]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
PowerPC64 statistics message
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
2571583a 2 Copyright (C) 1994-2017 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
8b1ad454
NC
78#endif /* OBJ_ELF */
79
4962c51a
MS
80/* Results from operand parsing worker functions. */
81
82typedef enum
83{
84 PARSE_OPERAND_SUCCESS,
85 PARSE_OPERAND_FAIL,
86 PARSE_OPERAND_FAIL_NO_BACKTRACK
87} parse_operand_result;
88
33a392fb
PB
89enum arm_float_abi
90{
91 ARM_FLOAT_ABI_HARD,
92 ARM_FLOAT_ABI_SOFTFP,
93 ARM_FLOAT_ABI_SOFT
94};
95
c19d1205 96/* Types of processor to assemble for. */
b99bd4ef 97#ifndef CPU_DEFAULT
8a59fff3 98/* The code that was here used to select a default CPU depending on compiler
fa94de6b 99 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
100 changing gas' default behaviour depending upon the build host.
101
102 If you have a target that requires a default CPU option then the you
103 should define CPU_DEFAULT here. */
b99bd4ef
NC
104#endif
105
106#ifndef FPU_DEFAULT
c820d418
MM
107# ifdef TE_LINUX
108# define FPU_DEFAULT FPU_ARCH_FPA
109# elif defined (TE_NetBSD)
110# ifdef OBJ_ELF
111# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
112# else
113 /* Legacy a.out format. */
114# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
115# endif
4e7fd91e
PB
116# elif defined (TE_VXWORKS)
117# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
118# else
119 /* For backwards compatibility, default to FPA. */
120# define FPU_DEFAULT FPU_ARCH_FPA
121# endif
122#endif /* ifndef FPU_DEFAULT */
b99bd4ef 123
c19d1205 124#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 125
e74cfd16
PB
126static arm_feature_set cpu_variant;
127static arm_feature_set arm_arch_used;
128static arm_feature_set thumb_arch_used;
b99bd4ef 129
b99bd4ef 130/* Flags stored in private area of BFD structure. */
c19d1205
ZW
131static int uses_apcs_26 = FALSE;
132static int atpcs = FALSE;
b34976b6
AM
133static int support_interwork = FALSE;
134static int uses_apcs_float = FALSE;
c19d1205 135static int pic_code = FALSE;
845b51d6 136static int fix_v4bx = FALSE;
278df34e
NS
137/* Warn on using deprecated features. */
138static int warn_on_deprecated = TRUE;
139
2e6976a8
DG
140/* Understand CodeComposer Studio assembly syntax. */
141bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
c168ce07 150static arm_feature_set *dyn_mcpu_ext_opt = NULL;
e74cfd16
PB
151static const arm_feature_set *mcpu_fpu_opt = NULL;
152static const arm_feature_set *march_cpu_opt = NULL;
c168ce07 153static arm_feature_set *dyn_march_ext_opt = NULL;
e74cfd16
PB
154static const arm_feature_set *march_fpu_opt = NULL;
155static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 156static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
157
158/* Constants for known architecture features. */
159static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 160static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 161static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
162static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
163static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
164static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
165static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 166#ifdef OBJ_ELF
e74cfd16 167static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 168#endif
e74cfd16
PB
169static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
170
171#ifdef CPU_DEFAULT
172static const arm_feature_set cpu_default = CPU_DEFAULT;
173#endif
174
823d2571 175static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 176static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
177static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
178static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
179static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
180static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
181static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
182static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 183static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
184 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
185static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
186static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
187static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
188static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
189static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
190static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
191static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
823d2571
TG
192static const arm_feature_set arm_ext_v6_notm =
193 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
194static const arm_feature_set arm_ext_v6_dsp =
195 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
196static const arm_feature_set arm_ext_barrier =
197 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
198static const arm_feature_set arm_ext_msr =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
200static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
201static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
202static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
203static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 204#ifdef OBJ_ELF
e7d39ed3 205static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 206#endif
823d2571 207static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 208static const arm_feature_set arm_ext_m =
173205ca 209 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 210 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
211static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
212static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
213static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
214static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
215static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 216static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 217static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
218static const arm_feature_set arm_ext_v8m_main =
219 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
220/* Instructions in ARMv8-M only found in M profile architectures. */
221static const arm_feature_set arm_ext_v8m_m_only =
222 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
223static const arm_feature_set arm_ext_v6t2_v8m =
224 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
225/* Instructions shared between ARMv8-A and ARMv8-M. */
226static const arm_feature_set arm_ext_atomics =
227 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 228#ifdef OBJ_ELF
15afaa63
TP
229/* DSP instructions Tag_DSP_extension refers to. */
230static const arm_feature_set arm_ext_dsp =
231 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 232#endif
4d1464f2
MW
233static const arm_feature_set arm_ext_ras =
234 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
235/* FP16 instructions. */
236static const arm_feature_set arm_ext_fp16 =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
49e8a725
SN
238static const arm_feature_set arm_ext_v8_3 =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
e74cfd16
PB
240
241static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 242#ifdef OBJ_ELF
2c6b98ea 243static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 244#endif
f85d59c3 245static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
246static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
247static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
248
2d447fca 249static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 250 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 251static const arm_feature_set arm_cext_iwmmxt =
823d2571 252 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 253static const arm_feature_set arm_cext_xscale =
823d2571 254 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 255static const arm_feature_set arm_cext_maverick =
823d2571
TG
256 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
257static const arm_feature_set fpu_fpa_ext_v1 =
258 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
259static const arm_feature_set fpu_fpa_ext_v2 =
260 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 261static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
262 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
263static const arm_feature_set fpu_vfp_ext_v1 =
264 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
265static const arm_feature_set fpu_vfp_ext_v2 =
266 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
267static const arm_feature_set fpu_vfp_ext_v3xd =
268 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
269static const arm_feature_set fpu_vfp_ext_v3 =
270 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 271static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
272 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
273static const arm_feature_set fpu_neon_ext_v1 =
274 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 275static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 276 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
69c9e028 277#ifdef OBJ_ELF
823d2571
TG
278static const arm_feature_set fpu_vfp_fp16 =
279 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
280static const arm_feature_set fpu_neon_ext_fma =
281 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 282#endif
823d2571
TG
283static const arm_feature_set fpu_vfp_ext_fma =
284 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 285static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 286 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 287static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 288 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 289static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 290 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 291static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 292 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 293static const arm_feature_set crc_ext_armv8 =
823d2571 294 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 295static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 296 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
297static const arm_feature_set fpu_neon_ext_dotprod =
298 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 299
33a392fb 300static int mfloat_abi_opt = -1;
e74cfd16
PB
301/* Record user cpu selection for object attributes. */
302static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83 303/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 304static char selected_cpu_name[20];
8d67f500 305
aacf0b33
KT
306extern FLONUM_TYPE generic_floating_point_number;
307
8d67f500
NC
308/* Return if no cpu was selected on command-line. */
309static bfd_boolean
310no_cpu_selected (void)
311{
823d2571 312 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
313}
314
7cc69913 315#ifdef OBJ_ELF
deeaaff8
DJ
316# ifdef EABI_DEFAULT
317static int meabi_flags = EABI_DEFAULT;
318# else
d507cf36 319static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 320# endif
e1da3f5b 321
ee3c0378
AS
322static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
323
e1da3f5b 324bfd_boolean
5f4273c7 325arm_is_eabi (void)
e1da3f5b
PB
326{
327 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
328}
7cc69913 329#endif
b99bd4ef 330
b99bd4ef 331#ifdef OBJ_ELF
c19d1205 332/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
333symbolS * GOT_symbol;
334#endif
335
b99bd4ef
NC
336/* 0: assemble for ARM,
337 1: assemble for Thumb,
338 2: assemble for Thumb even though target CPU does not support thumb
339 instructions. */
340static int thumb_mode = 0;
8dc2430f
NC
341/* A value distinct from the possible values for thumb_mode that we
342 can use to record whether thumb_mode has been copied into the
343 tc_frag_data field of a frag. */
344#define MODE_RECORDED (1 << 4)
b99bd4ef 345
e07e6e58
NC
346/* Specifies the intrinsic IT insn behavior mode. */
347enum implicit_it_mode
348{
349 IMPLICIT_IT_MODE_NEVER = 0x00,
350 IMPLICIT_IT_MODE_ARM = 0x01,
351 IMPLICIT_IT_MODE_THUMB = 0x02,
352 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
353};
354static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
355
c19d1205
ZW
356/* If unified_syntax is true, we are processing the new unified
357 ARM/Thumb syntax. Important differences from the old ARM mode:
358
359 - Immediate operands do not require a # prefix.
360 - Conditional affixes always appear at the end of the
361 instruction. (For backward compatibility, those instructions
362 that formerly had them in the middle, continue to accept them
363 there.)
364 - The IT instruction may appear, and if it does is validated
365 against subsequent conditional affixes. It does not generate
366 machine code.
367
368 Important differences from the old Thumb mode:
369
370 - Immediate operands do not require a # prefix.
371 - Most of the V6T2 instructions are only available in unified mode.
372 - The .N and .W suffixes are recognized and honored (it is an error
373 if they cannot be honored).
374 - All instructions set the flags if and only if they have an 's' affix.
375 - Conditional affixes may be used. They are validated against
376 preceding IT instructions. Unlike ARM mode, you cannot use a
377 conditional affix except in the scope of an IT instruction. */
378
379static bfd_boolean unified_syntax = FALSE;
b99bd4ef 380
bacebabc
RM
381/* An immediate operand can start with #, and ld*, st*, pld operands
382 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
383 before a [, which can appear as the first operand for pld.
384 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
385const char arm_symbol_chars[] = "#[]{}";
bacebabc 386
5287ad62
JB
387enum neon_el_type
388{
dcbf9037 389 NT_invtype,
5287ad62
JB
390 NT_untyped,
391 NT_integer,
392 NT_float,
393 NT_poly,
394 NT_signed,
dcbf9037 395 NT_unsigned
5287ad62
JB
396};
397
398struct neon_type_el
399{
400 enum neon_el_type type;
401 unsigned size;
402};
403
404#define NEON_MAX_TYPE_ELS 4
405
406struct neon_type
407{
408 struct neon_type_el el[NEON_MAX_TYPE_ELS];
409 unsigned elems;
410};
411
e07e6e58
NC
412enum it_instruction_type
413{
414 OUTSIDE_IT_INSN,
415 INSIDE_IT_INSN,
416 INSIDE_IT_LAST_INSN,
417 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 418 if inside, should be the last one. */
e07e6e58 419 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 420 i.e. BKPT and NOP. */
e07e6e58
NC
421 IT_INSN /* The IT insn has been parsed. */
422};
423
ad6cec43
MGD
424/* The maximum number of operands we need. */
425#define ARM_IT_MAX_OPERANDS 6
426
b99bd4ef
NC
427struct arm_it
428{
c19d1205 429 const char * error;
b99bd4ef 430 unsigned long instruction;
c19d1205
ZW
431 int size;
432 int size_req;
433 int cond;
037e8744
JB
434 /* "uncond_value" is set to the value in place of the conditional field in
435 unconditional versions of the instruction, or -1 if nothing is
436 appropriate. */
437 int uncond_value;
5287ad62 438 struct neon_type vectype;
88714cb8
DG
439 /* This does not indicate an actual NEON instruction, only that
440 the mnemonic accepts neon-style type suffixes. */
441 int is_neon;
0110f2b8
PB
442 /* Set to the opcode if the instruction needs relaxation.
443 Zero if the instruction is not relaxed. */
444 unsigned long relax;
b99bd4ef
NC
445 struct
446 {
447 bfd_reloc_code_real_type type;
c19d1205
ZW
448 expressionS exp;
449 int pc_rel;
b99bd4ef 450 } reloc;
b99bd4ef 451
e07e6e58
NC
452 enum it_instruction_type it_insn_type;
453
c19d1205
ZW
454 struct
455 {
456 unsigned reg;
ca3f61f7 457 signed int imm;
dcbf9037 458 struct neon_type_el vectype;
ca3f61f7
NC
459 unsigned present : 1; /* Operand present. */
460 unsigned isreg : 1; /* Operand was a register. */
461 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
462 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
463 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 464 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
465 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
466 instructions. This allows us to disambiguate ARM <-> vector insns. */
467 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 468 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 469 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 470 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
471 unsigned hasreloc : 1; /* Operand has relocation suffix. */
472 unsigned writeback : 1; /* Operand has trailing ! */
473 unsigned preind : 1; /* Preindexed address. */
474 unsigned postind : 1; /* Postindexed address. */
475 unsigned negative : 1; /* Index register was negated. */
476 unsigned shifted : 1; /* Shift applied to operation. */
477 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 478 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
479};
480
c19d1205 481static struct arm_it inst;
b99bd4ef
NC
482
483#define NUM_FLOAT_VALS 8
484
05d2d07e 485const char * fp_const[] =
b99bd4ef
NC
486{
487 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
488};
489
c19d1205 490/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
491#define MAX_LITTLENUMS 6
492
493LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
494
495#define FAIL (-1)
496#define SUCCESS (0)
497
498#define SUFF_S 1
499#define SUFF_D 2
500#define SUFF_E 3
501#define SUFF_P 4
502
c19d1205
ZW
503#define CP_T_X 0x00008000
504#define CP_T_Y 0x00400000
b99bd4ef 505
c19d1205
ZW
506#define CONDS_BIT 0x00100000
507#define LOAD_BIT 0x00100000
b99bd4ef
NC
508
509#define DOUBLE_LOAD_FLAG 0x00000001
510
511struct asm_cond
512{
d3ce72d0 513 const char * template_name;
c921be7d 514 unsigned long value;
b99bd4ef
NC
515};
516
c19d1205 517#define COND_ALWAYS 0xE
b99bd4ef 518
b99bd4ef
NC
519struct asm_psr
520{
d3ce72d0 521 const char * template_name;
c921be7d 522 unsigned long field;
b99bd4ef
NC
523};
524
62b3e311
PB
525struct asm_barrier_opt
526{
e797f7e0
MGD
527 const char * template_name;
528 unsigned long value;
529 const arm_feature_set arch;
62b3e311
PB
530};
531
2d2255b5 532/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
533#define SPSR_BIT (1 << 22)
534
c19d1205
ZW
535/* The individual PSR flag bits. */
536#define PSR_c (1 << 16)
537#define PSR_x (1 << 17)
538#define PSR_s (1 << 18)
539#define PSR_f (1 << 19)
b99bd4ef 540
c19d1205 541struct reloc_entry
bfae80f2 542{
e0471c16 543 const char * name;
c921be7d 544 bfd_reloc_code_real_type reloc;
bfae80f2
RE
545};
546
5287ad62 547enum vfp_reg_pos
bfae80f2 548{
5287ad62
JB
549 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
550 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
551};
552
553enum vfp_ldstm_type
554{
555 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
556};
557
dcbf9037
JB
558/* Bits for DEFINED field in neon_typed_alias. */
559#define NTA_HASTYPE 1
560#define NTA_HASINDEX 2
561
562struct neon_typed_alias
563{
c921be7d
NC
564 unsigned char defined;
565 unsigned char index;
566 struct neon_type_el eltype;
dcbf9037
JB
567};
568
c19d1205
ZW
569/* ARM register categories. This includes coprocessor numbers and various
570 architecture extensions' registers. */
571enum arm_reg_type
bfae80f2 572{
c19d1205
ZW
573 REG_TYPE_RN,
574 REG_TYPE_CP,
575 REG_TYPE_CN,
576 REG_TYPE_FN,
577 REG_TYPE_VFS,
578 REG_TYPE_VFD,
5287ad62 579 REG_TYPE_NQ,
037e8744 580 REG_TYPE_VFSD,
5287ad62 581 REG_TYPE_NDQ,
037e8744 582 REG_TYPE_NSDQ,
c19d1205
ZW
583 REG_TYPE_VFC,
584 REG_TYPE_MVF,
585 REG_TYPE_MVD,
586 REG_TYPE_MVFX,
587 REG_TYPE_MVDX,
588 REG_TYPE_MVAX,
589 REG_TYPE_DSPSC,
590 REG_TYPE_MMXWR,
591 REG_TYPE_MMXWC,
592 REG_TYPE_MMXWCG,
593 REG_TYPE_XSCALE,
90ec0d68 594 REG_TYPE_RNB
bfae80f2
RE
595};
596
dcbf9037
JB
597/* Structure for a hash table entry for a register.
598 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
599 information which states whether a vector type or index is specified (for a
600 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
601struct reg_entry
602{
c921be7d 603 const char * name;
90ec0d68 604 unsigned int number;
c921be7d
NC
605 unsigned char type;
606 unsigned char builtin;
607 struct neon_typed_alias * neon;
6c43fab6
RE
608};
609
c19d1205 610/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 611const char * const reg_expected_msgs[] =
c19d1205
ZW
612{
613 N_("ARM register expected"),
614 N_("bad or missing co-processor number"),
615 N_("co-processor register expected"),
616 N_("FPA register expected"),
617 N_("VFP single precision register expected"),
5287ad62
JB
618 N_("VFP/Neon double precision register expected"),
619 N_("Neon quad precision register expected"),
037e8744 620 N_("VFP single or double precision register expected"),
5287ad62 621 N_("Neon double or quad precision register expected"),
037e8744 622 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
623 N_("VFP system register expected"),
624 N_("Maverick MVF register expected"),
625 N_("Maverick MVD register expected"),
626 N_("Maverick MVFX register expected"),
627 N_("Maverick MVDX register expected"),
628 N_("Maverick MVAX register expected"),
629 N_("Maverick DSPSC register expected"),
630 N_("iWMMXt data register expected"),
631 N_("iWMMXt control register expected"),
632 N_("iWMMXt scalar register expected"),
633 N_("XScale accumulator register expected"),
6c43fab6
RE
634};
635
c19d1205 636/* Some well known registers that we refer to directly elsewhere. */
bd340a04 637#define REG_R12 12
c19d1205
ZW
638#define REG_SP 13
639#define REG_LR 14
640#define REG_PC 15
404ff6b5 641
b99bd4ef
NC
642/* ARM instructions take 4bytes in the object file, Thumb instructions
643 take 2: */
c19d1205 644#define INSN_SIZE 4
b99bd4ef
NC
645
646struct asm_opcode
647{
648 /* Basic string to match. */
d3ce72d0 649 const char * template_name;
c19d1205
ZW
650
651 /* Parameters to instruction. */
5be8be5d 652 unsigned int operands[8];
c19d1205
ZW
653
654 /* Conditional tag - see opcode_lookup. */
655 unsigned int tag : 4;
b99bd4ef
NC
656
657 /* Basic instruction code. */
c19d1205 658 unsigned int avalue : 28;
b99bd4ef 659
c19d1205
ZW
660 /* Thumb-format instruction code. */
661 unsigned int tvalue;
b99bd4ef 662
90e4755a 663 /* Which architecture variant provides this instruction. */
c921be7d
NC
664 const arm_feature_set * avariant;
665 const arm_feature_set * tvariant;
c19d1205
ZW
666
667 /* Function to call to encode instruction in ARM format. */
668 void (* aencode) (void);
b99bd4ef 669
c19d1205
ZW
670 /* Function to call to encode instruction in Thumb format. */
671 void (* tencode) (void);
b99bd4ef
NC
672};
673
a737bd4d
NC
674/* Defines for various bits that we will want to toggle. */
675#define INST_IMMEDIATE 0x02000000
676#define OFFSET_REG 0x02000000
c19d1205 677#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
678#define SHIFT_BY_REG 0x00000010
679#define PRE_INDEX 0x01000000
680#define INDEX_UP 0x00800000
681#define WRITE_BACK 0x00200000
682#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 683#define CPSI_MMOD 0x00020000
90e4755a 684
a737bd4d
NC
685#define LITERAL_MASK 0xf000f000
686#define OPCODE_MASK 0xfe1fffff
687#define V4_STR_BIT 0x00000020
8335d6aa 688#define VLDR_VMOV_SAME 0x0040f000
90e4755a 689
efd81785
PB
690#define T2_SUBS_PC_LR 0xf3de8f00
691
a737bd4d 692#define DATA_OP_SHIFT 21
bada4342 693#define SBIT_SHIFT 20
90e4755a 694
ef8d22e6
PB
695#define T2_OPCODE_MASK 0xfe1fffff
696#define T2_DATA_OP_SHIFT 21
bada4342 697#define T2_SBIT_SHIFT 20
ef8d22e6 698
6530b175
NC
699#define A_COND_MASK 0xf0000000
700#define A_PUSH_POP_OP_MASK 0x0fff0000
701
702/* Opcodes for pushing/poping registers to/from the stack. */
703#define A1_OPCODE_PUSH 0x092d0000
704#define A2_OPCODE_PUSH 0x052d0004
705#define A2_OPCODE_POP 0x049d0004
706
a737bd4d
NC
707/* Codes to distinguish the arithmetic instructions. */
708#define OPCODE_AND 0
709#define OPCODE_EOR 1
710#define OPCODE_SUB 2
711#define OPCODE_RSB 3
712#define OPCODE_ADD 4
713#define OPCODE_ADC 5
714#define OPCODE_SBC 6
715#define OPCODE_RSC 7
716#define OPCODE_TST 8
717#define OPCODE_TEQ 9
718#define OPCODE_CMP 10
719#define OPCODE_CMN 11
720#define OPCODE_ORR 12
721#define OPCODE_MOV 13
722#define OPCODE_BIC 14
723#define OPCODE_MVN 15
90e4755a 724
ef8d22e6
PB
725#define T2_OPCODE_AND 0
726#define T2_OPCODE_BIC 1
727#define T2_OPCODE_ORR 2
728#define T2_OPCODE_ORN 3
729#define T2_OPCODE_EOR 4
730#define T2_OPCODE_ADD 8
731#define T2_OPCODE_ADC 10
732#define T2_OPCODE_SBC 11
733#define T2_OPCODE_SUB 13
734#define T2_OPCODE_RSB 14
735
a737bd4d
NC
736#define T_OPCODE_MUL 0x4340
737#define T_OPCODE_TST 0x4200
738#define T_OPCODE_CMN 0x42c0
739#define T_OPCODE_NEG 0x4240
740#define T_OPCODE_MVN 0x43c0
90e4755a 741
a737bd4d
NC
742#define T_OPCODE_ADD_R3 0x1800
743#define T_OPCODE_SUB_R3 0x1a00
744#define T_OPCODE_ADD_HI 0x4400
745#define T_OPCODE_ADD_ST 0xb000
746#define T_OPCODE_SUB_ST 0xb080
747#define T_OPCODE_ADD_SP 0xa800
748#define T_OPCODE_ADD_PC 0xa000
749#define T_OPCODE_ADD_I8 0x3000
750#define T_OPCODE_SUB_I8 0x3800
751#define T_OPCODE_ADD_I3 0x1c00
752#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 753
a737bd4d
NC
754#define T_OPCODE_ASR_R 0x4100
755#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
756#define T_OPCODE_LSR_R 0x40c0
757#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
758#define T_OPCODE_ASR_I 0x1000
759#define T_OPCODE_LSL_I 0x0000
760#define T_OPCODE_LSR_I 0x0800
b99bd4ef 761
a737bd4d
NC
762#define T_OPCODE_MOV_I8 0x2000
763#define T_OPCODE_CMP_I8 0x2800
764#define T_OPCODE_CMP_LR 0x4280
765#define T_OPCODE_MOV_HR 0x4600
766#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 767
a737bd4d
NC
768#define T_OPCODE_LDR_PC 0x4800
769#define T_OPCODE_LDR_SP 0x9800
770#define T_OPCODE_STR_SP 0x9000
771#define T_OPCODE_LDR_IW 0x6800
772#define T_OPCODE_STR_IW 0x6000
773#define T_OPCODE_LDR_IH 0x8800
774#define T_OPCODE_STR_IH 0x8000
775#define T_OPCODE_LDR_IB 0x7800
776#define T_OPCODE_STR_IB 0x7000
777#define T_OPCODE_LDR_RW 0x5800
778#define T_OPCODE_STR_RW 0x5000
779#define T_OPCODE_LDR_RH 0x5a00
780#define T_OPCODE_STR_RH 0x5200
781#define T_OPCODE_LDR_RB 0x5c00
782#define T_OPCODE_STR_RB 0x5400
c9b604bd 783
a737bd4d
NC
784#define T_OPCODE_PUSH 0xb400
785#define T_OPCODE_POP 0xbc00
b99bd4ef 786
2fc8bdac 787#define T_OPCODE_BRANCH 0xe000
b99bd4ef 788
a737bd4d 789#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 790#define THUMB_PP_PC_LR 0x0100
c19d1205 791#define THUMB_LOAD_BIT 0x0800
53365c0d 792#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
793
794#define BAD_ARGS _("bad arguments to instruction")
fdfde340 795#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
796#define BAD_PC _("r15 not allowed here")
797#define BAD_COND _("instruction cannot be conditional")
798#define BAD_OVERLAP _("registers may not be the same")
799#define BAD_HIREG _("lo register required")
800#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 801#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
802#define BAD_BRANCH _("branch must be last instruction in IT block")
803#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 804#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
805#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
806#define BAD_IT_COND _("incorrect condition in IT block")
807#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 808#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
809#define BAD_PC_ADDRESSING \
810 _("cannot use register index with PC-relative addressing")
811#define BAD_PC_WRITEBACK \
812 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
813#define BAD_RANGE _("branch out of range")
814#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 815#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 816#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
c19d1205 817
c921be7d
NC
818static struct hash_control * arm_ops_hsh;
819static struct hash_control * arm_cond_hsh;
820static struct hash_control * arm_shift_hsh;
821static struct hash_control * arm_psr_hsh;
822static struct hash_control * arm_v7m_psr_hsh;
823static struct hash_control * arm_reg_hsh;
824static struct hash_control * arm_reloc_hsh;
825static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 826
b99bd4ef
NC
827/* Stuff needed to resolve the label ambiguity
828 As:
829 ...
830 label: <insn>
831 may differ from:
832 ...
833 label:
5f4273c7 834 <insn> */
b99bd4ef
NC
835
836symbolS * last_label_seen;
b34976b6 837static int label_is_thumb_function_name = FALSE;
e07e6e58 838
3d0c9500
NC
839/* Literal pool structure. Held on a per-section
840 and per-sub-section basis. */
a737bd4d 841
c19d1205 842#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 843typedef struct literal_pool
b99bd4ef 844{
c921be7d
NC
845 expressionS literals [MAX_LITERAL_POOL_SIZE];
846 unsigned int next_free_entry;
847 unsigned int id;
848 symbolS * symbol;
849 segT section;
850 subsegT sub_section;
a8040cf2
NC
851#ifdef OBJ_ELF
852 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
853#endif
c921be7d 854 struct literal_pool * next;
8335d6aa 855 unsigned int alignment;
3d0c9500 856} literal_pool;
b99bd4ef 857
3d0c9500
NC
858/* Pointer to a linked list of literal pools. */
859literal_pool * list_of_pools = NULL;
e27ec89e 860
2e6976a8
DG
861typedef enum asmfunc_states
862{
863 OUTSIDE_ASMFUNC,
864 WAITING_ASMFUNC_NAME,
865 WAITING_ENDASMFUNC
866} asmfunc_states;
867
868static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
869
e07e6e58
NC
870#ifdef OBJ_ELF
871# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
872#else
873static struct current_it now_it;
874#endif
875
876static inline int
877now_it_compatible (int cond)
878{
879 return (cond & ~1) == (now_it.cc & ~1);
880}
881
882static inline int
883conditional_insn (void)
884{
885 return inst.cond != COND_ALWAYS;
886}
887
888static int in_it_block (void);
889
890static int handle_it_state (void);
891
892static void force_automatic_it_block_close (void);
893
c921be7d
NC
894static void it_fsm_post_encode (void);
895
e07e6e58
NC
896#define set_it_insn_type(type) \
897 do \
898 { \
899 inst.it_insn_type = type; \
900 if (handle_it_state () == FAIL) \
477330fc 901 return; \
e07e6e58
NC
902 } \
903 while (0)
904
c921be7d
NC
905#define set_it_insn_type_nonvoid(type, failret) \
906 do \
907 { \
908 inst.it_insn_type = type; \
909 if (handle_it_state () == FAIL) \
477330fc 910 return failret; \
c921be7d
NC
911 } \
912 while(0)
913
e07e6e58
NC
914#define set_it_insn_type_last() \
915 do \
916 { \
917 if (inst.cond == COND_ALWAYS) \
477330fc 918 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 919 else \
477330fc 920 set_it_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
921 } \
922 while (0)
923
c19d1205 924/* Pure syntax. */
b99bd4ef 925
c19d1205
ZW
926/* This array holds the chars that always start a comment. If the
927 pre-processor is disabled, these aren't very useful. */
2e6976a8 928char arm_comment_chars[] = "@";
3d0c9500 929
c19d1205
ZW
930/* This array holds the chars that only start a comment at the beginning of
931 a line. If the line seems to have the form '# 123 filename'
932 .line and .file directives will appear in the pre-processed output. */
933/* Note that input_file.c hand checks for '#' at the beginning of the
934 first line of the input file. This is because the compiler outputs
935 #NO_APP at the beginning of its output. */
936/* Also note that comments like this one will always work. */
937const char line_comment_chars[] = "#";
3d0c9500 938
2e6976a8 939char arm_line_separator_chars[] = ";";
b99bd4ef 940
c19d1205
ZW
941/* Chars that can be used to separate mant
942 from exp in floating point numbers. */
943const char EXP_CHARS[] = "eE";
3d0c9500 944
c19d1205
ZW
945/* Chars that mean this number is a floating point constant. */
946/* As in 0f12.456 */
947/* or 0d1.2345e12 */
b99bd4ef 948
c19d1205 949const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 950
c19d1205
ZW
951/* Prefix characters that indicate the start of an immediate
952 value. */
953#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 954
c19d1205
ZW
955/* Separator character handling. */
956
957#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
958
959static inline int
960skip_past_char (char ** str, char c)
961{
8ab8155f
NC
962 /* PR gas/14987: Allow for whitespace before the expected character. */
963 skip_whitespace (*str);
427d0db6 964
c19d1205
ZW
965 if (**str == c)
966 {
967 (*str)++;
968 return SUCCESS;
3d0c9500 969 }
c19d1205
ZW
970 else
971 return FAIL;
972}
c921be7d 973
c19d1205 974#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 975
c19d1205
ZW
976/* Arithmetic expressions (possibly involving symbols). */
977
978/* Return TRUE if anything in the expression is a bignum. */
979
980static int
981walk_no_bignums (symbolS * sp)
982{
983 if (symbol_get_value_expression (sp)->X_op == O_big)
984 return 1;
985
986 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 987 {
c19d1205
ZW
988 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
989 || (symbol_get_value_expression (sp)->X_op_symbol
990 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
991 }
992
c19d1205 993 return 0;
3d0c9500
NC
994}
995
c19d1205
ZW
996static int in_my_get_expression = 0;
997
998/* Third argument to my_get_expression. */
999#define GE_NO_PREFIX 0
1000#define GE_IMM_PREFIX 1
1001#define GE_OPT_PREFIX 2
5287ad62
JB
1002/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1003 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1004#define GE_OPT_PREFIX_BIG 3
a737bd4d 1005
b99bd4ef 1006static int
c19d1205 1007my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1008{
c19d1205
ZW
1009 char * save_in;
1010 segT seg;
b99bd4ef 1011
c19d1205
ZW
1012 /* In unified syntax, all prefixes are optional. */
1013 if (unified_syntax)
5287ad62 1014 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1015 : GE_OPT_PREFIX;
b99bd4ef 1016
c19d1205 1017 switch (prefix_mode)
b99bd4ef 1018 {
c19d1205
ZW
1019 case GE_NO_PREFIX: break;
1020 case GE_IMM_PREFIX:
1021 if (!is_immediate_prefix (**str))
1022 {
1023 inst.error = _("immediate expression requires a # prefix");
1024 return FAIL;
1025 }
1026 (*str)++;
1027 break;
1028 case GE_OPT_PREFIX:
5287ad62 1029 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1030 if (is_immediate_prefix (**str))
1031 (*str)++;
1032 break;
1033 default: abort ();
1034 }
b99bd4ef 1035
c19d1205 1036 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1037
c19d1205
ZW
1038 save_in = input_line_pointer;
1039 input_line_pointer = *str;
1040 in_my_get_expression = 1;
1041 seg = expression (ep);
1042 in_my_get_expression = 0;
1043
f86adc07 1044 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1045 {
f86adc07 1046 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1047 *str = input_line_pointer;
1048 input_line_pointer = save_in;
1049 if (inst.error == NULL)
f86adc07
NS
1050 inst.error = (ep->X_op == O_absent
1051 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1052 return 1;
1053 }
b99bd4ef 1054
c19d1205
ZW
1055#ifdef OBJ_AOUT
1056 if (seg != absolute_section
1057 && seg != text_section
1058 && seg != data_section
1059 && seg != bss_section
1060 && seg != undefined_section)
1061 {
1062 inst.error = _("bad segment");
1063 *str = input_line_pointer;
1064 input_line_pointer = save_in;
1065 return 1;
b99bd4ef 1066 }
87975d2a
AM
1067#else
1068 (void) seg;
c19d1205 1069#endif
b99bd4ef 1070
c19d1205
ZW
1071 /* Get rid of any bignums now, so that we don't generate an error for which
1072 we can't establish a line number later on. Big numbers are never valid
1073 in instructions, which is where this routine is always called. */
5287ad62
JB
1074 if (prefix_mode != GE_OPT_PREFIX_BIG
1075 && (ep->X_op == O_big
477330fc 1076 || (ep->X_add_symbol
5287ad62 1077 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1078 || (ep->X_op_symbol
5287ad62 1079 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1080 {
1081 inst.error = _("invalid constant");
1082 *str = input_line_pointer;
1083 input_line_pointer = save_in;
1084 return 1;
1085 }
b99bd4ef 1086
c19d1205
ZW
1087 *str = input_line_pointer;
1088 input_line_pointer = save_in;
1089 return 0;
b99bd4ef
NC
1090}
1091
c19d1205
ZW
1092/* Turn a string in input_line_pointer into a floating point constant
1093 of type TYPE, and store the appropriate bytes in *LITP. The number
1094 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1095 returned, or NULL on OK.
b99bd4ef 1096
c19d1205
ZW
1097 Note that fp constants aren't represent in the normal way on the ARM.
1098 In big endian mode, things are as expected. However, in little endian
1099 mode fp constants are big-endian word-wise, and little-endian byte-wise
1100 within the words. For example, (double) 1.1 in big endian mode is
1101 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1102 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1103
c19d1205 1104 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1105
6d4af3c2 1106const char *
c19d1205
ZW
1107md_atof (int type, char * litP, int * sizeP)
1108{
1109 int prec;
1110 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1111 char *t;
1112 int i;
b99bd4ef 1113
c19d1205
ZW
1114 switch (type)
1115 {
1116 case 'f':
1117 case 'F':
1118 case 's':
1119 case 'S':
1120 prec = 2;
1121 break;
b99bd4ef 1122
c19d1205
ZW
1123 case 'd':
1124 case 'D':
1125 case 'r':
1126 case 'R':
1127 prec = 4;
1128 break;
b99bd4ef 1129
c19d1205
ZW
1130 case 'x':
1131 case 'X':
499ac353 1132 prec = 5;
c19d1205 1133 break;
b99bd4ef 1134
c19d1205
ZW
1135 case 'p':
1136 case 'P':
499ac353 1137 prec = 5;
c19d1205 1138 break;
a737bd4d 1139
c19d1205
ZW
1140 default:
1141 *sizeP = 0;
499ac353 1142 return _("Unrecognized or unsupported floating point constant");
c19d1205 1143 }
b99bd4ef 1144
c19d1205
ZW
1145 t = atof_ieee (input_line_pointer, type, words);
1146 if (t)
1147 input_line_pointer = t;
499ac353 1148 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1149
c19d1205
ZW
1150 if (target_big_endian)
1151 {
1152 for (i = 0; i < prec; i++)
1153 {
499ac353
NC
1154 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1155 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1156 }
1157 }
1158 else
1159 {
e74cfd16 1160 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1161 for (i = prec - 1; i >= 0; i--)
1162 {
499ac353
NC
1163 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1164 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1165 }
1166 else
1167 /* For a 4 byte float the order of elements in `words' is 1 0.
1168 For an 8 byte float the order is 1 0 3 2. */
1169 for (i = 0; i < prec; i += 2)
1170 {
499ac353
NC
1171 md_number_to_chars (litP, (valueT) words[i + 1],
1172 sizeof (LITTLENUM_TYPE));
1173 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1174 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1175 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1176 }
1177 }
b99bd4ef 1178
499ac353 1179 return NULL;
c19d1205 1180}
b99bd4ef 1181
c19d1205
ZW
1182/* We handle all bad expressions here, so that we can report the faulty
1183 instruction in the error message. */
1184void
91d6fa6a 1185md_operand (expressionS * exp)
c19d1205
ZW
1186{
1187 if (in_my_get_expression)
91d6fa6a 1188 exp->X_op = O_illegal;
b99bd4ef
NC
1189}
1190
c19d1205 1191/* Immediate values. */
b99bd4ef 1192
c19d1205
ZW
1193/* Generic immediate-value read function for use in directives.
1194 Accepts anything that 'expression' can fold to a constant.
1195 *val receives the number. */
1196#ifdef OBJ_ELF
1197static int
1198immediate_for_directive (int *val)
b99bd4ef 1199{
c19d1205
ZW
1200 expressionS exp;
1201 exp.X_op = O_illegal;
b99bd4ef 1202
c19d1205
ZW
1203 if (is_immediate_prefix (*input_line_pointer))
1204 {
1205 input_line_pointer++;
1206 expression (&exp);
1207 }
b99bd4ef 1208
c19d1205
ZW
1209 if (exp.X_op != O_constant)
1210 {
1211 as_bad (_("expected #constant"));
1212 ignore_rest_of_line ();
1213 return FAIL;
1214 }
1215 *val = exp.X_add_number;
1216 return SUCCESS;
b99bd4ef 1217}
c19d1205 1218#endif
b99bd4ef 1219
c19d1205 1220/* Register parsing. */
b99bd4ef 1221
c19d1205
ZW
1222/* Generic register parser. CCP points to what should be the
1223 beginning of a register name. If it is indeed a valid register
1224 name, advance CCP over it and return the reg_entry structure;
1225 otherwise return NULL. Does not issue diagnostics. */
1226
1227static struct reg_entry *
1228arm_reg_parse_multi (char **ccp)
b99bd4ef 1229{
c19d1205
ZW
1230 char *start = *ccp;
1231 char *p;
1232 struct reg_entry *reg;
b99bd4ef 1233
477330fc
RM
1234 skip_whitespace (start);
1235
c19d1205
ZW
1236#ifdef REGISTER_PREFIX
1237 if (*start != REGISTER_PREFIX)
01cfc07f 1238 return NULL;
c19d1205
ZW
1239 start++;
1240#endif
1241#ifdef OPTIONAL_REGISTER_PREFIX
1242 if (*start == OPTIONAL_REGISTER_PREFIX)
1243 start++;
1244#endif
b99bd4ef 1245
c19d1205
ZW
1246 p = start;
1247 if (!ISALPHA (*p) || !is_name_beginner (*p))
1248 return NULL;
b99bd4ef 1249
c19d1205
ZW
1250 do
1251 p++;
1252 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1253
1254 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1255
1256 if (!reg)
1257 return NULL;
1258
1259 *ccp = p;
1260 return reg;
b99bd4ef
NC
1261}
1262
1263static int
dcbf9037 1264arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1265 enum arm_reg_type type)
b99bd4ef 1266{
c19d1205
ZW
1267 /* Alternative syntaxes are accepted for a few register classes. */
1268 switch (type)
1269 {
1270 case REG_TYPE_MVF:
1271 case REG_TYPE_MVD:
1272 case REG_TYPE_MVFX:
1273 case REG_TYPE_MVDX:
1274 /* Generic coprocessor register names are allowed for these. */
79134647 1275 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1276 return reg->number;
1277 break;
69b97547 1278
c19d1205
ZW
1279 case REG_TYPE_CP:
1280 /* For backward compatibility, a bare number is valid here. */
1281 {
1282 unsigned long processor = strtoul (start, ccp, 10);
1283 if (*ccp != start && processor <= 15)
1284 return processor;
1285 }
1a0670f3 1286 /* Fall through. */
6057a28f 1287
c19d1205
ZW
1288 case REG_TYPE_MMXWC:
1289 /* WC includes WCG. ??? I'm not sure this is true for all
1290 instructions that take WC registers. */
79134647 1291 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1292 return reg->number;
6057a28f 1293 break;
c19d1205 1294
6057a28f 1295 default:
c19d1205 1296 break;
6057a28f
NC
1297 }
1298
dcbf9037
JB
1299 return FAIL;
1300}
1301
1302/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1303 return value is the register number or FAIL. */
1304
1305static int
1306arm_reg_parse (char **ccp, enum arm_reg_type type)
1307{
1308 char *start = *ccp;
1309 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1310 int ret;
1311
1312 /* Do not allow a scalar (reg+index) to parse as a register. */
1313 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1314 return FAIL;
1315
1316 if (reg && reg->type == type)
1317 return reg->number;
1318
1319 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1320 return ret;
1321
c19d1205
ZW
1322 *ccp = start;
1323 return FAIL;
1324}
69b97547 1325
dcbf9037
JB
1326/* Parse a Neon type specifier. *STR should point at the leading '.'
1327 character. Does no verification at this stage that the type fits the opcode
1328 properly. E.g.,
1329
1330 .i32.i32.s16
1331 .s32.f32
1332 .u16
1333
1334 Can all be legally parsed by this function.
1335
1336 Fills in neon_type struct pointer with parsed information, and updates STR
1337 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1338 type, FAIL if not. */
1339
1340static int
1341parse_neon_type (struct neon_type *type, char **str)
1342{
1343 char *ptr = *str;
1344
1345 if (type)
1346 type->elems = 0;
1347
1348 while (type->elems < NEON_MAX_TYPE_ELS)
1349 {
1350 enum neon_el_type thistype = NT_untyped;
1351 unsigned thissize = -1u;
1352
1353 if (*ptr != '.')
1354 break;
1355
1356 ptr++;
1357
1358 /* Just a size without an explicit type. */
1359 if (ISDIGIT (*ptr))
1360 goto parsesize;
1361
1362 switch (TOLOWER (*ptr))
1363 {
1364 case 'i': thistype = NT_integer; break;
1365 case 'f': thistype = NT_float; break;
1366 case 'p': thistype = NT_poly; break;
1367 case 's': thistype = NT_signed; break;
1368 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1369 case 'd':
1370 thistype = NT_float;
1371 thissize = 64;
1372 ptr++;
1373 goto done;
dcbf9037
JB
1374 default:
1375 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1376 return FAIL;
1377 }
1378
1379 ptr++;
1380
1381 /* .f is an abbreviation for .f32. */
1382 if (thistype == NT_float && !ISDIGIT (*ptr))
1383 thissize = 32;
1384 else
1385 {
1386 parsesize:
1387 thissize = strtoul (ptr, &ptr, 10);
1388
1389 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1390 && thissize != 64)
1391 {
1392 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1393 return FAIL;
1394 }
1395 }
1396
037e8744 1397 done:
dcbf9037 1398 if (type)
477330fc
RM
1399 {
1400 type->el[type->elems].type = thistype;
dcbf9037
JB
1401 type->el[type->elems].size = thissize;
1402 type->elems++;
1403 }
1404 }
1405
1406 /* Empty/missing type is not a successful parse. */
1407 if (type->elems == 0)
1408 return FAIL;
1409
1410 *str = ptr;
1411
1412 return SUCCESS;
1413}
1414
1415/* Errors may be set multiple times during parsing or bit encoding
1416 (particularly in the Neon bits), but usually the earliest error which is set
1417 will be the most meaningful. Avoid overwriting it with later (cascading)
1418 errors by calling this function. */
1419
1420static void
1421first_error (const char *err)
1422{
1423 if (!inst.error)
1424 inst.error = err;
1425}
1426
1427/* Parse a single type, e.g. ".s32", leading period included. */
1428static int
1429parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1430{
1431 char *str = *ccp;
1432 struct neon_type optype;
1433
1434 if (*str == '.')
1435 {
1436 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1437 {
1438 if (optype.elems == 1)
1439 *vectype = optype.el[0];
1440 else
1441 {
1442 first_error (_("only one type should be specified for operand"));
1443 return FAIL;
1444 }
1445 }
dcbf9037 1446 else
477330fc
RM
1447 {
1448 first_error (_("vector type expected"));
1449 return FAIL;
1450 }
dcbf9037
JB
1451 }
1452 else
1453 return FAIL;
5f4273c7 1454
dcbf9037 1455 *ccp = str;
5f4273c7 1456
dcbf9037
JB
1457 return SUCCESS;
1458}
1459
1460/* Special meanings for indices (which have a range of 0-7), which will fit into
1461 a 4-bit integer. */
1462
1463#define NEON_ALL_LANES 15
1464#define NEON_INTERLEAVE_LANES 14
1465
1466/* Parse either a register or a scalar, with an optional type. Return the
1467 register number, and optionally fill in the actual type of the register
1468 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1469 type/index information in *TYPEINFO. */
1470
1471static int
1472parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1473 enum arm_reg_type *rtype,
1474 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1475{
1476 char *str = *ccp;
1477 struct reg_entry *reg = arm_reg_parse_multi (&str);
1478 struct neon_typed_alias atype;
1479 struct neon_type_el parsetype;
1480
1481 atype.defined = 0;
1482 atype.index = -1;
1483 atype.eltype.type = NT_invtype;
1484 atype.eltype.size = -1;
1485
1486 /* Try alternate syntax for some types of register. Note these are mutually
1487 exclusive with the Neon syntax extensions. */
1488 if (reg == NULL)
1489 {
1490 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1491 if (altreg != FAIL)
477330fc 1492 *ccp = str;
dcbf9037 1493 if (typeinfo)
477330fc 1494 *typeinfo = atype;
dcbf9037
JB
1495 return altreg;
1496 }
1497
037e8744
JB
1498 /* Undo polymorphism when a set of register types may be accepted. */
1499 if ((type == REG_TYPE_NDQ
1500 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1501 || (type == REG_TYPE_VFSD
477330fc 1502 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1503 || (type == REG_TYPE_NSDQ
477330fc
RM
1504 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1505 || reg->type == REG_TYPE_NQ))
f512f76f
NC
1506 || (type == REG_TYPE_MMXWC
1507 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1508 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1509
1510 if (type != reg->type)
1511 return FAIL;
1512
1513 if (reg->neon)
1514 atype = *reg->neon;
5f4273c7 1515
dcbf9037
JB
1516 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1517 {
1518 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1519 {
1520 first_error (_("can't redefine type for operand"));
1521 return FAIL;
1522 }
dcbf9037
JB
1523 atype.defined |= NTA_HASTYPE;
1524 atype.eltype = parsetype;
1525 }
5f4273c7 1526
dcbf9037
JB
1527 if (skip_past_char (&str, '[') == SUCCESS)
1528 {
1529 if (type != REG_TYPE_VFD)
477330fc
RM
1530 {
1531 first_error (_("only D registers may be indexed"));
1532 return FAIL;
1533 }
5f4273c7 1534
dcbf9037 1535 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1536 {
1537 first_error (_("can't change index for operand"));
1538 return FAIL;
1539 }
dcbf9037
JB
1540
1541 atype.defined |= NTA_HASINDEX;
1542
1543 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1544 atype.index = NEON_ALL_LANES;
dcbf9037 1545 else
477330fc
RM
1546 {
1547 expressionS exp;
dcbf9037 1548
477330fc 1549 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1550
477330fc
RM
1551 if (exp.X_op != O_constant)
1552 {
1553 first_error (_("constant expression required"));
1554 return FAIL;
1555 }
dcbf9037 1556
477330fc
RM
1557 if (skip_past_char (&str, ']') == FAIL)
1558 return FAIL;
dcbf9037 1559
477330fc
RM
1560 atype.index = exp.X_add_number;
1561 }
dcbf9037 1562 }
5f4273c7 1563
dcbf9037
JB
1564 if (typeinfo)
1565 *typeinfo = atype;
5f4273c7 1566
dcbf9037
JB
1567 if (rtype)
1568 *rtype = type;
5f4273c7 1569
dcbf9037 1570 *ccp = str;
5f4273c7 1571
dcbf9037
JB
1572 return reg->number;
1573}
1574
1575/* Like arm_reg_parse, but allow allow the following extra features:
1576 - If RTYPE is non-zero, return the (possibly restricted) type of the
1577 register (e.g. Neon double or quad reg when either has been requested).
1578 - If this is a Neon vector type with additional type information, fill
1579 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1580 This function will fault on encountering a scalar. */
dcbf9037
JB
1581
1582static int
1583arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1584 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1585{
1586 struct neon_typed_alias atype;
1587 char *str = *ccp;
1588 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1589
1590 if (reg == FAIL)
1591 return FAIL;
1592
0855e32b
NS
1593 /* Do not allow regname(... to parse as a register. */
1594 if (*str == '(')
1595 return FAIL;
1596
dcbf9037
JB
1597 /* Do not allow a scalar (reg+index) to parse as a register. */
1598 if ((atype.defined & NTA_HASINDEX) != 0)
1599 {
1600 first_error (_("register operand expected, but got scalar"));
1601 return FAIL;
1602 }
1603
1604 if (vectype)
1605 *vectype = atype.eltype;
1606
1607 *ccp = str;
1608
1609 return reg;
1610}
1611
1612#define NEON_SCALAR_REG(X) ((X) >> 4)
1613#define NEON_SCALAR_INDEX(X) ((X) & 15)
1614
5287ad62
JB
1615/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1616 have enough information to be able to do a good job bounds-checking. So, we
1617 just do easy checks here, and do further checks later. */
1618
1619static int
dcbf9037 1620parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1621{
dcbf9037 1622 int reg;
5287ad62 1623 char *str = *ccp;
dcbf9037 1624 struct neon_typed_alias atype;
5f4273c7 1625
dcbf9037 1626 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1627
dcbf9037 1628 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1629 return FAIL;
5f4273c7 1630
dcbf9037 1631 if (atype.index == NEON_ALL_LANES)
5287ad62 1632 {
dcbf9037 1633 first_error (_("scalar must have an index"));
5287ad62
JB
1634 return FAIL;
1635 }
dcbf9037 1636 else if (atype.index >= 64 / elsize)
5287ad62 1637 {
dcbf9037 1638 first_error (_("scalar index out of range"));
5287ad62
JB
1639 return FAIL;
1640 }
5f4273c7 1641
dcbf9037
JB
1642 if (type)
1643 *type = atype.eltype;
5f4273c7 1644
5287ad62 1645 *ccp = str;
5f4273c7 1646
dcbf9037 1647 return reg * 16 + atype.index;
5287ad62
JB
1648}
1649
c19d1205 1650/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1651
c19d1205
ZW
1652static long
1653parse_reg_list (char ** strp)
1654{
1655 char * str = * strp;
1656 long range = 0;
1657 int another_range;
a737bd4d 1658
c19d1205
ZW
1659 /* We come back here if we get ranges concatenated by '+' or '|'. */
1660 do
6057a28f 1661 {
477330fc
RM
1662 skip_whitespace (str);
1663
c19d1205 1664 another_range = 0;
a737bd4d 1665
c19d1205
ZW
1666 if (*str == '{')
1667 {
1668 int in_range = 0;
1669 int cur_reg = -1;
a737bd4d 1670
c19d1205
ZW
1671 str++;
1672 do
1673 {
1674 int reg;
6057a28f 1675
dcbf9037 1676 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1677 {
dcbf9037 1678 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1679 return FAIL;
1680 }
a737bd4d 1681
c19d1205
ZW
1682 if (in_range)
1683 {
1684 int i;
a737bd4d 1685
c19d1205
ZW
1686 if (reg <= cur_reg)
1687 {
dcbf9037 1688 first_error (_("bad range in register list"));
c19d1205
ZW
1689 return FAIL;
1690 }
40a18ebd 1691
c19d1205
ZW
1692 for (i = cur_reg + 1; i < reg; i++)
1693 {
1694 if (range & (1 << i))
1695 as_tsktsk
1696 (_("Warning: duplicated register (r%d) in register list"),
1697 i);
1698 else
1699 range |= 1 << i;
1700 }
1701 in_range = 0;
1702 }
a737bd4d 1703
c19d1205
ZW
1704 if (range & (1 << reg))
1705 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1706 reg);
1707 else if (reg <= cur_reg)
1708 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1709
c19d1205
ZW
1710 range |= 1 << reg;
1711 cur_reg = reg;
1712 }
1713 while (skip_past_comma (&str) != FAIL
1714 || (in_range = 1, *str++ == '-'));
1715 str--;
a737bd4d 1716
d996d970 1717 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1718 {
dcbf9037 1719 first_error (_("missing `}'"));
c19d1205
ZW
1720 return FAIL;
1721 }
1722 }
1723 else
1724 {
91d6fa6a 1725 expressionS exp;
40a18ebd 1726
91d6fa6a 1727 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1728 return FAIL;
40a18ebd 1729
91d6fa6a 1730 if (exp.X_op == O_constant)
c19d1205 1731 {
91d6fa6a
NC
1732 if (exp.X_add_number
1733 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1734 {
1735 inst.error = _("invalid register mask");
1736 return FAIL;
1737 }
a737bd4d 1738
91d6fa6a 1739 if ((range & exp.X_add_number) != 0)
c19d1205 1740 {
91d6fa6a 1741 int regno = range & exp.X_add_number;
a737bd4d 1742
c19d1205
ZW
1743 regno &= -regno;
1744 regno = (1 << regno) - 1;
1745 as_tsktsk
1746 (_("Warning: duplicated register (r%d) in register list"),
1747 regno);
1748 }
a737bd4d 1749
91d6fa6a 1750 range |= exp.X_add_number;
c19d1205
ZW
1751 }
1752 else
1753 {
1754 if (inst.reloc.type != 0)
1755 {
1756 inst.error = _("expression too complex");
1757 return FAIL;
1758 }
a737bd4d 1759
91d6fa6a 1760 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1761 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1762 inst.reloc.pc_rel = 0;
1763 }
1764 }
a737bd4d 1765
c19d1205
ZW
1766 if (*str == '|' || *str == '+')
1767 {
1768 str++;
1769 another_range = 1;
1770 }
a737bd4d 1771 }
c19d1205 1772 while (another_range);
a737bd4d 1773
c19d1205
ZW
1774 *strp = str;
1775 return range;
a737bd4d
NC
1776}
1777
5287ad62
JB
1778/* Types of registers in a list. */
1779
1780enum reg_list_els
1781{
1782 REGLIST_VFP_S,
1783 REGLIST_VFP_D,
1784 REGLIST_NEON_D
1785};
1786
c19d1205
ZW
1787/* Parse a VFP register list. If the string is invalid return FAIL.
1788 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1789 register. Parses registers of type ETYPE.
1790 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1791 - Q registers can be used to specify pairs of D registers
1792 - { } can be omitted from around a singleton register list
477330fc
RM
1793 FIXME: This is not implemented, as it would require backtracking in
1794 some cases, e.g.:
1795 vtbl.8 d3,d4,d5
1796 This could be done (the meaning isn't really ambiguous), but doesn't
1797 fit in well with the current parsing framework.
dcbf9037
JB
1798 - 32 D registers may be used (also true for VFPv3).
1799 FIXME: Types are ignored in these register lists, which is probably a
1800 bug. */
6057a28f 1801
c19d1205 1802static int
037e8744 1803parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1804{
037e8744 1805 char *str = *ccp;
c19d1205
ZW
1806 int base_reg;
1807 int new_base;
21d799b5 1808 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1809 int max_regs = 0;
c19d1205
ZW
1810 int count = 0;
1811 int warned = 0;
1812 unsigned long mask = 0;
a737bd4d 1813 int i;
6057a28f 1814
477330fc 1815 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
1816 {
1817 inst.error = _("expecting {");
1818 return FAIL;
1819 }
6057a28f 1820
5287ad62 1821 switch (etype)
c19d1205 1822 {
5287ad62 1823 case REGLIST_VFP_S:
c19d1205
ZW
1824 regtype = REG_TYPE_VFS;
1825 max_regs = 32;
5287ad62 1826 break;
5f4273c7 1827
5287ad62
JB
1828 case REGLIST_VFP_D:
1829 regtype = REG_TYPE_VFD;
b7fc2769 1830 break;
5f4273c7 1831
b7fc2769
JB
1832 case REGLIST_NEON_D:
1833 regtype = REG_TYPE_NDQ;
1834 break;
1835 }
1836
1837 if (etype != REGLIST_VFP_S)
1838 {
b1cc4aeb
PB
1839 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1840 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
1841 {
1842 max_regs = 32;
1843 if (thumb_mode)
1844 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1845 fpu_vfp_ext_d32);
1846 else
1847 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1848 fpu_vfp_ext_d32);
1849 }
5287ad62 1850 else
477330fc 1851 max_regs = 16;
c19d1205 1852 }
6057a28f 1853
c19d1205 1854 base_reg = max_regs;
a737bd4d 1855
c19d1205
ZW
1856 do
1857 {
5287ad62 1858 int setmask = 1, addregs = 1;
dcbf9037 1859
037e8744 1860 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1861
c19d1205 1862 if (new_base == FAIL)
a737bd4d 1863 {
dcbf9037 1864 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1865 return FAIL;
1866 }
5f4273c7 1867
b7fc2769 1868 if (new_base >= max_regs)
477330fc
RM
1869 {
1870 first_error (_("register out of range in list"));
1871 return FAIL;
1872 }
5f4273c7 1873
5287ad62
JB
1874 /* Note: a value of 2 * n is returned for the register Q<n>. */
1875 if (regtype == REG_TYPE_NQ)
477330fc
RM
1876 {
1877 setmask = 3;
1878 addregs = 2;
1879 }
5287ad62 1880
c19d1205
ZW
1881 if (new_base < base_reg)
1882 base_reg = new_base;
a737bd4d 1883
5287ad62 1884 if (mask & (setmask << new_base))
c19d1205 1885 {
dcbf9037 1886 first_error (_("invalid register list"));
c19d1205 1887 return FAIL;
a737bd4d 1888 }
a737bd4d 1889
c19d1205
ZW
1890 if ((mask >> new_base) != 0 && ! warned)
1891 {
1892 as_tsktsk (_("register list not in ascending order"));
1893 warned = 1;
1894 }
0bbf2aa4 1895
5287ad62
JB
1896 mask |= setmask << new_base;
1897 count += addregs;
0bbf2aa4 1898
037e8744 1899 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1900 {
1901 int high_range;
0bbf2aa4 1902
037e8744 1903 str++;
0bbf2aa4 1904
037e8744 1905 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 1906 == FAIL)
c19d1205
ZW
1907 {
1908 inst.error = gettext (reg_expected_msgs[regtype]);
1909 return FAIL;
1910 }
0bbf2aa4 1911
477330fc
RM
1912 if (high_range >= max_regs)
1913 {
1914 first_error (_("register out of range in list"));
1915 return FAIL;
1916 }
b7fc2769 1917
477330fc
RM
1918 if (regtype == REG_TYPE_NQ)
1919 high_range = high_range + 1;
5287ad62 1920
c19d1205
ZW
1921 if (high_range <= new_base)
1922 {
1923 inst.error = _("register range not in ascending order");
1924 return FAIL;
1925 }
0bbf2aa4 1926
5287ad62 1927 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1928 {
5287ad62 1929 if (mask & (setmask << new_base))
0bbf2aa4 1930 {
c19d1205
ZW
1931 inst.error = _("invalid register list");
1932 return FAIL;
0bbf2aa4 1933 }
c19d1205 1934
5287ad62
JB
1935 mask |= setmask << new_base;
1936 count += addregs;
0bbf2aa4 1937 }
0bbf2aa4 1938 }
0bbf2aa4 1939 }
037e8744 1940 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1941
037e8744 1942 str++;
0bbf2aa4 1943
c19d1205
ZW
1944 /* Sanity check -- should have raised a parse error above. */
1945 if (count == 0 || count > max_regs)
1946 abort ();
1947
1948 *pbase = base_reg;
1949
1950 /* Final test -- the registers must be consecutive. */
1951 mask >>= base_reg;
1952 for (i = 0; i < count; i++)
1953 {
1954 if ((mask & (1u << i)) == 0)
1955 {
1956 inst.error = _("non-contiguous register range");
1957 return FAIL;
1958 }
1959 }
1960
037e8744
JB
1961 *ccp = str;
1962
c19d1205 1963 return count;
b99bd4ef
NC
1964}
1965
dcbf9037
JB
1966/* True if two alias types are the same. */
1967
c921be7d 1968static bfd_boolean
dcbf9037
JB
1969neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1970{
1971 if (!a && !b)
c921be7d 1972 return TRUE;
5f4273c7 1973
dcbf9037 1974 if (!a || !b)
c921be7d 1975 return FALSE;
dcbf9037
JB
1976
1977 if (a->defined != b->defined)
c921be7d 1978 return FALSE;
5f4273c7 1979
dcbf9037
JB
1980 if ((a->defined & NTA_HASTYPE) != 0
1981 && (a->eltype.type != b->eltype.type
477330fc 1982 || a->eltype.size != b->eltype.size))
c921be7d 1983 return FALSE;
dcbf9037
JB
1984
1985 if ((a->defined & NTA_HASINDEX) != 0
1986 && (a->index != b->index))
c921be7d 1987 return FALSE;
5f4273c7 1988
c921be7d 1989 return TRUE;
dcbf9037
JB
1990}
1991
5287ad62
JB
1992/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1993 The base register is put in *PBASE.
dcbf9037 1994 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1995 the return value.
1996 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1997 Bits [6:5] encode the list length (minus one).
1998 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1999
5287ad62 2000#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2001#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2002#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2003
2004static int
dcbf9037 2005parse_neon_el_struct_list (char **str, unsigned *pbase,
477330fc 2006 struct neon_type_el *eltype)
5287ad62
JB
2007{
2008 char *ptr = *str;
2009 int base_reg = -1;
2010 int reg_incr = -1;
2011 int count = 0;
2012 int lane = -1;
2013 int leading_brace = 0;
2014 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
2015 const char *const incr_error = _("register stride must be 1 or 2");
2016 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2017 struct neon_typed_alias firsttype;
f85d59c3
KT
2018 firsttype.defined = 0;
2019 firsttype.eltype.type = NT_invtype;
2020 firsttype.eltype.size = -1;
2021 firsttype.index = -1;
5f4273c7 2022
5287ad62
JB
2023 if (skip_past_char (&ptr, '{') == SUCCESS)
2024 leading_brace = 1;
5f4273c7 2025
5287ad62
JB
2026 do
2027 {
dcbf9037
JB
2028 struct neon_typed_alias atype;
2029 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2030
5287ad62 2031 if (getreg == FAIL)
477330fc
RM
2032 {
2033 first_error (_(reg_expected_msgs[rtype]));
2034 return FAIL;
2035 }
5f4273c7 2036
5287ad62 2037 if (base_reg == -1)
477330fc
RM
2038 {
2039 base_reg = getreg;
2040 if (rtype == REG_TYPE_NQ)
2041 {
2042 reg_incr = 1;
2043 }
2044 firsttype = atype;
2045 }
5287ad62 2046 else if (reg_incr == -1)
477330fc
RM
2047 {
2048 reg_incr = getreg - base_reg;
2049 if (reg_incr < 1 || reg_incr > 2)
2050 {
2051 first_error (_(incr_error));
2052 return FAIL;
2053 }
2054 }
5287ad62 2055 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2056 {
2057 first_error (_(incr_error));
2058 return FAIL;
2059 }
dcbf9037 2060
c921be7d 2061 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2062 {
2063 first_error (_(type_error));
2064 return FAIL;
2065 }
5f4273c7 2066
5287ad62 2067 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2068 modes. */
5287ad62 2069 if (ptr[0] == '-')
477330fc
RM
2070 {
2071 struct neon_typed_alias htype;
2072 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2073 if (lane == -1)
2074 lane = NEON_INTERLEAVE_LANES;
2075 else if (lane != NEON_INTERLEAVE_LANES)
2076 {
2077 first_error (_(type_error));
2078 return FAIL;
2079 }
2080 if (reg_incr == -1)
2081 reg_incr = 1;
2082 else if (reg_incr != 1)
2083 {
2084 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2085 return FAIL;
2086 }
2087 ptr++;
2088 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2089 if (hireg == FAIL)
2090 {
2091 first_error (_(reg_expected_msgs[rtype]));
2092 return FAIL;
2093 }
2094 if (! neon_alias_types_same (&htype, &firsttype))
2095 {
2096 first_error (_(type_error));
2097 return FAIL;
2098 }
2099 count += hireg + dregs - getreg;
2100 continue;
2101 }
5f4273c7 2102
5287ad62
JB
2103 /* If we're using Q registers, we can't use [] or [n] syntax. */
2104 if (rtype == REG_TYPE_NQ)
477330fc
RM
2105 {
2106 count += 2;
2107 continue;
2108 }
5f4273c7 2109
dcbf9037 2110 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2111 {
2112 if (lane == -1)
2113 lane = atype.index;
2114 else if (lane != atype.index)
2115 {
2116 first_error (_(type_error));
2117 return FAIL;
2118 }
2119 }
5287ad62 2120 else if (lane == -1)
477330fc 2121 lane = NEON_INTERLEAVE_LANES;
5287ad62 2122 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2123 {
2124 first_error (_(type_error));
2125 return FAIL;
2126 }
5287ad62
JB
2127 count++;
2128 }
2129 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2130
5287ad62
JB
2131 /* No lane set by [x]. We must be interleaving structures. */
2132 if (lane == -1)
2133 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2134
5287ad62
JB
2135 /* Sanity check. */
2136 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2137 || (count > 1 && reg_incr == -1))
2138 {
dcbf9037 2139 first_error (_("error parsing element/structure list"));
5287ad62
JB
2140 return FAIL;
2141 }
2142
2143 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2144 {
dcbf9037 2145 first_error (_("expected }"));
5287ad62
JB
2146 return FAIL;
2147 }
5f4273c7 2148
5287ad62
JB
2149 if (reg_incr == -1)
2150 reg_incr = 1;
2151
dcbf9037
JB
2152 if (eltype)
2153 *eltype = firsttype.eltype;
2154
5287ad62
JB
2155 *pbase = base_reg;
2156 *str = ptr;
5f4273c7 2157
5287ad62
JB
2158 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2159}
2160
c19d1205
ZW
2161/* Parse an explicit relocation suffix on an expression. This is
2162 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2163 arm_reloc_hsh contains no entries, so this function can only
2164 succeed if there is no () after the word. Returns -1 on error,
2165 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2166
c19d1205
ZW
2167static int
2168parse_reloc (char **str)
b99bd4ef 2169{
c19d1205
ZW
2170 struct reloc_entry *r;
2171 char *p, *q;
b99bd4ef 2172
c19d1205
ZW
2173 if (**str != '(')
2174 return BFD_RELOC_UNUSED;
b99bd4ef 2175
c19d1205
ZW
2176 p = *str + 1;
2177 q = p;
2178
2179 while (*q && *q != ')' && *q != ',')
2180 q++;
2181 if (*q != ')')
2182 return -1;
2183
21d799b5
NC
2184 if ((r = (struct reloc_entry *)
2185 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2186 return -1;
2187
2188 *str = q + 1;
2189 return r->reloc;
b99bd4ef
NC
2190}
2191
c19d1205
ZW
2192/* Directives: register aliases. */
2193
dcbf9037 2194static struct reg_entry *
90ec0d68 2195insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2196{
d3ce72d0 2197 struct reg_entry *new_reg;
c19d1205 2198 const char *name;
b99bd4ef 2199
d3ce72d0 2200 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2201 {
d3ce72d0 2202 if (new_reg->builtin)
c19d1205 2203 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2204
c19d1205
ZW
2205 /* Only warn about a redefinition if it's not defined as the
2206 same register. */
d3ce72d0 2207 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2208 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2209
d929913e 2210 return NULL;
c19d1205 2211 }
b99bd4ef 2212
c19d1205 2213 name = xstrdup (str);
325801bd 2214 new_reg = XNEW (struct reg_entry);
b99bd4ef 2215
d3ce72d0
NC
2216 new_reg->name = name;
2217 new_reg->number = number;
2218 new_reg->type = type;
2219 new_reg->builtin = FALSE;
2220 new_reg->neon = NULL;
b99bd4ef 2221
d3ce72d0 2222 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2223 abort ();
5f4273c7 2224
d3ce72d0 2225 return new_reg;
dcbf9037
JB
2226}
2227
2228static void
2229insert_neon_reg_alias (char *str, int number, int type,
477330fc 2230 struct neon_typed_alias *atype)
dcbf9037
JB
2231{
2232 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2233
dcbf9037
JB
2234 if (!reg)
2235 {
2236 first_error (_("attempt to redefine typed alias"));
2237 return;
2238 }
5f4273c7 2239
dcbf9037
JB
2240 if (atype)
2241 {
325801bd 2242 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2243 *reg->neon = *atype;
2244 }
c19d1205 2245}
b99bd4ef 2246
c19d1205 2247/* Look for the .req directive. This is of the form:
b99bd4ef 2248
c19d1205 2249 new_register_name .req existing_register_name
b99bd4ef 2250
c19d1205 2251 If we find one, or if it looks sufficiently like one that we want to
d929913e 2252 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2253
d929913e 2254static bfd_boolean
c19d1205
ZW
2255create_register_alias (char * newname, char *p)
2256{
2257 struct reg_entry *old;
2258 char *oldname, *nbuf;
2259 size_t nlen;
b99bd4ef 2260
c19d1205
ZW
2261 /* The input scrubber ensures that whitespace after the mnemonic is
2262 collapsed to single spaces. */
2263 oldname = p;
2264 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2265 return FALSE;
b99bd4ef 2266
c19d1205
ZW
2267 oldname += 6;
2268 if (*oldname == '\0')
d929913e 2269 return FALSE;
b99bd4ef 2270
21d799b5 2271 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2272 if (!old)
b99bd4ef 2273 {
c19d1205 2274 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2275 return TRUE;
b99bd4ef
NC
2276 }
2277
c19d1205
ZW
2278 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2279 the desired alias name, and p points to its end. If not, then
2280 the desired alias name is in the global original_case_string. */
2281#ifdef TC_CASE_SENSITIVE
2282 nlen = p - newname;
2283#else
2284 newname = original_case_string;
2285 nlen = strlen (newname);
2286#endif
b99bd4ef 2287
29a2809e 2288 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2289
c19d1205
ZW
2290 /* Create aliases under the new name as stated; an all-lowercase
2291 version of the new name; and an all-uppercase version of the new
2292 name. */
d929913e
NC
2293 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2294 {
2295 for (p = nbuf; *p; p++)
2296 *p = TOUPPER (*p);
c19d1205 2297
d929913e
NC
2298 if (strncmp (nbuf, newname, nlen))
2299 {
2300 /* If this attempt to create an additional alias fails, do not bother
2301 trying to create the all-lower case alias. We will fail and issue
2302 a second, duplicate error message. This situation arises when the
2303 programmer does something like:
2304 foo .req r0
2305 Foo .req r1
2306 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2307 the artificial FOO alias because it has already been created by the
d929913e
NC
2308 first .req. */
2309 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2310 {
2311 free (nbuf);
2312 return TRUE;
2313 }
d929913e 2314 }
c19d1205 2315
d929913e
NC
2316 for (p = nbuf; *p; p++)
2317 *p = TOLOWER (*p);
c19d1205 2318
d929913e
NC
2319 if (strncmp (nbuf, newname, nlen))
2320 insert_reg_alias (nbuf, old->number, old->type);
2321 }
c19d1205 2322
e1fa0163 2323 free (nbuf);
d929913e 2324 return TRUE;
b99bd4ef
NC
2325}
2326
dcbf9037
JB
2327/* Create a Neon typed/indexed register alias using directives, e.g.:
2328 X .dn d5.s32[1]
2329 Y .qn 6.s16
2330 Z .dn d7
2331 T .dn Z[0]
2332 These typed registers can be used instead of the types specified after the
2333 Neon mnemonic, so long as all operands given have types. Types can also be
2334 specified directly, e.g.:
5f4273c7 2335 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2336
c921be7d 2337static bfd_boolean
dcbf9037
JB
2338create_neon_reg_alias (char *newname, char *p)
2339{
2340 enum arm_reg_type basetype;
2341 struct reg_entry *basereg;
2342 struct reg_entry mybasereg;
2343 struct neon_type ntype;
2344 struct neon_typed_alias typeinfo;
12d6b0b7 2345 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2346 int namelen;
5f4273c7 2347
dcbf9037
JB
2348 typeinfo.defined = 0;
2349 typeinfo.eltype.type = NT_invtype;
2350 typeinfo.eltype.size = -1;
2351 typeinfo.index = -1;
5f4273c7 2352
dcbf9037 2353 nameend = p;
5f4273c7 2354
dcbf9037
JB
2355 if (strncmp (p, " .dn ", 5) == 0)
2356 basetype = REG_TYPE_VFD;
2357 else if (strncmp (p, " .qn ", 5) == 0)
2358 basetype = REG_TYPE_NQ;
2359 else
c921be7d 2360 return FALSE;
5f4273c7 2361
dcbf9037 2362 p += 5;
5f4273c7 2363
dcbf9037 2364 if (*p == '\0')
c921be7d 2365 return FALSE;
5f4273c7 2366
dcbf9037
JB
2367 basereg = arm_reg_parse_multi (&p);
2368
2369 if (basereg && basereg->type != basetype)
2370 {
2371 as_bad (_("bad type for register"));
c921be7d 2372 return FALSE;
dcbf9037
JB
2373 }
2374
2375 if (basereg == NULL)
2376 {
2377 expressionS exp;
2378 /* Try parsing as an integer. */
2379 my_get_expression (&exp, &p, GE_NO_PREFIX);
2380 if (exp.X_op != O_constant)
477330fc
RM
2381 {
2382 as_bad (_("expression must be constant"));
2383 return FALSE;
2384 }
dcbf9037
JB
2385 basereg = &mybasereg;
2386 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2387 : exp.X_add_number;
dcbf9037
JB
2388 basereg->neon = 0;
2389 }
2390
2391 if (basereg->neon)
2392 typeinfo = *basereg->neon;
2393
2394 if (parse_neon_type (&ntype, &p) == SUCCESS)
2395 {
2396 /* We got a type. */
2397 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2398 {
2399 as_bad (_("can't redefine the type of a register alias"));
2400 return FALSE;
2401 }
5f4273c7 2402
dcbf9037
JB
2403 typeinfo.defined |= NTA_HASTYPE;
2404 if (ntype.elems != 1)
477330fc
RM
2405 {
2406 as_bad (_("you must specify a single type only"));
2407 return FALSE;
2408 }
dcbf9037
JB
2409 typeinfo.eltype = ntype.el[0];
2410 }
5f4273c7 2411
dcbf9037
JB
2412 if (skip_past_char (&p, '[') == SUCCESS)
2413 {
2414 expressionS exp;
2415 /* We got a scalar index. */
5f4273c7 2416
dcbf9037 2417 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2418 {
2419 as_bad (_("can't redefine the index of a scalar alias"));
2420 return FALSE;
2421 }
5f4273c7 2422
dcbf9037 2423 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2424
dcbf9037 2425 if (exp.X_op != O_constant)
477330fc
RM
2426 {
2427 as_bad (_("scalar index must be constant"));
2428 return FALSE;
2429 }
5f4273c7 2430
dcbf9037
JB
2431 typeinfo.defined |= NTA_HASINDEX;
2432 typeinfo.index = exp.X_add_number;
5f4273c7 2433
dcbf9037 2434 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2435 {
2436 as_bad (_("expecting ]"));
2437 return FALSE;
2438 }
dcbf9037
JB
2439 }
2440
15735687
NS
2441 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2442 the desired alias name, and p points to its end. If not, then
2443 the desired alias name is in the global original_case_string. */
2444#ifdef TC_CASE_SENSITIVE
dcbf9037 2445 namelen = nameend - newname;
15735687
NS
2446#else
2447 newname = original_case_string;
2448 namelen = strlen (newname);
2449#endif
2450
29a2809e 2451 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2452
dcbf9037 2453 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2454 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2455
dcbf9037
JB
2456 /* Insert name in all uppercase. */
2457 for (p = namebuf; *p; p++)
2458 *p = TOUPPER (*p);
5f4273c7 2459
dcbf9037
JB
2460 if (strncmp (namebuf, newname, namelen))
2461 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2462 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2463
dcbf9037
JB
2464 /* Insert name in all lowercase. */
2465 for (p = namebuf; *p; p++)
2466 *p = TOLOWER (*p);
5f4273c7 2467
dcbf9037
JB
2468 if (strncmp (namebuf, newname, namelen))
2469 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2470 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2471
e1fa0163 2472 free (namebuf);
c921be7d 2473 return TRUE;
dcbf9037
JB
2474}
2475
c19d1205
ZW
2476/* Should never be called, as .req goes between the alias and the
2477 register name, not at the beginning of the line. */
c921be7d 2478
b99bd4ef 2479static void
c19d1205 2480s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2481{
c19d1205
ZW
2482 as_bad (_("invalid syntax for .req directive"));
2483}
b99bd4ef 2484
dcbf9037
JB
2485static void
2486s_dn (int a ATTRIBUTE_UNUSED)
2487{
2488 as_bad (_("invalid syntax for .dn directive"));
2489}
2490
2491static void
2492s_qn (int a ATTRIBUTE_UNUSED)
2493{
2494 as_bad (_("invalid syntax for .qn directive"));
2495}
2496
c19d1205
ZW
2497/* The .unreq directive deletes an alias which was previously defined
2498 by .req. For example:
b99bd4ef 2499
c19d1205
ZW
2500 my_alias .req r11
2501 .unreq my_alias */
b99bd4ef
NC
2502
2503static void
c19d1205 2504s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2505{
c19d1205
ZW
2506 char * name;
2507 char saved_char;
b99bd4ef 2508
c19d1205
ZW
2509 name = input_line_pointer;
2510
2511 while (*input_line_pointer != 0
2512 && *input_line_pointer != ' '
2513 && *input_line_pointer != '\n')
2514 ++input_line_pointer;
2515
2516 saved_char = *input_line_pointer;
2517 *input_line_pointer = 0;
2518
2519 if (!*name)
2520 as_bad (_("invalid syntax for .unreq directive"));
2521 else
2522 {
21d799b5 2523 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2524 name);
c19d1205
ZW
2525
2526 if (!reg)
2527 as_bad (_("unknown register alias '%s'"), name);
2528 else if (reg->builtin)
a1727c1a 2529 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2530 name);
2531 else
2532 {
d929913e
NC
2533 char * p;
2534 char * nbuf;
2535
db0bc284 2536 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2537 free ((char *) reg->name);
477330fc
RM
2538 if (reg->neon)
2539 free (reg->neon);
c19d1205 2540 free (reg);
d929913e
NC
2541
2542 /* Also locate the all upper case and all lower case versions.
2543 Do not complain if we cannot find one or the other as it
2544 was probably deleted above. */
5f4273c7 2545
d929913e
NC
2546 nbuf = strdup (name);
2547 for (p = nbuf; *p; p++)
2548 *p = TOUPPER (*p);
21d799b5 2549 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2550 if (reg)
2551 {
db0bc284 2552 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2553 free ((char *) reg->name);
2554 if (reg->neon)
2555 free (reg->neon);
2556 free (reg);
2557 }
2558
2559 for (p = nbuf; *p; p++)
2560 *p = TOLOWER (*p);
21d799b5 2561 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2562 if (reg)
2563 {
db0bc284 2564 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2565 free ((char *) reg->name);
2566 if (reg->neon)
2567 free (reg->neon);
2568 free (reg);
2569 }
2570
2571 free (nbuf);
c19d1205
ZW
2572 }
2573 }
b99bd4ef 2574
c19d1205 2575 *input_line_pointer = saved_char;
b99bd4ef
NC
2576 demand_empty_rest_of_line ();
2577}
2578
c19d1205
ZW
2579/* Directives: Instruction set selection. */
2580
2581#ifdef OBJ_ELF
2582/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2583 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2584 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2585 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2586
cd000bff
DJ
2587/* Create a new mapping symbol for the transition to STATE. */
2588
2589static void
2590make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2591{
a737bd4d 2592 symbolS * symbolP;
c19d1205
ZW
2593 const char * symname;
2594 int type;
b99bd4ef 2595
c19d1205 2596 switch (state)
b99bd4ef 2597 {
c19d1205
ZW
2598 case MAP_DATA:
2599 symname = "$d";
2600 type = BSF_NO_FLAGS;
2601 break;
2602 case MAP_ARM:
2603 symname = "$a";
2604 type = BSF_NO_FLAGS;
2605 break;
2606 case MAP_THUMB:
2607 symname = "$t";
2608 type = BSF_NO_FLAGS;
2609 break;
c19d1205
ZW
2610 default:
2611 abort ();
2612 }
2613
cd000bff 2614 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2615 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2616
2617 switch (state)
2618 {
2619 case MAP_ARM:
2620 THUMB_SET_FUNC (symbolP, 0);
2621 ARM_SET_THUMB (symbolP, 0);
2622 ARM_SET_INTERWORK (symbolP, support_interwork);
2623 break;
2624
2625 case MAP_THUMB:
2626 THUMB_SET_FUNC (symbolP, 1);
2627 ARM_SET_THUMB (symbolP, 1);
2628 ARM_SET_INTERWORK (symbolP, support_interwork);
2629 break;
2630
2631 case MAP_DATA:
2632 default:
cd000bff
DJ
2633 break;
2634 }
2635
2636 /* Save the mapping symbols for future reference. Also check that
2637 we do not place two mapping symbols at the same offset within a
2638 frag. We'll handle overlap between frags in
2de7820f
JZ
2639 check_mapping_symbols.
2640
2641 If .fill or other data filling directive generates zero sized data,
2642 the mapping symbol for the following code will have the same value
2643 as the one generated for the data filling directive. In this case,
2644 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2645 if (value == 0)
2646 {
2de7820f
JZ
2647 if (frag->tc_frag_data.first_map != NULL)
2648 {
2649 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2650 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2651 }
cd000bff
DJ
2652 frag->tc_frag_data.first_map = symbolP;
2653 }
2654 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2655 {
2656 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2657 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2658 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2659 }
cd000bff
DJ
2660 frag->tc_frag_data.last_map = symbolP;
2661}
2662
2663/* We must sometimes convert a region marked as code to data during
2664 code alignment, if an odd number of bytes have to be padded. The
2665 code mapping symbol is pushed to an aligned address. */
2666
2667static void
2668insert_data_mapping_symbol (enum mstate state,
2669 valueT value, fragS *frag, offsetT bytes)
2670{
2671 /* If there was already a mapping symbol, remove it. */
2672 if (frag->tc_frag_data.last_map != NULL
2673 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2674 {
2675 symbolS *symp = frag->tc_frag_data.last_map;
2676
2677 if (value == 0)
2678 {
2679 know (frag->tc_frag_data.first_map == symp);
2680 frag->tc_frag_data.first_map = NULL;
2681 }
2682 frag->tc_frag_data.last_map = NULL;
2683 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2684 }
cd000bff
DJ
2685
2686 make_mapping_symbol (MAP_DATA, value, frag);
2687 make_mapping_symbol (state, value + bytes, frag);
2688}
2689
2690static void mapping_state_2 (enum mstate state, int max_chars);
2691
2692/* Set the mapping state to STATE. Only call this when about to
2693 emit some STATE bytes to the file. */
2694
4e9aaefb 2695#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2696void
2697mapping_state (enum mstate state)
2698{
940b5ce0
DJ
2699 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2700
cd000bff
DJ
2701 if (mapstate == state)
2702 /* The mapping symbol has already been emitted.
2703 There is nothing else to do. */
2704 return;
49c62a33
NC
2705
2706 if (state == MAP_ARM || state == MAP_THUMB)
2707 /* PR gas/12931
2708 All ARM instructions require 4-byte alignment.
2709 (Almost) all Thumb instructions require 2-byte alignment.
2710
2711 When emitting instructions into any section, mark the section
2712 appropriately.
2713
2714 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2715 but themselves require 2-byte alignment; this applies to some
33eaf5de 2716 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2717 literal pool generation or an explicit .align >=2, both of
2718 which will cause the section to me marked with sufficient
2719 alignment. Thus, we don't handle those cases here. */
2720 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2721
2722 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2723 /* This case will be evaluated later. */
cd000bff 2724 return;
cd000bff
DJ
2725
2726 mapping_state_2 (state, 0);
cd000bff
DJ
2727}
2728
2729/* Same as mapping_state, but MAX_CHARS bytes have already been
2730 allocated. Put the mapping symbol that far back. */
2731
2732static void
2733mapping_state_2 (enum mstate state, int max_chars)
2734{
940b5ce0
DJ
2735 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2736
2737 if (!SEG_NORMAL (now_seg))
2738 return;
2739
cd000bff
DJ
2740 if (mapstate == state)
2741 /* The mapping symbol has already been emitted.
2742 There is nothing else to do. */
2743 return;
2744
4e9aaefb
SA
2745 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2746 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2747 {
2748 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2749 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2750
2751 if (add_symbol)
2752 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2753 }
2754
cd000bff
DJ
2755 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2756 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2757}
4e9aaefb 2758#undef TRANSITION
c19d1205 2759#else
d3106081
NS
2760#define mapping_state(x) ((void)0)
2761#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2762#endif
2763
2764/* Find the real, Thumb encoded start of a Thumb function. */
2765
4343666d 2766#ifdef OBJ_COFF
c19d1205
ZW
2767static symbolS *
2768find_real_start (symbolS * symbolP)
2769{
2770 char * real_start;
2771 const char * name = S_GET_NAME (symbolP);
2772 symbolS * new_target;
2773
2774 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2775#define STUB_NAME ".real_start_of"
2776
2777 if (name == NULL)
2778 abort ();
2779
37f6032b
ZW
2780 /* The compiler may generate BL instructions to local labels because
2781 it needs to perform a branch to a far away location. These labels
2782 do not have a corresponding ".real_start_of" label. We check
2783 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2784 the ".real_start_of" convention for nonlocal branches. */
2785 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2786 return symbolP;
2787
e1fa0163 2788 real_start = concat (STUB_NAME, name, NULL);
c19d1205 2789 new_target = symbol_find (real_start);
e1fa0163 2790 free (real_start);
c19d1205
ZW
2791
2792 if (new_target == NULL)
2793 {
bd3ba5d1 2794 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2795 new_target = symbolP;
2796 }
2797
c19d1205
ZW
2798 return new_target;
2799}
4343666d 2800#endif
c19d1205
ZW
2801
2802static void
2803opcode_select (int width)
2804{
2805 switch (width)
2806 {
2807 case 16:
2808 if (! thumb_mode)
2809 {
e74cfd16 2810 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2811 as_bad (_("selected processor does not support THUMB opcodes"));
2812
2813 thumb_mode = 1;
2814 /* No need to force the alignment, since we will have been
2815 coming from ARM mode, which is word-aligned. */
2816 record_alignment (now_seg, 1);
2817 }
c19d1205
ZW
2818 break;
2819
2820 case 32:
2821 if (thumb_mode)
2822 {
e74cfd16 2823 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2824 as_bad (_("selected processor does not support ARM opcodes"));
2825
2826 thumb_mode = 0;
2827
2828 if (!need_pass_2)
2829 frag_align (2, 0, 0);
2830
2831 record_alignment (now_seg, 1);
2832 }
c19d1205
ZW
2833 break;
2834
2835 default:
2836 as_bad (_("invalid instruction size selected (%d)"), width);
2837 }
2838}
2839
2840static void
2841s_arm (int ignore ATTRIBUTE_UNUSED)
2842{
2843 opcode_select (32);
2844 demand_empty_rest_of_line ();
2845}
2846
2847static void
2848s_thumb (int ignore ATTRIBUTE_UNUSED)
2849{
2850 opcode_select (16);
2851 demand_empty_rest_of_line ();
2852}
2853
2854static void
2855s_code (int unused ATTRIBUTE_UNUSED)
2856{
2857 int temp;
2858
2859 temp = get_absolute_expression ();
2860 switch (temp)
2861 {
2862 case 16:
2863 case 32:
2864 opcode_select (temp);
2865 break;
2866
2867 default:
2868 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2869 }
2870}
2871
2872static void
2873s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2874{
2875 /* If we are not already in thumb mode go into it, EVEN if
2876 the target processor does not support thumb instructions.
2877 This is used by gcc/config/arm/lib1funcs.asm for example
2878 to compile interworking support functions even if the
2879 target processor should not support interworking. */
2880 if (! thumb_mode)
2881 {
2882 thumb_mode = 2;
2883 record_alignment (now_seg, 1);
2884 }
2885
2886 demand_empty_rest_of_line ();
2887}
2888
2889static void
2890s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2891{
2892 s_thumb (0);
2893
2894 /* The following label is the name/address of the start of a Thumb function.
2895 We need to know this for the interworking support. */
2896 label_is_thumb_function_name = TRUE;
2897}
2898
2899/* Perform a .set directive, but also mark the alias as
2900 being a thumb function. */
2901
2902static void
2903s_thumb_set (int equiv)
2904{
2905 /* XXX the following is a duplicate of the code for s_set() in read.c
2906 We cannot just call that code as we need to get at the symbol that
2907 is created. */
2908 char * name;
2909 char delim;
2910 char * end_name;
2911 symbolS * symbolP;
2912
2913 /* Especial apologies for the random logic:
2914 This just grew, and could be parsed much more simply!
2915 Dean - in haste. */
d02603dc 2916 delim = get_symbol_name (& name);
c19d1205 2917 end_name = input_line_pointer;
d02603dc 2918 (void) restore_line_pointer (delim);
c19d1205
ZW
2919
2920 if (*input_line_pointer != ',')
2921 {
2922 *end_name = 0;
2923 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2924 *end_name = delim;
2925 ignore_rest_of_line ();
2926 return;
2927 }
2928
2929 input_line_pointer++;
2930 *end_name = 0;
2931
2932 if (name[0] == '.' && name[1] == '\0')
2933 {
2934 /* XXX - this should not happen to .thumb_set. */
2935 abort ();
2936 }
2937
2938 if ((symbolP = symbol_find (name)) == NULL
2939 && (symbolP = md_undefined_symbol (name)) == NULL)
2940 {
2941#ifndef NO_LISTING
2942 /* When doing symbol listings, play games with dummy fragments living
2943 outside the normal fragment chain to record the file and line info
c19d1205 2944 for this symbol. */
b99bd4ef
NC
2945 if (listing & LISTING_SYMBOLS)
2946 {
2947 extern struct list_info_struct * listing_tail;
21d799b5 2948 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2949
2950 memset (dummy_frag, 0, sizeof (fragS));
2951 dummy_frag->fr_type = rs_fill;
2952 dummy_frag->line = listing_tail;
2953 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2954 dummy_frag->fr_symbol = symbolP;
2955 }
2956 else
2957#endif
2958 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2959
2960#ifdef OBJ_COFF
2961 /* "set" symbols are local unless otherwise specified. */
2962 SF_SET_LOCAL (symbolP);
2963#endif /* OBJ_COFF */
2964 } /* Make a new symbol. */
2965
2966 symbol_table_insert (symbolP);
2967
2968 * end_name = delim;
2969
2970 if (equiv
2971 && S_IS_DEFINED (symbolP)
2972 && S_GET_SEGMENT (symbolP) != reg_section)
2973 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2974
2975 pseudo_set (symbolP);
2976
2977 demand_empty_rest_of_line ();
2978
c19d1205 2979 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2980
2981 THUMB_SET_FUNC (symbolP, 1);
2982 ARM_SET_THUMB (symbolP, 1);
2983#if defined OBJ_ELF || defined OBJ_COFF
2984 ARM_SET_INTERWORK (symbolP, support_interwork);
2985#endif
2986}
2987
c19d1205 2988/* Directives: Mode selection. */
b99bd4ef 2989
c19d1205
ZW
2990/* .syntax [unified|divided] - choose the new unified syntax
2991 (same for Arm and Thumb encoding, modulo slight differences in what
2992 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2993static void
c19d1205 2994s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2995{
c19d1205
ZW
2996 char *name, delim;
2997
d02603dc 2998 delim = get_symbol_name (& name);
c19d1205
ZW
2999
3000 if (!strcasecmp (name, "unified"))
3001 unified_syntax = TRUE;
3002 else if (!strcasecmp (name, "divided"))
3003 unified_syntax = FALSE;
3004 else
3005 {
3006 as_bad (_("unrecognized syntax mode \"%s\""), name);
3007 return;
3008 }
d02603dc 3009 (void) restore_line_pointer (delim);
b99bd4ef
NC
3010 demand_empty_rest_of_line ();
3011}
3012
c19d1205
ZW
3013/* Directives: sectioning and alignment. */
3014
c19d1205
ZW
3015static void
3016s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3017{
c19d1205
ZW
3018 /* We don't support putting frags in the BSS segment, we fake it by
3019 marking in_bss, then looking at s_skip for clues. */
3020 subseg_set (bss_section, 0);
3021 demand_empty_rest_of_line ();
cd000bff
DJ
3022
3023#ifdef md_elf_section_change_hook
3024 md_elf_section_change_hook ();
3025#endif
c19d1205 3026}
b99bd4ef 3027
c19d1205
ZW
3028static void
3029s_even (int ignore ATTRIBUTE_UNUSED)
3030{
3031 /* Never make frag if expect extra pass. */
3032 if (!need_pass_2)
3033 frag_align (1, 0, 0);
b99bd4ef 3034
c19d1205 3035 record_alignment (now_seg, 1);
b99bd4ef 3036
c19d1205 3037 demand_empty_rest_of_line ();
b99bd4ef
NC
3038}
3039
2e6976a8
DG
3040/* Directives: CodeComposer Studio. */
3041
3042/* .ref (for CodeComposer Studio syntax only). */
3043static void
3044s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3045{
3046 if (codecomposer_syntax)
3047 ignore_rest_of_line ();
3048 else
3049 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3050}
3051
3052/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3053 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3054static void
3055asmfunc_debug (const char * name)
3056{
3057 static const char * last_name = NULL;
3058
3059 if (name != NULL)
3060 {
3061 gas_assert (last_name == NULL);
3062 last_name = name;
3063
3064 if (debug_type == DEBUG_STABS)
3065 stabs_generate_asm_func (name, name);
3066 }
3067 else
3068 {
3069 gas_assert (last_name != NULL);
3070
3071 if (debug_type == DEBUG_STABS)
3072 stabs_generate_asm_endfunc (last_name, last_name);
3073
3074 last_name = NULL;
3075 }
3076}
3077
3078static void
3079s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3080{
3081 if (codecomposer_syntax)
3082 {
3083 switch (asmfunc_state)
3084 {
3085 case OUTSIDE_ASMFUNC:
3086 asmfunc_state = WAITING_ASMFUNC_NAME;
3087 break;
3088
3089 case WAITING_ASMFUNC_NAME:
3090 as_bad (_(".asmfunc repeated."));
3091 break;
3092
3093 case WAITING_ENDASMFUNC:
3094 as_bad (_(".asmfunc without function."));
3095 break;
3096 }
3097 demand_empty_rest_of_line ();
3098 }
3099 else
3100 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3101}
3102
3103static void
3104s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3105{
3106 if (codecomposer_syntax)
3107 {
3108 switch (asmfunc_state)
3109 {
3110 case OUTSIDE_ASMFUNC:
3111 as_bad (_(".endasmfunc without a .asmfunc."));
3112 break;
3113
3114 case WAITING_ASMFUNC_NAME:
3115 as_bad (_(".endasmfunc without function."));
3116 break;
3117
3118 case WAITING_ENDASMFUNC:
3119 asmfunc_state = OUTSIDE_ASMFUNC;
3120 asmfunc_debug (NULL);
3121 break;
3122 }
3123 demand_empty_rest_of_line ();
3124 }
3125 else
3126 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3127}
3128
3129static void
3130s_ccs_def (int name)
3131{
3132 if (codecomposer_syntax)
3133 s_globl (name);
3134 else
3135 as_bad (_(".def pseudo-op only available with -mccs flag."));
3136}
3137
c19d1205 3138/* Directives: Literal pools. */
a737bd4d 3139
c19d1205
ZW
3140static literal_pool *
3141find_literal_pool (void)
a737bd4d 3142{
c19d1205 3143 literal_pool * pool;
a737bd4d 3144
c19d1205 3145 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3146 {
c19d1205
ZW
3147 if (pool->section == now_seg
3148 && pool->sub_section == now_subseg)
3149 break;
a737bd4d
NC
3150 }
3151
c19d1205 3152 return pool;
a737bd4d
NC
3153}
3154
c19d1205
ZW
3155static literal_pool *
3156find_or_make_literal_pool (void)
a737bd4d 3157{
c19d1205
ZW
3158 /* Next literal pool ID number. */
3159 static unsigned int latest_pool_num = 1;
3160 literal_pool * pool;
a737bd4d 3161
c19d1205 3162 pool = find_literal_pool ();
a737bd4d 3163
c19d1205 3164 if (pool == NULL)
a737bd4d 3165 {
c19d1205 3166 /* Create a new pool. */
325801bd 3167 pool = XNEW (literal_pool);
c19d1205
ZW
3168 if (! pool)
3169 return NULL;
a737bd4d 3170
c19d1205
ZW
3171 pool->next_free_entry = 0;
3172 pool->section = now_seg;
3173 pool->sub_section = now_subseg;
3174 pool->next = list_of_pools;
3175 pool->symbol = NULL;
8335d6aa 3176 pool->alignment = 2;
c19d1205
ZW
3177
3178 /* Add it to the list. */
3179 list_of_pools = pool;
a737bd4d 3180 }
a737bd4d 3181
c19d1205
ZW
3182 /* New pools, and emptied pools, will have a NULL symbol. */
3183 if (pool->symbol == NULL)
a737bd4d 3184 {
c19d1205
ZW
3185 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3186 (valueT) 0, &zero_address_frag);
3187 pool->id = latest_pool_num ++;
a737bd4d
NC
3188 }
3189
c19d1205
ZW
3190 /* Done. */
3191 return pool;
a737bd4d
NC
3192}
3193
c19d1205 3194/* Add the literal in the global 'inst'
5f4273c7 3195 structure to the relevant literal pool. */
b99bd4ef
NC
3196
3197static int
8335d6aa 3198add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3199{
8335d6aa
JW
3200#define PADDING_SLOT 0x1
3201#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3202 literal_pool * pool;
8335d6aa
JW
3203 unsigned int entry, pool_size = 0;
3204 bfd_boolean padding_slot_p = FALSE;
e56c722b 3205 unsigned imm1 = 0;
8335d6aa
JW
3206 unsigned imm2 = 0;
3207
3208 if (nbytes == 8)
3209 {
3210 imm1 = inst.operands[1].imm;
3211 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3212 : inst.reloc.exp.X_unsigned ? 0
2569ceb0 3213 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3214 if (target_big_endian)
3215 {
3216 imm1 = imm2;
3217 imm2 = inst.operands[1].imm;
3218 }
3219 }
b99bd4ef 3220
c19d1205
ZW
3221 pool = find_or_make_literal_pool ();
3222
3223 /* Check if this literal value is already in the pool. */
3224 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3225 {
8335d6aa
JW
3226 if (nbytes == 4)
3227 {
3228 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3229 && (inst.reloc.exp.X_op == O_constant)
3230 && (pool->literals[entry].X_add_number
3231 == inst.reloc.exp.X_add_number)
3232 && (pool->literals[entry].X_md == nbytes)
3233 && (pool->literals[entry].X_unsigned
3234 == inst.reloc.exp.X_unsigned))
3235 break;
3236
3237 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3238 && (inst.reloc.exp.X_op == O_symbol)
3239 && (pool->literals[entry].X_add_number
3240 == inst.reloc.exp.X_add_number)
3241 && (pool->literals[entry].X_add_symbol
3242 == inst.reloc.exp.X_add_symbol)
3243 && (pool->literals[entry].X_op_symbol
3244 == inst.reloc.exp.X_op_symbol)
3245 && (pool->literals[entry].X_md == nbytes))
3246 break;
3247 }
3248 else if ((nbytes == 8)
3249 && !(pool_size & 0x7)
3250 && ((entry + 1) != pool->next_free_entry)
3251 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3252 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa
JW
3253 && (pool->literals[entry].X_unsigned
3254 == inst.reloc.exp.X_unsigned)
3255 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3256 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa
JW
3257 && (pool->literals[entry + 1].X_unsigned
3258 == inst.reloc.exp.X_unsigned))
c19d1205
ZW
3259 break;
3260
8335d6aa
JW
3261 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3262 if (padding_slot_p && (nbytes == 4))
c19d1205 3263 break;
8335d6aa
JW
3264
3265 pool_size += 4;
b99bd4ef
NC
3266 }
3267
c19d1205
ZW
3268 /* Do we need to create a new entry? */
3269 if (entry == pool->next_free_entry)
3270 {
3271 if (entry >= MAX_LITERAL_POOL_SIZE)
3272 {
3273 inst.error = _("literal pool overflow");
3274 return FAIL;
3275 }
3276
8335d6aa
JW
3277 if (nbytes == 8)
3278 {
3279 /* For 8-byte entries, we align to an 8-byte boundary,
3280 and split it into two 4-byte entries, because on 32-bit
3281 host, 8-byte constants are treated as big num, thus
3282 saved in "generic_bignum" which will be overwritten
3283 by later assignments.
3284
3285 We also need to make sure there is enough space for
3286 the split.
3287
3288 We also check to make sure the literal operand is a
3289 constant number. */
19f2f6a9
JW
3290 if (!(inst.reloc.exp.X_op == O_constant
3291 || inst.reloc.exp.X_op == O_big))
8335d6aa
JW
3292 {
3293 inst.error = _("invalid type for literal pool");
3294 return FAIL;
3295 }
3296 else if (pool_size & 0x7)
3297 {
3298 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3299 {
3300 inst.error = _("literal pool overflow");
3301 return FAIL;
3302 }
3303
3304 pool->literals[entry] = inst.reloc.exp;
a6684f0d 3305 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3306 pool->literals[entry].X_add_number = 0;
3307 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3308 pool->next_free_entry += 1;
3309 pool_size += 4;
3310 }
3311 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3312 {
3313 inst.error = _("literal pool overflow");
3314 return FAIL;
3315 }
3316
3317 pool->literals[entry] = inst.reloc.exp;
3318 pool->literals[entry].X_op = O_constant;
3319 pool->literals[entry].X_add_number = imm1;
3320 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3321 pool->literals[entry++].X_md = 4;
3322 pool->literals[entry] = inst.reloc.exp;
3323 pool->literals[entry].X_op = O_constant;
3324 pool->literals[entry].X_add_number = imm2;
3325 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3326 pool->literals[entry].X_md = 4;
3327 pool->alignment = 3;
3328 pool->next_free_entry += 1;
3329 }
3330 else
3331 {
3332 pool->literals[entry] = inst.reloc.exp;
3333 pool->literals[entry].X_md = 4;
3334 }
3335
a8040cf2
NC
3336#ifdef OBJ_ELF
3337 /* PR ld/12974: Record the location of the first source line to reference
3338 this entry in the literal pool. If it turns out during linking that the
3339 symbol does not exist we will be able to give an accurate line number for
3340 the (first use of the) missing reference. */
3341 if (debug_type == DEBUG_DWARF2)
3342 dwarf2_where (pool->locs + entry);
3343#endif
c19d1205
ZW
3344 pool->next_free_entry += 1;
3345 }
8335d6aa
JW
3346 else if (padding_slot_p)
3347 {
3348 pool->literals[entry] = inst.reloc.exp;
3349 pool->literals[entry].X_md = nbytes;
3350 }
b99bd4ef 3351
c19d1205 3352 inst.reloc.exp.X_op = O_symbol;
8335d6aa 3353 inst.reloc.exp.X_add_number = pool_size;
c19d1205 3354 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3355
c19d1205 3356 return SUCCESS;
b99bd4ef
NC
3357}
3358
2e6976a8 3359bfd_boolean
2e57ce7b 3360tc_start_label_without_colon (void)
2e6976a8
DG
3361{
3362 bfd_boolean ret = TRUE;
3363
3364 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3365 {
2e57ce7b 3366 const char *label = input_line_pointer;
2e6976a8
DG
3367
3368 while (!is_end_of_line[(int) label[-1]])
3369 --label;
3370
3371 if (*label == '.')
3372 {
3373 as_bad (_("Invalid label '%s'"), label);
3374 ret = FALSE;
3375 }
3376
3377 asmfunc_debug (label);
3378
3379 asmfunc_state = WAITING_ENDASMFUNC;
3380 }
3381
3382 return ret;
3383}
3384
c19d1205 3385/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3386 a later date assign it a value. That's what these functions do. */
e16bb312 3387
c19d1205
ZW
3388static void
3389symbol_locate (symbolS * symbolP,
3390 const char * name, /* It is copied, the caller can modify. */
3391 segT segment, /* Segment identifier (SEG_<something>). */
3392 valueT valu, /* Symbol value. */
3393 fragS * frag) /* Associated fragment. */
3394{
e57e6ddc 3395 size_t name_length;
c19d1205 3396 char * preserved_copy_of_name;
e16bb312 3397
c19d1205
ZW
3398 name_length = strlen (name) + 1; /* +1 for \0. */
3399 obstack_grow (&notes, name, name_length);
21d799b5 3400 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3401
c19d1205
ZW
3402#ifdef tc_canonicalize_symbol_name
3403 preserved_copy_of_name =
3404 tc_canonicalize_symbol_name (preserved_copy_of_name);
3405#endif
b99bd4ef 3406
c19d1205 3407 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3408
c19d1205
ZW
3409 S_SET_SEGMENT (symbolP, segment);
3410 S_SET_VALUE (symbolP, valu);
3411 symbol_clear_list_pointers (symbolP);
b99bd4ef 3412
c19d1205 3413 symbol_set_frag (symbolP, frag);
b99bd4ef 3414
c19d1205
ZW
3415 /* Link to end of symbol chain. */
3416 {
3417 extern int symbol_table_frozen;
b99bd4ef 3418
c19d1205
ZW
3419 if (symbol_table_frozen)
3420 abort ();
3421 }
b99bd4ef 3422
c19d1205 3423 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3424
c19d1205 3425 obj_symbol_new_hook (symbolP);
b99bd4ef 3426
c19d1205
ZW
3427#ifdef tc_symbol_new_hook
3428 tc_symbol_new_hook (symbolP);
3429#endif
3430
3431#ifdef DEBUG_SYMS
3432 verify_symbol_chain (symbol_rootP, symbol_lastP);
3433#endif /* DEBUG_SYMS */
b99bd4ef
NC
3434}
3435
c19d1205
ZW
3436static void
3437s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3438{
c19d1205
ZW
3439 unsigned int entry;
3440 literal_pool * pool;
3441 char sym_name[20];
b99bd4ef 3442
c19d1205
ZW
3443 pool = find_literal_pool ();
3444 if (pool == NULL
3445 || pool->symbol == NULL
3446 || pool->next_free_entry == 0)
3447 return;
b99bd4ef 3448
c19d1205
ZW
3449 /* Align pool as you have word accesses.
3450 Only make a frag if we have to. */
3451 if (!need_pass_2)
8335d6aa 3452 frag_align (pool->alignment, 0, 0);
b99bd4ef 3453
c19d1205 3454 record_alignment (now_seg, 2);
b99bd4ef 3455
aaca88ef 3456#ifdef OBJ_ELF
47fc6e36
WN
3457 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3458 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3459#endif
c19d1205 3460 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3461
c19d1205
ZW
3462 symbol_locate (pool->symbol, sym_name, now_seg,
3463 (valueT) frag_now_fix (), frag_now);
3464 symbol_table_insert (pool->symbol);
b99bd4ef 3465
c19d1205 3466 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3467
c19d1205
ZW
3468#if defined OBJ_COFF || defined OBJ_ELF
3469 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3470#endif
6c43fab6 3471
c19d1205 3472 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3473 {
3474#ifdef OBJ_ELF
3475 if (debug_type == DEBUG_DWARF2)
3476 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3477#endif
3478 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3479 emit_expr (&(pool->literals[entry]),
3480 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3481 }
b99bd4ef 3482
c19d1205
ZW
3483 /* Mark the pool as empty. */
3484 pool->next_free_entry = 0;
3485 pool->symbol = NULL;
b99bd4ef
NC
3486}
3487
c19d1205
ZW
3488#ifdef OBJ_ELF
3489/* Forward declarations for functions below, in the MD interface
3490 section. */
3491static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3492static valueT create_unwind_entry (int);
3493static void start_unwind_section (const segT, int);
3494static void add_unwind_opcode (valueT, int);
3495static void flush_pending_unwind (void);
b99bd4ef 3496
c19d1205 3497/* Directives: Data. */
b99bd4ef 3498
c19d1205
ZW
3499static void
3500s_arm_elf_cons (int nbytes)
3501{
3502 expressionS exp;
b99bd4ef 3503
c19d1205
ZW
3504#ifdef md_flush_pending_output
3505 md_flush_pending_output ();
3506#endif
b99bd4ef 3507
c19d1205 3508 if (is_it_end_of_statement ())
b99bd4ef 3509 {
c19d1205
ZW
3510 demand_empty_rest_of_line ();
3511 return;
b99bd4ef
NC
3512 }
3513
c19d1205
ZW
3514#ifdef md_cons_align
3515 md_cons_align (nbytes);
3516#endif
b99bd4ef 3517
c19d1205
ZW
3518 mapping_state (MAP_DATA);
3519 do
b99bd4ef 3520 {
c19d1205
ZW
3521 int reloc;
3522 char *base = input_line_pointer;
b99bd4ef 3523
c19d1205 3524 expression (& exp);
b99bd4ef 3525
c19d1205
ZW
3526 if (exp.X_op != O_symbol)
3527 emit_expr (&exp, (unsigned int) nbytes);
3528 else
3529 {
3530 char *before_reloc = input_line_pointer;
3531 reloc = parse_reloc (&input_line_pointer);
3532 if (reloc == -1)
3533 {
3534 as_bad (_("unrecognized relocation suffix"));
3535 ignore_rest_of_line ();
3536 return;
3537 }
3538 else if (reloc == BFD_RELOC_UNUSED)
3539 emit_expr (&exp, (unsigned int) nbytes);
3540 else
3541 {
21d799b5 3542 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3543 bfd_reloc_type_lookup (stdoutput,
3544 (bfd_reloc_code_real_type) reloc);
c19d1205 3545 int size = bfd_get_reloc_size (howto);
b99bd4ef 3546
2fc8bdac
ZW
3547 if (reloc == BFD_RELOC_ARM_PLT32)
3548 {
3549 as_bad (_("(plt) is only valid on branch targets"));
3550 reloc = BFD_RELOC_UNUSED;
3551 size = 0;
3552 }
3553
c19d1205 3554 if (size > nbytes)
992a06ee
AM
3555 as_bad (ngettext ("%s relocations do not fit in %d byte",
3556 "%s relocations do not fit in %d bytes",
3557 nbytes),
c19d1205
ZW
3558 howto->name, nbytes);
3559 else
3560 {
3561 /* We've parsed an expression stopping at O_symbol.
3562 But there may be more expression left now that we
3563 have parsed the relocation marker. Parse it again.
3564 XXX Surely there is a cleaner way to do this. */
3565 char *p = input_line_pointer;
3566 int offset;
325801bd 3567 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3568
c19d1205
ZW
3569 memcpy (save_buf, base, input_line_pointer - base);
3570 memmove (base + (input_line_pointer - before_reloc),
3571 base, before_reloc - base);
3572
3573 input_line_pointer = base + (input_line_pointer-before_reloc);
3574 expression (&exp);
3575 memcpy (base, save_buf, p - base);
3576
3577 offset = nbytes - size;
4b1a927e
AM
3578 p = frag_more (nbytes);
3579 memset (p, 0, nbytes);
c19d1205 3580 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3581 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3582 free (save_buf);
c19d1205
ZW
3583 }
3584 }
3585 }
b99bd4ef 3586 }
c19d1205 3587 while (*input_line_pointer++ == ',');
b99bd4ef 3588
c19d1205
ZW
3589 /* Put terminator back into stream. */
3590 input_line_pointer --;
3591 demand_empty_rest_of_line ();
b99bd4ef
NC
3592}
3593
c921be7d
NC
3594/* Emit an expression containing a 32-bit thumb instruction.
3595 Implementation based on put_thumb32_insn. */
3596
3597static void
3598emit_thumb32_expr (expressionS * exp)
3599{
3600 expressionS exp_high = *exp;
3601
3602 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3603 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3604 exp->X_add_number &= 0xffff;
3605 emit_expr (exp, (unsigned int) THUMB_SIZE);
3606}
3607
3608/* Guess the instruction size based on the opcode. */
3609
3610static int
3611thumb_insn_size (int opcode)
3612{
3613 if ((unsigned int) opcode < 0xe800u)
3614 return 2;
3615 else if ((unsigned int) opcode >= 0xe8000000u)
3616 return 4;
3617 else
3618 return 0;
3619}
3620
3621static bfd_boolean
3622emit_insn (expressionS *exp, int nbytes)
3623{
3624 int size = 0;
3625
3626 if (exp->X_op == O_constant)
3627 {
3628 size = nbytes;
3629
3630 if (size == 0)
3631 size = thumb_insn_size (exp->X_add_number);
3632
3633 if (size != 0)
3634 {
3635 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3636 {
3637 as_bad (_(".inst.n operand too big. "\
3638 "Use .inst.w instead"));
3639 size = 0;
3640 }
3641 else
3642 {
3643 if (now_it.state == AUTOMATIC_IT_BLOCK)
3644 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3645 else
3646 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3647
3648 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3649 emit_thumb32_expr (exp);
3650 else
3651 emit_expr (exp, (unsigned int) size);
3652
3653 it_fsm_post_encode ();
3654 }
3655 }
3656 else
3657 as_bad (_("cannot determine Thumb instruction size. " \
3658 "Use .inst.n/.inst.w instead"));
3659 }
3660 else
3661 as_bad (_("constant expression required"));
3662
3663 return (size != 0);
3664}
3665
3666/* Like s_arm_elf_cons but do not use md_cons_align and
3667 set the mapping state to MAP_ARM/MAP_THUMB. */
3668
3669static void
3670s_arm_elf_inst (int nbytes)
3671{
3672 if (is_it_end_of_statement ())
3673 {
3674 demand_empty_rest_of_line ();
3675 return;
3676 }
3677
3678 /* Calling mapping_state () here will not change ARM/THUMB,
3679 but will ensure not to be in DATA state. */
3680
3681 if (thumb_mode)
3682 mapping_state (MAP_THUMB);
3683 else
3684 {
3685 if (nbytes != 0)
3686 {
3687 as_bad (_("width suffixes are invalid in ARM mode"));
3688 ignore_rest_of_line ();
3689 return;
3690 }
3691
3692 nbytes = 4;
3693
3694 mapping_state (MAP_ARM);
3695 }
3696
3697 do
3698 {
3699 expressionS exp;
3700
3701 expression (& exp);
3702
3703 if (! emit_insn (& exp, nbytes))
3704 {
3705 ignore_rest_of_line ();
3706 return;
3707 }
3708 }
3709 while (*input_line_pointer++ == ',');
3710
3711 /* Put terminator back into stream. */
3712 input_line_pointer --;
3713 demand_empty_rest_of_line ();
3714}
b99bd4ef 3715
c19d1205 3716/* Parse a .rel31 directive. */
b99bd4ef 3717
c19d1205
ZW
3718static void
3719s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3720{
3721 expressionS exp;
3722 char *p;
3723 valueT highbit;
b99bd4ef 3724
c19d1205
ZW
3725 highbit = 0;
3726 if (*input_line_pointer == '1')
3727 highbit = 0x80000000;
3728 else if (*input_line_pointer != '0')
3729 as_bad (_("expected 0 or 1"));
b99bd4ef 3730
c19d1205
ZW
3731 input_line_pointer++;
3732 if (*input_line_pointer != ',')
3733 as_bad (_("missing comma"));
3734 input_line_pointer++;
b99bd4ef 3735
c19d1205
ZW
3736#ifdef md_flush_pending_output
3737 md_flush_pending_output ();
3738#endif
b99bd4ef 3739
c19d1205
ZW
3740#ifdef md_cons_align
3741 md_cons_align (4);
3742#endif
b99bd4ef 3743
c19d1205 3744 mapping_state (MAP_DATA);
b99bd4ef 3745
c19d1205 3746 expression (&exp);
b99bd4ef 3747
c19d1205
ZW
3748 p = frag_more (4);
3749 md_number_to_chars (p, highbit, 4);
3750 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3751 BFD_RELOC_ARM_PREL31);
b99bd4ef 3752
c19d1205 3753 demand_empty_rest_of_line ();
b99bd4ef
NC
3754}
3755
c19d1205 3756/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3757
c19d1205 3758/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3759
c19d1205
ZW
3760static void
3761s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3762{
3763 demand_empty_rest_of_line ();
921e5f0a
PB
3764 if (unwind.proc_start)
3765 {
c921be7d 3766 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3767 return;
3768 }
3769
c19d1205
ZW
3770 /* Mark the start of the function. */
3771 unwind.proc_start = expr_build_dot ();
b99bd4ef 3772
c19d1205
ZW
3773 /* Reset the rest of the unwind info. */
3774 unwind.opcode_count = 0;
3775 unwind.table_entry = NULL;
3776 unwind.personality_routine = NULL;
3777 unwind.personality_index = -1;
3778 unwind.frame_size = 0;
3779 unwind.fp_offset = 0;
fdfde340 3780 unwind.fp_reg = REG_SP;
c19d1205
ZW
3781 unwind.fp_used = 0;
3782 unwind.sp_restored = 0;
3783}
b99bd4ef 3784
b99bd4ef 3785
c19d1205
ZW
3786/* Parse a handlerdata directive. Creates the exception handling table entry
3787 for the function. */
b99bd4ef 3788
c19d1205
ZW
3789static void
3790s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3791{
3792 demand_empty_rest_of_line ();
921e5f0a 3793 if (!unwind.proc_start)
c921be7d 3794 as_bad (MISSING_FNSTART);
921e5f0a 3795
c19d1205 3796 if (unwind.table_entry)
6decc662 3797 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3798
c19d1205
ZW
3799 create_unwind_entry (1);
3800}
a737bd4d 3801
c19d1205 3802/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3803
c19d1205
ZW
3804static void
3805s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3806{
3807 long where;
3808 char *ptr;
3809 valueT val;
940b5ce0 3810 unsigned int marked_pr_dependency;
f02232aa 3811
c19d1205 3812 demand_empty_rest_of_line ();
f02232aa 3813
921e5f0a
PB
3814 if (!unwind.proc_start)
3815 {
c921be7d 3816 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3817 return;
3818 }
3819
c19d1205
ZW
3820 /* Add eh table entry. */
3821 if (unwind.table_entry == NULL)
3822 val = create_unwind_entry (0);
3823 else
3824 val = 0;
f02232aa 3825
c19d1205
ZW
3826 /* Add index table entry. This is two words. */
3827 start_unwind_section (unwind.saved_seg, 1);
3828 frag_align (2, 0, 0);
3829 record_alignment (now_seg, 2);
b99bd4ef 3830
c19d1205 3831 ptr = frag_more (8);
5011093d 3832 memset (ptr, 0, 8);
c19d1205 3833 where = frag_now_fix () - 8;
f02232aa 3834
c19d1205
ZW
3835 /* Self relative offset of the function start. */
3836 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3837 BFD_RELOC_ARM_PREL31);
f02232aa 3838
c19d1205
ZW
3839 /* Indicate dependency on EHABI-defined personality routines to the
3840 linker, if it hasn't been done already. */
940b5ce0
DJ
3841 marked_pr_dependency
3842 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3843 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3844 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3845 {
5f4273c7
NC
3846 static const char *const name[] =
3847 {
3848 "__aeabi_unwind_cpp_pr0",
3849 "__aeabi_unwind_cpp_pr1",
3850 "__aeabi_unwind_cpp_pr2"
3851 };
c19d1205
ZW
3852 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3853 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3854 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3855 |= 1 << unwind.personality_index;
c19d1205 3856 }
f02232aa 3857
c19d1205
ZW
3858 if (val)
3859 /* Inline exception table entry. */
3860 md_number_to_chars (ptr + 4, val, 4);
3861 else
3862 /* Self relative offset of the table entry. */
3863 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3864 BFD_RELOC_ARM_PREL31);
f02232aa 3865
c19d1205
ZW
3866 /* Restore the original section. */
3867 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3868
3869 unwind.proc_start = NULL;
c19d1205 3870}
f02232aa 3871
f02232aa 3872
c19d1205 3873/* Parse an unwind_cantunwind directive. */
b99bd4ef 3874
c19d1205
ZW
3875static void
3876s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3877{
3878 demand_empty_rest_of_line ();
921e5f0a 3879 if (!unwind.proc_start)
c921be7d 3880 as_bad (MISSING_FNSTART);
921e5f0a 3881
c19d1205
ZW
3882 if (unwind.personality_routine || unwind.personality_index != -1)
3883 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3884
c19d1205
ZW
3885 unwind.personality_index = -2;
3886}
b99bd4ef 3887
b99bd4ef 3888
c19d1205 3889/* Parse a personalityindex directive. */
b99bd4ef 3890
c19d1205
ZW
3891static void
3892s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3893{
3894 expressionS exp;
b99bd4ef 3895
921e5f0a 3896 if (!unwind.proc_start)
c921be7d 3897 as_bad (MISSING_FNSTART);
921e5f0a 3898
c19d1205
ZW
3899 if (unwind.personality_routine || unwind.personality_index != -1)
3900 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3901
c19d1205 3902 expression (&exp);
b99bd4ef 3903
c19d1205
ZW
3904 if (exp.X_op != O_constant
3905 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3906 {
c19d1205
ZW
3907 as_bad (_("bad personality routine number"));
3908 ignore_rest_of_line ();
3909 return;
b99bd4ef
NC
3910 }
3911
c19d1205 3912 unwind.personality_index = exp.X_add_number;
b99bd4ef 3913
c19d1205
ZW
3914 demand_empty_rest_of_line ();
3915}
e16bb312 3916
e16bb312 3917
c19d1205 3918/* Parse a personality directive. */
e16bb312 3919
c19d1205
ZW
3920static void
3921s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3922{
3923 char *name, *p, c;
a737bd4d 3924
921e5f0a 3925 if (!unwind.proc_start)
c921be7d 3926 as_bad (MISSING_FNSTART);
921e5f0a 3927
c19d1205
ZW
3928 if (unwind.personality_routine || unwind.personality_index != -1)
3929 as_bad (_("duplicate .personality directive"));
a737bd4d 3930
d02603dc 3931 c = get_symbol_name (& name);
c19d1205 3932 p = input_line_pointer;
d02603dc
NC
3933 if (c == '"')
3934 ++ input_line_pointer;
c19d1205
ZW
3935 unwind.personality_routine = symbol_find_or_make (name);
3936 *p = c;
3937 demand_empty_rest_of_line ();
3938}
e16bb312 3939
e16bb312 3940
c19d1205 3941/* Parse a directive saving core registers. */
e16bb312 3942
c19d1205
ZW
3943static void
3944s_arm_unwind_save_core (void)
e16bb312 3945{
c19d1205
ZW
3946 valueT op;
3947 long range;
3948 int n;
e16bb312 3949
c19d1205
ZW
3950 range = parse_reg_list (&input_line_pointer);
3951 if (range == FAIL)
e16bb312 3952 {
c19d1205
ZW
3953 as_bad (_("expected register list"));
3954 ignore_rest_of_line ();
3955 return;
3956 }
e16bb312 3957
c19d1205 3958 demand_empty_rest_of_line ();
e16bb312 3959
c19d1205
ZW
3960 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3961 into .unwind_save {..., sp...}. We aren't bothered about the value of
3962 ip because it is clobbered by calls. */
3963 if (unwind.sp_restored && unwind.fp_reg == 12
3964 && (range & 0x3000) == 0x1000)
3965 {
3966 unwind.opcode_count--;
3967 unwind.sp_restored = 0;
3968 range = (range | 0x2000) & ~0x1000;
3969 unwind.pending_offset = 0;
3970 }
e16bb312 3971
01ae4198
DJ
3972 /* Pop r4-r15. */
3973 if (range & 0xfff0)
c19d1205 3974 {
01ae4198
DJ
3975 /* See if we can use the short opcodes. These pop a block of up to 8
3976 registers starting with r4, plus maybe r14. */
3977 for (n = 0; n < 8; n++)
3978 {
3979 /* Break at the first non-saved register. */
3980 if ((range & (1 << (n + 4))) == 0)
3981 break;
3982 }
3983 /* See if there are any other bits set. */
3984 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3985 {
3986 /* Use the long form. */
3987 op = 0x8000 | ((range >> 4) & 0xfff);
3988 add_unwind_opcode (op, 2);
3989 }
0dd132b6 3990 else
01ae4198
DJ
3991 {
3992 /* Use the short form. */
3993 if (range & 0x4000)
3994 op = 0xa8; /* Pop r14. */
3995 else
3996 op = 0xa0; /* Do not pop r14. */
3997 op |= (n - 1);
3998 add_unwind_opcode (op, 1);
3999 }
c19d1205 4000 }
0dd132b6 4001
c19d1205
ZW
4002 /* Pop r0-r3. */
4003 if (range & 0xf)
4004 {
4005 op = 0xb100 | (range & 0xf);
4006 add_unwind_opcode (op, 2);
0dd132b6
NC
4007 }
4008
c19d1205
ZW
4009 /* Record the number of bytes pushed. */
4010 for (n = 0; n < 16; n++)
4011 {
4012 if (range & (1 << n))
4013 unwind.frame_size += 4;
4014 }
0dd132b6
NC
4015}
4016
c19d1205
ZW
4017
4018/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4019
4020static void
c19d1205 4021s_arm_unwind_save_fpa (int reg)
b99bd4ef 4022{
c19d1205
ZW
4023 expressionS exp;
4024 int num_regs;
4025 valueT op;
b99bd4ef 4026
c19d1205
ZW
4027 /* Get Number of registers to transfer. */
4028 if (skip_past_comma (&input_line_pointer) != FAIL)
4029 expression (&exp);
4030 else
4031 exp.X_op = O_illegal;
b99bd4ef 4032
c19d1205 4033 if (exp.X_op != O_constant)
b99bd4ef 4034 {
c19d1205
ZW
4035 as_bad (_("expected , <constant>"));
4036 ignore_rest_of_line ();
b99bd4ef
NC
4037 return;
4038 }
4039
c19d1205
ZW
4040 num_regs = exp.X_add_number;
4041
4042 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4043 {
c19d1205
ZW
4044 as_bad (_("number of registers must be in the range [1:4]"));
4045 ignore_rest_of_line ();
b99bd4ef
NC
4046 return;
4047 }
4048
c19d1205 4049 demand_empty_rest_of_line ();
b99bd4ef 4050
c19d1205
ZW
4051 if (reg == 4)
4052 {
4053 /* Short form. */
4054 op = 0xb4 | (num_regs - 1);
4055 add_unwind_opcode (op, 1);
4056 }
b99bd4ef
NC
4057 else
4058 {
c19d1205
ZW
4059 /* Long form. */
4060 op = 0xc800 | (reg << 4) | (num_regs - 1);
4061 add_unwind_opcode (op, 2);
b99bd4ef 4062 }
c19d1205 4063 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4064}
4065
c19d1205 4066
fa073d69
MS
4067/* Parse a directive saving VFP registers for ARMv6 and above. */
4068
4069static void
4070s_arm_unwind_save_vfp_armv6 (void)
4071{
4072 int count;
4073 unsigned int start;
4074 valueT op;
4075 int num_vfpv3_regs = 0;
4076 int num_regs_below_16;
4077
4078 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
4079 if (count == FAIL)
4080 {
4081 as_bad (_("expected register list"));
4082 ignore_rest_of_line ();
4083 return;
4084 }
4085
4086 demand_empty_rest_of_line ();
4087
4088 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4089 than FSTMX/FLDMX-style ones). */
4090
4091 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4092 if (start >= 16)
4093 num_vfpv3_regs = count;
4094 else if (start + count > 16)
4095 num_vfpv3_regs = start + count - 16;
4096
4097 if (num_vfpv3_regs > 0)
4098 {
4099 int start_offset = start > 16 ? start - 16 : 0;
4100 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4101 add_unwind_opcode (op, 2);
4102 }
4103
4104 /* Generate opcode for registers numbered in the range 0 .. 15. */
4105 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4106 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4107 if (num_regs_below_16 > 0)
4108 {
4109 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4110 add_unwind_opcode (op, 2);
4111 }
4112
4113 unwind.frame_size += count * 8;
4114}
4115
4116
4117/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4118
4119static void
c19d1205 4120s_arm_unwind_save_vfp (void)
b99bd4ef 4121{
c19d1205 4122 int count;
ca3f61f7 4123 unsigned int reg;
c19d1205 4124 valueT op;
b99bd4ef 4125
5287ad62 4126 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 4127 if (count == FAIL)
b99bd4ef 4128 {
c19d1205
ZW
4129 as_bad (_("expected register list"));
4130 ignore_rest_of_line ();
b99bd4ef
NC
4131 return;
4132 }
4133
c19d1205 4134 demand_empty_rest_of_line ();
b99bd4ef 4135
c19d1205 4136 if (reg == 8)
b99bd4ef 4137 {
c19d1205
ZW
4138 /* Short form. */
4139 op = 0xb8 | (count - 1);
4140 add_unwind_opcode (op, 1);
b99bd4ef 4141 }
c19d1205 4142 else
b99bd4ef 4143 {
c19d1205
ZW
4144 /* Long form. */
4145 op = 0xb300 | (reg << 4) | (count - 1);
4146 add_unwind_opcode (op, 2);
b99bd4ef 4147 }
c19d1205
ZW
4148 unwind.frame_size += count * 8 + 4;
4149}
b99bd4ef 4150
b99bd4ef 4151
c19d1205
ZW
4152/* Parse a directive saving iWMMXt data registers. */
4153
4154static void
4155s_arm_unwind_save_mmxwr (void)
4156{
4157 int reg;
4158 int hi_reg;
4159 int i;
4160 unsigned mask = 0;
4161 valueT op;
b99bd4ef 4162
c19d1205
ZW
4163 if (*input_line_pointer == '{')
4164 input_line_pointer++;
b99bd4ef 4165
c19d1205 4166 do
b99bd4ef 4167 {
dcbf9037 4168 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4169
c19d1205 4170 if (reg == FAIL)
b99bd4ef 4171 {
9b7132d3 4172 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4173 goto error;
b99bd4ef
NC
4174 }
4175
c19d1205
ZW
4176 if (mask >> reg)
4177 as_tsktsk (_("register list not in ascending order"));
4178 mask |= 1 << reg;
b99bd4ef 4179
c19d1205
ZW
4180 if (*input_line_pointer == '-')
4181 {
4182 input_line_pointer++;
dcbf9037 4183 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4184 if (hi_reg == FAIL)
4185 {
9b7132d3 4186 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4187 goto error;
4188 }
4189 else if (reg >= hi_reg)
4190 {
4191 as_bad (_("bad register range"));
4192 goto error;
4193 }
4194 for (; reg < hi_reg; reg++)
4195 mask |= 1 << reg;
4196 }
4197 }
4198 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4199
d996d970 4200 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4201
c19d1205 4202 demand_empty_rest_of_line ();
b99bd4ef 4203
708587a4 4204 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4205 the list. */
4206 flush_pending_unwind ();
b99bd4ef 4207
c19d1205 4208 for (i = 0; i < 16; i++)
b99bd4ef 4209 {
c19d1205
ZW
4210 if (mask & (1 << i))
4211 unwind.frame_size += 8;
b99bd4ef
NC
4212 }
4213
c19d1205
ZW
4214 /* Attempt to combine with a previous opcode. We do this because gcc
4215 likes to output separate unwind directives for a single block of
4216 registers. */
4217 if (unwind.opcode_count > 0)
b99bd4ef 4218 {
c19d1205
ZW
4219 i = unwind.opcodes[unwind.opcode_count - 1];
4220 if ((i & 0xf8) == 0xc0)
4221 {
4222 i &= 7;
4223 /* Only merge if the blocks are contiguous. */
4224 if (i < 6)
4225 {
4226 if ((mask & 0xfe00) == (1 << 9))
4227 {
4228 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4229 unwind.opcode_count--;
4230 }
4231 }
4232 else if (i == 6 && unwind.opcode_count >= 2)
4233 {
4234 i = unwind.opcodes[unwind.opcode_count - 2];
4235 reg = i >> 4;
4236 i &= 0xf;
b99bd4ef 4237
c19d1205
ZW
4238 op = 0xffff << (reg - 1);
4239 if (reg > 0
87a1fd79 4240 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4241 {
4242 op = (1 << (reg + i + 1)) - 1;
4243 op &= ~((1 << reg) - 1);
4244 mask |= op;
4245 unwind.opcode_count -= 2;
4246 }
4247 }
4248 }
b99bd4ef
NC
4249 }
4250
c19d1205
ZW
4251 hi_reg = 15;
4252 /* We want to generate opcodes in the order the registers have been
4253 saved, ie. descending order. */
4254 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4255 {
c19d1205
ZW
4256 /* Save registers in blocks. */
4257 if (reg < 0
4258 || !(mask & (1 << reg)))
4259 {
4260 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4261 preceding block. */
c19d1205
ZW
4262 if (reg != hi_reg)
4263 {
4264 if (reg == 9)
4265 {
4266 /* Short form. */
4267 op = 0xc0 | (hi_reg - 10);
4268 add_unwind_opcode (op, 1);
4269 }
4270 else
4271 {
4272 /* Long form. */
4273 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4274 add_unwind_opcode (op, 2);
4275 }
4276 }
4277 hi_reg = reg - 1;
4278 }
b99bd4ef
NC
4279 }
4280
c19d1205
ZW
4281 return;
4282error:
4283 ignore_rest_of_line ();
b99bd4ef
NC
4284}
4285
4286static void
c19d1205 4287s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4288{
c19d1205
ZW
4289 int reg;
4290 int hi_reg;
4291 unsigned mask = 0;
4292 valueT op;
b99bd4ef 4293
c19d1205
ZW
4294 if (*input_line_pointer == '{')
4295 input_line_pointer++;
b99bd4ef 4296
477330fc
RM
4297 skip_whitespace (input_line_pointer);
4298
c19d1205 4299 do
b99bd4ef 4300 {
dcbf9037 4301 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4302
c19d1205
ZW
4303 if (reg == FAIL)
4304 {
9b7132d3 4305 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4306 goto error;
4307 }
b99bd4ef 4308
c19d1205
ZW
4309 reg -= 8;
4310 if (mask >> reg)
4311 as_tsktsk (_("register list not in ascending order"));
4312 mask |= 1 << reg;
b99bd4ef 4313
c19d1205
ZW
4314 if (*input_line_pointer == '-')
4315 {
4316 input_line_pointer++;
dcbf9037 4317 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4318 if (hi_reg == FAIL)
4319 {
9b7132d3 4320 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4321 goto error;
4322 }
4323 else if (reg >= hi_reg)
4324 {
4325 as_bad (_("bad register range"));
4326 goto error;
4327 }
4328 for (; reg < hi_reg; reg++)
4329 mask |= 1 << reg;
4330 }
b99bd4ef 4331 }
c19d1205 4332 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4333
d996d970 4334 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4335
c19d1205
ZW
4336 demand_empty_rest_of_line ();
4337
708587a4 4338 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4339 the list. */
4340 flush_pending_unwind ();
b99bd4ef 4341
c19d1205 4342 for (reg = 0; reg < 16; reg++)
b99bd4ef 4343 {
c19d1205
ZW
4344 if (mask & (1 << reg))
4345 unwind.frame_size += 4;
b99bd4ef 4346 }
c19d1205
ZW
4347 op = 0xc700 | mask;
4348 add_unwind_opcode (op, 2);
4349 return;
4350error:
4351 ignore_rest_of_line ();
b99bd4ef
NC
4352}
4353
c19d1205 4354
fa073d69
MS
4355/* Parse an unwind_save directive.
4356 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4357
b99bd4ef 4358static void
fa073d69 4359s_arm_unwind_save (int arch_v6)
b99bd4ef 4360{
c19d1205
ZW
4361 char *peek;
4362 struct reg_entry *reg;
4363 bfd_boolean had_brace = FALSE;
b99bd4ef 4364
921e5f0a 4365 if (!unwind.proc_start)
c921be7d 4366 as_bad (MISSING_FNSTART);
921e5f0a 4367
c19d1205
ZW
4368 /* Figure out what sort of save we have. */
4369 peek = input_line_pointer;
b99bd4ef 4370
c19d1205 4371 if (*peek == '{')
b99bd4ef 4372 {
c19d1205
ZW
4373 had_brace = TRUE;
4374 peek++;
b99bd4ef
NC
4375 }
4376
c19d1205 4377 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4378
c19d1205 4379 if (!reg)
b99bd4ef 4380 {
c19d1205
ZW
4381 as_bad (_("register expected"));
4382 ignore_rest_of_line ();
b99bd4ef
NC
4383 return;
4384 }
4385
c19d1205 4386 switch (reg->type)
b99bd4ef 4387 {
c19d1205
ZW
4388 case REG_TYPE_FN:
4389 if (had_brace)
4390 {
4391 as_bad (_("FPA .unwind_save does not take a register list"));
4392 ignore_rest_of_line ();
4393 return;
4394 }
93ac2687 4395 input_line_pointer = peek;
c19d1205 4396 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4397 return;
c19d1205 4398
1f5afe1c
NC
4399 case REG_TYPE_RN:
4400 s_arm_unwind_save_core ();
4401 return;
4402
fa073d69
MS
4403 case REG_TYPE_VFD:
4404 if (arch_v6)
477330fc 4405 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4406 else
477330fc 4407 s_arm_unwind_save_vfp ();
fa073d69 4408 return;
1f5afe1c
NC
4409
4410 case REG_TYPE_MMXWR:
4411 s_arm_unwind_save_mmxwr ();
4412 return;
4413
4414 case REG_TYPE_MMXWCG:
4415 s_arm_unwind_save_mmxwcg ();
4416 return;
c19d1205
ZW
4417
4418 default:
4419 as_bad (_(".unwind_save does not support this kind of register"));
4420 ignore_rest_of_line ();
b99bd4ef 4421 }
c19d1205 4422}
b99bd4ef 4423
b99bd4ef 4424
c19d1205
ZW
4425/* Parse an unwind_movsp directive. */
4426
4427static void
4428s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4429{
4430 int reg;
4431 valueT op;
4fa3602b 4432 int offset;
c19d1205 4433
921e5f0a 4434 if (!unwind.proc_start)
c921be7d 4435 as_bad (MISSING_FNSTART);
921e5f0a 4436
dcbf9037 4437 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4438 if (reg == FAIL)
b99bd4ef 4439 {
9b7132d3 4440 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4441 ignore_rest_of_line ();
b99bd4ef
NC
4442 return;
4443 }
4fa3602b
PB
4444
4445 /* Optional constant. */
4446 if (skip_past_comma (&input_line_pointer) != FAIL)
4447 {
4448 if (immediate_for_directive (&offset) == FAIL)
4449 return;
4450 }
4451 else
4452 offset = 0;
4453
c19d1205 4454 demand_empty_rest_of_line ();
b99bd4ef 4455
c19d1205 4456 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4457 {
c19d1205 4458 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4459 return;
4460 }
4461
c19d1205
ZW
4462 if (unwind.fp_reg != REG_SP)
4463 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4464
c19d1205
ZW
4465 /* Generate opcode to restore the value. */
4466 op = 0x90 | reg;
4467 add_unwind_opcode (op, 1);
4468
4469 /* Record the information for later. */
4470 unwind.fp_reg = reg;
4fa3602b 4471 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4472 unwind.sp_restored = 1;
b05fe5cf
ZW
4473}
4474
c19d1205
ZW
4475/* Parse an unwind_pad directive. */
4476
b05fe5cf 4477static void
c19d1205 4478s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4479{
c19d1205 4480 int offset;
b05fe5cf 4481
921e5f0a 4482 if (!unwind.proc_start)
c921be7d 4483 as_bad (MISSING_FNSTART);
921e5f0a 4484
c19d1205
ZW
4485 if (immediate_for_directive (&offset) == FAIL)
4486 return;
b99bd4ef 4487
c19d1205
ZW
4488 if (offset & 3)
4489 {
4490 as_bad (_("stack increment must be multiple of 4"));
4491 ignore_rest_of_line ();
4492 return;
4493 }
b99bd4ef 4494
c19d1205
ZW
4495 /* Don't generate any opcodes, just record the details for later. */
4496 unwind.frame_size += offset;
4497 unwind.pending_offset += offset;
4498
4499 demand_empty_rest_of_line ();
4500}
4501
4502/* Parse an unwind_setfp directive. */
4503
4504static void
4505s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4506{
c19d1205
ZW
4507 int sp_reg;
4508 int fp_reg;
4509 int offset;
4510
921e5f0a 4511 if (!unwind.proc_start)
c921be7d 4512 as_bad (MISSING_FNSTART);
921e5f0a 4513
dcbf9037 4514 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4515 if (skip_past_comma (&input_line_pointer) == FAIL)
4516 sp_reg = FAIL;
4517 else
dcbf9037 4518 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4519
c19d1205
ZW
4520 if (fp_reg == FAIL || sp_reg == FAIL)
4521 {
4522 as_bad (_("expected <reg>, <reg>"));
4523 ignore_rest_of_line ();
4524 return;
4525 }
b99bd4ef 4526
c19d1205
ZW
4527 /* Optional constant. */
4528 if (skip_past_comma (&input_line_pointer) != FAIL)
4529 {
4530 if (immediate_for_directive (&offset) == FAIL)
4531 return;
4532 }
4533 else
4534 offset = 0;
a737bd4d 4535
c19d1205 4536 demand_empty_rest_of_line ();
a737bd4d 4537
fdfde340 4538 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4539 {
c19d1205
ZW
4540 as_bad (_("register must be either sp or set by a previous"
4541 "unwind_movsp directive"));
4542 return;
a737bd4d
NC
4543 }
4544
c19d1205
ZW
4545 /* Don't generate any opcodes, just record the information for later. */
4546 unwind.fp_reg = fp_reg;
4547 unwind.fp_used = 1;
fdfde340 4548 if (sp_reg == REG_SP)
c19d1205
ZW
4549 unwind.fp_offset = unwind.frame_size - offset;
4550 else
4551 unwind.fp_offset -= offset;
a737bd4d
NC
4552}
4553
c19d1205
ZW
4554/* Parse an unwind_raw directive. */
4555
4556static void
4557s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4558{
c19d1205 4559 expressionS exp;
708587a4 4560 /* This is an arbitrary limit. */
c19d1205
ZW
4561 unsigned char op[16];
4562 int count;
a737bd4d 4563
921e5f0a 4564 if (!unwind.proc_start)
c921be7d 4565 as_bad (MISSING_FNSTART);
921e5f0a 4566
c19d1205
ZW
4567 expression (&exp);
4568 if (exp.X_op == O_constant
4569 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4570 {
c19d1205
ZW
4571 unwind.frame_size += exp.X_add_number;
4572 expression (&exp);
4573 }
4574 else
4575 exp.X_op = O_illegal;
a737bd4d 4576
c19d1205
ZW
4577 if (exp.X_op != O_constant)
4578 {
4579 as_bad (_("expected <offset>, <opcode>"));
4580 ignore_rest_of_line ();
4581 return;
4582 }
a737bd4d 4583
c19d1205 4584 count = 0;
a737bd4d 4585
c19d1205
ZW
4586 /* Parse the opcode. */
4587 for (;;)
4588 {
4589 if (count >= 16)
4590 {
4591 as_bad (_("unwind opcode too long"));
4592 ignore_rest_of_line ();
a737bd4d 4593 }
c19d1205 4594 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4595 {
c19d1205
ZW
4596 as_bad (_("invalid unwind opcode"));
4597 ignore_rest_of_line ();
4598 return;
a737bd4d 4599 }
c19d1205 4600 op[count++] = exp.X_add_number;
a737bd4d 4601
c19d1205
ZW
4602 /* Parse the next byte. */
4603 if (skip_past_comma (&input_line_pointer) == FAIL)
4604 break;
a737bd4d 4605
c19d1205
ZW
4606 expression (&exp);
4607 }
b99bd4ef 4608
c19d1205
ZW
4609 /* Add the opcode bytes in reverse order. */
4610 while (count--)
4611 add_unwind_opcode (op[count], 1);
b99bd4ef 4612
c19d1205 4613 demand_empty_rest_of_line ();
b99bd4ef 4614}
ee065d83
PB
4615
4616
4617/* Parse a .eabi_attribute directive. */
4618
4619static void
4620s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4621{
0420f52b 4622 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378
AS
4623
4624 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4625 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4626}
4627
0855e32b
NS
4628/* Emit a tls fix for the symbol. */
4629
4630static void
4631s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4632{
4633 char *p;
4634 expressionS exp;
4635#ifdef md_flush_pending_output
4636 md_flush_pending_output ();
4637#endif
4638
4639#ifdef md_cons_align
4640 md_cons_align (4);
4641#endif
4642
4643 /* Since we're just labelling the code, there's no need to define a
4644 mapping symbol. */
4645 expression (&exp);
4646 p = obstack_next_free (&frchain_now->frch_obstack);
4647 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4648 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4649 : BFD_RELOC_ARM_TLS_DESCSEQ);
4650}
cdf9ccec 4651#endif /* OBJ_ELF */
0855e32b 4652
ee065d83 4653static void s_arm_arch (int);
7a1d4c38 4654static void s_arm_object_arch (int);
ee065d83
PB
4655static void s_arm_cpu (int);
4656static void s_arm_fpu (int);
69133863 4657static void s_arm_arch_extension (int);
b99bd4ef 4658
f0927246
NC
4659#ifdef TE_PE
4660
4661static void
5f4273c7 4662pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4663{
4664 expressionS exp;
4665
4666 do
4667 {
4668 expression (&exp);
4669 if (exp.X_op == O_symbol)
4670 exp.X_op = O_secrel;
4671
4672 emit_expr (&exp, 4);
4673 }
4674 while (*input_line_pointer++ == ',');
4675
4676 input_line_pointer--;
4677 demand_empty_rest_of_line ();
4678}
4679#endif /* TE_PE */
4680
c19d1205
ZW
4681/* This table describes all the machine specific pseudo-ops the assembler
4682 has to support. The fields are:
4683 pseudo-op name without dot
4684 function to call to execute this pseudo-op
4685 Integer arg to pass to the function. */
b99bd4ef 4686
c19d1205 4687const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4688{
c19d1205
ZW
4689 /* Never called because '.req' does not start a line. */
4690 { "req", s_req, 0 },
dcbf9037
JB
4691 /* Following two are likewise never called. */
4692 { "dn", s_dn, 0 },
4693 { "qn", s_qn, 0 },
c19d1205
ZW
4694 { "unreq", s_unreq, 0 },
4695 { "bss", s_bss, 0 },
db2ed2e0 4696 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4697 { "arm", s_arm, 0 },
4698 { "thumb", s_thumb, 0 },
4699 { "code", s_code, 0 },
4700 { "force_thumb", s_force_thumb, 0 },
4701 { "thumb_func", s_thumb_func, 0 },
4702 { "thumb_set", s_thumb_set, 0 },
4703 { "even", s_even, 0 },
4704 { "ltorg", s_ltorg, 0 },
4705 { "pool", s_ltorg, 0 },
4706 { "syntax", s_syntax, 0 },
8463be01
PB
4707 { "cpu", s_arm_cpu, 0 },
4708 { "arch", s_arm_arch, 0 },
7a1d4c38 4709 { "object_arch", s_arm_object_arch, 0 },
8463be01 4710 { "fpu", s_arm_fpu, 0 },
69133863 4711 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4712#ifdef OBJ_ELF
c921be7d
NC
4713 { "word", s_arm_elf_cons, 4 },
4714 { "long", s_arm_elf_cons, 4 },
4715 { "inst.n", s_arm_elf_inst, 2 },
4716 { "inst.w", s_arm_elf_inst, 4 },
4717 { "inst", s_arm_elf_inst, 0 },
4718 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4719 { "fnstart", s_arm_unwind_fnstart, 0 },
4720 { "fnend", s_arm_unwind_fnend, 0 },
4721 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4722 { "personality", s_arm_unwind_personality, 0 },
4723 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4724 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4725 { "save", s_arm_unwind_save, 0 },
fa073d69 4726 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4727 { "movsp", s_arm_unwind_movsp, 0 },
4728 { "pad", s_arm_unwind_pad, 0 },
4729 { "setfp", s_arm_unwind_setfp, 0 },
4730 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4731 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4732 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4733#else
4734 { "word", cons, 4},
f0927246
NC
4735
4736 /* These are used for dwarf. */
4737 {"2byte", cons, 2},
4738 {"4byte", cons, 4},
4739 {"8byte", cons, 8},
4740 /* These are used for dwarf2. */
4741 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4742 { "loc", dwarf2_directive_loc, 0 },
4743 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4744#endif
4745 { "extend", float_cons, 'x' },
4746 { "ldouble", float_cons, 'x' },
4747 { "packed", float_cons, 'p' },
f0927246
NC
4748#ifdef TE_PE
4749 {"secrel32", pe_directive_secrel, 0},
4750#endif
2e6976a8
DG
4751
4752 /* These are for compatibility with CodeComposer Studio. */
4753 {"ref", s_ccs_ref, 0},
4754 {"def", s_ccs_def, 0},
4755 {"asmfunc", s_ccs_asmfunc, 0},
4756 {"endasmfunc", s_ccs_endasmfunc, 0},
4757
c19d1205
ZW
4758 { 0, 0, 0 }
4759};
4760\f
4761/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4762
c19d1205
ZW
4763/* Generic immediate-value read function for use in insn parsing.
4764 STR points to the beginning of the immediate (the leading #);
4765 VAL receives the value; if the value is outside [MIN, MAX]
4766 issue an error. PREFIX_OPT is true if the immediate prefix is
4767 optional. */
b99bd4ef 4768
c19d1205
ZW
4769static int
4770parse_immediate (char **str, int *val, int min, int max,
4771 bfd_boolean prefix_opt)
4772{
4773 expressionS exp;
4774 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4775 if (exp.X_op != O_constant)
b99bd4ef 4776 {
c19d1205
ZW
4777 inst.error = _("constant expression required");
4778 return FAIL;
4779 }
b99bd4ef 4780
c19d1205
ZW
4781 if (exp.X_add_number < min || exp.X_add_number > max)
4782 {
4783 inst.error = _("immediate value out of range");
4784 return FAIL;
4785 }
b99bd4ef 4786
c19d1205
ZW
4787 *val = exp.X_add_number;
4788 return SUCCESS;
4789}
b99bd4ef 4790
5287ad62 4791/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4792 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4793 instructions. Puts the result directly in inst.operands[i]. */
4794
4795static int
8335d6aa
JW
4796parse_big_immediate (char **str, int i, expressionS *in_exp,
4797 bfd_boolean allow_symbol_p)
5287ad62
JB
4798{
4799 expressionS exp;
8335d6aa 4800 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
4801 char *ptr = *str;
4802
8335d6aa 4803 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 4804
8335d6aa 4805 if (exp_p->X_op == O_constant)
036dc3f7 4806 {
8335d6aa 4807 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
4808 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4809 O_constant. We have to be careful not to break compilation for
4810 32-bit X_add_number, though. */
8335d6aa 4811 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 4812 {
8335d6aa
JW
4813 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
4814 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
4815 & 0xffffffff);
036dc3f7
PB
4816 inst.operands[i].regisimm = 1;
4817 }
4818 }
8335d6aa
JW
4819 else if (exp_p->X_op == O_big
4820 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
4821 {
4822 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4823
5287ad62 4824 /* Bignums have their least significant bits in
477330fc
RM
4825 generic_bignum[0]. Make sure we put 32 bits in imm and
4826 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4827 gas_assert (parts != 0);
95b75c01
NC
4828
4829 /* Make sure that the number is not too big.
4830 PR 11972: Bignums can now be sign-extended to the
4831 size of a .octa so check that the out of range bits
4832 are all zero or all one. */
8335d6aa 4833 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
4834 {
4835 LITTLENUM_TYPE m = -1;
4836
4837 if (generic_bignum[parts * 2] != 0
4838 && generic_bignum[parts * 2] != m)
4839 return FAIL;
4840
8335d6aa 4841 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
4842 if (generic_bignum[j] != generic_bignum[j-1])
4843 return FAIL;
4844 }
4845
5287ad62
JB
4846 inst.operands[i].imm = 0;
4847 for (j = 0; j < parts; j++, idx++)
477330fc
RM
4848 inst.operands[i].imm |= generic_bignum[idx]
4849 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
4850 inst.operands[i].reg = 0;
4851 for (j = 0; j < parts; j++, idx++)
477330fc
RM
4852 inst.operands[i].reg |= generic_bignum[idx]
4853 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
4854 inst.operands[i].regisimm = 1;
4855 }
8335d6aa 4856 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 4857 return FAIL;
5f4273c7 4858
5287ad62
JB
4859 *str = ptr;
4860
4861 return SUCCESS;
4862}
4863
c19d1205
ZW
4864/* Returns the pseudo-register number of an FPA immediate constant,
4865 or FAIL if there isn't a valid constant here. */
b99bd4ef 4866
c19d1205
ZW
4867static int
4868parse_fpa_immediate (char ** str)
4869{
4870 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4871 char * save_in;
4872 expressionS exp;
4873 int i;
4874 int j;
b99bd4ef 4875
c19d1205
ZW
4876 /* First try and match exact strings, this is to guarantee
4877 that some formats will work even for cross assembly. */
b99bd4ef 4878
c19d1205
ZW
4879 for (i = 0; fp_const[i]; i++)
4880 {
4881 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4882 {
c19d1205 4883 char *start = *str;
b99bd4ef 4884
c19d1205
ZW
4885 *str += strlen (fp_const[i]);
4886 if (is_end_of_line[(unsigned char) **str])
4887 return i + 8;
4888 *str = start;
4889 }
4890 }
b99bd4ef 4891
c19d1205
ZW
4892 /* Just because we didn't get a match doesn't mean that the constant
4893 isn't valid, just that it is in a format that we don't
4894 automatically recognize. Try parsing it with the standard
4895 expression routines. */
b99bd4ef 4896
c19d1205 4897 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4898
c19d1205
ZW
4899 /* Look for a raw floating point number. */
4900 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4901 && is_end_of_line[(unsigned char) *save_in])
4902 {
4903 for (i = 0; i < NUM_FLOAT_VALS; i++)
4904 {
4905 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4906 {
c19d1205
ZW
4907 if (words[j] != fp_values[i][j])
4908 break;
b99bd4ef
NC
4909 }
4910
c19d1205 4911 if (j == MAX_LITTLENUMS)
b99bd4ef 4912 {
c19d1205
ZW
4913 *str = save_in;
4914 return i + 8;
b99bd4ef
NC
4915 }
4916 }
4917 }
b99bd4ef 4918
c19d1205
ZW
4919 /* Try and parse a more complex expression, this will probably fail
4920 unless the code uses a floating point prefix (eg "0f"). */
4921 save_in = input_line_pointer;
4922 input_line_pointer = *str;
4923 if (expression (&exp) == absolute_section
4924 && exp.X_op == O_big
4925 && exp.X_add_number < 0)
4926 {
4927 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4928 Ditto for 15. */
ba592044
AM
4929#define X_PRECISION 5
4930#define E_PRECISION 15L
4931 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
4932 {
4933 for (i = 0; i < NUM_FLOAT_VALS; i++)
4934 {
4935 for (j = 0; j < MAX_LITTLENUMS; j++)
4936 {
4937 if (words[j] != fp_values[i][j])
4938 break;
4939 }
b99bd4ef 4940
c19d1205
ZW
4941 if (j == MAX_LITTLENUMS)
4942 {
4943 *str = input_line_pointer;
4944 input_line_pointer = save_in;
4945 return i + 8;
4946 }
4947 }
4948 }
b99bd4ef
NC
4949 }
4950
c19d1205
ZW
4951 *str = input_line_pointer;
4952 input_line_pointer = save_in;
4953 inst.error = _("invalid FPA immediate expression");
4954 return FAIL;
b99bd4ef
NC
4955}
4956
136da414
JB
4957/* Returns 1 if a number has "quarter-precision" float format
4958 0baBbbbbbc defgh000 00000000 00000000. */
4959
4960static int
4961is_quarter_float (unsigned imm)
4962{
4963 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4964 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4965}
4966
aacf0b33
KT
4967
4968/* Detect the presence of a floating point or integer zero constant,
4969 i.e. #0.0 or #0. */
4970
4971static bfd_boolean
4972parse_ifimm_zero (char **in)
4973{
4974 int error_code;
4975
4976 if (!is_immediate_prefix (**in))
3c6452ae
TP
4977 {
4978 /* In unified syntax, all prefixes are optional. */
4979 if (!unified_syntax)
4980 return FALSE;
4981 }
4982 else
4983 ++*in;
0900a05b
JW
4984
4985 /* Accept #0x0 as a synonym for #0. */
4986 if (strncmp (*in, "0x", 2) == 0)
4987 {
4988 int val;
4989 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
4990 return FALSE;
4991 return TRUE;
4992 }
4993
aacf0b33
KT
4994 error_code = atof_generic (in, ".", EXP_CHARS,
4995 &generic_floating_point_number);
4996
4997 if (!error_code
4998 && generic_floating_point_number.sign == '+'
4999 && (generic_floating_point_number.low
5000 > generic_floating_point_number.leader))
5001 return TRUE;
5002
5003 return FALSE;
5004}
5005
136da414
JB
5006/* Parse an 8-bit "quarter-precision" floating point number of the form:
5007 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5008 The zero and minus-zero cases need special handling, since they can't be
5009 encoded in the "quarter-precision" float format, but can nonetheless be
5010 loaded as integer constants. */
136da414
JB
5011
5012static unsigned
5013parse_qfloat_immediate (char **ccp, int *immed)
5014{
5015 char *str = *ccp;
c96612cc 5016 char *fpnum;
136da414 5017 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5018 int found_fpchar = 0;
5f4273c7 5019
136da414 5020 skip_past_char (&str, '#');
5f4273c7 5021
c96612cc
JB
5022 /* We must not accidentally parse an integer as a floating-point number. Make
5023 sure that the value we parse is not an integer by checking for special
5024 characters '.' or 'e'.
5025 FIXME: This is a horrible hack, but doing better is tricky because type
5026 information isn't in a very usable state at parse time. */
5027 fpnum = str;
5028 skip_whitespace (fpnum);
5029
5030 if (strncmp (fpnum, "0x", 2) == 0)
5031 return FAIL;
5032 else
5033 {
5034 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5035 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5036 {
5037 found_fpchar = 1;
5038 break;
5039 }
c96612cc
JB
5040
5041 if (!found_fpchar)
477330fc 5042 return FAIL;
c96612cc 5043 }
5f4273c7 5044
136da414
JB
5045 if ((str = atof_ieee (str, 's', words)) != NULL)
5046 {
5047 unsigned fpword = 0;
5048 int i;
5f4273c7 5049
136da414
JB
5050 /* Our FP word must be 32 bits (single-precision FP). */
5051 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5052 {
5053 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5054 fpword |= words[i];
5055 }
5f4273c7 5056
c96612cc 5057 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5058 *immed = fpword;
136da414 5059 else
477330fc 5060 return FAIL;
136da414
JB
5061
5062 *ccp = str;
5f4273c7 5063
136da414
JB
5064 return SUCCESS;
5065 }
5f4273c7 5066
136da414
JB
5067 return FAIL;
5068}
5069
c19d1205
ZW
5070/* Shift operands. */
5071enum shift_kind
b99bd4ef 5072{
c19d1205
ZW
5073 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
5074};
b99bd4ef 5075
c19d1205
ZW
5076struct asm_shift_name
5077{
5078 const char *name;
5079 enum shift_kind kind;
5080};
b99bd4ef 5081
c19d1205
ZW
5082/* Third argument to parse_shift. */
5083enum parse_shift_mode
5084{
5085 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5086 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5087 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5088 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5089 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5090};
b99bd4ef 5091
c19d1205
ZW
5092/* Parse a <shift> specifier on an ARM data processing instruction.
5093 This has three forms:
b99bd4ef 5094
c19d1205
ZW
5095 (LSL|LSR|ASL|ASR|ROR) Rs
5096 (LSL|LSR|ASL|ASR|ROR) #imm
5097 RRX
b99bd4ef 5098
c19d1205
ZW
5099 Note that ASL is assimilated to LSL in the instruction encoding, and
5100 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5101
c19d1205
ZW
5102static int
5103parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5104{
c19d1205
ZW
5105 const struct asm_shift_name *shift_name;
5106 enum shift_kind shift;
5107 char *s = *str;
5108 char *p = s;
5109 int reg;
b99bd4ef 5110
c19d1205
ZW
5111 for (p = *str; ISALPHA (*p); p++)
5112 ;
b99bd4ef 5113
c19d1205 5114 if (p == *str)
b99bd4ef 5115 {
c19d1205
ZW
5116 inst.error = _("shift expression expected");
5117 return FAIL;
b99bd4ef
NC
5118 }
5119
21d799b5 5120 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5121 p - *str);
c19d1205
ZW
5122
5123 if (shift_name == NULL)
b99bd4ef 5124 {
c19d1205
ZW
5125 inst.error = _("shift expression expected");
5126 return FAIL;
b99bd4ef
NC
5127 }
5128
c19d1205 5129 shift = shift_name->kind;
b99bd4ef 5130
c19d1205
ZW
5131 switch (mode)
5132 {
5133 case NO_SHIFT_RESTRICT:
5134 case SHIFT_IMMEDIATE: break;
b99bd4ef 5135
c19d1205
ZW
5136 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5137 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5138 {
5139 inst.error = _("'LSL' or 'ASR' required");
5140 return FAIL;
5141 }
5142 break;
b99bd4ef 5143
c19d1205
ZW
5144 case SHIFT_LSL_IMMEDIATE:
5145 if (shift != SHIFT_LSL)
5146 {
5147 inst.error = _("'LSL' required");
5148 return FAIL;
5149 }
5150 break;
b99bd4ef 5151
c19d1205
ZW
5152 case SHIFT_ASR_IMMEDIATE:
5153 if (shift != SHIFT_ASR)
5154 {
5155 inst.error = _("'ASR' required");
5156 return FAIL;
5157 }
5158 break;
b99bd4ef 5159
c19d1205
ZW
5160 default: abort ();
5161 }
b99bd4ef 5162
c19d1205
ZW
5163 if (shift != SHIFT_RRX)
5164 {
5165 /* Whitespace can appear here if the next thing is a bare digit. */
5166 skip_whitespace (p);
b99bd4ef 5167
c19d1205 5168 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5169 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5170 {
5171 inst.operands[i].imm = reg;
5172 inst.operands[i].immisreg = 1;
5173 }
5174 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5175 return FAIL;
5176 }
5177 inst.operands[i].shift_kind = shift;
5178 inst.operands[i].shifted = 1;
5179 *str = p;
5180 return SUCCESS;
b99bd4ef
NC
5181}
5182
c19d1205 5183/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5184
c19d1205
ZW
5185 #<immediate>
5186 #<immediate>, <rotate>
5187 <Rm>
5188 <Rm>, <shift>
b99bd4ef 5189
c19d1205
ZW
5190 where <shift> is defined by parse_shift above, and <rotate> is a
5191 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5192 is deferred to md_apply_fix. */
b99bd4ef 5193
c19d1205
ZW
5194static int
5195parse_shifter_operand (char **str, int i)
5196{
5197 int value;
91d6fa6a 5198 expressionS exp;
b99bd4ef 5199
dcbf9037 5200 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5201 {
5202 inst.operands[i].reg = value;
5203 inst.operands[i].isreg = 1;
b99bd4ef 5204
c19d1205
ZW
5205 /* parse_shift will override this if appropriate */
5206 inst.reloc.exp.X_op = O_constant;
5207 inst.reloc.exp.X_add_number = 0;
b99bd4ef 5208
c19d1205
ZW
5209 if (skip_past_comma (str) == FAIL)
5210 return SUCCESS;
b99bd4ef 5211
c19d1205
ZW
5212 /* Shift operation on register. */
5213 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5214 }
5215
c19d1205
ZW
5216 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
5217 return FAIL;
b99bd4ef 5218
c19d1205 5219 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5220 {
c19d1205 5221 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5222 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5223 return FAIL;
b99bd4ef 5224
91d6fa6a 5225 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
5226 {
5227 inst.error = _("constant expression expected");
5228 return FAIL;
5229 }
b99bd4ef 5230
91d6fa6a 5231 value = exp.X_add_number;
c19d1205
ZW
5232 if (value < 0 || value > 30 || value % 2 != 0)
5233 {
5234 inst.error = _("invalid rotation");
5235 return FAIL;
5236 }
5237 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
5238 {
5239 inst.error = _("invalid constant");
5240 return FAIL;
5241 }
09d92015 5242
a415b1cd
JB
5243 /* Encode as specified. */
5244 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
5245 return SUCCESS;
09d92015
MM
5246 }
5247
c19d1205
ZW
5248 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
5249 inst.reloc.pc_rel = 0;
5250 return SUCCESS;
09d92015
MM
5251}
5252
4962c51a
MS
5253/* Group relocation information. Each entry in the table contains the
5254 textual name of the relocation as may appear in assembler source
5255 and must end with a colon.
5256 Along with this textual name are the relocation codes to be used if
5257 the corresponding instruction is an ALU instruction (ADD or SUB only),
5258 an LDR, an LDRS, or an LDC. */
5259
5260struct group_reloc_table_entry
5261{
5262 const char *name;
5263 int alu_code;
5264 int ldr_code;
5265 int ldrs_code;
5266 int ldc_code;
5267};
5268
5269typedef enum
5270{
5271 /* Varieties of non-ALU group relocation. */
5272
5273 GROUP_LDR,
5274 GROUP_LDRS,
5275 GROUP_LDC
5276} group_reloc_type;
5277
5278static struct group_reloc_table_entry group_reloc_table[] =
5279 { /* Program counter relative: */
5280 { "pc_g0_nc",
5281 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5282 0, /* LDR */
5283 0, /* LDRS */
5284 0 }, /* LDC */
5285 { "pc_g0",
5286 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5287 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5288 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5289 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5290 { "pc_g1_nc",
5291 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5292 0, /* LDR */
5293 0, /* LDRS */
5294 0 }, /* LDC */
5295 { "pc_g1",
5296 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5297 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5298 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5299 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5300 { "pc_g2",
5301 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5302 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5303 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5304 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5305 /* Section base relative */
5306 { "sb_g0_nc",
5307 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5308 0, /* LDR */
5309 0, /* LDRS */
5310 0 }, /* LDC */
5311 { "sb_g0",
5312 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5313 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5314 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5315 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5316 { "sb_g1_nc",
5317 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5318 0, /* LDR */
5319 0, /* LDRS */
5320 0 }, /* LDC */
5321 { "sb_g1",
5322 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5323 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5324 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5325 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5326 { "sb_g2",
5327 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5328 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5329 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5330 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5331 /* Absolute thumb alu relocations. */
5332 { "lower0_7",
5333 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5334 0, /* LDR. */
5335 0, /* LDRS. */
5336 0 }, /* LDC. */
5337 { "lower8_15",
5338 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5339 0, /* LDR. */
5340 0, /* LDRS. */
5341 0 }, /* LDC. */
5342 { "upper0_7",
5343 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5344 0, /* LDR. */
5345 0, /* LDRS. */
5346 0 }, /* LDC. */
5347 { "upper8_15",
5348 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5349 0, /* LDR. */
5350 0, /* LDRS. */
5351 0 } }; /* LDC. */
4962c51a
MS
5352
5353/* Given the address of a pointer pointing to the textual name of a group
5354 relocation as may appear in assembler source, attempt to find its details
5355 in group_reloc_table. The pointer will be updated to the character after
5356 the trailing colon. On failure, FAIL will be returned; SUCCESS
5357 otherwise. On success, *entry will be updated to point at the relevant
5358 group_reloc_table entry. */
5359
5360static int
5361find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5362{
5363 unsigned int i;
5364 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5365 {
5366 int length = strlen (group_reloc_table[i].name);
5367
5f4273c7
NC
5368 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5369 && (*str)[length] == ':')
477330fc
RM
5370 {
5371 *out = &group_reloc_table[i];
5372 *str += (length + 1);
5373 return SUCCESS;
5374 }
4962c51a
MS
5375 }
5376
5377 return FAIL;
5378}
5379
5380/* Parse a <shifter_operand> for an ARM data processing instruction
5381 (as for parse_shifter_operand) where group relocations are allowed:
5382
5383 #<immediate>
5384 #<immediate>, <rotate>
5385 #:<group_reloc>:<expression>
5386 <Rm>
5387 <Rm>, <shift>
5388
5389 where <group_reloc> is one of the strings defined in group_reloc_table.
5390 The hashes are optional.
5391
5392 Everything else is as for parse_shifter_operand. */
5393
5394static parse_operand_result
5395parse_shifter_operand_group_reloc (char **str, int i)
5396{
5397 /* Determine if we have the sequence of characters #: or just :
5398 coming next. If we do, then we check for a group relocation.
5399 If we don't, punt the whole lot to parse_shifter_operand. */
5400
5401 if (((*str)[0] == '#' && (*str)[1] == ':')
5402 || (*str)[0] == ':')
5403 {
5404 struct group_reloc_table_entry *entry;
5405
5406 if ((*str)[0] == '#')
477330fc 5407 (*str) += 2;
4962c51a 5408 else
477330fc 5409 (*str)++;
4962c51a
MS
5410
5411 /* Try to parse a group relocation. Anything else is an error. */
5412 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5413 {
5414 inst.error = _("unknown group relocation");
5415 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5416 }
4962c51a
MS
5417
5418 /* We now have the group relocation table entry corresponding to
477330fc 5419 the name in the assembler source. Next, we parse the expression. */
4962c51a 5420 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
477330fc 5421 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5422
5423 /* Record the relocation type (always the ALU variant here). */
21d799b5 5424 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 5425 gas_assert (inst.reloc.type != 0);
4962c51a
MS
5426
5427 return PARSE_OPERAND_SUCCESS;
5428 }
5429 else
5430 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5431 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5432
5433 /* Never reached. */
5434}
5435
8e560766
MGD
5436/* Parse a Neon alignment expression. Information is written to
5437 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5438
8e560766
MGD
5439 align .imm = align << 8, .immisalign=1, .preind=0 */
5440static parse_operand_result
5441parse_neon_alignment (char **str, int i)
5442{
5443 char *p = *str;
5444 expressionS exp;
5445
5446 my_get_expression (&exp, &p, GE_NO_PREFIX);
5447
5448 if (exp.X_op != O_constant)
5449 {
5450 inst.error = _("alignment must be constant");
5451 return PARSE_OPERAND_FAIL;
5452 }
5453
5454 inst.operands[i].imm = exp.X_add_number << 8;
5455 inst.operands[i].immisalign = 1;
5456 /* Alignments are not pre-indexes. */
5457 inst.operands[i].preind = 0;
5458
5459 *str = p;
5460 return PARSE_OPERAND_SUCCESS;
5461}
5462
c19d1205
ZW
5463/* Parse all forms of an ARM address expression. Information is written
5464 to inst.operands[i] and/or inst.reloc.
09d92015 5465
c19d1205 5466 Preindexed addressing (.preind=1):
09d92015 5467
c19d1205
ZW
5468 [Rn, #offset] .reg=Rn .reloc.exp=offset
5469 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5470 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5471 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5472
c19d1205 5473 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5474
c19d1205 5475 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5476
c19d1205
ZW
5477 [Rn], #offset .reg=Rn .reloc.exp=offset
5478 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5479 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5480 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5481
c19d1205 5482 Unindexed addressing (.preind=0, .postind=0):
09d92015 5483
c19d1205 5484 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5485
c19d1205 5486 Other:
09d92015 5487
c19d1205
ZW
5488 [Rn]{!} shorthand for [Rn,#0]{!}
5489 =immediate .isreg=0 .reloc.exp=immediate
5490 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5491
c19d1205
ZW
5492 It is the caller's responsibility to check for addressing modes not
5493 supported by the instruction, and to set inst.reloc.type. */
5494
4962c51a
MS
5495static parse_operand_result
5496parse_address_main (char **str, int i, int group_relocations,
477330fc 5497 group_reloc_type group_type)
09d92015 5498{
c19d1205
ZW
5499 char *p = *str;
5500 int reg;
09d92015 5501
c19d1205 5502 if (skip_past_char (&p, '[') == FAIL)
09d92015 5503 {
c19d1205
ZW
5504 if (skip_past_char (&p, '=') == FAIL)
5505 {
974da60d 5506 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5507 inst.reloc.pc_rel = 1;
5508 inst.operands[i].reg = REG_PC;
5509 inst.operands[i].isreg = 1;
5510 inst.operands[i].preind = 1;
09d92015 5511
8335d6aa
JW
5512 if (my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX_BIG))
5513 return PARSE_OPERAND_FAIL;
5514 }
5515 else if (parse_big_immediate (&p, i, &inst.reloc.exp,
5516 /*allow_symbol_p=*/TRUE))
4962c51a 5517 return PARSE_OPERAND_FAIL;
09d92015 5518
c19d1205 5519 *str = p;
4962c51a 5520 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5521 }
5522
8ab8155f
NC
5523 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5524 skip_whitespace (p);
5525
dcbf9037 5526 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5527 {
c19d1205 5528 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5529 return PARSE_OPERAND_FAIL;
09d92015 5530 }
c19d1205
ZW
5531 inst.operands[i].reg = reg;
5532 inst.operands[i].isreg = 1;
09d92015 5533
c19d1205 5534 if (skip_past_comma (&p) == SUCCESS)
09d92015 5535 {
c19d1205 5536 inst.operands[i].preind = 1;
09d92015 5537
c19d1205
ZW
5538 if (*p == '+') p++;
5539 else if (*p == '-') p++, inst.operands[i].negative = 1;
5540
dcbf9037 5541 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5542 {
c19d1205
ZW
5543 inst.operands[i].imm = reg;
5544 inst.operands[i].immisreg = 1;
5545
5546 if (skip_past_comma (&p) == SUCCESS)
5547 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5548 return PARSE_OPERAND_FAIL;
c19d1205 5549 }
5287ad62 5550 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5551 {
5552 /* FIXME: '@' should be used here, but it's filtered out by generic
5553 code before we get to see it here. This may be subject to
5554 change. */
5555 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5556
8e560766
MGD
5557 if (result != PARSE_OPERAND_SUCCESS)
5558 return result;
5559 }
c19d1205
ZW
5560 else
5561 {
5562 if (inst.operands[i].negative)
5563 {
5564 inst.operands[i].negative = 0;
5565 p--;
5566 }
4962c51a 5567
5f4273c7
NC
5568 if (group_relocations
5569 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5570 {
5571 struct group_reloc_table_entry *entry;
5572
477330fc
RM
5573 /* Skip over the #: or : sequence. */
5574 if (*p == '#')
5575 p += 2;
5576 else
5577 p++;
4962c51a
MS
5578
5579 /* Try to parse a group relocation. Anything else is an
477330fc 5580 error. */
4962c51a
MS
5581 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5582 {
5583 inst.error = _("unknown group relocation");
5584 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5585 }
5586
5587 /* We now have the group relocation table entry corresponding to
5588 the name in the assembler source. Next, we parse the
477330fc 5589 expression. */
4962c51a
MS
5590 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5591 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5592
5593 /* Record the relocation type. */
477330fc
RM
5594 switch (group_type)
5595 {
5596 case GROUP_LDR:
5597 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5598 break;
4962c51a 5599
477330fc
RM
5600 case GROUP_LDRS:
5601 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5602 break;
4962c51a 5603
477330fc
RM
5604 case GROUP_LDC:
5605 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5606 break;
4962c51a 5607
477330fc
RM
5608 default:
5609 gas_assert (0);
5610 }
4962c51a 5611
477330fc 5612 if (inst.reloc.type == 0)
4962c51a
MS
5613 {
5614 inst.error = _("this group relocation is not allowed on this instruction");
5615 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5616 }
477330fc
RM
5617 }
5618 else
26d97720
NS
5619 {
5620 char *q = p;
5621 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5622 return PARSE_OPERAND_FAIL;
5623 /* If the offset is 0, find out if it's a +0 or -0. */
5624 if (inst.reloc.exp.X_op == O_constant
5625 && inst.reloc.exp.X_add_number == 0)
5626 {
5627 skip_whitespace (q);
5628 if (*q == '#')
5629 {
5630 q++;
5631 skip_whitespace (q);
5632 }
5633 if (*q == '-')
5634 inst.operands[i].negative = 1;
5635 }
5636 }
09d92015
MM
5637 }
5638 }
8e560766
MGD
5639 else if (skip_past_char (&p, ':') == SUCCESS)
5640 {
5641 /* FIXME: '@' should be used here, but it's filtered out by generic code
5642 before we get to see it here. This may be subject to change. */
5643 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5644
8e560766
MGD
5645 if (result != PARSE_OPERAND_SUCCESS)
5646 return result;
5647 }
09d92015 5648
c19d1205 5649 if (skip_past_char (&p, ']') == FAIL)
09d92015 5650 {
c19d1205 5651 inst.error = _("']' expected");
4962c51a 5652 return PARSE_OPERAND_FAIL;
09d92015
MM
5653 }
5654
c19d1205
ZW
5655 if (skip_past_char (&p, '!') == SUCCESS)
5656 inst.operands[i].writeback = 1;
09d92015 5657
c19d1205 5658 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5659 {
c19d1205
ZW
5660 if (skip_past_char (&p, '{') == SUCCESS)
5661 {
5662 /* [Rn], {expr} - unindexed, with option */
5663 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5664 0, 255, TRUE) == FAIL)
4962c51a 5665 return PARSE_OPERAND_FAIL;
09d92015 5666
c19d1205
ZW
5667 if (skip_past_char (&p, '}') == FAIL)
5668 {
5669 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5670 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5671 }
5672 if (inst.operands[i].preind)
5673 {
5674 inst.error = _("cannot combine index with option");
4962c51a 5675 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5676 }
5677 *str = p;
4962c51a 5678 return PARSE_OPERAND_SUCCESS;
09d92015 5679 }
c19d1205
ZW
5680 else
5681 {
5682 inst.operands[i].postind = 1;
5683 inst.operands[i].writeback = 1;
09d92015 5684
c19d1205
ZW
5685 if (inst.operands[i].preind)
5686 {
5687 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5688 return PARSE_OPERAND_FAIL;
c19d1205 5689 }
09d92015 5690
c19d1205
ZW
5691 if (*p == '+') p++;
5692 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5693
dcbf9037 5694 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5695 {
477330fc
RM
5696 /* We might be using the immediate for alignment already. If we
5697 are, OR the register number into the low-order bits. */
5698 if (inst.operands[i].immisalign)
5699 inst.operands[i].imm |= reg;
5700 else
5701 inst.operands[i].imm = reg;
c19d1205 5702 inst.operands[i].immisreg = 1;
a737bd4d 5703
c19d1205
ZW
5704 if (skip_past_comma (&p) == SUCCESS)
5705 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5706 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5707 }
5708 else
5709 {
26d97720 5710 char *q = p;
c19d1205
ZW
5711 if (inst.operands[i].negative)
5712 {
5713 inst.operands[i].negative = 0;
5714 p--;
5715 }
5716 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5717 return PARSE_OPERAND_FAIL;
26d97720
NS
5718 /* If the offset is 0, find out if it's a +0 or -0. */
5719 if (inst.reloc.exp.X_op == O_constant
5720 && inst.reloc.exp.X_add_number == 0)
5721 {
5722 skip_whitespace (q);
5723 if (*q == '#')
5724 {
5725 q++;
5726 skip_whitespace (q);
5727 }
5728 if (*q == '-')
5729 inst.operands[i].negative = 1;
5730 }
c19d1205
ZW
5731 }
5732 }
a737bd4d
NC
5733 }
5734
c19d1205
ZW
5735 /* If at this point neither .preind nor .postind is set, we have a
5736 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5737 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5738 {
5739 inst.operands[i].preind = 1;
5740 inst.reloc.exp.X_op = O_constant;
5741 inst.reloc.exp.X_add_number = 0;
5742 }
5743 *str = p;
4962c51a
MS
5744 return PARSE_OPERAND_SUCCESS;
5745}
5746
5747static int
5748parse_address (char **str, int i)
5749{
21d799b5 5750 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 5751 ? SUCCESS : FAIL;
4962c51a
MS
5752}
5753
5754static parse_operand_result
5755parse_address_group_reloc (char **str, int i, group_reloc_type type)
5756{
5757 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5758}
5759
b6895b4f
PB
5760/* Parse an operand for a MOVW or MOVT instruction. */
5761static int
5762parse_half (char **str)
5763{
5764 char * p;
5f4273c7 5765
b6895b4f
PB
5766 p = *str;
5767 skip_past_char (&p, '#');
5f4273c7 5768 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5769 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5770 else if (strncasecmp (p, ":upper16:", 9) == 0)
5771 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5772
5773 if (inst.reloc.type != BFD_RELOC_UNUSED)
5774 {
5775 p += 9;
5f4273c7 5776 skip_whitespace (p);
b6895b4f
PB
5777 }
5778
5779 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5780 return FAIL;
5781
5782 if (inst.reloc.type == BFD_RELOC_UNUSED)
5783 {
5784 if (inst.reloc.exp.X_op != O_constant)
5785 {
5786 inst.error = _("constant expression expected");
5787 return FAIL;
5788 }
5789 if (inst.reloc.exp.X_add_number < 0
5790 || inst.reloc.exp.X_add_number > 0xffff)
5791 {
5792 inst.error = _("immediate value out of range");
5793 return FAIL;
5794 }
5795 }
5796 *str = p;
5797 return SUCCESS;
5798}
5799
c19d1205 5800/* Miscellaneous. */
a737bd4d 5801
c19d1205
ZW
5802/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5803 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5804static int
d2cd1205 5805parse_psr (char **str, bfd_boolean lhs)
09d92015 5806{
c19d1205
ZW
5807 char *p;
5808 unsigned long psr_field;
62b3e311
PB
5809 const struct asm_psr *psr;
5810 char *start;
d2cd1205 5811 bfd_boolean is_apsr = FALSE;
ac7f631b 5812 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5813
a4482bb6
NC
5814 /* PR gas/12698: If the user has specified -march=all then m_profile will
5815 be TRUE, but we want to ignore it in this case as we are building for any
5816 CPU type, including non-m variants. */
823d2571 5817 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
5818 m_profile = FALSE;
5819
c19d1205
ZW
5820 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5821 feature for ease of use and backwards compatibility. */
5822 p = *str;
62b3e311 5823 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5824 {
5825 if (m_profile)
5826 goto unsupported_psr;
fa94de6b 5827
d2cd1205
JB
5828 psr_field = SPSR_BIT;
5829 }
5830 else if (strncasecmp (p, "CPSR", 4) == 0)
5831 {
5832 if (m_profile)
5833 goto unsupported_psr;
5834
5835 psr_field = 0;
5836 }
5837 else if (strncasecmp (p, "APSR", 4) == 0)
5838 {
5839 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5840 and ARMv7-R architecture CPUs. */
5841 is_apsr = TRUE;
5842 psr_field = 0;
5843 }
5844 else if (m_profile)
62b3e311
PB
5845 {
5846 start = p;
5847 do
5848 p++;
5849 while (ISALNUM (*p) || *p == '_');
5850
d2cd1205
JB
5851 if (strncasecmp (start, "iapsr", 5) == 0
5852 || strncasecmp (start, "eapsr", 5) == 0
5853 || strncasecmp (start, "xpsr", 4) == 0
5854 || strncasecmp (start, "psr", 3) == 0)
5855 p = start + strcspn (start, "rR") + 1;
5856
21d799b5 5857 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 5858 p - start);
d2cd1205 5859
62b3e311
PB
5860 if (!psr)
5861 return FAIL;
09d92015 5862
d2cd1205
JB
5863 /* If APSR is being written, a bitfield may be specified. Note that
5864 APSR itself is handled above. */
5865 if (psr->field <= 3)
5866 {
5867 psr_field = psr->field;
5868 is_apsr = TRUE;
5869 goto check_suffix;
5870 }
5871
62b3e311 5872 *str = p;
d2cd1205
JB
5873 /* M-profile MSR instructions have the mask field set to "10", except
5874 *PSR variants which modify APSR, which may use a different mask (and
5875 have been handled already). Do that by setting the PSR_f field
5876 here. */
5877 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5878 }
d2cd1205
JB
5879 else
5880 goto unsupported_psr;
09d92015 5881
62b3e311 5882 p += 4;
d2cd1205 5883check_suffix:
c19d1205
ZW
5884 if (*p == '_')
5885 {
5886 /* A suffix follows. */
c19d1205
ZW
5887 p++;
5888 start = p;
a737bd4d 5889
c19d1205
ZW
5890 do
5891 p++;
5892 while (ISALNUM (*p) || *p == '_');
a737bd4d 5893
d2cd1205
JB
5894 if (is_apsr)
5895 {
5896 /* APSR uses a notation for bits, rather than fields. */
5897 unsigned int nzcvq_bits = 0;
5898 unsigned int g_bit = 0;
5899 char *bit;
fa94de6b 5900
d2cd1205
JB
5901 for (bit = start; bit != p; bit++)
5902 {
5903 switch (TOLOWER (*bit))
477330fc 5904 {
d2cd1205
JB
5905 case 'n':
5906 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5907 break;
5908
5909 case 'z':
5910 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5911 break;
5912
5913 case 'c':
5914 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5915 break;
5916
5917 case 'v':
5918 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5919 break;
fa94de6b 5920
d2cd1205
JB
5921 case 'q':
5922 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5923 break;
fa94de6b 5924
d2cd1205
JB
5925 case 'g':
5926 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5927 break;
fa94de6b 5928
d2cd1205
JB
5929 default:
5930 inst.error = _("unexpected bit specified after APSR");
5931 return FAIL;
5932 }
5933 }
fa94de6b 5934
d2cd1205
JB
5935 if (nzcvq_bits == 0x1f)
5936 psr_field |= PSR_f;
fa94de6b 5937
d2cd1205
JB
5938 if (g_bit == 0x1)
5939 {
5940 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 5941 {
d2cd1205
JB
5942 inst.error = _("selected processor does not "
5943 "support DSP extension");
5944 return FAIL;
5945 }
5946
5947 psr_field |= PSR_s;
5948 }
fa94de6b 5949
d2cd1205
JB
5950 if ((nzcvq_bits & 0x20) != 0
5951 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5952 || (g_bit & 0x2) != 0)
5953 {
5954 inst.error = _("bad bitmask specified after APSR");
5955 return FAIL;
5956 }
5957 }
5958 else
477330fc 5959 {
d2cd1205 5960 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 5961 p - start);
d2cd1205 5962 if (!psr)
477330fc 5963 goto error;
a737bd4d 5964
d2cd1205
JB
5965 psr_field |= psr->field;
5966 }
a737bd4d 5967 }
c19d1205 5968 else
a737bd4d 5969 {
c19d1205
ZW
5970 if (ISALNUM (*p))
5971 goto error; /* Garbage after "[CS]PSR". */
5972
d2cd1205 5973 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 5974 is deprecated, but allow it anyway. */
d2cd1205
JB
5975 if (is_apsr && lhs)
5976 {
5977 psr_field |= PSR_f;
5978 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5979 "deprecated"));
5980 }
5981 else if (!m_profile)
5982 /* These bits are never right for M-profile devices: don't set them
5983 (only code paths which read/write APSR reach here). */
5984 psr_field |= (PSR_c | PSR_f);
a737bd4d 5985 }
c19d1205
ZW
5986 *str = p;
5987 return psr_field;
a737bd4d 5988
d2cd1205
JB
5989 unsupported_psr:
5990 inst.error = _("selected processor does not support requested special "
5991 "purpose register");
5992 return FAIL;
5993
c19d1205
ZW
5994 error:
5995 inst.error = _("flag for {c}psr instruction expected");
5996 return FAIL;
a737bd4d
NC
5997}
5998
c19d1205
ZW
5999/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6000 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6001
c19d1205
ZW
6002static int
6003parse_cps_flags (char **str)
a737bd4d 6004{
c19d1205
ZW
6005 int val = 0;
6006 int saw_a_flag = 0;
6007 char *s = *str;
a737bd4d 6008
c19d1205
ZW
6009 for (;;)
6010 switch (*s++)
6011 {
6012 case '\0': case ',':
6013 goto done;
a737bd4d 6014
c19d1205
ZW
6015 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6016 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6017 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6018
c19d1205
ZW
6019 default:
6020 inst.error = _("unrecognized CPS flag");
6021 return FAIL;
6022 }
a737bd4d 6023
c19d1205
ZW
6024 done:
6025 if (saw_a_flag == 0)
a737bd4d 6026 {
c19d1205
ZW
6027 inst.error = _("missing CPS flags");
6028 return FAIL;
a737bd4d 6029 }
a737bd4d 6030
c19d1205
ZW
6031 *str = s - 1;
6032 return val;
a737bd4d
NC
6033}
6034
c19d1205
ZW
6035/* Parse an endian specifier ("BE" or "LE", case insensitive);
6036 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6037
6038static int
c19d1205 6039parse_endian_specifier (char **str)
a737bd4d 6040{
c19d1205
ZW
6041 int little_endian;
6042 char *s = *str;
a737bd4d 6043
c19d1205
ZW
6044 if (strncasecmp (s, "BE", 2))
6045 little_endian = 0;
6046 else if (strncasecmp (s, "LE", 2))
6047 little_endian = 1;
6048 else
a737bd4d 6049 {
c19d1205 6050 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6051 return FAIL;
6052 }
6053
c19d1205 6054 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6055 {
c19d1205 6056 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6057 return FAIL;
6058 }
6059
c19d1205
ZW
6060 *str = s + 2;
6061 return little_endian;
6062}
a737bd4d 6063
c19d1205
ZW
6064/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6065 value suitable for poking into the rotate field of an sxt or sxta
6066 instruction, or FAIL on error. */
6067
6068static int
6069parse_ror (char **str)
6070{
6071 int rot;
6072 char *s = *str;
6073
6074 if (strncasecmp (s, "ROR", 3) == 0)
6075 s += 3;
6076 else
a737bd4d 6077 {
c19d1205 6078 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6079 return FAIL;
6080 }
c19d1205
ZW
6081
6082 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6083 return FAIL;
6084
6085 switch (rot)
a737bd4d 6086 {
c19d1205
ZW
6087 case 0: *str = s; return 0x0;
6088 case 8: *str = s; return 0x1;
6089 case 16: *str = s; return 0x2;
6090 case 24: *str = s; return 0x3;
6091
6092 default:
6093 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6094 return FAIL;
6095 }
c19d1205 6096}
a737bd4d 6097
c19d1205
ZW
6098/* Parse a conditional code (from conds[] below). The value returned is in the
6099 range 0 .. 14, or FAIL. */
6100static int
6101parse_cond (char **str)
6102{
c462b453 6103 char *q;
c19d1205 6104 const struct asm_cond *c;
c462b453
PB
6105 int n;
6106 /* Condition codes are always 2 characters, so matching up to
6107 3 characters is sufficient. */
6108 char cond[3];
a737bd4d 6109
c462b453
PB
6110 q = *str;
6111 n = 0;
6112 while (ISALPHA (*q) && n < 3)
6113 {
e07e6e58 6114 cond[n] = TOLOWER (*q);
c462b453
PB
6115 q++;
6116 n++;
6117 }
a737bd4d 6118
21d799b5 6119 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6120 if (!c)
a737bd4d 6121 {
c19d1205 6122 inst.error = _("condition required");
a737bd4d
NC
6123 return FAIL;
6124 }
6125
c19d1205
ZW
6126 *str = q;
6127 return c->value;
6128}
6129
643afb90
MW
6130/* Record a use of the given feature. */
6131static void
6132record_feature_use (const arm_feature_set *feature)
6133{
6134 if (thumb_mode)
6135 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
6136 else
6137 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
6138}
6139
e797f7e0
MGD
6140/* If the given feature available in the selected CPU, mark it as used.
6141 Returns TRUE iff feature is available. */
6142static bfd_boolean
6143mark_feature_used (const arm_feature_set *feature)
6144{
6145 /* Ensure the option is valid on the current architecture. */
6146 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
6147 return FALSE;
6148
6149 /* Add the appropriate architecture feature for the barrier option used.
6150 */
643afb90 6151 record_feature_use (feature);
e797f7e0
MGD
6152
6153 return TRUE;
6154}
6155
62b3e311
PB
6156/* Parse an option for a barrier instruction. Returns the encoding for the
6157 option, or FAIL. */
6158static int
6159parse_barrier (char **str)
6160{
6161 char *p, *q;
6162 const struct asm_barrier_opt *o;
6163
6164 p = q = *str;
6165 while (ISALPHA (*q))
6166 q++;
6167
21d799b5 6168 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6169 q - p);
62b3e311
PB
6170 if (!o)
6171 return FAIL;
6172
e797f7e0
MGD
6173 if (!mark_feature_used (&o->arch))
6174 return FAIL;
6175
62b3e311
PB
6176 *str = q;
6177 return o->value;
6178}
6179
92e90b6e
PB
6180/* Parse the operands of a table branch instruction. Similar to a memory
6181 operand. */
6182static int
6183parse_tb (char **str)
6184{
6185 char * p = *str;
6186 int reg;
6187
6188 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6189 {
6190 inst.error = _("'[' expected");
6191 return FAIL;
6192 }
92e90b6e 6193
dcbf9037 6194 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6195 {
6196 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6197 return FAIL;
6198 }
6199 inst.operands[0].reg = reg;
6200
6201 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6202 {
6203 inst.error = _("',' expected");
6204 return FAIL;
6205 }
5f4273c7 6206
dcbf9037 6207 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6208 {
6209 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6210 return FAIL;
6211 }
6212 inst.operands[0].imm = reg;
6213
6214 if (skip_past_comma (&p) == SUCCESS)
6215 {
6216 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6217 return FAIL;
6218 if (inst.reloc.exp.X_add_number != 1)
6219 {
6220 inst.error = _("invalid shift");
6221 return FAIL;
6222 }
6223 inst.operands[0].shifted = 1;
6224 }
6225
6226 if (skip_past_char (&p, ']') == FAIL)
6227 {
6228 inst.error = _("']' expected");
6229 return FAIL;
6230 }
6231 *str = p;
6232 return SUCCESS;
6233}
6234
5287ad62
JB
6235/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6236 information on the types the operands can take and how they are encoded.
037e8744
JB
6237 Up to four operands may be read; this function handles setting the
6238 ".present" field for each read operand itself.
5287ad62
JB
6239 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6240 else returns FAIL. */
6241
6242static int
6243parse_neon_mov (char **str, int *which_operand)
6244{
6245 int i = *which_operand, val;
6246 enum arm_reg_type rtype;
6247 char *ptr = *str;
dcbf9037 6248 struct neon_type_el optype;
5f4273c7 6249
dcbf9037 6250 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
6251 {
6252 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6253 inst.operands[i].reg = val;
6254 inst.operands[i].isscalar = 1;
dcbf9037 6255 inst.operands[i].vectype = optype;
5287ad62
JB
6256 inst.operands[i++].present = 1;
6257
6258 if (skip_past_comma (&ptr) == FAIL)
477330fc 6259 goto wanted_comma;
5f4273c7 6260
dcbf9037 6261 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6262 goto wanted_arm;
5f4273c7 6263
5287ad62
JB
6264 inst.operands[i].reg = val;
6265 inst.operands[i].isreg = 1;
6266 inst.operands[i].present = 1;
6267 }
037e8744 6268 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
477330fc 6269 != FAIL)
5287ad62
JB
6270 {
6271 /* Cases 0, 1, 2, 3, 5 (D only). */
6272 if (skip_past_comma (&ptr) == FAIL)
477330fc 6273 goto wanted_comma;
5f4273c7 6274
5287ad62
JB
6275 inst.operands[i].reg = val;
6276 inst.operands[i].isreg = 1;
6277 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6278 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6279 inst.operands[i].isvec = 1;
dcbf9037 6280 inst.operands[i].vectype = optype;
5287ad62
JB
6281 inst.operands[i++].present = 1;
6282
dcbf9037 6283 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6284 {
6285 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6286 Case 13: VMOV <Sd>, <Rm> */
6287 inst.operands[i].reg = val;
6288 inst.operands[i].isreg = 1;
6289 inst.operands[i].present = 1;
6290
6291 if (rtype == REG_TYPE_NQ)
6292 {
6293 first_error (_("can't use Neon quad register here"));
6294 return FAIL;
6295 }
6296 else if (rtype != REG_TYPE_VFS)
6297 {
6298 i++;
6299 if (skip_past_comma (&ptr) == FAIL)
6300 goto wanted_comma;
6301 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6302 goto wanted_arm;
6303 inst.operands[i].reg = val;
6304 inst.operands[i].isreg = 1;
6305 inst.operands[i].present = 1;
6306 }
6307 }
037e8744 6308 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6309 &optype)) != FAIL)
6310 {
6311 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6312 Case 1: VMOV<c><q> <Dd>, <Dm>
6313 Case 8: VMOV.F32 <Sd>, <Sm>
6314 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6315
6316 inst.operands[i].reg = val;
6317 inst.operands[i].isreg = 1;
6318 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6319 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6320 inst.operands[i].isvec = 1;
6321 inst.operands[i].vectype = optype;
6322 inst.operands[i].present = 1;
6323
6324 if (skip_past_comma (&ptr) == SUCCESS)
6325 {
6326 /* Case 15. */
6327 i++;
6328
6329 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6330 goto wanted_arm;
6331
6332 inst.operands[i].reg = val;
6333 inst.operands[i].isreg = 1;
6334 inst.operands[i++].present = 1;
6335
6336 if (skip_past_comma (&ptr) == FAIL)
6337 goto wanted_comma;
6338
6339 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6340 goto wanted_arm;
6341
6342 inst.operands[i].reg = val;
6343 inst.operands[i].isreg = 1;
6344 inst.operands[i].present = 1;
6345 }
6346 }
4641781c 6347 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6348 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6349 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6350 Case 10: VMOV.F32 <Sd>, #<imm>
6351 Case 11: VMOV.F64 <Dd>, #<imm> */
6352 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6353 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6354 == SUCCESS)
477330fc
RM
6355 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6356 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6357 ;
5287ad62 6358 else
477330fc
RM
6359 {
6360 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6361 return FAIL;
6362 }
5287ad62 6363 }
dcbf9037 6364 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
6365 {
6366 /* Cases 6, 7. */
6367 inst.operands[i].reg = val;
6368 inst.operands[i].isreg = 1;
6369 inst.operands[i++].present = 1;
5f4273c7 6370
5287ad62 6371 if (skip_past_comma (&ptr) == FAIL)
477330fc 6372 goto wanted_comma;
5f4273c7 6373
dcbf9037 6374 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
477330fc
RM
6375 {
6376 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6377 inst.operands[i].reg = val;
6378 inst.operands[i].isscalar = 1;
6379 inst.operands[i].present = 1;
6380 inst.operands[i].vectype = optype;
6381 }
dcbf9037 6382 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6383 {
6384 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6385 inst.operands[i].reg = val;
6386 inst.operands[i].isreg = 1;
6387 inst.operands[i++].present = 1;
6388
6389 if (skip_past_comma (&ptr) == FAIL)
6390 goto wanted_comma;
6391
6392 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6393 == FAIL)
6394 {
6395 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6396 return FAIL;
6397 }
6398
6399 inst.operands[i].reg = val;
6400 inst.operands[i].isreg = 1;
6401 inst.operands[i].isvec = 1;
6402 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6403 inst.operands[i].vectype = optype;
6404 inst.operands[i].present = 1;
6405
6406 if (rtype == REG_TYPE_VFS)
6407 {
6408 /* Case 14. */
6409 i++;
6410 if (skip_past_comma (&ptr) == FAIL)
6411 goto wanted_comma;
6412 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6413 &optype)) == FAIL)
6414 {
6415 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6416 return FAIL;
6417 }
6418 inst.operands[i].reg = val;
6419 inst.operands[i].isreg = 1;
6420 inst.operands[i].isvec = 1;
6421 inst.operands[i].issingle = 1;
6422 inst.operands[i].vectype = optype;
6423 inst.operands[i].present = 1;
6424 }
6425 }
037e8744 6426 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6427 != FAIL)
6428 {
6429 /* Case 13. */
6430 inst.operands[i].reg = val;
6431 inst.operands[i].isreg = 1;
6432 inst.operands[i].isvec = 1;
6433 inst.operands[i].issingle = 1;
6434 inst.operands[i].vectype = optype;
6435 inst.operands[i].present = 1;
6436 }
5287ad62
JB
6437 }
6438 else
6439 {
dcbf9037 6440 first_error (_("parse error"));
5287ad62
JB
6441 return FAIL;
6442 }
6443
6444 /* Successfully parsed the operands. Update args. */
6445 *which_operand = i;
6446 *str = ptr;
6447 return SUCCESS;
6448
5f4273c7 6449 wanted_comma:
dcbf9037 6450 first_error (_("expected comma"));
5287ad62 6451 return FAIL;
5f4273c7
NC
6452
6453 wanted_arm:
dcbf9037 6454 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6455 return FAIL;
5287ad62
JB
6456}
6457
5be8be5d
DG
6458/* Use this macro when the operand constraints are different
6459 for ARM and THUMB (e.g. ldrd). */
6460#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6461 ((arm_operand) | ((thumb_operand) << 16))
6462
c19d1205
ZW
6463/* Matcher codes for parse_operands. */
6464enum operand_parse_code
6465{
6466 OP_stop, /* end of line */
6467
6468 OP_RR, /* ARM register */
6469 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6470 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6471 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6472 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6473 optional trailing ! */
c19d1205
ZW
6474 OP_RRw, /* ARM register, not r15, optional trailing ! */
6475 OP_RCP, /* Coprocessor number */
6476 OP_RCN, /* Coprocessor register */
6477 OP_RF, /* FPA register */
6478 OP_RVS, /* VFP single precision register */
5287ad62
JB
6479 OP_RVD, /* VFP double precision register (0..15) */
6480 OP_RND, /* Neon double precision register (0..31) */
6481 OP_RNQ, /* Neon quad precision register */
037e8744 6482 OP_RVSD, /* VFP single or double precision register */
5287ad62 6483 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6484 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6485 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6486 OP_RVC, /* VFP control register */
6487 OP_RMF, /* Maverick F register */
6488 OP_RMD, /* Maverick D register */
6489 OP_RMFX, /* Maverick FX register */
6490 OP_RMDX, /* Maverick DX register */
6491 OP_RMAX, /* Maverick AX register */
6492 OP_RMDS, /* Maverick DSPSC register */
6493 OP_RIWR, /* iWMMXt wR register */
6494 OP_RIWC, /* iWMMXt wC register */
6495 OP_RIWG, /* iWMMXt wCG register */
6496 OP_RXA, /* XScale accumulator register */
6497
6498 OP_REGLST, /* ARM register list */
6499 OP_VRSLST, /* VFP single-precision register list */
6500 OP_VRDLST, /* VFP double-precision register list */
037e8744 6501 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6502 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6503 OP_NSTRLST, /* Neon element/structure list */
6504
5287ad62 6505 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6506 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6507 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
5287ad62 6508 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 6509 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6510 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6511 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6512 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6513 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6514 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6515 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6516
6517 OP_I0, /* immediate zero */
c19d1205
ZW
6518 OP_I7, /* immediate value 0 .. 7 */
6519 OP_I15, /* 0 .. 15 */
6520 OP_I16, /* 1 .. 16 */
5287ad62 6521 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6522 OP_I31, /* 0 .. 31 */
6523 OP_I31w, /* 0 .. 31, optional trailing ! */
6524 OP_I32, /* 1 .. 32 */
5287ad62
JB
6525 OP_I32z, /* 0 .. 32 */
6526 OP_I63, /* 0 .. 63 */
c19d1205 6527 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6528 OP_I64, /* 1 .. 64 */
6529 OP_I64z, /* 0 .. 64 */
c19d1205 6530 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6531
6532 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6533 OP_I7b, /* 0 .. 7 */
6534 OP_I15b, /* 0 .. 15 */
6535 OP_I31b, /* 0 .. 31 */
6536
6537 OP_SH, /* shifter operand */
4962c51a 6538 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6539 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6540 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6541 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6542 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6543 OP_EXP, /* arbitrary expression */
6544 OP_EXPi, /* same, with optional immediate prefix */
6545 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 6546 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
6547 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6548 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
6549
6550 OP_CPSF, /* CPS flags */
6551 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6552 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6553 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6554 OP_COND, /* conditional code */
92e90b6e 6555 OP_TB, /* Table branch. */
c19d1205 6556
037e8744
JB
6557 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6558
c19d1205 6559 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 6560 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
6561 OP_RR_EXi, /* ARM register or expression with imm prefix */
6562 OP_RF_IF, /* FPA register or immediate */
6563 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6564 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6565
6566 /* Optional operands. */
6567 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6568 OP_oI31b, /* 0 .. 31 */
5287ad62 6569 OP_oI32b, /* 1 .. 32 */
5f1af56b 6570 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
6571 OP_oIffffb, /* 0 .. 65535 */
6572 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6573
6574 OP_oRR, /* ARM register */
6575 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6576 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6577 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6578 OP_oRND, /* Optional Neon double precision register */
6579 OP_oRNQ, /* Optional Neon quad precision register */
6580 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6581 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6582 OP_oSHll, /* LSL immediate */
6583 OP_oSHar, /* ASR immediate */
6584 OP_oSHllar, /* LSL or ASR immediate */
6585 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6586 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6587
5be8be5d
DG
6588 /* Some pre-defined mixed (ARM/THUMB) operands. */
6589 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6590 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6591 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6592
c19d1205
ZW
6593 OP_FIRST_OPTIONAL = OP_oI7b
6594};
a737bd4d 6595
c19d1205
ZW
6596/* Generic instruction operand parser. This does no encoding and no
6597 semantic validation; it merely squirrels values away in the inst
6598 structure. Returns SUCCESS or FAIL depending on whether the
6599 specified grammar matched. */
6600static int
5be8be5d 6601parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6602{
5be8be5d 6603 unsigned const int *upat = pattern;
c19d1205
ZW
6604 char *backtrack_pos = 0;
6605 const char *backtrack_error = 0;
99aad254 6606 int i, val = 0, backtrack_index = 0;
5287ad62 6607 enum arm_reg_type rtype;
4962c51a 6608 parse_operand_result result;
5be8be5d 6609 unsigned int op_parse_code;
c19d1205 6610
e07e6e58
NC
6611#define po_char_or_fail(chr) \
6612 do \
6613 { \
6614 if (skip_past_char (&str, chr) == FAIL) \
477330fc 6615 goto bad_args; \
e07e6e58
NC
6616 } \
6617 while (0)
c19d1205 6618
e07e6e58
NC
6619#define po_reg_or_fail(regtype) \
6620 do \
dcbf9037 6621 { \
e07e6e58 6622 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 6623 & inst.operands[i].vectype); \
e07e6e58 6624 if (val == FAIL) \
477330fc
RM
6625 { \
6626 first_error (_(reg_expected_msgs[regtype])); \
6627 goto failure; \
6628 } \
e07e6e58
NC
6629 inst.operands[i].reg = val; \
6630 inst.operands[i].isreg = 1; \
6631 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6632 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6633 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
6634 || rtype == REG_TYPE_VFD \
6635 || rtype == REG_TYPE_NQ); \
dcbf9037 6636 } \
e07e6e58
NC
6637 while (0)
6638
6639#define po_reg_or_goto(regtype, label) \
6640 do \
6641 { \
6642 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6643 & inst.operands[i].vectype); \
6644 if (val == FAIL) \
6645 goto label; \
dcbf9037 6646 \
e07e6e58
NC
6647 inst.operands[i].reg = val; \
6648 inst.operands[i].isreg = 1; \
6649 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6650 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6651 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 6652 || rtype == REG_TYPE_VFD \
e07e6e58
NC
6653 || rtype == REG_TYPE_NQ); \
6654 } \
6655 while (0)
6656
6657#define po_imm_or_fail(min, max, popt) \
6658 do \
6659 { \
6660 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6661 goto failure; \
6662 inst.operands[i].imm = val; \
6663 } \
6664 while (0)
6665
6666#define po_scalar_or_goto(elsz, label) \
6667 do \
6668 { \
6669 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6670 if (val == FAIL) \
6671 goto label; \
6672 inst.operands[i].reg = val; \
6673 inst.operands[i].isscalar = 1; \
6674 } \
6675 while (0)
6676
6677#define po_misc_or_fail(expr) \
6678 do \
6679 { \
6680 if (expr) \
6681 goto failure; \
6682 } \
6683 while (0)
6684
6685#define po_misc_or_fail_no_backtrack(expr) \
6686 do \
6687 { \
6688 result = expr; \
6689 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6690 backtrack_pos = 0; \
6691 if (result != PARSE_OPERAND_SUCCESS) \
6692 goto failure; \
6693 } \
6694 while (0)
4962c51a 6695
52e7f43d
RE
6696#define po_barrier_or_imm(str) \
6697 do \
6698 { \
6699 val = parse_barrier (&str); \
ccb84d65
JB
6700 if (val == FAIL && ! ISALPHA (*str)) \
6701 goto immediate; \
6702 if (val == FAIL \
6703 /* ISB can only take SY as an option. */ \
6704 || ((inst.instruction & 0xf0) == 0x60 \
6705 && val != 0xf)) \
52e7f43d 6706 { \
ccb84d65
JB
6707 inst.error = _("invalid barrier type"); \
6708 backtrack_pos = 0; \
6709 goto failure; \
52e7f43d
RE
6710 } \
6711 } \
6712 while (0)
6713
c19d1205
ZW
6714 skip_whitespace (str);
6715
6716 for (i = 0; upat[i] != OP_stop; i++)
6717 {
5be8be5d
DG
6718 op_parse_code = upat[i];
6719 if (op_parse_code >= 1<<16)
6720 op_parse_code = thumb ? (op_parse_code >> 16)
6721 : (op_parse_code & ((1<<16)-1));
6722
6723 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6724 {
6725 /* Remember where we are in case we need to backtrack. */
9c2799c2 6726 gas_assert (!backtrack_pos);
c19d1205
ZW
6727 backtrack_pos = str;
6728 backtrack_error = inst.error;
6729 backtrack_index = i;
6730 }
6731
b6702015 6732 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6733 po_char_or_fail (',');
6734
5be8be5d 6735 switch (op_parse_code)
c19d1205
ZW
6736 {
6737 /* Registers */
6738 case OP_oRRnpc:
5be8be5d 6739 case OP_oRRnpcsp:
c19d1205 6740 case OP_RRnpc:
5be8be5d 6741 case OP_RRnpcsp:
c19d1205
ZW
6742 case OP_oRR:
6743 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6744 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6745 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6746 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6747 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6748 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 6749 case OP_oRND:
5287ad62 6750 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6751 case OP_RVC:
6752 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6753 break;
6754 /* Also accept generic coprocessor regs for unknown registers. */
6755 coproc_reg:
6756 po_reg_or_fail (REG_TYPE_CN);
6757 break;
c19d1205
ZW
6758 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6759 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6760 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6761 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6762 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6763 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6764 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6765 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6766 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6767 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 6768 case OP_oRNQ:
5287ad62 6769 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
477330fc 6770 case OP_oRNDQ:
5287ad62 6771 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
477330fc
RM
6772 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6773 case OP_oRNSDQ:
6774 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6775
6776 /* Neon scalar. Using an element size of 8 means that some invalid
6777 scalars are accepted here, so deal with those in later code. */
6778 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6779
6780 case OP_RNDQ_I0:
6781 {
6782 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6783 break;
6784 try_imm0:
6785 po_imm_or_fail (0, 0, TRUE);
6786 }
6787 break;
6788
6789 case OP_RVSD_I0:
6790 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6791 break;
6792
aacf0b33
KT
6793 case OP_RSVD_FI0:
6794 {
6795 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
6796 break;
6797 try_ifimm0:
6798 if (parse_ifimm_zero (&str))
6799 inst.operands[i].imm = 0;
6800 else
6801 {
6802 inst.error
6803 = _("only floating point zero is allowed as immediate value");
6804 goto failure;
6805 }
6806 }
6807 break;
6808
477330fc
RM
6809 case OP_RR_RNSC:
6810 {
6811 po_scalar_or_goto (8, try_rr);
6812 break;
6813 try_rr:
6814 po_reg_or_fail (REG_TYPE_RN);
6815 }
6816 break;
6817
6818 case OP_RNSDQ_RNSC:
6819 {
6820 po_scalar_or_goto (8, try_nsdq);
6821 break;
6822 try_nsdq:
6823 po_reg_or_fail (REG_TYPE_NSDQ);
6824 }
6825 break;
6826
6827 case OP_RNDQ_RNSC:
6828 {
6829 po_scalar_or_goto (8, try_ndq);
6830 break;
6831 try_ndq:
6832 po_reg_or_fail (REG_TYPE_NDQ);
6833 }
6834 break;
6835
6836 case OP_RND_RNSC:
6837 {
6838 po_scalar_or_goto (8, try_vfd);
6839 break;
6840 try_vfd:
6841 po_reg_or_fail (REG_TYPE_VFD);
6842 }
6843 break;
6844
6845 case OP_VMOV:
6846 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6847 not careful then bad things might happen. */
6848 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6849 break;
6850
6851 case OP_RNDQ_Ibig:
6852 {
6853 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6854 break;
6855 try_immbig:
6856 /* There's a possibility of getting a 64-bit immediate here, so
6857 we need special handling. */
8335d6aa
JW
6858 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
6859 == FAIL)
477330fc
RM
6860 {
6861 inst.error = _("immediate value is out of range");
6862 goto failure;
6863 }
6864 }
6865 break;
6866
6867 case OP_RNDQ_I63b:
6868 {
6869 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6870 break;
6871 try_shimm:
6872 po_imm_or_fail (0, 63, TRUE);
6873 }
6874 break;
c19d1205
ZW
6875
6876 case OP_RRnpcb:
6877 po_char_or_fail ('[');
6878 po_reg_or_fail (REG_TYPE_RN);
6879 po_char_or_fail (']');
6880 break;
a737bd4d 6881
55881a11 6882 case OP_RRnpctw:
c19d1205 6883 case OP_RRw:
b6702015 6884 case OP_oRRw:
c19d1205
ZW
6885 po_reg_or_fail (REG_TYPE_RN);
6886 if (skip_past_char (&str, '!') == SUCCESS)
6887 inst.operands[i].writeback = 1;
6888 break;
6889
6890 /* Immediates */
6891 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6892 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6893 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 6894 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6895 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6896 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 6897 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6898 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
6899 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6900 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6901 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6902 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6903
6904 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6905 case OP_oI7b:
6906 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6907 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6908 case OP_oI31b:
6909 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
6910 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6911 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
6912 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6913
6914 /* Immediate variants */
6915 case OP_oI255c:
6916 po_char_or_fail ('{');
6917 po_imm_or_fail (0, 255, TRUE);
6918 po_char_or_fail ('}');
6919 break;
6920
6921 case OP_I31w:
6922 /* The expression parser chokes on a trailing !, so we have
6923 to find it first and zap it. */
6924 {
6925 char *s = str;
6926 while (*s && *s != ',')
6927 s++;
6928 if (s[-1] == '!')
6929 {
6930 s[-1] = '\0';
6931 inst.operands[i].writeback = 1;
6932 }
6933 po_imm_or_fail (0, 31, TRUE);
6934 if (str == s - 1)
6935 str = s;
6936 }
6937 break;
6938
6939 /* Expressions */
6940 case OP_EXPi: EXPi:
6941 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6942 GE_OPT_PREFIX));
6943 break;
6944
6945 case OP_EXP:
6946 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6947 GE_NO_PREFIX));
6948 break;
6949
6950 case OP_EXPr: EXPr:
6951 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6952 GE_NO_PREFIX));
6953 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6954 {
c19d1205
ZW
6955 val = parse_reloc (&str);
6956 if (val == -1)
6957 {
6958 inst.error = _("unrecognized relocation suffix");
6959 goto failure;
6960 }
6961 else if (val != BFD_RELOC_UNUSED)
6962 {
6963 inst.operands[i].imm = val;
6964 inst.operands[i].hasreloc = 1;
6965 }
a737bd4d 6966 }
c19d1205 6967 break;
a737bd4d 6968
b6895b4f
PB
6969 /* Operand for MOVW or MOVT. */
6970 case OP_HALF:
6971 po_misc_or_fail (parse_half (&str));
6972 break;
6973
e07e6e58 6974 /* Register or expression. */
c19d1205
ZW
6975 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6976 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6977
e07e6e58 6978 /* Register or immediate. */
c19d1205
ZW
6979 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6980 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6981
c19d1205
ZW
6982 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6983 IF:
6984 if (!is_immediate_prefix (*str))
6985 goto bad_args;
6986 str++;
6987 val = parse_fpa_immediate (&str);
6988 if (val == FAIL)
6989 goto failure;
6990 /* FPA immediates are encoded as registers 8-15.
6991 parse_fpa_immediate has already applied the offset. */
6992 inst.operands[i].reg = val;
6993 inst.operands[i].isreg = 1;
6994 break;
09d92015 6995
2d447fca
JM
6996 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6997 I32z: po_imm_or_fail (0, 32, FALSE); break;
6998
e07e6e58 6999 /* Two kinds of register. */
c19d1205
ZW
7000 case OP_RIWR_RIWC:
7001 {
7002 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7003 if (!rege
7004 || (rege->type != REG_TYPE_MMXWR
7005 && rege->type != REG_TYPE_MMXWC
7006 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7007 {
7008 inst.error = _("iWMMXt data or control register expected");
7009 goto failure;
7010 }
7011 inst.operands[i].reg = rege->number;
7012 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7013 }
7014 break;
09d92015 7015
41adaa5c
JM
7016 case OP_RIWC_RIWG:
7017 {
7018 struct reg_entry *rege = arm_reg_parse_multi (&str);
7019 if (!rege
7020 || (rege->type != REG_TYPE_MMXWC
7021 && rege->type != REG_TYPE_MMXWCG))
7022 {
7023 inst.error = _("iWMMXt control register expected");
7024 goto failure;
7025 }
7026 inst.operands[i].reg = rege->number;
7027 inst.operands[i].isreg = 1;
7028 }
7029 break;
7030
c19d1205
ZW
7031 /* Misc */
7032 case OP_CPSF: val = parse_cps_flags (&str); break;
7033 case OP_ENDI: val = parse_endian_specifier (&str); break;
7034 case OP_oROR: val = parse_ror (&str); break;
c19d1205 7035 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7036 case OP_oBARRIER_I15:
7037 po_barrier_or_imm (str); break;
7038 immediate:
7039 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7040 goto failure;
52e7f43d 7041 break;
c19d1205 7042
fa94de6b 7043 case OP_wPSR:
d2cd1205 7044 case OP_rPSR:
90ec0d68
MGD
7045 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7046 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7047 {
7048 inst.error = _("Banked registers are not available with this "
7049 "architecture.");
7050 goto failure;
7051 }
7052 break;
d2cd1205
JB
7053 try_psr:
7054 val = parse_psr (&str, op_parse_code == OP_wPSR);
7055 break;
037e8744 7056
477330fc
RM
7057 case OP_APSR_RR:
7058 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7059 break;
7060 try_apsr:
7061 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7062 instruction). */
7063 if (strncasecmp (str, "APSR_", 5) == 0)
7064 {
7065 unsigned found = 0;
7066 str += 5;
7067 while (found < 15)
7068 switch (*str++)
7069 {
7070 case 'c': found = (found & 1) ? 16 : found | 1; break;
7071 case 'n': found = (found & 2) ? 16 : found | 2; break;
7072 case 'z': found = (found & 4) ? 16 : found | 4; break;
7073 case 'v': found = (found & 8) ? 16 : found | 8; break;
7074 default: found = 16;
7075 }
7076 if (found != 15)
7077 goto failure;
7078 inst.operands[i].isvec = 1;
f7c21dc7
NC
7079 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7080 inst.operands[i].reg = REG_PC;
477330fc
RM
7081 }
7082 else
7083 goto failure;
7084 break;
037e8744 7085
92e90b6e
PB
7086 case OP_TB:
7087 po_misc_or_fail (parse_tb (&str));
7088 break;
7089
e07e6e58 7090 /* Register lists. */
c19d1205
ZW
7091 case OP_REGLST:
7092 val = parse_reg_list (&str);
7093 if (*str == '^')
7094 {
5e0d7f77 7095 inst.operands[i].writeback = 1;
c19d1205
ZW
7096 str++;
7097 }
7098 break;
09d92015 7099
c19d1205 7100 case OP_VRSLST:
5287ad62 7101 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 7102 break;
09d92015 7103
c19d1205 7104 case OP_VRDLST:
5287ad62 7105 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 7106 break;
a737bd4d 7107
477330fc
RM
7108 case OP_VRSDLST:
7109 /* Allow Q registers too. */
7110 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7111 REGLIST_NEON_D);
7112 if (val == FAIL)
7113 {
7114 inst.error = NULL;
7115 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7116 REGLIST_VFP_S);
7117 inst.operands[i].issingle = 1;
7118 }
7119 break;
7120
7121 case OP_NRDLST:
7122 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7123 REGLIST_NEON_D);
7124 break;
5287ad62
JB
7125
7126 case OP_NSTRLST:
477330fc
RM
7127 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7128 &inst.operands[i].vectype);
7129 break;
5287ad62 7130
c19d1205
ZW
7131 /* Addressing modes */
7132 case OP_ADDR:
7133 po_misc_or_fail (parse_address (&str, i));
7134 break;
09d92015 7135
4962c51a
MS
7136 case OP_ADDRGLDR:
7137 po_misc_or_fail_no_backtrack (
477330fc 7138 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7139 break;
7140
7141 case OP_ADDRGLDRS:
7142 po_misc_or_fail_no_backtrack (
477330fc 7143 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7144 break;
7145
7146 case OP_ADDRGLDC:
7147 po_misc_or_fail_no_backtrack (
477330fc 7148 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7149 break;
7150
c19d1205
ZW
7151 case OP_SH:
7152 po_misc_or_fail (parse_shifter_operand (&str, i));
7153 break;
09d92015 7154
4962c51a
MS
7155 case OP_SHG:
7156 po_misc_or_fail_no_backtrack (
477330fc 7157 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7158 break;
7159
c19d1205
ZW
7160 case OP_oSHll:
7161 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7162 break;
09d92015 7163
c19d1205
ZW
7164 case OP_oSHar:
7165 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7166 break;
09d92015 7167
c19d1205
ZW
7168 case OP_oSHllar:
7169 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7170 break;
09d92015 7171
c19d1205 7172 default:
5be8be5d 7173 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7174 }
09d92015 7175
c19d1205
ZW
7176 /* Various value-based sanity checks and shared operations. We
7177 do not signal immediate failures for the register constraints;
7178 this allows a syntax error to take precedence. */
5be8be5d 7179 switch (op_parse_code)
c19d1205
ZW
7180 {
7181 case OP_oRRnpc:
7182 case OP_RRnpc:
7183 case OP_RRnpcb:
7184 case OP_RRw:
b6702015 7185 case OP_oRRw:
c19d1205
ZW
7186 case OP_RRnpc_I0:
7187 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7188 inst.error = BAD_PC;
7189 break;
09d92015 7190
5be8be5d
DG
7191 case OP_oRRnpcsp:
7192 case OP_RRnpcsp:
7193 if (inst.operands[i].isreg)
7194 {
7195 if (inst.operands[i].reg == REG_PC)
7196 inst.error = BAD_PC;
5c8ed6a4
JW
7197 else if (inst.operands[i].reg == REG_SP
7198 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7199 relaxed since ARMv8-A. */
7200 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7201 {
7202 gas_assert (thumb);
7203 inst.error = BAD_SP;
7204 }
5be8be5d
DG
7205 }
7206 break;
7207
55881a11 7208 case OP_RRnpctw:
fa94de6b
RM
7209 if (inst.operands[i].isreg
7210 && inst.operands[i].reg == REG_PC
55881a11
MGD
7211 && (inst.operands[i].writeback || thumb))
7212 inst.error = BAD_PC;
7213 break;
7214
c19d1205
ZW
7215 case OP_CPSF:
7216 case OP_ENDI:
7217 case OP_oROR:
d2cd1205
JB
7218 case OP_wPSR:
7219 case OP_rPSR:
c19d1205 7220 case OP_COND:
52e7f43d 7221 case OP_oBARRIER_I15:
c19d1205
ZW
7222 case OP_REGLST:
7223 case OP_VRSLST:
7224 case OP_VRDLST:
477330fc
RM
7225 case OP_VRSDLST:
7226 case OP_NRDLST:
7227 case OP_NSTRLST:
c19d1205
ZW
7228 if (val == FAIL)
7229 goto failure;
7230 inst.operands[i].imm = val;
7231 break;
a737bd4d 7232
c19d1205
ZW
7233 default:
7234 break;
7235 }
09d92015 7236
c19d1205
ZW
7237 /* If we get here, this operand was successfully parsed. */
7238 inst.operands[i].present = 1;
7239 continue;
09d92015 7240
c19d1205 7241 bad_args:
09d92015 7242 inst.error = BAD_ARGS;
c19d1205
ZW
7243
7244 failure:
7245 if (!backtrack_pos)
d252fdde
PB
7246 {
7247 /* The parse routine should already have set inst.error, but set a
5f4273c7 7248 default here just in case. */
d252fdde
PB
7249 if (!inst.error)
7250 inst.error = _("syntax error");
7251 return FAIL;
7252 }
c19d1205
ZW
7253
7254 /* Do not backtrack over a trailing optional argument that
7255 absorbed some text. We will only fail again, with the
7256 'garbage following instruction' error message, which is
7257 probably less helpful than the current one. */
7258 if (backtrack_index == i && backtrack_pos != str
7259 && upat[i+1] == OP_stop)
d252fdde
PB
7260 {
7261 if (!inst.error)
7262 inst.error = _("syntax error");
7263 return FAIL;
7264 }
c19d1205
ZW
7265
7266 /* Try again, skipping the optional argument at backtrack_pos. */
7267 str = backtrack_pos;
7268 inst.error = backtrack_error;
7269 inst.operands[backtrack_index].present = 0;
7270 i = backtrack_index;
7271 backtrack_pos = 0;
09d92015 7272 }
09d92015 7273
c19d1205
ZW
7274 /* Check that we have parsed all the arguments. */
7275 if (*str != '\0' && !inst.error)
7276 inst.error = _("garbage following instruction");
09d92015 7277
c19d1205 7278 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7279}
7280
c19d1205
ZW
7281#undef po_char_or_fail
7282#undef po_reg_or_fail
7283#undef po_reg_or_goto
7284#undef po_imm_or_fail
5287ad62 7285#undef po_scalar_or_fail
52e7f43d 7286#undef po_barrier_or_imm
e07e6e58 7287
c19d1205 7288/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7289#define constraint(expr, err) \
7290 do \
c19d1205 7291 { \
e07e6e58
NC
7292 if (expr) \
7293 { \
7294 inst.error = err; \
7295 return; \
7296 } \
c19d1205 7297 } \
e07e6e58 7298 while (0)
c19d1205 7299
fdfde340
JM
7300/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7301 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7302 is the BadReg predicate in ARM's Thumb-2 documentation.
7303
7304 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7305 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7306#define reject_bad_reg(reg) \
7307 do \
7308 if (reg == REG_PC) \
7309 { \
7310 inst.error = BAD_PC; \
7311 return; \
7312 } \
7313 else if (reg == REG_SP \
7314 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7315 { \
7316 inst.error = BAD_SP; \
7317 return; \
7318 } \
fdfde340
JM
7319 while (0)
7320
94206790
MM
7321/* If REG is R13 (the stack pointer), warn that its use is
7322 deprecated. */
7323#define warn_deprecated_sp(reg) \
7324 do \
7325 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7326 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7327 while (0)
7328
c19d1205
ZW
7329/* Functions for operand encoding. ARM, then Thumb. */
7330
d840c081 7331#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 7332
9db2f6b4
RL
7333/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7334
7335 The only binary encoding difference is the Coprocessor number. Coprocessor
7336 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 7337 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
7338 exists for Single-Precision operation. */
7339
7340static void
7341do_scalar_fp16_v82_encode (void)
7342{
7343 if (inst.cond != COND_ALWAYS)
7344 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7345 " the behaviour is UNPREDICTABLE"));
7346 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7347 _(BAD_FP16));
7348
7349 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7350 mark_feature_used (&arm_ext_fp16);
7351}
7352
c19d1205
ZW
7353/* If VAL can be encoded in the immediate field of an ARM instruction,
7354 return the encoded form. Otherwise, return FAIL. */
7355
7356static unsigned int
7357encode_arm_immediate (unsigned int val)
09d92015 7358{
c19d1205
ZW
7359 unsigned int a, i;
7360
4f1d6205
L
7361 if (val <= 0xff)
7362 return val;
7363
7364 for (i = 2; i < 32; i += 2)
c19d1205
ZW
7365 if ((a = rotate_left (val, i)) <= 0xff)
7366 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7367
7368 return FAIL;
09d92015
MM
7369}
7370
c19d1205
ZW
7371/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7372 return the encoded form. Otherwise, return FAIL. */
7373static unsigned int
7374encode_thumb32_immediate (unsigned int val)
09d92015 7375{
c19d1205 7376 unsigned int a, i;
09d92015 7377
9c3c69f2 7378 if (val <= 0xff)
c19d1205 7379 return val;
a737bd4d 7380
9c3c69f2 7381 for (i = 1; i <= 24; i++)
09d92015 7382 {
9c3c69f2
PB
7383 a = val >> i;
7384 if ((val & ~(0xff << i)) == 0)
7385 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 7386 }
a737bd4d 7387
c19d1205
ZW
7388 a = val & 0xff;
7389 if (val == ((a << 16) | a))
7390 return 0x100 | a;
7391 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7392 return 0x300 | a;
09d92015 7393
c19d1205
ZW
7394 a = val & 0xff00;
7395 if (val == ((a << 16) | a))
7396 return 0x200 | (a >> 8);
a737bd4d 7397
c19d1205 7398 return FAIL;
09d92015 7399}
5287ad62 7400/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
7401
7402static void
5287ad62
JB
7403encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7404{
7405 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7406 && reg > 15)
7407 {
b1cc4aeb 7408 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
7409 {
7410 if (thumb_mode)
7411 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7412 fpu_vfp_ext_d32);
7413 else
7414 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7415 fpu_vfp_ext_d32);
7416 }
5287ad62 7417 else
477330fc
RM
7418 {
7419 first_error (_("D register out of range for selected VFP version"));
7420 return;
7421 }
5287ad62
JB
7422 }
7423
c19d1205 7424 switch (pos)
09d92015 7425 {
c19d1205
ZW
7426 case VFP_REG_Sd:
7427 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7428 break;
7429
7430 case VFP_REG_Sn:
7431 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7432 break;
7433
7434 case VFP_REG_Sm:
7435 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7436 break;
7437
5287ad62
JB
7438 case VFP_REG_Dd:
7439 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7440 break;
5f4273c7 7441
5287ad62
JB
7442 case VFP_REG_Dn:
7443 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7444 break;
5f4273c7 7445
5287ad62
JB
7446 case VFP_REG_Dm:
7447 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7448 break;
7449
c19d1205
ZW
7450 default:
7451 abort ();
09d92015 7452 }
09d92015
MM
7453}
7454
c19d1205 7455/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 7456 if any, is handled by md_apply_fix. */
09d92015 7457static void
c19d1205 7458encode_arm_shift (int i)
09d92015 7459{
008a97ef
RL
7460 /* register-shifted register. */
7461 if (inst.operands[i].immisreg)
7462 {
bf355b69
MR
7463 int op_index;
7464 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 7465 {
5689c942
RL
7466 /* Check the operand only when it's presented. In pre-UAL syntax,
7467 if the destination register is the same as the first operand, two
7468 register form of the instruction can be used. */
bf355b69
MR
7469 if (inst.operands[op_index].present && inst.operands[op_index].isreg
7470 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
7471 as_warn (UNPRED_REG ("r15"));
7472 }
7473
7474 if (inst.operands[i].imm == REG_PC)
7475 as_warn (UNPRED_REG ("r15"));
7476 }
7477
c19d1205
ZW
7478 if (inst.operands[i].shift_kind == SHIFT_RRX)
7479 inst.instruction |= SHIFT_ROR << 5;
7480 else
09d92015 7481 {
c19d1205
ZW
7482 inst.instruction |= inst.operands[i].shift_kind << 5;
7483 if (inst.operands[i].immisreg)
7484 {
7485 inst.instruction |= SHIFT_BY_REG;
7486 inst.instruction |= inst.operands[i].imm << 8;
7487 }
7488 else
7489 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 7490 }
c19d1205 7491}
09d92015 7492
c19d1205
ZW
7493static void
7494encode_arm_shifter_operand (int i)
7495{
7496 if (inst.operands[i].isreg)
09d92015 7497 {
c19d1205
ZW
7498 inst.instruction |= inst.operands[i].reg;
7499 encode_arm_shift (i);
09d92015 7500 }
c19d1205 7501 else
a415b1cd
JB
7502 {
7503 inst.instruction |= INST_IMMEDIATE;
7504 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7505 inst.instruction |= inst.operands[i].imm;
7506 }
09d92015
MM
7507}
7508
c19d1205 7509/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 7510static void
c19d1205 7511encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 7512{
2b2f5df9
NC
7513 /* PR 14260:
7514 Generate an error if the operand is not a register. */
7515 constraint (!inst.operands[i].isreg,
7516 _("Instruction does not support =N addresses"));
7517
c19d1205 7518 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7519
c19d1205 7520 if (inst.operands[i].preind)
09d92015 7521 {
c19d1205
ZW
7522 if (is_t)
7523 {
7524 inst.error = _("instruction does not accept preindexed addressing");
7525 return;
7526 }
7527 inst.instruction |= PRE_INDEX;
7528 if (inst.operands[i].writeback)
7529 inst.instruction |= WRITE_BACK;
09d92015 7530
c19d1205
ZW
7531 }
7532 else if (inst.operands[i].postind)
7533 {
9c2799c2 7534 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
7535 if (is_t)
7536 inst.instruction |= WRITE_BACK;
7537 }
7538 else /* unindexed - only for coprocessor */
09d92015 7539 {
c19d1205 7540 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
7541 return;
7542 }
7543
c19d1205
ZW
7544 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7545 && (((inst.instruction & 0x000f0000) >> 16)
7546 == ((inst.instruction & 0x0000f000) >> 12)))
7547 as_warn ((inst.instruction & LOAD_BIT)
7548 ? _("destination register same as write-back base")
7549 : _("source register same as write-back base"));
09d92015
MM
7550}
7551
c19d1205
ZW
7552/* inst.operands[i] was set up by parse_address. Encode it into an
7553 ARM-format mode 2 load or store instruction. If is_t is true,
7554 reject forms that cannot be used with a T instruction (i.e. not
7555 post-indexed). */
a737bd4d 7556static void
c19d1205 7557encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 7558{
5be8be5d
DG
7559 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7560
c19d1205 7561 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7562
c19d1205 7563 if (inst.operands[i].immisreg)
09d92015 7564 {
5be8be5d
DG
7565 constraint ((inst.operands[i].imm == REG_PC
7566 || (is_pc && inst.operands[i].writeback)),
7567 BAD_PC_ADDRESSING);
c19d1205
ZW
7568 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7569 inst.instruction |= inst.operands[i].imm;
7570 if (!inst.operands[i].negative)
7571 inst.instruction |= INDEX_UP;
7572 if (inst.operands[i].shifted)
7573 {
7574 if (inst.operands[i].shift_kind == SHIFT_RRX)
7575 inst.instruction |= SHIFT_ROR << 5;
7576 else
7577 {
7578 inst.instruction |= inst.operands[i].shift_kind << 5;
7579 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7580 }
7581 }
09d92015 7582 }
c19d1205 7583 else /* immediate offset in inst.reloc */
09d92015 7584 {
5be8be5d
DG
7585 if (is_pc && !inst.reloc.pc_rel)
7586 {
7587 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7588
7589 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7590 cannot use PC in addressing.
7591 PC cannot be used in writeback addressing, either. */
7592 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7593 BAD_PC_ADDRESSING);
23a10334 7594
dc5ec521 7595 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7596 if (warn_on_deprecated
7597 && !is_load
7598 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 7599 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7600 }
7601
c19d1205 7602 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7603 {
7604 /* Prefer + for zero encoded value. */
7605 if (!inst.operands[i].negative)
7606 inst.instruction |= INDEX_UP;
7607 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7608 }
09d92015 7609 }
09d92015
MM
7610}
7611
c19d1205
ZW
7612/* inst.operands[i] was set up by parse_address. Encode it into an
7613 ARM-format mode 3 load or store instruction. Reject forms that
7614 cannot be used with such instructions. If is_t is true, reject
7615 forms that cannot be used with a T instruction (i.e. not
7616 post-indexed). */
7617static void
7618encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7619{
c19d1205 7620 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7621 {
c19d1205
ZW
7622 inst.error = _("instruction does not accept scaled register index");
7623 return;
09d92015 7624 }
a737bd4d 7625
c19d1205 7626 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7627
c19d1205
ZW
7628 if (inst.operands[i].immisreg)
7629 {
5be8be5d 7630 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 7631 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 7632 BAD_PC_ADDRESSING);
eb9f3f00
JB
7633 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7634 BAD_PC_WRITEBACK);
c19d1205
ZW
7635 inst.instruction |= inst.operands[i].imm;
7636 if (!inst.operands[i].negative)
7637 inst.instruction |= INDEX_UP;
7638 }
7639 else /* immediate offset in inst.reloc */
7640 {
5be8be5d
DG
7641 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7642 && inst.operands[i].writeback),
7643 BAD_PC_WRITEBACK);
c19d1205
ZW
7644 inst.instruction |= HWOFFSET_IMM;
7645 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7646 {
7647 /* Prefer + for zero encoded value. */
7648 if (!inst.operands[i].negative)
7649 inst.instruction |= INDEX_UP;
7650
7651 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7652 }
c19d1205 7653 }
a737bd4d
NC
7654}
7655
8335d6aa
JW
7656/* Write immediate bits [7:0] to the following locations:
7657
7658 |28/24|23 19|18 16|15 4|3 0|
7659 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
7660
7661 This function is used by VMOV/VMVN/VORR/VBIC. */
7662
7663static void
7664neon_write_immbits (unsigned immbits)
7665{
7666 inst.instruction |= immbits & 0xf;
7667 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
7668 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
7669}
7670
7671/* Invert low-order SIZE bits of XHI:XLO. */
7672
7673static void
7674neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
7675{
7676 unsigned immlo = xlo ? *xlo : 0;
7677 unsigned immhi = xhi ? *xhi : 0;
7678
7679 switch (size)
7680 {
7681 case 8:
7682 immlo = (~immlo) & 0xff;
7683 break;
7684
7685 case 16:
7686 immlo = (~immlo) & 0xffff;
7687 break;
7688
7689 case 64:
7690 immhi = (~immhi) & 0xffffffff;
7691 /* fall through. */
7692
7693 case 32:
7694 immlo = (~immlo) & 0xffffffff;
7695 break;
7696
7697 default:
7698 abort ();
7699 }
7700
7701 if (xlo)
7702 *xlo = immlo;
7703
7704 if (xhi)
7705 *xhi = immhi;
7706}
7707
7708/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
7709 A, B, C, D. */
09d92015 7710
c19d1205 7711static int
8335d6aa 7712neon_bits_same_in_bytes (unsigned imm)
09d92015 7713{
8335d6aa
JW
7714 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
7715 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
7716 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
7717 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
7718}
a737bd4d 7719
8335d6aa 7720/* For immediate of above form, return 0bABCD. */
09d92015 7721
8335d6aa
JW
7722static unsigned
7723neon_squash_bits (unsigned imm)
7724{
7725 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
7726 | ((imm & 0x01000000) >> 21);
7727}
7728
7729/* Compress quarter-float representation to 0b...000 abcdefgh. */
7730
7731static unsigned
7732neon_qfloat_bits (unsigned imm)
7733{
7734 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
7735}
7736
7737/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
7738 the instruction. *OP is passed as the initial value of the op field, and
7739 may be set to a different value depending on the constant (i.e.
7740 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
7741 MVN). If the immediate looks like a repeated pattern then also
7742 try smaller element sizes. */
7743
7744static int
7745neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
7746 unsigned *immbits, int *op, int size,
7747 enum neon_el_type type)
7748{
7749 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
7750 float. */
7751 if (type == NT_float && !float_p)
7752 return FAIL;
7753
7754 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 7755 {
8335d6aa
JW
7756 if (size != 32 || *op == 1)
7757 return FAIL;
7758 *immbits = neon_qfloat_bits (immlo);
7759 return 0xf;
7760 }
7761
7762 if (size == 64)
7763 {
7764 if (neon_bits_same_in_bytes (immhi)
7765 && neon_bits_same_in_bytes (immlo))
c19d1205 7766 {
8335d6aa
JW
7767 if (*op == 1)
7768 return FAIL;
7769 *immbits = (neon_squash_bits (immhi) << 4)
7770 | neon_squash_bits (immlo);
7771 *op = 1;
7772 return 0xe;
c19d1205 7773 }
a737bd4d 7774
8335d6aa
JW
7775 if (immhi != immlo)
7776 return FAIL;
7777 }
a737bd4d 7778
8335d6aa 7779 if (size >= 32)
09d92015 7780 {
8335d6aa 7781 if (immlo == (immlo & 0x000000ff))
c19d1205 7782 {
8335d6aa
JW
7783 *immbits = immlo;
7784 return 0x0;
c19d1205 7785 }
8335d6aa 7786 else if (immlo == (immlo & 0x0000ff00))
c19d1205 7787 {
8335d6aa
JW
7788 *immbits = immlo >> 8;
7789 return 0x2;
c19d1205 7790 }
8335d6aa
JW
7791 else if (immlo == (immlo & 0x00ff0000))
7792 {
7793 *immbits = immlo >> 16;
7794 return 0x4;
7795 }
7796 else if (immlo == (immlo & 0xff000000))
7797 {
7798 *immbits = immlo >> 24;
7799 return 0x6;
7800 }
7801 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
7802 {
7803 *immbits = (immlo >> 8) & 0xff;
7804 return 0xc;
7805 }
7806 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
7807 {
7808 *immbits = (immlo >> 16) & 0xff;
7809 return 0xd;
7810 }
7811
7812 if ((immlo & 0xffff) != (immlo >> 16))
7813 return FAIL;
7814 immlo &= 0xffff;
09d92015 7815 }
a737bd4d 7816
8335d6aa 7817 if (size >= 16)
4962c51a 7818 {
8335d6aa
JW
7819 if (immlo == (immlo & 0x000000ff))
7820 {
7821 *immbits = immlo;
7822 return 0x8;
7823 }
7824 else if (immlo == (immlo & 0x0000ff00))
7825 {
7826 *immbits = immlo >> 8;
7827 return 0xa;
7828 }
7829
7830 if ((immlo & 0xff) != (immlo >> 8))
7831 return FAIL;
7832 immlo &= 0xff;
4962c51a
MS
7833 }
7834
8335d6aa
JW
7835 if (immlo == (immlo & 0x000000ff))
7836 {
7837 /* Don't allow MVN with 8-bit immediate. */
7838 if (*op == 1)
7839 return FAIL;
7840 *immbits = immlo;
7841 return 0xe;
7842 }
26d97720 7843
8335d6aa 7844 return FAIL;
c19d1205 7845}
a737bd4d 7846
5fc177c8 7847#if defined BFD_HOST_64_BIT
ba592044
AM
7848/* Returns TRUE if double precision value V may be cast
7849 to single precision without loss of accuracy. */
7850
7851static bfd_boolean
5fc177c8 7852is_double_a_single (bfd_int64_t v)
ba592044 7853{
5fc177c8 7854 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 7855 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
7856
7857 return (exp == 0 || exp == 0x7FF
7858 || (exp >= 1023 - 126 && exp <= 1023 + 127))
7859 && (mantissa & 0x1FFFFFFFl) == 0;
7860}
7861
3739860c 7862/* Returns a double precision value casted to single precision
ba592044
AM
7863 (ignoring the least significant bits in exponent and mantissa). */
7864
7865static int
5fc177c8 7866double_to_single (bfd_int64_t v)
ba592044
AM
7867{
7868 int sign = (int) ((v >> 63) & 1l);
5fc177c8 7869 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 7870 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
7871
7872 if (exp == 0x7FF)
7873 exp = 0xFF;
7874 else
7875 {
7876 exp = exp - 1023 + 127;
7877 if (exp >= 0xFF)
7878 {
7879 /* Infinity. */
7880 exp = 0x7F;
7881 mantissa = 0;
7882 }
7883 else if (exp < 0)
7884 {
7885 /* No denormalized numbers. */
7886 exp = 0;
7887 mantissa = 0;
7888 }
7889 }
7890 mantissa >>= 29;
7891 return (sign << 31) | (exp << 23) | mantissa;
7892}
5fc177c8 7893#endif /* BFD_HOST_64_BIT */
ba592044 7894
8335d6aa
JW
7895enum lit_type
7896{
7897 CONST_THUMB,
7898 CONST_ARM,
7899 CONST_VEC
7900};
7901
ba592044
AM
7902static void do_vfp_nsyn_opcode (const char *);
7903
c19d1205
ZW
7904/* inst.reloc.exp describes an "=expr" load pseudo-operation.
7905 Determine whether it can be performed with a move instruction; if
7906 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7907 return TRUE; if it can't, convert inst.instruction to a literal-pool
7908 load and return FALSE. If this is not a valid thing to do in the
7909 current context, set inst.error and return TRUE.
a737bd4d 7910
c19d1205
ZW
7911 inst.operands[i] describes the destination register. */
7912
c921be7d 7913static bfd_boolean
8335d6aa 7914move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 7915{
53365c0d 7916 unsigned long tbit;
8335d6aa
JW
7917 bfd_boolean thumb_p = (t == CONST_THUMB);
7918 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
7919
7920 if (thumb_p)
7921 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7922 else
7923 tbit = LOAD_BIT;
7924
7925 if ((inst.instruction & tbit) == 0)
09d92015 7926 {
c19d1205 7927 inst.error = _("invalid pseudo operation");
c921be7d 7928 return TRUE;
09d92015 7929 }
ba592044 7930
8335d6aa
JW
7931 if (inst.reloc.exp.X_op != O_constant
7932 && inst.reloc.exp.X_op != O_symbol
7933 && inst.reloc.exp.X_op != O_big)
09d92015
MM
7934 {
7935 inst.error = _("constant expression expected");
c921be7d 7936 return TRUE;
09d92015 7937 }
ba592044
AM
7938
7939 if (inst.reloc.exp.X_op == O_constant
7940 || inst.reloc.exp.X_op == O_big)
8335d6aa 7941 {
5fc177c8
NC
7942#if defined BFD_HOST_64_BIT
7943 bfd_int64_t v;
7944#else
ba592044 7945 offsetT v;
5fc177c8 7946#endif
ba592044 7947 if (inst.reloc.exp.X_op == O_big)
8335d6aa 7948 {
ba592044
AM
7949 LITTLENUM_TYPE w[X_PRECISION];
7950 LITTLENUM_TYPE * l;
7951
7952 if (inst.reloc.exp.X_add_number == -1)
8335d6aa 7953 {
ba592044
AM
7954 gen_to_words (w, X_PRECISION, E_PRECISION);
7955 l = w;
7956 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 7957 }
ba592044
AM
7958 else
7959 l = generic_bignum;
3739860c 7960
5fc177c8
NC
7961#if defined BFD_HOST_64_BIT
7962 v =
7963 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
7964 << LITTLENUM_NUMBER_OF_BITS)
7965 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
7966 << LITTLENUM_NUMBER_OF_BITS)
7967 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
7968 << LITTLENUM_NUMBER_OF_BITS)
7969 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
7970#else
ba592044
AM
7971 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
7972 | (l[0] & LITTLENUM_MASK);
5fc177c8 7973#endif
8335d6aa 7974 }
ba592044
AM
7975 else
7976 v = inst.reloc.exp.X_add_number;
7977
7978 if (!inst.operands[i].issingle)
8335d6aa 7979 {
12569877 7980 if (thumb_p)
8335d6aa 7981 {
53445554
TP
7982 /* LDR should not use lead in a flag-setting instruction being
7983 chosen so we do not check whether movs can be used. */
12569877 7984
53445554 7985 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 7986 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
7987 && inst.operands[i].reg != 13
7988 && inst.operands[i].reg != 15)
12569877 7989 {
fc289b0a
TP
7990 /* Check if on thumb2 it can be done with a mov.w, mvn or
7991 movw instruction. */
12569877
AM
7992 unsigned int newimm;
7993 bfd_boolean isNegated;
7994
7995 newimm = encode_thumb32_immediate (v);
7996 if (newimm != (unsigned int) FAIL)
7997 isNegated = FALSE;
7998 else
7999 {
582cfe03 8000 newimm = encode_thumb32_immediate (~v);
12569877
AM
8001 if (newimm != (unsigned int) FAIL)
8002 isNegated = TRUE;
8003 }
8004
fc289b0a
TP
8005 /* The number can be loaded with a mov.w or mvn
8006 instruction. */
ff8646ee
TP
8007 if (newimm != (unsigned int) FAIL
8008 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8009 {
fc289b0a 8010 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8011 | (inst.operands[i].reg << 8));
fc289b0a 8012 /* Change to MOVN. */
582cfe03 8013 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8014 inst.instruction |= (newimm & 0x800) << 15;
8015 inst.instruction |= (newimm & 0x700) << 4;
8016 inst.instruction |= (newimm & 0x0ff);
8017 return TRUE;
8018 }
fc289b0a 8019 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8020 else if ((v & ~0xFFFF) == 0
8021 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8022 {
582cfe03 8023 int imm = v & 0xFFFF;
12569877 8024
582cfe03 8025 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8026 inst.instruction |= (inst.operands[i].reg << 8);
8027 inst.instruction |= (imm & 0xf000) << 4;
8028 inst.instruction |= (imm & 0x0800) << 15;
8029 inst.instruction |= (imm & 0x0700) << 4;
8030 inst.instruction |= (imm & 0x00ff);
8031 return TRUE;
8032 }
8033 }
8335d6aa 8034 }
12569877 8035 else if (arm_p)
ba592044
AM
8036 {
8037 int value = encode_arm_immediate (v);
12569877 8038
ba592044
AM
8039 if (value != FAIL)
8040 {
8041 /* This can be done with a mov instruction. */
8042 inst.instruction &= LITERAL_MASK;
8043 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8044 inst.instruction |= value & 0xfff;
8045 return TRUE;
8046 }
8335d6aa 8047
ba592044
AM
8048 value = encode_arm_immediate (~ v);
8049 if (value != FAIL)
8050 {
8051 /* This can be done with a mvn instruction. */
8052 inst.instruction &= LITERAL_MASK;
8053 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8054 inst.instruction |= value & 0xfff;
8055 return TRUE;
8056 }
8057 }
934c2632 8058 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8059 {
ba592044
AM
8060 int op = 0;
8061 unsigned immbits = 0;
8062 unsigned immlo = inst.operands[1].imm;
8063 unsigned immhi = inst.operands[1].regisimm
8064 ? inst.operands[1].reg
8065 : inst.reloc.exp.X_unsigned
8066 ? 0
8067 : ((bfd_int64_t)((int) immlo)) >> 32;
8068 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8069 &op, 64, NT_invtype);
8070
8071 if (cmode == FAIL)
8072 {
8073 neon_invert_size (&immlo, &immhi, 64);
8074 op = !op;
8075 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8076 &op, 64, NT_invtype);
8077 }
8078
8079 if (cmode != FAIL)
8080 {
8081 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8082 | (1 << 23)
8083 | (cmode << 8)
8084 | (op << 5)
8085 | (1 << 4);
8086
8087 /* Fill other bits in vmov encoding for both thumb and arm. */
8088 if (thumb_mode)
eff0bc54 8089 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8090 else
eff0bc54 8091 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8092 neon_write_immbits (immbits);
8093 return TRUE;
8094 }
8335d6aa
JW
8095 }
8096 }
8335d6aa 8097
ba592044
AM
8098 if (t == CONST_VEC)
8099 {
8100 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8101 if (inst.operands[i].issingle
8102 && is_quarter_float (inst.operands[1].imm)
8103 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8104 {
ba592044
AM
8105 inst.operands[1].imm =
8106 neon_qfloat_bits (v);
8107 do_vfp_nsyn_opcode ("fconsts");
8108 return TRUE;
8335d6aa 8109 }
5fc177c8
NC
8110
8111 /* If our host does not support a 64-bit type then we cannot perform
8112 the following optimization. This mean that there will be a
8113 discrepancy between the output produced by an assembler built for
8114 a 32-bit-only host and the output produced from a 64-bit host, but
8115 this cannot be helped. */
8116#if defined BFD_HOST_64_BIT
ba592044
AM
8117 else if (!inst.operands[1].issingle
8118 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8119 {
ba592044
AM
8120 if (is_double_a_single (v)
8121 && is_quarter_float (double_to_single (v)))
8122 {
8123 inst.operands[1].imm =
8124 neon_qfloat_bits (double_to_single (v));
8125 do_vfp_nsyn_opcode ("fconstd");
8126 return TRUE;
8127 }
8335d6aa 8128 }
5fc177c8 8129#endif
8335d6aa
JW
8130 }
8131 }
8132
8133 if (add_to_lit_pool ((!inst.operands[i].isvec
8134 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8135 return TRUE;
8136
8137 inst.operands[1].reg = REG_PC;
8138 inst.operands[1].isreg = 1;
8139 inst.operands[1].preind = 1;
8140 inst.reloc.pc_rel = 1;
8141 inst.reloc.type = (thumb_p
8142 ? BFD_RELOC_ARM_THUMB_OFFSET
8143 : (mode_3
8144 ? BFD_RELOC_ARM_HWLITERAL
8145 : BFD_RELOC_ARM_LITERAL));
8146 return FALSE;
8147}
8148
8149/* inst.operands[i] was set up by parse_address. Encode it into an
8150 ARM-format instruction. Reject all forms which cannot be encoded
8151 into a coprocessor load/store instruction. If wb_ok is false,
8152 reject use of writeback; if unind_ok is false, reject use of
8153 unindexed addressing. If reloc_override is not 0, use it instead
8154 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8155 (in which case it is preserved). */
8156
8157static int
8158encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8159{
8160 if (!inst.operands[i].isreg)
8161 {
99b2a2dd
NC
8162 /* PR 18256 */
8163 if (! inst.operands[0].isvec)
8164 {
8165 inst.error = _("invalid co-processor operand");
8166 return FAIL;
8167 }
8335d6aa
JW
8168 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8169 return SUCCESS;
8170 }
8171
8172 inst.instruction |= inst.operands[i].reg << 16;
8173
8174 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8175
8176 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8177 {
8178 gas_assert (!inst.operands[i].writeback);
8179 if (!unind_ok)
8180 {
8181 inst.error = _("instruction does not support unindexed addressing");
8182 return FAIL;
8183 }
8184 inst.instruction |= inst.operands[i].imm;
8185 inst.instruction |= INDEX_UP;
8186 return SUCCESS;
8187 }
8188
8189 if (inst.operands[i].preind)
8190 inst.instruction |= PRE_INDEX;
8191
8192 if (inst.operands[i].writeback)
09d92015 8193 {
8335d6aa 8194 if (inst.operands[i].reg == REG_PC)
c19d1205 8195 {
8335d6aa
JW
8196 inst.error = _("pc may not be used with write-back");
8197 return FAIL;
c19d1205 8198 }
8335d6aa 8199 if (!wb_ok)
c19d1205 8200 {
8335d6aa
JW
8201 inst.error = _("instruction does not support writeback");
8202 return FAIL;
c19d1205 8203 }
8335d6aa 8204 inst.instruction |= WRITE_BACK;
09d92015
MM
8205 }
8206
8335d6aa
JW
8207 if (reloc_override)
8208 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
8209 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
8210 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
8211 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8212 {
8335d6aa
JW
8213 if (thumb_mode)
8214 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8215 else
8216 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8217 }
8335d6aa
JW
8218
8219 /* Prefer + for zero encoded value. */
8220 if (!inst.operands[i].negative)
8221 inst.instruction |= INDEX_UP;
8222
8223 return SUCCESS;
09d92015
MM
8224}
8225
5f4273c7 8226/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8227 First some generics; their names are taken from the conventional
8228 bit positions for register arguments in ARM format instructions. */
09d92015 8229
a737bd4d 8230static void
c19d1205 8231do_noargs (void)
09d92015 8232{
c19d1205 8233}
a737bd4d 8234
c19d1205
ZW
8235static void
8236do_rd (void)
8237{
8238 inst.instruction |= inst.operands[0].reg << 12;
8239}
a737bd4d 8240
16a1fa25
TP
8241static void
8242do_rn (void)
8243{
8244 inst.instruction |= inst.operands[0].reg << 16;
8245}
8246
c19d1205
ZW
8247static void
8248do_rd_rm (void)
8249{
8250 inst.instruction |= inst.operands[0].reg << 12;
8251 inst.instruction |= inst.operands[1].reg;
8252}
09d92015 8253
9eb6c0f1
MGD
8254static void
8255do_rm_rn (void)
8256{
8257 inst.instruction |= inst.operands[0].reg;
8258 inst.instruction |= inst.operands[1].reg << 16;
8259}
8260
c19d1205
ZW
8261static void
8262do_rd_rn (void)
8263{
8264 inst.instruction |= inst.operands[0].reg << 12;
8265 inst.instruction |= inst.operands[1].reg << 16;
8266}
a737bd4d 8267
c19d1205
ZW
8268static void
8269do_rn_rd (void)
8270{
8271 inst.instruction |= inst.operands[0].reg << 16;
8272 inst.instruction |= inst.operands[1].reg << 12;
8273}
09d92015 8274
4ed7ed8d
TP
8275static void
8276do_tt (void)
8277{
8278 inst.instruction |= inst.operands[0].reg << 8;
8279 inst.instruction |= inst.operands[1].reg << 16;
8280}
8281
59d09be6
MGD
8282static bfd_boolean
8283check_obsolete (const arm_feature_set *feature, const char *msg)
8284{
8285 if (ARM_CPU_IS_ANY (cpu_variant))
8286 {
5c3696f8 8287 as_tsktsk ("%s", msg);
59d09be6
MGD
8288 return TRUE;
8289 }
8290 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8291 {
8292 as_bad ("%s", msg);
8293 return TRUE;
8294 }
8295
8296 return FALSE;
8297}
8298
c19d1205
ZW
8299static void
8300do_rd_rm_rn (void)
8301{
9a64e435 8302 unsigned Rn = inst.operands[2].reg;
708587a4 8303 /* Enforce restrictions on SWP instruction. */
9a64e435 8304 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8305 {
8306 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8307 _("Rn must not overlap other operands"));
8308
59d09be6
MGD
8309 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8310 */
8311 if (!check_obsolete (&arm_ext_v8,
8312 _("swp{b} use is obsoleted for ARMv8 and later"))
8313 && warn_on_deprecated
8314 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8315 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8316 }
59d09be6 8317
c19d1205
ZW
8318 inst.instruction |= inst.operands[0].reg << 12;
8319 inst.instruction |= inst.operands[1].reg;
9a64e435 8320 inst.instruction |= Rn << 16;
c19d1205 8321}
09d92015 8322
c19d1205
ZW
8323static void
8324do_rd_rn_rm (void)
8325{
8326 inst.instruction |= inst.operands[0].reg << 12;
8327 inst.instruction |= inst.operands[1].reg << 16;
8328 inst.instruction |= inst.operands[2].reg;
8329}
a737bd4d 8330
c19d1205
ZW
8331static void
8332do_rm_rd_rn (void)
8333{
5be8be5d
DG
8334 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8335 constraint (((inst.reloc.exp.X_op != O_constant
8336 && inst.reloc.exp.X_op != O_illegal)
8337 || inst.reloc.exp.X_add_number != 0),
8338 BAD_ADDR_MODE);
c19d1205
ZW
8339 inst.instruction |= inst.operands[0].reg;
8340 inst.instruction |= inst.operands[1].reg << 12;
8341 inst.instruction |= inst.operands[2].reg << 16;
8342}
09d92015 8343
c19d1205
ZW
8344static void
8345do_imm0 (void)
8346{
8347 inst.instruction |= inst.operands[0].imm;
8348}
09d92015 8349
c19d1205
ZW
8350static void
8351do_rd_cpaddr (void)
8352{
8353 inst.instruction |= inst.operands[0].reg << 12;
8354 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 8355}
a737bd4d 8356
c19d1205
ZW
8357/* ARM instructions, in alphabetical order by function name (except
8358 that wrapper functions appear immediately after the function they
8359 wrap). */
09d92015 8360
c19d1205
ZW
8361/* This is a pseudo-op of the form "adr rd, label" to be converted
8362 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
8363
8364static void
c19d1205 8365do_adr (void)
09d92015 8366{
c19d1205 8367 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 8368
c19d1205
ZW
8369 /* Frag hacking will turn this into a sub instruction if the offset turns
8370 out to be negative. */
8371 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 8372 inst.reloc.pc_rel = 1;
2fc8bdac 8373 inst.reloc.exp.X_add_number -= 8;
52a86f84
NC
8374
8375 if (inst.reloc.exp.X_op == O_symbol
8376 && inst.reloc.exp.X_add_symbol != NULL
8377 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8378 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8379 inst.reloc.exp.X_add_number += 1;
c19d1205 8380}
b99bd4ef 8381
c19d1205
ZW
8382/* This is a pseudo-op of the form "adrl rd, label" to be converted
8383 into a relative address of the form:
8384 add rd, pc, #low(label-.-8)"
8385 add rd, rd, #high(label-.-8)" */
b99bd4ef 8386
c19d1205
ZW
8387static void
8388do_adrl (void)
8389{
8390 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 8391
c19d1205
ZW
8392 /* Frag hacking will turn this into a sub instruction if the offset turns
8393 out to be negative. */
8394 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
8395 inst.reloc.pc_rel = 1;
8396 inst.size = INSN_SIZE * 2;
2fc8bdac 8397 inst.reloc.exp.X_add_number -= 8;
52a86f84
NC
8398
8399 if (inst.reloc.exp.X_op == O_symbol
8400 && inst.reloc.exp.X_add_symbol != NULL
8401 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8402 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8403 inst.reloc.exp.X_add_number += 1;
b99bd4ef
NC
8404}
8405
b99bd4ef 8406static void
c19d1205 8407do_arit (void)
b99bd4ef 8408{
a9f02af8
MG
8409 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
8410 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
8411 THUMB1_RELOC_ONLY);
c19d1205
ZW
8412 if (!inst.operands[1].present)
8413 inst.operands[1].reg = inst.operands[0].reg;
8414 inst.instruction |= inst.operands[0].reg << 12;
8415 inst.instruction |= inst.operands[1].reg << 16;
8416 encode_arm_shifter_operand (2);
8417}
b99bd4ef 8418
62b3e311
PB
8419static void
8420do_barrier (void)
8421{
8422 if (inst.operands[0].present)
ccb84d65 8423 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
8424 else
8425 inst.instruction |= 0xf;
8426}
8427
c19d1205
ZW
8428static void
8429do_bfc (void)
8430{
8431 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8432 constraint (msb > 32, _("bit-field extends past end of register"));
8433 /* The instruction encoding stores the LSB and MSB,
8434 not the LSB and width. */
8435 inst.instruction |= inst.operands[0].reg << 12;
8436 inst.instruction |= inst.operands[1].imm << 7;
8437 inst.instruction |= (msb - 1) << 16;
8438}
b99bd4ef 8439
c19d1205
ZW
8440static void
8441do_bfi (void)
8442{
8443 unsigned int msb;
b99bd4ef 8444
c19d1205
ZW
8445 /* #0 in second position is alternative syntax for bfc, which is
8446 the same instruction but with REG_PC in the Rm field. */
8447 if (!inst.operands[1].isreg)
8448 inst.operands[1].reg = REG_PC;
b99bd4ef 8449
c19d1205
ZW
8450 msb = inst.operands[2].imm + inst.operands[3].imm;
8451 constraint (msb > 32, _("bit-field extends past end of register"));
8452 /* The instruction encoding stores the LSB and MSB,
8453 not the LSB and width. */
8454 inst.instruction |= inst.operands[0].reg << 12;
8455 inst.instruction |= inst.operands[1].reg;
8456 inst.instruction |= inst.operands[2].imm << 7;
8457 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
8458}
8459
b99bd4ef 8460static void
c19d1205 8461do_bfx (void)
b99bd4ef 8462{
c19d1205
ZW
8463 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8464 _("bit-field extends past end of register"));
8465 inst.instruction |= inst.operands[0].reg << 12;
8466 inst.instruction |= inst.operands[1].reg;
8467 inst.instruction |= inst.operands[2].imm << 7;
8468 inst.instruction |= (inst.operands[3].imm - 1) << 16;
8469}
09d92015 8470
c19d1205
ZW
8471/* ARM V5 breakpoint instruction (argument parse)
8472 BKPT <16 bit unsigned immediate>
8473 Instruction is not conditional.
8474 The bit pattern given in insns[] has the COND_ALWAYS condition,
8475 and it is an error if the caller tried to override that. */
b99bd4ef 8476
c19d1205
ZW
8477static void
8478do_bkpt (void)
8479{
8480 /* Top 12 of 16 bits to bits 19:8. */
8481 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 8482
c19d1205
ZW
8483 /* Bottom 4 of 16 bits to bits 3:0. */
8484 inst.instruction |= inst.operands[0].imm & 0xf;
8485}
09d92015 8486
c19d1205
ZW
8487static void
8488encode_branch (int default_reloc)
8489{
8490 if (inst.operands[0].hasreloc)
8491 {
0855e32b
NS
8492 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
8493 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
8494 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
8495 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
8496 ? BFD_RELOC_ARM_PLT32
8497 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 8498 }
b99bd4ef 8499 else
9ae92b05 8500 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 8501 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8502}
8503
b99bd4ef 8504static void
c19d1205 8505do_branch (void)
b99bd4ef 8506{
39b41c9c
PB
8507#ifdef OBJ_ELF
8508 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8509 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8510 else
8511#endif
8512 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8513}
8514
8515static void
8516do_bl (void)
8517{
8518#ifdef OBJ_ELF
8519 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8520 {
8521 if (inst.cond == COND_ALWAYS)
8522 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
8523 else
8524 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8525 }
8526 else
8527#endif
8528 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 8529}
b99bd4ef 8530
c19d1205
ZW
8531/* ARM V5 branch-link-exchange instruction (argument parse)
8532 BLX <target_addr> ie BLX(1)
8533 BLX{<condition>} <Rm> ie BLX(2)
8534 Unfortunately, there are two different opcodes for this mnemonic.
8535 So, the insns[].value is not used, and the code here zaps values
8536 into inst.instruction.
8537 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 8538
c19d1205
ZW
8539static void
8540do_blx (void)
8541{
8542 if (inst.operands[0].isreg)
b99bd4ef 8543 {
c19d1205
ZW
8544 /* Arg is a register; the opcode provided by insns[] is correct.
8545 It is not illegal to do "blx pc", just useless. */
8546 if (inst.operands[0].reg == REG_PC)
8547 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 8548
c19d1205
ZW
8549 inst.instruction |= inst.operands[0].reg;
8550 }
8551 else
b99bd4ef 8552 {
c19d1205 8553 /* Arg is an address; this instruction cannot be executed
267bf995
RR
8554 conditionally, and the opcode must be adjusted.
8555 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
8556 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 8557 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 8558 inst.instruction = 0xfa000000;
267bf995 8559 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 8560 }
c19d1205
ZW
8561}
8562
8563static void
8564do_bx (void)
8565{
845b51d6
PB
8566 bfd_boolean want_reloc;
8567
c19d1205
ZW
8568 if (inst.operands[0].reg == REG_PC)
8569 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 8570
c19d1205 8571 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
8572 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
8573 it is for ARMv4t or earlier. */
8574 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
8575 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
8576 want_reloc = TRUE;
8577
5ad34203 8578#ifdef OBJ_ELF
845b51d6 8579 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 8580#endif
584206db 8581 want_reloc = FALSE;
845b51d6
PB
8582
8583 if (want_reloc)
8584 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
8585}
8586
c19d1205
ZW
8587
8588/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
8589
8590static void
c19d1205 8591do_bxj (void)
a737bd4d 8592{
c19d1205
ZW
8593 if (inst.operands[0].reg == REG_PC)
8594 as_tsktsk (_("use of r15 in bxj is not really useful"));
8595
8596 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
8597}
8598
c19d1205
ZW
8599/* Co-processor data operation:
8600 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
8601 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
8602static void
8603do_cdp (void)
8604{
8605 inst.instruction |= inst.operands[0].reg << 8;
8606 inst.instruction |= inst.operands[1].imm << 20;
8607 inst.instruction |= inst.operands[2].reg << 12;
8608 inst.instruction |= inst.operands[3].reg << 16;
8609 inst.instruction |= inst.operands[4].reg;
8610 inst.instruction |= inst.operands[5].imm << 5;
8611}
a737bd4d
NC
8612
8613static void
c19d1205 8614do_cmp (void)
a737bd4d 8615{
c19d1205
ZW
8616 inst.instruction |= inst.operands[0].reg << 16;
8617 encode_arm_shifter_operand (1);
a737bd4d
NC
8618}
8619
c19d1205
ZW
8620/* Transfer between coprocessor and ARM registers.
8621 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
8622 MRC2
8623 MCR{cond}
8624 MCR2
8625
8626 No special properties. */
09d92015 8627
dcbd0d71
MGD
8628struct deprecated_coproc_regs_s
8629{
8630 unsigned cp;
8631 int opc1;
8632 unsigned crn;
8633 unsigned crm;
8634 int opc2;
8635 arm_feature_set deprecated;
8636 arm_feature_set obsoleted;
8637 const char *dep_msg;
8638 const char *obs_msg;
8639};
8640
8641#define DEPR_ACCESS_V8 \
8642 N_("This coprocessor register access is deprecated in ARMv8")
8643
8644/* Table of all deprecated coprocessor registers. */
8645static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
8646{
8647 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 8648 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8649 DEPR_ACCESS_V8, NULL},
8650 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 8651 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8652 DEPR_ACCESS_V8, NULL},
8653 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 8654 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8655 DEPR_ACCESS_V8, NULL},
8656 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 8657 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8658 DEPR_ACCESS_V8, NULL},
8659 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 8660 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8661 DEPR_ACCESS_V8, NULL},
8662};
8663
8664#undef DEPR_ACCESS_V8
8665
8666static const size_t deprecated_coproc_reg_count =
8667 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
8668
09d92015 8669static void
c19d1205 8670do_co_reg (void)
09d92015 8671{
fdfde340 8672 unsigned Rd;
dcbd0d71 8673 size_t i;
fdfde340
JM
8674
8675 Rd = inst.operands[2].reg;
8676 if (thumb_mode)
8677 {
8678 if (inst.instruction == 0xee000010
8679 || inst.instruction == 0xfe000010)
8680 /* MCR, MCR2 */
8681 reject_bad_reg (Rd);
5c8ed6a4 8682 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
8683 /* MRC, MRC2 */
8684 constraint (Rd == REG_SP, BAD_SP);
8685 }
8686 else
8687 {
8688 /* MCR */
8689 if (inst.instruction == 0xe000010)
8690 constraint (Rd == REG_PC, BAD_PC);
8691 }
8692
dcbd0d71
MGD
8693 for (i = 0; i < deprecated_coproc_reg_count; ++i)
8694 {
8695 const struct deprecated_coproc_regs_s *r =
8696 deprecated_coproc_regs + i;
8697
8698 if (inst.operands[0].reg == r->cp
8699 && inst.operands[1].imm == r->opc1
8700 && inst.operands[3].reg == r->crn
8701 && inst.operands[4].reg == r->crm
8702 && inst.operands[5].imm == r->opc2)
8703 {
b10bf8c5 8704 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 8705 && warn_on_deprecated
dcbd0d71 8706 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 8707 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
8708 }
8709 }
fdfde340 8710
c19d1205
ZW
8711 inst.instruction |= inst.operands[0].reg << 8;
8712 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 8713 inst.instruction |= Rd << 12;
c19d1205
ZW
8714 inst.instruction |= inst.operands[3].reg << 16;
8715 inst.instruction |= inst.operands[4].reg;
8716 inst.instruction |= inst.operands[5].imm << 5;
8717}
09d92015 8718
c19d1205
ZW
8719/* Transfer between coprocessor register and pair of ARM registers.
8720 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
8721 MCRR2
8722 MRRC{cond}
8723 MRRC2
b99bd4ef 8724
c19d1205 8725 Two XScale instructions are special cases of these:
09d92015 8726
c19d1205
ZW
8727 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
8728 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 8729
5f4273c7 8730 Result unpredictable if Rd or Rn is R15. */
a737bd4d 8731
c19d1205
ZW
8732static void
8733do_co_reg2c (void)
8734{
fdfde340
JM
8735 unsigned Rd, Rn;
8736
8737 Rd = inst.operands[2].reg;
8738 Rn = inst.operands[3].reg;
8739
8740 if (thumb_mode)
8741 {
8742 reject_bad_reg (Rd);
8743 reject_bad_reg (Rn);
8744 }
8745 else
8746 {
8747 constraint (Rd == REG_PC, BAD_PC);
8748 constraint (Rn == REG_PC, BAD_PC);
8749 }
8750
873f10f0
TC
8751 /* Only check the MRRC{2} variants. */
8752 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
8753 {
8754 /* If Rd == Rn, error that the operation is
8755 unpredictable (example MRRC p3,#1,r1,r1,c4). */
8756 constraint (Rd == Rn, BAD_OVERLAP);
8757 }
8758
c19d1205
ZW
8759 inst.instruction |= inst.operands[0].reg << 8;
8760 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
8761 inst.instruction |= Rd << 12;
8762 inst.instruction |= Rn << 16;
c19d1205 8763 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
8764}
8765
c19d1205
ZW
8766static void
8767do_cpsi (void)
8768{
8769 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
8770 if (inst.operands[1].present)
8771 {
8772 inst.instruction |= CPSI_MMOD;
8773 inst.instruction |= inst.operands[1].imm;
8774 }
c19d1205 8775}
b99bd4ef 8776
62b3e311
PB
8777static void
8778do_dbg (void)
8779{
8780 inst.instruction |= inst.operands[0].imm;
8781}
8782
eea54501
MGD
8783static void
8784do_div (void)
8785{
8786 unsigned Rd, Rn, Rm;
8787
8788 Rd = inst.operands[0].reg;
8789 Rn = (inst.operands[1].present
8790 ? inst.operands[1].reg : Rd);
8791 Rm = inst.operands[2].reg;
8792
8793 constraint ((Rd == REG_PC), BAD_PC);
8794 constraint ((Rn == REG_PC), BAD_PC);
8795 constraint ((Rm == REG_PC), BAD_PC);
8796
8797 inst.instruction |= Rd << 16;
8798 inst.instruction |= Rn << 0;
8799 inst.instruction |= Rm << 8;
8800}
8801
b99bd4ef 8802static void
c19d1205 8803do_it (void)
b99bd4ef 8804{
c19d1205 8805 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
8806 process it to do the validation as if in
8807 thumb mode, just in case the code gets
8808 assembled for thumb using the unified syntax. */
8809
c19d1205 8810 inst.size = 0;
e07e6e58
NC
8811 if (unified_syntax)
8812 {
8813 set_it_insn_type (IT_INSN);
8814 now_it.mask = (inst.instruction & 0xf) | 0x10;
8815 now_it.cc = inst.operands[0].imm;
8816 }
09d92015 8817}
b99bd4ef 8818
6530b175
NC
8819/* If there is only one register in the register list,
8820 then return its register number. Otherwise return -1. */
8821static int
8822only_one_reg_in_list (int range)
8823{
8824 int i = ffs (range) - 1;
8825 return (i > 15 || range != (1 << i)) ? -1 : i;
8826}
8827
09d92015 8828static void
6530b175 8829encode_ldmstm(int from_push_pop_mnem)
ea6ef066 8830{
c19d1205
ZW
8831 int base_reg = inst.operands[0].reg;
8832 int range = inst.operands[1].imm;
6530b175 8833 int one_reg;
ea6ef066 8834
c19d1205
ZW
8835 inst.instruction |= base_reg << 16;
8836 inst.instruction |= range;
ea6ef066 8837
c19d1205
ZW
8838 if (inst.operands[1].writeback)
8839 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 8840
c19d1205 8841 if (inst.operands[0].writeback)
ea6ef066 8842 {
c19d1205
ZW
8843 inst.instruction |= WRITE_BACK;
8844 /* Check for unpredictable uses of writeback. */
8845 if (inst.instruction & LOAD_BIT)
09d92015 8846 {
c19d1205
ZW
8847 /* Not allowed in LDM type 2. */
8848 if ((inst.instruction & LDM_TYPE_2_OR_3)
8849 && ((range & (1 << REG_PC)) == 0))
8850 as_warn (_("writeback of base register is UNPREDICTABLE"));
8851 /* Only allowed if base reg not in list for other types. */
8852 else if (range & (1 << base_reg))
8853 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8854 }
8855 else /* STM. */
8856 {
8857 /* Not allowed for type 2. */
8858 if (inst.instruction & LDM_TYPE_2_OR_3)
8859 as_warn (_("writeback of base register is UNPREDICTABLE"));
8860 /* Only allowed if base reg not in list, or first in list. */
8861 else if ((range & (1 << base_reg))
8862 && (range & ((1 << base_reg) - 1)))
8863 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 8864 }
ea6ef066 8865 }
6530b175
NC
8866
8867 /* If PUSH/POP has only one register, then use the A2 encoding. */
8868 one_reg = only_one_reg_in_list (range);
8869 if (from_push_pop_mnem && one_reg >= 0)
8870 {
8871 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8872
8873 inst.instruction &= A_COND_MASK;
8874 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8875 inst.instruction |= one_reg << 12;
8876 }
8877}
8878
8879static void
8880do_ldmstm (void)
8881{
8882 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
8883}
8884
c19d1205
ZW
8885/* ARMv5TE load-consecutive (argument parse)
8886 Mode is like LDRH.
8887
8888 LDRccD R, mode
8889 STRccD R, mode. */
8890
a737bd4d 8891static void
c19d1205 8892do_ldrd (void)
a737bd4d 8893{
c19d1205 8894 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 8895 _("first transfer register must be even"));
c19d1205
ZW
8896 constraint (inst.operands[1].present
8897 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 8898 _("can only transfer two consecutive registers"));
c19d1205
ZW
8899 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8900 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 8901
c19d1205
ZW
8902 if (!inst.operands[1].present)
8903 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 8904
c56791bb
RE
8905 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8906 register and the first register written; we have to diagnose
8907 overlap between the base and the second register written here. */
ea6ef066 8908
c56791bb
RE
8909 if (inst.operands[2].reg == inst.operands[1].reg
8910 && (inst.operands[2].writeback || inst.operands[2].postind))
8911 as_warn (_("base register written back, and overlaps "
8912 "second transfer register"));
b05fe5cf 8913
c56791bb
RE
8914 if (!(inst.instruction & V4_STR_BIT))
8915 {
c19d1205 8916 /* For an index-register load, the index register must not overlap the
c56791bb
RE
8917 destination (even if not write-back). */
8918 if (inst.operands[2].immisreg
8919 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8920 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8921 as_warn (_("index register overlaps transfer register"));
b05fe5cf 8922 }
c19d1205
ZW
8923 inst.instruction |= inst.operands[0].reg << 12;
8924 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
8925}
8926
8927static void
c19d1205 8928do_ldrex (void)
b05fe5cf 8929{
c19d1205
ZW
8930 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8931 || inst.operands[1].postind || inst.operands[1].writeback
8932 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
8933 || inst.operands[1].negative
8934 /* This can arise if the programmer has written
8935 strex rN, rM, foo
8936 or if they have mistakenly used a register name as the last
8937 operand, eg:
8938 strex rN, rM, rX
8939 It is very difficult to distinguish between these two cases
8940 because "rX" might actually be a label. ie the register
8941 name has been occluded by a symbol of the same name. So we
8942 just generate a general 'bad addressing mode' type error
8943 message and leave it up to the programmer to discover the
8944 true cause and fix their mistake. */
8945 || (inst.operands[1].reg == REG_PC),
8946 BAD_ADDR_MODE);
b05fe5cf 8947
c19d1205
ZW
8948 constraint (inst.reloc.exp.X_op != O_constant
8949 || inst.reloc.exp.X_add_number != 0,
8950 _("offset must be zero in ARM encoding"));
b05fe5cf 8951
5be8be5d
DG
8952 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8953
c19d1205
ZW
8954 inst.instruction |= inst.operands[0].reg << 12;
8955 inst.instruction |= inst.operands[1].reg << 16;
8956 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
8957}
8958
8959static void
c19d1205 8960do_ldrexd (void)
b05fe5cf 8961{
c19d1205
ZW
8962 constraint (inst.operands[0].reg % 2 != 0,
8963 _("even register required"));
8964 constraint (inst.operands[1].present
8965 && inst.operands[1].reg != inst.operands[0].reg + 1,
8966 _("can only load two consecutive registers"));
8967 /* If op 1 were present and equal to PC, this function wouldn't
8968 have been called in the first place. */
8969 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 8970
c19d1205
ZW
8971 inst.instruction |= inst.operands[0].reg << 12;
8972 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
8973}
8974
1be5fd2e
NC
8975/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8976 which is not a multiple of four is UNPREDICTABLE. */
8977static void
8978check_ldr_r15_aligned (void)
8979{
8980 constraint (!(inst.operands[1].immisreg)
8981 && (inst.operands[0].reg == REG_PC
8982 && inst.operands[1].reg == REG_PC
8983 && (inst.reloc.exp.X_add_number & 0x3)),
de194d85 8984 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
8985}
8986
b05fe5cf 8987static void
c19d1205 8988do_ldst (void)
b05fe5cf 8989{
c19d1205
ZW
8990 inst.instruction |= inst.operands[0].reg << 12;
8991 if (!inst.operands[1].isreg)
8335d6aa 8992 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 8993 return;
c19d1205 8994 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 8995 check_ldr_r15_aligned ();
b05fe5cf
ZW
8996}
8997
8998static void
c19d1205 8999do_ldstt (void)
b05fe5cf 9000{
c19d1205
ZW
9001 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9002 reject [Rn,...]. */
9003 if (inst.operands[1].preind)
b05fe5cf 9004 {
bd3ba5d1
NC
9005 constraint (inst.reloc.exp.X_op != O_constant
9006 || inst.reloc.exp.X_add_number != 0,
c19d1205 9007 _("this instruction requires a post-indexed address"));
b05fe5cf 9008
c19d1205
ZW
9009 inst.operands[1].preind = 0;
9010 inst.operands[1].postind = 1;
9011 inst.operands[1].writeback = 1;
b05fe5cf 9012 }
c19d1205
ZW
9013 inst.instruction |= inst.operands[0].reg << 12;
9014 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9015}
b05fe5cf 9016
c19d1205 9017/* Halfword and signed-byte load/store operations. */
b05fe5cf 9018
c19d1205
ZW
9019static void
9020do_ldstv4 (void)
9021{
ff4a8d2b 9022 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9023 inst.instruction |= inst.operands[0].reg << 12;
9024 if (!inst.operands[1].isreg)
8335d6aa 9025 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9026 return;
c19d1205 9027 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9028}
9029
9030static void
c19d1205 9031do_ldsttv4 (void)
b05fe5cf 9032{
c19d1205
ZW
9033 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9034 reject [Rn,...]. */
9035 if (inst.operands[1].preind)
b05fe5cf 9036 {
bd3ba5d1
NC
9037 constraint (inst.reloc.exp.X_op != O_constant
9038 || inst.reloc.exp.X_add_number != 0,
c19d1205 9039 _("this instruction requires a post-indexed address"));
b05fe5cf 9040
c19d1205
ZW
9041 inst.operands[1].preind = 0;
9042 inst.operands[1].postind = 1;
9043 inst.operands[1].writeback = 1;
b05fe5cf 9044 }
c19d1205
ZW
9045 inst.instruction |= inst.operands[0].reg << 12;
9046 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9047}
b05fe5cf 9048
c19d1205
ZW
9049/* Co-processor register load/store.
9050 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9051static void
9052do_lstc (void)
9053{
9054 inst.instruction |= inst.operands[0].reg << 8;
9055 inst.instruction |= inst.operands[1].reg << 12;
9056 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9057}
9058
b05fe5cf 9059static void
c19d1205 9060do_mlas (void)
b05fe5cf 9061{
8fb9d7b9 9062 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9063 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9064 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9065 && !(inst.instruction & 0x00400000))
8fb9d7b9 9066 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9067
c19d1205
ZW
9068 inst.instruction |= inst.operands[0].reg << 16;
9069 inst.instruction |= inst.operands[1].reg;
9070 inst.instruction |= inst.operands[2].reg << 8;
9071 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9072}
b05fe5cf 9073
c19d1205
ZW
9074static void
9075do_mov (void)
9076{
a9f02af8
MG
9077 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9078 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9079 THUMB1_RELOC_ONLY);
c19d1205
ZW
9080 inst.instruction |= inst.operands[0].reg << 12;
9081 encode_arm_shifter_operand (1);
9082}
b05fe5cf 9083
c19d1205
ZW
9084/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9085static void
9086do_mov16 (void)
9087{
b6895b4f
PB
9088 bfd_vma imm;
9089 bfd_boolean top;
9090
9091 top = (inst.instruction & 0x00400000) != 0;
9092 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
33eaf5de 9093 _(":lower16: not allowed in this instruction"));
b6895b4f 9094 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
33eaf5de 9095 _(":upper16: not allowed in this instruction"));
c19d1205 9096 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
9097 if (inst.reloc.type == BFD_RELOC_UNUSED)
9098 {
9099 imm = inst.reloc.exp.X_add_number;
9100 /* The value is in two pieces: 0:11, 16:19. */
9101 inst.instruction |= (imm & 0x00000fff);
9102 inst.instruction |= (imm & 0x0000f000) << 4;
9103 }
b05fe5cf 9104}
b99bd4ef 9105
037e8744
JB
9106static int
9107do_vfp_nsyn_mrs (void)
9108{
9109 if (inst.operands[0].isvec)
9110 {
9111 if (inst.operands[1].reg != 1)
477330fc 9112 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9113 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9114 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9115 do_vfp_nsyn_opcode ("fmstat");
9116 }
9117 else if (inst.operands[1].isvec)
9118 do_vfp_nsyn_opcode ("fmrx");
9119 else
9120 return FAIL;
5f4273c7 9121
037e8744
JB
9122 return SUCCESS;
9123}
9124
9125static int
9126do_vfp_nsyn_msr (void)
9127{
9128 if (inst.operands[0].isvec)
9129 do_vfp_nsyn_opcode ("fmxr");
9130 else
9131 return FAIL;
9132
9133 return SUCCESS;
9134}
9135
f7c21dc7
NC
9136static void
9137do_vmrs (void)
9138{
9139 unsigned Rt = inst.operands[0].reg;
fa94de6b 9140
16d02dc9 9141 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9142 {
9143 inst.error = BAD_SP;
9144 return;
9145 }
9146
40c7d507
RR
9147 /* MVFR2 is only valid at ARMv8-A. */
9148 if (inst.operands[1].reg == 5)
9149 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9150 _(BAD_FPU));
9151
f7c21dc7 9152 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9153 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9154 {
9155 inst.error = BAD_PC;
9156 return;
9157 }
9158
16d02dc9
JB
9159 /* If we get through parsing the register name, we just insert the number
9160 generated into the instruction without further validation. */
9161 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9162 inst.instruction |= (Rt << 12);
9163}
9164
9165static void
9166do_vmsr (void)
9167{
9168 unsigned Rt = inst.operands[1].reg;
fa94de6b 9169
f7c21dc7
NC
9170 if (thumb_mode)
9171 reject_bad_reg (Rt);
9172 else if (Rt == REG_PC)
9173 {
9174 inst.error = BAD_PC;
9175 return;
9176 }
9177
40c7d507
RR
9178 /* MVFR2 is only valid for ARMv8-A. */
9179 if (inst.operands[0].reg == 5)
9180 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9181 _(BAD_FPU));
9182
16d02dc9
JB
9183 /* If we get through parsing the register name, we just insert the number
9184 generated into the instruction without further validation. */
9185 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9186 inst.instruction |= (Rt << 12);
9187}
9188
b99bd4ef 9189static void
c19d1205 9190do_mrs (void)
b99bd4ef 9191{
90ec0d68
MGD
9192 unsigned br;
9193
037e8744
JB
9194 if (do_vfp_nsyn_mrs () == SUCCESS)
9195 return;
9196
ff4a8d2b 9197 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9198 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9199
9200 if (inst.operands[1].isreg)
9201 {
9202 br = inst.operands[1].reg;
9203 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
9204 as_bad (_("bad register for mrs"));
9205 }
9206 else
9207 {
9208 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9209 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9210 != (PSR_c|PSR_f),
d2cd1205 9211 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9212 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9213 }
9214
9215 inst.instruction |= br;
c19d1205 9216}
b99bd4ef 9217
c19d1205
ZW
9218/* Two possible forms:
9219 "{C|S}PSR_<field>, Rm",
9220 "{C|S}PSR_f, #expression". */
b99bd4ef 9221
c19d1205
ZW
9222static void
9223do_msr (void)
9224{
037e8744
JB
9225 if (do_vfp_nsyn_msr () == SUCCESS)
9226 return;
9227
c19d1205
ZW
9228 inst.instruction |= inst.operands[0].imm;
9229 if (inst.operands[1].isreg)
9230 inst.instruction |= inst.operands[1].reg;
9231 else
b99bd4ef 9232 {
c19d1205
ZW
9233 inst.instruction |= INST_IMMEDIATE;
9234 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
9235 inst.reloc.pc_rel = 0;
b99bd4ef 9236 }
b99bd4ef
NC
9237}
9238
c19d1205
ZW
9239static void
9240do_mul (void)
a737bd4d 9241{
ff4a8d2b
NC
9242 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9243
c19d1205
ZW
9244 if (!inst.operands[2].present)
9245 inst.operands[2].reg = inst.operands[0].reg;
9246 inst.instruction |= inst.operands[0].reg << 16;
9247 inst.instruction |= inst.operands[1].reg;
9248 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9249
8fb9d7b9
MS
9250 if (inst.operands[0].reg == inst.operands[1].reg
9251 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9252 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9253}
9254
c19d1205
ZW
9255/* Long Multiply Parser
9256 UMULL RdLo, RdHi, Rm, Rs
9257 SMULL RdLo, RdHi, Rm, Rs
9258 UMLAL RdLo, RdHi, Rm, Rs
9259 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9260
9261static void
c19d1205 9262do_mull (void)
b99bd4ef 9263{
c19d1205
ZW
9264 inst.instruction |= inst.operands[0].reg << 12;
9265 inst.instruction |= inst.operands[1].reg << 16;
9266 inst.instruction |= inst.operands[2].reg;
9267 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9268
682b27ad
PB
9269 /* rdhi and rdlo must be different. */
9270 if (inst.operands[0].reg == inst.operands[1].reg)
9271 as_tsktsk (_("rdhi and rdlo must be different"));
9272
9273 /* rdhi, rdlo and rm must all be different before armv6. */
9274 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9275 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9276 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9277 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9278}
b99bd4ef 9279
c19d1205
ZW
9280static void
9281do_nop (void)
9282{
e7495e45
NS
9283 if (inst.operands[0].present
9284 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9285 {
9286 /* Architectural NOP hints are CPSR sets with no bits selected. */
9287 inst.instruction &= 0xf0000000;
e7495e45
NS
9288 inst.instruction |= 0x0320f000;
9289 if (inst.operands[0].present)
9290 inst.instruction |= inst.operands[0].imm;
c19d1205 9291 }
b99bd4ef
NC
9292}
9293
c19d1205
ZW
9294/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9295 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9296 Condition defaults to COND_ALWAYS.
9297 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9298
9299static void
c19d1205 9300do_pkhbt (void)
b99bd4ef 9301{
c19d1205
ZW
9302 inst.instruction |= inst.operands[0].reg << 12;
9303 inst.instruction |= inst.operands[1].reg << 16;
9304 inst.instruction |= inst.operands[2].reg;
9305 if (inst.operands[3].present)
9306 encode_arm_shift (3);
9307}
b99bd4ef 9308
c19d1205 9309/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9310
c19d1205
ZW
9311static void
9312do_pkhtb (void)
9313{
9314 if (!inst.operands[3].present)
b99bd4ef 9315 {
c19d1205
ZW
9316 /* If the shift specifier is omitted, turn the instruction
9317 into pkhbt rd, rm, rn. */
9318 inst.instruction &= 0xfff00010;
9319 inst.instruction |= inst.operands[0].reg << 12;
9320 inst.instruction |= inst.operands[1].reg;
9321 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9322 }
9323 else
9324 {
c19d1205
ZW
9325 inst.instruction |= inst.operands[0].reg << 12;
9326 inst.instruction |= inst.operands[1].reg << 16;
9327 inst.instruction |= inst.operands[2].reg;
9328 encode_arm_shift (3);
b99bd4ef
NC
9329 }
9330}
9331
c19d1205 9332/* ARMv5TE: Preload-Cache
60e5ef9f 9333 MP Extensions: Preload for write
c19d1205 9334
60e5ef9f 9335 PLD(W) <addr_mode>
c19d1205
ZW
9336
9337 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
9338
9339static void
c19d1205 9340do_pld (void)
b99bd4ef 9341{
c19d1205
ZW
9342 constraint (!inst.operands[0].isreg,
9343 _("'[' expected after PLD mnemonic"));
9344 constraint (inst.operands[0].postind,
9345 _("post-indexed expression used in preload instruction"));
9346 constraint (inst.operands[0].writeback,
9347 _("writeback used in preload instruction"));
9348 constraint (!inst.operands[0].preind,
9349 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
9350 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9351}
b99bd4ef 9352
62b3e311
PB
9353/* ARMv7: PLI <addr_mode> */
9354static void
9355do_pli (void)
9356{
9357 constraint (!inst.operands[0].isreg,
9358 _("'[' expected after PLI mnemonic"));
9359 constraint (inst.operands[0].postind,
9360 _("post-indexed expression used in preload instruction"));
9361 constraint (inst.operands[0].writeback,
9362 _("writeback used in preload instruction"));
9363 constraint (!inst.operands[0].preind,
9364 _("unindexed addressing used in preload instruction"));
9365 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9366 inst.instruction &= ~PRE_INDEX;
9367}
9368
c19d1205
ZW
9369static void
9370do_push_pop (void)
9371{
5e0d7f77
MP
9372 constraint (inst.operands[0].writeback,
9373 _("push/pop do not support {reglist}^"));
c19d1205
ZW
9374 inst.operands[1] = inst.operands[0];
9375 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
9376 inst.operands[0].isreg = 1;
9377 inst.operands[0].writeback = 1;
9378 inst.operands[0].reg = REG_SP;
6530b175 9379 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 9380}
b99bd4ef 9381
c19d1205
ZW
9382/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
9383 word at the specified address and the following word
9384 respectively.
9385 Unconditionally executed.
9386 Error if Rn is R15. */
b99bd4ef 9387
c19d1205
ZW
9388static void
9389do_rfe (void)
9390{
9391 inst.instruction |= inst.operands[0].reg << 16;
9392 if (inst.operands[0].writeback)
9393 inst.instruction |= WRITE_BACK;
9394}
b99bd4ef 9395
c19d1205 9396/* ARM V6 ssat (argument parse). */
b99bd4ef 9397
c19d1205
ZW
9398static void
9399do_ssat (void)
9400{
9401 inst.instruction |= inst.operands[0].reg << 12;
9402 inst.instruction |= (inst.operands[1].imm - 1) << 16;
9403 inst.instruction |= inst.operands[2].reg;
b99bd4ef 9404
c19d1205
ZW
9405 if (inst.operands[3].present)
9406 encode_arm_shift (3);
b99bd4ef
NC
9407}
9408
c19d1205 9409/* ARM V6 usat (argument parse). */
b99bd4ef
NC
9410
9411static void
c19d1205 9412do_usat (void)
b99bd4ef 9413{
c19d1205
ZW
9414 inst.instruction |= inst.operands[0].reg << 12;
9415 inst.instruction |= inst.operands[1].imm << 16;
9416 inst.instruction |= inst.operands[2].reg;
b99bd4ef 9417
c19d1205
ZW
9418 if (inst.operands[3].present)
9419 encode_arm_shift (3);
b99bd4ef
NC
9420}
9421
c19d1205 9422/* ARM V6 ssat16 (argument parse). */
09d92015
MM
9423
9424static void
c19d1205 9425do_ssat16 (void)
09d92015 9426{
c19d1205
ZW
9427 inst.instruction |= inst.operands[0].reg << 12;
9428 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
9429 inst.instruction |= inst.operands[2].reg;
09d92015
MM
9430}
9431
c19d1205
ZW
9432static void
9433do_usat16 (void)
a737bd4d 9434{
c19d1205
ZW
9435 inst.instruction |= inst.operands[0].reg << 12;
9436 inst.instruction |= inst.operands[1].imm << 16;
9437 inst.instruction |= inst.operands[2].reg;
9438}
a737bd4d 9439
c19d1205
ZW
9440/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
9441 preserving the other bits.
a737bd4d 9442
c19d1205
ZW
9443 setend <endian_specifier>, where <endian_specifier> is either
9444 BE or LE. */
a737bd4d 9445
c19d1205
ZW
9446static void
9447do_setend (void)
9448{
12e37cbc
MGD
9449 if (warn_on_deprecated
9450 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 9451 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 9452
c19d1205
ZW
9453 if (inst.operands[0].imm)
9454 inst.instruction |= 0x200;
a737bd4d
NC
9455}
9456
9457static void
c19d1205 9458do_shift (void)
a737bd4d 9459{
c19d1205
ZW
9460 unsigned int Rm = (inst.operands[1].present
9461 ? inst.operands[1].reg
9462 : inst.operands[0].reg);
a737bd4d 9463
c19d1205
ZW
9464 inst.instruction |= inst.operands[0].reg << 12;
9465 inst.instruction |= Rm;
9466 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 9467 {
c19d1205
ZW
9468 inst.instruction |= inst.operands[2].reg << 8;
9469 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
9470 /* PR 12854: Error on extraneous shifts. */
9471 constraint (inst.operands[2].shifted,
9472 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
9473 }
9474 else
c19d1205 9475 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
9476}
9477
09d92015 9478static void
3eb17e6b 9479do_smc (void)
09d92015 9480{
3eb17e6b 9481 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 9482 inst.reloc.pc_rel = 0;
09d92015
MM
9483}
9484
90ec0d68
MGD
9485static void
9486do_hvc (void)
9487{
9488 inst.reloc.type = BFD_RELOC_ARM_HVC;
9489 inst.reloc.pc_rel = 0;
9490}
9491
09d92015 9492static void
c19d1205 9493do_swi (void)
09d92015 9494{
c19d1205
ZW
9495 inst.reloc.type = BFD_RELOC_ARM_SWI;
9496 inst.reloc.pc_rel = 0;
09d92015
MM
9497}
9498
ddfded2f
MW
9499static void
9500do_setpan (void)
9501{
9502 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9503 _("selected processor does not support SETPAN instruction"));
9504
9505 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
9506}
9507
9508static void
9509do_t_setpan (void)
9510{
9511 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9512 _("selected processor does not support SETPAN instruction"));
9513
9514 inst.instruction |= (inst.operands[0].imm << 3);
9515}
9516
c19d1205
ZW
9517/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
9518 SMLAxy{cond} Rd,Rm,Rs,Rn
9519 SMLAWy{cond} Rd,Rm,Rs,Rn
9520 Error if any register is R15. */
e16bb312 9521
c19d1205
ZW
9522static void
9523do_smla (void)
e16bb312 9524{
c19d1205
ZW
9525 inst.instruction |= inst.operands[0].reg << 16;
9526 inst.instruction |= inst.operands[1].reg;
9527 inst.instruction |= inst.operands[2].reg << 8;
9528 inst.instruction |= inst.operands[3].reg << 12;
9529}
a737bd4d 9530
c19d1205
ZW
9531/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
9532 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
9533 Error if any register is R15.
9534 Warning if Rdlo == Rdhi. */
a737bd4d 9535
c19d1205
ZW
9536static void
9537do_smlal (void)
9538{
9539 inst.instruction |= inst.operands[0].reg << 12;
9540 inst.instruction |= inst.operands[1].reg << 16;
9541 inst.instruction |= inst.operands[2].reg;
9542 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 9543
c19d1205
ZW
9544 if (inst.operands[0].reg == inst.operands[1].reg)
9545 as_tsktsk (_("rdhi and rdlo must be different"));
9546}
a737bd4d 9547
c19d1205
ZW
9548/* ARM V5E (El Segundo) signed-multiply (argument parse)
9549 SMULxy{cond} Rd,Rm,Rs
9550 Error if any register is R15. */
a737bd4d 9551
c19d1205
ZW
9552static void
9553do_smul (void)
9554{
9555 inst.instruction |= inst.operands[0].reg << 16;
9556 inst.instruction |= inst.operands[1].reg;
9557 inst.instruction |= inst.operands[2].reg << 8;
9558}
a737bd4d 9559
b6702015
PB
9560/* ARM V6 srs (argument parse). The variable fields in the encoding are
9561 the same for both ARM and Thumb-2. */
a737bd4d 9562
c19d1205
ZW
9563static void
9564do_srs (void)
9565{
b6702015
PB
9566 int reg;
9567
9568 if (inst.operands[0].present)
9569 {
9570 reg = inst.operands[0].reg;
fdfde340 9571 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
9572 }
9573 else
fdfde340 9574 reg = REG_SP;
b6702015
PB
9575
9576 inst.instruction |= reg << 16;
9577 inst.instruction |= inst.operands[1].imm;
9578 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
9579 inst.instruction |= WRITE_BACK;
9580}
a737bd4d 9581
c19d1205 9582/* ARM V6 strex (argument parse). */
a737bd4d 9583
c19d1205
ZW
9584static void
9585do_strex (void)
9586{
9587 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9588 || inst.operands[2].postind || inst.operands[2].writeback
9589 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
9590 || inst.operands[2].negative
9591 /* See comment in do_ldrex(). */
9592 || (inst.operands[2].reg == REG_PC),
9593 BAD_ADDR_MODE);
a737bd4d 9594
c19d1205
ZW
9595 constraint (inst.operands[0].reg == inst.operands[1].reg
9596 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 9597
c19d1205
ZW
9598 constraint (inst.reloc.exp.X_op != O_constant
9599 || inst.reloc.exp.X_add_number != 0,
9600 _("offset must be zero in ARM encoding"));
a737bd4d 9601
c19d1205
ZW
9602 inst.instruction |= inst.operands[0].reg << 12;
9603 inst.instruction |= inst.operands[1].reg;
9604 inst.instruction |= inst.operands[2].reg << 16;
9605 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
9606}
9607
877807f8
NC
9608static void
9609do_t_strexbh (void)
9610{
9611 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9612 || inst.operands[2].postind || inst.operands[2].writeback
9613 || inst.operands[2].immisreg || inst.operands[2].shifted
9614 || inst.operands[2].negative,
9615 BAD_ADDR_MODE);
9616
9617 constraint (inst.operands[0].reg == inst.operands[1].reg
9618 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9619
9620 do_rm_rd_rn ();
9621}
9622
e16bb312 9623static void
c19d1205 9624do_strexd (void)
e16bb312 9625{
c19d1205
ZW
9626 constraint (inst.operands[1].reg % 2 != 0,
9627 _("even register required"));
9628 constraint (inst.operands[2].present
9629 && inst.operands[2].reg != inst.operands[1].reg + 1,
9630 _("can only store two consecutive registers"));
9631 /* If op 2 were present and equal to PC, this function wouldn't
9632 have been called in the first place. */
9633 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 9634
c19d1205
ZW
9635 constraint (inst.operands[0].reg == inst.operands[1].reg
9636 || inst.operands[0].reg == inst.operands[1].reg + 1
9637 || inst.operands[0].reg == inst.operands[3].reg,
9638 BAD_OVERLAP);
e16bb312 9639
c19d1205
ZW
9640 inst.instruction |= inst.operands[0].reg << 12;
9641 inst.instruction |= inst.operands[1].reg;
9642 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
9643}
9644
9eb6c0f1
MGD
9645/* ARM V8 STRL. */
9646static void
4b8c8c02 9647do_stlex (void)
9eb6c0f1
MGD
9648{
9649 constraint (inst.operands[0].reg == inst.operands[1].reg
9650 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9651
9652 do_rd_rm_rn ();
9653}
9654
9655static void
4b8c8c02 9656do_t_stlex (void)
9eb6c0f1
MGD
9657{
9658 constraint (inst.operands[0].reg == inst.operands[1].reg
9659 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9660
9661 do_rm_rd_rn ();
9662}
9663
c19d1205
ZW
9664/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
9665 extends it to 32-bits, and adds the result to a value in another
9666 register. You can specify a rotation by 0, 8, 16, or 24 bits
9667 before extracting the 16-bit value.
9668 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
9669 Condition defaults to COND_ALWAYS.
9670 Error if any register uses R15. */
9671
e16bb312 9672static void
c19d1205 9673do_sxtah (void)
e16bb312 9674{
c19d1205
ZW
9675 inst.instruction |= inst.operands[0].reg << 12;
9676 inst.instruction |= inst.operands[1].reg << 16;
9677 inst.instruction |= inst.operands[2].reg;
9678 inst.instruction |= inst.operands[3].imm << 10;
9679}
e16bb312 9680
c19d1205 9681/* ARM V6 SXTH.
e16bb312 9682
c19d1205
ZW
9683 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
9684 Condition defaults to COND_ALWAYS.
9685 Error if any register uses R15. */
e16bb312
NC
9686
9687static void
c19d1205 9688do_sxth (void)
e16bb312 9689{
c19d1205
ZW
9690 inst.instruction |= inst.operands[0].reg << 12;
9691 inst.instruction |= inst.operands[1].reg;
9692 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 9693}
c19d1205
ZW
9694\f
9695/* VFP instructions. In a logical order: SP variant first, monad
9696 before dyad, arithmetic then move then load/store. */
e16bb312
NC
9697
9698static void
c19d1205 9699do_vfp_sp_monadic (void)
e16bb312 9700{
5287ad62
JB
9701 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9702 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
9703}
9704
9705static void
c19d1205 9706do_vfp_sp_dyadic (void)
e16bb312 9707{
5287ad62
JB
9708 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9709 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9710 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
9711}
9712
9713static void
c19d1205 9714do_vfp_sp_compare_z (void)
e16bb312 9715{
5287ad62 9716 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
9717}
9718
9719static void
c19d1205 9720do_vfp_dp_sp_cvt (void)
e16bb312 9721{
5287ad62
JB
9722 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9723 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
9724}
9725
9726static void
c19d1205 9727do_vfp_sp_dp_cvt (void)
e16bb312 9728{
5287ad62
JB
9729 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9730 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
9731}
9732
9733static void
c19d1205 9734do_vfp_reg_from_sp (void)
e16bb312 9735{
c19d1205 9736 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 9737 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
9738}
9739
9740static void
c19d1205 9741do_vfp_reg2_from_sp2 (void)
e16bb312 9742{
c19d1205
ZW
9743 constraint (inst.operands[2].imm != 2,
9744 _("only two consecutive VFP SP registers allowed here"));
9745 inst.instruction |= inst.operands[0].reg << 12;
9746 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 9747 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
9748}
9749
9750static void
c19d1205 9751do_vfp_sp_from_reg (void)
e16bb312 9752{
5287ad62 9753 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 9754 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
9755}
9756
9757static void
c19d1205 9758do_vfp_sp2_from_reg2 (void)
e16bb312 9759{
c19d1205
ZW
9760 constraint (inst.operands[0].imm != 2,
9761 _("only two consecutive VFP SP registers allowed here"));
5287ad62 9762 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
9763 inst.instruction |= inst.operands[1].reg << 12;
9764 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
9765}
9766
9767static void
c19d1205 9768do_vfp_sp_ldst (void)
e16bb312 9769{
5287ad62 9770 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 9771 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
9772}
9773
9774static void
c19d1205 9775do_vfp_dp_ldst (void)
e16bb312 9776{
5287ad62 9777 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 9778 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
9779}
9780
c19d1205 9781
e16bb312 9782static void
c19d1205 9783vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 9784{
c19d1205
ZW
9785 if (inst.operands[0].writeback)
9786 inst.instruction |= WRITE_BACK;
9787 else
9788 constraint (ldstm_type != VFP_LDSTMIA,
9789 _("this addressing mode requires base-register writeback"));
9790 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 9791 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 9792 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
9793}
9794
9795static void
c19d1205 9796vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 9797{
c19d1205 9798 int count;
e16bb312 9799
c19d1205
ZW
9800 if (inst.operands[0].writeback)
9801 inst.instruction |= WRITE_BACK;
9802 else
9803 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9804 _("this addressing mode requires base-register writeback"));
e16bb312 9805
c19d1205 9806 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 9807 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 9808
c19d1205
ZW
9809 count = inst.operands[1].imm << 1;
9810 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9811 count += 1;
e16bb312 9812
c19d1205 9813 inst.instruction |= count;
e16bb312
NC
9814}
9815
9816static void
c19d1205 9817do_vfp_sp_ldstmia (void)
e16bb312 9818{
c19d1205 9819 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
9820}
9821
9822static void
c19d1205 9823do_vfp_sp_ldstmdb (void)
e16bb312 9824{
c19d1205 9825 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
9826}
9827
9828static void
c19d1205 9829do_vfp_dp_ldstmia (void)
e16bb312 9830{
c19d1205 9831 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
9832}
9833
9834static void
c19d1205 9835do_vfp_dp_ldstmdb (void)
e16bb312 9836{
c19d1205 9837 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
9838}
9839
9840static void
c19d1205 9841do_vfp_xp_ldstmia (void)
e16bb312 9842{
c19d1205
ZW
9843 vfp_dp_ldstm (VFP_LDSTMIAX);
9844}
e16bb312 9845
c19d1205
ZW
9846static void
9847do_vfp_xp_ldstmdb (void)
9848{
9849 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 9850}
5287ad62
JB
9851
9852static void
9853do_vfp_dp_rd_rm (void)
9854{
9855 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9856 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9857}
9858
9859static void
9860do_vfp_dp_rn_rd (void)
9861{
9862 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9863 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9864}
9865
9866static void
9867do_vfp_dp_rd_rn (void)
9868{
9869 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9870 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9871}
9872
9873static void
9874do_vfp_dp_rd_rn_rm (void)
9875{
9876 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9877 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9878 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9879}
9880
9881static void
9882do_vfp_dp_rd (void)
9883{
9884 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9885}
9886
9887static void
9888do_vfp_dp_rm_rd_rn (void)
9889{
9890 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9891 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9892 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9893}
9894
9895/* VFPv3 instructions. */
9896static void
9897do_vfp_sp_const (void)
9898{
9899 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
9900 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9901 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
9902}
9903
9904static void
9905do_vfp_dp_const (void)
9906{
9907 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
9908 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9909 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
9910}
9911
9912static void
9913vfp_conv (int srcsize)
9914{
5f1af56b
MGD
9915 int immbits = srcsize - inst.operands[1].imm;
9916
fa94de6b
RM
9917 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9918 {
5f1af56b 9919 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 9920 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
9921 inst.error = _("immediate value out of range, expected range [0, 16]");
9922 return;
9923 }
fa94de6b 9924 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
9925 {
9926 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 9927 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
9928 inst.error = _("immediate value out of range, expected range [1, 32]");
9929 return;
9930 }
9931
5287ad62
JB
9932 inst.instruction |= (immbits & 1) << 5;
9933 inst.instruction |= (immbits >> 1);
9934}
9935
9936static void
9937do_vfp_sp_conv_16 (void)
9938{
9939 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9940 vfp_conv (16);
9941}
9942
9943static void
9944do_vfp_dp_conv_16 (void)
9945{
9946 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9947 vfp_conv (16);
9948}
9949
9950static void
9951do_vfp_sp_conv_32 (void)
9952{
9953 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9954 vfp_conv (32);
9955}
9956
9957static void
9958do_vfp_dp_conv_32 (void)
9959{
9960 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9961 vfp_conv (32);
9962}
c19d1205
ZW
9963\f
9964/* FPA instructions. Also in a logical order. */
e16bb312 9965
c19d1205
ZW
9966static void
9967do_fpa_cmp (void)
9968{
9969 inst.instruction |= inst.operands[0].reg << 16;
9970 inst.instruction |= inst.operands[1].reg;
9971}
b99bd4ef
NC
9972
9973static void
c19d1205 9974do_fpa_ldmstm (void)
b99bd4ef 9975{
c19d1205
ZW
9976 inst.instruction |= inst.operands[0].reg << 12;
9977 switch (inst.operands[1].imm)
9978 {
9979 case 1: inst.instruction |= CP_T_X; break;
9980 case 2: inst.instruction |= CP_T_Y; break;
9981 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9982 case 4: break;
9983 default: abort ();
9984 }
b99bd4ef 9985
c19d1205
ZW
9986 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9987 {
9988 /* The instruction specified "ea" or "fd", so we can only accept
9989 [Rn]{!}. The instruction does not really support stacking or
9990 unstacking, so we have to emulate these by setting appropriate
9991 bits and offsets. */
9992 constraint (inst.reloc.exp.X_op != O_constant
9993 || inst.reloc.exp.X_add_number != 0,
9994 _("this instruction does not support indexing"));
b99bd4ef 9995
c19d1205
ZW
9996 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9997 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 9998
c19d1205
ZW
9999 if (!(inst.instruction & INDEX_UP))
10000 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 10001
c19d1205
ZW
10002 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10003 {
10004 inst.operands[2].preind = 0;
10005 inst.operands[2].postind = 1;
10006 }
10007 }
b99bd4ef 10008
c19d1205 10009 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10010}
c19d1205
ZW
10011\f
10012/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10013
c19d1205
ZW
10014static void
10015do_iwmmxt_tandorc (void)
10016{
10017 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10018}
b99bd4ef 10019
c19d1205
ZW
10020static void
10021do_iwmmxt_textrc (void)
10022{
10023 inst.instruction |= inst.operands[0].reg << 12;
10024 inst.instruction |= inst.operands[1].imm;
10025}
b99bd4ef
NC
10026
10027static void
c19d1205 10028do_iwmmxt_textrm (void)
b99bd4ef 10029{
c19d1205
ZW
10030 inst.instruction |= inst.operands[0].reg << 12;
10031 inst.instruction |= inst.operands[1].reg << 16;
10032 inst.instruction |= inst.operands[2].imm;
10033}
b99bd4ef 10034
c19d1205
ZW
10035static void
10036do_iwmmxt_tinsr (void)
10037{
10038 inst.instruction |= inst.operands[0].reg << 16;
10039 inst.instruction |= inst.operands[1].reg << 12;
10040 inst.instruction |= inst.operands[2].imm;
10041}
b99bd4ef 10042
c19d1205
ZW
10043static void
10044do_iwmmxt_tmia (void)
10045{
10046 inst.instruction |= inst.operands[0].reg << 5;
10047 inst.instruction |= inst.operands[1].reg;
10048 inst.instruction |= inst.operands[2].reg << 12;
10049}
b99bd4ef 10050
c19d1205
ZW
10051static void
10052do_iwmmxt_waligni (void)
10053{
10054 inst.instruction |= inst.operands[0].reg << 12;
10055 inst.instruction |= inst.operands[1].reg << 16;
10056 inst.instruction |= inst.operands[2].reg;
10057 inst.instruction |= inst.operands[3].imm << 20;
10058}
b99bd4ef 10059
2d447fca
JM
10060static void
10061do_iwmmxt_wmerge (void)
10062{
10063 inst.instruction |= inst.operands[0].reg << 12;
10064 inst.instruction |= inst.operands[1].reg << 16;
10065 inst.instruction |= inst.operands[2].reg;
10066 inst.instruction |= inst.operands[3].imm << 21;
10067}
10068
c19d1205
ZW
10069static void
10070do_iwmmxt_wmov (void)
10071{
10072 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10073 inst.instruction |= inst.operands[0].reg << 12;
10074 inst.instruction |= inst.operands[1].reg << 16;
10075 inst.instruction |= inst.operands[1].reg;
10076}
b99bd4ef 10077
c19d1205
ZW
10078static void
10079do_iwmmxt_wldstbh (void)
10080{
8f06b2d8 10081 int reloc;
c19d1205 10082 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10083 if (thumb_mode)
10084 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10085 else
10086 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10087 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10088}
10089
c19d1205
ZW
10090static void
10091do_iwmmxt_wldstw (void)
10092{
10093 /* RIWR_RIWC clears .isreg for a control register. */
10094 if (!inst.operands[0].isreg)
10095 {
10096 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10097 inst.instruction |= 0xf0000000;
10098 }
b99bd4ef 10099
c19d1205
ZW
10100 inst.instruction |= inst.operands[0].reg << 12;
10101 encode_arm_cp_address (1, TRUE, TRUE, 0);
10102}
b99bd4ef
NC
10103
10104static void
c19d1205 10105do_iwmmxt_wldstd (void)
b99bd4ef 10106{
c19d1205 10107 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10108 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10109 && inst.operands[1].immisreg)
10110 {
10111 inst.instruction &= ~0x1a000ff;
eff0bc54 10112 inst.instruction |= (0xfU << 28);
2d447fca
JM
10113 if (inst.operands[1].preind)
10114 inst.instruction |= PRE_INDEX;
10115 if (!inst.operands[1].negative)
10116 inst.instruction |= INDEX_UP;
10117 if (inst.operands[1].writeback)
10118 inst.instruction |= WRITE_BACK;
10119 inst.instruction |= inst.operands[1].reg << 16;
10120 inst.instruction |= inst.reloc.exp.X_add_number << 4;
10121 inst.instruction |= inst.operands[1].imm;
10122 }
10123 else
10124 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10125}
b99bd4ef 10126
c19d1205
ZW
10127static void
10128do_iwmmxt_wshufh (void)
10129{
10130 inst.instruction |= inst.operands[0].reg << 12;
10131 inst.instruction |= inst.operands[1].reg << 16;
10132 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10133 inst.instruction |= (inst.operands[2].imm & 0x0f);
10134}
b99bd4ef 10135
c19d1205
ZW
10136static void
10137do_iwmmxt_wzero (void)
10138{
10139 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10140 inst.instruction |= inst.operands[0].reg;
10141 inst.instruction |= inst.operands[0].reg << 12;
10142 inst.instruction |= inst.operands[0].reg << 16;
10143}
2d447fca
JM
10144
10145static void
10146do_iwmmxt_wrwrwr_or_imm5 (void)
10147{
10148 if (inst.operands[2].isreg)
10149 do_rd_rn_rm ();
10150 else {
10151 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10152 _("immediate operand requires iWMMXt2"));
10153 do_rd_rn ();
10154 if (inst.operands[2].imm == 0)
10155 {
10156 switch ((inst.instruction >> 20) & 0xf)
10157 {
10158 case 4:
10159 case 5:
10160 case 6:
5f4273c7 10161 case 7:
2d447fca
JM
10162 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10163 inst.operands[2].imm = 16;
10164 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10165 break;
10166 case 8:
10167 case 9:
10168 case 10:
10169 case 11:
10170 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10171 inst.operands[2].imm = 32;
10172 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10173 break;
10174 case 12:
10175 case 13:
10176 case 14:
10177 case 15:
10178 {
10179 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10180 unsigned long wrn;
10181 wrn = (inst.instruction >> 16) & 0xf;
10182 inst.instruction &= 0xff0fff0f;
10183 inst.instruction |= wrn;
10184 /* Bail out here; the instruction is now assembled. */
10185 return;
10186 }
10187 }
10188 }
10189 /* Map 32 -> 0, etc. */
10190 inst.operands[2].imm &= 0x1f;
eff0bc54 10191 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10192 }
10193}
c19d1205
ZW
10194\f
10195/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10196 operations first, then control, shift, and load/store. */
b99bd4ef 10197
c19d1205 10198/* Insns like "foo X,Y,Z". */
b99bd4ef 10199
c19d1205
ZW
10200static void
10201do_mav_triple (void)
10202{
10203 inst.instruction |= inst.operands[0].reg << 16;
10204 inst.instruction |= inst.operands[1].reg;
10205 inst.instruction |= inst.operands[2].reg << 12;
10206}
b99bd4ef 10207
c19d1205
ZW
10208/* Insns like "foo W,X,Y,Z".
10209 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10210
c19d1205
ZW
10211static void
10212do_mav_quad (void)
10213{
10214 inst.instruction |= inst.operands[0].reg << 5;
10215 inst.instruction |= inst.operands[1].reg << 12;
10216 inst.instruction |= inst.operands[2].reg << 16;
10217 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10218}
10219
c19d1205
ZW
10220/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10221static void
10222do_mav_dspsc (void)
a737bd4d 10223{
c19d1205
ZW
10224 inst.instruction |= inst.operands[1].reg << 12;
10225}
a737bd4d 10226
c19d1205
ZW
10227/* Maverick shift immediate instructions.
10228 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10229 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10230
c19d1205
ZW
10231static void
10232do_mav_shift (void)
10233{
10234 int imm = inst.operands[2].imm;
a737bd4d 10235
c19d1205
ZW
10236 inst.instruction |= inst.operands[0].reg << 12;
10237 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10238
c19d1205
ZW
10239 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10240 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10241 Bit 4 should be 0. */
10242 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10243
c19d1205
ZW
10244 inst.instruction |= imm;
10245}
10246\f
10247/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10248
c19d1205
ZW
10249/* Xscale multiply-accumulate (argument parse)
10250 MIAcc acc0,Rm,Rs
10251 MIAPHcc acc0,Rm,Rs
10252 MIAxycc acc0,Rm,Rs. */
a737bd4d 10253
c19d1205
ZW
10254static void
10255do_xsc_mia (void)
10256{
10257 inst.instruction |= inst.operands[1].reg;
10258 inst.instruction |= inst.operands[2].reg << 12;
10259}
a737bd4d 10260
c19d1205 10261/* Xscale move-accumulator-register (argument parse)
a737bd4d 10262
c19d1205 10263 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10264
c19d1205
ZW
10265static void
10266do_xsc_mar (void)
10267{
10268 inst.instruction |= inst.operands[1].reg << 12;
10269 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10270}
10271
c19d1205 10272/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10273
c19d1205 10274 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10275
10276static void
c19d1205 10277do_xsc_mra (void)
b99bd4ef 10278{
c19d1205
ZW
10279 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10280 inst.instruction |= inst.operands[0].reg << 12;
10281 inst.instruction |= inst.operands[1].reg << 16;
10282}
10283\f
10284/* Encoding functions relevant only to Thumb. */
b99bd4ef 10285
c19d1205
ZW
10286/* inst.operands[i] is a shifted-register operand; encode
10287 it into inst.instruction in the format used by Thumb32. */
10288
10289static void
10290encode_thumb32_shifted_operand (int i)
10291{
10292 unsigned int value = inst.reloc.exp.X_add_number;
10293 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10294
9c3c69f2
PB
10295 constraint (inst.operands[i].immisreg,
10296 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10297 inst.instruction |= inst.operands[i].reg;
10298 if (shift == SHIFT_RRX)
10299 inst.instruction |= SHIFT_ROR << 4;
10300 else
b99bd4ef 10301 {
c19d1205
ZW
10302 constraint (inst.reloc.exp.X_op != O_constant,
10303 _("expression too complex"));
10304
10305 constraint (value > 32
10306 || (value == 32 && (shift == SHIFT_LSL
10307 || shift == SHIFT_ROR)),
10308 _("shift expression is too large"));
10309
10310 if (value == 0)
10311 shift = SHIFT_LSL;
10312 else if (value == 32)
10313 value = 0;
10314
10315 inst.instruction |= shift << 4;
10316 inst.instruction |= (value & 0x1c) << 10;
10317 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 10318 }
c19d1205 10319}
b99bd4ef 10320
b99bd4ef 10321
c19d1205
ZW
10322/* inst.operands[i] was set up by parse_address. Encode it into a
10323 Thumb32 format load or store instruction. Reject forms that cannot
10324 be used with such instructions. If is_t is true, reject forms that
10325 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
10326 that cannot be used with a D instruction. If it is a store insn,
10327 reject PC in Rn. */
b99bd4ef 10328
c19d1205
ZW
10329static void
10330encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10331{
5be8be5d 10332 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
10333
10334 constraint (!inst.operands[i].isreg,
53365c0d 10335 _("Instruction does not support =N addresses"));
b99bd4ef 10336
c19d1205
ZW
10337 inst.instruction |= inst.operands[i].reg << 16;
10338 if (inst.operands[i].immisreg)
b99bd4ef 10339 {
5be8be5d 10340 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
10341 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10342 constraint (inst.operands[i].negative,
10343 _("Thumb does not support negative register indexing"));
10344 constraint (inst.operands[i].postind,
10345 _("Thumb does not support register post-indexing"));
10346 constraint (inst.operands[i].writeback,
10347 _("Thumb does not support register indexing with writeback"));
10348 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
10349 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 10350
f40d1643 10351 inst.instruction |= inst.operands[i].imm;
c19d1205 10352 if (inst.operands[i].shifted)
b99bd4ef 10353 {
c19d1205
ZW
10354 constraint (inst.reloc.exp.X_op != O_constant,
10355 _("expression too complex"));
9c3c69f2
PB
10356 constraint (inst.reloc.exp.X_add_number < 0
10357 || inst.reloc.exp.X_add_number > 3,
c19d1205 10358 _("shift out of range"));
9c3c69f2 10359 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
10360 }
10361 inst.reloc.type = BFD_RELOC_UNUSED;
10362 }
10363 else if (inst.operands[i].preind)
10364 {
5be8be5d 10365 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 10366 constraint (is_t && inst.operands[i].writeback,
c19d1205 10367 _("cannot use writeback with this instruction"));
4755303e
WN
10368 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
10369 BAD_PC_ADDRESSING);
c19d1205
ZW
10370
10371 if (is_d)
10372 {
10373 inst.instruction |= 0x01000000;
10374 if (inst.operands[i].writeback)
10375 inst.instruction |= 0x00200000;
b99bd4ef 10376 }
c19d1205 10377 else
b99bd4ef 10378 {
c19d1205
ZW
10379 inst.instruction |= 0x00000c00;
10380 if (inst.operands[i].writeback)
10381 inst.instruction |= 0x00000100;
b99bd4ef 10382 }
c19d1205 10383 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 10384 }
c19d1205 10385 else if (inst.operands[i].postind)
b99bd4ef 10386 {
9c2799c2 10387 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
10388 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
10389 constraint (is_t, _("cannot use post-indexing with this instruction"));
10390
10391 if (is_d)
10392 inst.instruction |= 0x00200000;
10393 else
10394 inst.instruction |= 0x00000900;
10395 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10396 }
10397 else /* unindexed - only for coprocessor */
10398 inst.error = _("instruction does not accept unindexed addressing");
10399}
10400
10401/* Table of Thumb instructions which exist in both 16- and 32-bit
10402 encodings (the latter only in post-V6T2 cores). The index is the
10403 value used in the insns table below. When there is more than one
10404 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
10405 holds variant (1).
10406 Also contains several pseudo-instructions used during relaxation. */
c19d1205 10407#define T16_32_TAB \
21d799b5
NC
10408 X(_adc, 4140, eb400000), \
10409 X(_adcs, 4140, eb500000), \
10410 X(_add, 1c00, eb000000), \
10411 X(_adds, 1c00, eb100000), \
10412 X(_addi, 0000, f1000000), \
10413 X(_addis, 0000, f1100000), \
10414 X(_add_pc,000f, f20f0000), \
10415 X(_add_sp,000d, f10d0000), \
10416 X(_adr, 000f, f20f0000), \
10417 X(_and, 4000, ea000000), \
10418 X(_ands, 4000, ea100000), \
10419 X(_asr, 1000, fa40f000), \
10420 X(_asrs, 1000, fa50f000), \
10421 X(_b, e000, f000b000), \
10422 X(_bcond, d000, f0008000), \
10423 X(_bic, 4380, ea200000), \
10424 X(_bics, 4380, ea300000), \
10425 X(_cmn, 42c0, eb100f00), \
10426 X(_cmp, 2800, ebb00f00), \
10427 X(_cpsie, b660, f3af8400), \
10428 X(_cpsid, b670, f3af8600), \
10429 X(_cpy, 4600, ea4f0000), \
10430 X(_dec_sp,80dd, f1ad0d00), \
10431 X(_eor, 4040, ea800000), \
10432 X(_eors, 4040, ea900000), \
10433 X(_inc_sp,00dd, f10d0d00), \
10434 X(_ldmia, c800, e8900000), \
10435 X(_ldr, 6800, f8500000), \
10436 X(_ldrb, 7800, f8100000), \
10437 X(_ldrh, 8800, f8300000), \
10438 X(_ldrsb, 5600, f9100000), \
10439 X(_ldrsh, 5e00, f9300000), \
10440 X(_ldr_pc,4800, f85f0000), \
10441 X(_ldr_pc2,4800, f85f0000), \
10442 X(_ldr_sp,9800, f85d0000), \
10443 X(_lsl, 0000, fa00f000), \
10444 X(_lsls, 0000, fa10f000), \
10445 X(_lsr, 0800, fa20f000), \
10446 X(_lsrs, 0800, fa30f000), \
10447 X(_mov, 2000, ea4f0000), \
10448 X(_movs, 2000, ea5f0000), \
10449 X(_mul, 4340, fb00f000), \
10450 X(_muls, 4340, ffffffff), /* no 32b muls */ \
10451 X(_mvn, 43c0, ea6f0000), \
10452 X(_mvns, 43c0, ea7f0000), \
10453 X(_neg, 4240, f1c00000), /* rsb #0 */ \
10454 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
10455 X(_orr, 4300, ea400000), \
10456 X(_orrs, 4300, ea500000), \
10457 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
10458 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
10459 X(_rev, ba00, fa90f080), \
10460 X(_rev16, ba40, fa90f090), \
10461 X(_revsh, bac0, fa90f0b0), \
10462 X(_ror, 41c0, fa60f000), \
10463 X(_rors, 41c0, fa70f000), \
10464 X(_sbc, 4180, eb600000), \
10465 X(_sbcs, 4180, eb700000), \
10466 X(_stmia, c000, e8800000), \
10467 X(_str, 6000, f8400000), \
10468 X(_strb, 7000, f8000000), \
10469 X(_strh, 8000, f8200000), \
10470 X(_str_sp,9000, f84d0000), \
10471 X(_sub, 1e00, eba00000), \
10472 X(_subs, 1e00, ebb00000), \
10473 X(_subi, 8000, f1a00000), \
10474 X(_subis, 8000, f1b00000), \
10475 X(_sxtb, b240, fa4ff080), \
10476 X(_sxth, b200, fa0ff080), \
10477 X(_tst, 4200, ea100f00), \
10478 X(_uxtb, b2c0, fa5ff080), \
10479 X(_uxth, b280, fa1ff080), \
10480 X(_nop, bf00, f3af8000), \
10481 X(_yield, bf10, f3af8001), \
10482 X(_wfe, bf20, f3af8002), \
10483 X(_wfi, bf30, f3af8003), \
53c4b28b 10484 X(_sev, bf40, f3af8004), \
74db7efb
NC
10485 X(_sevl, bf50, f3af8005), \
10486 X(_udf, de00, f7f0a000)
c19d1205
ZW
10487
10488/* To catch errors in encoding functions, the codes are all offset by
10489 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
10490 as 16-bit instructions. */
21d799b5 10491#define X(a,b,c) T_MNEM##a
c19d1205
ZW
10492enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
10493#undef X
10494
10495#define X(a,b,c) 0x##b
10496static const unsigned short thumb_op16[] = { T16_32_TAB };
10497#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
10498#undef X
10499
10500#define X(a,b,c) 0x##c
10501static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
10502#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
10503#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
10504#undef X
10505#undef T16_32_TAB
10506
10507/* Thumb instruction encoders, in alphabetical order. */
10508
92e90b6e 10509/* ADDW or SUBW. */
c921be7d 10510
92e90b6e
PB
10511static void
10512do_t_add_sub_w (void)
10513{
10514 int Rd, Rn;
10515
10516 Rd = inst.operands[0].reg;
10517 Rn = inst.operands[1].reg;
10518
539d4391
NC
10519 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
10520 is the SP-{plus,minus}-immediate form of the instruction. */
10521 if (Rn == REG_SP)
10522 constraint (Rd == REG_PC, BAD_PC);
10523 else
10524 reject_bad_reg (Rd);
fdfde340 10525
92e90b6e
PB
10526 inst.instruction |= (Rn << 16) | (Rd << 8);
10527 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10528}
10529
c19d1205 10530/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 10531 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
10532
10533static void
10534do_t_add_sub (void)
10535{
10536 int Rd, Rs, Rn;
10537
10538 Rd = inst.operands[0].reg;
10539 Rs = (inst.operands[1].present
10540 ? inst.operands[1].reg /* Rd, Rs, foo */
10541 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10542
e07e6e58
NC
10543 if (Rd == REG_PC)
10544 set_it_insn_type_last ();
10545
c19d1205
ZW
10546 if (unified_syntax)
10547 {
0110f2b8
PB
10548 bfd_boolean flags;
10549 bfd_boolean narrow;
10550 int opcode;
10551
10552 flags = (inst.instruction == T_MNEM_adds
10553 || inst.instruction == T_MNEM_subs);
10554 if (flags)
e07e6e58 10555 narrow = !in_it_block ();
0110f2b8 10556 else
e07e6e58 10557 narrow = in_it_block ();
c19d1205 10558 if (!inst.operands[2].isreg)
b99bd4ef 10559 {
16805f35
PB
10560 int add;
10561
5c8ed6a4
JW
10562 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10563 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 10564
16805f35
PB
10565 add = (inst.instruction == T_MNEM_add
10566 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
10567 opcode = 0;
10568 if (inst.size_req != 4)
10569 {
0110f2b8 10570 /* Attempt to use a narrow opcode, with relaxation if
477330fc 10571 appropriate. */
0110f2b8
PB
10572 if (Rd == REG_SP && Rs == REG_SP && !flags)
10573 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
10574 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
10575 opcode = T_MNEM_add_sp;
10576 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
10577 opcode = T_MNEM_add_pc;
10578 else if (Rd <= 7 && Rs <= 7 && narrow)
10579 {
10580 if (flags)
10581 opcode = add ? T_MNEM_addis : T_MNEM_subis;
10582 else
10583 opcode = add ? T_MNEM_addi : T_MNEM_subi;
10584 }
10585 if (opcode)
10586 {
10587 inst.instruction = THUMB_OP16(opcode);
10588 inst.instruction |= (Rd << 4) | Rs;
72d98d16
MG
10589 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10590 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
a9f02af8
MG
10591 {
10592 if (inst.size_req == 2)
10593 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10594 else
10595 inst.relax = opcode;
10596 }
0110f2b8
PB
10597 }
10598 else
10599 constraint (inst.size_req == 2, BAD_HIREG);
10600 }
10601 if (inst.size_req == 4
10602 || (inst.size_req != 2 && !opcode))
10603 {
a9f02af8
MG
10604 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10605 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
10606 THUMB1_RELOC_ONLY);
efd81785
PB
10607 if (Rd == REG_PC)
10608 {
fdfde340 10609 constraint (add, BAD_PC);
efd81785
PB
10610 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
10611 _("only SUBS PC, LR, #const allowed"));
10612 constraint (inst.reloc.exp.X_op != O_constant,
10613 _("expression too complex"));
10614 constraint (inst.reloc.exp.X_add_number < 0
10615 || inst.reloc.exp.X_add_number > 0xff,
10616 _("immediate value out of range"));
10617 inst.instruction = T2_SUBS_PC_LR
10618 | inst.reloc.exp.X_add_number;
10619 inst.reloc.type = BFD_RELOC_UNUSED;
10620 return;
10621 }
10622 else if (Rs == REG_PC)
16805f35
PB
10623 {
10624 /* Always use addw/subw. */
10625 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
10626 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10627 }
10628 else
10629 {
10630 inst.instruction = THUMB_OP32 (inst.instruction);
10631 inst.instruction = (inst.instruction & 0xe1ffffff)
10632 | 0x10000000;
10633 if (flags)
10634 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10635 else
10636 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
10637 }
dc4503c6
PB
10638 inst.instruction |= Rd << 8;
10639 inst.instruction |= Rs << 16;
0110f2b8 10640 }
b99bd4ef 10641 }
c19d1205
ZW
10642 else
10643 {
5f4cb198
NC
10644 unsigned int value = inst.reloc.exp.X_add_number;
10645 unsigned int shift = inst.operands[2].shift_kind;
10646
c19d1205
ZW
10647 Rn = inst.operands[2].reg;
10648 /* See if we can do this with a 16-bit instruction. */
10649 if (!inst.operands[2].shifted && inst.size_req != 4)
10650 {
e27ec89e
PB
10651 if (Rd > 7 || Rs > 7 || Rn > 7)
10652 narrow = FALSE;
10653
10654 if (narrow)
c19d1205 10655 {
e27ec89e
PB
10656 inst.instruction = ((inst.instruction == T_MNEM_adds
10657 || inst.instruction == T_MNEM_add)
c19d1205
ZW
10658 ? T_OPCODE_ADD_R3
10659 : T_OPCODE_SUB_R3);
10660 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10661 return;
10662 }
b99bd4ef 10663
7e806470 10664 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 10665 {
7e806470
PB
10666 /* Thumb-1 cores (except v6-M) require at least one high
10667 register in a narrow non flag setting add. */
10668 if (Rd > 7 || Rn > 7
10669 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
10670 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 10671 {
7e806470
PB
10672 if (Rd == Rn)
10673 {
10674 Rn = Rs;
10675 Rs = Rd;
10676 }
c19d1205
ZW
10677 inst.instruction = T_OPCODE_ADD_HI;
10678 inst.instruction |= (Rd & 8) << 4;
10679 inst.instruction |= (Rd & 7);
10680 inst.instruction |= Rn << 3;
10681 return;
10682 }
c19d1205
ZW
10683 }
10684 }
c921be7d 10685
fdfde340 10686 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
10687 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10688 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
10689 constraint (Rs == REG_PC, BAD_PC);
10690 reject_bad_reg (Rn);
10691
c19d1205
ZW
10692 /* If we get here, it can't be done in 16 bits. */
10693 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
10694 _("shift must be constant"));
10695 inst.instruction = THUMB_OP32 (inst.instruction);
10696 inst.instruction |= Rd << 8;
10697 inst.instruction |= Rs << 16;
5f4cb198
NC
10698 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
10699 _("shift value over 3 not allowed in thumb mode"));
10700 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
10701 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
10702 encode_thumb32_shifted_operand (2);
10703 }
10704 }
10705 else
10706 {
10707 constraint (inst.instruction == T_MNEM_adds
10708 || inst.instruction == T_MNEM_subs,
10709 BAD_THUMB32);
b99bd4ef 10710
c19d1205 10711 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 10712 {
c19d1205
ZW
10713 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
10714 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
10715 BAD_HIREG);
10716
10717 inst.instruction = (inst.instruction == T_MNEM_add
10718 ? 0x0000 : 0x8000);
10719 inst.instruction |= (Rd << 4) | Rs;
10720 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
10721 return;
10722 }
10723
c19d1205
ZW
10724 Rn = inst.operands[2].reg;
10725 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 10726
c19d1205
ZW
10727 /* We now have Rd, Rs, and Rn set to registers. */
10728 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 10729 {
c19d1205
ZW
10730 /* Can't do this for SUB. */
10731 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
10732 inst.instruction = T_OPCODE_ADD_HI;
10733 inst.instruction |= (Rd & 8) << 4;
10734 inst.instruction |= (Rd & 7);
10735 if (Rs == Rd)
10736 inst.instruction |= Rn << 3;
10737 else if (Rn == Rd)
10738 inst.instruction |= Rs << 3;
10739 else
10740 constraint (1, _("dest must overlap one source register"));
10741 }
10742 else
10743 {
10744 inst.instruction = (inst.instruction == T_MNEM_add
10745 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
10746 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 10747 }
b99bd4ef 10748 }
b99bd4ef
NC
10749}
10750
c19d1205
ZW
10751static void
10752do_t_adr (void)
10753{
fdfde340
JM
10754 unsigned Rd;
10755
10756 Rd = inst.operands[0].reg;
10757 reject_bad_reg (Rd);
10758
10759 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
10760 {
10761 /* Defer to section relaxation. */
10762 inst.relax = inst.instruction;
10763 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 10764 inst.instruction |= Rd << 4;
0110f2b8
PB
10765 }
10766 else if (unified_syntax && inst.size_req != 2)
e9f89963 10767 {
0110f2b8 10768 /* Generate a 32-bit opcode. */
e9f89963 10769 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10770 inst.instruction |= Rd << 8;
e9f89963
PB
10771 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
10772 inst.reloc.pc_rel = 1;
10773 }
10774 else
10775 {
0110f2b8 10776 /* Generate a 16-bit opcode. */
e9f89963
PB
10777 inst.instruction = THUMB_OP16 (inst.instruction);
10778 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10779 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
10780 inst.reloc.pc_rel = 1;
fdfde340 10781 inst.instruction |= Rd << 4;
e9f89963 10782 }
52a86f84
NC
10783
10784 if (inst.reloc.exp.X_op == O_symbol
10785 && inst.reloc.exp.X_add_symbol != NULL
10786 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10787 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10788 inst.reloc.exp.X_add_number += 1;
c19d1205 10789}
b99bd4ef 10790
c19d1205
ZW
10791/* Arithmetic instructions for which there is just one 16-bit
10792 instruction encoding, and it allows only two low registers.
10793 For maximal compatibility with ARM syntax, we allow three register
10794 operands even when Thumb-32 instructions are not available, as long
10795 as the first two are identical. For instance, both "sbc r0,r1" and
10796 "sbc r0,r0,r1" are allowed. */
b99bd4ef 10797static void
c19d1205 10798do_t_arit3 (void)
b99bd4ef 10799{
c19d1205 10800 int Rd, Rs, Rn;
b99bd4ef 10801
c19d1205
ZW
10802 Rd = inst.operands[0].reg;
10803 Rs = (inst.operands[1].present
10804 ? inst.operands[1].reg /* Rd, Rs, foo */
10805 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10806 Rn = inst.operands[2].reg;
b99bd4ef 10807
fdfde340
JM
10808 reject_bad_reg (Rd);
10809 reject_bad_reg (Rs);
10810 if (inst.operands[2].isreg)
10811 reject_bad_reg (Rn);
10812
c19d1205 10813 if (unified_syntax)
b99bd4ef 10814 {
c19d1205
ZW
10815 if (!inst.operands[2].isreg)
10816 {
10817 /* For an immediate, we always generate a 32-bit opcode;
10818 section relaxation will shrink it later if possible. */
10819 inst.instruction = THUMB_OP32 (inst.instruction);
10820 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10821 inst.instruction |= Rd << 8;
10822 inst.instruction |= Rs << 16;
10823 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10824 }
10825 else
10826 {
e27ec89e
PB
10827 bfd_boolean narrow;
10828
c19d1205 10829 /* See if we can do this with a 16-bit instruction. */
e27ec89e 10830 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10831 narrow = !in_it_block ();
e27ec89e 10832 else
e07e6e58 10833 narrow = in_it_block ();
e27ec89e
PB
10834
10835 if (Rd > 7 || Rn > 7 || Rs > 7)
10836 narrow = FALSE;
10837 if (inst.operands[2].shifted)
10838 narrow = FALSE;
10839 if (inst.size_req == 4)
10840 narrow = FALSE;
10841
10842 if (narrow
c19d1205
ZW
10843 && Rd == Rs)
10844 {
10845 inst.instruction = THUMB_OP16 (inst.instruction);
10846 inst.instruction |= Rd;
10847 inst.instruction |= Rn << 3;
10848 return;
10849 }
b99bd4ef 10850
c19d1205
ZW
10851 /* If we get here, it can't be done in 16 bits. */
10852 constraint (inst.operands[2].shifted
10853 && inst.operands[2].immisreg,
10854 _("shift must be constant"));
10855 inst.instruction = THUMB_OP32 (inst.instruction);
10856 inst.instruction |= Rd << 8;
10857 inst.instruction |= Rs << 16;
10858 encode_thumb32_shifted_operand (2);
10859 }
a737bd4d 10860 }
c19d1205 10861 else
b99bd4ef 10862 {
c19d1205
ZW
10863 /* On its face this is a lie - the instruction does set the
10864 flags. However, the only supported mnemonic in this mode
10865 says it doesn't. */
10866 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 10867
c19d1205
ZW
10868 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10869 _("unshifted register required"));
10870 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10871 constraint (Rd != Rs,
10872 _("dest and source1 must be the same register"));
a737bd4d 10873
c19d1205
ZW
10874 inst.instruction = THUMB_OP16 (inst.instruction);
10875 inst.instruction |= Rd;
10876 inst.instruction |= Rn << 3;
b99bd4ef 10877 }
a737bd4d 10878}
b99bd4ef 10879
c19d1205
ZW
10880/* Similarly, but for instructions where the arithmetic operation is
10881 commutative, so we can allow either of them to be different from
10882 the destination operand in a 16-bit instruction. For instance, all
10883 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10884 accepted. */
10885static void
10886do_t_arit3c (void)
a737bd4d 10887{
c19d1205 10888 int Rd, Rs, Rn;
b99bd4ef 10889
c19d1205
ZW
10890 Rd = inst.operands[0].reg;
10891 Rs = (inst.operands[1].present
10892 ? inst.operands[1].reg /* Rd, Rs, foo */
10893 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10894 Rn = inst.operands[2].reg;
c921be7d 10895
fdfde340
JM
10896 reject_bad_reg (Rd);
10897 reject_bad_reg (Rs);
10898 if (inst.operands[2].isreg)
10899 reject_bad_reg (Rn);
a737bd4d 10900
c19d1205 10901 if (unified_syntax)
a737bd4d 10902 {
c19d1205 10903 if (!inst.operands[2].isreg)
b99bd4ef 10904 {
c19d1205
ZW
10905 /* For an immediate, we always generate a 32-bit opcode;
10906 section relaxation will shrink it later if possible. */
10907 inst.instruction = THUMB_OP32 (inst.instruction);
10908 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10909 inst.instruction |= Rd << 8;
10910 inst.instruction |= Rs << 16;
10911 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 10912 }
c19d1205 10913 else
a737bd4d 10914 {
e27ec89e
PB
10915 bfd_boolean narrow;
10916
c19d1205 10917 /* See if we can do this with a 16-bit instruction. */
e27ec89e 10918 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10919 narrow = !in_it_block ();
e27ec89e 10920 else
e07e6e58 10921 narrow = in_it_block ();
e27ec89e
PB
10922
10923 if (Rd > 7 || Rn > 7 || Rs > 7)
10924 narrow = FALSE;
10925 if (inst.operands[2].shifted)
10926 narrow = FALSE;
10927 if (inst.size_req == 4)
10928 narrow = FALSE;
10929
10930 if (narrow)
a737bd4d 10931 {
c19d1205 10932 if (Rd == Rs)
a737bd4d 10933 {
c19d1205
ZW
10934 inst.instruction = THUMB_OP16 (inst.instruction);
10935 inst.instruction |= Rd;
10936 inst.instruction |= Rn << 3;
10937 return;
a737bd4d 10938 }
c19d1205 10939 if (Rd == Rn)
a737bd4d 10940 {
c19d1205
ZW
10941 inst.instruction = THUMB_OP16 (inst.instruction);
10942 inst.instruction |= Rd;
10943 inst.instruction |= Rs << 3;
10944 return;
a737bd4d
NC
10945 }
10946 }
c19d1205
ZW
10947
10948 /* If we get here, it can't be done in 16 bits. */
10949 constraint (inst.operands[2].shifted
10950 && inst.operands[2].immisreg,
10951 _("shift must be constant"));
10952 inst.instruction = THUMB_OP32 (inst.instruction);
10953 inst.instruction |= Rd << 8;
10954 inst.instruction |= Rs << 16;
10955 encode_thumb32_shifted_operand (2);
a737bd4d 10956 }
b99bd4ef 10957 }
c19d1205
ZW
10958 else
10959 {
10960 /* On its face this is a lie - the instruction does set the
10961 flags. However, the only supported mnemonic in this mode
10962 says it doesn't. */
10963 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 10964
c19d1205
ZW
10965 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10966 _("unshifted register required"));
10967 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10968
10969 inst.instruction = THUMB_OP16 (inst.instruction);
10970 inst.instruction |= Rd;
10971
10972 if (Rd == Rs)
10973 inst.instruction |= Rn << 3;
10974 else if (Rd == Rn)
10975 inst.instruction |= Rs << 3;
10976 else
10977 constraint (1, _("dest must overlap one source register"));
10978 }
a737bd4d
NC
10979}
10980
c19d1205
ZW
10981static void
10982do_t_bfc (void)
a737bd4d 10983{
fdfde340 10984 unsigned Rd;
c19d1205
ZW
10985 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10986 constraint (msb > 32, _("bit-field extends past end of register"));
10987 /* The instruction encoding stores the LSB and MSB,
10988 not the LSB and width. */
fdfde340
JM
10989 Rd = inst.operands[0].reg;
10990 reject_bad_reg (Rd);
10991 inst.instruction |= Rd << 8;
c19d1205
ZW
10992 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10993 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10994 inst.instruction |= msb - 1;
b99bd4ef
NC
10995}
10996
c19d1205
ZW
10997static void
10998do_t_bfi (void)
b99bd4ef 10999{
fdfde340 11000 int Rd, Rn;
c19d1205 11001 unsigned int msb;
b99bd4ef 11002
fdfde340
JM
11003 Rd = inst.operands[0].reg;
11004 reject_bad_reg (Rd);
11005
c19d1205
ZW
11006 /* #0 in second position is alternative syntax for bfc, which is
11007 the same instruction but with REG_PC in the Rm field. */
11008 if (!inst.operands[1].isreg)
fdfde340
JM
11009 Rn = REG_PC;
11010 else
11011 {
11012 Rn = inst.operands[1].reg;
11013 reject_bad_reg (Rn);
11014 }
b99bd4ef 11015
c19d1205
ZW
11016 msb = inst.operands[2].imm + inst.operands[3].imm;
11017 constraint (msb > 32, _("bit-field extends past end of register"));
11018 /* The instruction encoding stores the LSB and MSB,
11019 not the LSB and width. */
fdfde340
JM
11020 inst.instruction |= Rd << 8;
11021 inst.instruction |= Rn << 16;
c19d1205
ZW
11022 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11023 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11024 inst.instruction |= msb - 1;
b99bd4ef
NC
11025}
11026
c19d1205
ZW
11027static void
11028do_t_bfx (void)
b99bd4ef 11029{
fdfde340
JM
11030 unsigned Rd, Rn;
11031
11032 Rd = inst.operands[0].reg;
11033 Rn = inst.operands[1].reg;
11034
11035 reject_bad_reg (Rd);
11036 reject_bad_reg (Rn);
11037
c19d1205
ZW
11038 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11039 _("bit-field extends past end of register"));
fdfde340
JM
11040 inst.instruction |= Rd << 8;
11041 inst.instruction |= Rn << 16;
c19d1205
ZW
11042 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11043 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11044 inst.instruction |= inst.operands[3].imm - 1;
11045}
b99bd4ef 11046
c19d1205
ZW
11047/* ARM V5 Thumb BLX (argument parse)
11048 BLX <target_addr> which is BLX(1)
11049 BLX <Rm> which is BLX(2)
11050 Unfortunately, there are two different opcodes for this mnemonic.
11051 So, the insns[].value is not used, and the code here zaps values
11052 into inst.instruction.
b99bd4ef 11053
c19d1205
ZW
11054 ??? How to take advantage of the additional two bits of displacement
11055 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11056
c19d1205
ZW
11057static void
11058do_t_blx (void)
11059{
e07e6e58
NC
11060 set_it_insn_type_last ();
11061
c19d1205 11062 if (inst.operands[0].isreg)
fdfde340
JM
11063 {
11064 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11065 /* We have a register, so this is BLX(2). */
11066 inst.instruction |= inst.operands[0].reg << 3;
11067 }
b99bd4ef
NC
11068 else
11069 {
c19d1205 11070 /* No register. This must be BLX(1). */
2fc8bdac 11071 inst.instruction = 0xf000e800;
0855e32b 11072 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11073 }
11074}
11075
c19d1205
ZW
11076static void
11077do_t_branch (void)
b99bd4ef 11078{
0110f2b8 11079 int opcode;
dfa9f0d5 11080 int cond;
2fe88214 11081 bfd_reloc_code_real_type reloc;
dfa9f0d5 11082
e07e6e58
NC
11083 cond = inst.cond;
11084 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
11085
11086 if (in_it_block ())
dfa9f0d5
PB
11087 {
11088 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11089 branches. */
dfa9f0d5 11090 cond = COND_ALWAYS;
dfa9f0d5
PB
11091 }
11092 else
11093 cond = inst.cond;
11094
11095 if (cond != COND_ALWAYS)
0110f2b8
PB
11096 opcode = T_MNEM_bcond;
11097 else
11098 opcode = inst.instruction;
11099
12d6b0b7
RS
11100 if (unified_syntax
11101 && (inst.size_req == 4
10960bfb
PB
11102 || (inst.size_req != 2
11103 && (inst.operands[0].hasreloc
11104 || inst.reloc.exp.X_op == O_constant))))
c19d1205 11105 {
0110f2b8 11106 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11107 if (cond == COND_ALWAYS)
9ae92b05 11108 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11109 else
11110 {
ff8646ee
TP
11111 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11112 _("selected architecture does not support "
11113 "wide conditional branch instruction"));
11114
9c2799c2 11115 gas_assert (cond != 0xF);
dfa9f0d5 11116 inst.instruction |= cond << 22;
9ae92b05 11117 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11118 }
11119 }
b99bd4ef
NC
11120 else
11121 {
0110f2b8 11122 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11123 if (cond == COND_ALWAYS)
9ae92b05 11124 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11125 else
b99bd4ef 11126 {
dfa9f0d5 11127 inst.instruction |= cond << 8;
9ae92b05 11128 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11129 }
0110f2b8
PB
11130 /* Allow section relaxation. */
11131 if (unified_syntax && inst.size_req != 2)
11132 inst.relax = opcode;
b99bd4ef 11133 }
9ae92b05 11134 inst.reloc.type = reloc;
c19d1205 11135 inst.reloc.pc_rel = 1;
b99bd4ef
NC
11136}
11137
8884b720 11138/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11139 between the two is the maximum immediate allowed - which is passed in
8884b720 11140 RANGE. */
b99bd4ef 11141static void
8884b720 11142do_t_bkpt_hlt1 (int range)
b99bd4ef 11143{
dfa9f0d5
PB
11144 constraint (inst.cond != COND_ALWAYS,
11145 _("instruction is always unconditional"));
c19d1205 11146 if (inst.operands[0].present)
b99bd4ef 11147 {
8884b720 11148 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11149 _("immediate value out of range"));
11150 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11151 }
8884b720
MGD
11152
11153 set_it_insn_type (NEUTRAL_IT_INSN);
11154}
11155
11156static void
11157do_t_hlt (void)
11158{
11159 do_t_bkpt_hlt1 (63);
11160}
11161
11162static void
11163do_t_bkpt (void)
11164{
11165 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11166}
11167
11168static void
c19d1205 11169do_t_branch23 (void)
b99bd4ef 11170{
e07e6e58 11171 set_it_insn_type_last ();
0855e32b 11172 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11173
0855e32b
NS
11174 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11175 this file. We used to simply ignore the PLT reloc type here --
11176 the branch encoding is now needed to deal with TLSCALL relocs.
11177 So if we see a PLT reloc now, put it back to how it used to be to
11178 keep the preexisting behaviour. */
11179 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
11180 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11181
4343666d 11182#if defined(OBJ_COFF)
c19d1205
ZW
11183 /* If the destination of the branch is a defined symbol which does not have
11184 the THUMB_FUNC attribute, then we must be calling a function which has
11185 the (interfacearm) attribute. We look for the Thumb entry point to that
11186 function and change the branch to refer to that function instead. */
11187 if ( inst.reloc.exp.X_op == O_symbol
11188 && inst.reloc.exp.X_add_symbol != NULL
11189 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
11190 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
11191 inst.reloc.exp.X_add_symbol =
11192 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 11193#endif
90e4755a
RE
11194}
11195
11196static void
c19d1205 11197do_t_bx (void)
90e4755a 11198{
e07e6e58 11199 set_it_insn_type_last ();
c19d1205
ZW
11200 inst.instruction |= inst.operands[0].reg << 3;
11201 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11202 should cause the alignment to be checked once it is known. This is
11203 because BX PC only works if the instruction is word aligned. */
11204}
90e4755a 11205
c19d1205
ZW
11206static void
11207do_t_bxj (void)
11208{
fdfde340 11209 int Rm;
90e4755a 11210
e07e6e58 11211 set_it_insn_type_last ();
fdfde340
JM
11212 Rm = inst.operands[0].reg;
11213 reject_bad_reg (Rm);
11214 inst.instruction |= Rm << 16;
90e4755a
RE
11215}
11216
11217static void
c19d1205 11218do_t_clz (void)
90e4755a 11219{
fdfde340
JM
11220 unsigned Rd;
11221 unsigned Rm;
11222
11223 Rd = inst.operands[0].reg;
11224 Rm = inst.operands[1].reg;
11225
11226 reject_bad_reg (Rd);
11227 reject_bad_reg (Rm);
11228
11229 inst.instruction |= Rd << 8;
11230 inst.instruction |= Rm << 16;
11231 inst.instruction |= Rm;
c19d1205 11232}
90e4755a 11233
dfa9f0d5
PB
11234static void
11235do_t_cps (void)
11236{
e07e6e58 11237 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
11238 inst.instruction |= inst.operands[0].imm;
11239}
11240
c19d1205
ZW
11241static void
11242do_t_cpsi (void)
11243{
e07e6e58 11244 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 11245 if (unified_syntax
62b3e311
PB
11246 && (inst.operands[1].present || inst.size_req == 4)
11247 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11248 {
c19d1205
ZW
11249 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11250 inst.instruction = 0xf3af8000;
11251 inst.instruction |= imod << 9;
11252 inst.instruction |= inst.operands[0].imm << 5;
11253 if (inst.operands[1].present)
11254 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11255 }
c19d1205 11256 else
90e4755a 11257 {
62b3e311
PB
11258 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11259 && (inst.operands[0].imm & 4),
11260 _("selected processor does not support 'A' form "
11261 "of this instruction"));
11262 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11263 _("Thumb does not support the 2-argument "
11264 "form of this instruction"));
11265 inst.instruction |= inst.operands[0].imm;
90e4755a 11266 }
90e4755a
RE
11267}
11268
c19d1205
ZW
11269/* THUMB CPY instruction (argument parse). */
11270
90e4755a 11271static void
c19d1205 11272do_t_cpy (void)
90e4755a 11273{
c19d1205 11274 if (inst.size_req == 4)
90e4755a 11275 {
c19d1205
ZW
11276 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11277 inst.instruction |= inst.operands[0].reg << 8;
11278 inst.instruction |= inst.operands[1].reg;
90e4755a 11279 }
c19d1205 11280 else
90e4755a 11281 {
c19d1205
ZW
11282 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11283 inst.instruction |= (inst.operands[0].reg & 0x7);
11284 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 11285 }
90e4755a
RE
11286}
11287
90e4755a 11288static void
25fe350b 11289do_t_cbz (void)
90e4755a 11290{
e07e6e58 11291 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11292 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11293 inst.instruction |= inst.operands[0].reg;
11294 inst.reloc.pc_rel = 1;
11295 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11296}
90e4755a 11297
62b3e311
PB
11298static void
11299do_t_dbg (void)
11300{
11301 inst.instruction |= inst.operands[0].imm;
11302}
11303
11304static void
11305do_t_div (void)
11306{
fdfde340
JM
11307 unsigned Rd, Rn, Rm;
11308
11309 Rd = inst.operands[0].reg;
11310 Rn = (inst.operands[1].present
11311 ? inst.operands[1].reg : Rd);
11312 Rm = inst.operands[2].reg;
11313
11314 reject_bad_reg (Rd);
11315 reject_bad_reg (Rn);
11316 reject_bad_reg (Rm);
11317
11318 inst.instruction |= Rd << 8;
11319 inst.instruction |= Rn << 16;
11320 inst.instruction |= Rm;
62b3e311
PB
11321}
11322
c19d1205
ZW
11323static void
11324do_t_hint (void)
11325{
11326 if (unified_syntax && inst.size_req == 4)
11327 inst.instruction = THUMB_OP32 (inst.instruction);
11328 else
11329 inst.instruction = THUMB_OP16 (inst.instruction);
11330}
90e4755a 11331
c19d1205
ZW
11332static void
11333do_t_it (void)
11334{
11335 unsigned int cond = inst.operands[0].imm;
e27ec89e 11336
e07e6e58
NC
11337 set_it_insn_type (IT_INSN);
11338 now_it.mask = (inst.instruction & 0xf) | 0x10;
11339 now_it.cc = cond;
5a01bb1d 11340 now_it.warn_deprecated = FALSE;
e27ec89e
PB
11341
11342 /* If the condition is a negative condition, invert the mask. */
c19d1205 11343 if ((cond & 0x1) == 0x0)
90e4755a 11344 {
c19d1205 11345 unsigned int mask = inst.instruction & 0x000f;
90e4755a 11346
c19d1205 11347 if ((mask & 0x7) == 0)
5a01bb1d
MGD
11348 {
11349 /* No conversion needed. */
11350 now_it.block_length = 1;
11351 }
c19d1205 11352 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
11353 {
11354 mask ^= 0x8;
11355 now_it.block_length = 2;
11356 }
e27ec89e 11357 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
11358 {
11359 mask ^= 0xC;
11360 now_it.block_length = 3;
11361 }
c19d1205 11362 else
5a01bb1d
MGD
11363 {
11364 mask ^= 0xE;
11365 now_it.block_length = 4;
11366 }
90e4755a 11367
e27ec89e
PB
11368 inst.instruction &= 0xfff0;
11369 inst.instruction |= mask;
c19d1205 11370 }
90e4755a 11371
c19d1205
ZW
11372 inst.instruction |= cond << 4;
11373}
90e4755a 11374
3c707909
PB
11375/* Helper function used for both push/pop and ldm/stm. */
11376static void
11377encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
11378{
11379 bfd_boolean load;
11380
11381 load = (inst.instruction & (1 << 20)) != 0;
11382
11383 if (mask & (1 << 13))
11384 inst.error = _("SP not allowed in register list");
1e5b0379
NC
11385
11386 if ((mask & (1 << base)) != 0
11387 && writeback)
11388 inst.error = _("having the base register in the register list when "
11389 "using write back is UNPREDICTABLE");
11390
3c707909
PB
11391 if (load)
11392 {
e07e6e58 11393 if (mask & (1 << 15))
477330fc
RM
11394 {
11395 if (mask & (1 << 14))
11396 inst.error = _("LR and PC should not both be in register list");
11397 else
11398 set_it_insn_type_last ();
11399 }
3c707909
PB
11400 }
11401 else
11402 {
11403 if (mask & (1 << 15))
11404 inst.error = _("PC not allowed in register list");
3c707909
PB
11405 }
11406
11407 if ((mask & (mask - 1)) == 0)
11408 {
11409 /* Single register transfers implemented as str/ldr. */
11410 if (writeback)
11411 {
11412 if (inst.instruction & (1 << 23))
11413 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
11414 else
11415 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
11416 }
11417 else
11418 {
11419 if (inst.instruction & (1 << 23))
11420 inst.instruction = 0x00800000; /* ia -> [base] */
11421 else
11422 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
11423 }
11424
11425 inst.instruction |= 0xf8400000;
11426 if (load)
11427 inst.instruction |= 0x00100000;
11428
5f4273c7 11429 mask = ffs (mask) - 1;
3c707909
PB
11430 mask <<= 12;
11431 }
11432 else if (writeback)
11433 inst.instruction |= WRITE_BACK;
11434
11435 inst.instruction |= mask;
11436 inst.instruction |= base << 16;
11437}
11438
c19d1205
ZW
11439static void
11440do_t_ldmstm (void)
11441{
11442 /* This really doesn't seem worth it. */
11443 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11444 _("expression too complex"));
11445 constraint (inst.operands[1].writeback,
11446 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 11447
c19d1205
ZW
11448 if (unified_syntax)
11449 {
3c707909
PB
11450 bfd_boolean narrow;
11451 unsigned mask;
11452
11453 narrow = FALSE;
c19d1205
ZW
11454 /* See if we can use a 16-bit instruction. */
11455 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
11456 && inst.size_req != 4
3c707909 11457 && !(inst.operands[1].imm & ~0xff))
90e4755a 11458 {
3c707909 11459 mask = 1 << inst.operands[0].reg;
90e4755a 11460
eab4f823 11461 if (inst.operands[0].reg <= 7)
90e4755a 11462 {
3c707909 11463 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
11464 ? inst.operands[0].writeback
11465 : (inst.operands[0].writeback
11466 == !(inst.operands[1].imm & mask)))
477330fc 11467 {
eab4f823
MGD
11468 if (inst.instruction == T_MNEM_stmia
11469 && (inst.operands[1].imm & mask)
11470 && (inst.operands[1].imm & (mask - 1)))
11471 as_warn (_("value stored for r%d is UNKNOWN"),
11472 inst.operands[0].reg);
3c707909 11473
eab4f823
MGD
11474 inst.instruction = THUMB_OP16 (inst.instruction);
11475 inst.instruction |= inst.operands[0].reg << 8;
11476 inst.instruction |= inst.operands[1].imm;
11477 narrow = TRUE;
11478 }
11479 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11480 {
11481 /* This means 1 register in reg list one of 3 situations:
11482 1. Instruction is stmia, but without writeback.
11483 2. lmdia without writeback, but with Rn not in
477330fc 11484 reglist.
eab4f823
MGD
11485 3. ldmia with writeback, but with Rn in reglist.
11486 Case 3 is UNPREDICTABLE behaviour, so we handle
11487 case 1 and 2 which can be converted into a 16-bit
11488 str or ldr. The SP cases are handled below. */
11489 unsigned long opcode;
11490 /* First, record an error for Case 3. */
11491 if (inst.operands[1].imm & mask
11492 && inst.operands[0].writeback)
fa94de6b 11493 inst.error =
eab4f823
MGD
11494 _("having the base register in the register list when "
11495 "using write back is UNPREDICTABLE");
fa94de6b
RM
11496
11497 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
11498 : T_MNEM_ldr);
11499 inst.instruction = THUMB_OP16 (opcode);
11500 inst.instruction |= inst.operands[0].reg << 3;
11501 inst.instruction |= (ffs (inst.operands[1].imm)-1);
11502 narrow = TRUE;
11503 }
90e4755a 11504 }
eab4f823 11505 else if (inst.operands[0] .reg == REG_SP)
90e4755a 11506 {
eab4f823
MGD
11507 if (inst.operands[0].writeback)
11508 {
fa94de6b 11509 inst.instruction =
eab4f823 11510 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 11511 ? T_MNEM_push : T_MNEM_pop);
eab4f823 11512 inst.instruction |= inst.operands[1].imm;
477330fc 11513 narrow = TRUE;
eab4f823
MGD
11514 }
11515 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11516 {
fa94de6b 11517 inst.instruction =
eab4f823 11518 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 11519 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 11520 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 11521 narrow = TRUE;
eab4f823 11522 }
90e4755a 11523 }
3c707909
PB
11524 }
11525
11526 if (!narrow)
11527 {
c19d1205
ZW
11528 if (inst.instruction < 0xffff)
11529 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 11530
5f4273c7
NC
11531 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
11532 inst.operands[0].writeback);
90e4755a
RE
11533 }
11534 }
c19d1205 11535 else
90e4755a 11536 {
c19d1205
ZW
11537 constraint (inst.operands[0].reg > 7
11538 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
11539 constraint (inst.instruction != T_MNEM_ldmia
11540 && inst.instruction != T_MNEM_stmia,
11541 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 11542 if (inst.instruction == T_MNEM_stmia)
f03698e6 11543 {
c19d1205
ZW
11544 if (!inst.operands[0].writeback)
11545 as_warn (_("this instruction will write back the base register"));
11546 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
11547 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 11548 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 11549 inst.operands[0].reg);
f03698e6 11550 }
c19d1205 11551 else
90e4755a 11552 {
c19d1205
ZW
11553 if (!inst.operands[0].writeback
11554 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
11555 as_warn (_("this instruction will write back the base register"));
11556 else if (inst.operands[0].writeback
11557 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
11558 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
11559 }
11560
c19d1205
ZW
11561 inst.instruction = THUMB_OP16 (inst.instruction);
11562 inst.instruction |= inst.operands[0].reg << 8;
11563 inst.instruction |= inst.operands[1].imm;
11564 }
11565}
e28cd48c 11566
c19d1205
ZW
11567static void
11568do_t_ldrex (void)
11569{
11570 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11571 || inst.operands[1].postind || inst.operands[1].writeback
11572 || inst.operands[1].immisreg || inst.operands[1].shifted
11573 || inst.operands[1].negative,
01cfc07f 11574 BAD_ADDR_MODE);
e28cd48c 11575
5be8be5d
DG
11576 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
11577
c19d1205
ZW
11578 inst.instruction |= inst.operands[0].reg << 12;
11579 inst.instruction |= inst.operands[1].reg << 16;
11580 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11581}
e28cd48c 11582
c19d1205
ZW
11583static void
11584do_t_ldrexd (void)
11585{
11586 if (!inst.operands[1].present)
1cac9012 11587 {
c19d1205
ZW
11588 constraint (inst.operands[0].reg == REG_LR,
11589 _("r14 not allowed as first register "
11590 "when second register is omitted"));
11591 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 11592 }
c19d1205
ZW
11593 constraint (inst.operands[0].reg == inst.operands[1].reg,
11594 BAD_OVERLAP);
b99bd4ef 11595
c19d1205
ZW
11596 inst.instruction |= inst.operands[0].reg << 12;
11597 inst.instruction |= inst.operands[1].reg << 8;
11598 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
11599}
11600
11601static void
c19d1205 11602do_t_ldst (void)
b99bd4ef 11603{
0110f2b8
PB
11604 unsigned long opcode;
11605 int Rn;
11606
e07e6e58
NC
11607 if (inst.operands[0].isreg
11608 && !inst.operands[0].preind
11609 && inst.operands[0].reg == REG_PC)
11610 set_it_insn_type_last ();
11611
0110f2b8 11612 opcode = inst.instruction;
c19d1205 11613 if (unified_syntax)
b99bd4ef 11614 {
53365c0d
PB
11615 if (!inst.operands[1].isreg)
11616 {
11617 if (opcode <= 0xffff)
11618 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 11619 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
11620 return;
11621 }
0110f2b8
PB
11622 if (inst.operands[1].isreg
11623 && !inst.operands[1].writeback
c19d1205
ZW
11624 && !inst.operands[1].shifted && !inst.operands[1].postind
11625 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
11626 && opcode <= 0xffff
11627 && inst.size_req != 4)
c19d1205 11628 {
0110f2b8
PB
11629 /* Insn may have a 16-bit form. */
11630 Rn = inst.operands[1].reg;
11631 if (inst.operands[1].immisreg)
11632 {
11633 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 11634 /* [Rn, Rik] */
0110f2b8
PB
11635 if (Rn <= 7 && inst.operands[1].imm <= 7)
11636 goto op16;
5be8be5d
DG
11637 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
11638 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
11639 }
11640 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
11641 && opcode != T_MNEM_ldrsb)
11642 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
11643 || (Rn == REG_SP && opcode == T_MNEM_str))
11644 {
11645 /* [Rn, #const] */
11646 if (Rn > 7)
11647 {
11648 if (Rn == REG_PC)
11649 {
11650 if (inst.reloc.pc_rel)
11651 opcode = T_MNEM_ldr_pc2;
11652 else
11653 opcode = T_MNEM_ldr_pc;
11654 }
11655 else
11656 {
11657 if (opcode == T_MNEM_ldr)
11658 opcode = T_MNEM_ldr_sp;
11659 else
11660 opcode = T_MNEM_str_sp;
11661 }
11662 inst.instruction = inst.operands[0].reg << 8;
11663 }
11664 else
11665 {
11666 inst.instruction = inst.operands[0].reg;
11667 inst.instruction |= inst.operands[1].reg << 3;
11668 }
11669 inst.instruction |= THUMB_OP16 (opcode);
11670 if (inst.size_req == 2)
11671 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11672 else
11673 inst.relax = opcode;
11674 return;
11675 }
c19d1205 11676 }
0110f2b8 11677 /* Definitely a 32-bit variant. */
5be8be5d 11678
8d67f500
NC
11679 /* Warning for Erratum 752419. */
11680 if (opcode == T_MNEM_ldr
11681 && inst.operands[0].reg == REG_SP
11682 && inst.operands[1].writeback == 1
11683 && !inst.operands[1].immisreg)
11684 {
11685 if (no_cpu_selected ()
11686 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
11687 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
11688 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
11689 as_warn (_("This instruction may be unpredictable "
11690 "if executed on M-profile cores "
11691 "with interrupts enabled."));
11692 }
11693
5be8be5d 11694 /* Do some validations regarding addressing modes. */
1be5fd2e 11695 if (inst.operands[1].immisreg)
5be8be5d
DG
11696 reject_bad_reg (inst.operands[1].imm);
11697
1be5fd2e
NC
11698 constraint (inst.operands[1].writeback == 1
11699 && inst.operands[0].reg == inst.operands[1].reg,
11700 BAD_OVERLAP);
11701
0110f2b8 11702 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
11703 inst.instruction |= inst.operands[0].reg << 12;
11704 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 11705 check_ldr_r15_aligned ();
b99bd4ef
NC
11706 return;
11707 }
11708
c19d1205
ZW
11709 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11710
11711 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 11712 {
c19d1205
ZW
11713 /* Only [Rn,Rm] is acceptable. */
11714 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
11715 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
11716 || inst.operands[1].postind || inst.operands[1].shifted
11717 || inst.operands[1].negative,
11718 _("Thumb does not support this addressing mode"));
11719 inst.instruction = THUMB_OP16 (inst.instruction);
11720 goto op16;
b99bd4ef 11721 }
5f4273c7 11722
c19d1205
ZW
11723 inst.instruction = THUMB_OP16 (inst.instruction);
11724 if (!inst.operands[1].isreg)
8335d6aa 11725 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 11726 return;
b99bd4ef 11727
c19d1205
ZW
11728 constraint (!inst.operands[1].preind
11729 || inst.operands[1].shifted
11730 || inst.operands[1].writeback,
11731 _("Thumb does not support this addressing mode"));
11732 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 11733 {
c19d1205
ZW
11734 constraint (inst.instruction & 0x0600,
11735 _("byte or halfword not valid for base register"));
11736 constraint (inst.operands[1].reg == REG_PC
11737 && !(inst.instruction & THUMB_LOAD_BIT),
11738 _("r15 based store not allowed"));
11739 constraint (inst.operands[1].immisreg,
11740 _("invalid base register for register offset"));
b99bd4ef 11741
c19d1205
ZW
11742 if (inst.operands[1].reg == REG_PC)
11743 inst.instruction = T_OPCODE_LDR_PC;
11744 else if (inst.instruction & THUMB_LOAD_BIT)
11745 inst.instruction = T_OPCODE_LDR_SP;
11746 else
11747 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 11748
c19d1205
ZW
11749 inst.instruction |= inst.operands[0].reg << 8;
11750 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11751 return;
11752 }
90e4755a 11753
c19d1205
ZW
11754 constraint (inst.operands[1].reg > 7, BAD_HIREG);
11755 if (!inst.operands[1].immisreg)
11756 {
11757 /* Immediate offset. */
11758 inst.instruction |= inst.operands[0].reg;
11759 inst.instruction |= inst.operands[1].reg << 3;
11760 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11761 return;
11762 }
90e4755a 11763
c19d1205
ZW
11764 /* Register offset. */
11765 constraint (inst.operands[1].imm > 7, BAD_HIREG);
11766 constraint (inst.operands[1].negative,
11767 _("Thumb does not support this addressing mode"));
90e4755a 11768
c19d1205
ZW
11769 op16:
11770 switch (inst.instruction)
11771 {
11772 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
11773 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
11774 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
11775 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
11776 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
11777 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
11778 case 0x5600 /* ldrsb */:
11779 case 0x5e00 /* ldrsh */: break;
11780 default: abort ();
11781 }
90e4755a 11782
c19d1205
ZW
11783 inst.instruction |= inst.operands[0].reg;
11784 inst.instruction |= inst.operands[1].reg << 3;
11785 inst.instruction |= inst.operands[1].imm << 6;
11786}
90e4755a 11787
c19d1205
ZW
11788static void
11789do_t_ldstd (void)
11790{
11791 if (!inst.operands[1].present)
b99bd4ef 11792 {
c19d1205
ZW
11793 inst.operands[1].reg = inst.operands[0].reg + 1;
11794 constraint (inst.operands[0].reg == REG_LR,
11795 _("r14 not allowed here"));
bd340a04 11796 constraint (inst.operands[0].reg == REG_R12,
477330fc 11797 _("r12 not allowed here"));
b99bd4ef 11798 }
bd340a04
MGD
11799
11800 if (inst.operands[2].writeback
11801 && (inst.operands[0].reg == inst.operands[2].reg
11802 || inst.operands[1].reg == inst.operands[2].reg))
11803 as_warn (_("base register written back, and overlaps "
477330fc 11804 "one of transfer registers"));
bd340a04 11805
c19d1205
ZW
11806 inst.instruction |= inst.operands[0].reg << 12;
11807 inst.instruction |= inst.operands[1].reg << 8;
11808 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
11809}
11810
c19d1205
ZW
11811static void
11812do_t_ldstt (void)
11813{
11814 inst.instruction |= inst.operands[0].reg << 12;
11815 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11816}
a737bd4d 11817
b99bd4ef 11818static void
c19d1205 11819do_t_mla (void)
b99bd4ef 11820{
fdfde340 11821 unsigned Rd, Rn, Rm, Ra;
c921be7d 11822
fdfde340
JM
11823 Rd = inst.operands[0].reg;
11824 Rn = inst.operands[1].reg;
11825 Rm = inst.operands[2].reg;
11826 Ra = inst.operands[3].reg;
11827
11828 reject_bad_reg (Rd);
11829 reject_bad_reg (Rn);
11830 reject_bad_reg (Rm);
11831 reject_bad_reg (Ra);
11832
11833 inst.instruction |= Rd << 8;
11834 inst.instruction |= Rn << 16;
11835 inst.instruction |= Rm;
11836 inst.instruction |= Ra << 12;
c19d1205 11837}
b99bd4ef 11838
c19d1205
ZW
11839static void
11840do_t_mlal (void)
11841{
fdfde340
JM
11842 unsigned RdLo, RdHi, Rn, Rm;
11843
11844 RdLo = inst.operands[0].reg;
11845 RdHi = inst.operands[1].reg;
11846 Rn = inst.operands[2].reg;
11847 Rm = inst.operands[3].reg;
11848
11849 reject_bad_reg (RdLo);
11850 reject_bad_reg (RdHi);
11851 reject_bad_reg (Rn);
11852 reject_bad_reg (Rm);
11853
11854 inst.instruction |= RdLo << 12;
11855 inst.instruction |= RdHi << 8;
11856 inst.instruction |= Rn << 16;
11857 inst.instruction |= Rm;
c19d1205 11858}
b99bd4ef 11859
c19d1205
ZW
11860static void
11861do_t_mov_cmp (void)
11862{
fdfde340
JM
11863 unsigned Rn, Rm;
11864
11865 Rn = inst.operands[0].reg;
11866 Rm = inst.operands[1].reg;
11867
e07e6e58
NC
11868 if (Rn == REG_PC)
11869 set_it_insn_type_last ();
11870
c19d1205 11871 if (unified_syntax)
b99bd4ef 11872 {
c19d1205
ZW
11873 int r0off = (inst.instruction == T_MNEM_mov
11874 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 11875 unsigned long opcode;
3d388997
PB
11876 bfd_boolean narrow;
11877 bfd_boolean low_regs;
11878
fdfde340 11879 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 11880 opcode = inst.instruction;
e07e6e58 11881 if (in_it_block ())
0110f2b8 11882 narrow = opcode != T_MNEM_movs;
3d388997 11883 else
0110f2b8 11884 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
11885 if (inst.size_req == 4
11886 || inst.operands[1].shifted)
11887 narrow = FALSE;
11888
efd81785
PB
11889 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11890 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11891 && !inst.operands[1].shifted
fdfde340
JM
11892 && Rn == REG_PC
11893 && Rm == REG_LR)
efd81785
PB
11894 {
11895 inst.instruction = T2_SUBS_PC_LR;
11896 return;
11897 }
11898
fdfde340
JM
11899 if (opcode == T_MNEM_cmp)
11900 {
11901 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
11902 if (narrow)
11903 {
11904 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
11905 but valid. */
11906 warn_deprecated_sp (Rm);
11907 /* R15 was documented as a valid choice for Rm in ARMv6,
11908 but as UNPREDICTABLE in ARMv7. ARM's proprietary
11909 tools reject R15, so we do too. */
11910 constraint (Rm == REG_PC, BAD_PC);
11911 }
11912 else
11913 reject_bad_reg (Rm);
fdfde340
JM
11914 }
11915 else if (opcode == T_MNEM_mov
11916 || opcode == T_MNEM_movs)
11917 {
11918 if (inst.operands[1].isreg)
11919 {
11920 if (opcode == T_MNEM_movs)
11921 {
11922 reject_bad_reg (Rn);
11923 reject_bad_reg (Rm);
11924 }
76fa04a4
MGD
11925 else if (narrow)
11926 {
11927 /* This is mov.n. */
11928 if ((Rn == REG_SP || Rn == REG_PC)
11929 && (Rm == REG_SP || Rm == REG_PC))
11930 {
5c3696f8 11931 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
11932 "deprecated when r%u is the destination "
11933 "register."), Rm, Rn);
11934 }
11935 }
11936 else
11937 {
11938 /* This is mov.w. */
11939 constraint (Rn == REG_PC, BAD_PC);
11940 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
11941 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11942 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 11943 }
fdfde340
JM
11944 }
11945 else
11946 reject_bad_reg (Rn);
11947 }
11948
c19d1205
ZW
11949 if (!inst.operands[1].isreg)
11950 {
0110f2b8 11951 /* Immediate operand. */
e07e6e58 11952 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
11953 narrow = 0;
11954 if (low_regs && narrow)
11955 {
11956 inst.instruction = THUMB_OP16 (opcode);
fdfde340 11957 inst.instruction |= Rn << 8;
a9f02af8
MG
11958 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11959 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 11960 {
a9f02af8 11961 if (inst.size_req == 2)
72d98d16 11962 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
11963 else
11964 inst.relax = opcode;
72d98d16 11965 }
0110f2b8
PB
11966 }
11967 else
11968 {
a9f02af8
MG
11969 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11970 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
11971 THUMB1_RELOC_ONLY);
11972
0110f2b8
PB
11973 inst.instruction = THUMB_OP32 (inst.instruction);
11974 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 11975 inst.instruction |= Rn << r0off;
0110f2b8
PB
11976 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11977 }
c19d1205 11978 }
728ca7c9
PB
11979 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11980 && (inst.instruction == T_MNEM_mov
11981 || inst.instruction == T_MNEM_movs))
11982 {
11983 /* Register shifts are encoded as separate shift instructions. */
11984 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11985
e07e6e58 11986 if (in_it_block ())
728ca7c9
PB
11987 narrow = !flags;
11988 else
11989 narrow = flags;
11990
11991 if (inst.size_req == 4)
11992 narrow = FALSE;
11993
11994 if (!low_regs || inst.operands[1].imm > 7)
11995 narrow = FALSE;
11996
fdfde340 11997 if (Rn != Rm)
728ca7c9
PB
11998 narrow = FALSE;
11999
12000 switch (inst.operands[1].shift_kind)
12001 {
12002 case SHIFT_LSL:
12003 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12004 break;
12005 case SHIFT_ASR:
12006 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12007 break;
12008 case SHIFT_LSR:
12009 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12010 break;
12011 case SHIFT_ROR:
12012 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12013 break;
12014 default:
5f4273c7 12015 abort ();
728ca7c9
PB
12016 }
12017
12018 inst.instruction = opcode;
12019 if (narrow)
12020 {
fdfde340 12021 inst.instruction |= Rn;
728ca7c9
PB
12022 inst.instruction |= inst.operands[1].imm << 3;
12023 }
12024 else
12025 {
12026 if (flags)
12027 inst.instruction |= CONDS_BIT;
12028
fdfde340
JM
12029 inst.instruction |= Rn << 8;
12030 inst.instruction |= Rm << 16;
728ca7c9
PB
12031 inst.instruction |= inst.operands[1].imm;
12032 }
12033 }
3d388997 12034 else if (!narrow)
c19d1205 12035 {
728ca7c9
PB
12036 /* Some mov with immediate shift have narrow variants.
12037 Register shifts are handled above. */
12038 if (low_regs && inst.operands[1].shifted
12039 && (inst.instruction == T_MNEM_mov
12040 || inst.instruction == T_MNEM_movs))
12041 {
e07e6e58 12042 if (in_it_block ())
728ca7c9
PB
12043 narrow = (inst.instruction == T_MNEM_mov);
12044 else
12045 narrow = (inst.instruction == T_MNEM_movs);
12046 }
12047
12048 if (narrow)
12049 {
12050 switch (inst.operands[1].shift_kind)
12051 {
12052 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12053 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12054 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12055 default: narrow = FALSE; break;
12056 }
12057 }
12058
12059 if (narrow)
12060 {
fdfde340
JM
12061 inst.instruction |= Rn;
12062 inst.instruction |= Rm << 3;
728ca7c9
PB
12063 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12064 }
12065 else
12066 {
12067 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12068 inst.instruction |= Rn << r0off;
728ca7c9
PB
12069 encode_thumb32_shifted_operand (1);
12070 }
c19d1205
ZW
12071 }
12072 else
12073 switch (inst.instruction)
12074 {
12075 case T_MNEM_mov:
837b3435 12076 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12077 results. Don't allow this. */
12078 if (low_regs)
12079 {
12080 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12081 "MOV Rd, Rs with two low registers is not "
12082 "permitted on this architecture");
fa94de6b 12083 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12084 arm_ext_v6);
12085 }
12086
c19d1205 12087 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12088 inst.instruction |= (Rn & 0x8) << 4;
12089 inst.instruction |= (Rn & 0x7);
12090 inst.instruction |= Rm << 3;
c19d1205 12091 break;
b99bd4ef 12092
c19d1205
ZW
12093 case T_MNEM_movs:
12094 /* We know we have low registers at this point.
941a8a52
MGD
12095 Generate LSLS Rd, Rs, #0. */
12096 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12097 inst.instruction |= Rn;
12098 inst.instruction |= Rm << 3;
c19d1205
ZW
12099 break;
12100
12101 case T_MNEM_cmp:
3d388997 12102 if (low_regs)
c19d1205
ZW
12103 {
12104 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12105 inst.instruction |= Rn;
12106 inst.instruction |= Rm << 3;
c19d1205
ZW
12107 }
12108 else
12109 {
12110 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12111 inst.instruction |= (Rn & 0x8) << 4;
12112 inst.instruction |= (Rn & 0x7);
12113 inst.instruction |= Rm << 3;
c19d1205
ZW
12114 }
12115 break;
12116 }
b99bd4ef
NC
12117 return;
12118 }
12119
c19d1205 12120 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12121
12122 /* PR 10443: Do not silently ignore shifted operands. */
12123 constraint (inst.operands[1].shifted,
12124 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12125
c19d1205 12126 if (inst.operands[1].isreg)
b99bd4ef 12127 {
fdfde340 12128 if (Rn < 8 && Rm < 8)
b99bd4ef 12129 {
c19d1205
ZW
12130 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12131 since a MOV instruction produces unpredictable results. */
12132 if (inst.instruction == T_OPCODE_MOV_I8)
12133 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12134 else
c19d1205 12135 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12136
fdfde340
JM
12137 inst.instruction |= Rn;
12138 inst.instruction |= Rm << 3;
b99bd4ef
NC
12139 }
12140 else
12141 {
c19d1205
ZW
12142 if (inst.instruction == T_OPCODE_MOV_I8)
12143 inst.instruction = T_OPCODE_MOV_HR;
12144 else
12145 inst.instruction = T_OPCODE_CMP_HR;
12146 do_t_cpy ();
b99bd4ef
NC
12147 }
12148 }
c19d1205 12149 else
b99bd4ef 12150 {
fdfde340 12151 constraint (Rn > 7,
c19d1205 12152 _("only lo regs allowed with immediate"));
fdfde340 12153 inst.instruction |= Rn << 8;
c19d1205
ZW
12154 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
12155 }
12156}
b99bd4ef 12157
c19d1205
ZW
12158static void
12159do_t_mov16 (void)
12160{
fdfde340 12161 unsigned Rd;
b6895b4f
PB
12162 bfd_vma imm;
12163 bfd_boolean top;
12164
12165 top = (inst.instruction & 0x00800000) != 0;
12166 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
12167 {
33eaf5de 12168 constraint (top, _(":lower16: not allowed in this instruction"));
b6895b4f
PB
12169 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
12170 }
12171 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
12172 {
33eaf5de 12173 constraint (!top, _(":upper16: not allowed in this instruction"));
b6895b4f
PB
12174 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
12175 }
12176
fdfde340
JM
12177 Rd = inst.operands[0].reg;
12178 reject_bad_reg (Rd);
12179
12180 inst.instruction |= Rd << 8;
b6895b4f
PB
12181 if (inst.reloc.type == BFD_RELOC_UNUSED)
12182 {
12183 imm = inst.reloc.exp.X_add_number;
12184 inst.instruction |= (imm & 0xf000) << 4;
12185 inst.instruction |= (imm & 0x0800) << 15;
12186 inst.instruction |= (imm & 0x0700) << 4;
12187 inst.instruction |= (imm & 0x00ff);
12188 }
c19d1205 12189}
b99bd4ef 12190
c19d1205
ZW
12191static void
12192do_t_mvn_tst (void)
12193{
fdfde340 12194 unsigned Rn, Rm;
c921be7d 12195
fdfde340
JM
12196 Rn = inst.operands[0].reg;
12197 Rm = inst.operands[1].reg;
12198
12199 if (inst.instruction == T_MNEM_cmp
12200 || inst.instruction == T_MNEM_cmn)
12201 constraint (Rn == REG_PC, BAD_PC);
12202 else
12203 reject_bad_reg (Rn);
12204 reject_bad_reg (Rm);
12205
c19d1205
ZW
12206 if (unified_syntax)
12207 {
12208 int r0off = (inst.instruction == T_MNEM_mvn
12209 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12210 bfd_boolean narrow;
12211
12212 if (inst.size_req == 4
12213 || inst.instruction > 0xffff
12214 || inst.operands[1].shifted
fdfde340 12215 || Rn > 7 || Rm > 7)
3d388997 12216 narrow = FALSE;
fe8b4cc3
KT
12217 else if (inst.instruction == T_MNEM_cmn
12218 || inst.instruction == T_MNEM_tst)
3d388997
PB
12219 narrow = TRUE;
12220 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12221 narrow = !in_it_block ();
3d388997 12222 else
e07e6e58 12223 narrow = in_it_block ();
3d388997 12224
c19d1205 12225 if (!inst.operands[1].isreg)
b99bd4ef 12226 {
c19d1205
ZW
12227 /* For an immediate, we always generate a 32-bit opcode;
12228 section relaxation will shrink it later if possible. */
12229 if (inst.instruction < 0xffff)
12230 inst.instruction = THUMB_OP32 (inst.instruction);
12231 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12232 inst.instruction |= Rn << r0off;
c19d1205 12233 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12234 }
c19d1205 12235 else
b99bd4ef 12236 {
c19d1205 12237 /* See if we can do this with a 16-bit instruction. */
3d388997 12238 if (narrow)
b99bd4ef 12239 {
c19d1205 12240 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12241 inst.instruction |= Rn;
12242 inst.instruction |= Rm << 3;
b99bd4ef 12243 }
c19d1205 12244 else
b99bd4ef 12245 {
c19d1205
ZW
12246 constraint (inst.operands[1].shifted
12247 && inst.operands[1].immisreg,
12248 _("shift must be constant"));
12249 if (inst.instruction < 0xffff)
12250 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12251 inst.instruction |= Rn << r0off;
c19d1205 12252 encode_thumb32_shifted_operand (1);
b99bd4ef 12253 }
b99bd4ef
NC
12254 }
12255 }
12256 else
12257 {
c19d1205
ZW
12258 constraint (inst.instruction > 0xffff
12259 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12260 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12261 _("unshifted register required"));
fdfde340 12262 constraint (Rn > 7 || Rm > 7,
c19d1205 12263 BAD_HIREG);
b99bd4ef 12264
c19d1205 12265 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12266 inst.instruction |= Rn;
12267 inst.instruction |= Rm << 3;
b99bd4ef 12268 }
b99bd4ef
NC
12269}
12270
b05fe5cf 12271static void
c19d1205 12272do_t_mrs (void)
b05fe5cf 12273{
fdfde340 12274 unsigned Rd;
037e8744
JB
12275
12276 if (do_vfp_nsyn_mrs () == SUCCESS)
12277 return;
12278
90ec0d68
MGD
12279 Rd = inst.operands[0].reg;
12280 reject_bad_reg (Rd);
12281 inst.instruction |= Rd << 8;
12282
12283 if (inst.operands[1].isreg)
62b3e311 12284 {
90ec0d68
MGD
12285 unsigned br = inst.operands[1].reg;
12286 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12287 as_bad (_("bad register for mrs"));
12288
12289 inst.instruction |= br & (0xf << 16);
12290 inst.instruction |= (br & 0x300) >> 4;
12291 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
12292 }
12293 else
12294 {
90ec0d68 12295 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 12296
d2cd1205 12297 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
12298 {
12299 /* PR gas/12698: The constraint is only applied for m_profile.
12300 If the user has specified -march=all, we want to ignore it as
12301 we are building for any CPU type, including non-m variants. */
823d2571
TG
12302 bfd_boolean m_profile =
12303 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
12304 constraint ((flags != 0) && m_profile, _("selected processor does "
12305 "not support requested special purpose register"));
12306 }
90ec0d68 12307 else
d2cd1205
JB
12308 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12309 devices). */
12310 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12311 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 12312
90ec0d68
MGD
12313 inst.instruction |= (flags & SPSR_BIT) >> 2;
12314 inst.instruction |= inst.operands[1].imm & 0xff;
12315 inst.instruction |= 0xf0000;
12316 }
c19d1205 12317}
b05fe5cf 12318
c19d1205
ZW
12319static void
12320do_t_msr (void)
12321{
62b3e311 12322 int flags;
fdfde340 12323 unsigned Rn;
62b3e311 12324
037e8744
JB
12325 if (do_vfp_nsyn_msr () == SUCCESS)
12326 return;
12327
c19d1205
ZW
12328 constraint (!inst.operands[1].isreg,
12329 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
12330
12331 if (inst.operands[0].isreg)
12332 flags = (int)(inst.operands[0].reg);
12333 else
12334 flags = inst.operands[0].imm;
12335
d2cd1205 12336 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 12337 {
d2cd1205
JB
12338 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12339
1a43faaf 12340 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
12341 If the user has specified -march=all, we want to ignore it as
12342 we are building for any CPU type, including non-m variants. */
823d2571
TG
12343 bfd_boolean m_profile =
12344 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 12345 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
12346 && (bits & ~(PSR_s | PSR_f)) != 0)
12347 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12348 && bits != PSR_f)) && m_profile,
12349 _("selected processor does not support requested special "
12350 "purpose register"));
62b3e311
PB
12351 }
12352 else
d2cd1205
JB
12353 constraint ((flags & 0xff) != 0, _("selected processor does not support "
12354 "requested special purpose register"));
c921be7d 12355
fdfde340
JM
12356 Rn = inst.operands[1].reg;
12357 reject_bad_reg (Rn);
12358
62b3e311 12359 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
12360 inst.instruction |= (flags & 0xf0000) >> 8;
12361 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 12362 inst.instruction |= (flags & 0xff);
fdfde340 12363 inst.instruction |= Rn << 16;
c19d1205 12364}
b05fe5cf 12365
c19d1205
ZW
12366static void
12367do_t_mul (void)
12368{
17828f45 12369 bfd_boolean narrow;
fdfde340 12370 unsigned Rd, Rn, Rm;
17828f45 12371
c19d1205
ZW
12372 if (!inst.operands[2].present)
12373 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 12374
fdfde340
JM
12375 Rd = inst.operands[0].reg;
12376 Rn = inst.operands[1].reg;
12377 Rm = inst.operands[2].reg;
12378
17828f45 12379 if (unified_syntax)
b05fe5cf 12380 {
17828f45 12381 if (inst.size_req == 4
fdfde340
JM
12382 || (Rd != Rn
12383 && Rd != Rm)
12384 || Rn > 7
12385 || Rm > 7)
17828f45
JM
12386 narrow = FALSE;
12387 else if (inst.instruction == T_MNEM_muls)
e07e6e58 12388 narrow = !in_it_block ();
17828f45 12389 else
e07e6e58 12390 narrow = in_it_block ();
b05fe5cf 12391 }
c19d1205 12392 else
b05fe5cf 12393 {
17828f45 12394 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 12395 constraint (Rn > 7 || Rm > 7,
c19d1205 12396 BAD_HIREG);
17828f45
JM
12397 narrow = TRUE;
12398 }
b05fe5cf 12399
17828f45
JM
12400 if (narrow)
12401 {
12402 /* 16-bit MULS/Conditional MUL. */
c19d1205 12403 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 12404 inst.instruction |= Rd;
b05fe5cf 12405
fdfde340
JM
12406 if (Rd == Rn)
12407 inst.instruction |= Rm << 3;
12408 else if (Rd == Rm)
12409 inst.instruction |= Rn << 3;
c19d1205
ZW
12410 else
12411 constraint (1, _("dest must overlap one source register"));
12412 }
17828f45
JM
12413 else
12414 {
e07e6e58
NC
12415 constraint (inst.instruction != T_MNEM_mul,
12416 _("Thumb-2 MUL must not set flags"));
17828f45
JM
12417 /* 32-bit MUL. */
12418 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12419 inst.instruction |= Rd << 8;
12420 inst.instruction |= Rn << 16;
12421 inst.instruction |= Rm << 0;
12422
12423 reject_bad_reg (Rd);
12424 reject_bad_reg (Rn);
12425 reject_bad_reg (Rm);
17828f45 12426 }
c19d1205 12427}
b05fe5cf 12428
c19d1205
ZW
12429static void
12430do_t_mull (void)
12431{
fdfde340 12432 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 12433
fdfde340
JM
12434 RdLo = inst.operands[0].reg;
12435 RdHi = inst.operands[1].reg;
12436 Rn = inst.operands[2].reg;
12437 Rm = inst.operands[3].reg;
12438
12439 reject_bad_reg (RdLo);
12440 reject_bad_reg (RdHi);
12441 reject_bad_reg (Rn);
12442 reject_bad_reg (Rm);
12443
12444 inst.instruction |= RdLo << 12;
12445 inst.instruction |= RdHi << 8;
12446 inst.instruction |= Rn << 16;
12447 inst.instruction |= Rm;
12448
12449 if (RdLo == RdHi)
c19d1205
ZW
12450 as_tsktsk (_("rdhi and rdlo must be different"));
12451}
b05fe5cf 12452
c19d1205
ZW
12453static void
12454do_t_nop (void)
12455{
e07e6e58
NC
12456 set_it_insn_type (NEUTRAL_IT_INSN);
12457
c19d1205
ZW
12458 if (unified_syntax)
12459 {
12460 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 12461 {
c19d1205
ZW
12462 inst.instruction = THUMB_OP32 (inst.instruction);
12463 inst.instruction |= inst.operands[0].imm;
12464 }
12465 else
12466 {
bc2d1808
NC
12467 /* PR9722: Check for Thumb2 availability before
12468 generating a thumb2 nop instruction. */
afa62d5e 12469 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
12470 {
12471 inst.instruction = THUMB_OP16 (inst.instruction);
12472 inst.instruction |= inst.operands[0].imm << 4;
12473 }
12474 else
12475 inst.instruction = 0x46c0;
c19d1205
ZW
12476 }
12477 }
12478 else
12479 {
12480 constraint (inst.operands[0].present,
12481 _("Thumb does not support NOP with hints"));
12482 inst.instruction = 0x46c0;
12483 }
12484}
b05fe5cf 12485
c19d1205
ZW
12486static void
12487do_t_neg (void)
12488{
12489 if (unified_syntax)
12490 {
3d388997
PB
12491 bfd_boolean narrow;
12492
12493 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12494 narrow = !in_it_block ();
3d388997 12495 else
e07e6e58 12496 narrow = in_it_block ();
3d388997
PB
12497 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12498 narrow = FALSE;
12499 if (inst.size_req == 4)
12500 narrow = FALSE;
12501
12502 if (!narrow)
c19d1205
ZW
12503 {
12504 inst.instruction = THUMB_OP32 (inst.instruction);
12505 inst.instruction |= inst.operands[0].reg << 8;
12506 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
12507 }
12508 else
12509 {
c19d1205
ZW
12510 inst.instruction = THUMB_OP16 (inst.instruction);
12511 inst.instruction |= inst.operands[0].reg;
12512 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
12513 }
12514 }
12515 else
12516 {
c19d1205
ZW
12517 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
12518 BAD_HIREG);
12519 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12520
12521 inst.instruction = THUMB_OP16 (inst.instruction);
12522 inst.instruction |= inst.operands[0].reg;
12523 inst.instruction |= inst.operands[1].reg << 3;
12524 }
12525}
12526
1c444d06
JM
12527static void
12528do_t_orn (void)
12529{
12530 unsigned Rd, Rn;
12531
12532 Rd = inst.operands[0].reg;
12533 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
12534
fdfde340
JM
12535 reject_bad_reg (Rd);
12536 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
12537 reject_bad_reg (Rn);
12538
1c444d06
JM
12539 inst.instruction |= Rd << 8;
12540 inst.instruction |= Rn << 16;
12541
12542 if (!inst.operands[2].isreg)
12543 {
12544 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12545 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12546 }
12547 else
12548 {
12549 unsigned Rm;
12550
12551 Rm = inst.operands[2].reg;
fdfde340 12552 reject_bad_reg (Rm);
1c444d06
JM
12553
12554 constraint (inst.operands[2].shifted
12555 && inst.operands[2].immisreg,
12556 _("shift must be constant"));
12557 encode_thumb32_shifted_operand (2);
12558 }
12559}
12560
c19d1205
ZW
12561static void
12562do_t_pkhbt (void)
12563{
fdfde340
JM
12564 unsigned Rd, Rn, Rm;
12565
12566 Rd = inst.operands[0].reg;
12567 Rn = inst.operands[1].reg;
12568 Rm = inst.operands[2].reg;
12569
12570 reject_bad_reg (Rd);
12571 reject_bad_reg (Rn);
12572 reject_bad_reg (Rm);
12573
12574 inst.instruction |= Rd << 8;
12575 inst.instruction |= Rn << 16;
12576 inst.instruction |= Rm;
c19d1205
ZW
12577 if (inst.operands[3].present)
12578 {
12579 unsigned int val = inst.reloc.exp.X_add_number;
12580 constraint (inst.reloc.exp.X_op != O_constant,
12581 _("expression too complex"));
12582 inst.instruction |= (val & 0x1c) << 10;
12583 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 12584 }
c19d1205 12585}
b05fe5cf 12586
c19d1205
ZW
12587static void
12588do_t_pkhtb (void)
12589{
12590 if (!inst.operands[3].present)
1ef52f49
NC
12591 {
12592 unsigned Rtmp;
12593
12594 inst.instruction &= ~0x00000020;
12595
12596 /* PR 10168. Swap the Rm and Rn registers. */
12597 Rtmp = inst.operands[1].reg;
12598 inst.operands[1].reg = inst.operands[2].reg;
12599 inst.operands[2].reg = Rtmp;
12600 }
c19d1205 12601 do_t_pkhbt ();
b05fe5cf
ZW
12602}
12603
c19d1205
ZW
12604static void
12605do_t_pld (void)
12606{
fdfde340
JM
12607 if (inst.operands[0].immisreg)
12608 reject_bad_reg (inst.operands[0].imm);
12609
c19d1205
ZW
12610 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
12611}
b05fe5cf 12612
c19d1205
ZW
12613static void
12614do_t_push_pop (void)
b99bd4ef 12615{
e9f89963 12616 unsigned mask;
5f4273c7 12617
c19d1205
ZW
12618 constraint (inst.operands[0].writeback,
12619 _("push/pop do not support {reglist}^"));
12620 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
12621 _("expression too complex"));
b99bd4ef 12622
e9f89963 12623 mask = inst.operands[0].imm;
d3bfe16e 12624 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 12625 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 12626 else if (inst.size_req != 4
c6025a80 12627 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 12628 ? REG_LR : REG_PC)))
b99bd4ef 12629 {
c19d1205
ZW
12630 inst.instruction = THUMB_OP16 (inst.instruction);
12631 inst.instruction |= THUMB_PP_PC_LR;
3c707909 12632 inst.instruction |= mask & 0xff;
c19d1205
ZW
12633 }
12634 else if (unified_syntax)
12635 {
3c707909 12636 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 12637 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
12638 }
12639 else
12640 {
12641 inst.error = _("invalid register list to push/pop instruction");
12642 return;
12643 }
c19d1205 12644}
b99bd4ef 12645
c19d1205
ZW
12646static void
12647do_t_rbit (void)
12648{
fdfde340
JM
12649 unsigned Rd, Rm;
12650
12651 Rd = inst.operands[0].reg;
12652 Rm = inst.operands[1].reg;
12653
12654 reject_bad_reg (Rd);
12655 reject_bad_reg (Rm);
12656
12657 inst.instruction |= Rd << 8;
12658 inst.instruction |= Rm << 16;
12659 inst.instruction |= Rm;
c19d1205 12660}
b99bd4ef 12661
c19d1205
ZW
12662static void
12663do_t_rev (void)
12664{
fdfde340
JM
12665 unsigned Rd, Rm;
12666
12667 Rd = inst.operands[0].reg;
12668 Rm = inst.operands[1].reg;
12669
12670 reject_bad_reg (Rd);
12671 reject_bad_reg (Rm);
12672
12673 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
12674 && inst.size_req != 4)
12675 {
12676 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12677 inst.instruction |= Rd;
12678 inst.instruction |= Rm << 3;
c19d1205
ZW
12679 }
12680 else if (unified_syntax)
12681 {
12682 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12683 inst.instruction |= Rd << 8;
12684 inst.instruction |= Rm << 16;
12685 inst.instruction |= Rm;
c19d1205
ZW
12686 }
12687 else
12688 inst.error = BAD_HIREG;
12689}
b99bd4ef 12690
1c444d06
JM
12691static void
12692do_t_rrx (void)
12693{
12694 unsigned Rd, Rm;
12695
12696 Rd = inst.operands[0].reg;
12697 Rm = inst.operands[1].reg;
12698
fdfde340
JM
12699 reject_bad_reg (Rd);
12700 reject_bad_reg (Rm);
c921be7d 12701
1c444d06
JM
12702 inst.instruction |= Rd << 8;
12703 inst.instruction |= Rm;
12704}
12705
c19d1205
ZW
12706static void
12707do_t_rsb (void)
12708{
fdfde340 12709 unsigned Rd, Rs;
b99bd4ef 12710
c19d1205
ZW
12711 Rd = inst.operands[0].reg;
12712 Rs = (inst.operands[1].present
12713 ? inst.operands[1].reg /* Rd, Rs, foo */
12714 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 12715
fdfde340
JM
12716 reject_bad_reg (Rd);
12717 reject_bad_reg (Rs);
12718 if (inst.operands[2].isreg)
12719 reject_bad_reg (inst.operands[2].reg);
12720
c19d1205
ZW
12721 inst.instruction |= Rd << 8;
12722 inst.instruction |= Rs << 16;
12723 if (!inst.operands[2].isreg)
12724 {
026d3abb
PB
12725 bfd_boolean narrow;
12726
12727 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 12728 narrow = !in_it_block ();
026d3abb 12729 else
e07e6e58 12730 narrow = in_it_block ();
026d3abb
PB
12731
12732 if (Rd > 7 || Rs > 7)
12733 narrow = FALSE;
12734
12735 if (inst.size_req == 4 || !unified_syntax)
12736 narrow = FALSE;
12737
12738 if (inst.reloc.exp.X_op != O_constant
12739 || inst.reloc.exp.X_add_number != 0)
12740 narrow = FALSE;
12741
12742 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 12743 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
12744 if (narrow)
12745 {
12746 inst.reloc.type = BFD_RELOC_UNUSED;
12747 inst.instruction = THUMB_OP16 (T_MNEM_negs);
12748 inst.instruction |= Rs << 3;
12749 inst.instruction |= Rd;
12750 }
12751 else
12752 {
12753 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12754 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12755 }
c19d1205
ZW
12756 }
12757 else
12758 encode_thumb32_shifted_operand (2);
12759}
b99bd4ef 12760
c19d1205
ZW
12761static void
12762do_t_setend (void)
12763{
12e37cbc
MGD
12764 if (warn_on_deprecated
12765 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 12766 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 12767
e07e6e58 12768 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
12769 if (inst.operands[0].imm)
12770 inst.instruction |= 0x8;
12771}
b99bd4ef 12772
c19d1205
ZW
12773static void
12774do_t_shift (void)
12775{
12776 if (!inst.operands[1].present)
12777 inst.operands[1].reg = inst.operands[0].reg;
12778
12779 if (unified_syntax)
12780 {
3d388997
PB
12781 bfd_boolean narrow;
12782 int shift_kind;
12783
12784 switch (inst.instruction)
12785 {
12786 case T_MNEM_asr:
12787 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
12788 case T_MNEM_lsl:
12789 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
12790 case T_MNEM_lsr:
12791 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
12792 case T_MNEM_ror:
12793 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
12794 default: abort ();
12795 }
12796
12797 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12798 narrow = !in_it_block ();
3d388997 12799 else
e07e6e58 12800 narrow = in_it_block ();
3d388997
PB
12801 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12802 narrow = FALSE;
12803 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12804 narrow = FALSE;
12805 if (inst.operands[2].isreg
12806 && (inst.operands[1].reg != inst.operands[0].reg
12807 || inst.operands[2].reg > 7))
12808 narrow = FALSE;
12809 if (inst.size_req == 4)
12810 narrow = FALSE;
12811
fdfde340
JM
12812 reject_bad_reg (inst.operands[0].reg);
12813 reject_bad_reg (inst.operands[1].reg);
c921be7d 12814
3d388997 12815 if (!narrow)
c19d1205
ZW
12816 {
12817 if (inst.operands[2].isreg)
b99bd4ef 12818 {
fdfde340 12819 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
12820 inst.instruction = THUMB_OP32 (inst.instruction);
12821 inst.instruction |= inst.operands[0].reg << 8;
12822 inst.instruction |= inst.operands[1].reg << 16;
12823 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
12824
12825 /* PR 12854: Error on extraneous shifts. */
12826 constraint (inst.operands[2].shifted,
12827 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
12828 }
12829 else
12830 {
12831 inst.operands[1].shifted = 1;
3d388997 12832 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
12833 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12834 ? T_MNEM_movs : T_MNEM_mov);
12835 inst.instruction |= inst.operands[0].reg << 8;
12836 encode_thumb32_shifted_operand (1);
12837 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
12838 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
12839 }
12840 }
12841 else
12842 {
c19d1205 12843 if (inst.operands[2].isreg)
b99bd4ef 12844 {
3d388997 12845 switch (shift_kind)
b99bd4ef 12846 {
3d388997
PB
12847 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12848 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12849 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12850 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 12851 default: abort ();
b99bd4ef 12852 }
5f4273c7 12853
c19d1205
ZW
12854 inst.instruction |= inst.operands[0].reg;
12855 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
12856
12857 /* PR 12854: Error on extraneous shifts. */
12858 constraint (inst.operands[2].shifted,
12859 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
12860 }
12861 else
12862 {
3d388997 12863 switch (shift_kind)
b99bd4ef 12864 {
3d388997
PB
12865 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12866 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12867 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 12868 default: abort ();
b99bd4ef 12869 }
c19d1205
ZW
12870 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12871 inst.instruction |= inst.operands[0].reg;
12872 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
12873 }
12874 }
c19d1205
ZW
12875 }
12876 else
12877 {
12878 constraint (inst.operands[0].reg > 7
12879 || inst.operands[1].reg > 7, BAD_HIREG);
12880 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 12881
c19d1205
ZW
12882 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12883 {
12884 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12885 constraint (inst.operands[0].reg != inst.operands[1].reg,
12886 _("source1 and dest must be same register"));
b99bd4ef 12887
c19d1205
ZW
12888 switch (inst.instruction)
12889 {
12890 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12891 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12892 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12893 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12894 default: abort ();
12895 }
5f4273c7 12896
c19d1205
ZW
12897 inst.instruction |= inst.operands[0].reg;
12898 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
12899
12900 /* PR 12854: Error on extraneous shifts. */
12901 constraint (inst.operands[2].shifted,
12902 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
12903 }
12904 else
b99bd4ef 12905 {
c19d1205
ZW
12906 switch (inst.instruction)
12907 {
12908 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
12909 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
12910 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
12911 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
12912 default: abort ();
12913 }
12914 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12915 inst.instruction |= inst.operands[0].reg;
12916 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
12917 }
12918 }
b99bd4ef
NC
12919}
12920
12921static void
c19d1205 12922do_t_simd (void)
b99bd4ef 12923{
fdfde340
JM
12924 unsigned Rd, Rn, Rm;
12925
12926 Rd = inst.operands[0].reg;
12927 Rn = inst.operands[1].reg;
12928 Rm = inst.operands[2].reg;
12929
12930 reject_bad_reg (Rd);
12931 reject_bad_reg (Rn);
12932 reject_bad_reg (Rm);
12933
12934 inst.instruction |= Rd << 8;
12935 inst.instruction |= Rn << 16;
12936 inst.instruction |= Rm;
c19d1205 12937}
b99bd4ef 12938
03ee1b7f
NC
12939static void
12940do_t_simd2 (void)
12941{
12942 unsigned Rd, Rn, Rm;
12943
12944 Rd = inst.operands[0].reg;
12945 Rm = inst.operands[1].reg;
12946 Rn = inst.operands[2].reg;
12947
12948 reject_bad_reg (Rd);
12949 reject_bad_reg (Rn);
12950 reject_bad_reg (Rm);
12951
12952 inst.instruction |= Rd << 8;
12953 inst.instruction |= Rn << 16;
12954 inst.instruction |= Rm;
12955}
12956
c19d1205 12957static void
3eb17e6b 12958do_t_smc (void)
c19d1205
ZW
12959{
12960 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
12961 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12962 _("SMC is not permitted on this architecture"));
c19d1205
ZW
12963 constraint (inst.reloc.exp.X_op != O_constant,
12964 _("expression too complex"));
12965 inst.reloc.type = BFD_RELOC_UNUSED;
12966 inst.instruction |= (value & 0xf000) >> 12;
12967 inst.instruction |= (value & 0x0ff0);
12968 inst.instruction |= (value & 0x000f) << 16;
24382199
NC
12969 /* PR gas/15623: SMC instructions must be last in an IT block. */
12970 set_it_insn_type_last ();
c19d1205 12971}
b99bd4ef 12972
90ec0d68
MGD
12973static void
12974do_t_hvc (void)
12975{
12976 unsigned int value = inst.reloc.exp.X_add_number;
12977
12978 inst.reloc.type = BFD_RELOC_UNUSED;
12979 inst.instruction |= (value & 0x0fff);
12980 inst.instruction |= (value & 0xf000) << 4;
12981}
12982
c19d1205 12983static void
3a21c15a 12984do_t_ssat_usat (int bias)
c19d1205 12985{
fdfde340
JM
12986 unsigned Rd, Rn;
12987
12988 Rd = inst.operands[0].reg;
12989 Rn = inst.operands[2].reg;
12990
12991 reject_bad_reg (Rd);
12992 reject_bad_reg (Rn);
12993
12994 inst.instruction |= Rd << 8;
3a21c15a 12995 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 12996 inst.instruction |= Rn << 16;
b99bd4ef 12997
c19d1205 12998 if (inst.operands[3].present)
b99bd4ef 12999 {
3a21c15a
NC
13000 offsetT shift_amount = inst.reloc.exp.X_add_number;
13001
13002 inst.reloc.type = BFD_RELOC_UNUSED;
13003
c19d1205
ZW
13004 constraint (inst.reloc.exp.X_op != O_constant,
13005 _("expression too complex"));
b99bd4ef 13006
3a21c15a 13007 if (shift_amount != 0)
6189168b 13008 {
3a21c15a
NC
13009 constraint (shift_amount > 31,
13010 _("shift expression is too large"));
13011
c19d1205 13012 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13013 inst.instruction |= 0x00200000; /* sh bit. */
13014
13015 inst.instruction |= (shift_amount & 0x1c) << 10;
13016 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13017 }
13018 }
b99bd4ef 13019}
c921be7d 13020
3a21c15a
NC
13021static void
13022do_t_ssat (void)
13023{
13024 do_t_ssat_usat (1);
13025}
b99bd4ef 13026
0dd132b6 13027static void
c19d1205 13028do_t_ssat16 (void)
0dd132b6 13029{
fdfde340
JM
13030 unsigned Rd, Rn;
13031
13032 Rd = inst.operands[0].reg;
13033 Rn = inst.operands[2].reg;
13034
13035 reject_bad_reg (Rd);
13036 reject_bad_reg (Rn);
13037
13038 inst.instruction |= Rd << 8;
c19d1205 13039 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13040 inst.instruction |= Rn << 16;
c19d1205 13041}
0dd132b6 13042
c19d1205
ZW
13043static void
13044do_t_strex (void)
13045{
13046 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13047 || inst.operands[2].postind || inst.operands[2].writeback
13048 || inst.operands[2].immisreg || inst.operands[2].shifted
13049 || inst.operands[2].negative,
01cfc07f 13050 BAD_ADDR_MODE);
0dd132b6 13051
5be8be5d
DG
13052 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13053
c19d1205
ZW
13054 inst.instruction |= inst.operands[0].reg << 8;
13055 inst.instruction |= inst.operands[1].reg << 12;
13056 inst.instruction |= inst.operands[2].reg << 16;
13057 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13058}
13059
b99bd4ef 13060static void
c19d1205 13061do_t_strexd (void)
b99bd4ef 13062{
c19d1205
ZW
13063 if (!inst.operands[2].present)
13064 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13065
c19d1205
ZW
13066 constraint (inst.operands[0].reg == inst.operands[1].reg
13067 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13068 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13069 BAD_OVERLAP);
b99bd4ef 13070
c19d1205
ZW
13071 inst.instruction |= inst.operands[0].reg;
13072 inst.instruction |= inst.operands[1].reg << 12;
13073 inst.instruction |= inst.operands[2].reg << 8;
13074 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13075}
13076
13077static void
c19d1205 13078do_t_sxtah (void)
b99bd4ef 13079{
fdfde340
JM
13080 unsigned Rd, Rn, Rm;
13081
13082 Rd = inst.operands[0].reg;
13083 Rn = inst.operands[1].reg;
13084 Rm = inst.operands[2].reg;
13085
13086 reject_bad_reg (Rd);
13087 reject_bad_reg (Rn);
13088 reject_bad_reg (Rm);
13089
13090 inst.instruction |= Rd << 8;
13091 inst.instruction |= Rn << 16;
13092 inst.instruction |= Rm;
c19d1205
ZW
13093 inst.instruction |= inst.operands[3].imm << 4;
13094}
b99bd4ef 13095
c19d1205
ZW
13096static void
13097do_t_sxth (void)
13098{
fdfde340
JM
13099 unsigned Rd, Rm;
13100
13101 Rd = inst.operands[0].reg;
13102 Rm = inst.operands[1].reg;
13103
13104 reject_bad_reg (Rd);
13105 reject_bad_reg (Rm);
c921be7d
NC
13106
13107 if (inst.instruction <= 0xffff
13108 && inst.size_req != 4
fdfde340 13109 && Rd <= 7 && Rm <= 7
c19d1205 13110 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13111 {
c19d1205 13112 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13113 inst.instruction |= Rd;
13114 inst.instruction |= Rm << 3;
b99bd4ef 13115 }
c19d1205 13116 else if (unified_syntax)
b99bd4ef 13117 {
c19d1205
ZW
13118 if (inst.instruction <= 0xffff)
13119 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13120 inst.instruction |= Rd << 8;
13121 inst.instruction |= Rm;
c19d1205 13122 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13123 }
c19d1205 13124 else
b99bd4ef 13125 {
c19d1205
ZW
13126 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13127 _("Thumb encoding does not support rotation"));
13128 constraint (1, BAD_HIREG);
b99bd4ef 13129 }
c19d1205 13130}
b99bd4ef 13131
c19d1205
ZW
13132static void
13133do_t_swi (void)
13134{
13135 inst.reloc.type = BFD_RELOC_ARM_SWI;
13136}
b99bd4ef 13137
92e90b6e
PB
13138static void
13139do_t_tb (void)
13140{
fdfde340 13141 unsigned Rn, Rm;
92e90b6e
PB
13142 int half;
13143
13144 half = (inst.instruction & 0x10) != 0;
e07e6e58 13145 set_it_insn_type_last ();
dfa9f0d5
PB
13146 constraint (inst.operands[0].immisreg,
13147 _("instruction requires register index"));
fdfde340
JM
13148
13149 Rn = inst.operands[0].reg;
13150 Rm = inst.operands[0].imm;
c921be7d 13151
5c8ed6a4
JW
13152 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13153 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13154 reject_bad_reg (Rm);
13155
92e90b6e
PB
13156 constraint (!half && inst.operands[0].shifted,
13157 _("instruction does not allow shifted index"));
fdfde340 13158 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13159}
13160
74db7efb
NC
13161static void
13162do_t_udf (void)
13163{
13164 if (!inst.operands[0].present)
13165 inst.operands[0].imm = 0;
13166
13167 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13168 {
13169 constraint (inst.size_req == 2,
13170 _("immediate value out of range"));
13171 inst.instruction = THUMB_OP32 (inst.instruction);
13172 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13173 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13174 }
13175 else
13176 {
13177 inst.instruction = THUMB_OP16 (inst.instruction);
13178 inst.instruction |= inst.operands[0].imm;
13179 }
13180
13181 set_it_insn_type (NEUTRAL_IT_INSN);
13182}
13183
13184
c19d1205
ZW
13185static void
13186do_t_usat (void)
13187{
3a21c15a 13188 do_t_ssat_usat (0);
b99bd4ef
NC
13189}
13190
13191static void
c19d1205 13192do_t_usat16 (void)
b99bd4ef 13193{
fdfde340
JM
13194 unsigned Rd, Rn;
13195
13196 Rd = inst.operands[0].reg;
13197 Rn = inst.operands[2].reg;
13198
13199 reject_bad_reg (Rd);
13200 reject_bad_reg (Rn);
13201
13202 inst.instruction |= Rd << 8;
c19d1205 13203 inst.instruction |= inst.operands[1].imm;
fdfde340 13204 inst.instruction |= Rn << 16;
b99bd4ef 13205}
c19d1205 13206
5287ad62 13207/* Neon instruction encoder helpers. */
5f4273c7 13208
5287ad62 13209/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 13210
5287ad62
JB
13211/* An "invalid" code for the following tables. */
13212#define N_INV -1u
13213
13214struct neon_tab_entry
b99bd4ef 13215{
5287ad62
JB
13216 unsigned integer;
13217 unsigned float_or_poly;
13218 unsigned scalar_or_imm;
13219};
5f4273c7 13220
5287ad62
JB
13221/* Map overloaded Neon opcodes to their respective encodings. */
13222#define NEON_ENC_TAB \
13223 X(vabd, 0x0000700, 0x1200d00, N_INV), \
13224 X(vmax, 0x0000600, 0x0000f00, N_INV), \
13225 X(vmin, 0x0000610, 0x0200f00, N_INV), \
13226 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
13227 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
13228 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
13229 X(vadd, 0x0000800, 0x0000d00, N_INV), \
13230 X(vsub, 0x1000800, 0x0200d00, N_INV), \
13231 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
13232 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
13233 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
13234 /* Register variants of the following two instructions are encoded as
e07e6e58 13235 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
13236 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
13237 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
13238 X(vfma, N_INV, 0x0000c10, N_INV), \
13239 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
13240 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
13241 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
13242 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
13243 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
13244 X(vmlal, 0x0800800, N_INV, 0x0800240), \
13245 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
13246 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
13247 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
13248 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
13249 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
13250 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
13251 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
13252 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
13253 X(vshl, 0x0000400, N_INV, 0x0800510), \
13254 X(vqshl, 0x0000410, N_INV, 0x0800710), \
13255 X(vand, 0x0000110, N_INV, 0x0800030), \
13256 X(vbic, 0x0100110, N_INV, 0x0800030), \
13257 X(veor, 0x1000110, N_INV, N_INV), \
13258 X(vorn, 0x0300110, N_INV, 0x0800010), \
13259 X(vorr, 0x0200110, N_INV, 0x0800010), \
13260 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
13261 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
13262 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
13263 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
13264 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
13265 X(vst1, 0x0000000, 0x0800000, N_INV), \
13266 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
13267 X(vst2, 0x0000100, 0x0800100, N_INV), \
13268 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
13269 X(vst3, 0x0000200, 0x0800200, N_INV), \
13270 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
13271 X(vst4, 0x0000300, 0x0800300, N_INV), \
13272 X(vmovn, 0x1b20200, N_INV, N_INV), \
13273 X(vtrn, 0x1b20080, N_INV, N_INV), \
13274 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
13275 X(vqmovun, 0x1b20240, N_INV, N_INV), \
13276 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
13277 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
13278 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
13279 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
13280 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
13281 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
13282 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
13283 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
13284 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
13285 X(vseleq, 0xe000a00, N_INV, N_INV), \
13286 X(vselvs, 0xe100a00, N_INV, N_INV), \
13287 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
13288 X(vselgt, 0xe300a00, N_INV, N_INV), \
13289 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 13290 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
13291 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
13292 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 13293 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 13294 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
13295 X(sha3op, 0x2000c00, N_INV, N_INV), \
13296 X(sha1h, 0x3b902c0, N_INV, N_INV), \
13297 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
13298
13299enum neon_opc
13300{
13301#define X(OPC,I,F,S) N_MNEM_##OPC
13302NEON_ENC_TAB
13303#undef X
13304};
b99bd4ef 13305
5287ad62
JB
13306static const struct neon_tab_entry neon_enc_tab[] =
13307{
13308#define X(OPC,I,F,S) { (I), (F), (S) }
13309NEON_ENC_TAB
13310#undef X
13311};
b99bd4ef 13312
88714cb8
DG
13313/* Do not use these macros; instead, use NEON_ENCODE defined below. */
13314#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13315#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13316#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13317#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13318#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13319#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13320#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13321#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13322#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13323#define NEON_ENC_SINGLE_(X) \
037e8744 13324 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 13325#define NEON_ENC_DOUBLE_(X) \
037e8744 13326 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
13327#define NEON_ENC_FPV8_(X) \
13328 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 13329
88714cb8
DG
13330#define NEON_ENCODE(type, inst) \
13331 do \
13332 { \
13333 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
13334 inst.is_neon = 1; \
13335 } \
13336 while (0)
13337
13338#define check_neon_suffixes \
13339 do \
13340 { \
13341 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
13342 { \
13343 as_bad (_("invalid neon suffix for non neon instruction")); \
13344 return; \
13345 } \
13346 } \
13347 while (0)
13348
037e8744
JB
13349/* Define shapes for instruction operands. The following mnemonic characters
13350 are used in this table:
5287ad62 13351
037e8744 13352 F - VFP S<n> register
5287ad62
JB
13353 D - Neon D<n> register
13354 Q - Neon Q<n> register
13355 I - Immediate
13356 S - Scalar
13357 R - ARM register
13358 L - D<n> register list
5f4273c7 13359
037e8744
JB
13360 This table is used to generate various data:
13361 - enumerations of the form NS_DDR to be used as arguments to
13362 neon_select_shape.
13363 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 13364 - a table used to drive neon_select_shape. */
b99bd4ef 13365
037e8744
JB
13366#define NEON_SHAPE_DEF \
13367 X(3, (D, D, D), DOUBLE), \
13368 X(3, (Q, Q, Q), QUAD), \
13369 X(3, (D, D, I), DOUBLE), \
13370 X(3, (Q, Q, I), QUAD), \
13371 X(3, (D, D, S), DOUBLE), \
13372 X(3, (Q, Q, S), QUAD), \
13373 X(2, (D, D), DOUBLE), \
13374 X(2, (Q, Q), QUAD), \
13375 X(2, (D, S), DOUBLE), \
13376 X(2, (Q, S), QUAD), \
13377 X(2, (D, R), DOUBLE), \
13378 X(2, (Q, R), QUAD), \
13379 X(2, (D, I), DOUBLE), \
13380 X(2, (Q, I), QUAD), \
13381 X(3, (D, L, D), DOUBLE), \
13382 X(2, (D, Q), MIXED), \
13383 X(2, (Q, D), MIXED), \
13384 X(3, (D, Q, I), MIXED), \
13385 X(3, (Q, D, I), MIXED), \
13386 X(3, (Q, D, D), MIXED), \
13387 X(3, (D, Q, Q), MIXED), \
13388 X(3, (Q, Q, D), MIXED), \
13389 X(3, (Q, D, S), MIXED), \
13390 X(3, (D, Q, S), MIXED), \
13391 X(4, (D, D, D, I), DOUBLE), \
13392 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
13393 X(4, (D, D, S, I), DOUBLE), \
13394 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
13395 X(2, (F, F), SINGLE), \
13396 X(3, (F, F, F), SINGLE), \
13397 X(2, (F, I), SINGLE), \
13398 X(2, (F, D), MIXED), \
13399 X(2, (D, F), MIXED), \
13400 X(3, (F, F, I), MIXED), \
13401 X(4, (R, R, F, F), SINGLE), \
13402 X(4, (F, F, R, R), SINGLE), \
13403 X(3, (D, R, R), DOUBLE), \
13404 X(3, (R, R, D), DOUBLE), \
13405 X(2, (S, R), SINGLE), \
13406 X(2, (R, S), SINGLE), \
13407 X(2, (F, R), SINGLE), \
d54af2d0
RL
13408 X(2, (R, F), SINGLE), \
13409/* Half float shape supported so far. */\
13410 X (2, (H, D), MIXED), \
13411 X (2, (D, H), MIXED), \
13412 X (2, (H, F), MIXED), \
13413 X (2, (F, H), MIXED), \
13414 X (2, (H, H), HALF), \
13415 X (2, (H, R), HALF), \
13416 X (2, (R, H), HALF), \
13417 X (2, (H, I), HALF), \
13418 X (3, (H, H, H), HALF), \
13419 X (3, (H, F, I), MIXED), \
13420 X (3, (F, H, I), MIXED)
037e8744
JB
13421
13422#define S2(A,B) NS_##A##B
13423#define S3(A,B,C) NS_##A##B##C
13424#define S4(A,B,C,D) NS_##A##B##C##D
13425
13426#define X(N, L, C) S##N L
13427
5287ad62
JB
13428enum neon_shape
13429{
037e8744
JB
13430 NEON_SHAPE_DEF,
13431 NS_NULL
5287ad62 13432};
b99bd4ef 13433
037e8744
JB
13434#undef X
13435#undef S2
13436#undef S3
13437#undef S4
13438
13439enum neon_shape_class
13440{
d54af2d0 13441 SC_HALF,
037e8744
JB
13442 SC_SINGLE,
13443 SC_DOUBLE,
13444 SC_QUAD,
13445 SC_MIXED
13446};
13447
13448#define X(N, L, C) SC_##C
13449
13450static enum neon_shape_class neon_shape_class[] =
13451{
13452 NEON_SHAPE_DEF
13453};
13454
13455#undef X
13456
13457enum neon_shape_el
13458{
d54af2d0 13459 SE_H,
037e8744
JB
13460 SE_F,
13461 SE_D,
13462 SE_Q,
13463 SE_I,
13464 SE_S,
13465 SE_R,
13466 SE_L
13467};
13468
13469/* Register widths of above. */
13470static unsigned neon_shape_el_size[] =
13471{
d54af2d0 13472 16,
037e8744
JB
13473 32,
13474 64,
13475 128,
13476 0,
13477 32,
13478 32,
13479 0
13480};
13481
13482struct neon_shape_info
13483{
13484 unsigned els;
13485 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
13486};
13487
13488#define S2(A,B) { SE_##A, SE_##B }
13489#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
13490#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
13491
13492#define X(N, L, C) { N, S##N L }
13493
13494static struct neon_shape_info neon_shape_tab[] =
13495{
13496 NEON_SHAPE_DEF
13497};
13498
13499#undef X
13500#undef S2
13501#undef S3
13502#undef S4
13503
5287ad62
JB
13504/* Bit masks used in type checking given instructions.
13505 'N_EQK' means the type must be the same as (or based on in some way) the key
13506 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
13507 set, various other bits can be set as well in order to modify the meaning of
13508 the type constraint. */
13509
13510enum neon_type_mask
13511{
8e79c3df
CM
13512 N_S8 = 0x0000001,
13513 N_S16 = 0x0000002,
13514 N_S32 = 0x0000004,
13515 N_S64 = 0x0000008,
13516 N_U8 = 0x0000010,
13517 N_U16 = 0x0000020,
13518 N_U32 = 0x0000040,
13519 N_U64 = 0x0000080,
13520 N_I8 = 0x0000100,
13521 N_I16 = 0x0000200,
13522 N_I32 = 0x0000400,
13523 N_I64 = 0x0000800,
13524 N_8 = 0x0001000,
13525 N_16 = 0x0002000,
13526 N_32 = 0x0004000,
13527 N_64 = 0x0008000,
13528 N_P8 = 0x0010000,
13529 N_P16 = 0x0020000,
13530 N_F16 = 0x0040000,
13531 N_F32 = 0x0080000,
13532 N_F64 = 0x0100000,
4f51b4bd 13533 N_P64 = 0x0200000,
c921be7d
NC
13534 N_KEY = 0x1000000, /* Key element (main type specifier). */
13535 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 13536 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 13537 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
13538 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
13539 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
13540 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
13541 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
13542 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
13543 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
13544 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 13545 N_UTYP = 0,
4f51b4bd 13546 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
13547};
13548
dcbf9037
JB
13549#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
13550
5287ad62
JB
13551#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
13552#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
13553#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
13554#define N_S_32 (N_S8 | N_S16 | N_S32)
13555#define N_F_16_32 (N_F16 | N_F32)
13556#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 13557#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 13558#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 13559#define N_F_ALL (N_F16 | N_F32 | N_F64)
5287ad62
JB
13560
13561/* Pass this as the first type argument to neon_check_type to ignore types
13562 altogether. */
13563#define N_IGNORE_TYPE (N_KEY | N_EQK)
13564
037e8744
JB
13565/* Select a "shape" for the current instruction (describing register types or
13566 sizes) from a list of alternatives. Return NS_NULL if the current instruction
13567 doesn't fit. For non-polymorphic shapes, checking is usually done as a
13568 function of operand parsing, so this function doesn't need to be called.
13569 Shapes should be listed in order of decreasing length. */
5287ad62
JB
13570
13571static enum neon_shape
037e8744 13572neon_select_shape (enum neon_shape shape, ...)
5287ad62 13573{
037e8744
JB
13574 va_list ap;
13575 enum neon_shape first_shape = shape;
5287ad62
JB
13576
13577 /* Fix missing optional operands. FIXME: we don't know at this point how
13578 many arguments we should have, so this makes the assumption that we have
13579 > 1. This is true of all current Neon opcodes, I think, but may not be
13580 true in the future. */
13581 if (!inst.operands[1].present)
13582 inst.operands[1] = inst.operands[0];
13583
037e8744 13584 va_start (ap, shape);
5f4273c7 13585
21d799b5 13586 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
13587 {
13588 unsigned j;
13589 int matches = 1;
13590
13591 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
13592 {
13593 if (!inst.operands[j].present)
13594 {
13595 matches = 0;
13596 break;
13597 }
13598
13599 switch (neon_shape_tab[shape].el[j])
13600 {
d54af2d0
RL
13601 /* If a .f16, .16, .u16, .s16 type specifier is given over
13602 a VFP single precision register operand, it's essentially
13603 means only half of the register is used.
13604
13605 If the type specifier is given after the mnemonics, the
13606 information is stored in inst.vectype. If the type specifier
13607 is given after register operand, the information is stored
13608 in inst.operands[].vectype.
13609
13610 When there is only one type specifier, and all the register
13611 operands are the same type of hardware register, the type
13612 specifier applies to all register operands.
13613
13614 If no type specifier is given, the shape is inferred from
13615 operand information.
13616
13617 for example:
13618 vadd.f16 s0, s1, s2: NS_HHH
13619 vabs.f16 s0, s1: NS_HH
13620 vmov.f16 s0, r1: NS_HR
13621 vmov.f16 r0, s1: NS_RH
13622 vcvt.f16 r0, s1: NS_RH
13623 vcvt.f16.s32 s2, s2, #29: NS_HFI
13624 vcvt.f16.s32 s2, s2: NS_HF
13625 */
13626 case SE_H:
13627 if (!(inst.operands[j].isreg
13628 && inst.operands[j].isvec
13629 && inst.operands[j].issingle
13630 && !inst.operands[j].isquad
13631 && ((inst.vectype.elems == 1
13632 && inst.vectype.el[0].size == 16)
13633 || (inst.vectype.elems > 1
13634 && inst.vectype.el[j].size == 16)
13635 || (inst.vectype.elems == 0
13636 && inst.operands[j].vectype.type != NT_invtype
13637 && inst.operands[j].vectype.size == 16))))
13638 matches = 0;
13639 break;
13640
477330fc
RM
13641 case SE_F:
13642 if (!(inst.operands[j].isreg
13643 && inst.operands[j].isvec
13644 && inst.operands[j].issingle
d54af2d0
RL
13645 && !inst.operands[j].isquad
13646 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
13647 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
13648 || (inst.vectype.elems == 0
13649 && (inst.operands[j].vectype.size == 32
13650 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
13651 matches = 0;
13652 break;
13653
13654 case SE_D:
13655 if (!(inst.operands[j].isreg
13656 && inst.operands[j].isvec
13657 && !inst.operands[j].isquad
13658 && !inst.operands[j].issingle))
13659 matches = 0;
13660 break;
13661
13662 case SE_R:
13663 if (!(inst.operands[j].isreg
13664 && !inst.operands[j].isvec))
13665 matches = 0;
13666 break;
13667
13668 case SE_Q:
13669 if (!(inst.operands[j].isreg
13670 && inst.operands[j].isvec
13671 && inst.operands[j].isquad
13672 && !inst.operands[j].issingle))
13673 matches = 0;
13674 break;
13675
13676 case SE_I:
13677 if (!(!inst.operands[j].isreg
13678 && !inst.operands[j].isscalar))
13679 matches = 0;
13680 break;
13681
13682 case SE_S:
13683 if (!(!inst.operands[j].isreg
13684 && inst.operands[j].isscalar))
13685 matches = 0;
13686 break;
13687
13688 case SE_L:
13689 break;
13690 }
3fde54a2
JZ
13691 if (!matches)
13692 break;
477330fc 13693 }
ad6cec43
MGD
13694 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
13695 /* We've matched all the entries in the shape table, and we don't
13696 have any left over operands which have not been matched. */
477330fc 13697 break;
037e8744 13698 }
5f4273c7 13699
037e8744 13700 va_end (ap);
5287ad62 13701
037e8744
JB
13702 if (shape == NS_NULL && first_shape != NS_NULL)
13703 first_error (_("invalid instruction shape"));
5287ad62 13704
037e8744
JB
13705 return shape;
13706}
5287ad62 13707
037e8744
JB
13708/* True if SHAPE is predominantly a quadword operation (most of the time, this
13709 means the Q bit should be set). */
13710
13711static int
13712neon_quad (enum neon_shape shape)
13713{
13714 return neon_shape_class[shape] == SC_QUAD;
5287ad62 13715}
037e8744 13716
5287ad62
JB
13717static void
13718neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 13719 unsigned *g_size)
5287ad62
JB
13720{
13721 /* Allow modification to be made to types which are constrained to be
13722 based on the key element, based on bits set alongside N_EQK. */
13723 if ((typebits & N_EQK) != 0)
13724 {
13725 if ((typebits & N_HLF) != 0)
13726 *g_size /= 2;
13727 else if ((typebits & N_DBL) != 0)
13728 *g_size *= 2;
13729 if ((typebits & N_SGN) != 0)
13730 *g_type = NT_signed;
13731 else if ((typebits & N_UNS) != 0)
477330fc 13732 *g_type = NT_unsigned;
5287ad62 13733 else if ((typebits & N_INT) != 0)
477330fc 13734 *g_type = NT_integer;
5287ad62 13735 else if ((typebits & N_FLT) != 0)
477330fc 13736 *g_type = NT_float;
dcbf9037 13737 else if ((typebits & N_SIZ) != 0)
477330fc 13738 *g_type = NT_untyped;
5287ad62
JB
13739 }
13740}
5f4273c7 13741
5287ad62
JB
13742/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
13743 operand type, i.e. the single type specified in a Neon instruction when it
13744 is the only one given. */
13745
13746static struct neon_type_el
13747neon_type_promote (struct neon_type_el *key, unsigned thisarg)
13748{
13749 struct neon_type_el dest = *key;
5f4273c7 13750
9c2799c2 13751 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 13752
5287ad62
JB
13753 neon_modify_type_size (thisarg, &dest.type, &dest.size);
13754
13755 return dest;
13756}
13757
13758/* Convert Neon type and size into compact bitmask representation. */
13759
13760static enum neon_type_mask
13761type_chk_of_el_type (enum neon_el_type type, unsigned size)
13762{
13763 switch (type)
13764 {
13765 case NT_untyped:
13766 switch (size)
477330fc
RM
13767 {
13768 case 8: return N_8;
13769 case 16: return N_16;
13770 case 32: return N_32;
13771 case 64: return N_64;
13772 default: ;
13773 }
5287ad62
JB
13774 break;
13775
13776 case NT_integer:
13777 switch (size)
477330fc
RM
13778 {
13779 case 8: return N_I8;
13780 case 16: return N_I16;
13781 case 32: return N_I32;
13782 case 64: return N_I64;
13783 default: ;
13784 }
5287ad62
JB
13785 break;
13786
13787 case NT_float:
037e8744 13788 switch (size)
477330fc 13789 {
8e79c3df 13790 case 16: return N_F16;
477330fc
RM
13791 case 32: return N_F32;
13792 case 64: return N_F64;
13793 default: ;
13794 }
5287ad62
JB
13795 break;
13796
13797 case NT_poly:
13798 switch (size)
477330fc
RM
13799 {
13800 case 8: return N_P8;
13801 case 16: return N_P16;
4f51b4bd 13802 case 64: return N_P64;
477330fc
RM
13803 default: ;
13804 }
5287ad62
JB
13805 break;
13806
13807 case NT_signed:
13808 switch (size)
477330fc
RM
13809 {
13810 case 8: return N_S8;
13811 case 16: return N_S16;
13812 case 32: return N_S32;
13813 case 64: return N_S64;
13814 default: ;
13815 }
5287ad62
JB
13816 break;
13817
13818 case NT_unsigned:
13819 switch (size)
477330fc
RM
13820 {
13821 case 8: return N_U8;
13822 case 16: return N_U16;
13823 case 32: return N_U32;
13824 case 64: return N_U64;
13825 default: ;
13826 }
5287ad62
JB
13827 break;
13828
13829 default: ;
13830 }
5f4273c7 13831
5287ad62
JB
13832 return N_UTYP;
13833}
13834
13835/* Convert compact Neon bitmask type representation to a type and size. Only
13836 handles the case where a single bit is set in the mask. */
13837
dcbf9037 13838static int
5287ad62 13839el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 13840 enum neon_type_mask mask)
5287ad62 13841{
dcbf9037
JB
13842 if ((mask & N_EQK) != 0)
13843 return FAIL;
13844
5287ad62
JB
13845 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
13846 *size = 8;
c70a8987 13847 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 13848 *size = 16;
dcbf9037 13849 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 13850 *size = 32;
4f51b4bd 13851 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 13852 *size = 64;
dcbf9037
JB
13853 else
13854 return FAIL;
13855
5287ad62
JB
13856 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
13857 *type = NT_signed;
dcbf9037 13858 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 13859 *type = NT_unsigned;
dcbf9037 13860 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 13861 *type = NT_integer;
dcbf9037 13862 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 13863 *type = NT_untyped;
4f51b4bd 13864 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 13865 *type = NT_poly;
d54af2d0 13866 else if ((mask & (N_F_ALL)) != 0)
5287ad62 13867 *type = NT_float;
dcbf9037
JB
13868 else
13869 return FAIL;
5f4273c7 13870
dcbf9037 13871 return SUCCESS;
5287ad62
JB
13872}
13873
13874/* Modify a bitmask of allowed types. This is only needed for type
13875 relaxation. */
13876
13877static unsigned
13878modify_types_allowed (unsigned allowed, unsigned mods)
13879{
13880 unsigned size;
13881 enum neon_el_type type;
13882 unsigned destmask;
13883 int i;
5f4273c7 13884
5287ad62 13885 destmask = 0;
5f4273c7 13886
5287ad62
JB
13887 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
13888 {
21d799b5 13889 if (el_type_of_type_chk (&type, &size,
477330fc
RM
13890 (enum neon_type_mask) (allowed & i)) == SUCCESS)
13891 {
13892 neon_modify_type_size (mods, &type, &size);
13893 destmask |= type_chk_of_el_type (type, size);
13894 }
5287ad62 13895 }
5f4273c7 13896
5287ad62
JB
13897 return destmask;
13898}
13899
13900/* Check type and return type classification.
13901 The manual states (paraphrase): If one datatype is given, it indicates the
13902 type given in:
13903 - the second operand, if there is one
13904 - the operand, if there is no second operand
13905 - the result, if there are no operands.
13906 This isn't quite good enough though, so we use a concept of a "key" datatype
13907 which is set on a per-instruction basis, which is the one which matters when
13908 only one data type is written.
13909 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 13910 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
13911
13912static struct neon_type_el
13913neon_check_type (unsigned els, enum neon_shape ns, ...)
13914{
13915 va_list ap;
13916 unsigned i, pass, key_el = 0;
13917 unsigned types[NEON_MAX_TYPE_ELS];
13918 enum neon_el_type k_type = NT_invtype;
13919 unsigned k_size = -1u;
13920 struct neon_type_el badtype = {NT_invtype, -1};
13921 unsigned key_allowed = 0;
13922
13923 /* Optional registers in Neon instructions are always (not) in operand 1.
13924 Fill in the missing operand here, if it was omitted. */
13925 if (els > 1 && !inst.operands[1].present)
13926 inst.operands[1] = inst.operands[0];
13927
13928 /* Suck up all the varargs. */
13929 va_start (ap, ns);
13930 for (i = 0; i < els; i++)
13931 {
13932 unsigned thisarg = va_arg (ap, unsigned);
13933 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
13934 {
13935 va_end (ap);
13936 return badtype;
13937 }
5287ad62
JB
13938 types[i] = thisarg;
13939 if ((thisarg & N_KEY) != 0)
477330fc 13940 key_el = i;
5287ad62
JB
13941 }
13942 va_end (ap);
13943
dcbf9037
JB
13944 if (inst.vectype.elems > 0)
13945 for (i = 0; i < els; i++)
13946 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
13947 {
13948 first_error (_("types specified in both the mnemonic and operands"));
13949 return badtype;
13950 }
dcbf9037 13951
5287ad62
JB
13952 /* Duplicate inst.vectype elements here as necessary.
13953 FIXME: No idea if this is exactly the same as the ARM assembler,
13954 particularly when an insn takes one register and one non-register
13955 operand. */
13956 if (inst.vectype.elems == 1 && els > 1)
13957 {
13958 unsigned j;
13959 inst.vectype.elems = els;
13960 inst.vectype.el[key_el] = inst.vectype.el[0];
13961 for (j = 0; j < els; j++)
477330fc
RM
13962 if (j != key_el)
13963 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
13964 types[j]);
dcbf9037
JB
13965 }
13966 else if (inst.vectype.elems == 0 && els > 0)
13967 {
13968 unsigned j;
13969 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
13970 after each operand. We allow some flexibility here; as long as the
13971 "key" operand has a type, we can infer the others. */
dcbf9037 13972 for (j = 0; j < els; j++)
477330fc
RM
13973 if (inst.operands[j].vectype.type != NT_invtype)
13974 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
13975
13976 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
13977 {
13978 for (j = 0; j < els; j++)
13979 if (inst.operands[j].vectype.type == NT_invtype)
13980 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
13981 types[j]);
13982 }
dcbf9037 13983 else
477330fc
RM
13984 {
13985 first_error (_("operand types can't be inferred"));
13986 return badtype;
13987 }
5287ad62
JB
13988 }
13989 else if (inst.vectype.elems != els)
13990 {
dcbf9037 13991 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
13992 return badtype;
13993 }
13994
13995 for (pass = 0; pass < 2; pass++)
13996 {
13997 for (i = 0; i < els; i++)
477330fc
RM
13998 {
13999 unsigned thisarg = types[i];
14000 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14001 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14002 enum neon_el_type g_type = inst.vectype.el[i].type;
14003 unsigned g_size = inst.vectype.el[i].size;
14004
14005 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 14006 integer types if sign-specific variants are unavailable. */
477330fc 14007 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
14008 && (types_allowed & N_SU_ALL) == 0)
14009 g_type = NT_integer;
14010
477330fc 14011 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
14012 them. Some instructions only care about signs for some element
14013 sizes, so handle that properly. */
477330fc 14014 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
14015 && ((g_size == 8 && (types_allowed & N_8) != 0)
14016 || (g_size == 16 && (types_allowed & N_16) != 0)
14017 || (g_size == 32 && (types_allowed & N_32) != 0)
14018 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
14019 g_type = NT_untyped;
14020
477330fc
RM
14021 if (pass == 0)
14022 {
14023 if ((thisarg & N_KEY) != 0)
14024 {
14025 k_type = g_type;
14026 k_size = g_size;
14027 key_allowed = thisarg & ~N_KEY;
cc933301
JW
14028
14029 /* Check architecture constraint on FP16 extension. */
14030 if (k_size == 16
14031 && k_type == NT_float
14032 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14033 {
14034 inst.error = _(BAD_FP16);
14035 return badtype;
14036 }
477330fc
RM
14037 }
14038 }
14039 else
14040 {
14041 if ((thisarg & N_VFP) != 0)
14042 {
14043 enum neon_shape_el regshape;
14044 unsigned regwidth, match;
99b253c5
NC
14045
14046 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
14047 if (ns == NS_NULL)
14048 {
14049 first_error (_("invalid instruction shape"));
14050 return badtype;
14051 }
477330fc
RM
14052 regshape = neon_shape_tab[ns].el[i];
14053 regwidth = neon_shape_el_size[regshape];
14054
14055 /* In VFP mode, operands must match register widths. If we
14056 have a key operand, use its width, else use the width of
14057 the current operand. */
14058 if (k_size != -1u)
14059 match = k_size;
14060 else
14061 match = g_size;
14062
9db2f6b4
RL
14063 /* FP16 will use a single precision register. */
14064 if (regwidth == 32 && match == 16)
14065 {
14066 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14067 match = regwidth;
14068 else
14069 {
14070 inst.error = _(BAD_FP16);
14071 return badtype;
14072 }
14073 }
14074
477330fc
RM
14075 if (regwidth != match)
14076 {
14077 first_error (_("operand size must match register width"));
14078 return badtype;
14079 }
14080 }
14081
14082 if ((thisarg & N_EQK) == 0)
14083 {
14084 unsigned given_type = type_chk_of_el_type (g_type, g_size);
14085
14086 if ((given_type & types_allowed) == 0)
14087 {
14088 first_error (_("bad type in Neon instruction"));
14089 return badtype;
14090 }
14091 }
14092 else
14093 {
14094 enum neon_el_type mod_k_type = k_type;
14095 unsigned mod_k_size = k_size;
14096 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
14097 if (g_type != mod_k_type || g_size != mod_k_size)
14098 {
14099 first_error (_("inconsistent types in Neon instruction"));
14100 return badtype;
14101 }
14102 }
14103 }
14104 }
5287ad62
JB
14105 }
14106
14107 return inst.vectype.el[key_el];
14108}
14109
037e8744 14110/* Neon-style VFP instruction forwarding. */
5287ad62 14111
037e8744
JB
14112/* Thumb VFP instructions have 0xE in the condition field. */
14113
14114static void
14115do_vfp_cond_or_thumb (void)
5287ad62 14116{
88714cb8
DG
14117 inst.is_neon = 1;
14118
5287ad62 14119 if (thumb_mode)
037e8744 14120 inst.instruction |= 0xe0000000;
5287ad62 14121 else
037e8744 14122 inst.instruction |= inst.cond << 28;
5287ad62
JB
14123}
14124
037e8744
JB
14125/* Look up and encode a simple mnemonic, for use as a helper function for the
14126 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
14127 etc. It is assumed that operand parsing has already been done, and that the
14128 operands are in the form expected by the given opcode (this isn't necessarily
14129 the same as the form in which they were parsed, hence some massaging must
14130 take place before this function is called).
14131 Checks current arch version against that in the looked-up opcode. */
5287ad62 14132
037e8744
JB
14133static void
14134do_vfp_nsyn_opcode (const char *opname)
5287ad62 14135{
037e8744 14136 const struct asm_opcode *opcode;
5f4273c7 14137
21d799b5 14138 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 14139
037e8744
JB
14140 if (!opcode)
14141 abort ();
5287ad62 14142
037e8744 14143 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
14144 thumb_mode ? *opcode->tvariant : *opcode->avariant),
14145 _(BAD_FPU));
5287ad62 14146
88714cb8
DG
14147 inst.is_neon = 1;
14148
037e8744
JB
14149 if (thumb_mode)
14150 {
14151 inst.instruction = opcode->tvalue;
14152 opcode->tencode ();
14153 }
14154 else
14155 {
14156 inst.instruction = (inst.cond << 28) | opcode->avalue;
14157 opcode->aencode ();
14158 }
14159}
5287ad62
JB
14160
14161static void
037e8744 14162do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 14163{
037e8744
JB
14164 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
14165
9db2f6b4 14166 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
14167 {
14168 if (is_add)
477330fc 14169 do_vfp_nsyn_opcode ("fadds");
037e8744 14170 else
477330fc 14171 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
14172
14173 /* ARMv8.2 fp16 instruction. */
14174 if (rs == NS_HHH)
14175 do_scalar_fp16_v82_encode ();
037e8744
JB
14176 }
14177 else
14178 {
14179 if (is_add)
477330fc 14180 do_vfp_nsyn_opcode ("faddd");
037e8744 14181 else
477330fc 14182 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
14183 }
14184}
14185
14186/* Check operand types to see if this is a VFP instruction, and if so call
14187 PFN (). */
14188
14189static int
14190try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
14191{
14192 enum neon_shape rs;
14193 struct neon_type_el et;
14194
14195 switch (args)
14196 {
14197 case 2:
9db2f6b4
RL
14198 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14199 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 14200 break;
5f4273c7 14201
037e8744 14202 case 3:
9db2f6b4
RL
14203 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14204 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14205 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
14206 break;
14207
14208 default:
14209 abort ();
14210 }
14211
14212 if (et.type != NT_invtype)
14213 {
14214 pfn (rs);
14215 return SUCCESS;
14216 }
037e8744 14217
99b253c5 14218 inst.error = NULL;
037e8744
JB
14219 return FAIL;
14220}
14221
14222static void
14223do_vfp_nsyn_mla_mls (enum neon_shape rs)
14224{
14225 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 14226
9db2f6b4 14227 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
14228 {
14229 if (is_mla)
477330fc 14230 do_vfp_nsyn_opcode ("fmacs");
037e8744 14231 else
477330fc 14232 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
14233
14234 /* ARMv8.2 fp16 instruction. */
14235 if (rs == NS_HHH)
14236 do_scalar_fp16_v82_encode ();
037e8744
JB
14237 }
14238 else
14239 {
14240 if (is_mla)
477330fc 14241 do_vfp_nsyn_opcode ("fmacd");
037e8744 14242 else
477330fc 14243 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
14244 }
14245}
14246
62f3b8c8
PB
14247static void
14248do_vfp_nsyn_fma_fms (enum neon_shape rs)
14249{
14250 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
14251
9db2f6b4 14252 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
14253 {
14254 if (is_fma)
477330fc 14255 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 14256 else
477330fc 14257 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
14258
14259 /* ARMv8.2 fp16 instruction. */
14260 if (rs == NS_HHH)
14261 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
14262 }
14263 else
14264 {
14265 if (is_fma)
477330fc 14266 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 14267 else
477330fc 14268 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
14269 }
14270}
14271
037e8744
JB
14272static void
14273do_vfp_nsyn_mul (enum neon_shape rs)
14274{
9db2f6b4
RL
14275 if (rs == NS_FFF || rs == NS_HHH)
14276 {
14277 do_vfp_nsyn_opcode ("fmuls");
14278
14279 /* ARMv8.2 fp16 instruction. */
14280 if (rs == NS_HHH)
14281 do_scalar_fp16_v82_encode ();
14282 }
037e8744
JB
14283 else
14284 do_vfp_nsyn_opcode ("fmuld");
14285}
14286
14287static void
14288do_vfp_nsyn_abs_neg (enum neon_shape rs)
14289{
14290 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 14291 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 14292
9db2f6b4 14293 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
14294 {
14295 if (is_neg)
477330fc 14296 do_vfp_nsyn_opcode ("fnegs");
037e8744 14297 else
477330fc 14298 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
14299
14300 /* ARMv8.2 fp16 instruction. */
14301 if (rs == NS_HH)
14302 do_scalar_fp16_v82_encode ();
037e8744
JB
14303 }
14304 else
14305 {
14306 if (is_neg)
477330fc 14307 do_vfp_nsyn_opcode ("fnegd");
037e8744 14308 else
477330fc 14309 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
14310 }
14311}
14312
14313/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
14314 insns belong to Neon, and are handled elsewhere. */
14315
14316static void
14317do_vfp_nsyn_ldm_stm (int is_dbmode)
14318{
14319 int is_ldm = (inst.instruction & (1 << 20)) != 0;
14320 if (is_ldm)
14321 {
14322 if (is_dbmode)
477330fc 14323 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 14324 else
477330fc 14325 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
14326 }
14327 else
14328 {
14329 if (is_dbmode)
477330fc 14330 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 14331 else
477330fc 14332 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
14333 }
14334}
14335
037e8744
JB
14336static void
14337do_vfp_nsyn_sqrt (void)
14338{
9db2f6b4
RL
14339 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14340 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 14341
9db2f6b4
RL
14342 if (rs == NS_FF || rs == NS_HH)
14343 {
14344 do_vfp_nsyn_opcode ("fsqrts");
14345
14346 /* ARMv8.2 fp16 instruction. */
14347 if (rs == NS_HH)
14348 do_scalar_fp16_v82_encode ();
14349 }
037e8744
JB
14350 else
14351 do_vfp_nsyn_opcode ("fsqrtd");
14352}
14353
14354static void
14355do_vfp_nsyn_div (void)
14356{
9db2f6b4 14357 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 14358 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 14359 N_F_ALL | N_KEY | N_VFP);
5f4273c7 14360
9db2f6b4
RL
14361 if (rs == NS_FFF || rs == NS_HHH)
14362 {
14363 do_vfp_nsyn_opcode ("fdivs");
14364
14365 /* ARMv8.2 fp16 instruction. */
14366 if (rs == NS_HHH)
14367 do_scalar_fp16_v82_encode ();
14368 }
037e8744
JB
14369 else
14370 do_vfp_nsyn_opcode ("fdivd");
14371}
14372
14373static void
14374do_vfp_nsyn_nmul (void)
14375{
9db2f6b4 14376 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 14377 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 14378 N_F_ALL | N_KEY | N_VFP);
5f4273c7 14379
9db2f6b4 14380 if (rs == NS_FFF || rs == NS_HHH)
037e8744 14381 {
88714cb8 14382 NEON_ENCODE (SINGLE, inst);
037e8744 14383 do_vfp_sp_dyadic ();
9db2f6b4
RL
14384
14385 /* ARMv8.2 fp16 instruction. */
14386 if (rs == NS_HHH)
14387 do_scalar_fp16_v82_encode ();
037e8744
JB
14388 }
14389 else
14390 {
88714cb8 14391 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
14392 do_vfp_dp_rd_rn_rm ();
14393 }
14394 do_vfp_cond_or_thumb ();
9db2f6b4 14395
037e8744
JB
14396}
14397
14398static void
14399do_vfp_nsyn_cmp (void)
14400{
9db2f6b4 14401 enum neon_shape rs;
037e8744
JB
14402 if (inst.operands[1].isreg)
14403 {
9db2f6b4
RL
14404 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14405 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 14406
9db2f6b4 14407 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
14408 {
14409 NEON_ENCODE (SINGLE, inst);
14410 do_vfp_sp_monadic ();
14411 }
037e8744 14412 else
477330fc
RM
14413 {
14414 NEON_ENCODE (DOUBLE, inst);
14415 do_vfp_dp_rd_rm ();
14416 }
037e8744
JB
14417 }
14418 else
14419 {
9db2f6b4
RL
14420 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
14421 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
14422
14423 switch (inst.instruction & 0x0fffffff)
477330fc
RM
14424 {
14425 case N_MNEM_vcmp:
14426 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
14427 break;
14428 case N_MNEM_vcmpe:
14429 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
14430 break;
14431 default:
14432 abort ();
14433 }
5f4273c7 14434
9db2f6b4 14435 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
14436 {
14437 NEON_ENCODE (SINGLE, inst);
14438 do_vfp_sp_compare_z ();
14439 }
037e8744 14440 else
477330fc
RM
14441 {
14442 NEON_ENCODE (DOUBLE, inst);
14443 do_vfp_dp_rd ();
14444 }
037e8744
JB
14445 }
14446 do_vfp_cond_or_thumb ();
9db2f6b4
RL
14447
14448 /* ARMv8.2 fp16 instruction. */
14449 if (rs == NS_HI || rs == NS_HH)
14450 do_scalar_fp16_v82_encode ();
037e8744
JB
14451}
14452
14453static void
14454nsyn_insert_sp (void)
14455{
14456 inst.operands[1] = inst.operands[0];
14457 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 14458 inst.operands[0].reg = REG_SP;
037e8744
JB
14459 inst.operands[0].isreg = 1;
14460 inst.operands[0].writeback = 1;
14461 inst.operands[0].present = 1;
14462}
14463
14464static void
14465do_vfp_nsyn_push (void)
14466{
14467 nsyn_insert_sp ();
b126985e
NC
14468
14469 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14470 _("register list must contain at least 1 and at most 16 "
14471 "registers"));
14472
037e8744
JB
14473 if (inst.operands[1].issingle)
14474 do_vfp_nsyn_opcode ("fstmdbs");
14475 else
14476 do_vfp_nsyn_opcode ("fstmdbd");
14477}
14478
14479static void
14480do_vfp_nsyn_pop (void)
14481{
14482 nsyn_insert_sp ();
b126985e
NC
14483
14484 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14485 _("register list must contain at least 1 and at most 16 "
14486 "registers"));
14487
037e8744 14488 if (inst.operands[1].issingle)
22b5b651 14489 do_vfp_nsyn_opcode ("fldmias");
037e8744 14490 else
22b5b651 14491 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
14492}
14493
14494/* Fix up Neon data-processing instructions, ORing in the correct bits for
14495 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
14496
88714cb8
DG
14497static void
14498neon_dp_fixup (struct arm_it* insn)
037e8744 14499{
88714cb8
DG
14500 unsigned int i = insn->instruction;
14501 insn->is_neon = 1;
14502
037e8744
JB
14503 if (thumb_mode)
14504 {
14505 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
14506 if (i & (1 << 24))
477330fc 14507 i |= 1 << 28;
5f4273c7 14508
037e8744 14509 i &= ~(1 << 24);
5f4273c7 14510
037e8744
JB
14511 i |= 0xef000000;
14512 }
14513 else
14514 i |= 0xf2000000;
5f4273c7 14515
88714cb8 14516 insn->instruction = i;
037e8744
JB
14517}
14518
14519/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
14520 (0, 1, 2, 3). */
14521
14522static unsigned
14523neon_logbits (unsigned x)
14524{
14525 return ffs (x) - 4;
14526}
14527
14528#define LOW4(R) ((R) & 0xf)
14529#define HI1(R) (((R) >> 4) & 1)
14530
14531/* Encode insns with bit pattern:
14532
14533 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14534 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 14535
037e8744
JB
14536 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
14537 different meaning for some instruction. */
14538
14539static void
14540neon_three_same (int isquad, int ubit, int size)
14541{
14542 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14543 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14544 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14545 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14546 inst.instruction |= LOW4 (inst.operands[2].reg);
14547 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14548 inst.instruction |= (isquad != 0) << 6;
14549 inst.instruction |= (ubit != 0) << 24;
14550 if (size != -1)
14551 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14552
88714cb8 14553 neon_dp_fixup (&inst);
037e8744
JB
14554}
14555
14556/* Encode instructions of the form:
14557
14558 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
14559 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
14560
14561 Don't write size if SIZE == -1. */
14562
14563static void
14564neon_two_same (int qbit, int ubit, int size)
14565{
14566 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14567 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14568 inst.instruction |= LOW4 (inst.operands[1].reg);
14569 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14570 inst.instruction |= (qbit != 0) << 6;
14571 inst.instruction |= (ubit != 0) << 24;
14572
14573 if (size != -1)
14574 inst.instruction |= neon_logbits (size) << 18;
14575
88714cb8 14576 neon_dp_fixup (&inst);
5287ad62
JB
14577}
14578
14579/* Neon instruction encoders, in approximate order of appearance. */
14580
14581static void
14582do_neon_dyadic_i_su (void)
14583{
037e8744 14584 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14585 struct neon_type_el et = neon_check_type (3, rs,
14586 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 14587 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14588}
14589
14590static void
14591do_neon_dyadic_i64_su (void)
14592{
037e8744 14593 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14594 struct neon_type_el et = neon_check_type (3, rs,
14595 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 14596 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14597}
14598
14599static void
14600neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 14601 unsigned immbits)
5287ad62
JB
14602{
14603 unsigned size = et.size >> 3;
14604 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14605 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14606 inst.instruction |= LOW4 (inst.operands[1].reg);
14607 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14608 inst.instruction |= (isquad != 0) << 6;
14609 inst.instruction |= immbits << 16;
14610 inst.instruction |= (size >> 3) << 7;
14611 inst.instruction |= (size & 0x7) << 19;
14612 if (write_ubit)
14613 inst.instruction |= (uval != 0) << 24;
14614
88714cb8 14615 neon_dp_fixup (&inst);
5287ad62
JB
14616}
14617
14618static void
14619do_neon_shl_imm (void)
14620{
14621 if (!inst.operands[2].isreg)
14622 {
037e8744 14623 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 14624 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
cb3b1e65
JB
14625 int imm = inst.operands[2].imm;
14626
14627 constraint (imm < 0 || (unsigned)imm >= et.size,
14628 _("immediate out of range for shift"));
88714cb8 14629 NEON_ENCODE (IMMED, inst);
cb3b1e65 14630 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14631 }
14632 else
14633 {
037e8744 14634 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14635 struct neon_type_el et = neon_check_type (3, rs,
477330fc 14636 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
14637 unsigned int tmp;
14638
14639 /* VSHL/VQSHL 3-register variants have syntax such as:
477330fc
RM
14640 vshl.xx Dd, Dm, Dn
14641 whereas other 3-register operations encoded by neon_three_same have
14642 syntax like:
14643 vadd.xx Dd, Dn, Dm
14644 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
14645 here. */
627907b7
JB
14646 tmp = inst.operands[2].reg;
14647 inst.operands[2].reg = inst.operands[1].reg;
14648 inst.operands[1].reg = tmp;
88714cb8 14649 NEON_ENCODE (INTEGER, inst);
037e8744 14650 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14651 }
14652}
14653
14654static void
14655do_neon_qshl_imm (void)
14656{
14657 if (!inst.operands[2].isreg)
14658 {
037e8744 14659 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 14660 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
cb3b1e65 14661 int imm = inst.operands[2].imm;
627907b7 14662
cb3b1e65
JB
14663 constraint (imm < 0 || (unsigned)imm >= et.size,
14664 _("immediate out of range for shift"));
88714cb8 14665 NEON_ENCODE (IMMED, inst);
cb3b1e65 14666 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
14667 }
14668 else
14669 {
037e8744 14670 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14671 struct neon_type_el et = neon_check_type (3, rs,
477330fc 14672 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
14673 unsigned int tmp;
14674
14675 /* See note in do_neon_shl_imm. */
14676 tmp = inst.operands[2].reg;
14677 inst.operands[2].reg = inst.operands[1].reg;
14678 inst.operands[1].reg = tmp;
88714cb8 14679 NEON_ENCODE (INTEGER, inst);
037e8744 14680 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14681 }
14682}
14683
627907b7
JB
14684static void
14685do_neon_rshl (void)
14686{
14687 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14688 struct neon_type_el et = neon_check_type (3, rs,
14689 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14690 unsigned int tmp;
14691
14692 tmp = inst.operands[2].reg;
14693 inst.operands[2].reg = inst.operands[1].reg;
14694 inst.operands[1].reg = tmp;
14695 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14696}
14697
5287ad62
JB
14698static int
14699neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
14700{
036dc3f7
PB
14701 /* Handle .I8 pseudo-instructions. */
14702 if (size == 8)
5287ad62 14703 {
5287ad62 14704 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
14705 FIXME is this the intended semantics? There doesn't seem much point in
14706 accepting .I8 if so. */
5287ad62
JB
14707 immediate |= immediate << 8;
14708 size = 16;
036dc3f7
PB
14709 }
14710
14711 if (size >= 32)
14712 {
14713 if (immediate == (immediate & 0x000000ff))
14714 {
14715 *immbits = immediate;
14716 return 0x1;
14717 }
14718 else if (immediate == (immediate & 0x0000ff00))
14719 {
14720 *immbits = immediate >> 8;
14721 return 0x3;
14722 }
14723 else if (immediate == (immediate & 0x00ff0000))
14724 {
14725 *immbits = immediate >> 16;
14726 return 0x5;
14727 }
14728 else if (immediate == (immediate & 0xff000000))
14729 {
14730 *immbits = immediate >> 24;
14731 return 0x7;
14732 }
14733 if ((immediate & 0xffff) != (immediate >> 16))
14734 goto bad_immediate;
14735 immediate &= 0xffff;
5287ad62
JB
14736 }
14737
14738 if (immediate == (immediate & 0x000000ff))
14739 {
14740 *immbits = immediate;
036dc3f7 14741 return 0x9;
5287ad62
JB
14742 }
14743 else if (immediate == (immediate & 0x0000ff00))
14744 {
14745 *immbits = immediate >> 8;
036dc3f7 14746 return 0xb;
5287ad62
JB
14747 }
14748
14749 bad_immediate:
dcbf9037 14750 first_error (_("immediate value out of range"));
5287ad62
JB
14751 return FAIL;
14752}
14753
5287ad62
JB
14754static void
14755do_neon_logic (void)
14756{
14757 if (inst.operands[2].present && inst.operands[2].isreg)
14758 {
037e8744 14759 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14760 neon_check_type (3, rs, N_IGNORE_TYPE);
14761 /* U bit and size field were set as part of the bitmask. */
88714cb8 14762 NEON_ENCODE (INTEGER, inst);
037e8744 14763 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14764 }
14765 else
14766 {
4316f0d2
DG
14767 const int three_ops_form = (inst.operands[2].present
14768 && !inst.operands[2].isreg);
14769 const int immoperand = (three_ops_form ? 2 : 1);
14770 enum neon_shape rs = (three_ops_form
14771 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
14772 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744 14773 struct neon_type_el et = neon_check_type (2, rs,
477330fc 14774 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 14775 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
14776 unsigned immbits;
14777 int cmode;
5f4273c7 14778
5287ad62 14779 if (et.type == NT_invtype)
477330fc 14780 return;
5f4273c7 14781
4316f0d2
DG
14782 if (three_ops_form)
14783 constraint (inst.operands[0].reg != inst.operands[1].reg,
14784 _("first and second operands shall be the same register"));
14785
88714cb8 14786 NEON_ENCODE (IMMED, inst);
5287ad62 14787
4316f0d2 14788 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
14789 if (et.size == 64)
14790 {
14791 /* .i64 is a pseudo-op, so the immediate must be a repeating
14792 pattern. */
4316f0d2
DG
14793 if (immbits != (inst.operands[immoperand].regisimm ?
14794 inst.operands[immoperand].reg : 0))
036dc3f7
PB
14795 {
14796 /* Set immbits to an invalid constant. */
14797 immbits = 0xdeadbeef;
14798 }
14799 }
14800
5287ad62 14801 switch (opcode)
477330fc
RM
14802 {
14803 case N_MNEM_vbic:
14804 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14805 break;
14806
14807 case N_MNEM_vorr:
14808 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14809 break;
14810
14811 case N_MNEM_vand:
14812 /* Pseudo-instruction for VBIC. */
14813 neon_invert_size (&immbits, 0, et.size);
14814 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14815 break;
14816
14817 case N_MNEM_vorn:
14818 /* Pseudo-instruction for VORR. */
14819 neon_invert_size (&immbits, 0, et.size);
14820 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14821 break;
14822
14823 default:
14824 abort ();
14825 }
5287ad62
JB
14826
14827 if (cmode == FAIL)
477330fc 14828 return;
5287ad62 14829
037e8744 14830 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14831 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14832 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14833 inst.instruction |= cmode << 8;
14834 neon_write_immbits (immbits);
5f4273c7 14835
88714cb8 14836 neon_dp_fixup (&inst);
5287ad62
JB
14837 }
14838}
14839
14840static void
14841do_neon_bitfield (void)
14842{
037e8744 14843 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 14844 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 14845 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14846}
14847
14848static void
dcbf9037 14849neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 14850 unsigned destbits)
5287ad62 14851{
037e8744 14852 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 14853 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 14854 types | N_KEY);
5287ad62
JB
14855 if (et.type == NT_float)
14856 {
88714cb8 14857 NEON_ENCODE (FLOAT, inst);
cc933301 14858 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
14859 }
14860 else
14861 {
88714cb8 14862 NEON_ENCODE (INTEGER, inst);
037e8744 14863 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
14864 }
14865}
14866
14867static void
14868do_neon_dyadic_if_su (void)
14869{
dcbf9037 14870 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
14871}
14872
14873static void
14874do_neon_dyadic_if_su_d (void)
14875{
14876 /* This version only allow D registers, but that constraint is enforced during
14877 operand parsing so we don't need to do anything extra here. */
dcbf9037 14878 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
14879}
14880
5287ad62
JB
14881static void
14882do_neon_dyadic_if_i_d (void)
14883{
428e3f1f
PB
14884 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14885 affected if we specify unsigned args. */
14886 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
14887}
14888
037e8744
JB
14889enum vfp_or_neon_is_neon_bits
14890{
14891 NEON_CHECK_CC = 1,
73924fbc
MGD
14892 NEON_CHECK_ARCH = 2,
14893 NEON_CHECK_ARCH8 = 4
037e8744
JB
14894};
14895
14896/* Call this function if an instruction which may have belonged to the VFP or
14897 Neon instruction sets, but turned out to be a Neon instruction (due to the
14898 operand types involved, etc.). We have to check and/or fix-up a couple of
14899 things:
14900
14901 - Make sure the user hasn't attempted to make a Neon instruction
14902 conditional.
14903 - Alter the value in the condition code field if necessary.
14904 - Make sure that the arch supports Neon instructions.
14905
14906 Which of these operations take place depends on bits from enum
14907 vfp_or_neon_is_neon_bits.
14908
14909 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14910 current instruction's condition is COND_ALWAYS, the condition field is
14911 changed to inst.uncond_value. This is necessary because instructions shared
14912 between VFP and Neon may be conditional for the VFP variants only, and the
14913 unconditional Neon version must have, e.g., 0xF in the condition field. */
14914
14915static int
14916vfp_or_neon_is_neon (unsigned check)
14917{
14918 /* Conditions are always legal in Thumb mode (IT blocks). */
14919 if (!thumb_mode && (check & NEON_CHECK_CC))
14920 {
14921 if (inst.cond != COND_ALWAYS)
477330fc
RM
14922 {
14923 first_error (_(BAD_COND));
14924 return FAIL;
14925 }
037e8744 14926 if (inst.uncond_value != -1)
477330fc 14927 inst.instruction |= inst.uncond_value << 28;
037e8744 14928 }
5f4273c7 14929
037e8744 14930 if ((check & NEON_CHECK_ARCH)
73924fbc
MGD
14931 && !mark_feature_used (&fpu_neon_ext_v1))
14932 {
14933 first_error (_(BAD_FPU));
14934 return FAIL;
14935 }
14936
14937 if ((check & NEON_CHECK_ARCH8)
14938 && !mark_feature_used (&fpu_neon_ext_armv8))
037e8744
JB
14939 {
14940 first_error (_(BAD_FPU));
14941 return FAIL;
14942 }
5f4273c7 14943
037e8744
JB
14944 return SUCCESS;
14945}
14946
5287ad62
JB
14947static void
14948do_neon_addsub_if_i (void)
14949{
037e8744
JB
14950 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14951 return;
14952
14953 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14954 return;
14955
5287ad62
JB
14956 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14957 affected if we specify unsigned args. */
dcbf9037 14958 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
14959}
14960
14961/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14962 result to be:
14963 V<op> A,B (A is operand 0, B is operand 2)
14964 to mean:
14965 V<op> A,B,A
14966 not:
14967 V<op> A,B,B
14968 so handle that case specially. */
14969
14970static void
14971neon_exchange_operands (void)
14972{
5287ad62
JB
14973 if (inst.operands[1].present)
14974 {
e1fa0163
NC
14975 void *scratch = xmalloc (sizeof (inst.operands[0]));
14976
5287ad62
JB
14977 /* Swap operands[1] and operands[2]. */
14978 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14979 inst.operands[1] = inst.operands[2];
14980 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 14981 free (scratch);
5287ad62
JB
14982 }
14983 else
14984 {
14985 inst.operands[1] = inst.operands[2];
14986 inst.operands[2] = inst.operands[0];
14987 }
14988}
14989
14990static void
14991neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14992{
14993 if (inst.operands[2].isreg)
14994 {
14995 if (invert)
477330fc 14996 neon_exchange_operands ();
dcbf9037 14997 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
14998 }
14999 else
15000 {
037e8744 15001 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 15002 struct neon_type_el et = neon_check_type (2, rs,
477330fc 15003 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 15004
88714cb8 15005 NEON_ENCODE (IMMED, inst);
5287ad62
JB
15006 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15007 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15008 inst.instruction |= LOW4 (inst.operands[1].reg);
15009 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 15010 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15011 inst.instruction |= (et.type == NT_float) << 10;
15012 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15013
88714cb8 15014 neon_dp_fixup (&inst);
5287ad62
JB
15015 }
15016}
15017
15018static void
15019do_neon_cmp (void)
15020{
cc933301 15021 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
15022}
15023
15024static void
15025do_neon_cmp_inv (void)
15026{
cc933301 15027 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
15028}
15029
15030static void
15031do_neon_ceq (void)
15032{
15033 neon_compare (N_IF_32, N_IF_32, FALSE);
15034}
15035
15036/* For multiply instructions, we have the possibility of 16-bit or 32-bit
15037 scalars, which are encoded in 5 bits, M : Rm.
15038 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
15039 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
15040 index in M.
15041
15042 Dot Product instructions are similar to multiply instructions except elsize
15043 should always be 32.
15044
15045 This function translates SCALAR, which is GAS's internal encoding of indexed
15046 scalar register, to raw encoding. There is also register and index range
15047 check based on ELSIZE. */
5287ad62
JB
15048
15049static unsigned
15050neon_scalar_for_mul (unsigned scalar, unsigned elsize)
15051{
dcbf9037
JB
15052 unsigned regno = NEON_SCALAR_REG (scalar);
15053 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
15054
15055 switch (elsize)
15056 {
15057 case 16:
15058 if (regno > 7 || elno > 3)
477330fc 15059 goto bad_scalar;
5287ad62 15060 return regno | (elno << 3);
5f4273c7 15061
5287ad62
JB
15062 case 32:
15063 if (regno > 15 || elno > 1)
477330fc 15064 goto bad_scalar;
5287ad62
JB
15065 return regno | (elno << 4);
15066
15067 default:
15068 bad_scalar:
dcbf9037 15069 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
15070 }
15071
15072 return 0;
15073}
15074
15075/* Encode multiply / multiply-accumulate scalar instructions. */
15076
15077static void
15078neon_mul_mac (struct neon_type_el et, int ubit)
15079{
dcbf9037
JB
15080 unsigned scalar;
15081
15082 /* Give a more helpful error message if we have an invalid type. */
15083 if (et.type == NT_invtype)
15084 return;
5f4273c7 15085
dcbf9037 15086 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
15087 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15088 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15089 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15090 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15091 inst.instruction |= LOW4 (scalar);
15092 inst.instruction |= HI1 (scalar) << 5;
15093 inst.instruction |= (et.type == NT_float) << 8;
15094 inst.instruction |= neon_logbits (et.size) << 20;
15095 inst.instruction |= (ubit != 0) << 24;
15096
88714cb8 15097 neon_dp_fixup (&inst);
5287ad62
JB
15098}
15099
15100static void
15101do_neon_mac_maybe_scalar (void)
15102{
037e8744
JB
15103 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
15104 return;
15105
15106 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15107 return;
15108
5287ad62
JB
15109 if (inst.operands[2].isscalar)
15110 {
037e8744 15111 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 15112 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 15113 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 15114 NEON_ENCODE (SCALAR, inst);
037e8744 15115 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
15116 }
15117 else
428e3f1f
PB
15118 {
15119 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15120 affected if we specify unsigned args. */
15121 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15122 }
5287ad62
JB
15123}
15124
62f3b8c8
PB
15125static void
15126do_neon_fmac (void)
15127{
15128 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
15129 return;
15130
15131 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15132 return;
15133
15134 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15135}
15136
5287ad62
JB
15137static void
15138do_neon_tst (void)
15139{
037e8744 15140 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
15141 struct neon_type_el et = neon_check_type (3, rs,
15142 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 15143 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
15144}
15145
15146/* VMUL with 3 registers allows the P8 type. The scalar version supports the
15147 same types as the MAC equivalents. The polynomial type for this instruction
15148 is encoded the same as the integer type. */
15149
15150static void
15151do_neon_mul (void)
15152{
037e8744
JB
15153 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
15154 return;
15155
15156 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15157 return;
15158
5287ad62
JB
15159 if (inst.operands[2].isscalar)
15160 do_neon_mac_maybe_scalar ();
15161 else
cc933301 15162 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
5287ad62
JB
15163}
15164
15165static void
15166do_neon_qdmulh (void)
15167{
15168 if (inst.operands[2].isscalar)
15169 {
037e8744 15170 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 15171 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15172 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 15173 NEON_ENCODE (SCALAR, inst);
037e8744 15174 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
15175 }
15176 else
15177 {
037e8744 15178 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 15179 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15180 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 15181 NEON_ENCODE (INTEGER, inst);
5287ad62 15182 /* The U bit (rounding) comes from bit mask. */
037e8744 15183 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
15184 }
15185}
15186
643afb90
MW
15187static void
15188do_neon_qrdmlah (void)
15189{
15190 /* Check we're on the correct architecture. */
15191 if (!mark_feature_used (&fpu_neon_ext_armv8))
15192 inst.error =
15193 _("instruction form not available on this architecture.");
15194 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
15195 {
15196 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
15197 record_feature_use (&fpu_neon_ext_v8_1);
15198 }
15199
15200 if (inst.operands[2].isscalar)
15201 {
15202 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15203 struct neon_type_el et = neon_check_type (3, rs,
15204 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15205 NEON_ENCODE (SCALAR, inst);
15206 neon_mul_mac (et, neon_quad (rs));
15207 }
15208 else
15209 {
15210 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15211 struct neon_type_el et = neon_check_type (3, rs,
15212 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15213 NEON_ENCODE (INTEGER, inst);
15214 /* The U bit (rounding) comes from bit mask. */
15215 neon_three_same (neon_quad (rs), 0, et.size);
15216 }
15217}
15218
5287ad62
JB
15219static void
15220do_neon_fcmp_absolute (void)
15221{
037e8744 15222 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
15223 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15224 N_F_16_32 | N_KEY);
5287ad62 15225 /* Size field comes from bit mask. */
cc933301 15226 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
15227}
15228
15229static void
15230do_neon_fcmp_absolute_inv (void)
15231{
15232 neon_exchange_operands ();
15233 do_neon_fcmp_absolute ();
15234}
15235
15236static void
15237do_neon_step (void)
15238{
037e8744 15239 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
15240 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15241 N_F_16_32 | N_KEY);
15242 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
15243}
15244
15245static void
15246do_neon_abs_neg (void)
15247{
037e8744
JB
15248 enum neon_shape rs;
15249 struct neon_type_el et;
5f4273c7 15250
037e8744
JB
15251 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
15252 return;
15253
15254 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15255 return;
15256
15257 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 15258 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 15259
5287ad62
JB
15260 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15261 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15262 inst.instruction |= LOW4 (inst.operands[1].reg);
15263 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 15264 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15265 inst.instruction |= (et.type == NT_float) << 10;
15266 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15267
88714cb8 15268 neon_dp_fixup (&inst);
5287ad62
JB
15269}
15270
15271static void
15272do_neon_sli (void)
15273{
037e8744 15274 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15275 struct neon_type_el et = neon_check_type (2, rs,
15276 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15277 int imm = inst.operands[2].imm;
15278 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 15279 _("immediate out of range for insert"));
037e8744 15280 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
15281}
15282
15283static void
15284do_neon_sri (void)
15285{
037e8744 15286 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15287 struct neon_type_el et = neon_check_type (2, rs,
15288 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15289 int imm = inst.operands[2].imm;
15290 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15291 _("immediate out of range for insert"));
037e8744 15292 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
15293}
15294
15295static void
15296do_neon_qshlu_imm (void)
15297{
037e8744 15298 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15299 struct neon_type_el et = neon_check_type (2, rs,
15300 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
15301 int imm = inst.operands[2].imm;
15302 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 15303 _("immediate out of range for shift"));
5287ad62
JB
15304 /* Only encodes the 'U present' variant of the instruction.
15305 In this case, signed types have OP (bit 8) set to 0.
15306 Unsigned types have OP set to 1. */
15307 inst.instruction |= (et.type == NT_unsigned) << 8;
15308 /* The rest of the bits are the same as other immediate shifts. */
037e8744 15309 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
15310}
15311
15312static void
15313do_neon_qmovn (void)
15314{
15315 struct neon_type_el et = neon_check_type (2, NS_DQ,
15316 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15317 /* Saturating move where operands can be signed or unsigned, and the
15318 destination has the same signedness. */
88714cb8 15319 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15320 if (et.type == NT_unsigned)
15321 inst.instruction |= 0xc0;
15322 else
15323 inst.instruction |= 0x80;
15324 neon_two_same (0, 1, et.size / 2);
15325}
15326
15327static void
15328do_neon_qmovun (void)
15329{
15330 struct neon_type_el et = neon_check_type (2, NS_DQ,
15331 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15332 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 15333 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15334 neon_two_same (0, 1, et.size / 2);
15335}
15336
15337static void
15338do_neon_rshift_sat_narrow (void)
15339{
15340 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15341 or unsigned. If operands are unsigned, results must also be unsigned. */
15342 struct neon_type_el et = neon_check_type (2, NS_DQI,
15343 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15344 int imm = inst.operands[2].imm;
15345 /* This gets the bounds check, size encoding and immediate bits calculation
15346 right. */
15347 et.size /= 2;
5f4273c7 15348
5287ad62
JB
15349 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
15350 VQMOVN.I<size> <Dd>, <Qm>. */
15351 if (imm == 0)
15352 {
15353 inst.operands[2].present = 0;
15354 inst.instruction = N_MNEM_vqmovn;
15355 do_neon_qmovn ();
15356 return;
15357 }
5f4273c7 15358
5287ad62 15359 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15360 _("immediate out of range"));
5287ad62
JB
15361 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
15362}
15363
15364static void
15365do_neon_rshift_sat_narrow_u (void)
15366{
15367 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15368 or unsigned. If operands are unsigned, results must also be unsigned. */
15369 struct neon_type_el et = neon_check_type (2, NS_DQI,
15370 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15371 int imm = inst.operands[2].imm;
15372 /* This gets the bounds check, size encoding and immediate bits calculation
15373 right. */
15374 et.size /= 2;
15375
15376 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
15377 VQMOVUN.I<size> <Dd>, <Qm>. */
15378 if (imm == 0)
15379 {
15380 inst.operands[2].present = 0;
15381 inst.instruction = N_MNEM_vqmovun;
15382 do_neon_qmovun ();
15383 return;
15384 }
15385
15386 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15387 _("immediate out of range"));
5287ad62
JB
15388 /* FIXME: The manual is kind of unclear about what value U should have in
15389 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
15390 must be 1. */
15391 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
15392}
15393
15394static void
15395do_neon_movn (void)
15396{
15397 struct neon_type_el et = neon_check_type (2, NS_DQ,
15398 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 15399 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15400 neon_two_same (0, 1, et.size / 2);
15401}
15402
15403static void
15404do_neon_rshift_narrow (void)
15405{
15406 struct neon_type_el et = neon_check_type (2, NS_DQI,
15407 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15408 int imm = inst.operands[2].imm;
15409 /* This gets the bounds check, size encoding and immediate bits calculation
15410 right. */
15411 et.size /= 2;
5f4273c7 15412
5287ad62
JB
15413 /* If immediate is zero then we are a pseudo-instruction for
15414 VMOVN.I<size> <Dd>, <Qm> */
15415 if (imm == 0)
15416 {
15417 inst.operands[2].present = 0;
15418 inst.instruction = N_MNEM_vmovn;
15419 do_neon_movn ();
15420 return;
15421 }
5f4273c7 15422
5287ad62 15423 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15424 _("immediate out of range for narrowing operation"));
5287ad62
JB
15425 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
15426}
15427
15428static void
15429do_neon_shll (void)
15430{
15431 /* FIXME: Type checking when lengthening. */
15432 struct neon_type_el et = neon_check_type (2, NS_QDI,
15433 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
15434 unsigned imm = inst.operands[2].imm;
15435
15436 if (imm == et.size)
15437 {
15438 /* Maximum shift variant. */
88714cb8 15439 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15440 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15441 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15442 inst.instruction |= LOW4 (inst.operands[1].reg);
15443 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15444 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15445
88714cb8 15446 neon_dp_fixup (&inst);
5287ad62
JB
15447 }
15448 else
15449 {
15450 /* A more-specific type check for non-max versions. */
15451 et = neon_check_type (2, NS_QDI,
477330fc 15452 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 15453 NEON_ENCODE (IMMED, inst);
5287ad62
JB
15454 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
15455 }
15456}
15457
037e8744 15458/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
15459 the current instruction is. */
15460
6b9a8b67
MGD
15461#define CVT_FLAVOUR_VAR \
15462 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
15463 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
15464 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
15465 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
15466 /* Half-precision conversions. */ \
cc933301
JW
15467 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15468 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15469 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
15470 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
15471 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
15472 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
15473 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
15474 Compared with single/double precision variants, only the co-processor \
15475 field is different, so the encoding flow is reused here. */ \
15476 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
15477 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
15478 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
15479 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
15480 /* VFP instructions. */ \
15481 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
15482 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
15483 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
15484 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
15485 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
15486 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
15487 /* VFP instructions with bitshift. */ \
15488 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
15489 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
15490 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
15491 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
15492 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
15493 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
15494 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
15495 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
15496
15497#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
15498 neon_cvt_flavour_##C,
15499
15500/* The different types of conversions we can do. */
15501enum neon_cvt_flavour
15502{
15503 CVT_FLAVOUR_VAR
15504 neon_cvt_flavour_invalid,
15505 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
15506};
15507
15508#undef CVT_VAR
15509
15510static enum neon_cvt_flavour
15511get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 15512{
6b9a8b67
MGD
15513#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
15514 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
15515 if (et.type != NT_invtype) \
15516 { \
15517 inst.error = NULL; \
15518 return (neon_cvt_flavour_##C); \
5287ad62 15519 }
6b9a8b67 15520
5287ad62 15521 struct neon_type_el et;
037e8744 15522 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 15523 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
15524 /* The instruction versions which take an immediate take one register
15525 argument, which is extended to the width of the full register. Thus the
15526 "source" and "destination" registers must have the same width. Hack that
15527 here by making the size equal to the key (wider, in this case) operand. */
15528 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 15529
6b9a8b67
MGD
15530 CVT_FLAVOUR_VAR;
15531
15532 return neon_cvt_flavour_invalid;
5287ad62
JB
15533#undef CVT_VAR
15534}
15535
7e8e6784
MGD
15536enum neon_cvt_mode
15537{
15538 neon_cvt_mode_a,
15539 neon_cvt_mode_n,
15540 neon_cvt_mode_p,
15541 neon_cvt_mode_m,
15542 neon_cvt_mode_z,
30bdf752
MGD
15543 neon_cvt_mode_x,
15544 neon_cvt_mode_r
7e8e6784
MGD
15545};
15546
037e8744
JB
15547/* Neon-syntax VFP conversions. */
15548
5287ad62 15549static void
6b9a8b67 15550do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 15551{
037e8744 15552 const char *opname = 0;
5f4273c7 15553
d54af2d0
RL
15554 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
15555 || rs == NS_FHI || rs == NS_HFI)
5287ad62 15556 {
037e8744
JB
15557 /* Conversions with immediate bitshift. */
15558 const char *enc[] =
477330fc 15559 {
6b9a8b67
MGD
15560#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
15561 CVT_FLAVOUR_VAR
15562 NULL
15563#undef CVT_VAR
477330fc 15564 };
037e8744 15565
6b9a8b67 15566 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
15567 {
15568 opname = enc[flavour];
15569 constraint (inst.operands[0].reg != inst.operands[1].reg,
15570 _("operands 0 and 1 must be the same register"));
15571 inst.operands[1] = inst.operands[2];
15572 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
15573 }
5287ad62
JB
15574 }
15575 else
15576 {
037e8744
JB
15577 /* Conversions without bitshift. */
15578 const char *enc[] =
477330fc 15579 {
6b9a8b67
MGD
15580#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
15581 CVT_FLAVOUR_VAR
15582 NULL
15583#undef CVT_VAR
477330fc 15584 };
037e8744 15585
6b9a8b67 15586 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 15587 opname = enc[flavour];
037e8744
JB
15588 }
15589
15590 if (opname)
15591 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
15592
15593 /* ARMv8.2 fp16 VCVT instruction. */
15594 if (flavour == neon_cvt_flavour_s32_f16
15595 || flavour == neon_cvt_flavour_u32_f16
15596 || flavour == neon_cvt_flavour_f16_u32
15597 || flavour == neon_cvt_flavour_f16_s32)
15598 do_scalar_fp16_v82_encode ();
037e8744
JB
15599}
15600
15601static void
15602do_vfp_nsyn_cvtz (void)
15603{
d54af2d0 15604 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 15605 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
15606 const char *enc[] =
15607 {
6b9a8b67
MGD
15608#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
15609 CVT_FLAVOUR_VAR
15610 NULL
15611#undef CVT_VAR
037e8744
JB
15612 };
15613
6b9a8b67 15614 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
15615 do_vfp_nsyn_opcode (enc[flavour]);
15616}
f31fef98 15617
037e8744 15618static void
bacebabc 15619do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
15620 enum neon_cvt_mode mode)
15621{
15622 int sz, op;
15623 int rm;
15624
a715796b
TG
15625 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
15626 D register operands. */
15627 if (flavour == neon_cvt_flavour_s32_f64
15628 || flavour == neon_cvt_flavour_u32_f64)
15629 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15630 _(BAD_FPU));
15631
9db2f6b4
RL
15632 if (flavour == neon_cvt_flavour_s32_f16
15633 || flavour == neon_cvt_flavour_u32_f16)
15634 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
15635 _(BAD_FP16));
15636
7e8e6784
MGD
15637 set_it_insn_type (OUTSIDE_IT_INSN);
15638
15639 switch (flavour)
15640 {
15641 case neon_cvt_flavour_s32_f64:
15642 sz = 1;
827f64ff 15643 op = 1;
7e8e6784
MGD
15644 break;
15645 case neon_cvt_flavour_s32_f32:
15646 sz = 0;
15647 op = 1;
15648 break;
9db2f6b4
RL
15649 case neon_cvt_flavour_s32_f16:
15650 sz = 0;
15651 op = 1;
15652 break;
7e8e6784
MGD
15653 case neon_cvt_flavour_u32_f64:
15654 sz = 1;
15655 op = 0;
15656 break;
15657 case neon_cvt_flavour_u32_f32:
15658 sz = 0;
15659 op = 0;
15660 break;
9db2f6b4
RL
15661 case neon_cvt_flavour_u32_f16:
15662 sz = 0;
15663 op = 0;
15664 break;
7e8e6784
MGD
15665 default:
15666 first_error (_("invalid instruction shape"));
15667 return;
15668 }
15669
15670 switch (mode)
15671 {
15672 case neon_cvt_mode_a: rm = 0; break;
15673 case neon_cvt_mode_n: rm = 1; break;
15674 case neon_cvt_mode_p: rm = 2; break;
15675 case neon_cvt_mode_m: rm = 3; break;
15676 default: first_error (_("invalid rounding mode")); return;
15677 }
15678
15679 NEON_ENCODE (FPV8, inst);
15680 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
15681 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
15682 inst.instruction |= sz << 8;
9db2f6b4
RL
15683
15684 /* ARMv8.2 fp16 VCVT instruction. */
15685 if (flavour == neon_cvt_flavour_s32_f16
15686 ||flavour == neon_cvt_flavour_u32_f16)
15687 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
15688 inst.instruction |= op << 7;
15689 inst.instruction |= rm << 16;
15690 inst.instruction |= 0xf0000000;
15691 inst.is_neon = TRUE;
15692}
15693
15694static void
15695do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
15696{
15697 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
15698 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
15699 NS_FH, NS_HF, NS_FHI, NS_HFI,
15700 NS_NULL);
6b9a8b67 15701 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 15702
cc933301
JW
15703 if (flavour == neon_cvt_flavour_invalid)
15704 return;
15705
e3e535bc 15706 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 15707 if (mode == neon_cvt_mode_z
e3e535bc 15708 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
15709 && (flavour == neon_cvt_flavour_s16_f16
15710 || flavour == neon_cvt_flavour_u16_f16
15711 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
15712 || flavour == neon_cvt_flavour_u32_f32
15713 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 15714 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
15715 && (rs == NS_FD || rs == NS_FF))
15716 {
15717 do_vfp_nsyn_cvtz ();
15718 return;
15719 }
15720
9db2f6b4
RL
15721 /* ARMv8.2 fp16 VCVT conversions. */
15722 if (mode == neon_cvt_mode_z
15723 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
15724 && (flavour == neon_cvt_flavour_s32_f16
15725 || flavour == neon_cvt_flavour_u32_f16)
15726 && (rs == NS_FH))
15727 {
15728 do_vfp_nsyn_cvtz ();
15729 do_scalar_fp16_v82_encode ();
15730 return;
15731 }
15732
037e8744 15733 /* VFP rather than Neon conversions. */
6b9a8b67 15734 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 15735 {
7e8e6784
MGD
15736 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15737 do_vfp_nsyn_cvt (rs, flavour);
15738 else
15739 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15740
037e8744
JB
15741 return;
15742 }
15743
15744 switch (rs)
15745 {
15746 case NS_DDI:
15747 case NS_QQI:
15748 {
477330fc 15749 unsigned immbits;
cc933301
JW
15750 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
15751 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 15752
477330fc
RM
15753 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15754 return;
037e8744 15755
477330fc
RM
15756 /* Fixed-point conversion with #0 immediate is encoded as an
15757 integer conversion. */
15758 if (inst.operands[2].present && inst.operands[2].imm == 0)
15759 goto int_encode;
477330fc
RM
15760 NEON_ENCODE (IMMED, inst);
15761 if (flavour != neon_cvt_flavour_invalid)
15762 inst.instruction |= enctab[flavour];
15763 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15764 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15765 inst.instruction |= LOW4 (inst.operands[1].reg);
15766 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15767 inst.instruction |= neon_quad (rs) << 6;
15768 inst.instruction |= 1 << 21;
cc933301
JW
15769 if (flavour < neon_cvt_flavour_s16_f16)
15770 {
15771 inst.instruction |= 1 << 21;
15772 immbits = 32 - inst.operands[2].imm;
15773 inst.instruction |= immbits << 16;
15774 }
15775 else
15776 {
15777 inst.instruction |= 3 << 20;
15778 immbits = 16 - inst.operands[2].imm;
15779 inst.instruction |= immbits << 16;
15780 inst.instruction &= ~(1 << 9);
15781 }
477330fc
RM
15782
15783 neon_dp_fixup (&inst);
037e8744
JB
15784 }
15785 break;
15786
15787 case NS_DD:
15788 case NS_QQ:
7e8e6784
MGD
15789 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
15790 {
15791 NEON_ENCODE (FLOAT, inst);
15792 set_it_insn_type (OUTSIDE_IT_INSN);
15793
15794 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15795 return;
15796
15797 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15798 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15799 inst.instruction |= LOW4 (inst.operands[1].reg);
15800 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15801 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
15802 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
15803 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 15804 inst.instruction |= mode << 8;
cc933301
JW
15805 if (flavour == neon_cvt_flavour_u16_f16
15806 || flavour == neon_cvt_flavour_s16_f16)
15807 /* Mask off the original size bits and reencode them. */
15808 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
15809
7e8e6784
MGD
15810 if (thumb_mode)
15811 inst.instruction |= 0xfc000000;
15812 else
15813 inst.instruction |= 0xf0000000;
15814 }
15815 else
15816 {
037e8744 15817 int_encode:
7e8e6784 15818 {
cc933301
JW
15819 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
15820 0x100, 0x180, 0x0, 0x080};
037e8744 15821
7e8e6784 15822 NEON_ENCODE (INTEGER, inst);
037e8744 15823
7e8e6784
MGD
15824 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15825 return;
037e8744 15826
7e8e6784
MGD
15827 if (flavour != neon_cvt_flavour_invalid)
15828 inst.instruction |= enctab[flavour];
037e8744 15829
7e8e6784
MGD
15830 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15831 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15832 inst.instruction |= LOW4 (inst.operands[1].reg);
15833 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15834 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
15835 if (flavour >= neon_cvt_flavour_s16_f16
15836 && flavour <= neon_cvt_flavour_f16_u16)
15837 /* Half precision. */
15838 inst.instruction |= 1 << 18;
15839 else
15840 inst.instruction |= 2 << 18;
037e8744 15841
7e8e6784
MGD
15842 neon_dp_fixup (&inst);
15843 }
15844 }
15845 break;
037e8744 15846
8e79c3df
CM
15847 /* Half-precision conversions for Advanced SIMD -- neon. */
15848 case NS_QD:
15849 case NS_DQ:
15850
15851 if ((rs == NS_DQ)
15852 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
15853 {
15854 as_bad (_("operand size must match register width"));
15855 break;
15856 }
15857
15858 if ((rs == NS_QD)
15859 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
15860 {
15861 as_bad (_("operand size must match register width"));
15862 break;
15863 }
15864
15865 if (rs == NS_DQ)
477330fc 15866 inst.instruction = 0x3b60600;
8e79c3df
CM
15867 else
15868 inst.instruction = 0x3b60700;
15869
15870 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15871 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15872 inst.instruction |= LOW4 (inst.operands[1].reg);
15873 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 15874 neon_dp_fixup (&inst);
8e79c3df
CM
15875 break;
15876
037e8744
JB
15877 default:
15878 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
15879 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15880 do_vfp_nsyn_cvt (rs, flavour);
15881 else
15882 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 15883 }
5287ad62
JB
15884}
15885
e3e535bc
NC
15886static void
15887do_neon_cvtr (void)
15888{
7e8e6784 15889 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
15890}
15891
15892static void
15893do_neon_cvt (void)
15894{
7e8e6784
MGD
15895 do_neon_cvt_1 (neon_cvt_mode_z);
15896}
15897
15898static void
15899do_neon_cvta (void)
15900{
15901 do_neon_cvt_1 (neon_cvt_mode_a);
15902}
15903
15904static void
15905do_neon_cvtn (void)
15906{
15907 do_neon_cvt_1 (neon_cvt_mode_n);
15908}
15909
15910static void
15911do_neon_cvtp (void)
15912{
15913 do_neon_cvt_1 (neon_cvt_mode_p);
15914}
15915
15916static void
15917do_neon_cvtm (void)
15918{
15919 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
15920}
15921
8e79c3df 15922static void
c70a8987 15923do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 15924{
c70a8987
MGD
15925 if (is_double)
15926 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 15927
c70a8987
MGD
15928 encode_arm_vfp_reg (inst.operands[0].reg,
15929 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
15930 encode_arm_vfp_reg (inst.operands[1].reg,
15931 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
15932 inst.instruction |= to ? 0x10000 : 0;
15933 inst.instruction |= t ? 0x80 : 0;
15934 inst.instruction |= is_double ? 0x100 : 0;
15935 do_vfp_cond_or_thumb ();
15936}
8e79c3df 15937
c70a8987
MGD
15938static void
15939do_neon_cvttb_1 (bfd_boolean t)
15940{
d54af2d0
RL
15941 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
15942 NS_DF, NS_DH, NS_NULL);
8e79c3df 15943
c70a8987
MGD
15944 if (rs == NS_NULL)
15945 return;
15946 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
15947 {
15948 inst.error = NULL;
15949 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
15950 }
15951 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
15952 {
15953 inst.error = NULL;
15954 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
15955 }
15956 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
15957 {
a715796b
TG
15958 /* The VCVTB and VCVTT instructions with D-register operands
15959 don't work for SP only targets. */
15960 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15961 _(BAD_FPU));
15962
c70a8987
MGD
15963 inst.error = NULL;
15964 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
15965 }
15966 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
15967 {
a715796b
TG
15968 /* The VCVTB and VCVTT instructions with D-register operands
15969 don't work for SP only targets. */
15970 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15971 _(BAD_FPU));
15972
c70a8987
MGD
15973 inst.error = NULL;
15974 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
15975 }
15976 else
15977 return;
15978}
15979
15980static void
15981do_neon_cvtb (void)
15982{
15983 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
15984}
15985
15986
15987static void
15988do_neon_cvtt (void)
15989{
c70a8987 15990 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
15991}
15992
5287ad62
JB
15993static void
15994neon_move_immediate (void)
15995{
037e8744
JB
15996 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
15997 struct neon_type_el et = neon_check_type (2, rs,
15998 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 15999 unsigned immlo, immhi = 0, immbits;
c96612cc 16000 int op, cmode, float_p;
5287ad62 16001
037e8744 16002 constraint (et.type == NT_invtype,
477330fc 16003 _("operand size must be specified for immediate VMOV"));
037e8744 16004
5287ad62
JB
16005 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
16006 op = (inst.instruction & (1 << 5)) != 0;
16007
16008 immlo = inst.operands[1].imm;
16009 if (inst.operands[1].regisimm)
16010 immhi = inst.operands[1].reg;
16011
16012 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 16013 _("immediate has bits set outside the operand size"));
5287ad62 16014
c96612cc
JB
16015 float_p = inst.operands[1].immisfloat;
16016
16017 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 16018 et.size, et.type)) == FAIL)
5287ad62
JB
16019 {
16020 /* Invert relevant bits only. */
16021 neon_invert_size (&immlo, &immhi, et.size);
16022 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
16023 with one or the other; those cases are caught by
16024 neon_cmode_for_move_imm. */
5287ad62 16025 op = !op;
c96612cc
JB
16026 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
16027 &op, et.size, et.type)) == FAIL)
477330fc
RM
16028 {
16029 first_error (_("immediate out of range"));
16030 return;
16031 }
5287ad62
JB
16032 }
16033
16034 inst.instruction &= ~(1 << 5);
16035 inst.instruction |= op << 5;
16036
16037 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16038 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 16039 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16040 inst.instruction |= cmode << 8;
16041
16042 neon_write_immbits (immbits);
16043}
16044
16045static void
16046do_neon_mvn (void)
16047{
16048 if (inst.operands[1].isreg)
16049 {
037e8744 16050 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 16051
88714cb8 16052 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
16053 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16054 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16055 inst.instruction |= LOW4 (inst.operands[1].reg);
16056 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 16057 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16058 }
16059 else
16060 {
88714cb8 16061 NEON_ENCODE (IMMED, inst);
5287ad62
JB
16062 neon_move_immediate ();
16063 }
16064
88714cb8 16065 neon_dp_fixup (&inst);
5287ad62
JB
16066}
16067
16068/* Encode instructions of form:
16069
16070 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 16071 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
16072
16073static void
16074neon_mixed_length (struct neon_type_el et, unsigned size)
16075{
16076 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16077 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16078 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16079 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16080 inst.instruction |= LOW4 (inst.operands[2].reg);
16081 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16082 inst.instruction |= (et.type == NT_unsigned) << 24;
16083 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 16084
88714cb8 16085 neon_dp_fixup (&inst);
5287ad62
JB
16086}
16087
16088static void
16089do_neon_dyadic_long (void)
16090{
16091 /* FIXME: Type checking for lengthening op. */
16092 struct neon_type_el et = neon_check_type (3, NS_QDD,
16093 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
16094 neon_mixed_length (et, et.size);
16095}
16096
16097static void
16098do_neon_abal (void)
16099{
16100 struct neon_type_el et = neon_check_type (3, NS_QDD,
16101 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
16102 neon_mixed_length (et, et.size);
16103}
16104
16105static void
16106neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
16107{
16108 if (inst.operands[2].isscalar)
16109 {
dcbf9037 16110 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 16111 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 16112 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
16113 neon_mul_mac (et, et.type == NT_unsigned);
16114 }
16115 else
16116 {
16117 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 16118 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 16119 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
16120 neon_mixed_length (et, et.size);
16121 }
16122}
16123
16124static void
16125do_neon_mac_maybe_scalar_long (void)
16126{
16127 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
16128}
16129
16130static void
16131do_neon_dyadic_wide (void)
16132{
16133 struct neon_type_el et = neon_check_type (3, NS_QQD,
16134 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
16135 neon_mixed_length (et, et.size);
16136}
16137
16138static void
16139do_neon_dyadic_narrow (void)
16140{
16141 struct neon_type_el et = neon_check_type (3, NS_QDD,
16142 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
16143 /* Operand sign is unimportant, and the U bit is part of the opcode,
16144 so force the operand type to integer. */
16145 et.type = NT_integer;
5287ad62
JB
16146 neon_mixed_length (et, et.size / 2);
16147}
16148
16149static void
16150do_neon_mul_sat_scalar_long (void)
16151{
16152 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
16153}
16154
16155static void
16156do_neon_vmull (void)
16157{
16158 if (inst.operands[2].isscalar)
16159 do_neon_mac_maybe_scalar_long ();
16160 else
16161 {
16162 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 16163 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 16164
5287ad62 16165 if (et.type == NT_poly)
477330fc 16166 NEON_ENCODE (POLY, inst);
5287ad62 16167 else
477330fc 16168 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
16169
16170 /* For polynomial encoding the U bit must be zero, and the size must
16171 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
16172 obviously, as 0b10). */
16173 if (et.size == 64)
16174 {
16175 /* Check we're on the correct architecture. */
16176 if (!mark_feature_used (&fpu_crypto_ext_armv8))
16177 inst.error =
16178 _("Instruction form not available on this architecture.");
16179
16180 et.size = 32;
16181 }
16182
5287ad62
JB
16183 neon_mixed_length (et, et.size);
16184 }
16185}
16186
16187static void
16188do_neon_ext (void)
16189{
037e8744 16190 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
16191 struct neon_type_el et = neon_check_type (3, rs,
16192 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16193 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
16194
16195 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
16196 _("shift out of range"));
5287ad62
JB
16197 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16198 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16199 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16200 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16201 inst.instruction |= LOW4 (inst.operands[2].reg);
16202 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 16203 inst.instruction |= neon_quad (rs) << 6;
5287ad62 16204 inst.instruction |= imm << 8;
5f4273c7 16205
88714cb8 16206 neon_dp_fixup (&inst);
5287ad62
JB
16207}
16208
16209static void
16210do_neon_rev (void)
16211{
037e8744 16212 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16213 struct neon_type_el et = neon_check_type (2, rs,
16214 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16215 unsigned op = (inst.instruction >> 7) & 3;
16216 /* N (width of reversed regions) is encoded as part of the bitmask. We
16217 extract it here to check the elements to be reversed are smaller.
16218 Otherwise we'd get a reserved instruction. */
16219 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 16220 gas_assert (elsize != 0);
5287ad62 16221 constraint (et.size >= elsize,
477330fc 16222 _("elements must be smaller than reversal region"));
037e8744 16223 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16224}
16225
16226static void
16227do_neon_dup (void)
16228{
16229 if (inst.operands[1].isscalar)
16230 {
037e8744 16231 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 16232 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16233 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 16234 unsigned sizebits = et.size >> 3;
dcbf9037 16235 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 16236 int logsize = neon_logbits (et.size);
dcbf9037 16237 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
16238
16239 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 16240 return;
037e8744 16241
88714cb8 16242 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
16243 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16244 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16245 inst.instruction |= LOW4 (dm);
16246 inst.instruction |= HI1 (dm) << 5;
037e8744 16247 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16248 inst.instruction |= x << 17;
16249 inst.instruction |= sizebits << 16;
5f4273c7 16250
88714cb8 16251 neon_dp_fixup (&inst);
5287ad62
JB
16252 }
16253 else
16254 {
037e8744
JB
16255 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
16256 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16257 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 16258 /* Duplicate ARM register to lanes of vector. */
88714cb8 16259 NEON_ENCODE (ARMREG, inst);
5287ad62 16260 switch (et.size)
477330fc
RM
16261 {
16262 case 8: inst.instruction |= 0x400000; break;
16263 case 16: inst.instruction |= 0x000020; break;
16264 case 32: inst.instruction |= 0x000000; break;
16265 default: break;
16266 }
5287ad62
JB
16267 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16268 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
16269 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 16270 inst.instruction |= neon_quad (rs) << 21;
5287ad62 16271 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 16272 variants, except for the condition field. */
037e8744 16273 do_vfp_cond_or_thumb ();
5287ad62
JB
16274 }
16275}
16276
16277/* VMOV has particularly many variations. It can be one of:
16278 0. VMOV<c><q> <Qd>, <Qm>
16279 1. VMOV<c><q> <Dd>, <Dm>
16280 (Register operations, which are VORR with Rm = Rn.)
16281 2. VMOV<c><q>.<dt> <Qd>, #<imm>
16282 3. VMOV<c><q>.<dt> <Dd>, #<imm>
16283 (Immediate loads.)
16284 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
16285 (ARM register to scalar.)
16286 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
16287 (Two ARM registers to vector.)
16288 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
16289 (Scalar to ARM register.)
16290 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
16291 (Vector to two ARM registers.)
037e8744
JB
16292 8. VMOV.F32 <Sd>, <Sm>
16293 9. VMOV.F64 <Dd>, <Dm>
16294 (VFP register moves.)
16295 10. VMOV.F32 <Sd>, #imm
16296 11. VMOV.F64 <Dd>, #imm
16297 (VFP float immediate load.)
16298 12. VMOV <Rd>, <Sm>
16299 (VFP single to ARM reg.)
16300 13. VMOV <Sd>, <Rm>
16301 (ARM reg to VFP single.)
16302 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
16303 (Two ARM regs to two VFP singles.)
16304 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
16305 (Two VFP singles to two ARM regs.)
5f4273c7 16306
037e8744
JB
16307 These cases can be disambiguated using neon_select_shape, except cases 1/9
16308 and 3/11 which depend on the operand type too.
5f4273c7 16309
5287ad62 16310 All the encoded bits are hardcoded by this function.
5f4273c7 16311
b7fc2769
JB
16312 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
16313 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 16314
5287ad62 16315 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 16316 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
16317
16318static void
16319do_neon_mov (void)
16320{
037e8744 16321 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
9db2f6b4
RL
16322 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR,
16323 NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
16324 NS_HR, NS_RH, NS_HI, NS_NULL);
037e8744
JB
16325 struct neon_type_el et;
16326 const char *ldconst = 0;
5287ad62 16327
037e8744 16328 switch (rs)
5287ad62 16329 {
037e8744
JB
16330 case NS_DD: /* case 1/9. */
16331 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16332 /* It is not an error here if no type is given. */
16333 inst.error = NULL;
16334 if (et.type == NT_float && et.size == 64)
477330fc
RM
16335 {
16336 do_vfp_nsyn_opcode ("fcpyd");
16337 break;
16338 }
037e8744 16339 /* fall through. */
5287ad62 16340
037e8744
JB
16341 case NS_QQ: /* case 0/1. */
16342 {
477330fc
RM
16343 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16344 return;
16345 /* The architecture manual I have doesn't explicitly state which
16346 value the U bit should have for register->register moves, but
16347 the equivalent VORR instruction has U = 0, so do that. */
16348 inst.instruction = 0x0200110;
16349 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16350 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16351 inst.instruction |= LOW4 (inst.operands[1].reg);
16352 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16353 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16354 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16355 inst.instruction |= neon_quad (rs) << 6;
16356
16357 neon_dp_fixup (&inst);
037e8744
JB
16358 }
16359 break;
5f4273c7 16360
037e8744
JB
16361 case NS_DI: /* case 3/11. */
16362 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16363 inst.error = NULL;
16364 if (et.type == NT_float && et.size == 64)
477330fc
RM
16365 {
16366 /* case 11 (fconstd). */
16367 ldconst = "fconstd";
16368 goto encode_fconstd;
16369 }
037e8744
JB
16370 /* fall through. */
16371
16372 case NS_QI: /* case 2/3. */
16373 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
477330fc 16374 return;
037e8744
JB
16375 inst.instruction = 0x0800010;
16376 neon_move_immediate ();
88714cb8 16377 neon_dp_fixup (&inst);
5287ad62 16378 break;
5f4273c7 16379
037e8744
JB
16380 case NS_SR: /* case 4. */
16381 {
477330fc
RM
16382 unsigned bcdebits = 0;
16383 int logsize;
16384 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
16385 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 16386
05ac0ffb
JB
16387 /* .<size> is optional here, defaulting to .32. */
16388 if (inst.vectype.elems == 0
16389 && inst.operands[0].vectype.type == NT_invtype
16390 && inst.operands[1].vectype.type == NT_invtype)
16391 {
16392 inst.vectype.el[0].type = NT_untyped;
16393 inst.vectype.el[0].size = 32;
16394 inst.vectype.elems = 1;
16395 }
16396
477330fc
RM
16397 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
16398 logsize = neon_logbits (et.size);
16399
16400 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16401 _(BAD_FPU));
16402 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16403 && et.size != 32, _(BAD_FPU));
16404 constraint (et.type == NT_invtype, _("bad type for scalar"));
16405 constraint (x >= 64 / et.size, _("scalar index out of range"));
16406
16407 switch (et.size)
16408 {
16409 case 8: bcdebits = 0x8; break;
16410 case 16: bcdebits = 0x1; break;
16411 case 32: bcdebits = 0x0; break;
16412 default: ;
16413 }
16414
16415 bcdebits |= x << logsize;
16416
16417 inst.instruction = 0xe000b10;
16418 do_vfp_cond_or_thumb ();
16419 inst.instruction |= LOW4 (dn) << 16;
16420 inst.instruction |= HI1 (dn) << 7;
16421 inst.instruction |= inst.operands[1].reg << 12;
16422 inst.instruction |= (bcdebits & 3) << 5;
16423 inst.instruction |= (bcdebits >> 2) << 21;
037e8744
JB
16424 }
16425 break;
5f4273c7 16426
037e8744 16427 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 16428 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
477330fc 16429 _(BAD_FPU));
b7fc2769 16430
037e8744
JB
16431 inst.instruction = 0xc400b10;
16432 do_vfp_cond_or_thumb ();
16433 inst.instruction |= LOW4 (inst.operands[0].reg);
16434 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
16435 inst.instruction |= inst.operands[1].reg << 12;
16436 inst.instruction |= inst.operands[2].reg << 16;
16437 break;
5f4273c7 16438
037e8744
JB
16439 case NS_RS: /* case 6. */
16440 {
477330fc
RM
16441 unsigned logsize;
16442 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
16443 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
16444 unsigned abcdebits = 0;
037e8744 16445
05ac0ffb
JB
16446 /* .<dt> is optional here, defaulting to .32. */
16447 if (inst.vectype.elems == 0
16448 && inst.operands[0].vectype.type == NT_invtype
16449 && inst.operands[1].vectype.type == NT_invtype)
16450 {
16451 inst.vectype.el[0].type = NT_untyped;
16452 inst.vectype.el[0].size = 32;
16453 inst.vectype.elems = 1;
16454 }
16455
91d6fa6a
NC
16456 et = neon_check_type (2, NS_NULL,
16457 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
16458 logsize = neon_logbits (et.size);
16459
16460 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16461 _(BAD_FPU));
16462 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16463 && et.size != 32, _(BAD_FPU));
16464 constraint (et.type == NT_invtype, _("bad type for scalar"));
16465 constraint (x >= 64 / et.size, _("scalar index out of range"));
16466
16467 switch (et.size)
16468 {
16469 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
16470 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
16471 case 32: abcdebits = 0x00; break;
16472 default: ;
16473 }
16474
16475 abcdebits |= x << logsize;
16476 inst.instruction = 0xe100b10;
16477 do_vfp_cond_or_thumb ();
16478 inst.instruction |= LOW4 (dn) << 16;
16479 inst.instruction |= HI1 (dn) << 7;
16480 inst.instruction |= inst.operands[0].reg << 12;
16481 inst.instruction |= (abcdebits & 3) << 5;
16482 inst.instruction |= (abcdebits >> 2) << 21;
037e8744
JB
16483 }
16484 break;
5f4273c7 16485
037e8744
JB
16486 case NS_RRD: /* case 7 (fmrrd). */
16487 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
477330fc 16488 _(BAD_FPU));
037e8744
JB
16489
16490 inst.instruction = 0xc500b10;
16491 do_vfp_cond_or_thumb ();
16492 inst.instruction |= inst.operands[0].reg << 12;
16493 inst.instruction |= inst.operands[1].reg << 16;
16494 inst.instruction |= LOW4 (inst.operands[2].reg);
16495 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16496 break;
5f4273c7 16497
037e8744
JB
16498 case NS_FF: /* case 8 (fcpys). */
16499 do_vfp_nsyn_opcode ("fcpys");
16500 break;
5f4273c7 16501
9db2f6b4 16502 case NS_HI:
037e8744
JB
16503 case NS_FI: /* case 10 (fconsts). */
16504 ldconst = "fconsts";
16505 encode_fconstd:
16506 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
16507 {
16508 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
16509 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
16510
16511 /* ARMv8.2 fp16 vmov.f16 instruction. */
16512 if (rs == NS_HI)
16513 do_scalar_fp16_v82_encode ();
477330fc 16514 }
5287ad62 16515 else
477330fc 16516 first_error (_("immediate out of range"));
037e8744 16517 break;
5f4273c7 16518
9db2f6b4 16519 case NS_RH:
037e8744
JB
16520 case NS_RF: /* case 12 (fmrs). */
16521 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
16522 /* ARMv8.2 fp16 vmov.f16 instruction. */
16523 if (rs == NS_RH)
16524 do_scalar_fp16_v82_encode ();
037e8744 16525 break;
5f4273c7 16526
9db2f6b4 16527 case NS_HR:
037e8744
JB
16528 case NS_FR: /* case 13 (fmsr). */
16529 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
16530 /* ARMv8.2 fp16 vmov.f16 instruction. */
16531 if (rs == NS_HR)
16532 do_scalar_fp16_v82_encode ();
037e8744 16533 break;
5f4273c7 16534
037e8744
JB
16535 /* The encoders for the fmrrs and fmsrr instructions expect three operands
16536 (one of which is a list), but we have parsed four. Do some fiddling to
16537 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
16538 expect. */
16539 case NS_RRFF: /* case 14 (fmrrs). */
16540 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 16541 _("VFP registers must be adjacent"));
037e8744
JB
16542 inst.operands[2].imm = 2;
16543 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16544 do_vfp_nsyn_opcode ("fmrrs");
16545 break;
5f4273c7 16546
037e8744
JB
16547 case NS_FFRR: /* case 15 (fmsrr). */
16548 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 16549 _("VFP registers must be adjacent"));
037e8744
JB
16550 inst.operands[1] = inst.operands[2];
16551 inst.operands[2] = inst.operands[3];
16552 inst.operands[0].imm = 2;
16553 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16554 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 16555 break;
5f4273c7 16556
4c261dff
NC
16557 case NS_NULL:
16558 /* neon_select_shape has determined that the instruction
16559 shape is wrong and has already set the error message. */
16560 break;
16561
5287ad62
JB
16562 default:
16563 abort ();
16564 }
16565}
16566
16567static void
16568do_neon_rshift_round_imm (void)
16569{
037e8744 16570 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
16571 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16572 int imm = inst.operands[2].imm;
16573
16574 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
16575 if (imm == 0)
16576 {
16577 inst.operands[2].present = 0;
16578 do_neon_mov ();
16579 return;
16580 }
16581
16582 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 16583 _("immediate out of range for shift"));
037e8744 16584 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 16585 et.size - imm);
5287ad62
JB
16586}
16587
9db2f6b4
RL
16588static void
16589do_neon_movhf (void)
16590{
16591 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
16592 constraint (rs != NS_HH, _("invalid suffix"));
16593
16594 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16595 _(BAD_FPU));
16596
16597 do_vfp_sp_monadic ();
16598
16599 inst.is_neon = 1;
16600 inst.instruction |= 0xf0000000;
16601}
16602
5287ad62
JB
16603static void
16604do_neon_movl (void)
16605{
16606 struct neon_type_el et = neon_check_type (2, NS_QD,
16607 N_EQK | N_DBL, N_SU_32 | N_KEY);
16608 unsigned sizebits = et.size >> 3;
16609 inst.instruction |= sizebits << 19;
16610 neon_two_same (0, et.type == NT_unsigned, -1);
16611}
16612
16613static void
16614do_neon_trn (void)
16615{
037e8744 16616 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16617 struct neon_type_el et = neon_check_type (2, rs,
16618 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 16619 NEON_ENCODE (INTEGER, inst);
037e8744 16620 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16621}
16622
16623static void
16624do_neon_zip_uzp (void)
16625{
037e8744 16626 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16627 struct neon_type_el et = neon_check_type (2, rs,
16628 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16629 if (rs == NS_DD && et.size == 32)
16630 {
16631 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
16632 inst.instruction = N_MNEM_vtrn;
16633 do_neon_trn ();
16634 return;
16635 }
037e8744 16636 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16637}
16638
16639static void
16640do_neon_sat_abs_neg (void)
16641{
037e8744 16642 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16643 struct neon_type_el et = neon_check_type (2, rs,
16644 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 16645 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16646}
16647
16648static void
16649do_neon_pair_long (void)
16650{
037e8744 16651 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16652 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16653 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
16654 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 16655 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16656}
16657
16658static void
16659do_neon_recip_est (void)
16660{
037e8744 16661 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 16662 struct neon_type_el et = neon_check_type (2, rs,
cc933301 16663 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 16664 inst.instruction |= (et.type == NT_float) << 8;
037e8744 16665 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16666}
16667
16668static void
16669do_neon_cls (void)
16670{
037e8744 16671 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16672 struct neon_type_el et = neon_check_type (2, rs,
16673 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 16674 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16675}
16676
16677static void
16678do_neon_clz (void)
16679{
037e8744 16680 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16681 struct neon_type_el et = neon_check_type (2, rs,
16682 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 16683 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16684}
16685
16686static void
16687do_neon_cnt (void)
16688{
037e8744 16689 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16690 struct neon_type_el et = neon_check_type (2, rs,
16691 N_EQK | N_INT, N_8 | N_KEY);
037e8744 16692 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16693}
16694
16695static void
16696do_neon_swp (void)
16697{
037e8744
JB
16698 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16699 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
16700}
16701
16702static void
16703do_neon_tbl_tbx (void)
16704{
16705 unsigned listlenbits;
dcbf9037 16706 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 16707
5287ad62
JB
16708 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
16709 {
dcbf9037 16710 first_error (_("bad list length for table lookup"));
5287ad62
JB
16711 return;
16712 }
5f4273c7 16713
5287ad62
JB
16714 listlenbits = inst.operands[1].imm - 1;
16715 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16716 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16717 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16718 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16719 inst.instruction |= LOW4 (inst.operands[2].reg);
16720 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16721 inst.instruction |= listlenbits << 8;
5f4273c7 16722
88714cb8 16723 neon_dp_fixup (&inst);
5287ad62
JB
16724}
16725
16726static void
16727do_neon_ldm_stm (void)
16728{
16729 /* P, U and L bits are part of bitmask. */
16730 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
16731 unsigned offsetbits = inst.operands[1].imm * 2;
16732
037e8744
JB
16733 if (inst.operands[1].issingle)
16734 {
16735 do_vfp_nsyn_ldm_stm (is_dbmode);
16736 return;
16737 }
16738
5287ad62 16739 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 16740 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
16741
16742 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
16743 _("register list must contain at least 1 and at most 16 "
16744 "registers"));
5287ad62
JB
16745
16746 inst.instruction |= inst.operands[0].reg << 16;
16747 inst.instruction |= inst.operands[0].writeback << 21;
16748 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16749 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
16750
16751 inst.instruction |= offsetbits;
5f4273c7 16752
037e8744 16753 do_vfp_cond_or_thumb ();
5287ad62
JB
16754}
16755
16756static void
16757do_neon_ldr_str (void)
16758{
5287ad62 16759 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 16760
6844b2c2
MGD
16761 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
16762 And is UNPREDICTABLE in thumb mode. */
fa94de6b 16763 if (!is_ldr
6844b2c2 16764 && inst.operands[1].reg == REG_PC
ba86b375 16765 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 16766 {
94dcf8bf 16767 if (thumb_mode)
6844b2c2 16768 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 16769 else if (warn_on_deprecated)
5c3696f8 16770 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
16771 }
16772
037e8744
JB
16773 if (inst.operands[0].issingle)
16774 {
cd2f129f 16775 if (is_ldr)
477330fc 16776 do_vfp_nsyn_opcode ("flds");
cd2f129f 16777 else
477330fc 16778 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
16779
16780 /* ARMv8.2 vldr.16/vstr.16 instruction. */
16781 if (inst.vectype.el[0].size == 16)
16782 do_scalar_fp16_v82_encode ();
5287ad62
JB
16783 }
16784 else
5287ad62 16785 {
cd2f129f 16786 if (is_ldr)
477330fc 16787 do_vfp_nsyn_opcode ("fldd");
5287ad62 16788 else
477330fc 16789 do_vfp_nsyn_opcode ("fstd");
5287ad62 16790 }
5287ad62
JB
16791}
16792
16793/* "interleave" version also handles non-interleaving register VLD1/VST1
16794 instructions. */
16795
16796static void
16797do_neon_ld_st_interleave (void)
16798{
037e8744 16799 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 16800 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
16801 unsigned alignbits = 0;
16802 unsigned idx;
16803 /* The bits in this table go:
16804 0: register stride of one (0) or two (1)
16805 1,2: register list length, minus one (1, 2, 3, 4).
16806 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
16807 We use -1 for invalid entries. */
16808 const int typetable[] =
16809 {
16810 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
16811 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
16812 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
16813 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
16814 };
16815 int typebits;
16816
dcbf9037
JB
16817 if (et.type == NT_invtype)
16818 return;
16819
5287ad62
JB
16820 if (inst.operands[1].immisalign)
16821 switch (inst.operands[1].imm >> 8)
16822 {
16823 case 64: alignbits = 1; break;
16824 case 128:
477330fc 16825 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 16826 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
16827 goto bad_alignment;
16828 alignbits = 2;
16829 break;
5287ad62 16830 case 256:
477330fc
RM
16831 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
16832 goto bad_alignment;
16833 alignbits = 3;
16834 break;
5287ad62
JB
16835 default:
16836 bad_alignment:
477330fc
RM
16837 first_error (_("bad alignment"));
16838 return;
5287ad62
JB
16839 }
16840
16841 inst.instruction |= alignbits << 4;
16842 inst.instruction |= neon_logbits (et.size) << 6;
16843
16844 /* Bits [4:6] of the immediate in a list specifier encode register stride
16845 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
16846 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
16847 up the right value for "type" in a table based on this value and the given
16848 list style, then stick it back. */
16849 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 16850 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
16851
16852 typebits = typetable[idx];
5f4273c7 16853
5287ad62 16854 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c
WN
16855 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
16856 _("bad element type for instruction"));
5287ad62
JB
16857
16858 inst.instruction &= ~0xf00;
16859 inst.instruction |= typebits << 8;
16860}
16861
16862/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
16863 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
16864 otherwise. The variable arguments are a list of pairs of legal (size, align)
16865 values, terminated with -1. */
16866
16867static int
aa8a0863 16868neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
16869{
16870 va_list ap;
16871 int result = FAIL, thissize, thisalign;
5f4273c7 16872
5287ad62
JB
16873 if (!inst.operands[1].immisalign)
16874 {
aa8a0863 16875 *do_alignment = 0;
5287ad62
JB
16876 return SUCCESS;
16877 }
5f4273c7 16878
aa8a0863 16879 va_start (ap, do_alignment);
5287ad62
JB
16880
16881 do
16882 {
16883 thissize = va_arg (ap, int);
16884 if (thissize == -1)
477330fc 16885 break;
5287ad62
JB
16886 thisalign = va_arg (ap, int);
16887
16888 if (size == thissize && align == thisalign)
477330fc 16889 result = SUCCESS;
5287ad62
JB
16890 }
16891 while (result != SUCCESS);
16892
16893 va_end (ap);
16894
16895 if (result == SUCCESS)
aa8a0863 16896 *do_alignment = 1;
5287ad62 16897 else
dcbf9037 16898 first_error (_("unsupported alignment for instruction"));
5f4273c7 16899
5287ad62
JB
16900 return result;
16901}
16902
16903static void
16904do_neon_ld_st_lane (void)
16905{
037e8744 16906 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 16907 int align_good, do_alignment = 0;
5287ad62
JB
16908 int logsize = neon_logbits (et.size);
16909 int align = inst.operands[1].imm >> 8;
16910 int n = (inst.instruction >> 8) & 3;
16911 int max_el = 64 / et.size;
5f4273c7 16912
dcbf9037
JB
16913 if (et.type == NT_invtype)
16914 return;
5f4273c7 16915
5287ad62 16916 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 16917 _("bad list length"));
5287ad62 16918 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 16919 _("scalar index out of range"));
5287ad62 16920 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
16921 && et.size == 8,
16922 _("stride of 2 unavailable when element size is 8"));
5f4273c7 16923
5287ad62
JB
16924 switch (n)
16925 {
16926 case 0: /* VLD1 / VST1. */
aa8a0863 16927 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 16928 32, 32, -1);
5287ad62 16929 if (align_good == FAIL)
477330fc 16930 return;
aa8a0863 16931 if (do_alignment)
477330fc
RM
16932 {
16933 unsigned alignbits = 0;
16934 switch (et.size)
16935 {
16936 case 16: alignbits = 0x1; break;
16937 case 32: alignbits = 0x3; break;
16938 default: ;
16939 }
16940 inst.instruction |= alignbits << 4;
16941 }
5287ad62
JB
16942 break;
16943
16944 case 1: /* VLD2 / VST2. */
aa8a0863
TS
16945 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
16946 16, 32, 32, 64, -1);
5287ad62 16947 if (align_good == FAIL)
477330fc 16948 return;
aa8a0863 16949 if (do_alignment)
477330fc 16950 inst.instruction |= 1 << 4;
5287ad62
JB
16951 break;
16952
16953 case 2: /* VLD3 / VST3. */
16954 constraint (inst.operands[1].immisalign,
477330fc 16955 _("can't use alignment with this instruction"));
5287ad62
JB
16956 break;
16957
16958 case 3: /* VLD4 / VST4. */
aa8a0863 16959 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 16960 16, 64, 32, 64, 32, 128, -1);
5287ad62 16961 if (align_good == FAIL)
477330fc 16962 return;
aa8a0863 16963 if (do_alignment)
477330fc
RM
16964 {
16965 unsigned alignbits = 0;
16966 switch (et.size)
16967 {
16968 case 8: alignbits = 0x1; break;
16969 case 16: alignbits = 0x1; break;
16970 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
16971 default: ;
16972 }
16973 inst.instruction |= alignbits << 4;
16974 }
5287ad62
JB
16975 break;
16976
16977 default: ;
16978 }
16979
16980 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
16981 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16982 inst.instruction |= 1 << (4 + logsize);
5f4273c7 16983
5287ad62
JB
16984 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
16985 inst.instruction |= logsize << 10;
16986}
16987
16988/* Encode single n-element structure to all lanes VLD<n> instructions. */
16989
16990static void
16991do_neon_ld_dup (void)
16992{
037e8744 16993 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 16994 int align_good, do_alignment = 0;
5287ad62 16995
dcbf9037
JB
16996 if (et.type == NT_invtype)
16997 return;
16998
5287ad62
JB
16999 switch ((inst.instruction >> 8) & 3)
17000 {
17001 case 0: /* VLD1. */
9c2799c2 17002 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 17003 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 17004 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 17005 if (align_good == FAIL)
477330fc 17006 return;
5287ad62 17007 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
17008 {
17009 case 1: break;
17010 case 2: inst.instruction |= 1 << 5; break;
17011 default: first_error (_("bad list length")); return;
17012 }
5287ad62
JB
17013 inst.instruction |= neon_logbits (et.size) << 6;
17014 break;
17015
17016 case 1: /* VLD2. */
17017 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
17018 &do_alignment, 8, 16, 16, 32, 32, 64,
17019 -1);
5287ad62 17020 if (align_good == FAIL)
477330fc 17021 return;
5287ad62 17022 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 17023 _("bad list length"));
5287ad62 17024 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 17025 inst.instruction |= 1 << 5;
5287ad62
JB
17026 inst.instruction |= neon_logbits (et.size) << 6;
17027 break;
17028
17029 case 2: /* VLD3. */
17030 constraint (inst.operands[1].immisalign,
477330fc 17031 _("can't use alignment with this instruction"));
5287ad62 17032 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 17033 _("bad list length"));
5287ad62 17034 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 17035 inst.instruction |= 1 << 5;
5287ad62
JB
17036 inst.instruction |= neon_logbits (et.size) << 6;
17037 break;
17038
17039 case 3: /* VLD4. */
17040 {
477330fc 17041 int align = inst.operands[1].imm >> 8;
aa8a0863 17042 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
17043 16, 64, 32, 64, 32, 128, -1);
17044 if (align_good == FAIL)
17045 return;
17046 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
17047 _("bad list length"));
17048 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17049 inst.instruction |= 1 << 5;
17050 if (et.size == 32 && align == 128)
17051 inst.instruction |= 0x3 << 6;
17052 else
17053 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
17054 }
17055 break;
17056
17057 default: ;
17058 }
17059
aa8a0863 17060 inst.instruction |= do_alignment << 4;
5287ad62
JB
17061}
17062
17063/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
17064 apart from bits [11:4]. */
17065
17066static void
17067do_neon_ldx_stx (void)
17068{
b1a769ed
DG
17069 if (inst.operands[1].isreg)
17070 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17071
5287ad62
JB
17072 switch (NEON_LANE (inst.operands[0].imm))
17073 {
17074 case NEON_INTERLEAVE_LANES:
88714cb8 17075 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
17076 do_neon_ld_st_interleave ();
17077 break;
5f4273c7 17078
5287ad62 17079 case NEON_ALL_LANES:
88714cb8 17080 NEON_ENCODE (DUP, inst);
2d51fb74
JB
17081 if (inst.instruction == N_INV)
17082 {
17083 first_error ("only loads support such operands");
17084 break;
17085 }
5287ad62
JB
17086 do_neon_ld_dup ();
17087 break;
5f4273c7 17088
5287ad62 17089 default:
88714cb8 17090 NEON_ENCODE (LANE, inst);
5287ad62
JB
17091 do_neon_ld_st_lane ();
17092 }
17093
17094 /* L bit comes from bit mask. */
17095 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17096 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17097 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 17098
5287ad62
JB
17099 if (inst.operands[1].postind)
17100 {
17101 int postreg = inst.operands[1].imm & 0xf;
17102 constraint (!inst.operands[1].immisreg,
477330fc 17103 _("post-index must be a register"));
5287ad62 17104 constraint (postreg == 0xd || postreg == 0xf,
477330fc 17105 _("bad register for post-index"));
5287ad62
JB
17106 inst.instruction |= postreg;
17107 }
4f2374c7 17108 else
5287ad62 17109 {
4f2374c7
WN
17110 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17111 constraint (inst.reloc.exp.X_op != O_constant
17112 || inst.reloc.exp.X_add_number != 0,
17113 BAD_ADDR_MODE);
17114
17115 if (inst.operands[1].writeback)
17116 {
17117 inst.instruction |= 0xd;
17118 }
17119 else
17120 inst.instruction |= 0xf;
5287ad62 17121 }
5f4273c7 17122
5287ad62
JB
17123 if (thumb_mode)
17124 inst.instruction |= 0xf9000000;
17125 else
17126 inst.instruction |= 0xf4000000;
17127}
33399f07
MGD
17128
17129/* FP v8. */
17130static void
17131do_vfp_nsyn_fpv8 (enum neon_shape rs)
17132{
a715796b
TG
17133 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17134 D register operands. */
17135 if (neon_shape_class[rs] == SC_DOUBLE)
17136 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17137 _(BAD_FPU));
17138
33399f07
MGD
17139 NEON_ENCODE (FPV8, inst);
17140
9db2f6b4
RL
17141 if (rs == NS_FFF || rs == NS_HHH)
17142 {
17143 do_vfp_sp_dyadic ();
17144
17145 /* ARMv8.2 fp16 instruction. */
17146 if (rs == NS_HHH)
17147 do_scalar_fp16_v82_encode ();
17148 }
33399f07
MGD
17149 else
17150 do_vfp_dp_rd_rn_rm ();
17151
17152 if (rs == NS_DDD)
17153 inst.instruction |= 0x100;
17154
17155 inst.instruction |= 0xf0000000;
17156}
17157
17158static void
17159do_vsel (void)
17160{
17161 set_it_insn_type (OUTSIDE_IT_INSN);
17162
17163 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
17164 first_error (_("invalid instruction shape"));
17165}
17166
73924fbc
MGD
17167static void
17168do_vmaxnm (void)
17169{
17170 set_it_insn_type (OUTSIDE_IT_INSN);
17171
17172 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
17173 return;
17174
17175 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17176 return;
17177
cc933301 17178 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
17179}
17180
30bdf752
MGD
17181static void
17182do_vrint_1 (enum neon_cvt_mode mode)
17183{
9db2f6b4 17184 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
17185 struct neon_type_el et;
17186
17187 if (rs == NS_NULL)
17188 return;
17189
a715796b
TG
17190 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17191 D register operands. */
17192 if (neon_shape_class[rs] == SC_DOUBLE)
17193 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17194 _(BAD_FPU));
17195
9db2f6b4
RL
17196 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
17197 | N_VFP);
30bdf752
MGD
17198 if (et.type != NT_invtype)
17199 {
17200 /* VFP encodings. */
17201 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17202 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
17203 set_it_insn_type (OUTSIDE_IT_INSN);
17204
17205 NEON_ENCODE (FPV8, inst);
9db2f6b4 17206 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
17207 do_vfp_sp_monadic ();
17208 else
17209 do_vfp_dp_rd_rm ();
17210
17211 switch (mode)
17212 {
17213 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
17214 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
17215 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
17216 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
17217 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
17218 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
17219 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
17220 default: abort ();
17221 }
17222
17223 inst.instruction |= (rs == NS_DD) << 8;
17224 do_vfp_cond_or_thumb ();
9db2f6b4
RL
17225
17226 /* ARMv8.2 fp16 vrint instruction. */
17227 if (rs == NS_HH)
17228 do_scalar_fp16_v82_encode ();
30bdf752
MGD
17229 }
17230 else
17231 {
17232 /* Neon encodings (or something broken...). */
17233 inst.error = NULL;
cc933301 17234 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
17235
17236 if (et.type == NT_invtype)
17237 return;
17238
17239 set_it_insn_type (OUTSIDE_IT_INSN);
17240 NEON_ENCODE (FLOAT, inst);
17241
17242 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17243 return;
17244
17245 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17246 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17247 inst.instruction |= LOW4 (inst.operands[1].reg);
17248 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17249 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
17250 /* Mask off the original size bits and reencode them. */
17251 inst.instruction = ((inst.instruction & 0xfff3ffff)
17252 | neon_logbits (et.size) << 18);
17253
30bdf752
MGD
17254 switch (mode)
17255 {
17256 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
17257 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
17258 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
17259 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
17260 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
17261 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
17262 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
17263 default: abort ();
17264 }
17265
17266 if (thumb_mode)
17267 inst.instruction |= 0xfc000000;
17268 else
17269 inst.instruction |= 0xf0000000;
17270 }
17271}
17272
17273static void
17274do_vrintx (void)
17275{
17276 do_vrint_1 (neon_cvt_mode_x);
17277}
17278
17279static void
17280do_vrintz (void)
17281{
17282 do_vrint_1 (neon_cvt_mode_z);
17283}
17284
17285static void
17286do_vrintr (void)
17287{
17288 do_vrint_1 (neon_cvt_mode_r);
17289}
17290
17291static void
17292do_vrinta (void)
17293{
17294 do_vrint_1 (neon_cvt_mode_a);
17295}
17296
17297static void
17298do_vrintn (void)
17299{
17300 do_vrint_1 (neon_cvt_mode_n);
17301}
17302
17303static void
17304do_vrintp (void)
17305{
17306 do_vrint_1 (neon_cvt_mode_p);
17307}
17308
17309static void
17310do_vrintm (void)
17311{
17312 do_vrint_1 (neon_cvt_mode_m);
17313}
17314
c28eeff2
SN
17315static unsigned
17316neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
17317{
17318 unsigned regno = NEON_SCALAR_REG (opnd);
17319 unsigned elno = NEON_SCALAR_INDEX (opnd);
17320
17321 if (elsize == 16 && elno < 2 && regno < 16)
17322 return regno | (elno << 4);
17323 else if (elsize == 32 && elno == 0)
17324 return regno;
17325
17326 first_error (_("scalar out of range"));
17327 return 0;
17328}
17329
17330static void
17331do_vcmla (void)
17332{
17333 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17334 _(BAD_FPU));
17335 constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex"));
17336 unsigned rot = inst.reloc.exp.X_add_number;
17337 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
17338 _("immediate out of range"));
17339 rot /= 90;
17340 if (inst.operands[2].isscalar)
17341 {
17342 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
17343 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17344 N_KEY | N_F16 | N_F32).size;
17345 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
17346 inst.is_neon = 1;
17347 inst.instruction = 0xfe000800;
17348 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17349 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17350 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17351 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17352 inst.instruction |= LOW4 (m);
17353 inst.instruction |= HI1 (m) << 5;
17354 inst.instruction |= neon_quad (rs) << 6;
17355 inst.instruction |= rot << 20;
17356 inst.instruction |= (size == 32) << 23;
17357 }
17358 else
17359 {
17360 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17361 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17362 N_KEY | N_F16 | N_F32).size;
17363 neon_three_same (neon_quad (rs), 0, -1);
17364 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17365 inst.instruction |= 0xfc200800;
17366 inst.instruction |= rot << 23;
17367 inst.instruction |= (size == 32) << 20;
17368 }
17369}
17370
17371static void
17372do_vcadd (void)
17373{
17374 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17375 _(BAD_FPU));
17376 constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex"));
17377 unsigned rot = inst.reloc.exp.X_add_number;
17378 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17379 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17380 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17381 N_KEY | N_F16 | N_F32).size;
17382 neon_three_same (neon_quad (rs), 0, -1);
17383 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17384 inst.instruction |= 0xfc800800;
17385 inst.instruction |= (rot == 270) << 24;
17386 inst.instruction |= (size == 32) << 20;
17387}
17388
c604a79a
JW
17389/* Dot Product instructions encoding support. */
17390
17391static void
17392do_neon_dotproduct (int unsigned_p)
17393{
17394 enum neon_shape rs;
17395 unsigned scalar_oprd2 = 0;
17396 int high8;
17397
17398 if (inst.cond != COND_ALWAYS)
17399 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
17400 "is UNPREDICTABLE"));
17401
17402 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17403 _(BAD_FPU));
17404
17405 /* Dot Product instructions are in three-same D/Q register format or the third
17406 operand can be a scalar index register. */
17407 if (inst.operands[2].isscalar)
17408 {
17409 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
17410 high8 = 0xfe000000;
17411 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17412 }
17413 else
17414 {
17415 high8 = 0xfc000000;
17416 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17417 }
17418
17419 if (unsigned_p)
17420 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
17421 else
17422 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
17423
17424 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
17425 Product instruction, so we pass 0 as the "ubit" parameter. And the
17426 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
17427 neon_three_same (neon_quad (rs), 0, 32);
17428
17429 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
17430 different NEON three-same encoding. */
17431 inst.instruction &= 0x00ffffff;
17432 inst.instruction |= high8;
17433 /* Encode 'U' bit which indicates signedness. */
17434 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
17435 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
17436 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
17437 the instruction encoding. */
17438 if (inst.operands[2].isscalar)
17439 {
17440 inst.instruction &= 0xffffffd0;
17441 inst.instruction |= LOW4 (scalar_oprd2);
17442 inst.instruction |= HI1 (scalar_oprd2) << 5;
17443 }
17444}
17445
17446/* Dot Product instructions for signed integer. */
17447
17448static void
17449do_neon_dotproduct_s (void)
17450{
17451 return do_neon_dotproduct (0);
17452}
17453
17454/* Dot Product instructions for unsigned integer. */
17455
17456static void
17457do_neon_dotproduct_u (void)
17458{
17459 return do_neon_dotproduct (1);
17460}
17461
91ff7894
MGD
17462/* Crypto v1 instructions. */
17463static void
17464do_crypto_2op_1 (unsigned elttype, int op)
17465{
17466 set_it_insn_type (OUTSIDE_IT_INSN);
17467
17468 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
17469 == NT_invtype)
17470 return;
17471
17472 inst.error = NULL;
17473
17474 NEON_ENCODE (INTEGER, inst);
17475 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17476 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17477 inst.instruction |= LOW4 (inst.operands[1].reg);
17478 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17479 if (op != -1)
17480 inst.instruction |= op << 6;
17481
17482 if (thumb_mode)
17483 inst.instruction |= 0xfc000000;
17484 else
17485 inst.instruction |= 0xf0000000;
17486}
17487
48adcd8e
MGD
17488static void
17489do_crypto_3op_1 (int u, int op)
17490{
17491 set_it_insn_type (OUTSIDE_IT_INSN);
17492
17493 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
17494 N_32 | N_UNT | N_KEY).type == NT_invtype)
17495 return;
17496
17497 inst.error = NULL;
17498
17499 NEON_ENCODE (INTEGER, inst);
17500 neon_three_same (1, u, 8 << op);
17501}
17502
91ff7894
MGD
17503static void
17504do_aese (void)
17505{
17506 do_crypto_2op_1 (N_8, 0);
17507}
17508
17509static void
17510do_aesd (void)
17511{
17512 do_crypto_2op_1 (N_8, 1);
17513}
17514
17515static void
17516do_aesmc (void)
17517{
17518 do_crypto_2op_1 (N_8, 2);
17519}
17520
17521static void
17522do_aesimc (void)
17523{
17524 do_crypto_2op_1 (N_8, 3);
17525}
17526
48adcd8e
MGD
17527static void
17528do_sha1c (void)
17529{
17530 do_crypto_3op_1 (0, 0);
17531}
17532
17533static void
17534do_sha1p (void)
17535{
17536 do_crypto_3op_1 (0, 1);
17537}
17538
17539static void
17540do_sha1m (void)
17541{
17542 do_crypto_3op_1 (0, 2);
17543}
17544
17545static void
17546do_sha1su0 (void)
17547{
17548 do_crypto_3op_1 (0, 3);
17549}
91ff7894 17550
48adcd8e
MGD
17551static void
17552do_sha256h (void)
17553{
17554 do_crypto_3op_1 (1, 0);
17555}
17556
17557static void
17558do_sha256h2 (void)
17559{
17560 do_crypto_3op_1 (1, 1);
17561}
17562
17563static void
17564do_sha256su1 (void)
17565{
17566 do_crypto_3op_1 (1, 2);
17567}
3c9017d2
MGD
17568
17569static void
17570do_sha1h (void)
17571{
17572 do_crypto_2op_1 (N_32, -1);
17573}
17574
17575static void
17576do_sha1su1 (void)
17577{
17578 do_crypto_2op_1 (N_32, 0);
17579}
17580
17581static void
17582do_sha256su0 (void)
17583{
17584 do_crypto_2op_1 (N_32, 1);
17585}
dd5181d5
KT
17586
17587static void
17588do_crc32_1 (unsigned int poly, unsigned int sz)
17589{
17590 unsigned int Rd = inst.operands[0].reg;
17591 unsigned int Rn = inst.operands[1].reg;
17592 unsigned int Rm = inst.operands[2].reg;
17593
17594 set_it_insn_type (OUTSIDE_IT_INSN);
17595 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
17596 inst.instruction |= LOW4 (Rn) << 16;
17597 inst.instruction |= LOW4 (Rm);
17598 inst.instruction |= sz << (thumb_mode ? 4 : 21);
17599 inst.instruction |= poly << (thumb_mode ? 20 : 9);
17600
17601 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
17602 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
17603}
17604
17605static void
17606do_crc32b (void)
17607{
17608 do_crc32_1 (0, 0);
17609}
17610
17611static void
17612do_crc32h (void)
17613{
17614 do_crc32_1 (0, 1);
17615}
17616
17617static void
17618do_crc32w (void)
17619{
17620 do_crc32_1 (0, 2);
17621}
17622
17623static void
17624do_crc32cb (void)
17625{
17626 do_crc32_1 (1, 0);
17627}
17628
17629static void
17630do_crc32ch (void)
17631{
17632 do_crc32_1 (1, 1);
17633}
17634
17635static void
17636do_crc32cw (void)
17637{
17638 do_crc32_1 (1, 2);
17639}
17640
49e8a725
SN
17641static void
17642do_vjcvt (void)
17643{
17644 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17645 _(BAD_FPU));
17646 neon_check_type (2, NS_FD, N_S32, N_F64);
17647 do_vfp_sp_dp_cvt ();
17648 do_vfp_cond_or_thumb ();
17649}
17650
5287ad62
JB
17651\f
17652/* Overall per-instruction processing. */
17653
17654/* We need to be able to fix up arbitrary expressions in some statements.
17655 This is so that we can handle symbols that are an arbitrary distance from
17656 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
17657 which returns part of an address in a form which will be valid for
17658 a data instruction. We do this by pushing the expression into a symbol
17659 in the expr_section, and creating a fix for that. */
17660
17661static void
17662fix_new_arm (fragS * frag,
17663 int where,
17664 short int size,
17665 expressionS * exp,
17666 int pc_rel,
17667 int reloc)
17668{
17669 fixS * new_fix;
17670
17671 switch (exp->X_op)
17672 {
17673 case O_constant:
6e7ce2cd
PB
17674 if (pc_rel)
17675 {
17676 /* Create an absolute valued symbol, so we have something to
477330fc
RM
17677 refer to in the object file. Unfortunately for us, gas's
17678 generic expression parsing will already have folded out
17679 any use of .set foo/.type foo %function that may have
17680 been used to set type information of the target location,
17681 that's being specified symbolically. We have to presume
17682 the user knows what they are doing. */
6e7ce2cd
PB
17683 char name[16 + 8];
17684 symbolS *symbol;
17685
17686 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
17687
17688 symbol = symbol_find_or_make (name);
17689 S_SET_SEGMENT (symbol, absolute_section);
17690 symbol_set_frag (symbol, &zero_address_frag);
17691 S_SET_VALUE (symbol, exp->X_add_number);
17692 exp->X_op = O_symbol;
17693 exp->X_add_symbol = symbol;
17694 exp->X_add_number = 0;
17695 }
17696 /* FALLTHROUGH */
5287ad62
JB
17697 case O_symbol:
17698 case O_add:
17699 case O_subtract:
21d799b5 17700 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 17701 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
17702 break;
17703
17704 default:
21d799b5 17705 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 17706 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
17707 break;
17708 }
17709
17710 /* Mark whether the fix is to a THUMB instruction, or an ARM
17711 instruction. */
17712 new_fix->tc_fix_data = thumb_mode;
17713}
17714
17715/* Create a frg for an instruction requiring relaxation. */
17716static void
17717output_relax_insn (void)
17718{
17719 char * to;
17720 symbolS *sym;
0110f2b8
PB
17721 int offset;
17722
6e1cb1a6
PB
17723 /* The size of the instruction is unknown, so tie the debug info to the
17724 start of the instruction. */
17725 dwarf2_emit_insn (0);
6e1cb1a6 17726
0110f2b8
PB
17727 switch (inst.reloc.exp.X_op)
17728 {
17729 case O_symbol:
17730 sym = inst.reloc.exp.X_add_symbol;
17731 offset = inst.reloc.exp.X_add_number;
17732 break;
17733 case O_constant:
17734 sym = NULL;
17735 offset = inst.reloc.exp.X_add_number;
17736 break;
17737 default:
17738 sym = make_expr_symbol (&inst.reloc.exp);
17739 offset = 0;
17740 break;
17741 }
17742 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
17743 inst.relax, sym, offset, NULL/*offset, opcode*/);
17744 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
17745}
17746
17747/* Write a 32-bit thumb instruction to buf. */
17748static void
17749put_thumb32_insn (char * buf, unsigned long insn)
17750{
17751 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
17752 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
17753}
17754
b99bd4ef 17755static void
c19d1205 17756output_inst (const char * str)
b99bd4ef 17757{
c19d1205 17758 char * to = NULL;
b99bd4ef 17759
c19d1205 17760 if (inst.error)
b99bd4ef 17761 {
c19d1205 17762 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
17763 return;
17764 }
5f4273c7
NC
17765 if (inst.relax)
17766 {
17767 output_relax_insn ();
0110f2b8 17768 return;
5f4273c7 17769 }
c19d1205
ZW
17770 if (inst.size == 0)
17771 return;
b99bd4ef 17772
c19d1205 17773 to = frag_more (inst.size);
8dc2430f
NC
17774 /* PR 9814: Record the thumb mode into the current frag so that we know
17775 what type of NOP padding to use, if necessary. We override any previous
17776 setting so that if the mode has changed then the NOPS that we use will
17777 match the encoding of the last instruction in the frag. */
cd000bff 17778 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
17779
17780 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 17781 {
9c2799c2 17782 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 17783 put_thumb32_insn (to, inst.instruction);
b99bd4ef 17784 }
c19d1205 17785 else if (inst.size > INSN_SIZE)
b99bd4ef 17786 {
9c2799c2 17787 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
17788 md_number_to_chars (to, inst.instruction, INSN_SIZE);
17789 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 17790 }
c19d1205
ZW
17791 else
17792 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 17793
c19d1205
ZW
17794 if (inst.reloc.type != BFD_RELOC_UNUSED)
17795 fix_new_arm (frag_now, to - frag_now->fr_literal,
17796 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
17797 inst.reloc.type);
b99bd4ef 17798
c19d1205 17799 dwarf2_emit_insn (inst.size);
c19d1205 17800}
b99bd4ef 17801
e07e6e58
NC
17802static char *
17803output_it_inst (int cond, int mask, char * to)
17804{
17805 unsigned long instruction = 0xbf00;
17806
17807 mask &= 0xf;
17808 instruction |= mask;
17809 instruction |= cond << 4;
17810
17811 if (to == NULL)
17812 {
17813 to = frag_more (2);
17814#ifdef OBJ_ELF
17815 dwarf2_emit_insn (2);
17816#endif
17817 }
17818
17819 md_number_to_chars (to, instruction, 2);
17820
17821 return to;
17822}
17823
c19d1205
ZW
17824/* Tag values used in struct asm_opcode's tag field. */
17825enum opcode_tag
17826{
17827 OT_unconditional, /* Instruction cannot be conditionalized.
17828 The ARM condition field is still 0xE. */
17829 OT_unconditionalF, /* Instruction cannot be conditionalized
17830 and carries 0xF in its ARM condition field. */
17831 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744 17832 OT_csuffixF, /* Some forms of the instruction take a conditional
477330fc
RM
17833 suffix, others place 0xF where the condition field
17834 would be. */
c19d1205
ZW
17835 OT_cinfix3, /* Instruction takes a conditional infix,
17836 beginning at character index 3. (In
17837 unified mode, it becomes a suffix.) */
088fa78e
KH
17838 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
17839 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
17840 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
17841 character index 3, even in unified mode. Used for
17842 legacy instructions where suffix and infix forms
17843 may be ambiguous. */
c19d1205 17844 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 17845 suffix or an infix at character index 3. */
c19d1205
ZW
17846 OT_odd_infix_unc, /* This is the unconditional variant of an
17847 instruction that takes a conditional infix
17848 at an unusual position. In unified mode,
17849 this variant will accept a suffix. */
17850 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
17851 are the conditional variants of instructions that
17852 take conditional infixes in unusual positions.
17853 The infix appears at character index
17854 (tag - OT_odd_infix_0). These are not accepted
17855 in unified mode. */
17856};
b99bd4ef 17857
c19d1205
ZW
17858/* Subroutine of md_assemble, responsible for looking up the primary
17859 opcode from the mnemonic the user wrote. STR points to the
17860 beginning of the mnemonic.
17861
17862 This is not simply a hash table lookup, because of conditional
17863 variants. Most instructions have conditional variants, which are
17864 expressed with a _conditional affix_ to the mnemonic. If we were
17865 to encode each conditional variant as a literal string in the opcode
17866 table, it would have approximately 20,000 entries.
17867
17868 Most mnemonics take this affix as a suffix, and in unified syntax,
17869 'most' is upgraded to 'all'. However, in the divided syntax, some
17870 instructions take the affix as an infix, notably the s-variants of
17871 the arithmetic instructions. Of those instructions, all but six
17872 have the infix appear after the third character of the mnemonic.
17873
17874 Accordingly, the algorithm for looking up primary opcodes given
17875 an identifier is:
17876
17877 1. Look up the identifier in the opcode table.
17878 If we find a match, go to step U.
17879
17880 2. Look up the last two characters of the identifier in the
17881 conditions table. If we find a match, look up the first N-2
17882 characters of the identifier in the opcode table. If we
17883 find a match, go to step CE.
17884
17885 3. Look up the fourth and fifth characters of the identifier in
17886 the conditions table. If we find a match, extract those
17887 characters from the identifier, and look up the remaining
17888 characters in the opcode table. If we find a match, go
17889 to step CM.
17890
17891 4. Fail.
17892
17893 U. Examine the tag field of the opcode structure, in case this is
17894 one of the six instructions with its conditional infix in an
17895 unusual place. If it is, the tag tells us where to find the
17896 infix; look it up in the conditions table and set inst.cond
17897 accordingly. Otherwise, this is an unconditional instruction.
17898 Again set inst.cond accordingly. Return the opcode structure.
17899
17900 CE. Examine the tag field to make sure this is an instruction that
17901 should receive a conditional suffix. If it is not, fail.
17902 Otherwise, set inst.cond from the suffix we already looked up,
17903 and return the opcode structure.
17904
17905 CM. Examine the tag field to make sure this is an instruction that
17906 should receive a conditional infix after the third character.
17907 If it is not, fail. Otherwise, undo the edits to the current
17908 line of input and proceed as for case CE. */
17909
17910static const struct asm_opcode *
17911opcode_lookup (char **str)
17912{
17913 char *end, *base;
17914 char *affix;
17915 const struct asm_opcode *opcode;
17916 const struct asm_cond *cond;
e3cb604e 17917 char save[2];
c19d1205
ZW
17918
17919 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 17920 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 17921 for (base = end = *str; *end != '\0'; end++)
721a8186 17922 if (*end == ' ' || *end == '.')
c19d1205 17923 break;
b99bd4ef 17924
c19d1205 17925 if (end == base)
c921be7d 17926 return NULL;
b99bd4ef 17927
5287ad62 17928 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 17929 if (end[0] == '.')
b99bd4ef 17930 {
5287ad62 17931 int offset = 2;
5f4273c7 17932
267d2029 17933 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 17934 use. */
267d2029 17935 if (unified_syntax && end[1] == 'w')
c19d1205 17936 inst.size_req = 4;
267d2029 17937 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
17938 inst.size_req = 2;
17939 else
477330fc 17940 offset = 0;
5287ad62
JB
17941
17942 inst.vectype.elems = 0;
17943
17944 *str = end + offset;
b99bd4ef 17945
5f4273c7 17946 if (end[offset] == '.')
5287ad62 17947 {
267d2029 17948 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
17949 non-unified ARM syntax mode). */
17950 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 17951 return NULL;
477330fc 17952 }
5287ad62 17953 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 17954 return NULL;
b99bd4ef 17955 }
c19d1205
ZW
17956 else
17957 *str = end;
b99bd4ef 17958
c19d1205 17959 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 17960 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 17961 end - base);
c19d1205 17962 if (opcode)
b99bd4ef 17963 {
c19d1205
ZW
17964 /* step U */
17965 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 17966 {
c19d1205
ZW
17967 inst.cond = COND_ALWAYS;
17968 return opcode;
b99bd4ef 17969 }
b99bd4ef 17970
278df34e 17971 if (warn_on_deprecated && unified_syntax)
5c3696f8 17972 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 17973 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 17974 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 17975 gas_assert (cond);
b99bd4ef 17976
c19d1205
ZW
17977 inst.cond = cond->value;
17978 return opcode;
17979 }
b99bd4ef 17980
c19d1205
ZW
17981 /* Cannot have a conditional suffix on a mnemonic of less than two
17982 characters. */
17983 if (end - base < 3)
c921be7d 17984 return NULL;
b99bd4ef 17985
c19d1205
ZW
17986 /* Look for suffixed mnemonic. */
17987 affix = end - 2;
21d799b5
NC
17988 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17989 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 17990 affix - base);
c19d1205
ZW
17991 if (opcode && cond)
17992 {
17993 /* step CE */
17994 switch (opcode->tag)
17995 {
e3cb604e
PB
17996 case OT_cinfix3_legacy:
17997 /* Ignore conditional suffixes matched on infix only mnemonics. */
17998 break;
17999
c19d1205 18000 case OT_cinfix3:
088fa78e 18001 case OT_cinfix3_deprecated:
c19d1205
ZW
18002 case OT_odd_infix_unc:
18003 if (!unified_syntax)
e3cb604e 18004 return 0;
1a0670f3 18005 /* Fall through. */
c19d1205
ZW
18006
18007 case OT_csuffix:
477330fc 18008 case OT_csuffixF:
c19d1205
ZW
18009 case OT_csuf_or_in3:
18010 inst.cond = cond->value;
18011 return opcode;
18012
18013 case OT_unconditional:
18014 case OT_unconditionalF:
dfa9f0d5 18015 if (thumb_mode)
c921be7d 18016 inst.cond = cond->value;
dfa9f0d5
PB
18017 else
18018 {
c921be7d 18019 /* Delayed diagnostic. */
dfa9f0d5
PB
18020 inst.error = BAD_COND;
18021 inst.cond = COND_ALWAYS;
18022 }
c19d1205 18023 return opcode;
b99bd4ef 18024
c19d1205 18025 default:
c921be7d 18026 return NULL;
c19d1205
ZW
18027 }
18028 }
b99bd4ef 18029
c19d1205
ZW
18030 /* Cannot have a usual-position infix on a mnemonic of less than
18031 six characters (five would be a suffix). */
18032 if (end - base < 6)
c921be7d 18033 return NULL;
b99bd4ef 18034
c19d1205
ZW
18035 /* Look for infixed mnemonic in the usual position. */
18036 affix = base + 3;
21d799b5 18037 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 18038 if (!cond)
c921be7d 18039 return NULL;
e3cb604e
PB
18040
18041 memcpy (save, affix, 2);
18042 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 18043 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 18044 (end - base) - 2);
e3cb604e
PB
18045 memmove (affix + 2, affix, (end - affix) - 2);
18046 memcpy (affix, save, 2);
18047
088fa78e
KH
18048 if (opcode
18049 && (opcode->tag == OT_cinfix3
18050 || opcode->tag == OT_cinfix3_deprecated
18051 || opcode->tag == OT_csuf_or_in3
18052 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 18053 {
c921be7d 18054 /* Step CM. */
278df34e 18055 if (warn_on_deprecated && unified_syntax
088fa78e
KH
18056 && (opcode->tag == OT_cinfix3
18057 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 18058 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
18059
18060 inst.cond = cond->value;
18061 return opcode;
b99bd4ef
NC
18062 }
18063
c921be7d 18064 return NULL;
b99bd4ef
NC
18065}
18066
e07e6e58
NC
18067/* This function generates an initial IT instruction, leaving its block
18068 virtually open for the new instructions. Eventually,
18069 the mask will be updated by now_it_add_mask () each time
18070 a new instruction needs to be included in the IT block.
18071 Finally, the block is closed with close_automatic_it_block ().
18072 The block closure can be requested either from md_assemble (),
18073 a tencode (), or due to a label hook. */
18074
18075static void
18076new_automatic_it_block (int cond)
18077{
18078 now_it.state = AUTOMATIC_IT_BLOCK;
18079 now_it.mask = 0x18;
18080 now_it.cc = cond;
18081 now_it.block_length = 1;
cd000bff 18082 mapping_state (MAP_THUMB);
e07e6e58 18083 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
5a01bb1d
MGD
18084 now_it.warn_deprecated = FALSE;
18085 now_it.insn_cond = TRUE;
e07e6e58
NC
18086}
18087
18088/* Close an automatic IT block.
18089 See comments in new_automatic_it_block (). */
18090
18091static void
18092close_automatic_it_block (void)
18093{
18094 now_it.mask = 0x10;
18095 now_it.block_length = 0;
18096}
18097
18098/* Update the mask of the current automatically-generated IT
18099 instruction. See comments in new_automatic_it_block (). */
18100
18101static void
18102now_it_add_mask (int cond)
18103{
18104#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
18105#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 18106 | ((bitvalue) << (nbit)))
e07e6e58 18107 const int resulting_bit = (cond & 1);
c921be7d 18108
e07e6e58
NC
18109 now_it.mask &= 0xf;
18110 now_it.mask = SET_BIT_VALUE (now_it.mask,
477330fc
RM
18111 resulting_bit,
18112 (5 - now_it.block_length));
e07e6e58 18113 now_it.mask = SET_BIT_VALUE (now_it.mask,
477330fc
RM
18114 1,
18115 ((5 - now_it.block_length) - 1) );
e07e6e58
NC
18116 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
18117
18118#undef CLEAR_BIT
18119#undef SET_BIT_VALUE
e07e6e58
NC
18120}
18121
18122/* The IT blocks handling machinery is accessed through the these functions:
18123 it_fsm_pre_encode () from md_assemble ()
18124 set_it_insn_type () optional, from the tencode functions
18125 set_it_insn_type_last () ditto
18126 in_it_block () ditto
18127 it_fsm_post_encode () from md_assemble ()
33eaf5de 18128 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
18129
18130 Rationale:
18131 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
18132 initializing the IT insn type with a generic initial value depending
18133 on the inst.condition.
e07e6e58 18134 2) During the tencode function, two things may happen:
477330fc
RM
18135 a) The tencode function overrides the IT insn type by
18136 calling either set_it_insn_type (type) or set_it_insn_type_last ().
18137 b) The tencode function queries the IT block state by
18138 calling in_it_block () (i.e. to determine narrow/not narrow mode).
18139
18140 Both set_it_insn_type and in_it_block run the internal FSM state
18141 handling function (handle_it_state), because: a) setting the IT insn
18142 type may incur in an invalid state (exiting the function),
18143 and b) querying the state requires the FSM to be updated.
18144 Specifically we want to avoid creating an IT block for conditional
18145 branches, so it_fsm_pre_encode is actually a guess and we can't
18146 determine whether an IT block is required until the tencode () routine
18147 has decided what type of instruction this actually it.
18148 Because of this, if set_it_insn_type and in_it_block have to be used,
18149 set_it_insn_type has to be called first.
18150
18151 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
18152 determines the insn IT type depending on the inst.cond code.
18153 When a tencode () routine encodes an instruction that can be
18154 either outside an IT block, or, in the case of being inside, has to be
18155 the last one, set_it_insn_type_last () will determine the proper
18156 IT instruction type based on the inst.cond code. Otherwise,
18157 set_it_insn_type can be called for overriding that logic or
18158 for covering other cases.
18159
18160 Calling handle_it_state () may not transition the IT block state to
2b0f3761 18161 OUTSIDE_IT_BLOCK immediately, since the (current) state could be
477330fc
RM
18162 still queried. Instead, if the FSM determines that the state should
18163 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
18164 after the tencode () function: that's what it_fsm_post_encode () does.
18165
18166 Since in_it_block () calls the state handling function to get an
18167 updated state, an error may occur (due to invalid insns combination).
18168 In that case, inst.error is set.
18169 Therefore, inst.error has to be checked after the execution of
18170 the tencode () routine.
e07e6e58
NC
18171
18172 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc
RM
18173 any pending state change (if any) that didn't take place in
18174 handle_it_state () as explained above. */
e07e6e58
NC
18175
18176static void
18177it_fsm_pre_encode (void)
18178{
18179 if (inst.cond != COND_ALWAYS)
18180 inst.it_insn_type = INSIDE_IT_INSN;
18181 else
18182 inst.it_insn_type = OUTSIDE_IT_INSN;
18183
18184 now_it.state_handled = 0;
18185}
18186
18187/* IT state FSM handling function. */
18188
18189static int
18190handle_it_state (void)
18191{
18192 now_it.state_handled = 1;
5a01bb1d 18193 now_it.insn_cond = FALSE;
e07e6e58
NC
18194
18195 switch (now_it.state)
18196 {
18197 case OUTSIDE_IT_BLOCK:
18198 switch (inst.it_insn_type)
18199 {
18200 case OUTSIDE_IT_INSN:
18201 break;
18202
18203 case INSIDE_IT_INSN:
18204 case INSIDE_IT_LAST_INSN:
18205 if (thumb_mode == 0)
18206 {
c921be7d 18207 if (unified_syntax
e07e6e58
NC
18208 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
18209 as_tsktsk (_("Warning: conditional outside an IT block"\
18210 " for Thumb."));
18211 }
18212 else
18213 {
18214 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
fc289b0a 18215 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
e07e6e58
NC
18216 {
18217 /* Automatically generate the IT instruction. */
18218 new_automatic_it_block (inst.cond);
18219 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
18220 close_automatic_it_block ();
18221 }
18222 else
18223 {
18224 inst.error = BAD_OUT_IT;
18225 return FAIL;
18226 }
18227 }
18228 break;
18229
18230 case IF_INSIDE_IT_LAST_INSN:
18231 case NEUTRAL_IT_INSN:
18232 break;
18233
18234 case IT_INSN:
18235 now_it.state = MANUAL_IT_BLOCK;
18236 now_it.block_length = 0;
18237 break;
18238 }
18239 break;
18240
18241 case AUTOMATIC_IT_BLOCK:
18242 /* Three things may happen now:
18243 a) We should increment current it block size;
18244 b) We should close current it block (closing insn or 4 insns);
18245 c) We should close current it block and start a new one (due
18246 to incompatible conditions or
18247 4 insns-length block reached). */
18248
18249 switch (inst.it_insn_type)
18250 {
18251 case OUTSIDE_IT_INSN:
2b0f3761 18252 /* The closure of the block shall happen immediately,
e07e6e58
NC
18253 so any in_it_block () call reports the block as closed. */
18254 force_automatic_it_block_close ();
18255 break;
18256
18257 case INSIDE_IT_INSN:
18258 case INSIDE_IT_LAST_INSN:
18259 case IF_INSIDE_IT_LAST_INSN:
18260 now_it.block_length++;
18261
18262 if (now_it.block_length > 4
18263 || !now_it_compatible (inst.cond))
18264 {
18265 force_automatic_it_block_close ();
18266 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
18267 new_automatic_it_block (inst.cond);
18268 }
18269 else
18270 {
5a01bb1d 18271 now_it.insn_cond = TRUE;
e07e6e58
NC
18272 now_it_add_mask (inst.cond);
18273 }
18274
18275 if (now_it.state == AUTOMATIC_IT_BLOCK
18276 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
18277 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
18278 close_automatic_it_block ();
18279 break;
18280
18281 case NEUTRAL_IT_INSN:
18282 now_it.block_length++;
5a01bb1d 18283 now_it.insn_cond = TRUE;
e07e6e58
NC
18284
18285 if (now_it.block_length > 4)
18286 force_automatic_it_block_close ();
18287 else
18288 now_it_add_mask (now_it.cc & 1);
18289 break;
18290
18291 case IT_INSN:
18292 close_automatic_it_block ();
18293 now_it.state = MANUAL_IT_BLOCK;
18294 break;
18295 }
18296 break;
18297
18298 case MANUAL_IT_BLOCK:
18299 {
18300 /* Check conditional suffixes. */
18301 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
18302 int is_last;
18303 now_it.mask <<= 1;
18304 now_it.mask &= 0x1f;
18305 is_last = (now_it.mask == 0x10);
5a01bb1d 18306 now_it.insn_cond = TRUE;
e07e6e58
NC
18307
18308 switch (inst.it_insn_type)
18309 {
18310 case OUTSIDE_IT_INSN:
18311 inst.error = BAD_NOT_IT;
18312 return FAIL;
18313
18314 case INSIDE_IT_INSN:
18315 if (cond != inst.cond)
18316 {
18317 inst.error = BAD_IT_COND;
18318 return FAIL;
18319 }
18320 break;
18321
18322 case INSIDE_IT_LAST_INSN:
18323 case IF_INSIDE_IT_LAST_INSN:
18324 if (cond != inst.cond)
18325 {
18326 inst.error = BAD_IT_COND;
18327 return FAIL;
18328 }
18329 if (!is_last)
18330 {
18331 inst.error = BAD_BRANCH;
18332 return FAIL;
18333 }
18334 break;
18335
18336 case NEUTRAL_IT_INSN:
18337 /* The BKPT instruction is unconditional even in an IT block. */
18338 break;
18339
18340 case IT_INSN:
18341 inst.error = BAD_IT_IT;
18342 return FAIL;
18343 }
18344 }
18345 break;
18346 }
18347
18348 return SUCCESS;
18349}
18350
5a01bb1d
MGD
18351struct depr_insn_mask
18352{
18353 unsigned long pattern;
18354 unsigned long mask;
18355 const char* description;
18356};
18357
18358/* List of 16-bit instruction patterns deprecated in an IT block in
18359 ARMv8. */
18360static const struct depr_insn_mask depr_it_insns[] = {
18361 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
18362 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
18363 { 0xa000, 0xb800, N_("ADR") },
18364 { 0x4800, 0xf800, N_("Literal loads") },
18365 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
18366 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
18367 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
18368 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
18369 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
18370 { 0, 0, NULL }
18371};
18372
e07e6e58
NC
18373static void
18374it_fsm_post_encode (void)
18375{
18376 int is_last;
18377
18378 if (!now_it.state_handled)
18379 handle_it_state ();
18380
5a01bb1d
MGD
18381 if (now_it.insn_cond
18382 && !now_it.warn_deprecated
18383 && warn_on_deprecated
18384 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
18385 {
18386 if (inst.instruction >= 0x10000)
18387 {
5c3696f8 18388 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
5a01bb1d
MGD
18389 "deprecated in ARMv8"));
18390 now_it.warn_deprecated = TRUE;
18391 }
18392 else
18393 {
18394 const struct depr_insn_mask *p = depr_it_insns;
18395
18396 while (p->mask != 0)
18397 {
18398 if ((inst.instruction & p->mask) == p->pattern)
18399 {
5c3696f8 18400 as_tsktsk (_("IT blocks containing 16-bit Thumb instructions "
5a01bb1d
MGD
18401 "of the following class are deprecated in ARMv8: "
18402 "%s"), p->description);
18403 now_it.warn_deprecated = TRUE;
18404 break;
18405 }
18406
18407 ++p;
18408 }
18409 }
18410
18411 if (now_it.block_length > 1)
18412 {
5c3696f8 18413 as_tsktsk (_("IT blocks containing more than one conditional "
0a8897c7 18414 "instruction are deprecated in ARMv8"));
5a01bb1d
MGD
18415 now_it.warn_deprecated = TRUE;
18416 }
18417 }
18418
e07e6e58
NC
18419 is_last = (now_it.mask == 0x10);
18420 if (is_last)
18421 {
18422 now_it.state = OUTSIDE_IT_BLOCK;
18423 now_it.mask = 0;
18424 }
18425}
18426
18427static void
18428force_automatic_it_block_close (void)
18429{
18430 if (now_it.state == AUTOMATIC_IT_BLOCK)
18431 {
18432 close_automatic_it_block ();
18433 now_it.state = OUTSIDE_IT_BLOCK;
18434 now_it.mask = 0;
18435 }
18436}
18437
18438static int
18439in_it_block (void)
18440{
18441 if (!now_it.state_handled)
18442 handle_it_state ();
18443
18444 return now_it.state != OUTSIDE_IT_BLOCK;
18445}
18446
ff8646ee
TP
18447/* Whether OPCODE only has T32 encoding. Since this function is only used by
18448 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
18449 here, hence the "known" in the function name. */
fc289b0a
TP
18450
18451static bfd_boolean
ff8646ee 18452known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
18453{
18454 /* Original Thumb-1 wide instruction. */
18455 if (opcode->tencode == do_t_blx
18456 || opcode->tencode == do_t_branch23
18457 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
18458 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
18459 return TRUE;
18460
16a1fa25
TP
18461 /* Wide-only instruction added to ARMv8-M Baseline. */
18462 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
18463 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
18464 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
18465 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
18466 return TRUE;
18467
18468 return FALSE;
18469}
18470
18471/* Whether wide instruction variant can be used if available for a valid OPCODE
18472 in ARCH. */
18473
18474static bfd_boolean
18475t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
18476{
18477 if (known_t32_only_insn (opcode))
18478 return TRUE;
18479
18480 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
18481 of variant T3 of B.W is checked in do_t_branch. */
18482 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18483 && opcode->tencode == do_t_branch)
18484 return TRUE;
18485
bada4342
JW
18486 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
18487 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18488 && opcode->tencode == do_t_mov_cmp
18489 /* Make sure CMP instruction is not affected. */
18490 && opcode->aencode == do_mov)
18491 return TRUE;
18492
ff8646ee
TP
18493 /* Wide instruction variants of all instructions with narrow *and* wide
18494 variants become available with ARMv6t2. Other opcodes are either
18495 narrow-only or wide-only and are thus available if OPCODE is valid. */
18496 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
18497 return TRUE;
18498
18499 /* OPCODE with narrow only instruction variant or wide variant not
18500 available. */
fc289b0a
TP
18501 return FALSE;
18502}
18503
c19d1205
ZW
18504void
18505md_assemble (char *str)
b99bd4ef 18506{
c19d1205
ZW
18507 char *p = str;
18508 const struct asm_opcode * opcode;
b99bd4ef 18509
c19d1205
ZW
18510 /* Align the previous label if needed. */
18511 if (last_label_seen != NULL)
b99bd4ef 18512 {
c19d1205
ZW
18513 symbol_set_frag (last_label_seen, frag_now);
18514 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
18515 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
18516 }
18517
c19d1205
ZW
18518 memset (&inst, '\0', sizeof (inst));
18519 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 18520
c19d1205
ZW
18521 opcode = opcode_lookup (&p);
18522 if (!opcode)
b99bd4ef 18523 {
c19d1205 18524 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 18525 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 18526 if (! create_register_alias (str, p)
477330fc 18527 && ! create_neon_reg_alias (str, p))
c19d1205 18528 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 18529
b99bd4ef
NC
18530 return;
18531 }
18532
278df34e 18533 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 18534 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 18535
037e8744
JB
18536 /* The value which unconditional instructions should have in place of the
18537 condition field. */
18538 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
18539
c19d1205 18540 if (thumb_mode)
b99bd4ef 18541 {
e74cfd16 18542 arm_feature_set variant;
8f06b2d8
PB
18543
18544 variant = cpu_variant;
18545 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
18546 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
18547 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 18548 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
18549 if (!opcode->tvariant
18550 || (thumb_mode == 1
18551 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 18552 {
173205ca
TP
18553 if (opcode->tencode == do_t_swi)
18554 as_bad (_("SVC is not permitted on this architecture"));
18555 else
18556 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
18557 return;
18558 }
c19d1205
ZW
18559 if (inst.cond != COND_ALWAYS && !unified_syntax
18560 && opcode->tencode != do_t_branch)
b99bd4ef 18561 {
c19d1205 18562 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
18563 return;
18564 }
18565
fc289b0a
TP
18566 /* Two things are addressed here:
18567 1) Implicit require narrow instructions on Thumb-1.
18568 This avoids relaxation accidentally introducing Thumb-2
18569 instructions.
18570 2) Reject wide instructions in non Thumb-2 cores.
18571
18572 Only instructions with narrow and wide variants need to be handled
18573 but selecting all non wide-only instructions is easier. */
18574 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 18575 && !t32_insn_ok (variant, opcode))
076d447c 18576 {
fc289b0a
TP
18577 if (inst.size_req == 0)
18578 inst.size_req = 2;
18579 else if (inst.size_req == 4)
752d5da4 18580 {
ff8646ee
TP
18581 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
18582 as_bad (_("selected processor does not support 32bit wide "
18583 "variant of instruction `%s'"), str);
18584 else
18585 as_bad (_("selected processor does not support `%s' in "
18586 "Thumb-2 mode"), str);
fc289b0a 18587 return;
752d5da4 18588 }
076d447c
PB
18589 }
18590
c19d1205
ZW
18591 inst.instruction = opcode->tvalue;
18592
5be8be5d 18593 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc
RM
18594 {
18595 /* Prepare the it_insn_type for those encodings that don't set
18596 it. */
18597 it_fsm_pre_encode ();
c19d1205 18598
477330fc 18599 opcode->tencode ();
e07e6e58 18600
477330fc
RM
18601 it_fsm_post_encode ();
18602 }
e27ec89e 18603
0110f2b8 18604 if (!(inst.error || inst.relax))
b99bd4ef 18605 {
9c2799c2 18606 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
18607 inst.size = (inst.instruction > 0xffff ? 4 : 2);
18608 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 18609 {
c19d1205 18610 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
18611 return;
18612 }
18613 }
076d447c
PB
18614
18615 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 18616 instruction. */
9c2799c2 18617 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 18618
e74cfd16
PB
18619 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18620 *opcode->tvariant);
ee065d83 18621 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
18622 set those bits when Thumb-2 32-bit instructions are seen. The impact
18623 of relaxable instructions will be considered later after we finish all
18624 relaxation. */
ff8646ee
TP
18625 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
18626 variant = arm_arch_none;
18627 else
18628 variant = cpu_variant;
18629 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
18630 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18631 arm_ext_v6t2);
cd000bff 18632
88714cb8
DG
18633 check_neon_suffixes;
18634
cd000bff 18635 if (!inst.error)
c877a2f2
NC
18636 {
18637 mapping_state (MAP_THUMB);
18638 }
c19d1205 18639 }
3e9e4fcf 18640 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 18641 {
845b51d6
PB
18642 bfd_boolean is_bx;
18643
18644 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
18645 is_bx = (opcode->aencode == do_bx);
18646
c19d1205 18647 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
18648 if (!(is_bx && fix_v4bx)
18649 && !(opcode->avariant &&
18650 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 18651 {
84b52b66 18652 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 18653 return;
b99bd4ef 18654 }
c19d1205 18655 if (inst.size_req)
b99bd4ef 18656 {
c19d1205
ZW
18657 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
18658 return;
b99bd4ef
NC
18659 }
18660
c19d1205
ZW
18661 inst.instruction = opcode->avalue;
18662 if (opcode->tag == OT_unconditionalF)
eff0bc54 18663 inst.instruction |= 0xFU << 28;
c19d1205
ZW
18664 else
18665 inst.instruction |= inst.cond << 28;
18666 inst.size = INSN_SIZE;
5be8be5d 18667 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
18668 {
18669 it_fsm_pre_encode ();
18670 opcode->aencode ();
18671 it_fsm_post_encode ();
18672 }
ee065d83 18673 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 18674 on a hypothetical non-thumb v5 core. */
845b51d6 18675 if (is_bx)
e74cfd16 18676 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 18677 else
e74cfd16
PB
18678 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
18679 *opcode->avariant);
88714cb8
DG
18680
18681 check_neon_suffixes;
18682
cd000bff 18683 if (!inst.error)
c877a2f2
NC
18684 {
18685 mapping_state (MAP_ARM);
18686 }
b99bd4ef 18687 }
3e9e4fcf
JB
18688 else
18689 {
18690 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
18691 "-- `%s'"), str);
18692 return;
18693 }
c19d1205
ZW
18694 output_inst (str);
18695}
b99bd4ef 18696
e07e6e58
NC
18697static void
18698check_it_blocks_finished (void)
18699{
18700#ifdef OBJ_ELF
18701 asection *sect;
18702
18703 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
18704 if (seg_info (sect)->tc_segment_info_data.current_it.state
18705 == MANUAL_IT_BLOCK)
18706 {
18707 as_warn (_("section '%s' finished with an open IT block."),
18708 sect->name);
18709 }
18710#else
18711 if (now_it.state == MANUAL_IT_BLOCK)
18712 as_warn (_("file finished with an open IT block."));
18713#endif
18714}
18715
c19d1205
ZW
18716/* Various frobbings of labels and their addresses. */
18717
18718void
18719arm_start_line_hook (void)
18720{
18721 last_label_seen = NULL;
b99bd4ef
NC
18722}
18723
c19d1205
ZW
18724void
18725arm_frob_label (symbolS * sym)
b99bd4ef 18726{
c19d1205 18727 last_label_seen = sym;
b99bd4ef 18728
c19d1205 18729 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 18730
c19d1205
ZW
18731#if defined OBJ_COFF || defined OBJ_ELF
18732 ARM_SET_INTERWORK (sym, support_interwork);
18733#endif
b99bd4ef 18734
e07e6e58
NC
18735 force_automatic_it_block_close ();
18736
5f4273c7 18737 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
18738 as Thumb functions. This is because these labels, whilst
18739 they exist inside Thumb code, are not the entry points for
18740 possible ARM->Thumb calls. Also, these labels can be used
18741 as part of a computed goto or switch statement. eg gcc
18742 can generate code that looks like this:
b99bd4ef 18743
c19d1205
ZW
18744 ldr r2, [pc, .Laaa]
18745 lsl r3, r3, #2
18746 ldr r2, [r3, r2]
18747 mov pc, r2
b99bd4ef 18748
c19d1205
ZW
18749 .Lbbb: .word .Lxxx
18750 .Lccc: .word .Lyyy
18751 ..etc...
18752 .Laaa: .word Lbbb
b99bd4ef 18753
c19d1205
ZW
18754 The first instruction loads the address of the jump table.
18755 The second instruction converts a table index into a byte offset.
18756 The third instruction gets the jump address out of the table.
18757 The fourth instruction performs the jump.
b99bd4ef 18758
c19d1205
ZW
18759 If the address stored at .Laaa is that of a symbol which has the
18760 Thumb_Func bit set, then the linker will arrange for this address
18761 to have the bottom bit set, which in turn would mean that the
18762 address computation performed by the third instruction would end
18763 up with the bottom bit set. Since the ARM is capable of unaligned
18764 word loads, the instruction would then load the incorrect address
18765 out of the jump table, and chaos would ensue. */
18766 if (label_is_thumb_function_name
18767 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
18768 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 18769 {
c19d1205
ZW
18770 /* When the address of a Thumb function is taken the bottom
18771 bit of that address should be set. This will allow
18772 interworking between Arm and Thumb functions to work
18773 correctly. */
b99bd4ef 18774
c19d1205 18775 THUMB_SET_FUNC (sym, 1);
b99bd4ef 18776
c19d1205 18777 label_is_thumb_function_name = FALSE;
b99bd4ef 18778 }
07a53e5c 18779
07a53e5c 18780 dwarf2_emit_label (sym);
b99bd4ef
NC
18781}
18782
c921be7d 18783bfd_boolean
c19d1205 18784arm_data_in_code (void)
b99bd4ef 18785{
c19d1205 18786 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 18787 {
c19d1205
ZW
18788 *input_line_pointer = '/';
18789 input_line_pointer += 5;
18790 *input_line_pointer = 0;
c921be7d 18791 return TRUE;
b99bd4ef
NC
18792 }
18793
c921be7d 18794 return FALSE;
b99bd4ef
NC
18795}
18796
c19d1205
ZW
18797char *
18798arm_canonicalize_symbol_name (char * name)
b99bd4ef 18799{
c19d1205 18800 int len;
b99bd4ef 18801
c19d1205
ZW
18802 if (thumb_mode && (len = strlen (name)) > 5
18803 && streq (name + len - 5, "/data"))
18804 *(name + len - 5) = 0;
b99bd4ef 18805
c19d1205 18806 return name;
b99bd4ef 18807}
c19d1205
ZW
18808\f
18809/* Table of all register names defined by default. The user can
18810 define additional names with .req. Note that all register names
18811 should appear in both upper and lowercase variants. Some registers
18812 also have mixed-case names. */
b99bd4ef 18813
dcbf9037 18814#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 18815#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 18816#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
18817#define REGSET(p,t) \
18818 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
18819 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
18820 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
18821 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
18822#define REGSETH(p,t) \
18823 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
18824 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
18825 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
18826 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
18827#define REGSET2(p,t) \
18828 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
18829 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
18830 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
18831 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
18832#define SPLRBANK(base,bank,t) \
18833 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
18834 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
18835 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
18836 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
18837 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
18838 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 18839
c19d1205 18840static const struct reg_entry reg_names[] =
7ed4c4c5 18841{
c19d1205
ZW
18842 /* ARM integer registers. */
18843 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 18844
c19d1205
ZW
18845 /* ATPCS synonyms. */
18846 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
18847 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
18848 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 18849
c19d1205
ZW
18850 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
18851 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
18852 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 18853
c19d1205
ZW
18854 /* Well-known aliases. */
18855 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
18856 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
18857
18858 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
18859 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
18860
18861 /* Coprocessor numbers. */
18862 REGSET(p, CP), REGSET(P, CP),
18863
18864 /* Coprocessor register numbers. The "cr" variants are for backward
18865 compatibility. */
18866 REGSET(c, CN), REGSET(C, CN),
18867 REGSET(cr, CN), REGSET(CR, CN),
18868
90ec0d68
MGD
18869 /* ARM banked registers. */
18870 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
18871 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
18872 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
18873 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
18874 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
18875 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
18876 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
18877
18878 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
18879 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
18880 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
18881 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
18882 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 18883 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
18884 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
18885 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
18886
18887 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
18888 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
18889 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
18890 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
18891 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
18892 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
18893 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 18894 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
18895 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
18896
c19d1205
ZW
18897 /* FPA registers. */
18898 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
18899 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
18900
18901 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
18902 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
18903
18904 /* VFP SP registers. */
5287ad62
JB
18905 REGSET(s,VFS), REGSET(S,VFS),
18906 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
18907
18908 /* VFP DP Registers. */
5287ad62
JB
18909 REGSET(d,VFD), REGSET(D,VFD),
18910 /* Extra Neon DP registers. */
18911 REGSETH(d,VFD), REGSETH(D,VFD),
18912
18913 /* Neon QP registers. */
18914 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
18915
18916 /* VFP control registers. */
18917 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
18918 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
18919 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
18920 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
18921 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
18922 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 18923 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
18924
18925 /* Maverick DSP coprocessor registers. */
18926 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
18927 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
18928
18929 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
18930 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
18931 REGDEF(dspsc,0,DSPSC),
18932
18933 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
18934 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
18935 REGDEF(DSPSC,0,DSPSC),
18936
18937 /* iWMMXt data registers - p0, c0-15. */
18938 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
18939
18940 /* iWMMXt control registers - p1, c0-3. */
18941 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
18942 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
18943 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
18944 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
18945
18946 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
18947 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
18948 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
18949 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
18950 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
18951
18952 /* XScale accumulator registers. */
18953 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
18954};
18955#undef REGDEF
18956#undef REGNUM
18957#undef REGSET
7ed4c4c5 18958
c19d1205
ZW
18959/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
18960 within psr_required_here. */
18961static const struct asm_psr psrs[] =
18962{
18963 /* Backward compatibility notation. Note that "all" is no longer
18964 truly all possible PSR bits. */
18965 {"all", PSR_c | PSR_f},
18966 {"flg", PSR_f},
18967 {"ctl", PSR_c},
18968
18969 /* Individual flags. */
18970 {"f", PSR_f},
18971 {"c", PSR_c},
18972 {"x", PSR_x},
18973 {"s", PSR_s},
59b42a0d 18974
c19d1205
ZW
18975 /* Combinations of flags. */
18976 {"fs", PSR_f | PSR_s},
18977 {"fx", PSR_f | PSR_x},
18978 {"fc", PSR_f | PSR_c},
18979 {"sf", PSR_s | PSR_f},
18980 {"sx", PSR_s | PSR_x},
18981 {"sc", PSR_s | PSR_c},
18982 {"xf", PSR_x | PSR_f},
18983 {"xs", PSR_x | PSR_s},
18984 {"xc", PSR_x | PSR_c},
18985 {"cf", PSR_c | PSR_f},
18986 {"cs", PSR_c | PSR_s},
18987 {"cx", PSR_c | PSR_x},
18988 {"fsx", PSR_f | PSR_s | PSR_x},
18989 {"fsc", PSR_f | PSR_s | PSR_c},
18990 {"fxs", PSR_f | PSR_x | PSR_s},
18991 {"fxc", PSR_f | PSR_x | PSR_c},
18992 {"fcs", PSR_f | PSR_c | PSR_s},
18993 {"fcx", PSR_f | PSR_c | PSR_x},
18994 {"sfx", PSR_s | PSR_f | PSR_x},
18995 {"sfc", PSR_s | PSR_f | PSR_c},
18996 {"sxf", PSR_s | PSR_x | PSR_f},
18997 {"sxc", PSR_s | PSR_x | PSR_c},
18998 {"scf", PSR_s | PSR_c | PSR_f},
18999 {"scx", PSR_s | PSR_c | PSR_x},
19000 {"xfs", PSR_x | PSR_f | PSR_s},
19001 {"xfc", PSR_x | PSR_f | PSR_c},
19002 {"xsf", PSR_x | PSR_s | PSR_f},
19003 {"xsc", PSR_x | PSR_s | PSR_c},
19004 {"xcf", PSR_x | PSR_c | PSR_f},
19005 {"xcs", PSR_x | PSR_c | PSR_s},
19006 {"cfs", PSR_c | PSR_f | PSR_s},
19007 {"cfx", PSR_c | PSR_f | PSR_x},
19008 {"csf", PSR_c | PSR_s | PSR_f},
19009 {"csx", PSR_c | PSR_s | PSR_x},
19010 {"cxf", PSR_c | PSR_x | PSR_f},
19011 {"cxs", PSR_c | PSR_x | PSR_s},
19012 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
19013 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
19014 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
19015 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
19016 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
19017 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
19018 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
19019 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
19020 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
19021 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
19022 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
19023 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
19024 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
19025 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
19026 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
19027 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
19028 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
19029 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
19030 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
19031 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
19032 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
19033 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
19034 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
19035 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
19036};
19037
62b3e311
PB
19038/* Table of V7M psr names. */
19039static const struct asm_psr v7m_psrs[] =
19040{
1a336194
TP
19041 {"apsr", 0x0 }, {"APSR", 0x0 },
19042 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
19043 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
19044 {"psr", 0x3 }, {"PSR", 0x3 },
19045 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
19046 {"ipsr", 0x5 }, {"IPSR", 0x5 },
19047 {"epsr", 0x6 }, {"EPSR", 0x6 },
19048 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
19049 {"msp", 0x8 }, {"MSP", 0x8 },
19050 {"psp", 0x9 }, {"PSP", 0x9 },
19051 {"msplim", 0xa }, {"MSPLIM", 0xa },
19052 {"psplim", 0xb }, {"PSPLIM", 0xb },
19053 {"primask", 0x10}, {"PRIMASK", 0x10},
19054 {"basepri", 0x11}, {"BASEPRI", 0x11},
19055 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
19056 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
19057 {"control", 0x14}, {"CONTROL", 0x14},
19058 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
19059 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
19060 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
19061 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
19062 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
19063 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
19064 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
19065 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
19066 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
19067};
19068
c19d1205
ZW
19069/* Table of all shift-in-operand names. */
19070static const struct asm_shift_name shift_names [] =
b99bd4ef 19071{
c19d1205
ZW
19072 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
19073 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
19074 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
19075 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
19076 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
19077 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
19078};
b99bd4ef 19079
c19d1205
ZW
19080/* Table of all explicit relocation names. */
19081#ifdef OBJ_ELF
19082static struct reloc_entry reloc_names[] =
19083{
19084 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
19085 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
19086 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
19087 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
19088 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
19089 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
19090 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
19091 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
19092 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
19093 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 19094 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
19095 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
19096 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 19097 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 19098 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 19099 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 19100 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
477330fc 19101 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
c19d1205
ZW
19102};
19103#endif
b99bd4ef 19104
c19d1205
ZW
19105/* Table of all conditional affixes. 0xF is not defined as a condition code. */
19106static const struct asm_cond conds[] =
19107{
19108 {"eq", 0x0},
19109 {"ne", 0x1},
19110 {"cs", 0x2}, {"hs", 0x2},
19111 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
19112 {"mi", 0x4},
19113 {"pl", 0x5},
19114 {"vs", 0x6},
19115 {"vc", 0x7},
19116 {"hi", 0x8},
19117 {"ls", 0x9},
19118 {"ge", 0xa},
19119 {"lt", 0xb},
19120 {"gt", 0xc},
19121 {"le", 0xd},
19122 {"al", 0xe}
19123};
bfae80f2 19124
e797f7e0 19125#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
19126 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
19127 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 19128
62b3e311
PB
19129static struct asm_barrier_opt barrier_opt_names[] =
19130{
e797f7e0
MGD
19131 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
19132 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
19133 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
19134 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
19135 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
19136 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
19137 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
19138 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
19139 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
19140 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
19141 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
19142 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
19143 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
19144 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
19145 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
19146 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
19147};
19148
e797f7e0
MGD
19149#undef UL_BARRIER
19150
c19d1205
ZW
19151/* Table of ARM-format instructions. */
19152
19153/* Macros for gluing together operand strings. N.B. In all cases
19154 other than OPS0, the trailing OP_stop comes from default
19155 zero-initialization of the unspecified elements of the array. */
19156#define OPS0() { OP_stop, }
19157#define OPS1(a) { OP_##a, }
19158#define OPS2(a,b) { OP_##a,OP_##b, }
19159#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
19160#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
19161#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
19162#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
19163
5be8be5d
DG
19164/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
19165 This is useful when mixing operands for ARM and THUMB, i.e. using the
19166 MIX_ARM_THUMB_OPERANDS macro.
19167 In order to use these macros, prefix the number of operands with _
19168 e.g. _3. */
19169#define OPS_1(a) { a, }
19170#define OPS_2(a,b) { a,b, }
19171#define OPS_3(a,b,c) { a,b,c, }
19172#define OPS_4(a,b,c,d) { a,b,c,d, }
19173#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
19174#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
19175
c19d1205
ZW
19176/* These macros abstract out the exact format of the mnemonic table and
19177 save some repeated characters. */
19178
19179/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
19180#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 19181 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 19182 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
19183
19184/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
19185 a T_MNEM_xyz enumerator. */
19186#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19187 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 19188#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19189 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
19190
19191/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
19192 infix after the third character. */
19193#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 19194 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 19195 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 19196#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 19197 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 19198 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 19199#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19200 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 19201#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19202 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 19203#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19204 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 19205#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19206 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 19207
c19d1205 19208/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
19209 field is still 0xE. Many of the Thumb variants can be executed
19210 conditionally, so this is checked separately. */
c19d1205 19211#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 19212 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 19213 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 19214
dd5181d5
KT
19215/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
19216 Used by mnemonics that have very minimal differences in the encoding for
19217 ARM and Thumb variants and can be handled in a common function. */
19218#define TUEc(mnem, op, top, nops, ops, en) \
19219 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19220 THUMB_VARIANT, do_##en, do_##en }
19221
c19d1205
ZW
19222/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
19223 condition code field. */
19224#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 19225 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 19226 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
19227
19228/* ARM-only variants of all the above. */
6a86118a 19229#define CE(mnem, op, nops, ops, ae) \
21d799b5 19230 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
19231
19232#define C3(mnem, op, nops, ops, ae) \
19233 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19234
e3cb604e
PB
19235/* Legacy mnemonics that always have conditional infix after the third
19236 character. */
19237#define CL(mnem, op, nops, ops, ae) \
21d799b5 19238 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
19239 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19240
8f06b2d8
PB
19241/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
19242#define cCE(mnem, op, nops, ops, ae) \
21d799b5 19243 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 19244
e3cb604e
PB
19245/* Legacy coprocessor instructions where conditional infix and conditional
19246 suffix are ambiguous. For consistency this includes all FPA instructions,
19247 not just the potentially ambiguous ones. */
19248#define cCL(mnem, op, nops, ops, ae) \
21d799b5 19249 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
19250 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19251
19252/* Coprocessor, takes either a suffix or a position-3 infix
19253 (for an FPA corner case). */
19254#define C3E(mnem, op, nops, ops, ae) \
21d799b5 19255 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 19256 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 19257
6a86118a 19258#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
19259 { m1 #m2 m3, OPS##nops ops, \
19260 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
19261 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19262
19263#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
19264 xCM_ (m1, , m2, op, nops, ops, ae), \
19265 xCM_ (m1, eq, m2, op, nops, ops, ae), \
19266 xCM_ (m1, ne, m2, op, nops, ops, ae), \
19267 xCM_ (m1, cs, m2, op, nops, ops, ae), \
19268 xCM_ (m1, hs, m2, op, nops, ops, ae), \
19269 xCM_ (m1, cc, m2, op, nops, ops, ae), \
19270 xCM_ (m1, ul, m2, op, nops, ops, ae), \
19271 xCM_ (m1, lo, m2, op, nops, ops, ae), \
19272 xCM_ (m1, mi, m2, op, nops, ops, ae), \
19273 xCM_ (m1, pl, m2, op, nops, ops, ae), \
19274 xCM_ (m1, vs, m2, op, nops, ops, ae), \
19275 xCM_ (m1, vc, m2, op, nops, ops, ae), \
19276 xCM_ (m1, hi, m2, op, nops, ops, ae), \
19277 xCM_ (m1, ls, m2, op, nops, ops, ae), \
19278 xCM_ (m1, ge, m2, op, nops, ops, ae), \
19279 xCM_ (m1, lt, m2, op, nops, ops, ae), \
19280 xCM_ (m1, gt, m2, op, nops, ops, ae), \
19281 xCM_ (m1, le, m2, op, nops, ops, ae), \
19282 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
19283
19284#define UE(mnem, op, nops, ops, ae) \
19285 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19286
19287#define UF(mnem, op, nops, ops, ae) \
19288 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19289
5287ad62
JB
19290/* Neon data-processing. ARM versions are unconditional with cond=0xf.
19291 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
19292 use the same encoding function for each. */
19293#define NUF(mnem, op, nops, ops, enc) \
19294 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
19295 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19296
19297/* Neon data processing, version which indirects through neon_enc_tab for
19298 the various overloaded versions of opcodes. */
19299#define nUF(mnem, op, nops, ops, enc) \
21d799b5 19300 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
19301 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19302
19303/* Neon insn with conditional suffix for the ARM version, non-overloaded
19304 version. */
037e8744
JB
19305#define NCE_tag(mnem, op, nops, ops, enc, tag) \
19306 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
19307 THUMB_VARIANT, do_##enc, do_##enc }
19308
037e8744 19309#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 19310 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
19311
19312#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 19313 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 19314
5287ad62 19315/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 19316#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 19317 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
19318 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19319
037e8744 19320#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 19321 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
19322
19323#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 19324 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 19325
c19d1205
ZW
19326#define do_0 0
19327
c19d1205 19328static const struct asm_opcode insns[] =
bfae80f2 19329{
74db7efb
NC
19330#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
19331#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
19332 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
19333 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
19334 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
19335 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
19336 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
19337 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
19338 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
19339 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
19340 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
19341 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
19342 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
19343 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
19344 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
19345 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
19346 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
19347 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
19348
19349 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
19350 for setting PSR flag bits. They are obsolete in V6 and do not
19351 have Thumb equivalents. */
21d799b5
NC
19352 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19353 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19354 CL("tstp", 110f000, 2, (RR, SH), cmp),
19355 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19356 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19357 CL("cmpp", 150f000, 2, (RR, SH), cmp),
19358 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19359 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19360 CL("cmnp", 170f000, 2, (RR, SH), cmp),
19361
19362 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 19363 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
19364 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
19365 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
19366
19367 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
19368 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19369 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
19370 OP_RRnpc),
19371 OP_ADDRGLDR),ldst, t_ldst),
19372 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
19373
19374 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19375 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19376 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19377 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19378 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19379 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19380
21d799b5
NC
19381 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
19382 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 19383
c19d1205 19384 /* Pseudo ops. */
21d799b5 19385 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 19386 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 19387 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 19388 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
19389
19390 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
19391 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
19392 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
19393 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
19394 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
19395 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
19396 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
19397 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
19398 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
19399 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
19400 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
19401 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
19402 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 19403
16a4cf17 19404 /* These may simplify to neg. */
21d799b5
NC
19405 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
19406 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 19407
173205ca
TP
19408#undef THUMB_VARIANT
19409#define THUMB_VARIANT & arm_ext_os
19410
19411 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
19412 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
19413
c921be7d
NC
19414#undef THUMB_VARIANT
19415#define THUMB_VARIANT & arm_ext_v6
19416
21d799b5 19417 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
19418
19419 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
19420#undef THUMB_VARIANT
19421#define THUMB_VARIANT & arm_ext_v6t2
19422
21d799b5
NC
19423 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19424 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19425 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 19426
5be8be5d
DG
19427 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19428 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19429 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
19430 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 19431
21d799b5
NC
19432 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19433 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 19434
21d799b5
NC
19435 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19436 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
19437
19438 /* V1 instructions with no Thumb analogue at all. */
21d799b5 19439 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
19440 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
19441
19442 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
19443 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
19444 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
19445 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
19446 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
19447 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
19448 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
19449 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
19450
c921be7d
NC
19451#undef ARM_VARIANT
19452#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
19453#undef THUMB_VARIANT
19454#define THUMB_VARIANT & arm_ext_v4t
19455
21d799b5
NC
19456 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19457 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 19458
c921be7d
NC
19459#undef THUMB_VARIANT
19460#define THUMB_VARIANT & arm_ext_v6t2
19461
21d799b5 19462 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
19463 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
19464
19465 /* Generic coprocessor instructions. */
21d799b5
NC
19466 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19467 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19468 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19469 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19470 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19471 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 19472 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 19473
c921be7d
NC
19474#undef ARM_VARIANT
19475#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
19476
21d799b5 19477 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
19478 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19479
c921be7d
NC
19480#undef ARM_VARIANT
19481#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
19482#undef THUMB_VARIANT
19483#define THUMB_VARIANT & arm_ext_msr
19484
d2cd1205
JB
19485 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
19486 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 19487
c921be7d
NC
19488#undef ARM_VARIANT
19489#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
19490#undef THUMB_VARIANT
19491#define THUMB_VARIANT & arm_ext_v6t2
19492
21d799b5
NC
19493 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19494 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19495 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19496 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19497 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19498 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19499 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19500 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 19501
c921be7d
NC
19502#undef ARM_VARIANT
19503#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
19504#undef THUMB_VARIANT
19505#define THUMB_VARIANT & arm_ext_v4t
19506
5be8be5d
DG
19507 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19508 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19509 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19510 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
19511 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19512 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 19513
c921be7d
NC
19514#undef ARM_VARIANT
19515#define ARM_VARIANT & arm_ext_v4t_5
19516
c19d1205
ZW
19517 /* ARM Architecture 4T. */
19518 /* Note: bx (and blx) are required on V5, even if the processor does
19519 not support Thumb. */
21d799b5 19520 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 19521
c921be7d
NC
19522#undef ARM_VARIANT
19523#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
19524#undef THUMB_VARIANT
19525#define THUMB_VARIANT & arm_ext_v5t
19526
c19d1205
ZW
19527 /* Note: blx has 2 variants; the .value coded here is for
19528 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
19529 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
19530 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 19531
c921be7d
NC
19532#undef THUMB_VARIANT
19533#define THUMB_VARIANT & arm_ext_v6t2
19534
21d799b5
NC
19535 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
19536 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19537 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19538 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19539 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19540 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19541 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19542 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 19543
c921be7d 19544#undef ARM_VARIANT
74db7efb
NC
19545#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
19546#undef THUMB_VARIANT
19547#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 19548
21d799b5
NC
19549 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19550 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19551 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19552 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 19553
21d799b5
NC
19554 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19555 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 19556
21d799b5
NC
19557 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19558 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19559 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19560 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 19561
21d799b5
NC
19562 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19563 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19564 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19565 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 19566
21d799b5
NC
19567 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19568 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 19569
03ee1b7f
NC
19570 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19571 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19572 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19573 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 19574
c921be7d 19575#undef ARM_VARIANT
74db7efb
NC
19576#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
19577#undef THUMB_VARIANT
19578#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 19579
21d799b5 19580 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
19581 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
19582 ldrd, t_ldstd),
19583 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
19584 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 19585
21d799b5
NC
19586 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19587 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 19588
c921be7d
NC
19589#undef ARM_VARIANT
19590#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
19591
21d799b5 19592 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 19593
c921be7d
NC
19594#undef ARM_VARIANT
19595#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
19596#undef THUMB_VARIANT
19597#define THUMB_VARIANT & arm_ext_v6
19598
21d799b5
NC
19599 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
19600 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
19601 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19602 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19603 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19604 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19605 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19606 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19607 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19608 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 19609
c921be7d 19610#undef THUMB_VARIANT
ff8646ee 19611#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 19612
5be8be5d
DG
19613 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
19614 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19615 strex, t_strex),
ff8646ee
TP
19616#undef THUMB_VARIANT
19617#define THUMB_VARIANT & arm_ext_v6t2
19618
21d799b5
NC
19619 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19620 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 19621
21d799b5
NC
19622 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
19623 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 19624
9e3c6df6 19625/* ARM V6 not included in V7M. */
c921be7d
NC
19626#undef THUMB_VARIANT
19627#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 19628 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 19629 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
19630 UF(rfeib, 9900a00, 1, (RRw), rfe),
19631 UF(rfeda, 8100a00, 1, (RRw), rfe),
19632 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19633 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
19634 UF(rfefa, 8100a00, 1, (RRw), rfe),
19635 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19636 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 19637 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
19638 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19639 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 19640 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 19641 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 19642 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 19643 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 19644 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 19645 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 19646 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 19647
9e3c6df6
PB
19648/* ARM V6 not included in V7M (eg. integer SIMD). */
19649#undef THUMB_VARIANT
19650#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
19651 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
19652 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
19653 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19654 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19655 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19656 /* Old name for QASX. */
74db7efb 19657 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 19658 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19659 /* Old name for QSAX. */
74db7efb 19660 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19661 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19662 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19663 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19664 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19665 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19666 /* Old name for SASX. */
74db7efb 19667 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19668 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19669 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 19670 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19671 /* Old name for SHASX. */
21d799b5 19672 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 19673 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19674 /* Old name for SHSAX. */
21d799b5
NC
19675 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19676 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19677 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19678 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19679 /* Old name for SSAX. */
74db7efb 19680 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19681 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19682 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19683 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19684 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19685 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19686 /* Old name for UASX. */
74db7efb 19687 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19688 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19689 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 19690 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19691 /* Old name for UHASX. */
21d799b5
NC
19692 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19693 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19694 /* Old name for UHSAX. */
21d799b5
NC
19695 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19696 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19697 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19698 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19699 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 19700 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19701 /* Old name for UQASX. */
21d799b5
NC
19702 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19703 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19704 /* Old name for UQSAX. */
21d799b5
NC
19705 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19706 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19707 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19708 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19709 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19710 /* Old name for USAX. */
74db7efb 19711 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 19712 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19713 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19714 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19715 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19716 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19717 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19718 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19719 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19720 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19721 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19722 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19723 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19724 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19725 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19726 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19727 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19728 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19729 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19730 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19731 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19732 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19733 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19734 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19735 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19736 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19737 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19738 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19739 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
19740 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
19741 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
19742 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19743 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19744 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 19745
c921be7d
NC
19746#undef ARM_VARIANT
19747#define ARM_VARIANT & arm_ext_v6k
19748#undef THUMB_VARIANT
19749#define THUMB_VARIANT & arm_ext_v6k
19750
21d799b5
NC
19751 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
19752 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
19753 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
19754 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 19755
c921be7d
NC
19756#undef THUMB_VARIANT
19757#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
19758 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
19759 ldrexd, t_ldrexd),
19760 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
19761 RRnpcb), strexd, t_strexd),
ebdca51a 19762
c921be7d 19763#undef THUMB_VARIANT
ff8646ee 19764#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
19765 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
19766 rd_rn, rd_rn),
19767 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
19768 rd_rn, rd_rn),
19769 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 19770 strex, t_strexbh),
5be8be5d 19771 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 19772 strex, t_strexbh),
21d799b5 19773 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 19774
c921be7d 19775#undef ARM_VARIANT
f4c65163 19776#define ARM_VARIANT & arm_ext_sec
74db7efb 19777#undef THUMB_VARIANT
f4c65163 19778#define THUMB_VARIANT & arm_ext_sec
c921be7d 19779
21d799b5 19780 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 19781
90ec0d68
MGD
19782#undef ARM_VARIANT
19783#define ARM_VARIANT & arm_ext_virt
19784#undef THUMB_VARIANT
19785#define THUMB_VARIANT & arm_ext_virt
19786
19787 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
19788 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
19789
ddfded2f
MW
19790#undef ARM_VARIANT
19791#define ARM_VARIANT & arm_ext_pan
19792#undef THUMB_VARIANT
19793#define THUMB_VARIANT & arm_ext_pan
19794
19795 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
19796
c921be7d 19797#undef ARM_VARIANT
74db7efb 19798#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
19799#undef THUMB_VARIANT
19800#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 19801
21d799b5
NC
19802 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
19803 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
19804 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
19805 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 19806
21d799b5 19807 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 19808 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 19809
5be8be5d
DG
19810 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19811 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19812 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19813 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 19814
ff8646ee
TP
19815#undef THUMB_VARIANT
19816#define THUMB_VARIANT & arm_ext_v6t2_v8m
19817 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
19818 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
19819
bf3eeda7 19820 /* Thumb-only instructions. */
74db7efb 19821#undef ARM_VARIANT
bf3eeda7
NS
19822#define ARM_VARIANT NULL
19823 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
19824 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
19825
19826 /* ARM does not really have an IT instruction, so always allow it.
19827 The opcode is copied from Thumb in order to allow warnings in
19828 -mimplicit-it=[never | arm] modes. */
19829#undef ARM_VARIANT
19830#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
19831#undef THUMB_VARIANT
19832#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 19833
21d799b5
NC
19834 TUE("it", bf08, bf08, 1, (COND), it, t_it),
19835 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
19836 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
19837 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
19838 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
19839 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
19840 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
19841 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
19842 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
19843 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
19844 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
19845 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
19846 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
19847 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
19848 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 19849 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
19850 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
19851 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 19852
92e90b6e 19853 /* Thumb2 only instructions. */
c921be7d
NC
19854#undef ARM_VARIANT
19855#define ARM_VARIANT NULL
92e90b6e 19856
21d799b5
NC
19857 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
19858 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
19859 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
19860 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
19861 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
19862 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 19863
eea54501
MGD
19864 /* Hardware division instructions. */
19865#undef ARM_VARIANT
19866#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
19867#undef THUMB_VARIANT
19868#define THUMB_VARIANT & arm_ext_div
19869
eea54501
MGD
19870 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
19871 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 19872
7e806470 19873 /* ARM V6M/V7 instructions. */
c921be7d
NC
19874#undef ARM_VARIANT
19875#define ARM_VARIANT & arm_ext_barrier
19876#undef THUMB_VARIANT
19877#define THUMB_VARIANT & arm_ext_barrier
19878
ccb84d65
JB
19879 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
19880 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
19881 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 19882
62b3e311 19883 /* ARM V7 instructions. */
c921be7d
NC
19884#undef ARM_VARIANT
19885#define ARM_VARIANT & arm_ext_v7
19886#undef THUMB_VARIANT
19887#define THUMB_VARIANT & arm_ext_v7
19888
21d799b5
NC
19889 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
19890 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 19891
74db7efb 19892#undef ARM_VARIANT
60e5ef9f 19893#define ARM_VARIANT & arm_ext_mp
74db7efb 19894#undef THUMB_VARIANT
60e5ef9f
MGD
19895#define THUMB_VARIANT & arm_ext_mp
19896
19897 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
19898
53c4b28b
MGD
19899 /* AArchv8 instructions. */
19900#undef ARM_VARIANT
19901#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
19902
19903/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 19904#undef THUMB_VARIANT
4ed7ed8d 19905#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 19906
4ed7ed8d
TP
19907 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19908 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19909 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19910 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19911 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19912 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 19913 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
19914 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
19915 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19916 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
19917 stlex, t_stlex),
4b8c8c02
RE
19918 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
19919 stlex, t_stlex),
19920 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
19921 stlex, t_stlex),
4ed7ed8d
TP
19922#undef THUMB_VARIANT
19923#define THUMB_VARIANT & arm_ext_v8
53c4b28b 19924
4ed7ed8d
TP
19925 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
19926 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
19927 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
19928 ldrexd, t_ldrexd),
19929 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
19930 strexd, t_strexd),
8884b720 19931 /* ARMv8 T32 only. */
74db7efb 19932#undef ARM_VARIANT
b79f7053
MGD
19933#define ARM_VARIANT NULL
19934 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
19935 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
19936 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
19937
33399f07
MGD
19938 /* FP for ARMv8. */
19939#undef ARM_VARIANT
a715796b 19940#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 19941#undef THUMB_VARIANT
a715796b 19942#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
19943
19944 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
19945 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
19946 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
19947 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
73924fbc
MGD
19948 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
19949 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
7e8e6784
MGD
19950 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
19951 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
19952 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
19953 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
30bdf752
MGD
19954 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
19955 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
19956 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
19957 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
19958 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
19959 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
19960 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
33399f07 19961
91ff7894
MGD
19962 /* Crypto v1 extensions. */
19963#undef ARM_VARIANT
19964#define ARM_VARIANT & fpu_crypto_ext_armv8
19965#undef THUMB_VARIANT
19966#define THUMB_VARIANT & fpu_crypto_ext_armv8
19967
19968 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
19969 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
19970 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
19971 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
19972 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
19973 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
19974 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
19975 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
19976 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
19977 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
19978 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
19979 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
19980 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
19981 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 19982
dd5181d5 19983#undef ARM_VARIANT
74db7efb 19984#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
19985#undef THUMB_VARIANT
19986#define THUMB_VARIANT & crc_ext_armv8
19987 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
19988 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
19989 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
19990 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
19991 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
19992 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
19993
105bde57
MW
19994 /* ARMv8.2 RAS extension. */
19995#undef ARM_VARIANT
4d1464f2 19996#define ARM_VARIANT & arm_ext_ras
105bde57 19997#undef THUMB_VARIANT
4d1464f2 19998#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
19999 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
20000
49e8a725
SN
20001#undef ARM_VARIANT
20002#define ARM_VARIANT & arm_ext_v8_3
20003#undef THUMB_VARIANT
20004#define THUMB_VARIANT & arm_ext_v8_3
20005 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
c28eeff2
SN
20006 NUF (vcmla, 0, 4, (RNDQ, RNDQ, RNDQ_RNSC, EXPi), vcmla),
20007 NUF (vcadd, 0, 4, (RNDQ, RNDQ, RNDQ, EXPi), vcadd),
49e8a725 20008
c604a79a
JW
20009#undef ARM_VARIANT
20010#define ARM_VARIANT & fpu_neon_ext_dotprod
20011#undef THUMB_VARIANT
20012#define THUMB_VARIANT & fpu_neon_ext_dotprod
20013 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
20014 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
20015
c921be7d
NC
20016#undef ARM_VARIANT
20017#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
20018#undef THUMB_VARIANT
20019#define THUMB_VARIANT NULL
c921be7d 20020
21d799b5
NC
20021 cCE("wfs", e200110, 1, (RR), rd),
20022 cCE("rfs", e300110, 1, (RR), rd),
20023 cCE("wfc", e400110, 1, (RR), rd),
20024 cCE("rfc", e500110, 1, (RR), rd),
20025
20026 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
20027 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
20028 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
20029 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
20030
20031 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
20032 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
20033 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
20034 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
20035
20036 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
20037 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
20038 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
20039 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
20040 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
20041 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
20042 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
20043 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
20044 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
20045 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
20046 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
20047 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
20048
20049 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
20050 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
20051 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
20052 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
20053 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
20054 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
20055 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
20056 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
20057 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
20058 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
20059 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
20060 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
20061
20062 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
20063 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
20064 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
20065 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
20066 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
20067 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
20068 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
20069 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
20070 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
20071 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
20072 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
20073 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
20074
20075 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
20076 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
20077 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
20078 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
20079 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
20080 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
20081 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
20082 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
20083 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
20084 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
20085 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
20086 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
20087
20088 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
20089 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
20090 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
20091 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
20092 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
20093 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
20094 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
20095 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
20096 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
20097 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
20098 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
20099 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
20100
20101 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
20102 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
20103 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
20104 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
20105 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
20106 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
20107 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
20108 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
20109 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
20110 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
20111 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
20112 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
20113
20114 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
20115 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
20116 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
20117 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
20118 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
20119 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
20120 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
20121 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
20122 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
20123 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
20124 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
20125 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
20126
20127 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
20128 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
20129 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
20130 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
20131 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
20132 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
20133 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
20134 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
20135 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
20136 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
20137 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
20138 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
20139
20140 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
20141 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
20142 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
20143 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
20144 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
20145 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
20146 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
20147 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
20148 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
20149 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
20150 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
20151 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
20152
20153 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
20154 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
20155 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
20156 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
20157 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
20158 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
20159 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
20160 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
20161 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
20162 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
20163 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
20164 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
20165
20166 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
20167 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
20168 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
20169 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
20170 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
20171 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
20172 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
20173 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
20174 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
20175 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
20176 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
20177 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
20178
20179 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
20180 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
20181 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
20182 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
20183 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
20184 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
20185 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
20186 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
20187 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
20188 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
20189 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
20190 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
20191
20192 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
20193 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
20194 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
20195 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
20196 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
20197 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
20198 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
20199 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
20200 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
20201 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
20202 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
20203 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
20204
20205 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
20206 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
20207 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
20208 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
20209 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
20210 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
20211 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
20212 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
20213 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
20214 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
20215 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
20216 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
20217
20218 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
20219 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
20220 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
20221 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
20222 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
20223 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
20224 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
20225 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
20226 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
20227 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
20228 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
20229 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
20230
20231 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
20232 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
20233 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
20234 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
20235 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
20236 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
20237 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
20238 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
20239 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
20240 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
20241 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
20242 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
20243
20244 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
20245 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
20246 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
20247 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
20248 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
20249 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20250 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20251 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20252 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
20253 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
20254 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
20255 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
20256
20257 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
20258 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
20259 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
20260 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
20261 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
20262 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20263 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20264 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20265 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
20266 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
20267 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
20268 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
20269
20270 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
20271 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
20272 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
20273 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
20274 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
20275 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20276 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20277 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20278 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
20279 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
20280 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
20281 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
20282
20283 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
20284 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
20285 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
20286 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
20287 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
20288 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20289 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20290 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20291 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
20292 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
20293 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
20294 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
20295
20296 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
20297 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
20298 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
20299 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
20300 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
20301 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20302 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20303 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20304 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
20305 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
20306 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
20307 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
20308
20309 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
20310 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
20311 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
20312 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
20313 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
20314 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20315 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20316 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20317 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
20318 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
20319 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
20320 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
20321
20322 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
20323 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
20324 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
20325 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
20326 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
20327 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20328 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20329 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20330 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
20331 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
20332 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
20333 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
20334
20335 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
20336 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
20337 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
20338 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
20339 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
20340 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20341 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20342 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20343 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
20344 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
20345 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
20346 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
20347
20348 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
20349 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
20350 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
20351 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
20352 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
20353 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20354 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20355 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20356 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
20357 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
20358 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
20359 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
20360
20361 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
20362 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
20363 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
20364 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
20365 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
20366 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20367 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20368 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20369 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
20370 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
20371 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
20372 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
20373
20374 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20375 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20376 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20377 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20378 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20379 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20380 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20381 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20382 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20383 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20384 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20385 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20386
20387 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20388 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20389 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20390 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20391 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20392 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20393 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20394 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20395 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20396 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20397 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20398 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20399
20400 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20401 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20402 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20403 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20404 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20405 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20406 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20407 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20408 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20409 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20410 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20411 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20412
20413 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
20414 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
20415 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
20416 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
20417
20418 cCL("flts", e000110, 2, (RF, RR), rn_rd),
20419 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
20420 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
20421 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
20422 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
20423 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
20424 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
20425 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
20426 cCL("flte", e080110, 2, (RF, RR), rn_rd),
20427 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
20428 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
20429 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 20430
c19d1205
ZW
20431 /* The implementation of the FIX instruction is broken on some
20432 assemblers, in that it accepts a precision specifier as well as a
20433 rounding specifier, despite the fact that this is meaningless.
20434 To be more compatible, we accept it as well, though of course it
20435 does not set any bits. */
21d799b5
NC
20436 cCE("fix", e100110, 2, (RR, RF), rd_rm),
20437 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
20438 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
20439 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
20440 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
20441 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
20442 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
20443 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
20444 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
20445 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
20446 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
20447 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
20448 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 20449
c19d1205 20450 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
20451#undef ARM_VARIANT
20452#define ARM_VARIANT & fpu_fpa_ext_v2
20453
21d799b5
NC
20454 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20455 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20456 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20457 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20458 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20459 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 20460
c921be7d
NC
20461#undef ARM_VARIANT
20462#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
20463
c19d1205 20464 /* Moves and type conversions. */
21d799b5
NC
20465 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
20466 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
20467 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
20468 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
20469 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
20470 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
20471 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
20472 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
20473 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
20474 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20475 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
20476 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20477 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
20478 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
20479
20480 /* Memory operations. */
21d799b5
NC
20481 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20482 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
20483 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20484 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20485 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20486 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20487 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20488 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20489 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20490 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20491 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20492 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20493 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20494 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20495 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20496 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20497 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20498 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 20499
c19d1205 20500 /* Monadic operations. */
21d799b5
NC
20501 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
20502 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
20503 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
20504
20505 /* Dyadic operations. */
21d799b5
NC
20506 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20507 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20508 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20509 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20510 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20511 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20512 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20513 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20514 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 20515
c19d1205 20516 /* Comparisons. */
21d799b5
NC
20517 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
20518 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
20519 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
20520 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 20521
62f3b8c8
PB
20522 /* Double precision load/store are still present on single precision
20523 implementations. */
20524 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20525 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
20526 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20527 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20528 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20529 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20530 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20531 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20532 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20533 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 20534
c921be7d
NC
20535#undef ARM_VARIANT
20536#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
20537
c19d1205 20538 /* Moves and type conversions. */
21d799b5
NC
20539 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20540 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20541 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20542 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
20543 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
20544 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
20545 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
20546 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20547 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
20548 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20549 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20550 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20551 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 20552
c19d1205 20553 /* Monadic operations. */
21d799b5
NC
20554 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20555 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20556 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
20557
20558 /* Dyadic operations. */
21d799b5
NC
20559 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20560 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20561 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20562 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20563 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20564 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20565 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20566 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20567 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 20568
c19d1205 20569 /* Comparisons. */
21d799b5
NC
20570 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20571 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
20572 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20573 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 20574
c921be7d
NC
20575#undef ARM_VARIANT
20576#define ARM_VARIANT & fpu_vfp_ext_v2
20577
21d799b5
NC
20578 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
20579 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
20580 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
20581 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 20582
037e8744
JB
20583/* Instructions which may belong to either the Neon or VFP instruction sets.
20584 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
20585#undef ARM_VARIANT
20586#define ARM_VARIANT & fpu_vfp_ext_v1xd
20587#undef THUMB_VARIANT
20588#define THUMB_VARIANT & fpu_vfp_ext_v1xd
20589
037e8744
JB
20590 /* These mnemonics are unique to VFP. */
20591 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
20592 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
20593 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20594 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20595 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
aacf0b33
KT
20596 nCE(vcmp, _vcmp, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20597 nCE(vcmpe, _vcmpe, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
037e8744
JB
20598 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
20599 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
20600 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
20601
20602 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
20603 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
20604 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20605 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 20606
21d799b5
NC
20607 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20608 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
20609
20610 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20611 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20612
55881a11
MGD
20613 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20614 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20615 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20616 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20617 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20618 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
20619 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
20620 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 20621
5f1af56b 20622 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
e3e535bc 20623 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
c70a8987
MGD
20624 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
20625 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
f31fef98 20626
037e8744
JB
20627
20628 /* NOTE: All VMOV encoding is special-cased! */
20629 NCE(vmov, 0, 1, (VMOV), neon_mov),
20630 NCE(vmovq, 0, 1, (VMOV), neon_mov),
20631
9db2f6b4
RL
20632#undef ARM_VARIANT
20633#define ARM_VARIANT & arm_ext_fp16
20634#undef THUMB_VARIANT
20635#define THUMB_VARIANT & arm_ext_fp16
20636 /* New instructions added from v8.2, allowing the extraction and insertion of
20637 the upper 16 bits of a 32-bit vector register. */
20638 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
20639 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
20640
c921be7d
NC
20641#undef THUMB_VARIANT
20642#define THUMB_VARIANT & fpu_neon_ext_v1
20643#undef ARM_VARIANT
20644#define ARM_VARIANT & fpu_neon_ext_v1
20645
5287ad62
JB
20646 /* Data processing with three registers of the same length. */
20647 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
20648 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
20649 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
20650 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20651 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20652 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20653 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20654 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20655 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20656 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
20657 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20658 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
20659 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20660 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
20661 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20662 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
20663 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20664 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
20665 /* If not immediate, fall back to neon_dyadic_i64_su.
20666 shl_imm should accept I8 I16 I32 I64,
20667 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
20668 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
20669 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
20670 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
20671 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 20672 /* Logic ops, types optional & ignored. */
4316f0d2
DG
20673 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20674 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20675 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20676 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20677 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20678 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20679 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20680 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20681 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
20682 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
20683 /* Bitfield ops, untyped. */
20684 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20685 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20686 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20687 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20688 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20689 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 20690 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5
NC
20691 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20692 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20693 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20694 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20695 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20696 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
20697 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
20698 back to neon_dyadic_if_su. */
21d799b5
NC
20699 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
20700 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
20701 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
20702 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
20703 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
20704 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
20705 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
20706 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 20707 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
20708 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
20709 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 20710 /* As above, D registers only. */
21d799b5
NC
20711 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
20712 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 20713 /* Int and float variants, signedness unimportant. */
21d799b5
NC
20714 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
20715 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
20716 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 20717 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
20718 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
20719 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
20720 /* vtst takes sizes 8, 16, 32. */
20721 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
20722 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
20723 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 20724 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 20725 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
20726 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
20727 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
20728 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
20729 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
20730 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
20731 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
20732 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
20733 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
20734 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
20735 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
20736 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
20737 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
20738 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
20739 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
20740 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
20741 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 20742 /* ARM v8.1 extension. */
643afb90
MW
20743 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
20744 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
20745 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
20746 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
20747
20748 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 20749 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
20750 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
20751
20752 /* Data processing with two registers and a shift amount. */
20753 /* Right shifts, and variants with rounding.
20754 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
20755 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
20756 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
20757 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
20758 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
20759 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
20760 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
20761 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
20762 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
20763 /* Shift and insert. Sizes accepted 8 16 32 64. */
20764 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
20765 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
20766 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
20767 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
20768 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
20769 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
20770 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
20771 /* Right shift immediate, saturating & narrowing, with rounding variants.
20772 Types accepted S16 S32 S64 U16 U32 U64. */
20773 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
20774 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
20775 /* As above, unsigned. Types accepted S16 S32 S64. */
20776 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
20777 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
20778 /* Right shift narrowing. Types accepted I16 I32 I64. */
20779 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
20780 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
20781 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 20782 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 20783 /* CVT with optional immediate for fixed-point variant. */
21d799b5 20784 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 20785
4316f0d2
DG
20786 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
20787 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
20788
20789 /* Data processing, three registers of different lengths. */
20790 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
20791 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
20792 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
20793 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
20794 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
20795 /* If not scalar, fall back to neon_dyadic_long.
20796 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
20797 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
20798 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
20799 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
20800 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
20801 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
20802 /* Dyadic, narrowing insns. Types I16 I32 I64. */
20803 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20804 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20805 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20806 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20807 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
20808 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20809 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20810 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
20811 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
20812 S16 S32 U16 U32. */
21d799b5 20813 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
20814
20815 /* Extract. Size 8. */
3b8d421e
PB
20816 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
20817 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
20818
20819 /* Two registers, miscellaneous. */
20820 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
20821 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
20822 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
20823 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
20824 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
20825 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
20826 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
20827 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
20828 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
20829 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
20830 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
20831 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
20832 /* VMOVN. Types I16 I32 I64. */
21d799b5 20833 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 20834 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 20835 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 20836 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 20837 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
20838 /* VZIP / VUZP. Sizes 8 16 32. */
20839 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
20840 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
20841 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
20842 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
20843 /* VQABS / VQNEG. Types S8 S16 S32. */
20844 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
20845 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
20846 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
20847 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
20848 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
20849 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
20850 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
20851 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
20852 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 20853 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
20854 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
20855 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
20856 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
20857 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
20858 /* VCLS. Types S8 S16 S32. */
20859 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
20860 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
20861 /* VCLZ. Types I8 I16 I32. */
20862 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
20863 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
20864 /* VCNT. Size 8. */
20865 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
20866 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
20867 /* Two address, untyped. */
20868 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
20869 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
20870 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
20871 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
20872 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
20873
20874 /* Table lookup. Size 8. */
20875 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
20876 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
20877
c921be7d
NC
20878#undef THUMB_VARIANT
20879#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
20880#undef ARM_VARIANT
20881#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
20882
5287ad62 20883 /* Neon element/structure load/store. */
21d799b5
NC
20884 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
20885 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
20886 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
20887 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
20888 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
20889 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
20890 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
20891 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 20892
c921be7d 20893#undef THUMB_VARIANT
74db7efb
NC
20894#define THUMB_VARIANT & fpu_vfp_ext_v3xd
20895#undef ARM_VARIANT
20896#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
20897 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
20898 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20899 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20900 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20901 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20902 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20903 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20904 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20905 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20906
74db7efb 20907#undef THUMB_VARIANT
c921be7d
NC
20908#define THUMB_VARIANT & fpu_vfp_ext_v3
20909#undef ARM_VARIANT
20910#define ARM_VARIANT & fpu_vfp_ext_v3
20911
21d799b5 20912 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 20913 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 20914 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 20915 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 20916 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 20917 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 20918 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 20919 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 20920 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 20921
74db7efb
NC
20922#undef ARM_VARIANT
20923#define ARM_VARIANT & fpu_vfp_ext_fma
20924#undef THUMB_VARIANT
20925#define THUMB_VARIANT & fpu_vfp_ext_fma
62f3b8c8
PB
20926 /* Mnemonics shared by Neon and VFP. These are included in the
20927 VFP FMA variant; NEON and VFP FMA always includes the NEON
20928 FMA instructions. */
20929 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
20930 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
20931 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
20932 the v form should always be used. */
20933 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20934 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20935 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20936 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20937 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20938 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20939
5287ad62 20940#undef THUMB_VARIANT
c921be7d
NC
20941#undef ARM_VARIANT
20942#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
20943
21d799b5
NC
20944 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20945 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20946 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20947 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20948 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20949 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20950 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
20951 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 20952
c921be7d
NC
20953#undef ARM_VARIANT
20954#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
20955
21d799b5
NC
20956 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
20957 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
20958 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
20959 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
20960 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
20961 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
20962 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
20963 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
20964 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
20965 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20966 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20967 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20968 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20969 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20970 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
20971 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20972 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20973 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20974 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
20975 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
20976 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20977 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20978 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20979 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20980 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20981 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
20982 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
20983 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
20984 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
20985 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
20986 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
20987 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
20988 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
20989 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
20990 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
20991 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
20992 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
20993 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20994 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20995 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20996 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20997 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20998 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20999 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21000 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21001 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21002 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
21003 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21004 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21005 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21006 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21007 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21008 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21009 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21010 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21011 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21012 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21013 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21014 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21015 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
21016 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21017 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21018 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21019 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21020 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21021 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21022 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21023 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21024 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21025 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21026 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21027 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21028 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21029 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21030 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21031 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21032 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21033 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21034 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21035 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21036 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21037 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21038 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21039 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21040 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21041 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21042 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21043 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21044 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
21045 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21046 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21047 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21048 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21049 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
21050 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21051 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21052 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21053 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21054 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21055 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21056 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21057 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21058 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21059 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21060 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21061 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21062 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21063 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21064 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21065 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21066 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
21067 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21068 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21069 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21070 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21071 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21072 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21073 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21074 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21075 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21076 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21077 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21078 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21079 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21080 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21081 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21082 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21083 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21084 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21085 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21086 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21087 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21088 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21089 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21090 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21091 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21092 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21093 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21094 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21095 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21096 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21097 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21098 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
21099 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
21100 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
21101 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
21102 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
21103 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
21104 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21105 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21106 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21107 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
21108 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
21109 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
21110 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
21111 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
21112 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
21113 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21114 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21115 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21116 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21117 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 21118
c921be7d
NC
21119#undef ARM_VARIANT
21120#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
21121
21d799b5
NC
21122 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
21123 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
21124 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
21125 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
21126 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
21127 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
21128 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21129 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21130 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21131 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21132 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21133 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21134 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21135 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21136 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21137 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21138 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21139 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21140 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21141 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21142 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
21143 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21144 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21145 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21146 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21147 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21148 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21149 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21150 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21151 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21152 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21153 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21154 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21155 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21156 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21157 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21158 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21159 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21160 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21161 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21162 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21163 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21164 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21165 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21166 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21167 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21168 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21169 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21170 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21171 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21172 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21173 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21174 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21175 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21176 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21177 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21178 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 21179
c921be7d
NC
21180#undef ARM_VARIANT
21181#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
21182
21d799b5
NC
21183 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21184 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21185 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21186 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21187 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21188 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21189 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21190 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21191 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
21192 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
21193 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
21194 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
21195 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
21196 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
21197 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
21198 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
21199 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
21200 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
21201 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
21202 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
21203 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
21204 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
21205 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
21206 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
21207 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
21208 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
21209 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
21210 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
21211 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
21212 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
21213 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
21214 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
21215 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
21216 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
21217 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
21218 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
21219 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
21220 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
21221 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
21222 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
21223 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
21224 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
21225 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
21226 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
21227 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
21228 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
21229 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
21230 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
21231 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
21232 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
21233 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
21234 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
21235 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
21236 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
21237 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
21238 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
21239 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
21240 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
21241 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
21242 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
21243 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
21244 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
21245 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
21246 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
21247 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21248 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21249 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21250 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21251 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21252 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21253 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21254 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
21255 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21256 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
21257 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21258 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 21259
16a1fa25 21260 /* ARMv8-M instructions. */
4ed7ed8d
TP
21261#undef ARM_VARIANT
21262#define ARM_VARIANT NULL
21263#undef THUMB_VARIANT
21264#define THUMB_VARIANT & arm_ext_v8m
16a1fa25
TP
21265 TUE("sg", 0, e97fe97f, 0, (), 0, noargs),
21266 TUE("blxns", 0, 4784, 1, (RRnpc), 0, t_blx),
21267 TUE("bxns", 0, 4704, 1, (RRnpc), 0, t_bx),
4ed7ed8d
TP
21268 TUE("tt", 0, e840f000, 2, (RRnpc, RRnpc), 0, tt),
21269 TUE("ttt", 0, e840f040, 2, (RRnpc, RRnpc), 0, tt),
16a1fa25
TP
21270 TUE("tta", 0, e840f080, 2, (RRnpc, RRnpc), 0, tt),
21271 TUE("ttat", 0, e840f0c0, 2, (RRnpc, RRnpc), 0, tt),
21272
21273 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
21274 instructions behave as nop if no VFP is present. */
21275#undef THUMB_VARIANT
21276#define THUMB_VARIANT & arm_ext_v8m_main
21277 TUEc("vlldm", 0, ec300a00, 1, (RRnpc), rn),
21278 TUEc("vlstm", 0, ec200a00, 1, (RRnpc), rn),
c19d1205
ZW
21279};
21280#undef ARM_VARIANT
21281#undef THUMB_VARIANT
21282#undef TCE
c19d1205
ZW
21283#undef TUE
21284#undef TUF
21285#undef TCC
8f06b2d8 21286#undef cCE
e3cb604e
PB
21287#undef cCL
21288#undef C3E
c19d1205
ZW
21289#undef CE
21290#undef CM
21291#undef UE
21292#undef UF
21293#undef UT
5287ad62
JB
21294#undef NUF
21295#undef nUF
21296#undef NCE
21297#undef nCE
c19d1205
ZW
21298#undef OPS0
21299#undef OPS1
21300#undef OPS2
21301#undef OPS3
21302#undef OPS4
21303#undef OPS5
21304#undef OPS6
21305#undef do_0
21306\f
21307/* MD interface: bits in the object file. */
bfae80f2 21308
c19d1205
ZW
21309/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
21310 for use in the a.out file, and stores them in the array pointed to by buf.
21311 This knows about the endian-ness of the target machine and does
21312 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
21313 2 (short) and 4 (long) Floating numbers are put out as a series of
21314 LITTLENUMS (shorts, here at least). */
b99bd4ef 21315
c19d1205
ZW
21316void
21317md_number_to_chars (char * buf, valueT val, int n)
21318{
21319 if (target_big_endian)
21320 number_to_chars_bigendian (buf, val, n);
21321 else
21322 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
21323}
21324
c19d1205
ZW
21325static valueT
21326md_chars_to_number (char * buf, int n)
bfae80f2 21327{
c19d1205
ZW
21328 valueT result = 0;
21329 unsigned char * where = (unsigned char *) buf;
bfae80f2 21330
c19d1205 21331 if (target_big_endian)
b99bd4ef 21332 {
c19d1205
ZW
21333 while (n--)
21334 {
21335 result <<= 8;
21336 result |= (*where++ & 255);
21337 }
b99bd4ef 21338 }
c19d1205 21339 else
b99bd4ef 21340 {
c19d1205
ZW
21341 while (n--)
21342 {
21343 result <<= 8;
21344 result |= (where[n] & 255);
21345 }
bfae80f2 21346 }
b99bd4ef 21347
c19d1205 21348 return result;
bfae80f2 21349}
b99bd4ef 21350
c19d1205 21351/* MD interface: Sections. */
b99bd4ef 21352
fa94de6b
RM
21353/* Calculate the maximum variable size (i.e., excluding fr_fix)
21354 that an rs_machine_dependent frag may reach. */
21355
21356unsigned int
21357arm_frag_max_var (fragS *fragp)
21358{
21359 /* We only use rs_machine_dependent for variable-size Thumb instructions,
21360 which are either THUMB_SIZE (2) or INSN_SIZE (4).
21361
21362 Note that we generate relaxable instructions even for cases that don't
21363 really need it, like an immediate that's a trivial constant. So we're
21364 overestimating the instruction size for some of those cases. Rather
21365 than putting more intelligence here, it would probably be better to
21366 avoid generating a relaxation frag in the first place when it can be
21367 determined up front that a short instruction will suffice. */
21368
21369 gas_assert (fragp->fr_type == rs_machine_dependent);
21370 return INSN_SIZE;
21371}
21372
0110f2b8
PB
21373/* Estimate the size of a frag before relaxing. Assume everything fits in
21374 2 bytes. */
21375
c19d1205 21376int
0110f2b8 21377md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
21378 segT segtype ATTRIBUTE_UNUSED)
21379{
0110f2b8
PB
21380 fragp->fr_var = 2;
21381 return 2;
21382}
21383
21384/* Convert a machine dependent frag. */
21385
21386void
21387md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
21388{
21389 unsigned long insn;
21390 unsigned long old_op;
21391 char *buf;
21392 expressionS exp;
21393 fixS *fixp;
21394 int reloc_type;
21395 int pc_rel;
21396 int opcode;
21397
21398 buf = fragp->fr_literal + fragp->fr_fix;
21399
21400 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
21401 if (fragp->fr_symbol)
21402 {
0110f2b8
PB
21403 exp.X_op = O_symbol;
21404 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
21405 }
21406 else
21407 {
0110f2b8 21408 exp.X_op = O_constant;
5f4273c7 21409 }
0110f2b8
PB
21410 exp.X_add_number = fragp->fr_offset;
21411 opcode = fragp->fr_subtype;
21412 switch (opcode)
21413 {
21414 case T_MNEM_ldr_pc:
21415 case T_MNEM_ldr_pc2:
21416 case T_MNEM_ldr_sp:
21417 case T_MNEM_str_sp:
21418 case T_MNEM_ldr:
21419 case T_MNEM_ldrb:
21420 case T_MNEM_ldrh:
21421 case T_MNEM_str:
21422 case T_MNEM_strb:
21423 case T_MNEM_strh:
21424 if (fragp->fr_var == 4)
21425 {
5f4273c7 21426 insn = THUMB_OP32 (opcode);
0110f2b8
PB
21427 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
21428 {
21429 insn |= (old_op & 0x700) << 4;
21430 }
21431 else
21432 {
21433 insn |= (old_op & 7) << 12;
21434 insn |= (old_op & 0x38) << 13;
21435 }
21436 insn |= 0x00000c00;
21437 put_thumb32_insn (buf, insn);
21438 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
21439 }
21440 else
21441 {
21442 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
21443 }
21444 pc_rel = (opcode == T_MNEM_ldr_pc2);
21445 break;
21446 case T_MNEM_adr:
21447 if (fragp->fr_var == 4)
21448 {
21449 insn = THUMB_OP32 (opcode);
21450 insn |= (old_op & 0xf0) << 4;
21451 put_thumb32_insn (buf, insn);
21452 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
21453 }
21454 else
21455 {
21456 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21457 exp.X_add_number -= 4;
21458 }
21459 pc_rel = 1;
21460 break;
21461 case T_MNEM_mov:
21462 case T_MNEM_movs:
21463 case T_MNEM_cmp:
21464 case T_MNEM_cmn:
21465 if (fragp->fr_var == 4)
21466 {
21467 int r0off = (opcode == T_MNEM_mov
21468 || opcode == T_MNEM_movs) ? 0 : 8;
21469 insn = THUMB_OP32 (opcode);
21470 insn = (insn & 0xe1ffffff) | 0x10000000;
21471 insn |= (old_op & 0x700) << r0off;
21472 put_thumb32_insn (buf, insn);
21473 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21474 }
21475 else
21476 {
21477 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
21478 }
21479 pc_rel = 0;
21480 break;
21481 case T_MNEM_b:
21482 if (fragp->fr_var == 4)
21483 {
21484 insn = THUMB_OP32(opcode);
21485 put_thumb32_insn (buf, insn);
21486 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
21487 }
21488 else
21489 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
21490 pc_rel = 1;
21491 break;
21492 case T_MNEM_bcond:
21493 if (fragp->fr_var == 4)
21494 {
21495 insn = THUMB_OP32(opcode);
21496 insn |= (old_op & 0xf00) << 14;
21497 put_thumb32_insn (buf, insn);
21498 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
21499 }
21500 else
21501 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
21502 pc_rel = 1;
21503 break;
21504 case T_MNEM_add_sp:
21505 case T_MNEM_add_pc:
21506 case T_MNEM_inc_sp:
21507 case T_MNEM_dec_sp:
21508 if (fragp->fr_var == 4)
21509 {
21510 /* ??? Choose between add and addw. */
21511 insn = THUMB_OP32 (opcode);
21512 insn |= (old_op & 0xf0) << 4;
21513 put_thumb32_insn (buf, insn);
16805f35
PB
21514 if (opcode == T_MNEM_add_pc)
21515 reloc_type = BFD_RELOC_ARM_T32_IMM12;
21516 else
21517 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
21518 }
21519 else
21520 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21521 pc_rel = 0;
21522 break;
21523
21524 case T_MNEM_addi:
21525 case T_MNEM_addis:
21526 case T_MNEM_subi:
21527 case T_MNEM_subis:
21528 if (fragp->fr_var == 4)
21529 {
21530 insn = THUMB_OP32 (opcode);
21531 insn |= (old_op & 0xf0) << 4;
21532 insn |= (old_op & 0xf) << 16;
21533 put_thumb32_insn (buf, insn);
16805f35
PB
21534 if (insn & (1 << 20))
21535 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21536 else
21537 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
21538 }
21539 else
21540 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21541 pc_rel = 0;
21542 break;
21543 default:
5f4273c7 21544 abort ();
0110f2b8
PB
21545 }
21546 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 21547 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
21548 fixp->fx_file = fragp->fr_file;
21549 fixp->fx_line = fragp->fr_line;
21550 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
21551
21552 /* Set whether we use thumb-2 ISA based on final relaxation results. */
21553 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
21554 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
21555 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
21556}
21557
21558/* Return the size of a relaxable immediate operand instruction.
21559 SHIFT and SIZE specify the form of the allowable immediate. */
21560static int
21561relax_immediate (fragS *fragp, int size, int shift)
21562{
21563 offsetT offset;
21564 offsetT mask;
21565 offsetT low;
21566
21567 /* ??? Should be able to do better than this. */
21568 if (fragp->fr_symbol)
21569 return 4;
21570
21571 low = (1 << shift) - 1;
21572 mask = (1 << (shift + size)) - (1 << shift);
21573 offset = fragp->fr_offset;
21574 /* Force misaligned offsets to 32-bit variant. */
21575 if (offset & low)
5e77afaa 21576 return 4;
0110f2b8
PB
21577 if (offset & ~mask)
21578 return 4;
21579 return 2;
21580}
21581
5e77afaa
PB
21582/* Get the address of a symbol during relaxation. */
21583static addressT
5f4273c7 21584relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
21585{
21586 fragS *sym_frag;
21587 addressT addr;
21588 symbolS *sym;
21589
21590 sym = fragp->fr_symbol;
21591 sym_frag = symbol_get_frag (sym);
21592 know (S_GET_SEGMENT (sym) != absolute_section
21593 || sym_frag == &zero_address_frag);
21594 addr = S_GET_VALUE (sym) + fragp->fr_offset;
21595
21596 /* If frag has yet to be reached on this pass, assume it will
21597 move by STRETCH just as we did. If this is not so, it will
21598 be because some frag between grows, and that will force
21599 another pass. */
21600
21601 if (stretch != 0
21602 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
21603 {
21604 fragS *f;
21605
21606 /* Adjust stretch for any alignment frag. Note that if have
21607 been expanding the earlier code, the symbol may be
21608 defined in what appears to be an earlier frag. FIXME:
21609 This doesn't handle the fr_subtype field, which specifies
21610 a maximum number of bytes to skip when doing an
21611 alignment. */
21612 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
21613 {
21614 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
21615 {
21616 if (stretch < 0)
21617 stretch = - ((- stretch)
21618 & ~ ((1 << (int) f->fr_offset) - 1));
21619 else
21620 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
21621 if (stretch == 0)
21622 break;
21623 }
21624 }
21625 if (f != NULL)
21626 addr += stretch;
21627 }
5e77afaa
PB
21628
21629 return addr;
21630}
21631
0110f2b8
PB
21632/* Return the size of a relaxable adr pseudo-instruction or PC-relative
21633 load. */
21634static int
5e77afaa 21635relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
21636{
21637 addressT addr;
21638 offsetT val;
21639
21640 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
21641 if (fragp->fr_symbol == NULL
21642 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
21643 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21644 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
21645 return 4;
21646
5f4273c7 21647 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
21648 addr = fragp->fr_address + fragp->fr_fix;
21649 addr = (addr + 4) & ~3;
5e77afaa 21650 /* Force misaligned targets to 32-bit variant. */
0110f2b8 21651 if (val & 3)
5e77afaa 21652 return 4;
0110f2b8
PB
21653 val -= addr;
21654 if (val < 0 || val > 1020)
21655 return 4;
21656 return 2;
21657}
21658
21659/* Return the size of a relaxable add/sub immediate instruction. */
21660static int
21661relax_addsub (fragS *fragp, asection *sec)
21662{
21663 char *buf;
21664 int op;
21665
21666 buf = fragp->fr_literal + fragp->fr_fix;
21667 op = bfd_get_16(sec->owner, buf);
21668 if ((op & 0xf) == ((op >> 4) & 0xf))
21669 return relax_immediate (fragp, 8, 0);
21670 else
21671 return relax_immediate (fragp, 3, 0);
21672}
21673
e83a675f
RE
21674/* Return TRUE iff the definition of symbol S could be pre-empted
21675 (overridden) at link or load time. */
21676static bfd_boolean
21677symbol_preemptible (symbolS *s)
21678{
21679 /* Weak symbols can always be pre-empted. */
21680 if (S_IS_WEAK (s))
21681 return TRUE;
21682
21683 /* Non-global symbols cannot be pre-empted. */
21684 if (! S_IS_EXTERNAL (s))
21685 return FALSE;
21686
21687#ifdef OBJ_ELF
21688 /* In ELF, a global symbol can be marked protected, or private. In that
21689 case it can't be pre-empted (other definitions in the same link unit
21690 would violate the ODR). */
21691 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
21692 return FALSE;
21693#endif
21694
21695 /* Other global symbols might be pre-empted. */
21696 return TRUE;
21697}
0110f2b8
PB
21698
21699/* Return the size of a relaxable branch instruction. BITS is the
21700 size of the offset field in the narrow instruction. */
21701
21702static int
5e77afaa 21703relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
21704{
21705 addressT addr;
21706 offsetT val;
21707 offsetT limit;
21708
21709 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 21710 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
21711 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21712 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
21713 return 4;
21714
267bf995 21715#ifdef OBJ_ELF
e83a675f 21716 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
21717 if (S_IS_DEFINED (fragp->fr_symbol)
21718 && ARM_IS_FUNC (fragp->fr_symbol))
21719 return 4;
e83a675f 21720#endif
0d9b4b55 21721
e83a675f 21722 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 21723 return 4;
267bf995 21724
5f4273c7 21725 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
21726 addr = fragp->fr_address + fragp->fr_fix + 4;
21727 val -= addr;
21728
21729 /* Offset is a signed value *2 */
21730 limit = 1 << bits;
21731 if (val >= limit || val < -limit)
21732 return 4;
21733 return 2;
21734}
21735
21736
21737/* Relax a machine dependent frag. This returns the amount by which
21738 the current size of the frag should change. */
21739
21740int
5e77afaa 21741arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
21742{
21743 int oldsize;
21744 int newsize;
21745
21746 oldsize = fragp->fr_var;
21747 switch (fragp->fr_subtype)
21748 {
21749 case T_MNEM_ldr_pc2:
5f4273c7 21750 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
21751 break;
21752 case T_MNEM_ldr_pc:
21753 case T_MNEM_ldr_sp:
21754 case T_MNEM_str_sp:
5f4273c7 21755 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
21756 break;
21757 case T_MNEM_ldr:
21758 case T_MNEM_str:
5f4273c7 21759 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
21760 break;
21761 case T_MNEM_ldrh:
21762 case T_MNEM_strh:
5f4273c7 21763 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
21764 break;
21765 case T_MNEM_ldrb:
21766 case T_MNEM_strb:
5f4273c7 21767 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
21768 break;
21769 case T_MNEM_adr:
5f4273c7 21770 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
21771 break;
21772 case T_MNEM_mov:
21773 case T_MNEM_movs:
21774 case T_MNEM_cmp:
21775 case T_MNEM_cmn:
5f4273c7 21776 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
21777 break;
21778 case T_MNEM_b:
5f4273c7 21779 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
21780 break;
21781 case T_MNEM_bcond:
5f4273c7 21782 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
21783 break;
21784 case T_MNEM_add_sp:
21785 case T_MNEM_add_pc:
21786 newsize = relax_immediate (fragp, 8, 2);
21787 break;
21788 case T_MNEM_inc_sp:
21789 case T_MNEM_dec_sp:
21790 newsize = relax_immediate (fragp, 7, 2);
21791 break;
21792 case T_MNEM_addi:
21793 case T_MNEM_addis:
21794 case T_MNEM_subi:
21795 case T_MNEM_subis:
21796 newsize = relax_addsub (fragp, sec);
21797 break;
21798 default:
5f4273c7 21799 abort ();
0110f2b8 21800 }
5e77afaa
PB
21801
21802 fragp->fr_var = newsize;
21803 /* Freeze wide instructions that are at or before the same location as
21804 in the previous pass. This avoids infinite loops.
5f4273c7
NC
21805 Don't freeze them unconditionally because targets may be artificially
21806 misaligned by the expansion of preceding frags. */
5e77afaa 21807 if (stretch <= 0 && newsize > 2)
0110f2b8 21808 {
0110f2b8 21809 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 21810 frag_wane (fragp);
0110f2b8 21811 }
5e77afaa 21812
0110f2b8 21813 return newsize - oldsize;
c19d1205 21814}
b99bd4ef 21815
c19d1205 21816/* Round up a section size to the appropriate boundary. */
b99bd4ef 21817
c19d1205
ZW
21818valueT
21819md_section_align (segT segment ATTRIBUTE_UNUSED,
21820 valueT size)
21821{
f0927246
NC
21822#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
21823 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
21824 {
21825 /* For a.out, force the section size to be aligned. If we don't do
21826 this, BFD will align it for us, but it will not write out the
21827 final bytes of the section. This may be a bug in BFD, but it is
21828 easier to fix it here since that is how the other a.out targets
21829 work. */
21830 int align;
21831
21832 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 21833 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
f0927246 21834 }
c19d1205 21835#endif
f0927246 21836
6844c0cc 21837 return size;
bfae80f2 21838}
b99bd4ef 21839
c19d1205
ZW
21840/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
21841 of an rs_align_code fragment. */
21842
21843void
21844arm_handle_align (fragS * fragP)
bfae80f2 21845{
d9235011 21846 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
21847 {
21848 { /* ARMv1 */
21849 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
21850 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
21851 },
21852 { /* ARMv6k */
21853 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
21854 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
21855 },
21856 };
d9235011 21857 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
21858 {
21859 { /* Thumb-1 */
21860 {0xc0, 0x46}, /* LE */
21861 {0x46, 0xc0}, /* BE */
21862 },
21863 { /* Thumb-2 */
21864 {0x00, 0xbf}, /* LE */
21865 {0xbf, 0x00} /* BE */
21866 }
21867 };
d9235011 21868 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
21869 { /* Wide Thumb-2 */
21870 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
21871 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
21872 };
c921be7d 21873
e7495e45 21874 unsigned bytes, fix, noop_size;
c19d1205 21875 char * p;
d9235011
TS
21876 const unsigned char * noop;
21877 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
21878#ifdef OBJ_ELF
21879 enum mstate state;
21880#endif
bfae80f2 21881
c19d1205 21882 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
21883 return;
21884
c19d1205
ZW
21885 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
21886 p = fragP->fr_literal + fragP->fr_fix;
21887 fix = 0;
bfae80f2 21888
c19d1205
ZW
21889 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
21890 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 21891
cd000bff 21892 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 21893
cd000bff 21894 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 21895 {
7f78eb34
JW
21896 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
21897 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
21898 {
21899 narrow_noop = thumb_noop[1][target_big_endian];
21900 noop = wide_thumb_noop[target_big_endian];
21901 }
c19d1205 21902 else
e7495e45
NS
21903 noop = thumb_noop[0][target_big_endian];
21904 noop_size = 2;
cd000bff
DJ
21905#ifdef OBJ_ELF
21906 state = MAP_THUMB;
21907#endif
7ed4c4c5
NC
21908 }
21909 else
21910 {
7f78eb34
JW
21911 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
21912 ? selected_cpu : arm_arch_none,
21913 arm_ext_v6k) != 0]
e7495e45
NS
21914 [target_big_endian];
21915 noop_size = 4;
cd000bff
DJ
21916#ifdef OBJ_ELF
21917 state = MAP_ARM;
21918#endif
7ed4c4c5 21919 }
c921be7d 21920
e7495e45 21921 fragP->fr_var = noop_size;
c921be7d 21922
c19d1205 21923 if (bytes & (noop_size - 1))
7ed4c4c5 21924 {
c19d1205 21925 fix = bytes & (noop_size - 1);
cd000bff
DJ
21926#ifdef OBJ_ELF
21927 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
21928#endif
c19d1205
ZW
21929 memset (p, 0, fix);
21930 p += fix;
21931 bytes -= fix;
a737bd4d 21932 }
a737bd4d 21933
e7495e45
NS
21934 if (narrow_noop)
21935 {
21936 if (bytes & noop_size)
21937 {
21938 /* Insert a narrow noop. */
21939 memcpy (p, narrow_noop, noop_size);
21940 p += noop_size;
21941 bytes -= noop_size;
21942 fix += noop_size;
21943 }
21944
21945 /* Use wide noops for the remainder */
21946 noop_size = 4;
21947 }
21948
c19d1205 21949 while (bytes >= noop_size)
a737bd4d 21950 {
c19d1205
ZW
21951 memcpy (p, noop, noop_size);
21952 p += noop_size;
21953 bytes -= noop_size;
21954 fix += noop_size;
a737bd4d
NC
21955 }
21956
c19d1205 21957 fragP->fr_fix += fix;
a737bd4d
NC
21958}
21959
c19d1205
ZW
21960/* Called from md_do_align. Used to create an alignment
21961 frag in a code section. */
21962
21963void
21964arm_frag_align_code (int n, int max)
bfae80f2 21965{
c19d1205 21966 char * p;
7ed4c4c5 21967
c19d1205 21968 /* We assume that there will never be a requirement
6ec8e702 21969 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 21970 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
21971 {
21972 char err_msg[128];
21973
fa94de6b 21974 sprintf (err_msg,
477330fc
RM
21975 _("alignments greater than %d bytes not supported in .text sections."),
21976 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 21977 as_fatal ("%s", err_msg);
6ec8e702 21978 }
bfae80f2 21979
c19d1205
ZW
21980 p = frag_var (rs_align_code,
21981 MAX_MEM_FOR_RS_ALIGN_CODE,
21982 1,
21983 (relax_substateT) max,
21984 (symbolS *) NULL,
21985 (offsetT) n,
21986 (char *) NULL);
21987 *p = 0;
21988}
bfae80f2 21989
8dc2430f
NC
21990/* Perform target specific initialisation of a frag.
21991 Note - despite the name this initialisation is not done when the frag
21992 is created, but only when its type is assigned. A frag can be created
21993 and used a long time before its type is set, so beware of assuming that
33eaf5de 21994 this initialisation is performed first. */
bfae80f2 21995
cd000bff
DJ
21996#ifndef OBJ_ELF
21997void
21998arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
21999{
22000 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 22001 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
22002}
22003
22004#else /* OBJ_ELF is defined. */
c19d1205 22005void
cd000bff 22006arm_init_frag (fragS * fragP, int max_chars)
c19d1205 22007{
e8d84ca1 22008 bfd_boolean frag_thumb_mode;
b968d18a 22009
8dc2430f
NC
22010 /* If the current ARM vs THUMB mode has not already
22011 been recorded into this frag then do so now. */
cd000bff 22012 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
22013 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22014
e8d84ca1
NC
22015 /* PR 21809: Do not set a mapping state for debug sections
22016 - it just confuses other tools. */
22017 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
22018 return;
22019
b968d18a 22020 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 22021
f9c1b181
RL
22022 /* Record a mapping symbol for alignment frags. We will delete this
22023 later if the alignment ends up empty. */
22024 switch (fragP->fr_type)
22025 {
22026 case rs_align:
22027 case rs_align_test:
22028 case rs_fill:
22029 mapping_state_2 (MAP_DATA, max_chars);
22030 break;
22031 case rs_align_code:
b968d18a 22032 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
22033 break;
22034 default:
22035 break;
cd000bff 22036 }
bfae80f2
RE
22037}
22038
c19d1205
ZW
22039/* When we change sections we need to issue a new mapping symbol. */
22040
22041void
22042arm_elf_change_section (void)
bfae80f2 22043{
c19d1205
ZW
22044 /* Link an unlinked unwind index table section to the .text section. */
22045 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
22046 && elf_linked_to_section (now_seg) == NULL)
22047 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
22048}
22049
c19d1205
ZW
22050int
22051arm_elf_section_type (const char * str, size_t len)
e45d0630 22052{
c19d1205
ZW
22053 if (len == 5 && strncmp (str, "exidx", 5) == 0)
22054 return SHT_ARM_EXIDX;
e45d0630 22055
c19d1205
ZW
22056 return -1;
22057}
22058\f
22059/* Code to deal with unwinding tables. */
e45d0630 22060
c19d1205 22061static void add_unwind_adjustsp (offsetT);
e45d0630 22062
5f4273c7 22063/* Generate any deferred unwind frame offset. */
e45d0630 22064
bfae80f2 22065static void
c19d1205 22066flush_pending_unwind (void)
bfae80f2 22067{
c19d1205 22068 offsetT offset;
bfae80f2 22069
c19d1205
ZW
22070 offset = unwind.pending_offset;
22071 unwind.pending_offset = 0;
22072 if (offset != 0)
22073 add_unwind_adjustsp (offset);
bfae80f2
RE
22074}
22075
c19d1205
ZW
22076/* Add an opcode to this list for this function. Two-byte opcodes should
22077 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
22078 order. */
22079
bfae80f2 22080static void
c19d1205 22081add_unwind_opcode (valueT op, int length)
bfae80f2 22082{
c19d1205
ZW
22083 /* Add any deferred stack adjustment. */
22084 if (unwind.pending_offset)
22085 flush_pending_unwind ();
bfae80f2 22086
c19d1205 22087 unwind.sp_restored = 0;
bfae80f2 22088
c19d1205 22089 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 22090 {
c19d1205
ZW
22091 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
22092 if (unwind.opcodes)
325801bd
TS
22093 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
22094 unwind.opcode_alloc);
c19d1205 22095 else
325801bd 22096 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 22097 }
c19d1205 22098 while (length > 0)
bfae80f2 22099 {
c19d1205
ZW
22100 length--;
22101 unwind.opcodes[unwind.opcode_count] = op & 0xff;
22102 op >>= 8;
22103 unwind.opcode_count++;
bfae80f2 22104 }
bfae80f2
RE
22105}
22106
c19d1205
ZW
22107/* Add unwind opcodes to adjust the stack pointer. */
22108
bfae80f2 22109static void
c19d1205 22110add_unwind_adjustsp (offsetT offset)
bfae80f2 22111{
c19d1205 22112 valueT op;
bfae80f2 22113
c19d1205 22114 if (offset > 0x200)
bfae80f2 22115 {
c19d1205
ZW
22116 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
22117 char bytes[5];
22118 int n;
22119 valueT o;
bfae80f2 22120
c19d1205
ZW
22121 /* Long form: 0xb2, uleb128. */
22122 /* This might not fit in a word so add the individual bytes,
22123 remembering the list is built in reverse order. */
22124 o = (valueT) ((offset - 0x204) >> 2);
22125 if (o == 0)
22126 add_unwind_opcode (0, 1);
bfae80f2 22127
c19d1205
ZW
22128 /* Calculate the uleb128 encoding of the offset. */
22129 n = 0;
22130 while (o)
22131 {
22132 bytes[n] = o & 0x7f;
22133 o >>= 7;
22134 if (o)
22135 bytes[n] |= 0x80;
22136 n++;
22137 }
22138 /* Add the insn. */
22139 for (; n; n--)
22140 add_unwind_opcode (bytes[n - 1], 1);
22141 add_unwind_opcode (0xb2, 1);
22142 }
22143 else if (offset > 0x100)
bfae80f2 22144 {
c19d1205
ZW
22145 /* Two short opcodes. */
22146 add_unwind_opcode (0x3f, 1);
22147 op = (offset - 0x104) >> 2;
22148 add_unwind_opcode (op, 1);
bfae80f2 22149 }
c19d1205
ZW
22150 else if (offset > 0)
22151 {
22152 /* Short opcode. */
22153 op = (offset - 4) >> 2;
22154 add_unwind_opcode (op, 1);
22155 }
22156 else if (offset < 0)
bfae80f2 22157 {
c19d1205
ZW
22158 offset = -offset;
22159 while (offset > 0x100)
bfae80f2 22160 {
c19d1205
ZW
22161 add_unwind_opcode (0x7f, 1);
22162 offset -= 0x100;
bfae80f2 22163 }
c19d1205
ZW
22164 op = ((offset - 4) >> 2) | 0x40;
22165 add_unwind_opcode (op, 1);
bfae80f2 22166 }
bfae80f2
RE
22167}
22168
c19d1205
ZW
22169/* Finish the list of unwind opcodes for this function. */
22170static void
22171finish_unwind_opcodes (void)
bfae80f2 22172{
c19d1205 22173 valueT op;
bfae80f2 22174
c19d1205 22175 if (unwind.fp_used)
bfae80f2 22176 {
708587a4 22177 /* Adjust sp as necessary. */
c19d1205
ZW
22178 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
22179 flush_pending_unwind ();
bfae80f2 22180
c19d1205
ZW
22181 /* After restoring sp from the frame pointer. */
22182 op = 0x90 | unwind.fp_reg;
22183 add_unwind_opcode (op, 1);
22184 }
22185 else
22186 flush_pending_unwind ();
bfae80f2
RE
22187}
22188
bfae80f2 22189
c19d1205
ZW
22190/* Start an exception table entry. If idx is nonzero this is an index table
22191 entry. */
bfae80f2
RE
22192
22193static void
c19d1205 22194start_unwind_section (const segT text_seg, int idx)
bfae80f2 22195{
c19d1205
ZW
22196 const char * text_name;
22197 const char * prefix;
22198 const char * prefix_once;
22199 const char * group_name;
c19d1205 22200 char * sec_name;
c19d1205
ZW
22201 int type;
22202 int flags;
22203 int linkonce;
bfae80f2 22204
c19d1205 22205 if (idx)
bfae80f2 22206 {
c19d1205
ZW
22207 prefix = ELF_STRING_ARM_unwind;
22208 prefix_once = ELF_STRING_ARM_unwind_once;
22209 type = SHT_ARM_EXIDX;
bfae80f2 22210 }
c19d1205 22211 else
bfae80f2 22212 {
c19d1205
ZW
22213 prefix = ELF_STRING_ARM_unwind_info;
22214 prefix_once = ELF_STRING_ARM_unwind_info_once;
22215 type = SHT_PROGBITS;
bfae80f2
RE
22216 }
22217
c19d1205
ZW
22218 text_name = segment_name (text_seg);
22219 if (streq (text_name, ".text"))
22220 text_name = "";
22221
22222 if (strncmp (text_name, ".gnu.linkonce.t.",
22223 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 22224 {
c19d1205
ZW
22225 prefix = prefix_once;
22226 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
22227 }
22228
29a2809e 22229 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 22230
c19d1205
ZW
22231 flags = SHF_ALLOC;
22232 linkonce = 0;
22233 group_name = 0;
bfae80f2 22234
c19d1205
ZW
22235 /* Handle COMDAT group. */
22236 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 22237 {
c19d1205
ZW
22238 group_name = elf_group_name (text_seg);
22239 if (group_name == NULL)
22240 {
bd3ba5d1 22241 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
22242 segment_name (text_seg));
22243 ignore_rest_of_line ();
22244 return;
22245 }
22246 flags |= SHF_GROUP;
22247 linkonce = 1;
bfae80f2
RE
22248 }
22249
a91e1603
L
22250 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
22251 linkonce, 0);
bfae80f2 22252
5f4273c7 22253 /* Set the section link for index tables. */
c19d1205
ZW
22254 if (idx)
22255 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
22256}
22257
bfae80f2 22258
c19d1205
ZW
22259/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
22260 personality routine data. Returns zero, or the index table value for
cad0da33 22261 an inline entry. */
c19d1205
ZW
22262
22263static valueT
22264create_unwind_entry (int have_data)
bfae80f2 22265{
c19d1205
ZW
22266 int size;
22267 addressT where;
22268 char *ptr;
22269 /* The current word of data. */
22270 valueT data;
22271 /* The number of bytes left in this word. */
22272 int n;
bfae80f2 22273
c19d1205 22274 finish_unwind_opcodes ();
bfae80f2 22275
c19d1205
ZW
22276 /* Remember the current text section. */
22277 unwind.saved_seg = now_seg;
22278 unwind.saved_subseg = now_subseg;
bfae80f2 22279
c19d1205 22280 start_unwind_section (now_seg, 0);
bfae80f2 22281
c19d1205 22282 if (unwind.personality_routine == NULL)
bfae80f2 22283 {
c19d1205
ZW
22284 if (unwind.personality_index == -2)
22285 {
22286 if (have_data)
5f4273c7 22287 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
22288 return 1; /* EXIDX_CANTUNWIND. */
22289 }
bfae80f2 22290
c19d1205
ZW
22291 /* Use a default personality routine if none is specified. */
22292 if (unwind.personality_index == -1)
22293 {
22294 if (unwind.opcode_count > 3)
22295 unwind.personality_index = 1;
22296 else
22297 unwind.personality_index = 0;
22298 }
bfae80f2 22299
c19d1205
ZW
22300 /* Space for the personality routine entry. */
22301 if (unwind.personality_index == 0)
22302 {
22303 if (unwind.opcode_count > 3)
22304 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 22305
c19d1205
ZW
22306 if (!have_data)
22307 {
22308 /* All the data is inline in the index table. */
22309 data = 0x80;
22310 n = 3;
22311 while (unwind.opcode_count > 0)
22312 {
22313 unwind.opcode_count--;
22314 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22315 n--;
22316 }
bfae80f2 22317
c19d1205
ZW
22318 /* Pad with "finish" opcodes. */
22319 while (n--)
22320 data = (data << 8) | 0xb0;
bfae80f2 22321
c19d1205
ZW
22322 return data;
22323 }
22324 size = 0;
22325 }
22326 else
22327 /* We get two opcodes "free" in the first word. */
22328 size = unwind.opcode_count - 2;
22329 }
22330 else
5011093d 22331 {
cad0da33
NC
22332 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
22333 if (unwind.personality_index != -1)
22334 {
22335 as_bad (_("attempt to recreate an unwind entry"));
22336 return 1;
22337 }
5011093d
NC
22338
22339 /* An extra byte is required for the opcode count. */
22340 size = unwind.opcode_count + 1;
22341 }
bfae80f2 22342
c19d1205
ZW
22343 size = (size + 3) >> 2;
22344 if (size > 0xff)
22345 as_bad (_("too many unwind opcodes"));
bfae80f2 22346
c19d1205
ZW
22347 frag_align (2, 0, 0);
22348 record_alignment (now_seg, 2);
22349 unwind.table_entry = expr_build_dot ();
22350
22351 /* Allocate the table entry. */
22352 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
22353 /* PR 13449: Zero the table entries in case some of them are not used. */
22354 memset (ptr, 0, (size << 2) + 4);
c19d1205 22355 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 22356
c19d1205 22357 switch (unwind.personality_index)
bfae80f2 22358 {
c19d1205
ZW
22359 case -1:
22360 /* ??? Should this be a PLT generating relocation? */
22361 /* Custom personality routine. */
22362 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
22363 BFD_RELOC_ARM_PREL31);
bfae80f2 22364
c19d1205
ZW
22365 where += 4;
22366 ptr += 4;
bfae80f2 22367
c19d1205 22368 /* Set the first byte to the number of additional words. */
5011093d 22369 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
22370 n = 3;
22371 break;
bfae80f2 22372
c19d1205
ZW
22373 /* ABI defined personality routines. */
22374 case 0:
22375 /* Three opcodes bytes are packed into the first word. */
22376 data = 0x80;
22377 n = 3;
22378 break;
bfae80f2 22379
c19d1205
ZW
22380 case 1:
22381 case 2:
22382 /* The size and first two opcode bytes go in the first word. */
22383 data = ((0x80 + unwind.personality_index) << 8) | size;
22384 n = 2;
22385 break;
bfae80f2 22386
c19d1205
ZW
22387 default:
22388 /* Should never happen. */
22389 abort ();
22390 }
bfae80f2 22391
c19d1205
ZW
22392 /* Pack the opcodes into words (MSB first), reversing the list at the same
22393 time. */
22394 while (unwind.opcode_count > 0)
22395 {
22396 if (n == 0)
22397 {
22398 md_number_to_chars (ptr, data, 4);
22399 ptr += 4;
22400 n = 4;
22401 data = 0;
22402 }
22403 unwind.opcode_count--;
22404 n--;
22405 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22406 }
22407
22408 /* Finish off the last word. */
22409 if (n < 4)
22410 {
22411 /* Pad with "finish" opcodes. */
22412 while (n--)
22413 data = (data << 8) | 0xb0;
22414
22415 md_number_to_chars (ptr, data, 4);
22416 }
22417
22418 if (!have_data)
22419 {
22420 /* Add an empty descriptor if there is no user-specified data. */
22421 ptr = frag_more (4);
22422 md_number_to_chars (ptr, 0, 4);
22423 }
22424
22425 return 0;
bfae80f2
RE
22426}
22427
f0927246
NC
22428
22429/* Initialize the DWARF-2 unwind information for this procedure. */
22430
22431void
22432tc_arm_frame_initial_instructions (void)
22433{
22434 cfi_add_CFA_def_cfa (REG_SP, 0);
22435}
22436#endif /* OBJ_ELF */
22437
c19d1205
ZW
22438/* Convert REGNAME to a DWARF-2 register number. */
22439
22440int
1df69f4f 22441tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 22442{
1df69f4f 22443 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
22444 if (reg != FAIL)
22445 return reg;
c19d1205 22446
1f5afe1c
NC
22447 /* PR 16694: Allow VFP registers as well. */
22448 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
22449 if (reg != FAIL)
22450 return 64 + reg;
c19d1205 22451
1f5afe1c
NC
22452 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
22453 if (reg != FAIL)
22454 return reg + 256;
22455
22456 return -1;
bfae80f2
RE
22457}
22458
f0927246 22459#ifdef TE_PE
c19d1205 22460void
f0927246 22461tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 22462{
91d6fa6a 22463 expressionS exp;
bfae80f2 22464
91d6fa6a
NC
22465 exp.X_op = O_secrel;
22466 exp.X_add_symbol = symbol;
22467 exp.X_add_number = 0;
22468 emit_expr (&exp, size);
f0927246
NC
22469}
22470#endif
bfae80f2 22471
c19d1205 22472/* MD interface: Symbol and relocation handling. */
bfae80f2 22473
2fc8bdac
ZW
22474/* Return the address within the segment that a PC-relative fixup is
22475 relative to. For ARM, PC-relative fixups applied to instructions
22476 are generally relative to the location of the fixup plus 8 bytes.
22477 Thumb branches are offset by 4, and Thumb loads relative to PC
22478 require special handling. */
bfae80f2 22479
c19d1205 22480long
2fc8bdac 22481md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 22482{
2fc8bdac
ZW
22483 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
22484
22485 /* If this is pc-relative and we are going to emit a relocation
22486 then we just want to put out any pipeline compensation that the linker
53baae48
NC
22487 will need. Otherwise we want to use the calculated base.
22488 For WinCE we skip the bias for externals as well, since this
22489 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 22490 if (fixP->fx_pcrel
2fc8bdac 22491 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
22492 || (arm_force_relocation (fixP)
22493#ifdef TE_WINCE
22494 && !S_IS_EXTERNAL (fixP->fx_addsy)
22495#endif
22496 )))
2fc8bdac 22497 base = 0;
bfae80f2 22498
267bf995 22499
c19d1205 22500 switch (fixP->fx_r_type)
bfae80f2 22501 {
2fc8bdac
ZW
22502 /* PC relative addressing on the Thumb is slightly odd as the
22503 bottom two bits of the PC are forced to zero for the
22504 calculation. This happens *after* application of the
22505 pipeline offset. However, Thumb adrl already adjusts for
22506 this, so we need not do it again. */
c19d1205 22507 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 22508 return base & ~3;
c19d1205
ZW
22509
22510 case BFD_RELOC_ARM_THUMB_OFFSET:
22511 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 22512 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 22513 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 22514 return (base + 4) & ~3;
c19d1205 22515
2fc8bdac
ZW
22516 /* Thumb branches are simply offset by +4. */
22517 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22518 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22519 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22520 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 22521 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 22522 return base + 4;
bfae80f2 22523
267bf995 22524 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
22525 if (fixP->fx_addsy
22526 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22527 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 22528 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
22529 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22530 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
22531 return base + 4;
22532
00adf2d4
JB
22533 /* BLX is like branches above, but forces the low two bits of PC to
22534 zero. */
486499d0
CL
22535 case BFD_RELOC_THUMB_PCREL_BLX:
22536 if (fixP->fx_addsy
22537 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22538 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22539 && THUMB_IS_FUNC (fixP->fx_addsy)
22540 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22541 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
22542 return (base + 4) & ~3;
22543
2fc8bdac
ZW
22544 /* ARM mode branches are offset by +8. However, the Windows CE
22545 loader expects the relocation not to take this into account. */
267bf995 22546 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
22547 if (fixP->fx_addsy
22548 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22549 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22550 && ARM_IS_FUNC (fixP->fx_addsy)
22551 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22552 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 22553 return base + 8;
267bf995 22554
486499d0
CL
22555 case BFD_RELOC_ARM_PCREL_CALL:
22556 if (fixP->fx_addsy
22557 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22558 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22559 && THUMB_IS_FUNC (fixP->fx_addsy)
22560 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22561 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 22562 return base + 8;
267bf995 22563
2fc8bdac 22564 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 22565 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 22566 case BFD_RELOC_ARM_PLT32:
c19d1205 22567#ifdef TE_WINCE
5f4273c7 22568 /* When handling fixups immediately, because we have already
477330fc 22569 discovered the value of a symbol, or the address of the frag involved
53baae48 22570 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
22571 see fixup_segment() in write.c
22572 The S_IS_EXTERNAL test handles the case of global symbols.
22573 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
22574 if (fixP->fx_pcrel
22575 && fixP->fx_addsy != NULL
22576 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22577 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
22578 return base + 8;
2fc8bdac 22579 return base;
c19d1205 22580#else
2fc8bdac 22581 return base + 8;
c19d1205 22582#endif
2fc8bdac 22583
267bf995 22584
2fc8bdac
ZW
22585 /* ARM mode loads relative to PC are also offset by +8. Unlike
22586 branches, the Windows CE loader *does* expect the relocation
22587 to take this into account. */
22588 case BFD_RELOC_ARM_OFFSET_IMM:
22589 case BFD_RELOC_ARM_OFFSET_IMM8:
22590 case BFD_RELOC_ARM_HWLITERAL:
22591 case BFD_RELOC_ARM_LITERAL:
22592 case BFD_RELOC_ARM_CP_OFF_IMM:
22593 return base + 8;
22594
22595
22596 /* Other PC-relative relocations are un-offset. */
22597 default:
22598 return base;
22599 }
bfae80f2
RE
22600}
22601
8b2d793c
NC
22602static bfd_boolean flag_warn_syms = TRUE;
22603
ae8714c2
NC
22604bfd_boolean
22605arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 22606{
8b2d793c
NC
22607 /* PR 18347 - Warn if the user attempts to create a symbol with the same
22608 name as an ARM instruction. Whilst strictly speaking it is allowed, it
22609 does mean that the resulting code might be very confusing to the reader.
22610 Also this warning can be triggered if the user omits an operand before
22611 an immediate address, eg:
22612
22613 LDR =foo
22614
22615 GAS treats this as an assignment of the value of the symbol foo to a
22616 symbol LDR, and so (without this code) it will not issue any kind of
22617 warning or error message.
22618
22619 Note - ARM instructions are case-insensitive but the strings in the hash
22620 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
22621 lower case too. */
22622 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
22623 {
22624 char * nbuf = strdup (name);
22625 char * p;
22626
22627 for (p = nbuf; *p; p++)
22628 *p = TOLOWER (*p);
22629 if (hash_find (arm_ops_hsh, nbuf) != NULL)
22630 {
22631 static struct hash_control * already_warned = NULL;
22632
22633 if (already_warned == NULL)
22634 already_warned = hash_new ();
22635 /* Only warn about the symbol once. To keep the code
22636 simple we let hash_insert do the lookup for us. */
22637 if (hash_insert (already_warned, name, NULL) == NULL)
ae8714c2 22638 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
22639 }
22640 else
22641 free (nbuf);
22642 }
3739860c 22643
ae8714c2
NC
22644 return FALSE;
22645}
22646
22647/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
22648 Otherwise we have no need to default values of symbols. */
22649
22650symbolS *
22651md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
22652{
22653#ifdef OBJ_ELF
22654 if (name[0] == '_' && name[1] == 'G'
22655 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
22656 {
22657 if (!GOT_symbol)
22658 {
22659 if (symbol_find (name))
22660 as_bad (_("GOT already in the symbol table"));
22661
22662 GOT_symbol = symbol_new (name, undefined_section,
22663 (valueT) 0, & zero_address_frag);
22664 }
22665
22666 return GOT_symbol;
22667 }
22668#endif
22669
c921be7d 22670 return NULL;
bfae80f2
RE
22671}
22672
55cf6793 22673/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
22674 computed as two separate immediate values, added together. We
22675 already know that this value cannot be computed by just one ARM
22676 instruction. */
22677
22678static unsigned int
22679validate_immediate_twopart (unsigned int val,
22680 unsigned int * highpart)
bfae80f2 22681{
c19d1205
ZW
22682 unsigned int a;
22683 unsigned int i;
bfae80f2 22684
c19d1205
ZW
22685 for (i = 0; i < 32; i += 2)
22686 if (((a = rotate_left (val, i)) & 0xff) != 0)
22687 {
22688 if (a & 0xff00)
22689 {
22690 if (a & ~ 0xffff)
22691 continue;
22692 * highpart = (a >> 8) | ((i + 24) << 7);
22693 }
22694 else if (a & 0xff0000)
22695 {
22696 if (a & 0xff000000)
22697 continue;
22698 * highpart = (a >> 16) | ((i + 16) << 7);
22699 }
22700 else
22701 {
9c2799c2 22702 gas_assert (a & 0xff000000);
c19d1205
ZW
22703 * highpart = (a >> 24) | ((i + 8) << 7);
22704 }
bfae80f2 22705
c19d1205
ZW
22706 return (a & 0xff) | (i << 7);
22707 }
bfae80f2 22708
c19d1205 22709 return FAIL;
bfae80f2
RE
22710}
22711
c19d1205
ZW
22712static int
22713validate_offset_imm (unsigned int val, int hwse)
22714{
22715 if ((hwse && val > 255) || val > 4095)
22716 return FAIL;
22717 return val;
22718}
bfae80f2 22719
55cf6793 22720/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
22721 negative immediate constant by altering the instruction. A bit of
22722 a hack really.
22723 MOV <-> MVN
22724 AND <-> BIC
22725 ADC <-> SBC
22726 by inverting the second operand, and
22727 ADD <-> SUB
22728 CMP <-> CMN
22729 by negating the second operand. */
bfae80f2 22730
c19d1205
ZW
22731static int
22732negate_data_op (unsigned long * instruction,
22733 unsigned long value)
bfae80f2 22734{
c19d1205
ZW
22735 int op, new_inst;
22736 unsigned long negated, inverted;
bfae80f2 22737
c19d1205
ZW
22738 negated = encode_arm_immediate (-value);
22739 inverted = encode_arm_immediate (~value);
bfae80f2 22740
c19d1205
ZW
22741 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
22742 switch (op)
bfae80f2 22743 {
c19d1205
ZW
22744 /* First negates. */
22745 case OPCODE_SUB: /* ADD <-> SUB */
22746 new_inst = OPCODE_ADD;
22747 value = negated;
22748 break;
bfae80f2 22749
c19d1205
ZW
22750 case OPCODE_ADD:
22751 new_inst = OPCODE_SUB;
22752 value = negated;
22753 break;
bfae80f2 22754
c19d1205
ZW
22755 case OPCODE_CMP: /* CMP <-> CMN */
22756 new_inst = OPCODE_CMN;
22757 value = negated;
22758 break;
bfae80f2 22759
c19d1205
ZW
22760 case OPCODE_CMN:
22761 new_inst = OPCODE_CMP;
22762 value = negated;
22763 break;
bfae80f2 22764
c19d1205
ZW
22765 /* Now Inverted ops. */
22766 case OPCODE_MOV: /* MOV <-> MVN */
22767 new_inst = OPCODE_MVN;
22768 value = inverted;
22769 break;
bfae80f2 22770
c19d1205
ZW
22771 case OPCODE_MVN:
22772 new_inst = OPCODE_MOV;
22773 value = inverted;
22774 break;
bfae80f2 22775
c19d1205
ZW
22776 case OPCODE_AND: /* AND <-> BIC */
22777 new_inst = OPCODE_BIC;
22778 value = inverted;
22779 break;
bfae80f2 22780
c19d1205
ZW
22781 case OPCODE_BIC:
22782 new_inst = OPCODE_AND;
22783 value = inverted;
22784 break;
bfae80f2 22785
c19d1205
ZW
22786 case OPCODE_ADC: /* ADC <-> SBC */
22787 new_inst = OPCODE_SBC;
22788 value = inverted;
22789 break;
bfae80f2 22790
c19d1205
ZW
22791 case OPCODE_SBC:
22792 new_inst = OPCODE_ADC;
22793 value = inverted;
22794 break;
bfae80f2 22795
c19d1205
ZW
22796 /* We cannot do anything. */
22797 default:
22798 return FAIL;
b99bd4ef
NC
22799 }
22800
c19d1205
ZW
22801 if (value == (unsigned) FAIL)
22802 return FAIL;
22803
22804 *instruction &= OPCODE_MASK;
22805 *instruction |= new_inst << DATA_OP_SHIFT;
22806 return value;
b99bd4ef
NC
22807}
22808
ef8d22e6
PB
22809/* Like negate_data_op, but for Thumb-2. */
22810
22811static unsigned int
16dd5e42 22812thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
22813{
22814 int op, new_inst;
22815 int rd;
16dd5e42 22816 unsigned int negated, inverted;
ef8d22e6
PB
22817
22818 negated = encode_thumb32_immediate (-value);
22819 inverted = encode_thumb32_immediate (~value);
22820
22821 rd = (*instruction >> 8) & 0xf;
22822 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
22823 switch (op)
22824 {
22825 /* ADD <-> SUB. Includes CMP <-> CMN. */
22826 case T2_OPCODE_SUB:
22827 new_inst = T2_OPCODE_ADD;
22828 value = negated;
22829 break;
22830
22831 case T2_OPCODE_ADD:
22832 new_inst = T2_OPCODE_SUB;
22833 value = negated;
22834 break;
22835
22836 /* ORR <-> ORN. Includes MOV <-> MVN. */
22837 case T2_OPCODE_ORR:
22838 new_inst = T2_OPCODE_ORN;
22839 value = inverted;
22840 break;
22841
22842 case T2_OPCODE_ORN:
22843 new_inst = T2_OPCODE_ORR;
22844 value = inverted;
22845 break;
22846
22847 /* AND <-> BIC. TST has no inverted equivalent. */
22848 case T2_OPCODE_AND:
22849 new_inst = T2_OPCODE_BIC;
22850 if (rd == 15)
22851 value = FAIL;
22852 else
22853 value = inverted;
22854 break;
22855
22856 case T2_OPCODE_BIC:
22857 new_inst = T2_OPCODE_AND;
22858 value = inverted;
22859 break;
22860
22861 /* ADC <-> SBC */
22862 case T2_OPCODE_ADC:
22863 new_inst = T2_OPCODE_SBC;
22864 value = inverted;
22865 break;
22866
22867 case T2_OPCODE_SBC:
22868 new_inst = T2_OPCODE_ADC;
22869 value = inverted;
22870 break;
22871
22872 /* We cannot do anything. */
22873 default:
22874 return FAIL;
22875 }
22876
16dd5e42 22877 if (value == (unsigned int)FAIL)
ef8d22e6
PB
22878 return FAIL;
22879
22880 *instruction &= T2_OPCODE_MASK;
22881 *instruction |= new_inst << T2_DATA_OP_SHIFT;
22882 return value;
22883}
22884
8f06b2d8
PB
22885/* Read a 32-bit thumb instruction from buf. */
22886static unsigned long
22887get_thumb32_insn (char * buf)
22888{
22889 unsigned long insn;
22890 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
22891 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22892
22893 return insn;
22894}
22895
a8bc6c78
PB
22896
22897/* We usually want to set the low bit on the address of thumb function
22898 symbols. In particular .word foo - . should have the low bit set.
22899 Generic code tries to fold the difference of two symbols to
22900 a constant. Prevent this and force a relocation when the first symbols
22901 is a thumb function. */
c921be7d
NC
22902
22903bfd_boolean
a8bc6c78
PB
22904arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
22905{
22906 if (op == O_subtract
22907 && l->X_op == O_symbol
22908 && r->X_op == O_symbol
22909 && THUMB_IS_FUNC (l->X_add_symbol))
22910 {
22911 l->X_op = O_subtract;
22912 l->X_op_symbol = r->X_add_symbol;
22913 l->X_add_number -= r->X_add_number;
c921be7d 22914 return TRUE;
a8bc6c78 22915 }
c921be7d 22916
a8bc6c78 22917 /* Process as normal. */
c921be7d 22918 return FALSE;
a8bc6c78
PB
22919}
22920
4a42ebbc
RR
22921/* Encode Thumb2 unconditional branches and calls. The encoding
22922 for the 2 are identical for the immediate values. */
22923
22924static void
22925encode_thumb2_b_bl_offset (char * buf, offsetT value)
22926{
22927#define T2I1I2MASK ((1 << 13) | (1 << 11))
22928 offsetT newval;
22929 offsetT newval2;
22930 addressT S, I1, I2, lo, hi;
22931
22932 S = (value >> 24) & 0x01;
22933 I1 = (value >> 23) & 0x01;
22934 I2 = (value >> 22) & 0x01;
22935 hi = (value >> 12) & 0x3ff;
fa94de6b 22936 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
22937 newval = md_chars_to_number (buf, THUMB_SIZE);
22938 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22939 newval |= (S << 10) | hi;
22940 newval2 &= ~T2I1I2MASK;
22941 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
22942 md_number_to_chars (buf, newval, THUMB_SIZE);
22943 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
22944}
22945
c19d1205 22946void
55cf6793 22947md_apply_fix (fixS * fixP,
c19d1205
ZW
22948 valueT * valP,
22949 segT seg)
22950{
22951 offsetT value = * valP;
22952 offsetT newval;
22953 unsigned int newimm;
22954 unsigned long temp;
22955 int sign;
22956 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 22957
9c2799c2 22958 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 22959
c19d1205 22960 /* Note whether this will delete the relocation. */
4962c51a 22961
c19d1205
ZW
22962 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
22963 fixP->fx_done = 1;
b99bd4ef 22964
adbaf948 22965 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 22966 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
22967 for emit_reloc. */
22968 value &= 0xffffffff;
22969 value ^= 0x80000000;
5f4273c7 22970 value -= 0x80000000;
adbaf948
ZW
22971
22972 *valP = value;
c19d1205 22973 fixP->fx_addnumber = value;
b99bd4ef 22974
adbaf948
ZW
22975 /* Same treatment for fixP->fx_offset. */
22976 fixP->fx_offset &= 0xffffffff;
22977 fixP->fx_offset ^= 0x80000000;
22978 fixP->fx_offset -= 0x80000000;
22979
c19d1205 22980 switch (fixP->fx_r_type)
b99bd4ef 22981 {
c19d1205
ZW
22982 case BFD_RELOC_NONE:
22983 /* This will need to go in the object file. */
22984 fixP->fx_done = 0;
22985 break;
b99bd4ef 22986
c19d1205
ZW
22987 case BFD_RELOC_ARM_IMMEDIATE:
22988 /* We claim that this fixup has been processed here,
22989 even if in fact we generate an error because we do
22990 not have a reloc for it, so tc_gen_reloc will reject it. */
22991 fixP->fx_done = 1;
b99bd4ef 22992
77db8e2e 22993 if (fixP->fx_addsy)
b99bd4ef 22994 {
77db8e2e 22995 const char *msg = 0;
b99bd4ef 22996
77db8e2e
NC
22997 if (! S_IS_DEFINED (fixP->fx_addsy))
22998 msg = _("undefined symbol %s used as an immediate value");
22999 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23000 msg = _("symbol %s is in a different section");
23001 else if (S_IS_WEAK (fixP->fx_addsy))
23002 msg = _("symbol %s is weak and may be overridden later");
23003
23004 if (msg)
23005 {
23006 as_bad_where (fixP->fx_file, fixP->fx_line,
23007 msg, S_GET_NAME (fixP->fx_addsy));
23008 break;
23009 }
42e5fcbf
AS
23010 }
23011
c19d1205
ZW
23012 temp = md_chars_to_number (buf, INSN_SIZE);
23013
5e73442d
SL
23014 /* If the offset is negative, we should use encoding A2 for ADR. */
23015 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
23016 newimm = negate_data_op (&temp, value);
23017 else
23018 {
23019 newimm = encode_arm_immediate (value);
23020
23021 /* If the instruction will fail, see if we can fix things up by
23022 changing the opcode. */
23023 if (newimm == (unsigned int) FAIL)
23024 newimm = negate_data_op (&temp, value);
bada4342
JW
23025 /* MOV accepts both ARM modified immediate (A1 encoding) and
23026 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
23027 When disassembling, MOV is preferred when there is no encoding
23028 overlap. */
23029 if (newimm == (unsigned int) FAIL
23030 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
23031 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
23032 && !((temp >> SBIT_SHIFT) & 0x1)
23033 && value >= 0 && value <= 0xffff)
23034 {
23035 /* Clear bits[23:20] to change encoding from A1 to A2. */
23036 temp &= 0xff0fffff;
23037 /* Encoding high 4bits imm. Code below will encode the remaining
23038 low 12bits. */
23039 temp |= (value & 0x0000f000) << 4;
23040 newimm = value & 0x00000fff;
23041 }
5e73442d
SL
23042 }
23043
23044 if (newimm == (unsigned int) FAIL)
b99bd4ef 23045 {
c19d1205
ZW
23046 as_bad_where (fixP->fx_file, fixP->fx_line,
23047 _("invalid constant (%lx) after fixup"),
23048 (unsigned long) value);
23049 break;
b99bd4ef 23050 }
b99bd4ef 23051
c19d1205
ZW
23052 newimm |= (temp & 0xfffff000);
23053 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23054 break;
b99bd4ef 23055
c19d1205
ZW
23056 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
23057 {
23058 unsigned int highpart = 0;
23059 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 23060
77db8e2e 23061 if (fixP->fx_addsy)
42e5fcbf 23062 {
77db8e2e 23063 const char *msg = 0;
42e5fcbf 23064
77db8e2e
NC
23065 if (! S_IS_DEFINED (fixP->fx_addsy))
23066 msg = _("undefined symbol %s used as an immediate value");
23067 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23068 msg = _("symbol %s is in a different section");
23069 else if (S_IS_WEAK (fixP->fx_addsy))
23070 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 23071
77db8e2e
NC
23072 if (msg)
23073 {
23074 as_bad_where (fixP->fx_file, fixP->fx_line,
23075 msg, S_GET_NAME (fixP->fx_addsy));
23076 break;
23077 }
23078 }
fa94de6b 23079
c19d1205
ZW
23080 newimm = encode_arm_immediate (value);
23081 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 23082
c19d1205
ZW
23083 /* If the instruction will fail, see if we can fix things up by
23084 changing the opcode. */
23085 if (newimm == (unsigned int) FAIL
23086 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
23087 {
23088 /* No ? OK - try using two ADD instructions to generate
23089 the value. */
23090 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 23091
c19d1205
ZW
23092 /* Yes - then make sure that the second instruction is
23093 also an add. */
23094 if (newimm != (unsigned int) FAIL)
23095 newinsn = temp;
23096 /* Still No ? Try using a negated value. */
23097 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
23098 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
23099 /* Otherwise - give up. */
23100 else
23101 {
23102 as_bad_where (fixP->fx_file, fixP->fx_line,
23103 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
23104 (long) value);
23105 break;
23106 }
b99bd4ef 23107
c19d1205
ZW
23108 /* Replace the first operand in the 2nd instruction (which
23109 is the PC) with the destination register. We have
23110 already added in the PC in the first instruction and we
23111 do not want to do it again. */
23112 newinsn &= ~ 0xf0000;
23113 newinsn |= ((newinsn & 0x0f000) << 4);
23114 }
b99bd4ef 23115
c19d1205
ZW
23116 newimm |= (temp & 0xfffff000);
23117 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 23118
c19d1205
ZW
23119 highpart |= (newinsn & 0xfffff000);
23120 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
23121 }
23122 break;
b99bd4ef 23123
c19d1205 23124 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
23125 if (!fixP->fx_done && seg->use_rela_p)
23126 value = 0;
1a0670f3 23127 /* Fall through. */
00a97672 23128
c19d1205 23129 case BFD_RELOC_ARM_LITERAL:
26d97720 23130 sign = value > 0;
b99bd4ef 23131
c19d1205
ZW
23132 if (value < 0)
23133 value = - value;
b99bd4ef 23134
c19d1205 23135 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 23136 {
c19d1205
ZW
23137 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
23138 as_bad_where (fixP->fx_file, fixP->fx_line,
23139 _("invalid literal constant: pool needs to be closer"));
23140 else
23141 as_bad_where (fixP->fx_file, fixP->fx_line,
23142 _("bad immediate value for offset (%ld)"),
23143 (long) value);
23144 break;
f03698e6
RE
23145 }
23146
c19d1205 23147 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
23148 if (value == 0)
23149 newval &= 0xfffff000;
23150 else
23151 {
23152 newval &= 0xff7ff000;
23153 newval |= value | (sign ? INDEX_UP : 0);
23154 }
c19d1205
ZW
23155 md_number_to_chars (buf, newval, INSN_SIZE);
23156 break;
b99bd4ef 23157
c19d1205
ZW
23158 case BFD_RELOC_ARM_OFFSET_IMM8:
23159 case BFD_RELOC_ARM_HWLITERAL:
26d97720 23160 sign = value > 0;
b99bd4ef 23161
c19d1205
ZW
23162 if (value < 0)
23163 value = - value;
b99bd4ef 23164
c19d1205 23165 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 23166 {
c19d1205
ZW
23167 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
23168 as_bad_where (fixP->fx_file, fixP->fx_line,
23169 _("invalid literal constant: pool needs to be closer"));
23170 else
427d0db6
RM
23171 as_bad_where (fixP->fx_file, fixP->fx_line,
23172 _("bad immediate value for 8-bit offset (%ld)"),
23173 (long) value);
c19d1205 23174 break;
b99bd4ef
NC
23175 }
23176
c19d1205 23177 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
23178 if (value == 0)
23179 newval &= 0xfffff0f0;
23180 else
23181 {
23182 newval &= 0xff7ff0f0;
23183 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
23184 }
c19d1205
ZW
23185 md_number_to_chars (buf, newval, INSN_SIZE);
23186 break;
b99bd4ef 23187
c19d1205
ZW
23188 case BFD_RELOC_ARM_T32_OFFSET_U8:
23189 if (value < 0 || value > 1020 || value % 4 != 0)
23190 as_bad_where (fixP->fx_file, fixP->fx_line,
23191 _("bad immediate value for offset (%ld)"), (long) value);
23192 value /= 4;
b99bd4ef 23193
c19d1205 23194 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
23195 newval |= value;
23196 md_number_to_chars (buf+2, newval, THUMB_SIZE);
23197 break;
b99bd4ef 23198
c19d1205
ZW
23199 case BFD_RELOC_ARM_T32_OFFSET_IMM:
23200 /* This is a complicated relocation used for all varieties of Thumb32
23201 load/store instruction with immediate offset:
23202
23203 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 23204 *4, optional writeback(W)
c19d1205
ZW
23205 (doubleword load/store)
23206
23207 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
23208 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
23209 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
23210 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
23211 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
23212
23213 Uppercase letters indicate bits that are already encoded at
23214 this point. Lowercase letters are our problem. For the
23215 second block of instructions, the secondary opcode nybble
23216 (bits 8..11) is present, and bit 23 is zero, even if this is
23217 a PC-relative operation. */
23218 newval = md_chars_to_number (buf, THUMB_SIZE);
23219 newval <<= 16;
23220 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 23221
c19d1205 23222 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 23223 {
c19d1205
ZW
23224 /* Doubleword load/store: 8-bit offset, scaled by 4. */
23225 if (value >= 0)
23226 newval |= (1 << 23);
23227 else
23228 value = -value;
23229 if (value % 4 != 0)
23230 {
23231 as_bad_where (fixP->fx_file, fixP->fx_line,
23232 _("offset not a multiple of 4"));
23233 break;
23234 }
23235 value /= 4;
216d22bc 23236 if (value > 0xff)
c19d1205
ZW
23237 {
23238 as_bad_where (fixP->fx_file, fixP->fx_line,
23239 _("offset out of range"));
23240 break;
23241 }
23242 newval &= ~0xff;
b99bd4ef 23243 }
c19d1205 23244 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 23245 {
c19d1205
ZW
23246 /* PC-relative, 12-bit offset. */
23247 if (value >= 0)
23248 newval |= (1 << 23);
23249 else
23250 value = -value;
216d22bc 23251 if (value > 0xfff)
c19d1205
ZW
23252 {
23253 as_bad_where (fixP->fx_file, fixP->fx_line,
23254 _("offset out of range"));
23255 break;
23256 }
23257 newval &= ~0xfff;
b99bd4ef 23258 }
c19d1205 23259 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 23260 {
c19d1205
ZW
23261 /* Writeback: 8-bit, +/- offset. */
23262 if (value >= 0)
23263 newval |= (1 << 9);
23264 else
23265 value = -value;
216d22bc 23266 if (value > 0xff)
c19d1205
ZW
23267 {
23268 as_bad_where (fixP->fx_file, fixP->fx_line,
23269 _("offset out of range"));
23270 break;
23271 }
23272 newval &= ~0xff;
b99bd4ef 23273 }
c19d1205 23274 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 23275 {
c19d1205 23276 /* T-instruction: positive 8-bit offset. */
216d22bc 23277 if (value < 0 || value > 0xff)
b99bd4ef 23278 {
c19d1205
ZW
23279 as_bad_where (fixP->fx_file, fixP->fx_line,
23280 _("offset out of range"));
23281 break;
b99bd4ef 23282 }
c19d1205
ZW
23283 newval &= ~0xff;
23284 newval |= value;
b99bd4ef
NC
23285 }
23286 else
b99bd4ef 23287 {
c19d1205
ZW
23288 /* Positive 12-bit or negative 8-bit offset. */
23289 int limit;
23290 if (value >= 0)
b99bd4ef 23291 {
c19d1205
ZW
23292 newval |= (1 << 23);
23293 limit = 0xfff;
23294 }
23295 else
23296 {
23297 value = -value;
23298 limit = 0xff;
23299 }
23300 if (value > limit)
23301 {
23302 as_bad_where (fixP->fx_file, fixP->fx_line,
23303 _("offset out of range"));
23304 break;
b99bd4ef 23305 }
c19d1205 23306 newval &= ~limit;
b99bd4ef 23307 }
b99bd4ef 23308
c19d1205
ZW
23309 newval |= value;
23310 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
23311 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
23312 break;
404ff6b5 23313
c19d1205
ZW
23314 case BFD_RELOC_ARM_SHIFT_IMM:
23315 newval = md_chars_to_number (buf, INSN_SIZE);
23316 if (((unsigned long) value) > 32
23317 || (value == 32
23318 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
23319 {
23320 as_bad_where (fixP->fx_file, fixP->fx_line,
23321 _("shift expression is too large"));
23322 break;
23323 }
404ff6b5 23324
c19d1205
ZW
23325 if (value == 0)
23326 /* Shifts of zero must be done as lsl. */
23327 newval &= ~0x60;
23328 else if (value == 32)
23329 value = 0;
23330 newval &= 0xfffff07f;
23331 newval |= (value & 0x1f) << 7;
23332 md_number_to_chars (buf, newval, INSN_SIZE);
23333 break;
404ff6b5 23334
c19d1205 23335 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 23336 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 23337 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 23338 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
23339 /* We claim that this fixup has been processed here,
23340 even if in fact we generate an error because we do
23341 not have a reloc for it, so tc_gen_reloc will reject it. */
23342 fixP->fx_done = 1;
404ff6b5 23343
c19d1205
ZW
23344 if (fixP->fx_addsy
23345 && ! S_IS_DEFINED (fixP->fx_addsy))
23346 {
23347 as_bad_where (fixP->fx_file, fixP->fx_line,
23348 _("undefined symbol %s used as an immediate value"),
23349 S_GET_NAME (fixP->fx_addsy));
23350 break;
23351 }
404ff6b5 23352
c19d1205
ZW
23353 newval = md_chars_to_number (buf, THUMB_SIZE);
23354 newval <<= 16;
23355 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 23356
16805f35 23357 newimm = FAIL;
bada4342
JW
23358 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23359 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
23360 Thumb2 modified immediate encoding (T2). */
23361 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 23362 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
23363 {
23364 newimm = encode_thumb32_immediate (value);
23365 if (newimm == (unsigned int) FAIL)
23366 newimm = thumb32_negate_data_op (&newval, value);
23367 }
bada4342 23368 if (newimm == (unsigned int) FAIL)
92e90b6e 23369 {
bada4342 23370 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 23371 {
bada4342
JW
23372 /* Turn add/sum into addw/subw. */
23373 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23374 newval = (newval & 0xfeffffff) | 0x02000000;
23375 /* No flat 12-bit imm encoding for addsw/subsw. */
23376 if ((newval & 0x00100000) == 0)
40f246e3 23377 {
bada4342
JW
23378 /* 12 bit immediate for addw/subw. */
23379 if (value < 0)
23380 {
23381 value = -value;
23382 newval ^= 0x00a00000;
23383 }
23384 if (value > 0xfff)
23385 newimm = (unsigned int) FAIL;
23386 else
23387 newimm = value;
23388 }
23389 }
23390 else
23391 {
23392 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
23393 UINT16 (T3 encoding), MOVW only accepts UINT16. When
23394 disassembling, MOV is preferred when there is no encoding
23395 overlap.
23396 NOTE: MOV is using ORR opcode under Thumb 2 mode. */
23397 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
23398 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
23399 && !((newval >> T2_SBIT_SHIFT) & 0x1)
23400 && value >= 0 && value <=0xffff)
23401 {
23402 /* Toggle bit[25] to change encoding from T2 to T3. */
23403 newval ^= 1 << 25;
23404 /* Clear bits[19:16]. */
23405 newval &= 0xfff0ffff;
23406 /* Encoding high 4bits imm. Code below will encode the
23407 remaining low 12bits. */
23408 newval |= (value & 0x0000f000) << 4;
23409 newimm = value & 0x00000fff;
40f246e3 23410 }
e9f89963 23411 }
92e90b6e 23412 }
cc8a6dd0 23413
c19d1205 23414 if (newimm == (unsigned int)FAIL)
3631a3c8 23415 {
c19d1205
ZW
23416 as_bad_where (fixP->fx_file, fixP->fx_line,
23417 _("invalid constant (%lx) after fixup"),
23418 (unsigned long) value);
23419 break;
3631a3c8
NC
23420 }
23421
c19d1205
ZW
23422 newval |= (newimm & 0x800) << 15;
23423 newval |= (newimm & 0x700) << 4;
23424 newval |= (newimm & 0x0ff);
cc8a6dd0 23425
c19d1205
ZW
23426 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
23427 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
23428 break;
a737bd4d 23429
3eb17e6b 23430 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
23431 if (((unsigned long) value) > 0xffff)
23432 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 23433 _("invalid smc expression"));
2fc8bdac 23434 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
23435 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23436 md_number_to_chars (buf, newval, INSN_SIZE);
23437 break;
a737bd4d 23438
90ec0d68
MGD
23439 case BFD_RELOC_ARM_HVC:
23440 if (((unsigned long) value) > 0xffff)
23441 as_bad_where (fixP->fx_file, fixP->fx_line,
23442 _("invalid hvc expression"));
23443 newval = md_chars_to_number (buf, INSN_SIZE);
23444 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23445 md_number_to_chars (buf, newval, INSN_SIZE);
23446 break;
23447
c19d1205 23448 case BFD_RELOC_ARM_SWI:
adbaf948 23449 if (fixP->tc_fix_data != 0)
c19d1205
ZW
23450 {
23451 if (((unsigned long) value) > 0xff)
23452 as_bad_where (fixP->fx_file, fixP->fx_line,
23453 _("invalid swi expression"));
2fc8bdac 23454 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
23455 newval |= value;
23456 md_number_to_chars (buf, newval, THUMB_SIZE);
23457 }
23458 else
23459 {
23460 if (((unsigned long) value) > 0x00ffffff)
23461 as_bad_where (fixP->fx_file, fixP->fx_line,
23462 _("invalid swi expression"));
2fc8bdac 23463 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
23464 newval |= value;
23465 md_number_to_chars (buf, newval, INSN_SIZE);
23466 }
23467 break;
a737bd4d 23468
c19d1205
ZW
23469 case BFD_RELOC_ARM_MULTI:
23470 if (((unsigned long) value) > 0xffff)
23471 as_bad_where (fixP->fx_file, fixP->fx_line,
23472 _("invalid expression in load/store multiple"));
23473 newval = value | md_chars_to_number (buf, INSN_SIZE);
23474 md_number_to_chars (buf, newval, INSN_SIZE);
23475 break;
a737bd4d 23476
c19d1205 23477#ifdef OBJ_ELF
39b41c9c 23478 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
23479
23480 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23481 && fixP->fx_addsy
34e77a92 23482 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23483 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23484 && THUMB_IS_FUNC (fixP->fx_addsy))
23485 /* Flip the bl to blx. This is a simple flip
23486 bit here because we generate PCREL_CALL for
23487 unconditional bls. */
23488 {
23489 newval = md_chars_to_number (buf, INSN_SIZE);
23490 newval = newval | 0x10000000;
23491 md_number_to_chars (buf, newval, INSN_SIZE);
23492 temp = 1;
23493 fixP->fx_done = 1;
23494 }
39b41c9c
PB
23495 else
23496 temp = 3;
23497 goto arm_branch_common;
23498
23499 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
23500 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23501 && fixP->fx_addsy
34e77a92 23502 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23503 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23504 && THUMB_IS_FUNC (fixP->fx_addsy))
23505 {
23506 /* This would map to a bl<cond>, b<cond>,
23507 b<always> to a Thumb function. We
23508 need to force a relocation for this particular
23509 case. */
23510 newval = md_chars_to_number (buf, INSN_SIZE);
23511 fixP->fx_done = 0;
23512 }
1a0670f3 23513 /* Fall through. */
267bf995 23514
2fc8bdac 23515 case BFD_RELOC_ARM_PLT32:
c19d1205 23516#endif
39b41c9c
PB
23517 case BFD_RELOC_ARM_PCREL_BRANCH:
23518 temp = 3;
23519 goto arm_branch_common;
a737bd4d 23520
39b41c9c 23521 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 23522
39b41c9c 23523 temp = 1;
267bf995
RR
23524 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23525 && fixP->fx_addsy
34e77a92 23526 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23527 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23528 && ARM_IS_FUNC (fixP->fx_addsy))
23529 {
23530 /* Flip the blx to a bl and warn. */
23531 const char *name = S_GET_NAME (fixP->fx_addsy);
23532 newval = 0xeb000000;
23533 as_warn_where (fixP->fx_file, fixP->fx_line,
23534 _("blx to '%s' an ARM ISA state function changed to bl"),
23535 name);
23536 md_number_to_chars (buf, newval, INSN_SIZE);
23537 temp = 3;
23538 fixP->fx_done = 1;
23539 }
23540
23541#ifdef OBJ_ELF
23542 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 23543 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
23544#endif
23545
39b41c9c 23546 arm_branch_common:
c19d1205 23547 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
23548 instruction, in a 24 bit, signed field. Bits 26 through 32 either
23549 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 23550 also be clear. */
39b41c9c 23551 if (value & temp)
c19d1205 23552 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
23553 _("misaligned branch destination"));
23554 if ((value & (offsetT)0xfe000000) != (offsetT)0
23555 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 23556 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 23557
2fc8bdac 23558 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 23559 {
2fc8bdac
ZW
23560 newval = md_chars_to_number (buf, INSN_SIZE);
23561 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
23562 /* Set the H bit on BLX instructions. */
23563 if (temp == 1)
23564 {
23565 if (value & 2)
23566 newval |= 0x01000000;
23567 else
23568 newval &= ~0x01000000;
23569 }
2fc8bdac 23570 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 23571 }
c19d1205 23572 break;
a737bd4d 23573
25fe350b
MS
23574 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
23575 /* CBZ can only branch forward. */
a737bd4d 23576
738755b0 23577 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
23578 (which, strictly speaking, are prohibited) will be turned into
23579 no-ops.
738755b0
MS
23580
23581 FIXME: It may be better to remove the instruction completely and
23582 perform relaxation. */
23583 if (value == -2)
2fc8bdac
ZW
23584 {
23585 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 23586 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
23587 md_number_to_chars (buf, newval, THUMB_SIZE);
23588 }
738755b0
MS
23589 else
23590 {
23591 if (value & ~0x7e)
08f10d51 23592 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 23593
477330fc 23594 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
23595 {
23596 newval = md_chars_to_number (buf, THUMB_SIZE);
23597 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
23598 md_number_to_chars (buf, newval, THUMB_SIZE);
23599 }
23600 }
c19d1205 23601 break;
a737bd4d 23602
c19d1205 23603 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 23604 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 23605 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 23606
2fc8bdac
ZW
23607 if (fixP->fx_done || !seg->use_rela_p)
23608 {
23609 newval = md_chars_to_number (buf, THUMB_SIZE);
23610 newval |= (value & 0x1ff) >> 1;
23611 md_number_to_chars (buf, newval, THUMB_SIZE);
23612 }
c19d1205 23613 break;
a737bd4d 23614
c19d1205 23615 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 23616 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 23617 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 23618
2fc8bdac
ZW
23619 if (fixP->fx_done || !seg->use_rela_p)
23620 {
23621 newval = md_chars_to_number (buf, THUMB_SIZE);
23622 newval |= (value & 0xfff) >> 1;
23623 md_number_to_chars (buf, newval, THUMB_SIZE);
23624 }
c19d1205 23625 break;
a737bd4d 23626
c19d1205 23627 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
23628 if (fixP->fx_addsy
23629 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 23630 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23631 && ARM_IS_FUNC (fixP->fx_addsy)
23632 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23633 {
23634 /* Force a relocation for a branch 20 bits wide. */
23635 fixP->fx_done = 0;
23636 }
08f10d51 23637 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
23638 as_bad_where (fixP->fx_file, fixP->fx_line,
23639 _("conditional branch out of range"));
404ff6b5 23640
2fc8bdac
ZW
23641 if (fixP->fx_done || !seg->use_rela_p)
23642 {
23643 offsetT newval2;
23644 addressT S, J1, J2, lo, hi;
404ff6b5 23645
2fc8bdac
ZW
23646 S = (value & 0x00100000) >> 20;
23647 J2 = (value & 0x00080000) >> 19;
23648 J1 = (value & 0x00040000) >> 18;
23649 hi = (value & 0x0003f000) >> 12;
23650 lo = (value & 0x00000ffe) >> 1;
6c43fab6 23651
2fc8bdac
ZW
23652 newval = md_chars_to_number (buf, THUMB_SIZE);
23653 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23654 newval |= (S << 10) | hi;
23655 newval2 |= (J1 << 13) | (J2 << 11) | lo;
23656 md_number_to_chars (buf, newval, THUMB_SIZE);
23657 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23658 }
c19d1205 23659 break;
6c43fab6 23660
c19d1205 23661 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
23662 /* If there is a blx from a thumb state function to
23663 another thumb function flip this to a bl and warn
23664 about it. */
23665
23666 if (fixP->fx_addsy
34e77a92 23667 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23668 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23669 && THUMB_IS_FUNC (fixP->fx_addsy))
23670 {
23671 const char *name = S_GET_NAME (fixP->fx_addsy);
23672 as_warn_where (fixP->fx_file, fixP->fx_line,
23673 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
23674 name);
23675 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23676 newval = newval | 0x1000;
23677 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
23678 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
23679 fixP->fx_done = 1;
23680 }
23681
23682
23683 goto thumb_bl_common;
23684
c19d1205 23685 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
23686 /* A bl from Thumb state ISA to an internal ARM state function
23687 is converted to a blx. */
23688 if (fixP->fx_addsy
23689 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 23690 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23691 && ARM_IS_FUNC (fixP->fx_addsy)
23692 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23693 {
23694 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23695 newval = newval & ~0x1000;
23696 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
23697 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
23698 fixP->fx_done = 1;
23699 }
23700
23701 thumb_bl_common:
23702
2fc8bdac
ZW
23703 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
23704 /* For a BLX instruction, make sure that the relocation is rounded up
23705 to a word boundary. This follows the semantics of the instruction
23706 which specifies that bit 1 of the target address will come from bit
23707 1 of the base address. */
d406f3e4
JB
23708 value = (value + 3) & ~ 3;
23709
23710#ifdef OBJ_ELF
23711 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
23712 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
23713 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
23714#endif
404ff6b5 23715
2b2f5df9
NC
23716 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
23717 {
fc289b0a 23718 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
23719 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23720 else if ((value & ~0x1ffffff)
23721 && ((value & ~0x1ffffff) != ~0x1ffffff))
23722 as_bad_where (fixP->fx_file, fixP->fx_line,
23723 _("Thumb2 branch out of range"));
23724 }
4a42ebbc
RR
23725
23726 if (fixP->fx_done || !seg->use_rela_p)
23727 encode_thumb2_b_bl_offset (buf, value);
23728
c19d1205 23729 break;
404ff6b5 23730
c19d1205 23731 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
23732 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
23733 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 23734
2fc8bdac 23735 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 23736 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 23737
2fc8bdac 23738 break;
a737bd4d 23739
2fc8bdac
ZW
23740 case BFD_RELOC_8:
23741 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 23742 *buf = value;
c19d1205 23743 break;
a737bd4d 23744
c19d1205 23745 case BFD_RELOC_16:
2fc8bdac 23746 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 23747 md_number_to_chars (buf, value, 2);
c19d1205 23748 break;
a737bd4d 23749
c19d1205 23750#ifdef OBJ_ELF
0855e32b
NS
23751 case BFD_RELOC_ARM_TLS_CALL:
23752 case BFD_RELOC_ARM_THM_TLS_CALL:
23753 case BFD_RELOC_ARM_TLS_DESCSEQ:
23754 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 23755 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
23756 case BFD_RELOC_ARM_TLS_GD32:
23757 case BFD_RELOC_ARM_TLS_LE32:
23758 case BFD_RELOC_ARM_TLS_IE32:
23759 case BFD_RELOC_ARM_TLS_LDM32:
23760 case BFD_RELOC_ARM_TLS_LDO32:
23761 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 23762 break;
6c43fab6 23763
c19d1205
ZW
23764 case BFD_RELOC_ARM_GOT32:
23765 case BFD_RELOC_ARM_GOTOFF:
c19d1205 23766 break;
b43420e6
NC
23767
23768 case BFD_RELOC_ARM_GOT_PREL:
23769 if (fixP->fx_done || !seg->use_rela_p)
477330fc 23770 md_number_to_chars (buf, value, 4);
b43420e6
NC
23771 break;
23772
9a6f4e97
NS
23773 case BFD_RELOC_ARM_TARGET2:
23774 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
23775 addend here for REL targets, because it won't be written out
23776 during reloc processing later. */
9a6f4e97
NS
23777 if (fixP->fx_done || !seg->use_rela_p)
23778 md_number_to_chars (buf, fixP->fx_offset, 4);
23779 break;
c19d1205 23780#endif
6c43fab6 23781
c19d1205
ZW
23782 case BFD_RELOC_RVA:
23783 case BFD_RELOC_32:
23784 case BFD_RELOC_ARM_TARGET1:
23785 case BFD_RELOC_ARM_ROSEGREL32:
23786 case BFD_RELOC_ARM_SBREL32:
23787 case BFD_RELOC_32_PCREL:
f0927246
NC
23788#ifdef TE_PE
23789 case BFD_RELOC_32_SECREL:
23790#endif
2fc8bdac 23791 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
23792#ifdef TE_WINCE
23793 /* For WinCE we only do this for pcrel fixups. */
23794 if (fixP->fx_done || fixP->fx_pcrel)
23795#endif
23796 md_number_to_chars (buf, value, 4);
c19d1205 23797 break;
6c43fab6 23798
c19d1205
ZW
23799#ifdef OBJ_ELF
23800 case BFD_RELOC_ARM_PREL31:
2fc8bdac 23801 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
23802 {
23803 newval = md_chars_to_number (buf, 4) & 0x80000000;
23804 if ((value ^ (value >> 1)) & 0x40000000)
23805 {
23806 as_bad_where (fixP->fx_file, fixP->fx_line,
23807 _("rel31 relocation overflow"));
23808 }
23809 newval |= value & 0x7fffffff;
23810 md_number_to_chars (buf, newval, 4);
23811 }
23812 break;
c19d1205 23813#endif
a737bd4d 23814
c19d1205 23815 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 23816 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
9db2f6b4
RL
23817 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
23818 newval = md_chars_to_number (buf, INSN_SIZE);
23819 else
23820 newval = get_thumb32_insn (buf);
23821 if ((newval & 0x0f200f00) == 0x0d000900)
23822 {
23823 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
23824 has permitted values that are multiples of 2, in the range 0
23825 to 510. */
23826 if (value < -510 || value > 510 || (value & 1))
23827 as_bad_where (fixP->fx_file, fixP->fx_line,
23828 _("co-processor offset out of range"));
23829 }
23830 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
23831 as_bad_where (fixP->fx_file, fixP->fx_line,
23832 _("co-processor offset out of range"));
23833 cp_off_common:
26d97720 23834 sign = value > 0;
c19d1205
ZW
23835 if (value < 0)
23836 value = -value;
8f06b2d8
PB
23837 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
23838 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
23839 newval = md_chars_to_number (buf, INSN_SIZE);
23840 else
23841 newval = get_thumb32_insn (buf);
26d97720
NS
23842 if (value == 0)
23843 newval &= 0xffffff00;
23844 else
23845 {
23846 newval &= 0xff7fff00;
9db2f6b4
RL
23847 if ((newval & 0x0f200f00) == 0x0d000900)
23848 {
23849 /* This is a fp16 vstr/vldr.
23850
23851 It requires the immediate offset in the instruction is shifted
23852 left by 1 to be a half-word offset.
23853
23854 Here, left shift by 1 first, and later right shift by 2
23855 should get the right offset. */
23856 value <<= 1;
23857 }
26d97720
NS
23858 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
23859 }
8f06b2d8
PB
23860 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
23861 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
23862 md_number_to_chars (buf, newval, INSN_SIZE);
23863 else
23864 put_thumb32_insn (buf, newval);
c19d1205 23865 break;
a737bd4d 23866
c19d1205 23867 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 23868 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
23869 if (value < -255 || value > 255)
23870 as_bad_where (fixP->fx_file, fixP->fx_line,
23871 _("co-processor offset out of range"));
df7849c5 23872 value *= 4;
c19d1205 23873 goto cp_off_common;
6c43fab6 23874
c19d1205
ZW
23875 case BFD_RELOC_ARM_THUMB_OFFSET:
23876 newval = md_chars_to_number (buf, THUMB_SIZE);
23877 /* Exactly what ranges, and where the offset is inserted depends
23878 on the type of instruction, we can establish this from the
23879 top 4 bits. */
23880 switch (newval >> 12)
23881 {
23882 case 4: /* PC load. */
23883 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
23884 forced to zero for these loads; md_pcrel_from has already
23885 compensated for this. */
23886 if (value & 3)
23887 as_bad_where (fixP->fx_file, fixP->fx_line,
23888 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
23889 (((unsigned long) fixP->fx_frag->fr_address
23890 + (unsigned long) fixP->fx_where) & ~3)
23891 + (unsigned long) value);
a737bd4d 23892
c19d1205
ZW
23893 if (value & ~0x3fc)
23894 as_bad_where (fixP->fx_file, fixP->fx_line,
23895 _("invalid offset, value too big (0x%08lX)"),
23896 (long) value);
a737bd4d 23897
c19d1205
ZW
23898 newval |= value >> 2;
23899 break;
a737bd4d 23900
c19d1205
ZW
23901 case 9: /* SP load/store. */
23902 if (value & ~0x3fc)
23903 as_bad_where (fixP->fx_file, fixP->fx_line,
23904 _("invalid offset, value too big (0x%08lX)"),
23905 (long) value);
23906 newval |= value >> 2;
23907 break;
6c43fab6 23908
c19d1205
ZW
23909 case 6: /* Word load/store. */
23910 if (value & ~0x7c)
23911 as_bad_where (fixP->fx_file, fixP->fx_line,
23912 _("invalid offset, value too big (0x%08lX)"),
23913 (long) value);
23914 newval |= value << 4; /* 6 - 2. */
23915 break;
a737bd4d 23916
c19d1205
ZW
23917 case 7: /* Byte load/store. */
23918 if (value & ~0x1f)
23919 as_bad_where (fixP->fx_file, fixP->fx_line,
23920 _("invalid offset, value too big (0x%08lX)"),
23921 (long) value);
23922 newval |= value << 6;
23923 break;
a737bd4d 23924
c19d1205
ZW
23925 case 8: /* Halfword load/store. */
23926 if (value & ~0x3e)
23927 as_bad_where (fixP->fx_file, fixP->fx_line,
23928 _("invalid offset, value too big (0x%08lX)"),
23929 (long) value);
23930 newval |= value << 5; /* 6 - 1. */
23931 break;
a737bd4d 23932
c19d1205
ZW
23933 default:
23934 as_bad_where (fixP->fx_file, fixP->fx_line,
23935 "Unable to process relocation for thumb opcode: %lx",
23936 (unsigned long) newval);
23937 break;
23938 }
23939 md_number_to_chars (buf, newval, THUMB_SIZE);
23940 break;
a737bd4d 23941
c19d1205
ZW
23942 case BFD_RELOC_ARM_THUMB_ADD:
23943 /* This is a complicated relocation, since we use it for all of
23944 the following immediate relocations:
a737bd4d 23945
c19d1205
ZW
23946 3bit ADD/SUB
23947 8bit ADD/SUB
23948 9bit ADD/SUB SP word-aligned
23949 10bit ADD PC/SP word-aligned
a737bd4d 23950
c19d1205
ZW
23951 The type of instruction being processed is encoded in the
23952 instruction field:
a737bd4d 23953
c19d1205
ZW
23954 0x8000 SUB
23955 0x00F0 Rd
23956 0x000F Rs
23957 */
23958 newval = md_chars_to_number (buf, THUMB_SIZE);
23959 {
23960 int rd = (newval >> 4) & 0xf;
23961 int rs = newval & 0xf;
23962 int subtract = !!(newval & 0x8000);
a737bd4d 23963
c19d1205
ZW
23964 /* Check for HI regs, only very restricted cases allowed:
23965 Adjusting SP, and using PC or SP to get an address. */
23966 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
23967 || (rs > 7 && rs != REG_SP && rs != REG_PC))
23968 as_bad_where (fixP->fx_file, fixP->fx_line,
23969 _("invalid Hi register with immediate"));
a737bd4d 23970
c19d1205
ZW
23971 /* If value is negative, choose the opposite instruction. */
23972 if (value < 0)
23973 {
23974 value = -value;
23975 subtract = !subtract;
23976 if (value < 0)
23977 as_bad_where (fixP->fx_file, fixP->fx_line,
23978 _("immediate value out of range"));
23979 }
a737bd4d 23980
c19d1205
ZW
23981 if (rd == REG_SP)
23982 {
75c11999 23983 if (value & ~0x1fc)
c19d1205
ZW
23984 as_bad_where (fixP->fx_file, fixP->fx_line,
23985 _("invalid immediate for stack address calculation"));
23986 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
23987 newval |= value >> 2;
23988 }
23989 else if (rs == REG_PC || rs == REG_SP)
23990 {
c12d2c9d
NC
23991 /* PR gas/18541. If the addition is for a defined symbol
23992 within range of an ADR instruction then accept it. */
23993 if (subtract
23994 && value == 4
23995 && fixP->fx_addsy != NULL)
23996 {
23997 subtract = 0;
23998
23999 if (! S_IS_DEFINED (fixP->fx_addsy)
24000 || S_GET_SEGMENT (fixP->fx_addsy) != seg
24001 || S_IS_WEAK (fixP->fx_addsy))
24002 {
24003 as_bad_where (fixP->fx_file, fixP->fx_line,
24004 _("address calculation needs a strongly defined nearby symbol"));
24005 }
24006 else
24007 {
24008 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
24009
24010 /* Round up to the next 4-byte boundary. */
24011 if (v & 3)
24012 v = (v + 3) & ~ 3;
24013 else
24014 v += 4;
24015 v = S_GET_VALUE (fixP->fx_addsy) - v;
24016
24017 if (v & ~0x3fc)
24018 {
24019 as_bad_where (fixP->fx_file, fixP->fx_line,
24020 _("symbol too far away"));
24021 }
24022 else
24023 {
24024 fixP->fx_done = 1;
24025 value = v;
24026 }
24027 }
24028 }
24029
c19d1205
ZW
24030 if (subtract || value & ~0x3fc)
24031 as_bad_where (fixP->fx_file, fixP->fx_line,
24032 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 24033 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
24034 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
24035 newval |= rd << 8;
24036 newval |= value >> 2;
24037 }
24038 else if (rs == rd)
24039 {
24040 if (value & ~0xff)
24041 as_bad_where (fixP->fx_file, fixP->fx_line,
24042 _("immediate value out of range"));
24043 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
24044 newval |= (rd << 8) | value;
24045 }
24046 else
24047 {
24048 if (value & ~0x7)
24049 as_bad_where (fixP->fx_file, fixP->fx_line,
24050 _("immediate value out of range"));
24051 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
24052 newval |= rd | (rs << 3) | (value << 6);
24053 }
24054 }
24055 md_number_to_chars (buf, newval, THUMB_SIZE);
24056 break;
a737bd4d 24057
c19d1205
ZW
24058 case BFD_RELOC_ARM_THUMB_IMM:
24059 newval = md_chars_to_number (buf, THUMB_SIZE);
24060 if (value < 0 || value > 255)
24061 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 24062 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
24063 (long) value);
24064 newval |= value;
24065 md_number_to_chars (buf, newval, THUMB_SIZE);
24066 break;
a737bd4d 24067
c19d1205
ZW
24068 case BFD_RELOC_ARM_THUMB_SHIFT:
24069 /* 5bit shift value (0..32). LSL cannot take 32. */
24070 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
24071 temp = newval & 0xf800;
24072 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
24073 as_bad_where (fixP->fx_file, fixP->fx_line,
24074 _("invalid shift value: %ld"), (long) value);
24075 /* Shifts of zero must be encoded as LSL. */
24076 if (value == 0)
24077 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
24078 /* Shifts of 32 are encoded as zero. */
24079 else if (value == 32)
24080 value = 0;
24081 newval |= value << 6;
24082 md_number_to_chars (buf, newval, THUMB_SIZE);
24083 break;
a737bd4d 24084
c19d1205
ZW
24085 case BFD_RELOC_VTABLE_INHERIT:
24086 case BFD_RELOC_VTABLE_ENTRY:
24087 fixP->fx_done = 0;
24088 return;
6c43fab6 24089
b6895b4f
PB
24090 case BFD_RELOC_ARM_MOVW:
24091 case BFD_RELOC_ARM_MOVT:
24092 case BFD_RELOC_ARM_THUMB_MOVW:
24093 case BFD_RELOC_ARM_THUMB_MOVT:
24094 if (fixP->fx_done || !seg->use_rela_p)
24095 {
24096 /* REL format relocations are limited to a 16-bit addend. */
24097 if (!fixP->fx_done)
24098 {
39623e12 24099 if (value < -0x8000 || value > 0x7fff)
b6895b4f 24100 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 24101 _("offset out of range"));
b6895b4f
PB
24102 }
24103 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
24104 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24105 {
24106 value >>= 16;
24107 }
24108
24109 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
24110 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24111 {
24112 newval = get_thumb32_insn (buf);
24113 newval &= 0xfbf08f00;
24114 newval |= (value & 0xf000) << 4;
24115 newval |= (value & 0x0800) << 15;
24116 newval |= (value & 0x0700) << 4;
24117 newval |= (value & 0x00ff);
24118 put_thumb32_insn (buf, newval);
24119 }
24120 else
24121 {
24122 newval = md_chars_to_number (buf, 4);
24123 newval &= 0xfff0f000;
24124 newval |= value & 0x0fff;
24125 newval |= (value & 0xf000) << 4;
24126 md_number_to_chars (buf, newval, 4);
24127 }
24128 }
24129 return;
24130
72d98d16
MG
24131 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24132 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24133 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24134 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24135 gas_assert (!fixP->fx_done);
24136 {
24137 bfd_vma insn;
24138 bfd_boolean is_mov;
24139 bfd_vma encoded_addend = value;
24140
24141 /* Check that addend can be encoded in instruction. */
24142 if (!seg->use_rela_p && (value < 0 || value > 255))
24143 as_bad_where (fixP->fx_file, fixP->fx_line,
24144 _("the offset 0x%08lX is not representable"),
24145 (unsigned long) encoded_addend);
24146
24147 /* Extract the instruction. */
24148 insn = md_chars_to_number (buf, THUMB_SIZE);
24149 is_mov = (insn & 0xf800) == 0x2000;
24150
24151 /* Encode insn. */
24152 if (is_mov)
24153 {
24154 if (!seg->use_rela_p)
24155 insn |= encoded_addend;
24156 }
24157 else
24158 {
24159 int rd, rs;
24160
24161 /* Extract the instruction. */
24162 /* Encoding is the following
24163 0x8000 SUB
24164 0x00F0 Rd
24165 0x000F Rs
24166 */
24167 /* The following conditions must be true :
24168 - ADD
24169 - Rd == Rs
24170 - Rd <= 7
24171 */
24172 rd = (insn >> 4) & 0xf;
24173 rs = insn & 0xf;
24174 if ((insn & 0x8000) || (rd != rs) || rd > 7)
24175 as_bad_where (fixP->fx_file, fixP->fx_line,
24176 _("Unable to process relocation for thumb opcode: %lx"),
24177 (unsigned long) insn);
24178
24179 /* Encode as ADD immediate8 thumb 1 code. */
24180 insn = 0x3000 | (rd << 8);
24181
24182 /* Place the encoded addend into the first 8 bits of the
24183 instruction. */
24184 if (!seg->use_rela_p)
24185 insn |= encoded_addend;
24186 }
24187
24188 /* Update the instruction. */
24189 md_number_to_chars (buf, insn, THUMB_SIZE);
24190 }
24191 break;
24192
4962c51a
MS
24193 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24194 case BFD_RELOC_ARM_ALU_PC_G0:
24195 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24196 case BFD_RELOC_ARM_ALU_PC_G1:
24197 case BFD_RELOC_ARM_ALU_PC_G2:
24198 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24199 case BFD_RELOC_ARM_ALU_SB_G0:
24200 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24201 case BFD_RELOC_ARM_ALU_SB_G1:
24202 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 24203 gas_assert (!fixP->fx_done);
4962c51a
MS
24204 if (!seg->use_rela_p)
24205 {
477330fc
RM
24206 bfd_vma insn;
24207 bfd_vma encoded_addend;
24208 bfd_vma addend_abs = abs (value);
24209
24210 /* Check that the absolute value of the addend can be
24211 expressed as an 8-bit constant plus a rotation. */
24212 encoded_addend = encode_arm_immediate (addend_abs);
24213 if (encoded_addend == (unsigned int) FAIL)
4962c51a 24214 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24215 _("the offset 0x%08lX is not representable"),
24216 (unsigned long) addend_abs);
24217
24218 /* Extract the instruction. */
24219 insn = md_chars_to_number (buf, INSN_SIZE);
24220
24221 /* If the addend is positive, use an ADD instruction.
24222 Otherwise use a SUB. Take care not to destroy the S bit. */
24223 insn &= 0xff1fffff;
24224 if (value < 0)
24225 insn |= 1 << 22;
24226 else
24227 insn |= 1 << 23;
24228
24229 /* Place the encoded addend into the first 12 bits of the
24230 instruction. */
24231 insn &= 0xfffff000;
24232 insn |= encoded_addend;
24233
24234 /* Update the instruction. */
24235 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
24236 }
24237 break;
24238
24239 case BFD_RELOC_ARM_LDR_PC_G0:
24240 case BFD_RELOC_ARM_LDR_PC_G1:
24241 case BFD_RELOC_ARM_LDR_PC_G2:
24242 case BFD_RELOC_ARM_LDR_SB_G0:
24243 case BFD_RELOC_ARM_LDR_SB_G1:
24244 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 24245 gas_assert (!fixP->fx_done);
4962c51a 24246 if (!seg->use_rela_p)
477330fc
RM
24247 {
24248 bfd_vma insn;
24249 bfd_vma addend_abs = abs (value);
4962c51a 24250
477330fc
RM
24251 /* Check that the absolute value of the addend can be
24252 encoded in 12 bits. */
24253 if (addend_abs >= 0x1000)
4962c51a 24254 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24255 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
24256 (unsigned long) addend_abs);
24257
24258 /* Extract the instruction. */
24259 insn = md_chars_to_number (buf, INSN_SIZE);
24260
24261 /* If the addend is negative, clear bit 23 of the instruction.
24262 Otherwise set it. */
24263 if (value < 0)
24264 insn &= ~(1 << 23);
24265 else
24266 insn |= 1 << 23;
24267
24268 /* Place the absolute value of the addend into the first 12 bits
24269 of the instruction. */
24270 insn &= 0xfffff000;
24271 insn |= addend_abs;
24272
24273 /* Update the instruction. */
24274 md_number_to_chars (buf, insn, INSN_SIZE);
24275 }
4962c51a
MS
24276 break;
24277
24278 case BFD_RELOC_ARM_LDRS_PC_G0:
24279 case BFD_RELOC_ARM_LDRS_PC_G1:
24280 case BFD_RELOC_ARM_LDRS_PC_G2:
24281 case BFD_RELOC_ARM_LDRS_SB_G0:
24282 case BFD_RELOC_ARM_LDRS_SB_G1:
24283 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 24284 gas_assert (!fixP->fx_done);
4962c51a 24285 if (!seg->use_rela_p)
477330fc
RM
24286 {
24287 bfd_vma insn;
24288 bfd_vma addend_abs = abs (value);
4962c51a 24289
477330fc
RM
24290 /* Check that the absolute value of the addend can be
24291 encoded in 8 bits. */
24292 if (addend_abs >= 0x100)
4962c51a 24293 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24294 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
24295 (unsigned long) addend_abs);
24296
24297 /* Extract the instruction. */
24298 insn = md_chars_to_number (buf, INSN_SIZE);
24299
24300 /* If the addend is negative, clear bit 23 of the instruction.
24301 Otherwise set it. */
24302 if (value < 0)
24303 insn &= ~(1 << 23);
24304 else
24305 insn |= 1 << 23;
24306
24307 /* Place the first four bits of the absolute value of the addend
24308 into the first 4 bits of the instruction, and the remaining
24309 four into bits 8 .. 11. */
24310 insn &= 0xfffff0f0;
24311 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
24312
24313 /* Update the instruction. */
24314 md_number_to_chars (buf, insn, INSN_SIZE);
24315 }
4962c51a
MS
24316 break;
24317
24318 case BFD_RELOC_ARM_LDC_PC_G0:
24319 case BFD_RELOC_ARM_LDC_PC_G1:
24320 case BFD_RELOC_ARM_LDC_PC_G2:
24321 case BFD_RELOC_ARM_LDC_SB_G0:
24322 case BFD_RELOC_ARM_LDC_SB_G1:
24323 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 24324 gas_assert (!fixP->fx_done);
4962c51a 24325 if (!seg->use_rela_p)
477330fc
RM
24326 {
24327 bfd_vma insn;
24328 bfd_vma addend_abs = abs (value);
4962c51a 24329
477330fc
RM
24330 /* Check that the absolute value of the addend is a multiple of
24331 four and, when divided by four, fits in 8 bits. */
24332 if (addend_abs & 0x3)
4962c51a 24333 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24334 _("bad offset 0x%08lX (must be word-aligned)"),
24335 (unsigned long) addend_abs);
4962c51a 24336
477330fc 24337 if ((addend_abs >> 2) > 0xff)
4962c51a 24338 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24339 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
24340 (unsigned long) addend_abs);
24341
24342 /* Extract the instruction. */
24343 insn = md_chars_to_number (buf, INSN_SIZE);
24344
24345 /* If the addend is negative, clear bit 23 of the instruction.
24346 Otherwise set it. */
24347 if (value < 0)
24348 insn &= ~(1 << 23);
24349 else
24350 insn |= 1 << 23;
24351
24352 /* Place the addend (divided by four) into the first eight
24353 bits of the instruction. */
24354 insn &= 0xfffffff0;
24355 insn |= addend_abs >> 2;
24356
24357 /* Update the instruction. */
24358 md_number_to_chars (buf, insn, INSN_SIZE);
24359 }
4962c51a
MS
24360 break;
24361
845b51d6
PB
24362 case BFD_RELOC_ARM_V4BX:
24363 /* This will need to go in the object file. */
24364 fixP->fx_done = 0;
24365 break;
24366
c19d1205
ZW
24367 case BFD_RELOC_UNUSED:
24368 default:
24369 as_bad_where (fixP->fx_file, fixP->fx_line,
24370 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
24371 }
6c43fab6
RE
24372}
24373
c19d1205
ZW
24374/* Translate internal representation of relocation info to BFD target
24375 format. */
a737bd4d 24376
c19d1205 24377arelent *
00a97672 24378tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 24379{
c19d1205
ZW
24380 arelent * reloc;
24381 bfd_reloc_code_real_type code;
a737bd4d 24382
325801bd 24383 reloc = XNEW (arelent);
a737bd4d 24384
325801bd 24385 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
24386 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
24387 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 24388
2fc8bdac 24389 if (fixp->fx_pcrel)
00a97672
RS
24390 {
24391 if (section->use_rela_p)
24392 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
24393 else
24394 fixp->fx_offset = reloc->address;
24395 }
c19d1205 24396 reloc->addend = fixp->fx_offset;
a737bd4d 24397
c19d1205 24398 switch (fixp->fx_r_type)
a737bd4d 24399 {
c19d1205
ZW
24400 case BFD_RELOC_8:
24401 if (fixp->fx_pcrel)
24402 {
24403 code = BFD_RELOC_8_PCREL;
24404 break;
24405 }
1a0670f3 24406 /* Fall through. */
a737bd4d 24407
c19d1205
ZW
24408 case BFD_RELOC_16:
24409 if (fixp->fx_pcrel)
24410 {
24411 code = BFD_RELOC_16_PCREL;
24412 break;
24413 }
1a0670f3 24414 /* Fall through. */
6c43fab6 24415
c19d1205
ZW
24416 case BFD_RELOC_32:
24417 if (fixp->fx_pcrel)
24418 {
24419 code = BFD_RELOC_32_PCREL;
24420 break;
24421 }
1a0670f3 24422 /* Fall through. */
a737bd4d 24423
b6895b4f
PB
24424 case BFD_RELOC_ARM_MOVW:
24425 if (fixp->fx_pcrel)
24426 {
24427 code = BFD_RELOC_ARM_MOVW_PCREL;
24428 break;
24429 }
1a0670f3 24430 /* Fall through. */
b6895b4f
PB
24431
24432 case BFD_RELOC_ARM_MOVT:
24433 if (fixp->fx_pcrel)
24434 {
24435 code = BFD_RELOC_ARM_MOVT_PCREL;
24436 break;
24437 }
1a0670f3 24438 /* Fall through. */
b6895b4f
PB
24439
24440 case BFD_RELOC_ARM_THUMB_MOVW:
24441 if (fixp->fx_pcrel)
24442 {
24443 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
24444 break;
24445 }
1a0670f3 24446 /* Fall through. */
b6895b4f
PB
24447
24448 case BFD_RELOC_ARM_THUMB_MOVT:
24449 if (fixp->fx_pcrel)
24450 {
24451 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
24452 break;
24453 }
1a0670f3 24454 /* Fall through. */
b6895b4f 24455
c19d1205
ZW
24456 case BFD_RELOC_NONE:
24457 case BFD_RELOC_ARM_PCREL_BRANCH:
24458 case BFD_RELOC_ARM_PCREL_BLX:
24459 case BFD_RELOC_RVA:
24460 case BFD_RELOC_THUMB_PCREL_BRANCH7:
24461 case BFD_RELOC_THUMB_PCREL_BRANCH9:
24462 case BFD_RELOC_THUMB_PCREL_BRANCH12:
24463 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24464 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24465 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
24466 case BFD_RELOC_VTABLE_ENTRY:
24467 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
24468#ifdef TE_PE
24469 case BFD_RELOC_32_SECREL:
24470#endif
c19d1205
ZW
24471 code = fixp->fx_r_type;
24472 break;
a737bd4d 24473
00adf2d4
JB
24474 case BFD_RELOC_THUMB_PCREL_BLX:
24475#ifdef OBJ_ELF
24476 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
24477 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
24478 else
24479#endif
24480 code = BFD_RELOC_THUMB_PCREL_BLX;
24481 break;
24482
c19d1205
ZW
24483 case BFD_RELOC_ARM_LITERAL:
24484 case BFD_RELOC_ARM_HWLITERAL:
24485 /* If this is called then the a literal has
24486 been referenced across a section boundary. */
24487 as_bad_where (fixp->fx_file, fixp->fx_line,
24488 _("literal referenced across section boundary"));
24489 return NULL;
a737bd4d 24490
c19d1205 24491#ifdef OBJ_ELF
0855e32b
NS
24492 case BFD_RELOC_ARM_TLS_CALL:
24493 case BFD_RELOC_ARM_THM_TLS_CALL:
24494 case BFD_RELOC_ARM_TLS_DESCSEQ:
24495 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
24496 case BFD_RELOC_ARM_GOT32:
24497 case BFD_RELOC_ARM_GOTOFF:
b43420e6 24498 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
24499 case BFD_RELOC_ARM_PLT32:
24500 case BFD_RELOC_ARM_TARGET1:
24501 case BFD_RELOC_ARM_ROSEGREL32:
24502 case BFD_RELOC_ARM_SBREL32:
24503 case BFD_RELOC_ARM_PREL31:
24504 case BFD_RELOC_ARM_TARGET2:
c19d1205 24505 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
24506 case BFD_RELOC_ARM_PCREL_CALL:
24507 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
24508 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24509 case BFD_RELOC_ARM_ALU_PC_G0:
24510 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24511 case BFD_RELOC_ARM_ALU_PC_G1:
24512 case BFD_RELOC_ARM_ALU_PC_G2:
24513 case BFD_RELOC_ARM_LDR_PC_G0:
24514 case BFD_RELOC_ARM_LDR_PC_G1:
24515 case BFD_RELOC_ARM_LDR_PC_G2:
24516 case BFD_RELOC_ARM_LDRS_PC_G0:
24517 case BFD_RELOC_ARM_LDRS_PC_G1:
24518 case BFD_RELOC_ARM_LDRS_PC_G2:
24519 case BFD_RELOC_ARM_LDC_PC_G0:
24520 case BFD_RELOC_ARM_LDC_PC_G1:
24521 case BFD_RELOC_ARM_LDC_PC_G2:
24522 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24523 case BFD_RELOC_ARM_ALU_SB_G0:
24524 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24525 case BFD_RELOC_ARM_ALU_SB_G1:
24526 case BFD_RELOC_ARM_ALU_SB_G2:
24527 case BFD_RELOC_ARM_LDR_SB_G0:
24528 case BFD_RELOC_ARM_LDR_SB_G1:
24529 case BFD_RELOC_ARM_LDR_SB_G2:
24530 case BFD_RELOC_ARM_LDRS_SB_G0:
24531 case BFD_RELOC_ARM_LDRS_SB_G1:
24532 case BFD_RELOC_ARM_LDRS_SB_G2:
24533 case BFD_RELOC_ARM_LDC_SB_G0:
24534 case BFD_RELOC_ARM_LDC_SB_G1:
24535 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 24536 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
24537 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24538 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24539 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24540 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
c19d1205
ZW
24541 code = fixp->fx_r_type;
24542 break;
a737bd4d 24543
0855e32b 24544 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 24545 case BFD_RELOC_ARM_TLS_GD32:
75c11999 24546 case BFD_RELOC_ARM_TLS_LE32:
c19d1205
ZW
24547 case BFD_RELOC_ARM_TLS_IE32:
24548 case BFD_RELOC_ARM_TLS_LDM32:
24549 /* BFD will include the symbol's address in the addend.
24550 But we don't want that, so subtract it out again here. */
24551 if (!S_IS_COMMON (fixp->fx_addsy))
24552 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
24553 code = fixp->fx_r_type;
24554 break;
24555#endif
a737bd4d 24556
c19d1205
ZW
24557 case BFD_RELOC_ARM_IMMEDIATE:
24558 as_bad_where (fixp->fx_file, fixp->fx_line,
24559 _("internal relocation (type: IMMEDIATE) not fixed up"));
24560 return NULL;
a737bd4d 24561
c19d1205
ZW
24562 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
24563 as_bad_where (fixp->fx_file, fixp->fx_line,
24564 _("ADRL used for a symbol not defined in the same file"));
24565 return NULL;
a737bd4d 24566
c19d1205 24567 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
24568 if (section->use_rela_p)
24569 {
24570 code = fixp->fx_r_type;
24571 break;
24572 }
24573
c19d1205
ZW
24574 if (fixp->fx_addsy != NULL
24575 && !S_IS_DEFINED (fixp->fx_addsy)
24576 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 24577 {
c19d1205
ZW
24578 as_bad_where (fixp->fx_file, fixp->fx_line,
24579 _("undefined local label `%s'"),
24580 S_GET_NAME (fixp->fx_addsy));
24581 return NULL;
a737bd4d
NC
24582 }
24583
c19d1205
ZW
24584 as_bad_where (fixp->fx_file, fixp->fx_line,
24585 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
24586 return NULL;
a737bd4d 24587
c19d1205
ZW
24588 default:
24589 {
e0471c16 24590 const char * type;
6c43fab6 24591
c19d1205
ZW
24592 switch (fixp->fx_r_type)
24593 {
24594 case BFD_RELOC_NONE: type = "NONE"; break;
24595 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
24596 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 24597 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
24598 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
24599 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
24600 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 24601 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 24602 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
24603 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
24604 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
24605 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
24606 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
24607 default: type = _("<unknown>"); break;
24608 }
24609 as_bad_where (fixp->fx_file, fixp->fx_line,
24610 _("cannot represent %s relocation in this object file format"),
24611 type);
24612 return NULL;
24613 }
a737bd4d 24614 }
6c43fab6 24615
c19d1205
ZW
24616#ifdef OBJ_ELF
24617 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
24618 && GOT_symbol
24619 && fixp->fx_addsy == GOT_symbol)
24620 {
24621 code = BFD_RELOC_ARM_GOTPC;
24622 reloc->addend = fixp->fx_offset = reloc->address;
24623 }
24624#endif
6c43fab6 24625
c19d1205 24626 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 24627
c19d1205
ZW
24628 if (reloc->howto == NULL)
24629 {
24630 as_bad_where (fixp->fx_file, fixp->fx_line,
24631 _("cannot represent %s relocation in this object file format"),
24632 bfd_get_reloc_code_name (code));
24633 return NULL;
24634 }
6c43fab6 24635
c19d1205
ZW
24636 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
24637 vtable entry to be used in the relocation's section offset. */
24638 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
24639 reloc->address = fixp->fx_offset;
6c43fab6 24640
c19d1205 24641 return reloc;
6c43fab6
RE
24642}
24643
c19d1205 24644/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 24645
c19d1205
ZW
24646void
24647cons_fix_new_arm (fragS * frag,
24648 int where,
24649 int size,
62ebcb5c
AM
24650 expressionS * exp,
24651 bfd_reloc_code_real_type reloc)
6c43fab6 24652{
c19d1205 24653 int pcrel = 0;
6c43fab6 24654
c19d1205
ZW
24655 /* Pick a reloc.
24656 FIXME: @@ Should look at CPU word size. */
24657 switch (size)
24658 {
24659 case 1:
62ebcb5c 24660 reloc = BFD_RELOC_8;
c19d1205
ZW
24661 break;
24662 case 2:
62ebcb5c 24663 reloc = BFD_RELOC_16;
c19d1205
ZW
24664 break;
24665 case 4:
24666 default:
62ebcb5c 24667 reloc = BFD_RELOC_32;
c19d1205
ZW
24668 break;
24669 case 8:
62ebcb5c 24670 reloc = BFD_RELOC_64;
c19d1205
ZW
24671 break;
24672 }
6c43fab6 24673
f0927246
NC
24674#ifdef TE_PE
24675 if (exp->X_op == O_secrel)
24676 {
24677 exp->X_op = O_symbol;
62ebcb5c 24678 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
24679 }
24680#endif
24681
62ebcb5c 24682 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 24683}
6c43fab6 24684
4343666d 24685#if defined (OBJ_COFF)
c19d1205
ZW
24686void
24687arm_validate_fix (fixS * fixP)
6c43fab6 24688{
c19d1205
ZW
24689 /* If the destination of the branch is a defined symbol which does not have
24690 the THUMB_FUNC attribute, then we must be calling a function which has
24691 the (interfacearm) attribute. We look for the Thumb entry point to that
24692 function and change the branch to refer to that function instead. */
24693 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
24694 && fixP->fx_addsy != NULL
24695 && S_IS_DEFINED (fixP->fx_addsy)
24696 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 24697 {
c19d1205 24698 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 24699 }
c19d1205
ZW
24700}
24701#endif
6c43fab6 24702
267bf995 24703
c19d1205
ZW
24704int
24705arm_force_relocation (struct fix * fixp)
24706{
24707#if defined (OBJ_COFF) && defined (TE_PE)
24708 if (fixp->fx_r_type == BFD_RELOC_RVA)
24709 return 1;
24710#endif
6c43fab6 24711
267bf995
RR
24712 /* In case we have a call or a branch to a function in ARM ISA mode from
24713 a thumb function or vice-versa force the relocation. These relocations
24714 are cleared off for some cores that might have blx and simple transformations
24715 are possible. */
24716
24717#ifdef OBJ_ELF
24718 switch (fixp->fx_r_type)
24719 {
24720 case BFD_RELOC_ARM_PCREL_JUMP:
24721 case BFD_RELOC_ARM_PCREL_CALL:
24722 case BFD_RELOC_THUMB_PCREL_BLX:
24723 if (THUMB_IS_FUNC (fixp->fx_addsy))
24724 return 1;
24725 break;
24726
24727 case BFD_RELOC_ARM_PCREL_BLX:
24728 case BFD_RELOC_THUMB_PCREL_BRANCH25:
24729 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24730 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24731 if (ARM_IS_FUNC (fixp->fx_addsy))
24732 return 1;
24733 break;
24734
24735 default:
24736 break;
24737 }
24738#endif
24739
b5884301
PB
24740 /* Resolve these relocations even if the symbol is extern or weak.
24741 Technically this is probably wrong due to symbol preemption.
24742 In practice these relocations do not have enough range to be useful
24743 at dynamic link time, and some code (e.g. in the Linux kernel)
24744 expects these references to be resolved. */
c19d1205
ZW
24745 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
24746 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 24747 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 24748 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
24749 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24750 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
24751 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 24752 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
24753 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
24754 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
24755 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
24756 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
24757 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
24758 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 24759 return 0;
a737bd4d 24760
4962c51a
MS
24761 /* Always leave these relocations for the linker. */
24762 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
24763 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
24764 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
24765 return 1;
24766
f0291e4c
PB
24767 /* Always generate relocations against function symbols. */
24768 if (fixp->fx_r_type == BFD_RELOC_32
24769 && fixp->fx_addsy
24770 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
24771 return 1;
24772
c19d1205 24773 return generic_force_reloc (fixp);
404ff6b5
AH
24774}
24775
0ffdc86c 24776#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
24777/* Relocations against function names must be left unadjusted,
24778 so that the linker can use this information to generate interworking
24779 stubs. The MIPS version of this function
c19d1205
ZW
24780 also prevents relocations that are mips-16 specific, but I do not
24781 know why it does this.
404ff6b5 24782
c19d1205
ZW
24783 FIXME:
24784 There is one other problem that ought to be addressed here, but
24785 which currently is not: Taking the address of a label (rather
24786 than a function) and then later jumping to that address. Such
24787 addresses also ought to have their bottom bit set (assuming that
24788 they reside in Thumb code), but at the moment they will not. */
404ff6b5 24789
c19d1205
ZW
24790bfd_boolean
24791arm_fix_adjustable (fixS * fixP)
404ff6b5 24792{
c19d1205
ZW
24793 if (fixP->fx_addsy == NULL)
24794 return 1;
404ff6b5 24795
e28387c3
PB
24796 /* Preserve relocations against symbols with function type. */
24797 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 24798 return FALSE;
e28387c3 24799
c19d1205
ZW
24800 if (THUMB_IS_FUNC (fixP->fx_addsy)
24801 && fixP->fx_subsy == NULL)
c921be7d 24802 return FALSE;
a737bd4d 24803
c19d1205
ZW
24804 /* We need the symbol name for the VTABLE entries. */
24805 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
24806 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 24807 return FALSE;
404ff6b5 24808
c19d1205
ZW
24809 /* Don't allow symbols to be discarded on GOT related relocs. */
24810 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
24811 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
24812 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
24813 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
24814 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
24815 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
24816 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
24817 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
24818 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
24819 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
24820 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
24821 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
24822 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 24823 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 24824 return FALSE;
a737bd4d 24825
4962c51a
MS
24826 /* Similarly for group relocations. */
24827 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
24828 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
24829 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 24830 return FALSE;
4962c51a 24831
79947c54
CD
24832 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
24833 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
24834 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
24835 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
24836 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
24837 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
24838 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
24839 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
24840 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 24841 return FALSE;
79947c54 24842
72d98d16
MG
24843 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
24844 offsets, so keep these symbols. */
24845 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
24846 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
24847 return FALSE;
24848
c921be7d 24849 return TRUE;
a737bd4d 24850}
0ffdc86c
NC
24851#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
24852
24853#ifdef OBJ_ELF
c19d1205
ZW
24854const char *
24855elf32_arm_target_format (void)
404ff6b5 24856{
c19d1205
ZW
24857#ifdef TE_SYMBIAN
24858 return (target_big_endian
24859 ? "elf32-bigarm-symbian"
24860 : "elf32-littlearm-symbian");
24861#elif defined (TE_VXWORKS)
24862 return (target_big_endian
24863 ? "elf32-bigarm-vxworks"
24864 : "elf32-littlearm-vxworks");
b38cadfb
NC
24865#elif defined (TE_NACL)
24866 return (target_big_endian
24867 ? "elf32-bigarm-nacl"
24868 : "elf32-littlearm-nacl");
c19d1205
ZW
24869#else
24870 if (target_big_endian)
24871 return "elf32-bigarm";
24872 else
24873 return "elf32-littlearm";
24874#endif
404ff6b5
AH
24875}
24876
c19d1205
ZW
24877void
24878armelf_frob_symbol (symbolS * symp,
24879 int * puntp)
404ff6b5 24880{
c19d1205
ZW
24881 elf_frob_symbol (symp, puntp);
24882}
24883#endif
404ff6b5 24884
c19d1205 24885/* MD interface: Finalization. */
a737bd4d 24886
c19d1205
ZW
24887void
24888arm_cleanup (void)
24889{
24890 literal_pool * pool;
a737bd4d 24891
e07e6e58
NC
24892 /* Ensure that all the IT blocks are properly closed. */
24893 check_it_blocks_finished ();
24894
c19d1205
ZW
24895 for (pool = list_of_pools; pool; pool = pool->next)
24896 {
5f4273c7 24897 /* Put it at the end of the relevant section. */
c19d1205
ZW
24898 subseg_set (pool->section, pool->sub_section);
24899#ifdef OBJ_ELF
24900 arm_elf_change_section ();
24901#endif
24902 s_ltorg (0);
24903 }
404ff6b5
AH
24904}
24905
cd000bff
DJ
24906#ifdef OBJ_ELF
24907/* Remove any excess mapping symbols generated for alignment frags in
24908 SEC. We may have created a mapping symbol before a zero byte
24909 alignment; remove it if there's a mapping symbol after the
24910 alignment. */
24911static void
24912check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
24913 void *dummy ATTRIBUTE_UNUSED)
24914{
24915 segment_info_type *seginfo = seg_info (sec);
24916 fragS *fragp;
24917
24918 if (seginfo == NULL || seginfo->frchainP == NULL)
24919 return;
24920
24921 for (fragp = seginfo->frchainP->frch_root;
24922 fragp != NULL;
24923 fragp = fragp->fr_next)
24924 {
24925 symbolS *sym = fragp->tc_frag_data.last_map;
24926 fragS *next = fragp->fr_next;
24927
24928 /* Variable-sized frags have been converted to fixed size by
24929 this point. But if this was variable-sized to start with,
24930 there will be a fixed-size frag after it. So don't handle
24931 next == NULL. */
24932 if (sym == NULL || next == NULL)
24933 continue;
24934
24935 if (S_GET_VALUE (sym) < next->fr_address)
24936 /* Not at the end of this frag. */
24937 continue;
24938 know (S_GET_VALUE (sym) == next->fr_address);
24939
24940 do
24941 {
24942 if (next->tc_frag_data.first_map != NULL)
24943 {
24944 /* Next frag starts with a mapping symbol. Discard this
24945 one. */
24946 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
24947 break;
24948 }
24949
24950 if (next->fr_next == NULL)
24951 {
24952 /* This mapping symbol is at the end of the section. Discard
24953 it. */
24954 know (next->fr_fix == 0 && next->fr_var == 0);
24955 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
24956 break;
24957 }
24958
24959 /* As long as we have empty frags without any mapping symbols,
24960 keep looking. */
24961 /* If the next frag is non-empty and does not start with a
24962 mapping symbol, then this mapping symbol is required. */
24963 if (next->fr_address != next->fr_next->fr_address)
24964 break;
24965
24966 next = next->fr_next;
24967 }
24968 while (next != NULL);
24969 }
24970}
24971#endif
24972
c19d1205
ZW
24973/* Adjust the symbol table. This marks Thumb symbols as distinct from
24974 ARM ones. */
404ff6b5 24975
c19d1205
ZW
24976void
24977arm_adjust_symtab (void)
404ff6b5 24978{
c19d1205
ZW
24979#ifdef OBJ_COFF
24980 symbolS * sym;
404ff6b5 24981
c19d1205
ZW
24982 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
24983 {
24984 if (ARM_IS_THUMB (sym))
24985 {
24986 if (THUMB_IS_FUNC (sym))
24987 {
24988 /* Mark the symbol as a Thumb function. */
24989 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
24990 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
24991 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 24992
c19d1205
ZW
24993 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
24994 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
24995 else
24996 as_bad (_("%s: unexpected function type: %d"),
24997 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
24998 }
24999 else switch (S_GET_STORAGE_CLASS (sym))
25000 {
25001 case C_EXT:
25002 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
25003 break;
25004 case C_STAT:
25005 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
25006 break;
25007 case C_LABEL:
25008 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
25009 break;
25010 default:
25011 /* Do nothing. */
25012 break;
25013 }
25014 }
a737bd4d 25015
c19d1205
ZW
25016 if (ARM_IS_INTERWORK (sym))
25017 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 25018 }
c19d1205
ZW
25019#endif
25020#ifdef OBJ_ELF
25021 symbolS * sym;
25022 char bind;
404ff6b5 25023
c19d1205 25024 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 25025 {
c19d1205
ZW
25026 if (ARM_IS_THUMB (sym))
25027 {
25028 elf_symbol_type * elf_sym;
404ff6b5 25029
c19d1205
ZW
25030 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
25031 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 25032
b0796911
PB
25033 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
25034 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
25035 {
25036 /* If it's a .thumb_func, declare it as so,
25037 otherwise tag label as .code 16. */
25038 if (THUMB_IS_FUNC (sym))
39d911fc
TP
25039 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
25040 ST_BRANCH_TO_THUMB);
3ba67470 25041 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
25042 elf_sym->internal_elf_sym.st_info =
25043 ELF_ST_INFO (bind, STT_ARM_16BIT);
25044 }
25045 }
25046 }
cd000bff
DJ
25047
25048 /* Remove any overlapping mapping symbols generated by alignment frags. */
25049 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
25050 /* Now do generic ELF adjustments. */
25051 elf_adjust_symtab ();
c19d1205 25052#endif
404ff6b5
AH
25053}
25054
c19d1205 25055/* MD interface: Initialization. */
404ff6b5 25056
a737bd4d 25057static void
c19d1205 25058set_constant_flonums (void)
a737bd4d 25059{
c19d1205 25060 int i;
404ff6b5 25061
c19d1205
ZW
25062 for (i = 0; i < NUM_FLOAT_VALS; i++)
25063 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
25064 abort ();
a737bd4d 25065}
404ff6b5 25066
3e9e4fcf
JB
25067/* Auto-select Thumb mode if it's the only available instruction set for the
25068 given architecture. */
25069
25070static void
25071autoselect_thumb_from_cpu_variant (void)
25072{
25073 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
25074 opcode_select (16);
25075}
25076
c19d1205
ZW
25077void
25078md_begin (void)
a737bd4d 25079{
c19d1205
ZW
25080 unsigned mach;
25081 unsigned int i;
404ff6b5 25082
c19d1205
ZW
25083 if ( (arm_ops_hsh = hash_new ()) == NULL
25084 || (arm_cond_hsh = hash_new ()) == NULL
25085 || (arm_shift_hsh = hash_new ()) == NULL
25086 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 25087 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 25088 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
25089 || (arm_reloc_hsh = hash_new ()) == NULL
25090 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
25091 as_fatal (_("virtual memory exhausted"));
25092
25093 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 25094 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 25095 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 25096 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 25097 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 25098 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 25099 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 25100 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 25101 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 25102 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 25103 (void *) (v7m_psrs + i));
c19d1205 25104 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 25105 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
25106 for (i = 0;
25107 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
25108 i++)
d3ce72d0 25109 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 25110 (void *) (barrier_opt_names + i));
c19d1205 25111#ifdef OBJ_ELF
3da1d841
NC
25112 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
25113 {
25114 struct reloc_entry * entry = reloc_names + i;
25115
25116 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
25117 /* This makes encode_branch() use the EABI versions of this relocation. */
25118 entry->reloc = BFD_RELOC_UNUSED;
25119
25120 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
25121 }
c19d1205
ZW
25122#endif
25123
25124 set_constant_flonums ();
404ff6b5 25125
c19d1205
ZW
25126 /* Set the cpu variant based on the command-line options. We prefer
25127 -mcpu= over -march= if both are set (as for GCC); and we prefer
25128 -mfpu= over any other way of setting the floating point unit.
25129 Use of legacy options with new options are faulted. */
e74cfd16 25130 if (legacy_cpu)
404ff6b5 25131 {
e74cfd16 25132 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
25133 as_bad (_("use of old and new-style options to set CPU type"));
25134
25135 mcpu_cpu_opt = legacy_cpu;
404ff6b5 25136 }
e74cfd16 25137 else if (!mcpu_cpu_opt)
c168ce07
TP
25138 {
25139 mcpu_cpu_opt = march_cpu_opt;
25140 dyn_mcpu_ext_opt = dyn_march_ext_opt;
25141 /* Avoid double free in arm_md_end. */
25142 dyn_march_ext_opt = NULL;
25143 }
404ff6b5 25144
e74cfd16 25145 if (legacy_fpu)
c19d1205 25146 {
e74cfd16 25147 if (mfpu_opt)
c19d1205 25148 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
25149
25150 mfpu_opt = legacy_fpu;
25151 }
e74cfd16 25152 else if (!mfpu_opt)
03b1477f 25153 {
45eb4c1b
NS
25154#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
25155 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
25156 /* Some environments specify a default FPU. If they don't, infer it
25157 from the processor. */
e74cfd16 25158 if (mcpu_fpu_opt)
03b1477f
RE
25159 mfpu_opt = mcpu_fpu_opt;
25160 else
25161 mfpu_opt = march_fpu_opt;
39c2da32 25162#else
e74cfd16 25163 mfpu_opt = &fpu_default;
39c2da32 25164#endif
03b1477f
RE
25165 }
25166
e74cfd16 25167 if (!mfpu_opt)
03b1477f 25168 {
493cb6ef 25169 if (mcpu_cpu_opt != NULL)
e74cfd16 25170 mfpu_opt = &fpu_default;
493cb6ef 25171 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 25172 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 25173 else
e74cfd16 25174 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
25175 }
25176
ee065d83 25177#ifdef CPU_DEFAULT
e74cfd16 25178 if (!mcpu_cpu_opt)
ee065d83 25179 {
e74cfd16
PB
25180 mcpu_cpu_opt = &cpu_default;
25181 selected_cpu = cpu_default;
ee065d83 25182 }
c168ce07
TP
25183 else if (dyn_mcpu_ext_opt)
25184 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
62785b09
TP
25185 else
25186 selected_cpu = *mcpu_cpu_opt;
e74cfd16 25187#else
c168ce07
TP
25188 if (mcpu_cpu_opt && dyn_mcpu_ext_opt)
25189 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
25190 else if (mcpu_cpu_opt)
e74cfd16 25191 selected_cpu = *mcpu_cpu_opt;
ee065d83 25192 else
e74cfd16 25193 mcpu_cpu_opt = &arm_arch_any;
ee065d83 25194#endif
03b1477f 25195
e74cfd16 25196 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
c168ce07
TP
25197 if (dyn_mcpu_ext_opt)
25198 ARM_MERGE_FEATURE_SETS (cpu_variant, cpu_variant, *dyn_mcpu_ext_opt);
03b1477f 25199
3e9e4fcf
JB
25200 autoselect_thumb_from_cpu_variant ();
25201
e74cfd16 25202 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 25203
f17c130b 25204#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 25205 {
7cc69913
NC
25206 unsigned int flags = 0;
25207
25208#if defined OBJ_ELF
25209 flags = meabi_flags;
d507cf36
PB
25210
25211 switch (meabi_flags)
33a392fb 25212 {
d507cf36 25213 case EF_ARM_EABI_UNKNOWN:
7cc69913 25214#endif
d507cf36
PB
25215 /* Set the flags in the private structure. */
25216 if (uses_apcs_26) flags |= F_APCS26;
25217 if (support_interwork) flags |= F_INTERWORK;
25218 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 25219 if (pic_code) flags |= F_PIC;
e74cfd16 25220 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
25221 flags |= F_SOFT_FLOAT;
25222
d507cf36
PB
25223 switch (mfloat_abi_opt)
25224 {
25225 case ARM_FLOAT_ABI_SOFT:
25226 case ARM_FLOAT_ABI_SOFTFP:
25227 flags |= F_SOFT_FLOAT;
25228 break;
33a392fb 25229
d507cf36
PB
25230 case ARM_FLOAT_ABI_HARD:
25231 if (flags & F_SOFT_FLOAT)
25232 as_bad (_("hard-float conflicts with specified fpu"));
25233 break;
25234 }
03b1477f 25235
e74cfd16
PB
25236 /* Using pure-endian doubles (even if soft-float). */
25237 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 25238 flags |= F_VFP_FLOAT;
f17c130b 25239
fde78edd 25240#if defined OBJ_ELF
e74cfd16 25241 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 25242 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
25243 break;
25244
8cb51566 25245 case EF_ARM_EABI_VER4:
3a4a14e9 25246 case EF_ARM_EABI_VER5:
c19d1205 25247 /* No additional flags to set. */
d507cf36
PB
25248 break;
25249
25250 default:
25251 abort ();
25252 }
7cc69913 25253#endif
b99bd4ef
NC
25254 bfd_set_private_flags (stdoutput, flags);
25255
25256 /* We have run out flags in the COFF header to encode the
25257 status of ATPCS support, so instead we create a dummy,
c19d1205 25258 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
25259 if (atpcs)
25260 {
25261 asection * sec;
25262
25263 sec = bfd_make_section (stdoutput, ".arm.atpcs");
25264
25265 if (sec != NULL)
25266 {
25267 bfd_set_section_flags
25268 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
25269 bfd_set_section_size (stdoutput, sec, 0);
25270 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
25271 }
25272 }
7cc69913 25273 }
f17c130b 25274#endif
b99bd4ef
NC
25275
25276 /* Record the CPU type as well. */
2d447fca
JM
25277 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
25278 mach = bfd_mach_arm_iWMMXt2;
25279 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 25280 mach = bfd_mach_arm_iWMMXt;
e74cfd16 25281 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 25282 mach = bfd_mach_arm_XScale;
e74cfd16 25283 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 25284 mach = bfd_mach_arm_ep9312;
e74cfd16 25285 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 25286 mach = bfd_mach_arm_5TE;
e74cfd16 25287 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 25288 {
e74cfd16 25289 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
25290 mach = bfd_mach_arm_5T;
25291 else
25292 mach = bfd_mach_arm_5;
25293 }
e74cfd16 25294 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 25295 {
e74cfd16 25296 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
25297 mach = bfd_mach_arm_4T;
25298 else
25299 mach = bfd_mach_arm_4;
25300 }
e74cfd16 25301 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 25302 mach = bfd_mach_arm_3M;
e74cfd16
PB
25303 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
25304 mach = bfd_mach_arm_3;
25305 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
25306 mach = bfd_mach_arm_2a;
25307 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
25308 mach = bfd_mach_arm_2;
25309 else
25310 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
25311
25312 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
25313}
25314
c19d1205 25315/* Command line processing. */
b99bd4ef 25316
c19d1205
ZW
25317/* md_parse_option
25318 Invocation line includes a switch not recognized by the base assembler.
25319 See if it's a processor-specific option.
b99bd4ef 25320
c19d1205
ZW
25321 This routine is somewhat complicated by the need for backwards
25322 compatibility (since older releases of gcc can't be changed).
25323 The new options try to make the interface as compatible as
25324 possible with GCC.
b99bd4ef 25325
c19d1205 25326 New options (supported) are:
b99bd4ef 25327
c19d1205
ZW
25328 -mcpu=<cpu name> Assemble for selected processor
25329 -march=<architecture name> Assemble for selected architecture
25330 -mfpu=<fpu architecture> Assemble for selected FPU.
25331 -EB/-mbig-endian Big-endian
25332 -EL/-mlittle-endian Little-endian
25333 -k Generate PIC code
25334 -mthumb Start in Thumb mode
25335 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 25336
278df34e 25337 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 25338 -m[no-]warn-syms Warn when symbols match instructions
267bf995 25339
c19d1205 25340 For now we will also provide support for:
b99bd4ef 25341
c19d1205
ZW
25342 -mapcs-32 32-bit Program counter
25343 -mapcs-26 26-bit Program counter
25344 -macps-float Floats passed in FP registers
25345 -mapcs-reentrant Reentrant code
25346 -matpcs
25347 (sometime these will probably be replaced with -mapcs=<list of options>
25348 and -matpcs=<list of options>)
b99bd4ef 25349
c19d1205
ZW
25350 The remaining options are only supported for back-wards compatibility.
25351 Cpu variants, the arm part is optional:
25352 -m[arm]1 Currently not supported.
25353 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
25354 -m[arm]3 Arm 3 processor
25355 -m[arm]6[xx], Arm 6 processors
25356 -m[arm]7[xx][t][[d]m] Arm 7 processors
25357 -m[arm]8[10] Arm 8 processors
25358 -m[arm]9[20][tdmi] Arm 9 processors
25359 -mstrongarm[110[0]] StrongARM processors
25360 -mxscale XScale processors
25361 -m[arm]v[2345[t[e]]] Arm architectures
25362 -mall All (except the ARM1)
25363 FP variants:
25364 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
25365 -mfpe-old (No float load/store multiples)
25366 -mvfpxd VFP Single precision
25367 -mvfp All VFP
25368 -mno-fpu Disable all floating point instructions
b99bd4ef 25369
c19d1205
ZW
25370 The following CPU names are recognized:
25371 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
25372 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
25373 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
25374 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
25375 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
25376 arm10t arm10e, arm1020t, arm1020e, arm10200e,
25377 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 25378
c19d1205 25379 */
b99bd4ef 25380
c19d1205 25381const char * md_shortopts = "m:k";
b99bd4ef 25382
c19d1205
ZW
25383#ifdef ARM_BI_ENDIAN
25384#define OPTION_EB (OPTION_MD_BASE + 0)
25385#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 25386#else
c19d1205
ZW
25387#if TARGET_BYTES_BIG_ENDIAN
25388#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 25389#else
c19d1205
ZW
25390#define OPTION_EL (OPTION_MD_BASE + 1)
25391#endif
b99bd4ef 25392#endif
845b51d6 25393#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 25394
c19d1205 25395struct option md_longopts[] =
b99bd4ef 25396{
c19d1205
ZW
25397#ifdef OPTION_EB
25398 {"EB", no_argument, NULL, OPTION_EB},
25399#endif
25400#ifdef OPTION_EL
25401 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 25402#endif
845b51d6 25403 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
25404 {NULL, no_argument, NULL, 0}
25405};
b99bd4ef 25406
8b2d793c 25407
c19d1205 25408size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 25409
c19d1205 25410struct arm_option_table
b99bd4ef 25411{
e0471c16
TS
25412 const char *option; /* Option name to match. */
25413 const char *help; /* Help information. */
c19d1205
ZW
25414 int *var; /* Variable to change. */
25415 int value; /* What to change it to. */
e0471c16 25416 const char *deprecated; /* If non-null, print this message. */
c19d1205 25417};
b99bd4ef 25418
c19d1205
ZW
25419struct arm_option_table arm_opts[] =
25420{
25421 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
25422 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
25423 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
25424 &support_interwork, 1, NULL},
25425 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
25426 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
25427 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
25428 1, NULL},
25429 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
25430 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
25431 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
25432 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
25433 NULL},
b99bd4ef 25434
c19d1205
ZW
25435 /* These are recognized by the assembler, but have no affect on code. */
25436 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
25437 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
25438
25439 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
25440 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
25441 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
25442 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
25443 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
25444 {NULL, NULL, NULL, 0, NULL}
25445};
25446
25447struct arm_legacy_option_table
25448{
e0471c16 25449 const char *option; /* Option name to match. */
e74cfd16
PB
25450 const arm_feature_set **var; /* Variable to change. */
25451 const arm_feature_set value; /* What to change it to. */
e0471c16 25452 const char *deprecated; /* If non-null, print this message. */
e74cfd16 25453};
b99bd4ef 25454
e74cfd16
PB
25455const struct arm_legacy_option_table arm_legacy_opts[] =
25456{
c19d1205
ZW
25457 /* DON'T add any new processors to this list -- we want the whole list
25458 to go away... Add them to the processors table instead. */
e74cfd16
PB
25459 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25460 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25461 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25462 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25463 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25464 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25465 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25466 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25467 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25468 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25469 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25470 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25471 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25472 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25473 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25474 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25475 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25476 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25477 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25478 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25479 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25480 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25481 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25482 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25483 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25484 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25485 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25486 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25487 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25488 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25489 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25490 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25491 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25492 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25493 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25494 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25495 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25496 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25497 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25498 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25499 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25500 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25501 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25502 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25503 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25504 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25505 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25506 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25507 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25508 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25509 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25510 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25511 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25512 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25513 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25514 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25515 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25516 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25517 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25518 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25519 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25520 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25521 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25522 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25523 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25524 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25525 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25526 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25527 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
25528 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 25529 N_("use -mcpu=strongarm110")},
e74cfd16 25530 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 25531 N_("use -mcpu=strongarm1100")},
e74cfd16 25532 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 25533 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
25534 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
25535 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
25536 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 25537
c19d1205 25538 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
25539 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25540 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25541 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25542 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25543 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25544 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25545 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25546 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25547 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25548 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25549 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25550 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25551 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25552 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25553 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25554 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25555 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
25556 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 25557
c19d1205 25558 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
25559 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
25560 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
25561 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
25562 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 25563 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 25564
e74cfd16 25565 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 25566};
7ed4c4c5 25567
c19d1205 25568struct arm_cpu_option_table
7ed4c4c5 25569{
e0471c16 25570 const char *name;
f3bad469 25571 size_t name_len;
e74cfd16 25572 const arm_feature_set value;
996b5569 25573 const arm_feature_set ext;
c19d1205
ZW
25574 /* For some CPUs we assume an FPU unless the user explicitly sets
25575 -mfpu=... */
e74cfd16 25576 const arm_feature_set default_fpu;
ee065d83
PB
25577 /* The canonical name of the CPU, or NULL to use NAME converted to upper
25578 case. */
25579 const char *canonical_name;
c19d1205 25580};
7ed4c4c5 25581
c19d1205
ZW
25582/* This list should, at a minimum, contain all the cpu names
25583 recognized by GCC. */
996b5569 25584#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
e74cfd16 25585static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 25586{
996b5569
TP
25587 ARM_CPU_OPT ("all", NULL, ARM_ANY,
25588 ARM_ARCH_NONE,
25589 FPU_ARCH_FPA),
25590 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
25591 ARM_ARCH_NONE,
25592 FPU_ARCH_FPA),
25593 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
25594 ARM_ARCH_NONE,
25595 FPU_ARCH_FPA),
25596 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
25597 ARM_ARCH_NONE,
25598 FPU_ARCH_FPA),
25599 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
25600 ARM_ARCH_NONE,
25601 FPU_ARCH_FPA),
25602 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
25603 ARM_ARCH_NONE,
25604 FPU_ARCH_FPA),
25605 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
25606 ARM_ARCH_NONE,
25607 FPU_ARCH_FPA),
25608 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
25609 ARM_ARCH_NONE,
25610 FPU_ARCH_FPA),
25611 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
25612 ARM_ARCH_NONE,
25613 FPU_ARCH_FPA),
25614 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
25615 ARM_ARCH_NONE,
25616 FPU_ARCH_FPA),
25617 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
25618 ARM_ARCH_NONE,
25619 FPU_ARCH_FPA),
25620 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
25621 ARM_ARCH_NONE,
25622 FPU_ARCH_FPA),
25623 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
25624 ARM_ARCH_NONE,
25625 FPU_ARCH_FPA),
25626 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
25627 ARM_ARCH_NONE,
25628 FPU_ARCH_FPA),
25629 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
25630 ARM_ARCH_NONE,
25631 FPU_ARCH_FPA),
25632 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
25633 ARM_ARCH_NONE,
25634 FPU_ARCH_FPA),
25635 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
25636 ARM_ARCH_NONE,
25637 FPU_ARCH_FPA),
25638 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
25639 ARM_ARCH_NONE,
25640 FPU_ARCH_FPA),
25641 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
25642 ARM_ARCH_NONE,
25643 FPU_ARCH_FPA),
25644 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
25645 ARM_ARCH_NONE,
25646 FPU_ARCH_FPA),
25647 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
25648 ARM_ARCH_NONE,
25649 FPU_ARCH_FPA),
25650 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
25651 ARM_ARCH_NONE,
25652 FPU_ARCH_FPA),
25653 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
25654 ARM_ARCH_NONE,
25655 FPU_ARCH_FPA),
25656 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
25657 ARM_ARCH_NONE,
25658 FPU_ARCH_FPA),
25659 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
25660 ARM_ARCH_NONE,
25661 FPU_ARCH_FPA),
25662 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
25663 ARM_ARCH_NONE,
25664 FPU_ARCH_FPA),
25665 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
25666 ARM_ARCH_NONE,
25667 FPU_ARCH_FPA),
25668 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
25669 ARM_ARCH_NONE,
25670 FPU_ARCH_FPA),
25671 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
25672 ARM_ARCH_NONE,
25673 FPU_ARCH_FPA),
25674 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
25675 ARM_ARCH_NONE,
25676 FPU_ARCH_FPA),
25677 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
25678 ARM_ARCH_NONE,
25679 FPU_ARCH_FPA),
25680 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
25681 ARM_ARCH_NONE,
25682 FPU_ARCH_FPA),
25683 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
25684 ARM_ARCH_NONE,
25685 FPU_ARCH_FPA),
25686 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
25687 ARM_ARCH_NONE,
25688 FPU_ARCH_FPA),
25689 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
25690 ARM_ARCH_NONE,
25691 FPU_ARCH_FPA),
25692 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
25693 ARM_ARCH_NONE,
25694 FPU_ARCH_FPA),
25695 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
25696 ARM_ARCH_NONE,
25697 FPU_ARCH_FPA),
25698 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
25699 ARM_ARCH_NONE,
25700 FPU_ARCH_FPA),
25701 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
25702 ARM_ARCH_NONE,
25703 FPU_ARCH_FPA),
25704 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
25705 ARM_ARCH_NONE,
25706 FPU_ARCH_FPA),
25707 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
25708 ARM_ARCH_NONE,
25709 FPU_ARCH_FPA),
25710 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
25711 ARM_ARCH_NONE,
25712 FPU_ARCH_FPA),
25713 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
25714 ARM_ARCH_NONE,
25715 FPU_ARCH_FPA),
25716 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
25717 ARM_ARCH_NONE,
25718 FPU_ARCH_FPA),
25719 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
25720 ARM_ARCH_NONE,
25721 FPU_ARCH_FPA),
25722 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
25723 ARM_ARCH_NONE,
25724 FPU_ARCH_FPA),
25725
c19d1205
ZW
25726 /* For V5 or later processors we default to using VFP; but the user
25727 should really set the FPU type explicitly. */
996b5569
TP
25728 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
25729 ARM_ARCH_NONE,
25730 FPU_ARCH_VFP_V2),
25731 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
25732 ARM_ARCH_NONE,
25733 FPU_ARCH_VFP_V2),
25734 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
25735 ARM_ARCH_NONE,
25736 FPU_ARCH_VFP_V2),
25737 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
25738 ARM_ARCH_NONE,
25739 FPU_ARCH_VFP_V2),
25740 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
25741 ARM_ARCH_NONE,
25742 FPU_ARCH_VFP_V2),
25743 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
25744 ARM_ARCH_NONE,
25745 FPU_ARCH_VFP_V2),
25746 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
25747 ARM_ARCH_NONE,
25748 FPU_ARCH_VFP_V2),
25749 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
25750 ARM_ARCH_NONE,
25751 FPU_ARCH_VFP_V2),
25752 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
25753 ARM_ARCH_NONE,
25754 FPU_ARCH_VFP_V2),
25755 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
25756 ARM_ARCH_NONE,
25757 FPU_ARCH_VFP_V2),
25758 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
25759 ARM_ARCH_NONE,
25760 FPU_ARCH_VFP_V2),
25761 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
25762 ARM_ARCH_NONE,
25763 FPU_ARCH_VFP_V2),
25764 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
25765 ARM_ARCH_NONE,
25766 FPU_ARCH_VFP_V1),
25767 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
25768 ARM_ARCH_NONE,
25769 FPU_ARCH_VFP_V1),
25770 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
25771 ARM_ARCH_NONE,
25772 FPU_ARCH_VFP_V2),
25773 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
25774 ARM_ARCH_NONE,
25775 FPU_ARCH_VFP_V2),
25776 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
25777 ARM_ARCH_NONE,
25778 FPU_ARCH_VFP_V1),
25779 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
25780 ARM_ARCH_NONE,
25781 FPU_ARCH_VFP_V2),
25782 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
25783 ARM_ARCH_NONE,
25784 FPU_ARCH_VFP_V2),
25785 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
25786 ARM_ARCH_NONE,
25787 FPU_ARCH_VFP_V2),
25788 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
25789 ARM_ARCH_NONE,
25790 FPU_ARCH_VFP_V2),
25791 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
25792 ARM_ARCH_NONE,
25793 FPU_ARCH_VFP_V2),
25794 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
25795 ARM_ARCH_NONE,
25796 FPU_ARCH_VFP_V2),
25797 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
25798 ARM_ARCH_NONE,
25799 FPU_ARCH_VFP_V2),
25800 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
25801 ARM_ARCH_NONE,
25802 FPU_ARCH_VFP_V2),
25803 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
25804 ARM_ARCH_NONE,
25805 FPU_ARCH_VFP_V2),
25806 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
25807 ARM_ARCH_NONE,
25808 FPU_NONE),
25809 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
25810 ARM_ARCH_NONE,
25811 FPU_NONE),
25812 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
25813 ARM_ARCH_NONE,
25814 FPU_ARCH_VFP_V2),
25815 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
25816 ARM_ARCH_NONE,
25817 FPU_ARCH_VFP_V2),
25818 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
25819 ARM_ARCH_NONE,
25820 FPU_ARCH_VFP_V2),
25821 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
25822 ARM_ARCH_NONE,
25823 FPU_NONE),
25824 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
25825 ARM_ARCH_NONE,
25826 FPU_NONE),
25827 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
25828 ARM_ARCH_NONE,
25829 FPU_ARCH_VFP_V2),
25830 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
25831 ARM_ARCH_NONE,
25832 FPU_NONE),
25833 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
25834 ARM_ARCH_NONE,
25835 FPU_ARCH_VFP_V2),
25836 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
25837 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
25838 FPU_NONE),
25839 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
25840 ARM_ARCH_NONE,
25841 FPU_ARCH_NEON_VFP_V4),
25842 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
25843 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
25844 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
25845 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
25846 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
25847 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
25848 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
25849 ARM_ARCH_NONE,
25850 FPU_ARCH_NEON_VFP_V4),
25851 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
25852 ARM_ARCH_NONE,
25853 FPU_ARCH_NEON_VFP_V4),
25854 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
25855 ARM_ARCH_NONE,
25856 FPU_ARCH_NEON_VFP_V4),
25857 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
25858 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25859 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25860 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
25861 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25862 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25863 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
25864 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25865 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
25866 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
25867 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
25868 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
996b5569
TP
25869 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
25870 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25871 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25872 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
25873 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25874 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25875 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
25876 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25877 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
25878 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
25879 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
25880 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
996b5569
TP
25881 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
25882 ARM_ARCH_NONE,
25883 FPU_NONE),
25884 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
25885 ARM_ARCH_NONE,
25886 FPU_ARCH_VFP_V3D16),
25887 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
25888 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
25889 FPU_NONE),
25890 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
25891 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
25892 FPU_ARCH_VFP_V3D16),
25893 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
25894 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
25895 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
25896 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
25897 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25898 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
25899 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
25900 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
25901 FPU_NONE),
25902 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
25903 ARM_ARCH_NONE,
25904 FPU_NONE),
25905 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
25906 ARM_ARCH_NONE,
25907 FPU_NONE),
25908 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
25909 ARM_ARCH_NONE,
25910 FPU_NONE),
25911 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
25912 ARM_ARCH_NONE,
25913 FPU_NONE),
25914 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
25915 ARM_ARCH_NONE,
25916 FPU_NONE),
25917 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
25918 ARM_ARCH_NONE,
25919 FPU_NONE),
25920 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
25921 ARM_ARCH_NONE,
25922 FPU_NONE),
25923 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
25924 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25925 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
6b21c2bf 25926
c19d1205 25927 /* ??? XSCALE is really an architecture. */
996b5569
TP
25928 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
25929 ARM_ARCH_NONE,
25930 FPU_ARCH_VFP_V2),
25931
c19d1205 25932 /* ??? iwmmxt is not a processor. */
996b5569
TP
25933 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
25934 ARM_ARCH_NONE,
25935 FPU_ARCH_VFP_V2),
25936 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
25937 ARM_ARCH_NONE,
25938 FPU_ARCH_VFP_V2),
25939 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
25940 ARM_ARCH_NONE,
25941 FPU_ARCH_VFP_V2),
25942
c19d1205 25943 /* Maverick */
996b5569
TP
25944 ARM_CPU_OPT ("ep9312", "ARM920T",
25945 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
25946 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
25947
da4339ed 25948 /* Marvell processors. */
996b5569
TP
25949 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
25950 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
25951 FPU_ARCH_VFP_V3D16),
25952 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
25953 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
25954 FPU_ARCH_NEON_VFP_V4),
da4339ed 25955
996b5569
TP
25956 /* APM X-Gene family. */
25957 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
25958 ARM_ARCH_NONE,
25959 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25960 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
25961 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25962 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25963
25964 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 25965};
f3bad469 25966#undef ARM_CPU_OPT
7ed4c4c5 25967
c19d1205 25968struct arm_arch_option_table
7ed4c4c5 25969{
e0471c16 25970 const char *name;
f3bad469 25971 size_t name_len;
e74cfd16
PB
25972 const arm_feature_set value;
25973 const arm_feature_set default_fpu;
c19d1205 25974};
7ed4c4c5 25975
c19d1205
ZW
25976/* This list should, at a minimum, contain all the architecture names
25977 recognized by GCC. */
f3bad469 25978#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
e74cfd16 25979static const struct arm_arch_option_table arm_archs[] =
c19d1205 25980{
f3bad469
MGD
25981 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
25982 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
25983 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
25984 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
25985 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
25986 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
25987 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
25988 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
25989 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
25990 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
25991 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
25992 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
25993 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
25994 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
25995 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
25996 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
25997 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
25998 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
25999 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
26000 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
26001 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
f33026a9
MW
26002 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
26003 kept to preserve existing behaviour. */
26004 ARM_ARCH_OPT ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
26005 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
f3bad469
MGD
26006 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
26007 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
26008 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
f33026a9
MW
26009 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
26010 kept to preserve existing behaviour. */
26011 ARM_ARCH_OPT ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
26012 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
f3bad469
MGD
26013 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
26014 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
26015 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
c450d570
PB
26016 /* The official spelling of the ARMv7 profile variants is the dashed form.
26017 Accept the non-dashed form for compatibility with old toolchains. */
f3bad469 26018 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
c9fb6e58 26019 ARM_ARCH_OPT ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP),
f3bad469
MGD
26020 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
26021 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
26022 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
26023 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
26024 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
26025 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
ff8646ee 26026 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
4ed7ed8d 26027 ARM_ARCH_OPT ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP),
bca38921 26028 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
a5932920 26029 ARM_ARCH_OPT ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP),
56a1b672 26030 ARM_ARCH_OPT ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP),
a12fd8e1 26031 ARM_ARCH_OPT ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP),
ced40572 26032 ARM_ARCH_OPT ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP),
f3bad469
MGD
26033 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
26034 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
26035 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
26036 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 26037};
f3bad469 26038#undef ARM_ARCH_OPT
7ed4c4c5 26039
69133863
MGD
26040/* ISA extensions in the co-processor and main instruction set space. */
26041struct arm_option_extension_value_table
c19d1205 26042{
e0471c16 26043 const char *name;
f3bad469 26044 size_t name_len;
5a70a223
JB
26045 const arm_feature_set merge_value;
26046 const arm_feature_set clear_value;
d942732e
TP
26047 /* List of architectures for which an extension is available. ARM_ARCH_NONE
26048 indicates that an extension is available for all architectures while
26049 ARM_ANY marks an empty entry. */
26050 const arm_feature_set allowed_archs[2];
c19d1205 26051};
7ed4c4c5 26052
69133863
MGD
26053/* The following table must be in alphabetical order with a NULL last entry.
26054 */
d942732e
TP
26055#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
26056#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
69133863 26057static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 26058{
823d2571
TG
26059 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26060 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 26061 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
26062 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
26063 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
26064 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
26065 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
26066 ARM_ARCH_V8_2A),
15afaa63
TP
26067 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26068 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26069 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
26070 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
26071 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
26072 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26073 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26074 ARM_ARCH_V8_2A),
d942732e 26075 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 26076 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
26077 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26078 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
26079 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
26080 Thumb divide instruction. Due to this having the same name as the
26081 previous entry, this will be ignored when doing command-line parsing and
26082 only considered by build attribute selection code. */
26083 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26084 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26085 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 26086 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 26087 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 26088 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 26089 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 26090 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
26091 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
26092 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 26093 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
26094 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26095 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
26096 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26097 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26098 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
26099 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
26100 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 26101 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
4d1464f2
MW
26102 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
26103 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 26104 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
26105 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
26106 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 26107 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
d942732e 26108 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 26109 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
26110 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
26111 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
26112 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
26113 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
26114 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
26115 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
26116 | ARM_EXT_DIV),
26117 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
26118 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
26119 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
26120 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
26121 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 26122};
f3bad469 26123#undef ARM_EXT_OPT
69133863
MGD
26124
26125/* ISA floating-point and Advanced SIMD extensions. */
26126struct arm_option_fpu_value_table
26127{
e0471c16 26128 const char *name;
69133863 26129 const arm_feature_set value;
c19d1205 26130};
7ed4c4c5 26131
c19d1205
ZW
26132/* This list should, at a minimum, contain all the fpu names
26133 recognized by GCC. */
69133863 26134static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
26135{
26136 {"softfpa", FPU_NONE},
26137 {"fpe", FPU_ARCH_FPE},
26138 {"fpe2", FPU_ARCH_FPE},
26139 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
26140 {"fpa", FPU_ARCH_FPA},
26141 {"fpa10", FPU_ARCH_FPA},
26142 {"fpa11", FPU_ARCH_FPA},
26143 {"arm7500fe", FPU_ARCH_FPA},
26144 {"softvfp", FPU_ARCH_VFP},
26145 {"softvfp+vfp", FPU_ARCH_VFP_V2},
26146 {"vfp", FPU_ARCH_VFP_V2},
26147 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 26148 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
26149 {"vfp10", FPU_ARCH_VFP_V2},
26150 {"vfp10-r0", FPU_ARCH_VFP_V1},
26151 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
26152 {"vfpv2", FPU_ARCH_VFP_V2},
26153 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 26154 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 26155 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
26156 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
26157 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
26158 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
26159 {"arm1020t", FPU_ARCH_VFP_V1},
26160 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 26161 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
26162 {"arm1136jf-s", FPU_ARCH_VFP_V2},
26163 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 26164 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 26165 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 26166 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
26167 {"vfpv4", FPU_ARCH_VFP_V4},
26168 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 26169 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
26170 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
26171 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 26172 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
26173 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
26174 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
26175 {"crypto-neon-fp-armv8",
26176 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 26177 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
26178 {"crypto-neon-fp-armv8.1",
26179 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
26180 {NULL, ARM_ARCH_NONE}
26181};
26182
26183struct arm_option_value_table
26184{
e0471c16 26185 const char *name;
e74cfd16 26186 long value;
c19d1205 26187};
7ed4c4c5 26188
e74cfd16 26189static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
26190{
26191 {"hard", ARM_FLOAT_ABI_HARD},
26192 {"softfp", ARM_FLOAT_ABI_SOFTFP},
26193 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 26194 {NULL, 0}
c19d1205 26195};
7ed4c4c5 26196
c19d1205 26197#ifdef OBJ_ELF
3a4a14e9 26198/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 26199static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
26200{
26201 {"gnu", EF_ARM_EABI_UNKNOWN},
26202 {"4", EF_ARM_EABI_VER4},
3a4a14e9 26203 {"5", EF_ARM_EABI_VER5},
e74cfd16 26204 {NULL, 0}
c19d1205
ZW
26205};
26206#endif
7ed4c4c5 26207
c19d1205
ZW
26208struct arm_long_option_table
26209{
e0471c16
TS
26210 const char * option; /* Substring to match. */
26211 const char * help; /* Help information. */
17b9d67d 26212 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 26213 const char * deprecated; /* If non-null, print this message. */
c19d1205 26214};
7ed4c4c5 26215
c921be7d 26216static bfd_boolean
c168ce07
TP
26217arm_parse_extension (const char *str, const arm_feature_set *opt_set,
26218 arm_feature_set **ext_set_p)
7ed4c4c5 26219{
69133863 26220 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
26221 extensions being added before being removed. We achieve this by having
26222 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 26223 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 26224 or removing it (0) and only allowing it to change in the order
69133863
MGD
26225 -1 -> 1 -> 0. */
26226 const struct arm_option_extension_value_table * opt = NULL;
d942732e 26227 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
26228 int adding_value = -1;
26229
c168ce07
TP
26230 if (!*ext_set_p)
26231 {
26232 *ext_set_p = XNEW (arm_feature_set);
26233 **ext_set_p = arm_arch_none;
26234 }
e74cfd16 26235
c19d1205 26236 while (str != NULL && *str != 0)
7ed4c4c5 26237 {
82b8a785 26238 const char *ext;
f3bad469 26239 size_t len;
7ed4c4c5 26240
c19d1205
ZW
26241 if (*str != '+')
26242 {
26243 as_bad (_("invalid architectural extension"));
c921be7d 26244 return FALSE;
c19d1205 26245 }
7ed4c4c5 26246
c19d1205
ZW
26247 str++;
26248 ext = strchr (str, '+');
7ed4c4c5 26249
c19d1205 26250 if (ext != NULL)
f3bad469 26251 len = ext - str;
c19d1205 26252 else
f3bad469 26253 len = strlen (str);
7ed4c4c5 26254
f3bad469 26255 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
26256 {
26257 if (adding_value != 0)
26258 {
26259 adding_value = 0;
26260 opt = arm_extensions;
26261 }
26262
f3bad469 26263 len -= 2;
69133863
MGD
26264 str += 2;
26265 }
f3bad469 26266 else if (len > 0)
69133863
MGD
26267 {
26268 if (adding_value == -1)
26269 {
26270 adding_value = 1;
26271 opt = arm_extensions;
26272 }
26273 else if (adding_value != 1)
26274 {
26275 as_bad (_("must specify extensions to add before specifying "
26276 "those to remove"));
26277 return FALSE;
26278 }
26279 }
26280
f3bad469 26281 if (len == 0)
c19d1205
ZW
26282 {
26283 as_bad (_("missing architectural extension"));
c921be7d 26284 return FALSE;
c19d1205 26285 }
7ed4c4c5 26286
69133863
MGD
26287 gas_assert (adding_value != -1);
26288 gas_assert (opt != NULL);
26289
26290 /* Scan over the options table trying to find an exact match. */
26291 for (; opt->name != NULL; opt++)
f3bad469 26292 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 26293 {
d942732e
TP
26294 int i, nb_allowed_archs =
26295 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 26296 /* Check we can apply the extension to this architecture. */
d942732e
TP
26297 for (i = 0; i < nb_allowed_archs; i++)
26298 {
26299 /* Empty entry. */
26300 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
26301 continue;
c168ce07 26302 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
26303 break;
26304 }
26305 if (i == nb_allowed_archs)
69133863
MGD
26306 {
26307 as_bad (_("extension does not apply to the base architecture"));
26308 return FALSE;
26309 }
26310
26311 /* Add or remove the extension. */
26312 if (adding_value)
c168ce07
TP
26313 ARM_MERGE_FEATURE_SETS (**ext_set_p, **ext_set_p,
26314 opt->merge_value);
69133863 26315 else
c168ce07 26316 ARM_CLEAR_FEATURE (**ext_set_p, **ext_set_p, opt->clear_value);
69133863 26317
3d030cdb
TP
26318 /* Allowing Thumb division instructions for ARMv7 in autodetection
26319 rely on this break so that duplicate extensions (extensions
26320 with the same name as a previous extension in the list) are not
26321 considered for command-line parsing. */
c19d1205
ZW
26322 break;
26323 }
7ed4c4c5 26324
c19d1205
ZW
26325 if (opt->name == NULL)
26326 {
69133863
MGD
26327 /* Did we fail to find an extension because it wasn't specified in
26328 alphabetical order, or because it does not exist? */
26329
26330 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 26331 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
26332 break;
26333
26334 if (opt->name == NULL)
26335 as_bad (_("unknown architectural extension `%s'"), str);
26336 else
26337 as_bad (_("architectural extensions must be specified in "
26338 "alphabetical order"));
26339
c921be7d 26340 return FALSE;
c19d1205 26341 }
69133863
MGD
26342 else
26343 {
26344 /* We should skip the extension we've just matched the next time
26345 round. */
26346 opt++;
26347 }
7ed4c4c5 26348
c19d1205
ZW
26349 str = ext;
26350 };
7ed4c4c5 26351
c921be7d 26352 return TRUE;
c19d1205 26353}
7ed4c4c5 26354
c921be7d 26355static bfd_boolean
17b9d67d 26356arm_parse_cpu (const char *str)
7ed4c4c5 26357{
f3bad469 26358 const struct arm_cpu_option_table *opt;
82b8a785 26359 const char *ext = strchr (str, '+');
f3bad469 26360 size_t len;
7ed4c4c5 26361
c19d1205 26362 if (ext != NULL)
f3bad469 26363 len = ext - str;
7ed4c4c5 26364 else
f3bad469 26365 len = strlen (str);
7ed4c4c5 26366
f3bad469 26367 if (len == 0)
7ed4c4c5 26368 {
c19d1205 26369 as_bad (_("missing cpu name `%s'"), str);
c921be7d 26370 return FALSE;
7ed4c4c5
NC
26371 }
26372
c19d1205 26373 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 26374 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 26375 {
c168ce07
TP
26376 mcpu_cpu_opt = &opt->value;
26377 if (!dyn_mcpu_ext_opt)
26378 dyn_mcpu_ext_opt = XNEW (arm_feature_set);
26379 *dyn_mcpu_ext_opt = opt->ext;
e74cfd16 26380 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 26381 if (opt->canonical_name)
ef8e6722
JW
26382 {
26383 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
26384 strcpy (selected_cpu_name, opt->canonical_name);
26385 }
ee065d83
PB
26386 else
26387 {
f3bad469 26388 size_t i;
c921be7d 26389
ef8e6722
JW
26390 if (len >= sizeof selected_cpu_name)
26391 len = (sizeof selected_cpu_name) - 1;
26392
f3bad469 26393 for (i = 0; i < len; i++)
ee065d83
PB
26394 selected_cpu_name[i] = TOUPPER (opt->name[i]);
26395 selected_cpu_name[i] = 0;
26396 }
7ed4c4c5 26397
c19d1205 26398 if (ext != NULL)
c168ce07 26399 return arm_parse_extension (ext, mcpu_cpu_opt, &dyn_mcpu_ext_opt);
7ed4c4c5 26400
c921be7d 26401 return TRUE;
c19d1205 26402 }
7ed4c4c5 26403
c19d1205 26404 as_bad (_("unknown cpu `%s'"), str);
c921be7d 26405 return FALSE;
7ed4c4c5
NC
26406}
26407
c921be7d 26408static bfd_boolean
17b9d67d 26409arm_parse_arch (const char *str)
7ed4c4c5 26410{
e74cfd16 26411 const struct arm_arch_option_table *opt;
82b8a785 26412 const char *ext = strchr (str, '+');
f3bad469 26413 size_t len;
7ed4c4c5 26414
c19d1205 26415 if (ext != NULL)
f3bad469 26416 len = ext - str;
7ed4c4c5 26417 else
f3bad469 26418 len = strlen (str);
7ed4c4c5 26419
f3bad469 26420 if (len == 0)
7ed4c4c5 26421 {
c19d1205 26422 as_bad (_("missing architecture name `%s'"), str);
c921be7d 26423 return FALSE;
7ed4c4c5
NC
26424 }
26425
c19d1205 26426 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 26427 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 26428 {
e74cfd16
PB
26429 march_cpu_opt = &opt->value;
26430 march_fpu_opt = &opt->default_fpu;
5f4273c7 26431 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 26432
c19d1205 26433 if (ext != NULL)
c168ce07 26434 return arm_parse_extension (ext, march_cpu_opt, &dyn_march_ext_opt);
7ed4c4c5 26435
c921be7d 26436 return TRUE;
c19d1205
ZW
26437 }
26438
26439 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 26440 return FALSE;
7ed4c4c5 26441}
eb043451 26442
c921be7d 26443static bfd_boolean
17b9d67d 26444arm_parse_fpu (const char * str)
c19d1205 26445{
69133863 26446 const struct arm_option_fpu_value_table * opt;
b99bd4ef 26447
c19d1205
ZW
26448 for (opt = arm_fpus; opt->name != NULL; opt++)
26449 if (streq (opt->name, str))
26450 {
e74cfd16 26451 mfpu_opt = &opt->value;
c921be7d 26452 return TRUE;
c19d1205 26453 }
b99bd4ef 26454
c19d1205 26455 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 26456 return FALSE;
c19d1205
ZW
26457}
26458
c921be7d 26459static bfd_boolean
17b9d67d 26460arm_parse_float_abi (const char * str)
b99bd4ef 26461{
e74cfd16 26462 const struct arm_option_value_table * opt;
b99bd4ef 26463
c19d1205
ZW
26464 for (opt = arm_float_abis; opt->name != NULL; opt++)
26465 if (streq (opt->name, str))
26466 {
26467 mfloat_abi_opt = opt->value;
c921be7d 26468 return TRUE;
c19d1205 26469 }
cc8a6dd0 26470
c19d1205 26471 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 26472 return FALSE;
c19d1205 26473}
b99bd4ef 26474
c19d1205 26475#ifdef OBJ_ELF
c921be7d 26476static bfd_boolean
17b9d67d 26477arm_parse_eabi (const char * str)
c19d1205 26478{
e74cfd16 26479 const struct arm_option_value_table *opt;
cc8a6dd0 26480
c19d1205
ZW
26481 for (opt = arm_eabis; opt->name != NULL; opt++)
26482 if (streq (opt->name, str))
26483 {
26484 meabi_flags = opt->value;
c921be7d 26485 return TRUE;
c19d1205
ZW
26486 }
26487 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 26488 return FALSE;
c19d1205
ZW
26489}
26490#endif
cc8a6dd0 26491
c921be7d 26492static bfd_boolean
17b9d67d 26493arm_parse_it_mode (const char * str)
e07e6e58 26494{
c921be7d 26495 bfd_boolean ret = TRUE;
e07e6e58
NC
26496
26497 if (streq ("arm", str))
26498 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
26499 else if (streq ("thumb", str))
26500 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
26501 else if (streq ("always", str))
26502 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
26503 else if (streq ("never", str))
26504 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
26505 else
26506 {
26507 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 26508 "arm, thumb, always, or never."), str);
c921be7d 26509 ret = FALSE;
e07e6e58
NC
26510 }
26511
26512 return ret;
26513}
26514
2e6976a8 26515static bfd_boolean
17b9d67d 26516arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
26517{
26518 codecomposer_syntax = TRUE;
26519 arm_comment_chars[0] = ';';
26520 arm_line_separator_chars[0] = 0;
26521 return TRUE;
26522}
26523
c19d1205
ZW
26524struct arm_long_option_table arm_long_opts[] =
26525{
26526 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
26527 arm_parse_cpu, NULL},
26528 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
26529 arm_parse_arch, NULL},
26530 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
26531 arm_parse_fpu, NULL},
26532 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
26533 arm_parse_float_abi, NULL},
26534#ifdef OBJ_ELF
7fac0536 26535 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
26536 arm_parse_eabi, NULL},
26537#endif
e07e6e58
NC
26538 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
26539 arm_parse_it_mode, NULL},
2e6976a8
DG
26540 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
26541 arm_ccs_mode, NULL},
c19d1205
ZW
26542 {NULL, NULL, 0, NULL}
26543};
cc8a6dd0 26544
c19d1205 26545int
17b9d67d 26546md_parse_option (int c, const char * arg)
c19d1205
ZW
26547{
26548 struct arm_option_table *opt;
e74cfd16 26549 const struct arm_legacy_option_table *fopt;
c19d1205 26550 struct arm_long_option_table *lopt;
b99bd4ef 26551
c19d1205 26552 switch (c)
b99bd4ef 26553 {
c19d1205
ZW
26554#ifdef OPTION_EB
26555 case OPTION_EB:
26556 target_big_endian = 1;
26557 break;
26558#endif
cc8a6dd0 26559
c19d1205
ZW
26560#ifdef OPTION_EL
26561 case OPTION_EL:
26562 target_big_endian = 0;
26563 break;
26564#endif
b99bd4ef 26565
845b51d6
PB
26566 case OPTION_FIX_V4BX:
26567 fix_v4bx = TRUE;
26568 break;
26569
c19d1205
ZW
26570 case 'a':
26571 /* Listing option. Just ignore these, we don't support additional
26572 ones. */
26573 return 0;
b99bd4ef 26574
c19d1205
ZW
26575 default:
26576 for (opt = arm_opts; opt->option != NULL; opt++)
26577 {
26578 if (c == opt->option[0]
26579 && ((arg == NULL && opt->option[1] == 0)
26580 || streq (arg, opt->option + 1)))
26581 {
c19d1205 26582 /* If the option is deprecated, tell the user. */
278df34e 26583 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
26584 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
26585 arg ? arg : "", _(opt->deprecated));
b99bd4ef 26586
c19d1205
ZW
26587 if (opt->var != NULL)
26588 *opt->var = opt->value;
cc8a6dd0 26589
c19d1205
ZW
26590 return 1;
26591 }
26592 }
b99bd4ef 26593
e74cfd16
PB
26594 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
26595 {
26596 if (c == fopt->option[0]
26597 && ((arg == NULL && fopt->option[1] == 0)
26598 || streq (arg, fopt->option + 1)))
26599 {
e74cfd16 26600 /* If the option is deprecated, tell the user. */
278df34e 26601 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
26602 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
26603 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
26604
26605 if (fopt->var != NULL)
26606 *fopt->var = &fopt->value;
26607
26608 return 1;
26609 }
26610 }
26611
c19d1205
ZW
26612 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
26613 {
26614 /* These options are expected to have an argument. */
26615 if (c == lopt->option[0]
26616 && arg != NULL
26617 && strncmp (arg, lopt->option + 1,
26618 strlen (lopt->option + 1)) == 0)
26619 {
c19d1205 26620 /* If the option is deprecated, tell the user. */
278df34e 26621 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
26622 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
26623 _(lopt->deprecated));
b99bd4ef 26624
c19d1205
ZW
26625 /* Call the sup-option parser. */
26626 return lopt->func (arg + strlen (lopt->option) - 1);
26627 }
26628 }
a737bd4d 26629
c19d1205
ZW
26630 return 0;
26631 }
a394c00f 26632
c19d1205
ZW
26633 return 1;
26634}
a394c00f 26635
c19d1205
ZW
26636void
26637md_show_usage (FILE * fp)
a394c00f 26638{
c19d1205
ZW
26639 struct arm_option_table *opt;
26640 struct arm_long_option_table *lopt;
a394c00f 26641
c19d1205 26642 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 26643
c19d1205
ZW
26644 for (opt = arm_opts; opt->option != NULL; opt++)
26645 if (opt->help != NULL)
26646 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 26647
c19d1205
ZW
26648 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
26649 if (lopt->help != NULL)
26650 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 26651
c19d1205
ZW
26652#ifdef OPTION_EB
26653 fprintf (fp, _("\
26654 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
26655#endif
26656
c19d1205
ZW
26657#ifdef OPTION_EL
26658 fprintf (fp, _("\
26659 -EL assemble code for a little-endian cpu\n"));
a737bd4d 26660#endif
845b51d6
PB
26661
26662 fprintf (fp, _("\
26663 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 26664}
ee065d83
PB
26665
26666
26667#ifdef OBJ_ELF
62b3e311
PB
26668typedef struct
26669{
26670 int val;
26671 arm_feature_set flags;
26672} cpu_arch_ver_table;
26673
2c6b98ea
TP
26674/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
26675 chronologically for architectures, with an exception for ARMv6-M and
26676 ARMv6S-M due to legacy reasons. No new architecture should have a
26677 special case. This allows for build attribute selection results to be
26678 stable when new architectures are added. */
62b3e311
PB
26679static const cpu_arch_ver_table cpu_arch_ver[] =
26680{
2c6b98ea
TP
26681 {0, ARM_ARCH_V1},
26682 {0, ARM_ARCH_V2},
26683 {0, ARM_ARCH_V2S},
26684 {0, ARM_ARCH_V3},
26685 {0, ARM_ARCH_V3M},
26686 {1, ARM_ARCH_V4xM},
62b3e311 26687 {1, ARM_ARCH_V4},
2c6b98ea 26688 {2, ARM_ARCH_V4TxM},
62b3e311 26689 {2, ARM_ARCH_V4T},
2c6b98ea 26690 {3, ARM_ARCH_V5xM},
62b3e311 26691 {3, ARM_ARCH_V5},
2c6b98ea 26692 {3, ARM_ARCH_V5TxM},
ee3c0378 26693 {3, ARM_ARCH_V5T},
2c6b98ea 26694 {4, ARM_ARCH_V5TExP},
62b3e311
PB
26695 {4, ARM_ARCH_V5TE},
26696 {5, ARM_ARCH_V5TEJ},
26697 {6, ARM_ARCH_V6},
f4c65163 26698 {7, ARM_ARCH_V6Z},
2c6b98ea
TP
26699 {7, ARM_ARCH_V6KZ},
26700 {9, ARM_ARCH_V6K},
26701 {8, ARM_ARCH_V6T2},
26702 {8, ARM_ARCH_V6KT2},
26703 {8, ARM_ARCH_V6ZT2},
26704 {8, ARM_ARCH_V6KZT2},
26705
26706 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
26707 always selected build attributes to match those of ARMv6-M
26708 (resp. ARMv6S-M). However, due to these architectures being a strict
26709 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
26710 would be selected when fully respecting chronology of architectures.
26711 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
26712 move them before ARMv7 architectures. */
91e22acd 26713 {11, ARM_ARCH_V6M},
b2a5fbdc 26714 {12, ARM_ARCH_V6SM},
2c6b98ea
TP
26715
26716 {10, ARM_ARCH_V7},
26717 {10, ARM_ARCH_V7A},
62b3e311
PB
26718 {10, ARM_ARCH_V7R},
26719 {10, ARM_ARCH_V7M},
2c6b98ea
TP
26720 {10, ARM_ARCH_V7VE},
26721 {13, ARM_ARCH_V7EM},
bca38921 26722 {14, ARM_ARCH_V8A},
2c6b98ea
TP
26723 {14, ARM_ARCH_V8_1A},
26724 {14, ARM_ARCH_V8_2A},
26725 {14, ARM_ARCH_V8_3A},
ff8646ee 26726 {16, ARM_ARCH_V8M_BASE},
4ed7ed8d 26727 {17, ARM_ARCH_V8M_MAIN},
ced40572 26728 {15, ARM_ARCH_V8R},
2c6b98ea 26729 {-1, ARM_ARCH_NONE}
62b3e311
PB
26730};
26731
ee3c0378
AS
26732/* Set an attribute if it has not already been set by the user. */
26733static void
26734aeabi_set_attribute_int (int tag, int value)
26735{
26736 if (tag < 1
26737 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
26738 || !attributes_set_explicitly[tag])
26739 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
26740}
26741
26742static void
26743aeabi_set_attribute_string (int tag, const char *value)
26744{
26745 if (tag < 1
26746 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
26747 || !attributes_set_explicitly[tag])
26748 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
26749}
26750
2c6b98ea
TP
26751/* Return whether features in the *NEEDED feature set are available via
26752 extensions for the architecture whose feature set is *ARCH_FSET. */
26753static bfd_boolean
26754have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
26755 const arm_feature_set *needed)
26756{
26757 int i, nb_allowed_archs;
26758 arm_feature_set ext_fset;
26759 const struct arm_option_extension_value_table *opt;
26760
26761 ext_fset = arm_arch_none;
26762 for (opt = arm_extensions; opt->name != NULL; opt++)
26763 {
26764 /* Extension does not provide any feature we need. */
26765 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
26766 continue;
26767
26768 nb_allowed_archs =
26769 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
26770 for (i = 0; i < nb_allowed_archs; i++)
26771 {
26772 /* Empty entry. */
26773 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
26774 break;
26775
26776 /* Extension is available, add it. */
26777 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
26778 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
26779 }
26780 }
26781
26782 /* Can we enable all features in *needed? */
26783 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
26784}
26785
26786/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
26787 a given architecture feature set *ARCH_EXT_FSET including extension feature
26788 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
26789 - if true, check for an exact match of the architecture modulo extensions;
26790 - otherwise, select build attribute value of the first superset
26791 architecture released so that results remains stable when new architectures
26792 are added.
26793 For -march/-mcpu=all the build attribute value of the most featureful
26794 architecture is returned. Tag_CPU_arch_profile result is returned in
26795 PROFILE. */
26796static int
26797get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
26798 const arm_feature_set *ext_fset,
26799 char *profile, int exact_match)
26800{
26801 arm_feature_set arch_fset;
26802 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
26803
26804 /* Select most featureful architecture with all its extensions if building
26805 for -march=all as the feature sets used to set build attributes. */
26806 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
26807 {
26808 /* Force revisiting of decision for each new architecture. */
26809 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8M_MAIN);
26810 *profile = 'A';
26811 return TAG_CPU_ARCH_V8;
26812 }
26813
26814 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
26815
26816 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
26817 {
26818 arm_feature_set known_arch_fset;
26819
26820 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
26821 if (exact_match)
26822 {
26823 /* Base architecture match user-specified architecture and
26824 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
26825 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
26826 {
26827 p_ver_ret = p_ver;
26828 goto found;
26829 }
26830 /* Base architecture match user-specified architecture only
26831 (eg. ARMv6-M in the same case as above). Record it in case we
26832 find a match with above condition. */
26833 else if (p_ver_ret == NULL
26834 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
26835 p_ver_ret = p_ver;
26836 }
26837 else
26838 {
26839
26840 /* Architecture has all features wanted. */
26841 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
26842 {
26843 arm_feature_set added_fset;
26844
26845 /* Compute features added by this architecture over the one
26846 recorded in p_ver_ret. */
26847 if (p_ver_ret != NULL)
26848 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
26849 p_ver_ret->flags);
26850 /* First architecture that match incl. with extensions, or the
26851 only difference in features over the recorded match is
26852 features that were optional and are now mandatory. */
26853 if (p_ver_ret == NULL
26854 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
26855 {
26856 p_ver_ret = p_ver;
26857 goto found;
26858 }
26859 }
26860 else if (p_ver_ret == NULL)
26861 {
26862 arm_feature_set needed_ext_fset;
26863
26864 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
26865
26866 /* Architecture has all features needed when using some
26867 extensions. Record it and continue searching in case there
26868 exist an architecture providing all needed features without
26869 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
26870 OS extension). */
26871 if (have_ext_for_needed_feat_p (&known_arch_fset,
26872 &needed_ext_fset))
26873 p_ver_ret = p_ver;
26874 }
26875 }
26876 }
26877
26878 if (p_ver_ret == NULL)
26879 return -1;
26880
26881found:
26882 /* Tag_CPU_arch_profile. */
26883 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
26884 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
26885 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
26886 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
26887 *profile = 'A';
26888 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
26889 *profile = 'R';
26890 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
26891 *profile = 'M';
26892 else
26893 *profile = '\0';
26894 return p_ver_ret->val;
26895}
26896
ee065d83 26897/* Set the public EABI object attributes. */
c168ce07 26898static void
ee065d83
PB
26899aeabi_set_public_attributes (void)
26900{
69239280 26901 char profile;
2c6b98ea 26902 int arch = -1;
90ec0d68 26903 int virt_sec = 0;
bca38921 26904 int fp16_optional = 0;
2c6b98ea
TP
26905 int skip_exact_match = 0;
26906 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 26907
54bab281
TP
26908 /* Autodetection mode, choose the architecture based the instructions
26909 actually used. */
26910 if (no_cpu_selected ())
26911 {
26912 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 26913
54bab281
TP
26914 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
26915 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 26916
54bab281
TP
26917 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
26918 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 26919
54bab281
TP
26920 /* Code run during relaxation relies on selected_cpu being set. */
26921 selected_cpu = flags;
26922 }
26923 /* Otherwise, choose the architecture based on the capabilities of the
26924 requested cpu. */
26925 else
26926 flags = selected_cpu;
26927 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
7f78eb34 26928
ddd7f988 26929 /* Allow the user to override the reported architecture. */
7a1d4c38
PB
26930 if (object_arch)
26931 {
2c6b98ea
TP
26932 ARM_CLEAR_FEATURE (flags_arch, *object_arch, fpu_any);
26933 flags_ext = arm_arch_none;
7a1d4c38 26934 }
2c6b98ea 26935 else
62b3e311 26936 {
2c6b98ea
TP
26937 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
26938 flags_ext = dyn_mcpu_ext_opt ? *dyn_mcpu_ext_opt : arm_arch_none;
26939 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
26940 }
26941
26942 /* When this function is run again after relaxation has happened there is no
26943 way to determine whether an architecture or CPU was specified by the user:
26944 - selected_cpu is set above for relaxation to work;
26945 - march_cpu_opt is not set if only -mcpu or .cpu is used;
26946 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
26947 Therefore, if not in -march=all case we first try an exact match and fall
26948 back to autodetection. */
26949 if (!skip_exact_match)
26950 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
26951 if (arch == -1)
26952 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
26953 if (arch == -1)
26954 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 26955
ee065d83
PB
26956 /* Tag_CPU_name. */
26957 if (selected_cpu_name[0])
26958 {
91d6fa6a 26959 char *q;
ee065d83 26960
91d6fa6a
NC
26961 q = selected_cpu_name;
26962 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
26963 {
26964 int i;
5f4273c7 26965
91d6fa6a
NC
26966 q += 4;
26967 for (i = 0; q[i]; i++)
26968 q[i] = TOUPPER (q[i]);
ee065d83 26969 }
91d6fa6a 26970 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 26971 }
62f3b8c8 26972
ee065d83 26973 /* Tag_CPU_arch. */
ee3c0378 26974 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 26975
62b3e311 26976 /* Tag_CPU_arch_profile. */
69239280
MGD
26977 if (profile != '\0')
26978 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 26979
15afaa63 26980 /* Tag_DSP_extension. */
6c290d53
TP
26981 if (dyn_mcpu_ext_opt && ARM_CPU_HAS_FEATURE (*dyn_mcpu_ext_opt, arm_ext_dsp))
26982 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 26983
2c6b98ea 26984 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 26985 /* Tag_ARM_ISA_use. */
ee3c0378 26986 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 26987 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 26988 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 26989
ee065d83 26990 /* Tag_THUMB_ISA_use. */
ee3c0378 26991 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 26992 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
26993 {
26994 int thumb_isa_use;
26995
26996 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 26997 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
26998 thumb_isa_use = 3;
26999 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
27000 thumb_isa_use = 2;
27001 else
27002 thumb_isa_use = 1;
27003 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
27004 }
62f3b8c8 27005
ee065d83 27006 /* Tag_VFP_arch. */
a715796b
TG
27007 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
27008 aeabi_set_attribute_int (Tag_VFP_arch,
27009 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27010 ? 7 : 8);
bca38921 27011 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
27012 aeabi_set_attribute_int (Tag_VFP_arch,
27013 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27014 ? 5 : 6);
27015 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
27016 {
27017 fp16_optional = 1;
27018 aeabi_set_attribute_int (Tag_VFP_arch, 3);
27019 }
ada65aa3 27020 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
27021 {
27022 aeabi_set_attribute_int (Tag_VFP_arch, 4);
27023 fp16_optional = 1;
27024 }
ee3c0378
AS
27025 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
27026 aeabi_set_attribute_int (Tag_VFP_arch, 2);
27027 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 27028 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 27029 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 27030
4547cb56
NC
27031 /* Tag_ABI_HardFP_use. */
27032 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
27033 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
27034 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
27035
ee065d83 27036 /* Tag_WMMX_arch. */
ee3c0378
AS
27037 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
27038 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
27039 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
27040 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 27041
ee3c0378 27042 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
27043 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
27044 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
27045 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
27046 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
27047 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
27048 {
27049 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
27050 {
27051 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
27052 }
27053 else
27054 {
27055 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
27056 fp16_optional = 1;
27057 }
27058 }
fa94de6b 27059
ee3c0378 27060 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 27061 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 27062 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 27063
69239280
MGD
27064 /* Tag_DIV_use.
27065
27066 We set Tag_DIV_use to two when integer divide instructions have been used
27067 in ARM state, or when Thumb integer divide instructions have been used,
27068 but we have no architecture profile set, nor have we any ARM instructions.
27069
4ed7ed8d
TP
27070 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
27071 by the base architecture.
bca38921 27072
69239280 27073 For new architectures we will have to check these tests. */
ced40572 27074 gas_assert (arch <= TAG_CPU_ARCH_V8M_MAIN);
4ed7ed8d
TP
27075 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
27076 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
27077 aeabi_set_attribute_int (Tag_DIV_use, 0);
27078 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
27079 || (profile == '\0'
27080 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
27081 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 27082 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
27083
27084 /* Tag_MP_extension_use. */
27085 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
27086 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
27087
27088 /* Tag Virtualization_use. */
27089 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
27090 virt_sec |= 1;
27091 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
27092 virt_sec |= 2;
27093 if (virt_sec != 0)
27094 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
27095}
27096
c168ce07
TP
27097/* Post relaxation hook. Recompute ARM attributes now that relaxation is
27098 finished and free extension feature bits which will not be used anymore. */
27099void
27100arm_md_post_relax (void)
27101{
27102 aeabi_set_public_attributes ();
27103 XDELETE (dyn_mcpu_ext_opt);
27104 dyn_mcpu_ext_opt = NULL;
27105 XDELETE (dyn_march_ext_opt);
27106 dyn_march_ext_opt = NULL;
27107}
27108
104d59d1 27109/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
27110void
27111arm_md_end (void)
27112{
ee065d83
PB
27113 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
27114 return;
27115
27116 aeabi_set_public_attributes ();
ee065d83 27117}
8463be01 27118#endif /* OBJ_ELF */
ee065d83
PB
27119
27120
27121/* Parse a .cpu directive. */
27122
27123static void
27124s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
27125{
e74cfd16 27126 const struct arm_cpu_option_table *opt;
ee065d83
PB
27127 char *name;
27128 char saved_char;
27129
27130 name = input_line_pointer;
5f4273c7 27131 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
27132 input_line_pointer++;
27133 saved_char = *input_line_pointer;
27134 *input_line_pointer = 0;
27135
27136 /* Skip the first "all" entry. */
27137 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
27138 if (streq (opt->name, name))
27139 {
c168ce07
TP
27140 mcpu_cpu_opt = &opt->value;
27141 if (!dyn_mcpu_ext_opt)
27142 dyn_mcpu_ext_opt = XNEW (arm_feature_set);
27143 *dyn_mcpu_ext_opt = opt->ext;
27144 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
ee065d83 27145 if (opt->canonical_name)
5f4273c7 27146 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
27147 else
27148 {
27149 int i;
27150 for (i = 0; opt->name[i]; i++)
27151 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 27152
ee065d83
PB
27153 selected_cpu_name[i] = 0;
27154 }
e74cfd16 27155 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
c168ce07
TP
27156 if (dyn_mcpu_ext_opt)
27157 ARM_MERGE_FEATURE_SETS (cpu_variant, cpu_variant, *dyn_mcpu_ext_opt);
ee065d83
PB
27158 *input_line_pointer = saved_char;
27159 demand_empty_rest_of_line ();
27160 return;
27161 }
27162 as_bad (_("unknown cpu `%s'"), name);
27163 *input_line_pointer = saved_char;
27164 ignore_rest_of_line ();
27165}
27166
27167
27168/* Parse a .arch directive. */
27169
27170static void
27171s_arm_arch (int ignored ATTRIBUTE_UNUSED)
27172{
e74cfd16 27173 const struct arm_arch_option_table *opt;
ee065d83
PB
27174 char saved_char;
27175 char *name;
27176
27177 name = input_line_pointer;
5f4273c7 27178 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
27179 input_line_pointer++;
27180 saved_char = *input_line_pointer;
27181 *input_line_pointer = 0;
27182
27183 /* Skip the first "all" entry. */
27184 for (opt = arm_archs + 1; opt->name != NULL; opt++)
27185 if (streq (opt->name, name))
27186 {
e74cfd16 27187 mcpu_cpu_opt = &opt->value;
c168ce07
TP
27188 XDELETE (dyn_mcpu_ext_opt);
27189 dyn_mcpu_ext_opt = NULL;
27190 selected_cpu = *mcpu_cpu_opt;
5f4273c7 27191 strcpy (selected_cpu_name, opt->name);
c168ce07 27192 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, *mfpu_opt);
ee065d83
PB
27193 *input_line_pointer = saved_char;
27194 demand_empty_rest_of_line ();
27195 return;
27196 }
27197
27198 as_bad (_("unknown architecture `%s'\n"), name);
27199 *input_line_pointer = saved_char;
27200 ignore_rest_of_line ();
27201}
27202
27203
7a1d4c38
PB
27204/* Parse a .object_arch directive. */
27205
27206static void
27207s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
27208{
27209 const struct arm_arch_option_table *opt;
27210 char saved_char;
27211 char *name;
27212
27213 name = input_line_pointer;
5f4273c7 27214 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
27215 input_line_pointer++;
27216 saved_char = *input_line_pointer;
27217 *input_line_pointer = 0;
27218
27219 /* Skip the first "all" entry. */
27220 for (opt = arm_archs + 1; opt->name != NULL; opt++)
27221 if (streq (opt->name, name))
27222 {
27223 object_arch = &opt->value;
27224 *input_line_pointer = saved_char;
27225 demand_empty_rest_of_line ();
27226 return;
27227 }
27228
27229 as_bad (_("unknown architecture `%s'\n"), name);
27230 *input_line_pointer = saved_char;
27231 ignore_rest_of_line ();
27232}
27233
69133863
MGD
27234/* Parse a .arch_extension directive. */
27235
27236static void
27237s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
27238{
27239 const struct arm_option_extension_value_table *opt;
d942732e 27240 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
27241 char saved_char;
27242 char *name;
27243 int adding_value = 1;
27244
27245 name = input_line_pointer;
27246 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27247 input_line_pointer++;
27248 saved_char = *input_line_pointer;
27249 *input_line_pointer = 0;
27250
27251 if (strlen (name) >= 2
27252 && strncmp (name, "no", 2) == 0)
27253 {
27254 adding_value = 0;
27255 name += 2;
27256 }
27257
27258 for (opt = arm_extensions; opt->name != NULL; opt++)
27259 if (streq (opt->name, name))
27260 {
d942732e
TP
27261 int i, nb_allowed_archs =
27262 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
27263 for (i = 0; i < nb_allowed_archs; i++)
27264 {
27265 /* Empty entry. */
27266 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
27267 continue;
27268 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *mcpu_cpu_opt))
27269 break;
27270 }
27271
27272 if (i == nb_allowed_archs)
69133863
MGD
27273 {
27274 as_bad (_("architectural extension `%s' is not allowed for the "
27275 "current base architecture"), name);
27276 break;
27277 }
27278
c168ce07
TP
27279 if (!dyn_mcpu_ext_opt)
27280 {
27281 dyn_mcpu_ext_opt = XNEW (arm_feature_set);
27282 *dyn_mcpu_ext_opt = arm_arch_none;
27283 }
69133863 27284 if (adding_value)
c168ce07 27285 ARM_MERGE_FEATURE_SETS (*dyn_mcpu_ext_opt, *dyn_mcpu_ext_opt,
5a70a223 27286 opt->merge_value);
69133863 27287 else
c168ce07
TP
27288 ARM_CLEAR_FEATURE (*dyn_mcpu_ext_opt, *dyn_mcpu_ext_opt,
27289 opt->clear_value);
69133863 27290
c168ce07
TP
27291 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
27292 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, *mfpu_opt);
69133863
MGD
27293 *input_line_pointer = saved_char;
27294 demand_empty_rest_of_line ();
3d030cdb
TP
27295 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
27296 on this return so that duplicate extensions (extensions with the
27297 same name as a previous extension in the list) are not considered
27298 for command-line parsing. */
69133863
MGD
27299 return;
27300 }
27301
27302 if (opt->name == NULL)
e673710a 27303 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
27304
27305 *input_line_pointer = saved_char;
27306 ignore_rest_of_line ();
27307}
27308
ee065d83
PB
27309/* Parse a .fpu directive. */
27310
27311static void
27312s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
27313{
69133863 27314 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
27315 char saved_char;
27316 char *name;
27317
27318 name = input_line_pointer;
5f4273c7 27319 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
27320 input_line_pointer++;
27321 saved_char = *input_line_pointer;
27322 *input_line_pointer = 0;
5f4273c7 27323
ee065d83
PB
27324 for (opt = arm_fpus; opt->name != NULL; opt++)
27325 if (streq (opt->name, name))
27326 {
e74cfd16
PB
27327 mfpu_opt = &opt->value;
27328 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
c168ce07
TP
27329 if (dyn_mcpu_ext_opt)
27330 ARM_MERGE_FEATURE_SETS (cpu_variant, cpu_variant, *dyn_mcpu_ext_opt);
ee065d83
PB
27331 *input_line_pointer = saved_char;
27332 demand_empty_rest_of_line ();
27333 return;
27334 }
27335
27336 as_bad (_("unknown floating point format `%s'\n"), name);
27337 *input_line_pointer = saved_char;
27338 ignore_rest_of_line ();
27339}
ee065d83 27340
794ba86a 27341/* Copy symbol information. */
f31fef98 27342
794ba86a
DJ
27343void
27344arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
27345{
27346 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
27347}
e04befd0 27348
f31fef98 27349#ifdef OBJ_ELF
e04befd0
AS
27350/* Given a symbolic attribute NAME, return the proper integer value.
27351 Returns -1 if the attribute is not known. */
f31fef98 27352
e04befd0
AS
27353int
27354arm_convert_symbolic_attribute (const char *name)
27355{
f31fef98
NC
27356 static const struct
27357 {
27358 const char * name;
27359 const int tag;
27360 }
27361 attribute_table[] =
27362 {
27363 /* When you modify this table you should
27364 also modify the list in doc/c-arm.texi. */
e04befd0 27365#define T(tag) {#tag, tag}
f31fef98
NC
27366 T (Tag_CPU_raw_name),
27367 T (Tag_CPU_name),
27368 T (Tag_CPU_arch),
27369 T (Tag_CPU_arch_profile),
27370 T (Tag_ARM_ISA_use),
27371 T (Tag_THUMB_ISA_use),
75375b3e 27372 T (Tag_FP_arch),
f31fef98
NC
27373 T (Tag_VFP_arch),
27374 T (Tag_WMMX_arch),
27375 T (Tag_Advanced_SIMD_arch),
27376 T (Tag_PCS_config),
27377 T (Tag_ABI_PCS_R9_use),
27378 T (Tag_ABI_PCS_RW_data),
27379 T (Tag_ABI_PCS_RO_data),
27380 T (Tag_ABI_PCS_GOT_use),
27381 T (Tag_ABI_PCS_wchar_t),
27382 T (Tag_ABI_FP_rounding),
27383 T (Tag_ABI_FP_denormal),
27384 T (Tag_ABI_FP_exceptions),
27385 T (Tag_ABI_FP_user_exceptions),
27386 T (Tag_ABI_FP_number_model),
75375b3e 27387 T (Tag_ABI_align_needed),
f31fef98 27388 T (Tag_ABI_align8_needed),
75375b3e 27389 T (Tag_ABI_align_preserved),
f31fef98
NC
27390 T (Tag_ABI_align8_preserved),
27391 T (Tag_ABI_enum_size),
27392 T (Tag_ABI_HardFP_use),
27393 T (Tag_ABI_VFP_args),
27394 T (Tag_ABI_WMMX_args),
27395 T (Tag_ABI_optimization_goals),
27396 T (Tag_ABI_FP_optimization_goals),
27397 T (Tag_compatibility),
27398 T (Tag_CPU_unaligned_access),
75375b3e 27399 T (Tag_FP_HP_extension),
f31fef98
NC
27400 T (Tag_VFP_HP_extension),
27401 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
27402 T (Tag_MPextension_use),
27403 T (Tag_DIV_use),
f31fef98
NC
27404 T (Tag_nodefaults),
27405 T (Tag_also_compatible_with),
27406 T (Tag_conformance),
27407 T (Tag_T2EE_use),
27408 T (Tag_Virtualization_use),
15afaa63 27409 T (Tag_DSP_extension),
cd21e546 27410 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 27411#undef T
f31fef98 27412 };
e04befd0
AS
27413 unsigned int i;
27414
27415 if (name == NULL)
27416 return -1;
27417
f31fef98 27418 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 27419 if (streq (name, attribute_table[i].name))
e04befd0
AS
27420 return attribute_table[i].tag;
27421
27422 return -1;
27423}
267bf995
RR
27424
27425
93ef582d
NC
27426/* Apply sym value for relocations only in the case that they are for
27427 local symbols in the same segment as the fixup and you have the
27428 respective architectural feature for blx and simple switches. */
267bf995 27429int
93ef582d 27430arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
27431{
27432 if (fixP->fx_addsy
27433 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
27434 /* PR 17444: If the local symbol is in a different section then a reloc
27435 will always be generated for it, so applying the symbol value now
27436 will result in a double offset being stored in the relocation. */
27437 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 27438 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
27439 {
27440 switch (fixP->fx_r_type)
27441 {
27442 case BFD_RELOC_ARM_PCREL_BLX:
27443 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27444 if (ARM_IS_FUNC (fixP->fx_addsy))
27445 return 1;
27446 break;
27447
27448 case BFD_RELOC_ARM_PCREL_CALL:
27449 case BFD_RELOC_THUMB_PCREL_BLX:
27450 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 27451 return 1;
267bf995
RR
27452 break;
27453
27454 default:
27455 break;
27456 }
27457
27458 }
27459 return 0;
27460}
f31fef98 27461#endif /* OBJ_ELF */