]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-tdep.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5ae96ec1 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
acd5c798
MK
23#include "arch-utils.h"
24#include "command.h"
25#include "dummy-frame.h"
6405b0a6 26#include "dwarf2-frame.h"
acd5c798 27#include "doublest.h"
c906108c 28#include "frame.h"
acd5c798
MK
29#include "frame-base.h"
30#include "frame-unwind.h"
c906108c 31#include "inferior.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
acd5c798 45
3d261580 46#include "gdb_assert.h"
acd5c798 47#include "gdb_string.h"
3d261580 48
d2a7c97a 49#include "i386-tdep.h"
61113f8b 50#include "i387-tdep.h"
d2a7c97a 51
c4fc7f1b 52/* Register names. */
c40e1eab 53
fc633446
MK
54static char *i386_register_names[] =
55{
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67};
68
1cb97e17 69static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 70
c4fc7f1b 71/* Register names for MMX pseudo-registers. */
28fc6740
AC
72
73static char *i386_mmx_names[] =
74{
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
77};
c40e1eab 78
1cb97e17 79static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 80
28fc6740 81static int
5716833c 82i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 83{
5716833c
MK
84 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
85
86 if (mm0_regnum < 0)
87 return 0;
88
89 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
90}
91
5716833c 92/* SSE register? */
23a34459 93
5716833c
MK
94static int
95i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 96{
5716833c
MK
97 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
98
99#define I387_ST0_REGNUM tdep->st0_regnum
100#define I387_NUM_XMM_REGS tdep->num_xmm_regs
101
102 if (I387_NUM_XMM_REGS == 0)
103 return 0;
104
105 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
106
107#undef I387_ST0_REGNUM
108#undef I387_NUM_XMM_REGS
23a34459
AC
109}
110
5716833c
MK
111static int
112i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 113{
5716833c
MK
114 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
115
116#define I387_ST0_REGNUM tdep->st0_regnum
117#define I387_NUM_XMM_REGS tdep->num_xmm_regs
118
119 if (I387_NUM_XMM_REGS == 0)
120 return 0;
121
122 return (regnum == I387_MXCSR_REGNUM);
123
124#undef I387_ST0_REGNUM
125#undef I387_NUM_XMM_REGS
23a34459
AC
126}
127
5716833c
MK
128#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
129#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
130#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
131
132/* FP register? */
23a34459
AC
133
134int
5716833c 135i386_fp_regnum_p (int regnum)
23a34459 136{
5716833c
MK
137 if (I387_ST0_REGNUM < 0)
138 return 0;
139
140 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
141}
142
143int
5716833c 144i386_fpc_regnum_p (int regnum)
23a34459 145{
5716833c
MK
146 if (I387_ST0_REGNUM < 0)
147 return 0;
148
149 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
150}
151
30b0e2d8 152/* Return the name of register REGNUM. */
fc633446 153
fa88f677 154const char *
d93859e2 155i386_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 156{
d93859e2 157 if (i386_mmx_regnum_p (gdbarch, regnum))
30b0e2d8 158 return i386_mmx_names[regnum - I387_MM0_REGNUM];
fc633446 159
30b0e2d8
MK
160 if (regnum >= 0 && regnum < i386_num_register_names)
161 return i386_register_names[regnum];
70913449 162
c40e1eab 163 return NULL;
fc633446
MK
164}
165
c4fc7f1b 166/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
167 number used by GDB. */
168
8201327c 169static int
c4fc7f1b 170i386_dbx_reg_to_regnum (int reg)
85540d8c 171{
c4fc7f1b
MK
172 /* This implements what GCC calls the "default" register map
173 (dbx_register_map[]). */
174
85540d8c
MK
175 if (reg >= 0 && reg <= 7)
176 {
9872ad24
JB
177 /* General-purpose registers. The debug info calls %ebp
178 register 4, and %esp register 5. */
179 if (reg == 4)
180 return 5;
181 else if (reg == 5)
182 return 4;
183 else return reg;
85540d8c
MK
184 }
185 else if (reg >= 12 && reg <= 19)
186 {
187 /* Floating-point registers. */
5716833c 188 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
189 }
190 else if (reg >= 21 && reg <= 28)
191 {
192 /* SSE registers. */
5716833c 193 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
194 }
195 else if (reg >= 29 && reg <= 36)
196 {
197 /* MMX registers. */
5716833c 198 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
199 }
200
201 /* This will hopefully provoke a warning. */
f57d151a
UW
202 return gdbarch_num_regs (current_gdbarch)
203 + gdbarch_num_pseudo_regs (current_gdbarch);
85540d8c
MK
204}
205
c4fc7f1b
MK
206/* Convert SVR4 register number REG to the appropriate register number
207 used by GDB. */
85540d8c 208
8201327c 209static int
c4fc7f1b 210i386_svr4_reg_to_regnum (int reg)
85540d8c 211{
c4fc7f1b
MK
212 /* This implements the GCC register map that tries to be compatible
213 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
214
215 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
216 numbers the floating point registers differently. */
217 if (reg >= 0 && reg <= 9)
218 {
acd5c798 219 /* General-purpose registers. */
85540d8c
MK
220 return reg;
221 }
222 else if (reg >= 11 && reg <= 18)
223 {
224 /* Floating-point registers. */
5716833c 225 return reg - 11 + I387_ST0_REGNUM;
85540d8c 226 }
c6f4c129 227 else if (reg >= 21 && reg <= 36)
85540d8c 228 {
c4fc7f1b
MK
229 /* The SSE and MMX registers have the same numbers as with dbx. */
230 return i386_dbx_reg_to_regnum (reg);
85540d8c
MK
231 }
232
c6f4c129
JB
233 switch (reg)
234 {
235 case 37: return I387_FCTRL_REGNUM;
236 case 38: return I387_FSTAT_REGNUM;
237 case 39: return I387_MXCSR_REGNUM;
238 case 40: return I386_ES_REGNUM;
239 case 41: return I386_CS_REGNUM;
240 case 42: return I386_SS_REGNUM;
241 case 43: return I386_DS_REGNUM;
242 case 44: return I386_FS_REGNUM;
243 case 45: return I386_GS_REGNUM;
244 }
245
85540d8c 246 /* This will hopefully provoke a warning. */
f57d151a
UW
247 return gdbarch_num_regs (current_gdbarch)
248 + gdbarch_num_pseudo_regs (current_gdbarch);
85540d8c 249}
5716833c
MK
250
251#undef I387_ST0_REGNUM
252#undef I387_MM0_REGNUM
253#undef I387_NUM_XMM_REGS
fc338970 254\f
917317f4 255
fc338970
MK
256/* This is the variable that is set with "set disassembly-flavor", and
257 its legitimate values. */
53904c9e
AC
258static const char att_flavor[] = "att";
259static const char intel_flavor[] = "intel";
260static const char *valid_flavors[] =
c5aa993b 261{
c906108c
SS
262 att_flavor,
263 intel_flavor,
264 NULL
265};
53904c9e 266static const char *disassembly_flavor = att_flavor;
acd5c798 267\f
c906108c 268
acd5c798
MK
269/* Use the program counter to determine the contents and size of a
270 breakpoint instruction. Return a pointer to a string of bytes that
271 encode a breakpoint instruction, store the length of the string in
272 *LEN and optionally adjust *PC to point to the correct memory
273 location for inserting the breakpoint.
c906108c 274
acd5c798
MK
275 On the i386 we have a single breakpoint that fits in a single byte
276 and can be inserted anywhere.
c906108c 277
acd5c798 278 This function is 64-bit safe. */
63c0089f
MK
279
280static const gdb_byte *
67d57894 281i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 282{
63c0089f
MK
283 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
284
acd5c798
MK
285 *len = sizeof (break_insn);
286 return break_insn;
c906108c 287}
fc338970 288\f
acd5c798
MK
289#ifdef I386_REGNO_TO_SYMMETRY
290#error "The Sequent Symmetry is no longer supported."
291#endif
c906108c 292
acd5c798
MK
293/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
294 and %esp "belong" to the calling function. Therefore these
295 registers should be saved if they're going to be modified. */
c906108c 296
acd5c798
MK
297/* The maximum number of saved registers. This should include all
298 registers mentioned above, and %eip. */
a3386186 299#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
300
301struct i386_frame_cache
c906108c 302{
acd5c798
MK
303 /* Base address. */
304 CORE_ADDR base;
772562f8 305 LONGEST sp_offset;
acd5c798
MK
306 CORE_ADDR pc;
307
fd13a04a
AC
308 /* Saved registers. */
309 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 310 CORE_ADDR saved_sp;
92dd43fa 311 int stack_align;
acd5c798
MK
312 int pc_in_eax;
313
314 /* Stack space reserved for local variables. */
315 long locals;
316};
317
318/* Allocate and initialize a frame cache. */
319
320static struct i386_frame_cache *
fd13a04a 321i386_alloc_frame_cache (void)
acd5c798
MK
322{
323 struct i386_frame_cache *cache;
324 int i;
325
326 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
327
328 /* Base address. */
329 cache->base = 0;
330 cache->sp_offset = -4;
331 cache->pc = 0;
332
fd13a04a
AC
333 /* Saved registers. We initialize these to -1 since zero is a valid
334 offset (that's where %ebp is supposed to be stored). */
335 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
336 cache->saved_regs[i] = -1;
acd5c798 337 cache->saved_sp = 0;
92dd43fa 338 cache->stack_align = 0;
acd5c798
MK
339 cache->pc_in_eax = 0;
340
341 /* Frameless until proven otherwise. */
342 cache->locals = -1;
343
344 return cache;
345}
c906108c 346
acd5c798
MK
347/* If the instruction at PC is a jump, return the address of its
348 target. Otherwise, return PC. */
c906108c 349
acd5c798
MK
350static CORE_ADDR
351i386_follow_jump (CORE_ADDR pc)
352{
63c0089f 353 gdb_byte op;
acd5c798
MK
354 long delta = 0;
355 int data16 = 0;
c906108c 356
24a2a654 357 read_memory_nobpt (pc, &op, 1);
acd5c798 358 if (op == 0x66)
c906108c 359 {
c906108c 360 data16 = 1;
acd5c798 361 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
362 }
363
acd5c798 364 switch (op)
c906108c
SS
365 {
366 case 0xe9:
fc338970 367 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
368 if (data16)
369 {
acd5c798 370 delta = read_memory_integer (pc + 2, 2);
c906108c 371
fc338970
MK
372 /* Include the size of the jmp instruction (including the
373 0x66 prefix). */
acd5c798 374 delta += 4;
c906108c
SS
375 }
376 else
377 {
acd5c798 378 delta = read_memory_integer (pc + 1, 4);
c906108c 379
acd5c798
MK
380 /* Include the size of the jmp instruction. */
381 delta += 5;
c906108c
SS
382 }
383 break;
384 case 0xeb:
fc338970 385 /* Relative jump, disp8 (ignore data16). */
acd5c798 386 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 387
acd5c798 388 delta += data16 + 2;
c906108c
SS
389 break;
390 }
c906108c 391
acd5c798
MK
392 return pc + delta;
393}
fc338970 394
acd5c798
MK
395/* Check whether PC points at a prologue for a function returning a
396 structure or union. If so, it updates CACHE and returns the
397 address of the first instruction after the code sequence that
398 removes the "hidden" argument from the stack or CURRENT_PC,
399 whichever is smaller. Otherwise, return PC. */
c906108c 400
acd5c798
MK
401static CORE_ADDR
402i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
403 struct i386_frame_cache *cache)
c906108c 404{
acd5c798
MK
405 /* Functions that return a structure or union start with:
406
407 popl %eax 0x58
408 xchgl %eax, (%esp) 0x87 0x04 0x24
409 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
410
411 (the System V compiler puts out the second `xchg' instruction,
412 and the assembler doesn't try to optimize it, so the 'sib' form
413 gets generated). This sequence is used to get the address of the
414 return buffer for a function that returns a structure. */
63c0089f
MK
415 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
416 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
417 gdb_byte buf[4];
418 gdb_byte op;
c906108c 419
acd5c798
MK
420 if (current_pc <= pc)
421 return pc;
422
24a2a654 423 read_memory_nobpt (pc, &op, 1);
c906108c 424
acd5c798
MK
425 if (op != 0x58) /* popl %eax */
426 return pc;
c906108c 427
24a2a654 428 read_memory_nobpt (pc + 1, buf, 4);
acd5c798
MK
429 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
430 return pc;
c906108c 431
acd5c798 432 if (current_pc == pc)
c906108c 433 {
acd5c798
MK
434 cache->sp_offset += 4;
435 return current_pc;
c906108c
SS
436 }
437
acd5c798 438 if (current_pc == pc + 1)
c906108c 439 {
acd5c798
MK
440 cache->pc_in_eax = 1;
441 return current_pc;
442 }
443
444 if (buf[1] == proto1[1])
445 return pc + 4;
446 else
447 return pc + 5;
448}
449
450static CORE_ADDR
451i386_skip_probe (CORE_ADDR pc)
452{
453 /* A function may start with
fc338970 454
acd5c798
MK
455 pushl constant
456 call _probe
457 addl $4, %esp
fc338970 458
acd5c798
MK
459 followed by
460
461 pushl %ebp
fc338970 462
acd5c798 463 etc. */
63c0089f
MK
464 gdb_byte buf[8];
465 gdb_byte op;
fc338970 466
24a2a654 467 read_memory_nobpt (pc, &op, 1);
acd5c798
MK
468
469 if (op == 0x68 || op == 0x6a)
470 {
471 int delta;
c906108c 472
acd5c798
MK
473 /* Skip past the `pushl' instruction; it has either a one-byte or a
474 four-byte operand, depending on the opcode. */
c906108c 475 if (op == 0x68)
acd5c798 476 delta = 5;
c906108c 477 else
acd5c798 478 delta = 2;
c906108c 479
acd5c798
MK
480 /* Read the following 8 bytes, which should be `call _probe' (6
481 bytes) followed by `addl $4,%esp' (2 bytes). */
482 read_memory (pc + delta, buf, sizeof (buf));
c906108c 483 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 484 pc += delta + sizeof (buf);
c906108c
SS
485 }
486
acd5c798
MK
487 return pc;
488}
489
92dd43fa
MK
490/* GCC 4.1 and later, can put code in the prologue to realign the
491 stack pointer. Check whether PC points to such code, and update
492 CACHE accordingly. Return the first instruction after the code
493 sequence or CURRENT_PC, whichever is smaller. If we don't
494 recognize the code, return PC. */
495
496static CORE_ADDR
497i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
498 struct i386_frame_cache *cache)
499{
92a56b20
JB
500 /* The register used by the compiler to perform the stack re-alignment
501 is, in order of preference, either %ecx, %edx, or %eax. GCC should
502 never use %ebx as it always treats it as callee-saved, whereas
503 the compiler can only use caller-saved registers. */
ade52156 504 static const gdb_byte insns_ecx[10] = {
92dd43fa
MK
505 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
506 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
507 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
508 };
ade52156
JB
509 static const gdb_byte insns_edx[10] = {
510 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
511 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
512 0xff, 0x72, 0xfc /* pushl -4(%edx) */
513 };
514 static const gdb_byte insns_eax[10] = {
515 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
516 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
517 0xff, 0x70, 0xfc /* pushl -4(%eax) */
518 };
92dd43fa
MK
519 gdb_byte buf[10];
520
521 if (target_read_memory (pc, buf, sizeof buf)
ade52156
JB
522 || (memcmp (buf, insns_ecx, sizeof buf) != 0
523 && memcmp (buf, insns_edx, sizeof buf) != 0
524 && memcmp (buf, insns_eax, sizeof buf) != 0))
92dd43fa
MK
525 return pc;
526
527 if (current_pc > pc + 4)
528 cache->stack_align = 1;
529
530 return min (pc + 10, current_pc);
531}
532
37bdc87e
MK
533/* Maximum instruction length we need to handle. */
534#define I386_MAX_INSN_LEN 6
535
536/* Instruction description. */
537struct i386_insn
538{
539 size_t len;
63c0089f
MK
540 gdb_byte insn[I386_MAX_INSN_LEN];
541 gdb_byte mask[I386_MAX_INSN_LEN];
37bdc87e
MK
542};
543
544/* Search for the instruction at PC in the list SKIP_INSNS. Return
545 the first instruction description that matches. Otherwise, return
546 NULL. */
547
548static struct i386_insn *
549i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
550{
551 struct i386_insn *insn;
63c0089f 552 gdb_byte op;
37bdc87e 553
24a2a654 554 read_memory_nobpt (pc, &op, 1);
37bdc87e
MK
555
556 for (insn = skip_insns; insn->len > 0; insn++)
557 {
558 if ((op & insn->mask[0]) == insn->insn[0])
559 {
613e8135
MK
560 gdb_byte buf[I386_MAX_INSN_LEN - 1];
561 int insn_matched = 1;
37bdc87e
MK
562 size_t i;
563
564 gdb_assert (insn->len > 1);
565 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
566
24a2a654 567 read_memory_nobpt (pc + 1, buf, insn->len - 1);
37bdc87e
MK
568 for (i = 1; i < insn->len; i++)
569 {
570 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 571 insn_matched = 0;
37bdc87e 572 }
613e8135
MK
573
574 if (insn_matched)
575 return insn;
37bdc87e
MK
576 }
577 }
578
579 return NULL;
580}
581
582/* Some special instructions that might be migrated by GCC into the
583 part of the prologue that sets up the new stack frame. Because the
584 stack frame hasn't been setup yet, no registers have been saved
585 yet, and only the scratch registers %eax, %ecx and %edx can be
586 touched. */
587
588struct i386_insn i386_frame_setup_skip_insns[] =
589{
590 /* Check for `movb imm8, r' and `movl imm32, r'.
591
592 ??? Should we handle 16-bit operand-sizes here? */
593
594 /* `movb imm8, %al' and `movb imm8, %ah' */
595 /* `movb imm8, %cl' and `movb imm8, %ch' */
596 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
597 /* `movb imm8, %dl' and `movb imm8, %dh' */
598 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
599 /* `movl imm32, %eax' and `movl imm32, %ecx' */
600 { 5, { 0xb8 }, { 0xfe } },
601 /* `movl imm32, %edx' */
602 { 5, { 0xba }, { 0xff } },
603
604 /* Check for `mov imm32, r32'. Note that there is an alternative
605 encoding for `mov m32, %eax'.
606
607 ??? Should we handle SIB adressing here?
608 ??? Should we handle 16-bit operand-sizes here? */
609
610 /* `movl m32, %eax' */
611 { 5, { 0xa1 }, { 0xff } },
612 /* `movl m32, %eax' and `mov; m32, %ecx' */
613 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
614 /* `movl m32, %edx' */
615 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
616
617 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
618 Because of the symmetry, there are actually two ways to encode
619 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
620 opcode bytes 0x31 and 0x33 for `xorl'. */
621
622 /* `subl %eax, %eax' */
623 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
624 /* `subl %ecx, %ecx' */
625 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
626 /* `subl %edx, %edx' */
627 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
628 /* `xorl %eax, %eax' */
629 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
630 /* `xorl %ecx, %ecx' */
631 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
632 /* `xorl %edx, %edx' */
633 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
634 { 0 }
635};
636
acd5c798
MK
637/* Check whether PC points at a code that sets up a new stack frame.
638 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
639 instruction after the sequence that sets up the frame or LIMIT,
640 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
641
642static CORE_ADDR
37bdc87e 643i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
644 struct i386_frame_cache *cache)
645{
37bdc87e 646 struct i386_insn *insn;
63c0089f 647 gdb_byte op;
26604a34 648 int skip = 0;
acd5c798 649
37bdc87e
MK
650 if (limit <= pc)
651 return limit;
acd5c798 652
24a2a654 653 read_memory_nobpt (pc, &op, 1);
acd5c798 654
c906108c 655 if (op == 0x55) /* pushl %ebp */
c5aa993b 656 {
acd5c798
MK
657 /* Take into account that we've executed the `pushl %ebp' that
658 starts this instruction sequence. */
fd13a04a 659 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 660 cache->sp_offset += 4;
37bdc87e 661 pc++;
acd5c798
MK
662
663 /* If that's all, return now. */
37bdc87e
MK
664 if (limit <= pc)
665 return limit;
26604a34 666
b4632131 667 /* Check for some special instructions that might be migrated by
37bdc87e
MK
668 GCC into the prologue and skip them. At this point in the
669 prologue, code should only touch the scratch registers %eax,
670 %ecx and %edx, so while the number of posibilities is sheer,
671 it is limited.
5daa5b4e 672
26604a34
MK
673 Make sure we only skip these instructions if we later see the
674 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 675 while (pc + skip < limit)
26604a34 676 {
37bdc87e
MK
677 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
678 if (insn == NULL)
679 break;
b4632131 680
37bdc87e 681 skip += insn->len;
26604a34
MK
682 }
683
37bdc87e
MK
684 /* If that's all, return now. */
685 if (limit <= pc + skip)
686 return limit;
687
24a2a654 688 read_memory_nobpt (pc + skip, &op, 1);
37bdc87e 689
26604a34 690 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 691 switch (op)
c906108c
SS
692 {
693 case 0x8b:
37bdc87e
MK
694 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
695 return pc;
c906108c
SS
696 break;
697 case 0x89:
37bdc87e
MK
698 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
699 return pc;
c906108c
SS
700 break;
701 default:
37bdc87e 702 return pc;
c906108c 703 }
acd5c798 704
26604a34
MK
705 /* OK, we actually have a frame. We just don't know how large
706 it is yet. Set its size to zero. We'll adjust it if
707 necessary. We also now commit to skipping the special
708 instructions mentioned before. */
acd5c798 709 cache->locals = 0;
37bdc87e 710 pc += (skip + 2);
acd5c798
MK
711
712 /* If that's all, return now. */
37bdc87e
MK
713 if (limit <= pc)
714 return limit;
acd5c798 715
fc338970
MK
716 /* Check for stack adjustment
717
acd5c798 718 subl $XXX, %esp
fc338970 719
fd35795f 720 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 721 reg, so we don't have to worry about a data16 prefix. */
24a2a654 722 read_memory_nobpt (pc, &op, 1);
c906108c
SS
723 if (op == 0x83)
724 {
fd35795f 725 /* `subl' with 8-bit immediate. */
37bdc87e 726 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 727 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 728 return pc;
acd5c798 729
37bdc87e
MK
730 /* `subl' with signed 8-bit immediate (though it wouldn't
731 make sense to be negative). */
732 cache->locals = read_memory_integer (pc + 2, 1);
733 return pc + 3;
c906108c
SS
734 }
735 else if (op == 0x81)
736 {
fd35795f 737 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 738 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 739 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 740 return pc;
acd5c798 741
fd35795f 742 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
743 cache->locals = read_memory_integer (pc + 2, 4);
744 return pc + 6;
c906108c
SS
745 }
746 else
747 {
acd5c798 748 /* Some instruction other than `subl'. */
37bdc87e 749 return pc;
c906108c
SS
750 }
751 }
37bdc87e 752 else if (op == 0xc8) /* enter */
c906108c 753 {
acd5c798
MK
754 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
755 return pc + 4;
c906108c 756 }
21d0e8a4 757
acd5c798 758 return pc;
21d0e8a4
MK
759}
760
acd5c798
MK
761/* Check whether PC points at code that saves registers on the stack.
762 If so, it updates CACHE and returns the address of the first
763 instruction after the register saves or CURRENT_PC, whichever is
764 smaller. Otherwise, return PC. */
6bff26de
MK
765
766static CORE_ADDR
acd5c798
MK
767i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
768 struct i386_frame_cache *cache)
6bff26de 769{
99ab4326 770 CORE_ADDR offset = 0;
63c0089f 771 gdb_byte op;
99ab4326 772 int i;
c0d1d883 773
99ab4326
MK
774 if (cache->locals > 0)
775 offset -= cache->locals;
776 for (i = 0; i < 8 && pc < current_pc; i++)
777 {
24a2a654 778 read_memory_nobpt (pc, &op, 1);
99ab4326
MK
779 if (op < 0x50 || op > 0x57)
780 break;
0d17c81d 781
99ab4326
MK
782 offset -= 4;
783 cache->saved_regs[op - 0x50] = offset;
784 cache->sp_offset += 4;
785 pc++;
6bff26de
MK
786 }
787
acd5c798 788 return pc;
22797942
AC
789}
790
acd5c798
MK
791/* Do a full analysis of the prologue at PC and update CACHE
792 accordingly. Bail out early if CURRENT_PC is reached. Return the
793 address where the analysis stopped.
ed84f6c1 794
fc338970
MK
795 We handle these cases:
796
797 The startup sequence can be at the start of the function, or the
798 function can start with a branch to startup code at the end.
799
800 %ebp can be set up with either the 'enter' instruction, or "pushl
801 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
802 once used in the System V compiler).
803
804 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
805 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
806 16-bit unsigned argument for space to allocate, and the 'addl'
807 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
808
809 Next, the registers used by this function are pushed. With the
810 System V compiler they will always be in the order: %edi, %esi,
811 %ebx (and sometimes a harmless bug causes it to also save but not
812 restore %eax); however, the code below is willing to see the pushes
813 in any order, and will handle up to 8 of them.
814
815 If the setup sequence is at the end of the function, then the next
816 instruction will be a branch back to the start. */
c906108c 817
acd5c798
MK
818static CORE_ADDR
819i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
820 struct i386_frame_cache *cache)
c906108c 821{
acd5c798
MK
822 pc = i386_follow_jump (pc);
823 pc = i386_analyze_struct_return (pc, current_pc, cache);
824 pc = i386_skip_probe (pc);
92dd43fa 825 pc = i386_analyze_stack_align (pc, current_pc, cache);
acd5c798
MK
826 pc = i386_analyze_frame_setup (pc, current_pc, cache);
827 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
828}
829
fc338970 830/* Return PC of first real instruction. */
c906108c 831
3a1e71e3 832static CORE_ADDR
acd5c798 833i386_skip_prologue (CORE_ADDR start_pc)
c906108c 834{
63c0089f 835 static gdb_byte pic_pat[6] =
acd5c798
MK
836 {
837 0xe8, 0, 0, 0, 0, /* call 0x0 */
838 0x5b, /* popl %ebx */
c5aa993b 839 };
acd5c798
MK
840 struct i386_frame_cache cache;
841 CORE_ADDR pc;
63c0089f 842 gdb_byte op;
acd5c798 843 int i;
c5aa993b 844
acd5c798
MK
845 cache.locals = -1;
846 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
847 if (cache.locals < 0)
848 return start_pc;
c5aa993b 849
acd5c798 850 /* Found valid frame setup. */
c906108c 851
fc338970
MK
852 /* The native cc on SVR4 in -K PIC mode inserts the following code
853 to get the address of the global offset table (GOT) into register
acd5c798
MK
854 %ebx:
855
fc338970
MK
856 call 0x0
857 popl %ebx
858 movl %ebx,x(%ebp) (optional)
859 addl y,%ebx
860
c906108c
SS
861 This code is with the rest of the prologue (at the end of the
862 function), so we have to skip it to get to the first real
863 instruction at the start of the function. */
c5aa993b 864
c906108c
SS
865 for (i = 0; i < 6; i++)
866 {
24a2a654 867 read_memory_nobpt (pc + i, &op, 1);
c5aa993b 868 if (pic_pat[i] != op)
c906108c
SS
869 break;
870 }
871 if (i == 6)
872 {
acd5c798
MK
873 int delta = 6;
874
24a2a654 875 read_memory_nobpt (pc + delta, &op, 1);
c906108c 876
c5aa993b 877 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 878 {
acd5c798
MK
879 op = read_memory_unsigned_integer (pc + delta + 1, 1);
880
fc338970 881 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 882 delta += 3;
fc338970 883 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 884 delta += 6;
fc338970 885 else /* Unexpected instruction. */
acd5c798
MK
886 delta = 0;
887
24a2a654 888 read_memory_nobpt (pc + delta, &op, 1);
c906108c 889 }
acd5c798 890
c5aa993b 891 /* addl y,%ebx */
acd5c798 892 if (delta > 0 && op == 0x81
d5d6fca5 893 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
c906108c 894 {
acd5c798 895 pc += delta + 6;
c906108c
SS
896 }
897 }
c5aa993b 898
e63bbc88
MK
899 /* If the function starts with a branch (to startup code at the end)
900 the last instruction should bring us back to the first
901 instruction of the real code. */
902 if (i386_follow_jump (start_pc) != start_pc)
903 pc = i386_follow_jump (pc);
904
905 return pc;
c906108c
SS
906}
907
acd5c798 908/* This function is 64-bit safe. */
93924b6b 909
acd5c798
MK
910static CORE_ADDR
911i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 912{
63c0089f 913 gdb_byte buf[8];
acd5c798 914
875f8d0e 915 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
acd5c798 916 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 917}
acd5c798 918\f
93924b6b 919
acd5c798 920/* Normal frames. */
c5aa993b 921
acd5c798
MK
922static struct i386_frame_cache *
923i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 924{
acd5c798 925 struct i386_frame_cache *cache;
63c0089f 926 gdb_byte buf[4];
acd5c798
MK
927 int i;
928
929 if (*this_cache)
930 return *this_cache;
931
fd13a04a 932 cache = i386_alloc_frame_cache ();
acd5c798
MK
933 *this_cache = cache;
934
935 /* In principle, for normal frames, %ebp holds the frame pointer,
936 which holds the base address for the current stack frame.
937 However, for functions that don't need it, the frame pointer is
938 optional. For these "frameless" functions the frame pointer is
939 actually the frame pointer of the calling frame. Signal
940 trampolines are just a special case of a "frameless" function.
941 They (usually) share their frame pointer with the frame that was
942 in progress when the signal occurred. */
943
944 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
945 cache->base = extract_unsigned_integer (buf, 4);
946 if (cache->base == 0)
947 return cache;
948
949 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 950 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 951
93d42b30 952 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
acd5c798
MK
953 if (cache->pc != 0)
954 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
955
92dd43fa
MK
956 if (cache->stack_align)
957 {
958 /* Saved stack pointer has been saved in %ecx. */
959 frame_unwind_register (next_frame, I386_ECX_REGNUM, buf);
960 cache->saved_sp = extract_unsigned_integer(buf, 4);
961 }
962
acd5c798
MK
963 if (cache->locals < 0)
964 {
965 /* We didn't find a valid frame, which means that CACHE->base
966 currently holds the frame pointer for our calling frame. If
967 we're at the start of a function, or somewhere half-way its
968 prologue, the function's frame probably hasn't been fully
969 setup yet. Try to reconstruct the base address for the stack
970 frame by looking at the stack pointer. For truly "frameless"
971 functions this might work too. */
972
92dd43fa
MK
973 if (cache->stack_align)
974 {
975 /* We're halfway aligning the stack. */
976 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
977 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
978
979 /* This will be added back below. */
980 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
981 }
982 else
983 {
984 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
985 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
986 }
acd5c798
MK
987 }
988
989 /* Now that we have the base address for the stack frame we can
990 calculate the value of %esp in the calling frame. */
92dd43fa
MK
991 if (cache->saved_sp == 0)
992 cache->saved_sp = cache->base + 8;
a7769679 993
acd5c798
MK
994 /* Adjust all the saved registers such that they contain addresses
995 instead of offsets. */
996 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
997 if (cache->saved_regs[i] != -1)
998 cache->saved_regs[i] += cache->base;
acd5c798
MK
999
1000 return cache;
a7769679
MK
1001}
1002
3a1e71e3 1003static void
acd5c798
MK
1004i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
1005 struct frame_id *this_id)
c906108c 1006{
acd5c798
MK
1007 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1008
1009 /* This marks the outermost frame. */
1010 if (cache->base == 0)
1011 return;
1012
3e210248 1013 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1014 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1015}
1016
1017static void
1018i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1019 int regnum, int *optimizedp,
1020 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1021 int *realnump, gdb_byte *valuep)
acd5c798
MK
1022{
1023 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1024
1025 gdb_assert (regnum >= 0);
1026
1027 /* The System V ABI says that:
1028
1029 "The flags register contains the system flags, such as the
1030 direction flag and the carry flag. The direction flag must be
1031 set to the forward (that is, zero) direction before entry and
1032 upon exit from a function. Other user flags have no specified
1033 role in the standard calling sequence and are not preserved."
1034
1035 To guarantee the "upon exit" part of that statement we fake a
1036 saved flags register that has its direction flag cleared.
1037
1038 Note that GCC doesn't seem to rely on the fact that the direction
1039 flag is cleared after a function return; it always explicitly
1040 clears the flag before operations where it matters.
1041
1042 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1043 right thing to do. The way we fake the flags register here makes
1044 it impossible to change it. */
1045
1046 if (regnum == I386_EFLAGS_REGNUM)
1047 {
1048 *optimizedp = 0;
1049 *lvalp = not_lval;
1050 *addrp = 0;
1051 *realnump = -1;
1052 if (valuep)
1053 {
1054 ULONGEST val;
c5aa993b 1055
acd5c798 1056 /* Clear the direction flag. */
f837910f
MK
1057 val = frame_unwind_register_unsigned (next_frame,
1058 I386_EFLAGS_REGNUM);
acd5c798
MK
1059 val &= ~(1 << 10);
1060 store_unsigned_integer (valuep, 4, val);
1061 }
1062
1063 return;
1064 }
1211c4e4 1065
acd5c798 1066 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 1067 {
00b25ff3
AC
1068 *optimizedp = 0;
1069 *lvalp = lval_register;
1070 *addrp = 0;
1071 *realnump = I386_EAX_REGNUM;
1072 if (valuep)
1073 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1074 return;
1075 }
1076
1077 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1078 {
1079 *optimizedp = 0;
1080 *lvalp = not_lval;
1081 *addrp = 0;
1082 *realnump = -1;
1083 if (valuep)
c906108c 1084 {
acd5c798
MK
1085 /* Store the value. */
1086 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 1087 }
acd5c798 1088 return;
c906108c 1089 }
acd5c798 1090
fd13a04a
AC
1091 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1092 {
1093 *optimizedp = 0;
1094 *lvalp = lval_memory;
1095 *addrp = cache->saved_regs[regnum];
1096 *realnump = -1;
1097 if (valuep)
1098 {
1099 /* Read the value in from memory. */
1100 read_memory (*addrp, valuep,
875f8d0e 1101 register_size (get_frame_arch (next_frame), regnum));
fd13a04a
AC
1102 }
1103 return;
1104 }
1105
00b25ff3
AC
1106 *optimizedp = 0;
1107 *lvalp = lval_register;
1108 *addrp = 0;
1109 *realnump = regnum;
1110 if (valuep)
1111 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1112}
1113
1114static const struct frame_unwind i386_frame_unwind =
1115{
1116 NORMAL_FRAME,
1117 i386_frame_this_id,
1118 i386_frame_prev_register
1119};
1120
1121static const struct frame_unwind *
336d1bba 1122i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
1123{
1124 return &i386_frame_unwind;
1125}
1126\f
1127
1128/* Signal trampolines. */
1129
1130static struct i386_frame_cache *
1131i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1132{
1133 struct i386_frame_cache *cache;
875f8d0e 1134 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1135 CORE_ADDR addr;
63c0089f 1136 gdb_byte buf[4];
acd5c798
MK
1137
1138 if (*this_cache)
1139 return *this_cache;
1140
fd13a04a 1141 cache = i386_alloc_frame_cache ();
acd5c798
MK
1142
1143 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1144 cache->base = extract_unsigned_integer (buf, 4) - 4;
1145
1146 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
1147 if (tdep->sc_reg_offset)
1148 {
1149 int i;
1150
1151 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1152
1153 for (i = 0; i < tdep->sc_num_regs; i++)
1154 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1155 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1156 }
1157 else
1158 {
fd13a04a
AC
1159 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1160 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1161 }
acd5c798
MK
1162
1163 *this_cache = cache;
1164 return cache;
1165}
1166
1167static void
1168i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1169 struct frame_id *this_id)
1170{
1171 struct i386_frame_cache *cache =
1172 i386_sigtramp_frame_cache (next_frame, this_cache);
1173
3e210248 1174 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1175 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1176}
1177
1178static void
1179i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1180 void **this_cache,
1181 int regnum, int *optimizedp,
1182 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1183 int *realnump, gdb_byte *valuep)
acd5c798
MK
1184{
1185 /* Make sure we've initialized the cache. */
1186 i386_sigtramp_frame_cache (next_frame, this_cache);
1187
1188 i386_frame_prev_register (next_frame, this_cache, regnum,
1189 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1190}
c0d1d883 1191
acd5c798
MK
1192static const struct frame_unwind i386_sigtramp_frame_unwind =
1193{
1194 SIGTRAMP_FRAME,
1195 i386_sigtramp_frame_this_id,
1196 i386_sigtramp_frame_prev_register
1197};
1198
1199static const struct frame_unwind *
336d1bba 1200i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1201{
911bc6ee 1202 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1203
911bc6ee
MK
1204 /* We shouldn't even bother if we don't have a sigcontext_addr
1205 handler. */
1206 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1207 return NULL;
1208
911bc6ee
MK
1209 if (tdep->sigtramp_p != NULL)
1210 {
1211 if (tdep->sigtramp_p (next_frame))
1212 return &i386_sigtramp_frame_unwind;
1213 }
1214
1215 if (tdep->sigtramp_start != 0)
1216 {
1217 CORE_ADDR pc = frame_pc_unwind (next_frame);
1218
1219 gdb_assert (tdep->sigtramp_end != 0);
1220 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1221 return &i386_sigtramp_frame_unwind;
1222 }
acd5c798
MK
1223
1224 return NULL;
1225}
1226\f
1227
1228static CORE_ADDR
1229i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1230{
1231 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1232
1233 return cache->base;
1234}
1235
1236static const struct frame_base i386_frame_base =
1237{
1238 &i386_frame_unwind,
1239 i386_frame_base_address,
1240 i386_frame_base_address,
1241 i386_frame_base_address
1242};
1243
acd5c798
MK
1244static struct frame_id
1245i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1246{
63c0089f 1247 gdb_byte buf[4];
acd5c798
MK
1248 CORE_ADDR fp;
1249
1250 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1251 fp = extract_unsigned_integer (buf, 4);
1252
3e210248 1253 /* See the end of i386_push_dummy_call. */
acd5c798 1254 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1255}
fc338970 1256\f
c906108c 1257
fc338970
MK
1258/* Figure out where the longjmp will land. Slurp the args out of the
1259 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1260 structure from which we extract the address that we will land at.
28bcfd30 1261 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1262 success.
1263
1264 This function is 64-bit safe. */
c906108c 1265
8201327c 1266static int
60ade65d 1267i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1268{
63c0089f 1269 gdb_byte buf[8];
c906108c 1270 CORE_ADDR sp, jb_addr;
60ade65d 1271 int jb_pc_offset = gdbarch_tdep (get_frame_arch (frame))->jb_pc_offset;
f9d3c2a8 1272 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1273
8201327c
MK
1274 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1275 longjmp will land. */
1276 if (jb_pc_offset == -1)
c906108c
SS
1277 return 0;
1278
f837910f
MK
1279 /* Don't use I386_ESP_REGNUM here, since this function is also used
1280 for AMD64. */
875f8d0e 1281 get_frame_register (frame, gdbarch_sp_regnum (get_frame_arch (frame)), buf);
f837910f 1282 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1283 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1284 return 0;
1285
f837910f 1286 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1287 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1288 return 0;
c906108c 1289
f9d3c2a8 1290 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1291 return 1;
1292}
fc338970 1293\f
c906108c 1294
3a1e71e3 1295static CORE_ADDR
7d9b040b 1296i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1297 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1298 struct value **args, CORE_ADDR sp, int struct_return,
1299 CORE_ADDR struct_addr)
22f8ba57 1300{
63c0089f 1301 gdb_byte buf[4];
acd5c798
MK
1302 int i;
1303
1304 /* Push arguments in reverse order. */
1305 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1306 {
4754a64e 1307 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798
MK
1308
1309 /* The System V ABI says that:
1310
1311 "An argument's size is increased, if necessary, to make it a
1312 multiple of [32-bit] words. This may require tail padding,
1313 depending on the size of the argument."
1314
cf913f37 1315 This makes sure the stack stays word-aligned. */
acd5c798 1316 sp -= (len + 3) & ~3;
46615f07 1317 write_memory (sp, value_contents_all (args[i]), len);
acd5c798 1318 }
22f8ba57 1319
acd5c798
MK
1320 /* Push value address. */
1321 if (struct_return)
1322 {
22f8ba57 1323 sp -= 4;
fbd9dcd3 1324 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1325 write_memory (sp, buf, 4);
1326 }
1327
acd5c798
MK
1328 /* Store return address. */
1329 sp -= 4;
6a65450a 1330 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1331 write_memory (sp, buf, 4);
1332
1333 /* Finally, update the stack pointer... */
1334 store_unsigned_integer (buf, 4, sp);
1335 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1336
1337 /* ...and fake a frame pointer. */
1338 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1339
3e210248
AC
1340 /* MarkK wrote: This "+ 8" is all over the place:
1341 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1342 i386_unwind_dummy_id). It's there, since all frame unwinders for
1343 a given target have to agree (within a certain margin) on the
fd35795f 1344 definition of the stack address of a frame. Otherwise
3e210248
AC
1345 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1346 stack address *before* the function call as a frame's CFA. On
1347 the i386, when %ebp is used as a frame pointer, the offset
1348 between the contents %ebp and the CFA as defined by GCC. */
1349 return sp + 8;
22f8ba57
MK
1350}
1351
1a309862
MK
1352/* These registers are used for returning integers (and on some
1353 targets also for returning `struct' and `union' values when their
ef9dff19 1354 size and alignment match an integer type). */
acd5c798
MK
1355#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1356#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1357
c5e656c1
MK
1358/* Read, for architecture GDBARCH, a function return value of TYPE
1359 from REGCACHE, and copy that into VALBUF. */
1a309862 1360
3a1e71e3 1361static void
c5e656c1 1362i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1363 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1364{
c5e656c1 1365 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1366 int len = TYPE_LENGTH (type);
63c0089f 1367 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1368
1e8d0a7b 1369 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1370 {
5716833c 1371 if (tdep->st0_regnum < 0)
1a309862 1372 {
8a3fe4f8 1373 warning (_("Cannot find floating-point return value."));
1a309862 1374 memset (valbuf, 0, len);
ef9dff19 1375 return;
1a309862
MK
1376 }
1377
c6ba6f0d
MK
1378 /* Floating-point return values can be found in %st(0). Convert
1379 its contents to the desired type. This is probably not
1380 exactly how it would happen on the target itself, but it is
1381 the best we can do. */
acd5c798 1382 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1383 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1384 }
1385 else
c5aa993b 1386 {
875f8d0e
UW
1387 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1388 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1389
1390 if (len <= low_size)
00f8375e 1391 {
0818c12a 1392 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1393 memcpy (valbuf, buf, len);
1394 }
d4f3574e
SS
1395 else if (len <= (low_size + high_size))
1396 {
0818c12a 1397 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1398 memcpy (valbuf, buf, low_size);
0818c12a 1399 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1400 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1401 }
1402 else
8e65ff28 1403 internal_error (__FILE__, __LINE__,
e2e0b3e5 1404 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1405 }
1406}
1407
c5e656c1
MK
1408/* Write, for architecture GDBARCH, a function return value of TYPE
1409 from VALBUF into REGCACHE. */
ef9dff19 1410
3a1e71e3 1411static void
c5e656c1 1412i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1413 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1414{
c5e656c1 1415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1416 int len = TYPE_LENGTH (type);
1417
5716833c
MK
1418 /* Define I387_ST0_REGNUM such that we use the proper definitions
1419 for the architecture. */
1420#define I387_ST0_REGNUM I386_ST0_REGNUM
1421
1e8d0a7b 1422 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1423 {
3d7f4f49 1424 ULONGEST fstat;
63c0089f 1425 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1426
5716833c 1427 if (tdep->st0_regnum < 0)
ef9dff19 1428 {
8a3fe4f8 1429 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1430 return;
1431 }
1432
635b0cc1
MK
1433 /* Returning floating-point values is a bit tricky. Apart from
1434 storing the return value in %st(0), we have to simulate the
1435 state of the FPU at function return point. */
1436
c6ba6f0d
MK
1437 /* Convert the value found in VALBUF to the extended
1438 floating-point format used by the FPU. This is probably
1439 not exactly how it would happen on the target itself, but
1440 it is the best we can do. */
1441 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1442 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1443
635b0cc1
MK
1444 /* Set the top of the floating-point register stack to 7. The
1445 actual value doesn't really matter, but 7 is what a normal
1446 function return would end up with if the program started out
1447 with a freshly initialized FPU. */
5716833c 1448 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1449 fstat |= (7 << 11);
5716833c 1450 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1451
635b0cc1
MK
1452 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1453 the floating-point register stack to 7, the appropriate value
1454 for the tag word is 0x3fff. */
5716833c 1455 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1456 }
1457 else
1458 {
875f8d0e
UW
1459 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1460 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1461
1462 if (len <= low_size)
3d7f4f49 1463 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1464 else if (len <= (low_size + high_size))
1465 {
3d7f4f49
MK
1466 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1467 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1468 len - low_size, valbuf + low_size);
ef9dff19
MK
1469 }
1470 else
8e65ff28 1471 internal_error (__FILE__, __LINE__,
e2e0b3e5 1472 _("Cannot store return value of %d bytes long."), len);
ef9dff19 1473 }
5716833c
MK
1474
1475#undef I387_ST0_REGNUM
ef9dff19 1476}
fc338970 1477\f
ef9dff19 1478
8201327c
MK
1479/* This is the variable that is set with "set struct-convention", and
1480 its legitimate values. */
1481static const char default_struct_convention[] = "default";
1482static const char pcc_struct_convention[] = "pcc";
1483static const char reg_struct_convention[] = "reg";
1484static const char *valid_conventions[] =
1485{
1486 default_struct_convention,
1487 pcc_struct_convention,
1488 reg_struct_convention,
1489 NULL
1490};
1491static const char *struct_convention = default_struct_convention;
1492
0e4377e1
JB
1493/* Return non-zero if TYPE, which is assumed to be a structure,
1494 a union type, or an array type, should be returned in registers
1495 for architecture GDBARCH. */
c5e656c1 1496
8201327c 1497static int
c5e656c1 1498i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1499{
c5e656c1
MK
1500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1501 enum type_code code = TYPE_CODE (type);
1502 int len = TYPE_LENGTH (type);
8201327c 1503
0e4377e1
JB
1504 gdb_assert (code == TYPE_CODE_STRUCT
1505 || code == TYPE_CODE_UNION
1506 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
1507
1508 if (struct_convention == pcc_struct_convention
1509 || (struct_convention == default_struct_convention
1510 && tdep->struct_return == pcc_struct_return))
1511 return 0;
1512
9edde48e
MK
1513 /* Structures consisting of a single `float', `double' or 'long
1514 double' member are returned in %st(0). */
1515 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1516 {
1517 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1518 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1519 return (len == 4 || len == 8 || len == 12);
1520 }
1521
c5e656c1
MK
1522 return (len == 1 || len == 2 || len == 4 || len == 8);
1523}
1524
1525/* Determine, for architecture GDBARCH, how a return value of TYPE
1526 should be returned. If it is supposed to be returned in registers,
1527 and READBUF is non-zero, read the appropriate value from REGCACHE,
1528 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1529 from WRITEBUF into REGCACHE. */
1530
1531static enum return_value_convention
1532i386_return_value (struct gdbarch *gdbarch, struct type *type,
42835c2b
MK
1533 struct regcache *regcache, gdb_byte *readbuf,
1534 const gdb_byte *writebuf)
c5e656c1
MK
1535{
1536 enum type_code code = TYPE_CODE (type);
1537
0e4377e1
JB
1538 if ((code == TYPE_CODE_STRUCT
1539 || code == TYPE_CODE_UNION
1540 || code == TYPE_CODE_ARRAY)
c5e656c1 1541 && !i386_reg_struct_return_p (gdbarch, type))
31db7b6c
MK
1542 {
1543 /* The System V ABI says that:
1544
1545 "A function that returns a structure or union also sets %eax
1546 to the value of the original address of the caller's area
1547 before it returns. Thus when the caller receives control
1548 again, the address of the returned object resides in register
1549 %eax and can be used to access the object."
1550
1551 So the ABI guarantees that we can always find the return
1552 value just after the function has returned. */
1553
0e4377e1
JB
1554 /* Note that the ABI doesn't mention functions returning arrays,
1555 which is something possible in certain languages such as Ada.
1556 In this case, the value is returned as if it was wrapped in
1557 a record, so the convention applied to records also applies
1558 to arrays. */
1559
31db7b6c
MK
1560 if (readbuf)
1561 {
1562 ULONGEST addr;
1563
1564 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1565 read_memory (addr, readbuf, TYPE_LENGTH (type));
1566 }
1567
1568 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1569 }
c5e656c1
MK
1570
1571 /* This special case is for structures consisting of a single
9edde48e
MK
1572 `float', `double' or 'long double' member. These structures are
1573 returned in %st(0). For these structures, we call ourselves
1574 recursively, changing TYPE into the type of the first member of
1575 the structure. Since that should work for all structures that
1576 have only one member, we don't bother to check the member's type
1577 here. */
c5e656c1
MK
1578 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1579 {
1580 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1581 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1582 }
1583
1584 if (readbuf)
1585 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1586 if (writebuf)
1587 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1588
c5e656c1 1589 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1590}
1591\f
1592
5ae96ec1
MK
1593/* Type for %eflags. */
1594struct type *i386_eflags_type;
1595
794ac428 1596/* Type for %mxcsr. */
878d9193 1597struct type *i386_mxcsr_type;
5ae96ec1
MK
1598
1599/* Construct types for ISA-specific registers. */
1600static void
1601i386_init_types (void)
1602{
1603 struct type *type;
1604
1605 type = init_flags_type ("builtin_type_i386_eflags", 4);
1606 append_flags_type_flag (type, 0, "CF");
1607 append_flags_type_flag (type, 1, NULL);
1608 append_flags_type_flag (type, 2, "PF");
1609 append_flags_type_flag (type, 4, "AF");
1610 append_flags_type_flag (type, 6, "ZF");
1611 append_flags_type_flag (type, 7, "SF");
1612 append_flags_type_flag (type, 8, "TF");
1613 append_flags_type_flag (type, 9, "IF");
1614 append_flags_type_flag (type, 10, "DF");
1615 append_flags_type_flag (type, 11, "OF");
1616 append_flags_type_flag (type, 14, "NT");
1617 append_flags_type_flag (type, 16, "RF");
1618 append_flags_type_flag (type, 17, "VM");
1619 append_flags_type_flag (type, 18, "AC");
1620 append_flags_type_flag (type, 19, "VIF");
1621 append_flags_type_flag (type, 20, "VIP");
1622 append_flags_type_flag (type, 21, "ID");
1623 i386_eflags_type = type;
21b4b2f2 1624
878d9193
MK
1625 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1626 append_flags_type_flag (type, 0, "IE");
1627 append_flags_type_flag (type, 1, "DE");
1628 append_flags_type_flag (type, 2, "ZE");
1629 append_flags_type_flag (type, 3, "OE");
1630 append_flags_type_flag (type, 4, "UE");
1631 append_flags_type_flag (type, 5, "PE");
1632 append_flags_type_flag (type, 6, "DAZ");
1633 append_flags_type_flag (type, 7, "IM");
1634 append_flags_type_flag (type, 8, "DM");
1635 append_flags_type_flag (type, 9, "ZM");
1636 append_flags_type_flag (type, 10, "OM");
1637 append_flags_type_flag (type, 11, "UM");
1638 append_flags_type_flag (type, 12, "PM");
1639 append_flags_type_flag (type, 15, "FZ");
1640 i386_mxcsr_type = type;
21b4b2f2
JB
1641}
1642
794ac428
UW
1643/* Construct vector type for MMX registers. */
1644struct type *
1645i386_mmx_type (struct gdbarch *gdbarch)
1646{
1647 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1648
1649 if (!tdep->i386_mmx_type)
1650 {
1651 /* The type we're building is this: */
1652#if 0
1653 union __gdb_builtin_type_vec64i
1654 {
1655 int64_t uint64;
1656 int32_t v2_int32[2];
1657 int16_t v4_int16[4];
1658 int8_t v8_int8[8];
1659 };
1660#endif
1661
1662 struct type *t;
1663
1664 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1665 append_composite_type_field (t, "uint64", builtin_type_int64);
1666 append_composite_type_field (t, "v2_int32",
1667 init_vector_type (builtin_type_int32, 2));
1668 append_composite_type_field (t, "v4_int16",
1669 init_vector_type (builtin_type_int16, 4));
1670 append_composite_type_field (t, "v8_int8",
1671 init_vector_type (builtin_type_int8, 8));
1672
1673 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1674 TYPE_NAME (t) = "builtin_type_vec64i";
1675 tdep->i386_mmx_type = t;
1676 }
1677
1678 return tdep->i386_mmx_type;
1679}
1680
1681struct type *
1682i386_sse_type (struct gdbarch *gdbarch)
1683{
1684 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1685
1686 if (!tdep->i386_sse_type)
1687 {
1688 /* The type we're building is this: */
1689#if 0
1690 union __gdb_builtin_type_vec128i
1691 {
1692 int128_t uint128;
1693 int64_t v2_int64[2];
1694 int32_t v4_int32[4];
1695 int16_t v8_int16[8];
1696 int8_t v16_int8[16];
1697 double v2_double[2];
1698 float v4_float[4];
1699 };
1700#endif
1701
1702 struct type *t;
1703
1704 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1705 append_composite_type_field (t, "v4_float",
1706 init_vector_type (builtin_type_float, 4));
1707 append_composite_type_field (t, "v2_double",
1708 init_vector_type (builtin_type_double, 2));
1709 append_composite_type_field (t, "v16_int8",
1710 init_vector_type (builtin_type_int8, 16));
1711 append_composite_type_field (t, "v8_int16",
1712 init_vector_type (builtin_type_int16, 8));
1713 append_composite_type_field (t, "v4_int32",
1714 init_vector_type (builtin_type_int32, 4));
1715 append_composite_type_field (t, "v2_int64",
1716 init_vector_type (builtin_type_int64, 2));
1717 append_composite_type_field (t, "uint128", builtin_type_int128);
1718
1719 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1720 TYPE_NAME (t) = "builtin_type_vec128i";
1721 tdep->i386_sse_type = t;
1722 }
1723
1724 return tdep->i386_sse_type;
1725}
1726
d7a0d72c
MK
1727/* Return the GDB type object for the "standard" data type of data in
1728 register REGNUM. Perhaps %esi and %edi should go here, but
1729 potentially they could be used for things other than address. */
1730
3a1e71e3 1731static struct type *
4e259f09 1732i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1733{
ab533587
MK
1734 if (regnum == I386_EIP_REGNUM)
1735 return builtin_type_void_func_ptr;
1736
5ae96ec1
MK
1737 if (regnum == I386_EFLAGS_REGNUM)
1738 return i386_eflags_type;
1739
ab533587
MK
1740 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1741 return builtin_type_void_data_ptr;
d7a0d72c 1742
23a34459 1743 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1744 return builtin_type_i387_ext;
d7a0d72c 1745
878d9193 1746 if (i386_mmx_regnum_p (gdbarch, regnum))
794ac428 1747 return i386_mmx_type (gdbarch);
878d9193 1748
5716833c 1749 if (i386_sse_regnum_p (gdbarch, regnum))
794ac428 1750 return i386_sse_type (gdbarch);
d7a0d72c 1751
878d9193 1752#define I387_ST0_REGNUM I386_ST0_REGNUM
d93859e2 1753#define I387_NUM_XMM_REGS (gdbarch_tdep (gdbarch)->num_xmm_regs)
878d9193
MK
1754
1755 if (regnum == I387_MXCSR_REGNUM)
1756 return i386_mxcsr_type;
1757
1758#undef I387_ST0_REGNUM
1759#undef I387_NUM_XMM_REGS
28fc6740 1760
d7a0d72c
MK
1761 return builtin_type_int;
1762}
1763
28fc6740 1764/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1765 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1766
1767static int
c86c27af 1768i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1769{
5716833c
MK
1770 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1771 int mmxreg, fpreg;
28fc6740
AC
1772 ULONGEST fstat;
1773 int tos;
c86c27af 1774
5716833c
MK
1775 /* Define I387_ST0_REGNUM such that we use the proper definitions
1776 for REGCACHE's architecture. */
1777#define I387_ST0_REGNUM tdep->st0_regnum
1778
1779 mmxreg = regnum - tdep->mm0_regnum;
1780 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1781 tos = (fstat >> 11) & 0x7;
5716833c
MK
1782 fpreg = (mmxreg + tos) % 8;
1783
1784 return (I387_ST0_REGNUM + fpreg);
c86c27af 1785
5716833c 1786#undef I387_ST0_REGNUM
28fc6740
AC
1787}
1788
1789static void
1790i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1791 int regnum, gdb_byte *buf)
28fc6740 1792{
5716833c 1793 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1794 {
63c0089f 1795 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1796 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1797
28fc6740 1798 /* Extract (always little endian). */
c86c27af 1799 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1800 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1801 }
1802 else
1803 regcache_raw_read (regcache, regnum, buf);
1804}
1805
1806static void
1807i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1808 int regnum, const gdb_byte *buf)
28fc6740 1809{
5716833c 1810 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1811 {
63c0089f 1812 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1813 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1814
28fc6740
AC
1815 /* Read ... */
1816 regcache_raw_read (regcache, fpnum, mmx_buf);
1817 /* ... Modify ... (always little endian). */
f837910f 1818 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1819 /* ... Write. */
1820 regcache_raw_write (regcache, fpnum, mmx_buf);
1821 }
1822 else
1823 regcache_raw_write (regcache, regnum, buf);
1824}
ff2e87ac
AC
1825\f
1826
ff2e87ac
AC
1827/* Return the register number of the register allocated by GCC after
1828 REGNUM, or -1 if there is no such register. */
1829
1830static int
1831i386_next_regnum (int regnum)
1832{
1833 /* GCC allocates the registers in the order:
1834
1835 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1836
1837 Since storing a variable in %esp doesn't make any sense we return
1838 -1 for %ebp and for %esp itself. */
1839 static int next_regnum[] =
1840 {
1841 I386_EDX_REGNUM, /* Slot for %eax. */
1842 I386_EBX_REGNUM, /* Slot for %ecx. */
1843 I386_ECX_REGNUM, /* Slot for %edx. */
1844 I386_ESI_REGNUM, /* Slot for %ebx. */
1845 -1, -1, /* Slots for %esp and %ebp. */
1846 I386_EDI_REGNUM, /* Slot for %esi. */
1847 I386_EBP_REGNUM /* Slot for %edi. */
1848 };
1849
de5b9bb9 1850 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1851 return next_regnum[regnum];
28fc6740 1852
ff2e87ac
AC
1853 return -1;
1854}
1855
1856/* Return nonzero if a value of type TYPE stored in register REGNUM
1857 needs any special handling. */
d7a0d72c 1858
3a1e71e3 1859static int
ff2e87ac 1860i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1861{
de5b9bb9
MK
1862 int len = TYPE_LENGTH (type);
1863
ff2e87ac
AC
1864 /* Values may be spread across multiple registers. Most debugging
1865 formats aren't expressive enough to specify the locations, so
1866 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1867 have a length that is a multiple of the word size, since GCC
1868 doesn't seem to put any other types into registers. */
1869 if (len > 4 && len % 4 == 0)
1870 {
1871 int last_regnum = regnum;
1872
1873 while (len > 4)
1874 {
1875 last_regnum = i386_next_regnum (last_regnum);
1876 len -= 4;
1877 }
1878
1879 if (last_regnum != -1)
1880 return 1;
1881 }
ff2e87ac 1882
83acabca 1883 return i387_convert_register_p (regnum, type);
d7a0d72c
MK
1884}
1885
ff2e87ac
AC
1886/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1887 return its contents in TO. */
ac27f131 1888
3a1e71e3 1889static void
ff2e87ac 1890i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 1891 struct type *type, gdb_byte *to)
ac27f131 1892{
de5b9bb9 1893 int len = TYPE_LENGTH (type);
de5b9bb9 1894
ff2e87ac
AC
1895 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1896 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1897
ff2e87ac 1898 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1899 {
d532c08f
MK
1900 i387_register_to_value (frame, regnum, type, to);
1901 return;
8d7f6b4a 1902 }
ff2e87ac 1903
fd35795f 1904 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1905
1906 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1907
de5b9bb9
MK
1908 while (len > 0)
1909 {
1910 gdb_assert (regnum != -1);
875f8d0e 1911 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 1912
42835c2b 1913 get_frame_register (frame, regnum, to);
de5b9bb9
MK
1914 regnum = i386_next_regnum (regnum);
1915 len -= 4;
42835c2b 1916 to += 4;
de5b9bb9 1917 }
ac27f131
MK
1918}
1919
ff2e87ac
AC
1920/* Write the contents FROM of a value of type TYPE into register
1921 REGNUM in frame FRAME. */
ac27f131 1922
3a1e71e3 1923static void
ff2e87ac 1924i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 1925 struct type *type, const gdb_byte *from)
ac27f131 1926{
de5b9bb9 1927 int len = TYPE_LENGTH (type);
de5b9bb9 1928
ff2e87ac 1929 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1930 {
d532c08f
MK
1931 i387_value_to_register (frame, regnum, type, from);
1932 return;
1933 }
3d261580 1934
fd35795f 1935 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1936
1937 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1938
de5b9bb9
MK
1939 while (len > 0)
1940 {
1941 gdb_assert (regnum != -1);
875f8d0e 1942 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 1943
42835c2b 1944 put_frame_register (frame, regnum, from);
de5b9bb9
MK
1945 regnum = i386_next_regnum (regnum);
1946 len -= 4;
42835c2b 1947 from += 4;
de5b9bb9 1948 }
ac27f131 1949}
ff2e87ac 1950\f
7fdafb5a
MK
1951/* Supply register REGNUM from the buffer specified by GREGS and LEN
1952 in the general-purpose register set REGSET to register cache
1953 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 1954
20187ed5 1955void
473f17b0
MK
1956i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1957 int regnum, const void *gregs, size_t len)
1958{
9ea75c57 1959 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1960 const gdb_byte *regs = gregs;
473f17b0
MK
1961 int i;
1962
1963 gdb_assert (len == tdep->sizeof_gregset);
1964
1965 for (i = 0; i < tdep->gregset_num_regs; i++)
1966 {
1967 if ((regnum == i || regnum == -1)
1968 && tdep->gregset_reg_offset[i] != -1)
1969 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1970 }
1971}
1972
7fdafb5a
MK
1973/* Collect register REGNUM from the register cache REGCACHE and store
1974 it in the buffer specified by GREGS and LEN as described by the
1975 general-purpose register set REGSET. If REGNUM is -1, do this for
1976 all registers in REGSET. */
1977
1978void
1979i386_collect_gregset (const struct regset *regset,
1980 const struct regcache *regcache,
1981 int regnum, void *gregs, size_t len)
1982{
1983 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1984 gdb_byte *regs = gregs;
7fdafb5a
MK
1985 int i;
1986
1987 gdb_assert (len == tdep->sizeof_gregset);
1988
1989 for (i = 0; i < tdep->gregset_num_regs; i++)
1990 {
1991 if ((regnum == i || regnum == -1)
1992 && tdep->gregset_reg_offset[i] != -1)
1993 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1994 }
1995}
1996
1997/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1998 in the floating-point register set REGSET to register cache
1999 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2000
2001static void
2002i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2003 int regnum, const void *fpregs, size_t len)
2004{
9ea75c57 2005 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 2006
66a72d25
MK
2007 if (len == I387_SIZEOF_FXSAVE)
2008 {
2009 i387_supply_fxsave (regcache, regnum, fpregs);
2010 return;
2011 }
2012
473f17b0
MK
2013 gdb_assert (len == tdep->sizeof_fpregset);
2014 i387_supply_fsave (regcache, regnum, fpregs);
2015}
8446b36a 2016
2f305df1
MK
2017/* Collect register REGNUM from the register cache REGCACHE and store
2018 it in the buffer specified by FPREGS and LEN as described by the
2019 floating-point register set REGSET. If REGNUM is -1, do this for
2020 all registers in REGSET. */
7fdafb5a
MK
2021
2022static void
2023i386_collect_fpregset (const struct regset *regset,
2024 const struct regcache *regcache,
2025 int regnum, void *fpregs, size_t len)
2026{
2027 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2028
2029 if (len == I387_SIZEOF_FXSAVE)
2030 {
2031 i387_collect_fxsave (regcache, regnum, fpregs);
2032 return;
2033 }
2034
2035 gdb_assert (len == tdep->sizeof_fpregset);
2036 i387_collect_fsave (regcache, regnum, fpregs);
2037}
2038
8446b36a
MK
2039/* Return the appropriate register set for the core section identified
2040 by SECT_NAME and SECT_SIZE. */
2041
2042const struct regset *
2043i386_regset_from_core_section (struct gdbarch *gdbarch,
2044 const char *sect_name, size_t sect_size)
2045{
2046 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2047
2048 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2049 {
2050 if (tdep->gregset == NULL)
7fdafb5a
MK
2051 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2052 i386_collect_gregset);
8446b36a
MK
2053 return tdep->gregset;
2054 }
2055
66a72d25
MK
2056 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2057 || (strcmp (sect_name, ".reg-xfp") == 0
2058 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
2059 {
2060 if (tdep->fpregset == NULL)
7fdafb5a
MK
2061 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2062 i386_collect_fpregset);
8446b36a
MK
2063 return tdep->fpregset;
2064 }
2065
2066 return NULL;
2067}
473f17b0 2068\f
fc338970 2069
fc338970 2070/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
2071
2072CORE_ADDR
1cce71eb 2073i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 2074{
fc338970 2075 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 2076 {
c5aa993b 2077 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 2078 struct minimal_symbol *indsym =
fc338970 2079 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2080 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2081
c5aa993b 2082 if (symname)
c906108c 2083 {
c5aa993b
JM
2084 if (strncmp (symname, "__imp_", 6) == 0
2085 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
2086 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2087 }
2088 }
fc338970 2089 return 0; /* Not a trampoline. */
c906108c 2090}
fc338970
MK
2091\f
2092
377d9ebd 2093/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 2094 sigtramp routine. */
8201327c
MK
2095
2096static int
911bc6ee 2097i386_sigtramp_p (struct frame_info *next_frame)
8201327c 2098{
911bc6ee
MK
2099 CORE_ADDR pc = frame_pc_unwind (next_frame);
2100 char *name;
2101
2102 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2103 return (name && strcmp ("_sigtramp", name) == 0);
2104}
2105\f
2106
fc338970
MK
2107/* We have two flavours of disassembly. The machinery on this page
2108 deals with switching between those. */
c906108c
SS
2109
2110static int
a89aa300 2111i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 2112{
5e3397bb
MK
2113 gdb_assert (disassembly_flavor == att_flavor
2114 || disassembly_flavor == intel_flavor);
2115
2116 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2117 constified, cast to prevent a compiler warning. */
2118 info->disassembler_options = (char *) disassembly_flavor;
2119 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
2120
2121 return print_insn_i386 (pc, info);
7a292a7a 2122}
fc338970 2123\f
3ce1502b 2124
8201327c
MK
2125/* There are a few i386 architecture variants that differ only
2126 slightly from the generic i386 target. For now, we don't give them
2127 their own source file, but include them here. As a consequence,
2128 they'll always be included. */
3ce1502b 2129
8201327c 2130/* System V Release 4 (SVR4). */
3ce1502b 2131
377d9ebd 2132/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
2133 sigtramp routine. */
2134
8201327c 2135static int
911bc6ee 2136i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 2137{
911bc6ee
MK
2138 CORE_ADDR pc = frame_pc_unwind (next_frame);
2139 char *name;
2140
acd5c798
MK
2141 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2142 currently unknown. */
911bc6ee 2143 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2144 return (name && (strcmp ("_sigreturn", name) == 0
2145 || strcmp ("_sigacthandler", name) == 0
2146 || strcmp ("sigvechandler", name) == 0));
2147}
d2a7c97a 2148
acd5c798
MK
2149/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2150 routine, return the address of the associated sigcontext (ucontext)
2151 structure. */
3ce1502b 2152
3a1e71e3 2153static CORE_ADDR
acd5c798 2154i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 2155{
63c0089f 2156 gdb_byte buf[4];
acd5c798 2157 CORE_ADDR sp;
3ce1502b 2158
acd5c798
MK
2159 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2160 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 2161
acd5c798 2162 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
2163}
2164\f
3ce1502b 2165
8201327c 2166/* Generic ELF. */
d2a7c97a 2167
8201327c
MK
2168void
2169i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2170{
c4fc7f1b
MK
2171 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2172 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2173}
3ce1502b 2174
8201327c 2175/* System V Release 4 (SVR4). */
3ce1502b 2176
8201327c
MK
2177void
2178i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2179{
2180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2181
8201327c
MK
2182 /* System V Release 4 uses ELF. */
2183 i386_elf_init_abi (info, gdbarch);
3ce1502b 2184
dfe01d39 2185 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2186 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2187
911bc6ee 2188 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2189 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2190 tdep->sc_pc_offset = 36 + 14 * 4;
2191 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2192
8201327c 2193 tdep->jb_pc_offset = 20;
3ce1502b
MK
2194}
2195
8201327c 2196/* DJGPP. */
3ce1502b 2197
3a1e71e3 2198static void
8201327c 2199i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2200{
8201327c 2201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2202
911bc6ee
MK
2203 /* DJGPP doesn't have any special frames for signal handlers. */
2204 tdep->sigtramp_p = NULL;
3ce1502b 2205
8201327c 2206 tdep->jb_pc_offset = 36;
3ce1502b 2207}
8201327c 2208\f
2acceee2 2209
38c968cf
AC
2210/* i386 register groups. In addition to the normal groups, add "mmx"
2211 and "sse". */
2212
2213static struct reggroup *i386_sse_reggroup;
2214static struct reggroup *i386_mmx_reggroup;
2215
2216static void
2217i386_init_reggroups (void)
2218{
2219 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2220 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2221}
2222
2223static void
2224i386_add_reggroups (struct gdbarch *gdbarch)
2225{
2226 reggroup_add (gdbarch, i386_sse_reggroup);
2227 reggroup_add (gdbarch, i386_mmx_reggroup);
2228 reggroup_add (gdbarch, general_reggroup);
2229 reggroup_add (gdbarch, float_reggroup);
2230 reggroup_add (gdbarch, all_reggroup);
2231 reggroup_add (gdbarch, save_reggroup);
2232 reggroup_add (gdbarch, restore_reggroup);
2233 reggroup_add (gdbarch, vector_reggroup);
2234 reggroup_add (gdbarch, system_reggroup);
2235}
2236
2237int
2238i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2239 struct reggroup *group)
2240{
5716833c
MK
2241 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2242 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
2243 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2244 || i386_fpc_regnum_p (regnum));
5716833c 2245 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2246
38c968cf
AC
2247 if (group == i386_mmx_reggroup)
2248 return mmx_regnum_p;
2249 if (group == i386_sse_reggroup)
2250 return sse_regnum_p;
2251 if (group == vector_reggroup)
2252 return (mmx_regnum_p || sse_regnum_p);
2253 if (group == float_reggroup)
2254 return fp_regnum_p;
2255 if (group == general_reggroup)
2256 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2257
38c968cf
AC
2258 return default_register_reggroup_p (gdbarch, regnum, group);
2259}
38c968cf 2260\f
acd5c798 2261
f837910f
MK
2262/* Get the ARGIth function argument for the current function. */
2263
42c466d7 2264static CORE_ADDR
143985b7
AF
2265i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2266 struct type *type)
2267{
f837910f
MK
2268 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2269 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2270}
2271
2272\f
3a1e71e3 2273static struct gdbarch *
a62cc96e
AC
2274i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2275{
cd3c07fc 2276 struct gdbarch_tdep *tdep;
a62cc96e
AC
2277 struct gdbarch *gdbarch;
2278
4be87837
DJ
2279 /* If there is already a candidate, use it. */
2280 arches = gdbarch_list_lookup_by_info (arches, &info);
2281 if (arches != NULL)
2282 return arches->gdbarch;
a62cc96e
AC
2283
2284 /* Allocate space for the new architecture. */
794ac428 2285 tdep = XCALLOC (1, struct gdbarch_tdep);
a62cc96e
AC
2286 gdbarch = gdbarch_alloc (&info, tdep);
2287
473f17b0
MK
2288 /* General-purpose registers. */
2289 tdep->gregset = NULL;
2290 tdep->gregset_reg_offset = NULL;
2291 tdep->gregset_num_regs = I386_NUM_GREGS;
2292 tdep->sizeof_gregset = 0;
2293
2294 /* Floating-point registers. */
2295 tdep->fpregset = NULL;
2296 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2297
5716833c 2298 /* The default settings include the FPU registers, the MMX registers
fd35795f 2299 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2300 by adjusting the members `st0_regnum', `mm0_regnum' and
2301 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2302 will show up in the output of "info all-registers". Ideally we
2303 should try to autodetect whether they are available, such that we
2304 can prevent "info all-registers" from displaying registers that
2305 aren't available.
2306
2307 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2308 [the SSE registers] always (even when they don't exist) or never
2309 showing them to the user (even when they do exist), I prefer the
2310 former over the latter. */
2311
2312 tdep->st0_regnum = I386_ST0_REGNUM;
2313
2314 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2315 calculating the register number for %mm0 until we know the number
5716833c
MK
2316 of raw registers. */
2317 tdep->mm0_regnum = 0;
2318
2319 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2320 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2321
8201327c
MK
2322 tdep->jb_pc_offset = -1;
2323 tdep->struct_return = pcc_struct_return;
8201327c
MK
2324 tdep->sigtramp_start = 0;
2325 tdep->sigtramp_end = 0;
911bc6ee 2326 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2327 tdep->sigcontext_addr = NULL;
a3386186 2328 tdep->sc_reg_offset = NULL;
8201327c 2329 tdep->sc_pc_offset = -1;
21d0e8a4 2330 tdep->sc_sp_offset = -1;
8201327c 2331
896fb97d
MK
2332 /* The format used for `long double' on almost all i386 targets is
2333 the i387 extended floating-point format. In fact, of all targets
2334 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2335 on having a `long double' that's not `long' at all. */
8da61cc4 2336 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
21d0e8a4 2337
66da5fd8 2338 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2339 bits, a `long double' actually takes up 96, probably to enforce
2340 alignment. */
2341 set_gdbarch_long_double_bit (gdbarch, 96);
2342
49ed40de
KB
2343 /* The default ABI includes general-purpose registers,
2344 floating-point registers, and the SSE registers. */
2345 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2346 set_gdbarch_register_name (gdbarch, i386_register_name);
2347 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2348
acd5c798
MK
2349 /* Register numbers of various important registers. */
2350 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2351 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2352 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2353 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2354
c4fc7f1b
MK
2355 /* NOTE: kettenis/20040418: GCC does have two possible register
2356 numbering schemes on the i386: dbx and SVR4. These schemes
2357 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2358 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2359 dbx_register_map[] and svr4_dbx_register_map in
2360 gcc/config/i386.c. GCC also defines a third numbering scheme in
2361 gcc/config/i386.c, which it designates as the "default" register
2362 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2363 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2364 amd64-tdep.c.
2365
2366 Currently, each GCC i386 target always uses the same register
2367 numbering scheme across all its supported debugging formats
2368 i.e. SDB (COFF), stabs and DWARF 2. This is because
2369 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2370 DBX_REGISTER_NUMBER macro which is defined by each target's
2371 respective config header in a manner independent of the requested
2372 output debugging format.
2373
2374 This does not match the arrangement below, which presumes that
2375 the SDB and stabs numbering schemes differ from the DWARF and
2376 DWARF 2 ones. The reason for this arrangement is that it is
2377 likely to get the numbering scheme for the target's
2378 default/native debug format right. For targets where GCC is the
2379 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2380 targets where the native toolchain uses a different numbering
2381 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2382 the defaults below will have to be overridden, like
2383 i386_elf_init_abi() does. */
c4fc7f1b
MK
2384
2385 /* Use the dbx register numbering scheme for stabs and COFF. */
2386 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2387 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2388
2389 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2390 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2391 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e 2392
055d23b8 2393 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
356a6b3e
MK
2394 be in use on any of the supported i386 targets. */
2395
61113f8b
MK
2396 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2397
8201327c 2398 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2399
a62cc96e 2400 /* Call dummy code. */
acd5c798 2401 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2402
ff2e87ac
AC
2403 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2404 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2405 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2406
c5e656c1 2407 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2408
93924b6b
MK
2409 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2410
2411 /* Stack grows downward. */
2412 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2413
2414 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2415 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2416
42fdc8df 2417 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2418
28fc6740 2419 /* Wire in the MMX registers. */
0f751ff2 2420 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2421 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2422 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2423
5e3397bb
MK
2424 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2425
acd5c798 2426 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2427
2428 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2429
38c968cf
AC
2430 /* Add the i386 register groups. */
2431 i386_add_reggroups (gdbarch);
2432 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2433
143985b7
AF
2434 /* Helper for function argument information. */
2435 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2436
6405b0a6 2437 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2438 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2439
acd5c798 2440 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2441
3ce1502b 2442 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2443 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2444
336d1bba
AC
2445 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2446 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2447
8446b36a
MK
2448 /* If we have a register mapping, enable the generic core file
2449 support, unless it has already been enabled. */
2450 if (tdep->gregset_reg_offset
2451 && !gdbarch_regset_from_core_section_p (gdbarch))
2452 set_gdbarch_regset_from_core_section (gdbarch,
2453 i386_regset_from_core_section);
2454
5716833c
MK
2455 /* Unless support for MMX has been disabled, make %mm0 the first
2456 pseudo-register. */
2457 if (tdep->mm0_regnum == 0)
2458 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2459
a62cc96e
AC
2460 return gdbarch;
2461}
2462
8201327c
MK
2463static enum gdb_osabi
2464i386_coff_osabi_sniffer (bfd *abfd)
2465{
762c5349
MK
2466 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2467 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2468 return GDB_OSABI_GO32;
2469
2470 return GDB_OSABI_UNKNOWN;
2471}
8201327c
MK
2472\f
2473
28e9e0f0
MK
2474/* Provide a prototype to silence -Wmissing-prototypes. */
2475void _initialize_i386_tdep (void);
2476
c906108c 2477void
fba45db2 2478_initialize_i386_tdep (void)
c906108c 2479{
a62cc96e
AC
2480 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2481
fc338970 2482 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
2483 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2484 &disassembly_flavor, _("\
2485Set the disassembly flavor."), _("\
2486Show the disassembly flavor."), _("\
2487The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2488 NULL,
2489 NULL, /* FIXME: i18n: */
2490 &setlist, &showlist);
8201327c
MK
2491
2492 /* Add the variable that controls the convention for returning
2493 structs. */
7ab04401
AC
2494 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2495 &struct_convention, _("\
2496Set the convention for returning small structs."), _("\
2497Show the convention for returning small structs."), _("\
2498Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2499is \"default\"."),
2500 NULL,
2501 NULL, /* FIXME: i18n: */
2502 &setlist, &showlist);
8201327c
MK
2503
2504 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2505 i386_coff_osabi_sniffer);
8201327c 2506
05816f70 2507 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2508 i386_svr4_init_abi);
05816f70 2509 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2510 i386_go32_init_abi);
38c968cf 2511
5ae96ec1 2512 /* Initialize the i386-specific register groups & types. */
38c968cf 2513 i386_init_reggroups ();
5ae96ec1 2514 i386_init_types();
c906108c 2515}