]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch4.adb
[multiple changes]
[thirdparty/gcc.git] / gcc / ada / sem_ch4.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 4 --
6-- --
7-- B o d y --
8-- --
445e5888 9-- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
157a9bf5 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
157a9bf5
ES
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
d50f4827 26with Aspects; use Aspects;
996ae0b0
RK
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
35ae2ed8 30with Elists; use Elists;
996ae0b0
RK
31with Errout; use Errout;
32with Exp_Util; use Exp_Util;
d935a36e 33with Fname; use Fname;
996ae0b0 34with Itypes; use Itypes;
d935a36e 35with Lib; use Lib;
996ae0b0
RK
36with Lib.Xref; use Lib.Xref;
37with Namet; use Namet;
d469eabe 38with Namet.Sp; use Namet.Sp;
996ae0b0
RK
39with Nlists; use Nlists;
40with Nmake; use Nmake;
41with Opt; use Opt;
42with Output; use Output;
43with Restrict; use Restrict;
6e937c1c 44with Rident; use Rident;
996ae0b0 45with Sem; use Sem;
a4100e55 46with Sem_Aux; use Sem_Aux;
19d846a0 47with Sem_Case; use Sem_Case;
996ae0b0
RK
48with Sem_Cat; use Sem_Cat;
49with Sem_Ch3; use Sem_Ch3;
d469eabe 50with Sem_Ch6; use Sem_Ch6;
996ae0b0 51with Sem_Ch8; use Sem_Ch8;
dec6faf1 52with Sem_Dim; use Sem_Dim;
b67a385c 53with Sem_Disp; use Sem_Disp;
996ae0b0
RK
54with Sem_Dist; use Sem_Dist;
55with Sem_Eval; use Sem_Eval;
56with Sem_Res; use Sem_Res;
996ae0b0 57with Sem_Type; use Sem_Type;
19d846a0
RD
58with Sem_Util; use Sem_Util;
59with Sem_Warn; use Sem_Warn;
996ae0b0
RK
60with Stand; use Stand;
61with Sinfo; use Sinfo;
62with Snames; use Snames;
63with Tbuild; use Tbuild;
b727a82b 64with Uintp; use Uintp;
996ae0b0 65
996ae0b0
RK
66package body Sem_Ch4 is
67
22e89283
AC
68 -- Tables which speed up the identification of dangerous calls to Ada 2012
69 -- functions with writable actuals (AI05-0144).
70
71 -- The following table enumerates the Ada constructs which may evaluate in
72 -- arbitrary order. It does not cover all the language constructs which can
73 -- be evaluated in arbitrary order but the subset needed for AI05-0144.
74
75 Has_Arbitrary_Evaluation_Order : constant array (Node_Kind) of Boolean :=
76 (N_Aggregate => True,
77 N_Assignment_Statement => True,
78 N_Entry_Call_Statement => True,
79 N_Extension_Aggregate => True,
80 N_Full_Type_Declaration => True,
81 N_Indexed_Component => True,
82 N_Object_Declaration => True,
83 N_Pragma => True,
84 N_Range => True,
85 N_Slice => True,
213999c2
AC
86 N_Array_Type_Definition => True,
87 N_Membership_Test => True,
88 N_Binary_Op => True,
89 N_Subprogram_Call => True,
22e89283
AC
90 others => False);
91
92 -- The following table enumerates the nodes on which we stop climbing when
93 -- locating the outermost Ada construct that can be evaluated in arbitrary
94 -- order.
95
96 Stop_Subtree_Climbing : constant array (Node_Kind) of Boolean :=
97 (N_Aggregate => True,
98 N_Assignment_Statement => True,
99 N_Entry_Call_Statement => True,
100 N_Extended_Return_Statement => True,
101 N_Extension_Aggregate => True,
102 N_Full_Type_Declaration => True,
103 N_Object_Declaration => True,
104 N_Object_Renaming_Declaration => True,
105 N_Package_Specification => True,
106 N_Pragma => True,
107 N_Procedure_Call_Statement => True,
108 N_Simple_Return_Statement => True,
213999c2 109 N_Has_Condition => True,
22e89283
AC
110 others => False);
111
996ae0b0
RK
112 -----------------------
113 -- Local Subprograms --
114 -----------------------
115
fe39cf20
BD
116 procedure Analyze_Concatenation_Rest (N : Node_Id);
117 -- Does the "rest" of the work of Analyze_Concatenation, after the left
118 -- operand has been analyzed. See Analyze_Concatenation for details.
119
996ae0b0 120 procedure Analyze_Expression (N : Node_Id);
80211802
AC
121 -- For expressions that are not names, this is just a call to analyze. If
122 -- the expression is a name, it may be a call to a parameterless function,
123 -- and if so must be converted into an explicit call node and analyzed as
124 -- such. This deproceduring must be done during the first pass of overload
125 -- resolution, because otherwise a procedure call with overloaded actuals
126 -- may fail to resolve.
996ae0b0
RK
127
128 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
80211802
AC
129 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
130 -- operator name or an expanded name whose selector is an operator name,
131 -- and one possible interpretation is as a predefined operator.
996ae0b0
RK
132
133 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
134 -- If the prefix of a selected_component is overloaded, the proper
135 -- interpretation that yields a record type with the proper selector
136 -- name must be selected.
137
138 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
139 -- Procedure to analyze a user defined binary operator, which is resolved
140 -- like a function, but instead of a list of actuals it is presented
141 -- with the left and right operands of an operator node.
142
143 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
144 -- Procedure to analyze a user defined unary operator, which is resolved
145 -- like a function, but instead of a list of actuals, it is presented with
146 -- the operand of the operator node.
147
148 procedure Ambiguous_Operands (N : Node_Id);
0877856b 149 -- For equality, membership, and comparison operators with overloaded
996ae0b0
RK
150 -- arguments, list possible interpretations.
151
996ae0b0 152 procedure Analyze_One_Call
ec6078e3
ES
153 (N : Node_Id;
154 Nam : Entity_Id;
155 Report : Boolean;
156 Success : out Boolean;
157 Skip_First : Boolean := False);
996ae0b0
RK
158 -- Check one interpretation of an overloaded subprogram name for
159 -- compatibility with the types of the actuals in a call. If there is a
160 -- single interpretation which does not match, post error if Report is
161 -- set to True.
162 --
163 -- Nam is the entity that provides the formals against which the actuals
164 -- are checked. Nam is either the name of a subprogram, or the internal
165 -- subprogram type constructed for an access_to_subprogram. If the actuals
166 -- are compatible with Nam, then Nam is added to the list of candidate
167 -- interpretations for N, and Success is set to True.
ec6078e3
ES
168 --
169 -- The flag Skip_First is used when analyzing a call that was rewritten
170 -- from object notation. In this case the first actual may have to receive
171 -- an explicit dereference, depending on the first formal of the operation
172 -- being called. The caller will have verified that the object is legal
173 -- for the call. If the remaining parameters match, the first parameter
174 -- will rewritten as a dereference if needed, prior to completing analysis.
996ae0b0
RK
175
176 procedure Check_Misspelled_Selector
177 (Prefix : Entity_Id;
178 Sel : Node_Id);
80211802 179 -- Give possible misspelling message if Sel seems likely to be a mis-
8dbf3473
AC
180 -- spelling of one of the selectors of the Prefix. This is called by
181 -- Analyze_Selected_Component after producing an invalid selector error
182 -- message.
996ae0b0
RK
183
184 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
f3d57416 185 -- Verify that type T is declared in scope S. Used to find interpretations
996ae0b0
RK
186 -- for operators given by expanded names. This is abstracted as a separate
187 -- function to handle extensions to System, where S is System, but T is
188 -- declared in the extension.
189
190 procedure Find_Arithmetic_Types
191 (L, R : Node_Id;
192 Op_Id : Entity_Id;
193 N : Node_Id);
80211802
AC
194 -- L and R are the operands of an arithmetic operator. Find consistent
195 -- pairs of interpretations for L and R that have a numeric type consistent
196 -- with the semantics of the operator.
996ae0b0
RK
197
198 procedure Find_Comparison_Types
199 (L, R : Node_Id;
200 Op_Id : Entity_Id;
201 N : Node_Id);
80211802
AC
202 -- L and R are operands of a comparison operator. Find consistent pairs of
203 -- interpretations for L and R.
996ae0b0
RK
204
205 procedure Find_Concatenation_Types
206 (L, R : Node_Id;
207 Op_Id : Entity_Id;
208 N : Node_Id);
6e73e3ab 209 -- For the four varieties of concatenation
996ae0b0
RK
210
211 procedure Find_Equality_Types
212 (L, R : Node_Id;
213 Op_Id : Entity_Id;
214 N : Node_Id);
6e73e3ab 215 -- Ditto for equality operators
996ae0b0
RK
216
217 procedure Find_Boolean_Types
218 (L, R : Node_Id;
219 Op_Id : Entity_Id;
220 N : Node_Id);
6e73e3ab 221 -- Ditto for binary logical operations
996ae0b0
RK
222
223 procedure Find_Negation_Types
224 (R : Node_Id;
225 Op_Id : Entity_Id;
226 N : Node_Id);
6e73e3ab 227 -- Find consistent interpretation for operand of negation operator
996ae0b0
RK
228
229 procedure Find_Non_Universal_Interpretations
230 (N : Node_Id;
231 R : Node_Id;
232 Op_Id : Entity_Id;
233 T1 : Entity_Id);
234 -- For equality and comparison operators, the result is always boolean,
235 -- and the legality of the operation is determined from the visibility
236 -- of the operand types. If one of the operands has a universal interpre-
237 -- tation, the legality check uses some compatible non-universal
238 -- interpretation of the other operand. N can be an operator node, or
be4c5193
AC
239 -- a function call whose name is an operator designator. Any_Access, which
240 -- is the initial type of the literal NULL, is a universal type for the
241 -- purpose of this routine.
996ae0b0 242
d469eabe
HK
243 function Find_Primitive_Operation (N : Node_Id) return Boolean;
244 -- Find candidate interpretations for the name Obj.Proc when it appears
245 -- in a subprogram renaming declaration.
246
996ae0b0
RK
247 procedure Find_Unary_Types
248 (R : Node_Id;
249 Op_Id : Entity_Id;
250 N : Node_Id);
6e73e3ab 251 -- Unary arithmetic types: plus, minus, abs
996ae0b0
RK
252
253 procedure Check_Arithmetic_Pair
254 (T1, T2 : Entity_Id;
255 Op_Id : Entity_Id;
256 N : Node_Id);
84dad556
AC
257 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid types
258 -- for left and right operand. Determine whether they constitute a valid
259 -- pair for the given operator, and record the corresponding interpretation
260 -- of the operator node. The node N may be an operator node (the usual
261 -- case) or a function call whose prefix is an operator designator. In
262 -- both cases Op_Id is the operator name itself.
996ae0b0
RK
263
264 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
265 -- Give detailed information on overloaded call where none of the
266 -- interpretations match. N is the call node, Nam the designator for
267 -- the overloaded entity being called.
268
269 function Junk_Operand (N : Node_Id) return Boolean;
270 -- Test for an operand that is an inappropriate entity (e.g. a package
271 -- name or a label). If so, issue an error message and return True. If
272 -- the operand is not an inappropriate entity kind, return False.
273
274 procedure Operator_Check (N : Node_Id);
da709d08
AC
275 -- Verify that an operator has received some valid interpretation. If none
276 -- was found, determine whether a use clause would make the operation
277 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
278 -- every type compatible with the operator, even if the operator for the
279 -- type is not directly visible. The routine uses this type to emit a more
280 -- informative message.
996ae0b0 281
d469eabe 282 function Process_Implicit_Dereference_Prefix
da709d08 283 (E : Entity_Id;
d469eabe 284 P : Node_Id) return Entity_Id;
da709d08 285 -- Called when P is the prefix of an implicit dereference, denoting an
d469eabe
HK
286 -- object E. The function returns the designated type of the prefix, taking
287 -- into account that the designated type of an anonymous access type may be
288 -- a limited view, when the non-limited view is visible.
84dad556 289 --
d469eabe
HK
290 -- If in semantics only mode (-gnatc or generic), the function also records
291 -- that the prefix is a reference to E, if any. Normally, such a reference
292 -- is generated only when the implicit dereference is expanded into an
293 -- explicit one, but for consistency we must generate the reference when
294 -- expansion is disabled as well.
6e73e3ab 295
30c20106
AC
296 procedure Remove_Abstract_Operations (N : Node_Id);
297 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
298 -- operation is not a candidate interpretation.
299
d50f4827
AC
300 function Try_Container_Indexing
301 (N : Node_Id;
302 Prefix : Node_Id;
50878404 303 Exprs : List_Id) return Boolean;
d50f4827
AC
304 -- AI05-0139: Generalized indexing to support iterators over containers
305
996ae0b0 306 function Try_Indexed_Call
aab883ec
ES
307 (N : Node_Id;
308 Nam : Entity_Id;
309 Typ : Entity_Id;
310 Skip_First : Boolean) return Boolean;
311 -- If a function has defaults for all its actuals, a call to it may in fact
312 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
313 -- interpretation as an indexing, prior to analysis as a call. If both are
314 -- possible, the node is overloaded with both interpretations (same symbol
315 -- but two different types). If the call is written in prefix form, the
316 -- prefix becomes the first parameter in the call, and only the remaining
317 -- actuals must be checked for the presence of defaults.
996ae0b0
RK
318
319 function Try_Indirect_Call
91b1417d
AC
320 (N : Node_Id;
321 Nam : Entity_Id;
322 Typ : Entity_Id) return Boolean;
aab883ec
ES
323 -- Similarly, a function F that needs no actuals can return an access to a
324 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
325 -- the call may be overloaded with both interpretations.
996ae0b0 326
8cf23b91 327 function Try_Object_Operation
11bc76df
AC
328 (N : Node_Id;
329 CW_Test_Only : Boolean := False) return Boolean;
0d57c6f4
RD
330 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
331 -- is a call in this notation, it is transformed into a normal subprogram
332 -- call where the prefix is a parameter, and True is returned. If node
84dad556 333 -- N is not of this form, it is unchanged, and False is returned. If
8cf23b91
AC
334 -- CW_Test_Only is true then N is an N_Selected_Component node which
335 -- is part of a call to an entry or procedure of a tagged concurrent
336 -- type and this routine is invoked to search for class-wide subprograms
337 -- conflicting with the target entity.
35ae2ed8 338
b4592168
GD
339 procedure wpo (T : Entity_Id);
340 pragma Warnings (Off, wpo);
341 -- Used for debugging: obtain list of primitive operations even if
342 -- type is not frozen and dispatch table is not built yet.
343
996ae0b0
RK
344 ------------------------
345 -- Ambiguous_Operands --
346 ------------------------
347
348 procedure Ambiguous_Operands (N : Node_Id) is
fbf5a39b 349 procedure List_Operand_Interps (Opnd : Node_Id);
996ae0b0 350
4c46b835
AC
351 --------------------------
352 -- List_Operand_Interps --
353 --------------------------
354
fbf5a39b 355 procedure List_Operand_Interps (Opnd : Node_Id) is
996ae0b0
RK
356 Nam : Node_Id;
357 Err : Node_Id := N;
358
359 begin
360 if Is_Overloaded (Opnd) then
361 if Nkind (Opnd) in N_Op then
362 Nam := Opnd;
84dad556 363
996ae0b0
RK
364 elsif Nkind (Opnd) = N_Function_Call then
365 Nam := Name (Opnd);
84dad556 366
44a10091
AC
367 elsif Ada_Version >= Ada_2012 then
368 declare
369 It : Interp;
370 I : Interp_Index;
371
372 begin
373 Get_First_Interp (Opnd, I, It);
374 while Present (It.Nam) loop
375 if Has_Implicit_Dereference (It.Typ) then
376 Error_Msg_N
377 ("can be interpreted as implicit dereference", Opnd);
378 return;
379 end if;
380
381 Get_Next_Interp (I, It);
382 end loop;
383 end;
384
996ae0b0
RK
385 return;
386 end if;
387
388 else
389 return;
390 end if;
391
392 if Opnd = Left_Opnd (N) then
84dad556
AC
393 Error_Msg_N
394 ("\left operand has the following interpretations", N);
996ae0b0 395 else
ed2233dc 396 Error_Msg_N
996ae0b0
RK
397 ("\right operand has the following interpretations", N);
398 Err := Opnd;
399 end if;
400
fbf5a39b
AC
401 List_Interps (Nam, Err);
402 end List_Operand_Interps;
996ae0b0 403
4c46b835
AC
404 -- Start of processing for Ambiguous_Operands
405
996ae0b0 406 begin
b67a385c 407 if Nkind (N) in N_Membership_Test then
ed2233dc 408 Error_Msg_N ("ambiguous operands for membership", N);
996ae0b0 409
d469eabe 410 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
ed2233dc 411 Error_Msg_N ("ambiguous operands for equality", N);
996ae0b0
RK
412
413 else
ed2233dc 414 Error_Msg_N ("ambiguous operands for comparison", N);
996ae0b0
RK
415 end if;
416
417 if All_Errors_Mode then
fbf5a39b
AC
418 List_Operand_Interps (Left_Opnd (N));
419 List_Operand_Interps (Right_Opnd (N));
996ae0b0 420 else
555360a5 421 Error_Msg_N ("\use -gnatf switch for details", N);
996ae0b0
RK
422 end if;
423 end Ambiguous_Operands;
424
425 -----------------------
426 -- Analyze_Aggregate --
427 -----------------------
428
429 -- Most of the analysis of Aggregates requires that the type be known,
430 -- and is therefore put off until resolution.
431
432 procedure Analyze_Aggregate (N : Node_Id) is
433 begin
434 if No (Etype (N)) then
435 Set_Etype (N, Any_Composite);
436 end if;
437 end Analyze_Aggregate;
438
439 -----------------------
440 -- Analyze_Allocator --
441 -----------------------
442
443 procedure Analyze_Allocator (N : Node_Id) is
444 Loc : constant Source_Ptr := Sloc (N);
07fc65c4 445 Sav_Errs : constant Nat := Serious_Errors_Detected;
b67a385c 446 E : Node_Id := Expression (N);
996ae0b0
RK
447 Acc_Type : Entity_Id;
448 Type_Id : Entity_Id;
87003b28
RD
449 P : Node_Id;
450 C : Node_Id;
b3b26ace 451 Onode : Node_Id;
996ae0b0
RK
452
453 begin
ce5ba43a 454 Check_SPARK_05_Restriction ("allocator is not allowed", N);
1d801f21 455
87003b28
RD
456 -- Deal with allocator restrictions
457
50cff367 458 -- In accordance with H.4(7), the No_Allocators restriction only applies
87003b28 459 -- to user-written allocators. The same consideration applies to the
d8941160 460 -- No_Standard_Allocators_Before_Elaboration restriction.
50cff367
GD
461
462 if Comes_From_Source (N) then
463 Check_Restriction (No_Allocators, N);
87003b28 464
57f4c288 465 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
489c6e19 466 -- look at enclosing context, checking task/main subprogram case.
87003b28
RD
467
468 C := N;
469 P := Parent (C);
470 while Present (P) loop
471
b3b26ace
AC
472 -- For the task case we need a handled sequence of statements,
473 -- where the occurrence of the allocator is within the statements
474 -- and the parent is a task body
87003b28
RD
475
476 if Nkind (P) = N_Handled_Sequence_Of_Statements
477 and then Is_List_Member (C)
478 and then List_Containing (C) = Statements (P)
479 then
b3b26ace
AC
480 Onode := Original_Node (Parent (P));
481
87003b28 482 -- Check for allocator within task body, this is a definite
d8941160
RD
483 -- violation of No_Allocators_After_Elaboration we can detect
484 -- at compile time.
87003b28 485
b3b26ace 486 if Nkind (Onode) = N_Task_Body then
57f4c288
ES
487 Check_Restriction
488 (No_Standard_Allocators_After_Elaboration, N);
87003b28
RD
489 exit;
490 end if;
b3b26ace 491 end if;
87003b28 492
b3b26ace
AC
493 -- The other case is appearance in a subprogram body. This is
494 -- a violation if this is a library level subprogram with no
495 -- parameters. Note that this is now a static error even if the
496 -- subprogram is not the main program (this is a change, in an
497 -- earlier version only the main program was affected, and the
498 -- check had to be done in the binder.
87003b28 499
b3b26ace
AC
500 if Nkind (P) = N_Subprogram_Body
501 and then Nkind (Parent (P)) = N_Compilation_Unit
502 and then No (Parameter_Specifications (Specification (P)))
503 then
504 Check_Restriction
505 (No_Standard_Allocators_After_Elaboration, N);
87003b28
RD
506 end if;
507
508 C := P;
509 P := Parent (C);
510 end loop;
50cff367 511 end if;
996ae0b0 512
df170605
AC
513 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
514 -- any. The expected type for the name is any type. A non-overloading
515 -- rule then requires it to be of a type descended from
f0f88eb6
RD
516 -- System.Storage_Pools.Subpools.Subpool_Handle.
517
518 -- This isn't exactly what the AI says, but it seems to be the right
519 -- rule. The AI should be fixed.???
df170605
AC
520
521 declare
522 Subpool : constant Node_Id := Subpool_Handle_Name (N);
f0f88eb6 523
df170605
AC
524 begin
525 if Present (Subpool) then
526 Analyze (Subpool);
f0f88eb6 527
df170605
AC
528 if Is_Overloaded (Subpool) then
529 Error_Msg_N ("ambiguous subpool handle", Subpool);
530 end if;
531
f0f88eb6 532 -- Check that Etype (Subpool) is descended from Subpool_Handle
df170605
AC
533
534 Resolve (Subpool);
535 end if;
536 end;
537
538 -- Analyze the qualified expression or subtype indication
87003b28 539
996ae0b0
RK
540 if Nkind (E) = N_Qualified_Expression then
541 Acc_Type := Create_Itype (E_Allocator_Type, N);
542 Set_Etype (Acc_Type, Acc_Type);
996ae0b0 543 Find_Type (Subtype_Mark (E));
45c8b94b
ES
544
545 -- Analyze the qualified expression, and apply the name resolution
f0f88eb6 546 -- rule given in 4.7(3).
45c8b94b
ES
547
548 Analyze (E);
549 Type_Id := Etype (E);
996ae0b0
RK
550 Set_Directly_Designated_Type (Acc_Type, Type_Id);
551
996ae0b0
RK
552 -- A qualified expression requires an exact match of the type,
553 -- class-wide matching is not allowed.
554
45c8b94b
ES
555 -- if Is_Class_Wide_Type (Type_Id)
556 -- and then Base_Type
557 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
558 -- then
559 -- Wrong_Type (Expression (E), Type_Id);
560 -- end if;
996ae0b0 561
996ae0b0 562 -- We don't analyze the qualified expression itself because it's
f3691f46
ES
563 -- part of the allocator. It is fully analyzed and resolved when
564 -- the allocator is resolved with the context type.
996ae0b0
RK
565
566 Set_Etype (E, Type_Id);
567
aab883ec 568 -- Case where allocator has a subtype indication
4c46b835 569
996ae0b0
RK
570 else
571 declare
758c442c
GD
572 Def_Id : Entity_Id;
573 Base_Typ : Entity_Id;
996ae0b0
RK
574
575 begin
576 -- If the allocator includes a N_Subtype_Indication then a
577 -- constraint is present, otherwise the node is a subtype mark.
578 -- Introduce an explicit subtype declaration into the tree
579 -- defining some anonymous subtype and rewrite the allocator to
580 -- use this subtype rather than the subtype indication.
581
582 -- It is important to introduce the explicit subtype declaration
583 -- so that the bounds of the subtype indication are attached to
584 -- the tree in case the allocator is inside a generic unit.
585
586 if Nkind (E) = N_Subtype_Indication then
587
588 -- A constraint is only allowed for a composite type in Ada
589 -- 95. In Ada 83, a constraint is also allowed for an
590 -- access-to-composite type, but the constraint is ignored.
591
592 Find_Type (Subtype_Mark (E));
758c442c 593 Base_Typ := Entity (Subtype_Mark (E));
996ae0b0 594
758c442c 595 if Is_Elementary_Type (Base_Typ) then
0ab80019 596 if not (Ada_Version = Ada_83
758c442c 597 and then Is_Access_Type (Base_Typ))
996ae0b0
RK
598 then
599 Error_Msg_N ("constraint not allowed here", E);
600
24657705
HK
601 if Nkind (Constraint (E)) =
602 N_Index_Or_Discriminant_Constraint
996ae0b0 603 then
4e7a4f6e 604 Error_Msg_N -- CODEFIX
996ae0b0
RK
605 ("\if qualified expression was meant, " &
606 "use apostrophe", Constraint (E));
607 end if;
608 end if;
609
610 -- Get rid of the bogus constraint:
611
612 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
613 Analyze_Allocator (N);
614 return;
615 end if;
616
617 if Expander_Active then
092ef350 618 Def_Id := Make_Temporary (Loc, 'S');
996ae0b0
RK
619
620 Insert_Action (E,
621 Make_Subtype_Declaration (Loc,
622 Defining_Identifier => Def_Id,
623 Subtype_Indication => Relocate_Node (E)));
624
07fc65c4 625 if Sav_Errs /= Serious_Errors_Detected
d469eabe
HK
626 and then Nkind (Constraint (E)) =
627 N_Index_Or_Discriminant_Constraint
996ae0b0 628 then
4e7a4f6e 629 Error_Msg_N -- CODEFIX
a90bd866
RD
630 ("if qualified expression was meant, "
631 & "use apostrophe!", Constraint (E));
996ae0b0
RK
632 end if;
633
634 E := New_Occurrence_Of (Def_Id, Loc);
635 Rewrite (Expression (N), E);
636 end if;
637 end if;
638
639 Type_Id := Process_Subtype (E, N);
640 Acc_Type := Create_Itype (E_Allocator_Type, N);
84dad556 641 Set_Etype (Acc_Type, Acc_Type);
996ae0b0
RK
642 Set_Directly_Designated_Type (Acc_Type, Type_Id);
643 Check_Fully_Declared (Type_Id, N);
644
1baa4d2d 645 -- Ada 2005 (AI-231): If the designated type is itself an access
16b05213 646 -- type that excludes null, its default initialization will
75ad5042
ES
647 -- be a null object, and we can insert an unconditional raise
648 -- before the allocator.
2820d220 649
bfae1846 650 -- Ada 2012 (AI-104): A not null indication here is altogether
518ade91
AC
651 -- illegal.
652
2820d220 653 if Can_Never_Be_Null (Type_Id) then
75ad5042
ES
654 declare
655 Not_Null_Check : constant Node_Id :=
656 Make_Raise_Constraint_Error (Sloc (E),
657 Reason => CE_Null_Not_Allowed);
40b93859 658
75ad5042 659 begin
7b55fea6 660 if Expander_Active then
75ad5042
ES
661 Insert_Action (N, Not_Null_Check);
662 Analyze (Not_Null_Check);
40b93859 663
685bc70f
AC
664 elsif Warn_On_Ada_2012_Compatibility then
665 Error_Msg_N
666 ("null value not allowed here in Ada 2012?y?", E);
75ad5042
ES
667 end if;
668 end;
2820d220
AC
669 end if;
670
996ae0b0
RK
671 -- Check for missing initialization. Skip this check if we already
672 -- had errors on analyzing the allocator, since in that case these
24657705 673 -- are probably cascaded errors.
996ae0b0 674
83496138 675 if not Is_Definite_Subtype (Type_Id)
07fc65c4 676 and then Serious_Errors_Detected = Sav_Errs
996ae0b0 677 then
a4956515
AC
678 -- The build-in-place machinery may produce an allocator when
679 -- the designated type is indefinite but the underlying type is
680 -- not. In this case the unknown discriminants are meaningless
681 -- and should not trigger error messages. Check the parent node
682 -- because the allocator is marked as coming from source.
683
684 if Present (Underlying_Type (Type_Id))
83496138 685 and then Is_Definite_Subtype (Underlying_Type (Type_Id))
a4956515
AC
686 and then not Comes_From_Source (Parent (N))
687 then
688 null;
689
690 elsif Is_Class_Wide_Type (Type_Id) then
996ae0b0
RK
691 Error_Msg_N
692 ("initialization required in class-wide allocation", N);
a4956515 693
996ae0b0 694 else
0791fbe9 695 if Ada_Version < Ada_2005
24657705
HK
696 and then Is_Limited_Type (Type_Id)
697 then
698 Error_Msg_N ("unconstrained allocation not allowed", N);
699
700 if Is_Array_Type (Type_Id) then
701 Error_Msg_N
702 ("\constraint with array bounds required", N);
703
704 elsif Has_Unknown_Discriminants (Type_Id) then
705 null;
706
707 else pragma Assert (Has_Discriminants (Type_Id));
708 Error_Msg_N
709 ("\constraint with discriminant values required", N);
710 end if;
711
712 -- Limited Ada 2005 and general non-limited case
713
714 else
715 Error_Msg_N
84dad556
AC
716 ("uninitialized unconstrained allocation not "
717 & "allowed", N);
24657705
HK
718
719 if Is_Array_Type (Type_Id) then
720 Error_Msg_N
84dad556
AC
721 ("\qualified expression or constraint with "
722 & "array bounds required", N);
24657705
HK
723
724 elsif Has_Unknown_Discriminants (Type_Id) then
725 Error_Msg_N ("\qualified expression required", N);
726
727 else pragma Assert (Has_Discriminants (Type_Id));
728 Error_Msg_N
84dad556
AC
729 ("\qualified expression or constraint with "
730 & "discriminant values required", N);
24657705
HK
731 end if;
732 end if;
996ae0b0
RK
733 end if;
734 end if;
735 end;
736 end if;
737
aab883ec 738 if Is_Abstract_Type (Type_Id) then
996ae0b0
RK
739 Error_Msg_N ("cannot allocate abstract object", E);
740 end if;
741
742 if Has_Task (Designated_Type (Acc_Type)) then
6e937c1c 743 Check_Restriction (No_Tasking, N);
fbf5a39b 744 Check_Restriction (Max_Tasks, N);
996ae0b0 745 Check_Restriction (No_Task_Allocators, N);
70b3b953
GD
746 end if;
747
02bb0765
AC
748 -- Check restriction against dynamically allocated protected objects
749
750 if Has_Protected (Designated_Type (Acc_Type)) then
751 Check_Restriction (No_Protected_Type_Allocators, N);
752 end if;
753
646e2823
AC
754 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
755 -- type is nested, and the designated type needs finalization. The rule
756 -- is conservative in that class-wide types need finalization.
757
758 if Needs_Finalization (Designated_Type (Acc_Type))
759 and then not Is_Library_Level_Entity (Acc_Type)
760 then
761 Check_Restriction (No_Nested_Finalization, N);
762 end if;
763
70b3b953
GD
764 -- Check that an allocator of a nested access type doesn't create a
765 -- protected object when restriction No_Local_Protected_Objects applies.
70b3b953 766
96e90ac1 767 if Has_Protected (Designated_Type (Acc_Type))
70b3b953
GD
768 and then not Is_Library_Level_Entity (Acc_Type)
769 then
770 Check_Restriction (No_Local_Protected_Objects, N);
996ae0b0
RK
771 end if;
772
ffe9aba8
AC
773 -- If the No_Streams restriction is set, check that the type of the
774 -- object is not, and does not contain, any subtype derived from
775 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
776 -- Has_Stream just for efficiency reasons. There is no point in
777 -- spending time on a Has_Stream check if the restriction is not set.
778
7a963087 779 if Restriction_Check_Required (No_Streams) then
ffe9aba8
AC
780 if Has_Stream (Designated_Type (Acc_Type)) then
781 Check_Restriction (No_Streams, N);
782 end if;
783 end if;
784
996ae0b0
RK
785 Set_Etype (N, Acc_Type);
786
787 if not Is_Library_Level_Entity (Acc_Type) then
788 Check_Restriction (No_Local_Allocators, N);
789 end if;
2820d220 790
07fc65c4 791 if Serious_Errors_Detected > Sav_Errs then
996ae0b0
RK
792 Set_Error_Posted (N);
793 Set_Etype (N, Any_Type);
794 end if;
996ae0b0
RK
795 end Analyze_Allocator;
796
797 ---------------------------
798 -- Analyze_Arithmetic_Op --
799 ---------------------------
800
801 procedure Analyze_Arithmetic_Op (N : Node_Id) is
802 L : constant Node_Id := Left_Opnd (N);
803 R : constant Node_Id := Right_Opnd (N);
804 Op_Id : Entity_Id;
805
806 begin
807 Candidate_Type := Empty;
808 Analyze_Expression (L);
809 Analyze_Expression (R);
810
d469eabe
HK
811 -- If the entity is already set, the node is the instantiation of a
812 -- generic node with a non-local reference, or was manufactured by a
813 -- call to Make_Op_xxx. In either case the entity is known to be valid,
814 -- and we do not need to collect interpretations, instead we just get
815 -- the single possible interpretation.
996ae0b0
RK
816
817 Op_Id := Entity (N);
818
819 if Present (Op_Id) then
820 if Ekind (Op_Id) = E_Operator then
821
d469eabe 822 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
996ae0b0
RK
823 and then Treat_Fixed_As_Integer (N)
824 then
825 null;
826 else
827 Set_Etype (N, Any_Type);
828 Find_Arithmetic_Types (L, R, Op_Id, N);
829 end if;
830
831 else
832 Set_Etype (N, Any_Type);
833 Add_One_Interp (N, Op_Id, Etype (Op_Id));
834 end if;
835
836 -- Entity is not already set, so we do need to collect interpretations
837
838 else
996ae0b0
RK
839 Set_Etype (N, Any_Type);
840
84dad556 841 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
842 while Present (Op_Id) loop
843 if Ekind (Op_Id) = E_Operator
844 and then Present (Next_Entity (First_Entity (Op_Id)))
845 then
846 Find_Arithmetic_Types (L, R, Op_Id, N);
847
848 -- The following may seem superfluous, because an operator cannot
849 -- be generic, but this ignores the cleverness of the author of
850 -- ACVC bc1013a.
851
852 elsif Is_Overloadable (Op_Id) then
853 Analyze_User_Defined_Binary_Op (N, Op_Id);
854 end if;
855
856 Op_Id := Homonym (Op_Id);
857 end loop;
858 end if;
859
860 Operator_Check (N);
22e89283 861 Check_Function_Writable_Actuals (N);
996ae0b0
RK
862 end Analyze_Arithmetic_Op;
863
864 ------------------
865 -- Analyze_Call --
866 ------------------
867
4c46b835
AC
868 -- Function, procedure, and entry calls are checked here. The Name in
869 -- the call may be overloaded. The actuals have been analyzed and may
870 -- themselves be overloaded. On exit from this procedure, the node N
871 -- may have zero, one or more interpretations. In the first case an
872 -- error message is produced. In the last case, the node is flagged
873 -- as overloaded and the interpretations are collected in All_Interp.
996ae0b0
RK
874
875 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
876 -- the type-checking is similar to that of other calls.
877
878 procedure Analyze_Call (N : Node_Id) is
879 Actuals : constant List_Id := Parameter_Associations (N);
63319f58 880 Nam : Node_Id;
996ae0b0
RK
881 X : Interp_Index;
882 It : Interp;
883 Nam_Ent : Entity_Id;
63319f58
RD
884 Success : Boolean := False;
885
886 Deref : Boolean := False;
1cb17b78
AC
887 -- Flag indicates whether an interpretation of the prefix is a
888 -- parameterless call that returns an access_to_subprogram.
996ae0b0 889
23685ae6
AC
890 procedure Check_Mixed_Parameter_And_Named_Associations;
891 -- Check that parameter and named associations are not mixed. This is
892 -- a restriction in SPARK mode.
893
288cbbbd
JM
894 procedure Check_Writable_Actuals (N : Node_Id);
895 -- If the call has out or in-out parameters then mark its outermost
896 -- enclosing construct as a node on which the writable actuals check
897 -- must be performed.
898
996ae0b0 899 function Name_Denotes_Function return Boolean;
5ff22245
ES
900 -- If the type of the name is an access to subprogram, this may be the
901 -- type of a name, or the return type of the function being called. If
902 -- the name is not an entity then it can denote a protected function.
903 -- Until we distinguish Etype from Return_Type, we must use this routine
904 -- to resolve the meaning of the name in the call.
905
906 procedure No_Interpretation;
907 -- Output error message when no valid interpretation exists
996ae0b0 908
23685ae6
AC
909 --------------------------------------------------
910 -- Check_Mixed_Parameter_And_Named_Associations --
911 --------------------------------------------------
912
913 procedure Check_Mixed_Parameter_And_Named_Associations is
914 Actual : Node_Id;
915 Named_Seen : Boolean;
f5afb270 916
23685ae6 917 begin
23685ae6 918 Named_Seen := False;
f5afb270
AC
919
920 Actual := First (Actuals);
23685ae6
AC
921 while Present (Actual) loop
922 case Nkind (Actual) is
923 when N_Parameter_Association =>
924 if Named_Seen then
ce5ba43a 925 Check_SPARK_05_Restriction
23685ae6
AC
926 ("named association cannot follow positional one",
927 Actual);
928 exit;
929 end if;
84dad556 930
23685ae6
AC
931 when others =>
932 Named_Seen := True;
933 end case;
934
935 Next (Actual);
936 end loop;
937 end Check_Mixed_Parameter_And_Named_Associations;
938
288cbbbd
JM
939 ----------------------------
940 -- Check_Writable_Actuals --
941 ----------------------------
942
943 -- The identification of conflicts in calls to functions with writable
551e1935 944 -- actuals is performed in the analysis phase of the front end to ensure
288cbbbd
JM
945 -- that it reports exactly the same errors compiling with and without
946 -- expansion enabled. It is performed in two stages:
947
551e1935
AC
948 -- 1) When a call to a function with out-mode parameters is found,
949 -- we climb to the outermost enclosing construct that can be
288cbbbd
JM
950 -- evaluated in arbitrary order and we mark it with the flag
951 -- Check_Actuals.
952
551e1935
AC
953 -- 2) When the analysis of the marked node is complete, we traverse
954 -- its decorated subtree searching for conflicts (see function
955 -- Sem_Util.Check_Function_Writable_Actuals).
288cbbbd 956
551e1935
AC
957 -- The unique exception to this general rule is for aggregates, since
958 -- their analysis is performed by the front end in the resolution
959 -- phase. For aggregates we do not climb to their enclosing construct:
288cbbbd
JM
960 -- we restrict the analysis to the subexpressions initializing the
961 -- aggregate components.
962
963 -- This implies that the analysis of expressions containing aggregates
551e1935 964 -- is not complete, since there may be conflicts on writable actuals
288cbbbd
JM
965 -- involving subexpressions of the enclosing logical or arithmetic
966 -- expressions. However, we cannot wait and perform the analysis when
551e1935 967 -- the whole subtree is resolved, since the subtrees may be transformed,
288cbbbd
JM
968 -- thus adding extra complexity and computation cost to identify and
969 -- report exactly the same errors compiling with and without expansion
970 -- enabled.
971
972 procedure Check_Writable_Actuals (N : Node_Id) is
288cbbbd
JM
973 begin
974 if Comes_From_Source (N)
975 and then Present (Get_Subprogram_Entity (N))
976 and then Has_Out_Or_In_Out_Parameter (Get_Subprogram_Entity (N))
977 then
978 -- For procedures and entries there is no need to climb since
979 -- we only need to check if the actuals of this call invoke
980 -- functions whose out-mode parameters overlap.
981
982 if Nkind (N) /= N_Function_Call then
983 Set_Check_Actuals (N);
984
985 -- For calls to functions we climb to the outermost enclosing
986 -- construct where the out-mode actuals of this function may
987 -- introduce conflicts.
988
989 else
990 declare
991 Outermost : Node_Id;
992 P : Node_Id := N;
993
994 begin
995 while Present (P) loop
996
551e1935 997 -- For object declarations we can climb to the node from
288cbbbd
JM
998 -- its object definition branch or from its initializing
999 -- expression. We prefer to mark the child node as the
1000 -- outermost construct to avoid adding further complexity
551e1935 1001 -- to the routine that will later take care of
288cbbbd
JM
1002 -- performing the writable actuals check.
1003
22e89283
AC
1004 if Has_Arbitrary_Evaluation_Order (Nkind (P))
1005 and then not Nkind_In (P, N_Assignment_Statement,
1006 N_Object_Declaration)
288cbbbd
JM
1007 then
1008 Outermost := P;
1009 end if;
1010
1011 -- Avoid climbing more than needed!
1012
22e89283 1013 exit when Stop_Subtree_Climbing (Nkind (P))
288cbbbd
JM
1014 or else (Nkind (P) = N_Range
1015 and then not
22e89283 1016 Nkind_In (Parent (P), N_In, N_Not_In));
288cbbbd
JM
1017
1018 P := Parent (P);
1019 end loop;
1020
1021 Set_Check_Actuals (Outermost);
1022 end;
1023 end if;
1024 end if;
1025 end Check_Writable_Actuals;
1026
996ae0b0
RK
1027 ---------------------------
1028 -- Name_Denotes_Function --
1029 ---------------------------
1030
1031 function Name_Denotes_Function return Boolean is
1032 begin
1033 if Is_Entity_Name (Nam) then
1034 return Ekind (Entity (Nam)) = E_Function;
996ae0b0
RK
1035 elsif Nkind (Nam) = N_Selected_Component then
1036 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
996ae0b0
RK
1037 else
1038 return False;
1039 end if;
1040 end Name_Denotes_Function;
1041
5ff22245
ES
1042 -----------------------
1043 -- No_Interpretation --
1044 -----------------------
1045
1046 procedure No_Interpretation is
1047 L : constant Boolean := Is_List_Member (N);
1048 K : constant Node_Kind := Nkind (Parent (N));
1049
1050 begin
1051 -- If the node is in a list whose parent is not an expression then it
1052 -- must be an attempted procedure call.
1053
1054 if L and then K not in N_Subexpr then
1055 if Ekind (Entity (Nam)) = E_Generic_Procedure then
1056 Error_Msg_NE
1057 ("must instantiate generic procedure& before call",
1058 Nam, Entity (Nam));
1059 else
84dad556 1060 Error_Msg_N ("procedure or entry name expected", Nam);
5ff22245
ES
1061 end if;
1062
1063 -- Check for tasking cases where only an entry call will do
1064
1065 elsif not L
1066 and then Nkind_In (K, N_Entry_Call_Alternative,
1067 N_Triggering_Alternative)
1068 then
1069 Error_Msg_N ("entry name expected", Nam);
1070
1071 -- Otherwise give general error message
1072
1073 else
1074 Error_Msg_N ("invalid prefix in call", Nam);
1075 end if;
1076 end No_Interpretation;
1077
996ae0b0
RK
1078 -- Start of processing for Analyze_Call
1079
1080 begin
6480338a 1081 if Restriction_Check_Required (SPARK_05) then
23685ae6
AC
1082 Check_Mixed_Parameter_And_Named_Associations;
1083 end if;
1084
996ae0b0
RK
1085 -- Initialize the type of the result of the call to the error type,
1086 -- which will be reset if the type is successfully resolved.
1087
1088 Set_Etype (N, Any_Type);
1089
63319f58
RD
1090 Nam := Name (N);
1091
996ae0b0
RK
1092 if not Is_Overloaded (Nam) then
1093
1094 -- Only one interpretation to check
1095
1096 if Ekind (Etype (Nam)) = E_Subprogram_Type then
1097 Nam_Ent := Etype (Nam);
1098
758c442c
GD
1099 -- If the prefix is an access_to_subprogram, this may be an indirect
1100 -- call. This is the case if the name in the call is not an entity
1101 -- name, or if it is a function name in the context of a procedure
1102 -- call. In this latter case, we have a call to a parameterless
1103 -- function that returns a pointer_to_procedure which is the entity
5ff22245
ES
1104 -- being called. Finally, F (X) may be a call to a parameterless
1105 -- function that returns a pointer to a function with parameters.
80e59506 1106 -- Note that if F returns an access-to-subprogram whose designated
4bb9c7b9
AC
1107 -- type is an array, F (X) cannot be interpreted as an indirect call
1108 -- through the result of the call to F.
758c442c 1109
996ae0b0
RK
1110 elsif Is_Access_Type (Etype (Nam))
1111 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
758c442c
GD
1112 and then
1113 (not Name_Denotes_Function
b2834fbd
AC
1114 or else Nkind (N) = N_Procedure_Call_Statement
1115 or else
1116 (Nkind (Parent (N)) /= N_Explicit_Dereference
1117 and then Is_Entity_Name (Nam)
1118 and then No (First_Formal (Entity (Nam)))
1119 and then not
1120 Is_Array_Type (Etype (Designated_Type (Etype (Nam))))
1121 and then Present (Actuals)))
996ae0b0
RK
1122 then
1123 Nam_Ent := Designated_Type (Etype (Nam));
1124 Insert_Explicit_Dereference (Nam);
1125
1126 -- Selected component case. Simple entry or protected operation,
1127 -- where the entry name is given by the selector name.
1128
1129 elsif Nkind (Nam) = N_Selected_Component then
1130 Nam_Ent := Entity (Selector_Name (Nam));
1131
bce79204
AC
1132 if not Ekind_In (Nam_Ent, E_Entry,
1133 E_Entry_Family,
1134 E_Function,
1135 E_Procedure)
996ae0b0
RK
1136 then
1137 Error_Msg_N ("name in call is not a callable entity", Nam);
1138 Set_Etype (N, Any_Type);
1139 return;
1140 end if;
1141
1142 -- If the name is an Indexed component, it can be a call to a member
1143 -- of an entry family. The prefix must be a selected component whose
1144 -- selector is the entry. Analyze_Procedure_Call normalizes several
1145 -- kinds of call into this form.
1146
1147 elsif Nkind (Nam) = N_Indexed_Component then
996ae0b0
RK
1148 if Nkind (Prefix (Nam)) = N_Selected_Component then
1149 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
996ae0b0
RK
1150 else
1151 Error_Msg_N ("name in call is not a callable entity", Nam);
1152 Set_Etype (N, Any_Type);
1153 return;
996ae0b0
RK
1154 end if;
1155
1156 elsif not Is_Entity_Name (Nam) then
1157 Error_Msg_N ("name in call is not a callable entity", Nam);
1158 Set_Etype (N, Any_Type);
1159 return;
1160
1161 else
1162 Nam_Ent := Entity (Nam);
1163
5f50020a
ES
1164 -- If not overloadable, this may be a generalized indexing
1165 -- operation with named associations. Rewrite again as an
1166 -- indexed component and analyze as container indexing.
996ae0b0
RK
1167
1168 if not Is_Overloadable (Nam_Ent) then
32bba3c9
AC
1169 if Present
1170 (Find_Value_Of_Aspect
1171 (Etype (Nam_Ent), Aspect_Constant_Indexing))
5f50020a
ES
1172 then
1173 Replace (N,
1174 Make_Indexed_Component (Sloc (N),
32bba3c9 1175 Prefix => Nam,
5f50020a
ES
1176 Expressions => Parameter_Associations (N)));
1177
1178 if Try_Container_Indexing (N, Nam, Expressions (N)) then
1179 return;
1180 else
1181 No_Interpretation;
1182 end if;
1183
1184 else
1185 No_Interpretation;
1186 end if;
32bba3c9 1187
5ff22245
ES
1188 return;
1189 end if;
1190 end if;
996ae0b0 1191
5ff22245
ES
1192 -- Operations generated for RACW stub types are called only through
1193 -- dispatching, and can never be the static interpretation of a call.
996ae0b0 1194
5ff22245
ES
1195 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1196 No_Interpretation;
1197 return;
996ae0b0
RK
1198 end if;
1199
1200 Analyze_One_Call (N, Nam_Ent, True, Success);
1201
ec6078e3
ES
1202 -- If this is an indirect call, the return type of the access_to
1203 -- subprogram may be an incomplete type. At the point of the call,
947430d5
AC
1204 -- use the full type if available, and at the same time update the
1205 -- return type of the access_to_subprogram.
ec6078e3
ES
1206
1207 if Success
d469eabe 1208 and then Nkind (Nam) = N_Explicit_Dereference
ec6078e3
ES
1209 and then Ekind (Etype (N)) = E_Incomplete_Type
1210 and then Present (Full_View (Etype (N)))
1211 then
1212 Set_Etype (N, Full_View (Etype (N)));
1213 Set_Etype (Nam_Ent, Etype (N));
1214 end if;
1215
a7e68e7f
HK
1216 -- Overloaded call
1217
996ae0b0 1218 else
5ff22245
ES
1219 -- An overloaded selected component must denote overloaded operations
1220 -- of a concurrent type. The interpretations are attached to the
1221 -- simple name of those operations.
996ae0b0
RK
1222
1223 if Nkind (Nam) = N_Selected_Component then
1224 Nam := Selector_Name (Nam);
1225 end if;
1226
1227 Get_First_Interp (Nam, X, It);
996ae0b0
RK
1228 while Present (It.Nam) loop
1229 Nam_Ent := It.Nam;
1cb17b78 1230 Deref := False;
996ae0b0
RK
1231
1232 -- Name may be call that returns an access to subprogram, or more
1233 -- generally an overloaded expression one of whose interpretations
947430d5
AC
1234 -- yields an access to subprogram. If the name is an entity, we do
1235 -- not dereference, because the node is a call that returns the
1236 -- access type: note difference between f(x), where the call may
1237 -- return an access subprogram type, and f(x)(y), where the type
1238 -- returned by the call to f is implicitly dereferenced to analyze
1239 -- the outer call.
996ae0b0
RK
1240
1241 if Is_Access_Type (Nam_Ent) then
1242 Nam_Ent := Designated_Type (Nam_Ent);
1243
1244 elsif Is_Access_Type (Etype (Nam_Ent))
1cb17b78
AC
1245 and then
1246 (not Is_Entity_Name (Nam)
1247 or else Nkind (N) = N_Procedure_Call_Statement)
996ae0b0
RK
1248 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1249 = E_Subprogram_Type
1250 then
1251 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1cb17b78
AC
1252
1253 if Is_Entity_Name (Nam) then
1254 Deref := True;
1255 end if;
996ae0b0
RK
1256 end if;
1257
7415029d
AC
1258 -- If the call has been rewritten from a prefixed call, the first
1259 -- parameter has been analyzed, but may need a subsequent
1260 -- dereference, so skip its analysis now.
1261
1262 if N /= Original_Node (N)
1263 and then Nkind (Original_Node (N)) = Nkind (N)
1264 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1265 and then Present (Parameter_Associations (N))
1266 and then Present (Etype (First (Parameter_Associations (N))))
1267 then
1268 Analyze_One_Call
1269 (N, Nam_Ent, False, Success, Skip_First => True);
1270 else
1271 Analyze_One_Call (N, Nam_Ent, False, Success);
1272 end if;
996ae0b0
RK
1273
1274 -- If the interpretation succeeds, mark the proper type of the
1275 -- prefix (any valid candidate will do). If not, remove the
1276 -- candidate interpretation. This only needs to be done for
1277 -- overloaded protected operations, for other entities disambi-
1278 -- guation is done directly in Resolve.
1279
1280 if Success then
1cb17b78
AC
1281 if Deref
1282 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1283 then
1284 Set_Entity (Nam, It.Nam);
1285 Insert_Explicit_Dereference (Nam);
1286 Set_Etype (Nam, Nam_Ent);
1287
1288 else
1289 Set_Etype (Nam, It.Typ);
1290 end if;
996ae0b0 1291
d469eabe
HK
1292 elsif Nkind_In (Name (N), N_Selected_Component,
1293 N_Function_Call)
fbf5a39b 1294 then
996ae0b0
RK
1295 Remove_Interp (X);
1296 end if;
1297
1298 Get_Next_Interp (X, It);
1299 end loop;
1300
a7e68e7f
HK
1301 -- If the name is the result of a function call, it can only be a
1302 -- call to a function returning an access to subprogram. Insert
1303 -- explicit dereference.
996ae0b0
RK
1304
1305 if Nkind (Nam) = N_Function_Call then
1306 Insert_Explicit_Dereference (Nam);
1307 end if;
1308
1309 if Etype (N) = Any_Type then
1310
1311 -- None of the interpretations is compatible with the actuals
1312
1313 Diagnose_Call (N, Nam);
1314
1315 -- Special checks for uninstantiated put routines
1316
1317 if Nkind (N) = N_Procedure_Call_Statement
1318 and then Is_Entity_Name (Nam)
1319 and then Chars (Nam) = Name_Put
1320 and then List_Length (Actuals) = 1
1321 then
1322 declare
1323 Arg : constant Node_Id := First (Actuals);
1324 Typ : Entity_Id;
1325
1326 begin
1327 if Nkind (Arg) = N_Parameter_Association then
1328 Typ := Etype (Explicit_Actual_Parameter (Arg));
1329 else
1330 Typ := Etype (Arg);
1331 end if;
1332
1333 if Is_Signed_Integer_Type (Typ) then
1334 Error_Msg_N
a90bd866
RD
1335 ("possible missing instantiation of "
1336 & "'Text_'I'O.'Integer_'I'O!", Nam);
996ae0b0
RK
1337
1338 elsif Is_Modular_Integer_Type (Typ) then
1339 Error_Msg_N
a90bd866
RD
1340 ("possible missing instantiation of "
1341 & "'Text_'I'O.'Modular_'I'O!", Nam);
996ae0b0
RK
1342
1343 elsif Is_Floating_Point_Type (Typ) then
1344 Error_Msg_N
a90bd866
RD
1345 ("possible missing instantiation of "
1346 & "'Text_'I'O.'Float_'I'O!", Nam);
996ae0b0
RK
1347
1348 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1349 Error_Msg_N
a90bd866
RD
1350 ("possible missing instantiation of "
1351 & "'Text_'I'O.'Fixed_'I'O!", Nam);
996ae0b0
RK
1352
1353 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1354 Error_Msg_N
a90bd866
RD
1355 ("possible missing instantiation of "
1356 & "'Text_'I'O.'Decimal_'I'O!", Nam);
996ae0b0
RK
1357
1358 elsif Is_Enumeration_Type (Typ) then
1359 Error_Msg_N
a90bd866
RD
1360 ("possible missing instantiation of "
1361 & "'Text_'I'O.'Enumeration_'I'O!", Nam);
996ae0b0
RK
1362 end if;
1363 end;
1364 end if;
1365
1366 elsif not Is_Overloaded (N)
1367 and then Is_Entity_Name (Nam)
1368 then
aab883ec
ES
1369 -- Resolution yields a single interpretation. Verify that the
1370 -- reference has capitalization consistent with the declaration.
996ae0b0 1371
e7ba564f 1372 Set_Entity_With_Checks (Nam, Entity (Nam));
996ae0b0
RK
1373 Generate_Reference (Entity (Nam), Nam);
1374
1375 Set_Etype (Nam, Etype (Entity (Nam)));
30c20106
AC
1376 else
1377 Remove_Abstract_Operations (N);
996ae0b0
RK
1378 end if;
1379
1380 End_Interp_List;
1381 end if;
288cbbbd
JM
1382
1383 if Ada_Version >= Ada_2012 then
1384
1385 -- Check if the call contains a function with writable actuals
1386
1387 Check_Writable_Actuals (N);
1388
551e1935
AC
1389 -- If found and the outermost construct that can be evaluated in
1390 -- an arbitrary order is precisely this call, then check all its
288cbbbd
JM
1391 -- actuals.
1392
22e89283 1393 Check_Function_Writable_Actuals (N);
288cbbbd 1394 end if;
996ae0b0
RK
1395 end Analyze_Call;
1396
19d846a0
RD
1397 -----------------------------
1398 -- Analyze_Case_Expression --
1399 -----------------------------
1400
1401 procedure Analyze_Case_Expression (N : Node_Id) is
19d846a0
RD
1402 procedure Non_Static_Choice_Error (Choice : Node_Id);
1403 -- Error routine invoked by the generic instantiation below when
1404 -- the case expression has a non static choice.
1405
15918371
AC
1406 package Case_Choices_Analysis is new
1407 Generic_Analyze_Choices
1408 (Process_Associated_Node => No_OP);
1409 use Case_Choices_Analysis;
1410
1411 package Case_Choices_Checking is new
1412 Generic_Check_Choices
1413 (Process_Empty_Choice => No_OP,
19d846a0
RD
1414 Process_Non_Static_Choice => Non_Static_Choice_Error,
1415 Process_Associated_Node => No_OP);
15918371 1416 use Case_Choices_Checking;
19d846a0 1417
19d846a0
RD
1418 -----------------------------
1419 -- Non_Static_Choice_Error --
1420 -----------------------------
1421
1422 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1423 begin
1424 Flag_Non_Static_Expr
1425 ("choice given in case expression is not static!", Choice);
1426 end Non_Static_Choice_Error;
1427
752b81d9
AC
1428 -- Local variables
1429
1430 Expr : constant Node_Id := Expression (N);
752b81d9
AC
1431 Alt : Node_Id;
1432 Exp_Type : Entity_Id;
1433 Exp_Btype : Entity_Id;
1434
308aab0b
AC
1435 FirstX : Node_Id := Empty;
1436 -- First expression in the case for which there is some type information
1437 -- available, i.e. it is not Any_Type, which can happen because of some
1438 -- error, or from the use of e.g. raise Constraint_Error.
1439
752b81d9 1440 Others_Present : Boolean;
15918371 1441 -- Indicates if Others was present
752b81d9 1442
10671e7a
AC
1443 Wrong_Alt : Node_Id;
1444 -- For error reporting
1445
19d846a0
RD
1446 -- Start of processing for Analyze_Case_Expression
1447
1448 begin
1449 if Comes_From_Source (N) then
c86cf714 1450 Check_Compiler_Unit ("case expression", N);
19d846a0
RD
1451 end if;
1452
1453 Analyze_And_Resolve (Expr, Any_Discrete);
1454 Check_Unset_Reference (Expr);
1455 Exp_Type := Etype (Expr);
1456 Exp_Btype := Base_Type (Exp_Type);
1457
1458 Alt := First (Alternatives (N));
1459 while Present (Alt) loop
1460 Analyze (Expression (Alt));
308aab0b
AC
1461
1462 if No (FirstX) and then Etype (Expression (Alt)) /= Any_Type then
1463 FirstX := Expression (Alt);
1464 end if;
1465
19d846a0
RD
1466 Next (Alt);
1467 end loop;
1468
308aab0b
AC
1469 -- Get our initial type from the first expression for which we got some
1470 -- useful type information from the expression.
1471
19d846a0
RD
1472 if not Is_Overloaded (FirstX) then
1473 Set_Etype (N, Etype (FirstX));
1474
1475 else
1476 declare
1477 I : Interp_Index;
1478 It : Interp;
1479
1480 begin
1481 Set_Etype (N, Any_Type);
1482
1483 Get_First_Interp (FirstX, I, It);
1484 while Present (It.Nam) loop
1485
308e6f3a
RW
1486 -- For each interpretation of the first expression, we only
1487 -- add the interpretation if every other expression in the
19d846a0
RD
1488 -- case expression alternatives has a compatible type.
1489
1490 Alt := Next (First (Alternatives (N)));
1491 while Present (Alt) loop
1492 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1493 Next (Alt);
1494 end loop;
1495
1496 if No (Alt) then
1497 Add_One_Interp (N, It.Typ, It.Typ);
10671e7a
AC
1498 else
1499 Wrong_Alt := Alt;
19d846a0
RD
1500 end if;
1501
1502 Get_Next_Interp (I, It);
1503 end loop;
1504 end;
1505 end if;
1506
1507 Exp_Btype := Base_Type (Exp_Type);
1508
1509 -- The expression must be of a discrete type which must be determinable
1510 -- independently of the context in which the expression occurs, but
1511 -- using the fact that the expression must be of a discrete type.
1512 -- Moreover, the type this expression must not be a character literal
1513 -- (which is always ambiguous).
1514
1515 -- If error already reported by Resolve, nothing more to do
1516
15918371 1517 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
19d846a0
RD
1518 return;
1519
bf0b0e5e
AC
1520 -- Special casee message for character literal
1521
19d846a0
RD
1522 elsif Exp_Btype = Any_Character then
1523 Error_Msg_N
1524 ("character literal as case expression is ambiguous", Expr);
1525 return;
1526 end if;
1527
10671e7a 1528 if Etype (N) = Any_Type and then Present (Wrong_Alt) then
bf0b0e5e
AC
1529 Error_Msg_N
1530 ("type incompatible with that of previous alternatives",
1531 Expression (Wrong_Alt));
10671e7a
AC
1532 return;
1533 end if;
1534
19d846a0
RD
1535 -- If the case expression is a formal object of mode in out, then
1536 -- treat it as having a nonstatic subtype by forcing use of the base
1537 -- type (which has to get passed to Check_Case_Choices below). Also
1538 -- use base type when the case expression is parenthesized.
1539
1540 if Paren_Count (Expr) > 0
1541 or else (Is_Entity_Name (Expr)
1542 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1543 then
1544 Exp_Type := Exp_Btype;
1545 end if;
1546
752b81d9
AC
1547 -- The case expression alternatives cover the range of a static subtype
1548 -- subject to aspect Static_Predicate. Do not check the choices when the
1549 -- case expression has not been fully analyzed yet because this may lead
1550 -- to bogus errors.
1551
edab6088 1552 if Is_OK_Static_Subtype (Exp_Type)
ee4eee0a 1553 and then Has_Static_Predicate_Aspect (Exp_Type)
752b81d9
AC
1554 and then In_Spec_Expression
1555 then
1556 null;
1557
15918371 1558 -- Call Analyze_Choices and Check_Choices to do the rest of the work
19d846a0 1559
752b81d9 1560 else
15918371
AC
1561 Analyze_Choices (Alternatives (N), Exp_Type);
1562 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
752b81d9 1563 end if;
19d846a0
RD
1564
1565 if Exp_Type = Universal_Integer and then not Others_Present then
1566 Error_Msg_N
1567 ("case on universal integer requires OTHERS choice", Expr);
1568 end if;
1569 end Analyze_Case_Expression;
1570
996ae0b0
RK
1571 ---------------------------
1572 -- Analyze_Comparison_Op --
1573 ---------------------------
1574
1575 procedure Analyze_Comparison_Op (N : Node_Id) is
1576 L : constant Node_Id := Left_Opnd (N);
1577 R : constant Node_Id := Right_Opnd (N);
1578 Op_Id : Entity_Id := Entity (N);
1579
1580 begin
1581 Set_Etype (N, Any_Type);
1582 Candidate_Type := Empty;
1583
1584 Analyze_Expression (L);
1585 Analyze_Expression (R);
1586
1587 if Present (Op_Id) then
996ae0b0
RK
1588 if Ekind (Op_Id) = E_Operator then
1589 Find_Comparison_Types (L, R, Op_Id, N);
1590 else
1591 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1592 end if;
1593
1594 if Is_Overloaded (L) then
1595 Set_Etype (L, Intersect_Types (L, R));
1596 end if;
1597
1598 else
1599 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 1600 while Present (Op_Id) loop
996ae0b0
RK
1601 if Ekind (Op_Id) = E_Operator then
1602 Find_Comparison_Types (L, R, Op_Id, N);
1603 else
1604 Analyze_User_Defined_Binary_Op (N, Op_Id);
1605 end if;
1606
1607 Op_Id := Homonym (Op_Id);
1608 end loop;
1609 end if;
1610
1611 Operator_Check (N);
22e89283 1612 Check_Function_Writable_Actuals (N);
996ae0b0
RK
1613 end Analyze_Comparison_Op;
1614
1615 ---------------------------
1616 -- Analyze_Concatenation --
1617 ---------------------------
1618
fe39cf20
BD
1619 procedure Analyze_Concatenation (N : Node_Id) is
1620
1621 -- We wish to avoid deep recursion, because concatenations are often
1622 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1623 -- operands nonrecursively until we find something that is not a
1624 -- concatenation (A in this case), or has already been analyzed. We
1625 -- analyze that, and then walk back up the tree following Parent
1626 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1627 -- work at each level. The Parent pointers allow us to avoid recursion,
1628 -- and thus avoid running out of memory.
1629
1630 NN : Node_Id := N;
1631 L : Node_Id;
1632
1633 begin
1634 Candidate_Type := Empty;
1635
1636 -- The following code is equivalent to:
1637
1638 -- Set_Etype (N, Any_Type);
1639 -- Analyze_Expression (Left_Opnd (N));
1640 -- Analyze_Concatenation_Rest (N);
1641
1642 -- where the Analyze_Expression call recurses back here if the left
1643 -- operand is a concatenation.
1644
1645 -- Walk down left operands
1646
1647 loop
1648 Set_Etype (NN, Any_Type);
1649 L := Left_Opnd (NN);
1650 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1651 NN := L;
1652 end loop;
1653
1654 -- Now (given the above example) NN is A&B and L is A
1655
1656 -- First analyze L ...
1657
1658 Analyze_Expression (L);
1659
1660 -- ... then walk NN back up until we reach N (where we started), calling
1661 -- Analyze_Concatenation_Rest along the way.
1662
1663 loop
1664 Analyze_Concatenation_Rest (NN);
1665 exit when NN = N;
1666 NN := Parent (NN);
1667 end loop;
1668 end Analyze_Concatenation;
1669
1670 --------------------------------
1671 -- Analyze_Concatenation_Rest --
1672 --------------------------------
1673
996ae0b0
RK
1674 -- If the only one-dimensional array type in scope is String,
1675 -- this is the resulting type of the operation. Otherwise there
1676 -- will be a concatenation operation defined for each user-defined
1677 -- one-dimensional array.
1678
fe39cf20 1679 procedure Analyze_Concatenation_Rest (N : Node_Id) is
996ae0b0
RK
1680 L : constant Node_Id := Left_Opnd (N);
1681 R : constant Node_Id := Right_Opnd (N);
1682 Op_Id : Entity_Id := Entity (N);
1683 LT : Entity_Id;
1684 RT : Entity_Id;
1685
1686 begin
996ae0b0
RK
1687 Analyze_Expression (R);
1688
cd3cd5b1
AC
1689 -- If the entity is present, the node appears in an instance, and
1690 -- denotes a predefined concatenation operation. The resulting type is
1691 -- obtained from the arguments when possible. If the arguments are
1692 -- aggregates, the array type and the concatenation type must be
fbf5a39b 1693 -- visible.
996ae0b0
RK
1694
1695 if Present (Op_Id) then
1696 if Ekind (Op_Id) = E_Operator then
996ae0b0
RK
1697 LT := Base_Type (Etype (L));
1698 RT := Base_Type (Etype (R));
1699
1700 if Is_Array_Type (LT)
1701 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1702 then
1703 Add_One_Interp (N, Op_Id, LT);
1704
1705 elsif Is_Array_Type (RT)
1706 and then LT = Base_Type (Component_Type (RT))
1707 then
1708 Add_One_Interp (N, Op_Id, RT);
1709
fbf5a39b
AC
1710 -- If one operand is a string type or a user-defined array type,
1711 -- and the other is a literal, result is of the specific type.
1712
1713 elsif
1714 (Root_Type (LT) = Standard_String
1715 or else Scope (LT) /= Standard_Standard)
1716 and then Etype (R) = Any_String
1717 then
1718 Add_One_Interp (N, Op_Id, LT);
1719
1720 elsif
1721 (Root_Type (RT) = Standard_String
1722 or else Scope (RT) /= Standard_Standard)
1723 and then Etype (L) = Any_String
1724 then
1725 Add_One_Interp (N, Op_Id, RT);
1726
1727 elsif not Is_Generic_Type (Etype (Op_Id)) then
996ae0b0 1728 Add_One_Interp (N, Op_Id, Etype (Op_Id));
fbf5a39b
AC
1729
1730 else
4c46b835 1731 -- Type and its operations must be visible
fbf5a39b
AC
1732
1733 Set_Entity (N, Empty);
1734 Analyze_Concatenation (N);
996ae0b0
RK
1735 end if;
1736
1737 else
1738 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1739 end if;
1740
1741 else
1a8fae99 1742 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
996ae0b0
RK
1743 while Present (Op_Id) loop
1744 if Ekind (Op_Id) = E_Operator then
1a8fae99
ES
1745
1746 -- Do not consider operators declared in dead code, they can
1747 -- not be part of the resolution.
1748
1749 if Is_Eliminated (Op_Id) then
1750 null;
1751 else
1752 Find_Concatenation_Types (L, R, Op_Id, N);
1753 end if;
1754
996ae0b0
RK
1755 else
1756 Analyze_User_Defined_Binary_Op (N, Op_Id);
1757 end if;
1758
1759 Op_Id := Homonym (Op_Id);
1760 end loop;
1761 end if;
1762
1763 Operator_Check (N);
fe39cf20 1764 end Analyze_Concatenation_Rest;
996ae0b0 1765
996ae0b0
RK
1766 -------------------------
1767 -- Analyze_Equality_Op --
1768 -------------------------
1769
1770 procedure Analyze_Equality_Op (N : Node_Id) is
4c46b835
AC
1771 Loc : constant Source_Ptr := Sloc (N);
1772 L : constant Node_Id := Left_Opnd (N);
1773 R : constant Node_Id := Right_Opnd (N);
1774 Op_Id : Entity_Id;
996ae0b0
RK
1775
1776 begin
1777 Set_Etype (N, Any_Type);
1778 Candidate_Type := Empty;
1779
1780 Analyze_Expression (L);
1781 Analyze_Expression (R);
1782
1783 -- If the entity is set, the node is a generic instance with a non-local
1784 -- reference to the predefined operator or to a user-defined function.
1785 -- It can also be an inequality that is expanded into the negation of a
1786 -- call to a user-defined equality operator.
1787
1788 -- For the predefined case, the result is Boolean, regardless of the
21d7ef70 1789 -- type of the operands. The operands may even be limited, if they are
996ae0b0
RK
1790 -- generic actuals. If they are overloaded, label the left argument with
1791 -- the common type that must be present, or with the type of the formal
1792 -- of the user-defined function.
1793
1794 if Present (Entity (N)) then
996ae0b0
RK
1795 Op_Id := Entity (N);
1796
1797 if Ekind (Op_Id) = E_Operator then
1798 Add_One_Interp (N, Op_Id, Standard_Boolean);
1799 else
1800 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1801 end if;
1802
1803 if Is_Overloaded (L) then
996ae0b0
RK
1804 if Ekind (Op_Id) = E_Operator then
1805 Set_Etype (L, Intersect_Types (L, R));
1806 else
1807 Set_Etype (L, Etype (First_Formal (Op_Id)));
1808 end if;
1809 end if;
1810
1811 else
1812 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 1813 while Present (Op_Id) loop
996ae0b0
RK
1814 if Ekind (Op_Id) = E_Operator then
1815 Find_Equality_Types (L, R, Op_Id, N);
1816 else
1817 Analyze_User_Defined_Binary_Op (N, Op_Id);
1818 end if;
1819
1820 Op_Id := Homonym (Op_Id);
1821 end loop;
1822 end if;
1823
84dad556
AC
1824 -- If there was no match, and the operator is inequality, this may be
1825 -- a case where inequality has not been made explicit, as for tagged
1826 -- types. Analyze the node as the negation of an equality operation.
1827 -- This cannot be done earlier, because before analysis we cannot rule
1828 -- out the presence of an explicit inequality.
996ae0b0
RK
1829
1830 if Etype (N) = Any_Type
1831 and then Nkind (N) = N_Op_Ne
1832 then
1833 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
996ae0b0 1834 while Present (Op_Id) loop
996ae0b0
RK
1835 if Ekind (Op_Id) = E_Operator then
1836 Find_Equality_Types (L, R, Op_Id, N);
1837 else
1838 Analyze_User_Defined_Binary_Op (N, Op_Id);
1839 end if;
1840
1841 Op_Id := Homonym (Op_Id);
1842 end loop;
1843
1844 if Etype (N) /= Any_Type then
1845 Op_Id := Entity (N);
1846
1847 Rewrite (N,
1848 Make_Op_Not (Loc,
1849 Right_Opnd =>
1850 Make_Op_Eq (Loc,
aab883ec
ES
1851 Left_Opnd => Left_Opnd (N),
1852 Right_Opnd => Right_Opnd (N))));
996ae0b0
RK
1853
1854 Set_Entity (Right_Opnd (N), Op_Id);
1855 Analyze (N);
1856 end if;
1857 end if;
1858
1859 Operator_Check (N);
22e89283 1860 Check_Function_Writable_Actuals (N);
996ae0b0
RK
1861 end Analyze_Equality_Op;
1862
1863 ----------------------------------
1864 -- Analyze_Explicit_Dereference --
1865 ----------------------------------
1866
1867 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1868 Loc : constant Source_Ptr := Sloc (N);
1869 P : constant Node_Id := Prefix (N);
1870 T : Entity_Id;
1871 I : Interp_Index;
1872 It : Interp;
1873 New_N : Node_Id;
1874
1875 function Is_Function_Type return Boolean;
4c46b835
AC
1876 -- Check whether node may be interpreted as an implicit function call
1877
1878 ----------------------
1879 -- Is_Function_Type --
1880 ----------------------
996ae0b0
RK
1881
1882 function Is_Function_Type return Boolean is
4c46b835
AC
1883 I : Interp_Index;
1884 It : Interp;
996ae0b0
RK
1885
1886 begin
1887 if not Is_Overloaded (N) then
1888 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1889 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1890
1891 else
1892 Get_First_Interp (N, I, It);
996ae0b0
RK
1893 while Present (It.Nam) loop
1894 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1895 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1896 then
1897 return False;
1898 end if;
1899
1900 Get_Next_Interp (I, It);
1901 end loop;
1902
1903 return True;
1904 end if;
1905 end Is_Function_Type;
1906
98123480 1907 -- Start of processing for Analyze_Explicit_Dereference
4c46b835 1908
996ae0b0 1909 begin
11bc76df
AC
1910 -- If source node, check SPARK restriction. We guard this with the
1911 -- source node check, because ???
1912
36b8f95f 1913 if Comes_From_Source (N) then
ce5ba43a 1914 Check_SPARK_05_Restriction ("explicit dereference is not allowed", N);
36b8f95f 1915 end if;
1d801f21 1916
226a7fa4
AC
1917 -- In formal verification mode, keep track of all reads and writes
1918 -- through explicit dereferences.
1919
f5da7a97 1920 if GNATprove_Mode then
06b599fd 1921 SPARK_Specific.Generate_Dereference (N);
226a7fa4
AC
1922 end if;
1923
996ae0b0
RK
1924 Analyze (P);
1925 Set_Etype (N, Any_Type);
1926
1927 -- Test for remote access to subprogram type, and if so return
1928 -- after rewriting the original tree.
1929
1930 if Remote_AST_E_Dereference (P) then
1931 return;
1932 end if;
1933
1934 -- Normal processing for other than remote access to subprogram type
1935
1936 if not Is_Overloaded (P) then
1937 if Is_Access_Type (Etype (P)) then
1938
f3d57416 1939 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
0a36105d
JM
1940 -- avoid other problems caused by the Private_Subtype and it is
1941 -- safe to go to the Base_Type because this is the same as
1942 -- converting the access value to its Base_Type.
996ae0b0
RK
1943
1944 declare
1945 DT : Entity_Id := Designated_Type (Etype (P));
1946
1947 begin
1948 if Ekind (DT) = E_Private_Subtype
1949 and then Is_For_Access_Subtype (DT)
1950 then
1951 DT := Base_Type (DT);
1952 end if;
1953
0a36105d 1954 -- An explicit dereference is a legal occurrence of an
0c6826a5
AC
1955 -- incomplete type imported through a limited_with clause, if
1956 -- the full view is visible, or if we are within an instance
1957 -- body, where the enclosing body has a regular with_clause
1958 -- on the unit.
0a36105d 1959
7b56a91b
AC
1960 if From_Limited_With (DT)
1961 and then not From_Limited_With (Scope (DT))
0a36105d
JM
1962 and then
1963 (Is_Immediately_Visible (Scope (DT))
1964 or else
1965 (Is_Child_Unit (Scope (DT))
bff469f7
AC
1966 and then Is_Visible_Lib_Unit (Scope (DT)))
1967 or else In_Instance_Body)
0a36105d
JM
1968 then
1969 Set_Etype (N, Available_View (DT));
1970
1971 else
1972 Set_Etype (N, DT);
1973 end if;
996ae0b0
RK
1974 end;
1975
1976 elsif Etype (P) /= Any_Type then
1977 Error_Msg_N ("prefix of dereference must be an access type", N);
1978 return;
1979 end if;
1980
1981 else
1982 Get_First_Interp (P, I, It);
996ae0b0
RK
1983 while Present (It.Nam) loop
1984 T := It.Typ;
1985
1986 if Is_Access_Type (T) then
1987 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1988 end if;
1989
1990 Get_Next_Interp (I, It);
1991 end loop;
1992
6e73e3ab 1993 -- Error if no interpretation of the prefix has an access type
996ae0b0
RK
1994
1995 if Etype (N) = Any_Type then
1996 Error_Msg_N
1997 ("access type required in prefix of explicit dereference", P);
1998 Set_Etype (N, Any_Type);
1999 return;
2000 end if;
2001 end if;
2002
2003 if Is_Function_Type
2004 and then Nkind (Parent (N)) /= N_Indexed_Component
2005
2006 and then (Nkind (Parent (N)) /= N_Function_Call
2007 or else N /= Name (Parent (N)))
2008
2009 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
2010 or else N /= Name (Parent (N)))
2011
2012 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
2013 and then (Nkind (Parent (N)) /= N_Attribute_Reference
2014 or else
2015 (Attribute_Name (Parent (N)) /= Name_Address
2016 and then
2017 Attribute_Name (Parent (N)) /= Name_Access))
2018 then
2019 -- Name is a function call with no actuals, in a context that
2020 -- requires deproceduring (including as an actual in an enclosing
98123480 2021 -- function or procedure call). There are some pathological cases
996ae0b0
RK
2022 -- where the prefix might include functions that return access to
2023 -- subprograms and others that return a regular type. Disambiguation
98123480 2024 -- of those has to take place in Resolve.
996ae0b0
RK
2025
2026 New_N :=
2027 Make_Function_Call (Loc,
2028 Name => Make_Explicit_Dereference (Loc, P),
2029 Parameter_Associations => New_List);
2030
2031 -- If the prefix is overloaded, remove operations that have formals,
2032 -- we know that this is a parameterless call.
2033
2034 if Is_Overloaded (P) then
2035 Get_First_Interp (P, I, It);
996ae0b0
RK
2036 while Present (It.Nam) loop
2037 T := It.Typ;
2038
2039 if No (First_Formal (Base_Type (Designated_Type (T)))) then
2040 Set_Etype (P, T);
2041 else
2042 Remove_Interp (I);
2043 end if;
2044
2045 Get_Next_Interp (I, It);
2046 end loop;
2047 end if;
2048
2049 Rewrite (N, New_N);
2050 Analyze (N);
98123480
ES
2051
2052 elsif not Is_Function_Type
2053 and then Is_Overloaded (N)
2054 then
2055 -- The prefix may include access to subprograms and other access
1cb17b78 2056 -- types. If the context selects the interpretation that is a
56a7a3ab
TQ
2057 -- function call (not a procedure call) we cannot rewrite the node
2058 -- yet, but we include the result of the call interpretation.
98123480
ES
2059
2060 Get_First_Interp (N, I, It);
2061 while Present (It.Nam) loop
2062 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
2063 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1cb17b78 2064 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
98123480
ES
2065 then
2066 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
2067 end if;
2068
2069 Get_Next_Interp (I, It);
2070 end loop;
996ae0b0
RK
2071 end if;
2072
2073 -- A value of remote access-to-class-wide must not be dereferenced
2074 -- (RM E.2.2(16)).
2075
2076 Validate_Remote_Access_To_Class_Wide_Type (N);
996ae0b0
RK
2077 end Analyze_Explicit_Dereference;
2078
2079 ------------------------
2080 -- Analyze_Expression --
2081 ------------------------
2082
2083 procedure Analyze_Expression (N : Node_Id) is
2084 begin
5f50020a
ES
2085
2086 -- If the expression is an indexed component that will be rewritten
2087 -- as a container indexing, it has already been analyzed.
2088
2089 if Nkind (N) = N_Indexed_Component
2090 and then Present (Generalized_Indexing (N))
2091 then
2092 null;
2093
2094 else
2095 Analyze (N);
2096 Check_Parameterless_Call (N);
2097 end if;
996ae0b0
RK
2098 end Analyze_Expression;
2099
955871d3
AC
2100 -------------------------------------
2101 -- Analyze_Expression_With_Actions --
2102 -------------------------------------
2103
2104 procedure Analyze_Expression_With_Actions (N : Node_Id) is
2105 A : Node_Id;
2106
2107 begin
2108 A := First (Actions (N));
752b81d9 2109 while Present (A) loop
955871d3
AC
2110 Analyze (A);
2111 Next (A);
955871d3
AC
2112 end loop;
2113
2ffcbaa5
AC
2114 Analyze_Expression (Expression (N));
2115 Set_Etype (N, Etype (Expression (N)));
955871d3
AC
2116 end Analyze_Expression_With_Actions;
2117
9b16cb57
RD
2118 ---------------------------
2119 -- Analyze_If_Expression --
2120 ---------------------------
2121
2122 procedure Analyze_If_Expression (N : Node_Id) is
2123 Condition : constant Node_Id := First (Expressions (N));
2124 Then_Expr : constant Node_Id := Next (Condition);
2125 Else_Expr : Node_Id;
2126
2127 begin
2128 -- Defend against error of missing expressions from previous error
2129
2130 if No (Then_Expr) then
ee2ba856 2131 Check_Error_Detected;
9b16cb57
RD
2132 return;
2133 end if;
2134
08988ed9 2135 if Comes_From_Source (N) then
ce5ba43a 2136 Check_SPARK_05_Restriction ("if expression is not allowed", N);
08988ed9 2137 end if;
9b16cb57
RD
2138
2139 Else_Expr := Next (Then_Expr);
2140
2141 if Comes_From_Source (N) then
c86cf714 2142 Check_Compiler_Unit ("if expression", N);
9b16cb57
RD
2143 end if;
2144
ac072cb2
AC
2145 -- Analyze and resolve the condition. We need to resolve this now so
2146 -- that it gets folded to True/False if possible, before we analyze
2147 -- the THEN/ELSE branches, because when analyzing these branches, we
2148 -- may call Is_Statically_Unevaluated, which expects the condition of
2149 -- an enclosing IF to have been analyze/resolved/evaluated.
2150
9b16cb57 2151 Analyze_Expression (Condition);
ac072cb2
AC
2152 Resolve (Condition, Any_Boolean);
2153
2154 -- Analyze THEN expression and (if present) ELSE expression. For those
2155 -- we delay resolution in the normal manner, because of overloading etc.
2156
9b16cb57
RD
2157 Analyze_Expression (Then_Expr);
2158
2159 if Present (Else_Expr) then
2160 Analyze_Expression (Else_Expr);
2161 end if;
2162
2163 -- If then expression not overloaded, then that decides the type
2164
2165 if not Is_Overloaded (Then_Expr) then
2166 Set_Etype (N, Etype (Then_Expr));
2167
2168 -- Case where then expression is overloaded
2169
2170 else
2171 declare
2172 I : Interp_Index;
2173 It : Interp;
2174
2175 begin
2176 Set_Etype (N, Any_Type);
2177
445e5888 2178 -- Loop through intepretations of Then_Expr
9b16cb57
RD
2179
2180 Get_First_Interp (Then_Expr, I, It);
445e5888 2181 while Present (It.Nam) loop
9b16cb57 2182
0c6826a5
AC
2183 -- Add possible intepretation of Then_Expr if no Else_Expr, or
2184 -- Else_Expr is present and has a compatible type.
9b16cb57 2185
445e5888
AC
2186 if No (Else_Expr)
2187 or else Has_Compatible_Type (Else_Expr, It.Typ)
2188 then
2189 Add_One_Interp (N, It.Typ, It.Typ);
2190 end if;
9b16cb57 2191
445e5888
AC
2192 Get_Next_Interp (I, It);
2193 end loop;
9b16cb57
RD
2194 end;
2195 end if;
2196 end Analyze_If_Expression;
2197
996ae0b0
RK
2198 ------------------------------------
2199 -- Analyze_Indexed_Component_Form --
2200 ------------------------------------
2201
2202 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
fbf5a39b
AC
2203 P : constant Node_Id := Prefix (N);
2204 Exprs : constant List_Id := Expressions (N);
2205 Exp : Node_Id;
2206 P_T : Entity_Id;
2207 E : Node_Id;
2208 U_N : Entity_Id;
996ae0b0
RK
2209
2210 procedure Process_Function_Call;
0c6826a5
AC
2211 -- Prefix in indexed component form is an overloadable entity, so the
2212 -- node is a function call. Reformat it as such.
996ae0b0
RK
2213
2214 procedure Process_Indexed_Component;
2215 -- Prefix in indexed component form is actually an indexed component.
2216 -- This routine processes it, knowing that the prefix is already
2217 -- resolved.
2218
2219 procedure Process_Indexed_Component_Or_Slice;
2220 -- An indexed component with a single index may designate a slice if
2221 -- the index is a subtype mark. This routine disambiguates these two
2222 -- cases by resolving the prefix to see if it is a subtype mark.
2223
2224 procedure Process_Overloaded_Indexed_Component;
2225 -- If the prefix of an indexed component is overloaded, the proper
2226 -- interpretation is selected by the index types and the context.
2227
2228 ---------------------------
2229 -- Process_Function_Call --
2230 ---------------------------
2231
2232 procedure Process_Function_Call is
1725676d 2233 Loc : constant Source_Ptr := Sloc (N);
f5afb270
AC
2234 Actual : Node_Id;
2235
996ae0b0
RK
2236 begin
2237 Change_Node (N, N_Function_Call);
2238 Set_Name (N, P);
2239 Set_Parameter_Associations (N, Exprs);
996ae0b0 2240
401093c1 2241 -- Analyze actuals prior to analyzing the call itself
0a36105d 2242
4c46b835 2243 Actual := First (Parameter_Associations (N));
996ae0b0
RK
2244 while Present (Actual) loop
2245 Analyze (Actual);
2246 Check_Parameterless_Call (Actual);
0a36105d
JM
2247
2248 -- Move to next actual. Note that we use Next, not Next_Actual
2249 -- here. The reason for this is a bit subtle. If a function call
0c6826a5
AC
2250 -- includes named associations, the parser recognizes the node
2251 -- as a call, and it is analyzed as such. If all associations are
0a36105d
JM
2252 -- positional, the parser builds an indexed_component node, and
2253 -- it is only after analysis of the prefix that the construct
2254 -- is recognized as a call, in which case Process_Function_Call
2255 -- rewrites the node and analyzes the actuals. If the list of
2256 -- actuals is malformed, the parser may leave the node as an
2257 -- indexed component (despite the presence of named associations).
2258 -- The iterator Next_Actual is equivalent to Next if the list is
2259 -- positional, but follows the normalized chain of actuals when
2260 -- named associations are present. In this case normalization has
2261 -- not taken place, and actuals remain unanalyzed, which leads to
2262 -- subsequent crashes or loops if there is an attempt to continue
2263 -- analysis of the program.
2264
1725676d
AC
2265 -- IF there is a single actual and it is a type name, the node
2266 -- can only be interpreted as a slice of a parameterless call.
2267 -- Rebuild the node as such and analyze.
2268
2269 if No (Next (Actual))
2270 and then Is_Entity_Name (Actual)
2271 and then Is_Type (Entity (Actual))
2272 and then Is_Discrete_Type (Entity (Actual))
2273 then
2274 Replace (N,
adc876a8
AC
2275 Make_Slice (Loc,
2276 Prefix => P,
2277 Discrete_Range =>
2278 New_Occurrence_Of (Entity (Actual), Loc)));
1725676d
AC
2279 Analyze (N);
2280 return;
2281
2282 else
2283 Next (Actual);
2284 end if;
996ae0b0
RK
2285 end loop;
2286
2287 Analyze_Call (N);
2288 end Process_Function_Call;
2289
2290 -------------------------------
2291 -- Process_Indexed_Component --
2292 -------------------------------
2293
2294 procedure Process_Indexed_Component is
fe39cf20
BD
2295 Exp : Node_Id;
2296 Array_Type : Entity_Id;
2297 Index : Node_Id;
2298 Pent : Entity_Id := Empty;
996ae0b0
RK
2299
2300 begin
2301 Exp := First (Exprs);
2302
2303 if Is_Overloaded (P) then
2304 Process_Overloaded_Indexed_Component;
2305
2306 else
2307 Array_Type := Etype (P);
2308
6e73e3ab
AC
2309 if Is_Entity_Name (P) then
2310 Pent := Entity (P);
2311 elsif Nkind (P) = N_Selected_Component
2312 and then Is_Entity_Name (Selector_Name (P))
2313 then
2314 Pent := Entity (Selector_Name (P));
2315 end if;
2316
2317 -- Prefix must be appropriate for an array type, taking into
2318 -- account a possible implicit dereference.
996ae0b0
RK
2319
2320 if Is_Access_Type (Array_Type) then
324ac540
AC
2321 Error_Msg_NW
2322 (Warn_On_Dereference, "?d?implicit dereference", N);
d469eabe 2323 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
996ae0b0
RK
2324 end if;
2325
2326 if Is_Array_Type (Array_Type) then
2327 null;
2328
6e73e3ab 2329 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
996ae0b0
RK
2330 Analyze (Exp);
2331 Set_Etype (N, Any_Type);
2332
2333 if not Has_Compatible_Type
6e73e3ab 2334 (Exp, Entry_Index_Type (Pent))
996ae0b0
RK
2335 then
2336 Error_Msg_N ("invalid index type in entry name", N);
2337
2338 elsif Present (Next (Exp)) then
2339 Error_Msg_N ("too many subscripts in entry reference", N);
2340
2341 else
2342 Set_Etype (N, Etype (P));
2343 end if;
2344
2345 return;
2346
2347 elsif Is_Record_Type (Array_Type)
2348 and then Remote_AST_I_Dereference (P)
2349 then
2350 return;
2351
50878404 2352 elsif Try_Container_Indexing (N, P, Exprs) then
d50f4827
AC
2353 return;
2354
996ae0b0
RK
2355 elsif Array_Type = Any_Type then
2356 Set_Etype (N, Any_Type);
6465b6a7
AC
2357
2358 -- In most cases the analysis of the prefix will have emitted
2359 -- an error already, but if the prefix may be interpreted as a
2360 -- call in prefixed notation, the report is left to the caller.
2361 -- To prevent cascaded errors, report only if no previous ones.
2362
2363 if Serious_Errors_Detected = 0 then
2364 Error_Msg_N ("invalid prefix in indexed component", P);
2365
2366 if Nkind (P) = N_Expanded_Name then
2367 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2368 end if;
2369 end if;
2370
996ae0b0
RK
2371 return;
2372
2373 -- Here we definitely have a bad indexing
2374
2375 else
2376 if Nkind (Parent (N)) = N_Requeue_Statement
6e73e3ab 2377 and then Present (Pent) and then Ekind (Pent) = E_Entry
996ae0b0
RK
2378 then
2379 Error_Msg_N
2380 ("REQUEUE does not permit parameters", First (Exprs));
2381
2382 elsif Is_Entity_Name (P)
2383 and then Etype (P) = Standard_Void_Type
2384 then
0c6826a5 2385 Error_Msg_NE ("incorrect use of &", P, Entity (P));
996ae0b0
RK
2386
2387 else
2388 Error_Msg_N ("array type required in indexed component", P);
2389 end if;
2390
2391 Set_Etype (N, Any_Type);
2392 return;
2393 end if;
2394
2395 Index := First_Index (Array_Type);
996ae0b0
RK
2396 while Present (Index) and then Present (Exp) loop
2397 if not Has_Compatible_Type (Exp, Etype (Index)) then
2398 Wrong_Type (Exp, Etype (Index));
2399 Set_Etype (N, Any_Type);
2400 return;
2401 end if;
2402
2403 Next_Index (Index);
2404 Next (Exp);
2405 end loop;
2406
2407 Set_Etype (N, Component_Type (Array_Type));
44a10091 2408 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
2409
2410 if Present (Index) then
2411 Error_Msg_N
2412 ("too few subscripts in array reference", First (Exprs));
2413
2414 elsif Present (Exp) then
2415 Error_Msg_N ("too many subscripts in array reference", Exp);
2416 end if;
2417 end if;
996ae0b0
RK
2418 end Process_Indexed_Component;
2419
2420 ----------------------------------------
2421 -- Process_Indexed_Component_Or_Slice --
2422 ----------------------------------------
2423
2424 procedure Process_Indexed_Component_Or_Slice is
2425 begin
2426 Exp := First (Exprs);
996ae0b0
RK
2427 while Present (Exp) loop
2428 Analyze_Expression (Exp);
2429 Next (Exp);
2430 end loop;
2431
2432 Exp := First (Exprs);
2433
0c6826a5
AC
2434 -- If one index is present, and it is a subtype name, then the node
2435 -- denotes a slice (note that the case of an explicit range for a
2436 -- slice was already built as an N_Slice node in the first place,
2437 -- so that case is not handled here).
996ae0b0
RK
2438
2439 -- We use a replace rather than a rewrite here because this is one
2440 -- of the cases in which the tree built by the parser is plain wrong.
2441
2442 if No (Next (Exp))
2443 and then Is_Entity_Name (Exp)
2444 and then Is_Type (Entity (Exp))
2445 then
2446 Replace (N,
2447 Make_Slice (Sloc (N),
2448 Prefix => P,
2449 Discrete_Range => New_Copy (Exp)));
2450 Analyze (N);
2451
2452 -- Otherwise (more than one index present, or single index is not
2453 -- a subtype name), then we have the indexed component case.
2454
2455 else
2456 Process_Indexed_Component;
2457 end if;
2458 end Process_Indexed_Component_Or_Slice;
2459
2460 ------------------------------------------
2461 -- Process_Overloaded_Indexed_Component --
2462 ------------------------------------------
2463
2464 procedure Process_Overloaded_Indexed_Component is
2465 Exp : Node_Id;
2466 I : Interp_Index;
2467 It : Interp;
2468 Typ : Entity_Id;
2469 Index : Node_Id;
2470 Found : Boolean;
2471
2472 begin
2473 Set_Etype (N, Any_Type);
996ae0b0 2474
4c46b835 2475 Get_First_Interp (P, I, It);
996ae0b0
RK
2476 while Present (It.Nam) loop
2477 Typ := It.Typ;
2478
2479 if Is_Access_Type (Typ) then
2480 Typ := Designated_Type (Typ);
324ac540
AC
2481 Error_Msg_NW
2482 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
2483 end if;
2484
2485 if Is_Array_Type (Typ) then
2486
2487 -- Got a candidate: verify that index types are compatible
2488
2489 Index := First_Index (Typ);
2490 Found := True;
996ae0b0 2491 Exp := First (Exprs);
996ae0b0
RK
2492 while Present (Index) and then Present (Exp) loop
2493 if Has_Compatible_Type (Exp, Etype (Index)) then
2494 null;
2495 else
2496 Found := False;
2497 Remove_Interp (I);
2498 exit;
2499 end if;
2500
2501 Next_Index (Index);
2502 Next (Exp);
2503 end loop;
2504
2505 if Found and then No (Index) and then No (Exp) then
44a10091
AC
2506 declare
2507 CT : constant Entity_Id :=
2508 Base_Type (Component_Type (Typ));
2509 begin
2510 Add_One_Interp (N, CT, CT);
2511 Check_Implicit_Dereference (N, CT);
2512 end;
996ae0b0 2513 end if;
57a8057a 2514
50878404 2515 elsif Try_Container_Indexing (N, P, Exprs) then
57a8057a
AC
2516 return;
2517
996ae0b0
RK
2518 end if;
2519
2520 Get_Next_Interp (I, It);
2521 end loop;
2522
2523 if Etype (N) = Any_Type then
ad6b5b00 2524 Error_Msg_N ("no legal interpretation for indexed component", N);
996ae0b0
RK
2525 Set_Is_Overloaded (N, False);
2526 end if;
2527
2528 End_Interp_List;
2529 end Process_Overloaded_Indexed_Component;
2530
4c46b835 2531 -- Start of processing for Analyze_Indexed_Component_Form
996ae0b0
RK
2532
2533 begin
2534 -- Get name of array, function or type
2535
2536 Analyze (P);
d469eabe 2537
24778dbb
AC
2538 -- If P is an explicit dereference whose prefix is of a remote access-
2539 -- to-subprogram type, then N has already been rewritten as a subprogram
2540 -- call and analyzed.
2541
d3b00ce3 2542 if Nkind (N) in N_Subprogram_Call then
24778dbb 2543 return;
d469eabe 2544
24778dbb
AC
2545 -- When the prefix is attribute 'Loop_Entry and the sole expression of
2546 -- the indexed component denotes a loop name, the indexed form is turned
2547 -- into an attribute reference.
fbf5a39b 2548
24778dbb
AC
2549 elsif Nkind (N) = N_Attribute_Reference
2550 and then Attribute_Name (N) = Name_Loop_Entry
2551 then
fbf5a39b
AC
2552 return;
2553 end if;
2554
2555 pragma Assert (Nkind (N) = N_Indexed_Component);
2556
996ae0b0
RK
2557 P_T := Base_Type (Etype (P));
2558
878f708a 2559 if Is_Entity_Name (P) and then Present (Entity (P)) then
996ae0b0
RK
2560 U_N := Entity (P);
2561
aab883ec 2562 if Is_Type (U_N) then
996ae0b0 2563
4c46b835 2564 -- Reformat node as a type conversion
996ae0b0
RK
2565
2566 E := Remove_Head (Exprs);
2567
2568 if Present (First (Exprs)) then
2569 Error_Msg_N
2570 ("argument of type conversion must be single expression", N);
2571 end if;
2572
2573 Change_Node (N, N_Type_Conversion);
2574 Set_Subtype_Mark (N, P);
2575 Set_Etype (N, U_N);
2576 Set_Expression (N, E);
2577
2578 -- After changing the node, call for the specific Analysis
2579 -- routine directly, to avoid a double call to the expander.
2580
2581 Analyze_Type_Conversion (N);
2582 return;
2583 end if;
2584
2585 if Is_Overloadable (U_N) then
2586 Process_Function_Call;
2587
2588 elsif Ekind (Etype (P)) = E_Subprogram_Type
2589 or else (Is_Access_Type (Etype (P))
2590 and then
bce79204
AC
2591 Ekind (Designated_Type (Etype (P))) =
2592 E_Subprogram_Type)
996ae0b0
RK
2593 then
2594 -- Call to access_to-subprogram with possible implicit dereference
2595
2596 Process_Function_Call;
2597
fbf5a39b
AC
2598 elsif Is_Generic_Subprogram (U_N) then
2599
4c46b835 2600 -- A common beginner's (or C++ templates fan) error
996ae0b0
RK
2601
2602 Error_Msg_N ("generic subprogram cannot be called", N);
2603 Set_Etype (N, Any_Type);
2604 return;
2605
2606 else
2607 Process_Indexed_Component_Or_Slice;
2608 end if;
2609
2610 -- If not an entity name, prefix is an expression that may denote
2611 -- an array or an access-to-subprogram.
2612
2613 else
fbf5a39b 2614 if Ekind (P_T) = E_Subprogram_Type
996ae0b0
RK
2615 or else (Is_Access_Type (P_T)
2616 and then
bce79204 2617 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
996ae0b0
RK
2618 then
2619 Process_Function_Call;
2620
2621 elsif Nkind (P) = N_Selected_Component
3d918396 2622 and then Present (Entity (Selector_Name (P)))
ffe9aba8 2623 and then Is_Overloadable (Entity (Selector_Name (P)))
996ae0b0
RK
2624 then
2625 Process_Function_Call;
2626
3d918396
AC
2627 -- In ASIS mode within a generic, a prefixed call is analyzed and
2628 -- partially rewritten but the original indexed component has not
2629 -- yet been rewritten as a call. Perform the replacement now.
2630
2631 elsif Nkind (P) = N_Selected_Component
2632 and then Nkind (Parent (P)) = N_Function_Call
2633 and then ASIS_Mode
2634 then
2635 Rewrite (N, Parent (P));
2636 Analyze (N);
2637
996ae0b0
RK
2638 else
2639 -- Indexed component, slice, or a call to a member of a family
2640 -- entry, which will be converted to an entry call later.
fbf5a39b 2641
996ae0b0
RK
2642 Process_Indexed_Component_Or_Slice;
2643 end if;
2644 end if;
5f49133f
AC
2645
2646 Analyze_Dimension (N);
996ae0b0
RK
2647 end Analyze_Indexed_Component_Form;
2648
2649 ------------------------
2650 -- Analyze_Logical_Op --
2651 ------------------------
2652
2653 procedure Analyze_Logical_Op (N : Node_Id) is
2654 L : constant Node_Id := Left_Opnd (N);
2655 R : constant Node_Id := Right_Opnd (N);
2656 Op_Id : Entity_Id := Entity (N);
2657
2658 begin
2659 Set_Etype (N, Any_Type);
2660 Candidate_Type := Empty;
2661
2662 Analyze_Expression (L);
2663 Analyze_Expression (R);
2664
2665 if Present (Op_Id) then
2666
2667 if Ekind (Op_Id) = E_Operator then
2668 Find_Boolean_Types (L, R, Op_Id, N);
2669 else
2670 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2671 end if;
2672
2673 else
2674 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
2675 while Present (Op_Id) loop
2676 if Ekind (Op_Id) = E_Operator then
2677 Find_Boolean_Types (L, R, Op_Id, N);
2678 else
2679 Analyze_User_Defined_Binary_Op (N, Op_Id);
2680 end if;
2681
2682 Op_Id := Homonym (Op_Id);
2683 end loop;
2684 end if;
2685
2686 Operator_Check (N);
22e89283 2687 Check_Function_Writable_Actuals (N);
996ae0b0
RK
2688 end Analyze_Logical_Op;
2689
2690 ---------------------------
2691 -- Analyze_Membership_Op --
2692 ---------------------------
2693
2694 procedure Analyze_Membership_Op (N : Node_Id) is
66150d01 2695 Loc : constant Source_Ptr := Sloc (N);
f2acf80c
AC
2696 L : constant Node_Id := Left_Opnd (N);
2697 R : constant Node_Id := Right_Opnd (N);
996ae0b0
RK
2698
2699 Index : Interp_Index;
2700 It : Interp;
2701 Found : Boolean := False;
2702 I_F : Interp_Index;
2703 T_F : Entity_Id;
2704
2705 procedure Try_One_Interp (T1 : Entity_Id);
2706 -- Routine to try one proposed interpretation. Note that the context
2707 -- of the operation plays no role in resolving the arguments, so that
2708 -- if there is more than one interpretation of the operands that is
2709 -- compatible with a membership test, the operation is ambiguous.
2710
4c46b835
AC
2711 --------------------
2712 -- Try_One_Interp --
2713 --------------------
2714
996ae0b0
RK
2715 procedure Try_One_Interp (T1 : Entity_Id) is
2716 begin
2717 if Has_Compatible_Type (R, T1) then
2718 if Found
2719 and then Base_Type (T1) /= Base_Type (T_F)
2720 then
2721 It := Disambiguate (L, I_F, Index, Any_Type);
2722
2723 if It = No_Interp then
2724 Ambiguous_Operands (N);
2725 Set_Etype (L, Any_Type);
2726 return;
2727
2728 else
2729 T_F := It.Typ;
2730 end if;
2731
2732 else
2733 Found := True;
2734 T_F := T1;
2735 I_F := Index;
2736 end if;
2737
2738 Set_Etype (L, T_F);
2739 end if;
996ae0b0
RK
2740 end Try_One_Interp;
2741
197e4514
AC
2742 procedure Analyze_Set_Membership;
2743 -- If a set of alternatives is present, analyze each and find the
2744 -- common type to which they must all resolve.
2745
2746 ----------------------------
2747 -- Analyze_Set_Membership --
2748 ----------------------------
2749
2750 procedure Analyze_Set_Membership is
2751 Alt : Node_Id;
2752 Index : Interp_Index;
2753 It : Interp;
197e4514
AC
2754 Candidate_Interps : Node_Id;
2755 Common_Type : Entity_Id := Empty;
2756
2757 begin
e917e3b8 2758 if Comes_From_Source (N) then
c86cf714 2759 Check_Compiler_Unit ("set membership", N);
e917e3b8
AC
2760 end if;
2761
197e4514
AC
2762 Analyze (L);
2763 Candidate_Interps := L;
2764
2765 if not Is_Overloaded (L) then
2766 Common_Type := Etype (L);
2767
2768 Alt := First (Alternatives (N));
2769 while Present (Alt) loop
2770 Analyze (Alt);
2771
2772 if not Has_Compatible_Type (Alt, Common_Type) then
2773 Wrong_Type (Alt, Common_Type);
2774 end if;
2775
2776 Next (Alt);
2777 end loop;
2778
2779 else
2780 Alt := First (Alternatives (N));
2781 while Present (Alt) loop
2782 Analyze (Alt);
2783 if not Is_Overloaded (Alt) then
2784 Common_Type := Etype (Alt);
2785
2786 else
2787 Get_First_Interp (Alt, Index, It);
2788 while Present (It.Typ) loop
442c0581
RD
2789 if not
2790 Has_Compatible_Type (Candidate_Interps, It.Typ)
197e4514
AC
2791 then
2792 Remove_Interp (Index);
2793 end if;
442c0581 2794
197e4514
AC
2795 Get_Next_Interp (Index, It);
2796 end loop;
2797
2798 Get_First_Interp (Alt, Index, It);
442c0581 2799
197e4514
AC
2800 if No (It.Typ) then
2801 Error_Msg_N ("alternative has no legal type", Alt);
2802 return;
2803 end if;
2804
442c0581
RD
2805 -- If alternative is not overloaded, we have a unique type
2806 -- for all of them.
197e4514
AC
2807
2808 Set_Etype (Alt, It.Typ);
2809 Get_Next_Interp (Index, It);
2810
2811 if No (It.Typ) then
2812 Set_Is_Overloaded (Alt, False);
2813 Common_Type := Etype (Alt);
2814 end if;
2815
2816 Candidate_Interps := Alt;
2817 end if;
2818
2819 Next (Alt);
2820 end loop;
2821 end if;
2822
2823 Set_Etype (N, Standard_Boolean);
2824
2825 if Present (Common_Type) then
2826 Set_Etype (L, Common_Type);
cd1a470a
AC
2827
2828 -- The left operand may still be overloaded, to be resolved using
2829 -- the Common_Type.
197e4514
AC
2830
2831 else
2832 Error_Msg_N ("cannot resolve membership operation", N);
2833 end if;
2834 end Analyze_Set_Membership;
2835
996ae0b0
RK
2836 -- Start of processing for Analyze_Membership_Op
2837
2838 begin
2839 Analyze_Expression (L);
2840
e917e3b8 2841 if No (R) and then Ada_Version >= Ada_2012 then
197e4514 2842 Analyze_Set_Membership;
22e89283 2843 Check_Function_Writable_Actuals (N);
288cbbbd 2844
197e4514
AC
2845 return;
2846 end if;
2847
996ae0b0
RK
2848 if Nkind (R) = N_Range
2849 or else (Nkind (R) = N_Attribute_Reference
2850 and then Attribute_Name (R) = Name_Range)
2851 then
2852 Analyze (R);
2853
2854 if not Is_Overloaded (L) then
2855 Try_One_Interp (Etype (L));
2856
2857 else
2858 Get_First_Interp (L, Index, It);
996ae0b0
RK
2859 while Present (It.Typ) loop
2860 Try_One_Interp (It.Typ);
2861 Get_Next_Interp (Index, It);
2862 end loop;
2863 end if;
2864
f6b5dc8e 2865 -- If not a range, it can be a subtype mark, or else it is a degenerate
b0186f71
AC
2866 -- membership test with a singleton value, i.e. a test for equality,
2867 -- if the types are compatible.
996ae0b0
RK
2868
2869 else
66150d01 2870 Analyze (R);
7483c888 2871
66150d01
AC
2872 if Is_Entity_Name (R)
2873 and then Is_Type (Entity (R))
2874 then
2875 Find_Type (R);
996ae0b0 2876 Check_Fully_Declared (Entity (R), R);
66150d01 2877
b0186f71
AC
2878 elsif Ada_Version >= Ada_2012
2879 and then Has_Compatible_Type (R, Etype (L))
2880 then
66150d01
AC
2881 if Nkind (N) = N_In then
2882 Rewrite (N,
2883 Make_Op_Eq (Loc,
2884 Left_Opnd => L,
2885 Right_Opnd => R));
2886 else
2887 Rewrite (N,
2888 Make_Op_Ne (Loc,
2889 Left_Opnd => L,
2890 Right_Opnd => R));
2891 end if;
2892
2893 Analyze (N);
2894 return;
2895
2896 else
b0186f71
AC
2897 -- In all versions of the language, if we reach this point there
2898 -- is a previous error that will be diagnosed below.
66150d01
AC
2899
2900 Find_Type (R);
996ae0b0
RK
2901 end if;
2902 end if;
2903
2904 -- Compatibility between expression and subtype mark or range is
2905 -- checked during resolution. The result of the operation is Boolean
2906 -- in any case.
2907
2908 Set_Etype (N, Standard_Boolean);
fe45e59e
ES
2909
2910 if Comes_From_Source (N)
197e4514 2911 and then Present (Right_Opnd (N))
fe45e59e
ES
2912 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2913 then
2914 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2915 end if;
288cbbbd 2916
22e89283 2917 Check_Function_Writable_Actuals (N);
996ae0b0
RK
2918 end Analyze_Membership_Op;
2919
b727a82b
AC
2920 -----------------
2921 -- Analyze_Mod --
2922 -----------------
2923
2924 procedure Analyze_Mod (N : Node_Id) is
2925 begin
2926 -- A special warning check, if we have an expression of the form:
2927 -- expr mod 2 * literal
2928 -- where literal is 64 or less, then probably what was meant was
2929 -- expr mod 2 ** literal
2930 -- so issue an appropriate warning.
2931
2932 if Warn_On_Suspicious_Modulus_Value
2933 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
2934 and then Intval (Right_Opnd (N)) = Uint_2
2935 and then Nkind (Parent (N)) = N_Op_Multiply
2936 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
2937 and then Intval (Right_Opnd (Parent (N))) <= Uint_64
2938 then
2939 Error_Msg_N
324ac540 2940 ("suspicious MOD value, was '*'* intended'??M?", Parent (N));
b727a82b
AC
2941 end if;
2942
2943 -- Remaining processing is same as for other arithmetic operators
2944
2945 Analyze_Arithmetic_Op (N);
2946 end Analyze_Mod;
2947
996ae0b0
RK
2948 ----------------------
2949 -- Analyze_Negation --
2950 ----------------------
2951
2952 procedure Analyze_Negation (N : Node_Id) is
2953 R : constant Node_Id := Right_Opnd (N);
2954 Op_Id : Entity_Id := Entity (N);
2955
2956 begin
2957 Set_Etype (N, Any_Type);
2958 Candidate_Type := Empty;
2959
2960 Analyze_Expression (R);
2961
2962 if Present (Op_Id) then
2963 if Ekind (Op_Id) = E_Operator then
2964 Find_Negation_Types (R, Op_Id, N);
2965 else
2966 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2967 end if;
2968
2969 else
2970 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
2971 while Present (Op_Id) loop
2972 if Ekind (Op_Id) = E_Operator then
2973 Find_Negation_Types (R, Op_Id, N);
2974 else
2975 Analyze_User_Defined_Unary_Op (N, Op_Id);
2976 end if;
2977
2978 Op_Id := Homonym (Op_Id);
2979 end loop;
2980 end if;
2981
2982 Operator_Check (N);
2983 end Analyze_Negation;
2984
15ce9ca2
AC
2985 ------------------
2986 -- Analyze_Null --
2987 ------------------
996ae0b0
RK
2988
2989 procedure Analyze_Null (N : Node_Id) is
2990 begin
ce5ba43a 2991 Check_SPARK_05_Restriction ("null is not allowed", N);
1d801f21 2992
996ae0b0
RK
2993 Set_Etype (N, Any_Access);
2994 end Analyze_Null;
2995
2996 ----------------------
2997 -- Analyze_One_Call --
2998 ----------------------
2999
3000 procedure Analyze_One_Call
ec6078e3
ES
3001 (N : Node_Id;
3002 Nam : Entity_Id;
3003 Report : Boolean;
3004 Success : out Boolean;
3005 Skip_First : Boolean := False)
996ae0b0 3006 is
d469eabe
HK
3007 Actuals : constant List_Id := Parameter_Associations (N);
3008 Prev_T : constant Entity_Id := Etype (N);
3009
aab883ec
ES
3010 Must_Skip : constant Boolean := Skip_First
3011 or else Nkind (Original_Node (N)) = N_Selected_Component
3012 or else
3013 (Nkind (Original_Node (N)) = N_Indexed_Component
3014 and then Nkind (Prefix (Original_Node (N)))
3015 = N_Selected_Component);
3016 -- The first formal must be omitted from the match when trying to find
3017 -- a primitive operation that is a possible interpretation, and also
3018 -- after the call has been rewritten, because the corresponding actual
3019 -- is already known to be compatible, and because this may be an
3020 -- indexing of a call with default parameters.
3021
53cf4600
ES
3022 Formal : Entity_Id;
3023 Actual : Node_Id;
3024 Is_Indexed : Boolean := False;
3025 Is_Indirect : Boolean := False;
3026 Subp_Type : constant Entity_Id := Etype (Nam);
3027 Norm_OK : Boolean;
996ae0b0 3028
157a9bf5
ES
3029 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
3030 -- There may be a user-defined operator that hides the current
3031 -- interpretation. We must check for this independently of the
3032 -- analysis of the call with the user-defined operation, because
3033 -- the parameter names may be wrong and yet the hiding takes place.
3034 -- This fixes a problem with ACATS test B34014O.
3035 --
3036 -- When the type Address is a visible integer type, and the DEC
3037 -- system extension is visible, the predefined operator may be
3038 -- hidden as well, by one of the address operations in auxdec.
3039 -- Finally, The abstract operations on address do not hide the
3040 -- predefined operator (this is the purpose of making them abstract).
3041
fbf5a39b 3042 procedure Indicate_Name_And_Type;
996ae0b0
RK
3043 -- If candidate interpretation matches, indicate name and type of
3044 -- result on call node.
3045
fbf5a39b
AC
3046 ----------------------------
3047 -- Indicate_Name_And_Type --
3048 ----------------------------
996ae0b0 3049
fbf5a39b 3050 procedure Indicate_Name_And_Type is
996ae0b0
RK
3051 begin
3052 Add_One_Interp (N, Nam, Etype (Nam));
44a10091 3053 Check_Implicit_Dereference (N, Etype (Nam));
996ae0b0
RK
3054 Success := True;
3055
3056 -- If the prefix of the call is a name, indicate the entity
3057 -- being called. If it is not a name, it is an expression that
3058 -- denotes an access to subprogram or else an entry or family. In
3059 -- the latter case, the name is a selected component, and the entity
3060 -- being called is noted on the selector.
3061
3062 if not Is_Type (Nam) then
a3f2babd 3063 if Is_Entity_Name (Name (N)) then
996ae0b0
RK
3064 Set_Entity (Name (N), Nam);
3065
3066 elsif Nkind (Name (N)) = N_Selected_Component then
3067 Set_Entity (Selector_Name (Name (N)), Nam);
3068 end if;
3069 end if;
3070
3071 if Debug_Flag_E and not Report then
3072 Write_Str (" Overloaded call ");
3073 Write_Int (Int (N));
3074 Write_Str (" compatible with ");
3075 Write_Int (Int (Nam));
3076 Write_Eol;
3077 end if;
fbf5a39b 3078 end Indicate_Name_And_Type;
996ae0b0 3079
157a9bf5
ES
3080 ------------------------
3081 -- Operator_Hidden_By --
3082 ------------------------
3083
3084 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
3085 Act1 : constant Node_Id := First_Actual (N);
3086 Act2 : constant Node_Id := Next_Actual (Act1);
3087 Form1 : constant Entity_Id := First_Formal (Fun);
3088 Form2 : constant Entity_Id := Next_Formal (Form1);
3089
3090 begin
e4deba8e 3091 if Ekind (Fun) /= E_Function or else Is_Abstract_Subprogram (Fun) then
157a9bf5
ES
3092 return False;
3093
3094 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
3095 return False;
3096
3097 elsif Present (Form2) then
e4deba8e
RD
3098 if No (Act2)
3099 or else not Has_Compatible_Type (Act2, Etype (Form2))
157a9bf5
ES
3100 then
3101 return False;
3102 end if;
3103
3104 elsif Present (Act2) then
3105 return False;
3106 end if;
3107
3108 -- Now we know that the arity of the operator matches the function,
3109 -- and the function call is a valid interpretation. The function
3110 -- hides the operator if it has the right signature, or if one of
3111 -- its operands is a non-abstract operation on Address when this is
3112 -- a visible integer type.
3113
3114 return Hides_Op (Fun, Nam)
3115 or else Is_Descendent_Of_Address (Etype (Form1))
3116 or else
3117 (Present (Form2)
3118 and then Is_Descendent_Of_Address (Etype (Form2)));
3119 end Operator_Hidden_By;
3120
996ae0b0
RK
3121 -- Start of processing for Analyze_One_Call
3122
3123 begin
3124 Success := False;
3125
157a9bf5
ES
3126 -- If the subprogram has no formals or if all the formals have defaults,
3127 -- and the return type is an array type, the node may denote an indexing
3128 -- of the result of a parameterless call. In Ada 2005, the subprogram
3129 -- may have one non-defaulted formal, and the call may have been written
3130 -- in prefix notation, so that the rebuilt parameter list has more than
3131 -- one actual.
996ae0b0 3132
53cf4600
ES
3133 if not Is_Overloadable (Nam)
3134 and then Ekind (Nam) /= E_Subprogram_Type
3135 and then Ekind (Nam) /= E_Entry_Family
3136 then
3137 return;
3138 end if;
3139
80e59506 3140 -- An indexing requires at least one actual. The name of the call cannot
4bb9c7b9
AC
3141 -- be an implicit indirect call, so it cannot be a generated explicit
3142 -- dereference.
e1f3cb58
AC
3143
3144 if not Is_Empty_List (Actuals)
aab883ec
ES
3145 and then
3146 (Needs_No_Actuals (Nam)
3147 or else
3148 (Needs_One_Actual (Nam)
e4deba8e 3149 and then Present (Next_Actual (First (Actuals)))))
996ae0b0 3150 then
4bb9c7b9
AC
3151 if Is_Array_Type (Subp_Type)
3152 and then
3153 (Nkind (Name (N)) /= N_Explicit_Dereference
3154 or else Comes_From_Source (Name (N)))
3155 then
aab883ec 3156 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
996ae0b0
RK
3157
3158 elsif Is_Access_Type (Subp_Type)
3159 and then Is_Array_Type (Designated_Type (Subp_Type))
3160 then
3161 Is_Indexed :=
aab883ec
ES
3162 Try_Indexed_Call
3163 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
996ae0b0 3164
758c442c 3165 -- The prefix can also be a parameterless function that returns an
f3d57416 3166 -- access to subprogram, in which case this is an indirect call.
53cf4600
ES
3167 -- If this succeeds, an explicit dereference is added later on,
3168 -- in Analyze_Call or Resolve_Call.
758c442c 3169
996ae0b0 3170 elsif Is_Access_Type (Subp_Type)
401093c1 3171 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
996ae0b0 3172 then
53cf4600 3173 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
996ae0b0
RK
3174 end if;
3175
3176 end if;
3177
5ff22245 3178 -- If the call has been transformed into a slice, it is of the form
30783513 3179 -- F (Subtype) where F is parameterless. The node has been rewritten in
5ff22245
ES
3180 -- Try_Indexed_Call and there is nothing else to do.
3181
3182 if Is_Indexed
21d7ef70 3183 and then Nkind (N) = N_Slice
5ff22245
ES
3184 then
3185 return;
3186 end if;
3187
53cf4600
ES
3188 Normalize_Actuals
3189 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
996ae0b0
RK
3190
3191 if not Norm_OK then
3192
53cf4600 3193 -- If an indirect call is a possible interpretation, indicate
80e59506 3194 -- success to the caller. This may be an indexing of an explicit
4bb9c7b9 3195 -- dereference of a call that returns an access type (see above).
53cf4600 3196
4bb9c7b9
AC
3197 if Is_Indirect
3198 or else (Is_Indexed
3199 and then Nkind (Name (N)) = N_Explicit_Dereference
3200 and then Comes_From_Source (Name (N)))
3201 then
53cf4600
ES
3202 Success := True;
3203 return;
3204
996ae0b0
RK
3205 -- Mismatch in number or names of parameters
3206
53cf4600 3207 elsif Debug_Flag_E then
996ae0b0
RK
3208 Write_Str (" normalization fails in call ");
3209 Write_Int (Int (N));
3210 Write_Str (" with subprogram ");
3211 Write_Int (Int (Nam));
3212 Write_Eol;
3213 end if;
3214
3215 -- If the context expects a function call, discard any interpretation
3216 -- that is a procedure. If the node is not overloaded, leave as is for
3217 -- better error reporting when type mismatch is found.
3218
3219 elsif Nkind (N) = N_Function_Call
3220 and then Is_Overloaded (Name (N))
3221 and then Ekind (Nam) = E_Procedure
3222 then
3223 return;
3224
4c46b835 3225 -- Ditto for function calls in a procedure context
996ae0b0
RK
3226
3227 elsif Nkind (N) = N_Procedure_Call_Statement
3228 and then Is_Overloaded (Name (N))
3229 and then Etype (Nam) /= Standard_Void_Type
3230 then
3231 return;
3232
fe45e59e 3233 elsif No (Actuals) then
996ae0b0
RK
3234
3235 -- If Normalize succeeds, then there are default parameters for
3236 -- all formals.
3237
fbf5a39b 3238 Indicate_Name_And_Type;
996ae0b0
RK
3239
3240 elsif Ekind (Nam) = E_Operator then
996ae0b0
RK
3241 if Nkind (N) = N_Procedure_Call_Statement then
3242 return;
3243 end if;
3244
3245 -- This can occur when the prefix of the call is an operator
3246 -- name or an expanded name whose selector is an operator name.
3247
3248 Analyze_Operator_Call (N, Nam);
3249
3250 if Etype (N) /= Prev_T then
3251
157a9bf5 3252 -- Check that operator is not hidden by a function interpretation
996ae0b0
RK
3253
3254 if Is_Overloaded (Name (N)) then
3255 declare
3256 I : Interp_Index;
3257 It : Interp;
3258
3259 begin
3260 Get_First_Interp (Name (N), I, It);
996ae0b0 3261 while Present (It.Nam) loop
157a9bf5 3262 if Operator_Hidden_By (It.Nam) then
996ae0b0
RK
3263 Set_Etype (N, Prev_T);
3264 return;
3265 end if;
3266
3267 Get_Next_Interp (I, It);
3268 end loop;
3269 end;
3270 end if;
3271
3272 -- If operator matches formals, record its name on the call.
3273 -- If the operator is overloaded, Resolve will select the
3274 -- correct one from the list of interpretations. The call
3275 -- node itself carries the first candidate.
3276
3277 Set_Entity (Name (N), Nam);
3278 Success := True;
3279
3280 elsif Report and then Etype (N) = Any_Type then
3281 Error_Msg_N ("incompatible arguments for operator", N);
3282 end if;
3283
3284 else
3285 -- Normalize_Actuals has chained the named associations in the
3286 -- correct order of the formals.
3287
3288 Actual := First_Actual (N);
3289 Formal := First_Formal (Nam);
ec6078e3 3290
df3e68b1
HK
3291 -- If we are analyzing a call rewritten from object notation, skip
3292 -- first actual, which may be rewritten later as an explicit
3293 -- dereference.
ec6078e3 3294
aab883ec 3295 if Must_Skip then
ec6078e3
ES
3296 Next_Actual (Actual);
3297 Next_Formal (Formal);
3298 end if;
3299
996ae0b0 3300 while Present (Actual) and then Present (Formal) loop
fbf5a39b
AC
3301 if Nkind (Parent (Actual)) /= N_Parameter_Association
3302 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
996ae0b0 3303 then
9c510803
ES
3304 -- The actual can be compatible with the formal, but we must
3305 -- also check that the context is not an address type that is
7a5b62b0
AC
3306 -- visibly an integer type. In this case the use of literals is
3307 -- illegal, except in the body of descendents of system, where
3308 -- arithmetic operations on address are of course used.
9c510803
ES
3309
3310 if Has_Compatible_Type (Actual, Etype (Formal))
3311 and then
3312 (Etype (Actual) /= Universal_Integer
3313 or else not Is_Descendent_Of_Address (Etype (Formal))
3314 or else
3315 Is_Predefined_File_Name
3316 (Unit_File_Name (Get_Source_Unit (N))))
3317 then
996ae0b0
RK
3318 Next_Actual (Actual);
3319 Next_Formal (Formal);
3320
061828e3
AC
3321 -- In Allow_Integer_Address mode, we allow an actual integer to
3322 -- match a formal address type and vice versa. We only do this
3323 -- if we are certain that an error will otherwise be issued
3324
3325 elsif Address_Integer_Convert_OK
3326 (Etype (Actual), Etype (Formal))
3327 and then (Report and not Is_Indexed and not Is_Indirect)
3328 then
3329 -- Handle this case by introducing an unchecked conversion
3330
3331 Rewrite (Actual,
3332 Unchecked_Convert_To (Etype (Formal),
3333 Relocate_Node (Actual)));
3334 Analyze_And_Resolve (Actual, Etype (Formal));
3335 Next_Actual (Actual);
3336 Next_Formal (Formal);
3337
a921e83c
AC
3338 -- For an Ada 2012 predicate or invariant, a call may mention
3339 -- an incomplete type, while resolution of the corresponding
3340 -- predicate function may see the full view, as a consequence
3341 -- of the delayed resolution of the corresponding expressions.
3342
3343 elsif Ekind (Etype (Formal)) = E_Incomplete_Type
3344 and then Full_View (Etype (Formal)) = Etype (Actual)
3345 then
3346 Set_Etype (Formal, Etype (Actual));
3347 Next_Actual (Actual);
3348 Next_Formal (Formal);
3349
996ae0b0
RK
3350 else
3351 if Debug_Flag_E then
3352 Write_Str (" type checking fails in call ");
3353 Write_Int (Int (N));
3354 Write_Str (" with formal ");
3355 Write_Int (Int (Formal));
3356 Write_Str (" in subprogram ");
3357 Write_Int (Int (Nam));
3358 Write_Eol;
3359 end if;
3360
061828e3
AC
3361 -- Comment needed on the following test???
3362
53cf4600 3363 if Report and not Is_Indexed and not Is_Indirect then
758c442c
GD
3364
3365 -- Ada 2005 (AI-251): Complete the error notification
8f2eeab7 3366 -- to help new Ada 2005 users.
758c442c
GD
3367
3368 if Is_Class_Wide_Type (Etype (Formal))
3369 and then Is_Interface (Etype (Etype (Formal)))
3370 and then not Interface_Present_In_Ancestor
3371 (Typ => Etype (Actual),
3372 Iface => Etype (Etype (Formal)))
3373 then
758c442c 3374 Error_Msg_NE
ec6078e3 3375 ("(Ada 2005) does not implement interface }",
758c442c
GD
3376 Actual, Etype (Etype (Formal)));
3377 end if;
3378
996ae0b0
RK
3379 Wrong_Type (Actual, Etype (Formal));
3380
3381 if Nkind (Actual) = N_Op_Eq
3382 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3383 then
3384 Formal := First_Formal (Nam);
996ae0b0 3385 while Present (Formal) loop
996ae0b0 3386 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
4e7a4f6e 3387 Error_Msg_N -- CODEFIX
fbf5a39b 3388 ("possible misspelling of `='>`!", Actual);
996ae0b0
RK
3389 exit;
3390 end if;
3391
3392 Next_Formal (Formal);
3393 end loop;
3394 end if;
3395
3396 if All_Errors_Mode then
3397 Error_Msg_Sloc := Sloc (Nam);
3398
3b42c566
RD
3399 if Etype (Formal) = Any_Type then
3400 Error_Msg_N
3401 ("there is no legal actual parameter", Actual);
3402 end if;
3403
996ae0b0
RK
3404 if Is_Overloadable (Nam)
3405 and then Present (Alias (Nam))
3406 and then not Comes_From_Source (Nam)
3407 then
3408 Error_Msg_NE
401093c1
ES
3409 ("\\ =='> in call to inherited operation & #!",
3410 Actual, Nam);
7324bf49
AC
3411
3412 elsif Ekind (Nam) = E_Subprogram_Type then
3413 declare
3414 Access_To_Subprogram_Typ :
3415 constant Entity_Id :=
3416 Defining_Identifier
3417 (Associated_Node_For_Itype (Nam));
3418 begin
a90bd866
RD
3419 Error_Msg_NE
3420 ("\\ =='> in call to dereference of &#!",
3421 Actual, Access_To_Subprogram_Typ);
7324bf49
AC
3422 end;
3423
996ae0b0 3424 else
401093c1
ES
3425 Error_Msg_NE
3426 ("\\ =='> in call to &#!", Actual, Nam);
7324bf49 3427
996ae0b0
RK
3428 end if;
3429 end if;
3430 end if;
3431
3432 return;
3433 end if;
3434
3435 else
3436 -- Normalize_Actuals has verified that a default value exists
3437 -- for this formal. Current actual names a subsequent formal.
3438
3439 Next_Formal (Formal);
3440 end if;
3441 end loop;
3442
4c46b835 3443 -- On exit, all actuals match
996ae0b0 3444
fbf5a39b 3445 Indicate_Name_And_Type;
996ae0b0
RK
3446 end if;
3447 end Analyze_One_Call;
3448
15ce9ca2
AC
3449 ---------------------------
3450 -- Analyze_Operator_Call --
3451 ---------------------------
996ae0b0
RK
3452
3453 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3454 Op_Name : constant Name_Id := Chars (Op_Id);
3455 Act1 : constant Node_Id := First_Actual (N);
3456 Act2 : constant Node_Id := Next_Actual (Act1);
3457
3458 begin
4c46b835
AC
3459 -- Binary operator case
3460
996ae0b0
RK
3461 if Present (Act2) then
3462
4c46b835 3463 -- If more than two operands, then not binary operator after all
996ae0b0
RK
3464
3465 if Present (Next_Actual (Act2)) then
996ae0b0 3466 return;
b7539c3b 3467 end if;
996ae0b0 3468
b7539c3b 3469 -- Otherwise action depends on operator
996ae0b0 3470
b7539c3b
AC
3471 case Op_Name is
3472 when Name_Op_Add |
3473 Name_Op_Subtract |
3474 Name_Op_Multiply |
3475 Name_Op_Divide |
3476 Name_Op_Mod |
3477 Name_Op_Rem |
3478 Name_Op_Expon =>
3479 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
996ae0b0 3480
b7539c3b
AC
3481 when Name_Op_And |
3482 Name_Op_Or |
3483 Name_Op_Xor =>
3484 Find_Boolean_Types (Act1, Act2, Op_Id, N);
996ae0b0 3485
b7539c3b
AC
3486 when Name_Op_Lt |
3487 Name_Op_Le |
3488 Name_Op_Gt |
3489 Name_Op_Ge =>
3490 Find_Comparison_Types (Act1, Act2, Op_Id, N);
996ae0b0 3491
b7539c3b
AC
3492 when Name_Op_Eq |
3493 Name_Op_Ne =>
3494 Find_Equality_Types (Act1, Act2, Op_Id, N);
996ae0b0 3495
b7539c3b
AC
3496 when Name_Op_Concat =>
3497 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
996ae0b0 3498
b7539c3b
AC
3499 -- Is this when others, or should it be an abort???
3500
3501 when others =>
3502 null;
3503 end case;
996ae0b0 3504
4c46b835 3505 -- Unary operator case
996ae0b0 3506
4c46b835 3507 else
b7539c3b
AC
3508 case Op_Name is
3509 when Name_Op_Subtract |
3510 Name_Op_Add |
3511 Name_Op_Abs =>
3512 Find_Unary_Types (Act1, Op_Id, N);
996ae0b0 3513
b7539c3b
AC
3514 when Name_Op_Not =>
3515 Find_Negation_Types (Act1, Op_Id, N);
996ae0b0 3516
b7539c3b 3517 -- Is this when others correct, or should it be an abort???
996ae0b0 3518
b7539c3b
AC
3519 when others =>
3520 null;
3521 end case;
996ae0b0
RK
3522 end if;
3523 end Analyze_Operator_Call;
3524
3525 -------------------------------------------
3526 -- Analyze_Overloaded_Selected_Component --
3527 -------------------------------------------
3528
3529 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
fbf5a39b
AC
3530 Nam : constant Node_Id := Prefix (N);
3531 Sel : constant Node_Id := Selector_Name (N);
996ae0b0 3532 Comp : Entity_Id;
996ae0b0
RK
3533 I : Interp_Index;
3534 It : Interp;
3535 T : Entity_Id;
3536
3537 begin
4c46b835 3538 Set_Etype (Sel, Any_Type);
996ae0b0 3539
4c46b835 3540 Get_First_Interp (Nam, I, It);
996ae0b0
RK
3541 while Present (It.Typ) loop
3542 if Is_Access_Type (It.Typ) then
3543 T := Designated_Type (It.Typ);
324ac540 3544 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
3545 else
3546 T := It.Typ;
3547 end if;
3548
95eb8b69
AC
3549 -- Locate the component. For a private prefix the selector can denote
3550 -- a discriminant.
3551
3552 if Is_Record_Type (T) or else Is_Private_Type (T) then
d469eabe
HK
3553
3554 -- If the prefix is a class-wide type, the visible components are
3555 -- those of the base type.
3556
3557 if Is_Class_Wide_Type (T) then
3558 T := Etype (T);
3559 end if;
3560
996ae0b0 3561 Comp := First_Entity (T);
996ae0b0 3562 while Present (Comp) loop
996ae0b0
RK
3563 if Chars (Comp) = Chars (Sel)
3564 and then Is_Visible_Component (Comp)
3565 then
996ae0b0 3566
f16d05d9
AC
3567 -- AI05-105: if the context is an object renaming with
3568 -- an anonymous access type, the expected type of the
3569 -- object must be anonymous. This is a name resolution rule.
996ae0b0 3570
f16d05d9
AC
3571 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3572 or else No (Access_Definition (Parent (N)))
3573 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3574 or else
3575 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3576 then
3577 Set_Entity (Sel, Comp);
3578 Set_Etype (Sel, Etype (Comp));
3579 Add_One_Interp (N, Etype (Comp), Etype (Comp));
44a10091 3580 Check_Implicit_Dereference (N, Etype (Comp));
f16d05d9
AC
3581
3582 -- This also specifies a candidate to resolve the name.
3583 -- Further overloading will be resolved from context.
3584 -- The selector name itself does not carry overloading
3585 -- information.
3586
3587 Set_Etype (Nam, It.Typ);
3588
3589 else
b61ee1aa 3590 -- Named access type in the context of a renaming
f16d05d9
AC
3591 -- declaration with an access definition. Remove
3592 -- inapplicable candidate.
3593
3594 Remove_Interp (I);
3595 end if;
996ae0b0
RK
3596 end if;
3597
3598 Next_Entity (Comp);
3599 end loop;
3600
3601 elsif Is_Concurrent_Type (T) then
3602 Comp := First_Entity (T);
996ae0b0
RK
3603 while Present (Comp)
3604 and then Comp /= First_Private_Entity (T)
3605 loop
3606 if Chars (Comp) = Chars (Sel) then
3607 if Is_Overloadable (Comp) then
3608 Add_One_Interp (Sel, Comp, Etype (Comp));
3609 else
e7ba564f 3610 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
3611 Generate_Reference (Comp, Sel);
3612 end if;
3613
3614 Set_Etype (Sel, Etype (Comp));
3615 Set_Etype (N, Etype (Comp));
3616 Set_Etype (Nam, It.Typ);
3617
09494c32
AC
3618 -- For access type case, introduce explicit dereference for
3619 -- more uniform treatment of entry calls. Do this only once
3620 -- if several interpretations yield an access type.
996ae0b0 3621
d469eabe
HK
3622 if Is_Access_Type (Etype (Nam))
3623 and then Nkind (Nam) /= N_Explicit_Dereference
3624 then
996ae0b0 3625 Insert_Explicit_Dereference (Nam);
fbf5a39b 3626 Error_Msg_NW
324ac540 3627 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
3628 end if;
3629 end if;
3630
3631 Next_Entity (Comp);
3632 end loop;
3633
3634 Set_Is_Overloaded (N, Is_Overloaded (Sel));
996ae0b0
RK
3635 end if;
3636
3637 Get_Next_Interp (I, It);
3638 end loop;
3639
0a36105d
JM
3640 if Etype (N) = Any_Type
3641 and then not Try_Object_Operation (N)
3642 then
996ae0b0
RK
3643 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3644 Set_Entity (Sel, Any_Id);
3645 Set_Etype (Sel, Any_Type);
3646 end if;
996ae0b0
RK
3647 end Analyze_Overloaded_Selected_Component;
3648
3649 ----------------------------------
3650 -- Analyze_Qualified_Expression --
3651 ----------------------------------
3652
3653 procedure Analyze_Qualified_Expression (N : Node_Id) is
3654 Mark : constant Entity_Id := Subtype_Mark (N);
45c8b94b
ES
3655 Expr : constant Node_Id := Expression (N);
3656 I : Interp_Index;
3657 It : Interp;
996ae0b0
RK
3658 T : Entity_Id;
3659
3660 begin
45c8b94b
ES
3661 Analyze_Expression (Expr);
3662
996ae0b0
RK
3663 Set_Etype (N, Any_Type);
3664 Find_Type (Mark);
3665 T := Entity (Mark);
45c8b94b 3666 Set_Etype (N, T);
996ae0b0
RK
3667
3668 if T = Any_Type then
3669 return;
3670 end if;
996ae0b0 3671
4c46b835 3672 Check_Fully_Declared (T, N);
45c8b94b
ES
3673
3674 -- If expected type is class-wide, check for exact match before
3675 -- expansion, because if the expression is a dispatching call it
3676 -- may be rewritten as explicit dereference with class-wide result.
3677 -- If expression is overloaded, retain only interpretations that
3678 -- will yield exact matches.
3679
3680 if Is_Class_Wide_Type (T) then
3681 if not Is_Overloaded (Expr) then
9fe696a3 3682 if Base_Type (Etype (Expr)) /= Base_Type (T) then
45c8b94b
ES
3683 if Nkind (Expr) = N_Aggregate then
3684 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3685 else
3686 Wrong_Type (Expr, T);
3687 end if;
3688 end if;
3689
3690 else
3691 Get_First_Interp (Expr, I, It);
3692
3693 while Present (It.Nam) loop
3694 if Base_Type (It.Typ) /= Base_Type (T) then
3695 Remove_Interp (I);
3696 end if;
3697
3698 Get_Next_Interp (I, It);
3699 end loop;
3700 end if;
3701 end if;
3702
996ae0b0
RK
3703 Set_Etype (N, T);
3704 end Analyze_Qualified_Expression;
3705
a961aa79
AC
3706 -----------------------------------
3707 -- Analyze_Quantified_Expression --
3708 -----------------------------------
3709
3710 procedure Analyze_Quantified_Expression (N : Node_Id) is
4856cc2a 3711 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
538dbb56
AC
3712 -- If the iterator is part of a quantified expression, and the range is
3713 -- known to be statically empty, emit a warning and replace expression
4856cc2a 3714 -- with its static value. Returns True if the replacement occurs.
538dbb56 3715
0812b84e
AC
3716 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean;
3717 -- Determine whether if expression If_Expr lacks an else part or if it
3718 -- has one, it evaluates to True.
3719
4856cc2a
ES
3720 --------------------
3721 -- Is_Empty_Range --
3722 --------------------
3723
3724 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
3725 Loc : constant Source_Ptr := Sloc (N);
538dbb56
AC
3726
3727 begin
3728 if Is_Array_Type (Typ)
4856cc2a
ES
3729 and then Compile_Time_Known_Bounds (Typ)
3730 and then
9a6dc470
RD
3731 (Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
3732 Expr_Value (Type_High_Bound (Etype (First_Index (Typ)))))
538dbb56 3733 then
4856cc2a
ES
3734 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
3735
538dbb56 3736 if All_Present (N) then
4856cc2a 3737 Error_Msg_N
324ac540 3738 ("??quantified expression with ALL "
4856cc2a 3739 & "over a null range has value True", N);
538dbb56
AC
3740 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3741
3742 else
4856cc2a 3743 Error_Msg_N
324ac540 3744 ("??quantified expression with SOME "
4856cc2a 3745 & "over a null range has value False", N);
538dbb56
AC
3746 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
3747 end if;
3748
3749 Analyze (N);
3750 return True;
3751
3752 else
3753 return False;
3754 end if;
3755 end Is_Empty_Range;
3756
0812b84e
AC
3757 -----------------------------
3758 -- No_Else_Or_Trivial_True --
3759 -----------------------------
3760
3761 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean is
3762 Else_Expr : constant Node_Id :=
3763 Next (Next (First (Expressions (If_Expr))));
3764 begin
3765 return
3766 No (Else_Expr)
3767 or else (Compile_Time_Known_Value (Else_Expr)
3768 and then Is_True (Expr_Value (Else_Expr)));
3769 end No_Else_Or_Trivial_True;
3770
3771 -- Local variables
3772
3773 Cond : constant Node_Id := Condition (N);
57081559 3774 Loop_Id : Entity_Id;
0812b84e
AC
3775 QE_Scop : Entity_Id;
3776
4856cc2a
ES
3777 -- Start of processing for Analyze_Quantified_Expression
3778
a961aa79 3779 begin
ce5ba43a 3780 Check_SPARK_05_Restriction ("quantified expression is not allowed", N);
1d801f21 3781
804670f1
AC
3782 -- Create a scope to emulate the loop-like behavior of the quantified
3783 -- expression. The scope is needed to provide proper visibility of the
3784 -- loop variable.
b3e42de5 3785
804670f1
AC
3786 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
3787 Set_Etype (QE_Scop, Standard_Void_Type);
3788 Set_Scope (QE_Scop, Current_Scope);
3789 Set_Parent (QE_Scop, N);
a961aa79 3790
804670f1 3791 Push_Scope (QE_Scop);
c56a9ba4 3792
804670f1
AC
3793 -- All constituents are preanalyzed and resolved to avoid untimely
3794 -- generation of various temporaries and types. Full analysis and
3795 -- expansion is carried out when the quantified expression is
3796 -- transformed into an expression with actions.
c56a9ba4 3797
804670f1
AC
3798 if Present (Iterator_Specification (N)) then
3799 Preanalyze (Iterator_Specification (N));
538dbb56 3800
57081559
AC
3801 -- Do not proceed with the analysis when the range of iteration is
3802 -- empty. The appropriate error is issued by Is_Empty_Range.
3803
538dbb56
AC
3804 if Is_Entity_Name (Name (Iterator_Specification (N)))
3805 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
3806 then
3807 return;
3808 end if;
3809
57081559 3810 else pragma Assert (Present (Loop_Parameter_Specification (N)));
a736f6e6
AC
3811 declare
3812 Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
3813
3814 begin
3815 Preanalyze (Loop_Par);
3816
e4deba8e 3817 if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
a736f6e6
AC
3818 and then Parent (Loop_Par) /= N
3819 then
3820 -- The parser cannot distinguish between a loop specification
3821 -- and an iterator specification. If after pre-analysis the
3822 -- proper form has been recognized, rewrite the expression to
5f0c4d67
AC
3823 -- reflect the right kind. This is needed for proper ASIS
3824 -- navigation. If expansion is enabled, the transformation is
3825 -- performed when the expression is rewritten as a loop.
a736f6e6 3826
a736f6e6
AC
3827 Set_Iterator_Specification (N,
3828 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
5f0c4d67
AC
3829
3830 Set_Defining_Identifier (Iterator_Specification (N),
3831 Relocate_Node (Defining_Identifier (Loop_Par)));
3832 Set_Name (Iterator_Specification (N),
3833 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
3834 Set_Comes_From_Source (Iterator_Specification (N),
3835 Comes_From_Source (Loop_Parameter_Specification (N)));
3836 Set_Loop_Parameter_Specification (N, Empty);
a736f6e6
AC
3837 end if;
3838 end;
ce6002ec
AC
3839 end if;
3840
0812b84e 3841 Preanalyze_And_Resolve (Cond, Standard_Boolean);
804670f1 3842
a961aa79
AC
3843 End_Scope;
3844 Set_Etype (N, Standard_Boolean);
0812b84e 3845
57081559
AC
3846 -- Verify that the loop variable is used within the condition of the
3847 -- quantified expression.
3848
3849 if Present (Iterator_Specification (N)) then
3850 Loop_Id := Defining_Identifier (Iterator_Specification (N));
3851 else
3852 Loop_Id := Defining_Identifier (Loop_Parameter_Specification (N));
3853 end if;
3854
3855 if Warn_On_Suspicious_Contract
3856 and then not Referenced (Loop_Id, Cond)
3857 then
3858 Error_Msg_N ("?T?unused variable &", Loop_Id);
3859 end if;
3860
e19fd0bd 3861 -- Diagnose a possible misuse of the SOME existential quantifier. When
d1ec4768
RD
3862 -- we have a quantified expression of the form:
3863
0812b84e 3864 -- for some X => (if P then Q [else True])
d1ec4768 3865
e19fd0bd 3866 -- any value for X that makes P False results in the if expression being
50ef946c 3867 -- trivially True, and so also results in the quantified expression
e19fd0bd 3868 -- being trivially True.
0812b84e 3869
e19fd0bd 3870 if Warn_On_Suspicious_Contract
0812b84e
AC
3871 and then not All_Present (N)
3872 and then Nkind (Cond) = N_If_Expression
3873 and then No_Else_Or_Trivial_True (Cond)
3874 then
e19fd0bd 3875 Error_Msg_N ("?T?suspicious expression", N);
0812b84e
AC
3876 Error_Msg_N ("\\did you mean (for all X ='> (if P then Q))", N);
3877 Error_Msg_N ("\\or (for some X ='> P and then Q) instead'?", N);
3878 end if;
a961aa79
AC
3879 end Analyze_Quantified_Expression;
3880
996ae0b0
RK
3881 -------------------
3882 -- Analyze_Range --
3883 -------------------
3884
3885 procedure Analyze_Range (N : Node_Id) is
3886 L : constant Node_Id := Low_Bound (N);
3887 H : constant Node_Id := High_Bound (N);
3888 I1, I2 : Interp_Index;
3889 It1, It2 : Interp;
3890
3891 procedure Check_Common_Type (T1, T2 : Entity_Id);
3892 -- Verify the compatibility of two types, and choose the
3893 -- non universal one if the other is universal.
3894
3895 procedure Check_High_Bound (T : Entity_Id);
3896 -- Test one interpretation of the low bound against all those
3897 -- of the high bound.
3898
fbf5a39b 3899 procedure Check_Universal_Expression (N : Node_Id);
a1092b48
AC
3900 -- In Ada 83, reject bounds of a universal range that are not literals
3901 -- or entity names.
fbf5a39b 3902
996ae0b0
RK
3903 -----------------------
3904 -- Check_Common_Type --
3905 -----------------------
3906
3907 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3908 begin
b4592168
GD
3909 if Covers (T1 => T1, T2 => T2)
3910 or else
3911 Covers (T1 => T2, T2 => T1)
3912 then
996ae0b0
RK
3913 if T1 = Universal_Integer
3914 or else T1 = Universal_Real
3915 or else T1 = Any_Character
3916 then
3917 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3918
fbf5a39b 3919 elsif T1 = T2 then
996ae0b0
RK
3920 Add_One_Interp (N, T1, T1);
3921
3922 else
3923 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3924 end if;
3925 end if;
3926 end Check_Common_Type;
3927
3928 ----------------------
3929 -- Check_High_Bound --
3930 ----------------------
3931
3932 procedure Check_High_Bound (T : Entity_Id) is
3933 begin
3934 if not Is_Overloaded (H) then
3935 Check_Common_Type (T, Etype (H));
3936 else
3937 Get_First_Interp (H, I2, It2);
996ae0b0
RK
3938 while Present (It2.Typ) loop
3939 Check_Common_Type (T, It2.Typ);
3940 Get_Next_Interp (I2, It2);
3941 end loop;
3942 end if;
3943 end Check_High_Bound;
3944
fbf5a39b
AC
3945 -----------------------------
3946 -- Is_Universal_Expression --
3947 -----------------------------
3948
3949 procedure Check_Universal_Expression (N : Node_Id) is
3950 begin
3951 if Etype (N) = Universal_Integer
3952 and then Nkind (N) /= N_Integer_Literal
3953 and then not Is_Entity_Name (N)
3954 and then Nkind (N) /= N_Attribute_Reference
3955 then
3956 Error_Msg_N ("illegal bound in discrete range", N);
3957 end if;
3958 end Check_Universal_Expression;
3959
996ae0b0
RK
3960 -- Start of processing for Analyze_Range
3961
3962 begin
3963 Set_Etype (N, Any_Type);
3964 Analyze_Expression (L);
3965 Analyze_Expression (H);
3966
3967 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3968 return;
3969
3970 else
3971 if not Is_Overloaded (L) then
3972 Check_High_Bound (Etype (L));
3973 else
3974 Get_First_Interp (L, I1, It1);
996ae0b0
RK
3975 while Present (It1.Typ) loop
3976 Check_High_Bound (It1.Typ);
3977 Get_Next_Interp (I1, It1);
3978 end loop;
3979 end if;
3980
3981 -- If result is Any_Type, then we did not find a compatible pair
3982
3983 if Etype (N) = Any_Type then
3984 Error_Msg_N ("incompatible types in range ", N);
3985 end if;
3986 end if;
fbf5a39b 3987
0ab80019 3988 if Ada_Version = Ada_83
fbf5a39b
AC
3989 and then
3990 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
4c46b835 3991 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
fbf5a39b
AC
3992 then
3993 Check_Universal_Expression (L);
3994 Check_Universal_Expression (H);
3995 end if;
d3820795 3996
22e89283 3997 Check_Function_Writable_Actuals (N);
996ae0b0
RK
3998 end Analyze_Range;
3999
4000 -----------------------
4001 -- Analyze_Reference --
4002 -----------------------
4003
4004 procedure Analyze_Reference (N : Node_Id) is
4005 P : constant Node_Id := Prefix (N);
b4592168
GD
4006 E : Entity_Id;
4007 T : Entity_Id;
996ae0b0 4008 Acc_Type : Entity_Id;
b4592168 4009
996ae0b0
RK
4010 begin
4011 Analyze (P);
b4592168 4012
c42e1b17
AC
4013 -- An interesting error check, if we take the 'Ref of an object for
4014 -- which a pragma Atomic or Volatile has been given, and the type of the
4015 -- object is not Atomic or Volatile, then we are in trouble. The problem
4016 -- is that no trace of the atomic/volatile status will remain for the
4017 -- backend to respect when it deals with the resulting pointer, since
4018 -- the pointer type will not be marked atomic (it is a pointer to the
4019 -- base type of the object).
b4592168
GD
4020
4021 -- It is not clear if that can ever occur, but in case it does, we will
4022 -- generate an error message. Not clear if this message can ever be
4023 -- generated, and pretty clear that it represents a bug if it is, still
d2f25cd1
AC
4024 -- seems worth checking, except in CodePeer mode where we do not really
4025 -- care and don't want to bother the user.
b4592168
GD
4026
4027 T := Etype (P);
4028
4029 if Is_Entity_Name (P)
4030 and then Is_Object_Reference (P)
d2f25cd1 4031 and then not CodePeer_Mode
b4592168
GD
4032 then
4033 E := Entity (P);
4034 T := Etype (P);
4035
4036 if (Has_Atomic_Components (E)
c42e1b17 4037 and then not Has_Atomic_Components (T))
b4592168
GD
4038 or else
4039 (Has_Volatile_Components (E)
c42e1b17 4040 and then not Has_Volatile_Components (T))
b4592168
GD
4041 or else (Is_Atomic (E) and then not Is_Atomic (T))
4042 or else (Is_Volatile (E) and then not Is_Volatile (T))
4043 then
4044 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
4045 end if;
4046 end if;
4047
4048 -- Carry on with normal processing
4049
996ae0b0 4050 Acc_Type := Create_Itype (E_Allocator_Type, N);
b4592168 4051 Set_Etype (Acc_Type, Acc_Type);
996ae0b0
RK
4052 Set_Directly_Designated_Type (Acc_Type, Etype (P));
4053 Set_Etype (N, Acc_Type);
4054 end Analyze_Reference;
4055
4056 --------------------------------
4057 -- Analyze_Selected_Component --
4058 --------------------------------
4059
2383acbd
AC
4060 -- Prefix is a record type or a task or protected type. In the latter case,
4061 -- the selector must denote a visible entry.
996ae0b0
RK
4062
4063 procedure Analyze_Selected_Component (N : Node_Id) is
d469eabe
HK
4064 Name : constant Node_Id := Prefix (N);
4065 Sel : constant Node_Id := Selector_Name (N);
4066 Act_Decl : Node_Id;
4067 Comp : Entity_Id;
4068 Has_Candidate : Boolean := False;
4069 In_Scope : Boolean;
4070 Parent_N : Node_Id;
4071 Pent : Entity_Id := Empty;
4072 Prefix_Type : Entity_Id;
401093c1
ES
4073
4074 Type_To_Use : Entity_Id;
4075 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
4076 -- a class-wide type, we use its root type, whose components are
4077 -- present in the class-wide type.
4078
2383acbd
AC
4079 Is_Single_Concurrent_Object : Boolean;
4080 -- Set True if the prefix is a single task or a single protected object
4081
20261dc1
AC
4082 procedure Find_Component_In_Instance (Rec : Entity_Id);
4083 -- In an instance, a component of a private extension may not be visible
4084 -- while it was visible in the generic. Search candidate scope for a
4085 -- component with the proper identifier. This is only done if all other
f90d14ac
AC
4086 -- searches have failed. If a match is found, the Etype of both N and
4087 -- Sel are set from this component, and the entity of Sel is set to
4088 -- reference this component. If no match is found, Entity (Sel) remains
7d9880c9
AC
4089 -- unset. For a derived type that is an actual of the instance, the
4090 -- desired component may be found in any ancestor.
20261dc1 4091
d469eabe
HK
4092 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
4093 -- It is known that the parent of N denotes a subprogram call. Comp
4094 -- is an overloadable component of the concurrent type of the prefix.
4095 -- Determine whether all formals of the parent of N and Comp are mode
b4592168
GD
4096 -- conformant. If the parent node is not analyzed yet it may be an
4097 -- indexed component rather than a function call.
d469eabe 4098
20261dc1
AC
4099 --------------------------------
4100 -- Find_Component_In_Instance --
4101 --------------------------------
4102
4103 procedure Find_Component_In_Instance (Rec : Entity_Id) is
4104 Comp : Entity_Id;
7d9880c9 4105 Typ : Entity_Id;
20261dc1
AC
4106
4107 begin
7d9880c9
AC
4108 Typ := Rec;
4109 while Present (Typ) loop
4110 Comp := First_Component (Typ);
4111 while Present (Comp) loop
4112 if Chars (Comp) = Chars (Sel) then
4113 Set_Entity_With_Checks (Sel, Comp);
4114 Set_Etype (Sel, Etype (Comp));
4115 Set_Etype (N, Etype (Comp));
4116 return;
4117 end if;
4118
4119 Next_Component (Comp);
4120 end loop;
4121
4122 -- If not found, the component may be declared in the parent
4123 -- type or its full view, if any.
4124
4125 if Is_Derived_Type (Typ) then
4126 Typ := Etype (Typ);
4127
4128 if Is_Private_Type (Typ) then
4129 Typ := Full_View (Typ);
4130 end if;
4131
4132 else
20261dc1
AC
4133 return;
4134 end if;
20261dc1
AC
4135 end loop;
4136
cf3e6845
AC
4137 -- If we fall through, no match, so no changes made
4138
4139 return;
20261dc1
AC
4140 end Find_Component_In_Instance;
4141
d469eabe
HK
4142 ------------------------------
4143 -- Has_Mode_Conformant_Spec --
4144 ------------------------------
4145
4146 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
4147 Comp_Param : Entity_Id;
4148 Param : Node_Id;
4149 Param_Typ : Entity_Id;
4150
4151 begin
4152 Comp_Param := First_Formal (Comp);
b4592168
GD
4153
4154 if Nkind (Parent (N)) = N_Indexed_Component then
4155 Param := First (Expressions (Parent (N)));
4156 else
4157 Param := First (Parameter_Associations (Parent (N)));
4158 end if;
4159
d469eabe
HK
4160 while Present (Comp_Param)
4161 and then Present (Param)
4162 loop
4163 Param_Typ := Find_Parameter_Type (Param);
4164
4165 if Present (Param_Typ)
4166 and then
4167 not Conforming_Types
4168 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
4169 then
4170 return False;
4171 end if;
4172
4173 Next_Formal (Comp_Param);
4174 Next (Param);
4175 end loop;
4176
9e92ad49
AC
4177 -- One of the specs has additional formals; there is no match, unless
4178 -- this may be an indexing of a parameterless call.
f0e7963f
AC
4179
4180 -- Note that when expansion is disabled, the corresponding record
4181 -- type of synchronized types is not constructed, so that there is
4182 -- no point is attempting an interpretation as a prefixed call, as
4183 -- this is bound to fail because the primitive operations will not
4184 -- be properly located.
d469eabe
HK
4185
4186 if Present (Comp_Param) or else Present (Param) then
f0e7963f
AC
4187 if Needs_No_Actuals (Comp)
4188 and then Is_Array_Type (Etype (Comp))
4189 and then not Expander_Active
4190 then
4191 return True;
f0e7963f
AC
4192 else
4193 return False;
4194 end if;
d469eabe
HK
4195 end if;
4196
4197 return True;
4198 end Has_Mode_Conformant_Spec;
996ae0b0
RK
4199
4200 -- Start of processing for Analyze_Selected_Component
4201
4202 begin
4203 Set_Etype (N, Any_Type);
4204
4205 if Is_Overloaded (Name) then
4206 Analyze_Overloaded_Selected_Component (N);
4207 return;
4208
4209 elsif Etype (Name) = Any_Type then
4210 Set_Entity (Sel, Any_Id);
4211 Set_Etype (Sel, Any_Type);
4212 return;
4213
4214 else
996ae0b0
RK
4215 Prefix_Type := Etype (Name);
4216 end if;
4217
4218 if Is_Access_Type (Prefix_Type) then
07fc65c4 4219
0d57c6f4
RD
4220 -- A RACW object can never be used as prefix of a selected component
4221 -- since that means it is dereferenced without being a controlling
4222 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
4223 -- reporting an error, we must check whether this is actually a
4224 -- dispatching call in prefix form.
07fc65c4 4225
996ae0b0
RK
4226 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
4227 and then Comes_From_Source (N)
4228 then
b4592168
GD
4229 if Try_Object_Operation (N) then
4230 return;
4231 else
4232 Error_Msg_N
4233 ("invalid dereference of a remote access-to-class-wide value",
4234 N);
4235 end if;
07fc65c4
GB
4236
4237 -- Normal case of selected component applied to access type
4238
4239 else
324ac540 4240 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
da709d08 4241
6e73e3ab
AC
4242 if Is_Entity_Name (Name) then
4243 Pent := Entity (Name);
4244 elsif Nkind (Name) = N_Selected_Component
4245 and then Is_Entity_Name (Selector_Name (Name))
4246 then
4247 Pent := Entity (Selector_Name (Name));
4248 end if;
da709d08 4249
d469eabe 4250 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
996ae0b0 4251 end if;
b4592168
GD
4252
4253 -- If we have an explicit dereference of a remote access-to-class-wide
4254 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
4255 -- have to check for the case of a prefix that is a controlling operand
4256 -- of a prefixed dispatching call, as the dereference is legal in that
4257 -- case. Normally this condition is checked in Validate_Remote_Access_
4258 -- To_Class_Wide_Type, but we have to defer the checking for selected
4259 -- component prefixes because of the prefixed dispatching call case.
4260 -- Note that implicit dereferences are checked for this just above.
4261
4262 elsif Nkind (Name) = N_Explicit_Dereference
4263 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
4264 and then Comes_From_Source (N)
4265 then
4266 if Try_Object_Operation (N) then
4267 return;
4268 else
4269 Error_Msg_N
4270 ("invalid dereference of a remote access-to-class-wide value",
4271 N);
4272 end if;
aab883ec 4273 end if;
b67a385c 4274
aab883ec
ES
4275 -- (Ada 2005): if the prefix is the limited view of a type, and
4276 -- the context already includes the full view, use the full view
4277 -- in what follows, either to retrieve a component of to find
4278 -- a primitive operation. If the prefix is an explicit dereference,
4279 -- set the type of the prefix to reflect this transformation.
401093c1
ES
4280 -- If the non-limited view is itself an incomplete type, get the
4281 -- full view if available.
aab883ec 4282
47346923
AC
4283 if From_Limited_With (Prefix_Type)
4284 and then Has_Non_Limited_View (Prefix_Type)
aab883ec 4285 then
401093c1 4286 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
aab883ec
ES
4287
4288 if Nkind (N) = N_Explicit_Dereference then
4289 Set_Etype (Prefix (N), Prefix_Type);
4290 end if;
996ae0b0
RK
4291 end if;
4292
4293 if Ekind (Prefix_Type) = E_Private_Subtype then
4294 Prefix_Type := Base_Type (Prefix_Type);
4295 end if;
4296
401093c1 4297 Type_To_Use := Prefix_Type;
996ae0b0
RK
4298
4299 -- For class-wide types, use the entity list of the root type. This
4300 -- indirection is specially important for private extensions because
4301 -- only the root type get switched (not the class-wide type).
4302
4303 if Is_Class_Wide_Type (Prefix_Type) then
401093c1 4304 Type_To_Use := Root_Type (Prefix_Type);
996ae0b0
RK
4305 end if;
4306
2383acbd
AC
4307 -- If the prefix is a single concurrent object, use its name in error
4308 -- messages, rather than that of its anonymous type.
4309
4310 Is_Single_Concurrent_Object :=
4311 Is_Concurrent_Type (Prefix_Type)
4312 and then Is_Internal_Name (Chars (Prefix_Type))
4313 and then not Is_Derived_Type (Prefix_Type)
4314 and then Is_Entity_Name (Name);
4315
401093c1 4316 Comp := First_Entity (Type_To_Use);
996ae0b0
RK
4317
4318 -- If the selector has an original discriminant, the node appears in
4319 -- an instance. Replace the discriminant with the corresponding one
4320 -- in the current discriminated type. For nested generics, this must
4321 -- be done transitively, so note the new original discriminant.
4322
4323 if Nkind (Sel) = N_Identifier
c0b11850 4324 and then In_Instance
996ae0b0
RK
4325 and then Present (Original_Discriminant (Sel))
4326 then
4327 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
4328
4329 -- Mark entity before rewriting, for completeness and because
4330 -- subsequent semantic checks might examine the original node.
4331
4332 Set_Entity (Sel, Comp);
ee2ba856 4333 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
996ae0b0
RK
4334 Set_Original_Discriminant (Selector_Name (N), Comp);
4335 Set_Etype (N, Etype (Comp));
44a10091 4336 Check_Implicit_Dereference (N, Etype (Comp));
996ae0b0
RK
4337
4338 if Is_Access_Type (Etype (Name)) then
4339 Insert_Explicit_Dereference (Name);
324ac540 4340 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4341 end if;
4342
4343 elsif Is_Record_Type (Prefix_Type) then
4344
ee2ba856
AC
4345 -- Find component with given name. In an instance, if the node is
4346 -- known as a prefixed call, do not examine components whose
4347 -- visibility may be accidental.
996ae0b0 4348
4913e24c 4349 while Present (Comp) and then not Is_Prefixed_Call (N) loop
996ae0b0 4350 if Chars (Comp) = Chars (Sel)
a53c5613 4351 and then Is_Visible_Component (Comp, N)
996ae0b0 4352 then
e7ba564f 4353 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4354 Set_Etype (Sel, Etype (Comp));
4355
4356 if Ekind (Comp) = E_Discriminant then
5d09245e 4357 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
996ae0b0 4358 Error_Msg_N
02f58834 4359 ("cannot reference discriminant of unchecked union",
996ae0b0
RK
4360 Sel);
4361 end if;
4362
4363 if Is_Generic_Type (Prefix_Type)
4364 or else
4365 Is_Generic_Type (Root_Type (Prefix_Type))
4366 then
4367 Set_Original_Discriminant (Sel, Comp);
4368 end if;
4369 end if;
4370
4371 -- Resolve the prefix early otherwise it is not possible to
4372 -- build the actual subtype of the component: it may need
4373 -- to duplicate this prefix and duplication is only allowed
4374 -- on fully resolved expressions.
4375
fbf5a39b 4376 Resolve (Name);
996ae0b0 4377
b67a385c
ES
4378 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
4379 -- subtypes in a package specification.
28be29ce
ES
4380 -- Example:
4381
4382 -- limited with Pkg;
4383 -- package Pkg is
4384 -- type Acc_Inc is access Pkg.T;
4385 -- X : Acc_Inc;
b67a385c
ES
4386 -- N : Natural := X.all.Comp; -- ERROR, limited view
4387 -- end Pkg; -- Comp is not visible
28be29ce
ES
4388
4389 if Nkind (Name) = N_Explicit_Dereference
7b56a91b 4390 and then From_Limited_With (Etype (Prefix (Name)))
28be29ce 4391 and then not Is_Potentially_Use_Visible (Etype (Name))
b67a385c
ES
4392 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
4393 N_Package_Specification
28be29ce
ES
4394 then
4395 Error_Msg_NE
4396 ("premature usage of incomplete}", Prefix (Name),
4397 Etype (Prefix (Name)));
4398 end if;
4399
996ae0b0
RK
4400 -- We never need an actual subtype for the case of a selection
4401 -- for a indexed component of a non-packed array, since in
4402 -- this case gigi generates all the checks and can find the
4403 -- necessary bounds information.
4404
0d57c6f4
RD
4405 -- We also do not need an actual subtype for the case of a
4406 -- first, last, length, or range attribute applied to a
996ae0b0
RK
4407 -- non-packed array, since gigi can again get the bounds in
4408 -- these cases (gigi cannot handle the packed case, since it
4409 -- has the bounds of the packed array type, not the original
4410 -- bounds of the type). However, if the prefix is itself a
4411 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4412 -- as a dynamic-sized temporary, so we do generate an actual
4413 -- subtype for this case.
4414
4415 Parent_N := Parent (N);
4416
4417 if not Is_Packed (Etype (Comp))
4418 and then
4419 ((Nkind (Parent_N) = N_Indexed_Component
d469eabe 4420 and then Nkind (Name) /= N_Selected_Component)
996ae0b0
RK
4421 or else
4422 (Nkind (Parent_N) = N_Attribute_Reference
b69cd36a
AC
4423 and then
4424 Nam_In (Attribute_Name (Parent_N), Name_First,
4425 Name_Last,
4426 Name_Length,
4427 Name_Range)))
996ae0b0
RK
4428 then
4429 Set_Etype (N, Etype (Comp));
4430
98123480
ES
4431 -- If full analysis is not enabled, we do not generate an
4432 -- actual subtype, because in the absence of expansion
4433 -- reference to a formal of a protected type, for example,
4434 -- will not be properly transformed, and will lead to
4435 -- out-of-scope references in gigi.
4436
4437 -- In all other cases, we currently build an actual subtype.
4438 -- It seems likely that many of these cases can be avoided,
4439 -- but right now, the front end makes direct references to the
fbf5a39b 4440 -- bounds (e.g. in generating a length check), and if we do
996ae0b0 4441 -- not make an actual subtype, we end up getting a direct
98123480 4442 -- reference to a discriminant, which will not do.
996ae0b0 4443
98123480 4444 elsif Full_Analysis then
996ae0b0
RK
4445 Act_Decl :=
4446 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
4447 Insert_Action (N, Act_Decl);
4448
4449 if No (Act_Decl) then
4450 Set_Etype (N, Etype (Comp));
4451
4452 else
4453 -- Component type depends on discriminants. Enter the
4454 -- main attributes of the subtype.
4455
4456 declare
fbf5a39b
AC
4457 Subt : constant Entity_Id :=
4458 Defining_Identifier (Act_Decl);
996ae0b0
RK
4459
4460 begin
4461 Set_Etype (Subt, Base_Type (Etype (Comp)));
4462 Set_Ekind (Subt, Ekind (Etype (Comp)));
4463 Set_Etype (N, Subt);
4464 end;
4465 end if;
98123480
ES
4466
4467 -- If Full_Analysis not enabled, just set the Etype
4468
4469 else
4470 Set_Etype (N, Etype (Comp));
996ae0b0
RK
4471 end if;
4472
44a10091 4473 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
4474 return;
4475 end if;
4476
aab883ec 4477 -- If the prefix is a private extension, check only the visible
9c510803 4478 -- components of the partial view. This must include the tag,
f3d57416 4479 -- which can appear in expanded code in a tag check.
aab883ec 4480
9c510803 4481 if Ekind (Type_To_Use) = E_Record_Type_With_Private
df3e68b1 4482 and then Chars (Selector_Name (N)) /= Name_uTag
9c510803 4483 then
401093c1 4484 exit when Comp = Last_Entity (Type_To_Use);
aab883ec
ES
4485 end if;
4486
996ae0b0
RK
4487 Next_Entity (Comp);
4488 end loop;
4489
d469eabe
HK
4490 -- Ada 2005 (AI-252): The selected component can be interpreted as
4491 -- a prefixed view of a subprogram. Depending on the context, this is
4492 -- either a name that can appear in a renaming declaration, or part
4493 -- of an enclosing call given in prefix form.
4494
4495 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4496 -- selected component should resolve to a name.
35ae2ed8 4497
0791fbe9 4498 if Ada_Version >= Ada_2005
35ae2ed8 4499 and then Is_Tagged_Type (Prefix_Type)
d469eabe 4500 and then not Is_Concurrent_Type (Prefix_Type)
35ae2ed8 4501 then
d469eabe
HK
4502 if Nkind (Parent (N)) = N_Generic_Association
4503 or else Nkind (Parent (N)) = N_Requeue_Statement
4504 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4505 then
4506 if Find_Primitive_Operation (N) then
4507 return;
4508 end if;
4509
4510 elsif Try_Object_Operation (N) then
4511 return;
4512 end if;
4c46b835 4513
98123480
ES
4514 -- If the transformation fails, it will be necessary to redo the
4515 -- analysis with all errors enabled, to indicate candidate
4516 -- interpretations and reasons for each failure ???
4c46b835 4517
35ae2ed8
AC
4518 end if;
4519
996ae0b0 4520 elsif Is_Private_Type (Prefix_Type) then
d469eabe 4521
98123480
ES
4522 -- Allow access only to discriminants of the type. If the type has
4523 -- no full view, gigi uses the parent type for the components, so we
4524 -- do the same here.
996ae0b0
RK
4525
4526 if No (Full_View (Prefix_Type)) then
401093c1
ES
4527 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4528 Comp := First_Entity (Type_To_Use);
996ae0b0
RK
4529 end if;
4530
4531 while Present (Comp) loop
996ae0b0
RK
4532 if Chars (Comp) = Chars (Sel) then
4533 if Ekind (Comp) = E_Discriminant then
e7ba564f 4534 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4535 Generate_Reference (Comp, Sel);
4536
4537 Set_Etype (Sel, Etype (Comp));
4538 Set_Etype (N, Etype (Comp));
44a10091 4539 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
4540
4541 if Is_Generic_Type (Prefix_Type)
d469eabe 4542 or else Is_Generic_Type (Root_Type (Prefix_Type))
996ae0b0
RK
4543 then
4544 Set_Original_Discriminant (Sel, Comp);
4545 end if;
4546
f3d57416 4547 -- Before declaring an error, check whether this is tagged
aab883ec
ES
4548 -- private type and a call to a primitive operation.
4549
0791fbe9 4550 elsif Ada_Version >= Ada_2005
aab883ec
ES
4551 and then Is_Tagged_Type (Prefix_Type)
4552 and then Try_Object_Operation (N)
4553 then
4554 return;
4555
996ae0b0 4556 else
2383acbd
AC
4557 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4558 Error_Msg_NE ("invisible selector& for }", N, Sel);
996ae0b0
RK
4559 Set_Entity (Sel, Any_Id);
4560 Set_Etype (N, Any_Type);
4561 end if;
4562
4563 return;
4564 end if;
4565
4566 Next_Entity (Comp);
4567 end loop;
4568
4569 elsif Is_Concurrent_Type (Prefix_Type) then
4570
d469eabe
HK
4571 -- Find visible operation with given name. For a protected type,
4572 -- the possible candidates are discriminants, entries or protected
4573 -- procedures. For a task type, the set can only include entries or
4574 -- discriminants if the task type is not an enclosing scope. If it
4575 -- is an enclosing scope (e.g. in an inner task) then all entities
4576 -- are visible, but the prefix must denote the enclosing scope, i.e.
4577 -- can only be a direct name or an expanded name.
996ae0b0 4578
d469eabe 4579 Set_Etype (Sel, Any_Type);
996ae0b0
RK
4580 In_Scope := In_Open_Scopes (Prefix_Type);
4581
4582 while Present (Comp) loop
4583 if Chars (Comp) = Chars (Sel) then
4584 if Is_Overloadable (Comp) then
4585 Add_One_Interp (Sel, Comp, Etype (Comp));
4586
d469eabe
HK
4587 -- If the prefix is tagged, the correct interpretation may
4588 -- lie in the primitive or class-wide operations of the
4589 -- type. Perform a simple conformance check to determine
4590 -- whether Try_Object_Operation should be invoked even if
4591 -- a visible entity is found.
4592
4593 if Is_Tagged_Type (Prefix_Type)
4594 and then
4595 Nkind_In (Parent (N), N_Procedure_Call_Statement,
b4592168
GD
4596 N_Function_Call,
4597 N_Indexed_Component)
d469eabe
HK
4598 and then Has_Mode_Conformant_Spec (Comp)
4599 then
4600 Has_Candidate := True;
4601 end if;
4602
2383acbd
AC
4603 -- Note: a selected component may not denote a component of a
4604 -- protected type (4.1.3(7)).
4605
bce79204 4606 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
2383acbd
AC
4607 or else (In_Scope
4608 and then not Is_Protected_Type (Prefix_Type)
4609 and then Is_Entity_Name (Name))
996ae0b0 4610 then
e7ba564f 4611 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4612 Generate_Reference (Comp, Sel);
4613
65e78a74
AC
4614 -- The selector is not overloadable, so we have a candidate
4615 -- interpretation.
4616
4617 Has_Candidate := True;
4618
996ae0b0
RK
4619 else
4620 goto Next_Comp;
4621 end if;
4622
4623 Set_Etype (Sel, Etype (Comp));
4624 Set_Etype (N, Etype (Comp));
4625
4626 if Ekind (Comp) = E_Discriminant then
4627 Set_Original_Discriminant (Sel, Comp);
4628 end if;
4629
09494c32
AC
4630 -- For access type case, introduce explicit dereference for
4631 -- more uniform treatment of entry calls.
996ae0b0
RK
4632
4633 if Is_Access_Type (Etype (Name)) then
4634 Insert_Explicit_Dereference (Name);
fbf5a39b 4635 Error_Msg_NW
324ac540 4636 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4637 end if;
4638 end if;
4639
4640 <<Next_Comp>>
4641 Next_Entity (Comp);
4642 exit when not In_Scope
9bc856dd
AC
4643 and then
4644 Comp = First_Private_Entity (Base_Type (Prefix_Type));
996ae0b0
RK
4645 end loop;
4646
d469eabe
HK
4647 -- If there is no visible entity with the given name or none of the
4648 -- visible entities are plausible interpretations, check whether
4649 -- there is some other primitive operation with that name.
aab883ec 4650
0791fbe9 4651 if Ada_Version >= Ada_2005
aab883ec 4652 and then Is_Tagged_Type (Prefix_Type)
aab883ec 4653 then
d469eabe
HK
4654 if (Etype (N) = Any_Type
4655 or else not Has_Candidate)
0a36105d
JM
4656 and then Try_Object_Operation (N)
4657 then
4658 return;
4659
4660 -- If the context is not syntactically a procedure call, it
4661 -- may be a call to a primitive function declared outside of
4662 -- the synchronized type.
4663
4664 -- If the context is a procedure call, there might still be
4665 -- an overloading between an entry and a primitive procedure
4666 -- declared outside of the synchronized type, called in prefix
4667 -- notation. This is harder to disambiguate because in one case
4668 -- the controlling formal is implicit ???
4669
4670 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
b4592168 4671 and then Nkind (Parent (N)) /= N_Indexed_Component
0a36105d
JM
4672 and then Try_Object_Operation (N)
4673 then
4674 return;
4675 end if;
8cf23b91
AC
4676
4677 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4678 -- entry or procedure of a tagged concurrent type we must check
4679 -- if there are class-wide subprograms covering the primitive. If
4680 -- true then Try_Object_Operation reports the error.
4681
4682 if Has_Candidate
4683 and then Is_Concurrent_Type (Prefix_Type)
4684 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
4685
4686 -- Duplicate the call. This is required to avoid problems with
4687 -- the tree transformations performed by Try_Object_Operation.
d7a44b14
AC
4688 -- Set properly the parent of the copied call, because it is
4689 -- about to be reanalyzed.
8cf23b91 4690
8cf23b91 4691 then
d7a44b14
AC
4692 declare
4693 Par : constant Node_Id := New_Copy_Tree (Parent (N));
4694
4695 begin
4696 Set_Parent (Par, Parent (Parent (N)));
29ba9f52 4697
d7a44b14 4698 if Try_Object_Operation
29ba9f52 4699 (Sinfo.Name (Par), CW_Test_Only => True)
d7a44b14
AC
4700 then
4701 return;
4702 end if;
4703 end;
8cf23b91 4704 end if;
aab883ec
ES
4705 end if;
4706
2383acbd 4707 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
11bc76df 4708
2383acbd
AC
4709 -- Case of a prefix of a protected type: selector might denote
4710 -- an invisible private component.
4711
4712 Comp := First_Private_Entity (Base_Type (Prefix_Type));
4713 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
4714 Next_Entity (Comp);
4715 end loop;
4716
4717 if Present (Comp) then
4718 if Is_Single_Concurrent_Object then
4719 Error_Msg_Node_2 := Entity (Name);
4720 Error_Msg_NE ("invisible selector& for &", N, Sel);
4721
4722 else
4723 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4724 Error_Msg_NE ("invisible selector& for }", N, Sel);
4725 end if;
4726 return;
4727 end if;
4728 end if;
4729
996ae0b0
RK
4730 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4731
4732 else
4733 -- Invalid prefix
4734
4735 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
4736 end if;
4737
4c46b835 4738 -- If N still has no type, the component is not defined in the prefix
996ae0b0
RK
4739
4740 if Etype (N) = Any_Type then
4741
2383acbd 4742 if Is_Single_Concurrent_Object then
996ae0b0
RK
4743 Error_Msg_Node_2 := Entity (Name);
4744 Error_Msg_NE ("no selector& for&", N, Sel);
4745
401093c1 4746 Check_Misspelled_Selector (Type_To_Use, Sel);
996ae0b0 4747
8b4230c8
AC
4748 -- If this is a derived formal type, the parent may have different
4749 -- visibility at this point. Try for an inherited component before
4750 -- reporting an error.
4751
de76a39c
GB
4752 elsif Is_Generic_Type (Prefix_Type)
4753 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
07fc65c4 4754 and then Prefix_Type /= Etype (Prefix_Type)
de76a39c
GB
4755 and then Is_Record_Type (Etype (Prefix_Type))
4756 then
de76a39c
GB
4757 Set_Etype (Prefix (N), Etype (Prefix_Type));
4758 Analyze_Selected_Component (N);
4759 return;
4760
b1d12996
AC
4761 -- Similarly, if this is the actual for a formal derived type, or
4762 -- a derived type thereof, the component inherited from the generic
4763 -- parent may not be visible in the actual, but the selected
4764 -- component is legal. Climb up the derivation chain of the generic
4765 -- parent type until we find the proper ancestor type.
20261dc1 4766
b1d12996
AC
4767 elsif In_Instance and then Is_Tagged_Type (Prefix_Type) then
4768 declare
4769 Par : Entity_Id := Prefix_Type;
4770 begin
4771 -- Climb up derivation chain to generic actual subtype
4772
4773 while not Is_Generic_Actual_Type (Par) loop
4774 if Ekind (Par) = E_Record_Type then
4775 Par := Parent_Subtype (Par);
4776 exit when No (Par);
4777 else
4778 exit when Par = Etype (Par);
4779 Par := Etype (Par);
4780 end if;
4781 end loop;
4c46b835 4782
b1d12996 4783 if Present (Par) and then Is_Generic_Actual_Type (Par) then
73999267 4784
b1d12996 4785 -- Now look for component in ancestor types
fbf5a39b 4786
b1d12996
AC
4787 Par := Generic_Parent_Type (Declaration_Node (Par));
4788 loop
4789 Find_Component_In_Instance (Par);
4790 exit when Present (Entity (Sel))
4791 or else Par = Etype (Par);
4792 Par := Etype (Par);
4793 end loop;
73999267 4794
7d9880c9
AC
4795 -- Another special case: the type is an extension of a private
4796 -- type T, is an actual in an instance, and we are in the body
4797 -- of the instance, so the generic body had a full view of the
4798 -- type declaration for T or of some ancestor that defines the
4799 -- component in question.
4800
4801 elsif Is_Derived_Type (Type_To_Use)
4802 and then Used_As_Generic_Actual (Type_To_Use)
4803 and then In_Instance_Body
4804 then
4805 Find_Component_In_Instance (Parent_Subtype (Type_To_Use));
4806
73999267
AC
4807 -- In ASIS mode the generic parent type may be absent. Examine
4808 -- the parent type directly for a component that may have been
4809 -- visible in a parent generic unit.
4810
4811 elsif Is_Derived_Type (Prefix_Type) then
4812 Par := Etype (Prefix_Type);
4813 Find_Component_In_Instance (Par);
b1d12996
AC
4814 end if;
4815 end;
4816
4817 -- The search above must have eventually succeeded, since the
4818 -- selected component was legal in the generic.
4819
4820 if No (Entity (Sel)) then
4821 raise Program_Error;
4822 end if;
73999267 4823
20261dc1 4824 return;
fbf5a39b 4825
20261dc1 4826 -- Component not found, specialize error message when appropriate
fbf5a39b 4827
996ae0b0
RK
4828 else
4829 if Ekind (Prefix_Type) = E_Record_Subtype then
4830
f4b049db
AC
4831 -- Check whether this is a component of the base type which
4832 -- is absent from a statically constrained subtype. This will
4833 -- raise constraint error at run time, but is not a compile-
4834 -- time error. When the selector is illegal for base type as
4835 -- well fall through and generate a compilation error anyway.
996ae0b0
RK
4836
4837 Comp := First_Component (Base_Type (Prefix_Type));
996ae0b0 4838 while Present (Comp) loop
996ae0b0
RK
4839 if Chars (Comp) = Chars (Sel)
4840 and then Is_Visible_Component (Comp)
4841 then
e7ba564f 4842 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4843 Generate_Reference (Comp, Sel);
4844 Set_Etype (Sel, Etype (Comp));
4845 Set_Etype (N, Etype (Comp));
4846
637a41a5
AC
4847 -- Emit appropriate message. The node will be replaced
4848 -- by an appropriate raise statement.
996ae0b0 4849
637a41a5
AC
4850 -- Note that in SPARK mode, as with all calls to apply a
4851 -- compile time constraint error, this will be made into
4852 -- an error to simplify the processing of the formal
4853 -- verification backend.
d7f41b2d 4854
4a28b181 4855 Apply_Compile_Time_Constraint_Error
637a41a5 4856 (N, "component not present in }??",
4a28b181
AC
4857 CE_Discriminant_Check_Failed,
4858 Ent => Prefix_Type, Rep => False);
d7f41b2d 4859
996ae0b0
RK
4860 Set_Raises_Constraint_Error (N);
4861 return;
4862 end if;
4863
4864 Next_Component (Comp);
4865 end loop;
4866
4867 end if;
4868
4869 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4870 Error_Msg_NE ("no selector& for}", N, Sel);
4871
94bbf008 4872 -- Add information in the case of an incomplete prefix
99d520ad
ES
4873
4874 if Is_Incomplete_Type (Type_To_Use) then
4875 declare
4876 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
4877
4878 begin
7b56a91b 4879 if From_Limited_With (Scope (Type_To_Use)) then
99d520ad
ES
4880 Error_Msg_NE
4881 ("\limited view of& has no components", N, Inc);
bd38b431 4882
99d520ad
ES
4883 else
4884 Error_Msg_NE
4885 ("\premature usage of incomplete type&", N, Inc);
bd38b431
AC
4886
4887 if Nkind (Parent (Inc)) =
4888 N_Incomplete_Type_Declaration
99d520ad 4889 then
94bbf008
AC
4890 -- Record location of premature use in entity so that
4891 -- a continuation message is generated when the
4892 -- completion is seen.
4893
99d520ad
ES
4894 Set_Premature_Use (Parent (Inc), N);
4895 end if;
4896 end if;
4897 end;
4898 end if;
4899
401093c1 4900 Check_Misspelled_Selector (Type_To_Use, Sel);
996ae0b0
RK
4901 end if;
4902
4903 Set_Entity (Sel, Any_Id);
4904 Set_Etype (Sel, Any_Type);
4905 end if;
4906 end Analyze_Selected_Component;
4907
4908 ---------------------------
4909 -- Analyze_Short_Circuit --
4910 ---------------------------
4911
4912 procedure Analyze_Short_Circuit (N : Node_Id) is
4913 L : constant Node_Id := Left_Opnd (N);
4914 R : constant Node_Id := Right_Opnd (N);
4915 Ind : Interp_Index;
4916 It : Interp;
4917
4918 begin
4919 Analyze_Expression (L);
4920 Analyze_Expression (R);
4921 Set_Etype (N, Any_Type);
4922
4923 if not Is_Overloaded (L) then
996ae0b0
RK
4924 if Root_Type (Etype (L)) = Standard_Boolean
4925 and then Has_Compatible_Type (R, Etype (L))
4926 then
4927 Add_One_Interp (N, Etype (L), Etype (L));
4928 end if;
4929
4930 else
4931 Get_First_Interp (L, Ind, It);
996ae0b0
RK
4932 while Present (It.Typ) loop
4933 if Root_Type (It.Typ) = Standard_Boolean
4934 and then Has_Compatible_Type (R, It.Typ)
4935 then
4936 Add_One_Interp (N, It.Typ, It.Typ);
4937 end if;
4938
4939 Get_Next_Interp (Ind, It);
4940 end loop;
4941 end if;
4942
d469eabe
HK
4943 -- Here we have failed to find an interpretation. Clearly we know that
4944 -- it is not the case that both operands can have an interpretation of
4945 -- Boolean, but this is by far the most likely intended interpretation.
4946 -- So we simply resolve both operands as Booleans, and at least one of
4947 -- these resolutions will generate an error message, and we do not need
4948 -- to give another error message on the short circuit operation itself.
996ae0b0
RK
4949
4950 if Etype (N) = Any_Type then
4951 Resolve (L, Standard_Boolean);
4952 Resolve (R, Standard_Boolean);
4953 Set_Etype (N, Standard_Boolean);
4954 end if;
4955 end Analyze_Short_Circuit;
4956
4957 -------------------
4958 -- Analyze_Slice --
4959 -------------------
4960
4961 procedure Analyze_Slice (N : Node_Id) is
996ae0b0 4962 D : constant Node_Id := Discrete_Range (N);
5f44f0d4 4963 P : constant Node_Id := Prefix (N);
996ae0b0 4964 Array_Type : Entity_Id;
5f44f0d4 4965 Index_Type : Entity_Id;
996ae0b0
RK
4966
4967 procedure Analyze_Overloaded_Slice;
4968 -- If the prefix is overloaded, select those interpretations that
4969 -- yield a one-dimensional array type.
4970
4c46b835
AC
4971 ------------------------------
4972 -- Analyze_Overloaded_Slice --
4973 ------------------------------
4974
996ae0b0
RK
4975 procedure Analyze_Overloaded_Slice is
4976 I : Interp_Index;
4977 It : Interp;
4978 Typ : Entity_Id;
4979
4980 begin
4981 Set_Etype (N, Any_Type);
996ae0b0 4982
4c46b835 4983 Get_First_Interp (P, I, It);
996ae0b0
RK
4984 while Present (It.Nam) loop
4985 Typ := It.Typ;
4986
4987 if Is_Access_Type (Typ) then
4988 Typ := Designated_Type (Typ);
324ac540
AC
4989 Error_Msg_NW
4990 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4991 end if;
4992
4993 if Is_Array_Type (Typ)
4994 and then Number_Dimensions (Typ) = 1
4995 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
4996 then
4997 Add_One_Interp (N, Typ, Typ);
4998 end if;
4999
5000 Get_Next_Interp (I, It);
5001 end loop;
5002
5003 if Etype (N) = Any_Type then
5004 Error_Msg_N ("expect array type in prefix of slice", N);
5005 end if;
5006 end Analyze_Overloaded_Slice;
5007
5008 -- Start of processing for Analyze_Slice
5009
5010 begin
36b8f95f 5011 if Comes_From_Source (N) then
ce5ba43a 5012 Check_SPARK_05_Restriction ("slice is not allowed", N);
36b8f95f 5013 end if;
1d801f21 5014
523456db 5015 Analyze (P);
996ae0b0
RK
5016 Analyze (D);
5017
5018 if Is_Overloaded (P) then
5019 Analyze_Overloaded_Slice;
5020
5021 else
5022 Array_Type := Etype (P);
5023 Set_Etype (N, Any_Type);
5024
5025 if Is_Access_Type (Array_Type) then
5026 Array_Type := Designated_Type (Array_Type);
324ac540 5027 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
5028 end if;
5029
5030 if not Is_Array_Type (Array_Type) then
5031 Wrong_Type (P, Any_Array);
5032
5033 elsif Number_Dimensions (Array_Type) > 1 then
5034 Error_Msg_N
5035 ("type is not one-dimensional array in slice prefix", N);
5036
996ae0b0 5037 else
5f44f0d4
AC
5038 if Ekind (Array_Type) = E_String_Literal_Subtype then
5039 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
5040 else
5041 Index_Type := Etype (First_Index (Array_Type));
5042 end if;
5043
5044 if not Has_Compatible_Type (D, Index_Type) then
5045 Wrong_Type (D, Index_Type);
5046 else
5047 Set_Etype (N, Array_Type);
5048 end if;
996ae0b0
RK
5049 end if;
5050 end if;
5051 end Analyze_Slice;
5052
5053 -----------------------------
5054 -- Analyze_Type_Conversion --
5055 -----------------------------
5056
5057 procedure Analyze_Type_Conversion (N : Node_Id) is
5058 Expr : constant Node_Id := Expression (N);
039538bc 5059 Typ : Entity_Id;
996ae0b0
RK
5060
5061 begin
039538bc
AC
5062 -- If Conversion_OK is set, then the Etype is already set, and the only
5063 -- processing required is to analyze the expression. This is used to
5064 -- construct certain "illegal" conversions which are not allowed by Ada
5065 -- semantics, but can be handled by Gigi, see Sinfo for further details.
996ae0b0
RK
5066
5067 if Conversion_OK (N) then
5068 Analyze (Expr);
5069 return;
5070 end if;
5071
5072 -- Otherwise full type analysis is required, as well as some semantic
5073 -- checks to make sure the argument of the conversion is appropriate.
5074
5075 Find_Type (Subtype_Mark (N));
039538bc
AC
5076 Typ := Entity (Subtype_Mark (N));
5077 Set_Etype (N, Typ);
5078 Check_Fully_Declared (Typ, N);
996ae0b0
RK
5079 Analyze_Expression (Expr);
5080 Validate_Remote_Type_Type_Conversion (N);
5e8c8e44 5081
996ae0b0
RK
5082 -- Only remaining step is validity checks on the argument. These
5083 -- are skipped if the conversion does not come from the source.
5084
5085 if not Comes_From_Source (N) then
5086 return;
5087
b67a385c
ES
5088 -- If there was an error in a generic unit, no need to replicate the
5089 -- error message. Conversely, constant-folding in the generic may
5090 -- transform the argument of a conversion into a string literal, which
5091 -- is legal. Therefore the following tests are not performed in an
36428cc4 5092 -- instance. The same applies to an inlined body.
b67a385c 5093
36428cc4 5094 elsif In_Instance or In_Inlined_Body then
b67a385c
ES
5095 return;
5096
996ae0b0
RK
5097 elsif Nkind (Expr) = N_Null then
5098 Error_Msg_N ("argument of conversion cannot be null", N);
ed2233dc 5099 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
5100 Set_Etype (N, Any_Type);
5101
5102 elsif Nkind (Expr) = N_Aggregate then
5103 Error_Msg_N ("argument of conversion cannot be aggregate", N);
ed2233dc 5104 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
5105
5106 elsif Nkind (Expr) = N_Allocator then
5107 Error_Msg_N ("argument of conversion cannot be an allocator", N);
ed2233dc 5108 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
5109
5110 elsif Nkind (Expr) = N_String_Literal then
5111 Error_Msg_N ("argument of conversion cannot be string literal", N);
ed2233dc 5112 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
5113
5114 elsif Nkind (Expr) = N_Character_Literal then
0ab80019 5115 if Ada_Version = Ada_83 then
039538bc 5116 Resolve (Expr, Typ);
996ae0b0
RK
5117 else
5118 Error_Msg_N ("argument of conversion cannot be character literal",
5119 N);
ed2233dc 5120 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
5121 end if;
5122
5123 elsif Nkind (Expr) = N_Attribute_Reference
039538bc
AC
5124 and then Nam_In (Attribute_Name (Expr), Name_Access,
5125 Name_Unchecked_Access,
5126 Name_Unrestricted_Access)
996ae0b0
RK
5127 then
5128 Error_Msg_N ("argument of conversion cannot be access", N);
ed2233dc 5129 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0 5130 end if;
039538bc
AC
5131
5132 -- A formal parameter of a specific tagged type whose related subprogram
5133 -- is subject to pragma Extensions_Visible with value "False" cannot
b3407ce0 5134 -- appear in a class-wide conversion (SPARK RM 6.1.7(3)).
039538bc
AC
5135
5136 if Is_Class_Wide_Type (Typ) and then Is_EVF_Expression (Expr) then
5137 Error_Msg_N
5138 ("formal parameter with Extensions_Visible False cannot be "
5139 & "converted to class-wide type", Expr);
5140 end if;
996ae0b0
RK
5141 end Analyze_Type_Conversion;
5142
5143 ----------------------
5144 -- Analyze_Unary_Op --
5145 ----------------------
5146
5147 procedure Analyze_Unary_Op (N : Node_Id) is
5148 R : constant Node_Id := Right_Opnd (N);
5149 Op_Id : Entity_Id := Entity (N);
5150
5151 begin
5152 Set_Etype (N, Any_Type);
5153 Candidate_Type := Empty;
5154
5155 Analyze_Expression (R);
5156
5157 if Present (Op_Id) then
5158 if Ekind (Op_Id) = E_Operator then
5159 Find_Unary_Types (R, Op_Id, N);
5160 else
5161 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5162 end if;
5163
5164 else
5165 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 5166 while Present (Op_Id) loop
996ae0b0
RK
5167 if Ekind (Op_Id) = E_Operator then
5168 if No (Next_Entity (First_Entity (Op_Id))) then
5169 Find_Unary_Types (R, Op_Id, N);
5170 end if;
5171
5172 elsif Is_Overloadable (Op_Id) then
5173 Analyze_User_Defined_Unary_Op (N, Op_Id);
5174 end if;
5175
5176 Op_Id := Homonym (Op_Id);
5177 end loop;
5178 end if;
5179
5180 Operator_Check (N);
5181 end Analyze_Unary_Op;
5182
5183 ----------------------------------
5184 -- Analyze_Unchecked_Expression --
5185 ----------------------------------
5186
5187 procedure Analyze_Unchecked_Expression (N : Node_Id) is
5188 begin
5189 Analyze (Expression (N), Suppress => All_Checks);
5190 Set_Etype (N, Etype (Expression (N)));
5191 Save_Interps (Expression (N), N);
5192 end Analyze_Unchecked_Expression;
5193
5194 ---------------------------------------
5195 -- Analyze_Unchecked_Type_Conversion --
5196 ---------------------------------------
5197
5198 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
5199 begin
5200 Find_Type (Subtype_Mark (N));
5201 Analyze_Expression (Expression (N));
5202 Set_Etype (N, Entity (Subtype_Mark (N)));
5203 end Analyze_Unchecked_Type_Conversion;
5204
5205 ------------------------------------
5206 -- Analyze_User_Defined_Binary_Op --
5207 ------------------------------------
5208
5209 procedure Analyze_User_Defined_Binary_Op
5210 (N : Node_Id;
5211 Op_Id : Entity_Id)
5212 is
5213 begin
5214 -- Only do analysis if the operator Comes_From_Source, since otherwise
5215 -- the operator was generated by the expander, and all such operators
5216 -- always refer to the operators in package Standard.
5217
5218 if Comes_From_Source (N) then
5219 declare
5220 F1 : constant Entity_Id := First_Formal (Op_Id);
5221 F2 : constant Entity_Id := Next_Formal (F1);
5222
5223 begin
5224 -- Verify that Op_Id is a visible binary function. Note that since
5225 -- we know Op_Id is overloaded, potentially use visible means use
5226 -- visible for sure (RM 9.4(11)).
5227
5228 if Ekind (Op_Id) = E_Function
5229 and then Present (F2)
5230 and then (Is_Immediately_Visible (Op_Id)
5231 or else Is_Potentially_Use_Visible (Op_Id))
5232 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
5233 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
5234 then
5235 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5236
8b4230c8
AC
5237 -- If the left operand is overloaded, indicate that the current
5238 -- type is a viable candidate. This is redundant in most cases,
5239 -- but for equality and comparison operators where the context
5240 -- does not impose a type on the operands, setting the proper
5241 -- type is necessary to avoid subsequent ambiguities during
5242 -- resolution, when both user-defined and predefined operators
5243 -- may be candidates.
7340e432
AC
5244
5245 if Is_Overloaded (Left_Opnd (N)) then
5246 Set_Etype (Left_Opnd (N), Etype (F1));
5247 end if;
5248
996ae0b0
RK
5249 if Debug_Flag_E then
5250 Write_Str ("user defined operator ");
5251 Write_Name (Chars (Op_Id));
5252 Write_Str (" on node ");
5253 Write_Int (Int (N));
5254 Write_Eol;
5255 end if;
5256 end if;
5257 end;
5258 end if;
5259 end Analyze_User_Defined_Binary_Op;
5260
5261 -----------------------------------
5262 -- Analyze_User_Defined_Unary_Op --
5263 -----------------------------------
5264
5265 procedure Analyze_User_Defined_Unary_Op
5266 (N : Node_Id;
5267 Op_Id : Entity_Id)
5268 is
5269 begin
5270 -- Only do analysis if the operator Comes_From_Source, since otherwise
5271 -- the operator was generated by the expander, and all such operators
5272 -- always refer to the operators in package Standard.
5273
5274 if Comes_From_Source (N) then
5275 declare
5276 F : constant Entity_Id := First_Formal (Op_Id);
5277
5278 begin
5279 -- Verify that Op_Id is a visible unary function. Note that since
5280 -- we know Op_Id is overloaded, potentially use visible means use
5281 -- visible for sure (RM 9.4(11)).
5282
5283 if Ekind (Op_Id) = E_Function
5284 and then No (Next_Formal (F))
5285 and then (Is_Immediately_Visible (Op_Id)
5286 or else Is_Potentially_Use_Visible (Op_Id))
5287 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
5288 then
5289 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5290 end if;
5291 end;
5292 end if;
5293 end Analyze_User_Defined_Unary_Op;
5294
5295 ---------------------------
5296 -- Check_Arithmetic_Pair --
5297 ---------------------------
5298
5299 procedure Check_Arithmetic_Pair
5300 (T1, T2 : Entity_Id;
5301 Op_Id : Entity_Id;
5302 N : Node_Id)
5303 is
401093c1 5304 Op_Name : constant Name_Id := Chars (Op_Id);
996ae0b0 5305
da709d08
AC
5306 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
5307 -- Check whether the fixed-point type Typ has a user-defined operator
5308 -- (multiplication or division) that should hide the corresponding
5309 -- predefined operator. Used to implement Ada 2005 AI-264, to make
5310 -- such operators more visible and therefore useful.
8b4230c8 5311 --
50cff367
GD
5312 -- If the name of the operation is an expanded name with prefix
5313 -- Standard, the predefined universal fixed operator is available,
5314 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
5315
996ae0b0
RK
5316 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
5317 -- Get specific type (i.e. non-universal type if there is one)
5318
da709d08
AC
5319 ------------------
5320 -- Has_Fixed_Op --
5321 ------------------
5322
5323 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
401093c1 5324 Bas : constant Entity_Id := Base_Type (Typ);
da709d08
AC
5325 Ent : Entity_Id;
5326 F1 : Entity_Id;
5327 F2 : Entity_Id;
5328
5329 begin
50cff367
GD
5330 -- If the universal_fixed operation is given explicitly the rule
5331 -- concerning primitive operations of the type do not apply.
5332
5333 if Nkind (N) = N_Function_Call
5334 and then Nkind (Name (N)) = N_Expanded_Name
5335 and then Entity (Prefix (Name (N))) = Standard_Standard
5336 then
5337 return False;
5338 end if;
5339
da709d08
AC
5340 -- The operation is treated as primitive if it is declared in the
5341 -- same scope as the type, and therefore on the same entity chain.
5342
5343 Ent := Next_Entity (Typ);
5344 while Present (Ent) loop
5345 if Chars (Ent) = Chars (Op) then
5346 F1 := First_Formal (Ent);
5347 F2 := Next_Formal (F1);
5348
5349 -- The operation counts as primitive if either operand or
401093c1
ES
5350 -- result are of the given base type, and both operands are
5351 -- fixed point types.
da709d08 5352
401093c1 5353 if (Base_Type (Etype (F1)) = Bas
da709d08
AC
5354 and then Is_Fixed_Point_Type (Etype (F2)))
5355
5356 or else
401093c1 5357 (Base_Type (Etype (F2)) = Bas
da709d08
AC
5358 and then Is_Fixed_Point_Type (Etype (F1)))
5359
5360 or else
401093c1 5361 (Base_Type (Etype (Ent)) = Bas
da709d08
AC
5362 and then Is_Fixed_Point_Type (Etype (F1))
5363 and then Is_Fixed_Point_Type (Etype (F2)))
5364 then
5365 return True;
5366 end if;
5367 end if;
5368
5369 Next_Entity (Ent);
5370 end loop;
5371
5372 return False;
5373 end Has_Fixed_Op;
5374
4c46b835
AC
5375 -------------------
5376 -- Specific_Type --
5377 -------------------
5378
996ae0b0
RK
5379 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
5380 begin
5381 if T1 = Universal_Integer or else T1 = Universal_Real then
5382 return Base_Type (T2);
5383 else
5384 return Base_Type (T1);
5385 end if;
5386 end Specific_Type;
5387
5388 -- Start of processing for Check_Arithmetic_Pair
5389
5390 begin
b69cd36a 5391 if Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
996ae0b0
RK
5392 if Is_Numeric_Type (T1)
5393 and then Is_Numeric_Type (T2)
b4592168
GD
5394 and then (Covers (T1 => T1, T2 => T2)
5395 or else
5396 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
5397 then
5398 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5399 end if;
5400
b69cd36a 5401 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide) then
996ae0b0 5402 if Is_Fixed_Point_Type (T1)
b69cd36a 5403 and then (Is_Fixed_Point_Type (T2) or else T2 = Universal_Real)
996ae0b0
RK
5404 then
5405 -- If Treat_Fixed_As_Integer is set then the Etype is already set
5406 -- and no further processing is required (this is the case of an
5407 -- operator constructed by Exp_Fixd for a fixed point operation)
5408 -- Otherwise add one interpretation with universal fixed result
21d7ef70 5409 -- If the operator is given in functional notation, it comes
996ae0b0
RK
5410 -- from source and Fixed_As_Integer cannot apply.
5411
da709d08
AC
5412 if (Nkind (N) not in N_Op
5413 or else not Treat_Fixed_As_Integer (N))
5414 and then
401093c1 5415 (not Has_Fixed_Op (T1, Op_Id)
da709d08 5416 or else Nkind (Parent (N)) = N_Type_Conversion)
fbf5a39b 5417 then
996ae0b0
RK
5418 Add_One_Interp (N, Op_Id, Universal_Fixed);
5419 end if;
5420
5421 elsif Is_Fixed_Point_Type (T2)
5422 and then (Nkind (N) not in N_Op
5423 or else not Treat_Fixed_As_Integer (N))
5424 and then T1 = Universal_Real
da709d08 5425 and then
401093c1 5426 (not Has_Fixed_Op (T1, Op_Id)
da709d08 5427 or else Nkind (Parent (N)) = N_Type_Conversion)
996ae0b0
RK
5428 then
5429 Add_One_Interp (N, Op_Id, Universal_Fixed);
5430
5431 elsif Is_Numeric_Type (T1)
5432 and then Is_Numeric_Type (T2)
b4592168
GD
5433 and then (Covers (T1 => T1, T2 => T2)
5434 or else
5435 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
5436 then
5437 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5438
5439 elsif Is_Fixed_Point_Type (T1)
5440 and then (Base_Type (T2) = Base_Type (Standard_Integer)
b69cd36a 5441 or else T2 = Universal_Integer)
996ae0b0
RK
5442 then
5443 Add_One_Interp (N, Op_Id, T1);
5444
5445 elsif T2 = Universal_Real
5446 and then Base_Type (T1) = Base_Type (Standard_Integer)
5447 and then Op_Name = Name_Op_Multiply
5448 then
5449 Add_One_Interp (N, Op_Id, Any_Fixed);
5450
5451 elsif T1 = Universal_Real
5452 and then Base_Type (T2) = Base_Type (Standard_Integer)
5453 then
5454 Add_One_Interp (N, Op_Id, Any_Fixed);
5455
5456 elsif Is_Fixed_Point_Type (T2)
5457 and then (Base_Type (T1) = Base_Type (Standard_Integer)
b69cd36a 5458 or else T1 = Universal_Integer)
996ae0b0
RK
5459 and then Op_Name = Name_Op_Multiply
5460 then
5461 Add_One_Interp (N, Op_Id, T2);
5462
5463 elsif T1 = Universal_Real and then T2 = Universal_Integer then
5464 Add_One_Interp (N, Op_Id, T1);
5465
5466 elsif T2 = Universal_Real
5467 and then T1 = Universal_Integer
5468 and then Op_Name = Name_Op_Multiply
5469 then
5470 Add_One_Interp (N, Op_Id, T2);
5471 end if;
5472
5473 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
5474
5475 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
5476 -- set does not require any special processing, since the Etype is
5477 -- already set (case of operation constructed by Exp_Fixed).
5478
5479 if Is_Integer_Type (T1)
b4592168
GD
5480 and then (Covers (T1 => T1, T2 => T2)
5481 or else
5482 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
5483 then
5484 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5485 end if;
5486
5487 elsif Op_Name = Name_Op_Expon then
996ae0b0
RK
5488 if Is_Numeric_Type (T1)
5489 and then not Is_Fixed_Point_Type (T1)
5490 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5491 or else T2 = Universal_Integer)
5492 then
5493 Add_One_Interp (N, Op_Id, Base_Type (T1));
5494 end if;
5495
5496 else pragma Assert (Nkind (N) in N_Op_Shift);
5497
5498 -- If not one of the predefined operators, the node may be one
5499 -- of the intrinsic functions. Its kind is always specific, and
5500 -- we can use it directly, rather than the name of the operation.
5501
5502 if Is_Integer_Type (T1)
5503 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5504 or else T2 = Universal_Integer)
5505 then
5506 Add_One_Interp (N, Op_Id, Base_Type (T1));
5507 end if;
5508 end if;
5509 end Check_Arithmetic_Pair;
5510
5511 -------------------------------
5512 -- Check_Misspelled_Selector --
5513 -------------------------------
5514
5515 procedure Check_Misspelled_Selector
5516 (Prefix : Entity_Id;
5517 Sel : Node_Id)
5518 is
5519 Max_Suggestions : constant := 2;
5520 Nr_Of_Suggestions : Natural := 0;
5521
5522 Suggestion_1 : Entity_Id := Empty;
5523 Suggestion_2 : Entity_Id := Empty;
5524
5525 Comp : Entity_Id;
5526
5527 begin
8b4230c8
AC
5528 -- All the components of the prefix of selector Sel are matched against
5529 -- Sel and a count is maintained of possible misspellings. When at
a90bd866 5530 -- the end of the analysis there are one or two (not more) possible
8b4230c8
AC
5531 -- misspellings, these misspellings will be suggested as possible
5532 -- correction.
996ae0b0 5533
4c46b835
AC
5534 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
5535
996ae0b0 5536 -- Concurrent types should be handled as well ???
4c46b835 5537
996ae0b0
RK
5538 return;
5539 end if;
5540
d469eabe
HK
5541 Comp := First_Entity (Prefix);
5542 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
5543 if Is_Visible_Component (Comp) then
5544 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
5545 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
5546
5547 case Nr_Of_Suggestions is
5548 when 1 => Suggestion_1 := Comp;
5549 when 2 => Suggestion_2 := Comp;
5550 when others => exit;
5551 end case;
996ae0b0 5552 end if;
d469eabe 5553 end if;
996ae0b0 5554
d469eabe
HK
5555 Comp := Next_Entity (Comp);
5556 end loop;
996ae0b0 5557
d469eabe 5558 -- Report at most two suggestions
996ae0b0 5559
d469eabe 5560 if Nr_Of_Suggestions = 1 then
4e7a4f6e 5561 Error_Msg_NE -- CODEFIX
d469eabe 5562 ("\possible misspelling of&", Sel, Suggestion_1);
996ae0b0 5563
d469eabe
HK
5564 elsif Nr_Of_Suggestions = 2 then
5565 Error_Msg_Node_2 := Suggestion_2;
4e7a4f6e 5566 Error_Msg_NE -- CODEFIX
d469eabe
HK
5567 ("\possible misspelling of& or&", Sel, Suggestion_1);
5568 end if;
996ae0b0
RK
5569 end Check_Misspelled_Selector;
5570
5571 ----------------------
5572 -- Defined_In_Scope --
5573 ----------------------
5574
5575 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
5576 is
5577 S1 : constant Entity_Id := Scope (Base_Type (T));
996ae0b0
RK
5578 begin
5579 return S1 = S
5580 or else (S1 = System_Aux_Id and then S = Scope (S1));
5581 end Defined_In_Scope;
5582
5583 -------------------
5584 -- Diagnose_Call --
5585 -------------------
5586
5587 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
fbf5a39b
AC
5588 Actual : Node_Id;
5589 X : Interp_Index;
5590 It : Interp;
fbf5a39b
AC
5591 Err_Mode : Boolean;
5592 New_Nam : Node_Id;
5593 Void_Interp_Seen : Boolean := False;
996ae0b0 5594
24657705
HK
5595 Success : Boolean;
5596 pragma Warnings (Off, Boolean);
5597
996ae0b0 5598 begin
0791fbe9 5599 if Ada_Version >= Ada_2005 then
996ae0b0 5600 Actual := First_Actual (N);
996ae0b0 5601 while Present (Actual) loop
0ab80019
AC
5602
5603 -- Ada 2005 (AI-50217): Post an error in case of premature
5604 -- usage of an entity from the limited view.
19f0526a 5605
996ae0b0 5606 if not Analyzed (Etype (Actual))
7b56a91b 5607 and then From_Limited_With (Etype (Actual))
996ae0b0
RK
5608 then
5609 Error_Msg_Qual_Level := 1;
ed2233dc 5610 Error_Msg_NE
996ae0b0
RK
5611 ("missing with_clause for scope of imported type&",
5612 Actual, Etype (Actual));
5613 Error_Msg_Qual_Level := 0;
5614 end if;
5615
5616 Next_Actual (Actual);
5617 end loop;
5618 end if;
5619
fbf5a39b
AC
5620 -- Analyze each candidate call again, with full error reporting
5621 -- for each.
5622
5623 Error_Msg_N
5624 ("no candidate interpretations match the actuals:!", Nam);
5625 Err_Mode := All_Errors_Mode;
5626 All_Errors_Mode := True;
5627
5628 -- If this is a call to an operation of a concurrent type,
5629 -- the failed interpretations have been removed from the
5630 -- name. Recover them to provide full diagnostics.
5631
5632 if Nkind (Parent (Nam)) = N_Selected_Component then
5633 Set_Entity (Nam, Empty);
5634 New_Nam := New_Copy_Tree (Parent (Nam));
5635 Set_Is_Overloaded (New_Nam, False);
5636 Set_Is_Overloaded (Selector_Name (New_Nam), False);
5637 Set_Parent (New_Nam, Parent (Parent (Nam)));
5638 Analyze_Selected_Component (New_Nam);
5639 Get_First_Interp (Selector_Name (New_Nam), X, It);
5640 else
996ae0b0 5641 Get_First_Interp (Nam, X, It);
fbf5a39b 5642 end if;
996ae0b0 5643
fbf5a39b
AC
5644 while Present (It.Nam) loop
5645 if Etype (It.Nam) = Standard_Void_Type then
5646 Void_Interp_Seen := True;
996ae0b0 5647 end if;
fbf5a39b
AC
5648
5649 Analyze_One_Call (N, It.Nam, True, Success);
5650 Get_Next_Interp (X, It);
5651 end loop;
996ae0b0
RK
5652
5653 if Nkind (N) = N_Function_Call then
5654 Get_First_Interp (Nam, X, It);
996ae0b0 5655 while Present (It.Nam) loop
bce79204 5656 if Ekind_In (It.Nam, E_Function, E_Operator) then
996ae0b0
RK
5657 return;
5658 else
5659 Get_Next_Interp (X, It);
5660 end if;
5661 end loop;
5662
5663 -- If all interpretations are procedures, this deserves a
5664 -- more precise message. Ditto if this appears as the prefix
5665 -- of a selected component, which may be a lexical error.
5666
4c46b835
AC
5667 Error_Msg_N
5668 ("\context requires function call, found procedure name", Nam);
996ae0b0
RK
5669
5670 if Nkind (Parent (N)) = N_Selected_Component
5671 and then N = Prefix (Parent (N))
5672 then
4e7a4f6e
AC
5673 Error_Msg_N -- CODEFIX
5674 ("\period should probably be semicolon", Parent (N));
996ae0b0 5675 end if;
fbf5a39b
AC
5676
5677 elsif Nkind (N) = N_Procedure_Call_Statement
5678 and then not Void_Interp_Seen
5679 then
5680 Error_Msg_N (
5681 "\function name found in procedure call", Nam);
996ae0b0 5682 end if;
fbf5a39b
AC
5683
5684 All_Errors_Mode := Err_Mode;
996ae0b0
RK
5685 end Diagnose_Call;
5686
5687 ---------------------------
5688 -- Find_Arithmetic_Types --
5689 ---------------------------
5690
5691 procedure Find_Arithmetic_Types
5692 (L, R : Node_Id;
5693 Op_Id : Entity_Id;
5694 N : Node_Id)
5695 is
4c46b835
AC
5696 Index1 : Interp_Index;
5697 Index2 : Interp_Index;
5698 It1 : Interp;
5699 It2 : Interp;
996ae0b0
RK
5700
5701 procedure Check_Right_Argument (T : Entity_Id);
5702 -- Check right operand of operator
5703
4c46b835
AC
5704 --------------------------
5705 -- Check_Right_Argument --
5706 --------------------------
5707
996ae0b0
RK
5708 procedure Check_Right_Argument (T : Entity_Id) is
5709 begin
5710 if not Is_Overloaded (R) then
5711 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
5712 else
5713 Get_First_Interp (R, Index2, It2);
996ae0b0
RK
5714 while Present (It2.Typ) loop
5715 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
5716 Get_Next_Interp (Index2, It2);
5717 end loop;
5718 end if;
5719 end Check_Right_Argument;
5720
d8221f45 5721 -- Start of processing for Find_Arithmetic_Types
996ae0b0
RK
5722
5723 begin
5724 if not Is_Overloaded (L) then
5725 Check_Right_Argument (Etype (L));
5726
5727 else
5728 Get_First_Interp (L, Index1, It1);
996ae0b0
RK
5729 while Present (It1.Typ) loop
5730 Check_Right_Argument (It1.Typ);
5731 Get_Next_Interp (Index1, It1);
5732 end loop;
5733 end if;
5734
5735 end Find_Arithmetic_Types;
5736
5737 ------------------------
5738 -- Find_Boolean_Types --
5739 ------------------------
5740
5741 procedure Find_Boolean_Types
5742 (L, R : Node_Id;
5743 Op_Id : Entity_Id;
5744 N : Node_Id)
5745 is
5746 Index : Interp_Index;
5747 It : Interp;
5748
5749 procedure Check_Numeric_Argument (T : Entity_Id);
5750 -- Special case for logical operations one of whose operands is an
5751 -- integer literal. If both are literal the result is any modular type.
5752
4c46b835
AC
5753 ----------------------------
5754 -- Check_Numeric_Argument --
5755 ----------------------------
5756
996ae0b0
RK
5757 procedure Check_Numeric_Argument (T : Entity_Id) is
5758 begin
5759 if T = Universal_Integer then
5760 Add_One_Interp (N, Op_Id, Any_Modular);
5761
5762 elsif Is_Modular_Integer_Type (T) then
5763 Add_One_Interp (N, Op_Id, T);
5764 end if;
5765 end Check_Numeric_Argument;
5766
5767 -- Start of processing for Find_Boolean_Types
5768
5769 begin
5770 if not Is_Overloaded (L) then
996ae0b0
RK
5771 if Etype (L) = Universal_Integer
5772 or else Etype (L) = Any_Modular
5773 then
5774 if not Is_Overloaded (R) then
5775 Check_Numeric_Argument (Etype (R));
5776
5777 else
5778 Get_First_Interp (R, Index, It);
996ae0b0
RK
5779 while Present (It.Typ) loop
5780 Check_Numeric_Argument (It.Typ);
996ae0b0
RK
5781 Get_Next_Interp (Index, It);
5782 end loop;
5783 end if;
5784
69e6a03e
ES
5785 -- If operands are aggregates, we must assume that they may be
5786 -- boolean arrays, and leave disambiguation for the second pass.
5787 -- If only one is an aggregate, verify that the other one has an
5788 -- interpretation as a boolean array
5789
5790 elsif Nkind (L) = N_Aggregate then
5791 if Nkind (R) = N_Aggregate then
5792 Add_One_Interp (N, Op_Id, Etype (L));
5793
5794 elsif not Is_Overloaded (R) then
5795 if Valid_Boolean_Arg (Etype (R)) then
5796 Add_One_Interp (N, Op_Id, Etype (R));
5797 end if;
5798
5799 else
5800 Get_First_Interp (R, Index, It);
5801 while Present (It.Typ) loop
5802 if Valid_Boolean_Arg (It.Typ) then
5803 Add_One_Interp (N, Op_Id, It.Typ);
5804 end if;
5805
5806 Get_Next_Interp (Index, It);
5807 end loop;
5808 end if;
5809
996ae0b0
RK
5810 elsif Valid_Boolean_Arg (Etype (L))
5811 and then Has_Compatible_Type (R, Etype (L))
5812 then
5813 Add_One_Interp (N, Op_Id, Etype (L));
5814 end if;
5815
5816 else
5817 Get_First_Interp (L, Index, It);
996ae0b0
RK
5818 while Present (It.Typ) loop
5819 if Valid_Boolean_Arg (It.Typ)
5820 and then Has_Compatible_Type (R, It.Typ)
5821 then
5822 Add_One_Interp (N, Op_Id, It.Typ);
5823 end if;
5824
5825 Get_Next_Interp (Index, It);
5826 end loop;
5827 end if;
5828 end Find_Boolean_Types;
5829
5830 ---------------------------
5831 -- Find_Comparison_Types --
5832 ---------------------------
5833
5834 procedure Find_Comparison_Types
5835 (L, R : Node_Id;
5836 Op_Id : Entity_Id;
5837 N : Node_Id)
5838 is
5839 Index : Interp_Index;
5840 It : Interp;
5841 Found : Boolean := False;
5842 I_F : Interp_Index;
5843 T_F : Entity_Id;
5844 Scop : Entity_Id := Empty;
5845
5846 procedure Try_One_Interp (T1 : Entity_Id);
5847 -- Routine to try one proposed interpretation. Note that the context
5848 -- of the operator plays no role in resolving the arguments, so that
5849 -- if there is more than one interpretation of the operands that is
5850 -- compatible with comparison, the operation is ambiguous.
5851
4c46b835
AC
5852 --------------------
5853 -- Try_One_Interp --
5854 --------------------
5855
996ae0b0
RK
5856 procedure Try_One_Interp (T1 : Entity_Id) is
5857 begin
5858
5859 -- If the operator is an expanded name, then the type of the operand
5860 -- must be defined in the corresponding scope. If the type is
5861 -- universal, the context will impose the correct type.
5862
5863 if Present (Scop)
8b4230c8
AC
5864 and then not Defined_In_Scope (T1, Scop)
5865 and then T1 /= Universal_Integer
5866 and then T1 /= Universal_Real
5867 and then T1 /= Any_String
5868 and then T1 /= Any_Composite
996ae0b0
RK
5869 then
5870 return;
5871 end if;
5872
8b4230c8
AC
5873 if Valid_Comparison_Arg (T1) and then Has_Compatible_Type (R, T1) then
5874 if Found and then Base_Type (T1) /= Base_Type (T_F) then
996ae0b0
RK
5875 It := Disambiguate (L, I_F, Index, Any_Type);
5876
5877 if It = No_Interp then
5878 Ambiguous_Operands (N);
5879 Set_Etype (L, Any_Type);
5880 return;
5881
5882 else
5883 T_F := It.Typ;
5884 end if;
5885
5886 else
5887 Found := True;
5888 T_F := T1;
5889 I_F := Index;
5890 end if;
5891
5892 Set_Etype (L, T_F);
5893 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5894
5895 end if;
5896 end Try_One_Interp;
5897
d8221f45 5898 -- Start of processing for Find_Comparison_Types
996ae0b0
RK
5899
5900 begin
fbf5a39b
AC
5901 -- If left operand is aggregate, the right operand has to
5902 -- provide a usable type for it.
5903
8b4230c8 5904 if Nkind (L) = N_Aggregate and then Nkind (R) /= N_Aggregate then
b4592168 5905 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
fbf5a39b
AC
5906 return;
5907 end if;
996ae0b0
RK
5908
5909 if Nkind (N) = N_Function_Call
5910 and then Nkind (Name (N)) = N_Expanded_Name
5911 then
5912 Scop := Entity (Prefix (Name (N)));
5913
5914 -- The prefix may be a package renaming, and the subsequent test
5915 -- requires the original package.
5916
5917 if Ekind (Scop) = E_Package
5918 and then Present (Renamed_Entity (Scop))
5919 then
5920 Scop := Renamed_Entity (Scop);
5921 Set_Entity (Prefix (Name (N)), Scop);
5922 end if;
5923 end if;
5924
5925 if not Is_Overloaded (L) then
5926 Try_One_Interp (Etype (L));
5927
5928 else
5929 Get_First_Interp (L, Index, It);
996ae0b0
RK
5930 while Present (It.Typ) loop
5931 Try_One_Interp (It.Typ);
5932 Get_Next_Interp (Index, It);
5933 end loop;
5934 end if;
5935 end Find_Comparison_Types;
5936
5937 ----------------------------------------
5938 -- Find_Non_Universal_Interpretations --
5939 ----------------------------------------
5940
5941 procedure Find_Non_Universal_Interpretations
5942 (N : Node_Id;
5943 R : Node_Id;
5944 Op_Id : Entity_Id;
5945 T1 : Entity_Id)
5946 is
5947 Index : Interp_Index;
4c46b835 5948 It : Interp;
996ae0b0
RK
5949
5950 begin
8b4230c8 5951 if T1 = Universal_Integer or else T1 = Universal_Real
b9daa96e
AC
5952
5953 -- If the left operand of an equality operator is null, the visibility
5954 -- of the operator must be determined from the interpretation of the
5955 -- right operand. This processing must be done for Any_Access, which
5956 -- is the internal representation of the type of the literal null.
5957
be4c5193 5958 or else T1 = Any_Access
996ae0b0
RK
5959 then
5960 if not Is_Overloaded (R) then
8b4230c8 5961 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
996ae0b0
RK
5962 else
5963 Get_First_Interp (R, Index, It);
996ae0b0
RK
5964 while Present (It.Typ) loop
5965 if Covers (It.Typ, T1) then
5966 Add_One_Interp
5967 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5968 end if;
5969
5970 Get_Next_Interp (Index, It);
5971 end loop;
5972 end if;
5973 else
5974 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
5975 end if;
5976 end Find_Non_Universal_Interpretations;
5977
5978 ------------------------------
5979 -- Find_Concatenation_Types --
5980 ------------------------------
5981
5982 procedure Find_Concatenation_Types
5983 (L, R : Node_Id;
5984 Op_Id : Entity_Id;
5985 N : Node_Id)
5986 is
5987 Op_Type : constant Entity_Id := Etype (Op_Id);
5988
5989 begin
5990 if Is_Array_Type (Op_Type)
5991 and then not Is_Limited_Type (Op_Type)
5992
5993 and then (Has_Compatible_Type (L, Op_Type)
5994 or else
5995 Has_Compatible_Type (L, Component_Type (Op_Type)))
5996
5997 and then (Has_Compatible_Type (R, Op_Type)
5998 or else
5999 Has_Compatible_Type (R, Component_Type (Op_Type)))
6000 then
6001 Add_One_Interp (N, Op_Id, Op_Type);
6002 end if;
6003 end Find_Concatenation_Types;
6004
6005 -------------------------
6006 -- Find_Equality_Types --
6007 -------------------------
6008
6009 procedure Find_Equality_Types
6010 (L, R : Node_Id;
6011 Op_Id : Entity_Id;
6012 N : Node_Id)
6013 is
6014 Index : Interp_Index;
6015 It : Interp;
6016 Found : Boolean := False;
6017 I_F : Interp_Index;
6018 T_F : Entity_Id;
6019 Scop : Entity_Id := Empty;
6020
6021 procedure Try_One_Interp (T1 : Entity_Id);
a8e65aa5
AC
6022 -- The context of the equality operator plays no role in resolving the
6023 -- arguments, so that if there is more than one interpretation of the
6024 -- operands that is compatible with equality, the construct is ambiguous
6025 -- and an error can be emitted now, after trying to disambiguate, i.e.
6026 -- applying preference rules.
996ae0b0 6027
4c46b835
AC
6028 --------------------
6029 -- Try_One_Interp --
6030 --------------------
6031
996ae0b0 6032 procedure Try_One_Interp (T1 : Entity_Id) is
a8e65aa5
AC
6033 Bas : constant Entity_Id := Base_Type (T1);
6034
996ae0b0 6035 begin
996ae0b0
RK
6036 -- If the operator is an expanded name, then the type of the operand
6037 -- must be defined in the corresponding scope. If the type is
6038 -- universal, the context will impose the correct type. An anonymous
6039 -- type for a 'Access reference is also universal in this sense, as
6040 -- the actual type is obtained from context.
8b4230c8 6041
fe45e59e
ES
6042 -- In Ada 2005, the equality operator for anonymous access types
6043 -- is declared in Standard, and preference rules apply to it.
996ae0b0 6044
fe45e59e
ES
6045 if Present (Scop) then
6046 if Defined_In_Scope (T1, Scop)
6047 or else T1 = Universal_Integer
6048 or else T1 = Universal_Real
6049 or else T1 = Any_Access
6050 or else T1 = Any_String
6051 or else T1 = Any_Composite
6052 or else (Ekind (T1) = E_Access_Subprogram_Type
a8e65aa5 6053 and then not Comes_From_Source (T1))
fe45e59e
ES
6054 then
6055 null;
6056
6057 elsif Ekind (T1) = E_Anonymous_Access_Type
6058 and then Scop = Standard_Standard
6059 then
6060 null;
6061
6062 else
6063 -- The scope does not contain an operator for the type
6064
6065 return;
6066 end if;
a8e65aa5 6067
9aa04cc7
AC
6068 -- If we have infix notation, the operator must be usable. Within
6069 -- an instance, if the type is already established we know it is
6070 -- correct. If an operand is universal it is compatible with any
6071 -- numeric type.
31af8899 6072
a8e65aa5
AC
6073 elsif In_Open_Scopes (Scope (Bas))
6074 or else Is_Potentially_Use_Visible (Bas)
6075 or else In_Use (Bas)
9aa04cc7 6076 or else (In_Use (Scope (Bas)) and then not Is_Hidden (Bas))
a54ffd6c
AC
6077
6078 -- In an instance, the type may have been immediately visible.
6079 -- Either the types are compatible, or one operand is universal
6080 -- (numeric or null).
6081
a8e65aa5 6082 or else (In_Instance
9aa04cc7
AC
6083 and then
6084 (First_Subtype (T1) = First_Subtype (Etype (R))
4f7c83ca 6085 or else Nkind (R) = N_Null
9aa04cc7
AC
6086 or else
6087 (Is_Numeric_Type (T1)
6088 and then Is_Universal_Numeric_Type (Etype (R)))))
a54ffd6c
AC
6089
6090 -- In Ada 2005, the equality on anonymous access types is declared
6091 -- in Standard, and is always visible.
6092
a8e65aa5
AC
6093 or else Ekind (T1) = E_Anonymous_Access_Type
6094 then
6095 null;
6096
6097 else
308e6f3a 6098 -- Save candidate type for subsequent error message, if any
a8e65aa5
AC
6099
6100 if not Is_Limited_Type (T1) then
6101 Candidate_Type := T1;
6102 end if;
6103
6104 return;
996ae0b0
RK
6105 end if;
6106
0ab80019
AC
6107 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
6108 -- Do not allow anonymous access types in equality operators.
6e937c1c 6109
0791fbe9 6110 if Ada_Version < Ada_2005
6e937c1c
AC
6111 and then Ekind (T1) = E_Anonymous_Access_Type
6112 then
6113 return;
6114 end if;
6115
c92e8586
AC
6116 -- If the right operand has a type compatible with T1, check for an
6117 -- acceptable interpretation, unless T1 is limited (no predefined
6118 -- equality available), or this is use of a "/=" for a tagged type.
8b4230c8
AC
6119 -- In the latter case, possible interpretations of equality need
6120 -- to be considered, we don't want the default inequality declared
6121 -- in Standard to be chosen, and the "/=" will be rewritten as a
c92e8586 6122 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
026c3cfd 6123 -- that rewriting happens during analysis rather than being
c92e8586
AC
6124 -- delayed until expansion (this is needed for ASIS, which only sees
6125 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
6126 -- is Name_Op_Eq then we still proceed with the interpretation,
6127 -- because that indicates the potential rewriting case where the
6128 -- interpretation to consider is actually "=" and the node may be
6129 -- about to be rewritten by Analyze_Equality_Op.
6130
996ae0b0 6131 if T1 /= Standard_Void_Type
996ae0b0 6132 and then Has_Compatible_Type (R, T1)
c92e8586 6133
9b62eb32
AC
6134 and then
6135 ((not Is_Limited_Type (T1)
6136 and then not Is_Limited_Composite (T1))
6137
6138 or else
2fcc44fa 6139 (Is_Array_Type (T1)
9b62eb32
AC
6140 and then not Is_Limited_Type (Component_Type (T1))
6141 and then Available_Full_View_Of_Component (T1)))
c92e8586
AC
6142
6143 and then
6144 (Nkind (N) /= N_Op_Ne
6145 or else not Is_Tagged_Type (T1)
6146 or else Chars (Op_Id) = Name_Op_Eq)
996ae0b0
RK
6147 then
6148 if Found
6149 and then Base_Type (T1) /= Base_Type (T_F)
6150 then
6151 It := Disambiguate (L, I_F, Index, Any_Type);
6152
6153 if It = No_Interp then
6154 Ambiguous_Operands (N);
6155 Set_Etype (L, Any_Type);
6156 return;
6157
6158 else
6159 T_F := It.Typ;
6160 end if;
6161
6162 else
6163 Found := True;
6164 T_F := T1;
6165 I_F := Index;
6166 end if;
6167
6168 if not Analyzed (L) then
6169 Set_Etype (L, T_F);
6170 end if;
6171
6172 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
6173
6e73e3ab 6174 -- Case of operator was not visible, Etype still set to Any_Type
996ae0b0 6175
6e73e3ab 6176 if Etype (N) = Any_Type then
996ae0b0
RK
6177 Found := False;
6178 end if;
fe45e59e
ES
6179
6180 elsif Scop = Standard_Standard
6181 and then Ekind (T1) = E_Anonymous_Access_Type
6182 then
6183 Found := True;
996ae0b0
RK
6184 end if;
6185 end Try_One_Interp;
6186
6187 -- Start of processing for Find_Equality_Types
6188
6189 begin
fbf5a39b
AC
6190 -- If left operand is aggregate, the right operand has to
6191 -- provide a usable type for it.
6192
6193 if Nkind (L) = N_Aggregate
6194 and then Nkind (R) /= N_Aggregate
6195 then
b4592168 6196 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
fbf5a39b
AC
6197 return;
6198 end if;
996ae0b0
RK
6199
6200 if Nkind (N) = N_Function_Call
6201 and then Nkind (Name (N)) = N_Expanded_Name
6202 then
6203 Scop := Entity (Prefix (Name (N)));
6204
6205 -- The prefix may be a package renaming, and the subsequent test
6206 -- requires the original package.
6207
6208 if Ekind (Scop) = E_Package
6209 and then Present (Renamed_Entity (Scop))
6210 then
6211 Scop := Renamed_Entity (Scop);
6212 Set_Entity (Prefix (Name (N)), Scop);
6213 end if;
6214 end if;
6215
6216 if not Is_Overloaded (L) then
6217 Try_One_Interp (Etype (L));
996ae0b0 6218
4c46b835 6219 else
996ae0b0 6220 Get_First_Interp (L, Index, It);
996ae0b0
RK
6221 while Present (It.Typ) loop
6222 Try_One_Interp (It.Typ);
6223 Get_Next_Interp (Index, It);
6224 end loop;
6225 end if;
6226 end Find_Equality_Types;
6227
6228 -------------------------
6229 -- Find_Negation_Types --
6230 -------------------------
6231
6232 procedure Find_Negation_Types
6233 (R : Node_Id;
6234 Op_Id : Entity_Id;
6235 N : Node_Id)
6236 is
6237 Index : Interp_Index;
6238 It : Interp;
6239
6240 begin
6241 if not Is_Overloaded (R) then
996ae0b0
RK
6242 if Etype (R) = Universal_Integer then
6243 Add_One_Interp (N, Op_Id, Any_Modular);
996ae0b0
RK
6244 elsif Valid_Boolean_Arg (Etype (R)) then
6245 Add_One_Interp (N, Op_Id, Etype (R));
6246 end if;
6247
6248 else
6249 Get_First_Interp (R, Index, It);
996ae0b0
RK
6250 while Present (It.Typ) loop
6251 if Valid_Boolean_Arg (It.Typ) then
6252 Add_One_Interp (N, Op_Id, It.Typ);
6253 end if;
6254
6255 Get_Next_Interp (Index, It);
6256 end loop;
6257 end if;
6258 end Find_Negation_Types;
6259
d469eabe
HK
6260 ------------------------------
6261 -- Find_Primitive_Operation --
6262 ------------------------------
6263
6264 function Find_Primitive_Operation (N : Node_Id) return Boolean is
6265 Obj : constant Node_Id := Prefix (N);
6266 Op : constant Node_Id := Selector_Name (N);
6267
6268 Prim : Elmt_Id;
6269 Prims : Elist_Id;
6270 Typ : Entity_Id;
6271
6272 begin
6273 Set_Etype (Op, Any_Type);
6274
6275 if Is_Access_Type (Etype (Obj)) then
6276 Typ := Designated_Type (Etype (Obj));
6277 else
6278 Typ := Etype (Obj);
6279 end if;
6280
6281 if Is_Class_Wide_Type (Typ) then
6282 Typ := Root_Type (Typ);
6283 end if;
6284
6285 Prims := Primitive_Operations (Typ);
6286
6287 Prim := First_Elmt (Prims);
6288 while Present (Prim) loop
6289 if Chars (Node (Prim)) = Chars (Op) then
6290 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
6291 Set_Etype (N, Etype (Node (Prim)));
6292 end if;
6293
6294 Next_Elmt (Prim);
6295 end loop;
6296
6297 -- Now look for class-wide operations of the type or any of its
6298 -- ancestors by iterating over the homonyms of the selector.
6299
6300 declare
6301 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
6302 Hom : Entity_Id;
6303
6304 begin
6305 Hom := Current_Entity (Op);
6306 while Present (Hom) loop
6307 if (Ekind (Hom) = E_Procedure
6308 or else
6309 Ekind (Hom) = E_Function)
6310 and then Scope (Hom) = Scope (Typ)
6311 and then Present (First_Formal (Hom))
6312 and then
6313 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6314 or else
6315 (Is_Access_Type (Etype (First_Formal (Hom)))
8b4230c8
AC
6316 and then
6317 Ekind (Etype (First_Formal (Hom))) =
6318 E_Anonymous_Access_Type
6319 and then
6320 Base_Type
6321 (Designated_Type (Etype (First_Formal (Hom)))) =
d469eabe
HK
6322 Cls_Type))
6323 then
6324 Add_One_Interp (Op, Hom, Etype (Hom));
6325 Set_Etype (N, Etype (Hom));
6326 end if;
6327
6328 Hom := Homonym (Hom);
6329 end loop;
6330 end;
6331
6332 return Etype (Op) /= Any_Type;
6333 end Find_Primitive_Operation;
6334
996ae0b0
RK
6335 ----------------------
6336 -- Find_Unary_Types --
6337 ----------------------
6338
6339 procedure Find_Unary_Types
6340 (R : Node_Id;
6341 Op_Id : Entity_Id;
6342 N : Node_Id)
6343 is
6344 Index : Interp_Index;
6345 It : Interp;
6346
6347 begin
6348 if not Is_Overloaded (R) then
6349 if Is_Numeric_Type (Etype (R)) then
65f7ed64
AC
6350
6351 -- In an instance a generic actual may be a numeric type even if
6352 -- the formal in the generic unit was not. In that case, the
6353 -- predefined operator was not a possible interpretation in the
2e70d415
AC
6354 -- generic, and cannot be one in the instance, unless the operator
6355 -- is an actual of an instance.
65f7ed64
AC
6356
6357 if In_Instance
6358 and then
6359 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
6360 then
6361 null;
6362 else
6363 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
6364 end if;
996ae0b0
RK
6365 end if;
6366
6367 else
6368 Get_First_Interp (R, Index, It);
996ae0b0
RK
6369 while Present (It.Typ) loop
6370 if Is_Numeric_Type (It.Typ) then
65f7ed64
AC
6371 if In_Instance
6372 and then
6373 not Is_Numeric_Type
6374 (Corresponding_Generic_Type (Etype (It.Typ)))
6375 then
6376 null;
6377
6378 else
6379 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
6380 end if;
996ae0b0
RK
6381 end if;
6382
6383 Get_Next_Interp (Index, It);
6384 end loop;
6385 end if;
6386 end Find_Unary_Types;
6387
996ae0b0
RK
6388 ------------------
6389 -- Junk_Operand --
6390 ------------------
6391
6392 function Junk_Operand (N : Node_Id) return Boolean is
6393 Enode : Node_Id;
6394
6395 begin
6396 if Error_Posted (N) then
6397 return False;
6398 end if;
6399
6400 -- Get entity to be tested
6401
6402 if Is_Entity_Name (N)
6403 and then Present (Entity (N))
6404 then
6405 Enode := N;
6406
6407 -- An odd case, a procedure name gets converted to a very peculiar
6408 -- function call, and here is where we detect this happening.
6409
6410 elsif Nkind (N) = N_Function_Call
6411 and then Is_Entity_Name (Name (N))
6412 and then Present (Entity (Name (N)))
6413 then
6414 Enode := Name (N);
6415
6416 -- Another odd case, there are at least some cases of selected
6417 -- components where the selected component is not marked as having
6418 -- an entity, even though the selector does have an entity
6419
6420 elsif Nkind (N) = N_Selected_Component
6421 and then Present (Entity (Selector_Name (N)))
6422 then
6423 Enode := Selector_Name (N);
6424
6425 else
6426 return False;
6427 end if;
6428
9de61fcb 6429 -- Now test the entity we got to see if it is a bad case
996ae0b0
RK
6430
6431 case Ekind (Entity (Enode)) is
6432
6433 when E_Package =>
6434 Error_Msg_N
6435 ("package name cannot be used as operand", Enode);
6436
6437 when Generic_Unit_Kind =>
6438 Error_Msg_N
6439 ("generic unit name cannot be used as operand", Enode);
6440
6441 when Type_Kind =>
6442 Error_Msg_N
6443 ("subtype name cannot be used as operand", Enode);
6444
6445 when Entry_Kind =>
6446 Error_Msg_N
6447 ("entry name cannot be used as operand", Enode);
6448
6449 when E_Procedure =>
6450 Error_Msg_N
6451 ("procedure name cannot be used as operand", Enode);
6452
6453 when E_Exception =>
6454 Error_Msg_N
6455 ("exception name cannot be used as operand", Enode);
6456
6457 when E_Block | E_Label | E_Loop =>
6458 Error_Msg_N
6459 ("label name cannot be used as operand", Enode);
6460
6461 when others =>
6462 return False;
6463
6464 end case;
6465
6466 return True;
6467 end Junk_Operand;
6468
6469 --------------------
6470 -- Operator_Check --
6471 --------------------
6472
6473 procedure Operator_Check (N : Node_Id) is
6474 begin
30c20106
AC
6475 Remove_Abstract_Operations (N);
6476
996ae0b0
RK
6477 -- Test for case of no interpretation found for operator
6478
6479 if Etype (N) = Any_Type then
6480 declare
b67a385c
ES
6481 L : Node_Id;
6482 R : Node_Id;
6483 Op_Id : Entity_Id := Empty;
996ae0b0
RK
6484
6485 begin
6486 R := Right_Opnd (N);
6487
6488 if Nkind (N) in N_Binary_Op then
6489 L := Left_Opnd (N);
6490 else
6491 L := Empty;
6492 end if;
6493
6494 -- If either operand has no type, then don't complain further,
9de61fcb 6495 -- since this simply means that we have a propagated error.
996ae0b0
RK
6496
6497 if R = Error
6498 or else Etype (R) = Any_Type
6499 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
6500 then
7610fee8
AC
6501 -- For the rather unusual case where one of the operands is
6502 -- a Raise_Expression, whose initial type is Any_Type, use
6503 -- the type of the other operand.
6504
6505 if Nkind (L) = N_Raise_Expression then
6506 Set_Etype (L, Etype (R));
6507 Set_Etype (N, Etype (R));
6508
6509 elsif Nkind (R) = N_Raise_Expression then
6510 Set_Etype (R, Etype (L));
6511 Set_Etype (N, Etype (L));
6512 end if;
6513
996ae0b0
RK
6514 return;
6515
4c46b835
AC
6516 -- We explicitly check for the case of concatenation of component
6517 -- with component to avoid reporting spurious matching array types
6518 -- that might happen to be lurking in distant packages (such as
6519 -- run-time packages). This also prevents inconsistencies in the
6520 -- messages for certain ACVC B tests, which can vary depending on
6521 -- types declared in run-time interfaces. Another improvement when
6522 -- aggregates are present is to look for a well-typed operand.
996ae0b0
RK
6523
6524 elsif Present (Candidate_Type)
6525 and then (Nkind (N) /= N_Op_Concat
6526 or else Is_Array_Type (Etype (L))
6527 or else Is_Array_Type (Etype (R)))
6528 then
996ae0b0
RK
6529 if Nkind (N) = N_Op_Concat then
6530 if Etype (L) /= Any_Composite
6531 and then Is_Array_Type (Etype (L))
6532 then
6533 Candidate_Type := Etype (L);
6534
6535 elsif Etype (R) /= Any_Composite
6536 and then Is_Array_Type (Etype (R))
6537 then
6538 Candidate_Type := Etype (R);
6539 end if;
6540 end if;
6541
19d846a0 6542 Error_Msg_NE -- CODEFIX
996ae0b0
RK
6543 ("operator for} is not directly visible!",
6544 N, First_Subtype (Candidate_Type));
4561baf7
ES
6545
6546 declare
6547 U : constant Node_Id :=
6548 Cunit (Get_Source_Unit (Candidate_Type));
4561baf7
ES
6549 begin
6550 if Unit_Is_Visible (U) then
6551 Error_Msg_N -- CODEFIX
6552 ("use clause would make operation legal!", N);
4561baf7
ES
6553 else
6554 Error_Msg_NE -- CODEFIX
6555 ("add with_clause and use_clause for&!",
8b4230c8 6556 N, Defining_Entity (Unit (U)));
4561baf7
ES
6557 end if;
6558 end;
996ae0b0
RK
6559 return;
6560
6561 -- If either operand is a junk operand (e.g. package name), then
6562 -- post appropriate error messages, but do not complain further.
6563
0e0eecec
ES
6564 -- Note that the use of OR in this test instead of OR ELSE is
6565 -- quite deliberate, we may as well check both operands in the
6566 -- binary operator case.
996ae0b0
RK
6567
6568 elsif Junk_Operand (R)
9559eccf
AC
6569 or -- really mean OR here and not OR ELSE, see above
6570 (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
996ae0b0
RK
6571 then
6572 return;
6573
6574 -- If we have a logical operator, one of whose operands is
0e0eecec
ES
6575 -- Boolean, then we know that the other operand cannot resolve to
6576 -- Boolean (since we got no interpretations), but in that case we
6577 -- pretty much know that the other operand should be Boolean, so
6578 -- resolve it that way (generating an error)
996ae0b0 6579
d469eabe 6580 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
996ae0b0
RK
6581 if Etype (L) = Standard_Boolean then
6582 Resolve (R, Standard_Boolean);
6583 return;
6584 elsif Etype (R) = Standard_Boolean then
6585 Resolve (L, Standard_Boolean);
6586 return;
6587 end if;
6588
6589 -- For an arithmetic operator or comparison operator, if one
6590 -- of the operands is numeric, then we know the other operand
6591 -- is not the same numeric type. If it is a non-numeric type,
6592 -- then probably it is intended to match the other operand.
6593
d469eabe
HK
6594 elsif Nkind_In (N, N_Op_Add,
6595 N_Op_Divide,
6596 N_Op_Ge,
6597 N_Op_Gt,
6598 N_Op_Le)
6599 or else
6600 Nkind_In (N, N_Op_Lt,
6601 N_Op_Mod,
6602 N_Op_Multiply,
6603 N_Op_Rem,
6604 N_Op_Subtract)
996ae0b0 6605 then
7dbd3de9
RD
6606 -- If Allow_Integer_Address is active, check whether the
6607 -- operation becomes legal after converting an operand.
6608
996ae0b0
RK
6609 if Is_Numeric_Type (Etype (L))
6610 and then not Is_Numeric_Type (Etype (R))
6611 then
7dbd3de9
RD
6612 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6613 Rewrite (R,
6614 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
7dbd3de9 6615
1e3689bd
AC
6616 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6617 Analyze_Comparison_Op (N);
6618 else
6619 Analyze_Arithmetic_Op (N);
6620 end if;
7dbd3de9
RD
6621 else
6622 Resolve (R, Etype (L));
6623 end if;
1e3689bd 6624
996ae0b0
RK
6625 return;
6626
6627 elsif Is_Numeric_Type (Etype (R))
6628 and then not Is_Numeric_Type (Etype (L))
6629 then
7dbd3de9
RD
6630 if Address_Integer_Convert_OK (Etype (L), Etype (R)) then
6631 Rewrite (L,
6632 Unchecked_Convert_To (Etype (R), Relocate_Node (L)));
1e3689bd
AC
6633
6634 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6635 Analyze_Comparison_Op (N);
6636 else
6637 Analyze_Arithmetic_Op (N);
6638 end if;
6639
9559eccf 6640 return;
7dbd3de9
RD
6641
6642 else
6643 Resolve (L, Etype (R));
6644 end if;
9559eccf 6645
996ae0b0 6646 return;
9559eccf
AC
6647
6648 elsif Allow_Integer_Address
6649 and then Is_Descendent_Of_Address (Etype (L))
6650 and then Is_Descendent_Of_Address (Etype (R))
6651 and then not Error_Posted (N)
6652 then
6653 declare
6654 Addr_Type : constant Entity_Id := Etype (L);
6655
6656 begin
6657 Rewrite (L,
6658 Unchecked_Convert_To (
6659 Standard_Integer, Relocate_Node (L)));
6660 Rewrite (R,
6661 Unchecked_Convert_To (
6662 Standard_Integer, Relocate_Node (R)));
1e3689bd
AC
6663
6664 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6665 Analyze_Comparison_Op (N);
6666 else
6667 Analyze_Arithmetic_Op (N);
6668 end if;
9559eccf
AC
6669
6670 -- If this is an operand in an enclosing arithmetic
6671 -- operation, Convert the result as an address so that
6672 -- arithmetic folding of address can continue.
6673
6674 if Nkind (Parent (N)) in N_Op then
6675 Rewrite (N,
6676 Unchecked_Convert_To (Addr_Type, Relocate_Node (N)));
6677 end if;
6678
6679 return;
6680 end;
996ae0b0
RK
6681 end if;
6682
6683 -- Comparisons on A'Access are common enough to deserve a
6684 -- special message.
6685
d469eabe 6686 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
996ae0b0
RK
6687 and then Ekind (Etype (L)) = E_Access_Attribute_Type
6688 and then Ekind (Etype (R)) = E_Access_Attribute_Type
6689 then
6690 Error_Msg_N
6691 ("two access attributes cannot be compared directly", N);
6692 Error_Msg_N
aab883ec 6693 ("\use qualified expression for one of the operands",
996ae0b0
RK
6694 N);
6695 return;
6696
6697 -- Another one for C programmers
6698
6699 elsif Nkind (N) = N_Op_Concat
6700 and then Valid_Boolean_Arg (Etype (L))
6701 and then Valid_Boolean_Arg (Etype (R))
6702 then
6703 Error_Msg_N ("invalid operands for concatenation", N);
4e7a4f6e
AC
6704 Error_Msg_N -- CODEFIX
6705 ("\maybe AND was meant", N);
996ae0b0
RK
6706 return;
6707
6708 -- A special case for comparison of access parameter with null
6709
6710 elsif Nkind (N) = N_Op_Eq
6711 and then Is_Entity_Name (L)
6712 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
6713 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
6714 N_Access_Definition
6715 and then Nkind (R) = N_Null
6716 then
6717 Error_Msg_N ("access parameter is not allowed to be null", L);
6718 Error_Msg_N ("\(call would raise Constraint_Error)", L);
6719 return;
61bee0e3
AC
6720
6721 -- Another special case for exponentiation, where the right
6722 -- operand must be Natural, independently of the base.
6723
6724 elsif Nkind (N) = N_Op_Expon
6725 and then Is_Numeric_Type (Etype (L))
6726 and then not Is_Overloaded (R)
6727 and then
6728 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
6729 and then Base_Type (Etype (R)) /= Universal_Integer
6730 then
dec6faf1 6731 if Ada_Version >= Ada_2012
15954beb 6732 and then Has_Dimension_System (Etype (L))
dec6faf1
AC
6733 then
6734 Error_Msg_NE
54c04d6c 6735 ("exponent for dimensioned type must be a rational" &
dec6faf1
AC
6736 ", found}", R, Etype (R));
6737 else
6738 Error_Msg_NE
6739 ("exponent must be of type Natural, found}", R, Etype (R));
6740 end if;
54c04d6c 6741
61bee0e3 6742 return;
11261647
AC
6743
6744 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
6745 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6746 Rewrite (R,
6747 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
6748 Analyze_Equality_Op (N);
6749 return;
6750 end if;
996ae0b0
RK
6751 end if;
6752
0e0eecec
ES
6753 -- If we fall through then just give general message. Note that in
6754 -- the following messages, if the operand is overloaded we choose
6755 -- an arbitrary type to complain about, but that is probably more
6756 -- useful than not giving a type at all.
996ae0b0
RK
6757
6758 if Nkind (N) in N_Unary_Op then
6759 Error_Msg_Node_2 := Etype (R);
6760 Error_Msg_N ("operator& not defined for}", N);
6761 return;
6762
6763 else
fbf5a39b
AC
6764 if Nkind (N) in N_Binary_Op then
6765 if not Is_Overloaded (L)
6766 and then not Is_Overloaded (R)
6767 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6768 then
7ffd9312 6769 Error_Msg_Node_2 := First_Subtype (Etype (R));
fbf5a39b 6770 Error_Msg_N ("there is no applicable operator& for}", N);
996ae0b0 6771
fbf5a39b 6772 else
b67a385c
ES
6773 -- Another attempt to find a fix: one of the candidate
6774 -- interpretations may not be use-visible. This has
6775 -- already been checked for predefined operators, so
6776 -- we examine only user-defined functions.
6777
6778 Op_Id := Get_Name_Entity_Id (Chars (N));
6779
6780 while Present (Op_Id) loop
6781 if Ekind (Op_Id) /= E_Operator
6782 and then Is_Overloadable (Op_Id)
6783 then
6784 if not Is_Immediately_Visible (Op_Id)
6785 and then not In_Use (Scope (Op_Id))
aab883ec 6786 and then not Is_Abstract_Subprogram (Op_Id)
b67a385c
ES
6787 and then not Is_Hidden (Op_Id)
6788 and then Ekind (Scope (Op_Id)) = E_Package
6789 and then
6790 Has_Compatible_Type
6791 (L, Etype (First_Formal (Op_Id)))
6792 and then Present
6793 (Next_Formal (First_Formal (Op_Id)))
6794 and then
6795 Has_Compatible_Type
6796 (R,
6797 Etype (Next_Formal (First_Formal (Op_Id))))
6798 then
ed2233dc 6799 Error_Msg_N
b67a385c 6800 ("No legal interpretation for operator&", N);
ed2233dc 6801 Error_Msg_NE
b67a385c 6802 ("\use clause on& would make operation legal",
8b4230c8 6803 N, Scope (Op_Id));
b67a385c
ES
6804 exit;
6805 end if;
6806 end if;
fbf5a39b 6807
b67a385c
ES
6808 Op_Id := Homonym (Op_Id);
6809 end loop;
6810
6811 if No (Op_Id) then
6812 Error_Msg_N ("invalid operand types for operator&", N);
6813
6814 if Nkind (N) /= N_Op_Concat then
6815 Error_Msg_NE ("\left operand has}!", N, Etype (L));
6816 Error_Msg_NE ("\right operand has}!", N, Etype (R));
2e70d415
AC
6817
6818 -- For concatenation operators it is more difficult to
6819 -- determine which is the wrong operand. It is worth
6820 -- flagging explicitly an access type, for those who
6821 -- might think that a dereference happens here.
6822
6823 elsif Is_Access_Type (Etype (L)) then
6824 Error_Msg_N ("\left operand is access type", N);
6825
6826 elsif Is_Access_Type (Etype (R)) then
6827 Error_Msg_N ("\right operand is access type", N);
b67a385c 6828 end if;
fbf5a39b
AC
6829 end if;
6830 end if;
996ae0b0
RK
6831 end if;
6832 end if;
6833 end;
6834 end if;
6835 end Operator_Check;
6836
6e73e3ab
AC
6837 -----------------------------------------
6838 -- Process_Implicit_Dereference_Prefix --
6839 -----------------------------------------
6840
d469eabe 6841 function Process_Implicit_Dereference_Prefix
da709d08 6842 (E : Entity_Id;
d469eabe 6843 P : Entity_Id) return Entity_Id
6e73e3ab
AC
6844 is
6845 Ref : Node_Id;
d469eabe 6846 Typ : constant Entity_Id := Designated_Type (Etype (P));
da709d08 6847
6e73e3ab 6848 begin
1a8fae99
ES
6849 if Present (E)
6850 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
6851 then
8b4230c8
AC
6852 -- We create a dummy reference to E to ensure that the reference is
6853 -- not considered as part of an assignment (an implicit dereference
6854 -- can never assign to its prefix). The Comes_From_Source attribute
6855 -- needs to be propagated for accurate warnings.
6e73e3ab 6856
e4494292 6857 Ref := New_Occurrence_Of (E, Sloc (P));
6e73e3ab
AC
6858 Set_Comes_From_Source (Ref, Comes_From_Source (P));
6859 Generate_Reference (E, Ref);
6860 end if;
d469eabe 6861
8b4230c8
AC
6862 -- An implicit dereference is a legal occurrence of an incomplete type
6863 -- imported through a limited_with clause, if the full view is visible.
d469eabe 6864
7b56a91b
AC
6865 if From_Limited_With (Typ)
6866 and then not From_Limited_With (Scope (Typ))
d469eabe
HK
6867 and then
6868 (Is_Immediately_Visible (Scope (Typ))
6869 or else
6870 (Is_Child_Unit (Scope (Typ))
8398e82e 6871 and then Is_Visible_Lib_Unit (Scope (Typ))))
d469eabe
HK
6872 then
6873 return Available_View (Typ);
6874 else
6875 return Typ;
6876 end if;
6e73e3ab
AC
6877 end Process_Implicit_Dereference_Prefix;
6878
30c20106
AC
6879 --------------------------------
6880 -- Remove_Abstract_Operations --
6881 --------------------------------
6882
6883 procedure Remove_Abstract_Operations (N : Node_Id) is
e80f0cb0
RD
6884 Abstract_Op : Entity_Id := Empty;
6885 Address_Descendent : Boolean := False;
6886 I : Interp_Index;
6887 It : Interp;
30c20106 6888
0e0eecec
ES
6889 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
6890 -- activate this if either extensions are enabled, or if the abstract
6891 -- operation in question comes from a predefined file. This latter test
6892 -- allows us to use abstract to make operations invisible to users. In
6893 -- particular, if type Address is non-private and abstract subprograms
6894 -- are used to hide its operators, they will be truly hidden.
30c20106 6895
5950a3ac 6896 type Operand_Position is (First_Op, Second_Op);
8a36a0cc 6897 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
5950a3ac
AC
6898
6899 procedure Remove_Address_Interpretations (Op : Operand_Position);
0e0eecec
ES
6900 -- Ambiguities may arise when the operands are literal and the address
6901 -- operations in s-auxdec are visible. In that case, remove the
8b4230c8
AC
6902 -- interpretation of a literal as Address, to retain the semantics
6903 -- of Address as a private type.
9f4fd324
AC
6904
6905 ------------------------------------
5950a3ac 6906 -- Remove_Address_Interpretations --
9f4fd324
AC
6907 ------------------------------------
6908
5950a3ac 6909 procedure Remove_Address_Interpretations (Op : Operand_Position) is
9f4fd324
AC
6910 Formal : Entity_Id;
6911
6912 begin
6913 if Is_Overloaded (N) then
6914 Get_First_Interp (N, I, It);
6915 while Present (It.Nam) loop
6916 Formal := First_Entity (It.Nam);
6917
5950a3ac
AC
6918 if Op = Second_Op then
6919 Formal := Next_Entity (Formal);
6920 end if;
6921
6922 if Is_Descendent_Of_Address (Etype (Formal)) then
e80f0cb0 6923 Address_Descendent := True;
9f4fd324
AC
6924 Remove_Interp (I);
6925 end if;
6926
6927 Get_Next_Interp (I, It);
6928 end loop;
6929 end if;
6930 end Remove_Address_Interpretations;
6931
6932 -- Start of processing for Remove_Abstract_Operations
6933
30c20106 6934 begin
d935a36e 6935 if Is_Overloaded (N) then
ee1a7572
AC
6936 if Debug_Flag_V then
6937 Write_Str ("Remove_Abstract_Operations: ");
6938 Write_Overloads (N);
6939 end if;
6940
30c20106 6941 Get_First_Interp (N, I, It);
d935a36e 6942
30c20106 6943 while Present (It.Nam) loop
aab883ec
ES
6944 if Is_Overloadable (It.Nam)
6945 and then Is_Abstract_Subprogram (It.Nam)
30c20106
AC
6946 and then not Is_Dispatching_Operation (It.Nam)
6947 then
af152989 6948 Abstract_Op := It.Nam;
fe45e59e 6949
401093c1 6950 if Is_Descendent_Of_Address (It.Typ) then
e80f0cb0 6951 Address_Descendent := True;
401093c1
ES
6952 Remove_Interp (I);
6953 exit;
6954
76264f60 6955 -- In Ada 2005, this operation does not participate in overload
9c510803 6956 -- resolution. If the operation is defined in a predefined
fe45e59e
ES
6957 -- unit, it is one of the operations declared abstract in some
6958 -- variants of System, and it must be removed as well.
6959
0791fbe9 6960 elsif Ada_Version >= Ada_2005
401093c1
ES
6961 or else Is_Predefined_File_Name
6962 (Unit_File_Name (Get_Source_Unit (It.Nam)))
fe45e59e
ES
6963 then
6964 Remove_Interp (I);
6965 exit;
6966 end if;
30c20106
AC
6967 end if;
6968
6969 Get_Next_Interp (I, It);
6970 end loop;
6971
af152989 6972 if No (Abstract_Op) then
fe45e59e
ES
6973
6974 -- If some interpretation yields an integer type, it is still
6975 -- possible that there are address interpretations. Remove them
6976 -- if one operand is a literal, to avoid spurious ambiguities
6977 -- on systems where Address is a visible integer type.
6978
6979 if Is_Overloaded (N)
401093c1 6980 and then Nkind (N) in N_Op
fe45e59e
ES
6981 and then Is_Integer_Type (Etype (N))
6982 then
6983 if Nkind (N) in N_Binary_Op then
6984 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
6985 Remove_Address_Interpretations (Second_Op);
6986
6987 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
6988 Remove_Address_Interpretations (First_Op);
6989 end if;
6990 end if;
6991 end if;
3984e89a
AC
6992
6993 elsif Nkind (N) in N_Op then
4c46b835 6994
fe45e59e
ES
6995 -- Remove interpretations that treat literals as addresses. This
6996 -- is never appropriate, even when Address is defined as a visible
6997 -- Integer type. The reason is that we would really prefer Address
7a5b62b0
AC
6998 -- to behave as a private type, even in this case. If Address is a
6999 -- visible integer type, we get lots of overload ambiguities.
30c20106 7000
5950a3ac
AC
7001 if Nkind (N) in N_Binary_Op then
7002 declare
7003 U1 : constant Boolean :=
8b4230c8 7004 Present (Universal_Interpretation (Right_Opnd (N)));
5950a3ac 7005 U2 : constant Boolean :=
8b4230c8 7006 Present (Universal_Interpretation (Left_Opnd (N)));
30c20106 7007
5950a3ac 7008 begin
0e0eecec 7009 if U1 then
5950a3ac 7010 Remove_Address_Interpretations (Second_Op);
0e0eecec 7011 end if;
5950a3ac 7012
0e0eecec 7013 if U2 then
5950a3ac 7014 Remove_Address_Interpretations (First_Op);
30c20106
AC
7015 end if;
7016
5950a3ac
AC
7017 if not (U1 and U2) then
7018
7019 -- Remove corresponding predefined operator, which is
7020 -- always added to the overload set.
7021
7022 Get_First_Interp (N, I, It);
7023 while Present (It.Nam) loop
0ab80019
AC
7024 if Scope (It.Nam) = Standard_Standard
7025 and then Base_Type (It.Typ) =
7026 Base_Type (Etype (Abstract_Op))
7027 then
5950a3ac
AC
7028 Remove_Interp (I);
7029 end if;
7030
8a36a0cc
AC
7031 Get_Next_Interp (I, It);
7032 end loop;
7033
7034 elsif Is_Overloaded (N)
7035 and then Present (Univ_Type)
7036 then
7037 -- If both operands have a universal interpretation,
0e0eecec
ES
7038 -- it is still necessary to remove interpretations that
7039 -- yield Address. Any remaining ambiguities will be
7040 -- removed in Disambiguate.
8a36a0cc
AC
7041
7042 Get_First_Interp (N, I, It);
8a36a0cc 7043 while Present (It.Nam) loop
0e0eecec
ES
7044 if Is_Descendent_Of_Address (It.Typ) then
7045 Remove_Interp (I);
7046
7047 elsif not Is_Type (It.Nam) then
8a36a0cc 7048 Set_Entity (N, It.Nam);
8a36a0cc
AC
7049 end if;
7050
5950a3ac
AC
7051 Get_Next_Interp (I, It);
7052 end loop;
7053 end if;
7054 end;
30c20106 7055 end if;
3984e89a
AC
7056
7057 elsif Nkind (N) = N_Function_Call
7058 and then
7059 (Nkind (Name (N)) = N_Operator_Symbol
7060 or else
7061 (Nkind (Name (N)) = N_Expanded_Name
7062 and then
7063 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
7064 then
5950a3ac 7065
3984e89a
AC
7066 declare
7067 Arg1 : constant Node_Id := First (Parameter_Associations (N));
5950a3ac
AC
7068 U1 : constant Boolean :=
7069 Present (Universal_Interpretation (Arg1));
7070 U2 : constant Boolean :=
7071 Present (Next (Arg1)) and then
7072 Present (Universal_Interpretation (Next (Arg1)));
3984e89a
AC
7073
7074 begin
0e0eecec 7075 if U1 then
5950a3ac 7076 Remove_Address_Interpretations (First_Op);
0e0eecec 7077 end if;
3984e89a 7078
0e0eecec 7079 if U2 then
5950a3ac
AC
7080 Remove_Address_Interpretations (Second_Op);
7081 end if;
7082
7083 if not (U1 and U2) then
3984e89a
AC
7084 Get_First_Interp (N, I, It);
7085 while Present (It.Nam) loop
9f4fd324
AC
7086 if Scope (It.Nam) = Standard_Standard
7087 and then It.Typ = Base_Type (Etype (Abstract_Op))
7088 then
3984e89a
AC
7089 Remove_Interp (I);
7090 end if;
7091
7092 Get_Next_Interp (I, It);
7093 end loop;
7094 end if;
7095 end;
30c20106 7096 end if;
af152989 7097
401093c1
ES
7098 -- If the removal has left no valid interpretations, emit an error
7099 -- message now and label node as illegal.
af152989
AC
7100
7101 if Present (Abstract_Op) then
7102 Get_First_Interp (N, I, It);
7103
7104 if No (It.Nam) then
7105
6e73e3ab 7106 -- Removal of abstract operation left no viable candidate
af152989
AC
7107
7108 Set_Etype (N, Any_Type);
7109 Error_Msg_Sloc := Sloc (Abstract_Op);
7110 Error_Msg_NE
7111 ("cannot call abstract operation& declared#", N, Abstract_Op);
401093c1
ES
7112
7113 -- In Ada 2005, an abstract operation may disable predefined
7114 -- operators. Since the context is not yet known, we mark the
7115 -- predefined operators as potentially hidden. Do not include
7116 -- predefined operators when addresses are involved since this
7117 -- case is handled separately.
7118
e80f0cb0 7119 elsif Ada_Version >= Ada_2005 and then not Address_Descendent then
401093c1
ES
7120 while Present (It.Nam) loop
7121 if Is_Numeric_Type (It.Typ)
7122 and then Scope (It.Typ) = Standard_Standard
7123 then
7124 Set_Abstract_Op (I, Abstract_Op);
7125 end if;
7126
7127 Get_Next_Interp (I, It);
7128 end loop;
af152989
AC
7129 end if;
7130 end if;
ee1a7572
AC
7131
7132 if Debug_Flag_V then
7133 Write_Str ("Remove_Abstract_Operations done: ");
7134 Write_Overloads (N);
7135 end if;
30c20106
AC
7136 end if;
7137 end Remove_Abstract_Operations;
7138
d50f4827
AC
7139 ----------------------------
7140 -- Try_Container_Indexing --
7141 ----------------------------
7142
7143 function Try_Container_Indexing
7144 (N : Node_Id;
7145 Prefix : Node_Id;
50878404 7146 Exprs : List_Id) return Boolean
d50f4827 7147 is
fa73fc3d
AC
7148 function Constant_Indexing_OK return Boolean;
7149 -- Constant_Indexing is legal if there is no Variable_Indexing defined
7150 -- for the type, or else node not a target of assignment, or an actual
7151 -- for an IN OUT or OUT formal (RM 4.1.6 (11)).
7152
7153 --------------------------
7154 -- Constant_Indexing_OK --
7155 --------------------------
7156
7157 function Constant_Indexing_OK return Boolean is
7158 Par : Node_Id;
7159
7160 begin
7161 if No (Find_Value_Of_Aspect
7162 (Etype (Prefix), Aspect_Variable_Indexing))
7163 then
7164 return True;
7165
7166 elsif not Is_Variable (Prefix) then
7167 return True;
7168 end if;
7169
7170 Par := N;
7171 while Present (Par) loop
7172 if Nkind (Parent (Par)) = N_Assignment_Statement
7173 and then Par = Name (Parent (Par))
7174 then
7175 return False;
7176
7177 -- The call may be overloaded, in which case we assume that its
7178 -- resolution does not depend on the type of the parameter that
7179 -- includes the indexing operation.
7180
7181 elsif Nkind_In (Parent (Par), N_Function_Call,
7182 N_Procedure_Call_Statement)
7183 and then Is_Entity_Name (Name (Parent (Par)))
7184 then
7185 declare
7186 Actual : Node_Id;
7187 Formal : Entity_Id;
7188 Proc : Entity_Id;
7189
7190 begin
7191 -- We should look for an interpretation with the proper
7192 -- number of formals, and determine whether it is an
31101470
AC
7193 -- In_Parameter, but for now we examine the formal that
7194 -- corresponds to the indexing, and assume that variable
7195 -- indexing is required if some interpretation has an
7196 -- assignable formal at that position. Still does not
7197 -- cover the most complex cases ???
fa73fc3d
AC
7198
7199 if Is_Overloaded (Name (Parent (Par))) then
31101470
AC
7200 declare
7201 Proc : constant Node_Id := Name (Parent (Par));
7202 A : Node_Id;
7203 F : Entity_Id;
7204 I : Interp_Index;
7205 It : Interp;
7206
7207 begin
7208 Get_First_Interp (Proc, I, It);
7209 while Present (It.Nam) loop
7210 F := First_Formal (It.Nam);
7211 A := First (Parameter_Associations (Parent (Par)));
7212
7213 while Present (F) and then Present (A) loop
7214 if A = Par then
7215 if Ekind (F) /= E_In_Parameter then
7216 return False;
7217 else
7218 exit; -- interpretation is safe
7219 end if;
7220 end if;
7221
7222 Next_Formal (F);
7223 Next_Actual (A);
7224 end loop;
7225
7226 Get_Next_Interp (I, It);
7227 end loop;
7228 end;
7229
fa73fc3d
AC
7230 return True;
7231
7232 else
7233 Proc := Entity (Name (Parent (Par)));
7234
7235 -- If this is an indirect call, get formals from
7236 -- designated type.
7237
7238 if Is_Access_Subprogram_Type (Etype (Proc)) then
7239 Proc := Designated_Type (Etype (Proc));
7240 end if;
7241 end if;
7242
7243 Formal := First_Formal (Proc);
7244 Actual := First_Actual (Parent (Par));
7245
7246 -- Find corresponding actual
7247
7248 while Present (Actual) loop
7249 exit when Actual = Par;
7250 Next_Actual (Actual);
7251
7252 if Present (Formal) then
7253 Next_Formal (Formal);
7254
7255 -- Otherwise this is a parameter mismatch, the error is
7256 -- reported elsewhere.
7257
7258 else
7259 return False;
7260 end if;
7261 end loop;
7262
7263 return Ekind (Formal) = E_In_Parameter;
7264 end;
7265
7266 elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
7267 return False;
7268
7269 -- If the indexed component is a prefix it may be the first actual
7270 -- of a prefixed call. Retrieve the called entity, if any, and
7271 -- check its first formal.
7272
7273 elsif Nkind (Parent (Par)) = N_Selected_Component then
7274 declare
7275 Sel : constant Node_Id := Selector_Name (Parent (Par));
7276 Nam : constant Entity_Id := Current_Entity (Sel);
7277
7278 begin
7279 if Present (Nam)
7280 and then Is_Overloadable (Nam)
7281 and then Present (First_Formal (Nam))
7282 then
7283 return Ekind (First_Formal (Nam)) = E_In_Parameter;
7284 end if;
7285 end;
7286
7287 elsif Nkind ((Par)) in N_Op then
7288 return True;
7289 end if;
7290
7291 Par := Parent (Par);
7292 end loop;
7293
7294 -- In all other cases, constant indexing is legal
7295
7296 return True;
7297 end Constant_Indexing_OK;
7298
7299 -- Local variables
7300
d50f4827 7301 Loc : constant Source_Ptr := Sloc (N);
50878404 7302 Assoc : List_Id;
fa73fc3d 7303 C_Type : Entity_Id;
d50f4827
AC
7304 Func : Entity_Id;
7305 Func_Name : Node_Id;
7306 Indexing : Node_Id;
d50f4827 7307
fa73fc3d
AC
7308 -- Start of processing for Try_Container_Indexing
7309
d50f4827 7310 begin
fa73fc3d
AC
7311 -- Node may have been analyzed already when testing for a prefixed
7312 -- call, in which case do not redo analysis.
7313
7314 if Present (Generalized_Indexing (N)) then
7315 return True;
7316 end if;
7317
f3296dd3
AC
7318 C_Type := Etype (Prefix);
7319
fa73fc3d
AC
7320 -- If indexing a class-wide container, obtain indexing primitive from
7321 -- specific type.
f3296dd3
AC
7322
7323 if Is_Class_Wide_Type (C_Type) then
7324 C_Type := Etype (Base_Type (C_Type));
7325 end if;
d50f4827 7326
af89615f 7327 -- Check whether type has a specified indexing aspect
d50f4827
AC
7328
7329 Func_Name := Empty;
d50f4827 7330
fa73fc3d 7331 if Constant_Indexing_OK then
d62520f3 7332 Func_Name :=
fa73fc3d 7333 Find_Value_Of_Aspect (Etype (Prefix), Aspect_Constant_Indexing);
9ee76313 7334 end if;
dedac3eb 7335
9ee76313 7336 if No (Func_Name) then
d62520f3 7337 Func_Name :=
fa73fc3d 7338 Find_Value_Of_Aspect (Etype (Prefix), Aspect_Variable_Indexing);
9ee76313 7339 end if;
d50f4827
AC
7340
7341 -- If aspect does not exist the expression is illegal. Error is
7342 -- diagnosed in caller.
7343
7344 if No (Func_Name) then
57a8057a 7345
fa73fc3d
AC
7346 -- The prefix itself may be an indexing of a container: rewrite as
7347 -- such and re-analyze.
57a8057a
AC
7348
7349 if Has_Implicit_Dereference (Etype (Prefix)) then
7350 Build_Explicit_Dereference
7351 (Prefix, First_Discriminant (Etype (Prefix)));
50878404 7352 return Try_Container_Indexing (N, Prefix, Exprs);
57a8057a
AC
7353
7354 else
7355 return False;
7356 end if;
3f433bc0 7357
6907542d
AC
7358 -- If the container type is derived from another container type, the
7359 -- value of the inherited aspect is the Reference operation declared
7360 -- for the parent type.
7361
fa73fc3d
AC
7362 -- However, Reference is also a primitive operation of the type, and the
7363 -- inherited operation has a different signature. We retrieve the right
7364 -- ones (the function may be overloaded) from the list of primitive
7365 -- operations of the derived type.
3f433bc0 7366
fa73fc3d
AC
7367 -- Note that predefined containers are typically all derived from one of
7368 -- the Controlled types. The code below is motivated by containers that
7369 -- are derived from other types with a Reference aspect.
6907542d 7370
f3296dd3 7371 elsif Is_Derived_Type (C_Type)
6907542d
AC
7372 and then Etype (First_Formal (Entity (Func_Name))) /= Etype (Prefix)
7373 then
a2667f14 7374 Func_Name := Find_Primitive_Operations (C_Type, Chars (Func_Name));
d50f4827
AC
7375 end if;
7376
50878404
AC
7377 Assoc := New_List (Relocate_Node (Prefix));
7378
5f50020a 7379 -- A generalized indexing may have nore than one index expression, so
50878404 7380 -- transfer all of them to the argument list to be used in the call.
5f50020a
ES
7381 -- Note that there may be named associations, in which case the node
7382 -- was rewritten earlier as a call, and has been transformed back into
7383 -- an indexed expression to share the following processing.
e917e3b8 7384
5f50020a
ES
7385 -- The generalized indexing node is the one on which analysis and
7386 -- resolution take place. Before expansion the original node is replaced
fa73fc3d
AC
7387 -- with the generalized indexing node, which is a call, possibly with a
7388 -- dereference operation.
50878404 7389
e917e3b8 7390 if Comes_From_Source (N) then
c86cf714 7391 Check_Compiler_Unit ("generalized indexing", N);
e917e3b8
AC
7392 end if;
7393
50878404
AC
7394 declare
7395 Arg : Node_Id;
50878404
AC
7396 begin
7397 Arg := First (Exprs);
7398 while Present (Arg) loop
7399 Append (Relocate_Node (Arg), Assoc);
7400 Next (Arg);
7401 end loop;
7402 end;
7403
d50f4827
AC
7404 if not Is_Overloaded (Func_Name) then
7405 Func := Entity (Func_Name);
29ba9f52
RD
7406 Indexing :=
7407 Make_Function_Call (Loc,
7408 Name => New_Occurrence_Of (Func, Loc),
7409 Parameter_Associations => Assoc);
5f50020a
ES
7410 Set_Parent (Indexing, Parent (N));
7411 Set_Generalized_Indexing (N, Indexing);
7412 Analyze (Indexing);
7413 Set_Etype (N, Etype (Indexing));
d50f4827 7414
76d49f49
ES
7415 -- If the return type of the indexing function is a reference type,
7416 -- add the dereference as a possible interpretation. Note that the
7417 -- indexing aspect may be a function that returns the element type
5f50020a
ES
7418 -- with no intervening implicit dereference, and that the reference
7419 -- discriminant is not the first discriminant.
76d49f49
ES
7420
7421 if Has_Discriminants (Etype (Func)) then
71ff3d18 7422 Check_Implicit_Dereference (N, Etype (Func));
76d49f49 7423 end if;
d50f4827
AC
7424
7425 else
8b4230c8
AC
7426 Indexing :=
7427 Make_Function_Call (Loc,
fa73fc3d
AC
7428 Name =>
7429 Make_Identifier (Loc, Chars (Func_Name)),
8b4230c8 7430 Parameter_Associations => Assoc);
d50f4827 7431
5f50020a
ES
7432 Set_Parent (Indexing, Parent (N));
7433 Set_Generalized_Indexing (N, Indexing);
d50f4827
AC
7434
7435 declare
8b4230c8
AC
7436 I : Interp_Index;
7437 It : Interp;
d50f4827
AC
7438 Success : Boolean;
7439
7440 begin
7441 Get_First_Interp (Func_Name, I, It);
5f50020a 7442 Set_Etype (Indexing, Any_Type);
d50f4827 7443 while Present (It.Nam) loop
5f50020a 7444 Analyze_One_Call (Indexing, It.Nam, False, Success);
32bba3c9 7445
d50f4827 7446 if Success then
fa73fc3d 7447 Set_Etype (Name (Indexing), It.Typ);
5f50020a
ES
7448 Set_Entity (Name (Indexing), It.Nam);
7449 Set_Etype (N, Etype (Indexing));
d50f4827 7450
af89615f 7451 -- Add implicit dereference interpretation
d50f4827 7452
76d49f49 7453 if Has_Discriminants (Etype (It.Nam)) then
71ff3d18 7454 Check_Implicit_Dereference (N, Etype (It.Nam));
76d49f49 7455 end if;
b5bf3335 7456
9ee76313 7457 exit;
d50f4827 7458 end if;
32bba3c9 7459
d50f4827
AC
7460 Get_Next_Interp (I, It);
7461 end loop;
7462 end;
7463 end if;
7464
5f50020a 7465 if Etype (Indexing) = Any_Type then
29ba9f52
RD
7466 Error_Msg_NE
7467 ("container cannot be indexed with&", N, Etype (First (Exprs)));
9ee76313 7468 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
9ee76313
AC
7469 end if;
7470
d50f4827
AC
7471 return True;
7472 end Try_Container_Indexing;
7473
996ae0b0
RK
7474 -----------------------
7475 -- Try_Indirect_Call --
7476 -----------------------
7477
7478 function Try_Indirect_Call
91b1417d
AC
7479 (N : Node_Id;
7480 Nam : Entity_Id;
7481 Typ : Entity_Id) return Boolean
996ae0b0 7482 is
24657705
HK
7483 Actual : Node_Id;
7484 Formal : Entity_Id;
7485
8a7988f5 7486 Call_OK : Boolean;
24657705 7487 pragma Warnings (Off, Call_OK);
996ae0b0
RK
7488
7489 begin
8a7988f5 7490 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
9de61fcb 7491
8a7988f5 7492 Actual := First_Actual (N);
fbf5a39b 7493 Formal := First_Formal (Designated_Type (Typ));
9de61fcb 7494 while Present (Actual) and then Present (Formal) loop
996ae0b0
RK
7495 if not Has_Compatible_Type (Actual, Etype (Formal)) then
7496 return False;
7497 end if;
7498
7499 Next (Actual);
7500 Next_Formal (Formal);
7501 end loop;
7502
7503 if No (Actual) and then No (Formal) then
7504 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
7505
7506 -- Nam is a candidate interpretation for the name in the call,
7507 -- if it is not an indirect call.
7508
7509 if not Is_Type (Nam)
7510 and then Is_Entity_Name (Name (N))
7511 then
7512 Set_Entity (Name (N), Nam);
7513 end if;
7514
7515 return True;
8b4230c8 7516
996ae0b0
RK
7517 else
7518 return False;
7519 end if;
7520 end Try_Indirect_Call;
7521
7522 ----------------------
7523 -- Try_Indexed_Call --
7524 ----------------------
7525
7526 function Try_Indexed_Call
aab883ec
ES
7527 (N : Node_Id;
7528 Nam : Entity_Id;
7529 Typ : Entity_Id;
7530 Skip_First : Boolean) return Boolean
996ae0b0 7531 is
5ff22245
ES
7532 Loc : constant Source_Ptr := Sloc (N);
7533 Actuals : constant List_Id := Parameter_Associations (N);
7534 Actual : Node_Id;
7535 Index : Entity_Id;
996ae0b0
RK
7536
7537 begin
fbf5a39b 7538 Actual := First (Actuals);
aab883ec
ES
7539
7540 -- If the call was originally written in prefix form, skip the first
7541 -- actual, which is obviously not defaulted.
7542
7543 if Skip_First then
7544 Next (Actual);
7545 end if;
7546
fbf5a39b 7547 Index := First_Index (Typ);
9de61fcb
RD
7548 while Present (Actual) and then Present (Index) loop
7549
996ae0b0
RK
7550 -- If the parameter list has a named association, the expression
7551 -- is definitely a call and not an indexed component.
7552
7553 if Nkind (Actual) = N_Parameter_Association then
7554 return False;
7555 end if;
7556
5ff22245
ES
7557 if Is_Entity_Name (Actual)
7558 and then Is_Type (Entity (Actual))
7559 and then No (Next (Actual))
7560 then
1c218ac3
AC
7561 -- A single actual that is a type name indicates a slice if the
7562 -- type is discrete, and an error otherwise.
7563
7564 if Is_Discrete_Type (Entity (Actual)) then
7565 Rewrite (N,
7566 Make_Slice (Loc,
22b77f68
RD
7567 Prefix =>
7568 Make_Function_Call (Loc,
7569 Name => Relocate_Node (Name (N))),
7570 Discrete_Range =>
1c218ac3
AC
7571 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
7572
7573 Analyze (N);
7574
7575 else
7576 Error_Msg_N ("invalid use of type in expression", Actual);
7577 Set_Etype (N, Any_Type);
7578 end if;
5ff22245 7579
5ff22245
ES
7580 return True;
7581
7582 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
996ae0b0
RK
7583 return False;
7584 end if;
7585
7586 Next (Actual);
7587 Next_Index (Index);
7588 end loop;
7589
7590 if No (Actual) and then No (Index) then
7591 Add_One_Interp (N, Nam, Component_Type (Typ));
7592
7593 -- Nam is a candidate interpretation for the name in the call,
7594 -- if it is not an indirect call.
7595
7596 if not Is_Type (Nam)
7597 and then Is_Entity_Name (Name (N))
7598 then
7599 Set_Entity (Name (N), Nam);
7600 end if;
7601
7602 return True;
7603 else
7604 return False;
7605 end if;
996ae0b0
RK
7606 end Try_Indexed_Call;
7607
35ae2ed8
AC
7608 --------------------------
7609 -- Try_Object_Operation --
7610 --------------------------
7611
8cf23b91
AC
7612 function Try_Object_Operation
7613 (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
7614 is
b67a385c 7615 K : constant Node_Kind := Nkind (Parent (N));
d3b00ce3 7616 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
b67a385c 7617 Loc : constant Source_Ptr := Sloc (N);
b67a385c 7618 Obj : constant Node_Id := Prefix (N);
0d57c6f4
RD
7619
7620 Subprog : constant Node_Id :=
7621 Make_Identifier (Sloc (Selector_Name (N)),
7622 Chars => Chars (Selector_Name (N)));
401093c1 7623 -- Identifier on which possible interpretations will be collected
0a36105d 7624
b67a385c 7625 Report_Error : Boolean := False;
8b4230c8
AC
7626 -- If no candidate interpretation matches the context, redo analysis
7627 -- with Report_Error True to provide additional information.
28d6470f
JM
7628
7629 Actual : Node_Id;
d469eabe 7630 Candidate : Entity_Id := Empty;
b67a385c 7631 New_Call_Node : Node_Id := Empty;
4c46b835 7632 Node_To_Replace : Node_Id;
28d6470f 7633 Obj_Type : Entity_Id := Etype (Obj);
d469eabe 7634 Success : Boolean := False;
4c46b835 7635
0a36105d
JM
7636 function Valid_Candidate
7637 (Success : Boolean;
7638 Call : Node_Id;
7639 Subp : Entity_Id) return Entity_Id;
7640 -- If the subprogram is a valid interpretation, record it, and add
11fa950b 7641 -- to the list of interpretations of Subprog. Otherwise return Empty.
0a36105d 7642
4c46b835
AC
7643 procedure Complete_Object_Operation
7644 (Call_Node : Node_Id;
0a36105d 7645 Node_To_Replace : Node_Id);
ec6078e3
ES
7646 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
7647 -- Call_Node, insert the object (or its dereference) as the first actual
7648 -- in the call, and complete the analysis of the call.
4c46b835 7649
0a36105d
JM
7650 procedure Report_Ambiguity (Op : Entity_Id);
7651 -- If a prefixed procedure call is ambiguous, indicate whether the
7652 -- call includes an implicit dereference or an implicit 'Access.
7653
4c46b835
AC
7654 procedure Transform_Object_Operation
7655 (Call_Node : out Node_Id;
0a36105d 7656 Node_To_Replace : out Node_Id);
ec6078e3 7657 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
d469eabe
HK
7658 -- Call_Node is the resulting subprogram call, Node_To_Replace is
7659 -- either N or the parent of N, and Subprog is a reference to the
7660 -- subprogram we are trying to match.
35ae2ed8
AC
7661
7662 function Try_Class_Wide_Operation
4c46b835
AC
7663 (Call_Node : Node_Id;
7664 Node_To_Replace : Node_Id) return Boolean;
ec6078e3
ES
7665 -- Traverse all ancestor types looking for a class-wide subprogram
7666 -- for which the current operation is a valid non-dispatching call.
35ae2ed8 7667
0a36105d
JM
7668 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
7669 -- If prefix is overloaded, its interpretation may include different
7670 -- tagged types, and we must examine the primitive operations and
7671 -- the class-wide operations of each in order to find candidate
7672 -- interpretations for the call as a whole.
7673
4c46b835
AC
7674 function Try_Primitive_Operation
7675 (Call_Node : Node_Id;
7676 Node_To_Replace : Node_Id) return Boolean;
ec6078e3
ES
7677 -- Traverse the list of primitive subprograms looking for a dispatching
7678 -- operation for which the current node is a valid call .
4c46b835 7679
0a36105d
JM
7680 ---------------------
7681 -- Valid_Candidate --
7682 ---------------------
7683
7684 function Valid_Candidate
7685 (Success : Boolean;
7686 Call : Node_Id;
7687 Subp : Entity_Id) return Entity_Id
7688 is
ee9aa7b6 7689 Arr_Type : Entity_Id;
0a36105d
JM
7690 Comp_Type : Entity_Id;
7691
7692 begin
7693 -- If the subprogram is a valid interpretation, record it in global
7694 -- variable Subprog, to collect all possible overloadings.
7695
7696 if Success then
7697 if Subp /= Entity (Subprog) then
7698 Add_One_Interp (Subprog, Subp, Etype (Subp));
7699 end if;
7700 end if;
7701
d469eabe
HK
7702 -- If the call may be an indexed call, retrieve component type of
7703 -- resulting expression, and add possible interpretation.
0a36105d 7704
ee9aa7b6 7705 Arr_Type := Empty;
0a36105d
JM
7706 Comp_Type := Empty;
7707
7708 if Nkind (Call) = N_Function_Call
d469eabe
HK
7709 and then Nkind (Parent (N)) = N_Indexed_Component
7710 and then Needs_One_Actual (Subp)
0a36105d
JM
7711 then
7712 if Is_Array_Type (Etype (Subp)) then
ee9aa7b6 7713 Arr_Type := Etype (Subp);
0a36105d
JM
7714
7715 elsif Is_Access_Type (Etype (Subp))
7716 and then Is_Array_Type (Designated_Type (Etype (Subp)))
7717 then
ee9aa7b6 7718 Arr_Type := Designated_Type (Etype (Subp));
0a36105d
JM
7719 end if;
7720 end if;
7721
ee9aa7b6
AC
7722 if Present (Arr_Type) then
7723
3b42c566
RD
7724 -- Verify that the actuals (excluding the object) match the types
7725 -- of the indexes.
ee9aa7b6
AC
7726
7727 declare
7728 Actual : Node_Id;
7729 Index : Node_Id;
7730
7731 begin
7732 Actual := Next (First_Actual (Call));
7733 Index := First_Index (Arr_Type);
ee9aa7b6
AC
7734 while Present (Actual) and then Present (Index) loop
7735 if not Has_Compatible_Type (Actual, Etype (Index)) then
7736 Arr_Type := Empty;
7737 exit;
7738 end if;
7739
7740 Next_Actual (Actual);
7741 Next_Index (Index);
7742 end loop;
7743
7744 if No (Actual)
7745 and then No (Index)
7746 and then Present (Arr_Type)
7747 then
7748 Comp_Type := Component_Type (Arr_Type);
7749 end if;
7750 end;
7751
7752 if Present (Comp_Type)
7753 and then Etype (Subprog) /= Comp_Type
7754 then
7755 Add_One_Interp (Subprog, Subp, Comp_Type);
7756 end if;
0a36105d
JM
7757 end if;
7758
7759 if Etype (Call) /= Any_Type then
7760 return Subp;
7761 else
7762 return Empty;
7763 end if;
7764 end Valid_Candidate;
7765
4c46b835
AC
7766 -------------------------------
7767 -- Complete_Object_Operation --
7768 -------------------------------
7769
7770 procedure Complete_Object_Operation
7771 (Call_Node : Node_Id;
0a36105d 7772 Node_To_Replace : Node_Id)
4c46b835 7773 is
b4592168
GD
7774 Control : constant Entity_Id := First_Formal (Entity (Subprog));
7775 Formal_Type : constant Entity_Id := Etype (Control);
ec6078e3
ES
7776 First_Actual : Node_Id;
7777
4c46b835 7778 begin
955871d3
AC
7779 -- Place the name of the operation, with its interpretations,
7780 -- on the rewritten call.
0a36105d 7781
ec6078e3
ES
7782 Set_Name (Call_Node, Subprog);
7783
0a36105d
JM
7784 First_Actual := First (Parameter_Associations (Call_Node));
7785
8b4230c8
AC
7786 -- For cross-reference purposes, treat the new node as being in the
7787 -- source if the original one is. Set entity and type, even though
7788 -- they may be overwritten during resolution if overloaded.
b67a385c
ES
7789
7790 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
7791 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
7792
ec6078e3 7793 if Nkind (N) = N_Selected_Component
3d918396 7794 and then not Inside_A_Generic
ec6078e3
ES
7795 then
7796 Set_Entity (Selector_Name (N), Entity (Subprog));
b2ab8c33 7797 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
ec6078e3
ES
7798 end if;
7799
8b4230c8
AC
7800 -- If need be, rewrite first actual as an explicit dereference. If
7801 -- the call is overloaded, the rewriting can only be done once the
7802 -- primitive operation is identified.
0a36105d
JM
7803
7804 if Is_Overloaded (Subprog) then
ec6078e3 7805
0a36105d
JM
7806 -- The prefix itself may be overloaded, and its interpretations
7807 -- must be propagated to the new actual in the call.
7808
7809 if Is_Overloaded (Obj) then
7810 Save_Interps (Obj, First_Actual);
7811 end if;
7812
7813 Rewrite (First_Actual, Obj);
7814
7815 elsif not Is_Access_Type (Formal_Type)
ec6078e3
ES
7816 and then Is_Access_Type (Etype (Obj))
7817 then
7818 Rewrite (First_Actual,
7819 Make_Explicit_Dereference (Sloc (Obj), Obj));
7820 Analyze (First_Actual);
fe45e59e 7821
401093c1
ES
7822 -- If we need to introduce an explicit dereference, verify that
7823 -- the resulting actual is compatible with the mode of the formal.
7824
7825 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
7826 and then Is_Access_Constant (Etype (Obj))
7827 then
7828 Error_Msg_NE
7829 ("expect variable in call to&", Prefix (N), Entity (Subprog));
7830 end if;
7831
d469eabe
HK
7832 -- Conversely, if the formal is an access parameter and the object
7833 -- is not, replace the actual with a 'Access reference. Its analysis
7834 -- will check that the object is aliased.
fe45e59e
ES
7835
7836 elsif Is_Access_Type (Formal_Type)
7837 and then not Is_Access_Type (Etype (Obj))
7838 then
b4592168
GD
7839 -- A special case: A.all'access is illegal if A is an access to a
7840 -- constant and the context requires an access to a variable.
7841
7842 if not Is_Access_Constant (Formal_Type) then
7843 if (Nkind (Obj) = N_Explicit_Dereference
7844 and then Is_Access_Constant (Etype (Prefix (Obj))))
7845 or else not Is_Variable (Obj)
7846 then
7847 Error_Msg_NE
ad075b50 7848 ("actual for & must be a variable", Obj, Control);
b4592168
GD
7849 end if;
7850 end if;
7851
fe45e59e
ES
7852 Rewrite (First_Actual,
7853 Make_Attribute_Reference (Loc,
7854 Attribute_Name => Name_Access,
7855 Prefix => Relocate_Node (Obj)));
0a36105d
JM
7856
7857 if not Is_Aliased_View (Obj) then
ed2233dc 7858 Error_Msg_NE
ad075b50 7859 ("object in prefixed call to & must be aliased "
715e529d 7860 & "(RM 4.1.3 (13 1/2))", Prefix (First_Actual), Subprog);
0a36105d
JM
7861 end if;
7862
fe45e59e
ES
7863 Analyze (First_Actual);
7864
ec6078e3 7865 else
0a36105d
JM
7866 if Is_Overloaded (Obj) then
7867 Save_Interps (Obj, First_Actual);
7868 end if;
ec6078e3 7869
0a36105d 7870 Rewrite (First_Actual, Obj);
aab883ec
ES
7871 end if;
7872
e699b76e
AC
7873 -- The operation is obtained from the dispatch table and not by
7874 -- visibility, and may be declared in a unit that is not explicitly
7875 -- referenced in the source, but is nevertheless required in the
7876 -- context of the current unit. Indicate that operation and its scope
7877 -- are referenced, to prevent spurious and misleading warnings. If
7878 -- the operation is overloaded, all primitives are in the same scope
7879 -- and we can use any of them.
7880
7881 Set_Referenced (Entity (Subprog), True);
7882 Set_Referenced (Scope (Entity (Subprog)), True);
7883
7ffd9312 7884 Rewrite (Node_To_Replace, Call_Node);
0a36105d
JM
7885
7886 -- Propagate the interpretations collected in subprog to the new
7887 -- function call node, to be resolved from context.
7888
7889 if Is_Overloaded (Subprog) then
7890 Save_Interps (Subprog, Node_To_Replace);
7415029d 7891
0a36105d 7892 else
28e18b4f
AC
7893 -- The type of the subprogram may be a limited view obtained
7894 -- transitively from another unit. If full view is available,
7895 -- use it to analyze call.
7896
7897 declare
7898 T : constant Entity_Id := Etype (Subprog);
7899 begin
7900 if From_Limited_With (T) then
7901 Set_Etype (Entity (Subprog), Available_View (T));
7902 end if;
7903 end;
7904
0a36105d 7905 Analyze (Node_To_Replace);
438ff97c 7906
199c6a10
AC
7907 -- If the operation has been rewritten into a call, which may get
7908 -- subsequently an explicit dereference, preserve the type on the
7909 -- original node (selected component or indexed component) for
7910 -- subsequent legality tests, e.g. Is_Variable. which examines
7911 -- the original node.
438ff97c
ES
7912
7913 if Nkind (Node_To_Replace) = N_Function_Call then
7914 Set_Etype
7915 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
7916 end if;
0a36105d 7917 end if;
4c46b835
AC
7918 end Complete_Object_Operation;
7919
0a36105d
JM
7920 ----------------------
7921 -- Report_Ambiguity --
7922 ----------------------
7923
7924 procedure Report_Ambiguity (Op : Entity_Id) is
0a36105d
JM
7925 Access_Actual : constant Boolean :=
7926 Is_Access_Type (Etype (Prefix (N)));
8cf23b91 7927 Access_Formal : Boolean := False;
0a36105d
JM
7928
7929 begin
7930 Error_Msg_Sloc := Sloc (Op);
7931
8cf23b91
AC
7932 if Present (First_Formal (Op)) then
7933 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
7934 end if;
7935
0a36105d
JM
7936 if Access_Formal and then not Access_Actual then
7937 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 7938 Error_Msg_N
8b4230c8
AC
7939 ("\possible interpretation "
7940 & "(inherited, with implicit 'Access) #", N);
0a36105d 7941 else
ed2233dc 7942 Error_Msg_N
0a36105d
JM
7943 ("\possible interpretation (with implicit 'Access) #", N);
7944 end if;
7945
7946 elsif not Access_Formal and then Access_Actual then
7947 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 7948 Error_Msg_N
8b4230c8 7949 ("\possible interpretation "
28e18b4f 7950 & "(inherited, with implicit dereference) #", N);
0a36105d 7951 else
ed2233dc 7952 Error_Msg_N
0a36105d
JM
7953 ("\possible interpretation (with implicit dereference) #", N);
7954 end if;
7955
7956 else
7957 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 7958 Error_Msg_N ("\possible interpretation (inherited)#", N);
0a36105d 7959 else
4e7a4f6e
AC
7960 Error_Msg_N -- CODEFIX
7961 ("\possible interpretation#", N);
0a36105d
JM
7962 end if;
7963 end if;
7964 end Report_Ambiguity;
7965
4c46b835
AC
7966 --------------------------------
7967 -- Transform_Object_Operation --
7968 --------------------------------
7969
7970 procedure Transform_Object_Operation
7971 (Call_Node : out Node_Id;
0a36105d 7972 Node_To_Replace : out Node_Id)
35ae2ed8 7973 is
ec6078e3
ES
7974 Dummy : constant Node_Id := New_Copy (Obj);
7975 -- Placeholder used as a first parameter in the call, replaced
7976 -- eventually by the proper object.
7977
d469eabe
HK
7978 Parent_Node : constant Node_Id := Parent (N);
7979
ec6078e3 7980 Actual : Node_Id;
d469eabe 7981 Actuals : List_Id;
ec6078e3 7982
35ae2ed8 7983 begin
ec6078e3
ES
7984 -- Common case covering 1) Call to a procedure and 2) Call to a
7985 -- function that has some additional actuals.
35ae2ed8 7986
d3b00ce3 7987 if Nkind (Parent_Node) in N_Subprogram_Call
35ae2ed8 7988
ec6078e3
ES
7989 -- N is a selected component node containing the name of the
7990 -- subprogram. If N is not the name of the parent node we must
7991 -- not replace the parent node by the new construct. This case
7992 -- occurs when N is a parameterless call to a subprogram that
7993 -- is an actual parameter of a call to another subprogram. For
7994 -- example:
7995 -- Some_Subprogram (..., Obj.Operation, ...)
35ae2ed8 7996
ec6078e3 7997 and then Name (Parent_Node) = N
4c46b835
AC
7998 then
7999 Node_To_Replace := Parent_Node;
35ae2ed8 8000
ec6078e3 8001 Actuals := Parameter_Associations (Parent_Node);
d3e65aad 8002
ec6078e3
ES
8003 if Present (Actuals) then
8004 Prepend (Dummy, Actuals);
8005 else
8006 Actuals := New_List (Dummy);
8007 end if;
4c46b835
AC
8008
8009 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
8010 Call_Node :=
8011 Make_Procedure_Call_Statement (Loc,
0a36105d 8012 Name => New_Copy (Subprog),
4c46b835
AC
8013 Parameter_Associations => Actuals);
8014
8015 else
4c46b835
AC
8016 Call_Node :=
8017 Make_Function_Call (Loc,
8b4230c8 8018 Name => New_Copy (Subprog),
4c46b835 8019 Parameter_Associations => Actuals);
35ae2ed8
AC
8020 end if;
8021
d469eabe 8022 -- Before analysis, a function call appears as an indexed component
ec6078e3 8023 -- if there are no named associations.
758c442c 8024
c8307596 8025 elsif Nkind (Parent_Node) = N_Indexed_Component
ec6078e3
ES
8026 and then N = Prefix (Parent_Node)
8027 then
758c442c 8028 Node_To_Replace := Parent_Node;
ec6078e3
ES
8029 Actuals := Expressions (Parent_Node);
8030
8031 Actual := First (Actuals);
8032 while Present (Actual) loop
8033 Analyze (Actual);
8034 Next (Actual);
8035 end loop;
8036
8037 Prepend (Dummy, Actuals);
758c442c
GD
8038
8039 Call_Node :=
8040 Make_Function_Call (Loc,
8b4230c8 8041 Name => New_Copy (Subprog),
758c442c
GD
8042 Parameter_Associations => Actuals);
8043
d469eabe 8044 -- Parameterless call: Obj.F is rewritten as F (Obj)
35ae2ed8 8045
4c46b835
AC
8046 else
8047 Node_To_Replace := N;
8048
8049 Call_Node :=
8050 Make_Function_Call (Loc,
8b4230c8 8051 Name => New_Copy (Subprog),
ec6078e3 8052 Parameter_Associations => New_List (Dummy));
4c46b835
AC
8053 end if;
8054 end Transform_Object_Operation;
35ae2ed8
AC
8055
8056 ------------------------------
8057 -- Try_Class_Wide_Operation --
8058 ------------------------------
8059
8060 function Try_Class_Wide_Operation
4c46b835
AC
8061 (Call_Node : Node_Id;
8062 Node_To_Replace : Node_Id) return Boolean
35ae2ed8 8063 is
0a36105d
JM
8064 Anc_Type : Entity_Id;
8065 Matching_Op : Entity_Id := Empty;
8066 Error : Boolean;
8067
8068 procedure Traverse_Homonyms
8069 (Anc_Type : Entity_Id;
8070 Error : out Boolean);
8071 -- Traverse the homonym chain of the subprogram searching for those
8072 -- homonyms whose first formal has the Anc_Type's class-wide type,
d469eabe
HK
8073 -- or an anonymous access type designating the class-wide type. If
8074 -- an ambiguity is detected, then Error is set to True.
0a36105d
JM
8075
8076 procedure Traverse_Interfaces
8077 (Anc_Type : Entity_Id;
8078 Error : out Boolean);
8079 -- Traverse the list of interfaces, if any, associated with Anc_Type
8080 -- and search for acceptable class-wide homonyms associated with each
8081 -- interface. If an ambiguity is detected, then Error is set to True.
8082
8083 -----------------------
8084 -- Traverse_Homonyms --
8085 -----------------------
8086
8087 procedure Traverse_Homonyms
8088 (Anc_Type : Entity_Id;
8089 Error : out Boolean)
8090 is
8091 Cls_Type : Entity_Id;
8092 Hom : Entity_Id;
8093 Hom_Ref : Node_Id;
8094 Success : Boolean;
35ae2ed8 8095
0a36105d
JM
8096 begin
8097 Error := False;
ec6078e3 8098
b67a385c
ES
8099 Cls_Type := Class_Wide_Type (Anc_Type);
8100
4c46b835 8101 Hom := Current_Entity (Subprog);
401093c1 8102
383e179e
AC
8103 -- Find a non-hidden operation whose first parameter is of the
8104 -- class-wide type, a subtype thereof, or an anonymous access
a68d415b 8105 -- to same. If in an instance, the operation can be considered
8b4230c8
AC
8106 -- even if hidden (it may be hidden because the instantiation
8107 -- is expanded after the containing package has been analyzed).
401093c1 8108
35ae2ed8 8109 while Present (Hom) loop
6a2e4f0b 8110 if Ekind_In (Hom, E_Procedure, E_Function)
a68d415b 8111 and then (not Is_Hidden (Hom) or else In_Instance)
b67a385c 8112 and then Scope (Hom) = Scope (Anc_Type)
4c46b835 8113 and then Present (First_Formal (Hom))
b67a385c 8114 and then
401093c1 8115 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
b67a385c
ES
8116 or else
8117 (Is_Access_Type (Etype (First_Formal (Hom)))
8b4230c8
AC
8118 and then
8119 Ekind (Etype (First_Formal (Hom))) =
8120 E_Anonymous_Access_Type
8121 and then
8122 Base_Type
8123 (Designated_Type (Etype (First_Formal (Hom)))) =
0a36105d 8124 Cls_Type))
35ae2ed8 8125 then
88f47280
AC
8126 -- If the context is a procedure call, ignore functions
8127 -- in the name of the call.
8128
8129 if Ekind (Hom) = E_Function
8130 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
8131 and then N = Name (Parent (N))
8132 then
8133 goto Next_Hom;
11fa950b
AC
8134
8135 -- If the context is a function call, ignore procedures
8136 -- in the name of the call.
8137
8138 elsif Ekind (Hom) = E_Procedure
8139 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
8140 then
8141 goto Next_Hom;
88f47280
AC
8142 end if;
8143
ec6078e3 8144 Set_Etype (Call_Node, Any_Type);
0a36105d
JM
8145 Set_Is_Overloaded (Call_Node, False);
8146 Success := False;
4c46b835 8147
0a36105d 8148 if No (Matching_Op) then
e4494292 8149 Hom_Ref := New_Occurrence_Of (Hom, Sloc (Subprog));
0a36105d
JM
8150 Set_Etype (Call_Node, Any_Type);
8151 Set_Parent (Call_Node, Parent (Node_To_Replace));
4c46b835 8152
0a36105d 8153 Set_Name (Call_Node, Hom_Ref);
4c46b835 8154
0a36105d
JM
8155 Analyze_One_Call
8156 (N => Call_Node,
8157 Nam => Hom,
8158 Report => Report_Error,
8159 Success => Success,
8160 Skip_First => True);
4c46b835 8161
0a36105d
JM
8162 Matching_Op :=
8163 Valid_Candidate (Success, Call_Node, Hom);
4c46b835 8164
0a36105d
JM
8165 else
8166 Analyze_One_Call
8167 (N => Call_Node,
8168 Nam => Hom,
8169 Report => Report_Error,
8170 Success => Success,
8171 Skip_First => True);
8172
8173 if Present (Valid_Candidate (Success, Call_Node, Hom))
8174 and then Nkind (Call_Node) /= N_Function_Call
8175 then
ed2233dc 8176 Error_Msg_NE ("ambiguous call to&", N, Hom);
0a36105d
JM
8177 Report_Ambiguity (Matching_Op);
8178 Report_Ambiguity (Hom);
8179 Error := True;
8180 return;
8181 end if;
35ae2ed8
AC
8182 end if;
8183 end if;
8184
88f47280
AC
8185 <<Next_Hom>>
8186 Hom := Homonym (Hom);
35ae2ed8 8187 end loop;
0a36105d
JM
8188 end Traverse_Homonyms;
8189
8190 -------------------------
8191 -- Traverse_Interfaces --
8192 -------------------------
35ae2ed8 8193
0a36105d
JM
8194 procedure Traverse_Interfaces
8195 (Anc_Type : Entity_Id;
8196 Error : out Boolean)
8197 is
0a36105d
JM
8198 Intface_List : constant List_Id :=
8199 Abstract_Interface_List (Anc_Type);
d469eabe 8200 Intface : Node_Id;
0a36105d
JM
8201
8202 begin
8203 Error := False;
8204
8205 if Is_Non_Empty_List (Intface_List) then
8206 Intface := First (Intface_List);
8207 while Present (Intface) loop
8208
8209 -- Look for acceptable class-wide homonyms associated with
8210 -- the interface.
8211
8212 Traverse_Homonyms (Etype (Intface), Error);
8213
8214 if Error then
8215 return;
8216 end if;
8217
8218 -- Continue the search by looking at each of the interface's
8219 -- associated interface ancestors.
8220
8221 Traverse_Interfaces (Etype (Intface), Error);
8222
8223 if Error then
8224 return;
8225 end if;
8226
8227 Next (Intface);
8228 end loop;
8229 end if;
8230 end Traverse_Interfaces;
8231
8232 -- Start of processing for Try_Class_Wide_Operation
8233
8234 begin
8cf23b91
AC
8235 -- If we are searching only for conflicting class-wide subprograms
8236 -- then initialize directly Matching_Op with the target entity.
8237
8238 if CW_Test_Only then
8239 Matching_Op := Entity (Selector_Name (N));
8240 end if;
8241
d469eabe
HK
8242 -- Loop through ancestor types (including interfaces), traversing
8243 -- the homonym chain of the subprogram, trying out those homonyms
8244 -- whose first formal has the class-wide type of the ancestor, or
8245 -- an anonymous access type designating the class-wide type.
0a36105d
JM
8246
8247 Anc_Type := Obj_Type;
8248 loop
8249 -- Look for a match among homonyms associated with the ancestor
8250
8251 Traverse_Homonyms (Anc_Type, Error);
8252
8253 if Error then
8254 return True;
8255 end if;
8256
8257 -- Continue the search for matches among homonyms associated with
8258 -- any interfaces implemented by the ancestor.
8259
8260 Traverse_Interfaces (Anc_Type, Error);
8261
8262 if Error then
8263 return True;
8264 end if;
35ae2ed8 8265
4c46b835
AC
8266 exit when Etype (Anc_Type) = Anc_Type;
8267 Anc_Type := Etype (Anc_Type);
35ae2ed8
AC
8268 end loop;
8269
0a36105d
JM
8270 if Present (Matching_Op) then
8271 Set_Etype (Call_Node, Etype (Matching_Op));
8272 end if;
ec6078e3 8273
0a36105d 8274 return Present (Matching_Op);
35ae2ed8
AC
8275 end Try_Class_Wide_Operation;
8276
0a36105d
JM
8277 -----------------------------------
8278 -- Try_One_Prefix_Interpretation --
8279 -----------------------------------
8280
8281 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
e3d9f448
AC
8282
8283 -- If the interpretation does not have a valid candidate type,
8284 -- preserve current value of Obj_Type for subsequent errors.
8285
8286 Prev_Obj_Type : constant Entity_Id := Obj_Type;
8287
0a36105d
JM
8288 begin
8289 Obj_Type := T;
8290
8291 if Is_Access_Type (Obj_Type) then
8292 Obj_Type := Designated_Type (Obj_Type);
8293 end if;
8294
8295 if Ekind (Obj_Type) = E_Private_Subtype then
8296 Obj_Type := Base_Type (Obj_Type);
8297 end if;
8298
8299 if Is_Class_Wide_Type (Obj_Type) then
8300 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
8301 end if;
8302
8303 -- The type may have be obtained through a limited_with clause,
8304 -- in which case the primitive operations are available on its
401093c1 8305 -- non-limited view. If still incomplete, retrieve full view.
0a36105d
JM
8306
8307 if Ekind (Obj_Type) = E_Incomplete_Type
7b56a91b 8308 and then From_Limited_With (Obj_Type)
47346923 8309 and then Has_Non_Limited_View (Obj_Type)
0a36105d 8310 then
401093c1 8311 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
0a36105d
JM
8312 end if;
8313
8314 -- If the object is not tagged, or the type is still an incomplete
8315 -- type, this is not a prefixed call.
8316
8317 if not Is_Tagged_Type (Obj_Type)
8318 or else Is_Incomplete_Type (Obj_Type)
8319 then
e3d9f448 8320
00c93ba2 8321 -- Restore previous type if current one is not legal candidate
e3d9f448
AC
8322
8323 Obj_Type := Prev_Obj_Type;
0a36105d
JM
8324 return;
8325 end if;
8326
11fa950b
AC
8327 declare
8328 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
8329 CW_Result : Boolean;
8330 Prim_Result : Boolean;
8331 pragma Unreferenced (CW_Result);
8332
8333 begin
8cf23b91
AC
8334 if not CW_Test_Only then
8335 Prim_Result :=
8336 Try_Primitive_Operation
8337 (Call_Node => New_Call_Node,
8338 Node_To_Replace => Node_To_Replace);
8339 end if;
11fa950b
AC
8340
8341 -- Check if there is a class-wide subprogram covering the
8342 -- primitive. This check must be done even if a candidate
8343 -- was found in order to report ambiguous calls.
8344
8345 if not (Prim_Result) then
8346 CW_Result :=
8347 Try_Class_Wide_Operation
8348 (Call_Node => New_Call_Node,
8349 Node_To_Replace => Node_To_Replace);
8350
8351 -- If we found a primitive we search for class-wide subprograms
8352 -- using a duplicate of the call node (done to avoid missing its
8353 -- decoration if there is no ambiguity).
8354
8355 else
8356 CW_Result :=
8357 Try_Class_Wide_Operation
8358 (Call_Node => Dup_Call_Node,
8359 Node_To_Replace => Node_To_Replace);
8360 end if;
8361 end;
0a36105d
JM
8362 end Try_One_Prefix_Interpretation;
8363
4c46b835
AC
8364 -----------------------------
8365 -- Try_Primitive_Operation --
8366 -----------------------------
35ae2ed8 8367
4c46b835
AC
8368 function Try_Primitive_Operation
8369 (Call_Node : Node_Id;
8370 Node_To_Replace : Node_Id) return Boolean
35ae2ed8 8371 is
6e73e3ab
AC
8372 Elmt : Elmt_Id;
8373 Prim_Op : Entity_Id;
0a36105d
JM
8374 Matching_Op : Entity_Id := Empty;
8375 Prim_Op_Ref : Node_Id := Empty;
8376
8b4230c8 8377 Corr_Type : Entity_Id := Empty;
0a36105d
JM
8378 -- If the prefix is a synchronized type, the controlling type of
8379 -- the primitive operation is the corresponding record type, else
8380 -- this is the object type itself.
8381
8b4230c8 8382 Success : Boolean := False;
35ae2ed8 8383
401093c1
ES
8384 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
8385 -- For tagged types the candidate interpretations are found in
8386 -- the list of primitive operations of the type and its ancestors.
8387 -- For formal tagged types we have to find the operations declared
8388 -- in the same scope as the type (including in the generic formal
8389 -- part) because the type itself carries no primitive operations,
8390 -- except for formal derived types that inherit the operations of
8391 -- the parent and progenitors.
8b4230c8 8392 --
d469eabe
HK
8393 -- If the context is a generic subprogram body, the generic formals
8394 -- are visible by name, but are not in the entity list of the
8395 -- subprogram because that list starts with the subprogram formals.
8396 -- We retrieve the candidate operations from the generic declaration.
401093c1 8397
84dad556
AC
8398 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id;
8399 -- Prefix notation can also be used on operations that are not
8400 -- primitives of the type, but are declared in the same immediate
8401 -- declarative part, which can only mean the corresponding package
8402 -- body (See RM 4.1.3 (9.2/3)). If we are in that body we extend the
8403 -- list of primitives with body operations with the same name that
8404 -- may be candidates, so that Try_Primitive_Operations can examine
8405 -- them if no real primitive is found.
8406
dfcfdc0a
AC
8407 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
8408 -- An operation that overrides an inherited operation in the private
8409 -- part of its package may be hidden, but if the inherited operation
8410 -- is visible a direct call to it will dispatch to the private one,
8411 -- which is therefore a valid candidate.
8412
ec6078e3
ES
8413 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
8414 -- Verify that the prefix, dereferenced if need be, is a valid
8415 -- controlling argument in a call to Op. The remaining actuals
8416 -- are checked in the subsequent call to Analyze_One_Call.
35ae2ed8 8417
401093c1
ES
8418 ------------------------------
8419 -- Collect_Generic_Type_Ops --
8420 ------------------------------
8421
8422 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
8423 Bas : constant Entity_Id := Base_Type (T);
8424 Candidates : constant Elist_Id := New_Elmt_List;
8425 Subp : Entity_Id;
8426 Formal : Entity_Id;
8427
d469eabe
HK
8428 procedure Check_Candidate;
8429 -- The operation is a candidate if its first parameter is a
8430 -- controlling operand of the desired type.
8431
8432 -----------------------
8433 -- Check_Candidate; --
8434 -----------------------
8435
8436 procedure Check_Candidate is
8437 begin
8438 Formal := First_Formal (Subp);
8439
8440 if Present (Formal)
8441 and then Is_Controlling_Formal (Formal)
8442 and then
8443 (Base_Type (Etype (Formal)) = Bas
8444 or else
8445 (Is_Access_Type (Etype (Formal))
8446 and then Designated_Type (Etype (Formal)) = Bas))
8447 then
8448 Append_Elmt (Subp, Candidates);
8449 end if;
8450 end Check_Candidate;
8451
8452 -- Start of processing for Collect_Generic_Type_Ops
8453
401093c1
ES
8454 begin
8455 if Is_Derived_Type (T) then
8456 return Primitive_Operations (T);
8457
bce79204
AC
8458 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
8459
d469eabe
HK
8460 -- Scan the list of generic formals to find subprograms
8461 -- that may have a first controlling formal of the type.
8462
8b4230c8
AC
8463 if Nkind (Unit_Declaration_Node (Scope (T))) =
8464 N_Generic_Subprogram_Declaration
bb10b891
AC
8465 then
8466 declare
8467 Decl : Node_Id;
8468
8469 begin
8470 Decl :=
8471 First (Generic_Formal_Declarations
8472 (Unit_Declaration_Node (Scope (T))));
8473 while Present (Decl) loop
8474 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
8475 Subp := Defining_Entity (Decl);
8476 Check_Candidate;
8477 end if;
d469eabe 8478
bb10b891
AC
8479 Next (Decl);
8480 end loop;
8481 end;
8482 end if;
d469eabe
HK
8483 return Candidates;
8484
401093c1
ES
8485 else
8486 -- Scan the list of entities declared in the same scope as
8487 -- the type. In general this will be an open scope, given that
8488 -- the call we are analyzing can only appear within a generic
8489 -- declaration or body (either the one that declares T, or a
8490 -- child unit).
8491
bb10b891
AC
8492 -- For a subtype representing a generic actual type, go to the
8493 -- base type.
8494
8495 if Is_Generic_Actual_Type (T) then
8496 Subp := First_Entity (Scope (Base_Type (T)));
8497 else
8498 Subp := First_Entity (Scope (T));
8499 end if;
8500
401093c1
ES
8501 while Present (Subp) loop
8502 if Is_Overloadable (Subp) then
d469eabe 8503 Check_Candidate;
401093c1
ES
8504 end if;
8505
8506 Next_Entity (Subp);
8507 end loop;
8508
8509 return Candidates;
8510 end if;
8511 end Collect_Generic_Type_Ops;
8512
84dad556
AC
8513 ----------------------------
8514 -- Extended_Primitive_Ops --
8515 ----------------------------
8516
8517 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id is
8518 Type_Scope : constant Entity_Id := Scope (T);
8519
8520 Body_Decls : List_Id;
8521 Op_Found : Boolean;
8522 Op : Entity_Id;
8523 Op_List : Elist_Id;
8524
8525 begin
8526 Op_List := Primitive_Operations (T);
8527
8528 if Ekind (Type_Scope) = E_Package
8529 and then In_Package_Body (Type_Scope)
8530 and then In_Open_Scopes (Type_Scope)
8531 then
8532 -- Retrieve list of declarations of package body.
8533
8534 Body_Decls :=
8535 Declarations
8536 (Unit_Declaration_Node
8537 (Corresponding_Body
8538 (Unit_Declaration_Node (Type_Scope))));
8539
8540 Op := Current_Entity (Subprog);
8541 Op_Found := False;
8542 while Present (Op) loop
8543 if Comes_From_Source (Op)
8544 and then Is_Overloadable (Op)
e23e04db
AC
8545
8546 -- Exclude overriding primitive operations of a type
8547 -- extension declared in the package body, to prevent
8548 -- duplicates in extended list.
8549
8550 and then not Is_Primitive (Op)
84dad556
AC
8551 and then Is_List_Member (Unit_Declaration_Node (Op))
8552 and then List_Containing (Unit_Declaration_Node (Op)) =
8553 Body_Decls
8554 then
8555 if not Op_Found then
8556
8557 -- Copy list of primitives so it is not affected for
8558 -- other uses.
8559
8560 Op_List := New_Copy_Elist (Op_List);
8561 Op_Found := True;
8562 end if;
8563
8564 Append_Elmt (Op, Op_List);
8565 end if;
8566
8567 Op := Homonym (Op);
8568 end loop;
8569 end if;
8570
8571 return Op_List;
8572 end Extended_Primitive_Ops;
8573
dfcfdc0a
AC
8574 ---------------------------
8575 -- Is_Private_Overriding --
8576 ---------------------------
8577
8578 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
8579 Visible_Op : constant Entity_Id := Homonym (Op);
8580
8581 begin
8582 return Present (Visible_Op)
6465b6a7 8583 and then Scope (Op) = Scope (Visible_Op)
dfcfdc0a
AC
8584 and then not Comes_From_Source (Visible_Op)
8585 and then Alias (Visible_Op) = Op
8586 and then not Is_Hidden (Visible_Op);
8587 end Is_Private_Overriding;
8588
ec6078e3
ES
8589 -----------------------------
8590 -- Valid_First_Argument_Of --
8591 -----------------------------
35ae2ed8 8592
ec6078e3 8593 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
9febb58f 8594 Typ : Entity_Id := Etype (First_Formal (Op));
35ae2ed8 8595
ec6078e3 8596 begin
9febb58f
JM
8597 if Is_Concurrent_Type (Typ)
8598 and then Present (Corresponding_Record_Type (Typ))
8599 then
8600 Typ := Corresponding_Record_Type (Typ);
8601 end if;
8602
d469eabe
HK
8603 -- Simple case. Object may be a subtype of the tagged type or
8604 -- may be the corresponding record of a synchronized type.
5d09245e 8605
aab883ec 8606 return Obj_Type = Typ
d469eabe 8607 or else Base_Type (Obj_Type) = Typ
0a36105d
JM
8608 or else Corr_Type = Typ
8609
8610 -- Prefix can be dereferenced
725e2a15 8611
ec6078e3 8612 or else
0a36105d
JM
8613 (Is_Access_Type (Corr_Type)
8614 and then Designated_Type (Corr_Type) = Typ)
5d09245e 8615
0a36105d
JM
8616 -- Formal is an access parameter, for which the object
8617 -- can provide an access.
35ae2ed8 8618
ec6078e3
ES
8619 or else
8620 (Ekind (Typ) = E_Anonymous_Access_Type
9fde638d
RD
8621 and then
8622 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
ec6078e3 8623 end Valid_First_Argument_Of;
35ae2ed8 8624
ec6078e3 8625 -- Start of processing for Try_Primitive_Operation
35ae2ed8 8626
ec6078e3 8627 begin
d469eabe 8628 -- Look for subprograms in the list of primitive operations. The name
0a36105d
JM
8629 -- must be identical, and the kind of call indicates the expected
8630 -- kind of operation (function or procedure). If the type is a
d469eabe 8631 -- (tagged) synchronized type, the primitive ops are attached to the
b4592168 8632 -- corresponding record (base) type.
aab883ec
ES
8633
8634 if Is_Concurrent_Type (Obj_Type) then
bb10b891
AC
8635 if Present (Corresponding_Record_Type (Obj_Type)) then
8636 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
8637 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
8638 else
8639 Corr_Type := Obj_Type;
8640 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
15e4986c
JM
8641 end if;
8642
401093c1 8643 elsif not Is_Generic_Type (Obj_Type) then
0a36105d 8644 Corr_Type := Obj_Type;
84dad556 8645 Elmt := First_Elmt (Extended_Primitive_Ops (Obj_Type));
401093c1
ES
8646
8647 else
8648 Corr_Type := Obj_Type;
8649 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
aab883ec 8650 end if;
35ae2ed8 8651
ec6078e3
ES
8652 while Present (Elmt) loop
8653 Prim_Op := Node (Elmt);
8654
8655 if Chars (Prim_Op) = Chars (Subprog)
8656 and then Present (First_Formal (Prim_Op))
8657 and then Valid_First_Argument_Of (Prim_Op)
fe45e59e 8658 and then
7415029d 8659 (Nkind (Call_Node) = N_Function_Call)
8b4230c8
AC
8660 =
8661 (Ekind (Prim_Op) = E_Function)
ec6078e3 8662 then
b67a385c 8663 -- Ada 2005 (AI-251): If this primitive operation corresponds
8b4230c8 8664 -- to an immediate ancestor interface there is no need to add
b67a385c
ES
8665 -- it to the list of interpretations; the corresponding aliased
8666 -- primitive is also in this list of primitive operations and
8667 -- will be used instead.
fe45e59e 8668
ce2b6ba5
JM
8669 if (Present (Interface_Alias (Prim_Op))
8670 and then Is_Ancestor (Find_Dispatching_Type
8671 (Alias (Prim_Op)), Corr_Type))
0a36105d 8672
dfcfdc0a
AC
8673 -- Do not consider hidden primitives unless the type is in an
8674 -- open scope or we are within an instance, where visibility
8675 -- is known to be correct, or else if this is an overriding
8676 -- operation in the private part for an inherited operation.
0a36105d 8677
dfcfdc0a
AC
8678 or else (Is_Hidden (Prim_Op)
8679 and then not Is_Immediately_Visible (Obj_Type)
8680 and then not In_Instance
8681 and then not Is_Private_Overriding (Prim_Op))
fe45e59e
ES
8682 then
8683 goto Continue;
8684 end if;
8685
0a36105d
JM
8686 Set_Etype (Call_Node, Any_Type);
8687 Set_Is_Overloaded (Call_Node, False);
8688
8689 if No (Matching_Op) then
e4494292 8690 Prim_Op_Ref := New_Occurrence_Of (Prim_Op, Sloc (Subprog));
b67a385c 8691 Candidate := Prim_Op;
35ae2ed8 8692
fe45e59e 8693 Set_Parent (Call_Node, Parent (Node_To_Replace));
35ae2ed8 8694
fe45e59e 8695 Set_Name (Call_Node, Prim_Op_Ref);
0a36105d 8696 Success := False;
35ae2ed8 8697
fe45e59e
ES
8698 Analyze_One_Call
8699 (N => Call_Node,
8700 Nam => Prim_Op,
b67a385c 8701 Report => Report_Error,
fe45e59e
ES
8702 Success => Success,
8703 Skip_First => True);
35ae2ed8 8704
0a36105d 8705 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
fe45e59e 8706
d469eabe
HK
8707 -- More than one interpretation, collect for subsequent
8708 -- disambiguation. If this is a procedure call and there
8709 -- is another match, report ambiguity now.
0a36105d 8710
d469eabe 8711 else
0a36105d
JM
8712 Analyze_One_Call
8713 (N => Call_Node,
8714 Nam => Prim_Op,
8715 Report => Report_Error,
8716 Success => Success,
8717 Skip_First => True);
fe45e59e 8718
0a36105d
JM
8719 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
8720 and then Nkind (Call_Node) /= N_Function_Call
8721 then
ed2233dc 8722 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
0a36105d
JM
8723 Report_Ambiguity (Matching_Op);
8724 Report_Ambiguity (Prim_Op);
8725 return True;
8726 end if;
4c46b835
AC
8727 end if;
8728 end if;
35ae2ed8 8729
fe45e59e 8730 <<Continue>>
4c46b835
AC
8731 Next_Elmt (Elmt);
8732 end loop;
35ae2ed8 8733
0a36105d
JM
8734 if Present (Matching_Op) then
8735 Set_Etype (Call_Node, Etype (Matching_Op));
fe45e59e
ES
8736 end if;
8737
0a36105d 8738 return Present (Matching_Op);
4c46b835 8739 end Try_Primitive_Operation;
35ae2ed8 8740
4c46b835 8741 -- Start of processing for Try_Object_Operation
35ae2ed8 8742
4c46b835 8743 begin
0a36105d 8744 Analyze_Expression (Obj);
ec6078e3 8745
0a36105d 8746 -- Analyze the actuals if node is known to be a subprogram call
28d6470f
JM
8747
8748 if Is_Subprg_Call and then N = Name (Parent (N)) then
8749 Actual := First (Parameter_Associations (Parent (N)));
8750 while Present (Actual) loop
725e2a15 8751 Analyze_Expression (Actual);
28d6470f
JM
8752 Next (Actual);
8753 end loop;
8754 end if;
5d09245e 8755
ec6078e3
ES
8756 -- Build a subprogram call node, using a copy of Obj as its first
8757 -- actual. This is a placeholder, to be replaced by an explicit
8758 -- dereference when needed.
4c46b835 8759
ec6078e3
ES
8760 Transform_Object_Operation
8761 (Call_Node => New_Call_Node,
0a36105d 8762 Node_To_Replace => Node_To_Replace);
4c46b835 8763
ec6078e3 8764 Set_Etype (New_Call_Node, Any_Type);
0a36105d 8765 Set_Etype (Subprog, Any_Type);
ec6078e3 8766 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
4c46b835 8767
0a36105d
JM
8768 if not Is_Overloaded (Obj) then
8769 Try_One_Prefix_Interpretation (Obj_Type);
ec6078e3 8770
0a36105d
JM
8771 else
8772 declare
8773 I : Interp_Index;
8774 It : Interp;
8775 begin
8776 Get_First_Interp (Obj, I, It);
8777 while Present (It.Nam) loop
8778 Try_One_Prefix_Interpretation (It.Typ);
8779 Get_Next_Interp (I, It);
8780 end loop;
8781 end;
8782 end if;
8783
8784 if Etype (New_Call_Node) /= Any_Type then
8cf23b91
AC
8785
8786 -- No need to complete the tree transformations if we are only
8787 -- searching for conflicting class-wide subprograms
8788
8789 if CW_Test_Only then
8790 return False;
8791 else
8792 Complete_Object_Operation
8793 (Call_Node => New_Call_Node,
8794 Node_To_Replace => Node_To_Replace);
8795 return True;
8796 end if;
b67a385c
ES
8797
8798 elsif Present (Candidate) then
8799
8800 -- The argument list is not type correct. Re-analyze with error
8801 -- reporting enabled, and use one of the possible candidates.
d469eabe 8802 -- In All_Errors_Mode, re-analyze all failed interpretations.
b67a385c
ES
8803
8804 if All_Errors_Mode then
8805 Report_Error := True;
8806 if Try_Primitive_Operation
8b4230c8
AC
8807 (Call_Node => New_Call_Node,
8808 Node_To_Replace => Node_To_Replace)
b67a385c
ES
8809
8810 or else
8811 Try_Class_Wide_Operation
8812 (Call_Node => New_Call_Node,
8813 Node_To_Replace => Node_To_Replace)
8814 then
8815 null;
8816 end if;
8817
8818 else
8819 Analyze_One_Call
8820 (N => New_Call_Node,
8821 Nam => Candidate,
8822 Report => True,
8823 Success => Success,
8824 Skip_First => True);
8825 end if;
8826
d469eabe
HK
8827 -- No need for further errors
8828
8829 return True;
b67a385c
ES
8830
8831 else
8832 -- There was no candidate operation, so report it as an error
8833 -- in the caller: Analyze_Selected_Component.
8834
8835 return False;
8836 end if;
35ae2ed8
AC
8837 end Try_Object_Operation;
8838
b4592168
GD
8839 ---------
8840 -- wpo --
8841 ---------
8842
8843 procedure wpo (T : Entity_Id) is
8844 Op : Entity_Id;
8845 E : Elmt_Id;
8846
8847 begin
8848 if not Is_Tagged_Type (T) then
8849 return;
8850 end if;
8851
8852 E := First_Elmt (Primitive_Operations (Base_Type (T)));
8853 while Present (E) loop
8854 Op := Node (E);
8855 Write_Int (Int (Op));
8856 Write_Str (" === ");
8857 Write_Name (Chars (Op));
8858 Write_Str (" in ");
8859 Write_Name (Chars (Scope (Op)));
8860 Next_Elmt (E);
8861 Write_Eol;
8862 end loop;
8863 end wpo;
8864
996ae0b0 8865end Sem_Ch4;