]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elfxx-mips.c
bfd_section_* macros
[thirdparty/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
82704155 2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9
TS
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
0a44bf69 38#include "elf-vxworks.h"
2f0c68f2 39#include "dwarf2.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
9ab066b4
RS
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
ead49a57 57/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
b15e6682
AO
75struct mips_got_entry
76{
3dff0dd1 77 /* One input bfd that needs the GOT entry. */
b15e6682 78 bfd *abfd;
f4416af6
AO
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 90 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
f4416af6
AO
93 struct mips_elf_link_hash_entry *h;
94 } d;
0f20cc35 95
9ab066b4
RS
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
0f20cc35
DJ
98 unsigned char tls_type;
99
9ab066b4
RS
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
b15e6682 104 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
b15e6682
AO
108};
109
13db6b44
RS
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
c224138d
RS
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
13db6b44 142 relocations against a given section. */
c224138d
RS
143struct mips_got_page_entry
144{
13db6b44
RS
145 /* The section that these entries are based on. */
146 asection *sec;
c224138d
RS
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
f0abc2a1 153/* This structure is used to hold .got information when linking. */
b49e97c9
TS
154
155struct mips_got_info
156{
b49e97c9
TS
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
23cc69b6
RS
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
0f20cc35
DJ
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
c224138d 166 /* The number of local .got entries, eventually including page entries. */
b49e97c9 167 unsigned int local_gotno;
c224138d
RS
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
ab361d49
RS
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
cb22ccf4
KCY
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
b15e6682
AO
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
13db6b44
RS
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
c224138d
RS
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
f4416af6
AO
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
d7206569 187/* Structure passed when merging bfds' gots. */
f4416af6
AO
188
189struct mips_elf_got_per_bfd_arg
190{
f4416af6
AO
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
c224138d
RS
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
0f20cc35
DJ
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
f4416af6
AO
212};
213
ab361d49
RS
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
f4416af6 216
ab361d49 217struct mips_elf_traverse_got_arg
f4416af6 218{
ab361d49 219 struct bfd_link_info *info;
f4416af6
AO
220 struct mips_got_info *g;
221 int value;
0f20cc35
DJ
222};
223
f0abc2a1
AM
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
f0abc2a1
AM
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
68bfbfcc 234 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 235
d5eaccd7
RS
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
4dfe6ac6 239 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 240
634835ae
RS
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
861fb55a
DJ
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
3734320d 295#define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
861fb55a 296#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
297#define LA25_LUI_MICROMIPS(VAL) \
298 (0x41b90000 | (VAL)) /* lui t9,VAL */
299#define LA25_J_MICROMIPS(VAL) \
300 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
301#define LA25_ADDIU_MICROMIPS(VAL) \
302 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 303
b49e97c9
TS
304/* This structure is passed to mips_elf_sort_hash_table_f when sorting
305 the dynamic symbols. */
306
307struct mips_elf_hash_sort_data
308{
309 /* The symbol in the global GOT with the lowest dynamic symbol table
310 index. */
311 struct elf_link_hash_entry *low;
0f20cc35
DJ
312 /* The least dynamic symbol table index corresponding to a non-TLS
313 symbol with a GOT entry. */
55f8b9d2 314 bfd_size_type min_got_dynindx;
f4416af6
AO
315 /* The greatest dynamic symbol table index corresponding to a symbol
316 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 317 with dynamic relocations pointing to it from non-primary GOTs). */
55f8b9d2 318 bfd_size_type max_unref_got_dynindx;
e17b0c35
MR
319 /* The greatest dynamic symbol table index corresponding to a local
320 symbol. */
321 bfd_size_type max_local_dynindx;
322 /* The greatest dynamic symbol table index corresponding to an external
b49e97c9 323 symbol without a GOT entry. */
55f8b9d2 324 bfd_size_type max_non_got_dynindx;
f16a9783
MS
325 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
326 bfd *output_bfd;
327 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
328 real final dynindx. */
329 bfd_byte *mipsxhash;
b49e97c9
TS
330};
331
1bbce132
MR
332/* We make up to two PLT entries if needed, one for standard MIPS code
333 and one for compressed code, either a MIPS16 or microMIPS one. We
334 keep a separate record of traditional lazy-binding stubs, for easier
335 processing. */
336
337struct plt_entry
338{
339 /* Traditional SVR4 stub offset, or -1 if none. */
340 bfd_vma stub_offset;
341
342 /* Standard PLT entry offset, or -1 if none. */
343 bfd_vma mips_offset;
344
345 /* Compressed PLT entry offset, or -1 if none. */
346 bfd_vma comp_offset;
347
348 /* The corresponding .got.plt index, or -1 if none. */
349 bfd_vma gotplt_index;
350
351 /* Whether we need a standard PLT entry. */
352 unsigned int need_mips : 1;
353
354 /* Whether we need a compressed PLT entry. */
355 unsigned int need_comp : 1;
356};
357
b49e97c9
TS
358/* The MIPS ELF linker needs additional information for each symbol in
359 the global hash table. */
360
361struct mips_elf_link_hash_entry
362{
363 struct elf_link_hash_entry root;
364
365 /* External symbol information. */
366 EXTR esym;
367
861fb55a
DJ
368 /* The la25 stub we have created for ths symbol, if any. */
369 struct mips_elf_la25_stub *la25_stub;
370
b49e97c9
TS
371 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
372 this symbol. */
373 unsigned int possibly_dynamic_relocs;
374
b49e97c9
TS
375 /* If there is a stub that 32 bit functions should use to call this
376 16 bit function, this points to the section containing the stub. */
377 asection *fn_stub;
378
b49e97c9
TS
379 /* If there is a stub that 16 bit functions should use to call this
380 32 bit function, this points to the section containing the stub. */
381 asection *call_stub;
382
383 /* This is like the call_stub field, but it is used if the function
384 being called returns a floating point value. */
385 asection *call_fp_stub;
7c5fcef7 386
f16a9783
MS
387 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
388 bfd_vma mipsxhash_loc;
389
634835ae
RS
390 /* The highest GGA_* value that satisfies all references to this symbol. */
391 unsigned int global_got_area : 2;
392
6ccf4795
RS
393 /* True if all GOT relocations against this symbol are for calls. This is
394 a looser condition than no_fn_stub below, because there may be other
395 non-call non-GOT relocations against the symbol. */
396 unsigned int got_only_for_calls : 1;
397
71782a75
RS
398 /* True if one of the relocations described by possibly_dynamic_relocs
399 is against a readonly section. */
400 unsigned int readonly_reloc : 1;
401
861fb55a
DJ
402 /* True if there is a relocation against this symbol that must be
403 resolved by the static linker (in other words, if the relocation
404 cannot possibly be made dynamic). */
405 unsigned int has_static_relocs : 1;
406
71782a75
RS
407 /* True if we must not create a .MIPS.stubs entry for this symbol.
408 This is set, for example, if there are relocations related to
409 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
410 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
411 unsigned int no_fn_stub : 1;
412
413 /* Whether we need the fn_stub; this is true if this symbol appears
414 in any relocs other than a 16 bit call. */
415 unsigned int need_fn_stub : 1;
416
861fb55a
DJ
417 /* True if this symbol is referenced by branch relocations from
418 any non-PIC input file. This is used to determine whether an
419 la25 stub is required. */
420 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
421
422 /* Does this symbol need a traditional MIPS lazy-binding stub
423 (as opposed to a PLT entry)? */
424 unsigned int needs_lazy_stub : 1;
1bbce132
MR
425
426 /* Does this symbol resolve to a PLT entry? */
427 unsigned int use_plt_entry : 1;
b49e97c9
TS
428};
429
430/* MIPS ELF linker hash table. */
431
432struct mips_elf_link_hash_table
433{
434 struct elf_link_hash_table root;
861fb55a 435
b49e97c9
TS
436 /* The number of .rtproc entries. */
437 bfd_size_type procedure_count;
861fb55a 438
b49e97c9
TS
439 /* The size of the .compact_rel section (if SGI_COMPAT). */
440 bfd_size_type compact_rel_size;
861fb55a 441
e6aea42d
MR
442 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
443 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 444 bfd_boolean use_rld_obj_head;
861fb55a 445
b4082c70
DD
446 /* The __rld_map or __rld_obj_head symbol. */
447 struct elf_link_hash_entry *rld_symbol;
861fb55a 448
b49e97c9 449 /* This is set if we see any mips16 stub sections. */
b34976b6 450 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
451
452 /* True if we can generate copy relocs and PLTs. */
453 bfd_boolean use_plts_and_copy_relocs;
454
833794fc
MR
455 /* True if we can only use 32-bit microMIPS instructions. */
456 bfd_boolean insn32;
457
8b10b0b3
MR
458 /* True if we suppress checks for invalid branches between ISA modes. */
459 bfd_boolean ignore_branch_isa;
460
3734320d
MF
461 /* True if we are targetting R6 compact branches. */
462 bfd_boolean compact_branches;
463
0a44bf69
RS
464 /* True if we're generating code for VxWorks. */
465 bfd_boolean is_vxworks;
861fb55a 466
0e53d9da
AN
467 /* True if we already reported the small-data section overflow. */
468 bfd_boolean small_data_overflow_reported;
861fb55a 469
47275900
MR
470 /* True if we use the special `__gnu_absolute_zero' symbol. */
471 bfd_boolean use_absolute_zero;
472
473 /* True if we have been configured for a GNU target. */
474 bfd_boolean gnu_target;
475
0a44bf69
RS
476 /* Shortcuts to some dynamic sections, or NULL if they are not
477 being used. */
0a44bf69 478 asection *srelplt2;
4e41d0d7 479 asection *sstubs;
861fb55a 480
a8028dd0
RS
481 /* The master GOT information. */
482 struct mips_got_info *got_info;
861fb55a 483
d222d210
RS
484 /* The global symbol in the GOT with the lowest index in the dynamic
485 symbol table. */
486 struct elf_link_hash_entry *global_gotsym;
487
861fb55a 488 /* The size of the PLT header in bytes. */
0a44bf69 489 bfd_vma plt_header_size;
861fb55a 490
1bbce132
MR
491 /* The size of a standard PLT entry in bytes. */
492 bfd_vma plt_mips_entry_size;
493
494 /* The size of a compressed PLT entry in bytes. */
495 bfd_vma plt_comp_entry_size;
496
497 /* The offset of the next standard PLT entry to create. */
498 bfd_vma plt_mips_offset;
499
500 /* The offset of the next compressed PLT entry to create. */
501 bfd_vma plt_comp_offset;
502
503 /* The index of the next .got.plt entry to create. */
504 bfd_vma plt_got_index;
861fb55a 505
33bb52fb
RS
506 /* The number of functions that need a lazy-binding stub. */
507 bfd_vma lazy_stub_count;
861fb55a 508
5108fc1b
RS
509 /* The size of a function stub entry in bytes. */
510 bfd_vma function_stub_size;
861fb55a
DJ
511
512 /* The number of reserved entries at the beginning of the GOT. */
513 unsigned int reserved_gotno;
514
515 /* The section used for mips_elf_la25_stub trampolines.
516 See the comment above that structure for details. */
517 asection *strampoline;
518
519 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
520 pairs. */
521 htab_t la25_stubs;
522
523 /* A function FN (NAME, IS, OS) that creates a new input section
524 called NAME and links it to output section OS. If IS is nonnull,
525 the new section should go immediately before it, otherwise it
526 should go at the (current) beginning of OS.
527
528 The function returns the new section on success, otherwise it
529 returns null. */
530 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
531
532 /* Small local sym cache. */
533 struct sym_cache sym_cache;
1bbce132
MR
534
535 /* Is the PLT header compressed? */
536 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
537};
538
4dfe6ac6
NC
539/* Get the MIPS ELF linker hash table from a link_info structure. */
540
541#define mips_elf_hash_table(p) \
542 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
543 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
544
861fb55a 545/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
546struct mips_htab_traverse_info
547{
861fb55a
DJ
548 /* The usual link-wide information. */
549 struct bfd_link_info *info;
550 bfd *output_bfd;
551
552 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
553 bfd_boolean error;
b49e97c9
TS
554};
555
6ae68ba3
MR
556/* MIPS ELF private object data. */
557
558struct mips_elf_obj_tdata
559{
560 /* Generic ELF private object data. */
561 struct elf_obj_tdata root;
562
563 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
564 bfd *abi_fp_bfd;
ee227692 565
b60bf9be
CF
566 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
567 bfd *abi_msa_bfd;
568
351cdf24
MF
569 /* The abiflags for this object. */
570 Elf_Internal_ABIFlags_v0 abiflags;
571 bfd_boolean abiflags_valid;
572
ee227692
RS
573 /* The GOT requirements of input bfds. */
574 struct mips_got_info *got;
698600e4
AM
575
576 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
577 included directly in this one, but there's no point to wasting
578 the memory just for the infrequently called find_nearest_line. */
579 struct mips_elf_find_line *find_line_info;
580
581 /* An array of stub sections indexed by symbol number. */
582 asection **local_stubs;
583 asection **local_call_stubs;
584
585 /* The Irix 5 support uses two virtual sections, which represent
586 text/data symbols defined in dynamic objects. */
587 asymbol *elf_data_symbol;
588 asymbol *elf_text_symbol;
589 asection *elf_data_section;
590 asection *elf_text_section;
6ae68ba3
MR
591};
592
593/* Get MIPS ELF private object data from BFD's tdata. */
594
595#define mips_elf_tdata(bfd) \
596 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
597
0f20cc35
DJ
598#define TLS_RELOC_P(r_type) \
599 (r_type == R_MIPS_TLS_DTPMOD32 \
600 || r_type == R_MIPS_TLS_DTPMOD64 \
601 || r_type == R_MIPS_TLS_DTPREL32 \
602 || r_type == R_MIPS_TLS_DTPREL64 \
603 || r_type == R_MIPS_TLS_GD \
604 || r_type == R_MIPS_TLS_LDM \
605 || r_type == R_MIPS_TLS_DTPREL_HI16 \
606 || r_type == R_MIPS_TLS_DTPREL_LO16 \
607 || r_type == R_MIPS_TLS_GOTTPREL \
608 || r_type == R_MIPS_TLS_TPREL32 \
609 || r_type == R_MIPS_TLS_TPREL64 \
610 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 611 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
612 || r_type == R_MIPS16_TLS_GD \
613 || r_type == R_MIPS16_TLS_LDM \
614 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
615 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
616 || r_type == R_MIPS16_TLS_GOTTPREL \
617 || r_type == R_MIPS16_TLS_TPREL_HI16 \
618 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
619 || r_type == R_MICROMIPS_TLS_GD \
620 || r_type == R_MICROMIPS_TLS_LDM \
621 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
622 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
623 || r_type == R_MICROMIPS_TLS_GOTTPREL \
624 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
625 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 626
b49e97c9
TS
627/* Structure used to pass information to mips_elf_output_extsym. */
628
629struct extsym_info
630{
9e4aeb93
RS
631 bfd *abfd;
632 struct bfd_link_info *info;
b49e97c9
TS
633 struct ecoff_debug_info *debug;
634 const struct ecoff_debug_swap *swap;
b34976b6 635 bfd_boolean failed;
b49e97c9
TS
636};
637
8dc1a139 638/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
639
640static const char * const mips_elf_dynsym_rtproc_names[] =
641{
642 "_procedure_table",
643 "_procedure_string_table",
644 "_procedure_table_size",
645 NULL
646};
647
648/* These structures are used to generate the .compact_rel section on
8dc1a139 649 IRIX5. */
b49e97c9
TS
650
651typedef struct
652{
653 unsigned long id1; /* Always one? */
654 unsigned long num; /* Number of compact relocation entries. */
655 unsigned long id2; /* Always two? */
656 unsigned long offset; /* The file offset of the first relocation. */
657 unsigned long reserved0; /* Zero? */
658 unsigned long reserved1; /* Zero? */
659} Elf32_compact_rel;
660
661typedef struct
662{
663 bfd_byte id1[4];
664 bfd_byte num[4];
665 bfd_byte id2[4];
666 bfd_byte offset[4];
667 bfd_byte reserved0[4];
668 bfd_byte reserved1[4];
669} Elf32_External_compact_rel;
670
671typedef struct
672{
673 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
674 unsigned int rtype : 4; /* Relocation types. See below. */
675 unsigned int dist2to : 8;
676 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
677 unsigned long konst; /* KONST field. See below. */
678 unsigned long vaddr; /* VADDR to be relocated. */
679} Elf32_crinfo;
680
681typedef struct
682{
683 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
684 unsigned int rtype : 4; /* Relocation types. See below. */
685 unsigned int dist2to : 8;
686 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
687 unsigned long konst; /* KONST field. See below. */
688} Elf32_crinfo2;
689
690typedef struct
691{
692 bfd_byte info[4];
693 bfd_byte konst[4];
694 bfd_byte vaddr[4];
695} Elf32_External_crinfo;
696
697typedef struct
698{
699 bfd_byte info[4];
700 bfd_byte konst[4];
701} Elf32_External_crinfo2;
702
703/* These are the constants used to swap the bitfields in a crinfo. */
704
705#define CRINFO_CTYPE (0x1)
706#define CRINFO_CTYPE_SH (31)
707#define CRINFO_RTYPE (0xf)
708#define CRINFO_RTYPE_SH (27)
709#define CRINFO_DIST2TO (0xff)
710#define CRINFO_DIST2TO_SH (19)
711#define CRINFO_RELVADDR (0x7ffff)
712#define CRINFO_RELVADDR_SH (0)
713
714/* A compact relocation info has long (3 words) or short (2 words)
715 formats. A short format doesn't have VADDR field and relvaddr
716 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
717#define CRF_MIPS_LONG 1
718#define CRF_MIPS_SHORT 0
719
720/* There are 4 types of compact relocation at least. The value KONST
721 has different meaning for each type:
722
723 (type) (konst)
724 CT_MIPS_REL32 Address in data
725 CT_MIPS_WORD Address in word (XXX)
726 CT_MIPS_GPHI_LO GP - vaddr
727 CT_MIPS_JMPAD Address to jump
728 */
729
730#define CRT_MIPS_REL32 0xa
731#define CRT_MIPS_WORD 0xb
732#define CRT_MIPS_GPHI_LO 0xc
733#define CRT_MIPS_JMPAD 0xd
734
735#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
736#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
737#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
738#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
739\f
740/* The structure of the runtime procedure descriptor created by the
741 loader for use by the static exception system. */
742
743typedef struct runtime_pdr {
ae9a127f
NC
744 bfd_vma adr; /* Memory address of start of procedure. */
745 long regmask; /* Save register mask. */
746 long regoffset; /* Save register offset. */
747 long fregmask; /* Save floating point register mask. */
748 long fregoffset; /* Save floating point register offset. */
749 long frameoffset; /* Frame size. */
750 short framereg; /* Frame pointer register. */
751 short pcreg; /* Offset or reg of return pc. */
752 long irpss; /* Index into the runtime string table. */
b49e97c9 753 long reserved;
ae9a127f 754 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
755} RPDR, *pRPDR;
756#define cbRPDR sizeof (RPDR)
757#define rpdNil ((pRPDR) 0)
758\f
b15e6682 759static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
760 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
761 struct mips_elf_link_hash_entry *, int);
b34976b6 762static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 763 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
764static bfd_vma mips_elf_high
765 (bfd_vma);
b34976b6 766static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
767 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
768 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
769 bfd_vma *, asection *);
f4416af6 770static bfd_vma mips_elf_adjust_gp
9719ad41 771 (bfd *, struct mips_got_info *, bfd *);
f4416af6 772
b49e97c9
TS
773/* This will be used when we sort the dynamic relocation records. */
774static bfd *reldyn_sorting_bfd;
775
6d30f5b2
NC
776/* True if ABFD is for CPUs with load interlocking that include
777 non-MIPS1 CPUs and R3900. */
778#define LOAD_INTERLOCKS_P(abfd) \
779 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
780 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
781
cd8d5a82
CF
782/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
783 This should be safe for all architectures. We enable this predicate
784 for RM9000 for now. */
785#define JAL_TO_BAL_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
787
788/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
789 This should be safe for all architectures. We enable this predicate for
790 all CPUs. */
791#define JALR_TO_BAL_P(abfd) 1
792
38a7df63
CF
793/* True if ABFD is for CPUs that are faster if JR is converted to B.
794 This should be safe for all architectures. We enable this predicate for
795 all CPUs. */
796#define JR_TO_B_P(abfd) 1
797
861fb55a
DJ
798/* True if ABFD is a PIC object. */
799#define PIC_OBJECT_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
801
351cdf24
MF
802/* Nonzero if ABFD is using the O32 ABI. */
803#define ABI_O32_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
805
b49e97c9 806/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
807#define ABI_N32_P(abfd) \
808 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
809
4a14403c 810/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 811#define ABI_64_P(abfd) \
141ff970 812 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 813
4a14403c
TS
814/* Nonzero if ABFD is using NewABI conventions. */
815#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
816
e8faf7d1
MR
817/* Nonzero if ABFD has microMIPS code. */
818#define MICROMIPS_P(abfd) \
819 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
820
7361da2c
AB
821/* Nonzero if ABFD is MIPS R6. */
822#define MIPSR6_P(abfd) \
823 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
824 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
825
4a14403c 826/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
827#define IRIX_COMPAT(abfd) \
828 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
829
b49e97c9
TS
830/* Whether we are trying to be compatible with IRIX at all. */
831#define SGI_COMPAT(abfd) \
832 (IRIX_COMPAT (abfd) != ict_none)
833
834/* The name of the options section. */
835#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 836 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 837
cc2e31b9
RS
838/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
839 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
840#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
841 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
842
351cdf24
MF
843/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
844#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
845 (strcmp (NAME, ".MIPS.abiflags") == 0)
846
943284cc
DJ
847/* Whether the section is readonly. */
848#define MIPS_ELF_READONLY_SECTION(sec) \
849 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
850 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
851
b49e97c9 852/* The name of the stub section. */
ca07892d 853#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
854
855/* The size of an external REL relocation. */
856#define MIPS_ELF_REL_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_rel)
858
0a44bf69
RS
859/* The size of an external RELA relocation. */
860#define MIPS_ELF_RELA_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->sizeof_rela)
862
b49e97c9
TS
863/* The size of an external dynamic table entry. */
864#define MIPS_ELF_DYN_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->sizeof_dyn)
866
867/* The size of a GOT entry. */
868#define MIPS_ELF_GOT_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->arch_size / 8)
870
b4082c70
DD
871/* The size of the .rld_map section. */
872#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
873 (get_elf_backend_data (abfd)->s->arch_size / 8)
874
b49e97c9
TS
875/* The size of a symbol-table entry. */
876#define MIPS_ELF_SYM_SIZE(abfd) \
877 (get_elf_backend_data (abfd)->s->sizeof_sym)
878
879/* The default alignment for sections, as a power of two. */
880#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 881 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
882
883/* Get word-sized data. */
884#define MIPS_ELF_GET_WORD(abfd, ptr) \
885 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
886
887/* Put out word-sized data. */
888#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
07d6d2b8
AM
889 (ABI_64_P (abfd) \
890 ? bfd_put_64 (abfd, val, ptr) \
b49e97c9
TS
891 : bfd_put_32 (abfd, val, ptr))
892
861fb55a
DJ
893/* The opcode for word-sized loads (LW or LD). */
894#define MIPS_ELF_LOAD_WORD(abfd) \
895 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
896
b49e97c9 897/* Add a dynamic symbol table-entry. */
9719ad41 898#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 899 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
900
901#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
0aa13fee 902 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
b49e97c9 903
0a44bf69
RS
904/* The name of the dynamic relocation section. */
905#define MIPS_ELF_REL_DYN_NAME(INFO) \
906 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
907
b49e97c9
TS
908/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
909 from smaller values. Start with zero, widen, *then* decrement. */
910#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 911#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 912
51e38d68
RS
913/* The value to write into got[1] for SVR4 targets, to identify it is
914 a GNU object. The dynamic linker can then use got[1] to store the
915 module pointer. */
916#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
917 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
918
f4416af6 919/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
920#define ELF_MIPS_GP_OFFSET(INFO) \
921 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
922
923/* The maximum size of the GOT for it to be addressable using 16-bit
924 offsets from $gp. */
0a44bf69 925#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 926
6a691779 927/* Instructions which appear in a stub. */
3d6746ca
DD
928#define STUB_LW(abfd) \
929 ((ABI_64_P (abfd) \
930 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
07d6d2b8 931 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 932#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca 933#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
a18a2a34 934#define STUB_JALR 0x0320f809 /* jalr ra,t9 */
3734320d 935#define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
5108fc1b
RS
936#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
937#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
938#define STUB_LI16S(abfd, VAL) \
939 ((ABI_64_P (abfd) \
940 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
941 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
942
1bbce132
MR
943/* Likewise for the microMIPS ASE. */
944#define STUB_LW_MICROMIPS(abfd) \
945 (ABI_64_P (abfd) \
946 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
947 : 0xff3c8010) /* lw t9,0x8010(gp) */
948#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 949#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
950#define STUB_LUI_MICROMIPS(VAL) \
951 (0x41b80000 + (VAL)) /* lui t8,VAL */
952#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 953#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
954#define STUB_ORI_MICROMIPS(VAL) \
955 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
956#define STUB_LI16U_MICROMIPS(VAL) \
957 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
958#define STUB_LI16S_MICROMIPS(abfd, VAL) \
959 (ABI_64_P (abfd) \
960 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
961 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
962
5108fc1b
RS
963#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
964#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
965#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
966#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
967#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
968#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
969
970/* The name of the dynamic interpreter. This is put in the .interp
971 section. */
972
07d6d2b8
AM
973#define ELF_DYNAMIC_INTERPRETER(abfd) \
974 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
975 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
b49e97c9
TS
976 : "/usr/lib/libc.so.1")
977
978#ifdef BFD64
ee6423ed
AO
979#define MNAME(bfd,pre,pos) \
980 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
981#define ELF_R_SYM(bfd, i) \
982 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
983#define ELF_R_TYPE(bfd, i) \
984 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
985#define ELF_R_INFO(bfd, s, t) \
986 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
987#else
ee6423ed 988#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
989#define ELF_R_SYM(bfd, i) \
990 (ELF32_R_SYM (i))
991#define ELF_R_TYPE(bfd, i) \
992 (ELF32_R_TYPE (i))
993#define ELF_R_INFO(bfd, s, t) \
994 (ELF32_R_INFO (s, t))
995#endif
996\f
997 /* The mips16 compiler uses a couple of special sections to handle
998 floating point arguments.
999
1000 Section names that look like .mips16.fn.FNNAME contain stubs that
1001 copy floating point arguments from the fp regs to the gp regs and
1002 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1003 call should be redirected to the stub instead. If no 32 bit
1004 function calls FNNAME, the stub should be discarded. We need to
1005 consider any reference to the function, not just a call, because
1006 if the address of the function is taken we will need the stub,
1007 since the address might be passed to a 32 bit function.
1008
1009 Section names that look like .mips16.call.FNNAME contain stubs
1010 that copy floating point arguments from the gp regs to the fp
1011 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1012 then any 16 bit function that calls FNNAME should be redirected
1013 to the stub instead. If FNNAME is not a 32 bit function, the
1014 stub should be discarded.
1015
1016 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1017 which call FNNAME and then copy the return value from the fp regs
1018 to the gp regs. These stubs store the return value in $18 while
1019 calling FNNAME; any function which might call one of these stubs
1020 must arrange to save $18 around the call. (This case is not
1021 needed for 32 bit functions that call 16 bit functions, because
1022 16 bit functions always return floating point values in both
1023 $f0/$f1 and $2/$3.)
1024
1025 Note that in all cases FNNAME might be defined statically.
1026 Therefore, FNNAME is not used literally. Instead, the relocation
1027 information will indicate which symbol the section is for.
1028
1029 We record any stubs that we find in the symbol table. */
1030
1031#define FN_STUB ".mips16.fn."
1032#define CALL_STUB ".mips16.call."
1033#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1034
1035#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1036#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1037#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1038\f
861fb55a 1039/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1040static const bfd_vma mips_o32_exec_plt0_entry[] =
1041{
861fb55a
DJ
1042 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1043 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1044 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1045 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1046 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1047 0x0018c082, /* srl $24, $24, 2 */
1048 0x0320f809, /* jalr $25 */
1049 0x2718fffe /* subu $24, $24, 2 */
1050};
1051
3734320d
MF
1052/* The format of the first PLT entry in an O32 executable using compact
1053 jumps. */
1054static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1055{
1056 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1057 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1058 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1059 0x031cc023, /* subu $24, $24, $28 */
1060 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1061 0x0018c082, /* srl $24, $24, 2 */
1062 0x2718fffe, /* subu $24, $24, 2 */
1063 0xf8190000 /* jalrc $25 */
1064};
1065
861fb55a
DJ
1066/* The format of the first PLT entry in an N32 executable. Different
1067 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1068static const bfd_vma mips_n32_exec_plt0_entry[] =
1069{
861fb55a
DJ
1070 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1071 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1072 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1073 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1074 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1075 0x0018c082, /* srl $24, $24, 2 */
1076 0x0320f809, /* jalr $25 */
1077 0x2718fffe /* subu $24, $24, 2 */
1078};
1079
3734320d
MF
1080/* The format of the first PLT entry in an N32 executable using compact
1081 jumps. Different because gp ($28) is not available; we use t2 ($14)
1082 instead. */
1083static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1084{
1085 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1086 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1087 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1088 0x030ec023, /* subu $24, $24, $14 */
1089 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1090 0x0018c082, /* srl $24, $24, 2 */
1091 0x2718fffe, /* subu $24, $24, 2 */
1092 0xf8190000 /* jalrc $25 */
1093};
1094
861fb55a
DJ
1095/* The format of the first PLT entry in an N64 executable. Different
1096 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1097static const bfd_vma mips_n64_exec_plt0_entry[] =
1098{
861fb55a
DJ
1099 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1100 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1101 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1102 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1103 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1104 0x0018c0c2, /* srl $24, $24, 3 */
1105 0x0320f809, /* jalr $25 */
1106 0x2718fffe /* subu $24, $24, 2 */
1107};
1108
3734320d
MF
1109/* The format of the first PLT entry in an N64 executable using compact
1110 jumps. Different from N32 because of the increased size of GOT
1111 entries. */
1112static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1113{
1114 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1115 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1116 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1117 0x030ec023, /* subu $24, $24, $14 */
1118 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1119 0x0018c0c2, /* srl $24, $24, 3 */
1120 0x2718fffe, /* subu $24, $24, 2 */
1121 0xf8190000 /* jalrc $25 */
1122};
1123
1124
1bbce132
MR
1125/* The format of the microMIPS first PLT entry in an O32 executable.
1126 We rely on v0 ($2) rather than t8 ($24) to contain the address
1127 of the GOTPLT entry handled, so this stub may only be used when
1128 all the subsequent PLT entries are microMIPS code too.
1129
1130 The trailing NOP is for alignment and correct disassembly only. */
1131static const bfd_vma micromips_o32_exec_plt0_entry[] =
1132{
1133 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1134 0xff23, 0x0000, /* lw $25, 0($3) */
1135 0x0535, /* subu $2, $2, $3 */
1136 0x2525, /* srl $2, $2, 2 */
1137 0x3302, 0xfffe, /* subu $24, $2, 2 */
1138 0x0dff, /* move $15, $31 */
1139 0x45f9, /* jalrs $25 */
1140 0x0f83, /* move $28, $3 */
1141 0x0c00 /* nop */
1142};
1143
833794fc
MR
1144/* The format of the microMIPS first PLT entry in an O32 executable
1145 in the insn32 mode. */
1146static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1147{
1148 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1149 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1150 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1151 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1152 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1153 0x0318, 0x1040, /* srl $24, $24, 2 */
1154 0x03f9, 0x0f3c, /* jalr $25 */
1155 0x3318, 0xfffe /* subu $24, $24, 2 */
1156};
1157
1bbce132 1158/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1159static const bfd_vma mips_exec_plt_entry[] =
1160{
861fb55a
DJ
1161 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1162 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1163 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1164 0x03200008 /* jr $25 */
1165};
1166
7361da2c
AB
1167static const bfd_vma mipsr6_exec_plt_entry[] =
1168{
1169 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1170 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1171 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1172 0x03200009 /* jr $25 */
1173};
1174
3734320d
MF
1175static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1176{
1177 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1178 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1179 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1180 0xd8190000 /* jic $25, 0 */
1181};
1182
1bbce132
MR
1183/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1184 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1185 directly addressable. */
1186static const bfd_vma mips16_o32_exec_plt_entry[] =
1187{
1188 0xb203, /* lw $2, 12($pc) */
1189 0x9a60, /* lw $3, 0($2) */
1190 0x651a, /* move $24, $2 */
1191 0xeb00, /* jr $3 */
1192 0x653b, /* move $25, $3 */
1193 0x6500, /* nop */
1194 0x0000, 0x0000 /* .word (.got.plt entry) */
1195};
1196
1197/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1198 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1199static const bfd_vma micromips_o32_exec_plt_entry[] =
1200{
1201 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1202 0xff22, 0x0000, /* lw $25, 0($2) */
1203 0x4599, /* jr $25 */
1204 0x0f02 /* move $24, $2 */
1205};
1206
833794fc
MR
1207/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1208static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1209{
1210 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1211 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1212 0x0019, 0x0f3c, /* jr $25 */
1213 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1214};
1215
0a44bf69 1216/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1217static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1218{
0a44bf69
RS
1219 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1220 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1221 0x8f390008, /* lw t9, 8(t9) */
1222 0x00000000, /* nop */
1223 0x03200008, /* jr t9 */
1224 0x00000000 /* nop */
1225};
1226
1227/* The format of subsequent PLT entries. */
6d30f5b2
NC
1228static const bfd_vma mips_vxworks_exec_plt_entry[] =
1229{
0a44bf69
RS
1230 0x10000000, /* b .PLT_resolver */
1231 0x24180000, /* li t8, <pltindex> */
1232 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1233 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1234 0x8f390000, /* lw t9, 0(t9) */
1235 0x00000000, /* nop */
1236 0x03200008, /* jr t9 */
1237 0x00000000 /* nop */
1238};
1239
1240/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1241static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1242{
0a44bf69
RS
1243 0x8f990008, /* lw t9, 8(gp) */
1244 0x00000000, /* nop */
1245 0x03200008, /* jr t9 */
1246 0x00000000, /* nop */
1247 0x00000000, /* nop */
1248 0x00000000 /* nop */
1249};
1250
1251/* The format of subsequent PLT entries. */
6d30f5b2
NC
1252static const bfd_vma mips_vxworks_shared_plt_entry[] =
1253{
0a44bf69
RS
1254 0x10000000, /* b .PLT_resolver */
1255 0x24180000 /* li t8, <pltindex> */
1256};
1257\f
d21911ea
MR
1258/* microMIPS 32-bit opcode helper installer. */
1259
1260static void
1261bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1262{
1263 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
07d6d2b8 1264 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
d21911ea
MR
1265}
1266
1267/* microMIPS 32-bit opcode helper retriever. */
1268
1269static bfd_vma
1270bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1271{
1272 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1273}
1274\f
b49e97c9
TS
1275/* Look up an entry in a MIPS ELF linker hash table. */
1276
1277#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1278 ((struct mips_elf_link_hash_entry *) \
1279 elf_link_hash_lookup (&(table)->root, (string), (create), \
1280 (copy), (follow)))
1281
1282/* Traverse a MIPS ELF linker hash table. */
1283
1284#define mips_elf_link_hash_traverse(table, func, info) \
1285 (elf_link_hash_traverse \
1286 (&(table)->root, \
9719ad41 1287 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1288 (info)))
1289
0f20cc35
DJ
1290/* Find the base offsets for thread-local storage in this object,
1291 for GD/LD and IE/LE respectively. */
1292
1293#define TP_OFFSET 0x7000
1294#define DTP_OFFSET 0x8000
1295
1296static bfd_vma
1297dtprel_base (struct bfd_link_info *info)
1298{
1299 /* If tls_sec is NULL, we should have signalled an error already. */
1300 if (elf_hash_table (info)->tls_sec == NULL)
1301 return 0;
1302 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1303}
1304
1305static bfd_vma
1306tprel_base (struct bfd_link_info *info)
1307{
1308 /* If tls_sec is NULL, we should have signalled an error already. */
1309 if (elf_hash_table (info)->tls_sec == NULL)
1310 return 0;
1311 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1312}
1313
b49e97c9
TS
1314/* Create an entry in a MIPS ELF linker hash table. */
1315
1316static struct bfd_hash_entry *
9719ad41
RS
1317mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1318 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1319{
1320 struct mips_elf_link_hash_entry *ret =
1321 (struct mips_elf_link_hash_entry *) entry;
1322
1323 /* Allocate the structure if it has not already been allocated by a
1324 subclass. */
9719ad41
RS
1325 if (ret == NULL)
1326 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1327 if (ret == NULL)
b49e97c9
TS
1328 return (struct bfd_hash_entry *) ret;
1329
1330 /* Call the allocation method of the superclass. */
1331 ret = ((struct mips_elf_link_hash_entry *)
1332 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1333 table, string));
9719ad41 1334 if (ret != NULL)
b49e97c9
TS
1335 {
1336 /* Set local fields. */
1337 memset (&ret->esym, 0, sizeof (EXTR));
1338 /* We use -2 as a marker to indicate that the information has
1339 not been set. -1 means there is no associated ifd. */
1340 ret->esym.ifd = -2;
861fb55a 1341 ret->la25_stub = 0;
b49e97c9 1342 ret->possibly_dynamic_relocs = 0;
b49e97c9 1343 ret->fn_stub = NULL;
b49e97c9
TS
1344 ret->call_stub = NULL;
1345 ret->call_fp_stub = NULL;
f16a9783 1346 ret->mipsxhash_loc = 0;
634835ae 1347 ret->global_got_area = GGA_NONE;
6ccf4795 1348 ret->got_only_for_calls = TRUE;
71782a75 1349 ret->readonly_reloc = FALSE;
861fb55a 1350 ret->has_static_relocs = FALSE;
71782a75
RS
1351 ret->no_fn_stub = FALSE;
1352 ret->need_fn_stub = FALSE;
861fb55a 1353 ret->has_nonpic_branches = FALSE;
33bb52fb 1354 ret->needs_lazy_stub = FALSE;
1bbce132 1355 ret->use_plt_entry = FALSE;
b49e97c9
TS
1356 }
1357
1358 return (struct bfd_hash_entry *) ret;
1359}
f0abc2a1 1360
6ae68ba3
MR
1361/* Allocate MIPS ELF private object data. */
1362
1363bfd_boolean
1364_bfd_mips_elf_mkobject (bfd *abfd)
1365{
1366 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1367 MIPS_ELF_DATA);
1368}
1369
f0abc2a1 1370bfd_boolean
9719ad41 1371_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1372{
f592407e
AM
1373 if (!sec->used_by_bfd)
1374 {
1375 struct _mips_elf_section_data *sdata;
1376 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1377
f592407e
AM
1378 sdata = bfd_zalloc (abfd, amt);
1379 if (sdata == NULL)
1380 return FALSE;
1381 sec->used_by_bfd = sdata;
1382 }
f0abc2a1
AM
1383
1384 return _bfd_elf_new_section_hook (abfd, sec);
1385}
b49e97c9
TS
1386\f
1387/* Read ECOFF debugging information from a .mdebug section into a
1388 ecoff_debug_info structure. */
1389
b34976b6 1390bfd_boolean
9719ad41
RS
1391_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1392 struct ecoff_debug_info *debug)
b49e97c9
TS
1393{
1394 HDRR *symhdr;
1395 const struct ecoff_debug_swap *swap;
9719ad41 1396 char *ext_hdr;
b49e97c9
TS
1397
1398 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1399 memset (debug, 0, sizeof (*debug));
1400
9719ad41 1401 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1402 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1403 goto error_return;
1404
9719ad41 1405 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1406 swap->external_hdr_size))
b49e97c9
TS
1407 goto error_return;
1408
1409 symhdr = &debug->symbolic_header;
1410 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1411
1412 /* The symbolic header contains absolute file offsets and sizes to
1413 read. */
1414#define READ(ptr, offset, count, size, type) \
1415 if (symhdr->count == 0) \
1416 debug->ptr = NULL; \
1417 else \
1418 { \
1419 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1420 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1421 if (debug->ptr == NULL) \
1422 goto error_return; \
9719ad41 1423 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1424 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1425 goto error_return; \
1426 }
1427
1428 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1429 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1430 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1431 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1432 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1433 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1434 union aux_ext *);
1435 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1436 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1437 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1438 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1439 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1440#undef READ
1441
1442 debug->fdr = NULL;
b49e97c9 1443
b34976b6 1444 return TRUE;
b49e97c9
TS
1445
1446 error_return:
1447 if (ext_hdr != NULL)
1448 free (ext_hdr);
1449 if (debug->line != NULL)
1450 free (debug->line);
1451 if (debug->external_dnr != NULL)
1452 free (debug->external_dnr);
1453 if (debug->external_pdr != NULL)
1454 free (debug->external_pdr);
1455 if (debug->external_sym != NULL)
1456 free (debug->external_sym);
1457 if (debug->external_opt != NULL)
1458 free (debug->external_opt);
1459 if (debug->external_aux != NULL)
1460 free (debug->external_aux);
1461 if (debug->ss != NULL)
1462 free (debug->ss);
1463 if (debug->ssext != NULL)
1464 free (debug->ssext);
1465 if (debug->external_fdr != NULL)
1466 free (debug->external_fdr);
1467 if (debug->external_rfd != NULL)
1468 free (debug->external_rfd);
1469 if (debug->external_ext != NULL)
1470 free (debug->external_ext);
b34976b6 1471 return FALSE;
b49e97c9
TS
1472}
1473\f
1474/* Swap RPDR (runtime procedure table entry) for output. */
1475
1476static void
9719ad41 1477ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1478{
1479 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1480 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1481 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1482 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1483 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1484 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1485
1486 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1487 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1488
1489 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1490}
1491
1492/* Create a runtime procedure table from the .mdebug section. */
1493
b34976b6 1494static bfd_boolean
9719ad41
RS
1495mips_elf_create_procedure_table (void *handle, bfd *abfd,
1496 struct bfd_link_info *info, asection *s,
1497 struct ecoff_debug_info *debug)
b49e97c9
TS
1498{
1499 const struct ecoff_debug_swap *swap;
1500 HDRR *hdr = &debug->symbolic_header;
1501 RPDR *rpdr, *rp;
1502 struct rpdr_ext *erp;
9719ad41 1503 void *rtproc;
b49e97c9
TS
1504 struct pdr_ext *epdr;
1505 struct sym_ext *esym;
1506 char *ss, **sv;
1507 char *str;
1508 bfd_size_type size;
1509 bfd_size_type count;
1510 unsigned long sindex;
1511 unsigned long i;
1512 PDR pdr;
1513 SYMR sym;
1514 const char *no_name_func = _("static procedure (no name)");
1515
1516 epdr = NULL;
1517 rpdr = NULL;
1518 esym = NULL;
1519 ss = NULL;
1520 sv = NULL;
1521
1522 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1523
1524 sindex = strlen (no_name_func) + 1;
1525 count = hdr->ipdMax;
1526 if (count > 0)
1527 {
1528 size = swap->external_pdr_size;
1529
9719ad41 1530 epdr = bfd_malloc (size * count);
b49e97c9
TS
1531 if (epdr == NULL)
1532 goto error_return;
1533
9719ad41 1534 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1535 goto error_return;
1536
1537 size = sizeof (RPDR);
9719ad41 1538 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1539 if (rpdr == NULL)
1540 goto error_return;
1541
1542 size = sizeof (char *);
9719ad41 1543 sv = bfd_malloc (size * count);
b49e97c9
TS
1544 if (sv == NULL)
1545 goto error_return;
1546
1547 count = hdr->isymMax;
1548 size = swap->external_sym_size;
9719ad41 1549 esym = bfd_malloc (size * count);
b49e97c9
TS
1550 if (esym == NULL)
1551 goto error_return;
1552
9719ad41 1553 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1554 goto error_return;
1555
1556 count = hdr->issMax;
9719ad41 1557 ss = bfd_malloc (count);
b49e97c9
TS
1558 if (ss == NULL)
1559 goto error_return;
f075ee0c 1560 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1561 goto error_return;
1562
1563 count = hdr->ipdMax;
1564 for (i = 0; i < (unsigned long) count; i++, rp++)
1565 {
9719ad41
RS
1566 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1567 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1568 rp->adr = sym.value;
1569 rp->regmask = pdr.regmask;
1570 rp->regoffset = pdr.regoffset;
1571 rp->fregmask = pdr.fregmask;
1572 rp->fregoffset = pdr.fregoffset;
1573 rp->frameoffset = pdr.frameoffset;
1574 rp->framereg = pdr.framereg;
1575 rp->pcreg = pdr.pcreg;
1576 rp->irpss = sindex;
1577 sv[i] = ss + sym.iss;
1578 sindex += strlen (sv[i]) + 1;
1579 }
1580 }
1581
1582 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1583 size = BFD_ALIGN (size, 16);
9719ad41 1584 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1585 if (rtproc == NULL)
1586 {
1587 mips_elf_hash_table (info)->procedure_count = 0;
1588 goto error_return;
1589 }
1590
1591 mips_elf_hash_table (info)->procedure_count = count + 2;
1592
9719ad41 1593 erp = rtproc;
b49e97c9
TS
1594 memset (erp, 0, sizeof (struct rpdr_ext));
1595 erp++;
1596 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1597 strcpy (str, no_name_func);
1598 str += strlen (no_name_func) + 1;
1599 for (i = 0; i < count; i++)
1600 {
1601 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1602 strcpy (str, sv[i]);
1603 str += strlen (sv[i]) + 1;
1604 }
1605 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1606
1607 /* Set the size and contents of .rtproc section. */
eea6121a 1608 s->size = size;
9719ad41 1609 s->contents = rtproc;
b49e97c9
TS
1610
1611 /* Skip this section later on (I don't think this currently
1612 matters, but someday it might). */
8423293d 1613 s->map_head.link_order = NULL;
b49e97c9
TS
1614
1615 if (epdr != NULL)
1616 free (epdr);
1617 if (rpdr != NULL)
1618 free (rpdr);
1619 if (esym != NULL)
1620 free (esym);
1621 if (ss != NULL)
1622 free (ss);
1623 if (sv != NULL)
1624 free (sv);
1625
b34976b6 1626 return TRUE;
b49e97c9
TS
1627
1628 error_return:
1629 if (epdr != NULL)
1630 free (epdr);
1631 if (rpdr != NULL)
1632 free (rpdr);
1633 if (esym != NULL)
1634 free (esym);
1635 if (ss != NULL)
1636 free (ss);
1637 if (sv != NULL)
1638 free (sv);
b34976b6 1639 return FALSE;
b49e97c9 1640}
738e5348 1641\f
861fb55a
DJ
1642/* We're going to create a stub for H. Create a symbol for the stub's
1643 value and size, to help make the disassembly easier to read. */
1644
1645static bfd_boolean
1646mips_elf_create_stub_symbol (struct bfd_link_info *info,
1647 struct mips_elf_link_hash_entry *h,
1648 const char *prefix, asection *s, bfd_vma value,
1649 bfd_vma size)
1650{
a848a227 1651 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
861fb55a
DJ
1652 struct bfd_link_hash_entry *bh;
1653 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1654 char *name;
1655 bfd_boolean res;
861fb55a 1656
a848a227 1657 if (micromips_p)
df58fc94
RS
1658 value |= 1;
1659
861fb55a 1660 /* Create a new symbol. */
e1fa0163 1661 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1662 bh = NULL;
e1fa0163
NC
1663 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1664 BSF_LOCAL, s, value, NULL,
1665 TRUE, FALSE, &bh);
1666 free (name);
1667 if (! res)
861fb55a
DJ
1668 return FALSE;
1669
1670 /* Make it a local function. */
1671 elfh = (struct elf_link_hash_entry *) bh;
1672 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1673 elfh->size = size;
1674 elfh->forced_local = 1;
a848a227
MR
1675 if (micromips_p)
1676 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
861fb55a
DJ
1677 return TRUE;
1678}
1679
738e5348
RS
1680/* We're about to redefine H. Create a symbol to represent H's
1681 current value and size, to help make the disassembly easier
1682 to read. */
1683
1684static bfd_boolean
1685mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1686 struct mips_elf_link_hash_entry *h,
1687 const char *prefix)
1688{
1689 struct bfd_link_hash_entry *bh;
1690 struct elf_link_hash_entry *elfh;
e1fa0163 1691 char *name;
738e5348
RS
1692 asection *s;
1693 bfd_vma value;
e1fa0163 1694 bfd_boolean res;
738e5348
RS
1695
1696 /* Read the symbol's value. */
1697 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1698 || h->root.root.type == bfd_link_hash_defweak);
1699 s = h->root.root.u.def.section;
1700 value = h->root.root.u.def.value;
1701
1702 /* Create a new symbol. */
e1fa0163 1703 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1704 bh = NULL;
e1fa0163
NC
1705 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1706 BSF_LOCAL, s, value, NULL,
1707 TRUE, FALSE, &bh);
1708 free (name);
1709 if (! res)
738e5348
RS
1710 return FALSE;
1711
1712 /* Make it local and copy the other attributes from H. */
1713 elfh = (struct elf_link_hash_entry *) bh;
1714 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1715 elfh->other = h->root.other;
1716 elfh->size = h->root.size;
1717 elfh->forced_local = 1;
1718 return TRUE;
1719}
1720
1721/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1722 function rather than to a hard-float stub. */
1723
1724static bfd_boolean
1725section_allows_mips16_refs_p (asection *section)
1726{
1727 const char *name;
1728
fd361982 1729 name = bfd_section_name (section);
738e5348
RS
1730 return (FN_STUB_P (name)
1731 || CALL_STUB_P (name)
1732 || CALL_FP_STUB_P (name)
1733 || strcmp (name, ".pdr") == 0);
1734}
1735
1736/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1737 stub section of some kind. Return the R_SYMNDX of the target
1738 function, or 0 if we can't decide which function that is. */
1739
1740static unsigned long
cb4437b8
MR
1741mips16_stub_symndx (const struct elf_backend_data *bed,
1742 asection *sec ATTRIBUTE_UNUSED,
502e814e 1743 const Elf_Internal_Rela *relocs,
738e5348
RS
1744 const Elf_Internal_Rela *relend)
1745{
cb4437b8 1746 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1747 const Elf_Internal_Rela *rel;
1748
cb4437b8
MR
1749 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1750 one in a compound relocation. */
1751 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1752 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1753 return ELF_R_SYM (sec->owner, rel->r_info);
1754
1755 /* Otherwise trust the first relocation, whatever its kind. This is
1756 the traditional behavior. */
1757 if (relocs < relend)
1758 return ELF_R_SYM (sec->owner, relocs->r_info);
1759
1760 return 0;
1761}
b49e97c9
TS
1762
1763/* Check the mips16 stubs for a particular symbol, and see if we can
1764 discard them. */
1765
861fb55a
DJ
1766static void
1767mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1768 struct mips_elf_link_hash_entry *h)
b49e97c9 1769{
738e5348
RS
1770 /* Dynamic symbols must use the standard call interface, in case other
1771 objects try to call them. */
1772 if (h->fn_stub != NULL
1773 && h->root.dynindx != -1)
1774 {
1775 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1776 h->need_fn_stub = TRUE;
1777 }
1778
b49e97c9
TS
1779 if (h->fn_stub != NULL
1780 && ! h->need_fn_stub)
1781 {
1782 /* We don't need the fn_stub; the only references to this symbol
07d6d2b8
AM
1783 are 16 bit calls. Clobber the size to 0 to prevent it from
1784 being included in the link. */
eea6121a 1785 h->fn_stub->size = 0;
b49e97c9
TS
1786 h->fn_stub->flags &= ~SEC_RELOC;
1787 h->fn_stub->reloc_count = 0;
1788 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1789 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1790 }
1791
1792 if (h->call_stub != NULL
30c09090 1793 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1794 {
1795 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1796 calls from other 16 bit functions are OK. Clobber the size
1797 to 0 to prevent it from being included in the link. */
eea6121a 1798 h->call_stub->size = 0;
b49e97c9
TS
1799 h->call_stub->flags &= ~SEC_RELOC;
1800 h->call_stub->reloc_count = 0;
1801 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1802 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1803 }
1804
1805 if (h->call_fp_stub != NULL
30c09090 1806 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1807 {
1808 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1809 calls from other 16 bit functions are OK. Clobber the size
1810 to 0 to prevent it from being included in the link. */
eea6121a 1811 h->call_fp_stub->size = 0;
b49e97c9
TS
1812 h->call_fp_stub->flags &= ~SEC_RELOC;
1813 h->call_fp_stub->reloc_count = 0;
1814 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1815 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1816 }
861fb55a
DJ
1817}
1818
1819/* Hashtable callbacks for mips_elf_la25_stubs. */
1820
1821static hashval_t
1822mips_elf_la25_stub_hash (const void *entry_)
1823{
1824 const struct mips_elf_la25_stub *entry;
1825
1826 entry = (struct mips_elf_la25_stub *) entry_;
1827 return entry->h->root.root.u.def.section->id
1828 + entry->h->root.root.u.def.value;
1829}
1830
1831static int
1832mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1833{
1834 const struct mips_elf_la25_stub *entry1, *entry2;
1835
1836 entry1 = (struct mips_elf_la25_stub *) entry1_;
1837 entry2 = (struct mips_elf_la25_stub *) entry2_;
1838 return ((entry1->h->root.root.u.def.section
1839 == entry2->h->root.root.u.def.section)
1840 && (entry1->h->root.root.u.def.value
1841 == entry2->h->root.root.u.def.value));
1842}
1843
1844/* Called by the linker to set up the la25 stub-creation code. FN is
1845 the linker's implementation of add_stub_function. Return true on
1846 success. */
1847
1848bfd_boolean
1849_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1850 asection *(*fn) (const char *, asection *,
1851 asection *))
1852{
1853 struct mips_elf_link_hash_table *htab;
1854
1855 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1856 if (htab == NULL)
1857 return FALSE;
1858
861fb55a
DJ
1859 htab->add_stub_section = fn;
1860 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1861 mips_elf_la25_stub_eq, NULL);
1862 if (htab->la25_stubs == NULL)
1863 return FALSE;
1864
1865 return TRUE;
1866}
1867
1868/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1869 that it or its fn_stub might need $25 to be valid on entry.
1870 Note that MIPS16 functions set up $gp using PC-relative instructions,
1871 so they themselves never need $25 to be valid. Only non-MIPS16
1872 entry points are of interest here. */
861fb55a
DJ
1873
1874static bfd_boolean
1875mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1876{
1877 return ((h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1879 && h->root.def_regular
1880 && !bfd_is_abs_section (h->root.root.u.def.section)
f02cb058 1881 && !bfd_is_und_section (h->root.root.u.def.section)
8f0c309a
CLT
1882 && (!ELF_ST_IS_MIPS16 (h->root.other)
1883 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1884 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1885 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1886}
1887
8f0c309a
CLT
1888/* Set *SEC to the input section that contains the target of STUB.
1889 Return the offset of the target from the start of that section. */
1890
1891static bfd_vma
1892mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1893 asection **sec)
1894{
1895 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1896 {
1897 BFD_ASSERT (stub->h->need_fn_stub);
1898 *sec = stub->h->fn_stub;
1899 return 0;
1900 }
1901 else
1902 {
1903 *sec = stub->h->root.root.u.def.section;
1904 return stub->h->root.root.u.def.value;
1905 }
1906}
1907
861fb55a
DJ
1908/* STUB describes an la25 stub that we have decided to implement
1909 by inserting an LUI/ADDIU pair before the target function.
1910 Create the section and redirect the function symbol to it. */
1911
1912static bfd_boolean
1913mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1914 struct bfd_link_info *info)
1915{
1916 struct mips_elf_link_hash_table *htab;
1917 char *name;
1918 asection *s, *input_section;
1919 unsigned int align;
1920
1921 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1922 if (htab == NULL)
1923 return FALSE;
861fb55a
DJ
1924
1925 /* Create a unique name for the new section. */
1926 name = bfd_malloc (11 + sizeof (".text.stub."));
1927 if (name == NULL)
1928 return FALSE;
1929 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1930
1931 /* Create the section. */
8f0c309a 1932 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1933 s = htab->add_stub_section (name, input_section,
1934 input_section->output_section);
1935 if (s == NULL)
1936 return FALSE;
1937
1938 /* Make sure that any padding goes before the stub. */
1939 align = input_section->alignment_power;
fd361982 1940 if (!bfd_set_section_alignment (s, align))
861fb55a
DJ
1941 return FALSE;
1942 if (align > 3)
1943 s->size = (1 << align) - 8;
1944
1945 /* Create a symbol for the stub. */
1946 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1947 stub->stub_section = s;
1948 stub->offset = s->size;
1949
1950 /* Allocate room for it. */
1951 s->size += 8;
1952 return TRUE;
1953}
1954
1955/* STUB describes an la25 stub that we have decided to implement
1956 with a separate trampoline. Allocate room for it and redirect
1957 the function symbol to it. */
1958
1959static bfd_boolean
1960mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1961 struct bfd_link_info *info)
1962{
1963 struct mips_elf_link_hash_table *htab;
1964 asection *s;
1965
1966 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1967 if (htab == NULL)
1968 return FALSE;
861fb55a
DJ
1969
1970 /* Create a trampoline section, if we haven't already. */
1971 s = htab->strampoline;
1972 if (s == NULL)
1973 {
1974 asection *input_section = stub->h->root.root.u.def.section;
1975 s = htab->add_stub_section (".text", NULL,
1976 input_section->output_section);
fd361982 1977 if (s == NULL || !bfd_set_section_alignment (s, 4))
861fb55a
DJ
1978 return FALSE;
1979 htab->strampoline = s;
1980 }
1981
1982 /* Create a symbol for the stub. */
1983 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1984 stub->stub_section = s;
1985 stub->offset = s->size;
1986
1987 /* Allocate room for it. */
1988 s->size += 16;
1989 return TRUE;
1990}
1991
1992/* H describes a symbol that needs an la25 stub. Make sure that an
1993 appropriate stub exists and point H at it. */
1994
1995static bfd_boolean
1996mips_elf_add_la25_stub (struct bfd_link_info *info,
1997 struct mips_elf_link_hash_entry *h)
1998{
1999 struct mips_elf_link_hash_table *htab;
2000 struct mips_elf_la25_stub search, *stub;
2001 bfd_boolean use_trampoline_p;
2002 asection *s;
2003 bfd_vma value;
2004 void **slot;
2005
861fb55a
DJ
2006 /* Describe the stub we want. */
2007 search.stub_section = NULL;
2008 search.offset = 0;
2009 search.h = h;
2010
2011 /* See if we've already created an equivalent stub. */
2012 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
2013 if (htab == NULL)
2014 return FALSE;
2015
861fb55a
DJ
2016 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
2017 if (slot == NULL)
2018 return FALSE;
2019
2020 stub = (struct mips_elf_la25_stub *) *slot;
2021 if (stub != NULL)
2022 {
2023 /* We can reuse the existing stub. */
2024 h->la25_stub = stub;
2025 return TRUE;
2026 }
2027
2028 /* Create a permanent copy of ENTRY and add it to the hash table. */
2029 stub = bfd_malloc (sizeof (search));
2030 if (stub == NULL)
2031 return FALSE;
2032 *stub = search;
2033 *slot = stub;
2034
8f0c309a
CLT
2035 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2036 of the section and if we would need no more than 2 nops. */
2037 value = mips_elf_get_la25_target (stub, &s);
fe152e64
MR
2038 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2039 value &= ~1;
8f0c309a
CLT
2040 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2041
861fb55a
DJ
2042 h->la25_stub = stub;
2043 return (use_trampoline_p
2044 ? mips_elf_add_la25_trampoline (stub, info)
2045 : mips_elf_add_la25_intro (stub, info));
2046}
2047
2048/* A mips_elf_link_hash_traverse callback that is called before sizing
2049 sections. DATA points to a mips_htab_traverse_info structure. */
2050
2051static bfd_boolean
2052mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2053{
2054 struct mips_htab_traverse_info *hti;
2055
2056 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 2057 if (!bfd_link_relocatable (hti->info))
861fb55a 2058 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 2059
861fb55a
DJ
2060 if (mips_elf_local_pic_function_p (h))
2061 {
ba85c43e
NC
2062 /* PR 12845: If H is in a section that has been garbage
2063 collected it will have its output section set to *ABS*. */
2064 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2065 return TRUE;
2066
861fb55a
DJ
2067 /* H is a function that might need $25 to be valid on entry.
2068 If we're creating a non-PIC relocatable object, mark H as
2069 being PIC. If we're creating a non-relocatable object with
2070 non-PIC branches and jumps to H, make sure that H has an la25
2071 stub. */
0e1862bb 2072 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
2073 {
2074 if (!PIC_OBJECT_P (hti->output_bfd))
2075 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2076 }
2077 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2078 {
2079 hti->error = TRUE;
2080 return FALSE;
2081 }
2082 }
b34976b6 2083 return TRUE;
b49e97c9
TS
2084}
2085\f
d6f16593
MR
2086/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2087 Most mips16 instructions are 16 bits, but these instructions
2088 are 32 bits.
2089
2090 The format of these instructions is:
2091
2092 +--------------+--------------------------------+
2093 | JALX | X| Imm 20:16 | Imm 25:21 |
2094 +--------------+--------------------------------+
07d6d2b8 2095 | Immediate 15:0 |
d6f16593
MR
2096 +-----------------------------------------------+
2097
2098 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2099 Note that the immediate value in the first word is swapped.
2100
2101 When producing a relocatable object file, R_MIPS16_26 is
2102 handled mostly like R_MIPS_26. In particular, the addend is
2103 stored as a straight 26-bit value in a 32-bit instruction.
2104 (gas makes life simpler for itself by never adjusting a
2105 R_MIPS16_26 reloc to be against a section, so the addend is
2106 always zero). However, the 32 bit instruction is stored as 2
2107 16-bit values, rather than a single 32-bit value. In a
2108 big-endian file, the result is the same; in a little-endian
2109 file, the two 16-bit halves of the 32 bit value are swapped.
2110 This is so that a disassembler can recognize the jal
2111 instruction.
2112
2113 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2114 instruction stored as two 16-bit values. The addend A is the
2115 contents of the targ26 field. The calculation is the same as
2116 R_MIPS_26. When storing the calculated value, reorder the
2117 immediate value as shown above, and don't forget to store the
2118 value as two 16-bit values.
2119
2120 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2121 defined as
2122
2123 big-endian:
2124 +--------+----------------------+
07d6d2b8
AM
2125 | | |
2126 | | targ26-16 |
2127 |31 26|25 0|
d6f16593
MR
2128 +--------+----------------------+
2129
2130 little-endian:
2131 +----------+------+-------------+
07d6d2b8
AM
2132 | | | |
2133 | sub1 | | sub2 |
2134 |0 9|10 15|16 31|
d6f16593
MR
2135 +----------+--------------------+
2136 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2137 ((sub1 << 16) | sub2)).
2138
2139 When producing a relocatable object file, the calculation is
2140 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2141 When producing a fully linked file, the calculation is
2142 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2143 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2144
738e5348
RS
2145 The table below lists the other MIPS16 instruction relocations.
2146 Each one is calculated in the same way as the non-MIPS16 relocation
2147 given on the right, but using the extended MIPS16 layout of 16-bit
2148 immediate fields:
2149
2150 R_MIPS16_GPREL R_MIPS_GPREL16
2151 R_MIPS16_GOT16 R_MIPS_GOT16
2152 R_MIPS16_CALL16 R_MIPS_CALL16
2153 R_MIPS16_HI16 R_MIPS_HI16
2154 R_MIPS16_LO16 R_MIPS_LO16
2155
2156 A typical instruction will have a format like this:
d6f16593
MR
2157
2158 +--------------+--------------------------------+
2159 | EXTEND | Imm 10:5 | Imm 15:11 |
2160 +--------------+--------------------------------+
2161 | Major | rx | ry | Imm 4:0 |
2162 +--------------+--------------------------------+
2163
2164 EXTEND is the five bit value 11110. Major is the instruction
2165 opcode.
2166
738e5348
RS
2167 All we need to do here is shuffle the bits appropriately.
2168 As above, the two 16-bit halves must be swapped on a
c9775dde
MR
2169 little-endian system.
2170
2171 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2172 relocatable field is shifted by 1 rather than 2 and the same bit
2173 shuffling is done as with the relocations above. */
738e5348
RS
2174
2175static inline bfd_boolean
2176mips16_reloc_p (int r_type)
2177{
2178 switch (r_type)
2179 {
2180 case R_MIPS16_26:
2181 case R_MIPS16_GPREL:
2182 case R_MIPS16_GOT16:
2183 case R_MIPS16_CALL16:
2184 case R_MIPS16_HI16:
2185 case R_MIPS16_LO16:
d0f13682
CLT
2186 case R_MIPS16_TLS_GD:
2187 case R_MIPS16_TLS_LDM:
2188 case R_MIPS16_TLS_DTPREL_HI16:
2189 case R_MIPS16_TLS_DTPREL_LO16:
2190 case R_MIPS16_TLS_GOTTPREL:
2191 case R_MIPS16_TLS_TPREL_HI16:
2192 case R_MIPS16_TLS_TPREL_LO16:
c9775dde 2193 case R_MIPS16_PC16_S1:
738e5348
RS
2194 return TRUE;
2195
2196 default:
2197 return FALSE;
2198 }
2199}
2200
df58fc94
RS
2201/* Check if a microMIPS reloc. */
2202
2203static inline bfd_boolean
2204micromips_reloc_p (unsigned int r_type)
2205{
2206 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2207}
2208
2209/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2210 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2211 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2212
2213static inline bfd_boolean
2214micromips_reloc_shuffle_p (unsigned int r_type)
2215{
2216 return (micromips_reloc_p (r_type)
2217 && r_type != R_MICROMIPS_PC7_S1
2218 && r_type != R_MICROMIPS_PC10_S1);
2219}
2220
738e5348
RS
2221static inline bfd_boolean
2222got16_reloc_p (int r_type)
2223{
df58fc94
RS
2224 return (r_type == R_MIPS_GOT16
2225 || r_type == R_MIPS16_GOT16
2226 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2227}
2228
2229static inline bfd_boolean
2230call16_reloc_p (int r_type)
2231{
df58fc94
RS
2232 return (r_type == R_MIPS_CALL16
2233 || r_type == R_MIPS16_CALL16
2234 || r_type == R_MICROMIPS_CALL16);
2235}
2236
2237static inline bfd_boolean
2238got_disp_reloc_p (unsigned int r_type)
2239{
2240 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2241}
2242
2243static inline bfd_boolean
2244got_page_reloc_p (unsigned int r_type)
2245{
2246 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2247}
2248
df58fc94
RS
2249static inline bfd_boolean
2250got_lo16_reloc_p (unsigned int r_type)
2251{
2252 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2253}
2254
2255static inline bfd_boolean
2256call_hi16_reloc_p (unsigned int r_type)
2257{
2258 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2259}
2260
2261static inline bfd_boolean
2262call_lo16_reloc_p (unsigned int r_type)
2263{
2264 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2265}
2266
2267static inline bfd_boolean
2268hi16_reloc_p (int r_type)
2269{
df58fc94
RS
2270 return (r_type == R_MIPS_HI16
2271 || r_type == R_MIPS16_HI16
7361da2c
AB
2272 || r_type == R_MICROMIPS_HI16
2273 || r_type == R_MIPS_PCHI16);
738e5348 2274}
d6f16593 2275
738e5348
RS
2276static inline bfd_boolean
2277lo16_reloc_p (int r_type)
2278{
df58fc94
RS
2279 return (r_type == R_MIPS_LO16
2280 || r_type == R_MIPS16_LO16
7361da2c
AB
2281 || r_type == R_MICROMIPS_LO16
2282 || r_type == R_MIPS_PCLO16);
738e5348
RS
2283}
2284
2285static inline bfd_boolean
2286mips16_call_reloc_p (int r_type)
2287{
2288 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2289}
d6f16593 2290
38a7df63
CF
2291static inline bfd_boolean
2292jal_reloc_p (int r_type)
2293{
df58fc94
RS
2294 return (r_type == R_MIPS_26
2295 || r_type == R_MIPS16_26
2296 || r_type == R_MICROMIPS_26_S1);
2297}
2298
99aefae6
MR
2299static inline bfd_boolean
2300b_reloc_p (int r_type)
2301{
2302 return (r_type == R_MIPS_PC26_S2
2303 || r_type == R_MIPS_PC21_S2
2304 || r_type == R_MIPS_PC16
c9775dde 2305 || r_type == R_MIPS_GNU_REL16_S2
9d862524
MR
2306 || r_type == R_MIPS16_PC16_S1
2307 || r_type == R_MICROMIPS_PC16_S1
2308 || r_type == R_MICROMIPS_PC10_S1
2309 || r_type == R_MICROMIPS_PC7_S1);
99aefae6
MR
2310}
2311
7361da2c
AB
2312static inline bfd_boolean
2313aligned_pcrel_reloc_p (int r_type)
2314{
2315 return (r_type == R_MIPS_PC18_S3
2316 || r_type == R_MIPS_PC19_S2);
2317}
2318
9d862524
MR
2319static inline bfd_boolean
2320branch_reloc_p (int r_type)
2321{
2322 return (r_type == R_MIPS_26
2323 || r_type == R_MIPS_PC26_S2
2324 || r_type == R_MIPS_PC21_S2
2325 || r_type == R_MIPS_PC16
2326 || r_type == R_MIPS_GNU_REL16_S2);
2327}
2328
c9775dde
MR
2329static inline bfd_boolean
2330mips16_branch_reloc_p (int r_type)
2331{
2332 return (r_type == R_MIPS16_26
2333 || r_type == R_MIPS16_PC16_S1);
2334}
2335
df58fc94
RS
2336static inline bfd_boolean
2337micromips_branch_reloc_p (int r_type)
2338{
2339 return (r_type == R_MICROMIPS_26_S1
2340 || r_type == R_MICROMIPS_PC16_S1
2341 || r_type == R_MICROMIPS_PC10_S1
2342 || r_type == R_MICROMIPS_PC7_S1);
2343}
2344
2345static inline bfd_boolean
2346tls_gd_reloc_p (unsigned int r_type)
2347{
d0f13682
CLT
2348 return (r_type == R_MIPS_TLS_GD
2349 || r_type == R_MIPS16_TLS_GD
2350 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2351}
2352
2353static inline bfd_boolean
2354tls_ldm_reloc_p (unsigned int r_type)
2355{
d0f13682
CLT
2356 return (r_type == R_MIPS_TLS_LDM
2357 || r_type == R_MIPS16_TLS_LDM
2358 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2359}
2360
2361static inline bfd_boolean
2362tls_gottprel_reloc_p (unsigned int r_type)
2363{
d0f13682
CLT
2364 return (r_type == R_MIPS_TLS_GOTTPREL
2365 || r_type == R_MIPS16_TLS_GOTTPREL
2366 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2367}
2368
d6f16593 2369void
df58fc94
RS
2370_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2371 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2372{
df58fc94 2373 bfd_vma first, second, val;
d6f16593 2374
df58fc94 2375 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2376 return;
2377
df58fc94
RS
2378 /* Pick up the first and second halfwords of the instruction. */
2379 first = bfd_get_16 (abfd, data);
2380 second = bfd_get_16 (abfd, data + 2);
2381 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2382 val = first << 16 | second;
2383 else if (r_type != R_MIPS16_26)
2384 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2385 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2386 else
df58fc94
RS
2387 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2388 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2389 bfd_put_32 (abfd, val, data);
2390}
2391
2392void
df58fc94
RS
2393_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2394 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2395{
df58fc94 2396 bfd_vma first, second, val;
d6f16593 2397
df58fc94 2398 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2399 return;
2400
2401 val = bfd_get_32 (abfd, data);
df58fc94 2402 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2403 {
df58fc94
RS
2404 second = val & 0xffff;
2405 first = val >> 16;
2406 }
2407 else if (r_type != R_MIPS16_26)
2408 {
2409 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2410 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2411 }
2412 else
2413 {
df58fc94
RS
2414 second = val & 0xffff;
2415 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2416 | ((val >> 21) & 0x1f);
d6f16593 2417 }
df58fc94
RS
2418 bfd_put_16 (abfd, second, data + 2);
2419 bfd_put_16 (abfd, first, data);
d6f16593
MR
2420}
2421
b49e97c9 2422bfd_reloc_status_type
9719ad41
RS
2423_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2424 arelent *reloc_entry, asection *input_section,
2425 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2426{
2427 bfd_vma relocation;
a7ebbfdf 2428 bfd_signed_vma val;
30ac9238 2429 bfd_reloc_status_type status;
b49e97c9
TS
2430
2431 if (bfd_is_com_section (symbol->section))
2432 relocation = 0;
2433 else
2434 relocation = symbol->value;
2435
2436 relocation += symbol->section->output_section->vma;
2437 relocation += symbol->section->output_offset;
2438
07515404 2439 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2440 return bfd_reloc_outofrange;
2441
b49e97c9 2442 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2443 val = reloc_entry->addend;
2444
30ac9238 2445 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2446
b49e97c9 2447 /* Adjust val for the final section location and GP value. If we
1049f94e 2448 are producing relocatable output, we don't want to do this for
b49e97c9 2449 an external symbol. */
1049f94e 2450 if (! relocatable
b49e97c9
TS
2451 || (symbol->flags & BSF_SECTION_SYM) != 0)
2452 val += relocation - gp;
2453
a7ebbfdf
TS
2454 if (reloc_entry->howto->partial_inplace)
2455 {
30ac9238
RS
2456 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2457 (bfd_byte *) data
2458 + reloc_entry->address);
2459 if (status != bfd_reloc_ok)
2460 return status;
a7ebbfdf
TS
2461 }
2462 else
2463 reloc_entry->addend = val;
b49e97c9 2464
1049f94e 2465 if (relocatable)
b49e97c9 2466 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2467
2468 return bfd_reloc_ok;
2469}
2470
2471/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2472 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2473 that contains the relocation field and DATA points to the start of
2474 INPUT_SECTION. */
2475
2476struct mips_hi16
2477{
2478 struct mips_hi16 *next;
2479 bfd_byte *data;
2480 asection *input_section;
2481 arelent rel;
2482};
2483
2484/* FIXME: This should not be a static variable. */
2485
2486static struct mips_hi16 *mips_hi16_list;
2487
2488/* A howto special_function for REL *HI16 relocations. We can only
2489 calculate the correct value once we've seen the partnering
2490 *LO16 relocation, so just save the information for later.
2491
2492 The ABI requires that the *LO16 immediately follow the *HI16.
2493 However, as a GNU extension, we permit an arbitrary number of
2494 *HI16s to be associated with a single *LO16. This significantly
2495 simplies the relocation handling in gcc. */
2496
2497bfd_reloc_status_type
2498_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2499 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2500 asection *input_section, bfd *output_bfd,
2501 char **error_message ATTRIBUTE_UNUSED)
2502{
2503 struct mips_hi16 *n;
2504
07515404 2505 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2506 return bfd_reloc_outofrange;
2507
2508 n = bfd_malloc (sizeof *n);
2509 if (n == NULL)
2510 return bfd_reloc_outofrange;
2511
2512 n->next = mips_hi16_list;
2513 n->data = data;
2514 n->input_section = input_section;
2515 n->rel = *reloc_entry;
2516 mips_hi16_list = n;
2517
2518 if (output_bfd != NULL)
2519 reloc_entry->address += input_section->output_offset;
2520
2521 return bfd_reloc_ok;
2522}
2523
738e5348 2524/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2525 like any other 16-bit relocation when applied to global symbols, but is
2526 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2527
2528bfd_reloc_status_type
2529_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2530 void *data, asection *input_section,
2531 bfd *output_bfd, char **error_message)
2532{
2533 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
e6f7f6d1
AM
2534 || bfd_is_und_section (bfd_asymbol_section (symbol))
2535 || bfd_is_com_section (bfd_asymbol_section (symbol)))
30ac9238
RS
2536 /* The relocation is against a global symbol. */
2537 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2538 input_section, output_bfd,
2539 error_message);
2540
2541 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2542 input_section, output_bfd, error_message);
2543}
2544
2545/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2546 is a straightforward 16 bit inplace relocation, but we must deal with
2547 any partnering high-part relocations as well. */
2548
2549bfd_reloc_status_type
2550_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2551 void *data, asection *input_section,
2552 bfd *output_bfd, char **error_message)
2553{
2554 bfd_vma vallo;
d6f16593 2555 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2556
07515404 2557 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2558 return bfd_reloc_outofrange;
2559
df58fc94 2560 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2561 location);
df58fc94
RS
2562 vallo = bfd_get_32 (abfd, location);
2563 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2564 location);
d6f16593 2565
30ac9238
RS
2566 while (mips_hi16_list != NULL)
2567 {
2568 bfd_reloc_status_type ret;
2569 struct mips_hi16 *hi;
2570
2571 hi = mips_hi16_list;
2572
738e5348
RS
2573 /* R_MIPS*_GOT16 relocations are something of a special case. We
2574 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2575 relocation (with a rightshift of 16). However, since GOT16
2576 relocations can also be used with global symbols, their howto
2577 has a rightshift of 0. */
2578 if (hi->rel.howto->type == R_MIPS_GOT16)
2579 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2580 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2581 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2582 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2583 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2584
2585 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2586 carry or borrow will induce a change of +1 or -1 in the high part. */
2587 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2588
30ac9238
RS
2589 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2590 hi->input_section, output_bfd,
2591 error_message);
2592 if (ret != bfd_reloc_ok)
2593 return ret;
2594
2595 mips_hi16_list = hi->next;
2596 free (hi);
2597 }
2598
2599 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2600 input_section, output_bfd,
2601 error_message);
2602}
2603
2604/* A generic howto special_function. This calculates and installs the
2605 relocation itself, thus avoiding the oft-discussed problems in
2606 bfd_perform_relocation and bfd_install_relocation. */
2607
2608bfd_reloc_status_type
2609_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2610 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2611 asection *input_section, bfd *output_bfd,
2612 char **error_message ATTRIBUTE_UNUSED)
2613{
2614 bfd_signed_vma val;
2615 bfd_reloc_status_type status;
2616 bfd_boolean relocatable;
2617
2618 relocatable = (output_bfd != NULL);
2619
07515404 2620 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2621 return bfd_reloc_outofrange;
2622
2623 /* Build up the field adjustment in VAL. */
2624 val = 0;
2625 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2626 {
2627 /* Either we're calculating the final field value or we have a
2628 relocation against a section symbol. Add in the section's
2629 offset or address. */
2630 val += symbol->section->output_section->vma;
2631 val += symbol->section->output_offset;
2632 }
2633
2634 if (!relocatable)
2635 {
2636 /* We're calculating the final field value. Add in the symbol's value
2637 and, if pc-relative, subtract the address of the field itself. */
2638 val += symbol->value;
2639 if (reloc_entry->howto->pc_relative)
2640 {
2641 val -= input_section->output_section->vma;
2642 val -= input_section->output_offset;
2643 val -= reloc_entry->address;
2644 }
2645 }
2646
2647 /* VAL is now the final adjustment. If we're keeping this relocation
2648 in the output file, and if the relocation uses a separate addend,
2649 we just need to add VAL to that addend. Otherwise we need to add
2650 VAL to the relocation field itself. */
2651 if (relocatable && !reloc_entry->howto->partial_inplace)
2652 reloc_entry->addend += val;
2653 else
2654 {
d6f16593
MR
2655 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2656
30ac9238
RS
2657 /* Add in the separate addend, if any. */
2658 val += reloc_entry->addend;
2659
2660 /* Add VAL to the relocation field. */
df58fc94
RS
2661 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2662 location);
30ac9238 2663 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2664 location);
df58fc94
RS
2665 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2666 location);
d6f16593 2667
30ac9238
RS
2668 if (status != bfd_reloc_ok)
2669 return status;
2670 }
2671
2672 if (relocatable)
2673 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2674
2675 return bfd_reloc_ok;
2676}
2677\f
2678/* Swap an entry in a .gptab section. Note that these routines rely
2679 on the equivalence of the two elements of the union. */
2680
2681static void
9719ad41
RS
2682bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2683 Elf32_gptab *in)
b49e97c9
TS
2684{
2685 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2686 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2687}
2688
2689static void
9719ad41
RS
2690bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2691 Elf32_External_gptab *ex)
b49e97c9
TS
2692{
2693 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2694 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2695}
2696
2697static void
9719ad41
RS
2698bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2699 Elf32_External_compact_rel *ex)
b49e97c9
TS
2700{
2701 H_PUT_32 (abfd, in->id1, ex->id1);
2702 H_PUT_32 (abfd, in->num, ex->num);
2703 H_PUT_32 (abfd, in->id2, ex->id2);
2704 H_PUT_32 (abfd, in->offset, ex->offset);
2705 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2706 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2707}
2708
2709static void
9719ad41
RS
2710bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2711 Elf32_External_crinfo *ex)
b49e97c9
TS
2712{
2713 unsigned long l;
2714
2715 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2716 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2717 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2718 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2719 H_PUT_32 (abfd, l, ex->info);
2720 H_PUT_32 (abfd, in->konst, ex->konst);
2721 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2722}
b49e97c9
TS
2723\f
2724/* A .reginfo section holds a single Elf32_RegInfo structure. These
2725 routines swap this structure in and out. They are used outside of
2726 BFD, so they are globally visible. */
2727
2728void
9719ad41
RS
2729bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2730 Elf32_RegInfo *in)
b49e97c9
TS
2731{
2732 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2733 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2734 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2735 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2736 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2737 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2738}
2739
2740void
9719ad41
RS
2741bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2742 Elf32_External_RegInfo *ex)
b49e97c9
TS
2743{
2744 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2745 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2746 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2747 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2748 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2749 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2750}
2751
2752/* In the 64 bit ABI, the .MIPS.options section holds register
2753 information in an Elf64_Reginfo structure. These routines swap
2754 them in and out. They are globally visible because they are used
2755 outside of BFD. These routines are here so that gas can call them
2756 without worrying about whether the 64 bit ABI has been included. */
2757
2758void
9719ad41
RS
2759bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2760 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2761{
2762 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2763 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2764 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2765 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2766 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2767 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2768 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2769}
2770
2771void
9719ad41
RS
2772bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2773 Elf64_External_RegInfo *ex)
b49e97c9
TS
2774{
2775 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2776 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2777 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2778 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2779 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2780 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2781 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2782}
2783
2784/* Swap in an options header. */
2785
2786void
9719ad41
RS
2787bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2788 Elf_Internal_Options *in)
b49e97c9
TS
2789{
2790 in->kind = H_GET_8 (abfd, ex->kind);
2791 in->size = H_GET_8 (abfd, ex->size);
2792 in->section = H_GET_16 (abfd, ex->section);
2793 in->info = H_GET_32 (abfd, ex->info);
2794}
2795
2796/* Swap out an options header. */
2797
2798void
9719ad41
RS
2799bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2800 Elf_External_Options *ex)
b49e97c9
TS
2801{
2802 H_PUT_8 (abfd, in->kind, ex->kind);
2803 H_PUT_8 (abfd, in->size, ex->size);
2804 H_PUT_16 (abfd, in->section, ex->section);
2805 H_PUT_32 (abfd, in->info, ex->info);
2806}
351cdf24
MF
2807
2808/* Swap in an abiflags structure. */
2809
2810void
2811bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2812 const Elf_External_ABIFlags_v0 *ex,
2813 Elf_Internal_ABIFlags_v0 *in)
2814{
2815 in->version = H_GET_16 (abfd, ex->version);
2816 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2817 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2818 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2819 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2820 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2821 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2822 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2823 in->ases = H_GET_32 (abfd, ex->ases);
2824 in->flags1 = H_GET_32 (abfd, ex->flags1);
2825 in->flags2 = H_GET_32 (abfd, ex->flags2);
2826}
2827
2828/* Swap out an abiflags structure. */
2829
2830void
2831bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2832 const Elf_Internal_ABIFlags_v0 *in,
2833 Elf_External_ABIFlags_v0 *ex)
2834{
2835 H_PUT_16 (abfd, in->version, ex->version);
2836 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2837 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2838 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2839 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2840 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2841 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2842 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2843 H_PUT_32 (abfd, in->ases, ex->ases);
2844 H_PUT_32 (abfd, in->flags1, ex->flags1);
2845 H_PUT_32 (abfd, in->flags2, ex->flags2);
2846}
b49e97c9
TS
2847\f
2848/* This function is called via qsort() to sort the dynamic relocation
2849 entries by increasing r_symndx value. */
2850
2851static int
9719ad41 2852sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2853{
947216bf
AM
2854 Elf_Internal_Rela int_reloc1;
2855 Elf_Internal_Rela int_reloc2;
6870500c 2856 int diff;
b49e97c9 2857
947216bf
AM
2858 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2859 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2860
6870500c
RS
2861 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2862 if (diff != 0)
2863 return diff;
2864
2865 if (int_reloc1.r_offset < int_reloc2.r_offset)
2866 return -1;
2867 if (int_reloc1.r_offset > int_reloc2.r_offset)
2868 return 1;
2869 return 0;
b49e97c9
TS
2870}
2871
f4416af6
AO
2872/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2873
2874static int
7e3102a7
AM
2875sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2876 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2877{
7e3102a7 2878#ifdef BFD64
f4416af6
AO
2879 Elf_Internal_Rela int_reloc1[3];
2880 Elf_Internal_Rela int_reloc2[3];
2881
2882 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2883 (reldyn_sorting_bfd, arg1, int_reloc1);
2884 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2885 (reldyn_sorting_bfd, arg2, int_reloc2);
2886
6870500c
RS
2887 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2888 return -1;
2889 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2890 return 1;
2891
2892 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2893 return -1;
2894 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2895 return 1;
2896 return 0;
7e3102a7
AM
2897#else
2898 abort ();
2899#endif
f4416af6
AO
2900}
2901
2902
b49e97c9
TS
2903/* This routine is used to write out ECOFF debugging external symbol
2904 information. It is called via mips_elf_link_hash_traverse. The
2905 ECOFF external symbol information must match the ELF external
2906 symbol information. Unfortunately, at this point we don't know
2907 whether a symbol is required by reloc information, so the two
2908 tables may wind up being different. We must sort out the external
2909 symbol information before we can set the final size of the .mdebug
2910 section, and we must set the size of the .mdebug section before we
2911 can relocate any sections, and we can't know which symbols are
2912 required by relocation until we relocate the sections.
2913 Fortunately, it is relatively unlikely that any symbol will be
2914 stripped but required by a reloc. In particular, it can not happen
2915 when generating a final executable. */
2916
b34976b6 2917static bfd_boolean
9719ad41 2918mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2919{
9719ad41 2920 struct extsym_info *einfo = data;
b34976b6 2921 bfd_boolean strip;
b49e97c9
TS
2922 asection *sec, *output_section;
2923
b49e97c9 2924 if (h->root.indx == -2)
b34976b6 2925 strip = FALSE;
f5385ebf 2926 else if ((h->root.def_dynamic
77cfaee6
AM
2927 || h->root.ref_dynamic
2928 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2929 && !h->root.def_regular
2930 && !h->root.ref_regular)
b34976b6 2931 strip = TRUE;
b49e97c9
TS
2932 else if (einfo->info->strip == strip_all
2933 || (einfo->info->strip == strip_some
2934 && bfd_hash_lookup (einfo->info->keep_hash,
2935 h->root.root.root.string,
b34976b6
AM
2936 FALSE, FALSE) == NULL))
2937 strip = TRUE;
b49e97c9 2938 else
b34976b6 2939 strip = FALSE;
b49e97c9
TS
2940
2941 if (strip)
b34976b6 2942 return TRUE;
b49e97c9
TS
2943
2944 if (h->esym.ifd == -2)
2945 {
2946 h->esym.jmptbl = 0;
2947 h->esym.cobol_main = 0;
2948 h->esym.weakext = 0;
2949 h->esym.reserved = 0;
2950 h->esym.ifd = ifdNil;
2951 h->esym.asym.value = 0;
2952 h->esym.asym.st = stGlobal;
2953
2954 if (h->root.root.type == bfd_link_hash_undefined
2955 || h->root.root.type == bfd_link_hash_undefweak)
2956 {
2957 const char *name;
2958
2959 /* Use undefined class. Also, set class and type for some
07d6d2b8 2960 special symbols. */
b49e97c9
TS
2961 name = h->root.root.root.string;
2962 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2963 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2964 {
2965 h->esym.asym.sc = scData;
2966 h->esym.asym.st = stLabel;
2967 h->esym.asym.value = 0;
2968 }
2969 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2970 {
2971 h->esym.asym.sc = scAbs;
2972 h->esym.asym.st = stLabel;
2973 h->esym.asym.value =
2974 mips_elf_hash_table (einfo->info)->procedure_count;
2975 }
b49e97c9
TS
2976 else
2977 h->esym.asym.sc = scUndefined;
2978 }
2979 else if (h->root.root.type != bfd_link_hash_defined
2980 && h->root.root.type != bfd_link_hash_defweak)
2981 h->esym.asym.sc = scAbs;
2982 else
2983 {
2984 const char *name;
2985
2986 sec = h->root.root.u.def.section;
2987 output_section = sec->output_section;
2988
2989 /* When making a shared library and symbol h is the one from
2990 the another shared library, OUTPUT_SECTION may be null. */
2991 if (output_section == NULL)
2992 h->esym.asym.sc = scUndefined;
2993 else
2994 {
fd361982 2995 name = bfd_section_name (output_section);
b49e97c9
TS
2996
2997 if (strcmp (name, ".text") == 0)
2998 h->esym.asym.sc = scText;
2999 else if (strcmp (name, ".data") == 0)
3000 h->esym.asym.sc = scData;
3001 else if (strcmp (name, ".sdata") == 0)
3002 h->esym.asym.sc = scSData;
3003 else if (strcmp (name, ".rodata") == 0
3004 || strcmp (name, ".rdata") == 0)
3005 h->esym.asym.sc = scRData;
3006 else if (strcmp (name, ".bss") == 0)
3007 h->esym.asym.sc = scBss;
3008 else if (strcmp (name, ".sbss") == 0)
3009 h->esym.asym.sc = scSBss;
3010 else if (strcmp (name, ".init") == 0)
3011 h->esym.asym.sc = scInit;
3012 else if (strcmp (name, ".fini") == 0)
3013 h->esym.asym.sc = scFini;
3014 else
3015 h->esym.asym.sc = scAbs;
3016 }
3017 }
3018
3019 h->esym.asym.reserved = 0;
3020 h->esym.asym.index = indexNil;
3021 }
3022
3023 if (h->root.root.type == bfd_link_hash_common)
3024 h->esym.asym.value = h->root.root.u.c.size;
3025 else if (h->root.root.type == bfd_link_hash_defined
3026 || h->root.root.type == bfd_link_hash_defweak)
3027 {
3028 if (h->esym.asym.sc == scCommon)
3029 h->esym.asym.sc = scBss;
3030 else if (h->esym.asym.sc == scSCommon)
3031 h->esym.asym.sc = scSBss;
3032
3033 sec = h->root.root.u.def.section;
3034 output_section = sec->output_section;
3035 if (output_section != NULL)
3036 h->esym.asym.value = (h->root.root.u.def.value
3037 + sec->output_offset
3038 + output_section->vma);
3039 else
3040 h->esym.asym.value = 0;
3041 }
33bb52fb 3042 else
b49e97c9
TS
3043 {
3044 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
3045
3046 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 3047 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 3048
33bb52fb 3049 if (hd->needs_lazy_stub)
b49e97c9 3050 {
1bbce132
MR
3051 BFD_ASSERT (hd->root.plt.plist != NULL);
3052 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
3053 /* Set type and value for a symbol with a function stub. */
3054 h->esym.asym.st = stProc;
3055 sec = hd->root.root.u.def.section;
3056 if (sec == NULL)
3057 h->esym.asym.value = 0;
3058 else
3059 {
3060 output_section = sec->output_section;
3061 if (output_section != NULL)
1bbce132 3062 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
3063 + sec->output_offset
3064 + output_section->vma);
3065 else
3066 h->esym.asym.value = 0;
3067 }
b49e97c9
TS
3068 }
3069 }
3070
3071 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3072 h->root.root.root.string,
3073 &h->esym))
3074 {
b34976b6
AM
3075 einfo->failed = TRUE;
3076 return FALSE;
b49e97c9
TS
3077 }
3078
b34976b6 3079 return TRUE;
b49e97c9
TS
3080}
3081
3082/* A comparison routine used to sort .gptab entries. */
3083
3084static int
9719ad41 3085gptab_compare (const void *p1, const void *p2)
b49e97c9 3086{
9719ad41
RS
3087 const Elf32_gptab *a1 = p1;
3088 const Elf32_gptab *a2 = p2;
b49e97c9
TS
3089
3090 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3091}
3092\f
b15e6682 3093/* Functions to manage the got entry hash table. */
f4416af6
AO
3094
3095/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3096 hash number. */
3097
3098static INLINE hashval_t
9719ad41 3099mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3100{
3101#ifdef BFD64
3102 return addr + (addr >> 32);
3103#else
3104 return addr;
3105#endif
3106}
3107
f4416af6 3108static hashval_t
d9bf376d 3109mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3110{
3111 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3112
e641e783 3113 return (entry->symndx
9ab066b4
RS
3114 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3115 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3116 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3117 : entry->symndx >= 0 ? (entry->abfd->id
3118 + mips_elf_hash_bfd_vma (entry->d.addend))
3119 : entry->d.h->root.root.root.hash));
f4416af6
AO
3120}
3121
3122static int
3dff0dd1 3123mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3124{
3125 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3126 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3127
e641e783 3128 return (e1->symndx == e2->symndx
9ab066b4
RS
3129 && e1->tls_type == e2->tls_type
3130 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3131 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3132 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3133 && e1->d.addend == e2->d.addend)
3134 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3135}
c224138d 3136
13db6b44
RS
3137static hashval_t
3138mips_got_page_ref_hash (const void *ref_)
3139{
3140 const struct mips_got_page_ref *ref;
3141
3142 ref = (const struct mips_got_page_ref *) ref_;
3143 return ((ref->symndx >= 0
3144 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3145 : ref->u.h->root.root.root.hash)
3146 + mips_elf_hash_bfd_vma (ref->addend));
3147}
3148
3149static int
3150mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3151{
3152 const struct mips_got_page_ref *ref1, *ref2;
3153
3154 ref1 = (const struct mips_got_page_ref *) ref1_;
3155 ref2 = (const struct mips_got_page_ref *) ref2_;
3156 return (ref1->symndx == ref2->symndx
3157 && (ref1->symndx < 0
3158 ? ref1->u.h == ref2->u.h
3159 : ref1->u.abfd == ref2->u.abfd)
3160 && ref1->addend == ref2->addend);
3161}
3162
c224138d
RS
3163static hashval_t
3164mips_got_page_entry_hash (const void *entry_)
3165{
3166 const struct mips_got_page_entry *entry;
3167
3168 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3169 return entry->sec->id;
c224138d
RS
3170}
3171
3172static int
3173mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3174{
3175 const struct mips_got_page_entry *entry1, *entry2;
3176
3177 entry1 = (const struct mips_got_page_entry *) entry1_;
3178 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3179 return entry1->sec == entry2->sec;
c224138d 3180}
b15e6682 3181\f
3dff0dd1 3182/* Create and return a new mips_got_info structure. */
5334aa52
RS
3183
3184static struct mips_got_info *
3dff0dd1 3185mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3186{
3187 struct mips_got_info *g;
3188
3189 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3190 if (g == NULL)
3191 return NULL;
3192
3dff0dd1
RS
3193 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3194 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3195 if (g->got_entries == NULL)
3196 return NULL;
3197
13db6b44
RS
3198 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3199 mips_got_page_ref_eq, NULL);
3200 if (g->got_page_refs == NULL)
5334aa52
RS
3201 return NULL;
3202
3203 return g;
3204}
3205
ee227692
RS
3206/* Return the GOT info for input bfd ABFD, trying to create a new one if
3207 CREATE_P and if ABFD doesn't already have a GOT. */
3208
3209static struct mips_got_info *
3210mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3211{
3212 struct mips_elf_obj_tdata *tdata;
3213
3214 if (!is_mips_elf (abfd))
3215 return NULL;
3216
3217 tdata = mips_elf_tdata (abfd);
3218 if (!tdata->got && create_p)
3dff0dd1 3219 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3220 return tdata->got;
3221}
3222
d7206569
RS
3223/* Record that ABFD should use output GOT G. */
3224
3225static void
3226mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3227{
3228 struct mips_elf_obj_tdata *tdata;
3229
3230 BFD_ASSERT (is_mips_elf (abfd));
3231 tdata = mips_elf_tdata (abfd);
3232 if (tdata->got)
3233 {
3234 /* The GOT structure itself and the hash table entries are
3235 allocated to a bfd, but the hash tables aren't. */
3236 htab_delete (tdata->got->got_entries);
13db6b44
RS
3237 htab_delete (tdata->got->got_page_refs);
3238 if (tdata->got->got_page_entries)
3239 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3240 }
3241 tdata->got = g;
3242}
3243
0a44bf69
RS
3244/* Return the dynamic relocation section. If it doesn't exist, try to
3245 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3246 if creation fails. */
f4416af6
AO
3247
3248static asection *
0a44bf69 3249mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3250{
0a44bf69 3251 const char *dname;
f4416af6 3252 asection *sreloc;
0a44bf69 3253 bfd *dynobj;
f4416af6 3254
0a44bf69
RS
3255 dname = MIPS_ELF_REL_DYN_NAME (info);
3256 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3257 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3258 if (sreloc == NULL && create_p)
3259 {
3d4d4302
AM
3260 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3261 (SEC_ALLOC
3262 | SEC_LOAD
3263 | SEC_HAS_CONTENTS
3264 | SEC_IN_MEMORY
3265 | SEC_LINKER_CREATED
3266 | SEC_READONLY));
f4416af6 3267 if (sreloc == NULL
fd361982
AM
3268 || !bfd_set_section_alignment (sreloc,
3269 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3270 return NULL;
3271 }
3272 return sreloc;
3273}
3274
e641e783
RS
3275/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3276
3277static int
3278mips_elf_reloc_tls_type (unsigned int r_type)
3279{
3280 if (tls_gd_reloc_p (r_type))
3281 return GOT_TLS_GD;
3282
3283 if (tls_ldm_reloc_p (r_type))
3284 return GOT_TLS_LDM;
3285
3286 if (tls_gottprel_reloc_p (r_type))
3287 return GOT_TLS_IE;
3288
9ab066b4 3289 return GOT_TLS_NONE;
e641e783
RS
3290}
3291
3292/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3293
3294static int
3295mips_tls_got_entries (unsigned int type)
3296{
3297 switch (type)
3298 {
3299 case GOT_TLS_GD:
3300 case GOT_TLS_LDM:
3301 return 2;
3302
3303 case GOT_TLS_IE:
3304 return 1;
3305
9ab066b4 3306 case GOT_TLS_NONE:
e641e783
RS
3307 return 0;
3308 }
3309 abort ();
3310}
3311
0f20cc35
DJ
3312/* Count the number of relocations needed for a TLS GOT entry, with
3313 access types from TLS_TYPE, and symbol H (or a local symbol if H
3314 is NULL). */
3315
3316static int
3317mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3318 struct elf_link_hash_entry *h)
3319{
3320 int indx = 0;
0f20cc35
DJ
3321 bfd_boolean need_relocs = FALSE;
3322 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3323
1cb83cac
MR
3324 if (h != NULL
3325 && h->dynindx != -1
3326 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3327 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3328 indx = h->dynindx;
3329
9143e72c 3330 if ((bfd_link_dll (info) || indx != 0)
0f20cc35
DJ
3331 && (h == NULL
3332 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3333 || h->root.type != bfd_link_hash_undefweak))
3334 need_relocs = TRUE;
3335
3336 if (!need_relocs)
e641e783 3337 return 0;
0f20cc35 3338
9ab066b4 3339 switch (tls_type)
0f20cc35 3340 {
e641e783
RS
3341 case GOT_TLS_GD:
3342 return indx != 0 ? 2 : 1;
0f20cc35 3343
e641e783
RS
3344 case GOT_TLS_IE:
3345 return 1;
0f20cc35 3346
e641e783 3347 case GOT_TLS_LDM:
9143e72c 3348 return bfd_link_dll (info) ? 1 : 0;
0f20cc35 3349
e641e783
RS
3350 default:
3351 return 0;
3352 }
0f20cc35
DJ
3353}
3354
ab361d49
RS
3355/* Add the number of GOT entries and TLS relocations required by ENTRY
3356 to G. */
0f20cc35 3357
ab361d49
RS
3358static void
3359mips_elf_count_got_entry (struct bfd_link_info *info,
3360 struct mips_got_info *g,
3361 struct mips_got_entry *entry)
0f20cc35 3362{
9ab066b4 3363 if (entry->tls_type)
ab361d49 3364 {
9ab066b4
RS
3365 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3366 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3367 entry->symndx < 0
3368 ? &entry->d.h->root : NULL);
3369 }
3370 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3371 g->local_gotno += 1;
3372 else
3373 g->global_gotno += 1;
0f20cc35
DJ
3374}
3375
0f20cc35
DJ
3376/* Output a simple dynamic relocation into SRELOC. */
3377
3378static void
3379mips_elf_output_dynamic_relocation (bfd *output_bfd,
3380 asection *sreloc,
861fb55a 3381 unsigned long reloc_index,
0f20cc35
DJ
3382 unsigned long indx,
3383 int r_type,
3384 bfd_vma offset)
3385{
3386 Elf_Internal_Rela rel[3];
3387
3388 memset (rel, 0, sizeof (rel));
3389
3390 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3391 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3392
3393 if (ABI_64_P (output_bfd))
3394 {
3395 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3396 (output_bfd, &rel[0],
3397 (sreloc->contents
861fb55a 3398 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3399 }
3400 else
3401 bfd_elf32_swap_reloc_out
3402 (output_bfd, &rel[0],
3403 (sreloc->contents
861fb55a 3404 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3405}
3406
3407/* Initialize a set of TLS GOT entries for one symbol. */
3408
3409static void
9ab066b4
RS
3410mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3411 struct mips_got_entry *entry,
0f20cc35
DJ
3412 struct mips_elf_link_hash_entry *h,
3413 bfd_vma value)
3414{
1cb83cac 3415 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
23cc69b6 3416 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3417 int indx;
3418 asection *sreloc, *sgot;
9ab066b4 3419 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3420 bfd_boolean need_relocs = FALSE;
3421
23cc69b6 3422 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3423 if (htab == NULL)
3424 return;
3425
ce558b89 3426 sgot = htab->root.sgot;
0f20cc35
DJ
3427
3428 indx = 0;
1cb83cac
MR
3429 if (h != NULL
3430 && h->root.dynindx != -1
3431 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3432 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3433 indx = h->root.dynindx;
0f20cc35 3434
9ab066b4 3435 if (entry->tls_initialized)
0f20cc35
DJ
3436 return;
3437
9143e72c 3438 if ((bfd_link_dll (info) || indx != 0)
0f20cc35
DJ
3439 && (h == NULL
3440 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3441 || h->root.type != bfd_link_hash_undefweak))
3442 need_relocs = TRUE;
3443
3444 /* MINUS_ONE means the symbol is not defined in this object. It may not
3445 be defined at all; assume that the value doesn't matter in that
3446 case. Otherwise complain if we would use the value. */
3447 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3448 || h->root.root.type == bfd_link_hash_undefweak);
3449
3450 /* Emit necessary relocations. */
0a44bf69 3451 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3452 got_offset = entry->gotidx;
0f20cc35 3453
9ab066b4 3454 switch (entry->tls_type)
0f20cc35 3455 {
e641e783
RS
3456 case GOT_TLS_GD:
3457 /* General Dynamic. */
3458 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3459
3460 if (need_relocs)
3461 {
3462 mips_elf_output_dynamic_relocation
861fb55a 3463 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3464 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3465 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3466
3467 if (indx)
3468 mips_elf_output_dynamic_relocation
861fb55a 3469 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3470 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3471 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3472 else
3473 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3474 sgot->contents + got_offset2);
0f20cc35
DJ
3475 }
3476 else
3477 {
3478 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3479 sgot->contents + got_offset);
0f20cc35 3480 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3481 sgot->contents + got_offset2);
0f20cc35 3482 }
e641e783 3483 break;
0f20cc35 3484
e641e783
RS
3485 case GOT_TLS_IE:
3486 /* Initial Exec model. */
0f20cc35
DJ
3487 if (need_relocs)
3488 {
3489 if (indx == 0)
3490 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3491 sgot->contents + got_offset);
0f20cc35
DJ
3492 else
3493 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3494 sgot->contents + got_offset);
0f20cc35
DJ
3495
3496 mips_elf_output_dynamic_relocation
861fb55a 3497 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3498 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3499 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3500 }
3501 else
3502 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3503 sgot->contents + got_offset);
3504 break;
0f20cc35 3505
e641e783 3506 case GOT_TLS_LDM:
0f20cc35
DJ
3507 /* The initial offset is zero, and the LD offsets will include the
3508 bias by DTP_OFFSET. */
3509 MIPS_ELF_PUT_WORD (abfd, 0,
3510 sgot->contents + got_offset
3511 + MIPS_ELF_GOT_SIZE (abfd));
3512
9143e72c 3513 if (!bfd_link_dll (info))
0f20cc35
DJ
3514 MIPS_ELF_PUT_WORD (abfd, 1,
3515 sgot->contents + got_offset);
3516 else
3517 mips_elf_output_dynamic_relocation
861fb55a 3518 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3519 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3520 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3521 break;
3522
3523 default:
3524 abort ();
0f20cc35
DJ
3525 }
3526
9ab066b4 3527 entry->tls_initialized = TRUE;
e641e783 3528}
0f20cc35 3529
0a44bf69
RS
3530/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3531 for global symbol H. .got.plt comes before the GOT, so the offset
3532 will be negative. */
3533
3534static bfd_vma
3535mips_elf_gotplt_index (struct bfd_link_info *info,
3536 struct elf_link_hash_entry *h)
3537{
1bbce132 3538 bfd_vma got_address, got_value;
0a44bf69
RS
3539 struct mips_elf_link_hash_table *htab;
3540
3541 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3542 BFD_ASSERT (htab != NULL);
3543
1bbce132
MR
3544 BFD_ASSERT (h->plt.plist != NULL);
3545 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3546
3547 /* Calculate the address of the associated .got.plt entry. */
ce558b89
AM
3548 got_address = (htab->root.sgotplt->output_section->vma
3549 + htab->root.sgotplt->output_offset
1bbce132
MR
3550 + (h->plt.plist->gotplt_index
3551 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3552
3553 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3554 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3555 + htab->root.hgot->root.u.def.section->output_offset
3556 + htab->root.hgot->root.u.def.value);
3557
3558 return got_address - got_value;
3559}
3560
5c18022e 3561/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3562 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3563 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3564 offset can be found. */
b49e97c9
TS
3565
3566static bfd_vma
9719ad41 3567mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3568 bfd_vma value, unsigned long r_symndx,
0f20cc35 3569 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3570{
a8028dd0 3571 struct mips_elf_link_hash_table *htab;
b15e6682 3572 struct mips_got_entry *entry;
b49e97c9 3573
a8028dd0 3574 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3575 BFD_ASSERT (htab != NULL);
3576
a8028dd0
RS
3577 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3578 r_symndx, h, r_type);
0f20cc35 3579 if (!entry)
b15e6682 3580 return MINUS_ONE;
0f20cc35 3581
e641e783 3582 if (entry->tls_type)
9ab066b4
RS
3583 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3584 return entry->gotidx;
b49e97c9
TS
3585}
3586
13fbec83 3587/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3588
3589static bfd_vma
13fbec83
RS
3590mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3591 struct elf_link_hash_entry *h)
3592{
3593 struct mips_elf_link_hash_table *htab;
3594 long global_got_dynindx;
3595 struct mips_got_info *g;
3596 bfd_vma got_index;
3597
3598 htab = mips_elf_hash_table (info);
3599 BFD_ASSERT (htab != NULL);
3600
3601 global_got_dynindx = 0;
3602 if (htab->global_gotsym != NULL)
3603 global_got_dynindx = htab->global_gotsym->dynindx;
3604
3605 /* Once we determine the global GOT entry with the lowest dynamic
3606 symbol table index, we must put all dynamic symbols with greater
3607 indices into the primary GOT. That makes it easy to calculate the
3608 GOT offset. */
3609 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3610 g = mips_elf_bfd_got (obfd, FALSE);
3611 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3612 * MIPS_ELF_GOT_SIZE (obfd));
ce558b89 3613 BFD_ASSERT (got_index < htab->root.sgot->size);
13fbec83
RS
3614
3615 return got_index;
3616}
3617
3618/* Return the GOT index for the global symbol indicated by H, which is
3619 referenced by a relocation of type R_TYPE in IBFD. */
3620
3621static bfd_vma
3622mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3623 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3624{
a8028dd0 3625 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3626 struct mips_got_info *g;
3627 struct mips_got_entry lookup, *entry;
3628 bfd_vma gotidx;
b49e97c9 3629
a8028dd0 3630 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3631 BFD_ASSERT (htab != NULL);
3632
6c42ddb9
RS
3633 g = mips_elf_bfd_got (ibfd, FALSE);
3634 BFD_ASSERT (g);
f4416af6 3635
6c42ddb9
RS
3636 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3637 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3638 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3639
6c42ddb9
RS
3640 lookup.abfd = ibfd;
3641 lookup.symndx = -1;
3642 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3643 entry = htab_find (g->got_entries, &lookup);
3644 BFD_ASSERT (entry);
0f20cc35 3645
6c42ddb9 3646 gotidx = entry->gotidx;
ce558b89 3647 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
f4416af6 3648
6c42ddb9 3649 if (lookup.tls_type)
0f20cc35 3650 {
0f20cc35
DJ
3651 bfd_vma value = MINUS_ONE;
3652
3653 if ((h->root.type == bfd_link_hash_defined
3654 || h->root.type == bfd_link_hash_defweak)
3655 && h->root.u.def.section->output_section)
3656 value = (h->root.u.def.value
3657 + h->root.u.def.section->output_offset
3658 + h->root.u.def.section->output_section->vma);
3659
9ab066b4 3660 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3661 }
6c42ddb9 3662 return gotidx;
b49e97c9
TS
3663}
3664
5c18022e
RS
3665/* Find a GOT page entry that points to within 32KB of VALUE. These
3666 entries are supposed to be placed at small offsets in the GOT, i.e.,
3667 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3668 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3669 offset of the GOT entry from VALUE. */
b49e97c9
TS
3670
3671static bfd_vma
9719ad41 3672mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3673 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3674{
91d6fa6a 3675 bfd_vma page, got_index;
b15e6682 3676 struct mips_got_entry *entry;
b49e97c9 3677
0a44bf69 3678 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3679 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3680 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3681
b15e6682
AO
3682 if (!entry)
3683 return MINUS_ONE;
143d77c5 3684
91d6fa6a 3685 got_index = entry->gotidx;
b49e97c9
TS
3686
3687 if (offsetp)
f4416af6 3688 *offsetp = value - entry->d.address;
b49e97c9 3689
91d6fa6a 3690 return got_index;
b49e97c9
TS
3691}
3692
738e5348 3693/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3694 EXTERNAL is true if the relocation was originally against a global
3695 symbol that binds locally. */
b49e97c9
TS
3696
3697static bfd_vma
9719ad41 3698mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3699 bfd_vma value, bfd_boolean external)
b49e97c9 3700{
b15e6682 3701 struct mips_got_entry *entry;
b49e97c9 3702
0a44bf69
RS
3703 /* GOT16 relocations against local symbols are followed by a LO16
3704 relocation; those against global symbols are not. Thus if the
3705 symbol was originally local, the GOT16 relocation should load the
3706 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3707 if (! external)
0a44bf69 3708 value = mips_elf_high (value) << 16;
b49e97c9 3709
738e5348
RS
3710 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3711 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3712 same in all cases. */
a8028dd0
RS
3713 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3714 NULL, R_MIPS_GOT16);
b15e6682
AO
3715 if (entry)
3716 return entry->gotidx;
3717 else
3718 return MINUS_ONE;
b49e97c9
TS
3719}
3720
3721/* Returns the offset for the entry at the INDEXth position
3722 in the GOT. */
3723
3724static bfd_vma
a8028dd0 3725mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3726 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3727{
a8028dd0 3728 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3729 asection *sgot;
3730 bfd_vma gp;
3731
a8028dd0 3732 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3733 BFD_ASSERT (htab != NULL);
3734
ce558b89 3735 sgot = htab->root.sgot;
f4416af6 3736 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3737 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3738
91d6fa6a 3739 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3740}
3741
0a44bf69
RS
3742/* Create and return a local GOT entry for VALUE, which was calculated
3743 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3744 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3745 instead. */
b49e97c9 3746
b15e6682 3747static struct mips_got_entry *
0a44bf69 3748mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3749 bfd *ibfd, bfd_vma value,
5c18022e 3750 unsigned long r_symndx,
0f20cc35
DJ
3751 struct mips_elf_link_hash_entry *h,
3752 int r_type)
b49e97c9 3753{
ebc53538
RS
3754 struct mips_got_entry lookup, *entry;
3755 void **loc;
f4416af6 3756 struct mips_got_info *g;
0a44bf69 3757 struct mips_elf_link_hash_table *htab;
6c42ddb9 3758 bfd_vma gotidx;
0a44bf69
RS
3759
3760 htab = mips_elf_hash_table (info);
4dfe6ac6 3761 BFD_ASSERT (htab != NULL);
b15e6682 3762
d7206569 3763 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3764 if (g == NULL)
3765 {
d7206569 3766 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3767 BFD_ASSERT (g != NULL);
3768 }
b15e6682 3769
020d7251
RS
3770 /* This function shouldn't be called for symbols that live in the global
3771 area of the GOT. */
3772 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3773
ebc53538
RS
3774 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3775 if (lookup.tls_type)
3776 {
3777 lookup.abfd = ibfd;
df58fc94 3778 if (tls_ldm_reloc_p (r_type))
0f20cc35 3779 {
ebc53538
RS
3780 lookup.symndx = 0;
3781 lookup.d.addend = 0;
0f20cc35
DJ
3782 }
3783 else if (h == NULL)
3784 {
ebc53538
RS
3785 lookup.symndx = r_symndx;
3786 lookup.d.addend = 0;
0f20cc35
DJ
3787 }
3788 else
ebc53538
RS
3789 {
3790 lookup.symndx = -1;
3791 lookup.d.h = h;
3792 }
0f20cc35 3793
ebc53538
RS
3794 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3795 BFD_ASSERT (entry);
0f20cc35 3796
6c42ddb9 3797 gotidx = entry->gotidx;
ce558b89 3798 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
6c42ddb9 3799
ebc53538 3800 return entry;
0f20cc35
DJ
3801 }
3802
ebc53538
RS
3803 lookup.abfd = NULL;
3804 lookup.symndx = -1;
3805 lookup.d.address = value;
3806 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3807 if (!loc)
b15e6682 3808 return NULL;
143d77c5 3809
ebc53538
RS
3810 entry = (struct mips_got_entry *) *loc;
3811 if (entry)
3812 return entry;
b15e6682 3813
cb22ccf4 3814 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3815 {
3816 /* We didn't allocate enough space in the GOT. */
4eca0228 3817 _bfd_error_handler
b49e97c9
TS
3818 (_("not enough GOT space for local GOT entries"));
3819 bfd_set_error (bfd_error_bad_value);
b15e6682 3820 return NULL;
b49e97c9
TS
3821 }
3822
ebc53538
RS
3823 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3824 if (!entry)
3825 return NULL;
3826
cb22ccf4
KCY
3827 if (got16_reloc_p (r_type)
3828 || call16_reloc_p (r_type)
3829 || got_page_reloc_p (r_type)
3830 || got_disp_reloc_p (r_type))
3831 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3832 else
3833 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3834
ebc53538
RS
3835 *entry = lookup;
3836 *loc = entry;
3837
ce558b89 3838 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
b15e6682 3839
5c18022e 3840 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3841 if (htab->is_vxworks)
3842 {
3843 Elf_Internal_Rela outrel;
5c18022e 3844 asection *s;
91d6fa6a 3845 bfd_byte *rloc;
0a44bf69 3846 bfd_vma got_address;
0a44bf69
RS
3847
3848 s = mips_elf_rel_dyn_section (info, FALSE);
ce558b89
AM
3849 got_address = (htab->root.sgot->output_section->vma
3850 + htab->root.sgot->output_offset
ebc53538 3851 + entry->gotidx);
0a44bf69 3852
91d6fa6a 3853 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3854 outrel.r_offset = got_address;
5c18022e
RS
3855 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3856 outrel.r_addend = value;
91d6fa6a 3857 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3858 }
3859
ebc53538 3860 return entry;
b49e97c9
TS
3861}
3862
d4596a51
RS
3863/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3864 The number might be exact or a worst-case estimate, depending on how
3865 much information is available to elf_backend_omit_section_dynsym at
3866 the current linking stage. */
3867
3868static bfd_size_type
3869count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3870{
3871 bfd_size_type count;
3872
3873 count = 0;
0e1862bb
L
3874 if (bfd_link_pic (info)
3875 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3876 {
3877 asection *p;
3878 const struct elf_backend_data *bed;
3879
3880 bed = get_elf_backend_data (output_bfd);
3881 for (p = output_bfd->sections; p ; p = p->next)
3882 if ((p->flags & SEC_EXCLUDE) == 0
3883 && (p->flags & SEC_ALLOC) != 0
7f923b7f 3884 && elf_hash_table (info)->dynamic_relocs
d4596a51
RS
3885 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3886 ++count;
3887 }
3888 return count;
3889}
3890
b49e97c9 3891/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3892 appear towards the end. */
b49e97c9 3893
b34976b6 3894static bfd_boolean
d4596a51 3895mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3896{
a8028dd0 3897 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3898 struct mips_elf_hash_sort_data hsd;
3899 struct mips_got_info *g;
b49e97c9 3900
a8028dd0 3901 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3902 BFD_ASSERT (htab != NULL);
3903
0f8c4b60 3904 if (htab->root.dynsymcount == 0)
17a80fa8
MR
3905 return TRUE;
3906
a8028dd0 3907 g = htab->got_info;
d4596a51
RS
3908 if (g == NULL)
3909 return TRUE;
f4416af6 3910
b49e97c9 3911 hsd.low = NULL;
23cc69b6
RS
3912 hsd.max_unref_got_dynindx
3913 = hsd.min_got_dynindx
0f8c4b60 3914 = (htab->root.dynsymcount - g->reloc_only_gotno);
e17b0c35
MR
3915 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3916 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3917 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3918 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
f16a9783
MS
3919 hsd.output_bfd = abfd;
3920 if (htab->root.dynobj != NULL
3921 && htab->root.dynamic_sections_created
3922 && info->emit_gnu_hash)
3923 {
3924 asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3925 BFD_ASSERT (s != NULL);
3926 hsd.mipsxhash = s->contents;
3927 BFD_ASSERT (hsd.mipsxhash != NULL);
3928 }
3929 else
3930 hsd.mipsxhash = NULL;
0f8c4b60 3931 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
b49e97c9
TS
3932
3933 /* There should have been enough room in the symbol table to
44c410de 3934 accommodate both the GOT and non-GOT symbols. */
e17b0c35 3935 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
b49e97c9 3936 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
55f8b9d2 3937 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
0f8c4b60 3938 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
b49e97c9
TS
3939
3940 /* Now we know which dynamic symbol has the lowest dynamic symbol
3941 table index in the GOT. */
d222d210 3942 htab->global_gotsym = hsd.low;
b49e97c9 3943
b34976b6 3944 return TRUE;
b49e97c9
TS
3945}
3946
3947/* If H needs a GOT entry, assign it the highest available dynamic
3948 index. Otherwise, assign it the lowest available dynamic
3949 index. */
3950
b34976b6 3951static bfd_boolean
9719ad41 3952mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3953{
9719ad41 3954 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3955
b49e97c9
TS
3956 /* Symbols without dynamic symbol table entries aren't interesting
3957 at all. */
3958 if (h->root.dynindx == -1)
b34976b6 3959 return TRUE;
b49e97c9 3960
634835ae 3961 switch (h->global_got_area)
f4416af6 3962 {
634835ae 3963 case GGA_NONE:
e17b0c35
MR
3964 if (h->root.forced_local)
3965 h->root.dynindx = hsd->max_local_dynindx++;
3966 else
3967 h->root.dynindx = hsd->max_non_got_dynindx++;
634835ae 3968 break;
0f20cc35 3969
634835ae 3970 case GGA_NORMAL:
b49e97c9
TS
3971 h->root.dynindx = --hsd->min_got_dynindx;
3972 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3973 break;
3974
3975 case GGA_RELOC_ONLY:
634835ae
RS
3976 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3977 hsd->low = (struct elf_link_hash_entry *) h;
3978 h->root.dynindx = hsd->max_unref_got_dynindx++;
3979 break;
b49e97c9
TS
3980 }
3981
f16a9783
MS
3982 /* Populate the .MIPS.xhash translation table entry with
3983 the symbol dynindx. */
3984 if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3985 bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3986 hsd->mipsxhash + h->mipsxhash_loc);
3987
b34976b6 3988 return TRUE;
b49e97c9
TS
3989}
3990
ee227692
RS
3991/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3992 (which is owned by the caller and shouldn't be added to the
3993 hash table directly). */
3994
3995static bfd_boolean
3996mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3997 struct mips_got_entry *lookup)
3998{
3999 struct mips_elf_link_hash_table *htab;
4000 struct mips_got_entry *entry;
4001 struct mips_got_info *g;
4002 void **loc, **bfd_loc;
4003
4004 /* Make sure there's a slot for this entry in the master GOT. */
4005 htab = mips_elf_hash_table (info);
4006 g = htab->got_info;
4007 loc = htab_find_slot (g->got_entries, lookup, INSERT);
4008 if (!loc)
4009 return FALSE;
4010
4011 /* Populate the entry if it isn't already. */
4012 entry = (struct mips_got_entry *) *loc;
4013 if (!entry)
4014 {
4015 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
4016 if (!entry)
4017 return FALSE;
4018
9ab066b4 4019 lookup->tls_initialized = FALSE;
ee227692
RS
4020 lookup->gotidx = -1;
4021 *entry = *lookup;
4022 *loc = entry;
4023 }
4024
4025 /* Reuse the same GOT entry for the BFD's GOT. */
4026 g = mips_elf_bfd_got (abfd, TRUE);
4027 if (!g)
4028 return FALSE;
4029
4030 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4031 if (!bfd_loc)
4032 return FALSE;
4033
4034 if (!*bfd_loc)
4035 *bfd_loc = entry;
4036 return TRUE;
4037}
4038
e641e783
RS
4039/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4040 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 4041 using the GOT entry for calls. */
b49e97c9 4042
b34976b6 4043static bfd_boolean
9719ad41
RS
4044mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4045 bfd *abfd, struct bfd_link_info *info,
e641e783 4046 bfd_boolean for_call, int r_type)
b49e97c9 4047{
a8028dd0 4048 struct mips_elf_link_hash_table *htab;
634835ae 4049 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
4050 struct mips_got_entry entry;
4051 unsigned char tls_type;
a8028dd0
RS
4052
4053 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4054 BFD_ASSERT (htab != NULL);
4055
634835ae 4056 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
4057 if (!for_call)
4058 hmips->got_only_for_calls = FALSE;
f4416af6 4059
b49e97c9
TS
4060 /* A global symbol in the GOT must also be in the dynamic symbol
4061 table. */
7c5fcef7
L
4062 if (h->dynindx == -1)
4063 {
4064 switch (ELF_ST_VISIBILITY (h->other))
4065 {
4066 case STV_INTERNAL:
4067 case STV_HIDDEN:
47275900 4068 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
4069 break;
4070 }
c152c796 4071 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4072 return FALSE;
7c5fcef7 4073 }
b49e97c9 4074
ee227692 4075 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 4076 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 4077 hmips->global_got_area = GGA_NORMAL;
86324f90 4078
f4416af6
AO
4079 entry.abfd = abfd;
4080 entry.symndx = -1;
4081 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
4082 entry.tls_type = tls_type;
4083 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 4084}
f4416af6 4085
e641e783
RS
4086/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4087 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
4088
4089static bfd_boolean
9719ad41 4090mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 4091 struct bfd_link_info *info, int r_type)
f4416af6 4092{
a8028dd0
RS
4093 struct mips_elf_link_hash_table *htab;
4094 struct mips_got_info *g;
ee227692 4095 struct mips_got_entry entry;
f4416af6 4096
a8028dd0 4097 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4098 BFD_ASSERT (htab != NULL);
4099
a8028dd0
RS
4100 g = htab->got_info;
4101 BFD_ASSERT (g != NULL);
4102
f4416af6
AO
4103 entry.abfd = abfd;
4104 entry.symndx = symndx;
4105 entry.d.addend = addend;
e641e783 4106 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 4107 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 4108}
c224138d 4109
13db6b44
RS
4110/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4111 H is the symbol's hash table entry, or null if SYMNDX is local
4112 to ABFD. */
c224138d
RS
4113
4114static bfd_boolean
13db6b44
RS
4115mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4116 long symndx, struct elf_link_hash_entry *h,
4117 bfd_signed_vma addend)
c224138d 4118{
a8028dd0 4119 struct mips_elf_link_hash_table *htab;
ee227692 4120 struct mips_got_info *g1, *g2;
13db6b44 4121 struct mips_got_page_ref lookup, *entry;
ee227692 4122 void **loc, **bfd_loc;
c224138d 4123
a8028dd0 4124 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4125 BFD_ASSERT (htab != NULL);
4126
ee227692
RS
4127 g1 = htab->got_info;
4128 BFD_ASSERT (g1 != NULL);
a8028dd0 4129
13db6b44
RS
4130 if (h)
4131 {
4132 lookup.symndx = -1;
4133 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4134 }
4135 else
4136 {
4137 lookup.symndx = symndx;
4138 lookup.u.abfd = abfd;
4139 }
4140 lookup.addend = addend;
4141 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4142 if (loc == NULL)
4143 return FALSE;
4144
13db6b44 4145 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4146 if (!entry)
4147 {
4148 entry = bfd_alloc (abfd, sizeof (*entry));
4149 if (!entry)
4150 return FALSE;
4151
13db6b44 4152 *entry = lookup;
c224138d
RS
4153 *loc = entry;
4154 }
4155
ee227692
RS
4156 /* Add the same entry to the BFD's GOT. */
4157 g2 = mips_elf_bfd_got (abfd, TRUE);
4158 if (!g2)
4159 return FALSE;
4160
13db6b44 4161 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4162 if (!bfd_loc)
4163 return FALSE;
4164
4165 if (!*bfd_loc)
4166 *bfd_loc = entry;
4167
c224138d
RS
4168 return TRUE;
4169}
33bb52fb
RS
4170
4171/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4172
4173static void
4174mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4175 unsigned int n)
4176{
4177 asection *s;
4178 struct mips_elf_link_hash_table *htab;
4179
4180 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4181 BFD_ASSERT (htab != NULL);
4182
33bb52fb
RS
4183 s = mips_elf_rel_dyn_section (info, FALSE);
4184 BFD_ASSERT (s != NULL);
4185
4186 if (htab->is_vxworks)
4187 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4188 else
4189 {
4190 if (s->size == 0)
4191 {
4192 /* Make room for a null element. */
4193 s->size += MIPS_ELF_REL_SIZE (abfd);
4194 ++s->reloc_count;
4195 }
4196 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4197 }
4198}
4199\f
476366af
RS
4200/* A htab_traverse callback for GOT entries, with DATA pointing to a
4201 mips_elf_traverse_got_arg structure. Count the number of GOT
4202 entries and TLS relocs. Set DATA->value to true if we need
4203 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4204
4205static int
4206mips_elf_check_recreate_got (void **entryp, void *data)
4207{
4208 struct mips_got_entry *entry;
476366af 4209 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4210
4211 entry = (struct mips_got_entry *) *entryp;
476366af 4212 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4213 if (entry->abfd != NULL && entry->symndx == -1)
4214 {
4215 struct mips_elf_link_hash_entry *h;
4216
4217 h = entry->d.h;
4218 if (h->root.root.type == bfd_link_hash_indirect
4219 || h->root.root.type == bfd_link_hash_warning)
4220 {
476366af 4221 arg->value = TRUE;
33bb52fb
RS
4222 return 0;
4223 }
4224 }
476366af 4225 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4226 return 1;
4227}
4228
476366af
RS
4229/* A htab_traverse callback for GOT entries, with DATA pointing to a
4230 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4231 converting entries for indirect and warning symbols into entries
4232 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4233
4234static int
4235mips_elf_recreate_got (void **entryp, void *data)
4236{
72e7511a 4237 struct mips_got_entry new_entry, *entry;
476366af 4238 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4239 void **slot;
4240
33bb52fb 4241 entry = (struct mips_got_entry *) *entryp;
476366af 4242 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4243 if (entry->abfd != NULL
4244 && entry->symndx == -1
4245 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4246 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4247 {
4248 struct mips_elf_link_hash_entry *h;
4249
72e7511a
RS
4250 new_entry = *entry;
4251 entry = &new_entry;
33bb52fb 4252 h = entry->d.h;
72e7511a 4253 do
634835ae
RS
4254 {
4255 BFD_ASSERT (h->global_got_area == GGA_NONE);
4256 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4257 }
72e7511a
RS
4258 while (h->root.root.type == bfd_link_hash_indirect
4259 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4260 entry->d.h = h;
4261 }
476366af 4262 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4263 if (slot == NULL)
4264 {
476366af 4265 arg->g = NULL;
33bb52fb
RS
4266 return 0;
4267 }
4268 if (*slot == NULL)
72e7511a
RS
4269 {
4270 if (entry == &new_entry)
4271 {
4272 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4273 if (!entry)
4274 {
476366af 4275 arg->g = NULL;
72e7511a
RS
4276 return 0;
4277 }
4278 *entry = new_entry;
4279 }
4280 *slot = entry;
476366af 4281 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4282 }
33bb52fb
RS
4283 return 1;
4284}
4285
13db6b44
RS
4286/* Return the maximum number of GOT page entries required for RANGE. */
4287
4288static bfd_vma
4289mips_elf_pages_for_range (const struct mips_got_page_range *range)
4290{
4291 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4292}
4293
4294/* Record that G requires a page entry that can reach SEC + ADDEND. */
4295
4296static bfd_boolean
b75d42bc 4297mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4298 asection *sec, bfd_signed_vma addend)
4299{
b75d42bc 4300 struct mips_got_info *g = arg->g;
13db6b44
RS
4301 struct mips_got_page_entry lookup, *entry;
4302 struct mips_got_page_range **range_ptr, *range;
4303 bfd_vma old_pages, new_pages;
4304 void **loc;
4305
4306 /* Find the mips_got_page_entry hash table entry for this section. */
4307 lookup.sec = sec;
4308 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4309 if (loc == NULL)
4310 return FALSE;
4311
4312 /* Create a mips_got_page_entry if this is the first time we've
4313 seen the section. */
4314 entry = (struct mips_got_page_entry *) *loc;
4315 if (!entry)
4316 {
b75d42bc 4317 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4318 if (!entry)
4319 return FALSE;
4320
4321 entry->sec = sec;
4322 *loc = entry;
4323 }
4324
4325 /* Skip over ranges whose maximum extent cannot share a page entry
4326 with ADDEND. */
4327 range_ptr = &entry->ranges;
4328 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4329 range_ptr = &(*range_ptr)->next;
4330
4331 /* If we scanned to the end of the list, or found a range whose
4332 minimum extent cannot share a page entry with ADDEND, create
4333 a new singleton range. */
4334 range = *range_ptr;
4335 if (!range || addend < range->min_addend - 0xffff)
4336 {
b75d42bc 4337 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4338 if (!range)
4339 return FALSE;
4340
4341 range->next = *range_ptr;
4342 range->min_addend = addend;
4343 range->max_addend = addend;
4344
4345 *range_ptr = range;
4346 entry->num_pages++;
4347 g->page_gotno++;
4348 return TRUE;
4349 }
4350
4351 /* Remember how many pages the old range contributed. */
4352 old_pages = mips_elf_pages_for_range (range);
4353
4354 /* Update the ranges. */
4355 if (addend < range->min_addend)
4356 range->min_addend = addend;
4357 else if (addend > range->max_addend)
4358 {
4359 if (range->next && addend >= range->next->min_addend - 0xffff)
4360 {
4361 old_pages += mips_elf_pages_for_range (range->next);
4362 range->max_addend = range->next->max_addend;
4363 range->next = range->next->next;
4364 }
4365 else
4366 range->max_addend = addend;
4367 }
4368
4369 /* Record any change in the total estimate. */
4370 new_pages = mips_elf_pages_for_range (range);
4371 if (old_pages != new_pages)
4372 {
4373 entry->num_pages += new_pages - old_pages;
4374 g->page_gotno += new_pages - old_pages;
4375 }
4376
4377 return TRUE;
4378}
4379
4380/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4381 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4382 whether the page reference described by *REFP needs a GOT page entry,
4383 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4384
4385static bfd_boolean
4386mips_elf_resolve_got_page_ref (void **refp, void *data)
4387{
4388 struct mips_got_page_ref *ref;
4389 struct mips_elf_traverse_got_arg *arg;
4390 struct mips_elf_link_hash_table *htab;
4391 asection *sec;
4392 bfd_vma addend;
4393
4394 ref = (struct mips_got_page_ref *) *refp;
4395 arg = (struct mips_elf_traverse_got_arg *) data;
4396 htab = mips_elf_hash_table (arg->info);
4397
4398 if (ref->symndx < 0)
4399 {
4400 struct mips_elf_link_hash_entry *h;
4401
4402 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4403 h = ref->u.h;
4404 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4405 return 1;
4406
4407 /* Ignore undefined symbols; we'll issue an error later if
4408 appropriate. */
4409 if (!((h->root.root.type == bfd_link_hash_defined
4410 || h->root.root.type == bfd_link_hash_defweak)
4411 && h->root.root.u.def.section))
4412 return 1;
4413
4414 sec = h->root.root.u.def.section;
4415 addend = h->root.root.u.def.value + ref->addend;
4416 }
4417 else
4418 {
4419 Elf_Internal_Sym *isym;
4420
4421 /* Read in the symbol. */
4422 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4423 ref->symndx);
4424 if (isym == NULL)
4425 {
4426 arg->g = NULL;
4427 return 0;
4428 }
4429
4430 /* Get the associated input section. */
4431 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4432 if (sec == NULL)
4433 {
4434 arg->g = NULL;
4435 return 0;
4436 }
4437
4438 /* If this is a mergable section, work out the section and offset
4439 of the merged data. For section symbols, the addend specifies
4440 of the offset _of_ the first byte in the data, otherwise it
4441 specifies the offset _from_ the first byte. */
4442 if (sec->flags & SEC_MERGE)
4443 {
4444 void *secinfo;
4445
4446 secinfo = elf_section_data (sec)->sec_info;
4447 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4448 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4449 isym->st_value + ref->addend);
4450 else
4451 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4452 isym->st_value) + ref->addend;
4453 }
4454 else
4455 addend = isym->st_value + ref->addend;
4456 }
b75d42bc 4457 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4458 {
4459 arg->g = NULL;
4460 return 0;
4461 }
4462 return 1;
4463}
4464
33bb52fb 4465/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4466 replace them with entries for the target symbol. Convert g->got_page_refs
4467 into got_page_entry structures and estimate the number of page entries
4468 that they require. */
33bb52fb
RS
4469
4470static bfd_boolean
476366af
RS
4471mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4472 struct mips_got_info *g)
33bb52fb 4473{
476366af
RS
4474 struct mips_elf_traverse_got_arg tga;
4475 struct mips_got_info oldg;
4476
4477 oldg = *g;
33bb52fb 4478
476366af
RS
4479 tga.info = info;
4480 tga.g = g;
4481 tga.value = FALSE;
4482 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4483 if (tga.value)
33bb52fb 4484 {
476366af
RS
4485 *g = oldg;
4486 g->got_entries = htab_create (htab_size (oldg.got_entries),
4487 mips_elf_got_entry_hash,
4488 mips_elf_got_entry_eq, NULL);
4489 if (!g->got_entries)
33bb52fb
RS
4490 return FALSE;
4491
476366af
RS
4492 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4493 if (!tga.g)
4494 return FALSE;
4495
4496 htab_delete (oldg.got_entries);
33bb52fb 4497 }
13db6b44
RS
4498
4499 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4500 mips_got_page_entry_eq, NULL);
4501 if (g->got_page_entries == NULL)
4502 return FALSE;
4503
4504 tga.info = info;
4505 tga.g = g;
4506 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4507
33bb52fb
RS
4508 return TRUE;
4509}
4510
c5d6fa44
RS
4511/* Return true if a GOT entry for H should live in the local rather than
4512 global GOT area. */
4513
4514static bfd_boolean
4515mips_use_local_got_p (struct bfd_link_info *info,
4516 struct mips_elf_link_hash_entry *h)
4517{
4518 /* Symbols that aren't in the dynamic symbol table must live in the
4519 local GOT. This includes symbols that are completely undefined
4520 and which therefore don't bind locally. We'll report undefined
4521 symbols later if appropriate. */
4522 if (h->root.dynindx == -1)
4523 return TRUE;
4524
47275900
MR
4525 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4526 to the local GOT, as they would be implicitly relocated by the
4527 base address by the dynamic loader. */
4528 if (bfd_is_abs_symbol (&h->root.root))
4529 return FALSE;
4530
c5d6fa44
RS
4531 /* Symbols that bind locally can (and in the case of forced-local
4532 symbols, must) live in the local GOT. */
4533 if (h->got_only_for_calls
4534 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4535 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4536 return TRUE;
4537
4538 /* If this is an executable that must provide a definition of the symbol,
4539 either though PLTs or copy relocations, then that address should go in
4540 the local rather than global GOT. */
0e1862bb 4541 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4542 return TRUE;
4543
4544 return FALSE;
4545}
4546
6c42ddb9
RS
4547/* A mips_elf_link_hash_traverse callback for which DATA points to the
4548 link_info structure. Decide whether the hash entry needs an entry in
4549 the global part of the primary GOT, setting global_got_area accordingly.
4550 Count the number of global symbols that are in the primary GOT only
4551 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4552
4553static int
d4596a51 4554mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4555{
020d7251 4556 struct bfd_link_info *info;
6ccf4795 4557 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4558 struct mips_got_info *g;
4559
020d7251 4560 info = (struct bfd_link_info *) data;
6ccf4795
RS
4561 htab = mips_elf_hash_table (info);
4562 g = htab->got_info;
d4596a51 4563 if (h->global_got_area != GGA_NONE)
33bb52fb 4564 {
020d7251 4565 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4566 local or global GOT. */
4567 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4568 /* The symbol belongs in the local GOT. We no longer need this
4569 entry if it was only used for relocations; those relocations
4570 will be against the null or section symbol instead of H. */
4571 h->global_got_area = GGA_NONE;
6ccf4795
RS
4572 else if (htab->is_vxworks
4573 && h->got_only_for_calls
1bbce132 4574 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4575 /* On VxWorks, calls can refer directly to the .got.plt entry;
4576 they don't need entries in the regular GOT. .got.plt entries
4577 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4578 h->global_got_area = GGA_NONE;
6c42ddb9 4579 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4580 {
6c42ddb9 4581 g->reloc_only_gotno++;
23cc69b6 4582 g->global_gotno++;
23cc69b6 4583 }
33bb52fb
RS
4584 }
4585 return 1;
4586}
f4416af6 4587\f
d7206569
RS
4588/* A htab_traverse callback for GOT entries. Add each one to the GOT
4589 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4590
4591static int
d7206569 4592mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4593{
d7206569
RS
4594 struct mips_got_entry *entry;
4595 struct mips_elf_traverse_got_arg *arg;
4596 void **slot;
f4416af6 4597
d7206569
RS
4598 entry = (struct mips_got_entry *) *entryp;
4599 arg = (struct mips_elf_traverse_got_arg *) data;
4600 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4601 if (!slot)
f4416af6 4602 {
d7206569
RS
4603 arg->g = NULL;
4604 return 0;
f4416af6 4605 }
d7206569 4606 if (!*slot)
c224138d 4607 {
d7206569
RS
4608 *slot = entry;
4609 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4610 }
f4416af6
AO
4611 return 1;
4612}
4613
d7206569
RS
4614/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4615 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4616
4617static int
d7206569 4618mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4619{
d7206569
RS
4620 struct mips_got_page_entry *entry;
4621 struct mips_elf_traverse_got_arg *arg;
4622 void **slot;
c224138d 4623
d7206569
RS
4624 entry = (struct mips_got_page_entry *) *entryp;
4625 arg = (struct mips_elf_traverse_got_arg *) data;
4626 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4627 if (!slot)
c224138d 4628 {
d7206569 4629 arg->g = NULL;
c224138d
RS
4630 return 0;
4631 }
d7206569
RS
4632 if (!*slot)
4633 {
4634 *slot = entry;
4635 arg->g->page_gotno += entry->num_pages;
4636 }
c224138d
RS
4637 return 1;
4638}
4639
d7206569
RS
4640/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4641 this would lead to overflow, 1 if they were merged successfully,
4642 and 0 if a merge failed due to lack of memory. (These values are chosen
4643 so that nonnegative return values can be returned by a htab_traverse
4644 callback.) */
c224138d
RS
4645
4646static int
d7206569 4647mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4648 struct mips_got_info *to,
4649 struct mips_elf_got_per_bfd_arg *arg)
4650{
d7206569 4651 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4652 unsigned int estimate;
4653
4654 /* Work out how many page entries we would need for the combined GOT. */
4655 estimate = arg->max_pages;
4656 if (estimate >= from->page_gotno + to->page_gotno)
4657 estimate = from->page_gotno + to->page_gotno;
4658
e2ece73c 4659 /* And conservatively estimate how many local and TLS entries
c224138d 4660 would be needed. */
e2ece73c
RS
4661 estimate += from->local_gotno + to->local_gotno;
4662 estimate += from->tls_gotno + to->tls_gotno;
4663
17214937
RS
4664 /* If we're merging with the primary got, any TLS relocations will
4665 come after the full set of global entries. Otherwise estimate those
e2ece73c 4666 conservatively as well. */
17214937 4667 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4668 estimate += arg->global_count;
4669 else
4670 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4671
4672 /* Bail out if the combined GOT might be too big. */
4673 if (estimate > arg->max_count)
4674 return -1;
4675
c224138d 4676 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4677 tga.info = arg->info;
4678 tga.g = to;
4679 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4680 if (!tga.g)
c224138d
RS
4681 return 0;
4682
d7206569
RS
4683 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4684 if (!tga.g)
c224138d
RS
4685 return 0;
4686
d7206569 4687 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4688 return 1;
4689}
4690
d7206569 4691/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4692 as possible of the primary got, since it doesn't require explicit
4693 dynamic relocations, but don't use bfds that would reference global
4694 symbols out of the addressable range. Failing the primary got,
4695 attempt to merge with the current got, or finish the current got
4696 and then make make the new got current. */
4697
d7206569
RS
4698static bfd_boolean
4699mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4700 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4701{
c224138d
RS
4702 unsigned int estimate;
4703 int result;
4704
476366af 4705 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4706 return FALSE;
4707
c224138d
RS
4708 /* Work out the number of page, local and TLS entries. */
4709 estimate = arg->max_pages;
4710 if (estimate > g->page_gotno)
4711 estimate = g->page_gotno;
4712 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4713
4714 /* We place TLS GOT entries after both locals and globals. The globals
4715 for the primary GOT may overflow the normal GOT size limit, so be
4716 sure not to merge a GOT which requires TLS with the primary GOT in that
4717 case. This doesn't affect non-primary GOTs. */
c224138d 4718 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4719
c224138d 4720 if (estimate <= arg->max_count)
f4416af6 4721 {
c224138d
RS
4722 /* If we don't have a primary GOT, use it as
4723 a starting point for the primary GOT. */
4724 if (!arg->primary)
4725 {
d7206569
RS
4726 arg->primary = g;
4727 return TRUE;
c224138d 4728 }
f4416af6 4729
c224138d 4730 /* Try merging with the primary GOT. */
d7206569 4731 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4732 if (result >= 0)
4733 return result;
f4416af6 4734 }
c224138d 4735
f4416af6 4736 /* If we can merge with the last-created got, do it. */
c224138d 4737 if (arg->current)
f4416af6 4738 {
d7206569 4739 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4740 if (result >= 0)
4741 return result;
f4416af6 4742 }
c224138d 4743
f4416af6
AO
4744 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4745 fits; if it turns out that it doesn't, we'll get relocation
4746 overflows anyway. */
c224138d
RS
4747 g->next = arg->current;
4748 arg->current = g;
0f20cc35 4749
d7206569 4750 return TRUE;
0f20cc35
DJ
4751}
4752
72e7511a
RS
4753/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4754 to GOTIDX, duplicating the entry if it has already been assigned
4755 an index in a different GOT. */
4756
4757static bfd_boolean
4758mips_elf_set_gotidx (void **entryp, long gotidx)
4759{
4760 struct mips_got_entry *entry;
4761
4762 entry = (struct mips_got_entry *) *entryp;
4763 if (entry->gotidx > 0)
4764 {
4765 struct mips_got_entry *new_entry;
4766
4767 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4768 if (!new_entry)
4769 return FALSE;
4770
4771 *new_entry = *entry;
4772 *entryp = new_entry;
4773 entry = new_entry;
4774 }
4775 entry->gotidx = gotidx;
4776 return TRUE;
4777}
4778
4779/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4780 mips_elf_traverse_got_arg in which DATA->value is the size of one
4781 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4782
4783static int
72e7511a 4784mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4785{
72e7511a
RS
4786 struct mips_got_entry *entry;
4787 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4788
4789 /* We're only interested in TLS symbols. */
72e7511a 4790 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4791 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4792 return 1;
4793
72e7511a 4794 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4795 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4796 {
6c42ddb9
RS
4797 arg->g = NULL;
4798 return 0;
f4416af6
AO
4799 }
4800
ead49a57 4801 /* Account for the entries we've just allocated. */
9ab066b4 4802 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4803 return 1;
4804}
4805
ab361d49
RS
4806/* A htab_traverse callback for GOT entries, where DATA points to a
4807 mips_elf_traverse_got_arg. Set the global_got_area of each global
4808 symbol to DATA->value. */
f4416af6 4809
f4416af6 4810static int
ab361d49 4811mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4812{
ab361d49
RS
4813 struct mips_got_entry *entry;
4814 struct mips_elf_traverse_got_arg *arg;
f4416af6 4815
ab361d49
RS
4816 entry = (struct mips_got_entry *) *entryp;
4817 arg = (struct mips_elf_traverse_got_arg *) data;
4818 if (entry->abfd != NULL
4819 && entry->symndx == -1
4820 && entry->d.h->global_got_area != GGA_NONE)
4821 entry->d.h->global_got_area = arg->value;
4822 return 1;
4823}
4824
4825/* A htab_traverse callback for secondary GOT entries, where DATA points
4826 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4827 and record the number of relocations they require. DATA->value is
72e7511a 4828 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4829
4830static int
4831mips_elf_set_global_gotidx (void **entryp, void *data)
4832{
4833 struct mips_got_entry *entry;
4834 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4835
ab361d49
RS
4836 entry = (struct mips_got_entry *) *entryp;
4837 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4838 if (entry->abfd != NULL
4839 && entry->symndx == -1
4840 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4841 {
cb22ccf4 4842 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4843 {
4844 arg->g = NULL;
4845 return 0;
4846 }
cb22ccf4 4847 arg->g->assigned_low_gotno += 1;
72e7511a 4848
0e1862bb 4849 if (bfd_link_pic (arg->info)
ab361d49
RS
4850 || (elf_hash_table (arg->info)->dynamic_sections_created
4851 && entry->d.h->root.def_dynamic
4852 && !entry->d.h->root.def_regular))
4853 arg->g->relocs += 1;
f4416af6
AO
4854 }
4855
4856 return 1;
4857}
4858
33bb52fb
RS
4859/* A htab_traverse callback for GOT entries for which DATA is the
4860 bfd_link_info. Forbid any global symbols from having traditional
4861 lazy-binding stubs. */
4862
0626d451 4863static int
33bb52fb 4864mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4865{
33bb52fb
RS
4866 struct bfd_link_info *info;
4867 struct mips_elf_link_hash_table *htab;
4868 struct mips_got_entry *entry;
0626d451 4869
33bb52fb
RS
4870 entry = (struct mips_got_entry *) *entryp;
4871 info = (struct bfd_link_info *) data;
4872 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4873 BFD_ASSERT (htab != NULL);
4874
0626d451
RS
4875 if (entry->abfd != NULL
4876 && entry->symndx == -1
33bb52fb 4877 && entry->d.h->needs_lazy_stub)
f4416af6 4878 {
33bb52fb
RS
4879 entry->d.h->needs_lazy_stub = FALSE;
4880 htab->lazy_stub_count--;
f4416af6 4881 }
143d77c5 4882
f4416af6
AO
4883 return 1;
4884}
4885
f4416af6
AO
4886/* Return the offset of an input bfd IBFD's GOT from the beginning of
4887 the primary GOT. */
4888static bfd_vma
9719ad41 4889mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4890{
d7206569 4891 if (!g->next)
f4416af6
AO
4892 return 0;
4893
d7206569 4894 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4895 if (! g)
4896 return 0;
4897
4898 BFD_ASSERT (g->next);
4899
4900 g = g->next;
143d77c5 4901
0f20cc35
DJ
4902 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4903 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4904}
4905
4906/* Turn a single GOT that is too big for 16-bit addressing into
4907 a sequence of GOTs, each one 16-bit addressable. */
4908
4909static bfd_boolean
9719ad41 4910mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4911 asection *got, bfd_size_type pages)
f4416af6 4912{
a8028dd0 4913 struct mips_elf_link_hash_table *htab;
f4416af6 4914 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4915 struct mips_elf_traverse_got_arg tga;
a8028dd0 4916 struct mips_got_info *g, *gg;
33bb52fb 4917 unsigned int assign, needed_relocs;
d7206569 4918 bfd *dynobj, *ibfd;
f4416af6 4919
33bb52fb 4920 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4921 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4922 BFD_ASSERT (htab != NULL);
4923
a8028dd0 4924 g = htab->got_info;
f4416af6 4925
f4416af6
AO
4926 got_per_bfd_arg.obfd = abfd;
4927 got_per_bfd_arg.info = info;
f4416af6
AO
4928 got_per_bfd_arg.current = NULL;
4929 got_per_bfd_arg.primary = NULL;
0a44bf69 4930 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4931 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4932 - htab->reserved_gotno);
c224138d 4933 got_per_bfd_arg.max_pages = pages;
0f20cc35 4934 /* The number of globals that will be included in the primary GOT.
ab361d49 4935 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4936 information. */
4937 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4938
4939 /* Try to merge the GOTs of input bfds together, as long as they
4940 don't seem to exceed the maximum GOT size, choosing one of them
4941 to be the primary GOT. */
c72f2fb2 4942 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4943 {
4944 gg = mips_elf_bfd_got (ibfd, FALSE);
4945 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4946 return FALSE;
4947 }
f4416af6 4948
0f20cc35 4949 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4950 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4951 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4952 else
4953 g->next = got_per_bfd_arg.primary;
4954 g->next->next = got_per_bfd_arg.current;
4955
4956 /* GG is now the master GOT, and G is the primary GOT. */
4957 gg = g;
4958 g = g->next;
4959
4960 /* Map the output bfd to the primary got. That's what we're going
4961 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4962 didn't mark in check_relocs, and we want a quick way to find it.
4963 We can't just use gg->next because we're going to reverse the
4964 list. */
d7206569 4965 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4966
634835ae
RS
4967 /* Every symbol that is referenced in a dynamic relocation must be
4968 present in the primary GOT, so arrange for them to appear after
4969 those that are actually referenced. */
23cc69b6 4970 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4971 g->global_gotno = gg->global_gotno;
f4416af6 4972
ab361d49
RS
4973 tga.info = info;
4974 tga.value = GGA_RELOC_ONLY;
4975 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4976 tga.value = GGA_NORMAL;
4977 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4978
4979 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4980 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4981 entries in each GOT. We can then compute the end of a GOT by
4982 adding local_gotno to global_gotno. We reverse the list and make
4983 it circular since then we'll be able to quickly compute the
4984 beginning of a GOT, by computing the end of its predecessor. To
4985 avoid special cases for the primary GOT, while still preserving
4986 assertions that are valid for both single- and multi-got links,
4987 we arrange for the main got struct to have the right number of
4988 global entries, but set its local_gotno such that the initial
4989 offset of the primary GOT is zero. Remember that the primary GOT
4990 will become the last item in the circular linked list, so it
4991 points back to the master GOT. */
4992 gg->local_gotno = -g->global_gotno;
4993 gg->global_gotno = g->global_gotno;
0f20cc35 4994 gg->tls_gotno = 0;
f4416af6
AO
4995 assign = 0;
4996 gg->next = gg;
4997
4998 do
4999 {
5000 struct mips_got_info *gn;
5001
861fb55a 5002 assign += htab->reserved_gotno;
cb22ccf4 5003 g->assigned_low_gotno = assign;
c224138d
RS
5004 g->local_gotno += assign;
5005 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 5006 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
5007 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
5008
ead49a57
RS
5009 /* Take g out of the direct list, and push it onto the reversed
5010 list that gg points to. g->next is guaranteed to be nonnull after
5011 this operation, as required by mips_elf_initialize_tls_index. */
5012 gn = g->next;
5013 g->next = gg->next;
5014 gg->next = g;
5015
0f20cc35
DJ
5016 /* Set up any TLS entries. We always place the TLS entries after
5017 all non-TLS entries. */
5018 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
5019 tga.g = g;
5020 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5021 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5022 if (!tga.g)
5023 return FALSE;
1fd20d70 5024 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 5025
ead49a57 5026 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 5027 g = gn;
0626d451 5028
33bb52fb
RS
5029 /* Forbid global symbols in every non-primary GOT from having
5030 lazy-binding stubs. */
0626d451 5031 if (g)
33bb52fb 5032 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
5033 }
5034 while (g);
5035
59b08994 5036 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
5037
5038 needed_relocs = 0;
33bb52fb
RS
5039 for (g = gg->next; g && g->next != gg; g = g->next)
5040 {
5041 unsigned int save_assign;
5042
ab361d49
RS
5043 /* Assign offsets to global GOT entries and count how many
5044 relocations they need. */
cb22ccf4
KCY
5045 save_assign = g->assigned_low_gotno;
5046 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
5047 tga.info = info;
5048 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5049 tga.g = g;
5050 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
5051 if (!tga.g)
5052 return FALSE;
cb22ccf4
KCY
5053 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5054 g->assigned_low_gotno = save_assign;
72e7511a 5055
0e1862bb 5056 if (bfd_link_pic (info))
33bb52fb 5057 {
cb22ccf4
KCY
5058 g->relocs += g->local_gotno - g->assigned_low_gotno;
5059 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
5060 + g->next->global_gotno
5061 + g->next->tls_gotno
861fb55a 5062 + htab->reserved_gotno);
33bb52fb 5063 }
ab361d49 5064 needed_relocs += g->relocs;
33bb52fb 5065 }
ab361d49 5066 needed_relocs += g->relocs;
33bb52fb
RS
5067
5068 if (needed_relocs)
5069 mips_elf_allocate_dynamic_relocations (dynobj, info,
5070 needed_relocs);
143d77c5 5071
f4416af6
AO
5072 return TRUE;
5073}
143d77c5 5074
b49e97c9
TS
5075\f
5076/* Returns the first relocation of type r_type found, beginning with
5077 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5078
5079static const Elf_Internal_Rela *
9719ad41
RS
5080mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5081 const Elf_Internal_Rela *relocation,
5082 const Elf_Internal_Rela *relend)
b49e97c9 5083{
c000e262
TS
5084 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5085
b49e97c9
TS
5086 while (relocation < relend)
5087 {
c000e262
TS
5088 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5089 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
5090 return relocation;
5091
5092 ++relocation;
5093 }
5094
5095 /* We didn't find it. */
b49e97c9
TS
5096 return NULL;
5097}
5098
020d7251 5099/* Return whether an input relocation is against a local symbol. */
b49e97c9 5100
b34976b6 5101static bfd_boolean
9719ad41
RS
5102mips_elf_local_relocation_p (bfd *input_bfd,
5103 const Elf_Internal_Rela *relocation,
020d7251 5104 asection **local_sections)
b49e97c9
TS
5105{
5106 unsigned long r_symndx;
5107 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
5108 size_t extsymoff;
5109
5110 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5111 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5112 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5113
5114 if (r_symndx < extsymoff)
b34976b6 5115 return TRUE;
b49e97c9 5116 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 5117 return TRUE;
b49e97c9 5118
b34976b6 5119 return FALSE;
b49e97c9
TS
5120}
5121\f
5122/* Sign-extend VALUE, which has the indicated number of BITS. */
5123
a7ebbfdf 5124bfd_vma
9719ad41 5125_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5126{
5127 if (value & ((bfd_vma) 1 << (bits - 1)))
5128 /* VALUE is negative. */
5129 value |= ((bfd_vma) - 1) << bits;
5130
5131 return value;
5132}
5133
5134/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5135 range expressible by a signed number with the indicated number of
b49e97c9
TS
5136 BITS. */
5137
b34976b6 5138static bfd_boolean
9719ad41 5139mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5140{
5141 bfd_signed_vma svalue = (bfd_signed_vma) value;
5142
5143 if (svalue > (1 << (bits - 1)) - 1)
5144 /* The value is too big. */
b34976b6 5145 return TRUE;
b49e97c9
TS
5146 else if (svalue < -(1 << (bits - 1)))
5147 /* The value is too small. */
b34976b6 5148 return TRUE;
b49e97c9
TS
5149
5150 /* All is well. */
b34976b6 5151 return FALSE;
b49e97c9
TS
5152}
5153
5154/* Calculate the %high function. */
5155
5156static bfd_vma
9719ad41 5157mips_elf_high (bfd_vma value)
b49e97c9
TS
5158{
5159 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5160}
5161
5162/* Calculate the %higher function. */
5163
5164static bfd_vma
9719ad41 5165mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5166{
5167#ifdef BFD64
5168 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5169#else
5170 abort ();
c5ae1840 5171 return MINUS_ONE;
b49e97c9
TS
5172#endif
5173}
5174
5175/* Calculate the %highest function. */
5176
5177static bfd_vma
9719ad41 5178mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5179{
5180#ifdef BFD64
b15e6682 5181 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5182#else
5183 abort ();
c5ae1840 5184 return MINUS_ONE;
b49e97c9
TS
5185#endif
5186}
5187\f
5188/* Create the .compact_rel section. */
5189
b34976b6 5190static bfd_boolean
9719ad41
RS
5191mips_elf_create_compact_rel_section
5192 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5193{
5194 flagword flags;
5195 register asection *s;
5196
3d4d4302 5197 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5198 {
5199 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5200 | SEC_READONLY);
5201
3d4d4302 5202 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5203 if (s == NULL
fd361982 5204 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5205 return FALSE;
b49e97c9 5206
eea6121a 5207 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5208 }
5209
b34976b6 5210 return TRUE;
b49e97c9
TS
5211}
5212
5213/* Create the .got section to hold the global offset table. */
5214
b34976b6 5215static bfd_boolean
23cc69b6 5216mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5217{
5218 flagword flags;
5219 register asection *s;
5220 struct elf_link_hash_entry *h;
14a793b2 5221 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5222 struct mips_elf_link_hash_table *htab;
5223
5224 htab = mips_elf_hash_table (info);
4dfe6ac6 5225 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5226
5227 /* This function may be called more than once. */
ce558b89 5228 if (htab->root.sgot)
23cc69b6 5229 return TRUE;
b49e97c9
TS
5230
5231 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5232 | SEC_LINKER_CREATED);
5233
72b4917c
TS
5234 /* We have to use an alignment of 2**4 here because this is hardcoded
5235 in the function stub generation and in the linker script. */
87e0a731 5236 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5237 if (s == NULL
fd361982 5238 || !bfd_set_section_alignment (s, 4))
b34976b6 5239 return FALSE;
ce558b89 5240 htab->root.sgot = s;
b49e97c9
TS
5241
5242 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5243 linker script because we don't want to define the symbol if we
5244 are not creating a global offset table. */
14a793b2 5245 bh = NULL;
b49e97c9
TS
5246 if (! (_bfd_generic_link_add_one_symbol
5247 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5248 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5249 return FALSE;
14a793b2
AM
5250
5251 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5252 h->non_elf = 0;
5253 h->def_regular = 1;
b49e97c9 5254 h->type = STT_OBJECT;
2f9efdfc 5255 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5256 elf_hash_table (info)->hgot = h;
b49e97c9 5257
0e1862bb 5258 if (bfd_link_pic (info)
c152c796 5259 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5260 return FALSE;
b49e97c9 5261
3dff0dd1 5262 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5263 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5264 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5265
861fb55a 5266 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5267 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5268 SEC_ALLOC | SEC_LOAD
5269 | SEC_HAS_CONTENTS
5270 | SEC_IN_MEMORY
5271 | SEC_LINKER_CREATED);
861fb55a
DJ
5272 if (s == NULL)
5273 return FALSE;
ce558b89 5274 htab->root.sgotplt = s;
0a44bf69 5275
b34976b6 5276 return TRUE;
b49e97c9 5277}
b49e97c9 5278\f
0a44bf69
RS
5279/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5280 __GOTT_INDEX__ symbols. These symbols are only special for
5281 shared objects; they are not used in executables. */
5282
5283static bfd_boolean
5284is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5285{
5286 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5287 && bfd_link_pic (info)
0a44bf69
RS
5288 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5289 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5290}
861fb55a
DJ
5291
5292/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5293 require an la25 stub. See also mips_elf_local_pic_function_p,
5294 which determines whether the destination function ever requires a
5295 stub. */
5296
5297static bfd_boolean
8f0c309a
CLT
5298mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5299 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5300{
5301 /* We specifically ignore branches and jumps from EF_PIC objects,
5302 where the onus is on the compiler or programmer to perform any
5303 necessary initialization of $25. Sometimes such initialization
5304 is unnecessary; for example, -mno-shared functions do not use
5305 the incoming value of $25, and may therefore be called directly. */
5306 if (PIC_OBJECT_P (input_bfd))
5307 return FALSE;
5308
5309 switch (r_type)
5310 {
5311 case R_MIPS_26:
5312 case R_MIPS_PC16:
7361da2c
AB
5313 case R_MIPS_PC21_S2:
5314 case R_MIPS_PC26_S2:
df58fc94
RS
5315 case R_MICROMIPS_26_S1:
5316 case R_MICROMIPS_PC7_S1:
5317 case R_MICROMIPS_PC10_S1:
5318 case R_MICROMIPS_PC16_S1:
5319 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5320 return TRUE;
5321
8f0c309a
CLT
5322 case R_MIPS16_26:
5323 return !target_is_16_bit_code_p;
5324
861fb55a
DJ
5325 default:
5326 return FALSE;
5327 }
5328}
0a44bf69 5329\f
47275900
MR
5330/* Obtain the field relocated by RELOCATION. */
5331
5332static bfd_vma
5333mips_elf_obtain_contents (reloc_howto_type *howto,
5334 const Elf_Internal_Rela *relocation,
5335 bfd *input_bfd, bfd_byte *contents)
5336{
5337 bfd_vma x = 0;
5338 bfd_byte *location = contents + relocation->r_offset;
5339 unsigned int size = bfd_get_reloc_size (howto);
5340
5341 /* Obtain the bytes. */
5342 if (size != 0)
5343 x = bfd_get (8 * size, input_bfd, location);
5344
5345 return x;
5346}
5347
98e10ffa
MR
5348/* Store the field relocated by RELOCATION. */
5349
5350static void
5351mips_elf_store_contents (reloc_howto_type *howto,
5352 const Elf_Internal_Rela *relocation,
5353 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5354{
5355 bfd_byte *location = contents + relocation->r_offset;
5356 unsigned int size = bfd_get_reloc_size (howto);
5357
5358 /* Put the value into the output. */
5359 if (size != 0)
5360 bfd_put (8 * size, input_bfd, x, location);
5361}
5362
47275900
MR
5363/* Try to patch a load from GOT instruction in CONTENTS pointed to by
5364 RELOCATION described by HOWTO, with a move of 0 to the load target
5365 register, returning TRUE if that is successful and FALSE otherwise.
5366 If DOIT is FALSE, then only determine it patching is possible and
5367 return status without actually changing CONTENTS.
5368*/
5369
5370static bfd_boolean
5371mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5372 const Elf_Internal_Rela *relocation,
5373 reloc_howto_type *howto, bfd_boolean doit)
5374{
5375 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5376 bfd_byte *location = contents + relocation->r_offset;
5377 bfd_boolean nullified = TRUE;
5378 bfd_vma x;
5379
5380 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5381
5382 /* Obtain the current value. */
5383 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5384
5385 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5386 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5387 if (mips16_reloc_p (r_type)
5388 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5389 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5390 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5391 else if (micromips_reloc_p (r_type)
5392 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5393 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5394 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5395 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5396 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5397 else
5398 nullified = FALSE;
5399
5400 /* Put the value into the output. */
5401 if (doit && nullified)
5402 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5403
5404 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5405
5406 return nullified;
5407}
5408
b49e97c9
TS
5409/* Calculate the value produced by the RELOCATION (which comes from
5410 the INPUT_BFD). The ADDEND is the addend to use for this
5411 RELOCATION; RELOCATION->R_ADDEND is ignored.
5412
5413 The result of the relocation calculation is stored in VALUEP.
38a7df63 5414 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5415 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5416
5417 This function returns bfd_reloc_continue if the caller need take no
5418 further action regarding this relocation, bfd_reloc_notsupported if
5419 something goes dramatically wrong, bfd_reloc_overflow if an
5420 overflow occurs, and bfd_reloc_ok to indicate success. */
5421
5422static bfd_reloc_status_type
9719ad41 5423mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
47275900 5424 asection *input_section, bfd_byte *contents,
9719ad41
RS
5425 struct bfd_link_info *info,
5426 const Elf_Internal_Rela *relocation,
5427 bfd_vma addend, reloc_howto_type *howto,
5428 Elf_Internal_Sym *local_syms,
5429 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5430 const char **namep,
5431 bfd_boolean *cross_mode_jump_p,
9719ad41 5432 bfd_boolean save_addend)
b49e97c9
TS
5433{
5434 /* The eventual value we will return. */
5435 bfd_vma value;
5436 /* The address of the symbol against which the relocation is
5437 occurring. */
5438 bfd_vma symbol = 0;
5439 /* The final GP value to be used for the relocatable, executable, or
5440 shared object file being produced. */
0a61c8c2 5441 bfd_vma gp;
b49e97c9
TS
5442 /* The place (section offset or address) of the storage unit being
5443 relocated. */
5444 bfd_vma p;
5445 /* The value of GP used to create the relocatable object. */
0a61c8c2 5446 bfd_vma gp0;
b49e97c9
TS
5447 /* The offset into the global offset table at which the address of
5448 the relocation entry symbol, adjusted by the addend, resides
5449 during execution. */
5450 bfd_vma g = MINUS_ONE;
5451 /* The section in which the symbol referenced by the relocation is
5452 located. */
5453 asection *sec = NULL;
5454 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5455 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5456 symbol. */
b34976b6 5457 bfd_boolean local_p, was_local_p;
77434823
MR
5458 /* TRUE if the symbol referred to by this relocation is a section
5459 symbol. */
5460 bfd_boolean section_p = FALSE;
b34976b6
AM
5461 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5462 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5463 /* TRUE if the symbol referred to by this relocation is
5464 "__gnu_local_gp". */
5465 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5466 Elf_Internal_Shdr *symtab_hdr;
5467 size_t extsymoff;
5468 unsigned long r_symndx;
5469 int r_type;
b34976b6 5470 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5471 relocation value. */
b34976b6
AM
5472 bfd_boolean overflowed_p;
5473 /* TRUE if this relocation refers to a MIPS16 function. */
5474 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5475 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5476 struct mips_elf_link_hash_table *htab;
5477 bfd *dynobj;
ad951203 5478 bfd_boolean resolved_to_zero;
0a44bf69
RS
5479
5480 dynobj = elf_hash_table (info)->dynobj;
5481 htab = mips_elf_hash_table (info);
4dfe6ac6 5482 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5483
5484 /* Parse the relocation. */
5485 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5486 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5487 p = (input_section->output_section->vma
5488 + input_section->output_offset
5489 + relocation->r_offset);
5490
5491 /* Assume that there will be no overflow. */
b34976b6 5492 overflowed_p = FALSE;
b49e97c9
TS
5493
5494 /* Figure out whether or not the symbol is local, and get the offset
5495 used in the array of hash table entries. */
5496 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5497 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5498 local_sections);
bce03d3d 5499 was_local_p = local_p;
b49e97c9
TS
5500 if (! elf_bad_symtab (input_bfd))
5501 extsymoff = symtab_hdr->sh_info;
5502 else
5503 {
5504 /* The symbol table does not follow the rule that local symbols
5505 must come before globals. */
5506 extsymoff = 0;
5507 }
5508
5509 /* Figure out the value of the symbol. */
5510 if (local_p)
5511 {
9d862524 5512 bfd_boolean micromips_p = MICROMIPS_P (abfd);
b49e97c9
TS
5513 Elf_Internal_Sym *sym;
5514
5515 sym = local_syms + r_symndx;
5516 sec = local_sections[r_symndx];
5517
77434823
MR
5518 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5519
b49e97c9 5520 symbol = sec->output_section->vma + sec->output_offset;
77434823 5521 if (!section_p || (sec->flags & SEC_MERGE))
b49e97c9 5522 symbol += sym->st_value;
77434823 5523 if ((sec->flags & SEC_MERGE) && section_p)
d4df96e6
L
5524 {
5525 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5526 addend -= symbol;
5527 addend += sec->output_section->vma + sec->output_offset;
5528 }
b49e97c9 5529
df58fc94
RS
5530 /* MIPS16/microMIPS text labels should be treated as odd. */
5531 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5532 ++symbol;
5533
5534 /* Record the name of this symbol, for our caller. */
5535 *namep = bfd_elf_string_from_elf_section (input_bfd,
5536 symtab_hdr->sh_link,
5537 sym->st_name);
ceab86af 5538 if (*namep == NULL || **namep == '\0')
fd361982 5539 *namep = bfd_section_name (sec);
b49e97c9 5540
9d862524 5541 /* For relocations against a section symbol and ones against no
07d6d2b8 5542 symbol (absolute relocations) infer the ISA mode from the addend. */
9d862524
MR
5543 if (section_p || r_symndx == STN_UNDEF)
5544 {
5545 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5546 target_is_micromips_code_p = (addend & 1) && micromips_p;
5547 }
5548 /* For relocations against an absolute symbol infer the ISA mode
07d6d2b8 5549 from the value of the symbol plus addend. */
9d862524
MR
5550 else if (bfd_is_abs_section (sec))
5551 {
5552 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5553 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5554 }
5555 /* Otherwise just use the regular symbol annotation available. */
5556 else
5557 {
5558 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5559 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5560 }
b49e97c9
TS
5561 }
5562 else
5563 {
560e09e9
NC
5564 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5565
b49e97c9
TS
5566 /* For global symbols we look up the symbol in the hash-table. */
5567 h = ((struct mips_elf_link_hash_entry *)
5568 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5569 /* Find the real hash-table entry for this symbol. */
5570 while (h->root.root.type == bfd_link_hash_indirect
5571 || h->root.root.type == bfd_link_hash_warning)
5572 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5573
5574 /* Record the name of this symbol, for our caller. */
5575 *namep = h->root.root.root.string;
5576
5577 /* See if this is the special _gp_disp symbol. Note that such a
5578 symbol must always be a global symbol. */
560e09e9 5579 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5580 && ! NEWABI_P (input_bfd))
5581 {
5582 /* Relocations against _gp_disp are permitted only with
5583 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5584 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5585 return bfd_reloc_notsupported;
5586
b34976b6 5587 gp_disp_p = TRUE;
b49e97c9 5588 }
bbe506e8
TS
5589 /* See if this is the special _gp symbol. Note that such a
5590 symbol must always be a global symbol. */
5591 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5592 gnu_local_gp_p = TRUE;
5593
5594
b49e97c9
TS
5595 /* If this symbol is defined, calculate its address. Note that
5596 _gp_disp is a magic symbol, always implicitly defined by the
5597 linker, so it's inappropriate to check to see whether or not
5598 its defined. */
5599 else if ((h->root.root.type == bfd_link_hash_defined
5600 || h->root.root.type == bfd_link_hash_defweak)
5601 && h->root.root.u.def.section)
5602 {
5603 sec = h->root.root.u.def.section;
5604 if (sec->output_section)
5605 symbol = (h->root.root.u.def.value
5606 + sec->output_section->vma
5607 + sec->output_offset);
5608 else
5609 symbol = h->root.root.u.def.value;
5610 }
5611 else if (h->root.root.type == bfd_link_hash_undefweak)
5612 /* We allow relocations against undefined weak symbols, giving
5613 it the value zero, so that you can undefined weak functions
5614 and check to see if they exist by looking at their
5615 addresses. */
5616 symbol = 0;
59c2e50f 5617 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5618 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5619 symbol = 0;
a4d0f181
TS
5620 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5621 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5622 {
5623 /* If this is a dynamic link, we should have created a
5624 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
de194d85 5625 in _bfd_mips_elf_create_dynamic_sections.
b49e97c9
TS
5626 Otherwise, we should define the symbol with a value of 0.
5627 FIXME: It should probably get into the symbol table
5628 somehow as well. */
0e1862bb 5629 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5630 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5631 symbol = 0;
5632 }
5e2b0d47
NC
5633 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5634 {
5635 /* This is an optional symbol - an Irix specific extension to the
5636 ELF spec. Ignore it for now.
5637 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5638 than simply ignoring them, but we do not handle this for now.
5639 For information see the "64-bit ELF Object File Specification"
5640 which is available from here:
5641 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5642 symbol = 0;
5643 }
b49e97c9
TS
5644 else
5645 {
dfb93f11
JC
5646 bfd_boolean reject_undefined
5647 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5648 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5649
1a72702b
AM
5650 (*info->callbacks->undefined_symbol)
5651 (info, h->root.root.root.string, input_bfd,
dfb93f11
JC
5652 input_section, relocation->r_offset, reject_undefined);
5653
5654 if (reject_undefined)
5655 return bfd_reloc_undefined;
5656
5657 symbol = 0;
b49e97c9
TS
5658 }
5659
30c09090 5660 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5661 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5662 }
5663
738e5348
RS
5664 /* If this is a reference to a 16-bit function with a stub, we need
5665 to redirect the relocation to the stub unless:
5666
5667 (a) the relocation is for a MIPS16 JAL;
5668
5669 (b) the relocation is for a MIPS16 PIC call, and there are no
5670 non-MIPS16 uses of the GOT slot; or
5671
5672 (c) the section allows direct references to MIPS16 functions. */
5673 if (r_type != R_MIPS16_26
0e1862bb 5674 && !bfd_link_relocatable (info)
738e5348
RS
5675 && ((h != NULL
5676 && h->fn_stub != NULL
5677 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5678 || (local_p
698600e4
AM
5679 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5680 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5681 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5682 {
5683 /* This is a 32- or 64-bit call to a 16-bit function. We should
5684 have already noticed that we were going to need the
5685 stub. */
5686 if (local_p)
8f0c309a 5687 {
698600e4 5688 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5689 value = 0;
5690 }
b49e97c9
TS
5691 else
5692 {
5693 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5694 if (h->la25_stub)
5695 {
5696 /* If a LA25 header for the stub itself exists, point to the
5697 prepended LUI/ADDIU sequence. */
5698 sec = h->la25_stub->stub_section;
5699 value = h->la25_stub->offset;
5700 }
5701 else
5702 {
5703 sec = h->fn_stub;
5704 value = 0;
5705 }
b49e97c9
TS
5706 }
5707
8f0c309a 5708 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5709 /* The target is 16-bit, but the stub isn't. */
5710 target_is_16_bit_code_p = FALSE;
b49e97c9 5711 }
1bbce132
MR
5712 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5713 to a standard MIPS function, we need to redirect the call to the stub.
5714 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5715 indirect calls should use an indirect stub instead. */
0e1862bb 5716 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5717 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5718 || (local_p
698600e4
AM
5719 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5720 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5721 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5722 {
b9d58d71 5723 if (local_p)
698600e4 5724 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5725 else
b49e97c9 5726 {
b9d58d71
TS
5727 /* If both call_stub and call_fp_stub are defined, we can figure
5728 out which one to use by checking which one appears in the input
5729 file. */
5730 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5731 {
b9d58d71 5732 asection *o;
68ffbac6 5733
b9d58d71
TS
5734 sec = NULL;
5735 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5736 {
fd361982 5737 if (CALL_FP_STUB_P (bfd_section_name (o)))
b9d58d71
TS
5738 {
5739 sec = h->call_fp_stub;
5740 break;
5741 }
b49e97c9 5742 }
b9d58d71
TS
5743 if (sec == NULL)
5744 sec = h->call_stub;
b49e97c9 5745 }
b9d58d71 5746 else if (h->call_stub != NULL)
b49e97c9 5747 sec = h->call_stub;
b9d58d71
TS
5748 else
5749 sec = h->call_fp_stub;
07d6d2b8 5750 }
b49e97c9 5751
eea6121a 5752 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5753 symbol = sec->output_section->vma + sec->output_offset;
5754 }
861fb55a
DJ
5755 /* If this is a direct call to a PIC function, redirect to the
5756 non-PIC stub. */
5757 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5758 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5759 target_is_16_bit_code_p))
c7318def
MR
5760 {
5761 symbol = (h->la25_stub->stub_section->output_section->vma
5762 + h->la25_stub->stub_section->output_offset
5763 + h->la25_stub->offset);
5764 if (ELF_ST_IS_MICROMIPS (h->root.other))
5765 symbol |= 1;
5766 }
1bbce132
MR
5767 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5768 entry is used if a standard PLT entry has also been made. In this
5769 case the symbol will have been set by mips_elf_set_plt_sym_value
5770 to point to the standard PLT entry, so redirect to the compressed
5771 one. */
54806ffa
MR
5772 else if ((mips16_branch_reloc_p (r_type)
5773 || micromips_branch_reloc_p (r_type))
0e1862bb 5774 && !bfd_link_relocatable (info)
1bbce132
MR
5775 && h != NULL
5776 && h->use_plt_entry
5777 && h->root.plt.plist->comp_offset != MINUS_ONE
5778 && h->root.plt.plist->mips_offset != MINUS_ONE)
5779 {
5780 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5781
ce558b89 5782 sec = htab->root.splt;
1bbce132
MR
5783 symbol = (sec->output_section->vma
5784 + sec->output_offset
5785 + htab->plt_header_size
5786 + htab->plt_mips_offset
5787 + h->root.plt.plist->comp_offset
5788 + 1);
5789
5790 target_is_16_bit_code_p = !micromips_p;
5791 target_is_micromips_code_p = micromips_p;
5792 }
b49e97c9 5793
df58fc94 5794 /* Make sure MIPS16 and microMIPS are not used together. */
c9775dde 5795 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
df58fc94
RS
5796 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5797 {
4eca0228 5798 _bfd_error_handler
df58fc94
RS
5799 (_("MIPS16 and microMIPS functions cannot call each other"));
5800 return bfd_reloc_notsupported;
5801 }
5802
b49e97c9 5803 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5804 mode change. However, we can ignore calls to undefined weak symbols,
5805 which should never be executed at runtime. This exception is important
5806 because the assembly writer may have "known" that any definition of the
5807 symbol would be 16-bit code, and that direct jumps were therefore
5808 acceptable. */
0e1862bb 5809 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94 5810 && !(h && h->root.root.type == bfd_link_hash_undefweak)
9d862524
MR
5811 && ((mips16_branch_reloc_p (r_type)
5812 && !target_is_16_bit_code_p)
5813 || (micromips_branch_reloc_p (r_type)
df58fc94 5814 && !target_is_micromips_code_p)
9d862524
MR
5815 || ((branch_reloc_p (r_type)
5816 || r_type == R_MIPS_JALR)
df58fc94
RS
5817 && (target_is_16_bit_code_p
5818 || target_is_micromips_code_p))));
b49e97c9 5819
47275900
MR
5820 resolved_to_zero = (h != NULL
5821 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5822
5823 switch (r_type)
5824 {
5825 case R_MIPS16_CALL16:
5826 case R_MIPS16_GOT16:
5827 case R_MIPS_CALL16:
5828 case R_MIPS_GOT16:
5829 case R_MIPS_GOT_PAGE:
5830 case R_MIPS_GOT_DISP:
5831 case R_MIPS_GOT_LO16:
5832 case R_MIPS_CALL_LO16:
5833 case R_MICROMIPS_CALL16:
5834 case R_MICROMIPS_GOT16:
5835 case R_MICROMIPS_GOT_PAGE:
5836 case R_MICROMIPS_GOT_DISP:
5837 case R_MICROMIPS_GOT_LO16:
5838 case R_MICROMIPS_CALL_LO16:
5839 if (resolved_to_zero
5840 && !bfd_link_relocatable (info)
5841 && mips_elf_nullify_got_load (input_bfd, contents,
5842 relocation, howto, TRUE))
5843 return bfd_reloc_continue;
5844
5845 /* Fall through. */
5846 case R_MIPS_GOT_HI16:
5847 case R_MIPS_CALL_HI16:
5848 case R_MICROMIPS_GOT_HI16:
5849 case R_MICROMIPS_CALL_HI16:
5850 if (resolved_to_zero
5851 && htab->use_absolute_zero
5852 && bfd_link_pic (info))
5853 {
5854 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5855 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5856 FALSE, FALSE, FALSE);
5857 BFD_ASSERT (h != NULL);
5858 }
5859 break;
5860 }
5861
c5d6fa44 5862 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5863
0a61c8c2
RS
5864 gp0 = _bfd_get_gp_value (input_bfd);
5865 gp = _bfd_get_gp_value (abfd);
23cc69b6 5866 if (htab->got_info)
a8028dd0 5867 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5868
5869 if (gnu_local_gp_p)
5870 symbol = gp;
5871
df58fc94
RS
5872 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5873 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5874 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5875 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5876 {
df58fc94
RS
5877 r_type = (micromips_reloc_p (r_type)
5878 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5879 addend = 0;
5880 }
5881
e77760d2 5882 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5883 to need it, get it now. */
b49e97c9
TS
5884 switch (r_type)
5885 {
738e5348
RS
5886 case R_MIPS16_CALL16:
5887 case R_MIPS16_GOT16:
b49e97c9
TS
5888 case R_MIPS_CALL16:
5889 case R_MIPS_GOT16:
5890 case R_MIPS_GOT_DISP:
5891 case R_MIPS_GOT_HI16:
5892 case R_MIPS_CALL_HI16:
5893 case R_MIPS_GOT_LO16:
5894 case R_MIPS_CALL_LO16:
df58fc94
RS
5895 case R_MICROMIPS_CALL16:
5896 case R_MICROMIPS_GOT16:
5897 case R_MICROMIPS_GOT_DISP:
5898 case R_MICROMIPS_GOT_HI16:
5899 case R_MICROMIPS_CALL_HI16:
5900 case R_MICROMIPS_GOT_LO16:
5901 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5902 case R_MIPS_TLS_GD:
5903 case R_MIPS_TLS_GOTTPREL:
5904 case R_MIPS_TLS_LDM:
d0f13682
CLT
5905 case R_MIPS16_TLS_GD:
5906 case R_MIPS16_TLS_GOTTPREL:
5907 case R_MIPS16_TLS_LDM:
df58fc94
RS
5908 case R_MICROMIPS_TLS_GD:
5909 case R_MICROMIPS_TLS_GOTTPREL:
5910 case R_MICROMIPS_TLS_LDM:
b49e97c9 5911 /* Find the index into the GOT where this value is located. */
df58fc94 5912 if (tls_ldm_reloc_p (r_type))
0f20cc35 5913 {
0a44bf69 5914 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5915 0, 0, NULL, r_type);
0f20cc35
DJ
5916 if (g == MINUS_ONE)
5917 return bfd_reloc_outofrange;
5918 }
5919 else if (!local_p)
b49e97c9 5920 {
0a44bf69
RS
5921 /* On VxWorks, CALL relocations should refer to the .got.plt
5922 entry, which is initialized to point at the PLT stub. */
5923 if (htab->is_vxworks
df58fc94
RS
5924 && (call_hi16_reloc_p (r_type)
5925 || call_lo16_reloc_p (r_type)
738e5348 5926 || call16_reloc_p (r_type)))
0a44bf69
RS
5927 {
5928 BFD_ASSERT (addend == 0);
5929 BFD_ASSERT (h->root.needs_plt);
5930 g = mips_elf_gotplt_index (info, &h->root);
5931 }
5932 else
b49e97c9 5933 {
020d7251 5934 BFD_ASSERT (addend == 0);
13fbec83
RS
5935 g = mips_elf_global_got_index (abfd, info, input_bfd,
5936 &h->root, r_type);
e641e783 5937 if (!TLS_RELOC_P (r_type)
020d7251
RS
5938 && !elf_hash_table (info)->dynamic_sections_created)
5939 /* This is a static link. We must initialize the GOT entry. */
ce558b89 5940 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
b49e97c9
TS
5941 }
5942 }
0a44bf69 5943 else if (!htab->is_vxworks
738e5348 5944 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5945 /* The calculation below does not involve "g". */
b49e97c9
TS
5946 break;
5947 else
5948 {
5c18022e 5949 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5950 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5951 if (g == MINUS_ONE)
5952 return bfd_reloc_outofrange;
5953 }
5954
5955 /* Convert GOT indices to actual offsets. */
a8028dd0 5956 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5957 break;
b49e97c9
TS
5958 }
5959
0a44bf69
RS
5960 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5961 symbols are resolved by the loader. Add them to .rela.dyn. */
5962 if (h != NULL && is_gott_symbol (info, &h->root))
5963 {
5964 Elf_Internal_Rela outrel;
5965 bfd_byte *loc;
5966 asection *s;
5967
5968 s = mips_elf_rel_dyn_section (info, FALSE);
5969 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5970
5971 outrel.r_offset = (input_section->output_section->vma
5972 + input_section->output_offset
5973 + relocation->r_offset);
5974 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5975 outrel.r_addend = addend;
5976 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5977
5978 /* If we've written this relocation for a readonly section,
5979 we need to set DF_TEXTREL again, so that we do not delete the
5980 DT_TEXTREL tag. */
5981 if (MIPS_ELF_READONLY_SECTION (input_section))
5982 info->flags |= DF_TEXTREL;
5983
0a44bf69
RS
5984 *valuep = 0;
5985 return bfd_reloc_ok;
5986 }
5987
b49e97c9
TS
5988 /* Figure out what kind of relocation is being performed. */
5989 switch (r_type)
5990 {
5991 case R_MIPS_NONE:
5992 return bfd_reloc_continue;
5993
5994 case R_MIPS_16:
c3eb94b4
MF
5995 if (howto->partial_inplace)
5996 addend = _bfd_mips_elf_sign_extend (addend, 16);
5997 value = symbol + addend;
b49e97c9
TS
5998 overflowed_p = mips_elf_overflow_p (value, 16);
5999 break;
6000
6001 case R_MIPS_32:
6002 case R_MIPS_REL32:
6003 case R_MIPS_64:
0e1862bb 6004 if ((bfd_link_pic (info)
861fb55a 6005 || (htab->root.dynamic_sections_created
b49e97c9 6006 && h != NULL
f5385ebf 6007 && h->root.def_dynamic
861fb55a
DJ
6008 && !h->root.def_regular
6009 && !h->has_static_relocs))
cf35638d 6010 && r_symndx != STN_UNDEF
9a59ad6b
DJ
6011 && (h == NULL
6012 || h->root.root.type != bfd_link_hash_undefweak
ad951203
L
6013 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
6014 && !resolved_to_zero))
b49e97c9
TS
6015 && (input_section->flags & SEC_ALLOC) != 0)
6016 {
861fb55a 6017 /* If we're creating a shared library, then we can't know
b49e97c9
TS
6018 where the symbol will end up. So, we create a relocation
6019 record in the output, and leave the job up to the dynamic
861fb55a
DJ
6020 linker. We must do the same for executable references to
6021 shared library symbols, unless we've decided to use copy
6022 relocs or PLTs instead. */
b49e97c9
TS
6023 value = addend;
6024 if (!mips_elf_create_dynamic_relocation (abfd,
6025 info,
6026 relocation,
6027 h,
6028 sec,
6029 symbol,
6030 &value,
6031 input_section))
6032 return bfd_reloc_undefined;
6033 }
6034 else
6035 {
6036 if (r_type != R_MIPS_REL32)
6037 value = symbol + addend;
6038 else
6039 value = addend;
6040 }
6041 value &= howto->dst_mask;
092dcd75
CD
6042 break;
6043
6044 case R_MIPS_PC32:
6045 value = symbol + addend - p;
6046 value &= howto->dst_mask;
b49e97c9
TS
6047 break;
6048
b49e97c9
TS
6049 case R_MIPS16_26:
6050 /* The calculation for R_MIPS16_26 is just the same as for an
6051 R_MIPS_26. It's only the storage of the relocated field into
6052 the output file that's different. That's handled in
6053 mips_elf_perform_relocation. So, we just fall through to the
6054 R_MIPS_26 case here. */
6055 case R_MIPS_26:
df58fc94
RS
6056 case R_MICROMIPS_26_S1:
6057 {
6058 unsigned int shift;
6059
df58fc94
RS
6060 /* Shift is 2, unusually, for microMIPS JALX. */
6061 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6062
77434823 6063 if (howto->partial_inplace && !section_p)
df58fc94 6064 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
6065 else
6066 value = addend;
bc27bb05
MR
6067 value += symbol;
6068
9d862524
MR
6069 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6070 be the correct ISA mode selector except for weak undefined
6071 symbols. */
6072 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6073 && (*cross_mode_jump_p
6074 ? (value & 3) != (r_type == R_MIPS_26)
07d6d2b8 6075 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
bc27bb05
MR
6076 return bfd_reloc_outofrange;
6077
6078 value >>= shift;
77434823 6079 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
df58fc94
RS
6080 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6081 value &= howto->dst_mask;
6082 }
b49e97c9
TS
6083 break;
6084
0f20cc35 6085 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 6086 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 6087 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
6088 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6089 & howto->dst_mask);
6090 break;
6091
6092 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
6093 case R_MIPS_TLS_DTPREL32:
6094 case R_MIPS_TLS_DTPREL64:
d0f13682 6095 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 6096 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
6097 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6098 break;
6099
6100 case R_MIPS_TLS_TPREL_HI16:
d0f13682 6101 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 6102 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
6103 value = (mips_elf_high (addend + symbol - tprel_base (info))
6104 & howto->dst_mask);
6105 break;
6106
6107 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
6108 case R_MIPS_TLS_TPREL32:
6109 case R_MIPS_TLS_TPREL64:
6110 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 6111 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
6112 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6113 break;
6114
b49e97c9 6115 case R_MIPS_HI16:
d6f16593 6116 case R_MIPS16_HI16:
df58fc94 6117 case R_MICROMIPS_HI16:
b49e97c9
TS
6118 if (!gp_disp_p)
6119 {
6120 value = mips_elf_high (addend + symbol);
6121 value &= howto->dst_mask;
6122 }
6123 else
6124 {
d6f16593 6125 /* For MIPS16 ABI code we generate this sequence
07d6d2b8
AM
6126 0: li $v0,%hi(_gp_disp)
6127 4: addiupc $v1,%lo(_gp_disp)
6128 8: sll $v0,16
d6f16593
MR
6129 12: addu $v0,$v1
6130 14: move $gp,$v0
6131 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
6132 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6133 ADDIUPC clears the low two bits of the instruction address,
6134 so the base is ($t9 + 4) & ~3. */
d6f16593 6135 if (r_type == R_MIPS16_HI16)
888b9c01 6136 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
6137 /* The microMIPS .cpload sequence uses the same assembly
6138 instructions as the traditional psABI version, but the
6139 incoming $t9 has the low bit set. */
6140 else if (r_type == R_MICROMIPS_HI16)
6141 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
6142 else
6143 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
6144 }
6145 break;
6146
6147 case R_MIPS_LO16:
d6f16593 6148 case R_MIPS16_LO16:
df58fc94
RS
6149 case R_MICROMIPS_LO16:
6150 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
6151 if (!gp_disp_p)
6152 value = (symbol + addend) & howto->dst_mask;
6153 else
6154 {
d6f16593
MR
6155 /* See the comment for R_MIPS16_HI16 above for the reason
6156 for this conditional. */
6157 if (r_type == R_MIPS16_LO16)
888b9c01 6158 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
6159 else if (r_type == R_MICROMIPS_LO16
6160 || r_type == R_MICROMIPS_HI0_LO16)
6161 value = addend + gp - p + 3;
d6f16593
MR
6162 else
6163 value = addend + gp - p + 4;
b49e97c9 6164 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 6165 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
6166 _gp_disp are normally generated from the .cpload
6167 pseudo-op. It generates code that normally looks like
6168 this:
6169
6170 lui $gp,%hi(_gp_disp)
6171 addiu $gp,$gp,%lo(_gp_disp)
6172 addu $gp,$gp,$t9
6173
6174 Here $t9 holds the address of the function being called,
6175 as required by the MIPS ELF ABI. The R_MIPS_LO16
6176 relocation can easily overflow in this situation, but the
6177 R_MIPS_HI16 relocation will handle the overflow.
6178 Therefore, we consider this a bug in the MIPS ABI, and do
6179 not check for overflow here. */
6180 }
6181 break;
6182
6183 case R_MIPS_LITERAL:
df58fc94 6184 case R_MICROMIPS_LITERAL:
b49e97c9
TS
6185 /* Because we don't merge literal sections, we can handle this
6186 just like R_MIPS_GPREL16. In the long run, we should merge
6187 shared literals, and then we will need to additional work
6188 here. */
6189
6190 /* Fall through. */
6191
6192 case R_MIPS16_GPREL:
6193 /* The R_MIPS16_GPREL performs the same calculation as
6194 R_MIPS_GPREL16, but stores the relocated bits in a different
6195 order. We don't need to do anything special here; the
6196 differences are handled in mips_elf_perform_relocation. */
6197 case R_MIPS_GPREL16:
df58fc94
RS
6198 case R_MICROMIPS_GPREL7_S2:
6199 case R_MICROMIPS_GPREL16:
bce03d3d
AO
6200 /* Only sign-extend the addend if it was extracted from the
6201 instruction. If the addend was separate, leave it alone,
6202 otherwise we may lose significant bits. */
6203 if (howto->partial_inplace)
a7ebbfdf 6204 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
6205 value = symbol + addend - gp;
6206 /* If the symbol was local, any earlier relocatable links will
6207 have adjusted its addend with the gp offset, so compensate
6208 for that now. Don't do it for symbols forced local in this
6209 link, though, since they won't have had the gp offset applied
6210 to them before. */
6211 if (was_local_p)
6212 value += gp0;
538baf8b
AB
6213 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6214 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
6215 break;
6216
738e5348
RS
6217 case R_MIPS16_GOT16:
6218 case R_MIPS16_CALL16:
b49e97c9
TS
6219 case R_MIPS_GOT16:
6220 case R_MIPS_CALL16:
df58fc94
RS
6221 case R_MICROMIPS_GOT16:
6222 case R_MICROMIPS_CALL16:
0a44bf69 6223 /* VxWorks does not have separate local and global semantics for
738e5348 6224 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 6225 if (!htab->is_vxworks && local_p)
b49e97c9 6226 {
5c18022e 6227 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 6228 symbol + addend, !was_local_p);
b49e97c9
TS
6229 if (value == MINUS_ONE)
6230 return bfd_reloc_outofrange;
6231 value
a8028dd0 6232 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6233 overflowed_p = mips_elf_overflow_p (value, 16);
6234 break;
6235 }
6236
6237 /* Fall through. */
6238
0f20cc35
DJ
6239 case R_MIPS_TLS_GD:
6240 case R_MIPS_TLS_GOTTPREL:
6241 case R_MIPS_TLS_LDM:
b49e97c9 6242 case R_MIPS_GOT_DISP:
d0f13682
CLT
6243 case R_MIPS16_TLS_GD:
6244 case R_MIPS16_TLS_GOTTPREL:
6245 case R_MIPS16_TLS_LDM:
df58fc94
RS
6246 case R_MICROMIPS_TLS_GD:
6247 case R_MICROMIPS_TLS_GOTTPREL:
6248 case R_MICROMIPS_TLS_LDM:
6249 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
6250 value = g;
6251 overflowed_p = mips_elf_overflow_p (value, 16);
6252 break;
6253
6254 case R_MIPS_GPREL32:
bce03d3d
AO
6255 value = (addend + symbol + gp0 - gp);
6256 if (!save_addend)
6257 value &= howto->dst_mask;
b49e97c9
TS
6258 break;
6259
6260 case R_MIPS_PC16:
bad36eac 6261 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
6262 if (howto->partial_inplace)
6263 addend = _bfd_mips_elf_sign_extend (addend, 18);
6264
9d862524 6265 /* No need to exclude weak undefined symbols here as they resolve
07d6d2b8
AM
6266 to 0 and never set `*cross_mode_jump_p', so this alignment check
6267 will never trigger for them. */
9d862524
MR
6268 if (*cross_mode_jump_p
6269 ? ((symbol + addend) & 3) != 1
6270 : ((symbol + addend) & 3) != 0)
c3eb94b4
MF
6271 return bfd_reloc_outofrange;
6272
6273 value = symbol + addend - p;
538baf8b
AB
6274 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6275 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
6276 value >>= howto->rightshift;
6277 value &= howto->dst_mask;
b49e97c9
TS
6278 break;
6279
c9775dde
MR
6280 case R_MIPS16_PC16_S1:
6281 if (howto->partial_inplace)
6282 addend = _bfd_mips_elf_sign_extend (addend, 17);
6283
6284 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
9d862524
MR
6285 && (*cross_mode_jump_p
6286 ? ((symbol + addend) & 3) != 0
6287 : ((symbol + addend) & 1) == 0))
c9775dde
MR
6288 return bfd_reloc_outofrange;
6289
6290 value = symbol + addend - p;
6291 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6292 overflowed_p = mips_elf_overflow_p (value, 17);
6293 value >>= howto->rightshift;
6294 value &= howto->dst_mask;
6295 break;
6296
7361da2c
AB
6297 case R_MIPS_PC21_S2:
6298 if (howto->partial_inplace)
6299 addend = _bfd_mips_elf_sign_extend (addend, 23);
6300
6301 if ((symbol + addend) & 3)
6302 return bfd_reloc_outofrange;
6303
6304 value = symbol + addend - p;
538baf8b
AB
6305 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6306 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
6307 value >>= howto->rightshift;
6308 value &= howto->dst_mask;
6309 break;
6310
6311 case R_MIPS_PC26_S2:
6312 if (howto->partial_inplace)
6313 addend = _bfd_mips_elf_sign_extend (addend, 28);
6314
6315 if ((symbol + addend) & 3)
6316 return bfd_reloc_outofrange;
6317
6318 value = symbol + addend - p;
538baf8b
AB
6319 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6320 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6321 value >>= howto->rightshift;
6322 value &= howto->dst_mask;
6323 break;
6324
6325 case R_MIPS_PC18_S3:
6326 if (howto->partial_inplace)
6327 addend = _bfd_mips_elf_sign_extend (addend, 21);
6328
6329 if ((symbol + addend) & 7)
6330 return bfd_reloc_outofrange;
6331
6332 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6333 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6334 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6335 value >>= howto->rightshift;
6336 value &= howto->dst_mask;
6337 break;
6338
6339 case R_MIPS_PC19_S2:
6340 if (howto->partial_inplace)
6341 addend = _bfd_mips_elf_sign_extend (addend, 21);
6342
6343 if ((symbol + addend) & 3)
6344 return bfd_reloc_outofrange;
6345
6346 value = symbol + addend - p;
538baf8b
AB
6347 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6348 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6349 value >>= howto->rightshift;
6350 value &= howto->dst_mask;
6351 break;
6352
6353 case R_MIPS_PCHI16:
6354 value = mips_elf_high (symbol + addend - p);
7361da2c
AB
6355 value &= howto->dst_mask;
6356 break;
6357
6358 case R_MIPS_PCLO16:
6359 if (howto->partial_inplace)
6360 addend = _bfd_mips_elf_sign_extend (addend, 16);
6361 value = symbol + addend - p;
6362 value &= howto->dst_mask;
6363 break;
6364
df58fc94 6365 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6366 if (howto->partial_inplace)
6367 addend = _bfd_mips_elf_sign_extend (addend, 8);
9d862524
MR
6368
6369 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6370 && (*cross_mode_jump_p
6371 ? ((symbol + addend + 2) & 3) != 0
6372 : ((symbol + addend + 2) & 1) == 0))
6373 return bfd_reloc_outofrange;
6374
c3eb94b4 6375 value = symbol + addend - p;
538baf8b
AB
6376 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6377 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6378 value >>= howto->rightshift;
6379 value &= howto->dst_mask;
6380 break;
6381
6382 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6383 if (howto->partial_inplace)
6384 addend = _bfd_mips_elf_sign_extend (addend, 11);
9d862524
MR
6385
6386 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6387 && (*cross_mode_jump_p
6388 ? ((symbol + addend + 2) & 3) != 0
6389 : ((symbol + addend + 2) & 1) == 0))
6390 return bfd_reloc_outofrange;
6391
c3eb94b4 6392 value = symbol + addend - p;
538baf8b
AB
6393 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6394 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6395 value >>= howto->rightshift;
6396 value &= howto->dst_mask;
6397 break;
6398
6399 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6400 if (howto->partial_inplace)
6401 addend = _bfd_mips_elf_sign_extend (addend, 17);
9d862524
MR
6402
6403 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6404 && (*cross_mode_jump_p
6405 ? ((symbol + addend) & 3) != 0
6406 : ((symbol + addend) & 1) == 0))
6407 return bfd_reloc_outofrange;
6408
c3eb94b4 6409 value = symbol + addend - p;
538baf8b
AB
6410 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6411 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6412 value >>= howto->rightshift;
6413 value &= howto->dst_mask;
6414 break;
6415
6416 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6417 if (howto->partial_inplace)
6418 addend = _bfd_mips_elf_sign_extend (addend, 25);
6419 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6420 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6421 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6422 value >>= howto->rightshift;
6423 value &= howto->dst_mask;
6424 break;
6425
b49e97c9
TS
6426 case R_MIPS_GOT_HI16:
6427 case R_MIPS_CALL_HI16:
df58fc94
RS
6428 case R_MICROMIPS_GOT_HI16:
6429 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6430 /* We're allowed to handle these two relocations identically.
6431 The dynamic linker is allowed to handle the CALL relocations
6432 differently by creating a lazy evaluation stub. */
6433 value = g;
6434 value = mips_elf_high (value);
6435 value &= howto->dst_mask;
6436 break;
6437
6438 case R_MIPS_GOT_LO16:
6439 case R_MIPS_CALL_LO16:
df58fc94
RS
6440 case R_MICROMIPS_GOT_LO16:
6441 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6442 value = g & howto->dst_mask;
6443 break;
6444
6445 case R_MIPS_GOT_PAGE:
df58fc94 6446 case R_MICROMIPS_GOT_PAGE:
5c18022e 6447 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6448 if (value == MINUS_ONE)
6449 return bfd_reloc_outofrange;
a8028dd0 6450 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6451 overflowed_p = mips_elf_overflow_p (value, 16);
6452 break;
6453
6454 case R_MIPS_GOT_OFST:
df58fc94 6455 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6456 if (local_p)
5c18022e 6457 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6458 else
6459 value = addend;
b49e97c9
TS
6460 overflowed_p = mips_elf_overflow_p (value, 16);
6461 break;
6462
6463 case R_MIPS_SUB:
df58fc94 6464 case R_MICROMIPS_SUB:
b49e97c9
TS
6465 value = symbol - addend;
6466 value &= howto->dst_mask;
6467 break;
6468
6469 case R_MIPS_HIGHER:
df58fc94 6470 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6471 value = mips_elf_higher (addend + symbol);
6472 value &= howto->dst_mask;
6473 break;
6474
6475 case R_MIPS_HIGHEST:
df58fc94 6476 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6477 value = mips_elf_highest (addend + symbol);
6478 value &= howto->dst_mask;
6479 break;
6480
6481 case R_MIPS_SCN_DISP:
df58fc94 6482 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6483 value = symbol + addend - sec->output_offset;
6484 value &= howto->dst_mask;
6485 break;
6486
b49e97c9 6487 case R_MIPS_JALR:
df58fc94 6488 case R_MICROMIPS_JALR:
1367d393
ILT
6489 /* This relocation is only a hint. In some cases, we optimize
6490 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6491 when the symbol does not resolve locally. */
6492 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393 6493 return bfd_reloc_continue;
c1556ecd
MR
6494 /* We can't optimize cross-mode jumps either. */
6495 if (*cross_mode_jump_p)
6496 return bfd_reloc_continue;
1367d393 6497 value = symbol + addend;
c1556ecd
MR
6498 /* Neither we can non-instruction-aligned targets. */
6499 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6500 return bfd_reloc_continue;
1367d393 6501 break;
b49e97c9 6502
1367d393 6503 case R_MIPS_PJUMP:
b49e97c9
TS
6504 case R_MIPS_GNU_VTINHERIT:
6505 case R_MIPS_GNU_VTENTRY:
6506 /* We don't do anything with these at present. */
6507 return bfd_reloc_continue;
6508
6509 default:
6510 /* An unrecognized relocation type. */
6511 return bfd_reloc_notsupported;
6512 }
6513
6514 /* Store the VALUE for our caller. */
6515 *valuep = value;
6516 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6517}
6518
b49e97c9
TS
6519/* It has been determined that the result of the RELOCATION is the
6520 VALUE. Use HOWTO to place VALUE into the output file at the
6521 appropriate position. The SECTION is the section to which the
68ffbac6 6522 relocation applies.
38a7df63 6523 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6524 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6525
b34976b6 6526 Returns FALSE if anything goes wrong. */
b49e97c9 6527
b34976b6 6528static bfd_boolean
9719ad41
RS
6529mips_elf_perform_relocation (struct bfd_link_info *info,
6530 reloc_howto_type *howto,
6531 const Elf_Internal_Rela *relocation,
6532 bfd_vma value, bfd *input_bfd,
6533 asection *input_section, bfd_byte *contents,
38a7df63 6534 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6535{
6536 bfd_vma x;
6537 bfd_byte *location;
6538 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6539
6540 /* Figure out where the relocation is occurring. */
6541 location = contents + relocation->r_offset;
6542
df58fc94 6543 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6544
b49e97c9
TS
6545 /* Obtain the current value. */
6546 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6547
6548 /* Clear the field we are setting. */
6549 x &= ~howto->dst_mask;
6550
b49e97c9
TS
6551 /* Set the field. */
6552 x |= (value & howto->dst_mask);
6553
a6ebf616 6554 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
9d862524
MR
6555 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6556 {
6557 bfd_vma opcode = x >> 26;
6558
6559 if (r_type == R_MIPS16_26 ? opcode == 0x7
6560 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6561 : opcode == 0x1d)
6562 {
6563 info->callbacks->einfo
2c1c9679 6564 (_("%X%H: unsupported JALX to the same ISA mode\n"),
9d862524
MR
6565 input_bfd, input_section, relocation->r_offset);
6566 return TRUE;
6567 }
6568 }
38a7df63 6569 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6570 {
b34976b6 6571 bfd_boolean ok;
b49e97c9
TS
6572 bfd_vma opcode = x >> 26;
6573 bfd_vma jalx_opcode;
6574
6575 /* Check to see if the opcode is already JAL or JALX. */
6576 if (r_type == R_MIPS16_26)
6577 {
6578 ok = ((opcode == 0x6) || (opcode == 0x7));
6579 jalx_opcode = 0x7;
6580 }
df58fc94
RS
6581 else if (r_type == R_MICROMIPS_26_S1)
6582 {
6583 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6584 jalx_opcode = 0x3c;
6585 }
b49e97c9
TS
6586 else
6587 {
6588 ok = ((opcode == 0x3) || (opcode == 0x1d));
6589 jalx_opcode = 0x1d;
6590 }
6591
3bdf9505 6592 /* If the opcode is not JAL or JALX, there's a problem. We cannot
07d6d2b8 6593 convert J or JALS to JALX. */
b49e97c9
TS
6594 if (!ok)
6595 {
5f68df25 6596 info->callbacks->einfo
2c1c9679 6597 (_("%X%H: unsupported jump between ISA modes; "
5f68df25
MR
6598 "consider recompiling with interlinking enabled\n"),
6599 input_bfd, input_section, relocation->r_offset);
6600 return TRUE;
b49e97c9
TS
6601 }
6602
6603 /* Make this the JALX opcode. */
6604 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6605 }
9d862524
MR
6606 else if (cross_mode_jump_p && b_reloc_p (r_type))
6607 {
a6ebf616
MR
6608 bfd_boolean ok = FALSE;
6609 bfd_vma opcode = x >> 16;
6610 bfd_vma jalx_opcode = 0;
70e65ca8 6611 bfd_vma sign_bit = 0;
a6ebf616
MR
6612 bfd_vma addr;
6613 bfd_vma dest;
6614
6615 if (r_type == R_MICROMIPS_PC16_S1)
6616 {
6617 ok = opcode == 0x4060;
6618 jalx_opcode = 0x3c;
70e65ca8 6619 sign_bit = 0x10000;
a6ebf616
MR
6620 value <<= 1;
6621 }
6622 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6623 {
6624 ok = opcode == 0x411;
6625 jalx_opcode = 0x1d;
70e65ca8 6626 sign_bit = 0x20000;
a6ebf616
MR
6627 value <<= 2;
6628 }
6629
8b10b0b3 6630 if (ok && !bfd_link_pic (info))
a6ebf616 6631 {
8b10b0b3
MR
6632 addr = (input_section->output_section->vma
6633 + input_section->output_offset
6634 + relocation->r_offset
6635 + 4);
70e65ca8
MR
6636 dest = (addr
6637 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
a6ebf616 6638
8b10b0b3
MR
6639 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6640 {
6641 info->callbacks->einfo
2c1c9679 6642 (_("%X%H: cannot convert branch between ISA modes "
8b10b0b3
MR
6643 "to JALX: relocation out of range\n"),
6644 input_bfd, input_section, relocation->r_offset);
6645 return TRUE;
6646 }
a6ebf616 6647
8b10b0b3
MR
6648 /* Make this the JALX opcode. */
6649 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6650 }
6651 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
a6ebf616
MR
6652 {
6653 info->callbacks->einfo
2c1c9679 6654 (_("%X%H: unsupported branch between ISA modes\n"),
a6ebf616
MR
6655 input_bfd, input_section, relocation->r_offset);
6656 return TRUE;
6657 }
9d862524 6658 }
b49e97c9 6659
38a7df63
CF
6660 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6661 range. */
0e1862bb 6662 if (!bfd_link_relocatable (info)
38a7df63 6663 && !cross_mode_jump_p
cd8d5a82
CF
6664 && ((JAL_TO_BAL_P (input_bfd)
6665 && r_type == R_MIPS_26
0e392101 6666 && (x >> 26) == 0x3) /* jal addr */
cd8d5a82
CF
6667 || (JALR_TO_BAL_P (input_bfd)
6668 && r_type == R_MIPS_JALR
0e392101 6669 && x == 0x0320f809) /* jalr t9 */
38a7df63
CF
6670 || (JR_TO_B_P (input_bfd)
6671 && r_type == R_MIPS_JALR
0e392101 6672 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
1367d393
ILT
6673 {
6674 bfd_vma addr;
6675 bfd_vma dest;
6676 bfd_signed_vma off;
6677
6678 addr = (input_section->output_section->vma
6679 + input_section->output_offset
6680 + relocation->r_offset
6681 + 4);
6682 if (r_type == R_MIPS_26)
6683 dest = (value << 2) | ((addr >> 28) << 28);
6684 else
6685 dest = value;
6686 off = dest - addr;
6687 if (off <= 0x1ffff && off >= -0x20000)
38a7df63 6688 {
0e392101 6689 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
38a7df63
CF
6690 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6691 else
6692 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6693 }
1367d393
ILT
6694 }
6695
b49e97c9 6696 /* Put the value into the output. */
98e10ffa 6697 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
d6f16593 6698
0e1862bb 6699 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6700 location);
d6f16593 6701
b34976b6 6702 return TRUE;
b49e97c9 6703}
b49e97c9 6704\f
b49e97c9
TS
6705/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6706 is the original relocation, which is now being transformed into a
6707 dynamic relocation. The ADDENDP is adjusted if necessary; the
6708 caller should store the result in place of the original addend. */
6709
b34976b6 6710static bfd_boolean
9719ad41
RS
6711mips_elf_create_dynamic_relocation (bfd *output_bfd,
6712 struct bfd_link_info *info,
6713 const Elf_Internal_Rela *rel,
6714 struct mips_elf_link_hash_entry *h,
6715 asection *sec, bfd_vma symbol,
6716 bfd_vma *addendp, asection *input_section)
b49e97c9 6717{
947216bf 6718 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6719 asection *sreloc;
6720 bfd *dynobj;
6721 int r_type;
5d41f0b6
RS
6722 long indx;
6723 bfd_boolean defined_p;
0a44bf69 6724 struct mips_elf_link_hash_table *htab;
b49e97c9 6725
0a44bf69 6726 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6727 BFD_ASSERT (htab != NULL);
6728
b49e97c9
TS
6729 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6730 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6731 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6732 BFD_ASSERT (sreloc != NULL);
6733 BFD_ASSERT (sreloc->contents != NULL);
6734 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6735 < sreloc->size);
b49e97c9 6736
b49e97c9
TS
6737 outrel[0].r_offset =
6738 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6739 if (ABI_64_P (output_bfd))
6740 {
6741 outrel[1].r_offset =
6742 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6743 outrel[2].r_offset =
6744 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6745 }
b49e97c9 6746
c5ae1840 6747 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6748 /* The relocation field has been deleted. */
5d41f0b6
RS
6749 return TRUE;
6750
6751 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6752 {
6753 /* The relocation field has been converted into a relative value of
6754 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6755 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6756 *addendp += symbol;
5d41f0b6 6757 return TRUE;
0d591ff7 6758 }
b49e97c9 6759
5d41f0b6
RS
6760 /* We must now calculate the dynamic symbol table index to use
6761 in the relocation. */
d4a77f3f 6762 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6763 {
020d7251 6764 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6765 indx = h->root.dynindx;
6766 if (SGI_COMPAT (output_bfd))
6767 defined_p = h->root.def_regular;
6768 else
6769 /* ??? glibc's ld.so just adds the final GOT entry to the
6770 relocation field. It therefore treats relocs against
6771 defined symbols in the same way as relocs against
6772 undefined symbols. */
6773 defined_p = FALSE;
6774 }
b49e97c9
TS
6775 else
6776 {
5d41f0b6
RS
6777 if (sec != NULL && bfd_is_abs_section (sec))
6778 indx = 0;
6779 else if (sec == NULL || sec->owner == NULL)
fdd07405 6780 {
5d41f0b6
RS
6781 bfd_set_error (bfd_error_bad_value);
6782 return FALSE;
b49e97c9
TS
6783 }
6784 else
6785 {
5d41f0b6 6786 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6787 if (indx == 0)
6788 {
6789 asection *osec = htab->root.text_index_section;
6790 indx = elf_section_data (osec)->dynindx;
6791 }
5d41f0b6
RS
6792 if (indx == 0)
6793 abort ();
b49e97c9
TS
6794 }
6795
5d41f0b6
RS
6796 /* Instead of generating a relocation using the section
6797 symbol, we may as well make it a fully relative
6798 relocation. We want to avoid generating relocations to
6799 local symbols because we used to generate them
6800 incorrectly, without adding the original symbol value,
6801 which is mandated by the ABI for section symbols. In
6802 order to give dynamic loaders and applications time to
6803 phase out the incorrect use, we refrain from emitting
6804 section-relative relocations. It's not like they're
6805 useful, after all. This should be a bit more efficient
6806 as well. */
6807 /* ??? Although this behavior is compatible with glibc's ld.so,
6808 the ABI says that relocations against STN_UNDEF should have
6809 a symbol value of 0. Irix rld honors this, so relocations
6810 against STN_UNDEF have no effect. */
6811 if (!SGI_COMPAT (output_bfd))
6812 indx = 0;
6813 defined_p = TRUE;
b49e97c9
TS
6814 }
6815
5d41f0b6
RS
6816 /* If the relocation was previously an absolute relocation and
6817 this symbol will not be referred to by the relocation, we must
6818 adjust it by the value we give it in the dynamic symbol table.
6819 Otherwise leave the job up to the dynamic linker. */
6820 if (defined_p && r_type != R_MIPS_REL32)
6821 *addendp += symbol;
6822
0a44bf69
RS
6823 if (htab->is_vxworks)
6824 /* VxWorks uses non-relative relocations for this. */
6825 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6826 else
6827 /* The relocation is always an REL32 relocation because we don't
6828 know where the shared library will wind up at load-time. */
6829 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6830 R_MIPS_REL32);
6831
5d41f0b6
RS
6832 /* For strict adherence to the ABI specification, we should
6833 generate a R_MIPS_64 relocation record by itself before the
6834 _REL32/_64 record as well, such that the addend is read in as
6835 a 64-bit value (REL32 is a 32-bit relocation, after all).
6836 However, since none of the existing ELF64 MIPS dynamic
6837 loaders seems to care, we don't waste space with these
6838 artificial relocations. If this turns out to not be true,
6839 mips_elf_allocate_dynamic_relocation() should be tweaked so
6840 as to make room for a pair of dynamic relocations per
6841 invocation if ABI_64_P, and here we should generate an
6842 additional relocation record with R_MIPS_64 by itself for a
6843 NULL symbol before this relocation record. */
6844 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6845 ABI_64_P (output_bfd)
6846 ? R_MIPS_64
6847 : R_MIPS_NONE);
6848 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6849
6850 /* Adjust the output offset of the relocation to reference the
6851 correct location in the output file. */
6852 outrel[0].r_offset += (input_section->output_section->vma
6853 + input_section->output_offset);
6854 outrel[1].r_offset += (input_section->output_section->vma
6855 + input_section->output_offset);
6856 outrel[2].r_offset += (input_section->output_section->vma
6857 + input_section->output_offset);
6858
b49e97c9
TS
6859 /* Put the relocation back out. We have to use the special
6860 relocation outputter in the 64-bit case since the 64-bit
6861 relocation format is non-standard. */
6862 if (ABI_64_P (output_bfd))
6863 {
6864 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6865 (output_bfd, &outrel[0],
6866 (sreloc->contents
6867 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6868 }
0a44bf69
RS
6869 else if (htab->is_vxworks)
6870 {
6871 /* VxWorks uses RELA rather than REL dynamic relocations. */
6872 outrel[0].r_addend = *addendp;
6873 bfd_elf32_swap_reloca_out
6874 (output_bfd, &outrel[0],
6875 (sreloc->contents
6876 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6877 }
b49e97c9 6878 else
947216bf
AM
6879 bfd_elf32_swap_reloc_out
6880 (output_bfd, &outrel[0],
6881 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6882
b49e97c9
TS
6883 /* We've now added another relocation. */
6884 ++sreloc->reloc_count;
6885
6886 /* Make sure the output section is writable. The dynamic linker
6887 will be writing to it. */
6888 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6889 |= SHF_WRITE;
6890
6891 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6892 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6893 {
3d4d4302 6894 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6895 bfd_byte *cr;
6896
6897 if (scpt)
6898 {
6899 Elf32_crinfo cptrel;
6900
6901 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6902 cptrel.vaddr = (rel->r_offset
6903 + input_section->output_section->vma
6904 + input_section->output_offset);
6905 if (r_type == R_MIPS_REL32)
6906 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6907 else
6908 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6909 mips_elf_set_cr_dist2to (cptrel, 0);
6910 cptrel.konst = *addendp;
6911
6912 cr = (scpt->contents
6913 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6914 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6915 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6916 ((Elf32_External_crinfo *) cr
6917 + scpt->reloc_count));
6918 ++scpt->reloc_count;
6919 }
6920 }
6921
943284cc
DJ
6922 /* If we've written this relocation for a readonly section,
6923 we need to set DF_TEXTREL again, so that we do not delete the
6924 DT_TEXTREL tag. */
6925 if (MIPS_ELF_READONLY_SECTION (input_section))
6926 info->flags |= DF_TEXTREL;
6927
b34976b6 6928 return TRUE;
b49e97c9
TS
6929}
6930\f
b49e97c9
TS
6931/* Return the MACH for a MIPS e_flags value. */
6932
6933unsigned long
9719ad41 6934_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6935{
6936 switch (flags & EF_MIPS_MACH)
6937 {
6938 case E_MIPS_MACH_3900:
6939 return bfd_mach_mips3900;
6940
6941 case E_MIPS_MACH_4010:
6942 return bfd_mach_mips4010;
6943
6944 case E_MIPS_MACH_4100:
6945 return bfd_mach_mips4100;
6946
6947 case E_MIPS_MACH_4111:
6948 return bfd_mach_mips4111;
6949
00707a0e
RS
6950 case E_MIPS_MACH_4120:
6951 return bfd_mach_mips4120;
6952
b49e97c9
TS
6953 case E_MIPS_MACH_4650:
6954 return bfd_mach_mips4650;
6955
00707a0e
RS
6956 case E_MIPS_MACH_5400:
6957 return bfd_mach_mips5400;
6958
6959 case E_MIPS_MACH_5500:
6960 return bfd_mach_mips5500;
6961
e407c74b
NC
6962 case E_MIPS_MACH_5900:
6963 return bfd_mach_mips5900;
6964
0d2e43ed
ILT
6965 case E_MIPS_MACH_9000:
6966 return bfd_mach_mips9000;
6967
b49e97c9
TS
6968 case E_MIPS_MACH_SB1:
6969 return bfd_mach_mips_sb1;
6970
350cc38d
MS
6971 case E_MIPS_MACH_LS2E:
6972 return bfd_mach_mips_loongson_2e;
6973
6974 case E_MIPS_MACH_LS2F:
6975 return bfd_mach_mips_loongson_2f;
6976
ac8cb70f
CX
6977 case E_MIPS_MACH_GS464:
6978 return bfd_mach_mips_gs464;
fd503541 6979
bd782c07
CX
6980 case E_MIPS_MACH_GS464E:
6981 return bfd_mach_mips_gs464e;
6982
9108bc33
CX
6983 case E_MIPS_MACH_GS264E:
6984 return bfd_mach_mips_gs264e;
6985
2c629856
N
6986 case E_MIPS_MACH_OCTEON3:
6987 return bfd_mach_mips_octeon3;
6988
432233b3
AP
6989 case E_MIPS_MACH_OCTEON2:
6990 return bfd_mach_mips_octeon2;
6991
6f179bd0
AN
6992 case E_MIPS_MACH_OCTEON:
6993 return bfd_mach_mips_octeon;
6994
52b6b6b9
JM
6995 case E_MIPS_MACH_XLR:
6996 return bfd_mach_mips_xlr;
6997
38bf472a
MR
6998 case E_MIPS_MACH_IAMR2:
6999 return bfd_mach_mips_interaptiv_mr2;
7000
b49e97c9
TS
7001 default:
7002 switch (flags & EF_MIPS_ARCH)
7003 {
7004 default:
7005 case E_MIPS_ARCH_1:
7006 return bfd_mach_mips3000;
b49e97c9
TS
7007
7008 case E_MIPS_ARCH_2:
7009 return bfd_mach_mips6000;
b49e97c9
TS
7010
7011 case E_MIPS_ARCH_3:
7012 return bfd_mach_mips4000;
b49e97c9
TS
7013
7014 case E_MIPS_ARCH_4:
7015 return bfd_mach_mips8000;
b49e97c9
TS
7016
7017 case E_MIPS_ARCH_5:
7018 return bfd_mach_mips5;
b49e97c9
TS
7019
7020 case E_MIPS_ARCH_32:
7021 return bfd_mach_mipsisa32;
b49e97c9
TS
7022
7023 case E_MIPS_ARCH_64:
7024 return bfd_mach_mipsisa64;
af7ee8bf
CD
7025
7026 case E_MIPS_ARCH_32R2:
7027 return bfd_mach_mipsisa32r2;
5f74bc13
CD
7028
7029 case E_MIPS_ARCH_64R2:
7030 return bfd_mach_mipsisa64r2;
7361da2c
AB
7031
7032 case E_MIPS_ARCH_32R6:
7033 return bfd_mach_mipsisa32r6;
7034
7035 case E_MIPS_ARCH_64R6:
7036 return bfd_mach_mipsisa64r6;
b49e97c9
TS
7037 }
7038 }
7039
7040 return 0;
7041}
7042
7043/* Return printable name for ABI. */
7044
7045static INLINE char *
9719ad41 7046elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
7047{
7048 flagword flags;
7049
7050 flags = elf_elfheader (abfd)->e_flags;
7051 switch (flags & EF_MIPS_ABI)
7052 {
7053 case 0:
7054 if (ABI_N32_P (abfd))
7055 return "N32";
7056 else if (ABI_64_P (abfd))
7057 return "64";
7058 else
7059 return "none";
7060 case E_MIPS_ABI_O32:
7061 return "O32";
7062 case E_MIPS_ABI_O64:
7063 return "O64";
7064 case E_MIPS_ABI_EABI32:
7065 return "EABI32";
7066 case E_MIPS_ABI_EABI64:
7067 return "EABI64";
7068 default:
7069 return "unknown abi";
7070 }
7071}
7072\f
7073/* MIPS ELF uses two common sections. One is the usual one, and the
7074 other is for small objects. All the small objects are kept
7075 together, and then referenced via the gp pointer, which yields
7076 faster assembler code. This is what we use for the small common
7077 section. This approach is copied from ecoff.c. */
7078static asection mips_elf_scom_section;
7079static asymbol mips_elf_scom_symbol;
7080static asymbol *mips_elf_scom_symbol_ptr;
7081
7082/* MIPS ELF also uses an acommon section, which represents an
7083 allocated common symbol which may be overridden by a
7084 definition in a shared library. */
7085static asection mips_elf_acom_section;
7086static asymbol mips_elf_acom_symbol;
7087static asymbol *mips_elf_acom_symbol_ptr;
7088
738e5348 7089/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
7090
7091void
9719ad41 7092_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
7093{
7094 elf_symbol_type *elfsym;
7095
738e5348 7096 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
7097 elfsym = (elf_symbol_type *) asym;
7098 switch (elfsym->internal_elf_sym.st_shndx)
7099 {
7100 case SHN_MIPS_ACOMMON:
7101 /* This section is used in a dynamically linked executable file.
7102 It is an allocated common section. The dynamic linker can
7103 either resolve these symbols to something in a shared
7104 library, or it can just leave them here. For our purposes,
7105 we can consider these symbols to be in a new section. */
7106 if (mips_elf_acom_section.name == NULL)
7107 {
7108 /* Initialize the acommon section. */
7109 mips_elf_acom_section.name = ".acommon";
7110 mips_elf_acom_section.flags = SEC_ALLOC;
7111 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7112 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7113 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7114 mips_elf_acom_symbol.name = ".acommon";
7115 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7116 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7117 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7118 }
7119 asym->section = &mips_elf_acom_section;
7120 break;
7121
7122 case SHN_COMMON:
7123 /* Common symbols less than the GP size are automatically
7124 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7125 if (asym->value > elf_gp_size (abfd)
b59eed79 7126 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
7127 || IRIX_COMPAT (abfd) == ict_irix6)
7128 break;
7129 /* Fall through. */
7130 case SHN_MIPS_SCOMMON:
7131 if (mips_elf_scom_section.name == NULL)
7132 {
7133 /* Initialize the small common section. */
7134 mips_elf_scom_section.name = ".scommon";
7135 mips_elf_scom_section.flags = SEC_IS_COMMON;
7136 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7137 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7138 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7139 mips_elf_scom_symbol.name = ".scommon";
7140 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7141 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7142 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7143 }
7144 asym->section = &mips_elf_scom_section;
7145 asym->value = elfsym->internal_elf_sym.st_size;
7146 break;
7147
7148 case SHN_MIPS_SUNDEFINED:
7149 asym->section = bfd_und_section_ptr;
7150 break;
7151
b49e97c9 7152 case SHN_MIPS_TEXT:
00b4930b
TS
7153 {
7154 asection *section = bfd_get_section_by_name (abfd, ".text");
7155
00b4930b
TS
7156 if (section != NULL)
7157 {
7158 asym->section = section;
7159 /* MIPS_TEXT is a bit special, the address is not an offset
de194d85 7160 to the base of the .text section. So subtract the section
00b4930b
TS
7161 base address to make it an offset. */
7162 asym->value -= section->vma;
7163 }
7164 }
b49e97c9
TS
7165 break;
7166
7167 case SHN_MIPS_DATA:
00b4930b
TS
7168 {
7169 asection *section = bfd_get_section_by_name (abfd, ".data");
7170
00b4930b
TS
7171 if (section != NULL)
7172 {
7173 asym->section = section;
7174 /* MIPS_DATA is a bit special, the address is not an offset
de194d85 7175 to the base of the .data section. So subtract the section
00b4930b
TS
7176 base address to make it an offset. */
7177 asym->value -= section->vma;
7178 }
7179 }
b49e97c9 7180 break;
b49e97c9 7181 }
738e5348 7182
df58fc94
RS
7183 /* If this is an odd-valued function symbol, assume it's a MIPS16
7184 or microMIPS one. */
738e5348
RS
7185 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7186 && (asym->value & 1) != 0)
7187 {
7188 asym->value--;
e8faf7d1 7189 if (MICROMIPS_P (abfd))
df58fc94
RS
7190 elfsym->internal_elf_sym.st_other
7191 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7192 else
7193 elfsym->internal_elf_sym.st_other
7194 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 7195 }
b49e97c9
TS
7196}
7197\f
8c946ed5
RS
7198/* Implement elf_backend_eh_frame_address_size. This differs from
7199 the default in the way it handles EABI64.
7200
7201 EABI64 was originally specified as an LP64 ABI, and that is what
7202 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7203 historically accepted the combination of -mabi=eabi and -mlong32,
7204 and this ILP32 variation has become semi-official over time.
7205 Both forms use elf32 and have pointer-sized FDE addresses.
7206
7207 If an EABI object was generated by GCC 4.0 or above, it will have
7208 an empty .gcc_compiled_longXX section, where XX is the size of longs
7209 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7210 have no special marking to distinguish them from LP64 objects.
7211
7212 We don't want users of the official LP64 ABI to be punished for the
7213 existence of the ILP32 variant, but at the same time, we don't want
7214 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7215 We therefore take the following approach:
7216
7217 - If ABFD contains a .gcc_compiled_longXX section, use it to
07d6d2b8 7218 determine the pointer size.
8c946ed5
RS
7219
7220 - Otherwise check the type of the first relocation. Assume that
07d6d2b8 7221 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
8c946ed5
RS
7222
7223 - Otherwise punt.
7224
7225 The second check is enough to detect LP64 objects generated by pre-4.0
7226 compilers because, in the kind of output generated by those compilers,
7227 the first relocation will be associated with either a CIE personality
7228 routine or an FDE start address. Furthermore, the compilers never
7229 used a special (non-pointer) encoding for this ABI.
7230
7231 Checking the relocation type should also be safe because there is no
7232 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7233 did so. */
7234
7235unsigned int
76c20d54 7236_bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
8c946ed5
RS
7237{
7238 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7239 return 8;
7240 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7241 {
7242 bfd_boolean long32_p, long64_p;
7243
7244 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7245 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7246 if (long32_p && long64_p)
7247 return 0;
7248 if (long32_p)
7249 return 4;
7250 if (long64_p)
7251 return 8;
7252
7253 if (sec->reloc_count > 0
7254 && elf_section_data (sec)->relocs != NULL
7255 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7256 == R_MIPS_64))
7257 return 8;
7258
7259 return 0;
7260 }
7261 return 4;
7262}
7263\f
174fd7f9
RS
7264/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7265 relocations against two unnamed section symbols to resolve to the
7266 same address. For example, if we have code like:
7267
7268 lw $4,%got_disp(.data)($gp)
7269 lw $25,%got_disp(.text)($gp)
7270 jalr $25
7271
7272 then the linker will resolve both relocations to .data and the program
7273 will jump there rather than to .text.
7274
7275 We can work around this problem by giving names to local section symbols.
7276 This is also what the MIPSpro tools do. */
7277
7278bfd_boolean
7279_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7280{
7281 return SGI_COMPAT (abfd);
7282}
7283\f
b49e97c9
TS
7284/* Work over a section just before writing it out. This routine is
7285 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7286 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7287 a better way. */
7288
b34976b6 7289bfd_boolean
9719ad41 7290_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
7291{
7292 if (hdr->sh_type == SHT_MIPS_REGINFO
7293 && hdr->sh_size > 0)
7294 {
7295 bfd_byte buf[4];
7296
b49e97c9
TS
7297 BFD_ASSERT (hdr->contents == NULL);
7298
2d6dda71
MR
7299 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7300 {
7301 _bfd_error_handler
2c1c9679 7302 (_("%pB: incorrect `.reginfo' section size; "
2dcf00ce
AM
7303 "expected %" PRIu64 ", got %" PRIu64),
7304 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7305 (uint64_t) hdr->sh_size);
2d6dda71
MR
7306 bfd_set_error (bfd_error_bad_value);
7307 return FALSE;
7308 }
7309
b49e97c9
TS
7310 if (bfd_seek (abfd,
7311 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7312 SEEK_SET) != 0)
b34976b6 7313 return FALSE;
b49e97c9 7314 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7315 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7316 return FALSE;
b49e97c9
TS
7317 }
7318
7319 if (hdr->sh_type == SHT_MIPS_OPTIONS
7320 && hdr->bfd_section != NULL
f0abc2a1
AM
7321 && mips_elf_section_data (hdr->bfd_section) != NULL
7322 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
7323 {
7324 bfd_byte *contents, *l, *lend;
7325
f0abc2a1
AM
7326 /* We stored the section contents in the tdata field in the
7327 set_section_contents routine. We save the section contents
7328 so that we don't have to read them again.
b49e97c9
TS
7329 At this point we know that elf_gp is set, so we can look
7330 through the section contents to see if there is an
7331 ODK_REGINFO structure. */
7332
f0abc2a1 7333 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
7334 l = contents;
7335 lend = contents + hdr->sh_size;
7336 while (l + sizeof (Elf_External_Options) <= lend)
7337 {
7338 Elf_Internal_Options intopt;
7339
7340 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7341 &intopt);
1bc8074d
MR
7342 if (intopt.size < sizeof (Elf_External_Options))
7343 {
4eca0228 7344 _bfd_error_handler
695344c0 7345 /* xgettext:c-format */
2c1c9679 7346 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7347 " its header"),
1bc8074d
MR
7348 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7349 break;
7350 }
b49e97c9
TS
7351 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7352 {
7353 bfd_byte buf[8];
7354
7355 if (bfd_seek (abfd,
7356 (hdr->sh_offset
7357 + (l - contents)
7358 + sizeof (Elf_External_Options)
7359 + (sizeof (Elf64_External_RegInfo) - 8)),
7360 SEEK_SET) != 0)
b34976b6 7361 return FALSE;
b49e97c9 7362 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 7363 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 7364 return FALSE;
b49e97c9
TS
7365 }
7366 else if (intopt.kind == ODK_REGINFO)
7367 {
7368 bfd_byte buf[4];
7369
7370 if (bfd_seek (abfd,
7371 (hdr->sh_offset
7372 + (l - contents)
7373 + sizeof (Elf_External_Options)
7374 + (sizeof (Elf32_External_RegInfo) - 4)),
7375 SEEK_SET) != 0)
b34976b6 7376 return FALSE;
b49e97c9 7377 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7378 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7379 return FALSE;
b49e97c9
TS
7380 }
7381 l += intopt.size;
7382 }
7383 }
7384
7385 if (hdr->bfd_section != NULL)
7386 {
fd361982 7387 const char *name = bfd_section_name (hdr->bfd_section);
b49e97c9 7388
2d0f9ad9
JM
7389 /* .sbss is not handled specially here because the GNU/Linux
7390 prelinker can convert .sbss from NOBITS to PROGBITS and
7391 changing it back to NOBITS breaks the binary. The entry in
7392 _bfd_mips_elf_special_sections will ensure the correct flags
7393 are set on .sbss if BFD creates it without reading it from an
7394 input file, and without special handling here the flags set
7395 on it in an input file will be followed. */
b49e97c9
TS
7396 if (strcmp (name, ".sdata") == 0
7397 || strcmp (name, ".lit8") == 0
7398 || strcmp (name, ".lit4") == 0)
fd6f9d17 7399 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7400 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7401 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7402 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7403 hdr->sh_flags = 0;
b49e97c9
TS
7404 else if (strcmp (name, ".rtproc") == 0)
7405 {
7406 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7407 {
7408 unsigned int adjust;
7409
7410 adjust = hdr->sh_size % hdr->sh_addralign;
7411 if (adjust != 0)
7412 hdr->sh_size += hdr->sh_addralign - adjust;
7413 }
7414 }
7415 }
7416
b34976b6 7417 return TRUE;
b49e97c9
TS
7418}
7419
7420/* Handle a MIPS specific section when reading an object file. This
7421 is called when elfcode.h finds a section with an unknown type.
7422 This routine supports both the 32-bit and 64-bit ELF ABI.
7423
7424 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7425 how to. */
7426
b34976b6 7427bfd_boolean
6dc132d9
L
7428_bfd_mips_elf_section_from_shdr (bfd *abfd,
7429 Elf_Internal_Shdr *hdr,
7430 const char *name,
7431 int shindex)
b49e97c9
TS
7432{
7433 flagword flags = 0;
7434
7435 /* There ought to be a place to keep ELF backend specific flags, but
7436 at the moment there isn't one. We just keep track of the
7437 sections by their name, instead. Fortunately, the ABI gives
7438 suggested names for all the MIPS specific sections, so we will
7439 probably get away with this. */
7440 switch (hdr->sh_type)
7441 {
7442 case SHT_MIPS_LIBLIST:
7443 if (strcmp (name, ".liblist") != 0)
b34976b6 7444 return FALSE;
b49e97c9
TS
7445 break;
7446 case SHT_MIPS_MSYM:
7447 if (strcmp (name, ".msym") != 0)
b34976b6 7448 return FALSE;
b49e97c9
TS
7449 break;
7450 case SHT_MIPS_CONFLICT:
7451 if (strcmp (name, ".conflict") != 0)
b34976b6 7452 return FALSE;
b49e97c9
TS
7453 break;
7454 case SHT_MIPS_GPTAB:
0112cd26 7455 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7456 return FALSE;
b49e97c9
TS
7457 break;
7458 case SHT_MIPS_UCODE:
7459 if (strcmp (name, ".ucode") != 0)
b34976b6 7460 return FALSE;
b49e97c9
TS
7461 break;
7462 case SHT_MIPS_DEBUG:
7463 if (strcmp (name, ".mdebug") != 0)
b34976b6 7464 return FALSE;
b49e97c9
TS
7465 flags = SEC_DEBUGGING;
7466 break;
7467 case SHT_MIPS_REGINFO:
7468 if (strcmp (name, ".reginfo") != 0
7469 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7470 return FALSE;
b49e97c9
TS
7471 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7472 break;
7473 case SHT_MIPS_IFACE:
7474 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7475 return FALSE;
b49e97c9
TS
7476 break;
7477 case SHT_MIPS_CONTENT:
0112cd26 7478 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7479 return FALSE;
b49e97c9
TS
7480 break;
7481 case SHT_MIPS_OPTIONS:
cc2e31b9 7482 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7483 return FALSE;
b49e97c9 7484 break;
351cdf24
MF
7485 case SHT_MIPS_ABIFLAGS:
7486 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7487 return FALSE;
7488 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7489 break;
b49e97c9 7490 case SHT_MIPS_DWARF:
1b315056 7491 if (! CONST_STRNEQ (name, ".debug_")
07d6d2b8 7492 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7493 return FALSE;
b49e97c9
TS
7494 break;
7495 case SHT_MIPS_SYMBOL_LIB:
7496 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7497 return FALSE;
b49e97c9
TS
7498 break;
7499 case SHT_MIPS_EVENTS:
0112cd26
NC
7500 if (! CONST_STRNEQ (name, ".MIPS.events")
7501 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7502 return FALSE;
b49e97c9 7503 break;
f16a9783
MS
7504 case SHT_MIPS_XHASH:
7505 if (strcmp (name, ".MIPS.xhash") != 0)
7506 return FALSE;
b49e97c9 7507 default:
cc2e31b9 7508 break;
b49e97c9
TS
7509 }
7510
6dc132d9 7511 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7512 return FALSE;
b49e97c9
TS
7513
7514 if (flags)
7515 {
fd361982
AM
7516 if (!bfd_set_section_flags (hdr->bfd_section,
7517 (bfd_section_flags (hdr->bfd_section)
7518 | flags)))
b34976b6 7519 return FALSE;
b49e97c9
TS
7520 }
7521
351cdf24
MF
7522 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7523 {
7524 Elf_External_ABIFlags_v0 ext;
7525
7526 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7527 &ext, 0, sizeof ext))
7528 return FALSE;
7529 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7530 &mips_elf_tdata (abfd)->abiflags);
7531 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7532 return FALSE;
7533 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7534 }
7535
b49e97c9
TS
7536 /* FIXME: We should record sh_info for a .gptab section. */
7537
7538 /* For a .reginfo section, set the gp value in the tdata information
7539 from the contents of this section. We need the gp value while
7540 processing relocs, so we just get it now. The .reginfo section
7541 is not used in the 64-bit MIPS ELF ABI. */
7542 if (hdr->sh_type == SHT_MIPS_REGINFO)
7543 {
7544 Elf32_External_RegInfo ext;
7545 Elf32_RegInfo s;
7546
9719ad41
RS
7547 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7548 &ext, 0, sizeof ext))
b34976b6 7549 return FALSE;
b49e97c9
TS
7550 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7551 elf_gp (abfd) = s.ri_gp_value;
7552 }
7553
7554 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7555 set the gp value based on what we find. We may see both
7556 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7557 they should agree. */
7558 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7559 {
7560 bfd_byte *contents, *l, *lend;
7561
9719ad41 7562 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7563 if (contents == NULL)
b34976b6 7564 return FALSE;
b49e97c9 7565 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7566 0, hdr->sh_size))
b49e97c9
TS
7567 {
7568 free (contents);
b34976b6 7569 return FALSE;
b49e97c9
TS
7570 }
7571 l = contents;
7572 lend = contents + hdr->sh_size;
7573 while (l + sizeof (Elf_External_Options) <= lend)
7574 {
7575 Elf_Internal_Options intopt;
7576
7577 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7578 &intopt);
1bc8074d
MR
7579 if (intopt.size < sizeof (Elf_External_Options))
7580 {
4eca0228 7581 _bfd_error_handler
695344c0 7582 /* xgettext:c-format */
2c1c9679 7583 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7584 " its header"),
1bc8074d
MR
7585 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7586 break;
7587 }
b49e97c9
TS
7588 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7589 {
7590 Elf64_Internal_RegInfo intreg;
7591
7592 bfd_mips_elf64_swap_reginfo_in
7593 (abfd,
7594 ((Elf64_External_RegInfo *)
7595 (l + sizeof (Elf_External_Options))),
7596 &intreg);
7597 elf_gp (abfd) = intreg.ri_gp_value;
7598 }
7599 else if (intopt.kind == ODK_REGINFO)
7600 {
7601 Elf32_RegInfo intreg;
7602
7603 bfd_mips_elf32_swap_reginfo_in
7604 (abfd,
7605 ((Elf32_External_RegInfo *)
7606 (l + sizeof (Elf_External_Options))),
7607 &intreg);
7608 elf_gp (abfd) = intreg.ri_gp_value;
7609 }
7610 l += intopt.size;
7611 }
7612 free (contents);
7613 }
7614
b34976b6 7615 return TRUE;
b49e97c9
TS
7616}
7617
7618/* Set the correct type for a MIPS ELF section. We do this by the
7619 section name, which is a hack, but ought to work. This routine is
7620 used by both the 32-bit and the 64-bit ABI. */
7621
b34976b6 7622bfd_boolean
9719ad41 7623_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7624{
fd361982 7625 const char *name = bfd_section_name (sec);
b49e97c9
TS
7626
7627 if (strcmp (name, ".liblist") == 0)
7628 {
7629 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7630 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7631 /* The sh_link field is set in final_write_processing. */
7632 }
7633 else if (strcmp (name, ".conflict") == 0)
7634 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7635 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7636 {
7637 hdr->sh_type = SHT_MIPS_GPTAB;
7638 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7639 /* The sh_info field is set in final_write_processing. */
7640 }
7641 else if (strcmp (name, ".ucode") == 0)
7642 hdr->sh_type = SHT_MIPS_UCODE;
7643 else if (strcmp (name, ".mdebug") == 0)
7644 {
7645 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7646 /* In a shared object on IRIX 5.3, the .mdebug section has an
07d6d2b8 7647 entsize of 0. FIXME: Does this matter? */
b49e97c9
TS
7648 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7649 hdr->sh_entsize = 0;
7650 else
7651 hdr->sh_entsize = 1;
7652 }
7653 else if (strcmp (name, ".reginfo") == 0)
7654 {
7655 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7656 /* In a shared object on IRIX 5.3, the .reginfo section has an
07d6d2b8 7657 entsize of 0x18. FIXME: Does this matter? */
b49e97c9
TS
7658 if (SGI_COMPAT (abfd))
7659 {
7660 if ((abfd->flags & DYNAMIC) != 0)
7661 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7662 else
7663 hdr->sh_entsize = 1;
7664 }
7665 else
7666 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7667 }
7668 else if (SGI_COMPAT (abfd)
7669 && (strcmp (name, ".hash") == 0
7670 || strcmp (name, ".dynamic") == 0
7671 || strcmp (name, ".dynstr") == 0))
7672 {
7673 if (SGI_COMPAT (abfd))
7674 hdr->sh_entsize = 0;
7675#if 0
8dc1a139 7676 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7677 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7678#endif
7679 }
7680 else if (strcmp (name, ".got") == 0
7681 || strcmp (name, ".srdata") == 0
7682 || strcmp (name, ".sdata") == 0
7683 || strcmp (name, ".sbss") == 0
7684 || strcmp (name, ".lit4") == 0
7685 || strcmp (name, ".lit8") == 0)
7686 hdr->sh_flags |= SHF_MIPS_GPREL;
7687 else if (strcmp (name, ".MIPS.interfaces") == 0)
7688 {
7689 hdr->sh_type = SHT_MIPS_IFACE;
7690 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7691 }
0112cd26 7692 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7693 {
7694 hdr->sh_type = SHT_MIPS_CONTENT;
7695 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7696 /* The sh_info field is set in final_write_processing. */
7697 }
cc2e31b9 7698 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7699 {
7700 hdr->sh_type = SHT_MIPS_OPTIONS;
7701 hdr->sh_entsize = 1;
7702 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7703 }
351cdf24
MF
7704 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7705 {
7706 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7707 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7708 }
1b315056 7709 else if (CONST_STRNEQ (name, ".debug_")
07d6d2b8 7710 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7711 {
7712 hdr->sh_type = SHT_MIPS_DWARF;
7713
7714 /* Irix facilities such as libexc expect a single .debug_frame
7715 per executable, the system ones have NOSTRIP set and the linker
7716 doesn't merge sections with different flags so ... */
7717 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7718 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7719 }
b49e97c9
TS
7720 else if (strcmp (name, ".MIPS.symlib") == 0)
7721 {
7722 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7723 /* The sh_link and sh_info fields are set in
07d6d2b8 7724 final_write_processing. */
b49e97c9 7725 }
0112cd26
NC
7726 else if (CONST_STRNEQ (name, ".MIPS.events")
7727 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7728 {
7729 hdr->sh_type = SHT_MIPS_EVENTS;
7730 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7731 /* The sh_link field is set in final_write_processing. */
7732 }
7733 else if (strcmp (name, ".msym") == 0)
7734 {
7735 hdr->sh_type = SHT_MIPS_MSYM;
7736 hdr->sh_flags |= SHF_ALLOC;
7737 hdr->sh_entsize = 8;
7738 }
f16a9783
MS
7739 else if (strcmp (name, ".MIPS.xhash") == 0)
7740 {
7741 hdr->sh_type = SHT_MIPS_XHASH;
7742 hdr->sh_flags |= SHF_ALLOC;
7743 hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7744 }
b49e97c9 7745
7a79a000
TS
7746 /* The generic elf_fake_sections will set up REL_HDR using the default
7747 kind of relocations. We used to set up a second header for the
7748 non-default kind of relocations here, but only NewABI would use
7749 these, and the IRIX ld doesn't like resulting empty RELA sections.
7750 Thus we create those header only on demand now. */
b49e97c9 7751
b34976b6 7752 return TRUE;
b49e97c9
TS
7753}
7754
7755/* Given a BFD section, try to locate the corresponding ELF section
7756 index. This is used by both the 32-bit and the 64-bit ABI.
7757 Actually, it's not clear to me that the 64-bit ABI supports these,
7758 but for non-PIC objects we will certainly want support for at least
7759 the .scommon section. */
7760
b34976b6 7761bfd_boolean
9719ad41
RS
7762_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7763 asection *sec, int *retval)
b49e97c9 7764{
fd361982 7765 if (strcmp (bfd_section_name (sec), ".scommon") == 0)
b49e97c9
TS
7766 {
7767 *retval = SHN_MIPS_SCOMMON;
b34976b6 7768 return TRUE;
b49e97c9 7769 }
fd361982 7770 if (strcmp (bfd_section_name (sec), ".acommon") == 0)
b49e97c9
TS
7771 {
7772 *retval = SHN_MIPS_ACOMMON;
b34976b6 7773 return TRUE;
b49e97c9 7774 }
b34976b6 7775 return FALSE;
b49e97c9
TS
7776}
7777\f
7778/* Hook called by the linker routine which adds symbols from an object
7779 file. We must handle the special MIPS section numbers here. */
7780
b34976b6 7781bfd_boolean
9719ad41 7782_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7783 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7784 flagword *flagsp ATTRIBUTE_UNUSED,
7785 asection **secp, bfd_vma *valp)
b49e97c9
TS
7786{
7787 if (SGI_COMPAT (abfd)
7788 && (abfd->flags & DYNAMIC) != 0
7789 && strcmp (*namep, "_rld_new_interface") == 0)
7790 {
8dc1a139 7791 /* Skip IRIX5 rld entry name. */
b49e97c9 7792 *namep = NULL;
b34976b6 7793 return TRUE;
b49e97c9
TS
7794 }
7795
eedecc07
DD
7796 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7797 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7798 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7799 a magic symbol resolved by the linker, we ignore this bogus definition
7800 of _gp_disp. New ABI objects do not suffer from this problem so this
7801 is not done for them. */
7802 if (!NEWABI_P(abfd)
7803 && (sym->st_shndx == SHN_ABS)
7804 && (strcmp (*namep, "_gp_disp") == 0))
7805 {
7806 *namep = NULL;
7807 return TRUE;
7808 }
7809
b49e97c9
TS
7810 switch (sym->st_shndx)
7811 {
7812 case SHN_COMMON:
7813 /* Common symbols less than the GP size are automatically
7814 treated as SHN_MIPS_SCOMMON symbols. */
7815 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7816 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7817 || IRIX_COMPAT (abfd) == ict_irix6)
7818 break;
7819 /* Fall through. */
7820 case SHN_MIPS_SCOMMON:
7821 *secp = bfd_make_section_old_way (abfd, ".scommon");
7822 (*secp)->flags |= SEC_IS_COMMON;
7823 *valp = sym->st_size;
7824 break;
7825
7826 case SHN_MIPS_TEXT:
7827 /* This section is used in a shared object. */
698600e4 7828 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7829 {
7830 asymbol *elf_text_symbol;
7831 asection *elf_text_section;
7832 bfd_size_type amt = sizeof (asection);
7833
7834 elf_text_section = bfd_zalloc (abfd, amt);
7835 if (elf_text_section == NULL)
b34976b6 7836 return FALSE;
b49e97c9
TS
7837
7838 amt = sizeof (asymbol);
7839 elf_text_symbol = bfd_zalloc (abfd, amt);
7840 if (elf_text_symbol == NULL)
b34976b6 7841 return FALSE;
b49e97c9
TS
7842
7843 /* Initialize the section. */
7844
698600e4
AM
7845 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7846 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7847
7848 elf_text_section->symbol = elf_text_symbol;
698600e4 7849 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7850
7851 elf_text_section->name = ".text";
7852 elf_text_section->flags = SEC_NO_FLAGS;
7853 elf_text_section->output_section = NULL;
7854 elf_text_section->owner = abfd;
7855 elf_text_symbol->name = ".text";
7856 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7857 elf_text_symbol->section = elf_text_section;
7858 }
7859 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7860 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7861 so I took it out. */
698600e4 7862 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7863 break;
7864
7865 case SHN_MIPS_ACOMMON:
7866 /* Fall through. XXX Can we treat this as allocated data? */
7867 case SHN_MIPS_DATA:
7868 /* This section is used in a shared object. */
698600e4 7869 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7870 {
7871 asymbol *elf_data_symbol;
7872 asection *elf_data_section;
7873 bfd_size_type amt = sizeof (asection);
7874
7875 elf_data_section = bfd_zalloc (abfd, amt);
7876 if (elf_data_section == NULL)
b34976b6 7877 return FALSE;
b49e97c9
TS
7878
7879 amt = sizeof (asymbol);
7880 elf_data_symbol = bfd_zalloc (abfd, amt);
7881 if (elf_data_symbol == NULL)
b34976b6 7882 return FALSE;
b49e97c9
TS
7883
7884 /* Initialize the section. */
7885
698600e4
AM
7886 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7887 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7888
7889 elf_data_section->symbol = elf_data_symbol;
698600e4 7890 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7891
7892 elf_data_section->name = ".data";
7893 elf_data_section->flags = SEC_NO_FLAGS;
7894 elf_data_section->output_section = NULL;
7895 elf_data_section->owner = abfd;
7896 elf_data_symbol->name = ".data";
7897 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7898 elf_data_symbol->section = elf_data_section;
7899 }
7900 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7901 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7902 so I took it out. */
698600e4 7903 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7904 break;
7905
7906 case SHN_MIPS_SUNDEFINED:
7907 *secp = bfd_und_section_ptr;
7908 break;
7909 }
7910
7911 if (SGI_COMPAT (abfd)
0e1862bb 7912 && ! bfd_link_pic (info)
f13a99db 7913 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7914 && strcmp (*namep, "__rld_obj_head") == 0)
7915 {
7916 struct elf_link_hash_entry *h;
14a793b2 7917 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7918
7919 /* Mark __rld_obj_head as dynamic. */
14a793b2 7920 bh = NULL;
b49e97c9 7921 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7922 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7923 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7924 return FALSE;
14a793b2
AM
7925
7926 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7927 h->non_elf = 0;
7928 h->def_regular = 1;
b49e97c9
TS
7929 h->type = STT_OBJECT;
7930
c152c796 7931 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7932 return FALSE;
b49e97c9 7933
b34976b6 7934 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7935 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7936 }
7937
7938 /* If this is a mips16 text symbol, add 1 to the value to make it
7939 odd. This will cause something like .word SYM to come up with
7940 the right value when it is loaded into the PC. */
df58fc94 7941 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7942 ++*valp;
7943
b34976b6 7944 return TRUE;
b49e97c9
TS
7945}
7946
7947/* This hook function is called before the linker writes out a global
7948 symbol. We mark symbols as small common if appropriate. This is
7949 also where we undo the increment of the value for a mips16 symbol. */
7950
6e0b88f1 7951int
9719ad41
RS
7952_bfd_mips_elf_link_output_symbol_hook
7953 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7954 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7955 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7956{
7957 /* If we see a common symbol, which implies a relocatable link, then
7958 if a symbol was small common in an input file, mark it as small
7959 common in the output file. */
7960 if (sym->st_shndx == SHN_COMMON
7961 && strcmp (input_sec->name, ".scommon") == 0)
7962 sym->st_shndx = SHN_MIPS_SCOMMON;
7963
df58fc94 7964 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7965 sym->st_value &= ~1;
b49e97c9 7966
6e0b88f1 7967 return 1;
b49e97c9
TS
7968}
7969\f
7970/* Functions for the dynamic linker. */
7971
7972/* Create dynamic sections when linking against a dynamic object. */
7973
b34976b6 7974bfd_boolean
9719ad41 7975_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7976{
7977 struct elf_link_hash_entry *h;
14a793b2 7978 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7979 flagword flags;
7980 register asection *s;
7981 const char * const *namep;
0a44bf69 7982 struct mips_elf_link_hash_table *htab;
b49e97c9 7983
0a44bf69 7984 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7985 BFD_ASSERT (htab != NULL);
7986
b49e97c9
TS
7987 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7988 | SEC_LINKER_CREATED | SEC_READONLY);
7989
0a44bf69
RS
7990 /* The psABI requires a read-only .dynamic section, but the VxWorks
7991 EABI doesn't. */
7992 if (!htab->is_vxworks)
b49e97c9 7993 {
3d4d4302 7994 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7995 if (s != NULL)
7996 {
fd361982 7997 if (!bfd_set_section_flags (s, flags))
0a44bf69
RS
7998 return FALSE;
7999 }
b49e97c9
TS
8000 }
8001
8002 /* We need to create .got section. */
23cc69b6 8003 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
8004 return FALSE;
8005
0a44bf69 8006 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 8007 return FALSE;
b49e97c9 8008
b49e97c9 8009 /* Create .stub section. */
3d4d4302
AM
8010 s = bfd_make_section_anyway_with_flags (abfd,
8011 MIPS_ELF_STUB_SECTION_NAME (abfd),
8012 flags | SEC_CODE);
4e41d0d7 8013 if (s == NULL
fd361982 8014 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4e41d0d7
RS
8015 return FALSE;
8016 htab->sstubs = s;
b49e97c9 8017
e6aea42d 8018 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 8019 && bfd_link_executable (info)
3d4d4302 8020 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 8021 {
3d4d4302
AM
8022 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
8023 flags &~ (flagword) SEC_READONLY);
b49e97c9 8024 if (s == NULL
fd361982 8025 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 8026 return FALSE;
b49e97c9
TS
8027 }
8028
f16a9783
MS
8029 /* Create .MIPS.xhash section. */
8030 if (info->emit_gnu_hash)
8031 s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
8032 flags | SEC_READONLY);
8033
b49e97c9
TS
8034 /* On IRIX5, we adjust add some additional symbols and change the
8035 alignments of several sections. There is no ABI documentation
8036 indicating that this is necessary on IRIX6, nor any evidence that
8037 the linker takes such action. */
8038 if (IRIX_COMPAT (abfd) == ict_irix5)
8039 {
8040 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8041 {
14a793b2 8042 bh = NULL;
b49e97c9 8043 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
8044 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8045 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 8046 return FALSE;
14a793b2
AM
8047
8048 h = (struct elf_link_hash_entry *) bh;
12f09816 8049 h->mark = 1;
f5385ebf
AM
8050 h->non_elf = 0;
8051 h->def_regular = 1;
b49e97c9
TS
8052 h->type = STT_SECTION;
8053
c152c796 8054 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 8055 return FALSE;
b49e97c9
TS
8056 }
8057
8058 /* We need to create a .compact_rel section. */
8059 if (SGI_COMPAT (abfd))
8060 {
8061 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 8062 return FALSE;
b49e97c9
TS
8063 }
8064
44c410de 8065 /* Change alignments of some sections. */
3d4d4302 8066 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 8067 if (s != NULL)
fd361982 8068 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
a253d456 8069
3d4d4302 8070 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 8071 if (s != NULL)
fd361982 8072 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
a253d456 8073
3d4d4302 8074 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 8075 if (s != NULL)
fd361982 8076 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
a253d456 8077
3d4d4302 8078 /* ??? */
b49e97c9
TS
8079 s = bfd_get_section_by_name (abfd, ".reginfo");
8080 if (s != NULL)
fd361982 8081 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
a253d456 8082
3d4d4302 8083 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 8084 if (s != NULL)
fd361982 8085 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
8086 }
8087
0e1862bb 8088 if (bfd_link_executable (info))
b49e97c9 8089 {
14a793b2
AM
8090 const char *name;
8091
8092 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8093 bh = NULL;
8094 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
8095 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8096 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 8097 return FALSE;
14a793b2
AM
8098
8099 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
8100 h->non_elf = 0;
8101 h->def_regular = 1;
b49e97c9
TS
8102 h->type = STT_SECTION;
8103
c152c796 8104 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 8105 return FALSE;
b49e97c9
TS
8106
8107 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8108 {
8109 /* __rld_map is a four byte word located in the .data section
8110 and is filled in by the rtld to contain a pointer to
8111 the _r_debug structure. Its symbol value will be set in
8112 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 8113 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 8114 BFD_ASSERT (s != NULL);
14a793b2 8115
0abfb97a
L
8116 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8117 bh = NULL;
8118 if (!(_bfd_generic_link_add_one_symbol
8119 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8120 get_elf_backend_data (abfd)->collect, &bh)))
8121 return FALSE;
b49e97c9 8122
0abfb97a
L
8123 h = (struct elf_link_hash_entry *) bh;
8124 h->non_elf = 0;
8125 h->def_regular = 1;
8126 h->type = STT_OBJECT;
8127
8128 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8129 return FALSE;
b4082c70 8130 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
8131 }
8132 }
8133
861fb55a 8134 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 8135 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
8136 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8137 return FALSE;
8138
1bbce132
MR
8139 /* Do the usual VxWorks handling. */
8140 if (htab->is_vxworks
8141 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8142 return FALSE;
0a44bf69 8143
b34976b6 8144 return TRUE;
b49e97c9
TS
8145}
8146\f
c224138d
RS
8147/* Return true if relocation REL against section SEC is a REL rather than
8148 RELA relocation. RELOCS is the first relocation in the section and
8149 ABFD is the bfd that contains SEC. */
8150
8151static bfd_boolean
8152mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8153 const Elf_Internal_Rela *relocs,
8154 const Elf_Internal_Rela *rel)
8155{
8156 Elf_Internal_Shdr *rel_hdr;
8157 const struct elf_backend_data *bed;
8158
d4730f92
BS
8159 /* To determine which flavor of relocation this is, we depend on the
8160 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8161 rel_hdr = elf_section_data (sec)->rel.hdr;
8162 if (rel_hdr == NULL)
8163 return FALSE;
c224138d 8164 bed = get_elf_backend_data (abfd);
d4730f92
BS
8165 return ((size_t) (rel - relocs)
8166 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
8167}
8168
8169/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8170 HOWTO is the relocation's howto and CONTENTS points to the contents
8171 of the section that REL is against. */
8172
8173static bfd_vma
8174mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8175 reloc_howto_type *howto, bfd_byte *contents)
8176{
8177 bfd_byte *location;
8178 unsigned int r_type;
8179 bfd_vma addend;
17c6c9d9 8180 bfd_vma bytes;
c224138d
RS
8181
8182 r_type = ELF_R_TYPE (abfd, rel->r_info);
8183 location = contents + rel->r_offset;
8184
8185 /* Get the addend, which is stored in the input file. */
df58fc94 8186 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 8187 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 8188 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 8189
17c6c9d9
MR
8190 addend = bytes & howto->src_mask;
8191
8192 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8193 accordingly. */
8194 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8195 addend <<= 1;
8196
8197 return addend;
c224138d
RS
8198}
8199
8200/* REL is a relocation in ABFD that needs a partnering LO16 relocation
8201 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8202 and update *ADDEND with the final addend. Return true on success
8203 or false if the LO16 could not be found. RELEND is the exclusive
8204 upper bound on the relocations for REL's section. */
8205
8206static bfd_boolean
8207mips_elf_add_lo16_rel_addend (bfd *abfd,
8208 const Elf_Internal_Rela *rel,
8209 const Elf_Internal_Rela *relend,
8210 bfd_byte *contents, bfd_vma *addend)
8211{
8212 unsigned int r_type, lo16_type;
8213 const Elf_Internal_Rela *lo16_relocation;
8214 reloc_howto_type *lo16_howto;
8215 bfd_vma l;
8216
8217 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 8218 if (mips16_reloc_p (r_type))
c224138d 8219 lo16_type = R_MIPS16_LO16;
df58fc94
RS
8220 else if (micromips_reloc_p (r_type))
8221 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
8222 else if (r_type == R_MIPS_PCHI16)
8223 lo16_type = R_MIPS_PCLO16;
c224138d
RS
8224 else
8225 lo16_type = R_MIPS_LO16;
8226
8227 /* The combined value is the sum of the HI16 addend, left-shifted by
8228 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8229 code does a `lui' of the HI16 value, and then an `addiu' of the
8230 LO16 value.)
8231
8232 Scan ahead to find a matching LO16 relocation.
8233
8234 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8235 be immediately following. However, for the IRIX6 ABI, the next
8236 relocation may be a composed relocation consisting of several
8237 relocations for the same address. In that case, the R_MIPS_LO16
8238 relocation may occur as one of these. We permit a similar
8239 extension in general, as that is useful for GCC.
8240
8241 In some cases GCC dead code elimination removes the LO16 but keeps
8242 the corresponding HI16. This is strictly speaking a violation of
8243 the ABI but not immediately harmful. */
8244 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8245 if (lo16_relocation == NULL)
8246 return FALSE;
8247
8248 /* Obtain the addend kept there. */
8249 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8250 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8251
8252 l <<= lo16_howto->rightshift;
8253 l = _bfd_mips_elf_sign_extend (l, 16);
8254
8255 *addend <<= 16;
8256 *addend += l;
8257 return TRUE;
8258}
8259
8260/* Try to read the contents of section SEC in bfd ABFD. Return true and
8261 store the contents in *CONTENTS on success. Assume that *CONTENTS
8262 already holds the contents if it is nonull on entry. */
8263
8264static bfd_boolean
8265mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8266{
8267 if (*contents)
8268 return TRUE;
8269
8270 /* Get cached copy if it exists. */
8271 if (elf_section_data (sec)->this_hdr.contents != NULL)
8272 {
8273 *contents = elf_section_data (sec)->this_hdr.contents;
8274 return TRUE;
8275 }
8276
8277 return bfd_malloc_and_get_section (abfd, sec, contents);
8278}
8279
1bbce132
MR
8280/* Make a new PLT record to keep internal data. */
8281
8282static struct plt_entry *
8283mips_elf_make_plt_record (bfd *abfd)
8284{
8285 struct plt_entry *entry;
8286
8287 entry = bfd_zalloc (abfd, sizeof (*entry));
8288 if (entry == NULL)
8289 return NULL;
8290
8291 entry->stub_offset = MINUS_ONE;
8292 entry->mips_offset = MINUS_ONE;
8293 entry->comp_offset = MINUS_ONE;
8294 entry->gotplt_index = MINUS_ONE;
8295 return entry;
8296}
8297
47275900
MR
8298/* Define the special `__gnu_absolute_zero' symbol. We only need this
8299 for PIC code, as otherwise there is no load-time relocation involved
8300 and local GOT entries whose value is zero at static link time will
8301 retain their value at load time. */
8302
8303static bfd_boolean
8304mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8305 struct mips_elf_link_hash_table *htab,
8306 unsigned int r_type)
8307{
8308 union
8309 {
8310 struct elf_link_hash_entry *eh;
8311 struct bfd_link_hash_entry *bh;
8312 }
8313 hzero;
8314
8315 BFD_ASSERT (!htab->use_absolute_zero);
8316 BFD_ASSERT (bfd_link_pic (info));
8317
8318 hzero.bh = NULL;
8319 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8320 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8321 NULL, FALSE, FALSE, &hzero.bh))
8322 return FALSE;
8323
8324 BFD_ASSERT (hzero.bh != NULL);
8325 hzero.eh->size = 0;
8326 hzero.eh->type = STT_NOTYPE;
8327 hzero.eh->other = STV_PROTECTED;
8328 hzero.eh->def_regular = 1;
8329 hzero.eh->non_elf = 0;
8330
8331 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8332 return FALSE;
8333
8334 htab->use_absolute_zero = TRUE;
8335
8336 return TRUE;
8337}
8338
b49e97c9 8339/* Look through the relocs for a section during the first phase, and
1bbce132
MR
8340 allocate space in the global offset table and record the need for
8341 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 8342
b34976b6 8343bfd_boolean
9719ad41
RS
8344_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8345 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
8346{
8347 const char *name;
8348 bfd *dynobj;
8349 Elf_Internal_Shdr *symtab_hdr;
8350 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
8351 size_t extsymoff;
8352 const Elf_Internal_Rela *rel;
8353 const Elf_Internal_Rela *rel_end;
b49e97c9 8354 asection *sreloc;
9c5bfbb7 8355 const struct elf_backend_data *bed;
0a44bf69 8356 struct mips_elf_link_hash_table *htab;
c224138d
RS
8357 bfd_byte *contents;
8358 bfd_vma addend;
8359 reloc_howto_type *howto;
b49e97c9 8360
0e1862bb 8361 if (bfd_link_relocatable (info))
b34976b6 8362 return TRUE;
b49e97c9 8363
0a44bf69 8364 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8365 BFD_ASSERT (htab != NULL);
8366
b49e97c9
TS
8367 dynobj = elf_hash_table (info)->dynobj;
8368 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8369 sym_hashes = elf_sym_hashes (abfd);
8370 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8371
738e5348 8372 bed = get_elf_backend_data (abfd);
056bafd4 8373 rel_end = relocs + sec->reloc_count;
738e5348 8374
b49e97c9
TS
8375 /* Check for the mips16 stub sections. */
8376
fd361982 8377 name = bfd_section_name (sec);
b9d58d71 8378 if (FN_STUB_P (name))
b49e97c9
TS
8379 {
8380 unsigned long r_symndx;
8381
8382 /* Look at the relocation information to figure out which symbol
07d6d2b8 8383 this is for. */
b49e97c9 8384
cb4437b8 8385 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8386 if (r_symndx == 0)
8387 {
4eca0228 8388 _bfd_error_handler
695344c0 8389 /* xgettext:c-format */
2c1c9679 8390 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8391 " stub section `%s'"),
8392 abfd, name);
8393 bfd_set_error (bfd_error_bad_value);
8394 return FALSE;
8395 }
b49e97c9
TS
8396
8397 if (r_symndx < extsymoff
8398 || sym_hashes[r_symndx - extsymoff] == NULL)
8399 {
8400 asection *o;
8401
8402 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8403 needed if there is some relocation in this BFD, other
8404 than a 16 bit function call, which refers to this symbol. */
b49e97c9
TS
8405 for (o = abfd->sections; o != NULL; o = o->next)
8406 {
8407 Elf_Internal_Rela *sec_relocs;
8408 const Elf_Internal_Rela *r, *rend;
8409
8410 /* We can ignore stub sections when looking for relocs. */
8411 if ((o->flags & SEC_RELOC) == 0
8412 || o->reloc_count == 0
738e5348 8413 || section_allows_mips16_refs_p (o))
b49e97c9
TS
8414 continue;
8415
45d6a902 8416 sec_relocs
9719ad41 8417 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8418 info->keep_memory);
b49e97c9 8419 if (sec_relocs == NULL)
b34976b6 8420 return FALSE;
b49e97c9
TS
8421
8422 rend = sec_relocs + o->reloc_count;
8423 for (r = sec_relocs; r < rend; r++)
8424 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 8425 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
8426 break;
8427
6cdc0ccc 8428 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
8429 free (sec_relocs);
8430
8431 if (r < rend)
8432 break;
8433 }
8434
8435 if (o == NULL)
8436 {
8437 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8438 not need it. Since this function is called before
8439 the linker maps input sections to output sections, we
8440 can easily discard it by setting the SEC_EXCLUDE
8441 flag. */
b49e97c9 8442 sec->flags |= SEC_EXCLUDE;
b34976b6 8443 return TRUE;
b49e97c9
TS
8444 }
8445
8446 /* Record this stub in an array of local symbol stubs for
07d6d2b8 8447 this BFD. */
698600e4 8448 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8449 {
8450 unsigned long symcount;
8451 asection **n;
8452 bfd_size_type amt;
8453
8454 if (elf_bad_symtab (abfd))
8455 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8456 else
8457 symcount = symtab_hdr->sh_info;
8458 amt = symcount * sizeof (asection *);
9719ad41 8459 n = bfd_zalloc (abfd, amt);
b49e97c9 8460 if (n == NULL)
b34976b6 8461 return FALSE;
698600e4 8462 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8463 }
8464
b9d58d71 8465 sec->flags |= SEC_KEEP;
698600e4 8466 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8467
8468 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8469 That flag is used to see whether we need to look through
8470 the global symbol table for stubs. We don't need to set
8471 it here, because we just have a local stub. */
b49e97c9
TS
8472 }
8473 else
8474 {
8475 struct mips_elf_link_hash_entry *h;
8476
8477 h = ((struct mips_elf_link_hash_entry *)
8478 sym_hashes[r_symndx - extsymoff]);
8479
973a3492
L
8480 while (h->root.root.type == bfd_link_hash_indirect
8481 || h->root.root.type == bfd_link_hash_warning)
8482 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8483
b49e97c9
TS
8484 /* H is the symbol this stub is for. */
8485
b9d58d71
TS
8486 /* If we already have an appropriate stub for this function, we
8487 don't need another one, so we can discard this one. Since
8488 this function is called before the linker maps input sections
8489 to output sections, we can easily discard it by setting the
8490 SEC_EXCLUDE flag. */
8491 if (h->fn_stub != NULL)
8492 {
8493 sec->flags |= SEC_EXCLUDE;
8494 return TRUE;
8495 }
8496
8497 sec->flags |= SEC_KEEP;
b49e97c9 8498 h->fn_stub = sec;
b34976b6 8499 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8500 }
8501 }
b9d58d71 8502 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8503 {
8504 unsigned long r_symndx;
8505 struct mips_elf_link_hash_entry *h;
8506 asection **loc;
8507
8508 /* Look at the relocation information to figure out which symbol
07d6d2b8 8509 this is for. */
b49e97c9 8510
cb4437b8 8511 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8512 if (r_symndx == 0)
8513 {
4eca0228 8514 _bfd_error_handler
695344c0 8515 /* xgettext:c-format */
2c1c9679 8516 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8517 " stub section `%s'"),
8518 abfd, name);
8519 bfd_set_error (bfd_error_bad_value);
8520 return FALSE;
8521 }
b49e97c9
TS
8522
8523 if (r_symndx < extsymoff
8524 || sym_hashes[r_symndx - extsymoff] == NULL)
8525 {
b9d58d71 8526 asection *o;
b49e97c9 8527
b9d58d71 8528 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8529 needed if there is some relocation (R_MIPS16_26) in this BFD
8530 that refers to this symbol. */
b9d58d71
TS
8531 for (o = abfd->sections; o != NULL; o = o->next)
8532 {
8533 Elf_Internal_Rela *sec_relocs;
8534 const Elf_Internal_Rela *r, *rend;
8535
8536 /* We can ignore stub sections when looking for relocs. */
8537 if ((o->flags & SEC_RELOC) == 0
8538 || o->reloc_count == 0
738e5348 8539 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8540 continue;
8541
8542 sec_relocs
8543 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8544 info->keep_memory);
8545 if (sec_relocs == NULL)
8546 return FALSE;
8547
8548 rend = sec_relocs + o->reloc_count;
8549 for (r = sec_relocs; r < rend; r++)
8550 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8551 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8552 break;
8553
8554 if (elf_section_data (o)->relocs != sec_relocs)
8555 free (sec_relocs);
8556
8557 if (r < rend)
8558 break;
8559 }
8560
8561 if (o == NULL)
8562 {
8563 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8564 not need it. Since this function is called before
8565 the linker maps input sections to output sections, we
8566 can easily discard it by setting the SEC_EXCLUDE
8567 flag. */
b9d58d71
TS
8568 sec->flags |= SEC_EXCLUDE;
8569 return TRUE;
8570 }
8571
8572 /* Record this stub in an array of local symbol call_stubs for
07d6d2b8 8573 this BFD. */
698600e4 8574 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8575 {
8576 unsigned long symcount;
8577 asection **n;
8578 bfd_size_type amt;
8579
8580 if (elf_bad_symtab (abfd))
8581 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8582 else
8583 symcount = symtab_hdr->sh_info;
8584 amt = symcount * sizeof (asection *);
8585 n = bfd_zalloc (abfd, amt);
8586 if (n == NULL)
8587 return FALSE;
698600e4 8588 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8589 }
b49e97c9 8590
b9d58d71 8591 sec->flags |= SEC_KEEP;
698600e4 8592 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8593
b9d58d71 8594 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8595 That flag is used to see whether we need to look through
8596 the global symbol table for stubs. We don't need to set
8597 it here, because we just have a local stub. */
b9d58d71 8598 }
b49e97c9 8599 else
b49e97c9 8600 {
b9d58d71
TS
8601 h = ((struct mips_elf_link_hash_entry *)
8602 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8603
b9d58d71 8604 /* H is the symbol this stub is for. */
68ffbac6 8605
b9d58d71
TS
8606 if (CALL_FP_STUB_P (name))
8607 loc = &h->call_fp_stub;
8608 else
8609 loc = &h->call_stub;
68ffbac6 8610
b9d58d71
TS
8611 /* If we already have an appropriate stub for this function, we
8612 don't need another one, so we can discard this one. Since
8613 this function is called before the linker maps input sections
8614 to output sections, we can easily discard it by setting the
8615 SEC_EXCLUDE flag. */
8616 if (*loc != NULL)
8617 {
8618 sec->flags |= SEC_EXCLUDE;
8619 return TRUE;
8620 }
b49e97c9 8621
b9d58d71
TS
8622 sec->flags |= SEC_KEEP;
8623 *loc = sec;
8624 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8625 }
b49e97c9
TS
8626 }
8627
b49e97c9 8628 sreloc = NULL;
c224138d 8629 contents = NULL;
b49e97c9
TS
8630 for (rel = relocs; rel < rel_end; ++rel)
8631 {
8632 unsigned long r_symndx;
8633 unsigned int r_type;
8634 struct elf_link_hash_entry *h;
861fb55a 8635 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8636 bfd_boolean call_reloc_p;
8637 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8638
8639 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8640 r_type = ELF_R_TYPE (abfd, rel->r_info);
8641
8642 if (r_symndx < extsymoff)
8643 h = NULL;
8644 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8645 {
4eca0228 8646 _bfd_error_handler
695344c0 8647 /* xgettext:c-format */
2c1c9679 8648 (_("%pB: malformed reloc detected for section %s"),
d003868e 8649 abfd, name);
b49e97c9 8650 bfd_set_error (bfd_error_bad_value);
b34976b6 8651 return FALSE;
b49e97c9
TS
8652 }
8653 else
8654 {
8655 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8656 if (h != NULL)
8657 {
8658 while (h->root.type == bfd_link_hash_indirect
8659 || h->root.type == bfd_link_hash_warning)
8660 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831 8661 }
861fb55a 8662 }
b49e97c9 8663
861fb55a
DJ
8664 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8665 relocation into a dynamic one. */
8666 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8667
8668 /* Set CALL_RELOC_P to true if the relocation is for a call,
8669 and if pointer equality therefore doesn't matter. */
8670 call_reloc_p = FALSE;
8671
8672 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8673 into account when deciding how to define the symbol.
8674 Relocations in nonallocatable sections such as .pdr and
8675 .debug* should have no effect. */
8676 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8677
861fb55a
DJ
8678 switch (r_type)
8679 {
861fb55a
DJ
8680 case R_MIPS_CALL16:
8681 case R_MIPS_CALL_HI16:
8682 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8683 case R_MIPS16_CALL16:
8684 case R_MICROMIPS_CALL16:
8685 case R_MICROMIPS_CALL_HI16:
8686 case R_MICROMIPS_CALL_LO16:
8687 call_reloc_p = TRUE;
8688 /* Fall through. */
8689
8690 case R_MIPS_GOT16:
861fb55a
DJ
8691 case R_MIPS_GOT_LO16:
8692 case R_MIPS_GOT_PAGE:
861fb55a 8693 case R_MIPS_GOT_DISP:
47275900
MR
8694 case R_MIPS16_GOT16:
8695 case R_MICROMIPS_GOT16:
8696 case R_MICROMIPS_GOT_LO16:
8697 case R_MICROMIPS_GOT_PAGE:
8698 case R_MICROMIPS_GOT_DISP:
8699 /* If we have a symbol that will resolve to zero at static link
8700 time and it is used by a GOT relocation applied to code we
8701 cannot relax to an immediate zero load, then we will be using
8702 the special `__gnu_absolute_zero' symbol whose value is zero
8703 at dynamic load time. We ignore HI16-type GOT relocations at
8704 this stage, because their handling will depend entirely on
8705 the corresponding LO16-type GOT relocation. */
8706 if (!call_hi16_reloc_p (r_type)
8707 && h != NULL
8708 && bfd_link_pic (info)
8709 && !htab->use_absolute_zero
8710 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8711 {
8712 bfd_boolean rel_reloc;
8713
8714 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8715 return FALSE;
8716
8717 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8718 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8719
8720 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8721 FALSE))
8722 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8723 return FALSE;
8724 }
8725
8726 /* Fall through. */
8727 case R_MIPS_GOT_HI16:
8728 case R_MIPS_GOT_OFST:
861fb55a
DJ
8729 case R_MIPS_TLS_GOTTPREL:
8730 case R_MIPS_TLS_GD:
8731 case R_MIPS_TLS_LDM:
d0f13682
CLT
8732 case R_MIPS16_TLS_GOTTPREL:
8733 case R_MIPS16_TLS_GD:
8734 case R_MIPS16_TLS_LDM:
df58fc94 8735 case R_MICROMIPS_GOT_HI16:
df58fc94 8736 case R_MICROMIPS_GOT_OFST:
df58fc94
RS
8737 case R_MICROMIPS_TLS_GOTTPREL:
8738 case R_MICROMIPS_TLS_GD:
8739 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8740 if (dynobj == NULL)
8741 elf_hash_table (info)->dynobj = dynobj = abfd;
8742 if (!mips_elf_create_got_section (dynobj, info))
8743 return FALSE;
0e1862bb 8744 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8745 {
4eca0228 8746 _bfd_error_handler
695344c0 8747 /* xgettext:c-format */
2dcf00ce
AM
8748 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8749 abfd, (uint64_t) rel->r_offset);
861fb55a
DJ
8750 bfd_set_error (bfd_error_bad_value);
8751 return FALSE;
b49e97c9 8752 }
c5d6fa44 8753 can_make_dynamic_p = TRUE;
861fb55a 8754 break;
b49e97c9 8755
c5d6fa44 8756 case R_MIPS_NONE:
99da6b5f 8757 case R_MIPS_JALR:
df58fc94 8758 case R_MICROMIPS_JALR:
c5d6fa44
RS
8759 /* These relocations have empty fields and are purely there to
8760 provide link information. The symbol value doesn't matter. */
8761 constrain_symbol_p = FALSE;
8762 break;
8763
8764 case R_MIPS_GPREL16:
8765 case R_MIPS_GPREL32:
8766 case R_MIPS16_GPREL:
8767 case R_MICROMIPS_GPREL16:
8768 /* GP-relative relocations always resolve to a definition in a
8769 regular input file, ignoring the one-definition rule. This is
8770 important for the GP setup sequence in NewABI code, which
8771 always resolves to a local function even if other relocations
8772 against the symbol wouldn't. */
8773 constrain_symbol_p = FALSE;
99da6b5f
AN
8774 break;
8775
861fb55a
DJ
8776 case R_MIPS_32:
8777 case R_MIPS_REL32:
8778 case R_MIPS_64:
8779 /* In VxWorks executables, references to external symbols
8780 must be handled using copy relocs or PLT entries; it is not
8781 possible to convert this relocation into a dynamic one.
8782
8783 For executables that use PLTs and copy-relocs, we have a
8784 choice between converting the relocation into a dynamic
8785 one or using copy relocations or PLT entries. It is
8786 usually better to do the former, unless the relocation is
8787 against a read-only section. */
0e1862bb 8788 if ((bfd_link_pic (info)
861fb55a
DJ
8789 || (h != NULL
8790 && !htab->is_vxworks
8791 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8792 && !(!info->nocopyreloc
8793 && !PIC_OBJECT_P (abfd)
8794 && MIPS_ELF_READONLY_SECTION (sec))))
8795 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8796 {
861fb55a 8797 can_make_dynamic_p = TRUE;
b49e97c9
TS
8798 if (dynobj == NULL)
8799 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8800 }
c5d6fa44 8801 break;
b49e97c9 8802
861fb55a
DJ
8803 case R_MIPS_26:
8804 case R_MIPS_PC16:
7361da2c
AB
8805 case R_MIPS_PC21_S2:
8806 case R_MIPS_PC26_S2:
861fb55a 8807 case R_MIPS16_26:
c9775dde 8808 case R_MIPS16_PC16_S1:
df58fc94
RS
8809 case R_MICROMIPS_26_S1:
8810 case R_MICROMIPS_PC7_S1:
8811 case R_MICROMIPS_PC10_S1:
8812 case R_MICROMIPS_PC16_S1:
8813 case R_MICROMIPS_PC23_S2:
c5d6fa44 8814 call_reloc_p = TRUE;
861fb55a 8815 break;
b49e97c9
TS
8816 }
8817
0a44bf69
RS
8818 if (h)
8819 {
c5d6fa44
RS
8820 if (constrain_symbol_p)
8821 {
8822 if (!can_make_dynamic_p)
8823 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8824
8825 if (!call_reloc_p)
8826 h->pointer_equality_needed = 1;
8827
8828 /* We must not create a stub for a symbol that has
8829 relocations related to taking the function's address.
8830 This doesn't apply to VxWorks, where CALL relocs refer
8831 to a .got.plt entry instead of a normal .got entry. */
8832 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8833 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8834 }
8835
0a44bf69
RS
8836 /* Relocations against the special VxWorks __GOTT_BASE__ and
8837 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8838 room for them in .rela.dyn. */
8839 if (is_gott_symbol (info, h))
8840 {
8841 if (sreloc == NULL)
8842 {
8843 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8844 if (sreloc == NULL)
8845 return FALSE;
8846 }
8847 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8848 if (MIPS_ELF_READONLY_SECTION (sec))
8849 /* We tell the dynamic linker that there are
8850 relocations against the text segment. */
8851 info->flags |= DF_TEXTREL;
0a44bf69
RS
8852 }
8853 }
df58fc94
RS
8854 else if (call_lo16_reloc_p (r_type)
8855 || got_lo16_reloc_p (r_type)
8856 || got_disp_reloc_p (r_type)
738e5348 8857 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8858 {
8859 /* We may need a local GOT entry for this relocation. We
8860 don't count R_MIPS_GOT_PAGE because we can estimate the
8861 maximum number of pages needed by looking at the size of
738e5348
RS
8862 the segment. Similar comments apply to R_MIPS*_GOT16 and
8863 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8864 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8865 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8866 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8867 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8868 rel->r_addend, info, r_type))
f4416af6 8869 return FALSE;
b49e97c9
TS
8870 }
8871
8f0c309a
CLT
8872 if (h != NULL
8873 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8874 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8875 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8876
b49e97c9
TS
8877 switch (r_type)
8878 {
8879 case R_MIPS_CALL16:
738e5348 8880 case R_MIPS16_CALL16:
df58fc94 8881 case R_MICROMIPS_CALL16:
b49e97c9
TS
8882 if (h == NULL)
8883 {
4eca0228 8884 _bfd_error_handler
695344c0 8885 /* xgettext:c-format */
2dcf00ce
AM
8886 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8887 abfd, (uint64_t) rel->r_offset);
b49e97c9 8888 bfd_set_error (bfd_error_bad_value);
b34976b6 8889 return FALSE;
b49e97c9
TS
8890 }
8891 /* Fall through. */
8892
8893 case R_MIPS_CALL_HI16:
8894 case R_MIPS_CALL_LO16:
df58fc94
RS
8895 case R_MICROMIPS_CALL_HI16:
8896 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8897 if (h != NULL)
8898 {
6ccf4795
RS
8899 /* Make sure there is room in the regular GOT to hold the
8900 function's address. We may eliminate it in favour of
8901 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8902 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8903 r_type))
b34976b6 8904 return FALSE;
b49e97c9
TS
8905
8906 /* We need a stub, not a plt entry for the undefined
8907 function. But we record it as if it needs plt. See
c152c796 8908 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8909 h->needs_plt = 1;
b49e97c9
TS
8910 h->type = STT_FUNC;
8911 }
8912 break;
8913
0fdc1bf1 8914 case R_MIPS_GOT_PAGE:
df58fc94 8915 case R_MICROMIPS_GOT_PAGE:
738e5348 8916 case R_MIPS16_GOT16:
b49e97c9
TS
8917 case R_MIPS_GOT16:
8918 case R_MIPS_GOT_HI16:
8919 case R_MIPS_GOT_LO16:
df58fc94
RS
8920 case R_MICROMIPS_GOT16:
8921 case R_MICROMIPS_GOT_HI16:
8922 case R_MICROMIPS_GOT_LO16:
8923 if (!h || got_page_reloc_p (r_type))
c224138d 8924 {
3a3b6725
DJ
8925 /* This relocation needs (or may need, if h != NULL) a
8926 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8927 know for sure until we know whether the symbol is
8928 preemptible. */
c224138d
RS
8929 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8930 {
8931 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8932 return FALSE;
8933 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8934 addend = mips_elf_read_rel_addend (abfd, rel,
8935 howto, contents);
9684f078 8936 if (got16_reloc_p (r_type))
c224138d
RS
8937 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8938 contents, &addend);
8939 else
8940 addend <<= howto->rightshift;
8941 }
8942 else
8943 addend = rel->r_addend;
13db6b44
RS
8944 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8945 h, addend))
c224138d 8946 return FALSE;
13db6b44
RS
8947
8948 if (h)
8949 {
8950 struct mips_elf_link_hash_entry *hmips =
8951 (struct mips_elf_link_hash_entry *) h;
8952
8953 /* This symbol is definitely not overridable. */
8954 if (hmips->root.def_regular
0e1862bb 8955 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8956 && ! hmips->root.forced_local))
8957 h = NULL;
8958 }
c224138d 8959 }
13db6b44
RS
8960 /* If this is a global, overridable symbol, GOT_PAGE will
8961 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8962 /* Fall through. */
8963
b49e97c9 8964 case R_MIPS_GOT_DISP:
df58fc94 8965 case R_MICROMIPS_GOT_DISP:
6ccf4795 8966 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8967 FALSE, r_type))
b34976b6 8968 return FALSE;
b49e97c9
TS
8969 break;
8970
0f20cc35 8971 case R_MIPS_TLS_GOTTPREL:
d0f13682 8972 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8973 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8974 if (bfd_link_pic (info))
0f20cc35
DJ
8975 info->flags |= DF_STATIC_TLS;
8976 /* Fall through */
8977
8978 case R_MIPS_TLS_LDM:
d0f13682 8979 case R_MIPS16_TLS_LDM:
df58fc94
RS
8980 case R_MICROMIPS_TLS_LDM:
8981 if (tls_ldm_reloc_p (r_type))
0f20cc35 8982 {
cf35638d 8983 r_symndx = STN_UNDEF;
0f20cc35
DJ
8984 h = NULL;
8985 }
8986 /* Fall through */
8987
8988 case R_MIPS_TLS_GD:
d0f13682 8989 case R_MIPS16_TLS_GD:
df58fc94 8990 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8991 /* This symbol requires a global offset table entry, or two
8992 for TLS GD relocations. */
e641e783
RS
8993 if (h != NULL)
8994 {
8995 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8996 FALSE, r_type))
8997 return FALSE;
8998 }
8999 else
9000 {
9001 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
9002 rel->r_addend,
9003 info, r_type))
9004 return FALSE;
9005 }
0f20cc35
DJ
9006 break;
9007
b49e97c9
TS
9008 case R_MIPS_32:
9009 case R_MIPS_REL32:
9010 case R_MIPS_64:
0a44bf69
RS
9011 /* In VxWorks executables, references to external symbols
9012 are handled using copy relocs or PLT stubs, so there's
9013 no need to add a .rela.dyn entry for this relocation. */
861fb55a 9014 if (can_make_dynamic_p)
b49e97c9
TS
9015 {
9016 if (sreloc == NULL)
9017 {
0a44bf69 9018 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 9019 if (sreloc == NULL)
f4416af6 9020 return FALSE;
b49e97c9 9021 }
0e1862bb 9022 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
9023 {
9024 /* When creating a shared object, we must copy these
9025 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
9026 relocs. Make room for this reloc in .rel(a).dyn. */
9027 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 9028 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
9029 /* We tell the dynamic linker that there are
9030 relocations against the text segment. */
9031 info->flags |= DF_TEXTREL;
9032 }
b49e97c9
TS
9033 else
9034 {
9035 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 9036
9a59ad6b
DJ
9037 /* For a shared object, we must copy this relocation
9038 unless the symbol turns out to be undefined and
9039 weak with non-default visibility, in which case
9040 it will be left as zero.
9041
9042 We could elide R_MIPS_REL32 for locally binding symbols
9043 in shared libraries, but do not yet do so.
9044
9045 For an executable, we only need to copy this
9046 reloc if the symbol is defined in a dynamic
9047 object. */
b49e97c9
TS
9048 hmips = (struct mips_elf_link_hash_entry *) h;
9049 ++hmips->possibly_dynamic_relocs;
943284cc 9050 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
9051 /* We need it to tell the dynamic linker if there
9052 are relocations against the text segment. */
9053 hmips->readonly_reloc = TRUE;
b49e97c9 9054 }
b49e97c9
TS
9055 }
9056
9057 if (SGI_COMPAT (abfd))
9058 mips_elf_hash_table (info)->compact_rel_size +=
9059 sizeof (Elf32_External_crinfo);
9060 break;
9061
9062 case R_MIPS_26:
9063 case R_MIPS_GPREL16:
9064 case R_MIPS_LITERAL:
9065 case R_MIPS_GPREL32:
df58fc94
RS
9066 case R_MICROMIPS_26_S1:
9067 case R_MICROMIPS_GPREL16:
9068 case R_MICROMIPS_LITERAL:
9069 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
9070 if (SGI_COMPAT (abfd))
9071 mips_elf_hash_table (info)->compact_rel_size +=
9072 sizeof (Elf32_External_crinfo);
9073 break;
9074
9075 /* This relocation describes the C++ object vtable hierarchy.
9076 Reconstruct it for later use during GC. */
9077 case R_MIPS_GNU_VTINHERIT:
c152c796 9078 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 9079 return FALSE;
b49e97c9
TS
9080 break;
9081
9082 /* This relocation describes which C++ vtable entries are actually
9083 used. Record for later use during GC. */
9084 case R_MIPS_GNU_VTENTRY:
a0ea3a14 9085 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 9086 return FALSE;
b49e97c9
TS
9087 break;
9088
9089 default:
9090 break;
9091 }
9092
1bbce132 9093 /* Record the need for a PLT entry. At this point we don't know
07d6d2b8
AM
9094 yet if we are going to create a PLT in the first place, but
9095 we only record whether the relocation requires a standard MIPS
9096 or a compressed code entry anyway. If we don't make a PLT after
9097 all, then we'll just ignore these arrangements. Likewise if
9098 a PLT entry is not created because the symbol is satisfied
9099 locally. */
1bbce132 9100 if (h != NULL
54806ffa
MR
9101 && (branch_reloc_p (r_type)
9102 || mips16_branch_reloc_p (r_type)
9103 || micromips_branch_reloc_p (r_type))
1bbce132
MR
9104 && !SYMBOL_CALLS_LOCAL (info, h))
9105 {
9106 if (h->plt.plist == NULL)
9107 h->plt.plist = mips_elf_make_plt_record (abfd);
9108 if (h->plt.plist == NULL)
9109 return FALSE;
9110
54806ffa 9111 if (branch_reloc_p (r_type))
1bbce132
MR
9112 h->plt.plist->need_mips = TRUE;
9113 else
9114 h->plt.plist->need_comp = TRUE;
9115 }
9116
738e5348
RS
9117 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9118 if there is one. We only need to handle global symbols here;
9119 we decide whether to keep or delete stubs for local symbols
9120 when processing the stub's relocations. */
b49e97c9 9121 if (h != NULL
738e5348
RS
9122 && !mips16_call_reloc_p (r_type)
9123 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
9124 {
9125 struct mips_elf_link_hash_entry *mh;
9126
9127 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 9128 mh->need_fn_stub = TRUE;
b49e97c9 9129 }
861fb55a
DJ
9130
9131 /* Refuse some position-dependent relocations when creating a
9132 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9133 not PIC, but we can create dynamic relocations and the result
9134 will be fine. Also do not refuse R_MIPS_LO16, which can be
9135 combined with R_MIPS_GOT16. */
0e1862bb 9136 if (bfd_link_pic (info))
861fb55a
DJ
9137 {
9138 switch (r_type)
9139 {
b474a202
FS
9140 case R_MIPS_TLS_TPREL_HI16:
9141 case R_MIPS16_TLS_TPREL_HI16:
9142 case R_MICROMIPS_TLS_TPREL_HI16:
9143 case R_MIPS_TLS_TPREL_LO16:
9144 case R_MIPS16_TLS_TPREL_LO16:
9145 case R_MICROMIPS_TLS_TPREL_LO16:
9146 /* These are okay in PIE, but not in a shared library. */
9147 if (bfd_link_executable (info))
9148 break;
9149
9150 /* FALLTHROUGH */
9151
861fb55a
DJ
9152 case R_MIPS16_HI16:
9153 case R_MIPS_HI16:
9154 case R_MIPS_HIGHER:
9155 case R_MIPS_HIGHEST:
df58fc94
RS
9156 case R_MICROMIPS_HI16:
9157 case R_MICROMIPS_HIGHER:
9158 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
9159 /* Don't refuse a high part relocation if it's against
9160 no symbol (e.g. part of a compound relocation). */
cf35638d 9161 if (r_symndx == STN_UNDEF)
861fb55a
DJ
9162 break;
9163
3c7687b9 9164 /* Likewise an absolute symbol. */
304f09d0 9165 if (h != NULL && bfd_is_abs_symbol (&h->root))
3c7687b9
MR
9166 break;
9167
861fb55a
DJ
9168 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9169 and has a special meaning. */
9170 if (!NEWABI_P (abfd) && h != NULL
9171 && strcmp (h->root.root.string, "_gp_disp") == 0)
9172 break;
9173
0fc1eb3c
RS
9174 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9175 if (is_gott_symbol (info, h))
9176 break;
9177
861fb55a
DJ
9178 /* FALLTHROUGH */
9179
9180 case R_MIPS16_26:
9181 case R_MIPS_26:
df58fc94 9182 case R_MICROMIPS_26_S1:
304f09d0
FS
9183 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9184 /* An error for unsupported relocations is raised as part
9185 of the above search, so we can skip the following. */
9186 if (howto != NULL)
9187 info->callbacks->einfo
9188 /* xgettext:c-format */
9189 (_("%X%H: relocation %s against `%s' cannot be used"
9190 " when making a shared object; recompile with -fPIC\n"),
9191 abfd, sec, rel->r_offset, howto->name,
9192 (h) ? h->root.root.string : "a local symbol");
aff68bd0 9193 break;
861fb55a
DJ
9194 default:
9195 break;
9196 }
9197 }
b49e97c9
TS
9198 }
9199
b34976b6 9200 return TRUE;
b49e97c9
TS
9201}
9202\f
9a59ad6b
DJ
9203/* Allocate space for global sym dynamic relocs. */
9204
9205static bfd_boolean
9206allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9207{
9208 struct bfd_link_info *info = inf;
9209 bfd *dynobj;
9210 struct mips_elf_link_hash_entry *hmips;
9211 struct mips_elf_link_hash_table *htab;
9212
9213 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9214 BFD_ASSERT (htab != NULL);
9215
9a59ad6b
DJ
9216 dynobj = elf_hash_table (info)->dynobj;
9217 hmips = (struct mips_elf_link_hash_entry *) h;
9218
9219 /* VxWorks executables are handled elsewhere; we only need to
9220 allocate relocations in shared objects. */
0e1862bb 9221 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
9222 return TRUE;
9223
7686d77d
AM
9224 /* Ignore indirect symbols. All relocations against such symbols
9225 will be redirected to the target symbol. */
9226 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
9227 return TRUE;
9228
9a59ad6b
DJ
9229 /* If this symbol is defined in a dynamic object, or we are creating
9230 a shared library, we will need to copy any R_MIPS_32 or
9231 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 9232 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
9233 && hmips->possibly_dynamic_relocs != 0
9234 && (h->root.type == bfd_link_hash_defweak
625ef6dc 9235 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 9236 || bfd_link_pic (info)))
9a59ad6b
DJ
9237 {
9238 bfd_boolean do_copy = TRUE;
9239
9240 if (h->root.type == bfd_link_hash_undefweak)
9241 {
262e07d0
MR
9242 /* Do not copy relocations for undefined weak symbols that
9243 we are not going to export. */
9244 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9a59ad6b
DJ
9245 do_copy = FALSE;
9246
9247 /* Make sure undefined weak symbols are output as a dynamic
9248 symbol in PIEs. */
9249 else if (h->dynindx == -1 && !h->forced_local)
9250 {
9251 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9252 return FALSE;
9253 }
9254 }
9255
9256 if (do_copy)
9257 {
aff469fa 9258 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
9259 the SVR4 psABI requires it to have a dynamic symbol table
9260 index greater that DT_MIPS_GOTSYM if there are dynamic
9261 relocations against it.
9262
9263 VxWorks does not enforce the same mapping between the GOT
9264 and the symbol table, so the same requirement does not
9265 apply there. */
6ccf4795
RS
9266 if (!htab->is_vxworks)
9267 {
9268 if (hmips->global_got_area > GGA_RELOC_ONLY)
9269 hmips->global_got_area = GGA_RELOC_ONLY;
9270 hmips->got_only_for_calls = FALSE;
9271 }
aff469fa 9272
9a59ad6b
DJ
9273 mips_elf_allocate_dynamic_relocations
9274 (dynobj, info, hmips->possibly_dynamic_relocs);
9275 if (hmips->readonly_reloc)
9276 /* We tell the dynamic linker that there are relocations
9277 against the text segment. */
9278 info->flags |= DF_TEXTREL;
9279 }
9280 }
9281
9282 return TRUE;
9283}
9284
b49e97c9
TS
9285/* Adjust a symbol defined by a dynamic object and referenced by a
9286 regular object. The current definition is in some section of the
9287 dynamic object, but we're not including those sections. We have to
9288 change the definition to something the rest of the link can
9289 understand. */
9290
b34976b6 9291bfd_boolean
9719ad41
RS
9292_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9293 struct elf_link_hash_entry *h)
b49e97c9
TS
9294{
9295 bfd *dynobj;
9296 struct mips_elf_link_hash_entry *hmips;
5108fc1b 9297 struct mips_elf_link_hash_table *htab;
5474d94f 9298 asection *s, *srel;
b49e97c9 9299
5108fc1b 9300 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9301 BFD_ASSERT (htab != NULL);
9302
b49e97c9 9303 dynobj = elf_hash_table (info)->dynobj;
861fb55a 9304 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
9305
9306 /* Make sure we know what is going on here. */
9307 BFD_ASSERT (dynobj != NULL
f5385ebf 9308 && (h->needs_plt
60d67dc8 9309 || h->is_weakalias
f5385ebf
AM
9310 || (h->def_dynamic
9311 && h->ref_regular
9312 && !h->def_regular)));
b49e97c9 9313
b49e97c9 9314 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9315
861fb55a
DJ
9316 /* If there are call relocations against an externally-defined symbol,
9317 see whether we can create a MIPS lazy-binding stub for it. We can
9318 only do this if all references to the function are through call
9319 relocations, and in that case, the traditional lazy-binding stubs
9320 are much more efficient than PLT entries.
9321
9322 Traditional stubs are only available on SVR4 psABI-based systems;
9323 VxWorks always uses PLTs instead. */
9324 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
9325 {
9326 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 9327 return TRUE;
b49e97c9
TS
9328
9329 /* If this symbol is not defined in a regular file, then set
9330 the symbol to the stub location. This is required to make
9331 function pointers compare as equal between the normal
9332 executable and the shared library. */
4b8377e7
MR
9333 if (!h->def_regular
9334 && !bfd_is_abs_section (htab->sstubs->output_section))
b49e97c9 9335 {
33bb52fb
RS
9336 hmips->needs_lazy_stub = TRUE;
9337 htab->lazy_stub_count++;
b34976b6 9338 return TRUE;
b49e97c9
TS
9339 }
9340 }
861fb55a
DJ
9341 /* As above, VxWorks requires PLT entries for externally-defined
9342 functions that are only accessed through call relocations.
b49e97c9 9343
861fb55a
DJ
9344 Both VxWorks and non-VxWorks targets also need PLT entries if there
9345 are static-only relocations against an externally-defined function.
9346 This can technically occur for shared libraries if there are
9347 branches to the symbol, although it is unlikely that this will be
9348 used in practice due to the short ranges involved. It can occur
9349 for any relative or absolute relocation in executables; in that
9350 case, the PLT entry becomes the function's canonical address. */
9351 else if (((h->needs_plt && !hmips->no_fn_stub)
9352 || (h->type == STT_FUNC && hmips->has_static_relocs))
9353 && htab->use_plts_and_copy_relocs
9354 && !SYMBOL_CALLS_LOCAL (info, h)
9355 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9356 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9357 {
1bbce132
MR
9358 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9359 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9360
9361 /* If this is the first symbol to need a PLT entry, then make some
07d6d2b8
AM
9362 basic setup. Also work out PLT entry sizes. We'll need them
9363 for PLT offset calculations. */
1bbce132 9364 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a 9365 {
ce558b89 9366 BFD_ASSERT (htab->root.sgotplt->size == 0);
1bbce132 9367 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9368
861fb55a
DJ
9369 /* If we're using the PLT additions to the psABI, each PLT
9370 entry is 16 bytes and the PLT0 entry is 32 bytes.
9371 Encourage better cache usage by aligning. We do this
9372 lazily to avoid pessimizing traditional objects. */
9373 if (!htab->is_vxworks
fd361982 9374 && !bfd_set_section_alignment (htab->root.splt, 5))
861fb55a 9375 return FALSE;
0a44bf69 9376
861fb55a
DJ
9377 /* Make sure that .got.plt is word-aligned. We do this lazily
9378 for the same reason as above. */
fd361982 9379 if (!bfd_set_section_alignment (htab->root.sgotplt,
861fb55a
DJ
9380 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9381 return FALSE;
0a44bf69 9382
861fb55a
DJ
9383 /* On non-VxWorks targets, the first two entries in .got.plt
9384 are reserved. */
9385 if (!htab->is_vxworks)
1bbce132
MR
9386 htab->plt_got_index
9387 += (get_elf_backend_data (dynobj)->got_header_size
9388 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9389
861fb55a
DJ
9390 /* On VxWorks, also allocate room for the header's
9391 .rela.plt.unloaded entries. */
0e1862bb 9392 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9393 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9394
9395 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9396 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9397 htab->plt_mips_entry_size
9398 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9399 else if (htab->is_vxworks)
9400 htab->plt_mips_entry_size
9401 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9402 else if (newabi_p)
9403 htab->plt_mips_entry_size
9404 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9405 else if (!micromips_p)
1bbce132
MR
9406 {
9407 htab->plt_mips_entry_size
9408 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9409 htab->plt_comp_entry_size
833794fc
MR
9410 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9411 }
9412 else if (htab->insn32)
9413 {
9414 htab->plt_mips_entry_size
9415 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9416 htab->plt_comp_entry_size
9417 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9418 }
9419 else
9420 {
9421 htab->plt_mips_entry_size
9422 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9423 htab->plt_comp_entry_size
833794fc 9424 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9425 }
0a44bf69
RS
9426 }
9427
1bbce132
MR
9428 if (h->plt.plist == NULL)
9429 h->plt.plist = mips_elf_make_plt_record (dynobj);
9430 if (h->plt.plist == NULL)
9431 return FALSE;
9432
9433 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
07d6d2b8 9434 n32 or n64, so always use a standard entry there.
1bbce132 9435
07d6d2b8
AM
9436 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9437 all MIPS16 calls will go via that stub, and there is no benefit
9438 to having a MIPS16 entry. And in the case of call_stub a
9439 standard entry actually has to be used as the stub ends with a J
9440 instruction. */
1bbce132
MR
9441 if (newabi_p
9442 || htab->is_vxworks
9443 || hmips->call_stub
9444 || hmips->call_fp_stub)
9445 {
9446 h->plt.plist->need_mips = TRUE;
9447 h->plt.plist->need_comp = FALSE;
9448 }
9449
9450 /* Otherwise, if there are no direct calls to the function, we
07d6d2b8
AM
9451 have a free choice of whether to use standard or compressed
9452 entries. Prefer microMIPS entries if the object is known to
9453 contain microMIPS code, so that it becomes possible to create
9454 pure microMIPS binaries. Prefer standard entries otherwise,
9455 because MIPS16 ones are no smaller and are usually slower. */
1bbce132
MR
9456 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9457 {
9458 if (micromips_p)
9459 h->plt.plist->need_comp = TRUE;
9460 else
9461 h->plt.plist->need_mips = TRUE;
9462 }
9463
9464 if (h->plt.plist->need_mips)
9465 {
9466 h->plt.plist->mips_offset = htab->plt_mips_offset;
9467 htab->plt_mips_offset += htab->plt_mips_entry_size;
9468 }
9469 if (h->plt.plist->need_comp)
9470 {
9471 h->plt.plist->comp_offset = htab->plt_comp_offset;
9472 htab->plt_comp_offset += htab->plt_comp_entry_size;
9473 }
9474
9475 /* Reserve the corresponding .got.plt entry now too. */
9476 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9477
9478 /* If the output file has no definition of the symbol, set the
861fb55a 9479 symbol's value to the address of the stub. */
0e1862bb 9480 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9481 hmips->use_plt_entry = TRUE;
0a44bf69 9482
1bbce132 9483 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
ce558b89
AM
9484 htab->root.srelplt->size += (htab->is_vxworks
9485 ? MIPS_ELF_RELA_SIZE (dynobj)
9486 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9487
9488 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9489 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9490 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9491
861fb55a
DJ
9492 /* All relocations against this symbol that could have been made
9493 dynamic will now refer to the PLT entry instead. */
9494 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9495
0a44bf69
RS
9496 return TRUE;
9497 }
9498
9499 /* If this is a weak symbol, and there is a real definition, the
9500 processor independent code will have arranged for us to see the
9501 real definition first, and we can just use the same value. */
60d67dc8 9502 if (h->is_weakalias)
0a44bf69 9503 {
60d67dc8
AM
9504 struct elf_link_hash_entry *def = weakdef (h);
9505 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9506 h->root.u.def.section = def->root.u.def.section;
9507 h->root.u.def.value = def->root.u.def.value;
0a44bf69
RS
9508 return TRUE;
9509 }
9510
861fb55a
DJ
9511 /* Otherwise, there is nothing further to do for symbols defined
9512 in regular objects. */
9513 if (h->def_regular)
0a44bf69
RS
9514 return TRUE;
9515
861fb55a
DJ
9516 /* There's also nothing more to do if we'll convert all relocations
9517 against this symbol into dynamic relocations. */
9518 if (!hmips->has_static_relocs)
9519 return TRUE;
9520
9521 /* We're now relying on copy relocations. Complain if we have
9522 some that we can't convert. */
0e1862bb 9523 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a 9524 {
4eca0228
AM
9525 _bfd_error_handler (_("non-dynamic relocations refer to "
9526 "dynamic symbol %s"),
9527 h->root.root.string);
861fb55a
DJ
9528 bfd_set_error (bfd_error_bad_value);
9529 return FALSE;
9530 }
9531
0a44bf69
RS
9532 /* We must allocate the symbol in our .dynbss section, which will
9533 become part of the .bss section of the executable. There will be
9534 an entry for this symbol in the .dynsym section. The dynamic
9535 object will contain position independent code, so all references
9536 from the dynamic object to this symbol will go through the global
9537 offset table. The dynamic linker will use the .dynsym entry to
9538 determine the address it must put in the global offset table, so
9539 both the dynamic object and the regular object will refer to the
9540 same memory location for the variable. */
9541
5474d94f
AM
9542 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9543 {
9544 s = htab->root.sdynrelro;
9545 srel = htab->root.sreldynrelro;
9546 }
9547 else
9548 {
9549 s = htab->root.sdynbss;
9550 srel = htab->root.srelbss;
9551 }
0a44bf69
RS
9552 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9553 {
861fb55a 9554 if (htab->is_vxworks)
5474d94f 9555 srel->size += sizeof (Elf32_External_Rela);
861fb55a
DJ
9556 else
9557 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9558 h->needs_copy = 1;
9559 }
9560
861fb55a
DJ
9561 /* All relocations against this symbol that could have been made
9562 dynamic will now refer to the local copy instead. */
9563 hmips->possibly_dynamic_relocs = 0;
9564
5474d94f 9565 return _bfd_elf_adjust_dynamic_copy (info, h, s);
0a44bf69 9566}
b49e97c9
TS
9567\f
9568/* This function is called after all the input files have been read,
9569 and the input sections have been assigned to output sections. We
9570 check for any mips16 stub sections that we can discard. */
9571
b34976b6 9572bfd_boolean
9719ad41
RS
9573_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9574 struct bfd_link_info *info)
b49e97c9 9575{
351cdf24 9576 asection *sect;
0a44bf69 9577 struct mips_elf_link_hash_table *htab;
861fb55a 9578 struct mips_htab_traverse_info hti;
0a44bf69
RS
9579
9580 htab = mips_elf_hash_table (info);
4dfe6ac6 9581 BFD_ASSERT (htab != NULL);
f4416af6 9582
b49e97c9 9583 /* The .reginfo section has a fixed size. */
351cdf24
MF
9584 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9585 if (sect != NULL)
6798f8bf 9586 {
fd361982 9587 bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
6798f8bf
MR
9588 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9589 }
351cdf24
MF
9590
9591 /* The .MIPS.abiflags section has a fixed size. */
9592 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9593 if (sect != NULL)
6798f8bf 9594 {
fd361982 9595 bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
6798f8bf
MR
9596 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9597 }
b49e97c9 9598
861fb55a
DJ
9599 hti.info = info;
9600 hti.output_bfd = output_bfd;
9601 hti.error = FALSE;
9602 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9603 mips_elf_check_symbols, &hti);
9604 if (hti.error)
9605 return FALSE;
f4416af6 9606
33bb52fb
RS
9607 return TRUE;
9608}
9609
9610/* If the link uses a GOT, lay it out and work out its size. */
9611
9612static bfd_boolean
9613mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9614{
9615 bfd *dynobj;
9616 asection *s;
9617 struct mips_got_info *g;
33bb52fb
RS
9618 bfd_size_type loadable_size = 0;
9619 bfd_size_type page_gotno;
d7206569 9620 bfd *ibfd;
ab361d49 9621 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9622 struct mips_elf_link_hash_table *htab;
9623
9624 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9625 BFD_ASSERT (htab != NULL);
9626
ce558b89 9627 s = htab->root.sgot;
f4416af6 9628 if (s == NULL)
b34976b6 9629 return TRUE;
b49e97c9 9630
33bb52fb 9631 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9632 g = htab->got_info;
9633
861fb55a
DJ
9634 /* Allocate room for the reserved entries. VxWorks always reserves
9635 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9636 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9637 if (htab->is_vxworks)
9638 htab->reserved_gotno = 3;
9639 else
9640 htab->reserved_gotno = 2;
9641 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9642 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9643
6c42ddb9
RS
9644 /* Decide which symbols need to go in the global part of the GOT and
9645 count the number of reloc-only GOT symbols. */
020d7251 9646 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9647
13db6b44
RS
9648 if (!mips_elf_resolve_final_got_entries (info, g))
9649 return FALSE;
9650
33bb52fb
RS
9651 /* Calculate the total loadable size of the output. That
9652 will give us the maximum number of GOT_PAGE entries
9653 required. */
c72f2fb2 9654 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9655 {
9656 asection *subsection;
5108fc1b 9657
d7206569 9658 for (subsection = ibfd->sections;
33bb52fb
RS
9659 subsection;
9660 subsection = subsection->next)
9661 {
9662 if ((subsection->flags & SEC_ALLOC) == 0)
9663 continue;
9664 loadable_size += ((subsection->size + 0xf)
9665 &~ (bfd_size_type) 0xf);
9666 }
9667 }
f4416af6 9668
0a44bf69 9669 if (htab->is_vxworks)
738e5348 9670 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9671 relocations against local symbols evaluate to "G", and the EABI does
9672 not include R_MIPS_GOT_PAGE. */
c224138d 9673 page_gotno = 0;
0a44bf69
RS
9674 else
9675 /* Assume there are two loadable segments consisting of contiguous
9676 sections. Is 5 enough? */
c224138d
RS
9677 page_gotno = (loadable_size >> 16) + 5;
9678
13db6b44 9679 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9680 conservative. */
9681 if (page_gotno > g->page_gotno)
9682 page_gotno = g->page_gotno;
f4416af6 9683
c224138d 9684 g->local_gotno += page_gotno;
cb22ccf4 9685 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9686
ab361d49
RS
9687 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9688 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9689 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9690
0a44bf69
RS
9691 /* VxWorks does not support multiple GOTs. It initializes $gp to
9692 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9693 dynamic loader. */
57093f5e 9694 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9695 {
a8028dd0 9696 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9697 return FALSE;
9698 }
9699 else
9700 {
d7206569
RS
9701 /* Record that all bfds use G. This also has the effect of freeing
9702 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9703 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9704 if (mips_elf_bfd_got (ibfd, FALSE))
9705 mips_elf_replace_bfd_got (ibfd, g);
9706 mips_elf_replace_bfd_got (output_bfd, g);
9707
33bb52fb 9708 /* Set up TLS entries. */
0f20cc35 9709 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9710 tga.info = info;
9711 tga.g = g;
9712 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9713 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9714 if (!tga.g)
9715 return FALSE;
1fd20d70
RS
9716 BFD_ASSERT (g->tls_assigned_gotno
9717 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9718
57093f5e 9719 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9720 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9721 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9722
33bb52fb 9723 /* Allocate room for the TLS relocations. */
ab361d49
RS
9724 if (g->relocs)
9725 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9726 }
b49e97c9 9727
b34976b6 9728 return TRUE;
b49e97c9
TS
9729}
9730
33bb52fb
RS
9731/* Estimate the size of the .MIPS.stubs section. */
9732
9733static void
9734mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9735{
9736 struct mips_elf_link_hash_table *htab;
9737 bfd_size_type dynsymcount;
9738
9739 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9740 BFD_ASSERT (htab != NULL);
9741
33bb52fb
RS
9742 if (htab->lazy_stub_count == 0)
9743 return;
9744
9745 /* IRIX rld assumes that a function stub isn't at the end of the .text
9746 section, so add a dummy entry to the end. */
9747 htab->lazy_stub_count++;
9748
9749 /* Get a worst-case estimate of the number of dynamic symbols needed.
9750 At this point, dynsymcount does not account for section symbols
9751 and count_section_dynsyms may overestimate the number that will
9752 be needed. */
9753 dynsymcount = (elf_hash_table (info)->dynsymcount
9754 + count_section_dynsyms (output_bfd, info));
9755
1bbce132
MR
9756 /* Determine the size of one stub entry. There's no disadvantage
9757 from using microMIPS code here, so for the sake of pure-microMIPS
9758 binaries we prefer it whenever there's any microMIPS code in
9759 output produced at all. This has a benefit of stubs being
833794fc
MR
9760 shorter by 4 bytes each too, unless in the insn32 mode. */
9761 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9762 htab->function_stub_size = (dynsymcount > 0x10000
9763 ? MIPS_FUNCTION_STUB_BIG_SIZE
9764 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9765 else if (htab->insn32)
9766 htab->function_stub_size = (dynsymcount > 0x10000
9767 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9768 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9769 else
9770 htab->function_stub_size = (dynsymcount > 0x10000
9771 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9772 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9773
9774 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9775}
9776
1bbce132
MR
9777/* A mips_elf_link_hash_traverse callback for which DATA points to a
9778 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9779 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9780
9781static bfd_boolean
af924177 9782mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9783{
1bbce132 9784 struct mips_htab_traverse_info *hti = data;
33bb52fb 9785 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9786 struct bfd_link_info *info;
9787 bfd *output_bfd;
9788
9789 info = hti->info;
9790 output_bfd = hti->output_bfd;
9791 htab = mips_elf_hash_table (info);
9792 BFD_ASSERT (htab != NULL);
33bb52fb 9793
33bb52fb
RS
9794 if (h->needs_lazy_stub)
9795 {
1bbce132
MR
9796 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9797 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9798 bfd_vma isa_bit = micromips_p;
9799
9800 BFD_ASSERT (htab->root.dynobj != NULL);
9801 if (h->root.plt.plist == NULL)
9802 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9803 if (h->root.plt.plist == NULL)
9804 {
9805 hti->error = TRUE;
9806 return FALSE;
9807 }
33bb52fb 9808 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9809 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9810 h->root.plt.plist->stub_offset = htab->sstubs->size;
9811 h->root.other = other;
33bb52fb
RS
9812 htab->sstubs->size += htab->function_stub_size;
9813 }
9814 return TRUE;
9815}
9816
9817/* Allocate offsets in the stubs section to each symbol that needs one.
9818 Set the final size of the .MIPS.stub section. */
9819
1bbce132 9820static bfd_boolean
33bb52fb
RS
9821mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9822{
1bbce132
MR
9823 bfd *output_bfd = info->output_bfd;
9824 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9825 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9826 bfd_vma isa_bit = micromips_p;
33bb52fb 9827 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9828 struct mips_htab_traverse_info hti;
9829 struct elf_link_hash_entry *h;
9830 bfd *dynobj;
33bb52fb
RS
9831
9832 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9833 BFD_ASSERT (htab != NULL);
9834
33bb52fb 9835 if (htab->lazy_stub_count == 0)
1bbce132 9836 return TRUE;
33bb52fb
RS
9837
9838 htab->sstubs->size = 0;
1bbce132
MR
9839 hti.info = info;
9840 hti.output_bfd = output_bfd;
9841 hti.error = FALSE;
9842 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9843 if (hti.error)
9844 return FALSE;
33bb52fb
RS
9845 htab->sstubs->size += htab->function_stub_size;
9846 BFD_ASSERT (htab->sstubs->size
9847 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9848
9849 dynobj = elf_hash_table (info)->dynobj;
9850 BFD_ASSERT (dynobj != NULL);
9851 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9852 if (h == NULL)
9853 return FALSE;
9854 h->root.u.def.value = isa_bit;
9855 h->other = other;
9856 h->type = STT_FUNC;
9857
9858 return TRUE;
9859}
9860
9861/* A mips_elf_link_hash_traverse callback for which DATA points to a
9862 bfd_link_info. If H uses the address of a PLT entry as the value
9863 of the symbol, then set the entry in the symbol table now. Prefer
9864 a standard MIPS PLT entry. */
9865
9866static bfd_boolean
9867mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9868{
9869 struct bfd_link_info *info = data;
9870 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9871 struct mips_elf_link_hash_table *htab;
9872 unsigned int other;
9873 bfd_vma isa_bit;
9874 bfd_vma val;
9875
9876 htab = mips_elf_hash_table (info);
9877 BFD_ASSERT (htab != NULL);
9878
9879 if (h->use_plt_entry)
9880 {
9881 BFD_ASSERT (h->root.plt.plist != NULL);
9882 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9883 || h->root.plt.plist->comp_offset != MINUS_ONE);
9884
9885 val = htab->plt_header_size;
9886 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9887 {
9888 isa_bit = 0;
9889 val += h->root.plt.plist->mips_offset;
9890 other = 0;
9891 }
9892 else
9893 {
9894 isa_bit = 1;
9895 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9896 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9897 }
9898 val += isa_bit;
9899 /* For VxWorks, point at the PLT load stub rather than the lazy
07d6d2b8
AM
9900 resolution stub; this stub will become the canonical function
9901 address. */
1bbce132
MR
9902 if (htab->is_vxworks)
9903 val += 8;
9904
ce558b89 9905 h->root.root.u.def.section = htab->root.splt;
1bbce132
MR
9906 h->root.root.u.def.value = val;
9907 h->root.other = other;
9908 }
9909
9910 return TRUE;
33bb52fb
RS
9911}
9912
b49e97c9
TS
9913/* Set the sizes of the dynamic sections. */
9914
b34976b6 9915bfd_boolean
9719ad41
RS
9916_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9917 struct bfd_link_info *info)
b49e97c9
TS
9918{
9919 bfd *dynobj;
861fb55a 9920 asection *s, *sreldyn;
b34976b6 9921 bfd_boolean reltext;
0a44bf69 9922 struct mips_elf_link_hash_table *htab;
b49e97c9 9923
0a44bf69 9924 htab = mips_elf_hash_table (info);
4dfe6ac6 9925 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9926 dynobj = elf_hash_table (info)->dynobj;
9927 BFD_ASSERT (dynobj != NULL);
9928
9929 if (elf_hash_table (info)->dynamic_sections_created)
9930 {
9931 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9932 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9933 {
3d4d4302 9934 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9935 BFD_ASSERT (s != NULL);
eea6121a 9936 s->size
b49e97c9
TS
9937 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9938 s->contents
9939 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9940 }
861fb55a 9941
1bbce132 9942 /* Figure out the size of the PLT header if we know that we
07d6d2b8
AM
9943 are using it. For the sake of cache alignment always use
9944 a standard header whenever any standard entries are present
9945 even if microMIPS entries are present as well. This also
9946 lets the microMIPS header rely on the value of $v0 only set
9947 by microMIPS entries, for a small size reduction.
1bbce132 9948
07d6d2b8
AM
9949 Set symbol table entry values for symbols that use the
9950 address of their PLT entry now that we can calculate it.
1bbce132 9951
07d6d2b8
AM
9952 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9953 haven't already in _bfd_elf_create_dynamic_sections. */
ce558b89 9954 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9955 {
1bbce132
MR
9956 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9957 && !htab->plt_mips_offset);
9958 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9959 bfd_vma isa_bit = micromips_p;
861fb55a 9960 struct elf_link_hash_entry *h;
1bbce132 9961 bfd_vma size;
861fb55a
DJ
9962
9963 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
9964 BFD_ASSERT (htab->root.sgotplt->size == 0);
9965 BFD_ASSERT (htab->root.splt->size == 0);
1bbce132 9966
0e1862bb 9967 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9968 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9969 else if (htab->is_vxworks)
9970 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9971 else if (ABI_64_P (output_bfd))
9972 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9973 else if (ABI_N32_P (output_bfd))
9974 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9975 else if (!micromips_p)
9976 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9977 else if (htab->insn32)
9978 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9979 else
9980 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9981
1bbce132
MR
9982 htab->plt_header_is_comp = micromips_p;
9983 htab->plt_header_size = size;
ce558b89
AM
9984 htab->root.splt->size = (size
9985 + htab->plt_mips_offset
9986 + htab->plt_comp_offset);
9987 htab->root.sgotplt->size = (htab->plt_got_index
9988 * MIPS_ELF_GOT_SIZE (dynobj));
1bbce132
MR
9989
9990 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9991
9992 if (htab->root.hplt == NULL)
9993 {
ce558b89 9994 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
1bbce132
MR
9995 "_PROCEDURE_LINKAGE_TABLE_");
9996 htab->root.hplt = h;
9997 if (h == NULL)
9998 return FALSE;
9999 }
10000
10001 h = htab->root.hplt;
10002 h->root.u.def.value = isa_bit;
10003 h->other = other;
861fb55a
DJ
10004 h->type = STT_FUNC;
10005 }
10006 }
4e41d0d7 10007
9a59ad6b 10008 /* Allocate space for global sym dynamic relocs. */
2c3fc389 10009 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 10010
33bb52fb
RS
10011 mips_elf_estimate_stub_size (output_bfd, info);
10012
10013 if (!mips_elf_lay_out_got (output_bfd, info))
10014 return FALSE;
10015
10016 mips_elf_lay_out_lazy_stubs (info);
10017
b49e97c9
TS
10018 /* The check_relocs and adjust_dynamic_symbol entry points have
10019 determined the sizes of the various dynamic sections. Allocate
10020 memory for them. */
b34976b6 10021 reltext = FALSE;
b49e97c9
TS
10022 for (s = dynobj->sections; s != NULL; s = s->next)
10023 {
10024 const char *name;
b49e97c9
TS
10025
10026 /* It's OK to base decisions on the section name, because none
10027 of the dynobj section names depend upon the input files. */
fd361982 10028 name = bfd_section_name (s);
b49e97c9
TS
10029
10030 if ((s->flags & SEC_LINKER_CREATED) == 0)
10031 continue;
10032
0112cd26 10033 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 10034 {
c456f082 10035 if (s->size != 0)
b49e97c9
TS
10036 {
10037 const char *outname;
10038 asection *target;
10039
10040 /* If this relocation section applies to a read only
07d6d2b8
AM
10041 section, then we probably need a DT_TEXTREL entry.
10042 If the relocation section is .rel(a).dyn, we always
10043 assert a DT_TEXTREL entry rather than testing whether
10044 there exists a relocation to a read only section or
10045 not. */
fd361982 10046 outname = bfd_section_name (s->output_section);
b49e97c9
TS
10047 target = bfd_get_section_by_name (output_bfd, outname + 4);
10048 if ((target != NULL
10049 && (target->flags & SEC_READONLY) != 0
10050 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 10051 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 10052 reltext = TRUE;
b49e97c9
TS
10053
10054 /* We use the reloc_count field as a counter if we need
10055 to copy relocs into the output file. */
0a44bf69 10056 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 10057 s->reloc_count = 0;
f4416af6
AO
10058
10059 /* If combreloc is enabled, elf_link_sort_relocs() will
10060 sort relocations, but in a different way than we do,
10061 and before we're done creating relocations. Also, it
10062 will move them around between input sections'
10063 relocation's contents, so our sorting would be
10064 broken, so don't let it run. */
10065 info->combreloc = 0;
b49e97c9
TS
10066 }
10067 }
0e1862bb 10068 else if (bfd_link_executable (info)
b49e97c9 10069 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 10070 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 10071 {
5108fc1b 10072 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 10073 rtld to contain a pointer to the _r_debug structure. */
b4082c70 10074 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
10075 }
10076 else if (SGI_COMPAT (output_bfd)
0112cd26 10077 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 10078 s->size += mips_elf_hash_table (info)->compact_rel_size;
ce558b89 10079 else if (s == htab->root.splt)
861fb55a
DJ
10080 {
10081 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
10082 room for an extra nop to fill the delay slot. This is
10083 for CPUs without load interlocking. */
10084 if (! LOAD_INTERLOCKS_P (output_bfd)
10085 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
10086 s->size += 4;
10087 }
0112cd26 10088 else if (! CONST_STRNEQ (name, ".init")
ce558b89
AM
10089 && s != htab->root.sgot
10090 && s != htab->root.sgotplt
861fb55a 10091 && s != htab->sstubs
5474d94f
AM
10092 && s != htab->root.sdynbss
10093 && s != htab->root.sdynrelro)
b49e97c9
TS
10094 {
10095 /* It's not one of our sections, so don't allocate space. */
10096 continue;
10097 }
10098
c456f082 10099 if (s->size == 0)
b49e97c9 10100 {
8423293d 10101 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
10102 continue;
10103 }
10104
c456f082
AM
10105 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10106 continue;
10107
b49e97c9 10108 /* Allocate memory for the section contents. */
eea6121a 10109 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 10110 if (s->contents == NULL)
b49e97c9
TS
10111 {
10112 bfd_set_error (bfd_error_no_memory);
b34976b6 10113 return FALSE;
b49e97c9
TS
10114 }
10115 }
10116
10117 if (elf_hash_table (info)->dynamic_sections_created)
10118 {
10119 /* Add some entries to the .dynamic section. We fill in the
10120 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10121 must add the entries now so that we get the correct size for
5750dcec 10122 the .dynamic section. */
af5978fb
RS
10123
10124 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 10125 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
10126 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10127 may only look at the first one they see. */
0e1862bb 10128 if (!bfd_link_pic (info)
af5978fb
RS
10129 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10130 return FALSE;
b49e97c9 10131
0e1862bb 10132 if (bfd_link_executable (info)
a5499fa4
MF
10133 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10134 return FALSE;
10135
5750dcec
DJ
10136 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10137 used by the debugger. */
0e1862bb 10138 if (bfd_link_executable (info)
5750dcec
DJ
10139 && !SGI_COMPAT (output_bfd)
10140 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10141 return FALSE;
10142
0a44bf69 10143 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
10144 info->flags |= DF_TEXTREL;
10145
10146 if ((info->flags & DF_TEXTREL) != 0)
10147 {
10148 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 10149 return FALSE;
943284cc
DJ
10150
10151 /* Clear the DF_TEXTREL flag. It will be set again if we
10152 write out an actual text relocation; we may not, because
10153 at this point we do not know whether e.g. any .eh_frame
10154 absolute relocations have been converted to PC-relative. */
10155 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
10156 }
10157
10158 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 10159 return FALSE;
b49e97c9 10160
861fb55a 10161 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 10162 if (htab->is_vxworks)
b49e97c9 10163 {
0a44bf69
RS
10164 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10165 use any of the DT_MIPS_* tags. */
861fb55a 10166 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
10167 {
10168 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10169 return FALSE;
b49e97c9 10170
0a44bf69
RS
10171 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10172 return FALSE;
b49e97c9 10173
0a44bf69
RS
10174 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10175 return FALSE;
10176 }
b49e97c9 10177 }
0a44bf69
RS
10178 else
10179 {
db841b6f
MR
10180 if (sreldyn && sreldyn->size > 0
10181 && !bfd_is_abs_section (sreldyn->output_section))
0a44bf69
RS
10182 {
10183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10184 return FALSE;
b49e97c9 10185
0a44bf69
RS
10186 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10187 return FALSE;
b49e97c9 10188
0a44bf69
RS
10189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10190 return FALSE;
10191 }
b49e97c9 10192
0a44bf69
RS
10193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10194 return FALSE;
b49e97c9 10195
0a44bf69
RS
10196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10197 return FALSE;
b49e97c9 10198
0a44bf69
RS
10199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10200 return FALSE;
b49e97c9 10201
0a44bf69
RS
10202 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10203 return FALSE;
b49e97c9 10204
0a44bf69
RS
10205 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10206 return FALSE;
b49e97c9 10207
0a44bf69
RS
10208 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10209 return FALSE;
b49e97c9 10210
0a44bf69
RS
10211 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10212 return FALSE;
10213
f16a9783
MS
10214 if (info->emit_gnu_hash
10215 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10216 return FALSE;
10217
0a44bf69
RS
10218 if (IRIX_COMPAT (dynobj) == ict_irix5
10219 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10220 return FALSE;
10221
10222 if (IRIX_COMPAT (dynobj) == ict_irix6
10223 && (bfd_get_section_by_name
af0edeb8 10224 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
10225 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10226 return FALSE;
10227 }
ce558b89 10228 if (htab->root.splt->size > 0)
861fb55a
DJ
10229 {
10230 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10231 return FALSE;
10232
10233 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10234 return FALSE;
10235
10236 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10237 return FALSE;
10238
10239 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10240 return FALSE;
10241 }
7a2b07ff
NS
10242 if (htab->is_vxworks
10243 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10244 return FALSE;
b49e97c9
TS
10245 }
10246
b34976b6 10247 return TRUE;
b49e97c9
TS
10248}
10249\f
81d43bff
RS
10250/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10251 Adjust its R_ADDEND field so that it is correct for the output file.
10252 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10253 and sections respectively; both use symbol indexes. */
10254
10255static void
10256mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10257 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10258 asection **local_sections, Elf_Internal_Rela *rel)
10259{
10260 unsigned int r_type, r_symndx;
10261 Elf_Internal_Sym *sym;
10262 asection *sec;
10263
020d7251 10264 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
10265 {
10266 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 10267 if (gprel16_reloc_p (r_type)
81d43bff 10268 || r_type == R_MIPS_GPREL32
df58fc94 10269 || literal_reloc_p (r_type))
81d43bff
RS
10270 {
10271 rel->r_addend += _bfd_get_gp_value (input_bfd);
10272 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10273 }
10274
10275 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10276 sym = local_syms + r_symndx;
10277
10278 /* Adjust REL's addend to account for section merging. */
0e1862bb 10279 if (!bfd_link_relocatable (info))
81d43bff
RS
10280 {
10281 sec = local_sections[r_symndx];
10282 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10283 }
10284
10285 /* This would normally be done by the rela_normal code in elflink.c. */
10286 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10287 rel->r_addend += local_sections[r_symndx]->output_offset;
10288 }
10289}
10290
545fd46b
MR
10291/* Handle relocations against symbols from removed linkonce sections,
10292 or sections discarded by a linker script. We use this wrapper around
10293 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10294 on 64-bit ELF targets. In this case for any relocation handled, which
10295 always be the first in a triplet, the remaining two have to be processed
10296 together with the first, even if they are R_MIPS_NONE. It is the symbol
10297 index referred by the first reloc that applies to all the three and the
10298 remaining two never refer to an object symbol. And it is the final
10299 relocation (the last non-null one) that determines the output field of
10300 the whole relocation so retrieve the corresponding howto structure for
10301 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10302
10303 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10304 and therefore requires to be pasted in a loop. It also defines a block
10305 and does not protect any of its arguments, hence the extra brackets. */
10306
10307static void
10308mips_reloc_against_discarded_section (bfd *output_bfd,
10309 struct bfd_link_info *info,
10310 bfd *input_bfd, asection *input_section,
10311 Elf_Internal_Rela **rel,
10312 const Elf_Internal_Rela **relend,
10313 bfd_boolean rel_reloc,
10314 reloc_howto_type *howto,
10315 bfd_byte *contents)
10316{
10317 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10318 int count = bed->s->int_rels_per_ext_rel;
10319 unsigned int r_type;
10320 int i;
10321
10322 for (i = count - 1; i > 0; i--)
10323 {
10324 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10325 if (r_type != R_MIPS_NONE)
10326 {
10327 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10328 break;
10329 }
10330 }
10331 do
10332 {
10333 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10334 (*rel), count, (*relend),
10335 howto, i, contents);
10336 }
10337 while (0);
10338}
10339
b49e97c9
TS
10340/* Relocate a MIPS ELF section. */
10341
b34976b6 10342bfd_boolean
9719ad41
RS
10343_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10344 bfd *input_bfd, asection *input_section,
10345 bfd_byte *contents, Elf_Internal_Rela *relocs,
10346 Elf_Internal_Sym *local_syms,
10347 asection **local_sections)
b49e97c9
TS
10348{
10349 Elf_Internal_Rela *rel;
10350 const Elf_Internal_Rela *relend;
10351 bfd_vma addend = 0;
b34976b6 10352 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9 10353
056bafd4 10354 relend = relocs + input_section->reloc_count;
b49e97c9
TS
10355 for (rel = relocs; rel < relend; ++rel)
10356 {
10357 const char *name;
c9adbffe 10358 bfd_vma value = 0;
b49e97c9 10359 reloc_howto_type *howto;
ad3d9127 10360 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10361 /* TRUE if the relocation is a RELA relocation, rather than a
07d6d2b8 10362 REL relocation. */
b34976b6 10363 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10364 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10365 const char *msg;
ab96bf03
AM
10366 unsigned long r_symndx;
10367 asection *sec;
749b8d9d
L
10368 Elf_Internal_Shdr *symtab_hdr;
10369 struct elf_link_hash_entry *h;
d4730f92 10370 bfd_boolean rel_reloc;
b49e97c9 10371
d4730f92
BS
10372 rel_reloc = (NEWABI_P (input_bfd)
10373 && mips_elf_rel_relocation_p (input_bfd, input_section,
10374 relocs, rel));
b49e97c9 10375 /* Find the relocation howto for this relocation. */
d4730f92 10376 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10377
10378 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10379 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10380 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10381 {
10382 sec = local_sections[r_symndx];
10383 h = NULL;
10384 }
ab96bf03
AM
10385 else
10386 {
ab96bf03 10387 unsigned long extsymoff;
ab96bf03 10388
ab96bf03
AM
10389 extsymoff = 0;
10390 if (!elf_bad_symtab (input_bfd))
10391 extsymoff = symtab_hdr->sh_info;
10392 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10393 while (h->root.type == bfd_link_hash_indirect
10394 || h->root.type == bfd_link_hash_warning)
10395 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10396
10397 sec = NULL;
10398 if (h->root.type == bfd_link_hash_defined
10399 || h->root.type == bfd_link_hash_defweak)
10400 sec = h->root.u.def.section;
10401 }
10402
dbaa2011 10403 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10404 {
10405 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10406 input_section, &rel, &relend,
10407 rel_reloc, howto, contents);
10408 continue;
10409 }
ab96bf03 10410
4a14403c 10411 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10412 {
10413 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10414 64-bit code, but make sure all their addresses are in the
10415 lowermost or uppermost 32-bit section of the 64-bit address
10416 space. Thus, when they use an R_MIPS_64 they mean what is
10417 usually meant by R_MIPS_32, with the exception that the
10418 stored value is sign-extended to 64 bits. */
b34976b6 10419 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10420
10421 /* On big-endian systems, we need to lie about the position
10422 of the reloc. */
10423 if (bfd_big_endian (input_bfd))
10424 rel->r_offset += 4;
10425 }
b49e97c9
TS
10426
10427 if (!use_saved_addend_p)
10428 {
b49e97c9
TS
10429 /* If these relocations were originally of the REL variety,
10430 we must pull the addend out of the field that will be
10431 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10432 RELA relocation. */
10433 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10434 relocs, rel))
b49e97c9 10435 {
b34976b6 10436 rela_relocation_p = FALSE;
c224138d
RS
10437 addend = mips_elf_read_rel_addend (input_bfd, rel,
10438 howto, contents);
738e5348
RS
10439 if (hi16_reloc_p (r_type)
10440 || (got16_reloc_p (r_type)
b49e97c9 10441 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10442 local_sections)))
b49e97c9 10443 {
c224138d
RS
10444 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10445 contents, &addend))
749b8d9d 10446 {
749b8d9d
L
10447 if (h)
10448 name = h->root.root.string;
10449 else
10450 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10451 local_syms + r_symndx,
10452 sec);
4eca0228 10453 _bfd_error_handler
695344c0 10454 /* xgettext:c-format */
2c1c9679 10455 (_("%pB: can't find matching LO16 reloc against `%s'"
2dcf00ce 10456 " for %s at %#" PRIx64 " in section `%pA'"),
c08bb8dd 10457 input_bfd, name,
2dcf00ce 10458 howto->name, (uint64_t) rel->r_offset, input_section);
749b8d9d 10459 }
b49e97c9 10460 }
30ac9238
RS
10461 else
10462 addend <<= howto->rightshift;
b49e97c9
TS
10463 }
10464 else
10465 addend = rel->r_addend;
81d43bff
RS
10466 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10467 local_syms, local_sections, rel);
b49e97c9
TS
10468 }
10469
0e1862bb 10470 if (bfd_link_relocatable (info))
b49e97c9 10471 {
4a14403c 10472 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10473 && bfd_big_endian (input_bfd))
10474 rel->r_offset -= 4;
10475
81d43bff 10476 if (!rela_relocation_p && rel->r_addend)
5a659663 10477 {
81d43bff 10478 addend += rel->r_addend;
738e5348 10479 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10480 addend = mips_elf_high (addend);
10481 else if (r_type == R_MIPS_HIGHER)
10482 addend = mips_elf_higher (addend);
10483 else if (r_type == R_MIPS_HIGHEST)
10484 addend = mips_elf_highest (addend);
30ac9238
RS
10485 else
10486 addend >>= howto->rightshift;
b49e97c9 10487
30ac9238
RS
10488 /* We use the source mask, rather than the destination
10489 mask because the place to which we are writing will be
10490 source of the addend in the final link. */
b49e97c9
TS
10491 addend &= howto->src_mask;
10492
5a659663 10493 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10494 /* See the comment above about using R_MIPS_64 in the 32-bit
10495 ABI. Here, we need to update the addend. It would be
10496 possible to get away with just using the R_MIPS_32 reloc
10497 but for endianness. */
10498 {
10499 bfd_vma sign_bits;
10500 bfd_vma low_bits;
10501 bfd_vma high_bits;
10502
10503 if (addend & ((bfd_vma) 1 << 31))
10504#ifdef BFD64
10505 sign_bits = ((bfd_vma) 1 << 32) - 1;
10506#else
10507 sign_bits = -1;
10508#endif
10509 else
10510 sign_bits = 0;
10511
10512 /* If we don't know that we have a 64-bit type,
10513 do two separate stores. */
10514 if (bfd_big_endian (input_bfd))
10515 {
10516 /* Store the sign-bits (which are most significant)
10517 first. */
10518 low_bits = sign_bits;
10519 high_bits = addend;
10520 }
10521 else
10522 {
10523 low_bits = addend;
10524 high_bits = sign_bits;
10525 }
10526 bfd_put_32 (input_bfd, low_bits,
10527 contents + rel->r_offset);
10528 bfd_put_32 (input_bfd, high_bits,
10529 contents + rel->r_offset + 4);
10530 continue;
10531 }
10532
10533 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10534 input_bfd, input_section,
b34976b6
AM
10535 contents, FALSE))
10536 return FALSE;
b49e97c9
TS
10537 }
10538
10539 /* Go on to the next relocation. */
10540 continue;
10541 }
10542
10543 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10544 relocations for the same offset. In that case we are
10545 supposed to treat the output of each relocation as the addend
10546 for the next. */
10547 if (rel + 1 < relend
10548 && rel->r_offset == rel[1].r_offset
10549 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10550 use_saved_addend_p = TRUE;
b49e97c9 10551 else
b34976b6 10552 use_saved_addend_p = FALSE;
b49e97c9
TS
10553
10554 /* Figure out what value we are supposed to relocate. */
10555 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
47275900
MR
10556 input_section, contents,
10557 info, rel, addend, howto,
10558 local_syms, local_sections,
10559 &value, &name, &cross_mode_jump_p,
bce03d3d 10560 use_saved_addend_p))
b49e97c9
TS
10561 {
10562 case bfd_reloc_continue:
10563 /* There's nothing to do. */
10564 continue;
10565
10566 case bfd_reloc_undefined:
10567 /* mips_elf_calculate_relocation already called the
10568 undefined_symbol callback. There's no real point in
10569 trying to perform the relocation at this point, so we
10570 just skip ahead to the next relocation. */
10571 continue;
10572
10573 case bfd_reloc_notsupported:
10574 msg = _("internal error: unsupported relocation error");
10575 info->callbacks->warning
10576 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10577 return FALSE;
b49e97c9
TS
10578
10579 case bfd_reloc_overflow:
10580 if (use_saved_addend_p)
10581 /* Ignore overflow until we reach the last relocation for
10582 a given location. */
10583 ;
10584 else
10585 {
0e53d9da
AN
10586 struct mips_elf_link_hash_table *htab;
10587
10588 htab = mips_elf_hash_table (info);
4dfe6ac6 10589 BFD_ASSERT (htab != NULL);
b49e97c9 10590 BFD_ASSERT (name != NULL);
0e53d9da 10591 if (!htab->small_data_overflow_reported
9684f078 10592 && (gprel16_reloc_p (howto->type)
df58fc94 10593 || literal_reloc_p (howto->type)))
0e53d9da 10594 {
91d6fa6a
NC
10595 msg = _("small-data section exceeds 64KB;"
10596 " lower small-data size limit (see option -G)");
0e53d9da
AN
10597
10598 htab->small_data_overflow_reported = TRUE;
10599 (*info->callbacks->einfo) ("%P: %s\n", msg);
10600 }
1a72702b
AM
10601 (*info->callbacks->reloc_overflow)
10602 (info, NULL, name, howto->name, (bfd_vma) 0,
10603 input_bfd, input_section, rel->r_offset);
b49e97c9
TS
10604 }
10605 break;
10606
10607 case bfd_reloc_ok:
10608 break;
10609
df58fc94 10610 case bfd_reloc_outofrange:
7db9a74e 10611 msg = NULL;
df58fc94 10612 if (jal_reloc_p (howto->type))
9d862524 10613 msg = (cross_mode_jump_p
2c1c9679 10614 ? _("cannot convert a jump to JALX "
9d862524
MR
10615 "for a non-word-aligned address")
10616 : (howto->type == R_MIPS16_26
2c1c9679
AM
10617 ? _("jump to a non-word-aligned address")
10618 : _("jump to a non-instruction-aligned address")));
99aefae6 10619 else if (b_reloc_p (howto->type))
a6ebf616 10620 msg = (cross_mode_jump_p
2c1c9679 10621 ? _("cannot convert a branch to JALX "
a6ebf616 10622 "for a non-word-aligned address")
2c1c9679 10623 : _("branch to a non-instruction-aligned address"));
7db9a74e
MR
10624 else if (aligned_pcrel_reloc_p (howto->type))
10625 msg = _("PC-relative load from unaligned address");
10626 if (msg)
df58fc94 10627 {
de341542 10628 info->callbacks->einfo
ed53407e
MR
10629 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10630 break;
7361da2c 10631 }
df58fc94
RS
10632 /* Fall through. */
10633
b49e97c9
TS
10634 default:
10635 abort ();
10636 break;
10637 }
10638
10639 /* If we've got another relocation for the address, keep going
10640 until we reach the last one. */
10641 if (use_saved_addend_p)
10642 {
10643 addend = value;
10644 continue;
10645 }
10646
4a14403c 10647 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10648 /* See the comment above about using R_MIPS_64 in the 32-bit
10649 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10650 that calculated the right value. Now, however, we
10651 sign-extend the 32-bit result to 64-bits, and store it as a
10652 64-bit value. We are especially generous here in that we
10653 go to extreme lengths to support this usage on systems with
10654 only a 32-bit VMA. */
10655 {
10656 bfd_vma sign_bits;
10657 bfd_vma low_bits;
10658 bfd_vma high_bits;
10659
10660 if (value & ((bfd_vma) 1 << 31))
10661#ifdef BFD64
10662 sign_bits = ((bfd_vma) 1 << 32) - 1;
10663#else
10664 sign_bits = -1;
10665#endif
10666 else
10667 sign_bits = 0;
10668
10669 /* If we don't know that we have a 64-bit type,
10670 do two separate stores. */
10671 if (bfd_big_endian (input_bfd))
10672 {
10673 /* Undo what we did above. */
10674 rel->r_offset -= 4;
10675 /* Store the sign-bits (which are most significant)
10676 first. */
10677 low_bits = sign_bits;
10678 high_bits = value;
10679 }
10680 else
10681 {
10682 low_bits = value;
10683 high_bits = sign_bits;
10684 }
10685 bfd_put_32 (input_bfd, low_bits,
10686 contents + rel->r_offset);
10687 bfd_put_32 (input_bfd, high_bits,
10688 contents + rel->r_offset + 4);
10689 continue;
10690 }
10691
10692 /* Actually perform the relocation. */
10693 if (! mips_elf_perform_relocation (info, howto, rel, value,
10694 input_bfd, input_section,
38a7df63 10695 contents, cross_mode_jump_p))
b34976b6 10696 return FALSE;
b49e97c9
TS
10697 }
10698
b34976b6 10699 return TRUE;
b49e97c9
TS
10700}
10701\f
861fb55a
DJ
10702/* A function that iterates over each entry in la25_stubs and fills
10703 in the code for each one. DATA points to a mips_htab_traverse_info. */
10704
10705static int
10706mips_elf_create_la25_stub (void **slot, void *data)
10707{
10708 struct mips_htab_traverse_info *hti;
10709 struct mips_elf_link_hash_table *htab;
10710 struct mips_elf_la25_stub *stub;
10711 asection *s;
10712 bfd_byte *loc;
10713 bfd_vma offset, target, target_high, target_low;
3734320d
MF
10714 bfd_vma branch_pc;
10715 bfd_signed_vma pcrel_offset = 0;
861fb55a
DJ
10716
10717 stub = (struct mips_elf_la25_stub *) *slot;
10718 hti = (struct mips_htab_traverse_info *) data;
10719 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10720 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10721
10722 /* Create the section contents, if we haven't already. */
10723 s = stub->stub_section;
10724 loc = s->contents;
10725 if (loc == NULL)
10726 {
10727 loc = bfd_malloc (s->size);
10728 if (loc == NULL)
10729 {
10730 hti->error = TRUE;
10731 return FALSE;
10732 }
10733 s->contents = loc;
10734 }
10735
10736 /* Work out where in the section this stub should go. */
10737 offset = stub->offset;
10738
3734320d
MF
10739 /* We add 8 here to account for the LUI/ADDIU instructions
10740 before the branch instruction. This cannot be moved down to
10741 where pcrel_offset is calculated as 's' is updated in
10742 mips_elf_get_la25_target. */
10743 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10744
861fb55a 10745 /* Work out the target address. */
8f0c309a
CLT
10746 target = mips_elf_get_la25_target (stub, &s);
10747 target += s->output_section->vma + s->output_offset;
10748
861fb55a
DJ
10749 target_high = ((target + 0x8000) >> 16) & 0xffff;
10750 target_low = (target & 0xffff);
10751
3734320d
MF
10752 /* Calculate the PC of the compact branch instruction (for the case where
10753 compact branches are used for either microMIPSR6 or MIPSR6 with
10754 compact branches. Add 4-bytes to account for BC using the PC of the
10755 next instruction as the base. */
10756 pcrel_offset = target - (branch_pc + 4);
10757
861fb55a
DJ
10758 if (stub->stub_section != htab->strampoline)
10759 {
df58fc94 10760 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10761 of the section and write the two instructions at the end. */
10762 memset (loc, 0, offset);
10763 loc += offset;
df58fc94
RS
10764 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10765 {
d21911ea
MR
10766 bfd_put_micromips_32 (hti->output_bfd,
10767 LA25_LUI_MICROMIPS (target_high),
10768 loc);
10769 bfd_put_micromips_32 (hti->output_bfd,
10770 LA25_ADDIU_MICROMIPS (target_low),
10771 loc + 4);
df58fc94
RS
10772 }
10773 else
10774 {
10775 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10776 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10777 }
861fb55a
DJ
10778 }
10779 else
10780 {
10781 /* This is trampoline. */
10782 loc += offset;
df58fc94
RS
10783 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10784 {
d21911ea
MR
10785 bfd_put_micromips_32 (hti->output_bfd,
10786 LA25_LUI_MICROMIPS (target_high), loc);
10787 bfd_put_micromips_32 (hti->output_bfd,
10788 LA25_J_MICROMIPS (target), loc + 4);
10789 bfd_put_micromips_32 (hti->output_bfd,
10790 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10791 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10792 }
10793 else
10794 {
10795 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
3734320d
MF
10796 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10797 {
10798 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10799 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10800 }
10801 else
10802 {
10803 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10804 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10805 }
df58fc94
RS
10806 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10807 }
861fb55a
DJ
10808 }
10809 return TRUE;
10810}
10811
b49e97c9
TS
10812/* If NAME is one of the special IRIX6 symbols defined by the linker,
10813 adjust it appropriately now. */
10814
10815static void
9719ad41
RS
10816mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10817 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10818{
10819 /* The linker script takes care of providing names and values for
10820 these, but we must place them into the right sections. */
10821 static const char* const text_section_symbols[] = {
10822 "_ftext",
10823 "_etext",
10824 "__dso_displacement",
10825 "__elf_header",
10826 "__program_header_table",
10827 NULL
10828 };
10829
10830 static const char* const data_section_symbols[] = {
10831 "_fdata",
10832 "_edata",
10833 "_end",
10834 "_fbss",
10835 NULL
10836 };
10837
10838 const char* const *p;
10839 int i;
10840
10841 for (i = 0; i < 2; ++i)
10842 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10843 *p;
10844 ++p)
10845 if (strcmp (*p, name) == 0)
10846 {
10847 /* All of these symbols are given type STT_SECTION by the
10848 IRIX6 linker. */
10849 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10850 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10851
10852 /* The IRIX linker puts these symbols in special sections. */
10853 if (i == 0)
10854 sym->st_shndx = SHN_MIPS_TEXT;
10855 else
10856 sym->st_shndx = SHN_MIPS_DATA;
10857
10858 break;
10859 }
10860}
10861
10862/* Finish up dynamic symbol handling. We set the contents of various
10863 dynamic sections here. */
10864
b34976b6 10865bfd_boolean
9719ad41
RS
10866_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10867 struct bfd_link_info *info,
10868 struct elf_link_hash_entry *h,
10869 Elf_Internal_Sym *sym)
b49e97c9
TS
10870{
10871 bfd *dynobj;
b49e97c9 10872 asection *sgot;
f4416af6 10873 struct mips_got_info *g, *gg;
b49e97c9 10874 const char *name;
3d6746ca 10875 int idx;
5108fc1b 10876 struct mips_elf_link_hash_table *htab;
738e5348 10877 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10878
5108fc1b 10879 htab = mips_elf_hash_table (info);
4dfe6ac6 10880 BFD_ASSERT (htab != NULL);
b49e97c9 10881 dynobj = elf_hash_table (info)->dynobj;
738e5348 10882 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10883
861fb55a
DJ
10884 BFD_ASSERT (!htab->is_vxworks);
10885
1bbce132
MR
10886 if (h->plt.plist != NULL
10887 && (h->plt.plist->mips_offset != MINUS_ONE
10888 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10889 {
10890 /* We've decided to create a PLT entry for this symbol. */
10891 bfd_byte *loc;
1bbce132 10892 bfd_vma header_address, got_address;
861fb55a 10893 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10894 bfd_vma got_index;
10895 bfd_vma isa_bit;
10896
10897 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10898
10899 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10900 BFD_ASSERT (h->dynindx != -1);
ce558b89 10901 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 10902 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10903 BFD_ASSERT (!h->def_regular);
10904
10905 /* Calculate the address of the PLT header. */
1bbce132 10906 isa_bit = htab->plt_header_is_comp;
ce558b89
AM
10907 header_address = (htab->root.splt->output_section->vma
10908 + htab->root.splt->output_offset + isa_bit);
861fb55a
DJ
10909
10910 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
10911 got_address = (htab->root.sgotplt->output_section->vma
10912 + htab->root.sgotplt->output_offset
1bbce132
MR
10913 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10914
861fb55a
DJ
10915 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10916 got_address_low = got_address & 0xffff;
10917
789ff5b6
MR
10918 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10919 cannot be loaded in two instructions. */
10920 if (ABI_64_P (output_bfd)
10921 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10922 {
10923 _bfd_error_handler
10924 /* xgettext:c-format */
10925 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10926 "supported; consider using `-Ttext-segment=...'"),
10927 output_bfd,
10928 htab->root.sgotplt->output_section,
10929 (int64_t) got_address);
10930 bfd_set_error (bfd_error_no_error);
10931 return FALSE;
10932 }
10933
861fb55a 10934 /* Initially point the .got.plt entry at the PLT header. */
6a382bce
MR
10935 loc = (htab->root.sgotplt->contents
10936 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10937 if (ABI_64_P (output_bfd))
10938 bfd_put_64 (output_bfd, header_address, loc);
10939 else
10940 bfd_put_32 (output_bfd, header_address, loc);
10941
1bbce132 10942 /* Now handle the PLT itself. First the standard entry (the order
07d6d2b8 10943 does not matter, we just have to pick one). */
1bbce132
MR
10944 if (h->plt.plist->mips_offset != MINUS_ONE)
10945 {
10946 const bfd_vma *plt_entry;
10947 bfd_vma plt_offset;
861fb55a 10948
1bbce132 10949 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10950
ce558b89 10951 BFD_ASSERT (plt_offset <= htab->root.splt->size);
6d30f5b2 10952
1bbce132 10953 /* Find out where the .plt entry should go. */
ce558b89 10954 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10955
10956 /* Pick the load opcode. */
10957 load = MIPS_ELF_LOAD_WORD (output_bfd);
10958
10959 /* Fill in the PLT entry itself. */
7361da2c
AB
10960
10961 if (MIPSR6_P (output_bfd))
3734320d
MF
10962 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10963 : mipsr6_exec_plt_entry;
7361da2c
AB
10964 else
10965 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10966 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10967 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10968 loc + 4);
10969
3734320d
MF
10970 if (! LOAD_INTERLOCKS_P (output_bfd)
10971 || (MIPSR6_P (output_bfd) && htab->compact_branches))
1bbce132
MR
10972 {
10973 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10974 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10975 }
10976 else
10977 {
10978 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10979 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10980 loc + 12);
10981 }
6d30f5b2 10982 }
1bbce132
MR
10983
10984 /* Now the compressed entry. They come after any standard ones. */
10985 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10986 {
1bbce132
MR
10987 bfd_vma plt_offset;
10988
10989 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10990 + h->plt.plist->comp_offset);
10991
ce558b89 10992 BFD_ASSERT (plt_offset <= htab->root.splt->size);
1bbce132
MR
10993
10994 /* Find out where the .plt entry should go. */
ce558b89 10995 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10996
10997 /* Fill in the PLT entry itself. */
833794fc
MR
10998 if (!MICROMIPS_P (output_bfd))
10999 {
11000 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
11001
11002 bfd_put_16 (output_bfd, plt_entry[0], loc);
11003 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
11004 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11005 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11006 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11007 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11008 bfd_put_32 (output_bfd, got_address, loc + 12);
11009 }
11010 else if (htab->insn32)
11011 {
11012 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
11013
11014 bfd_put_16 (output_bfd, plt_entry[0], loc);
11015 bfd_put_16 (output_bfd, got_address_high, loc + 2);
11016 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11017 bfd_put_16 (output_bfd, got_address_low, loc + 6);
11018 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11019 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11020 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11021 bfd_put_16 (output_bfd, got_address_low, loc + 14);
11022 }
11023 else
1bbce132
MR
11024 {
11025 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11026 bfd_signed_vma gotpc_offset;
11027 bfd_vma loc_address;
11028
11029 BFD_ASSERT (got_address % 4 == 0);
11030
ce558b89
AM
11031 loc_address = (htab->root.splt->output_section->vma
11032 + htab->root.splt->output_offset + plt_offset);
1bbce132
MR
11033 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11034
11035 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11036 if (gotpc_offset + 0x1000000 >= 0x2000000)
11037 {
4eca0228 11038 _bfd_error_handler
695344c0 11039 /* xgettext:c-format */
2dcf00ce 11040 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
1bbce132
MR
11041 "beyond the range of ADDIUPC"),
11042 output_bfd,
ce558b89 11043 htab->root.sgotplt->output_section,
2dcf00ce 11044 (int64_t) gotpc_offset,
c08bb8dd 11045 htab->root.splt->output_section);
1bbce132
MR
11046 bfd_set_error (bfd_error_no_error);
11047 return FALSE;
11048 }
11049 bfd_put_16 (output_bfd,
11050 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11051 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11052 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11053 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11054 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11055 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11056 }
6d30f5b2 11057 }
861fb55a
DJ
11058
11059 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11060 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
1bbce132 11061 got_index - 2, h->dynindx,
861fb55a
DJ
11062 R_MIPS_JUMP_SLOT, got_address);
11063
11064 /* We distinguish between PLT entries and lazy-binding stubs by
11065 giving the former an st_other value of STO_MIPS_PLT. Set the
11066 flag and leave the value if there are any relocations in the
11067 binary where pointer equality matters. */
11068 sym->st_shndx = SHN_UNDEF;
11069 if (h->pointer_equality_needed)
1bbce132 11070 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 11071 else
1bbce132
MR
11072 {
11073 sym->st_value = 0;
11074 sym->st_other = 0;
11075 }
861fb55a 11076 }
1bbce132
MR
11077
11078 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 11079 {
861fb55a 11080 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
11081 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11082 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11083 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 11084 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
11085 bfd_vma isa_bit = micromips_p;
11086 bfd_vma stub_big_size;
11087
833794fc 11088 if (!micromips_p)
1bbce132 11089 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
11090 else if (htab->insn32)
11091 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11092 else
11093 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
11094
11095 /* This symbol has a stub. Set it up. */
11096
11097 BFD_ASSERT (h->dynindx != -1);
11098
1bbce132 11099 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
11100
11101 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
11102 sign extension at runtime in the stub, resulting in a negative
11103 index value. */
11104 if (h->dynindx & ~0x7fffffff)
b34976b6 11105 return FALSE;
b49e97c9
TS
11106
11107 /* Fill the stub. */
1bbce132
MR
11108 if (micromips_p)
11109 {
11110 idx = 0;
11111 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11112 stub + idx);
11113 idx += 4;
833794fc
MR
11114 if (htab->insn32)
11115 {
11116 bfd_put_micromips_32 (output_bfd,
40fc1451 11117 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
11118 idx += 4;
11119 }
11120 else
11121 {
11122 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11123 idx += 2;
11124 }
1bbce132
MR
11125 if (stub_size == stub_big_size)
11126 {
11127 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11128
11129 bfd_put_micromips_32 (output_bfd,
11130 STUB_LUI_MICROMIPS (dynindx_hi),
11131 stub + idx);
11132 idx += 4;
11133 }
833794fc
MR
11134 if (htab->insn32)
11135 {
11136 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11137 stub + idx);
11138 idx += 4;
11139 }
11140 else
11141 {
11142 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11143 idx += 2;
11144 }
1bbce132
MR
11145
11146 /* If a large stub is not required and sign extension is not a
11147 problem, then use legacy code in the stub. */
11148 if (stub_size == stub_big_size)
11149 bfd_put_micromips_32 (output_bfd,
11150 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11151 stub + idx);
11152 else if (h->dynindx & ~0x7fff)
11153 bfd_put_micromips_32 (output_bfd,
11154 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11155 stub + idx);
11156 else
11157 bfd_put_micromips_32 (output_bfd,
11158 STUB_LI16S_MICROMIPS (output_bfd,
11159 h->dynindx),
11160 stub + idx);
11161 }
3d6746ca 11162 else
1bbce132
MR
11163 {
11164 idx = 0;
11165 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11166 idx += 4;
40fc1451 11167 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
11168 idx += 4;
11169 if (stub_size == stub_big_size)
11170 {
11171 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11172 stub + idx);
11173 idx += 4;
11174 }
3734320d
MF
11175
11176 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11177 {
11178 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11179 idx += 4;
11180 }
1bbce132
MR
11181
11182 /* If a large stub is not required and sign extension is not a
11183 problem, then use legacy code in the stub. */
11184 if (stub_size == stub_big_size)
11185 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11186 stub + idx);
11187 else if (h->dynindx & ~0x7fff)
11188 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11189 stub + idx);
11190 else
11191 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11192 stub + idx);
3734320d
MF
11193 idx += 4;
11194
11195 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11196 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
1bbce132 11197 }
5108fc1b 11198
1bbce132
MR
11199 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11200 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11201 stub, stub_size);
b49e97c9 11202
1bbce132 11203 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
11204 only for the referenced symbol. */
11205 sym->st_shndx = SHN_UNDEF;
11206
11207 /* The run-time linker uses the st_value field of the symbol
11208 to reset the global offset table entry for this external
11209 to its stub address when unlinking a shared object. */
4e41d0d7
RS
11210 sym->st_value = (htab->sstubs->output_section->vma
11211 + htab->sstubs->output_offset
1bbce132
MR
11212 + h->plt.plist->stub_offset
11213 + isa_bit);
11214 sym->st_other = other;
b49e97c9
TS
11215 }
11216
738e5348
RS
11217 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11218 refer to the stub, since only the stub uses the standard calling
11219 conventions. */
11220 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11221 {
11222 BFD_ASSERT (hmips->need_fn_stub);
11223 sym->st_value = (hmips->fn_stub->output_section->vma
11224 + hmips->fn_stub->output_offset);
11225 sym->st_size = hmips->fn_stub->size;
11226 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11227 }
11228
b49e97c9 11229 BFD_ASSERT (h->dynindx != -1
f5385ebf 11230 || h->forced_local);
b49e97c9 11231
ce558b89 11232 sgot = htab->root.sgot;
a8028dd0 11233 g = htab->got_info;
b49e97c9
TS
11234 BFD_ASSERT (g != NULL);
11235
11236 /* Run through the global symbol table, creating GOT entries for all
11237 the symbols that need them. */
020d7251 11238 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
11239 {
11240 bfd_vma offset;
11241 bfd_vma value;
11242
6eaa6adc 11243 value = sym->st_value;
13fbec83 11244 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
11245 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11246 }
11247
e641e783 11248 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
11249 {
11250 struct mips_got_entry e, *p;
0626d451 11251 bfd_vma entry;
f4416af6 11252 bfd_vma offset;
f4416af6
AO
11253
11254 gg = g;
11255
11256 e.abfd = output_bfd;
11257 e.symndx = -1;
738e5348 11258 e.d.h = hmips;
9ab066b4 11259 e.tls_type = GOT_TLS_NONE;
143d77c5 11260
f4416af6
AO
11261 for (g = g->next; g->next != gg; g = g->next)
11262 {
11263 if (g->got_entries
11264 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11265 &e)))
11266 {
11267 offset = p->gotidx;
ce558b89 11268 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
0e1862bb 11269 if (bfd_link_pic (info)
0626d451
RS
11270 || (elf_hash_table (info)->dynamic_sections_created
11271 && p->d.h != NULL
f5385ebf
AM
11272 && p->d.h->root.def_dynamic
11273 && !p->d.h->root.def_regular))
0626d451
RS
11274 {
11275 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11276 the various compatibility problems, it's easier to mock
11277 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11278 mips_elf_create_dynamic_relocation to calculate the
11279 appropriate addend. */
11280 Elf_Internal_Rela rel[3];
11281
11282 memset (rel, 0, sizeof (rel));
11283 if (ABI_64_P (output_bfd))
11284 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11285 else
11286 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11287 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11288
11289 entry = 0;
11290 if (! (mips_elf_create_dynamic_relocation
11291 (output_bfd, info, rel,
11292 e.d.h, NULL, sym->st_value, &entry, sgot)))
11293 return FALSE;
11294 }
11295 else
11296 entry = sym->st_value;
11297 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
11298 }
11299 }
11300 }
11301
b49e97c9
TS
11302 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11303 name = h->root.root.string;
9637f6ef 11304 if (h == elf_hash_table (info)->hdynamic
22edb2f1 11305 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
11306 sym->st_shndx = SHN_ABS;
11307 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11308 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11309 {
11310 sym->st_shndx = SHN_ABS;
11311 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11312 sym->st_value = 1;
11313 }
b49e97c9
TS
11314 else if (SGI_COMPAT (output_bfd))
11315 {
11316 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11317 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11318 {
11319 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11320 sym->st_other = STO_PROTECTED;
11321 sym->st_value = 0;
11322 sym->st_shndx = SHN_MIPS_DATA;
11323 }
11324 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11325 {
11326 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11327 sym->st_other = STO_PROTECTED;
11328 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11329 sym->st_shndx = SHN_ABS;
11330 }
11331 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11332 {
11333 if (h->type == STT_FUNC)
11334 sym->st_shndx = SHN_MIPS_TEXT;
11335 else if (h->type == STT_OBJECT)
11336 sym->st_shndx = SHN_MIPS_DATA;
11337 }
11338 }
11339
861fb55a
DJ
11340 /* Emit a copy reloc, if needed. */
11341 if (h->needs_copy)
11342 {
11343 asection *s;
11344 bfd_vma symval;
11345
11346 BFD_ASSERT (h->dynindx != -1);
11347 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11348
11349 s = mips_elf_rel_dyn_section (info, FALSE);
11350 symval = (h->root.u.def.section->output_section->vma
11351 + h->root.u.def.section->output_offset
11352 + h->root.u.def.value);
11353 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11354 h->dynindx, R_MIPS_COPY, symval);
11355 }
11356
b49e97c9
TS
11357 /* Handle the IRIX6-specific symbols. */
11358 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11359 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11360
cbf8d970
MR
11361 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11362 to treat compressed symbols like any other. */
30c09090 11363 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
11364 {
11365 BFD_ASSERT (sym->st_value & 1);
11366 sym->st_other -= STO_MIPS16;
11367 }
cbf8d970
MR
11368 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11369 {
11370 BFD_ASSERT (sym->st_value & 1);
11371 sym->st_other -= STO_MICROMIPS;
11372 }
b49e97c9 11373
b34976b6 11374 return TRUE;
b49e97c9
TS
11375}
11376
0a44bf69
RS
11377/* Likewise, for VxWorks. */
11378
11379bfd_boolean
11380_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11381 struct bfd_link_info *info,
11382 struct elf_link_hash_entry *h,
11383 Elf_Internal_Sym *sym)
11384{
11385 bfd *dynobj;
11386 asection *sgot;
11387 struct mips_got_info *g;
11388 struct mips_elf_link_hash_table *htab;
020d7251 11389 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
11390
11391 htab = mips_elf_hash_table (info);
4dfe6ac6 11392 BFD_ASSERT (htab != NULL);
0a44bf69 11393 dynobj = elf_hash_table (info)->dynobj;
020d7251 11394 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 11395
1bbce132 11396 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 11397 {
6d79d2ed 11398 bfd_byte *loc;
1bbce132 11399 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
11400 Elf_Internal_Rela rel;
11401 static const bfd_vma *plt_entry;
1bbce132
MR
11402 bfd_vma gotplt_index;
11403 bfd_vma plt_offset;
11404
11405 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11406 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11407
11408 BFD_ASSERT (h->dynindx != -1);
ce558b89 11409 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 11410 BFD_ASSERT (gotplt_index != MINUS_ONE);
ce558b89 11411 BFD_ASSERT (plt_offset <= htab->root.splt->size);
0a44bf69
RS
11412
11413 /* Calculate the address of the .plt entry. */
ce558b89
AM
11414 plt_address = (htab->root.splt->output_section->vma
11415 + htab->root.splt->output_offset
1bbce132 11416 + plt_offset);
0a44bf69
RS
11417
11418 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
11419 got_address = (htab->root.sgotplt->output_section->vma
11420 + htab->root.sgotplt->output_offset
1bbce132 11421 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11422
11423 /* Calculate the offset of the .got.plt entry from
11424 _GLOBAL_OFFSET_TABLE_. */
11425 got_offset = mips_elf_gotplt_index (info, h);
11426
11427 /* Calculate the offset for the branch at the start of the PLT
11428 entry. The branch jumps to the beginning of .plt. */
1bbce132 11429 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11430
11431 /* Fill in the initial value of the .got.plt entry. */
11432 bfd_put_32 (output_bfd, plt_address,
ce558b89 11433 (htab->root.sgotplt->contents
1bbce132 11434 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11435
11436 /* Find out where the .plt entry should go. */
ce558b89 11437 loc = htab->root.splt->contents + plt_offset;
0a44bf69 11438
0e1862bb 11439 if (bfd_link_pic (info))
0a44bf69
RS
11440 {
11441 plt_entry = mips_vxworks_shared_plt_entry;
11442 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11443 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11444 }
11445 else
11446 {
11447 bfd_vma got_address_high, got_address_low;
11448
11449 plt_entry = mips_vxworks_exec_plt_entry;
11450 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11451 got_address_low = got_address & 0xffff;
11452
11453 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11454 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11455 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11456 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11457 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11458 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11459 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11460 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11461
11462 loc = (htab->srelplt2->contents
1bbce132 11463 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11464
11465 /* Emit a relocation for the .got.plt entry. */
11466 rel.r_offset = got_address;
11467 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11468 rel.r_addend = plt_offset;
0a44bf69
RS
11469 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11470
11471 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11472 loc += sizeof (Elf32_External_Rela);
11473 rel.r_offset = plt_address + 8;
11474 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11475 rel.r_addend = got_offset;
11476 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11477
11478 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11479 loc += sizeof (Elf32_External_Rela);
11480 rel.r_offset += 4;
11481 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11482 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11483 }
11484
11485 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11486 loc = (htab->root.srelplt->contents
1bbce132 11487 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11488 rel.r_offset = got_address;
11489 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11490 rel.r_addend = 0;
11491 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11492
11493 if (!h->def_regular)
11494 sym->st_shndx = SHN_UNDEF;
11495 }
11496
11497 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11498
ce558b89 11499 sgot = htab->root.sgot;
a8028dd0 11500 g = htab->got_info;
0a44bf69
RS
11501 BFD_ASSERT (g != NULL);
11502
11503 /* See if this symbol has an entry in the GOT. */
020d7251 11504 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11505 {
11506 bfd_vma offset;
11507 Elf_Internal_Rela outrel;
11508 bfd_byte *loc;
11509 asection *s;
11510
11511 /* Install the symbol value in the GOT. */
13fbec83 11512 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11513 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11514
11515 /* Add a dynamic relocation for it. */
11516 s = mips_elf_rel_dyn_section (info, FALSE);
11517 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11518 outrel.r_offset = (sgot->output_section->vma
11519 + sgot->output_offset
11520 + offset);
11521 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11522 outrel.r_addend = 0;
11523 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11524 }
11525
11526 /* Emit a copy reloc, if needed. */
11527 if (h->needs_copy)
11528 {
11529 Elf_Internal_Rela rel;
5474d94f
AM
11530 asection *srel;
11531 bfd_byte *loc;
0a44bf69
RS
11532
11533 BFD_ASSERT (h->dynindx != -1);
11534
11535 rel.r_offset = (h->root.u.def.section->output_section->vma
11536 + h->root.u.def.section->output_offset
11537 + h->root.u.def.value);
11538 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11539 rel.r_addend = 0;
afbf7e8e 11540 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
11541 srel = htab->root.sreldynrelro;
11542 else
11543 srel = htab->root.srelbss;
11544 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11545 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11546 ++srel->reloc_count;
0a44bf69
RS
11547 }
11548
df58fc94
RS
11549 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11550 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11551 sym->st_value &= ~1;
11552
11553 return TRUE;
11554}
11555
861fb55a
DJ
11556/* Write out a plt0 entry to the beginning of .plt. */
11557
1bbce132 11558static bfd_boolean
861fb55a
DJ
11559mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11560{
11561 bfd_byte *loc;
11562 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11563 static const bfd_vma *plt_entry;
11564 struct mips_elf_link_hash_table *htab;
11565
11566 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11567 BFD_ASSERT (htab != NULL);
11568
861fb55a 11569 if (ABI_64_P (output_bfd))
3734320d
MF
11570 plt_entry = (htab->compact_branches
11571 ? mipsr6_n64_exec_plt0_entry_compact
11572 : mips_n64_exec_plt0_entry);
861fb55a 11573 else if (ABI_N32_P (output_bfd))
3734320d
MF
11574 plt_entry = (htab->compact_branches
11575 ? mipsr6_n32_exec_plt0_entry_compact
11576 : mips_n32_exec_plt0_entry);
833794fc 11577 else if (!htab->plt_header_is_comp)
3734320d
MF
11578 plt_entry = (htab->compact_branches
11579 ? mipsr6_o32_exec_plt0_entry_compact
11580 : mips_o32_exec_plt0_entry);
833794fc
MR
11581 else if (htab->insn32)
11582 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11583 else
11584 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11585
11586 /* Calculate the value of .got.plt. */
ce558b89
AM
11587 gotplt_value = (htab->root.sgotplt->output_section->vma
11588 + htab->root.sgotplt->output_offset);
861fb55a
DJ
11589 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11590 gotplt_value_low = gotplt_value & 0xffff;
11591
11592 /* The PLT sequence is not safe for N64 if .got.plt's address can
11593 not be loaded in two instructions. */
789ff5b6
MR
11594 if (ABI_64_P (output_bfd)
11595 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11596 {
11597 _bfd_error_handler
11598 /* xgettext:c-format */
11599 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11600 "supported; consider using `-Ttext-segment=...'"),
11601 output_bfd,
11602 htab->root.sgotplt->output_section,
11603 (int64_t) gotplt_value);
11604 bfd_set_error (bfd_error_no_error);
11605 return FALSE;
11606 }
861fb55a
DJ
11607
11608 /* Install the PLT header. */
ce558b89 11609 loc = htab->root.splt->contents;
1bbce132
MR
11610 if (plt_entry == micromips_o32_exec_plt0_entry)
11611 {
11612 bfd_vma gotpc_offset;
11613 bfd_vma loc_address;
11614 size_t i;
11615
11616 BFD_ASSERT (gotplt_value % 4 == 0);
11617
ce558b89
AM
11618 loc_address = (htab->root.splt->output_section->vma
11619 + htab->root.splt->output_offset);
1bbce132
MR
11620 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11621
11622 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11623 if (gotpc_offset + 0x1000000 >= 0x2000000)
11624 {
4eca0228 11625 _bfd_error_handler
695344c0 11626 /* xgettext:c-format */
2dcf00ce
AM
11627 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11628 "beyond the range of ADDIUPC"),
1bbce132 11629 output_bfd,
ce558b89 11630 htab->root.sgotplt->output_section,
2dcf00ce 11631 (int64_t) gotpc_offset,
c08bb8dd 11632 htab->root.splt->output_section);
1bbce132
MR
11633 bfd_set_error (bfd_error_no_error);
11634 return FALSE;
11635 }
11636 bfd_put_16 (output_bfd,
11637 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11638 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11639 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11640 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11641 }
833794fc
MR
11642 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11643 {
11644 size_t i;
11645
11646 bfd_put_16 (output_bfd, plt_entry[0], loc);
11647 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11648 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11649 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11650 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11651 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11652 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11653 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11654 }
1bbce132
MR
11655 else
11656 {
11657 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11658 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11659 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11660 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11661 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11662 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11663 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11664 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11665 }
11666
11667 return TRUE;
861fb55a
DJ
11668}
11669
0a44bf69
RS
11670/* Install the PLT header for a VxWorks executable and finalize the
11671 contents of .rela.plt.unloaded. */
11672
11673static void
11674mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11675{
11676 Elf_Internal_Rela rela;
11677 bfd_byte *loc;
11678 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11679 static const bfd_vma *plt_entry;
11680 struct mips_elf_link_hash_table *htab;
11681
11682 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11683 BFD_ASSERT (htab != NULL);
11684
0a44bf69
RS
11685 plt_entry = mips_vxworks_exec_plt0_entry;
11686
11687 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11688 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11689 + htab->root.hgot->root.u.def.section->output_offset
11690 + htab->root.hgot->root.u.def.value);
11691
11692 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11693 got_value_low = got_value & 0xffff;
11694
11695 /* Calculate the address of the PLT header. */
ce558b89
AM
11696 plt_address = (htab->root.splt->output_section->vma
11697 + htab->root.splt->output_offset);
0a44bf69
RS
11698
11699 /* Install the PLT header. */
ce558b89 11700 loc = htab->root.splt->contents;
0a44bf69
RS
11701 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11702 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11703 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11704 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11705 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11706 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11707
11708 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11709 loc = htab->srelplt2->contents;
11710 rela.r_offset = plt_address;
11711 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11712 rela.r_addend = 0;
11713 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11714 loc += sizeof (Elf32_External_Rela);
11715
11716 /* Output the relocation for the following addiu of
11717 %lo(_GLOBAL_OFFSET_TABLE_). */
11718 rela.r_offset += 4;
11719 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11720 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11721 loc += sizeof (Elf32_External_Rela);
11722
11723 /* Fix up the remaining relocations. They may have the wrong
11724 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11725 in which symbols were output. */
11726 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11727 {
11728 Elf_Internal_Rela rel;
11729
11730 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11731 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11732 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11733 loc += sizeof (Elf32_External_Rela);
11734
11735 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11736 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11737 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11738 loc += sizeof (Elf32_External_Rela);
11739
11740 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11741 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11742 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11743 loc += sizeof (Elf32_External_Rela);
11744 }
11745}
11746
11747/* Install the PLT header for a VxWorks shared library. */
11748
11749static void
11750mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11751{
11752 unsigned int i;
11753 struct mips_elf_link_hash_table *htab;
11754
11755 htab = mips_elf_hash_table (info);
4dfe6ac6 11756 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11757
11758 /* We just need to copy the entry byte-by-byte. */
11759 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11760 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
ce558b89 11761 htab->root.splt->contents + i * 4);
0a44bf69
RS
11762}
11763
b49e97c9
TS
11764/* Finish up the dynamic sections. */
11765
b34976b6 11766bfd_boolean
9719ad41
RS
11767_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11768 struct bfd_link_info *info)
b49e97c9
TS
11769{
11770 bfd *dynobj;
11771 asection *sdyn;
11772 asection *sgot;
f4416af6 11773 struct mips_got_info *gg, *g;
0a44bf69 11774 struct mips_elf_link_hash_table *htab;
b49e97c9 11775
0a44bf69 11776 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11777 BFD_ASSERT (htab != NULL);
11778
b49e97c9
TS
11779 dynobj = elf_hash_table (info)->dynobj;
11780
3d4d4302 11781 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11782
ce558b89 11783 sgot = htab->root.sgot;
23cc69b6 11784 gg = htab->got_info;
b49e97c9
TS
11785
11786 if (elf_hash_table (info)->dynamic_sections_created)
11787 {
11788 bfd_byte *b;
943284cc 11789 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11790
11791 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11792 BFD_ASSERT (gg != NULL);
11793
d7206569 11794 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11795 BFD_ASSERT (g != NULL);
11796
11797 for (b = sdyn->contents;
eea6121a 11798 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11799 b += MIPS_ELF_DYN_SIZE (dynobj))
11800 {
11801 Elf_Internal_Dyn dyn;
11802 const char *name;
11803 size_t elemsize;
11804 asection *s;
b34976b6 11805 bfd_boolean swap_out_p;
b49e97c9
TS
11806
11807 /* Read in the current dynamic entry. */
11808 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11809
11810 /* Assume that we're going to modify it and write it out. */
b34976b6 11811 swap_out_p = TRUE;
b49e97c9
TS
11812
11813 switch (dyn.d_tag)
11814 {
11815 case DT_RELENT:
b49e97c9
TS
11816 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11817 break;
11818
0a44bf69
RS
11819 case DT_RELAENT:
11820 BFD_ASSERT (htab->is_vxworks);
11821 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11822 break;
11823
b49e97c9
TS
11824 case DT_STRSZ:
11825 /* Rewrite DT_STRSZ. */
11826 dyn.d_un.d_val =
11827 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11828 break;
11829
11830 case DT_PLTGOT:
ce558b89 11831 s = htab->root.sgot;
861fb55a
DJ
11832 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11833 break;
11834
11835 case DT_MIPS_PLTGOT:
ce558b89 11836 s = htab->root.sgotplt;
861fb55a 11837 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11838 break;
11839
11840 case DT_MIPS_RLD_VERSION:
11841 dyn.d_un.d_val = 1; /* XXX */
11842 break;
11843
11844 case DT_MIPS_FLAGS:
11845 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11846 break;
11847
b49e97c9 11848 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11849 {
11850 time_t t;
11851 time (&t);
11852 dyn.d_un.d_val = t;
11853 }
b49e97c9
TS
11854 break;
11855
11856 case DT_MIPS_ICHECKSUM:
11857 /* XXX FIXME: */
b34976b6 11858 swap_out_p = FALSE;
b49e97c9
TS
11859 break;
11860
11861 case DT_MIPS_IVERSION:
11862 /* XXX FIXME: */
b34976b6 11863 swap_out_p = FALSE;
b49e97c9
TS
11864 break;
11865
11866 case DT_MIPS_BASE_ADDRESS:
11867 s = output_bfd->sections;
11868 BFD_ASSERT (s != NULL);
11869 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11870 break;
11871
11872 case DT_MIPS_LOCAL_GOTNO:
11873 dyn.d_un.d_val = g->local_gotno;
11874 break;
11875
11876 case DT_MIPS_UNREFEXTNO:
11877 /* The index into the dynamic symbol table which is the
11878 entry of the first external symbol that is not
11879 referenced within the same object. */
11880 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11881 break;
11882
11883 case DT_MIPS_GOTSYM:
d222d210 11884 if (htab->global_gotsym)
b49e97c9 11885 {
d222d210 11886 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11887 break;
11888 }
11889 /* In case if we don't have global got symbols we default
11890 to setting DT_MIPS_GOTSYM to the same value as
1a0670f3
AM
11891 DT_MIPS_SYMTABNO. */
11892 /* Fall through. */
b49e97c9
TS
11893
11894 case DT_MIPS_SYMTABNO:
11895 name = ".dynsym";
11896 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11897 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11898
131e2f8e
MF
11899 if (s != NULL)
11900 dyn.d_un.d_val = s->size / elemsize;
11901 else
11902 dyn.d_un.d_val = 0;
b49e97c9
TS
11903 break;
11904
11905 case DT_MIPS_HIPAGENO:
861fb55a 11906 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11907 break;
11908
11909 case DT_MIPS_RLD_MAP:
b4082c70
DD
11910 {
11911 struct elf_link_hash_entry *h;
11912 h = mips_elf_hash_table (info)->rld_symbol;
11913 if (!h)
11914 {
11915 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11916 swap_out_p = FALSE;
11917 break;
11918 }
11919 s = h->root.u.def.section;
a5499fa4
MF
11920
11921 /* The MIPS_RLD_MAP tag stores the absolute address of the
11922 debug pointer. */
b4082c70
DD
11923 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11924 + h->root.u.def.value);
11925 }
b49e97c9
TS
11926 break;
11927
a5499fa4
MF
11928 case DT_MIPS_RLD_MAP_REL:
11929 {
11930 struct elf_link_hash_entry *h;
11931 bfd_vma dt_addr, rld_addr;
11932 h = mips_elf_hash_table (info)->rld_symbol;
11933 if (!h)
11934 {
11935 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11936 swap_out_p = FALSE;
11937 break;
11938 }
11939 s = h->root.u.def.section;
11940
11941 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11942 pointer, relative to the address of the tag. */
11943 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11944 + (b - sdyn->contents));
a5499fa4
MF
11945 rld_addr = (s->output_section->vma + s->output_offset
11946 + h->root.u.def.value);
11947 dyn.d_un.d_ptr = rld_addr - dt_addr;
11948 }
11949 break;
11950
b49e97c9
TS
11951 case DT_MIPS_OPTIONS:
11952 s = (bfd_get_section_by_name
11953 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11954 dyn.d_un.d_ptr = s->vma;
11955 break;
11956
0a44bf69 11957 case DT_PLTREL:
861fb55a
DJ
11958 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11959 if (htab->is_vxworks)
11960 dyn.d_un.d_val = DT_RELA;
11961 else
11962 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11963 break;
11964
11965 case DT_PLTRELSZ:
861fb55a 11966 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89 11967 dyn.d_un.d_val = htab->root.srelplt->size;
0a44bf69
RS
11968 break;
11969
11970 case DT_JMPREL:
861fb55a 11971 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
11972 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11973 + htab->root.srelplt->output_offset);
0a44bf69
RS
11974 break;
11975
943284cc
DJ
11976 case DT_TEXTREL:
11977 /* If we didn't need any text relocations after all, delete
11978 the dynamic tag. */
11979 if (!(info->flags & DF_TEXTREL))
11980 {
11981 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11982 swap_out_p = FALSE;
11983 }
11984 break;
11985
11986 case DT_FLAGS:
11987 /* If we didn't need any text relocations after all, clear
11988 DF_TEXTREL from DT_FLAGS. */
11989 if (!(info->flags & DF_TEXTREL))
11990 dyn.d_un.d_val &= ~DF_TEXTREL;
11991 else
11992 swap_out_p = FALSE;
11993 break;
11994
f16a9783
MS
11995 case DT_MIPS_XHASH:
11996 name = ".MIPS.xhash";
11997 s = bfd_get_linker_section (dynobj, name);
11998 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11999 break;
12000
b49e97c9 12001 default:
b34976b6 12002 swap_out_p = FALSE;
7a2b07ff
NS
12003 if (htab->is_vxworks
12004 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12005 swap_out_p = TRUE;
b49e97c9
TS
12006 break;
12007 }
12008
943284cc 12009 if (swap_out_p || dyn_skipped)
b49e97c9 12010 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
12011 (dynobj, &dyn, b - dyn_skipped);
12012
12013 if (dyn_to_skip)
12014 {
12015 dyn_skipped += dyn_to_skip;
12016 dyn_to_skip = 0;
12017 }
b49e97c9 12018 }
943284cc
DJ
12019
12020 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12021 if (dyn_skipped > 0)
12022 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
12023 }
12024
b55fd4d4
DJ
12025 if (sgot != NULL && sgot->size > 0
12026 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 12027 {
0a44bf69
RS
12028 if (htab->is_vxworks)
12029 {
12030 /* The first entry of the global offset table points to the
12031 ".dynamic" section. The second is initialized by the
12032 loader and contains the shared library identifier.
12033 The third is also initialized by the loader and points
12034 to the lazy resolution stub. */
12035 MIPS_ELF_PUT_WORD (output_bfd,
12036 sdyn->output_offset + sdyn->output_section->vma,
12037 sgot->contents);
12038 MIPS_ELF_PUT_WORD (output_bfd, 0,
12039 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12040 MIPS_ELF_PUT_WORD (output_bfd, 0,
12041 sgot->contents
12042 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12043 }
12044 else
12045 {
12046 /* The first entry of the global offset table will be filled at
12047 runtime. The second entry will be used by some runtime loaders.
12048 This isn't the case of IRIX rld. */
12049 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 12050 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
12051 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12052 }
b49e97c9 12053
54938e2a
TS
12054 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12055 = MIPS_ELF_GOT_SIZE (output_bfd);
12056 }
b49e97c9 12057
f4416af6
AO
12058 /* Generate dynamic relocations for the non-primary gots. */
12059 if (gg != NULL && gg->next)
12060 {
12061 Elf_Internal_Rela rel[3];
12062 bfd_vma addend = 0;
12063
12064 memset (rel, 0, sizeof (rel));
12065 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12066
12067 for (g = gg->next; g->next != gg; g = g->next)
12068 {
91d6fa6a 12069 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 12070 + g->next->tls_gotno;
f4416af6 12071
9719ad41 12072 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 12073 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
12074 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12075 sgot->contents
91d6fa6a 12076 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 12077
0e1862bb 12078 if (! bfd_link_pic (info))
f4416af6
AO
12079 continue;
12080
cb22ccf4 12081 for (; got_index < g->local_gotno; got_index++)
f4416af6 12082 {
cb22ccf4
KCY
12083 if (got_index >= g->assigned_low_gotno
12084 && got_index <= g->assigned_high_gotno)
12085 continue;
12086
f4416af6 12087 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 12088 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
12089 if (!(mips_elf_create_dynamic_relocation
12090 (output_bfd, info, rel, NULL,
12091 bfd_abs_section_ptr,
12092 0, &addend, sgot)))
12093 return FALSE;
12094 BFD_ASSERT (addend == 0);
12095 }
12096 }
12097 }
12098
3133ddbf
DJ
12099 /* The generation of dynamic relocations for the non-primary gots
12100 adds more dynamic relocations. We cannot count them until
12101 here. */
12102
12103 if (elf_hash_table (info)->dynamic_sections_created)
12104 {
12105 bfd_byte *b;
12106 bfd_boolean swap_out_p;
12107
12108 BFD_ASSERT (sdyn != NULL);
12109
12110 for (b = sdyn->contents;
12111 b < sdyn->contents + sdyn->size;
12112 b += MIPS_ELF_DYN_SIZE (dynobj))
12113 {
12114 Elf_Internal_Dyn dyn;
12115 asection *s;
12116
12117 /* Read in the current dynamic entry. */
12118 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12119
12120 /* Assume that we're going to modify it and write it out. */
12121 swap_out_p = TRUE;
12122
12123 switch (dyn.d_tag)
12124 {
12125 case DT_RELSZ:
12126 /* Reduce DT_RELSZ to account for any relocations we
12127 decided not to make. This is for the n64 irix rld,
12128 which doesn't seem to apply any relocations if there
12129 are trailing null entries. */
0a44bf69 12130 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
12131 dyn.d_un.d_val = (s->reloc_count
12132 * (ABI_64_P (output_bfd)
12133 ? sizeof (Elf64_Mips_External_Rel)
12134 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
12135 /* Adjust the section size too. Tools like the prelinker
12136 can reasonably expect the values to the same. */
db841b6f 12137 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
bcfdf036
RS
12138 elf_section_data (s->output_section)->this_hdr.sh_size
12139 = dyn.d_un.d_val;
3133ddbf
DJ
12140 break;
12141
12142 default:
12143 swap_out_p = FALSE;
12144 break;
12145 }
12146
12147 if (swap_out_p)
12148 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12149 (dynobj, &dyn, b);
12150 }
12151 }
12152
b49e97c9 12153 {
b49e97c9
TS
12154 asection *s;
12155 Elf32_compact_rel cpt;
12156
b49e97c9
TS
12157 if (SGI_COMPAT (output_bfd))
12158 {
12159 /* Write .compact_rel section out. */
3d4d4302 12160 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
12161 if (s != NULL)
12162 {
12163 cpt.id1 = 1;
12164 cpt.num = s->reloc_count;
12165 cpt.id2 = 2;
12166 cpt.offset = (s->output_section->filepos
12167 + sizeof (Elf32_External_compact_rel));
12168 cpt.reserved0 = 0;
12169 cpt.reserved1 = 0;
12170 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12171 ((Elf32_External_compact_rel *)
12172 s->contents));
12173
12174 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 12175 if (htab->sstubs != NULL)
b49e97c9
TS
12176 {
12177 file_ptr dummy_offset;
12178
4e41d0d7
RS
12179 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12180 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12181 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 12182 htab->function_stub_size);
b49e97c9
TS
12183 }
12184 }
12185 }
12186
0a44bf69
RS
12187 /* The psABI says that the dynamic relocations must be sorted in
12188 increasing order of r_symndx. The VxWorks EABI doesn't require
12189 this, and because the code below handles REL rather than RELA
12190 relocations, using it for VxWorks would be outright harmful. */
12191 if (!htab->is_vxworks)
b49e97c9 12192 {
0a44bf69
RS
12193 s = mips_elf_rel_dyn_section (info, FALSE);
12194 if (s != NULL
12195 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12196 {
12197 reldyn_sorting_bfd = output_bfd;
b49e97c9 12198
0a44bf69
RS
12199 if (ABI_64_P (output_bfd))
12200 qsort ((Elf64_External_Rel *) s->contents + 1,
12201 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12202 sort_dynamic_relocs_64);
12203 else
12204 qsort ((Elf32_External_Rel *) s->contents + 1,
12205 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12206 sort_dynamic_relocs);
12207 }
b49e97c9 12208 }
b49e97c9
TS
12209 }
12210
ce558b89 12211 if (htab->root.splt && htab->root.splt->size > 0)
0a44bf69 12212 {
861fb55a
DJ
12213 if (htab->is_vxworks)
12214 {
0e1862bb 12215 if (bfd_link_pic (info))
861fb55a
DJ
12216 mips_vxworks_finish_shared_plt (output_bfd, info);
12217 else
12218 mips_vxworks_finish_exec_plt (output_bfd, info);
12219 }
0a44bf69 12220 else
861fb55a 12221 {
0e1862bb 12222 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
12223 if (!mips_finish_exec_plt (output_bfd, info))
12224 return FALSE;
861fb55a 12225 }
0a44bf69 12226 }
b34976b6 12227 return TRUE;
b49e97c9
TS
12228}
12229
b49e97c9 12230
64543e1a
RS
12231/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12232
12233static void
9719ad41 12234mips_set_isa_flags (bfd *abfd)
b49e97c9 12235{
64543e1a 12236 flagword val;
b49e97c9
TS
12237
12238 switch (bfd_get_mach (abfd))
12239 {
12240 default:
c7c860d2
YS
12241 if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12242 val = E_MIPS_ARCH_3;
12243 else
12244 val = E_MIPS_ARCH_1;
12245 break;
12246
b49e97c9
TS
12247 case bfd_mach_mips3000:
12248 val = E_MIPS_ARCH_1;
12249 break;
12250
12251 case bfd_mach_mips3900:
12252 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12253 break;
12254
12255 case bfd_mach_mips6000:
12256 val = E_MIPS_ARCH_2;
12257 break;
12258
b417536f
MR
12259 case bfd_mach_mips4010:
12260 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12261 break;
12262
b49e97c9
TS
12263 case bfd_mach_mips4000:
12264 case bfd_mach_mips4300:
12265 case bfd_mach_mips4400:
12266 case bfd_mach_mips4600:
12267 val = E_MIPS_ARCH_3;
12268 break;
12269
b49e97c9
TS
12270 case bfd_mach_mips4100:
12271 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12272 break;
12273
12274 case bfd_mach_mips4111:
12275 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12276 break;
12277
00707a0e
RS
12278 case bfd_mach_mips4120:
12279 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12280 break;
12281
b49e97c9
TS
12282 case bfd_mach_mips4650:
12283 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12284 break;
12285
00707a0e
RS
12286 case bfd_mach_mips5400:
12287 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12288 break;
12289
12290 case bfd_mach_mips5500:
12291 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12292 break;
12293
e407c74b
NC
12294 case bfd_mach_mips5900:
12295 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12296 break;
12297
0d2e43ed
ILT
12298 case bfd_mach_mips9000:
12299 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12300 break;
12301
b49e97c9 12302 case bfd_mach_mips5000:
5a7ea749 12303 case bfd_mach_mips7000:
b49e97c9
TS
12304 case bfd_mach_mips8000:
12305 case bfd_mach_mips10000:
12306 case bfd_mach_mips12000:
3aa3176b
TS
12307 case bfd_mach_mips14000:
12308 case bfd_mach_mips16000:
b49e97c9
TS
12309 val = E_MIPS_ARCH_4;
12310 break;
12311
12312 case bfd_mach_mips5:
12313 val = E_MIPS_ARCH_5;
12314 break;
12315
350cc38d
MS
12316 case bfd_mach_mips_loongson_2e:
12317 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12318 break;
12319
12320 case bfd_mach_mips_loongson_2f:
12321 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12322 break;
12323
b49e97c9
TS
12324 case bfd_mach_mips_sb1:
12325 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12326 break;
12327
ac8cb70f
CX
12328 case bfd_mach_mips_gs464:
12329 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
d051516a
NC
12330 break;
12331
bd782c07
CX
12332 case bfd_mach_mips_gs464e:
12333 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12334 break;
12335
9108bc33
CX
12336 case bfd_mach_mips_gs264e:
12337 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12338 break;
12339
6f179bd0 12340 case bfd_mach_mips_octeon:
dd6a37e7 12341 case bfd_mach_mips_octeonp:
6f179bd0
AN
12342 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12343 break;
12344
2c629856
N
12345 case bfd_mach_mips_octeon3:
12346 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12347 break;
12348
52b6b6b9
JM
12349 case bfd_mach_mips_xlr:
12350 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12351 break;
12352
432233b3
AP
12353 case bfd_mach_mips_octeon2:
12354 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12355 break;
12356
b49e97c9
TS
12357 case bfd_mach_mipsisa32:
12358 val = E_MIPS_ARCH_32;
12359 break;
12360
12361 case bfd_mach_mipsisa64:
12362 val = E_MIPS_ARCH_64;
af7ee8bf
CD
12363 break;
12364
12365 case bfd_mach_mipsisa32r2:
ae52f483
AB
12366 case bfd_mach_mipsisa32r3:
12367 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
12368 val = E_MIPS_ARCH_32R2;
12369 break;
5f74bc13 12370
38bf472a
MR
12371 case bfd_mach_mips_interaptiv_mr2:
12372 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12373 break;
12374
5f74bc13 12375 case bfd_mach_mipsisa64r2:
ae52f483
AB
12376 case bfd_mach_mipsisa64r3:
12377 case bfd_mach_mipsisa64r5:
5f74bc13
CD
12378 val = E_MIPS_ARCH_64R2;
12379 break;
7361da2c
AB
12380
12381 case bfd_mach_mipsisa32r6:
12382 val = E_MIPS_ARCH_32R6;
12383 break;
12384
12385 case bfd_mach_mipsisa64r6:
12386 val = E_MIPS_ARCH_64R6;
12387 break;
b49e97c9 12388 }
b49e97c9
TS
12389 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12390 elf_elfheader (abfd)->e_flags |= val;
12391
64543e1a
RS
12392}
12393
12394
28dbcedc
AM
12395/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12396 Don't do so for code sections. We want to keep ordering of HI16/LO16
12397 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12398 relocs to be sorted. */
12399
12400bfd_boolean
12401_bfd_mips_elf_sort_relocs_p (asection *sec)
12402{
12403 return (sec->flags & SEC_CODE) == 0;
12404}
12405
12406
64543e1a
RS
12407/* The final processing done just before writing out a MIPS ELF object
12408 file. This gets the MIPS architecture right based on the machine
12409 number. This is used by both the 32-bit and the 64-bit ABI. */
12410
12411void
cc364be6 12412_bfd_mips_final_write_processing (bfd *abfd)
64543e1a
RS
12413{
12414 unsigned int i;
12415 Elf_Internal_Shdr **hdrpp;
12416 const char *name;
12417 asection *sec;
12418
12419 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12420 is nonzero. This is for compatibility with old objects, which used
12421 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12422 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12423 mips_set_isa_flags (abfd);
12424
b49e97c9
TS
12425 /* Set the sh_info field for .gptab sections and other appropriate
12426 info for each special section. */
12427 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12428 i < elf_numsections (abfd);
12429 i++, hdrpp++)
12430 {
12431 switch ((*hdrpp)->sh_type)
12432 {
12433 case SHT_MIPS_MSYM:
12434 case SHT_MIPS_LIBLIST:
12435 sec = bfd_get_section_by_name (abfd, ".dynstr");
12436 if (sec != NULL)
12437 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12438 break;
12439
12440 case SHT_MIPS_GPTAB:
12441 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
fd361982 12442 name = bfd_section_name ((*hdrpp)->bfd_section);
b49e97c9 12443 BFD_ASSERT (name != NULL
0112cd26 12444 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12445 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12446 BFD_ASSERT (sec != NULL);
12447 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12448 break;
12449
12450 case SHT_MIPS_CONTENT:
12451 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
fd361982 12452 name = bfd_section_name ((*hdrpp)->bfd_section);
b49e97c9 12453 BFD_ASSERT (name != NULL
0112cd26 12454 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12455 sec = bfd_get_section_by_name (abfd,
12456 name + sizeof ".MIPS.content" - 1);
12457 BFD_ASSERT (sec != NULL);
12458 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12459 break;
12460
12461 case SHT_MIPS_SYMBOL_LIB:
12462 sec = bfd_get_section_by_name (abfd, ".dynsym");
12463 if (sec != NULL)
12464 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12465 sec = bfd_get_section_by_name (abfd, ".liblist");
12466 if (sec != NULL)
12467 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12468 break;
12469
12470 case SHT_MIPS_EVENTS:
12471 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
fd361982 12472 name = bfd_section_name ((*hdrpp)->bfd_section);
b49e97c9 12473 BFD_ASSERT (name != NULL);
0112cd26 12474 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12475 sec = bfd_get_section_by_name (abfd,
12476 name + sizeof ".MIPS.events" - 1);
12477 else
12478 {
0112cd26 12479 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12480 sec = bfd_get_section_by_name (abfd,
12481 (name
12482 + sizeof ".MIPS.post_rel" - 1));
12483 }
12484 BFD_ASSERT (sec != NULL);
12485 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12486 break;
12487
f16a9783
MS
12488 case SHT_MIPS_XHASH:
12489 sec = bfd_get_section_by_name (abfd, ".dynsym");
12490 if (sec != NULL)
12491 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
b49e97c9
TS
12492 }
12493 }
12494}
06f44071 12495
cc364be6
AM
12496bfd_boolean
12497_bfd_mips_elf_final_write_processing (bfd *abfd)
06f44071 12498{
cc364be6
AM
12499 _bfd_mips_final_write_processing (abfd);
12500 return _bfd_elf_final_write_processing (abfd);
06f44071 12501}
b49e97c9 12502\f
8dc1a139 12503/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12504 segments. */
12505
12506int
a6b96beb
AM
12507_bfd_mips_elf_additional_program_headers (bfd *abfd,
12508 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12509{
12510 asection *s;
12511 int ret = 0;
12512
12513 /* See if we need a PT_MIPS_REGINFO segment. */
12514 s = bfd_get_section_by_name (abfd, ".reginfo");
12515 if (s && (s->flags & SEC_LOAD))
12516 ++ret;
12517
351cdf24
MF
12518 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12519 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12520 ++ret;
12521
b49e97c9
TS
12522 /* See if we need a PT_MIPS_OPTIONS segment. */
12523 if (IRIX_COMPAT (abfd) == ict_irix6
12524 && bfd_get_section_by_name (abfd,
12525 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12526 ++ret;
12527
12528 /* See if we need a PT_MIPS_RTPROC segment. */
12529 if (IRIX_COMPAT (abfd) == ict_irix5
12530 && bfd_get_section_by_name (abfd, ".dynamic")
12531 && bfd_get_section_by_name (abfd, ".mdebug"))
12532 ++ret;
12533
98c904a8
RS
12534 /* Allocate a PT_NULL header in dynamic objects. See
12535 _bfd_mips_elf_modify_segment_map for details. */
12536 if (!SGI_COMPAT (abfd)
12537 && bfd_get_section_by_name (abfd, ".dynamic"))
12538 ++ret;
12539
b49e97c9
TS
12540 return ret;
12541}
12542
8dc1a139 12543/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12544
b34976b6 12545bfd_boolean
9719ad41 12546_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12547 struct bfd_link_info *info)
b49e97c9
TS
12548{
12549 asection *s;
12550 struct elf_segment_map *m, **pm;
12551 bfd_size_type amt;
12552
12553 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12554 segment. */
12555 s = bfd_get_section_by_name (abfd, ".reginfo");
12556 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12557 {
12bd6957 12558 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12559 if (m->p_type == PT_MIPS_REGINFO)
12560 break;
12561 if (m == NULL)
12562 {
12563 amt = sizeof *m;
9719ad41 12564 m = bfd_zalloc (abfd, amt);
b49e97c9 12565 if (m == NULL)
b34976b6 12566 return FALSE;
b49e97c9
TS
12567
12568 m->p_type = PT_MIPS_REGINFO;
12569 m->count = 1;
12570 m->sections[0] = s;
12571
12572 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12573 pm = &elf_seg_map (abfd);
b49e97c9
TS
12574 while (*pm != NULL
12575 && ((*pm)->p_type == PT_PHDR
12576 || (*pm)->p_type == PT_INTERP))
12577 pm = &(*pm)->next;
12578
12579 m->next = *pm;
12580 *pm = m;
12581 }
12582 }
12583
351cdf24
MF
12584 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12585 segment. */
12586 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12587 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12588 {
12589 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12590 if (m->p_type == PT_MIPS_ABIFLAGS)
12591 break;
12592 if (m == NULL)
12593 {
12594 amt = sizeof *m;
12595 m = bfd_zalloc (abfd, amt);
12596 if (m == NULL)
12597 return FALSE;
12598
12599 m->p_type = PT_MIPS_ABIFLAGS;
12600 m->count = 1;
12601 m->sections[0] = s;
12602
12603 /* We want to put it after the PHDR and INTERP segments. */
12604 pm = &elf_seg_map (abfd);
12605 while (*pm != NULL
12606 && ((*pm)->p_type == PT_PHDR
12607 || (*pm)->p_type == PT_INTERP))
12608 pm = &(*pm)->next;
12609
12610 m->next = *pm;
12611 *pm = m;
12612 }
12613 }
12614
b49e97c9
TS
12615 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12616 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12617 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12618 table. */
c1fd6598
AO
12619 if (NEWABI_P (abfd)
12620 /* On non-IRIX6 new abi, we'll have already created a segment
12621 for this section, so don't create another. I'm not sure this
12622 is not also the case for IRIX 6, but I can't test it right
12623 now. */
12624 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12625 {
12626 for (s = abfd->sections; s; s = s->next)
12627 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12628 break;
12629
12630 if (s)
12631 {
12632 struct elf_segment_map *options_segment;
12633
12bd6957 12634 pm = &elf_seg_map (abfd);
98a8deaf
RS
12635 while (*pm != NULL
12636 && ((*pm)->p_type == PT_PHDR
12637 || (*pm)->p_type == PT_INTERP))
12638 pm = &(*pm)->next;
b49e97c9 12639
8ded5a0f
AM
12640 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12641 {
12642 amt = sizeof (struct elf_segment_map);
12643 options_segment = bfd_zalloc (abfd, amt);
12644 options_segment->next = *pm;
12645 options_segment->p_type = PT_MIPS_OPTIONS;
12646 options_segment->p_flags = PF_R;
12647 options_segment->p_flags_valid = TRUE;
12648 options_segment->count = 1;
12649 options_segment->sections[0] = s;
12650 *pm = options_segment;
12651 }
b49e97c9
TS
12652 }
12653 }
12654 else
12655 {
12656 if (IRIX_COMPAT (abfd) == ict_irix5)
12657 {
12658 /* If there are .dynamic and .mdebug sections, we make a room
12659 for the RTPROC header. FIXME: Rewrite without section names. */
12660 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12661 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12662 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12663 {
12bd6957 12664 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12665 if (m->p_type == PT_MIPS_RTPROC)
12666 break;
12667 if (m == NULL)
12668 {
12669 amt = sizeof *m;
9719ad41 12670 m = bfd_zalloc (abfd, amt);
b49e97c9 12671 if (m == NULL)
b34976b6 12672 return FALSE;
b49e97c9
TS
12673
12674 m->p_type = PT_MIPS_RTPROC;
12675
12676 s = bfd_get_section_by_name (abfd, ".rtproc");
12677 if (s == NULL)
12678 {
12679 m->count = 0;
12680 m->p_flags = 0;
12681 m->p_flags_valid = 1;
12682 }
12683 else
12684 {
12685 m->count = 1;
12686 m->sections[0] = s;
12687 }
12688
12689 /* We want to put it after the DYNAMIC segment. */
12bd6957 12690 pm = &elf_seg_map (abfd);
b49e97c9
TS
12691 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12692 pm = &(*pm)->next;
12693 if (*pm != NULL)
12694 pm = &(*pm)->next;
12695
12696 m->next = *pm;
12697 *pm = m;
12698 }
12699 }
12700 }
8dc1a139 12701 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12702 .dynstr, .dynsym, and .hash sections, and everything in
12703 between. */
12bd6957 12704 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12705 pm = &(*pm)->next)
12706 if ((*pm)->p_type == PT_DYNAMIC)
12707 break;
12708 m = *pm;
f6f62d6f
RS
12709 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12710 glibc's dynamic linker has traditionally derived the number of
12711 tags from the p_filesz field, and sometimes allocates stack
12712 arrays of that size. An overly-big PT_DYNAMIC segment can
12713 be actively harmful in such cases. Making PT_DYNAMIC contain
12714 other sections can also make life hard for the prelinker,
12715 which might move one of the other sections to a different
12716 PT_LOAD segment. */
12717 if (SGI_COMPAT (abfd)
12718 && m != NULL
12719 && m->count == 1
12720 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12721 {
12722 static const char *sec_names[] =
12723 {
12724 ".dynamic", ".dynstr", ".dynsym", ".hash"
12725 };
12726 bfd_vma low, high;
12727 unsigned int i, c;
12728 struct elf_segment_map *n;
12729
792b4a53 12730 low = ~(bfd_vma) 0;
b49e97c9
TS
12731 high = 0;
12732 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12733 {
12734 s = bfd_get_section_by_name (abfd, sec_names[i]);
12735 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12736 {
12737 bfd_size_type sz;
12738
12739 if (low > s->vma)
12740 low = s->vma;
eea6121a 12741 sz = s->size;
b49e97c9
TS
12742 if (high < s->vma + sz)
12743 high = s->vma + sz;
12744 }
12745 }
12746
12747 c = 0;
12748 for (s = abfd->sections; s != NULL; s = s->next)
12749 if ((s->flags & SEC_LOAD) != 0
12750 && s->vma >= low
eea6121a 12751 && s->vma + s->size <= high)
b49e97c9
TS
12752 ++c;
12753
12754 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12755 n = bfd_zalloc (abfd, amt);
b49e97c9 12756 if (n == NULL)
b34976b6 12757 return FALSE;
b49e97c9
TS
12758 *n = *m;
12759 n->count = c;
12760
12761 i = 0;
12762 for (s = abfd->sections; s != NULL; s = s->next)
12763 {
12764 if ((s->flags & SEC_LOAD) != 0
12765 && s->vma >= low
eea6121a 12766 && s->vma + s->size <= high)
b49e97c9
TS
12767 {
12768 n->sections[i] = s;
12769 ++i;
12770 }
12771 }
12772
12773 *pm = n;
12774 }
12775 }
12776
98c904a8
RS
12777 /* Allocate a spare program header in dynamic objects so that tools
12778 like the prelinker can add an extra PT_LOAD entry.
12779
12780 If the prelinker needs to make room for a new PT_LOAD entry, its
12781 standard procedure is to move the first (read-only) sections into
12782 the new (writable) segment. However, the MIPS ABI requires
12783 .dynamic to be in a read-only segment, and the section will often
12784 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12785
12786 Although the prelinker could in principle move .dynamic to a
12787 writable segment, it seems better to allocate a spare program
12788 header instead, and avoid the need to move any sections.
12789 There is a long tradition of allocating spare dynamic tags,
12790 so allocating a spare program header seems like a natural
7c8b76cc
JM
12791 extension.
12792
12793 If INFO is NULL, we may be copying an already prelinked binary
12794 with objcopy or strip, so do not add this header. */
12795 if (info != NULL
12796 && !SGI_COMPAT (abfd)
98c904a8
RS
12797 && bfd_get_section_by_name (abfd, ".dynamic"))
12798 {
12bd6957 12799 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12800 if ((*pm)->p_type == PT_NULL)
12801 break;
12802 if (*pm == NULL)
12803 {
12804 m = bfd_zalloc (abfd, sizeof (*m));
12805 if (m == NULL)
12806 return FALSE;
12807
12808 m->p_type = PT_NULL;
12809 *pm = m;
12810 }
12811 }
12812
b34976b6 12813 return TRUE;
b49e97c9
TS
12814}
12815\f
12816/* Return the section that should be marked against GC for a given
12817 relocation. */
12818
12819asection *
9719ad41 12820_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12821 struct bfd_link_info *info,
9719ad41
RS
12822 Elf_Internal_Rela *rel,
12823 struct elf_link_hash_entry *h,
12824 Elf_Internal_Sym *sym)
b49e97c9
TS
12825{
12826 /* ??? Do mips16 stub sections need to be handled special? */
12827
12828 if (h != NULL)
07adf181
AM
12829 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12830 {
12831 case R_MIPS_GNU_VTINHERIT:
12832 case R_MIPS_GNU_VTENTRY:
12833 return NULL;
12834 }
b49e97c9 12835
07adf181 12836 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12837}
12838
351cdf24
MF
12839/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12840
12841bfd_boolean
12842_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12843 elf_gc_mark_hook_fn gc_mark_hook)
12844{
12845 bfd *sub;
12846
12847 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12848
12849 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12850 {
12851 asection *o;
12852
12853 if (! is_mips_elf (sub))
12854 continue;
12855
12856 for (o = sub->sections; o != NULL; o = o->next)
12857 if (!o->gc_mark
fd361982 12858 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
351cdf24
MF
12859 {
12860 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12861 return FALSE;
12862 }
12863 }
12864
12865 return TRUE;
12866}
b49e97c9
TS
12867\f
12868/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12869 hiding the old indirect symbol. Process additional relocation
12870 information. Also called for weakdefs, in which case we just let
12871 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12872
12873void
fcfa13d2 12874_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12875 struct elf_link_hash_entry *dir,
12876 struct elf_link_hash_entry *ind)
b49e97c9
TS
12877{
12878 struct mips_elf_link_hash_entry *dirmips, *indmips;
12879
fcfa13d2 12880 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12881
861fb55a
DJ
12882 dirmips = (struct mips_elf_link_hash_entry *) dir;
12883 indmips = (struct mips_elf_link_hash_entry *) ind;
12884 /* Any absolute non-dynamic relocations against an indirect or weak
12885 definition will be against the target symbol. */
12886 if (indmips->has_static_relocs)
12887 dirmips->has_static_relocs = TRUE;
12888
b49e97c9
TS
12889 if (ind->root.type != bfd_link_hash_indirect)
12890 return;
12891
b49e97c9
TS
12892 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12893 if (indmips->readonly_reloc)
b34976b6 12894 dirmips->readonly_reloc = TRUE;
b49e97c9 12895 if (indmips->no_fn_stub)
b34976b6 12896 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12897 if (indmips->fn_stub)
12898 {
12899 dirmips->fn_stub = indmips->fn_stub;
12900 indmips->fn_stub = NULL;
12901 }
12902 if (indmips->need_fn_stub)
12903 {
12904 dirmips->need_fn_stub = TRUE;
12905 indmips->need_fn_stub = FALSE;
12906 }
12907 if (indmips->call_stub)
12908 {
12909 dirmips->call_stub = indmips->call_stub;
12910 indmips->call_stub = NULL;
12911 }
12912 if (indmips->call_fp_stub)
12913 {
12914 dirmips->call_fp_stub = indmips->call_fp_stub;
12915 indmips->call_fp_stub = NULL;
12916 }
634835ae
RS
12917 if (indmips->global_got_area < dirmips->global_got_area)
12918 dirmips->global_got_area = indmips->global_got_area;
12919 if (indmips->global_got_area < GGA_NONE)
12920 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12921 if (indmips->has_nonpic_branches)
12922 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12923}
47275900
MR
12924
12925/* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12926 to hide it. It has to remain global (it will also be protected) so as to
12927 be assigned a global GOT entry, which will then remain unchanged at load
12928 time. */
12929
12930void
12931_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12932 struct elf_link_hash_entry *entry,
12933 bfd_boolean force_local)
12934{
12935 struct mips_elf_link_hash_table *htab;
12936
12937 htab = mips_elf_hash_table (info);
12938 BFD_ASSERT (htab != NULL);
12939 if (htab->use_absolute_zero
12940 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12941 return;
12942
12943 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12944}
b49e97c9 12945\f
d01414a5
TS
12946#define PDR_SIZE 32
12947
b34976b6 12948bfd_boolean
9719ad41
RS
12949_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12950 struct bfd_link_info *info)
d01414a5
TS
12951{
12952 asection *o;
b34976b6 12953 bfd_boolean ret = FALSE;
d01414a5
TS
12954 unsigned char *tdata;
12955 size_t i, skip;
12956
12957 o = bfd_get_section_by_name (abfd, ".pdr");
12958 if (! o)
b34976b6 12959 return FALSE;
eea6121a 12960 if (o->size == 0)
b34976b6 12961 return FALSE;
eea6121a 12962 if (o->size % PDR_SIZE != 0)
b34976b6 12963 return FALSE;
d01414a5
TS
12964 if (o->output_section != NULL
12965 && bfd_is_abs_section (o->output_section))
b34976b6 12966 return FALSE;
d01414a5 12967
eea6121a 12968 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12969 if (! tdata)
b34976b6 12970 return FALSE;
d01414a5 12971
9719ad41 12972 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12973 info->keep_memory);
d01414a5
TS
12974 if (!cookie->rels)
12975 {
12976 free (tdata);
b34976b6 12977 return FALSE;
d01414a5
TS
12978 }
12979
12980 cookie->rel = cookie->rels;
12981 cookie->relend = cookie->rels + o->reloc_count;
12982
eea6121a 12983 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12984 {
c152c796 12985 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12986 {
12987 tdata[i] = 1;
12988 skip ++;
12989 }
12990 }
12991
12992 if (skip != 0)
12993 {
f0abc2a1 12994 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12995 if (o->rawsize == 0)
12996 o->rawsize = o->size;
eea6121a 12997 o->size -= skip * PDR_SIZE;
b34976b6 12998 ret = TRUE;
d01414a5
TS
12999 }
13000 else
13001 free (tdata);
13002
13003 if (! info->keep_memory)
13004 free (cookie->rels);
13005
13006 return ret;
13007}
13008
b34976b6 13009bfd_boolean
9719ad41 13010_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
13011{
13012 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
13013 return TRUE;
13014 return FALSE;
53bfd6b4 13015}
d01414a5 13016
b34976b6 13017bfd_boolean
c7b8f16e
JB
13018_bfd_mips_elf_write_section (bfd *output_bfd,
13019 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
07d6d2b8 13020 asection *sec, bfd_byte *contents)
d01414a5
TS
13021{
13022 bfd_byte *to, *from, *end;
13023 int i;
13024
13025 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 13026 return FALSE;
d01414a5 13027
f0abc2a1 13028 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 13029 return FALSE;
d01414a5
TS
13030
13031 to = contents;
eea6121a 13032 end = contents + sec->size;
d01414a5
TS
13033 for (from = contents, i = 0;
13034 from < end;
13035 from += PDR_SIZE, i++)
13036 {
f0abc2a1 13037 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
13038 continue;
13039 if (to != from)
13040 memcpy (to, from, PDR_SIZE);
13041 to += PDR_SIZE;
13042 }
13043 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 13044 sec->output_offset, sec->size);
b34976b6 13045 return TRUE;
d01414a5 13046}
53bfd6b4 13047\f
df58fc94
RS
13048/* microMIPS code retains local labels for linker relaxation. Omit them
13049 from output by default for clarity. */
13050
13051bfd_boolean
13052_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13053{
13054 return _bfd_elf_is_local_label_name (abfd, sym->name);
13055}
13056
b49e97c9
TS
13057/* MIPS ELF uses a special find_nearest_line routine in order the
13058 handle the ECOFF debugging information. */
13059
13060struct mips_elf_find_line
13061{
13062 struct ecoff_debug_info d;
13063 struct ecoff_find_line i;
13064};
13065
b34976b6 13066bfd_boolean
fb167eb2
AM
13067_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13068 asection *section, bfd_vma offset,
9719ad41
RS
13069 const char **filename_ptr,
13070 const char **functionname_ptr,
fb167eb2
AM
13071 unsigned int *line_ptr,
13072 unsigned int *discriminator_ptr)
b49e97c9
TS
13073{
13074 asection *msec;
13075
fb167eb2 13076 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 13077 filename_ptr, functionname_ptr,
fb167eb2
AM
13078 line_ptr, discriminator_ptr,
13079 dwarf_debug_sections,
46d09186
NC
13080 &elf_tdata (abfd)->dwarf2_find_line_info)
13081 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13082 filename_ptr, functionname_ptr,
13083 line_ptr))
13084 {
13085 /* PR 22789: If the function name or filename was not found through
13086 the debug information, then try an ordinary lookup instead. */
13087 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
13088 || (filename_ptr != NULL && *filename_ptr == NULL))
13089 {
13090 /* Do not override already discovered names. */
13091 if (functionname_ptr != NULL && *functionname_ptr != NULL)
13092 functionname_ptr = NULL;
b49e97c9 13093
46d09186
NC
13094 if (filename_ptr != NULL && *filename_ptr != NULL)
13095 filename_ptr = NULL;
13096
13097 _bfd_elf_find_function (abfd, symbols, section, offset,
13098 filename_ptr, functionname_ptr);
13099 }
13100
13101 return TRUE;
13102 }
b49e97c9
TS
13103
13104 msec = bfd_get_section_by_name (abfd, ".mdebug");
13105 if (msec != NULL)
13106 {
13107 flagword origflags;
13108 struct mips_elf_find_line *fi;
13109 const struct ecoff_debug_swap * const swap =
13110 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13111
13112 /* If we are called during a link, mips_elf_final_link may have
13113 cleared the SEC_HAS_CONTENTS field. We force it back on here
13114 if appropriate (which it normally will be). */
13115 origflags = msec->flags;
13116 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13117 msec->flags |= SEC_HAS_CONTENTS;
13118
698600e4 13119 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
13120 if (fi == NULL)
13121 {
13122 bfd_size_type external_fdr_size;
13123 char *fraw_src;
13124 char *fraw_end;
13125 struct fdr *fdr_ptr;
13126 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13127
9719ad41 13128 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
13129 if (fi == NULL)
13130 {
13131 msec->flags = origflags;
b34976b6 13132 return FALSE;
b49e97c9
TS
13133 }
13134
13135 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13136 {
13137 msec->flags = origflags;
b34976b6 13138 return FALSE;
b49e97c9
TS
13139 }
13140
13141 /* Swap in the FDR information. */
13142 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 13143 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
13144 if (fi->d.fdr == NULL)
13145 {
13146 msec->flags = origflags;
b34976b6 13147 return FALSE;
b49e97c9
TS
13148 }
13149 external_fdr_size = swap->external_fdr_size;
13150 fdr_ptr = fi->d.fdr;
13151 fraw_src = (char *) fi->d.external_fdr;
13152 fraw_end = (fraw_src
13153 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13154 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 13155 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 13156
698600e4 13157 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
13158
13159 /* Note that we don't bother to ever free this information.
07d6d2b8
AM
13160 find_nearest_line is either called all the time, as in
13161 objdump -l, so the information should be saved, or it is
13162 rarely called, as in ld error messages, so the memory
13163 wasted is unimportant. Still, it would probably be a
13164 good idea for free_cached_info to throw it away. */
b49e97c9
TS
13165 }
13166
13167 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13168 &fi->i, filename_ptr, functionname_ptr,
13169 line_ptr))
13170 {
13171 msec->flags = origflags;
b34976b6 13172 return TRUE;
b49e97c9
TS
13173 }
13174
13175 msec->flags = origflags;
13176 }
13177
13178 /* Fall back on the generic ELF find_nearest_line routine. */
13179
fb167eb2 13180 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 13181 filename_ptr, functionname_ptr,
fb167eb2 13182 line_ptr, discriminator_ptr);
b49e97c9 13183}
4ab527b0
FF
13184
13185bfd_boolean
13186_bfd_mips_elf_find_inliner_info (bfd *abfd,
13187 const char **filename_ptr,
13188 const char **functionname_ptr,
13189 unsigned int *line_ptr)
13190{
13191 bfd_boolean found;
13192 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13193 functionname_ptr, line_ptr,
13194 & elf_tdata (abfd)->dwarf2_find_line_info);
13195 return found;
13196}
13197
b49e97c9
TS
13198\f
13199/* When are writing out the .options or .MIPS.options section,
13200 remember the bytes we are writing out, so that we can install the
13201 GP value in the section_processing routine. */
13202
b34976b6 13203bfd_boolean
9719ad41
RS
13204_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13205 const void *location,
13206 file_ptr offset, bfd_size_type count)
b49e97c9 13207{
cc2e31b9 13208 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
13209 {
13210 bfd_byte *c;
13211
13212 if (elf_section_data (section) == NULL)
13213 {
13214 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 13215 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 13216 if (elf_section_data (section) == NULL)
b34976b6 13217 return FALSE;
b49e97c9 13218 }
f0abc2a1 13219 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
13220 if (c == NULL)
13221 {
eea6121a 13222 c = bfd_zalloc (abfd, section->size);
b49e97c9 13223 if (c == NULL)
b34976b6 13224 return FALSE;
f0abc2a1 13225 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
13226 }
13227
9719ad41 13228 memcpy (c + offset, location, count);
b49e97c9
TS
13229 }
13230
13231 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13232 count);
13233}
13234
13235/* This is almost identical to bfd_generic_get_... except that some
13236 MIPS relocations need to be handled specially. Sigh. */
13237
13238bfd_byte *
9719ad41
RS
13239_bfd_elf_mips_get_relocated_section_contents
13240 (bfd *abfd,
13241 struct bfd_link_info *link_info,
13242 struct bfd_link_order *link_order,
13243 bfd_byte *data,
13244 bfd_boolean relocatable,
13245 asymbol **symbols)
b49e97c9
TS
13246{
13247 /* Get enough memory to hold the stuff */
13248 bfd *input_bfd = link_order->u.indirect.section->owner;
13249 asection *input_section = link_order->u.indirect.section;
eea6121a 13250 bfd_size_type sz;
b49e97c9
TS
13251
13252 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13253 arelent **reloc_vector = NULL;
13254 long reloc_count;
13255
13256 if (reloc_size < 0)
13257 goto error_return;
13258
9719ad41 13259 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
13260 if (reloc_vector == NULL && reloc_size != 0)
13261 goto error_return;
13262
13263 /* read in the section */
eea6121a
AM
13264 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13265 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
13266 goto error_return;
13267
b49e97c9
TS
13268 reloc_count = bfd_canonicalize_reloc (input_bfd,
13269 input_section,
13270 reloc_vector,
13271 symbols);
13272 if (reloc_count < 0)
13273 goto error_return;
13274
13275 if (reloc_count > 0)
13276 {
13277 arelent **parent;
13278 /* for mips */
13279 int gp_found;
13280 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13281
13282 {
13283 struct bfd_hash_entry *h;
13284 struct bfd_link_hash_entry *lh;
13285 /* Skip all this stuff if we aren't mixing formats. */
13286 if (abfd && input_bfd
13287 && abfd->xvec == input_bfd->xvec)
13288 lh = 0;
13289 else
13290 {
b34976b6 13291 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
13292 lh = (struct bfd_link_hash_entry *) h;
13293 }
13294 lookup:
13295 if (lh)
13296 {
13297 switch (lh->type)
13298 {
13299 case bfd_link_hash_undefined:
13300 case bfd_link_hash_undefweak:
13301 case bfd_link_hash_common:
13302 gp_found = 0;
13303 break;
13304 case bfd_link_hash_defined:
13305 case bfd_link_hash_defweak:
13306 gp_found = 1;
13307 gp = lh->u.def.value;
13308 break;
13309 case bfd_link_hash_indirect:
13310 case bfd_link_hash_warning:
13311 lh = lh->u.i.link;
13312 /* @@FIXME ignoring warning for now */
13313 goto lookup;
13314 case bfd_link_hash_new:
13315 default:
13316 abort ();
13317 }
13318 }
13319 else
13320 gp_found = 0;
13321 }
13322 /* end mips */
9719ad41 13323 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 13324 {
9719ad41 13325 char *error_message = NULL;
b49e97c9
TS
13326 bfd_reloc_status_type r;
13327
13328 /* Specific to MIPS: Deal with relocation types that require
13329 knowing the gp of the output bfd. */
13330 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 13331
8236346f
EC
13332 /* If we've managed to find the gp and have a special
13333 function for the relocation then go ahead, else default
13334 to the generic handling. */
13335 if (gp_found
13336 && (*parent)->howto->special_function
13337 == _bfd_mips_elf32_gprel16_reloc)
13338 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13339 input_section, relocatable,
13340 data, gp);
13341 else
86324f90 13342 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
13343 input_section,
13344 relocatable ? abfd : NULL,
13345 &error_message);
b49e97c9 13346
1049f94e 13347 if (relocatable)
b49e97c9
TS
13348 {
13349 asection *os = input_section->output_section;
13350
13351 /* A partial link, so keep the relocs */
13352 os->orelocation[os->reloc_count] = *parent;
13353 os->reloc_count++;
13354 }
13355
13356 if (r != bfd_reloc_ok)
13357 {
13358 switch (r)
13359 {
13360 case bfd_reloc_undefined:
1a72702b
AM
13361 (*link_info->callbacks->undefined_symbol)
13362 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13363 input_bfd, input_section, (*parent)->address, TRUE);
b49e97c9
TS
13364 break;
13365 case bfd_reloc_dangerous:
9719ad41 13366 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13367 (*link_info->callbacks->reloc_dangerous)
13368 (link_info, error_message,
13369 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13370 break;
13371 case bfd_reloc_overflow:
1a72702b
AM
13372 (*link_info->callbacks->reloc_overflow)
13373 (link_info, NULL,
13374 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13375 (*parent)->howto->name, (*parent)->addend,
13376 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13377 break;
13378 case bfd_reloc_outofrange:
13379 default:
13380 abort ();
13381 break;
13382 }
13383
13384 }
13385 }
13386 }
13387 if (reloc_vector != NULL)
13388 free (reloc_vector);
13389 return data;
13390
13391error_return:
13392 if (reloc_vector != NULL)
13393 free (reloc_vector);
13394 return NULL;
13395}
13396\f
df58fc94
RS
13397static bfd_boolean
13398mips_elf_relax_delete_bytes (bfd *abfd,
13399 asection *sec, bfd_vma addr, int count)
13400{
13401 Elf_Internal_Shdr *symtab_hdr;
13402 unsigned int sec_shndx;
13403 bfd_byte *contents;
13404 Elf_Internal_Rela *irel, *irelend;
13405 Elf_Internal_Sym *isym;
13406 Elf_Internal_Sym *isymend;
13407 struct elf_link_hash_entry **sym_hashes;
13408 struct elf_link_hash_entry **end_hashes;
13409 struct elf_link_hash_entry **start_hashes;
13410 unsigned int symcount;
13411
13412 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13413 contents = elf_section_data (sec)->this_hdr.contents;
13414
13415 irel = elf_section_data (sec)->relocs;
13416 irelend = irel + sec->reloc_count;
13417
13418 /* Actually delete the bytes. */
13419 memmove (contents + addr, contents + addr + count,
13420 (size_t) (sec->size - addr - count));
13421 sec->size -= count;
13422
13423 /* Adjust all the relocs. */
13424 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13425 {
13426 /* Get the new reloc address. */
13427 if (irel->r_offset > addr)
13428 irel->r_offset -= count;
13429 }
13430
13431 BFD_ASSERT (addr % 2 == 0);
13432 BFD_ASSERT (count % 2 == 0);
13433
13434 /* Adjust the local symbols defined in this section. */
13435 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13436 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13437 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13438 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13439 isym->st_value -= count;
13440
13441 /* Now adjust the global symbols defined in this section. */
13442 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13443 - symtab_hdr->sh_info);
13444 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13445 end_hashes = sym_hashes + symcount;
13446
13447 for (; sym_hashes < end_hashes; sym_hashes++)
13448 {
13449 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13450
13451 if ((sym_hash->root.type == bfd_link_hash_defined
13452 || sym_hash->root.type == bfd_link_hash_defweak)
13453 && sym_hash->root.u.def.section == sec)
13454 {
2309ddf2 13455 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13456
df58fc94
RS
13457 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13458 value &= MINUS_TWO;
13459 if (value > addr)
13460 sym_hash->root.u.def.value -= count;
13461 }
13462 }
13463
13464 return TRUE;
13465}
13466
13467
13468/* Opcodes needed for microMIPS relaxation as found in
13469 opcodes/micromips-opc.c. */
13470
13471struct opcode_descriptor {
13472 unsigned long match;
13473 unsigned long mask;
13474};
13475
13476/* The $ra register aka $31. */
13477
13478#define RA 31
13479
13480/* 32-bit instruction format register fields. */
13481
13482#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13483#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13484
13485/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13486
13487#define OP16_VALID_REG(r) \
13488 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13489
13490
13491/* 32-bit and 16-bit branches. */
13492
13493static const struct opcode_descriptor b_insns_32[] = {
13494 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13495 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13496 { 0, 0 } /* End marker for find_match(). */
13497};
13498
13499static const struct opcode_descriptor bc_insn_32 =
13500 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13501
13502static const struct opcode_descriptor bz_insn_32 =
13503 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13504
13505static const struct opcode_descriptor bzal_insn_32 =
13506 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13507
13508static const struct opcode_descriptor beq_insn_32 =
13509 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13510
13511static const struct opcode_descriptor b_insn_16 =
13512 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13513
13514static const struct opcode_descriptor bz_insn_16 =
c088dedf 13515 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13516
13517
13518/* 32-bit and 16-bit branch EQ and NE zero. */
13519
13520/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13521 eq and second the ne. This convention is used when replacing a
13522 32-bit BEQ/BNE with the 16-bit version. */
13523
13524#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13525
13526static const struct opcode_descriptor bz_rs_insns_32[] = {
13527 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13528 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13529 { 0, 0 } /* End marker for find_match(). */
13530};
13531
13532static const struct opcode_descriptor bz_rt_insns_32[] = {
13533 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13534 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13535 { 0, 0 } /* End marker for find_match(). */
13536};
13537
13538static const struct opcode_descriptor bzc_insns_32[] = {
13539 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13540 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13541 { 0, 0 } /* End marker for find_match(). */
13542};
13543
13544static const struct opcode_descriptor bz_insns_16[] = {
13545 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13546 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13547 { 0, 0 } /* End marker for find_match(). */
13548};
13549
13550/* Switch between a 5-bit register index and its 3-bit shorthand. */
13551
e67f83e5 13552#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13553#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13554
13555
13556/* 32-bit instructions with a delay slot. */
13557
13558static const struct opcode_descriptor jal_insn_32_bd16 =
13559 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13560
13561static const struct opcode_descriptor jal_insn_32_bd32 =
13562 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13563
13564static const struct opcode_descriptor jal_x_insn_32_bd32 =
13565 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13566
13567static const struct opcode_descriptor j_insn_32 =
13568 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13569
13570static const struct opcode_descriptor jalr_insn_32 =
13571 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13572
13573/* This table can be compacted, because no opcode replacement is made. */
13574
13575static const struct opcode_descriptor ds_insns_32_bd16[] = {
13576 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13577
13578 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13579 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13580
13581 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13582 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13583 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13584 { 0, 0 } /* End marker for find_match(). */
13585};
13586
13587/* This table can be compacted, because no opcode replacement is made. */
13588
13589static const struct opcode_descriptor ds_insns_32_bd32[] = {
13590 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13591
13592 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13593 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13594 { 0, 0 } /* End marker for find_match(). */
13595};
13596
13597
13598/* 16-bit instructions with a delay slot. */
13599
13600static const struct opcode_descriptor jalr_insn_16_bd16 =
13601 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13602
13603static const struct opcode_descriptor jalr_insn_16_bd32 =
13604 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13605
13606static const struct opcode_descriptor jr_insn_16 =
13607 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13608
13609#define JR16_REG(opcode) ((opcode) & 0x1f)
13610
13611/* This table can be compacted, because no opcode replacement is made. */
13612
13613static const struct opcode_descriptor ds_insns_16_bd16[] = {
13614 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13615
13616 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13617 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13618 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13619 { 0, 0 } /* End marker for find_match(). */
13620};
13621
13622
13623/* LUI instruction. */
13624
13625static const struct opcode_descriptor lui_insn =
13626 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13627
13628
13629/* ADDIU instruction. */
13630
13631static const struct opcode_descriptor addiu_insn =
13632 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13633
13634static const struct opcode_descriptor addiupc_insn =
13635 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13636
13637#define ADDIUPC_REG_FIELD(r) \
13638 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13639
13640
13641/* Relaxable instructions in a JAL delay slot: MOVE. */
13642
13643/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13644 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13645#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13646#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13647
13648#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13649#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13650
13651static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13652 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13653 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13654 { 0, 0 } /* End marker for find_match(). */
13655};
13656
13657static const struct opcode_descriptor move_insn_16 =
13658 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13659
13660
13661/* NOP instructions. */
13662
13663static const struct opcode_descriptor nop_insn_32 =
13664 { /* "nop", "", */ 0x00000000, 0xffffffff };
13665
13666static const struct opcode_descriptor nop_insn_16 =
13667 { /* "nop", "", */ 0x0c00, 0xffff };
13668
13669
13670/* Instruction match support. */
13671
13672#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13673
13674static int
13675find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13676{
13677 unsigned long indx;
13678
13679 for (indx = 0; insn[indx].mask != 0; indx++)
13680 if (MATCH (opcode, insn[indx]))
13681 return indx;
13682
13683 return -1;
13684}
13685
13686
13687/* Branch and delay slot decoding support. */
13688
13689/* If PTR points to what *might* be a 16-bit branch or jump, then
13690 return the minimum length of its delay slot, otherwise return 0.
13691 Non-zero results are not definitive as we might be checking against
13692 the second half of another instruction. */
13693
13694static int
13695check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13696{
13697 unsigned long opcode;
13698 int bdsize;
13699
13700 opcode = bfd_get_16 (abfd, ptr);
13701 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13702 /* 16-bit branch/jump with a 32-bit delay slot. */
13703 bdsize = 4;
13704 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13705 || find_match (opcode, ds_insns_16_bd16) >= 0)
13706 /* 16-bit branch/jump with a 16-bit delay slot. */
13707 bdsize = 2;
13708 else
13709 /* No delay slot. */
13710 bdsize = 0;
13711
13712 return bdsize;
13713}
13714
13715/* If PTR points to what *might* be a 32-bit branch or jump, then
13716 return the minimum length of its delay slot, otherwise return 0.
13717 Non-zero results are not definitive as we might be checking against
13718 the second half of another instruction. */
13719
13720static int
13721check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13722{
13723 unsigned long opcode;
13724 int bdsize;
13725
d21911ea 13726 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13727 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13728 /* 32-bit branch/jump with a 32-bit delay slot. */
13729 bdsize = 4;
13730 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13731 /* 32-bit branch/jump with a 16-bit delay slot. */
13732 bdsize = 2;
13733 else
13734 /* No delay slot. */
13735 bdsize = 0;
13736
13737 return bdsize;
13738}
13739
13740/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13741 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13742
13743static bfd_boolean
13744check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13745{
13746 unsigned long opcode;
13747
13748 opcode = bfd_get_16 (abfd, ptr);
13749 if (MATCH (opcode, b_insn_16)
13750 /* B16 */
13751 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13752 /* JR16 */
13753 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13754 /* BEQZ16, BNEZ16 */
13755 || (MATCH (opcode, jalr_insn_16_bd32)
13756 /* JALR16 */
13757 && reg != JR16_REG (opcode) && reg != RA))
13758 return TRUE;
13759
13760 return FALSE;
13761}
13762
13763/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13764 then return TRUE, otherwise FALSE. */
13765
f41e5fcc 13766static bfd_boolean
df58fc94
RS
13767check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13768{
13769 unsigned long opcode;
13770
d21911ea 13771 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13772 if (MATCH (opcode, j_insn_32)
13773 /* J */
13774 || MATCH (opcode, bc_insn_32)
13775 /* BC1F, BC1T, BC2F, BC2T */
13776 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13777 /* JAL, JALX */
13778 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13779 /* BGEZ, BGTZ, BLEZ, BLTZ */
13780 || (MATCH (opcode, bzal_insn_32)
13781 /* BGEZAL, BLTZAL */
13782 && reg != OP32_SREG (opcode) && reg != RA)
13783 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13784 /* JALR, JALR.HB, BEQ, BNE */
13785 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13786 return TRUE;
13787
13788 return FALSE;
13789}
13790
80cab405
MR
13791/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13792 IRELEND) at OFFSET indicate that there must be a compact branch there,
13793 then return TRUE, otherwise FALSE. */
df58fc94
RS
13794
13795static bfd_boolean
80cab405
MR
13796check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13797 const Elf_Internal_Rela *internal_relocs,
13798 const Elf_Internal_Rela *irelend)
df58fc94 13799{
80cab405
MR
13800 const Elf_Internal_Rela *irel;
13801 unsigned long opcode;
13802
d21911ea 13803 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13804 if (find_match (opcode, bzc_insns_32) < 0)
13805 return FALSE;
df58fc94
RS
13806
13807 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13808 if (irel->r_offset == offset
13809 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13810 return TRUE;
13811
df58fc94
RS
13812 return FALSE;
13813}
80cab405
MR
13814
13815/* Bitsize checking. */
13816#define IS_BITSIZE(val, N) \
13817 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13818 - (1ULL << ((N) - 1))) == (val))
13819
df58fc94
RS
13820\f
13821bfd_boolean
13822_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13823 struct bfd_link_info *link_info,
13824 bfd_boolean *again)
13825{
833794fc 13826 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13827 Elf_Internal_Shdr *symtab_hdr;
13828 Elf_Internal_Rela *internal_relocs;
13829 Elf_Internal_Rela *irel, *irelend;
13830 bfd_byte *contents = NULL;
13831 Elf_Internal_Sym *isymbuf = NULL;
13832
13833 /* Assume nothing changes. */
13834 *again = FALSE;
13835
13836 /* We don't have to do anything for a relocatable link, if
13837 this section does not have relocs, or if this is not a
13838 code section. */
13839
0e1862bb 13840 if (bfd_link_relocatable (link_info)
df58fc94
RS
13841 || (sec->flags & SEC_RELOC) == 0
13842 || sec->reloc_count == 0
13843 || (sec->flags & SEC_CODE) == 0)
13844 return TRUE;
13845
13846 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13847
13848 /* Get a copy of the native relocations. */
13849 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13850 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13851 link_info->keep_memory));
13852 if (internal_relocs == NULL)
13853 goto error_return;
13854
13855 /* Walk through them looking for relaxing opportunities. */
13856 irelend = internal_relocs + sec->reloc_count;
13857 for (irel = internal_relocs; irel < irelend; irel++)
13858 {
13859 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13860 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13861 bfd_boolean target_is_micromips_code_p;
13862 unsigned long opcode;
13863 bfd_vma symval;
13864 bfd_vma pcrval;
2309ddf2 13865 bfd_byte *ptr;
df58fc94
RS
13866 int fndopc;
13867
13868 /* The number of bytes to delete for relaxation and from where
07d6d2b8 13869 to delete these bytes starting at irel->r_offset. */
df58fc94
RS
13870 int delcnt = 0;
13871 int deloff = 0;
13872
13873 /* If this isn't something that can be relaxed, then ignore
07d6d2b8 13874 this reloc. */
df58fc94
RS
13875 if (r_type != R_MICROMIPS_HI16
13876 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13877 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13878 continue;
13879
13880 /* Get the section contents if we haven't done so already. */
13881 if (contents == NULL)
13882 {
13883 /* Get cached copy if it exists. */
13884 if (elf_section_data (sec)->this_hdr.contents != NULL)
13885 contents = elf_section_data (sec)->this_hdr.contents;
13886 /* Go get them off disk. */
13887 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13888 goto error_return;
13889 }
2309ddf2 13890 ptr = contents + irel->r_offset;
df58fc94
RS
13891
13892 /* Read this BFD's local symbols if we haven't done so already. */
13893 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13894 {
13895 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13896 if (isymbuf == NULL)
13897 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13898 symtab_hdr->sh_info, 0,
13899 NULL, NULL, NULL);
13900 if (isymbuf == NULL)
13901 goto error_return;
13902 }
13903
13904 /* Get the value of the symbol referred to by the reloc. */
13905 if (r_symndx < symtab_hdr->sh_info)
13906 {
13907 /* A local symbol. */
13908 Elf_Internal_Sym *isym;
13909 asection *sym_sec;
13910
13911 isym = isymbuf + r_symndx;
13912 if (isym->st_shndx == SHN_UNDEF)
13913 sym_sec = bfd_und_section_ptr;
13914 else if (isym->st_shndx == SHN_ABS)
13915 sym_sec = bfd_abs_section_ptr;
13916 else if (isym->st_shndx == SHN_COMMON)
13917 sym_sec = bfd_com_section_ptr;
13918 else
13919 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13920 symval = (isym->st_value
13921 + sym_sec->output_section->vma
13922 + sym_sec->output_offset);
13923 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13924 }
13925 else
13926 {
13927 unsigned long indx;
13928 struct elf_link_hash_entry *h;
13929
13930 /* An external symbol. */
13931 indx = r_symndx - symtab_hdr->sh_info;
13932 h = elf_sym_hashes (abfd)[indx];
13933 BFD_ASSERT (h != NULL);
13934
13935 if (h->root.type != bfd_link_hash_defined
13936 && h->root.type != bfd_link_hash_defweak)
13937 /* This appears to be a reference to an undefined
13938 symbol. Just ignore it -- it will be caught by the
13939 regular reloc processing. */
13940 continue;
13941
13942 symval = (h->root.u.def.value
13943 + h->root.u.def.section->output_section->vma
13944 + h->root.u.def.section->output_offset);
13945 target_is_micromips_code_p = (!h->needs_plt
13946 && ELF_ST_IS_MICROMIPS (h->other));
13947 }
13948
13949
13950 /* For simplicity of coding, we are going to modify the
07d6d2b8
AM
13951 section contents, the section relocs, and the BFD symbol
13952 table. We must tell the rest of the code not to free up this
13953 information. It would be possible to instead create a table
13954 of changes which have to be made, as is done in coff-mips.c;
13955 that would be more work, but would require less memory when
13956 the linker is run. */
df58fc94
RS
13957
13958 /* Only 32-bit instructions relaxed. */
13959 if (irel->r_offset + 4 > sec->size)
13960 continue;
13961
d21911ea 13962 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13963
13964 /* This is the pc-relative distance from the instruction the
07d6d2b8 13965 relocation is applied to, to the symbol referred. */
df58fc94
RS
13966 pcrval = (symval
13967 - (sec->output_section->vma + sec->output_offset)
13968 - irel->r_offset);
13969
13970 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
07d6d2b8
AM
13971 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13972 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
df58fc94 13973
07d6d2b8 13974 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
df58fc94 13975
07d6d2b8
AM
13976 where pcrval has first to be adjusted to apply against the LO16
13977 location (we make the adjustment later on, when we have figured
13978 out the offset). */
df58fc94
RS
13979 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13980 {
80cab405 13981 bfd_boolean bzc = FALSE;
df58fc94
RS
13982 unsigned long nextopc;
13983 unsigned long reg;
13984 bfd_vma offset;
13985
13986 /* Give up if the previous reloc was a HI16 against this symbol
13987 too. */
13988 if (irel > internal_relocs
13989 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13990 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13991 continue;
13992
13993 /* Or if the next reloc is not a LO16 against this symbol. */
13994 if (irel + 1 >= irelend
13995 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13996 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13997 continue;
13998
13999 /* Or if the second next reloc is a LO16 against this symbol too. */
14000 if (irel + 2 >= irelend
14001 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
14002 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
14003 continue;
14004
80cab405
MR
14005 /* See if the LUI instruction *might* be in a branch delay slot.
14006 We check whether what looks like a 16-bit branch or jump is
14007 actually an immediate argument to a compact branch, and let
14008 it through if so. */
df58fc94 14009 if (irel->r_offset >= 2
2309ddf2 14010 && check_br16_dslot (abfd, ptr - 2)
df58fc94 14011 && !(irel->r_offset >= 4
80cab405
MR
14012 && (bzc = check_relocated_bzc (abfd,
14013 ptr - 4, irel->r_offset - 4,
14014 internal_relocs, irelend))))
df58fc94
RS
14015 continue;
14016 if (irel->r_offset >= 4
80cab405 14017 && !bzc
2309ddf2 14018 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
14019 continue;
14020
14021 reg = OP32_SREG (opcode);
14022
14023 /* We only relax adjacent instructions or ones separated with
14024 a branch or jump that has a delay slot. The branch or jump
14025 must not fiddle with the register used to hold the address.
14026 Subtract 4 for the LUI itself. */
14027 offset = irel[1].r_offset - irel[0].r_offset;
14028 switch (offset - 4)
14029 {
14030 case 0:
14031 break;
14032 case 2:
2309ddf2 14033 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
14034 break;
14035 continue;
14036 case 4:
2309ddf2 14037 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
14038 break;
14039 continue;
14040 default:
14041 continue;
14042 }
14043
d21911ea 14044 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
14045
14046 /* Give up unless the same register is used with both
14047 relocations. */
14048 if (OP32_SREG (nextopc) != reg)
14049 continue;
14050
14051 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14052 and rounding up to take masking of the two LSBs into account. */
14053 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14054
14055 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14056 if (IS_BITSIZE (symval, 16))
14057 {
14058 /* Fix the relocation's type. */
14059 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14060
14061 /* Instructions using R_MICROMIPS_LO16 have the base or
07d6d2b8
AM
14062 source register in bits 20:16. This register becomes $0
14063 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
df58fc94
RS
14064 nextopc &= ~0x001f0000;
14065 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14066 contents + irel[1].r_offset);
14067 }
14068
14069 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14070 We add 4 to take LUI deletion into account while checking
14071 the PC-relative distance. */
14072 else if (symval % 4 == 0
14073 && IS_BITSIZE (pcrval + 4, 25)
14074 && MATCH (nextopc, addiu_insn)
14075 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14076 && OP16_VALID_REG (OP32_TREG (nextopc)))
14077 {
14078 /* Fix the relocation's type. */
14079 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14080
14081 /* Replace ADDIU with the ADDIUPC version. */
14082 nextopc = (addiupc_insn.match
14083 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14084
d21911ea
MR
14085 bfd_put_micromips_32 (abfd, nextopc,
14086 contents + irel[1].r_offset);
df58fc94
RS
14087 }
14088
14089 /* Can't do anything, give up, sigh... */
14090 else
14091 continue;
14092
14093 /* Fix the relocation's type. */
14094 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14095
14096 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14097 delcnt = 4;
14098 deloff = 0;
14099 }
14100
14101 /* Compact branch relaxation -- due to the multitude of macros
07d6d2b8
AM
14102 employed by the compiler/assembler, compact branches are not
14103 always generated. Obviously, this can/will be fixed elsewhere,
14104 but there is no drawback in double checking it here. */
df58fc94
RS
14105 else if (r_type == R_MICROMIPS_PC16_S1
14106 && irel->r_offset + 5 < sec->size
14107 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14108 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
14109 && ((!insn32
14110 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14111 nop_insn_16) ? 2 : 0))
14112 || (irel->r_offset + 7 < sec->size
14113 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14114 ptr + 4),
14115 nop_insn_32) ? 4 : 0))))
df58fc94
RS
14116 {
14117 unsigned long reg;
14118
14119 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14120
14121 /* Replace BEQZ/BNEZ with the compact version. */
14122 opcode = (bzc_insns_32[fndopc].match
14123 | BZC32_REG_FIELD (reg)
14124 | (opcode & 0xffff)); /* Addend value. */
14125
d21911ea 14126 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 14127
833794fc
MR
14128 /* Delete the delay slot NOP: two or four bytes from
14129 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
14130 deloff = 4;
14131 }
14132
14133 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
07d6d2b8 14134 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
14135 else if (!insn32
14136 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
14137 && IS_BITSIZE (pcrval - 2, 11)
14138 && find_match (opcode, b_insns_32) >= 0)
14139 {
14140 /* Fix the relocation's type. */
14141 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14142
a8685210 14143 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
14144 bfd_put_16 (abfd,
14145 (b_insn_16.match
14146 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 14147 ptr);
df58fc94
RS
14148
14149 /* Delete 2 bytes from irel->r_offset + 2. */
14150 delcnt = 2;
14151 deloff = 2;
14152 }
14153
14154 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
07d6d2b8 14155 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
14156 else if (!insn32
14157 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
14158 && IS_BITSIZE (pcrval - 2, 8)
14159 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14160 && OP16_VALID_REG (OP32_SREG (opcode)))
14161 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14162 && OP16_VALID_REG (OP32_TREG (opcode)))))
14163 {
14164 unsigned long reg;
14165
14166 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14167
14168 /* Fix the relocation's type. */
14169 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14170
a8685210 14171 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
14172 bfd_put_16 (abfd,
14173 (bz_insns_16[fndopc].match
14174 | BZ16_REG_FIELD (reg)
14175 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 14176 ptr);
df58fc94
RS
14177
14178 /* Delete 2 bytes from irel->r_offset + 2. */
14179 delcnt = 2;
14180 deloff = 2;
14181 }
14182
14183 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
14184 else if (!insn32
14185 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
14186 && target_is_micromips_code_p
14187 && irel->r_offset + 7 < sec->size
14188 && MATCH (opcode, jal_insn_32_bd32))
14189 {
14190 unsigned long n32opc;
14191 bfd_boolean relaxed = FALSE;
14192
d21911ea 14193 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
14194
14195 if (MATCH (n32opc, nop_insn_32))
14196 {
14197 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 14198 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
14199
14200 relaxed = TRUE;
14201 }
14202 else if (find_match (n32opc, move_insns_32) >= 0)
14203 {
14204 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14205 bfd_put_16 (abfd,
14206 (move_insn_16.match
14207 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14208 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 14209 ptr + 4);
df58fc94
RS
14210
14211 relaxed = TRUE;
14212 }
14213 /* Other 32-bit instructions relaxable to 16-bit
14214 instructions will be handled here later. */
14215
14216 if (relaxed)
14217 {
14218 /* JAL with 32-bit delay slot that is changed to a JALS
07d6d2b8 14219 with 16-bit delay slot. */
d21911ea 14220 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
14221
14222 /* Delete 2 bytes from irel->r_offset + 6. */
14223 delcnt = 2;
14224 deloff = 6;
14225 }
14226 }
14227
14228 if (delcnt != 0)
14229 {
14230 /* Note that we've changed the relocs, section contents, etc. */
14231 elf_section_data (sec)->relocs = internal_relocs;
14232 elf_section_data (sec)->this_hdr.contents = contents;
14233 symtab_hdr->contents = (unsigned char *) isymbuf;
14234
14235 /* Delete bytes depending on the delcnt and deloff. */
14236 if (!mips_elf_relax_delete_bytes (abfd, sec,
14237 irel->r_offset + deloff, delcnt))
14238 goto error_return;
14239
14240 /* That will change things, so we should relax again.
14241 Note that this is not required, and it may be slow. */
14242 *again = TRUE;
14243 }
14244 }
14245
14246 if (isymbuf != NULL
14247 && symtab_hdr->contents != (unsigned char *) isymbuf)
14248 {
14249 if (! link_info->keep_memory)
14250 free (isymbuf);
14251 else
14252 {
14253 /* Cache the symbols for elf_link_input_bfd. */
14254 symtab_hdr->contents = (unsigned char *) isymbuf;
14255 }
14256 }
14257
14258 if (contents != NULL
14259 && elf_section_data (sec)->this_hdr.contents != contents)
14260 {
14261 if (! link_info->keep_memory)
14262 free (contents);
14263 else
14264 {
14265 /* Cache the section contents for elf_link_input_bfd. */
14266 elf_section_data (sec)->this_hdr.contents = contents;
14267 }
14268 }
14269
14270 if (internal_relocs != NULL
14271 && elf_section_data (sec)->relocs != internal_relocs)
14272 free (internal_relocs);
14273
14274 return TRUE;
14275
14276 error_return:
14277 if (isymbuf != NULL
14278 && symtab_hdr->contents != (unsigned char *) isymbuf)
14279 free (isymbuf);
14280 if (contents != NULL
14281 && elf_section_data (sec)->this_hdr.contents != contents)
14282 free (contents);
14283 if (internal_relocs != NULL
14284 && elf_section_data (sec)->relocs != internal_relocs)
14285 free (internal_relocs);
14286
14287 return FALSE;
14288}
14289\f
b49e97c9
TS
14290/* Create a MIPS ELF linker hash table. */
14291
14292struct bfd_link_hash_table *
9719ad41 14293_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
14294{
14295 struct mips_elf_link_hash_table *ret;
14296 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14297
7bf52ea2 14298 ret = bfd_zmalloc (amt);
9719ad41 14299 if (ret == NULL)
b49e97c9
TS
14300 return NULL;
14301
66eb6687
AM
14302 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14303 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
14304 sizeof (struct mips_elf_link_hash_entry),
14305 MIPS_ELF_DATA))
b49e97c9 14306 {
e2d34d7d 14307 free (ret);
b49e97c9
TS
14308 return NULL;
14309 }
1bbce132
MR
14310 ret->root.init_plt_refcount.plist = NULL;
14311 ret->root.init_plt_offset.plist = NULL;
b49e97c9 14312
b49e97c9
TS
14313 return &ret->root.root;
14314}
0a44bf69
RS
14315
14316/* Likewise, but indicate that the target is VxWorks. */
14317
14318struct bfd_link_hash_table *
14319_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14320{
14321 struct bfd_link_hash_table *ret;
14322
14323 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14324 if (ret)
14325 {
14326 struct mips_elf_link_hash_table *htab;
14327
14328 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
14329 htab->use_plts_and_copy_relocs = TRUE;
14330 htab->is_vxworks = TRUE;
0a44bf69
RS
14331 }
14332 return ret;
14333}
861fb55a
DJ
14334
14335/* A function that the linker calls if we are allowed to use PLTs
14336 and copy relocs. */
14337
14338void
14339_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14340{
14341 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14342}
833794fc
MR
14343
14344/* A function that the linker calls to select between all or only
8b10b0b3 14345 32-bit microMIPS instructions, and between making or ignoring
47275900
MR
14346 branch relocation checks for invalid transitions between ISA modes.
14347 Also record whether we have been configured for a GNU target. */
833794fc
MR
14348
14349void
8b10b0b3 14350_bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
47275900
MR
14351 bfd_boolean ignore_branch_isa,
14352 bfd_boolean gnu_target)
833794fc 14353{
8b10b0b3
MR
14354 mips_elf_hash_table (info)->insn32 = insn32;
14355 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
47275900 14356 mips_elf_hash_table (info)->gnu_target = gnu_target;
833794fc 14357}
3734320d
MF
14358
14359/* A function that the linker calls to enable use of compact branches in
14360 linker generated code for MIPSR6. */
14361
14362void
14363_bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14364{
14365 mips_elf_hash_table (info)->compact_branches = on;
14366}
14367
b49e97c9 14368\f
c97c330b
MF
14369/* Structure for saying that BFD machine EXTENSION extends BASE. */
14370
14371struct mips_mach_extension
14372{
14373 unsigned long extension, base;
14374};
14375
14376
14377/* An array describing how BFD machines relate to one another. The entries
14378 are ordered topologically with MIPS I extensions listed last. */
14379
14380static const struct mips_mach_extension mips_mach_extensions[] =
14381{
14382 /* MIPS64r2 extensions. */
14383 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14384 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14385 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14386 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
9108bc33 14387 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
bd782c07 14388 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
ac8cb70f 14389 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
c97c330b
MF
14390
14391 /* MIPS64 extensions. */
14392 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14393 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14394 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14395
14396 /* MIPS V extensions. */
14397 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14398
14399 /* R10000 extensions. */
14400 { bfd_mach_mips12000, bfd_mach_mips10000 },
14401 { bfd_mach_mips14000, bfd_mach_mips10000 },
14402 { bfd_mach_mips16000, bfd_mach_mips10000 },
14403
14404 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14405 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14406 better to allow vr5400 and vr5500 code to be merged anyway, since
14407 many libraries will just use the core ISA. Perhaps we could add
14408 some sort of ASE flag if this ever proves a problem. */
14409 { bfd_mach_mips5500, bfd_mach_mips5400 },
14410 { bfd_mach_mips5400, bfd_mach_mips5000 },
14411
14412 /* MIPS IV extensions. */
14413 { bfd_mach_mips5, bfd_mach_mips8000 },
14414 { bfd_mach_mips10000, bfd_mach_mips8000 },
14415 { bfd_mach_mips5000, bfd_mach_mips8000 },
14416 { bfd_mach_mips7000, bfd_mach_mips8000 },
14417 { bfd_mach_mips9000, bfd_mach_mips8000 },
14418
14419 /* VR4100 extensions. */
14420 { bfd_mach_mips4120, bfd_mach_mips4100 },
14421 { bfd_mach_mips4111, bfd_mach_mips4100 },
14422
14423 /* MIPS III extensions. */
14424 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14425 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14426 { bfd_mach_mips8000, bfd_mach_mips4000 },
14427 { bfd_mach_mips4650, bfd_mach_mips4000 },
14428 { bfd_mach_mips4600, bfd_mach_mips4000 },
14429 { bfd_mach_mips4400, bfd_mach_mips4000 },
14430 { bfd_mach_mips4300, bfd_mach_mips4000 },
14431 { bfd_mach_mips4100, bfd_mach_mips4000 },
c97c330b
MF
14432 { bfd_mach_mips5900, bfd_mach_mips4000 },
14433
38bf472a
MR
14434 /* MIPS32r3 extensions. */
14435 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14436
14437 /* MIPS32r2 extensions. */
14438 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14439
c97c330b
MF
14440 /* MIPS32 extensions. */
14441 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14442
14443 /* MIPS II extensions. */
14444 { bfd_mach_mips4000, bfd_mach_mips6000 },
14445 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
b417536f 14446 { bfd_mach_mips4010, bfd_mach_mips6000 },
c97c330b
MF
14447
14448 /* MIPS I extensions. */
14449 { bfd_mach_mips6000, bfd_mach_mips3000 },
14450 { bfd_mach_mips3900, bfd_mach_mips3000 }
14451};
14452
14453/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14454
14455static bfd_boolean
14456mips_mach_extends_p (unsigned long base, unsigned long extension)
14457{
14458 size_t i;
14459
14460 if (extension == base)
14461 return TRUE;
14462
14463 if (base == bfd_mach_mipsisa32
14464 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14465 return TRUE;
14466
14467 if (base == bfd_mach_mipsisa32r2
14468 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14469 return TRUE;
14470
14471 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14472 if (extension == mips_mach_extensions[i].extension)
14473 {
14474 extension = mips_mach_extensions[i].base;
14475 if (extension == base)
14476 return TRUE;
14477 }
14478
14479 return FALSE;
14480}
14481
14482/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14483
14484static unsigned long
14485bfd_mips_isa_ext_mach (unsigned int isa_ext)
14486{
14487 switch (isa_ext)
14488 {
07d6d2b8
AM
14489 case AFL_EXT_3900: return bfd_mach_mips3900;
14490 case AFL_EXT_4010: return bfd_mach_mips4010;
14491 case AFL_EXT_4100: return bfd_mach_mips4100;
14492 case AFL_EXT_4111: return bfd_mach_mips4111;
14493 case AFL_EXT_4120: return bfd_mach_mips4120;
14494 case AFL_EXT_4650: return bfd_mach_mips4650;
14495 case AFL_EXT_5400: return bfd_mach_mips5400;
14496 case AFL_EXT_5500: return bfd_mach_mips5500;
14497 case AFL_EXT_5900: return bfd_mach_mips5900;
14498 case AFL_EXT_10000: return bfd_mach_mips10000;
c97c330b
MF
14499 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14500 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
07d6d2b8 14501 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
c97c330b
MF
14502 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14503 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14504 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
07d6d2b8
AM
14505 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14506 default: return bfd_mach_mips3000;
c97c330b
MF
14507 }
14508}
14509
351cdf24
MF
14510/* Return the .MIPS.abiflags value representing each ISA Extension. */
14511
14512unsigned int
14513bfd_mips_isa_ext (bfd *abfd)
14514{
14515 switch (bfd_get_mach (abfd))
14516 {
07d6d2b8
AM
14517 case bfd_mach_mips3900: return AFL_EXT_3900;
14518 case bfd_mach_mips4010: return AFL_EXT_4010;
14519 case bfd_mach_mips4100: return AFL_EXT_4100;
14520 case bfd_mach_mips4111: return AFL_EXT_4111;
14521 case bfd_mach_mips4120: return AFL_EXT_4120;
14522 case bfd_mach_mips4650: return AFL_EXT_4650;
14523 case bfd_mach_mips5400: return AFL_EXT_5400;
14524 case bfd_mach_mips5500: return AFL_EXT_5500;
14525 case bfd_mach_mips5900: return AFL_EXT_5900;
14526 case bfd_mach_mips10000: return AFL_EXT_10000;
c97c330b
MF
14527 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14528 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
07d6d2b8
AM
14529 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14530 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14531 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14532 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14533 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14534 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
38bf472a
MR
14535 case bfd_mach_mips_interaptiv_mr2:
14536 return AFL_EXT_INTERAPTIV_MR2;
07d6d2b8 14537 default: return 0;
c97c330b
MF
14538 }
14539}
14540
14541/* Encode ISA level and revision as a single value. */
14542#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14543
14544/* Decode a single value into level and revision. */
14545#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14546#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14547
14548/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14549
14550static void
14551update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14552{
c97c330b 14553 int new_isa = 0;
351cdf24
MF
14554 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14555 {
c97c330b
MF
14556 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14557 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14558 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14559 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14560 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14561 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14562 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14563 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14564 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14565 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14566 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24 14567 default:
4eca0228 14568 _bfd_error_handler
695344c0 14569 /* xgettext:c-format */
2c1c9679 14570 (_("%pB: unknown architecture %s"),
351cdf24
MF
14571 abfd, bfd_printable_name (abfd));
14572 }
14573
c97c330b
MF
14574 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14575 {
14576 abiflags->isa_level = ISA_LEVEL (new_isa);
14577 abiflags->isa_rev = ISA_REV (new_isa);
14578 }
14579
14580 /* Update the isa_ext if ABFD describes a further extension. */
14581 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14582 bfd_get_mach (abfd)))
14583 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14584}
14585
14586/* Return true if the given ELF header flags describe a 32-bit binary. */
14587
14588static bfd_boolean
14589mips_32bit_flags_p (flagword flags)
14590{
14591 return ((flags & EF_MIPS_32BITMODE) != 0
14592 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14593 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14594 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14595 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14596 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14597 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14598 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14599}
14600
14601/* Infer the content of the ABI flags based on the elf header. */
14602
14603static void
14604infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14605{
14606 obj_attribute *in_attr;
14607
14608 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14609 update_mips_abiflags_isa (abfd, abiflags);
14610
14611 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14612 abiflags->gpr_size = AFL_REG_32;
14613 else
14614 abiflags->gpr_size = AFL_REG_64;
14615
14616 abiflags->cpr1_size = AFL_REG_NONE;
14617
14618 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14619 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14620
14621 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14622 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14623 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14624 && abiflags->gpr_size == AFL_REG_32))
14625 abiflags->cpr1_size = AFL_REG_32;
14626 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14627 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14628 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14629 abiflags->cpr1_size = AFL_REG_64;
14630
14631 abiflags->cpr2_size = AFL_REG_NONE;
14632
14633 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14634 abiflags->ases |= AFL_ASE_MDMX;
14635 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14636 abiflags->ases |= AFL_ASE_MIPS16;
14637 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14638 abiflags->ases |= AFL_ASE_MICROMIPS;
14639
14640 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14641 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14642 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14643 && abiflags->isa_level >= 32
bdc6c06e 14644 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
351cdf24
MF
14645 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14646}
14647
b49e97c9
TS
14648/* We need to use a special link routine to handle the .reginfo and
14649 the .mdebug sections. We need to merge all instances of these
14650 sections together, not write them all out sequentially. */
14651
b34976b6 14652bfd_boolean
9719ad41 14653_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14654{
b49e97c9
TS
14655 asection *o;
14656 struct bfd_link_order *p;
14657 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14658 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14659 Elf32_RegInfo reginfo;
14660 struct ecoff_debug_info debug;
861fb55a 14661 struct mips_htab_traverse_info hti;
7a2a6943
NC
14662 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14663 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14664 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14665 void *mdebug_handle = NULL;
b49e97c9
TS
14666 asection *s;
14667 EXTR esym;
14668 unsigned int i;
14669 bfd_size_type amt;
0a44bf69 14670 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14671
14672 static const char * const secname[] =
14673 {
14674 ".text", ".init", ".fini", ".data",
14675 ".rodata", ".sdata", ".sbss", ".bss"
14676 };
14677 static const int sc[] =
14678 {
14679 scText, scInit, scFini, scData,
14680 scRData, scSData, scSBss, scBss
14681 };
14682
0a44bf69 14683 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14684 BFD_ASSERT (htab != NULL);
14685
64575f78
MR
14686 /* Sort the dynamic symbols so that those with GOT entries come after
14687 those without. */
d4596a51
RS
14688 if (!mips_elf_sort_hash_table (abfd, info))
14689 return FALSE;
b49e97c9 14690
861fb55a
DJ
14691 /* Create any scheduled LA25 stubs. */
14692 hti.info = info;
14693 hti.output_bfd = abfd;
14694 hti.error = FALSE;
14695 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14696 if (hti.error)
14697 return FALSE;
14698
b49e97c9
TS
14699 /* Get a value for the GP register. */
14700 if (elf_gp (abfd) == 0)
14701 {
14702 struct bfd_link_hash_entry *h;
14703
b34976b6 14704 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14705 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14706 elf_gp (abfd) = (h->u.def.value
14707 + h->u.def.section->output_section->vma
14708 + h->u.def.section->output_offset);
0a44bf69
RS
14709 else if (htab->is_vxworks
14710 && (h = bfd_link_hash_lookup (info->hash,
14711 "_GLOBAL_OFFSET_TABLE_",
14712 FALSE, FALSE, TRUE))
14713 && h->type == bfd_link_hash_defined)
14714 elf_gp (abfd) = (h->u.def.section->output_section->vma
14715 + h->u.def.section->output_offset
14716 + h->u.def.value);
0e1862bb 14717 else if (bfd_link_relocatable (info))
b49e97c9
TS
14718 {
14719 bfd_vma lo = MINUS_ONE;
14720
14721 /* Find the GP-relative section with the lowest offset. */
9719ad41 14722 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14723 if (o->vma < lo
14724 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14725 lo = o->vma;
14726
14727 /* And calculate GP relative to that. */
0a44bf69 14728 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14729 }
14730 else
14731 {
14732 /* If the relocate_section function needs to do a reloc
14733 involving the GP value, it should make a reloc_dangerous
14734 callback to warn that GP is not defined. */
14735 }
14736 }
14737
14738 /* Go through the sections and collect the .reginfo and .mdebug
14739 information. */
351cdf24 14740 abiflags_sec = NULL;
b49e97c9
TS
14741 reginfo_sec = NULL;
14742 mdebug_sec = NULL;
14743 gptab_data_sec = NULL;
14744 gptab_bss_sec = NULL;
9719ad41 14745 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14746 {
351cdf24
MF
14747 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14748 {
14749 /* We have found the .MIPS.abiflags section in the output file.
14750 Look through all the link_orders comprising it and remove them.
14751 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14752 for (p = o->map_head.link_order; p != NULL; p = p->next)
14753 {
14754 asection *input_section;
14755
14756 if (p->type != bfd_indirect_link_order)
14757 {
14758 if (p->type == bfd_data_link_order)
14759 continue;
14760 abort ();
14761 }
14762
14763 input_section = p->u.indirect.section;
14764
14765 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14766 elf_link_input_bfd ignores this section. */
14767 input_section->flags &= ~SEC_HAS_CONTENTS;
14768 }
14769
14770 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14771 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14772
14773 /* Skip this section later on (I don't think this currently
14774 matters, but someday it might). */
14775 o->map_head.link_order = NULL;
14776
14777 abiflags_sec = o;
14778 }
14779
b49e97c9
TS
14780 if (strcmp (o->name, ".reginfo") == 0)
14781 {
14782 memset (&reginfo, 0, sizeof reginfo);
14783
14784 /* We have found the .reginfo section in the output file.
14785 Look through all the link_orders comprising it and merge
14786 the information together. */
8423293d 14787 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14788 {
14789 asection *input_section;
14790 bfd *input_bfd;
14791 Elf32_External_RegInfo ext;
14792 Elf32_RegInfo sub;
6798f8bf 14793 bfd_size_type sz;
b49e97c9
TS
14794
14795 if (p->type != bfd_indirect_link_order)
14796 {
14797 if (p->type == bfd_data_link_order)
14798 continue;
14799 abort ();
14800 }
14801
14802 input_section = p->u.indirect.section;
14803 input_bfd = input_section->owner;
14804
6798f8bf
MR
14805 sz = (input_section->size < sizeof (ext)
14806 ? input_section->size : sizeof (ext));
14807 memset (&ext, 0, sizeof (ext));
b49e97c9 14808 if (! bfd_get_section_contents (input_bfd, input_section,
6798f8bf 14809 &ext, 0, sz))
b34976b6 14810 return FALSE;
b49e97c9
TS
14811
14812 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14813
14814 reginfo.ri_gprmask |= sub.ri_gprmask;
14815 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14816 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14817 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14818 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14819
14820 /* ri_gp_value is set by the function
1c5e4ee9 14821 `_bfd_mips_elf_section_processing' when the section is
b49e97c9
TS
14822 finally written out. */
14823
14824 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14825 elf_link_input_bfd ignores this section. */
14826 input_section->flags &= ~SEC_HAS_CONTENTS;
14827 }
14828
14829 /* Size has been set in _bfd_mips_elf_always_size_sections. */
b248d650 14830 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14831
14832 /* Skip this section later on (I don't think this currently
14833 matters, but someday it might). */
8423293d 14834 o->map_head.link_order = NULL;
b49e97c9
TS
14835
14836 reginfo_sec = o;
14837 }
14838
14839 if (strcmp (o->name, ".mdebug") == 0)
14840 {
14841 struct extsym_info einfo;
14842 bfd_vma last;
14843
14844 /* We have found the .mdebug section in the output file.
14845 Look through all the link_orders comprising it and merge
14846 the information together. */
14847 symhdr->magic = swap->sym_magic;
14848 /* FIXME: What should the version stamp be? */
14849 symhdr->vstamp = 0;
14850 symhdr->ilineMax = 0;
14851 symhdr->cbLine = 0;
14852 symhdr->idnMax = 0;
14853 symhdr->ipdMax = 0;
14854 symhdr->isymMax = 0;
14855 symhdr->ioptMax = 0;
14856 symhdr->iauxMax = 0;
14857 symhdr->issMax = 0;
14858 symhdr->issExtMax = 0;
14859 symhdr->ifdMax = 0;
14860 symhdr->crfd = 0;
14861 symhdr->iextMax = 0;
14862
14863 /* We accumulate the debugging information itself in the
14864 debug_info structure. */
14865 debug.line = NULL;
14866 debug.external_dnr = NULL;
14867 debug.external_pdr = NULL;
14868 debug.external_sym = NULL;
14869 debug.external_opt = NULL;
14870 debug.external_aux = NULL;
14871 debug.ss = NULL;
14872 debug.ssext = debug.ssext_end = NULL;
14873 debug.external_fdr = NULL;
14874 debug.external_rfd = NULL;
14875 debug.external_ext = debug.external_ext_end = NULL;
14876
14877 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14878 if (mdebug_handle == NULL)
b34976b6 14879 return FALSE;
b49e97c9
TS
14880
14881 esym.jmptbl = 0;
14882 esym.cobol_main = 0;
14883 esym.weakext = 0;
14884 esym.reserved = 0;
14885 esym.ifd = ifdNil;
14886 esym.asym.iss = issNil;
14887 esym.asym.st = stLocal;
14888 esym.asym.reserved = 0;
14889 esym.asym.index = indexNil;
14890 last = 0;
14891 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14892 {
14893 esym.asym.sc = sc[i];
14894 s = bfd_get_section_by_name (abfd, secname[i]);
14895 if (s != NULL)
14896 {
14897 esym.asym.value = s->vma;
eea6121a 14898 last = s->vma + s->size;
b49e97c9
TS
14899 }
14900 else
14901 esym.asym.value = last;
14902 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14903 secname[i], &esym))
b34976b6 14904 return FALSE;
b49e97c9
TS
14905 }
14906
8423293d 14907 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14908 {
14909 asection *input_section;
14910 bfd *input_bfd;
14911 const struct ecoff_debug_swap *input_swap;
14912 struct ecoff_debug_info input_debug;
14913 char *eraw_src;
14914 char *eraw_end;
14915
14916 if (p->type != bfd_indirect_link_order)
14917 {
14918 if (p->type == bfd_data_link_order)
14919 continue;
14920 abort ();
14921 }
14922
14923 input_section = p->u.indirect.section;
14924 input_bfd = input_section->owner;
14925
d5eaccd7 14926 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14927 {
14928 /* I don't know what a non MIPS ELF bfd would be
14929 doing with a .mdebug section, but I don't really
14930 want to deal with it. */
14931 continue;
14932 }
14933
14934 input_swap = (get_elf_backend_data (input_bfd)
14935 ->elf_backend_ecoff_debug_swap);
14936
eea6121a 14937 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14938
14939 /* The ECOFF linking code expects that we have already
14940 read in the debugging information and set up an
14941 ecoff_debug_info structure, so we do that now. */
14942 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14943 &input_debug))
b34976b6 14944 return FALSE;
b49e97c9
TS
14945
14946 if (! (bfd_ecoff_debug_accumulate
14947 (mdebug_handle, abfd, &debug, swap, input_bfd,
14948 &input_debug, input_swap, info)))
b34976b6 14949 return FALSE;
b49e97c9
TS
14950
14951 /* Loop through the external symbols. For each one with
14952 interesting information, try to find the symbol in
14953 the linker global hash table and save the information
14954 for the output external symbols. */
14955 eraw_src = input_debug.external_ext;
14956 eraw_end = (eraw_src
14957 + (input_debug.symbolic_header.iextMax
14958 * input_swap->external_ext_size));
14959 for (;
14960 eraw_src < eraw_end;
14961 eraw_src += input_swap->external_ext_size)
14962 {
14963 EXTR ext;
14964 const char *name;
14965 struct mips_elf_link_hash_entry *h;
14966
9719ad41 14967 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14968 if (ext.asym.sc == scNil
14969 || ext.asym.sc == scUndefined
14970 || ext.asym.sc == scSUndefined)
14971 continue;
14972
14973 name = input_debug.ssext + ext.asym.iss;
14974 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14975 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14976 if (h == NULL || h->esym.ifd != -2)
14977 continue;
14978
14979 if (ext.ifd != -1)
14980 {
14981 BFD_ASSERT (ext.ifd
14982 < input_debug.symbolic_header.ifdMax);
14983 ext.ifd = input_debug.ifdmap[ext.ifd];
14984 }
14985
14986 h->esym = ext;
14987 }
14988
14989 /* Free up the information we just read. */
14990 free (input_debug.line);
14991 free (input_debug.external_dnr);
14992 free (input_debug.external_pdr);
14993 free (input_debug.external_sym);
14994 free (input_debug.external_opt);
14995 free (input_debug.external_aux);
14996 free (input_debug.ss);
14997 free (input_debug.ssext);
14998 free (input_debug.external_fdr);
14999 free (input_debug.external_rfd);
15000 free (input_debug.external_ext);
15001
15002 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15003 elf_link_input_bfd ignores this section. */
15004 input_section->flags &= ~SEC_HAS_CONTENTS;
15005 }
15006
0e1862bb 15007 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
15008 {
15009 /* Create .rtproc section. */
87e0a731 15010 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
15011 if (rtproc_sec == NULL)
15012 {
15013 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
15014 | SEC_LINKER_CREATED | SEC_READONLY);
15015
87e0a731
AM
15016 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
15017 ".rtproc",
15018 flags);
b49e97c9 15019 if (rtproc_sec == NULL
fd361982 15020 || !bfd_set_section_alignment (rtproc_sec, 4))
b34976b6 15021 return FALSE;
b49e97c9
TS
15022 }
15023
15024 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
15025 info, rtproc_sec,
15026 &debug))
b34976b6 15027 return FALSE;
b49e97c9
TS
15028 }
15029
15030 /* Build the external symbol information. */
15031 einfo.abfd = abfd;
15032 einfo.info = info;
15033 einfo.debug = &debug;
15034 einfo.swap = swap;
b34976b6 15035 einfo.failed = FALSE;
b49e97c9 15036 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 15037 mips_elf_output_extsym, &einfo);
b49e97c9 15038 if (einfo.failed)
b34976b6 15039 return FALSE;
b49e97c9
TS
15040
15041 /* Set the size of the .mdebug section. */
eea6121a 15042 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
15043
15044 /* Skip this section later on (I don't think this currently
15045 matters, but someday it might). */
8423293d 15046 o->map_head.link_order = NULL;
b49e97c9
TS
15047
15048 mdebug_sec = o;
15049 }
15050
0112cd26 15051 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
15052 {
15053 const char *subname;
15054 unsigned int c;
15055 Elf32_gptab *tab;
15056 Elf32_External_gptab *ext_tab;
15057 unsigned int j;
15058
15059 /* The .gptab.sdata and .gptab.sbss sections hold
15060 information describing how the small data area would
15061 change depending upon the -G switch. These sections
15062 not used in executables files. */
0e1862bb 15063 if (! bfd_link_relocatable (info))
b49e97c9 15064 {
8423293d 15065 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
15066 {
15067 asection *input_section;
15068
15069 if (p->type != bfd_indirect_link_order)
15070 {
15071 if (p->type == bfd_data_link_order)
15072 continue;
15073 abort ();
15074 }
15075
15076 input_section = p->u.indirect.section;
15077
15078 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15079 elf_link_input_bfd ignores this section. */
15080 input_section->flags &= ~SEC_HAS_CONTENTS;
15081 }
15082
15083 /* Skip this section later on (I don't think this
15084 currently matters, but someday it might). */
8423293d 15085 o->map_head.link_order = NULL;
b49e97c9
TS
15086
15087 /* Really remove the section. */
5daa8fe7 15088 bfd_section_list_remove (abfd, o);
b49e97c9
TS
15089 --abfd->section_count;
15090
15091 continue;
15092 }
15093
15094 /* There is one gptab for initialized data, and one for
15095 uninitialized data. */
15096 if (strcmp (o->name, ".gptab.sdata") == 0)
15097 gptab_data_sec = o;
15098 else if (strcmp (o->name, ".gptab.sbss") == 0)
15099 gptab_bss_sec = o;
15100 else
15101 {
4eca0228 15102 _bfd_error_handler
695344c0 15103 /* xgettext:c-format */
871b3ab2 15104 (_("%pB: illegal section name `%pA'"), abfd, o);
b49e97c9 15105 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 15106 return FALSE;
b49e97c9
TS
15107 }
15108
15109 /* The linker script always combines .gptab.data and
15110 .gptab.sdata into .gptab.sdata, and likewise for
15111 .gptab.bss and .gptab.sbss. It is possible that there is
15112 no .sdata or .sbss section in the output file, in which
15113 case we must change the name of the output section. */
15114 subname = o->name + sizeof ".gptab" - 1;
15115 if (bfd_get_section_by_name (abfd, subname) == NULL)
15116 {
15117 if (o == gptab_data_sec)
15118 o->name = ".gptab.data";
15119 else
15120 o->name = ".gptab.bss";
15121 subname = o->name + sizeof ".gptab" - 1;
15122 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15123 }
15124
15125 /* Set up the first entry. */
15126 c = 1;
15127 amt = c * sizeof (Elf32_gptab);
9719ad41 15128 tab = bfd_malloc (amt);
b49e97c9 15129 if (tab == NULL)
b34976b6 15130 return FALSE;
b49e97c9
TS
15131 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15132 tab[0].gt_header.gt_unused = 0;
15133
15134 /* Combine the input sections. */
8423293d 15135 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
15136 {
15137 asection *input_section;
15138 bfd *input_bfd;
15139 bfd_size_type size;
15140 unsigned long last;
15141 bfd_size_type gpentry;
15142
15143 if (p->type != bfd_indirect_link_order)
15144 {
15145 if (p->type == bfd_data_link_order)
15146 continue;
15147 abort ();
15148 }
15149
15150 input_section = p->u.indirect.section;
15151 input_bfd = input_section->owner;
15152
15153 /* Combine the gptab entries for this input section one
15154 by one. We know that the input gptab entries are
15155 sorted by ascending -G value. */
eea6121a 15156 size = input_section->size;
b49e97c9
TS
15157 last = 0;
15158 for (gpentry = sizeof (Elf32_External_gptab);
15159 gpentry < size;
15160 gpentry += sizeof (Elf32_External_gptab))
15161 {
15162 Elf32_External_gptab ext_gptab;
15163 Elf32_gptab int_gptab;
15164 unsigned long val;
15165 unsigned long add;
b34976b6 15166 bfd_boolean exact;
b49e97c9
TS
15167 unsigned int look;
15168
15169 if (! (bfd_get_section_contents
9719ad41
RS
15170 (input_bfd, input_section, &ext_gptab, gpentry,
15171 sizeof (Elf32_External_gptab))))
b49e97c9
TS
15172 {
15173 free (tab);
b34976b6 15174 return FALSE;
b49e97c9
TS
15175 }
15176
15177 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15178 &int_gptab);
15179 val = int_gptab.gt_entry.gt_g_value;
15180 add = int_gptab.gt_entry.gt_bytes - last;
15181
b34976b6 15182 exact = FALSE;
b49e97c9
TS
15183 for (look = 1; look < c; look++)
15184 {
15185 if (tab[look].gt_entry.gt_g_value >= val)
15186 tab[look].gt_entry.gt_bytes += add;
15187
15188 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 15189 exact = TRUE;
b49e97c9
TS
15190 }
15191
15192 if (! exact)
15193 {
15194 Elf32_gptab *new_tab;
15195 unsigned int max;
15196
15197 /* We need a new table entry. */
15198 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 15199 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
15200 if (new_tab == NULL)
15201 {
15202 free (tab);
b34976b6 15203 return FALSE;
b49e97c9
TS
15204 }
15205 tab = new_tab;
15206 tab[c].gt_entry.gt_g_value = val;
15207 tab[c].gt_entry.gt_bytes = add;
15208
15209 /* Merge in the size for the next smallest -G
15210 value, since that will be implied by this new
15211 value. */
15212 max = 0;
15213 for (look = 1; look < c; look++)
15214 {
15215 if (tab[look].gt_entry.gt_g_value < val
15216 && (max == 0
15217 || (tab[look].gt_entry.gt_g_value
15218 > tab[max].gt_entry.gt_g_value)))
15219 max = look;
15220 }
15221 if (max != 0)
15222 tab[c].gt_entry.gt_bytes +=
15223 tab[max].gt_entry.gt_bytes;
15224
15225 ++c;
15226 }
15227
15228 last = int_gptab.gt_entry.gt_bytes;
15229 }
15230
15231 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15232 elf_link_input_bfd ignores this section. */
15233 input_section->flags &= ~SEC_HAS_CONTENTS;
15234 }
15235
15236 /* The table must be sorted by -G value. */
15237 if (c > 2)
15238 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15239
15240 /* Swap out the table. */
15241 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 15242 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
15243 if (ext_tab == NULL)
15244 {
15245 free (tab);
b34976b6 15246 return FALSE;
b49e97c9
TS
15247 }
15248
15249 for (j = 0; j < c; j++)
15250 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15251 free (tab);
15252
eea6121a 15253 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
15254 o->contents = (bfd_byte *) ext_tab;
15255
15256 /* Skip this section later on (I don't think this currently
15257 matters, but someday it might). */
8423293d 15258 o->map_head.link_order = NULL;
b49e97c9
TS
15259 }
15260 }
15261
15262 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 15263 if (!bfd_elf_final_link (abfd, info))
b34976b6 15264 return FALSE;
b49e97c9
TS
15265
15266 /* Now write out the computed sections. */
15267
351cdf24
MF
15268 if (abiflags_sec != NULL)
15269 {
15270 Elf_External_ABIFlags_v0 ext;
15271 Elf_Internal_ABIFlags_v0 *abiflags;
15272
15273 abiflags = &mips_elf_tdata (abfd)->abiflags;
15274
15275 /* Set up the abiflags if no valid input sections were found. */
15276 if (!mips_elf_tdata (abfd)->abiflags_valid)
15277 {
15278 infer_mips_abiflags (abfd, abiflags);
15279 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15280 }
15281 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15282 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15283 return FALSE;
15284 }
15285
9719ad41 15286 if (reginfo_sec != NULL)
b49e97c9
TS
15287 {
15288 Elf32_External_RegInfo ext;
15289
15290 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 15291 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 15292 return FALSE;
b49e97c9
TS
15293 }
15294
9719ad41 15295 if (mdebug_sec != NULL)
b49e97c9
TS
15296 {
15297 BFD_ASSERT (abfd->output_has_begun);
15298 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15299 swap, info,
15300 mdebug_sec->filepos))
b34976b6 15301 return FALSE;
b49e97c9
TS
15302
15303 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15304 }
15305
9719ad41 15306 if (gptab_data_sec != NULL)
b49e97c9
TS
15307 {
15308 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15309 gptab_data_sec->contents,
eea6121a 15310 0, gptab_data_sec->size))
b34976b6 15311 return FALSE;
b49e97c9
TS
15312 }
15313
9719ad41 15314 if (gptab_bss_sec != NULL)
b49e97c9
TS
15315 {
15316 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15317 gptab_bss_sec->contents,
eea6121a 15318 0, gptab_bss_sec->size))
b34976b6 15319 return FALSE;
b49e97c9
TS
15320 }
15321
15322 if (SGI_COMPAT (abfd))
15323 {
15324 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15325 if (rtproc_sec != NULL)
15326 {
15327 if (! bfd_set_section_contents (abfd, rtproc_sec,
15328 rtproc_sec->contents,
eea6121a 15329 0, rtproc_sec->size))
b34976b6 15330 return FALSE;
b49e97c9
TS
15331 }
15332 }
15333
b34976b6 15334 return TRUE;
b49e97c9
TS
15335}
15336\f
b2e9744f
MR
15337/* Merge object file header flags from IBFD into OBFD. Raise an error
15338 if there are conflicting settings. */
15339
15340static bfd_boolean
50e03d47 15341mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
b2e9744f 15342{
50e03d47 15343 bfd *obfd = info->output_bfd;
b2e9744f
MR
15344 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15345 flagword old_flags;
15346 flagword new_flags;
15347 bfd_boolean ok;
15348
15349 new_flags = elf_elfheader (ibfd)->e_flags;
15350 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15351 old_flags = elf_elfheader (obfd)->e_flags;
15352
15353 /* Check flag compatibility. */
15354
15355 new_flags &= ~EF_MIPS_NOREORDER;
15356 old_flags &= ~EF_MIPS_NOREORDER;
15357
15358 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15359 doesn't seem to matter. */
15360 new_flags &= ~EF_MIPS_XGOT;
15361 old_flags &= ~EF_MIPS_XGOT;
15362
15363 /* MIPSpro generates ucode info in n64 objects. Again, we should
15364 just be able to ignore this. */
15365 new_flags &= ~EF_MIPS_UCODE;
15366 old_flags &= ~EF_MIPS_UCODE;
15367
15368 /* DSOs should only be linked with CPIC code. */
15369 if ((ibfd->flags & DYNAMIC) != 0)
15370 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15371
15372 if (new_flags == old_flags)
15373 return TRUE;
15374
15375 ok = TRUE;
15376
15377 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15378 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15379 {
4eca0228 15380 _bfd_error_handler
871b3ab2 15381 (_("%pB: warning: linking abicalls files with non-abicalls files"),
b2e9744f
MR
15382 ibfd);
15383 ok = TRUE;
15384 }
15385
15386 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15387 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15388 if (! (new_flags & EF_MIPS_PIC))
15389 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15390
15391 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15392 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15393
15394 /* Compare the ISAs. */
15395 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15396 {
4eca0228 15397 _bfd_error_handler
871b3ab2 15398 (_("%pB: linking 32-bit code with 64-bit code"),
b2e9744f
MR
15399 ibfd);
15400 ok = FALSE;
15401 }
15402 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15403 {
15404 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15405 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15406 {
15407 /* Copy the architecture info from IBFD to OBFD. Also copy
15408 the 32-bit flag (if set) so that we continue to recognise
15409 OBFD as a 32-bit binary. */
15410 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15411 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15412 elf_elfheader (obfd)->e_flags
15413 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15414
15415 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15416 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15417
15418 /* Copy across the ABI flags if OBFD doesn't use them
15419 and if that was what caused us to treat IBFD as 32-bit. */
15420 if ((old_flags & EF_MIPS_ABI) == 0
15421 && mips_32bit_flags_p (new_flags)
15422 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15423 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15424 }
15425 else
15426 {
15427 /* The ISAs aren't compatible. */
4eca0228 15428 _bfd_error_handler
695344c0 15429 /* xgettext:c-format */
871b3ab2 15430 (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15431 ibfd,
15432 bfd_printable_name (ibfd),
15433 bfd_printable_name (obfd));
15434 ok = FALSE;
15435 }
15436 }
15437
15438 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15439 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15440
15441 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15442 does set EI_CLASS differently from any 32-bit ABI. */
15443 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15444 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15445 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15446 {
15447 /* Only error if both are set (to different values). */
15448 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15449 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15450 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15451 {
4eca0228 15452 _bfd_error_handler
695344c0 15453 /* xgettext:c-format */
871b3ab2 15454 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15455 ibfd,
15456 elf_mips_abi_name (ibfd),
15457 elf_mips_abi_name (obfd));
15458 ok = FALSE;
15459 }
15460 new_flags &= ~EF_MIPS_ABI;
15461 old_flags &= ~EF_MIPS_ABI;
15462 }
15463
15464 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15465 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15466 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15467 {
15468 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15469 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15470 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15471 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15472 int micro_mis = old_m16 && new_micro;
15473 int m16_mis = old_micro && new_m16;
15474
15475 if (m16_mis || micro_mis)
15476 {
4eca0228 15477 _bfd_error_handler
695344c0 15478 /* xgettext:c-format */
871b3ab2 15479 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15480 ibfd,
15481 m16_mis ? "MIPS16" : "microMIPS",
15482 m16_mis ? "microMIPS" : "MIPS16");
15483 ok = FALSE;
15484 }
15485
15486 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15487
15488 new_flags &= ~ EF_MIPS_ARCH_ASE;
15489 old_flags &= ~ EF_MIPS_ARCH_ASE;
15490 }
15491
15492 /* Compare NaN encodings. */
15493 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15494 {
695344c0 15495 /* xgettext:c-format */
871b3ab2 15496 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15497 ibfd,
15498 (new_flags & EF_MIPS_NAN2008
15499 ? "-mnan=2008" : "-mnan=legacy"),
15500 (old_flags & EF_MIPS_NAN2008
15501 ? "-mnan=2008" : "-mnan=legacy"));
15502 ok = FALSE;
15503 new_flags &= ~EF_MIPS_NAN2008;
15504 old_flags &= ~EF_MIPS_NAN2008;
15505 }
15506
15507 /* Compare FP64 state. */
15508 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15509 {
695344c0 15510 /* xgettext:c-format */
871b3ab2 15511 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15512 ibfd,
15513 (new_flags & EF_MIPS_FP64
15514 ? "-mfp64" : "-mfp32"),
15515 (old_flags & EF_MIPS_FP64
15516 ? "-mfp64" : "-mfp32"));
15517 ok = FALSE;
15518 new_flags &= ~EF_MIPS_FP64;
15519 old_flags &= ~EF_MIPS_FP64;
15520 }
15521
15522 /* Warn about any other mismatches */
15523 if (new_flags != old_flags)
15524 {
695344c0 15525 /* xgettext:c-format */
4eca0228 15526 _bfd_error_handler
871b3ab2 15527 (_("%pB: uses different e_flags (%#x) fields than previous modules "
d42c267e
AM
15528 "(%#x)"),
15529 ibfd, new_flags, old_flags);
b2e9744f
MR
15530 ok = FALSE;
15531 }
15532
15533 return ok;
15534}
15535
2cf19d5c
JM
15536/* Merge object attributes from IBFD into OBFD. Raise an error if
15537 there are conflicting attributes. */
15538static bfd_boolean
50e03d47 15539mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
2cf19d5c 15540{
50e03d47 15541 bfd *obfd = info->output_bfd;
2cf19d5c
JM
15542 obj_attribute *in_attr;
15543 obj_attribute *out_attr;
6ae68ba3 15544 bfd *abi_fp_bfd;
b60bf9be 15545 bfd *abi_msa_bfd;
6ae68ba3
MR
15546
15547 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15548 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15549 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15550 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15551
b60bf9be
CF
15552 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15553 if (!abi_msa_bfd
15554 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15555 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15556
2cf19d5c
JM
15557 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15558 {
15559 /* This is the first object. Copy the attributes. */
15560 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15561
15562 /* Use the Tag_null value to indicate the attributes have been
15563 initialized. */
15564 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15565
15566 return TRUE;
15567 }
15568
15569 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15570 non-conflicting ones. */
2cf19d5c
JM
15571 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15572 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15573 {
757a636f 15574 int out_fp, in_fp;
6ae68ba3 15575
757a636f
RS
15576 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15577 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15578 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15579 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15580 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15581 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15582 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15583 || in_fp == Val_GNU_MIPS_ABI_FP_64
15584 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15585 {
15586 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15587 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15588 }
15589 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15590 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15591 || out_fp == Val_GNU_MIPS_ABI_FP_64
15592 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15593 /* Keep the current setting. */;
15594 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15595 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15596 {
15597 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15598 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15599 }
15600 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15601 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15602 /* Keep the current setting. */;
757a636f
RS
15603 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15604 {
15605 const char *out_string, *in_string;
6ae68ba3 15606
757a636f
RS
15607 out_string = _bfd_mips_fp_abi_string (out_fp);
15608 in_string = _bfd_mips_fp_abi_string (in_fp);
15609 /* First warn about cases involving unrecognised ABIs. */
15610 if (!out_string && !in_string)
695344c0 15611 /* xgettext:c-format */
757a636f 15612 _bfd_error_handler
2c1c9679 15613 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15614 "(set by %pB), %pB uses unknown floating point ABI %d"),
c08bb8dd 15615 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15616 else if (!out_string)
15617 _bfd_error_handler
695344c0 15618 /* xgettext:c-format */
2c1c9679 15619 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15620 "(set by %pB), %pB uses %s"),
c08bb8dd 15621 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15622 else if (!in_string)
15623 _bfd_error_handler
695344c0 15624 /* xgettext:c-format */
2c1c9679 15625 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15626 "%pB uses unknown floating point ABI %d"),
c08bb8dd 15627 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15628 else
15629 {
15630 /* If one of the bfds is soft-float, the other must be
15631 hard-float. The exact choice of hard-float ABI isn't
15632 really relevant to the error message. */
15633 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15634 out_string = "-mhard-float";
15635 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15636 in_string = "-mhard-float";
15637 _bfd_error_handler
695344c0 15638 /* xgettext:c-format */
2c1c9679 15639 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
c08bb8dd 15640 obfd, out_string, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15641 }
15642 }
2cf19d5c
JM
15643 }
15644
b60bf9be
CF
15645 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15646 non-conflicting ones. */
15647 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15648 {
15649 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15650 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15651 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15652 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15653 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15654 {
15655 case Val_GNU_MIPS_ABI_MSA_128:
15656 _bfd_error_handler
695344c0 15657 /* xgettext:c-format */
2c1c9679 15658 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15659 "%pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15660 obfd, "-mmsa", abi_msa_bfd,
15661 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15662 break;
15663
15664 default:
15665 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15666 {
15667 case Val_GNU_MIPS_ABI_MSA_128:
15668 _bfd_error_handler
695344c0 15669 /* xgettext:c-format */
2c1c9679 15670 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15671 "(set by %pB), %pB uses %s"),
c08bb8dd
AM
15672 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15673 abi_msa_bfd, ibfd, "-mmsa");
b60bf9be
CF
15674 break;
15675
15676 default:
15677 _bfd_error_handler
695344c0 15678 /* xgettext:c-format */
2c1c9679 15679 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15680 "(set by %pB), %pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15681 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15682 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15683 break;
15684 }
15685 }
15686 }
15687
2cf19d5c 15688 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15689 return _bfd_elf_merge_object_attributes (ibfd, info);
2cf19d5c
JM
15690}
15691
a3dc0a7f
MR
15692/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15693 there are conflicting settings. */
15694
15695static bfd_boolean
15696mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15697{
15698 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15699 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15700 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15701
15702 /* Update the output abiflags fp_abi using the computed fp_abi. */
15703 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15704
15705#define max(a, b) ((a) > (b) ? (a) : (b))
15706 /* Merge abiflags. */
15707 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15708 in_tdata->abiflags.isa_level);
15709 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15710 in_tdata->abiflags.isa_rev);
15711 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15712 in_tdata->abiflags.gpr_size);
15713 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15714 in_tdata->abiflags.cpr1_size);
15715 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15716 in_tdata->abiflags.cpr2_size);
15717#undef max
15718 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15719 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15720
15721 return TRUE;
15722}
15723
b49e97c9
TS
15724/* Merge backend specific data from an object file to the output
15725 object file when linking. */
15726
b34976b6 15727bfd_boolean
50e03d47 15728_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
b49e97c9 15729{
50e03d47 15730 bfd *obfd = info->output_bfd;
cf8502c1
MR
15731 struct mips_elf_obj_tdata *out_tdata;
15732 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15733 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15734 asection *sec;
d537eeb5 15735 bfd_boolean ok;
b49e97c9 15736
58238693 15737 /* Check if we have the same endianness. */
50e03d47 15738 if (! _bfd_generic_verify_endian_match (ibfd, info))
aa701218 15739 {
4eca0228 15740 _bfd_error_handler
871b3ab2 15741 (_("%pB: endianness incompatible with that of the selected emulation"),
d003868e 15742 ibfd);
aa701218
AO
15743 return FALSE;
15744 }
b49e97c9 15745
d5eaccd7 15746 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15747 return TRUE;
b49e97c9 15748
cf8502c1
MR
15749 in_tdata = mips_elf_tdata (ibfd);
15750 out_tdata = mips_elf_tdata (obfd);
15751
aa701218
AO
15752 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15753 {
4eca0228 15754 _bfd_error_handler
871b3ab2 15755 (_("%pB: ABI is incompatible with that of the selected emulation"),
d003868e 15756 ibfd);
aa701218
AO
15757 return FALSE;
15758 }
15759
23ba6f18
MR
15760 /* Check to see if the input BFD actually contains any sections. If not,
15761 then it has no attributes, and its flags may not have been initialized
15762 either, but it cannot actually cause any incompatibility. */
351cdf24
MF
15763 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15764 {
15765 /* Ignore synthetic sections and empty .text, .data and .bss sections
15766 which are automatically generated by gas. Also ignore fake
15767 (s)common sections, since merely defining a common symbol does
15768 not affect compatibility. */
15769 if ((sec->flags & SEC_IS_COMMON) == 0
15770 && strcmp (sec->name, ".reginfo")
15771 && strcmp (sec->name, ".mdebug")
15772 && (sec->size != 0
15773 || (strcmp (sec->name, ".text")
15774 && strcmp (sec->name, ".data")
15775 && strcmp (sec->name, ".bss"))))
15776 {
15777 null_input_bfd = FALSE;
15778 break;
15779 }
15780 }
15781 if (null_input_bfd)
15782 return TRUE;
15783
28d45e28 15784 /* Populate abiflags using existing information. */
23ba6f18
MR
15785 if (in_tdata->abiflags_valid)
15786 {
15787 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15788 Elf_Internal_ABIFlags_v0 in_abiflags;
15789 Elf_Internal_ABIFlags_v0 abiflags;
15790
15791 /* Set up the FP ABI attribute from the abiflags if it is not already
07d6d2b8 15792 set. */
23ba6f18 15793 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
07d6d2b8 15794 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15795
351cdf24 15796 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15797 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15798
15799 /* It is not possible to infer the correct ISA revision
07d6d2b8 15800 for R3 or R5 so drop down to R2 for the checks. */
351cdf24
MF
15801 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15802 in_abiflags.isa_rev = 2;
15803
c97c330b
MF
15804 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15805 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
4eca0228 15806 _bfd_error_handler
2c1c9679 15807 (_("%pB: warning: inconsistent ISA between e_flags and "
351cdf24
MF
15808 ".MIPS.abiflags"), ibfd);
15809 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15810 && in_abiflags.fp_abi != abiflags.fp_abi)
4eca0228 15811 _bfd_error_handler
2c1c9679 15812 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15813 ".MIPS.abiflags"), ibfd);
15814 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
4eca0228 15815 _bfd_error_handler
2c1c9679 15816 (_("%pB: warning: inconsistent ASEs between e_flags and "
351cdf24 15817 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15818 /* The isa_ext is allowed to be an extension of what can be inferred
15819 from e_flags. */
15820 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15821 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
4eca0228 15822 _bfd_error_handler
2c1c9679 15823 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
351cdf24
MF
15824 ".MIPS.abiflags"), ibfd);
15825 if (in_abiflags.flags2 != 0)
4eca0228 15826 _bfd_error_handler
2c1c9679 15827 (_("%pB: warning: unexpected flag in the flags2 field of "
351cdf24 15828 ".MIPS.abiflags (0x%lx)"), ibfd,
d42c267e 15829 in_abiflags.flags2);
351cdf24 15830 }
28d45e28
MR
15831 else
15832 {
15833 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15834 in_tdata->abiflags_valid = TRUE;
15835 }
15836
cf8502c1 15837 if (!out_tdata->abiflags_valid)
351cdf24
MF
15838 {
15839 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15840 out_tdata->abiflags = in_tdata->abiflags;
15841 out_tdata->abiflags_valid = TRUE;
351cdf24 15842 }
b49e97c9
TS
15843
15844 if (! elf_flags_init (obfd))
15845 {
b34976b6 15846 elf_flags_init (obfd) = TRUE;
351cdf24 15847 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15848 elf_elfheader (obfd)->e_ident[EI_CLASS]
15849 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15850
15851 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15852 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15853 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15854 bfd_get_mach (ibfd))))
b49e97c9
TS
15855 {
15856 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15857 bfd_get_mach (ibfd)))
b34976b6 15858 return FALSE;
351cdf24
MF
15859
15860 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15861 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15862 }
15863
d537eeb5 15864 ok = TRUE;
b49e97c9 15865 }
d537eeb5 15866 else
50e03d47 15867 ok = mips_elf_merge_obj_e_flags (ibfd, info);
d537eeb5 15868
50e03d47 15869 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
b49e97c9 15870
a3dc0a7f 15871 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15872
d537eeb5 15873 if (!ok)
b49e97c9
TS
15874 {
15875 bfd_set_error (bfd_error_bad_value);
b34976b6 15876 return FALSE;
b49e97c9
TS
15877 }
15878
b34976b6 15879 return TRUE;
b49e97c9
TS
15880}
15881
15882/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15883
b34976b6 15884bfd_boolean
9719ad41 15885_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15886{
15887 BFD_ASSERT (!elf_flags_init (abfd)
15888 || elf_elfheader (abfd)->e_flags == flags);
15889
15890 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15891 elf_flags_init (abfd) = TRUE;
15892 return TRUE;
b49e97c9
TS
15893}
15894
ad9563d6
CM
15895char *
15896_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15897{
15898 switch (dtag)
15899 {
15900 default: return "";
15901 case DT_MIPS_RLD_VERSION:
15902 return "MIPS_RLD_VERSION";
15903 case DT_MIPS_TIME_STAMP:
15904 return "MIPS_TIME_STAMP";
15905 case DT_MIPS_ICHECKSUM:
15906 return "MIPS_ICHECKSUM";
15907 case DT_MIPS_IVERSION:
15908 return "MIPS_IVERSION";
15909 case DT_MIPS_FLAGS:
15910 return "MIPS_FLAGS";
15911 case DT_MIPS_BASE_ADDRESS:
15912 return "MIPS_BASE_ADDRESS";
15913 case DT_MIPS_MSYM:
15914 return "MIPS_MSYM";
15915 case DT_MIPS_CONFLICT:
15916 return "MIPS_CONFLICT";
15917 case DT_MIPS_LIBLIST:
15918 return "MIPS_LIBLIST";
15919 case DT_MIPS_LOCAL_GOTNO:
15920 return "MIPS_LOCAL_GOTNO";
15921 case DT_MIPS_CONFLICTNO:
15922 return "MIPS_CONFLICTNO";
15923 case DT_MIPS_LIBLISTNO:
15924 return "MIPS_LIBLISTNO";
15925 case DT_MIPS_SYMTABNO:
15926 return "MIPS_SYMTABNO";
15927 case DT_MIPS_UNREFEXTNO:
15928 return "MIPS_UNREFEXTNO";
15929 case DT_MIPS_GOTSYM:
15930 return "MIPS_GOTSYM";
15931 case DT_MIPS_HIPAGENO:
15932 return "MIPS_HIPAGENO";
15933 case DT_MIPS_RLD_MAP:
15934 return "MIPS_RLD_MAP";
a5499fa4
MF
15935 case DT_MIPS_RLD_MAP_REL:
15936 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15937 case DT_MIPS_DELTA_CLASS:
15938 return "MIPS_DELTA_CLASS";
15939 case DT_MIPS_DELTA_CLASS_NO:
15940 return "MIPS_DELTA_CLASS_NO";
15941 case DT_MIPS_DELTA_INSTANCE:
15942 return "MIPS_DELTA_INSTANCE";
15943 case DT_MIPS_DELTA_INSTANCE_NO:
15944 return "MIPS_DELTA_INSTANCE_NO";
15945 case DT_MIPS_DELTA_RELOC:
15946 return "MIPS_DELTA_RELOC";
15947 case DT_MIPS_DELTA_RELOC_NO:
15948 return "MIPS_DELTA_RELOC_NO";
15949 case DT_MIPS_DELTA_SYM:
15950 return "MIPS_DELTA_SYM";
15951 case DT_MIPS_DELTA_SYM_NO:
15952 return "MIPS_DELTA_SYM_NO";
15953 case DT_MIPS_DELTA_CLASSSYM:
15954 return "MIPS_DELTA_CLASSSYM";
15955 case DT_MIPS_DELTA_CLASSSYM_NO:
15956 return "MIPS_DELTA_CLASSSYM_NO";
15957 case DT_MIPS_CXX_FLAGS:
15958 return "MIPS_CXX_FLAGS";
15959 case DT_MIPS_PIXIE_INIT:
15960 return "MIPS_PIXIE_INIT";
15961 case DT_MIPS_SYMBOL_LIB:
15962 return "MIPS_SYMBOL_LIB";
15963 case DT_MIPS_LOCALPAGE_GOTIDX:
15964 return "MIPS_LOCALPAGE_GOTIDX";
15965 case DT_MIPS_LOCAL_GOTIDX:
15966 return "MIPS_LOCAL_GOTIDX";
15967 case DT_MIPS_HIDDEN_GOTIDX:
15968 return "MIPS_HIDDEN_GOTIDX";
15969 case DT_MIPS_PROTECTED_GOTIDX:
15970 return "MIPS_PROTECTED_GOT_IDX";
15971 case DT_MIPS_OPTIONS:
15972 return "MIPS_OPTIONS";
15973 case DT_MIPS_INTERFACE:
15974 return "MIPS_INTERFACE";
15975 case DT_MIPS_DYNSTR_ALIGN:
15976 return "DT_MIPS_DYNSTR_ALIGN";
15977 case DT_MIPS_INTERFACE_SIZE:
15978 return "DT_MIPS_INTERFACE_SIZE";
15979 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15980 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15981 case DT_MIPS_PERF_SUFFIX:
15982 return "DT_MIPS_PERF_SUFFIX";
15983 case DT_MIPS_COMPACT_SIZE:
15984 return "DT_MIPS_COMPACT_SIZE";
15985 case DT_MIPS_GP_VALUE:
15986 return "DT_MIPS_GP_VALUE";
15987 case DT_MIPS_AUX_DYNAMIC:
15988 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15989 case DT_MIPS_PLTGOT:
15990 return "DT_MIPS_PLTGOT";
15991 case DT_MIPS_RWPLT:
15992 return "DT_MIPS_RWPLT";
f16a9783
MS
15993 case DT_MIPS_XHASH:
15994 return "DT_MIPS_XHASH";
ad9563d6
CM
15995 }
15996}
15997
757a636f
RS
15998/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15999 not known. */
16000
16001const char *
16002_bfd_mips_fp_abi_string (int fp)
16003{
16004 switch (fp)
16005 {
16006 /* These strings aren't translated because they're simply
16007 option lists. */
16008 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16009 return "-mdouble-float";
16010
16011 case Val_GNU_MIPS_ABI_FP_SINGLE:
16012 return "-msingle-float";
16013
16014 case Val_GNU_MIPS_ABI_FP_SOFT:
16015 return "-msoft-float";
16016
351cdf24
MF
16017 case Val_GNU_MIPS_ABI_FP_OLD_64:
16018 return _("-mips32r2 -mfp64 (12 callee-saved)");
16019
16020 case Val_GNU_MIPS_ABI_FP_XX:
16021 return "-mfpxx";
16022
757a636f 16023 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
16024 return "-mgp32 -mfp64";
16025
16026 case Val_GNU_MIPS_ABI_FP_64A:
16027 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
16028
16029 default:
16030 return 0;
16031 }
16032}
16033
351cdf24
MF
16034static void
16035print_mips_ases (FILE *file, unsigned int mask)
16036{
16037 if (mask & AFL_ASE_DSP)
16038 fputs ("\n\tDSP ASE", file);
16039 if (mask & AFL_ASE_DSPR2)
16040 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
16041 if (mask & AFL_ASE_DSPR3)
16042 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
16043 if (mask & AFL_ASE_EVA)
16044 fputs ("\n\tEnhanced VA Scheme", file);
16045 if (mask & AFL_ASE_MCU)
16046 fputs ("\n\tMCU (MicroController) ASE", file);
16047 if (mask & AFL_ASE_MDMX)
16048 fputs ("\n\tMDMX ASE", file);
16049 if (mask & AFL_ASE_MIPS3D)
16050 fputs ("\n\tMIPS-3D ASE", file);
16051 if (mask & AFL_ASE_MT)
16052 fputs ("\n\tMT ASE", file);
16053 if (mask & AFL_ASE_SMARTMIPS)
16054 fputs ("\n\tSmartMIPS ASE", file);
16055 if (mask & AFL_ASE_VIRT)
16056 fputs ("\n\tVZ ASE", file);
16057 if (mask & AFL_ASE_MSA)
16058 fputs ("\n\tMSA ASE", file);
16059 if (mask & AFL_ASE_MIPS16)
16060 fputs ("\n\tMIPS16 ASE", file);
16061 if (mask & AFL_ASE_MICROMIPS)
16062 fputs ("\n\tMICROMIPS ASE", file);
16063 if (mask & AFL_ASE_XPA)
16064 fputs ("\n\tXPA ASE", file);
25499ac7
MR
16065 if (mask & AFL_ASE_MIPS16E2)
16066 fputs ("\n\tMIPS16e2 ASE", file);
730c3174
SE
16067 if (mask & AFL_ASE_CRC)
16068 fputs ("\n\tCRC ASE", file);
6f20c942
FS
16069 if (mask & AFL_ASE_GINV)
16070 fputs ("\n\tGINV ASE", file);
8095d2f7
CX
16071 if (mask & AFL_ASE_LOONGSON_MMI)
16072 fputs ("\n\tLoongson MMI ASE", file);
716c08de
CX
16073 if (mask & AFL_ASE_LOONGSON_CAM)
16074 fputs ("\n\tLoongson CAM ASE", file);
bdc6c06e
CX
16075 if (mask & AFL_ASE_LOONGSON_EXT)
16076 fputs ("\n\tLoongson EXT ASE", file);
a693765e
CX
16077 if (mask & AFL_ASE_LOONGSON_EXT2)
16078 fputs ("\n\tLoongson EXT2 ASE", file);
351cdf24
MF
16079 if (mask == 0)
16080 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
16081 else if ((mask & ~AFL_ASE_MASK) != 0)
16082 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
16083}
16084
16085static void
16086print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16087{
16088 switch (isa_ext)
16089 {
16090 case 0:
16091 fputs (_("None"), file);
16092 break;
16093 case AFL_EXT_XLR:
16094 fputs ("RMI XLR", file);
16095 break;
2c629856
N
16096 case AFL_EXT_OCTEON3:
16097 fputs ("Cavium Networks Octeon3", file);
16098 break;
351cdf24
MF
16099 case AFL_EXT_OCTEON2:
16100 fputs ("Cavium Networks Octeon2", file);
16101 break;
16102 case AFL_EXT_OCTEONP:
16103 fputs ("Cavium Networks OcteonP", file);
16104 break;
351cdf24
MF
16105 case AFL_EXT_OCTEON:
16106 fputs ("Cavium Networks Octeon", file);
16107 break;
16108 case AFL_EXT_5900:
16109 fputs ("Toshiba R5900", file);
16110 break;
16111 case AFL_EXT_4650:
16112 fputs ("MIPS R4650", file);
16113 break;
16114 case AFL_EXT_4010:
16115 fputs ("LSI R4010", file);
16116 break;
16117 case AFL_EXT_4100:
16118 fputs ("NEC VR4100", file);
16119 break;
16120 case AFL_EXT_3900:
16121 fputs ("Toshiba R3900", file);
16122 break;
16123 case AFL_EXT_10000:
16124 fputs ("MIPS R10000", file);
16125 break;
16126 case AFL_EXT_SB1:
16127 fputs ("Broadcom SB-1", file);
16128 break;
16129 case AFL_EXT_4111:
16130 fputs ("NEC VR4111/VR4181", file);
16131 break;
16132 case AFL_EXT_4120:
16133 fputs ("NEC VR4120", file);
16134 break;
16135 case AFL_EXT_5400:
16136 fputs ("NEC VR5400", file);
16137 break;
16138 case AFL_EXT_5500:
16139 fputs ("NEC VR5500", file);
16140 break;
16141 case AFL_EXT_LOONGSON_2E:
16142 fputs ("ST Microelectronics Loongson 2E", file);
16143 break;
16144 case AFL_EXT_LOONGSON_2F:
16145 fputs ("ST Microelectronics Loongson 2F", file);
16146 break;
38bf472a
MR
16147 case AFL_EXT_INTERAPTIV_MR2:
16148 fputs ("Imagination interAptiv MR2", file);
16149 break;
351cdf24 16150 default:
00ac7aa0 16151 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
16152 break;
16153 }
16154}
16155
16156static void
16157print_mips_fp_abi_value (FILE *file, int val)
16158{
16159 switch (val)
16160 {
16161 case Val_GNU_MIPS_ABI_FP_ANY:
16162 fprintf (file, _("Hard or soft float\n"));
16163 break;
16164 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16165 fprintf (file, _("Hard float (double precision)\n"));
16166 break;
16167 case Val_GNU_MIPS_ABI_FP_SINGLE:
16168 fprintf (file, _("Hard float (single precision)\n"));
16169 break;
16170 case Val_GNU_MIPS_ABI_FP_SOFT:
16171 fprintf (file, _("Soft float\n"));
16172 break;
16173 case Val_GNU_MIPS_ABI_FP_OLD_64:
16174 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16175 break;
16176 case Val_GNU_MIPS_ABI_FP_XX:
16177 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16178 break;
16179 case Val_GNU_MIPS_ABI_FP_64:
16180 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16181 break;
16182 case Val_GNU_MIPS_ABI_FP_64A:
16183 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16184 break;
16185 default:
16186 fprintf (file, "??? (%d)\n", val);
16187 break;
16188 }
16189}
16190
16191static int
16192get_mips_reg_size (int reg_size)
16193{
16194 return (reg_size == AFL_REG_NONE) ? 0
16195 : (reg_size == AFL_REG_32) ? 32
16196 : (reg_size == AFL_REG_64) ? 64
16197 : (reg_size == AFL_REG_128) ? 128
16198 : -1;
16199}
16200
b34976b6 16201bfd_boolean
9719ad41 16202_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 16203{
9719ad41 16204 FILE *file = ptr;
b49e97c9
TS
16205
16206 BFD_ASSERT (abfd != NULL && ptr != NULL);
16207
16208 /* Print normal ELF private data. */
16209 _bfd_elf_print_private_bfd_data (abfd, ptr);
16210
16211 /* xgettext:c-format */
16212 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16213
16214 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16215 fprintf (file, _(" [abi=O32]"));
16216 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16217 fprintf (file, _(" [abi=O64]"));
16218 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16219 fprintf (file, _(" [abi=EABI32]"));
16220 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16221 fprintf (file, _(" [abi=EABI64]"));
16222 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16223 fprintf (file, _(" [abi unknown]"));
16224 else if (ABI_N32_P (abfd))
16225 fprintf (file, _(" [abi=N32]"));
16226 else if (ABI_64_P (abfd))
16227 fprintf (file, _(" [abi=64]"));
16228 else
16229 fprintf (file, _(" [no abi set]"));
16230
16231 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 16232 fprintf (file, " [mips1]");
b49e97c9 16233 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 16234 fprintf (file, " [mips2]");
b49e97c9 16235 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 16236 fprintf (file, " [mips3]");
b49e97c9 16237 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 16238 fprintf (file, " [mips4]");
b49e97c9 16239 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 16240 fprintf (file, " [mips5]");
b49e97c9 16241 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 16242 fprintf (file, " [mips32]");
b49e97c9 16243 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 16244 fprintf (file, " [mips64]");
af7ee8bf 16245 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 16246 fprintf (file, " [mips32r2]");
5f74bc13 16247 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 16248 fprintf (file, " [mips64r2]");
7361da2c
AB
16249 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16250 fprintf (file, " [mips32r6]");
16251 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16252 fprintf (file, " [mips64r6]");
b49e97c9
TS
16253 else
16254 fprintf (file, _(" [unknown ISA]"));
16255
40d32fc6 16256 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 16257 fprintf (file, " [mdmx]");
40d32fc6
CD
16258
16259 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 16260 fprintf (file, " [mips16]");
40d32fc6 16261
df58fc94
RS
16262 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16263 fprintf (file, " [micromips]");
16264
ba92f887
MR
16265 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16266 fprintf (file, " [nan2008]");
16267
5baf5e34 16268 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 16269 fprintf (file, " [old fp64]");
5baf5e34 16270
b49e97c9 16271 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 16272 fprintf (file, " [32bitmode]");
b49e97c9
TS
16273 else
16274 fprintf (file, _(" [not 32bitmode]"));
16275
c0e3f241 16276 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 16277 fprintf (file, " [noreorder]");
c0e3f241
CD
16278
16279 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 16280 fprintf (file, " [PIC]");
c0e3f241
CD
16281
16282 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 16283 fprintf (file, " [CPIC]");
c0e3f241
CD
16284
16285 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 16286 fprintf (file, " [XGOT]");
c0e3f241
CD
16287
16288 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 16289 fprintf (file, " [UCODE]");
c0e3f241 16290
b49e97c9
TS
16291 fputc ('\n', file);
16292
351cdf24
MF
16293 if (mips_elf_tdata (abfd)->abiflags_valid)
16294 {
16295 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16296 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16297 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16298 if (abiflags->isa_rev > 1)
16299 fprintf (file, "r%d", abiflags->isa_rev);
16300 fprintf (file, "\nGPR size: %d",
16301 get_mips_reg_size (abiflags->gpr_size));
16302 fprintf (file, "\nCPR1 size: %d",
16303 get_mips_reg_size (abiflags->cpr1_size));
16304 fprintf (file, "\nCPR2 size: %d",
16305 get_mips_reg_size (abiflags->cpr2_size));
16306 fputs ("\nFP ABI: ", file);
16307 print_mips_fp_abi_value (file, abiflags->fp_abi);
16308 fputs ("ISA Extension: ", file);
16309 print_mips_isa_ext (file, abiflags->isa_ext);
16310 fputs ("\nASEs:", file);
16311 print_mips_ases (file, abiflags->ases);
16312 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16313 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16314 fputc ('\n', file);
16315 }
16316
b34976b6 16317 return TRUE;
b49e97c9 16318}
2f89ff8d 16319
b35d266b 16320const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 16321{
07d6d2b8
AM
16322 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16323 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26 16324 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
07d6d2b8 16325 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26
NC
16326 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16327 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
f16a9783 16328 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC },
07d6d2b8 16329 { NULL, 0, 0, 0, 0 }
2f89ff8d 16330};
5e2b0d47 16331
8992f0d7
TS
16332/* Merge non visibility st_other attributes. Ensure that the
16333 STO_OPTIONAL flag is copied into h->other, even if this is not a
16334 definiton of the symbol. */
5e2b0d47
NC
16335void
16336_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16337 const Elf_Internal_Sym *isym,
16338 bfd_boolean definition,
16339 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16340{
8992f0d7
TS
16341 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16342 {
16343 unsigned char other;
16344
16345 other = (definition ? isym->st_other : h->other);
16346 other &= ~ELF_ST_VISIBILITY (-1);
16347 h->other = other | ELF_ST_VISIBILITY (h->other);
16348 }
16349
16350 if (!definition
5e2b0d47
NC
16351 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16352 h->other |= STO_OPTIONAL;
16353}
12ac1cf5
NC
16354
16355/* Decide whether an undefined symbol is special and can be ignored.
16356 This is the case for OPTIONAL symbols on IRIX. */
16357bfd_boolean
16358_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16359{
16360 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16361}
e0764319
NC
16362
16363bfd_boolean
16364_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16365{
16366 return (sym->st_shndx == SHN_COMMON
16367 || sym->st_shndx == SHN_MIPS_ACOMMON
16368 || sym->st_shndx == SHN_MIPS_SCOMMON);
16369}
861fb55a
DJ
16370
16371/* Return address for Ith PLT stub in section PLT, for relocation REL
16372 or (bfd_vma) -1 if it should not be included. */
16373
16374bfd_vma
16375_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16376 const arelent *rel ATTRIBUTE_UNUSED)
16377{
16378 return (plt->vma
16379 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16380 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16381}
16382
1bbce132
MR
16383/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16384 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16385 and .got.plt and also the slots may be of a different size each we walk
16386 the PLT manually fetching instructions and matching them against known
16387 patterns. To make things easier standard MIPS slots, if any, always come
16388 first. As we don't create proper ELF symbols we use the UDATA.I member
16389 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16390 with the ST_OTHER member of the ELF symbol. */
16391
16392long
16393_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16394 long symcount ATTRIBUTE_UNUSED,
16395 asymbol **syms ATTRIBUTE_UNUSED,
16396 long dynsymcount, asymbol **dynsyms,
16397 asymbol **ret)
16398{
16399 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16400 static const char microsuffix[] = "@micromipsplt";
16401 static const char m16suffix[] = "@mips16plt";
16402 static const char mipssuffix[] = "@plt";
16403
16404 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16405 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16406 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16407 Elf_Internal_Shdr *hdr;
16408 bfd_byte *plt_data;
16409 bfd_vma plt_offset;
16410 unsigned int other;
16411 bfd_vma entry_size;
16412 bfd_vma plt0_size;
16413 asection *relplt;
16414 bfd_vma opcode;
16415 asection *plt;
16416 asymbol *send;
16417 size_t size;
16418 char *names;
16419 long counti;
16420 arelent *p;
16421 asymbol *s;
16422 char *nend;
16423 long count;
16424 long pi;
16425 long i;
16426 long n;
16427
16428 *ret = NULL;
16429
16430 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16431 return 0;
16432
16433 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16434 if (relplt == NULL)
16435 return 0;
16436
16437 hdr = &elf_section_data (relplt)->this_hdr;
16438 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16439 return 0;
16440
16441 plt = bfd_get_section_by_name (abfd, ".plt");
16442 if (plt == NULL)
16443 return 0;
16444
16445 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16446 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16447 return -1;
16448 p = relplt->relocation;
16449
16450 /* Calculating the exact amount of space required for symbols would
16451 require two passes over the PLT, so just pessimise assuming two
16452 PLT slots per relocation. */
16453 count = relplt->size / hdr->sh_entsize;
16454 counti = count * bed->s->int_rels_per_ext_rel;
16455 size = 2 * count * sizeof (asymbol);
16456 size += count * (sizeof (mipssuffix) +
16457 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16458 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16459 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16460
16461 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16462 size += sizeof (asymbol) + sizeof (pltname);
16463
16464 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16465 return -1;
16466
16467 if (plt->size < 16)
16468 return -1;
16469
16470 s = *ret = bfd_malloc (size);
16471 if (s == NULL)
16472 return -1;
16473 send = s + 2 * count + 1;
16474
16475 names = (char *) send;
16476 nend = (char *) s + size;
16477 n = 0;
16478
16479 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16480 if (opcode == 0x3302fffe)
16481 {
16482 if (!micromips_p)
16483 return -1;
16484 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16485 other = STO_MICROMIPS;
16486 }
833794fc
MR
16487 else if (opcode == 0x0398c1d0)
16488 {
16489 if (!micromips_p)
16490 return -1;
16491 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16492 other = STO_MICROMIPS;
16493 }
1bbce132
MR
16494 else
16495 {
16496 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16497 other = 0;
16498 }
16499
16500 s->the_bfd = abfd;
16501 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16502 s->section = plt;
16503 s->value = 0;
16504 s->name = names;
16505 s->udata.i = other;
16506 memcpy (names, pltname, sizeof (pltname));
16507 names += sizeof (pltname);
16508 ++s, ++n;
16509
16510 pi = 0;
16511 for (plt_offset = plt0_size;
16512 plt_offset + 8 <= plt->size && s < send;
16513 plt_offset += entry_size)
16514 {
16515 bfd_vma gotplt_addr;
16516 const char *suffix;
16517 bfd_vma gotplt_hi;
16518 bfd_vma gotplt_lo;
16519 size_t suffixlen;
16520
16521 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16522
16523 /* Check if the second word matches the expected MIPS16 instruction. */
16524 if (opcode == 0x651aeb00)
16525 {
16526 if (micromips_p)
16527 return -1;
16528 /* Truncated table??? */
16529 if (plt_offset + 16 > plt->size)
16530 break;
16531 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16532 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16533 suffixlen = sizeof (m16suffix);
16534 suffix = m16suffix;
16535 other = STO_MIPS16;
16536 }
833794fc 16537 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16538 else if (opcode == 0xff220000)
16539 {
16540 if (!micromips_p)
16541 return -1;
16542 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16543 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16544 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16545 gotplt_lo <<= 2;
16546 gotplt_addr = gotplt_hi + gotplt_lo;
16547 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16548 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16549 suffixlen = sizeof (microsuffix);
16550 suffix = microsuffix;
16551 other = STO_MICROMIPS;
16552 }
833794fc
MR
16553 /* Likewise the expected microMIPS instruction (insn32 mode). */
16554 else if ((opcode & 0xffff0000) == 0xff2f0000)
16555 {
16556 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16557 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16558 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16559 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16560 gotplt_addr = gotplt_hi + gotplt_lo;
16561 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16562 suffixlen = sizeof (microsuffix);
16563 suffix = microsuffix;
16564 other = STO_MICROMIPS;
16565 }
1bbce132
MR
16566 /* Otherwise assume standard MIPS code. */
16567 else
16568 {
16569 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16570 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16571 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16572 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16573 gotplt_addr = gotplt_hi + gotplt_lo;
16574 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16575 suffixlen = sizeof (mipssuffix);
16576 suffix = mipssuffix;
16577 other = 0;
16578 }
16579 /* Truncated table??? */
16580 if (plt_offset + entry_size > plt->size)
16581 break;
16582
16583 for (i = 0;
16584 i < count && p[pi].address != gotplt_addr;
16585 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16586
16587 if (i < count)
16588 {
16589 size_t namelen;
16590 size_t len;
16591
16592 *s = **p[pi].sym_ptr_ptr;
16593 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16594 we are defining a symbol, ensure one of them is set. */
16595 if ((s->flags & BSF_LOCAL) == 0)
16596 s->flags |= BSF_GLOBAL;
16597 s->flags |= BSF_SYNTHETIC;
16598 s->section = plt;
16599 s->value = plt_offset;
16600 s->name = names;
16601 s->udata.i = other;
16602
16603 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16604 namelen = len + suffixlen;
16605 if (names + namelen > nend)
16606 break;
16607
16608 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16609 names += len;
16610 memcpy (names, suffix, suffixlen);
16611 names += suffixlen;
16612
16613 ++s, ++n;
16614 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16615 }
16616 }
16617
16618 free (plt_data);
16619
16620 return n;
16621}
16622
5e7fc731
MR
16623/* Return the ABI flags associated with ABFD if available. */
16624
16625Elf_Internal_ABIFlags_v0 *
16626bfd_mips_elf_get_abiflags (bfd *abfd)
16627{
16628 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16629
16630 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16631}
16632
bb29b84d
MR
16633/* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16634 field. Taken from `libc-abis.h' generated at GNU libc build time.
16635 Using a MIPS_ prefix as other libc targets use different values. */
16636enum
16637{
16638 MIPS_LIBC_ABI_DEFAULT = 0,
16639 MIPS_LIBC_ABI_MIPS_PLT,
16640 MIPS_LIBC_ABI_UNIQUE,
16641 MIPS_LIBC_ABI_MIPS_O32_FP64,
47275900 16642 MIPS_LIBC_ABI_ABSOLUTE,
f16a9783 16643 MIPS_LIBC_ABI_XHASH,
bb29b84d
MR
16644 MIPS_LIBC_ABI_MAX
16645};
16646
861fb55a
DJ
16647void
16648_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16649{
47275900 16650 struct mips_elf_link_hash_table *htab = NULL;
861fb55a
DJ
16651 Elf_Internal_Ehdr *i_ehdrp;
16652
16653 i_ehdrp = elf_elfheader (abfd);
16654 if (link_info)
16655 {
16656 htab = mips_elf_hash_table (link_info);
4dfe6ac6 16657 BFD_ASSERT (htab != NULL);
861fb55a 16658 }
0af03126 16659
47275900
MR
16660 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16661 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16662
351cdf24
MF
16663 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16664 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
bb29b84d 16665 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
334cd8a7 16666
47275900
MR
16667 /* Mark that we need support for absolute symbols in the dynamic loader. */
16668 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16669 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16670
f16a9783
MS
16671 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16672 if it is the only hash section that will be created. */
16673 if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16674 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
16675
334cd8a7 16676 _bfd_elf_post_process_headers (abfd, link_info);
861fb55a 16677}
2f0c68f2
CM
16678
16679int
1ced1a5f
MR
16680_bfd_mips_elf_compact_eh_encoding
16681 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
2f0c68f2
CM
16682{
16683 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16684}
16685
16686/* Return the opcode for can't unwind. */
16687
16688int
1ced1a5f
MR
16689_bfd_mips_elf_cant_unwind_opcode
16690 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
2f0c68f2
CM
16691{
16692 return COMPACT_EH_CANT_UNWIND_OPCODE;
16693}
f16a9783
MS
16694
16695/* Record a position XLAT_LOC in the xlat translation table, associated with
16696 the hash entry H. The entry in the translation table will later be
16697 populated with the real symbol dynindx. */
16698
16699void
16700_bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16701 bfd_vma xlat_loc)
16702{
16703 struct mips_elf_link_hash_entry *hmips;
16704
16705 hmips = (struct mips_elf_link_hash_entry *) h;
16706 hmips->mipsxhash_loc = xlat_loc;
16707}