]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/sparc-tdep.c
[binutils, ARM, 4/16] BF insns infrastructure with array of relocs in struct arm_it
[thirdparty/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
42a4f53d 3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c906108c 20#include "defs.h"
5af923b0 21#include "arch-utils.h"
386c036b 22#include "dis-asm.h"
b41c5a85 23#include "dwarf2.h"
f5a9b87d 24#include "dwarf2-frame.h"
c906108c 25#include "frame.h"
386c036b
MK
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
c906108c 30#include "inferior.h"
386c036b
MK
31#include "symtab.h"
32#include "objfiles.h"
33#include "osabi.h"
34#include "regcache.h"
c906108c 35#include "target.h"
3f7b46f2 36#include "target-descriptions.h"
c906108c 37#include "value.h"
c906108c 38
386c036b 39#include "sparc-tdep.h"
e6f9c00b 40#include "sparc-ravenscar-thread.h"
325fac50 41#include <algorithm>
c906108c 42
a54124c5
MK
43struct regset;
44
9eb42ed1
MK
45/* This file implements the SPARC 32-bit ABI as defined by the section
46 "Low-Level System Information" of the SPARC Compliance Definition
47 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 48 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 49 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
50
51 Note that if we talk about SunOS, we mean SunOS 4.x, which was
52 BSD-based, which is sometimes (retroactively?) referred to as
53 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
54 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
55 suffering from severe version number inflation). Solaris 2.x is
56 also known as SunOS 5.x, since that's what uname(1) says. Solaris
57 2.x is SVR4-based. */
58
59/* Please use the sparc32_-prefix for 32-bit specific code, the
60 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
61 code that can handle both. The 64-bit specific code lives in
62 sparc64-tdep.c; don't add any here. */
63
64/* The SPARC Floating-Point Quad-Precision format is similar to
7a58cce8 65 big-endian IA-64 Quad-Precision format. */
8da61cc4 66#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
67
68/* The stack pointer is offset from the stack frame by a BIAS of 2047
69 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
70 hosts, so undefine it first. */
71#undef BIAS
72#define BIAS 2047
73
74/* Macros to extract fields from SPARC instructions. */
c906108c
SS
75#define X_OP(i) (((i) >> 30) & 0x3)
76#define X_RD(i) (((i) >> 25) & 0x1f)
77#define X_A(i) (((i) >> 29) & 1)
78#define X_COND(i) (((i) >> 25) & 0xf)
79#define X_OP2(i) (((i) >> 22) & 0x7)
80#define X_IMM22(i) ((i) & 0x3fffff)
81#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 82#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 83#define X_RS2(i) ((i) & 0x1f)
c906108c 84#define X_I(i) (((i) >> 13) & 1)
c906108c 85/* Sign extension macros. */
c906108c 86#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 87#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
8d1b3521 88#define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
075ccec8 89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
961842b2
JM
90/* Macros to identify some instructions. */
91/* RETURN (RETT in V8) */
92#define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
c906108c 93
386c036b
MK
94/* Fetch the instruction at PC. Instructions are always big-endian
95 even if the processor operates in little-endian mode. */
96
97unsigned long
98sparc_fetch_instruction (CORE_ADDR pc)
c906108c 99{
e1613aba 100 gdb_byte buf[4];
386c036b
MK
101 unsigned long insn;
102 int i;
103
690668cc 104 /* If we can't read the instruction at PC, return zero. */
8defab1a 105 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 106 return 0;
c906108c 107
386c036b
MK
108 insn = 0;
109 for (i = 0; i < sizeof (buf); i++)
110 insn = (insn << 8) | buf[i];
111 return insn;
112}
42cdca6c
MK
113\f
114
5465445a
JB
115/* Return non-zero if the instruction corresponding to PC is an "unimp"
116 instruction. */
117
118static int
119sparc_is_unimp_insn (CORE_ADDR pc)
120{
121 const unsigned long insn = sparc_fetch_instruction (pc);
122
123 return ((insn & 0xc1c00000) == 0);
124}
125
d0b5971a
JM
126/* Return non-zero if the instruction corresponding to PC is an
127 "annulled" branch, i.e. the annul bit is set. */
128
129int
130sparc_is_annulled_branch_insn (CORE_ADDR pc)
131{
132 /* The branch instructions featuring an annul bit can be identified
133 by the following bit patterns:
134
135 OP=0
136 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
137 OP2=2: Branch on Integer Condition Codes (Bcc).
138 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
139 OP2=6: Branch on FP Condition Codes (FBcc).
140 OP2=3 && Bit28=0:
141 Branch on Integer Register with Prediction (BPr).
142
143 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
144 coprocessor branch instructions (Op2=7). */
145
146 const unsigned long insn = sparc_fetch_instruction (pc);
147 const unsigned op2 = X_OP2 (insn);
148
149 if ((X_OP (insn) == 0)
150 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
151 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
152 return X_A (insn);
153 else
154 return 0;
155}
156
42cdca6c
MK
157/* OpenBSD/sparc includes StackGhost, which according to the author's
158 website http://stackghost.cerias.purdue.edu "... transparently and
159 automatically protects applications' stack frames; more
160 specifically, it guards the return pointers. The protection
161 mechanisms require no application source or binary modification and
162 imposes only a negligible performance penalty."
163
164 The same website provides the following description of how
165 StackGhost works:
166
167 "StackGhost interfaces with the kernel trap handler that would
168 normally write out registers to the stack and the handler that
169 would read them back in. By XORing a cookie into the
170 return-address saved in the user stack when it is actually written
171 to the stack, and then XOR it out when the return-address is pulled
172 from the stack, StackGhost can cause attacker corrupted return
173 pointers to behave in a manner the attacker cannot predict.
174 StackGhost can also use several unused bits in the return pointer
175 to detect a smashed return pointer and abort the process."
176
177 For GDB this means that whenever we're reading %i7 from a stack
178 frame's window save area, we'll have to XOR the cookie.
179
180 More information on StackGuard can be found on in:
181
c378eb4e 182 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
42cdca6c
MK
183 Stack Protection." 2001. Published in USENIX Security Symposium
184 '01. */
185
186/* Fetch StackGhost Per-Process XOR cookie. */
187
188ULONGEST
e17a4113 189sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 190{
e17a4113 191 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8b88a78e 192 struct target_ops *ops = current_top_target ();
e1613aba 193 gdb_byte buf[8];
baf92889
MK
194 int len;
195
13547ab6 196 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
197 if (len == -1)
198 return 0;
42cdca6c 199
baf92889
MK
200 /* We should have either an 32-bit or an 64-bit cookie. */
201 gdb_assert (len == 4 || len == 8);
202
e17a4113 203 return extract_unsigned_integer (buf, len, byte_order);
baf92889 204}
386c036b 205\f
baf92889 206
386c036b
MK
207/* The functions on this page are intended to be used to classify
208 function arguments. */
c906108c 209
386c036b 210/* Check whether TYPE is "Integral or Pointer". */
c906108c 211
386c036b
MK
212static int
213sparc_integral_or_pointer_p (const struct type *type)
c906108c 214{
80ad1639
MK
215 int len = TYPE_LENGTH (type);
216
386c036b 217 switch (TYPE_CODE (type))
c906108c 218 {
386c036b
MK
219 case TYPE_CODE_INT:
220 case TYPE_CODE_BOOL:
221 case TYPE_CODE_CHAR:
222 case TYPE_CODE_ENUM:
223 case TYPE_CODE_RANGE:
80ad1639
MK
224 /* We have byte, half-word, word and extended-word/doubleword
225 integral types. The doubleword is an extension to the
226 original 32-bit ABI by the SCD 2.4.x. */
227 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
228 case TYPE_CODE_PTR:
229 case TYPE_CODE_REF:
aa006118 230 case TYPE_CODE_RVALUE_REF:
80ad1639
MK
231 /* Allow either 32-bit or 64-bit pointers. */
232 return (len == 4 || len == 8);
386c036b
MK
233 default:
234 break;
235 }
c906108c 236
386c036b
MK
237 return 0;
238}
c906108c 239
386c036b 240/* Check whether TYPE is "Floating". */
c906108c 241
386c036b
MK
242static int
243sparc_floating_p (const struct type *type)
244{
245 switch (TYPE_CODE (type))
c906108c 246 {
386c036b
MK
247 case TYPE_CODE_FLT:
248 {
249 int len = TYPE_LENGTH (type);
250 return (len == 4 || len == 8 || len == 16);
251 }
252 default:
253 break;
254 }
255
256 return 0;
257}
c906108c 258
fe10a582
DM
259/* Check whether TYPE is "Complex Floating". */
260
261static int
262sparc_complex_floating_p (const struct type *type)
263{
264 switch (TYPE_CODE (type))
265 {
266 case TYPE_CODE_COMPLEX:
267 {
268 int len = TYPE_LENGTH (type);
269 return (len == 8 || len == 16 || len == 32);
270 }
271 default:
272 break;
273 }
274
275 return 0;
276}
277
0497f5b0
JB
278/* Check whether TYPE is "Structure or Union".
279
280 In terms of Ada subprogram calls, arrays are treated the same as
281 struct and union types. So this function also returns non-zero
282 for array types. */
c906108c 283
386c036b
MK
284static int
285sparc_structure_or_union_p (const struct type *type)
286{
287 switch (TYPE_CODE (type))
288 {
289 case TYPE_CODE_STRUCT:
290 case TYPE_CODE_UNION:
0497f5b0 291 case TYPE_CODE_ARRAY:
386c036b
MK
292 return 1;
293 default:
294 break;
c906108c 295 }
386c036b
MK
296
297 return 0;
c906108c 298}
386c036b 299
05bc7456
JB
300/* Return true if TYPE is returned by memory, false if returned by
301 register. */
1933fd8e
VM
302
303static bool
304sparc_structure_return_p (const struct type *type)
305{
05bc7456 306 if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1933fd8e 307 {
05bc7456
JB
308 /* Float vectors are always returned by memory. */
309 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
310 return true;
311 /* Integer vectors are returned by memory if the vector size
312 is greater than 8 bytes long. */
313 return (TYPE_LENGTH (type) > 8);
314 }
1933fd8e 315
05bc7456
JB
316 if (sparc_floating_p (type))
317 {
318 /* Floating point types are passed by register for size 4 and
319 8 bytes, and by memory for size 16 bytes. */
320 return (TYPE_LENGTH (type) == 16);
1933fd8e 321 }
05bc7456
JB
322
323 /* Other than that, only aggregates of all sizes get returned by
324 memory. */
1933fd8e
VM
325 return sparc_structure_or_union_p (type);
326}
327
05bc7456
JB
328/* Return true if arguments of the given TYPE are passed by
329 memory; false if returned by register. */
1933fd8e
VM
330
331static bool
05bc7456 332sparc_arg_by_memory_p (const struct type *type)
1933fd8e 333{
05bc7456 334 if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1933fd8e 335 {
05bc7456
JB
336 /* Float vectors are always passed by memory. */
337 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
338 return true;
339 /* Integer vectors are passed by memory if the vector size
340 is greater than 8 bytes long. */
341 return (TYPE_LENGTH (type) > 8);
1933fd8e 342 }
05bc7456
JB
343
344 /* Floats are passed by register for size 4 and 8 bytes, and by memory
345 for size 16 bytes. */
346 if (sparc_floating_p (type))
347 return (TYPE_LENGTH (type) == 16);
348
349 /* Complex floats and aggregates of all sizes are passed by memory. */
350 if (sparc_complex_floating_p (type) || sparc_structure_or_union_p (type))
351 return true;
352
353 /* Everything else gets passed by register. */
354 return false;
1933fd8e
VM
355}
356
386c036b 357/* Register information. */
7a36499a
IR
358#define SPARC32_FPU_REGISTERS \
359 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
360 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
361 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
362 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
363#define SPARC32_CP0_REGISTERS \
364 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
386c036b 365
3f7b46f2
IR
366static const char *sparc_core_register_names[] = { SPARC_CORE_REGISTERS };
367static const char *sparc32_fpu_register_names[] = { SPARC32_FPU_REGISTERS };
368static const char *sparc32_cp0_register_names[] = { SPARC32_CP0_REGISTERS };
369
386c036b 370static const char *sparc32_register_names[] =
5af923b0 371{
7a36499a
IR
372 SPARC_CORE_REGISTERS,
373 SPARC32_FPU_REGISTERS,
374 SPARC32_CP0_REGISTERS
5af923b0
MS
375};
376
386c036b
MK
377/* Total number of registers. */
378#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 379
386c036b
MK
380/* We provide the aliases %d0..%d30 for the floating registers as
381 "psuedo" registers. */
382
383static const char *sparc32_pseudo_register_names[] =
384{
385 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
386 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
387};
388
389/* Total number of pseudo registers. */
390#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
391
7a36499a
IR
392/* Return the name of pseudo register REGNUM. */
393
394static const char *
395sparc32_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
396{
397 regnum -= gdbarch_num_regs (gdbarch);
398
399 if (regnum < SPARC32_NUM_PSEUDO_REGS)
400 return sparc32_pseudo_register_names[regnum];
401
402 internal_error (__FILE__, __LINE__,
403 _("sparc32_pseudo_register_name: bad register number %d"),
404 regnum);
405}
406
386c036b
MK
407/* Return the name of register REGNUM. */
408
409static const char *
d93859e2 410sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b 411{
3f7b46f2
IR
412 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
413 return tdesc_register_name (gdbarch, regnum);
414
7a36499a 415 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
386c036b
MK
416 return sparc32_register_names[regnum];
417
7a36499a 418 return sparc32_pseudo_register_name (gdbarch, regnum);
386c036b 419}
2d457077 420\f
209bd28e 421/* Construct types for ISA-specific registers. */
2d457077 422
209bd28e
UW
423static struct type *
424sparc_psr_type (struct gdbarch *gdbarch)
425{
426 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 427
209bd28e
UW
428 if (!tdep->sparc_psr_type)
429 {
430 struct type *type;
2d457077 431
77b7c781 432 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 32);
209bd28e
UW
433 append_flags_type_flag (type, 5, "ET");
434 append_flags_type_flag (type, 6, "PS");
435 append_flags_type_flag (type, 7, "S");
436 append_flags_type_flag (type, 12, "EF");
437 append_flags_type_flag (type, 13, "EC");
2d457077 438
209bd28e
UW
439 tdep->sparc_psr_type = type;
440 }
441
442 return tdep->sparc_psr_type;
443}
444
445static struct type *
446sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 447{
209bd28e
UW
448 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
449
450 if (!tdep->sparc_fsr_type)
451 {
452 struct type *type;
453
77b7c781 454 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 32);
209bd28e
UW
455 append_flags_type_flag (type, 0, "NXA");
456 append_flags_type_flag (type, 1, "DZA");
457 append_flags_type_flag (type, 2, "UFA");
458 append_flags_type_flag (type, 3, "OFA");
459 append_flags_type_flag (type, 4, "NVA");
460 append_flags_type_flag (type, 5, "NXC");
461 append_flags_type_flag (type, 6, "DZC");
462 append_flags_type_flag (type, 7, "UFC");
463 append_flags_type_flag (type, 8, "OFC");
464 append_flags_type_flag (type, 9, "NVC");
465 append_flags_type_flag (type, 22, "NS");
466 append_flags_type_flag (type, 23, "NXM");
467 append_flags_type_flag (type, 24, "DZM");
468 append_flags_type_flag (type, 25, "UFM");
469 append_flags_type_flag (type, 26, "OFM");
470 append_flags_type_flag (type, 27, "NVM");
471
472 tdep->sparc_fsr_type = type;
473 }
474
475 return tdep->sparc_fsr_type;
2d457077 476}
386c036b 477
7a36499a
IR
478/* Return the GDB type object for the "standard" data type of data in
479 pseudo register REGNUM. */
480
481static struct type *
482sparc32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
483{
484 regnum -= gdbarch_num_regs (gdbarch);
485
486 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
487 return builtin_type (gdbarch)->builtin_double;
488
489 internal_error (__FILE__, __LINE__,
490 _("sparc32_pseudo_register_type: bad register number %d"),
491 regnum);
492}
493
386c036b 494/* Return the GDB type object for the "standard" data type of data in
c378eb4e 495 register REGNUM. */
386c036b
MK
496
497static struct type *
498sparc32_register_type (struct gdbarch *gdbarch, int regnum)
499{
3f7b46f2
IR
500 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
501 return tdesc_register_type (gdbarch, regnum);
502
386c036b 503 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 504 return builtin_type (gdbarch)->builtin_float;
386c036b 505
386c036b 506 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 507 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
508
509 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 510 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 511
2d457077 512 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 513 return sparc_psr_type (gdbarch);
2d457077
MK
514
515 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 516 return sparc_fsr_type (gdbarch);
2d457077 517
7a36499a
IR
518 if (regnum >= gdbarch_num_regs (gdbarch))
519 return sparc32_pseudo_register_type (gdbarch, regnum);
520
df4df182 521 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
522}
523
05d1431c 524static enum register_status
386c036b 525sparc32_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 526 readable_regcache *regcache,
e1613aba 527 int regnum, gdb_byte *buf)
386c036b 528{
05d1431c
PA
529 enum register_status status;
530
7a36499a 531 regnum -= gdbarch_num_regs (gdbarch);
386c036b
MK
532 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
533
534 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
03f50fc8 535 status = regcache->raw_read (regnum, buf);
05d1431c 536 if (status == REG_VALID)
03f50fc8 537 status = regcache->raw_read (regnum + 1, buf + 4);
05d1431c 538 return status;
386c036b
MK
539}
540
541static void
542sparc32_pseudo_register_write (struct gdbarch *gdbarch,
543 struct regcache *regcache,
e1613aba 544 int regnum, const gdb_byte *buf)
386c036b 545{
7a36499a 546 regnum -= gdbarch_num_regs (gdbarch);
386c036b
MK
547 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
548
549 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
10eaee5f
SM
550 regcache->raw_write (regnum, buf);
551 regcache->raw_write (regnum + 1, buf + 4);
386c036b
MK
552}
553\f
c9cf6e20 554/* Implement the stack_frame_destroyed_p gdbarch method. */
961842b2
JM
555
556int
c9cf6e20 557sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
961842b2
JM
558{
559 /* This function must return true if we are one instruction after an
560 instruction that destroyed the stack frame of the current
561 function. The SPARC instructions used to restore the callers
562 stack frame are RESTORE and RETURN/RETT.
563
564 Of these RETURN/RETT is a branch instruction and thus we return
565 true if we are in its delay slot.
566
567 RESTORE is almost always found in the delay slot of a branch
568 instruction that transfers control to the caller, such as JMPL.
569 Thus the next instruction is in the caller frame and we don't
570 need to do anything about it. */
571
572 unsigned int insn = sparc_fetch_instruction (pc - 4);
573
574 return X_RETTURN (insn);
575}
576\f
386c036b 577
49a45ecf
JB
578static CORE_ADDR
579sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
580{
581 /* The ABI requires double-word alignment. */
582 return address & ~0x7;
583}
584
386c036b
MK
585static CORE_ADDR
586sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 587 CORE_ADDR funcaddr,
386c036b
MK
588 struct value **args, int nargs,
589 struct type *value_type,
e4fd649a
UW
590 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
591 struct regcache *regcache)
c906108c 592{
e17a4113
UW
593 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
594
386c036b
MK
595 *bp_addr = sp - 4;
596 *real_pc = funcaddr;
597
d80b854b 598 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 599 {
e1613aba 600 gdb_byte buf[4];
386c036b
MK
601
602 /* This is an UNIMP instruction. */
e17a4113
UW
603 store_unsigned_integer (buf, 4, byte_order,
604 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
605 write_memory (sp - 8, buf, 4);
606 return sp - 8;
c906108c
SS
607 }
608
386c036b
MK
609 return sp - 4;
610}
611
612static CORE_ADDR
613sparc32_store_arguments (struct regcache *regcache, int nargs,
614 struct value **args, CORE_ADDR sp,
cf84fa6b
AH
615 function_call_return_method return_method,
616 CORE_ADDR struct_addr)
386c036b 617{
ac7936df 618 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 619 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
620 /* Number of words in the "parameter array". */
621 int num_elements = 0;
622 int element = 0;
623 int i;
624
625 for (i = 0; i < nargs; i++)
c906108c 626 {
4991999e 627 struct type *type = value_type (args[i]);
386c036b
MK
628 int len = TYPE_LENGTH (type);
629
05bc7456 630 if (sparc_arg_by_memory_p (type))
c906108c 631 {
386c036b
MK
632 /* Structure, Union and Quad-Precision Arguments. */
633 sp -= len;
634
635 /* Use doubleword alignment for these values. That's always
636 correct, and wasting a few bytes shouldn't be a problem. */
637 sp &= ~0x7;
638
0fd88904 639 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
640 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
641 num_elements++;
642 }
643 else if (sparc_floating_p (type))
644 {
645 /* Floating arguments. */
646 gdb_assert (len == 4 || len == 8);
647 num_elements += (len / 4);
c906108c 648 }
c5aa993b
JM
649 else
650 {
05bc7456 651 /* Arguments passed via the General Purpose Registers. */
386c036b 652 num_elements += ((len + 3) / 4);
c5aa993b 653 }
c906108c 654 }
c906108c 655
386c036b 656 /* Always allocate at least six words. */
325fac50 657 sp -= std::max (6, num_elements) * 4;
c906108c 658
386c036b
MK
659 /* The psABI says that "Software convention requires space for the
660 struct/union return value pointer, even if the word is unused." */
661 sp -= 4;
c906108c 662
386c036b
MK
663 /* The psABI says that "Although software convention and the
664 operating system require every stack frame to be doubleword
665 aligned." */
666 sp &= ~0x7;
c906108c 667
386c036b 668 for (i = 0; i < nargs; i++)
c906108c 669 {
0fd88904 670 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 671 struct type *type = value_type (args[i]);
386c036b 672 int len = TYPE_LENGTH (type);
1933fd8e
VM
673 gdb_byte buf[4];
674
675 if (len < 4)
676 {
677 memset (buf, 0, 4 - len);
678 memcpy (buf + 4 - len, valbuf, len);
679 valbuf = buf;
680 len = 4;
681 }
c906108c 682
386c036b 683 gdb_assert (len == 4 || len == 8);
c906108c 684
386c036b
MK
685 if (element < 6)
686 {
687 int regnum = SPARC_O0_REGNUM + element;
c906108c 688
b66f5587 689 regcache->cooked_write (regnum, valbuf);
386c036b 690 if (len > 4 && element < 5)
b66f5587 691 regcache->cooked_write (regnum + 1, valbuf + 4);
386c036b 692 }
5af923b0 693
386c036b
MK
694 /* Always store the argument in memory. */
695 write_memory (sp + 4 + element * 4, valbuf, len);
696 element += len / 4;
697 }
c906108c 698
386c036b 699 gdb_assert (element == num_elements);
c906108c 700
cf84fa6b 701 if (return_method == return_method_struct)
c906108c 702 {
e1613aba 703 gdb_byte buf[4];
c906108c 704
e17a4113 705 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
706 write_memory (sp, buf, 4);
707 }
c906108c 708
386c036b 709 return sp;
c906108c
SS
710}
711
386c036b 712static CORE_ADDR
7d9b040b 713sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
714 struct regcache *regcache, CORE_ADDR bp_addr,
715 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
716 function_call_return_method return_method,
717 CORE_ADDR struct_addr)
c906108c 718{
cf84fa6b
AH
719 CORE_ADDR call_pc = (return_method == return_method_struct
720 ? (bp_addr - 12) : (bp_addr - 8));
386c036b
MK
721
722 /* Set return address. */
723 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
724
725 /* Set up function arguments. */
cf84fa6b
AH
726 sp = sparc32_store_arguments (regcache, nargs, args, sp, return_method,
727 struct_addr);
386c036b
MK
728
729 /* Allocate the 16-word window save area. */
730 sp -= 16 * 4;
c906108c 731
386c036b
MK
732 /* Stack should be doubleword aligned at this point. */
733 gdb_assert (sp % 8 == 0);
c906108c 734
386c036b
MK
735 /* Finally, update the stack pointer. */
736 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
737
738 return sp;
739}
740\f
c906108c 741
386c036b
MK
742/* Use the program counter to determine the contents and size of a
743 breakpoint instruction. Return a pointer to a string of bytes that
744 encode a breakpoint instruction, store the length of the string in
745 *LEN and optionally adjust *PC to point to the correct memory
746 location for inserting the breakpoint. */
04180708 747constexpr gdb_byte sparc_break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 748
04180708 749typedef BP_MANIPULATION (sparc_break_insn) sparc_breakpoint;
386c036b 750\f
c906108c 751
386c036b 752/* Allocate and initialize a frame cache. */
c906108c 753
386c036b
MK
754static struct sparc_frame_cache *
755sparc_alloc_frame_cache (void)
756{
757 struct sparc_frame_cache *cache;
c906108c 758
386c036b 759 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 760
386c036b
MK
761 /* Base address. */
762 cache->base = 0;
763 cache->pc = 0;
c906108c 764
386c036b
MK
765 /* Frameless until proven otherwise. */
766 cache->frameless_p = 1;
369c397b
JB
767 cache->frame_offset = 0;
768 cache->saved_regs_mask = 0;
769 cache->copied_regs_mask = 0;
386c036b
MK
770 cache->struct_return_p = 0;
771
772 return cache;
773}
774
b0b92586
JB
775/* GCC generates several well-known sequences of instructions at the begining
776 of each function prologue when compiling with -fstack-check. If one of
777 such sequences starts at START_PC, then return the address of the
778 instruction immediately past this sequence. Otherwise, return START_PC. */
779
780static CORE_ADDR
781sparc_skip_stack_check (const CORE_ADDR start_pc)
782{
783 CORE_ADDR pc = start_pc;
784 unsigned long insn;
2067c8d4 785 int probing_loop = 0;
b0b92586
JB
786
787 /* With GCC, all stack checking sequences begin with the same two
2067c8d4 788 instructions, plus an optional one in the case of a probing loop:
b0b92586 789
2067c8d4
JG
790 sethi <some immediate>, %g1
791 sub %sp, %g1, %g1
792
793 or:
794
795 sethi <some immediate>, %g1
796 sethi <some immediate>, %g4
797 sub %sp, %g1, %g1
798
799 or:
800
801 sethi <some immediate>, %g1
802 sub %sp, %g1, %g1
803 sethi <some immediate>, %g4
804
805 If the optional instruction is found (setting g4), assume that a
806 probing loop will follow. */
807
808 /* sethi <some immediate>, %g1 */
b0b92586
JB
809 insn = sparc_fetch_instruction (pc);
810 pc = pc + 4;
811 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
812 return start_pc;
813
2067c8d4 814 /* optional: sethi <some immediate>, %g4 */
b0b92586
JB
815 insn = sparc_fetch_instruction (pc);
816 pc = pc + 4;
2067c8d4
JG
817 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
818 {
819 probing_loop = 1;
820 insn = sparc_fetch_instruction (pc);
821 pc = pc + 4;
822 }
823
824 /* sub %sp, %g1, %g1 */
b0b92586
JB
825 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
826 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
827 return start_pc;
828
829 insn = sparc_fetch_instruction (pc);
830 pc = pc + 4;
831
2067c8d4
JG
832 /* optional: sethi <some immediate>, %g4 */
833 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
834 {
835 probing_loop = 1;
836 insn = sparc_fetch_instruction (pc);
837 pc = pc + 4;
838 }
839
b0b92586
JB
840 /* First possible sequence:
841 [first two instructions above]
842 clr [%g1 - some immediate] */
843
844 /* clr [%g1 - some immediate] */
845 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
846 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
847 {
848 /* Valid stack-check sequence, return the new PC. */
849 return pc;
850 }
851
852 /* Second possible sequence: A small number of probes.
853 [first two instructions above]
854 clr [%g1]
855 add %g1, -<some immediate>, %g1
856 clr [%g1]
857 [repeat the two instructions above any (small) number of times]
858 clr [%g1 - some immediate] */
859
860 /* clr [%g1] */
861 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
862 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
863 {
864 while (1)
865 {
866 /* add %g1, -<some immediate>, %g1 */
867 insn = sparc_fetch_instruction (pc);
868 pc = pc + 4;
869 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
870 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
871 break;
872
873 /* clr [%g1] */
874 insn = sparc_fetch_instruction (pc);
875 pc = pc + 4;
876 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
877 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
878 return start_pc;
879 }
880
881 /* clr [%g1 - some immediate] */
882 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
883 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
884 return start_pc;
885
886 /* We found a valid stack-check sequence, return the new PC. */
887 return pc;
888 }
889
890 /* Third sequence: A probing loop.
2067c8d4 891 [first three instructions above]
b0b92586
JB
892 sub %g1, %g4, %g4
893 cmp %g1, %g4
894 be <disp>
895 add %g1, -<some immediate>, %g1
896 ba <disp>
897 clr [%g1]
2067c8d4
JG
898
899 And an optional last probe for the remainder:
900
b0b92586
JB
901 clr [%g4 - some immediate] */
902
2067c8d4 903 if (probing_loop)
b0b92586
JB
904 {
905 /* sub %g1, %g4, %g4 */
b0b92586
JB
906 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
907 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
908 return start_pc;
909
910 /* cmp %g1, %g4 */
911 insn = sparc_fetch_instruction (pc);
912 pc = pc + 4;
913 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
914 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
915 return start_pc;
916
917 /* be <disp> */
918 insn = sparc_fetch_instruction (pc);
919 pc = pc + 4;
920 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
921 return start_pc;
922
923 /* add %g1, -<some immediate>, %g1 */
924 insn = sparc_fetch_instruction (pc);
925 pc = pc + 4;
926 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
927 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
928 return start_pc;
929
930 /* ba <disp> */
931 insn = sparc_fetch_instruction (pc);
932 pc = pc + 4;
933 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
934 return start_pc;
935
2067c8d4 936 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
b0b92586
JB
937 insn = sparc_fetch_instruction (pc);
938 pc = pc + 4;
2067c8d4
JG
939 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
940 && X_RD (insn) == 0 && X_RS1 (insn) == 1
941 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
b0b92586
JB
942 return start_pc;
943
2067c8d4
JG
944 /* We found a valid stack-check sequence, return the new PC. */
945
946 /* optional: clr [%g4 - some immediate] */
b0b92586
JB
947 insn = sparc_fetch_instruction (pc);
948 pc = pc + 4;
949 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
950 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
2067c8d4
JG
951 return pc - 4;
952 else
953 return pc;
b0b92586
JB
954 }
955
956 /* No stack check code in our prologue, return the start_pc. */
957 return start_pc;
958}
959
369c397b
JB
960/* Record the effect of a SAVE instruction on CACHE. */
961
962void
963sparc_record_save_insn (struct sparc_frame_cache *cache)
964{
965 /* The frame is set up. */
966 cache->frameless_p = 0;
967
968 /* The frame pointer contains the CFA. */
969 cache->frame_offset = 0;
970
971 /* The `local' and `in' registers are all saved. */
972 cache->saved_regs_mask = 0xffff;
973
974 /* The `out' registers are all renamed. */
975 cache->copied_regs_mask = 0xff;
976}
977
978/* Do a full analysis of the prologue at PC and update CACHE accordingly.
979 Bail out early if CURRENT_PC is reached. Return the address where
980 the analysis stopped.
981
982 We handle both the traditional register window model and the single
983 register window (aka flat) model. */
984
386c036b 985CORE_ADDR
be8626e0
MD
986sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
987 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 988{
be8626e0 989 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
990 unsigned long insn;
991 int offset = 0;
c906108c 992 int dest = -1;
c906108c 993
b0b92586
JB
994 pc = sparc_skip_stack_check (pc);
995
386c036b
MK
996 if (current_pc <= pc)
997 return current_pc;
998
999 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
1000 SPARC the linker usually defines a symbol (typically
1001 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
1002 This symbol makes us end up here with PC pointing at the start of
1003 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
1004 would do our normal prologue analysis, we would probably conclude
1005 that we've got a frame when in reality we don't, since the
1006 dynamic linker patches up the first PLT with some code that
1007 starts with a SAVE instruction. Patch up PC such that it points
1008 at the start of our PLT entry. */
3e5d3a5a 1009 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
386c036b 1010 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 1011
386c036b
MK
1012 insn = sparc_fetch_instruction (pc);
1013
369c397b
JB
1014 /* Recognize store insns and record their sources. */
1015 while (X_OP (insn) == 3
1016 && (X_OP3 (insn) == 0x4 /* stw */
1017 || X_OP3 (insn) == 0x7 /* std */
1018 || X_OP3 (insn) == 0xe) /* stx */
1019 && X_RS1 (insn) == SPARC_SP_REGNUM)
1020 {
1021 int regnum = X_RD (insn);
1022
1023 /* Recognize stores into the corresponding stack slots. */
1024 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1025 && ((X_I (insn)
1026 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
1027 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
1028 : (regnum - SPARC_L0_REGNUM) * 4))
1029 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
1030 {
1031 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
1032 if (X_OP3 (insn) == 0x7)
1033 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
1034 }
1035
1036 offset += 4;
1037
1038 insn = sparc_fetch_instruction (pc + offset);
1039 }
1040
386c036b
MK
1041 /* Recognize a SETHI insn and record its destination. */
1042 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
1043 {
1044 dest = X_RD (insn);
386c036b
MK
1045 offset += 4;
1046
369c397b 1047 insn = sparc_fetch_instruction (pc + offset);
c906108c
SS
1048 }
1049
386c036b
MK
1050 /* Allow for an arithmetic operation on DEST or %g1. */
1051 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
1052 && (X_RD (insn) == 1 || X_RD (insn) == dest))
1053 {
386c036b 1054 offset += 4;
c906108c 1055
369c397b 1056 insn = sparc_fetch_instruction (pc + offset);
c906108c 1057 }
c906108c 1058
386c036b
MK
1059 /* Check for the SAVE instruction that sets up the frame. */
1060 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 1061 {
369c397b
JB
1062 sparc_record_save_insn (cache);
1063 offset += 4;
1064 return pc + offset;
1065 }
1066
1067 /* Check for an arithmetic operation on %sp. */
1068 if (X_OP (insn) == 2
1069 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1070 && X_RS1 (insn) == SPARC_SP_REGNUM
1071 && X_RD (insn) == SPARC_SP_REGNUM)
1072 {
1073 if (X_I (insn))
1074 {
1075 cache->frame_offset = X_SIMM13 (insn);
1076 if (X_OP3 (insn) == 0)
1077 cache->frame_offset = -cache->frame_offset;
1078 }
1079 offset += 4;
1080
1081 insn = sparc_fetch_instruction (pc + offset);
1082
1083 /* Check for an arithmetic operation that sets up the frame. */
1084 if (X_OP (insn) == 2
1085 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1086 && X_RS1 (insn) == SPARC_SP_REGNUM
1087 && X_RD (insn) == SPARC_FP_REGNUM)
1088 {
1089 cache->frameless_p = 0;
1090 cache->frame_offset = 0;
1091 /* We could check that the amount subtracted to %sp above is the
1092 same as the one added here, but this seems superfluous. */
1093 cache->copied_regs_mask |= 0x40;
1094 offset += 4;
1095
1096 insn = sparc_fetch_instruction (pc + offset);
1097 }
1098
1099 /* Check for a move (or) operation that copies the return register. */
1100 if (X_OP (insn) == 2
1101 && X_OP3 (insn) == 0x2
1102 && !X_I (insn)
1103 && X_RS1 (insn) == SPARC_G0_REGNUM
1104 && X_RS2 (insn) == SPARC_O7_REGNUM
1105 && X_RD (insn) == SPARC_I7_REGNUM)
1106 {
1107 cache->copied_regs_mask |= 0x80;
1108 offset += 4;
1109 }
1110
1111 return pc + offset;
c906108c
SS
1112 }
1113
1114 return pc;
1115}
1116
386c036b 1117static CORE_ADDR
236369e7 1118sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1119{
1120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 1121 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
1122}
1123
1124/* Return PC of first real instruction of the function starting at
1125 START_PC. */
f510d44e 1126
386c036b 1127static CORE_ADDR
6093d2eb 1128sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1129{
f510d44e
DM
1130 struct symtab_and_line sal;
1131 CORE_ADDR func_start, func_end;
386c036b 1132 struct sparc_frame_cache cache;
f510d44e
DM
1133
1134 /* This is the preferred method, find the end of the prologue by
1135 using the debugging information. */
1136 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1137 {
1138 sal = find_pc_line (func_start, 0);
1139
1140 if (sal.end < func_end
1141 && start_pc <= sal.end)
1142 return sal.end;
1143 }
1144
be8626e0 1145 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
1146
1147 /* The psABI says that "Although the first 6 words of arguments
1148 reside in registers, the standard stack frame reserves space for
1149 them.". It also suggests that a function may use that space to
1150 "write incoming arguments 0 to 5" into that space, and that's
1151 indeed what GCC seems to be doing. In that case GCC will
1152 generate debug information that points to the stack slots instead
1153 of the registers, so we should consider the instructions that
369c397b 1154 write out these incoming arguments onto the stack. */
075ccec8 1155
369c397b 1156 while (1)
075ccec8
MK
1157 {
1158 unsigned long insn = sparc_fetch_instruction (start_pc);
1159
369c397b
JB
1160 /* Recognize instructions that store incoming arguments into the
1161 corresponding stack slots. */
1162 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1163 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
075ccec8 1164 {
369c397b
JB
1165 int regnum = X_RD (insn);
1166
1167 /* Case of arguments still in %o[0..5]. */
1168 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1169 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1170 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1171 {
1172 start_pc += 4;
1173 continue;
1174 }
1175
1176 /* Case of arguments copied into %i[0..5]. */
1177 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1178 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1179 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1180 {
1181 start_pc += 4;
1182 continue;
1183 }
075ccec8
MK
1184 }
1185
1186 break;
1187 }
1188
1189 return start_pc;
c906108c
SS
1190}
1191
386c036b 1192/* Normal frames. */
9319a2fe 1193
386c036b 1194struct sparc_frame_cache *
236369e7 1195sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 1196{
386c036b 1197 struct sparc_frame_cache *cache;
9319a2fe 1198
386c036b 1199 if (*this_cache)
19ba03f4 1200 return (struct sparc_frame_cache *) *this_cache;
c906108c 1201
386c036b
MK
1202 cache = sparc_alloc_frame_cache ();
1203 *this_cache = cache;
c906108c 1204
236369e7 1205 cache->pc = get_frame_func (this_frame);
386c036b 1206 if (cache->pc != 0)
236369e7
JB
1207 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1208 get_frame_pc (this_frame), cache);
386c036b
MK
1209
1210 if (cache->frameless_p)
c906108c 1211 {
cbeae229
MK
1212 /* This function is frameless, so %fp (%i6) holds the frame
1213 pointer for our calling frame. Use %sp (%o6) as this frame's
1214 base address. */
1215 cache->base =
236369e7 1216 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
1217 }
1218 else
1219 {
1220 /* For normal frames, %fp (%i6) holds the frame pointer, the
1221 base address for the current stack frame. */
1222 cache->base =
236369e7 1223 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 1224 }
c906108c 1225
369c397b
JB
1226 cache->base += cache->frame_offset;
1227
5b2d44a0
MK
1228 if (cache->base & 1)
1229 cache->base += BIAS;
1230
386c036b 1231 return cache;
c906108c 1232}
c906108c 1233
aff37fc1
DM
1234static int
1235sparc32_struct_return_from_sym (struct symbol *sym)
1236{
1237 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1238 enum type_code code = TYPE_CODE (type);
1239
1240 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1241 {
1242 type = check_typedef (TYPE_TARGET_TYPE (type));
1243 if (sparc_structure_or_union_p (type)
1244 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1245 return 1;
1246 }
1247
1248 return 0;
1249}
1250
386c036b 1251struct sparc_frame_cache *
236369e7 1252sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 1253{
386c036b
MK
1254 struct sparc_frame_cache *cache;
1255 struct symbol *sym;
c906108c 1256
386c036b 1257 if (*this_cache)
19ba03f4 1258 return (struct sparc_frame_cache *) *this_cache;
c906108c 1259
236369e7 1260 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 1261
386c036b
MK
1262 sym = find_pc_function (cache->pc);
1263 if (sym)
c906108c 1264 {
aff37fc1 1265 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 1266 }
5465445a
JB
1267 else
1268 {
1269 /* There is no debugging information for this function to
1270 help us determine whether this function returns a struct
1271 or not. So we rely on another heuristic which is to check
1272 the instruction at the return address and see if this is
1273 an "unimp" instruction. If it is, then it is a struct-return
1274 function. */
1275 CORE_ADDR pc;
369c397b
JB
1276 int regnum =
1277 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
5465445a 1278
236369e7 1279 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
1280 if (sparc_is_unimp_insn (pc))
1281 cache->struct_return_p = 1;
1282 }
c906108c 1283
386c036b
MK
1284 return cache;
1285}
1286
1287static void
236369e7 1288sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
1289 struct frame_id *this_id)
1290{
1291 struct sparc_frame_cache *cache =
236369e7 1292 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
1293
1294 /* This marks the outermost frame. */
1295 if (cache->base == 0)
1296 return;
1297
1298 (*this_id) = frame_id_build (cache->base, cache->pc);
1299}
c906108c 1300
236369e7
JB
1301static struct value *
1302sparc32_frame_prev_register (struct frame_info *this_frame,
1303 void **this_cache, int regnum)
386c036b 1304{
e17a4113 1305 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 1306 struct sparc_frame_cache *cache =
236369e7 1307 sparc32_frame_cache (this_frame, this_cache);
c906108c 1308
386c036b 1309 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 1310 {
236369e7 1311 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 1312
236369e7
JB
1313 /* If this functions has a Structure, Union or Quad-Precision
1314 return value, we have to skip the UNIMP instruction that encodes
1315 the size of the structure. */
1316 if (cache->struct_return_p)
1317 pc += 4;
386c036b 1318
369c397b
JB
1319 regnum =
1320 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
236369e7
JB
1321 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1322 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
1323 }
1324
42cdca6c
MK
1325 /* Handle StackGhost. */
1326 {
e17a4113 1327 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
1328
1329 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1330 {
236369e7
JB
1331 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1332 ULONGEST i7;
1333
1334 /* Read the value in from memory. */
1335 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1336 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
1337 }
1338 }
1339
369c397b 1340 /* The previous frame's `local' and `in' registers may have been saved
386c036b 1341 in the register save area. */
369c397b
JB
1342 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1343 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
c906108c 1344 {
236369e7 1345 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1346
236369e7 1347 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1348 }
c906108c 1349
369c397b
JB
1350 /* The previous frame's `out' registers may be accessible as the current
1351 frame's `in' registers. */
1352 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1353 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
386c036b 1354 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1355
236369e7 1356 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1357}
c906108c 1358
386c036b
MK
1359static const struct frame_unwind sparc32_frame_unwind =
1360{
1361 NORMAL_FRAME,
8fbca658 1362 default_frame_unwind_stop_reason,
386c036b 1363 sparc32_frame_this_id,
236369e7
JB
1364 sparc32_frame_prev_register,
1365 NULL,
1366 default_frame_sniffer
386c036b 1367};
386c036b 1368\f
c906108c 1369
386c036b 1370static CORE_ADDR
236369e7 1371sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1372{
1373 struct sparc_frame_cache *cache =
236369e7 1374 sparc32_frame_cache (this_frame, this_cache);
c906108c 1375
386c036b
MK
1376 return cache->base;
1377}
c906108c 1378
386c036b
MK
1379static const struct frame_base sparc32_frame_base =
1380{
1381 &sparc32_frame_unwind,
1382 sparc32_frame_base_address,
1383 sparc32_frame_base_address,
1384 sparc32_frame_base_address
1385};
c906108c 1386
386c036b 1387static struct frame_id
236369e7 1388sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1389{
1390 CORE_ADDR sp;
5af923b0 1391
236369e7 1392 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1393 if (sp & 1)
1394 sp += BIAS;
236369e7 1395 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1396}
1397\f
c906108c 1398
3923a2b2
MK
1399/* Extract a function return value of TYPE from REGCACHE, and copy
1400 that into VALBUF. */
5af923b0 1401
386c036b
MK
1402static void
1403sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1404 gdb_byte *valbuf)
386c036b
MK
1405{
1406 int len = TYPE_LENGTH (type);
fe10a582 1407 gdb_byte buf[32];
c906108c 1408
1933fd8e 1409 gdb_assert (!sparc_structure_return_p (type));
c906108c 1410
1933fd8e
VM
1411 if (sparc_floating_p (type) || sparc_complex_floating_p (type)
1412 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5af923b0 1413 {
386c036b 1414 /* Floating return values. */
dca08e1f 1415 regcache->cooked_read (SPARC_F0_REGNUM, buf);
386c036b 1416 if (len > 4)
dca08e1f 1417 regcache->cooked_read (SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1418 if (len > 8)
1419 {
dca08e1f
SM
1420 regcache->cooked_read (SPARC_F2_REGNUM, buf + 8);
1421 regcache->cooked_read (SPARC_F3_REGNUM, buf + 12);
fe10a582
DM
1422 }
1423 if (len > 16)
1424 {
dca08e1f
SM
1425 regcache->cooked_read (SPARC_F4_REGNUM, buf + 16);
1426 regcache->cooked_read (SPARC_F5_REGNUM, buf + 20);
1427 regcache->cooked_read (SPARC_F6_REGNUM, buf + 24);
1428 regcache->cooked_read (SPARC_F7_REGNUM, buf + 28);
fe10a582 1429 }
386c036b 1430 memcpy (valbuf, buf, len);
5af923b0
MS
1431 }
1432 else
1433 {
386c036b
MK
1434 /* Integral and pointer return values. */
1435 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1436
dca08e1f 1437 regcache->cooked_read (SPARC_O0_REGNUM, buf);
386c036b
MK
1438 if (len > 4)
1439 {
dca08e1f 1440 regcache->cooked_read (SPARC_O1_REGNUM, buf + 4);
386c036b
MK
1441 gdb_assert (len == 8);
1442 memcpy (valbuf, buf, 8);
1443 }
1444 else
1445 {
1446 /* Just stripping off any unused bytes should preserve the
1447 signed-ness just fine. */
1448 memcpy (valbuf, buf + 4 - len, len);
1449 }
1450 }
1451}
c906108c 1452
3923a2b2
MK
1453/* Store the function return value of type TYPE from VALBUF into
1454 REGCACHE. */
c906108c 1455
386c036b
MK
1456static void
1457sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1458 const gdb_byte *valbuf)
386c036b
MK
1459{
1460 int len = TYPE_LENGTH (type);
1933fd8e 1461 gdb_byte buf[32];
c906108c 1462
1933fd8e 1463 gdb_assert (!sparc_structure_return_p (type));
c906108c 1464
fe10a582 1465 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
386c036b
MK
1466 {
1467 /* Floating return values. */
1468 memcpy (buf, valbuf, len);
b66f5587 1469 regcache->cooked_write (SPARC_F0_REGNUM, buf);
386c036b 1470 if (len > 4)
b66f5587 1471 regcache->cooked_write (SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1472 if (len > 8)
1473 {
b66f5587
SM
1474 regcache->cooked_write (SPARC_F2_REGNUM, buf + 8);
1475 regcache->cooked_write (SPARC_F3_REGNUM, buf + 12);
fe10a582
DM
1476 }
1477 if (len > 16)
1478 {
b66f5587
SM
1479 regcache->cooked_write (SPARC_F4_REGNUM, buf + 16);
1480 regcache->cooked_write (SPARC_F5_REGNUM, buf + 20);
1481 regcache->cooked_write (SPARC_F6_REGNUM, buf + 24);
1482 regcache->cooked_write (SPARC_F7_REGNUM, buf + 28);
fe10a582 1483 }
386c036b
MK
1484 }
1485 else
c906108c 1486 {
386c036b
MK
1487 /* Integral and pointer return values. */
1488 gdb_assert (sparc_integral_or_pointer_p (type));
1489
1490 if (len > 4)
2757dd86 1491 {
386c036b
MK
1492 gdb_assert (len == 8);
1493 memcpy (buf, valbuf, 8);
b66f5587 1494 regcache->cooked_write (SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1495 }
1496 else
1497 {
386c036b
MK
1498 /* ??? Do we need to do any sign-extension here? */
1499 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1500 }
b66f5587 1501 regcache->cooked_write (SPARC_O0_REGNUM, buf);
c906108c
SS
1502 }
1503}
1504
b9d4c5ed 1505static enum return_value_convention
6a3a010b 1506sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1507 struct type *type, struct regcache *regcache,
1508 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1509{
e17a4113
UW
1510 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1511
0a8f48b9
MK
1512 /* The psABI says that "...every stack frame reserves the word at
1513 %fp+64. If a function returns a structure, union, or
1514 quad-precision value, this word should hold the address of the
1515 object into which the return value should be copied." This
1516 guarantees that we can always find the return value, not just
1517 before the function returns. */
1518
1933fd8e 1519 if (sparc_structure_return_p (type))
0a8f48b9 1520 {
bbfdfe1c
DM
1521 ULONGEST sp;
1522 CORE_ADDR addr;
1523
0a8f48b9
MK
1524 if (readbuf)
1525 {
0a8f48b9 1526 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1527 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1528 read_memory (addr, readbuf, TYPE_LENGTH (type));
1529 }
bbfdfe1c
DM
1530 if (writebuf)
1531 {
1532 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1533 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1534 write_memory (addr, writebuf, TYPE_LENGTH (type));
1535 }
0a8f48b9
MK
1536
1537 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1538 }
b9d4c5ed
MK
1539
1540 if (readbuf)
1541 sparc32_extract_return_value (type, regcache, readbuf);
1542 if (writebuf)
1543 sparc32_store_return_value (type, regcache, writebuf);
1544
1545 return RETURN_VALUE_REGISTER_CONVENTION;
1546}
1547
386c036b
MK
1548static int
1549sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1550{
386c036b 1551 return (sparc_structure_or_union_p (type)
fe10a582
DM
1552 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1553 || sparc_complex_floating_p (type));
386c036b 1554}
c906108c 1555
aff37fc1 1556static int
4a4e5149 1557sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1558{
236369e7 1559 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1560 struct symbol *sym = find_pc_function (pc);
1561
1562 if (sym)
1563 return sparc32_struct_return_from_sym (sym);
1564 return 0;
1565}
1566
f5a9b87d
DM
1567static void
1568sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1569 struct dwarf2_frame_state_reg *reg,
4a4e5149 1570 struct frame_info *this_frame)
f5a9b87d 1571{
aff37fc1
DM
1572 int off;
1573
f5a9b87d
DM
1574 switch (regnum)
1575 {
1576 case SPARC_G0_REGNUM:
1577 /* Since %g0 is always zero, there is no point in saving it, and
1578 people will be inclined omit it from the CFI. Make sure we
1579 don't warn about that. */
1580 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1581 break;
1582 case SPARC_SP_REGNUM:
1583 reg->how = DWARF2_FRAME_REG_CFA;
1584 break;
1585 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1586 case SPARC32_NPC_REGNUM:
1587 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1588 off = 8;
4a4e5149 1589 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1590 off += 4;
1591 if (regnum == SPARC32_NPC_REGNUM)
1592 off += 4;
1593 reg->loc.offset = off;
f5a9b87d
DM
1594 break;
1595 }
1596}
1597
b41c5a85
JW
1598/* Implement the execute_dwarf_cfa_vendor_op method. */
1599
1600static bool
1601sparc_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
1602 struct dwarf2_frame_state *fs)
1603{
1604 /* Only DW_CFA_GNU_window_save is expected on SPARC. */
1605 if (op != DW_CFA_GNU_window_save)
1606 return false;
1607
1608 uint64_t reg;
1609 int size = register_size (gdbarch, 0);
1610
1c90d9f0 1611 fs->regs.alloc_regs (32);
b41c5a85
JW
1612 for (reg = 8; reg < 16; reg++)
1613 {
1614 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
1615 fs->regs.reg[reg].loc.reg = reg + 16;
1616 }
1617 for (reg = 16; reg < 32; reg++)
1618 {
1619 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
1620 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
1621 }
1622
1623 return true;
1624}
1625
386c036b
MK
1626\f
1627/* The SPARC Architecture doesn't have hardware single-step support,
1628 and most operating systems don't implement it either, so we provide
1629 software single-step mechanism. */
c906108c 1630
386c036b 1631static CORE_ADDR
cd76b525 1632sparc_analyze_control_transfer (struct regcache *regcache,
c893be75 1633 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1634{
1635 unsigned long insn = sparc_fetch_instruction (pc);
1636 int conditional_p = X_COND (insn) & 0x7;
8d1b3521 1637 int branch_p = 0, fused_p = 0;
386c036b 1638 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1639
8d1b3521 1640 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
c906108c 1641 {
8d1b3521
DM
1642 if ((insn & 0x10000000) == 0)
1643 {
1644 /* Branch on Integer Register with Prediction (BPr). */
1645 branch_p = 1;
1646 conditional_p = 1;
1647 }
1648 else
1649 {
1650 /* Compare and Branch */
1651 branch_p = 1;
1652 fused_p = 1;
1653 offset = 4 * X_DISP10 (insn);
1654 }
c906108c 1655 }
386c036b 1656 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1657 {
386c036b
MK
1658 /* Branch on Floating-Point Condition Codes (FBfcc). */
1659 branch_p = 1;
1660 offset = 4 * X_DISP22 (insn);
c906108c 1661 }
386c036b
MK
1662 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1663 {
1664 /* Branch on Floating-Point Condition Codes with Prediction
1665 (FBPfcc). */
1666 branch_p = 1;
1667 offset = 4 * X_DISP19 (insn);
1668 }
1669 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1670 {
1671 /* Branch on Integer Condition Codes (Bicc). */
1672 branch_p = 1;
1673 offset = 4 * X_DISP22 (insn);
1674 }
1675 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1676 {
386c036b
MK
1677 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1678 branch_p = 1;
1679 offset = 4 * X_DISP19 (insn);
c906108c 1680 }
c893be75
MK
1681 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1682 {
cd76b525
YQ
1683 struct frame_info *frame = get_current_frame ();
1684
c893be75 1685 /* Trap instruction (TRAP). */
ac7936df 1686 return gdbarch_tdep (regcache->arch ())->step_trap (frame,
cd76b525 1687 insn);
c893be75 1688 }
386c036b
MK
1689
1690 /* FIXME: Handle DONE and RETRY instructions. */
1691
386c036b 1692 if (branch_p)
c906108c 1693 {
8d1b3521
DM
1694 if (fused_p)
1695 {
1696 /* Fused compare-and-branch instructions are non-delayed,
1697 and do not have an annuling capability. So we need to
1698 always set a breakpoint on both the NPC and the branch
1699 target address. */
1700 gdb_assert (offset != 0);
1701 return pc + offset;
1702 }
1703 else if (conditional_p)
c906108c 1704 {
386c036b
MK
1705 /* For conditional branches, return nPC + 4 iff the annul
1706 bit is 1. */
1707 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1708 }
1709 else
1710 {
386c036b
MK
1711 /* For unconditional branches, return the target if its
1712 specified condition is "always" and return nPC + 4 if the
1713 condition is "never". If the annul bit is 1, set *NPC to
1714 zero. */
1715 if (X_COND (insn) == 0x0)
1716 pc = *npc, offset = 4;
1717 if (X_A (insn))
1718 *npc = 0;
1719
386c036b 1720 return pc + offset;
c906108c
SS
1721 }
1722 }
386c036b
MK
1723
1724 return 0;
c906108c
SS
1725}
1726
c893be75 1727static CORE_ADDR
0b1b3e42 1728sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1729{
1730 return 0;
1731}
1732
a0ff9e1a 1733static std::vector<CORE_ADDR>
f5ea389a 1734sparc_software_single_step (struct regcache *regcache)
386c036b 1735{
ac7936df 1736 struct gdbarch *arch = regcache->arch ();
c893be75 1737 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
8181d85f 1738 CORE_ADDR npc, nnpc;
c906108c 1739
e0cd558a 1740 CORE_ADDR pc, orig_npc;
a0ff9e1a 1741 std::vector<CORE_ADDR> next_pcs;
c906108c 1742
cd76b525
YQ
1743 pc = regcache_raw_get_unsigned (regcache, tdep->pc_regnum);
1744 orig_npc = npc = regcache_raw_get_unsigned (regcache, tdep->npc_regnum);
c906108c 1745
e0cd558a 1746 /* Analyze the instruction at PC. */
cd76b525 1747 nnpc = sparc_analyze_control_transfer (regcache, pc, &npc);
e0cd558a 1748 if (npc != 0)
a0ff9e1a 1749 next_pcs.push_back (npc);
8181d85f 1750
e0cd558a 1751 if (nnpc != 0)
a0ff9e1a 1752 next_pcs.push_back (nnpc);
c906108c 1753
e0cd558a
UW
1754 /* Assert that we have set at least one breakpoint, and that
1755 they're not set at the same spot - unless we're going
1756 from here straight to NULL, i.e. a call or jump to 0. */
1757 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1758 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b 1759
93f9a11f 1760 return next_pcs;
386c036b
MK
1761}
1762
1763static void
61a1198a 1764sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1765{
ac7936df 1766 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
386c036b 1767
61a1198a
UW
1768 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1769 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1770}
1771\f
5af923b0 1772
e5139de8 1773/* Iterate over core file register note sections. */
a54124c5 1774
e5139de8
AA
1775static void
1776sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
1777 iterate_over_regset_sections_cb *cb,
1778 void *cb_data,
1779 const struct regcache *regcache)
a54124c5
MK
1780{
1781 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1782
a616bb94
AH
1783 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, tdep->gregset, NULL,
1784 cb_data);
1785 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
1786 NULL, cb_data);
a54124c5
MK
1787}
1788\f
1789
3f7b46f2
IR
1790static int
1791validate_tdesc_registers (const struct target_desc *tdesc,
1792 struct tdesc_arch_data *tdesc_data,
1793 const char *feature_name,
1794 const char *register_names[],
1795 unsigned int registers_num,
1796 unsigned int reg_start)
1797{
1798 int valid_p = 1;
1799 const struct tdesc_feature *feature;
1800
1801 feature = tdesc_find_feature (tdesc, feature_name);
1802 if (feature == NULL)
1803 return 0;
1804
1805 for (unsigned int i = 0; i < registers_num; i++)
1806 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1807 reg_start + i,
1808 register_names[i]);
1809
1810 return valid_p;
1811}
1812
386c036b
MK
1813static struct gdbarch *
1814sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1815{
1816 struct gdbarch_tdep *tdep;
3f7b46f2 1817 const struct target_desc *tdesc = info.target_desc;
386c036b 1818 struct gdbarch *gdbarch;
3f7b46f2 1819 int valid_p = 1;
c906108c 1820
386c036b
MK
1821 /* If there is already a candidate, use it. */
1822 arches = gdbarch_list_lookup_by_info (arches, &info);
1823 if (arches != NULL)
1824 return arches->gdbarch;
c906108c 1825
386c036b 1826 /* Allocate space for the new architecture. */
41bf6aca 1827 tdep = XCNEW (struct gdbarch_tdep);
386c036b 1828 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1829
386c036b
MK
1830 tdep->pc_regnum = SPARC32_PC_REGNUM;
1831 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1832 tdep->step_trap = sparc_step_trap;
3f7b46f2
IR
1833 tdep->fpu_register_names = sparc32_fpu_register_names;
1834 tdep->fpu_registers_num = ARRAY_SIZE (sparc32_fpu_register_names);
1835 tdep->cp0_register_names = sparc32_cp0_register_names;
1836 tdep->cp0_registers_num = ARRAY_SIZE (sparc32_cp0_register_names);
386c036b
MK
1837
1838 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1839 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b 1840
53375380
PA
1841 set_gdbarch_wchar_bit (gdbarch, 16);
1842 set_gdbarch_wchar_signed (gdbarch, 1);
1843
386c036b
MK
1844 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1845 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1846 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1847 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
3f7b46f2
IR
1848 set_tdesc_pseudo_register_name (gdbarch, sparc32_pseudo_register_name);
1849 set_tdesc_pseudo_register_type (gdbarch, sparc32_pseudo_register_type);
386c036b
MK
1850 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1851 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1852
1853 /* Register numbers of various important registers. */
1854 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1855 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1856 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1857
1858 /* Call dummy code. */
49a45ecf 1859 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
386c036b
MK
1860 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1861 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1862 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1863
b9d4c5ed 1864 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1865 set_gdbarch_stabs_argument_has_addr
1866 (gdbarch, sparc32_stabs_argument_has_addr);
1867
1868 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1869
1870 /* Stack grows downward. */
1871 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1872
04180708
YQ
1873 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1874 sparc_breakpoint::kind_from_pc);
1875 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1876 sparc_breakpoint::bp_from_kind);
c906108c 1877
386c036b 1878 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1879
386c036b
MK
1880 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1881 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1882
236369e7 1883 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1884
386c036b 1885 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1886
386c036b
MK
1887 frame_base_set_default (gdbarch, &sparc32_frame_base);
1888
f5a9b87d
DM
1889 /* Hook in the DWARF CFI frame unwinder. */
1890 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
b41c5a85
JW
1891 /* Register DWARF vendor CFI handler. */
1892 set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch,
1893 sparc_execute_dwarf_cfa_vendor_op);
f5a9b87d
DM
1894 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1895 StackGhost issues have been resolved. */
1896
b2a0b9b2
DM
1897 /* Hook in ABI-specific overrides, if they have been registered. */
1898 gdbarch_init_osabi (info, gdbarch);
1899
236369e7 1900 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1901
3f7b46f2
IR
1902 if (tdesc_has_registers (tdesc))
1903 {
1904 struct tdesc_arch_data *tdesc_data = tdesc_data_alloc ();
1905
1906 /* Validate that the descriptor provides the mandatory registers
1907 and allocate their numbers. */
1908 valid_p &= validate_tdesc_registers (tdesc, tdesc_data,
1909 "org.gnu.gdb.sparc.cpu",
1910 sparc_core_register_names,
1911 ARRAY_SIZE (sparc_core_register_names),
1912 SPARC_G0_REGNUM);
1913 valid_p &= validate_tdesc_registers (tdesc, tdesc_data,
1914 "org.gnu.gdb.sparc.fpu",
1915 tdep->fpu_register_names,
1916 tdep->fpu_registers_num,
1917 SPARC_F0_REGNUM);
1918 valid_p &= validate_tdesc_registers (tdesc, tdesc_data,
1919 "org.gnu.gdb.sparc.cp0",
1920 tdep->cp0_register_names,
1921 tdep->cp0_registers_num,
1291063d
JM
1922 SPARC_F0_REGNUM
1923 + tdep->fpu_registers_num);
3f7b46f2
IR
1924 if (!valid_p)
1925 {
1926 tdesc_data_cleanup (tdesc_data);
1927 return NULL;
1928 }
1929
1930 /* Target description may have changed. */
0dba2a6c 1931 info.tdesc_data = tdesc_data;
3f7b46f2
IR
1932 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1933 }
1934
a54124c5 1935 /* If we have register sets, enable the generic core file support. */
4c72d57a 1936 if (tdep->gregset)
e5139de8
AA
1937 set_gdbarch_iterate_over_regset_sections
1938 (gdbarch, sparc_iterate_over_regset_sections);
a54124c5 1939
7e35103a
JB
1940 register_sparc_ravenscar_ops (gdbarch);
1941
386c036b
MK
1942 return gdbarch;
1943}
1944\f
1945/* Helper functions for dealing with register windows. */
1946
1947void
1948sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1949{
ac7936df 1950 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1951 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1952 int offset = 0;
e1613aba 1953 gdb_byte buf[8];
386c036b
MK
1954 int i;
1955
1956 if (sp & 1)
1957 {
1958 /* Registers are 64-bit. */
1959 sp += BIAS;
c906108c 1960
386c036b
MK
1961 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1962 {
1963 if (regnum == i || regnum == -1)
1964 {
1965 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1966
1967 /* Handle StackGhost. */
1968 if (i == SPARC_I7_REGNUM)
1969 {
e17a4113
UW
1970 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1971 ULONGEST i7;
f700a364 1972
e17a4113
UW
1973 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1974 store_unsigned_integer (buf + offset, 8, byte_order,
1975 i7 ^ wcookie);
f700a364
MK
1976 }
1977
73e1c03f 1978 regcache->raw_supply (i, buf);
386c036b
MK
1979 }
1980 }
1981 }
1982 else
c906108c 1983 {
386c036b
MK
1984 /* Registers are 32-bit. Toss any sign-extension of the stack
1985 pointer. */
1986 sp &= 0xffffffffUL;
c906108c 1987
386c036b
MK
1988 /* Clear out the top half of the temporary buffer, and put the
1989 register value in the bottom half if we're in 64-bit mode. */
ac7936df 1990 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
c906108c 1991 {
386c036b
MK
1992 memset (buf, 0, 4);
1993 offset = 4;
1994 }
c906108c 1995
386c036b
MK
1996 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1997 {
1998 if (regnum == i || regnum == -1)
1999 {
2000 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
2001 buf + offset, 4);
42cdca6c
MK
2002
2003 /* Handle StackGhost. */
2004 if (i == SPARC_I7_REGNUM)
2005 {
e17a4113
UW
2006 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2007 ULONGEST i7;
42cdca6c 2008
e17a4113
UW
2009 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2010 store_unsigned_integer (buf + offset, 4, byte_order,
2011 i7 ^ wcookie);
42cdca6c
MK
2012 }
2013
73e1c03f 2014 regcache->raw_supply (i, buf);
386c036b 2015 }
c906108c
SS
2016 }
2017 }
c906108c 2018}
c906108c
SS
2019
2020void
386c036b
MK
2021sparc_collect_rwindow (const struct regcache *regcache,
2022 CORE_ADDR sp, int regnum)
c906108c 2023{
ac7936df 2024 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 2025 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 2026 int offset = 0;
e1613aba 2027 gdb_byte buf[8];
386c036b 2028 int i;
5af923b0 2029
386c036b 2030 if (sp & 1)
5af923b0 2031 {
386c036b
MK
2032 /* Registers are 64-bit. */
2033 sp += BIAS;
c906108c 2034
386c036b
MK
2035 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2036 {
2037 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2038 {
34a79281 2039 regcache->raw_collect (i, buf);
f700a364
MK
2040
2041 /* Handle StackGhost. */
2042 if (i == SPARC_I7_REGNUM)
2043 {
e17a4113
UW
2044 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2045 ULONGEST i7;
f700a364 2046
e17a4113
UW
2047 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
2048 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
2049 }
2050
386c036b
MK
2051 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
2052 }
2053 }
5af923b0
MS
2054 }
2055 else
2056 {
386c036b
MK
2057 /* Registers are 32-bit. Toss any sign-extension of the stack
2058 pointer. */
2059 sp &= 0xffffffffUL;
2060
2061 /* Only use the bottom half if we're in 64-bit mode. */
ac7936df 2062 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
386c036b
MK
2063 offset = 4;
2064
2065 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2066 {
2067 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2068 {
34a79281 2069 regcache->raw_collect (i, buf);
42cdca6c
MK
2070
2071 /* Handle StackGhost. */
2072 if (i == SPARC_I7_REGNUM)
2073 {
e17a4113
UW
2074 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2075 ULONGEST i7;
42cdca6c 2076
e17a4113
UW
2077 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2078 store_unsigned_integer (buf + offset, 4, byte_order,
2079 i7 ^ wcookie);
42cdca6c
MK
2080 }
2081
386c036b
MK
2082 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
2083 buf + offset, 4);
2084 }
2085 }
5af923b0 2086 }
c906108c
SS
2087}
2088
386c036b
MK
2089/* Helper functions for dealing with register sets. */
2090
c906108c 2091void
b4fd25c9 2092sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
386c036b
MK
2093 struct regcache *regcache,
2094 int regnum, const void *gregs)
c906108c 2095{
19ba03f4 2096 const gdb_byte *regs = (const gdb_byte *) gregs;
22e74ef9 2097 gdb_byte zero[4] = { 0 };
386c036b 2098 int i;
5af923b0 2099
386c036b 2100 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
73e1c03f 2101 regcache->raw_supply (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);
c906108c 2102
386c036b 2103 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
73e1c03f 2104 regcache->raw_supply (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);
5af923b0 2105
386c036b 2106 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
73e1c03f 2107 regcache->raw_supply (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);
5af923b0 2108
386c036b 2109 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
73e1c03f 2110 regcache->raw_supply (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);
5af923b0 2111
386c036b 2112 if (regnum == SPARC_G0_REGNUM || regnum == -1)
73e1c03f 2113 regcache->raw_supply (SPARC_G0_REGNUM, &zero);
5af923b0 2114
386c036b 2115 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 2116 {
b4fd25c9 2117 int offset = gregmap->r_g1_offset;
386c036b
MK
2118
2119 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2120 {
2121 if (regnum == i || regnum == -1)
73e1c03f 2122 regcache->raw_supply (i, regs + offset);
386c036b
MK
2123 offset += 4;
2124 }
c906108c 2125 }
386c036b
MK
2126
2127 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 2128 {
386c036b
MK
2129 /* Not all of the register set variants include Locals and
2130 Inputs. For those that don't, we read them off the stack. */
b4fd25c9 2131 if (gregmap->r_l0_offset == -1)
386c036b
MK
2132 {
2133 ULONGEST sp;
2134
2135 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
2136 sparc_supply_rwindow (regcache, sp, regnum);
2137 }
2138 else
2139 {
b4fd25c9 2140 int offset = gregmap->r_l0_offset;
386c036b
MK
2141
2142 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2143 {
2144 if (regnum == i || regnum == -1)
73e1c03f 2145 regcache->raw_supply (i, regs + offset);
386c036b
MK
2146 offset += 4;
2147 }
2148 }
c906108c
SS
2149 }
2150}
2151
c5aa993b 2152void
b4fd25c9 2153sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
386c036b
MK
2154 const struct regcache *regcache,
2155 int regnum, void *gregs)
c906108c 2156{
19ba03f4 2157 gdb_byte *regs = (gdb_byte *) gregs;
386c036b 2158 int i;
c5aa993b 2159
386c036b 2160 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
34a79281 2161 regcache->raw_collect (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);
60054393 2162
386c036b 2163 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
34a79281 2164 regcache->raw_collect (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);
386c036b
MK
2165
2166 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
34a79281 2167 regcache->raw_collect (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);
5af923b0 2168
386c036b 2169 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
34a79281 2170 regcache->raw_collect (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);
386c036b
MK
2171
2172 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 2173 {
b4fd25c9 2174 int offset = gregmap->r_g1_offset;
386c036b
MK
2175
2176 /* %g0 is always zero. */
2177 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2178 {
2179 if (regnum == i || regnum == -1)
34a79281 2180 regcache->raw_collect (i, regs + offset);
386c036b
MK
2181 offset += 4;
2182 }
5af923b0 2183 }
386c036b
MK
2184
2185 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 2186 {
386c036b
MK
2187 /* Not all of the register set variants include Locals and
2188 Inputs. For those that don't, we read them off the stack. */
b4fd25c9 2189 if (gregmap->r_l0_offset != -1)
386c036b 2190 {
b4fd25c9 2191 int offset = gregmap->r_l0_offset;
386c036b
MK
2192
2193 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2194 {
2195 if (regnum == i || regnum == -1)
34a79281 2196 regcache->raw_collect (i, regs + offset);
386c036b
MK
2197 offset += 4;
2198 }
2199 }
5af923b0 2200 }
c906108c
SS
2201}
2202
c906108c 2203void
b4fd25c9 2204sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
db75c717 2205 struct regcache *regcache,
386c036b 2206 int regnum, const void *fpregs)
c906108c 2207{
19ba03f4 2208 const gdb_byte *regs = (const gdb_byte *) fpregs;
386c036b 2209 int i;
60054393 2210
386c036b 2211 for (i = 0; i < 32; i++)
c906108c 2212 {
386c036b 2213 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
73e1c03f
SM
2214 regcache->raw_supply (SPARC_F0_REGNUM + i,
2215 regs + fpregmap->r_f0_offset + (i * 4));
c906108c 2216 }
5af923b0 2217
386c036b 2218 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
73e1c03f 2219 regcache->raw_supply (SPARC32_FSR_REGNUM, regs + fpregmap->r_fsr_offset);
c906108c
SS
2220}
2221
386c036b 2222void
b4fd25c9 2223sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
db75c717 2224 const struct regcache *regcache,
386c036b 2225 int regnum, void *fpregs)
c906108c 2226{
19ba03f4 2227 gdb_byte *regs = (gdb_byte *) fpregs;
386c036b 2228 int i;
c906108c 2229
386c036b
MK
2230 for (i = 0; i < 32; i++)
2231 {
2232 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
34a79281
SM
2233 regcache->raw_collect (SPARC_F0_REGNUM + i,
2234 regs + fpregmap->r_f0_offset + (i * 4));
386c036b 2235 }
c906108c 2236
386c036b 2237 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
34a79281
SM
2238 regcache->raw_collect (SPARC32_FSR_REGNUM,
2239 regs + fpregmap->r_fsr_offset);
c906108c 2240}
c906108c 2241\f
c906108c 2242
386c036b 2243/* SunOS 4. */
c906108c 2244
386c036b 2245/* From <machine/reg.h>. */
b4fd25c9 2246const struct sparc_gregmap sparc32_sunos4_gregmap =
c906108c 2247{
386c036b
MK
2248 0 * 4, /* %psr */
2249 1 * 4, /* %pc */
2250 2 * 4, /* %npc */
2251 3 * 4, /* %y */
2252 -1, /* %wim */
2253 -1, /* %tbr */
2254 4 * 4, /* %g1 */
2255 -1 /* %l0 */
2256};
db75c717 2257
b4fd25c9 2258const struct sparc_fpregmap sparc32_sunos4_fpregmap =
db75c717
DM
2259{
2260 0 * 4, /* %f0 */
2261 33 * 4, /* %fsr */
2262};
2263
b4fd25c9 2264const struct sparc_fpregmap sparc32_bsd_fpregmap =
db75c717
DM
2265{
2266 0 * 4, /* %f0 */
2267 32 * 4, /* %fsr */
2268};
c906108c
SS
2269
2270void
386c036b 2271_initialize_sparc_tdep (void)
c906108c 2272{
386c036b 2273 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 2274}