]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch4.adb
Minor reformatting.
[thirdparty/gcc.git] / gcc / ada / sem_ch4.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 4 --
6-- --
7-- B o d y --
8-- --
211e7410 9-- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
157a9bf5 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
157a9bf5
ES
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
d50f4827 26with Aspects; use Aspects;
996ae0b0
RK
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
35ae2ed8 30with Elists; use Elists;
996ae0b0
RK
31with Errout; use Errout;
32with Exp_Util; use Exp_Util;
996ae0b0 33with Itypes; use Itypes;
d935a36e 34with Lib; use Lib;
996ae0b0
RK
35with Lib.Xref; use Lib.Xref;
36with Namet; use Namet;
d469eabe 37with Namet.Sp; use Namet.Sp;
996ae0b0
RK
38with Nlists; use Nlists;
39with Nmake; use Nmake;
40with Opt; use Opt;
41with Output; use Output;
42with Restrict; use Restrict;
6e937c1c 43with Rident; use Rident;
996ae0b0 44with Sem; use Sem;
a4100e55 45with Sem_Aux; use Sem_Aux;
19d846a0 46with Sem_Case; use Sem_Case;
996ae0b0
RK
47with Sem_Cat; use Sem_Cat;
48with Sem_Ch3; use Sem_Ch3;
d469eabe 49with Sem_Ch6; use Sem_Ch6;
996ae0b0 50with Sem_Ch8; use Sem_Ch8;
dec6faf1 51with Sem_Dim; use Sem_Dim;
b67a385c 52with Sem_Disp; use Sem_Disp;
996ae0b0
RK
53with Sem_Dist; use Sem_Dist;
54with Sem_Eval; use Sem_Eval;
55with Sem_Res; use Sem_Res;
996ae0b0 56with Sem_Type; use Sem_Type;
19d846a0
RD
57with Sem_Util; use Sem_Util;
58with Sem_Warn; use Sem_Warn;
996ae0b0
RK
59with Stand; use Stand;
60with Sinfo; use Sinfo;
61with Snames; use Snames;
62with Tbuild; use Tbuild;
b727a82b 63with Uintp; use Uintp;
996ae0b0 64
996ae0b0
RK
65package body Sem_Ch4 is
66
22e89283
AC
67 -- Tables which speed up the identification of dangerous calls to Ada 2012
68 -- functions with writable actuals (AI05-0144).
69
70 -- The following table enumerates the Ada constructs which may evaluate in
71 -- arbitrary order. It does not cover all the language constructs which can
72 -- be evaluated in arbitrary order but the subset needed for AI05-0144.
73
74 Has_Arbitrary_Evaluation_Order : constant array (Node_Kind) of Boolean :=
75 (N_Aggregate => True,
76 N_Assignment_Statement => True,
77 N_Entry_Call_Statement => True,
78 N_Extension_Aggregate => True,
79 N_Full_Type_Declaration => True,
80 N_Indexed_Component => True,
81 N_Object_Declaration => True,
82 N_Pragma => True,
83 N_Range => True,
84 N_Slice => True,
213999c2
AC
85 N_Array_Type_Definition => True,
86 N_Membership_Test => True,
87 N_Binary_Op => True,
88 N_Subprogram_Call => True,
22e89283
AC
89 others => False);
90
91 -- The following table enumerates the nodes on which we stop climbing when
92 -- locating the outermost Ada construct that can be evaluated in arbitrary
93 -- order.
94
95 Stop_Subtree_Climbing : constant array (Node_Kind) of Boolean :=
96 (N_Aggregate => True,
97 N_Assignment_Statement => True,
98 N_Entry_Call_Statement => True,
99 N_Extended_Return_Statement => True,
100 N_Extension_Aggregate => True,
101 N_Full_Type_Declaration => True,
102 N_Object_Declaration => True,
103 N_Object_Renaming_Declaration => True,
104 N_Package_Specification => True,
105 N_Pragma => True,
106 N_Procedure_Call_Statement => True,
107 N_Simple_Return_Statement => True,
213999c2 108 N_Has_Condition => True,
22e89283
AC
109 others => False);
110
996ae0b0
RK
111 -----------------------
112 -- Local Subprograms --
113 -----------------------
114
fe39cf20
BD
115 procedure Analyze_Concatenation_Rest (N : Node_Id);
116 -- Does the "rest" of the work of Analyze_Concatenation, after the left
117 -- operand has been analyzed. See Analyze_Concatenation for details.
118
996ae0b0 119 procedure Analyze_Expression (N : Node_Id);
80211802
AC
120 -- For expressions that are not names, this is just a call to analyze. If
121 -- the expression is a name, it may be a call to a parameterless function,
122 -- and if so must be converted into an explicit call node and analyzed as
123 -- such. This deproceduring must be done during the first pass of overload
124 -- resolution, because otherwise a procedure call with overloaded actuals
125 -- may fail to resolve.
996ae0b0
RK
126
127 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
80211802
AC
128 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
129 -- operator name or an expanded name whose selector is an operator name,
130 -- and one possible interpretation is as a predefined operator.
996ae0b0
RK
131
132 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
133 -- If the prefix of a selected_component is overloaded, the proper
134 -- interpretation that yields a record type with the proper selector
135 -- name must be selected.
136
137 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
138 -- Procedure to analyze a user defined binary operator, which is resolved
139 -- like a function, but instead of a list of actuals it is presented
140 -- with the left and right operands of an operator node.
141
142 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
143 -- Procedure to analyze a user defined unary operator, which is resolved
144 -- like a function, but instead of a list of actuals, it is presented with
145 -- the operand of the operator node.
146
147 procedure Ambiguous_Operands (N : Node_Id);
0877856b 148 -- For equality, membership, and comparison operators with overloaded
996ae0b0
RK
149 -- arguments, list possible interpretations.
150
996ae0b0 151 procedure Analyze_One_Call
ec6078e3
ES
152 (N : Node_Id;
153 Nam : Entity_Id;
154 Report : Boolean;
155 Success : out Boolean;
156 Skip_First : Boolean := False);
996ae0b0
RK
157 -- Check one interpretation of an overloaded subprogram name for
158 -- compatibility with the types of the actuals in a call. If there is a
159 -- single interpretation which does not match, post error if Report is
160 -- set to True.
161 --
162 -- Nam is the entity that provides the formals against which the actuals
163 -- are checked. Nam is either the name of a subprogram, or the internal
164 -- subprogram type constructed for an access_to_subprogram. If the actuals
165 -- are compatible with Nam, then Nam is added to the list of candidate
166 -- interpretations for N, and Success is set to True.
ec6078e3
ES
167 --
168 -- The flag Skip_First is used when analyzing a call that was rewritten
169 -- from object notation. In this case the first actual may have to receive
170 -- an explicit dereference, depending on the first formal of the operation
171 -- being called. The caller will have verified that the object is legal
172 -- for the call. If the remaining parameters match, the first parameter
173 -- will rewritten as a dereference if needed, prior to completing analysis.
996ae0b0
RK
174
175 procedure Check_Misspelled_Selector
176 (Prefix : Entity_Id;
177 Sel : Node_Id);
80211802 178 -- Give possible misspelling message if Sel seems likely to be a mis-
8dbf3473
AC
179 -- spelling of one of the selectors of the Prefix. This is called by
180 -- Analyze_Selected_Component after producing an invalid selector error
181 -- message.
996ae0b0
RK
182
183 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
f3d57416 184 -- Verify that type T is declared in scope S. Used to find interpretations
996ae0b0
RK
185 -- for operators given by expanded names. This is abstracted as a separate
186 -- function to handle extensions to System, where S is System, but T is
187 -- declared in the extension.
188
189 procedure Find_Arithmetic_Types
190 (L, R : Node_Id;
191 Op_Id : Entity_Id;
192 N : Node_Id);
80211802
AC
193 -- L and R are the operands of an arithmetic operator. Find consistent
194 -- pairs of interpretations for L and R that have a numeric type consistent
195 -- with the semantics of the operator.
996ae0b0
RK
196
197 procedure Find_Comparison_Types
198 (L, R : Node_Id;
199 Op_Id : Entity_Id;
200 N : Node_Id);
80211802
AC
201 -- L and R are operands of a comparison operator. Find consistent pairs of
202 -- interpretations for L and R.
996ae0b0
RK
203
204 procedure Find_Concatenation_Types
205 (L, R : Node_Id;
206 Op_Id : Entity_Id;
207 N : Node_Id);
6e73e3ab 208 -- For the four varieties of concatenation
996ae0b0
RK
209
210 procedure Find_Equality_Types
211 (L, R : Node_Id;
212 Op_Id : Entity_Id;
213 N : Node_Id);
6e73e3ab 214 -- Ditto for equality operators
996ae0b0
RK
215
216 procedure Find_Boolean_Types
217 (L, R : Node_Id;
218 Op_Id : Entity_Id;
219 N : Node_Id);
6e73e3ab 220 -- Ditto for binary logical operations
996ae0b0
RK
221
222 procedure Find_Negation_Types
223 (R : Node_Id;
224 Op_Id : Entity_Id;
225 N : Node_Id);
6e73e3ab 226 -- Find consistent interpretation for operand of negation operator
996ae0b0
RK
227
228 procedure Find_Non_Universal_Interpretations
229 (N : Node_Id;
230 R : Node_Id;
231 Op_Id : Entity_Id;
232 T1 : Entity_Id);
5dc203d2
AC
233 -- For equality and comparison operators, the result is always boolean, and
234 -- the legality of the operation is determined from the visibility of the
235 -- operand types. If one of the operands has a universal interpretation,
236 -- the legality check uses some compatible non-universal interpretation of
237 -- the other operand. N can be an operator node, or a function call whose
238 -- name is an operator designator. Any_Access, which is the initial type of
239 -- the literal NULL, is a universal type for the purpose of this routine.
996ae0b0 240
d469eabe 241 function Find_Primitive_Operation (N : Node_Id) return Boolean;
5dc203d2
AC
242 -- Find candidate interpretations for the name Obj.Proc when it appears in
243 -- a subprogram renaming declaration.
d469eabe 244
996ae0b0
RK
245 procedure Find_Unary_Types
246 (R : Node_Id;
247 Op_Id : Entity_Id;
248 N : Node_Id);
6e73e3ab 249 -- Unary arithmetic types: plus, minus, abs
996ae0b0
RK
250
251 procedure Check_Arithmetic_Pair
252 (T1, T2 : Entity_Id;
253 Op_Id : Entity_Id;
254 N : Node_Id);
84dad556
AC
255 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid types
256 -- for left and right operand. Determine whether they constitute a valid
257 -- pair for the given operator, and record the corresponding interpretation
258 -- of the operator node. The node N may be an operator node (the usual
259 -- case) or a function call whose prefix is an operator designator. In
260 -- both cases Op_Id is the operator name itself.
996ae0b0
RK
261
262 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
263 -- Give detailed information on overloaded call where none of the
264 -- interpretations match. N is the call node, Nam the designator for
265 -- the overloaded entity being called.
266
267 function Junk_Operand (N : Node_Id) return Boolean;
268 -- Test for an operand that is an inappropriate entity (e.g. a package
269 -- name or a label). If so, issue an error message and return True. If
270 -- the operand is not an inappropriate entity kind, return False.
271
272 procedure Operator_Check (N : Node_Id);
da709d08
AC
273 -- Verify that an operator has received some valid interpretation. If none
274 -- was found, determine whether a use clause would make the operation
275 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
276 -- every type compatible with the operator, even if the operator for the
277 -- type is not directly visible. The routine uses this type to emit a more
278 -- informative message.
996ae0b0 279
d469eabe 280 function Process_Implicit_Dereference_Prefix
da709d08 281 (E : Entity_Id;
d469eabe 282 P : Node_Id) return Entity_Id;
da709d08 283 -- Called when P is the prefix of an implicit dereference, denoting an
d469eabe
HK
284 -- object E. The function returns the designated type of the prefix, taking
285 -- into account that the designated type of an anonymous access type may be
286 -- a limited view, when the non-limited view is visible.
84dad556 287 --
d469eabe
HK
288 -- If in semantics only mode (-gnatc or generic), the function also records
289 -- that the prefix is a reference to E, if any. Normally, such a reference
290 -- is generated only when the implicit dereference is expanded into an
291 -- explicit one, but for consistency we must generate the reference when
292 -- expansion is disabled as well.
6e73e3ab 293
30c20106
AC
294 procedure Remove_Abstract_Operations (N : Node_Id);
295 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
296 -- operation is not a candidate interpretation.
297
d50f4827
AC
298 function Try_Container_Indexing
299 (N : Node_Id;
300 Prefix : Node_Id;
50878404 301 Exprs : List_Id) return Boolean;
d50f4827
AC
302 -- AI05-0139: Generalized indexing to support iterators over containers
303
996ae0b0 304 function Try_Indexed_Call
aab883ec
ES
305 (N : Node_Id;
306 Nam : Entity_Id;
307 Typ : Entity_Id;
308 Skip_First : Boolean) return Boolean;
309 -- If a function has defaults for all its actuals, a call to it may in fact
310 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
311 -- interpretation as an indexing, prior to analysis as a call. If both are
312 -- possible, the node is overloaded with both interpretations (same symbol
313 -- but two different types). If the call is written in prefix form, the
314 -- prefix becomes the first parameter in the call, and only the remaining
315 -- actuals must be checked for the presence of defaults.
996ae0b0
RK
316
317 function Try_Indirect_Call
91b1417d
AC
318 (N : Node_Id;
319 Nam : Entity_Id;
320 Typ : Entity_Id) return Boolean;
aab883ec
ES
321 -- Similarly, a function F that needs no actuals can return an access to a
322 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
323 -- the call may be overloaded with both interpretations.
996ae0b0 324
b4592168
GD
325 procedure wpo (T : Entity_Id);
326 pragma Warnings (Off, wpo);
327 -- Used for debugging: obtain list of primitive operations even if
328 -- type is not frozen and dispatch table is not built yet.
329
996ae0b0
RK
330 ------------------------
331 -- Ambiguous_Operands --
332 ------------------------
333
334 procedure Ambiguous_Operands (N : Node_Id) is
fbf5a39b 335 procedure List_Operand_Interps (Opnd : Node_Id);
996ae0b0 336
4c46b835
AC
337 --------------------------
338 -- List_Operand_Interps --
339 --------------------------
340
fbf5a39b 341 procedure List_Operand_Interps (Opnd : Node_Id) is
996ae0b0 342 Nam : Node_Id;
85be939e 343 pragma Warnings (Off, Nam);
996ae0b0
RK
344 Err : Node_Id := N;
345
346 begin
347 if Is_Overloaded (Opnd) then
348 if Nkind (Opnd) in N_Op then
349 Nam := Opnd;
84dad556 350
996ae0b0
RK
351 elsif Nkind (Opnd) = N_Function_Call then
352 Nam := Name (Opnd);
84dad556 353
44a10091
AC
354 elsif Ada_Version >= Ada_2012 then
355 declare
356 It : Interp;
357 I : Interp_Index;
358
359 begin
360 Get_First_Interp (Opnd, I, It);
361 while Present (It.Nam) loop
362 if Has_Implicit_Dereference (It.Typ) then
363 Error_Msg_N
364 ("can be interpreted as implicit dereference", Opnd);
365 return;
366 end if;
367
368 Get_Next_Interp (I, It);
369 end loop;
370 end;
371
996ae0b0
RK
372 return;
373 end if;
374
375 else
376 return;
377 end if;
378
379 if Opnd = Left_Opnd (N) then
84dad556
AC
380 Error_Msg_N
381 ("\left operand has the following interpretations", N);
996ae0b0 382 else
ed2233dc 383 Error_Msg_N
996ae0b0
RK
384 ("\right operand has the following interpretations", N);
385 Err := Opnd;
386 end if;
387
fbf5a39b
AC
388 List_Interps (Nam, Err);
389 end List_Operand_Interps;
996ae0b0 390
4c46b835
AC
391 -- Start of processing for Ambiguous_Operands
392
996ae0b0 393 begin
b67a385c 394 if Nkind (N) in N_Membership_Test then
ed2233dc 395 Error_Msg_N ("ambiguous operands for membership", N);
996ae0b0 396
d469eabe 397 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
ed2233dc 398 Error_Msg_N ("ambiguous operands for equality", N);
996ae0b0
RK
399
400 else
ed2233dc 401 Error_Msg_N ("ambiguous operands for comparison", N);
996ae0b0
RK
402 end if;
403
404 if All_Errors_Mode then
fbf5a39b
AC
405 List_Operand_Interps (Left_Opnd (N));
406 List_Operand_Interps (Right_Opnd (N));
996ae0b0 407 else
555360a5 408 Error_Msg_N ("\use -gnatf switch for details", N);
996ae0b0
RK
409 end if;
410 end Ambiguous_Operands;
411
412 -----------------------
413 -- Analyze_Aggregate --
414 -----------------------
415
416 -- Most of the analysis of Aggregates requires that the type be known,
417 -- and is therefore put off until resolution.
418
419 procedure Analyze_Aggregate (N : Node_Id) is
420 begin
421 if No (Etype (N)) then
422 Set_Etype (N, Any_Composite);
423 end if;
424 end Analyze_Aggregate;
425
426 -----------------------
427 -- Analyze_Allocator --
428 -----------------------
429
430 procedure Analyze_Allocator (N : Node_Id) is
431 Loc : constant Source_Ptr := Sloc (N);
07fc65c4 432 Sav_Errs : constant Nat := Serious_Errors_Detected;
b67a385c 433 E : Node_Id := Expression (N);
996ae0b0
RK
434 Acc_Type : Entity_Id;
435 Type_Id : Entity_Id;
87003b28
RD
436 P : Node_Id;
437 C : Node_Id;
b3b26ace 438 Onode : Node_Id;
996ae0b0
RK
439
440 begin
ce5ba43a 441 Check_SPARK_05_Restriction ("allocator is not allowed", N);
1d801f21 442
87003b28
RD
443 -- Deal with allocator restrictions
444
50cff367 445 -- In accordance with H.4(7), the No_Allocators restriction only applies
87003b28 446 -- to user-written allocators. The same consideration applies to the
d8941160 447 -- No_Standard_Allocators_Before_Elaboration restriction.
50cff367
GD
448
449 if Comes_From_Source (N) then
450 Check_Restriction (No_Allocators, N);
87003b28 451
57f4c288 452 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
489c6e19 453 -- look at enclosing context, checking task/main subprogram case.
87003b28
RD
454
455 C := N;
456 P := Parent (C);
457 while Present (P) loop
458
b3b26ace
AC
459 -- For the task case we need a handled sequence of statements,
460 -- where the occurrence of the allocator is within the statements
461 -- and the parent is a task body
87003b28
RD
462
463 if Nkind (P) = N_Handled_Sequence_Of_Statements
464 and then Is_List_Member (C)
465 and then List_Containing (C) = Statements (P)
466 then
b3b26ace
AC
467 Onode := Original_Node (Parent (P));
468
87003b28 469 -- Check for allocator within task body, this is a definite
d8941160
RD
470 -- violation of No_Allocators_After_Elaboration we can detect
471 -- at compile time.
87003b28 472
b3b26ace 473 if Nkind (Onode) = N_Task_Body then
57f4c288
ES
474 Check_Restriction
475 (No_Standard_Allocators_After_Elaboration, N);
87003b28
RD
476 exit;
477 end if;
b3b26ace 478 end if;
87003b28 479
b3b26ace
AC
480 -- The other case is appearance in a subprogram body. This is
481 -- a violation if this is a library level subprogram with no
482 -- parameters. Note that this is now a static error even if the
483 -- subprogram is not the main program (this is a change, in an
484 -- earlier version only the main program was affected, and the
485 -- check had to be done in the binder.
87003b28 486
b3b26ace
AC
487 if Nkind (P) = N_Subprogram_Body
488 and then Nkind (Parent (P)) = N_Compilation_Unit
489 and then No (Parameter_Specifications (Specification (P)))
490 then
491 Check_Restriction
492 (No_Standard_Allocators_After_Elaboration, N);
87003b28
RD
493 end if;
494
495 C := P;
496 P := Parent (C);
497 end loop;
50cff367 498 end if;
996ae0b0 499
df170605
AC
500 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
501 -- any. The expected type for the name is any type. A non-overloading
502 -- rule then requires it to be of a type descended from
f0f88eb6
RD
503 -- System.Storage_Pools.Subpools.Subpool_Handle.
504
505 -- This isn't exactly what the AI says, but it seems to be the right
506 -- rule. The AI should be fixed.???
df170605
AC
507
508 declare
509 Subpool : constant Node_Id := Subpool_Handle_Name (N);
f0f88eb6 510
df170605
AC
511 begin
512 if Present (Subpool) then
513 Analyze (Subpool);
f0f88eb6 514
df170605
AC
515 if Is_Overloaded (Subpool) then
516 Error_Msg_N ("ambiguous subpool handle", Subpool);
517 end if;
518
f0f88eb6 519 -- Check that Etype (Subpool) is descended from Subpool_Handle
df170605
AC
520
521 Resolve (Subpool);
522 end if;
523 end;
524
525 -- Analyze the qualified expression or subtype indication
87003b28 526
996ae0b0
RK
527 if Nkind (E) = N_Qualified_Expression then
528 Acc_Type := Create_Itype (E_Allocator_Type, N);
529 Set_Etype (Acc_Type, Acc_Type);
996ae0b0 530 Find_Type (Subtype_Mark (E));
45c8b94b
ES
531
532 -- Analyze the qualified expression, and apply the name resolution
f0f88eb6 533 -- rule given in 4.7(3).
45c8b94b
ES
534
535 Analyze (E);
536 Type_Id := Etype (E);
996ae0b0
RK
537 Set_Directly_Designated_Type (Acc_Type, Type_Id);
538
996ae0b0
RK
539 -- A qualified expression requires an exact match of the type,
540 -- class-wide matching is not allowed.
541
45c8b94b
ES
542 -- if Is_Class_Wide_Type (Type_Id)
543 -- and then Base_Type
544 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
545 -- then
546 -- Wrong_Type (Expression (E), Type_Id);
547 -- end if;
996ae0b0 548
996ae0b0 549 -- We don't analyze the qualified expression itself because it's
f3691f46
ES
550 -- part of the allocator. It is fully analyzed and resolved when
551 -- the allocator is resolved with the context type.
996ae0b0
RK
552
553 Set_Etype (E, Type_Id);
554
aab883ec 555 -- Case where allocator has a subtype indication
4c46b835 556
996ae0b0
RK
557 else
558 declare
758c442c
GD
559 Def_Id : Entity_Id;
560 Base_Typ : Entity_Id;
996ae0b0
RK
561
562 begin
563 -- If the allocator includes a N_Subtype_Indication then a
564 -- constraint is present, otherwise the node is a subtype mark.
565 -- Introduce an explicit subtype declaration into the tree
566 -- defining some anonymous subtype and rewrite the allocator to
567 -- use this subtype rather than the subtype indication.
568
569 -- It is important to introduce the explicit subtype declaration
570 -- so that the bounds of the subtype indication are attached to
571 -- the tree in case the allocator is inside a generic unit.
572
3ba1a9eb
AC
573 -- Finally, if there is no subtype indication and the type is
574 -- a tagged unconstrained type with discriminants, the designated
575 -- object is constrained by their default values, and it is
576 -- simplest to introduce an explicit constraint now. In some cases
577 -- this is done during expansion, but freeze actions are certain
578 -- to be emitted in the proper order if constraint is explicit.
579
580 if Is_Entity_Name (E) and then Expander_Active then
581 Find_Type (E);
582 Type_Id := Entity (E);
583
584 if Is_Tagged_Type (Type_Id)
585 and then Has_Discriminants (Type_Id)
586 and then not Is_Constrained (Type_Id)
3702225c
AC
587 and then
588 Present
589 (Discriminant_Default_Value
590 (First_Discriminant (Type_Id)))
3ba1a9eb
AC
591 then
592 declare
3702225c 593 Constr : constant List_Id := New_List;
3ba1a9eb
AC
594 Loc : constant Source_Ptr := Sloc (E);
595 Discr : Entity_Id := First_Discriminant (Type_Id);
3ba1a9eb
AC
596
597 begin
598 if Present (Discriminant_Default_Value (Discr)) then
599 while Present (Discr) loop
600 Append (Discriminant_Default_Value (Discr), Constr);
601 Next_Discriminant (Discr);
602 end loop;
603
3702225c
AC
604 Rewrite (E,
605 Make_Subtype_Indication (Loc,
606 Subtype_Mark => New_Occurrence_Of (Type_Id, Loc),
607 Constraint =>
608 Make_Index_Or_Discriminant_Constraint (Loc,
609 Constraints => Constr)));
3ba1a9eb
AC
610 end if;
611 end;
612 end if;
613 end if;
614
996ae0b0
RK
615 if Nkind (E) = N_Subtype_Indication then
616
617 -- A constraint is only allowed for a composite type in Ada
618 -- 95. In Ada 83, a constraint is also allowed for an
619 -- access-to-composite type, but the constraint is ignored.
620
621 Find_Type (Subtype_Mark (E));
758c442c 622 Base_Typ := Entity (Subtype_Mark (E));
996ae0b0 623
758c442c 624 if Is_Elementary_Type (Base_Typ) then
0ab80019 625 if not (Ada_Version = Ada_83
758c442c 626 and then Is_Access_Type (Base_Typ))
996ae0b0
RK
627 then
628 Error_Msg_N ("constraint not allowed here", E);
629
24657705 630 if Nkind (Constraint (E)) =
3702225c 631 N_Index_Or_Discriminant_Constraint
996ae0b0 632 then
4e7a4f6e 633 Error_Msg_N -- CODEFIX
996ae0b0
RK
634 ("\if qualified expression was meant, " &
635 "use apostrophe", Constraint (E));
636 end if;
637 end if;
638
639 -- Get rid of the bogus constraint:
640
641 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
642 Analyze_Allocator (N);
643 return;
644 end if;
645
646 if Expander_Active then
092ef350 647 Def_Id := Make_Temporary (Loc, 'S');
996ae0b0
RK
648
649 Insert_Action (E,
650 Make_Subtype_Declaration (Loc,
651 Defining_Identifier => Def_Id,
652 Subtype_Indication => Relocate_Node (E)));
653
07fc65c4 654 if Sav_Errs /= Serious_Errors_Detected
d469eabe
HK
655 and then Nkind (Constraint (E)) =
656 N_Index_Or_Discriminant_Constraint
996ae0b0 657 then
4e7a4f6e 658 Error_Msg_N -- CODEFIX
a90bd866
RD
659 ("if qualified expression was meant, "
660 & "use apostrophe!", Constraint (E));
996ae0b0
RK
661 end if;
662
663 E := New_Occurrence_Of (Def_Id, Loc);
664 Rewrite (Expression (N), E);
665 end if;
666 end if;
667
668 Type_Id := Process_Subtype (E, N);
669 Acc_Type := Create_Itype (E_Allocator_Type, N);
84dad556 670 Set_Etype (Acc_Type, Acc_Type);
996ae0b0
RK
671 Set_Directly_Designated_Type (Acc_Type, Type_Id);
672 Check_Fully_Declared (Type_Id, N);
673
1baa4d2d 674 -- Ada 2005 (AI-231): If the designated type is itself an access
16b05213 675 -- type that excludes null, its default initialization will
75ad5042
ES
676 -- be a null object, and we can insert an unconditional raise
677 -- before the allocator.
2820d220 678
bfae1846 679 -- Ada 2012 (AI-104): A not null indication here is altogether
518ade91
AC
680 -- illegal.
681
2820d220 682 if Can_Never_Be_Null (Type_Id) then
75ad5042
ES
683 declare
684 Not_Null_Check : constant Node_Id :=
685 Make_Raise_Constraint_Error (Sloc (E),
686 Reason => CE_Null_Not_Allowed);
40b93859 687
75ad5042 688 begin
7b55fea6 689 if Expander_Active then
75ad5042
ES
690 Insert_Action (N, Not_Null_Check);
691 Analyze (Not_Null_Check);
40b93859 692
685bc70f
AC
693 elsif Warn_On_Ada_2012_Compatibility then
694 Error_Msg_N
695 ("null value not allowed here in Ada 2012?y?", E);
75ad5042
ES
696 end if;
697 end;
2820d220
AC
698 end if;
699
996ae0b0
RK
700 -- Check for missing initialization. Skip this check if we already
701 -- had errors on analyzing the allocator, since in that case these
24657705 702 -- are probably cascaded errors.
996ae0b0 703
83496138 704 if not Is_Definite_Subtype (Type_Id)
07fc65c4 705 and then Serious_Errors_Detected = Sav_Errs
996ae0b0 706 then
a4956515
AC
707 -- The build-in-place machinery may produce an allocator when
708 -- the designated type is indefinite but the underlying type is
709 -- not. In this case the unknown discriminants are meaningless
710 -- and should not trigger error messages. Check the parent node
711 -- because the allocator is marked as coming from source.
712
713 if Present (Underlying_Type (Type_Id))
83496138 714 and then Is_Definite_Subtype (Underlying_Type (Type_Id))
a4956515
AC
715 and then not Comes_From_Source (Parent (N))
716 then
717 null;
718
d43584ca
AC
719 -- An unusual case arises when the parent of a derived type is
720 -- a limited record extension with unknown discriminants, and
721 -- its full view has no discriminants.
722 --
723 -- A more general fix might be to create the proper underlying
724 -- type for such a derived type, but it is a record type with
725 -- no private attributes, so this required extending the
726 -- meaning of this attribute. ???
727
728 elsif Ekind (Etype (Type_Id)) = E_Record_Type_With_Private
729 and then Present (Underlying_Type (Etype (Type_Id)))
730 and then
731 not Has_Discriminants (Underlying_Type (Etype (Type_Id)))
732 and then not Comes_From_Source (Parent (N))
733 then
734 null;
735
a4956515 736 elsif Is_Class_Wide_Type (Type_Id) then
996ae0b0
RK
737 Error_Msg_N
738 ("initialization required in class-wide allocation", N);
a4956515 739
996ae0b0 740 else
0791fbe9 741 if Ada_Version < Ada_2005
24657705
HK
742 and then Is_Limited_Type (Type_Id)
743 then
744 Error_Msg_N ("unconstrained allocation not allowed", N);
745
746 if Is_Array_Type (Type_Id) then
747 Error_Msg_N
748 ("\constraint with array bounds required", N);
749
750 elsif Has_Unknown_Discriminants (Type_Id) then
751 null;
752
753 else pragma Assert (Has_Discriminants (Type_Id));
754 Error_Msg_N
755 ("\constraint with discriminant values required", N);
756 end if;
757
758 -- Limited Ada 2005 and general non-limited case
759
760 else
761 Error_Msg_N
84dad556
AC
762 ("uninitialized unconstrained allocation not "
763 & "allowed", N);
24657705
HK
764
765 if Is_Array_Type (Type_Id) then
766 Error_Msg_N
84dad556
AC
767 ("\qualified expression or constraint with "
768 & "array bounds required", N);
24657705
HK
769
770 elsif Has_Unknown_Discriminants (Type_Id) then
771 Error_Msg_N ("\qualified expression required", N);
772
773 else pragma Assert (Has_Discriminants (Type_Id));
774 Error_Msg_N
84dad556
AC
775 ("\qualified expression or constraint with "
776 & "discriminant values required", N);
24657705
HK
777 end if;
778 end if;
996ae0b0
RK
779 end if;
780 end if;
781 end;
782 end if;
783
aab883ec 784 if Is_Abstract_Type (Type_Id) then
996ae0b0
RK
785 Error_Msg_N ("cannot allocate abstract object", E);
786 end if;
787
788 if Has_Task (Designated_Type (Acc_Type)) then
6e937c1c 789 Check_Restriction (No_Tasking, N);
fbf5a39b 790 Check_Restriction (Max_Tasks, N);
996ae0b0 791 Check_Restriction (No_Task_Allocators, N);
70b3b953
GD
792 end if;
793
02bb0765
AC
794 -- Check restriction against dynamically allocated protected objects
795
796 if Has_Protected (Designated_Type (Acc_Type)) then
797 Check_Restriction (No_Protected_Type_Allocators, N);
798 end if;
799
646e2823
AC
800 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
801 -- type is nested, and the designated type needs finalization. The rule
802 -- is conservative in that class-wide types need finalization.
803
804 if Needs_Finalization (Designated_Type (Acc_Type))
805 and then not Is_Library_Level_Entity (Acc_Type)
806 then
807 Check_Restriction (No_Nested_Finalization, N);
808 end if;
809
70b3b953
GD
810 -- Check that an allocator of a nested access type doesn't create a
811 -- protected object when restriction No_Local_Protected_Objects applies.
70b3b953 812
96e90ac1 813 if Has_Protected (Designated_Type (Acc_Type))
70b3b953
GD
814 and then not Is_Library_Level_Entity (Acc_Type)
815 then
816 Check_Restriction (No_Local_Protected_Objects, N);
996ae0b0
RK
817 end if;
818
4969efdf
AC
819 -- Likewise for No_Local_Timing_Events
820
821 if Has_Timing_Event (Designated_Type (Acc_Type))
822 and then not Is_Library_Level_Entity (Acc_Type)
823 then
824 Check_Restriction (No_Local_Timing_Events, N);
825 end if;
826
ffe9aba8
AC
827 -- If the No_Streams restriction is set, check that the type of the
828 -- object is not, and does not contain, any subtype derived from
829 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
830 -- Has_Stream just for efficiency reasons. There is no point in
831 -- spending time on a Has_Stream check if the restriction is not set.
832
7a963087 833 if Restriction_Check_Required (No_Streams) then
ffe9aba8
AC
834 if Has_Stream (Designated_Type (Acc_Type)) then
835 Check_Restriction (No_Streams, N);
836 end if;
837 end if;
838
996ae0b0
RK
839 Set_Etype (N, Acc_Type);
840
841 if not Is_Library_Level_Entity (Acc_Type) then
842 Check_Restriction (No_Local_Allocators, N);
843 end if;
2820d220 844
07fc65c4 845 if Serious_Errors_Detected > Sav_Errs then
996ae0b0
RK
846 Set_Error_Posted (N);
847 Set_Etype (N, Any_Type);
848 end if;
996ae0b0
RK
849 end Analyze_Allocator;
850
851 ---------------------------
852 -- Analyze_Arithmetic_Op --
853 ---------------------------
854
855 procedure Analyze_Arithmetic_Op (N : Node_Id) is
856 L : constant Node_Id := Left_Opnd (N);
857 R : constant Node_Id := Right_Opnd (N);
858 Op_Id : Entity_Id;
859
860 begin
861 Candidate_Type := Empty;
862 Analyze_Expression (L);
863 Analyze_Expression (R);
864
d469eabe
HK
865 -- If the entity is already set, the node is the instantiation of a
866 -- generic node with a non-local reference, or was manufactured by a
867 -- call to Make_Op_xxx. In either case the entity is known to be valid,
868 -- and we do not need to collect interpretations, instead we just get
869 -- the single possible interpretation.
996ae0b0
RK
870
871 Op_Id := Entity (N);
872
873 if Present (Op_Id) then
874 if Ekind (Op_Id) = E_Operator then
875
d469eabe 876 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
996ae0b0
RK
877 and then Treat_Fixed_As_Integer (N)
878 then
879 null;
880 else
881 Set_Etype (N, Any_Type);
882 Find_Arithmetic_Types (L, R, Op_Id, N);
883 end if;
884
885 else
886 Set_Etype (N, Any_Type);
887 Add_One_Interp (N, Op_Id, Etype (Op_Id));
888 end if;
889
890 -- Entity is not already set, so we do need to collect interpretations
891
892 else
996ae0b0
RK
893 Set_Etype (N, Any_Type);
894
84dad556 895 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
896 while Present (Op_Id) loop
897 if Ekind (Op_Id) = E_Operator
898 and then Present (Next_Entity (First_Entity (Op_Id)))
899 then
900 Find_Arithmetic_Types (L, R, Op_Id, N);
901
902 -- The following may seem superfluous, because an operator cannot
903 -- be generic, but this ignores the cleverness of the author of
904 -- ACVC bc1013a.
905
906 elsif Is_Overloadable (Op_Id) then
907 Analyze_User_Defined_Binary_Op (N, Op_Id);
908 end if;
909
910 Op_Id := Homonym (Op_Id);
911 end loop;
912 end if;
913
914 Operator_Check (N);
22e89283 915 Check_Function_Writable_Actuals (N);
996ae0b0
RK
916 end Analyze_Arithmetic_Op;
917
918 ------------------
919 -- Analyze_Call --
920 ------------------
921
4c46b835
AC
922 -- Function, procedure, and entry calls are checked here. The Name in
923 -- the call may be overloaded. The actuals have been analyzed and may
924 -- themselves be overloaded. On exit from this procedure, the node N
925 -- may have zero, one or more interpretations. In the first case an
926 -- error message is produced. In the last case, the node is flagged
927 -- as overloaded and the interpretations are collected in All_Interp.
996ae0b0
RK
928
929 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
930 -- the type-checking is similar to that of other calls.
931
932 procedure Analyze_Call (N : Node_Id) is
4f324de2 933 Actuals : constant List_Id := Parameter_Associations (N);
f4ef7b06 934 Loc : constant Source_Ptr := Sloc (N);
63319f58 935 Nam : Node_Id;
996ae0b0
RK
936 X : Interp_Index;
937 It : Interp;
938 Nam_Ent : Entity_Id;
63319f58
RD
939 Success : Boolean := False;
940
941 Deref : Boolean := False;
1cb17b78
AC
942 -- Flag indicates whether an interpretation of the prefix is a
943 -- parameterless call that returns an access_to_subprogram.
996ae0b0 944
23685ae6
AC
945 procedure Check_Mixed_Parameter_And_Named_Associations;
946 -- Check that parameter and named associations are not mixed. This is
947 -- a restriction in SPARK mode.
948
288cbbbd
JM
949 procedure Check_Writable_Actuals (N : Node_Id);
950 -- If the call has out or in-out parameters then mark its outermost
951 -- enclosing construct as a node on which the writable actuals check
952 -- must be performed.
953
996ae0b0 954 function Name_Denotes_Function return Boolean;
5ff22245
ES
955 -- If the type of the name is an access to subprogram, this may be the
956 -- type of a name, or the return type of the function being called. If
957 -- the name is not an entity then it can denote a protected function.
958 -- Until we distinguish Etype from Return_Type, we must use this routine
959 -- to resolve the meaning of the name in the call.
960
961 procedure No_Interpretation;
962 -- Output error message when no valid interpretation exists
996ae0b0 963
23685ae6
AC
964 --------------------------------------------------
965 -- Check_Mixed_Parameter_And_Named_Associations --
966 --------------------------------------------------
967
968 procedure Check_Mixed_Parameter_And_Named_Associations is
969 Actual : Node_Id;
970 Named_Seen : Boolean;
f5afb270 971
23685ae6 972 begin
23685ae6 973 Named_Seen := False;
f5afb270
AC
974
975 Actual := First (Actuals);
23685ae6
AC
976 while Present (Actual) loop
977 case Nkind (Actual) is
978 when N_Parameter_Association =>
979 if Named_Seen then
ce5ba43a 980 Check_SPARK_05_Restriction
23685ae6
AC
981 ("named association cannot follow positional one",
982 Actual);
983 exit;
984 end if;
84dad556 985
23685ae6
AC
986 when others =>
987 Named_Seen := True;
988 end case;
989
990 Next (Actual);
991 end loop;
992 end Check_Mixed_Parameter_And_Named_Associations;
993
288cbbbd
JM
994 ----------------------------
995 -- Check_Writable_Actuals --
996 ----------------------------
997
998 -- The identification of conflicts in calls to functions with writable
551e1935 999 -- actuals is performed in the analysis phase of the front end to ensure
288cbbbd
JM
1000 -- that it reports exactly the same errors compiling with and without
1001 -- expansion enabled. It is performed in two stages:
1002
551e1935
AC
1003 -- 1) When a call to a function with out-mode parameters is found,
1004 -- we climb to the outermost enclosing construct that can be
288cbbbd
JM
1005 -- evaluated in arbitrary order and we mark it with the flag
1006 -- Check_Actuals.
1007
551e1935
AC
1008 -- 2) When the analysis of the marked node is complete, we traverse
1009 -- its decorated subtree searching for conflicts (see function
1010 -- Sem_Util.Check_Function_Writable_Actuals).
288cbbbd 1011
551e1935
AC
1012 -- The unique exception to this general rule is for aggregates, since
1013 -- their analysis is performed by the front end in the resolution
1014 -- phase. For aggregates we do not climb to their enclosing construct:
288cbbbd
JM
1015 -- we restrict the analysis to the subexpressions initializing the
1016 -- aggregate components.
1017
1018 -- This implies that the analysis of expressions containing aggregates
551e1935 1019 -- is not complete, since there may be conflicts on writable actuals
288cbbbd
JM
1020 -- involving subexpressions of the enclosing logical or arithmetic
1021 -- expressions. However, we cannot wait and perform the analysis when
551e1935 1022 -- the whole subtree is resolved, since the subtrees may be transformed,
288cbbbd
JM
1023 -- thus adding extra complexity and computation cost to identify and
1024 -- report exactly the same errors compiling with and without expansion
1025 -- enabled.
1026
1027 procedure Check_Writable_Actuals (N : Node_Id) is
288cbbbd
JM
1028 begin
1029 if Comes_From_Source (N)
1030 and then Present (Get_Subprogram_Entity (N))
1031 and then Has_Out_Or_In_Out_Parameter (Get_Subprogram_Entity (N))
1032 then
1033 -- For procedures and entries there is no need to climb since
1034 -- we only need to check if the actuals of this call invoke
1035 -- functions whose out-mode parameters overlap.
1036
1037 if Nkind (N) /= N_Function_Call then
1038 Set_Check_Actuals (N);
1039
1040 -- For calls to functions we climb to the outermost enclosing
1041 -- construct where the out-mode actuals of this function may
1042 -- introduce conflicts.
1043
1044 else
1045 declare
1046 Outermost : Node_Id;
1047 P : Node_Id := N;
1048
1049 begin
1050 while Present (P) loop
1051
551e1935 1052 -- For object declarations we can climb to the node from
288cbbbd
JM
1053 -- its object definition branch or from its initializing
1054 -- expression. We prefer to mark the child node as the
1055 -- outermost construct to avoid adding further complexity
551e1935 1056 -- to the routine that will later take care of
288cbbbd
JM
1057 -- performing the writable actuals check.
1058
22e89283
AC
1059 if Has_Arbitrary_Evaluation_Order (Nkind (P))
1060 and then not Nkind_In (P, N_Assignment_Statement,
1061 N_Object_Declaration)
288cbbbd
JM
1062 then
1063 Outermost := P;
1064 end if;
1065
1066 -- Avoid climbing more than needed!
1067
22e89283 1068 exit when Stop_Subtree_Climbing (Nkind (P))
288cbbbd
JM
1069 or else (Nkind (P) = N_Range
1070 and then not
22e89283 1071 Nkind_In (Parent (P), N_In, N_Not_In));
288cbbbd
JM
1072
1073 P := Parent (P);
1074 end loop;
1075
1076 Set_Check_Actuals (Outermost);
1077 end;
1078 end if;
1079 end if;
1080 end Check_Writable_Actuals;
1081
996ae0b0
RK
1082 ---------------------------
1083 -- Name_Denotes_Function --
1084 ---------------------------
1085
1086 function Name_Denotes_Function return Boolean is
1087 begin
1088 if Is_Entity_Name (Nam) then
1089 return Ekind (Entity (Nam)) = E_Function;
996ae0b0
RK
1090 elsif Nkind (Nam) = N_Selected_Component then
1091 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
996ae0b0
RK
1092 else
1093 return False;
1094 end if;
1095 end Name_Denotes_Function;
1096
5ff22245
ES
1097 -----------------------
1098 -- No_Interpretation --
1099 -----------------------
1100
1101 procedure No_Interpretation is
1102 L : constant Boolean := Is_List_Member (N);
1103 K : constant Node_Kind := Nkind (Parent (N));
1104
1105 begin
1106 -- If the node is in a list whose parent is not an expression then it
1107 -- must be an attempted procedure call.
1108
1109 if L and then K not in N_Subexpr then
1110 if Ekind (Entity (Nam)) = E_Generic_Procedure then
1111 Error_Msg_NE
1112 ("must instantiate generic procedure& before call",
1113 Nam, Entity (Nam));
1114 else
84dad556 1115 Error_Msg_N ("procedure or entry name expected", Nam);
5ff22245
ES
1116 end if;
1117
1118 -- Check for tasking cases where only an entry call will do
1119
1120 elsif not L
1121 and then Nkind_In (K, N_Entry_Call_Alternative,
1122 N_Triggering_Alternative)
1123 then
1124 Error_Msg_N ("entry name expected", Nam);
1125
1126 -- Otherwise give general error message
1127
1128 else
1129 Error_Msg_N ("invalid prefix in call", Nam);
1130 end if;
1131 end No_Interpretation;
1132
996ae0b0
RK
1133 -- Start of processing for Analyze_Call
1134
1135 begin
6480338a 1136 if Restriction_Check_Required (SPARK_05) then
23685ae6
AC
1137 Check_Mixed_Parameter_And_Named_Associations;
1138 end if;
1139
996ae0b0
RK
1140 -- Initialize the type of the result of the call to the error type,
1141 -- which will be reset if the type is successfully resolved.
1142
1143 Set_Etype (N, Any_Type);
1144
63319f58
RD
1145 Nam := Name (N);
1146
996ae0b0
RK
1147 if not Is_Overloaded (Nam) then
1148
1149 -- Only one interpretation to check
1150
1151 if Ekind (Etype (Nam)) = E_Subprogram_Type then
1152 Nam_Ent := Etype (Nam);
1153
758c442c
GD
1154 -- If the prefix is an access_to_subprogram, this may be an indirect
1155 -- call. This is the case if the name in the call is not an entity
1156 -- name, or if it is a function name in the context of a procedure
1157 -- call. In this latter case, we have a call to a parameterless
1158 -- function that returns a pointer_to_procedure which is the entity
5ff22245
ES
1159 -- being called. Finally, F (X) may be a call to a parameterless
1160 -- function that returns a pointer to a function with parameters.
80e59506 1161 -- Note that if F returns an access-to-subprogram whose designated
4bb9c7b9
AC
1162 -- type is an array, F (X) cannot be interpreted as an indirect call
1163 -- through the result of the call to F.
758c442c 1164
996ae0b0
RK
1165 elsif Is_Access_Type (Etype (Nam))
1166 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
758c442c
GD
1167 and then
1168 (not Name_Denotes_Function
b2834fbd
AC
1169 or else Nkind (N) = N_Procedure_Call_Statement
1170 or else
1171 (Nkind (Parent (N)) /= N_Explicit_Dereference
1172 and then Is_Entity_Name (Nam)
1173 and then No (First_Formal (Entity (Nam)))
1174 and then not
1175 Is_Array_Type (Etype (Designated_Type (Etype (Nam))))
1176 and then Present (Actuals)))
996ae0b0
RK
1177 then
1178 Nam_Ent := Designated_Type (Etype (Nam));
1179 Insert_Explicit_Dereference (Nam);
1180
1181 -- Selected component case. Simple entry or protected operation,
1182 -- where the entry name is given by the selector name.
1183
1184 elsif Nkind (Nam) = N_Selected_Component then
1185 Nam_Ent := Entity (Selector_Name (Nam));
1186
bce79204
AC
1187 if not Ekind_In (Nam_Ent, E_Entry,
1188 E_Entry_Family,
1189 E_Function,
1190 E_Procedure)
996ae0b0
RK
1191 then
1192 Error_Msg_N ("name in call is not a callable entity", Nam);
1193 Set_Etype (N, Any_Type);
1194 return;
1195 end if;
1196
1197 -- If the name is an Indexed component, it can be a call to a member
1198 -- of an entry family. The prefix must be a selected component whose
1199 -- selector is the entry. Analyze_Procedure_Call normalizes several
1200 -- kinds of call into this form.
1201
1202 elsif Nkind (Nam) = N_Indexed_Component then
996ae0b0
RK
1203 if Nkind (Prefix (Nam)) = N_Selected_Component then
1204 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
996ae0b0
RK
1205 else
1206 Error_Msg_N ("name in call is not a callable entity", Nam);
1207 Set_Etype (N, Any_Type);
1208 return;
996ae0b0
RK
1209 end if;
1210
1211 elsif not Is_Entity_Name (Nam) then
1212 Error_Msg_N ("name in call is not a callable entity", Nam);
1213 Set_Etype (N, Any_Type);
1214 return;
1215
1216 else
1217 Nam_Ent := Entity (Nam);
1218
5f50020a
ES
1219 -- If not overloadable, this may be a generalized indexing
1220 -- operation with named associations. Rewrite again as an
1221 -- indexed component and analyze as container indexing.
996ae0b0
RK
1222
1223 if not Is_Overloadable (Nam_Ent) then
32bba3c9
AC
1224 if Present
1225 (Find_Value_Of_Aspect
1226 (Etype (Nam_Ent), Aspect_Constant_Indexing))
5f50020a
ES
1227 then
1228 Replace (N,
1229 Make_Indexed_Component (Sloc (N),
32bba3c9 1230 Prefix => Nam,
5f50020a
ES
1231 Expressions => Parameter_Associations (N)));
1232
1233 if Try_Container_Indexing (N, Nam, Expressions (N)) then
1234 return;
1235 else
1236 No_Interpretation;
1237 end if;
1238
1239 else
1240 No_Interpretation;
1241 end if;
32bba3c9 1242
5ff22245
ES
1243 return;
1244 end if;
1245 end if;
996ae0b0 1246
5ff22245
ES
1247 -- Operations generated for RACW stub types are called only through
1248 -- dispatching, and can never be the static interpretation of a call.
996ae0b0 1249
5ff22245
ES
1250 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1251 No_Interpretation;
1252 return;
996ae0b0
RK
1253 end if;
1254
1255 Analyze_One_Call (N, Nam_Ent, True, Success);
1256
ec6078e3
ES
1257 -- If this is an indirect call, the return type of the access_to
1258 -- subprogram may be an incomplete type. At the point of the call,
947430d5
AC
1259 -- use the full type if available, and at the same time update the
1260 -- return type of the access_to_subprogram.
ec6078e3
ES
1261
1262 if Success
d469eabe 1263 and then Nkind (Nam) = N_Explicit_Dereference
ec6078e3
ES
1264 and then Ekind (Etype (N)) = E_Incomplete_Type
1265 and then Present (Full_View (Etype (N)))
1266 then
1267 Set_Etype (N, Full_View (Etype (N)));
1268 Set_Etype (Nam_Ent, Etype (N));
1269 end if;
1270
a7e68e7f
HK
1271 -- Overloaded call
1272
996ae0b0 1273 else
5ff22245
ES
1274 -- An overloaded selected component must denote overloaded operations
1275 -- of a concurrent type. The interpretations are attached to the
1276 -- simple name of those operations.
996ae0b0
RK
1277
1278 if Nkind (Nam) = N_Selected_Component then
1279 Nam := Selector_Name (Nam);
1280 end if;
1281
1282 Get_First_Interp (Nam, X, It);
996ae0b0
RK
1283 while Present (It.Nam) loop
1284 Nam_Ent := It.Nam;
1cb17b78 1285 Deref := False;
996ae0b0
RK
1286
1287 -- Name may be call that returns an access to subprogram, or more
1288 -- generally an overloaded expression one of whose interpretations
947430d5
AC
1289 -- yields an access to subprogram. If the name is an entity, we do
1290 -- not dereference, because the node is a call that returns the
1291 -- access type: note difference between f(x), where the call may
1292 -- return an access subprogram type, and f(x)(y), where the type
1293 -- returned by the call to f is implicitly dereferenced to analyze
1294 -- the outer call.
996ae0b0
RK
1295
1296 if Is_Access_Type (Nam_Ent) then
1297 Nam_Ent := Designated_Type (Nam_Ent);
1298
1299 elsif Is_Access_Type (Etype (Nam_Ent))
1cb17b78
AC
1300 and then
1301 (not Is_Entity_Name (Nam)
1302 or else Nkind (N) = N_Procedure_Call_Statement)
996ae0b0
RK
1303 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1304 = E_Subprogram_Type
1305 then
1306 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1cb17b78
AC
1307
1308 if Is_Entity_Name (Nam) then
1309 Deref := True;
1310 end if;
996ae0b0
RK
1311 end if;
1312
7415029d
AC
1313 -- If the call has been rewritten from a prefixed call, the first
1314 -- parameter has been analyzed, but may need a subsequent
1315 -- dereference, so skip its analysis now.
1316
1317 if N /= Original_Node (N)
1318 and then Nkind (Original_Node (N)) = Nkind (N)
1319 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1320 and then Present (Parameter_Associations (N))
1321 and then Present (Etype (First (Parameter_Associations (N))))
1322 then
1323 Analyze_One_Call
1324 (N, Nam_Ent, False, Success, Skip_First => True);
1325 else
1326 Analyze_One_Call (N, Nam_Ent, False, Success);
1327 end if;
996ae0b0
RK
1328
1329 -- If the interpretation succeeds, mark the proper type of the
1330 -- prefix (any valid candidate will do). If not, remove the
f4ef7b06
AC
1331 -- candidate interpretation. If this is a parameterless call
1332 -- on an anonymous access to subprogram, X is a variable with
1333 -- an access discriminant D, the entity in the interpretation is
1334 -- D, so rewrite X as X.D.all.
996ae0b0
RK
1335
1336 if Success then
1cb17b78
AC
1337 if Deref
1338 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1339 then
f4ef7b06
AC
1340 if Ekind (It.Nam) = E_Discriminant
1341 and then Has_Implicit_Dereference (It.Nam)
1342 then
1343 Rewrite (Name (N),
1344 Make_Explicit_Dereference (Loc,
4f324de2
AC
1345 Prefix =>
1346 Make_Selected_Component (Loc,
1347 Prefix =>
1348 New_Occurrence_Of (Entity (Nam), Loc),
1349 Selector_Name =>
1350 New_Occurrence_Of (It.Nam, Loc))));
1351
f4ef7b06
AC
1352 Analyze (N);
1353 return;
1354
1355 else
1356 Set_Entity (Nam, It.Nam);
1357 Insert_Explicit_Dereference (Nam);
1358 Set_Etype (Nam, Nam_Ent);
1359 end if;
1cb17b78
AC
1360
1361 else
1362 Set_Etype (Nam, It.Typ);
1363 end if;
996ae0b0 1364
4f324de2 1365 elsif Nkind_In (Name (N), N_Function_Call, N_Selected_Component)
fbf5a39b 1366 then
996ae0b0
RK
1367 Remove_Interp (X);
1368 end if;
1369
1370 Get_Next_Interp (X, It);
1371 end loop;
1372
a7e68e7f
HK
1373 -- If the name is the result of a function call, it can only be a
1374 -- call to a function returning an access to subprogram. Insert
1375 -- explicit dereference.
996ae0b0
RK
1376
1377 if Nkind (Nam) = N_Function_Call then
1378 Insert_Explicit_Dereference (Nam);
1379 end if;
1380
1381 if Etype (N) = Any_Type then
1382
1383 -- None of the interpretations is compatible with the actuals
1384
1385 Diagnose_Call (N, Nam);
1386
1387 -- Special checks for uninstantiated put routines
1388
1389 if Nkind (N) = N_Procedure_Call_Statement
1390 and then Is_Entity_Name (Nam)
1391 and then Chars (Nam) = Name_Put
1392 and then List_Length (Actuals) = 1
1393 then
1394 declare
1395 Arg : constant Node_Id := First (Actuals);
1396 Typ : Entity_Id;
1397
1398 begin
1399 if Nkind (Arg) = N_Parameter_Association then
1400 Typ := Etype (Explicit_Actual_Parameter (Arg));
1401 else
1402 Typ := Etype (Arg);
1403 end if;
1404
1405 if Is_Signed_Integer_Type (Typ) then
1406 Error_Msg_N
a90bd866
RD
1407 ("possible missing instantiation of "
1408 & "'Text_'I'O.'Integer_'I'O!", Nam);
996ae0b0
RK
1409
1410 elsif Is_Modular_Integer_Type (Typ) then
1411 Error_Msg_N
a90bd866
RD
1412 ("possible missing instantiation of "
1413 & "'Text_'I'O.'Modular_'I'O!", Nam);
996ae0b0
RK
1414
1415 elsif Is_Floating_Point_Type (Typ) then
1416 Error_Msg_N
a90bd866
RD
1417 ("possible missing instantiation of "
1418 & "'Text_'I'O.'Float_'I'O!", Nam);
996ae0b0
RK
1419
1420 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1421 Error_Msg_N
a90bd866
RD
1422 ("possible missing instantiation of "
1423 & "'Text_'I'O.'Fixed_'I'O!", Nam);
996ae0b0
RK
1424
1425 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1426 Error_Msg_N
a90bd866
RD
1427 ("possible missing instantiation of "
1428 & "'Text_'I'O.'Decimal_'I'O!", Nam);
996ae0b0
RK
1429
1430 elsif Is_Enumeration_Type (Typ) then
1431 Error_Msg_N
a90bd866
RD
1432 ("possible missing instantiation of "
1433 & "'Text_'I'O.'Enumeration_'I'O!", Nam);
996ae0b0
RK
1434 end if;
1435 end;
1436 end if;
1437
1438 elsif not Is_Overloaded (N)
1439 and then Is_Entity_Name (Nam)
1440 then
aab883ec
ES
1441 -- Resolution yields a single interpretation. Verify that the
1442 -- reference has capitalization consistent with the declaration.
996ae0b0 1443
e7ba564f 1444 Set_Entity_With_Checks (Nam, Entity (Nam));
996ae0b0
RK
1445 Generate_Reference (Entity (Nam), Nam);
1446
1447 Set_Etype (Nam, Etype (Entity (Nam)));
30c20106
AC
1448 else
1449 Remove_Abstract_Operations (N);
996ae0b0
RK
1450 end if;
1451
1452 End_Interp_List;
1453 end if;
288cbbbd
JM
1454
1455 if Ada_Version >= Ada_2012 then
1456
1457 -- Check if the call contains a function with writable actuals
1458
1459 Check_Writable_Actuals (N);
1460
551e1935
AC
1461 -- If found and the outermost construct that can be evaluated in
1462 -- an arbitrary order is precisely this call, then check all its
288cbbbd
JM
1463 -- actuals.
1464
22e89283 1465 Check_Function_Writable_Actuals (N);
b63d61f7
AC
1466
1467 -- The return type of the function may be incomplete. This can be
1468 -- the case if the type is a generic formal, or a limited view. It
1469 -- can also happen when the function declaration appears before the
1470 -- full view of the type (which is legal in Ada 2012) and the call
1471 -- appears in a different unit, in which case the incomplete view
1472 -- must be replaced with the full view to prevent subsequent type
1473 -- errors.
1474
1475 if Is_Incomplete_Type (Etype (N))
1476 and then Present (Full_View (Etype (N)))
1477 then
1478 if Is_Entity_Name (Nam) then
1479 Set_Etype (Nam, Full_View (Etype (N)));
1480 Set_Etype (Entity (Nam), Full_View (Etype (N)));
1481 end if;
1482
1483 Set_Etype (N, Full_View (Etype (N)));
1484 end if;
288cbbbd 1485 end if;
996ae0b0
RK
1486 end Analyze_Call;
1487
19d846a0
RD
1488 -----------------------------
1489 -- Analyze_Case_Expression --
1490 -----------------------------
1491
1492 procedure Analyze_Case_Expression (N : Node_Id) is
19d846a0
RD
1493 procedure Non_Static_Choice_Error (Choice : Node_Id);
1494 -- Error routine invoked by the generic instantiation below when
1495 -- the case expression has a non static choice.
1496
15918371
AC
1497 package Case_Choices_Analysis is new
1498 Generic_Analyze_Choices
1499 (Process_Associated_Node => No_OP);
1500 use Case_Choices_Analysis;
1501
1502 package Case_Choices_Checking is new
1503 Generic_Check_Choices
1504 (Process_Empty_Choice => No_OP,
19d846a0
RD
1505 Process_Non_Static_Choice => Non_Static_Choice_Error,
1506 Process_Associated_Node => No_OP);
15918371 1507 use Case_Choices_Checking;
19d846a0 1508
19d846a0
RD
1509 -----------------------------
1510 -- Non_Static_Choice_Error --
1511 -----------------------------
1512
1513 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1514 begin
1515 Flag_Non_Static_Expr
1516 ("choice given in case expression is not static!", Choice);
1517 end Non_Static_Choice_Error;
1518
752b81d9
AC
1519 -- Local variables
1520
1521 Expr : constant Node_Id := Expression (N);
752b81d9
AC
1522 Alt : Node_Id;
1523 Exp_Type : Entity_Id;
1524 Exp_Btype : Entity_Id;
1525
308aab0b
AC
1526 FirstX : Node_Id := Empty;
1527 -- First expression in the case for which there is some type information
1528 -- available, i.e. it is not Any_Type, which can happen because of some
1529 -- error, or from the use of e.g. raise Constraint_Error.
1530
752b81d9 1531 Others_Present : Boolean;
15918371 1532 -- Indicates if Others was present
752b81d9 1533
e49de265 1534 Wrong_Alt : Node_Id := Empty;
10671e7a
AC
1535 -- For error reporting
1536
19d846a0
RD
1537 -- Start of processing for Analyze_Case_Expression
1538
1539 begin
1540 if Comes_From_Source (N) then
c86cf714 1541 Check_Compiler_Unit ("case expression", N);
19d846a0
RD
1542 end if;
1543
1544 Analyze_And_Resolve (Expr, Any_Discrete);
1545 Check_Unset_Reference (Expr);
1546 Exp_Type := Etype (Expr);
1547 Exp_Btype := Base_Type (Exp_Type);
1548
1549 Alt := First (Alternatives (N));
1550 while Present (Alt) loop
1551 Analyze (Expression (Alt));
308aab0b
AC
1552
1553 if No (FirstX) and then Etype (Expression (Alt)) /= Any_Type then
1554 FirstX := Expression (Alt);
1555 end if;
1556
19d846a0
RD
1557 Next (Alt);
1558 end loop;
1559
308aab0b
AC
1560 -- Get our initial type from the first expression for which we got some
1561 -- useful type information from the expression.
1562
19d846a0
RD
1563 if not Is_Overloaded (FirstX) then
1564 Set_Etype (N, Etype (FirstX));
1565
1566 else
1567 declare
1568 I : Interp_Index;
1569 It : Interp;
1570
1571 begin
1572 Set_Etype (N, Any_Type);
1573
1574 Get_First_Interp (FirstX, I, It);
1575 while Present (It.Nam) loop
1576
308e6f3a
RW
1577 -- For each interpretation of the first expression, we only
1578 -- add the interpretation if every other expression in the
19d846a0
RD
1579 -- case expression alternatives has a compatible type.
1580
1581 Alt := Next (First (Alternatives (N)));
1582 while Present (Alt) loop
1583 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1584 Next (Alt);
1585 end loop;
1586
1587 if No (Alt) then
1588 Add_One_Interp (N, It.Typ, It.Typ);
10671e7a
AC
1589 else
1590 Wrong_Alt := Alt;
19d846a0
RD
1591 end if;
1592
1593 Get_Next_Interp (I, It);
1594 end loop;
1595 end;
1596 end if;
1597
1598 Exp_Btype := Base_Type (Exp_Type);
1599
1600 -- The expression must be of a discrete type which must be determinable
1601 -- independently of the context in which the expression occurs, but
1602 -- using the fact that the expression must be of a discrete type.
1603 -- Moreover, the type this expression must not be a character literal
1604 -- (which is always ambiguous).
1605
1606 -- If error already reported by Resolve, nothing more to do
1607
15918371 1608 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
19d846a0
RD
1609 return;
1610
bf0b0e5e
AC
1611 -- Special casee message for character literal
1612
19d846a0
RD
1613 elsif Exp_Btype = Any_Character then
1614 Error_Msg_N
1615 ("character literal as case expression is ambiguous", Expr);
1616 return;
1617 end if;
1618
10671e7a 1619 if Etype (N) = Any_Type and then Present (Wrong_Alt) then
bf0b0e5e
AC
1620 Error_Msg_N
1621 ("type incompatible with that of previous alternatives",
1622 Expression (Wrong_Alt));
10671e7a
AC
1623 return;
1624 end if;
1625
19d846a0
RD
1626 -- If the case expression is a formal object of mode in out, then
1627 -- treat it as having a nonstatic subtype by forcing use of the base
1628 -- type (which has to get passed to Check_Case_Choices below). Also
1629 -- use base type when the case expression is parenthesized.
1630
1631 if Paren_Count (Expr) > 0
1632 or else (Is_Entity_Name (Expr)
1633 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1634 then
1635 Exp_Type := Exp_Btype;
1636 end if;
1637
752b81d9
AC
1638 -- The case expression alternatives cover the range of a static subtype
1639 -- subject to aspect Static_Predicate. Do not check the choices when the
1640 -- case expression has not been fully analyzed yet because this may lead
1641 -- to bogus errors.
1642
edab6088 1643 if Is_OK_Static_Subtype (Exp_Type)
ee4eee0a 1644 and then Has_Static_Predicate_Aspect (Exp_Type)
752b81d9
AC
1645 and then In_Spec_Expression
1646 then
1647 null;
1648
15918371 1649 -- Call Analyze_Choices and Check_Choices to do the rest of the work
19d846a0 1650
752b81d9 1651 else
15918371
AC
1652 Analyze_Choices (Alternatives (N), Exp_Type);
1653 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
752b81d9 1654 end if;
19d846a0
RD
1655
1656 if Exp_Type = Universal_Integer and then not Others_Present then
1657 Error_Msg_N
1658 ("case on universal integer requires OTHERS choice", Expr);
1659 end if;
1660 end Analyze_Case_Expression;
1661
996ae0b0
RK
1662 ---------------------------
1663 -- Analyze_Comparison_Op --
1664 ---------------------------
1665
1666 procedure Analyze_Comparison_Op (N : Node_Id) is
1667 L : constant Node_Id := Left_Opnd (N);
1668 R : constant Node_Id := Right_Opnd (N);
1669 Op_Id : Entity_Id := Entity (N);
1670
1671 begin
1672 Set_Etype (N, Any_Type);
1673 Candidate_Type := Empty;
1674
1675 Analyze_Expression (L);
1676 Analyze_Expression (R);
1677
1678 if Present (Op_Id) then
996ae0b0
RK
1679 if Ekind (Op_Id) = E_Operator then
1680 Find_Comparison_Types (L, R, Op_Id, N);
1681 else
1682 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1683 end if;
1684
1685 if Is_Overloaded (L) then
1686 Set_Etype (L, Intersect_Types (L, R));
1687 end if;
1688
1689 else
1690 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 1691 while Present (Op_Id) loop
996ae0b0
RK
1692 if Ekind (Op_Id) = E_Operator then
1693 Find_Comparison_Types (L, R, Op_Id, N);
1694 else
1695 Analyze_User_Defined_Binary_Op (N, Op_Id);
1696 end if;
1697
1698 Op_Id := Homonym (Op_Id);
1699 end loop;
1700 end if;
1701
1702 Operator_Check (N);
22e89283 1703 Check_Function_Writable_Actuals (N);
996ae0b0
RK
1704 end Analyze_Comparison_Op;
1705
1706 ---------------------------
1707 -- Analyze_Concatenation --
1708 ---------------------------
1709
fe39cf20
BD
1710 procedure Analyze_Concatenation (N : Node_Id) is
1711
1712 -- We wish to avoid deep recursion, because concatenations are often
1713 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1714 -- operands nonrecursively until we find something that is not a
1715 -- concatenation (A in this case), or has already been analyzed. We
1716 -- analyze that, and then walk back up the tree following Parent
1717 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1718 -- work at each level. The Parent pointers allow us to avoid recursion,
1719 -- and thus avoid running out of memory.
1720
1721 NN : Node_Id := N;
1722 L : Node_Id;
1723
1724 begin
1725 Candidate_Type := Empty;
1726
1727 -- The following code is equivalent to:
1728
1729 -- Set_Etype (N, Any_Type);
1730 -- Analyze_Expression (Left_Opnd (N));
1731 -- Analyze_Concatenation_Rest (N);
1732
1733 -- where the Analyze_Expression call recurses back here if the left
1734 -- operand is a concatenation.
1735
1736 -- Walk down left operands
1737
1738 loop
1739 Set_Etype (NN, Any_Type);
1740 L := Left_Opnd (NN);
1741 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1742 NN := L;
1743 end loop;
1744
1745 -- Now (given the above example) NN is A&B and L is A
1746
1747 -- First analyze L ...
1748
1749 Analyze_Expression (L);
1750
1751 -- ... then walk NN back up until we reach N (where we started), calling
1752 -- Analyze_Concatenation_Rest along the way.
1753
1754 loop
1755 Analyze_Concatenation_Rest (NN);
1756 exit when NN = N;
1757 NN := Parent (NN);
1758 end loop;
1759 end Analyze_Concatenation;
1760
1761 --------------------------------
1762 -- Analyze_Concatenation_Rest --
1763 --------------------------------
1764
996ae0b0
RK
1765 -- If the only one-dimensional array type in scope is String,
1766 -- this is the resulting type of the operation. Otherwise there
1767 -- will be a concatenation operation defined for each user-defined
1768 -- one-dimensional array.
1769
fe39cf20 1770 procedure Analyze_Concatenation_Rest (N : Node_Id) is
996ae0b0
RK
1771 L : constant Node_Id := Left_Opnd (N);
1772 R : constant Node_Id := Right_Opnd (N);
1773 Op_Id : Entity_Id := Entity (N);
1774 LT : Entity_Id;
1775 RT : Entity_Id;
1776
1777 begin
996ae0b0
RK
1778 Analyze_Expression (R);
1779
cd3cd5b1
AC
1780 -- If the entity is present, the node appears in an instance, and
1781 -- denotes a predefined concatenation operation. The resulting type is
1782 -- obtained from the arguments when possible. If the arguments are
1783 -- aggregates, the array type and the concatenation type must be
fbf5a39b 1784 -- visible.
996ae0b0
RK
1785
1786 if Present (Op_Id) then
1787 if Ekind (Op_Id) = E_Operator then
996ae0b0
RK
1788 LT := Base_Type (Etype (L));
1789 RT := Base_Type (Etype (R));
1790
1791 if Is_Array_Type (LT)
1792 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1793 then
1794 Add_One_Interp (N, Op_Id, LT);
1795
1796 elsif Is_Array_Type (RT)
1797 and then LT = Base_Type (Component_Type (RT))
1798 then
1799 Add_One_Interp (N, Op_Id, RT);
1800
fbf5a39b
AC
1801 -- If one operand is a string type or a user-defined array type,
1802 -- and the other is a literal, result is of the specific type.
1803
1804 elsif
1805 (Root_Type (LT) = Standard_String
1806 or else Scope (LT) /= Standard_Standard)
1807 and then Etype (R) = Any_String
1808 then
1809 Add_One_Interp (N, Op_Id, LT);
1810
1811 elsif
1812 (Root_Type (RT) = Standard_String
1813 or else Scope (RT) /= Standard_Standard)
1814 and then Etype (L) = Any_String
1815 then
1816 Add_One_Interp (N, Op_Id, RT);
1817
1818 elsif not Is_Generic_Type (Etype (Op_Id)) then
996ae0b0 1819 Add_One_Interp (N, Op_Id, Etype (Op_Id));
fbf5a39b
AC
1820
1821 else
4c46b835 1822 -- Type and its operations must be visible
fbf5a39b
AC
1823
1824 Set_Entity (N, Empty);
1825 Analyze_Concatenation (N);
996ae0b0
RK
1826 end if;
1827
1828 else
1829 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1830 end if;
1831
1832 else
1a8fae99 1833 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
996ae0b0
RK
1834 while Present (Op_Id) loop
1835 if Ekind (Op_Id) = E_Operator then
1a8fae99
ES
1836
1837 -- Do not consider operators declared in dead code, they can
1838 -- not be part of the resolution.
1839
1840 if Is_Eliminated (Op_Id) then
1841 null;
1842 else
1843 Find_Concatenation_Types (L, R, Op_Id, N);
1844 end if;
1845
996ae0b0
RK
1846 else
1847 Analyze_User_Defined_Binary_Op (N, Op_Id);
1848 end if;
1849
1850 Op_Id := Homonym (Op_Id);
1851 end loop;
1852 end if;
1853
1854 Operator_Check (N);
fe39cf20 1855 end Analyze_Concatenation_Rest;
996ae0b0 1856
996ae0b0
RK
1857 -------------------------
1858 -- Analyze_Equality_Op --
1859 -------------------------
1860
1861 procedure Analyze_Equality_Op (N : Node_Id) is
4c46b835
AC
1862 Loc : constant Source_Ptr := Sloc (N);
1863 L : constant Node_Id := Left_Opnd (N);
1864 R : constant Node_Id := Right_Opnd (N);
1865 Op_Id : Entity_Id;
996ae0b0
RK
1866
1867 begin
1868 Set_Etype (N, Any_Type);
1869 Candidate_Type := Empty;
1870
1871 Analyze_Expression (L);
1872 Analyze_Expression (R);
1873
1874 -- If the entity is set, the node is a generic instance with a non-local
1875 -- reference to the predefined operator or to a user-defined function.
1876 -- It can also be an inequality that is expanded into the negation of a
1877 -- call to a user-defined equality operator.
1878
1879 -- For the predefined case, the result is Boolean, regardless of the
21d7ef70 1880 -- type of the operands. The operands may even be limited, if they are
996ae0b0
RK
1881 -- generic actuals. If they are overloaded, label the left argument with
1882 -- the common type that must be present, or with the type of the formal
1883 -- of the user-defined function.
1884
1885 if Present (Entity (N)) then
996ae0b0
RK
1886 Op_Id := Entity (N);
1887
1888 if Ekind (Op_Id) = E_Operator then
1889 Add_One_Interp (N, Op_Id, Standard_Boolean);
1890 else
1891 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1892 end if;
1893
1894 if Is_Overloaded (L) then
996ae0b0
RK
1895 if Ekind (Op_Id) = E_Operator then
1896 Set_Etype (L, Intersect_Types (L, R));
1897 else
1898 Set_Etype (L, Etype (First_Formal (Op_Id)));
1899 end if;
1900 end if;
1901
1902 else
1903 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 1904 while Present (Op_Id) loop
996ae0b0
RK
1905 if Ekind (Op_Id) = E_Operator then
1906 Find_Equality_Types (L, R, Op_Id, N);
1907 else
1908 Analyze_User_Defined_Binary_Op (N, Op_Id);
1909 end if;
1910
1911 Op_Id := Homonym (Op_Id);
1912 end loop;
1913 end if;
1914
84dad556
AC
1915 -- If there was no match, and the operator is inequality, this may be
1916 -- a case where inequality has not been made explicit, as for tagged
1917 -- types. Analyze the node as the negation of an equality operation.
1918 -- This cannot be done earlier, because before analysis we cannot rule
1919 -- out the presence of an explicit inequality.
996ae0b0
RK
1920
1921 if Etype (N) = Any_Type
1922 and then Nkind (N) = N_Op_Ne
1923 then
1924 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
996ae0b0 1925 while Present (Op_Id) loop
996ae0b0
RK
1926 if Ekind (Op_Id) = E_Operator then
1927 Find_Equality_Types (L, R, Op_Id, N);
1928 else
1929 Analyze_User_Defined_Binary_Op (N, Op_Id);
1930 end if;
1931
1932 Op_Id := Homonym (Op_Id);
1933 end loop;
1934
1935 if Etype (N) /= Any_Type then
1936 Op_Id := Entity (N);
1937
1938 Rewrite (N,
1939 Make_Op_Not (Loc,
1940 Right_Opnd =>
1941 Make_Op_Eq (Loc,
aab883ec
ES
1942 Left_Opnd => Left_Opnd (N),
1943 Right_Opnd => Right_Opnd (N))));
996ae0b0
RK
1944
1945 Set_Entity (Right_Opnd (N), Op_Id);
1946 Analyze (N);
1947 end if;
1948 end if;
1949
1950 Operator_Check (N);
22e89283 1951 Check_Function_Writable_Actuals (N);
996ae0b0
RK
1952 end Analyze_Equality_Op;
1953
1954 ----------------------------------
1955 -- Analyze_Explicit_Dereference --
1956 ----------------------------------
1957
1958 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1959 Loc : constant Source_Ptr := Sloc (N);
1960 P : constant Node_Id := Prefix (N);
1961 T : Entity_Id;
1962 I : Interp_Index;
1963 It : Interp;
1964 New_N : Node_Id;
1965
1966 function Is_Function_Type return Boolean;
4c46b835
AC
1967 -- Check whether node may be interpreted as an implicit function call
1968
1969 ----------------------
1970 -- Is_Function_Type --
1971 ----------------------
996ae0b0
RK
1972
1973 function Is_Function_Type return Boolean is
4c46b835
AC
1974 I : Interp_Index;
1975 It : Interp;
996ae0b0
RK
1976
1977 begin
1978 if not Is_Overloaded (N) then
1979 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1980 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1981
1982 else
1983 Get_First_Interp (N, I, It);
996ae0b0
RK
1984 while Present (It.Nam) loop
1985 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1986 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1987 then
1988 return False;
1989 end if;
1990
1991 Get_Next_Interp (I, It);
1992 end loop;
1993
1994 return True;
1995 end if;
1996 end Is_Function_Type;
1997
98123480 1998 -- Start of processing for Analyze_Explicit_Dereference
4c46b835 1999
996ae0b0 2000 begin
11bc76df
AC
2001 -- If source node, check SPARK restriction. We guard this with the
2002 -- source node check, because ???
2003
36b8f95f 2004 if Comes_From_Source (N) then
ce5ba43a 2005 Check_SPARK_05_Restriction ("explicit dereference is not allowed", N);
36b8f95f 2006 end if;
1d801f21 2007
226a7fa4
AC
2008 -- In formal verification mode, keep track of all reads and writes
2009 -- through explicit dereferences.
2010
f5da7a97 2011 if GNATprove_Mode then
06b599fd 2012 SPARK_Specific.Generate_Dereference (N);
226a7fa4
AC
2013 end if;
2014
996ae0b0
RK
2015 Analyze (P);
2016 Set_Etype (N, Any_Type);
2017
2018 -- Test for remote access to subprogram type, and if so return
2019 -- after rewriting the original tree.
2020
2021 if Remote_AST_E_Dereference (P) then
2022 return;
2023 end if;
2024
2025 -- Normal processing for other than remote access to subprogram type
2026
2027 if not Is_Overloaded (P) then
2028 if Is_Access_Type (Etype (P)) then
2029
f3d57416 2030 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
0a36105d
JM
2031 -- avoid other problems caused by the Private_Subtype and it is
2032 -- safe to go to the Base_Type because this is the same as
2033 -- converting the access value to its Base_Type.
996ae0b0
RK
2034
2035 declare
2036 DT : Entity_Id := Designated_Type (Etype (P));
2037
2038 begin
2039 if Ekind (DT) = E_Private_Subtype
2040 and then Is_For_Access_Subtype (DT)
2041 then
2042 DT := Base_Type (DT);
2043 end if;
2044
0a36105d 2045 -- An explicit dereference is a legal occurrence of an
0c6826a5
AC
2046 -- incomplete type imported through a limited_with clause, if
2047 -- the full view is visible, or if we are within an instance
2048 -- body, where the enclosing body has a regular with_clause
2049 -- on the unit.
0a36105d 2050
7b56a91b
AC
2051 if From_Limited_With (DT)
2052 and then not From_Limited_With (Scope (DT))
0a36105d
JM
2053 and then
2054 (Is_Immediately_Visible (Scope (DT))
2055 or else
2056 (Is_Child_Unit (Scope (DT))
bff469f7
AC
2057 and then Is_Visible_Lib_Unit (Scope (DT)))
2058 or else In_Instance_Body)
0a36105d
JM
2059 then
2060 Set_Etype (N, Available_View (DT));
2061
2062 else
2063 Set_Etype (N, DT);
2064 end if;
996ae0b0
RK
2065 end;
2066
2067 elsif Etype (P) /= Any_Type then
2068 Error_Msg_N ("prefix of dereference must be an access type", N);
2069 return;
2070 end if;
2071
2072 else
2073 Get_First_Interp (P, I, It);
996ae0b0
RK
2074 while Present (It.Nam) loop
2075 T := It.Typ;
2076
2077 if Is_Access_Type (T) then
2078 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
2079 end if;
2080
2081 Get_Next_Interp (I, It);
2082 end loop;
2083
6e73e3ab 2084 -- Error if no interpretation of the prefix has an access type
996ae0b0
RK
2085
2086 if Etype (N) = Any_Type then
2087 Error_Msg_N
2088 ("access type required in prefix of explicit dereference", P);
2089 Set_Etype (N, Any_Type);
2090 return;
2091 end if;
2092 end if;
2093
2094 if Is_Function_Type
2095 and then Nkind (Parent (N)) /= N_Indexed_Component
2096
2097 and then (Nkind (Parent (N)) /= N_Function_Call
2098 or else N /= Name (Parent (N)))
2099
2100 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
2101 or else N /= Name (Parent (N)))
2102
2103 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
2104 and then (Nkind (Parent (N)) /= N_Attribute_Reference
2105 or else
2106 (Attribute_Name (Parent (N)) /= Name_Address
2107 and then
2108 Attribute_Name (Parent (N)) /= Name_Access))
2109 then
2110 -- Name is a function call with no actuals, in a context that
2111 -- requires deproceduring (including as an actual in an enclosing
98123480 2112 -- function or procedure call). There are some pathological cases
996ae0b0
RK
2113 -- where the prefix might include functions that return access to
2114 -- subprograms and others that return a regular type. Disambiguation
98123480 2115 -- of those has to take place in Resolve.
996ae0b0
RK
2116
2117 New_N :=
2118 Make_Function_Call (Loc,
2119 Name => Make_Explicit_Dereference (Loc, P),
2120 Parameter_Associations => New_List);
2121
2122 -- If the prefix is overloaded, remove operations that have formals,
2123 -- we know that this is a parameterless call.
2124
2125 if Is_Overloaded (P) then
2126 Get_First_Interp (P, I, It);
996ae0b0
RK
2127 while Present (It.Nam) loop
2128 T := It.Typ;
2129
2130 if No (First_Formal (Base_Type (Designated_Type (T)))) then
2131 Set_Etype (P, T);
2132 else
2133 Remove_Interp (I);
2134 end if;
2135
2136 Get_Next_Interp (I, It);
2137 end loop;
2138 end if;
2139
2140 Rewrite (N, New_N);
2141 Analyze (N);
98123480
ES
2142
2143 elsif not Is_Function_Type
2144 and then Is_Overloaded (N)
2145 then
2146 -- The prefix may include access to subprograms and other access
1cb17b78 2147 -- types. If the context selects the interpretation that is a
56a7a3ab
TQ
2148 -- function call (not a procedure call) we cannot rewrite the node
2149 -- yet, but we include the result of the call interpretation.
98123480
ES
2150
2151 Get_First_Interp (N, I, It);
2152 while Present (It.Nam) loop
2153 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
2154 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1cb17b78 2155 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
98123480
ES
2156 then
2157 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
2158 end if;
2159
2160 Get_Next_Interp (I, It);
2161 end loop;
996ae0b0
RK
2162 end if;
2163
2164 -- A value of remote access-to-class-wide must not be dereferenced
2165 -- (RM E.2.2(16)).
2166
2167 Validate_Remote_Access_To_Class_Wide_Type (N);
996ae0b0
RK
2168 end Analyze_Explicit_Dereference;
2169
2170 ------------------------
2171 -- Analyze_Expression --
2172 ------------------------
2173
2174 procedure Analyze_Expression (N : Node_Id) is
2175 begin
5f50020a
ES
2176
2177 -- If the expression is an indexed component that will be rewritten
2178 -- as a container indexing, it has already been analyzed.
2179
2180 if Nkind (N) = N_Indexed_Component
2181 and then Present (Generalized_Indexing (N))
2182 then
2183 null;
2184
2185 else
2186 Analyze (N);
2187 Check_Parameterless_Call (N);
2188 end if;
996ae0b0
RK
2189 end Analyze_Expression;
2190
955871d3
AC
2191 -------------------------------------
2192 -- Analyze_Expression_With_Actions --
2193 -------------------------------------
2194
2195 procedure Analyze_Expression_With_Actions (N : Node_Id) is
2196 A : Node_Id;
2197
2198 begin
2199 A := First (Actions (N));
752b81d9 2200 while Present (A) loop
955871d3
AC
2201 Analyze (A);
2202 Next (A);
955871d3
AC
2203 end loop;
2204
2ffcbaa5
AC
2205 Analyze_Expression (Expression (N));
2206 Set_Etype (N, Etype (Expression (N)));
955871d3
AC
2207 end Analyze_Expression_With_Actions;
2208
9b16cb57
RD
2209 ---------------------------
2210 -- Analyze_If_Expression --
2211 ---------------------------
2212
2213 procedure Analyze_If_Expression (N : Node_Id) is
2214 Condition : constant Node_Id := First (Expressions (N));
2215 Then_Expr : constant Node_Id := Next (Condition);
2216 Else_Expr : Node_Id;
2217
2218 begin
2219 -- Defend against error of missing expressions from previous error
2220
2221 if No (Then_Expr) then
ee2ba856 2222 Check_Error_Detected;
9b16cb57
RD
2223 return;
2224 end if;
2225
08988ed9 2226 if Comes_From_Source (N) then
ce5ba43a 2227 Check_SPARK_05_Restriction ("if expression is not allowed", N);
08988ed9 2228 end if;
9b16cb57
RD
2229
2230 Else_Expr := Next (Then_Expr);
2231
2232 if Comes_From_Source (N) then
c86cf714 2233 Check_Compiler_Unit ("if expression", N);
9b16cb57
RD
2234 end if;
2235
ac072cb2
AC
2236 -- Analyze and resolve the condition. We need to resolve this now so
2237 -- that it gets folded to True/False if possible, before we analyze
2238 -- the THEN/ELSE branches, because when analyzing these branches, we
2239 -- may call Is_Statically_Unevaluated, which expects the condition of
2240 -- an enclosing IF to have been analyze/resolved/evaluated.
2241
9b16cb57 2242 Analyze_Expression (Condition);
ac072cb2
AC
2243 Resolve (Condition, Any_Boolean);
2244
2245 -- Analyze THEN expression and (if present) ELSE expression. For those
2246 -- we delay resolution in the normal manner, because of overloading etc.
2247
9b16cb57
RD
2248 Analyze_Expression (Then_Expr);
2249
2250 if Present (Else_Expr) then
2251 Analyze_Expression (Else_Expr);
2252 end if;
2253
2254 -- If then expression not overloaded, then that decides the type
2255
2256 if not Is_Overloaded (Then_Expr) then
2257 Set_Etype (N, Etype (Then_Expr));
2258
2259 -- Case where then expression is overloaded
2260
2261 else
2262 declare
2263 I : Interp_Index;
2264 It : Interp;
2265
2266 begin
2267 Set_Etype (N, Any_Type);
2268
bc795e3e 2269 -- Loop through interpretations of Then_Expr
9b16cb57
RD
2270
2271 Get_First_Interp (Then_Expr, I, It);
445e5888 2272 while Present (It.Nam) loop
9b16cb57 2273
bc795e3e 2274 -- Add possible interpretation of Then_Expr if no Else_Expr, or
0c6826a5 2275 -- Else_Expr is present and has a compatible type.
9b16cb57 2276
445e5888
AC
2277 if No (Else_Expr)
2278 or else Has_Compatible_Type (Else_Expr, It.Typ)
2279 then
2280 Add_One_Interp (N, It.Typ, It.Typ);
2281 end if;
9b16cb57 2282
445e5888
AC
2283 Get_Next_Interp (I, It);
2284 end loop;
7408c4a5 2285
bc38dbb4
AC
2286 -- If no valid interpretation has been found, then the type of the
2287 -- ELSE expression does not match any interpretation of the THEN
2288 -- expression.
7408c4a5
AC
2289
2290 if Etype (N) = Any_Type then
2291 Error_Msg_N
2292 ("type incompatible with that of `THEN` expression",
2293 Else_Expr);
2294 return;
2295 end if;
9b16cb57
RD
2296 end;
2297 end if;
2298 end Analyze_If_Expression;
2299
996ae0b0
RK
2300 ------------------------------------
2301 -- Analyze_Indexed_Component_Form --
2302 ------------------------------------
2303
2304 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
fbf5a39b
AC
2305 P : constant Node_Id := Prefix (N);
2306 Exprs : constant List_Id := Expressions (N);
2307 Exp : Node_Id;
2308 P_T : Entity_Id;
2309 E : Node_Id;
2310 U_N : Entity_Id;
996ae0b0
RK
2311
2312 procedure Process_Function_Call;
0c6826a5
AC
2313 -- Prefix in indexed component form is an overloadable entity, so the
2314 -- node is a function call. Reformat it as such.
996ae0b0
RK
2315
2316 procedure Process_Indexed_Component;
2317 -- Prefix in indexed component form is actually an indexed component.
2318 -- This routine processes it, knowing that the prefix is already
2319 -- resolved.
2320
2321 procedure Process_Indexed_Component_Or_Slice;
2322 -- An indexed component with a single index may designate a slice if
2323 -- the index is a subtype mark. This routine disambiguates these two
2324 -- cases by resolving the prefix to see if it is a subtype mark.
2325
2326 procedure Process_Overloaded_Indexed_Component;
2327 -- If the prefix of an indexed component is overloaded, the proper
2328 -- interpretation is selected by the index types and the context.
2329
2330 ---------------------------
2331 -- Process_Function_Call --
2332 ---------------------------
2333
2334 procedure Process_Function_Call is
1725676d 2335 Loc : constant Source_Ptr := Sloc (N);
f5afb270
AC
2336 Actual : Node_Id;
2337
996ae0b0
RK
2338 begin
2339 Change_Node (N, N_Function_Call);
2340 Set_Name (N, P);
2341 Set_Parameter_Associations (N, Exprs);
996ae0b0 2342
401093c1 2343 -- Analyze actuals prior to analyzing the call itself
0a36105d 2344
4c46b835 2345 Actual := First (Parameter_Associations (N));
996ae0b0
RK
2346 while Present (Actual) loop
2347 Analyze (Actual);
2348 Check_Parameterless_Call (Actual);
0a36105d
JM
2349
2350 -- Move to next actual. Note that we use Next, not Next_Actual
2351 -- here. The reason for this is a bit subtle. If a function call
0c6826a5
AC
2352 -- includes named associations, the parser recognizes the node
2353 -- as a call, and it is analyzed as such. If all associations are
0a36105d
JM
2354 -- positional, the parser builds an indexed_component node, and
2355 -- it is only after analysis of the prefix that the construct
2356 -- is recognized as a call, in which case Process_Function_Call
2357 -- rewrites the node and analyzes the actuals. If the list of
2358 -- actuals is malformed, the parser may leave the node as an
2359 -- indexed component (despite the presence of named associations).
2360 -- The iterator Next_Actual is equivalent to Next if the list is
2361 -- positional, but follows the normalized chain of actuals when
2362 -- named associations are present. In this case normalization has
2363 -- not taken place, and actuals remain unanalyzed, which leads to
2364 -- subsequent crashes or loops if there is an attempt to continue
2365 -- analysis of the program.
2366
1725676d
AC
2367 -- IF there is a single actual and it is a type name, the node
2368 -- can only be interpreted as a slice of a parameterless call.
2369 -- Rebuild the node as such and analyze.
2370
2371 if No (Next (Actual))
2372 and then Is_Entity_Name (Actual)
2373 and then Is_Type (Entity (Actual))
2374 and then Is_Discrete_Type (Entity (Actual))
2375 then
2376 Replace (N,
adc876a8
AC
2377 Make_Slice (Loc,
2378 Prefix => P,
2379 Discrete_Range =>
2380 New_Occurrence_Of (Entity (Actual), Loc)));
1725676d
AC
2381 Analyze (N);
2382 return;
2383
2384 else
2385 Next (Actual);
2386 end if;
996ae0b0
RK
2387 end loop;
2388
2389 Analyze_Call (N);
2390 end Process_Function_Call;
2391
2392 -------------------------------
2393 -- Process_Indexed_Component --
2394 -------------------------------
2395
2396 procedure Process_Indexed_Component is
fe39cf20
BD
2397 Exp : Node_Id;
2398 Array_Type : Entity_Id;
2399 Index : Node_Id;
2400 Pent : Entity_Id := Empty;
996ae0b0
RK
2401
2402 begin
2403 Exp := First (Exprs);
2404
2405 if Is_Overloaded (P) then
2406 Process_Overloaded_Indexed_Component;
2407
2408 else
2409 Array_Type := Etype (P);
2410
6e73e3ab
AC
2411 if Is_Entity_Name (P) then
2412 Pent := Entity (P);
2413 elsif Nkind (P) = N_Selected_Component
2414 and then Is_Entity_Name (Selector_Name (P))
2415 then
2416 Pent := Entity (Selector_Name (P));
2417 end if;
2418
2419 -- Prefix must be appropriate for an array type, taking into
2420 -- account a possible implicit dereference.
996ae0b0
RK
2421
2422 if Is_Access_Type (Array_Type) then
324ac540
AC
2423 Error_Msg_NW
2424 (Warn_On_Dereference, "?d?implicit dereference", N);
d469eabe 2425 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
996ae0b0
RK
2426 end if;
2427
2428 if Is_Array_Type (Array_Type) then
bfaf8a97
AC
2429
2430 -- In order to correctly access First_Index component later,
2431 -- replace string literal subtype by its parent type.
2432
2433 if Ekind (Array_Type) = E_String_Literal_Subtype then
2434 Array_Type := Etype (Array_Type);
2435 end if;
996ae0b0 2436
6e73e3ab 2437 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
996ae0b0
RK
2438 Analyze (Exp);
2439 Set_Etype (N, Any_Type);
2440
dafe11cd 2441 if not Has_Compatible_Type (Exp, Entry_Index_Type (Pent)) then
996ae0b0
RK
2442 Error_Msg_N ("invalid index type in entry name", N);
2443
2444 elsif Present (Next (Exp)) then
2445 Error_Msg_N ("too many subscripts in entry reference", N);
2446
2447 else
2448 Set_Etype (N, Etype (P));
2449 end if;
2450
2451 return;
2452
2453 elsif Is_Record_Type (Array_Type)
2454 and then Remote_AST_I_Dereference (P)
2455 then
2456 return;
2457
50878404 2458 elsif Try_Container_Indexing (N, P, Exprs) then
d50f4827
AC
2459 return;
2460
996ae0b0
RK
2461 elsif Array_Type = Any_Type then
2462 Set_Etype (N, Any_Type);
6465b6a7
AC
2463
2464 -- In most cases the analysis of the prefix will have emitted
2465 -- an error already, but if the prefix may be interpreted as a
2466 -- call in prefixed notation, the report is left to the caller.
2467 -- To prevent cascaded errors, report only if no previous ones.
2468
2469 if Serious_Errors_Detected = 0 then
2470 Error_Msg_N ("invalid prefix in indexed component", P);
2471
2472 if Nkind (P) = N_Expanded_Name then
2473 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2474 end if;
2475 end if;
2476
996ae0b0
RK
2477 return;
2478
2479 -- Here we definitely have a bad indexing
2480
2481 else
2482 if Nkind (Parent (N)) = N_Requeue_Statement
6e73e3ab 2483 and then Present (Pent) and then Ekind (Pent) = E_Entry
996ae0b0
RK
2484 then
2485 Error_Msg_N
2486 ("REQUEUE does not permit parameters", First (Exprs));
2487
2488 elsif Is_Entity_Name (P)
2489 and then Etype (P) = Standard_Void_Type
2490 then
0c6826a5 2491 Error_Msg_NE ("incorrect use of &", P, Entity (P));
996ae0b0
RK
2492
2493 else
2494 Error_Msg_N ("array type required in indexed component", P);
2495 end if;
2496
2497 Set_Etype (N, Any_Type);
2498 return;
2499 end if;
2500
2501 Index := First_Index (Array_Type);
996ae0b0
RK
2502 while Present (Index) and then Present (Exp) loop
2503 if not Has_Compatible_Type (Exp, Etype (Index)) then
2504 Wrong_Type (Exp, Etype (Index));
2505 Set_Etype (N, Any_Type);
2506 return;
2507 end if;
2508
2509 Next_Index (Index);
2510 Next (Exp);
2511 end loop;
2512
2513 Set_Etype (N, Component_Type (Array_Type));
44a10091 2514 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
2515
2516 if Present (Index) then
2517 Error_Msg_N
2518 ("too few subscripts in array reference", First (Exprs));
2519
2520 elsif Present (Exp) then
2521 Error_Msg_N ("too many subscripts in array reference", Exp);
2522 end if;
2523 end if;
996ae0b0
RK
2524 end Process_Indexed_Component;
2525
2526 ----------------------------------------
2527 -- Process_Indexed_Component_Or_Slice --
2528 ----------------------------------------
2529
2530 procedure Process_Indexed_Component_Or_Slice is
2531 begin
2532 Exp := First (Exprs);
996ae0b0
RK
2533 while Present (Exp) loop
2534 Analyze_Expression (Exp);
2535 Next (Exp);
2536 end loop;
2537
2538 Exp := First (Exprs);
2539
0c6826a5
AC
2540 -- If one index is present, and it is a subtype name, then the node
2541 -- denotes a slice (note that the case of an explicit range for a
2542 -- slice was already built as an N_Slice node in the first place,
2543 -- so that case is not handled here).
996ae0b0
RK
2544
2545 -- We use a replace rather than a rewrite here because this is one
2546 -- of the cases in which the tree built by the parser is plain wrong.
2547
2548 if No (Next (Exp))
2549 and then Is_Entity_Name (Exp)
2550 and then Is_Type (Entity (Exp))
2551 then
2552 Replace (N,
2553 Make_Slice (Sloc (N),
2554 Prefix => P,
2555 Discrete_Range => New_Copy (Exp)));
2556 Analyze (N);
2557
2558 -- Otherwise (more than one index present, or single index is not
2559 -- a subtype name), then we have the indexed component case.
2560
2561 else
2562 Process_Indexed_Component;
2563 end if;
2564 end Process_Indexed_Component_Or_Slice;
2565
2566 ------------------------------------------
2567 -- Process_Overloaded_Indexed_Component --
2568 ------------------------------------------
2569
2570 procedure Process_Overloaded_Indexed_Component is
2571 Exp : Node_Id;
2572 I : Interp_Index;
2573 It : Interp;
2574 Typ : Entity_Id;
2575 Index : Node_Id;
2576 Found : Boolean;
2577
2578 begin
2579 Set_Etype (N, Any_Type);
996ae0b0 2580
4c46b835 2581 Get_First_Interp (P, I, It);
996ae0b0
RK
2582 while Present (It.Nam) loop
2583 Typ := It.Typ;
2584
2585 if Is_Access_Type (Typ) then
2586 Typ := Designated_Type (Typ);
324ac540
AC
2587 Error_Msg_NW
2588 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
2589 end if;
2590
2591 if Is_Array_Type (Typ) then
2592
2593 -- Got a candidate: verify that index types are compatible
2594
2595 Index := First_Index (Typ);
2596 Found := True;
996ae0b0 2597 Exp := First (Exprs);
996ae0b0
RK
2598 while Present (Index) and then Present (Exp) loop
2599 if Has_Compatible_Type (Exp, Etype (Index)) then
2600 null;
2601 else
2602 Found := False;
2603 Remove_Interp (I);
2604 exit;
2605 end if;
2606
2607 Next_Index (Index);
2608 Next (Exp);
2609 end loop;
2610
2611 if Found and then No (Index) and then No (Exp) then
44a10091
AC
2612 declare
2613 CT : constant Entity_Id :=
2614 Base_Type (Component_Type (Typ));
2615 begin
2616 Add_One_Interp (N, CT, CT);
2617 Check_Implicit_Dereference (N, CT);
2618 end;
996ae0b0 2619 end if;
57a8057a 2620
50878404 2621 elsif Try_Container_Indexing (N, P, Exprs) then
57a8057a
AC
2622 return;
2623
996ae0b0
RK
2624 end if;
2625
2626 Get_Next_Interp (I, It);
2627 end loop;
2628
2629 if Etype (N) = Any_Type then
ad6b5b00 2630 Error_Msg_N ("no legal interpretation for indexed component", N);
996ae0b0
RK
2631 Set_Is_Overloaded (N, False);
2632 end if;
2633
2634 End_Interp_List;
2635 end Process_Overloaded_Indexed_Component;
2636
4c46b835 2637 -- Start of processing for Analyze_Indexed_Component_Form
996ae0b0
RK
2638
2639 begin
2640 -- Get name of array, function or type
2641
2642 Analyze (P);
d469eabe 2643
24778dbb
AC
2644 -- If P is an explicit dereference whose prefix is of a remote access-
2645 -- to-subprogram type, then N has already been rewritten as a subprogram
2646 -- call and analyzed.
2647
d3b00ce3 2648 if Nkind (N) in N_Subprogram_Call then
24778dbb 2649 return;
d469eabe 2650
24778dbb
AC
2651 -- When the prefix is attribute 'Loop_Entry and the sole expression of
2652 -- the indexed component denotes a loop name, the indexed form is turned
2653 -- into an attribute reference.
fbf5a39b 2654
24778dbb
AC
2655 elsif Nkind (N) = N_Attribute_Reference
2656 and then Attribute_Name (N) = Name_Loop_Entry
2657 then
fbf5a39b
AC
2658 return;
2659 end if;
2660
2661 pragma Assert (Nkind (N) = N_Indexed_Component);
2662
996ae0b0
RK
2663 P_T := Base_Type (Etype (P));
2664
878f708a 2665 if Is_Entity_Name (P) and then Present (Entity (P)) then
996ae0b0
RK
2666 U_N := Entity (P);
2667
aab883ec 2668 if Is_Type (U_N) then
996ae0b0 2669
4c46b835 2670 -- Reformat node as a type conversion
996ae0b0
RK
2671
2672 E := Remove_Head (Exprs);
2673
2674 if Present (First (Exprs)) then
2675 Error_Msg_N
2676 ("argument of type conversion must be single expression", N);
2677 end if;
2678
2679 Change_Node (N, N_Type_Conversion);
2680 Set_Subtype_Mark (N, P);
2681 Set_Etype (N, U_N);
2682 Set_Expression (N, E);
2683
2684 -- After changing the node, call for the specific Analysis
2685 -- routine directly, to avoid a double call to the expander.
2686
2687 Analyze_Type_Conversion (N);
2688 return;
2689 end if;
2690
2691 if Is_Overloadable (U_N) then
2692 Process_Function_Call;
2693
2694 elsif Ekind (Etype (P)) = E_Subprogram_Type
2695 or else (Is_Access_Type (Etype (P))
2696 and then
bce79204
AC
2697 Ekind (Designated_Type (Etype (P))) =
2698 E_Subprogram_Type)
996ae0b0
RK
2699 then
2700 -- Call to access_to-subprogram with possible implicit dereference
2701
2702 Process_Function_Call;
2703
fbf5a39b
AC
2704 elsif Is_Generic_Subprogram (U_N) then
2705
4c46b835 2706 -- A common beginner's (or C++ templates fan) error
996ae0b0
RK
2707
2708 Error_Msg_N ("generic subprogram cannot be called", N);
2709 Set_Etype (N, Any_Type);
2710 return;
2711
2712 else
2713 Process_Indexed_Component_Or_Slice;
2714 end if;
2715
2716 -- If not an entity name, prefix is an expression that may denote
2717 -- an array or an access-to-subprogram.
2718
2719 else
fbf5a39b 2720 if Ekind (P_T) = E_Subprogram_Type
996ae0b0
RK
2721 or else (Is_Access_Type (P_T)
2722 and then
bce79204 2723 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
996ae0b0
RK
2724 then
2725 Process_Function_Call;
2726
2727 elsif Nkind (P) = N_Selected_Component
3d918396 2728 and then Present (Entity (Selector_Name (P)))
ffe9aba8 2729 and then Is_Overloadable (Entity (Selector_Name (P)))
996ae0b0
RK
2730 then
2731 Process_Function_Call;
2732
3d918396
AC
2733 -- In ASIS mode within a generic, a prefixed call is analyzed and
2734 -- partially rewritten but the original indexed component has not
2735 -- yet been rewritten as a call. Perform the replacement now.
2736
2737 elsif Nkind (P) = N_Selected_Component
2738 and then Nkind (Parent (P)) = N_Function_Call
2739 and then ASIS_Mode
2740 then
2741 Rewrite (N, Parent (P));
2742 Analyze (N);
2743
996ae0b0
RK
2744 else
2745 -- Indexed component, slice, or a call to a member of a family
2746 -- entry, which will be converted to an entry call later.
fbf5a39b 2747
996ae0b0
RK
2748 Process_Indexed_Component_Or_Slice;
2749 end if;
2750 end if;
5f49133f
AC
2751
2752 Analyze_Dimension (N);
996ae0b0
RK
2753 end Analyze_Indexed_Component_Form;
2754
2755 ------------------------
2756 -- Analyze_Logical_Op --
2757 ------------------------
2758
2759 procedure Analyze_Logical_Op (N : Node_Id) is
2760 L : constant Node_Id := Left_Opnd (N);
2761 R : constant Node_Id := Right_Opnd (N);
2762 Op_Id : Entity_Id := Entity (N);
2763
2764 begin
2765 Set_Etype (N, Any_Type);
2766 Candidate_Type := Empty;
2767
2768 Analyze_Expression (L);
2769 Analyze_Expression (R);
2770
2771 if Present (Op_Id) then
2772
2773 if Ekind (Op_Id) = E_Operator then
2774 Find_Boolean_Types (L, R, Op_Id, N);
2775 else
2776 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2777 end if;
2778
2779 else
2780 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
2781 while Present (Op_Id) loop
2782 if Ekind (Op_Id) = E_Operator then
2783 Find_Boolean_Types (L, R, Op_Id, N);
2784 else
2785 Analyze_User_Defined_Binary_Op (N, Op_Id);
2786 end if;
2787
2788 Op_Id := Homonym (Op_Id);
2789 end loop;
2790 end if;
2791
2792 Operator_Check (N);
22e89283 2793 Check_Function_Writable_Actuals (N);
996ae0b0
RK
2794 end Analyze_Logical_Op;
2795
2796 ---------------------------
2797 -- Analyze_Membership_Op --
2798 ---------------------------
2799
2800 procedure Analyze_Membership_Op (N : Node_Id) is
66150d01 2801 Loc : constant Source_Ptr := Sloc (N);
f2acf80c
AC
2802 L : constant Node_Id := Left_Opnd (N);
2803 R : constant Node_Id := Right_Opnd (N);
996ae0b0
RK
2804
2805 Index : Interp_Index;
2806 It : Interp;
2807 Found : Boolean := False;
2808 I_F : Interp_Index;
2809 T_F : Entity_Id;
2810
2811 procedure Try_One_Interp (T1 : Entity_Id);
2812 -- Routine to try one proposed interpretation. Note that the context
2813 -- of the operation plays no role in resolving the arguments, so that
2814 -- if there is more than one interpretation of the operands that is
2815 -- compatible with a membership test, the operation is ambiguous.
2816
4c46b835
AC
2817 --------------------
2818 -- Try_One_Interp --
2819 --------------------
2820
996ae0b0
RK
2821 procedure Try_One_Interp (T1 : Entity_Id) is
2822 begin
2823 if Has_Compatible_Type (R, T1) then
2824 if Found
2825 and then Base_Type (T1) /= Base_Type (T_F)
2826 then
2827 It := Disambiguate (L, I_F, Index, Any_Type);
2828
2829 if It = No_Interp then
2830 Ambiguous_Operands (N);
2831 Set_Etype (L, Any_Type);
2832 return;
2833
2834 else
2835 T_F := It.Typ;
2836 end if;
2837
2838 else
2839 Found := True;
2840 T_F := T1;
2841 I_F := Index;
2842 end if;
2843
2844 Set_Etype (L, T_F);
2845 end if;
996ae0b0
RK
2846 end Try_One_Interp;
2847
197e4514
AC
2848 procedure Analyze_Set_Membership;
2849 -- If a set of alternatives is present, analyze each and find the
2850 -- common type to which they must all resolve.
2851
2852 ----------------------------
2853 -- Analyze_Set_Membership --
2854 ----------------------------
2855
2856 procedure Analyze_Set_Membership is
2857 Alt : Node_Id;
2858 Index : Interp_Index;
2859 It : Interp;
197e4514
AC
2860 Candidate_Interps : Node_Id;
2861 Common_Type : Entity_Id := Empty;
2862
2863 begin
e917e3b8 2864 if Comes_From_Source (N) then
c86cf714 2865 Check_Compiler_Unit ("set membership", N);
e917e3b8
AC
2866 end if;
2867
197e4514
AC
2868 Analyze (L);
2869 Candidate_Interps := L;
2870
2871 if not Is_Overloaded (L) then
2872 Common_Type := Etype (L);
2873
2874 Alt := First (Alternatives (N));
2875 while Present (Alt) loop
2876 Analyze (Alt);
2877
2878 if not Has_Compatible_Type (Alt, Common_Type) then
2879 Wrong_Type (Alt, Common_Type);
2880 end if;
2881
2882 Next (Alt);
2883 end loop;
2884
2885 else
2886 Alt := First (Alternatives (N));
2887 while Present (Alt) loop
2888 Analyze (Alt);
2889 if not Is_Overloaded (Alt) then
2890 Common_Type := Etype (Alt);
2891
2892 else
2893 Get_First_Interp (Alt, Index, It);
2894 while Present (It.Typ) loop
442c0581
RD
2895 if not
2896 Has_Compatible_Type (Candidate_Interps, It.Typ)
197e4514
AC
2897 then
2898 Remove_Interp (Index);
2899 end if;
442c0581 2900
197e4514
AC
2901 Get_Next_Interp (Index, It);
2902 end loop;
2903
2904 Get_First_Interp (Alt, Index, It);
442c0581 2905
197e4514
AC
2906 if No (It.Typ) then
2907 Error_Msg_N ("alternative has no legal type", Alt);
2908 return;
2909 end if;
2910
442c0581
RD
2911 -- If alternative is not overloaded, we have a unique type
2912 -- for all of them.
197e4514
AC
2913
2914 Set_Etype (Alt, It.Typ);
2915 Get_Next_Interp (Index, It);
2916
2917 if No (It.Typ) then
2918 Set_Is_Overloaded (Alt, False);
2919 Common_Type := Etype (Alt);
2920 end if;
2921
2922 Candidate_Interps := Alt;
2923 end if;
2924
2925 Next (Alt);
2926 end loop;
2927 end if;
2928
2929 Set_Etype (N, Standard_Boolean);
2930
2931 if Present (Common_Type) then
2932 Set_Etype (L, Common_Type);
cd1a470a
AC
2933
2934 -- The left operand may still be overloaded, to be resolved using
2935 -- the Common_Type.
197e4514
AC
2936
2937 else
2938 Error_Msg_N ("cannot resolve membership operation", N);
2939 end if;
2940 end Analyze_Set_Membership;
2941
996ae0b0
RK
2942 -- Start of processing for Analyze_Membership_Op
2943
2944 begin
2945 Analyze_Expression (L);
2946
e917e3b8 2947 if No (R) and then Ada_Version >= Ada_2012 then
197e4514 2948 Analyze_Set_Membership;
22e89283 2949 Check_Function_Writable_Actuals (N);
288cbbbd 2950
197e4514
AC
2951 return;
2952 end if;
2953
996ae0b0
RK
2954 if Nkind (R) = N_Range
2955 or else (Nkind (R) = N_Attribute_Reference
2956 and then Attribute_Name (R) = Name_Range)
2957 then
2958 Analyze (R);
2959
2960 if not Is_Overloaded (L) then
2961 Try_One_Interp (Etype (L));
2962
2963 else
2964 Get_First_Interp (L, Index, It);
996ae0b0
RK
2965 while Present (It.Typ) loop
2966 Try_One_Interp (It.Typ);
2967 Get_Next_Interp (Index, It);
2968 end loop;
2969 end if;
2970
f6b5dc8e 2971 -- If not a range, it can be a subtype mark, or else it is a degenerate
b0186f71
AC
2972 -- membership test with a singleton value, i.e. a test for equality,
2973 -- if the types are compatible.
996ae0b0
RK
2974
2975 else
66150d01 2976 Analyze (R);
7483c888 2977
66150d01
AC
2978 if Is_Entity_Name (R)
2979 and then Is_Type (Entity (R))
2980 then
2981 Find_Type (R);
996ae0b0 2982 Check_Fully_Declared (Entity (R), R);
66150d01 2983
b0186f71
AC
2984 elsif Ada_Version >= Ada_2012
2985 and then Has_Compatible_Type (R, Etype (L))
2986 then
66150d01
AC
2987 if Nkind (N) = N_In then
2988 Rewrite (N,
2989 Make_Op_Eq (Loc,
2990 Left_Opnd => L,
2991 Right_Opnd => R));
2992 else
2993 Rewrite (N,
2994 Make_Op_Ne (Loc,
2995 Left_Opnd => L,
2996 Right_Opnd => R));
2997 end if;
2998
2999 Analyze (N);
3000 return;
3001
3002 else
b0186f71
AC
3003 -- In all versions of the language, if we reach this point there
3004 -- is a previous error that will be diagnosed below.
66150d01
AC
3005
3006 Find_Type (R);
996ae0b0
RK
3007 end if;
3008 end if;
3009
3010 -- Compatibility between expression and subtype mark or range is
3011 -- checked during resolution. The result of the operation is Boolean
3012 -- in any case.
3013
3014 Set_Etype (N, Standard_Boolean);
fe45e59e
ES
3015
3016 if Comes_From_Source (N)
197e4514 3017 and then Present (Right_Opnd (N))
fe45e59e
ES
3018 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
3019 then
3020 Error_Msg_N ("membership test not applicable to cpp-class types", N);
3021 end if;
288cbbbd 3022
22e89283 3023 Check_Function_Writable_Actuals (N);
996ae0b0
RK
3024 end Analyze_Membership_Op;
3025
b727a82b
AC
3026 -----------------
3027 -- Analyze_Mod --
3028 -----------------
3029
3030 procedure Analyze_Mod (N : Node_Id) is
3031 begin
3032 -- A special warning check, if we have an expression of the form:
3033 -- expr mod 2 * literal
3034 -- where literal is 64 or less, then probably what was meant was
3035 -- expr mod 2 ** literal
3036 -- so issue an appropriate warning.
3037
3038 if Warn_On_Suspicious_Modulus_Value
3039 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
3040 and then Intval (Right_Opnd (N)) = Uint_2
3041 and then Nkind (Parent (N)) = N_Op_Multiply
3042 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
3043 and then Intval (Right_Opnd (Parent (N))) <= Uint_64
3044 then
3045 Error_Msg_N
324ac540 3046 ("suspicious MOD value, was '*'* intended'??M?", Parent (N));
b727a82b
AC
3047 end if;
3048
3049 -- Remaining processing is same as for other arithmetic operators
3050
3051 Analyze_Arithmetic_Op (N);
3052 end Analyze_Mod;
3053
996ae0b0
RK
3054 ----------------------
3055 -- Analyze_Negation --
3056 ----------------------
3057
3058 procedure Analyze_Negation (N : Node_Id) is
3059 R : constant Node_Id := Right_Opnd (N);
3060 Op_Id : Entity_Id := Entity (N);
3061
3062 begin
3063 Set_Etype (N, Any_Type);
3064 Candidate_Type := Empty;
3065
3066 Analyze_Expression (R);
3067
3068 if Present (Op_Id) then
3069 if Ekind (Op_Id) = E_Operator then
3070 Find_Negation_Types (R, Op_Id, N);
3071 else
3072 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3073 end if;
3074
3075 else
3076 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
3077 while Present (Op_Id) loop
3078 if Ekind (Op_Id) = E_Operator then
3079 Find_Negation_Types (R, Op_Id, N);
3080 else
3081 Analyze_User_Defined_Unary_Op (N, Op_Id);
3082 end if;
3083
3084 Op_Id := Homonym (Op_Id);
3085 end loop;
3086 end if;
3087
3088 Operator_Check (N);
3089 end Analyze_Negation;
3090
15ce9ca2
AC
3091 ------------------
3092 -- Analyze_Null --
3093 ------------------
996ae0b0
RK
3094
3095 procedure Analyze_Null (N : Node_Id) is
3096 begin
ce5ba43a 3097 Check_SPARK_05_Restriction ("null is not allowed", N);
1d801f21 3098
996ae0b0
RK
3099 Set_Etype (N, Any_Access);
3100 end Analyze_Null;
3101
3102 ----------------------
3103 -- Analyze_One_Call --
3104 ----------------------
3105
3106 procedure Analyze_One_Call
ec6078e3
ES
3107 (N : Node_Id;
3108 Nam : Entity_Id;
3109 Report : Boolean;
3110 Success : out Boolean;
3111 Skip_First : Boolean := False)
996ae0b0 3112 is
d469eabe
HK
3113 Actuals : constant List_Id := Parameter_Associations (N);
3114 Prev_T : constant Entity_Id := Etype (N);
3115
aab883ec
ES
3116 Must_Skip : constant Boolean := Skip_First
3117 or else Nkind (Original_Node (N)) = N_Selected_Component
3118 or else
3119 (Nkind (Original_Node (N)) = N_Indexed_Component
3120 and then Nkind (Prefix (Original_Node (N)))
3121 = N_Selected_Component);
3122 -- The first formal must be omitted from the match when trying to find
3123 -- a primitive operation that is a possible interpretation, and also
3124 -- after the call has been rewritten, because the corresponding actual
3125 -- is already known to be compatible, and because this may be an
3126 -- indexing of a call with default parameters.
3127
53cf4600
ES
3128 Formal : Entity_Id;
3129 Actual : Node_Id;
3130 Is_Indexed : Boolean := False;
3131 Is_Indirect : Boolean := False;
3132 Subp_Type : constant Entity_Id := Etype (Nam);
3133 Norm_OK : Boolean;
996ae0b0 3134
1d2d8a8f
AC
3135 function Compatible_Types_In_Predicate
3136 (T1 : Entity_Id;
3137 T2 : Entity_Id) return Boolean;
3138 -- For an Ada 2012 predicate or invariant, a call may mention an
3139 -- incomplete type, while resolution of the corresponding predicate
3140 -- function may see the full view, as a consequence of the delayed
3141 -- resolution of the corresponding expressions. This may occur in
3142 -- the body of a predicate function, or in a call to such. Anomalies
3143 -- involving private and full views can also happen. In each case,
3144 -- rewrite node or add conversions to remove spurious type errors.
3145
3146 procedure Indicate_Name_And_Type;
3147 -- If candidate interpretation matches, indicate name and type of result
3148 -- on call node.
3149
157a9bf5
ES
3150 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
3151 -- There may be a user-defined operator that hides the current
3152 -- interpretation. We must check for this independently of the
3153 -- analysis of the call with the user-defined operation, because
3154 -- the parameter names may be wrong and yet the hiding takes place.
3155 -- This fixes a problem with ACATS test B34014O.
3156 --
3157 -- When the type Address is a visible integer type, and the DEC
3158 -- system extension is visible, the predefined operator may be
3159 -- hidden as well, by one of the address operations in auxdec.
3160 -- Finally, The abstract operations on address do not hide the
3161 -- predefined operator (this is the purpose of making them abstract).
3162
1d2d8a8f
AC
3163 -----------------------------------
3164 -- Compatible_Types_In_Predicate --
3165 -----------------------------------
3166
3167 function Compatible_Types_In_Predicate
3168 (T1 : Entity_Id;
3169 T2 : Entity_Id) return Boolean
3170 is
3171 function Common_Type (T : Entity_Id) return Entity_Id;
3172 -- Find non-private full view if any, without going to ancestor type
3173 -- (as opposed to Underlying_Type).
3174
3175 -----------------
3176 -- Common_Type --
3177 -----------------
3178
3179 function Common_Type (T : Entity_Id) return Entity_Id is
3180 begin
3181 if Is_Private_Type (T) and then Present (Full_View (T)) then
3182 return Base_Type (Full_View (T));
3183 else
3184 return Base_Type (T);
3185 end if;
3186 end Common_Type;
3187
3188 -- Start of processing for Compatible_Types_In_Predicate
3189
3190 begin
3191 if (Ekind (Current_Scope) = E_Function
3192 and then Is_Predicate_Function (Current_Scope))
3193 or else
3194 (Ekind (Nam) = E_Function
3195 and then Is_Predicate_Function (Nam))
3196 then
3197 if Is_Incomplete_Type (T1)
3198 and then Present (Full_View (T1))
3199 and then Full_View (T1) = T2
3200 then
3201 Set_Etype (Formal, Etype (Actual));
3202 return True;
3203
3204 elsif Common_Type (T1) = Common_Type (T2) then
3205 Rewrite (Actual, Unchecked_Convert_To (Etype (Formal), Actual));
3206 return True;
3207
3208 else
3209 return False;
3210 end if;
3211
3212 else
3213 return False;
3214 end if;
3215 end Compatible_Types_In_Predicate;
996ae0b0 3216
fbf5a39b
AC
3217 ----------------------------
3218 -- Indicate_Name_And_Type --
3219 ----------------------------
996ae0b0 3220
fbf5a39b 3221 procedure Indicate_Name_And_Type is
996ae0b0
RK
3222 begin
3223 Add_One_Interp (N, Nam, Etype (Nam));
44a10091 3224 Check_Implicit_Dereference (N, Etype (Nam));
996ae0b0
RK
3225 Success := True;
3226
3227 -- If the prefix of the call is a name, indicate the entity
3228 -- being called. If it is not a name, it is an expression that
3229 -- denotes an access to subprogram or else an entry or family. In
3230 -- the latter case, the name is a selected component, and the entity
3231 -- being called is noted on the selector.
3232
3233 if not Is_Type (Nam) then
a3f2babd 3234 if Is_Entity_Name (Name (N)) then
996ae0b0 3235 Set_Entity (Name (N), Nam);
d9307840 3236 Set_Etype (Name (N), Etype (Nam));
996ae0b0
RK
3237
3238 elsif Nkind (Name (N)) = N_Selected_Component then
3239 Set_Entity (Selector_Name (Name (N)), Nam);
3240 end if;
3241 end if;
3242
3243 if Debug_Flag_E and not Report then
3244 Write_Str (" Overloaded call ");
3245 Write_Int (Int (N));
3246 Write_Str (" compatible with ");
3247 Write_Int (Int (Nam));
3248 Write_Eol;
3249 end if;
fbf5a39b 3250 end Indicate_Name_And_Type;
996ae0b0 3251
157a9bf5
ES
3252 ------------------------
3253 -- Operator_Hidden_By --
3254 ------------------------
3255
3256 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
3257 Act1 : constant Node_Id := First_Actual (N);
3258 Act2 : constant Node_Id := Next_Actual (Act1);
3259 Form1 : constant Entity_Id := First_Formal (Fun);
3260 Form2 : constant Entity_Id := Next_Formal (Form1);
3261
3262 begin
e4deba8e 3263 if Ekind (Fun) /= E_Function or else Is_Abstract_Subprogram (Fun) then
157a9bf5
ES
3264 return False;
3265
3266 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
3267 return False;
3268
3269 elsif Present (Form2) then
e4deba8e
RD
3270 if No (Act2)
3271 or else not Has_Compatible_Type (Act2, Etype (Form2))
157a9bf5
ES
3272 then
3273 return False;
3274 end if;
3275
3276 elsif Present (Act2) then
3277 return False;
3278 end if;
3279
3280 -- Now we know that the arity of the operator matches the function,
3281 -- and the function call is a valid interpretation. The function
3282 -- hides the operator if it has the right signature, or if one of
3283 -- its operands is a non-abstract operation on Address when this is
3284 -- a visible integer type.
3285
3286 return Hides_Op (Fun, Nam)
d9d25d04 3287 or else Is_Descendant_Of_Address (Etype (Form1))
157a9bf5
ES
3288 or else
3289 (Present (Form2)
d9d25d04 3290 and then Is_Descendant_Of_Address (Etype (Form2)));
157a9bf5
ES
3291 end Operator_Hidden_By;
3292
996ae0b0
RK
3293 -- Start of processing for Analyze_One_Call
3294
3295 begin
3296 Success := False;
3297
157a9bf5
ES
3298 -- If the subprogram has no formals or if all the formals have defaults,
3299 -- and the return type is an array type, the node may denote an indexing
3300 -- of the result of a parameterless call. In Ada 2005, the subprogram
3301 -- may have one non-defaulted formal, and the call may have been written
3302 -- in prefix notation, so that the rebuilt parameter list has more than
3303 -- one actual.
996ae0b0 3304
53cf4600
ES
3305 if not Is_Overloadable (Nam)
3306 and then Ekind (Nam) /= E_Subprogram_Type
3307 and then Ekind (Nam) /= E_Entry_Family
3308 then
3309 return;
3310 end if;
3311
80e59506 3312 -- An indexing requires at least one actual. The name of the call cannot
4bb9c7b9
AC
3313 -- be an implicit indirect call, so it cannot be a generated explicit
3314 -- dereference.
e1f3cb58
AC
3315
3316 if not Is_Empty_List (Actuals)
aab883ec
ES
3317 and then
3318 (Needs_No_Actuals (Nam)
3319 or else
3320 (Needs_One_Actual (Nam)
e4deba8e 3321 and then Present (Next_Actual (First (Actuals)))))
996ae0b0 3322 then
4bb9c7b9
AC
3323 if Is_Array_Type (Subp_Type)
3324 and then
3325 (Nkind (Name (N)) /= N_Explicit_Dereference
3326 or else Comes_From_Source (Name (N)))
3327 then
aab883ec 3328 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
996ae0b0
RK
3329
3330 elsif Is_Access_Type (Subp_Type)
3331 and then Is_Array_Type (Designated_Type (Subp_Type))
3332 then
3333 Is_Indexed :=
aab883ec
ES
3334 Try_Indexed_Call
3335 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
996ae0b0 3336
758c442c 3337 -- The prefix can also be a parameterless function that returns an
f3d57416 3338 -- access to subprogram, in which case this is an indirect call.
53cf4600
ES
3339 -- If this succeeds, an explicit dereference is added later on,
3340 -- in Analyze_Call or Resolve_Call.
758c442c 3341
996ae0b0 3342 elsif Is_Access_Type (Subp_Type)
401093c1 3343 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
996ae0b0 3344 then
53cf4600 3345 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
996ae0b0
RK
3346 end if;
3347
3348 end if;
3349
5ff22245 3350 -- If the call has been transformed into a slice, it is of the form
30783513 3351 -- F (Subtype) where F is parameterless. The node has been rewritten in
5ff22245
ES
3352 -- Try_Indexed_Call and there is nothing else to do.
3353
3354 if Is_Indexed
21d7ef70 3355 and then Nkind (N) = N_Slice
5ff22245
ES
3356 then
3357 return;
3358 end if;
3359
53cf4600
ES
3360 Normalize_Actuals
3361 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
996ae0b0
RK
3362
3363 if not Norm_OK then
3364
53cf4600 3365 -- If an indirect call is a possible interpretation, indicate
80e59506 3366 -- success to the caller. This may be an indexing of an explicit
4bb9c7b9 3367 -- dereference of a call that returns an access type (see above).
53cf4600 3368
4bb9c7b9
AC
3369 if Is_Indirect
3370 or else (Is_Indexed
3371 and then Nkind (Name (N)) = N_Explicit_Dereference
3372 and then Comes_From_Source (Name (N)))
3373 then
53cf4600
ES
3374 Success := True;
3375 return;
3376
996ae0b0
RK
3377 -- Mismatch in number or names of parameters
3378
53cf4600 3379 elsif Debug_Flag_E then
996ae0b0
RK
3380 Write_Str (" normalization fails in call ");
3381 Write_Int (Int (N));
3382 Write_Str (" with subprogram ");
3383 Write_Int (Int (Nam));
3384 Write_Eol;
3385 end if;
3386
3387 -- If the context expects a function call, discard any interpretation
3388 -- that is a procedure. If the node is not overloaded, leave as is for
3389 -- better error reporting when type mismatch is found.
3390
3391 elsif Nkind (N) = N_Function_Call
3392 and then Is_Overloaded (Name (N))
3393 and then Ekind (Nam) = E_Procedure
3394 then
3395 return;
3396
4c46b835 3397 -- Ditto for function calls in a procedure context
996ae0b0
RK
3398
3399 elsif Nkind (N) = N_Procedure_Call_Statement
3400 and then Is_Overloaded (Name (N))
3401 and then Etype (Nam) /= Standard_Void_Type
3402 then
3403 return;
3404
fe45e59e 3405 elsif No (Actuals) then
996ae0b0
RK
3406
3407 -- If Normalize succeeds, then there are default parameters for
3408 -- all formals.
3409
fbf5a39b 3410 Indicate_Name_And_Type;
996ae0b0
RK
3411
3412 elsif Ekind (Nam) = E_Operator then
996ae0b0
RK
3413 if Nkind (N) = N_Procedure_Call_Statement then
3414 return;
3415 end if;
3416
3417 -- This can occur when the prefix of the call is an operator
3418 -- name or an expanded name whose selector is an operator name.
3419
3420 Analyze_Operator_Call (N, Nam);
3421
3422 if Etype (N) /= Prev_T then
3423
157a9bf5 3424 -- Check that operator is not hidden by a function interpretation
996ae0b0
RK
3425
3426 if Is_Overloaded (Name (N)) then
3427 declare
3428 I : Interp_Index;
3429 It : Interp;
3430
3431 begin
3432 Get_First_Interp (Name (N), I, It);
996ae0b0 3433 while Present (It.Nam) loop
157a9bf5 3434 if Operator_Hidden_By (It.Nam) then
996ae0b0
RK
3435 Set_Etype (N, Prev_T);
3436 return;
3437 end if;
3438
3439 Get_Next_Interp (I, It);
3440 end loop;
3441 end;
3442 end if;
3443
3444 -- If operator matches formals, record its name on the call.
3445 -- If the operator is overloaded, Resolve will select the
3446 -- correct one from the list of interpretations. The call
3447 -- node itself carries the first candidate.
3448
3449 Set_Entity (Name (N), Nam);
3450 Success := True;
3451
3452 elsif Report and then Etype (N) = Any_Type then
3453 Error_Msg_N ("incompatible arguments for operator", N);
3454 end if;
3455
3456 else
3457 -- Normalize_Actuals has chained the named associations in the
3458 -- correct order of the formals.
3459
3460 Actual := First_Actual (N);
3461 Formal := First_Formal (Nam);
ec6078e3 3462
df3e68b1
HK
3463 -- If we are analyzing a call rewritten from object notation, skip
3464 -- first actual, which may be rewritten later as an explicit
3465 -- dereference.
ec6078e3 3466
aab883ec 3467 if Must_Skip then
ec6078e3
ES
3468 Next_Actual (Actual);
3469 Next_Formal (Formal);
3470 end if;
3471
996ae0b0 3472 while Present (Actual) and then Present (Formal) loop
fbf5a39b
AC
3473 if Nkind (Parent (Actual)) /= N_Parameter_Association
3474 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
996ae0b0 3475 then
9c510803
ES
3476 -- The actual can be compatible with the formal, but we must
3477 -- also check that the context is not an address type that is
7a5b62b0 3478 -- visibly an integer type. In this case the use of literals is
d9d25d04 3479 -- illegal, except in the body of descendants of system, where
7a5b62b0 3480 -- arithmetic operations on address are of course used.
9c510803
ES
3481
3482 if Has_Compatible_Type (Actual, Etype (Formal))
3483 and then
3484 (Etype (Actual) /= Universal_Integer
d9d25d04 3485 or else not Is_Descendant_Of_Address (Etype (Formal))
8ab31c0c 3486 or else In_Predefined_Unit (N))
9c510803 3487 then
996ae0b0
RK
3488 Next_Actual (Actual);
3489 Next_Formal (Formal);
3490
061828e3
AC
3491 -- In Allow_Integer_Address mode, we allow an actual integer to
3492 -- match a formal address type and vice versa. We only do this
3493 -- if we are certain that an error will otherwise be issued
3494
3495 elsif Address_Integer_Convert_OK
3496 (Etype (Actual), Etype (Formal))
3497 and then (Report and not Is_Indexed and not Is_Indirect)
3498 then
3499 -- Handle this case by introducing an unchecked conversion
3500
3501 Rewrite (Actual,
3502 Unchecked_Convert_To (Etype (Formal),
3503 Relocate_Node (Actual)));
3504 Analyze_And_Resolve (Actual, Etype (Formal));
3505 Next_Actual (Actual);
3506 Next_Formal (Formal);
3507
a8a42b93
AC
3508 -- Under relaxed RM semantics silently replace occurrences of
3509 -- null by System.Address_Null. We only do this if we know that
3510 -- an error will otherwise be issued.
3511
3512 elsif Null_To_Null_Address_Convert_OK (Actual, Etype (Formal))
3513 and then (Report and not Is_Indexed and not Is_Indirect)
3514 then
3515 Replace_Null_By_Null_Address (Actual);
3516 Analyze_And_Resolve (Actual, Etype (Formal));
3517 Next_Actual (Actual);
3518 Next_Formal (Formal);
3519
1d2d8a8f
AC
3520 elsif Compatible_Types_In_Predicate
3521 (Etype (Formal), Etype (Actual))
a921e83c 3522 then
a921e83c
AC
3523 Next_Actual (Actual);
3524 Next_Formal (Formal);
3525
bb072d1c
AC
3526 -- In a complex case where an enclosing generic and a nested
3527 -- generic package, both declared with partially parameterized
3528 -- formal subprograms with the same names, are instantiated
3529 -- with the same type, the types of the actual parameter and
3530 -- that of the formal may appear incompatible at first sight.
3531
3532 -- generic
3533 -- type Outer_T is private;
3534 -- with function Func (Formal : Outer_T)
3535 -- return ... is <>;
3536
3537 -- package Outer_Gen is
3538 -- generic
3539 -- type Inner_T is private;
3540 -- with function Func (Formal : Inner_T) -- (1)
d030f3a4 3541 -- return ... is <>;
bb072d1c
AC
3542
3543 -- package Inner_Gen is
3544 -- function Inner_Func (Formal : Inner_T) -- (2)
d030f3a4 3545 -- return ... is (Func (Formal));
bb072d1c
AC
3546 -- end Inner_Gen;
3547 -- end Outer_Generic;
3548
3549 -- package Outer_Inst is new Outer_Gen (Actual_T);
3550 -- package Inner_Inst is new Outer_Inst.Inner_Gen (Actual_T);
3551
3552 -- In the example above, the type of parameter
3553 -- Inner_Func.Formal at (2) is incompatible with the type of
3554 -- Func.Formal at (1) in the context of instantiations
d030f3a4
AC
3555 -- Outer_Inst and Inner_Inst. In reality both types are generic
3556 -- actual subtypes renaming base type Actual_T as part of the
3557 -- generic prologues for the instantiations.
3558
3559 -- Recognize this case and add a type conversion to allow this
3560 -- kind of generic actual subtype conformance. Note that this
3561 -- is done only when the call is non-overloaded because the
3562 -- resolution mechanism already has the means to disambiguate
3563 -- similar cases.
bb072d1c
AC
3564
3565 elsif not Is_Overloaded (Name (N))
3566 and then Is_Type (Etype (Actual))
3567 and then Is_Type (Etype (Formal))
3568 and then Is_Generic_Actual_Type (Etype (Actual))
3569 and then Is_Generic_Actual_Type (Etype (Formal))
3570 and then Base_Type (Etype (Actual)) =
3571 Base_Type (Etype (Formal))
3572 then
3573 Rewrite (Actual,
3574 Convert_To (Etype (Formal), Relocate_Node (Actual)));
3575 Analyze_And_Resolve (Actual, Etype (Formal));
3576 Next_Actual (Actual);
3577 Next_Formal (Formal);
3578
3579 -- Handle failed type check
3580
996ae0b0
RK
3581 else
3582 if Debug_Flag_E then
3583 Write_Str (" type checking fails in call ");
3584 Write_Int (Int (N));
3585 Write_Str (" with formal ");
3586 Write_Int (Int (Formal));
3587 Write_Str (" in subprogram ");
3588 Write_Int (Int (Nam));
3589 Write_Eol;
3590 end if;
3591
061828e3
AC
3592 -- Comment needed on the following test???
3593
53cf4600 3594 if Report and not Is_Indexed and not Is_Indirect then
758c442c
GD
3595
3596 -- Ada 2005 (AI-251): Complete the error notification
8f2eeab7 3597 -- to help new Ada 2005 users.
758c442c
GD
3598
3599 if Is_Class_Wide_Type (Etype (Formal))
3600 and then Is_Interface (Etype (Etype (Formal)))
3601 and then not Interface_Present_In_Ancestor
3602 (Typ => Etype (Actual),
3603 Iface => Etype (Etype (Formal)))
3604 then
758c442c 3605 Error_Msg_NE
ec6078e3 3606 ("(Ada 2005) does not implement interface }",
758c442c
GD
3607 Actual, Etype (Etype (Formal)));
3608 end if;
3609
996ae0b0
RK
3610 Wrong_Type (Actual, Etype (Formal));
3611
3612 if Nkind (Actual) = N_Op_Eq
3613 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3614 then
3615 Formal := First_Formal (Nam);
996ae0b0 3616 while Present (Formal) loop
996ae0b0 3617 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
4e7a4f6e 3618 Error_Msg_N -- CODEFIX
fbf5a39b 3619 ("possible misspelling of `='>`!", Actual);
996ae0b0
RK
3620 exit;
3621 end if;
3622
3623 Next_Formal (Formal);
3624 end loop;
3625 end if;
3626
3627 if All_Errors_Mode then
3628 Error_Msg_Sloc := Sloc (Nam);
3629
3b42c566
RD
3630 if Etype (Formal) = Any_Type then
3631 Error_Msg_N
3632 ("there is no legal actual parameter", Actual);
3633 end if;
3634
996ae0b0
RK
3635 if Is_Overloadable (Nam)
3636 and then Present (Alias (Nam))
3637 and then not Comes_From_Source (Nam)
3638 then
3639 Error_Msg_NE
401093c1
ES
3640 ("\\ =='> in call to inherited operation & #!",
3641 Actual, Nam);
7324bf49
AC
3642
3643 elsif Ekind (Nam) = E_Subprogram_Type then
3644 declare
3645 Access_To_Subprogram_Typ :
3646 constant Entity_Id :=
3647 Defining_Identifier
3648 (Associated_Node_For_Itype (Nam));
3649 begin
a90bd866
RD
3650 Error_Msg_NE
3651 ("\\ =='> in call to dereference of &#!",
3652 Actual, Access_To_Subprogram_Typ);
7324bf49
AC
3653 end;
3654
996ae0b0 3655 else
401093c1
ES
3656 Error_Msg_NE
3657 ("\\ =='> in call to &#!", Actual, Nam);
7324bf49 3658
996ae0b0
RK
3659 end if;
3660 end if;
3661 end if;
3662
3663 return;
3664 end if;
3665
3666 else
3667 -- Normalize_Actuals has verified that a default value exists
3668 -- for this formal. Current actual names a subsequent formal.
3669
3670 Next_Formal (Formal);
3671 end if;
3672 end loop;
3673
4c46b835 3674 -- On exit, all actuals match
996ae0b0 3675
fbf5a39b 3676 Indicate_Name_And_Type;
996ae0b0
RK
3677 end if;
3678 end Analyze_One_Call;
3679
15ce9ca2
AC
3680 ---------------------------
3681 -- Analyze_Operator_Call --
3682 ---------------------------
996ae0b0
RK
3683
3684 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3685 Op_Name : constant Name_Id := Chars (Op_Id);
3686 Act1 : constant Node_Id := First_Actual (N);
3687 Act2 : constant Node_Id := Next_Actual (Act1);
3688
3689 begin
4c46b835
AC
3690 -- Binary operator case
3691
996ae0b0
RK
3692 if Present (Act2) then
3693
4c46b835 3694 -- If more than two operands, then not binary operator after all
996ae0b0
RK
3695
3696 if Present (Next_Actual (Act2)) then
996ae0b0 3697 return;
b7539c3b 3698 end if;
996ae0b0 3699
b7539c3b 3700 -- Otherwise action depends on operator
996ae0b0 3701
b7539c3b 3702 case Op_Name is
d8f43ee6
HK
3703 when Name_Op_Add
3704 | Name_Op_Divide
3705 | Name_Op_Expon
3706 | Name_Op_Mod
3707 | Name_Op_Multiply
3708 | Name_Op_Rem
3709 | Name_Op_Subtract
3710 =>
b7539c3b 3711 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
996ae0b0 3712
d8f43ee6
HK
3713 when Name_Op_And
3714 | Name_Op_Or
3715 | Name_Op_Xor
3716 =>
b7539c3b 3717 Find_Boolean_Types (Act1, Act2, Op_Id, N);
996ae0b0 3718
d8f43ee6
HK
3719 when Name_Op_Ge
3720 | Name_Op_Gt
3721 | Name_Op_Le
3722 | Name_Op_Lt
3723 =>
b7539c3b 3724 Find_Comparison_Types (Act1, Act2, Op_Id, N);
996ae0b0 3725
d8f43ee6
HK
3726 when Name_Op_Eq
3727 | Name_Op_Ne
3728 =>
b7539c3b 3729 Find_Equality_Types (Act1, Act2, Op_Id, N);
996ae0b0 3730
d8f43ee6 3731 when Name_Op_Concat =>
b7539c3b 3732 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
996ae0b0 3733
b7539c3b
AC
3734 -- Is this when others, or should it be an abort???
3735
d8f43ee6 3736 when others =>
b7539c3b
AC
3737 null;
3738 end case;
996ae0b0 3739
4c46b835 3740 -- Unary operator case
996ae0b0 3741
4c46b835 3742 else
b7539c3b 3743 case Op_Name is
d8f43ee6
HK
3744 when Name_Op_Abs
3745 | Name_Op_Add
3746 | Name_Op_Subtract
3747 =>
b7539c3b 3748 Find_Unary_Types (Act1, Op_Id, N);
996ae0b0 3749
d8f43ee6 3750 when Name_Op_Not =>
b7539c3b 3751 Find_Negation_Types (Act1, Op_Id, N);
996ae0b0 3752
b7539c3b 3753 -- Is this when others correct, or should it be an abort???
996ae0b0 3754
d8f43ee6 3755 when others =>
b7539c3b
AC
3756 null;
3757 end case;
996ae0b0
RK
3758 end if;
3759 end Analyze_Operator_Call;
3760
3761 -------------------------------------------
3762 -- Analyze_Overloaded_Selected_Component --
3763 -------------------------------------------
3764
3765 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
fbf5a39b
AC
3766 Nam : constant Node_Id := Prefix (N);
3767 Sel : constant Node_Id := Selector_Name (N);
996ae0b0 3768 Comp : Entity_Id;
996ae0b0
RK
3769 I : Interp_Index;
3770 It : Interp;
3771 T : Entity_Id;
3772
3773 begin
4c46b835 3774 Set_Etype (Sel, Any_Type);
996ae0b0 3775
4c46b835 3776 Get_First_Interp (Nam, I, It);
996ae0b0
RK
3777 while Present (It.Typ) loop
3778 if Is_Access_Type (It.Typ) then
3779 T := Designated_Type (It.Typ);
324ac540 3780 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
3781 else
3782 T := It.Typ;
3783 end if;
3784
95eb8b69
AC
3785 -- Locate the component. For a private prefix the selector can denote
3786 -- a discriminant.
3787
3788 if Is_Record_Type (T) or else Is_Private_Type (T) then
d469eabe
HK
3789
3790 -- If the prefix is a class-wide type, the visible components are
3791 -- those of the base type.
3792
3793 if Is_Class_Wide_Type (T) then
3794 T := Etype (T);
3795 end if;
3796
996ae0b0 3797 Comp := First_Entity (T);
996ae0b0 3798 while Present (Comp) loop
996ae0b0
RK
3799 if Chars (Comp) = Chars (Sel)
3800 and then Is_Visible_Component (Comp)
3801 then
996ae0b0 3802
f16d05d9
AC
3803 -- AI05-105: if the context is an object renaming with
3804 -- an anonymous access type, the expected type of the
3805 -- object must be anonymous. This is a name resolution rule.
996ae0b0 3806
f16d05d9
AC
3807 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3808 or else No (Access_Definition (Parent (N)))
3809 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3810 or else
3811 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3812 then
3813 Set_Entity (Sel, Comp);
3814 Set_Etype (Sel, Etype (Comp));
3815 Add_One_Interp (N, Etype (Comp), Etype (Comp));
44a10091 3816 Check_Implicit_Dereference (N, Etype (Comp));
f16d05d9
AC
3817
3818 -- This also specifies a candidate to resolve the name.
3819 -- Further overloading will be resolved from context.
3820 -- The selector name itself does not carry overloading
3821 -- information.
3822
3823 Set_Etype (Nam, It.Typ);
3824
3825 else
b61ee1aa 3826 -- Named access type in the context of a renaming
f16d05d9
AC
3827 -- declaration with an access definition. Remove
3828 -- inapplicable candidate.
3829
3830 Remove_Interp (I);
3831 end if;
996ae0b0
RK
3832 end if;
3833
3834 Next_Entity (Comp);
3835 end loop;
3836
3837 elsif Is_Concurrent_Type (T) then
3838 Comp := First_Entity (T);
996ae0b0
RK
3839 while Present (Comp)
3840 and then Comp /= First_Private_Entity (T)
3841 loop
3842 if Chars (Comp) = Chars (Sel) then
3843 if Is_Overloadable (Comp) then
3844 Add_One_Interp (Sel, Comp, Etype (Comp));
3845 else
e7ba564f 3846 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
3847 Generate_Reference (Comp, Sel);
3848 end if;
3849
3850 Set_Etype (Sel, Etype (Comp));
3851 Set_Etype (N, Etype (Comp));
3852 Set_Etype (Nam, It.Typ);
3853
09494c32
AC
3854 -- For access type case, introduce explicit dereference for
3855 -- more uniform treatment of entry calls. Do this only once
3856 -- if several interpretations yield an access type.
996ae0b0 3857
d469eabe
HK
3858 if Is_Access_Type (Etype (Nam))
3859 and then Nkind (Nam) /= N_Explicit_Dereference
3860 then
996ae0b0 3861 Insert_Explicit_Dereference (Nam);
fbf5a39b 3862 Error_Msg_NW
324ac540 3863 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
3864 end if;
3865 end if;
3866
3867 Next_Entity (Comp);
3868 end loop;
3869
3870 Set_Is_Overloaded (N, Is_Overloaded (Sel));
996ae0b0
RK
3871 end if;
3872
3873 Get_Next_Interp (I, It);
3874 end loop;
3875
0a36105d
JM
3876 if Etype (N) = Any_Type
3877 and then not Try_Object_Operation (N)
3878 then
996ae0b0
RK
3879 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3880 Set_Entity (Sel, Any_Id);
3881 Set_Etype (Sel, Any_Type);
3882 end if;
996ae0b0
RK
3883 end Analyze_Overloaded_Selected_Component;
3884
3885 ----------------------------------
3886 -- Analyze_Qualified_Expression --
3887 ----------------------------------
3888
3889 procedure Analyze_Qualified_Expression (N : Node_Id) is
3890 Mark : constant Entity_Id := Subtype_Mark (N);
45c8b94b
ES
3891 Expr : constant Node_Id := Expression (N);
3892 I : Interp_Index;
3893 It : Interp;
996ae0b0
RK
3894 T : Entity_Id;
3895
3896 begin
45c8b94b
ES
3897 Analyze_Expression (Expr);
3898
996ae0b0
RK
3899 Set_Etype (N, Any_Type);
3900 Find_Type (Mark);
3901 T := Entity (Mark);
45c8b94b 3902 Set_Etype (N, T);
996ae0b0
RK
3903
3904 if T = Any_Type then
3905 return;
3906 end if;
996ae0b0 3907
4c46b835 3908 Check_Fully_Declared (T, N);
45c8b94b
ES
3909
3910 -- If expected type is class-wide, check for exact match before
3911 -- expansion, because if the expression is a dispatching call it
3912 -- may be rewritten as explicit dereference with class-wide result.
3913 -- If expression is overloaded, retain only interpretations that
3914 -- will yield exact matches.
3915
3916 if Is_Class_Wide_Type (T) then
3917 if not Is_Overloaded (Expr) then
9fe696a3 3918 if Base_Type (Etype (Expr)) /= Base_Type (T) then
45c8b94b
ES
3919 if Nkind (Expr) = N_Aggregate then
3920 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3921 else
3922 Wrong_Type (Expr, T);
3923 end if;
3924 end if;
3925
3926 else
3927 Get_First_Interp (Expr, I, It);
3928
3929 while Present (It.Nam) loop
3930 if Base_Type (It.Typ) /= Base_Type (T) then
3931 Remove_Interp (I);
3932 end if;
3933
3934 Get_Next_Interp (I, It);
3935 end loop;
3936 end if;
3937 end if;
3938
996ae0b0
RK
3939 Set_Etype (N, T);
3940 end Analyze_Qualified_Expression;
3941
a961aa79
AC
3942 -----------------------------------
3943 -- Analyze_Quantified_Expression --
3944 -----------------------------------
3945
3946 procedure Analyze_Quantified_Expression (N : Node_Id) is
4856cc2a 3947 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
538dbb56
AC
3948 -- If the iterator is part of a quantified expression, and the range is
3949 -- known to be statically empty, emit a warning and replace expression
4856cc2a 3950 -- with its static value. Returns True if the replacement occurs.
538dbb56 3951
0812b84e
AC
3952 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean;
3953 -- Determine whether if expression If_Expr lacks an else part or if it
3954 -- has one, it evaluates to True.
3955
4856cc2a
ES
3956 --------------------
3957 -- Is_Empty_Range --
3958 --------------------
3959
3960 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
3961 Loc : constant Source_Ptr := Sloc (N);
538dbb56
AC
3962
3963 begin
3964 if Is_Array_Type (Typ)
4856cc2a
ES
3965 and then Compile_Time_Known_Bounds (Typ)
3966 and then
9a6dc470
RD
3967 (Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
3968 Expr_Value (Type_High_Bound (Etype (First_Index (Typ)))))
538dbb56 3969 then
4856cc2a
ES
3970 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
3971
538dbb56 3972 if All_Present (N) then
4856cc2a 3973 Error_Msg_N
324ac540 3974 ("??quantified expression with ALL "
4856cc2a 3975 & "over a null range has value True", N);
538dbb56
AC
3976 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3977
3978 else
4856cc2a 3979 Error_Msg_N
324ac540 3980 ("??quantified expression with SOME "
4856cc2a 3981 & "over a null range has value False", N);
538dbb56
AC
3982 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
3983 end if;
3984
3985 Analyze (N);
3986 return True;
3987
3988 else
3989 return False;
3990 end if;
3991 end Is_Empty_Range;
3992
0812b84e
AC
3993 -----------------------------
3994 -- No_Else_Or_Trivial_True --
3995 -----------------------------
3996
3997 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean is
3998 Else_Expr : constant Node_Id :=
3999 Next (Next (First (Expressions (If_Expr))));
4000 begin
4001 return
4002 No (Else_Expr)
4003 or else (Compile_Time_Known_Value (Else_Expr)
4004 and then Is_True (Expr_Value (Else_Expr)));
4005 end No_Else_Or_Trivial_True;
4006
4007 -- Local variables
4008
4009 Cond : constant Node_Id := Condition (N);
57081559 4010 Loop_Id : Entity_Id;
0812b84e
AC
4011 QE_Scop : Entity_Id;
4012
4856cc2a
ES
4013 -- Start of processing for Analyze_Quantified_Expression
4014
a961aa79 4015 begin
ce5ba43a 4016 Check_SPARK_05_Restriction ("quantified expression is not allowed", N);
1d801f21 4017
804670f1
AC
4018 -- Create a scope to emulate the loop-like behavior of the quantified
4019 -- expression. The scope is needed to provide proper visibility of the
4020 -- loop variable.
b3e42de5 4021
804670f1
AC
4022 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
4023 Set_Etype (QE_Scop, Standard_Void_Type);
4024 Set_Scope (QE_Scop, Current_Scope);
4025 Set_Parent (QE_Scop, N);
a961aa79 4026
804670f1 4027 Push_Scope (QE_Scop);
c56a9ba4 4028
804670f1
AC
4029 -- All constituents are preanalyzed and resolved to avoid untimely
4030 -- generation of various temporaries and types. Full analysis and
4031 -- expansion is carried out when the quantified expression is
4032 -- transformed into an expression with actions.
c56a9ba4 4033
804670f1
AC
4034 if Present (Iterator_Specification (N)) then
4035 Preanalyze (Iterator_Specification (N));
538dbb56 4036
57081559
AC
4037 -- Do not proceed with the analysis when the range of iteration is
4038 -- empty. The appropriate error is issued by Is_Empty_Range.
4039
538dbb56
AC
4040 if Is_Entity_Name (Name (Iterator_Specification (N)))
4041 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
4042 then
4043 return;
4044 end if;
4045
57081559 4046 else pragma Assert (Present (Loop_Parameter_Specification (N)));
a736f6e6
AC
4047 declare
4048 Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
4049
4050 begin
4051 Preanalyze (Loop_Par);
4052
e4deba8e 4053 if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
a736f6e6
AC
4054 and then Parent (Loop_Par) /= N
4055 then
4056 -- The parser cannot distinguish between a loop specification
4057 -- and an iterator specification. If after pre-analysis the
4058 -- proper form has been recognized, rewrite the expression to
5f0c4d67
AC
4059 -- reflect the right kind. This is needed for proper ASIS
4060 -- navigation. If expansion is enabled, the transformation is
4061 -- performed when the expression is rewritten as a loop.
a736f6e6 4062
a736f6e6
AC
4063 Set_Iterator_Specification (N,
4064 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
5f0c4d67
AC
4065
4066 Set_Defining_Identifier (Iterator_Specification (N),
4067 Relocate_Node (Defining_Identifier (Loop_Par)));
4068 Set_Name (Iterator_Specification (N),
4069 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
4070 Set_Comes_From_Source (Iterator_Specification (N),
4071 Comes_From_Source (Loop_Parameter_Specification (N)));
4072 Set_Loop_Parameter_Specification (N, Empty);
a736f6e6
AC
4073 end if;
4074 end;
ce6002ec
AC
4075 end if;
4076
0812b84e 4077 Preanalyze_And_Resolve (Cond, Standard_Boolean);
804670f1 4078
a961aa79
AC
4079 End_Scope;
4080 Set_Etype (N, Standard_Boolean);
0812b84e 4081
57081559
AC
4082 -- Verify that the loop variable is used within the condition of the
4083 -- quantified expression.
4084
4085 if Present (Iterator_Specification (N)) then
4086 Loop_Id := Defining_Identifier (Iterator_Specification (N));
4087 else
4088 Loop_Id := Defining_Identifier (Loop_Parameter_Specification (N));
4089 end if;
4090
4091 if Warn_On_Suspicious_Contract
4092 and then not Referenced (Loop_Id, Cond)
4093 then
124bed29 4094 -- Generating C, this check causes spurious warnings on inlined
519e9fdf 4095 -- postconditions; we can safely disable it because this check
124bed29 4096 -- was previously performed when analyzing the internally built
519e9fdf
AC
4097 -- postconditions procedure.
4098
4099 if Modify_Tree_For_C and then In_Inlined_Body then
4100 null;
4101 else
4102 Error_Msg_N ("?T?unused variable &", Loop_Id);
4103 end if;
57081559
AC
4104 end if;
4105
e19fd0bd 4106 -- Diagnose a possible misuse of the SOME existential quantifier. When
d1ec4768
RD
4107 -- we have a quantified expression of the form:
4108
0812b84e 4109 -- for some X => (if P then Q [else True])
d1ec4768 4110
e19fd0bd 4111 -- any value for X that makes P False results in the if expression being
50ef946c 4112 -- trivially True, and so also results in the quantified expression
e19fd0bd 4113 -- being trivially True.
0812b84e 4114
e19fd0bd 4115 if Warn_On_Suspicious_Contract
0812b84e
AC
4116 and then not All_Present (N)
4117 and then Nkind (Cond) = N_If_Expression
4118 and then No_Else_Or_Trivial_True (Cond)
4119 then
e19fd0bd 4120 Error_Msg_N ("?T?suspicious expression", N);
0812b84e
AC
4121 Error_Msg_N ("\\did you mean (for all X ='> (if P then Q))", N);
4122 Error_Msg_N ("\\or (for some X ='> P and then Q) instead'?", N);
4123 end if;
a961aa79
AC
4124 end Analyze_Quantified_Expression;
4125
996ae0b0
RK
4126 -------------------
4127 -- Analyze_Range --
4128 -------------------
4129
4130 procedure Analyze_Range (N : Node_Id) is
4131 L : constant Node_Id := Low_Bound (N);
4132 H : constant Node_Id := High_Bound (N);
4133 I1, I2 : Interp_Index;
4134 It1, It2 : Interp;
4135
4136 procedure Check_Common_Type (T1, T2 : Entity_Id);
4137 -- Verify the compatibility of two types, and choose the
4138 -- non universal one if the other is universal.
4139
4140 procedure Check_High_Bound (T : Entity_Id);
4141 -- Test one interpretation of the low bound against all those
4142 -- of the high bound.
4143
fbf5a39b 4144 procedure Check_Universal_Expression (N : Node_Id);
a1092b48
AC
4145 -- In Ada 83, reject bounds of a universal range that are not literals
4146 -- or entity names.
fbf5a39b 4147
996ae0b0
RK
4148 -----------------------
4149 -- Check_Common_Type --
4150 -----------------------
4151
4152 procedure Check_Common_Type (T1, T2 : Entity_Id) is
4153 begin
b4592168
GD
4154 if Covers (T1 => T1, T2 => T2)
4155 or else
4156 Covers (T1 => T2, T2 => T1)
4157 then
996ae0b0
RK
4158 if T1 = Universal_Integer
4159 or else T1 = Universal_Real
4160 or else T1 = Any_Character
4161 then
4162 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
4163
fbf5a39b 4164 elsif T1 = T2 then
996ae0b0
RK
4165 Add_One_Interp (N, T1, T1);
4166
4167 else
4168 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
4169 end if;
4170 end if;
4171 end Check_Common_Type;
4172
4173 ----------------------
4174 -- Check_High_Bound --
4175 ----------------------
4176
4177 procedure Check_High_Bound (T : Entity_Id) is
4178 begin
4179 if not Is_Overloaded (H) then
4180 Check_Common_Type (T, Etype (H));
4181 else
4182 Get_First_Interp (H, I2, It2);
996ae0b0
RK
4183 while Present (It2.Typ) loop
4184 Check_Common_Type (T, It2.Typ);
4185 Get_Next_Interp (I2, It2);
4186 end loop;
4187 end if;
4188 end Check_High_Bound;
4189
fbf5a39b
AC
4190 -----------------------------
4191 -- Is_Universal_Expression --
4192 -----------------------------
4193
4194 procedure Check_Universal_Expression (N : Node_Id) is
4195 begin
4196 if Etype (N) = Universal_Integer
4197 and then Nkind (N) /= N_Integer_Literal
4198 and then not Is_Entity_Name (N)
4199 and then Nkind (N) /= N_Attribute_Reference
4200 then
4201 Error_Msg_N ("illegal bound in discrete range", N);
4202 end if;
4203 end Check_Universal_Expression;
4204
996ae0b0
RK
4205 -- Start of processing for Analyze_Range
4206
4207 begin
4208 Set_Etype (N, Any_Type);
4209 Analyze_Expression (L);
4210 Analyze_Expression (H);
4211
4212 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
4213 return;
4214
4215 else
4216 if not Is_Overloaded (L) then
4217 Check_High_Bound (Etype (L));
4218 else
4219 Get_First_Interp (L, I1, It1);
996ae0b0
RK
4220 while Present (It1.Typ) loop
4221 Check_High_Bound (It1.Typ);
4222 Get_Next_Interp (I1, It1);
4223 end loop;
4224 end if;
4225
4226 -- If result is Any_Type, then we did not find a compatible pair
4227
4228 if Etype (N) = Any_Type then
4229 Error_Msg_N ("incompatible types in range ", N);
4230 end if;
4231 end if;
fbf5a39b 4232
0ab80019 4233 if Ada_Version = Ada_83
fbf5a39b
AC
4234 and then
4235 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
4c46b835 4236 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
fbf5a39b
AC
4237 then
4238 Check_Universal_Expression (L);
4239 Check_Universal_Expression (H);
4240 end if;
d3820795 4241
22e89283 4242 Check_Function_Writable_Actuals (N);
996ae0b0
RK
4243 end Analyze_Range;
4244
4245 -----------------------
4246 -- Analyze_Reference --
4247 -----------------------
4248
4249 procedure Analyze_Reference (N : Node_Id) is
4250 P : constant Node_Id := Prefix (N);
b4592168
GD
4251 E : Entity_Id;
4252 T : Entity_Id;
996ae0b0 4253 Acc_Type : Entity_Id;
b4592168 4254
996ae0b0
RK
4255 begin
4256 Analyze (P);
b4592168 4257
c42e1b17
AC
4258 -- An interesting error check, if we take the 'Ref of an object for
4259 -- which a pragma Atomic or Volatile has been given, and the type of the
4260 -- object is not Atomic or Volatile, then we are in trouble. The problem
4261 -- is that no trace of the atomic/volatile status will remain for the
4262 -- backend to respect when it deals with the resulting pointer, since
4263 -- the pointer type will not be marked atomic (it is a pointer to the
4264 -- base type of the object).
b4592168
GD
4265
4266 -- It is not clear if that can ever occur, but in case it does, we will
4267 -- generate an error message. Not clear if this message can ever be
4268 -- generated, and pretty clear that it represents a bug if it is, still
d2f25cd1
AC
4269 -- seems worth checking, except in CodePeer mode where we do not really
4270 -- care and don't want to bother the user.
b4592168
GD
4271
4272 T := Etype (P);
4273
4274 if Is_Entity_Name (P)
4275 and then Is_Object_Reference (P)
d2f25cd1 4276 and then not CodePeer_Mode
b4592168
GD
4277 then
4278 E := Entity (P);
4279 T := Etype (P);
4280
4281 if (Has_Atomic_Components (E)
c42e1b17 4282 and then not Has_Atomic_Components (T))
b4592168
GD
4283 or else
4284 (Has_Volatile_Components (E)
c42e1b17 4285 and then not Has_Volatile_Components (T))
b4592168
GD
4286 or else (Is_Atomic (E) and then not Is_Atomic (T))
4287 or else (Is_Volatile (E) and then not Is_Volatile (T))
4288 then
4289 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
4290 end if;
4291 end if;
4292
4293 -- Carry on with normal processing
4294
996ae0b0 4295 Acc_Type := Create_Itype (E_Allocator_Type, N);
b4592168 4296 Set_Etype (Acc_Type, Acc_Type);
996ae0b0
RK
4297 Set_Directly_Designated_Type (Acc_Type, Etype (P));
4298 Set_Etype (N, Acc_Type);
4299 end Analyze_Reference;
4300
4301 --------------------------------
4302 -- Analyze_Selected_Component --
4303 --------------------------------
4304
2383acbd
AC
4305 -- Prefix is a record type or a task or protected type. In the latter case,
4306 -- the selector must denote a visible entry.
996ae0b0
RK
4307
4308 procedure Analyze_Selected_Component (N : Node_Id) is
d469eabe
HK
4309 Name : constant Node_Id := Prefix (N);
4310 Sel : constant Node_Id := Selector_Name (N);
4311 Act_Decl : Node_Id;
4312 Comp : Entity_Id;
4313 Has_Candidate : Boolean := False;
c0e938d0 4314 Hidden_Comp : Entity_Id;
d469eabe 4315 In_Scope : Boolean;
d1eb8a82 4316 Is_Private_Op : Boolean;
d469eabe
HK
4317 Parent_N : Node_Id;
4318 Pent : Entity_Id := Empty;
4319 Prefix_Type : Entity_Id;
401093c1
ES
4320
4321 Type_To_Use : Entity_Id;
4322 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
4323 -- a class-wide type, we use its root type, whose components are
4324 -- present in the class-wide type.
4325
2383acbd
AC
4326 Is_Single_Concurrent_Object : Boolean;
4327 -- Set True if the prefix is a single task or a single protected object
4328
20261dc1
AC
4329 procedure Find_Component_In_Instance (Rec : Entity_Id);
4330 -- In an instance, a component of a private extension may not be visible
4331 -- while it was visible in the generic. Search candidate scope for a
4332 -- component with the proper identifier. This is only done if all other
f90d14ac
AC
4333 -- searches have failed. If a match is found, the Etype of both N and
4334 -- Sel are set from this component, and the entity of Sel is set to
4335 -- reference this component. If no match is found, Entity (Sel) remains
7d9880c9
AC
4336 -- unset. For a derived type that is an actual of the instance, the
4337 -- desired component may be found in any ancestor.
20261dc1 4338
d469eabe
HK
4339 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
4340 -- It is known that the parent of N denotes a subprogram call. Comp
4341 -- is an overloadable component of the concurrent type of the prefix.
4342 -- Determine whether all formals of the parent of N and Comp are mode
b4592168
GD
4343 -- conformant. If the parent node is not analyzed yet it may be an
4344 -- indexed component rather than a function call.
d469eabe 4345
bd717ec9 4346 function Has_Dereference (Nod : Node_Id) return Boolean;
0f8b3e5d 4347 -- Check whether prefix includes a dereference at any level.
bd717ec9 4348
20261dc1
AC
4349 --------------------------------
4350 -- Find_Component_In_Instance --
4351 --------------------------------
4352
4353 procedure Find_Component_In_Instance (Rec : Entity_Id) is
4354 Comp : Entity_Id;
7d9880c9 4355 Typ : Entity_Id;
20261dc1
AC
4356
4357 begin
7d9880c9
AC
4358 Typ := Rec;
4359 while Present (Typ) loop
4360 Comp := First_Component (Typ);
4361 while Present (Comp) loop
4362 if Chars (Comp) = Chars (Sel) then
4363 Set_Entity_With_Checks (Sel, Comp);
4364 Set_Etype (Sel, Etype (Comp));
4365 Set_Etype (N, Etype (Comp));
4366 return;
4367 end if;
4368
4369 Next_Component (Comp);
4370 end loop;
4371
4372 -- If not found, the component may be declared in the parent
4373 -- type or its full view, if any.
4374
4375 if Is_Derived_Type (Typ) then
4376 Typ := Etype (Typ);
4377
4378 if Is_Private_Type (Typ) then
4379 Typ := Full_View (Typ);
4380 end if;
4381
4382 else
20261dc1
AC
4383 return;
4384 end if;
20261dc1
AC
4385 end loop;
4386
cf3e6845
AC
4387 -- If we fall through, no match, so no changes made
4388
4389 return;
20261dc1
AC
4390 end Find_Component_In_Instance;
4391
d469eabe
HK
4392 ------------------------------
4393 -- Has_Mode_Conformant_Spec --
4394 ------------------------------
4395
4396 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
4397 Comp_Param : Entity_Id;
4398 Param : Node_Id;
4399 Param_Typ : Entity_Id;
4400
4401 begin
4402 Comp_Param := First_Formal (Comp);
b4592168
GD
4403
4404 if Nkind (Parent (N)) = N_Indexed_Component then
4405 Param := First (Expressions (Parent (N)));
4406 else
4407 Param := First (Parameter_Associations (Parent (N)));
4408 end if;
4409
d469eabe
HK
4410 while Present (Comp_Param)
4411 and then Present (Param)
4412 loop
4413 Param_Typ := Find_Parameter_Type (Param);
4414
4415 if Present (Param_Typ)
4416 and then
4417 not Conforming_Types
4418 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
4419 then
4420 return False;
4421 end if;
4422
4423 Next_Formal (Comp_Param);
4424 Next (Param);
4425 end loop;
4426
9e92ad49
AC
4427 -- One of the specs has additional formals; there is no match, unless
4428 -- this may be an indexing of a parameterless call.
f0e7963f
AC
4429
4430 -- Note that when expansion is disabled, the corresponding record
4431 -- type of synchronized types is not constructed, so that there is
4432 -- no point is attempting an interpretation as a prefixed call, as
4433 -- this is bound to fail because the primitive operations will not
4434 -- be properly located.
d469eabe
HK
4435
4436 if Present (Comp_Param) or else Present (Param) then
f0e7963f
AC
4437 if Needs_No_Actuals (Comp)
4438 and then Is_Array_Type (Etype (Comp))
4439 and then not Expander_Active
4440 then
4441 return True;
f0e7963f
AC
4442 else
4443 return False;
4444 end if;
d469eabe
HK
4445 end if;
4446
4447 return True;
4448 end Has_Mode_Conformant_Spec;
996ae0b0 4449
bd717ec9
AC
4450 ---------------------
4451 -- Has_Dereference --
4452 ---------------------
4453
4454 function Has_Dereference (Nod : Node_Id) return Boolean is
4455 begin
4456 if Nkind (Nod) = N_Explicit_Dereference then
4457 return True;
4458
a6363ed3
AC
4459 -- When expansion is disabled an explicit dereference may not have
4460 -- been inserted, but if this is an access type the indirection makes
4461 -- the call safe.
4462
4463 elsif Is_Access_Type (Etype (Nod)) then
4464 return True;
4465
bd717ec9
AC
4466 elsif Nkind_In (Nod, N_Indexed_Component, N_Selected_Component) then
4467 return Has_Dereference (Prefix (Nod));
4468
4469 else
4470 return False;
4471 end if;
4472 end Has_Dereference;
4473
996ae0b0
RK
4474 -- Start of processing for Analyze_Selected_Component
4475
4476 begin
4477 Set_Etype (N, Any_Type);
4478
4479 if Is_Overloaded (Name) then
4480 Analyze_Overloaded_Selected_Component (N);
4481 return;
4482
4483 elsif Etype (Name) = Any_Type then
4484 Set_Entity (Sel, Any_Id);
4485 Set_Etype (Sel, Any_Type);
4486 return;
4487
4488 else
996ae0b0
RK
4489 Prefix_Type := Etype (Name);
4490 end if;
4491
4492 if Is_Access_Type (Prefix_Type) then
07fc65c4 4493
0d57c6f4
RD
4494 -- A RACW object can never be used as prefix of a selected component
4495 -- since that means it is dereferenced without being a controlling
4496 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
4497 -- reporting an error, we must check whether this is actually a
4498 -- dispatching call in prefix form.
07fc65c4 4499
996ae0b0
RK
4500 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
4501 and then Comes_From_Source (N)
4502 then
b4592168
GD
4503 if Try_Object_Operation (N) then
4504 return;
4505 else
4506 Error_Msg_N
4507 ("invalid dereference of a remote access-to-class-wide value",
4508 N);
4509 end if;
07fc65c4
GB
4510
4511 -- Normal case of selected component applied to access type
4512
4513 else
324ac540 4514 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
da709d08 4515
6e73e3ab
AC
4516 if Is_Entity_Name (Name) then
4517 Pent := Entity (Name);
4518 elsif Nkind (Name) = N_Selected_Component
4519 and then Is_Entity_Name (Selector_Name (Name))
4520 then
4521 Pent := Entity (Selector_Name (Name));
4522 end if;
da709d08 4523
d469eabe 4524 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
996ae0b0 4525 end if;
b4592168
GD
4526
4527 -- If we have an explicit dereference of a remote access-to-class-wide
4528 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
4529 -- have to check for the case of a prefix that is a controlling operand
4530 -- of a prefixed dispatching call, as the dereference is legal in that
4531 -- case. Normally this condition is checked in Validate_Remote_Access_
4532 -- To_Class_Wide_Type, but we have to defer the checking for selected
4533 -- component prefixes because of the prefixed dispatching call case.
4534 -- Note that implicit dereferences are checked for this just above.
4535
4536 elsif Nkind (Name) = N_Explicit_Dereference
4537 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
4538 and then Comes_From_Source (N)
4539 then
4540 if Try_Object_Operation (N) then
4541 return;
4542 else
4543 Error_Msg_N
4544 ("invalid dereference of a remote access-to-class-wide value",
4545 N);
4546 end if;
aab883ec 4547 end if;
b67a385c 4548
aab883ec
ES
4549 -- (Ada 2005): if the prefix is the limited view of a type, and
4550 -- the context already includes the full view, use the full view
4551 -- in what follows, either to retrieve a component of to find
4552 -- a primitive operation. If the prefix is an explicit dereference,
4553 -- set the type of the prefix to reflect this transformation.
401093c1
ES
4554 -- If the non-limited view is itself an incomplete type, get the
4555 -- full view if available.
aab883ec 4556
47346923
AC
4557 if From_Limited_With (Prefix_Type)
4558 and then Has_Non_Limited_View (Prefix_Type)
aab883ec 4559 then
401093c1 4560 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
aab883ec
ES
4561
4562 if Nkind (N) = N_Explicit_Dereference then
4563 Set_Etype (Prefix (N), Prefix_Type);
4564 end if;
996ae0b0
RK
4565 end if;
4566
4567 if Ekind (Prefix_Type) = E_Private_Subtype then
4568 Prefix_Type := Base_Type (Prefix_Type);
4569 end if;
4570
401093c1 4571 Type_To_Use := Prefix_Type;
996ae0b0
RK
4572
4573 -- For class-wide types, use the entity list of the root type. This
4574 -- indirection is specially important for private extensions because
4575 -- only the root type get switched (not the class-wide type).
4576
4577 if Is_Class_Wide_Type (Prefix_Type) then
401093c1 4578 Type_To_Use := Root_Type (Prefix_Type);
996ae0b0
RK
4579 end if;
4580
2383acbd
AC
4581 -- If the prefix is a single concurrent object, use its name in error
4582 -- messages, rather than that of its anonymous type.
4583
4584 Is_Single_Concurrent_Object :=
4585 Is_Concurrent_Type (Prefix_Type)
4586 and then Is_Internal_Name (Chars (Prefix_Type))
4587 and then not Is_Derived_Type (Prefix_Type)
4588 and then Is_Entity_Name (Name);
4589
401093c1 4590 Comp := First_Entity (Type_To_Use);
996ae0b0
RK
4591
4592 -- If the selector has an original discriminant, the node appears in
4593 -- an instance. Replace the discriminant with the corresponding one
4594 -- in the current discriminated type. For nested generics, this must
4595 -- be done transitively, so note the new original discriminant.
4596
4597 if Nkind (Sel) = N_Identifier
c0b11850 4598 and then In_Instance
996ae0b0
RK
4599 and then Present (Original_Discriminant (Sel))
4600 then
4601 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
4602
4603 -- Mark entity before rewriting, for completeness and because
4604 -- subsequent semantic checks might examine the original node.
4605
4606 Set_Entity (Sel, Comp);
ee2ba856 4607 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
996ae0b0
RK
4608 Set_Original_Discriminant (Selector_Name (N), Comp);
4609 Set_Etype (N, Etype (Comp));
44a10091 4610 Check_Implicit_Dereference (N, Etype (Comp));
996ae0b0
RK
4611
4612 if Is_Access_Type (Etype (Name)) then
4613 Insert_Explicit_Dereference (Name);
324ac540 4614 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4615 end if;
4616
4617 elsif Is_Record_Type (Prefix_Type) then
4618
ee2ba856
AC
4619 -- Find component with given name. In an instance, if the node is
4620 -- known as a prefixed call, do not examine components whose
4621 -- visibility may be accidental.
996ae0b0 4622
4913e24c 4623 while Present (Comp) and then not Is_Prefixed_Call (N) loop
996ae0b0 4624 if Chars (Comp) = Chars (Sel)
a53c5613 4625 and then Is_Visible_Component (Comp, N)
996ae0b0 4626 then
e7ba564f 4627 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4628 Set_Etype (Sel, Etype (Comp));
4629
4630 if Ekind (Comp) = E_Discriminant then
5d09245e 4631 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
996ae0b0 4632 Error_Msg_N
02f58834 4633 ("cannot reference discriminant of unchecked union",
996ae0b0
RK
4634 Sel);
4635 end if;
4636
4637 if Is_Generic_Type (Prefix_Type)
4638 or else
4639 Is_Generic_Type (Root_Type (Prefix_Type))
4640 then
4641 Set_Original_Discriminant (Sel, Comp);
4642 end if;
4643 end if;
4644
4645 -- Resolve the prefix early otherwise it is not possible to
4646 -- build the actual subtype of the component: it may need
4647 -- to duplicate this prefix and duplication is only allowed
4648 -- on fully resolved expressions.
4649
fbf5a39b 4650 Resolve (Name);
996ae0b0 4651
b67a385c
ES
4652 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
4653 -- subtypes in a package specification.
28be29ce
ES
4654 -- Example:
4655
4656 -- limited with Pkg;
4657 -- package Pkg is
4658 -- type Acc_Inc is access Pkg.T;
4659 -- X : Acc_Inc;
b67a385c
ES
4660 -- N : Natural := X.all.Comp; -- ERROR, limited view
4661 -- end Pkg; -- Comp is not visible
28be29ce
ES
4662
4663 if Nkind (Name) = N_Explicit_Dereference
7b56a91b 4664 and then From_Limited_With (Etype (Prefix (Name)))
28be29ce 4665 and then not Is_Potentially_Use_Visible (Etype (Name))
b67a385c
ES
4666 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
4667 N_Package_Specification
28be29ce
ES
4668 then
4669 Error_Msg_NE
4670 ("premature usage of incomplete}", Prefix (Name),
4671 Etype (Prefix (Name)));
4672 end if;
4673
996ae0b0
RK
4674 -- We never need an actual subtype for the case of a selection
4675 -- for a indexed component of a non-packed array, since in
4676 -- this case gigi generates all the checks and can find the
4677 -- necessary bounds information.
4678
0d57c6f4
RD
4679 -- We also do not need an actual subtype for the case of a
4680 -- first, last, length, or range attribute applied to a
996ae0b0
RK
4681 -- non-packed array, since gigi can again get the bounds in
4682 -- these cases (gigi cannot handle the packed case, since it
4683 -- has the bounds of the packed array type, not the original
4684 -- bounds of the type). However, if the prefix is itself a
4685 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4686 -- as a dynamic-sized temporary, so we do generate an actual
4687 -- subtype for this case.
4688
4689 Parent_N := Parent (N);
4690
4691 if not Is_Packed (Etype (Comp))
4692 and then
4693 ((Nkind (Parent_N) = N_Indexed_Component
d469eabe 4694 and then Nkind (Name) /= N_Selected_Component)
996ae0b0
RK
4695 or else
4696 (Nkind (Parent_N) = N_Attribute_Reference
b69cd36a
AC
4697 and then
4698 Nam_In (Attribute_Name (Parent_N), Name_First,
4699 Name_Last,
4700 Name_Length,
4701 Name_Range)))
996ae0b0
RK
4702 then
4703 Set_Etype (N, Etype (Comp));
4704
98123480
ES
4705 -- If full analysis is not enabled, we do not generate an
4706 -- actual subtype, because in the absence of expansion
4707 -- reference to a formal of a protected type, for example,
4708 -- will not be properly transformed, and will lead to
4709 -- out-of-scope references in gigi.
4710
4711 -- In all other cases, we currently build an actual subtype.
4712 -- It seems likely that many of these cases can be avoided,
4713 -- but right now, the front end makes direct references to the
fbf5a39b 4714 -- bounds (e.g. in generating a length check), and if we do
996ae0b0 4715 -- not make an actual subtype, we end up getting a direct
98123480 4716 -- reference to a discriminant, which will not do.
996ae0b0 4717
98123480 4718 elsif Full_Analysis then
996ae0b0
RK
4719 Act_Decl :=
4720 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
4721 Insert_Action (N, Act_Decl);
4722
4723 if No (Act_Decl) then
4724 Set_Etype (N, Etype (Comp));
4725
4726 else
4727 -- Component type depends on discriminants. Enter the
4728 -- main attributes of the subtype.
4729
4730 declare
fbf5a39b
AC
4731 Subt : constant Entity_Id :=
4732 Defining_Identifier (Act_Decl);
996ae0b0
RK
4733
4734 begin
4735 Set_Etype (Subt, Base_Type (Etype (Comp)));
4736 Set_Ekind (Subt, Ekind (Etype (Comp)));
4737 Set_Etype (N, Subt);
4738 end;
4739 end if;
98123480
ES
4740
4741 -- If Full_Analysis not enabled, just set the Etype
4742
4743 else
4744 Set_Etype (N, Etype (Comp));
996ae0b0
RK
4745 end if;
4746
44a10091 4747 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
4748 return;
4749 end if;
4750
aab883ec 4751 -- If the prefix is a private extension, check only the visible
9c510803 4752 -- components of the partial view. This must include the tag,
f3d57416 4753 -- which can appear in expanded code in a tag check.
aab883ec 4754
9c510803 4755 if Ekind (Type_To_Use) = E_Record_Type_With_Private
df3e68b1 4756 and then Chars (Selector_Name (N)) /= Name_uTag
9c510803 4757 then
401093c1 4758 exit when Comp = Last_Entity (Type_To_Use);
aab883ec
ES
4759 end if;
4760
996ae0b0
RK
4761 Next_Entity (Comp);
4762 end loop;
4763
d469eabe
HK
4764 -- Ada 2005 (AI-252): The selected component can be interpreted as
4765 -- a prefixed view of a subprogram. Depending on the context, this is
4766 -- either a name that can appear in a renaming declaration, or part
4767 -- of an enclosing call given in prefix form.
4768
4769 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4770 -- selected component should resolve to a name.
35ae2ed8 4771
0791fbe9 4772 if Ada_Version >= Ada_2005
35ae2ed8 4773 and then Is_Tagged_Type (Prefix_Type)
d469eabe 4774 and then not Is_Concurrent_Type (Prefix_Type)
35ae2ed8 4775 then
d469eabe
HK
4776 if Nkind (Parent (N)) = N_Generic_Association
4777 or else Nkind (Parent (N)) = N_Requeue_Statement
4778 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4779 then
4780 if Find_Primitive_Operation (N) then
4781 return;
4782 end if;
4783
4784 elsif Try_Object_Operation (N) then
4785 return;
4786 end if;
4c46b835 4787
98123480
ES
4788 -- If the transformation fails, it will be necessary to redo the
4789 -- analysis with all errors enabled, to indicate candidate
4790 -- interpretations and reasons for each failure ???
4c46b835 4791
35ae2ed8
AC
4792 end if;
4793
996ae0b0 4794 elsif Is_Private_Type (Prefix_Type) then
d469eabe 4795
98123480
ES
4796 -- Allow access only to discriminants of the type. If the type has
4797 -- no full view, gigi uses the parent type for the components, so we
4798 -- do the same here.
996ae0b0
RK
4799
4800 if No (Full_View (Prefix_Type)) then
401093c1
ES
4801 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4802 Comp := First_Entity (Type_To_Use);
996ae0b0
RK
4803 end if;
4804
4805 while Present (Comp) loop
996ae0b0
RK
4806 if Chars (Comp) = Chars (Sel) then
4807 if Ekind (Comp) = E_Discriminant then
e7ba564f 4808 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4809 Generate_Reference (Comp, Sel);
4810
4811 Set_Etype (Sel, Etype (Comp));
4812 Set_Etype (N, Etype (Comp));
44a10091 4813 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
4814
4815 if Is_Generic_Type (Prefix_Type)
d469eabe 4816 or else Is_Generic_Type (Root_Type (Prefix_Type))
996ae0b0
RK
4817 then
4818 Set_Original_Discriminant (Sel, Comp);
4819 end if;
4820
f3d57416 4821 -- Before declaring an error, check whether this is tagged
aab883ec
ES
4822 -- private type and a call to a primitive operation.
4823
0791fbe9 4824 elsif Ada_Version >= Ada_2005
aab883ec
ES
4825 and then Is_Tagged_Type (Prefix_Type)
4826 and then Try_Object_Operation (N)
4827 then
4828 return;
4829
996ae0b0 4830 else
2383acbd
AC
4831 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4832 Error_Msg_NE ("invisible selector& for }", N, Sel);
996ae0b0
RK
4833 Set_Entity (Sel, Any_Id);
4834 Set_Etype (N, Any_Type);
4835 end if;
4836
4837 return;
4838 end if;
4839
4840 Next_Entity (Comp);
4841 end loop;
4842
4843 elsif Is_Concurrent_Type (Prefix_Type) then
4844
d469eabe
HK
4845 -- Find visible operation with given name. For a protected type,
4846 -- the possible candidates are discriminants, entries or protected
d1eb8a82 4847 -- subprograms. For a task type, the set can only include entries or
d469eabe
HK
4848 -- discriminants if the task type is not an enclosing scope. If it
4849 -- is an enclosing scope (e.g. in an inner task) then all entities
4850 -- are visible, but the prefix must denote the enclosing scope, i.e.
4851 -- can only be a direct name or an expanded name.
996ae0b0 4852
d469eabe 4853 Set_Etype (Sel, Any_Type);
c0e938d0 4854 Hidden_Comp := Empty;
996ae0b0 4855 In_Scope := In_Open_Scopes (Prefix_Type);
d1eb8a82 4856 Is_Private_Op := False;
996ae0b0
RK
4857
4858 while Present (Comp) loop
f31dcd99 4859
86ec3bfb
AC
4860 -- Do not examine private operations of the type if not within
4861 -- its scope.
4862
996ae0b0 4863 if Chars (Comp) = Chars (Sel) then
86ec3bfb
AC
4864 if Is_Overloadable (Comp)
4865 and then (In_Scope
4866 or else Comp /= First_Private_Entity (Type_To_Use))
4867 then
996ae0b0 4868 Add_One_Interp (Sel, Comp, Etype (Comp));
d1eb8a82
AC
4869 if Comp = First_Private_Entity (Type_To_Use) then
4870 Is_Private_Op := True;
4871 end if;
996ae0b0 4872
d469eabe
HK
4873 -- If the prefix is tagged, the correct interpretation may
4874 -- lie in the primitive or class-wide operations of the
4875 -- type. Perform a simple conformance check to determine
4876 -- whether Try_Object_Operation should be invoked even if
4877 -- a visible entity is found.
4878
4879 if Is_Tagged_Type (Prefix_Type)
f31dcd99
HK
4880 and then Nkind_In (Parent (N), N_Function_Call,
4881 N_Indexed_Component,
4882 N_Procedure_Call_Statement)
d469eabe
HK
4883 and then Has_Mode_Conformant_Spec (Comp)
4884 then
4885 Has_Candidate := True;
4886 end if;
4887
2383acbd
AC
4888 -- Note: a selected component may not denote a component of a
4889 -- protected type (4.1.3(7)).
4890
bce79204 4891 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
2383acbd
AC
4892 or else (In_Scope
4893 and then not Is_Protected_Type (Prefix_Type)
4894 and then Is_Entity_Name (Name))
996ae0b0 4895 then
e7ba564f 4896 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4897 Generate_Reference (Comp, Sel);
4898
65e78a74
AC
4899 -- The selector is not overloadable, so we have a candidate
4900 -- interpretation.
4901
4902 Has_Candidate := True;
4903
996ae0b0 4904 else
c0e938d0
AC
4905 if Ekind (Comp) = E_Component then
4906 Hidden_Comp := Comp;
4907 end if;
4908
996ae0b0
RK
4909 goto Next_Comp;
4910 end if;
4911
4912 Set_Etype (Sel, Etype (Comp));
4913 Set_Etype (N, Etype (Comp));
4914
4915 if Ekind (Comp) = E_Discriminant then
4916 Set_Original_Discriminant (Sel, Comp);
4917 end if;
4918
09494c32
AC
4919 -- For access type case, introduce explicit dereference for
4920 -- more uniform treatment of entry calls.
996ae0b0
RK
4921
4922 if Is_Access_Type (Etype (Name)) then
4923 Insert_Explicit_Dereference (Name);
fbf5a39b 4924 Error_Msg_NW
324ac540 4925 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4926 end if;
4927 end if;
4928
4929 <<Next_Comp>>
c0e938d0
AC
4930 if Comp = First_Private_Entity (Type_To_Use) then
4931 if Etype (Sel) /= Any_Type then
4932
c5b4738f
AC
4933 -- We have a candiate
4934
c0e938d0
AC
4935 exit;
4936
4937 else
4938 -- Indicate that subsequent operations are private,
4939 -- for better error reporting.
4940
4941 Is_Private_Op := True;
4942 end if;
4943 end if;
4944
996ae0b0
RK
4945 Next_Entity (Comp);
4946 exit when not In_Scope
9bc856dd
AC
4947 and then
4948 Comp = First_Private_Entity (Base_Type (Prefix_Type));
996ae0b0
RK
4949 end loop;
4950
b3083540 4951 -- If the scope is a current instance, the prefix cannot be an
0f6251c7
AC
4952 -- expression of the same type, unless the selector designates a
4953 -- public operation (otherwise that would represent an attempt to
4954 -- reach an internal entity of another synchronized object).
be3416c6 4955
b3083540 4956 -- This is legal if prefix is an access to such type and there is
0f6251c7 4957 -- a dereference, or is a component with a dereferenced prefix.
0f8b3e5d
AC
4958 -- It is also legal if the prefix is a component of a task type,
4959 -- and the selector is one of the task operations.
b3083540 4960
bd717ec9
AC
4961 if In_Scope
4962 and then not Is_Entity_Name (Name)
4963 and then not Has_Dereference (Name)
4964 then
0f8b3e5d
AC
4965 if Is_Task_Type (Prefix_Type)
4966 and then Present (Entity (Sel))
4967 and then Ekind_In (Entity (Sel), E_Entry, E_Entry_Family)
4968 then
4969 null;
4970
d1eb8a82
AC
4971 elsif Is_Protected_Type (Prefix_Type)
4972 and then Is_Overloadable (Entity (Sel))
4973 and then not Is_Private_Op
4974 then
4975 null;
4976
0f8b3e5d
AC
4977 else
4978 Error_Msg_NE
4979 ("invalid reference to internal operation of some object of "
4980 & "type &", N, Type_To_Use);
4981 Set_Entity (Sel, Any_Id);
4982 Set_Etype (Sel, Any_Type);
4983 return;
4984 end if;
be3416c6
AC
4985
4986 -- Another special case: the prefix may denote an object of the type
4987 -- (but not a type) in which case this is an external call and the
4988 -- operation must be public.
4989
4990 elsif In_Scope
4991 and then Is_Object_Reference (Original_Node (Prefix (N)))
c0e938d0 4992 and then Comes_From_Source (N)
be3416c6
AC
4993 and then Is_Private_Op
4994 then
c0e938d0
AC
4995 if Present (Hidden_Comp) then
4996 Error_Msg_NE
c5b4738f
AC
4997 ("invalid reference to private component of object of type "
4998 & "&", N, Type_To_Use);
c0e938d0
AC
4999
5000 else
5001 Error_Msg_NE
5002 ("invalid reference to private operation of some object of "
5003 & "type &", N, Type_To_Use);
5004 end if;
5005
be3416c6
AC
5006 Set_Entity (Sel, Any_Id);
5007 Set_Etype (Sel, Any_Type);
5008 return;
b3083540
AC
5009 end if;
5010
d469eabe
HK
5011 -- If there is no visible entity with the given name or none of the
5012 -- visible entities are plausible interpretations, check whether
5013 -- there is some other primitive operation with that name.
aab883ec 5014
bc38dbb4 5015 if Ada_Version >= Ada_2005 and then Is_Tagged_Type (Prefix_Type) then
d469eabe
HK
5016 if (Etype (N) = Any_Type
5017 or else not Has_Candidate)
0a36105d
JM
5018 and then Try_Object_Operation (N)
5019 then
5020 return;
5021
5022 -- If the context is not syntactically a procedure call, it
5023 -- may be a call to a primitive function declared outside of
5024 -- the synchronized type.
5025
5026 -- If the context is a procedure call, there might still be
5027 -- an overloading between an entry and a primitive procedure
5028 -- declared outside of the synchronized type, called in prefix
5029 -- notation. This is harder to disambiguate because in one case
5030 -- the controlling formal is implicit ???
5031
5032 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
b4592168 5033 and then Nkind (Parent (N)) /= N_Indexed_Component
0a36105d
JM
5034 and then Try_Object_Operation (N)
5035 then
5036 return;
5037 end if;
8cf23b91
AC
5038
5039 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
5040 -- entry or procedure of a tagged concurrent type we must check
5041 -- if there are class-wide subprograms covering the primitive. If
5042 -- true then Try_Object_Operation reports the error.
5043
5044 if Has_Candidate
5045 and then Is_Concurrent_Type (Prefix_Type)
5046 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
bc38dbb4 5047 then
8cf23b91
AC
5048 -- Duplicate the call. This is required to avoid problems with
5049 -- the tree transformations performed by Try_Object_Operation.
d7a44b14
AC
5050 -- Set properly the parent of the copied call, because it is
5051 -- about to be reanalyzed.
8cf23b91 5052
d7a44b14
AC
5053 declare
5054 Par : constant Node_Id := New_Copy_Tree (Parent (N));
5055
5056 begin
5057 Set_Parent (Par, Parent (Parent (N)));
29ba9f52 5058
d7a44b14 5059 if Try_Object_Operation
29ba9f52 5060 (Sinfo.Name (Par), CW_Test_Only => True)
d7a44b14
AC
5061 then
5062 return;
5063 end if;
5064 end;
8cf23b91 5065 end if;
aab883ec
ES
5066 end if;
5067
2383acbd 5068 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
11bc76df 5069
2383acbd
AC
5070 -- Case of a prefix of a protected type: selector might denote
5071 -- an invisible private component.
5072
5073 Comp := First_Private_Entity (Base_Type (Prefix_Type));
5074 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
5075 Next_Entity (Comp);
5076 end loop;
5077
5078 if Present (Comp) then
5079 if Is_Single_Concurrent_Object then
5080 Error_Msg_Node_2 := Entity (Name);
5081 Error_Msg_NE ("invisible selector& for &", N, Sel);
5082
5083 else
5084 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
5085 Error_Msg_NE ("invisible selector& for }", N, Sel);
5086 end if;
5087 return;
5088 end if;
5089 end if;
5090
996ae0b0
RK
5091 Set_Is_Overloaded (N, Is_Overloaded (Sel));
5092
5093 else
5094 -- Invalid prefix
5095
5096 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
5097 end if;
5098
4c46b835 5099 -- If N still has no type, the component is not defined in the prefix
996ae0b0
RK
5100
5101 if Etype (N) = Any_Type then
5102
2383acbd 5103 if Is_Single_Concurrent_Object then
996ae0b0
RK
5104 Error_Msg_Node_2 := Entity (Name);
5105 Error_Msg_NE ("no selector& for&", N, Sel);
5106
401093c1 5107 Check_Misspelled_Selector (Type_To_Use, Sel);
996ae0b0 5108
8b4230c8
AC
5109 -- If this is a derived formal type, the parent may have different
5110 -- visibility at this point. Try for an inherited component before
5111 -- reporting an error.
5112
de76a39c
GB
5113 elsif Is_Generic_Type (Prefix_Type)
5114 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
07fc65c4 5115 and then Prefix_Type /= Etype (Prefix_Type)
de76a39c
GB
5116 and then Is_Record_Type (Etype (Prefix_Type))
5117 then
de76a39c
GB
5118 Set_Etype (Prefix (N), Etype (Prefix_Type));
5119 Analyze_Selected_Component (N);
5120 return;
5121
b1d12996
AC
5122 -- Similarly, if this is the actual for a formal derived type, or
5123 -- a derived type thereof, the component inherited from the generic
5124 -- parent may not be visible in the actual, but the selected
5125 -- component is legal. Climb up the derivation chain of the generic
5126 -- parent type until we find the proper ancestor type.
20261dc1 5127
b1d12996
AC
5128 elsif In_Instance and then Is_Tagged_Type (Prefix_Type) then
5129 declare
5130 Par : Entity_Id := Prefix_Type;
5131 begin
5132 -- Climb up derivation chain to generic actual subtype
5133
5134 while not Is_Generic_Actual_Type (Par) loop
5135 if Ekind (Par) = E_Record_Type then
5136 Par := Parent_Subtype (Par);
5137 exit when No (Par);
5138 else
5139 exit when Par = Etype (Par);
5140 Par := Etype (Par);
5141 end if;
5142 end loop;
4c46b835 5143
b1d12996 5144 if Present (Par) and then Is_Generic_Actual_Type (Par) then
73999267 5145
b1d12996 5146 -- Now look for component in ancestor types
fbf5a39b 5147
b1d12996
AC
5148 Par := Generic_Parent_Type (Declaration_Node (Par));
5149 loop
5150 Find_Component_In_Instance (Par);
5151 exit when Present (Entity (Sel))
5152 or else Par = Etype (Par);
5153 Par := Etype (Par);
5154 end loop;
73999267 5155
7d9880c9
AC
5156 -- Another special case: the type is an extension of a private
5157 -- type T, is an actual in an instance, and we are in the body
5158 -- of the instance, so the generic body had a full view of the
5159 -- type declaration for T or of some ancestor that defines the
5160 -- component in question.
5161
5162 elsif Is_Derived_Type (Type_To_Use)
5163 and then Used_As_Generic_Actual (Type_To_Use)
5164 and then In_Instance_Body
5165 then
5166 Find_Component_In_Instance (Parent_Subtype (Type_To_Use));
5167
73999267
AC
5168 -- In ASIS mode the generic parent type may be absent. Examine
5169 -- the parent type directly for a component that may have been
5170 -- visible in a parent generic unit.
5171
5172 elsif Is_Derived_Type (Prefix_Type) then
5173 Par := Etype (Prefix_Type);
5174 Find_Component_In_Instance (Par);
b1d12996
AC
5175 end if;
5176 end;
5177
5178 -- The search above must have eventually succeeded, since the
5179 -- selected component was legal in the generic.
5180
5181 if No (Entity (Sel)) then
5182 raise Program_Error;
5183 end if;
73999267 5184
20261dc1 5185 return;
fbf5a39b 5186
20261dc1 5187 -- Component not found, specialize error message when appropriate
fbf5a39b 5188
996ae0b0
RK
5189 else
5190 if Ekind (Prefix_Type) = E_Record_Subtype then
5191
f4b049db
AC
5192 -- Check whether this is a component of the base type which
5193 -- is absent from a statically constrained subtype. This will
5194 -- raise constraint error at run time, but is not a compile-
5195 -- time error. When the selector is illegal for base type as
5196 -- well fall through and generate a compilation error anyway.
996ae0b0
RK
5197
5198 Comp := First_Component (Base_Type (Prefix_Type));
996ae0b0 5199 while Present (Comp) loop
996ae0b0
RK
5200 if Chars (Comp) = Chars (Sel)
5201 and then Is_Visible_Component (Comp)
5202 then
e7ba564f 5203 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
5204 Generate_Reference (Comp, Sel);
5205 Set_Etype (Sel, Etype (Comp));
5206 Set_Etype (N, Etype (Comp));
5207
637a41a5
AC
5208 -- Emit appropriate message. The node will be replaced
5209 -- by an appropriate raise statement.
996ae0b0 5210
637a41a5
AC
5211 -- Note that in SPARK mode, as with all calls to apply a
5212 -- compile time constraint error, this will be made into
5213 -- an error to simplify the processing of the formal
5214 -- verification backend.
d7f41b2d 5215
4a28b181 5216 Apply_Compile_Time_Constraint_Error
637a41a5 5217 (N, "component not present in }??",
4a28b181
AC
5218 CE_Discriminant_Check_Failed,
5219 Ent => Prefix_Type, Rep => False);
d7f41b2d 5220
996ae0b0
RK
5221 Set_Raises_Constraint_Error (N);
5222 return;
5223 end if;
5224
5225 Next_Component (Comp);
5226 end loop;
5227
5228 end if;
5229
5230 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
5231 Error_Msg_NE ("no selector& for}", N, Sel);
5232
94bbf008 5233 -- Add information in the case of an incomplete prefix
99d520ad
ES
5234
5235 if Is_Incomplete_Type (Type_To_Use) then
5236 declare
5237 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
5238
5239 begin
7b56a91b 5240 if From_Limited_With (Scope (Type_To_Use)) then
99d520ad
ES
5241 Error_Msg_NE
5242 ("\limited view of& has no components", N, Inc);
bd38b431 5243
99d520ad
ES
5244 else
5245 Error_Msg_NE
5246 ("\premature usage of incomplete type&", N, Inc);
bd38b431
AC
5247
5248 if Nkind (Parent (Inc)) =
5249 N_Incomplete_Type_Declaration
99d520ad 5250 then
94bbf008
AC
5251 -- Record location of premature use in entity so that
5252 -- a continuation message is generated when the
5253 -- completion is seen.
5254
99d520ad
ES
5255 Set_Premature_Use (Parent (Inc), N);
5256 end if;
5257 end if;
5258 end;
5259 end if;
5260
401093c1 5261 Check_Misspelled_Selector (Type_To_Use, Sel);
996ae0b0
RK
5262 end if;
5263
5264 Set_Entity (Sel, Any_Id);
5265 Set_Etype (Sel, Any_Type);
5266 end if;
5267 end Analyze_Selected_Component;
5268
5269 ---------------------------
5270 -- Analyze_Short_Circuit --
5271 ---------------------------
5272
5273 procedure Analyze_Short_Circuit (N : Node_Id) is
5274 L : constant Node_Id := Left_Opnd (N);
5275 R : constant Node_Id := Right_Opnd (N);
5276 Ind : Interp_Index;
5277 It : Interp;
5278
5279 begin
5280 Analyze_Expression (L);
5281 Analyze_Expression (R);
5282 Set_Etype (N, Any_Type);
5283
5284 if not Is_Overloaded (L) then
996ae0b0
RK
5285 if Root_Type (Etype (L)) = Standard_Boolean
5286 and then Has_Compatible_Type (R, Etype (L))
5287 then
5288 Add_One_Interp (N, Etype (L), Etype (L));
5289 end if;
5290
5291 else
5292 Get_First_Interp (L, Ind, It);
996ae0b0
RK
5293 while Present (It.Typ) loop
5294 if Root_Type (It.Typ) = Standard_Boolean
5295 and then Has_Compatible_Type (R, It.Typ)
5296 then
5297 Add_One_Interp (N, It.Typ, It.Typ);
5298 end if;
5299
5300 Get_Next_Interp (Ind, It);
5301 end loop;
5302 end if;
5303
d469eabe
HK
5304 -- Here we have failed to find an interpretation. Clearly we know that
5305 -- it is not the case that both operands can have an interpretation of
5306 -- Boolean, but this is by far the most likely intended interpretation.
5307 -- So we simply resolve both operands as Booleans, and at least one of
5308 -- these resolutions will generate an error message, and we do not need
5309 -- to give another error message on the short circuit operation itself.
996ae0b0
RK
5310
5311 if Etype (N) = Any_Type then
5312 Resolve (L, Standard_Boolean);
5313 Resolve (R, Standard_Boolean);
5314 Set_Etype (N, Standard_Boolean);
5315 end if;
5316 end Analyze_Short_Circuit;
5317
5318 -------------------
5319 -- Analyze_Slice --
5320 -------------------
5321
5322 procedure Analyze_Slice (N : Node_Id) is
996ae0b0 5323 D : constant Node_Id := Discrete_Range (N);
5f44f0d4 5324 P : constant Node_Id := Prefix (N);
996ae0b0 5325 Array_Type : Entity_Id;
5f44f0d4 5326 Index_Type : Entity_Id;
996ae0b0
RK
5327
5328 procedure Analyze_Overloaded_Slice;
5329 -- If the prefix is overloaded, select those interpretations that
5330 -- yield a one-dimensional array type.
5331
4c46b835
AC
5332 ------------------------------
5333 -- Analyze_Overloaded_Slice --
5334 ------------------------------
5335
996ae0b0
RK
5336 procedure Analyze_Overloaded_Slice is
5337 I : Interp_Index;
5338 It : Interp;
5339 Typ : Entity_Id;
5340
5341 begin
5342 Set_Etype (N, Any_Type);
996ae0b0 5343
4c46b835 5344 Get_First_Interp (P, I, It);
996ae0b0
RK
5345 while Present (It.Nam) loop
5346 Typ := It.Typ;
5347
5348 if Is_Access_Type (Typ) then
5349 Typ := Designated_Type (Typ);
324ac540
AC
5350 Error_Msg_NW
5351 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
5352 end if;
5353
5354 if Is_Array_Type (Typ)
5355 and then Number_Dimensions (Typ) = 1
5356 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
5357 then
5358 Add_One_Interp (N, Typ, Typ);
5359 end if;
5360
5361 Get_Next_Interp (I, It);
5362 end loop;
5363
5364 if Etype (N) = Any_Type then
5365 Error_Msg_N ("expect array type in prefix of slice", N);
5366 end if;
5367 end Analyze_Overloaded_Slice;
5368
5369 -- Start of processing for Analyze_Slice
5370
5371 begin
36b8f95f 5372 if Comes_From_Source (N) then
ce5ba43a 5373 Check_SPARK_05_Restriction ("slice is not allowed", N);
36b8f95f 5374 end if;
1d801f21 5375
523456db 5376 Analyze (P);
996ae0b0
RK
5377 Analyze (D);
5378
5379 if Is_Overloaded (P) then
5380 Analyze_Overloaded_Slice;
5381
5382 else
5383 Array_Type := Etype (P);
5384 Set_Etype (N, Any_Type);
5385
5386 if Is_Access_Type (Array_Type) then
5387 Array_Type := Designated_Type (Array_Type);
324ac540 5388 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
5389 end if;
5390
5391 if not Is_Array_Type (Array_Type) then
5392 Wrong_Type (P, Any_Array);
5393
5394 elsif Number_Dimensions (Array_Type) > 1 then
5395 Error_Msg_N
5396 ("type is not one-dimensional array in slice prefix", N);
5397
996ae0b0 5398 else
5f44f0d4
AC
5399 if Ekind (Array_Type) = E_String_Literal_Subtype then
5400 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
5401 else
5402 Index_Type := Etype (First_Index (Array_Type));
5403 end if;
5404
5405 if not Has_Compatible_Type (D, Index_Type) then
5406 Wrong_Type (D, Index_Type);
5407 else
5408 Set_Etype (N, Array_Type);
5409 end if;
996ae0b0
RK
5410 end if;
5411 end if;
5412 end Analyze_Slice;
5413
5414 -----------------------------
5415 -- Analyze_Type_Conversion --
5416 -----------------------------
5417
5418 procedure Analyze_Type_Conversion (N : Node_Id) is
5419 Expr : constant Node_Id := Expression (N);
039538bc 5420 Typ : Entity_Id;
996ae0b0
RK
5421
5422 begin
039538bc
AC
5423 -- If Conversion_OK is set, then the Etype is already set, and the only
5424 -- processing required is to analyze the expression. This is used to
5425 -- construct certain "illegal" conversions which are not allowed by Ada
5426 -- semantics, but can be handled by Gigi, see Sinfo for further details.
996ae0b0
RK
5427
5428 if Conversion_OK (N) then
5429 Analyze (Expr);
5430 return;
5431 end if;
5432
5433 -- Otherwise full type analysis is required, as well as some semantic
5434 -- checks to make sure the argument of the conversion is appropriate.
5435
5436 Find_Type (Subtype_Mark (N));
039538bc
AC
5437 Typ := Entity (Subtype_Mark (N));
5438 Set_Etype (N, Typ);
5439 Check_Fully_Declared (Typ, N);
996ae0b0
RK
5440 Analyze_Expression (Expr);
5441 Validate_Remote_Type_Type_Conversion (N);
5e8c8e44 5442
996ae0b0
RK
5443 -- Only remaining step is validity checks on the argument. These
5444 -- are skipped if the conversion does not come from the source.
5445
5446 if not Comes_From_Source (N) then
5447 return;
5448
b67a385c
ES
5449 -- If there was an error in a generic unit, no need to replicate the
5450 -- error message. Conversely, constant-folding in the generic may
5451 -- transform the argument of a conversion into a string literal, which
5452 -- is legal. Therefore the following tests are not performed in an
36428cc4 5453 -- instance. The same applies to an inlined body.
b67a385c 5454
36428cc4 5455 elsif In_Instance or In_Inlined_Body then
b67a385c
ES
5456 return;
5457
996ae0b0
RK
5458 elsif Nkind (Expr) = N_Null then
5459 Error_Msg_N ("argument of conversion cannot be null", N);
ed2233dc 5460 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
5461 Set_Etype (N, Any_Type);
5462
5463 elsif Nkind (Expr) = N_Aggregate then
5464 Error_Msg_N ("argument of conversion cannot be aggregate", N);
ed2233dc 5465 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
5466
5467 elsif Nkind (Expr) = N_Allocator then
5468 Error_Msg_N ("argument of conversion cannot be an allocator", N);
ed2233dc 5469 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
5470
5471 elsif Nkind (Expr) = N_String_Literal then
5472 Error_Msg_N ("argument of conversion cannot be string literal", N);
ed2233dc 5473 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
5474
5475 elsif Nkind (Expr) = N_Character_Literal then
0ab80019 5476 if Ada_Version = Ada_83 then
039538bc 5477 Resolve (Expr, Typ);
996ae0b0
RK
5478 else
5479 Error_Msg_N ("argument of conversion cannot be character literal",
5480 N);
ed2233dc 5481 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
5482 end if;
5483
5484 elsif Nkind (Expr) = N_Attribute_Reference
039538bc
AC
5485 and then Nam_In (Attribute_Name (Expr), Name_Access,
5486 Name_Unchecked_Access,
5487 Name_Unrestricted_Access)
996ae0b0
RK
5488 then
5489 Error_Msg_N ("argument of conversion cannot be access", N);
ed2233dc 5490 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0 5491 end if;
039538bc
AC
5492
5493 -- A formal parameter of a specific tagged type whose related subprogram
5494 -- is subject to pragma Extensions_Visible with value "False" cannot
070d862d
HK
5495 -- appear in a class-wide conversion (SPARK RM 6.1.7(3)). Do not check
5496 -- internally generated expressions.
039538bc 5497
070d862d
HK
5498 if Is_Class_Wide_Type (Typ)
5499 and then Comes_From_Source (Expr)
5500 and then Is_EVF_Expression (Expr)
5501 then
039538bc 5502 Error_Msg_N
44900051
AC
5503 ("formal parameter cannot be converted to class-wide type when "
5504 & "Extensions_Visible is False", Expr);
039538bc 5505 end if;
996ae0b0
RK
5506 end Analyze_Type_Conversion;
5507
5508 ----------------------
5509 -- Analyze_Unary_Op --
5510 ----------------------
5511
5512 procedure Analyze_Unary_Op (N : Node_Id) is
5513 R : constant Node_Id := Right_Opnd (N);
5514 Op_Id : Entity_Id := Entity (N);
5515
5516 begin
5517 Set_Etype (N, Any_Type);
5518 Candidate_Type := Empty;
5519
5520 Analyze_Expression (R);
5521
5522 if Present (Op_Id) then
5523 if Ekind (Op_Id) = E_Operator then
5524 Find_Unary_Types (R, Op_Id, N);
5525 else
5526 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5527 end if;
5528
5529 else
5530 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 5531 while Present (Op_Id) loop
996ae0b0
RK
5532 if Ekind (Op_Id) = E_Operator then
5533 if No (Next_Entity (First_Entity (Op_Id))) then
5534 Find_Unary_Types (R, Op_Id, N);
5535 end if;
5536
5537 elsif Is_Overloadable (Op_Id) then
5538 Analyze_User_Defined_Unary_Op (N, Op_Id);
5539 end if;
5540
5541 Op_Id := Homonym (Op_Id);
5542 end loop;
5543 end if;
5544
5545 Operator_Check (N);
5546 end Analyze_Unary_Op;
5547
5548 ----------------------------------
5549 -- Analyze_Unchecked_Expression --
5550 ----------------------------------
5551
5552 procedure Analyze_Unchecked_Expression (N : Node_Id) is
5553 begin
5554 Analyze (Expression (N), Suppress => All_Checks);
5555 Set_Etype (N, Etype (Expression (N)));
5556 Save_Interps (Expression (N), N);
5557 end Analyze_Unchecked_Expression;
5558
5559 ---------------------------------------
5560 -- Analyze_Unchecked_Type_Conversion --
5561 ---------------------------------------
5562
5563 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
5564 begin
5565 Find_Type (Subtype_Mark (N));
5566 Analyze_Expression (Expression (N));
5567 Set_Etype (N, Entity (Subtype_Mark (N)));
5568 end Analyze_Unchecked_Type_Conversion;
5569
5570 ------------------------------------
5571 -- Analyze_User_Defined_Binary_Op --
5572 ------------------------------------
5573
5574 procedure Analyze_User_Defined_Binary_Op
5575 (N : Node_Id;
5576 Op_Id : Entity_Id)
5577 is
5578 begin
5579 -- Only do analysis if the operator Comes_From_Source, since otherwise
5580 -- the operator was generated by the expander, and all such operators
5581 -- always refer to the operators in package Standard.
5582
5583 if Comes_From_Source (N) then
5584 declare
5585 F1 : constant Entity_Id := First_Formal (Op_Id);
5586 F2 : constant Entity_Id := Next_Formal (F1);
5587
5588 begin
5589 -- Verify that Op_Id is a visible binary function. Note that since
5590 -- we know Op_Id is overloaded, potentially use visible means use
5591 -- visible for sure (RM 9.4(11)).
5592
5593 if Ekind (Op_Id) = E_Function
5594 and then Present (F2)
5595 and then (Is_Immediately_Visible (Op_Id)
5596 or else Is_Potentially_Use_Visible (Op_Id))
5597 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
5598 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
5599 then
5600 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5601
8b4230c8
AC
5602 -- If the left operand is overloaded, indicate that the current
5603 -- type is a viable candidate. This is redundant in most cases,
5604 -- but for equality and comparison operators where the context
5605 -- does not impose a type on the operands, setting the proper
5606 -- type is necessary to avoid subsequent ambiguities during
5607 -- resolution, when both user-defined and predefined operators
5608 -- may be candidates.
7340e432
AC
5609
5610 if Is_Overloaded (Left_Opnd (N)) then
5611 Set_Etype (Left_Opnd (N), Etype (F1));
5612 end if;
5613
996ae0b0
RK
5614 if Debug_Flag_E then
5615 Write_Str ("user defined operator ");
5616 Write_Name (Chars (Op_Id));
5617 Write_Str (" on node ");
5618 Write_Int (Int (N));
5619 Write_Eol;
5620 end if;
5621 end if;
5622 end;
5623 end if;
5624 end Analyze_User_Defined_Binary_Op;
5625
5626 -----------------------------------
5627 -- Analyze_User_Defined_Unary_Op --
5628 -----------------------------------
5629
5630 procedure Analyze_User_Defined_Unary_Op
5631 (N : Node_Id;
5632 Op_Id : Entity_Id)
5633 is
5634 begin
5635 -- Only do analysis if the operator Comes_From_Source, since otherwise
5636 -- the operator was generated by the expander, and all such operators
5637 -- always refer to the operators in package Standard.
5638
5639 if Comes_From_Source (N) then
5640 declare
5641 F : constant Entity_Id := First_Formal (Op_Id);
5642
5643 begin
5644 -- Verify that Op_Id is a visible unary function. Note that since
5645 -- we know Op_Id is overloaded, potentially use visible means use
5646 -- visible for sure (RM 9.4(11)).
5647
5648 if Ekind (Op_Id) = E_Function
5649 and then No (Next_Formal (F))
5650 and then (Is_Immediately_Visible (Op_Id)
5651 or else Is_Potentially_Use_Visible (Op_Id))
5652 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
5653 then
5654 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5655 end if;
5656 end;
5657 end if;
5658 end Analyze_User_Defined_Unary_Op;
5659
5660 ---------------------------
5661 -- Check_Arithmetic_Pair --
5662 ---------------------------
5663
5664 procedure Check_Arithmetic_Pair
5665 (T1, T2 : Entity_Id;
5666 Op_Id : Entity_Id;
5667 N : Node_Id)
5668 is
401093c1 5669 Op_Name : constant Name_Id := Chars (Op_Id);
996ae0b0 5670
da709d08
AC
5671 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
5672 -- Check whether the fixed-point type Typ has a user-defined operator
5673 -- (multiplication or division) that should hide the corresponding
5674 -- predefined operator. Used to implement Ada 2005 AI-264, to make
5675 -- such operators more visible and therefore useful.
8b4230c8 5676 --
50cff367
GD
5677 -- If the name of the operation is an expanded name with prefix
5678 -- Standard, the predefined universal fixed operator is available,
5679 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
5680
996ae0b0
RK
5681 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
5682 -- Get specific type (i.e. non-universal type if there is one)
5683
da709d08
AC
5684 ------------------
5685 -- Has_Fixed_Op --
5686 ------------------
5687
5688 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
401093c1 5689 Bas : constant Entity_Id := Base_Type (Typ);
da709d08
AC
5690 Ent : Entity_Id;
5691 F1 : Entity_Id;
5692 F2 : Entity_Id;
5693
5694 begin
50cff367
GD
5695 -- If the universal_fixed operation is given explicitly the rule
5696 -- concerning primitive operations of the type do not apply.
5697
5698 if Nkind (N) = N_Function_Call
5699 and then Nkind (Name (N)) = N_Expanded_Name
5700 and then Entity (Prefix (Name (N))) = Standard_Standard
5701 then
5702 return False;
5703 end if;
5704
da709d08
AC
5705 -- The operation is treated as primitive if it is declared in the
5706 -- same scope as the type, and therefore on the same entity chain.
5707
5708 Ent := Next_Entity (Typ);
5709 while Present (Ent) loop
5710 if Chars (Ent) = Chars (Op) then
5711 F1 := First_Formal (Ent);
5712 F2 := Next_Formal (F1);
5713
5714 -- The operation counts as primitive if either operand or
401093c1
ES
5715 -- result are of the given base type, and both operands are
5716 -- fixed point types.
da709d08 5717
401093c1 5718 if (Base_Type (Etype (F1)) = Bas
da709d08
AC
5719 and then Is_Fixed_Point_Type (Etype (F2)))
5720
5721 or else
401093c1 5722 (Base_Type (Etype (F2)) = Bas
da709d08
AC
5723 and then Is_Fixed_Point_Type (Etype (F1)))
5724
5725 or else
401093c1 5726 (Base_Type (Etype (Ent)) = Bas
da709d08
AC
5727 and then Is_Fixed_Point_Type (Etype (F1))
5728 and then Is_Fixed_Point_Type (Etype (F2)))
5729 then
5730 return True;
5731 end if;
5732 end if;
5733
5734 Next_Entity (Ent);
5735 end loop;
5736
5737 return False;
5738 end Has_Fixed_Op;
5739
4c46b835
AC
5740 -------------------
5741 -- Specific_Type --
5742 -------------------
5743
996ae0b0
RK
5744 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
5745 begin
5746 if T1 = Universal_Integer or else T1 = Universal_Real then
5747 return Base_Type (T2);
5748 else
5749 return Base_Type (T1);
5750 end if;
5751 end Specific_Type;
5752
5753 -- Start of processing for Check_Arithmetic_Pair
5754
5755 begin
b69cd36a 5756 if Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
996ae0b0
RK
5757 if Is_Numeric_Type (T1)
5758 and then Is_Numeric_Type (T2)
b4592168
GD
5759 and then (Covers (T1 => T1, T2 => T2)
5760 or else
5761 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
5762 then
5763 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5764 end if;
5765
b69cd36a 5766 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide) then
996ae0b0 5767 if Is_Fixed_Point_Type (T1)
b69cd36a 5768 and then (Is_Fixed_Point_Type (T2) or else T2 = Universal_Real)
996ae0b0
RK
5769 then
5770 -- If Treat_Fixed_As_Integer is set then the Etype is already set
5771 -- and no further processing is required (this is the case of an
5772 -- operator constructed by Exp_Fixd for a fixed point operation)
5773 -- Otherwise add one interpretation with universal fixed result
21d7ef70 5774 -- If the operator is given in functional notation, it comes
996ae0b0
RK
5775 -- from source and Fixed_As_Integer cannot apply.
5776
da709d08
AC
5777 if (Nkind (N) not in N_Op
5778 or else not Treat_Fixed_As_Integer (N))
5779 and then
401093c1 5780 (not Has_Fixed_Op (T1, Op_Id)
da709d08 5781 or else Nkind (Parent (N)) = N_Type_Conversion)
fbf5a39b 5782 then
996ae0b0
RK
5783 Add_One_Interp (N, Op_Id, Universal_Fixed);
5784 end if;
5785
5786 elsif Is_Fixed_Point_Type (T2)
5787 and then (Nkind (N) not in N_Op
5788 or else not Treat_Fixed_As_Integer (N))
5789 and then T1 = Universal_Real
da709d08 5790 and then
401093c1 5791 (not Has_Fixed_Op (T1, Op_Id)
da709d08 5792 or else Nkind (Parent (N)) = N_Type_Conversion)
996ae0b0
RK
5793 then
5794 Add_One_Interp (N, Op_Id, Universal_Fixed);
5795
5796 elsif Is_Numeric_Type (T1)
5797 and then Is_Numeric_Type (T2)
b4592168
GD
5798 and then (Covers (T1 => T1, T2 => T2)
5799 or else
5800 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
5801 then
5802 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5803
5804 elsif Is_Fixed_Point_Type (T1)
5805 and then (Base_Type (T2) = Base_Type (Standard_Integer)
b69cd36a 5806 or else T2 = Universal_Integer)
996ae0b0
RK
5807 then
5808 Add_One_Interp (N, Op_Id, T1);
5809
5810 elsif T2 = Universal_Real
5811 and then Base_Type (T1) = Base_Type (Standard_Integer)
5812 and then Op_Name = Name_Op_Multiply
5813 then
5814 Add_One_Interp (N, Op_Id, Any_Fixed);
5815
5816 elsif T1 = Universal_Real
5817 and then Base_Type (T2) = Base_Type (Standard_Integer)
5818 then
5819 Add_One_Interp (N, Op_Id, Any_Fixed);
5820
5821 elsif Is_Fixed_Point_Type (T2)
5822 and then (Base_Type (T1) = Base_Type (Standard_Integer)
b69cd36a 5823 or else T1 = Universal_Integer)
996ae0b0
RK
5824 and then Op_Name = Name_Op_Multiply
5825 then
5826 Add_One_Interp (N, Op_Id, T2);
5827
5828 elsif T1 = Universal_Real and then T2 = Universal_Integer then
5829 Add_One_Interp (N, Op_Id, T1);
5830
5831 elsif T2 = Universal_Real
5832 and then T1 = Universal_Integer
5833 and then Op_Name = Name_Op_Multiply
5834 then
5835 Add_One_Interp (N, Op_Id, T2);
5836 end if;
5837
5838 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
5839
5840 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
5841 -- set does not require any special processing, since the Etype is
5842 -- already set (case of operation constructed by Exp_Fixed).
5843
5844 if Is_Integer_Type (T1)
b4592168
GD
5845 and then (Covers (T1 => T1, T2 => T2)
5846 or else
5847 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
5848 then
5849 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5850 end if;
5851
5852 elsif Op_Name = Name_Op_Expon then
996ae0b0
RK
5853 if Is_Numeric_Type (T1)
5854 and then not Is_Fixed_Point_Type (T1)
5855 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5856 or else T2 = Universal_Integer)
5857 then
5858 Add_One_Interp (N, Op_Id, Base_Type (T1));
5859 end if;
5860
5861 else pragma Assert (Nkind (N) in N_Op_Shift);
5862
5863 -- If not one of the predefined operators, the node may be one
5864 -- of the intrinsic functions. Its kind is always specific, and
5865 -- we can use it directly, rather than the name of the operation.
5866
5867 if Is_Integer_Type (T1)
5868 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5869 or else T2 = Universal_Integer)
5870 then
5871 Add_One_Interp (N, Op_Id, Base_Type (T1));
5872 end if;
5873 end if;
5874 end Check_Arithmetic_Pair;
5875
5876 -------------------------------
5877 -- Check_Misspelled_Selector --
5878 -------------------------------
5879
5880 procedure Check_Misspelled_Selector
5881 (Prefix : Entity_Id;
5882 Sel : Node_Id)
5883 is
5884 Max_Suggestions : constant := 2;
5885 Nr_Of_Suggestions : Natural := 0;
5886
5887 Suggestion_1 : Entity_Id := Empty;
5888 Suggestion_2 : Entity_Id := Empty;
5889
5890 Comp : Entity_Id;
5891
5892 begin
8b4230c8
AC
5893 -- All the components of the prefix of selector Sel are matched against
5894 -- Sel and a count is maintained of possible misspellings. When at
a90bd866 5895 -- the end of the analysis there are one or two (not more) possible
8b4230c8
AC
5896 -- misspellings, these misspellings will be suggested as possible
5897 -- correction.
996ae0b0 5898
4c46b835
AC
5899 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
5900
996ae0b0 5901 -- Concurrent types should be handled as well ???
4c46b835 5902
996ae0b0
RK
5903 return;
5904 end if;
5905
d469eabe
HK
5906 Comp := First_Entity (Prefix);
5907 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
5908 if Is_Visible_Component (Comp) then
5909 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
5910 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
5911
5912 case Nr_Of_Suggestions is
5913 when 1 => Suggestion_1 := Comp;
5914 when 2 => Suggestion_2 := Comp;
e49de265 5915 when others => null;
d469eabe 5916 end case;
996ae0b0 5917 end if;
d469eabe 5918 end if;
996ae0b0 5919
d469eabe
HK
5920 Comp := Next_Entity (Comp);
5921 end loop;
996ae0b0 5922
d469eabe 5923 -- Report at most two suggestions
996ae0b0 5924
d469eabe 5925 if Nr_Of_Suggestions = 1 then
4e7a4f6e 5926 Error_Msg_NE -- CODEFIX
d469eabe 5927 ("\possible misspelling of&", Sel, Suggestion_1);
996ae0b0 5928
d469eabe
HK
5929 elsif Nr_Of_Suggestions = 2 then
5930 Error_Msg_Node_2 := Suggestion_2;
4e7a4f6e 5931 Error_Msg_NE -- CODEFIX
d469eabe
HK
5932 ("\possible misspelling of& or&", Sel, Suggestion_1);
5933 end if;
996ae0b0
RK
5934 end Check_Misspelled_Selector;
5935
5936 ----------------------
5937 -- Defined_In_Scope --
5938 ----------------------
5939
5940 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
5941 is
5942 S1 : constant Entity_Id := Scope (Base_Type (T));
996ae0b0
RK
5943 begin
5944 return S1 = S
5945 or else (S1 = System_Aux_Id and then S = Scope (S1));
5946 end Defined_In_Scope;
5947
5948 -------------------
5949 -- Diagnose_Call --
5950 -------------------
5951
5952 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
fbf5a39b
AC
5953 Actual : Node_Id;
5954 X : Interp_Index;
5955 It : Interp;
fbf5a39b
AC
5956 Err_Mode : Boolean;
5957 New_Nam : Node_Id;
5958 Void_Interp_Seen : Boolean := False;
996ae0b0 5959
24657705
HK
5960 Success : Boolean;
5961 pragma Warnings (Off, Boolean);
5962
996ae0b0 5963 begin
0791fbe9 5964 if Ada_Version >= Ada_2005 then
996ae0b0 5965 Actual := First_Actual (N);
996ae0b0 5966 while Present (Actual) loop
0ab80019
AC
5967
5968 -- Ada 2005 (AI-50217): Post an error in case of premature
5969 -- usage of an entity from the limited view.
19f0526a 5970
996ae0b0 5971 if not Analyzed (Etype (Actual))
7b56a91b 5972 and then From_Limited_With (Etype (Actual))
996ae0b0
RK
5973 then
5974 Error_Msg_Qual_Level := 1;
ed2233dc 5975 Error_Msg_NE
996ae0b0
RK
5976 ("missing with_clause for scope of imported type&",
5977 Actual, Etype (Actual));
5978 Error_Msg_Qual_Level := 0;
5979 end if;
5980
5981 Next_Actual (Actual);
5982 end loop;
5983 end if;
5984
c63a2ad6
AC
5985 -- Before listing the possible candidates, check whether this is
5986 -- a prefix of a selected component that has been rewritten as a
5987 -- parameterless function call because there is a callable candidate
5988 -- interpretation. If there is a hidden package in the list of homonyms
5989 -- of the function name (bad programming style in any case) suggest that
5990 -- this is the intended entity.
40bf00b1
AC
5991
5992 if No (Parameter_Associations (N))
5993 and then Nkind (Parent (N)) = N_Selected_Component
5994 and then Nkind (Parent (Parent (N))) in N_Declaration
5995 and then Is_Overloaded (Nam)
5996 then
5997 declare
5998 Ent : Entity_Id;
5999
6000 begin
6001 Ent := Current_Entity (Nam);
6002 while Present (Ent) loop
6003 if Ekind (Ent) = E_Package then
6004 Error_Msg_N
6005 ("no legal interpretations as function call,!", Nam);
6006 Error_Msg_NE ("\package& is not visible", N, Ent);
c63a2ad6 6007
40bf00b1
AC
6008 Rewrite (Parent (N),
6009 New_Occurrence_Of (Any_Type, Sloc (N)));
6010 return;
6011 end if;
6012
6013 Ent := Homonym (Ent);
6014 end loop;
6015 end;
6016 end if;
6017
c63a2ad6
AC
6018 -- Analyze each candidate call again, with full error reporting for
6019 -- each.
fbf5a39b
AC
6020
6021 Error_Msg_N
6022 ("no candidate interpretations match the actuals:!", Nam);
6023 Err_Mode := All_Errors_Mode;
6024 All_Errors_Mode := True;
6025
6026 -- If this is a call to an operation of a concurrent type,
6027 -- the failed interpretations have been removed from the
6028 -- name. Recover them to provide full diagnostics.
6029
6030 if Nkind (Parent (Nam)) = N_Selected_Component then
6031 Set_Entity (Nam, Empty);
6032 New_Nam := New_Copy_Tree (Parent (Nam));
6033 Set_Is_Overloaded (New_Nam, False);
6034 Set_Is_Overloaded (Selector_Name (New_Nam), False);
6035 Set_Parent (New_Nam, Parent (Parent (Nam)));
6036 Analyze_Selected_Component (New_Nam);
6037 Get_First_Interp (Selector_Name (New_Nam), X, It);
6038 else
996ae0b0 6039 Get_First_Interp (Nam, X, It);
fbf5a39b 6040 end if;
996ae0b0 6041
fbf5a39b
AC
6042 while Present (It.Nam) loop
6043 if Etype (It.Nam) = Standard_Void_Type then
6044 Void_Interp_Seen := True;
996ae0b0 6045 end if;
fbf5a39b
AC
6046
6047 Analyze_One_Call (N, It.Nam, True, Success);
6048 Get_Next_Interp (X, It);
6049 end loop;
996ae0b0
RK
6050
6051 if Nkind (N) = N_Function_Call then
6052 Get_First_Interp (Nam, X, It);
996ae0b0 6053 while Present (It.Nam) loop
bce79204 6054 if Ekind_In (It.Nam, E_Function, E_Operator) then
996ae0b0
RK
6055 return;
6056 else
6057 Get_Next_Interp (X, It);
6058 end if;
6059 end loop;
6060
6061 -- If all interpretations are procedures, this deserves a
6062 -- more precise message. Ditto if this appears as the prefix
6063 -- of a selected component, which may be a lexical error.
6064
4c46b835
AC
6065 Error_Msg_N
6066 ("\context requires function call, found procedure name", Nam);
996ae0b0
RK
6067
6068 if Nkind (Parent (N)) = N_Selected_Component
6069 and then N = Prefix (Parent (N))
6070 then
4e7a4f6e
AC
6071 Error_Msg_N -- CODEFIX
6072 ("\period should probably be semicolon", Parent (N));
996ae0b0 6073 end if;
fbf5a39b
AC
6074
6075 elsif Nkind (N) = N_Procedure_Call_Statement
6076 and then not Void_Interp_Seen
6077 then
6078 Error_Msg_N (
6079 "\function name found in procedure call", Nam);
996ae0b0 6080 end if;
fbf5a39b
AC
6081
6082 All_Errors_Mode := Err_Mode;
996ae0b0
RK
6083 end Diagnose_Call;
6084
6085 ---------------------------
6086 -- Find_Arithmetic_Types --
6087 ---------------------------
6088
6089 procedure Find_Arithmetic_Types
6090 (L, R : Node_Id;
6091 Op_Id : Entity_Id;
6092 N : Node_Id)
6093 is
4c46b835
AC
6094 Index1 : Interp_Index;
6095 Index2 : Interp_Index;
6096 It1 : Interp;
6097 It2 : Interp;
996ae0b0
RK
6098
6099 procedure Check_Right_Argument (T : Entity_Id);
6100 -- Check right operand of operator
6101
4c46b835
AC
6102 --------------------------
6103 -- Check_Right_Argument --
6104 --------------------------
6105
996ae0b0
RK
6106 procedure Check_Right_Argument (T : Entity_Id) is
6107 begin
6108 if not Is_Overloaded (R) then
6109 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
6110 else
6111 Get_First_Interp (R, Index2, It2);
996ae0b0
RK
6112 while Present (It2.Typ) loop
6113 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
6114 Get_Next_Interp (Index2, It2);
6115 end loop;
6116 end if;
6117 end Check_Right_Argument;
6118
d8221f45 6119 -- Start of processing for Find_Arithmetic_Types
996ae0b0
RK
6120
6121 begin
6122 if not Is_Overloaded (L) then
6123 Check_Right_Argument (Etype (L));
6124
6125 else
6126 Get_First_Interp (L, Index1, It1);
996ae0b0
RK
6127 while Present (It1.Typ) loop
6128 Check_Right_Argument (It1.Typ);
6129 Get_Next_Interp (Index1, It1);
6130 end loop;
6131 end if;
6132
6133 end Find_Arithmetic_Types;
6134
6135 ------------------------
6136 -- Find_Boolean_Types --
6137 ------------------------
6138
6139 procedure Find_Boolean_Types
6140 (L, R : Node_Id;
6141 Op_Id : Entity_Id;
6142 N : Node_Id)
6143 is
6144 Index : Interp_Index;
6145 It : Interp;
6146
6147 procedure Check_Numeric_Argument (T : Entity_Id);
6148 -- Special case for logical operations one of whose operands is an
6149 -- integer literal. If both are literal the result is any modular type.
6150
4c46b835
AC
6151 ----------------------------
6152 -- Check_Numeric_Argument --
6153 ----------------------------
6154
996ae0b0
RK
6155 procedure Check_Numeric_Argument (T : Entity_Id) is
6156 begin
6157 if T = Universal_Integer then
6158 Add_One_Interp (N, Op_Id, Any_Modular);
6159
6160 elsif Is_Modular_Integer_Type (T) then
6161 Add_One_Interp (N, Op_Id, T);
6162 end if;
6163 end Check_Numeric_Argument;
6164
6165 -- Start of processing for Find_Boolean_Types
6166
6167 begin
6168 if not Is_Overloaded (L) then
996ae0b0
RK
6169 if Etype (L) = Universal_Integer
6170 or else Etype (L) = Any_Modular
6171 then
6172 if not Is_Overloaded (R) then
6173 Check_Numeric_Argument (Etype (R));
6174
6175 else
6176 Get_First_Interp (R, Index, It);
996ae0b0
RK
6177 while Present (It.Typ) loop
6178 Check_Numeric_Argument (It.Typ);
996ae0b0
RK
6179 Get_Next_Interp (Index, It);
6180 end loop;
6181 end if;
6182
69e6a03e
ES
6183 -- If operands are aggregates, we must assume that they may be
6184 -- boolean arrays, and leave disambiguation for the second pass.
6185 -- If only one is an aggregate, verify that the other one has an
6186 -- interpretation as a boolean array
6187
6188 elsif Nkind (L) = N_Aggregate then
6189 if Nkind (R) = N_Aggregate then
6190 Add_One_Interp (N, Op_Id, Etype (L));
6191
6192 elsif not Is_Overloaded (R) then
6193 if Valid_Boolean_Arg (Etype (R)) then
6194 Add_One_Interp (N, Op_Id, Etype (R));
6195 end if;
6196
6197 else
6198 Get_First_Interp (R, Index, It);
6199 while Present (It.Typ) loop
6200 if Valid_Boolean_Arg (It.Typ) then
6201 Add_One_Interp (N, Op_Id, It.Typ);
6202 end if;
6203
6204 Get_Next_Interp (Index, It);
6205 end loop;
6206 end if;
6207
996ae0b0
RK
6208 elsif Valid_Boolean_Arg (Etype (L))
6209 and then Has_Compatible_Type (R, Etype (L))
6210 then
6211 Add_One_Interp (N, Op_Id, Etype (L));
6212 end if;
6213
6214 else
6215 Get_First_Interp (L, Index, It);
996ae0b0
RK
6216 while Present (It.Typ) loop
6217 if Valid_Boolean_Arg (It.Typ)
6218 and then Has_Compatible_Type (R, It.Typ)
6219 then
6220 Add_One_Interp (N, Op_Id, It.Typ);
6221 end if;
6222
6223 Get_Next_Interp (Index, It);
6224 end loop;
6225 end if;
6226 end Find_Boolean_Types;
6227
6228 ---------------------------
6229 -- Find_Comparison_Types --
6230 ---------------------------
6231
6232 procedure Find_Comparison_Types
6233 (L, R : Node_Id;
6234 Op_Id : Entity_Id;
6235 N : Node_Id)
6236 is
6237 Index : Interp_Index;
6238 It : Interp;
6239 Found : Boolean := False;
6240 I_F : Interp_Index;
6241 T_F : Entity_Id;
6242 Scop : Entity_Id := Empty;
6243
6244 procedure Try_One_Interp (T1 : Entity_Id);
6245 -- Routine to try one proposed interpretation. Note that the context
6246 -- of the operator plays no role in resolving the arguments, so that
6247 -- if there is more than one interpretation of the operands that is
6248 -- compatible with comparison, the operation is ambiguous.
6249
4c46b835
AC
6250 --------------------
6251 -- Try_One_Interp --
6252 --------------------
6253
996ae0b0
RK
6254 procedure Try_One_Interp (T1 : Entity_Id) is
6255 begin
6256
6257 -- If the operator is an expanded name, then the type of the operand
6258 -- must be defined in the corresponding scope. If the type is
6259 -- universal, the context will impose the correct type.
6260
6261 if Present (Scop)
8b4230c8
AC
6262 and then not Defined_In_Scope (T1, Scop)
6263 and then T1 /= Universal_Integer
6264 and then T1 /= Universal_Real
6265 and then T1 /= Any_String
6266 and then T1 /= Any_Composite
996ae0b0
RK
6267 then
6268 return;
6269 end if;
6270
8b4230c8
AC
6271 if Valid_Comparison_Arg (T1) and then Has_Compatible_Type (R, T1) then
6272 if Found and then Base_Type (T1) /= Base_Type (T_F) then
996ae0b0
RK
6273 It := Disambiguate (L, I_F, Index, Any_Type);
6274
6275 if It = No_Interp then
6276 Ambiguous_Operands (N);
6277 Set_Etype (L, Any_Type);
6278 return;
6279
6280 else
6281 T_F := It.Typ;
6282 end if;
6283
6284 else
6285 Found := True;
6286 T_F := T1;
6287 I_F := Index;
6288 end if;
6289
6290 Set_Etype (L, T_F);
6291 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
6292
6293 end if;
6294 end Try_One_Interp;
6295
d8221f45 6296 -- Start of processing for Find_Comparison_Types
996ae0b0
RK
6297
6298 begin
fbf5a39b
AC
6299 -- If left operand is aggregate, the right operand has to
6300 -- provide a usable type for it.
6301
8b4230c8 6302 if Nkind (L) = N_Aggregate and then Nkind (R) /= N_Aggregate then
b4592168 6303 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
fbf5a39b
AC
6304 return;
6305 end if;
996ae0b0
RK
6306
6307 if Nkind (N) = N_Function_Call
6308 and then Nkind (Name (N)) = N_Expanded_Name
6309 then
6310 Scop := Entity (Prefix (Name (N)));
6311
6312 -- The prefix may be a package renaming, and the subsequent test
6313 -- requires the original package.
6314
6315 if Ekind (Scop) = E_Package
6316 and then Present (Renamed_Entity (Scop))
6317 then
6318 Scop := Renamed_Entity (Scop);
6319 Set_Entity (Prefix (Name (N)), Scop);
6320 end if;
6321 end if;
6322
6323 if not Is_Overloaded (L) then
6324 Try_One_Interp (Etype (L));
6325
6326 else
6327 Get_First_Interp (L, Index, It);
996ae0b0
RK
6328 while Present (It.Typ) loop
6329 Try_One_Interp (It.Typ);
6330 Get_Next_Interp (Index, It);
6331 end loop;
6332 end if;
6333 end Find_Comparison_Types;
6334
6335 ----------------------------------------
6336 -- Find_Non_Universal_Interpretations --
6337 ----------------------------------------
6338
6339 procedure Find_Non_Universal_Interpretations
6340 (N : Node_Id;
6341 R : Node_Id;
6342 Op_Id : Entity_Id;
6343 T1 : Entity_Id)
6344 is
6345 Index : Interp_Index;
4c46b835 6346 It : Interp;
996ae0b0
RK
6347
6348 begin
8b4230c8 6349 if T1 = Universal_Integer or else T1 = Universal_Real
b9daa96e
AC
6350
6351 -- If the left operand of an equality operator is null, the visibility
6352 -- of the operator must be determined from the interpretation of the
6353 -- right operand. This processing must be done for Any_Access, which
6354 -- is the internal representation of the type of the literal null.
6355
be4c5193 6356 or else T1 = Any_Access
996ae0b0
RK
6357 then
6358 if not Is_Overloaded (R) then
8b4230c8 6359 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
996ae0b0
RK
6360 else
6361 Get_First_Interp (R, Index, It);
996ae0b0
RK
6362 while Present (It.Typ) loop
6363 if Covers (It.Typ, T1) then
6364 Add_One_Interp
6365 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
6366 end if;
6367
6368 Get_Next_Interp (Index, It);
6369 end loop;
6370 end if;
6371 else
6372 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
6373 end if;
6374 end Find_Non_Universal_Interpretations;
6375
6376 ------------------------------
6377 -- Find_Concatenation_Types --
6378 ------------------------------
6379
6380 procedure Find_Concatenation_Types
6381 (L, R : Node_Id;
6382 Op_Id : Entity_Id;
6383 N : Node_Id)
6384 is
6385 Op_Type : constant Entity_Id := Etype (Op_Id);
6386
6387 begin
6388 if Is_Array_Type (Op_Type)
6389 and then not Is_Limited_Type (Op_Type)
6390
6391 and then (Has_Compatible_Type (L, Op_Type)
6392 or else
6393 Has_Compatible_Type (L, Component_Type (Op_Type)))
6394
6395 and then (Has_Compatible_Type (R, Op_Type)
6396 or else
6397 Has_Compatible_Type (R, Component_Type (Op_Type)))
6398 then
6399 Add_One_Interp (N, Op_Id, Op_Type);
6400 end if;
6401 end Find_Concatenation_Types;
6402
6403 -------------------------
6404 -- Find_Equality_Types --
6405 -------------------------
6406
6407 procedure Find_Equality_Types
6408 (L, R : Node_Id;
6409 Op_Id : Entity_Id;
6410 N : Node_Id)
6411 is
6412 Index : Interp_Index;
6413 It : Interp;
6414 Found : Boolean := False;
6415 I_F : Interp_Index;
6416 T_F : Entity_Id;
6417 Scop : Entity_Id := Empty;
6418
6419 procedure Try_One_Interp (T1 : Entity_Id);
a8e65aa5
AC
6420 -- The context of the equality operator plays no role in resolving the
6421 -- arguments, so that if there is more than one interpretation of the
6422 -- operands that is compatible with equality, the construct is ambiguous
6423 -- and an error can be emitted now, after trying to disambiguate, i.e.
6424 -- applying preference rules.
996ae0b0 6425
4c46b835
AC
6426 --------------------
6427 -- Try_One_Interp --
6428 --------------------
6429
996ae0b0 6430 procedure Try_One_Interp (T1 : Entity_Id) is
a8e65aa5
AC
6431 Bas : constant Entity_Id := Base_Type (T1);
6432
996ae0b0 6433 begin
996ae0b0
RK
6434 -- If the operator is an expanded name, then the type of the operand
6435 -- must be defined in the corresponding scope. If the type is
6436 -- universal, the context will impose the correct type. An anonymous
6437 -- type for a 'Access reference is also universal in this sense, as
6438 -- the actual type is obtained from context.
8b4230c8 6439
fe45e59e
ES
6440 -- In Ada 2005, the equality operator for anonymous access types
6441 -- is declared in Standard, and preference rules apply to it.
996ae0b0 6442
fe45e59e
ES
6443 if Present (Scop) then
6444 if Defined_In_Scope (T1, Scop)
6445 or else T1 = Universal_Integer
6446 or else T1 = Universal_Real
6447 or else T1 = Any_Access
6448 or else T1 = Any_String
6449 or else T1 = Any_Composite
6450 or else (Ekind (T1) = E_Access_Subprogram_Type
a8e65aa5 6451 and then not Comes_From_Source (T1))
fe45e59e
ES
6452 then
6453 null;
6454
6455 elsif Ekind (T1) = E_Anonymous_Access_Type
6456 and then Scop = Standard_Standard
6457 then
6458 null;
6459
6460 else
6461 -- The scope does not contain an operator for the type
6462
6463 return;
6464 end if;
a8e65aa5 6465
9aa04cc7
AC
6466 -- If we have infix notation, the operator must be usable. Within
6467 -- an instance, if the type is already established we know it is
6468 -- correct. If an operand is universal it is compatible with any
6469 -- numeric type.
31af8899 6470
a8e65aa5
AC
6471 elsif In_Open_Scopes (Scope (Bas))
6472 or else Is_Potentially_Use_Visible (Bas)
6473 or else In_Use (Bas)
9aa04cc7 6474 or else (In_Use (Scope (Bas)) and then not Is_Hidden (Bas))
a54ffd6c
AC
6475
6476 -- In an instance, the type may have been immediately visible.
6477 -- Either the types are compatible, or one operand is universal
6478 -- (numeric or null).
6479
c5b4738f
AC
6480 or else
6481 ((In_Instance or else In_Inlined_Body)
6482 and then
6483 (First_Subtype (T1) = First_Subtype (Etype (R))
6484 or else Nkind (R) = N_Null
6485 or else
6486 (Is_Numeric_Type (T1)
6487 and then Is_Universal_Numeric_Type (Etype (R)))))
a54ffd6c
AC
6488
6489 -- In Ada 2005, the equality on anonymous access types is declared
6490 -- in Standard, and is always visible.
6491
a8e65aa5
AC
6492 or else Ekind (T1) = E_Anonymous_Access_Type
6493 then
6494 null;
6495
6496 else
308e6f3a 6497 -- Save candidate type for subsequent error message, if any
a8e65aa5
AC
6498
6499 if not Is_Limited_Type (T1) then
6500 Candidate_Type := T1;
6501 end if;
6502
6503 return;
996ae0b0
RK
6504 end if;
6505
0ab80019
AC
6506 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
6507 -- Do not allow anonymous access types in equality operators.
6e937c1c 6508
0791fbe9 6509 if Ada_Version < Ada_2005
6e937c1c
AC
6510 and then Ekind (T1) = E_Anonymous_Access_Type
6511 then
6512 return;
6513 end if;
6514
c92e8586
AC
6515 -- If the right operand has a type compatible with T1, check for an
6516 -- acceptable interpretation, unless T1 is limited (no predefined
6517 -- equality available), or this is use of a "/=" for a tagged type.
8b4230c8
AC
6518 -- In the latter case, possible interpretations of equality need
6519 -- to be considered, we don't want the default inequality declared
6520 -- in Standard to be chosen, and the "/=" will be rewritten as a
c92e8586 6521 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
026c3cfd 6522 -- that rewriting happens during analysis rather than being
c92e8586
AC
6523 -- delayed until expansion (this is needed for ASIS, which only sees
6524 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
6525 -- is Name_Op_Eq then we still proceed with the interpretation,
6526 -- because that indicates the potential rewriting case where the
6527 -- interpretation to consider is actually "=" and the node may be
6528 -- about to be rewritten by Analyze_Equality_Op.
6529
996ae0b0 6530 if T1 /= Standard_Void_Type
996ae0b0 6531 and then Has_Compatible_Type (R, T1)
c92e8586 6532
9b62eb32
AC
6533 and then
6534 ((not Is_Limited_Type (T1)
6535 and then not Is_Limited_Composite (T1))
6536
6537 or else
2fcc44fa 6538 (Is_Array_Type (T1)
9b62eb32
AC
6539 and then not Is_Limited_Type (Component_Type (T1))
6540 and then Available_Full_View_Of_Component (T1)))
c92e8586
AC
6541
6542 and then
6543 (Nkind (N) /= N_Op_Ne
6544 or else not Is_Tagged_Type (T1)
6545 or else Chars (Op_Id) = Name_Op_Eq)
996ae0b0
RK
6546 then
6547 if Found
6548 and then Base_Type (T1) /= Base_Type (T_F)
6549 then
6550 It := Disambiguate (L, I_F, Index, Any_Type);
6551
6552 if It = No_Interp then
6553 Ambiguous_Operands (N);
6554 Set_Etype (L, Any_Type);
6555 return;
6556
6557 else
6558 T_F := It.Typ;
6559 end if;
6560
6561 else
6562 Found := True;
6563 T_F := T1;
6564 I_F := Index;
6565 end if;
6566
6567 if not Analyzed (L) then
6568 Set_Etype (L, T_F);
6569 end if;
6570
6571 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
6572
6e73e3ab 6573 -- Case of operator was not visible, Etype still set to Any_Type
996ae0b0 6574
6e73e3ab 6575 if Etype (N) = Any_Type then
996ae0b0
RK
6576 Found := False;
6577 end if;
fe45e59e
ES
6578
6579 elsif Scop = Standard_Standard
6580 and then Ekind (T1) = E_Anonymous_Access_Type
6581 then
6582 Found := True;
996ae0b0
RK
6583 end if;
6584 end Try_One_Interp;
6585
6586 -- Start of processing for Find_Equality_Types
6587
6588 begin
fbf5a39b
AC
6589 -- If left operand is aggregate, the right operand has to
6590 -- provide a usable type for it.
6591
6592 if Nkind (L) = N_Aggregate
6593 and then Nkind (R) /= N_Aggregate
6594 then
b4592168 6595 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
fbf5a39b
AC
6596 return;
6597 end if;
996ae0b0
RK
6598
6599 if Nkind (N) = N_Function_Call
6600 and then Nkind (Name (N)) = N_Expanded_Name
6601 then
6602 Scop := Entity (Prefix (Name (N)));
6603
6604 -- The prefix may be a package renaming, and the subsequent test
6605 -- requires the original package.
6606
6607 if Ekind (Scop) = E_Package
6608 and then Present (Renamed_Entity (Scop))
6609 then
6610 Scop := Renamed_Entity (Scop);
6611 Set_Entity (Prefix (Name (N)), Scop);
6612 end if;
6613 end if;
6614
6615 if not Is_Overloaded (L) then
6616 Try_One_Interp (Etype (L));
996ae0b0 6617
4c46b835 6618 else
996ae0b0 6619 Get_First_Interp (L, Index, It);
996ae0b0
RK
6620 while Present (It.Typ) loop
6621 Try_One_Interp (It.Typ);
6622 Get_Next_Interp (Index, It);
6623 end loop;
6624 end if;
6625 end Find_Equality_Types;
6626
6627 -------------------------
6628 -- Find_Negation_Types --
6629 -------------------------
6630
6631 procedure Find_Negation_Types
6632 (R : Node_Id;
6633 Op_Id : Entity_Id;
6634 N : Node_Id)
6635 is
6636 Index : Interp_Index;
6637 It : Interp;
6638
6639 begin
6640 if not Is_Overloaded (R) then
996ae0b0
RK
6641 if Etype (R) = Universal_Integer then
6642 Add_One_Interp (N, Op_Id, Any_Modular);
996ae0b0
RK
6643 elsif Valid_Boolean_Arg (Etype (R)) then
6644 Add_One_Interp (N, Op_Id, Etype (R));
6645 end if;
6646
6647 else
6648 Get_First_Interp (R, Index, It);
996ae0b0
RK
6649 while Present (It.Typ) loop
6650 if Valid_Boolean_Arg (It.Typ) then
6651 Add_One_Interp (N, Op_Id, It.Typ);
6652 end if;
6653
6654 Get_Next_Interp (Index, It);
6655 end loop;
6656 end if;
6657 end Find_Negation_Types;
6658
d469eabe
HK
6659 ------------------------------
6660 -- Find_Primitive_Operation --
6661 ------------------------------
6662
6663 function Find_Primitive_Operation (N : Node_Id) return Boolean is
6664 Obj : constant Node_Id := Prefix (N);
6665 Op : constant Node_Id := Selector_Name (N);
6666
6667 Prim : Elmt_Id;
6668 Prims : Elist_Id;
6669 Typ : Entity_Id;
6670
6671 begin
6672 Set_Etype (Op, Any_Type);
6673
6674 if Is_Access_Type (Etype (Obj)) then
6675 Typ := Designated_Type (Etype (Obj));
6676 else
6677 Typ := Etype (Obj);
6678 end if;
6679
6680 if Is_Class_Wide_Type (Typ) then
6681 Typ := Root_Type (Typ);
6682 end if;
6683
6684 Prims := Primitive_Operations (Typ);
6685
6686 Prim := First_Elmt (Prims);
6687 while Present (Prim) loop
6688 if Chars (Node (Prim)) = Chars (Op) then
6689 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
6690 Set_Etype (N, Etype (Node (Prim)));
6691 end if;
6692
6693 Next_Elmt (Prim);
6694 end loop;
6695
6696 -- Now look for class-wide operations of the type or any of its
6697 -- ancestors by iterating over the homonyms of the selector.
6698
6699 declare
6700 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
6701 Hom : Entity_Id;
6702
6703 begin
6704 Hom := Current_Entity (Op);
6705 while Present (Hom) loop
6706 if (Ekind (Hom) = E_Procedure
6707 or else
6708 Ekind (Hom) = E_Function)
6709 and then Scope (Hom) = Scope (Typ)
6710 and then Present (First_Formal (Hom))
6711 and then
6712 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6713 or else
6714 (Is_Access_Type (Etype (First_Formal (Hom)))
8b4230c8
AC
6715 and then
6716 Ekind (Etype (First_Formal (Hom))) =
6717 E_Anonymous_Access_Type
6718 and then
6719 Base_Type
6720 (Designated_Type (Etype (First_Formal (Hom)))) =
d469eabe
HK
6721 Cls_Type))
6722 then
6723 Add_One_Interp (Op, Hom, Etype (Hom));
6724 Set_Etype (N, Etype (Hom));
6725 end if;
6726
6727 Hom := Homonym (Hom);
6728 end loop;
6729 end;
6730
6731 return Etype (Op) /= Any_Type;
6732 end Find_Primitive_Operation;
6733
996ae0b0
RK
6734 ----------------------
6735 -- Find_Unary_Types --
6736 ----------------------
6737
6738 procedure Find_Unary_Types
6739 (R : Node_Id;
6740 Op_Id : Entity_Id;
6741 N : Node_Id)
6742 is
6743 Index : Interp_Index;
6744 It : Interp;
6745
6746 begin
6747 if not Is_Overloaded (R) then
6748 if Is_Numeric_Type (Etype (R)) then
65f7ed64
AC
6749
6750 -- In an instance a generic actual may be a numeric type even if
6751 -- the formal in the generic unit was not. In that case, the
6752 -- predefined operator was not a possible interpretation in the
2e70d415
AC
6753 -- generic, and cannot be one in the instance, unless the operator
6754 -- is an actual of an instance.
65f7ed64
AC
6755
6756 if In_Instance
6757 and then
6758 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
6759 then
6760 null;
6761 else
6762 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
6763 end if;
996ae0b0
RK
6764 end if;
6765
6766 else
6767 Get_First_Interp (R, Index, It);
996ae0b0
RK
6768 while Present (It.Typ) loop
6769 if Is_Numeric_Type (It.Typ) then
65f7ed64
AC
6770 if In_Instance
6771 and then
6772 not Is_Numeric_Type
6773 (Corresponding_Generic_Type (Etype (It.Typ)))
6774 then
6775 null;
6776
6777 else
6778 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
6779 end if;
996ae0b0
RK
6780 end if;
6781
6782 Get_Next_Interp (Index, It);
6783 end loop;
6784 end if;
6785 end Find_Unary_Types;
6786
996ae0b0
RK
6787 ------------------
6788 -- Junk_Operand --
6789 ------------------
6790
6791 function Junk_Operand (N : Node_Id) return Boolean is
6792 Enode : Node_Id;
6793
6794 begin
6795 if Error_Posted (N) then
6796 return False;
6797 end if;
6798
6799 -- Get entity to be tested
6800
6801 if Is_Entity_Name (N)
6802 and then Present (Entity (N))
6803 then
6804 Enode := N;
6805
6806 -- An odd case, a procedure name gets converted to a very peculiar
6807 -- function call, and here is where we detect this happening.
6808
6809 elsif Nkind (N) = N_Function_Call
6810 and then Is_Entity_Name (Name (N))
6811 and then Present (Entity (Name (N)))
6812 then
6813 Enode := Name (N);
6814
6815 -- Another odd case, there are at least some cases of selected
6816 -- components where the selected component is not marked as having
6817 -- an entity, even though the selector does have an entity
6818
6819 elsif Nkind (N) = N_Selected_Component
6820 and then Present (Entity (Selector_Name (N)))
6821 then
6822 Enode := Selector_Name (N);
6823
6824 else
6825 return False;
6826 end if;
6827
9de61fcb 6828 -- Now test the entity we got to see if it is a bad case
996ae0b0
RK
6829
6830 case Ekind (Entity (Enode)) is
996ae0b0
RK
6831 when E_Package =>
6832 Error_Msg_N
6833 ("package name cannot be used as operand", Enode);
6834
6835 when Generic_Unit_Kind =>
6836 Error_Msg_N
6837 ("generic unit name cannot be used as operand", Enode);
6838
6839 when Type_Kind =>
6840 Error_Msg_N
6841 ("subtype name cannot be used as operand", Enode);
6842
6843 when Entry_Kind =>
6844 Error_Msg_N
6845 ("entry name cannot be used as operand", Enode);
6846
6847 when E_Procedure =>
6848 Error_Msg_N
6849 ("procedure name cannot be used as operand", Enode);
6850
6851 when E_Exception =>
6852 Error_Msg_N
6853 ("exception name cannot be used as operand", Enode);
6854
d8f43ee6
HK
6855 when E_Block
6856 | E_Label
6857 | E_Loop
6858 =>
996ae0b0
RK
6859 Error_Msg_N
6860 ("label name cannot be used as operand", Enode);
6861
6862 when others =>
6863 return False;
996ae0b0
RK
6864 end case;
6865
6866 return True;
6867 end Junk_Operand;
6868
6869 --------------------
6870 -- Operator_Check --
6871 --------------------
6872
6873 procedure Operator_Check (N : Node_Id) is
6874 begin
30c20106
AC
6875 Remove_Abstract_Operations (N);
6876
996ae0b0
RK
6877 -- Test for case of no interpretation found for operator
6878
6879 if Etype (N) = Any_Type then
6880 declare
b67a385c
ES
6881 L : Node_Id;
6882 R : Node_Id;
6883 Op_Id : Entity_Id := Empty;
996ae0b0
RK
6884
6885 begin
6886 R := Right_Opnd (N);
6887
6888 if Nkind (N) in N_Binary_Op then
6889 L := Left_Opnd (N);
6890 else
6891 L := Empty;
6892 end if;
6893
6894 -- If either operand has no type, then don't complain further,
9de61fcb 6895 -- since this simply means that we have a propagated error.
996ae0b0
RK
6896
6897 if R = Error
6898 or else Etype (R) = Any_Type
6899 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
6900 then
7610fee8
AC
6901 -- For the rather unusual case where one of the operands is
6902 -- a Raise_Expression, whose initial type is Any_Type, use
6903 -- the type of the other operand.
6904
6905 if Nkind (L) = N_Raise_Expression then
6906 Set_Etype (L, Etype (R));
6907 Set_Etype (N, Etype (R));
6908
6909 elsif Nkind (R) = N_Raise_Expression then
6910 Set_Etype (R, Etype (L));
6911 Set_Etype (N, Etype (L));
6912 end if;
6913
996ae0b0
RK
6914 return;
6915
4c46b835
AC
6916 -- We explicitly check for the case of concatenation of component
6917 -- with component to avoid reporting spurious matching array types
6918 -- that might happen to be lurking in distant packages (such as
6919 -- run-time packages). This also prevents inconsistencies in the
6920 -- messages for certain ACVC B tests, which can vary depending on
6921 -- types declared in run-time interfaces. Another improvement when
6922 -- aggregates are present is to look for a well-typed operand.
996ae0b0
RK
6923
6924 elsif Present (Candidate_Type)
6925 and then (Nkind (N) /= N_Op_Concat
6926 or else Is_Array_Type (Etype (L))
6927 or else Is_Array_Type (Etype (R)))
6928 then
996ae0b0
RK
6929 if Nkind (N) = N_Op_Concat then
6930 if Etype (L) /= Any_Composite
6931 and then Is_Array_Type (Etype (L))
6932 then
6933 Candidate_Type := Etype (L);
6934
6935 elsif Etype (R) /= Any_Composite
6936 and then Is_Array_Type (Etype (R))
6937 then
6938 Candidate_Type := Etype (R);
6939 end if;
6940 end if;
6941
19d846a0 6942 Error_Msg_NE -- CODEFIX
996ae0b0
RK
6943 ("operator for} is not directly visible!",
6944 N, First_Subtype (Candidate_Type));
4561baf7
ES
6945
6946 declare
6947 U : constant Node_Id :=
6948 Cunit (Get_Source_Unit (Candidate_Type));
4561baf7
ES
6949 begin
6950 if Unit_Is_Visible (U) then
6951 Error_Msg_N -- CODEFIX
6952 ("use clause would make operation legal!", N);
4561baf7
ES
6953 else
6954 Error_Msg_NE -- CODEFIX
6955 ("add with_clause and use_clause for&!",
8b4230c8 6956 N, Defining_Entity (Unit (U)));
4561baf7
ES
6957 end if;
6958 end;
996ae0b0
RK
6959 return;
6960
6961 -- If either operand is a junk operand (e.g. package name), then
6962 -- post appropriate error messages, but do not complain further.
6963
0e0eecec
ES
6964 -- Note that the use of OR in this test instead of OR ELSE is
6965 -- quite deliberate, we may as well check both operands in the
6966 -- binary operator case.
996ae0b0
RK
6967
6968 elsif Junk_Operand (R)
9559eccf
AC
6969 or -- really mean OR here and not OR ELSE, see above
6970 (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
996ae0b0
RK
6971 then
6972 return;
6973
6974 -- If we have a logical operator, one of whose operands is
0e0eecec
ES
6975 -- Boolean, then we know that the other operand cannot resolve to
6976 -- Boolean (since we got no interpretations), but in that case we
6977 -- pretty much know that the other operand should be Boolean, so
070d862d 6978 -- resolve it that way (generating an error).
996ae0b0 6979
d469eabe 6980 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
996ae0b0
RK
6981 if Etype (L) = Standard_Boolean then
6982 Resolve (R, Standard_Boolean);
6983 return;
6984 elsif Etype (R) = Standard_Boolean then
6985 Resolve (L, Standard_Boolean);
6986 return;
6987 end if;
6988
6989 -- For an arithmetic operator or comparison operator, if one
6990 -- of the operands is numeric, then we know the other operand
6991 -- is not the same numeric type. If it is a non-numeric type,
6992 -- then probably it is intended to match the other operand.
6993
d469eabe
HK
6994 elsif Nkind_In (N, N_Op_Add,
6995 N_Op_Divide,
6996 N_Op_Ge,
6997 N_Op_Gt,
6998 N_Op_Le)
6999 or else
7000 Nkind_In (N, N_Op_Lt,
7001 N_Op_Mod,
7002 N_Op_Multiply,
7003 N_Op_Rem,
7004 N_Op_Subtract)
996ae0b0 7005 then
7dbd3de9
RD
7006 -- If Allow_Integer_Address is active, check whether the
7007 -- operation becomes legal after converting an operand.
7008
996ae0b0
RK
7009 if Is_Numeric_Type (Etype (L))
7010 and then not Is_Numeric_Type (Etype (R))
7011 then
7dbd3de9
RD
7012 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
7013 Rewrite (R,
7014 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
7dbd3de9 7015
1e3689bd
AC
7016 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
7017 Analyze_Comparison_Op (N);
7018 else
7019 Analyze_Arithmetic_Op (N);
7020 end if;
7dbd3de9
RD
7021 else
7022 Resolve (R, Etype (L));
7023 end if;
1e3689bd 7024
996ae0b0
RK
7025 return;
7026
7027 elsif Is_Numeric_Type (Etype (R))
7028 and then not Is_Numeric_Type (Etype (L))
7029 then
7dbd3de9
RD
7030 if Address_Integer_Convert_OK (Etype (L), Etype (R)) then
7031 Rewrite (L,
7032 Unchecked_Convert_To (Etype (R), Relocate_Node (L)));
1e3689bd
AC
7033
7034 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
7035 Analyze_Comparison_Op (N);
7036 else
7037 Analyze_Arithmetic_Op (N);
7038 end if;
7039
9559eccf 7040 return;
7dbd3de9
RD
7041
7042 else
7043 Resolve (L, Etype (R));
7044 end if;
9559eccf 7045
996ae0b0 7046 return;
9559eccf
AC
7047
7048 elsif Allow_Integer_Address
d9d25d04
AC
7049 and then Is_Descendant_Of_Address (Etype (L))
7050 and then Is_Descendant_Of_Address (Etype (R))
9559eccf
AC
7051 and then not Error_Posted (N)
7052 then
7053 declare
7054 Addr_Type : constant Entity_Id := Etype (L);
7055
7056 begin
7057 Rewrite (L,
7058 Unchecked_Convert_To (
7059 Standard_Integer, Relocate_Node (L)));
7060 Rewrite (R,
7061 Unchecked_Convert_To (
7062 Standard_Integer, Relocate_Node (R)));
1e3689bd
AC
7063
7064 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
7065 Analyze_Comparison_Op (N);
7066 else
7067 Analyze_Arithmetic_Op (N);
7068 end if;
9559eccf
AC
7069
7070 -- If this is an operand in an enclosing arithmetic
7071 -- operation, Convert the result as an address so that
7072 -- arithmetic folding of address can continue.
7073
7074 if Nkind (Parent (N)) in N_Op then
7075 Rewrite (N,
7076 Unchecked_Convert_To (Addr_Type, Relocate_Node (N)));
7077 end if;
7078
7079 return;
7080 end;
a8a42b93
AC
7081
7082 -- Under relaxed RM semantics silently replace occurrences of
7083 -- null by System.Address_Null.
7084
7085 elsif Null_To_Null_Address_Convert_OK (N) then
7086 Replace_Null_By_Null_Address (N);
7087
7088 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
7089 Analyze_Comparison_Op (N);
7090 else
7091 Analyze_Arithmetic_Op (N);
7092 end if;
7093
7094 return;
996ae0b0
RK
7095 end if;
7096
7097 -- Comparisons on A'Access are common enough to deserve a
7098 -- special message.
7099
d469eabe 7100 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
996ae0b0
RK
7101 and then Ekind (Etype (L)) = E_Access_Attribute_Type
7102 and then Ekind (Etype (R)) = E_Access_Attribute_Type
7103 then
7104 Error_Msg_N
7105 ("two access attributes cannot be compared directly", N);
7106 Error_Msg_N
aab883ec 7107 ("\use qualified expression for one of the operands",
996ae0b0
RK
7108 N);
7109 return;
7110
7111 -- Another one for C programmers
7112
7113 elsif Nkind (N) = N_Op_Concat
7114 and then Valid_Boolean_Arg (Etype (L))
7115 and then Valid_Boolean_Arg (Etype (R))
7116 then
7117 Error_Msg_N ("invalid operands for concatenation", N);
4e7a4f6e
AC
7118 Error_Msg_N -- CODEFIX
7119 ("\maybe AND was meant", N);
996ae0b0
RK
7120 return;
7121
7122 -- A special case for comparison of access parameter with null
7123
7124 elsif Nkind (N) = N_Op_Eq
7125 and then Is_Entity_Name (L)
7126 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
7127 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
7128 N_Access_Definition
7129 and then Nkind (R) = N_Null
7130 then
7131 Error_Msg_N ("access parameter is not allowed to be null", L);
7132 Error_Msg_N ("\(call would raise Constraint_Error)", L);
7133 return;
61bee0e3
AC
7134
7135 -- Another special case for exponentiation, where the right
7136 -- operand must be Natural, independently of the base.
7137
7138 elsif Nkind (N) = N_Op_Expon
7139 and then Is_Numeric_Type (Etype (L))
7140 and then not Is_Overloaded (R)
7141 and then
7142 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
7143 and then Base_Type (Etype (R)) /= Universal_Integer
7144 then
dec6faf1 7145 if Ada_Version >= Ada_2012
15954beb 7146 and then Has_Dimension_System (Etype (L))
dec6faf1
AC
7147 then
7148 Error_Msg_NE
54c04d6c 7149 ("exponent for dimensioned type must be a rational" &
dec6faf1
AC
7150 ", found}", R, Etype (R));
7151 else
7152 Error_Msg_NE
7153 ("exponent must be of type Natural, found}", R, Etype (R));
7154 end if;
54c04d6c 7155
61bee0e3 7156 return;
11261647
AC
7157
7158 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
7159 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
7160 Rewrite (R,
7161 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
7162 Analyze_Equality_Op (N);
7163 return;
a8a42b93
AC
7164
7165 -- Under relaxed RM semantics silently replace occurrences of
7166 -- null by System.Address_Null.
7167
7168 elsif Null_To_Null_Address_Convert_OK (N) then
7169 Replace_Null_By_Null_Address (N);
7170 Analyze_Equality_Op (N);
7171 return;
11261647 7172 end if;
996ae0b0
RK
7173 end if;
7174
0e0eecec
ES
7175 -- If we fall through then just give general message. Note that in
7176 -- the following messages, if the operand is overloaded we choose
7177 -- an arbitrary type to complain about, but that is probably more
7178 -- useful than not giving a type at all.
996ae0b0
RK
7179
7180 if Nkind (N) in N_Unary_Op then
7181 Error_Msg_Node_2 := Etype (R);
7182 Error_Msg_N ("operator& not defined for}", N);
7183 return;
7184
7185 else
fbf5a39b
AC
7186 if Nkind (N) in N_Binary_Op then
7187 if not Is_Overloaded (L)
7188 and then not Is_Overloaded (R)
7189 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7190 then
7ffd9312 7191 Error_Msg_Node_2 := First_Subtype (Etype (R));
fbf5a39b 7192 Error_Msg_N ("there is no applicable operator& for}", N);
996ae0b0 7193
fbf5a39b 7194 else
b67a385c
ES
7195 -- Another attempt to find a fix: one of the candidate
7196 -- interpretations may not be use-visible. This has
7197 -- already been checked for predefined operators, so
7198 -- we examine only user-defined functions.
7199
7200 Op_Id := Get_Name_Entity_Id (Chars (N));
7201
7202 while Present (Op_Id) loop
7203 if Ekind (Op_Id) /= E_Operator
7204 and then Is_Overloadable (Op_Id)
7205 then
7206 if not Is_Immediately_Visible (Op_Id)
7207 and then not In_Use (Scope (Op_Id))
aab883ec 7208 and then not Is_Abstract_Subprogram (Op_Id)
b67a385c
ES
7209 and then not Is_Hidden (Op_Id)
7210 and then Ekind (Scope (Op_Id)) = E_Package
7211 and then
7212 Has_Compatible_Type
7213 (L, Etype (First_Formal (Op_Id)))
7214 and then Present
7215 (Next_Formal (First_Formal (Op_Id)))
7216 and then
7217 Has_Compatible_Type
7218 (R,
7219 Etype (Next_Formal (First_Formal (Op_Id))))
7220 then
ed2233dc 7221 Error_Msg_N
b67a385c 7222 ("No legal interpretation for operator&", N);
ed2233dc 7223 Error_Msg_NE
b67a385c 7224 ("\use clause on& would make operation legal",
8b4230c8 7225 N, Scope (Op_Id));
b67a385c
ES
7226 exit;
7227 end if;
7228 end if;
fbf5a39b 7229
b67a385c
ES
7230 Op_Id := Homonym (Op_Id);
7231 end loop;
7232
7233 if No (Op_Id) then
7234 Error_Msg_N ("invalid operand types for operator&", N);
7235
7236 if Nkind (N) /= N_Op_Concat then
7237 Error_Msg_NE ("\left operand has}!", N, Etype (L));
7238 Error_Msg_NE ("\right operand has}!", N, Etype (R));
2e70d415
AC
7239
7240 -- For concatenation operators it is more difficult to
7241 -- determine which is the wrong operand. It is worth
7242 -- flagging explicitly an access type, for those who
7243 -- might think that a dereference happens here.
7244
7245 elsif Is_Access_Type (Etype (L)) then
7246 Error_Msg_N ("\left operand is access type", N);
7247
7248 elsif Is_Access_Type (Etype (R)) then
7249 Error_Msg_N ("\right operand is access type", N);
b67a385c 7250 end if;
fbf5a39b
AC
7251 end if;
7252 end if;
996ae0b0
RK
7253 end if;
7254 end if;
7255 end;
7256 end if;
7257 end Operator_Check;
7258
6e73e3ab
AC
7259 -----------------------------------------
7260 -- Process_Implicit_Dereference_Prefix --
7261 -----------------------------------------
7262
d469eabe 7263 function Process_Implicit_Dereference_Prefix
da709d08 7264 (E : Entity_Id;
d469eabe 7265 P : Entity_Id) return Entity_Id
6e73e3ab
AC
7266 is
7267 Ref : Node_Id;
d469eabe 7268 Typ : constant Entity_Id := Designated_Type (Etype (P));
da709d08 7269
6e73e3ab 7270 begin
1a8fae99
ES
7271 if Present (E)
7272 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
7273 then
8b4230c8
AC
7274 -- We create a dummy reference to E to ensure that the reference is
7275 -- not considered as part of an assignment (an implicit dereference
7276 -- can never assign to its prefix). The Comes_From_Source attribute
7277 -- needs to be propagated for accurate warnings.
6e73e3ab 7278
e4494292 7279 Ref := New_Occurrence_Of (E, Sloc (P));
6e73e3ab
AC
7280 Set_Comes_From_Source (Ref, Comes_From_Source (P));
7281 Generate_Reference (E, Ref);
7282 end if;
d469eabe 7283
8b4230c8
AC
7284 -- An implicit dereference is a legal occurrence of an incomplete type
7285 -- imported through a limited_with clause, if the full view is visible.
d469eabe 7286
7b56a91b
AC
7287 if From_Limited_With (Typ)
7288 and then not From_Limited_With (Scope (Typ))
d469eabe
HK
7289 and then
7290 (Is_Immediately_Visible (Scope (Typ))
7291 or else
7292 (Is_Child_Unit (Scope (Typ))
8398e82e 7293 and then Is_Visible_Lib_Unit (Scope (Typ))))
d469eabe
HK
7294 then
7295 return Available_View (Typ);
7296 else
7297 return Typ;
7298 end if;
6e73e3ab
AC
7299 end Process_Implicit_Dereference_Prefix;
7300
30c20106
AC
7301 --------------------------------
7302 -- Remove_Abstract_Operations --
7303 --------------------------------
7304
7305 procedure Remove_Abstract_Operations (N : Node_Id) is
e80f0cb0 7306 Abstract_Op : Entity_Id := Empty;
d9d25d04 7307 Address_Descendant : Boolean := False;
e80f0cb0
RD
7308 I : Interp_Index;
7309 It : Interp;
30c20106 7310
0e0eecec
ES
7311 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
7312 -- activate this if either extensions are enabled, or if the abstract
7313 -- operation in question comes from a predefined file. This latter test
7314 -- allows us to use abstract to make operations invisible to users. In
7315 -- particular, if type Address is non-private and abstract subprograms
7316 -- are used to hide its operators, they will be truly hidden.
30c20106 7317
5950a3ac 7318 type Operand_Position is (First_Op, Second_Op);
8a36a0cc 7319 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
5950a3ac
AC
7320
7321 procedure Remove_Address_Interpretations (Op : Operand_Position);
0e0eecec
ES
7322 -- Ambiguities may arise when the operands are literal and the address
7323 -- operations in s-auxdec are visible. In that case, remove the
8b4230c8
AC
7324 -- interpretation of a literal as Address, to retain the semantics
7325 -- of Address as a private type.
9f4fd324
AC
7326
7327 ------------------------------------
5950a3ac 7328 -- Remove_Address_Interpretations --
9f4fd324
AC
7329 ------------------------------------
7330
5950a3ac 7331 procedure Remove_Address_Interpretations (Op : Operand_Position) is
9f4fd324
AC
7332 Formal : Entity_Id;
7333
7334 begin
7335 if Is_Overloaded (N) then
7336 Get_First_Interp (N, I, It);
7337 while Present (It.Nam) loop
7338 Formal := First_Entity (It.Nam);
7339
5950a3ac
AC
7340 if Op = Second_Op then
7341 Formal := Next_Entity (Formal);
7342 end if;
7343
d9d25d04
AC
7344 if Is_Descendant_Of_Address (Etype (Formal)) then
7345 Address_Descendant := True;
9f4fd324
AC
7346 Remove_Interp (I);
7347 end if;
7348
7349 Get_Next_Interp (I, It);
7350 end loop;
7351 end if;
7352 end Remove_Address_Interpretations;
7353
7354 -- Start of processing for Remove_Abstract_Operations
7355
30c20106 7356 begin
d935a36e 7357 if Is_Overloaded (N) then
ee1a7572
AC
7358 if Debug_Flag_V then
7359 Write_Str ("Remove_Abstract_Operations: ");
7360 Write_Overloads (N);
7361 end if;
7362
30c20106 7363 Get_First_Interp (N, I, It);
d935a36e 7364
30c20106 7365 while Present (It.Nam) loop
aab883ec
ES
7366 if Is_Overloadable (It.Nam)
7367 and then Is_Abstract_Subprogram (It.Nam)
30c20106
AC
7368 and then not Is_Dispatching_Operation (It.Nam)
7369 then
af152989 7370 Abstract_Op := It.Nam;
fe45e59e 7371
d9d25d04
AC
7372 if Is_Descendant_Of_Address (It.Typ) then
7373 Address_Descendant := True;
401093c1
ES
7374 Remove_Interp (I);
7375 exit;
7376
76264f60 7377 -- In Ada 2005, this operation does not participate in overload
9c510803 7378 -- resolution. If the operation is defined in a predefined
fe45e59e
ES
7379 -- unit, it is one of the operations declared abstract in some
7380 -- variants of System, and it must be removed as well.
7381
0791fbe9 7382 elsif Ada_Version >= Ada_2005
8ab31c0c 7383 or else In_Predefined_Unit (It.Nam)
fe45e59e
ES
7384 then
7385 Remove_Interp (I);
7386 exit;
7387 end if;
30c20106
AC
7388 end if;
7389
7390 Get_Next_Interp (I, It);
7391 end loop;
7392
af152989 7393 if No (Abstract_Op) then
fe45e59e
ES
7394
7395 -- If some interpretation yields an integer type, it is still
7396 -- possible that there are address interpretations. Remove them
7397 -- if one operand is a literal, to avoid spurious ambiguities
7398 -- on systems where Address is a visible integer type.
7399
7400 if Is_Overloaded (N)
401093c1 7401 and then Nkind (N) in N_Op
fe45e59e
ES
7402 and then Is_Integer_Type (Etype (N))
7403 then
7404 if Nkind (N) in N_Binary_Op then
7405 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
7406 Remove_Address_Interpretations (Second_Op);
7407
e6326de5 7408 elsif Nkind (Left_Opnd (N)) = N_Integer_Literal then
fe45e59e
ES
7409 Remove_Address_Interpretations (First_Op);
7410 end if;
7411 end if;
7412 end if;
3984e89a
AC
7413
7414 elsif Nkind (N) in N_Op then
4c46b835 7415
fe45e59e
ES
7416 -- Remove interpretations that treat literals as addresses. This
7417 -- is never appropriate, even when Address is defined as a visible
7418 -- Integer type. The reason is that we would really prefer Address
7a5b62b0
AC
7419 -- to behave as a private type, even in this case. If Address is a
7420 -- visible integer type, we get lots of overload ambiguities.
30c20106 7421
5950a3ac
AC
7422 if Nkind (N) in N_Binary_Op then
7423 declare
7424 U1 : constant Boolean :=
8b4230c8 7425 Present (Universal_Interpretation (Right_Opnd (N)));
5950a3ac 7426 U2 : constant Boolean :=
8b4230c8 7427 Present (Universal_Interpretation (Left_Opnd (N)));
30c20106 7428
5950a3ac 7429 begin
0e0eecec 7430 if U1 then
5950a3ac 7431 Remove_Address_Interpretations (Second_Op);
0e0eecec 7432 end if;
5950a3ac 7433
0e0eecec 7434 if U2 then
5950a3ac 7435 Remove_Address_Interpretations (First_Op);
30c20106
AC
7436 end if;
7437
5950a3ac
AC
7438 if not (U1 and U2) then
7439
7440 -- Remove corresponding predefined operator, which is
7441 -- always added to the overload set.
7442
7443 Get_First_Interp (N, I, It);
7444 while Present (It.Nam) loop
0ab80019
AC
7445 if Scope (It.Nam) = Standard_Standard
7446 and then Base_Type (It.Typ) =
7447 Base_Type (Etype (Abstract_Op))
7448 then
5950a3ac
AC
7449 Remove_Interp (I);
7450 end if;
7451
8a36a0cc
AC
7452 Get_Next_Interp (I, It);
7453 end loop;
7454
7455 elsif Is_Overloaded (N)
7456 and then Present (Univ_Type)
7457 then
7458 -- If both operands have a universal interpretation,
0e0eecec
ES
7459 -- it is still necessary to remove interpretations that
7460 -- yield Address. Any remaining ambiguities will be
7461 -- removed in Disambiguate.
8a36a0cc
AC
7462
7463 Get_First_Interp (N, I, It);
8a36a0cc 7464 while Present (It.Nam) loop
d9d25d04 7465 if Is_Descendant_Of_Address (It.Typ) then
0e0eecec
ES
7466 Remove_Interp (I);
7467
7468 elsif not Is_Type (It.Nam) then
8a36a0cc 7469 Set_Entity (N, It.Nam);
8a36a0cc
AC
7470 end if;
7471
5950a3ac
AC
7472 Get_Next_Interp (I, It);
7473 end loop;
7474 end if;
7475 end;
30c20106 7476 end if;
3984e89a
AC
7477
7478 elsif Nkind (N) = N_Function_Call
7479 and then
7480 (Nkind (Name (N)) = N_Operator_Symbol
7481 or else
7482 (Nkind (Name (N)) = N_Expanded_Name
7483 and then
7484 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
7485 then
5950a3ac 7486
3984e89a
AC
7487 declare
7488 Arg1 : constant Node_Id := First (Parameter_Associations (N));
5950a3ac
AC
7489 U1 : constant Boolean :=
7490 Present (Universal_Interpretation (Arg1));
7491 U2 : constant Boolean :=
7492 Present (Next (Arg1)) and then
7493 Present (Universal_Interpretation (Next (Arg1)));
3984e89a
AC
7494
7495 begin
0e0eecec 7496 if U1 then
5950a3ac 7497 Remove_Address_Interpretations (First_Op);
0e0eecec 7498 end if;
3984e89a 7499
0e0eecec 7500 if U2 then
5950a3ac
AC
7501 Remove_Address_Interpretations (Second_Op);
7502 end if;
7503
7504 if not (U1 and U2) then
3984e89a
AC
7505 Get_First_Interp (N, I, It);
7506 while Present (It.Nam) loop
9f4fd324
AC
7507 if Scope (It.Nam) = Standard_Standard
7508 and then It.Typ = Base_Type (Etype (Abstract_Op))
7509 then
3984e89a
AC
7510 Remove_Interp (I);
7511 end if;
7512
7513 Get_Next_Interp (I, It);
7514 end loop;
7515 end if;
7516 end;
30c20106 7517 end if;
af152989 7518
401093c1
ES
7519 -- If the removal has left no valid interpretations, emit an error
7520 -- message now and label node as illegal.
af152989
AC
7521
7522 if Present (Abstract_Op) then
7523 Get_First_Interp (N, I, It);
7524
7525 if No (It.Nam) then
7526
6e73e3ab 7527 -- Removal of abstract operation left no viable candidate
af152989
AC
7528
7529 Set_Etype (N, Any_Type);
7530 Error_Msg_Sloc := Sloc (Abstract_Op);
7531 Error_Msg_NE
7532 ("cannot call abstract operation& declared#", N, Abstract_Op);
401093c1
ES
7533
7534 -- In Ada 2005, an abstract operation may disable predefined
7535 -- operators. Since the context is not yet known, we mark the
7536 -- predefined operators as potentially hidden. Do not include
7537 -- predefined operators when addresses are involved since this
7538 -- case is handled separately.
7539
d9d25d04 7540 elsif Ada_Version >= Ada_2005 and then not Address_Descendant then
401093c1
ES
7541 while Present (It.Nam) loop
7542 if Is_Numeric_Type (It.Typ)
7543 and then Scope (It.Typ) = Standard_Standard
7544 then
7545 Set_Abstract_Op (I, Abstract_Op);
7546 end if;
7547
7548 Get_Next_Interp (I, It);
7549 end loop;
af152989
AC
7550 end if;
7551 end if;
ee1a7572
AC
7552
7553 if Debug_Flag_V then
7554 Write_Str ("Remove_Abstract_Operations done: ");
7555 Write_Overloads (N);
7556 end if;
30c20106
AC
7557 end if;
7558 end Remove_Abstract_Operations;
7559
d50f4827
AC
7560 ----------------------------
7561 -- Try_Container_Indexing --
7562 ----------------------------
7563
7564 function Try_Container_Indexing
7565 (N : Node_Id;
7566 Prefix : Node_Id;
50878404 7567 Exprs : List_Id) return Boolean
d50f4827 7568 is
437244c7
AC
7569 Pref_Typ : constant Entity_Id := Etype (Prefix);
7570
0c3ef0cc
GD
7571 function Constant_Indexing_OK return Boolean;
7572 -- Constant_Indexing is legal if there is no Variable_Indexing defined
7573 -- for the type, or else node not a target of assignment, or an actual
7574 -- for an IN OUT or OUT formal (RM 4.1.6 (11)).
7575
211e7410
AC
7576 function Expr_Matches_In_Formal
7577 (Subp : Entity_Id;
7578 Par : Node_Id) return Boolean;
7579 -- Find formal corresponding to given indexed component that is an
7580 -- actual in a call. Note that the enclosing subprogram call has not
0c3ef0cc 7581 -- been analyzed yet, and the parameter list is not normalized, so
211e7410
AC
7582 -- that if the argument is a parameter association we must match it
7583 -- by name and not by position.
7584
437244c7
AC
7585 function Find_Indexing_Operations
7586 (T : Entity_Id;
7587 Nam : Name_Id;
7588 Is_Constant : Boolean) return Node_Id;
7589 -- Return a reference to the primitive operation of type T denoted by
7590 -- name Nam. If the operation is overloaded, the reference carries all
7591 -- interpretations. Flag Is_Constant should be set when the context is
7592 -- constant indexing.
7593
fa73fc3d
AC
7594 --------------------------
7595 -- Constant_Indexing_OK --
7596 --------------------------
7597
7598 function Constant_Indexing_OK return Boolean is
7599 Par : Node_Id;
7600
7601 begin
437244c7 7602 if No (Find_Value_Of_Aspect (Pref_Typ, Aspect_Variable_Indexing)) then
fa73fc3d
AC
7603 return True;
7604
7605 elsif not Is_Variable (Prefix) then
7606 return True;
7607 end if;
7608
7609 Par := N;
7610 while Present (Par) loop
7611 if Nkind (Parent (Par)) = N_Assignment_Statement
7612 and then Par = Name (Parent (Par))
7613 then
7614 return False;
7615
7616 -- The call may be overloaded, in which case we assume that its
7617 -- resolution does not depend on the type of the parameter that
7618 -- includes the indexing operation.
7619
7620 elsif Nkind_In (Parent (Par), N_Function_Call,
7621 N_Procedure_Call_Statement)
7622 and then Is_Entity_Name (Name (Parent (Par)))
7623 then
7624 declare
fa73fc3d
AC
7625 Proc : Entity_Id;
7626
7627 begin
7628 -- We should look for an interpretation with the proper
7629 -- number of formals, and determine whether it is an
31101470
AC
7630 -- In_Parameter, but for now we examine the formal that
7631 -- corresponds to the indexing, and assume that variable
7632 -- indexing is required if some interpretation has an
7633 -- assignable formal at that position. Still does not
7634 -- cover the most complex cases ???
fa73fc3d
AC
7635
7636 if Is_Overloaded (Name (Parent (Par))) then
31101470
AC
7637 declare
7638 Proc : constant Node_Id := Name (Parent (Par));
31101470
AC
7639 I : Interp_Index;
7640 It : Interp;
7641
7642 begin
7643 Get_First_Interp (Proc, I, It);
7644 while Present (It.Nam) loop
211e7410
AC
7645 if not Expr_Matches_In_Formal (It.Nam, Par) then
7646 return False;
7647 end if;
31101470
AC
7648
7649 Get_Next_Interp (I, It);
7650 end loop;
7651 end;
7652
0c3ef0cc 7653 -- All interpretations have a matching in-mode formal
211e7410 7654
fa73fc3d
AC
7655 return True;
7656
7657 else
7658 Proc := Entity (Name (Parent (Par)));
7659
7660 -- If this is an indirect call, get formals from
7661 -- designated type.
7662
7663 if Is_Access_Subprogram_Type (Etype (Proc)) then
7664 Proc := Designated_Type (Etype (Proc));
7665 end if;
7666 end if;
7667
211e7410 7668 return Expr_Matches_In_Formal (Proc, Par);
fa73fc3d
AC
7669 end;
7670
7671 elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
7672 return False;
7673
7674 -- If the indexed component is a prefix it may be the first actual
7675 -- of a prefixed call. Retrieve the called entity, if any, and
4e9ee595
AC
7676 -- check its first formal. Determine if the context is a procedure
7677 -- or function call.
fa73fc3d
AC
7678
7679 elsif Nkind (Parent (Par)) = N_Selected_Component then
7680 declare
7681 Sel : constant Node_Id := Selector_Name (Parent (Par));
7682 Nam : constant Entity_Id := Current_Entity (Sel);
7683
7684 begin
bc38dbb4
AC
7685 if Present (Nam) and then Is_Overloadable (Nam) then
7686 if Nkind (Parent (Parent (Par))) =
7687 N_Procedure_Call_Statement
4e9ee595
AC
7688 then
7689 return False;
7690
bc38dbb4
AC
7691 elsif Ekind (Nam) = E_Function
7692 and then Present (First_Formal (Nam))
7693 then
7694 return Ekind (First_Formal (Nam)) = E_In_Parameter;
4e9ee595 7695 end if;
fa73fc3d
AC
7696 end if;
7697 end;
7698
437244c7 7699 elsif Nkind (Par) in N_Op then
fa73fc3d
AC
7700 return True;
7701 end if;
7702
7703 Par := Parent (Par);
7704 end loop;
7705
7706 -- In all other cases, constant indexing is legal
7707
7708 return True;
7709 end Constant_Indexing_OK;
7710
f32eb591
AC
7711 ----------------------------
7712 -- Expr_Matches_In_Formal --
7713 ----------------------------
0c3ef0cc
GD
7714
7715 function Expr_Matches_In_Formal
7716 (Subp : Entity_Id;
7717 Par : Node_Id) return Boolean
7718 is
7719 Actual : Node_Id;
7720 Formal : Node_Id;
7721
7722 begin
7723 Formal := First_Formal (Subp);
7724 Actual := First (Parameter_Associations ((Parent (Par))));
7725
7726 if Nkind (Par) /= N_Parameter_Association then
7727
7728 -- Match by position
7729
7730 while Present (Actual) and then Present (Formal) loop
7731 exit when Actual = Par;
7732 Next (Actual);
7733
7734 if Present (Formal) then
7735 Next_Formal (Formal);
7736
7737 -- Otherwise this is a parameter mismatch, the error is
7738 -- reported elsewhere, or else variable indexing is implied.
7739
7740 else
7741 return False;
7742 end if;
7743 end loop;
7744
7745 else
7746 -- Match by name
7747
7748 while Present (Formal) loop
7749 exit when Chars (Formal) = Chars (Selector_Name (Par));
7750 Next_Formal (Formal);
7751
7752 if No (Formal) then
7753 return False;
7754 end if;
7755 end loop;
7756 end if;
7757
7758 return Present (Formal) and then Ekind (Formal) = E_In_Parameter;
7759 end Expr_Matches_In_Formal;
7760
437244c7
AC
7761 ------------------------------
7762 -- Find_Indexing_Operations --
7763 ------------------------------
7764
7765 function Find_Indexing_Operations
7766 (T : Entity_Id;
7767 Nam : Name_Id;
7768 Is_Constant : Boolean) return Node_Id
7769 is
7770 procedure Inspect_Declarations
7771 (Typ : Entity_Id;
7772 Ref : in out Node_Id);
7773 -- Traverse the declarative list where type Typ resides and collect
7774 -- all suitable interpretations in node Ref.
7775
7776 procedure Inspect_Primitives
7777 (Typ : Entity_Id;
7778 Ref : in out Node_Id);
7779 -- Traverse the list of primitive operations of type Typ and collect
7780 -- all suitable interpretations in node Ref.
7781
7782 function Is_OK_Candidate
7783 (Subp_Id : Entity_Id;
7784 Typ : Entity_Id) return Boolean;
7785 -- Determine whether subprogram Subp_Id is a suitable indexing
7786 -- operation for type Typ. To qualify as such, the subprogram must
7787 -- be a function, have at least two parameters, and the type of the
7788 -- first parameter must be either Typ, or Typ'Class, or access [to
7789 -- constant] with designated type Typ or Typ'Class.
7790
7791 procedure Record_Interp (Subp_Id : Entity_Id; Ref : in out Node_Id);
7792 -- Store subprogram Subp_Id as an interpretation in node Ref
7793
7794 --------------------------
7795 -- Inspect_Declarations --
7796 --------------------------
7797
7798 procedure Inspect_Declarations
7799 (Typ : Entity_Id;
7800 Ref : in out Node_Id)
7801 is
7802 Typ_Decl : constant Node_Id := Declaration_Node (Typ);
7803 Decl : Node_Id;
7804 Subp_Id : Entity_Id;
7805
7806 begin
2cc2e964 7807 -- Ensure that the routine is not called with itypes, which lack a
437244c7
AC
7808 -- declarative node.
7809
7810 pragma Assert (Present (Typ_Decl));
7811 pragma Assert (Is_List_Member (Typ_Decl));
7812
7813 Decl := First (List_Containing (Typ_Decl));
7814 while Present (Decl) loop
7815 if Nkind (Decl) = N_Subprogram_Declaration then
7816 Subp_Id := Defining_Entity (Decl);
7817
7818 if Is_OK_Candidate (Subp_Id, Typ) then
7819 Record_Interp (Subp_Id, Ref);
7820 end if;
7821 end if;
7822
7823 Next (Decl);
7824 end loop;
7825 end Inspect_Declarations;
7826
7827 ------------------------
7828 -- Inspect_Primitives --
7829 ------------------------
7830
7831 procedure Inspect_Primitives
7832 (Typ : Entity_Id;
7833 Ref : in out Node_Id)
7834 is
7835 Prim_Elmt : Elmt_Id;
7836 Prim_Id : Entity_Id;
7837
7838 begin
7839 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
7840 while Present (Prim_Elmt) loop
7841 Prim_Id := Node (Prim_Elmt);
7842
7843 if Is_OK_Candidate (Prim_Id, Typ) then
7844 Record_Interp (Prim_Id, Ref);
7845 end if;
7846
7847 Next_Elmt (Prim_Elmt);
7848 end loop;
7849 end Inspect_Primitives;
7850
7851 ---------------------
7852 -- Is_OK_Candidate --
7853 ---------------------
7854
7855 function Is_OK_Candidate
7856 (Subp_Id : Entity_Id;
7857 Typ : Entity_Id) return Boolean
7858 is
7859 Formal : Entity_Id;
7860 Formal_Typ : Entity_Id;
7861 Param_Typ : Node_Id;
7862
7863 begin
2cc2e964 7864 -- To classify as a suitable candidate, the subprogram must be a
437244c7
AC
7865 -- function whose name matches the argument of aspect Constant or
7866 -- Variable_Indexing.
7867
7868 if Ekind (Subp_Id) = E_Function and then Chars (Subp_Id) = Nam then
7869 Formal := First_Formal (Subp_Id);
7870
7871 -- The candidate requires at least two parameters
7872
7873 if Present (Formal) and then Present (Next_Formal (Formal)) then
7874 Formal_Typ := Empty;
7875 Param_Typ := Parameter_Type (Parent (Formal));
7876
7877 -- Use the designated type when the first parameter is of an
7878 -- access type.
7879
7880 if Nkind (Param_Typ) = N_Access_Definition
7881 and then Present (Subtype_Mark (Param_Typ))
7882 then
7883 -- When the context is a constant indexing, the access
7884 -- definition must be access-to-constant. This does not
7885 -- apply to variable indexing.
7886
7887 if not Is_Constant
7888 or else Constant_Present (Param_Typ)
7889 then
7890 Formal_Typ := Etype (Subtype_Mark (Param_Typ));
7891 end if;
7892
7893 -- Otherwise use the parameter type
7894
7895 else
7896 Formal_Typ := Etype (Param_Typ);
7897 end if;
7898
7899 if Present (Formal_Typ) then
7900
7901 -- Use the specific type when the parameter type is
7902 -- class-wide.
7903
7904 if Is_Class_Wide_Type (Formal_Typ) then
7905 Formal_Typ := Etype (Base_Type (Formal_Typ));
7906 end if;
7907
7908 -- Use the full view when the parameter type is private
7909 -- or incomplete.
7910
7911 if Is_Incomplete_Or_Private_Type (Formal_Typ)
7912 and then Present (Full_View (Formal_Typ))
7913 then
7914 Formal_Typ := Full_View (Formal_Typ);
7915 end if;
7916
7917 -- The type of the first parameter must denote the type
7918 -- of the container or acts as its ancestor type.
7919
7920 return
7921 Formal_Typ = Typ
7922 or else Is_Ancestor (Formal_Typ, Typ);
7923 end if;
7924 end if;
7925 end if;
7926
7927 return False;
7928 end Is_OK_Candidate;
7929
7930 -------------------
7931 -- Record_Interp --
7932 -------------------
7933
7934 procedure Record_Interp (Subp_Id : Entity_Id; Ref : in out Node_Id) is
7935 begin
7936 if Present (Ref) then
7937 Add_One_Interp (Ref, Subp_Id, Etype (Subp_Id));
7938
7939 -- Otherwise this is the first interpretation. Create a reference
7940 -- where all remaining interpretations will be collected.
7941
7942 else
7943 Ref := New_Occurrence_Of (Subp_Id, Sloc (T));
7944 end if;
7945 end Record_Interp;
7946
7947 -- Local variables
7948
7949 Ref : Node_Id;
7950 Typ : Entity_Id;
7951
7952 -- Start of processing for Find_Indexing_Operations
7953
7954 begin
7955 Typ := T;
7956
1e60643a
AC
7957 -- Use the specific type when the parameter type is class-wide
7958
437244c7
AC
7959 if Is_Class_Wide_Type (Typ) then
7960 Typ := Root_Type (Typ);
7961 end if;
7962
7963 Ref := Empty;
1e60643a 7964 Typ := Underlying_Type (Base_Type (Typ));
437244c7 7965
e11b776b
AC
7966 Inspect_Primitives (Typ, Ref);
7967
7968 -- Now look for explicit declarations of an indexing operation.
7969 -- If the type is private the operation may be declared in the
7970 -- visible part that contains the partial view.
7971
7972 if Is_Private_Type (T) then
7973 Inspect_Declarations (T, Ref);
7974 end if;
7975
437244c7
AC
7976 Inspect_Declarations (Typ, Ref);
7977
7978 return Ref;
7979 end Find_Indexing_Operations;
7980
fa73fc3d
AC
7981 -- Local variables
7982
d50f4827 7983 Loc : constant Source_Ptr := Sloc (N);
50878404 7984 Assoc : List_Id;
fa73fc3d 7985 C_Type : Entity_Id;
d50f4827
AC
7986 Func : Entity_Id;
7987 Func_Name : Node_Id;
7988 Indexing : Node_Id;
d50f4827 7989
437244c7
AC
7990 Is_Constant_Indexing : Boolean := False;
7991 -- This flag reflects the nature of the container indexing. Note that
7992 -- the context may be suited for constant indexing, but the type may
7993 -- lack a Constant_Indexing annotation.
7994
fa73fc3d
AC
7995 -- Start of processing for Try_Container_Indexing
7996
d50f4827 7997 begin
fa73fc3d
AC
7998 -- Node may have been analyzed already when testing for a prefixed
7999 -- call, in which case do not redo analysis.
8000
8001 if Present (Generalized_Indexing (N)) then
8002 return True;
8003 end if;
8004
437244c7 8005 C_Type := Pref_Typ;
f3296dd3 8006
fa73fc3d
AC
8007 -- If indexing a class-wide container, obtain indexing primitive from
8008 -- specific type.
f3296dd3
AC
8009
8010 if Is_Class_Wide_Type (C_Type) then
8011 C_Type := Etype (Base_Type (C_Type));
8012 end if;
d50f4827 8013
2cc2e964 8014 -- Check whether the type has a specified indexing aspect
d50f4827
AC
8015
8016 Func_Name := Empty;
d50f4827 8017
2cc2e964
AC
8018 -- The context is suitable for constant indexing, so obtain the name of
8019 -- the indexing function from aspect Constant_Indexing.
437244c7 8020
fa73fc3d 8021 if Constant_Indexing_OK then
d62520f3 8022 Func_Name :=
437244c7 8023 Find_Value_Of_Aspect (Pref_Typ, Aspect_Constant_Indexing);
9ee76313 8024 end if;
dedac3eb 8025
437244c7
AC
8026 if Present (Func_Name) then
8027 Is_Constant_Indexing := True;
8028
8029 -- Otherwise attempt variable indexing
8030
8031 else
d62520f3 8032 Func_Name :=
437244c7 8033 Find_Value_Of_Aspect (Pref_Typ, Aspect_Variable_Indexing);
9ee76313 8034 end if;
d50f4827 8035
437244c7
AC
8036 -- The type is not subject to either form of indexing, therefore the
8037 -- indexed component does not denote container indexing. If this is a
8038 -- true error, it is diagnosed by the caller.
d50f4827
AC
8039
8040 if No (Func_Name) then
57a8057a 8041
437244c7
AC
8042 -- The prefix itself may be an indexing of a container. Rewrite it
8043 -- as such and retry.
57a8057a 8044
437244c7
AC
8045 if Has_Implicit_Dereference (Pref_Typ) then
8046 Build_Explicit_Dereference (Prefix, First_Discriminant (Pref_Typ));
50878404 8047 return Try_Container_Indexing (N, Prefix, Exprs);
57a8057a 8048
437244c7
AC
8049 -- Otherwise this is definitely not container indexing
8050
57a8057a
AC
8051 else
8052 return False;
8053 end if;
3f433bc0 8054
6907542d
AC
8055 -- If the container type is derived from another container type, the
8056 -- value of the inherited aspect is the Reference operation declared
8057 -- for the parent type.
8058
fa73fc3d
AC
8059 -- However, Reference is also a primitive operation of the type, and the
8060 -- inherited operation has a different signature. We retrieve the right
8061 -- ones (the function may be overloaded) from the list of primitive
8062 -- operations of the derived type.
3f433bc0 8063
fa73fc3d
AC
8064 -- Note that predefined containers are typically all derived from one of
8065 -- the Controlled types. The code below is motivated by containers that
8066 -- are derived from other types with a Reference aspect.
6907542d 8067
f3296dd3 8068 elsif Is_Derived_Type (C_Type)
437244c7 8069 and then Etype (First_Formal (Entity (Func_Name))) /= Pref_Typ
6907542d 8070 then
437244c7
AC
8071 Func_Name :=
8072 Find_Indexing_Operations
8073 (T => C_Type,
8074 Nam => Chars (Func_Name),
8075 Is_Constant => Is_Constant_Indexing);
d50f4827
AC
8076 end if;
8077
50878404
AC
8078 Assoc := New_List (Relocate_Node (Prefix));
8079
5f50020a 8080 -- A generalized indexing may have nore than one index expression, so
50878404 8081 -- transfer all of them to the argument list to be used in the call.
5f50020a
ES
8082 -- Note that there may be named associations, in which case the node
8083 -- was rewritten earlier as a call, and has been transformed back into
8084 -- an indexed expression to share the following processing.
e917e3b8 8085
5f50020a
ES
8086 -- The generalized indexing node is the one on which analysis and
8087 -- resolution take place. Before expansion the original node is replaced
fa73fc3d
AC
8088 -- with the generalized indexing node, which is a call, possibly with a
8089 -- dereference operation.
50878404 8090
e917e3b8 8091 if Comes_From_Source (N) then
c86cf714 8092 Check_Compiler_Unit ("generalized indexing", N);
e917e3b8
AC
8093 end if;
8094
287aa0ed
AC
8095 -- Create argument list for function call that represents generalized
8096 -- indexing. Note that indices (i.e. actuals) may themselves be
8097 -- overloaded.
8098
50878404 8099 declare
287aa0ed
AC
8100 Arg : Node_Id;
8101 New_Arg : Node_Id;
8102
50878404
AC
8103 begin
8104 Arg := First (Exprs);
8105 while Present (Arg) loop
287aa0ed 8106 New_Arg := Relocate_Node (Arg);
43151cfd
ES
8107
8108 -- The arguments can be parameter associations, in which case the
8109 -- explicit actual parameter carries the overloadings.
8110
8111 if Nkind (New_Arg) /= N_Parameter_Association then
8112 Save_Interps (Arg, New_Arg);
8113 end if;
8114
287aa0ed 8115 Append (New_Arg, Assoc);
50878404
AC
8116 Next (Arg);
8117 end loop;
8118 end;
8119
d50f4827
AC
8120 if not Is_Overloaded (Func_Name) then
8121 Func := Entity (Func_Name);
f4ef7b06 8122
29ba9f52
RD
8123 Indexing :=
8124 Make_Function_Call (Loc,
8125 Name => New_Occurrence_Of (Func, Loc),
8126 Parameter_Associations => Assoc);
f4ef7b06 8127
5f50020a
ES
8128 Set_Parent (Indexing, Parent (N));
8129 Set_Generalized_Indexing (N, Indexing);
8130 Analyze (Indexing);
8131 Set_Etype (N, Etype (Indexing));
d50f4827 8132
76d49f49
ES
8133 -- If the return type of the indexing function is a reference type,
8134 -- add the dereference as a possible interpretation. Note that the
8135 -- indexing aspect may be a function that returns the element type
5f50020a
ES
8136 -- with no intervening implicit dereference, and that the reference
8137 -- discriminant is not the first discriminant.
76d49f49
ES
8138
8139 if Has_Discriminants (Etype (Func)) then
71ff3d18 8140 Check_Implicit_Dereference (N, Etype (Func));
76d49f49 8141 end if;
d50f4827
AC
8142
8143 else
90b510e4
AC
8144 -- If there are multiple indexing functions, build a function call
8145 -- and analyze it for each of the possible interpretations.
8146
8b4230c8
AC
8147 Indexing :=
8148 Make_Function_Call (Loc,
fa73fc3d
AC
8149 Name =>
8150 Make_Identifier (Loc, Chars (Func_Name)),
8b4230c8 8151 Parameter_Associations => Assoc);
5f50020a
ES
8152 Set_Parent (Indexing, Parent (N));
8153 Set_Generalized_Indexing (N, Indexing);
90b510e4
AC
8154 Set_Etype (N, Any_Type);
8155 Set_Etype (Name (Indexing), Any_Type);
d50f4827
AC
8156
8157 declare
8b4230c8
AC
8158 I : Interp_Index;
8159 It : Interp;
d50f4827
AC
8160 Success : Boolean;
8161
8162 begin
8163 Get_First_Interp (Func_Name, I, It);
5f50020a 8164 Set_Etype (Indexing, Any_Type);
90b510e4 8165
f4ef7b06 8166 -- Analyze each candidate function with the given actuals
0310af44 8167
d50f4827 8168 while Present (It.Nam) loop
5f50020a 8169 Analyze_One_Call (Indexing, It.Nam, False, Success);
0310af44
AC
8170 Get_Next_Interp (I, It);
8171 end loop;
32bba3c9 8172
0310af44
AC
8173 -- If there are several successful candidates, resolution will
8174 -- be by result. Mark the interpretations of the function name
8175 -- itself.
d50f4827 8176
0310af44
AC
8177 if Is_Overloaded (Indexing) then
8178 Get_First_Interp (Indexing, I, It);
90b510e4 8179
0310af44 8180 while Present (It.Nam) loop
90b510e4 8181 Add_One_Interp (Name (Indexing), It.Nam, It.Typ);
0310af44
AC
8182 Get_Next_Interp (I, It);
8183 end loop;
8184
8185 else
8186 Set_Etype (Name (Indexing), Etype (Indexing));
8187 end if;
8188
8189 -- Now add the candidate interpretations to the indexing node
8190 -- itself, to be replaced later by the function call.
8191
8192 if Is_Overloaded (Name (Indexing)) then
8193 Get_First_Interp (Name (Indexing), I, It);
8194
8195 while Present (It.Nam) loop
90b510e4
AC
8196 Add_One_Interp (N, It.Nam, It.Typ);
8197
6c7f7b8c
AC
8198 -- Add dereference interpretation if the result type has
8199 -- implicit reference discriminants.
d50f4827 8200
76d49f49 8201 if Has_Discriminants (Etype (It.Nam)) then
71ff3d18 8202 Check_Implicit_Dereference (N, Etype (It.Nam));
76d49f49 8203 end if;
32bba3c9 8204
0310af44
AC
8205 Get_Next_Interp (I, It);
8206 end loop;
8207
8208 else
8209 Set_Etype (N, Etype (Name (Indexing)));
8210 if Has_Discriminants (Etype (N)) then
8211 Check_Implicit_Dereference (N, Etype (N));
8212 end if;
8213 end if;
d50f4827
AC
8214 end;
8215 end if;
8216
5f50020a 8217 if Etype (Indexing) = Any_Type then
29ba9f52
RD
8218 Error_Msg_NE
8219 ("container cannot be indexed with&", N, Etype (First (Exprs)));
9ee76313 8220 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
9ee76313
AC
8221 end if;
8222
d50f4827
AC
8223 return True;
8224 end Try_Container_Indexing;
8225
996ae0b0
RK
8226 -----------------------
8227 -- Try_Indirect_Call --
8228 -----------------------
8229
8230 function Try_Indirect_Call
91b1417d
AC
8231 (N : Node_Id;
8232 Nam : Entity_Id;
8233 Typ : Entity_Id) return Boolean
996ae0b0 8234 is
24657705
HK
8235 Actual : Node_Id;
8236 Formal : Entity_Id;
8237
8a7988f5 8238 Call_OK : Boolean;
24657705 8239 pragma Warnings (Off, Call_OK);
996ae0b0
RK
8240
8241 begin
8a7988f5 8242 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
9de61fcb 8243
8a7988f5 8244 Actual := First_Actual (N);
fbf5a39b 8245 Formal := First_Formal (Designated_Type (Typ));
9de61fcb 8246 while Present (Actual) and then Present (Formal) loop
996ae0b0
RK
8247 if not Has_Compatible_Type (Actual, Etype (Formal)) then
8248 return False;
8249 end if;
8250
8251 Next (Actual);
8252 Next_Formal (Formal);
8253 end loop;
8254
8255 if No (Actual) and then No (Formal) then
8256 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
8257
8258 -- Nam is a candidate interpretation for the name in the call,
8259 -- if it is not an indirect call.
8260
8261 if not Is_Type (Nam)
8262 and then Is_Entity_Name (Name (N))
8263 then
8264 Set_Entity (Name (N), Nam);
8265 end if;
8266
8267 return True;
8b4230c8 8268
996ae0b0
RK
8269 else
8270 return False;
8271 end if;
8272 end Try_Indirect_Call;
8273
8274 ----------------------
8275 -- Try_Indexed_Call --
8276 ----------------------
8277
8278 function Try_Indexed_Call
aab883ec
ES
8279 (N : Node_Id;
8280 Nam : Entity_Id;
8281 Typ : Entity_Id;
8282 Skip_First : Boolean) return Boolean
996ae0b0 8283 is
5ff22245
ES
8284 Loc : constant Source_Ptr := Sloc (N);
8285 Actuals : constant List_Id := Parameter_Associations (N);
8286 Actual : Node_Id;
8287 Index : Entity_Id;
996ae0b0
RK
8288
8289 begin
fbf5a39b 8290 Actual := First (Actuals);
aab883ec
ES
8291
8292 -- If the call was originally written in prefix form, skip the first
8293 -- actual, which is obviously not defaulted.
8294
8295 if Skip_First then
8296 Next (Actual);
8297 end if;
8298
fbf5a39b 8299 Index := First_Index (Typ);
9de61fcb
RD
8300 while Present (Actual) and then Present (Index) loop
8301
996ae0b0
RK
8302 -- If the parameter list has a named association, the expression
8303 -- is definitely a call and not an indexed component.
8304
8305 if Nkind (Actual) = N_Parameter_Association then
8306 return False;
8307 end if;
8308
5ff22245
ES
8309 if Is_Entity_Name (Actual)
8310 and then Is_Type (Entity (Actual))
8311 and then No (Next (Actual))
8312 then
1c218ac3
AC
8313 -- A single actual that is a type name indicates a slice if the
8314 -- type is discrete, and an error otherwise.
8315
8316 if Is_Discrete_Type (Entity (Actual)) then
8317 Rewrite (N,
8318 Make_Slice (Loc,
22b77f68
RD
8319 Prefix =>
8320 Make_Function_Call (Loc,
8321 Name => Relocate_Node (Name (N))),
8322 Discrete_Range =>
1c218ac3
AC
8323 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
8324
8325 Analyze (N);
8326
8327 else
8328 Error_Msg_N ("invalid use of type in expression", Actual);
8329 Set_Etype (N, Any_Type);
8330 end if;
5ff22245 8331
5ff22245
ES
8332 return True;
8333
8334 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
996ae0b0
RK
8335 return False;
8336 end if;
8337
8338 Next (Actual);
8339 Next_Index (Index);
8340 end loop;
8341
8342 if No (Actual) and then No (Index) then
8343 Add_One_Interp (N, Nam, Component_Type (Typ));
8344
8345 -- Nam is a candidate interpretation for the name in the call,
8346 -- if it is not an indirect call.
8347
8348 if not Is_Type (Nam)
8349 and then Is_Entity_Name (Name (N))
8350 then
8351 Set_Entity (Name (N), Nam);
8352 end if;
8353
8354 return True;
8355 else
8356 return False;
8357 end if;
996ae0b0
RK
8358 end Try_Indexed_Call;
8359
35ae2ed8
AC
8360 --------------------------
8361 -- Try_Object_Operation --
8362 --------------------------
8363
8cf23b91
AC
8364 function Try_Object_Operation
8365 (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
8366 is
b67a385c 8367 K : constant Node_Kind := Nkind (Parent (N));
d3b00ce3 8368 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
b67a385c 8369 Loc : constant Source_Ptr := Sloc (N);
b67a385c 8370 Obj : constant Node_Id := Prefix (N);
0d57c6f4 8371
48c8c473 8372 Subprog : constant Node_Id :=
0d57c6f4
RD
8373 Make_Identifier (Sloc (Selector_Name (N)),
8374 Chars => Chars (Selector_Name (N)));
401093c1 8375 -- Identifier on which possible interpretations will be collected
0a36105d 8376
b67a385c 8377 Report_Error : Boolean := False;
8b4230c8
AC
8378 -- If no candidate interpretation matches the context, redo analysis
8379 -- with Report_Error True to provide additional information.
28d6470f
JM
8380
8381 Actual : Node_Id;
d469eabe 8382 Candidate : Entity_Id := Empty;
48c8c473 8383 New_Call_Node : Node_Id := Empty;
4c46b835 8384 Node_To_Replace : Node_Id;
28d6470f 8385 Obj_Type : Entity_Id := Etype (Obj);
48c8c473 8386 Success : Boolean := False;
0a36105d 8387
4c46b835
AC
8388 procedure Complete_Object_Operation
8389 (Call_Node : Node_Id;
0a36105d 8390 Node_To_Replace : Node_Id);
ec6078e3
ES
8391 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
8392 -- Call_Node, insert the object (or its dereference) as the first actual
8393 -- in the call, and complete the analysis of the call.
4c46b835 8394
0a36105d 8395 procedure Report_Ambiguity (Op : Entity_Id);
48c8c473
AC
8396 -- If a prefixed procedure call is ambiguous, indicate whether the call
8397 -- includes an implicit dereference or an implicit 'Access.
0a36105d 8398
4c46b835
AC
8399 procedure Transform_Object_Operation
8400 (Call_Node : out Node_Id;
0a36105d 8401 Node_To_Replace : out Node_Id);
ec6078e3 8402 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
d469eabe
HK
8403 -- Call_Node is the resulting subprogram call, Node_To_Replace is
8404 -- either N or the parent of N, and Subprog is a reference to the
8405 -- subprogram we are trying to match.
35ae2ed8
AC
8406
8407 function Try_Class_Wide_Operation
4c46b835
AC
8408 (Call_Node : Node_Id;
8409 Node_To_Replace : Node_Id) return Boolean;
48c8c473
AC
8410 -- Traverse all ancestor types looking for a class-wide subprogram for
8411 -- which the current operation is a valid non-dispatching call.
35ae2ed8 8412
0a36105d
JM
8413 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
8414 -- If prefix is overloaded, its interpretation may include different
48c8c473
AC
8415 -- tagged types, and we must examine the primitive operations and the
8416 -- class-wide operations of each in order to find candidate
0a36105d
JM
8417 -- interpretations for the call as a whole.
8418
4c46b835
AC
8419 function Try_Primitive_Operation
8420 (Call_Node : Node_Id;
8421 Node_To_Replace : Node_Id) return Boolean;
ec6078e3 8422 -- Traverse the list of primitive subprograms looking for a dispatching
48c8c473 8423 -- operation for which the current node is a valid call.
0a36105d
JM
8424
8425 function Valid_Candidate
8426 (Success : Boolean;
8427 Call : Node_Id;
48c8c473
AC
8428 Subp : Entity_Id) return Entity_Id;
8429 -- If the subprogram is a valid interpretation, record it, and add to
8430 -- the list of interpretations of Subprog. Otherwise return Empty.
0a36105d 8431
4c46b835
AC
8432 -------------------------------
8433 -- Complete_Object_Operation --
8434 -------------------------------
8435
8436 procedure Complete_Object_Operation
8437 (Call_Node : Node_Id;
0a36105d 8438 Node_To_Replace : Node_Id)
4c46b835 8439 is
b4592168
GD
8440 Control : constant Entity_Id := First_Formal (Entity (Subprog));
8441 Formal_Type : constant Entity_Id := Etype (Control);
ec6078e3
ES
8442 First_Actual : Node_Id;
8443
4c46b835 8444 begin
955871d3
AC
8445 -- Place the name of the operation, with its interpretations,
8446 -- on the rewritten call.
0a36105d 8447
ec6078e3
ES
8448 Set_Name (Call_Node, Subprog);
8449
0a36105d
JM
8450 First_Actual := First (Parameter_Associations (Call_Node));
8451
8b4230c8
AC
8452 -- For cross-reference purposes, treat the new node as being in the
8453 -- source if the original one is. Set entity and type, even though
8454 -- they may be overwritten during resolution if overloaded.
b67a385c
ES
8455
8456 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
8457 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
8458
ec6078e3 8459 if Nkind (N) = N_Selected_Component
3d918396 8460 and then not Inside_A_Generic
ec6078e3
ES
8461 then
8462 Set_Entity (Selector_Name (N), Entity (Subprog));
b2ab8c33 8463 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
ec6078e3
ES
8464 end if;
8465
8b4230c8
AC
8466 -- If need be, rewrite first actual as an explicit dereference. If
8467 -- the call is overloaded, the rewriting can only be done once the
8468 -- primitive operation is identified.
0a36105d
JM
8469
8470 if Is_Overloaded (Subprog) then
ec6078e3 8471
0a36105d
JM
8472 -- The prefix itself may be overloaded, and its interpretations
8473 -- must be propagated to the new actual in the call.
8474
8475 if Is_Overloaded (Obj) then
8476 Save_Interps (Obj, First_Actual);
8477 end if;
8478
8479 Rewrite (First_Actual, Obj);
8480
8481 elsif not Is_Access_Type (Formal_Type)
ec6078e3
ES
8482 and then Is_Access_Type (Etype (Obj))
8483 then
8484 Rewrite (First_Actual,
8485 Make_Explicit_Dereference (Sloc (Obj), Obj));
8486 Analyze (First_Actual);
fe45e59e 8487
401093c1
ES
8488 -- If we need to introduce an explicit dereference, verify that
8489 -- the resulting actual is compatible with the mode of the formal.
8490
8491 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
8492 and then Is_Access_Constant (Etype (Obj))
8493 then
8494 Error_Msg_NE
8495 ("expect variable in call to&", Prefix (N), Entity (Subprog));
8496 end if;
8497
d469eabe
HK
8498 -- Conversely, if the formal is an access parameter and the object
8499 -- is not, replace the actual with a 'Access reference. Its analysis
8500 -- will check that the object is aliased.
fe45e59e
ES
8501
8502 elsif Is_Access_Type (Formal_Type)
8503 and then not Is_Access_Type (Etype (Obj))
8504 then
b4592168
GD
8505 -- A special case: A.all'access is illegal if A is an access to a
8506 -- constant and the context requires an access to a variable.
8507
8508 if not Is_Access_Constant (Formal_Type) then
8509 if (Nkind (Obj) = N_Explicit_Dereference
8510 and then Is_Access_Constant (Etype (Prefix (Obj))))
8511 or else not Is_Variable (Obj)
8512 then
8513 Error_Msg_NE
ad075b50 8514 ("actual for & must be a variable", Obj, Control);
b4592168
GD
8515 end if;
8516 end if;
8517
fe45e59e
ES
8518 Rewrite (First_Actual,
8519 Make_Attribute_Reference (Loc,
8520 Attribute_Name => Name_Access,
8521 Prefix => Relocate_Node (Obj)));
0a36105d 8522
8f34c90b
AC
8523 -- If the object is not overloaded verify that taking access of
8524 -- it is legal. Otherwise check is made during resolution.
8525
8526 if not Is_Overloaded (Obj)
8527 and then not Is_Aliased_View (Obj)
8528 then
ed2233dc 8529 Error_Msg_NE
ad075b50 8530 ("object in prefixed call to & must be aliased "
715e529d 8531 & "(RM 4.1.3 (13 1/2))", Prefix (First_Actual), Subprog);
0a36105d
JM
8532 end if;
8533
fe45e59e
ES
8534 Analyze (First_Actual);
8535
ec6078e3 8536 else
0a36105d
JM
8537 if Is_Overloaded (Obj) then
8538 Save_Interps (Obj, First_Actual);
8539 end if;
ec6078e3 8540
0a36105d 8541 Rewrite (First_Actual, Obj);
aab883ec
ES
8542 end if;
8543
e699b76e
AC
8544 -- The operation is obtained from the dispatch table and not by
8545 -- visibility, and may be declared in a unit that is not explicitly
8546 -- referenced in the source, but is nevertheless required in the
8547 -- context of the current unit. Indicate that operation and its scope
8548 -- are referenced, to prevent spurious and misleading warnings. If
8549 -- the operation is overloaded, all primitives are in the same scope
8550 -- and we can use any of them.
8551
8552 Set_Referenced (Entity (Subprog), True);
8553 Set_Referenced (Scope (Entity (Subprog)), True);
8554
7ffd9312 8555 Rewrite (Node_To_Replace, Call_Node);
0a36105d
JM
8556
8557 -- Propagate the interpretations collected in subprog to the new
8558 -- function call node, to be resolved from context.
8559
8560 if Is_Overloaded (Subprog) then
8561 Save_Interps (Subprog, Node_To_Replace);
7415029d 8562
0a36105d 8563 else
28e18b4f
AC
8564 -- The type of the subprogram may be a limited view obtained
8565 -- transitively from another unit. If full view is available,
8566 -- use it to analyze call.
8567
8568 declare
8569 T : constant Entity_Id := Etype (Subprog);
8570 begin
8571 if From_Limited_With (T) then
8572 Set_Etype (Entity (Subprog), Available_View (T));
8573 end if;
8574 end;
8575
0a36105d 8576 Analyze (Node_To_Replace);
438ff97c 8577
199c6a10
AC
8578 -- If the operation has been rewritten into a call, which may get
8579 -- subsequently an explicit dereference, preserve the type on the
8580 -- original node (selected component or indexed component) for
8581 -- subsequent legality tests, e.g. Is_Variable. which examines
8582 -- the original node.
438ff97c
ES
8583
8584 if Nkind (Node_To_Replace) = N_Function_Call then
8585 Set_Etype
8586 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
8587 end if;
0a36105d 8588 end if;
4c46b835
AC
8589 end Complete_Object_Operation;
8590
0a36105d
JM
8591 ----------------------
8592 -- Report_Ambiguity --
8593 ----------------------
8594
8595 procedure Report_Ambiguity (Op : Entity_Id) is
0a36105d
JM
8596 Access_Actual : constant Boolean :=
8597 Is_Access_Type (Etype (Prefix (N)));
8cf23b91 8598 Access_Formal : Boolean := False;
0a36105d
JM
8599
8600 begin
8601 Error_Msg_Sloc := Sloc (Op);
8602
8cf23b91
AC
8603 if Present (First_Formal (Op)) then
8604 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
8605 end if;
8606
0a36105d
JM
8607 if Access_Formal and then not Access_Actual then
8608 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 8609 Error_Msg_N
8b4230c8
AC
8610 ("\possible interpretation "
8611 & "(inherited, with implicit 'Access) #", N);
0a36105d 8612 else
ed2233dc 8613 Error_Msg_N
0a36105d
JM
8614 ("\possible interpretation (with implicit 'Access) #", N);
8615 end if;
8616
8617 elsif not Access_Formal and then Access_Actual then
8618 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 8619 Error_Msg_N
8b4230c8 8620 ("\possible interpretation "
28e18b4f 8621 & "(inherited, with implicit dereference) #", N);
0a36105d 8622 else
ed2233dc 8623 Error_Msg_N
0a36105d
JM
8624 ("\possible interpretation (with implicit dereference) #", N);
8625 end if;
8626
8627 else
8628 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 8629 Error_Msg_N ("\possible interpretation (inherited)#", N);
0a36105d 8630 else
4e7a4f6e
AC
8631 Error_Msg_N -- CODEFIX
8632 ("\possible interpretation#", N);
0a36105d
JM
8633 end if;
8634 end if;
8635 end Report_Ambiguity;
8636
4c46b835
AC
8637 --------------------------------
8638 -- Transform_Object_Operation --
8639 --------------------------------
8640
8641 procedure Transform_Object_Operation
8642 (Call_Node : out Node_Id;
0a36105d 8643 Node_To_Replace : out Node_Id)
35ae2ed8 8644 is
ec6078e3
ES
8645 Dummy : constant Node_Id := New_Copy (Obj);
8646 -- Placeholder used as a first parameter in the call, replaced
8647 -- eventually by the proper object.
8648
d469eabe
HK
8649 Parent_Node : constant Node_Id := Parent (N);
8650
ec6078e3 8651 Actual : Node_Id;
d469eabe 8652 Actuals : List_Id;
ec6078e3 8653
35ae2ed8 8654 begin
40b4bc2d
AC
8655 -- Obj may already have been rewritten if it involves an implicit
8656 -- dereference (e.g. if it is an access to a limited view). Preserve
8657 -- a link to the original node for ASIS use.
8658
8659 if not Comes_From_Source (Obj) then
8660 Set_Original_Node (Dummy, Original_Node (Obj));
8661 end if;
8662
ec6078e3
ES
8663 -- Common case covering 1) Call to a procedure and 2) Call to a
8664 -- function that has some additional actuals.
35ae2ed8 8665
d3b00ce3 8666 if Nkind (Parent_Node) in N_Subprogram_Call
35ae2ed8 8667
ec6078e3
ES
8668 -- N is a selected component node containing the name of the
8669 -- subprogram. If N is not the name of the parent node we must
8670 -- not replace the parent node by the new construct. This case
8671 -- occurs when N is a parameterless call to a subprogram that
8672 -- is an actual parameter of a call to another subprogram. For
8673 -- example:
8674 -- Some_Subprogram (..., Obj.Operation, ...)
35ae2ed8 8675
ec6078e3 8676 and then Name (Parent_Node) = N
4c46b835
AC
8677 then
8678 Node_To_Replace := Parent_Node;
35ae2ed8 8679
ec6078e3 8680 Actuals := Parameter_Associations (Parent_Node);
d3e65aad 8681
ec6078e3
ES
8682 if Present (Actuals) then
8683 Prepend (Dummy, Actuals);
8684 else
8685 Actuals := New_List (Dummy);
8686 end if;
4c46b835
AC
8687
8688 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
8689 Call_Node :=
8690 Make_Procedure_Call_Statement (Loc,
48c8c473 8691 Name => New_Copy (Subprog),
4c46b835
AC
8692 Parameter_Associations => Actuals);
8693
8694 else
4c46b835
AC
8695 Call_Node :=
8696 Make_Function_Call (Loc,
8b4230c8 8697 Name => New_Copy (Subprog),
4c46b835 8698 Parameter_Associations => Actuals);
35ae2ed8
AC
8699 end if;
8700
d469eabe 8701 -- Before analysis, a function call appears as an indexed component
ec6078e3 8702 -- if there are no named associations.
758c442c 8703
c8307596 8704 elsif Nkind (Parent_Node) = N_Indexed_Component
ec6078e3
ES
8705 and then N = Prefix (Parent_Node)
8706 then
758c442c 8707 Node_To_Replace := Parent_Node;
ec6078e3
ES
8708 Actuals := Expressions (Parent_Node);
8709
8710 Actual := First (Actuals);
8711 while Present (Actual) loop
8712 Analyze (Actual);
8713 Next (Actual);
8714 end loop;
8715
8716 Prepend (Dummy, Actuals);
758c442c
GD
8717
8718 Call_Node :=
8719 Make_Function_Call (Loc,
8b4230c8 8720 Name => New_Copy (Subprog),
758c442c
GD
8721 Parameter_Associations => Actuals);
8722
d469eabe 8723 -- Parameterless call: Obj.F is rewritten as F (Obj)
35ae2ed8 8724
4c46b835
AC
8725 else
8726 Node_To_Replace := N;
8727
8728 Call_Node :=
8729 Make_Function_Call (Loc,
8b4230c8 8730 Name => New_Copy (Subprog),
ec6078e3 8731 Parameter_Associations => New_List (Dummy));
4c46b835
AC
8732 end if;
8733 end Transform_Object_Operation;
35ae2ed8
AC
8734
8735 ------------------------------
8736 -- Try_Class_Wide_Operation --
8737 ------------------------------
8738
8739 function Try_Class_Wide_Operation
4c46b835
AC
8740 (Call_Node : Node_Id;
8741 Node_To_Replace : Node_Id) return Boolean
35ae2ed8 8742 is
0a36105d
JM
8743 Anc_Type : Entity_Id;
8744 Matching_Op : Entity_Id := Empty;
8745 Error : Boolean;
8746
8747 procedure Traverse_Homonyms
8748 (Anc_Type : Entity_Id;
8749 Error : out Boolean);
8750 -- Traverse the homonym chain of the subprogram searching for those
8751 -- homonyms whose first formal has the Anc_Type's class-wide type,
d469eabe
HK
8752 -- or an anonymous access type designating the class-wide type. If
8753 -- an ambiguity is detected, then Error is set to True.
0a36105d
JM
8754
8755 procedure Traverse_Interfaces
8756 (Anc_Type : Entity_Id;
8757 Error : out Boolean);
8758 -- Traverse the list of interfaces, if any, associated with Anc_Type
8759 -- and search for acceptable class-wide homonyms associated with each
8760 -- interface. If an ambiguity is detected, then Error is set to True.
8761
8762 -----------------------
8763 -- Traverse_Homonyms --
8764 -----------------------
8765
8766 procedure Traverse_Homonyms
8767 (Anc_Type : Entity_Id;
8768 Error : out Boolean)
8769 is
8770 Cls_Type : Entity_Id;
8771 Hom : Entity_Id;
8772 Hom_Ref : Node_Id;
8773 Success : Boolean;
35ae2ed8 8774
0a36105d
JM
8775 begin
8776 Error := False;
ec6078e3 8777
b67a385c
ES
8778 Cls_Type := Class_Wide_Type (Anc_Type);
8779
4c46b835 8780 Hom := Current_Entity (Subprog);
401093c1 8781
383e179e
AC
8782 -- Find a non-hidden operation whose first parameter is of the
8783 -- class-wide type, a subtype thereof, or an anonymous access
a68d415b 8784 -- to same. If in an instance, the operation can be considered
8b4230c8
AC
8785 -- even if hidden (it may be hidden because the instantiation
8786 -- is expanded after the containing package has been analyzed).
401093c1 8787
35ae2ed8 8788 while Present (Hom) loop
6a2e4f0b 8789 if Ekind_In (Hom, E_Procedure, E_Function)
a68d415b 8790 and then (not Is_Hidden (Hom) or else In_Instance)
b67a385c 8791 and then Scope (Hom) = Scope (Anc_Type)
4c46b835 8792 and then Present (First_Formal (Hom))
b67a385c 8793 and then
401093c1 8794 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
b67a385c
ES
8795 or else
8796 (Is_Access_Type (Etype (First_Formal (Hom)))
8b4230c8
AC
8797 and then
8798 Ekind (Etype (First_Formal (Hom))) =
8799 E_Anonymous_Access_Type
8800 and then
8801 Base_Type
8802 (Designated_Type (Etype (First_Formal (Hom)))) =
0a36105d 8803 Cls_Type))
35ae2ed8 8804 then
88f47280
AC
8805 -- If the context is a procedure call, ignore functions
8806 -- in the name of the call.
8807
8808 if Ekind (Hom) = E_Function
8809 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
8810 and then N = Name (Parent (N))
8811 then
8812 goto Next_Hom;
11fa950b
AC
8813
8814 -- If the context is a function call, ignore procedures
8815 -- in the name of the call.
8816
8817 elsif Ekind (Hom) = E_Procedure
8818 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
8819 then
8820 goto Next_Hom;
88f47280
AC
8821 end if;
8822
ec6078e3 8823 Set_Etype (Call_Node, Any_Type);
0a36105d
JM
8824 Set_Is_Overloaded (Call_Node, False);
8825 Success := False;
4c46b835 8826
0a36105d 8827 if No (Matching_Op) then
e4494292 8828 Hom_Ref := New_Occurrence_Of (Hom, Sloc (Subprog));
0a36105d
JM
8829 Set_Etype (Call_Node, Any_Type);
8830 Set_Parent (Call_Node, Parent (Node_To_Replace));
4c46b835 8831
0a36105d 8832 Set_Name (Call_Node, Hom_Ref);
4c46b835 8833
0a36105d
JM
8834 Analyze_One_Call
8835 (N => Call_Node,
8836 Nam => Hom,
8837 Report => Report_Error,
8838 Success => Success,
8839 Skip_First => True);
4c46b835 8840
0a36105d
JM
8841 Matching_Op :=
8842 Valid_Candidate (Success, Call_Node, Hom);
4c46b835 8843
0a36105d
JM
8844 else
8845 Analyze_One_Call
8846 (N => Call_Node,
8847 Nam => Hom,
8848 Report => Report_Error,
8849 Success => Success,
8850 Skip_First => True);
8851
8852 if Present (Valid_Candidate (Success, Call_Node, Hom))
8853 and then Nkind (Call_Node) /= N_Function_Call
8854 then
ed2233dc 8855 Error_Msg_NE ("ambiguous call to&", N, Hom);
0a36105d
JM
8856 Report_Ambiguity (Matching_Op);
8857 Report_Ambiguity (Hom);
8858 Error := True;
8859 return;
8860 end if;
35ae2ed8
AC
8861 end if;
8862 end if;
8863
88f47280
AC
8864 <<Next_Hom>>
8865 Hom := Homonym (Hom);
35ae2ed8 8866 end loop;
0a36105d
JM
8867 end Traverse_Homonyms;
8868
8869 -------------------------
8870 -- Traverse_Interfaces --
8871 -------------------------
35ae2ed8 8872
0a36105d
JM
8873 procedure Traverse_Interfaces
8874 (Anc_Type : Entity_Id;
8875 Error : out Boolean)
8876 is
0a36105d
JM
8877 Intface_List : constant List_Id :=
8878 Abstract_Interface_List (Anc_Type);
d469eabe 8879 Intface : Node_Id;
0a36105d
JM
8880
8881 begin
8882 Error := False;
8883
8884 if Is_Non_Empty_List (Intface_List) then
8885 Intface := First (Intface_List);
8886 while Present (Intface) loop
8887
8888 -- Look for acceptable class-wide homonyms associated with
8889 -- the interface.
8890
8891 Traverse_Homonyms (Etype (Intface), Error);
8892
8893 if Error then
8894 return;
8895 end if;
8896
8897 -- Continue the search by looking at each of the interface's
8898 -- associated interface ancestors.
8899
8900 Traverse_Interfaces (Etype (Intface), Error);
8901
8902 if Error then
8903 return;
8904 end if;
8905
8906 Next (Intface);
8907 end loop;
8908 end if;
8909 end Traverse_Interfaces;
8910
8911 -- Start of processing for Try_Class_Wide_Operation
8912
8913 begin
8cf23b91
AC
8914 -- If we are searching only for conflicting class-wide subprograms
8915 -- then initialize directly Matching_Op with the target entity.
8916
8917 if CW_Test_Only then
8918 Matching_Op := Entity (Selector_Name (N));
8919 end if;
8920
d469eabe
HK
8921 -- Loop through ancestor types (including interfaces), traversing
8922 -- the homonym chain of the subprogram, trying out those homonyms
8923 -- whose first formal has the class-wide type of the ancestor, or
8924 -- an anonymous access type designating the class-wide type.
0a36105d
JM
8925
8926 Anc_Type := Obj_Type;
8927 loop
8928 -- Look for a match among homonyms associated with the ancestor
8929
8930 Traverse_Homonyms (Anc_Type, Error);
8931
8932 if Error then
8933 return True;
8934 end if;
8935
8936 -- Continue the search for matches among homonyms associated with
8937 -- any interfaces implemented by the ancestor.
8938
8939 Traverse_Interfaces (Anc_Type, Error);
8940
8941 if Error then
8942 return True;
8943 end if;
35ae2ed8 8944
4c46b835
AC
8945 exit when Etype (Anc_Type) = Anc_Type;
8946 Anc_Type := Etype (Anc_Type);
35ae2ed8
AC
8947 end loop;
8948
0a36105d
JM
8949 if Present (Matching_Op) then
8950 Set_Etype (Call_Node, Etype (Matching_Op));
8951 end if;
ec6078e3 8952
0a36105d 8953 return Present (Matching_Op);
35ae2ed8
AC
8954 end Try_Class_Wide_Operation;
8955
0a36105d
JM
8956 -----------------------------------
8957 -- Try_One_Prefix_Interpretation --
8958 -----------------------------------
8959
8960 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
48c8c473 8961 Prev_Obj_Type : constant Entity_Id := Obj_Type;
e3d9f448
AC
8962 -- If the interpretation does not have a valid candidate type,
8963 -- preserve current value of Obj_Type for subsequent errors.
8964
0a36105d
JM
8965 begin
8966 Obj_Type := T;
8967
8968 if Is_Access_Type (Obj_Type) then
8969 Obj_Type := Designated_Type (Obj_Type);
8970 end if;
8971
48c8c473
AC
8972 if Ekind_In (Obj_Type, E_Private_Subtype,
8973 E_Record_Subtype_With_Private)
8974 then
0a36105d
JM
8975 Obj_Type := Base_Type (Obj_Type);
8976 end if;
8977
8978 if Is_Class_Wide_Type (Obj_Type) then
8979 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
8980 end if;
8981
8982 -- The type may have be obtained through a limited_with clause,
8983 -- in which case the primitive operations are available on its
401093c1 8984 -- non-limited view. If still incomplete, retrieve full view.
0a36105d
JM
8985
8986 if Ekind (Obj_Type) = E_Incomplete_Type
7b56a91b 8987 and then From_Limited_With (Obj_Type)
47346923 8988 and then Has_Non_Limited_View (Obj_Type)
0a36105d 8989 then
401093c1 8990 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
0a36105d
JM
8991 end if;
8992
8993 -- If the object is not tagged, or the type is still an incomplete
48c8c473
AC
8994 -- type, this is not a prefixed call. Restore the previous type as
8995 -- the current one is not a legal candidate.
0a36105d
JM
8996
8997 if not Is_Tagged_Type (Obj_Type)
8998 or else Is_Incomplete_Type (Obj_Type)
8999 then
e3d9f448 9000 Obj_Type := Prev_Obj_Type;
0a36105d
JM
9001 return;
9002 end if;
9003
11fa950b
AC
9004 declare
9005 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
9006 CW_Result : Boolean;
9007 Prim_Result : Boolean;
9008 pragma Unreferenced (CW_Result);
9009
9010 begin
8cf23b91
AC
9011 if not CW_Test_Only then
9012 Prim_Result :=
9013 Try_Primitive_Operation
9014 (Call_Node => New_Call_Node,
9015 Node_To_Replace => Node_To_Replace);
9016 end if;
11fa950b
AC
9017
9018 -- Check if there is a class-wide subprogram covering the
9019 -- primitive. This check must be done even if a candidate
9020 -- was found in order to report ambiguous calls.
9021
48c8c473 9022 if not Prim_Result then
11fa950b
AC
9023 CW_Result :=
9024 Try_Class_Wide_Operation
9025 (Call_Node => New_Call_Node,
9026 Node_To_Replace => Node_To_Replace);
9027
9028 -- If we found a primitive we search for class-wide subprograms
9029 -- using a duplicate of the call node (done to avoid missing its
9030 -- decoration if there is no ambiguity).
9031
9032 else
9033 CW_Result :=
9034 Try_Class_Wide_Operation
9035 (Call_Node => Dup_Call_Node,
9036 Node_To_Replace => Node_To_Replace);
9037 end if;
9038 end;
0a36105d
JM
9039 end Try_One_Prefix_Interpretation;
9040
4c46b835
AC
9041 -----------------------------
9042 -- Try_Primitive_Operation --
9043 -----------------------------
35ae2ed8 9044
4c46b835
AC
9045 function Try_Primitive_Operation
9046 (Call_Node : Node_Id;
9047 Node_To_Replace : Node_Id) return Boolean
35ae2ed8 9048 is
6e73e3ab
AC
9049 Elmt : Elmt_Id;
9050 Prim_Op : Entity_Id;
0a36105d
JM
9051 Matching_Op : Entity_Id := Empty;
9052 Prim_Op_Ref : Node_Id := Empty;
9053
8b4230c8 9054 Corr_Type : Entity_Id := Empty;
0a36105d
JM
9055 -- If the prefix is a synchronized type, the controlling type of
9056 -- the primitive operation is the corresponding record type, else
9057 -- this is the object type itself.
9058
8b4230c8 9059 Success : Boolean := False;
35ae2ed8 9060
401093c1
ES
9061 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
9062 -- For tagged types the candidate interpretations are found in
9063 -- the list of primitive operations of the type and its ancestors.
9064 -- For formal tagged types we have to find the operations declared
9065 -- in the same scope as the type (including in the generic formal
9066 -- part) because the type itself carries no primitive operations,
9067 -- except for formal derived types that inherit the operations of
9068 -- the parent and progenitors.
8b4230c8 9069 --
d469eabe
HK
9070 -- If the context is a generic subprogram body, the generic formals
9071 -- are visible by name, but are not in the entity list of the
9072 -- subprogram because that list starts with the subprogram formals.
9073 -- We retrieve the candidate operations from the generic declaration.
401093c1 9074
84dad556
AC
9075 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id;
9076 -- Prefix notation can also be used on operations that are not
9077 -- primitives of the type, but are declared in the same immediate
9078 -- declarative part, which can only mean the corresponding package
9079 -- body (See RM 4.1.3 (9.2/3)). If we are in that body we extend the
9080 -- list of primitives with body operations with the same name that
9081 -- may be candidates, so that Try_Primitive_Operations can examine
9082 -- them if no real primitive is found.
9083
dfcfdc0a
AC
9084 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
9085 -- An operation that overrides an inherited operation in the private
9086 -- part of its package may be hidden, but if the inherited operation
9087 -- is visible a direct call to it will dispatch to the private one,
9088 -- which is therefore a valid candidate.
9089
42f11e4c
AC
9090 function Names_Match
9091 (Obj_Type : Entity_Id;
9092 Prim_Op : Entity_Id;
9093 Subprog : Entity_Id) return Boolean;
9094 -- Return True if the names of Prim_Op and Subprog match. If Obj_Type
9095 -- is a protected type then compare also the original name of Prim_Op
9096 -- with the name of Subprog (since the expander may have added a
9097 -- prefix to its original name --see Exp_Ch9.Build_Selected_Name).
9098
ec6078e3
ES
9099 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
9100 -- Verify that the prefix, dereferenced if need be, is a valid
9101 -- controlling argument in a call to Op. The remaining actuals
9102 -- are checked in the subsequent call to Analyze_One_Call.
35ae2ed8 9103
401093c1
ES
9104 ------------------------------
9105 -- Collect_Generic_Type_Ops --
9106 ------------------------------
9107
9108 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
9109 Bas : constant Entity_Id := Base_Type (T);
9110 Candidates : constant Elist_Id := New_Elmt_List;
9111 Subp : Entity_Id;
9112 Formal : Entity_Id;
9113
d469eabe
HK
9114 procedure Check_Candidate;
9115 -- The operation is a candidate if its first parameter is a
9116 -- controlling operand of the desired type.
9117
9118 -----------------------
9119 -- Check_Candidate; --
9120 -----------------------
9121
9122 procedure Check_Candidate is
9123 begin
9124 Formal := First_Formal (Subp);
9125
9126 if Present (Formal)
9127 and then Is_Controlling_Formal (Formal)
9128 and then
9129 (Base_Type (Etype (Formal)) = Bas
9130 or else
9131 (Is_Access_Type (Etype (Formal))
9132 and then Designated_Type (Etype (Formal)) = Bas))
9133 then
9134 Append_Elmt (Subp, Candidates);
9135 end if;
9136 end Check_Candidate;
9137
9138 -- Start of processing for Collect_Generic_Type_Ops
9139
401093c1
ES
9140 begin
9141 if Is_Derived_Type (T) then
9142 return Primitive_Operations (T);
9143
bce79204
AC
9144 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
9145
d469eabe
HK
9146 -- Scan the list of generic formals to find subprograms
9147 -- that may have a first controlling formal of the type.
9148
8b4230c8
AC
9149 if Nkind (Unit_Declaration_Node (Scope (T))) =
9150 N_Generic_Subprogram_Declaration
bb10b891
AC
9151 then
9152 declare
9153 Decl : Node_Id;
9154
9155 begin
9156 Decl :=
9157 First (Generic_Formal_Declarations
9158 (Unit_Declaration_Node (Scope (T))));
9159 while Present (Decl) loop
9160 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
9161 Subp := Defining_Entity (Decl);
9162 Check_Candidate;
9163 end if;
d469eabe 9164
bb10b891
AC
9165 Next (Decl);
9166 end loop;
9167 end;
9168 end if;
d469eabe
HK
9169 return Candidates;
9170
401093c1
ES
9171 else
9172 -- Scan the list of entities declared in the same scope as
9173 -- the type. In general this will be an open scope, given that
9174 -- the call we are analyzing can only appear within a generic
9175 -- declaration or body (either the one that declares T, or a
9176 -- child unit).
9177
bb10b891
AC
9178 -- For a subtype representing a generic actual type, go to the
9179 -- base type.
9180
9181 if Is_Generic_Actual_Type (T) then
9182 Subp := First_Entity (Scope (Base_Type (T)));
9183 else
9184 Subp := First_Entity (Scope (T));
9185 end if;
9186
401093c1
ES
9187 while Present (Subp) loop
9188 if Is_Overloadable (Subp) then
d469eabe 9189 Check_Candidate;
401093c1
ES
9190 end if;
9191
9192 Next_Entity (Subp);
9193 end loop;
9194
9195 return Candidates;
9196 end if;
9197 end Collect_Generic_Type_Ops;
9198
84dad556
AC
9199 ----------------------------
9200 -- Extended_Primitive_Ops --
9201 ----------------------------
9202
9203 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id is
9204 Type_Scope : constant Entity_Id := Scope (T);
9205
9206 Body_Decls : List_Id;
9207 Op_Found : Boolean;
9208 Op : Entity_Id;
9209 Op_List : Elist_Id;
9210
9211 begin
9212 Op_List := Primitive_Operations (T);
9213
9214 if Ekind (Type_Scope) = E_Package
9215 and then In_Package_Body (Type_Scope)
9216 and then In_Open_Scopes (Type_Scope)
9217 then
9218 -- Retrieve list of declarations of package body.
9219
9220 Body_Decls :=
9221 Declarations
9222 (Unit_Declaration_Node
9223 (Corresponding_Body
9224 (Unit_Declaration_Node (Type_Scope))));
9225
9226 Op := Current_Entity (Subprog);
9227 Op_Found := False;
9228 while Present (Op) loop
9229 if Comes_From_Source (Op)
9230 and then Is_Overloadable (Op)
e23e04db
AC
9231
9232 -- Exclude overriding primitive operations of a type
9233 -- extension declared in the package body, to prevent
9234 -- duplicates in extended list.
9235
9236 and then not Is_Primitive (Op)
84dad556
AC
9237 and then Is_List_Member (Unit_Declaration_Node (Op))
9238 and then List_Containing (Unit_Declaration_Node (Op)) =
9239 Body_Decls
9240 then
9241 if not Op_Found then
9242
9243 -- Copy list of primitives so it is not affected for
9244 -- other uses.
9245
9246 Op_List := New_Copy_Elist (Op_List);
9247 Op_Found := True;
9248 end if;
9249
9250 Append_Elmt (Op, Op_List);
9251 end if;
9252
9253 Op := Homonym (Op);
9254 end loop;
9255 end if;
9256
9257 return Op_List;
9258 end Extended_Primitive_Ops;
9259
dfcfdc0a
AC
9260 ---------------------------
9261 -- Is_Private_Overriding --
9262 ---------------------------
9263
9264 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
9265 Visible_Op : constant Entity_Id := Homonym (Op);
9266
9267 begin
9268 return Present (Visible_Op)
6465b6a7 9269 and then Scope (Op) = Scope (Visible_Op)
dfcfdc0a
AC
9270 and then not Comes_From_Source (Visible_Op)
9271 and then Alias (Visible_Op) = Op
9272 and then not Is_Hidden (Visible_Op);
9273 end Is_Private_Overriding;
9274
42f11e4c
AC
9275 -----------------
9276 -- Names_Match --
9277 -----------------
9278
9279 function Names_Match
9280 (Obj_Type : Entity_Id;
9281 Prim_Op : Entity_Id;
9282 Subprog : Entity_Id) return Boolean is
9283 begin
9284 -- Common case: exact match
9285
9286 if Chars (Prim_Op) = Chars (Subprog) then
9287 return True;
9288
9289 -- For protected type primitives the expander may have built the
9290 -- name of the dispatching primitive prepending the type name to
9291 -- avoid conflicts with the name of the protected subprogram (see
9292 -- Exp_Ch9.Build_Selected_Name).
9293
9294 elsif Is_Protected_Type (Obj_Type) then
bac5ba15
AC
9295 return
9296 Present (Original_Protected_Subprogram (Prim_Op))
9297 and then Chars (Original_Protected_Subprogram (Prim_Op)) =
9298 Chars (Subprog);
42f11e4c
AC
9299 end if;
9300
9301 return False;
9302 end Names_Match;
9303
ec6078e3
ES
9304 -----------------------------
9305 -- Valid_First_Argument_Of --
9306 -----------------------------
35ae2ed8 9307
ec6078e3 9308 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
9febb58f 9309 Typ : Entity_Id := Etype (First_Formal (Op));
35ae2ed8 9310
ec6078e3 9311 begin
9febb58f
JM
9312 if Is_Concurrent_Type (Typ)
9313 and then Present (Corresponding_Record_Type (Typ))
9314 then
9315 Typ := Corresponding_Record_Type (Typ);
9316 end if;
9317
9313a26a
AC
9318 -- Simple case. Object may be a subtype of the tagged type or may
9319 -- be the corresponding record of a synchronized type.
5d09245e 9320
aab883ec 9321 return Obj_Type = Typ
d469eabe 9322 or else Base_Type (Obj_Type) = Typ
0a36105d
JM
9323 or else Corr_Type = Typ
9324
913e4b36 9325 -- Object may be of a derived type whose parent has unknown
9313a26a
AC
9326 -- discriminants, in which case the type matches the underlying
9327 -- record view of its base.
913e4b36 9328
9313a26a
AC
9329 or else
9330 (Has_Unknown_Discriminants (Typ)
9331 and then Typ = Underlying_Record_View (Base_Type (Obj_Type)))
913e4b36 9332
0a36105d 9333 -- Prefix can be dereferenced
725e2a15 9334
ec6078e3 9335 or else
0a36105d
JM
9336 (Is_Access_Type (Corr_Type)
9337 and then Designated_Type (Corr_Type) = Typ)
5d09245e 9338
9313a26a
AC
9339 -- Formal is an access parameter, for which the object can
9340 -- provide an access.
35ae2ed8 9341
ec6078e3
ES
9342 or else
9343 (Ekind (Typ) = E_Anonymous_Access_Type
9fde638d
RD
9344 and then
9345 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
ec6078e3 9346 end Valid_First_Argument_Of;
35ae2ed8 9347
ec6078e3 9348 -- Start of processing for Try_Primitive_Operation
35ae2ed8 9349
ec6078e3 9350 begin
d469eabe 9351 -- Look for subprograms in the list of primitive operations. The name
0a36105d
JM
9352 -- must be identical, and the kind of call indicates the expected
9353 -- kind of operation (function or procedure). If the type is a
d469eabe 9354 -- (tagged) synchronized type, the primitive ops are attached to the
b4592168 9355 -- corresponding record (base) type.
aab883ec
ES
9356
9357 if Is_Concurrent_Type (Obj_Type) then
bb10b891
AC
9358 if Present (Corresponding_Record_Type (Obj_Type)) then
9359 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
48c8c473 9360 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
bb10b891
AC
9361 else
9362 Corr_Type := Obj_Type;
48c8c473 9363 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
15e4986c
JM
9364 end if;
9365
401093c1 9366 elsif not Is_Generic_Type (Obj_Type) then
0a36105d 9367 Corr_Type := Obj_Type;
48c8c473 9368 Elmt := First_Elmt (Extended_Primitive_Ops (Obj_Type));
401093c1
ES
9369
9370 else
9371 Corr_Type := Obj_Type;
48c8c473 9372 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
aab883ec 9373 end if;
35ae2ed8 9374
ec6078e3
ES
9375 while Present (Elmt) loop
9376 Prim_Op := Node (Elmt);
9377
42f11e4c 9378 if Names_Match (Obj_Type, Prim_Op, Subprog)
ec6078e3
ES
9379 and then Present (First_Formal (Prim_Op))
9380 and then Valid_First_Argument_Of (Prim_Op)
fe45e59e 9381 and then
7415029d 9382 (Nkind (Call_Node) = N_Function_Call)
48c8c473 9383 =
8b4230c8 9384 (Ekind (Prim_Op) = E_Function)
ec6078e3 9385 then
b67a385c 9386 -- Ada 2005 (AI-251): If this primitive operation corresponds
8b4230c8 9387 -- to an immediate ancestor interface there is no need to add
b67a385c
ES
9388 -- it to the list of interpretations; the corresponding aliased
9389 -- primitive is also in this list of primitive operations and
9390 -- will be used instead.
fe45e59e 9391
ce2b6ba5
JM
9392 if (Present (Interface_Alias (Prim_Op))
9393 and then Is_Ancestor (Find_Dispatching_Type
9394 (Alias (Prim_Op)), Corr_Type))
0a36105d 9395
dfcfdc0a
AC
9396 -- Do not consider hidden primitives unless the type is in an
9397 -- open scope or we are within an instance, where visibility
9398 -- is known to be correct, or else if this is an overriding
9399 -- operation in the private part for an inherited operation.
0a36105d 9400
dfcfdc0a
AC
9401 or else (Is_Hidden (Prim_Op)
9402 and then not Is_Immediately_Visible (Obj_Type)
9403 and then not In_Instance
9404 and then not Is_Private_Overriding (Prim_Op))
fe45e59e
ES
9405 then
9406 goto Continue;
9407 end if;
9408
0a36105d
JM
9409 Set_Etype (Call_Node, Any_Type);
9410 Set_Is_Overloaded (Call_Node, False);
9411
9412 if No (Matching_Op) then
e4494292 9413 Prim_Op_Ref := New_Occurrence_Of (Prim_Op, Sloc (Subprog));
b67a385c 9414 Candidate := Prim_Op;
35ae2ed8 9415
fe45e59e 9416 Set_Parent (Call_Node, Parent (Node_To_Replace));
35ae2ed8 9417
fe45e59e 9418 Set_Name (Call_Node, Prim_Op_Ref);
0a36105d 9419 Success := False;
35ae2ed8 9420
fe45e59e
ES
9421 Analyze_One_Call
9422 (N => Call_Node,
9423 Nam => Prim_Op,
b67a385c 9424 Report => Report_Error,
fe45e59e
ES
9425 Success => Success,
9426 Skip_First => True);
35ae2ed8 9427
0a36105d 9428 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
fe45e59e 9429
d469eabe
HK
9430 -- More than one interpretation, collect for subsequent
9431 -- disambiguation. If this is a procedure call and there
9432 -- is another match, report ambiguity now.
0a36105d 9433
d469eabe 9434 else
0a36105d
JM
9435 Analyze_One_Call
9436 (N => Call_Node,
9437 Nam => Prim_Op,
9438 Report => Report_Error,
9439 Success => Success,
9440 Skip_First => True);
fe45e59e 9441
0a36105d
JM
9442 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
9443 and then Nkind (Call_Node) /= N_Function_Call
9444 then
ed2233dc 9445 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
0a36105d
JM
9446 Report_Ambiguity (Matching_Op);
9447 Report_Ambiguity (Prim_Op);
9448 return True;
9449 end if;
4c46b835
AC
9450 end if;
9451 end if;
35ae2ed8 9452
fe45e59e 9453 <<Continue>>
4c46b835
AC
9454 Next_Elmt (Elmt);
9455 end loop;
35ae2ed8 9456
0a36105d
JM
9457 if Present (Matching_Op) then
9458 Set_Etype (Call_Node, Etype (Matching_Op));
fe45e59e
ES
9459 end if;
9460
0a36105d 9461 return Present (Matching_Op);
4c46b835 9462 end Try_Primitive_Operation;
35ae2ed8 9463
48c8c473
AC
9464 ---------------------
9465 -- Valid_Candidate --
9466 ---------------------
9467
9468 function Valid_Candidate
9469 (Success : Boolean;
9470 Call : Node_Id;
9471 Subp : Entity_Id) return Entity_Id
9472 is
9473 Arr_Type : Entity_Id;
9474 Comp_Type : Entity_Id;
9475
9476 begin
9477 -- If the subprogram is a valid interpretation, record it in global
9478 -- variable Subprog, to collect all possible overloadings.
9479
9480 if Success then
9481 if Subp /= Entity (Subprog) then
9482 Add_One_Interp (Subprog, Subp, Etype (Subp));
9483 end if;
9484 end if;
9485
9486 -- If the call may be an indexed call, retrieve component type of
9487 -- resulting expression, and add possible interpretation.
9488
9489 Arr_Type := Empty;
9490 Comp_Type := Empty;
9491
9492 if Nkind (Call) = N_Function_Call
9493 and then Nkind (Parent (N)) = N_Indexed_Component
9494 and then Needs_One_Actual (Subp)
9495 then
9496 if Is_Array_Type (Etype (Subp)) then
9497 Arr_Type := Etype (Subp);
9498
9499 elsif Is_Access_Type (Etype (Subp))
9500 and then Is_Array_Type (Designated_Type (Etype (Subp)))
9501 then
9502 Arr_Type := Designated_Type (Etype (Subp));
9503 end if;
9504 end if;
9505
9506 if Present (Arr_Type) then
9507
9508 -- Verify that the actuals (excluding the object) match the types
9509 -- of the indexes.
9510
9511 declare
9512 Actual : Node_Id;
9513 Index : Node_Id;
9514
9515 begin
9516 Actual := Next (First_Actual (Call));
9517 Index := First_Index (Arr_Type);
9518 while Present (Actual) and then Present (Index) loop
9519 if not Has_Compatible_Type (Actual, Etype (Index)) then
9520 Arr_Type := Empty;
9521 exit;
9522 end if;
9523
9524 Next_Actual (Actual);
9525 Next_Index (Index);
9526 end loop;
9527
9528 if No (Actual)
9529 and then No (Index)
9530 and then Present (Arr_Type)
9531 then
9532 Comp_Type := Component_Type (Arr_Type);
9533 end if;
9534 end;
9535
9536 if Present (Comp_Type)
9537 and then Etype (Subprog) /= Comp_Type
9538 then
9539 Add_One_Interp (Subprog, Subp, Comp_Type);
9540 end if;
9541 end if;
9542
9543 if Etype (Call) /= Any_Type then
9544 return Subp;
9545 else
9546 return Empty;
9547 end if;
9548 end Valid_Candidate;
9549
4c46b835 9550 -- Start of processing for Try_Object_Operation
35ae2ed8 9551
4c46b835 9552 begin
0a36105d 9553 Analyze_Expression (Obj);
ec6078e3 9554
0a36105d 9555 -- Analyze the actuals if node is known to be a subprogram call
28d6470f
JM
9556
9557 if Is_Subprg_Call and then N = Name (Parent (N)) then
9558 Actual := First (Parameter_Associations (Parent (N)));
9559 while Present (Actual) loop
725e2a15 9560 Analyze_Expression (Actual);
28d6470f
JM
9561 Next (Actual);
9562 end loop;
9563 end if;
5d09245e 9564
ec6078e3
ES
9565 -- Build a subprogram call node, using a copy of Obj as its first
9566 -- actual. This is a placeholder, to be replaced by an explicit
9567 -- dereference when needed.
4c46b835 9568
ec6078e3
ES
9569 Transform_Object_Operation
9570 (Call_Node => New_Call_Node,
0a36105d 9571 Node_To_Replace => Node_To_Replace);
4c46b835 9572
ec6078e3 9573 Set_Etype (New_Call_Node, Any_Type);
0a36105d 9574 Set_Etype (Subprog, Any_Type);
ec6078e3 9575 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
4c46b835 9576
0a36105d
JM
9577 if not Is_Overloaded (Obj) then
9578 Try_One_Prefix_Interpretation (Obj_Type);
ec6078e3 9579
0a36105d
JM
9580 else
9581 declare
9582 I : Interp_Index;
9583 It : Interp;
9584 begin
9585 Get_First_Interp (Obj, I, It);
9586 while Present (It.Nam) loop
9587 Try_One_Prefix_Interpretation (It.Typ);
9588 Get_Next_Interp (I, It);
9589 end loop;
9590 end;
9591 end if;
9592
9593 if Etype (New_Call_Node) /= Any_Type then
8cf23b91
AC
9594
9595 -- No need to complete the tree transformations if we are only
9596 -- searching for conflicting class-wide subprograms
9597
9598 if CW_Test_Only then
9599 return False;
9600 else
9601 Complete_Object_Operation
9602 (Call_Node => New_Call_Node,
9603 Node_To_Replace => Node_To_Replace);
9604 return True;
9605 end if;
b67a385c
ES
9606
9607 elsif Present (Candidate) then
9608
9609 -- The argument list is not type correct. Re-analyze with error
9610 -- reporting enabled, and use one of the possible candidates.
d469eabe 9611 -- In All_Errors_Mode, re-analyze all failed interpretations.
b67a385c
ES
9612
9613 if All_Errors_Mode then
9614 Report_Error := True;
9615 if Try_Primitive_Operation
8b4230c8
AC
9616 (Call_Node => New_Call_Node,
9617 Node_To_Replace => Node_To_Replace)
b67a385c
ES
9618
9619 or else
9620 Try_Class_Wide_Operation
9621 (Call_Node => New_Call_Node,
9622 Node_To_Replace => Node_To_Replace)
9623 then
9624 null;
9625 end if;
9626
9627 else
9628 Analyze_One_Call
9629 (N => New_Call_Node,
9630 Nam => Candidate,
9631 Report => True,
9632 Success => Success,
9633 Skip_First => True);
9634 end if;
9635
d469eabe
HK
9636 -- No need for further errors
9637
9638 return True;
b67a385c
ES
9639
9640 else
9641 -- There was no candidate operation, so report it as an error
9642 -- in the caller: Analyze_Selected_Component.
9643
9644 return False;
9645 end if;
35ae2ed8
AC
9646 end Try_Object_Operation;
9647
b4592168
GD
9648 ---------
9649 -- wpo --
9650 ---------
9651
9652 procedure wpo (T : Entity_Id) is
9653 Op : Entity_Id;
9654 E : Elmt_Id;
9655
9656 begin
9657 if not Is_Tagged_Type (T) then
9658 return;
9659 end if;
9660
9661 E := First_Elmt (Primitive_Operations (Base_Type (T)));
9662 while Present (E) loop
9663 Op := Node (E);
9664 Write_Int (Int (Op));
9665 Write_Str (" === ");
9666 Write_Name (Chars (Op));
9667 Write_Str (" in ");
9668 Write_Name (Chars (Scope (Op)));
9669 Next_Elmt (E);
9670 Write_Eol;
9671 end loop;
9672 end wpo;
9673
996ae0b0 9674end Sem_Ch4;