ADDR (pc + thumb_insn_size (inst1));
177321bd
DJ
4457
4458 /* Otherwise, handle the instruction normally. */
9dca5578
DJ
4459 }
4460
c906108c
SS
4461 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
4462 {
4463 CORE_ADDR sp;
4464
4465 /* Fetch the saved PC from the stack. It's stored above
4466 all of the other registers. */
f0c9063c 4467 offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
0b1b3e42 4468 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
e17a4113 4469 nextpc = read_memory_unsigned_integer (sp + offset, 4, byte_order);
c906108c
SS
4470 }
4471 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
4472 {
c5aa993b 4473 unsigned long cond = bits (inst1, 8, 11);
25b41d01
YQ
4474 if (cond == 0x0f) /* 0x0f = SWI */
4475 {
4476 struct gdbarch_tdep *tdep;
4477 tdep = gdbarch_tdep (gdbarch);
4478
4479 if (tdep->syscall_next_pc != NULL)
4480 nextpc = tdep->syscall_next_pc (frame);
4481
4482 }
4483 else if (cond != 0x0f && condition_true (cond, status))
c906108c
SS
4484 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
4485 }
4486 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
4487 {
4488 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
4489 }
db24da6d 4490 else if (thumb_insn_size (inst1) == 4) /* 32-bit instruction */
c906108c 4491 {
e17a4113
UW
4492 unsigned short inst2;
4493 inst2 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
9dca5578
DJ
4494
4495 /* Default to the next instruction. */
4496 nextpc = pc + 4;
50e98be4 4497 nextpc = MAKE_THUMB_ADDR (nextpc);
9dca5578
DJ
4498
4499 if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000)
4500 {
4501 /* Branches and miscellaneous control instructions. */
4502
4503 if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000)
4504 {
4505 /* B, BL, BLX. */
4506 int j1, j2, imm1, imm2;
4507
4508 imm1 = sbits (inst1, 0, 10);
4509 imm2 = bits (inst2, 0, 10);
4510 j1 = bit (inst2, 13);
4511 j2 = bit (inst2, 11);
4512
4513 offset = ((imm1 << 12) + (imm2 << 1));
4514 offset ^= ((!j2) << 22) | ((!j1) << 23);
4515
4516 nextpc = pc_val + offset;
4517 /* For BLX make sure to clear the low bits. */
4518 if (bit (inst2, 12) == 0)
4519 nextpc = nextpc & 0xfffffffc;
4520 }
4521 else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00)
4522 {
4523 /* SUBS PC, LR, #imm8. */
4524 nextpc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
4525 nextpc -= inst2 & 0x00ff;
4526 }
4069ebbe 4527 else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380)
9dca5578
DJ
4528 {
4529 /* Conditional branch. */
4530 if (condition_true (bits (inst1, 6, 9), status))
4531 {
4532 int sign, j1, j2, imm1, imm2;
4533
4534 sign = sbits (inst1, 10, 10);
4535 imm1 = bits (inst1, 0, 5);
4536 imm2 = bits (inst2, 0, 10);
4537 j1 = bit (inst2, 13);
4538 j2 = bit (inst2, 11);
4539
4540 offset = (sign << 20) + (j2 << 19) + (j1 << 18);
4541 offset += (imm1 << 12) + (imm2 << 1);
4542
4543 nextpc = pc_val + offset;
4544 }
4545 }
4546 }
4547 else if ((inst1 & 0xfe50) == 0xe810)
4548 {
4549 /* Load multiple or RFE. */
4550 int rn, offset, load_pc = 1;
4551
4552 rn = bits (inst1, 0, 3);
4553 if (bit (inst1, 7) && !bit (inst1, 8))
4554 {
4555 /* LDMIA or POP */
4556 if (!bit (inst2, 15))
4557 load_pc = 0;
4558 offset = bitcount (inst2) * 4 - 4;
4559 }
4560 else if (!bit (inst1, 7) && bit (inst1, 8))
4561 {
4562 /* LDMDB */
4563 if (!bit (inst2, 15))
4564 load_pc = 0;
4565 offset = -4;
4566 }
4567 else if (bit (inst1, 7) && bit (inst1, 8))
4568 {
4569 /* RFEIA */
4570 offset = 0;
4571 }
4572 else if (!bit (inst1, 7) && !bit (inst1, 8))
4573 {
4574 /* RFEDB */
4575 offset = -8;
4576 }
4577 else
4578 load_pc = 0;
4579
4580 if (load_pc)
4581 {
4582 CORE_ADDR addr = get_frame_register_unsigned (frame, rn);
4583 nextpc = get_frame_memory_unsigned (frame, addr + offset, 4);
4584 }
4585 }
4586 else if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00)
4587 {
4588 /* MOV PC or MOVS PC. */
4589 nextpc = get_frame_register_unsigned (frame, bits (inst2, 0, 3));
50e98be4 4590 nextpc = MAKE_THUMB_ADDR (nextpc);
9dca5578
DJ
4591 }
4592 else if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000)
4593 {
4594 /* LDR PC. */
4595 CORE_ADDR base;
4596 int rn, load_pc = 1;
4597
4598 rn = bits (inst1, 0, 3);
4599 base = get_frame_register_unsigned (frame, rn);
bf9f652a 4600 if (rn == ARM_PC_REGNUM)
9dca5578
DJ
4601 {
4602 base = (base + 4) & ~(CORE_ADDR) 0x3;
4603 if (bit (inst1, 7))
4604 base += bits (inst2, 0, 11);
4605 else
4606 base -= bits (inst2, 0, 11);
4607 }
4608 else if (bit (inst1, 7))
4609 base += bits (inst2, 0, 11);
4610 else if (bit (inst2, 11))
4611 {
4612 if (bit (inst2, 10))
4613 {
4614 if (bit (inst2, 9))
4615 base += bits (inst2, 0, 7);
4616 else
4617 base -= bits (inst2, 0, 7);
4618 }
4619 }
4620 else if ((inst2 & 0x0fc0) == 0x0000)
4621 {
4622 int shift = bits (inst2, 4, 5), rm = bits (inst2, 0, 3);
4623 base += get_frame_register_unsigned (frame, rm) << shift;
4624 }
4625 else
4626 /* Reserved. */
4627 load_pc = 0;
4628
4629 if (load_pc)
4630 nextpc = get_frame_memory_unsigned (frame, base, 4);
4631 }
4632 else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000)
4633 {
4634 /* TBB. */
d476da0e
RE
4635 CORE_ADDR tbl_reg, table, offset, length;
4636
4637 tbl_reg = bits (inst1, 0, 3);
4638 if (tbl_reg == 0x0f)
4639 table = pc + 4; /* Regcache copy of PC isn't right yet. */
4640 else
4641 table = get_frame_register_unsigned (frame, tbl_reg);
9dca5578 4642
9dca5578
DJ
4643 offset = get_frame_register_unsigned (frame, bits (inst2, 0, 3));
4644 length = 2 * get_frame_memory_unsigned (frame, table + offset, 1);
4645 nextpc = pc_val + length;
4646 }
d476da0e 4647 else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010)
9dca5578
DJ
4648 {
4649 /* TBH. */
d476da0e
RE
4650 CORE_ADDR tbl_reg, table, offset, length;
4651
4652 tbl_reg = bits (inst1, 0, 3);
4653 if (tbl_reg == 0x0f)
4654 table = pc + 4; /* Regcache copy of PC isn't right yet. */
4655 else
4656 table = get_frame_register_unsigned (frame, tbl_reg);
9dca5578 4657
9dca5578
DJ
4658 offset = 2 * get_frame_register_unsigned (frame, bits (inst2, 0, 3));
4659 length = 2 * get_frame_memory_unsigned (frame, table + offset, 2);
4660 nextpc = pc_val + length;
4661 }
c906108c 4662 }
aa17d93e 4663 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
4664 {
4665 if (bits (inst1, 3, 6) == 0x0f)
6ca1b147 4666 nextpc = UNMAKE_THUMB_ADDR (pc_val);
9498281f 4667 else
0b1b3e42 4668 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
9498281f 4669 }
ad8b5167
UW
4670 else if ((inst1 & 0xff87) == 0x4687) /* mov pc, REG */
4671 {
4672 if (bits (inst1, 3, 6) == 0x0f)
4673 nextpc = pc_val;
4674 else
4675 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
4676
4677 nextpc = MAKE_THUMB_ADDR (nextpc);
4678 }
9dca5578
DJ
4679 else if ((inst1 & 0xf500) == 0xb100)
4680 {
4681 /* CBNZ or CBZ. */
4682 int imm = (bit (inst1, 9) << 6) + (bits (inst1, 3, 7) << 1);
4683 ULONGEST reg = get_frame_register_unsigned (frame, bits (inst1, 0, 2));
4684
4685 if (bit (inst1, 11) && reg != 0)
4686 nextpc = pc_val + imm;
4687 else if (!bit (inst1, 11) && reg == 0)
4688 nextpc = pc_val + imm;
4689 }
c906108c
SS
4690 return nextpc;
4691}
4692
50e98be4 4693/* Get the raw next address. PC is the current program counter, in
18819fa6 4694 FRAME, which is assumed to be executing in ARM mode.
50e98be4
DJ
4695
4696 The value returned has the execution state of the next instruction
4697 encoded in it. Use IS_THUMB_ADDR () to see whether the instruction is
4698 in Thumb-State, and gdbarch_addr_bits_remove () to get the plain memory
0963b4bd
MS
4699 address. */
4700
50e98be4 4701static CORE_ADDR
18819fa6 4702arm_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc)
c906108c 4703{
2af46ca0 4704 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113
UW
4705 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4706 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
c906108c
SS
4707 unsigned long pc_val;
4708 unsigned long this_instr;
4709 unsigned long status;
4710 CORE_ADDR nextpc;
4711
c906108c 4712 pc_val = (unsigned long) pc;
e17a4113 4713 this_instr = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
9d4fde75 4714
0b1b3e42 4715 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
c5aa993b 4716 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c 4717
daddc3c1
DJ
4718 if (bits (this_instr, 28, 31) == INST_NV)
4719 switch (bits (this_instr, 24, 27))
4720 {
4721 case 0xa:
4722 case 0xb:
4723 {
4724 /* Branch with Link and change to Thumb. */
4725 nextpc = BranchDest (pc, this_instr);
4726 nextpc |= bit (this_instr, 24) << 1;
50e98be4 4727 nextpc = MAKE_THUMB_ADDR (nextpc);
daddc3c1
DJ
4728 break;
4729 }
4730 case 0xc:
4731 case 0xd:
4732 case 0xe:
4733 /* Coprocessor register transfer. */
4734 if (bits (this_instr, 12, 15) == 15)
4735 error (_("Invalid update to pc in instruction"));
4736 break;
4737 }
4738 else if (condition_true (bits (this_instr, 28, 31), status))
c906108c
SS
4739 {
4740 switch (bits (this_instr, 24, 27))
4741 {
c5aa993b 4742 case 0x0:
94c30b78 4743 case 0x1: /* data processing */
c5aa993b
JM
4744 case 0x2:
4745 case 0x3:
c906108c
SS
4746 {
4747 unsigned long operand1, operand2, result = 0;
4748 unsigned long rn;
4749 int c;
c5aa993b 4750
c906108c
SS
4751 if (bits (this_instr, 12, 15) != 15)
4752 break;
4753
4754 if (bits (this_instr, 22, 25) == 0
c5aa993b 4755 && bits (this_instr, 4, 7) == 9) /* multiply */
edefbb7c 4756 error (_("Invalid update to pc in instruction"));
c906108c 4757
9498281f 4758 /* BX <reg>, BLX <reg> */
e150acc7
PB
4759 if (bits (this_instr, 4, 27) == 0x12fff1
4760 || bits (this_instr, 4, 27) == 0x12fff3)
9498281f
DJ
4761 {
4762 rn = bits (this_instr, 0, 3);
bf9f652a
YQ
4763 nextpc = ((rn == ARM_PC_REGNUM)
4764 ? (pc_val + 8)
4765 : get_frame_register_unsigned (frame, rn));
4766
9498281f
DJ
4767 return nextpc;
4768 }
4769
0963b4bd 4770 /* Multiply into PC. */
c906108c
SS
4771 c = (status & FLAG_C) ? 1 : 0;
4772 rn = bits (this_instr, 16, 19);
bf9f652a
YQ
4773 operand1 = ((rn == ARM_PC_REGNUM)
4774 ? (pc_val + 8)
4775 : get_frame_register_unsigned (frame, rn));
c5aa993b 4776
c906108c
SS
4777 if (bit (this_instr, 25))
4778 {
4779 unsigned long immval = bits (this_instr, 0, 7);
4780 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
4781 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
4782 & 0xffffffff;
c906108c 4783 }
0963b4bd
MS
4784 else /* operand 2 is a shifted register. */
4785 operand2 = shifted_reg_val (frame, this_instr, c,
4786 pc_val, status);
c5aa993b 4787
c906108c
SS
4788 switch (bits (this_instr, 21, 24))
4789 {
c5aa993b 4790 case 0x0: /*and */
c906108c
SS
4791 result = operand1 & operand2;
4792 break;
4793
c5aa993b 4794 case 0x1: /*eor */
c906108c
SS
4795 result = operand1 ^ operand2;
4796 break;
4797
c5aa993b 4798 case 0x2: /*sub */
c906108c
SS
4799 result = operand1 - operand2;
4800 break;
4801
c5aa993b 4802 case 0x3: /*rsb */
c906108c
SS
4803 result = operand2 - operand1;
4804 break;
4805
c5aa993b 4806 case 0x4: /*add */
c906108c
SS
4807 result = operand1 + operand2;
4808 break;
4809
c5aa993b 4810 case 0x5: /*adc */
c906108c
SS
4811 result = operand1 + operand2 + c;
4812 break;
4813
c5aa993b 4814 case 0x6: /*sbc */
c906108c
SS
4815 result = operand1 - operand2 + c;
4816 break;
4817
c5aa993b 4818 case 0x7: /*rsc */
c906108c
SS
4819 result = operand2 - operand1 + c;
4820 break;
4821
c5aa993b
JM
4822 case 0x8:
4823 case 0x9:
4824 case 0xa:
4825 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
4826 result = (unsigned long) nextpc;
4827 break;
4828
c5aa993b 4829 case 0xc: /*orr */
c906108c
SS
4830 result = operand1 | operand2;
4831 break;
4832
c5aa993b 4833 case 0xd: /*mov */
c906108c
SS
4834 /* Always step into a function. */
4835 result = operand2;
c5aa993b 4836 break;
c906108c 4837
c5aa993b 4838 case 0xe: /*bic */
c906108c
SS
4839 result = operand1 & ~operand2;
4840 break;
4841
c5aa993b 4842 case 0xf: /*mvn */
c906108c
SS
4843 result = ~operand2;
4844 break;
4845 }
c906108c 4846
50e98be4
DJ
4847 /* In 26-bit APCS the bottom two bits of the result are
4848 ignored, and we always end up in ARM state. */
4849 if (!arm_apcs_32)
4850 nextpc = arm_addr_bits_remove (gdbarch, result);
4851 else
4852 nextpc = result;
4853
c906108c
SS
4854 break;
4855 }
c5aa993b
JM
4856
4857 case 0x4:
4858 case 0x5: /* data transfer */
4859 case 0x6:
4860 case 0x7:
c906108c
SS
4861 if (bit (this_instr, 20))
4862 {
4863 /* load */
4864 if (bits (this_instr, 12, 15) == 15)
4865 {
4866 /* rd == pc */
c5aa993b 4867 unsigned long rn;
c906108c 4868 unsigned long base;
c5aa993b 4869
c906108c 4870 if (bit (this_instr, 22))
edefbb7c 4871 error (_("Invalid update to pc in instruction"));
c906108c
SS
4872
4873 /* byte write to PC */
4874 rn = bits (this_instr, 16, 19);
bf9f652a
YQ
4875 base = ((rn == ARM_PC_REGNUM)
4876 ? (pc_val + 8)
4877 : get_frame_register_unsigned (frame, rn));
4878
c906108c
SS
4879 if (bit (this_instr, 24))
4880 {
4881 /* pre-indexed */
4882 int c = (status & FLAG_C) ? 1 : 0;
4883 unsigned long offset =
c5aa993b 4884 (bit (this_instr, 25)
0b1b3e42 4885 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
c5aa993b 4886 : bits (this_instr, 0, 11));
c906108c
SS
4887
4888 if (bit (this_instr, 23))
4889 base += offset;
4890 else
4891 base -= offset;
4892 }
51370a33
YQ
4893 nextpc =
4894 (CORE_ADDR) read_memory_unsigned_integer ((CORE_ADDR) base,
4895 4, byte_order);
c906108c
SS
4896 }
4897 }
4898 break;
c5aa993b
JM
4899
4900 case 0x8:
4901 case 0x9: /* block transfer */
c906108c
SS
4902 if (bit (this_instr, 20))
4903 {
4904 /* LDM */
4905 if (bit (this_instr, 15))
4906 {
4907 /* loading pc */
4908 int offset = 0;
51370a33
YQ
4909 unsigned long rn_val
4910 = get_frame_register_unsigned (frame,
4911 bits (this_instr, 16, 19));
c906108c
SS
4912
4913 if (bit (this_instr, 23))
4914 {
4915 /* up */
4916 unsigned long reglist = bits (this_instr, 0, 14);
4917 offset = bitcount (reglist) * 4;
c5aa993b 4918 if (bit (this_instr, 24)) /* pre */
c906108c
SS
4919 offset += 4;
4920 }
4921 else if (bit (this_instr, 24))
4922 offset = -4;
c5aa993b 4923
51370a33
YQ
4924 nextpc =
4925 (CORE_ADDR) read_memory_unsigned_integer ((CORE_ADDR)
4926 (rn_val + offset),
4927 4, byte_order);
c906108c
SS
4928 }
4929 }
4930 break;
c5aa993b
JM
4931
4932 case 0xb: /* branch & link */
4933 case 0xa: /* branch */
c906108c
SS
4934 {
4935 nextpc = BranchDest (pc, this_instr);
c906108c
SS
4936 break;
4937 }
c5aa993b
JM
4938
4939 case 0xc:
4940 case 0xd:
4941 case 0xe: /* coproc ops */
25b41d01 4942 break;
c5aa993b 4943 case 0xf: /* SWI */
25b41d01
YQ
4944 {
4945 struct gdbarch_tdep *tdep;
4946 tdep = gdbarch_tdep (gdbarch);
4947
4948 if (tdep->syscall_next_pc != NULL)
4949 nextpc = tdep->syscall_next_pc (frame);
4950
4951 }
c906108c
SS
4952 break;
4953
4954 default:
edefbb7c 4955 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
c906108c
SS
4956 return (pc);
4957 }
4958 }
4959
4960 return nextpc;
4961}
4962
18819fa6
UW
4963/* Determine next PC after current instruction executes. Will call either
4964 arm_get_next_pc_raw or thumb_get_next_pc_raw. Error out if infinite
4965 loop is detected. */
4966
50e98be4
DJ
4967CORE_ADDR
4968arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
4969{
18819fa6
UW
4970 CORE_ADDR nextpc;
4971
4972 if (arm_frame_is_thumb (frame))
4973 {
4974 nextpc = thumb_get_next_pc_raw (frame, pc);
4975 if (nextpc == MAKE_THUMB_ADDR (pc))
4976 error (_("Infinite loop detected"));
4977 }
4978 else
4979 {
4980 nextpc = arm_get_next_pc_raw (frame, pc);
4981 if (nextpc == pc)
4982 error (_("Infinite loop detected"));
4983 }
4984
50e98be4
DJ
4985 return nextpc;
4986}
4987
18819fa6
UW
4988/* Like insert_single_step_breakpoint, but make sure we use a breakpoint
4989 of the appropriate mode (as encoded in the PC value), even if this
4990 differs from what would be expected according to the symbol tables. */
4991
4992void
4993arm_insert_single_step_breakpoint (struct gdbarch *gdbarch,
4994 struct address_space *aspace,
4995 CORE_ADDR pc)
4996{
4997 struct cleanup *old_chain
4998 = make_cleanup_restore_integer (&arm_override_mode);
4999
5000 arm_override_mode = IS_THUMB_ADDR (pc);
5001 pc = gdbarch_addr_bits_remove (gdbarch, pc);
5002
5003 insert_single_step_breakpoint (gdbarch, aspace, pc);
5004
5005 do_cleanups (old_chain);
5006}
5007
35f73cfc
UW
5008/* Checks for an atomic sequence of instructions beginning with a LDREX{,B,H,D}
5009 instruction and ending with a STREX{,B,H,D} instruction. If such a sequence
5010 is found, attempt to step through it. A breakpoint is placed at the end of
5011 the sequence. */
5012
5013static int
5014thumb_deal_with_atomic_sequence_raw (struct frame_info *frame)
5015{
5016 struct gdbarch *gdbarch = get_frame_arch (frame);
5017 struct address_space *aspace = get_frame_address_space (frame);
5018 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
5019 CORE_ADDR pc = get_frame_pc (frame);
5020 CORE_ADDR breaks[2] = {-1, -1};
5021 CORE_ADDR loc = pc;
5022 unsigned short insn1, insn2;
5023 int insn_count;
5024 int index;
5025 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
5026 const int atomic_sequence_length = 16; /* Instruction sequence length. */
5027 ULONGEST status, itstate;
5028
5029 /* We currently do not support atomic sequences within an IT block. */
5030 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
5031 itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3);
5032 if (itstate & 0x0f)
5033 return 0;
5034
5035 /* Assume all atomic sequences start with a ldrex{,b,h,d} instruction. */
5036 insn1 = read_memory_unsigned_integer (loc, 2, byte_order_for_code);
5037 loc += 2;
5038 if (thumb_insn_size (insn1) != 4)
5039 return 0;
5040
5041 insn2 = read_memory_unsigned_integer (loc, 2, byte_order_for_code);
5042 loc += 2;
5043 if (!((insn1 & 0xfff0) == 0xe850
5044 || ((insn1 & 0xfff0) == 0xe8d0 && (insn2 & 0x00c0) == 0x0040)))
5045 return 0;
5046
5047 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
5048 instructions. */
5049 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
5050 {
5051 insn1 = read_memory_unsigned_integer (loc, 2, byte_order_for_code);
5052 loc += 2;
5053
5054 if (thumb_insn_size (insn1) != 4)
5055 {
5056 /* Assume that there is at most one conditional branch in the
5057 atomic sequence. If a conditional branch is found, put a
5058 breakpoint in its destination address. */
5059 if ((insn1 & 0xf000) == 0xd000 && bits (insn1, 8, 11) != 0x0f)
5060 {
5061 if (last_breakpoint > 0)
5062 return 0; /* More than one conditional branch found,
5063 fallback to the standard code. */
5064
5065 breaks[1] = loc + 2 + (sbits (insn1, 0, 7) << 1);
5066 last_breakpoint++;
5067 }
5068
5069 /* We do not support atomic sequences that use any *other*
5070 instructions but conditional branches to change the PC.
5071 Fall back to standard code to avoid losing control of
5072 execution. */
5073 else if (thumb_instruction_changes_pc (insn1))
5074 return 0;
5075 }
5076 else
5077 {
5078 insn2 = read_memory_unsigned_integer (loc, 2, byte_order_for_code);
5079 loc += 2;
5080
5081 /* Assume that there is at most one conditional branch in the
5082 atomic sequence. If a conditional branch is found, put a
5083 breakpoint in its destination address. */
5084 if ((insn1 & 0xf800) == 0xf000
5085 && (insn2 & 0xd000) == 0x8000
5086 && (insn1 & 0x0380) != 0x0380)
5087 {
5088 int sign, j1, j2, imm1, imm2;
5089 unsigned int offset;
5090
5091 sign = sbits (insn1, 10, 10);
5092 imm1 = bits (insn1, 0, 5);
5093 imm2 = bits (insn2, 0, 10);
5094 j1 = bit (insn2, 13);
5095 j2 = bit (insn2, 11);
5096
5097 offset = (sign << 20) + (j2 << 19) + (j1 << 18);
5098 offset += (imm1 << 12) + (imm2 << 1);
5099
5100 if (last_breakpoint > 0)
5101 return 0; /* More than one conditional branch found,
5102 fallback to the standard code. */
5103
5104 breaks[1] = loc + offset;
5105 last_breakpoint++;
5106 }
5107
5108 /* We do not support atomic sequences that use any *other*
5109 instructions but conditional branches to change the PC.
5110 Fall back to standard code to avoid losing control of
5111 execution. */
5112 else if (thumb2_instruction_changes_pc (insn1, insn2))
5113 return 0;
5114
5115 /* If we find a strex{,b,h,d}, we're done. */
5116 if ((insn1 & 0xfff0) == 0xe840
5117 || ((insn1 & 0xfff0) == 0xe8c0 && (insn2 & 0x00c0) == 0x0040))
5118 break;
5119 }
5120 }
5121
5122 /* If we didn't find the strex{,b,h,d}, we cannot handle the sequence. */
5123 if (insn_count == atomic_sequence_length)
5124 return 0;
5125
5126 /* Insert a breakpoint right after the end of the atomic sequence. */
5127 breaks[0] = loc;
5128
5129 /* Check for duplicated breakpoints. Check also for a breakpoint
5130 placed (branch instruction's destination) anywhere in sequence. */
5131 if (last_breakpoint
5132 && (breaks[1] == breaks[0]
5133 || (breaks[1] >= pc && breaks[1] < loc)))
5134 last_breakpoint = 0;
5135
5136 /* Effectively inserts the breakpoints. */
5137 for (index = 0; index <= last_breakpoint; index++)
5138 arm_insert_single_step_breakpoint (gdbarch, aspace,
5139 MAKE_THUMB_ADDR (breaks[index]));
5140
5141 return 1;
5142}
5143
5144static int
5145arm_deal_with_atomic_sequence_raw (struct frame_info *frame)
5146{
5147 struct gdbarch *gdbarch = get_frame_arch (frame);
5148 struct address_space *aspace = get_frame_address_space (frame);
5149 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
5150 CORE_ADDR pc = get_frame_pc (frame);
5151 CORE_ADDR breaks[2] = {-1, -1};
5152 CORE_ADDR loc = pc;
5153 unsigned int insn;
5154 int insn_count;
5155 int index;
5156 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
5157 const int atomic_sequence_length = 16; /* Instruction sequence length. */
5158
5159 /* Assume all atomic sequences start with a ldrex{,b,h,d} instruction.
5160 Note that we do not currently support conditionally executed atomic
5161 instructions. */
5162 insn = read_memory_unsigned_integer (loc, 4, byte_order_for_code);
5163 loc += 4;
5164 if ((insn & 0xff9000f0) != 0xe1900090)
5165 return 0;
5166
5167 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
5168 instructions. */
5169 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
5170 {
5171 insn = read_memory_unsigned_integer (loc, 4, byte_order_for_code);
5172 loc += 4;
5173
5174 /* Assume that there is at most one conditional branch in the atomic
5175 sequence. If a conditional branch is found, put a breakpoint in
5176 its destination address. */
5177 if (bits (insn, 24, 27) == 0xa)
5178 {
5179 if (last_breakpoint > 0)
5180 return 0; /* More than one conditional branch found, fallback
5181 to the standard single-step code. */
5182
5183 breaks[1] = BranchDest (loc - 4, insn);
5184 last_breakpoint++;
5185 }
5186
5187 /* We do not support atomic sequences that use any *other* instructions
5188 but conditional branches to change the PC. Fall back to standard
5189 code to avoid losing control of execution. */
5190 else if (arm_instruction_changes_pc (insn))
5191 return 0;
5192
5193 /* If we find a strex{,b,h,d}, we're done. */
5194 if ((insn & 0xff9000f0) == 0xe1800090)
5195 break;
5196 }
5197
5198 /* If we didn't find the strex{,b,h,d}, we cannot handle the sequence. */
5199 if (insn_count == atomic_sequence_length)
5200 return 0;
5201
5202 /* Insert a breakpoint right after the end of the atomic sequence. */
5203 breaks[0] = loc;
5204
5205 /* Check for duplicated breakpoints. Check also for a breakpoint
5206 placed (branch instruction's destination) anywhere in sequence. */
5207 if (last_breakpoint
5208 && (breaks[1] == breaks[0]
5209 || (breaks[1] >= pc && breaks[1] < loc)))
5210 last_breakpoint = 0;
5211
5212 /* Effectively inserts the breakpoints. */
5213 for (index = 0; index <= last_breakpoint; index++)
5214 arm_insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
5215
5216 return 1;
5217}
5218
5219int
5220arm_deal_with_atomic_sequence (struct frame_info *frame)
5221{
5222 if (arm_frame_is_thumb (frame))
5223 return thumb_deal_with_atomic_sequence_raw (frame);
5224 else
5225 return arm_deal_with_atomic_sequence_raw (frame);
5226}
5227
9512d7fd
FN
5228/* single_step() is called just before we want to resume the inferior,
5229 if we want to single-step it but there is no hardware or kernel
5230 single-step support. We find the target of the coming instruction
e0cd558a 5231 and breakpoint it. */
9512d7fd 5232
190dce09 5233int
0b1b3e42 5234arm_software_single_step (struct frame_info *frame)
9512d7fd 5235{
a6d9a66e 5236 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 5237 struct address_space *aspace = get_frame_address_space (frame);
35f73cfc
UW
5238 CORE_ADDR next_pc;
5239
5240 if (arm_deal_with_atomic_sequence (frame))
5241 return 1;
18819fa6 5242
35f73cfc 5243 next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
18819fa6 5244 arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
e6590a1b
UW
5245
5246 return 1;
9512d7fd 5247}
9512d7fd 5248
f9d67f43
DJ
5249/* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
5250 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
5251 NULL if an error occurs. BUF is freed. */
5252
5253static gdb_byte *
5254extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
5255 int old_len, int new_len)
5256{
22e048c9 5257 gdb_byte *new_buf;
f9d67f43
DJ
5258 int bytes_to_read = new_len - old_len;
5259
5260 new_buf = xmalloc (new_len);
5261 memcpy (new_buf + bytes_to_read, buf, old_len);
5262 xfree (buf);
5263 if (target_read_memory (endaddr - new_len, new_buf, bytes_to_read) != 0)
5264 {
5265 xfree (new_buf);
5266 return NULL;
5267 }
5268 return new_buf;
5269}
5270
5271/* An IT block is at most the 2-byte IT instruction followed by
5272 four 4-byte instructions. The furthest back we must search to
5273 find an IT block that affects the current instruction is thus
5274 2 + 3 * 4 == 14 bytes. */
5275#define MAX_IT_BLOCK_PREFIX 14
5276
5277/* Use a quick scan if there are more than this many bytes of
5278 code. */
5279#define IT_SCAN_THRESHOLD 32
5280
5281/* Adjust a breakpoint's address to move breakpoints out of IT blocks.
5282 A breakpoint in an IT block may not be hit, depending on the
5283 condition flags. */
5284static CORE_ADDR
5285arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
5286{
5287 gdb_byte *buf;
5288 char map_type;
5289 CORE_ADDR boundary, func_start;
22e048c9 5290 int buf_len;
f9d67f43
DJ
5291 enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
5292 int i, any, last_it, last_it_count;
5293
5294 /* If we are using BKPT breakpoints, none of this is necessary. */
5295 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
5296 return bpaddr;
5297
5298 /* ARM mode does not have this problem. */
9779414d 5299 if (!arm_pc_is_thumb (gdbarch, bpaddr))
f9d67f43
DJ
5300 return bpaddr;
5301
5302 /* We are setting a breakpoint in Thumb code that could potentially
5303 contain an IT block. The first step is to find how much Thumb
5304 code there is; we do not need to read outside of known Thumb
5305 sequences. */
5306 map_type = arm_find_mapping_symbol (bpaddr, &boundary);
5307 if (map_type == 0)
5308 /* Thumb-2 code must have mapping symbols to have a chance. */
5309 return bpaddr;
5310
5311 bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
5312
5313 if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
5314 && func_start > boundary)
5315 boundary = func_start;
5316
5317 /* Search for a candidate IT instruction. We have to do some fancy
5318 footwork to distinguish a real IT instruction from the second
5319 half of a 32-bit instruction, but there is no need for that if
5320 there's no candidate. */
5321 buf_len = min (bpaddr - boundary, MAX_IT_BLOCK_PREFIX);
5322 if (buf_len == 0)
5323 /* No room for an IT instruction. */
5324 return bpaddr;
5325
5326 buf = xmalloc (buf_len);
5327 if (target_read_memory (bpaddr - buf_len, buf, buf_len) != 0)
5328 return bpaddr;
5329 any = 0;
5330 for (i = 0; i < buf_len; i += 2)
5331 {
5332 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
5333 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
5334 {
5335 any = 1;
5336 break;
5337 }
5338 }
5339 if (any == 0)
5340 {
5341 xfree (buf);
5342 return bpaddr;
5343 }
5344
5345 /* OK, the code bytes before this instruction contain at least one
5346 halfword which resembles an IT instruction. We know that it's
5347 Thumb code, but there are still two possibilities. Either the
5348 halfword really is an IT instruction, or it is the second half of
5349 a 32-bit Thumb instruction. The only way we can tell is to
5350 scan forwards from a known instruction boundary. */
5351 if (bpaddr - boundary > IT_SCAN_THRESHOLD)
5352 {
5353 int definite;
5354
5355 /* There's a lot of code before this instruction. Start with an
5356 optimistic search; it's easy to recognize halfwords that can
5357 not be the start of a 32-bit instruction, and use that to
5358 lock on to the instruction boundaries. */
5359 buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
5360 if (buf == NULL)
5361 return bpaddr;
5362 buf_len = IT_SCAN_THRESHOLD;
5363
5364 definite = 0;
5365 for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
5366 {
5367 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
5368 if (thumb_insn_size (inst1) == 2)
5369 {
5370 definite = 1;
5371 break;
5372 }
5373 }
5374
5375 /* At this point, if DEFINITE, BUF[I] is the first place we
5376 are sure that we know the instruction boundaries, and it is far
5377 enough from BPADDR that we could not miss an IT instruction
5378 affecting BPADDR. If ! DEFINITE, give up - start from a
5379 known boundary. */
5380 if (! definite)
5381 {
0963b4bd
MS
5382 buf = extend_buffer_earlier (buf, bpaddr, buf_len,
5383 bpaddr - boundary);
f9d67f43
DJ
5384 if (buf == NULL)
5385 return bpaddr;
5386 buf_len = bpaddr - boundary;
5387 i = 0;
5388 }
5389 }
5390 else
5391 {
5392 buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
5393 if (buf == NULL)
5394 return bpaddr;
5395 buf_len = bpaddr - boundary;
5396 i = 0;
5397 }
5398
5399 /* Scan forwards. Find the last IT instruction before BPADDR. */
5400 last_it = -1;
5401 last_it_count = 0;
5402 while (i < buf_len)
5403 {
5404 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
5405 last_it_count--;
5406 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
5407 {
5408 last_it = i;
5409 if (inst1 & 0x0001)
5410 last_it_count = 4;
5411 else if (inst1 & 0x0002)
5412 last_it_count = 3;
5413 else if (inst1 & 0x0004)
5414 last_it_count = 2;
5415 else
5416 last_it_count = 1;
5417 }
5418 i += thumb_insn_size (inst1);
5419 }
5420
5421 xfree (buf);
5422
5423 if (last_it == -1)
5424 /* There wasn't really an IT instruction after all. */
5425 return bpaddr;
5426
5427 if (last_it_count < 1)
5428 /* It was too far away. */
5429 return bpaddr;
5430
5431 /* This really is a trouble spot. Move the breakpoint to the IT
5432 instruction. */
5433 return bpaddr - buf_len + last_it;
5434}
5435
cca44b1b 5436/* ARM displaced stepping support.
c906108c 5437
cca44b1b 5438 Generally ARM displaced stepping works as follows:
c906108c 5439
cca44b1b
JB
5440 1. When an instruction is to be single-stepped, it is first decoded by
5441 arm_process_displaced_insn (called from arm_displaced_step_copy_insn).
5442 Depending on the type of instruction, it is then copied to a scratch
5443 location, possibly in a modified form. The copy_* set of functions
0963b4bd 5444 performs such modification, as necessary. A breakpoint is placed after
cca44b1b
JB
5445 the modified instruction in the scratch space to return control to GDB.
5446 Note in particular that instructions which modify the PC will no longer
5447 do so after modification.
c5aa993b 5448
cca44b1b
JB
5449 2. The instruction is single-stepped, by setting the PC to the scratch
5450 location address, and resuming. Control returns to GDB when the
5451 breakpoint is hit.
c5aa993b 5452
cca44b1b
JB
5453 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
5454 function used for the current instruction. This function's job is to
5455 put the CPU/memory state back to what it would have been if the
5456 instruction had been executed unmodified in its original location. */
c5aa993b 5457
cca44b1b
JB
5458/* NOP instruction (mov r0, r0). */
5459#define ARM_NOP 0xe1a00000
34518530 5460#define THUMB_NOP 0x4600
cca44b1b
JB
5461
5462/* Helper for register reads for displaced stepping. In particular, this
5463 returns the PC as it would be seen by the instruction at its original
5464 location. */
5465
5466ULONGEST
36073a92
YQ
5467displaced_read_reg (struct regcache *regs, struct displaced_step_closure *dsc,
5468 int regno)
cca44b1b
JB
5469{
5470 ULONGEST ret;
36073a92 5471 CORE_ADDR from = dsc->insn_addr;
cca44b1b 5472
bf9f652a 5473 if (regno == ARM_PC_REGNUM)
cca44b1b 5474 {
4db71c0b
YQ
5475 /* Compute pipeline offset:
5476 - When executing an ARM instruction, PC reads as the address of the
5477 current instruction plus 8.
5478 - When executing a Thumb instruction, PC reads as the address of the
5479 current instruction plus 4. */
5480
36073a92 5481 if (!dsc->is_thumb)
4db71c0b
YQ
5482 from += 8;
5483 else
5484 from += 4;
5485
cca44b1b
JB
5486 if (debug_displaced)
5487 fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
4db71c0b
YQ
5488 (unsigned long) from);
5489 return (ULONGEST) from;
cca44b1b 5490 }
c906108c 5491 else
cca44b1b
JB
5492 {
5493 regcache_cooked_read_unsigned (regs, regno, &ret);
5494 if (debug_displaced)
5495 fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
5496 regno, (unsigned long) ret);
5497 return ret;
5498 }
c906108c
SS
5499}
5500
cca44b1b
JB
5501static int
5502displaced_in_arm_mode (struct regcache *regs)
5503{
5504 ULONGEST ps;
9779414d 5505 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
66e810cd 5506
cca44b1b 5507 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
66e810cd 5508
9779414d 5509 return (ps & t_bit) == 0;
cca44b1b 5510}
66e810cd 5511
cca44b1b 5512/* Write to the PC as from a branch instruction. */
c906108c 5513
cca44b1b 5514static void
36073a92
YQ
5515branch_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
5516 ULONGEST val)
c906108c 5517{
36073a92 5518 if (!dsc->is_thumb)
cca44b1b
JB
5519 /* Note: If bits 0/1 are set, this branch would be unpredictable for
5520 architecture versions < 6. */
0963b4bd
MS
5521 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
5522 val & ~(ULONGEST) 0x3);
cca44b1b 5523 else
0963b4bd
MS
5524 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
5525 val & ~(ULONGEST) 0x1);
cca44b1b 5526}
66e810cd 5527
cca44b1b
JB
5528/* Write to the PC as from a branch-exchange instruction. */
5529
5530static void
5531bx_write_pc (struct regcache *regs, ULONGEST val)
5532{
5533 ULONGEST ps;
9779414d 5534 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
cca44b1b
JB
5535
5536 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
5537
5538 if ((val & 1) == 1)
c906108c 5539 {
9779414d 5540 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
cca44b1b
JB
5541 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
5542 }
5543 else if ((val & 2) == 0)
5544 {
9779414d 5545 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
cca44b1b 5546 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
c906108c
SS
5547 }
5548 else
5549 {
cca44b1b
JB
5550 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
5551 mode, align dest to 4 bytes). */
5552 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
9779414d 5553 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
cca44b1b 5554 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
c906108c
SS
5555 }
5556}
ed9a39eb 5557
cca44b1b 5558/* Write to the PC as if from a load instruction. */
ed9a39eb 5559
34e8f22d 5560static void
36073a92
YQ
5561load_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
5562 ULONGEST val)
ed9a39eb 5563{
cca44b1b
JB
5564 if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
5565 bx_write_pc (regs, val);
5566 else
36073a92 5567 branch_write_pc (regs, dsc, val);
cca44b1b 5568}
be8626e0 5569
cca44b1b
JB
5570/* Write to the PC as if from an ALU instruction. */
5571
5572static void
36073a92
YQ
5573alu_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
5574 ULONGEST val)
cca44b1b 5575{
36073a92 5576 if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb)
cca44b1b
JB
5577 bx_write_pc (regs, val);
5578 else
36073a92 5579 branch_write_pc (regs, dsc, val);
cca44b1b
JB
5580}
5581
5582/* Helper for writing to registers for displaced stepping. Writing to the PC
5583 has a varying effects depending on the instruction which does the write:
5584 this is controlled by the WRITE_PC argument. */
5585
5586void
5587displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc,
5588 int regno, ULONGEST val, enum pc_write_style write_pc)
5589{
bf9f652a 5590 if (regno == ARM_PC_REGNUM)
08216dd7 5591 {
cca44b1b
JB
5592 if (debug_displaced)
5593 fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
5594 (unsigned long) val);
5595 switch (write_pc)
08216dd7 5596 {
cca44b1b 5597 case BRANCH_WRITE_PC:
36073a92 5598 branch_write_pc (regs, dsc, val);
08216dd7
RE
5599 break;
5600
cca44b1b
JB
5601 case BX_WRITE_PC:
5602 bx_write_pc (regs, val);
5603 break;
5604
5605 case LOAD_WRITE_PC:
36073a92 5606 load_write_pc (regs, dsc, val);
cca44b1b
JB
5607 break;
5608
5609 case ALU_WRITE_PC:
36073a92 5610 alu_write_pc (regs, dsc, val);
cca44b1b
JB
5611 break;
5612
5613 case CANNOT_WRITE_PC:
5614 warning (_("Instruction wrote to PC in an unexpected way when "
5615 "single-stepping"));
08216dd7
RE
5616 break;
5617
5618 default:
97b9747c
JB
5619 internal_error (__FILE__, __LINE__,
5620 _("Invalid argument to displaced_write_reg"));
08216dd7 5621 }
b508a996 5622
cca44b1b 5623 dsc->wrote_to_pc = 1;
b508a996 5624 }
ed9a39eb 5625 else
b508a996 5626 {
cca44b1b
JB
5627 if (debug_displaced)
5628 fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
5629 regno, (unsigned long) val);
5630 regcache_cooked_write_unsigned (regs, regno, val);
b508a996 5631 }
34e8f22d
RE
5632}
5633
cca44b1b
JB
5634/* This function is used to concisely determine if an instruction INSN
5635 references PC. Register fields of interest in INSN should have the
0963b4bd
MS
5636 corresponding fields of BITMASK set to 0b1111. The function
5637 returns return 1 if any of these fields in INSN reference the PC
5638 (also 0b1111, r15), else it returns 0. */
67255d04
RE
5639
5640static int
cca44b1b 5641insn_references_pc (uint32_t insn, uint32_t bitmask)
67255d04 5642{
cca44b1b 5643 uint32_t lowbit = 1;
67255d04 5644
cca44b1b
JB
5645 while (bitmask != 0)
5646 {
5647 uint32_t mask;
44e1a9eb 5648
cca44b1b
JB
5649 for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
5650 ;
67255d04 5651
cca44b1b
JB
5652 if (!lowbit)
5653 break;
67255d04 5654
cca44b1b 5655 mask = lowbit * 0xf;
67255d04 5656
cca44b1b
JB
5657 if ((insn & mask) == mask)
5658 return 1;
5659
5660 bitmask &= ~mask;
67255d04
RE
5661 }
5662
cca44b1b
JB
5663 return 0;
5664}
2af48f68 5665
cca44b1b
JB
5666/* The simplest copy function. Many instructions have the same effect no
5667 matter what address they are executed at: in those cases, use this. */
67255d04 5668
cca44b1b 5669static int
7ff120b4
YQ
5670arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
5671 const char *iname, struct displaced_step_closure *dsc)
cca44b1b
JB
5672{
5673 if (debug_displaced)
5674 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
5675 "opcode/class '%s' unmodified\n", (unsigned long) insn,
5676 iname);
67255d04 5677
cca44b1b 5678 dsc->modinsn[0] = insn;
67255d04 5679
cca44b1b
JB
5680 return 0;
5681}
5682
34518530
YQ
5683static int
5684thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1,
5685 uint16_t insn2, const char *iname,
5686 struct displaced_step_closure *dsc)
5687{
5688 if (debug_displaced)
5689 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, "
5690 "opcode/class '%s' unmodified\n", insn1, insn2,
5691 iname);
5692
5693 dsc->modinsn[0] = insn1;
5694 dsc->modinsn[1] = insn2;
5695 dsc->numinsns = 2;
5696
5697 return 0;
5698}
5699
5700/* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any
5701 modification. */
5702static int
5703thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, unsigned int insn,
5704 const char *iname,
5705 struct displaced_step_closure *dsc)
5706{
5707 if (debug_displaced)
5708 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, "
5709 "opcode/class '%s' unmodified\n", insn,
5710 iname);
5711
5712 dsc->modinsn[0] = insn;
5713
5714 return 0;
5715}
5716
cca44b1b
JB
5717/* Preload instructions with immediate offset. */
5718
5719static void
6e39997a 5720cleanup_preload (struct gdbarch *gdbarch,
cca44b1b
JB
5721 struct regcache *regs, struct displaced_step_closure *dsc)
5722{
5723 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5724 if (!dsc->u.preload.immed)
5725 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5726}
5727
7ff120b4
YQ
5728static void
5729install_preload (struct gdbarch *gdbarch, struct regcache *regs,
5730 struct displaced_step_closure *dsc, unsigned int rn)
cca44b1b 5731{
cca44b1b 5732 ULONGEST rn_val;
cca44b1b
JB
5733 /* Preload instructions:
5734
5735 {pli/pld} [rn, #+/-imm]
5736 ->
5737 {pli/pld} [r0, #+/-imm]. */
5738
36073a92
YQ
5739 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5740 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 5741 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
cca44b1b
JB
5742 dsc->u.preload.immed = 1;
5743
cca44b1b 5744 dsc->cleanup = &cleanup_preload;
cca44b1b
JB
5745}
5746
cca44b1b 5747static int
7ff120b4 5748arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
cca44b1b
JB
5749 struct displaced_step_closure *dsc)
5750{
5751 unsigned int rn = bits (insn, 16, 19);
cca44b1b 5752
7ff120b4
YQ
5753 if (!insn_references_pc (insn, 0x000f0000ul))
5754 return arm_copy_unmodified (gdbarch, insn, "preload", dsc);
cca44b1b
JB
5755
5756 if (debug_displaced)
5757 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
5758 (unsigned long) insn);
5759
7ff120b4
YQ
5760 dsc->modinsn[0] = insn & 0xfff0ffff;
5761
5762 install_preload (gdbarch, regs, dsc, rn);
5763
5764 return 0;
5765}
5766
34518530
YQ
5767static int
5768thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
5769 struct regcache *regs, struct displaced_step_closure *dsc)
5770{
5771 unsigned int rn = bits (insn1, 0, 3);
5772 unsigned int u_bit = bit (insn1, 7);
5773 int imm12 = bits (insn2, 0, 11);
5774 ULONGEST pc_val;
5775
5776 if (rn != ARM_PC_REGNUM)
5777 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc);
5778
5779 /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and
5780 PLD (literal) Encoding T1. */
5781 if (debug_displaced)
5782 fprintf_unfiltered (gdb_stdlog,
5783 "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n",
5784 (unsigned int) dsc->insn_addr, u_bit ? '+' : '-',
5785 imm12);
5786
5787 if (!u_bit)
5788 imm12 = -1 * imm12;
5789
5790 /* Rewrite instruction {pli/pld} PC imm12 into:
5791 Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12
5792
5793 {pli/pld} [r0, r1]
5794
5795 Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */
5796
5797 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5798 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5799
5800 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
5801
5802 displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC);
5803 displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC);
5804 dsc->u.preload.immed = 0;
5805
5806 /* {pli/pld} [r0, r1] */
5807 dsc->modinsn[0] = insn1 & 0xfff0;
5808 dsc->modinsn[1] = 0xf001;
5809 dsc->numinsns = 2;
5810
5811 dsc->cleanup = &cleanup_preload;
5812 return 0;
5813}
5814
7ff120b4
YQ
5815/* Preload instructions with register offset. */
5816
5817static void
5818install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs,
5819 struct displaced_step_closure *dsc, unsigned int rn,
5820 unsigned int rm)
5821{
5822 ULONGEST rn_val, rm_val;
5823
cca44b1b
JB
5824 /* Preload register-offset instructions:
5825
5826 {pli/pld} [rn, rm {, shift}]
5827 ->
5828 {pli/pld} [r0, r1 {, shift}]. */
5829
36073a92
YQ
5830 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5831 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5832 rn_val = displaced_read_reg (regs, dsc, rn);
5833 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5834 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
5835 displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
cca44b1b
JB
5836 dsc->u.preload.immed = 0;
5837
cca44b1b 5838 dsc->cleanup = &cleanup_preload;
7ff120b4
YQ
5839}
5840
5841static int
5842arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
5843 struct regcache *regs,
5844 struct displaced_step_closure *dsc)
5845{
5846 unsigned int rn = bits (insn, 16, 19);
5847 unsigned int rm = bits (insn, 0, 3);
5848
5849
5850 if (!insn_references_pc (insn, 0x000f000ful))
5851 return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc);
5852
5853 if (debug_displaced)
5854 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
5855 (unsigned long) insn);
5856
5857 dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
cca44b1b 5858
7ff120b4 5859 install_preload_reg (gdbarch, regs, dsc, rn, rm);
cca44b1b
JB
5860 return 0;
5861}
5862
5863/* Copy/cleanup coprocessor load and store instructions. */
5864
5865static void
6e39997a 5866cleanup_copro_load_store (struct gdbarch *gdbarch,
cca44b1b
JB
5867 struct regcache *regs,
5868 struct displaced_step_closure *dsc)
5869{
36073a92 5870 ULONGEST rn_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
5871
5872 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5873
5874 if (dsc->u.ldst.writeback)
5875 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
5876}
5877
7ff120b4
YQ
5878static void
5879install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs,
5880 struct displaced_step_closure *dsc,
5881 int writeback, unsigned int rn)
cca44b1b 5882{
cca44b1b 5883 ULONGEST rn_val;
cca44b1b 5884
cca44b1b
JB
5885 /* Coprocessor load/store instructions:
5886
5887 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
5888 ->
5889 {stc/stc2} [r0, #+/-imm].
5890
5891 ldc/ldc2 are handled identically. */
5892
36073a92
YQ
5893 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5894 rn_val = displaced_read_reg (regs, dsc, rn);
2b16b2e3
YQ
5895 /* PC should be 4-byte aligned. */
5896 rn_val = rn_val & 0xfffffffc;
cca44b1b
JB
5897 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
5898
7ff120b4 5899 dsc->u.ldst.writeback = writeback;
cca44b1b
JB
5900 dsc->u.ldst.rn = rn;
5901
7ff120b4
YQ
5902 dsc->cleanup = &cleanup_copro_load_store;
5903}
5904
5905static int
5906arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
5907 struct regcache *regs,
5908 struct displaced_step_closure *dsc)
5909{
5910 unsigned int rn = bits (insn, 16, 19);
5911
5912 if (!insn_references_pc (insn, 0x000f0000ul))
5913 return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc);
5914
5915 if (debug_displaced)
5916 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
5917 "load/store insn %.8lx\n", (unsigned long) insn);
5918
cca44b1b
JB
5919 dsc->modinsn[0] = insn & 0xfff0ffff;
5920
7ff120b4 5921 install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn);
cca44b1b
JB
5922
5923 return 0;
5924}
5925
34518530
YQ
5926static int
5927thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1,
5928 uint16_t insn2, struct regcache *regs,
5929 struct displaced_step_closure *dsc)
5930{
5931 unsigned int rn = bits (insn1, 0, 3);
5932
5933 if (rn != ARM_PC_REGNUM)
5934 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
5935 "copro load/store", dsc);
5936
5937 if (debug_displaced)
5938 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
5939 "load/store insn %.4x%.4x\n", insn1, insn2);
5940
5941 dsc->modinsn[0] = insn1 & 0xfff0;
5942 dsc->modinsn[1] = insn2;
5943 dsc->numinsns = 2;
5944
5945 /* This function is called for copying instruction LDC/LDC2/VLDR, which
5946 doesn't support writeback, so pass 0. */
5947 install_copro_load_store (gdbarch, regs, dsc, 0, rn);
5948
5949 return 0;
5950}
5951
cca44b1b
JB
5952/* Clean up branch instructions (actually perform the branch, by setting
5953 PC). */
5954
5955static void
6e39997a 5956cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
5957 struct displaced_step_closure *dsc)
5958{
36073a92 5959 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
5960 int branch_taken = condition_true (dsc->u.branch.cond, status);
5961 enum pc_write_style write_pc = dsc->u.branch.exchange
5962 ? BX_WRITE_PC : BRANCH_WRITE_PC;
5963
5964 if (!branch_taken)
5965 return;
5966
5967 if (dsc->u.branch.link)
5968 {
8c8dba6d
YQ
5969 /* The value of LR should be the next insn of current one. In order
5970 not to confuse logic hanlding later insn `bx lr', if current insn mode
5971 is Thumb, the bit 0 of LR value should be set to 1. */
5972 ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size;
5973
5974 if (dsc->is_thumb)
5975 next_insn_addr |= 0x1;
5976
5977 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr,
5978 CANNOT_WRITE_PC);
cca44b1b
JB
5979 }
5980
bf9f652a 5981 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
cca44b1b
JB
5982}
5983
5984/* Copy B/BL/BLX instructions with immediate destinations. */
5985
7ff120b4
YQ
5986static void
5987install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs,
5988 struct displaced_step_closure *dsc,
5989 unsigned int cond, int exchange, int link, long offset)
5990{
5991 /* Implement "BL<cond> <label>" as:
5992
5993 Preparation: cond <- instruction condition
5994 Insn: mov r0, r0 (nop)
5995 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
5996
5997 B<cond> similar, but don't set r14 in cleanup. */
5998
5999 dsc->u.branch.cond = cond;
6000 dsc->u.branch.link = link;
6001 dsc->u.branch.exchange = exchange;
6002
2b16b2e3
YQ
6003 dsc->u.branch.dest = dsc->insn_addr;
6004 if (link && exchange)
6005 /* For BLX, offset is computed from the Align (PC, 4). */
6006 dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc;
6007
7ff120b4 6008 if (dsc->is_thumb)
2b16b2e3 6009 dsc->u.branch.dest += 4 + offset;
7ff120b4 6010 else
2b16b2e3 6011 dsc->u.branch.dest += 8 + offset;
7ff120b4
YQ
6012
6013 dsc->cleanup = &cleanup_branch;
6014}
cca44b1b 6015static int
7ff120b4
YQ
6016arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
6017 struct regcache *regs, struct displaced_step_closure *dsc)
cca44b1b
JB
6018{
6019 unsigned int cond = bits (insn, 28, 31);
6020 int exchange = (cond == 0xf);
6021 int link = exchange || bit (insn, 24);
cca44b1b
JB
6022 long offset;
6023
6024 if (debug_displaced)
6025 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
6026 "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
6027 (unsigned long) insn);
cca44b1b
JB
6028 if (exchange)
6029 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
6030 then arrange the switch into Thumb mode. */
6031 offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
6032 else
6033 offset = bits (insn, 0, 23) << 2;
6034
6035 if (bit (offset, 25))
6036 offset = offset | ~0x3ffffff;
6037
cca44b1b
JB
6038 dsc->modinsn[0] = ARM_NOP;
6039
7ff120b4 6040 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
cca44b1b
JB
6041 return 0;
6042}
6043
34518530
YQ
6044static int
6045thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1,
6046 uint16_t insn2, struct regcache *regs,
6047 struct displaced_step_closure *dsc)
6048{
6049 int link = bit (insn2, 14);
6050 int exchange = link && !bit (insn2, 12);
6051 int cond = INST_AL;
6052 long offset = 0;
6053 int j1 = bit (insn2, 13);
6054 int j2 = bit (insn2, 11);
6055 int s = sbits (insn1, 10, 10);
6056 int i1 = !(j1 ^ bit (insn1, 10));
6057 int i2 = !(j2 ^ bit (insn1, 10));
6058
6059 if (!link && !exchange) /* B */
6060 {
6061 offset = (bits (insn2, 0, 10) << 1);
6062 if (bit (insn2, 12)) /* Encoding T4 */
6063 {
6064 offset |= (bits (insn1, 0, 9) << 12)
6065 | (i2 << 22)
6066 | (i1 << 23)
6067 | (s << 24);
6068 cond = INST_AL;
6069 }
6070 else /* Encoding T3 */
6071 {
6072 offset |= (bits (insn1, 0, 5) << 12)
6073 | (j1 << 18)
6074 | (j2 << 19)
6075 | (s << 20);
6076 cond = bits (insn1, 6, 9);
6077 }
6078 }
6079 else
6080 {
6081 offset = (bits (insn1, 0, 9) << 12);
6082 offset |= ((i2 << 22) | (i1 << 23) | (s << 24));
6083 offset |= exchange ?
6084 (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1);
6085 }
6086
6087 if (debug_displaced)
6088 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn "
6089 "%.4x %.4x with offset %.8lx\n",
6090 link ? (exchange) ? "blx" : "bl" : "b",
6091 insn1, insn2, offset);
6092
6093 dsc->modinsn[0] = THUMB_NOP;
6094
6095 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
6096 return 0;
6097}
6098
6099/* Copy B Thumb instructions. */
6100static int
6101thumb_copy_b (struct gdbarch *gdbarch, unsigned short insn,
6102 struct displaced_step_closure *dsc)
6103{
6104 unsigned int cond = 0;
6105 int offset = 0;
6106 unsigned short bit_12_15 = bits (insn, 12, 15);
6107 CORE_ADDR from = dsc->insn_addr;
6108
6109 if (bit_12_15 == 0xd)
6110 {
6111 /* offset = SignExtend (imm8:0, 32) */
6112 offset = sbits ((insn << 1), 0, 8);
6113 cond = bits (insn, 8, 11);
6114 }
6115 else if (bit_12_15 == 0xe) /* Encoding T2 */
6116 {
6117 offset = sbits ((insn << 1), 0, 11);
6118 cond = INST_AL;
6119 }
6120
6121 if (debug_displaced)
6122 fprintf_unfiltered (gdb_stdlog,
6123 "displaced: copying b immediate insn %.4x "
6124 "with offset %d\n", insn, offset);
6125
6126 dsc->u.branch.cond = cond;
6127 dsc->u.branch.link = 0;
6128 dsc->u.branch.exchange = 0;
6129 dsc->u.branch.dest = from + 4 + offset;
6130
6131 dsc->modinsn[0] = THUMB_NOP;
6132
6133 dsc->cleanup = &cleanup_branch;
6134
6135 return 0;
6136}
6137
cca44b1b
JB
6138/* Copy BX/BLX with register-specified destinations. */
6139
7ff120b4
YQ
6140static void
6141install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs,
6142 struct displaced_step_closure *dsc, int link,
6143 unsigned int cond, unsigned int rm)
cca44b1b 6144{
cca44b1b
JB
6145 /* Implement {BX,BLX}<cond> <reg>" as:
6146
6147 Preparation: cond <- instruction condition
6148 Insn: mov r0, r0 (nop)
6149 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
6150
6151 Don't set r14 in cleanup for BX. */
6152
36073a92 6153 dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
6154
6155 dsc->u.branch.cond = cond;
6156 dsc->u.branch.link = link;
cca44b1b 6157
7ff120b4 6158 dsc->u.branch.exchange = 1;
cca44b1b
JB
6159
6160 dsc->cleanup = &cleanup_branch;
7ff120b4 6161}
cca44b1b 6162
7ff120b4
YQ
6163static int
6164arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
6165 struct regcache *regs, struct displaced_step_closure *dsc)
6166{
6167 unsigned int cond = bits (insn, 28, 31);
6168 /* BX: x12xxx1x
6169 BLX: x12xxx3x. */
6170 int link = bit (insn, 5);
6171 unsigned int rm = bits (insn, 0, 3);
6172
6173 if (debug_displaced)
6174 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx",
6175 (unsigned long) insn);
6176
6177 dsc->modinsn[0] = ARM_NOP;
6178
6179 install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm);
cca44b1b
JB
6180 return 0;
6181}
6182
34518530
YQ
6183static int
6184thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn,
6185 struct regcache *regs,
6186 struct displaced_step_closure *dsc)
6187{
6188 int link = bit (insn, 7);
6189 unsigned int rm = bits (insn, 3, 6);
6190
6191 if (debug_displaced)
6192 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x",
6193 (unsigned short) insn);
6194
6195 dsc->modinsn[0] = THUMB_NOP;
6196
6197 install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm);
6198
6199 return 0;
6200}
6201
6202
0963b4bd 6203/* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
cca44b1b
JB
6204
6205static void
6e39997a 6206cleanup_alu_imm (struct gdbarch *gdbarch,
cca44b1b
JB
6207 struct regcache *regs, struct displaced_step_closure *dsc)
6208{
36073a92 6209 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
6210 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
6211 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
6212 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
6213}
6214
6215static int
7ff120b4
YQ
6216arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
6217 struct displaced_step_closure *dsc)
cca44b1b
JB
6218{
6219 unsigned int rn = bits (insn, 16, 19);
6220 unsigned int rd = bits (insn, 12, 15);
6221 unsigned int op = bits (insn, 21, 24);
6222 int is_mov = (op == 0xd);
6223 ULONGEST rd_val, rn_val;
cca44b1b
JB
6224
6225 if (!insn_references_pc (insn, 0x000ff000ul))
7ff120b4 6226 return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
cca44b1b
JB
6227
6228 if (debug_displaced)
6229 fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
6230 "%.8lx\n", is_mov ? "move" : "ALU",
6231 (unsigned long) insn);
6232
6233 /* Instruction is of form:
6234
6235 <op><cond> rd, [rn,] #imm
6236
6237 Rewrite as:
6238
6239 Preparation: tmp1, tmp2 <- r0, r1;
6240 r0, r1 <- rd, rn
6241 Insn: <op><cond> r0, r1, #imm
6242 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
6243 */
6244
36073a92
YQ
6245 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
6246 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
6247 rn_val = displaced_read_reg (regs, dsc, rn);
6248 rd_val = displaced_read_reg (regs, dsc, rd);
cca44b1b
JB
6249 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
6250 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
6251 dsc->rd = rd;
6252
6253 if (is_mov)
6254 dsc->modinsn[0] = insn & 0xfff00fff;
6255 else
6256 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
6257
6258 dsc->cleanup = &cleanup_alu_imm;
6259
6260 return 0;
6261}
6262
34518530
YQ
6263static int
6264thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1,
6265 uint16_t insn2, struct regcache *regs,
6266 struct displaced_step_closure *dsc)
6267{
6268 unsigned int op = bits (insn1, 5, 8);
6269 unsigned int rn, rm, rd;
6270 ULONGEST rd_val, rn_val;
6271
6272 rn = bits (insn1, 0, 3); /* Rn */
6273 rm = bits (insn2, 0, 3); /* Rm */
6274 rd = bits (insn2, 8, 11); /* Rd */
6275
6276 /* This routine is only called for instruction MOV. */
6277 gdb_assert (op == 0x2 && rn == 0xf);
6278
6279 if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM)
6280 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc);
6281
6282 if (debug_displaced)
6283 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n",
6284 "ALU", insn1, insn2);
6285
6286 /* Instruction is of form:
6287
6288 <op><cond> rd, [rn,] #imm
6289
6290 Rewrite as:
6291
6292 Preparation: tmp1, tmp2 <- r0, r1;
6293 r0, r1 <- rd, rn
6294 Insn: <op><cond> r0, r1, #imm
6295 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
6296 */
6297
6298 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
6299 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
6300 rn_val = displaced_read_reg (regs, dsc, rn);
6301 rd_val = displaced_read_reg (regs, dsc, rd);
6302 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
6303 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
6304 dsc->rd = rd;
6305
6306 dsc->modinsn[0] = insn1;
6307 dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1);
6308 dsc->numinsns = 2;
6309
6310 dsc->cleanup = &cleanup_alu_imm;
6311
6312 return 0;
6313}
6314
cca44b1b
JB
6315/* Copy/cleanup arithmetic/logic insns with register RHS. */
6316
6317static void
6e39997a 6318cleanup_alu_reg (struct gdbarch *gdbarch,
cca44b1b
JB
6319 struct regcache *regs, struct displaced_step_closure *dsc)
6320{
6321 ULONGEST rd_val;
6322 int i;
6323
36073a92 6324 rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
6325
6326 for (i = 0; i < 3; i++)
6327 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
6328
6329 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
6330}
6331
7ff120b4
YQ
6332static void
6333install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
6334 struct displaced_step_closure *dsc,
6335 unsigned int rd, unsigned int rn, unsigned int rm)
cca44b1b 6336{
cca44b1b 6337 ULONGEST rd_val, rn_val, rm_val;
cca44b1b 6338
cca44b1b
JB
6339 /* Instruction is of form:
6340
6341 <op><cond> rd, [rn,] rm [, <shift>]
6342
6343 Rewrite as:
6344
6345 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
6346 r0, r1, r2 <- rd, rn, rm
6347 Insn: <op><cond> r0, r1, r2 [, <shift>]
6348 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
6349 */
6350
36073a92
YQ
6351 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
6352 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
6353 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
6354 rd_val = displaced_read_reg (regs, dsc, rd);
6355 rn_val = displaced_read_reg (regs, dsc, rn);
6356 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
6357 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
6358 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
6359 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
6360 dsc->rd = rd;
6361
7ff120b4
YQ
6362 dsc->cleanup = &cleanup_alu_reg;
6363}
6364
6365static int
6366arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
6367 struct displaced_step_closure *dsc)
6368{
6369 unsigned int op = bits (insn, 21, 24);
6370 int is_mov = (op == 0xd);
6371
6372 if (!insn_references_pc (insn, 0x000ff00ful))
6373 return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc);
6374
6375 if (debug_displaced)
6376 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
6377 is_mov ? "move" : "ALU", (unsigned long) insn);
6378
cca44b1b
JB
6379 if (is_mov)
6380 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
6381 else
6382 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
6383
7ff120b4
YQ
6384 install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19),
6385 bits (insn, 0, 3));
cca44b1b
JB
6386 return 0;
6387}
6388
34518530
YQ
6389static int
6390thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn,
6391 struct regcache *regs,
6392 struct displaced_step_closure *dsc)
6393{
6394 unsigned rn, rm, rd;
6395
6396 rd = bits (insn, 3, 6);
6397 rn = (bit (insn, 7) << 3) | bits (insn, 0, 2);
6398 rm = 2;
6399
6400 if (rd != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
6401 return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc);
6402
6403 if (debug_displaced)
6404 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x\n",
6405 "ALU", (unsigned short) insn);
6406
6407 dsc->modinsn[0] = ((insn & 0xff00) | 0x08);
6408
6409 install_alu_reg (gdbarch, regs, dsc, rd, rn, rm);
6410
6411 return 0;
6412}
6413
cca44b1b
JB
6414/* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
6415
6416static void
6e39997a 6417cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
cca44b1b
JB
6418 struct regcache *regs,
6419 struct displaced_step_closure *dsc)
6420{
36073a92 6421 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
6422 int i;
6423
6424 for (i = 0; i < 4; i++)
6425 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
6426
6427 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
6428}
6429
7ff120b4
YQ
6430static void
6431install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs,
6432 struct displaced_step_closure *dsc,
6433 unsigned int rd, unsigned int rn, unsigned int rm,
6434 unsigned rs)
cca44b1b 6435{
7ff120b4 6436 int i;
cca44b1b 6437 ULONGEST rd_val, rn_val, rm_val, rs_val;
cca44b1b 6438
cca44b1b
JB
6439 /* Instruction is of form:
6440
6441 <op><cond> rd, [rn,] rm, <shift> rs
6442
6443 Rewrite as:
6444
6445 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
6446 r0, r1, r2, r3 <- rd, rn, rm, rs
6447 Insn: <op><cond> r0, r1, r2, <shift> r3
6448 Cleanup: tmp5 <- r0
6449 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
6450 rd <- tmp5
6451 */
6452
6453 for (i = 0; i < 4; i++)
36073a92 6454 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
cca44b1b 6455
36073a92
YQ
6456 rd_val = displaced_read_reg (regs, dsc, rd);
6457 rn_val = displaced_read_reg (regs, dsc, rn);
6458 rm_val = displaced_read_reg (regs, dsc, rm);
6459 rs_val = displaced_read_reg (regs, dsc, rs);
cca44b1b
JB
6460 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
6461 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
6462 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
6463 displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
6464 dsc->rd = rd;
7ff120b4
YQ
6465 dsc->cleanup = &cleanup_alu_shifted_reg;
6466}
6467
6468static int
6469arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
6470 struct regcache *regs,
6471 struct displaced_step_closure *dsc)
6472{
6473 unsigned int op = bits (insn, 21, 24);
6474 int is_mov = (op == 0xd);
6475 unsigned int rd, rn, rm, rs;
6476
6477 if (!insn_references_pc (insn, 0x000fff0ful))
6478 return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
6479
6480 if (debug_displaced)
6481 fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
6482 "%.8lx\n", is_mov ? "move" : "ALU",
6483 (unsigned long) insn);
6484
6485 rn = bits (insn, 16, 19);
6486 rm = bits (insn, 0, 3);
6487 rs = bits (insn, 8, 11);
6488 rd = bits (insn, 12, 15);
cca44b1b
JB
6489
6490 if (is_mov)
6491 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
6492 else
6493 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
6494
7ff120b4 6495 install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs);
cca44b1b
JB
6496
6497 return 0;
6498}
6499
6500/* Clean up load instructions. */
6501
6502static void
6e39997a 6503cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
6504 struct displaced_step_closure *dsc)
6505{
6506 ULONGEST rt_val, rt_val2 = 0, rn_val;
cca44b1b 6507
36073a92 6508 rt_val = displaced_read_reg (regs, dsc, 0);
cca44b1b 6509 if (dsc->u.ldst.xfersize == 8)
36073a92
YQ
6510 rt_val2 = displaced_read_reg (regs, dsc, 1);
6511 rn_val = displaced_read_reg (regs, dsc, 2);
cca44b1b
JB
6512
6513 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
6514 if (dsc->u.ldst.xfersize > 4)
6515 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
6516 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
6517 if (!dsc->u.ldst.immed)
6518 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
6519
6520 /* Handle register writeback. */
6521 if (dsc->u.ldst.writeback)
6522 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
6523 /* Put result in right place. */
6524 displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
6525 if (dsc->u.ldst.xfersize == 8)
6526 displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
6527}
6528
6529/* Clean up store instructions. */
6530
6531static void
6e39997a 6532cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
6533 struct displaced_step_closure *dsc)
6534{
36073a92 6535 ULONGEST rn_val = displaced_read_reg (regs, dsc, 2);
cca44b1b
JB
6536
6537 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
6538 if (dsc->u.ldst.xfersize > 4)
6539 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
6540 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
6541 if (!dsc->u.ldst.immed)
6542 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
6543 if (!dsc->u.ldst.restore_r4)
6544 displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
6545
6546 /* Writeback. */
6547 if (dsc->u.ldst.writeback)
6548 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
6549}
6550
6551/* Copy "extra" load/store instructions. These are halfword/doubleword
6552 transfers, which have a different encoding to byte/word transfers. */
6553
6554static int
7ff120b4
YQ
6555arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unpriveleged,
6556 struct regcache *regs, struct displaced_step_closure *dsc)
cca44b1b
JB
6557{
6558 unsigned int op1 = bits (insn, 20, 24);
6559 unsigned int op2 = bits (insn, 5, 6);
6560 unsigned int rt = bits (insn, 12, 15);
6561 unsigned int rn = bits (insn, 16, 19);
6562 unsigned int rm = bits (insn, 0, 3);
6563 char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
6564 char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
6565 int immed = (op1 & 0x4) != 0;
6566 int opcode;
6567 ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
cca44b1b
JB
6568
6569 if (!insn_references_pc (insn, 0x000ff00ful))
7ff120b4 6570 return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc);
cca44b1b
JB
6571
6572 if (debug_displaced)
6573 fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
6574 "insn %.8lx\n", unpriveleged ? "unpriveleged " : "",
6575 (unsigned long) insn);
6576
6577 opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
6578
6579 if (opcode < 0)
6580 internal_error (__FILE__, __LINE__,
6581 _("copy_extra_ld_st: instruction decode error"));
6582
36073a92
YQ
6583 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
6584 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
6585 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
cca44b1b 6586 if (!immed)
36073a92 6587 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
cca44b1b 6588
36073a92 6589 rt_val = displaced_read_reg (regs, dsc, rt);
cca44b1b 6590 if (bytesize[opcode] == 8)
36073a92
YQ
6591 rt_val2 = displaced_read_reg (regs, dsc, rt + 1);
6592 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 6593 if (!immed)
36073a92 6594 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
6595
6596 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
6597 if (bytesize[opcode] == 8)
6598 displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
6599 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
6600 if (!immed)
6601 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
6602
6603 dsc->rd = rt;
6604 dsc->u.ldst.xfersize = bytesize[opcode];
6605 dsc->u.ldst.rn = rn;
6606 dsc->u.ldst.immed = immed;
6607 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
6608 dsc->u.ldst.restore_r4 = 0;
6609
6610 if (immed)
6611 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
6612 ->
6613 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
6614 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
6615 else
6616 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
6617 ->
6618 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
6619 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
6620
6621 dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
6622
6623 return 0;
6624}
6625
0f6f04ba 6626/* Copy byte/half word/word loads and stores. */
cca44b1b 6627
7ff120b4 6628static void
0f6f04ba
YQ
6629install_load_store (struct gdbarch *gdbarch, struct regcache *regs,
6630 struct displaced_step_closure *dsc, int load,
6631 int immed, int writeback, int size, int usermode,
6632 int rt, int rm, int rn)
cca44b1b 6633{
cca44b1b 6634 ULONGEST rt_val, rn_val, rm_val = 0;
cca44b1b 6635
36073a92
YQ
6636 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
6637 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
cca44b1b 6638 if (!immed)
36073a92 6639 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
cca44b1b 6640 if (!load)
36073a92 6641 dsc->tmp[4] = displaced_read_reg (regs, dsc, 4);
cca44b1b 6642
36073a92
YQ
6643 rt_val = displaced_read_reg (regs, dsc, rt);
6644 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 6645 if (!immed)
36073a92 6646 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
6647
6648 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
6649 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
6650 if (!immed)
6651 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
cca44b1b 6652 dsc->rd = rt;
0f6f04ba 6653 dsc->u.ldst.xfersize = size;
cca44b1b
JB
6654 dsc->u.ldst.rn = rn;
6655 dsc->u.ldst.immed = immed;
7ff120b4 6656 dsc->u.ldst.writeback = writeback;
cca44b1b
JB
6657
6658 /* To write PC we can do:
6659
494e194e
YQ
6660 Before this sequence of instructions:
6661 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
6662 r2 is the Rn value got from dispalced_read_reg.
6663
6664 Insn1: push {pc} Write address of STR instruction + offset on stack
6665 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
6666 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
6667 = addr(Insn1) + offset - addr(Insn3) - 8
6668 = offset - 16
6669 Insn4: add r4, r4, #8 r4 = offset - 8
6670 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
6671 = from + offset
6672 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
cca44b1b
JB
6673
6674 Otherwise we don't know what value to write for PC, since the offset is
494e194e
YQ
6675 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
6676 of this can be found in Section "Saving from r15" in
6677 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
cca44b1b 6678
7ff120b4
YQ
6679 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
6680}
6681
34518530
YQ
6682
6683static int
6684thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1,
6685 uint16_t insn2, struct regcache *regs,
6686 struct displaced_step_closure *dsc, int size)
6687{
6688 unsigned int u_bit = bit (insn1, 7);
6689 unsigned int rt = bits (insn2, 12, 15);
6690 int imm12 = bits (insn2, 0, 11);
6691 ULONGEST pc_val;
6692
6693 if (debug_displaced)
6694 fprintf_unfiltered (gdb_stdlog,
6695 "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n",
6696 (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-',
6697 imm12);
6698
6699 if (!u_bit)
6700 imm12 = -1 * imm12;
6701
6702 /* Rewrite instruction LDR Rt imm12 into:
6703
6704 Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12
6705
6706 LDR R0, R2, R3,
6707
6708 Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */
6709
6710
6711 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
6712 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
6713 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
6714
6715 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
6716
6717 pc_val = pc_val & 0xfffffffc;
6718
6719 displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC);
6720 displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC);
6721
6722 dsc->rd = rt;
6723
6724 dsc->u.ldst.xfersize = size;
6725 dsc->u.ldst.immed = 0;
6726 dsc->u.ldst.writeback = 0;
6727 dsc->u.ldst.restore_r4 = 0;
6728
6729 /* LDR R0, R2, R3 */
6730 dsc->modinsn[0] = 0xf852;
6731 dsc->modinsn[1] = 0x3;
6732 dsc->numinsns = 2;
6733
6734 dsc->cleanup = &cleanup_load;
6735
6736 return 0;
6737}
6738
6739static int
6740thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1,
6741 uint16_t insn2, struct regcache *regs,
6742 struct displaced_step_closure *dsc,
6743 int writeback, int immed)
6744{
6745 unsigned int rt = bits (insn2, 12, 15);
6746 unsigned int rn = bits (insn1, 0, 3);
6747 unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */
6748 /* In LDR (register), there is also a register Rm, which is not allowed to
6749 be PC, so we don't have to check it. */
6750
6751 if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
6752 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load",
6753 dsc);
6754
6755 if (debug_displaced)
6756 fprintf_unfiltered (gdb_stdlog,
6757 "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n",
6758 rt, rn, insn1, insn2);
6759
6760 install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4,
6761 0, rt, rm, rn);
6762
6763 dsc->u.ldst.restore_r4 = 0;
6764
6765 if (immed)
6766 /* ldr[b]<cond> rt, [rn, #imm], etc.
6767 ->
6768 ldr[b]<cond> r0, [r2, #imm]. */
6769 {
6770 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
6771 dsc->modinsn[1] = insn2 & 0x0fff;
6772 }
6773 else
6774 /* ldr[b]<cond> rt, [rn, rm], etc.
6775 ->
6776 ldr[b]<cond> r0, [r2, r3]. */
6777 {
6778 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
6779 dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3;
6780 }
6781
6782 dsc->numinsns = 2;
6783
6784 return 0;
6785}
6786
6787
7ff120b4
YQ
6788static int
6789arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
6790 struct regcache *regs,
6791 struct displaced_step_closure *dsc,
0f6f04ba 6792 int load, int size, int usermode)
7ff120b4
YQ
6793{
6794 int immed = !bit (insn, 25);
6795 int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0);
6796 unsigned int rt = bits (insn, 12, 15);
6797 unsigned int rn = bits (insn, 16, 19);
6798 unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
6799
6800 if (!insn_references_pc (insn, 0x000ff00ful))
6801 return arm_copy_unmodified (gdbarch, insn, "load/store", dsc);
6802
6803 if (debug_displaced)
6804 fprintf_unfiltered (gdb_stdlog,
6805 "displaced: copying %s%s r%d [r%d] insn %.8lx\n",
0f6f04ba
YQ
6806 load ? (size == 1 ? "ldrb" : "ldr")
6807 : (size == 1 ? "strb" : "str"), usermode ? "t" : "",
7ff120b4
YQ
6808 rt, rn,
6809 (unsigned long) insn);
6810
0f6f04ba
YQ
6811 install_load_store (gdbarch, regs, dsc, load, immed, writeback, size,
6812 usermode, rt, rm, rn);
7ff120b4 6813
bf9f652a 6814 if (load || rt != ARM_PC_REGNUM)
cca44b1b
JB
6815 {
6816 dsc->u.ldst.restore_r4 = 0;
6817
6818 if (immed)
6819 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
6820 ->
6821 {ldr,str}[b]<cond> r0, [r2, #imm]. */
6822 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
6823 else
6824 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
6825 ->
6826 {ldr,str}[b]<cond> r0, [r2, r3]. */
6827 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
6828 }
6829 else
6830 {
6831 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
6832 dsc->u.ldst.restore_r4 = 1;
494e194e
YQ
6833 dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
6834 dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
cca44b1b
JB
6835 dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
6836 dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
6837 dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
6838
6839 /* As above. */
6840 if (immed)
6841 dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
6842 else
6843 dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
6844
cca44b1b
JB
6845 dsc->numinsns = 6;
6846 }
6847
6848 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
6849
6850 return 0;
6851}
6852
6853/* Cleanup LDM instructions with fully-populated register list. This is an
6854 unfortunate corner case: it's impossible to implement correctly by modifying
6855 the instruction. The issue is as follows: we have an instruction,
6856
6857 ldm rN, {r0-r15}
6858
6859 which we must rewrite to avoid loading PC. A possible solution would be to
6860 do the load in two halves, something like (with suitable cleanup
6861 afterwards):
6862
6863 mov r8, rN
6864 ldm[id][ab] r8!, {r0-r7}
6865 str r7, <temp>
6866 ldm[id][ab] r8, {r7-r14}
6867 <bkpt>
6868
6869 but at present there's no suitable place for <temp>, since the scratch space
6870 is overwritten before the cleanup routine is called. For now, we simply
6871 emulate the instruction. */
6872
6873static void
6874cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
6875 struct displaced_step_closure *dsc)
6876{
cca44b1b
JB
6877 int inc = dsc->u.block.increment;
6878 int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
6879 int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
6880 uint32_t regmask = dsc->u.block.regmask;
6881 int regno = inc ? 0 : 15;
6882 CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
6883 int exception_return = dsc->u.block.load && dsc->u.block.user
6884 && (regmask & 0x8000) != 0;
36073a92 6885 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
6886 int do_transfer = condition_true (dsc->u.block.cond, status);
6887 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6888
6889 if (!do_transfer)
6890 return;
6891
6892 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
6893 sensible we can do here. Complain loudly. */
6894 if (exception_return)
6895 error (_("Cannot single-step exception return"));
6896
6897 /* We don't handle any stores here for now. */
6898 gdb_assert (dsc->u.block.load != 0);
6899
6900 if (debug_displaced)
6901 fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
6902 "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
6903 dsc->u.block.increment ? "inc" : "dec",
6904 dsc->u.block.before ? "before" : "after");
6905
6906 while (regmask)
6907 {
6908 uint32_t memword;
6909
6910 if (inc)
bf9f652a 6911 while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
cca44b1b
JB
6912 regno++;
6913 else
6914 while (regno >= 0 && (regmask & (1 << regno)) == 0)
6915 regno--;
6916
6917 xfer_addr += bump_before;
6918
6919 memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
6920 displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
6921
6922 xfer_addr += bump_after;
6923
6924 regmask &= ~(1 << regno);
6925 }
6926
6927 if (dsc->u.block.writeback)
6928 displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
6929 CANNOT_WRITE_PC);
6930}
6931
6932/* Clean up an STM which included the PC in the register list. */
6933
6934static void
6935cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
6936 struct displaced_step_closure *dsc)
6937{
36073a92 6938 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
6939 int store_executed = condition_true (dsc->u.block.cond, status);
6940 CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
6941 CORE_ADDR stm_insn_addr;
6942 uint32_t pc_val;
6943 long offset;
6944 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6945
6946 /* If condition code fails, there's nothing else to do. */
6947 if (!store_executed)
6948 return;
6949
6950 if (dsc->u.block.increment)
6951 {
6952 pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
6953
6954 if (dsc->u.block.before)
6955 pc_stored_at += 4;
6956 }
6957 else
6958 {
6959 pc_stored_at = dsc->u.block.xfer_addr;
6960
6961 if (dsc->u.block.before)
6962 pc_stored_at -= 4;
6963 }
6964
6965 pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
6966 stm_insn_addr = dsc->scratch_base;
6967 offset = pc_val - stm_insn_addr;
6968
6969 if (debug_displaced)
6970 fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
6971 "STM instruction\n", offset);
6972
6973 /* Rewrite the stored PC to the proper value for the non-displaced original
6974 instruction. */
6975 write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
6976 dsc->insn_addr + offset);
6977}
6978
6979/* Clean up an LDM which includes the PC in the register list. We clumped all
6980 the registers in the transferred list into a contiguous range r0...rX (to
6981 avoid loading PC directly and losing control of the debugged program), so we
6982 must undo that here. */
6983
6984static void
6e39997a 6985cleanup_block_load_pc (struct gdbarch *gdbarch,
cca44b1b
JB
6986 struct regcache *regs,
6987 struct displaced_step_closure *dsc)
6988{
36073a92 6989 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
22e048c9 6990 int load_executed = condition_true (dsc->u.block.cond, status);
bf9f652a 6991 unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
cca44b1b
JB
6992 unsigned int regs_loaded = bitcount (mask);
6993 unsigned int num_to_shuffle = regs_loaded, clobbered;
6994
6995 /* The method employed here will fail if the register list is fully populated
6996 (we need to avoid loading PC directly). */
6997 gdb_assert (num_to_shuffle < 16);
6998
6999 if (!load_executed)
7000 return;
7001
7002 clobbered = (1 << num_to_shuffle) - 1;
7003
7004 while (num_to_shuffle > 0)
7005 {
7006 if ((mask & (1 << write_reg)) != 0)
7007 {
7008 unsigned int read_reg = num_to_shuffle - 1;
7009
7010 if (read_reg != write_reg)
7011 {
36073a92 7012 ULONGEST rval = displaced_read_reg (regs, dsc, read_reg);
cca44b1b
JB
7013 displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
7014 if (debug_displaced)
7015 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
7016 "loaded register r%d to r%d\n"), read_reg,
7017 write_reg);
7018 }
7019 else if (debug_displaced)
7020 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
7021 "r%d already in the right place\n"),
7022 write_reg);
7023
7024 clobbered &= ~(1 << write_reg);
7025
7026 num_to_shuffle--;
7027 }
7028
7029 write_reg--;
7030 }
7031
7032 /* Restore any registers we scribbled over. */
7033 for (write_reg = 0; clobbered != 0; write_reg++)
7034 {
7035 if ((clobbered & (1 << write_reg)) != 0)
7036 {
7037 displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
7038 CANNOT_WRITE_PC);
7039 if (debug_displaced)
7040 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
7041 "clobbered register r%d\n"), write_reg);
7042 clobbered &= ~(1 << write_reg);
7043 }
7044 }
7045
7046 /* Perform register writeback manually. */
7047 if (dsc->u.block.writeback)
7048 {
7049 ULONGEST new_rn_val = dsc->u.block.xfer_addr;
7050
7051 if (dsc->u.block.increment)
7052 new_rn_val += regs_loaded * 4;
7053 else
7054 new_rn_val -= regs_loaded * 4;
7055
7056 displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
7057 CANNOT_WRITE_PC);
7058 }
7059}
7060
7061/* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
7062 in user-level code (in particular exception return, ldm rn, {...pc}^). */
7063
7064static int
7ff120b4
YQ
7065arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn,
7066 struct regcache *regs,
7067 struct displaced_step_closure *dsc)
cca44b1b
JB
7068{
7069 int load = bit (insn, 20);
7070 int user = bit (insn, 22);
7071 int increment = bit (insn, 23);
7072 int before = bit (insn, 24);
7073 int writeback = bit (insn, 21);
7074 int rn = bits (insn, 16, 19);
cca44b1b 7075
0963b4bd
MS
7076 /* Block transfers which don't mention PC can be run directly
7077 out-of-line. */
bf9f652a 7078 if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
7ff120b4 7079 return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
cca44b1b 7080
bf9f652a 7081 if (rn == ARM_PC_REGNUM)
cca44b1b 7082 {
0963b4bd
MS
7083 warning (_("displaced: Unpredictable LDM or STM with "
7084 "base register r15"));
7ff120b4 7085 return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
cca44b1b
JB
7086 }
7087
7088 if (debug_displaced)
7089 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
7090 "%.8lx\n", (unsigned long) insn);
7091
36073a92 7092 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
cca44b1b
JB
7093 dsc->u.block.rn = rn;
7094
7095 dsc->u.block.load = load;
7096 dsc->u.block.user = user;
7097 dsc->u.block.increment = increment;
7098 dsc->u.block.before = before;
7099 dsc->u.block.writeback = writeback;
7100 dsc->u.block.cond = bits (insn, 28, 31);
7101
7102 dsc->u.block.regmask = insn & 0xffff;
7103
7104 if (load)
7105 {
7106 if ((insn & 0xffff) == 0xffff)
7107 {
7108 /* LDM with a fully-populated register list. This case is
7109 particularly tricky. Implement for now by fully emulating the
7110 instruction (which might not behave perfectly in all cases, but
7111 these instructions should be rare enough for that not to matter
7112 too much). */
7113 dsc->modinsn[0] = ARM_NOP;
7114
7115 dsc->cleanup = &cleanup_block_load_all;
7116 }
7117 else
7118 {
7119 /* LDM of a list of registers which includes PC. Implement by
7120 rewriting the list of registers to be transferred into a
7121 contiguous chunk r0...rX before doing the transfer, then shuffling
7122 registers into the correct places in the cleanup routine. */
7123 unsigned int regmask = insn & 0xffff;
7124 unsigned int num_in_list = bitcount (regmask), new_regmask, bit = 1;
7125 unsigned int to = 0, from = 0, i, new_rn;
7126
7127 for (i = 0; i < num_in_list; i++)
36073a92 7128 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
cca44b1b
JB
7129
7130 /* Writeback makes things complicated. We need to avoid clobbering
7131 the base register with one of the registers in our modified
7132 register list, but just using a different register can't work in
7133 all cases, e.g.:
7134
7135 ldm r14!, {r0-r13,pc}
7136
7137 which would need to be rewritten as:
7138
7139 ldm rN!, {r0-r14}
7140
7141 but that can't work, because there's no free register for N.
7142
7143 Solve this by turning off the writeback bit, and emulating
7144 writeback manually in the cleanup routine. */
7145
7146 if (writeback)
7147 insn &= ~(1 << 21);
7148
7149 new_regmask = (1 << num_in_list) - 1;
7150
7151 if (debug_displaced)
7152 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
7153 "{..., pc}: original reg list %.4x, modified "
7154 "list %.4x\n"), rn, writeback ? "!" : "",
7155 (int) insn & 0xffff, new_regmask);
7156
7157 dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
7158
7159 dsc->cleanup = &cleanup_block_load_pc;
7160 }
7161 }
7162 else
7163 {
7164 /* STM of a list of registers which includes PC. Run the instruction
7165 as-is, but out of line: this will store the wrong value for the PC,
7166 so we must manually fix up the memory in the cleanup routine.
7167 Doing things this way has the advantage that we can auto-detect
7168 the offset of the PC write (which is architecture-dependent) in
7169 the cleanup routine. */
7170 dsc->modinsn[0] = insn;
7171
7172 dsc->cleanup = &cleanup_block_store_pc;
7173 }
7174
7175 return 0;
7176}
7177
34518530
YQ
7178static int
7179thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
7180 struct regcache *regs,
7181 struct displaced_step_closure *dsc)
cca44b1b 7182{
34518530
YQ
7183 int rn = bits (insn1, 0, 3);
7184 int load = bit (insn1, 4);
7185 int writeback = bit (insn1, 5);
cca44b1b 7186
34518530
YQ
7187 /* Block transfers which don't mention PC can be run directly
7188 out-of-line. */
7189 if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0)
7190 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc);
7ff120b4 7191
34518530
YQ
7192 if (rn == ARM_PC_REGNUM)
7193 {
7194 warning (_("displaced: Unpredictable LDM or STM with "
7195 "base register r15"));
7196 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7197 "unpredictable ldm/stm", dsc);
7198 }
cca44b1b
JB
7199
7200 if (debug_displaced)
34518530
YQ
7201 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
7202 "%.4x%.4x\n", insn1, insn2);
cca44b1b 7203
34518530
YQ
7204 /* Clear bit 13, since it should be always zero. */
7205 dsc->u.block.regmask = (insn2 & 0xdfff);
7206 dsc->u.block.rn = rn;
cca44b1b 7207
34518530
YQ
7208 dsc->u.block.load = load;
7209 dsc->u.block.user = 0;
7210 dsc->u.block.increment = bit (insn1, 7);
7211 dsc->u.block.before = bit (insn1, 8);
7212 dsc->u.block.writeback = writeback;
7213 dsc->u.block.cond = INST_AL;
7214 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
cca44b1b 7215
34518530
YQ
7216 if (load)
7217 {
7218 if (dsc->u.block.regmask == 0xffff)
7219 {
7220 /* This branch is impossible to happen. */
7221 gdb_assert (0);
7222 }
7223 else
7224 {
7225 unsigned int regmask = dsc->u.block.regmask;
7226 unsigned int num_in_list = bitcount (regmask), new_regmask, bit = 1;
7227 unsigned int to = 0, from = 0, i, new_rn;
7228
7229 for (i = 0; i < num_in_list; i++)
7230 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
7231
7232 if (writeback)
7233 insn1 &= ~(1 << 5);
7234
7235 new_regmask = (1 << num_in_list) - 1;
7236
7237 if (debug_displaced)
7238 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
7239 "{..., pc}: original reg list %.4x, modified "
7240 "list %.4x\n"), rn, writeback ? "!" : "",
7241 (int) dsc->u.block.regmask, new_regmask);
7242
7243 dsc->modinsn[0] = insn1;
7244 dsc->modinsn[1] = (new_regmask & 0xffff);
7245 dsc->numinsns = 2;
7246
7247 dsc->cleanup = &cleanup_block_load_pc;
7248 }
7249 }
7250 else
7251 {
7252 dsc->modinsn[0] = insn1;
7253 dsc->modinsn[1] = insn2;
7254 dsc->numinsns = 2;
7255 dsc->cleanup = &cleanup_block_store_pc;
7256 }
7257 return 0;
7258}
7259
7260/* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
7261 for Linux, where some SVC instructions must be treated specially. */
7262
7263static void
7264cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
7265 struct displaced_step_closure *dsc)
7266{
7267 CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size;
7268
7269 if (debug_displaced)
7270 fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
7271 "%.8lx\n", (unsigned long) resume_addr);
7272
7273 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
7274}
7275
7276
7277/* Common copy routine for svc instruciton. */
7278
7279static int
7280install_svc (struct gdbarch *gdbarch, struct regcache *regs,
7281 struct displaced_step_closure *dsc)
7282{
7283 /* Preparation: none.
7284 Insn: unmodified svc.
7285 Cleanup: pc <- insn_addr + insn_size. */
7286
7287 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
7288 instruction. */
7289 dsc->wrote_to_pc = 1;
7290
7291 /* Allow OS-specific code to override SVC handling. */
bd18283a
YQ
7292 if (dsc->u.svc.copy_svc_os)
7293 return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc);
7294 else
7295 {
7296 dsc->cleanup = &cleanup_svc;
7297 return 0;
7298 }
34518530
YQ
7299}
7300
7301static int
7302arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn,
7303 struct regcache *regs, struct displaced_step_closure *dsc)
7304{
7305
7306 if (debug_displaced)
7307 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
7308 (unsigned long) insn);
7309
7310 dsc->modinsn[0] = insn;
7311
7312 return install_svc (gdbarch, regs, dsc);
7313}
7314
7315static int
7316thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn,
7317 struct regcache *regs, struct displaced_step_closure *dsc)
7318{
7319
7320 if (debug_displaced)
7321 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n",
7322 insn);
bd18283a 7323
34518530
YQ
7324 dsc->modinsn[0] = insn;
7325
7326 return install_svc (gdbarch, regs, dsc);
cca44b1b
JB
7327}
7328
7329/* Copy undefined instructions. */
7330
7331static int
7ff120b4
YQ
7332arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn,
7333 struct displaced_step_closure *dsc)
cca44b1b
JB
7334{
7335 if (debug_displaced)
0963b4bd
MS
7336 fprintf_unfiltered (gdb_stdlog,
7337 "displaced: copying undefined insn %.8lx\n",
cca44b1b
JB
7338 (unsigned long) insn);
7339
7340 dsc->modinsn[0] = insn;
7341
7342 return 0;
7343}
7344
34518530
YQ
7345static int
7346thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
7347 struct displaced_step_closure *dsc)
7348{
7349
7350 if (debug_displaced)
7351 fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn "
7352 "%.4x %.4x\n", (unsigned short) insn1,
7353 (unsigned short) insn2);
7354
7355 dsc->modinsn[0] = insn1;
7356 dsc->modinsn[1] = insn2;
7357 dsc->numinsns = 2;
7358
7359 return 0;
7360}
7361
cca44b1b
JB
7362/* Copy unpredictable instructions. */
7363
7364static int
7ff120b4
YQ
7365arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
7366 struct displaced_step_closure *dsc)
cca44b1b
JB
7367{
7368 if (debug_displaced)
7369 fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
7370 "%.8lx\n", (unsigned long) insn);
7371
7372 dsc->modinsn[0] = insn;
7373
7374 return 0;
7375}
7376
7377/* The decode_* functions are instruction decoding helpers. They mostly follow
7378 the presentation in the ARM ARM. */
7379
7380static int
7ff120b4
YQ
7381arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
7382 struct regcache *regs,
7383 struct displaced_step_closure *dsc)
cca44b1b
JB
7384{
7385 unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
7386 unsigned int rn = bits (insn, 16, 19);
7387
7388 if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0)
7ff120b4 7389 return arm_copy_unmodified (gdbarch, insn, "cps", dsc);
cca44b1b 7390 else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1)
7ff120b4 7391 return arm_copy_unmodified (gdbarch, insn, "setend", dsc);
cca44b1b 7392 else if ((op1 & 0x60) == 0x20)
7ff120b4 7393 return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
cca44b1b 7394 else if ((op1 & 0x71) == 0x40)
7ff120b4
YQ
7395 return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store",
7396 dsc);
cca44b1b 7397 else if ((op1 & 0x77) == 0x41)
7ff120b4 7398 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
cca44b1b 7399 else if ((op1 & 0x77) == 0x45)
7ff120b4 7400 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */
cca44b1b
JB
7401 else if ((op1 & 0x77) == 0x51)
7402 {
7403 if (rn != 0xf)
7ff120b4 7404 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
cca44b1b 7405 else
7ff120b4 7406 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
7407 }
7408 else if ((op1 & 0x77) == 0x55)
7ff120b4 7409 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
cca44b1b
JB
7410 else if (op1 == 0x57)
7411 switch (op2)
7412 {
7ff120b4
YQ
7413 case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc);
7414 case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc);
7415 case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc);
7416 case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc);
7417 default: return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
7418 }
7419 else if ((op1 & 0x63) == 0x43)
7ff120b4 7420 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
7421 else if ((op2 & 0x1) == 0x0)
7422 switch (op1 & ~0x80)
7423 {
7424 case 0x61:
7ff120b4 7425 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
cca44b1b 7426 case 0x65:
7ff120b4 7427 return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
cca44b1b
JB
7428 case 0x71: case 0x75:
7429 /* pld/pldw reg. */
7ff120b4 7430 return arm_copy_preload_reg (gdbarch, insn, regs, dsc);
cca44b1b 7431 case 0x63: case 0x67: case 0x73: case 0x77:
7ff120b4 7432 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b 7433 default:
7ff120b4 7434 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7435 }
7436 else
7ff120b4 7437 return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
cca44b1b
JB
7438}
7439
7440static int
7ff120b4
YQ
7441arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
7442 struct regcache *regs,
7443 struct displaced_step_closure *dsc)
cca44b1b
JB
7444{
7445 if (bit (insn, 27) == 0)
7ff120b4 7446 return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
cca44b1b
JB
7447 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
7448 else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
7449 {
7450 case 0x0: case 0x2:
7ff120b4 7451 return arm_copy_unmodified (gdbarch, insn, "srs", dsc);
cca44b1b
JB
7452
7453 case 0x1: case 0x3:
7ff120b4 7454 return arm_copy_unmodified (gdbarch, insn, "rfe", dsc);
cca44b1b
JB
7455
7456 case 0x4: case 0x5: case 0x6: case 0x7:
7ff120b4 7457 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
cca44b1b
JB
7458
7459 case 0x8:
7460 switch ((insn & 0xe00000) >> 21)
7461 {
7462 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
7463 /* stc/stc2. */
7ff120b4 7464 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
7465
7466 case 0x2:
7ff120b4 7467 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
cca44b1b
JB
7468
7469 default:
7ff120b4 7470 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7471 }
7472
7473 case 0x9:
7474 {
7475 int rn_f = (bits (insn, 16, 19) == 0xf);
7476 switch ((insn & 0xe00000) >> 21)
7477 {
7478 case 0x1: case 0x3:
7479 /* ldc/ldc2 imm (undefined for rn == pc). */
7ff120b4
YQ
7480 return rn_f ? arm_copy_undef (gdbarch, insn, dsc)
7481 : arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
7482
7483 case 0x2:
7ff120b4 7484 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
cca44b1b
JB
7485
7486 case 0x4: case 0x5: case 0x6: case 0x7:
7487 /* ldc/ldc2 lit (undefined for rn != pc). */
7ff120b4
YQ
7488 return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc)
7489 : arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7490
7491 default:
7ff120b4 7492 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7493 }
7494 }
7495
7496 case 0xa:
7ff120b4 7497 return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
cca44b1b
JB
7498
7499 case 0xb:
7500 if (bits (insn, 16, 19) == 0xf)
7501 /* ldc/ldc2 lit. */
7ff120b4 7502 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b 7503 else
7ff120b4 7504 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7505
7506 case 0xc:
7507 if (bit (insn, 4))
7ff120b4 7508 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
cca44b1b 7509 else
7ff120b4 7510 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
7511
7512 case 0xd:
7513 if (bit (insn, 4))
7ff120b4 7514 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
cca44b1b 7515 else
7ff120b4 7516 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
7517
7518 default:
7ff120b4 7519 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7520 }
7521}
7522
7523/* Decode miscellaneous instructions in dp/misc encoding space. */
7524
7525static int
7ff120b4
YQ
7526arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
7527 struct regcache *regs,
7528 struct displaced_step_closure *dsc)
cca44b1b
JB
7529{
7530 unsigned int op2 = bits (insn, 4, 6);
7531 unsigned int op = bits (insn, 21, 22);
7532 unsigned int op1 = bits (insn, 16, 19);
7533
7534 switch (op2)
7535 {
7536 case 0x0:
7ff120b4 7537 return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
cca44b1b
JB
7538
7539 case 0x1:
7540 if (op == 0x1) /* bx. */
7ff120b4 7541 return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc);
cca44b1b 7542 else if (op == 0x3)
7ff120b4 7543 return arm_copy_unmodified (gdbarch, insn, "clz", dsc);
cca44b1b 7544 else
7ff120b4 7545 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7546
7547 case 0x2:
7548 if (op == 0x1)
7549 /* Not really supported. */
7ff120b4 7550 return arm_copy_unmodified (gdbarch, insn, "bxj", dsc);
cca44b1b 7551 else
7ff120b4 7552 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7553
7554 case 0x3:
7555 if (op == 0x1)
7ff120b4 7556 return arm_copy_bx_blx_reg (gdbarch, insn,
0963b4bd 7557 regs, dsc); /* blx register. */
cca44b1b 7558 else
7ff120b4 7559 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7560
7561 case 0x5:
7ff120b4 7562 return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
cca44b1b
JB
7563
7564 case 0x7:
7565 if (op == 0x1)
7ff120b4 7566 return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc);
cca44b1b
JB
7567 else if (op == 0x3)
7568 /* Not really supported. */
7ff120b4 7569 return arm_copy_unmodified (gdbarch, insn, "smc", dsc);
cca44b1b
JB
7570
7571 default:
7ff120b4 7572 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7573 }
7574}
7575
7576static int
7ff120b4
YQ
7577arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn,
7578 struct regcache *regs,
7579 struct displaced_step_closure *dsc)
cca44b1b
JB
7580{
7581 if (bit (insn, 25))
7582 switch (bits (insn, 20, 24))
7583 {
7584 case 0x10:
7ff120b4 7585 return arm_copy_unmodified (gdbarch, insn, "movw", dsc);
cca44b1b
JB
7586
7587 case 0x14:
7ff120b4 7588 return arm_copy_unmodified (gdbarch, insn, "movt", dsc);
cca44b1b
JB
7589
7590 case 0x12: case 0x16:
7ff120b4 7591 return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc);
cca44b1b
JB
7592
7593 default:
7ff120b4 7594 return arm_copy_alu_imm (gdbarch, insn, regs, dsc);
cca44b1b
JB
7595 }
7596 else
7597 {
7598 uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
7599
7600 if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
7ff120b4 7601 return arm_copy_alu_reg (gdbarch, insn, regs, dsc);
cca44b1b 7602 else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
7ff120b4 7603 return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
cca44b1b 7604 else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
7ff120b4 7605 return arm_decode_miscellaneous (gdbarch, insn, regs, dsc);
cca44b1b 7606 else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
7ff120b4 7607 return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
cca44b1b 7608 else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
7ff120b4 7609 return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc);
cca44b1b 7610 else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
7ff120b4 7611 return arm_copy_unmodified (gdbarch, insn, "synch", dsc);
cca44b1b
JB
7612 else if (op2 == 0xb || (op2 & 0xd) == 0xd)
7613 /* 2nd arg means "unpriveleged". */
7ff120b4
YQ
7614 return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
7615 dsc);
cca44b1b
JB
7616 }
7617
7618 /* Should be unreachable. */
7619 return 1;
7620}
7621
7622static int
7ff120b4
YQ
7623arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
7624 struct regcache *regs,
7625 struct displaced_step_closure *dsc)
cca44b1b
JB
7626{
7627 int a = bit (insn, 25), b = bit (insn, 4);
7628 uint32_t op1 = bits (insn, 20, 24);
7629 int rn_f = bits (insn, 16, 19) == 0xf;
7630
7631 if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
7632 || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
0f6f04ba 7633 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0);
cca44b1b
JB
7634 else if ((!a && (op1 & 0x17) == 0x02)
7635 || (a && (op1 & 0x17) == 0x02 && !b))
0f6f04ba 7636 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1);
cca44b1b
JB
7637 else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
7638 || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
0f6f04ba 7639 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0);
cca44b1b
JB
7640 else if ((!a && (op1 & 0x17) == 0x03)
7641 || (a && (op1 & 0x17) == 0x03 && !b))
0f6f04ba 7642 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1);
cca44b1b
JB
7643 else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
7644 || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
7ff120b4 7645 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
cca44b1b
JB
7646 else if ((!a && (op1 & 0x17) == 0x06)
7647 || (a && (op1 & 0x17) == 0x06 && !b))
7ff120b4 7648 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
cca44b1b
JB
7649 else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
7650 || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
7ff120b4 7651 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
cca44b1b
JB
7652 else if ((!a && (op1 & 0x17) == 0x07)
7653 || (a && (op1 & 0x17) == 0x07 && !b))
7ff120b4 7654 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
cca44b1b
JB
7655
7656 /* Should be unreachable. */
7657 return 1;
7658}
7659
7660static int
7ff120b4
YQ
7661arm_decode_media (struct gdbarch *gdbarch, uint32_t insn,
7662 struct displaced_step_closure *dsc)
cca44b1b
JB
7663{
7664 switch (bits (insn, 20, 24))
7665 {
7666 case 0x00: case 0x01: case 0x02: case 0x03:
7ff120b4 7667 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
cca44b1b
JB
7668
7669 case 0x04: case 0x05: case 0x06: case 0x07:
7ff120b4 7670 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
cca44b1b
JB
7671
7672 case 0x08: case 0x09: case 0x0a: case 0x0b:
7673 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
7ff120b4 7674 return arm_copy_unmodified (gdbarch, insn,
cca44b1b
JB
7675 "decode/pack/unpack/saturate/reverse", dsc);
7676
7677 case 0x18:
7678 if (bits (insn, 5, 7) == 0) /* op2. */
7679 {
7680 if (bits (insn, 12, 15) == 0xf)
7ff120b4 7681 return arm_copy_unmodified (gdbarch, insn, "usad8", dsc);
cca44b1b 7682 else
7ff120b4 7683 return arm_copy_unmodified (gdbarch, insn, "usada8", dsc);
cca44b1b
JB
7684 }
7685 else
7ff120b4 7686 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7687
7688 case 0x1a: case 0x1b:
7689 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
7ff120b4 7690 return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc);
cca44b1b 7691 else
7ff120b4 7692 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7693
7694 case 0x1c: case 0x1d:
7695 if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
7696 {
7697 if (bits (insn, 0, 3) == 0xf)
7ff120b4 7698 return arm_copy_unmodified (gdbarch, insn, "bfc", dsc);
cca44b1b 7699 else
7ff120b4 7700 return arm_copy_unmodified (gdbarch, insn, "bfi", dsc);
cca44b1b
JB
7701 }
7702 else
7ff120b4 7703 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7704
7705 case 0x1e: case 0x1f:
7706 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
7ff120b4 7707 return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc);
cca44b1b 7708 else
7ff120b4 7709 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7710 }
7711
7712 /* Should be unreachable. */
7713 return 1;
7714}
7715
7716static int
7ff120b4
YQ
7717arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, int32_t insn,
7718 struct regcache *regs,
7719 struct displaced_step_closure *dsc)
cca44b1b
JB
7720{
7721 if (bit (insn, 25))
7ff120b4 7722 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
cca44b1b 7723 else
7ff120b4 7724 return arm_copy_block_xfer (gdbarch, insn, regs, dsc);
cca44b1b
JB
7725}
7726
7727static int
7ff120b4
YQ
7728arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
7729 struct regcache *regs,
7730 struct displaced_step_closure *dsc)
cca44b1b
JB
7731{
7732 unsigned int opcode = bits (insn, 20, 24);
7733
7734 switch (opcode)
7735 {
7736 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
7ff120b4 7737 return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
cca44b1b
JB
7738
7739 case 0x08: case 0x0a: case 0x0c: case 0x0e:
7740 case 0x12: case 0x16:
7ff120b4 7741 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
cca44b1b
JB
7742
7743 case 0x09: case 0x0b: case 0x0d: case 0x0f:
7744 case 0x13: case 0x17:
7ff120b4 7745 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
cca44b1b
JB
7746
7747 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
7748 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
7749 /* Note: no writeback for these instructions. Bit 25 will always be
7750 zero though (via caller), so the following works OK. */
7ff120b4 7751 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
7752 }
7753
7754 /* Should be unreachable. */
7755 return 1;
7756}
7757
34518530
YQ
7758/* Decode shifted register instructions. */
7759
7760static int
7761thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1,
7762 uint16_t insn2, struct regcache *regs,
7763 struct displaced_step_closure *dsc)
7764{
7765 /* PC is only allowed to be used in instruction MOV. */
7766
7767 unsigned int op = bits (insn1, 5, 8);
7768 unsigned int rn = bits (insn1, 0, 3);
7769
7770 if (op == 0x2 && rn == 0xf) /* MOV */
7771 return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc);
7772 else
7773 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7774 "dp (shift reg)", dsc);
7775}
7776
7777
7778/* Decode extension register load/store. Exactly the same as
7779 arm_decode_ext_reg_ld_st. */
7780
7781static int
7782thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1,
7783 uint16_t insn2, struct regcache *regs,
7784 struct displaced_step_closure *dsc)
7785{
7786 unsigned int opcode = bits (insn1, 4, 8);
7787
7788 switch (opcode)
7789 {
7790 case 0x04: case 0x05:
7791 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7792 "vfp/neon vmov", dsc);
7793
7794 case 0x08: case 0x0c: /* 01x00 */
7795 case 0x0a: case 0x0e: /* 01x10 */
7796 case 0x12: case 0x16: /* 10x10 */
7797 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7798 "vfp/neon vstm/vpush", dsc);
7799
7800 case 0x09: case 0x0d: /* 01x01 */
7801 case 0x0b: case 0x0f: /* 01x11 */
7802 case 0x13: case 0x17: /* 10x11 */
7803 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7804 "vfp/neon vldm/vpop", dsc);
7805
7806 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
7807 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7808 "vstr", dsc);
7809 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
7810 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc);
7811 }
7812
7813 /* Should be unreachable. */
7814 return 1;
7815}
7816
cca44b1b 7817static int
7ff120b4
YQ
7818arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to,
7819 struct regcache *regs, struct displaced_step_closure *dsc)
cca44b1b
JB
7820{
7821 unsigned int op1 = bits (insn, 20, 25);
7822 int op = bit (insn, 4);
7823 unsigned int coproc = bits (insn, 8, 11);
7824 unsigned int rn = bits (insn, 16, 19);
7825
7826 if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
7ff120b4 7827 return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
cca44b1b
JB
7828 else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
7829 && (coproc & 0xe) != 0xa)
7830 /* stc/stc2. */
7ff120b4 7831 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
7832 else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
7833 && (coproc & 0xe) != 0xa)
7834 /* ldc/ldc2 imm/lit. */
7ff120b4 7835 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b 7836 else if ((op1 & 0x3e) == 0x00)
7ff120b4 7837 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b 7838 else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
7ff120b4 7839 return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
cca44b1b 7840 else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
7ff120b4 7841 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
cca44b1b 7842 else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
7ff120b4 7843 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
cca44b1b
JB
7844 else if ((op1 & 0x30) == 0x20 && !op)
7845 {
7846 if ((coproc & 0xe) == 0xa)
7ff120b4 7847 return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
cca44b1b 7848 else
7ff120b4 7849 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
7850 }
7851 else if ((op1 & 0x30) == 0x20 && op)
7ff120b4 7852 return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
cca44b1b 7853 else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
7ff120b4 7854 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
cca44b1b 7855 else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
7ff120b4 7856 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
cca44b1b 7857 else if ((op1 & 0x30) == 0x30)
7ff120b4 7858 return arm_copy_svc (gdbarch, insn, regs, dsc);
cca44b1b 7859 else
7ff120b4 7860 return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
cca44b1b
JB
7861}
7862
34518530
YQ
7863static int
7864thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1,
7865 uint16_t insn2, struct regcache *regs,
7866 struct displaced_step_closure *dsc)
7867{
7868 unsigned int coproc = bits (insn2, 8, 11);
7869 unsigned int op1 = bits (insn1, 4, 9);
7870 unsigned int bit_5_8 = bits (insn1, 5, 8);
7871 unsigned int bit_9 = bit (insn1, 9);
7872 unsigned int bit_4 = bit (insn1, 4);
7873 unsigned int rn = bits (insn1, 0, 3);
7874
7875 if (bit_9 == 0)
7876 {
7877 if (bit_5_8 == 2)
7878 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7879 "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2",
7880 dsc);
7881 else if (bit_5_8 == 0) /* UNDEFINED. */
7882 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
7883 else
7884 {
7885 /*coproc is 101x. SIMD/VFP, ext registers load/store. */
7886 if ((coproc & 0xe) == 0xa)
7887 return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs,
7888 dsc);
7889 else /* coproc is not 101x. */
7890 {
7891 if (bit_4 == 0) /* STC/STC2. */
7892 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7893 "stc/stc2", dsc);
7894 else /* LDC/LDC2 {literal, immeidate}. */
7895 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2,
7896 regs, dsc);
7897 }
7898 }
7899 }
7900 else
7901 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc);
7902
7903 return 0;
7904}
7905
7906static void
7907install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs,
7908 struct displaced_step_closure *dsc, int rd)
7909{
7910 /* ADR Rd, #imm
7911
7912 Rewrite as:
7913
7914 Preparation: Rd <- PC
7915 Insn: ADD Rd, #imm
7916 Cleanup: Null.
7917 */
7918
7919 /* Rd <- PC */
7920 int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
7921 displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC);
7922}
7923
7924static int
7925thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs,
7926 struct displaced_step_closure *dsc,
7927 int rd, unsigned int imm)
7928{
7929
7930 /* Encoding T2: ADDS Rd, #imm */
7931 dsc->modinsn[0] = (0x3000 | (rd << 8) | imm);
7932
7933 install_pc_relative (gdbarch, regs, dsc, rd);
7934
7935 return 0;
7936}
7937
7938static int
7939thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn,
7940 struct regcache *regs,
7941 struct displaced_step_closure *dsc)
7942{
7943 unsigned int rd = bits (insn, 8, 10);
7944 unsigned int imm8 = bits (insn, 0, 7);
7945
7946 if (debug_displaced)
7947 fprintf_unfiltered (gdb_stdlog,
7948 "displaced: copying thumb adr r%d, #%d insn %.4x\n",
7949 rd, imm8, insn);
7950
7951 return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8);
7952}
7953
7954static int
7955thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1,
7956 uint16_t insn2, struct regcache *regs,
7957 struct displaced_step_closure *dsc)
7958{
7959 unsigned int rd = bits (insn2, 8, 11);
7960 /* Since immediate has the same encoding in ADR ADD and SUB, so we simply
7961 extract raw immediate encoding rather than computing immediate. When
7962 generating ADD or SUB instruction, we can simply perform OR operation to
7963 set immediate into ADD. */
7964 unsigned int imm_3_8 = insn2 & 0x70ff;
7965 unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */
7966
7967 if (debug_displaced)
7968 fprintf_unfiltered (gdb_stdlog,
7969 "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n",
7970 rd, imm_i, imm_3_8, insn1, insn2);
7971
7972 if (bit (insn1, 7)) /* Encoding T2 */
7973 {
7974 /* Encoding T3: SUB Rd, Rd, #imm */
7975 dsc->modinsn[0] = (0xf1a0 | rd | imm_i);
7976 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7977 }
7978 else /* Encoding T3 */
7979 {
7980 /* Encoding T3: ADD Rd, Rd, #imm */
7981 dsc->modinsn[0] = (0xf100 | rd | imm_i);
7982 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7983 }
7984 dsc->numinsns = 2;
7985
7986 install_pc_relative (gdbarch, regs, dsc, rd);
7987
7988 return 0;
7989}
7990
7991static int
7992thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, unsigned short insn1,
7993 struct regcache *regs,
7994 struct displaced_step_closure *dsc)
7995{
7996 unsigned int rt = bits (insn1, 8, 10);
7997 unsigned int pc;
7998 int imm8 = (bits (insn1, 0, 7) << 2);
7999 CORE_ADDR from = dsc->insn_addr;
8000
8001 /* LDR Rd, #imm8
8002
8003 Rwrite as:
8004
8005 Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8;
8006
8007 Insn: LDR R0, [R2, R3];
8008 Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */
8009
8010 if (debug_displaced)
8011 fprintf_unfiltered (gdb_stdlog,
8012 "displaced: copying thumb ldr r%d [pc #%d]\n"
8013 , rt, imm8);
8014
8015 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
8016 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
8017 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
8018 pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
8019 /* The assembler calculates the required value of the offset from the
8020 Align(PC,4) value of this instruction to the label. */
8021 pc = pc & 0xfffffffc;
8022
8023 displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC);
8024 displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC);
8025
8026 dsc->rd = rt;
8027 dsc->u.ldst.xfersize = 4;
8028 dsc->u.ldst.rn = 0;
8029 dsc->u.ldst.immed = 0;
8030 dsc->u.ldst.writeback = 0;
8031 dsc->u.ldst.restore_r4 = 0;
8032
8033 dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/
8034
8035 dsc->cleanup = &cleanup_load;
8036
8037 return 0;
8038}
8039
8040/* Copy Thumb cbnz/cbz insruction. */
8041
8042static int
8043thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1,
8044 struct regcache *regs,
8045 struct displaced_step_closure *dsc)
8046{
8047 int non_zero = bit (insn1, 11);
8048 unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1);
8049 CORE_ADDR from = dsc->insn_addr;
8050 int rn = bits (insn1, 0, 2);
8051 int rn_val = displaced_read_reg (regs, dsc, rn);
8052
8053 dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero);
8054 /* CBNZ and CBZ do not affect the condition flags. If condition is true,
8055 set it INST_AL, so cleanup_branch will know branch is taken, otherwise,
8056 condition is false, let it be, cleanup_branch will do nothing. */
8057 if (dsc->u.branch.cond)
8058 {
8059 dsc->u.branch.cond = INST_AL;
8060 dsc->u.branch.dest = from + 4 + imm5;
8061 }
8062 else
8063 dsc->u.branch.dest = from + 2;
8064
8065 dsc->u.branch.link = 0;
8066 dsc->u.branch.exchange = 0;
8067
8068 if (debug_displaced)
8069 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]"
8070 " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz",
8071 rn, rn_val, insn1, dsc->u.branch.dest);
8072
8073 dsc->modinsn[0] = THUMB_NOP;
8074
8075 dsc->cleanup = &cleanup_branch;
8076 return 0;
8077}
8078
8079/* Copy Table Branch Byte/Halfword */
8080static int
8081thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1,
8082 uint16_t insn2, struct regcache *regs,
8083 struct displaced_step_closure *dsc)
8084{
8085 ULONGEST rn_val, rm_val;
8086 int is_tbh = bit (insn2, 4);
8087 CORE_ADDR halfwords = 0;
8088 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8089
8090 rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3));
8091 rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3));
8092
8093 if (is_tbh)
8094 {
8095 gdb_byte buf[2];
8096
8097 target_read_memory (rn_val + 2 * rm_val, buf, 2);
8098 halfwords = extract_unsigned_integer (buf, 2, byte_order);
8099 }
8100 else
8101 {
8102 gdb_byte buf[1];
8103
8104 target_read_memory (rn_val + rm_val, buf, 1);
8105 halfwords = extract_unsigned_integer (buf, 1, byte_order);
8106 }
8107
8108 if (debug_displaced)
8109 fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x"
8110 " offset 0x%x\n", is_tbh ? "tbh" : "tbb",
8111 (unsigned int) rn_val, (unsigned int) rm_val,
8112 (unsigned int) halfwords);
8113
8114 dsc->u.branch.cond = INST_AL;
8115 dsc->u.branch.link = 0;
8116 dsc->u.branch.exchange = 0;
8117 dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords;
8118
8119 dsc->cleanup = &cleanup_branch;
8120
8121 return 0;
8122}
8123
8124static void
8125cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs,
8126 struct displaced_step_closure *dsc)
8127{
8128 /* PC <- r7 */
8129 int val = displaced_read_reg (regs, dsc, 7);
8130 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC);
8131
8132 /* r7 <- r8 */
8133 val = displaced_read_reg (regs, dsc, 8);
8134 displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC);
8135
8136 /* r8 <- tmp[0] */
8137 displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC);
8138
8139}
8140
8141static int
8142thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, unsigned short insn1,
8143 struct regcache *regs,
8144 struct displaced_step_closure *dsc)
8145{
8146 dsc->u.block.regmask = insn1 & 0x00ff;
8147
8148 /* Rewrite instruction: POP {rX, rY, ...,rZ, PC}
8149 to :
8150
8151 (1) register list is full, that is, r0-r7 are used.
8152 Prepare: tmp[0] <- r8
8153
8154 POP {r0, r1, ...., r6, r7}; remove PC from reglist
8155 MOV r8, r7; Move value of r7 to r8;
8156 POP {r7}; Store PC value into r7.
8157
8158 Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0]
8159
8160 (2) register list is not full, supposing there are N registers in
8161 register list (except PC, 0 <= N <= 7).
8162 Prepare: for each i, 0 - N, tmp[i] <- ri.
8163
8164 POP {r0, r1, ...., rN};
8165
8166 Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN
8167 from tmp[] properly.
8168 */
8169 if (debug_displaced)
8170 fprintf_unfiltered (gdb_stdlog,
8171 "displaced: copying thumb pop {%.8x, pc} insn %.4x\n",
8172 dsc->u.block.regmask, insn1);
8173
8174 if (dsc->u.block.regmask == 0xff)
8175 {
8176 dsc->tmp[0] = displaced_read_reg (regs, dsc, 8);
8177
8178 dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */
8179 dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */
8180 dsc->modinsn[2] = 0xbc80; /* POP {r7} */
8181
8182 dsc->numinsns = 3;
8183 dsc->cleanup = &cleanup_pop_pc_16bit_all;
8184 }
8185 else
8186 {
8187 unsigned int num_in_list = bitcount (dsc->u.block.regmask);
8188 unsigned int new_regmask, bit = 1;
8189 unsigned int to = 0, from = 0, i, new_rn;
8190
8191 for (i = 0; i < num_in_list + 1; i++)
8192 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
8193
8194 new_regmask = (1 << (num_in_list + 1)) - 1;
8195
8196 if (debug_displaced)
8197 fprintf_unfiltered (gdb_stdlog, _("displaced: POP "
8198 "{..., pc}: original reg list %.4x,"
8199 " modified list %.4x\n"),
8200 (int) dsc->u.block.regmask, new_regmask);
8201
8202 dsc->u.block.regmask |= 0x8000;
8203 dsc->u.block.writeback = 0;
8204 dsc->u.block.cond = INST_AL;
8205
8206 dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff);
8207
8208 dsc->cleanup = &cleanup_block_load_pc;
8209 }
8210
8211 return 0;
8212}
8213
8214static void
8215thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
8216 struct regcache *regs,
8217 struct displaced_step_closure *dsc)
8218{
8219 unsigned short op_bit_12_15 = bits (insn1, 12, 15);
8220 unsigned short op_bit_10_11 = bits (insn1, 10, 11);
8221 int err = 0;
8222
8223 /* 16-bit thumb instructions. */
8224 switch (op_bit_12_15)
8225 {
8226 /* Shift (imme), add, subtract, move and compare. */
8227 case 0: case 1: case 2: case 3:
8228 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
8229 "shift/add/sub/mov/cmp",
8230 dsc);
8231 break;
8232 case 4:
8233 switch (op_bit_10_11)
8234 {
8235 case 0: /* Data-processing */
8236 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
8237 "data-processing",
8238 dsc);
8239 break;
8240 case 1: /* Special data instructions and branch and exchange. */
8241 {
8242 unsigned short op = bits (insn1, 7, 9);
8243 if (op == 6 || op == 7) /* BX or BLX */
8244 err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc);
8245 else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */
8246 err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc);
8247 else
8248 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data",
8249 dsc);
8250 }
8251 break;
8252 default: /* LDR (literal) */
8253 err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc);
8254 }
8255 break;
8256 case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */
8257 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc);
8258 break;
8259 case 10:
8260 if (op_bit_10_11 < 2) /* Generate PC-relative address */
8261 err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc);
8262 else /* Generate SP-relative address */
8263 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc);
8264 break;
8265 case 11: /* Misc 16-bit instructions */
8266 {
8267 switch (bits (insn1, 8, 11))
8268 {
8269 case 1: case 3: case 9: case 11: /* CBNZ, CBZ */
8270 err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc);
8271 break;
8272 case 12: case 13: /* POP */
8273 if (bit (insn1, 8)) /* PC is in register list. */
8274 err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc);
8275 else
8276 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc);
8277 break;
8278 case 15: /* If-Then, and hints */
8279 if (bits (insn1, 0, 3))
8280 /* If-Then makes up to four following instructions conditional.
8281 IT instruction itself is not conditional, so handle it as a
8282 common unmodified instruction. */
8283 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then",
8284 dsc);
8285 else
8286 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc);
8287 break;
8288 default:
8289 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc);
8290 }
8291 }
8292 break;
8293 case 12:
8294 if (op_bit_10_11 < 2) /* Store multiple registers */
8295 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc);
8296 else /* Load multiple registers */
8297 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc);
8298 break;
8299 case 13: /* Conditional branch and supervisor call */
8300 if (bits (insn1, 9, 11) != 7) /* conditional branch */
8301 err = thumb_copy_b (gdbarch, insn1, dsc);
8302 else
8303 err = thumb_copy_svc (gdbarch, insn1, regs, dsc);
8304 break;
8305 case 14: /* Unconditional branch */
8306 err = thumb_copy_b (gdbarch, insn1, dsc);
8307 break;
8308 default:
8309 err = 1;
8310 }
8311
8312 if (err)
8313 internal_error (__FILE__, __LINE__,
8314 _("thumb_process_displaced_16bit_insn: Instruction decode error"));
8315}
8316
8317static int
8318decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch,
8319 uint16_t insn1, uint16_t insn2,
8320 struct regcache *regs,
8321 struct displaced_step_closure *dsc)
8322{
8323 int rt = bits (insn2, 12, 15);
8324 int rn = bits (insn1, 0, 3);
8325 int op1 = bits (insn1, 7, 8);
8326 int err = 0;
8327
8328 switch (bits (insn1, 5, 6))
8329 {
8330 case 0: /* Load byte and memory hints */
8331 if (rt == 0xf) /* PLD/PLI */
8332 {
8333 if (rn == 0xf)
8334 /* PLD literal or Encoding T3 of PLI(immediate, literal). */
8335 return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc);
8336 else
8337 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8338 "pli/pld", dsc);
8339 }
8340 else
8341 {
8342 if (rn == 0xf) /* LDRB/LDRSB (literal) */
8343 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
8344 1);
8345 else
8346 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8347 "ldrb{reg, immediate}/ldrbt",
8348 dsc);
8349 }
8350
8351 break;
8352 case 1: /* Load halfword and memory hints. */
8353 if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */
8354 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8355 "pld/unalloc memhint", dsc);
8356 else
8357 {
8358 if (rn == 0xf)
8359 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
8360 2);
8361 else
8362 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8363 "ldrh/ldrht", dsc);
8364 }
8365 break;
8366 case 2: /* Load word */
8367 {
8368 int insn2_bit_8_11 = bits (insn2, 8, 11);
8369
8370 if (rn == 0xf)
8371 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4);
8372 else if (op1 == 0x1) /* Encoding T3 */
8373 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc,
8374 0, 1);
8375 else /* op1 == 0x0 */
8376 {
8377 if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9)
8378 /* LDR (immediate) */
8379 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
8380 dsc, bit (insn2, 8), 1);
8381 else if (insn2_bit_8_11 == 0xe) /* LDRT */
8382 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8383 "ldrt", dsc);
8384 else
8385 /* LDR (register) */
8386 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
8387 dsc, 0, 0);
8388 }
8389 break;
8390 }
8391 default:
8392 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
8393 break;
8394 }
8395 return 0;
8396}
8397
8398static void
8399thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
8400 uint16_t insn2, struct regcache *regs,
8401 struct displaced_step_closure *dsc)
8402{
8403 int err = 0;
8404 unsigned short op = bit (insn2, 15);
8405 unsigned int op1 = bits (insn1, 11, 12);
8406
8407 switch (op1)
8408 {
8409 case 1:
8410 {
8411 switch (bits (insn1, 9, 10))
8412 {
8413 case 0:
8414 if (bit (insn1, 6))
8415 {
8416 /* Load/store {dual, execlusive}, table branch. */
8417 if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1
8418 && bits (insn2, 5, 7) == 0)
8419 err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs,
8420 dsc);
8421 else
8422 /* PC is not allowed to use in load/store {dual, exclusive}
8423 instructions. */
8424 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8425 "load/store dual/ex", dsc);
8426 }
8427 else /* load/store multiple */
8428 {
8429 switch (bits (insn1, 7, 8))
8430 {
8431 case 0: case 3: /* SRS, RFE */
8432 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8433 "srs/rfe", dsc);
8434 break;
8435 case 1: case 2: /* LDM/STM/PUSH/POP */
8436 err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc);
8437 break;
8438 }
8439 }
8440 break;
8441
8442 case 1:
8443 /* Data-processing (shift register). */
8444 err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs,
8445 dsc);
8446 break;
8447 default: /* Coprocessor instructions. */
8448 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
8449 break;
8450 }
8451 break;
8452 }
8453 case 2: /* op1 = 2 */
8454 if (op) /* Branch and misc control. */
8455 {
8456 if (bit (insn2, 14) /* BLX/BL */
8457 || bit (insn2, 12) /* Unconditional branch */
8458 || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */
8459 err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc);
8460 else
8461 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8462 "misc ctrl", dsc);
8463 }
8464 else
8465 {
8466 if (bit (insn1, 9)) /* Data processing (plain binary imm). */
8467 {
8468 int op = bits (insn1, 4, 8);
8469 int rn = bits (insn1, 0, 3);
8470 if ((op == 0 || op == 0xa) && rn == 0xf)
8471 err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2,
8472 regs, dsc);
8473 else
8474 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8475 "dp/pb", dsc);
8476 }
8477 else /* Data processing (modified immeidate) */
8478 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8479 "dp/mi", dsc);
8480 }
8481 break;
8482 case 3: /* op1 = 3 */
8483 switch (bits (insn1, 9, 10))
8484 {
8485 case 0:
8486 if (bit (insn1, 4))
8487 err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2,
8488 regs, dsc);
8489 else /* NEON Load/Store and Store single data item */
8490 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8491 "neon elt/struct load/store",
8492 dsc);
8493 break;
8494 case 1: /* op1 = 3, bits (9, 10) == 1 */
8495 switch (bits (insn1, 7, 8))
8496 {
8497 case 0: case 1: /* Data processing (register) */
8498 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8499 "dp(reg)", dsc);
8500 break;
8501 case 2: /* Multiply and absolute difference */
8502 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8503 "mul/mua/diff", dsc);
8504 break;
8505 case 3: /* Long multiply and divide */
8506 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8507 "lmul/lmua", dsc);
8508 break;
8509 }
8510 break;
8511 default: /* Coprocessor instructions */
8512 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
8513 break;
8514 }
8515 break;
8516 default:
8517 err = 1;
8518 }
8519
8520 if (err)
8521 internal_error (__FILE__, __LINE__,
8522 _("thumb_process_displaced_32bit_insn: Instruction decode error"));
8523
8524}
8525
b434a28f
YQ
8526static void
8527thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
8528 CORE_ADDR to, struct regcache *regs,
8529 struct displaced_step_closure *dsc)
8530{
34518530
YQ
8531 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
8532 uint16_t insn1
8533 = read_memory_unsigned_integer (from, 2, byte_order_for_code);
8534
8535 if (debug_displaced)
8536 fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x "
8537 "at %.8lx\n", insn1, (unsigned long) from);
8538
8539 dsc->is_thumb = 1;
8540 dsc->insn_size = thumb_insn_size (insn1);
8541 if (thumb_insn_size (insn1) == 4)
8542 {
8543 uint16_t insn2
8544 = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code);
8545 thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc);
8546 }
8547 else
8548 thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc);
b434a28f
YQ
8549}
8550
cca44b1b 8551void
b434a28f
YQ
8552arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
8553 CORE_ADDR to, struct regcache *regs,
cca44b1b
JB
8554 struct displaced_step_closure *dsc)
8555{
8556 int err = 0;
b434a28f
YQ
8557 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
8558 uint32_t insn;
cca44b1b
JB
8559
8560 /* Most displaced instructions use a 1-instruction scratch space, so set this
8561 here and override below if/when necessary. */
8562 dsc->numinsns = 1;
8563 dsc->insn_addr = from;
8564 dsc->scratch_base = to;
8565 dsc->cleanup = NULL;
8566 dsc->wrote_to_pc = 0;
8567
b434a28f
YQ
8568 if (!displaced_in_arm_mode (regs))
8569 return thumb_process_displaced_insn (gdbarch, from, to, regs, dsc);
8570
4db71c0b
YQ
8571 dsc->is_thumb = 0;
8572 dsc->insn_size = 4;
b434a28f
YQ
8573 insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
8574 if (debug_displaced)
8575 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
8576 "at %.8lx\n", (unsigned long) insn,
8577 (unsigned long) from);
8578
cca44b1b 8579 if ((insn & 0xf0000000) == 0xf0000000)
7ff120b4 8580 err = arm_decode_unconditional (gdbarch, insn, regs, dsc);
cca44b1b
JB
8581 else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
8582 {
8583 case 0x0: case 0x1: case 0x2: case 0x3:
7ff120b4 8584 err = arm_decode_dp_misc (gdbarch, insn, regs, dsc);
cca44b1b
JB
8585 break;
8586
8587 case 0x4: case 0x5: case 0x6:
7ff120b4 8588 err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
cca44b1b
JB
8589 break;
8590
8591 case 0x7:
7ff120b4 8592 err = arm_decode_media (gdbarch, insn, dsc);
cca44b1b
JB
8593 break;
8594
8595 case 0x8: case 0x9: case 0xa: case 0xb:
7ff120b4 8596 err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
cca44b1b
JB
8597 break;
8598
8599 case 0xc: case 0xd: case 0xe: case 0xf:
7ff120b4 8600 err = arm_decode_svc_copro (gdbarch, insn, to, regs, dsc);
cca44b1b
JB
8601 break;
8602 }
8603
8604 if (err)
8605 internal_error (__FILE__, __LINE__,
8606 _("arm_process_displaced_insn: Instruction decode error"));
8607}
8608
8609/* Actually set up the scratch space for a displaced instruction. */
8610
8611void
8612arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
8613 CORE_ADDR to, struct displaced_step_closure *dsc)
8614{
8615 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4db71c0b 8616 unsigned int i, len, offset;
cca44b1b 8617 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
4db71c0b 8618 int size = dsc->is_thumb? 2 : 4;
948f8e3d 8619 const gdb_byte *bkp_insn;
cca44b1b 8620
4db71c0b 8621 offset = 0;
cca44b1b
JB
8622 /* Poke modified instruction(s). */
8623 for (i = 0; i < dsc->numinsns; i++)
8624 {
8625 if (debug_displaced)
4db71c0b
YQ
8626 {
8627 fprintf_unfiltered (gdb_stdlog, "displaced: writing insn ");
8628 if (size == 4)
8629 fprintf_unfiltered (gdb_stdlog, "%.8lx",
8630 dsc->modinsn[i]);
8631 else if (size == 2)
8632 fprintf_unfiltered (gdb_stdlog, "%.4x",
8633 (unsigned short)dsc->modinsn[i]);
8634
8635 fprintf_unfiltered (gdb_stdlog, " at %.8lx\n",
8636 (unsigned long) to + offset);
8637
8638 }
8639 write_memory_unsigned_integer (to + offset, size,
8640 byte_order_for_code,
cca44b1b 8641 dsc->modinsn[i]);
4db71c0b
YQ
8642 offset += size;
8643 }
8644
8645 /* Choose the correct breakpoint instruction. */
8646 if (dsc->is_thumb)
8647 {
8648 bkp_insn = tdep->thumb_breakpoint;
8649 len = tdep->thumb_breakpoint_size;
8650 }
8651 else
8652 {
8653 bkp_insn = tdep->arm_breakpoint;
8654 len = tdep->arm_breakpoint_size;
cca44b1b
JB
8655 }
8656
8657 /* Put breakpoint afterwards. */
4db71c0b 8658 write_memory (to + offset, bkp_insn, len);
cca44b1b
JB
8659
8660 if (debug_displaced)
8661 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
8662 paddress (gdbarch, from), paddress (gdbarch, to));
8663}
8664
8665/* Entry point for copying an instruction into scratch space for displaced
8666 stepping. */
8667
8668struct displaced_step_closure *
8669arm_displaced_step_copy_insn (struct gdbarch *gdbarch,
8670 CORE_ADDR from, CORE_ADDR to,
8671 struct regcache *regs)
8672{
8673 struct displaced_step_closure *dsc
8674 = xmalloc (sizeof (struct displaced_step_closure));
b434a28f 8675 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
cca44b1b
JB
8676 arm_displaced_init_closure (gdbarch, from, to, dsc);
8677
8678 return dsc;
8679}
8680
8681/* Entry point for cleaning things up after a displaced instruction has been
8682 single-stepped. */
8683
8684void
8685arm_displaced_step_fixup (struct gdbarch *gdbarch,
8686 struct displaced_step_closure *dsc,
8687 CORE_ADDR from, CORE_ADDR to,
8688 struct regcache *regs)
8689{
8690 if (dsc->cleanup)
8691 dsc->cleanup (gdbarch, regs, dsc);
8692
8693 if (!dsc->wrote_to_pc)
4db71c0b
YQ
8694 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
8695 dsc->insn_addr + dsc->insn_size);
8696
cca44b1b
JB
8697}
8698
8699#include "bfd-in2.h"
8700#include "libcoff.h"
8701
8702static int
8703gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
8704{
9779414d
DJ
8705 struct gdbarch *gdbarch = info->application_data;
8706
8707 if (arm_pc_is_thumb (gdbarch, memaddr))
cca44b1b
JB
8708 {
8709 static asymbol *asym;
8710 static combined_entry_type ce;
8711 static struct coff_symbol_struct csym;
8712 static struct bfd fake_bfd;
8713 static bfd_target fake_target;
8714
8715 if (csym.native == NULL)
8716 {
8717 /* Create a fake symbol vector containing a Thumb symbol.
8718 This is solely so that the code in print_insn_little_arm()
8719 and print_insn_big_arm() in opcodes/arm-dis.c will detect
8720 the presence of a Thumb symbol and switch to decoding
8721 Thumb instructions. */
8722
8723 fake_target.flavour = bfd_target_coff_flavour;
8724 fake_bfd.xvec = &fake_target;
8725 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
8726 csym.native = &ce;
8727 csym.symbol.the_bfd = &fake_bfd;
8728 csym.symbol.name = "fake";
8729 asym = (asymbol *) & csym;
8730 }
8731
8732 memaddr = UNMAKE_THUMB_ADDR (memaddr);
8733 info->symbols = &asym;
8734 }
8735 else
8736 info->symbols = NULL;
8737
8738 if (info->endian == BFD_ENDIAN_BIG)
8739 return print_insn_big_arm (memaddr, info);
8740 else
8741 return print_insn_little_arm (memaddr, info);
8742}
8743
8744/* The following define instruction sequences that will cause ARM
8745 cpu's to take an undefined instruction trap. These are used to
8746 signal a breakpoint to GDB.
8747
8748 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
8749 modes. A different instruction is required for each mode. The ARM
8750 cpu's can also be big or little endian. Thus four different
8751 instructions are needed to support all cases.
8752
8753 Note: ARMv4 defines several new instructions that will take the
8754 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
8755 not in fact add the new instructions. The new undefined
8756 instructions in ARMv4 are all instructions that had no defined
8757 behaviour in earlier chips. There is no guarantee that they will
8758 raise an exception, but may be treated as NOP's. In practice, it
8759 may only safe to rely on instructions matching:
8760
8761 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
8762 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
8763 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
8764
0963b4bd 8765 Even this may only true if the condition predicate is true. The
cca44b1b
JB
8766 following use a condition predicate of ALWAYS so it is always TRUE.
8767
8768 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
8769 and NetBSD all use a software interrupt rather than an undefined
8770 instruction to force a trap. This can be handled by by the
8771 abi-specific code during establishment of the gdbarch vector. */
8772
8773#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
8774#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
8775#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
8776#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
8777
948f8e3d
PA
8778static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
8779static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
8780static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
8781static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
cca44b1b
JB
8782
8783/* Determine the type and size of breakpoint to insert at PCPTR. Uses
8784 the program counter value to determine whether a 16-bit or 32-bit
8785 breakpoint should be used. It returns a pointer to a string of
8786 bytes that encode a breakpoint instruction, stores the length of
8787 the string to *lenptr, and adjusts the program counter (if
8788 necessary) to point to the actual memory location where the
8789 breakpoint should be inserted. */
8790
8791static const unsigned char *
8792arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
8793{
8794 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177321bd 8795 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
cca44b1b 8796
9779414d 8797 if (arm_pc_is_thumb (gdbarch, *pcptr))
cca44b1b
JB
8798 {
8799 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
177321bd
DJ
8800
8801 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
8802 check whether we are replacing a 32-bit instruction. */
8803 if (tdep->thumb2_breakpoint != NULL)
8804 {
8805 gdb_byte buf[2];
8806 if (target_read_memory (*pcptr, buf, 2) == 0)
8807 {
8808 unsigned short inst1;
8809 inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
db24da6d 8810 if (thumb_insn_size (inst1) == 4)
177321bd
DJ
8811 {
8812 *lenptr = tdep->thumb2_breakpoint_size;
8813 return tdep->thumb2_breakpoint;
8814 }
8815 }
8816 }
8817
cca44b1b
JB
8818 *lenptr = tdep->thumb_breakpoint_size;
8819 return tdep->thumb_breakpoint;
8820 }
8821 else
8822 {
8823 *lenptr = tdep->arm_breakpoint_size;
8824 return tdep->arm_breakpoint;
8825 }
8826}
8827
177321bd
DJ
8828static void
8829arm_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
8830 int *kindptr)
8831{
177321bd
DJ
8832 arm_breakpoint_from_pc (gdbarch, pcptr, kindptr);
8833
9779414d 8834 if (arm_pc_is_thumb (gdbarch, *pcptr) && *kindptr == 4)
177321bd
DJ
8835 /* The documented magic value for a 32-bit Thumb-2 breakpoint, so
8836 that this is not confused with a 32-bit ARM breakpoint. */
8837 *kindptr = 3;
8838}
8839
cca44b1b
JB
8840/* Extract from an array REGBUF containing the (raw) register state a
8841 function return value of type TYPE, and copy that, in virtual
8842 format, into VALBUF. */
8843
8844static void
8845arm_extract_return_value (struct type *type, struct regcache *regs,
8846 gdb_byte *valbuf)
8847{
8848 struct gdbarch *gdbarch = get_regcache_arch (regs);
8849 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8850
8851 if (TYPE_CODE_FLT == TYPE_CODE (type))
8852 {
8853 switch (gdbarch_tdep (gdbarch)->fp_model)
8854 {
8855 case ARM_FLOAT_FPA:
8856 {
8857 /* The value is in register F0 in internal format. We need to
8858 extract the raw value and then convert it to the desired
8859 internal type. */
8860 bfd_byte tmpbuf[FP_REGISTER_SIZE];
8861
8862 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
8863 convert_from_extended (floatformat_from_type (type), tmpbuf,
8864 valbuf, gdbarch_byte_order (gdbarch));
8865 }
8866 break;
8867
8868 case ARM_FLOAT_SOFT_FPA:
8869 case ARM_FLOAT_SOFT_VFP:
8870 /* ARM_FLOAT_VFP can arise if this is a variadic function so
8871 not using the VFP ABI code. */
8872 case ARM_FLOAT_VFP:
8873 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
8874 if (TYPE_LENGTH (type) > 4)
8875 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
8876 valbuf + INT_REGISTER_SIZE);
8877 break;
8878
8879 default:
0963b4bd
MS
8880 internal_error (__FILE__, __LINE__,
8881 _("arm_extract_return_value: "
8882 "Floating point model not supported"));
cca44b1b
JB
8883 break;
8884 }
8885 }
8886 else if (TYPE_CODE (type) == TYPE_CODE_INT
8887 || TYPE_CODE (type) == TYPE_CODE_CHAR
8888 || TYPE_CODE (type) == TYPE_CODE_BOOL
8889 || TYPE_CODE (type) == TYPE_CODE_PTR
8890 || TYPE_CODE (type) == TYPE_CODE_REF
8891 || TYPE_CODE (type) == TYPE_CODE_ENUM)
8892 {
b021a221
MS
8893 /* If the type is a plain integer, then the access is
8894 straight-forward. Otherwise we have to play around a bit
8895 more. */
cca44b1b
JB
8896 int len = TYPE_LENGTH (type);
8897 int regno = ARM_A1_REGNUM;
8898 ULONGEST tmp;
8899
8900 while (len > 0)
8901 {
8902 /* By using store_unsigned_integer we avoid having to do
8903 anything special for small big-endian values. */
8904 regcache_cooked_read_unsigned (regs, regno++, &tmp);
8905 store_unsigned_integer (valbuf,
8906 (len > INT_REGISTER_SIZE
8907 ? INT_REGISTER_SIZE : len),
8908 byte_order, tmp);
8909 len -= INT_REGISTER_SIZE;
8910 valbuf += INT_REGISTER_SIZE;
8911 }
8912 }
8913 else
8914 {
8915 /* For a structure or union the behaviour is as if the value had
8916 been stored to word-aligned memory and then loaded into
8917 registers with 32-bit load instruction(s). */
8918 int len = TYPE_LENGTH (type);
8919 int regno = ARM_A1_REGNUM;
8920 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8921
8922 while (len > 0)
8923 {
8924 regcache_cooked_read (regs, regno++, tmpbuf);
8925 memcpy (valbuf, tmpbuf,
8926 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
8927 len -= INT_REGISTER_SIZE;
8928 valbuf += INT_REGISTER_SIZE;
8929 }
8930 }
8931}
8932
8933
8934/* Will a function return an aggregate type in memory or in a
8935 register? Return 0 if an aggregate type can be returned in a
8936 register, 1 if it must be returned in memory. */
8937
8938static int
8939arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
8940{
8941 int nRc;
8942 enum type_code code;
8943
8944 CHECK_TYPEDEF (type);
8945
8946 /* In the ARM ABI, "integer" like aggregate types are returned in
8947 registers. For an aggregate type to be integer like, its size
8948 must be less than or equal to INT_REGISTER_SIZE and the
8949 offset of each addressable subfield must be zero. Note that bit
8950 fields are not addressable, and all addressable subfields of
8951 unions always start at offset zero.
8952
8953 This function is based on the behaviour of GCC 2.95.1.
8954 See: gcc/arm.c: arm_return_in_memory() for details.
8955
8956 Note: All versions of GCC before GCC 2.95.2 do not set up the
8957 parameters correctly for a function returning the following
8958 structure: struct { float f;}; This should be returned in memory,
8959 not a register. Richard Earnshaw sent me a patch, but I do not
8960 know of any way to detect if a function like the above has been
8961 compiled with the correct calling convention. */
8962
8963 /* All aggregate types that won't fit in a register must be returned
8964 in memory. */
8965 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
8966 {
8967 return 1;
8968 }
8969
8970 /* The AAPCS says all aggregates not larger than a word are returned
8971 in a register. */
8972 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
8973 return 0;
8974
8975 /* The only aggregate types that can be returned in a register are
8976 structs and unions. Arrays must be returned in memory. */
8977 code = TYPE_CODE (type);
8978 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
8979 {
8980 return 1;
8981 }
8982
8983 /* Assume all other aggregate types can be returned in a register.
8984 Run a check for structures, unions and arrays. */
8985 nRc = 0;
8986
8987 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
8988 {
8989 int i;
8990 /* Need to check if this struct/union is "integer" like. For
8991 this to be true, its size must be less than or equal to
8992 INT_REGISTER_SIZE and the offset of each addressable
8993 subfield must be zero. Note that bit fields are not
8994 addressable, and unions always start at offset zero. If any
8995 of the subfields is a floating point type, the struct/union
8996 cannot be an integer type. */
8997
8998 /* For each field in the object, check:
8999 1) Is it FP? --> yes, nRc = 1;
67255d04
RE
9000 2) Is it addressable (bitpos != 0) and
9001 not packed (bitsize == 0)?
9002 --> yes, nRc = 1
9003 */
9004
9005 for (i = 0; i < TYPE_NFIELDS (type); i++)
9006 {
9007 enum type_code field_type_code;
0963b4bd
MS
9008 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
9009 i)));
67255d04
RE
9010
9011 /* Is it a floating point type field? */
9012 if (field_type_code == TYPE_CODE_FLT)
9013 {
9014 nRc = 1;
9015 break;
9016 }
9017
9018 /* If bitpos != 0, then we have to care about it. */
9019 if (TYPE_FIELD_BITPOS (type, i) != 0)
9020 {
9021 /* Bitfields are not addressable. If the field bitsize is
9022 zero, then the field is not packed. Hence it cannot be
9023 a bitfield or any other packed type. */
9024 if (TYPE_FIELD_BITSIZE (type, i) == 0)
9025 {
9026 nRc = 1;
9027 break;
9028 }
9029 }
9030 }
9031 }
9032
9033 return nRc;
9034}
9035
34e8f22d
RE
9036/* Write into appropriate registers a function return value of type
9037 TYPE, given in virtual format. */
9038
9039static void
b508a996 9040arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 9041 const gdb_byte *valbuf)
34e8f22d 9042{
be8626e0 9043 struct gdbarch *gdbarch = get_regcache_arch (regs);
e17a4113 9044 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
be8626e0 9045
34e8f22d
RE
9046 if (TYPE_CODE (type) == TYPE_CODE_FLT)
9047 {
e362b510 9048 gdb_byte buf[MAX_REGISTER_SIZE];
34e8f22d 9049
be8626e0 9050 switch (gdbarch_tdep (gdbarch)->fp_model)
08216dd7
RE
9051 {
9052 case ARM_FLOAT_FPA:
9053
be8626e0
MD
9054 convert_to_extended (floatformat_from_type (type), buf, valbuf,
9055 gdbarch_byte_order (gdbarch));
b508a996 9056 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
9057 break;
9058
fd50bc42 9059 case ARM_FLOAT_SOFT_FPA:
08216dd7 9060 case ARM_FLOAT_SOFT_VFP:
90445bd3
DJ
9061 /* ARM_FLOAT_VFP can arise if this is a variadic function so
9062 not using the VFP ABI code. */
9063 case ARM_FLOAT_VFP:
b508a996
RE
9064 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
9065 if (TYPE_LENGTH (type) > 4)
9066 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 9067 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
9068 break;
9069
9070 default:
9b20d036
MS
9071 internal_error (__FILE__, __LINE__,
9072 _("arm_store_return_value: Floating "
9073 "point model not supported"));
08216dd7
RE
9074 break;
9075 }
34e8f22d 9076 }
b508a996
RE
9077 else if (TYPE_CODE (type) == TYPE_CODE_INT
9078 || TYPE_CODE (type) == TYPE_CODE_CHAR
9079 || TYPE_CODE (type) == TYPE_CODE_BOOL
9080 || TYPE_CODE (type) == TYPE_CODE_PTR
9081 || TYPE_CODE (type) == TYPE_CODE_REF
9082 || TYPE_CODE (type) == TYPE_CODE_ENUM)
9083 {
9084 if (TYPE_LENGTH (type) <= 4)
9085 {
9086 /* Values of one word or less are zero/sign-extended and
9087 returned in r0. */
7a5ea0d4 9088 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
9089 LONGEST val = unpack_long (type, valbuf);
9090
e17a4113 9091 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
b508a996
RE
9092 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
9093 }
9094 else
9095 {
9096 /* Integral values greater than one word are stored in consecutive
9097 registers starting with r0. This will always be a multiple of
9098 the regiser size. */
9099 int len = TYPE_LENGTH (type);
9100 int regno = ARM_A1_REGNUM;
9101
9102 while (len > 0)
9103 {
9104 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
9105 len -= INT_REGISTER_SIZE;
9106 valbuf += INT_REGISTER_SIZE;
b508a996
RE
9107 }
9108 }
9109 }
34e8f22d 9110 else
b508a996
RE
9111 {
9112 /* For a structure or union the behaviour is as if the value had
9113 been stored to word-aligned memory and then loaded into
9114 registers with 32-bit load instruction(s). */
9115 int len = TYPE_LENGTH (type);
9116 int regno = ARM_A1_REGNUM;
7a5ea0d4 9117 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
9118
9119 while (len > 0)
9120 {
9121 memcpy (tmpbuf, valbuf,
7a5ea0d4 9122 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 9123 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
9124 len -= INT_REGISTER_SIZE;
9125 valbuf += INT_REGISTER_SIZE;
b508a996
RE
9126 }
9127 }
34e8f22d
RE
9128}
9129
2af48f68
PB
9130
9131/* Handle function return values. */
9132
9133static enum return_value_convention
6a3a010b 9134arm_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
9135 struct type *valtype, struct regcache *regcache,
9136 gdb_byte *readbuf, const gdb_byte *writebuf)
2af48f68 9137{
7c00367c 9138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 9139 struct type *func_type = function ? value_type (function) : NULL;
90445bd3
DJ
9140 enum arm_vfp_cprc_base_type vfp_base_type;
9141 int vfp_base_count;
9142
9143 if (arm_vfp_abi_for_function (gdbarch, func_type)
9144 && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
9145 {
9146 int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
9147 int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
9148 int i;
9149 for (i = 0; i < vfp_base_count; i++)
9150 {
58d6951d
DJ
9151 if (reg_char == 'q')
9152 {
9153 if (writebuf)
9154 arm_neon_quad_write (gdbarch, regcache, i,
9155 writebuf + i * unit_length);
9156
9157 if (readbuf)
9158 arm_neon_quad_read (gdbarch, regcache, i,
9159 readbuf + i * unit_length);
9160 }
9161 else
9162 {
9163 char name_buf[4];
9164 int regnum;
9165
8c042590 9166 xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i);
58d6951d
DJ
9167 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
9168 strlen (name_buf));
9169 if (writebuf)
9170 regcache_cooked_write (regcache, regnum,
9171 writebuf + i * unit_length);
9172 if (readbuf)
9173 regcache_cooked_read (regcache, regnum,
9174 readbuf + i * unit_length);
9175 }
90445bd3
DJ
9176 }
9177 return RETURN_VALUE_REGISTER_CONVENTION;
9178 }
7c00367c 9179
2af48f68
PB
9180 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
9181 || TYPE_CODE (valtype) == TYPE_CODE_UNION
9182 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
9183 {
7c00367c
MK
9184 if (tdep->struct_return == pcc_struct_return
9185 || arm_return_in_memory (gdbarch, valtype))
2af48f68
PB
9186 return RETURN_VALUE_STRUCT_CONVENTION;
9187 }
9188
7052e42c
UW
9189 /* AAPCS returns complex types longer than a register in memory. */
9190 if (tdep->arm_abi != ARM_ABI_APCS
9191 && TYPE_CODE (valtype) == TYPE_CODE_COMPLEX
9192 && TYPE_LENGTH (valtype) > INT_REGISTER_SIZE)
9193 return RETURN_VALUE_STRUCT_CONVENTION;
9194
2af48f68
PB
9195 if (writebuf)
9196 arm_store_return_value (valtype, regcache, writebuf);
9197
9198 if (readbuf)
9199 arm_extract_return_value (valtype, regcache, readbuf);
9200
9201 return RETURN_VALUE_REGISTER_CONVENTION;
9202}
9203
9204
9df628e0 9205static int
60ade65d 9206arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
9df628e0 9207{
e17a4113
UW
9208 struct gdbarch *gdbarch = get_frame_arch (frame);
9209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9df628e0 9211 CORE_ADDR jb_addr;
e362b510 9212 gdb_byte buf[INT_REGISTER_SIZE];
9df628e0 9213
60ade65d 9214 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
9df628e0
RE
9215
9216 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 9217 INT_REGISTER_SIZE))
9df628e0
RE
9218 return 0;
9219
e17a4113 9220 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
9df628e0
RE
9221 return 1;
9222}
9223
faa95490
DJ
9224/* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
9225 return the target PC. Otherwise return 0. */
c906108c
SS
9226
9227CORE_ADDR
52f729a7 9228arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
c906108c 9229{
2c02bd72 9230 const char *name;
faa95490 9231 int namelen;
c906108c
SS
9232 CORE_ADDR start_addr;
9233
9234 /* Find the starting address and name of the function containing the PC. */
9235 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
9236 return 0;
9237
faa95490
DJ
9238 /* If PC is in a Thumb call or return stub, return the address of the
9239 target PC, which is in a register. The thunk functions are called
9240 _call_via_xx, where x is the register name. The possible names
3d8d5e79
DJ
9241 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
9242 functions, named __ARM_call_via_r[0-7]. */
9243 if (strncmp (name, "_call_via_", 10) == 0
9244 || strncmp (name, "__ARM_call_via_", strlen ("__ARM_call_via_")) == 0)
c906108c 9245 {
ed9a39eb
JM
9246 /* Use the name suffix to determine which register contains the
9247 target PC. */
c5aa993b
JM
9248 static char *table[15] =
9249 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
9250 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
9251 };
c906108c 9252 int regno;
faa95490 9253 int offset = strlen (name) - 2;
c906108c
SS
9254
9255 for (regno = 0; regno <= 14; regno++)
faa95490 9256 if (strcmp (&name[offset], table[regno]) == 0)
52f729a7 9257 return get_frame_register_unsigned (frame, regno);
c906108c 9258 }
ed9a39eb 9259
faa95490
DJ
9260 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
9261 non-interworking calls to foo. We could decode the stubs
9262 to find the target but it's easier to use the symbol table. */
9263 namelen = strlen (name);
9264 if (name[0] == '_' && name[1] == '_'
9265 && ((namelen > 2 + strlen ("_from_thumb")
9266 && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
9267 strlen ("_from_thumb")) == 0)
9268 || (namelen > 2 + strlen ("_from_arm")
9269 && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
9270 strlen ("_from_arm")) == 0)))
9271 {
9272 char *target_name;
9273 int target_len = namelen - 2;
9274 struct minimal_symbol *minsym;
9275 struct objfile *objfile;
9276 struct obj_section *sec;
9277
9278 if (name[namelen - 1] == 'b')
9279 target_len -= strlen ("_from_thumb");
9280 else
9281 target_len -= strlen ("_from_arm");
9282
9283 target_name = alloca (target_len + 1);
9284 memcpy (target_name, name + 2, target_len);
9285 target_name[target_len] = '\0';
9286
9287 sec = find_pc_section (pc);
9288 objfile = (sec == NULL) ? NULL : sec->objfile;
9289 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
9290 if (minsym != NULL)
9291 return SYMBOL_VALUE_ADDRESS (minsym);
9292 else
9293 return 0;
9294 }
9295
c5aa993b 9296 return 0; /* not a stub */
c906108c
SS
9297}
9298
afd7eef0
RE
9299static void
9300set_arm_command (char *args, int from_tty)
9301{
edefbb7c
AC
9302 printf_unfiltered (_("\
9303\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
9304 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
9305}
9306
9307static void
9308show_arm_command (char *args, int from_tty)
9309{
26304000 9310 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
9311}
9312
28e97307
DJ
9313static void
9314arm_update_current_architecture (void)
fd50bc42 9315{
28e97307 9316 struct gdbarch_info info;
fd50bc42 9317
28e97307 9318 /* If the current architecture is not ARM, we have nothing to do. */
f5656ead 9319 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm)
28e97307 9320 return;
fd50bc42 9321
28e97307
DJ
9322 /* Update the architecture. */
9323 gdbarch_info_init (&info);
fd50bc42 9324
28e97307 9325 if (!gdbarch_update_p (info))
9b20d036 9326 internal_error (__FILE__, __LINE__, _("could not update architecture"));
fd50bc42
RE
9327}
9328
9329static void
9330set_fp_model_sfunc (char *args, int from_tty,
9331 struct cmd_list_element *c)
9332{
9333 enum arm_float_model fp_model;
9334
9335 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
9336 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
9337 {
9338 arm_fp_model = fp_model;
9339 break;
9340 }
9341
9342 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 9343 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
9344 current_fp_model);
9345
28e97307 9346 arm_update_current_architecture ();
fd50bc42
RE
9347}
9348
9349static void
08546159
AC
9350show_fp_model (struct ui_file *file, int from_tty,
9351 struct cmd_list_element *c, const char *value)
fd50bc42 9352{
f5656ead 9353 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
fd50bc42 9354
28e97307 9355 if (arm_fp_model == ARM_FLOAT_AUTO
f5656ead 9356 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
28e97307
DJ
9357 fprintf_filtered (file, _("\
9358The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
9359 fp_model_strings[tdep->fp_model]);
9360 else
9361 fprintf_filtered (file, _("\
9362The current ARM floating point model is \"%s\".\n"),
9363 fp_model_strings[arm_fp_model]);
9364}
9365
9366static void
9367arm_set_abi (char *args, int from_tty,
9368 struct cmd_list_element *c)
9369{
9370 enum arm_abi_kind arm_abi;
9371
9372 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
9373 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
9374 {
9375 arm_abi_global = arm_abi;
9376 break;
9377 }
9378
9379 if (arm_abi == ARM_ABI_LAST)
9380 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
9381 arm_abi_string);
9382
9383 arm_update_current_architecture ();
9384}
9385
9386static void
9387arm_show_abi (struct ui_file *file, int from_tty,
9388 struct cmd_list_element *c, const char *value)
9389{
f5656ead 9390 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
28e97307
DJ
9391
9392 if (arm_abi_global == ARM_ABI_AUTO
f5656ead 9393 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
28e97307
DJ
9394 fprintf_filtered (file, _("\
9395The current ARM ABI is \"auto\" (currently \"%s\").\n"),
9396 arm_abi_strings[tdep->arm_abi]);
9397 else
9398 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
9399 arm_abi_string);
fd50bc42
RE
9400}
9401
0428b8f5
DJ
9402static void
9403arm_show_fallback_mode (struct ui_file *file, int from_tty,
9404 struct cmd_list_element *c, const char *value)
9405{
0963b4bd
MS
9406 fprintf_filtered (file,
9407 _("The current execution mode assumed "
9408 "(when symbols are unavailable) is \"%s\".\n"),
0428b8f5
DJ
9409 arm_fallback_mode_string);
9410}
9411
9412static void
9413arm_show_force_mode (struct ui_file *file, int from_tty,
9414 struct cmd_list_element *c, const char *value)
9415{
f5656ead 9416 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
0428b8f5 9417
0963b4bd
MS
9418 fprintf_filtered (file,
9419 _("The current execution mode assumed "
9420 "(even when symbols are available) is \"%s\".\n"),
0428b8f5
DJ
9421 arm_force_mode_string);
9422}
9423
afd7eef0
RE
9424/* If the user changes the register disassembly style used for info
9425 register and other commands, we have to also switch the style used
9426 in opcodes for disassembly output. This function is run in the "set
9427 arm disassembly" command, and does that. */
bc90b915
FN
9428
9429static void
afd7eef0 9430set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
9431 struct cmd_list_element *c)
9432{
afd7eef0 9433 set_disassembly_style ();
bc90b915
FN
9434}
9435\f
966fbf70 9436/* Return the ARM register name corresponding to register I. */
a208b0cb 9437static const char *
d93859e2 9438arm_register_name (struct gdbarch *gdbarch, int i)
966fbf70 9439{
58d6951d
DJ
9440 const int num_regs = gdbarch_num_regs (gdbarch);
9441
9442 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
9443 && i >= num_regs && i < num_regs + 32)
9444 {
9445 static const char *const vfp_pseudo_names[] = {
9446 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
9447 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
9448 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
9449 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
9450 };
9451
9452 return vfp_pseudo_names[i - num_regs];
9453 }
9454
9455 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
9456 && i >= num_regs + 32 && i < num_regs + 32 + 16)
9457 {
9458 static const char *const neon_pseudo_names[] = {
9459 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
9460 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
9461 };
9462
9463 return neon_pseudo_names[i - num_regs - 32];
9464 }
9465
ff6f572f
DJ
9466 if (i >= ARRAY_SIZE (arm_register_names))
9467 /* These registers are only supported on targets which supply
9468 an XML description. */
9469 return "";
9470
966fbf70
RE
9471 return arm_register_names[i];
9472}
9473
bc90b915 9474static void
afd7eef0 9475set_disassembly_style (void)
bc90b915 9476{
123dc839 9477 int current;
bc90b915 9478
123dc839
DJ
9479 /* Find the style that the user wants. */
9480 for (current = 0; current < num_disassembly_options; current++)
9481 if (disassembly_style == valid_disassembly_styles[current])
9482 break;
9483 gdb_assert (current < num_disassembly_options);
bc90b915 9484
94c30b78 9485 /* Synchronize the disassembler. */
bc90b915
FN
9486 set_arm_regname_option (current);
9487}
9488
082fc60d
RE
9489/* Test whether the coff symbol specific value corresponds to a Thumb
9490 function. */
9491
9492static int
9493coff_sym_is_thumb (int val)
9494{
f8bf5763
PM
9495 return (val == C_THUMBEXT
9496 || val == C_THUMBSTAT
9497 || val == C_THUMBEXTFUNC
9498 || val == C_THUMBSTATFUNC
9499 || val == C_THUMBLABEL);
082fc60d
RE
9500}
9501
9502/* arm_coff_make_msymbol_special()
9503 arm_elf_make_msymbol_special()
9504
9505 These functions test whether the COFF or ELF symbol corresponds to
9506 an address in thumb code, and set a "special" bit in a minimal
9507 symbol to indicate that it does. */
9508
34e8f22d 9509static void
082fc60d
RE
9510arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
9511{
467d42c4
UW
9512 if (ARM_SYM_BRANCH_TYPE (&((elf_symbol_type *)sym)->internal_elf_sym)
9513 == ST_BRANCH_TO_THUMB)
082fc60d
RE
9514 MSYMBOL_SET_SPECIAL (msym);
9515}
9516
34e8f22d 9517static void
082fc60d
RE
9518arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
9519{
9520 if (coff_sym_is_thumb (val))
9521 MSYMBOL_SET_SPECIAL (msym);
9522}
9523
60c5725c 9524static void
c1bd65d0 9525arm_objfile_data_free (struct objfile *objfile, void *arg)
60c5725c
DJ
9526{
9527 struct arm_per_objfile *data = arg;
9528 unsigned int i;
9529
9530 for (i = 0; i < objfile->obfd->section_count; i++)
9531 VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
9532}
9533
9534static void
9535arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
9536 asymbol *sym)
9537{
9538 const char *name = bfd_asymbol_name (sym);
9539 struct arm_per_objfile *data;
9540 VEC(arm_mapping_symbol_s) **map_p;
9541 struct arm_mapping_symbol new_map_sym;
9542
9543 gdb_assert (name[0] == '$');
9544 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
9545 return;
9546
9547 data = objfile_data (objfile, arm_objfile_data_key);
9548 if (data == NULL)
9549 {
9550 data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9551 struct arm_per_objfile);
9552 set_objfile_data (objfile, arm_objfile_data_key, data);
9553 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
9554 objfile->obfd->section_count,
9555 VEC(arm_mapping_symbol_s) *);
9556 }
9557 map_p = &data->section_maps[bfd_get_section (sym)->index];
9558
9559 new_map_sym.value = sym->value;
9560 new_map_sym.type = name[1];
9561
9562 /* Assume that most mapping symbols appear in order of increasing
9563 value. If they were randomly distributed, it would be faster to
9564 always push here and then sort at first use. */
9565 if (!VEC_empty (arm_mapping_symbol_s, *map_p))
9566 {
9567 struct arm_mapping_symbol *prev_map_sym;
9568
9569 prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
9570 if (prev_map_sym->value >= sym->value)
9571 {
9572 unsigned int idx;
9573 idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
9574 arm_compare_mapping_symbols);
9575 VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
9576 return;
9577 }
9578 }
9579
9580 VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
9581}
9582
756fe439 9583static void
61a1198a 9584arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
756fe439 9585{
9779414d 9586 struct gdbarch *gdbarch = get_regcache_arch (regcache);
61a1198a 9587 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
756fe439
DJ
9588
9589 /* If necessary, set the T bit. */
9590 if (arm_apcs_32)
9591 {
9779414d 9592 ULONGEST val, t_bit;
61a1198a 9593 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
9779414d
DJ
9594 t_bit = arm_psr_thumb_bit (gdbarch);
9595 if (arm_pc_is_thumb (gdbarch, pc))
9596 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
9597 val | t_bit);
756fe439 9598 else
61a1198a 9599 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
9779414d 9600 val & ~t_bit);
756fe439
DJ
9601 }
9602}
123dc839 9603
58d6951d
DJ
9604/* Read the contents of a NEON quad register, by reading from two
9605 double registers. This is used to implement the quad pseudo
9606 registers, and for argument passing in case the quad registers are
9607 missing; vectors are passed in quad registers when using the VFP
9608 ABI, even if a NEON unit is not present. REGNUM is the index of
9609 the quad register, in [0, 15]. */
9610
05d1431c 9611static enum register_status
58d6951d
DJ
9612arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache,
9613 int regnum, gdb_byte *buf)
9614{
9615 char name_buf[4];
9616 gdb_byte reg_buf[8];
9617 int offset, double_regnum;
05d1431c 9618 enum register_status status;
58d6951d 9619
8c042590 9620 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
58d6951d
DJ
9621 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
9622 strlen (name_buf));
9623
9624 /* d0 is always the least significant half of q0. */
9625 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
9626 offset = 8;
9627 else
9628 offset = 0;
9629
05d1431c
PA
9630 status = regcache_raw_read (regcache, double_regnum, reg_buf);
9631 if (status != REG_VALID)
9632 return status;
58d6951d
DJ
9633 memcpy (buf + offset, reg_buf, 8);
9634
9635 offset = 8 - offset;
05d1431c
PA
9636 status = regcache_raw_read (regcache, double_regnum + 1, reg_buf);
9637 if (status != REG_VALID)
9638 return status;
58d6951d 9639 memcpy (buf + offset, reg_buf, 8);
05d1431c
PA
9640
9641 return REG_VALID;
58d6951d
DJ
9642}
9643
05d1431c 9644static enum register_status
58d6951d
DJ
9645arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache,
9646 int regnum, gdb_byte *buf)
9647{
9648 const int num_regs = gdbarch_num_regs (gdbarch);
9649 char name_buf[4];
9650 gdb_byte reg_buf[8];
9651 int offset, double_regnum;
9652
9653 gdb_assert (regnum >= num_regs);
9654 regnum -= num_regs;
9655
9656 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
9657 /* Quad-precision register. */
05d1431c 9658 return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
58d6951d
DJ
9659 else
9660 {
05d1431c
PA
9661 enum register_status status;
9662
58d6951d
DJ
9663 /* Single-precision register. */
9664 gdb_assert (regnum < 32);
9665
9666 /* s0 is always the least significant half of d0. */
9667 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
9668 offset = (regnum & 1) ? 0 : 4;
9669 else
9670 offset = (regnum & 1) ? 4 : 0;
9671
8c042590 9672 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
58d6951d
DJ
9673 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
9674 strlen (name_buf));
9675
05d1431c
PA
9676 status = regcache_raw_read (regcache, double_regnum, reg_buf);
9677 if (status == REG_VALID)
9678 memcpy (buf, reg_buf + offset, 4);
9679 return status;
58d6951d
DJ
9680 }
9681}
9682
9683/* Store the contents of BUF to a NEON quad register, by writing to
9684 two double registers. This is used to implement the quad pseudo
9685 registers, and for argument passing in case the quad registers are
9686 missing; vectors are passed in quad registers when using the VFP
9687 ABI, even if a NEON unit is not present. REGNUM is the index
9688 of the quad register, in [0, 15]. */
9689
9690static void
9691arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
9692 int regnum, const gdb_byte *buf)
9693{
9694 char name_buf[4];
58d6951d
DJ
9695 int offset, double_regnum;
9696
8c042590 9697 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
58d6951d
DJ
9698 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
9699 strlen (name_buf));
9700
9701 /* d0 is always the least significant half of q0. */
9702 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
9703 offset = 8;
9704 else
9705 offset = 0;
9706
9707 regcache_raw_write (regcache, double_regnum, buf + offset);
9708 offset = 8 - offset;
9709 regcache_raw_write (regcache, double_regnum + 1, buf + offset);
9710}
9711
9712static void
9713arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
9714 int regnum, const gdb_byte *buf)
9715{
9716 const int num_regs = gdbarch_num_regs (gdbarch);
9717 char name_buf[4];
9718 gdb_byte reg_buf[8];
9719 int offset, double_regnum;
9720
9721 gdb_assert (regnum >= num_regs);
9722 regnum -= num_regs;
9723
9724 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
9725 /* Quad-precision register. */
9726 arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
9727 else
9728 {
9729 /* Single-precision register. */
9730 gdb_assert (regnum < 32);
9731
9732 /* s0 is always the least significant half of d0. */
9733 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
9734 offset = (regnum & 1) ? 0 : 4;
9735 else
9736 offset = (regnum & 1) ? 4 : 0;
9737
8c042590 9738 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
58d6951d
DJ
9739 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
9740 strlen (name_buf));
9741
9742 regcache_raw_read (regcache, double_regnum, reg_buf);
9743 memcpy (reg_buf + offset, buf, 4);
9744 regcache_raw_write (regcache, double_regnum, reg_buf);
9745 }
9746}
9747
123dc839
DJ
9748static struct value *
9749value_of_arm_user_reg (struct frame_info *frame, const void *baton)
9750{
9751 const int *reg_p = baton;
9752 return value_of_register (*reg_p, frame);
9753}
97e03143 9754\f
70f80edf
JT
9755static enum gdb_osabi
9756arm_elf_osabi_sniffer (bfd *abfd)
97e03143 9757{
2af48f68 9758 unsigned int elfosabi;
70f80edf 9759 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 9760
70f80edf 9761 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 9762
28e97307
DJ
9763 if (elfosabi == ELFOSABI_ARM)
9764 /* GNU tools use this value. Check note sections in this case,
9765 as well. */
9766 bfd_map_over_sections (abfd,
9767 generic_elf_osabi_sniff_abi_tag_sections,
9768 &osabi);
97e03143 9769
28e97307 9770 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 9771 return osabi;
97e03143
RE
9772}
9773
54483882
YQ
9774static int
9775arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
9776 struct reggroup *group)
9777{
2c291032
YQ
9778 /* FPS register's type is INT, but belongs to float_reggroup. Beside
9779 this, FPS register belongs to save_regroup, restore_reggroup, and
9780 all_reggroup, of course. */
54483882 9781 if (regnum == ARM_FPS_REGNUM)
2c291032
YQ
9782 return (group == float_reggroup
9783 || group == save_reggroup
9784 || group == restore_reggroup
9785 || group == all_reggroup);
54483882
YQ
9786 else
9787 return default_register_reggroup_p (gdbarch, regnum, group);
9788}
9789
25f8c692
JL
9790\f
9791/* For backward-compatibility we allow two 'g' packet lengths with
9792 the remote protocol depending on whether FPA registers are
9793 supplied. M-profile targets do not have FPA registers, but some
9794 stubs already exist in the wild which use a 'g' packet which
9795 supplies them albeit with dummy values. The packet format which
9796 includes FPA registers should be considered deprecated for
9797 M-profile targets. */
9798
9799static void
9800arm_register_g_packet_guesses (struct gdbarch *gdbarch)
9801{
9802 if (gdbarch_tdep (gdbarch)->is_m)
9803 {
9804 /* If we know from the executable this is an M-profile target,
9805 cater for remote targets whose register set layout is the
9806 same as the FPA layout. */
9807 register_remote_g_packet_guess (gdbarch,
03145bf4 9808 /* r0-r12,sp,lr,pc; f0-f7; fps,xpsr */
25f8c692
JL
9809 (16 * INT_REGISTER_SIZE)
9810 + (8 * FP_REGISTER_SIZE)
9811 + (2 * INT_REGISTER_SIZE),
9812 tdesc_arm_with_m_fpa_layout);
9813
9814 /* The regular M-profile layout. */
9815 register_remote_g_packet_guess (gdbarch,
9816 /* r0-r12,sp,lr,pc; xpsr */
9817 (16 * INT_REGISTER_SIZE)
9818 + INT_REGISTER_SIZE,
9819 tdesc_arm_with_m);
3184d3f9
JL
9820
9821 /* M-profile plus M4F VFP. */
9822 register_remote_g_packet_guess (gdbarch,
9823 /* r0-r12,sp,lr,pc; d0-d15; fpscr,xpsr */
9824 (16 * INT_REGISTER_SIZE)
9825 + (16 * VFP_REGISTER_SIZE)
9826 + (2 * INT_REGISTER_SIZE),
9827 tdesc_arm_with_m_vfp_d16);
25f8c692
JL
9828 }
9829
9830 /* Otherwise we don't have a useful guess. */
9831}
9832
70f80edf 9833\f
da3c6d4a
MS
9834/* Initialize the current architecture based on INFO. If possible,
9835 re-use an architecture from ARCHES, which is a list of
9836 architectures already created during this debugging session.
97e03143 9837
da3c6d4a
MS
9838 Called e.g. at program startup, when reading a core file, and when
9839 reading a binary file. */
97e03143 9840
39bbf761
RE
9841static struct gdbarch *
9842arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
9843{
97e03143 9844 struct gdbarch_tdep *tdep;
39bbf761 9845 struct gdbarch *gdbarch;
28e97307
DJ
9846 struct gdbarch_list *best_arch;
9847 enum arm_abi_kind arm_abi = arm_abi_global;
9848 enum arm_float_model fp_model = arm_fp_model;
123dc839 9849 struct tdesc_arch_data *tdesc_data = NULL;
9779414d 9850 int i, is_m = 0;
58d6951d
DJ
9851 int have_vfp_registers = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
9852 int have_neon = 0;
ff6f572f 9853 int have_fpa_registers = 1;
9779414d
DJ
9854 const struct target_desc *tdesc = info.target_desc;
9855
9856 /* If we have an object to base this architecture on, try to determine
9857 its ABI. */
9858
9859 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
9860 {
9861 int ei_osabi, e_flags;
9862
9863 switch (bfd_get_flavour (info.abfd))
9864 {
9865 case bfd_target_aout_flavour:
9866 /* Assume it's an old APCS-style ABI. */
9867 arm_abi = ARM_ABI_APCS;
9868 break;
9869
9870 case bfd_target_coff_flavour:
9871 /* Assume it's an old APCS-style ABI. */
9872 /* XXX WinCE? */
9873 arm_abi = ARM_ABI_APCS;
9874 break;
9875
9876 case bfd_target_elf_flavour:
9877 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
9878 e_flags = elf_elfheader (info.abfd)->e_flags;
9879
9880 if (ei_osabi == ELFOSABI_ARM)
9881 {
9882 /* GNU tools used to use this value, but do not for EABI
9883 objects. There's nowhere to tag an EABI version
9884 anyway, so assume APCS. */
9885 arm_abi = ARM_ABI_APCS;
9886 }
9887 else if (ei_osabi == ELFOSABI_NONE)
9888 {
9889 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
9890 int attr_arch, attr_profile;
9891
9892 switch (eabi_ver)
9893 {
9894 case EF_ARM_EABI_UNKNOWN:
9895 /* Assume GNU tools. */
9896 arm_abi = ARM_ABI_APCS;
9897 break;
9898
9899 case EF_ARM_EABI_VER4:
9900 case EF_ARM_EABI_VER5:
9901 arm_abi = ARM_ABI_AAPCS;
9902 /* EABI binaries default to VFP float ordering.
9903 They may also contain build attributes that can
9904 be used to identify if the VFP argument-passing
9905 ABI is in use. */
9906 if (fp_model == ARM_FLOAT_AUTO)
9907 {
9908#ifdef HAVE_ELF
9909 switch (bfd_elf_get_obj_attr_int (info.abfd,
9910 OBJ_ATTR_PROC,
9911 Tag_ABI_VFP_args))
9912 {
9913 case 0:
9914 /* "The user intended FP parameter/result
9915 passing to conform to AAPCS, base
9916 variant". */
9917 fp_model = ARM_FLOAT_SOFT_VFP;
9918 break;
9919 case 1:
9920 /* "The user intended FP parameter/result
9921 passing to conform to AAPCS, VFP
9922 variant". */
9923 fp_model = ARM_FLOAT_VFP;
9924 break;
9925 case 2:
9926 /* "The user intended FP parameter/result
9927 passing to conform to tool chain-specific
9928 conventions" - we don't know any such
9929 conventions, so leave it as "auto". */
9930 break;
9931 default:
9932 /* Attribute value not mentioned in the
9933 October 2008 ABI, so leave it as
9934 "auto". */
9935 break;
9936 }
9937#else
9938 fp_model = ARM_FLOAT_SOFT_VFP;
9939#endif
9940 }
9941 break;
9942
9943 default:
9944 /* Leave it as "auto". */
9945 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
9946 break;
9947 }
9948
9949#ifdef HAVE_ELF
9950 /* Detect M-profile programs. This only works if the
9951 executable file includes build attributes; GCC does
9952 copy them to the executable, but e.g. RealView does
9953 not. */
9954 attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
9955 Tag_CPU_arch);
0963b4bd
MS
9956 attr_profile = bfd_elf_get_obj_attr_int (info.abfd,
9957 OBJ_ATTR_PROC,
9779414d
DJ
9958 Tag_CPU_arch_profile);
9959 /* GCC specifies the profile for v6-M; RealView only
9960 specifies the profile for architectures starting with
9961 V7 (as opposed to architectures with a tag
9962 numerically greater than TAG_CPU_ARCH_V7). */
9963 if (!tdesc_has_registers (tdesc)
9964 && (attr_arch == TAG_CPU_ARCH_V6_M
9965 || attr_arch == TAG_CPU_ARCH_V6S_M
9966 || attr_profile == 'M'))
25f8c692 9967 is_m = 1;
9779414d
DJ
9968#endif
9969 }
9970
9971 if (fp_model == ARM_FLOAT_AUTO)
9972 {
9973 int e_flags = elf_elfheader (info.abfd)->e_flags;
9974
9975 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
9976 {
9977 case 0:
9978 /* Leave it as "auto". Strictly speaking this case
9979 means FPA, but almost nobody uses that now, and
9980 many toolchains fail to set the appropriate bits
9981 for the floating-point model they use. */
9982 break;
9983 case EF_ARM_SOFT_FLOAT:
9984 fp_model = ARM_FLOAT_SOFT_FPA;
9985 break;
9986 case EF_ARM_VFP_FLOAT:
9987 fp_model = ARM_FLOAT_VFP;
9988 break;
9989 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
9990 fp_model = ARM_FLOAT_SOFT_VFP;
9991 break;
9992 }
9993 }
9994
9995 if (e_flags & EF_ARM_BE8)
9996 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
9997
9998 break;
9999
10000 default:
10001 /* Leave it as "auto". */
10002 break;
10003 }
10004 }
123dc839
DJ
10005
10006 /* Check any target description for validity. */
9779414d 10007 if (tdesc_has_registers (tdesc))
123dc839
DJ
10008 {
10009 /* For most registers we require GDB's default names; but also allow
10010 the numeric names for sp / lr / pc, as a convenience. */
10011 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
10012 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
10013 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
10014
10015 const struct tdesc_feature *feature;
58d6951d 10016 int valid_p;
123dc839 10017
9779414d 10018 feature = tdesc_find_feature (tdesc,
123dc839
DJ
10019 "org.gnu.gdb.arm.core");
10020 if (feature == NULL)
9779414d
DJ
10021 {
10022 feature = tdesc_find_feature (tdesc,
10023 "org.gnu.gdb.arm.m-profile");
10024 if (feature == NULL)
10025 return NULL;
10026 else
10027 is_m = 1;
10028 }
123dc839
DJ
10029
10030 tdesc_data = tdesc_data_alloc ();
10031
10032 valid_p = 1;
10033 for (i = 0; i < ARM_SP_REGNUM; i++)
10034 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
10035 arm_register_names[i]);
10036 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
10037 ARM_SP_REGNUM,
10038 arm_sp_names);
10039 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
10040 ARM_LR_REGNUM,
10041 arm_lr_names);
10042 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
10043 ARM_PC_REGNUM,
10044 arm_pc_names);
9779414d
DJ
10045 if (is_m)
10046 valid_p &= tdesc_numbered_register (feature, tdesc_data,
10047 ARM_PS_REGNUM, "xpsr");
10048 else
10049 valid_p &= tdesc_numbered_register (feature, tdesc_data,
10050 ARM_PS_REGNUM, "cpsr");
123dc839
DJ
10051
10052 if (!valid_p)
10053 {
10054 tdesc_data_cleanup (tdesc_data);
10055 return NULL;
10056 }
10057
9779414d 10058 feature = tdesc_find_feature (tdesc,
123dc839
DJ
10059 "org.gnu.gdb.arm.fpa");
10060 if (feature != NULL)
10061 {
10062 valid_p = 1;
10063 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
10064 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
10065 arm_register_names[i]);
10066 if (!valid_p)
10067 {
10068 tdesc_data_cleanup (tdesc_data);
10069 return NULL;
10070 }
10071 }
ff6f572f
DJ
10072 else
10073 have_fpa_registers = 0;
10074
9779414d 10075 feature = tdesc_find_feature (tdesc,
ff6f572f
DJ
10076 "org.gnu.gdb.xscale.iwmmxt");
10077 if (feature != NULL)
10078 {
10079 static const char *const iwmmxt_names[] = {
10080 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
10081 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
10082 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
10083 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
10084 };
10085
10086 valid_p = 1;
10087 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
10088 valid_p
10089 &= tdesc_numbered_register (feature, tdesc_data, i,
10090 iwmmxt_names[i - ARM_WR0_REGNUM]);
10091
10092 /* Check for the control registers, but do not fail if they
10093 are missing. */
10094 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
10095 tdesc_numbered_register (feature, tdesc_data, i,
10096 iwmmxt_names[i - ARM_WR0_REGNUM]);
10097
10098 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
10099 valid_p
10100 &= tdesc_numbered_register (feature, tdesc_data, i,
10101 iwmmxt_names[i - ARM_WR0_REGNUM]);
10102
10103 if (!valid_p)
10104 {
10105 tdesc_data_cleanup (tdesc_data);
10106 return NULL;
10107 }
10108 }
58d6951d
DJ
10109
10110 /* If we have a VFP unit, check whether the single precision registers
10111 are present. If not, then we will synthesize them as pseudo
10112 registers. */
9779414d 10113 feature = tdesc_find_feature (tdesc,
58d6951d
DJ
10114 "org.gnu.gdb.arm.vfp");
10115 if (feature != NULL)
10116 {
10117 static const char *const vfp_double_names[] = {
10118 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
10119 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
10120 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
10121 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
10122 };
10123
10124 /* Require the double precision registers. There must be either
10125 16 or 32. */
10126 valid_p = 1;
10127 for (i = 0; i < 32; i++)
10128 {
10129 valid_p &= tdesc_numbered_register (feature, tdesc_data,
10130 ARM_D0_REGNUM + i,
10131 vfp_double_names[i]);
10132 if (!valid_p)
10133 break;
10134 }
2b9e5ea6
UW
10135 if (!valid_p && i == 16)
10136 valid_p = 1;
58d6951d 10137
2b9e5ea6
UW
10138 /* Also require FPSCR. */
10139 valid_p &= tdesc_numbered_register (feature, tdesc_data,
10140 ARM_FPSCR_REGNUM, "fpscr");
10141 if (!valid_p)
58d6951d
DJ
10142 {
10143 tdesc_data_cleanup (tdesc_data);
10144 return NULL;
10145 }
10146
10147 if (tdesc_unnumbered_register (feature, "s0") == 0)
10148 have_vfp_pseudos = 1;
10149
10150 have_vfp_registers = 1;
10151
10152 /* If we have VFP, also check for NEON. The architecture allows
10153 NEON without VFP (integer vector operations only), but GDB
10154 does not support that. */
9779414d 10155 feature = tdesc_find_feature (tdesc,
58d6951d
DJ
10156 "org.gnu.gdb.arm.neon");
10157 if (feature != NULL)
10158 {
10159 /* NEON requires 32 double-precision registers. */
10160 if (i != 32)
10161 {
10162 tdesc_data_cleanup (tdesc_data);
10163 return NULL;
10164 }
10165
10166 /* If there are quad registers defined by the stub, use
10167 their type; otherwise (normally) provide them with
10168 the default type. */
10169 if (tdesc_unnumbered_register (feature, "q0") == 0)
10170 have_neon_pseudos = 1;
10171
10172 have_neon = 1;
10173 }
10174 }
123dc839 10175 }
39bbf761 10176
28e97307
DJ
10177 /* If there is already a candidate, use it. */
10178 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
10179 best_arch != NULL;
10180 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
10181 {
b8926edc
DJ
10182 if (arm_abi != ARM_ABI_AUTO
10183 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
28e97307
DJ
10184 continue;
10185
b8926edc
DJ
10186 if (fp_model != ARM_FLOAT_AUTO
10187 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
28e97307
DJ
10188 continue;
10189
58d6951d
DJ
10190 /* There are various other properties in tdep that we do not
10191 need to check here: those derived from a target description,
10192 since gdbarches with a different target description are
10193 automatically disqualified. */
10194
9779414d
DJ
10195 /* Do check is_m, though, since it might come from the binary. */
10196 if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
10197 continue;
10198
28e97307
DJ
10199 /* Found a match. */
10200 break;
10201 }
97e03143 10202
28e97307 10203 if (best_arch != NULL)
123dc839
DJ
10204 {
10205 if (tdesc_data != NULL)
10206 tdesc_data_cleanup (tdesc_data);
10207 return best_arch->gdbarch;
10208 }
28e97307
DJ
10209
10210 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
97e03143
RE
10211 gdbarch = gdbarch_alloc (&info, tdep);
10212
28e97307
DJ
10213 /* Record additional information about the architecture we are defining.
10214 These are gdbarch discriminators, like the OSABI. */
10215 tdep->arm_abi = arm_abi;
10216 tdep->fp_model = fp_model;
9779414d 10217 tdep->is_m = is_m;
ff6f572f 10218 tdep->have_fpa_registers = have_fpa_registers;
58d6951d
DJ
10219 tdep->have_vfp_registers = have_vfp_registers;
10220 tdep->have_vfp_pseudos = have_vfp_pseudos;
10221 tdep->have_neon_pseudos = have_neon_pseudos;
10222 tdep->have_neon = have_neon;
08216dd7 10223
25f8c692
JL
10224 arm_register_g_packet_guesses (gdbarch);
10225
08216dd7 10226 /* Breakpoints. */
9d4fde75 10227 switch (info.byte_order_for_code)
67255d04
RE
10228 {
10229 case BFD_ENDIAN_BIG:
66e810cd
RE
10230 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
10231 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
10232 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
10233 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
10234
67255d04
RE
10235 break;
10236
10237 case BFD_ENDIAN_LITTLE:
66e810cd
RE
10238 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
10239 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
10240 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
10241 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
10242
67255d04
RE
10243 break;
10244
10245 default:
10246 internal_error (__FILE__, __LINE__,
edefbb7c 10247 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
10248 }
10249
d7b486e7
RE
10250 /* On ARM targets char defaults to unsigned. */
10251 set_gdbarch_char_signed (gdbarch, 0);
10252
cca44b1b
JB
10253 /* Note: for displaced stepping, this includes the breakpoint, and one word
10254 of additional scratch space. This setting isn't used for anything beside
10255 displaced stepping at present. */
10256 set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
10257
9df628e0 10258 /* This should be low enough for everything. */
97e03143 10259 tdep->lowest_pc = 0x20;
94c30b78 10260 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 10261
7c00367c
MK
10262 /* The default, for both APCS and AAPCS, is to return small
10263 structures in registers. */
10264 tdep->struct_return = reg_struct_return;
10265
2dd604e7 10266 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 10267 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 10268
756fe439
DJ
10269 set_gdbarch_write_pc (gdbarch, arm_write_pc);
10270
148754e5 10271 /* Frame handling. */
a262aec2 10272 set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
eb5492fa
DJ
10273 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
10274 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
10275
eb5492fa 10276 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 10277
34e8f22d 10278 /* Address manipulation. */
34e8f22d
RE
10279 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
10280
34e8f22d
RE
10281 /* Advance PC across function entry code. */
10282 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
10283
4024ca99
UW
10284 /* Detect whether PC is in function epilogue. */
10285 set_gdbarch_in_function_epilogue_p (gdbarch, arm_in_function_epilogue_p);
10286
190dce09
UW
10287 /* Skip trampolines. */
10288 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
10289
34e8f22d
RE
10290 /* The stack grows downward. */
10291 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
10292
10293 /* Breakpoint manipulation. */
10294 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
177321bd
DJ
10295 set_gdbarch_remote_breakpoint_from_pc (gdbarch,
10296 arm_remote_breakpoint_from_pc);
34e8f22d
RE
10297
10298 /* Information about registers, etc. */
34e8f22d
RE
10299 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
10300 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
ff6f572f 10301 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
7a5ea0d4 10302 set_gdbarch_register_type (gdbarch, arm_register_type);
54483882 10303 set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
34e8f22d 10304
ff6f572f
DJ
10305 /* This "info float" is FPA-specific. Use the generic version if we
10306 do not have FPA. */
10307 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
10308 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
10309
26216b98 10310 /* Internal <-> external register number maps. */
ff6f572f 10311 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
26216b98
AC
10312 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
10313
34e8f22d
RE
10314 set_gdbarch_register_name (gdbarch, arm_register_name);
10315
10316 /* Returning results. */
2af48f68 10317 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d 10318
03d48a7d
RE
10319 /* Disassembly. */
10320 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
10321
34e8f22d
RE
10322 /* Minsymbol frobbing. */
10323 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
10324 set_gdbarch_coff_make_msymbol_special (gdbarch,
10325 arm_coff_make_msymbol_special);
60c5725c 10326 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
34e8f22d 10327
f9d67f43
DJ
10328 /* Thumb-2 IT block support. */
10329 set_gdbarch_adjust_breakpoint_address (gdbarch,
10330 arm_adjust_breakpoint_address);
10331
0d5de010
DJ
10332 /* Virtual tables. */
10333 set_gdbarch_vbit_in_delta (gdbarch, 1);
10334
97e03143 10335 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 10336 gdbarch_init_osabi (info, gdbarch);
97e03143 10337
b39cc962
DJ
10338 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
10339
eb5492fa 10340 /* Add some default predicates. */
2ae28aa9
YQ
10341 if (is_m)
10342 frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind);
a262aec2
DJ
10343 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
10344 dwarf2_append_unwinders (gdbarch);
0e9e9abd 10345 frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
a262aec2 10346 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
eb5492fa 10347
97e03143
RE
10348 /* Now we have tuned the configuration, set a few final things,
10349 based on what the OS ABI has told us. */
10350
b8926edc
DJ
10351 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
10352 binaries are always marked. */
10353 if (tdep->arm_abi == ARM_ABI_AUTO)
10354 tdep->arm_abi = ARM_ABI_APCS;
10355
e3039479
UW
10356 /* Watchpoints are not steppable. */
10357 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
10358
b8926edc
DJ
10359 /* We used to default to FPA for generic ARM, but almost nobody
10360 uses that now, and we now provide a way for the user to force
10361 the model. So default to the most useful variant. */
10362 if (tdep->fp_model == ARM_FLOAT_AUTO)
10363 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
10364
9df628e0
RE
10365 if (tdep->jb_pc >= 0)
10366 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
10367
08216dd7 10368 /* Floating point sizes and format. */
8da61cc4 10369 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
b8926edc 10370 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
08216dd7 10371 {
8da61cc4
DJ
10372 set_gdbarch_double_format
10373 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
10374 set_gdbarch_long_double_format
10375 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
10376 }
10377 else
10378 {
10379 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
10380 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
10381 }
10382
58d6951d
DJ
10383 if (have_vfp_pseudos)
10384 {
10385 /* NOTE: These are the only pseudo registers used by
10386 the ARM target at the moment. If more are added, a
10387 little more care in numbering will be needed. */
10388
10389 int num_pseudos = 32;
10390 if (have_neon_pseudos)
10391 num_pseudos += 16;
10392 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
10393 set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
10394 set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
10395 }
10396
123dc839 10397 if (tdesc_data)
58d6951d
DJ
10398 {
10399 set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
10400
9779414d 10401 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
58d6951d
DJ
10402
10403 /* Override tdesc_register_type to adjust the types of VFP
10404 registers for NEON. */
10405 set_gdbarch_register_type (gdbarch, arm_register_type);
10406 }
123dc839
DJ
10407
10408 /* Add standard register aliases. We add aliases even for those
10409 nanes which are used by the current architecture - it's simpler,
10410 and does no harm, since nothing ever lists user registers. */
10411 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
10412 user_reg_add (gdbarch, arm_register_aliases[i].name,
10413 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
10414
39bbf761
RE
10415 return gdbarch;
10416}
10417
97e03143 10418static void
2af46ca0 10419arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
97e03143 10420{
2af46ca0 10421 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
97e03143
RE
10422
10423 if (tdep == NULL)
10424 return;
10425
edefbb7c 10426 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
10427 (unsigned long) tdep->lowest_pc);
10428}
10429
a78f21af
AC
10430extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
10431
c906108c 10432void
ed9a39eb 10433_initialize_arm_tdep (void)
c906108c 10434{
bc90b915
FN
10435 struct ui_file *stb;
10436 long length;
26304000 10437 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
10438 const char *setname;
10439 const char *setdesc;
4bd7b427 10440 const char *const *regnames;
bc90b915
FN
10441 int numregs, i, j;
10442 static char *helptext;
edefbb7c
AC
10443 char regdesc[1024], *rdptr = regdesc;
10444 size_t rest = sizeof (regdesc);
085dd6e6 10445
42cf1509 10446 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 10447
60c5725c 10448 arm_objfile_data_key
c1bd65d0 10449 = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
60c5725c 10450
0e9e9abd
UW
10451 /* Add ourselves to objfile event chain. */
10452 observer_attach_new_objfile (arm_exidx_new_objfile);
10453 arm_exidx_data_key
10454 = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free);
10455
70f80edf
JT
10456 /* Register an ELF OS ABI sniffer for ARM binaries. */
10457 gdbarch_register_osabi_sniffer (bfd_arch_arm,
10458 bfd_target_elf_flavour,
10459 arm_elf_osabi_sniffer);
10460
9779414d
DJ
10461 /* Initialize the standard target descriptions. */
10462 initialize_tdesc_arm_with_m ();
25f8c692 10463 initialize_tdesc_arm_with_m_fpa_layout ();
3184d3f9 10464 initialize_tdesc_arm_with_m_vfp_d16 ();
ef7e8358
UW
10465 initialize_tdesc_arm_with_iwmmxt ();
10466 initialize_tdesc_arm_with_vfpv2 ();
10467 initialize_tdesc_arm_with_vfpv3 ();
10468 initialize_tdesc_arm_with_neon ();
9779414d 10469
94c30b78 10470 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
10471 num_disassembly_options = get_arm_regname_num_options ();
10472
10473 /* Add root prefix command for all "set arm"/"show arm" commands. */
10474 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 10475 _("Various ARM-specific commands."),
afd7eef0
RE
10476 &setarmcmdlist, "set arm ", 0, &setlist);
10477
10478 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 10479 _("Various ARM-specific commands."),
afd7eef0 10480 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 10481
94c30b78 10482 /* Sync the opcode insn printer with our register viewer. */
bc90b915 10483 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 10484
eefe576e
AC
10485 /* Initialize the array that will be passed to
10486 add_setshow_enum_cmd(). */
afd7eef0
RE
10487 valid_disassembly_styles
10488 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
10489 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
10490 {
10491 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 10492 valid_disassembly_styles[i] = setname;
edefbb7c
AC
10493 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
10494 rdptr += length;
10495 rest -= length;
123dc839
DJ
10496 /* When we find the default names, tell the disassembler to use
10497 them. */
bc90b915
FN
10498 if (!strcmp (setname, "std"))
10499 {
afd7eef0 10500 disassembly_style = setname;
bc90b915
FN
10501 set_arm_regname_option (i);
10502 }
10503 }
94c30b78 10504 /* Mark the end of valid options. */
afd7eef0 10505 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 10506
edefbb7c
AC
10507 /* Create the help text. */
10508 stb = mem_fileopen ();
10509 fprintf_unfiltered (stb, "%s%s%s",
10510 _("The valid values are:\n"),
10511 regdesc,
10512 _("The default is \"std\"."));
759ef836 10513 helptext = ui_file_xstrdup (stb, NULL);
bc90b915 10514 ui_file_delete (stb);
ed9a39eb 10515
edefbb7c
AC
10516 add_setshow_enum_cmd("disassembler", no_class,
10517 valid_disassembly_styles, &disassembly_style,
10518 _("Set the disassembly style."),
10519 _("Show the disassembly style."),
10520 helptext,
2c5b56ce 10521 set_disassembly_style_sfunc,
0963b4bd
MS
10522 NULL, /* FIXME: i18n: The disassembly style is
10523 \"%s\". */
7376b4c2 10524 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
10525
10526 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
10527 _("Set usage of ARM 32-bit mode."),
10528 _("Show usage of ARM 32-bit mode."),
10529 _("When off, a 26-bit PC will be used."),
2c5b56ce 10530 NULL,
0963b4bd
MS
10531 NULL, /* FIXME: i18n: Usage of ARM 32-bit
10532 mode is %s. */
26304000 10533 &setarmcmdlist, &showarmcmdlist);
c906108c 10534
fd50bc42 10535 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
10536 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
10537 _("Set the floating point type."),
10538 _("Show the floating point type."),
10539 _("auto - Determine the FP typefrom the OS-ABI.\n\
10540softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
10541fpa - FPA co-processor (GCC compiled).\n\
10542softvfp - Software FP with pure-endian doubles.\n\
10543vfp - VFP co-processor."),
edefbb7c 10544 set_fp_model_sfunc, show_fp_model,
7376b4c2 10545 &setarmcmdlist, &showarmcmdlist);
fd50bc42 10546
28e97307
DJ
10547 /* Add a command to allow the user to force the ABI. */
10548 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
10549 _("Set the ABI."),
10550 _("Show the ABI."),
10551 NULL, arm_set_abi, arm_show_abi,
10552 &setarmcmdlist, &showarmcmdlist);
10553
0428b8f5
DJ
10554 /* Add two commands to allow the user to force the assumed
10555 execution mode. */
10556 add_setshow_enum_cmd ("fallback-mode", class_support,
10557 arm_mode_strings, &arm_fallback_mode_string,
10558 _("Set the mode assumed when symbols are unavailable."),
10559 _("Show the mode assumed when symbols are unavailable."),
10560 NULL, NULL, arm_show_fallback_mode,
10561 &setarmcmdlist, &showarmcmdlist);
10562 add_setshow_enum_cmd ("force-mode", class_support,
10563 arm_mode_strings, &arm_force_mode_string,
10564 _("Set the mode assumed even when symbols are available."),
10565 _("Show the mode assumed even when symbols are available."),
10566 NULL, NULL, arm_show_force_mode,
10567 &setarmcmdlist, &showarmcmdlist);
10568
6529d2dd 10569 /* Debugging flag. */
edefbb7c
AC
10570 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
10571 _("Set ARM debugging."),
10572 _("Show ARM debugging."),
10573 _("When on, arm-specific debugging is enabled."),
2c5b56ce 10574 NULL,
7915a72c 10575 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 10576 &setdebuglist, &showdebuglist);
c906108c 10577}
72508ac0
PO
10578
10579/* ARM-reversible process record data structures. */
10580
10581#define ARM_INSN_SIZE_BYTES 4
10582#define THUMB_INSN_SIZE_BYTES 2
10583#define THUMB2_INSN_SIZE_BYTES 4
10584
10585
10586#define INSN_S_L_BIT_NUM 20
10587
10588#define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
10589 do \
10590 { \
10591 unsigned int reg_len = LENGTH; \
10592 if (reg_len) \
10593 { \
10594 REGS = XNEWVEC (uint32_t, reg_len); \
10595 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
10596 } \
10597 } \
10598 while (0)
10599
10600#define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
10601 do \
10602 { \
10603 unsigned int mem_len = LENGTH; \
10604 if (mem_len) \
10605 { \
10606 MEMS = XNEWVEC (struct arm_mem_r, mem_len); \
10607 memcpy(&MEMS->len, &RECORD_BUF[0], \
10608 sizeof(struct arm_mem_r) * LENGTH); \
10609 } \
10610 } \
10611 while (0)
10612
10613/* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */
10614#define INSN_RECORDED(ARM_RECORD) \
10615 (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count)
10616
10617/* ARM memory record structure. */
10618struct arm_mem_r
10619{
10620 uint32_t len; /* Record length. */
10621 CORE_ADDR addr; /* Memory address. */
10622};
10623
10624/* ARM instruction record contains opcode of current insn
10625 and execution state (before entry to decode_insn()),
10626 contains list of to-be-modified registers and
10627 memory blocks (on return from decode_insn()). */
10628
10629typedef struct insn_decode_record_t
10630{
10631 struct gdbarch *gdbarch;
10632 struct regcache *regcache;
10633 CORE_ADDR this_addr; /* Address of the insn being decoded. */
10634 uint32_t arm_insn; /* Should accommodate thumb. */
10635 uint32_t cond; /* Condition code. */
10636 uint32_t opcode; /* Insn opcode. */
10637 uint32_t decode; /* Insn decode bits. */
10638 uint32_t mem_rec_count; /* No of mem records. */
10639 uint32_t reg_rec_count; /* No of reg records. */
10640 uint32_t *arm_regs; /* Registers to be saved for this record. */
10641 struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */
10642} insn_decode_record;
10643
10644
10645/* Checks ARM SBZ and SBO mandatory fields. */
10646
10647static int
10648sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo)
10649{
10650 uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1));
10651
10652 if (!len)
10653 return 1;
10654
10655 if (!sbo)
10656 ones = ~ones;
10657
10658 while (ones)
10659 {
10660 if (!(ones & sbo))
10661 {
10662 return 0;
10663 }
10664 ones = ones >> 1;
10665 }
10666 return 1;
10667}
10668
10669typedef enum
10670{
10671 ARM_RECORD_STRH=1,
10672 ARM_RECORD_STRD
10673} arm_record_strx_t;
10674
10675typedef enum
10676{
10677 ARM_RECORD=1,
10678 THUMB_RECORD,
10679 THUMB2_RECORD
10680} record_type_t;
10681
10682
10683static int
10684arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf,
10685 uint32_t *record_buf_mem, arm_record_strx_t str_type)
10686{
10687
10688 struct regcache *reg_cache = arm_insn_r->regcache;
10689 ULONGEST u_regval[2]= {0};
10690
10691 uint32_t reg_src1 = 0, reg_src2 = 0;
10692 uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
10693 uint32_t opcode1 = 0;
10694
10695 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10696 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10697 opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
10698
10699
10700 if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10701 {
10702 /* 1) Handle misc store, immediate offset. */
10703 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
10704 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
10705 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10706 regcache_raw_read_unsigned (reg_cache, reg_src1,
10707 &u_regval[0]);
10708 if (ARM_PC_REGNUM == reg_src1)
10709 {
10710 /* If R15 was used as Rn, hence current PC+8. */
10711 u_regval[0] = u_regval[0] + 8;
10712 }
10713 offset_8 = (immed_high << 4) | immed_low;
10714 /* Calculate target store address. */
10715 if (14 == arm_insn_r->opcode)
10716 {
10717 tgt_mem_addr = u_regval[0] + offset_8;
10718 }
10719 else
10720 {
10721 tgt_mem_addr = u_regval[0] - offset_8;
10722 }
10723 if (ARM_RECORD_STRH == str_type)
10724 {
10725 record_buf_mem[0] = 2;
10726 record_buf_mem[1] = tgt_mem_addr;
10727 arm_insn_r->mem_rec_count = 1;
10728 }
10729 else if (ARM_RECORD_STRD == str_type)
10730 {
10731 record_buf_mem[0] = 4;
10732 record_buf_mem[1] = tgt_mem_addr;
10733 record_buf_mem[2] = 4;
10734 record_buf_mem[3] = tgt_mem_addr + 4;
10735 arm_insn_r->mem_rec_count = 2;
10736 }
10737 }
10738 else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode)
10739 {
10740 /* 2) Store, register offset. */
10741 /* Get Rm. */
10742 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10743 /* Get Rn. */
10744 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10745 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10746 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10747 if (15 == reg_src2)
10748 {
10749 /* If R15 was used as Rn, hence current PC+8. */
10750 u_regval[0] = u_regval[0] + 8;
10751 }
10752 /* Calculate target store address, Rn +/- Rm, register offset. */
10753 if (12 == arm_insn_r->opcode)
10754 {
10755 tgt_mem_addr = u_regval[0] + u_regval[1];
10756 }
10757 else
10758 {
10759 tgt_mem_addr = u_regval[1] - u_regval[0];
10760 }
10761 if (ARM_RECORD_STRH == str_type)
10762 {
10763 record_buf_mem[0] = 2;
10764 record_buf_mem[1] = tgt_mem_addr;
10765 arm_insn_r->mem_rec_count = 1;
10766 }
10767 else if (ARM_RECORD_STRD == str_type)
10768 {
10769 record_buf_mem[0] = 4;
10770 record_buf_mem[1] = tgt_mem_addr;
10771 record_buf_mem[2] = 4;
10772 record_buf_mem[3] = tgt_mem_addr + 4;
10773 arm_insn_r->mem_rec_count = 2;
10774 }
10775 }
10776 else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10777 || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
10778 {
10779 /* 3) Store, immediate pre-indexed. */
10780 /* 5) Store, immediate post-indexed. */
10781 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
10782 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
10783 offset_8 = (immed_high << 4) | immed_low;
10784 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10785 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10786 /* Calculate target store address, Rn +/- Rm, register offset. */
10787 if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
10788 {
10789 tgt_mem_addr = u_regval[0] + offset_8;
10790 }
10791 else
10792 {
10793 tgt_mem_addr = u_regval[0] - offset_8;
10794 }
10795 if (ARM_RECORD_STRH == str_type)
10796 {
10797 record_buf_mem[0] = 2;
10798 record_buf_mem[1] = tgt_mem_addr;
10799 arm_insn_r->mem_rec_count = 1;
10800 }
10801 else if (ARM_RECORD_STRD == str_type)
10802 {
10803 record_buf_mem[0] = 4;
10804 record_buf_mem[1] = tgt_mem_addr;
10805 record_buf_mem[2] = 4;
10806 record_buf_mem[3] = tgt_mem_addr + 4;
10807 arm_insn_r->mem_rec_count = 2;
10808 }
10809 /* Record Rn also as it changes. */
10810 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
10811 arm_insn_r->reg_rec_count = 1;
10812 }
10813 else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode
10814 || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
10815 {
10816 /* 4) Store, register pre-indexed. */
10817 /* 6) Store, register post -indexed. */
10818 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10819 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10820 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10821 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10822 /* Calculate target store address, Rn +/- Rm, register offset. */
10823 if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
10824 {
10825 tgt_mem_addr = u_regval[0] + u_regval[1];
10826 }
10827 else
10828 {
10829 tgt_mem_addr = u_regval[1] - u_regval[0];
10830 }
10831 if (ARM_RECORD_STRH == str_type)
10832 {
10833 record_buf_mem[0] = 2;
10834 record_buf_mem[1] = tgt_mem_addr;
10835 arm_insn_r->mem_rec_count = 1;
10836 }
10837 else if (ARM_RECORD_STRD == str_type)
10838 {
10839 record_buf_mem[0] = 4;
10840 record_buf_mem[1] = tgt_mem_addr;
10841 record_buf_mem[2] = 4;
10842 record_buf_mem[3] = tgt_mem_addr + 4;
10843 arm_insn_r->mem_rec_count = 2;
10844 }
10845 /* Record Rn also as it changes. */
10846 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
10847 arm_insn_r->reg_rec_count = 1;
10848 }
10849 return 0;
10850}
10851
10852/* Handling ARM extension space insns. */
10853
10854static int
10855arm_record_extension_space (insn_decode_record *arm_insn_r)
10856{
10857 uint32_t ret = 0; /* Return value: -1:record failure ; 0:success */
10858 uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0;
10859 uint32_t record_buf[8], record_buf_mem[8];
10860 uint32_t reg_src1 = 0;
10861 uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
10862 struct regcache *reg_cache = arm_insn_r->regcache;
10863 ULONGEST u_regval = 0;
10864
10865 gdb_assert (!INSN_RECORDED(arm_insn_r));
10866 /* Handle unconditional insn extension space. */
10867
10868 opcode1 = bits (arm_insn_r->arm_insn, 20, 27);
10869 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10870 if (arm_insn_r->cond)
10871 {
10872 /* PLD has no affect on architectural state, it just affects
10873 the caches. */
10874 if (5 == ((opcode1 & 0xE0) >> 5))
10875 {
10876 /* BLX(1) */
10877 record_buf[0] = ARM_PS_REGNUM;
10878 record_buf[1] = ARM_LR_REGNUM;
10879 arm_insn_r->reg_rec_count = 2;
10880 }
10881 /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */
10882 }
10883
10884
10885 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10886 if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4))
10887 {
10888 ret = -1;
10889 /* Undefined instruction on ARM V5; need to handle if later
10890 versions define it. */
10891 }
10892
10893 opcode1 = bits (arm_insn_r->arm_insn, 24, 27);
10894 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10895 insn_op1 = bits (arm_insn_r->arm_insn, 20, 23);
10896
10897 /* Handle arithmetic insn extension space. */
10898 if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond
10899 && !INSN_RECORDED(arm_insn_r))
10900 {
10901 /* Handle MLA(S) and MUL(S). */
10902 if (0 <= insn_op1 && 3 >= insn_op1)
10903 {
10904 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10905 record_buf[1] = ARM_PS_REGNUM;
10906 arm_insn_r->reg_rec_count = 2;
10907 }
10908 else if (4 <= insn_op1 && 15 >= insn_op1)
10909 {
10910 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
10911 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10912 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10913 record_buf[2] = ARM_PS_REGNUM;
10914 arm_insn_r->reg_rec_count = 3;
10915 }
10916 }
10917
10918 opcode1 = bits (arm_insn_r->arm_insn, 26, 27);
10919 opcode2 = bits (arm_insn_r->arm_insn, 23, 24);
10920 insn_op1 = bits (arm_insn_r->arm_insn, 21, 22);
10921
10922 /* Handle control insn extension space. */
10923
10924 if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20)
10925 && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r))
10926 {
10927 if (!bit (arm_insn_r->arm_insn,25))
10928 {
10929 if (!bits (arm_insn_r->arm_insn, 4, 7))
10930 {
10931 if ((0 == insn_op1) || (2 == insn_op1))
10932 {
10933 /* MRS. */
10934 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10935 arm_insn_r->reg_rec_count = 1;
10936 }
10937 else if (1 == insn_op1)
10938 {
10939 /* CSPR is going to be changed. */
10940 record_buf[0] = ARM_PS_REGNUM;
10941 arm_insn_r->reg_rec_count = 1;
10942 }
10943 else if (3 == insn_op1)
10944 {
10945 /* SPSR is going to be changed. */
10946 /* We need to get SPSR value, which is yet to be done. */
10947 printf_unfiltered (_("Process record does not support "
10948 "instruction 0x%0x at address %s.\n"),
10949 arm_insn_r->arm_insn,
10950 paddress (arm_insn_r->gdbarch,
10951 arm_insn_r->this_addr));
10952 return -1;
10953 }
10954 }
10955 else if (1 == bits (arm_insn_r->arm_insn, 4, 7))
10956 {
10957 if (1 == insn_op1)
10958 {
10959 /* BX. */
10960 record_buf[0] = ARM_PS_REGNUM;
10961 arm_insn_r->reg_rec_count = 1;
10962 }
10963 else if (3 == insn_op1)
10964 {
10965 /* CLZ. */
10966 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10967 arm_insn_r->reg_rec_count = 1;
10968 }
10969 }
10970 else if (3 == bits (arm_insn_r->arm_insn, 4, 7))
10971 {
10972 /* BLX. */
10973 record_buf[0] = ARM_PS_REGNUM;
10974 record_buf[1] = ARM_LR_REGNUM;
10975 arm_insn_r->reg_rec_count = 2;
10976 }
10977 else if (5 == bits (arm_insn_r->arm_insn, 4, 7))
10978 {
10979 /* QADD, QSUB, QDADD, QDSUB */
10980 record_buf[0] = ARM_PS_REGNUM;
10981 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10982 arm_insn_r->reg_rec_count = 2;
10983 }
10984 else if (7 == bits (arm_insn_r->arm_insn, 4, 7))
10985 {
10986 /* BKPT. */
10987 record_buf[0] = ARM_PS_REGNUM;
10988 record_buf[1] = ARM_LR_REGNUM;
10989 arm_insn_r->reg_rec_count = 2;
10990
10991 /* Save SPSR also;how? */
10992 printf_unfiltered (_("Process record does not support "
10993 "instruction 0x%0x at address %s.\n"),
10994 arm_insn_r->arm_insn,
10995 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
10996 return -1;
10997 }
10998 else if(8 == bits (arm_insn_r->arm_insn, 4, 7)
10999 || 10 == bits (arm_insn_r->arm_insn, 4, 7)
11000 || 12 == bits (arm_insn_r->arm_insn, 4, 7)
11001 || 14 == bits (arm_insn_r->arm_insn, 4, 7)
11002 )
11003 {
11004 if (0 == insn_op1 || 1 == insn_op1)
11005 {
11006 /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */
11007 /* We dont do optimization for SMULW<y> where we
11008 need only Rd. */
11009 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11010 record_buf[1] = ARM_PS_REGNUM;
11011 arm_insn_r->reg_rec_count = 2;
11012 }
11013 else if (2 == insn_op1)
11014 {
11015 /* SMLAL<x><y>. */
11016 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11017 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
11018 arm_insn_r->reg_rec_count = 2;
11019 }
11020 else if (3 == insn_op1)
11021 {
11022 /* SMUL<x><y>. */
11023 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11024 arm_insn_r->reg_rec_count = 1;
11025 }
11026 }
11027 }
11028 else
11029 {
11030 /* MSR : immediate form. */
11031 if (1 == insn_op1)
11032 {
11033 /* CSPR is going to be changed. */
11034 record_buf[0] = ARM_PS_REGNUM;
11035 arm_insn_r->reg_rec_count = 1;
11036 }
11037 else if (3 == insn_op1)
11038 {
11039 /* SPSR is going to be changed. */
11040 /* we need to get SPSR value, which is yet to be done */
11041 printf_unfiltered (_("Process record does not support "
11042 "instruction 0x%0x at address %s.\n"),
11043 arm_insn_r->arm_insn,
11044 paddress (arm_insn_r->gdbarch,
11045 arm_insn_r->this_addr));
11046 return -1;
11047 }
11048 }
11049 }
11050
11051 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
11052 opcode2 = bits (arm_insn_r->arm_insn, 20, 24);
11053 insn_op1 = bits (arm_insn_r->arm_insn, 5, 6);
11054
11055 /* Handle load/store insn extension space. */
11056
11057 if (!opcode1 && bit (arm_insn_r->arm_insn, 7)
11058 && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond
11059 && !INSN_RECORDED(arm_insn_r))
11060 {
11061 /* SWP/SWPB. */
11062 if (0 == insn_op1)
11063 {
11064 /* These insn, changes register and memory as well. */
11065 /* SWP or SWPB insn. */
11066 /* Get memory address given by Rn. */
11067 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
11068 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11069 /* SWP insn ?, swaps word. */
11070 if (8 == arm_insn_r->opcode)
11071 {
11072 record_buf_mem[0] = 4;
11073 }
11074 else
11075 {
11076 /* SWPB insn, swaps only byte. */
11077 record_buf_mem[0] = 1;
11078 }
11079 record_buf_mem[1] = u_regval;
11080 arm_insn_r->mem_rec_count = 1;
11081 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11082 arm_insn_r->reg_rec_count = 1;
11083 }
11084 else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
11085 {
11086 /* STRH. */
11087 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
11088 ARM_RECORD_STRH);
11089 }
11090 else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
11091 {
11092 /* LDRD. */
11093 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11094 record_buf[1] = record_buf[0] + 1;
11095 arm_insn_r->reg_rec_count = 2;
11096 }
11097 else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
11098 {
11099 /* STRD. */
11100 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
11101 ARM_RECORD_STRD);
11102 }
11103 else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3)
11104 {
11105 /* LDRH, LDRSB, LDRSH. */
11106 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11107 arm_insn_r->reg_rec_count = 1;
11108 }
11109
11110 }
11111
11112 opcode1 = bits (arm_insn_r->arm_insn, 23, 27);
11113 if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21)
11114 && !INSN_RECORDED(arm_insn_r))
11115 {
11116 ret = -1;
11117 /* Handle coprocessor insn extension space. */
11118 }
11119
11120 /* To be done for ARMv5 and later; as of now we return -1. */
11121 if (-1 == ret)
11122 printf_unfiltered (_("Process record does not support instruction x%0x "
11123 "at address %s.\n"),arm_insn_r->arm_insn,
11124 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
11125
11126
11127 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11128 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11129
11130 return ret;
11131}
11132
11133/* Handling opcode 000 insns. */
11134
11135static int
11136arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r)
11137{
11138 struct regcache *reg_cache = arm_insn_r->regcache;
11139 uint32_t record_buf[8], record_buf_mem[8];
11140 ULONGEST u_regval[2] = {0};
11141
11142 uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
11143 uint32_t immed_high = 0, immed_low = 0, offset_8 = 0, tgt_mem_addr = 0;
11144 uint32_t opcode1 = 0;
11145
11146 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
11147 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
11148 opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
11149
11150 /* Data processing insn /multiply insn. */
11151 if (9 == arm_insn_r->decode
11152 && ((4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
11153 || (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)))
11154 {
11155 /* Handle multiply instructions. */
11156 /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */
11157 if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)
11158 {
11159 /* Handle MLA and MUL. */
11160 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
11161 record_buf[1] = ARM_PS_REGNUM;
11162 arm_insn_r->reg_rec_count = 2;
11163 }
11164 else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
11165 {
11166 /* Handle SMLAL, SMULL, UMLAL, UMULL. */
11167 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
11168 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
11169 record_buf[2] = ARM_PS_REGNUM;
11170 arm_insn_r->reg_rec_count = 3;
11171 }
11172 }
11173 else if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
11174 && (11 == arm_insn_r->decode || 13 == arm_insn_r->decode))
11175 {
11176 /* Handle misc load insns, as 20th bit (L = 1). */
11177 /* LDR insn has a capability to do branching, if
11178 MOV LR, PC is precceded by LDR insn having Rn as R15
11179 in that case, it emulates branch and link insn, and hence we
11180 need to save CSPR and PC as well. I am not sure this is right
11181 place; as opcode = 010 LDR insn make this happen, if R15 was
11182 used. */
11183 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
11184 if (15 != reg_dest)
11185 {
11186 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11187 arm_insn_r->reg_rec_count = 1;
11188 }
11189 else
11190 {
11191 record_buf[0] = reg_dest;
11192 record_buf[1] = ARM_PS_REGNUM;
11193 arm_insn_r->reg_rec_count = 2;
11194 }
11195 }
11196 else if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
11197 && sbo_sbz (arm_insn_r->arm_insn, 5, 12, 0)
11198 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
11199 && 2 == bits (arm_insn_r->arm_insn, 20, 21))
11200 {
11201 /* Handle MSR insn. */
11202 if (9 == arm_insn_r->opcode)
11203 {
11204 /* CSPR is going to be changed. */
11205 record_buf[0] = ARM_PS_REGNUM;
11206 arm_insn_r->reg_rec_count = 1;
11207 }
11208 else
11209 {
11210 /* SPSR is going to be changed. */
11211 /* How to read SPSR value? */
11212 printf_unfiltered (_("Process record does not support instruction "
11213 "0x%0x at address %s.\n"),
11214 arm_insn_r->arm_insn,
11215 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
11216 return -1;
11217 }
11218 }
11219 else if (9 == arm_insn_r->decode
11220 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
11221 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
11222 {
11223 /* Handling SWP, SWPB. */
11224 /* These insn, changes register and memory as well. */
11225 /* SWP or SWPB insn. */
11226
11227 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
11228 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11229 /* SWP insn ?, swaps word. */
11230 if (8 == arm_insn_r->opcode)
11231 {
11232 record_buf_mem[0] = 4;
11233 }
11234 else
11235 {
11236 /* SWPB insn, swaps only byte. */
11237 record_buf_mem[0] = 1;
11238 }
11239 record_buf_mem[1] = u_regval[0];
11240 arm_insn_r->mem_rec_count = 1;
11241 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11242 arm_insn_r->reg_rec_count = 1;
11243 }
11244 else if (3 == arm_insn_r->decode && 0x12 == opcode1
11245 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
11246 {
11247 /* Handle BLX, branch and link/exchange. */
11248 if (9 == arm_insn_r->opcode)
11249 {
11250 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm,
11251 and R14 stores the return address. */
11252 record_buf[0] = ARM_PS_REGNUM;
11253 record_buf[1] = ARM_LR_REGNUM;
11254 arm_insn_r->reg_rec_count = 2;
11255 }
11256 }
11257 else if (7 == arm_insn_r->decode && 0x12 == opcode1)
11258 {
11259 /* Handle enhanced software breakpoint insn, BKPT. */
11260 /* CPSR is changed to be executed in ARM state, disabling normal
11261 interrupts, entering abort mode. */
11262 /* According to high vector configuration PC is set. */
11263 /* user hit breakpoint and type reverse, in
11264 that case, we need to go back with previous CPSR and
11265 Program Counter. */
11266 record_buf[0] = ARM_PS_REGNUM;
11267 record_buf[1] = ARM_LR_REGNUM;
11268 arm_insn_r->reg_rec_count = 2;
11269
11270 /* Save SPSR also; how? */
11271 printf_unfiltered (_("Process record does not support instruction "
11272 "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
11273 paddress (arm_insn_r->gdbarch,
11274 arm_insn_r->this_addr));
11275 return -1;
11276 }
11277 else if (11 == arm_insn_r->decode
11278 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
11279 {
11280 /* Handle enhanced store insns and DSP insns (e.g. LDRD). */
11281
11282 /* Handle str(x) insn */
11283 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
11284 ARM_RECORD_STRH);
11285 }
11286 else if (1 == arm_insn_r->decode && 0x12 == opcode1
11287 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
11288 {
11289 /* Handle BX, branch and link/exchange. */
11290 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */
11291 record_buf[0] = ARM_PS_REGNUM;
11292 arm_insn_r->reg_rec_count = 1;
11293 }
11294 else if (1 == arm_insn_r->decode && 0x16 == opcode1
11295 && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1)
11296 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1))
11297 {
11298 /* Count leading zeros: CLZ. */
11299 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11300 arm_insn_r->reg_rec_count = 1;
11301 }
11302 else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
11303 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
11304 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)
11305 && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0)
11306 )
11307 {
11308 /* Handle MRS insn. */
11309 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11310 arm_insn_r->reg_rec_count = 1;
11311 }
11312 else if (arm_insn_r->opcode <= 15)
11313 {
11314 /* Normal data processing insns. */
11315 /* Out of 11 shifter operands mode, all the insn modifies destination
11316 register, which is specified by 13-16 decode. */
11317 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11318 record_buf[1] = ARM_PS_REGNUM;
11319 arm_insn_r->reg_rec_count = 2;
11320 }
11321 else
11322 {
11323 return -1;
11324 }
11325
11326 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11327 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11328 return 0;
11329}
11330
11331/* Handling opcode 001 insns. */
11332
11333static int
11334arm_record_data_proc_imm (insn_decode_record *arm_insn_r)
11335{
11336 uint32_t record_buf[8], record_buf_mem[8];
11337
11338 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
11339 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
11340
11341 if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
11342 && 2 == bits (arm_insn_r->arm_insn, 20, 21)
11343 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
11344 )
11345 {
11346 /* Handle MSR insn. */
11347 if (9 == arm_insn_r->opcode)
11348 {
11349 /* CSPR is going to be changed. */
11350 record_buf[0] = ARM_PS_REGNUM;
11351 arm_insn_r->reg_rec_count = 1;
11352 }
11353 else
11354 {
11355 /* SPSR is going to be changed. */
11356 }
11357 }
11358 else if (arm_insn_r->opcode <= 15)
11359 {
11360 /* Normal data processing insns. */
11361 /* Out of 11 shifter operands mode, all the insn modifies destination
11362 register, which is specified by 13-16 decode. */
11363 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11364 record_buf[1] = ARM_PS_REGNUM;
11365 arm_insn_r->reg_rec_count = 2;
11366 }
11367 else
11368 {
11369 return -1;
11370 }
11371
11372 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11373 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11374 return 0;
11375}
11376
11377/* Handling opcode 010 insns. */
11378
11379static int
11380arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r)
11381{
11382 struct regcache *reg_cache = arm_insn_r->regcache;
11383
11384 uint32_t reg_src1 = 0 , reg_dest = 0;
11385 uint32_t offset_12 = 0, tgt_mem_addr = 0;
11386 uint32_t record_buf[8], record_buf_mem[8];
11387
11388 ULONGEST u_regval = 0;
11389
11390 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
11391 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
11392
11393 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
11394 {
11395 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
11396 /* LDR insn has a capability to do branching, if
11397 MOV LR, PC is precedded by LDR insn having Rn as R15
11398 in that case, it emulates branch and link insn, and hence we
11399 need to save CSPR and PC as well. */
11400 if (ARM_PC_REGNUM != reg_dest)
11401 {
11402 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11403 arm_insn_r->reg_rec_count = 1;
11404 }
11405 else
11406 {
11407 record_buf[0] = reg_dest;
11408 record_buf[1] = ARM_PS_REGNUM;
11409 arm_insn_r->reg_rec_count = 2;
11410 }
11411 }
11412 else
11413 {
11414 /* Store, immediate offset, immediate pre-indexed,
11415 immediate post-indexed. */
11416 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
11417 offset_12 = bits (arm_insn_r->arm_insn, 0, 11);
11418 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11419 /* U == 1 */
11420 if (bit (arm_insn_r->arm_insn, 23))
11421 {
11422 tgt_mem_addr = u_regval + offset_12;
11423 }
11424 else
11425 {
11426 tgt_mem_addr = u_regval - offset_12;
11427 }
11428
11429 switch (arm_insn_r->opcode)
11430 {
11431 /* STR. */
11432 case 8:
11433 case 12:
11434 /* STR. */
11435 case 9:
11436 case 13:
11437 /* STRT. */
11438 case 1:
11439 case 5:
11440 /* STR. */
11441 case 4:
11442 case 0:
11443 record_buf_mem[0] = 4;
11444 break;
11445
11446 /* STRB. */
11447 case 10:
11448 case 14:
11449 /* STRB. */
11450 case 11:
11451 case 15:
11452 /* STRBT. */
11453 case 3:
11454 case 7:
11455 /* STRB. */
11456 case 2:
11457 case 6:
11458 record_buf_mem[0] = 1;
11459 break;
11460
11461 default:
11462 gdb_assert_not_reached ("no decoding pattern found");
11463 break;
11464 }
11465 record_buf_mem[1] = tgt_mem_addr;
11466 arm_insn_r->mem_rec_count = 1;
11467
11468 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
11469 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
11470 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
11471 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
11472 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
11473 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
11474 )
11475 {
11476 /* We are handling pre-indexed mode; post-indexed mode;
11477 where Rn is going to be changed. */
11478 record_buf[0] = reg_src1;
11479 arm_insn_r->reg_rec_count = 1;
11480 }
11481 }
11482
11483 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11484 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11485 return 0;
11486}
11487
11488/* Handling opcode 011 insns. */
11489
11490static int
11491arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r)
11492{
11493 struct regcache *reg_cache = arm_insn_r->regcache;
11494
11495 uint32_t shift_imm = 0;
11496 uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
11497 uint32_t offset_12 = 0, tgt_mem_addr = 0;
11498 uint32_t record_buf[8], record_buf_mem[8];
11499
11500 LONGEST s_word;
11501 ULONGEST u_regval[2];
11502
11503 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
11504 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
11505
11506 /* Handle enhanced store insns and LDRD DSP insn,
11507 order begins according to addressing modes for store insns
11508 STRH insn. */
11509
11510 /* LDR or STR? */
11511 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
11512 {
11513 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
11514 /* LDR insn has a capability to do branching, if
11515 MOV LR, PC is precedded by LDR insn having Rn as R15
11516 in that case, it emulates branch and link insn, and hence we
11517 need to save CSPR and PC as well. */
11518 if (15 != reg_dest)
11519 {
11520 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11521 arm_insn_r->reg_rec_count = 1;
11522 }
11523 else
11524 {
11525 record_buf[0] = reg_dest;
11526 record_buf[1] = ARM_PS_REGNUM;
11527 arm_insn_r->reg_rec_count = 2;
11528 }
11529 }
11530 else
11531 {
11532 if (! bits (arm_insn_r->arm_insn, 4, 11))
11533 {
11534 /* Store insn, register offset and register pre-indexed,
11535 register post-indexed. */
11536 /* Get Rm. */
11537 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
11538 /* Get Rn. */
11539 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
11540 regcache_raw_read_unsigned (reg_cache, reg_src1
11541 , &u_regval[0]);
11542 regcache_raw_read_unsigned (reg_cache, reg_src2
11543 , &u_regval[1]);
11544 if (15 == reg_src2)
11545 {
11546 /* If R15 was used as Rn, hence current PC+8. */
11547 /* Pre-indexed mode doesnt reach here ; illegal insn. */
11548 u_regval[0] = u_regval[0] + 8;
11549 }
11550 /* Calculate target store address, Rn +/- Rm, register offset. */
11551 /* U == 1. */
11552 if (bit (arm_insn_r->arm_insn, 23))
11553 {
11554 tgt_mem_addr = u_regval[0] + u_regval[1];
11555 }
11556 else
11557 {
11558 tgt_mem_addr = u_regval[1] - u_regval[0];
11559 }
11560
11561 switch (arm_insn_r->opcode)
11562 {
11563 /* STR. */
11564 case 8:
11565 case 12:
11566 /* STR. */
11567 case 9:
11568 case 13:
11569 /* STRT. */
11570 case 1:
11571 case 5:
11572 /* STR. */
11573 case 0:
11574 case 4:
11575 record_buf_mem[0] = 4;
11576 break;
11577
11578 /* STRB. */
11579 case 10:
11580 case 14:
11581 /* STRB. */
11582 case 11:
11583 case 15:
11584 /* STRBT. */
11585 case 3:
11586 case 7:
11587 /* STRB. */
11588 case 2:
11589 case 6:
11590 record_buf_mem[0] = 1;
11591 break;
11592
11593 default:
11594 gdb_assert_not_reached ("no decoding pattern found");
11595 break;
11596 }
11597 record_buf_mem[1] = tgt_mem_addr;
11598 arm_insn_r->mem_rec_count = 1;
11599
11600 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
11601 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
11602 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
11603 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
11604 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
11605 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
11606 )
11607 {
11608 /* Rn is going to be changed in pre-indexed mode and
11609 post-indexed mode as well. */
11610 record_buf[0] = reg_src2;
11611 arm_insn_r->reg_rec_count = 1;
11612 }
11613 }
11614 else
11615 {
11616 /* Store insn, scaled register offset; scaled pre-indexed. */
11617 offset_12 = bits (arm_insn_r->arm_insn, 5, 6);
11618 /* Get Rm. */
11619 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
11620 /* Get Rn. */
11621 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
11622 /* Get shift_imm. */
11623 shift_imm = bits (arm_insn_r->arm_insn, 7, 11);
11624 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11625 regcache_raw_read_signed (reg_cache, reg_src1, &s_word);
11626 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
11627 /* Offset_12 used as shift. */
11628 switch (offset_12)
11629 {
11630 case 0:
11631 /* Offset_12 used as index. */
11632 offset_12 = u_regval[0] << shift_imm;
11633 break;
11634
11635 case 1:
11636 offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm;
11637 break;
11638
11639 case 2:
11640 if (!shift_imm)
11641 {
11642 if (bit (u_regval[0], 31))
11643 {
11644 offset_12 = 0xFFFFFFFF;
11645 }
11646 else
11647 {
11648 offset_12 = 0;
11649 }
11650 }
11651 else
11652 {
11653 /* This is arithmetic shift. */
11654 offset_12 = s_word >> shift_imm;
11655 }
11656 break;
11657
11658 case 3:
11659 if (!shift_imm)
11660 {
11661 regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM,
11662 &u_regval[1]);
11663 /* Get C flag value and shift it by 31. */
11664 offset_12 = (((bit (u_regval[1], 29)) << 31) \
11665 | (u_regval[0]) >> 1);
11666 }
11667 else
11668 {
11669 offset_12 = (u_regval[0] >> shift_imm) \
11670 | (u_regval[0] <<
11671 (sizeof(uint32_t) - shift_imm));
11672 }
11673 break;
11674
11675 default:
11676 gdb_assert_not_reached ("no decoding pattern found");
11677 break;
11678 }
11679
11680 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
11681 /* bit U set. */
11682 if (bit (arm_insn_r->arm_insn, 23))
11683 {
11684 tgt_mem_addr = u_regval[1] + offset_12;
11685 }
11686 else
11687 {
11688 tgt_mem_addr = u_regval[1] - offset_12;
11689 }
11690
11691 switch (arm_insn_r->opcode)
11692 {
11693 /* STR. */
11694 case 8:
11695 case 12:
11696 /* STR. */
11697 case 9:
11698 case 13:
11699 /* STRT. */
11700 case 1:
11701 case 5:
11702 /* STR. */
11703 case 0:
11704 case 4:
11705 record_buf_mem[0] = 4;
11706 break;
11707
11708 /* STRB. */
11709 case 10:
11710 case 14:
11711 /* STRB. */
11712 case 11:
11713 case 15:
11714 /* STRBT. */
11715 case 3:
11716 case 7:
11717 /* STRB. */
11718 case 2:
11719 case 6:
11720 record_buf_mem[0] = 1;
11721 break;
11722
11723 default:
11724 gdb_assert_not_reached ("no decoding pattern found");
11725 break;
11726 }
11727 record_buf_mem[1] = tgt_mem_addr;
11728 arm_insn_r->mem_rec_count = 1;
11729
11730 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
11731 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
11732 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
11733 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
11734 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
11735 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
11736 )
11737 {
11738 /* Rn is going to be changed in register scaled pre-indexed
11739 mode,and scaled post indexed mode. */
11740 record_buf[0] = reg_src2;
11741 arm_insn_r->reg_rec_count = 1;
11742 }
11743 }
11744 }
11745
11746 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11747 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11748 return 0;
11749}
11750
11751/* Handling opcode 100 insns. */
11752
11753static int
11754arm_record_ld_st_multiple (insn_decode_record *arm_insn_r)
11755{
11756 struct regcache *reg_cache = arm_insn_r->regcache;
11757
11758 uint32_t register_list[16] = {0}, register_count = 0, register_bits = 0;
11759 uint32_t reg_src1 = 0, addr_mode = 0, no_of_regs = 0;
11760 uint32_t start_address = 0, index = 0;
11761 uint32_t record_buf[24], record_buf_mem[48];
11762
11763 ULONGEST u_regval[2] = {0};
11764
11765 /* This mode is exclusively for load and store multiple. */
11766 /* Handle incremenrt after/before and decrment after.before mode;
11767 Rn is changing depending on W bit, but as of now we store Rn too
11768 without optimization. */
11769
11770 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
11771 {
11772 /* LDM (1,2,3) where LDM (3) changes CPSR too. */
11773
11774 if (bit (arm_insn_r->arm_insn, 20) && !bit (arm_insn_r->arm_insn, 22))
11775 {
11776 register_bits = bits (arm_insn_r->arm_insn, 0, 15);
11777 no_of_regs = 15;
11778 }
11779 else
11780 {
11781 register_bits = bits (arm_insn_r->arm_insn, 0, 14);
11782 no_of_regs = 14;
11783 }
11784 /* Get Rn. */
11785 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
11786 while (register_bits)
11787 {
11788 if (register_bits & 0x00000001)
11789 register_list[register_count++] = 1;
11790 register_bits = register_bits >> 1;
11791 }
11792
11793 /* Extra space for Base Register and CPSR; wihtout optimization. */
11794 record_buf[register_count] = reg_src1;
11795 record_buf[register_count + 1] = ARM_PS_REGNUM;
11796 arm_insn_r->reg_rec_count = register_count + 2;
11797
11798 for (register_count = 0; register_count < no_of_regs; register_count++)
11799 {
11800 if (register_list[register_count])
11801 {
11802 /* Register_count gives total no of registers
11803 and dually working as reg number. */
11804 record_buf[index] = register_count;
11805 index++;
11806 }
11807 }
11808
11809 }
11810 else
11811 {
11812 /* It handles both STM(1) and STM(2). */
11813 addr_mode = bits (arm_insn_r->arm_insn, 23, 24);
11814
11815 register_bits = bits (arm_insn_r->arm_insn, 0, 15);
11816 /* Get Rn. */
11817 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
11818 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11819 while (register_bits)
11820 {
11821 if (register_bits & 0x00000001)
11822 register_count++;
11823 register_bits = register_bits >> 1;
11824 }
11825
11826 switch (addr_mode)
11827 {
11828 /* Decrement after. */
11829 case 0:
11830 start_address = (u_regval[0]) - (register_count * 4) + 4;
11831 arm_insn_r->mem_rec_count = register_count;
11832 while (register_count)
11833 {
11834 record_buf_mem[(register_count * 2) - 1] = start_address;
11835 record_buf_mem[(register_count * 2) - 2] = 4;
11836 start_address = start_address + 4;
11837 register_count--;
11838 }
11839 break;
11840
11841 /* Increment after. */
11842 case 1:
11843 start_address = u_regval[0];
11844 arm_insn_r->mem_rec_count = register_count;
11845 while (register_count)
11846 {
11847 record_buf_mem[(register_count * 2) - 1] = start_address;
11848 record_buf_mem[(register_count * 2) - 2] = 4;
11849 start_address = start_address + 4;
11850 register_count--;
11851 }
11852 break;
11853
11854 /* Decrement before. */
11855 case 2:
11856
11857 start_address = (u_regval[0]) - (register_count * 4);
11858 arm_insn_r->mem_rec_count = register_count;
11859 while (register_count)
11860 {
11861 record_buf_mem[(register_count * 2) - 1] = start_address;
11862 record_buf_mem[(register_count * 2) - 2] = 4;
11863 start_address = start_address + 4;
11864 register_count--;
11865 }
11866 break;
11867
11868 /* Increment before. */
11869 case 3:
11870 start_address = u_regval[0] + 4;
11871 arm_insn_r->mem_rec_count = register_count;
11872 while (register_count)
11873 {
11874 record_buf_mem[(register_count * 2) - 1] = start_address;
11875 record_buf_mem[(register_count * 2) - 2] = 4;
11876 start_address = start_address + 4;
11877 register_count--;
11878 }
11879 break;
11880
11881 default:
11882 gdb_assert_not_reached ("no decoding pattern found");
11883 break;
11884 }
11885
11886 /* Base register also changes; based on condition and W bit. */
11887 /* We save it anyway without optimization. */
11888 record_buf[0] = reg_src1;
11889 arm_insn_r->reg_rec_count = 1;
11890 }
11891
11892 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11893 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11894 return 0;
11895}
11896
11897/* Handling opcode 101 insns. */
11898
11899static int
11900arm_record_b_bl (insn_decode_record *arm_insn_r)
11901{
11902 uint32_t record_buf[8];
11903
11904 /* Handle B, BL, BLX(1) insns. */
11905 /* B simply branches so we do nothing here. */
11906 /* Note: BLX(1) doesnt fall here but instead it falls into
11907 extension space. */
11908 if (bit (arm_insn_r->arm_insn, 24))
11909 {
11910 record_buf[0] = ARM_LR_REGNUM;
11911 arm_insn_r->reg_rec_count = 1;
11912 }
11913
11914 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11915
11916 return 0;
11917}
11918
11919/* Handling opcode 110 insns. */
11920
11921static int
11922arm_record_coproc (insn_decode_record *arm_insn_r)
11923{
11924 printf_unfiltered (_("Process record does not support instruction "
11925 "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
11926 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
11927
11928 return -1;
11929}
11930
11931/* Handling opcode 111 insns. */
11932
11933static int
11934arm_record_coproc_data_proc (insn_decode_record *arm_insn_r)
11935{
11936 struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch);
11937 struct regcache *reg_cache = arm_insn_r->regcache;
11938 uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */
11939
11940 /* Handle SWI insn; system call would be handled over here. */
11941
11942 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27);
11943 if (15 == arm_insn_r->opcode)
11944 {
11945 /* Handle arm syscall insn. */
11946 if (tdep->arm_swi_record != NULL)
11947 {
11948 ret = tdep->arm_swi_record(reg_cache);
11949 }
11950 else
11951 {
11952 printf_unfiltered (_("no syscall record support\n"));
11953 ret = -1;
11954 }
11955 }
11956
11957 printf_unfiltered (_("Process record does not support instruction "
11958 "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
11959 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
11960 return ret;
11961}
11962
11963/* Handling opcode 000 insns. */
11964
11965static int
11966thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r)
11967{
11968 uint32_t record_buf[8];
11969 uint32_t reg_src1 = 0;
11970
11971 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11972
11973 record_buf[0] = ARM_PS_REGNUM;
11974 record_buf[1] = reg_src1;
11975 thumb_insn_r->reg_rec_count = 2;
11976
11977 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11978
11979 return 0;
11980}
11981
11982
11983/* Handling opcode 001 insns. */
11984
11985static int
11986thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r)
11987{
11988 uint32_t record_buf[8];
11989 uint32_t reg_src1 = 0;
11990
11991 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11992
11993 record_buf[0] = ARM_PS_REGNUM;
11994 record_buf[1] = reg_src1;
11995 thumb_insn_r->reg_rec_count = 2;
11996
11997 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11998
11999 return 0;
12000}
12001
12002/* Handling opcode 010 insns. */
12003
12004static int
12005thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r)
12006{
12007 struct regcache *reg_cache = thumb_insn_r->regcache;
12008 uint32_t record_buf[8], record_buf_mem[8];
12009
12010 uint32_t reg_src1 = 0, reg_src2 = 0;
12011 uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0;
12012
12013 ULONGEST u_regval[2] = {0};
12014
12015 opcode1 = bits (thumb_insn_r->arm_insn, 10, 12);
12016
12017 if (bit (thumb_insn_r->arm_insn, 12))
12018 {
12019 /* Handle load/store register offset. */
12020 opcode2 = bits (thumb_insn_r->arm_insn, 9, 10);
12021 if (opcode2 >= 12 && opcode2 <= 15)
12022 {
12023 /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */
12024 reg_src1 = bits (thumb_insn_r->arm_insn,0, 2);
12025 record_buf[0] = reg_src1;
12026 thumb_insn_r->reg_rec_count = 1;
12027 }
12028 else if (opcode2 >= 8 && opcode2 <= 10)
12029 {
12030 /* STR(2), STRB(2), STRH(2) . */
12031 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
12032 reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8);
12033 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
12034 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
12035 if (8 == opcode2)
12036 record_buf_mem[0] = 4; /* STR (2). */
12037 else if (10 == opcode2)
12038 record_buf_mem[0] = 1; /* STRB (2). */
12039 else if (9 == opcode2)
12040 record_buf_mem[0] = 2; /* STRH (2). */
12041 record_buf_mem[1] = u_regval[0] + u_regval[1];
12042 thumb_insn_r->mem_rec_count = 1;
12043 }
12044 }
12045 else if (bit (thumb_insn_r->arm_insn, 11))
12046 {
12047 /* Handle load from literal pool. */
12048 /* LDR(3). */
12049 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12050 record_buf[0] = reg_src1;
12051 thumb_insn_r->reg_rec_count = 1;
12052 }
12053 else if (opcode1)
12054 {
12055 opcode2 = bits (thumb_insn_r->arm_insn, 8, 9);
12056 opcode3 = bits (thumb_insn_r->arm_insn, 0, 2);
12057 if ((3 == opcode2) && (!opcode3))
12058 {
12059 /* Branch with exchange. */
12060 record_buf[0] = ARM_PS_REGNUM;
12061 thumb_insn_r->reg_rec_count = 1;
12062 }
12063 else
12064 {
12065 /* Format 8; special data processing insns. */
12066 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
12067 record_buf[0] = ARM_PS_REGNUM;
12068 record_buf[1] = reg_src1;
12069 thumb_insn_r->reg_rec_count = 2;
12070 }
12071 }
12072 else
12073 {
12074 /* Format 5; data processing insns. */
12075 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
12076 if (bit (thumb_insn_r->arm_insn, 7))
12077 {
12078 reg_src1 = reg_src1 + 8;
12079 }
12080 record_buf[0] = ARM_PS_REGNUM;
12081 record_buf[1] = reg_src1;
12082 thumb_insn_r->reg_rec_count = 2;
12083 }
12084
12085 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12086 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12087 record_buf_mem);
12088
12089 return 0;
12090}
12091
12092/* Handling opcode 001 insns. */
12093
12094static int
12095thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r)
12096{
12097 struct regcache *reg_cache = thumb_insn_r->regcache;
12098 uint32_t record_buf[8], record_buf_mem[8];
12099
12100 uint32_t reg_src1 = 0;
12101 uint32_t opcode = 0, immed_5 = 0;
12102
12103 ULONGEST u_regval = 0;
12104
12105 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
12106
12107 if (opcode)
12108 {
12109 /* LDR(1). */
12110 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
12111 record_buf[0] = reg_src1;
12112 thumb_insn_r->reg_rec_count = 1;
12113 }
12114 else
12115 {
12116 /* STR(1). */
12117 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
12118 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
12119 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
12120 record_buf_mem[0] = 4;
12121 record_buf_mem[1] = u_regval + (immed_5 * 4);
12122 thumb_insn_r->mem_rec_count = 1;
12123 }
12124
12125 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12126 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12127 record_buf_mem);
12128
12129 return 0;
12130}
12131
12132/* Handling opcode 100 insns. */
12133
12134static int
12135thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r)
12136{
12137 struct regcache *reg_cache = thumb_insn_r->regcache;
12138 uint32_t record_buf[8], record_buf_mem[8];
12139
12140 uint32_t reg_src1 = 0;
12141 uint32_t opcode = 0, immed_8 = 0, immed_5 = 0;
12142
12143 ULONGEST u_regval = 0;
12144
12145 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
12146
12147 if (3 == opcode)
12148 {
12149 /* LDR(4). */
12150 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12151 record_buf[0] = reg_src1;
12152 thumb_insn_r->reg_rec_count = 1;
12153 }
12154 else if (1 == opcode)
12155 {
12156 /* LDRH(1). */
12157 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
12158 record_buf[0] = reg_src1;
12159 thumb_insn_r->reg_rec_count = 1;
12160 }
12161 else if (2 == opcode)
12162 {
12163 /* STR(3). */
12164 immed_8 = bits (thumb_insn_r->arm_insn, 0, 7);
12165 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
12166 record_buf_mem[0] = 4;
12167 record_buf_mem[1] = u_regval + (immed_8 * 4);
12168 thumb_insn_r->mem_rec_count = 1;
12169 }
12170 else if (0 == opcode)
12171 {
12172 /* STRH(1). */
12173 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
12174 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
12175 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
12176 record_buf_mem[0] = 2;
12177 record_buf_mem[1] = u_regval + (immed_5 * 2);
12178 thumb_insn_r->mem_rec_count = 1;
12179 }
12180
12181 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12182 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12183 record_buf_mem);
12184
12185 return 0;
12186}
12187
12188/* Handling opcode 101 insns. */
12189
12190static int
12191thumb_record_misc (insn_decode_record *thumb_insn_r)
12192{
12193 struct regcache *reg_cache = thumb_insn_r->regcache;
12194
12195 uint32_t opcode = 0, opcode1 = 0, opcode2 = 0;
12196 uint32_t register_bits = 0, register_count = 0;
12197 uint32_t register_list[8] = {0}, index = 0, start_address = 0;
12198 uint32_t record_buf[24], record_buf_mem[48];
12199 uint32_t reg_src1;
12200
12201 ULONGEST u_regval = 0;
12202
12203 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
12204 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
12205 opcode2 = bits (thumb_insn_r->arm_insn, 9, 12);
12206
12207 if (14 == opcode2)
12208 {
12209 /* POP. */
12210 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12211 while (register_bits)
12212 {
12213 if (register_bits & 0x00000001)
12214 register_list[register_count++] = 1;
12215 register_bits = register_bits >> 1;
12216 }
12217 record_buf[register_count] = ARM_PS_REGNUM;
12218 record_buf[register_count + 1] = ARM_SP_REGNUM;
12219 thumb_insn_r->reg_rec_count = register_count + 2;
12220 for (register_count = 0; register_count < 8; register_count++)
12221 {
12222 if (register_list[register_count])
12223 {
12224 record_buf[index] = register_count;
12225 index++;
12226 }
12227 }
12228 }
12229 else if (10 == opcode2)
12230 {
12231 /* PUSH. */
12232 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12233 regcache_raw_read_unsigned (reg_cache, ARM_PC_REGNUM, &u_regval);
12234 while (register_bits)
12235 {
12236 if (register_bits & 0x00000001)
12237 register_count++;
12238 register_bits = register_bits >> 1;
12239 }
12240 start_address = u_regval - \
12241 (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count));
12242 thumb_insn_r->mem_rec_count = register_count;
12243 while (register_count)
12244 {
12245 record_buf_mem[(register_count * 2) - 1] = start_address;
12246 record_buf_mem[(register_count * 2) - 2] = 4;
12247 start_address = start_address + 4;
12248 register_count--;
12249 }
12250 record_buf[0] = ARM_SP_REGNUM;
12251 thumb_insn_r->reg_rec_count = 1;
12252 }
12253 else if (0x1E == opcode1)
12254 {
12255 /* BKPT insn. */
12256 /* Handle enhanced software breakpoint insn, BKPT. */
12257 /* CPSR is changed to be executed in ARM state, disabling normal
12258 interrupts, entering abort mode. */
12259 /* According to high vector configuration PC is set. */
12260 /* User hits breakpoint and type reverse, in that case, we need to go back with
12261 previous CPSR and Program Counter. */
12262 record_buf[0] = ARM_PS_REGNUM;
12263 record_buf[1] = ARM_LR_REGNUM;
12264 thumb_insn_r->reg_rec_count = 2;
12265 /* We need to save SPSR value, which is not yet done. */
12266 printf_unfiltered (_("Process record does not support instruction "
12267 "0x%0x at address %s.\n"),
12268 thumb_insn_r->arm_insn,
12269 paddress (thumb_insn_r->gdbarch,
12270 thumb_insn_r->this_addr));
12271 return -1;
12272 }
12273 else if ((0 == opcode) || (1 == opcode))
12274 {
12275 /* ADD(5), ADD(6). */
12276 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12277 record_buf[0] = reg_src1;
12278 thumb_insn_r->reg_rec_count = 1;
12279 }
12280 else if (2 == opcode)
12281 {
12282 /* ADD(7), SUB(4). */
12283 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12284 record_buf[0] = ARM_SP_REGNUM;
12285 thumb_insn_r->reg_rec_count = 1;
12286 }
12287
12288 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12289 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12290 record_buf_mem);
12291
12292 return 0;
12293}
12294
12295/* Handling opcode 110 insns. */
12296
12297static int
12298thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r)
12299{
12300 struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch);
12301 struct regcache *reg_cache = thumb_insn_r->regcache;
12302
12303 uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */
12304 uint32_t reg_src1 = 0;
12305 uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0;
12306 uint32_t register_list[8] = {0}, index = 0, start_address = 0;
12307 uint32_t record_buf[24], record_buf_mem[48];
12308
12309 ULONGEST u_regval = 0;
12310
12311 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
12312 opcode2 = bits (thumb_insn_r->arm_insn, 11, 12);
12313
12314 if (1 == opcode2)
12315 {
12316
12317 /* LDMIA. */
12318 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12319 /* Get Rn. */
12320 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12321 while (register_bits)
12322 {
12323 if (register_bits & 0x00000001)
12324 register_list[register_count++] = 1;
12325 register_bits = register_bits >> 1;
12326 }
12327 record_buf[register_count] = reg_src1;
12328 thumb_insn_r->reg_rec_count = register_count + 1;
12329 for (register_count = 0; register_count < 8; register_count++)
12330 {
12331 if (register_list[register_count])
12332 {
12333 record_buf[index] = register_count;
12334 index++;
12335 }
12336 }
12337 }
12338 else if (0 == opcode2)
12339 {
12340 /* It handles both STMIA. */
12341 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12342 /* Get Rn. */
12343 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12344 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
12345 while (register_bits)
12346 {
12347 if (register_bits & 0x00000001)
12348 register_count++;
12349 register_bits = register_bits >> 1;
12350 }
12351 start_address = u_regval;
12352 thumb_insn_r->mem_rec_count = register_count;
12353 while (register_count)
12354 {
12355 record_buf_mem[(register_count * 2) - 1] = start_address;
12356 record_buf_mem[(register_count * 2) - 2] = 4;
12357 start_address = start_address + 4;
12358 register_count--;
12359 }
12360 }
12361 else if (0x1F == opcode1)
12362 {
12363 /* Handle arm syscall insn. */
12364 if (tdep->arm_swi_record != NULL)
12365 {
12366 ret = tdep->arm_swi_record(reg_cache);
12367 }
12368 else
12369 {
12370 printf_unfiltered (_("no syscall record support\n"));
12371 return -1;
12372 }
12373 }
12374
12375 /* B (1), conditional branch is automatically taken care in process_record,
12376 as PC is saved there. */
12377
12378 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12379 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12380 record_buf_mem);
12381
12382 return ret;
12383}
12384
12385/* Handling opcode 111 insns. */
12386
12387static int
12388thumb_record_branch (insn_decode_record *thumb_insn_r)
12389{
12390 uint32_t record_buf[8];
12391 uint32_t bits_h = 0;
12392
12393 bits_h = bits (thumb_insn_r->arm_insn, 11, 12);
12394
12395 if (2 == bits_h || 3 == bits_h)
12396 {
12397 /* BL */
12398 record_buf[0] = ARM_LR_REGNUM;
12399 thumb_insn_r->reg_rec_count = 1;
12400 }
12401 else if (1 == bits_h)
12402 {
12403 /* BLX(1). */
12404 record_buf[0] = ARM_PS_REGNUM;
12405 record_buf[1] = ARM_LR_REGNUM;
12406 thumb_insn_r->reg_rec_count = 2;
12407 }
12408
12409 /* B(2) is automatically taken care in process_record, as PC is
12410 saved there. */
12411
12412 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12413
12414 return 0;
12415}
12416
12417
12418/* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success
12419and positive val on fauilure. */
12420
12421static int
12422extract_arm_insn (insn_decode_record *insn_record, uint32_t insn_size)
12423{
12424 gdb_byte buf[insn_size];
12425
12426 memset (&buf[0], 0, insn_size);
12427
12428 if (target_read_memory (insn_record->this_addr, &buf[0], insn_size))
12429 return 1;
12430 insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0],
12431 insn_size,
12432 gdbarch_byte_order (insn_record->gdbarch));
12433 return 0;
12434}
12435
12436typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*);
12437
12438/* Decode arm/thumb insn depending on condition cods and opcodes; and
12439 dispatch it. */
12440
12441static int
12442decode_insn (insn_decode_record *arm_record, record_type_t record_type,
12443 uint32_t insn_size)
12444{
12445
12446 /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm instruction. */
12447 static const sti_arm_hdl_fp_t const arm_handle_insn[8] =
12448 {
12449 arm_record_data_proc_misc_ld_str, /* 000. */
12450 arm_record_data_proc_imm, /* 001. */
12451 arm_record_ld_st_imm_offset, /* 010. */
12452 arm_record_ld_st_reg_offset, /* 011. */
12453 arm_record_ld_st_multiple, /* 100. */
12454 arm_record_b_bl, /* 101. */
12455 arm_record_coproc, /* 110. */
12456 arm_record_coproc_data_proc /* 111. */
12457 };
12458
12459 /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb instruction. */
12460 static const sti_arm_hdl_fp_t const thumb_handle_insn[8] =
12461 { \
12462 thumb_record_shift_add_sub, /* 000. */
12463 thumb_record_add_sub_cmp_mov, /* 001. */
12464 thumb_record_ld_st_reg_offset, /* 010. */
12465 thumb_record_ld_st_imm_offset, /* 011. */
12466 thumb_record_ld_st_stack, /* 100. */
12467 thumb_record_misc, /* 101. */
12468 thumb_record_ldm_stm_swi, /* 110. */
12469 thumb_record_branch /* 111. */
12470 };
12471
12472 uint32_t ret = 0; /* return value: negative:failure 0:success. */
12473 uint32_t insn_id = 0;
12474
12475 if (extract_arm_insn (arm_record, insn_size))
12476 {
12477 if (record_debug)
12478 {
12479 printf_unfiltered (_("Process record: error reading memory at "
12480 "addr %s len = %d.\n"),
12481 paddress (arm_record->gdbarch, arm_record->this_addr), insn_size);
12482 }
12483 return -1;
12484 }
12485 else if (ARM_RECORD == record_type)
12486 {
12487 arm_record->cond = bits (arm_record->arm_insn, 28, 31);
12488 insn_id = bits (arm_record->arm_insn, 25, 27);
12489 ret = arm_record_extension_space (arm_record);
12490 /* If this insn has fallen into extension space
12491 then we need not decode it anymore. */
12492 if (ret != -1 && !INSN_RECORDED(arm_record))
12493 {
12494 ret = arm_handle_insn[insn_id] (arm_record);
12495 }
12496 }
12497 else if (THUMB_RECORD == record_type)
12498 {
12499 /* As thumb does not have condition codes, we set negative. */
12500 arm_record->cond = -1;
12501 insn_id = bits (arm_record->arm_insn, 13, 15);
12502 ret = thumb_handle_insn[insn_id] (arm_record);
12503 }
12504 else if (THUMB2_RECORD == record_type)
12505 {
12506 printf_unfiltered (_("Process record doesnt support thumb32 instruction "
12507 "0x%0x at address %s.\n"),arm_record->arm_insn,
12508 paddress (arm_record->gdbarch,
12509 arm_record->this_addr));
12510 ret = -1;
12511 }
12512 else
12513 {
12514 /* Throw assertion. */
12515 gdb_assert_not_reached ("not a valid instruction, could not decode");
12516 }
12517
12518 return ret;
12519}
12520
12521
12522/* Cleans up local record registers and memory allocations. */
12523
12524static void
12525deallocate_reg_mem (insn_decode_record *record)
12526{
12527 xfree (record->arm_regs);
12528 xfree (record->arm_mems);
12529}
12530
12531
12532/* Parse the current instruction and record the values of the registers and
12533 memory that will be changed in current instruction to record_arch_list".
12534 Return -1 if something is wrong. */
12535
12536int
12537arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
12538 CORE_ADDR insn_addr)
12539{
12540
12541 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
12542 uint32_t no_of_rec = 0;
12543 uint32_t ret = 0; /* return value: -1:record failure ; 0:success */
12544 ULONGEST t_bit = 0, insn_id = 0;
12545
12546 ULONGEST u_regval = 0;
12547
12548 insn_decode_record arm_record;
12549
12550 memset (&arm_record, 0, sizeof (insn_decode_record));
12551 arm_record.regcache = regcache;
12552 arm_record.this_addr = insn_addr;
12553 arm_record.gdbarch = gdbarch;
12554
12555
12556 if (record_debug > 1)
12557 {
12558 fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record "
12559 "addr = %s\n",
12560 paddress (gdbarch, arm_record.this_addr));
12561 }
12562
12563 if (extract_arm_insn (&arm_record, 2))
12564 {
12565 if (record_debug)
12566 {
12567 printf_unfiltered (_("Process record: error reading memory at "
12568 "addr %s len = %d.\n"),
12569 paddress (arm_record.gdbarch,
12570 arm_record.this_addr), 2);
12571 }
12572 return -1;
12573 }
12574
12575 /* Check the insn, whether it is thumb or arm one. */
12576
12577 t_bit = arm_psr_thumb_bit (arm_record.gdbarch);
12578 regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval);
12579
12580
12581 if (!(u_regval & t_bit))
12582 {
12583 /* We are decoding arm insn. */
12584 ret = decode_insn (&arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES);
12585 }
12586 else
12587 {
12588 insn_id = bits (arm_record.arm_insn, 11, 15);
12589 /* is it thumb2 insn? */
12590 if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id))
12591 {
12592 ret = decode_insn (&arm_record, THUMB2_RECORD,
12593 THUMB2_INSN_SIZE_BYTES);
12594 }
12595 else
12596 {
12597 /* We are decoding thumb insn. */
12598 ret = decode_insn (&arm_record, THUMB_RECORD, THUMB_INSN_SIZE_BYTES);
12599 }
12600 }
12601
12602 if (0 == ret)
12603 {
12604 /* Record registers. */
25ea693b 12605 record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM);
72508ac0
PO
12606 if (arm_record.arm_regs)
12607 {
12608 for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++)
12609 {
25ea693b
MM
12610 if (record_full_arch_list_add_reg
12611 (arm_record.regcache , arm_record.arm_regs[no_of_rec]))
72508ac0
PO
12612 ret = -1;
12613 }
12614 }
12615 /* Record memories. */
12616 if (arm_record.arm_mems)
12617 {
12618 for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++)
12619 {
25ea693b 12620 if (record_full_arch_list_add_mem
72508ac0 12621 ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr,
25ea693b 12622 arm_record.arm_mems[no_of_rec].len))
72508ac0
PO
12623 ret = -1;
12624 }
12625 }
12626
25ea693b 12627 if (record_full_arch_list_add_end ())
72508ac0
PO
12628 ret = -1;
12629 }
12630
12631
12632 deallocate_reg_mem (&arm_record);
12633
12634 return ret;
12635}
12636