]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
Fix imsm-overlap test.
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
77#define MPB_ATTRIB_SUPPORTED MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE
fe7ed8cb 85
8e59f3d8 86#define MPB_SECTOR_CNT 2210
c2c087e6 87#define IMSM_RESERVED_SECTORS 4096
979d38be 88#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
89
90/* Disk configuration info. */
91#define IMSM_MAX_DEVICES 255
92struct imsm_disk {
93 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
94 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
95 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
96#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
97#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
98#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 99 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
100 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
101#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
102 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
103};
104
105/* RAID map configuration infos. */
106struct imsm_map {
107 __u32 pba_of_lba0; /* start address of partition */
108 __u32 blocks_per_member;/* blocks per member */
109 __u32 num_data_stripes; /* number of data stripes */
110 __u16 blocks_per_strip;
111 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
112#define IMSM_T_STATE_NORMAL 0
113#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
114#define IMSM_T_STATE_DEGRADED 2
115#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
116 __u8 raid_level;
117#define IMSM_T_RAID0 0
118#define IMSM_T_RAID1 1
119#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
120 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
121 __u8 num_domains; /* number of parity domains */
122 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 123 __u8 ddf;
cdddbdbc 124 __u32 filler[7]; /* expansion area */
7eef0453 125#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 126 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
127 * top byte contains some flags
128 */
cdddbdbc
DW
129} __attribute__ ((packed));
130
131struct imsm_vol {
f8f603f1 132 __u32 curr_migr_unit;
fe7ed8cb 133 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 134 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
135#define MIGR_INIT 0
136#define MIGR_REBUILD 1
137#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
138#define MIGR_GEN_MIGR 3
139#define MIGR_STATE_CHANGE 4
1484e727 140#define MIGR_REPAIR 5
cdddbdbc
DW
141 __u8 migr_type; /* Initializing, Rebuilding, ... */
142 __u8 dirty;
fe7ed8cb
DW
143 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
144 __u16 verify_errors; /* number of mismatches */
145 __u16 bad_blocks; /* number of bad blocks during verify */
146 __u32 filler[4];
cdddbdbc
DW
147 struct imsm_map map[1];
148 /* here comes another one if migr_state */
149} __attribute__ ((packed));
150
151struct imsm_dev {
fe7ed8cb 152 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
153 __u32 size_low;
154 __u32 size_high;
fe7ed8cb
DW
155#define DEV_BOOTABLE __cpu_to_le32(0x01)
156#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
157#define DEV_READ_COALESCING __cpu_to_le32(0x04)
158#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
159#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
160#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
161#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
162#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
163#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
164#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
165#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
166#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
167#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
168 __u32 status; /* Persistent RaidDev status */
169 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
170 __u8 migr_priority;
171 __u8 num_sub_vols;
172 __u8 tid;
173 __u8 cng_master_disk;
174 __u16 cache_policy;
175 __u8 cng_state;
176 __u8 cng_sub_state;
177#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
178 __u32 filler[IMSM_DEV_FILLERS];
179 struct imsm_vol vol;
180} __attribute__ ((packed));
181
182struct imsm_super {
183 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
184 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
185 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
186 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
187 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
188 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
189 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
190 __u8 num_disks; /* 0x38 Number of configured disks */
191 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
192 __u8 error_log_pos; /* 0x3A */
193 __u8 fill[1]; /* 0x3B */
194 __u32 cache_size; /* 0x3c - 0x40 in mb */
195 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
196 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
197 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
198#define IMSM_FILLERS 35
199 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
200 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
201 /* here comes imsm_dev[num_raid_devs] */
604b746f 202 /* here comes BBM logs */
cdddbdbc
DW
203} __attribute__ ((packed));
204
604b746f
JD
205#define BBM_LOG_MAX_ENTRIES 254
206
207struct bbm_log_entry {
208 __u64 defective_block_start;
209#define UNREADABLE 0xFFFFFFFF
210 __u32 spare_block_offset;
211 __u16 remapped_marked_count;
212 __u16 disk_ordinal;
213} __attribute__ ((__packed__));
214
215struct bbm_log {
216 __u32 signature; /* 0xABADB10C */
217 __u32 entry_count;
218 __u32 reserved_spare_block_count; /* 0 */
219 __u32 reserved; /* 0xFFFF */
220 __u64 first_spare_lba;
221 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
222} __attribute__ ((__packed__));
223
224
cdddbdbc
DW
225#ifndef MDASSEMBLE
226static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
227#endif
228
8e59f3d8
AK
229#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
230
231#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
232
233#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
234 * be recovered using srcMap */
235#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
236 * already been migrated and must
237 * be recovered from checkpoint area */
238struct migr_record {
239 __u32 rec_status; /* Status used to determine how to restart
240 * migration in case it aborts
241 * in some fashion */
242 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
243 __u32 family_num; /* Family number of MPB
244 * containing the RaidDev
245 * that is migrating */
246 __u32 ascending_migr; /* True if migrating in increasing
247 * order of lbas */
248 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
249 __u32 dest_depth_per_unit; /* Num member blocks each destMap
250 * member disk
251 * advances per unit-of-operation */
252 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
253 __u32 dest_1st_member_lba; /* First member lba on first
254 * stripe of destination */
255 __u32 num_migr_units; /* Total num migration units-of-op */
256 __u32 post_migr_vol_cap; /* Size of volume after
257 * migration completes */
258 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
259 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
260 * migration ckpt record was read from
261 * (for recovered migrations) */
262} __attribute__ ((__packed__));
263
1484e727
DW
264static __u8 migr_type(struct imsm_dev *dev)
265{
266 if (dev->vol.migr_type == MIGR_VERIFY &&
267 dev->status & DEV_VERIFY_AND_FIX)
268 return MIGR_REPAIR;
269 else
270 return dev->vol.migr_type;
271}
272
273static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
274{
275 /* for compatibility with older oroms convert MIGR_REPAIR, into
276 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
277 */
278 if (migr_type == MIGR_REPAIR) {
279 dev->vol.migr_type = MIGR_VERIFY;
280 dev->status |= DEV_VERIFY_AND_FIX;
281 } else {
282 dev->vol.migr_type = migr_type;
283 dev->status &= ~DEV_VERIFY_AND_FIX;
284 }
285}
286
87eb16df 287static unsigned int sector_count(__u32 bytes)
cdddbdbc 288{
87eb16df
DW
289 return ((bytes + (512-1)) & (~(512-1))) / 512;
290}
cdddbdbc 291
87eb16df
DW
292static unsigned int mpb_sectors(struct imsm_super *mpb)
293{
294 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
295}
296
ba2de7ba
DW
297struct intel_dev {
298 struct imsm_dev *dev;
299 struct intel_dev *next;
f21e18ca 300 unsigned index;
ba2de7ba
DW
301};
302
88654014
LM
303struct intel_hba {
304 enum sys_dev_type type;
305 char *path;
306 char *pci_id;
307 struct intel_hba *next;
308};
309
1a64be56
LM
310enum action {
311 DISK_REMOVE = 1,
312 DISK_ADD
313};
cdddbdbc
DW
314/* internal representation of IMSM metadata */
315struct intel_super {
316 union {
949c47a0
DW
317 void *buf; /* O_DIRECT buffer for reading/writing metadata */
318 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 319 };
8e59f3d8
AK
320 union {
321 void *migr_rec_buf; /* buffer for I/O operations */
322 struct migr_record *migr_rec; /* migration record */
323 };
949c47a0 324 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
325 void *next_buf; /* for realloc'ing buf from the manager */
326 size_t next_len;
c2c087e6 327 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 328 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 329 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 330 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 331 struct intel_dev *devlist;
cdddbdbc
DW
332 struct dl {
333 struct dl *next;
334 int index;
335 __u8 serial[MAX_RAID_SERIAL_LEN];
336 int major, minor;
337 char *devname;
b9f594fe 338 struct imsm_disk disk;
cdddbdbc 339 int fd;
0dcecb2e
DW
340 int extent_cnt;
341 struct extent *e; /* for determining freespace @ create */
efb30e7f 342 int raiddisk; /* slot to fill in autolayout */
1a64be56 343 enum action action;
cdddbdbc 344 } *disks;
1a64be56
LM
345 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
346 active */
47ee5a45 347 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 348 struct bbm_log *bbm_log;
88654014 349 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 350 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
351 struct intel_super *next; /* (temp) list for disambiguating family_num */
352};
353
354struct intel_disk {
355 struct imsm_disk disk;
356 #define IMSM_UNKNOWN_OWNER (-1)
357 int owner;
358 struct intel_disk *next;
cdddbdbc
DW
359};
360
c2c087e6
DW
361struct extent {
362 unsigned long long start, size;
363};
364
694575e7
KW
365/* definitions of reshape process types */
366enum imsm_reshape_type {
367 CH_TAKEOVER,
b5347799 368 CH_MIGRATION,
694575e7
KW
369};
370
88758e9d
DW
371/* definition of messages passed to imsm_process_update */
372enum imsm_update_type {
373 update_activate_spare,
8273f55e 374 update_create_array,
33414a01 375 update_kill_array,
aa534678 376 update_rename_array,
1a64be56 377 update_add_remove_disk,
78b10e66 378 update_reshape_container_disks,
48c5303a 379 update_reshape_migration,
2d40f3a1
AK
380 update_takeover,
381 update_general_migration_checkpoint,
88758e9d
DW
382};
383
384struct imsm_update_activate_spare {
385 enum imsm_update_type type;
d23fe947 386 struct dl *dl;
88758e9d
DW
387 int slot;
388 int array;
389 struct imsm_update_activate_spare *next;
390};
391
78b10e66
N
392struct geo_params {
393 int dev_id;
394 char *dev_name;
395 long long size;
396 int level;
397 int layout;
398 int chunksize;
399 int raid_disks;
400};
401
bb025c2f
KW
402enum takeover_direction {
403 R10_TO_R0,
404 R0_TO_R10
405};
406struct imsm_update_takeover {
407 enum imsm_update_type type;
408 int subarray;
409 enum takeover_direction direction;
410};
78b10e66
N
411
412struct imsm_update_reshape {
413 enum imsm_update_type type;
414 int old_raid_disks;
415 int new_raid_disks;
48c5303a
PC
416
417 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
418};
419
420struct imsm_update_reshape_migration {
421 enum imsm_update_type type;
422 int old_raid_disks;
423 int new_raid_disks;
424 /* fields for array migration changes
425 */
426 int subdev;
427 int new_level;
428 int new_layout;
4bba0439 429 int new_chunksize;
48c5303a 430
d195167d 431 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
432};
433
2d40f3a1
AK
434struct imsm_update_general_migration_checkpoint {
435 enum imsm_update_type type;
436 __u32 curr_migr_unit;
437};
438
54c2c1ea
DW
439struct disk_info {
440 __u8 serial[MAX_RAID_SERIAL_LEN];
441};
442
8273f55e
DW
443struct imsm_update_create_array {
444 enum imsm_update_type type;
8273f55e 445 int dev_idx;
6a3e913e 446 struct imsm_dev dev;
8273f55e
DW
447};
448
33414a01
DW
449struct imsm_update_kill_array {
450 enum imsm_update_type type;
451 int dev_idx;
452};
453
aa534678
DW
454struct imsm_update_rename_array {
455 enum imsm_update_type type;
456 __u8 name[MAX_RAID_SERIAL_LEN];
457 int dev_idx;
458};
459
1a64be56 460struct imsm_update_add_remove_disk {
43dad3d6
DW
461 enum imsm_update_type type;
462};
463
88654014
LM
464
465static const char *_sys_dev_type[] = {
466 [SYS_DEV_UNKNOWN] = "Unknown",
467 [SYS_DEV_SAS] = "SAS",
468 [SYS_DEV_SATA] = "SATA"
469};
470
471const char *get_sys_dev_type(enum sys_dev_type type)
472{
473 if (type >= SYS_DEV_MAX)
474 type = SYS_DEV_UNKNOWN;
475
476 return _sys_dev_type[type];
477}
478
479static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
480{
481 struct intel_hba *result = malloc(sizeof(*result));
482 if (result) {
483 result->type = device->type;
484 result->path = strdup(device->path);
485 result->next = NULL;
486 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
487 result->pci_id++;
488 }
489 return result;
490}
491
492static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
493{
494 struct intel_hba *result=NULL;
495 for (result = hba; result; result = result->next) {
496 if (result->type == device->type && strcmp(result->path, device->path) == 0)
497 break;
498 }
499 return result;
500}
501
b4cf4cba 502static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
503{
504 struct intel_hba *hba;
505
506 /* check if disk attached to Intel HBA */
507 hba = find_intel_hba(super->hba, device);
508 if (hba != NULL)
509 return 1;
510 /* Check if HBA is already attached to super */
511 if (super->hba == NULL) {
512 super->hba = alloc_intel_hba(device);
513 return 1;
514 }
515
516 hba = super->hba;
517 /* Intel metadata allows for all disks attached to the same type HBA.
518 * Do not sypport odf HBA types mixing
519 */
520 if (device->type != hba->type)
521 return 2;
522
523 while (hba->next)
524 hba = hba->next;
525
526 hba->next = alloc_intel_hba(device);
527 return 1;
528}
529
530static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
531{
532 struct sys_dev *list, *elem, *prev;
533 char *disk_path;
534
535 if ((list = find_intel_devices()) == NULL)
536 return 0;
537
538 if (fd < 0)
539 disk_path = (char *) devname;
540 else
541 disk_path = diskfd_to_devpath(fd);
542
543 if (!disk_path) {
544 free_sys_dev(&list);
545 return 0;
546 }
547
548 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
549 if (path_attached_to_hba(disk_path, elem->path)) {
550 if (prev == NULL)
551 list = list->next;
552 else
553 prev->next = elem->next;
554 elem->next = NULL;
555 if (disk_path != devname)
556 free(disk_path);
557 free_sys_dev(&list);
558 return elem;
559 }
560 }
561 if (disk_path != devname)
562 free(disk_path);
563 free_sys_dev(&list);
564
565 return NULL;
566}
567
568
d424212e
N
569static int find_intel_hba_capability(int fd, struct intel_super *super,
570 char *devname);
f2f5c343 571
cdddbdbc
DW
572static struct supertype *match_metadata_desc_imsm(char *arg)
573{
574 struct supertype *st;
575
576 if (strcmp(arg, "imsm") != 0 &&
577 strcmp(arg, "default") != 0
578 )
579 return NULL;
580
581 st = malloc(sizeof(*st));
4e9d2186
AW
582 if (!st)
583 return NULL;
ef609477 584 memset(st, 0, sizeof(*st));
d1d599ea 585 st->container_dev = NoMdDev;
cdddbdbc
DW
586 st->ss = &super_imsm;
587 st->max_devs = IMSM_MAX_DEVICES;
588 st->minor_version = 0;
589 st->sb = NULL;
590 return st;
591}
592
0e600426 593#ifndef MDASSEMBLE
cdddbdbc
DW
594static __u8 *get_imsm_version(struct imsm_super *mpb)
595{
596 return &mpb->sig[MPB_SIG_LEN];
597}
0e600426 598#endif
cdddbdbc 599
949c47a0
DW
600/* retrieve a disk directly from the anchor when the anchor is known to be
601 * up-to-date, currently only at load time
602 */
603static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 604{
949c47a0 605 if (index >= mpb->num_disks)
cdddbdbc
DW
606 return NULL;
607 return &mpb->disk[index];
608}
609
95d07a2c
LM
610/* retrieve the disk description based on a index of the disk
611 * in the sub-array
612 */
613static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 614{
b9f594fe
DW
615 struct dl *d;
616
617 for (d = super->disks; d; d = d->next)
618 if (d->index == index)
95d07a2c
LM
619 return d;
620
621 return NULL;
622}
623/* retrieve a disk from the parsed metadata */
624static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
625{
626 struct dl *dl;
627
628 dl = get_imsm_dl_disk(super, index);
629 if (dl)
630 return &dl->disk;
631
b9f594fe 632 return NULL;
949c47a0
DW
633}
634
635/* generate a checksum directly from the anchor when the anchor is known to be
636 * up-to-date, currently only at load or write_super after coalescing
637 */
638static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
639{
640 __u32 end = mpb->mpb_size / sizeof(end);
641 __u32 *p = (__u32 *) mpb;
642 __u32 sum = 0;
643
97f734fd
N
644 while (end--) {
645 sum += __le32_to_cpu(*p);
646 p++;
647 }
cdddbdbc
DW
648
649 return sum - __le32_to_cpu(mpb->check_sum);
650}
651
a965f303
DW
652static size_t sizeof_imsm_map(struct imsm_map *map)
653{
654 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
655}
656
657struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 658{
5e7b0330
AK
659 /* A device can have 2 maps if it is in the middle of a migration.
660 * If second_map is:
661 * 0 - we return the first map
662 * 1 - we return the second map if it exists, else NULL
663 * -1 - we return the second map if it exists, else the first
664 */
a965f303
DW
665 struct imsm_map *map = &dev->vol.map[0];
666
5e7b0330 667 if (second_map == 1 && !dev->vol.migr_state)
a965f303 668 return NULL;
5e7b0330
AK
669 else if (second_map == 1 ||
670 (second_map < 0 && dev->vol.migr_state)) {
a965f303
DW
671 void *ptr = map;
672
673 return ptr + sizeof_imsm_map(map);
674 } else
675 return map;
5e7b0330 676
a965f303 677}
cdddbdbc 678
3393c6af
DW
679/* return the size of the device.
680 * migr_state increases the returned size if map[0] were to be duplicated
681 */
682static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
683{
684 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
685 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
686
687 /* migrating means an additional map */
a965f303
DW
688 if (dev->vol.migr_state)
689 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
690 else if (migr_state)
691 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
692
693 return size;
694}
695
54c2c1ea
DW
696#ifndef MDASSEMBLE
697/* retrieve disk serial number list from a metadata update */
698static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
699{
700 void *u = update;
701 struct disk_info *inf;
702
703 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
704 sizeof_imsm_dev(&update->dev, 0);
705
706 return inf;
707}
708#endif
709
949c47a0 710static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
711{
712 int offset;
713 int i;
714 void *_mpb = mpb;
715
949c47a0 716 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
717 return NULL;
718
719 /* devices start after all disks */
720 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
721
722 for (i = 0; i <= index; i++)
723 if (i == index)
724 return _mpb + offset;
725 else
3393c6af 726 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
727
728 return NULL;
729}
730
949c47a0
DW
731static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
732{
ba2de7ba
DW
733 struct intel_dev *dv;
734
949c47a0
DW
735 if (index >= super->anchor->num_raid_devs)
736 return NULL;
ba2de7ba
DW
737 for (dv = super->devlist; dv; dv = dv->next)
738 if (dv->index == index)
739 return dv->dev;
740 return NULL;
949c47a0
DW
741}
742
98130f40
AK
743/*
744 * for second_map:
745 * == 0 get first map
746 * == 1 get second map
747 * == -1 than get map according to the current migr_state
748 */
749static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
750 int slot,
751 int second_map)
7eef0453
DW
752{
753 struct imsm_map *map;
754
5e7b0330 755 map = get_imsm_map(dev, second_map);
7eef0453 756
ff077194
DW
757 /* top byte identifies disk under rebuild */
758 return __le32_to_cpu(map->disk_ord_tbl[slot]);
759}
760
761#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 762static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 763{
98130f40 764 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
765
766 return ord_to_idx(ord);
7eef0453
DW
767}
768
be73972f
DW
769static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
770{
771 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
772}
773
f21e18ca 774static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
775{
776 int slot;
777 __u32 ord;
778
779 for (slot = 0; slot < map->num_members; slot++) {
780 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
781 if (ord_to_idx(ord) == idx)
782 return slot;
783 }
784
785 return -1;
786}
787
cdddbdbc
DW
788static int get_imsm_raid_level(struct imsm_map *map)
789{
790 if (map->raid_level == 1) {
791 if (map->num_members == 2)
792 return 1;
793 else
794 return 10;
795 }
796
797 return map->raid_level;
798}
799
c2c087e6
DW
800static int cmp_extent(const void *av, const void *bv)
801{
802 const struct extent *a = av;
803 const struct extent *b = bv;
804 if (a->start < b->start)
805 return -1;
806 if (a->start > b->start)
807 return 1;
808 return 0;
809}
810
0dcecb2e 811static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 812{
c2c087e6 813 int memberships = 0;
620b1713 814 int i;
c2c087e6 815
949c47a0
DW
816 for (i = 0; i < super->anchor->num_raid_devs; i++) {
817 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 818 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 819
620b1713
DW
820 if (get_imsm_disk_slot(map, dl->index) >= 0)
821 memberships++;
c2c087e6 822 }
0dcecb2e
DW
823
824 return memberships;
825}
826
827static struct extent *get_extents(struct intel_super *super, struct dl *dl)
828{
829 /* find a list of used extents on the given physical device */
830 struct extent *rv, *e;
620b1713 831 int i;
0dcecb2e
DW
832 int memberships = count_memberships(dl, super);
833 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
834
c2c087e6
DW
835 rv = malloc(sizeof(struct extent) * (memberships + 1));
836 if (!rv)
837 return NULL;
838 e = rv;
839
949c47a0
DW
840 for (i = 0; i < super->anchor->num_raid_devs; i++) {
841 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 842 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 843
620b1713
DW
844 if (get_imsm_disk_slot(map, dl->index) >= 0) {
845 e->start = __le32_to_cpu(map->pba_of_lba0);
846 e->size = __le32_to_cpu(map->blocks_per_member);
847 e++;
c2c087e6
DW
848 }
849 }
850 qsort(rv, memberships, sizeof(*rv), cmp_extent);
851
14e8215b
DW
852 /* determine the start of the metadata
853 * when no raid devices are defined use the default
854 * ...otherwise allow the metadata to truncate the value
855 * as is the case with older versions of imsm
856 */
857 if (memberships) {
858 struct extent *last = &rv[memberships - 1];
859 __u32 remainder;
860
861 remainder = __le32_to_cpu(dl->disk.total_blocks) -
862 (last->start + last->size);
dda5855f
DW
863 /* round down to 1k block to satisfy precision of the kernel
864 * 'size' interface
865 */
866 remainder &= ~1UL;
867 /* make sure remainder is still sane */
f21e18ca 868 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 869 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
870 if (reservation > remainder)
871 reservation = remainder;
872 }
873 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
874 e->size = 0;
875 return rv;
876}
877
14e8215b
DW
878/* try to determine how much space is reserved for metadata from
879 * the last get_extents() entry, otherwise fallback to the
880 * default
881 */
882static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
883{
884 struct extent *e;
885 int i;
886 __u32 rv;
887
888 /* for spares just return a minimal reservation which will grow
889 * once the spare is picked up by an array
890 */
891 if (dl->index == -1)
892 return MPB_SECTOR_CNT;
893
894 e = get_extents(super, dl);
895 if (!e)
896 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
897
898 /* scroll to last entry */
899 for (i = 0; e[i].size; i++)
900 continue;
901
902 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
903
904 free(e);
905
906 return rv;
907}
908
25ed7e59
DW
909static int is_spare(struct imsm_disk *disk)
910{
911 return (disk->status & SPARE_DISK) == SPARE_DISK;
912}
913
914static int is_configured(struct imsm_disk *disk)
915{
916 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
917}
918
919static int is_failed(struct imsm_disk *disk)
920{
921 return (disk->status & FAILED_DISK) == FAILED_DISK;
922}
923
80e7f8c3
AC
924/* Return minimum size of a spare that can be used in this array*/
925static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
926{
927 struct intel_super *super = st->sb;
928 struct dl *dl;
929 struct extent *e;
930 int i;
931 unsigned long long rv = 0;
932
933 if (!super)
934 return rv;
935 /* find first active disk in array */
936 dl = super->disks;
937 while (dl && (is_failed(&dl->disk) || dl->index == -1))
938 dl = dl->next;
939 if (!dl)
940 return rv;
941 /* find last lba used by subarrays */
942 e = get_extents(super, dl);
943 if (!e)
944 return rv;
945 for (i = 0; e[i].size; i++)
946 continue;
947 if (i > 0)
948 rv = e[i-1].start + e[i-1].size;
949 free(e);
950 /* add the amount of space needed for metadata */
951 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
952 return rv * 512;
953}
954
1799c9e8 955#ifndef MDASSEMBLE
c47b0ff6
AK
956static __u64 blocks_per_migr_unit(struct intel_super *super,
957 struct imsm_dev *dev);
1e5c6983 958
c47b0ff6
AK
959static void print_imsm_dev(struct intel_super *super,
960 struct imsm_dev *dev,
961 char *uuid,
962 int disk_idx)
cdddbdbc
DW
963{
964 __u64 sz;
0d80bb2f 965 int slot, i;
a965f303 966 struct imsm_map *map = get_imsm_map(dev, 0);
dd8bcb3b 967 struct imsm_map *map2 = get_imsm_map(dev, 1);
b10b37b8 968 __u32 ord;
cdddbdbc
DW
969
970 printf("\n");
1e7bc0ed 971 printf("[%.16s]:\n", dev->volume);
44470971 972 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
973 printf(" RAID Level : %d", get_imsm_raid_level(map));
974 if (map2)
975 printf(" <-- %d", get_imsm_raid_level(map2));
976 printf("\n");
977 printf(" Members : %d", map->num_members);
978 if (map2)
979 printf(" <-- %d", map2->num_members);
980 printf("\n");
0d80bb2f
DW
981 printf(" Slots : [");
982 for (i = 0; i < map->num_members; i++) {
dd8bcb3b 983 ord = get_imsm_ord_tbl_ent(dev, i, 0);
0d80bb2f
DW
984 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
985 }
dd8bcb3b
AK
986 printf("]");
987 if (map2) {
988 printf(" <-- [");
989 for (i = 0; i < map2->num_members; i++) {
990 ord = get_imsm_ord_tbl_ent(dev, i, 1);
991 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
992 }
993 printf("]");
994 }
995 printf("\n");
7095bccb
AK
996 printf(" Failed disk : ");
997 if (map->failed_disk_num == 0xff)
998 printf("none");
999 else
1000 printf("%i", map->failed_disk_num);
1001 printf("\n");
620b1713
DW
1002 slot = get_imsm_disk_slot(map, disk_idx);
1003 if (slot >= 0) {
98130f40 1004 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
b10b37b8
DW
1005 printf(" This Slot : %d%s\n", slot,
1006 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1007 } else
cdddbdbc
DW
1008 printf(" This Slot : ?\n");
1009 sz = __le32_to_cpu(dev->size_high);
1010 sz <<= 32;
1011 sz += __le32_to_cpu(dev->size_low);
1012 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1013 human_size(sz * 512));
1014 sz = __le32_to_cpu(map->blocks_per_member);
1015 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1016 human_size(sz * 512));
1017 printf(" Sector Offset : %u\n",
1018 __le32_to_cpu(map->pba_of_lba0));
1019 printf(" Num Stripes : %u\n",
1020 __le32_to_cpu(map->num_data_stripes));
dd8bcb3b 1021 printf(" Chunk Size : %u KiB",
cdddbdbc 1022 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1023 if (map2)
1024 printf(" <-- %u KiB",
1025 __le16_to_cpu(map2->blocks_per_strip) / 2);
1026 printf("\n");
cdddbdbc 1027 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1028 printf(" Migrate State : ");
1484e727
DW
1029 if (dev->vol.migr_state) {
1030 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1031 printf("initialize\n");
1484e727 1032 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1033 printf("rebuild\n");
1484e727 1034 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1035 printf("check\n");
1484e727 1036 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1037 printf("general migration\n");
1484e727 1038 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1039 printf("state change\n");
1484e727 1040 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1041 printf("repair\n");
1484e727 1042 else
8655a7b1
DW
1043 printf("<unknown:%d>\n", migr_type(dev));
1044 } else
1045 printf("idle\n");
3393c6af
DW
1046 printf(" Map State : %s", map_state_str[map->map_state]);
1047 if (dev->vol.migr_state) {
1048 struct imsm_map *map = get_imsm_map(dev, 1);
1e5c6983 1049
b10b37b8 1050 printf(" <-- %s", map_state_str[map->map_state]);
1e5c6983
DW
1051 printf("\n Checkpoint : %u (%llu)",
1052 __le32_to_cpu(dev->vol.curr_migr_unit),
c47b0ff6 1053 (unsigned long long)blocks_per_migr_unit(super, dev));
3393c6af
DW
1054 }
1055 printf("\n");
cdddbdbc 1056 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1057}
1058
14e8215b 1059static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
cdddbdbc 1060{
949c47a0 1061 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
1f24f035 1062 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1063 __u64 sz;
1064
d362da3d 1065 if (index < 0 || !disk)
e9d82038
DW
1066 return;
1067
cdddbdbc 1068 printf("\n");
1f24f035 1069 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
cdddbdbc 1070 printf(" Disk%02d Serial : %s\n", index, str);
25ed7e59
DW
1071 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1072 is_configured(disk) ? " active" : "",
1073 is_failed(disk) ? " failed" : "");
cdddbdbc 1074 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 1075 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
1076 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1077 human_size(sz * 512));
1078}
1079
520e69e2
AK
1080static int is_gen_migration(struct imsm_dev *dev);
1081
1082void examine_migr_rec_imsm(struct intel_super *super)
1083{
1084 struct migr_record *migr_rec = super->migr_rec;
1085 struct imsm_super *mpb = super->anchor;
1086 int i;
1087
1088 for (i = 0; i < mpb->num_raid_devs; i++) {
1089 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1090 if (is_gen_migration(dev) == 0)
1091 continue;
1092
1093 printf("\nMigration Record Information:");
1094 if (super->disks->index > 1) {
1095 printf(" Empty\n ");
1096 printf("Examine one of first two disks in array\n");
1097 break;
1098 }
1099 printf("\n Status : ");
1100 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1101 printf("Normal\n");
1102 else
1103 printf("Contains Data\n");
1104 printf(" Current Unit : %u\n",
1105 __le32_to_cpu(migr_rec->curr_migr_unit));
1106 printf(" Family : %u\n",
1107 __le32_to_cpu(migr_rec->family_num));
1108 printf(" Ascending : %u\n",
1109 __le32_to_cpu(migr_rec->ascending_migr));
1110 printf(" Blocks Per Unit : %u\n",
1111 __le32_to_cpu(migr_rec->blocks_per_unit));
1112 printf(" Dest. Depth Per Unit : %u\n",
1113 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1114 printf(" Checkpoint Area pba : %u\n",
1115 __le32_to_cpu(migr_rec->ckpt_area_pba));
1116 printf(" First member lba : %u\n",
1117 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1118 printf(" Total Number of Units : %u\n",
1119 __le32_to_cpu(migr_rec->num_migr_units));
1120 printf(" Size of volume : %u\n",
1121 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1122 printf(" Expansion space for LBA64 : %u\n",
1123 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1124 printf(" Record was read from : %u\n",
1125 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1126
1127 break;
1128 }
1129}
1130
19482bcc
AK
1131/*******************************************************************************
1132 * function: imsm_check_attributes
1133 * Description: Function checks if features represented by attributes flags
1134 * are supported by mdadm.
1135 * Parameters:
1136 * attributes - Attributes read from metadata
1137 * Returns:
1138 * 0 - passed attributes contains unsupported features flags
1139 * 1 - all features are supported
1140 ******************************************************************************/
1141static int imsm_check_attributes(__u32 attributes)
1142{
1143 int ret_val = 1;
1144 __u32 not_supported = (MPB_ATTRIB_SUPPORTED)^0xffffffff;
1145
1146 not_supported &= attributes;
1147 if (not_supported) {
1148 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n", not_supported);
1149 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1150 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1151 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1152 }
1153 if (not_supported & MPB_ATTRIB_2TB) {
1154 dprintf("\t\tMPB_ATTRIB_2TB\n");
1155 not_supported ^= MPB_ATTRIB_2TB;
1156 }
1157 if (not_supported & MPB_ATTRIB_RAID0) {
1158 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1159 not_supported ^= MPB_ATTRIB_RAID0;
1160 }
1161 if (not_supported & MPB_ATTRIB_RAID1) {
1162 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1163 not_supported ^= MPB_ATTRIB_RAID1;
1164 }
1165 if (not_supported & MPB_ATTRIB_RAID10) {
1166 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1167 not_supported ^= MPB_ATTRIB_RAID10;
1168 }
1169 if (not_supported & MPB_ATTRIB_RAID1E) {
1170 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1171 not_supported ^= MPB_ATTRIB_RAID1E;
1172 }
1173 if (not_supported & MPB_ATTRIB_RAID5) {
1174 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1175 not_supported ^= MPB_ATTRIB_RAID5;
1176 }
1177 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1178 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1179 not_supported ^= MPB_ATTRIB_RAIDCNG;
1180 }
1181 if (not_supported & MPB_ATTRIB_BBM) {
1182 dprintf("\t\tMPB_ATTRIB_BBM\n");
1183 not_supported ^= MPB_ATTRIB_BBM;
1184 }
1185 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1186 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1187 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1188 }
1189 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1190 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1191 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1192 }
1193 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1194 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1195 not_supported ^= MPB_ATTRIB_2TB_DISK;
1196 }
1197 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1198 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1199 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1200 }
1201 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1202 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1203 not_supported ^= MPB_ATTRIB_NEVER_USE;
1204 }
1205
1206 if (not_supported)
1207 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1208
1209 ret_val = 0;
1210 }
1211
1212 return ret_val;
1213}
1214
a5d85af7 1215static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1216
cdddbdbc
DW
1217static void examine_super_imsm(struct supertype *st, char *homehost)
1218{
1219 struct intel_super *super = st->sb;
949c47a0 1220 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1221 char str[MAX_SIGNATURE_LENGTH];
1222 int i;
27fd6274
DW
1223 struct mdinfo info;
1224 char nbuf[64];
cdddbdbc 1225 __u32 sum;
14e8215b 1226 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1227 struct dl *dl;
27fd6274 1228
cdddbdbc
DW
1229 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1230 printf(" Magic : %s\n", str);
1231 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1232 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1233 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1234 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1235 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1236 printf(" Attributes : ");
1237 if (imsm_check_attributes(mpb->attributes))
1238 printf("All supported\n");
1239 else
1240 printf("not supported\n");
a5d85af7 1241 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1242 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1243 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1244 sum = __le32_to_cpu(mpb->check_sum);
1245 printf(" Checksum : %08x %s\n", sum,
949c47a0 1246 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1247 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1248 printf(" Disks : %d\n", mpb->num_disks);
1249 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
14e8215b 1250 print_imsm_disk(mpb, super->disks->index, reserved);
604b746f
JD
1251 if (super->bbm_log) {
1252 struct bbm_log *log = super->bbm_log;
1253
1254 printf("\n");
1255 printf("Bad Block Management Log:\n");
1256 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1257 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1258 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1259 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1260 printf(" First Spare : %llx\n",
1261 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1262 }
44470971
DW
1263 for (i = 0; i < mpb->num_raid_devs; i++) {
1264 struct mdinfo info;
1265 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1266
1267 super->current_vol = i;
a5d85af7 1268 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1269 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1270 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1271 }
cdddbdbc
DW
1272 for (i = 0; i < mpb->num_disks; i++) {
1273 if (i == super->disks->index)
1274 continue;
14e8215b 1275 print_imsm_disk(mpb, i, reserved);
cdddbdbc 1276 }
94827db3
N
1277 for (dl = super->disks ; dl; dl = dl->next) {
1278 struct imsm_disk *disk;
1279 char str[MAX_RAID_SERIAL_LEN + 1];
1280 __u64 sz;
1281
1282 if (dl->index >= 0)
1283 continue;
1284
1285 disk = &dl->disk;
1286 printf("\n");
1287 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1288 printf(" Disk Serial : %s\n", str);
1289 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1290 is_configured(disk) ? " active" : "",
1291 is_failed(disk) ? " failed" : "");
1292 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1293 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1294 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1295 human_size(sz * 512));
1296 }
520e69e2
AK
1297
1298 examine_migr_rec_imsm(super);
cdddbdbc
DW
1299}
1300
061f2c6a 1301static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1302{
27fd6274 1303 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1304 struct mdinfo info;
1305 char nbuf[64];
1e7bc0ed 1306 struct intel_super *super = st->sb;
1e7bc0ed 1307
0d5a423f
DW
1308 if (!super->anchor->num_raid_devs) {
1309 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1310 return;
0d5a423f 1311 }
ff54de6e 1312
a5d85af7 1313 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1314 fname_from_uuid(st, &info, nbuf, ':');
1315 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1316}
1317
1318static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1319{
1320 /* We just write a generic IMSM ARRAY entry */
1321 struct mdinfo info;
1322 char nbuf[64];
1323 char nbuf1[64];
1324 struct intel_super *super = st->sb;
1325 int i;
1326
1327 if (!super->anchor->num_raid_devs)
1328 return;
1329
a5d85af7 1330 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1331 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1332 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1333 struct imsm_dev *dev = get_imsm_dev(super, i);
1334
1335 super->current_vol = i;
a5d85af7 1336 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1337 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1338 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1339 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1340 }
cdddbdbc
DW
1341}
1342
9d84c8ea
DW
1343static void export_examine_super_imsm(struct supertype *st)
1344{
1345 struct intel_super *super = st->sb;
1346 struct imsm_super *mpb = super->anchor;
1347 struct mdinfo info;
1348 char nbuf[64];
1349
a5d85af7 1350 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1351 fname_from_uuid(st, &info, nbuf, ':');
1352 printf("MD_METADATA=imsm\n");
1353 printf("MD_LEVEL=container\n");
1354 printf("MD_UUID=%s\n", nbuf+5);
1355 printf("MD_DEVICES=%u\n", mpb->num_disks);
1356}
1357
cdddbdbc
DW
1358static void detail_super_imsm(struct supertype *st, char *homehost)
1359{
3ebe00a1
DW
1360 struct mdinfo info;
1361 char nbuf[64];
1362
a5d85af7 1363 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1364 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1365 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1366}
1367
1368static void brief_detail_super_imsm(struct supertype *st)
1369{
ff54de6e
N
1370 struct mdinfo info;
1371 char nbuf[64];
a5d85af7 1372 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1373 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1374 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1375}
d665cc31
DW
1376
1377static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1378static void fd2devname(int fd, char *name);
1379
120dc887 1380static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1381{
120dc887
LM
1382 /* dump an unsorted list of devices attached to AHCI Intel storage
1383 * controller, as well as non-connected ports
d665cc31
DW
1384 */
1385 int hba_len = strlen(hba_path) + 1;
1386 struct dirent *ent;
1387 DIR *dir;
1388 char *path = NULL;
1389 int err = 0;
1390 unsigned long port_mask = (1 << port_count) - 1;
1391
f21e18ca 1392 if (port_count > (int)sizeof(port_mask) * 8) {
d665cc31
DW
1393 if (verbose)
1394 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1395 return 2;
1396 }
1397
1398 /* scroll through /sys/dev/block looking for devices attached to
1399 * this hba
1400 */
1401 dir = opendir("/sys/dev/block");
1402 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1403 int fd;
1404 char model[64];
1405 char vendor[64];
1406 char buf[1024];
1407 int major, minor;
1408 char *device;
1409 char *c;
1410 int port;
1411 int type;
1412
1413 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1414 continue;
1415 path = devt_to_devpath(makedev(major, minor));
1416 if (!path)
1417 continue;
1418 if (!path_attached_to_hba(path, hba_path)) {
1419 free(path);
1420 path = NULL;
1421 continue;
1422 }
1423
1424 /* retrieve the scsi device type */
1425 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1426 if (verbose)
1427 fprintf(stderr, Name ": failed to allocate 'device'\n");
1428 err = 2;
1429 break;
1430 }
1431 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1432 if (load_sys(device, buf) != 0) {
1433 if (verbose)
1434 fprintf(stderr, Name ": failed to read device type for %s\n",
1435 path);
1436 err = 2;
1437 free(device);
1438 break;
1439 }
1440 type = strtoul(buf, NULL, 10);
1441
1442 /* if it's not a disk print the vendor and model */
1443 if (!(type == 0 || type == 7 || type == 14)) {
1444 vendor[0] = '\0';
1445 model[0] = '\0';
1446 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1447 if (load_sys(device, buf) == 0) {
1448 strncpy(vendor, buf, sizeof(vendor));
1449 vendor[sizeof(vendor) - 1] = '\0';
1450 c = (char *) &vendor[sizeof(vendor) - 1];
1451 while (isspace(*c) || *c == '\0')
1452 *c-- = '\0';
1453
1454 }
1455 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1456 if (load_sys(device, buf) == 0) {
1457 strncpy(model, buf, sizeof(model));
1458 model[sizeof(model) - 1] = '\0';
1459 c = (char *) &model[sizeof(model) - 1];
1460 while (isspace(*c) || *c == '\0')
1461 *c-- = '\0';
1462 }
1463
1464 if (vendor[0] && model[0])
1465 sprintf(buf, "%.64s %.64s", vendor, model);
1466 else
1467 switch (type) { /* numbers from hald/linux/device.c */
1468 case 1: sprintf(buf, "tape"); break;
1469 case 2: sprintf(buf, "printer"); break;
1470 case 3: sprintf(buf, "processor"); break;
1471 case 4:
1472 case 5: sprintf(buf, "cdrom"); break;
1473 case 6: sprintf(buf, "scanner"); break;
1474 case 8: sprintf(buf, "media_changer"); break;
1475 case 9: sprintf(buf, "comm"); break;
1476 case 12: sprintf(buf, "raid"); break;
1477 default: sprintf(buf, "unknown");
1478 }
1479 } else
1480 buf[0] = '\0';
1481 free(device);
1482
1483 /* chop device path to 'host%d' and calculate the port number */
1484 c = strchr(&path[hba_len], '/');
4e5e717d
AW
1485 if (!c) {
1486 if (verbose)
1487 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1488 err = 2;
1489 break;
1490 }
d665cc31
DW
1491 *c = '\0';
1492 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1493 port -= host_base;
1494 else {
1495 if (verbose) {
1496 *c = '/'; /* repair the full string */
1497 fprintf(stderr, Name ": failed to determine port number for %s\n",
1498 path);
1499 }
1500 err = 2;
1501 break;
1502 }
1503
1504 /* mark this port as used */
1505 port_mask &= ~(1 << port);
1506
1507 /* print out the device information */
1508 if (buf[0]) {
1509 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1510 continue;
1511 }
1512
1513 fd = dev_open(ent->d_name, O_RDONLY);
1514 if (fd < 0)
1515 printf(" Port%d : - disk info unavailable -\n", port);
1516 else {
1517 fd2devname(fd, buf);
1518 printf(" Port%d : %s", port, buf);
1519 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1520 printf(" (%s)\n", buf);
1521 else
1522 printf("()\n");
1523 }
1524 close(fd);
1525 free(path);
1526 path = NULL;
1527 }
1528 if (path)
1529 free(path);
1530 if (dir)
1531 closedir(dir);
1532 if (err == 0) {
1533 int i;
1534
1535 for (i = 0; i < port_count; i++)
1536 if (port_mask & (1 << i))
1537 printf(" Port%d : - no device attached -\n", i);
1538 }
1539
1540 return err;
1541}
1542
120dc887 1543
155cbb4c 1544
120dc887
LM
1545static void print_found_intel_controllers(struct sys_dev *elem)
1546{
1547 for (; elem; elem = elem->next) {
1548 fprintf(stderr, Name ": found Intel(R) ");
1549 if (elem->type == SYS_DEV_SATA)
1550 fprintf(stderr, "SATA ");
155cbb4c
LM
1551 else if (elem->type == SYS_DEV_SAS)
1552 fprintf(stderr, "SAS ");
120dc887
LM
1553 fprintf(stderr, "RAID controller");
1554 if (elem->pci_id)
1555 fprintf(stderr, " at %s", elem->pci_id);
1556 fprintf(stderr, ".\n");
1557 }
1558 fflush(stderr);
1559}
1560
120dc887
LM
1561static int ahci_get_port_count(const char *hba_path, int *port_count)
1562{
1563 struct dirent *ent;
1564 DIR *dir;
1565 int host_base = -1;
1566
1567 *port_count = 0;
1568 if ((dir = opendir(hba_path)) == NULL)
1569 return -1;
1570
1571 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1572 int host;
1573
1574 if (sscanf(ent->d_name, "host%d", &host) != 1)
1575 continue;
1576 if (*port_count == 0)
1577 host_base = host;
1578 else if (host < host_base)
1579 host_base = host;
1580
1581 if (host + 1 > *port_count + host_base)
1582 *port_count = host + 1 - host_base;
1583 }
1584 closedir(dir);
1585 return host_base;
1586}
1587
a891a3c2
LM
1588static void print_imsm_capability(const struct imsm_orom *orom)
1589{
1590 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1591 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1592 orom->hotfix_ver, orom->build);
1593 printf(" RAID Levels :%s%s%s%s%s\n",
1594 imsm_orom_has_raid0(orom) ? " raid0" : "",
1595 imsm_orom_has_raid1(orom) ? " raid1" : "",
1596 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1597 imsm_orom_has_raid10(orom) ? " raid10" : "",
1598 imsm_orom_has_raid5(orom) ? " raid5" : "");
1599 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1600 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1601 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1602 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1603 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1604 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1605 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1606 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1607 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1608 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1609 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1610 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1611 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1612 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1613 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1614 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1615 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1616 printf(" Max Disks : %d\n", orom->tds);
1617 printf(" Max Volumes : %d\n", orom->vpa);
1618 return;
1619}
1620
5615172f 1621static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1622{
1623 /* There are two components to imsm platform support, the ahci SATA
1624 * controller and the option-rom. To find the SATA controller we
1625 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1626 * controller with the Intel vendor id is present. This approach
1627 * allows mdadm to leverage the kernel's ahci detection logic, with the
1628 * caveat that if ahci.ko is not loaded mdadm will not be able to
1629 * detect platform raid capabilities. The option-rom resides in a
1630 * platform "Adapter ROM". We scan for its signature to retrieve the
1631 * platform capabilities. If raid support is disabled in the BIOS the
1632 * option-rom capability structure will not be available.
1633 */
1634 const struct imsm_orom *orom;
1635 struct sys_dev *list, *hba;
d665cc31
DW
1636 int host_base = 0;
1637 int port_count = 0;
120dc887 1638 int result=0;
d665cc31 1639
5615172f 1640 if (enumerate_only) {
a891a3c2 1641 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1642 return 0;
a891a3c2
LM
1643 list = find_intel_devices();
1644 if (!list)
1645 return 2;
1646 for (hba = list; hba; hba = hba->next) {
1647 orom = find_imsm_capability(hba->type);
1648 if (!orom) {
1649 result = 2;
1650 break;
1651 }
1652 }
1653 free_sys_dev(&list);
1654 return result;
5615172f
DW
1655 }
1656
155cbb4c
LM
1657 list = find_intel_devices();
1658 if (!list) {
d665cc31 1659 if (verbose)
155cbb4c
LM
1660 fprintf(stderr, Name ": no active Intel(R) RAID "
1661 "controller found.\n");
d665cc31
DW
1662 free_sys_dev(&list);
1663 return 2;
1664 } else if (verbose)
155cbb4c 1665 print_found_intel_controllers(list);
d665cc31 1666
a891a3c2
LM
1667 for (hba = list; hba; hba = hba->next) {
1668 orom = find_imsm_capability(hba->type);
1669 if (!orom)
1670 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1671 hba->path, get_sys_dev_type(hba->type));
1672 else
1673 print_imsm_capability(orom);
d665cc31
DW
1674 }
1675
120dc887
LM
1676 for (hba = list; hba; hba = hba->next) {
1677 printf(" I/O Controller : %s (%s)\n",
1678 hba->path, get_sys_dev_type(hba->type));
d665cc31 1679
120dc887
LM
1680 if (hba->type == SYS_DEV_SATA) {
1681 host_base = ahci_get_port_count(hba->path, &port_count);
1682 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1683 if (verbose)
1684 fprintf(stderr, Name ": failed to enumerate "
1685 "ports on SATA controller at %s.", hba->pci_id);
1686 result |= 2;
1687 }
1688 }
d665cc31 1689 }
155cbb4c 1690
120dc887
LM
1691 free_sys_dev(&list);
1692 return result;
d665cc31 1693}
cdddbdbc
DW
1694#endif
1695
1696static int match_home_imsm(struct supertype *st, char *homehost)
1697{
5115ca67
DW
1698 /* the imsm metadata format does not specify any host
1699 * identification information. We return -1 since we can never
1700 * confirm nor deny whether a given array is "meant" for this
148acb7b 1701 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1702 * exclude member disks that do not belong, and we rely on
1703 * mdadm.conf to specify the arrays that should be assembled.
1704 * Auto-assembly may still pick up "foreign" arrays.
1705 */
cdddbdbc 1706
9362c1c8 1707 return -1;
cdddbdbc
DW
1708}
1709
1710static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1711{
51006d85
N
1712 /* The uuid returned here is used for:
1713 * uuid to put into bitmap file (Create, Grow)
1714 * uuid for backup header when saving critical section (Grow)
1715 * comparing uuids when re-adding a device into an array
1716 * In these cases the uuid required is that of the data-array,
1717 * not the device-set.
1718 * uuid to recognise same set when adding a missing device back
1719 * to an array. This is a uuid for the device-set.
1720 *
1721 * For each of these we can make do with a truncated
1722 * or hashed uuid rather than the original, as long as
1723 * everyone agrees.
1724 * In each case the uuid required is that of the data-array,
1725 * not the device-set.
43dad3d6 1726 */
51006d85
N
1727 /* imsm does not track uuid's so we synthesis one using sha1 on
1728 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1729 * - the orig_family_num of the container
51006d85
N
1730 * - the index number of the volume
1731 * - the 'serial' number of the volume.
1732 * Hopefully these are all constant.
1733 */
1734 struct intel_super *super = st->sb;
43dad3d6 1735
51006d85
N
1736 char buf[20];
1737 struct sha1_ctx ctx;
1738 struct imsm_dev *dev = NULL;
148acb7b 1739 __u32 family_num;
51006d85 1740
148acb7b
DW
1741 /* some mdadm versions failed to set ->orig_family_num, in which
1742 * case fall back to ->family_num. orig_family_num will be
1743 * fixed up with the first metadata update.
1744 */
1745 family_num = super->anchor->orig_family_num;
1746 if (family_num == 0)
1747 family_num = super->anchor->family_num;
51006d85 1748 sha1_init_ctx(&ctx);
92bd8f8d 1749 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1750 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1751 if (super->current_vol >= 0)
1752 dev = get_imsm_dev(super, super->current_vol);
1753 if (dev) {
1754 __u32 vol = super->current_vol;
1755 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1756 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1757 }
1758 sha1_finish_ctx(&ctx, buf);
1759 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1760}
1761
0d481d37 1762#if 0
4f5bc454
DW
1763static void
1764get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1765{
cdddbdbc
DW
1766 __u8 *v = get_imsm_version(mpb);
1767 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1768 char major[] = { 0, 0, 0 };
1769 char minor[] = { 0 ,0, 0 };
1770 char patch[] = { 0, 0, 0 };
1771 char *ver_parse[] = { major, minor, patch };
1772 int i, j;
1773
1774 i = j = 0;
1775 while (*v != '\0' && v < end) {
1776 if (*v != '.' && j < 2)
1777 ver_parse[i][j++] = *v;
1778 else {
1779 i++;
1780 j = 0;
1781 }
1782 v++;
1783 }
1784
4f5bc454
DW
1785 *m = strtol(minor, NULL, 0);
1786 *p = strtol(patch, NULL, 0);
1787}
0d481d37 1788#endif
4f5bc454 1789
1e5c6983
DW
1790static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1791{
1792 /* migr_strip_size when repairing or initializing parity */
1793 struct imsm_map *map = get_imsm_map(dev, 0);
1794 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1795
1796 switch (get_imsm_raid_level(map)) {
1797 case 5:
1798 case 10:
1799 return chunk;
1800 default:
1801 return 128*1024 >> 9;
1802 }
1803}
1804
1805static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1806{
1807 /* migr_strip_size when rebuilding a degraded disk, no idea why
1808 * this is different than migr_strip_size_resync(), but it's good
1809 * to be compatible
1810 */
1811 struct imsm_map *map = get_imsm_map(dev, 1);
1812 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1813
1814 switch (get_imsm_raid_level(map)) {
1815 case 1:
1816 case 10:
1817 if (map->num_members % map->num_domains == 0)
1818 return 128*1024 >> 9;
1819 else
1820 return chunk;
1821 case 5:
1822 return max((__u32) 64*1024 >> 9, chunk);
1823 default:
1824 return 128*1024 >> 9;
1825 }
1826}
1827
1828static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1829{
1830 struct imsm_map *lo = get_imsm_map(dev, 0);
1831 struct imsm_map *hi = get_imsm_map(dev, 1);
1832 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1833 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1834
1835 return max((__u32) 1, hi_chunk / lo_chunk);
1836}
1837
1838static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1839{
1840 struct imsm_map *lo = get_imsm_map(dev, 0);
1841 int level = get_imsm_raid_level(lo);
1842
1843 if (level == 1 || level == 10) {
1844 struct imsm_map *hi = get_imsm_map(dev, 1);
1845
1846 return hi->num_domains;
1847 } else
1848 return num_stripes_per_unit_resync(dev);
1849}
1850
98130f40 1851static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
1852{
1853 /* named 'imsm_' because raid0, raid1 and raid10
1854 * counter-intuitively have the same number of data disks
1855 */
98130f40 1856 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
1857
1858 switch (get_imsm_raid_level(map)) {
1859 case 0:
1860 case 1:
1861 case 10:
1862 return map->num_members;
1863 case 5:
1864 return map->num_members - 1;
1865 default:
1866 dprintf("%s: unsupported raid level\n", __func__);
1867 return 0;
1868 }
1869}
1870
1871static __u32 parity_segment_depth(struct imsm_dev *dev)
1872{
1873 struct imsm_map *map = get_imsm_map(dev, 0);
1874 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1875
1876 switch(get_imsm_raid_level(map)) {
1877 case 1:
1878 case 10:
1879 return chunk * map->num_domains;
1880 case 5:
1881 return chunk * map->num_members;
1882 default:
1883 return chunk;
1884 }
1885}
1886
1887static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1888{
1889 struct imsm_map *map = get_imsm_map(dev, 1);
1890 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1891 __u32 strip = block / chunk;
1892
1893 switch (get_imsm_raid_level(map)) {
1894 case 1:
1895 case 10: {
1896 __u32 vol_strip = (strip * map->num_domains) + 1;
1897 __u32 vol_stripe = vol_strip / map->num_members;
1898
1899 return vol_stripe * chunk + block % chunk;
1900 } case 5: {
1901 __u32 stripe = strip / (map->num_members - 1);
1902
1903 return stripe * chunk + block % chunk;
1904 }
1905 default:
1906 return 0;
1907 }
1908}
1909
c47b0ff6
AK
1910static __u64 blocks_per_migr_unit(struct intel_super *super,
1911 struct imsm_dev *dev)
1e5c6983
DW
1912{
1913 /* calculate the conversion factor between per member 'blocks'
1914 * (md/{resync,rebuild}_start) and imsm migration units, return
1915 * 0 for the 'not migrating' and 'unsupported migration' cases
1916 */
1917 if (!dev->vol.migr_state)
1918 return 0;
1919
1920 switch (migr_type(dev)) {
c47b0ff6
AK
1921 case MIGR_GEN_MIGR: {
1922 struct migr_record *migr_rec = super->migr_rec;
1923 return __le32_to_cpu(migr_rec->blocks_per_unit);
1924 }
1e5c6983
DW
1925 case MIGR_VERIFY:
1926 case MIGR_REPAIR:
1927 case MIGR_INIT: {
1928 struct imsm_map *map = get_imsm_map(dev, 0);
1929 __u32 stripes_per_unit;
1930 __u32 blocks_per_unit;
1931 __u32 parity_depth;
1932 __u32 migr_chunk;
1933 __u32 block_map;
1934 __u32 block_rel;
1935 __u32 segment;
1936 __u32 stripe;
1937 __u8 disks;
1938
1939 /* yes, this is really the translation of migr_units to
1940 * per-member blocks in the 'resync' case
1941 */
1942 stripes_per_unit = num_stripes_per_unit_resync(dev);
1943 migr_chunk = migr_strip_blocks_resync(dev);
98130f40 1944 disks = imsm_num_data_members(dev, 0);
1e5c6983 1945 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 1946 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
1947 segment = blocks_per_unit / stripe;
1948 block_rel = blocks_per_unit - segment * stripe;
1949 parity_depth = parity_segment_depth(dev);
1950 block_map = map_migr_block(dev, block_rel);
1951 return block_map + parity_depth * segment;
1952 }
1953 case MIGR_REBUILD: {
1954 __u32 stripes_per_unit;
1955 __u32 migr_chunk;
1956
1957 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1958 migr_chunk = migr_strip_blocks_rebuild(dev);
1959 return migr_chunk * stripes_per_unit;
1960 }
1e5c6983
DW
1961 case MIGR_STATE_CHANGE:
1962 default:
1963 return 0;
1964 }
1965}
1966
c2c087e6
DW
1967static int imsm_level_to_layout(int level)
1968{
1969 switch (level) {
1970 case 0:
1971 case 1:
1972 return 0;
1973 case 5:
1974 case 6:
a380c027 1975 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 1976 case 10:
c92a2527 1977 return 0x102;
c2c087e6 1978 }
a18a888e 1979 return UnSet;
c2c087e6
DW
1980}
1981
8e59f3d8
AK
1982/*******************************************************************************
1983 * Function: read_imsm_migr_rec
1984 * Description: Function reads imsm migration record from last sector of disk
1985 * Parameters:
1986 * fd : disk descriptor
1987 * super : metadata info
1988 * Returns:
1989 * 0 : success,
1990 * -1 : fail
1991 ******************************************************************************/
1992static int read_imsm_migr_rec(int fd, struct intel_super *super)
1993{
1994 int ret_val = -1;
1995 unsigned long long dsize;
1996
1997 get_dev_size(fd, NULL, &dsize);
1998 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
1999 fprintf(stderr,
2000 Name ": Cannot seek to anchor block: %s\n",
2001 strerror(errno));
2002 goto out;
2003 }
2004 if (read(fd, super->migr_rec_buf, 512) != 512) {
2005 fprintf(stderr,
2006 Name ": Cannot read migr record block: %s\n",
2007 strerror(errno));
2008 goto out;
2009 }
2010 ret_val = 0;
2011
2012out:
2013 return ret_val;
2014}
2015
2016/*******************************************************************************
2017 * Function: load_imsm_migr_rec
2018 * Description: Function reads imsm migration record (it is stored at the last
2019 * sector of disk)
2020 * Parameters:
2021 * super : imsm internal array info
2022 * info : general array info
2023 * Returns:
2024 * 0 : success
2025 * -1 : fail
2026 ******************************************************************************/
2027static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2028{
2029 struct mdinfo *sd;
2030 struct dl *dl = NULL;
2031 char nm[30];
2032 int retval = -1;
2033 int fd = -1;
2034
2035 if (info) {
2036 for (sd = info->devs ; sd ; sd = sd->next) {
2037 /* read only from one of the first two slots */
2038 if ((sd->disk.raid_disk > 1) ||
2039 (sd->disk.raid_disk < 0))
2040 continue;
2041 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2042 fd = dev_open(nm, O_RDONLY);
2043 if (fd >= 0)
2044 break;
2045 }
2046 }
2047 if (fd < 0) {
2048 for (dl = super->disks; dl; dl = dl->next) {
2049 /* read only from one of the first two slots */
2050 if (dl->index > 1)
2051 continue;
2052 sprintf(nm, "%d:%d", dl->major, dl->minor);
2053 fd = dev_open(nm, O_RDONLY);
2054 if (fd >= 0)
2055 break;
2056 }
2057 }
2058 if (fd < 0)
2059 goto out;
2060 retval = read_imsm_migr_rec(fd, super);
2061
2062out:
2063 if (fd >= 0)
2064 close(fd);
2065 return retval;
2066}
2067
c17608ea
AK
2068/*******************************************************************************
2069 * function: imsm_create_metadata_checkpoint_update
2070 * Description: It creates update for checkpoint change.
2071 * Parameters:
2072 * super : imsm internal array info
2073 * u : pointer to prepared update
2074 * Returns:
2075 * Uptate length.
2076 * If length is equal to 0, input pointer u contains no update
2077 ******************************************************************************/
2078static int imsm_create_metadata_checkpoint_update(
2079 struct intel_super *super,
2080 struct imsm_update_general_migration_checkpoint **u)
2081{
2082
2083 int update_memory_size = 0;
2084
2085 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2086
2087 if (u == NULL)
2088 return 0;
2089 *u = NULL;
2090
2091 /* size of all update data without anchor */
2092 update_memory_size =
2093 sizeof(struct imsm_update_general_migration_checkpoint);
2094
2095 *u = calloc(1, update_memory_size);
2096 if (*u == NULL) {
2097 dprintf("error: cannot get memory for "
2098 "imsm_create_metadata_checkpoint_update update\n");
2099 return 0;
2100 }
2101 (*u)->type = update_general_migration_checkpoint;
2102 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2103 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2104 (*u)->curr_migr_unit);
2105
2106 return update_memory_size;
2107}
2108
2109
2110static void imsm_update_metadata_locally(struct supertype *st,
2111 void *buf, int len);
2112
687629c2
AK
2113/*******************************************************************************
2114 * Function: write_imsm_migr_rec
2115 * Description: Function writes imsm migration record
2116 * (at the last sector of disk)
2117 * Parameters:
2118 * super : imsm internal array info
2119 * Returns:
2120 * 0 : success
2121 * -1 : if fail
2122 ******************************************************************************/
2123static int write_imsm_migr_rec(struct supertype *st)
2124{
2125 struct intel_super *super = st->sb;
2126 unsigned long long dsize;
2127 char nm[30];
2128 int fd = -1;
2129 int retval = -1;
2130 struct dl *sd;
c17608ea
AK
2131 int len;
2132 struct imsm_update_general_migration_checkpoint *u;
687629c2
AK
2133
2134 for (sd = super->disks ; sd ; sd = sd->next) {
2135 /* write to 2 first slots only */
2136 if ((sd->index < 0) || (sd->index > 1))
2137 continue;
2138 sprintf(nm, "%d:%d", sd->major, sd->minor);
2139 fd = dev_open(nm, O_RDWR);
2140 if (fd < 0)
2141 continue;
2142 get_dev_size(fd, NULL, &dsize);
2143 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2144 fprintf(stderr,
2145 Name ": Cannot seek to anchor block: %s\n",
2146 strerror(errno));
2147 goto out;
2148 }
2149 if (write(fd, super->migr_rec_buf, 512) != 512) {
2150 fprintf(stderr,
2151 Name ": Cannot write migr record block: %s\n",
2152 strerror(errno));
2153 goto out;
2154 }
2155 close(fd);
2156 fd = -1;
2157 }
c17608ea
AK
2158 /* update checkpoint information in metadata */
2159 len = imsm_create_metadata_checkpoint_update(super, &u);
2160
2161 if (len <= 0) {
2162 dprintf("imsm: Cannot prepare update\n");
2163 goto out;
2164 }
2165 /* update metadata locally */
2166 imsm_update_metadata_locally(st, u, len);
2167 /* and possibly remotely */
2168 if (st->update_tail) {
2169 append_metadata_update(st, u, len);
2170 /* during reshape we do all work inside metadata handler
2171 * manage_reshape(), so metadata update has to be triggered
2172 * insida it
2173 */
2174 flush_metadata_updates(st);
2175 st->update_tail = &st->updates;
2176 } else
2177 free(u);
687629c2
AK
2178
2179 retval = 0;
2180 out:
2181 if (fd >= 0)
2182 close(fd);
2183 return retval;
2184}
2185
a5d85af7 2186static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2187{
2188 struct intel_super *super = st->sb;
c47b0ff6 2189 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2190 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 2191 struct imsm_map *map = get_imsm_map(dev, 0);
81ac8b4d 2192 struct imsm_map *prev_map = get_imsm_map(dev, 1);
b335e593 2193 struct imsm_map *map_to_analyse = map;
efb30e7f 2194 struct dl *dl;
e207da2f 2195 char *devname;
139dae11 2196 unsigned int component_size_alligment;
a5d85af7 2197 int map_disks = info->array.raid_disks;
bf5a934a 2198
95eeceeb 2199 memset(info, 0, sizeof(*info));
b335e593
AK
2200 if (prev_map)
2201 map_to_analyse = prev_map;
2202
9894ec0d
N
2203 dl = super->disks;
2204
bf5a934a 2205 info->container_member = super->current_vol;
cd0430a1 2206 info->array.raid_disks = map->num_members;
b335e593 2207 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2208 info->array.layout = imsm_level_to_layout(info->array.level);
2209 info->array.md_minor = -1;
2210 info->array.ctime = 0;
2211 info->array.utime = 0;
b335e593
AK
2212 info->array.chunk_size =
2213 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2214 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2215 info->custom_array_size = __le32_to_cpu(dev->size_high);
2216 info->custom_array_size <<= 32;
2217 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3f83228a
N
2218 if (prev_map && map->map_state == prev_map->map_state) {
2219 info->reshape_active = 1;
b335e593
AK
2220 info->new_level = get_imsm_raid_level(map);
2221 info->new_layout = imsm_level_to_layout(info->new_level);
2222 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2223 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2224 if (info->delta_disks) {
2225 /* this needs to be applied to every array
2226 * in the container.
2227 */
2228 info->reshape_active = 2;
2229 }
3f83228a
N
2230 /* We shape information that we give to md might have to be
2231 * modify to cope with md's requirement for reshaping arrays.
2232 * For example, when reshaping a RAID0, md requires it to be
2233 * presented as a degraded RAID4.
2234 * Also if a RAID0 is migrating to a RAID5 we need to specify
2235 * the array as already being RAID5, but the 'before' layout
2236 * is a RAID4-like layout.
2237 */
2238 switch (info->array.level) {
2239 case 0:
2240 switch(info->new_level) {
2241 case 0:
2242 /* conversion is happening as RAID4 */
2243 info->array.level = 4;
2244 info->array.raid_disks += 1;
2245 break;
2246 case 5:
2247 /* conversion is happening as RAID5 */
2248 info->array.level = 5;
2249 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
2250 info->delta_disks -= 1;
2251 break;
2252 default:
2253 /* FIXME error message */
2254 info->array.level = UnSet;
2255 break;
2256 }
2257 break;
2258 }
b335e593
AK
2259 } else {
2260 info->new_level = UnSet;
2261 info->new_layout = UnSet;
2262 info->new_chunk = info->array.chunk_size;
3f83228a 2263 info->delta_disks = 0;
b335e593 2264 }
301406c9
DW
2265 info->disk.major = 0;
2266 info->disk.minor = 0;
efb30e7f
DW
2267 if (dl) {
2268 info->disk.major = dl->major;
2269 info->disk.minor = dl->minor;
2270 }
bf5a934a 2271
b335e593
AK
2272 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2273 info->component_size =
2274 __le32_to_cpu(map_to_analyse->blocks_per_member);
139dae11
AK
2275
2276 /* check component size aligment
2277 */
2278 component_size_alligment =
2279 info->component_size % (info->array.chunk_size/512);
2280
2281 if (component_size_alligment &&
2282 (info->array.level != 1) && (info->array.level != UnSet)) {
2283 dprintf("imsm: reported component size alligned from %llu ",
2284 info->component_size);
2285 info->component_size -= component_size_alligment;
2286 dprintf("to %llu (%i).\n",
2287 info->component_size, component_size_alligment);
2288 }
2289
301406c9 2290 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2291 info->recovery_start = MaxSector;
bf5a934a 2292
d2e6d5d6 2293 info->reshape_progress = 0;
b6796ce1 2294 info->resync_start = MaxSector;
b335e593
AK
2295 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2296 dev->vol.dirty) {
301406c9 2297 info->resync_start = 0;
b6796ce1
AK
2298 }
2299 if (dev->vol.migr_state) {
1e5c6983
DW
2300 switch (migr_type(dev)) {
2301 case MIGR_REPAIR:
2302 case MIGR_INIT: {
c47b0ff6
AK
2303 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2304 dev);
1e5c6983
DW
2305 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2306
2307 info->resync_start = blocks_per_unit * units;
2308 break;
2309 }
d2e6d5d6 2310 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2311 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2312 dev);
2313 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2314 unsigned long long array_blocks;
2315 int used_disks;
d2e6d5d6 2316
befb629b
AK
2317 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2318 (units <
2319 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2320 (super->migr_rec->rec_status ==
2321 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2322 units++;
2323
d2e6d5d6 2324 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2325
d2e6d5d6
AK
2326 dprintf("IMSM: General Migration checkpoint : %llu "
2327 "(%llu) -> read reshape progress : %llu\n",
2328 units, blocks_per_unit, info->reshape_progress);
75156c46
AK
2329
2330 used_disks = imsm_num_data_members(dev, 1);
2331 if (used_disks > 0) {
2332 array_blocks = map->blocks_per_member *
2333 used_disks;
2334 /* round array size down to closest MB
2335 */
2336 info->custom_array_size = (array_blocks
2337 >> SECT_PER_MB_SHIFT)
2338 << SECT_PER_MB_SHIFT;
2339 }
d2e6d5d6 2340 }
1e5c6983
DW
2341 case MIGR_VERIFY:
2342 /* we could emulate the checkpointing of
2343 * 'sync_action=check' migrations, but for now
2344 * we just immediately complete them
2345 */
2346 case MIGR_REBUILD:
2347 /* this is handled by container_content_imsm() */
1e5c6983
DW
2348 case MIGR_STATE_CHANGE:
2349 /* FIXME handle other migrations */
2350 default:
2351 /* we are not dirty, so... */
2352 info->resync_start = MaxSector;
2353 }
b6796ce1 2354 }
301406c9
DW
2355
2356 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2357 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2358
f35f2525
N
2359 info->array.major_version = -1;
2360 info->array.minor_version = -2;
e207da2f
AW
2361 devname = devnum2devname(st->container_dev);
2362 *info->text_version = '\0';
2363 if (devname)
2364 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2365 free(devname);
a67dd8cc 2366 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2367 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2368
2369 if (dmap) {
2370 int i, j;
2371 for (i=0; i<map_disks; i++) {
2372 dmap[i] = 0;
2373 if (i < info->array.raid_disks) {
2374 struct imsm_disk *dsk;
98130f40 2375 j = get_imsm_disk_idx(dev, i, -1);
a5d85af7
N
2376 dsk = get_imsm_disk(super, j);
2377 if (dsk && (dsk->status & CONFIGURED_DISK))
2378 dmap[i] = 1;
2379 }
2380 }
2381 }
81ac8b4d 2382}
bf5a934a 2383
97b4d0e9
DW
2384static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2385static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2386
2387static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2388{
2389 struct dl *d;
2390
2391 for (d = super->missing; d; d = d->next)
2392 if (d->index == index)
2393 return &d->disk;
2394 return NULL;
2395}
2396
a5d85af7 2397static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2398{
2399 struct intel_super *super = st->sb;
4f5bc454 2400 struct imsm_disk *disk;
a5d85af7 2401 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2402 int max_enough = -1;
2403 int i;
2404 struct imsm_super *mpb;
4f5bc454 2405
bf5a934a 2406 if (super->current_vol >= 0) {
a5d85af7 2407 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2408 return;
2409 }
95eeceeb 2410 memset(info, 0, sizeof(*info));
d23fe947
DW
2411
2412 /* Set raid_disks to zero so that Assemble will always pull in valid
2413 * spares
2414 */
2415 info->array.raid_disks = 0;
cdddbdbc
DW
2416 info->array.level = LEVEL_CONTAINER;
2417 info->array.layout = 0;
2418 info->array.md_minor = -1;
c2c087e6 2419 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2420 info->array.utime = 0;
2421 info->array.chunk_size = 0;
2422
2423 info->disk.major = 0;
2424 info->disk.minor = 0;
cdddbdbc 2425 info->disk.raid_disk = -1;
c2c087e6 2426 info->reshape_active = 0;
f35f2525
N
2427 info->array.major_version = -1;
2428 info->array.minor_version = -2;
c2c087e6 2429 strcpy(info->text_version, "imsm");
a67dd8cc 2430 info->safe_mode_delay = 0;
c2c087e6
DW
2431 info->disk.number = -1;
2432 info->disk.state = 0;
c5afc314 2433 info->name[0] = 0;
921d9e16 2434 info->recovery_start = MaxSector;
c2c087e6 2435
97b4d0e9 2436 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2437 mpb = super->anchor;
97b4d0e9 2438
ab3cb6b3
N
2439 for (i = 0; i < mpb->num_raid_devs; i++) {
2440 struct imsm_dev *dev = get_imsm_dev(super, i);
2441 int failed, enough, j, missing = 0;
2442 struct imsm_map *map;
2443 __u8 state;
97b4d0e9 2444
ab3cb6b3
N
2445 failed = imsm_count_failed(super, dev);
2446 state = imsm_check_degraded(super, dev, failed);
2447 map = get_imsm_map(dev, dev->vol.migr_state);
2448
2449 /* any newly missing disks?
2450 * (catches single-degraded vs double-degraded)
2451 */
2452 for (j = 0; j < map->num_members; j++) {
98130f40 2453 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
ab3cb6b3
N
2454 __u32 idx = ord_to_idx(ord);
2455
2456 if (!(ord & IMSM_ORD_REBUILD) &&
2457 get_imsm_missing(super, idx)) {
2458 missing = 1;
2459 break;
2460 }
97b4d0e9 2461 }
ab3cb6b3
N
2462
2463 if (state == IMSM_T_STATE_FAILED)
2464 enough = -1;
2465 else if (state == IMSM_T_STATE_DEGRADED &&
2466 (state != map->map_state || missing))
2467 enough = 0;
2468 else /* we're normal, or already degraded */
2469 enough = 1;
2470
2471 /* in the missing/failed disk case check to see
2472 * if at least one array is runnable
2473 */
2474 max_enough = max(max_enough, enough);
2475 }
2476 dprintf("%s: enough: %d\n", __func__, max_enough);
2477 info->container_enough = max_enough;
97b4d0e9 2478
4a04ec6c 2479 if (super->disks) {
14e8215b
DW
2480 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2481
b9f594fe 2482 disk = &super->disks->disk;
14e8215b
DW
2483 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2484 info->component_size = reserved;
25ed7e59 2485 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2486 /* we don't change info->disk.raid_disk here because
2487 * this state will be finalized in mdmon after we have
2488 * found the 'most fresh' version of the metadata
2489 */
25ed7e59
DW
2490 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2491 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2492 }
a575e2a7
DW
2493
2494 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2495 * ->compare_super may have updated the 'num_raid_devs' field for spares
2496 */
2497 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2498 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2499 else
2500 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2501
2502 /* I don't know how to compute 'map' on imsm, so use safe default */
2503 if (map) {
2504 int i;
2505 for (i = 0; i < map_disks; i++)
2506 map[i] = 1;
2507 }
2508
cdddbdbc
DW
2509}
2510
5c4cd5da
AC
2511/* allocates memory and fills disk in mdinfo structure
2512 * for each disk in array */
2513struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2514{
2515 struct mdinfo *mddev = NULL;
2516 struct intel_super *super = st->sb;
2517 struct imsm_disk *disk;
2518 int count = 0;
2519 struct dl *dl;
2520 if (!super || !super->disks)
2521 return NULL;
2522 dl = super->disks;
2523 mddev = malloc(sizeof(*mddev));
2524 if (!mddev) {
2525 fprintf(stderr, Name ": Failed to allocate memory.\n");
2526 return NULL;
2527 }
2528 memset(mddev, 0, sizeof(*mddev));
2529 while (dl) {
2530 struct mdinfo *tmp;
2531 disk = &dl->disk;
2532 tmp = malloc(sizeof(*tmp));
2533 if (!tmp) {
2534 fprintf(stderr, Name ": Failed to allocate memory.\n");
2535 if (mddev)
2536 sysfs_free(mddev);
2537 return NULL;
2538 }
2539 memset(tmp, 0, sizeof(*tmp));
2540 if (mddev->devs)
2541 tmp->next = mddev->devs;
2542 mddev->devs = tmp;
2543 tmp->disk.number = count++;
2544 tmp->disk.major = dl->major;
2545 tmp->disk.minor = dl->minor;
2546 tmp->disk.state = is_configured(disk) ?
2547 (1 << MD_DISK_ACTIVE) : 0;
2548 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2549 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2550 tmp->disk.raid_disk = -1;
2551 dl = dl->next;
2552 }
2553 return mddev;
2554}
2555
cdddbdbc
DW
2556static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2557 char *update, char *devname, int verbose,
2558 int uuid_set, char *homehost)
2559{
f352c545
DW
2560 /* For 'assemble' and 'force' we need to return non-zero if any
2561 * change was made. For others, the return value is ignored.
2562 * Update options are:
2563 * force-one : This device looks a bit old but needs to be included,
2564 * update age info appropriately.
2565 * assemble: clear any 'faulty' flag to allow this device to
2566 * be assembled.
2567 * force-array: Array is degraded but being forced, mark it clean
2568 * if that will be needed to assemble it.
2569 *
2570 * newdev: not used ????
2571 * grow: Array has gained a new device - this is currently for
2572 * linear only
2573 * resync: mark as dirty so a resync will happen.
2574 * name: update the name - preserving the homehost
6e46bf34 2575 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2576 *
2577 * Following are not relevant for this imsm:
2578 * sparc2.2 : update from old dodgey metadata
2579 * super-minor: change the preferred_minor number
2580 * summaries: update redundant counters.
f352c545
DW
2581 * homehost: update the recorded homehost
2582 * _reshape_progress: record new reshape_progress position.
2583 */
6e46bf34
DW
2584 int rv = 1;
2585 struct intel_super *super = st->sb;
2586 struct imsm_super *mpb;
f352c545 2587
6e46bf34
DW
2588 /* we can only update container info */
2589 if (!super || super->current_vol >= 0 || !super->anchor)
2590 return 1;
2591
2592 mpb = super->anchor;
2593
2594 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1e2b2765 2595 rv = -1;
6e46bf34
DW
2596 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2597 mpb->orig_family_num = *((__u32 *) info->update_private);
2598 rv = 0;
2599 } else if (strcmp(update, "uuid") == 0) {
2600 __u32 *new_family = malloc(sizeof(*new_family));
2601
2602 /* update orig_family_number with the incoming random
2603 * data, report the new effective uuid, and store the
2604 * new orig_family_num for future updates.
2605 */
2606 if (new_family) {
2607 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2608 uuid_from_super_imsm(st, info->uuid);
2609 *new_family = mpb->orig_family_num;
2610 info->update_private = new_family;
2611 rv = 0;
2612 }
2613 } else if (strcmp(update, "assemble") == 0)
2614 rv = 0;
2615 else
1e2b2765 2616 rv = -1;
f352c545 2617
6e46bf34
DW
2618 /* successful update? recompute checksum */
2619 if (rv == 0)
2620 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
2621
2622 return rv;
cdddbdbc
DW
2623}
2624
c2c087e6 2625static size_t disks_to_mpb_size(int disks)
cdddbdbc 2626{
c2c087e6 2627 size_t size;
cdddbdbc 2628
c2c087e6
DW
2629 size = sizeof(struct imsm_super);
2630 size += (disks - 1) * sizeof(struct imsm_disk);
2631 size += 2 * sizeof(struct imsm_dev);
2632 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2633 size += (4 - 2) * sizeof(struct imsm_map);
2634 /* 4 possible disk_ord_tbl's */
2635 size += 4 * (disks - 1) * sizeof(__u32);
2636
2637 return size;
2638}
2639
2640static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2641{
2642 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2643 return 0;
2644
2645 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
2646}
2647
ba2de7ba
DW
2648static void free_devlist(struct intel_super *super)
2649{
2650 struct intel_dev *dv;
2651
2652 while (super->devlist) {
2653 dv = super->devlist->next;
2654 free(super->devlist->dev);
2655 free(super->devlist);
2656 super->devlist = dv;
2657 }
2658}
2659
2660static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2661{
2662 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2663}
2664
cdddbdbc
DW
2665static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2666{
2667 /*
2668 * return:
2669 * 0 same, or first was empty, and second was copied
2670 * 1 second had wrong number
2671 * 2 wrong uuid
2672 * 3 wrong other info
2673 */
2674 struct intel_super *first = st->sb;
2675 struct intel_super *sec = tst->sb;
2676
2677 if (!first) {
2678 st->sb = tst->sb;
2679 tst->sb = NULL;
2680 return 0;
2681 }
8603ea6f
LM
2682 /* in platform dependent environment test if the disks
2683 * use the same Intel hba
2684 */
2685 if (!check_env("IMSM_NO_PLATFORM")) {
ea2bc72b
LM
2686 if (!first->hba || !sec->hba ||
2687 (first->hba->type != sec->hba->type)) {
8603ea6f
LM
2688 fprintf(stderr,
2689 "HBAs of devices does not match %s != %s\n",
ea2bc72b
LM
2690 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2691 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
8603ea6f
LM
2692 return 3;
2693 }
2694 }
cdddbdbc 2695
d23fe947
DW
2696 /* if an anchor does not have num_raid_devs set then it is a free
2697 * floating spare
2698 */
2699 if (first->anchor->num_raid_devs > 0 &&
2700 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
2701 /* Determine if these disks might ever have been
2702 * related. Further disambiguation can only take place
2703 * in load_super_imsm_all
2704 */
2705 __u32 first_family = first->anchor->orig_family_num;
2706 __u32 sec_family = sec->anchor->orig_family_num;
2707
f796af5d
DW
2708 if (memcmp(first->anchor->sig, sec->anchor->sig,
2709 MAX_SIGNATURE_LENGTH) != 0)
2710 return 3;
2711
a2b97981
DW
2712 if (first_family == 0)
2713 first_family = first->anchor->family_num;
2714 if (sec_family == 0)
2715 sec_family = sec->anchor->family_num;
2716
2717 if (first_family != sec_family)
d23fe947 2718 return 3;
f796af5d 2719
d23fe947 2720 }
cdddbdbc 2721
f796af5d 2722
3e372e5a
DW
2723 /* if 'first' is a spare promote it to a populated mpb with sec's
2724 * family number
2725 */
2726 if (first->anchor->num_raid_devs == 0 &&
2727 sec->anchor->num_raid_devs > 0) {
78d30f94 2728 int i;
ba2de7ba
DW
2729 struct intel_dev *dv;
2730 struct imsm_dev *dev;
78d30f94
DW
2731
2732 /* we need to copy raid device info from sec if an allocation
2733 * fails here we don't associate the spare
2734 */
2735 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
2736 dv = malloc(sizeof(*dv));
2737 if (!dv)
2738 break;
2739 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2740 if (!dev) {
2741 free(dv);
2742 break;
78d30f94 2743 }
ba2de7ba
DW
2744 dv->dev = dev;
2745 dv->index = i;
2746 dv->next = first->devlist;
2747 first->devlist = dv;
78d30f94 2748 }
709743c5 2749 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
2750 /* allocation failure */
2751 free_devlist(first);
2752 fprintf(stderr, "imsm: failed to associate spare\n");
2753 return 3;
78d30f94 2754 }
3e372e5a 2755 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 2756 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 2757 first->anchor->family_num = sec->anchor->family_num;
ac6449be 2758 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
2759 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2760 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
2761 }
2762
cdddbdbc
DW
2763 return 0;
2764}
2765
0030e8d6
DW
2766static void fd2devname(int fd, char *name)
2767{
2768 struct stat st;
2769 char path[256];
33a6535d 2770 char dname[PATH_MAX];
0030e8d6
DW
2771 char *nm;
2772 int rv;
2773
2774 name[0] = '\0';
2775 if (fstat(fd, &st) != 0)
2776 return;
2777 sprintf(path, "/sys/dev/block/%d:%d",
2778 major(st.st_rdev), minor(st.st_rdev));
2779
2780 rv = readlink(path, dname, sizeof(dname));
2781 if (rv <= 0)
2782 return;
2783
2784 dname[rv] = '\0';
2785 nm = strrchr(dname, '/');
2786 nm++;
2787 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2788}
2789
cdddbdbc
DW
2790extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2791
2792static int imsm_read_serial(int fd, char *devname,
2793 __u8 serial[MAX_RAID_SERIAL_LEN])
2794{
2795 unsigned char scsi_serial[255];
cdddbdbc
DW
2796 int rv;
2797 int rsp_len;
1f24f035 2798 int len;
316e2bf4
DW
2799 char *dest;
2800 char *src;
2801 char *rsp_buf;
2802 int i;
cdddbdbc
DW
2803
2804 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 2805
f9ba0ff1
DW
2806 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2807
40ebbb9c 2808 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
2809 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2810 fd2devname(fd, (char *) serial);
0030e8d6
DW
2811 return 0;
2812 }
2813
cdddbdbc
DW
2814 if (rv != 0) {
2815 if (devname)
2816 fprintf(stderr,
2817 Name ": Failed to retrieve serial for %s\n",
2818 devname);
2819 return rv;
2820 }
2821
2822 rsp_len = scsi_serial[3];
03cd4cc8
DW
2823 if (!rsp_len) {
2824 if (devname)
2825 fprintf(stderr,
2826 Name ": Failed to retrieve serial for %s\n",
2827 devname);
2828 return 2;
2829 }
1f24f035 2830 rsp_buf = (char *) &scsi_serial[4];
5c3db629 2831
316e2bf4
DW
2832 /* trim all whitespace and non-printable characters and convert
2833 * ':' to ';'
2834 */
2835 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2836 src = &rsp_buf[i];
2837 if (*src > 0x20) {
2838 /* ':' is reserved for use in placeholder serial
2839 * numbers for missing disks
2840 */
2841 if (*src == ':')
2842 *dest++ = ';';
2843 else
2844 *dest++ = *src;
2845 }
2846 }
2847 len = dest - rsp_buf;
2848 dest = rsp_buf;
2849
2850 /* truncate leading characters */
2851 if (len > MAX_RAID_SERIAL_LEN) {
2852 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 2853 len = MAX_RAID_SERIAL_LEN;
316e2bf4 2854 }
5c3db629 2855
5c3db629 2856 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 2857 memcpy(serial, dest, len);
cdddbdbc
DW
2858
2859 return 0;
2860}
2861
1f24f035
DW
2862static int serialcmp(__u8 *s1, __u8 *s2)
2863{
2864 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2865}
2866
2867static void serialcpy(__u8 *dest, __u8 *src)
2868{
2869 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2870}
2871
1799c9e8 2872#ifndef MDASSEMBLE
54c2c1ea
DW
2873static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2874{
2875 struct dl *dl;
2876
2877 for (dl = super->disks; dl; dl = dl->next)
2878 if (serialcmp(dl->serial, serial) == 0)
2879 break;
2880
2881 return dl;
2882}
1799c9e8 2883#endif
54c2c1ea 2884
a2b97981
DW
2885static struct imsm_disk *
2886__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2887{
2888 int i;
2889
2890 for (i = 0; i < mpb->num_disks; i++) {
2891 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2892
2893 if (serialcmp(disk->serial, serial) == 0) {
2894 if (idx)
2895 *idx = i;
2896 return disk;
2897 }
2898 }
2899
2900 return NULL;
2901}
2902
cdddbdbc
DW
2903static int
2904load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2905{
a2b97981 2906 struct imsm_disk *disk;
cdddbdbc
DW
2907 struct dl *dl;
2908 struct stat stb;
cdddbdbc 2909 int rv;
a2b97981 2910 char name[40];
d23fe947
DW
2911 __u8 serial[MAX_RAID_SERIAL_LEN];
2912
2913 rv = imsm_read_serial(fd, devname, serial);
2914
2915 if (rv != 0)
2916 return 2;
2917
a2b97981 2918 dl = calloc(1, sizeof(*dl));
b9f594fe 2919 if (!dl) {
cdddbdbc
DW
2920 if (devname)
2921 fprintf(stderr,
2922 Name ": failed to allocate disk buffer for %s\n",
2923 devname);
2924 return 2;
2925 }
cdddbdbc 2926
a2b97981
DW
2927 fstat(fd, &stb);
2928 dl->major = major(stb.st_rdev);
2929 dl->minor = minor(stb.st_rdev);
2930 dl->next = super->disks;
2931 dl->fd = keep_fd ? fd : -1;
2932 assert(super->disks == NULL);
2933 super->disks = dl;
2934 serialcpy(dl->serial, serial);
2935 dl->index = -2;
2936 dl->e = NULL;
2937 fd2devname(fd, name);
2938 if (devname)
2939 dl->devname = strdup(devname);
2940 else
2941 dl->devname = strdup(name);
cdddbdbc 2942
d23fe947 2943 /* look up this disk's index in the current anchor */
a2b97981
DW
2944 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2945 if (disk) {
2946 dl->disk = *disk;
2947 /* only set index on disks that are a member of a
2948 * populated contianer, i.e. one with raid_devs
2949 */
2950 if (is_failed(&dl->disk))
3f6efecc 2951 dl->index = -2;
a2b97981
DW
2952 else if (is_spare(&dl->disk))
2953 dl->index = -1;
3f6efecc
DW
2954 }
2955
949c47a0
DW
2956 return 0;
2957}
2958
0e600426 2959#ifndef MDASSEMBLE
0c046afd
DW
2960/* When migrating map0 contains the 'destination' state while map1
2961 * contains the current state. When not migrating map0 contains the
2962 * current state. This routine assumes that map[0].map_state is set to
2963 * the current array state before being called.
2964 *
2965 * Migration is indicated by one of the following states
2966 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 2967 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 2968 * map1state=unitialized)
1484e727 2969 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 2970 * map1state=normal)
e3bba0e0 2971 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 2972 * map1state=degraded)
8e59f3d8
AK
2973 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
2974 * map1state=normal)
0c046afd 2975 */
8e59f3d8
AK
2976static void migrate(struct imsm_dev *dev, struct intel_super *super,
2977 __u8 to_state, int migr_type)
3393c6af 2978{
0c046afd 2979 struct imsm_map *dest;
3393c6af
DW
2980 struct imsm_map *src = get_imsm_map(dev, 0);
2981
0c046afd 2982 dev->vol.migr_state = 1;
1484e727 2983 set_migr_type(dev, migr_type);
f8f603f1 2984 dev->vol.curr_migr_unit = 0;
0c046afd
DW
2985 dest = get_imsm_map(dev, 1);
2986
0556e1a2 2987 /* duplicate and then set the target end state in map[0] */
3393c6af 2988 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
2989 if ((migr_type == MIGR_REBUILD) ||
2990 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
2991 __u32 ord;
2992 int i;
2993
2994 for (i = 0; i < src->num_members; i++) {
2995 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2996 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2997 }
2998 }
2999
8e59f3d8
AK
3000 if (migr_type == MIGR_GEN_MIGR)
3001 /* Clear migration record */
3002 memset(super->migr_rec, 0, sizeof(struct migr_record));
3003
0c046afd 3004 src->map_state = to_state;
949c47a0 3005}
f8f603f1
DW
3006
3007static void end_migration(struct imsm_dev *dev, __u8 map_state)
3008{
3009 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 3010 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
28bce06f 3011 int i, j;
0556e1a2
DW
3012
3013 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3014 * completed in the last migration.
3015 *
28bce06f 3016 * FIXME add support for raid-level-migration
0556e1a2
DW
3017 */
3018 for (i = 0; i < prev->num_members; i++)
28bce06f
AK
3019 for (j = 0; j < map->num_members; j++)
3020 /* during online capacity expansion
3021 * disks position can be changed if takeover is used
3022 */
3023 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3024 ord_to_idx(prev->disk_ord_tbl[i])) {
3025 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3026 break;
3027 }
f8f603f1
DW
3028
3029 dev->vol.migr_state = 0;
28bce06f 3030 dev->vol.migr_type = 0;
f8f603f1
DW
3031 dev->vol.curr_migr_unit = 0;
3032 map->map_state = map_state;
3033}
0e600426 3034#endif
949c47a0
DW
3035
3036static int parse_raid_devices(struct intel_super *super)
3037{
3038 int i;
3039 struct imsm_dev *dev_new;
4d7b1503 3040 size_t len, len_migr;
401d313b 3041 size_t max_len = 0;
4d7b1503
DW
3042 size_t space_needed = 0;
3043 struct imsm_super *mpb = super->anchor;
949c47a0
DW
3044
3045 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3046 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 3047 struct intel_dev *dv;
949c47a0 3048
4d7b1503
DW
3049 len = sizeof_imsm_dev(dev_iter, 0);
3050 len_migr = sizeof_imsm_dev(dev_iter, 1);
3051 if (len_migr > len)
3052 space_needed += len_migr - len;
3053
ba2de7ba
DW
3054 dv = malloc(sizeof(*dv));
3055 if (!dv)
3056 return 1;
401d313b
AK
3057 if (max_len < len_migr)
3058 max_len = len_migr;
3059 if (max_len > len_migr)
3060 space_needed += max_len - len_migr;
3061 dev_new = malloc(max_len);
ba2de7ba
DW
3062 if (!dev_new) {
3063 free(dv);
949c47a0 3064 return 1;
ba2de7ba 3065 }
949c47a0 3066 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
3067 dv->dev = dev_new;
3068 dv->index = i;
3069 dv->next = super->devlist;
3070 super->devlist = dv;
949c47a0 3071 }
cdddbdbc 3072
4d7b1503
DW
3073 /* ensure that super->buf is large enough when all raid devices
3074 * are migrating
3075 */
3076 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3077 void *buf;
3078
3079 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3080 if (posix_memalign(&buf, 512, len) != 0)
3081 return 1;
3082
1f45a8ad
DW
3083 memcpy(buf, super->buf, super->len);
3084 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
3085 free(super->buf);
3086 super->buf = buf;
3087 super->len = len;
3088 }
3089
cdddbdbc
DW
3090 return 0;
3091}
3092
604b746f
JD
3093/* retrieve a pointer to the bbm log which starts after all raid devices */
3094struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3095{
3096 void *ptr = NULL;
3097
3098 if (__le32_to_cpu(mpb->bbm_log_size)) {
3099 ptr = mpb;
3100 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3101 }
3102
3103 return ptr;
3104}
3105
e2f41b2c
AK
3106/*******************************************************************************
3107 * Function: check_mpb_migr_compatibility
3108 * Description: Function checks for unsupported migration features:
3109 * - migration optimization area (pba_of_lba0)
3110 * - descending reshape (ascending_migr)
3111 * Parameters:
3112 * super : imsm metadata information
3113 * Returns:
3114 * 0 : migration is compatible
3115 * -1 : migration is not compatible
3116 ******************************************************************************/
3117int check_mpb_migr_compatibility(struct intel_super *super)
3118{
3119 struct imsm_map *map0, *map1;
3120 struct migr_record *migr_rec = super->migr_rec;
3121 int i;
3122
3123 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3124 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3125
3126 if (dev_iter &&
3127 dev_iter->vol.migr_state == 1 &&
3128 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3129 /* This device is migrating */
3130 map0 = get_imsm_map(dev_iter, 0);
3131 map1 = get_imsm_map(dev_iter, 1);
3132 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3133 /* migration optimization area was used */
3134 return -1;
3135 if (migr_rec->ascending_migr == 0
3136 && migr_rec->dest_depth_per_unit > 0)
3137 /* descending reshape not supported yet */
3138 return -1;
3139 }
3140 }
3141 return 0;
3142}
3143
d23fe947 3144static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3145
cdddbdbc 3146/* load_imsm_mpb - read matrix metadata
f2f5c343 3147 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3148 */
3149static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3150{
3151 unsigned long long dsize;
cdddbdbc
DW
3152 unsigned long long sectors;
3153 struct stat;
6416d527 3154 struct imsm_super *anchor;
cdddbdbc
DW
3155 __u32 check_sum;
3156
cdddbdbc 3157 get_dev_size(fd, NULL, &dsize);
64436f06
N
3158 if (dsize < 1024) {
3159 if (devname)
3160 fprintf(stderr,
3161 Name ": %s: device to small for imsm\n",
3162 devname);
3163 return 1;
3164 }
cdddbdbc
DW
3165
3166 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3167 if (devname)
2e062e82
AK
3168 fprintf(stderr, Name
3169 ": Cannot seek to anchor block on %s: %s\n",
cdddbdbc
DW
3170 devname, strerror(errno));
3171 return 1;
3172 }
3173
949c47a0 3174 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
3175 if (devname)
3176 fprintf(stderr,
3177 Name ": Failed to allocate imsm anchor buffer"
3178 " on %s\n", devname);
3179 return 1;
3180 }
949c47a0 3181 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
3182 if (devname)
3183 fprintf(stderr,
3184 Name ": Cannot read anchor block on %s: %s\n",
3185 devname, strerror(errno));
6416d527 3186 free(anchor);
cdddbdbc
DW
3187 return 1;
3188 }
3189
6416d527 3190 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
3191 if (devname)
3192 fprintf(stderr,
3193 Name ": no IMSM anchor on %s\n", devname);
6416d527 3194 free(anchor);
cdddbdbc
DW
3195 return 2;
3196 }
3197
d23fe947 3198 __free_imsm(super, 0);
f2f5c343
LM
3199 /* reload capability and hba */
3200
3201 /* capability and hba must be updated with new super allocation */
d424212e 3202 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3203 super->len = ROUND_UP(anchor->mpb_size, 512);
3204 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
3205 if (devname)
3206 fprintf(stderr,
3207 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 3208 super->len);
6416d527 3209 free(anchor);
cdddbdbc
DW
3210 return 2;
3211 }
949c47a0 3212 memcpy(super->buf, anchor, 512);
cdddbdbc 3213
6416d527
NB
3214 sectors = mpb_sectors(anchor) - 1;
3215 free(anchor);
8e59f3d8
AK
3216
3217 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3218 fprintf(stderr, Name
3219 ": %s could not allocate migr_rec buffer\n", __func__);
3220 free(super->buf);
3221 return 2;
3222 }
3223
949c47a0 3224 if (!sectors) {
ecf45690
DW
3225 check_sum = __gen_imsm_checksum(super->anchor);
3226 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3227 if (devname)
3228 fprintf(stderr,
3229 Name ": IMSM checksum %x != %x on %s\n",
3230 check_sum,
3231 __le32_to_cpu(super->anchor->check_sum),
3232 devname);
3233 return 2;
3234 }
3235
a2b97981 3236 return 0;
949c47a0 3237 }
cdddbdbc
DW
3238
3239 /* read the extended mpb */
3240 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3241 if (devname)
3242 fprintf(stderr,
3243 Name ": Cannot seek to extended mpb on %s: %s\n",
3244 devname, strerror(errno));
3245 return 1;
3246 }
3247
f21e18ca 3248 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
3249 if (devname)
3250 fprintf(stderr,
3251 Name ": Cannot read extended mpb on %s: %s\n",
3252 devname, strerror(errno));
3253 return 2;
3254 }
3255
949c47a0
DW
3256 check_sum = __gen_imsm_checksum(super->anchor);
3257 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
3258 if (devname)
3259 fprintf(stderr,
3260 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 3261 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 3262 devname);
db575f3b 3263 return 3;
cdddbdbc
DW
3264 }
3265
604b746f
JD
3266 /* FIXME the BBM log is disk specific so we cannot use this global
3267 * buffer for all disks. Ok for now since we only look at the global
3268 * bbm_log_size parameter to gate assembly
3269 */
3270 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3271
a2b97981
DW
3272 return 0;
3273}
3274
8e59f3d8
AK
3275static int read_imsm_migr_rec(int fd, struct intel_super *super);
3276
a2b97981
DW
3277static int
3278load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3279{
3280 int err;
3281
3282 err = load_imsm_mpb(fd, super, devname);
3283 if (err)
3284 return err;
3285 err = load_imsm_disk(fd, super, devname, keep_fd);
3286 if (err)
3287 return err;
3288 err = parse_raid_devices(super);
4d7b1503 3289
a2b97981 3290 return err;
cdddbdbc
DW
3291}
3292
ae6aad82
DW
3293static void __free_imsm_disk(struct dl *d)
3294{
3295 if (d->fd >= 0)
3296 close(d->fd);
3297 if (d->devname)
3298 free(d->devname);
0dcecb2e
DW
3299 if (d->e)
3300 free(d->e);
ae6aad82
DW
3301 free(d);
3302
3303}
1a64be56 3304
cdddbdbc
DW
3305static void free_imsm_disks(struct intel_super *super)
3306{
47ee5a45 3307 struct dl *d;
cdddbdbc 3308
47ee5a45
DW
3309 while (super->disks) {
3310 d = super->disks;
cdddbdbc 3311 super->disks = d->next;
ae6aad82 3312 __free_imsm_disk(d);
cdddbdbc 3313 }
cb82edca
AK
3314 while (super->disk_mgmt_list) {
3315 d = super->disk_mgmt_list;
3316 super->disk_mgmt_list = d->next;
3317 __free_imsm_disk(d);
3318 }
47ee5a45
DW
3319 while (super->missing) {
3320 d = super->missing;
3321 super->missing = d->next;
3322 __free_imsm_disk(d);
3323 }
3324
cdddbdbc
DW
3325}
3326
9ca2c81c 3327/* free all the pieces hanging off of a super pointer */
d23fe947 3328static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3329{
88654014
LM
3330 struct intel_hba *elem, *next;
3331
9ca2c81c 3332 if (super->buf) {
949c47a0 3333 free(super->buf);
9ca2c81c
DW
3334 super->buf = NULL;
3335 }
f2f5c343
LM
3336 /* unlink capability description */
3337 super->orom = NULL;
8e59f3d8
AK
3338 if (super->migr_rec_buf) {
3339 free(super->migr_rec_buf);
3340 super->migr_rec_buf = NULL;
3341 }
d23fe947
DW
3342 if (free_disks)
3343 free_imsm_disks(super);
ba2de7ba 3344 free_devlist(super);
88654014
LM
3345 elem = super->hba;
3346 while (elem) {
3347 if (elem->path)
3348 free((void *)elem->path);
3349 next = elem->next;
3350 free(elem);
3351 elem = next;
88c32bb1 3352 }
88654014 3353 super->hba = NULL;
cdddbdbc
DW
3354}
3355
9ca2c81c
DW
3356static void free_imsm(struct intel_super *super)
3357{
d23fe947 3358 __free_imsm(super, 1);
9ca2c81c
DW
3359 free(super);
3360}
cdddbdbc
DW
3361
3362static void free_super_imsm(struct supertype *st)
3363{
3364 struct intel_super *super = st->sb;
3365
3366 if (!super)
3367 return;
3368
3369 free_imsm(super);
3370 st->sb = NULL;
3371}
3372
49133e57 3373static struct intel_super *alloc_super(void)
c2c087e6
DW
3374{
3375 struct intel_super *super = malloc(sizeof(*super));
3376
3377 if (super) {
3378 memset(super, 0, sizeof(*super));
bf5a934a 3379 super->current_vol = -1;
0dcecb2e 3380 super->create_offset = ~((__u32 ) 0);
c2c087e6 3381 }
c2c087e6
DW
3382 return super;
3383}
3384
f0f5a016
LM
3385/*
3386 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3387 */
d424212e 3388static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3389{
3390 struct sys_dev *hba_name;
3391 int rv = 0;
3392
3393 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3394 super->orom = NULL;
f0f5a016
LM
3395 super->hba = NULL;
3396 return 0;
3397 }
3398 hba_name = find_disk_attached_hba(fd, NULL);
3399 if (!hba_name) {
d424212e 3400 if (devname)
f0f5a016
LM
3401 fprintf(stderr,
3402 Name ": %s is not attached to Intel(R) RAID controller.\n",
d424212e 3403 devname);
f0f5a016
LM
3404 return 1;
3405 }
3406 rv = attach_hba_to_super(super, hba_name);
3407 if (rv == 2) {
d424212e
N
3408 if (devname) {
3409 struct intel_hba *hba = super->hba;
f0f5a016 3410
f0f5a016
LM
3411 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3412 "controller (%s),\n"
3413 " but the container is assigned to Intel(R) "
3414 "%s RAID controller (",
d424212e 3415 devname,
f0f5a016
LM
3416 hba_name->path,
3417 hba_name->pci_id ? : "Err!",
3418 get_sys_dev_type(hba_name->type));
3419
f0f5a016
LM
3420 while (hba) {
3421 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3422 if (hba->next)
3423 fprintf(stderr, ", ");
3424 hba = hba->next;
3425 }
3426
3427 fprintf(stderr, ").\n"
3428 " Mixing devices attached to different controllers "
3429 "is not allowed.\n");
3430 }
3431 free_sys_dev(&hba_name);
3432 return 2;
3433 }
f2f5c343 3434 super->orom = find_imsm_capability(hba_name->type);
f0f5a016 3435 free_sys_dev(&hba_name);
f2f5c343
LM
3436 if (!super->orom)
3437 return 3;
f0f5a016
LM
3438 return 0;
3439}
3440
cdddbdbc 3441#ifndef MDASSEMBLE
47ee5a45
DW
3442/* find_missing - helper routine for load_super_imsm_all that identifies
3443 * disks that have disappeared from the system. This routine relies on
3444 * the mpb being uptodate, which it is at load time.
3445 */
3446static int find_missing(struct intel_super *super)
3447{
3448 int i;
3449 struct imsm_super *mpb = super->anchor;
3450 struct dl *dl;
3451 struct imsm_disk *disk;
47ee5a45
DW
3452
3453 for (i = 0; i < mpb->num_disks; i++) {
3454 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3455 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3456 if (dl)
3457 continue;
47ee5a45
DW
3458
3459 dl = malloc(sizeof(*dl));
3460 if (!dl)
3461 return 1;
3462 dl->major = 0;
3463 dl->minor = 0;
3464 dl->fd = -1;
3465 dl->devname = strdup("missing");
3466 dl->index = i;
3467 serialcpy(dl->serial, disk->serial);
3468 dl->disk = *disk;
689c9bf3 3469 dl->e = NULL;
47ee5a45
DW
3470 dl->next = super->missing;
3471 super->missing = dl;
3472 }
3473
3474 return 0;
3475}
3476
a2b97981
DW
3477static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3478{
3479 struct intel_disk *idisk = disk_list;
3480
3481 while (idisk) {
3482 if (serialcmp(idisk->disk.serial, serial) == 0)
3483 break;
3484 idisk = idisk->next;
3485 }
3486
3487 return idisk;
3488}
3489
3490static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3491 struct intel_super *super,
3492 struct intel_disk **disk_list)
3493{
3494 struct imsm_disk *d = &super->disks->disk;
3495 struct imsm_super *mpb = super->anchor;
3496 int i, j;
3497
3498 for (i = 0; i < tbl_size; i++) {
3499 struct imsm_super *tbl_mpb = table[i]->anchor;
3500 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3501
3502 if (tbl_mpb->family_num == mpb->family_num) {
3503 if (tbl_mpb->check_sum == mpb->check_sum) {
3504 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3505 __func__, super->disks->major,
3506 super->disks->minor,
3507 table[i]->disks->major,
3508 table[i]->disks->minor);
3509 break;
3510 }
3511
3512 if (((is_configured(d) && !is_configured(tbl_d)) ||
3513 is_configured(d) == is_configured(tbl_d)) &&
3514 tbl_mpb->generation_num < mpb->generation_num) {
3515 /* current version of the mpb is a
3516 * better candidate than the one in
3517 * super_table, but copy over "cross
3518 * generational" status
3519 */
3520 struct intel_disk *idisk;
3521
3522 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3523 __func__, super->disks->major,
3524 super->disks->minor,
3525 table[i]->disks->major,
3526 table[i]->disks->minor);
3527
3528 idisk = disk_list_get(tbl_d->serial, *disk_list);
3529 if (idisk && is_failed(&idisk->disk))
3530 tbl_d->status |= FAILED_DISK;
3531 break;
3532 } else {
3533 struct intel_disk *idisk;
3534 struct imsm_disk *disk;
3535
3536 /* tbl_mpb is more up to date, but copy
3537 * over cross generational status before
3538 * returning
3539 */
3540 disk = __serial_to_disk(d->serial, mpb, NULL);
3541 if (disk && is_failed(disk))
3542 d->status |= FAILED_DISK;
3543
3544 idisk = disk_list_get(d->serial, *disk_list);
3545 if (idisk) {
3546 idisk->owner = i;
3547 if (disk && is_configured(disk))
3548 idisk->disk.status |= CONFIGURED_DISK;
3549 }
3550
3551 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3552 __func__, super->disks->major,
3553 super->disks->minor,
3554 table[i]->disks->major,
3555 table[i]->disks->minor);
3556
3557 return tbl_size;
3558 }
3559 }
3560 }
3561
3562 if (i >= tbl_size)
3563 table[tbl_size++] = super;
3564 else
3565 table[i] = super;
3566
3567 /* update/extend the merged list of imsm_disk records */
3568 for (j = 0; j < mpb->num_disks; j++) {
3569 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3570 struct intel_disk *idisk;
3571
3572 idisk = disk_list_get(disk->serial, *disk_list);
3573 if (idisk) {
3574 idisk->disk.status |= disk->status;
3575 if (is_configured(&idisk->disk) ||
3576 is_failed(&idisk->disk))
3577 idisk->disk.status &= ~(SPARE_DISK);
3578 } else {
3579 idisk = calloc(1, sizeof(*idisk));
3580 if (!idisk)
3581 return -1;
3582 idisk->owner = IMSM_UNKNOWN_OWNER;
3583 idisk->disk = *disk;
3584 idisk->next = *disk_list;
3585 *disk_list = idisk;
3586 }
3587
3588 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3589 idisk->owner = i;
3590 }
3591
3592 return tbl_size;
3593}
3594
3595static struct intel_super *
3596validate_members(struct intel_super *super, struct intel_disk *disk_list,
3597 const int owner)
3598{
3599 struct imsm_super *mpb = super->anchor;
3600 int ok_count = 0;
3601 int i;
3602
3603 for (i = 0; i < mpb->num_disks; i++) {
3604 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3605 struct intel_disk *idisk;
3606
3607 idisk = disk_list_get(disk->serial, disk_list);
3608 if (idisk) {
3609 if (idisk->owner == owner ||
3610 idisk->owner == IMSM_UNKNOWN_OWNER)
3611 ok_count++;
3612 else
3613 dprintf("%s: '%.16s' owner %d != %d\n",
3614 __func__, disk->serial, idisk->owner,
3615 owner);
3616 } else {
3617 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3618 __func__, __le32_to_cpu(mpb->family_num), i,
3619 disk->serial);
3620 break;
3621 }
3622 }
3623
3624 if (ok_count == mpb->num_disks)
3625 return super;
3626 return NULL;
3627}
3628
3629static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3630{
3631 struct intel_super *s;
3632
3633 for (s = super_list; s; s = s->next) {
3634 if (family_num != s->anchor->family_num)
3635 continue;
3636 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3637 __le32_to_cpu(family_num), s->disks->devname);
3638 }
3639}
3640
3641static struct intel_super *
3642imsm_thunderdome(struct intel_super **super_list, int len)
3643{
3644 struct intel_super *super_table[len];
3645 struct intel_disk *disk_list = NULL;
3646 struct intel_super *champion, *spare;
3647 struct intel_super *s, **del;
3648 int tbl_size = 0;
3649 int conflict;
3650 int i;
3651
3652 memset(super_table, 0, sizeof(super_table));
3653 for (s = *super_list; s; s = s->next)
3654 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3655
3656 for (i = 0; i < tbl_size; i++) {
3657 struct imsm_disk *d;
3658 struct intel_disk *idisk;
3659 struct imsm_super *mpb = super_table[i]->anchor;
3660
3661 s = super_table[i];
3662 d = &s->disks->disk;
3663
3664 /* 'd' must appear in merged disk list for its
3665 * configuration to be valid
3666 */
3667 idisk = disk_list_get(d->serial, disk_list);
3668 if (idisk && idisk->owner == i)
3669 s = validate_members(s, disk_list, i);
3670 else
3671 s = NULL;
3672
3673 if (!s)
3674 dprintf("%s: marking family: %#x from %d:%d offline\n",
3675 __func__, mpb->family_num,
3676 super_table[i]->disks->major,
3677 super_table[i]->disks->minor);
3678 super_table[i] = s;
3679 }
3680
3681 /* This is where the mdadm implementation differs from the Windows
3682 * driver which has no strict concept of a container. We can only
3683 * assemble one family from a container, so when returning a prodigal
3684 * array member to this system the code will not be able to disambiguate
3685 * the container contents that should be assembled ("foreign" versus
3686 * "local"). It requires user intervention to set the orig_family_num
3687 * to a new value to establish a new container. The Windows driver in
3688 * this situation fixes up the volume name in place and manages the
3689 * foreign array as an independent entity.
3690 */
3691 s = NULL;
3692 spare = NULL;
3693 conflict = 0;
3694 for (i = 0; i < tbl_size; i++) {
3695 struct intel_super *tbl_ent = super_table[i];
3696 int is_spare = 0;
3697
3698 if (!tbl_ent)
3699 continue;
3700
3701 if (tbl_ent->anchor->num_raid_devs == 0) {
3702 spare = tbl_ent;
3703 is_spare = 1;
3704 }
3705
3706 if (s && !is_spare) {
3707 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3708 conflict++;
3709 } else if (!s && !is_spare)
3710 s = tbl_ent;
3711 }
3712
3713 if (!s)
3714 s = spare;
3715 if (!s) {
3716 champion = NULL;
3717 goto out;
3718 }
3719 champion = s;
3720
3721 if (conflict)
3722 fprintf(stderr, "Chose family %#x on '%s', "
3723 "assemble conflicts to new container with '--update=uuid'\n",
3724 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3725
3726 /* collect all dl's onto 'champion', and update them to
3727 * champion's version of the status
3728 */
3729 for (s = *super_list; s; s = s->next) {
3730 struct imsm_super *mpb = champion->anchor;
3731 struct dl *dl = s->disks;
3732
3733 if (s == champion)
3734 continue;
3735
3736 for (i = 0; i < mpb->num_disks; i++) {
3737 struct imsm_disk *disk;
3738
3739 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3740 if (disk) {
3741 dl->disk = *disk;
3742 /* only set index on disks that are a member of
3743 * a populated contianer, i.e. one with
3744 * raid_devs
3745 */
3746 if (is_failed(&dl->disk))
3747 dl->index = -2;
3748 else if (is_spare(&dl->disk))
3749 dl->index = -1;
3750 break;
3751 }
3752 }
3753
3754 if (i >= mpb->num_disks) {
3755 struct intel_disk *idisk;
3756
3757 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 3758 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
3759 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3760 dl->index = -1;
3761 else {
3762 dl->index = -2;
3763 continue;
3764 }
3765 }
3766
3767 dl->next = champion->disks;
3768 champion->disks = dl;
3769 s->disks = NULL;
3770 }
3771
3772 /* delete 'champion' from super_list */
3773 for (del = super_list; *del; ) {
3774 if (*del == champion) {
3775 *del = (*del)->next;
3776 break;
3777 } else
3778 del = &(*del)->next;
3779 }
3780 champion->next = NULL;
3781
3782 out:
3783 while (disk_list) {
3784 struct intel_disk *idisk = disk_list;
3785
3786 disk_list = disk_list->next;
3787 free(idisk);
3788 }
3789
3790 return champion;
3791}
3792
cdddbdbc 3793static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
e1902a7b 3794 char *devname)
cdddbdbc
DW
3795{
3796 struct mdinfo *sra;
a2b97981
DW
3797 struct intel_super *super_list = NULL;
3798 struct intel_super *super = NULL;
db575f3b 3799 int devnum = fd2devnum(fd);
a2b97981 3800 struct mdinfo *sd;
db575f3b 3801 int retry;
a2b97981
DW
3802 int err = 0;
3803 int i;
dab4a513
DW
3804
3805 /* check if 'fd' an opened container */
b526e52d 3806 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
cdddbdbc
DW
3807 if (!sra)
3808 return 1;
3809
3810 if (sra->array.major_version != -1 ||
3811 sra->array.minor_version != -2 ||
1602d52c
AW
3812 strcmp(sra->text_version, "imsm") != 0) {
3813 err = 1;
3814 goto error;
3815 }
a2b97981
DW
3816 /* load all mpbs */
3817 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
49133e57 3818 struct intel_super *s = alloc_super();
7a6ecd55 3819 char nm[32];
a2b97981 3820 int dfd;
f2f5c343 3821 int rv;
a2b97981
DW
3822
3823 err = 1;
3824 if (!s)
3825 goto error;
3826 s->next = super_list;
3827 super_list = s;
cdddbdbc 3828
a2b97981 3829 err = 2;
cdddbdbc 3830 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
e1902a7b 3831 dfd = dev_open(nm, O_RDWR);
a2b97981
DW
3832 if (dfd < 0)
3833 goto error;
3834
d424212e 3835 rv = find_intel_hba_capability(dfd, s, devname);
f2f5c343
LM
3836 /* no orom/efi or non-intel hba of the disk */
3837 if (rv != 0)
3838 goto error;
3839
e1902a7b 3840 err = load_and_parse_mpb(dfd, s, NULL, 1);
db575f3b
DW
3841
3842 /* retry the load if we might have raced against mdmon */
a2b97981 3843 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
3844 for (retry = 0; retry < 3; retry++) {
3845 usleep(3000);
e1902a7b 3846 err = load_and_parse_mpb(dfd, s, NULL, 1);
a2b97981 3847 if (err != 3)
db575f3b
DW
3848 break;
3849 }
a2b97981
DW
3850 if (err)
3851 goto error;
cdddbdbc
DW
3852 }
3853
a2b97981
DW
3854 /* all mpbs enter, maybe one leaves */
3855 super = imsm_thunderdome(&super_list, i);
3856 if (!super) {
3857 err = 1;
3858 goto error;
cdddbdbc
DW
3859 }
3860
47ee5a45
DW
3861 if (find_missing(super) != 0) {
3862 free_imsm(super);
a2b97981
DW
3863 err = 2;
3864 goto error;
47ee5a45 3865 }
8e59f3d8
AK
3866
3867 /* load migration record */
3868 err = load_imsm_migr_rec(super, NULL);
3869 if (err) {
3870 err = 4;
3871 goto error;
3872 }
e2f41b2c
AK
3873
3874 /* Check migration compatibility */
3875 if (check_mpb_migr_compatibility(super) != 0) {
3876 fprintf(stderr, Name ": Unsupported migration detected");
3877 if (devname)
3878 fprintf(stderr, " on %s\n", devname);
3879 else
3880 fprintf(stderr, " (IMSM).\n");
3881
3882 err = 5;
3883 goto error;
3884 }
3885
a2b97981
DW
3886 err = 0;
3887
3888 error:
3889 while (super_list) {
3890 struct intel_super *s = super_list;
3891
3892 super_list = super_list->next;
3893 free_imsm(s);
3894 }
1602d52c 3895 sysfs_free(sra);
a2b97981
DW
3896
3897 if (err)
3898 return err;
f7e7067b 3899
cdddbdbc 3900 *sbp = super;
db575f3b 3901 st->container_dev = devnum;
a2b97981 3902 if (err == 0 && st->ss == NULL) {
bf5a934a 3903 st->ss = &super_imsm;
cdddbdbc
DW
3904 st->minor_version = 0;
3905 st->max_devs = IMSM_MAX_DEVICES;
3906 }
cdddbdbc
DW
3907 return 0;
3908}
2b959fbf
N
3909
3910static int load_container_imsm(struct supertype *st, int fd, char *devname)
3911{
3912 return load_super_imsm_all(st, fd, &st->sb, devname);
3913}
cdddbdbc
DW
3914#endif
3915
3916static int load_super_imsm(struct supertype *st, int fd, char *devname)
3917{
3918 struct intel_super *super;
3919 int rv;
3920
691c6ee1
N
3921 if (test_partition(fd))
3922 /* IMSM not allowed on partitions */
3923 return 1;
3924
37424f13
DW
3925 free_super_imsm(st);
3926
49133e57 3927 super = alloc_super();
cdddbdbc
DW
3928 if (!super) {
3929 fprintf(stderr,
3930 Name ": malloc of %zu failed.\n",
3931 sizeof(*super));
3932 return 1;
3933 }
ea2bc72b
LM
3934 /* Load hba and capabilities if they exist.
3935 * But do not preclude loading metadata in case capabilities or hba are
3936 * non-compliant and ignore_hw_compat is set.
3937 */
d424212e 3938 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 3939 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 3940 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343
LM
3941 if (devname)
3942 fprintf(stderr,
3943 Name ": No OROM/EFI properties for %s\n", devname);
3944 free_imsm(super);
3945 return 2;
3946 }
a2b97981 3947 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
3948
3949 if (rv) {
3950 if (devname)
3951 fprintf(stderr,
3952 Name ": Failed to load all information "
3953 "sections on %s\n", devname);
3954 free_imsm(super);
3955 return rv;
3956 }
3957
3958 st->sb = super;
3959 if (st->ss == NULL) {
3960 st->ss = &super_imsm;
3961 st->minor_version = 0;
3962 st->max_devs = IMSM_MAX_DEVICES;
3963 }
8e59f3d8
AK
3964
3965 /* load migration record */
2e062e82
AK
3966 if (load_imsm_migr_rec(super, NULL) == 0) {
3967 /* Check for unsupported migration features */
3968 if (check_mpb_migr_compatibility(super) != 0) {
3969 fprintf(stderr,
3970 Name ": Unsupported migration detected");
3971 if (devname)
3972 fprintf(stderr, " on %s\n", devname);
3973 else
3974 fprintf(stderr, " (IMSM).\n");
3975 return 3;
3976 }
e2f41b2c
AK
3977 }
3978
cdddbdbc
DW
3979 return 0;
3980}
3981
ef6ffade
DW
3982static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3983{
3984 if (info->level == 1)
3985 return 128;
3986 return info->chunk_size >> 9;
3987}
3988
ff596308 3989static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
3990{
3991 __u32 num_stripes;
3992
3993 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 3994 num_stripes /= num_domains;
ef6ffade
DW
3995
3996 return num_stripes;
3997}
3998
fcfd9599
DW
3999static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4000{
4025c288
DW
4001 if (info->level == 1)
4002 return info->size * 2;
4003 else
4004 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
4005}
4006
4d1313e9
DW
4007static void imsm_update_version_info(struct intel_super *super)
4008{
4009 /* update the version and attributes */
4010 struct imsm_super *mpb = super->anchor;
4011 char *version;
4012 struct imsm_dev *dev;
4013 struct imsm_map *map;
4014 int i;
4015
4016 for (i = 0; i < mpb->num_raid_devs; i++) {
4017 dev = get_imsm_dev(super, i);
4018 map = get_imsm_map(dev, 0);
4019 if (__le32_to_cpu(dev->size_high) > 0)
4020 mpb->attributes |= MPB_ATTRIB_2TB;
4021
4022 /* FIXME detect when an array spans a port multiplier */
4023 #if 0
4024 mpb->attributes |= MPB_ATTRIB_PM;
4025 #endif
4026
4027 if (mpb->num_raid_devs > 1 ||
4028 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4029 version = MPB_VERSION_ATTRIBS;
4030 switch (get_imsm_raid_level(map)) {
4031 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4032 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4033 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4034 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4035 }
4036 } else {
4037 if (map->num_members >= 5)
4038 version = MPB_VERSION_5OR6_DISK_ARRAY;
4039 else if (dev->status == DEV_CLONE_N_GO)
4040 version = MPB_VERSION_CNG;
4041 else if (get_imsm_raid_level(map) == 5)
4042 version = MPB_VERSION_RAID5;
4043 else if (map->num_members >= 3)
4044 version = MPB_VERSION_3OR4_DISK_ARRAY;
4045 else if (get_imsm_raid_level(map) == 1)
4046 version = MPB_VERSION_RAID1;
4047 else
4048 version = MPB_VERSION_RAID0;
4049 }
4050 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4051 }
4052}
4053
aa534678
DW
4054static int check_name(struct intel_super *super, char *name, int quiet)
4055{
4056 struct imsm_super *mpb = super->anchor;
4057 char *reason = NULL;
4058 int i;
4059
4060 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4061 reason = "must be 16 characters or less";
4062
4063 for (i = 0; i < mpb->num_raid_devs; i++) {
4064 struct imsm_dev *dev = get_imsm_dev(super, i);
4065
4066 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4067 reason = "already exists";
4068 break;
4069 }
4070 }
4071
4072 if (reason && !quiet)
4073 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4074
4075 return !reason;
4076}
4077
8b353278
DW
4078static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4079 unsigned long long size, char *name,
4080 char *homehost, int *uuid)
cdddbdbc 4081{
c2c087e6
DW
4082 /* We are creating a volume inside a pre-existing container.
4083 * so st->sb is already set.
4084 */
4085 struct intel_super *super = st->sb;
949c47a0 4086 struct imsm_super *mpb = super->anchor;
ba2de7ba 4087 struct intel_dev *dv;
c2c087e6
DW
4088 struct imsm_dev *dev;
4089 struct imsm_vol *vol;
4090 struct imsm_map *map;
4091 int idx = mpb->num_raid_devs;
4092 int i;
4093 unsigned long long array_blocks;
2c092cad 4094 size_t size_old, size_new;
ff596308 4095 __u32 num_data_stripes;
cdddbdbc 4096
88c32bb1 4097 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 4098 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 4099 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
4100 return 0;
4101 }
4102
2c092cad
DW
4103 /* ensure the mpb is large enough for the new data */
4104 size_old = __le32_to_cpu(mpb->mpb_size);
4105 size_new = disks_to_mpb_size(info->nr_disks);
4106 if (size_new > size_old) {
4107 void *mpb_new;
4108 size_t size_round = ROUND_UP(size_new, 512);
4109
4110 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4111 fprintf(stderr, Name": could not allocate new mpb\n");
4112 return 0;
4113 }
8e59f3d8
AK
4114 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4115 fprintf(stderr, Name
4116 ": %s could not allocate migr_rec buffer\n",
4117 __func__);
4118 free(super->buf);
4119 free(super);
4120 return 0;
4121 }
2c092cad
DW
4122 memcpy(mpb_new, mpb, size_old);
4123 free(mpb);
4124 mpb = mpb_new;
949c47a0 4125 super->anchor = mpb_new;
2c092cad
DW
4126 mpb->mpb_size = __cpu_to_le32(size_new);
4127 memset(mpb_new + size_old, 0, size_round - size_old);
4128 }
bf5a934a 4129 super->current_vol = idx;
d23fe947
DW
4130 /* when creating the first raid device in this container set num_disks
4131 * to zero, i.e. delete this spare and add raid member devices in
4132 * add_to_super_imsm_volume()
4133 */
4134 if (super->current_vol == 0)
4135 mpb->num_disks = 0;
5a038140 4136
aa534678
DW
4137 if (!check_name(super, name, 0))
4138 return 0;
ba2de7ba
DW
4139 dv = malloc(sizeof(*dv));
4140 if (!dv) {
4141 fprintf(stderr, Name ": failed to allocate device list entry\n");
4142 return 0;
4143 }
1a2487c2 4144 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
949c47a0 4145 if (!dev) {
ba2de7ba 4146 free(dv);
949c47a0
DW
4147 fprintf(stderr, Name": could not allocate raid device\n");
4148 return 0;
4149 }
1a2487c2 4150
c2c087e6 4151 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
4152 if (info->level == 1)
4153 array_blocks = info_to_blocks_per_member(info);
4154 else
4155 array_blocks = calc_array_size(info->level, info->raid_disks,
4156 info->layout, info->chunk_size,
4157 info->size*2);
979d38be
DW
4158 /* round array size down to closest MB */
4159 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4160
c2c087e6
DW
4161 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4162 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4163 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4164 vol = &dev->vol;
4165 vol->migr_state = 0;
1484e727 4166 set_migr_type(dev, MIGR_INIT);
c2c087e6 4167 vol->dirty = 0;
f8f603f1 4168 vol->curr_migr_unit = 0;
a965f303 4169 map = get_imsm_map(dev, 0);
0dcecb2e 4170 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 4171 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 4172 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4173 map->failed_disk_num = ~0;
c2c087e6
DW
4174 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
4175 IMSM_T_STATE_NORMAL;
252d23c0 4176 map->ddf = 1;
ef6ffade
DW
4177
4178 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4179 free(dev);
4180 free(dv);
ef6ffade
DW
4181 fprintf(stderr, Name": imsm does not support more than 2 disks"
4182 "in a raid1 volume\n");
4183 return 0;
4184 }
81062a36
DW
4185
4186 map->raid_level = info->level;
4d1313e9 4187 if (info->level == 10) {
c2c087e6 4188 map->raid_level = 1;
4d1313e9 4189 map->num_domains = info->raid_disks / 2;
81062a36
DW
4190 } else if (info->level == 1)
4191 map->num_domains = info->raid_disks;
4192 else
ff596308 4193 map->num_domains = 1;
81062a36 4194
ff596308
DW
4195 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4196 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 4197
c2c087e6
DW
4198 map->num_members = info->raid_disks;
4199 for (i = 0; i < map->num_members; i++) {
4200 /* initialized in add_to_super */
4eb26970 4201 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4202 }
949c47a0 4203 mpb->num_raid_devs++;
ba2de7ba
DW
4204
4205 dv->dev = dev;
4206 dv->index = super->current_vol;
4207 dv->next = super->devlist;
4208 super->devlist = dv;
c2c087e6 4209
4d1313e9
DW
4210 imsm_update_version_info(super);
4211
c2c087e6 4212 return 1;
cdddbdbc
DW
4213}
4214
bf5a934a
DW
4215static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4216 unsigned long long size, char *name,
4217 char *homehost, int *uuid)
4218{
4219 /* This is primarily called by Create when creating a new array.
4220 * We will then get add_to_super called for each component, and then
4221 * write_init_super called to write it out to each device.
4222 * For IMSM, Create can create on fresh devices or on a pre-existing
4223 * array.
4224 * To create on a pre-existing array a different method will be called.
4225 * This one is just for fresh drives.
4226 */
4227 struct intel_super *super;
4228 struct imsm_super *mpb;
4229 size_t mpb_size;
4d1313e9 4230 char *version;
bf5a934a 4231
bf5a934a 4232 if (st->sb)
e683ca88
DW
4233 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4234
4235 if (info)
4236 mpb_size = disks_to_mpb_size(info->nr_disks);
4237 else
4238 mpb_size = 512;
bf5a934a 4239
49133e57 4240 super = alloc_super();
e683ca88 4241 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4242 free(super);
e683ca88
DW
4243 super = NULL;
4244 }
4245 if (!super) {
4246 fprintf(stderr, Name
4247 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
4248 return 0;
4249 }
8e59f3d8
AK
4250 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4251 fprintf(stderr, Name
4252 ": %s could not allocate migr_rec buffer\n", __func__);
4253 free(super->buf);
4254 free(super);
4255 return 0;
4256 }
e683ca88 4257 memset(super->buf, 0, mpb_size);
ef649044 4258 mpb = super->buf;
e683ca88
DW
4259 mpb->mpb_size = __cpu_to_le32(mpb_size);
4260 st->sb = super;
4261
4262 if (info == NULL) {
4263 /* zeroing superblock */
4264 return 0;
4265 }
bf5a934a 4266
4d1313e9
DW
4267 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4268
4269 version = (char *) mpb->sig;
4270 strcpy(version, MPB_SIGNATURE);
4271 version += strlen(MPB_SIGNATURE);
4272 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4273
bf5a934a
DW
4274 return 1;
4275}
4276
0e600426 4277#ifndef MDASSEMBLE
f20c3968 4278static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4279 int fd, char *devname)
4280{
4281 struct intel_super *super = st->sb;
d23fe947 4282 struct imsm_super *mpb = super->anchor;
bf5a934a
DW
4283 struct dl *dl;
4284 struct imsm_dev *dev;
4285 struct imsm_map *map;
4eb26970 4286 int slot;
bf5a934a 4287
949c47a0 4288 dev = get_imsm_dev(super, super->current_vol);
a965f303 4289 map = get_imsm_map(dev, 0);
bf5a934a 4290
208933a7
N
4291 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4292 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4293 devname);
4294 return 1;
4295 }
4296
efb30e7f
DW
4297 if (fd == -1) {
4298 /* we're doing autolayout so grab the pre-marked (in
4299 * validate_geometry) raid_disk
4300 */
4301 for (dl = super->disks; dl; dl = dl->next)
4302 if (dl->raiddisk == dk->raid_disk)
4303 break;
4304 } else {
4305 for (dl = super->disks; dl ; dl = dl->next)
4306 if (dl->major == dk->major &&
4307 dl->minor == dk->minor)
4308 break;
4309 }
d23fe947 4310
208933a7
N
4311 if (!dl) {
4312 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 4313 return 1;
208933a7 4314 }
bf5a934a 4315
d23fe947
DW
4316 /* add a pristine spare to the metadata */
4317 if (dl->index < 0) {
4318 dl->index = super->anchor->num_disks;
4319 super->anchor->num_disks++;
4320 }
4eb26970
DW
4321 /* Check the device has not already been added */
4322 slot = get_imsm_disk_slot(map, dl->index);
4323 if (slot >= 0 &&
98130f40 4324 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4eb26970
DW
4325 fprintf(stderr, Name ": %s has been included in this array twice\n",
4326 devname);
4327 return 1;
4328 }
be73972f 4329 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
ee5aad5a 4330 dl->disk.status = CONFIGURED_DISK;
d23fe947
DW
4331
4332 /* if we are creating the first raid device update the family number */
4333 if (super->current_vol == 0) {
4334 __u32 sum;
4335 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4336 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
4337
791b666a
AW
4338 if (!_dev || !_disk) {
4339 fprintf(stderr, Name ": BUG mpb setup error\n");
4340 return 1;
4341 }
d23fe947
DW
4342 *_dev = *dev;
4343 *_disk = dl->disk;
148acb7b
DW
4344 sum = random32();
4345 sum += __gen_imsm_checksum(mpb);
d23fe947 4346 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4347 mpb->orig_family_num = mpb->family_num;
d23fe947 4348 }
f20c3968
DW
4349
4350 return 0;
bf5a934a
DW
4351}
4352
88654014 4353
f20c3968 4354static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 4355 int fd, char *devname)
cdddbdbc 4356{
c2c087e6 4357 struct intel_super *super = st->sb;
c2c087e6
DW
4358 struct dl *dd;
4359 unsigned long long size;
f2f27e63 4360 __u32 id;
c2c087e6
DW
4361 int rv;
4362 struct stat stb;
4363
88654014
LM
4364 /* If we are on an RAID enabled platform check that the disk is
4365 * attached to the raid controller.
4366 * We do not need to test disks attachment for container based additions,
4367 * they shall be already tested when container was created/assembled.
88c32bb1 4368 */
d424212e 4369 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4370 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
4371 if (rv != 0) {
4372 dprintf("capability: %p fd: %d ret: %d\n",
4373 super->orom, fd, rv);
4374 return 1;
88c32bb1
DW
4375 }
4376
f20c3968
DW
4377 if (super->current_vol >= 0)
4378 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 4379
c2c087e6
DW
4380 fstat(fd, &stb);
4381 dd = malloc(sizeof(*dd));
b9f594fe 4382 if (!dd) {
c2c087e6
DW
4383 fprintf(stderr,
4384 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 4385 return 1;
c2c087e6
DW
4386 }
4387 memset(dd, 0, sizeof(*dd));
4388 dd->major = major(stb.st_rdev);
4389 dd->minor = minor(stb.st_rdev);
b9f594fe 4390 dd->index = -1;
c2c087e6 4391 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 4392 dd->fd = fd;
689c9bf3 4393 dd->e = NULL;
1a64be56 4394 dd->action = DISK_ADD;
c2c087e6 4395 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 4396 if (rv) {
c2c087e6 4397 fprintf(stderr,
0030e8d6 4398 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 4399 free(dd);
0030e8d6 4400 abort();
c2c087e6
DW
4401 }
4402
c2c087e6
DW
4403 get_dev_size(fd, NULL, &size);
4404 size /= 512;
1f24f035 4405 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 4406 dd->disk.total_blocks = __cpu_to_le32(size);
ee5aad5a 4407 dd->disk.status = SPARE_DISK;
c2c087e6 4408 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 4409 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 4410 else
b9f594fe 4411 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
4412
4413 if (st->update_tail) {
1a64be56
LM
4414 dd->next = super->disk_mgmt_list;
4415 super->disk_mgmt_list = dd;
43dad3d6
DW
4416 } else {
4417 dd->next = super->disks;
4418 super->disks = dd;
ceaf0ee1 4419 super->updates_pending++;
43dad3d6 4420 }
f20c3968
DW
4421
4422 return 0;
cdddbdbc
DW
4423}
4424
1a64be56
LM
4425
4426static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4427{
4428 struct intel_super *super = st->sb;
4429 struct dl *dd;
4430
4431 /* remove from super works only in mdmon - for communication
4432 * manager - monitor. Check if communication memory buffer
4433 * is prepared.
4434 */
4435 if (!st->update_tail) {
4436 fprintf(stderr,
4437 Name ": %s shall be used in mdmon context only"
4438 "(line %d).\n", __func__, __LINE__);
4439 return 1;
4440 }
4441 dd = malloc(sizeof(*dd));
4442 if (!dd) {
4443 fprintf(stderr,
4444 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4445 return 1;
4446 }
4447 memset(dd, 0, sizeof(*dd));
4448 dd->major = dk->major;
4449 dd->minor = dk->minor;
4450 dd->index = -1;
4451 dd->fd = -1;
4452 dd->disk.status = SPARE_DISK;
4453 dd->action = DISK_REMOVE;
4454
4455 dd->next = super->disk_mgmt_list;
4456 super->disk_mgmt_list = dd;
4457
4458
4459 return 0;
4460}
4461
f796af5d
DW
4462static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4463
4464static union {
4465 char buf[512];
4466 struct imsm_super anchor;
4467} spare_record __attribute__ ((aligned(512)));
c2c087e6 4468
d23fe947
DW
4469/* spare records have their own family number and do not have any defined raid
4470 * devices
4471 */
4472static int write_super_imsm_spares(struct intel_super *super, int doclose)
4473{
d23fe947 4474 struct imsm_super *mpb = super->anchor;
f796af5d 4475 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
4476 __u32 sum;
4477 struct dl *d;
4478
f796af5d
DW
4479 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4480 spare->generation_num = __cpu_to_le32(1UL),
4481 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4482 spare->num_disks = 1,
4483 spare->num_raid_devs = 0,
4484 spare->cache_size = mpb->cache_size,
4485 spare->pwr_cycle_count = __cpu_to_le32(1),
4486
4487 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4488 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
4489
4490 for (d = super->disks; d; d = d->next) {
8796fdc4 4491 if (d->index != -1)
d23fe947
DW
4492 continue;
4493
f796af5d
DW
4494 spare->disk[0] = d->disk;
4495 sum = __gen_imsm_checksum(spare);
4496 spare->family_num = __cpu_to_le32(sum);
4497 spare->orig_family_num = 0;
4498 sum = __gen_imsm_checksum(spare);
4499 spare->check_sum = __cpu_to_le32(sum);
d23fe947 4500
f796af5d 4501 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
4502 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4503 __func__, d->major, d->minor, strerror(errno));
e74255d9 4504 return 1;
d23fe947
DW
4505 }
4506 if (doclose) {
4507 close(d->fd);
4508 d->fd = -1;
4509 }
4510 }
4511
e74255d9 4512 return 0;
d23fe947
DW
4513}
4514
146c6260
AK
4515static int is_gen_migration(struct imsm_dev *dev);
4516
36988a3d 4517static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 4518{
36988a3d 4519 struct intel_super *super = st->sb;
949c47a0 4520 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4521 struct dl *d;
4522 __u32 generation;
4523 __u32 sum;
d23fe947 4524 int spares = 0;
949c47a0 4525 int i;
a48ac0a8 4526 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 4527 int num_disks = 0;
146c6260 4528 int clear_migration_record = 1;
cdddbdbc 4529
c2c087e6
DW
4530 /* 'generation' is incremented everytime the metadata is written */
4531 generation = __le32_to_cpu(mpb->generation_num);
4532 generation++;
4533 mpb->generation_num = __cpu_to_le32(generation);
4534
148acb7b
DW
4535 /* fix up cases where previous mdadm releases failed to set
4536 * orig_family_num
4537 */
4538 if (mpb->orig_family_num == 0)
4539 mpb->orig_family_num = mpb->family_num;
4540
d23fe947 4541 for (d = super->disks; d; d = d->next) {
8796fdc4 4542 if (d->index == -1)
d23fe947 4543 spares++;
36988a3d 4544 else {
d23fe947 4545 mpb->disk[d->index] = d->disk;
36988a3d
AK
4546 num_disks++;
4547 }
d23fe947 4548 }
36988a3d 4549 for (d = super->missing; d; d = d->next) {
47ee5a45 4550 mpb->disk[d->index] = d->disk;
36988a3d
AK
4551 num_disks++;
4552 }
4553 mpb->num_disks = num_disks;
4554 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 4555
949c47a0
DW
4556 for (i = 0; i < mpb->num_raid_devs; i++) {
4557 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
4558 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4559 if (dev && dev2) {
4560 imsm_copy_dev(dev, dev2);
4561 mpb_size += sizeof_imsm_dev(dev, 0);
4562 }
146c6260
AK
4563 if (is_gen_migration(dev2))
4564 clear_migration_record = 0;
949c47a0 4565 }
a48ac0a8
DW
4566 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4567 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 4568
c2c087e6 4569 /* recalculate checksum */
949c47a0 4570 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
4571 mpb->check_sum = __cpu_to_le32(sum);
4572
146c6260
AK
4573 if (clear_migration_record)
4574 memset(super->migr_rec_buf, 0, 512);
4575
d23fe947 4576 /* write the mpb for disks that compose raid devices */
c2c087e6 4577 for (d = super->disks; d ; d = d->next) {
d23fe947
DW
4578 if (d->index < 0)
4579 continue;
f796af5d 4580 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
4581 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4582 __func__, d->major, d->minor, strerror(errno));
146c6260
AK
4583 if (clear_migration_record) {
4584 unsigned long long dsize;
4585
4586 get_dev_size(d->fd, NULL, &dsize);
4587 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4588 write(d->fd, super->migr_rec_buf, 512);
4589 }
4590 }
c2c087e6
DW
4591 if (doclose) {
4592 close(d->fd);
4593 d->fd = -1;
4594 }
4595 }
4596
d23fe947
DW
4597 if (spares)
4598 return write_super_imsm_spares(super, doclose);
4599
e74255d9 4600 return 0;
c2c087e6
DW
4601}
4602
0e600426 4603
9b1fb677 4604static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
4605{
4606 size_t len;
4607 struct imsm_update_create_array *u;
4608 struct intel_super *super = st->sb;
9b1fb677 4609 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
4610 struct imsm_map *map = get_imsm_map(dev, 0);
4611 struct disk_info *inf;
4612 struct imsm_disk *disk;
4613 int i;
43dad3d6 4614
54c2c1ea
DW
4615 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4616 sizeof(*inf) * map->num_members;
43dad3d6
DW
4617 u = malloc(len);
4618 if (!u) {
4619 fprintf(stderr, "%s: failed to allocate update buffer\n",
4620 __func__);
4621 return 1;
4622 }
4623
4624 u->type = update_create_array;
9b1fb677 4625 u->dev_idx = dev_idx;
43dad3d6 4626 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
4627 inf = get_disk_info(u);
4628 for (i = 0; i < map->num_members; i++) {
98130f40 4629 int idx = get_imsm_disk_idx(dev, i, -1);
9b1fb677 4630
54c2c1ea
DW
4631 disk = get_imsm_disk(super, idx);
4632 serialcpy(inf[i].serial, disk->serial);
4633 }
43dad3d6
DW
4634 append_metadata_update(st, u, len);
4635
4636 return 0;
4637}
4638
1a64be56 4639static int mgmt_disk(struct supertype *st)
43dad3d6
DW
4640{
4641 struct intel_super *super = st->sb;
4642 size_t len;
1a64be56 4643 struct imsm_update_add_remove_disk *u;
43dad3d6 4644
1a64be56 4645 if (!super->disk_mgmt_list)
43dad3d6
DW
4646 return 0;
4647
4648 len = sizeof(*u);
4649 u = malloc(len);
4650 if (!u) {
4651 fprintf(stderr, "%s: failed to allocate update buffer\n",
4652 __func__);
4653 return 1;
4654 }
4655
1a64be56 4656 u->type = update_add_remove_disk;
43dad3d6
DW
4657 append_metadata_update(st, u, len);
4658
4659 return 0;
4660}
4661
c2c087e6
DW
4662static int write_init_super_imsm(struct supertype *st)
4663{
9b1fb677
DW
4664 struct intel_super *super = st->sb;
4665 int current_vol = super->current_vol;
4666
4667 /* we are done with current_vol reset it to point st at the container */
4668 super->current_vol = -1;
4669
8273f55e 4670 if (st->update_tail) {
43dad3d6
DW
4671 /* queue the recently created array / added disk
4672 * as a metadata update */
43dad3d6 4673 int rv;
8273f55e 4674
43dad3d6 4675 /* determine if we are creating a volume or adding a disk */
9b1fb677 4676 if (current_vol < 0) {
1a64be56
LM
4677 /* in the mgmt (add/remove) disk case we are running
4678 * in mdmon context, so don't close fd's
43dad3d6 4679 */
1a64be56 4680 return mgmt_disk(st);
43dad3d6 4681 } else
9b1fb677 4682 rv = create_array(st, current_vol);
8273f55e 4683
43dad3d6 4684 return rv;
d682f344
N
4685 } else {
4686 struct dl *d;
4687 for (d = super->disks; d; d = d->next)
4688 Kill(d->devname, NULL, 0, 1, 1);
36988a3d 4689 return write_super_imsm(st, 1);
d682f344 4690 }
cdddbdbc 4691}
0e600426 4692#endif
cdddbdbc 4693
e683ca88 4694static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 4695{
e683ca88
DW
4696 struct intel_super *super = st->sb;
4697 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 4698
e683ca88 4699 if (!mpb)
ad97895e
DW
4700 return 1;
4701
1799c9e8 4702#ifndef MDASSEMBLE
e683ca88 4703 return store_imsm_mpb(fd, mpb);
1799c9e8
N
4704#else
4705 return 1;
4706#endif
cdddbdbc
DW
4707}
4708
0e600426
N
4709static int imsm_bbm_log_size(struct imsm_super *mpb)
4710{
4711 return __le32_to_cpu(mpb->bbm_log_size);
4712}
4713
4714#ifndef MDASSEMBLE
cdddbdbc
DW
4715static int validate_geometry_imsm_container(struct supertype *st, int level,
4716 int layout, int raiddisks, int chunk,
c2c087e6 4717 unsigned long long size, char *dev,
2c514b71
NB
4718 unsigned long long *freesize,
4719 int verbose)
cdddbdbc 4720{
c2c087e6
DW
4721 int fd;
4722 unsigned long long ldsize;
f2f5c343
LM
4723 struct intel_super *super=NULL;
4724 int rv = 0;
cdddbdbc 4725
c2c087e6
DW
4726 if (level != LEVEL_CONTAINER)
4727 return 0;
4728 if (!dev)
4729 return 1;
4730
4731 fd = open(dev, O_RDONLY|O_EXCL, 0);
4732 if (fd < 0) {
2c514b71
NB
4733 if (verbose)
4734 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4735 dev, strerror(errno));
c2c087e6
DW
4736 return 0;
4737 }
4738 if (!get_dev_size(fd, dev, &ldsize)) {
4739 close(fd);
4740 return 0;
4741 }
f2f5c343
LM
4742
4743 /* capabilities retrieve could be possible
4744 * note that there is no fd for the disks in array.
4745 */
4746 super = alloc_super();
4747 if (!super) {
4748 fprintf(stderr,
4749 Name ": malloc of %zu failed.\n",
4750 sizeof(*super));
4751 close(fd);
4752 return 0;
4753 }
4754
d424212e 4755 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
f2f5c343
LM
4756 if (rv != 0) {
4757#if DEBUG
4758 char str[256];
4759 fd2devname(fd, str);
4760 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4761 fd, str, super->orom, rv, raiddisks);
4762#endif
4763 /* no orom/efi or non-intel hba of the disk */
4764 close(fd);
4765 free_imsm(super);
4766 return 0;
4767 }
c2c087e6 4768 close(fd);
f2f5c343
LM
4769 if (super->orom && raiddisks > super->orom->tds) {
4770 if (verbose)
4771 fprintf(stderr, Name ": %d exceeds maximum number of"
4772 " platform supported disks: %d\n",
4773 raiddisks, super->orom->tds);
4774
4775 free_imsm(super);
4776 return 0;
4777 }
c2c087e6
DW
4778
4779 *freesize = avail_size_imsm(st, ldsize >> 9);
f2f5c343 4780 free_imsm(super);
c2c087e6
DW
4781
4782 return 1;
cdddbdbc
DW
4783}
4784
0dcecb2e
DW
4785static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4786{
4787 const unsigned long long base_start = e[*idx].start;
4788 unsigned long long end = base_start + e[*idx].size;
4789 int i;
4790
4791 if (base_start == end)
4792 return 0;
4793
4794 *idx = *idx + 1;
4795 for (i = *idx; i < num_extents; i++) {
4796 /* extend overlapping extents */
4797 if (e[i].start >= base_start &&
4798 e[i].start <= end) {
4799 if (e[i].size == 0)
4800 return 0;
4801 if (e[i].start + e[i].size > end)
4802 end = e[i].start + e[i].size;
4803 } else if (e[i].start > end) {
4804 *idx = i;
4805 break;
4806 }
4807 }
4808
4809 return end - base_start;
4810}
4811
4812static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4813{
4814 /* build a composite disk with all known extents and generate a new
4815 * 'maxsize' given the "all disks in an array must share a common start
4816 * offset" constraint
4817 */
4818 struct extent *e = calloc(sum_extents, sizeof(*e));
4819 struct dl *dl;
4820 int i, j;
4821 int start_extent;
4822 unsigned long long pos;
b9d77223 4823 unsigned long long start = 0;
0dcecb2e
DW
4824 unsigned long long maxsize;
4825 unsigned long reserve;
4826
4827 if (!e)
a7dd165b 4828 return 0;
0dcecb2e
DW
4829
4830 /* coalesce and sort all extents. also, check to see if we need to
4831 * reserve space between member arrays
4832 */
4833 j = 0;
4834 for (dl = super->disks; dl; dl = dl->next) {
4835 if (!dl->e)
4836 continue;
4837 for (i = 0; i < dl->extent_cnt; i++)
4838 e[j++] = dl->e[i];
4839 }
4840 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4841
4842 /* merge extents */
4843 i = 0;
4844 j = 0;
4845 while (i < sum_extents) {
4846 e[j].start = e[i].start;
4847 e[j].size = find_size(e, &i, sum_extents);
4848 j++;
4849 if (e[j-1].size == 0)
4850 break;
4851 }
4852
4853 pos = 0;
4854 maxsize = 0;
4855 start_extent = 0;
4856 i = 0;
4857 do {
4858 unsigned long long esize;
4859
4860 esize = e[i].start - pos;
4861 if (esize >= maxsize) {
4862 maxsize = esize;
4863 start = pos;
4864 start_extent = i;
4865 }
4866 pos = e[i].start + e[i].size;
4867 i++;
4868 } while (e[i-1].size);
4869 free(e);
4870
a7dd165b
DW
4871 if (maxsize == 0)
4872 return 0;
4873
4874 /* FIXME assumes volume at offset 0 is the first volume in a
4875 * container
4876 */
0dcecb2e
DW
4877 if (start_extent > 0)
4878 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
4879 else
4880 reserve = 0;
4881
4882 if (maxsize < reserve)
a7dd165b 4883 return 0;
0dcecb2e
DW
4884
4885 super->create_offset = ~((__u32) 0);
4886 if (start + reserve > super->create_offset)
a7dd165b 4887 return 0; /* start overflows create_offset */
0dcecb2e
DW
4888 super->create_offset = start + reserve;
4889
4890 return maxsize - reserve;
4891}
4892
88c32bb1
DW
4893static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
4894{
4895 if (level < 0 || level == 6 || level == 4)
4896 return 0;
4897
4898 /* if we have an orom prevent invalid raid levels */
4899 if (orom)
4900 switch (level) {
4901 case 0: return imsm_orom_has_raid0(orom);
4902 case 1:
4903 if (raiddisks > 2)
4904 return imsm_orom_has_raid1e(orom);
1c556e92
DW
4905 return imsm_orom_has_raid1(orom) && raiddisks == 2;
4906 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
4907 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
4908 }
4909 else
4910 return 1; /* not on an Intel RAID platform so anything goes */
4911
4912 return 0;
4913}
4914
73408129 4915
35f81cbb 4916#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
73408129
LM
4917/*
4918 * validate volume parameters with OROM/EFI capabilities
4919 */
6592ce37
DW
4920static int
4921validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
c21e737b 4922 int raiddisks, int *chunk, int verbose)
6592ce37 4923{
73408129
LM
4924#if DEBUG
4925 verbose = 1;
4926#endif
4927 /* validate container capabilities */
4928 if (super->orom && raiddisks > super->orom->tds) {
4929 if (verbose)
4930 fprintf(stderr, Name ": %d exceeds maximum number of"
4931 " platform supported disks: %d\n",
4932 raiddisks, super->orom->tds);
4933 return 0;
4934 }
4935
4936 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
4937 if (super->orom && (!is_raid_level_supported(super->orom, level,
4938 raiddisks))) {
6592ce37
DW
4939 pr_vrb(": platform does not support raid%d with %d disk%s\n",
4940 level, raiddisks, raiddisks > 1 ? "s" : "");
4941 return 0;
4942 }
c21e737b
CA
4943 if (super->orom && level != 1) {
4944 if (chunk && (*chunk == 0 || *chunk == UnSet))
4945 *chunk = imsm_orom_default_chunk(super->orom);
4946 else if (chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
4947 pr_vrb(": platform does not support a chunk size of: "
4948 "%d\n", *chunk);
4949 return 0;
4950 }
6592ce37
DW
4951 }
4952 if (layout != imsm_level_to_layout(level)) {
4953 if (level == 5)
4954 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
4955 else if (level == 10)
4956 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
4957 else
4958 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
4959 layout, level);
4960 return 0;
4961 }
6592ce37
DW
4962 return 1;
4963}
4964
c2c087e6
DW
4965/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
4966 * FIX ME add ahci details
4967 */
8b353278 4968static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 4969 int layout, int raiddisks, int *chunk,
c2c087e6 4970 unsigned long long size, char *dev,
2c514b71
NB
4971 unsigned long long *freesize,
4972 int verbose)
cdddbdbc 4973{
c2c087e6
DW
4974 struct stat stb;
4975 struct intel_super *super = st->sb;
a20d2ba5 4976 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4977 struct dl *dl;
4978 unsigned long long pos = 0;
4979 unsigned long long maxsize;
4980 struct extent *e;
4981 int i;
cdddbdbc 4982
88c32bb1
DW
4983 /* We must have the container info already read in. */
4984 if (!super)
c2c087e6
DW
4985 return 0;
4986
d54559f0
LM
4987 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
4988 fprintf(stderr, Name ": RAID gemetry validation failed. "
4989 "Cannot proceed with the action(s).\n");
c2c087e6 4990 return 0;
d54559f0 4991 }
c2c087e6
DW
4992 if (!dev) {
4993 /* General test: make sure there is space for
2da8544a
DW
4994 * 'raiddisks' device extents of size 'size' at a given
4995 * offset
c2c087e6 4996 */
e46273eb 4997 unsigned long long minsize = size;
b7528a20 4998 unsigned long long start_offset = MaxSector;
c2c087e6
DW
4999 int dcnt = 0;
5000 if (minsize == 0)
5001 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5002 for (dl = super->disks; dl ; dl = dl->next) {
5003 int found = 0;
5004
bf5a934a 5005 pos = 0;
c2c087e6
DW
5006 i = 0;
5007 e = get_extents(super, dl);
5008 if (!e) continue;
5009 do {
5010 unsigned long long esize;
5011 esize = e[i].start - pos;
5012 if (esize >= minsize)
5013 found = 1;
b7528a20 5014 if (found && start_offset == MaxSector) {
2da8544a
DW
5015 start_offset = pos;
5016 break;
5017 } else if (found && pos != start_offset) {
5018 found = 0;
5019 break;
5020 }
c2c087e6
DW
5021 pos = e[i].start + e[i].size;
5022 i++;
5023 } while (e[i-1].size);
5024 if (found)
5025 dcnt++;
5026 free(e);
5027 }
5028 if (dcnt < raiddisks) {
2c514b71
NB
5029 if (verbose)
5030 fprintf(stderr, Name ": imsm: Not enough "
5031 "devices with space for this array "
5032 "(%d < %d)\n",
5033 dcnt, raiddisks);
c2c087e6
DW
5034 return 0;
5035 }
5036 return 1;
5037 }
0dcecb2e 5038
c2c087e6
DW
5039 /* This device must be a member of the set */
5040 if (stat(dev, &stb) < 0)
5041 return 0;
5042 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5043 return 0;
5044 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
5045 if (dl->major == (int)major(stb.st_rdev) &&
5046 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
5047 break;
5048 }
5049 if (!dl) {
2c514b71
NB
5050 if (verbose)
5051 fprintf(stderr, Name ": %s is not in the "
5052 "same imsm set\n", dev);
c2c087e6 5053 return 0;
a20d2ba5
DW
5054 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5055 /* If a volume is present then the current creation attempt
5056 * cannot incorporate new spares because the orom may not
5057 * understand this configuration (all member disks must be
5058 * members of each array in the container).
5059 */
5060 fprintf(stderr, Name ": %s is a spare and a volume"
5061 " is already defined for this container\n", dev);
5062 fprintf(stderr, Name ": The option-rom requires all member"
5063 " disks to be a member of all volumes\n");
5064 return 0;
c2c087e6 5065 }
0dcecb2e
DW
5066
5067 /* retrieve the largest free space block */
c2c087e6
DW
5068 e = get_extents(super, dl);
5069 maxsize = 0;
5070 i = 0;
0dcecb2e
DW
5071 if (e) {
5072 do {
5073 unsigned long long esize;
5074
5075 esize = e[i].start - pos;
5076 if (esize >= maxsize)
5077 maxsize = esize;
5078 pos = e[i].start + e[i].size;
5079 i++;
5080 } while (e[i-1].size);
5081 dl->e = e;
5082 dl->extent_cnt = i;
5083 } else {
5084 if (verbose)
5085 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5086 dev);
5087 return 0;
5088 }
5089 if (maxsize < size) {
5090 if (verbose)
5091 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5092 dev, maxsize, size);
5093 return 0;
5094 }
5095
5096 /* count total number of extents for merge */
5097 i = 0;
5098 for (dl = super->disks; dl; dl = dl->next)
5099 if (dl->e)
5100 i += dl->extent_cnt;
5101
5102 maxsize = merge_extents(super, i);
a7dd165b 5103 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
5104 if (verbose)
5105 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5106 maxsize, size);
5107 return 0;
0dcecb2e
DW
5108 }
5109
c2c087e6
DW
5110 *freesize = maxsize;
5111
5112 return 1;
cdddbdbc
DW
5113}
5114
efb30e7f
DW
5115static int reserve_space(struct supertype *st, int raiddisks,
5116 unsigned long long size, int chunk,
5117 unsigned long long *freesize)
5118{
5119 struct intel_super *super = st->sb;
5120 struct imsm_super *mpb = super->anchor;
5121 struct dl *dl;
5122 int i;
5123 int extent_cnt;
5124 struct extent *e;
5125 unsigned long long maxsize;
5126 unsigned long long minsize;
5127 int cnt;
5128 int used;
5129
5130 /* find the largest common start free region of the possible disks */
5131 used = 0;
5132 extent_cnt = 0;
5133 cnt = 0;
5134 for (dl = super->disks; dl; dl = dl->next) {
5135 dl->raiddisk = -1;
5136
5137 if (dl->index >= 0)
5138 used++;
5139
5140 /* don't activate new spares if we are orom constrained
5141 * and there is already a volume active in the container
5142 */
5143 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5144 continue;
5145
5146 e = get_extents(super, dl);
5147 if (!e)
5148 continue;
5149 for (i = 1; e[i-1].size; i++)
5150 ;
5151 dl->e = e;
5152 dl->extent_cnt = i;
5153 extent_cnt += i;
5154 cnt++;
5155 }
5156
5157 maxsize = merge_extents(super, extent_cnt);
5158 minsize = size;
5159 if (size == 0)
612e59d8
CA
5160 /* chunk is in K */
5161 minsize = chunk * 2;
efb30e7f
DW
5162
5163 if (cnt < raiddisks ||
5164 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
5165 maxsize < minsize ||
5166 maxsize == 0) {
efb30e7f
DW
5167 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5168 return 0; /* No enough free spaces large enough */
5169 }
5170
5171 if (size == 0) {
5172 size = maxsize;
5173 if (chunk) {
612e59d8
CA
5174 size /= 2 * chunk;
5175 size *= 2 * chunk;
efb30e7f
DW
5176 }
5177 }
5178
5179 cnt = 0;
5180 for (dl = super->disks; dl; dl = dl->next)
5181 if (dl->e)
5182 dl->raiddisk = cnt++;
5183
5184 *freesize = size;
5185
5186 return 1;
5187}
5188
bf5a934a 5189static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 5190 int raiddisks, int *chunk, unsigned long long size,
bf5a934a
DW
5191 char *dev, unsigned long long *freesize,
5192 int verbose)
5193{
5194 int fd, cfd;
5195 struct mdinfo *sra;
20cbe8d2 5196 int is_member = 0;
bf5a934a 5197
d54559f0
LM
5198 /* load capability
5199 * if given unused devices create a container
bf5a934a
DW
5200 * if given given devices in a container create a member volume
5201 */
5202 if (level == LEVEL_CONTAINER) {
5203 /* Must be a fresh device to add to a container */
5204 return validate_geometry_imsm_container(st, level, layout,
c21e737b
CA
5205 raiddisks,
5206 chunk?*chunk:0, size,
bf5a934a
DW
5207 dev, freesize,
5208 verbose);
5209 }
5210
8592f29d
N
5211 if (!dev) {
5212 if (st->sb && freesize) {
efb30e7f
DW
5213 /* we are being asked to automatically layout a
5214 * new volume based on the current contents of
5215 * the container. If the the parameters can be
5216 * satisfied reserve_space will record the disks,
5217 * start offset, and size of the volume to be
5218 * created. add_to_super and getinfo_super
5219 * detect when autolayout is in progress.
5220 */
6592ce37
DW
5221 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5222 raiddisks, chunk,
5223 verbose))
5224 return 0;
c21e737b
CA
5225 return reserve_space(st, raiddisks, size,
5226 chunk?*chunk:0, freesize);
8592f29d
N
5227 }
5228 return 1;
5229 }
bf5a934a
DW
5230 if (st->sb) {
5231 /* creating in a given container */
5232 return validate_geometry_imsm_volume(st, level, layout,
5233 raiddisks, chunk, size,
5234 dev, freesize, verbose);
5235 }
5236
bf5a934a
DW
5237 /* This device needs to be a device in an 'imsm' container */
5238 fd = open(dev, O_RDONLY|O_EXCL, 0);
5239 if (fd >= 0) {
5240 if (verbose)
5241 fprintf(stderr,
5242 Name ": Cannot create this array on device %s\n",
5243 dev);
5244 close(fd);
5245 return 0;
5246 }
5247 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5248 if (verbose)
5249 fprintf(stderr, Name ": Cannot open %s: %s\n",
5250 dev, strerror(errno));
5251 return 0;
5252 }
5253 /* Well, it is in use by someone, maybe an 'imsm' container. */
5254 cfd = open_container(fd);
20cbe8d2 5255 close(fd);
bf5a934a 5256 if (cfd < 0) {
bf5a934a
DW
5257 if (verbose)
5258 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5259 dev);
5260 return 0;
5261 }
5262 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 5263 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
5264 strcmp(sra->text_version, "imsm") == 0)
5265 is_member = 1;
5266 sysfs_free(sra);
5267 if (is_member) {
bf5a934a
DW
5268 /* This is a member of a imsm container. Load the container
5269 * and try to create a volume
5270 */
5271 struct intel_super *super;
5272
e1902a7b 5273 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
bf5a934a
DW
5274 st->sb = super;
5275 st->container_dev = fd2devnum(cfd);
5276 close(cfd);
5277 return validate_geometry_imsm_volume(st, level, layout,
5278 raiddisks, chunk,
5279 size, dev,
5280 freesize, verbose);
5281 }
20cbe8d2 5282 }
bf5a934a 5283
20cbe8d2
AW
5284 if (verbose)
5285 fprintf(stderr, Name ": failed container membership check\n");
5286
5287 close(cfd);
5288 return 0;
bf5a934a 5289}
0bd16cf2 5290
30f58b22 5291static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
5292{
5293 struct intel_super *super = st->sb;
5294
30f58b22
DW
5295 if (level && *level == UnSet)
5296 *level = LEVEL_CONTAINER;
5297
5298 if (level && layout && *layout == UnSet)
5299 *layout = imsm_level_to_layout(*level);
0bd16cf2 5300
1d54f286
N
5301 if (chunk && (*chunk == UnSet || *chunk == 0) &&
5302 super && super->orom)
30f58b22 5303 *chunk = imsm_orom_default_chunk(super->orom);
0bd16cf2
DJ
5304}
5305
33414a01
DW
5306static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5307
5308static int kill_subarray_imsm(struct supertype *st)
5309{
5310 /* remove the subarray currently referenced by ->current_vol */
5311 __u8 i;
5312 struct intel_dev **dp;
5313 struct intel_super *super = st->sb;
5314 __u8 current_vol = super->current_vol;
5315 struct imsm_super *mpb = super->anchor;
5316
5317 if (super->current_vol < 0)
5318 return 2;
5319 super->current_vol = -1; /* invalidate subarray cursor */
5320
5321 /* block deletions that would change the uuid of active subarrays
5322 *
5323 * FIXME when immutable ids are available, but note that we'll
5324 * also need to fixup the invalidated/active subarray indexes in
5325 * mdstat
5326 */
5327 for (i = 0; i < mpb->num_raid_devs; i++) {
5328 char subarray[4];
5329
5330 if (i < current_vol)
5331 continue;
5332 sprintf(subarray, "%u", i);
5333 if (is_subarray_active(subarray, st->devname)) {
5334 fprintf(stderr,
5335 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5336 current_vol, i);
5337
5338 return 2;
5339 }
5340 }
5341
5342 if (st->update_tail) {
5343 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5344
5345 if (!u)
5346 return 2;
5347 u->type = update_kill_array;
5348 u->dev_idx = current_vol;
5349 append_metadata_update(st, u, sizeof(*u));
5350
5351 return 0;
5352 }
5353
5354 for (dp = &super->devlist; *dp;)
5355 if ((*dp)->index == current_vol) {
5356 *dp = (*dp)->next;
5357 } else {
5358 handle_missing(super, (*dp)->dev);
5359 if ((*dp)->index > current_vol)
5360 (*dp)->index--;
5361 dp = &(*dp)->next;
5362 }
5363
5364 /* no more raid devices, all active components are now spares,
5365 * but of course failed are still failed
5366 */
5367 if (--mpb->num_raid_devs == 0) {
5368 struct dl *d;
5369
5370 for (d = super->disks; d; d = d->next)
5371 if (d->index > -2) {
5372 d->index = -1;
5373 d->disk.status = SPARE_DISK;
5374 }
5375 }
5376
5377 super->updates_pending++;
5378
5379 return 0;
5380}
aa534678 5381
a951a4f7 5382static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 5383 char *update, struct mddev_ident *ident)
aa534678
DW
5384{
5385 /* update the subarray currently referenced by ->current_vol */
5386 struct intel_super *super = st->sb;
5387 struct imsm_super *mpb = super->anchor;
5388
aa534678
DW
5389 if (strcmp(update, "name") == 0) {
5390 char *name = ident->name;
a951a4f7
N
5391 char *ep;
5392 int vol;
aa534678 5393
a951a4f7 5394 if (is_subarray_active(subarray, st->devname)) {
aa534678
DW
5395 fprintf(stderr,
5396 Name ": Unable to update name of active subarray\n");
5397 return 2;
5398 }
5399
5400 if (!check_name(super, name, 0))
5401 return 2;
5402
a951a4f7
N
5403 vol = strtoul(subarray, &ep, 10);
5404 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5405 return 2;
5406
aa534678
DW
5407 if (st->update_tail) {
5408 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5409
5410 if (!u)
5411 return 2;
5412 u->type = update_rename_array;
a951a4f7 5413 u->dev_idx = vol;
aa534678
DW
5414 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5415 append_metadata_update(st, u, sizeof(*u));
5416 } else {
5417 struct imsm_dev *dev;
5418 int i;
5419
a951a4f7 5420 dev = get_imsm_dev(super, vol);
aa534678
DW
5421 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5422 for (i = 0; i < mpb->num_raid_devs; i++) {
5423 dev = get_imsm_dev(super, i);
5424 handle_missing(super, dev);
5425 }
5426 super->updates_pending++;
5427 }
5428 } else
5429 return 2;
5430
5431 return 0;
5432}
bf5a934a 5433
28bce06f
AK
5434static int is_gen_migration(struct imsm_dev *dev)
5435{
7534230b
AK
5436 if (dev == NULL)
5437 return 0;
5438
28bce06f
AK
5439 if (!dev->vol.migr_state)
5440 return 0;
5441
5442 if (migr_type(dev) == MIGR_GEN_MIGR)
5443 return 1;
5444
5445 return 0;
5446}
71204a50 5447#endif /* MDASSEMBLE */
28bce06f 5448
1e5c6983
DW
5449static int is_rebuilding(struct imsm_dev *dev)
5450{
5451 struct imsm_map *migr_map;
5452
5453 if (!dev->vol.migr_state)
5454 return 0;
5455
5456 if (migr_type(dev) != MIGR_REBUILD)
5457 return 0;
5458
5459 migr_map = get_imsm_map(dev, 1);
5460
5461 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5462 return 1;
5463 else
5464 return 0;
5465}
5466
c47b0ff6
AK
5467static void update_recovery_start(struct intel_super *super,
5468 struct imsm_dev *dev,
5469 struct mdinfo *array)
1e5c6983
DW
5470{
5471 struct mdinfo *rebuild = NULL;
5472 struct mdinfo *d;
5473 __u32 units;
5474
5475 if (!is_rebuilding(dev))
5476 return;
5477
5478 /* Find the rebuild target, but punt on the dual rebuild case */
5479 for (d = array->devs; d; d = d->next)
5480 if (d->recovery_start == 0) {
5481 if (rebuild)
5482 return;
5483 rebuild = d;
5484 }
5485
4363fd80
DW
5486 if (!rebuild) {
5487 /* (?) none of the disks are marked with
5488 * IMSM_ORD_REBUILD, so assume they are missing and the
5489 * disk_ord_tbl was not correctly updated
5490 */
5491 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5492 return;
5493 }
5494
1e5c6983 5495 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 5496 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
5497}
5498
276d77db 5499static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
1e5c6983 5500
00bbdbda 5501static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 5502{
4f5bc454
DW
5503 /* Given a container loaded by load_super_imsm_all,
5504 * extract information about all the arrays into
5505 * an mdinfo tree.
00bbdbda 5506 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
5507 *
5508 * For each imsm_dev create an mdinfo, fill it in,
5509 * then look for matching devices in super->disks
5510 * and create appropriate device mdinfo.
5511 */
5512 struct intel_super *super = st->sb;
949c47a0 5513 struct imsm_super *mpb = super->anchor;
4f5bc454 5514 struct mdinfo *rest = NULL;
00bbdbda 5515 unsigned int i;
a06d022d 5516 int bbm_errors = 0;
abef11a3
AK
5517 struct dl *d;
5518 int spare_disks = 0;
cdddbdbc 5519
19482bcc
AK
5520 /* do not assemble arrays when not all attributes are supported */
5521 if (imsm_check_attributes(mpb->attributes) == 0) {
5522 fprintf(stderr, Name ": IMSM metadata loading not allowed "
5523 "due to attributes incompatibility.\n");
5524 return NULL;
5525 }
5526
a06d022d
KW
5527 /* check for bad blocks */
5528 if (imsm_bbm_log_size(super->anchor))
5529 bbm_errors = 1;
604b746f 5530
abef11a3
AK
5531 /* count spare devices, not used in maps
5532 */
5533 for (d = super->disks; d; d = d->next)
5534 if (d->index == -1)
5535 spare_disks++;
5536
4f5bc454 5537 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
5538 struct imsm_dev *dev;
5539 struct imsm_map *map;
86e3692b 5540 struct imsm_map *map2;
4f5bc454 5541 struct mdinfo *this;
2db86302 5542 int slot, chunk;
00bbdbda
N
5543 char *ep;
5544
5545 if (subarray &&
5546 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5547 continue;
5548
5549 dev = get_imsm_dev(super, i);
5550 map = get_imsm_map(dev, 0);
86e3692b 5551 map2 = get_imsm_map(dev, 1);
4f5bc454 5552
1ce0101c
DW
5553 /* do not publish arrays that are in the middle of an
5554 * unsupported migration
5555 */
5556 if (dev->vol.migr_state &&
28bce06f 5557 (migr_type(dev) == MIGR_STATE_CHANGE)) {
1ce0101c
DW
5558 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5559 " unsupported migration in progress\n",
5560 dev->volume);
5561 continue;
5562 }
2db86302
LM
5563 /* do not publish arrays that are not support by controller's
5564 * OROM/EFI
5565 */
1ce0101c 5566
2db86302 5567 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
7b0bbd0f 5568#ifndef MDASSEMBLE
2db86302
LM
5569 if (!validate_geometry_imsm_orom(super,
5570 get_imsm_raid_level(map), /* RAID level */
5571 imsm_level_to_layout(get_imsm_raid_level(map)),
5572 map->num_members, /* raid disks */
5573 &chunk,
5574 1 /* verbose */)) {
5575 fprintf(stderr, Name ": RAID gemetry validation failed. "
5576 "Cannot proceed with the action(s).\n");
5577 continue;
5578 }
7b0bbd0f 5579#endif /* MDASSEMBLE */
4f5bc454 5580 this = malloc(sizeof(*this));
0fbd635c 5581 if (!this) {
cf1be220 5582 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
5583 sizeof(*this));
5584 break;
5585 }
4f5bc454 5586
301406c9 5587 super->current_vol = i;
a5d85af7 5588 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 5589 this->next = rest;
4f5bc454 5590 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 5591 unsigned long long recovery_start;
4f5bc454
DW
5592 struct mdinfo *info_d;
5593 struct dl *d;
5594 int idx;
9a1608e5 5595 int skip;
7eef0453 5596 __u32 ord;
4f5bc454 5597
9a1608e5 5598 skip = 0;
98130f40 5599 idx = get_imsm_disk_idx(dev, slot, 0);
196b0d44 5600 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4f5bc454
DW
5601 for (d = super->disks; d ; d = d->next)
5602 if (d->index == idx)
0fbd635c 5603 break;
4f5bc454 5604
1e5c6983 5605 recovery_start = MaxSector;
4f5bc454 5606 if (d == NULL)
9a1608e5 5607 skip = 1;
25ed7e59 5608 if (d && is_failed(&d->disk))
9a1608e5 5609 skip = 1;
7eef0453 5610 if (ord & IMSM_ORD_REBUILD)
1e5c6983 5611 recovery_start = 0;
9a1608e5
DW
5612
5613 /*
5614 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
5615 * reset resync start to avoid a dirty-degraded
5616 * situation when performing the intial sync
9a1608e5
DW
5617 *
5618 * FIXME handle dirty degraded
5619 */
1e5c6983 5620 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 5621 this->resync_start = MaxSector;
9a1608e5
DW
5622 if (skip)
5623 continue;
4f5bc454 5624
1e5c6983 5625 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
5626 if (!info_d) {
5627 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 5628 " for volume %.16s\n", dev->volume);
1e5c6983
DW
5629 info_d = this->devs;
5630 while (info_d) {
5631 struct mdinfo *d = info_d->next;
5632
5633 free(info_d);
5634 info_d = d;
5635 }
9a1608e5
DW
5636 free(this);
5637 this = rest;
5638 break;
5639 }
4f5bc454
DW
5640 info_d->next = this->devs;
5641 this->devs = info_d;
5642
4f5bc454
DW
5643 info_d->disk.number = d->index;
5644 info_d->disk.major = d->major;
5645 info_d->disk.minor = d->minor;
5646 info_d->disk.raid_disk = slot;
1e5c6983 5647 info_d->recovery_start = recovery_start;
86e3692b
AK
5648 if (map2) {
5649 if (slot < map2->num_members)
5650 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5651 else
5652 this->array.spare_disks++;
86e3692b
AK
5653 } else {
5654 if (slot < map->num_members)
5655 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5656 else
5657 this->array.spare_disks++;
86e3692b 5658 }
1e5c6983
DW
5659 if (info_d->recovery_start == MaxSector)
5660 this->array.working_disks++;
4f5bc454
DW
5661
5662 info_d->events = __le32_to_cpu(mpb->generation_num);
5663 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5664 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 5665 }
1e5c6983 5666 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 5667 update_recovery_start(super, dev, this);
abef11a3 5668 this->array.spare_disks += spare_disks;
276d77db
AK
5669
5670 /* check for reshape */
5671 if (this->reshape_active == 1)
5672 recover_backup_imsm(st, this);
5673
9a1608e5 5674 rest = this;
4f5bc454
DW
5675 }
5676
a06d022d
KW
5677 /* if array has bad blocks, set suitable bit in array status */
5678 if (bbm_errors)
5679 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5680
4f5bc454 5681 return rest;
cdddbdbc
DW
5682}
5683
845dea95 5684
fb49eef2 5685static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
c2a1e7da 5686{
a965f303 5687 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
5688
5689 if (!failed)
3393c6af
DW
5690 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5691 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
5692
5693 switch (get_imsm_raid_level(map)) {
5694 case 0:
5695 return IMSM_T_STATE_FAILED;
5696 break;
5697 case 1:
5698 if (failed < map->num_members)
5699 return IMSM_T_STATE_DEGRADED;
5700 else
5701 return IMSM_T_STATE_FAILED;
5702 break;
5703 case 10:
5704 {
5705 /**
c92a2527
DW
5706 * check to see if any mirrors have failed, otherwise we
5707 * are degraded. Even numbered slots are mirrored on
5708 * slot+1
c2a1e7da 5709 */
c2a1e7da 5710 int i;
d9b420a5
N
5711 /* gcc -Os complains that this is unused */
5712 int insync = insync;
c2a1e7da
DW
5713
5714 for (i = 0; i < map->num_members; i++) {
98130f40 5715 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
c92a2527
DW
5716 int idx = ord_to_idx(ord);
5717 struct imsm_disk *disk;
c2a1e7da 5718
c92a2527
DW
5719 /* reset the potential in-sync count on even-numbered
5720 * slots. num_copies is always 2 for imsm raid10
5721 */
5722 if ((i & 1) == 0)
5723 insync = 2;
c2a1e7da 5724
c92a2527 5725 disk = get_imsm_disk(super, idx);
25ed7e59 5726 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 5727 insync--;
c2a1e7da 5728
c92a2527
DW
5729 /* no in-sync disks left in this mirror the
5730 * array has failed
5731 */
5732 if (insync == 0)
5733 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
5734 }
5735
5736 return IMSM_T_STATE_DEGRADED;
5737 }
5738 case 5:
5739 if (failed < 2)
5740 return IMSM_T_STATE_DEGRADED;
5741 else
5742 return IMSM_T_STATE_FAILED;
5743 break;
5744 default:
5745 break;
5746 }
5747
5748 return map->map_state;
5749}
5750
ff077194 5751static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
c2a1e7da
DW
5752{
5753 int i;
5754 int failed = 0;
5755 struct imsm_disk *disk;
ff077194 5756 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2
DW
5757 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5758 __u32 ord;
5759 int idx;
c2a1e7da 5760
0556e1a2
DW
5761 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5762 * disks that are being rebuilt. New failures are recorded to
5763 * map[0]. So we look through all the disks we started with and
5764 * see if any failures are still present, or if any new ones
5765 * have arrived
5766 *
5767 * FIXME add support for online capacity expansion and
5768 * raid-level-migration
5769 */
5770 for (i = 0; i < prev->num_members; i++) {
5771 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5772 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5773 idx = ord_to_idx(ord);
c2a1e7da 5774
949c47a0 5775 disk = get_imsm_disk(super, idx);
25ed7e59 5776 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
fcb84475 5777 failed++;
c2a1e7da
DW
5778 }
5779
5780 return failed;
845dea95
NB
5781}
5782
97b4d0e9
DW
5783#ifndef MDASSEMBLE
5784static int imsm_open_new(struct supertype *c, struct active_array *a,
5785 char *inst)
5786{
5787 struct intel_super *super = c->sb;
5788 struct imsm_super *mpb = super->anchor;
5789
5790 if (atoi(inst) >= mpb->num_raid_devs) {
5791 fprintf(stderr, "%s: subarry index %d, out of range\n",
5792 __func__, atoi(inst));
5793 return -ENODEV;
5794 }
5795
5796 dprintf("imsm: open_new %s\n", inst);
5797 a->info.container_member = atoi(inst);
5798 return 0;
5799}
5800
0c046afd
DW
5801static int is_resyncing(struct imsm_dev *dev)
5802{
5803 struct imsm_map *migr_map;
5804
5805 if (!dev->vol.migr_state)
5806 return 0;
5807
1484e727
DW
5808 if (migr_type(dev) == MIGR_INIT ||
5809 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
5810 return 1;
5811
4c9bc37b
AK
5812 if (migr_type(dev) == MIGR_GEN_MIGR)
5813 return 0;
5814
0c046afd
DW
5815 migr_map = get_imsm_map(dev, 1);
5816
4c9bc37b
AK
5817 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5818 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
5819 return 1;
5820 else
5821 return 0;
5822}
5823
0556e1a2
DW
5824/* return true if we recorded new information */
5825static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 5826{
0556e1a2
DW
5827 __u32 ord;
5828 int slot;
5829 struct imsm_map *map;
5830
5831 /* new failures are always set in map[0] */
5832 map = get_imsm_map(dev, 0);
5833
5834 slot = get_imsm_disk_slot(map, idx);
5835 if (slot < 0)
5836 return 0;
5837
5838 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 5839 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
5840 return 0;
5841
f2f27e63 5842 disk->status |= FAILED_DISK;
0556e1a2 5843 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
f21e18ca 5844 if (map->failed_disk_num == 0xff)
0556e1a2
DW
5845 map->failed_disk_num = slot;
5846 return 1;
5847}
5848
5849static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5850{
5851 mark_failure(dev, disk, idx);
5852
5853 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
5854 return;
5855
47ee5a45
DW
5856 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5857 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
5858}
5859
33414a01
DW
5860static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
5861{
5862 __u8 map_state;
5863 struct dl *dl;
5864 int failed;
5865
5866 if (!super->missing)
5867 return;
5868 failed = imsm_count_failed(super, dev);
5869 map_state = imsm_check_degraded(super, dev, failed);
5870
5871 dprintf("imsm: mark missing\n");
5872 end_migration(dev, map_state);
5873 for (dl = super->missing; dl; dl = dl->next)
5874 mark_missing(dev, &dl->disk, dl->index);
5875 super->updates_pending++;
5876}
5877
70bdf0dc
AK
5878static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
5879{
5880 int used_disks = imsm_num_data_members(dev, 0);
5881 unsigned long long array_blocks;
5882 struct imsm_map *map;
5883
5884 if (used_disks == 0) {
5885 /* when problems occures
5886 * return current array_blocks value
5887 */
5888 array_blocks = __le32_to_cpu(dev->size_high);
5889 array_blocks = array_blocks << 32;
5890 array_blocks += __le32_to_cpu(dev->size_low);
5891
5892 return array_blocks;
5893 }
5894
5895 /* set array size in metadata
5896 */
5897 map = get_imsm_map(dev, 0);
5898 array_blocks = map->blocks_per_member * used_disks;
5899
5900 /* round array size down to closest MB
5901 */
5902 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5903 dev->size_low = __cpu_to_le32((__u32)array_blocks);
5904 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
5905
5906 return array_blocks;
5907}
5908
28bce06f
AK
5909static void imsm_set_disk(struct active_array *a, int n, int state);
5910
0e2d1a4e
AK
5911static void imsm_progress_container_reshape(struct intel_super *super)
5912{
5913 /* if no device has a migr_state, but some device has a
5914 * different number of members than the previous device, start
5915 * changing the number of devices in this device to match
5916 * previous.
5917 */
5918 struct imsm_super *mpb = super->anchor;
5919 int prev_disks = -1;
5920 int i;
1dfaa380 5921 int copy_map_size;
0e2d1a4e
AK
5922
5923 for (i = 0; i < mpb->num_raid_devs; i++) {
5924 struct imsm_dev *dev = get_imsm_dev(super, i);
5925 struct imsm_map *map = get_imsm_map(dev, 0);
5926 struct imsm_map *map2;
5927 int prev_num_members;
0e2d1a4e
AK
5928
5929 if (dev->vol.migr_state)
5930 return;
5931
5932 if (prev_disks == -1)
5933 prev_disks = map->num_members;
5934 if (prev_disks == map->num_members)
5935 continue;
5936
5937 /* OK, this array needs to enter reshape mode.
5938 * i.e it needs a migr_state
5939 */
5940
1dfaa380 5941 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
5942 prev_num_members = map->num_members;
5943 map->num_members = prev_disks;
5944 dev->vol.migr_state = 1;
5945 dev->vol.curr_migr_unit = 0;
5946 dev->vol.migr_type = MIGR_GEN_MIGR;
5947 for (i = prev_num_members;
5948 i < map->num_members; i++)
5949 set_imsm_ord_tbl_ent(map, i, i);
5950 map2 = get_imsm_map(dev, 1);
5951 /* Copy the current map */
1dfaa380 5952 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
5953 map2->num_members = prev_num_members;
5954
70bdf0dc 5955 imsm_set_array_size(dev);
0e2d1a4e
AK
5956 super->updates_pending++;
5957 }
5958}
5959
aad6f216 5960/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
5961 * states are handled in imsm_set_disk() with one exception, when a
5962 * resync is stopped due to a new failure this routine will set the
5963 * 'degraded' state for the array.
5964 */
01f157d7 5965static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
5966{
5967 int inst = a->info.container_member;
5968 struct intel_super *super = a->container->sb;
949c47a0 5969 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 5970 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd
DW
5971 int failed = imsm_count_failed(super, dev);
5972 __u8 map_state = imsm_check_degraded(super, dev, failed);
1e5c6983 5973 __u32 blocks_per_unit;
a862209d 5974
1af97990
AK
5975 if (dev->vol.migr_state &&
5976 dev->vol.migr_type == MIGR_GEN_MIGR) {
5977 /* array state change is blocked due to reshape action
aad6f216
N
5978 * We might need to
5979 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
5980 * - finish the reshape (if last_checkpoint is big and action != reshape)
5981 * - update curr_migr_unit
1af97990 5982 */
aad6f216
N
5983 if (a->curr_action == reshape) {
5984 /* still reshaping, maybe update curr_migr_unit */
633b5610 5985 goto mark_checkpoint;
aad6f216
N
5986 } else {
5987 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
5988 /* for some reason we aborted the reshape.
b66e591b
AK
5989 *
5990 * disable automatic metadata rollback
5991 * user action is required to recover process
aad6f216 5992 */
b66e591b 5993 if (0) {
aad6f216
N
5994 struct imsm_map *map2 = get_imsm_map(dev, 1);
5995 dev->vol.migr_state = 0;
5996 dev->vol.migr_type = 0;
5997 dev->vol.curr_migr_unit = 0;
5998 memcpy(map, map2, sizeof_imsm_map(map2));
5999 super->updates_pending++;
b66e591b 6000 }
aad6f216
N
6001 }
6002 if (a->last_checkpoint >= a->info.component_size) {
6003 unsigned long long array_blocks;
6004 int used_disks;
e154ced3 6005 struct mdinfo *mdi;
aad6f216 6006
9653001d 6007 used_disks = imsm_num_data_members(dev, 0);
d55adef9
AK
6008 if (used_disks > 0) {
6009 array_blocks =
6010 map->blocks_per_member *
6011 used_disks;
6012 /* round array size down to closest MB
6013 */
6014 array_blocks = (array_blocks
6015 >> SECT_PER_MB_SHIFT)
6016 << SECT_PER_MB_SHIFT;
d55adef9
AK
6017 a->info.custom_array_size = array_blocks;
6018 /* encourage manager to update array
6019 * size
6020 */
e154ced3 6021
d55adef9 6022 a->check_reshape = 1;
633b5610 6023 }
e154ced3
AK
6024 /* finalize online capacity expansion/reshape */
6025 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6026 imsm_set_disk(a,
6027 mdi->disk.raid_disk,
6028 mdi->curr_state);
6029
0e2d1a4e 6030 imsm_progress_container_reshape(super);
e154ced3 6031 }
aad6f216 6032 }
1af97990
AK
6033 }
6034
47ee5a45 6035 /* before we activate this array handle any missing disks */
33414a01
DW
6036 if (consistent == 2)
6037 handle_missing(super, dev);
1e5c6983 6038
0c046afd 6039 if (consistent == 2 &&
b7941fd6 6040 (!is_resync_complete(&a->info) ||
0c046afd
DW
6041 map_state != IMSM_T_STATE_NORMAL ||
6042 dev->vol.migr_state))
01f157d7 6043 consistent = 0;
272906ef 6044
b7941fd6 6045 if (is_resync_complete(&a->info)) {
0c046afd 6046 /* complete intialization / resync,
0556e1a2
DW
6047 * recovery and interrupted recovery is completed in
6048 * ->set_disk
0c046afd
DW
6049 */
6050 if (is_resyncing(dev)) {
6051 dprintf("imsm: mark resync done\n");
f8f603f1 6052 end_migration(dev, map_state);
115c3803 6053 super->updates_pending++;
484240d8 6054 a->last_checkpoint = 0;
115c3803 6055 }
0c046afd
DW
6056 } else if (!is_resyncing(dev) && !failed) {
6057 /* mark the start of the init process if nothing is failed */
b7941fd6 6058 dprintf("imsm: mark resync start\n");
1484e727 6059 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 6060 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 6061 else
8e59f3d8 6062 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 6063 super->updates_pending++;
115c3803 6064 }
a862209d 6065
633b5610 6066mark_checkpoint:
5b83bacf
AK
6067 /* skip checkpointing for general migration,
6068 * it is controlled in mdadm
6069 */
6070 if (is_gen_migration(dev))
6071 goto skip_mark_checkpoint;
6072
1e5c6983 6073 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 6074 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 6075 if (blocks_per_unit) {
1e5c6983
DW
6076 __u32 units32;
6077 __u64 units;
6078
4f0a7acc 6079 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
6080 units32 = units;
6081
6082 /* check that we did not overflow 32-bits, and that
6083 * curr_migr_unit needs updating
6084 */
6085 if (units32 == units &&
bfd80a56 6086 units32 != 0 &&
1e5c6983
DW
6087 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6088 dprintf("imsm: mark checkpoint (%u)\n", units32);
6089 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6090 super->updates_pending++;
6091 }
6092 }
f8f603f1 6093
5b83bacf 6094skip_mark_checkpoint:
3393c6af 6095 /* mark dirty / clean */
0c046afd 6096 if (dev->vol.dirty != !consistent) {
b7941fd6 6097 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
6098 if (consistent)
6099 dev->vol.dirty = 0;
6100 else
6101 dev->vol.dirty = 1;
a862209d
DW
6102 super->updates_pending++;
6103 }
28bce06f 6104
01f157d7 6105 return consistent;
a862209d
DW
6106}
6107
8d45d196 6108static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 6109{
8d45d196
DW
6110 int inst = a->info.container_member;
6111 struct intel_super *super = a->container->sb;
949c47a0 6112 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6113 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 6114 struct imsm_disk *disk;
0c046afd 6115 int failed;
b10b37b8 6116 __u32 ord;
0c046afd 6117 __u8 map_state;
8d45d196
DW
6118
6119 if (n > map->num_members)
6120 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6121 n, map->num_members - 1);
6122
6123 if (n < 0)
6124 return;
6125
4e6e574a 6126 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 6127
98130f40 6128 ord = get_imsm_ord_tbl_ent(dev, n, -1);
b10b37b8 6129 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 6130
5802a811 6131 /* check for new failures */
0556e1a2
DW
6132 if (state & DS_FAULTY) {
6133 if (mark_failure(dev, disk, ord_to_idx(ord)))
6134 super->updates_pending++;
8d45d196 6135 }
47ee5a45 6136
19859edc 6137 /* check if in_sync */
0556e1a2 6138 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
6139 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6140
6141 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
6142 super->updates_pending++;
6143 }
8d45d196 6144
0c046afd
DW
6145 failed = imsm_count_failed(super, dev);
6146 map_state = imsm_check_degraded(super, dev, failed);
5802a811 6147
0c046afd
DW
6148 /* check if recovery complete, newly degraded, or failed */
6149 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 6150 end_migration(dev, map_state);
0556e1a2
DW
6151 map = get_imsm_map(dev, 0);
6152 map->failed_disk_num = ~0;
0c046afd 6153 super->updates_pending++;
484240d8 6154 a->last_checkpoint = 0;
0c046afd
DW
6155 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6156 map->map_state != map_state &&
6157 !dev->vol.migr_state) {
6158 dprintf("imsm: mark degraded\n");
6159 map->map_state = map_state;
6160 super->updates_pending++;
484240d8 6161 a->last_checkpoint = 0;
0c046afd
DW
6162 } else if (map_state == IMSM_T_STATE_FAILED &&
6163 map->map_state != map_state) {
6164 dprintf("imsm: mark failed\n");
f8f603f1 6165 end_migration(dev, map_state);
0c046afd 6166 super->updates_pending++;
484240d8 6167 a->last_checkpoint = 0;
28bce06f
AK
6168 } else if (is_gen_migration(dev)) {
6169 dprintf("imsm: Detected General Migration in state: ");
6170 if (map_state == IMSM_T_STATE_NORMAL) {
6171 end_migration(dev, map_state);
6172 map = get_imsm_map(dev, 0);
6173 map->failed_disk_num = ~0;
6174 dprintf("normal\n");
6175 } else {
6176 if (map_state == IMSM_T_STATE_DEGRADED) {
6177 printf("degraded\n");
6178 end_migration(dev, map_state);
6179 } else {
6180 dprintf("failed\n");
6181 }
6182 map->map_state = map_state;
6183 }
6184 super->updates_pending++;
5802a811 6185 }
845dea95
NB
6186}
6187
f796af5d 6188static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 6189{
f796af5d 6190 void *buf = mpb;
c2a1e7da
DW
6191 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6192 unsigned long long dsize;
6193 unsigned long long sectors;
6194
6195 get_dev_size(fd, NULL, &dsize);
6196
272f648f
DW
6197 if (mpb_size > 512) {
6198 /* -1 to account for anchor */
6199 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 6200
272f648f
DW
6201 /* write the extended mpb to the sectors preceeding the anchor */
6202 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6203 return 1;
c2a1e7da 6204
f21e18ca
N
6205 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6206 != 512 * sectors)
272f648f
DW
6207 return 1;
6208 }
c2a1e7da 6209
272f648f
DW
6210 /* first block is stored on second to last sector of the disk */
6211 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
6212 return 1;
6213
f796af5d 6214 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
6215 return 1;
6216
c2a1e7da
DW
6217 return 0;
6218}
6219
2e735d19 6220static void imsm_sync_metadata(struct supertype *container)
845dea95 6221{
2e735d19 6222 struct intel_super *super = container->sb;
c2a1e7da 6223
1a64be56 6224 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
6225 if (!super->updates_pending)
6226 return;
6227
36988a3d 6228 write_super_imsm(container, 0);
c2a1e7da
DW
6229
6230 super->updates_pending = 0;
845dea95
NB
6231}
6232
272906ef
DW
6233static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6234{
6235 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6236 int i = get_imsm_disk_idx(dev, idx, -1);
272906ef
DW
6237 struct dl *dl;
6238
6239 for (dl = super->disks; dl; dl = dl->next)
6240 if (dl->index == i)
6241 break;
6242
25ed7e59 6243 if (dl && is_failed(&dl->disk))
272906ef
DW
6244 dl = NULL;
6245
6246 if (dl)
6247 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6248
6249 return dl;
6250}
6251
a20d2ba5 6252static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
6253 struct active_array *a, int activate_new,
6254 struct mdinfo *additional_test_list)
272906ef
DW
6255{
6256 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6257 int idx = get_imsm_disk_idx(dev, slot, -1);
a20d2ba5
DW
6258 struct imsm_super *mpb = super->anchor;
6259 struct imsm_map *map;
272906ef
DW
6260 unsigned long long pos;
6261 struct mdinfo *d;
6262 struct extent *ex;
a20d2ba5 6263 int i, j;
272906ef 6264 int found;
569cc43f
DW
6265 __u32 array_start = 0;
6266 __u32 array_end = 0;
272906ef 6267 struct dl *dl;
6c932028 6268 struct mdinfo *test_list;
272906ef
DW
6269
6270 for (dl = super->disks; dl; dl = dl->next) {
6271 /* If in this array, skip */
6272 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
6273 if (d->state_fd >= 0 &&
6274 d->disk.major == dl->major &&
272906ef 6275 d->disk.minor == dl->minor) {
8ba77d32
AK
6276 dprintf("%x:%x already in array\n",
6277 dl->major, dl->minor);
272906ef
DW
6278 break;
6279 }
6280 if (d)
6281 continue;
6c932028
AK
6282 test_list = additional_test_list;
6283 while (test_list) {
6284 if (test_list->disk.major == dl->major &&
6285 test_list->disk.minor == dl->minor) {
8ba77d32
AK
6286 dprintf("%x:%x already in additional test list\n",
6287 dl->major, dl->minor);
6288 break;
6289 }
6c932028 6290 test_list = test_list->next;
8ba77d32 6291 }
6c932028 6292 if (test_list)
8ba77d32 6293 continue;
272906ef 6294
e553d2a4 6295 /* skip in use or failed drives */
25ed7e59 6296 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
6297 dl->index == -2) {
6298 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 6299 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
6300 continue;
6301 }
6302
a20d2ba5
DW
6303 /* skip pure spares when we are looking for partially
6304 * assimilated drives
6305 */
6306 if (dl->index == -1 && !activate_new)
6307 continue;
6308
272906ef 6309 /* Does this unused device have the requisite free space?
a20d2ba5 6310 * It needs to be able to cover all member volumes
272906ef
DW
6311 */
6312 ex = get_extents(super, dl);
6313 if (!ex) {
6314 dprintf("cannot get extents\n");
6315 continue;
6316 }
a20d2ba5
DW
6317 for (i = 0; i < mpb->num_raid_devs; i++) {
6318 dev = get_imsm_dev(super, i);
6319 map = get_imsm_map(dev, 0);
272906ef 6320
a20d2ba5
DW
6321 /* check if this disk is already a member of
6322 * this array
272906ef 6323 */
620b1713 6324 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
6325 continue;
6326
6327 found = 0;
6328 j = 0;
6329 pos = 0;
6330 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
6331 array_end = array_start +
6332 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
6333
6334 do {
6335 /* check that we can start at pba_of_lba0 with
6336 * blocks_per_member of space
6337 */
329c8278 6338 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
6339 found = 1;
6340 break;
6341 }
6342 pos = ex[j].start + ex[j].size;
6343 j++;
6344 } while (ex[j-1].size);
6345
6346 if (!found)
272906ef 6347 break;
a20d2ba5 6348 }
272906ef
DW
6349
6350 free(ex);
a20d2ba5 6351 if (i < mpb->num_raid_devs) {
329c8278
DW
6352 dprintf("%x:%x does not have %u to %u available\n",
6353 dl->major, dl->minor, array_start, array_end);
272906ef
DW
6354 /* No room */
6355 continue;
a20d2ba5
DW
6356 }
6357 return dl;
272906ef
DW
6358 }
6359
6360 return dl;
6361}
6362
95d07a2c
LM
6363
6364static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6365{
6366 struct imsm_dev *dev2;
6367 struct imsm_map *map;
6368 struct dl *idisk;
6369 int slot;
6370 int idx;
6371 __u8 state;
6372
6373 dev2 = get_imsm_dev(cont->sb, dev_idx);
6374 if (dev2) {
6375 state = imsm_check_degraded(cont->sb, dev2, failed);
6376 if (state == IMSM_T_STATE_FAILED) {
6377 map = get_imsm_map(dev2, 0);
6378 if (!map)
6379 return 1;
6380 for (slot = 0; slot < map->num_members; slot++) {
6381 /*
6382 * Check if failed disks are deleted from intel
6383 * disk list or are marked to be deleted
6384 */
98130f40 6385 idx = get_imsm_disk_idx(dev2, slot, -1);
95d07a2c
LM
6386 idisk = get_imsm_dl_disk(cont->sb, idx);
6387 /*
6388 * Do not rebuild the array if failed disks
6389 * from failed sub-array are not removed from
6390 * container.
6391 */
6392 if (idisk &&
6393 is_failed(&idisk->disk) &&
6394 (idisk->action != DISK_REMOVE))
6395 return 0;
6396 }
6397 }
6398 }
6399 return 1;
6400}
6401
88758e9d
DW
6402static struct mdinfo *imsm_activate_spare(struct active_array *a,
6403 struct metadata_update **updates)
6404{
6405 /**
d23fe947
DW
6406 * Find a device with unused free space and use it to replace a
6407 * failed/vacant region in an array. We replace failed regions one a
6408 * array at a time. The result is that a new spare disk will be added
6409 * to the first failed array and after the monitor has finished
6410 * propagating failures the remainder will be consumed.
88758e9d 6411 *
d23fe947
DW
6412 * FIXME add a capability for mdmon to request spares from another
6413 * container.
88758e9d
DW
6414 */
6415
6416 struct intel_super *super = a->container->sb;
88758e9d 6417 int inst = a->info.container_member;
949c47a0 6418 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6419 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
6420 int failed = a->info.array.raid_disks;
6421 struct mdinfo *rv = NULL;
6422 struct mdinfo *d;
6423 struct mdinfo *di;
6424 struct metadata_update *mu;
6425 struct dl *dl;
6426 struct imsm_update_activate_spare *u;
6427 int num_spares = 0;
6428 int i;
95d07a2c 6429 int allowed;
88758e9d
DW
6430
6431 for (d = a->info.devs ; d ; d = d->next) {
6432 if ((d->curr_state & DS_FAULTY) &&
6433 d->state_fd >= 0)
6434 /* wait for Removal to happen */
6435 return NULL;
6436 if (d->state_fd >= 0)
6437 failed--;
6438 }
6439
6440 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6441 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990
AK
6442
6443 if (dev->vol.migr_state &&
6444 dev->vol.migr_type == MIGR_GEN_MIGR)
6445 /* No repair during migration */
6446 return NULL;
6447
89c67882
AK
6448 if (a->info.array.level == 4)
6449 /* No repair for takeovered array
6450 * imsm doesn't support raid4
6451 */
6452 return NULL;
6453
fb49eef2 6454 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
6455 return NULL;
6456
95d07a2c
LM
6457 /*
6458 * If there are any failed disks check state of the other volume.
6459 * Block rebuild if the another one is failed until failed disks
6460 * are removed from container.
6461 */
6462 if (failed) {
6463 dprintf("found failed disks in %s, check if there another"
6464 "failed sub-array.\n",
6465 dev->volume);
6466 /* check if states of the other volumes allow for rebuild */
6467 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6468 if (i != inst) {
6469 allowed = imsm_rebuild_allowed(a->container,
6470 i, failed);
6471 if (!allowed)
6472 return NULL;
6473 }
6474 }
6475 }
6476
88758e9d 6477 /* For each slot, if it is not working, find a spare */
88758e9d
DW
6478 for (i = 0; i < a->info.array.raid_disks; i++) {
6479 for (d = a->info.devs ; d ; d = d->next)
6480 if (d->disk.raid_disk == i)
6481 break;
6482 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6483 if (d && (d->state_fd >= 0))
6484 continue;
6485
272906ef 6486 /*
a20d2ba5
DW
6487 * OK, this device needs recovery. Try to re-add the
6488 * previous occupant of this slot, if this fails see if
6489 * we can continue the assimilation of a spare that was
6490 * partially assimilated, finally try to activate a new
6491 * spare.
272906ef
DW
6492 */
6493 dl = imsm_readd(super, i, a);
6494 if (!dl)
8ba77d32 6495 dl = imsm_add_spare(super, i, a, 0, NULL);
a20d2ba5 6496 if (!dl)
8ba77d32 6497 dl = imsm_add_spare(super, i, a, 1, NULL);
272906ef
DW
6498 if (!dl)
6499 continue;
6500
6501 /* found a usable disk with enough space */
6502 di = malloc(sizeof(*di));
79244939
DW
6503 if (!di)
6504 continue;
272906ef
DW
6505 memset(di, 0, sizeof(*di));
6506
6507 /* dl->index will be -1 in the case we are activating a
6508 * pristine spare. imsm_process_update() will create a
6509 * new index in this case. Once a disk is found to be
6510 * failed in all member arrays it is kicked from the
6511 * metadata
6512 */
6513 di->disk.number = dl->index;
d23fe947 6514
272906ef
DW
6515 /* (ab)use di->devs to store a pointer to the device
6516 * we chose
6517 */
6518 di->devs = (struct mdinfo *) dl;
6519
6520 di->disk.raid_disk = i;
6521 di->disk.major = dl->major;
6522 di->disk.minor = dl->minor;
6523 di->disk.state = 0;
d23534e4 6524 di->recovery_start = 0;
272906ef
DW
6525 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6526 di->component_size = a->info.component_size;
6527 di->container_member = inst;
148acb7b 6528 super->random = random32();
272906ef
DW
6529 di->next = rv;
6530 rv = di;
6531 num_spares++;
6532 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6533 i, di->data_offset);
88758e9d 6534
272906ef 6535 break;
88758e9d
DW
6536 }
6537
6538 if (!rv)
6539 /* No spares found */
6540 return rv;
6541 /* Now 'rv' has a list of devices to return.
6542 * Create a metadata_update record to update the
6543 * disk_ord_tbl for the array
6544 */
6545 mu = malloc(sizeof(*mu));
79244939
DW
6546 if (mu) {
6547 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6548 if (mu->buf == NULL) {
6549 free(mu);
6550 mu = NULL;
6551 }
6552 }
6553 if (!mu) {
6554 while (rv) {
6555 struct mdinfo *n = rv->next;
6556
6557 free(rv);
6558 rv = n;
6559 }
6560 return NULL;
6561 }
6562
88758e9d 6563 mu->space = NULL;
cb23f1f4 6564 mu->space_list = NULL;
88758e9d
DW
6565 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6566 mu->next = *updates;
6567 u = (struct imsm_update_activate_spare *) mu->buf;
6568
6569 for (di = rv ; di ; di = di->next) {
6570 u->type = update_activate_spare;
d23fe947
DW
6571 u->dl = (struct dl *) di->devs;
6572 di->devs = NULL;
88758e9d
DW
6573 u->slot = di->disk.raid_disk;
6574 u->array = inst;
6575 u->next = u + 1;
6576 u++;
6577 }
6578 (u-1)->next = NULL;
6579 *updates = mu;
6580
6581 return rv;
6582}
6583
54c2c1ea 6584static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 6585{
54c2c1ea
DW
6586 struct imsm_dev *dev = get_imsm_dev(super, idx);
6587 struct imsm_map *map = get_imsm_map(dev, 0);
6588 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6589 struct disk_info *inf = get_disk_info(u);
6590 struct imsm_disk *disk;
8273f55e
DW
6591 int i;
6592 int j;
8273f55e 6593
54c2c1ea 6594 for (i = 0; i < map->num_members; i++) {
98130f40 6595 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
54c2c1ea
DW
6596 for (j = 0; j < new_map->num_members; j++)
6597 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
6598 return 1;
6599 }
6600
6601 return 0;
6602}
6603
1a64be56
LM
6604
6605static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6606{
6607 struct dl *dl = NULL;
6608 for (dl = super->disks; dl; dl = dl->next)
6609 if ((dl->major == major) && (dl->minor == minor))
6610 return dl;
6611 return NULL;
6612}
6613
6614static int remove_disk_super(struct intel_super *super, int major, int minor)
6615{
6616 struct dl *prev = NULL;
6617 struct dl *dl;
6618
6619 prev = NULL;
6620 for (dl = super->disks; dl; dl = dl->next) {
6621 if ((dl->major == major) && (dl->minor == minor)) {
6622 /* remove */
6623 if (prev)
6624 prev->next = dl->next;
6625 else
6626 super->disks = dl->next;
6627 dl->next = NULL;
6628 __free_imsm_disk(dl);
6629 dprintf("%s: removed %x:%x\n",
6630 __func__, major, minor);
6631 break;
6632 }
6633 prev = dl;
6634 }
6635 return 0;
6636}
6637
f21e18ca 6638static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 6639
1a64be56
LM
6640static int add_remove_disk_update(struct intel_super *super)
6641{
6642 int check_degraded = 0;
6643 struct dl *disk = NULL;
6644 /* add/remove some spares to/from the metadata/contrainer */
6645 while (super->disk_mgmt_list) {
6646 struct dl *disk_cfg;
6647
6648 disk_cfg = super->disk_mgmt_list;
6649 super->disk_mgmt_list = disk_cfg->next;
6650 disk_cfg->next = NULL;
6651
6652 if (disk_cfg->action == DISK_ADD) {
6653 disk_cfg->next = super->disks;
6654 super->disks = disk_cfg;
6655 check_degraded = 1;
6656 dprintf("%s: added %x:%x\n",
6657 __func__, disk_cfg->major,
6658 disk_cfg->minor);
6659 } else if (disk_cfg->action == DISK_REMOVE) {
6660 dprintf("Disk remove action processed: %x.%x\n",
6661 disk_cfg->major, disk_cfg->minor);
6662 disk = get_disk_super(super,
6663 disk_cfg->major,
6664 disk_cfg->minor);
6665 if (disk) {
6666 /* store action status */
6667 disk->action = DISK_REMOVE;
6668 /* remove spare disks only */
6669 if (disk->index == -1) {
6670 remove_disk_super(super,
6671 disk_cfg->major,
6672 disk_cfg->minor);
6673 }
6674 }
6675 /* release allocate disk structure */
6676 __free_imsm_disk(disk_cfg);
6677 }
6678 }
6679 return check_degraded;
6680}
6681
a29911da
PC
6682
6683static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6684 struct intel_super *super,
6685 void ***space_list)
6686{
6687 struct intel_dev *id;
6688 void **tofree = NULL;
6689 int ret_val = 0;
6690
6691 dprintf("apply_reshape_migration_update()\n");
6692 if ((u->subdev < 0) ||
6693 (u->subdev > 1)) {
6694 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6695 return ret_val;
6696 }
6697 if ((space_list == NULL) || (*space_list == NULL)) {
6698 dprintf("imsm: Error: Memory is not allocated\n");
6699 return ret_val;
6700 }
6701
6702 for (id = super->devlist ; id; id = id->next) {
6703 if (id->index == (unsigned)u->subdev) {
6704 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6705 struct imsm_map *map;
6706 struct imsm_dev *new_dev =
6707 (struct imsm_dev *)*space_list;
6708 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6709 int to_state;
6710 struct dl *new_disk;
6711
6712 if (new_dev == NULL)
6713 return ret_val;
6714 *space_list = **space_list;
6715 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6716 map = get_imsm_map(new_dev, 0);
6717 if (migr_map) {
6718 dprintf("imsm: Error: migration in progress");
6719 return ret_val;
6720 }
6721
6722 to_state = map->map_state;
6723 if ((u->new_level == 5) && (map->raid_level == 0)) {
6724 map->num_members++;
6725 /* this should not happen */
6726 if (u->new_disks[0] < 0) {
6727 map->failed_disk_num =
6728 map->num_members - 1;
6729 to_state = IMSM_T_STATE_DEGRADED;
6730 } else
6731 to_state = IMSM_T_STATE_NORMAL;
6732 }
8e59f3d8 6733 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
6734 if (u->new_level > -1)
6735 map->raid_level = u->new_level;
6736 migr_map = get_imsm_map(new_dev, 1);
6737 if ((u->new_level == 5) &&
6738 (migr_map->raid_level == 0)) {
6739 int ord = map->num_members - 1;
6740 migr_map->num_members--;
6741 if (u->new_disks[0] < 0)
6742 ord |= IMSM_ORD_REBUILD;
6743 set_imsm_ord_tbl_ent(map,
6744 map->num_members - 1,
6745 ord);
6746 }
6747 id->dev = new_dev;
6748 tofree = (void **)dev;
6749
4bba0439
PC
6750 /* update chunk size
6751 */
6752 if (u->new_chunksize > 0)
6753 map->blocks_per_strip =
6754 __cpu_to_le16(u->new_chunksize * 2);
6755
a29911da
PC
6756 /* add disk
6757 */
6758 if ((u->new_level != 5) ||
6759 (migr_map->raid_level != 0) ||
6760 (migr_map->raid_level == map->raid_level))
6761 goto skip_disk_add;
6762
6763 if (u->new_disks[0] >= 0) {
6764 /* use passes spare
6765 */
6766 new_disk = get_disk_super(super,
6767 major(u->new_disks[0]),
6768 minor(u->new_disks[0]));
6769 dprintf("imsm: new disk for reshape is: %i:%i "
6770 "(%p, index = %i)\n",
6771 major(u->new_disks[0]),
6772 minor(u->new_disks[0]),
6773 new_disk, new_disk->index);
6774 if (new_disk == NULL)
6775 goto error_disk_add;
6776
6777 new_disk->index = map->num_members - 1;
6778 /* slot to fill in autolayout
6779 */
6780 new_disk->raiddisk = new_disk->index;
6781 new_disk->disk.status |= CONFIGURED_DISK;
6782 new_disk->disk.status &= ~SPARE_DISK;
6783 } else
6784 goto error_disk_add;
6785
6786skip_disk_add:
6787 *tofree = *space_list;
6788 /* calculate new size
6789 */
6790 imsm_set_array_size(new_dev);
6791
6792 ret_val = 1;
6793 }
6794 }
6795
6796 if (tofree)
6797 *space_list = tofree;
6798 return ret_val;
6799
6800error_disk_add:
6801 dprintf("Error: imsm: Cannot find disk.\n");
6802 return ret_val;
6803}
6804
6805
2e5dc010
N
6806static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
6807 struct intel_super *super,
6808 void ***space_list)
6809{
6810 struct dl *new_disk;
6811 struct intel_dev *id;
6812 int i;
6813 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 6814 int disk_count = u->old_raid_disks;
2e5dc010
N
6815 void **tofree = NULL;
6816 int devices_to_reshape = 1;
6817 struct imsm_super *mpb = super->anchor;
6818 int ret_val = 0;
d098291a 6819 unsigned int dev_id;
2e5dc010 6820
ed7333bd 6821 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
6822
6823 /* enable spares to use in array */
6824 for (i = 0; i < delta_disks; i++) {
6825 new_disk = get_disk_super(super,
6826 major(u->new_disks[i]),
6827 minor(u->new_disks[i]));
ed7333bd
AK
6828 dprintf("imsm: new disk for reshape is: %i:%i "
6829 "(%p, index = %i)\n",
2e5dc010
N
6830 major(u->new_disks[i]), minor(u->new_disks[i]),
6831 new_disk, new_disk->index);
6832 if ((new_disk == NULL) ||
6833 ((new_disk->index >= 0) &&
6834 (new_disk->index < u->old_raid_disks)))
6835 goto update_reshape_exit;
ee4beede 6836 new_disk->index = disk_count++;
2e5dc010
N
6837 /* slot to fill in autolayout
6838 */
6839 new_disk->raiddisk = new_disk->index;
6840 new_disk->disk.status |=
6841 CONFIGURED_DISK;
6842 new_disk->disk.status &= ~SPARE_DISK;
6843 }
6844
ed7333bd
AK
6845 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
6846 mpb->num_raid_devs);
2e5dc010
N
6847 /* manage changes in volume
6848 */
d098291a 6849 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
6850 void **sp = *space_list;
6851 struct imsm_dev *newdev;
6852 struct imsm_map *newmap, *oldmap;
6853
d098291a
AK
6854 for (id = super->devlist ; id; id = id->next) {
6855 if (id->index == dev_id)
6856 break;
6857 }
6858 if (id == NULL)
6859 break;
2e5dc010
N
6860 if (!sp)
6861 continue;
6862 *space_list = *sp;
6863 newdev = (void*)sp;
6864 /* Copy the dev, but not (all of) the map */
6865 memcpy(newdev, id->dev, sizeof(*newdev));
6866 oldmap = get_imsm_map(id->dev, 0);
6867 newmap = get_imsm_map(newdev, 0);
6868 /* Copy the current map */
6869 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6870 /* update one device only
6871 */
6872 if (devices_to_reshape) {
ed7333bd
AK
6873 dprintf("imsm: modifying subdev: %i\n",
6874 id->index);
2e5dc010
N
6875 devices_to_reshape--;
6876 newdev->vol.migr_state = 1;
6877 newdev->vol.curr_migr_unit = 0;
6878 newdev->vol.migr_type = MIGR_GEN_MIGR;
6879 newmap->num_members = u->new_raid_disks;
6880 for (i = 0; i < delta_disks; i++) {
6881 set_imsm_ord_tbl_ent(newmap,
6882 u->old_raid_disks + i,
6883 u->old_raid_disks + i);
6884 }
6885 /* New map is correct, now need to save old map
6886 */
6887 newmap = get_imsm_map(newdev, 1);
6888 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6889
70bdf0dc 6890 imsm_set_array_size(newdev);
2e5dc010
N
6891 }
6892
6893 sp = (void **)id->dev;
6894 id->dev = newdev;
6895 *sp = tofree;
6896 tofree = sp;
8e59f3d8
AK
6897
6898 /* Clear migration record */
6899 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 6900 }
819bc634
AK
6901 if (tofree)
6902 *space_list = tofree;
2e5dc010
N
6903 ret_val = 1;
6904
6905update_reshape_exit:
6906
6907 return ret_val;
6908}
6909
bb025c2f 6910static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
6911 struct intel_super *super,
6912 void ***space_list)
bb025c2f
KW
6913{
6914 struct imsm_dev *dev = NULL;
8ca6df95
KW
6915 struct intel_dev *dv;
6916 struct imsm_dev *dev_new;
bb025c2f
KW
6917 struct imsm_map *map;
6918 struct dl *dm, *du;
8ca6df95 6919 int i;
bb025c2f
KW
6920
6921 for (dv = super->devlist; dv; dv = dv->next)
6922 if (dv->index == (unsigned int)u->subarray) {
6923 dev = dv->dev;
6924 break;
6925 }
6926
6927 if (dev == NULL)
6928 return 0;
6929
6930 map = get_imsm_map(dev, 0);
6931
6932 if (u->direction == R10_TO_R0) {
43d5ec18
KW
6933 /* Number of failed disks must be half of initial disk number */
6934 if (imsm_count_failed(super, dev) != (map->num_members / 2))
6935 return 0;
6936
bb025c2f
KW
6937 /* iterate through devices to mark removed disks as spare */
6938 for (dm = super->disks; dm; dm = dm->next) {
6939 if (dm->disk.status & FAILED_DISK) {
6940 int idx = dm->index;
6941 /* update indexes on the disk list */
6942/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
6943 the index values will end up being correct.... NB */
6944 for (du = super->disks; du; du = du->next)
6945 if (du->index > idx)
6946 du->index--;
6947 /* mark as spare disk */
6948 dm->disk.status = SPARE_DISK;
6949 dm->index = -1;
6950 }
6951 }
bb025c2f
KW
6952 /* update map */
6953 map->num_members = map->num_members / 2;
6954 map->map_state = IMSM_T_STATE_NORMAL;
6955 map->num_domains = 1;
6956 map->raid_level = 0;
6957 map->failed_disk_num = -1;
6958 }
6959
8ca6df95
KW
6960 if (u->direction == R0_TO_R10) {
6961 void **space;
6962 /* update slots in current disk list */
6963 for (dm = super->disks; dm; dm = dm->next) {
6964 if (dm->index >= 0)
6965 dm->index *= 2;
6966 }
6967 /* create new *missing* disks */
6968 for (i = 0; i < map->num_members; i++) {
6969 space = *space_list;
6970 if (!space)
6971 continue;
6972 *space_list = *space;
6973 du = (void *)space;
6974 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
6975 du->fd = -1;
6976 du->minor = 0;
6977 du->major = 0;
6978 du->index = (i * 2) + 1;
6979 sprintf((char *)du->disk.serial,
6980 " MISSING_%d", du->index);
6981 sprintf((char *)du->serial,
6982 "MISSING_%d", du->index);
6983 du->next = super->missing;
6984 super->missing = du;
6985 }
6986 /* create new dev and map */
6987 space = *space_list;
6988 if (!space)
6989 return 0;
6990 *space_list = *space;
6991 dev_new = (void *)space;
6992 memcpy(dev_new, dev, sizeof(*dev));
6993 /* update new map */
6994 map = get_imsm_map(dev_new, 0);
8ca6df95 6995 map->num_members = map->num_members * 2;
1a2487c2 6996 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
6997 map->num_domains = 2;
6998 map->raid_level = 1;
6999 /* replace dev<->dev_new */
7000 dv->dev = dev_new;
7001 }
bb025c2f
KW
7002 /* update disk order table */
7003 for (du = super->disks; du; du = du->next)
7004 if (du->index >= 0)
7005 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 7006 for (du = super->missing; du; du = du->next)
1a2487c2
KW
7007 if (du->index >= 0) {
7008 set_imsm_ord_tbl_ent(map, du->index, du->index);
7009 mark_missing(dev_new, &du->disk, du->index);
7010 }
bb025c2f
KW
7011
7012 return 1;
7013}
7014
e8319a19
DW
7015static void imsm_process_update(struct supertype *st,
7016 struct metadata_update *update)
7017{
7018 /**
7019 * crack open the metadata_update envelope to find the update record
7020 * update can be one of:
d195167d
AK
7021 * update_reshape_container_disks - all the arrays in the container
7022 * are being reshaped to have more devices. We need to mark
7023 * the arrays for general migration and convert selected spares
7024 * into active devices.
7025 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
7026 * device in an array, update the disk_ord_tbl. If this disk is
7027 * present in all member arrays then also clear the SPARE_DISK
7028 * flag
d195167d
AK
7029 * update_create_array
7030 * update_kill_array
7031 * update_rename_array
7032 * update_add_remove_disk
e8319a19
DW
7033 */
7034 struct intel_super *super = st->sb;
4d7b1503 7035 struct imsm_super *mpb;
e8319a19
DW
7036 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7037
4d7b1503
DW
7038 /* update requires a larger buf but the allocation failed */
7039 if (super->next_len && !super->next_buf) {
7040 super->next_len = 0;
7041 return;
7042 }
7043
7044 if (super->next_buf) {
7045 memcpy(super->next_buf, super->buf, super->len);
7046 free(super->buf);
7047 super->len = super->next_len;
7048 super->buf = super->next_buf;
7049
7050 super->next_len = 0;
7051 super->next_buf = NULL;
7052 }
7053
7054 mpb = super->anchor;
7055
e8319a19 7056 switch (type) {
0ec5d470
AK
7057 case update_general_migration_checkpoint: {
7058 struct intel_dev *id;
7059 struct imsm_update_general_migration_checkpoint *u =
7060 (void *)update->buf;
7061
7062 dprintf("imsm: process_update() "
7063 "for update_general_migration_checkpoint called\n");
7064
7065 /* find device under general migration */
7066 for (id = super->devlist ; id; id = id->next) {
7067 if (is_gen_migration(id->dev)) {
7068 id->dev->vol.curr_migr_unit =
7069 __cpu_to_le32(u->curr_migr_unit);
7070 super->updates_pending++;
7071 }
7072 }
7073 break;
7074 }
bb025c2f
KW
7075 case update_takeover: {
7076 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
7077 if (apply_takeover_update(u, super, &update->space_list)) {
7078 imsm_update_version_info(super);
bb025c2f 7079 super->updates_pending++;
1a2487c2 7080 }
bb025c2f
KW
7081 break;
7082 }
7083
78b10e66 7084 case update_reshape_container_disks: {
d195167d 7085 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
7086 if (apply_reshape_container_disks_update(
7087 u, super, &update->space_list))
7088 super->updates_pending++;
78b10e66
N
7089 break;
7090 }
48c5303a 7091 case update_reshape_migration: {
a29911da
PC
7092 struct imsm_update_reshape_migration *u = (void *)update->buf;
7093 if (apply_reshape_migration_update(
7094 u, super, &update->space_list))
7095 super->updates_pending++;
48c5303a
PC
7096 break;
7097 }
e8319a19
DW
7098 case update_activate_spare: {
7099 struct imsm_update_activate_spare *u = (void *) update->buf;
949c47a0 7100 struct imsm_dev *dev = get_imsm_dev(super, u->array);
a965f303 7101 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd 7102 struct imsm_map *migr_map;
e8319a19
DW
7103 struct active_array *a;
7104 struct imsm_disk *disk;
0c046afd 7105 __u8 to_state;
e8319a19 7106 struct dl *dl;
e8319a19 7107 unsigned int found;
0c046afd 7108 int failed;
98130f40 7109 int victim = get_imsm_disk_idx(dev, u->slot, -1);
e8319a19
DW
7110 int i;
7111
7112 for (dl = super->disks; dl; dl = dl->next)
d23fe947 7113 if (dl == u->dl)
e8319a19
DW
7114 break;
7115
7116 if (!dl) {
7117 fprintf(stderr, "error: imsm_activate_spare passed "
1f24f035
DW
7118 "an unknown disk (index: %d)\n",
7119 u->dl->index);
e8319a19
DW
7120 return;
7121 }
7122
7123 super->updates_pending++;
0c046afd
DW
7124 /* count failures (excluding rebuilds and the victim)
7125 * to determine map[0] state
7126 */
7127 failed = 0;
7128 for (i = 0; i < map->num_members; i++) {
7129 if (i == u->slot)
7130 continue;
98130f40
AK
7131 disk = get_imsm_disk(super,
7132 get_imsm_disk_idx(dev, i, -1));
25ed7e59 7133 if (!disk || is_failed(disk))
0c046afd
DW
7134 failed++;
7135 }
7136
d23fe947
DW
7137 /* adding a pristine spare, assign a new index */
7138 if (dl->index < 0) {
7139 dl->index = super->anchor->num_disks;
7140 super->anchor->num_disks++;
7141 }
d23fe947 7142 disk = &dl->disk;
f2f27e63
DW
7143 disk->status |= CONFIGURED_DISK;
7144 disk->status &= ~SPARE_DISK;
e8319a19 7145
0c046afd
DW
7146 /* mark rebuild */
7147 to_state = imsm_check_degraded(super, dev, failed);
7148 map->map_state = IMSM_T_STATE_DEGRADED;
8e59f3d8 7149 migrate(dev, super, to_state, MIGR_REBUILD);
0c046afd
DW
7150 migr_map = get_imsm_map(dev, 1);
7151 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7152 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
7153
148acb7b
DW
7154 /* update the family_num to mark a new container
7155 * generation, being careful to record the existing
7156 * family_num in orig_family_num to clean up after
7157 * earlier mdadm versions that neglected to set it.
7158 */
7159 if (mpb->orig_family_num == 0)
7160 mpb->orig_family_num = mpb->family_num;
7161 mpb->family_num += super->random;
7162
e8319a19
DW
7163 /* count arrays using the victim in the metadata */
7164 found = 0;
7165 for (a = st->arrays; a ; a = a->next) {
949c47a0 7166 dev = get_imsm_dev(super, a->info.container_member);
620b1713
DW
7167 map = get_imsm_map(dev, 0);
7168
7169 if (get_imsm_disk_slot(map, victim) >= 0)
7170 found++;
e8319a19
DW
7171 }
7172
24565c9a 7173 /* delete the victim if it is no longer being
e8319a19
DW
7174 * utilized anywhere
7175 */
e8319a19 7176 if (!found) {
ae6aad82 7177 struct dl **dlp;
24565c9a 7178
47ee5a45
DW
7179 /* We know that 'manager' isn't touching anything,
7180 * so it is safe to delete
7181 */
24565c9a 7182 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
ae6aad82
DW
7183 if ((*dlp)->index == victim)
7184 break;
47ee5a45
DW
7185
7186 /* victim may be on the missing list */
7187 if (!*dlp)
7188 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
7189 if ((*dlp)->index == victim)
7190 break;
24565c9a 7191 imsm_delete(super, dlp, victim);
e8319a19 7192 }
8273f55e
DW
7193 break;
7194 }
7195 case update_create_array: {
7196 /* someone wants to create a new array, we need to be aware of
7197 * a few races/collisions:
7198 * 1/ 'Create' called by two separate instances of mdadm
7199 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7200 * devices that have since been assimilated via
7201 * activate_spare.
7202 * In the event this update can not be carried out mdadm will
7203 * (FIX ME) notice that its update did not take hold.
7204 */
7205 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7206 struct intel_dev *dv;
8273f55e
DW
7207 struct imsm_dev *dev;
7208 struct imsm_map *map, *new_map;
7209 unsigned long long start, end;
7210 unsigned long long new_start, new_end;
7211 int i;
54c2c1ea
DW
7212 struct disk_info *inf;
7213 struct dl *dl;
8273f55e
DW
7214
7215 /* handle racing creates: first come first serve */
7216 if (u->dev_idx < mpb->num_raid_devs) {
7217 dprintf("%s: subarray %d already defined\n",
7218 __func__, u->dev_idx);
ba2de7ba 7219 goto create_error;
8273f55e
DW
7220 }
7221
7222 /* check update is next in sequence */
7223 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
7224 dprintf("%s: can not create array %d expected index %d\n",
7225 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 7226 goto create_error;
8273f55e
DW
7227 }
7228
a965f303 7229 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
7230 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7231 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 7232 inf = get_disk_info(u);
8273f55e
DW
7233
7234 /* handle activate_spare versus create race:
7235 * check to make sure that overlapping arrays do not include
7236 * overalpping disks
7237 */
7238 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 7239 dev = get_imsm_dev(super, i);
a965f303 7240 map = get_imsm_map(dev, 0);
8273f55e
DW
7241 start = __le32_to_cpu(map->pba_of_lba0);
7242 end = start + __le32_to_cpu(map->blocks_per_member);
7243 if ((new_start >= start && new_start <= end) ||
7244 (start >= new_start && start <= new_end))
54c2c1ea
DW
7245 /* overlap */;
7246 else
7247 continue;
7248
7249 if (disks_overlap(super, i, u)) {
8273f55e 7250 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 7251 goto create_error;
8273f55e
DW
7252 }
7253 }
8273f55e 7254
949c47a0
DW
7255 /* check that prepare update was successful */
7256 if (!update->space) {
7257 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 7258 goto create_error;
949c47a0
DW
7259 }
7260
54c2c1ea
DW
7261 /* check that all disks are still active before committing
7262 * changes. FIXME: could we instead handle this by creating a
7263 * degraded array? That's probably not what the user expects,
7264 * so better to drop this update on the floor.
7265 */
7266 for (i = 0; i < new_map->num_members; i++) {
7267 dl = serial_to_dl(inf[i].serial, super);
7268 if (!dl) {
7269 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 7270 goto create_error;
54c2c1ea 7271 }
949c47a0
DW
7272 }
7273
8273f55e 7274 super->updates_pending++;
54c2c1ea
DW
7275
7276 /* convert spares to members and fixup ord_tbl */
7277 for (i = 0; i < new_map->num_members; i++) {
7278 dl = serial_to_dl(inf[i].serial, super);
7279 if (dl->index == -1) {
7280 dl->index = mpb->num_disks;
7281 mpb->num_disks++;
7282 dl->disk.status |= CONFIGURED_DISK;
7283 dl->disk.status &= ~SPARE_DISK;
7284 }
7285 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7286 }
7287
ba2de7ba
DW
7288 dv = update->space;
7289 dev = dv->dev;
949c47a0
DW
7290 update->space = NULL;
7291 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
7292 dv->index = u->dev_idx;
7293 dv->next = super->devlist;
7294 super->devlist = dv;
8273f55e 7295 mpb->num_raid_devs++;
8273f55e 7296
4d1313e9 7297 imsm_update_version_info(super);
8273f55e 7298 break;
ba2de7ba
DW
7299 create_error:
7300 /* mdmon knows how to release update->space, but not
7301 * ((struct intel_dev *) update->space)->dev
7302 */
7303 if (update->space) {
7304 dv = update->space;
7305 free(dv->dev);
7306 }
8273f55e 7307 break;
e8319a19 7308 }
33414a01
DW
7309 case update_kill_array: {
7310 struct imsm_update_kill_array *u = (void *) update->buf;
7311 int victim = u->dev_idx;
7312 struct active_array *a;
7313 struct intel_dev **dp;
7314 struct imsm_dev *dev;
7315
7316 /* sanity check that we are not affecting the uuid of
7317 * active arrays, or deleting an active array
7318 *
7319 * FIXME when immutable ids are available, but note that
7320 * we'll also need to fixup the invalidated/active
7321 * subarray indexes in mdstat
7322 */
7323 for (a = st->arrays; a; a = a->next)
7324 if (a->info.container_member >= victim)
7325 break;
7326 /* by definition if mdmon is running at least one array
7327 * is active in the container, so checking
7328 * mpb->num_raid_devs is just extra paranoia
7329 */
7330 dev = get_imsm_dev(super, victim);
7331 if (a || !dev || mpb->num_raid_devs == 1) {
7332 dprintf("failed to delete subarray-%d\n", victim);
7333 break;
7334 }
7335
7336 for (dp = &super->devlist; *dp;)
f21e18ca 7337 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
7338 *dp = (*dp)->next;
7339 } else {
f21e18ca 7340 if ((*dp)->index > (unsigned)victim)
33414a01
DW
7341 (*dp)->index--;
7342 dp = &(*dp)->next;
7343 }
7344 mpb->num_raid_devs--;
7345 super->updates_pending++;
7346 break;
7347 }
aa534678
DW
7348 case update_rename_array: {
7349 struct imsm_update_rename_array *u = (void *) update->buf;
7350 char name[MAX_RAID_SERIAL_LEN+1];
7351 int target = u->dev_idx;
7352 struct active_array *a;
7353 struct imsm_dev *dev;
7354
7355 /* sanity check that we are not affecting the uuid of
7356 * an active array
7357 */
7358 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7359 name[MAX_RAID_SERIAL_LEN] = '\0';
7360 for (a = st->arrays; a; a = a->next)
7361 if (a->info.container_member == target)
7362 break;
7363 dev = get_imsm_dev(super, u->dev_idx);
7364 if (a || !dev || !check_name(super, name, 1)) {
7365 dprintf("failed to rename subarray-%d\n", target);
7366 break;
7367 }
7368
cdbe98cd 7369 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
7370 super->updates_pending++;
7371 break;
7372 }
1a64be56 7373 case update_add_remove_disk: {
43dad3d6 7374 /* we may be able to repair some arrays if disks are
1a64be56
LM
7375 * being added, check teh status of add_remove_disk
7376 * if discs has been added.
7377 */
7378 if (add_remove_disk_update(super)) {
43dad3d6 7379 struct active_array *a;
072b727f
DW
7380
7381 super->updates_pending++;
1a64be56 7382 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
7383 a->check_degraded = 1;
7384 }
43dad3d6 7385 break;
e8319a19 7386 }
1a64be56
LM
7387 default:
7388 fprintf(stderr, "error: unsuported process update type:"
7389 "(type: %d)\n", type);
7390 }
e8319a19 7391}
88758e9d 7392
bc0b9d34
PC
7393static struct mdinfo *get_spares_for_grow(struct supertype *st);
7394
8273f55e
DW
7395static void imsm_prepare_update(struct supertype *st,
7396 struct metadata_update *update)
7397{
949c47a0 7398 /**
4d7b1503
DW
7399 * Allocate space to hold new disk entries, raid-device entries or a new
7400 * mpb if necessary. The manager synchronously waits for updates to
7401 * complete in the monitor, so new mpb buffers allocated here can be
7402 * integrated by the monitor thread without worrying about live pointers
7403 * in the manager thread.
8273f55e 7404 */
949c47a0 7405 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
7406 struct intel_super *super = st->sb;
7407 struct imsm_super *mpb = super->anchor;
7408 size_t buf_len;
7409 size_t len = 0;
949c47a0
DW
7410
7411 switch (type) {
0ec5d470
AK
7412 case update_general_migration_checkpoint:
7413 dprintf("imsm: prepare_update() "
7414 "for update_general_migration_checkpoint called\n");
7415 break;
abedf5fc
KW
7416 case update_takeover: {
7417 struct imsm_update_takeover *u = (void *)update->buf;
7418 if (u->direction == R0_TO_R10) {
7419 void **tail = (void **)&update->space_list;
7420 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7421 struct imsm_map *map = get_imsm_map(dev, 0);
7422 int num_members = map->num_members;
7423 void *space;
7424 int size, i;
7425 int err = 0;
7426 /* allocate memory for added disks */
7427 for (i = 0; i < num_members; i++) {
7428 size = sizeof(struct dl);
7429 space = malloc(size);
7430 if (!space) {
7431 err++;
7432 break;
7433 }
7434 *tail = space;
7435 tail = space;
7436 *tail = NULL;
7437 }
7438 /* allocate memory for new device */
7439 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7440 (num_members * sizeof(__u32));
7441 space = malloc(size);
7442 if (!space)
7443 err++;
7444 else {
7445 *tail = space;
7446 tail = space;
7447 *tail = NULL;
7448 }
7449 if (!err) {
7450 len = disks_to_mpb_size(num_members * 2);
7451 } else {
7452 /* if allocation didn't success, free buffer */
7453 while (update->space_list) {
7454 void **sp = update->space_list;
7455 update->space_list = *sp;
7456 free(sp);
7457 }
7458 }
7459 }
7460
7461 break;
7462 }
78b10e66 7463 case update_reshape_container_disks: {
d195167d
AK
7464 /* Every raid device in the container is about to
7465 * gain some more devices, and we will enter a
7466 * reconfiguration.
7467 * So each 'imsm_map' will be bigger, and the imsm_vol
7468 * will now hold 2 of them.
7469 * Thus we need new 'struct imsm_dev' allocations sized
7470 * as sizeof_imsm_dev but with more devices in both maps.
7471 */
7472 struct imsm_update_reshape *u = (void *)update->buf;
7473 struct intel_dev *dl;
7474 void **space_tail = (void**)&update->space_list;
7475
7476 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7477
7478 for (dl = super->devlist; dl; dl = dl->next) {
7479 int size = sizeof_imsm_dev(dl->dev, 1);
7480 void *s;
d677e0b8
AK
7481 if (u->new_raid_disks > u->old_raid_disks)
7482 size += sizeof(__u32)*2*
7483 (u->new_raid_disks - u->old_raid_disks);
d195167d
AK
7484 s = malloc(size);
7485 if (!s)
7486 break;
7487 *space_tail = s;
7488 space_tail = s;
7489 *space_tail = NULL;
7490 }
7491
7492 len = disks_to_mpb_size(u->new_raid_disks);
7493 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
7494 break;
7495 }
48c5303a 7496 case update_reshape_migration: {
bc0b9d34
PC
7497 /* for migration level 0->5 we need to add disks
7498 * so the same as for container operation we will copy
7499 * device to the bigger location.
7500 * in memory prepared device and new disk area are prepared
7501 * for usage in process update
7502 */
7503 struct imsm_update_reshape_migration *u = (void *)update->buf;
7504 struct intel_dev *id;
7505 void **space_tail = (void **)&update->space_list;
7506 int size;
7507 void *s;
7508 int current_level = -1;
7509
7510 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7511
7512 /* add space for bigger array in update
7513 */
7514 for (id = super->devlist; id; id = id->next) {
7515 if (id->index == (unsigned)u->subdev) {
7516 size = sizeof_imsm_dev(id->dev, 1);
7517 if (u->new_raid_disks > u->old_raid_disks)
7518 size += sizeof(__u32)*2*
7519 (u->new_raid_disks - u->old_raid_disks);
7520 s = malloc(size);
7521 if (!s)
7522 break;
7523 *space_tail = s;
7524 space_tail = s;
7525 *space_tail = NULL;
7526 break;
7527 }
7528 }
7529 if (update->space_list == NULL)
7530 break;
7531
7532 /* add space for disk in update
7533 */
7534 size = sizeof(struct dl);
7535 s = malloc(size);
7536 if (!s) {
7537 free(update->space_list);
7538 update->space_list = NULL;
7539 break;
7540 }
7541 *space_tail = s;
7542 space_tail = s;
7543 *space_tail = NULL;
7544
7545 /* add spare device to update
7546 */
7547 for (id = super->devlist ; id; id = id->next)
7548 if (id->index == (unsigned)u->subdev) {
7549 struct imsm_dev *dev;
7550 struct imsm_map *map;
7551
7552 dev = get_imsm_dev(super, u->subdev);
7553 map = get_imsm_map(dev, 0);
7554 current_level = map->raid_level;
7555 break;
7556 }
7557 if ((u->new_level == 5) && (u->new_level != current_level)) {
7558 struct mdinfo *spares;
7559
7560 spares = get_spares_for_grow(st);
7561 if (spares) {
7562 struct dl *dl;
7563 struct mdinfo *dev;
7564
7565 dev = spares->devs;
7566 if (dev) {
7567 u->new_disks[0] =
7568 makedev(dev->disk.major,
7569 dev->disk.minor);
7570 dl = get_disk_super(super,
7571 dev->disk.major,
7572 dev->disk.minor);
7573 dl->index = u->old_raid_disks;
7574 dev = dev->next;
7575 }
7576 sysfs_free(spares);
7577 }
7578 }
7579 len = disks_to_mpb_size(u->new_raid_disks);
7580 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
7581 break;
7582 }
949c47a0
DW
7583 case update_create_array: {
7584 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7585 struct intel_dev *dv;
54c2c1ea
DW
7586 struct imsm_dev *dev = &u->dev;
7587 struct imsm_map *map = get_imsm_map(dev, 0);
7588 struct dl *dl;
7589 struct disk_info *inf;
7590 int i;
7591 int activate = 0;
949c47a0 7592
54c2c1ea
DW
7593 inf = get_disk_info(u);
7594 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
7595 /* allocate a new super->devlist entry */
7596 dv = malloc(sizeof(*dv));
7597 if (dv) {
7598 dv->dev = malloc(len);
7599 if (dv->dev)
7600 update->space = dv;
7601 else {
7602 free(dv);
7603 update->space = NULL;
7604 }
7605 }
949c47a0 7606
54c2c1ea
DW
7607 /* count how many spares will be converted to members */
7608 for (i = 0; i < map->num_members; i++) {
7609 dl = serial_to_dl(inf[i].serial, super);
7610 if (!dl) {
7611 /* hmm maybe it failed?, nothing we can do about
7612 * it here
7613 */
7614 continue;
7615 }
7616 if (count_memberships(dl, super) == 0)
7617 activate++;
7618 }
7619 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
7620 break;
7621 default:
7622 break;
7623 }
7624 }
8273f55e 7625
4d7b1503
DW
7626 /* check if we need a larger metadata buffer */
7627 if (super->next_buf)
7628 buf_len = super->next_len;
7629 else
7630 buf_len = super->len;
7631
7632 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7633 /* ok we need a larger buf than what is currently allocated
7634 * if this allocation fails process_update will notice that
7635 * ->next_len is set and ->next_buf is NULL
7636 */
7637 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7638 if (super->next_buf)
7639 free(super->next_buf);
7640
7641 super->next_len = buf_len;
1f45a8ad
DW
7642 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7643 memset(super->next_buf, 0, buf_len);
7644 else
4d7b1503
DW
7645 super->next_buf = NULL;
7646 }
8273f55e
DW
7647}
7648
ae6aad82 7649/* must be called while manager is quiesced */
f21e18ca 7650static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
7651{
7652 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
7653 struct dl *iter;
7654 struct imsm_dev *dev;
7655 struct imsm_map *map;
24565c9a
DW
7656 int i, j, num_members;
7657 __u32 ord;
ae6aad82 7658
24565c9a
DW
7659 dprintf("%s: deleting device[%d] from imsm_super\n",
7660 __func__, index);
ae6aad82
DW
7661
7662 /* shift all indexes down one */
7663 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 7664 if (iter->index > (int)index)
ae6aad82 7665 iter->index--;
47ee5a45 7666 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 7667 if (iter->index > (int)index)
47ee5a45 7668 iter->index--;
ae6aad82
DW
7669
7670 for (i = 0; i < mpb->num_raid_devs; i++) {
7671 dev = get_imsm_dev(super, i);
7672 map = get_imsm_map(dev, 0);
24565c9a
DW
7673 num_members = map->num_members;
7674 for (j = 0; j < num_members; j++) {
7675 /* update ord entries being careful not to propagate
7676 * ord-flags to the first map
7677 */
98130f40 7678 ord = get_imsm_ord_tbl_ent(dev, j, -1);
ae6aad82 7679
24565c9a
DW
7680 if (ord_to_idx(ord) <= index)
7681 continue;
ae6aad82 7682
24565c9a
DW
7683 map = get_imsm_map(dev, 0);
7684 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7685 map = get_imsm_map(dev, 1);
7686 if (map)
7687 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
7688 }
7689 }
7690
7691 mpb->num_disks--;
7692 super->updates_pending++;
24565c9a
DW
7693 if (*dlp) {
7694 struct dl *dl = *dlp;
7695
7696 *dlp = (*dlp)->next;
7697 __free_imsm_disk(dl);
7698 }
ae6aad82
DW
7699}
7700
687629c2
AK
7701/*******************************************************************************
7702 * Function: open_backup_targets
7703 * Description: Function opens file descriptors for all devices given in
7704 * info->devs
7705 * Parameters:
7706 * info : general array info
7707 * raid_disks : number of disks
7708 * raid_fds : table of device's file descriptors
7709 * Returns:
7710 * 0 : success
7711 * -1 : fail
7712 ******************************************************************************/
7713int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7714{
7715 struct mdinfo *sd;
7716
7717 for (sd = info->devs ; sd ; sd = sd->next) {
7718 char *dn;
7719
7720 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7721 dprintf("disk is faulty!!\n");
7722 continue;
7723 }
7724
7725 if ((sd->disk.raid_disk >= raid_disks) ||
7726 (sd->disk.raid_disk < 0))
7727 continue;
7728
7729 dn = map_dev(sd->disk.major,
7730 sd->disk.minor, 1);
7731 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7732 if (raid_fds[sd->disk.raid_disk] < 0) {
7733 fprintf(stderr, "cannot open component\n");
7734 return -1;
7735 }
7736 }
7737 return 0;
7738}
7739
7740/*******************************************************************************
7741 * Function: init_migr_record_imsm
7742 * Description: Function inits imsm migration record
7743 * Parameters:
7744 * super : imsm internal array info
7745 * dev : device under migration
7746 * info : general array info to find the smallest device
7747 * Returns:
7748 * none
7749 ******************************************************************************/
7750void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7751 struct mdinfo *info)
7752{
7753 struct intel_super *super = st->sb;
7754 struct migr_record *migr_rec = super->migr_rec;
7755 int new_data_disks;
7756 unsigned long long dsize, dev_sectors;
7757 long long unsigned min_dev_sectors = -1LLU;
7758 struct mdinfo *sd;
7759 char nm[30];
7760 int fd;
7761 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7762 struct imsm_map *map_src = get_imsm_map(dev, 1);
7763 unsigned long long num_migr_units;
3ef4403c 7764 unsigned long long array_blocks;
687629c2
AK
7765
7766 memset(migr_rec, 0, sizeof(struct migr_record));
7767 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
7768
7769 /* only ascending reshape supported now */
7770 migr_rec->ascending_migr = __cpu_to_le32(1);
7771
7772 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
7773 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
7774 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
7775 new_data_disks = imsm_num_data_members(dev, 0);
7776 migr_rec->blocks_per_unit =
7777 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
7778 migr_rec->dest_depth_per_unit =
7779 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 7780 array_blocks = info->component_size * new_data_disks;
687629c2
AK
7781 num_migr_units =
7782 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
7783
7784 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
7785 num_migr_units++;
7786 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
7787
7788 migr_rec->post_migr_vol_cap = dev->size_low;
7789 migr_rec->post_migr_vol_cap_hi = dev->size_high;
7790
7791
7792 /* Find the smallest dev */
7793 for (sd = info->devs ; sd ; sd = sd->next) {
7794 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
7795 fd = dev_open(nm, O_RDONLY);
7796 if (fd < 0)
7797 continue;
7798 get_dev_size(fd, NULL, &dsize);
7799 dev_sectors = dsize / 512;
7800 if (dev_sectors < min_dev_sectors)
7801 min_dev_sectors = dev_sectors;
7802 close(fd);
7803 }
7804 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
7805 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
7806
7807 write_imsm_migr_rec(st);
7808
7809 return;
7810}
7811
7812/*******************************************************************************
7813 * Function: save_backup_imsm
7814 * Description: Function saves critical data stripes to Migration Copy Area
7815 * and updates the current migration unit status.
7816 * Use restore_stripes() to form a destination stripe,
7817 * and to write it to the Copy Area.
7818 * Parameters:
7819 * st : supertype information
aea93171 7820 * dev : imsm device that backup is saved for
687629c2
AK
7821 * info : general array info
7822 * buf : input buffer
687629c2
AK
7823 * length : length of data to backup (blocks_per_unit)
7824 * Returns:
7825 * 0 : success
7826 *, -1 : fail
7827 ******************************************************************************/
7828int save_backup_imsm(struct supertype *st,
7829 struct imsm_dev *dev,
7830 struct mdinfo *info,
7831 void *buf,
687629c2
AK
7832 int length)
7833{
7834 int rv = -1;
7835 struct intel_super *super = st->sb;
7836 unsigned long long *target_offsets = NULL;
7837 int *targets = NULL;
7838 int i;
7839 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7840 int new_disks = map_dest->num_members;
ab724b98
AK
7841 int dest_layout = 0;
7842 int dest_chunk;
d1877f69
AK
7843 unsigned long long start;
7844 int data_disks = imsm_num_data_members(dev, 0);
687629c2
AK
7845
7846 targets = malloc(new_disks * sizeof(int));
7847 if (!targets)
7848 goto abort;
7849
7e45b550
AK
7850 for (i = 0; i < new_disks; i++)
7851 targets[i] = -1;
7852
687629c2
AK
7853 target_offsets = malloc(new_disks * sizeof(unsigned long long));
7854 if (!target_offsets)
7855 goto abort;
7856
d1877f69 7857 start = info->reshape_progress * 512;
687629c2 7858 for (i = 0; i < new_disks; i++) {
687629c2
AK
7859 target_offsets[i] = (unsigned long long)
7860 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
7861 /* move back copy area adderss, it will be moved forward
7862 * in restore_stripes() using start input variable
7863 */
7864 target_offsets[i] -= start/data_disks;
687629c2
AK
7865 }
7866
7867 if (open_backup_targets(info, new_disks, targets))
7868 goto abort;
7869
68eb8bc6 7870 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
7871 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
7872
687629c2
AK
7873 if (restore_stripes(targets, /* list of dest devices */
7874 target_offsets, /* migration record offsets */
7875 new_disks,
ab724b98
AK
7876 dest_chunk,
7877 map_dest->raid_level,
7878 dest_layout,
7879 -1, /* source backup file descriptor */
7880 0, /* input buf offset
7881 * always 0 buf is already offseted */
d1877f69 7882 start,
687629c2
AK
7883 length,
7884 buf) != 0) {
7885 fprintf(stderr, Name ": Error restoring stripes\n");
7886 goto abort;
7887 }
7888
7889 rv = 0;
7890
7891abort:
7892 if (targets) {
7893 for (i = 0; i < new_disks; i++)
7894 if (targets[i] >= 0)
7895 close(targets[i]);
7896 free(targets);
7897 }
7898 free(target_offsets);
7899
7900 return rv;
7901}
7902
7903/*******************************************************************************
7904 * Function: save_checkpoint_imsm
7905 * Description: Function called for current unit status update
7906 * in the migration record. It writes it to disk.
7907 * Parameters:
7908 * super : imsm internal array info
7909 * info : general array info
7910 * Returns:
7911 * 0: success
7912 * 1: failure
0228d92c
AK
7913 * 2: failure, means no valid migration record
7914 * / no general migration in progress /
687629c2
AK
7915 ******************************************************************************/
7916int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
7917{
7918 struct intel_super *super = st->sb;
f8b72ef5
AK
7919 unsigned long long blocks_per_unit;
7920 unsigned long long curr_migr_unit;
7921
2e062e82
AK
7922 if (load_imsm_migr_rec(super, info) != 0) {
7923 dprintf("imsm: ERROR: Cannot read migration record "
7924 "for checkpoint save.\n");
7925 return 1;
7926 }
7927
f8b72ef5
AK
7928 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
7929 if (blocks_per_unit == 0) {
0228d92c
AK
7930 dprintf("imsm: no migration in progress.\n");
7931 return 2;
687629c2 7932 }
f8b72ef5
AK
7933 curr_migr_unit = info->reshape_progress / blocks_per_unit;
7934 /* check if array is alligned to copy area
7935 * if it is not alligned, add one to current migration unit value
7936 * this can happend on array reshape finish only
7937 */
7938 if (info->reshape_progress % blocks_per_unit)
7939 curr_migr_unit++;
687629c2
AK
7940
7941 super->migr_rec->curr_migr_unit =
f8b72ef5 7942 __cpu_to_le32(curr_migr_unit);
687629c2
AK
7943 super->migr_rec->rec_status = __cpu_to_le32(state);
7944 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
7945 __cpu_to_le32(curr_migr_unit *
7946 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2
AK
7947 if (write_imsm_migr_rec(st) < 0) {
7948 dprintf("imsm: Cannot write migration record "
7949 "outside backup area\n");
7950 return 1;
7951 }
7952
7953 return 0;
7954}
7955
276d77db
AK
7956static __u64 blocks_per_migr_unit(struct intel_super *super,
7957 struct imsm_dev *dev);
7958
7959/*******************************************************************************
7960 * Function: recover_backup_imsm
7961 * Description: Function recovers critical data from the Migration Copy Area
7962 * while assembling an array.
7963 * Parameters:
7964 * super : imsm internal array info
7965 * info : general array info
7966 * Returns:
7967 * 0 : success (or there is no data to recover)
7968 * 1 : fail
7969 ******************************************************************************/
7970int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
7971{
7972 struct intel_super *super = st->sb;
7973 struct migr_record *migr_rec = super->migr_rec;
7974 struct imsm_map *map_dest = NULL;
7975 struct intel_dev *id = NULL;
7976 unsigned long long read_offset;
7977 unsigned long long write_offset;
7978 unsigned unit_len;
7979 int *targets = NULL;
7980 int new_disks, i, err;
7981 char *buf = NULL;
7982 int retval = 1;
7983 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
7984 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 7985 char buffer[20];
6c3560c0
AK
7986 int skipped_disks = 0;
7987 int max_degradation;
276d77db
AK
7988
7989 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
7990 if (err < 1)
7991 return 1;
7992
7993 /* recover data only during assemblation */
7994 if (strncmp(buffer, "inactive", 8) != 0)
7995 return 0;
7996 /* no data to recover */
7997 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
7998 return 0;
7999 if (curr_migr_unit >= num_migr_units)
8000 return 1;
8001
8002 /* find device during reshape */
8003 for (id = super->devlist; id; id = id->next)
8004 if (is_gen_migration(id->dev))
8005 break;
8006 if (id == NULL)
8007 return 1;
8008
8009 map_dest = get_imsm_map(id->dev, 0);
8010 new_disks = map_dest->num_members;
6c3560c0 8011 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
276d77db
AK
8012
8013 read_offset = (unsigned long long)
8014 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8015
8016 write_offset = ((unsigned long long)
8017 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
75b69ea4 8018 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
276d77db
AK
8019
8020 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8021 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8022 goto abort;
8023 targets = malloc(new_disks * sizeof(int));
8024 if (!targets)
8025 goto abort;
8026
8027 open_backup_targets(info, new_disks, targets);
8028
8029 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
8030 if (targets[i] < 0) {
8031 skipped_disks++;
8032 continue;
8033 }
276d77db
AK
8034 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8035 fprintf(stderr,
8036 Name ": Cannot seek to block: %s\n",
8037 strerror(errno));
8038 goto abort;
8039 }
8040 if (read(targets[i], buf, unit_len) != unit_len) {
8041 fprintf(stderr,
8042 Name ": Cannot read copy area block: %s\n",
8043 strerror(errno));
8044 goto abort;
8045 }
8046 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8047 fprintf(stderr,
8048 Name ": Cannot seek to block: %s\n",
8049 strerror(errno));
8050 goto abort;
8051 }
8052 if (write(targets[i], buf, unit_len) != unit_len) {
8053 fprintf(stderr,
8054 Name ": Cannot restore block: %s\n",
8055 strerror(errno));
8056 goto abort;
8057 }
8058 }
8059
6c3560c0
AK
8060 if (skipped_disks > max_degradation) {
8061 fprintf(stderr,
8062 Name ": Cannot restore data from backup."
8063 " Too many failed disks\n");
8064 goto abort;
8065 }
8066
befb629b
AK
8067 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8068 /* ignore error == 2, this can mean end of reshape here
8069 */
8070 dprintf("imsm: Cannot write checkpoint to "
8071 "migration record (UNIT_SRC_NORMAL) during restart\n");
8072 } else
276d77db 8073 retval = 0;
276d77db
AK
8074
8075abort:
8076 if (targets) {
8077 for (i = 0; i < new_disks; i++)
8078 if (targets[i])
8079 close(targets[i]);
8080 free(targets);
8081 }
8082 free(buf);
8083 return retval;
8084}
8085
2cda7640
ML
8086static char disk_by_path[] = "/dev/disk/by-path/";
8087
8088static const char *imsm_get_disk_controller_domain(const char *path)
8089{
2cda7640 8090 char disk_path[PATH_MAX];
96234762
LM
8091 char *drv=NULL;
8092 struct stat st;
2cda7640 8093
96234762
LM
8094 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8095 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8096 if (stat(disk_path, &st) == 0) {
8097 struct sys_dev* hba;
8098 char *path=NULL;
8099
8100 path = devt_to_devpath(st.st_rdev);
8101 if (path == NULL)
8102 return "unknown";
8103 hba = find_disk_attached_hba(-1, path);
8104 if (hba && hba->type == SYS_DEV_SAS)
8105 drv = "isci";
8106 else if (hba && hba->type == SYS_DEV_SATA)
8107 drv = "ahci";
8108 else
8109 drv = "unknown";
8110 dprintf("path: %s hba: %s attached: %s\n",
8111 path, (hba) ? hba->path : "NULL", drv);
8112 free(path);
8113 if (hba)
8114 free_sys_dev(&hba);
2cda7640 8115 }
96234762 8116 return drv;
2cda7640
ML
8117}
8118
78b10e66
N
8119static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8120{
8121 char subdev_name[20];
8122 struct mdstat_ent *mdstat;
8123
8124 sprintf(subdev_name, "%d", subdev);
8125 mdstat = mdstat_by_subdev(subdev_name, container);
8126 if (!mdstat)
8127 return -1;
8128
8129 *minor = mdstat->devnum;
8130 free_mdstat(mdstat);
8131 return 0;
8132}
8133
8134static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8135 struct geo_params *geo,
8136 int *old_raid_disks)
8137{
694575e7
KW
8138 /* currently we only support increasing the number of devices
8139 * for a container. This increases the number of device for each
8140 * member array. They must all be RAID0 or RAID5.
8141 */
78b10e66
N
8142 int ret_val = 0;
8143 struct mdinfo *info, *member;
8144 int devices_that_can_grow = 0;
8145
8146 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8147 "st->devnum = (%i)\n",
8148 st->devnum);
8149
8150 if (geo->size != -1 ||
8151 geo->level != UnSet ||
8152 geo->layout != UnSet ||
8153 geo->chunksize != 0 ||
8154 geo->raid_disks == UnSet) {
8155 dprintf("imsm: Container operation is allowed for "
8156 "raid disks number change only.\n");
8157 return ret_val;
8158 }
8159
8160 info = container_content_imsm(st, NULL);
8161 for (member = info; member; member = member->next) {
8162 int result;
8163 int minor;
8164
8165 dprintf("imsm: checking device_num: %i\n",
8166 member->container_member);
8167
d7d205bd 8168 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
8169 /* we work on container for Online Capacity Expansion
8170 * only so raid_disks has to grow
8171 */
8172 dprintf("imsm: for container operation raid disks "
8173 "increase is required\n");
8174 break;
8175 }
8176
8177 if ((info->array.level != 0) &&
8178 (info->array.level != 5)) {
8179 /* we cannot use this container with other raid level
8180 */
690aae1a 8181 dprintf("imsm: for container operation wrong"
78b10e66
N
8182 " raid level (%i) detected\n",
8183 info->array.level);
8184 break;
8185 } else {
8186 /* check for platform support
8187 * for this raid level configuration
8188 */
8189 struct intel_super *super = st->sb;
8190 if (!is_raid_level_supported(super->orom,
8191 member->array.level,
8192 geo->raid_disks)) {
690aae1a 8193 dprintf("platform does not support raid%d with"
78b10e66
N
8194 " %d disk%s\n",
8195 info->array.level,
8196 geo->raid_disks,
8197 geo->raid_disks > 1 ? "s" : "");
8198 break;
8199 }
2a4a08e7
AK
8200 /* check if component size is aligned to chunk size
8201 */
8202 if (info->component_size %
8203 (info->array.chunk_size/512)) {
8204 dprintf("Component size is not aligned to "
8205 "chunk size\n");
8206 break;
8207 }
78b10e66
N
8208 }
8209
8210 if (*old_raid_disks &&
8211 info->array.raid_disks != *old_raid_disks)
8212 break;
8213 *old_raid_disks = info->array.raid_disks;
8214
8215 /* All raid5 and raid0 volumes in container
8216 * have to be ready for Online Capacity Expansion
8217 * so they need to be assembled. We have already
8218 * checked that no recovery etc is happening.
8219 */
8220 result = imsm_find_array_minor_by_subdev(member->container_member,
8221 st->container_dev,
8222 &minor);
8223 if (result < 0) {
8224 dprintf("imsm: cannot find array\n");
8225 break;
8226 }
8227 devices_that_can_grow++;
8228 }
8229 sysfs_free(info);
8230 if (!member && devices_that_can_grow)
8231 ret_val = 1;
8232
8233 if (ret_val)
8234 dprintf("\tContainer operation allowed\n");
8235 else
8236 dprintf("\tError: %i\n", ret_val);
8237
8238 return ret_val;
8239}
8240
8241/* Function: get_spares_for_grow
8242 * Description: Allocates memory and creates list of spare devices
8243 * avaliable in container. Checks if spare drive size is acceptable.
8244 * Parameters: Pointer to the supertype structure
8245 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8246 * NULL if fail
8247 */
8248static struct mdinfo *get_spares_for_grow(struct supertype *st)
8249{
78b10e66 8250 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 8251 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
8252}
8253
8254/******************************************************************************
8255 * function: imsm_create_metadata_update_for_reshape
8256 * Function creates update for whole IMSM container.
8257 *
8258 ******************************************************************************/
8259static int imsm_create_metadata_update_for_reshape(
8260 struct supertype *st,
8261 struct geo_params *geo,
8262 int old_raid_disks,
8263 struct imsm_update_reshape **updatep)
8264{
8265 struct intel_super *super = st->sb;
8266 struct imsm_super *mpb = super->anchor;
8267 int update_memory_size = 0;
8268 struct imsm_update_reshape *u = NULL;
8269 struct mdinfo *spares = NULL;
8270 int i;
8271 int delta_disks = 0;
bbd24d86 8272 struct mdinfo *dev;
78b10e66
N
8273
8274 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8275 geo->raid_disks);
8276
8277 delta_disks = geo->raid_disks - old_raid_disks;
8278
8279 /* size of all update data without anchor */
8280 update_memory_size = sizeof(struct imsm_update_reshape);
8281
8282 /* now add space for spare disks that we need to add. */
8283 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8284
8285 u = calloc(1, update_memory_size);
8286 if (u == NULL) {
8287 dprintf("error: "
8288 "cannot get memory for imsm_update_reshape update\n");
8289 return 0;
8290 }
8291 u->type = update_reshape_container_disks;
8292 u->old_raid_disks = old_raid_disks;
8293 u->new_raid_disks = geo->raid_disks;
8294
8295 /* now get spare disks list
8296 */
8297 spares = get_spares_for_grow(st);
8298
8299 if (spares == NULL
8300 || delta_disks > spares->array.spare_disks) {
e14e5960
KW
8301 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8302 "for %s.\n", geo->dev_name);
78b10e66
N
8303 goto abort;
8304 }
8305
8306 /* we have got spares
8307 * update disk list in imsm_disk list table in anchor
8308 */
8309 dprintf("imsm: %i spares are available.\n\n",
8310 spares->array.spare_disks);
8311
bbd24d86 8312 dev = spares->devs;
78b10e66 8313 for (i = 0; i < delta_disks; i++) {
78b10e66
N
8314 struct dl *dl;
8315
bbd24d86
AK
8316 if (dev == NULL)
8317 break;
78b10e66
N
8318 u->new_disks[i] = makedev(dev->disk.major,
8319 dev->disk.minor);
8320 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
8321 dl->index = mpb->num_disks;
8322 mpb->num_disks++;
bbd24d86 8323 dev = dev->next;
78b10e66 8324 }
78b10e66
N
8325
8326abort:
8327 /* free spares
8328 */
8329 sysfs_free(spares);
8330
d677e0b8 8331 dprintf("imsm: reshape update preparation :");
78b10e66 8332 if (i == delta_disks) {
d677e0b8 8333 dprintf(" OK\n");
78b10e66
N
8334 *updatep = u;
8335 return update_memory_size;
8336 }
8337 free(u);
d677e0b8 8338 dprintf(" Error\n");
78b10e66
N
8339
8340 return 0;
8341}
8342
48c5303a
PC
8343/******************************************************************************
8344 * function: imsm_create_metadata_update_for_migration()
8345 * Creates update for IMSM array.
8346 *
8347 ******************************************************************************/
8348static int imsm_create_metadata_update_for_migration(
8349 struct supertype *st,
8350 struct geo_params *geo,
8351 struct imsm_update_reshape_migration **updatep)
8352{
8353 struct intel_super *super = st->sb;
8354 int update_memory_size = 0;
8355 struct imsm_update_reshape_migration *u = NULL;
8356 struct imsm_dev *dev;
8357 int previous_level = -1;
8358
8359 dprintf("imsm_create_metadata_update_for_migration(enter)"
8360 " New Level = %i\n", geo->level);
8361
8362 /* size of all update data without anchor */
8363 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8364
8365 u = calloc(1, update_memory_size);
8366 if (u == NULL) {
8367 dprintf("error: cannot get memory for "
8368 "imsm_create_metadata_update_for_migration\n");
8369 return 0;
8370 }
8371 u->type = update_reshape_migration;
8372 u->subdev = super->current_vol;
8373 u->new_level = geo->level;
8374 u->new_layout = geo->layout;
8375 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8376 u->new_disks[0] = -1;
4bba0439 8377 u->new_chunksize = -1;
48c5303a
PC
8378
8379 dev = get_imsm_dev(super, u->subdev);
8380 if (dev) {
8381 struct imsm_map *map;
8382
8383 map = get_imsm_map(dev, 0);
4bba0439
PC
8384 if (map) {
8385 int current_chunk_size =
8386 __le16_to_cpu(map->blocks_per_strip) / 2;
8387
8388 if (geo->chunksize != current_chunk_size) {
8389 u->new_chunksize = geo->chunksize / 1024;
8390 dprintf("imsm: "
8391 "chunk size change from %i to %i\n",
8392 current_chunk_size, u->new_chunksize);
8393 }
48c5303a 8394 previous_level = map->raid_level;
4bba0439 8395 }
48c5303a
PC
8396 }
8397 if ((geo->level == 5) && (previous_level == 0)) {
8398 struct mdinfo *spares = NULL;
8399
8400 u->new_raid_disks++;
8401 spares = get_spares_for_grow(st);
8402 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8403 free(u);
8404 sysfs_free(spares);
8405 update_memory_size = 0;
8406 dprintf("error: cannot get spare device "
8407 "for requested migration");
8408 return 0;
8409 }
8410 sysfs_free(spares);
8411 }
8412 dprintf("imsm: reshape update preparation : OK\n");
8413 *updatep = u;
8414
8415 return update_memory_size;
8416}
8417
8dd70bce
AK
8418static void imsm_update_metadata_locally(struct supertype *st,
8419 void *buf, int len)
8420{
8421 struct metadata_update mu;
8422
8423 mu.buf = buf;
8424 mu.len = len;
8425 mu.space = NULL;
8426 mu.space_list = NULL;
8427 mu.next = NULL;
8428 imsm_prepare_update(st, &mu);
8429 imsm_process_update(st, &mu);
8430
8431 while (mu.space_list) {
8432 void **space = mu.space_list;
8433 mu.space_list = *space;
8434 free(space);
8435 }
8436}
78b10e66 8437
471bceb6 8438/***************************************************************************
694575e7 8439* Function: imsm_analyze_change
471bceb6
KW
8440* Description: Function analyze change for single volume
8441* and validate if transition is supported
694575e7
KW
8442* Parameters: Geometry parameters, supertype structure
8443* Returns: Operation type code on success, -1 if fail
471bceb6
KW
8444****************************************************************************/
8445enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8446 struct geo_params *geo)
694575e7 8447{
471bceb6
KW
8448 struct mdinfo info;
8449 int change = -1;
8450 int check_devs = 0;
c21e737b 8451 int chunk;
471bceb6
KW
8452
8453 getinfo_super_imsm_volume(st, &info, NULL);
471bceb6
KW
8454 if ((geo->level != info.array.level) &&
8455 (geo->level >= 0) &&
8456 (geo->level != UnSet)) {
8457 switch (info.array.level) {
8458 case 0:
8459 if (geo->level == 5) {
b5347799 8460 change = CH_MIGRATION;
e13ce846
AK
8461 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8462 fprintf(stderr,
8463 Name " Error. Requested Layout "
8464 "not supported (left-asymmetric layout "
8465 "is supported only)!\n");
8466 change = -1;
8467 goto analyse_change_exit;
8468 }
471bceb6
KW
8469 check_devs = 1;
8470 }
8471 if (geo->level == 10) {
8472 change = CH_TAKEOVER;
8473 check_devs = 1;
8474 }
dfe77a9e
KW
8475 break;
8476 case 1:
8477 if (geo->level == 0) {
8478 change = CH_TAKEOVER;
8479 check_devs = 1;
8480 }
471bceb6 8481 break;
471bceb6
KW
8482 case 10:
8483 if (geo->level == 0) {
8484 change = CH_TAKEOVER;
8485 check_devs = 1;
8486 }
8487 break;
8488 }
8489 if (change == -1) {
8490 fprintf(stderr,
8491 Name " Error. Level Migration from %d to %d "
8492 "not supported!\n",
8493 info.array.level, geo->level);
8494 goto analyse_change_exit;
8495 }
8496 } else
8497 geo->level = info.array.level;
8498
8499 if ((geo->layout != info.array.layout)
8500 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 8501 change = CH_MIGRATION;
471bceb6
KW
8502 if ((info.array.layout == 0)
8503 && (info.array.level == 5)
8504 && (geo->layout == 5)) {
8505 /* reshape 5 -> 4 */
8506 } else if ((info.array.layout == 5)
8507 && (info.array.level == 5)
8508 && (geo->layout == 0)) {
8509 /* reshape 4 -> 5 */
8510 geo->layout = 0;
8511 geo->level = 5;
8512 } else {
8513 fprintf(stderr,
8514 Name " Error. Layout Migration from %d to %d "
8515 "not supported!\n",
8516 info.array.layout, geo->layout);
8517 change = -1;
8518 goto analyse_change_exit;
8519 }
8520 } else
8521 geo->layout = info.array.layout;
8522
8523 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8524 && (geo->chunksize != info.array.chunk_size))
b5347799 8525 change = CH_MIGRATION;
471bceb6
KW
8526 else
8527 geo->chunksize = info.array.chunk_size;
8528
c21e737b 8529 chunk = geo->chunksize / 1024;
471bceb6
KW
8530 if (!validate_geometry_imsm(st,
8531 geo->level,
8532 geo->layout,
8533 geo->raid_disks,
c21e737b 8534 &chunk,
471bceb6
KW
8535 geo->size,
8536 0, 0, 1))
8537 change = -1;
8538
8539 if (check_devs) {
8540 struct intel_super *super = st->sb;
8541 struct imsm_super *mpb = super->anchor;
8542
8543 if (mpb->num_raid_devs > 1) {
8544 fprintf(stderr,
8545 Name " Error. Cannot perform operation on %s"
8546 "- for this operation it MUST be single "
8547 "array in container\n",
8548 geo->dev_name);
8549 change = -1;
8550 }
8551 }
8552
8553analyse_change_exit:
8554
8555 return change;
694575e7
KW
8556}
8557
bb025c2f
KW
8558int imsm_takeover(struct supertype *st, struct geo_params *geo)
8559{
8560 struct intel_super *super = st->sb;
8561 struct imsm_update_takeover *u;
8562
8563 u = malloc(sizeof(struct imsm_update_takeover));
8564 if (u == NULL)
8565 return 1;
8566
8567 u->type = update_takeover;
8568 u->subarray = super->current_vol;
8569
8570 /* 10->0 transition */
8571 if (geo->level == 0)
8572 u->direction = R10_TO_R0;
8573
0529c688
KW
8574 /* 0->10 transition */
8575 if (geo->level == 10)
8576 u->direction = R0_TO_R10;
8577
bb025c2f
KW
8578 /* update metadata locally */
8579 imsm_update_metadata_locally(st, u,
8580 sizeof(struct imsm_update_takeover));
8581 /* and possibly remotely */
8582 if (st->update_tail)
8583 append_metadata_update(st, u,
8584 sizeof(struct imsm_update_takeover));
8585 else
8586 free(u);
8587
8588 return 0;
8589}
8590
78b10e66
N
8591static int imsm_reshape_super(struct supertype *st, long long size, int level,
8592 int layout, int chunksize, int raid_disks,
41784c88
AK
8593 int delta_disks, char *backup, char *dev,
8594 int verbose)
78b10e66 8595{
78b10e66
N
8596 int ret_val = 1;
8597 struct geo_params geo;
8598
8599 dprintf("imsm: reshape_super called.\n");
8600
71204a50 8601 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
8602
8603 geo.dev_name = dev;
694575e7 8604 geo.dev_id = st->devnum;
78b10e66
N
8605 geo.size = size;
8606 geo.level = level;
8607 geo.layout = layout;
8608 geo.chunksize = chunksize;
8609 geo.raid_disks = raid_disks;
41784c88
AK
8610 if (delta_disks != UnSet)
8611 geo.raid_disks += delta_disks;
78b10e66
N
8612
8613 dprintf("\tfor level : %i\n", geo.level);
8614 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8615
8616 if (experimental() == 0)
8617 return ret_val;
8618
78b10e66 8619 if (st->container_dev == st->devnum) {
694575e7
KW
8620 /* On container level we can only increase number of devices. */
8621 dprintf("imsm: info: Container operation\n");
78b10e66 8622 int old_raid_disks = 0;
6dc0be30 8623
78b10e66
N
8624 if (imsm_reshape_is_allowed_on_container(
8625 st, &geo, &old_raid_disks)) {
8626 struct imsm_update_reshape *u = NULL;
8627 int len;
8628
8629 len = imsm_create_metadata_update_for_reshape(
8630 st, &geo, old_raid_disks, &u);
8631
ed08d51c
AK
8632 if (len <= 0) {
8633 dprintf("imsm: Cannot prepare update\n");
8634 goto exit_imsm_reshape_super;
8635 }
8636
8dd70bce
AK
8637 ret_val = 0;
8638 /* update metadata locally */
8639 imsm_update_metadata_locally(st, u, len);
8640 /* and possibly remotely */
8641 if (st->update_tail)
8642 append_metadata_update(st, u, len);
8643 else
ed08d51c 8644 free(u);
8dd70bce 8645
694575e7 8646 } else {
e7ff7e40
AK
8647 fprintf(stderr, Name ": (imsm) Operation "
8648 "is not allowed on this container\n");
694575e7
KW
8649 }
8650 } else {
8651 /* On volume level we support following operations
471bceb6
KW
8652 * - takeover: raid10 -> raid0; raid0 -> raid10
8653 * - chunk size migration
8654 * - migration: raid5 -> raid0; raid0 -> raid5
8655 */
8656 struct intel_super *super = st->sb;
8657 struct intel_dev *dev = super->devlist;
8658 int change, devnum;
694575e7 8659 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
8660 /* find requested device */
8661 while (dev) {
8662 imsm_find_array_minor_by_subdev(dev->index, st->container_dev, &devnum);
8663 if (devnum == geo.dev_id)
8664 break;
8665 dev = dev->next;
8666 }
8667 if (dev == NULL) {
8668 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8669 geo.dev_name, geo.dev_id);
8670 goto exit_imsm_reshape_super;
8671 }
8672 super->current_vol = dev->index;
694575e7
KW
8673 change = imsm_analyze_change(st, &geo);
8674 switch (change) {
471bceb6 8675 case CH_TAKEOVER:
bb025c2f 8676 ret_val = imsm_takeover(st, &geo);
694575e7 8677 break;
48c5303a
PC
8678 case CH_MIGRATION: {
8679 struct imsm_update_reshape_migration *u = NULL;
8680 int len =
8681 imsm_create_metadata_update_for_migration(
8682 st, &geo, &u);
8683 if (len < 1) {
8684 dprintf("imsm: "
8685 "Cannot prepare update\n");
8686 break;
8687 }
471bceb6 8688 ret_val = 0;
48c5303a
PC
8689 /* update metadata locally */
8690 imsm_update_metadata_locally(st, u, len);
8691 /* and possibly remotely */
8692 if (st->update_tail)
8693 append_metadata_update(st, u, len);
8694 else
8695 free(u);
8696 }
8697 break;
471bceb6
KW
8698 default:
8699 ret_val = 1;
694575e7 8700 }
694575e7 8701 }
78b10e66 8702
ed08d51c 8703exit_imsm_reshape_super:
78b10e66
N
8704 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8705 return ret_val;
8706}
2cda7640 8707
eee67a47
AK
8708/*******************************************************************************
8709 * Function: wait_for_reshape_imsm
8710 * Description: Function writes new sync_max value and waits until
8711 * reshape process reach new position
8712 * Parameters:
8713 * sra : general array info
eee67a47
AK
8714 * ndata : number of disks in new array's layout
8715 * Returns:
8716 * 0 : success,
8717 * 1 : there is no reshape in progress,
8718 * -1 : fail
8719 ******************************************************************************/
ae9f01f8 8720int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47
AK
8721{
8722 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8723 unsigned long long completed;
ae9f01f8
AK
8724 /* to_complete : new sync_max position */
8725 unsigned long long to_complete = sra->reshape_progress;
8726 unsigned long long position_to_set = to_complete / ndata;
eee67a47 8727
ae9f01f8
AK
8728 if (fd < 0) {
8729 dprintf("imsm: wait_for_reshape_imsm() "
8730 "cannot open reshape_position\n");
eee67a47 8731 return 1;
ae9f01f8 8732 }
eee67a47 8733
ae9f01f8
AK
8734 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8735 dprintf("imsm: wait_for_reshape_imsm() "
8736 "cannot read reshape_position (no reshape in progres)\n");
8737 close(fd);
8738 return 0;
8739 }
eee67a47 8740
ae9f01f8
AK
8741 if (completed > to_complete) {
8742 dprintf("imsm: wait_for_reshape_imsm() "
8743 "wrong next position to set %llu (%llu)\n",
8744 to_complete, completed);
8745 close(fd);
8746 return -1;
8747 }
8748 dprintf("Position set: %llu\n", position_to_set);
8749 if (sysfs_set_num(sra, NULL, "sync_max",
8750 position_to_set) != 0) {
8751 dprintf("imsm: wait_for_reshape_imsm() "
8752 "cannot set reshape position to %llu\n",
8753 position_to_set);
8754 close(fd);
8755 return -1;
eee67a47
AK
8756 }
8757
eee67a47
AK
8758 do {
8759 char action[20];
8760 fd_set rfds;
8761 FD_ZERO(&rfds);
8762 FD_SET(fd, &rfds);
a47e44fb
AK
8763 select(fd+1, &rfds, NULL, NULL, NULL);
8764 if (sysfs_get_str(sra, NULL, "sync_action",
8765 action, 20) > 0 &&
8766 strncmp(action, "reshape", 7) != 0)
8767 break;
eee67a47 8768 if (sysfs_fd_get_ll(fd, &completed) < 0) {
ae9f01f8
AK
8769 dprintf("imsm: wait_for_reshape_imsm() "
8770 "cannot read reshape_position (in loop)\n");
eee67a47
AK
8771 close(fd);
8772 return 1;
8773 }
eee67a47
AK
8774 } while (completed < to_complete);
8775 close(fd);
8776 return 0;
8777
8778}
8779
b915c95f
AK
8780/*******************************************************************************
8781 * Function: check_degradation_change
8782 * Description: Check that array hasn't become failed.
8783 * Parameters:
8784 * info : for sysfs access
8785 * sources : source disks descriptors
8786 * degraded: previous degradation level
8787 * Returns:
8788 * degradation level
8789 ******************************************************************************/
8790int check_degradation_change(struct mdinfo *info,
8791 int *sources,
8792 int degraded)
8793{
8794 unsigned long long new_degraded;
8795 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
8796 if (new_degraded != (unsigned long long)degraded) {
8797 /* check each device to ensure it is still working */
8798 struct mdinfo *sd;
8799 new_degraded = 0;
8800 for (sd = info->devs ; sd ; sd = sd->next) {
8801 if (sd->disk.state & (1<<MD_DISK_FAULTY))
8802 continue;
8803 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
8804 char sbuf[20];
8805 if (sysfs_get_str(info,
8806 sd, "state", sbuf, 20) < 0 ||
8807 strstr(sbuf, "faulty") ||
8808 strstr(sbuf, "in_sync") == NULL) {
8809 /* this device is dead */
8810 sd->disk.state = (1<<MD_DISK_FAULTY);
8811 if (sd->disk.raid_disk >= 0 &&
8812 sources[sd->disk.raid_disk] >= 0) {
8813 close(sources[
8814 sd->disk.raid_disk]);
8815 sources[sd->disk.raid_disk] =
8816 -1;
8817 }
8818 new_degraded++;
8819 }
8820 }
8821 }
8822 }
8823
8824 return new_degraded;
8825}
8826
10f22854
AK
8827/*******************************************************************************
8828 * Function: imsm_manage_reshape
8829 * Description: Function finds array under reshape and it manages reshape
8830 * process. It creates stripes backups (if required) and sets
8831 * checheckpoits.
8832 * Parameters:
8833 * afd : Backup handle (nattive) - not used
8834 * sra : general array info
8835 * reshape : reshape parameters - not used
8836 * st : supertype structure
8837 * blocks : size of critical section [blocks]
8838 * fds : table of source device descriptor
8839 * offsets : start of array (offest per devices)
8840 * dests : not used
8841 * destfd : table of destination device descriptor
8842 * destoffsets : table of destination offsets (per device)
8843 * Returns:
8844 * 1 : success, reshape is done
8845 * 0 : fail
8846 ******************************************************************************/
999b4972
N
8847static int imsm_manage_reshape(
8848 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 8849 struct supertype *st, unsigned long backup_blocks,
999b4972
N
8850 int *fds, unsigned long long *offsets,
8851 int dests, int *destfd, unsigned long long *destoffsets)
8852{
10f22854
AK
8853 int ret_val = 0;
8854 struct intel_super *super = st->sb;
8855 struct intel_dev *dv = NULL;
8856 struct imsm_dev *dev = NULL;
a6b6d984 8857 struct imsm_map *map_src;
10f22854
AK
8858 int migr_vol_qan = 0;
8859 int ndata, odata; /* [bytes] */
8860 int chunk; /* [bytes] */
8861 struct migr_record *migr_rec;
8862 char *buf = NULL;
8863 unsigned int buf_size; /* [bytes] */
8864 unsigned long long max_position; /* array size [bytes] */
8865 unsigned long long next_step; /* [blocks]/[bytes] */
8866 unsigned long long old_data_stripe_length;
10f22854
AK
8867 unsigned long long start_src; /* [bytes] */
8868 unsigned long long start; /* [bytes] */
8869 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 8870 int degraded = 0;
ab724b98 8871 int source_layout = 0;
10f22854 8872
1ab242d8 8873 if (!fds || !offsets || !sra)
10f22854
AK
8874 goto abort;
8875
8876 /* Find volume during the reshape */
8877 for (dv = super->devlist; dv; dv = dv->next) {
8878 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
8879 && dv->dev->vol.migr_state == 1) {
8880 dev = dv->dev;
8881 migr_vol_qan++;
8882 }
8883 }
8884 /* Only one volume can migrate at the same time */
8885 if (migr_vol_qan != 1) {
8886 fprintf(stderr, Name " : %s", migr_vol_qan ?
8887 "Number of migrating volumes greater than 1\n" :
8888 "There is no volume during migrationg\n");
8889 goto abort;
8890 }
8891
8892 map_src = get_imsm_map(dev, 1);
8893 if (map_src == NULL)
8894 goto abort;
10f22854
AK
8895
8896 ndata = imsm_num_data_members(dev, 0);
8897 odata = imsm_num_data_members(dev, 1);
8898
7b1ab482 8899 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
8900 old_data_stripe_length = odata * chunk;
8901
8902 migr_rec = super->migr_rec;
8903
10f22854
AK
8904 /* initialize migration record for start condition */
8905 if (sra->reshape_progress == 0)
8906 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
8907 else {
8908 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
8909 dprintf("imsm: cannot restart migration when data "
8910 "are present in copy area.\n");
8911 goto abort;
8912 }
8913 }
10f22854
AK
8914
8915 /* size for data */
8916 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
8917 /* extend buffer size for parity disk */
8918 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8919 /* add space for stripe aligment */
8920 buf_size += old_data_stripe_length;
8921 if (posix_memalign((void **)&buf, 4096, buf_size)) {
8922 dprintf("imsm: Cannot allocate checpoint buffer\n");
8923 goto abort;
8924 }
8925
3ef4403c 8926 max_position = sra->component_size * ndata;
68eb8bc6 8927 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
8928
8929 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
8930 __le32_to_cpu(migr_rec->num_migr_units)) {
8931 /* current reshape position [blocks] */
8932 unsigned long long current_position =
8933 __le32_to_cpu(migr_rec->blocks_per_unit)
8934 * __le32_to_cpu(migr_rec->curr_migr_unit);
8935 unsigned long long border;
8936
b915c95f
AK
8937 /* Check that array hasn't become failed.
8938 */
8939 degraded = check_degradation_change(sra, fds, degraded);
8940 if (degraded > 1) {
8941 dprintf("imsm: Abort reshape due to degradation"
8942 " level (%i)\n", degraded);
8943 goto abort;
8944 }
8945
10f22854
AK
8946 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
8947
8948 if ((current_position + next_step) > max_position)
8949 next_step = max_position - current_position;
8950
92144abf 8951 start = current_position * 512;
10f22854
AK
8952
8953 /* allign reading start to old geometry */
8954 start_buf_shift = start % old_data_stripe_length;
8955 start_src = start - start_buf_shift;
8956
8957 border = (start_src / odata) - (start / ndata);
8958 border /= 512;
8959 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
8960 /* save critical stripes to buf
8961 * start - start address of current unit
8962 * to backup [bytes]
8963 * start_src - start address of current unit
8964 * to backup alligned to source array
8965 * [bytes]
8966 */
8967 unsigned long long next_step_filler = 0;
8968 unsigned long long copy_length = next_step * 512;
8969
8970 /* allign copy area length to stripe in old geometry */
8971 next_step_filler = ((copy_length + start_buf_shift)
8972 % old_data_stripe_length);
8973 if (next_step_filler)
8974 next_step_filler = (old_data_stripe_length
8975 - next_step_filler);
8976 dprintf("save_stripes() parameters: start = %llu,"
8977 "\tstart_src = %llu,\tnext_step*512 = %llu,"
8978 "\tstart_in_buf_shift = %llu,"
8979 "\tnext_step_filler = %llu\n",
8980 start, start_src, copy_length,
8981 start_buf_shift, next_step_filler);
8982
8983 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
8984 chunk, map_src->raid_level,
8985 source_layout, 0, NULL, start_src,
10f22854
AK
8986 copy_length +
8987 next_step_filler + start_buf_shift,
8988 buf)) {
8989 dprintf("imsm: Cannot save stripes"
8990 " to buffer\n");
8991 goto abort;
8992 }
8993 /* Convert data to destination format and store it
8994 * in backup general migration area
8995 */
8996 if (save_backup_imsm(st, dev, sra,
aea93171 8997 buf + start_buf_shift, copy_length)) {
10f22854
AK
8998 dprintf("imsm: Cannot save stripes to "
8999 "target devices\n");
9000 goto abort;
9001 }
9002 if (save_checkpoint_imsm(st, sra,
9003 UNIT_SRC_IN_CP_AREA)) {
9004 dprintf("imsm: Cannot write checkpoint to "
9005 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9006 goto abort;
9007 }
8016a6d4
AK
9008 } else {
9009 /* set next step to use whole border area */
9010 border /= next_step;
9011 if (border > 1)
9012 next_step *= border;
10f22854
AK
9013 }
9014 /* When data backed up, checkpoint stored,
9015 * kick the kernel to reshape unit of data
9016 */
9017 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
9018 /* limit next step to array max position */
9019 if (next_step > max_position)
9020 next_step = max_position;
10f22854
AK
9021 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9022 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 9023 sra->reshape_progress = next_step;
10f22854
AK
9024
9025 /* wait until reshape finish */
ae9f01f8 9026 if (wait_for_reshape_imsm(sra, ndata) < 0) {
c47b0ff6
AK
9027 dprintf("wait_for_reshape_imsm returned error!\n");
9028 goto abort;
9029 }
10f22854 9030
0228d92c
AK
9031 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9032 /* ignore error == 2, this can mean end of reshape here
9033 */
10f22854
AK
9034 dprintf("imsm: Cannot write checkpoint to "
9035 "migration record (UNIT_SRC_NORMAL)\n");
9036 goto abort;
9037 }
9038
9039 }
9040
9041 /* return '1' if done */
9042 ret_val = 1;
9043abort:
9044 free(buf);
9045 abort_reshape(sra);
9046
9047 return ret_val;
999b4972 9048}
71204a50 9049#endif /* MDASSEMBLE */
999b4972 9050
cdddbdbc
DW
9051struct superswitch super_imsm = {
9052#ifndef MDASSEMBLE
9053 .examine_super = examine_super_imsm,
9054 .brief_examine_super = brief_examine_super_imsm,
4737ae25 9055 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 9056 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
9057 .detail_super = detail_super_imsm,
9058 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 9059 .write_init_super = write_init_super_imsm,
0e600426
N
9060 .validate_geometry = validate_geometry_imsm,
9061 .add_to_super = add_to_super_imsm,
1a64be56 9062 .remove_from_super = remove_from_super_imsm,
d665cc31 9063 .detail_platform = detail_platform_imsm,
33414a01 9064 .kill_subarray = kill_subarray_imsm,
aa534678 9065 .update_subarray = update_subarray_imsm,
2b959fbf 9066 .load_container = load_container_imsm,
71204a50
N
9067 .default_geometry = default_geometry_imsm,
9068 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9069 .reshape_super = imsm_reshape_super,
9070 .manage_reshape = imsm_manage_reshape,
cdddbdbc
DW
9071#endif
9072 .match_home = match_home_imsm,
9073 .uuid_from_super= uuid_from_super_imsm,
9074 .getinfo_super = getinfo_super_imsm,
5c4cd5da 9075 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
9076 .update_super = update_super_imsm,
9077
9078 .avail_size = avail_size_imsm,
80e7f8c3 9079 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
9080
9081 .compare_super = compare_super_imsm,
9082
9083 .load_super = load_super_imsm,
bf5a934a 9084 .init_super = init_super_imsm,
e683ca88 9085 .store_super = store_super_imsm,
cdddbdbc
DW
9086 .free_super = free_super_imsm,
9087 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 9088 .container_content = container_content_imsm,
cdddbdbc 9089
276d77db
AK
9090 .recover_backup = recover_backup_imsm,
9091
cdddbdbc 9092 .external = 1,
4cce4069 9093 .name = "imsm",
845dea95 9094
0e600426 9095#ifndef MDASSEMBLE
845dea95
NB
9096/* for mdmon */
9097 .open_new = imsm_open_new,
ed9d66aa 9098 .set_array_state= imsm_set_array_state,
845dea95
NB
9099 .set_disk = imsm_set_disk,
9100 .sync_metadata = imsm_sync_metadata,
88758e9d 9101 .activate_spare = imsm_activate_spare,
e8319a19 9102 .process_update = imsm_process_update,
8273f55e 9103 .prepare_update = imsm_prepare_update,
0e600426 9104#endif /* MDASSEMBLE */
cdddbdbc 9105};