]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch4.adb
[multiple changes]
[thirdparty/gcc.git] / gcc / ada / sem_ch4.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 4 --
6-- --
7-- B o d y --
8-- --
445e5888 9-- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
157a9bf5 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
157a9bf5
ES
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
d50f4827 26with Aspects; use Aspects;
996ae0b0
RK
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
35ae2ed8 30with Elists; use Elists;
996ae0b0
RK
31with Errout; use Errout;
32with Exp_Util; use Exp_Util;
d935a36e 33with Fname; use Fname;
996ae0b0 34with Itypes; use Itypes;
d935a36e 35with Lib; use Lib;
996ae0b0
RK
36with Lib.Xref; use Lib.Xref;
37with Namet; use Namet;
d469eabe 38with Namet.Sp; use Namet.Sp;
996ae0b0
RK
39with Nlists; use Nlists;
40with Nmake; use Nmake;
41with Opt; use Opt;
42with Output; use Output;
43with Restrict; use Restrict;
6e937c1c 44with Rident; use Rident;
996ae0b0 45with Sem; use Sem;
a4100e55 46with Sem_Aux; use Sem_Aux;
19d846a0 47with Sem_Case; use Sem_Case;
996ae0b0
RK
48with Sem_Cat; use Sem_Cat;
49with Sem_Ch3; use Sem_Ch3;
d469eabe 50with Sem_Ch6; use Sem_Ch6;
996ae0b0 51with Sem_Ch8; use Sem_Ch8;
dec6faf1 52with Sem_Dim; use Sem_Dim;
b67a385c 53with Sem_Disp; use Sem_Disp;
996ae0b0
RK
54with Sem_Dist; use Sem_Dist;
55with Sem_Eval; use Sem_Eval;
56with Sem_Res; use Sem_Res;
996ae0b0 57with Sem_Type; use Sem_Type;
19d846a0
RD
58with Sem_Util; use Sem_Util;
59with Sem_Warn; use Sem_Warn;
996ae0b0
RK
60with Stand; use Stand;
61with Sinfo; use Sinfo;
62with Snames; use Snames;
63with Tbuild; use Tbuild;
b727a82b 64with Uintp; use Uintp;
996ae0b0 65
996ae0b0
RK
66package body Sem_Ch4 is
67
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
71
fe39cf20
BD
72 procedure Analyze_Concatenation_Rest (N : Node_Id);
73 -- Does the "rest" of the work of Analyze_Concatenation, after the left
74 -- operand has been analyzed. See Analyze_Concatenation for details.
75
996ae0b0 76 procedure Analyze_Expression (N : Node_Id);
80211802
AC
77 -- For expressions that are not names, this is just a call to analyze. If
78 -- the expression is a name, it may be a call to a parameterless function,
79 -- and if so must be converted into an explicit call node and analyzed as
80 -- such. This deproceduring must be done during the first pass of overload
81 -- resolution, because otherwise a procedure call with overloaded actuals
82 -- may fail to resolve.
996ae0b0
RK
83
84 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
80211802
AC
85 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
86 -- operator name or an expanded name whose selector is an operator name,
87 -- and one possible interpretation is as a predefined operator.
996ae0b0
RK
88
89 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
90 -- If the prefix of a selected_component is overloaded, the proper
91 -- interpretation that yields a record type with the proper selector
92 -- name must be selected.
93
94 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
95 -- Procedure to analyze a user defined binary operator, which is resolved
96 -- like a function, but instead of a list of actuals it is presented
97 -- with the left and right operands of an operator node.
98
99 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
100 -- Procedure to analyze a user defined unary operator, which is resolved
101 -- like a function, but instead of a list of actuals, it is presented with
102 -- the operand of the operator node.
103
104 procedure Ambiguous_Operands (N : Node_Id);
0877856b 105 -- For equality, membership, and comparison operators with overloaded
996ae0b0
RK
106 -- arguments, list possible interpretations.
107
996ae0b0 108 procedure Analyze_One_Call
ec6078e3
ES
109 (N : Node_Id;
110 Nam : Entity_Id;
111 Report : Boolean;
112 Success : out Boolean;
113 Skip_First : Boolean := False);
996ae0b0
RK
114 -- Check one interpretation of an overloaded subprogram name for
115 -- compatibility with the types of the actuals in a call. If there is a
116 -- single interpretation which does not match, post error if Report is
117 -- set to True.
118 --
119 -- Nam is the entity that provides the formals against which the actuals
120 -- are checked. Nam is either the name of a subprogram, or the internal
121 -- subprogram type constructed for an access_to_subprogram. If the actuals
122 -- are compatible with Nam, then Nam is added to the list of candidate
123 -- interpretations for N, and Success is set to True.
ec6078e3
ES
124 --
125 -- The flag Skip_First is used when analyzing a call that was rewritten
126 -- from object notation. In this case the first actual may have to receive
127 -- an explicit dereference, depending on the first formal of the operation
128 -- being called. The caller will have verified that the object is legal
129 -- for the call. If the remaining parameters match, the first parameter
130 -- will rewritten as a dereference if needed, prior to completing analysis.
996ae0b0
RK
131
132 procedure Check_Misspelled_Selector
133 (Prefix : Entity_Id;
134 Sel : Node_Id);
80211802 135 -- Give possible misspelling message if Sel seems likely to be a mis-
8dbf3473
AC
136 -- spelling of one of the selectors of the Prefix. This is called by
137 -- Analyze_Selected_Component after producing an invalid selector error
138 -- message.
996ae0b0
RK
139
140 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
f3d57416 141 -- Verify that type T is declared in scope S. Used to find interpretations
996ae0b0
RK
142 -- for operators given by expanded names. This is abstracted as a separate
143 -- function to handle extensions to System, where S is System, but T is
144 -- declared in the extension.
145
146 procedure Find_Arithmetic_Types
147 (L, R : Node_Id;
148 Op_Id : Entity_Id;
149 N : Node_Id);
80211802
AC
150 -- L and R are the operands of an arithmetic operator. Find consistent
151 -- pairs of interpretations for L and R that have a numeric type consistent
152 -- with the semantics of the operator.
996ae0b0
RK
153
154 procedure Find_Comparison_Types
155 (L, R : Node_Id;
156 Op_Id : Entity_Id;
157 N : Node_Id);
80211802
AC
158 -- L and R are operands of a comparison operator. Find consistent pairs of
159 -- interpretations for L and R.
996ae0b0
RK
160
161 procedure Find_Concatenation_Types
162 (L, R : Node_Id;
163 Op_Id : Entity_Id;
164 N : Node_Id);
6e73e3ab 165 -- For the four varieties of concatenation
996ae0b0
RK
166
167 procedure Find_Equality_Types
168 (L, R : Node_Id;
169 Op_Id : Entity_Id;
170 N : Node_Id);
6e73e3ab 171 -- Ditto for equality operators
996ae0b0
RK
172
173 procedure Find_Boolean_Types
174 (L, R : Node_Id;
175 Op_Id : Entity_Id;
176 N : Node_Id);
6e73e3ab 177 -- Ditto for binary logical operations
996ae0b0
RK
178
179 procedure Find_Negation_Types
180 (R : Node_Id;
181 Op_Id : Entity_Id;
182 N : Node_Id);
6e73e3ab 183 -- Find consistent interpretation for operand of negation operator
996ae0b0
RK
184
185 procedure Find_Non_Universal_Interpretations
186 (N : Node_Id;
187 R : Node_Id;
188 Op_Id : Entity_Id;
189 T1 : Entity_Id);
190 -- For equality and comparison operators, the result is always boolean,
191 -- and the legality of the operation is determined from the visibility
192 -- of the operand types. If one of the operands has a universal interpre-
193 -- tation, the legality check uses some compatible non-universal
194 -- interpretation of the other operand. N can be an operator node, or
be4c5193
AC
195 -- a function call whose name is an operator designator. Any_Access, which
196 -- is the initial type of the literal NULL, is a universal type for the
197 -- purpose of this routine.
996ae0b0 198
d469eabe
HK
199 function Find_Primitive_Operation (N : Node_Id) return Boolean;
200 -- Find candidate interpretations for the name Obj.Proc when it appears
201 -- in a subprogram renaming declaration.
202
996ae0b0
RK
203 procedure Find_Unary_Types
204 (R : Node_Id;
205 Op_Id : Entity_Id;
206 N : Node_Id);
6e73e3ab 207 -- Unary arithmetic types: plus, minus, abs
996ae0b0
RK
208
209 procedure Check_Arithmetic_Pair
210 (T1, T2 : Entity_Id;
211 Op_Id : Entity_Id;
212 N : Node_Id);
84dad556
AC
213 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid types
214 -- for left and right operand. Determine whether they constitute a valid
215 -- pair for the given operator, and record the corresponding interpretation
216 -- of the operator node. The node N may be an operator node (the usual
217 -- case) or a function call whose prefix is an operator designator. In
218 -- both cases Op_Id is the operator name itself.
996ae0b0
RK
219
220 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
221 -- Give detailed information on overloaded call where none of the
222 -- interpretations match. N is the call node, Nam the designator for
223 -- the overloaded entity being called.
224
225 function Junk_Operand (N : Node_Id) return Boolean;
226 -- Test for an operand that is an inappropriate entity (e.g. a package
227 -- name or a label). If so, issue an error message and return True. If
228 -- the operand is not an inappropriate entity kind, return False.
229
230 procedure Operator_Check (N : Node_Id);
da709d08
AC
231 -- Verify that an operator has received some valid interpretation. If none
232 -- was found, determine whether a use clause would make the operation
233 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
234 -- every type compatible with the operator, even if the operator for the
235 -- type is not directly visible. The routine uses this type to emit a more
236 -- informative message.
996ae0b0 237
d469eabe 238 function Process_Implicit_Dereference_Prefix
da709d08 239 (E : Entity_Id;
d469eabe 240 P : Node_Id) return Entity_Id;
da709d08 241 -- Called when P is the prefix of an implicit dereference, denoting an
d469eabe
HK
242 -- object E. The function returns the designated type of the prefix, taking
243 -- into account that the designated type of an anonymous access type may be
244 -- a limited view, when the non-limited view is visible.
84dad556 245 --
d469eabe
HK
246 -- If in semantics only mode (-gnatc or generic), the function also records
247 -- that the prefix is a reference to E, if any. Normally, such a reference
248 -- is generated only when the implicit dereference is expanded into an
249 -- explicit one, but for consistency we must generate the reference when
250 -- expansion is disabled as well.
6e73e3ab 251
30c20106
AC
252 procedure Remove_Abstract_Operations (N : Node_Id);
253 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
254 -- operation is not a candidate interpretation.
255
d50f4827
AC
256 function Try_Container_Indexing
257 (N : Node_Id;
258 Prefix : Node_Id;
50878404 259 Exprs : List_Id) return Boolean;
d50f4827
AC
260 -- AI05-0139: Generalized indexing to support iterators over containers
261
996ae0b0 262 function Try_Indexed_Call
aab883ec
ES
263 (N : Node_Id;
264 Nam : Entity_Id;
265 Typ : Entity_Id;
266 Skip_First : Boolean) return Boolean;
267 -- If a function has defaults for all its actuals, a call to it may in fact
268 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
269 -- interpretation as an indexing, prior to analysis as a call. If both are
270 -- possible, the node is overloaded with both interpretations (same symbol
271 -- but two different types). If the call is written in prefix form, the
272 -- prefix becomes the first parameter in the call, and only the remaining
273 -- actuals must be checked for the presence of defaults.
996ae0b0
RK
274
275 function Try_Indirect_Call
91b1417d
AC
276 (N : Node_Id;
277 Nam : Entity_Id;
278 Typ : Entity_Id) return Boolean;
aab883ec
ES
279 -- Similarly, a function F that needs no actuals can return an access to a
280 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
281 -- the call may be overloaded with both interpretations.
996ae0b0 282
8cf23b91 283 function Try_Object_Operation
11bc76df
AC
284 (N : Node_Id;
285 CW_Test_Only : Boolean := False) return Boolean;
0d57c6f4
RD
286 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
287 -- is a call in this notation, it is transformed into a normal subprogram
288 -- call where the prefix is a parameter, and True is returned. If node
84dad556 289 -- N is not of this form, it is unchanged, and False is returned. If
8cf23b91
AC
290 -- CW_Test_Only is true then N is an N_Selected_Component node which
291 -- is part of a call to an entry or procedure of a tagged concurrent
292 -- type and this routine is invoked to search for class-wide subprograms
293 -- conflicting with the target entity.
35ae2ed8 294
b4592168
GD
295 procedure wpo (T : Entity_Id);
296 pragma Warnings (Off, wpo);
297 -- Used for debugging: obtain list of primitive operations even if
298 -- type is not frozen and dispatch table is not built yet.
299
996ae0b0
RK
300 ------------------------
301 -- Ambiguous_Operands --
302 ------------------------
303
304 procedure Ambiguous_Operands (N : Node_Id) is
fbf5a39b 305 procedure List_Operand_Interps (Opnd : Node_Id);
996ae0b0 306
4c46b835
AC
307 --------------------------
308 -- List_Operand_Interps --
309 --------------------------
310
fbf5a39b 311 procedure List_Operand_Interps (Opnd : Node_Id) is
996ae0b0
RK
312 Nam : Node_Id;
313 Err : Node_Id := N;
314
315 begin
316 if Is_Overloaded (Opnd) then
317 if Nkind (Opnd) in N_Op then
318 Nam := Opnd;
84dad556 319
996ae0b0
RK
320 elsif Nkind (Opnd) = N_Function_Call then
321 Nam := Name (Opnd);
84dad556 322
44a10091
AC
323 elsif Ada_Version >= Ada_2012 then
324 declare
325 It : Interp;
326 I : Interp_Index;
327
328 begin
329 Get_First_Interp (Opnd, I, It);
330 while Present (It.Nam) loop
331 if Has_Implicit_Dereference (It.Typ) then
332 Error_Msg_N
333 ("can be interpreted as implicit dereference", Opnd);
334 return;
335 end if;
336
337 Get_Next_Interp (I, It);
338 end loop;
339 end;
340
996ae0b0
RK
341 return;
342 end if;
343
344 else
345 return;
346 end if;
347
348 if Opnd = Left_Opnd (N) then
84dad556
AC
349 Error_Msg_N
350 ("\left operand has the following interpretations", N);
996ae0b0 351 else
ed2233dc 352 Error_Msg_N
996ae0b0
RK
353 ("\right operand has the following interpretations", N);
354 Err := Opnd;
355 end if;
356
fbf5a39b
AC
357 List_Interps (Nam, Err);
358 end List_Operand_Interps;
996ae0b0 359
4c46b835
AC
360 -- Start of processing for Ambiguous_Operands
361
996ae0b0 362 begin
b67a385c 363 if Nkind (N) in N_Membership_Test then
ed2233dc 364 Error_Msg_N ("ambiguous operands for membership", N);
996ae0b0 365
d469eabe 366 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
ed2233dc 367 Error_Msg_N ("ambiguous operands for equality", N);
996ae0b0
RK
368
369 else
ed2233dc 370 Error_Msg_N ("ambiguous operands for comparison", N);
996ae0b0
RK
371 end if;
372
373 if All_Errors_Mode then
fbf5a39b
AC
374 List_Operand_Interps (Left_Opnd (N));
375 List_Operand_Interps (Right_Opnd (N));
996ae0b0 376 else
555360a5 377 Error_Msg_N ("\use -gnatf switch for details", N);
996ae0b0
RK
378 end if;
379 end Ambiguous_Operands;
380
381 -----------------------
382 -- Analyze_Aggregate --
383 -----------------------
384
385 -- Most of the analysis of Aggregates requires that the type be known,
386 -- and is therefore put off until resolution.
387
388 procedure Analyze_Aggregate (N : Node_Id) is
389 begin
390 if No (Etype (N)) then
391 Set_Etype (N, Any_Composite);
392 end if;
393 end Analyze_Aggregate;
394
395 -----------------------
396 -- Analyze_Allocator --
397 -----------------------
398
399 procedure Analyze_Allocator (N : Node_Id) is
400 Loc : constant Source_Ptr := Sloc (N);
07fc65c4 401 Sav_Errs : constant Nat := Serious_Errors_Detected;
b67a385c 402 E : Node_Id := Expression (N);
996ae0b0
RK
403 Acc_Type : Entity_Id;
404 Type_Id : Entity_Id;
87003b28
RD
405 P : Node_Id;
406 C : Node_Id;
b3b26ace 407 Onode : Node_Id;
996ae0b0
RK
408
409 begin
ce5ba43a 410 Check_SPARK_05_Restriction ("allocator is not allowed", N);
1d801f21 411
87003b28
RD
412 -- Deal with allocator restrictions
413
50cff367 414 -- In accordance with H.4(7), the No_Allocators restriction only applies
87003b28 415 -- to user-written allocators. The same consideration applies to the
d8941160 416 -- No_Standard_Allocators_Before_Elaboration restriction.
50cff367
GD
417
418 if Comes_From_Source (N) then
419 Check_Restriction (No_Allocators, N);
87003b28 420
57f4c288 421 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
489c6e19 422 -- look at enclosing context, checking task/main subprogram case.
87003b28
RD
423
424 C := N;
425 P := Parent (C);
426 while Present (P) loop
427
b3b26ace
AC
428 -- For the task case we need a handled sequence of statements,
429 -- where the occurrence of the allocator is within the statements
430 -- and the parent is a task body
87003b28
RD
431
432 if Nkind (P) = N_Handled_Sequence_Of_Statements
433 and then Is_List_Member (C)
434 and then List_Containing (C) = Statements (P)
435 then
b3b26ace
AC
436 Onode := Original_Node (Parent (P));
437
87003b28 438 -- Check for allocator within task body, this is a definite
d8941160
RD
439 -- violation of No_Allocators_After_Elaboration we can detect
440 -- at compile time.
87003b28 441
b3b26ace 442 if Nkind (Onode) = N_Task_Body then
57f4c288
ES
443 Check_Restriction
444 (No_Standard_Allocators_After_Elaboration, N);
87003b28
RD
445 exit;
446 end if;
b3b26ace 447 end if;
87003b28 448
b3b26ace
AC
449 -- The other case is appearance in a subprogram body. This is
450 -- a violation if this is a library level subprogram with no
451 -- parameters. Note that this is now a static error even if the
452 -- subprogram is not the main program (this is a change, in an
453 -- earlier version only the main program was affected, and the
454 -- check had to be done in the binder.
87003b28 455
b3b26ace
AC
456 if Nkind (P) = N_Subprogram_Body
457 and then Nkind (Parent (P)) = N_Compilation_Unit
458 and then No (Parameter_Specifications (Specification (P)))
459 then
460 Check_Restriction
461 (No_Standard_Allocators_After_Elaboration, N);
87003b28
RD
462 end if;
463
464 C := P;
465 P := Parent (C);
466 end loop;
50cff367 467 end if;
996ae0b0 468
df170605
AC
469 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
470 -- any. The expected type for the name is any type. A non-overloading
471 -- rule then requires it to be of a type descended from
f0f88eb6
RD
472 -- System.Storage_Pools.Subpools.Subpool_Handle.
473
474 -- This isn't exactly what the AI says, but it seems to be the right
475 -- rule. The AI should be fixed.???
df170605
AC
476
477 declare
478 Subpool : constant Node_Id := Subpool_Handle_Name (N);
f0f88eb6 479
df170605
AC
480 begin
481 if Present (Subpool) then
482 Analyze (Subpool);
f0f88eb6 483
df170605
AC
484 if Is_Overloaded (Subpool) then
485 Error_Msg_N ("ambiguous subpool handle", Subpool);
486 end if;
487
f0f88eb6 488 -- Check that Etype (Subpool) is descended from Subpool_Handle
df170605
AC
489
490 Resolve (Subpool);
491 end if;
492 end;
493
494 -- Analyze the qualified expression or subtype indication
87003b28 495
996ae0b0
RK
496 if Nkind (E) = N_Qualified_Expression then
497 Acc_Type := Create_Itype (E_Allocator_Type, N);
498 Set_Etype (Acc_Type, Acc_Type);
996ae0b0 499 Find_Type (Subtype_Mark (E));
45c8b94b
ES
500
501 -- Analyze the qualified expression, and apply the name resolution
f0f88eb6 502 -- rule given in 4.7(3).
45c8b94b
ES
503
504 Analyze (E);
505 Type_Id := Etype (E);
996ae0b0
RK
506 Set_Directly_Designated_Type (Acc_Type, Type_Id);
507
f7bb41af
AC
508 -- Allocators generated by the build-in-place expansion mechanism
509 -- are explicitly marked as coming from source but do not need to be
510 -- checked for limited initialization. To exclude this case, ensure
511 -- that the parent of the allocator is a source node.
512
d05ef0ab 513 if Is_Limited_Type (Type_Id)
996ae0b0 514 and then Comes_From_Source (N)
f7bb41af 515 and then Comes_From_Source (Parent (N))
996ae0b0
RK
516 and then not In_Instance_Body
517 then
2a31c32b 518 if not OK_For_Limited_Init (Type_Id, Expression (E)) then
d05ef0ab
AC
519 Error_Msg_N ("initialization not allowed for limited types", N);
520 Explain_Limited_Type (Type_Id, N);
521 end if;
996ae0b0
RK
522 end if;
523
996ae0b0
RK
524 -- A qualified expression requires an exact match of the type,
525 -- class-wide matching is not allowed.
526
45c8b94b
ES
527 -- if Is_Class_Wide_Type (Type_Id)
528 -- and then Base_Type
529 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
530 -- then
531 -- Wrong_Type (Expression (E), Type_Id);
532 -- end if;
996ae0b0 533
996ae0b0 534 -- We don't analyze the qualified expression itself because it's
f3691f46
ES
535 -- part of the allocator. It is fully analyzed and resolved when
536 -- the allocator is resolved with the context type.
996ae0b0
RK
537
538 Set_Etype (E, Type_Id);
539
aab883ec 540 -- Case where allocator has a subtype indication
4c46b835 541
996ae0b0
RK
542 else
543 declare
758c442c
GD
544 Def_Id : Entity_Id;
545 Base_Typ : Entity_Id;
996ae0b0
RK
546
547 begin
548 -- If the allocator includes a N_Subtype_Indication then a
549 -- constraint is present, otherwise the node is a subtype mark.
550 -- Introduce an explicit subtype declaration into the tree
551 -- defining some anonymous subtype and rewrite the allocator to
552 -- use this subtype rather than the subtype indication.
553
554 -- It is important to introduce the explicit subtype declaration
555 -- so that the bounds of the subtype indication are attached to
556 -- the tree in case the allocator is inside a generic unit.
557
558 if Nkind (E) = N_Subtype_Indication then
559
560 -- A constraint is only allowed for a composite type in Ada
561 -- 95. In Ada 83, a constraint is also allowed for an
562 -- access-to-composite type, but the constraint is ignored.
563
564 Find_Type (Subtype_Mark (E));
758c442c 565 Base_Typ := Entity (Subtype_Mark (E));
996ae0b0 566
758c442c 567 if Is_Elementary_Type (Base_Typ) then
0ab80019 568 if not (Ada_Version = Ada_83
758c442c 569 and then Is_Access_Type (Base_Typ))
996ae0b0
RK
570 then
571 Error_Msg_N ("constraint not allowed here", E);
572
24657705
HK
573 if Nkind (Constraint (E)) =
574 N_Index_Or_Discriminant_Constraint
996ae0b0 575 then
4e7a4f6e 576 Error_Msg_N -- CODEFIX
996ae0b0
RK
577 ("\if qualified expression was meant, " &
578 "use apostrophe", Constraint (E));
579 end if;
580 end if;
581
582 -- Get rid of the bogus constraint:
583
584 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
585 Analyze_Allocator (N);
586 return;
587 end if;
588
589 if Expander_Active then
092ef350 590 Def_Id := Make_Temporary (Loc, 'S');
996ae0b0
RK
591
592 Insert_Action (E,
593 Make_Subtype_Declaration (Loc,
594 Defining_Identifier => Def_Id,
595 Subtype_Indication => Relocate_Node (E)));
596
07fc65c4 597 if Sav_Errs /= Serious_Errors_Detected
d469eabe
HK
598 and then Nkind (Constraint (E)) =
599 N_Index_Or_Discriminant_Constraint
996ae0b0 600 then
4e7a4f6e 601 Error_Msg_N -- CODEFIX
a90bd866
RD
602 ("if qualified expression was meant, "
603 & "use apostrophe!", Constraint (E));
996ae0b0
RK
604 end if;
605
606 E := New_Occurrence_Of (Def_Id, Loc);
607 Rewrite (Expression (N), E);
608 end if;
609 end if;
610
611 Type_Id := Process_Subtype (E, N);
612 Acc_Type := Create_Itype (E_Allocator_Type, N);
84dad556 613 Set_Etype (Acc_Type, Acc_Type);
996ae0b0
RK
614 Set_Directly_Designated_Type (Acc_Type, Type_Id);
615 Check_Fully_Declared (Type_Id, N);
616
1baa4d2d 617 -- Ada 2005 (AI-231): If the designated type is itself an access
16b05213 618 -- type that excludes null, its default initialization will
75ad5042
ES
619 -- be a null object, and we can insert an unconditional raise
620 -- before the allocator.
2820d220 621
bfae1846 622 -- Ada 2012 (AI-104): A not null indication here is altogether
518ade91
AC
623 -- illegal.
624
2820d220 625 if Can_Never_Be_Null (Type_Id) then
75ad5042
ES
626 declare
627 Not_Null_Check : constant Node_Id :=
628 Make_Raise_Constraint_Error (Sloc (E),
629 Reason => CE_Null_Not_Allowed);
40b93859 630
75ad5042 631 begin
7b55fea6 632 if Expander_Active then
75ad5042
ES
633 Insert_Action (N, Not_Null_Check);
634 Analyze (Not_Null_Check);
40b93859 635
685bc70f
AC
636 elsif Warn_On_Ada_2012_Compatibility then
637 Error_Msg_N
638 ("null value not allowed here in Ada 2012?y?", E);
75ad5042
ES
639 end if;
640 end;
2820d220
AC
641 end if;
642
996ae0b0
RK
643 -- Check for missing initialization. Skip this check if we already
644 -- had errors on analyzing the allocator, since in that case these
24657705 645 -- are probably cascaded errors.
996ae0b0
RK
646
647 if Is_Indefinite_Subtype (Type_Id)
07fc65c4 648 and then Serious_Errors_Detected = Sav_Errs
996ae0b0 649 then
a4956515
AC
650 -- The build-in-place machinery may produce an allocator when
651 -- the designated type is indefinite but the underlying type is
652 -- not. In this case the unknown discriminants are meaningless
653 -- and should not trigger error messages. Check the parent node
654 -- because the allocator is marked as coming from source.
655
656 if Present (Underlying_Type (Type_Id))
657 and then not Is_Indefinite_Subtype (Underlying_Type (Type_Id))
658 and then not Comes_From_Source (Parent (N))
659 then
660 null;
661
662 elsif Is_Class_Wide_Type (Type_Id) then
996ae0b0
RK
663 Error_Msg_N
664 ("initialization required in class-wide allocation", N);
a4956515 665
996ae0b0 666 else
0791fbe9 667 if Ada_Version < Ada_2005
24657705
HK
668 and then Is_Limited_Type (Type_Id)
669 then
670 Error_Msg_N ("unconstrained allocation not allowed", N);
671
672 if Is_Array_Type (Type_Id) then
673 Error_Msg_N
674 ("\constraint with array bounds required", N);
675
676 elsif Has_Unknown_Discriminants (Type_Id) then
677 null;
678
679 else pragma Assert (Has_Discriminants (Type_Id));
680 Error_Msg_N
681 ("\constraint with discriminant values required", N);
682 end if;
683
684 -- Limited Ada 2005 and general non-limited case
685
686 else
687 Error_Msg_N
84dad556
AC
688 ("uninitialized unconstrained allocation not "
689 & "allowed", N);
24657705
HK
690
691 if Is_Array_Type (Type_Id) then
692 Error_Msg_N
84dad556
AC
693 ("\qualified expression or constraint with "
694 & "array bounds required", N);
24657705
HK
695
696 elsif Has_Unknown_Discriminants (Type_Id) then
697 Error_Msg_N ("\qualified expression required", N);
698
699 else pragma Assert (Has_Discriminants (Type_Id));
700 Error_Msg_N
84dad556
AC
701 ("\qualified expression or constraint with "
702 & "discriminant values required", N);
24657705
HK
703 end if;
704 end if;
996ae0b0
RK
705 end if;
706 end if;
707 end;
708 end if;
709
aab883ec 710 if Is_Abstract_Type (Type_Id) then
996ae0b0
RK
711 Error_Msg_N ("cannot allocate abstract object", E);
712 end if;
713
714 if Has_Task (Designated_Type (Acc_Type)) then
6e937c1c 715 Check_Restriction (No_Tasking, N);
fbf5a39b 716 Check_Restriction (Max_Tasks, N);
996ae0b0 717 Check_Restriction (No_Task_Allocators, N);
70b3b953
GD
718 end if;
719
02bb0765
AC
720 -- Check restriction against dynamically allocated protected objects
721
722 if Has_Protected (Designated_Type (Acc_Type)) then
723 Check_Restriction (No_Protected_Type_Allocators, N);
724 end if;
725
646e2823
AC
726 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
727 -- type is nested, and the designated type needs finalization. The rule
728 -- is conservative in that class-wide types need finalization.
729
730 if Needs_Finalization (Designated_Type (Acc_Type))
731 and then not Is_Library_Level_Entity (Acc_Type)
732 then
733 Check_Restriction (No_Nested_Finalization, N);
734 end if;
735
70b3b953
GD
736 -- Check that an allocator of a nested access type doesn't create a
737 -- protected object when restriction No_Local_Protected_Objects applies.
70b3b953 738
96e90ac1 739 if Has_Protected (Designated_Type (Acc_Type))
70b3b953
GD
740 and then not Is_Library_Level_Entity (Acc_Type)
741 then
742 Check_Restriction (No_Local_Protected_Objects, N);
996ae0b0
RK
743 end if;
744
ffe9aba8
AC
745 -- If the No_Streams restriction is set, check that the type of the
746 -- object is not, and does not contain, any subtype derived from
747 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
748 -- Has_Stream just for efficiency reasons. There is no point in
749 -- spending time on a Has_Stream check if the restriction is not set.
750
7a963087 751 if Restriction_Check_Required (No_Streams) then
ffe9aba8
AC
752 if Has_Stream (Designated_Type (Acc_Type)) then
753 Check_Restriction (No_Streams, N);
754 end if;
755 end if;
756
996ae0b0
RK
757 Set_Etype (N, Acc_Type);
758
759 if not Is_Library_Level_Entity (Acc_Type) then
760 Check_Restriction (No_Local_Allocators, N);
761 end if;
2820d220 762
07fc65c4 763 if Serious_Errors_Detected > Sav_Errs then
996ae0b0
RK
764 Set_Error_Posted (N);
765 Set_Etype (N, Any_Type);
766 end if;
996ae0b0
RK
767 end Analyze_Allocator;
768
769 ---------------------------
770 -- Analyze_Arithmetic_Op --
771 ---------------------------
772
773 procedure Analyze_Arithmetic_Op (N : Node_Id) is
774 L : constant Node_Id := Left_Opnd (N);
775 R : constant Node_Id := Right_Opnd (N);
776 Op_Id : Entity_Id;
777
778 begin
779 Candidate_Type := Empty;
780 Analyze_Expression (L);
781 Analyze_Expression (R);
782
d469eabe
HK
783 -- If the entity is already set, the node is the instantiation of a
784 -- generic node with a non-local reference, or was manufactured by a
785 -- call to Make_Op_xxx. In either case the entity is known to be valid,
786 -- and we do not need to collect interpretations, instead we just get
787 -- the single possible interpretation.
996ae0b0
RK
788
789 Op_Id := Entity (N);
790
791 if Present (Op_Id) then
792 if Ekind (Op_Id) = E_Operator then
793
d469eabe 794 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
996ae0b0
RK
795 and then Treat_Fixed_As_Integer (N)
796 then
797 null;
798 else
799 Set_Etype (N, Any_Type);
800 Find_Arithmetic_Types (L, R, Op_Id, N);
801 end if;
802
803 else
804 Set_Etype (N, Any_Type);
805 Add_One_Interp (N, Op_Id, Etype (Op_Id));
806 end if;
807
808 -- Entity is not already set, so we do need to collect interpretations
809
810 else
996ae0b0
RK
811 Set_Etype (N, Any_Type);
812
84dad556 813 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
814 while Present (Op_Id) loop
815 if Ekind (Op_Id) = E_Operator
816 and then Present (Next_Entity (First_Entity (Op_Id)))
817 then
818 Find_Arithmetic_Types (L, R, Op_Id, N);
819
820 -- The following may seem superfluous, because an operator cannot
821 -- be generic, but this ignores the cleverness of the author of
822 -- ACVC bc1013a.
823
824 elsif Is_Overloadable (Op_Id) then
825 Analyze_User_Defined_Binary_Op (N, Op_Id);
826 end if;
827
828 Op_Id := Homonym (Op_Id);
829 end loop;
830 end if;
831
832 Operator_Check (N);
833 end Analyze_Arithmetic_Op;
834
835 ------------------
836 -- Analyze_Call --
837 ------------------
838
4c46b835
AC
839 -- Function, procedure, and entry calls are checked here. The Name in
840 -- the call may be overloaded. The actuals have been analyzed and may
841 -- themselves be overloaded. On exit from this procedure, the node N
842 -- may have zero, one or more interpretations. In the first case an
843 -- error message is produced. In the last case, the node is flagged
844 -- as overloaded and the interpretations are collected in All_Interp.
996ae0b0
RK
845
846 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
847 -- the type-checking is similar to that of other calls.
848
849 procedure Analyze_Call (N : Node_Id) is
850 Actuals : constant List_Id := Parameter_Associations (N);
63319f58 851 Nam : Node_Id;
996ae0b0
RK
852 X : Interp_Index;
853 It : Interp;
854 Nam_Ent : Entity_Id;
63319f58
RD
855 Success : Boolean := False;
856
857 Deref : Boolean := False;
1cb17b78
AC
858 -- Flag indicates whether an interpretation of the prefix is a
859 -- parameterless call that returns an access_to_subprogram.
996ae0b0 860
23685ae6
AC
861 procedure Check_Mixed_Parameter_And_Named_Associations;
862 -- Check that parameter and named associations are not mixed. This is
863 -- a restriction in SPARK mode.
864
996ae0b0 865 function Name_Denotes_Function return Boolean;
5ff22245
ES
866 -- If the type of the name is an access to subprogram, this may be the
867 -- type of a name, or the return type of the function being called. If
868 -- the name is not an entity then it can denote a protected function.
869 -- Until we distinguish Etype from Return_Type, we must use this routine
870 -- to resolve the meaning of the name in the call.
871
872 procedure No_Interpretation;
873 -- Output error message when no valid interpretation exists
996ae0b0 874
23685ae6
AC
875 --------------------------------------------------
876 -- Check_Mixed_Parameter_And_Named_Associations --
877 --------------------------------------------------
878
879 procedure Check_Mixed_Parameter_And_Named_Associations is
880 Actual : Node_Id;
881 Named_Seen : Boolean;
f5afb270 882
23685ae6 883 begin
23685ae6 884 Named_Seen := False;
f5afb270
AC
885
886 Actual := First (Actuals);
23685ae6
AC
887 while Present (Actual) loop
888 case Nkind (Actual) is
889 when N_Parameter_Association =>
890 if Named_Seen then
ce5ba43a 891 Check_SPARK_05_Restriction
23685ae6
AC
892 ("named association cannot follow positional one",
893 Actual);
894 exit;
895 end if;
84dad556 896
23685ae6
AC
897 when others =>
898 Named_Seen := True;
899 end case;
900
901 Next (Actual);
902 end loop;
903 end Check_Mixed_Parameter_And_Named_Associations;
904
996ae0b0
RK
905 ---------------------------
906 -- Name_Denotes_Function --
907 ---------------------------
908
909 function Name_Denotes_Function return Boolean is
910 begin
911 if Is_Entity_Name (Nam) then
912 return Ekind (Entity (Nam)) = E_Function;
996ae0b0
RK
913 elsif Nkind (Nam) = N_Selected_Component then
914 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
996ae0b0
RK
915 else
916 return False;
917 end if;
918 end Name_Denotes_Function;
919
5ff22245
ES
920 -----------------------
921 -- No_Interpretation --
922 -----------------------
923
924 procedure No_Interpretation is
925 L : constant Boolean := Is_List_Member (N);
926 K : constant Node_Kind := Nkind (Parent (N));
927
928 begin
929 -- If the node is in a list whose parent is not an expression then it
930 -- must be an attempted procedure call.
931
932 if L and then K not in N_Subexpr then
933 if Ekind (Entity (Nam)) = E_Generic_Procedure then
934 Error_Msg_NE
935 ("must instantiate generic procedure& before call",
936 Nam, Entity (Nam));
937 else
84dad556 938 Error_Msg_N ("procedure or entry name expected", Nam);
5ff22245
ES
939 end if;
940
941 -- Check for tasking cases where only an entry call will do
942
943 elsif not L
944 and then Nkind_In (K, N_Entry_Call_Alternative,
945 N_Triggering_Alternative)
946 then
947 Error_Msg_N ("entry name expected", Nam);
948
949 -- Otherwise give general error message
950
951 else
952 Error_Msg_N ("invalid prefix in call", Nam);
953 end if;
954 end No_Interpretation;
955
996ae0b0
RK
956 -- Start of processing for Analyze_Call
957
958 begin
6480338a 959 if Restriction_Check_Required (SPARK_05) then
23685ae6
AC
960 Check_Mixed_Parameter_And_Named_Associations;
961 end if;
962
996ae0b0
RK
963 -- Initialize the type of the result of the call to the error type,
964 -- which will be reset if the type is successfully resolved.
965
966 Set_Etype (N, Any_Type);
967
63319f58
RD
968 Nam := Name (N);
969
996ae0b0
RK
970 if not Is_Overloaded (Nam) then
971
972 -- Only one interpretation to check
973
974 if Ekind (Etype (Nam)) = E_Subprogram_Type then
975 Nam_Ent := Etype (Nam);
976
758c442c
GD
977 -- If the prefix is an access_to_subprogram, this may be an indirect
978 -- call. This is the case if the name in the call is not an entity
979 -- name, or if it is a function name in the context of a procedure
980 -- call. In this latter case, we have a call to a parameterless
981 -- function that returns a pointer_to_procedure which is the entity
5ff22245
ES
982 -- being called. Finally, F (X) may be a call to a parameterless
983 -- function that returns a pointer to a function with parameters.
80e59506 984 -- Note that if F returns an access-to-subprogram whose designated
4bb9c7b9
AC
985 -- type is an array, F (X) cannot be interpreted as an indirect call
986 -- through the result of the call to F.
758c442c 987
996ae0b0
RK
988 elsif Is_Access_Type (Etype (Nam))
989 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
758c442c
GD
990 and then
991 (not Name_Denotes_Function
b2834fbd
AC
992 or else Nkind (N) = N_Procedure_Call_Statement
993 or else
994 (Nkind (Parent (N)) /= N_Explicit_Dereference
995 and then Is_Entity_Name (Nam)
996 and then No (First_Formal (Entity (Nam)))
997 and then not
998 Is_Array_Type (Etype (Designated_Type (Etype (Nam))))
999 and then Present (Actuals)))
996ae0b0
RK
1000 then
1001 Nam_Ent := Designated_Type (Etype (Nam));
1002 Insert_Explicit_Dereference (Nam);
1003
1004 -- Selected component case. Simple entry or protected operation,
1005 -- where the entry name is given by the selector name.
1006
1007 elsif Nkind (Nam) = N_Selected_Component then
1008 Nam_Ent := Entity (Selector_Name (Nam));
1009
bce79204
AC
1010 if not Ekind_In (Nam_Ent, E_Entry,
1011 E_Entry_Family,
1012 E_Function,
1013 E_Procedure)
996ae0b0
RK
1014 then
1015 Error_Msg_N ("name in call is not a callable entity", Nam);
1016 Set_Etype (N, Any_Type);
1017 return;
1018 end if;
1019
1020 -- If the name is an Indexed component, it can be a call to a member
1021 -- of an entry family. The prefix must be a selected component whose
1022 -- selector is the entry. Analyze_Procedure_Call normalizes several
1023 -- kinds of call into this form.
1024
1025 elsif Nkind (Nam) = N_Indexed_Component then
996ae0b0
RK
1026 if Nkind (Prefix (Nam)) = N_Selected_Component then
1027 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
996ae0b0
RK
1028 else
1029 Error_Msg_N ("name in call is not a callable entity", Nam);
1030 Set_Etype (N, Any_Type);
1031 return;
996ae0b0
RK
1032 end if;
1033
1034 elsif not Is_Entity_Name (Nam) then
1035 Error_Msg_N ("name in call is not a callable entity", Nam);
1036 Set_Etype (N, Any_Type);
1037 return;
1038
1039 else
1040 Nam_Ent := Entity (Nam);
1041
5f50020a
ES
1042 -- If not overloadable, this may be a generalized indexing
1043 -- operation with named associations. Rewrite again as an
1044 -- indexed component and analyze as container indexing.
996ae0b0
RK
1045
1046 if not Is_Overloadable (Nam_Ent) then
32bba3c9
AC
1047 if Present
1048 (Find_Value_Of_Aspect
1049 (Etype (Nam_Ent), Aspect_Constant_Indexing))
5f50020a
ES
1050 then
1051 Replace (N,
1052 Make_Indexed_Component (Sloc (N),
32bba3c9 1053 Prefix => Nam,
5f50020a
ES
1054 Expressions => Parameter_Associations (N)));
1055
1056 if Try_Container_Indexing (N, Nam, Expressions (N)) then
1057 return;
1058 else
1059 No_Interpretation;
1060 end if;
1061
1062 else
1063 No_Interpretation;
1064 end if;
32bba3c9 1065
5ff22245
ES
1066 return;
1067 end if;
1068 end if;
996ae0b0 1069
5ff22245
ES
1070 -- Operations generated for RACW stub types are called only through
1071 -- dispatching, and can never be the static interpretation of a call.
996ae0b0 1072
5ff22245
ES
1073 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1074 No_Interpretation;
1075 return;
996ae0b0
RK
1076 end if;
1077
1078 Analyze_One_Call (N, Nam_Ent, True, Success);
1079
ec6078e3
ES
1080 -- If this is an indirect call, the return type of the access_to
1081 -- subprogram may be an incomplete type. At the point of the call,
947430d5
AC
1082 -- use the full type if available, and at the same time update the
1083 -- return type of the access_to_subprogram.
ec6078e3
ES
1084
1085 if Success
d469eabe 1086 and then Nkind (Nam) = N_Explicit_Dereference
ec6078e3
ES
1087 and then Ekind (Etype (N)) = E_Incomplete_Type
1088 and then Present (Full_View (Etype (N)))
1089 then
1090 Set_Etype (N, Full_View (Etype (N)));
1091 Set_Etype (Nam_Ent, Etype (N));
1092 end if;
1093
a7e68e7f
HK
1094 -- Overloaded call
1095
996ae0b0 1096 else
5ff22245
ES
1097 -- An overloaded selected component must denote overloaded operations
1098 -- of a concurrent type. The interpretations are attached to the
1099 -- simple name of those operations.
996ae0b0
RK
1100
1101 if Nkind (Nam) = N_Selected_Component then
1102 Nam := Selector_Name (Nam);
1103 end if;
1104
1105 Get_First_Interp (Nam, X, It);
996ae0b0
RK
1106 while Present (It.Nam) loop
1107 Nam_Ent := It.Nam;
1cb17b78 1108 Deref := False;
996ae0b0
RK
1109
1110 -- Name may be call that returns an access to subprogram, or more
1111 -- generally an overloaded expression one of whose interpretations
947430d5
AC
1112 -- yields an access to subprogram. If the name is an entity, we do
1113 -- not dereference, because the node is a call that returns the
1114 -- access type: note difference between f(x), where the call may
1115 -- return an access subprogram type, and f(x)(y), where the type
1116 -- returned by the call to f is implicitly dereferenced to analyze
1117 -- the outer call.
996ae0b0
RK
1118
1119 if Is_Access_Type (Nam_Ent) then
1120 Nam_Ent := Designated_Type (Nam_Ent);
1121
1122 elsif Is_Access_Type (Etype (Nam_Ent))
1cb17b78
AC
1123 and then
1124 (not Is_Entity_Name (Nam)
1125 or else Nkind (N) = N_Procedure_Call_Statement)
996ae0b0
RK
1126 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1127 = E_Subprogram_Type
1128 then
1129 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1cb17b78
AC
1130
1131 if Is_Entity_Name (Nam) then
1132 Deref := True;
1133 end if;
996ae0b0
RK
1134 end if;
1135
7415029d
AC
1136 -- If the call has been rewritten from a prefixed call, the first
1137 -- parameter has been analyzed, but may need a subsequent
1138 -- dereference, so skip its analysis now.
1139
1140 if N /= Original_Node (N)
1141 and then Nkind (Original_Node (N)) = Nkind (N)
1142 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1143 and then Present (Parameter_Associations (N))
1144 and then Present (Etype (First (Parameter_Associations (N))))
1145 then
1146 Analyze_One_Call
1147 (N, Nam_Ent, False, Success, Skip_First => True);
1148 else
1149 Analyze_One_Call (N, Nam_Ent, False, Success);
1150 end if;
996ae0b0
RK
1151
1152 -- If the interpretation succeeds, mark the proper type of the
1153 -- prefix (any valid candidate will do). If not, remove the
1154 -- candidate interpretation. This only needs to be done for
1155 -- overloaded protected operations, for other entities disambi-
1156 -- guation is done directly in Resolve.
1157
1158 if Success then
1cb17b78
AC
1159 if Deref
1160 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1161 then
1162 Set_Entity (Nam, It.Nam);
1163 Insert_Explicit_Dereference (Nam);
1164 Set_Etype (Nam, Nam_Ent);
1165
1166 else
1167 Set_Etype (Nam, It.Typ);
1168 end if;
996ae0b0 1169
d469eabe
HK
1170 elsif Nkind_In (Name (N), N_Selected_Component,
1171 N_Function_Call)
fbf5a39b 1172 then
996ae0b0
RK
1173 Remove_Interp (X);
1174 end if;
1175
1176 Get_Next_Interp (X, It);
1177 end loop;
1178
a7e68e7f
HK
1179 -- If the name is the result of a function call, it can only be a
1180 -- call to a function returning an access to subprogram. Insert
1181 -- explicit dereference.
996ae0b0
RK
1182
1183 if Nkind (Nam) = N_Function_Call then
1184 Insert_Explicit_Dereference (Nam);
1185 end if;
1186
1187 if Etype (N) = Any_Type then
1188
1189 -- None of the interpretations is compatible with the actuals
1190
1191 Diagnose_Call (N, Nam);
1192
1193 -- Special checks for uninstantiated put routines
1194
1195 if Nkind (N) = N_Procedure_Call_Statement
1196 and then Is_Entity_Name (Nam)
1197 and then Chars (Nam) = Name_Put
1198 and then List_Length (Actuals) = 1
1199 then
1200 declare
1201 Arg : constant Node_Id := First (Actuals);
1202 Typ : Entity_Id;
1203
1204 begin
1205 if Nkind (Arg) = N_Parameter_Association then
1206 Typ := Etype (Explicit_Actual_Parameter (Arg));
1207 else
1208 Typ := Etype (Arg);
1209 end if;
1210
1211 if Is_Signed_Integer_Type (Typ) then
1212 Error_Msg_N
a90bd866
RD
1213 ("possible missing instantiation of "
1214 & "'Text_'I'O.'Integer_'I'O!", Nam);
996ae0b0
RK
1215
1216 elsif Is_Modular_Integer_Type (Typ) then
1217 Error_Msg_N
a90bd866
RD
1218 ("possible missing instantiation of "
1219 & "'Text_'I'O.'Modular_'I'O!", Nam);
996ae0b0
RK
1220
1221 elsif Is_Floating_Point_Type (Typ) then
1222 Error_Msg_N
a90bd866
RD
1223 ("possible missing instantiation of "
1224 & "'Text_'I'O.'Float_'I'O!", Nam);
996ae0b0
RK
1225
1226 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1227 Error_Msg_N
a90bd866
RD
1228 ("possible missing instantiation of "
1229 & "'Text_'I'O.'Fixed_'I'O!", Nam);
996ae0b0
RK
1230
1231 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1232 Error_Msg_N
a90bd866
RD
1233 ("possible missing instantiation of "
1234 & "'Text_'I'O.'Decimal_'I'O!", Nam);
996ae0b0
RK
1235
1236 elsif Is_Enumeration_Type (Typ) then
1237 Error_Msg_N
a90bd866
RD
1238 ("possible missing instantiation of "
1239 & "'Text_'I'O.'Enumeration_'I'O!", Nam);
996ae0b0
RK
1240 end if;
1241 end;
1242 end if;
1243
1244 elsif not Is_Overloaded (N)
1245 and then Is_Entity_Name (Nam)
1246 then
aab883ec
ES
1247 -- Resolution yields a single interpretation. Verify that the
1248 -- reference has capitalization consistent with the declaration.
996ae0b0 1249
e7ba564f 1250 Set_Entity_With_Checks (Nam, Entity (Nam));
996ae0b0
RK
1251 Generate_Reference (Entity (Nam), Nam);
1252
1253 Set_Etype (Nam, Etype (Entity (Nam)));
30c20106
AC
1254 else
1255 Remove_Abstract_Operations (N);
996ae0b0
RK
1256 end if;
1257
1258 End_Interp_List;
1259 end if;
1260 end Analyze_Call;
1261
19d846a0
RD
1262 -----------------------------
1263 -- Analyze_Case_Expression --
1264 -----------------------------
1265
1266 procedure Analyze_Case_Expression (N : Node_Id) is
19d846a0
RD
1267 procedure Non_Static_Choice_Error (Choice : Node_Id);
1268 -- Error routine invoked by the generic instantiation below when
1269 -- the case expression has a non static choice.
1270
15918371
AC
1271 package Case_Choices_Analysis is new
1272 Generic_Analyze_Choices
1273 (Process_Associated_Node => No_OP);
1274 use Case_Choices_Analysis;
1275
1276 package Case_Choices_Checking is new
1277 Generic_Check_Choices
1278 (Process_Empty_Choice => No_OP,
19d846a0
RD
1279 Process_Non_Static_Choice => Non_Static_Choice_Error,
1280 Process_Associated_Node => No_OP);
15918371 1281 use Case_Choices_Checking;
19d846a0 1282
19d846a0
RD
1283 -----------------------------
1284 -- Non_Static_Choice_Error --
1285 -----------------------------
1286
1287 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1288 begin
1289 Flag_Non_Static_Expr
1290 ("choice given in case expression is not static!", Choice);
1291 end Non_Static_Choice_Error;
1292
752b81d9
AC
1293 -- Local variables
1294
1295 Expr : constant Node_Id := Expression (N);
752b81d9
AC
1296 Alt : Node_Id;
1297 Exp_Type : Entity_Id;
1298 Exp_Btype : Entity_Id;
1299
308aab0b
AC
1300 FirstX : Node_Id := Empty;
1301 -- First expression in the case for which there is some type information
1302 -- available, i.e. it is not Any_Type, which can happen because of some
1303 -- error, or from the use of e.g. raise Constraint_Error.
1304
752b81d9 1305 Others_Present : Boolean;
15918371 1306 -- Indicates if Others was present
752b81d9 1307
10671e7a
AC
1308 Wrong_Alt : Node_Id;
1309 -- For error reporting
1310
19d846a0
RD
1311 -- Start of processing for Analyze_Case_Expression
1312
1313 begin
1314 if Comes_From_Source (N) then
c86cf714 1315 Check_Compiler_Unit ("case expression", N);
19d846a0
RD
1316 end if;
1317
1318 Analyze_And_Resolve (Expr, Any_Discrete);
1319 Check_Unset_Reference (Expr);
1320 Exp_Type := Etype (Expr);
1321 Exp_Btype := Base_Type (Exp_Type);
1322
1323 Alt := First (Alternatives (N));
1324 while Present (Alt) loop
1325 Analyze (Expression (Alt));
308aab0b
AC
1326
1327 if No (FirstX) and then Etype (Expression (Alt)) /= Any_Type then
1328 FirstX := Expression (Alt);
1329 end if;
1330
19d846a0
RD
1331 Next (Alt);
1332 end loop;
1333
308aab0b
AC
1334 -- Get our initial type from the first expression for which we got some
1335 -- useful type information from the expression.
1336
19d846a0
RD
1337 if not Is_Overloaded (FirstX) then
1338 Set_Etype (N, Etype (FirstX));
1339
1340 else
1341 declare
1342 I : Interp_Index;
1343 It : Interp;
1344
1345 begin
1346 Set_Etype (N, Any_Type);
1347
1348 Get_First_Interp (FirstX, I, It);
1349 while Present (It.Nam) loop
1350
308e6f3a
RW
1351 -- For each interpretation of the first expression, we only
1352 -- add the interpretation if every other expression in the
19d846a0
RD
1353 -- case expression alternatives has a compatible type.
1354
1355 Alt := Next (First (Alternatives (N)));
1356 while Present (Alt) loop
1357 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1358 Next (Alt);
1359 end loop;
1360
1361 if No (Alt) then
1362 Add_One_Interp (N, It.Typ, It.Typ);
10671e7a
AC
1363 else
1364 Wrong_Alt := Alt;
19d846a0
RD
1365 end if;
1366
1367 Get_Next_Interp (I, It);
1368 end loop;
1369 end;
1370 end if;
1371
1372 Exp_Btype := Base_Type (Exp_Type);
1373
1374 -- The expression must be of a discrete type which must be determinable
1375 -- independently of the context in which the expression occurs, but
1376 -- using the fact that the expression must be of a discrete type.
1377 -- Moreover, the type this expression must not be a character literal
1378 -- (which is always ambiguous).
1379
1380 -- If error already reported by Resolve, nothing more to do
1381
15918371 1382 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
19d846a0
RD
1383 return;
1384
bf0b0e5e
AC
1385 -- Special casee message for character literal
1386
19d846a0
RD
1387 elsif Exp_Btype = Any_Character then
1388 Error_Msg_N
1389 ("character literal as case expression is ambiguous", Expr);
1390 return;
1391 end if;
1392
10671e7a 1393 if Etype (N) = Any_Type and then Present (Wrong_Alt) then
bf0b0e5e
AC
1394 Error_Msg_N
1395 ("type incompatible with that of previous alternatives",
1396 Expression (Wrong_Alt));
10671e7a
AC
1397 return;
1398 end if;
1399
19d846a0
RD
1400 -- If the case expression is a formal object of mode in out, then
1401 -- treat it as having a nonstatic subtype by forcing use of the base
1402 -- type (which has to get passed to Check_Case_Choices below). Also
1403 -- use base type when the case expression is parenthesized.
1404
1405 if Paren_Count (Expr) > 0
1406 or else (Is_Entity_Name (Expr)
1407 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1408 then
1409 Exp_Type := Exp_Btype;
1410 end if;
1411
752b81d9
AC
1412 -- The case expression alternatives cover the range of a static subtype
1413 -- subject to aspect Static_Predicate. Do not check the choices when the
1414 -- case expression has not been fully analyzed yet because this may lead
1415 -- to bogus errors.
1416
edab6088 1417 if Is_OK_Static_Subtype (Exp_Type)
ee4eee0a 1418 and then Has_Static_Predicate_Aspect (Exp_Type)
752b81d9
AC
1419 and then In_Spec_Expression
1420 then
1421 null;
1422
15918371 1423 -- Call Analyze_Choices and Check_Choices to do the rest of the work
19d846a0 1424
752b81d9 1425 else
15918371
AC
1426 Analyze_Choices (Alternatives (N), Exp_Type);
1427 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
752b81d9 1428 end if;
19d846a0
RD
1429
1430 if Exp_Type = Universal_Integer and then not Others_Present then
1431 Error_Msg_N
1432 ("case on universal integer requires OTHERS choice", Expr);
1433 end if;
1434 end Analyze_Case_Expression;
1435
996ae0b0
RK
1436 ---------------------------
1437 -- Analyze_Comparison_Op --
1438 ---------------------------
1439
1440 procedure Analyze_Comparison_Op (N : Node_Id) is
1441 L : constant Node_Id := Left_Opnd (N);
1442 R : constant Node_Id := Right_Opnd (N);
1443 Op_Id : Entity_Id := Entity (N);
1444
1445 begin
1446 Set_Etype (N, Any_Type);
1447 Candidate_Type := Empty;
1448
1449 Analyze_Expression (L);
1450 Analyze_Expression (R);
1451
1452 if Present (Op_Id) then
996ae0b0
RK
1453 if Ekind (Op_Id) = E_Operator then
1454 Find_Comparison_Types (L, R, Op_Id, N);
1455 else
1456 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1457 end if;
1458
1459 if Is_Overloaded (L) then
1460 Set_Etype (L, Intersect_Types (L, R));
1461 end if;
1462
1463 else
1464 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 1465 while Present (Op_Id) loop
996ae0b0
RK
1466 if Ekind (Op_Id) = E_Operator then
1467 Find_Comparison_Types (L, R, Op_Id, N);
1468 else
1469 Analyze_User_Defined_Binary_Op (N, Op_Id);
1470 end if;
1471
1472 Op_Id := Homonym (Op_Id);
1473 end loop;
1474 end if;
1475
1476 Operator_Check (N);
1477 end Analyze_Comparison_Op;
1478
1479 ---------------------------
1480 -- Analyze_Concatenation --
1481 ---------------------------
1482
fe39cf20
BD
1483 procedure Analyze_Concatenation (N : Node_Id) is
1484
1485 -- We wish to avoid deep recursion, because concatenations are often
1486 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1487 -- operands nonrecursively until we find something that is not a
1488 -- concatenation (A in this case), or has already been analyzed. We
1489 -- analyze that, and then walk back up the tree following Parent
1490 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1491 -- work at each level. The Parent pointers allow us to avoid recursion,
1492 -- and thus avoid running out of memory.
1493
1494 NN : Node_Id := N;
1495 L : Node_Id;
1496
1497 begin
1498 Candidate_Type := Empty;
1499
1500 -- The following code is equivalent to:
1501
1502 -- Set_Etype (N, Any_Type);
1503 -- Analyze_Expression (Left_Opnd (N));
1504 -- Analyze_Concatenation_Rest (N);
1505
1506 -- where the Analyze_Expression call recurses back here if the left
1507 -- operand is a concatenation.
1508
1509 -- Walk down left operands
1510
1511 loop
1512 Set_Etype (NN, Any_Type);
1513 L := Left_Opnd (NN);
1514 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1515 NN := L;
1516 end loop;
1517
1518 -- Now (given the above example) NN is A&B and L is A
1519
1520 -- First analyze L ...
1521
1522 Analyze_Expression (L);
1523
1524 -- ... then walk NN back up until we reach N (where we started), calling
1525 -- Analyze_Concatenation_Rest along the way.
1526
1527 loop
1528 Analyze_Concatenation_Rest (NN);
1529 exit when NN = N;
1530 NN := Parent (NN);
1531 end loop;
1532 end Analyze_Concatenation;
1533
1534 --------------------------------
1535 -- Analyze_Concatenation_Rest --
1536 --------------------------------
1537
996ae0b0
RK
1538 -- If the only one-dimensional array type in scope is String,
1539 -- this is the resulting type of the operation. Otherwise there
1540 -- will be a concatenation operation defined for each user-defined
1541 -- one-dimensional array.
1542
fe39cf20 1543 procedure Analyze_Concatenation_Rest (N : Node_Id) is
996ae0b0
RK
1544 L : constant Node_Id := Left_Opnd (N);
1545 R : constant Node_Id := Right_Opnd (N);
1546 Op_Id : Entity_Id := Entity (N);
1547 LT : Entity_Id;
1548 RT : Entity_Id;
1549
1550 begin
996ae0b0
RK
1551 Analyze_Expression (R);
1552
cd3cd5b1
AC
1553 -- If the entity is present, the node appears in an instance, and
1554 -- denotes a predefined concatenation operation. The resulting type is
1555 -- obtained from the arguments when possible. If the arguments are
1556 -- aggregates, the array type and the concatenation type must be
fbf5a39b 1557 -- visible.
996ae0b0
RK
1558
1559 if Present (Op_Id) then
1560 if Ekind (Op_Id) = E_Operator then
996ae0b0
RK
1561 LT := Base_Type (Etype (L));
1562 RT := Base_Type (Etype (R));
1563
1564 if Is_Array_Type (LT)
1565 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1566 then
1567 Add_One_Interp (N, Op_Id, LT);
1568
1569 elsif Is_Array_Type (RT)
1570 and then LT = Base_Type (Component_Type (RT))
1571 then
1572 Add_One_Interp (N, Op_Id, RT);
1573
fbf5a39b
AC
1574 -- If one operand is a string type or a user-defined array type,
1575 -- and the other is a literal, result is of the specific type.
1576
1577 elsif
1578 (Root_Type (LT) = Standard_String
1579 or else Scope (LT) /= Standard_Standard)
1580 and then Etype (R) = Any_String
1581 then
1582 Add_One_Interp (N, Op_Id, LT);
1583
1584 elsif
1585 (Root_Type (RT) = Standard_String
1586 or else Scope (RT) /= Standard_Standard)
1587 and then Etype (L) = Any_String
1588 then
1589 Add_One_Interp (N, Op_Id, RT);
1590
1591 elsif not Is_Generic_Type (Etype (Op_Id)) then
996ae0b0 1592 Add_One_Interp (N, Op_Id, Etype (Op_Id));
fbf5a39b
AC
1593
1594 else
4c46b835 1595 -- Type and its operations must be visible
fbf5a39b
AC
1596
1597 Set_Entity (N, Empty);
1598 Analyze_Concatenation (N);
996ae0b0
RK
1599 end if;
1600
1601 else
1602 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1603 end if;
1604
1605 else
1a8fae99 1606 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
996ae0b0
RK
1607 while Present (Op_Id) loop
1608 if Ekind (Op_Id) = E_Operator then
1a8fae99
ES
1609
1610 -- Do not consider operators declared in dead code, they can
1611 -- not be part of the resolution.
1612
1613 if Is_Eliminated (Op_Id) then
1614 null;
1615 else
1616 Find_Concatenation_Types (L, R, Op_Id, N);
1617 end if;
1618
996ae0b0
RK
1619 else
1620 Analyze_User_Defined_Binary_Op (N, Op_Id);
1621 end if;
1622
1623 Op_Id := Homonym (Op_Id);
1624 end loop;
1625 end if;
1626
1627 Operator_Check (N);
fe39cf20 1628 end Analyze_Concatenation_Rest;
996ae0b0 1629
996ae0b0
RK
1630 -------------------------
1631 -- Analyze_Equality_Op --
1632 -------------------------
1633
1634 procedure Analyze_Equality_Op (N : Node_Id) is
4c46b835
AC
1635 Loc : constant Source_Ptr := Sloc (N);
1636 L : constant Node_Id := Left_Opnd (N);
1637 R : constant Node_Id := Right_Opnd (N);
1638 Op_Id : Entity_Id;
996ae0b0
RK
1639
1640 begin
1641 Set_Etype (N, Any_Type);
1642 Candidate_Type := Empty;
1643
1644 Analyze_Expression (L);
1645 Analyze_Expression (R);
1646
1647 -- If the entity is set, the node is a generic instance with a non-local
1648 -- reference to the predefined operator or to a user-defined function.
1649 -- It can also be an inequality that is expanded into the negation of a
1650 -- call to a user-defined equality operator.
1651
1652 -- For the predefined case, the result is Boolean, regardless of the
1653 -- type of the operands. The operands may even be limited, if they are
1654 -- generic actuals. If they are overloaded, label the left argument with
1655 -- the common type that must be present, or with the type of the formal
1656 -- of the user-defined function.
1657
1658 if Present (Entity (N)) then
996ae0b0
RK
1659 Op_Id := Entity (N);
1660
1661 if Ekind (Op_Id) = E_Operator then
1662 Add_One_Interp (N, Op_Id, Standard_Boolean);
1663 else
1664 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1665 end if;
1666
1667 if Is_Overloaded (L) then
996ae0b0
RK
1668 if Ekind (Op_Id) = E_Operator then
1669 Set_Etype (L, Intersect_Types (L, R));
1670 else
1671 Set_Etype (L, Etype (First_Formal (Op_Id)));
1672 end if;
1673 end if;
1674
1675 else
1676 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 1677 while Present (Op_Id) loop
996ae0b0
RK
1678 if Ekind (Op_Id) = E_Operator then
1679 Find_Equality_Types (L, R, Op_Id, N);
1680 else
1681 Analyze_User_Defined_Binary_Op (N, Op_Id);
1682 end if;
1683
1684 Op_Id := Homonym (Op_Id);
1685 end loop;
1686 end if;
1687
84dad556
AC
1688 -- If there was no match, and the operator is inequality, this may be
1689 -- a case where inequality has not been made explicit, as for tagged
1690 -- types. Analyze the node as the negation of an equality operation.
1691 -- This cannot be done earlier, because before analysis we cannot rule
1692 -- out the presence of an explicit inequality.
996ae0b0
RK
1693
1694 if Etype (N) = Any_Type
1695 and then Nkind (N) = N_Op_Ne
1696 then
1697 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
996ae0b0 1698 while Present (Op_Id) loop
996ae0b0
RK
1699 if Ekind (Op_Id) = E_Operator then
1700 Find_Equality_Types (L, R, Op_Id, N);
1701 else
1702 Analyze_User_Defined_Binary_Op (N, Op_Id);
1703 end if;
1704
1705 Op_Id := Homonym (Op_Id);
1706 end loop;
1707
1708 if Etype (N) /= Any_Type then
1709 Op_Id := Entity (N);
1710
1711 Rewrite (N,
1712 Make_Op_Not (Loc,
1713 Right_Opnd =>
1714 Make_Op_Eq (Loc,
aab883ec
ES
1715 Left_Opnd => Left_Opnd (N),
1716 Right_Opnd => Right_Opnd (N))));
996ae0b0
RK
1717
1718 Set_Entity (Right_Opnd (N), Op_Id);
1719 Analyze (N);
1720 end if;
1721 end if;
1722
1723 Operator_Check (N);
1724 end Analyze_Equality_Op;
1725
1726 ----------------------------------
1727 -- Analyze_Explicit_Dereference --
1728 ----------------------------------
1729
1730 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1731 Loc : constant Source_Ptr := Sloc (N);
1732 P : constant Node_Id := Prefix (N);
1733 T : Entity_Id;
1734 I : Interp_Index;
1735 It : Interp;
1736 New_N : Node_Id;
1737
1738 function Is_Function_Type return Boolean;
4c46b835
AC
1739 -- Check whether node may be interpreted as an implicit function call
1740
1741 ----------------------
1742 -- Is_Function_Type --
1743 ----------------------
996ae0b0
RK
1744
1745 function Is_Function_Type return Boolean is
4c46b835
AC
1746 I : Interp_Index;
1747 It : Interp;
996ae0b0
RK
1748
1749 begin
1750 if not Is_Overloaded (N) then
1751 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1752 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1753
1754 else
1755 Get_First_Interp (N, I, It);
996ae0b0
RK
1756 while Present (It.Nam) loop
1757 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1758 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1759 then
1760 return False;
1761 end if;
1762
1763 Get_Next_Interp (I, It);
1764 end loop;
1765
1766 return True;
1767 end if;
1768 end Is_Function_Type;
1769
98123480 1770 -- Start of processing for Analyze_Explicit_Dereference
4c46b835 1771
996ae0b0 1772 begin
11bc76df
AC
1773 -- If source node, check SPARK restriction. We guard this with the
1774 -- source node check, because ???
1775
36b8f95f 1776 if Comes_From_Source (N) then
ce5ba43a 1777 Check_SPARK_05_Restriction ("explicit dereference is not allowed", N);
36b8f95f 1778 end if;
1d801f21 1779
226a7fa4
AC
1780 -- In formal verification mode, keep track of all reads and writes
1781 -- through explicit dereferences.
1782
f5da7a97 1783 if GNATprove_Mode then
06b599fd 1784 SPARK_Specific.Generate_Dereference (N);
226a7fa4
AC
1785 end if;
1786
996ae0b0
RK
1787 Analyze (P);
1788 Set_Etype (N, Any_Type);
1789
1790 -- Test for remote access to subprogram type, and if so return
1791 -- after rewriting the original tree.
1792
1793 if Remote_AST_E_Dereference (P) then
1794 return;
1795 end if;
1796
1797 -- Normal processing for other than remote access to subprogram type
1798
1799 if not Is_Overloaded (P) then
1800 if Is_Access_Type (Etype (P)) then
1801
f3d57416 1802 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
0a36105d
JM
1803 -- avoid other problems caused by the Private_Subtype and it is
1804 -- safe to go to the Base_Type because this is the same as
1805 -- converting the access value to its Base_Type.
996ae0b0
RK
1806
1807 declare
1808 DT : Entity_Id := Designated_Type (Etype (P));
1809
1810 begin
1811 if Ekind (DT) = E_Private_Subtype
1812 and then Is_For_Access_Subtype (DT)
1813 then
1814 DT := Base_Type (DT);
1815 end if;
1816
0a36105d
JM
1817 -- An explicit dereference is a legal occurrence of an
1818 -- incomplete type imported through a limited_with clause,
1819 -- if the full view is visible.
1820
7b56a91b
AC
1821 if From_Limited_With (DT)
1822 and then not From_Limited_With (Scope (DT))
0a36105d
JM
1823 and then
1824 (Is_Immediately_Visible (Scope (DT))
1825 or else
1826 (Is_Child_Unit (Scope (DT))
8398e82e 1827 and then Is_Visible_Lib_Unit (Scope (DT))))
0a36105d
JM
1828 then
1829 Set_Etype (N, Available_View (DT));
1830
1831 else
1832 Set_Etype (N, DT);
1833 end if;
996ae0b0
RK
1834 end;
1835
1836 elsif Etype (P) /= Any_Type then
1837 Error_Msg_N ("prefix of dereference must be an access type", N);
1838 return;
1839 end if;
1840
1841 else
1842 Get_First_Interp (P, I, It);
996ae0b0
RK
1843 while Present (It.Nam) loop
1844 T := It.Typ;
1845
1846 if Is_Access_Type (T) then
1847 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1848 end if;
1849
1850 Get_Next_Interp (I, It);
1851 end loop;
1852
6e73e3ab 1853 -- Error if no interpretation of the prefix has an access type
996ae0b0
RK
1854
1855 if Etype (N) = Any_Type then
1856 Error_Msg_N
1857 ("access type required in prefix of explicit dereference", P);
1858 Set_Etype (N, Any_Type);
1859 return;
1860 end if;
1861 end if;
1862
1863 if Is_Function_Type
1864 and then Nkind (Parent (N)) /= N_Indexed_Component
1865
1866 and then (Nkind (Parent (N)) /= N_Function_Call
1867 or else N /= Name (Parent (N)))
1868
1869 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1870 or else N /= Name (Parent (N)))
1871
1872 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1873 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1874 or else
1875 (Attribute_Name (Parent (N)) /= Name_Address
1876 and then
1877 Attribute_Name (Parent (N)) /= Name_Access))
1878 then
1879 -- Name is a function call with no actuals, in a context that
1880 -- requires deproceduring (including as an actual in an enclosing
98123480 1881 -- function or procedure call). There are some pathological cases
996ae0b0
RK
1882 -- where the prefix might include functions that return access to
1883 -- subprograms and others that return a regular type. Disambiguation
98123480 1884 -- of those has to take place in Resolve.
996ae0b0
RK
1885
1886 New_N :=
1887 Make_Function_Call (Loc,
1888 Name => Make_Explicit_Dereference (Loc, P),
1889 Parameter_Associations => New_List);
1890
1891 -- If the prefix is overloaded, remove operations that have formals,
1892 -- we know that this is a parameterless call.
1893
1894 if Is_Overloaded (P) then
1895 Get_First_Interp (P, I, It);
996ae0b0
RK
1896 while Present (It.Nam) loop
1897 T := It.Typ;
1898
1899 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1900 Set_Etype (P, T);
1901 else
1902 Remove_Interp (I);
1903 end if;
1904
1905 Get_Next_Interp (I, It);
1906 end loop;
1907 end if;
1908
1909 Rewrite (N, New_N);
1910 Analyze (N);
98123480
ES
1911
1912 elsif not Is_Function_Type
1913 and then Is_Overloaded (N)
1914 then
1915 -- The prefix may include access to subprograms and other access
1cb17b78 1916 -- types. If the context selects the interpretation that is a
56a7a3ab
TQ
1917 -- function call (not a procedure call) we cannot rewrite the node
1918 -- yet, but we include the result of the call interpretation.
98123480
ES
1919
1920 Get_First_Interp (N, I, It);
1921 while Present (It.Nam) loop
1922 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1923 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1cb17b78 1924 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
98123480
ES
1925 then
1926 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1927 end if;
1928
1929 Get_Next_Interp (I, It);
1930 end loop;
996ae0b0
RK
1931 end if;
1932
1933 -- A value of remote access-to-class-wide must not be dereferenced
1934 -- (RM E.2.2(16)).
1935
1936 Validate_Remote_Access_To_Class_Wide_Type (N);
996ae0b0
RK
1937 end Analyze_Explicit_Dereference;
1938
1939 ------------------------
1940 -- Analyze_Expression --
1941 ------------------------
1942
1943 procedure Analyze_Expression (N : Node_Id) is
1944 begin
5f50020a
ES
1945
1946 -- If the expression is an indexed component that will be rewritten
1947 -- as a container indexing, it has already been analyzed.
1948
1949 if Nkind (N) = N_Indexed_Component
1950 and then Present (Generalized_Indexing (N))
1951 then
1952 null;
1953
1954 else
1955 Analyze (N);
1956 Check_Parameterless_Call (N);
1957 end if;
996ae0b0
RK
1958 end Analyze_Expression;
1959
955871d3
AC
1960 -------------------------------------
1961 -- Analyze_Expression_With_Actions --
1962 -------------------------------------
1963
1964 procedure Analyze_Expression_With_Actions (N : Node_Id) is
1965 A : Node_Id;
1966
1967 begin
1968 A := First (Actions (N));
752b81d9 1969 while Present (A) loop
955871d3
AC
1970 Analyze (A);
1971 Next (A);
955871d3
AC
1972 end loop;
1973
2ffcbaa5
AC
1974 Analyze_Expression (Expression (N));
1975 Set_Etype (N, Etype (Expression (N)));
955871d3
AC
1976 end Analyze_Expression_With_Actions;
1977
9b16cb57
RD
1978 ---------------------------
1979 -- Analyze_If_Expression --
1980 ---------------------------
1981
1982 procedure Analyze_If_Expression (N : Node_Id) is
1983 Condition : constant Node_Id := First (Expressions (N));
1984 Then_Expr : constant Node_Id := Next (Condition);
1985 Else_Expr : Node_Id;
1986
1987 begin
1988 -- Defend against error of missing expressions from previous error
1989
1990 if No (Then_Expr) then
ee2ba856 1991 Check_Error_Detected;
9b16cb57
RD
1992 return;
1993 end if;
1994
08988ed9 1995 if Comes_From_Source (N) then
ce5ba43a 1996 Check_SPARK_05_Restriction ("if expression is not allowed", N);
08988ed9 1997 end if;
9b16cb57
RD
1998
1999 Else_Expr := Next (Then_Expr);
2000
2001 if Comes_From_Source (N) then
c86cf714 2002 Check_Compiler_Unit ("if expression", N);
9b16cb57
RD
2003 end if;
2004
ac072cb2
AC
2005 -- Analyze and resolve the condition. We need to resolve this now so
2006 -- that it gets folded to True/False if possible, before we analyze
2007 -- the THEN/ELSE branches, because when analyzing these branches, we
2008 -- may call Is_Statically_Unevaluated, which expects the condition of
2009 -- an enclosing IF to have been analyze/resolved/evaluated.
2010
9b16cb57 2011 Analyze_Expression (Condition);
ac072cb2
AC
2012 Resolve (Condition, Any_Boolean);
2013
2014 -- Analyze THEN expression and (if present) ELSE expression. For those
2015 -- we delay resolution in the normal manner, because of overloading etc.
2016
9b16cb57
RD
2017 Analyze_Expression (Then_Expr);
2018
2019 if Present (Else_Expr) then
2020 Analyze_Expression (Else_Expr);
2021 end if;
2022
2023 -- If then expression not overloaded, then that decides the type
2024
2025 if not Is_Overloaded (Then_Expr) then
2026 Set_Etype (N, Etype (Then_Expr));
2027
2028 -- Case where then expression is overloaded
2029
2030 else
2031 declare
2032 I : Interp_Index;
2033 It : Interp;
2034
2035 begin
2036 Set_Etype (N, Any_Type);
2037
445e5888 2038 -- Loop through intepretations of Then_Expr
9b16cb57
RD
2039
2040 Get_First_Interp (Then_Expr, I, It);
445e5888 2041 while Present (It.Nam) loop
9b16cb57 2042
445e5888
AC
2043 -- Add possible intepretation of Then_Expr if no Else_Expr,
2044 -- or Else_Expr is present and has a compatible type.
9b16cb57 2045
445e5888
AC
2046 if No (Else_Expr)
2047 or else Has_Compatible_Type (Else_Expr, It.Typ)
2048 then
2049 Add_One_Interp (N, It.Typ, It.Typ);
2050 end if;
9b16cb57 2051
445e5888
AC
2052 Get_Next_Interp (I, It);
2053 end loop;
9b16cb57
RD
2054 end;
2055 end if;
2056 end Analyze_If_Expression;
2057
996ae0b0
RK
2058 ------------------------------------
2059 -- Analyze_Indexed_Component_Form --
2060 ------------------------------------
2061
2062 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
fbf5a39b
AC
2063 P : constant Node_Id := Prefix (N);
2064 Exprs : constant List_Id := Expressions (N);
2065 Exp : Node_Id;
2066 P_T : Entity_Id;
2067 E : Node_Id;
2068 U_N : Entity_Id;
996ae0b0
RK
2069
2070 procedure Process_Function_Call;
2071 -- Prefix in indexed component form is an overloadable entity,
2072 -- so the node is a function call. Reformat it as such.
2073
2074 procedure Process_Indexed_Component;
2075 -- Prefix in indexed component form is actually an indexed component.
2076 -- This routine processes it, knowing that the prefix is already
2077 -- resolved.
2078
2079 procedure Process_Indexed_Component_Or_Slice;
2080 -- An indexed component with a single index may designate a slice if
2081 -- the index is a subtype mark. This routine disambiguates these two
2082 -- cases by resolving the prefix to see if it is a subtype mark.
2083
2084 procedure Process_Overloaded_Indexed_Component;
2085 -- If the prefix of an indexed component is overloaded, the proper
2086 -- interpretation is selected by the index types and the context.
2087
2088 ---------------------------
2089 -- Process_Function_Call --
2090 ---------------------------
2091
2092 procedure Process_Function_Call is
1725676d 2093 Loc : constant Source_Ptr := Sloc (N);
f5afb270
AC
2094 Actual : Node_Id;
2095
996ae0b0
RK
2096 begin
2097 Change_Node (N, N_Function_Call);
2098 Set_Name (N, P);
2099 Set_Parameter_Associations (N, Exprs);
996ae0b0 2100
401093c1 2101 -- Analyze actuals prior to analyzing the call itself
0a36105d 2102
4c46b835 2103 Actual := First (Parameter_Associations (N));
996ae0b0
RK
2104 while Present (Actual) loop
2105 Analyze (Actual);
2106 Check_Parameterless_Call (Actual);
0a36105d
JM
2107
2108 -- Move to next actual. Note that we use Next, not Next_Actual
2109 -- here. The reason for this is a bit subtle. If a function call
2110 -- includes named associations, the parser recognizes the node as
2111 -- a call, and it is analyzed as such. If all associations are
2112 -- positional, the parser builds an indexed_component node, and
2113 -- it is only after analysis of the prefix that the construct
2114 -- is recognized as a call, in which case Process_Function_Call
2115 -- rewrites the node and analyzes the actuals. If the list of
2116 -- actuals is malformed, the parser may leave the node as an
2117 -- indexed component (despite the presence of named associations).
2118 -- The iterator Next_Actual is equivalent to Next if the list is
2119 -- positional, but follows the normalized chain of actuals when
2120 -- named associations are present. In this case normalization has
2121 -- not taken place, and actuals remain unanalyzed, which leads to
2122 -- subsequent crashes or loops if there is an attempt to continue
2123 -- analysis of the program.
2124
1725676d
AC
2125 -- IF there is a single actual and it is a type name, the node
2126 -- can only be interpreted as a slice of a parameterless call.
2127 -- Rebuild the node as such and analyze.
2128
2129 if No (Next (Actual))
2130 and then Is_Entity_Name (Actual)
2131 and then Is_Type (Entity (Actual))
2132 and then Is_Discrete_Type (Entity (Actual))
2133 then
2134 Replace (N,
adc876a8
AC
2135 Make_Slice (Loc,
2136 Prefix => P,
2137 Discrete_Range =>
2138 New_Occurrence_Of (Entity (Actual), Loc)));
1725676d
AC
2139 Analyze (N);
2140 return;
2141
2142 else
2143 Next (Actual);
2144 end if;
996ae0b0
RK
2145 end loop;
2146
2147 Analyze_Call (N);
2148 end Process_Function_Call;
2149
2150 -------------------------------
2151 -- Process_Indexed_Component --
2152 -------------------------------
2153
2154 procedure Process_Indexed_Component is
fe39cf20
BD
2155 Exp : Node_Id;
2156 Array_Type : Entity_Id;
2157 Index : Node_Id;
2158 Pent : Entity_Id := Empty;
996ae0b0
RK
2159
2160 begin
2161 Exp := First (Exprs);
2162
2163 if Is_Overloaded (P) then
2164 Process_Overloaded_Indexed_Component;
2165
2166 else
2167 Array_Type := Etype (P);
2168
6e73e3ab
AC
2169 if Is_Entity_Name (P) then
2170 Pent := Entity (P);
2171 elsif Nkind (P) = N_Selected_Component
2172 and then Is_Entity_Name (Selector_Name (P))
2173 then
2174 Pent := Entity (Selector_Name (P));
2175 end if;
2176
2177 -- Prefix must be appropriate for an array type, taking into
2178 -- account a possible implicit dereference.
996ae0b0
RK
2179
2180 if Is_Access_Type (Array_Type) then
324ac540
AC
2181 Error_Msg_NW
2182 (Warn_On_Dereference, "?d?implicit dereference", N);
d469eabe 2183 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
996ae0b0
RK
2184 end if;
2185
2186 if Is_Array_Type (Array_Type) then
2187 null;
2188
6e73e3ab 2189 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
996ae0b0
RK
2190 Analyze (Exp);
2191 Set_Etype (N, Any_Type);
2192
2193 if not Has_Compatible_Type
6e73e3ab 2194 (Exp, Entry_Index_Type (Pent))
996ae0b0
RK
2195 then
2196 Error_Msg_N ("invalid index type in entry name", N);
2197
2198 elsif Present (Next (Exp)) then
2199 Error_Msg_N ("too many subscripts in entry reference", N);
2200
2201 else
2202 Set_Etype (N, Etype (P));
2203 end if;
2204
2205 return;
2206
2207 elsif Is_Record_Type (Array_Type)
2208 and then Remote_AST_I_Dereference (P)
2209 then
2210 return;
2211
50878404 2212 elsif Try_Container_Indexing (N, P, Exprs) then
d50f4827
AC
2213 return;
2214
996ae0b0
RK
2215 elsif Array_Type = Any_Type then
2216 Set_Etype (N, Any_Type);
6465b6a7
AC
2217
2218 -- In most cases the analysis of the prefix will have emitted
2219 -- an error already, but if the prefix may be interpreted as a
2220 -- call in prefixed notation, the report is left to the caller.
2221 -- To prevent cascaded errors, report only if no previous ones.
2222
2223 if Serious_Errors_Detected = 0 then
2224 Error_Msg_N ("invalid prefix in indexed component", P);
2225
2226 if Nkind (P) = N_Expanded_Name then
2227 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2228 end if;
2229 end if;
2230
996ae0b0
RK
2231 return;
2232
2233 -- Here we definitely have a bad indexing
2234
2235 else
2236 if Nkind (Parent (N)) = N_Requeue_Statement
6e73e3ab 2237 and then Present (Pent) and then Ekind (Pent) = E_Entry
996ae0b0
RK
2238 then
2239 Error_Msg_N
2240 ("REQUEUE does not permit parameters", First (Exprs));
2241
2242 elsif Is_Entity_Name (P)
2243 and then Etype (P) = Standard_Void_Type
2244 then
2245 Error_Msg_NE ("incorrect use of&", P, Entity (P));
2246
2247 else
2248 Error_Msg_N ("array type required in indexed component", P);
2249 end if;
2250
2251 Set_Etype (N, Any_Type);
2252 return;
2253 end if;
2254
2255 Index := First_Index (Array_Type);
996ae0b0
RK
2256 while Present (Index) and then Present (Exp) loop
2257 if not Has_Compatible_Type (Exp, Etype (Index)) then
2258 Wrong_Type (Exp, Etype (Index));
2259 Set_Etype (N, Any_Type);
2260 return;
2261 end if;
2262
2263 Next_Index (Index);
2264 Next (Exp);
2265 end loop;
2266
2267 Set_Etype (N, Component_Type (Array_Type));
44a10091 2268 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
2269
2270 if Present (Index) then
2271 Error_Msg_N
2272 ("too few subscripts in array reference", First (Exprs));
2273
2274 elsif Present (Exp) then
2275 Error_Msg_N ("too many subscripts in array reference", Exp);
2276 end if;
2277 end if;
996ae0b0
RK
2278 end Process_Indexed_Component;
2279
2280 ----------------------------------------
2281 -- Process_Indexed_Component_Or_Slice --
2282 ----------------------------------------
2283
2284 procedure Process_Indexed_Component_Or_Slice is
2285 begin
2286 Exp := First (Exprs);
996ae0b0
RK
2287 while Present (Exp) loop
2288 Analyze_Expression (Exp);
2289 Next (Exp);
2290 end loop;
2291
2292 Exp := First (Exprs);
2293
2294 -- If one index is present, and it is a subtype name, then the
2295 -- node denotes a slice (note that the case of an explicit range
2296 -- for a slice was already built as an N_Slice node in the first
2297 -- place, so that case is not handled here).
2298
2299 -- We use a replace rather than a rewrite here because this is one
2300 -- of the cases in which the tree built by the parser is plain wrong.
2301
2302 if No (Next (Exp))
2303 and then Is_Entity_Name (Exp)
2304 and then Is_Type (Entity (Exp))
2305 then
2306 Replace (N,
2307 Make_Slice (Sloc (N),
2308 Prefix => P,
2309 Discrete_Range => New_Copy (Exp)));
2310 Analyze (N);
2311
2312 -- Otherwise (more than one index present, or single index is not
2313 -- a subtype name), then we have the indexed component case.
2314
2315 else
2316 Process_Indexed_Component;
2317 end if;
2318 end Process_Indexed_Component_Or_Slice;
2319
2320 ------------------------------------------
2321 -- Process_Overloaded_Indexed_Component --
2322 ------------------------------------------
2323
2324 procedure Process_Overloaded_Indexed_Component is
2325 Exp : Node_Id;
2326 I : Interp_Index;
2327 It : Interp;
2328 Typ : Entity_Id;
2329 Index : Node_Id;
2330 Found : Boolean;
2331
2332 begin
2333 Set_Etype (N, Any_Type);
996ae0b0 2334
4c46b835 2335 Get_First_Interp (P, I, It);
996ae0b0
RK
2336 while Present (It.Nam) loop
2337 Typ := It.Typ;
2338
2339 if Is_Access_Type (Typ) then
2340 Typ := Designated_Type (Typ);
324ac540
AC
2341 Error_Msg_NW
2342 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
2343 end if;
2344
2345 if Is_Array_Type (Typ) then
2346
2347 -- Got a candidate: verify that index types are compatible
2348
2349 Index := First_Index (Typ);
2350 Found := True;
996ae0b0 2351 Exp := First (Exprs);
996ae0b0
RK
2352 while Present (Index) and then Present (Exp) loop
2353 if Has_Compatible_Type (Exp, Etype (Index)) then
2354 null;
2355 else
2356 Found := False;
2357 Remove_Interp (I);
2358 exit;
2359 end if;
2360
2361 Next_Index (Index);
2362 Next (Exp);
2363 end loop;
2364
2365 if Found and then No (Index) and then No (Exp) then
44a10091
AC
2366 declare
2367 CT : constant Entity_Id :=
2368 Base_Type (Component_Type (Typ));
2369 begin
2370 Add_One_Interp (N, CT, CT);
2371 Check_Implicit_Dereference (N, CT);
2372 end;
996ae0b0 2373 end if;
57a8057a 2374
50878404 2375 elsif Try_Container_Indexing (N, P, Exprs) then
57a8057a
AC
2376 return;
2377
996ae0b0
RK
2378 end if;
2379
2380 Get_Next_Interp (I, It);
2381 end loop;
2382
2383 if Etype (N) = Any_Type then
ad6b5b00 2384 Error_Msg_N ("no legal interpretation for indexed component", N);
996ae0b0
RK
2385 Set_Is_Overloaded (N, False);
2386 end if;
2387
2388 End_Interp_List;
2389 end Process_Overloaded_Indexed_Component;
2390
4c46b835 2391 -- Start of processing for Analyze_Indexed_Component_Form
996ae0b0
RK
2392
2393 begin
2394 -- Get name of array, function or type
2395
2396 Analyze (P);
d469eabe 2397
24778dbb
AC
2398 -- If P is an explicit dereference whose prefix is of a remote access-
2399 -- to-subprogram type, then N has already been rewritten as a subprogram
2400 -- call and analyzed.
2401
d3b00ce3 2402 if Nkind (N) in N_Subprogram_Call then
24778dbb 2403 return;
d469eabe 2404
24778dbb
AC
2405 -- When the prefix is attribute 'Loop_Entry and the sole expression of
2406 -- the indexed component denotes a loop name, the indexed form is turned
2407 -- into an attribute reference.
fbf5a39b 2408
24778dbb
AC
2409 elsif Nkind (N) = N_Attribute_Reference
2410 and then Attribute_Name (N) = Name_Loop_Entry
2411 then
fbf5a39b
AC
2412 return;
2413 end if;
2414
2415 pragma Assert (Nkind (N) = N_Indexed_Component);
2416
996ae0b0
RK
2417 P_T := Base_Type (Etype (P));
2418
878f708a 2419 if Is_Entity_Name (P) and then Present (Entity (P)) then
996ae0b0
RK
2420 U_N := Entity (P);
2421
aab883ec 2422 if Is_Type (U_N) then
996ae0b0 2423
4c46b835 2424 -- Reformat node as a type conversion
996ae0b0
RK
2425
2426 E := Remove_Head (Exprs);
2427
2428 if Present (First (Exprs)) then
2429 Error_Msg_N
2430 ("argument of type conversion must be single expression", N);
2431 end if;
2432
2433 Change_Node (N, N_Type_Conversion);
2434 Set_Subtype_Mark (N, P);
2435 Set_Etype (N, U_N);
2436 Set_Expression (N, E);
2437
2438 -- After changing the node, call for the specific Analysis
2439 -- routine directly, to avoid a double call to the expander.
2440
2441 Analyze_Type_Conversion (N);
2442 return;
2443 end if;
2444
2445 if Is_Overloadable (U_N) then
2446 Process_Function_Call;
2447
2448 elsif Ekind (Etype (P)) = E_Subprogram_Type
2449 or else (Is_Access_Type (Etype (P))
2450 and then
bce79204
AC
2451 Ekind (Designated_Type (Etype (P))) =
2452 E_Subprogram_Type)
996ae0b0
RK
2453 then
2454 -- Call to access_to-subprogram with possible implicit dereference
2455
2456 Process_Function_Call;
2457
fbf5a39b
AC
2458 elsif Is_Generic_Subprogram (U_N) then
2459
4c46b835 2460 -- A common beginner's (or C++ templates fan) error
996ae0b0
RK
2461
2462 Error_Msg_N ("generic subprogram cannot be called", N);
2463 Set_Etype (N, Any_Type);
2464 return;
2465
2466 else
2467 Process_Indexed_Component_Or_Slice;
2468 end if;
2469
2470 -- If not an entity name, prefix is an expression that may denote
2471 -- an array or an access-to-subprogram.
2472
2473 else
fbf5a39b 2474 if Ekind (P_T) = E_Subprogram_Type
996ae0b0
RK
2475 or else (Is_Access_Type (P_T)
2476 and then
bce79204 2477 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
996ae0b0
RK
2478 then
2479 Process_Function_Call;
2480
2481 elsif Nkind (P) = N_Selected_Component
3d918396 2482 and then Present (Entity (Selector_Name (P)))
ffe9aba8 2483 and then Is_Overloadable (Entity (Selector_Name (P)))
996ae0b0
RK
2484 then
2485 Process_Function_Call;
2486
3d918396
AC
2487 -- In ASIS mode within a generic, a prefixed call is analyzed and
2488 -- partially rewritten but the original indexed component has not
2489 -- yet been rewritten as a call. Perform the replacement now.
2490
2491 elsif Nkind (P) = N_Selected_Component
2492 and then Nkind (Parent (P)) = N_Function_Call
2493 and then ASIS_Mode
2494 then
2495 Rewrite (N, Parent (P));
2496 Analyze (N);
2497
996ae0b0
RK
2498 else
2499 -- Indexed component, slice, or a call to a member of a family
2500 -- entry, which will be converted to an entry call later.
fbf5a39b 2501
996ae0b0
RK
2502 Process_Indexed_Component_Or_Slice;
2503 end if;
2504 end if;
5f49133f
AC
2505
2506 Analyze_Dimension (N);
996ae0b0
RK
2507 end Analyze_Indexed_Component_Form;
2508
2509 ------------------------
2510 -- Analyze_Logical_Op --
2511 ------------------------
2512
2513 procedure Analyze_Logical_Op (N : Node_Id) is
2514 L : constant Node_Id := Left_Opnd (N);
2515 R : constant Node_Id := Right_Opnd (N);
2516 Op_Id : Entity_Id := Entity (N);
2517
2518 begin
2519 Set_Etype (N, Any_Type);
2520 Candidate_Type := Empty;
2521
2522 Analyze_Expression (L);
2523 Analyze_Expression (R);
2524
2525 if Present (Op_Id) then
2526
2527 if Ekind (Op_Id) = E_Operator then
2528 Find_Boolean_Types (L, R, Op_Id, N);
2529 else
2530 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2531 end if;
2532
2533 else
2534 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
2535 while Present (Op_Id) loop
2536 if Ekind (Op_Id) = E_Operator then
2537 Find_Boolean_Types (L, R, Op_Id, N);
2538 else
2539 Analyze_User_Defined_Binary_Op (N, Op_Id);
2540 end if;
2541
2542 Op_Id := Homonym (Op_Id);
2543 end loop;
2544 end if;
2545
2546 Operator_Check (N);
2547 end Analyze_Logical_Op;
2548
2549 ---------------------------
2550 -- Analyze_Membership_Op --
2551 ---------------------------
2552
2553 procedure Analyze_Membership_Op (N : Node_Id) is
66150d01 2554 Loc : constant Source_Ptr := Sloc (N);
f2acf80c
AC
2555 L : constant Node_Id := Left_Opnd (N);
2556 R : constant Node_Id := Right_Opnd (N);
996ae0b0
RK
2557
2558 Index : Interp_Index;
2559 It : Interp;
2560 Found : Boolean := False;
2561 I_F : Interp_Index;
2562 T_F : Entity_Id;
2563
2564 procedure Try_One_Interp (T1 : Entity_Id);
2565 -- Routine to try one proposed interpretation. Note that the context
2566 -- of the operation plays no role in resolving the arguments, so that
2567 -- if there is more than one interpretation of the operands that is
2568 -- compatible with a membership test, the operation is ambiguous.
2569
4c46b835
AC
2570 --------------------
2571 -- Try_One_Interp --
2572 --------------------
2573
996ae0b0
RK
2574 procedure Try_One_Interp (T1 : Entity_Id) is
2575 begin
2576 if Has_Compatible_Type (R, T1) then
2577 if Found
2578 and then Base_Type (T1) /= Base_Type (T_F)
2579 then
2580 It := Disambiguate (L, I_F, Index, Any_Type);
2581
2582 if It = No_Interp then
2583 Ambiguous_Operands (N);
2584 Set_Etype (L, Any_Type);
2585 return;
2586
2587 else
2588 T_F := It.Typ;
2589 end if;
2590
2591 else
2592 Found := True;
2593 T_F := T1;
2594 I_F := Index;
2595 end if;
2596
2597 Set_Etype (L, T_F);
2598 end if;
996ae0b0
RK
2599 end Try_One_Interp;
2600
197e4514
AC
2601 procedure Analyze_Set_Membership;
2602 -- If a set of alternatives is present, analyze each and find the
2603 -- common type to which they must all resolve.
2604
2605 ----------------------------
2606 -- Analyze_Set_Membership --
2607 ----------------------------
2608
2609 procedure Analyze_Set_Membership is
2610 Alt : Node_Id;
2611 Index : Interp_Index;
2612 It : Interp;
197e4514
AC
2613 Candidate_Interps : Node_Id;
2614 Common_Type : Entity_Id := Empty;
2615
2616 begin
e917e3b8 2617 if Comes_From_Source (N) then
c86cf714 2618 Check_Compiler_Unit ("set membership", N);
e917e3b8
AC
2619 end if;
2620
197e4514
AC
2621 Analyze (L);
2622 Candidate_Interps := L;
2623
2624 if not Is_Overloaded (L) then
2625 Common_Type := Etype (L);
2626
2627 Alt := First (Alternatives (N));
2628 while Present (Alt) loop
2629 Analyze (Alt);
2630
2631 if not Has_Compatible_Type (Alt, Common_Type) then
2632 Wrong_Type (Alt, Common_Type);
2633 end if;
2634
2635 Next (Alt);
2636 end loop;
2637
2638 else
2639 Alt := First (Alternatives (N));
2640 while Present (Alt) loop
2641 Analyze (Alt);
2642 if not Is_Overloaded (Alt) then
2643 Common_Type := Etype (Alt);
2644
2645 else
2646 Get_First_Interp (Alt, Index, It);
2647 while Present (It.Typ) loop
442c0581
RD
2648 if not
2649 Has_Compatible_Type (Candidate_Interps, It.Typ)
197e4514
AC
2650 then
2651 Remove_Interp (Index);
2652 end if;
442c0581 2653
197e4514
AC
2654 Get_Next_Interp (Index, It);
2655 end loop;
2656
2657 Get_First_Interp (Alt, Index, It);
442c0581 2658
197e4514
AC
2659 if No (It.Typ) then
2660 Error_Msg_N ("alternative has no legal type", Alt);
2661 return;
2662 end if;
2663
442c0581
RD
2664 -- If alternative is not overloaded, we have a unique type
2665 -- for all of them.
197e4514
AC
2666
2667 Set_Etype (Alt, It.Typ);
2668 Get_Next_Interp (Index, It);
2669
2670 if No (It.Typ) then
2671 Set_Is_Overloaded (Alt, False);
2672 Common_Type := Etype (Alt);
2673 end if;
2674
2675 Candidate_Interps := Alt;
2676 end if;
2677
2678 Next (Alt);
2679 end loop;
2680 end if;
2681
2682 Set_Etype (N, Standard_Boolean);
2683
2684 if Present (Common_Type) then
2685 Set_Etype (L, Common_Type);
cd1a470a
AC
2686
2687 -- The left operand may still be overloaded, to be resolved using
2688 -- the Common_Type.
197e4514
AC
2689
2690 else
2691 Error_Msg_N ("cannot resolve membership operation", N);
2692 end if;
2693 end Analyze_Set_Membership;
2694
996ae0b0
RK
2695 -- Start of processing for Analyze_Membership_Op
2696
2697 begin
2698 Analyze_Expression (L);
2699
e917e3b8 2700 if No (R) and then Ada_Version >= Ada_2012 then
197e4514
AC
2701 Analyze_Set_Membership;
2702 return;
2703 end if;
2704
996ae0b0
RK
2705 if Nkind (R) = N_Range
2706 or else (Nkind (R) = N_Attribute_Reference
2707 and then Attribute_Name (R) = Name_Range)
2708 then
2709 Analyze (R);
2710
2711 if not Is_Overloaded (L) then
2712 Try_One_Interp (Etype (L));
2713
2714 else
2715 Get_First_Interp (L, Index, It);
996ae0b0
RK
2716 while Present (It.Typ) loop
2717 Try_One_Interp (It.Typ);
2718 Get_Next_Interp (Index, It);
2719 end loop;
2720 end if;
2721
f6b5dc8e 2722 -- If not a range, it can be a subtype mark, or else it is a degenerate
b0186f71
AC
2723 -- membership test with a singleton value, i.e. a test for equality,
2724 -- if the types are compatible.
996ae0b0
RK
2725
2726 else
66150d01 2727 Analyze (R);
7483c888 2728
66150d01
AC
2729 if Is_Entity_Name (R)
2730 and then Is_Type (Entity (R))
2731 then
2732 Find_Type (R);
996ae0b0 2733 Check_Fully_Declared (Entity (R), R);
66150d01 2734
b0186f71
AC
2735 elsif Ada_Version >= Ada_2012
2736 and then Has_Compatible_Type (R, Etype (L))
2737 then
66150d01
AC
2738 if Nkind (N) = N_In then
2739 Rewrite (N,
2740 Make_Op_Eq (Loc,
2741 Left_Opnd => L,
2742 Right_Opnd => R));
2743 else
2744 Rewrite (N,
2745 Make_Op_Ne (Loc,
2746 Left_Opnd => L,
2747 Right_Opnd => R));
2748 end if;
2749
2750 Analyze (N);
2751 return;
2752
2753 else
b0186f71
AC
2754 -- In all versions of the language, if we reach this point there
2755 -- is a previous error that will be diagnosed below.
66150d01
AC
2756
2757 Find_Type (R);
996ae0b0
RK
2758 end if;
2759 end if;
2760
2761 -- Compatibility between expression and subtype mark or range is
2762 -- checked during resolution. The result of the operation is Boolean
2763 -- in any case.
2764
2765 Set_Etype (N, Standard_Boolean);
fe45e59e
ES
2766
2767 if Comes_From_Source (N)
197e4514 2768 and then Present (Right_Opnd (N))
fe45e59e
ES
2769 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2770 then
2771 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2772 end if;
996ae0b0
RK
2773 end Analyze_Membership_Op;
2774
b727a82b
AC
2775 -----------------
2776 -- Analyze_Mod --
2777 -----------------
2778
2779 procedure Analyze_Mod (N : Node_Id) is
2780 begin
2781 -- A special warning check, if we have an expression of the form:
2782 -- expr mod 2 * literal
2783 -- where literal is 64 or less, then probably what was meant was
2784 -- expr mod 2 ** literal
2785 -- so issue an appropriate warning.
2786
2787 if Warn_On_Suspicious_Modulus_Value
2788 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
2789 and then Intval (Right_Opnd (N)) = Uint_2
2790 and then Nkind (Parent (N)) = N_Op_Multiply
2791 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
2792 and then Intval (Right_Opnd (Parent (N))) <= Uint_64
2793 then
2794 Error_Msg_N
324ac540 2795 ("suspicious MOD value, was '*'* intended'??M?", Parent (N));
b727a82b
AC
2796 end if;
2797
2798 -- Remaining processing is same as for other arithmetic operators
2799
2800 Analyze_Arithmetic_Op (N);
2801 end Analyze_Mod;
2802
996ae0b0
RK
2803 ----------------------
2804 -- Analyze_Negation --
2805 ----------------------
2806
2807 procedure Analyze_Negation (N : Node_Id) is
2808 R : constant Node_Id := Right_Opnd (N);
2809 Op_Id : Entity_Id := Entity (N);
2810
2811 begin
2812 Set_Etype (N, Any_Type);
2813 Candidate_Type := Empty;
2814
2815 Analyze_Expression (R);
2816
2817 if Present (Op_Id) then
2818 if Ekind (Op_Id) = E_Operator then
2819 Find_Negation_Types (R, Op_Id, N);
2820 else
2821 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2822 end if;
2823
2824 else
2825 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
2826 while Present (Op_Id) loop
2827 if Ekind (Op_Id) = E_Operator then
2828 Find_Negation_Types (R, Op_Id, N);
2829 else
2830 Analyze_User_Defined_Unary_Op (N, Op_Id);
2831 end if;
2832
2833 Op_Id := Homonym (Op_Id);
2834 end loop;
2835 end if;
2836
2837 Operator_Check (N);
2838 end Analyze_Negation;
2839
15ce9ca2
AC
2840 ------------------
2841 -- Analyze_Null --
2842 ------------------
996ae0b0
RK
2843
2844 procedure Analyze_Null (N : Node_Id) is
2845 begin
ce5ba43a 2846 Check_SPARK_05_Restriction ("null is not allowed", N);
1d801f21 2847
996ae0b0
RK
2848 Set_Etype (N, Any_Access);
2849 end Analyze_Null;
2850
2851 ----------------------
2852 -- Analyze_One_Call --
2853 ----------------------
2854
2855 procedure Analyze_One_Call
ec6078e3
ES
2856 (N : Node_Id;
2857 Nam : Entity_Id;
2858 Report : Boolean;
2859 Success : out Boolean;
2860 Skip_First : Boolean := False)
996ae0b0 2861 is
d469eabe
HK
2862 Actuals : constant List_Id := Parameter_Associations (N);
2863 Prev_T : constant Entity_Id := Etype (N);
2864
aab883ec
ES
2865 Must_Skip : constant Boolean := Skip_First
2866 or else Nkind (Original_Node (N)) = N_Selected_Component
2867 or else
2868 (Nkind (Original_Node (N)) = N_Indexed_Component
2869 and then Nkind (Prefix (Original_Node (N)))
2870 = N_Selected_Component);
2871 -- The first formal must be omitted from the match when trying to find
2872 -- a primitive operation that is a possible interpretation, and also
2873 -- after the call has been rewritten, because the corresponding actual
2874 -- is already known to be compatible, and because this may be an
2875 -- indexing of a call with default parameters.
2876
53cf4600
ES
2877 Formal : Entity_Id;
2878 Actual : Node_Id;
2879 Is_Indexed : Boolean := False;
2880 Is_Indirect : Boolean := False;
2881 Subp_Type : constant Entity_Id := Etype (Nam);
2882 Norm_OK : Boolean;
996ae0b0 2883
157a9bf5
ES
2884 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2885 -- There may be a user-defined operator that hides the current
2886 -- interpretation. We must check for this independently of the
2887 -- analysis of the call with the user-defined operation, because
2888 -- the parameter names may be wrong and yet the hiding takes place.
2889 -- This fixes a problem with ACATS test B34014O.
2890 --
2891 -- When the type Address is a visible integer type, and the DEC
2892 -- system extension is visible, the predefined operator may be
2893 -- hidden as well, by one of the address operations in auxdec.
2894 -- Finally, The abstract operations on address do not hide the
2895 -- predefined operator (this is the purpose of making them abstract).
2896
fbf5a39b 2897 procedure Indicate_Name_And_Type;
996ae0b0
RK
2898 -- If candidate interpretation matches, indicate name and type of
2899 -- result on call node.
2900
fbf5a39b
AC
2901 ----------------------------
2902 -- Indicate_Name_And_Type --
2903 ----------------------------
996ae0b0 2904
fbf5a39b 2905 procedure Indicate_Name_And_Type is
996ae0b0
RK
2906 begin
2907 Add_One_Interp (N, Nam, Etype (Nam));
44a10091 2908 Check_Implicit_Dereference (N, Etype (Nam));
996ae0b0
RK
2909 Success := True;
2910
2911 -- If the prefix of the call is a name, indicate the entity
2912 -- being called. If it is not a name, it is an expression that
2913 -- denotes an access to subprogram or else an entry or family. In
2914 -- the latter case, the name is a selected component, and the entity
2915 -- being called is noted on the selector.
2916
2917 if not Is_Type (Nam) then
a3f2babd 2918 if Is_Entity_Name (Name (N)) then
996ae0b0
RK
2919 Set_Entity (Name (N), Nam);
2920
2921 elsif Nkind (Name (N)) = N_Selected_Component then
2922 Set_Entity (Selector_Name (Name (N)), Nam);
2923 end if;
2924 end if;
2925
2926 if Debug_Flag_E and not Report then
2927 Write_Str (" Overloaded call ");
2928 Write_Int (Int (N));
2929 Write_Str (" compatible with ");
2930 Write_Int (Int (Nam));
2931 Write_Eol;
2932 end if;
fbf5a39b 2933 end Indicate_Name_And_Type;
996ae0b0 2934
157a9bf5
ES
2935 ------------------------
2936 -- Operator_Hidden_By --
2937 ------------------------
2938
2939 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
2940 Act1 : constant Node_Id := First_Actual (N);
2941 Act2 : constant Node_Id := Next_Actual (Act1);
2942 Form1 : constant Entity_Id := First_Formal (Fun);
2943 Form2 : constant Entity_Id := Next_Formal (Form1);
2944
2945 begin
e4deba8e 2946 if Ekind (Fun) /= E_Function or else Is_Abstract_Subprogram (Fun) then
157a9bf5
ES
2947 return False;
2948
2949 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
2950 return False;
2951
2952 elsif Present (Form2) then
e4deba8e
RD
2953 if No (Act2)
2954 or else not Has_Compatible_Type (Act2, Etype (Form2))
157a9bf5
ES
2955 then
2956 return False;
2957 end if;
2958
2959 elsif Present (Act2) then
2960 return False;
2961 end if;
2962
2963 -- Now we know that the arity of the operator matches the function,
2964 -- and the function call is a valid interpretation. The function
2965 -- hides the operator if it has the right signature, or if one of
2966 -- its operands is a non-abstract operation on Address when this is
2967 -- a visible integer type.
2968
2969 return Hides_Op (Fun, Nam)
2970 or else Is_Descendent_Of_Address (Etype (Form1))
2971 or else
2972 (Present (Form2)
2973 and then Is_Descendent_Of_Address (Etype (Form2)));
2974 end Operator_Hidden_By;
2975
996ae0b0
RK
2976 -- Start of processing for Analyze_One_Call
2977
2978 begin
2979 Success := False;
2980
157a9bf5
ES
2981 -- If the subprogram has no formals or if all the formals have defaults,
2982 -- and the return type is an array type, the node may denote an indexing
2983 -- of the result of a parameterless call. In Ada 2005, the subprogram
2984 -- may have one non-defaulted formal, and the call may have been written
2985 -- in prefix notation, so that the rebuilt parameter list has more than
2986 -- one actual.
996ae0b0 2987
53cf4600
ES
2988 if not Is_Overloadable (Nam)
2989 and then Ekind (Nam) /= E_Subprogram_Type
2990 and then Ekind (Nam) /= E_Entry_Family
2991 then
2992 return;
2993 end if;
2994
80e59506 2995 -- An indexing requires at least one actual. The name of the call cannot
4bb9c7b9
AC
2996 -- be an implicit indirect call, so it cannot be a generated explicit
2997 -- dereference.
e1f3cb58
AC
2998
2999 if not Is_Empty_List (Actuals)
aab883ec
ES
3000 and then
3001 (Needs_No_Actuals (Nam)
3002 or else
3003 (Needs_One_Actual (Nam)
e4deba8e 3004 and then Present (Next_Actual (First (Actuals)))))
996ae0b0 3005 then
4bb9c7b9
AC
3006 if Is_Array_Type (Subp_Type)
3007 and then
3008 (Nkind (Name (N)) /= N_Explicit_Dereference
3009 or else Comes_From_Source (Name (N)))
3010 then
aab883ec 3011 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
996ae0b0
RK
3012
3013 elsif Is_Access_Type (Subp_Type)
3014 and then Is_Array_Type (Designated_Type (Subp_Type))
3015 then
3016 Is_Indexed :=
aab883ec
ES
3017 Try_Indexed_Call
3018 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
996ae0b0 3019
758c442c 3020 -- The prefix can also be a parameterless function that returns an
f3d57416 3021 -- access to subprogram, in which case this is an indirect call.
53cf4600
ES
3022 -- If this succeeds, an explicit dereference is added later on,
3023 -- in Analyze_Call or Resolve_Call.
758c442c 3024
996ae0b0 3025 elsif Is_Access_Type (Subp_Type)
401093c1 3026 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
996ae0b0 3027 then
53cf4600 3028 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
996ae0b0
RK
3029 end if;
3030
3031 end if;
3032
5ff22245 3033 -- If the call has been transformed into a slice, it is of the form
30783513 3034 -- F (Subtype) where F is parameterless. The node has been rewritten in
5ff22245
ES
3035 -- Try_Indexed_Call and there is nothing else to do.
3036
3037 if Is_Indexed
3038 and then Nkind (N) = N_Slice
3039 then
3040 return;
3041 end if;
3042
53cf4600
ES
3043 Normalize_Actuals
3044 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
996ae0b0
RK
3045
3046 if not Norm_OK then
3047
53cf4600 3048 -- If an indirect call is a possible interpretation, indicate
80e59506 3049 -- success to the caller. This may be an indexing of an explicit
4bb9c7b9 3050 -- dereference of a call that returns an access type (see above).
53cf4600 3051
4bb9c7b9
AC
3052 if Is_Indirect
3053 or else (Is_Indexed
3054 and then Nkind (Name (N)) = N_Explicit_Dereference
3055 and then Comes_From_Source (Name (N)))
3056 then
53cf4600
ES
3057 Success := True;
3058 return;
3059
996ae0b0
RK
3060 -- Mismatch in number or names of parameters
3061
53cf4600 3062 elsif Debug_Flag_E then
996ae0b0
RK
3063 Write_Str (" normalization fails in call ");
3064 Write_Int (Int (N));
3065 Write_Str (" with subprogram ");
3066 Write_Int (Int (Nam));
3067 Write_Eol;
3068 end if;
3069
3070 -- If the context expects a function call, discard any interpretation
3071 -- that is a procedure. If the node is not overloaded, leave as is for
3072 -- better error reporting when type mismatch is found.
3073
3074 elsif Nkind (N) = N_Function_Call
3075 and then Is_Overloaded (Name (N))
3076 and then Ekind (Nam) = E_Procedure
3077 then
3078 return;
3079
4c46b835 3080 -- Ditto for function calls in a procedure context
996ae0b0
RK
3081
3082 elsif Nkind (N) = N_Procedure_Call_Statement
3083 and then Is_Overloaded (Name (N))
3084 and then Etype (Nam) /= Standard_Void_Type
3085 then
3086 return;
3087
fe45e59e 3088 elsif No (Actuals) then
996ae0b0
RK
3089
3090 -- If Normalize succeeds, then there are default parameters for
3091 -- all formals.
3092
fbf5a39b 3093 Indicate_Name_And_Type;
996ae0b0
RK
3094
3095 elsif Ekind (Nam) = E_Operator then
996ae0b0
RK
3096 if Nkind (N) = N_Procedure_Call_Statement then
3097 return;
3098 end if;
3099
3100 -- This can occur when the prefix of the call is an operator
3101 -- name or an expanded name whose selector is an operator name.
3102
3103 Analyze_Operator_Call (N, Nam);
3104
3105 if Etype (N) /= Prev_T then
3106
157a9bf5 3107 -- Check that operator is not hidden by a function interpretation
996ae0b0
RK
3108
3109 if Is_Overloaded (Name (N)) then
3110 declare
3111 I : Interp_Index;
3112 It : Interp;
3113
3114 begin
3115 Get_First_Interp (Name (N), I, It);
996ae0b0 3116 while Present (It.Nam) loop
157a9bf5 3117 if Operator_Hidden_By (It.Nam) then
996ae0b0
RK
3118 Set_Etype (N, Prev_T);
3119 return;
3120 end if;
3121
3122 Get_Next_Interp (I, It);
3123 end loop;
3124 end;
3125 end if;
3126
3127 -- If operator matches formals, record its name on the call.
3128 -- If the operator is overloaded, Resolve will select the
3129 -- correct one from the list of interpretations. The call
3130 -- node itself carries the first candidate.
3131
3132 Set_Entity (Name (N), Nam);
3133 Success := True;
3134
3135 elsif Report and then Etype (N) = Any_Type then
3136 Error_Msg_N ("incompatible arguments for operator", N);
3137 end if;
3138
3139 else
3140 -- Normalize_Actuals has chained the named associations in the
3141 -- correct order of the formals.
3142
3143 Actual := First_Actual (N);
3144 Formal := First_Formal (Nam);
ec6078e3 3145
df3e68b1
HK
3146 -- If we are analyzing a call rewritten from object notation, skip
3147 -- first actual, which may be rewritten later as an explicit
3148 -- dereference.
ec6078e3 3149
aab883ec 3150 if Must_Skip then
ec6078e3
ES
3151 Next_Actual (Actual);
3152 Next_Formal (Formal);
3153 end if;
3154
996ae0b0 3155 while Present (Actual) and then Present (Formal) loop
fbf5a39b
AC
3156 if Nkind (Parent (Actual)) /= N_Parameter_Association
3157 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
996ae0b0 3158 then
9c510803
ES
3159 -- The actual can be compatible with the formal, but we must
3160 -- also check that the context is not an address type that is
7a5b62b0
AC
3161 -- visibly an integer type. In this case the use of literals is
3162 -- illegal, except in the body of descendents of system, where
3163 -- arithmetic operations on address are of course used.
9c510803
ES
3164
3165 if Has_Compatible_Type (Actual, Etype (Formal))
3166 and then
3167 (Etype (Actual) /= Universal_Integer
3168 or else not Is_Descendent_Of_Address (Etype (Formal))
3169 or else
3170 Is_Predefined_File_Name
3171 (Unit_File_Name (Get_Source_Unit (N))))
3172 then
996ae0b0
RK
3173 Next_Actual (Actual);
3174 Next_Formal (Formal);
3175
061828e3
AC
3176 -- In Allow_Integer_Address mode, we allow an actual integer to
3177 -- match a formal address type and vice versa. We only do this
3178 -- if we are certain that an error will otherwise be issued
3179
3180 elsif Address_Integer_Convert_OK
3181 (Etype (Actual), Etype (Formal))
3182 and then (Report and not Is_Indexed and not Is_Indirect)
3183 then
3184 -- Handle this case by introducing an unchecked conversion
3185
3186 Rewrite (Actual,
3187 Unchecked_Convert_To (Etype (Formal),
3188 Relocate_Node (Actual)));
3189 Analyze_And_Resolve (Actual, Etype (Formal));
3190 Next_Actual (Actual);
3191 Next_Formal (Formal);
3192
a921e83c
AC
3193 -- For an Ada 2012 predicate or invariant, a call may mention
3194 -- an incomplete type, while resolution of the corresponding
3195 -- predicate function may see the full view, as a consequence
3196 -- of the delayed resolution of the corresponding expressions.
3197
3198 elsif Ekind (Etype (Formal)) = E_Incomplete_Type
3199 and then Full_View (Etype (Formal)) = Etype (Actual)
3200 then
3201 Set_Etype (Formal, Etype (Actual));
3202 Next_Actual (Actual);
3203 Next_Formal (Formal);
3204
996ae0b0
RK
3205 else
3206 if Debug_Flag_E then
3207 Write_Str (" type checking fails in call ");
3208 Write_Int (Int (N));
3209 Write_Str (" with formal ");
3210 Write_Int (Int (Formal));
3211 Write_Str (" in subprogram ");
3212 Write_Int (Int (Nam));
3213 Write_Eol;
3214 end if;
3215
061828e3
AC
3216 -- Comment needed on the following test???
3217
53cf4600 3218 if Report and not Is_Indexed and not Is_Indirect then
758c442c
GD
3219
3220 -- Ada 2005 (AI-251): Complete the error notification
8f2eeab7 3221 -- to help new Ada 2005 users.
758c442c
GD
3222
3223 if Is_Class_Wide_Type (Etype (Formal))
3224 and then Is_Interface (Etype (Etype (Formal)))
3225 and then not Interface_Present_In_Ancestor
3226 (Typ => Etype (Actual),
3227 Iface => Etype (Etype (Formal)))
3228 then
758c442c 3229 Error_Msg_NE
ec6078e3 3230 ("(Ada 2005) does not implement interface }",
758c442c
GD
3231 Actual, Etype (Etype (Formal)));
3232 end if;
3233
996ae0b0
RK
3234 Wrong_Type (Actual, Etype (Formal));
3235
3236 if Nkind (Actual) = N_Op_Eq
3237 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3238 then
3239 Formal := First_Formal (Nam);
996ae0b0 3240 while Present (Formal) loop
996ae0b0 3241 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
4e7a4f6e 3242 Error_Msg_N -- CODEFIX
fbf5a39b 3243 ("possible misspelling of `='>`!", Actual);
996ae0b0
RK
3244 exit;
3245 end if;
3246
3247 Next_Formal (Formal);
3248 end loop;
3249 end if;
3250
3251 if All_Errors_Mode then
3252 Error_Msg_Sloc := Sloc (Nam);
3253
3b42c566
RD
3254 if Etype (Formal) = Any_Type then
3255 Error_Msg_N
3256 ("there is no legal actual parameter", Actual);
3257 end if;
3258
996ae0b0
RK
3259 if Is_Overloadable (Nam)
3260 and then Present (Alias (Nam))
3261 and then not Comes_From_Source (Nam)
3262 then
3263 Error_Msg_NE
401093c1
ES
3264 ("\\ =='> in call to inherited operation & #!",
3265 Actual, Nam);
7324bf49
AC
3266
3267 elsif Ekind (Nam) = E_Subprogram_Type then
3268 declare
3269 Access_To_Subprogram_Typ :
3270 constant Entity_Id :=
3271 Defining_Identifier
3272 (Associated_Node_For_Itype (Nam));
3273 begin
a90bd866
RD
3274 Error_Msg_NE
3275 ("\\ =='> in call to dereference of &#!",
3276 Actual, Access_To_Subprogram_Typ);
7324bf49
AC
3277 end;
3278
996ae0b0 3279 else
401093c1
ES
3280 Error_Msg_NE
3281 ("\\ =='> in call to &#!", Actual, Nam);
7324bf49 3282
996ae0b0
RK
3283 end if;
3284 end if;
3285 end if;
3286
3287 return;
3288 end if;
3289
3290 else
3291 -- Normalize_Actuals has verified that a default value exists
3292 -- for this formal. Current actual names a subsequent formal.
3293
3294 Next_Formal (Formal);
3295 end if;
3296 end loop;
3297
4c46b835 3298 -- On exit, all actuals match
996ae0b0 3299
fbf5a39b 3300 Indicate_Name_And_Type;
996ae0b0
RK
3301 end if;
3302 end Analyze_One_Call;
3303
15ce9ca2
AC
3304 ---------------------------
3305 -- Analyze_Operator_Call --
3306 ---------------------------
996ae0b0
RK
3307
3308 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3309 Op_Name : constant Name_Id := Chars (Op_Id);
3310 Act1 : constant Node_Id := First_Actual (N);
3311 Act2 : constant Node_Id := Next_Actual (Act1);
3312
3313 begin
4c46b835
AC
3314 -- Binary operator case
3315
996ae0b0
RK
3316 if Present (Act2) then
3317
4c46b835 3318 -- If more than two operands, then not binary operator after all
996ae0b0
RK
3319
3320 if Present (Next_Actual (Act2)) then
996ae0b0 3321 return;
b7539c3b 3322 end if;
996ae0b0 3323
b7539c3b 3324 -- Otherwise action depends on operator
996ae0b0 3325
b7539c3b
AC
3326 case Op_Name is
3327 when Name_Op_Add |
3328 Name_Op_Subtract |
3329 Name_Op_Multiply |
3330 Name_Op_Divide |
3331 Name_Op_Mod |
3332 Name_Op_Rem |
3333 Name_Op_Expon =>
3334 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
996ae0b0 3335
b7539c3b
AC
3336 when Name_Op_And |
3337 Name_Op_Or |
3338 Name_Op_Xor =>
3339 Find_Boolean_Types (Act1, Act2, Op_Id, N);
996ae0b0 3340
b7539c3b
AC
3341 when Name_Op_Lt |
3342 Name_Op_Le |
3343 Name_Op_Gt |
3344 Name_Op_Ge =>
3345 Find_Comparison_Types (Act1, Act2, Op_Id, N);
996ae0b0 3346
b7539c3b
AC
3347 when Name_Op_Eq |
3348 Name_Op_Ne =>
3349 Find_Equality_Types (Act1, Act2, Op_Id, N);
996ae0b0 3350
b7539c3b
AC
3351 when Name_Op_Concat =>
3352 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
996ae0b0 3353
b7539c3b
AC
3354 -- Is this when others, or should it be an abort???
3355
3356 when others =>
3357 null;
3358 end case;
996ae0b0 3359
4c46b835 3360 -- Unary operator case
996ae0b0 3361
4c46b835 3362 else
b7539c3b
AC
3363 case Op_Name is
3364 when Name_Op_Subtract |
3365 Name_Op_Add |
3366 Name_Op_Abs =>
3367 Find_Unary_Types (Act1, Op_Id, N);
996ae0b0 3368
b7539c3b
AC
3369 when Name_Op_Not =>
3370 Find_Negation_Types (Act1, Op_Id, N);
996ae0b0 3371
b7539c3b 3372 -- Is this when others correct, or should it be an abort???
996ae0b0 3373
b7539c3b
AC
3374 when others =>
3375 null;
3376 end case;
996ae0b0
RK
3377 end if;
3378 end Analyze_Operator_Call;
3379
3380 -------------------------------------------
3381 -- Analyze_Overloaded_Selected_Component --
3382 -------------------------------------------
3383
3384 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
fbf5a39b
AC
3385 Nam : constant Node_Id := Prefix (N);
3386 Sel : constant Node_Id := Selector_Name (N);
996ae0b0 3387 Comp : Entity_Id;
996ae0b0
RK
3388 I : Interp_Index;
3389 It : Interp;
3390 T : Entity_Id;
3391
3392 begin
4c46b835 3393 Set_Etype (Sel, Any_Type);
996ae0b0 3394
4c46b835 3395 Get_First_Interp (Nam, I, It);
996ae0b0
RK
3396 while Present (It.Typ) loop
3397 if Is_Access_Type (It.Typ) then
3398 T := Designated_Type (It.Typ);
324ac540 3399 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
3400 else
3401 T := It.Typ;
3402 end if;
3403
95eb8b69
AC
3404 -- Locate the component. For a private prefix the selector can denote
3405 -- a discriminant.
3406
3407 if Is_Record_Type (T) or else Is_Private_Type (T) then
d469eabe
HK
3408
3409 -- If the prefix is a class-wide type, the visible components are
3410 -- those of the base type.
3411
3412 if Is_Class_Wide_Type (T) then
3413 T := Etype (T);
3414 end if;
3415
996ae0b0 3416 Comp := First_Entity (T);
996ae0b0 3417 while Present (Comp) loop
996ae0b0
RK
3418 if Chars (Comp) = Chars (Sel)
3419 and then Is_Visible_Component (Comp)
3420 then
996ae0b0 3421
f16d05d9
AC
3422 -- AI05-105: if the context is an object renaming with
3423 -- an anonymous access type, the expected type of the
3424 -- object must be anonymous. This is a name resolution rule.
996ae0b0 3425
f16d05d9
AC
3426 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3427 or else No (Access_Definition (Parent (N)))
3428 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3429 or else
3430 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3431 then
3432 Set_Entity (Sel, Comp);
3433 Set_Etype (Sel, Etype (Comp));
3434 Add_One_Interp (N, Etype (Comp), Etype (Comp));
44a10091 3435 Check_Implicit_Dereference (N, Etype (Comp));
f16d05d9
AC
3436
3437 -- This also specifies a candidate to resolve the name.
3438 -- Further overloading will be resolved from context.
3439 -- The selector name itself does not carry overloading
3440 -- information.
3441
3442 Set_Etype (Nam, It.Typ);
3443
3444 else
b61ee1aa 3445 -- Named access type in the context of a renaming
f16d05d9
AC
3446 -- declaration with an access definition. Remove
3447 -- inapplicable candidate.
3448
3449 Remove_Interp (I);
3450 end if;
996ae0b0
RK
3451 end if;
3452
3453 Next_Entity (Comp);
3454 end loop;
3455
3456 elsif Is_Concurrent_Type (T) then
3457 Comp := First_Entity (T);
996ae0b0
RK
3458 while Present (Comp)
3459 and then Comp /= First_Private_Entity (T)
3460 loop
3461 if Chars (Comp) = Chars (Sel) then
3462 if Is_Overloadable (Comp) then
3463 Add_One_Interp (Sel, Comp, Etype (Comp));
3464 else
e7ba564f 3465 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
3466 Generate_Reference (Comp, Sel);
3467 end if;
3468
3469 Set_Etype (Sel, Etype (Comp));
3470 Set_Etype (N, Etype (Comp));
3471 Set_Etype (Nam, It.Typ);
3472
09494c32
AC
3473 -- For access type case, introduce explicit dereference for
3474 -- more uniform treatment of entry calls. Do this only once
3475 -- if several interpretations yield an access type.
996ae0b0 3476
d469eabe
HK
3477 if Is_Access_Type (Etype (Nam))
3478 and then Nkind (Nam) /= N_Explicit_Dereference
3479 then
996ae0b0 3480 Insert_Explicit_Dereference (Nam);
fbf5a39b 3481 Error_Msg_NW
324ac540 3482 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
3483 end if;
3484 end if;
3485
3486 Next_Entity (Comp);
3487 end loop;
3488
3489 Set_Is_Overloaded (N, Is_Overloaded (Sel));
996ae0b0
RK
3490 end if;
3491
3492 Get_Next_Interp (I, It);
3493 end loop;
3494
0a36105d
JM
3495 if Etype (N) = Any_Type
3496 and then not Try_Object_Operation (N)
3497 then
996ae0b0
RK
3498 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3499 Set_Entity (Sel, Any_Id);
3500 Set_Etype (Sel, Any_Type);
3501 end if;
996ae0b0
RK
3502 end Analyze_Overloaded_Selected_Component;
3503
3504 ----------------------------------
3505 -- Analyze_Qualified_Expression --
3506 ----------------------------------
3507
3508 procedure Analyze_Qualified_Expression (N : Node_Id) is
3509 Mark : constant Entity_Id := Subtype_Mark (N);
45c8b94b
ES
3510 Expr : constant Node_Id := Expression (N);
3511 I : Interp_Index;
3512 It : Interp;
996ae0b0
RK
3513 T : Entity_Id;
3514
3515 begin
45c8b94b
ES
3516 Analyze_Expression (Expr);
3517
996ae0b0
RK
3518 Set_Etype (N, Any_Type);
3519 Find_Type (Mark);
3520 T := Entity (Mark);
45c8b94b 3521 Set_Etype (N, T);
996ae0b0
RK
3522
3523 if T = Any_Type then
3524 return;
3525 end if;
996ae0b0 3526
4c46b835 3527 Check_Fully_Declared (T, N);
45c8b94b
ES
3528
3529 -- If expected type is class-wide, check for exact match before
3530 -- expansion, because if the expression is a dispatching call it
3531 -- may be rewritten as explicit dereference with class-wide result.
3532 -- If expression is overloaded, retain only interpretations that
3533 -- will yield exact matches.
3534
3535 if Is_Class_Wide_Type (T) then
3536 if not Is_Overloaded (Expr) then
3537 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3538 if Nkind (Expr) = N_Aggregate then
3539 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3540 else
3541 Wrong_Type (Expr, T);
3542 end if;
3543 end if;
3544
3545 else
3546 Get_First_Interp (Expr, I, It);
3547
3548 while Present (It.Nam) loop
3549 if Base_Type (It.Typ) /= Base_Type (T) then
3550 Remove_Interp (I);
3551 end if;
3552
3553 Get_Next_Interp (I, It);
3554 end loop;
3555 end if;
3556 end if;
3557
996ae0b0
RK
3558 Set_Etype (N, T);
3559 end Analyze_Qualified_Expression;
3560
a961aa79
AC
3561 -----------------------------------
3562 -- Analyze_Quantified_Expression --
3563 -----------------------------------
3564
3565 procedure Analyze_Quantified_Expression (N : Node_Id) is
4856cc2a 3566 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
538dbb56
AC
3567 -- If the iterator is part of a quantified expression, and the range is
3568 -- known to be statically empty, emit a warning and replace expression
4856cc2a 3569 -- with its static value. Returns True if the replacement occurs.
538dbb56 3570
0812b84e
AC
3571 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean;
3572 -- Determine whether if expression If_Expr lacks an else part or if it
3573 -- has one, it evaluates to True.
3574
4856cc2a
ES
3575 --------------------
3576 -- Is_Empty_Range --
3577 --------------------
3578
3579 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
3580 Loc : constant Source_Ptr := Sloc (N);
538dbb56
AC
3581
3582 begin
3583 if Is_Array_Type (Typ)
4856cc2a
ES
3584 and then Compile_Time_Known_Bounds (Typ)
3585 and then
9a6dc470
RD
3586 (Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
3587 Expr_Value (Type_High_Bound (Etype (First_Index (Typ)))))
538dbb56 3588 then
4856cc2a
ES
3589 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
3590
538dbb56 3591 if All_Present (N) then
4856cc2a 3592 Error_Msg_N
324ac540 3593 ("??quantified expression with ALL "
4856cc2a 3594 & "over a null range has value True", N);
538dbb56
AC
3595 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3596
3597 else
4856cc2a 3598 Error_Msg_N
324ac540 3599 ("??quantified expression with SOME "
4856cc2a 3600 & "over a null range has value False", N);
538dbb56
AC
3601 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
3602 end if;
3603
3604 Analyze (N);
3605 return True;
3606
3607 else
3608 return False;
3609 end if;
3610 end Is_Empty_Range;
3611
0812b84e
AC
3612 -----------------------------
3613 -- No_Else_Or_Trivial_True --
3614 -----------------------------
3615
3616 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean is
3617 Else_Expr : constant Node_Id :=
3618 Next (Next (First (Expressions (If_Expr))));
3619 begin
3620 return
3621 No (Else_Expr)
3622 or else (Compile_Time_Known_Value (Else_Expr)
3623 and then Is_True (Expr_Value (Else_Expr)));
3624 end No_Else_Or_Trivial_True;
3625
3626 -- Local variables
3627
3628 Cond : constant Node_Id := Condition (N);
57081559 3629 Loop_Id : Entity_Id;
0812b84e
AC
3630 QE_Scop : Entity_Id;
3631
4856cc2a
ES
3632 -- Start of processing for Analyze_Quantified_Expression
3633
a961aa79 3634 begin
ce5ba43a 3635 Check_SPARK_05_Restriction ("quantified expression is not allowed", N);
1d801f21 3636
804670f1
AC
3637 -- Create a scope to emulate the loop-like behavior of the quantified
3638 -- expression. The scope is needed to provide proper visibility of the
3639 -- loop variable.
b3e42de5 3640
804670f1
AC
3641 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
3642 Set_Etype (QE_Scop, Standard_Void_Type);
3643 Set_Scope (QE_Scop, Current_Scope);
3644 Set_Parent (QE_Scop, N);
a961aa79 3645
804670f1 3646 Push_Scope (QE_Scop);
c56a9ba4 3647
804670f1
AC
3648 -- All constituents are preanalyzed and resolved to avoid untimely
3649 -- generation of various temporaries and types. Full analysis and
3650 -- expansion is carried out when the quantified expression is
3651 -- transformed into an expression with actions.
c56a9ba4 3652
804670f1
AC
3653 if Present (Iterator_Specification (N)) then
3654 Preanalyze (Iterator_Specification (N));
538dbb56 3655
57081559
AC
3656 -- Do not proceed with the analysis when the range of iteration is
3657 -- empty. The appropriate error is issued by Is_Empty_Range.
3658
538dbb56
AC
3659 if Is_Entity_Name (Name (Iterator_Specification (N)))
3660 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
3661 then
3662 return;
3663 end if;
3664
57081559 3665 else pragma Assert (Present (Loop_Parameter_Specification (N)));
a736f6e6
AC
3666 declare
3667 Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
3668
3669 begin
3670 Preanalyze (Loop_Par);
3671
e4deba8e 3672 if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
a736f6e6
AC
3673 and then Parent (Loop_Par) /= N
3674 then
3675 -- The parser cannot distinguish between a loop specification
3676 -- and an iterator specification. If after pre-analysis the
3677 -- proper form has been recognized, rewrite the expression to
5f0c4d67
AC
3678 -- reflect the right kind. This is needed for proper ASIS
3679 -- navigation. If expansion is enabled, the transformation is
3680 -- performed when the expression is rewritten as a loop.
a736f6e6 3681
a736f6e6
AC
3682 Set_Iterator_Specification (N,
3683 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
5f0c4d67
AC
3684
3685 Set_Defining_Identifier (Iterator_Specification (N),
3686 Relocate_Node (Defining_Identifier (Loop_Par)));
3687 Set_Name (Iterator_Specification (N),
3688 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
3689 Set_Comes_From_Source (Iterator_Specification (N),
3690 Comes_From_Source (Loop_Parameter_Specification (N)));
3691 Set_Loop_Parameter_Specification (N, Empty);
a736f6e6
AC
3692 end if;
3693 end;
ce6002ec
AC
3694 end if;
3695
0812b84e 3696 Preanalyze_And_Resolve (Cond, Standard_Boolean);
804670f1 3697
a961aa79
AC
3698 End_Scope;
3699 Set_Etype (N, Standard_Boolean);
0812b84e 3700
57081559
AC
3701 -- Verify that the loop variable is used within the condition of the
3702 -- quantified expression.
3703
3704 if Present (Iterator_Specification (N)) then
3705 Loop_Id := Defining_Identifier (Iterator_Specification (N));
3706 else
3707 Loop_Id := Defining_Identifier (Loop_Parameter_Specification (N));
3708 end if;
3709
3710 if Warn_On_Suspicious_Contract
3711 and then not Referenced (Loop_Id, Cond)
3712 then
3713 Error_Msg_N ("?T?unused variable &", Loop_Id);
3714 end if;
3715
e19fd0bd 3716 -- Diagnose a possible misuse of the SOME existential quantifier. When
d1ec4768
RD
3717 -- we have a quantified expression of the form:
3718
0812b84e 3719 -- for some X => (if P then Q [else True])
d1ec4768 3720
e19fd0bd
AC
3721 -- any value for X that makes P False results in the if expression being
3722 -- trivially True, and so also results in the the quantified expression
3723 -- being trivially True.
0812b84e 3724
e19fd0bd 3725 if Warn_On_Suspicious_Contract
0812b84e
AC
3726 and then not All_Present (N)
3727 and then Nkind (Cond) = N_If_Expression
3728 and then No_Else_Or_Trivial_True (Cond)
3729 then
e19fd0bd 3730 Error_Msg_N ("?T?suspicious expression", N);
0812b84e
AC
3731 Error_Msg_N ("\\did you mean (for all X ='> (if P then Q))", N);
3732 Error_Msg_N ("\\or (for some X ='> P and then Q) instead'?", N);
3733 end if;
a961aa79
AC
3734 end Analyze_Quantified_Expression;
3735
996ae0b0
RK
3736 -------------------
3737 -- Analyze_Range --
3738 -------------------
3739
3740 procedure Analyze_Range (N : Node_Id) is
3741 L : constant Node_Id := Low_Bound (N);
3742 H : constant Node_Id := High_Bound (N);
3743 I1, I2 : Interp_Index;
3744 It1, It2 : Interp;
3745
3746 procedure Check_Common_Type (T1, T2 : Entity_Id);
3747 -- Verify the compatibility of two types, and choose the
3748 -- non universal one if the other is universal.
3749
3750 procedure Check_High_Bound (T : Entity_Id);
3751 -- Test one interpretation of the low bound against all those
3752 -- of the high bound.
3753
fbf5a39b 3754 procedure Check_Universal_Expression (N : Node_Id);
a1092b48
AC
3755 -- In Ada 83, reject bounds of a universal range that are not literals
3756 -- or entity names.
fbf5a39b 3757
996ae0b0
RK
3758 -----------------------
3759 -- Check_Common_Type --
3760 -----------------------
3761
3762 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3763 begin
b4592168
GD
3764 if Covers (T1 => T1, T2 => T2)
3765 or else
3766 Covers (T1 => T2, T2 => T1)
3767 then
996ae0b0
RK
3768 if T1 = Universal_Integer
3769 or else T1 = Universal_Real
3770 or else T1 = Any_Character
3771 then
3772 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3773
fbf5a39b 3774 elsif T1 = T2 then
996ae0b0
RK
3775 Add_One_Interp (N, T1, T1);
3776
3777 else
3778 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3779 end if;
3780 end if;
3781 end Check_Common_Type;
3782
3783 ----------------------
3784 -- Check_High_Bound --
3785 ----------------------
3786
3787 procedure Check_High_Bound (T : Entity_Id) is
3788 begin
3789 if not Is_Overloaded (H) then
3790 Check_Common_Type (T, Etype (H));
3791 else
3792 Get_First_Interp (H, I2, It2);
996ae0b0
RK
3793 while Present (It2.Typ) loop
3794 Check_Common_Type (T, It2.Typ);
3795 Get_Next_Interp (I2, It2);
3796 end loop;
3797 end if;
3798 end Check_High_Bound;
3799
fbf5a39b
AC
3800 -----------------------------
3801 -- Is_Universal_Expression --
3802 -----------------------------
3803
3804 procedure Check_Universal_Expression (N : Node_Id) is
3805 begin
3806 if Etype (N) = Universal_Integer
3807 and then Nkind (N) /= N_Integer_Literal
3808 and then not Is_Entity_Name (N)
3809 and then Nkind (N) /= N_Attribute_Reference
3810 then
3811 Error_Msg_N ("illegal bound in discrete range", N);
3812 end if;
3813 end Check_Universal_Expression;
3814
996ae0b0
RK
3815 -- Start of processing for Analyze_Range
3816
3817 begin
3818 Set_Etype (N, Any_Type);
3819 Analyze_Expression (L);
3820 Analyze_Expression (H);
3821
3822 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3823 return;
3824
3825 else
3826 if not Is_Overloaded (L) then
3827 Check_High_Bound (Etype (L));
3828 else
3829 Get_First_Interp (L, I1, It1);
996ae0b0
RK
3830 while Present (It1.Typ) loop
3831 Check_High_Bound (It1.Typ);
3832 Get_Next_Interp (I1, It1);
3833 end loop;
3834 end if;
3835
3836 -- If result is Any_Type, then we did not find a compatible pair
3837
3838 if Etype (N) = Any_Type then
3839 Error_Msg_N ("incompatible types in range ", N);
3840 end if;
3841 end if;
fbf5a39b 3842
0ab80019 3843 if Ada_Version = Ada_83
fbf5a39b
AC
3844 and then
3845 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
4c46b835 3846 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
fbf5a39b
AC
3847 then
3848 Check_Universal_Expression (L);
3849 Check_Universal_Expression (H);
3850 end if;
d3820795
JM
3851
3852 Check_Function_Writable_Actuals (N);
996ae0b0
RK
3853 end Analyze_Range;
3854
3855 -----------------------
3856 -- Analyze_Reference --
3857 -----------------------
3858
3859 procedure Analyze_Reference (N : Node_Id) is
3860 P : constant Node_Id := Prefix (N);
b4592168
GD
3861 E : Entity_Id;
3862 T : Entity_Id;
996ae0b0 3863 Acc_Type : Entity_Id;
b4592168 3864
996ae0b0
RK
3865 begin
3866 Analyze (P);
b4592168
GD
3867
3868 -- An interesting error check, if we take the 'Reference of an object
3869 -- for which a pragma Atomic or Volatile has been given, and the type
3870 -- of the object is not Atomic or Volatile, then we are in trouble. The
3871 -- problem is that no trace of the atomic/volatile status will remain
3872 -- for the backend to respect when it deals with the resulting pointer,
3873 -- since the pointer type will not be marked atomic (it is a pointer to
3874 -- the base type of the object).
3875
3876 -- It is not clear if that can ever occur, but in case it does, we will
3877 -- generate an error message. Not clear if this message can ever be
3878 -- generated, and pretty clear that it represents a bug if it is, still
d2f25cd1
AC
3879 -- seems worth checking, except in CodePeer mode where we do not really
3880 -- care and don't want to bother the user.
b4592168
GD
3881
3882 T := Etype (P);
3883
3884 if Is_Entity_Name (P)
3885 and then Is_Object_Reference (P)
d2f25cd1 3886 and then not CodePeer_Mode
b4592168
GD
3887 then
3888 E := Entity (P);
3889 T := Etype (P);
3890
3891 if (Has_Atomic_Components (E)
3892 and then not Has_Atomic_Components (T))
3893 or else
3894 (Has_Volatile_Components (E)
3895 and then not Has_Volatile_Components (T))
3896 or else (Is_Atomic (E) and then not Is_Atomic (T))
3897 or else (Is_Volatile (E) and then not Is_Volatile (T))
3898 then
3899 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
3900 end if;
3901 end if;
3902
3903 -- Carry on with normal processing
3904
996ae0b0 3905 Acc_Type := Create_Itype (E_Allocator_Type, N);
b4592168 3906 Set_Etype (Acc_Type, Acc_Type);
996ae0b0
RK
3907 Set_Directly_Designated_Type (Acc_Type, Etype (P));
3908 Set_Etype (N, Acc_Type);
3909 end Analyze_Reference;
3910
3911 --------------------------------
3912 -- Analyze_Selected_Component --
3913 --------------------------------
3914
2383acbd
AC
3915 -- Prefix is a record type or a task or protected type. In the latter case,
3916 -- the selector must denote a visible entry.
996ae0b0
RK
3917
3918 procedure Analyze_Selected_Component (N : Node_Id) is
d469eabe
HK
3919 Name : constant Node_Id := Prefix (N);
3920 Sel : constant Node_Id := Selector_Name (N);
3921 Act_Decl : Node_Id;
3922 Comp : Entity_Id;
3923 Has_Candidate : Boolean := False;
3924 In_Scope : Boolean;
3925 Parent_N : Node_Id;
3926 Pent : Entity_Id := Empty;
3927 Prefix_Type : Entity_Id;
401093c1
ES
3928
3929 Type_To_Use : Entity_Id;
3930 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3931 -- a class-wide type, we use its root type, whose components are
3932 -- present in the class-wide type.
3933
2383acbd
AC
3934 Is_Single_Concurrent_Object : Boolean;
3935 -- Set True if the prefix is a single task or a single protected object
3936
20261dc1
AC
3937 procedure Find_Component_In_Instance (Rec : Entity_Id);
3938 -- In an instance, a component of a private extension may not be visible
3939 -- while it was visible in the generic. Search candidate scope for a
3940 -- component with the proper identifier. This is only done if all other
f90d14ac
AC
3941 -- searches have failed. If a match is found, the Etype of both N and
3942 -- Sel are set from this component, and the entity of Sel is set to
3943 -- reference this component. If no match is found, Entity (Sel) remains
3944 -- unset.
20261dc1 3945
d469eabe
HK
3946 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
3947 -- It is known that the parent of N denotes a subprogram call. Comp
3948 -- is an overloadable component of the concurrent type of the prefix.
3949 -- Determine whether all formals of the parent of N and Comp are mode
b4592168
GD
3950 -- conformant. If the parent node is not analyzed yet it may be an
3951 -- indexed component rather than a function call.
d469eabe 3952
20261dc1
AC
3953 --------------------------------
3954 -- Find_Component_In_Instance --
3955 --------------------------------
3956
3957 procedure Find_Component_In_Instance (Rec : Entity_Id) is
3958 Comp : Entity_Id;
3959
3960 begin
3961 Comp := First_Component (Rec);
3962 while Present (Comp) loop
3963 if Chars (Comp) = Chars (Sel) then
e7ba564f 3964 Set_Entity_With_Checks (Sel, Comp);
20261dc1
AC
3965 Set_Etype (Sel, Etype (Comp));
3966 Set_Etype (N, Etype (Comp));
3967 return;
3968 end if;
3969
3970 Next_Component (Comp);
3971 end loop;
3972
cf3e6845
AC
3973 -- If we fall through, no match, so no changes made
3974
3975 return;
20261dc1
AC
3976 end Find_Component_In_Instance;
3977
d469eabe
HK
3978 ------------------------------
3979 -- Has_Mode_Conformant_Spec --
3980 ------------------------------
3981
3982 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
3983 Comp_Param : Entity_Id;
3984 Param : Node_Id;
3985 Param_Typ : Entity_Id;
3986
3987 begin
3988 Comp_Param := First_Formal (Comp);
b4592168
GD
3989
3990 if Nkind (Parent (N)) = N_Indexed_Component then
3991 Param := First (Expressions (Parent (N)));
3992 else
3993 Param := First (Parameter_Associations (Parent (N)));
3994 end if;
3995
d469eabe
HK
3996 while Present (Comp_Param)
3997 and then Present (Param)
3998 loop
3999 Param_Typ := Find_Parameter_Type (Param);
4000
4001 if Present (Param_Typ)
4002 and then
4003 not Conforming_Types
4004 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
4005 then
4006 return False;
4007 end if;
4008
4009 Next_Formal (Comp_Param);
4010 Next (Param);
4011 end loop;
4012
9e92ad49
AC
4013 -- One of the specs has additional formals; there is no match, unless
4014 -- this may be an indexing of a parameterless call.
f0e7963f
AC
4015
4016 -- Note that when expansion is disabled, the corresponding record
4017 -- type of synchronized types is not constructed, so that there is
4018 -- no point is attempting an interpretation as a prefixed call, as
4019 -- this is bound to fail because the primitive operations will not
4020 -- be properly located.
d469eabe
HK
4021
4022 if Present (Comp_Param) or else Present (Param) then
f0e7963f
AC
4023 if Needs_No_Actuals (Comp)
4024 and then Is_Array_Type (Etype (Comp))
4025 and then not Expander_Active
4026 then
4027 return True;
f0e7963f
AC
4028 else
4029 return False;
4030 end if;
d469eabe
HK
4031 end if;
4032
4033 return True;
4034 end Has_Mode_Conformant_Spec;
996ae0b0
RK
4035
4036 -- Start of processing for Analyze_Selected_Component
4037
4038 begin
4039 Set_Etype (N, Any_Type);
4040
4041 if Is_Overloaded (Name) then
4042 Analyze_Overloaded_Selected_Component (N);
4043 return;
4044
4045 elsif Etype (Name) = Any_Type then
4046 Set_Entity (Sel, Any_Id);
4047 Set_Etype (Sel, Any_Type);
4048 return;
4049
4050 else
996ae0b0
RK
4051 Prefix_Type := Etype (Name);
4052 end if;
4053
4054 if Is_Access_Type (Prefix_Type) then
07fc65c4 4055
0d57c6f4
RD
4056 -- A RACW object can never be used as prefix of a selected component
4057 -- since that means it is dereferenced without being a controlling
4058 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
4059 -- reporting an error, we must check whether this is actually a
4060 -- dispatching call in prefix form.
07fc65c4 4061
996ae0b0
RK
4062 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
4063 and then Comes_From_Source (N)
4064 then
b4592168
GD
4065 if Try_Object_Operation (N) then
4066 return;
4067 else
4068 Error_Msg_N
4069 ("invalid dereference of a remote access-to-class-wide value",
4070 N);
4071 end if;
07fc65c4
GB
4072
4073 -- Normal case of selected component applied to access type
4074
4075 else
324ac540 4076 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
da709d08 4077
6e73e3ab
AC
4078 if Is_Entity_Name (Name) then
4079 Pent := Entity (Name);
4080 elsif Nkind (Name) = N_Selected_Component
4081 and then Is_Entity_Name (Selector_Name (Name))
4082 then
4083 Pent := Entity (Selector_Name (Name));
4084 end if;
da709d08 4085
d469eabe 4086 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
996ae0b0 4087 end if;
b4592168
GD
4088
4089 -- If we have an explicit dereference of a remote access-to-class-wide
4090 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
4091 -- have to check for the case of a prefix that is a controlling operand
4092 -- of a prefixed dispatching call, as the dereference is legal in that
4093 -- case. Normally this condition is checked in Validate_Remote_Access_
4094 -- To_Class_Wide_Type, but we have to defer the checking for selected
4095 -- component prefixes because of the prefixed dispatching call case.
4096 -- Note that implicit dereferences are checked for this just above.
4097
4098 elsif Nkind (Name) = N_Explicit_Dereference
4099 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
4100 and then Comes_From_Source (N)
4101 then
4102 if Try_Object_Operation (N) then
4103 return;
4104 else
4105 Error_Msg_N
4106 ("invalid dereference of a remote access-to-class-wide value",
4107 N);
4108 end if;
aab883ec 4109 end if;
b67a385c 4110
aab883ec
ES
4111 -- (Ada 2005): if the prefix is the limited view of a type, and
4112 -- the context already includes the full view, use the full view
4113 -- in what follows, either to retrieve a component of to find
4114 -- a primitive operation. If the prefix is an explicit dereference,
4115 -- set the type of the prefix to reflect this transformation.
401093c1
ES
4116 -- If the non-limited view is itself an incomplete type, get the
4117 -- full view if available.
aab883ec 4118
47346923
AC
4119 if From_Limited_With (Prefix_Type)
4120 and then Has_Non_Limited_View (Prefix_Type)
aab883ec 4121 then
401093c1 4122 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
aab883ec
ES
4123
4124 if Nkind (N) = N_Explicit_Dereference then
4125 Set_Etype (Prefix (N), Prefix_Type);
4126 end if;
996ae0b0
RK
4127 end if;
4128
4129 if Ekind (Prefix_Type) = E_Private_Subtype then
4130 Prefix_Type := Base_Type (Prefix_Type);
4131 end if;
4132
401093c1 4133 Type_To_Use := Prefix_Type;
996ae0b0
RK
4134
4135 -- For class-wide types, use the entity list of the root type. This
4136 -- indirection is specially important for private extensions because
4137 -- only the root type get switched (not the class-wide type).
4138
4139 if Is_Class_Wide_Type (Prefix_Type) then
401093c1 4140 Type_To_Use := Root_Type (Prefix_Type);
996ae0b0
RK
4141 end if;
4142
2383acbd
AC
4143 -- If the prefix is a single concurrent object, use its name in error
4144 -- messages, rather than that of its anonymous type.
4145
4146 Is_Single_Concurrent_Object :=
4147 Is_Concurrent_Type (Prefix_Type)
4148 and then Is_Internal_Name (Chars (Prefix_Type))
4149 and then not Is_Derived_Type (Prefix_Type)
4150 and then Is_Entity_Name (Name);
4151
401093c1 4152 Comp := First_Entity (Type_To_Use);
996ae0b0
RK
4153
4154 -- If the selector has an original discriminant, the node appears in
4155 -- an instance. Replace the discriminant with the corresponding one
4156 -- in the current discriminated type. For nested generics, this must
4157 -- be done transitively, so note the new original discriminant.
4158
4159 if Nkind (Sel) = N_Identifier
c0b11850 4160 and then In_Instance
996ae0b0
RK
4161 and then Present (Original_Discriminant (Sel))
4162 then
4163 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
4164
4165 -- Mark entity before rewriting, for completeness and because
4166 -- subsequent semantic checks might examine the original node.
4167
4168 Set_Entity (Sel, Comp);
ee2ba856 4169 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
996ae0b0
RK
4170 Set_Original_Discriminant (Selector_Name (N), Comp);
4171 Set_Etype (N, Etype (Comp));
44a10091 4172 Check_Implicit_Dereference (N, Etype (Comp));
996ae0b0
RK
4173
4174 if Is_Access_Type (Etype (Name)) then
4175 Insert_Explicit_Dereference (Name);
324ac540 4176 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4177 end if;
4178
4179 elsif Is_Record_Type (Prefix_Type) then
4180
ee2ba856
AC
4181 -- Find component with given name. In an instance, if the node is
4182 -- known as a prefixed call, do not examine components whose
4183 -- visibility may be accidental.
996ae0b0 4184
4913e24c 4185 while Present (Comp) and then not Is_Prefixed_Call (N) loop
996ae0b0 4186 if Chars (Comp) = Chars (Sel)
a53c5613 4187 and then Is_Visible_Component (Comp, N)
996ae0b0 4188 then
e7ba564f 4189 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4190 Set_Etype (Sel, Etype (Comp));
4191
4192 if Ekind (Comp) = E_Discriminant then
5d09245e 4193 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
996ae0b0 4194 Error_Msg_N
02f58834 4195 ("cannot reference discriminant of unchecked union",
996ae0b0
RK
4196 Sel);
4197 end if;
4198
4199 if Is_Generic_Type (Prefix_Type)
4200 or else
4201 Is_Generic_Type (Root_Type (Prefix_Type))
4202 then
4203 Set_Original_Discriminant (Sel, Comp);
4204 end if;
4205 end if;
4206
4207 -- Resolve the prefix early otherwise it is not possible to
4208 -- build the actual subtype of the component: it may need
4209 -- to duplicate this prefix and duplication is only allowed
4210 -- on fully resolved expressions.
4211
fbf5a39b 4212 Resolve (Name);
996ae0b0 4213
b67a385c
ES
4214 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
4215 -- subtypes in a package specification.
28be29ce
ES
4216 -- Example:
4217
4218 -- limited with Pkg;
4219 -- package Pkg is
4220 -- type Acc_Inc is access Pkg.T;
4221 -- X : Acc_Inc;
b67a385c
ES
4222 -- N : Natural := X.all.Comp; -- ERROR, limited view
4223 -- end Pkg; -- Comp is not visible
28be29ce
ES
4224
4225 if Nkind (Name) = N_Explicit_Dereference
7b56a91b 4226 and then From_Limited_With (Etype (Prefix (Name)))
28be29ce 4227 and then not Is_Potentially_Use_Visible (Etype (Name))
b67a385c
ES
4228 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
4229 N_Package_Specification
28be29ce
ES
4230 then
4231 Error_Msg_NE
4232 ("premature usage of incomplete}", Prefix (Name),
4233 Etype (Prefix (Name)));
4234 end if;
4235
996ae0b0
RK
4236 -- We never need an actual subtype for the case of a selection
4237 -- for a indexed component of a non-packed array, since in
4238 -- this case gigi generates all the checks and can find the
4239 -- necessary bounds information.
4240
0d57c6f4
RD
4241 -- We also do not need an actual subtype for the case of a
4242 -- first, last, length, or range attribute applied to a
996ae0b0
RK
4243 -- non-packed array, since gigi can again get the bounds in
4244 -- these cases (gigi cannot handle the packed case, since it
4245 -- has the bounds of the packed array type, not the original
4246 -- bounds of the type). However, if the prefix is itself a
4247 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4248 -- as a dynamic-sized temporary, so we do generate an actual
4249 -- subtype for this case.
4250
4251 Parent_N := Parent (N);
4252
4253 if not Is_Packed (Etype (Comp))
4254 and then
4255 ((Nkind (Parent_N) = N_Indexed_Component
d469eabe 4256 and then Nkind (Name) /= N_Selected_Component)
996ae0b0
RK
4257 or else
4258 (Nkind (Parent_N) = N_Attribute_Reference
b69cd36a
AC
4259 and then
4260 Nam_In (Attribute_Name (Parent_N), Name_First,
4261 Name_Last,
4262 Name_Length,
4263 Name_Range)))
996ae0b0
RK
4264 then
4265 Set_Etype (N, Etype (Comp));
4266
98123480
ES
4267 -- If full analysis is not enabled, we do not generate an
4268 -- actual subtype, because in the absence of expansion
4269 -- reference to a formal of a protected type, for example,
4270 -- will not be properly transformed, and will lead to
4271 -- out-of-scope references in gigi.
4272
4273 -- In all other cases, we currently build an actual subtype.
4274 -- It seems likely that many of these cases can be avoided,
4275 -- but right now, the front end makes direct references to the
fbf5a39b 4276 -- bounds (e.g. in generating a length check), and if we do
996ae0b0 4277 -- not make an actual subtype, we end up getting a direct
98123480 4278 -- reference to a discriminant, which will not do.
996ae0b0 4279
98123480 4280 elsif Full_Analysis then
996ae0b0
RK
4281 Act_Decl :=
4282 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
4283 Insert_Action (N, Act_Decl);
4284
4285 if No (Act_Decl) then
4286 Set_Etype (N, Etype (Comp));
4287
4288 else
4289 -- Component type depends on discriminants. Enter the
4290 -- main attributes of the subtype.
4291
4292 declare
fbf5a39b
AC
4293 Subt : constant Entity_Id :=
4294 Defining_Identifier (Act_Decl);
996ae0b0
RK
4295
4296 begin
4297 Set_Etype (Subt, Base_Type (Etype (Comp)));
4298 Set_Ekind (Subt, Ekind (Etype (Comp)));
4299 Set_Etype (N, Subt);
4300 end;
4301 end if;
98123480
ES
4302
4303 -- If Full_Analysis not enabled, just set the Etype
4304
4305 else
4306 Set_Etype (N, Etype (Comp));
996ae0b0
RK
4307 end if;
4308
44a10091 4309 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
4310 return;
4311 end if;
4312
aab883ec 4313 -- If the prefix is a private extension, check only the visible
9c510803 4314 -- components of the partial view. This must include the tag,
f3d57416 4315 -- which can appear in expanded code in a tag check.
aab883ec 4316
9c510803 4317 if Ekind (Type_To_Use) = E_Record_Type_With_Private
df3e68b1 4318 and then Chars (Selector_Name (N)) /= Name_uTag
9c510803 4319 then
401093c1 4320 exit when Comp = Last_Entity (Type_To_Use);
aab883ec
ES
4321 end if;
4322
996ae0b0
RK
4323 Next_Entity (Comp);
4324 end loop;
4325
d469eabe
HK
4326 -- Ada 2005 (AI-252): The selected component can be interpreted as
4327 -- a prefixed view of a subprogram. Depending on the context, this is
4328 -- either a name that can appear in a renaming declaration, or part
4329 -- of an enclosing call given in prefix form.
4330
4331 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4332 -- selected component should resolve to a name.
35ae2ed8 4333
0791fbe9 4334 if Ada_Version >= Ada_2005
35ae2ed8 4335 and then Is_Tagged_Type (Prefix_Type)
d469eabe 4336 and then not Is_Concurrent_Type (Prefix_Type)
35ae2ed8 4337 then
d469eabe
HK
4338 if Nkind (Parent (N)) = N_Generic_Association
4339 or else Nkind (Parent (N)) = N_Requeue_Statement
4340 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4341 then
4342 if Find_Primitive_Operation (N) then
4343 return;
4344 end if;
4345
4346 elsif Try_Object_Operation (N) then
4347 return;
4348 end if;
4c46b835 4349
98123480
ES
4350 -- If the transformation fails, it will be necessary to redo the
4351 -- analysis with all errors enabled, to indicate candidate
4352 -- interpretations and reasons for each failure ???
4c46b835 4353
35ae2ed8
AC
4354 end if;
4355
996ae0b0 4356 elsif Is_Private_Type (Prefix_Type) then
d469eabe 4357
98123480
ES
4358 -- Allow access only to discriminants of the type. If the type has
4359 -- no full view, gigi uses the parent type for the components, so we
4360 -- do the same here.
996ae0b0
RK
4361
4362 if No (Full_View (Prefix_Type)) then
401093c1
ES
4363 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4364 Comp := First_Entity (Type_To_Use);
996ae0b0
RK
4365 end if;
4366
4367 while Present (Comp) loop
996ae0b0
RK
4368 if Chars (Comp) = Chars (Sel) then
4369 if Ekind (Comp) = E_Discriminant then
e7ba564f 4370 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4371 Generate_Reference (Comp, Sel);
4372
4373 Set_Etype (Sel, Etype (Comp));
4374 Set_Etype (N, Etype (Comp));
44a10091 4375 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
4376
4377 if Is_Generic_Type (Prefix_Type)
d469eabe 4378 or else Is_Generic_Type (Root_Type (Prefix_Type))
996ae0b0
RK
4379 then
4380 Set_Original_Discriminant (Sel, Comp);
4381 end if;
4382
f3d57416 4383 -- Before declaring an error, check whether this is tagged
aab883ec
ES
4384 -- private type and a call to a primitive operation.
4385
0791fbe9 4386 elsif Ada_Version >= Ada_2005
aab883ec
ES
4387 and then Is_Tagged_Type (Prefix_Type)
4388 and then Try_Object_Operation (N)
4389 then
4390 return;
4391
996ae0b0 4392 else
2383acbd
AC
4393 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4394 Error_Msg_NE ("invisible selector& for }", N, Sel);
996ae0b0
RK
4395 Set_Entity (Sel, Any_Id);
4396 Set_Etype (N, Any_Type);
4397 end if;
4398
4399 return;
4400 end if;
4401
4402 Next_Entity (Comp);
4403 end loop;
4404
4405 elsif Is_Concurrent_Type (Prefix_Type) then
4406
d469eabe
HK
4407 -- Find visible operation with given name. For a protected type,
4408 -- the possible candidates are discriminants, entries or protected
4409 -- procedures. For a task type, the set can only include entries or
4410 -- discriminants if the task type is not an enclosing scope. If it
4411 -- is an enclosing scope (e.g. in an inner task) then all entities
4412 -- are visible, but the prefix must denote the enclosing scope, i.e.
4413 -- can only be a direct name or an expanded name.
996ae0b0 4414
d469eabe 4415 Set_Etype (Sel, Any_Type);
996ae0b0
RK
4416 In_Scope := In_Open_Scopes (Prefix_Type);
4417
4418 while Present (Comp) loop
4419 if Chars (Comp) = Chars (Sel) then
4420 if Is_Overloadable (Comp) then
4421 Add_One_Interp (Sel, Comp, Etype (Comp));
4422
d469eabe
HK
4423 -- If the prefix is tagged, the correct interpretation may
4424 -- lie in the primitive or class-wide operations of the
4425 -- type. Perform a simple conformance check to determine
4426 -- whether Try_Object_Operation should be invoked even if
4427 -- a visible entity is found.
4428
4429 if Is_Tagged_Type (Prefix_Type)
4430 and then
4431 Nkind_In (Parent (N), N_Procedure_Call_Statement,
b4592168
GD
4432 N_Function_Call,
4433 N_Indexed_Component)
d469eabe
HK
4434 and then Has_Mode_Conformant_Spec (Comp)
4435 then
4436 Has_Candidate := True;
4437 end if;
4438
2383acbd
AC
4439 -- Note: a selected component may not denote a component of a
4440 -- protected type (4.1.3(7)).
4441
bce79204 4442 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
2383acbd
AC
4443 or else (In_Scope
4444 and then not Is_Protected_Type (Prefix_Type)
4445 and then Is_Entity_Name (Name))
996ae0b0 4446 then
e7ba564f 4447 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4448 Generate_Reference (Comp, Sel);
4449
65e78a74
AC
4450 -- The selector is not overloadable, so we have a candidate
4451 -- interpretation.
4452
4453 Has_Candidate := True;
4454
996ae0b0
RK
4455 else
4456 goto Next_Comp;
4457 end if;
4458
4459 Set_Etype (Sel, Etype (Comp));
4460 Set_Etype (N, Etype (Comp));
4461
4462 if Ekind (Comp) = E_Discriminant then
4463 Set_Original_Discriminant (Sel, Comp);
4464 end if;
4465
09494c32
AC
4466 -- For access type case, introduce explicit dereference for
4467 -- more uniform treatment of entry calls.
996ae0b0
RK
4468
4469 if Is_Access_Type (Etype (Name)) then
4470 Insert_Explicit_Dereference (Name);
fbf5a39b 4471 Error_Msg_NW
324ac540 4472 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4473 end if;
4474 end if;
4475
4476 <<Next_Comp>>
4477 Next_Entity (Comp);
4478 exit when not In_Scope
9bc856dd
AC
4479 and then
4480 Comp = First_Private_Entity (Base_Type (Prefix_Type));
996ae0b0
RK
4481 end loop;
4482
d469eabe
HK
4483 -- If there is no visible entity with the given name or none of the
4484 -- visible entities are plausible interpretations, check whether
4485 -- there is some other primitive operation with that name.
aab883ec 4486
0791fbe9 4487 if Ada_Version >= Ada_2005
aab883ec 4488 and then Is_Tagged_Type (Prefix_Type)
aab883ec 4489 then
d469eabe
HK
4490 if (Etype (N) = Any_Type
4491 or else not Has_Candidate)
0a36105d
JM
4492 and then Try_Object_Operation (N)
4493 then
4494 return;
4495
4496 -- If the context is not syntactically a procedure call, it
4497 -- may be a call to a primitive function declared outside of
4498 -- the synchronized type.
4499
4500 -- If the context is a procedure call, there might still be
4501 -- an overloading between an entry and a primitive procedure
4502 -- declared outside of the synchronized type, called in prefix
4503 -- notation. This is harder to disambiguate because in one case
4504 -- the controlling formal is implicit ???
4505
4506 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
b4592168 4507 and then Nkind (Parent (N)) /= N_Indexed_Component
0a36105d
JM
4508 and then Try_Object_Operation (N)
4509 then
4510 return;
4511 end if;
8cf23b91
AC
4512
4513 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4514 -- entry or procedure of a tagged concurrent type we must check
4515 -- if there are class-wide subprograms covering the primitive. If
4516 -- true then Try_Object_Operation reports the error.
4517
4518 if Has_Candidate
4519 and then Is_Concurrent_Type (Prefix_Type)
4520 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
4521
4522 -- Duplicate the call. This is required to avoid problems with
4523 -- the tree transformations performed by Try_Object_Operation.
d7a44b14
AC
4524 -- Set properly the parent of the copied call, because it is
4525 -- about to be reanalyzed.
8cf23b91 4526
8cf23b91 4527 then
d7a44b14
AC
4528 declare
4529 Par : constant Node_Id := New_Copy_Tree (Parent (N));
4530
4531 begin
4532 Set_Parent (Par, Parent (Parent (N)));
29ba9f52 4533
d7a44b14 4534 if Try_Object_Operation
29ba9f52 4535 (Sinfo.Name (Par), CW_Test_Only => True)
d7a44b14
AC
4536 then
4537 return;
4538 end if;
4539 end;
8cf23b91 4540 end if;
aab883ec
ES
4541 end if;
4542
2383acbd 4543 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
11bc76df 4544
2383acbd
AC
4545 -- Case of a prefix of a protected type: selector might denote
4546 -- an invisible private component.
4547
4548 Comp := First_Private_Entity (Base_Type (Prefix_Type));
4549 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
4550 Next_Entity (Comp);
4551 end loop;
4552
4553 if Present (Comp) then
4554 if Is_Single_Concurrent_Object then
4555 Error_Msg_Node_2 := Entity (Name);
4556 Error_Msg_NE ("invisible selector& for &", N, Sel);
4557
4558 else
4559 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4560 Error_Msg_NE ("invisible selector& for }", N, Sel);
4561 end if;
4562 return;
4563 end if;
4564 end if;
4565
996ae0b0
RK
4566 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4567
4568 else
4569 -- Invalid prefix
4570
4571 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
4572 end if;
4573
4c46b835 4574 -- If N still has no type, the component is not defined in the prefix
996ae0b0
RK
4575
4576 if Etype (N) = Any_Type then
4577
2383acbd 4578 if Is_Single_Concurrent_Object then
996ae0b0
RK
4579 Error_Msg_Node_2 := Entity (Name);
4580 Error_Msg_NE ("no selector& for&", N, Sel);
4581
401093c1 4582 Check_Misspelled_Selector (Type_To_Use, Sel);
996ae0b0 4583
8b4230c8
AC
4584 -- If this is a derived formal type, the parent may have different
4585 -- visibility at this point. Try for an inherited component before
4586 -- reporting an error.
4587
de76a39c
GB
4588 elsif Is_Generic_Type (Prefix_Type)
4589 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
07fc65c4 4590 and then Prefix_Type /= Etype (Prefix_Type)
de76a39c
GB
4591 and then Is_Record_Type (Etype (Prefix_Type))
4592 then
de76a39c
GB
4593 Set_Etype (Prefix (N), Etype (Prefix_Type));
4594 Analyze_Selected_Component (N);
4595 return;
4596
b1d12996
AC
4597 -- Similarly, if this is the actual for a formal derived type, or
4598 -- a derived type thereof, the component inherited from the generic
4599 -- parent may not be visible in the actual, but the selected
4600 -- component is legal. Climb up the derivation chain of the generic
4601 -- parent type until we find the proper ancestor type.
20261dc1 4602
b1d12996
AC
4603 elsif In_Instance and then Is_Tagged_Type (Prefix_Type) then
4604 declare
4605 Par : Entity_Id := Prefix_Type;
4606 begin
4607 -- Climb up derivation chain to generic actual subtype
4608
4609 while not Is_Generic_Actual_Type (Par) loop
4610 if Ekind (Par) = E_Record_Type then
4611 Par := Parent_Subtype (Par);
4612 exit when No (Par);
4613 else
4614 exit when Par = Etype (Par);
4615 Par := Etype (Par);
4616 end if;
4617 end loop;
4c46b835 4618
b1d12996 4619 if Present (Par) and then Is_Generic_Actual_Type (Par) then
73999267 4620
b1d12996 4621 -- Now look for component in ancestor types
fbf5a39b 4622
b1d12996
AC
4623 Par := Generic_Parent_Type (Declaration_Node (Par));
4624 loop
4625 Find_Component_In_Instance (Par);
4626 exit when Present (Entity (Sel))
4627 or else Par = Etype (Par);
4628 Par := Etype (Par);
4629 end loop;
73999267
AC
4630
4631 -- In ASIS mode the generic parent type may be absent. Examine
4632 -- the parent type directly for a component that may have been
4633 -- visible in a parent generic unit.
4634
4635 elsif Is_Derived_Type (Prefix_Type) then
4636 Par := Etype (Prefix_Type);
4637 Find_Component_In_Instance (Par);
b1d12996
AC
4638 end if;
4639 end;
4640
4641 -- The search above must have eventually succeeded, since the
4642 -- selected component was legal in the generic.
4643
4644 if No (Entity (Sel)) then
4645 raise Program_Error;
4646 end if;
73999267 4647
20261dc1 4648 return;
fbf5a39b 4649
20261dc1 4650 -- Component not found, specialize error message when appropriate
fbf5a39b 4651
996ae0b0
RK
4652 else
4653 if Ekind (Prefix_Type) = E_Record_Subtype then
4654
f4b049db
AC
4655 -- Check whether this is a component of the base type which
4656 -- is absent from a statically constrained subtype. This will
4657 -- raise constraint error at run time, but is not a compile-
4658 -- time error. When the selector is illegal for base type as
4659 -- well fall through and generate a compilation error anyway.
996ae0b0
RK
4660
4661 Comp := First_Component (Base_Type (Prefix_Type));
996ae0b0 4662 while Present (Comp) loop
996ae0b0
RK
4663 if Chars (Comp) = Chars (Sel)
4664 and then Is_Visible_Component (Comp)
4665 then
e7ba564f 4666 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4667 Generate_Reference (Comp, Sel);
4668 Set_Etype (Sel, Etype (Comp));
4669 Set_Etype (N, Etype (Comp));
4670
637a41a5
AC
4671 -- Emit appropriate message. The node will be replaced
4672 -- by an appropriate raise statement.
996ae0b0 4673
637a41a5
AC
4674 -- Note that in SPARK mode, as with all calls to apply a
4675 -- compile time constraint error, this will be made into
4676 -- an error to simplify the processing of the formal
4677 -- verification backend.
d7f41b2d 4678
4a28b181 4679 Apply_Compile_Time_Constraint_Error
637a41a5 4680 (N, "component not present in }??",
4a28b181
AC
4681 CE_Discriminant_Check_Failed,
4682 Ent => Prefix_Type, Rep => False);
d7f41b2d 4683
996ae0b0
RK
4684 Set_Raises_Constraint_Error (N);
4685 return;
4686 end if;
4687
4688 Next_Component (Comp);
4689 end loop;
4690
4691 end if;
4692
4693 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4694 Error_Msg_NE ("no selector& for}", N, Sel);
4695
94bbf008 4696 -- Add information in the case of an incomplete prefix
99d520ad
ES
4697
4698 if Is_Incomplete_Type (Type_To_Use) then
4699 declare
4700 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
4701
4702 begin
7b56a91b 4703 if From_Limited_With (Scope (Type_To_Use)) then
99d520ad
ES
4704 Error_Msg_NE
4705 ("\limited view of& has no components", N, Inc);
bd38b431 4706
99d520ad
ES
4707 else
4708 Error_Msg_NE
4709 ("\premature usage of incomplete type&", N, Inc);
bd38b431
AC
4710
4711 if Nkind (Parent (Inc)) =
4712 N_Incomplete_Type_Declaration
99d520ad 4713 then
94bbf008
AC
4714 -- Record location of premature use in entity so that
4715 -- a continuation message is generated when the
4716 -- completion is seen.
4717
99d520ad
ES
4718 Set_Premature_Use (Parent (Inc), N);
4719 end if;
4720 end if;
4721 end;
4722 end if;
4723
401093c1 4724 Check_Misspelled_Selector (Type_To_Use, Sel);
996ae0b0
RK
4725 end if;
4726
4727 Set_Entity (Sel, Any_Id);
4728 Set_Etype (Sel, Any_Type);
4729 end if;
4730 end Analyze_Selected_Component;
4731
4732 ---------------------------
4733 -- Analyze_Short_Circuit --
4734 ---------------------------
4735
4736 procedure Analyze_Short_Circuit (N : Node_Id) is
4737 L : constant Node_Id := Left_Opnd (N);
4738 R : constant Node_Id := Right_Opnd (N);
4739 Ind : Interp_Index;
4740 It : Interp;
4741
4742 begin
4743 Analyze_Expression (L);
4744 Analyze_Expression (R);
4745 Set_Etype (N, Any_Type);
4746
4747 if not Is_Overloaded (L) then
996ae0b0
RK
4748 if Root_Type (Etype (L)) = Standard_Boolean
4749 and then Has_Compatible_Type (R, Etype (L))
4750 then
4751 Add_One_Interp (N, Etype (L), Etype (L));
4752 end if;
4753
4754 else
4755 Get_First_Interp (L, Ind, It);
996ae0b0
RK
4756 while Present (It.Typ) loop
4757 if Root_Type (It.Typ) = Standard_Boolean
4758 and then Has_Compatible_Type (R, It.Typ)
4759 then
4760 Add_One_Interp (N, It.Typ, It.Typ);
4761 end if;
4762
4763 Get_Next_Interp (Ind, It);
4764 end loop;
4765 end if;
4766
d469eabe
HK
4767 -- Here we have failed to find an interpretation. Clearly we know that
4768 -- it is not the case that both operands can have an interpretation of
4769 -- Boolean, but this is by far the most likely intended interpretation.
4770 -- So we simply resolve both operands as Booleans, and at least one of
4771 -- these resolutions will generate an error message, and we do not need
4772 -- to give another error message on the short circuit operation itself.
996ae0b0
RK
4773
4774 if Etype (N) = Any_Type then
4775 Resolve (L, Standard_Boolean);
4776 Resolve (R, Standard_Boolean);
4777 Set_Etype (N, Standard_Boolean);
4778 end if;
4779 end Analyze_Short_Circuit;
4780
4781 -------------------
4782 -- Analyze_Slice --
4783 -------------------
4784
4785 procedure Analyze_Slice (N : Node_Id) is
996ae0b0 4786 D : constant Node_Id := Discrete_Range (N);
5f44f0d4 4787 P : constant Node_Id := Prefix (N);
996ae0b0 4788 Array_Type : Entity_Id;
5f44f0d4 4789 Index_Type : Entity_Id;
996ae0b0
RK
4790
4791 procedure Analyze_Overloaded_Slice;
4792 -- If the prefix is overloaded, select those interpretations that
4793 -- yield a one-dimensional array type.
4794
4c46b835
AC
4795 ------------------------------
4796 -- Analyze_Overloaded_Slice --
4797 ------------------------------
4798
996ae0b0
RK
4799 procedure Analyze_Overloaded_Slice is
4800 I : Interp_Index;
4801 It : Interp;
4802 Typ : Entity_Id;
4803
4804 begin
4805 Set_Etype (N, Any_Type);
996ae0b0 4806
4c46b835 4807 Get_First_Interp (P, I, It);
996ae0b0
RK
4808 while Present (It.Nam) loop
4809 Typ := It.Typ;
4810
4811 if Is_Access_Type (Typ) then
4812 Typ := Designated_Type (Typ);
324ac540
AC
4813 Error_Msg_NW
4814 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4815 end if;
4816
4817 if Is_Array_Type (Typ)
4818 and then Number_Dimensions (Typ) = 1
4819 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
4820 then
4821 Add_One_Interp (N, Typ, Typ);
4822 end if;
4823
4824 Get_Next_Interp (I, It);
4825 end loop;
4826
4827 if Etype (N) = Any_Type then
4828 Error_Msg_N ("expect array type in prefix of slice", N);
4829 end if;
4830 end Analyze_Overloaded_Slice;
4831
4832 -- Start of processing for Analyze_Slice
4833
4834 begin
36b8f95f 4835 if Comes_From_Source (N) then
ce5ba43a 4836 Check_SPARK_05_Restriction ("slice is not allowed", N);
36b8f95f 4837 end if;
1d801f21 4838
523456db 4839 Analyze (P);
996ae0b0
RK
4840 Analyze (D);
4841
4842 if Is_Overloaded (P) then
4843 Analyze_Overloaded_Slice;
4844
4845 else
4846 Array_Type := Etype (P);
4847 Set_Etype (N, Any_Type);
4848
4849 if Is_Access_Type (Array_Type) then
4850 Array_Type := Designated_Type (Array_Type);
324ac540 4851 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4852 end if;
4853
4854 if not Is_Array_Type (Array_Type) then
4855 Wrong_Type (P, Any_Array);
4856
4857 elsif Number_Dimensions (Array_Type) > 1 then
4858 Error_Msg_N
4859 ("type is not one-dimensional array in slice prefix", N);
4860
996ae0b0 4861 else
5f44f0d4
AC
4862 if Ekind (Array_Type) = E_String_Literal_Subtype then
4863 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
4864 else
4865 Index_Type := Etype (First_Index (Array_Type));
4866 end if;
4867
4868 if not Has_Compatible_Type (D, Index_Type) then
4869 Wrong_Type (D, Index_Type);
4870 else
4871 Set_Etype (N, Array_Type);
4872 end if;
996ae0b0
RK
4873 end if;
4874 end if;
4875 end Analyze_Slice;
4876
4877 -----------------------------
4878 -- Analyze_Type_Conversion --
4879 -----------------------------
4880
4881 procedure Analyze_Type_Conversion (N : Node_Id) is
4882 Expr : constant Node_Id := Expression (N);
039538bc 4883 Typ : Entity_Id;
996ae0b0
RK
4884
4885 begin
039538bc
AC
4886 -- If Conversion_OK is set, then the Etype is already set, and the only
4887 -- processing required is to analyze the expression. This is used to
4888 -- construct certain "illegal" conversions which are not allowed by Ada
4889 -- semantics, but can be handled by Gigi, see Sinfo for further details.
996ae0b0
RK
4890
4891 if Conversion_OK (N) then
4892 Analyze (Expr);
4893 return;
4894 end if;
4895
4896 -- Otherwise full type analysis is required, as well as some semantic
4897 -- checks to make sure the argument of the conversion is appropriate.
4898
4899 Find_Type (Subtype_Mark (N));
039538bc
AC
4900 Typ := Entity (Subtype_Mark (N));
4901 Set_Etype (N, Typ);
4902 Check_Fully_Declared (Typ, N);
996ae0b0
RK
4903 Analyze_Expression (Expr);
4904 Validate_Remote_Type_Type_Conversion (N);
5e8c8e44 4905
996ae0b0
RK
4906 -- Only remaining step is validity checks on the argument. These
4907 -- are skipped if the conversion does not come from the source.
4908
4909 if not Comes_From_Source (N) then
4910 return;
4911
b67a385c
ES
4912 -- If there was an error in a generic unit, no need to replicate the
4913 -- error message. Conversely, constant-folding in the generic may
4914 -- transform the argument of a conversion into a string literal, which
4915 -- is legal. Therefore the following tests are not performed in an
36428cc4 4916 -- instance. The same applies to an inlined body.
b67a385c 4917
36428cc4 4918 elsif In_Instance or In_Inlined_Body then
b67a385c
ES
4919 return;
4920
996ae0b0
RK
4921 elsif Nkind (Expr) = N_Null then
4922 Error_Msg_N ("argument of conversion cannot be null", N);
ed2233dc 4923 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4924 Set_Etype (N, Any_Type);
4925
4926 elsif Nkind (Expr) = N_Aggregate then
4927 Error_Msg_N ("argument of conversion cannot be aggregate", N);
ed2233dc 4928 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4929
4930 elsif Nkind (Expr) = N_Allocator then
4931 Error_Msg_N ("argument of conversion cannot be an allocator", N);
ed2233dc 4932 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4933
4934 elsif Nkind (Expr) = N_String_Literal then
4935 Error_Msg_N ("argument of conversion cannot be string literal", N);
ed2233dc 4936 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4937
4938 elsif Nkind (Expr) = N_Character_Literal then
0ab80019 4939 if Ada_Version = Ada_83 then
039538bc 4940 Resolve (Expr, Typ);
996ae0b0
RK
4941 else
4942 Error_Msg_N ("argument of conversion cannot be character literal",
4943 N);
ed2233dc 4944 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4945 end if;
4946
4947 elsif Nkind (Expr) = N_Attribute_Reference
039538bc
AC
4948 and then Nam_In (Attribute_Name (Expr), Name_Access,
4949 Name_Unchecked_Access,
4950 Name_Unrestricted_Access)
996ae0b0
RK
4951 then
4952 Error_Msg_N ("argument of conversion cannot be access", N);
ed2233dc 4953 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0 4954 end if;
039538bc
AC
4955
4956 -- A formal parameter of a specific tagged type whose related subprogram
4957 -- is subject to pragma Extensions_Visible with value "False" cannot
b3407ce0 4958 -- appear in a class-wide conversion (SPARK RM 6.1.7(3)).
039538bc
AC
4959
4960 if Is_Class_Wide_Type (Typ) and then Is_EVF_Expression (Expr) then
4961 Error_Msg_N
4962 ("formal parameter with Extensions_Visible False cannot be "
4963 & "converted to class-wide type", Expr);
4964 end if;
996ae0b0
RK
4965 end Analyze_Type_Conversion;
4966
4967 ----------------------
4968 -- Analyze_Unary_Op --
4969 ----------------------
4970
4971 procedure Analyze_Unary_Op (N : Node_Id) is
4972 R : constant Node_Id := Right_Opnd (N);
4973 Op_Id : Entity_Id := Entity (N);
4974
4975 begin
4976 Set_Etype (N, Any_Type);
4977 Candidate_Type := Empty;
4978
4979 Analyze_Expression (R);
4980
4981 if Present (Op_Id) then
4982 if Ekind (Op_Id) = E_Operator then
4983 Find_Unary_Types (R, Op_Id, N);
4984 else
4985 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4986 end if;
4987
4988 else
4989 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 4990 while Present (Op_Id) loop
996ae0b0
RK
4991 if Ekind (Op_Id) = E_Operator then
4992 if No (Next_Entity (First_Entity (Op_Id))) then
4993 Find_Unary_Types (R, Op_Id, N);
4994 end if;
4995
4996 elsif Is_Overloadable (Op_Id) then
4997 Analyze_User_Defined_Unary_Op (N, Op_Id);
4998 end if;
4999
5000 Op_Id := Homonym (Op_Id);
5001 end loop;
5002 end if;
5003
5004 Operator_Check (N);
5005 end Analyze_Unary_Op;
5006
5007 ----------------------------------
5008 -- Analyze_Unchecked_Expression --
5009 ----------------------------------
5010
5011 procedure Analyze_Unchecked_Expression (N : Node_Id) is
5012 begin
5013 Analyze (Expression (N), Suppress => All_Checks);
5014 Set_Etype (N, Etype (Expression (N)));
5015 Save_Interps (Expression (N), N);
5016 end Analyze_Unchecked_Expression;
5017
5018 ---------------------------------------
5019 -- Analyze_Unchecked_Type_Conversion --
5020 ---------------------------------------
5021
5022 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
5023 begin
5024 Find_Type (Subtype_Mark (N));
5025 Analyze_Expression (Expression (N));
5026 Set_Etype (N, Entity (Subtype_Mark (N)));
5027 end Analyze_Unchecked_Type_Conversion;
5028
5029 ------------------------------------
5030 -- Analyze_User_Defined_Binary_Op --
5031 ------------------------------------
5032
5033 procedure Analyze_User_Defined_Binary_Op
5034 (N : Node_Id;
5035 Op_Id : Entity_Id)
5036 is
5037 begin
5038 -- Only do analysis if the operator Comes_From_Source, since otherwise
5039 -- the operator was generated by the expander, and all such operators
5040 -- always refer to the operators in package Standard.
5041
5042 if Comes_From_Source (N) then
5043 declare
5044 F1 : constant Entity_Id := First_Formal (Op_Id);
5045 F2 : constant Entity_Id := Next_Formal (F1);
5046
5047 begin
5048 -- Verify that Op_Id is a visible binary function. Note that since
5049 -- we know Op_Id is overloaded, potentially use visible means use
5050 -- visible for sure (RM 9.4(11)).
5051
5052 if Ekind (Op_Id) = E_Function
5053 and then Present (F2)
5054 and then (Is_Immediately_Visible (Op_Id)
5055 or else Is_Potentially_Use_Visible (Op_Id))
5056 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
5057 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
5058 then
5059 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5060
8b4230c8
AC
5061 -- If the left operand is overloaded, indicate that the current
5062 -- type is a viable candidate. This is redundant in most cases,
5063 -- but for equality and comparison operators where the context
5064 -- does not impose a type on the operands, setting the proper
5065 -- type is necessary to avoid subsequent ambiguities during
5066 -- resolution, when both user-defined and predefined operators
5067 -- may be candidates.
7340e432
AC
5068
5069 if Is_Overloaded (Left_Opnd (N)) then
5070 Set_Etype (Left_Opnd (N), Etype (F1));
5071 end if;
5072
996ae0b0
RK
5073 if Debug_Flag_E then
5074 Write_Str ("user defined operator ");
5075 Write_Name (Chars (Op_Id));
5076 Write_Str (" on node ");
5077 Write_Int (Int (N));
5078 Write_Eol;
5079 end if;
5080 end if;
5081 end;
5082 end if;
5083 end Analyze_User_Defined_Binary_Op;
5084
5085 -----------------------------------
5086 -- Analyze_User_Defined_Unary_Op --
5087 -----------------------------------
5088
5089 procedure Analyze_User_Defined_Unary_Op
5090 (N : Node_Id;
5091 Op_Id : Entity_Id)
5092 is
5093 begin
5094 -- Only do analysis if the operator Comes_From_Source, since otherwise
5095 -- the operator was generated by the expander, and all such operators
5096 -- always refer to the operators in package Standard.
5097
5098 if Comes_From_Source (N) then
5099 declare
5100 F : constant Entity_Id := First_Formal (Op_Id);
5101
5102 begin
5103 -- Verify that Op_Id is a visible unary function. Note that since
5104 -- we know Op_Id is overloaded, potentially use visible means use
5105 -- visible for sure (RM 9.4(11)).
5106
5107 if Ekind (Op_Id) = E_Function
5108 and then No (Next_Formal (F))
5109 and then (Is_Immediately_Visible (Op_Id)
5110 or else Is_Potentially_Use_Visible (Op_Id))
5111 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
5112 then
5113 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5114 end if;
5115 end;
5116 end if;
5117 end Analyze_User_Defined_Unary_Op;
5118
5119 ---------------------------
5120 -- Check_Arithmetic_Pair --
5121 ---------------------------
5122
5123 procedure Check_Arithmetic_Pair
5124 (T1, T2 : Entity_Id;
5125 Op_Id : Entity_Id;
5126 N : Node_Id)
5127 is
401093c1 5128 Op_Name : constant Name_Id := Chars (Op_Id);
996ae0b0 5129
da709d08
AC
5130 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
5131 -- Check whether the fixed-point type Typ has a user-defined operator
5132 -- (multiplication or division) that should hide the corresponding
5133 -- predefined operator. Used to implement Ada 2005 AI-264, to make
5134 -- such operators more visible and therefore useful.
8b4230c8 5135 --
50cff367
GD
5136 -- If the name of the operation is an expanded name with prefix
5137 -- Standard, the predefined universal fixed operator is available,
5138 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
5139
996ae0b0
RK
5140 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
5141 -- Get specific type (i.e. non-universal type if there is one)
5142
da709d08
AC
5143 ------------------
5144 -- Has_Fixed_Op --
5145 ------------------
5146
5147 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
401093c1 5148 Bas : constant Entity_Id := Base_Type (Typ);
da709d08
AC
5149 Ent : Entity_Id;
5150 F1 : Entity_Id;
5151 F2 : Entity_Id;
5152
5153 begin
50cff367
GD
5154 -- If the universal_fixed operation is given explicitly the rule
5155 -- concerning primitive operations of the type do not apply.
5156
5157 if Nkind (N) = N_Function_Call
5158 and then Nkind (Name (N)) = N_Expanded_Name
5159 and then Entity (Prefix (Name (N))) = Standard_Standard
5160 then
5161 return False;
5162 end if;
5163
da709d08
AC
5164 -- The operation is treated as primitive if it is declared in the
5165 -- same scope as the type, and therefore on the same entity chain.
5166
5167 Ent := Next_Entity (Typ);
5168 while Present (Ent) loop
5169 if Chars (Ent) = Chars (Op) then
5170 F1 := First_Formal (Ent);
5171 F2 := Next_Formal (F1);
5172
5173 -- The operation counts as primitive if either operand or
401093c1
ES
5174 -- result are of the given base type, and both operands are
5175 -- fixed point types.
da709d08 5176
401093c1 5177 if (Base_Type (Etype (F1)) = Bas
da709d08
AC
5178 and then Is_Fixed_Point_Type (Etype (F2)))
5179
5180 or else
401093c1 5181 (Base_Type (Etype (F2)) = Bas
da709d08
AC
5182 and then Is_Fixed_Point_Type (Etype (F1)))
5183
5184 or else
401093c1 5185 (Base_Type (Etype (Ent)) = Bas
da709d08
AC
5186 and then Is_Fixed_Point_Type (Etype (F1))
5187 and then Is_Fixed_Point_Type (Etype (F2)))
5188 then
5189 return True;
5190 end if;
5191 end if;
5192
5193 Next_Entity (Ent);
5194 end loop;
5195
5196 return False;
5197 end Has_Fixed_Op;
5198
4c46b835
AC
5199 -------------------
5200 -- Specific_Type --
5201 -------------------
5202
996ae0b0
RK
5203 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
5204 begin
5205 if T1 = Universal_Integer or else T1 = Universal_Real then
5206 return Base_Type (T2);
5207 else
5208 return Base_Type (T1);
5209 end if;
5210 end Specific_Type;
5211
5212 -- Start of processing for Check_Arithmetic_Pair
5213
5214 begin
b69cd36a 5215 if Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
996ae0b0
RK
5216 if Is_Numeric_Type (T1)
5217 and then Is_Numeric_Type (T2)
b4592168
GD
5218 and then (Covers (T1 => T1, T2 => T2)
5219 or else
5220 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
5221 then
5222 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5223 end if;
5224
b69cd36a 5225 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide) then
996ae0b0 5226 if Is_Fixed_Point_Type (T1)
b69cd36a 5227 and then (Is_Fixed_Point_Type (T2) or else T2 = Universal_Real)
996ae0b0
RK
5228 then
5229 -- If Treat_Fixed_As_Integer is set then the Etype is already set
5230 -- and no further processing is required (this is the case of an
5231 -- operator constructed by Exp_Fixd for a fixed point operation)
5232 -- Otherwise add one interpretation with universal fixed result
5233 -- If the operator is given in functional notation, it comes
5234 -- from source and Fixed_As_Integer cannot apply.
5235
da709d08
AC
5236 if (Nkind (N) not in N_Op
5237 or else not Treat_Fixed_As_Integer (N))
5238 and then
401093c1 5239 (not Has_Fixed_Op (T1, Op_Id)
da709d08 5240 or else Nkind (Parent (N)) = N_Type_Conversion)
fbf5a39b 5241 then
996ae0b0
RK
5242 Add_One_Interp (N, Op_Id, Universal_Fixed);
5243 end if;
5244
5245 elsif Is_Fixed_Point_Type (T2)
5246 and then (Nkind (N) not in N_Op
5247 or else not Treat_Fixed_As_Integer (N))
5248 and then T1 = Universal_Real
da709d08 5249 and then
401093c1 5250 (not Has_Fixed_Op (T1, Op_Id)
da709d08 5251 or else Nkind (Parent (N)) = N_Type_Conversion)
996ae0b0
RK
5252 then
5253 Add_One_Interp (N, Op_Id, Universal_Fixed);
5254
5255 elsif Is_Numeric_Type (T1)
5256 and then Is_Numeric_Type (T2)
b4592168
GD
5257 and then (Covers (T1 => T1, T2 => T2)
5258 or else
5259 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
5260 then
5261 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5262
5263 elsif Is_Fixed_Point_Type (T1)
5264 and then (Base_Type (T2) = Base_Type (Standard_Integer)
b69cd36a 5265 or else T2 = Universal_Integer)
996ae0b0
RK
5266 then
5267 Add_One_Interp (N, Op_Id, T1);
5268
5269 elsif T2 = Universal_Real
5270 and then Base_Type (T1) = Base_Type (Standard_Integer)
5271 and then Op_Name = Name_Op_Multiply
5272 then
5273 Add_One_Interp (N, Op_Id, Any_Fixed);
5274
5275 elsif T1 = Universal_Real
5276 and then Base_Type (T2) = Base_Type (Standard_Integer)
5277 then
5278 Add_One_Interp (N, Op_Id, Any_Fixed);
5279
5280 elsif Is_Fixed_Point_Type (T2)
5281 and then (Base_Type (T1) = Base_Type (Standard_Integer)
b69cd36a 5282 or else T1 = Universal_Integer)
996ae0b0
RK
5283 and then Op_Name = Name_Op_Multiply
5284 then
5285 Add_One_Interp (N, Op_Id, T2);
5286
5287 elsif T1 = Universal_Real and then T2 = Universal_Integer then
5288 Add_One_Interp (N, Op_Id, T1);
5289
5290 elsif T2 = Universal_Real
5291 and then T1 = Universal_Integer
5292 and then Op_Name = Name_Op_Multiply
5293 then
5294 Add_One_Interp (N, Op_Id, T2);
5295 end if;
5296
5297 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
5298
5299 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
5300 -- set does not require any special processing, since the Etype is
5301 -- already set (case of operation constructed by Exp_Fixed).
5302
5303 if Is_Integer_Type (T1)
b4592168
GD
5304 and then (Covers (T1 => T1, T2 => T2)
5305 or else
5306 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
5307 then
5308 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5309 end if;
5310
5311 elsif Op_Name = Name_Op_Expon then
996ae0b0
RK
5312 if Is_Numeric_Type (T1)
5313 and then not Is_Fixed_Point_Type (T1)
5314 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5315 or else T2 = Universal_Integer)
5316 then
5317 Add_One_Interp (N, Op_Id, Base_Type (T1));
5318 end if;
5319
5320 else pragma Assert (Nkind (N) in N_Op_Shift);
5321
5322 -- If not one of the predefined operators, the node may be one
5323 -- of the intrinsic functions. Its kind is always specific, and
5324 -- we can use it directly, rather than the name of the operation.
5325
5326 if Is_Integer_Type (T1)
5327 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5328 or else T2 = Universal_Integer)
5329 then
5330 Add_One_Interp (N, Op_Id, Base_Type (T1));
5331 end if;
5332 end if;
5333 end Check_Arithmetic_Pair;
5334
5335 -------------------------------
5336 -- Check_Misspelled_Selector --
5337 -------------------------------
5338
5339 procedure Check_Misspelled_Selector
5340 (Prefix : Entity_Id;
5341 Sel : Node_Id)
5342 is
5343 Max_Suggestions : constant := 2;
5344 Nr_Of_Suggestions : Natural := 0;
5345
5346 Suggestion_1 : Entity_Id := Empty;
5347 Suggestion_2 : Entity_Id := Empty;
5348
5349 Comp : Entity_Id;
5350
5351 begin
8b4230c8
AC
5352 -- All the components of the prefix of selector Sel are matched against
5353 -- Sel and a count is maintained of possible misspellings. When at
a90bd866 5354 -- the end of the analysis there are one or two (not more) possible
8b4230c8
AC
5355 -- misspellings, these misspellings will be suggested as possible
5356 -- correction.
996ae0b0 5357
4c46b835
AC
5358 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
5359
996ae0b0 5360 -- Concurrent types should be handled as well ???
4c46b835 5361
996ae0b0
RK
5362 return;
5363 end if;
5364
d469eabe
HK
5365 Comp := First_Entity (Prefix);
5366 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
5367 if Is_Visible_Component (Comp) then
5368 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
5369 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
5370
5371 case Nr_Of_Suggestions is
5372 when 1 => Suggestion_1 := Comp;
5373 when 2 => Suggestion_2 := Comp;
5374 when others => exit;
5375 end case;
996ae0b0 5376 end if;
d469eabe 5377 end if;
996ae0b0 5378
d469eabe
HK
5379 Comp := Next_Entity (Comp);
5380 end loop;
996ae0b0 5381
d469eabe 5382 -- Report at most two suggestions
996ae0b0 5383
d469eabe 5384 if Nr_Of_Suggestions = 1 then
4e7a4f6e 5385 Error_Msg_NE -- CODEFIX
d469eabe 5386 ("\possible misspelling of&", Sel, Suggestion_1);
996ae0b0 5387
d469eabe
HK
5388 elsif Nr_Of_Suggestions = 2 then
5389 Error_Msg_Node_2 := Suggestion_2;
4e7a4f6e 5390 Error_Msg_NE -- CODEFIX
d469eabe
HK
5391 ("\possible misspelling of& or&", Sel, Suggestion_1);
5392 end if;
996ae0b0
RK
5393 end Check_Misspelled_Selector;
5394
5395 ----------------------
5396 -- Defined_In_Scope --
5397 ----------------------
5398
5399 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
5400 is
5401 S1 : constant Entity_Id := Scope (Base_Type (T));
996ae0b0
RK
5402 begin
5403 return S1 = S
5404 or else (S1 = System_Aux_Id and then S = Scope (S1));
5405 end Defined_In_Scope;
5406
5407 -------------------
5408 -- Diagnose_Call --
5409 -------------------
5410
5411 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
fbf5a39b
AC
5412 Actual : Node_Id;
5413 X : Interp_Index;
5414 It : Interp;
fbf5a39b
AC
5415 Err_Mode : Boolean;
5416 New_Nam : Node_Id;
5417 Void_Interp_Seen : Boolean := False;
996ae0b0 5418
24657705
HK
5419 Success : Boolean;
5420 pragma Warnings (Off, Boolean);
5421
996ae0b0 5422 begin
0791fbe9 5423 if Ada_Version >= Ada_2005 then
996ae0b0 5424 Actual := First_Actual (N);
996ae0b0 5425 while Present (Actual) loop
0ab80019
AC
5426
5427 -- Ada 2005 (AI-50217): Post an error in case of premature
5428 -- usage of an entity from the limited view.
19f0526a 5429
996ae0b0 5430 if not Analyzed (Etype (Actual))
7b56a91b 5431 and then From_Limited_With (Etype (Actual))
996ae0b0
RK
5432 then
5433 Error_Msg_Qual_Level := 1;
ed2233dc 5434 Error_Msg_NE
996ae0b0
RK
5435 ("missing with_clause for scope of imported type&",
5436 Actual, Etype (Actual));
5437 Error_Msg_Qual_Level := 0;
5438 end if;
5439
5440 Next_Actual (Actual);
5441 end loop;
5442 end if;
5443
fbf5a39b
AC
5444 -- Analyze each candidate call again, with full error reporting
5445 -- for each.
5446
5447 Error_Msg_N
5448 ("no candidate interpretations match the actuals:!", Nam);
5449 Err_Mode := All_Errors_Mode;
5450 All_Errors_Mode := True;
5451
5452 -- If this is a call to an operation of a concurrent type,
5453 -- the failed interpretations have been removed from the
5454 -- name. Recover them to provide full diagnostics.
5455
5456 if Nkind (Parent (Nam)) = N_Selected_Component then
5457 Set_Entity (Nam, Empty);
5458 New_Nam := New_Copy_Tree (Parent (Nam));
5459 Set_Is_Overloaded (New_Nam, False);
5460 Set_Is_Overloaded (Selector_Name (New_Nam), False);
5461 Set_Parent (New_Nam, Parent (Parent (Nam)));
5462 Analyze_Selected_Component (New_Nam);
5463 Get_First_Interp (Selector_Name (New_Nam), X, It);
5464 else
996ae0b0 5465 Get_First_Interp (Nam, X, It);
fbf5a39b 5466 end if;
996ae0b0 5467
fbf5a39b
AC
5468 while Present (It.Nam) loop
5469 if Etype (It.Nam) = Standard_Void_Type then
5470 Void_Interp_Seen := True;
996ae0b0 5471 end if;
fbf5a39b
AC
5472
5473 Analyze_One_Call (N, It.Nam, True, Success);
5474 Get_Next_Interp (X, It);
5475 end loop;
996ae0b0
RK
5476
5477 if Nkind (N) = N_Function_Call then
5478 Get_First_Interp (Nam, X, It);
996ae0b0 5479 while Present (It.Nam) loop
bce79204 5480 if Ekind_In (It.Nam, E_Function, E_Operator) then
996ae0b0
RK
5481 return;
5482 else
5483 Get_Next_Interp (X, It);
5484 end if;
5485 end loop;
5486
5487 -- If all interpretations are procedures, this deserves a
5488 -- more precise message. Ditto if this appears as the prefix
5489 -- of a selected component, which may be a lexical error.
5490
4c46b835
AC
5491 Error_Msg_N
5492 ("\context requires function call, found procedure name", Nam);
996ae0b0
RK
5493
5494 if Nkind (Parent (N)) = N_Selected_Component
5495 and then N = Prefix (Parent (N))
5496 then
4e7a4f6e
AC
5497 Error_Msg_N -- CODEFIX
5498 ("\period should probably be semicolon", Parent (N));
996ae0b0 5499 end if;
fbf5a39b
AC
5500
5501 elsif Nkind (N) = N_Procedure_Call_Statement
5502 and then not Void_Interp_Seen
5503 then
5504 Error_Msg_N (
5505 "\function name found in procedure call", Nam);
996ae0b0 5506 end if;
fbf5a39b
AC
5507
5508 All_Errors_Mode := Err_Mode;
996ae0b0
RK
5509 end Diagnose_Call;
5510
5511 ---------------------------
5512 -- Find_Arithmetic_Types --
5513 ---------------------------
5514
5515 procedure Find_Arithmetic_Types
5516 (L, R : Node_Id;
5517 Op_Id : Entity_Id;
5518 N : Node_Id)
5519 is
4c46b835
AC
5520 Index1 : Interp_Index;
5521 Index2 : Interp_Index;
5522 It1 : Interp;
5523 It2 : Interp;
996ae0b0
RK
5524
5525 procedure Check_Right_Argument (T : Entity_Id);
5526 -- Check right operand of operator
5527
4c46b835
AC
5528 --------------------------
5529 -- Check_Right_Argument --
5530 --------------------------
5531
996ae0b0
RK
5532 procedure Check_Right_Argument (T : Entity_Id) is
5533 begin
5534 if not Is_Overloaded (R) then
5535 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
5536 else
5537 Get_First_Interp (R, Index2, It2);
996ae0b0
RK
5538 while Present (It2.Typ) loop
5539 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
5540 Get_Next_Interp (Index2, It2);
5541 end loop;
5542 end if;
5543 end Check_Right_Argument;
5544
d8221f45 5545 -- Start of processing for Find_Arithmetic_Types
996ae0b0
RK
5546
5547 begin
5548 if not Is_Overloaded (L) then
5549 Check_Right_Argument (Etype (L));
5550
5551 else
5552 Get_First_Interp (L, Index1, It1);
996ae0b0
RK
5553 while Present (It1.Typ) loop
5554 Check_Right_Argument (It1.Typ);
5555 Get_Next_Interp (Index1, It1);
5556 end loop;
5557 end if;
5558
5559 end Find_Arithmetic_Types;
5560
5561 ------------------------
5562 -- Find_Boolean_Types --
5563 ------------------------
5564
5565 procedure Find_Boolean_Types
5566 (L, R : Node_Id;
5567 Op_Id : Entity_Id;
5568 N : Node_Id)
5569 is
5570 Index : Interp_Index;
5571 It : Interp;
5572
5573 procedure Check_Numeric_Argument (T : Entity_Id);
5574 -- Special case for logical operations one of whose operands is an
5575 -- integer literal. If both are literal the result is any modular type.
5576
4c46b835
AC
5577 ----------------------------
5578 -- Check_Numeric_Argument --
5579 ----------------------------
5580
996ae0b0
RK
5581 procedure Check_Numeric_Argument (T : Entity_Id) is
5582 begin
5583 if T = Universal_Integer then
5584 Add_One_Interp (N, Op_Id, Any_Modular);
5585
5586 elsif Is_Modular_Integer_Type (T) then
5587 Add_One_Interp (N, Op_Id, T);
5588 end if;
5589 end Check_Numeric_Argument;
5590
5591 -- Start of processing for Find_Boolean_Types
5592
5593 begin
5594 if not Is_Overloaded (L) then
996ae0b0
RK
5595 if Etype (L) = Universal_Integer
5596 or else Etype (L) = Any_Modular
5597 then
5598 if not Is_Overloaded (R) then
5599 Check_Numeric_Argument (Etype (R));
5600
5601 else
5602 Get_First_Interp (R, Index, It);
996ae0b0
RK
5603 while Present (It.Typ) loop
5604 Check_Numeric_Argument (It.Typ);
996ae0b0
RK
5605 Get_Next_Interp (Index, It);
5606 end loop;
5607 end if;
5608
69e6a03e
ES
5609 -- If operands are aggregates, we must assume that they may be
5610 -- boolean arrays, and leave disambiguation for the second pass.
5611 -- If only one is an aggregate, verify that the other one has an
5612 -- interpretation as a boolean array
5613
5614 elsif Nkind (L) = N_Aggregate then
5615 if Nkind (R) = N_Aggregate then
5616 Add_One_Interp (N, Op_Id, Etype (L));
5617
5618 elsif not Is_Overloaded (R) then
5619 if Valid_Boolean_Arg (Etype (R)) then
5620 Add_One_Interp (N, Op_Id, Etype (R));
5621 end if;
5622
5623 else
5624 Get_First_Interp (R, Index, It);
5625 while Present (It.Typ) loop
5626 if Valid_Boolean_Arg (It.Typ) then
5627 Add_One_Interp (N, Op_Id, It.Typ);
5628 end if;
5629
5630 Get_Next_Interp (Index, It);
5631 end loop;
5632 end if;
5633
996ae0b0
RK
5634 elsif Valid_Boolean_Arg (Etype (L))
5635 and then Has_Compatible_Type (R, Etype (L))
5636 then
5637 Add_One_Interp (N, Op_Id, Etype (L));
5638 end if;
5639
5640 else
5641 Get_First_Interp (L, Index, It);
996ae0b0
RK
5642 while Present (It.Typ) loop
5643 if Valid_Boolean_Arg (It.Typ)
5644 and then Has_Compatible_Type (R, It.Typ)
5645 then
5646 Add_One_Interp (N, Op_Id, It.Typ);
5647 end if;
5648
5649 Get_Next_Interp (Index, It);
5650 end loop;
5651 end if;
5652 end Find_Boolean_Types;
5653
5654 ---------------------------
5655 -- Find_Comparison_Types --
5656 ---------------------------
5657
5658 procedure Find_Comparison_Types
5659 (L, R : Node_Id;
5660 Op_Id : Entity_Id;
5661 N : Node_Id)
5662 is
5663 Index : Interp_Index;
5664 It : Interp;
5665 Found : Boolean := False;
5666 I_F : Interp_Index;
5667 T_F : Entity_Id;
5668 Scop : Entity_Id := Empty;
5669
5670 procedure Try_One_Interp (T1 : Entity_Id);
5671 -- Routine to try one proposed interpretation. Note that the context
5672 -- of the operator plays no role in resolving the arguments, so that
5673 -- if there is more than one interpretation of the operands that is
5674 -- compatible with comparison, the operation is ambiguous.
5675
4c46b835
AC
5676 --------------------
5677 -- Try_One_Interp --
5678 --------------------
5679
996ae0b0
RK
5680 procedure Try_One_Interp (T1 : Entity_Id) is
5681 begin
5682
5683 -- If the operator is an expanded name, then the type of the operand
5684 -- must be defined in the corresponding scope. If the type is
5685 -- universal, the context will impose the correct type.
5686
5687 if Present (Scop)
8b4230c8
AC
5688 and then not Defined_In_Scope (T1, Scop)
5689 and then T1 /= Universal_Integer
5690 and then T1 /= Universal_Real
5691 and then T1 /= Any_String
5692 and then T1 /= Any_Composite
996ae0b0
RK
5693 then
5694 return;
5695 end if;
5696
8b4230c8
AC
5697 if Valid_Comparison_Arg (T1) and then Has_Compatible_Type (R, T1) then
5698 if Found and then Base_Type (T1) /= Base_Type (T_F) then
996ae0b0
RK
5699 It := Disambiguate (L, I_F, Index, Any_Type);
5700
5701 if It = No_Interp then
5702 Ambiguous_Operands (N);
5703 Set_Etype (L, Any_Type);
5704 return;
5705
5706 else
5707 T_F := It.Typ;
5708 end if;
5709
5710 else
5711 Found := True;
5712 T_F := T1;
5713 I_F := Index;
5714 end if;
5715
5716 Set_Etype (L, T_F);
5717 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5718
5719 end if;
5720 end Try_One_Interp;
5721
d8221f45 5722 -- Start of processing for Find_Comparison_Types
996ae0b0
RK
5723
5724 begin
fbf5a39b
AC
5725 -- If left operand is aggregate, the right operand has to
5726 -- provide a usable type for it.
5727
8b4230c8 5728 if Nkind (L) = N_Aggregate and then Nkind (R) /= N_Aggregate then
b4592168 5729 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
fbf5a39b
AC
5730 return;
5731 end if;
996ae0b0
RK
5732
5733 if Nkind (N) = N_Function_Call
5734 and then Nkind (Name (N)) = N_Expanded_Name
5735 then
5736 Scop := Entity (Prefix (Name (N)));
5737
5738 -- The prefix may be a package renaming, and the subsequent test
5739 -- requires the original package.
5740
5741 if Ekind (Scop) = E_Package
5742 and then Present (Renamed_Entity (Scop))
5743 then
5744 Scop := Renamed_Entity (Scop);
5745 Set_Entity (Prefix (Name (N)), Scop);
5746 end if;
5747 end if;
5748
5749 if not Is_Overloaded (L) then
5750 Try_One_Interp (Etype (L));
5751
5752 else
5753 Get_First_Interp (L, Index, It);
996ae0b0
RK
5754 while Present (It.Typ) loop
5755 Try_One_Interp (It.Typ);
5756 Get_Next_Interp (Index, It);
5757 end loop;
5758 end if;
5759 end Find_Comparison_Types;
5760
5761 ----------------------------------------
5762 -- Find_Non_Universal_Interpretations --
5763 ----------------------------------------
5764
5765 procedure Find_Non_Universal_Interpretations
5766 (N : Node_Id;
5767 R : Node_Id;
5768 Op_Id : Entity_Id;
5769 T1 : Entity_Id)
5770 is
5771 Index : Interp_Index;
4c46b835 5772 It : Interp;
996ae0b0
RK
5773
5774 begin
8b4230c8 5775 if T1 = Universal_Integer or else T1 = Universal_Real
b9daa96e
AC
5776
5777 -- If the left operand of an equality operator is null, the visibility
5778 -- of the operator must be determined from the interpretation of the
5779 -- right operand. This processing must be done for Any_Access, which
5780 -- is the internal representation of the type of the literal null.
5781
be4c5193 5782 or else T1 = Any_Access
996ae0b0
RK
5783 then
5784 if not Is_Overloaded (R) then
8b4230c8 5785 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
996ae0b0
RK
5786 else
5787 Get_First_Interp (R, Index, It);
996ae0b0
RK
5788 while Present (It.Typ) loop
5789 if Covers (It.Typ, T1) then
5790 Add_One_Interp
5791 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5792 end if;
5793
5794 Get_Next_Interp (Index, It);
5795 end loop;
5796 end if;
5797 else
5798 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
5799 end if;
5800 end Find_Non_Universal_Interpretations;
5801
5802 ------------------------------
5803 -- Find_Concatenation_Types --
5804 ------------------------------
5805
5806 procedure Find_Concatenation_Types
5807 (L, R : Node_Id;
5808 Op_Id : Entity_Id;
5809 N : Node_Id)
5810 is
5811 Op_Type : constant Entity_Id := Etype (Op_Id);
5812
5813 begin
5814 if Is_Array_Type (Op_Type)
5815 and then not Is_Limited_Type (Op_Type)
5816
5817 and then (Has_Compatible_Type (L, Op_Type)
5818 or else
5819 Has_Compatible_Type (L, Component_Type (Op_Type)))
5820
5821 and then (Has_Compatible_Type (R, Op_Type)
5822 or else
5823 Has_Compatible_Type (R, Component_Type (Op_Type)))
5824 then
5825 Add_One_Interp (N, Op_Id, Op_Type);
5826 end if;
5827 end Find_Concatenation_Types;
5828
5829 -------------------------
5830 -- Find_Equality_Types --
5831 -------------------------
5832
5833 procedure Find_Equality_Types
5834 (L, R : Node_Id;
5835 Op_Id : Entity_Id;
5836 N : Node_Id)
5837 is
5838 Index : Interp_Index;
5839 It : Interp;
5840 Found : Boolean := False;
5841 I_F : Interp_Index;
5842 T_F : Entity_Id;
5843 Scop : Entity_Id := Empty;
5844
5845 procedure Try_One_Interp (T1 : Entity_Id);
a8e65aa5
AC
5846 -- The context of the equality operator plays no role in resolving the
5847 -- arguments, so that if there is more than one interpretation of the
5848 -- operands that is compatible with equality, the construct is ambiguous
5849 -- and an error can be emitted now, after trying to disambiguate, i.e.
5850 -- applying preference rules.
996ae0b0 5851
4c46b835
AC
5852 --------------------
5853 -- Try_One_Interp --
5854 --------------------
5855
996ae0b0 5856 procedure Try_One_Interp (T1 : Entity_Id) is
a8e65aa5
AC
5857 Bas : constant Entity_Id := Base_Type (T1);
5858
996ae0b0 5859 begin
996ae0b0
RK
5860 -- If the operator is an expanded name, then the type of the operand
5861 -- must be defined in the corresponding scope. If the type is
5862 -- universal, the context will impose the correct type. An anonymous
5863 -- type for a 'Access reference is also universal in this sense, as
5864 -- the actual type is obtained from context.
8b4230c8 5865
fe45e59e
ES
5866 -- In Ada 2005, the equality operator for anonymous access types
5867 -- is declared in Standard, and preference rules apply to it.
996ae0b0 5868
fe45e59e
ES
5869 if Present (Scop) then
5870 if Defined_In_Scope (T1, Scop)
5871 or else T1 = Universal_Integer
5872 or else T1 = Universal_Real
5873 or else T1 = Any_Access
5874 or else T1 = Any_String
5875 or else T1 = Any_Composite
5876 or else (Ekind (T1) = E_Access_Subprogram_Type
a8e65aa5 5877 and then not Comes_From_Source (T1))
fe45e59e
ES
5878 then
5879 null;
5880
5881 elsif Ekind (T1) = E_Anonymous_Access_Type
5882 and then Scop = Standard_Standard
5883 then
5884 null;
5885
5886 else
5887 -- The scope does not contain an operator for the type
5888
5889 return;
5890 end if;
a8e65aa5 5891
9aa04cc7
AC
5892 -- If we have infix notation, the operator must be usable. Within
5893 -- an instance, if the type is already established we know it is
5894 -- correct. If an operand is universal it is compatible with any
5895 -- numeric type.
31af8899 5896
a8e65aa5
AC
5897 elsif In_Open_Scopes (Scope (Bas))
5898 or else Is_Potentially_Use_Visible (Bas)
5899 or else In_Use (Bas)
9aa04cc7 5900 or else (In_Use (Scope (Bas)) and then not Is_Hidden (Bas))
a54ffd6c
AC
5901
5902 -- In an instance, the type may have been immediately visible.
5903 -- Either the types are compatible, or one operand is universal
5904 -- (numeric or null).
5905
a8e65aa5 5906 or else (In_Instance
9aa04cc7
AC
5907 and then
5908 (First_Subtype (T1) = First_Subtype (Etype (R))
4f7c83ca 5909 or else Nkind (R) = N_Null
9aa04cc7
AC
5910 or else
5911 (Is_Numeric_Type (T1)
5912 and then Is_Universal_Numeric_Type (Etype (R)))))
a54ffd6c
AC
5913
5914 -- In Ada 2005, the equality on anonymous access types is declared
5915 -- in Standard, and is always visible.
5916
a8e65aa5
AC
5917 or else Ekind (T1) = E_Anonymous_Access_Type
5918 then
5919 null;
5920
5921 else
308e6f3a 5922 -- Save candidate type for subsequent error message, if any
a8e65aa5
AC
5923
5924 if not Is_Limited_Type (T1) then
5925 Candidate_Type := T1;
5926 end if;
5927
5928 return;
996ae0b0
RK
5929 end if;
5930
0ab80019
AC
5931 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5932 -- Do not allow anonymous access types in equality operators.
6e937c1c 5933
0791fbe9 5934 if Ada_Version < Ada_2005
6e937c1c
AC
5935 and then Ekind (T1) = E_Anonymous_Access_Type
5936 then
5937 return;
5938 end if;
5939
c92e8586
AC
5940 -- If the right operand has a type compatible with T1, check for an
5941 -- acceptable interpretation, unless T1 is limited (no predefined
5942 -- equality available), or this is use of a "/=" for a tagged type.
8b4230c8
AC
5943 -- In the latter case, possible interpretations of equality need
5944 -- to be considered, we don't want the default inequality declared
5945 -- in Standard to be chosen, and the "/=" will be rewritten as a
c92e8586
AC
5946 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
5947 -- that that rewriting happens during analysis rather than being
5948 -- delayed until expansion (this is needed for ASIS, which only sees
5949 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
5950 -- is Name_Op_Eq then we still proceed with the interpretation,
5951 -- because that indicates the potential rewriting case where the
5952 -- interpretation to consider is actually "=" and the node may be
5953 -- about to be rewritten by Analyze_Equality_Op.
5954
996ae0b0 5955 if T1 /= Standard_Void_Type
996ae0b0 5956 and then Has_Compatible_Type (R, T1)
c92e8586 5957
9b62eb32
AC
5958 and then
5959 ((not Is_Limited_Type (T1)
5960 and then not Is_Limited_Composite (T1))
5961
5962 or else
2fcc44fa 5963 (Is_Array_Type (T1)
9b62eb32
AC
5964 and then not Is_Limited_Type (Component_Type (T1))
5965 and then Available_Full_View_Of_Component (T1)))
c92e8586
AC
5966
5967 and then
5968 (Nkind (N) /= N_Op_Ne
5969 or else not Is_Tagged_Type (T1)
5970 or else Chars (Op_Id) = Name_Op_Eq)
996ae0b0
RK
5971 then
5972 if Found
5973 and then Base_Type (T1) /= Base_Type (T_F)
5974 then
5975 It := Disambiguate (L, I_F, Index, Any_Type);
5976
5977 if It = No_Interp then
5978 Ambiguous_Operands (N);
5979 Set_Etype (L, Any_Type);
5980 return;
5981
5982 else
5983 T_F := It.Typ;
5984 end if;
5985
5986 else
5987 Found := True;
5988 T_F := T1;
5989 I_F := Index;
5990 end if;
5991
5992 if not Analyzed (L) then
5993 Set_Etype (L, T_F);
5994 end if;
5995
5996 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5997
6e73e3ab 5998 -- Case of operator was not visible, Etype still set to Any_Type
996ae0b0 5999
6e73e3ab 6000 if Etype (N) = Any_Type then
996ae0b0
RK
6001 Found := False;
6002 end if;
fe45e59e
ES
6003
6004 elsif Scop = Standard_Standard
6005 and then Ekind (T1) = E_Anonymous_Access_Type
6006 then
6007 Found := True;
996ae0b0
RK
6008 end if;
6009 end Try_One_Interp;
6010
6011 -- Start of processing for Find_Equality_Types
6012
6013 begin
fbf5a39b
AC
6014 -- If left operand is aggregate, the right operand has to
6015 -- provide a usable type for it.
6016
6017 if Nkind (L) = N_Aggregate
6018 and then Nkind (R) /= N_Aggregate
6019 then
b4592168 6020 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
fbf5a39b
AC
6021 return;
6022 end if;
996ae0b0
RK
6023
6024 if Nkind (N) = N_Function_Call
6025 and then Nkind (Name (N)) = N_Expanded_Name
6026 then
6027 Scop := Entity (Prefix (Name (N)));
6028
6029 -- The prefix may be a package renaming, and the subsequent test
6030 -- requires the original package.
6031
6032 if Ekind (Scop) = E_Package
6033 and then Present (Renamed_Entity (Scop))
6034 then
6035 Scop := Renamed_Entity (Scop);
6036 Set_Entity (Prefix (Name (N)), Scop);
6037 end if;
6038 end if;
6039
6040 if not Is_Overloaded (L) then
6041 Try_One_Interp (Etype (L));
996ae0b0 6042
4c46b835 6043 else
996ae0b0 6044 Get_First_Interp (L, Index, It);
996ae0b0
RK
6045 while Present (It.Typ) loop
6046 Try_One_Interp (It.Typ);
6047 Get_Next_Interp (Index, It);
6048 end loop;
6049 end if;
6050 end Find_Equality_Types;
6051
6052 -------------------------
6053 -- Find_Negation_Types --
6054 -------------------------
6055
6056 procedure Find_Negation_Types
6057 (R : Node_Id;
6058 Op_Id : Entity_Id;
6059 N : Node_Id)
6060 is
6061 Index : Interp_Index;
6062 It : Interp;
6063
6064 begin
6065 if not Is_Overloaded (R) then
996ae0b0
RK
6066 if Etype (R) = Universal_Integer then
6067 Add_One_Interp (N, Op_Id, Any_Modular);
996ae0b0
RK
6068 elsif Valid_Boolean_Arg (Etype (R)) then
6069 Add_One_Interp (N, Op_Id, Etype (R));
6070 end if;
6071
6072 else
6073 Get_First_Interp (R, Index, It);
996ae0b0
RK
6074 while Present (It.Typ) loop
6075 if Valid_Boolean_Arg (It.Typ) then
6076 Add_One_Interp (N, Op_Id, It.Typ);
6077 end if;
6078
6079 Get_Next_Interp (Index, It);
6080 end loop;
6081 end if;
6082 end Find_Negation_Types;
6083
d469eabe
HK
6084 ------------------------------
6085 -- Find_Primitive_Operation --
6086 ------------------------------
6087
6088 function Find_Primitive_Operation (N : Node_Id) return Boolean is
6089 Obj : constant Node_Id := Prefix (N);
6090 Op : constant Node_Id := Selector_Name (N);
6091
6092 Prim : Elmt_Id;
6093 Prims : Elist_Id;
6094 Typ : Entity_Id;
6095
6096 begin
6097 Set_Etype (Op, Any_Type);
6098
6099 if Is_Access_Type (Etype (Obj)) then
6100 Typ := Designated_Type (Etype (Obj));
6101 else
6102 Typ := Etype (Obj);
6103 end if;
6104
6105 if Is_Class_Wide_Type (Typ) then
6106 Typ := Root_Type (Typ);
6107 end if;
6108
6109 Prims := Primitive_Operations (Typ);
6110
6111 Prim := First_Elmt (Prims);
6112 while Present (Prim) loop
6113 if Chars (Node (Prim)) = Chars (Op) then
6114 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
6115 Set_Etype (N, Etype (Node (Prim)));
6116 end if;
6117
6118 Next_Elmt (Prim);
6119 end loop;
6120
6121 -- Now look for class-wide operations of the type or any of its
6122 -- ancestors by iterating over the homonyms of the selector.
6123
6124 declare
6125 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
6126 Hom : Entity_Id;
6127
6128 begin
6129 Hom := Current_Entity (Op);
6130 while Present (Hom) loop
6131 if (Ekind (Hom) = E_Procedure
6132 or else
6133 Ekind (Hom) = E_Function)
6134 and then Scope (Hom) = Scope (Typ)
6135 and then Present (First_Formal (Hom))
6136 and then
6137 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6138 or else
6139 (Is_Access_Type (Etype (First_Formal (Hom)))
8b4230c8
AC
6140 and then
6141 Ekind (Etype (First_Formal (Hom))) =
6142 E_Anonymous_Access_Type
6143 and then
6144 Base_Type
6145 (Designated_Type (Etype (First_Formal (Hom)))) =
d469eabe
HK
6146 Cls_Type))
6147 then
6148 Add_One_Interp (Op, Hom, Etype (Hom));
6149 Set_Etype (N, Etype (Hom));
6150 end if;
6151
6152 Hom := Homonym (Hom);
6153 end loop;
6154 end;
6155
6156 return Etype (Op) /= Any_Type;
6157 end Find_Primitive_Operation;
6158
996ae0b0
RK
6159 ----------------------
6160 -- Find_Unary_Types --
6161 ----------------------
6162
6163 procedure Find_Unary_Types
6164 (R : Node_Id;
6165 Op_Id : Entity_Id;
6166 N : Node_Id)
6167 is
6168 Index : Interp_Index;
6169 It : Interp;
6170
6171 begin
6172 if not Is_Overloaded (R) then
6173 if Is_Numeric_Type (Etype (R)) then
65f7ed64
AC
6174
6175 -- In an instance a generic actual may be a numeric type even if
6176 -- the formal in the generic unit was not. In that case, the
6177 -- predefined operator was not a possible interpretation in the
2e70d415
AC
6178 -- generic, and cannot be one in the instance, unless the operator
6179 -- is an actual of an instance.
65f7ed64
AC
6180
6181 if In_Instance
6182 and then
6183 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
6184 then
6185 null;
6186 else
6187 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
6188 end if;
996ae0b0
RK
6189 end if;
6190
6191 else
6192 Get_First_Interp (R, Index, It);
996ae0b0
RK
6193 while Present (It.Typ) loop
6194 if Is_Numeric_Type (It.Typ) then
65f7ed64
AC
6195 if In_Instance
6196 and then
6197 not Is_Numeric_Type
6198 (Corresponding_Generic_Type (Etype (It.Typ)))
6199 then
6200 null;
6201
6202 else
6203 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
6204 end if;
996ae0b0
RK
6205 end if;
6206
6207 Get_Next_Interp (Index, It);
6208 end loop;
6209 end if;
6210 end Find_Unary_Types;
6211
996ae0b0
RK
6212 ------------------
6213 -- Junk_Operand --
6214 ------------------
6215
6216 function Junk_Operand (N : Node_Id) return Boolean is
6217 Enode : Node_Id;
6218
6219 begin
6220 if Error_Posted (N) then
6221 return False;
6222 end if;
6223
6224 -- Get entity to be tested
6225
6226 if Is_Entity_Name (N)
6227 and then Present (Entity (N))
6228 then
6229 Enode := N;
6230
6231 -- An odd case, a procedure name gets converted to a very peculiar
6232 -- function call, and here is where we detect this happening.
6233
6234 elsif Nkind (N) = N_Function_Call
6235 and then Is_Entity_Name (Name (N))
6236 and then Present (Entity (Name (N)))
6237 then
6238 Enode := Name (N);
6239
6240 -- Another odd case, there are at least some cases of selected
6241 -- components where the selected component is not marked as having
6242 -- an entity, even though the selector does have an entity
6243
6244 elsif Nkind (N) = N_Selected_Component
6245 and then Present (Entity (Selector_Name (N)))
6246 then
6247 Enode := Selector_Name (N);
6248
6249 else
6250 return False;
6251 end if;
6252
9de61fcb 6253 -- Now test the entity we got to see if it is a bad case
996ae0b0
RK
6254
6255 case Ekind (Entity (Enode)) is
6256
6257 when E_Package =>
6258 Error_Msg_N
6259 ("package name cannot be used as operand", Enode);
6260
6261 when Generic_Unit_Kind =>
6262 Error_Msg_N
6263 ("generic unit name cannot be used as operand", Enode);
6264
6265 when Type_Kind =>
6266 Error_Msg_N
6267 ("subtype name cannot be used as operand", Enode);
6268
6269 when Entry_Kind =>
6270 Error_Msg_N
6271 ("entry name cannot be used as operand", Enode);
6272
6273 when E_Procedure =>
6274 Error_Msg_N
6275 ("procedure name cannot be used as operand", Enode);
6276
6277 when E_Exception =>
6278 Error_Msg_N
6279 ("exception name cannot be used as operand", Enode);
6280
6281 when E_Block | E_Label | E_Loop =>
6282 Error_Msg_N
6283 ("label name cannot be used as operand", Enode);
6284
6285 when others =>
6286 return False;
6287
6288 end case;
6289
6290 return True;
6291 end Junk_Operand;
6292
6293 --------------------
6294 -- Operator_Check --
6295 --------------------
6296
6297 procedure Operator_Check (N : Node_Id) is
6298 begin
30c20106
AC
6299 Remove_Abstract_Operations (N);
6300
996ae0b0
RK
6301 -- Test for case of no interpretation found for operator
6302
6303 if Etype (N) = Any_Type then
6304 declare
b67a385c
ES
6305 L : Node_Id;
6306 R : Node_Id;
6307 Op_Id : Entity_Id := Empty;
996ae0b0
RK
6308
6309 begin
6310 R := Right_Opnd (N);
6311
6312 if Nkind (N) in N_Binary_Op then
6313 L := Left_Opnd (N);
6314 else
6315 L := Empty;
6316 end if;
6317
6318 -- If either operand has no type, then don't complain further,
9de61fcb 6319 -- since this simply means that we have a propagated error.
996ae0b0
RK
6320
6321 if R = Error
6322 or else Etype (R) = Any_Type
6323 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
6324 then
7610fee8
AC
6325 -- For the rather unusual case where one of the operands is
6326 -- a Raise_Expression, whose initial type is Any_Type, use
6327 -- the type of the other operand.
6328
6329 if Nkind (L) = N_Raise_Expression then
6330 Set_Etype (L, Etype (R));
6331 Set_Etype (N, Etype (R));
6332
6333 elsif Nkind (R) = N_Raise_Expression then
6334 Set_Etype (R, Etype (L));
6335 Set_Etype (N, Etype (L));
6336 end if;
6337
996ae0b0
RK
6338 return;
6339
4c46b835
AC
6340 -- We explicitly check for the case of concatenation of component
6341 -- with component to avoid reporting spurious matching array types
6342 -- that might happen to be lurking in distant packages (such as
6343 -- run-time packages). This also prevents inconsistencies in the
6344 -- messages for certain ACVC B tests, which can vary depending on
6345 -- types declared in run-time interfaces. Another improvement when
6346 -- aggregates are present is to look for a well-typed operand.
996ae0b0
RK
6347
6348 elsif Present (Candidate_Type)
6349 and then (Nkind (N) /= N_Op_Concat
6350 or else Is_Array_Type (Etype (L))
6351 or else Is_Array_Type (Etype (R)))
6352 then
996ae0b0
RK
6353 if Nkind (N) = N_Op_Concat then
6354 if Etype (L) /= Any_Composite
6355 and then Is_Array_Type (Etype (L))
6356 then
6357 Candidate_Type := Etype (L);
6358
6359 elsif Etype (R) /= Any_Composite
6360 and then Is_Array_Type (Etype (R))
6361 then
6362 Candidate_Type := Etype (R);
6363 end if;
6364 end if;
6365
19d846a0 6366 Error_Msg_NE -- CODEFIX
996ae0b0
RK
6367 ("operator for} is not directly visible!",
6368 N, First_Subtype (Candidate_Type));
4561baf7
ES
6369
6370 declare
6371 U : constant Node_Id :=
6372 Cunit (Get_Source_Unit (Candidate_Type));
4561baf7
ES
6373 begin
6374 if Unit_Is_Visible (U) then
6375 Error_Msg_N -- CODEFIX
6376 ("use clause would make operation legal!", N);
4561baf7
ES
6377 else
6378 Error_Msg_NE -- CODEFIX
6379 ("add with_clause and use_clause for&!",
8b4230c8 6380 N, Defining_Entity (Unit (U)));
4561baf7
ES
6381 end if;
6382 end;
996ae0b0
RK
6383 return;
6384
6385 -- If either operand is a junk operand (e.g. package name), then
6386 -- post appropriate error messages, but do not complain further.
6387
0e0eecec
ES
6388 -- Note that the use of OR in this test instead of OR ELSE is
6389 -- quite deliberate, we may as well check both operands in the
6390 -- binary operator case.
996ae0b0
RK
6391
6392 elsif Junk_Operand (R)
9559eccf
AC
6393 or -- really mean OR here and not OR ELSE, see above
6394 (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
996ae0b0
RK
6395 then
6396 return;
6397
6398 -- If we have a logical operator, one of whose operands is
0e0eecec
ES
6399 -- Boolean, then we know that the other operand cannot resolve to
6400 -- Boolean (since we got no interpretations), but in that case we
6401 -- pretty much know that the other operand should be Boolean, so
6402 -- resolve it that way (generating an error)
996ae0b0 6403
d469eabe 6404 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
996ae0b0
RK
6405 if Etype (L) = Standard_Boolean then
6406 Resolve (R, Standard_Boolean);
6407 return;
6408 elsif Etype (R) = Standard_Boolean then
6409 Resolve (L, Standard_Boolean);
6410 return;
6411 end if;
6412
6413 -- For an arithmetic operator or comparison operator, if one
6414 -- of the operands is numeric, then we know the other operand
6415 -- is not the same numeric type. If it is a non-numeric type,
6416 -- then probably it is intended to match the other operand.
6417
d469eabe
HK
6418 elsif Nkind_In (N, N_Op_Add,
6419 N_Op_Divide,
6420 N_Op_Ge,
6421 N_Op_Gt,
6422 N_Op_Le)
6423 or else
6424 Nkind_In (N, N_Op_Lt,
6425 N_Op_Mod,
6426 N_Op_Multiply,
6427 N_Op_Rem,
6428 N_Op_Subtract)
996ae0b0 6429 then
7dbd3de9
RD
6430 -- If Allow_Integer_Address is active, check whether the
6431 -- operation becomes legal after converting an operand.
6432
996ae0b0
RK
6433 if Is_Numeric_Type (Etype (L))
6434 and then not Is_Numeric_Type (Etype (R))
6435 then
7dbd3de9
RD
6436 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6437 Rewrite (R,
6438 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
7dbd3de9 6439
1e3689bd
AC
6440 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6441 Analyze_Comparison_Op (N);
6442 else
6443 Analyze_Arithmetic_Op (N);
6444 end if;
7dbd3de9
RD
6445 else
6446 Resolve (R, Etype (L));
6447 end if;
1e3689bd 6448
996ae0b0
RK
6449 return;
6450
6451 elsif Is_Numeric_Type (Etype (R))
6452 and then not Is_Numeric_Type (Etype (L))
6453 then
7dbd3de9
RD
6454 if Address_Integer_Convert_OK (Etype (L), Etype (R)) then
6455 Rewrite (L,
6456 Unchecked_Convert_To (Etype (R), Relocate_Node (L)));
1e3689bd
AC
6457
6458 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6459 Analyze_Comparison_Op (N);
6460 else
6461 Analyze_Arithmetic_Op (N);
6462 end if;
6463
9559eccf 6464 return;
7dbd3de9
RD
6465
6466 else
6467 Resolve (L, Etype (R));
6468 end if;
9559eccf 6469
996ae0b0 6470 return;
9559eccf
AC
6471
6472 elsif Allow_Integer_Address
6473 and then Is_Descendent_Of_Address (Etype (L))
6474 and then Is_Descendent_Of_Address (Etype (R))
6475 and then not Error_Posted (N)
6476 then
6477 declare
6478 Addr_Type : constant Entity_Id := Etype (L);
6479
6480 begin
6481 Rewrite (L,
6482 Unchecked_Convert_To (
6483 Standard_Integer, Relocate_Node (L)));
6484 Rewrite (R,
6485 Unchecked_Convert_To (
6486 Standard_Integer, Relocate_Node (R)));
1e3689bd
AC
6487
6488 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6489 Analyze_Comparison_Op (N);
6490 else
6491 Analyze_Arithmetic_Op (N);
6492 end if;
9559eccf
AC
6493
6494 -- If this is an operand in an enclosing arithmetic
6495 -- operation, Convert the result as an address so that
6496 -- arithmetic folding of address can continue.
6497
6498 if Nkind (Parent (N)) in N_Op then
6499 Rewrite (N,
6500 Unchecked_Convert_To (Addr_Type, Relocate_Node (N)));
6501 end if;
6502
6503 return;
6504 end;
996ae0b0
RK
6505 end if;
6506
6507 -- Comparisons on A'Access are common enough to deserve a
6508 -- special message.
6509
d469eabe 6510 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
996ae0b0
RK
6511 and then Ekind (Etype (L)) = E_Access_Attribute_Type
6512 and then Ekind (Etype (R)) = E_Access_Attribute_Type
6513 then
6514 Error_Msg_N
6515 ("two access attributes cannot be compared directly", N);
6516 Error_Msg_N
aab883ec 6517 ("\use qualified expression for one of the operands",
996ae0b0
RK
6518 N);
6519 return;
6520
6521 -- Another one for C programmers
6522
6523 elsif Nkind (N) = N_Op_Concat
6524 and then Valid_Boolean_Arg (Etype (L))
6525 and then Valid_Boolean_Arg (Etype (R))
6526 then
6527 Error_Msg_N ("invalid operands for concatenation", N);
4e7a4f6e
AC
6528 Error_Msg_N -- CODEFIX
6529 ("\maybe AND was meant", N);
996ae0b0
RK
6530 return;
6531
6532 -- A special case for comparison of access parameter with null
6533
6534 elsif Nkind (N) = N_Op_Eq
6535 and then Is_Entity_Name (L)
6536 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
6537 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
6538 N_Access_Definition
6539 and then Nkind (R) = N_Null
6540 then
6541 Error_Msg_N ("access parameter is not allowed to be null", L);
6542 Error_Msg_N ("\(call would raise Constraint_Error)", L);
6543 return;
61bee0e3
AC
6544
6545 -- Another special case for exponentiation, where the right
6546 -- operand must be Natural, independently of the base.
6547
6548 elsif Nkind (N) = N_Op_Expon
6549 and then Is_Numeric_Type (Etype (L))
6550 and then not Is_Overloaded (R)
6551 and then
6552 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
6553 and then Base_Type (Etype (R)) /= Universal_Integer
6554 then
dec6faf1 6555 if Ada_Version >= Ada_2012
15954beb 6556 and then Has_Dimension_System (Etype (L))
dec6faf1
AC
6557 then
6558 Error_Msg_NE
54c04d6c 6559 ("exponent for dimensioned type must be a rational" &
dec6faf1
AC
6560 ", found}", R, Etype (R));
6561 else
6562 Error_Msg_NE
6563 ("exponent must be of type Natural, found}", R, Etype (R));
6564 end if;
54c04d6c 6565
61bee0e3 6566 return;
11261647
AC
6567
6568 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
6569 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6570 Rewrite (R,
6571 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
6572 Analyze_Equality_Op (N);
6573 return;
6574 end if;
996ae0b0
RK
6575 end if;
6576
0e0eecec
ES
6577 -- If we fall through then just give general message. Note that in
6578 -- the following messages, if the operand is overloaded we choose
6579 -- an arbitrary type to complain about, but that is probably more
6580 -- useful than not giving a type at all.
996ae0b0
RK
6581
6582 if Nkind (N) in N_Unary_Op then
6583 Error_Msg_Node_2 := Etype (R);
6584 Error_Msg_N ("operator& not defined for}", N);
6585 return;
6586
6587 else
fbf5a39b
AC
6588 if Nkind (N) in N_Binary_Op then
6589 if not Is_Overloaded (L)
6590 and then not Is_Overloaded (R)
6591 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6592 then
7ffd9312 6593 Error_Msg_Node_2 := First_Subtype (Etype (R));
fbf5a39b 6594 Error_Msg_N ("there is no applicable operator& for}", N);
996ae0b0 6595
fbf5a39b 6596 else
b67a385c
ES
6597 -- Another attempt to find a fix: one of the candidate
6598 -- interpretations may not be use-visible. This has
6599 -- already been checked for predefined operators, so
6600 -- we examine only user-defined functions.
6601
6602 Op_Id := Get_Name_Entity_Id (Chars (N));
6603
6604 while Present (Op_Id) loop
6605 if Ekind (Op_Id) /= E_Operator
6606 and then Is_Overloadable (Op_Id)
6607 then
6608 if not Is_Immediately_Visible (Op_Id)
6609 and then not In_Use (Scope (Op_Id))
aab883ec 6610 and then not Is_Abstract_Subprogram (Op_Id)
b67a385c
ES
6611 and then not Is_Hidden (Op_Id)
6612 and then Ekind (Scope (Op_Id)) = E_Package
6613 and then
6614 Has_Compatible_Type
6615 (L, Etype (First_Formal (Op_Id)))
6616 and then Present
6617 (Next_Formal (First_Formal (Op_Id)))
6618 and then
6619 Has_Compatible_Type
6620 (R,
6621 Etype (Next_Formal (First_Formal (Op_Id))))
6622 then
ed2233dc 6623 Error_Msg_N
b67a385c 6624 ("No legal interpretation for operator&", N);
ed2233dc 6625 Error_Msg_NE
b67a385c 6626 ("\use clause on& would make operation legal",
8b4230c8 6627 N, Scope (Op_Id));
b67a385c
ES
6628 exit;
6629 end if;
6630 end if;
fbf5a39b 6631
b67a385c
ES
6632 Op_Id := Homonym (Op_Id);
6633 end loop;
6634
6635 if No (Op_Id) then
6636 Error_Msg_N ("invalid operand types for operator&", N);
6637
6638 if Nkind (N) /= N_Op_Concat then
6639 Error_Msg_NE ("\left operand has}!", N, Etype (L));
6640 Error_Msg_NE ("\right operand has}!", N, Etype (R));
2e70d415
AC
6641
6642 -- For concatenation operators it is more difficult to
6643 -- determine which is the wrong operand. It is worth
6644 -- flagging explicitly an access type, for those who
6645 -- might think that a dereference happens here.
6646
6647 elsif Is_Access_Type (Etype (L)) then
6648 Error_Msg_N ("\left operand is access type", N);
6649
6650 elsif Is_Access_Type (Etype (R)) then
6651 Error_Msg_N ("\right operand is access type", N);
b67a385c 6652 end if;
fbf5a39b
AC
6653 end if;
6654 end if;
996ae0b0
RK
6655 end if;
6656 end if;
6657 end;
6658 end if;
6659 end Operator_Check;
6660
6e73e3ab
AC
6661 -----------------------------------------
6662 -- Process_Implicit_Dereference_Prefix --
6663 -----------------------------------------
6664
d469eabe 6665 function Process_Implicit_Dereference_Prefix
da709d08 6666 (E : Entity_Id;
d469eabe 6667 P : Entity_Id) return Entity_Id
6e73e3ab
AC
6668 is
6669 Ref : Node_Id;
d469eabe 6670 Typ : constant Entity_Id := Designated_Type (Etype (P));
da709d08 6671
6e73e3ab 6672 begin
1a8fae99
ES
6673 if Present (E)
6674 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
6675 then
8b4230c8
AC
6676 -- We create a dummy reference to E to ensure that the reference is
6677 -- not considered as part of an assignment (an implicit dereference
6678 -- can never assign to its prefix). The Comes_From_Source attribute
6679 -- needs to be propagated for accurate warnings.
6e73e3ab 6680
e4494292 6681 Ref := New_Occurrence_Of (E, Sloc (P));
6e73e3ab
AC
6682 Set_Comes_From_Source (Ref, Comes_From_Source (P));
6683 Generate_Reference (E, Ref);
6684 end if;
d469eabe 6685
8b4230c8
AC
6686 -- An implicit dereference is a legal occurrence of an incomplete type
6687 -- imported through a limited_with clause, if the full view is visible.
d469eabe 6688
7b56a91b
AC
6689 if From_Limited_With (Typ)
6690 and then not From_Limited_With (Scope (Typ))
d469eabe
HK
6691 and then
6692 (Is_Immediately_Visible (Scope (Typ))
6693 or else
6694 (Is_Child_Unit (Scope (Typ))
8398e82e 6695 and then Is_Visible_Lib_Unit (Scope (Typ))))
d469eabe
HK
6696 then
6697 return Available_View (Typ);
6698 else
6699 return Typ;
6700 end if;
6e73e3ab
AC
6701 end Process_Implicit_Dereference_Prefix;
6702
30c20106
AC
6703 --------------------------------
6704 -- Remove_Abstract_Operations --
6705 --------------------------------
6706
6707 procedure Remove_Abstract_Operations (N : Node_Id) is
e80f0cb0
RD
6708 Abstract_Op : Entity_Id := Empty;
6709 Address_Descendent : Boolean := False;
6710 I : Interp_Index;
6711 It : Interp;
30c20106 6712
0e0eecec
ES
6713 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
6714 -- activate this if either extensions are enabled, or if the abstract
6715 -- operation in question comes from a predefined file. This latter test
6716 -- allows us to use abstract to make operations invisible to users. In
6717 -- particular, if type Address is non-private and abstract subprograms
6718 -- are used to hide its operators, they will be truly hidden.
30c20106 6719
5950a3ac 6720 type Operand_Position is (First_Op, Second_Op);
8a36a0cc 6721 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
5950a3ac
AC
6722
6723 procedure Remove_Address_Interpretations (Op : Operand_Position);
0e0eecec
ES
6724 -- Ambiguities may arise when the operands are literal and the address
6725 -- operations in s-auxdec are visible. In that case, remove the
8b4230c8
AC
6726 -- interpretation of a literal as Address, to retain the semantics
6727 -- of Address as a private type.
9f4fd324
AC
6728
6729 ------------------------------------
5950a3ac 6730 -- Remove_Address_Interpretations --
9f4fd324
AC
6731 ------------------------------------
6732
5950a3ac 6733 procedure Remove_Address_Interpretations (Op : Operand_Position) is
9f4fd324
AC
6734 Formal : Entity_Id;
6735
6736 begin
6737 if Is_Overloaded (N) then
6738 Get_First_Interp (N, I, It);
6739 while Present (It.Nam) loop
6740 Formal := First_Entity (It.Nam);
6741
5950a3ac
AC
6742 if Op = Second_Op then
6743 Formal := Next_Entity (Formal);
6744 end if;
6745
6746 if Is_Descendent_Of_Address (Etype (Formal)) then
e80f0cb0 6747 Address_Descendent := True;
9f4fd324
AC
6748 Remove_Interp (I);
6749 end if;
6750
6751 Get_Next_Interp (I, It);
6752 end loop;
6753 end if;
6754 end Remove_Address_Interpretations;
6755
6756 -- Start of processing for Remove_Abstract_Operations
6757
30c20106 6758 begin
d935a36e 6759 if Is_Overloaded (N) then
ee1a7572
AC
6760 if Debug_Flag_V then
6761 Write_Str ("Remove_Abstract_Operations: ");
6762 Write_Overloads (N);
6763 end if;
6764
30c20106 6765 Get_First_Interp (N, I, It);
d935a36e 6766
30c20106 6767 while Present (It.Nam) loop
aab883ec
ES
6768 if Is_Overloadable (It.Nam)
6769 and then Is_Abstract_Subprogram (It.Nam)
30c20106
AC
6770 and then not Is_Dispatching_Operation (It.Nam)
6771 then
af152989 6772 Abstract_Op := It.Nam;
fe45e59e 6773
401093c1 6774 if Is_Descendent_Of_Address (It.Typ) then
e80f0cb0 6775 Address_Descendent := True;
401093c1
ES
6776 Remove_Interp (I);
6777 exit;
6778
76264f60 6779 -- In Ada 2005, this operation does not participate in overload
9c510803 6780 -- resolution. If the operation is defined in a predefined
fe45e59e
ES
6781 -- unit, it is one of the operations declared abstract in some
6782 -- variants of System, and it must be removed as well.
6783
0791fbe9 6784 elsif Ada_Version >= Ada_2005
401093c1
ES
6785 or else Is_Predefined_File_Name
6786 (Unit_File_Name (Get_Source_Unit (It.Nam)))
fe45e59e
ES
6787 then
6788 Remove_Interp (I);
6789 exit;
6790 end if;
30c20106
AC
6791 end if;
6792
6793 Get_Next_Interp (I, It);
6794 end loop;
6795
af152989 6796 if No (Abstract_Op) then
fe45e59e
ES
6797
6798 -- If some interpretation yields an integer type, it is still
6799 -- possible that there are address interpretations. Remove them
6800 -- if one operand is a literal, to avoid spurious ambiguities
6801 -- on systems where Address is a visible integer type.
6802
6803 if Is_Overloaded (N)
401093c1 6804 and then Nkind (N) in N_Op
fe45e59e
ES
6805 and then Is_Integer_Type (Etype (N))
6806 then
6807 if Nkind (N) in N_Binary_Op then
6808 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
6809 Remove_Address_Interpretations (Second_Op);
6810
6811 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
6812 Remove_Address_Interpretations (First_Op);
6813 end if;
6814 end if;
6815 end if;
3984e89a
AC
6816
6817 elsif Nkind (N) in N_Op then
4c46b835 6818
fe45e59e
ES
6819 -- Remove interpretations that treat literals as addresses. This
6820 -- is never appropriate, even when Address is defined as a visible
6821 -- Integer type. The reason is that we would really prefer Address
7a5b62b0
AC
6822 -- to behave as a private type, even in this case. If Address is a
6823 -- visible integer type, we get lots of overload ambiguities.
30c20106 6824
5950a3ac
AC
6825 if Nkind (N) in N_Binary_Op then
6826 declare
6827 U1 : constant Boolean :=
8b4230c8 6828 Present (Universal_Interpretation (Right_Opnd (N)));
5950a3ac 6829 U2 : constant Boolean :=
8b4230c8 6830 Present (Universal_Interpretation (Left_Opnd (N)));
30c20106 6831
5950a3ac 6832 begin
0e0eecec 6833 if U1 then
5950a3ac 6834 Remove_Address_Interpretations (Second_Op);
0e0eecec 6835 end if;
5950a3ac 6836
0e0eecec 6837 if U2 then
5950a3ac 6838 Remove_Address_Interpretations (First_Op);
30c20106
AC
6839 end if;
6840
5950a3ac
AC
6841 if not (U1 and U2) then
6842
6843 -- Remove corresponding predefined operator, which is
6844 -- always added to the overload set.
6845
6846 Get_First_Interp (N, I, It);
6847 while Present (It.Nam) loop
0ab80019
AC
6848 if Scope (It.Nam) = Standard_Standard
6849 and then Base_Type (It.Typ) =
6850 Base_Type (Etype (Abstract_Op))
6851 then
5950a3ac
AC
6852 Remove_Interp (I);
6853 end if;
6854
8a36a0cc
AC
6855 Get_Next_Interp (I, It);
6856 end loop;
6857
6858 elsif Is_Overloaded (N)
6859 and then Present (Univ_Type)
6860 then
6861 -- If both operands have a universal interpretation,
0e0eecec
ES
6862 -- it is still necessary to remove interpretations that
6863 -- yield Address. Any remaining ambiguities will be
6864 -- removed in Disambiguate.
8a36a0cc
AC
6865
6866 Get_First_Interp (N, I, It);
8a36a0cc 6867 while Present (It.Nam) loop
0e0eecec
ES
6868 if Is_Descendent_Of_Address (It.Typ) then
6869 Remove_Interp (I);
6870
6871 elsif not Is_Type (It.Nam) then
8a36a0cc 6872 Set_Entity (N, It.Nam);
8a36a0cc
AC
6873 end if;
6874
5950a3ac
AC
6875 Get_Next_Interp (I, It);
6876 end loop;
6877 end if;
6878 end;
30c20106 6879 end if;
3984e89a
AC
6880
6881 elsif Nkind (N) = N_Function_Call
6882 and then
6883 (Nkind (Name (N)) = N_Operator_Symbol
6884 or else
6885 (Nkind (Name (N)) = N_Expanded_Name
6886 and then
6887 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
6888 then
5950a3ac 6889
3984e89a
AC
6890 declare
6891 Arg1 : constant Node_Id := First (Parameter_Associations (N));
5950a3ac
AC
6892 U1 : constant Boolean :=
6893 Present (Universal_Interpretation (Arg1));
6894 U2 : constant Boolean :=
6895 Present (Next (Arg1)) and then
6896 Present (Universal_Interpretation (Next (Arg1)));
3984e89a
AC
6897
6898 begin
0e0eecec 6899 if U1 then
5950a3ac 6900 Remove_Address_Interpretations (First_Op);
0e0eecec 6901 end if;
3984e89a 6902
0e0eecec 6903 if U2 then
5950a3ac
AC
6904 Remove_Address_Interpretations (Second_Op);
6905 end if;
6906
6907 if not (U1 and U2) then
3984e89a
AC
6908 Get_First_Interp (N, I, It);
6909 while Present (It.Nam) loop
9f4fd324
AC
6910 if Scope (It.Nam) = Standard_Standard
6911 and then It.Typ = Base_Type (Etype (Abstract_Op))
6912 then
3984e89a
AC
6913 Remove_Interp (I);
6914 end if;
6915
6916 Get_Next_Interp (I, It);
6917 end loop;
6918 end if;
6919 end;
30c20106 6920 end if;
af152989 6921
401093c1
ES
6922 -- If the removal has left no valid interpretations, emit an error
6923 -- message now and label node as illegal.
af152989
AC
6924
6925 if Present (Abstract_Op) then
6926 Get_First_Interp (N, I, It);
6927
6928 if No (It.Nam) then
6929
6e73e3ab 6930 -- Removal of abstract operation left no viable candidate
af152989
AC
6931
6932 Set_Etype (N, Any_Type);
6933 Error_Msg_Sloc := Sloc (Abstract_Op);
6934 Error_Msg_NE
6935 ("cannot call abstract operation& declared#", N, Abstract_Op);
401093c1
ES
6936
6937 -- In Ada 2005, an abstract operation may disable predefined
6938 -- operators. Since the context is not yet known, we mark the
6939 -- predefined operators as potentially hidden. Do not include
6940 -- predefined operators when addresses are involved since this
6941 -- case is handled separately.
6942
e80f0cb0 6943 elsif Ada_Version >= Ada_2005 and then not Address_Descendent then
401093c1
ES
6944 while Present (It.Nam) loop
6945 if Is_Numeric_Type (It.Typ)
6946 and then Scope (It.Typ) = Standard_Standard
6947 then
6948 Set_Abstract_Op (I, Abstract_Op);
6949 end if;
6950
6951 Get_Next_Interp (I, It);
6952 end loop;
af152989
AC
6953 end if;
6954 end if;
ee1a7572
AC
6955
6956 if Debug_Flag_V then
6957 Write_Str ("Remove_Abstract_Operations done: ");
6958 Write_Overloads (N);
6959 end if;
30c20106
AC
6960 end if;
6961 end Remove_Abstract_Operations;
6962
d50f4827
AC
6963 ----------------------------
6964 -- Try_Container_Indexing --
6965 ----------------------------
6966
6967 function Try_Container_Indexing
6968 (N : Node_Id;
6969 Prefix : Node_Id;
50878404 6970 Exprs : List_Id) return Boolean
d50f4827
AC
6971 is
6972 Loc : constant Source_Ptr := Sloc (N);
f3296dd3 6973 C_Type : Entity_Id;
50878404 6974 Assoc : List_Id;
d50f4827
AC
6975 Func : Entity_Id;
6976 Func_Name : Node_Id;
6977 Indexing : Node_Id;
d50f4827
AC
6978
6979 begin
f3296dd3
AC
6980 C_Type := Etype (Prefix);
6981
6982 -- If indexing a class-wide container, obtain indexing primitive
6983 -- from specific type.
6984
6985 if Is_Class_Wide_Type (C_Type) then
6986 C_Type := Etype (Base_Type (C_Type));
6987 end if;
d50f4827 6988
af89615f 6989 -- Check whether type has a specified indexing aspect
d50f4827
AC
6990
6991 Func_Name := Empty;
d50f4827 6992
9ee76313 6993 if Is_Variable (Prefix) then
d62520f3
HK
6994 Func_Name :=
6995 Find_Value_Of_Aspect (Etype (Prefix), Aspect_Variable_Indexing);
9ee76313 6996 end if;
dedac3eb 6997
9ee76313 6998 if No (Func_Name) then
d62520f3
HK
6999 Func_Name :=
7000 Find_Value_Of_Aspect (Etype (Prefix), Aspect_Constant_Indexing);
9ee76313 7001 end if;
d50f4827
AC
7002
7003 -- If aspect does not exist the expression is illegal. Error is
7004 -- diagnosed in caller.
7005
7006 if No (Func_Name) then
57a8057a 7007
5ff90f08
AC
7008 -- The prefix itself may be an indexing of a container: rewrite
7009 -- as such and re-analyze.
57a8057a
AC
7010
7011 if Has_Implicit_Dereference (Etype (Prefix)) then
7012 Build_Explicit_Dereference
7013 (Prefix, First_Discriminant (Etype (Prefix)));
50878404 7014 return Try_Container_Indexing (N, Prefix, Exprs);
57a8057a
AC
7015
7016 else
7017 return False;
7018 end if;
3f433bc0 7019
6907542d
AC
7020 -- If the container type is derived from another container type, the
7021 -- value of the inherited aspect is the Reference operation declared
7022 -- for the parent type.
7023
3f433bc0
ES
7024 -- However, Reference is also a primitive operation of the type, and
7025 -- the inherited operation has a different signature. We retrieve the
7026 -- right one from the list of primitive operations of the derived type.
7027
6907542d
AC
7028 -- Note that predefined containers are typically all derived from one
7029 -- of the Controlled types. The code below is motivated by containers
7030 -- that are derived from other types with a Reference aspect.
7031
7032 -- Additional machinery may be needed for types that have several user-
7033 -- defined Reference operations with different signatures ???
7034
f3296dd3 7035 elsif Is_Derived_Type (C_Type)
6907542d
AC
7036 and then Etype (First_Formal (Entity (Func_Name))) /= Etype (Prefix)
7037 then
f3296dd3 7038 Func := Find_Prim_Op (C_Type, Chars (Func_Name));
3f433bc0 7039 Func_Name := New_Occurrence_Of (Func, Loc);
d50f4827
AC
7040 end if;
7041
50878404
AC
7042 Assoc := New_List (Relocate_Node (Prefix));
7043
5f50020a 7044 -- A generalized indexing may have nore than one index expression, so
50878404 7045 -- transfer all of them to the argument list to be used in the call.
5f50020a
ES
7046 -- Note that there may be named associations, in which case the node
7047 -- was rewritten earlier as a call, and has been transformed back into
7048 -- an indexed expression to share the following processing.
e917e3b8 7049
5f50020a
ES
7050 -- The generalized indexing node is the one on which analysis and
7051 -- resolution take place. Before expansion the original node is replaced
7052 -- with the generalized indexing node, which is a call, possibly with
7053 -- a dereference operation.
50878404 7054
e917e3b8 7055 if Comes_From_Source (N) then
c86cf714 7056 Check_Compiler_Unit ("generalized indexing", N);
e917e3b8
AC
7057 end if;
7058
50878404
AC
7059 declare
7060 Arg : Node_Id;
50878404
AC
7061 begin
7062 Arg := First (Exprs);
7063 while Present (Arg) loop
7064 Append (Relocate_Node (Arg), Assoc);
7065 Next (Arg);
7066 end loop;
7067 end;
7068
d50f4827
AC
7069 if not Is_Overloaded (Func_Name) then
7070 Func := Entity (Func_Name);
29ba9f52
RD
7071 Indexing :=
7072 Make_Function_Call (Loc,
7073 Name => New_Occurrence_Of (Func, Loc),
7074 Parameter_Associations => Assoc);
5f50020a
ES
7075 Set_Parent (Indexing, Parent (N));
7076 Set_Generalized_Indexing (N, Indexing);
7077 Analyze (Indexing);
7078 Set_Etype (N, Etype (Indexing));
d50f4827 7079
76d49f49
ES
7080 -- If the return type of the indexing function is a reference type,
7081 -- add the dereference as a possible interpretation. Note that the
7082 -- indexing aspect may be a function that returns the element type
5f50020a
ES
7083 -- with no intervening implicit dereference, and that the reference
7084 -- discriminant is not the first discriminant.
76d49f49
ES
7085
7086 if Has_Discriminants (Etype (Func)) then
71ff3d18 7087 Check_Implicit_Dereference (N, Etype (Func));
76d49f49 7088 end if;
d50f4827
AC
7089
7090 else
8b4230c8
AC
7091 Indexing :=
7092 Make_Function_Call (Loc,
7093 Name => Make_Identifier (Loc, Chars (Func_Name)),
7094 Parameter_Associations => Assoc);
d50f4827 7095
5f50020a
ES
7096 Set_Parent (Indexing, Parent (N));
7097 Set_Generalized_Indexing (N, Indexing);
d50f4827
AC
7098
7099 declare
8b4230c8
AC
7100 I : Interp_Index;
7101 It : Interp;
d50f4827
AC
7102 Success : Boolean;
7103
7104 begin
7105 Get_First_Interp (Func_Name, I, It);
5f50020a 7106 Set_Etype (Indexing, Any_Type);
d50f4827 7107 while Present (It.Nam) loop
5f50020a 7108 Analyze_One_Call (Indexing, It.Nam, False, Success);
32bba3c9 7109
d50f4827 7110 if Success then
5f50020a
ES
7111 Set_Etype (Name (Indexing), It.Typ);
7112 Set_Entity (Name (Indexing), It.Nam);
7113 Set_Etype (N, Etype (Indexing));
d50f4827 7114
af89615f 7115 -- Add implicit dereference interpretation
d50f4827 7116
76d49f49 7117 if Has_Discriminants (Etype (It.Nam)) then
71ff3d18 7118 Check_Implicit_Dereference (N, Etype (It.Nam));
76d49f49 7119 end if;
b5bf3335 7120
9ee76313 7121 exit;
d50f4827 7122 end if;
32bba3c9 7123
d50f4827
AC
7124 Get_Next_Interp (I, It);
7125 end loop;
7126 end;
7127 end if;
7128
5f50020a 7129 if Etype (Indexing) = Any_Type then
29ba9f52
RD
7130 Error_Msg_NE
7131 ("container cannot be indexed with&", N, Etype (First (Exprs)));
9ee76313 7132 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
9ee76313
AC
7133 end if;
7134
d50f4827
AC
7135 return True;
7136 end Try_Container_Indexing;
7137
996ae0b0
RK
7138 -----------------------
7139 -- Try_Indirect_Call --
7140 -----------------------
7141
7142 function Try_Indirect_Call
91b1417d
AC
7143 (N : Node_Id;
7144 Nam : Entity_Id;
7145 Typ : Entity_Id) return Boolean
996ae0b0 7146 is
24657705
HK
7147 Actual : Node_Id;
7148 Formal : Entity_Id;
7149
8a7988f5 7150 Call_OK : Boolean;
24657705 7151 pragma Warnings (Off, Call_OK);
996ae0b0
RK
7152
7153 begin
8a7988f5 7154 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
9de61fcb 7155
8a7988f5 7156 Actual := First_Actual (N);
fbf5a39b 7157 Formal := First_Formal (Designated_Type (Typ));
9de61fcb 7158 while Present (Actual) and then Present (Formal) loop
996ae0b0
RK
7159 if not Has_Compatible_Type (Actual, Etype (Formal)) then
7160 return False;
7161 end if;
7162
7163 Next (Actual);
7164 Next_Formal (Formal);
7165 end loop;
7166
7167 if No (Actual) and then No (Formal) then
7168 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
7169
7170 -- Nam is a candidate interpretation for the name in the call,
7171 -- if it is not an indirect call.
7172
7173 if not Is_Type (Nam)
7174 and then Is_Entity_Name (Name (N))
7175 then
7176 Set_Entity (Name (N), Nam);
7177 end if;
7178
7179 return True;
8b4230c8 7180
996ae0b0
RK
7181 else
7182 return False;
7183 end if;
7184 end Try_Indirect_Call;
7185
7186 ----------------------
7187 -- Try_Indexed_Call --
7188 ----------------------
7189
7190 function Try_Indexed_Call
aab883ec
ES
7191 (N : Node_Id;
7192 Nam : Entity_Id;
7193 Typ : Entity_Id;
7194 Skip_First : Boolean) return Boolean
996ae0b0 7195 is
5ff22245
ES
7196 Loc : constant Source_Ptr := Sloc (N);
7197 Actuals : constant List_Id := Parameter_Associations (N);
7198 Actual : Node_Id;
7199 Index : Entity_Id;
996ae0b0
RK
7200
7201 begin
fbf5a39b 7202 Actual := First (Actuals);
aab883ec
ES
7203
7204 -- If the call was originally written in prefix form, skip the first
7205 -- actual, which is obviously not defaulted.
7206
7207 if Skip_First then
7208 Next (Actual);
7209 end if;
7210
fbf5a39b 7211 Index := First_Index (Typ);
9de61fcb
RD
7212 while Present (Actual) and then Present (Index) loop
7213
996ae0b0
RK
7214 -- If the parameter list has a named association, the expression
7215 -- is definitely a call and not an indexed component.
7216
7217 if Nkind (Actual) = N_Parameter_Association then
7218 return False;
7219 end if;
7220
5ff22245
ES
7221 if Is_Entity_Name (Actual)
7222 and then Is_Type (Entity (Actual))
7223 and then No (Next (Actual))
7224 then
1c218ac3
AC
7225 -- A single actual that is a type name indicates a slice if the
7226 -- type is discrete, and an error otherwise.
7227
7228 if Is_Discrete_Type (Entity (Actual)) then
7229 Rewrite (N,
7230 Make_Slice (Loc,
22b77f68
RD
7231 Prefix =>
7232 Make_Function_Call (Loc,
7233 Name => Relocate_Node (Name (N))),
7234 Discrete_Range =>
1c218ac3
AC
7235 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
7236
7237 Analyze (N);
7238
7239 else
7240 Error_Msg_N ("invalid use of type in expression", Actual);
7241 Set_Etype (N, Any_Type);
7242 end if;
5ff22245 7243
5ff22245
ES
7244 return True;
7245
7246 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
996ae0b0
RK
7247 return False;
7248 end if;
7249
7250 Next (Actual);
7251 Next_Index (Index);
7252 end loop;
7253
7254 if No (Actual) and then No (Index) then
7255 Add_One_Interp (N, Nam, Component_Type (Typ));
7256
7257 -- Nam is a candidate interpretation for the name in the call,
7258 -- if it is not an indirect call.
7259
7260 if not Is_Type (Nam)
7261 and then Is_Entity_Name (Name (N))
7262 then
7263 Set_Entity (Name (N), Nam);
7264 end if;
7265
7266 return True;
7267 else
7268 return False;
7269 end if;
996ae0b0
RK
7270 end Try_Indexed_Call;
7271
35ae2ed8
AC
7272 --------------------------
7273 -- Try_Object_Operation --
7274 --------------------------
7275
8cf23b91
AC
7276 function Try_Object_Operation
7277 (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
7278 is
b67a385c 7279 K : constant Node_Kind := Nkind (Parent (N));
d3b00ce3 7280 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
b67a385c 7281 Loc : constant Source_Ptr := Sloc (N);
b67a385c 7282 Obj : constant Node_Id := Prefix (N);
0d57c6f4
RD
7283
7284 Subprog : constant Node_Id :=
7285 Make_Identifier (Sloc (Selector_Name (N)),
7286 Chars => Chars (Selector_Name (N)));
401093c1 7287 -- Identifier on which possible interpretations will be collected
0a36105d 7288
b67a385c 7289 Report_Error : Boolean := False;
8b4230c8
AC
7290 -- If no candidate interpretation matches the context, redo analysis
7291 -- with Report_Error True to provide additional information.
28d6470f
JM
7292
7293 Actual : Node_Id;
d469eabe 7294 Candidate : Entity_Id := Empty;
b67a385c 7295 New_Call_Node : Node_Id := Empty;
4c46b835 7296 Node_To_Replace : Node_Id;
28d6470f 7297 Obj_Type : Entity_Id := Etype (Obj);
d469eabe 7298 Success : Boolean := False;
4c46b835 7299
0a36105d
JM
7300 function Valid_Candidate
7301 (Success : Boolean;
7302 Call : Node_Id;
7303 Subp : Entity_Id) return Entity_Id;
7304 -- If the subprogram is a valid interpretation, record it, and add
11fa950b 7305 -- to the list of interpretations of Subprog. Otherwise return Empty.
0a36105d 7306
4c46b835
AC
7307 procedure Complete_Object_Operation
7308 (Call_Node : Node_Id;
0a36105d 7309 Node_To_Replace : Node_Id);
ec6078e3
ES
7310 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
7311 -- Call_Node, insert the object (or its dereference) as the first actual
7312 -- in the call, and complete the analysis of the call.
4c46b835 7313
0a36105d
JM
7314 procedure Report_Ambiguity (Op : Entity_Id);
7315 -- If a prefixed procedure call is ambiguous, indicate whether the
7316 -- call includes an implicit dereference or an implicit 'Access.
7317
4c46b835
AC
7318 procedure Transform_Object_Operation
7319 (Call_Node : out Node_Id;
0a36105d 7320 Node_To_Replace : out Node_Id);
ec6078e3 7321 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
d469eabe
HK
7322 -- Call_Node is the resulting subprogram call, Node_To_Replace is
7323 -- either N or the parent of N, and Subprog is a reference to the
7324 -- subprogram we are trying to match.
35ae2ed8
AC
7325
7326 function Try_Class_Wide_Operation
4c46b835
AC
7327 (Call_Node : Node_Id;
7328 Node_To_Replace : Node_Id) return Boolean;
ec6078e3
ES
7329 -- Traverse all ancestor types looking for a class-wide subprogram
7330 -- for which the current operation is a valid non-dispatching call.
35ae2ed8 7331
0a36105d
JM
7332 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
7333 -- If prefix is overloaded, its interpretation may include different
7334 -- tagged types, and we must examine the primitive operations and
7335 -- the class-wide operations of each in order to find candidate
7336 -- interpretations for the call as a whole.
7337
4c46b835
AC
7338 function Try_Primitive_Operation
7339 (Call_Node : Node_Id;
7340 Node_To_Replace : Node_Id) return Boolean;
ec6078e3
ES
7341 -- Traverse the list of primitive subprograms looking for a dispatching
7342 -- operation for which the current node is a valid call .
4c46b835 7343
0a36105d
JM
7344 ---------------------
7345 -- Valid_Candidate --
7346 ---------------------
7347
7348 function Valid_Candidate
7349 (Success : Boolean;
7350 Call : Node_Id;
7351 Subp : Entity_Id) return Entity_Id
7352 is
ee9aa7b6 7353 Arr_Type : Entity_Id;
0a36105d
JM
7354 Comp_Type : Entity_Id;
7355
7356 begin
7357 -- If the subprogram is a valid interpretation, record it in global
7358 -- variable Subprog, to collect all possible overloadings.
7359
7360 if Success then
7361 if Subp /= Entity (Subprog) then
7362 Add_One_Interp (Subprog, Subp, Etype (Subp));
7363 end if;
7364 end if;
7365
d469eabe
HK
7366 -- If the call may be an indexed call, retrieve component type of
7367 -- resulting expression, and add possible interpretation.
0a36105d 7368
ee9aa7b6 7369 Arr_Type := Empty;
0a36105d
JM
7370 Comp_Type := Empty;
7371
7372 if Nkind (Call) = N_Function_Call
d469eabe
HK
7373 and then Nkind (Parent (N)) = N_Indexed_Component
7374 and then Needs_One_Actual (Subp)
0a36105d
JM
7375 then
7376 if Is_Array_Type (Etype (Subp)) then
ee9aa7b6 7377 Arr_Type := Etype (Subp);
0a36105d
JM
7378
7379 elsif Is_Access_Type (Etype (Subp))
7380 and then Is_Array_Type (Designated_Type (Etype (Subp)))
7381 then
ee9aa7b6 7382 Arr_Type := Designated_Type (Etype (Subp));
0a36105d
JM
7383 end if;
7384 end if;
7385
ee9aa7b6
AC
7386 if Present (Arr_Type) then
7387
3b42c566
RD
7388 -- Verify that the actuals (excluding the object) match the types
7389 -- of the indexes.
ee9aa7b6
AC
7390
7391 declare
7392 Actual : Node_Id;
7393 Index : Node_Id;
7394
7395 begin
7396 Actual := Next (First_Actual (Call));
7397 Index := First_Index (Arr_Type);
ee9aa7b6
AC
7398 while Present (Actual) and then Present (Index) loop
7399 if not Has_Compatible_Type (Actual, Etype (Index)) then
7400 Arr_Type := Empty;
7401 exit;
7402 end if;
7403
7404 Next_Actual (Actual);
7405 Next_Index (Index);
7406 end loop;
7407
7408 if No (Actual)
7409 and then No (Index)
7410 and then Present (Arr_Type)
7411 then
7412 Comp_Type := Component_Type (Arr_Type);
7413 end if;
7414 end;
7415
7416 if Present (Comp_Type)
7417 and then Etype (Subprog) /= Comp_Type
7418 then
7419 Add_One_Interp (Subprog, Subp, Comp_Type);
7420 end if;
0a36105d
JM
7421 end if;
7422
7423 if Etype (Call) /= Any_Type then
7424 return Subp;
7425 else
7426 return Empty;
7427 end if;
7428 end Valid_Candidate;
7429
4c46b835
AC
7430 -------------------------------
7431 -- Complete_Object_Operation --
7432 -------------------------------
7433
7434 procedure Complete_Object_Operation
7435 (Call_Node : Node_Id;
0a36105d 7436 Node_To_Replace : Node_Id)
4c46b835 7437 is
b4592168
GD
7438 Control : constant Entity_Id := First_Formal (Entity (Subprog));
7439 Formal_Type : constant Entity_Id := Etype (Control);
ec6078e3
ES
7440 First_Actual : Node_Id;
7441
4c46b835 7442 begin
955871d3
AC
7443 -- Place the name of the operation, with its interpretations,
7444 -- on the rewritten call.
0a36105d 7445
ec6078e3
ES
7446 Set_Name (Call_Node, Subprog);
7447
0a36105d
JM
7448 First_Actual := First (Parameter_Associations (Call_Node));
7449
8b4230c8
AC
7450 -- For cross-reference purposes, treat the new node as being in the
7451 -- source if the original one is. Set entity and type, even though
7452 -- they may be overwritten during resolution if overloaded.
b67a385c
ES
7453
7454 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
7455 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
7456
ec6078e3 7457 if Nkind (N) = N_Selected_Component
3d918396 7458 and then not Inside_A_Generic
ec6078e3
ES
7459 then
7460 Set_Entity (Selector_Name (N), Entity (Subprog));
b2ab8c33 7461 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
ec6078e3
ES
7462 end if;
7463
8b4230c8
AC
7464 -- If need be, rewrite first actual as an explicit dereference. If
7465 -- the call is overloaded, the rewriting can only be done once the
7466 -- primitive operation is identified.
0a36105d
JM
7467
7468 if Is_Overloaded (Subprog) then
ec6078e3 7469
0a36105d
JM
7470 -- The prefix itself may be overloaded, and its interpretations
7471 -- must be propagated to the new actual in the call.
7472
7473 if Is_Overloaded (Obj) then
7474 Save_Interps (Obj, First_Actual);
7475 end if;
7476
7477 Rewrite (First_Actual, Obj);
7478
7479 elsif not Is_Access_Type (Formal_Type)
ec6078e3
ES
7480 and then Is_Access_Type (Etype (Obj))
7481 then
7482 Rewrite (First_Actual,
7483 Make_Explicit_Dereference (Sloc (Obj), Obj));
7484 Analyze (First_Actual);
fe45e59e 7485
401093c1
ES
7486 -- If we need to introduce an explicit dereference, verify that
7487 -- the resulting actual is compatible with the mode of the formal.
7488
7489 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
7490 and then Is_Access_Constant (Etype (Obj))
7491 then
7492 Error_Msg_NE
7493 ("expect variable in call to&", Prefix (N), Entity (Subprog));
7494 end if;
7495
d469eabe
HK
7496 -- Conversely, if the formal is an access parameter and the object
7497 -- is not, replace the actual with a 'Access reference. Its analysis
7498 -- will check that the object is aliased.
fe45e59e
ES
7499
7500 elsif Is_Access_Type (Formal_Type)
7501 and then not Is_Access_Type (Etype (Obj))
7502 then
b4592168
GD
7503 -- A special case: A.all'access is illegal if A is an access to a
7504 -- constant and the context requires an access to a variable.
7505
7506 if not Is_Access_Constant (Formal_Type) then
7507 if (Nkind (Obj) = N_Explicit_Dereference
7508 and then Is_Access_Constant (Etype (Prefix (Obj))))
7509 or else not Is_Variable (Obj)
7510 then
7511 Error_Msg_NE
ad075b50 7512 ("actual for & must be a variable", Obj, Control);
b4592168
GD
7513 end if;
7514 end if;
7515
fe45e59e
ES
7516 Rewrite (First_Actual,
7517 Make_Attribute_Reference (Loc,
7518 Attribute_Name => Name_Access,
7519 Prefix => Relocate_Node (Obj)));
0a36105d
JM
7520
7521 if not Is_Aliased_View (Obj) then
ed2233dc 7522 Error_Msg_NE
ad075b50 7523 ("object in prefixed call to & must be aliased "
715e529d 7524 & "(RM 4.1.3 (13 1/2))", Prefix (First_Actual), Subprog);
0a36105d
JM
7525 end if;
7526
fe45e59e
ES
7527 Analyze (First_Actual);
7528
ec6078e3 7529 else
0a36105d
JM
7530 if Is_Overloaded (Obj) then
7531 Save_Interps (Obj, First_Actual);
7532 end if;
ec6078e3 7533
0a36105d 7534 Rewrite (First_Actual, Obj);
aab883ec
ES
7535 end if;
7536
e699b76e
AC
7537 -- The operation is obtained from the dispatch table and not by
7538 -- visibility, and may be declared in a unit that is not explicitly
7539 -- referenced in the source, but is nevertheless required in the
7540 -- context of the current unit. Indicate that operation and its scope
7541 -- are referenced, to prevent spurious and misleading warnings. If
7542 -- the operation is overloaded, all primitives are in the same scope
7543 -- and we can use any of them.
7544
7545 Set_Referenced (Entity (Subprog), True);
7546 Set_Referenced (Scope (Entity (Subprog)), True);
7547
7ffd9312 7548 Rewrite (Node_To_Replace, Call_Node);
0a36105d
JM
7549
7550 -- Propagate the interpretations collected in subprog to the new
7551 -- function call node, to be resolved from context.
7552
7553 if Is_Overloaded (Subprog) then
7554 Save_Interps (Subprog, Node_To_Replace);
7415029d 7555
0a36105d 7556 else
28e18b4f
AC
7557 -- The type of the subprogram may be a limited view obtained
7558 -- transitively from another unit. If full view is available,
7559 -- use it to analyze call.
7560
7561 declare
7562 T : constant Entity_Id := Etype (Subprog);
7563 begin
7564 if From_Limited_With (T) then
7565 Set_Etype (Entity (Subprog), Available_View (T));
7566 end if;
7567 end;
7568
0a36105d 7569 Analyze (Node_To_Replace);
438ff97c 7570
199c6a10
AC
7571 -- If the operation has been rewritten into a call, which may get
7572 -- subsequently an explicit dereference, preserve the type on the
7573 -- original node (selected component or indexed component) for
7574 -- subsequent legality tests, e.g. Is_Variable. which examines
7575 -- the original node.
438ff97c
ES
7576
7577 if Nkind (Node_To_Replace) = N_Function_Call then
7578 Set_Etype
7579 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
7580 end if;
0a36105d 7581 end if;
4c46b835
AC
7582 end Complete_Object_Operation;
7583
0a36105d
JM
7584 ----------------------
7585 -- Report_Ambiguity --
7586 ----------------------
7587
7588 procedure Report_Ambiguity (Op : Entity_Id) is
0a36105d
JM
7589 Access_Actual : constant Boolean :=
7590 Is_Access_Type (Etype (Prefix (N)));
8cf23b91 7591 Access_Formal : Boolean := False;
0a36105d
JM
7592
7593 begin
7594 Error_Msg_Sloc := Sloc (Op);
7595
8cf23b91
AC
7596 if Present (First_Formal (Op)) then
7597 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
7598 end if;
7599
0a36105d
JM
7600 if Access_Formal and then not Access_Actual then
7601 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 7602 Error_Msg_N
8b4230c8
AC
7603 ("\possible interpretation "
7604 & "(inherited, with implicit 'Access) #", N);
0a36105d 7605 else
ed2233dc 7606 Error_Msg_N
0a36105d
JM
7607 ("\possible interpretation (with implicit 'Access) #", N);
7608 end if;
7609
7610 elsif not Access_Formal and then Access_Actual then
7611 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 7612 Error_Msg_N
8b4230c8 7613 ("\possible interpretation "
28e18b4f 7614 & "(inherited, with implicit dereference) #", N);
0a36105d 7615 else
ed2233dc 7616 Error_Msg_N
0a36105d
JM
7617 ("\possible interpretation (with implicit dereference) #", N);
7618 end if;
7619
7620 else
7621 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 7622 Error_Msg_N ("\possible interpretation (inherited)#", N);
0a36105d 7623 else
4e7a4f6e
AC
7624 Error_Msg_N -- CODEFIX
7625 ("\possible interpretation#", N);
0a36105d
JM
7626 end if;
7627 end if;
7628 end Report_Ambiguity;
7629
4c46b835
AC
7630 --------------------------------
7631 -- Transform_Object_Operation --
7632 --------------------------------
7633
7634 procedure Transform_Object_Operation
7635 (Call_Node : out Node_Id;
0a36105d 7636 Node_To_Replace : out Node_Id)
35ae2ed8 7637 is
ec6078e3
ES
7638 Dummy : constant Node_Id := New_Copy (Obj);
7639 -- Placeholder used as a first parameter in the call, replaced
7640 -- eventually by the proper object.
7641
d469eabe
HK
7642 Parent_Node : constant Node_Id := Parent (N);
7643
ec6078e3 7644 Actual : Node_Id;
d469eabe 7645 Actuals : List_Id;
ec6078e3 7646
35ae2ed8 7647 begin
ec6078e3
ES
7648 -- Common case covering 1) Call to a procedure and 2) Call to a
7649 -- function that has some additional actuals.
35ae2ed8 7650
d3b00ce3 7651 if Nkind (Parent_Node) in N_Subprogram_Call
35ae2ed8 7652
ec6078e3
ES
7653 -- N is a selected component node containing the name of the
7654 -- subprogram. If N is not the name of the parent node we must
7655 -- not replace the parent node by the new construct. This case
7656 -- occurs when N is a parameterless call to a subprogram that
7657 -- is an actual parameter of a call to another subprogram. For
7658 -- example:
7659 -- Some_Subprogram (..., Obj.Operation, ...)
35ae2ed8 7660
ec6078e3 7661 and then Name (Parent_Node) = N
4c46b835
AC
7662 then
7663 Node_To_Replace := Parent_Node;
35ae2ed8 7664
ec6078e3 7665 Actuals := Parameter_Associations (Parent_Node);
d3e65aad 7666
ec6078e3
ES
7667 if Present (Actuals) then
7668 Prepend (Dummy, Actuals);
7669 else
7670 Actuals := New_List (Dummy);
7671 end if;
4c46b835
AC
7672
7673 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
7674 Call_Node :=
7675 Make_Procedure_Call_Statement (Loc,
0a36105d 7676 Name => New_Copy (Subprog),
4c46b835
AC
7677 Parameter_Associations => Actuals);
7678
7679 else
4c46b835
AC
7680 Call_Node :=
7681 Make_Function_Call (Loc,
8b4230c8 7682 Name => New_Copy (Subprog),
4c46b835 7683 Parameter_Associations => Actuals);
35ae2ed8
AC
7684 end if;
7685
d469eabe 7686 -- Before analysis, a function call appears as an indexed component
ec6078e3 7687 -- if there are no named associations.
758c442c 7688
ec6078e3
ES
7689 elsif Nkind (Parent_Node) = N_Indexed_Component
7690 and then N = Prefix (Parent_Node)
7691 then
758c442c 7692 Node_To_Replace := Parent_Node;
ec6078e3
ES
7693 Actuals := Expressions (Parent_Node);
7694
7695 Actual := First (Actuals);
7696 while Present (Actual) loop
7697 Analyze (Actual);
7698 Next (Actual);
7699 end loop;
7700
7701 Prepend (Dummy, Actuals);
758c442c
GD
7702
7703 Call_Node :=
7704 Make_Function_Call (Loc,
8b4230c8 7705 Name => New_Copy (Subprog),
758c442c
GD
7706 Parameter_Associations => Actuals);
7707
d469eabe 7708 -- Parameterless call: Obj.F is rewritten as F (Obj)
35ae2ed8 7709
4c46b835
AC
7710 else
7711 Node_To_Replace := N;
7712
7713 Call_Node :=
7714 Make_Function_Call (Loc,
8b4230c8 7715 Name => New_Copy (Subprog),
ec6078e3 7716 Parameter_Associations => New_List (Dummy));
4c46b835
AC
7717 end if;
7718 end Transform_Object_Operation;
35ae2ed8
AC
7719
7720 ------------------------------
7721 -- Try_Class_Wide_Operation --
7722 ------------------------------
7723
7724 function Try_Class_Wide_Operation
4c46b835
AC
7725 (Call_Node : Node_Id;
7726 Node_To_Replace : Node_Id) return Boolean
35ae2ed8 7727 is
0a36105d
JM
7728 Anc_Type : Entity_Id;
7729 Matching_Op : Entity_Id := Empty;
7730 Error : Boolean;
7731
7732 procedure Traverse_Homonyms
7733 (Anc_Type : Entity_Id;
7734 Error : out Boolean);
7735 -- Traverse the homonym chain of the subprogram searching for those
7736 -- homonyms whose first formal has the Anc_Type's class-wide type,
d469eabe
HK
7737 -- or an anonymous access type designating the class-wide type. If
7738 -- an ambiguity is detected, then Error is set to True.
0a36105d
JM
7739
7740 procedure Traverse_Interfaces
7741 (Anc_Type : Entity_Id;
7742 Error : out Boolean);
7743 -- Traverse the list of interfaces, if any, associated with Anc_Type
7744 -- and search for acceptable class-wide homonyms associated with each
7745 -- interface. If an ambiguity is detected, then Error is set to True.
7746
7747 -----------------------
7748 -- Traverse_Homonyms --
7749 -----------------------
7750
7751 procedure Traverse_Homonyms
7752 (Anc_Type : Entity_Id;
7753 Error : out Boolean)
7754 is
7755 Cls_Type : Entity_Id;
7756 Hom : Entity_Id;
7757 Hom_Ref : Node_Id;
7758 Success : Boolean;
35ae2ed8 7759
0a36105d
JM
7760 begin
7761 Error := False;
ec6078e3 7762
b67a385c
ES
7763 Cls_Type := Class_Wide_Type (Anc_Type);
7764
4c46b835 7765 Hom := Current_Entity (Subprog);
401093c1 7766
383e179e
AC
7767 -- Find a non-hidden operation whose first parameter is of the
7768 -- class-wide type, a subtype thereof, or an anonymous access
a68d415b 7769 -- to same. If in an instance, the operation can be considered
8b4230c8
AC
7770 -- even if hidden (it may be hidden because the instantiation
7771 -- is expanded after the containing package has been analyzed).
401093c1 7772
35ae2ed8 7773 while Present (Hom) loop
6a2e4f0b 7774 if Ekind_In (Hom, E_Procedure, E_Function)
a68d415b 7775 and then (not Is_Hidden (Hom) or else In_Instance)
b67a385c 7776 and then Scope (Hom) = Scope (Anc_Type)
4c46b835 7777 and then Present (First_Formal (Hom))
b67a385c 7778 and then
401093c1 7779 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
b67a385c
ES
7780 or else
7781 (Is_Access_Type (Etype (First_Formal (Hom)))
8b4230c8
AC
7782 and then
7783 Ekind (Etype (First_Formal (Hom))) =
7784 E_Anonymous_Access_Type
7785 and then
7786 Base_Type
7787 (Designated_Type (Etype (First_Formal (Hom)))) =
0a36105d 7788 Cls_Type))
35ae2ed8 7789 then
88f47280
AC
7790 -- If the context is a procedure call, ignore functions
7791 -- in the name of the call.
7792
7793 if Ekind (Hom) = E_Function
7794 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
7795 and then N = Name (Parent (N))
7796 then
7797 goto Next_Hom;
11fa950b
AC
7798
7799 -- If the context is a function call, ignore procedures
7800 -- in the name of the call.
7801
7802 elsif Ekind (Hom) = E_Procedure
7803 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
7804 then
7805 goto Next_Hom;
88f47280
AC
7806 end if;
7807
ec6078e3 7808 Set_Etype (Call_Node, Any_Type);
0a36105d
JM
7809 Set_Is_Overloaded (Call_Node, False);
7810 Success := False;
4c46b835 7811
0a36105d 7812 if No (Matching_Op) then
e4494292 7813 Hom_Ref := New_Occurrence_Of (Hom, Sloc (Subprog));
0a36105d
JM
7814 Set_Etype (Call_Node, Any_Type);
7815 Set_Parent (Call_Node, Parent (Node_To_Replace));
4c46b835 7816
0a36105d 7817 Set_Name (Call_Node, Hom_Ref);
4c46b835 7818
0a36105d
JM
7819 Analyze_One_Call
7820 (N => Call_Node,
7821 Nam => Hom,
7822 Report => Report_Error,
7823 Success => Success,
7824 Skip_First => True);
4c46b835 7825
0a36105d
JM
7826 Matching_Op :=
7827 Valid_Candidate (Success, Call_Node, Hom);
4c46b835 7828
0a36105d
JM
7829 else
7830 Analyze_One_Call
7831 (N => Call_Node,
7832 Nam => Hom,
7833 Report => Report_Error,
7834 Success => Success,
7835 Skip_First => True);
7836
7837 if Present (Valid_Candidate (Success, Call_Node, Hom))
7838 and then Nkind (Call_Node) /= N_Function_Call
7839 then
ed2233dc 7840 Error_Msg_NE ("ambiguous call to&", N, Hom);
0a36105d
JM
7841 Report_Ambiguity (Matching_Op);
7842 Report_Ambiguity (Hom);
7843 Error := True;
7844 return;
7845 end if;
35ae2ed8
AC
7846 end if;
7847 end if;
7848
88f47280
AC
7849 <<Next_Hom>>
7850 Hom := Homonym (Hom);
35ae2ed8 7851 end loop;
0a36105d
JM
7852 end Traverse_Homonyms;
7853
7854 -------------------------
7855 -- Traverse_Interfaces --
7856 -------------------------
35ae2ed8 7857
0a36105d
JM
7858 procedure Traverse_Interfaces
7859 (Anc_Type : Entity_Id;
7860 Error : out Boolean)
7861 is
0a36105d
JM
7862 Intface_List : constant List_Id :=
7863 Abstract_Interface_List (Anc_Type);
d469eabe 7864 Intface : Node_Id;
0a36105d
JM
7865
7866 begin
7867 Error := False;
7868
7869 if Is_Non_Empty_List (Intface_List) then
7870 Intface := First (Intface_List);
7871 while Present (Intface) loop
7872
7873 -- Look for acceptable class-wide homonyms associated with
7874 -- the interface.
7875
7876 Traverse_Homonyms (Etype (Intface), Error);
7877
7878 if Error then
7879 return;
7880 end if;
7881
7882 -- Continue the search by looking at each of the interface's
7883 -- associated interface ancestors.
7884
7885 Traverse_Interfaces (Etype (Intface), Error);
7886
7887 if Error then
7888 return;
7889 end if;
7890
7891 Next (Intface);
7892 end loop;
7893 end if;
7894 end Traverse_Interfaces;
7895
7896 -- Start of processing for Try_Class_Wide_Operation
7897
7898 begin
8cf23b91
AC
7899 -- If we are searching only for conflicting class-wide subprograms
7900 -- then initialize directly Matching_Op with the target entity.
7901
7902 if CW_Test_Only then
7903 Matching_Op := Entity (Selector_Name (N));
7904 end if;
7905
d469eabe
HK
7906 -- Loop through ancestor types (including interfaces), traversing
7907 -- the homonym chain of the subprogram, trying out those homonyms
7908 -- whose first formal has the class-wide type of the ancestor, or
7909 -- an anonymous access type designating the class-wide type.
0a36105d
JM
7910
7911 Anc_Type := Obj_Type;
7912 loop
7913 -- Look for a match among homonyms associated with the ancestor
7914
7915 Traverse_Homonyms (Anc_Type, Error);
7916
7917 if Error then
7918 return True;
7919 end if;
7920
7921 -- Continue the search for matches among homonyms associated with
7922 -- any interfaces implemented by the ancestor.
7923
7924 Traverse_Interfaces (Anc_Type, Error);
7925
7926 if Error then
7927 return True;
7928 end if;
35ae2ed8 7929
4c46b835
AC
7930 exit when Etype (Anc_Type) = Anc_Type;
7931 Anc_Type := Etype (Anc_Type);
35ae2ed8
AC
7932 end loop;
7933
0a36105d
JM
7934 if Present (Matching_Op) then
7935 Set_Etype (Call_Node, Etype (Matching_Op));
7936 end if;
ec6078e3 7937
0a36105d 7938 return Present (Matching_Op);
35ae2ed8
AC
7939 end Try_Class_Wide_Operation;
7940
0a36105d
JM
7941 -----------------------------------
7942 -- Try_One_Prefix_Interpretation --
7943 -----------------------------------
7944
7945 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
7946 begin
7947 Obj_Type := T;
7948
7949 if Is_Access_Type (Obj_Type) then
7950 Obj_Type := Designated_Type (Obj_Type);
7951 end if;
7952
7953 if Ekind (Obj_Type) = E_Private_Subtype then
7954 Obj_Type := Base_Type (Obj_Type);
7955 end if;
7956
7957 if Is_Class_Wide_Type (Obj_Type) then
7958 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
7959 end if;
7960
7961 -- The type may have be obtained through a limited_with clause,
7962 -- in which case the primitive operations are available on its
401093c1 7963 -- non-limited view. If still incomplete, retrieve full view.
0a36105d
JM
7964
7965 if Ekind (Obj_Type) = E_Incomplete_Type
7b56a91b 7966 and then From_Limited_With (Obj_Type)
47346923 7967 and then Has_Non_Limited_View (Obj_Type)
0a36105d 7968 then
401093c1 7969 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
0a36105d
JM
7970 end if;
7971
7972 -- If the object is not tagged, or the type is still an incomplete
7973 -- type, this is not a prefixed call.
7974
7975 if not Is_Tagged_Type (Obj_Type)
7976 or else Is_Incomplete_Type (Obj_Type)
7977 then
7978 return;
7979 end if;
7980
11fa950b
AC
7981 declare
7982 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
7983 CW_Result : Boolean;
7984 Prim_Result : Boolean;
7985 pragma Unreferenced (CW_Result);
7986
7987 begin
8cf23b91
AC
7988 if not CW_Test_Only then
7989 Prim_Result :=
7990 Try_Primitive_Operation
7991 (Call_Node => New_Call_Node,
7992 Node_To_Replace => Node_To_Replace);
7993 end if;
11fa950b
AC
7994
7995 -- Check if there is a class-wide subprogram covering the
7996 -- primitive. This check must be done even if a candidate
7997 -- was found in order to report ambiguous calls.
7998
7999 if not (Prim_Result) then
8000 CW_Result :=
8001 Try_Class_Wide_Operation
8002 (Call_Node => New_Call_Node,
8003 Node_To_Replace => Node_To_Replace);
8004
8005 -- If we found a primitive we search for class-wide subprograms
8006 -- using a duplicate of the call node (done to avoid missing its
8007 -- decoration if there is no ambiguity).
8008
8009 else
8010 CW_Result :=
8011 Try_Class_Wide_Operation
8012 (Call_Node => Dup_Call_Node,
8013 Node_To_Replace => Node_To_Replace);
8014 end if;
8015 end;
0a36105d
JM
8016 end Try_One_Prefix_Interpretation;
8017
4c46b835
AC
8018 -----------------------------
8019 -- Try_Primitive_Operation --
8020 -----------------------------
35ae2ed8 8021
4c46b835
AC
8022 function Try_Primitive_Operation
8023 (Call_Node : Node_Id;
8024 Node_To_Replace : Node_Id) return Boolean
35ae2ed8 8025 is
6e73e3ab
AC
8026 Elmt : Elmt_Id;
8027 Prim_Op : Entity_Id;
0a36105d
JM
8028 Matching_Op : Entity_Id := Empty;
8029 Prim_Op_Ref : Node_Id := Empty;
8030
8b4230c8 8031 Corr_Type : Entity_Id := Empty;
0a36105d
JM
8032 -- If the prefix is a synchronized type, the controlling type of
8033 -- the primitive operation is the corresponding record type, else
8034 -- this is the object type itself.
8035
8b4230c8 8036 Success : Boolean := False;
35ae2ed8 8037
401093c1
ES
8038 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
8039 -- For tagged types the candidate interpretations are found in
8040 -- the list of primitive operations of the type and its ancestors.
8041 -- For formal tagged types we have to find the operations declared
8042 -- in the same scope as the type (including in the generic formal
8043 -- part) because the type itself carries no primitive operations,
8044 -- except for formal derived types that inherit the operations of
8045 -- the parent and progenitors.
8b4230c8 8046 --
d469eabe
HK
8047 -- If the context is a generic subprogram body, the generic formals
8048 -- are visible by name, but are not in the entity list of the
8049 -- subprogram because that list starts with the subprogram formals.
8050 -- We retrieve the candidate operations from the generic declaration.
401093c1 8051
84dad556
AC
8052 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id;
8053 -- Prefix notation can also be used on operations that are not
8054 -- primitives of the type, but are declared in the same immediate
8055 -- declarative part, which can only mean the corresponding package
8056 -- body (See RM 4.1.3 (9.2/3)). If we are in that body we extend the
8057 -- list of primitives with body operations with the same name that
8058 -- may be candidates, so that Try_Primitive_Operations can examine
8059 -- them if no real primitive is found.
8060
dfcfdc0a
AC
8061 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
8062 -- An operation that overrides an inherited operation in the private
8063 -- part of its package may be hidden, but if the inherited operation
8064 -- is visible a direct call to it will dispatch to the private one,
8065 -- which is therefore a valid candidate.
8066
ec6078e3
ES
8067 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
8068 -- Verify that the prefix, dereferenced if need be, is a valid
8069 -- controlling argument in a call to Op. The remaining actuals
8070 -- are checked in the subsequent call to Analyze_One_Call.
35ae2ed8 8071
401093c1
ES
8072 ------------------------------
8073 -- Collect_Generic_Type_Ops --
8074 ------------------------------
8075
8076 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
8077 Bas : constant Entity_Id := Base_Type (T);
8078 Candidates : constant Elist_Id := New_Elmt_List;
8079 Subp : Entity_Id;
8080 Formal : Entity_Id;
8081
d469eabe
HK
8082 procedure Check_Candidate;
8083 -- The operation is a candidate if its first parameter is a
8084 -- controlling operand of the desired type.
8085
8086 -----------------------
8087 -- Check_Candidate; --
8088 -----------------------
8089
8090 procedure Check_Candidate is
8091 begin
8092 Formal := First_Formal (Subp);
8093
8094 if Present (Formal)
8095 and then Is_Controlling_Formal (Formal)
8096 and then
8097 (Base_Type (Etype (Formal)) = Bas
8098 or else
8099 (Is_Access_Type (Etype (Formal))
8100 and then Designated_Type (Etype (Formal)) = Bas))
8101 then
8102 Append_Elmt (Subp, Candidates);
8103 end if;
8104 end Check_Candidate;
8105
8106 -- Start of processing for Collect_Generic_Type_Ops
8107
401093c1
ES
8108 begin
8109 if Is_Derived_Type (T) then
8110 return Primitive_Operations (T);
8111
bce79204
AC
8112 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
8113
d469eabe
HK
8114 -- Scan the list of generic formals to find subprograms
8115 -- that may have a first controlling formal of the type.
8116
8b4230c8
AC
8117 if Nkind (Unit_Declaration_Node (Scope (T))) =
8118 N_Generic_Subprogram_Declaration
bb10b891
AC
8119 then
8120 declare
8121 Decl : Node_Id;
8122
8123 begin
8124 Decl :=
8125 First (Generic_Formal_Declarations
8126 (Unit_Declaration_Node (Scope (T))));
8127 while Present (Decl) loop
8128 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
8129 Subp := Defining_Entity (Decl);
8130 Check_Candidate;
8131 end if;
d469eabe 8132
bb10b891
AC
8133 Next (Decl);
8134 end loop;
8135 end;
8136 end if;
d469eabe
HK
8137 return Candidates;
8138
401093c1
ES
8139 else
8140 -- Scan the list of entities declared in the same scope as
8141 -- the type. In general this will be an open scope, given that
8142 -- the call we are analyzing can only appear within a generic
8143 -- declaration or body (either the one that declares T, or a
8144 -- child unit).
8145
bb10b891
AC
8146 -- For a subtype representing a generic actual type, go to the
8147 -- base type.
8148
8149 if Is_Generic_Actual_Type (T) then
8150 Subp := First_Entity (Scope (Base_Type (T)));
8151 else
8152 Subp := First_Entity (Scope (T));
8153 end if;
8154
401093c1
ES
8155 while Present (Subp) loop
8156 if Is_Overloadable (Subp) then
d469eabe 8157 Check_Candidate;
401093c1
ES
8158 end if;
8159
8160 Next_Entity (Subp);
8161 end loop;
8162
8163 return Candidates;
8164 end if;
8165 end Collect_Generic_Type_Ops;
8166
84dad556
AC
8167 ----------------------------
8168 -- Extended_Primitive_Ops --
8169 ----------------------------
8170
8171 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id is
8172 Type_Scope : constant Entity_Id := Scope (T);
8173
8174 Body_Decls : List_Id;
8175 Op_Found : Boolean;
8176 Op : Entity_Id;
8177 Op_List : Elist_Id;
8178
8179 begin
8180 Op_List := Primitive_Operations (T);
8181
8182 if Ekind (Type_Scope) = E_Package
8183 and then In_Package_Body (Type_Scope)
8184 and then In_Open_Scopes (Type_Scope)
8185 then
8186 -- Retrieve list of declarations of package body.
8187
8188 Body_Decls :=
8189 Declarations
8190 (Unit_Declaration_Node
8191 (Corresponding_Body
8192 (Unit_Declaration_Node (Type_Scope))));
8193
8194 Op := Current_Entity (Subprog);
8195 Op_Found := False;
8196 while Present (Op) loop
8197 if Comes_From_Source (Op)
8198 and then Is_Overloadable (Op)
8199 and then Is_List_Member (Unit_Declaration_Node (Op))
8200 and then List_Containing (Unit_Declaration_Node (Op)) =
8201 Body_Decls
8202 then
8203 if not Op_Found then
8204
8205 -- Copy list of primitives so it is not affected for
8206 -- other uses.
8207
8208 Op_List := New_Copy_Elist (Op_List);
8209 Op_Found := True;
8210 end if;
8211
8212 Append_Elmt (Op, Op_List);
8213 end if;
8214
8215 Op := Homonym (Op);
8216 end loop;
8217 end if;
8218
8219 return Op_List;
8220 end Extended_Primitive_Ops;
8221
dfcfdc0a
AC
8222 ---------------------------
8223 -- Is_Private_Overriding --
8224 ---------------------------
8225
8226 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
8227 Visible_Op : constant Entity_Id := Homonym (Op);
8228
8229 begin
8230 return Present (Visible_Op)
6465b6a7 8231 and then Scope (Op) = Scope (Visible_Op)
dfcfdc0a
AC
8232 and then not Comes_From_Source (Visible_Op)
8233 and then Alias (Visible_Op) = Op
8234 and then not Is_Hidden (Visible_Op);
8235 end Is_Private_Overriding;
8236
ec6078e3
ES
8237 -----------------------------
8238 -- Valid_First_Argument_Of --
8239 -----------------------------
35ae2ed8 8240
ec6078e3 8241 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
9febb58f 8242 Typ : Entity_Id := Etype (First_Formal (Op));
35ae2ed8 8243
ec6078e3 8244 begin
9febb58f
JM
8245 if Is_Concurrent_Type (Typ)
8246 and then Present (Corresponding_Record_Type (Typ))
8247 then
8248 Typ := Corresponding_Record_Type (Typ);
8249 end if;
8250
d469eabe
HK
8251 -- Simple case. Object may be a subtype of the tagged type or
8252 -- may be the corresponding record of a synchronized type.
5d09245e 8253
aab883ec 8254 return Obj_Type = Typ
d469eabe 8255 or else Base_Type (Obj_Type) = Typ
0a36105d
JM
8256 or else Corr_Type = Typ
8257
8258 -- Prefix can be dereferenced
725e2a15 8259
ec6078e3 8260 or else
0a36105d
JM
8261 (Is_Access_Type (Corr_Type)
8262 and then Designated_Type (Corr_Type) = Typ)
5d09245e 8263
0a36105d
JM
8264 -- Formal is an access parameter, for which the object
8265 -- can provide an access.
35ae2ed8 8266
ec6078e3
ES
8267 or else
8268 (Ekind (Typ) = E_Anonymous_Access_Type
9fde638d
RD
8269 and then
8270 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
ec6078e3 8271 end Valid_First_Argument_Of;
35ae2ed8 8272
ec6078e3 8273 -- Start of processing for Try_Primitive_Operation
35ae2ed8 8274
ec6078e3 8275 begin
d469eabe 8276 -- Look for subprograms in the list of primitive operations. The name
0a36105d
JM
8277 -- must be identical, and the kind of call indicates the expected
8278 -- kind of operation (function or procedure). If the type is a
d469eabe 8279 -- (tagged) synchronized type, the primitive ops are attached to the
b4592168 8280 -- corresponding record (base) type.
aab883ec
ES
8281
8282 if Is_Concurrent_Type (Obj_Type) then
bb10b891
AC
8283 if Present (Corresponding_Record_Type (Obj_Type)) then
8284 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
8285 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
8286 else
8287 Corr_Type := Obj_Type;
8288 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
15e4986c
JM
8289 end if;
8290
401093c1 8291 elsif not Is_Generic_Type (Obj_Type) then
0a36105d 8292 Corr_Type := Obj_Type;
84dad556 8293 Elmt := First_Elmt (Extended_Primitive_Ops (Obj_Type));
401093c1
ES
8294
8295 else
8296 Corr_Type := Obj_Type;
8297 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
aab883ec 8298 end if;
35ae2ed8 8299
ec6078e3
ES
8300 while Present (Elmt) loop
8301 Prim_Op := Node (Elmt);
8302
8303 if Chars (Prim_Op) = Chars (Subprog)
8304 and then Present (First_Formal (Prim_Op))
8305 and then Valid_First_Argument_Of (Prim_Op)
fe45e59e 8306 and then
7415029d 8307 (Nkind (Call_Node) = N_Function_Call)
8b4230c8
AC
8308 =
8309 (Ekind (Prim_Op) = E_Function)
ec6078e3 8310 then
b67a385c 8311 -- Ada 2005 (AI-251): If this primitive operation corresponds
8b4230c8 8312 -- to an immediate ancestor interface there is no need to add
b67a385c
ES
8313 -- it to the list of interpretations; the corresponding aliased
8314 -- primitive is also in this list of primitive operations and
8315 -- will be used instead.
fe45e59e 8316
ce2b6ba5
JM
8317 if (Present (Interface_Alias (Prim_Op))
8318 and then Is_Ancestor (Find_Dispatching_Type
8319 (Alias (Prim_Op)), Corr_Type))
0a36105d 8320
dfcfdc0a
AC
8321 -- Do not consider hidden primitives unless the type is in an
8322 -- open scope or we are within an instance, where visibility
8323 -- is known to be correct, or else if this is an overriding
8324 -- operation in the private part for an inherited operation.
0a36105d 8325
dfcfdc0a
AC
8326 or else (Is_Hidden (Prim_Op)
8327 and then not Is_Immediately_Visible (Obj_Type)
8328 and then not In_Instance
8329 and then not Is_Private_Overriding (Prim_Op))
fe45e59e
ES
8330 then
8331 goto Continue;
8332 end if;
8333
0a36105d
JM
8334 Set_Etype (Call_Node, Any_Type);
8335 Set_Is_Overloaded (Call_Node, False);
8336
8337 if No (Matching_Op) then
e4494292 8338 Prim_Op_Ref := New_Occurrence_Of (Prim_Op, Sloc (Subprog));
b67a385c 8339 Candidate := Prim_Op;
35ae2ed8 8340
fe45e59e 8341 Set_Parent (Call_Node, Parent (Node_To_Replace));
35ae2ed8 8342
fe45e59e 8343 Set_Name (Call_Node, Prim_Op_Ref);
0a36105d 8344 Success := False;
35ae2ed8 8345
fe45e59e
ES
8346 Analyze_One_Call
8347 (N => Call_Node,
8348 Nam => Prim_Op,
b67a385c 8349 Report => Report_Error,
fe45e59e
ES
8350 Success => Success,
8351 Skip_First => True);
35ae2ed8 8352
0a36105d 8353 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
fe45e59e 8354
d469eabe
HK
8355 -- More than one interpretation, collect for subsequent
8356 -- disambiguation. If this is a procedure call and there
8357 -- is another match, report ambiguity now.
0a36105d 8358
d469eabe 8359 else
0a36105d
JM
8360 Analyze_One_Call
8361 (N => Call_Node,
8362 Nam => Prim_Op,
8363 Report => Report_Error,
8364 Success => Success,
8365 Skip_First => True);
fe45e59e 8366
0a36105d
JM
8367 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
8368 and then Nkind (Call_Node) /= N_Function_Call
8369 then
ed2233dc 8370 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
0a36105d
JM
8371 Report_Ambiguity (Matching_Op);
8372 Report_Ambiguity (Prim_Op);
8373 return True;
8374 end if;
4c46b835
AC
8375 end if;
8376 end if;
35ae2ed8 8377
fe45e59e 8378 <<Continue>>
4c46b835
AC
8379 Next_Elmt (Elmt);
8380 end loop;
35ae2ed8 8381
0a36105d
JM
8382 if Present (Matching_Op) then
8383 Set_Etype (Call_Node, Etype (Matching_Op));
fe45e59e
ES
8384 end if;
8385
0a36105d 8386 return Present (Matching_Op);
4c46b835 8387 end Try_Primitive_Operation;
35ae2ed8 8388
4c46b835 8389 -- Start of processing for Try_Object_Operation
35ae2ed8 8390
4c46b835 8391 begin
0a36105d 8392 Analyze_Expression (Obj);
ec6078e3 8393
0a36105d 8394 -- Analyze the actuals if node is known to be a subprogram call
28d6470f
JM
8395
8396 if Is_Subprg_Call and then N = Name (Parent (N)) then
8397 Actual := First (Parameter_Associations (Parent (N)));
8398 while Present (Actual) loop
725e2a15 8399 Analyze_Expression (Actual);
28d6470f
JM
8400 Next (Actual);
8401 end loop;
8402 end if;
5d09245e 8403
ec6078e3
ES
8404 -- Build a subprogram call node, using a copy of Obj as its first
8405 -- actual. This is a placeholder, to be replaced by an explicit
8406 -- dereference when needed.
4c46b835 8407
ec6078e3
ES
8408 Transform_Object_Operation
8409 (Call_Node => New_Call_Node,
0a36105d 8410 Node_To_Replace => Node_To_Replace);
4c46b835 8411
ec6078e3 8412 Set_Etype (New_Call_Node, Any_Type);
0a36105d 8413 Set_Etype (Subprog, Any_Type);
ec6078e3 8414 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
4c46b835 8415
0a36105d
JM
8416 if not Is_Overloaded (Obj) then
8417 Try_One_Prefix_Interpretation (Obj_Type);
ec6078e3 8418
0a36105d
JM
8419 else
8420 declare
8421 I : Interp_Index;
8422 It : Interp;
8423 begin
8424 Get_First_Interp (Obj, I, It);
8425 while Present (It.Nam) loop
8426 Try_One_Prefix_Interpretation (It.Typ);
8427 Get_Next_Interp (I, It);
8428 end loop;
8429 end;
8430 end if;
8431
8432 if Etype (New_Call_Node) /= Any_Type then
8cf23b91
AC
8433
8434 -- No need to complete the tree transformations if we are only
8435 -- searching for conflicting class-wide subprograms
8436
8437 if CW_Test_Only then
8438 return False;
8439 else
8440 Complete_Object_Operation
8441 (Call_Node => New_Call_Node,
8442 Node_To_Replace => Node_To_Replace);
8443 return True;
8444 end if;
b67a385c
ES
8445
8446 elsif Present (Candidate) then
8447
8448 -- The argument list is not type correct. Re-analyze with error
8449 -- reporting enabled, and use one of the possible candidates.
d469eabe 8450 -- In All_Errors_Mode, re-analyze all failed interpretations.
b67a385c
ES
8451
8452 if All_Errors_Mode then
8453 Report_Error := True;
8454 if Try_Primitive_Operation
8b4230c8
AC
8455 (Call_Node => New_Call_Node,
8456 Node_To_Replace => Node_To_Replace)
b67a385c
ES
8457
8458 or else
8459 Try_Class_Wide_Operation
8460 (Call_Node => New_Call_Node,
8461 Node_To_Replace => Node_To_Replace)
8462 then
8463 null;
8464 end if;
8465
8466 else
8467 Analyze_One_Call
8468 (N => New_Call_Node,
8469 Nam => Candidate,
8470 Report => True,
8471 Success => Success,
8472 Skip_First => True);
8473 end if;
8474
d469eabe
HK
8475 -- No need for further errors
8476
8477 return True;
b67a385c
ES
8478
8479 else
8480 -- There was no candidate operation, so report it as an error
8481 -- in the caller: Analyze_Selected_Component.
8482
8483 return False;
8484 end if;
35ae2ed8
AC
8485 end Try_Object_Operation;
8486
b4592168
GD
8487 ---------
8488 -- wpo --
8489 ---------
8490
8491 procedure wpo (T : Entity_Id) is
8492 Op : Entity_Id;
8493 E : Elmt_Id;
8494
8495 begin
8496 if not Is_Tagged_Type (T) then
8497 return;
8498 end if;
8499
8500 E := First_Elmt (Primitive_Operations (Base_Type (T)));
8501 while Present (E) loop
8502 Op := Node (E);
8503 Write_Int (Int (Op));
8504 Write_Str (" === ");
8505 Write_Name (Chars (Op));
8506 Write_Str (" in ");
8507 Write_Name (Chars (Scope (Op)));
8508 Next_Elmt (E);
8509 Write_Eol;
8510 end loop;
8511 end wpo;
8512
996ae0b0 8513end Sem_Ch4;