]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/value.c
Remove config.cache in gdbserver's "distclean"
[thirdparty/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
3666a048 3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
36160dc4 31#include "regcache.h"
fe898f56 32#include "block.h"
70100014 33#include "target-float.h"
bccdca4a 34#include "objfiles.h"
79a45b7d 35#include "valprint.h"
bc3b79fd 36#include "cli/cli-decode.h"
6dddc817 37#include "extension.h"
3bd0f5ef 38#include <ctype.h>
0914bcdb 39#include "tracepoint.h"
be335936 40#include "cp-abi.h"
a58e2656 41#include "user-regs.h"
325fac50 42#include <algorithm>
eb3ff9a5 43#include "completer.h"
268a13a5
TT
44#include "gdbsupport/selftest.h"
45#include "gdbsupport/array-view.h"
7f6aba03 46#include "cli/cli-style.h"
413403fc 47#include "expop.h"
328d42d8 48#include "inferior.h"
0914bcdb 49
bc3b79fd
TJB
50/* Definition of a user function. */
51struct internal_function
52{
53 /* The name of the function. It is a bit odd to have this in the
54 function itself -- the user might use a differently-named
55 convenience variable to hold the function. */
56 char *name;
57
58 /* The handler. */
59 internal_function_fn handler;
60
61 /* User data for the handler. */
62 void *cookie;
63};
64
4e07d55f
PA
65/* Defines an [OFFSET, OFFSET + LENGTH) range. */
66
67struct range
68{
69 /* Lowest offset in the range. */
6b850546 70 LONGEST offset;
4e07d55f
PA
71
72 /* Length of the range. */
6b850546 73 LONGEST length;
4e07d55f 74
0c7e6dd8
TT
75 /* Returns true if THIS is strictly less than OTHER, useful for
76 searching. We keep ranges sorted by offset and coalesce
77 overlapping and contiguous ranges, so this just compares the
78 starting offset. */
4e07d55f 79
0c7e6dd8
TT
80 bool operator< (const range &other) const
81 {
82 return offset < other.offset;
83 }
d5f4488f
SM
84
85 /* Returns true if THIS is equal to OTHER. */
86 bool operator== (const range &other) const
87 {
88 return offset == other.offset && length == other.length;
89 }
0c7e6dd8 90};
4e07d55f
PA
91
92/* Returns true if the ranges defined by [offset1, offset1+len1) and
93 [offset2, offset2+len2) overlap. */
94
95static int
6b850546
DT
96ranges_overlap (LONGEST offset1, LONGEST len1,
97 LONGEST offset2, LONGEST len2)
4e07d55f
PA
98{
99 ULONGEST h, l;
100
325fac50
PA
101 l = std::max (offset1, offset2);
102 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
103 return (l < h);
104}
105
4e07d55f
PA
106/* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109static int
0c7e6dd8
TT
110ranges_contain (const std::vector<range> &ranges, LONGEST offset,
111 LONGEST length)
4e07d55f 112{
0c7e6dd8 113 range what;
4e07d55f
PA
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
dda83cd7
SM
126 R
127 |---|
4e07d55f
PA
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
dda83cd7
SM
141 R
142 |---|
4e07d55f
PA
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
4e07d55f 149
0c7e6dd8
TT
150 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
151
152 if (i > ranges.begin ())
4e07d55f 153 {
0c7e6dd8 154 const struct range &bef = *(i - 1);
4e07d55f 155
0c7e6dd8 156 if (ranges_overlap (bef.offset, bef.length, offset, length))
4e07d55f
PA
157 return 1;
158 }
159
0c7e6dd8 160 if (i < ranges.end ())
4e07d55f 161 {
0c7e6dd8 162 const struct range &r = *i;
4e07d55f 163
0c7e6dd8 164 if (ranges_overlap (r.offset, r.length, offset, length))
4e07d55f
PA
165 return 1;
166 }
167
168 return 0;
169}
170
bc3b79fd
TJB
171static struct cmd_list_element *functionlist;
172
87784a47
TT
173/* Note that the fields in this structure are arranged to save a bit
174 of memory. */
175
91294c83
AC
176struct value
177{
466ce3ae
TT
178 explicit value (struct type *type_)
179 : modifiable (1),
180 lazy (1),
181 initialized (1),
182 stack (0),
3e44c304 183 is_zero (false),
466ce3ae
TT
184 type (type_),
185 enclosing_type (type_)
186 {
466ce3ae
TT
187 }
188
189 ~value ()
190 {
466ce3ae
TT
191 if (VALUE_LVAL (this) == lval_computed)
192 {
193 const struct lval_funcs *funcs = location.computed.funcs;
194
195 if (funcs->free_closure)
196 funcs->free_closure (this);
197 }
198 else if (VALUE_LVAL (this) == lval_xcallable)
199 delete location.xm_worker;
466ce3ae
TT
200 }
201
202 DISABLE_COPY_AND_ASSIGN (value);
203
91294c83
AC
204 /* Type of value; either not an lval, or one of the various
205 different possible kinds of lval. */
466ce3ae 206 enum lval_type lval = not_lval;
91294c83
AC
207
208 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
209 unsigned int modifiable : 1;
210
211 /* If zero, contents of this value are in the contents field. If
212 nonzero, contents are in inferior. If the lval field is lval_memory,
213 the contents are in inferior memory at location.address plus offset.
214 The lval field may also be lval_register.
215
216 WARNING: This field is used by the code which handles watchpoints
217 (see breakpoint.c) to decide whether a particular value can be
218 watched by hardware watchpoints. If the lazy flag is set for
219 some member of a value chain, it is assumed that this member of
220 the chain doesn't need to be watched as part of watching the
221 value itself. This is how GDB avoids watching the entire struct
222 or array when the user wants to watch a single struct member or
223 array element. If you ever change the way lazy flag is set and
224 reset, be sure to consider this use as well! */
225 unsigned int lazy : 1;
226
87784a47
TT
227 /* If value is a variable, is it initialized or not. */
228 unsigned int initialized : 1;
229
230 /* If value is from the stack. If this is set, read_stack will be
231 used instead of read_memory to enable extra caching. */
232 unsigned int stack : 1;
91294c83 233
3e44c304
TT
234 /* True if this is a zero value, created by 'value_zero'; false
235 otherwise. */
236 bool is_zero : 1;
237
91294c83
AC
238 /* Location of value (if lval). */
239 union
240 {
7dc54575 241 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
242 CORE_ADDR address;
243
7dc54575
YQ
244 /*If lval == lval_register, the value is from a register. */
245 struct
246 {
247 /* Register number. */
248 int regnum;
249 /* Frame ID of "next" frame to which a register value is relative.
250 If the register value is found relative to frame F, then the
251 frame id of F->next will be stored in next_frame_id. */
252 struct frame_id next_frame_id;
253 } reg;
254
91294c83
AC
255 /* Pointer to internal variable. */
256 struct internalvar *internalvar;
5f5233d4 257
e81e7f5e
SC
258 /* Pointer to xmethod worker. */
259 struct xmethod_worker *xm_worker;
260
5f5233d4
PA
261 /* If lval == lval_computed, this is a set of function pointers
262 to use to access and describe the value, and a closure pointer
263 for them to use. */
264 struct
265 {
c8f2448a
JK
266 /* Functions to call. */
267 const struct lval_funcs *funcs;
268
269 /* Closure for those functions to use. */
270 void *closure;
5f5233d4 271 } computed;
41a883c8 272 } location {};
91294c83 273
3723fda8 274 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
275 addressable memory units. Note also the member embedded_offset
276 below. */
466ce3ae 277 LONGEST offset = 0;
91294c83
AC
278
279 /* Only used for bitfields; number of bits contained in them. */
466ce3ae 280 LONGEST bitsize = 0;
91294c83
AC
281
282 /* Only used for bitfields; position of start of field. For
d5a22e77
TT
283 little-endian targets, it is the position of the LSB. For
284 big-endian targets, it is the position of the MSB. */
466ce3ae 285 LONGEST bitpos = 0;
91294c83 286
87784a47
TT
287 /* The number of references to this value. When a value is created,
288 the value chain holds a reference, so REFERENCE_COUNT is 1. If
289 release_value is called, this value is removed from the chain but
290 the caller of release_value now has a reference to this value.
291 The caller must arrange for a call to value_free later. */
466ce3ae 292 int reference_count = 1;
87784a47 293
4ea48cc1
DJ
294 /* Only used for bitfields; the containing value. This allows a
295 single read from the target when displaying multiple
296 bitfields. */
2c8331b9 297 value_ref_ptr parent;
4ea48cc1 298
91294c83
AC
299 /* Type of the value. */
300 struct type *type;
301
302 /* If a value represents a C++ object, then the `type' field gives
303 the object's compile-time type. If the object actually belongs
304 to some class derived from `type', perhaps with other base
305 classes and additional members, then `type' is just a subobject
306 of the real thing, and the full object is probably larger than
307 `type' would suggest.
308
309 If `type' is a dynamic class (i.e. one with a vtable), then GDB
310 can actually determine the object's run-time type by looking at
311 the run-time type information in the vtable. When this
312 information is available, we may elect to read in the entire
313 object, for several reasons:
314
315 - When printing the value, the user would probably rather see the
316 full object, not just the limited portion apparent from the
317 compile-time type.
318
319 - If `type' has virtual base classes, then even printing `type'
320 alone may require reaching outside the `type' portion of the
321 object to wherever the virtual base class has been stored.
322
323 When we store the entire object, `enclosing_type' is the run-time
324 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
325 offset of `type' within that larger type, in target addressable memory
326 units. The value_contents() macro takes `embedded_offset' into account,
327 so most GDB code continues to see the `type' portion of the value, just
328 as the inferior would.
91294c83
AC
329
330 If `type' is a pointer to an object, then `enclosing_type' is a
331 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
332 the offset in target addressable memory units from the full object
333 to the pointed-to object -- that is, the value `embedded_offset' would
334 have if we followed the pointer and fetched the complete object.
335 (I don't really see the point. Why not just determine the
336 run-time type when you indirect, and avoid the special case? The
337 contents don't matter until you indirect anyway.)
91294c83
AC
338
339 If we're not doing anything fancy, `enclosing_type' is equal to
340 `type', and `embedded_offset' is zero, so everything works
341 normally. */
342 struct type *enclosing_type;
466ce3ae
TT
343 LONGEST embedded_offset = 0;
344 LONGEST pointed_to_offset = 0;
91294c83 345
3e3d7139
JG
346 /* Actual contents of the value. Target byte-order. NULL or not
347 valid if lazy is nonzero. */
14c88955 348 gdb::unique_xmalloc_ptr<gdb_byte> contents;
828d3400 349
4e07d55f
PA
350 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
351 rather than available, since the common and default case is for a
9a0dc9e3
PA
352 value to be available. This is filled in at value read time.
353 The unavailable ranges are tracked in bits. Note that a contents
354 bit that has been optimized out doesn't really exist in the
355 program, so it can't be marked unavailable either. */
0c7e6dd8 356 std::vector<range> unavailable;
9a0dc9e3
PA
357
358 /* Likewise, but for optimized out contents (a chunk of the value of
359 a variable that does not actually exist in the program). If LVAL
360 is lval_register, this is a register ($pc, $sp, etc., never a
361 program variable) that has not been saved in the frame. Not
362 saved registers and optimized-out program variables values are
363 treated pretty much the same, except not-saved registers have a
364 different string representation and related error strings. */
0c7e6dd8 365 std::vector<range> optimized_out;
91294c83
AC
366};
367
e512cdbd
SM
368/* See value.h. */
369
370struct gdbarch *
371get_value_arch (const struct value *value)
372{
8ee511af 373 return value_type (value)->arch ();
e512cdbd
SM
374}
375
4e07d55f 376int
6b850546 377value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
378{
379 gdb_assert (!value->lazy);
380
381 return !ranges_contain (value->unavailable, offset, length);
382}
383
bdf22206 384int
6b850546
DT
385value_bytes_available (const struct value *value,
386 LONGEST offset, LONGEST length)
bdf22206
AB
387{
388 return value_bits_available (value,
389 offset * TARGET_CHAR_BIT,
390 length * TARGET_CHAR_BIT);
391}
392
9a0dc9e3
PA
393int
394value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
395{
396 gdb_assert (!value->lazy);
397
398 return ranges_contain (value->optimized_out, bit_offset, bit_length);
399}
400
ec0a52e1
PA
401int
402value_entirely_available (struct value *value)
403{
404 /* We can only tell whether the whole value is available when we try
405 to read it. */
406 if (value->lazy)
407 value_fetch_lazy (value);
408
0c7e6dd8 409 if (value->unavailable.empty ())
ec0a52e1
PA
410 return 1;
411 return 0;
412}
413
9a0dc9e3
PA
414/* Returns true if VALUE is entirely covered by RANGES. If the value
415 is lazy, it'll be read now. Note that RANGE is a pointer to
416 pointer because reading the value might change *RANGE. */
417
418static int
419value_entirely_covered_by_range_vector (struct value *value,
0c7e6dd8 420 const std::vector<range> &ranges)
6211c335 421{
9a0dc9e3
PA
422 /* We can only tell whether the whole value is optimized out /
423 unavailable when we try to read it. */
6211c335
YQ
424 if (value->lazy)
425 value_fetch_lazy (value);
426
0c7e6dd8 427 if (ranges.size () == 1)
6211c335 428 {
0c7e6dd8 429 const struct range &t = ranges[0];
6211c335 430
0c7e6dd8
TT
431 if (t.offset == 0
432 && t.length == (TARGET_CHAR_BIT
433 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
434 return 1;
435 }
436
437 return 0;
438}
439
9a0dc9e3
PA
440int
441value_entirely_unavailable (struct value *value)
442{
0c7e6dd8 443 return value_entirely_covered_by_range_vector (value, value->unavailable);
9a0dc9e3
PA
444}
445
446int
447value_entirely_optimized_out (struct value *value)
448{
0c7e6dd8 449 return value_entirely_covered_by_range_vector (value, value->optimized_out);
9a0dc9e3
PA
450}
451
452/* Insert into the vector pointed to by VECTORP the bit range starting of
453 OFFSET bits, and extending for the next LENGTH bits. */
454
455static void
0c7e6dd8 456insert_into_bit_range_vector (std::vector<range> *vectorp,
6b850546 457 LONGEST offset, LONGEST length)
4e07d55f 458{
0c7e6dd8 459 range newr;
4e07d55f
PA
460
461 /* Insert the range sorted. If there's overlap or the new range
462 would be contiguous with an existing range, merge. */
463
464 newr.offset = offset;
465 newr.length = length;
466
467 /* Do a binary search for the position the given range would be
468 inserted if we only considered the starting OFFSET of ranges.
469 Call that position I. Since we also have LENGTH to care for
470 (this is a range afterall), we need to check if the _previous_
471 range overlaps the I range. E.g., calling R the new range:
472
473 #1 - overlaps with previous
474
475 R
476 |-...-|
477 |---| |---| |------| ... |--|
478 0 1 2 N
479
480 I=1
481
482 In the case #1 above, the binary search would return `I=1',
483 meaning, this OFFSET should be inserted at position 1, and the
484 current position 1 should be pushed further (and become 2). But,
485 note that `0' overlaps with R, so we want to merge them.
486
487 A similar consideration needs to be taken if the new range would
488 be contiguous with the previous range:
489
490 #2 - contiguous with previous
491
492 R
493 |-...-|
494 |--| |---| |------| ... |--|
495 0 1 2 N
496
497 I=1
498
499 If there's no overlap with the previous range, as in:
500
501 #3 - not overlapping and not contiguous
502
503 R
504 |-...-|
505 |--| |---| |------| ... |--|
506 0 1 2 N
507
508 I=1
509
510 or if I is 0:
511
512 #4 - R is the range with lowest offset
513
514 R
515 |-...-|
dda83cd7
SM
516 |--| |---| |------| ... |--|
517 0 1 2 N
4e07d55f
PA
518
519 I=0
520
521 ... we just push the new range to I.
522
523 All the 4 cases above need to consider that the new range may
524 also overlap several of the ranges that follow, or that R may be
525 contiguous with the following range, and merge. E.g.,
526
527 #5 - overlapping following ranges
528
529 R
530 |------------------------|
dda83cd7
SM
531 |--| |---| |------| ... |--|
532 0 1 2 N
4e07d55f
PA
533
534 I=0
535
536 or:
537
538 R
539 |-------|
540 |--| |---| |------| ... |--|
541 0 1 2 N
542
543 I=1
544
545 */
546
0c7e6dd8
TT
547 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
548 if (i > vectorp->begin ())
4e07d55f 549 {
0c7e6dd8 550 struct range &bef = *(i - 1);
4e07d55f 551
0c7e6dd8 552 if (ranges_overlap (bef.offset, bef.length, offset, length))
4e07d55f
PA
553 {
554 /* #1 */
0c7e6dd8
TT
555 ULONGEST l = std::min (bef.offset, offset);
556 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
4e07d55f 557
0c7e6dd8
TT
558 bef.offset = l;
559 bef.length = h - l;
4e07d55f
PA
560 i--;
561 }
0c7e6dd8 562 else if (offset == bef.offset + bef.length)
4e07d55f
PA
563 {
564 /* #2 */
0c7e6dd8 565 bef.length += length;
4e07d55f
PA
566 i--;
567 }
568 else
569 {
570 /* #3 */
0c7e6dd8 571 i = vectorp->insert (i, newr);
4e07d55f
PA
572 }
573 }
574 else
575 {
576 /* #4 */
0c7e6dd8 577 i = vectorp->insert (i, newr);
4e07d55f
PA
578 }
579
580 /* Check whether the ranges following the one we've just added or
581 touched can be folded in (#5 above). */
0c7e6dd8 582 if (i != vectorp->end () && i + 1 < vectorp->end ())
4e07d55f 583 {
4e07d55f 584 int removed = 0;
0c7e6dd8 585 auto next = i + 1;
4e07d55f
PA
586
587 /* Get the range we just touched. */
0c7e6dd8 588 struct range &t = *i;
4e07d55f
PA
589 removed = 0;
590
591 i = next;
0c7e6dd8
TT
592 for (; i < vectorp->end (); i++)
593 {
594 struct range &r = *i;
595 if (r.offset <= t.offset + t.length)
596 {
597 ULONGEST l, h;
598
599 l = std::min (t.offset, r.offset);
600 h = std::max (t.offset + t.length, r.offset + r.length);
601
602 t.offset = l;
603 t.length = h - l;
604
605 removed++;
606 }
607 else
608 {
609 /* If we couldn't merge this one, we won't be able to
610 merge following ones either, since the ranges are
611 always sorted by OFFSET. */
612 break;
613 }
614 }
4e07d55f
PA
615
616 if (removed != 0)
0c7e6dd8 617 vectorp->erase (next, next + removed);
4e07d55f
PA
618 }
619}
620
9a0dc9e3 621void
6b850546
DT
622mark_value_bits_unavailable (struct value *value,
623 LONGEST offset, LONGEST length)
9a0dc9e3
PA
624{
625 insert_into_bit_range_vector (&value->unavailable, offset, length);
626}
627
bdf22206 628void
6b850546
DT
629mark_value_bytes_unavailable (struct value *value,
630 LONGEST offset, LONGEST length)
bdf22206
AB
631{
632 mark_value_bits_unavailable (value,
633 offset * TARGET_CHAR_BIT,
634 length * TARGET_CHAR_BIT);
635}
636
c8c1c22f
PA
637/* Find the first range in RANGES that overlaps the range defined by
638 OFFSET and LENGTH, starting at element POS in the RANGES vector,
639 Returns the index into RANGES where such overlapping range was
640 found, or -1 if none was found. */
641
642static int
0c7e6dd8 643find_first_range_overlap (const std::vector<range> *ranges, int pos,
6b850546 644 LONGEST offset, LONGEST length)
c8c1c22f 645{
c8c1c22f
PA
646 int i;
647
0c7e6dd8
TT
648 for (i = pos; i < ranges->size (); i++)
649 {
650 const range &r = (*ranges)[i];
651 if (ranges_overlap (r.offset, r.length, offset, length))
652 return i;
653 }
c8c1c22f
PA
654
655 return -1;
656}
657
bdf22206
AB
658/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
659 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
660 return non-zero.
661
662 It must always be the case that:
663 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
664
665 It is assumed that memory can be accessed from:
666 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
667 to:
668 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
dda83cd7 669 / TARGET_CHAR_BIT) */
bdf22206
AB
670static int
671memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
672 const gdb_byte *ptr2, size_t offset2_bits,
673 size_t length_bits)
674{
675 gdb_assert (offset1_bits % TARGET_CHAR_BIT
676 == offset2_bits % TARGET_CHAR_BIT);
677
678 if (offset1_bits % TARGET_CHAR_BIT != 0)
679 {
680 size_t bits;
681 gdb_byte mask, b1, b2;
682
683 /* The offset from the base pointers PTR1 and PTR2 is not a complete
684 number of bytes. A number of bits up to either the next exact
685 byte boundary, or LENGTH_BITS (which ever is sooner) will be
686 compared. */
687 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
688 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
689 mask = (1 << bits) - 1;
690
691 if (length_bits < bits)
692 {
693 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
694 bits = length_bits;
695 }
696
697 /* Now load the two bytes and mask off the bits we care about. */
698 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
699 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
700
701 if (b1 != b2)
702 return 1;
703
704 /* Now update the length and offsets to take account of the bits
705 we've just compared. */
706 length_bits -= bits;
707 offset1_bits += bits;
708 offset2_bits += bits;
709 }
710
711 if (length_bits % TARGET_CHAR_BIT != 0)
712 {
713 size_t bits;
714 size_t o1, o2;
715 gdb_byte mask, b1, b2;
716
717 /* The length is not an exact number of bytes. After the previous
718 IF.. block then the offsets are byte aligned, or the
719 length is zero (in which case this code is not reached). Compare
720 a number of bits at the end of the region, starting from an exact
721 byte boundary. */
722 bits = length_bits % TARGET_CHAR_BIT;
723 o1 = offset1_bits + length_bits - bits;
724 o2 = offset2_bits + length_bits - bits;
725
726 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
727 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
728
729 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
730 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
731
732 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
733 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
734
735 if (b1 != b2)
736 return 1;
737
738 length_bits -= bits;
739 }
740
741 if (length_bits > 0)
742 {
743 /* We've now taken care of any stray "bits" at the start, or end of
744 the region to compare, the remainder can be covered with a simple
745 memcmp. */
746 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
747 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
748 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
749
750 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
751 ptr2 + offset2_bits / TARGET_CHAR_BIT,
752 length_bits / TARGET_CHAR_BIT);
753 }
754
755 /* Length is zero, regions match. */
756 return 0;
757}
758
9a0dc9e3
PA
759/* Helper struct for find_first_range_overlap_and_match and
760 value_contents_bits_eq. Keep track of which slot of a given ranges
761 vector have we last looked at. */
bdf22206 762
9a0dc9e3
PA
763struct ranges_and_idx
764{
765 /* The ranges. */
0c7e6dd8 766 const std::vector<range> *ranges;
9a0dc9e3
PA
767
768 /* The range we've last found in RANGES. Given ranges are sorted,
769 we can start the next lookup here. */
770 int idx;
771};
772
773/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
774 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
775 ranges starting at OFFSET2 bits. Return true if the ranges match
776 and fill in *L and *H with the overlapping window relative to
777 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
778
779static int
9a0dc9e3
PA
780find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
781 struct ranges_and_idx *rp2,
6b850546
DT
782 LONGEST offset1, LONGEST offset2,
783 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 784{
9a0dc9e3
PA
785 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
786 offset1, length);
787 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
788 offset2, length);
c8c1c22f 789
9a0dc9e3
PA
790 if (rp1->idx == -1 && rp2->idx == -1)
791 {
792 *l = length;
793 *h = length;
794 return 1;
795 }
796 else if (rp1->idx == -1 || rp2->idx == -1)
797 return 0;
798 else
c8c1c22f 799 {
0c7e6dd8 800 const range *r1, *r2;
c8c1c22f
PA
801 ULONGEST l1, h1;
802 ULONGEST l2, h2;
803
0c7e6dd8
TT
804 r1 = &(*rp1->ranges)[rp1->idx];
805 r2 = &(*rp2->ranges)[rp2->idx];
c8c1c22f
PA
806
807 /* Get the unavailable windows intersected by the incoming
808 ranges. The first and last ranges that overlap the argument
809 range may be wider than said incoming arguments ranges. */
325fac50
PA
810 l1 = std::max (offset1, r1->offset);
811 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 812
325fac50
PA
813 l2 = std::max (offset2, r2->offset);
814 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
815
816 /* Make them relative to the respective start offsets, so we can
817 compare them for equality. */
818 l1 -= offset1;
819 h1 -= offset1;
820
821 l2 -= offset2;
822 h2 -= offset2;
823
9a0dc9e3 824 /* Different ranges, no match. */
c8c1c22f
PA
825 if (l1 != l2 || h1 != h2)
826 return 0;
827
9a0dc9e3
PA
828 *h = h1;
829 *l = l1;
830 return 1;
831 }
832}
833
834/* Helper function for value_contents_eq. The only difference is that
835 this function is bit rather than byte based.
836
837 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
838 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
839 Return true if the available bits match. */
840
98ead37e 841static bool
9a0dc9e3
PA
842value_contents_bits_eq (const struct value *val1, int offset1,
843 const struct value *val2, int offset2,
844 int length)
845{
846 /* Each array element corresponds to a ranges source (unavailable,
847 optimized out). '1' is for VAL1, '2' for VAL2. */
848 struct ranges_and_idx rp1[2], rp2[2];
849
850 /* See function description in value.h. */
851 gdb_assert (!val1->lazy && !val2->lazy);
852
853 /* We shouldn't be trying to compare past the end of the values. */
854 gdb_assert (offset1 + length
855 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
856 gdb_assert (offset2 + length
857 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
858
859 memset (&rp1, 0, sizeof (rp1));
860 memset (&rp2, 0, sizeof (rp2));
0c7e6dd8
TT
861 rp1[0].ranges = &val1->unavailable;
862 rp2[0].ranges = &val2->unavailable;
863 rp1[1].ranges = &val1->optimized_out;
864 rp2[1].ranges = &val2->optimized_out;
9a0dc9e3
PA
865
866 while (length > 0)
867 {
000339af 868 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
869 int i;
870
871 for (i = 0; i < 2; i++)
872 {
873 ULONGEST l_tmp, h_tmp;
874
875 /* The contents only match equal if the invalid/unavailable
876 contents ranges match as well. */
877 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
878 offset1, offset2, length,
879 &l_tmp, &h_tmp))
98ead37e 880 return false;
9a0dc9e3
PA
881
882 /* We're interested in the lowest/first range found. */
883 if (i == 0 || l_tmp < l)
884 {
885 l = l_tmp;
886 h = h_tmp;
887 }
888 }
889
890 /* Compare the available/valid contents. */
14c88955
TT
891 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
892 val2->contents.get (), offset2, l) != 0)
98ead37e 893 return false;
c8c1c22f 894
9a0dc9e3
PA
895 length -= h;
896 offset1 += h;
897 offset2 += h;
c8c1c22f
PA
898 }
899
98ead37e 900 return true;
c8c1c22f
PA
901}
902
98ead37e 903bool
6b850546
DT
904value_contents_eq (const struct value *val1, LONGEST offset1,
905 const struct value *val2, LONGEST offset2,
906 LONGEST length)
bdf22206 907{
9a0dc9e3
PA
908 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
909 val2, offset2 * TARGET_CHAR_BIT,
910 length * TARGET_CHAR_BIT);
bdf22206
AB
911}
912
c906108c 913
4d0266a0
TT
914/* The value-history records all the values printed by print commands
915 during this session. */
c906108c 916
4d0266a0 917static std::vector<value_ref_ptr> value_history;
bc3b79fd 918
c906108c
SS
919\f
920/* List of all value objects currently allocated
921 (except for those released by calls to release_value)
922 This is so they can be freed after each command. */
923
062d818d 924static std::vector<value_ref_ptr> all_values;
c906108c 925
3e3d7139
JG
926/* Allocate a lazy value for type TYPE. Its actual content is
927 "lazily" allocated too: the content field of the return value is
928 NULL; it will be allocated when it is fetched from the target. */
c906108c 929
f23631e4 930struct value *
3e3d7139 931allocate_value_lazy (struct type *type)
c906108c 932{
f23631e4 933 struct value *val;
c54eabfa
JK
934
935 /* Call check_typedef on our type to make sure that, if TYPE
936 is a TYPE_CODE_TYPEDEF, its length is set to the length
937 of the target type instead of zero. However, we do not
938 replace the typedef type by the target type, because we want
939 to keep the typedef in order to be able to set the VAL's type
940 description correctly. */
941 check_typedef (type);
c906108c 942
466ce3ae 943 val = new struct value (type);
828d3400
DJ
944
945 /* Values start out on the all_values chain. */
062d818d 946 all_values.emplace_back (val);
828d3400 947
c906108c
SS
948 return val;
949}
950
5fdf6324
AB
951/* The maximum size, in bytes, that GDB will try to allocate for a value.
952 The initial value of 64k was not selected for any specific reason, it is
953 just a reasonable starting point. */
954
955static int max_value_size = 65536; /* 64k bytes */
956
957/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
958 LONGEST, otherwise GDB will not be able to parse integer values from the
959 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
960 be unable to parse "set max-value-size 2".
961
962 As we want a consistent GDB experience across hosts with different sizes
963 of LONGEST, this arbitrary minimum value was selected, so long as this
964 is bigger than LONGEST on all GDB supported hosts we're fine. */
965
966#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
967gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
968
969/* Implement the "set max-value-size" command. */
970
971static void
eb4c3f4a 972set_max_value_size (const char *args, int from_tty,
5fdf6324
AB
973 struct cmd_list_element *c)
974{
975 gdb_assert (max_value_size == -1 || max_value_size >= 0);
976
977 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
978 {
979 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
980 error (_("max-value-size set too low, increasing to %d bytes"),
981 max_value_size);
982 }
983}
984
985/* Implement the "show max-value-size" command. */
986
987static void
988show_max_value_size (struct ui_file *file, int from_tty,
989 struct cmd_list_element *c, const char *value)
990{
991 if (max_value_size == -1)
992 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
993 else
994 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
995 max_value_size);
996}
997
998/* Called before we attempt to allocate or reallocate a buffer for the
999 contents of a value. TYPE is the type of the value for which we are
1000 allocating the buffer. If the buffer is too large (based on the user
1001 controllable setting) then throw an error. If this function returns
1002 then we should attempt to allocate the buffer. */
1003
1004static void
1005check_type_length_before_alloc (const struct type *type)
1006{
6d8a0a5e 1007 ULONGEST length = TYPE_LENGTH (type);
5fdf6324
AB
1008
1009 if (max_value_size > -1 && length > max_value_size)
1010 {
7d93a1e0 1011 if (type->name () != NULL)
6d8a0a5e
LM
1012 error (_("value of type `%s' requires %s bytes, which is more "
1013 "than max-value-size"), type->name (), pulongest (length));
5fdf6324 1014 else
6d8a0a5e
LM
1015 error (_("value requires %s bytes, which is more than "
1016 "max-value-size"), pulongest (length));
5fdf6324
AB
1017 }
1018}
1019
3e3d7139
JG
1020/* Allocate the contents of VAL if it has not been allocated yet. */
1021
548b762d 1022static void
3e3d7139
JG
1023allocate_value_contents (struct value *val)
1024{
1025 if (!val->contents)
5fdf6324
AB
1026 {
1027 check_type_length_before_alloc (val->enclosing_type);
14c88955
TT
1028 val->contents.reset
1029 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
5fdf6324 1030 }
3e3d7139
JG
1031}
1032
1033/* Allocate a value and its contents for type TYPE. */
1034
1035struct value *
1036allocate_value (struct type *type)
1037{
1038 struct value *val = allocate_value_lazy (type);
a109c7c1 1039
3e3d7139
JG
1040 allocate_value_contents (val);
1041 val->lazy = 0;
1042 return val;
1043}
1044
c906108c 1045/* Allocate a value that has the correct length
938f5214 1046 for COUNT repetitions of type TYPE. */
c906108c 1047
f23631e4 1048struct value *
fba45db2 1049allocate_repeat_value (struct type *type, int count)
c906108c 1050{
22c12a6c
AB
1051 /* Despite the fact that we are really creating an array of TYPE here, we
1052 use the string lower bound as the array lower bound. This seems to
1053 work fine for now. */
1054 int low_bound = current_language->string_lower_bound ();
c906108c
SS
1055 /* FIXME-type-allocation: need a way to free this type when we are
1056 done with it. */
e3506a9f
UW
1057 struct type *array_type
1058 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1059
e3506a9f 1060 return allocate_value (array_type);
c906108c
SS
1061}
1062
5f5233d4
PA
1063struct value *
1064allocate_computed_value (struct type *type,
dda83cd7
SM
1065 const struct lval_funcs *funcs,
1066 void *closure)
5f5233d4 1067{
41e8491f 1068 struct value *v = allocate_value_lazy (type);
a109c7c1 1069
5f5233d4
PA
1070 VALUE_LVAL (v) = lval_computed;
1071 v->location.computed.funcs = funcs;
1072 v->location.computed.closure = closure;
5f5233d4
PA
1073
1074 return v;
1075}
1076
a7035dbb
JK
1077/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1078
1079struct value *
1080allocate_optimized_out_value (struct type *type)
1081{
1082 struct value *retval = allocate_value_lazy (type);
1083
9a0dc9e3
PA
1084 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1085 set_value_lazy (retval, 0);
a7035dbb
JK
1086 return retval;
1087}
1088
df407dfe
AC
1089/* Accessor methods. */
1090
1091struct type *
0e03807e 1092value_type (const struct value *value)
df407dfe
AC
1093{
1094 return value->type;
1095}
04624583
AC
1096void
1097deprecated_set_value_type (struct value *value, struct type *type)
1098{
1099 value->type = type;
1100}
df407dfe 1101
6b850546 1102LONGEST
0e03807e 1103value_offset (const struct value *value)
df407dfe
AC
1104{
1105 return value->offset;
1106}
f5cf64a7 1107void
6b850546 1108set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1109{
1110 value->offset = offset;
1111}
df407dfe 1112
6b850546 1113LONGEST
0e03807e 1114value_bitpos (const struct value *value)
df407dfe
AC
1115{
1116 return value->bitpos;
1117}
9bbda503 1118void
6b850546 1119set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1120{
1121 value->bitpos = bit;
1122}
df407dfe 1123
6b850546 1124LONGEST
0e03807e 1125value_bitsize (const struct value *value)
df407dfe
AC
1126{
1127 return value->bitsize;
1128}
9bbda503 1129void
6b850546 1130set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1131{
1132 value->bitsize = bit;
1133}
df407dfe 1134
4ea48cc1 1135struct value *
4bf7b526 1136value_parent (const struct value *value)
4ea48cc1 1137{
2c8331b9 1138 return value->parent.get ();
4ea48cc1
DJ
1139}
1140
53ba8333
JB
1141/* See value.h. */
1142
1143void
1144set_value_parent (struct value *value, struct value *parent)
1145{
bbfa6f00 1146 value->parent = value_ref_ptr::new_reference (parent);
53ba8333
JB
1147}
1148
50888e42 1149gdb::array_view<gdb_byte>
990a07ab
AC
1150value_contents_raw (struct value *value)
1151{
3ae385af
SM
1152 struct gdbarch *arch = get_value_arch (value);
1153 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1154
3e3d7139 1155 allocate_value_contents (value);
50888e42
SM
1156
1157 ULONGEST length = TYPE_LENGTH (value_type (value));
5612b5d2
SM
1158 return gdb::make_array_view
1159 (value->contents.get () + value->embedded_offset * unit_size, length);
990a07ab
AC
1160}
1161
50888e42 1162gdb::array_view<gdb_byte>
990a07ab
AC
1163value_contents_all_raw (struct value *value)
1164{
3e3d7139 1165 allocate_value_contents (value);
50888e42
SM
1166
1167 ULONGEST length = TYPE_LENGTH (value_type (value));
5612b5d2 1168 return gdb::make_array_view (value->contents.get (), length);
990a07ab
AC
1169}
1170
4754a64e 1171struct type *
4bf7b526 1172value_enclosing_type (const struct value *value)
4754a64e
AC
1173{
1174 return value->enclosing_type;
1175}
1176
8264ba82
AG
1177/* Look at value.h for description. */
1178
1179struct type *
1180value_actual_type (struct value *value, int resolve_simple_types,
1181 int *real_type_found)
1182{
1183 struct value_print_options opts;
8264ba82
AG
1184 struct type *result;
1185
1186 get_user_print_options (&opts);
1187
1188 if (real_type_found)
1189 *real_type_found = 0;
1190 result = value_type (value);
1191 if (opts.objectprint)
1192 {
5e34c6c3
LM
1193 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1194 fetch its rtti type. */
809f3be1 1195 if (result->is_pointer_or_reference ()
78134374
SM
1196 && (check_typedef (TYPE_TARGET_TYPE (result))->code ()
1197 == TYPE_CODE_STRUCT)
ecf2e90c 1198 && !value_optimized_out (value))
dda83cd7
SM
1199 {
1200 struct type *real_type;
1201
1202 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1203 if (real_type)
1204 {
1205 if (real_type_found)
1206 *real_type_found = 1;
1207 result = real_type;
1208 }
1209 }
8264ba82 1210 else if (resolve_simple_types)
dda83cd7
SM
1211 {
1212 if (real_type_found)
1213 *real_type_found = 1;
1214 result = value_enclosing_type (value);
1215 }
8264ba82
AG
1216 }
1217
1218 return result;
1219}
1220
901461f8
PA
1221void
1222error_value_optimized_out (void)
1223{
1224 error (_("value has been optimized out"));
1225}
1226
0e03807e 1227static void
4e07d55f 1228require_not_optimized_out (const struct value *value)
0e03807e 1229{
0c7e6dd8 1230 if (!value->optimized_out.empty ())
901461f8
PA
1231 {
1232 if (value->lval == lval_register)
1233 error (_("register has not been saved in frame"));
1234 else
1235 error_value_optimized_out ();
1236 }
0e03807e
TT
1237}
1238
4e07d55f
PA
1239static void
1240require_available (const struct value *value)
1241{
0c7e6dd8 1242 if (!value->unavailable.empty ())
8af8e3bc 1243 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1244}
1245
50888e42 1246gdb::array_view<const gdb_byte>
0e03807e 1247value_contents_for_printing (struct value *value)
46615f07
AC
1248{
1249 if (value->lazy)
1250 value_fetch_lazy (value);
50888e42
SM
1251
1252 ULONGEST length = TYPE_LENGTH (value_type (value));
5612b5d2 1253 return gdb::make_array_view (value->contents.get (), length);
46615f07
AC
1254}
1255
50888e42 1256gdb::array_view<const gdb_byte>
de4127a3
PA
1257value_contents_for_printing_const (const struct value *value)
1258{
1259 gdb_assert (!value->lazy);
50888e42
SM
1260
1261 ULONGEST length = TYPE_LENGTH (value_type (value));
5612b5d2 1262 return gdb::make_array_view (value->contents.get (), length);
de4127a3
PA
1263}
1264
50888e42 1265gdb::array_view<const gdb_byte>
0e03807e
TT
1266value_contents_all (struct value *value)
1267{
50888e42 1268 gdb::array_view<const gdb_byte> result = value_contents_for_printing (value);
0e03807e 1269 require_not_optimized_out (value);
4e07d55f 1270 require_available (value);
0e03807e
TT
1271 return result;
1272}
1273
9a0dc9e3
PA
1274/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1275 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1276
1277static void
0c7e6dd8
TT
1278ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1279 const std::vector<range> &src_range, int src_bit_offset,
9a0dc9e3
PA
1280 int bit_length)
1281{
0c7e6dd8 1282 for (const range &r : src_range)
9a0dc9e3
PA
1283 {
1284 ULONGEST h, l;
1285
0c7e6dd8
TT
1286 l = std::max (r.offset, (LONGEST) src_bit_offset);
1287 h = std::min (r.offset + r.length,
325fac50 1288 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1289
1290 if (l < h)
1291 insert_into_bit_range_vector (dst_range,
1292 dst_bit_offset + (l - src_bit_offset),
1293 h - l);
1294 }
1295}
1296
4875ffdb
PA
1297/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1298 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1299
1300static void
1301value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1302 const struct value *src, int src_bit_offset,
1303 int bit_length)
1304{
1305 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1306 src->unavailable, src_bit_offset,
1307 bit_length);
1308 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1309 src->optimized_out, src_bit_offset,
1310 bit_length);
1311}
1312
3ae385af 1313/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1314 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1315 contents, starting at DST_OFFSET. If unavailable contents are
1316 being copied from SRC, the corresponding DST contents are marked
1317 unavailable accordingly. Neither DST nor SRC may be lazy
1318 values.
1319
1320 It is assumed the contents of DST in the [DST_OFFSET,
1321 DST_OFFSET+LENGTH) range are wholly available. */
39d37385 1322
f73e424f 1323static void
6b850546
DT
1324value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1325 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1326{
6b850546 1327 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1328 struct gdbarch *arch = get_value_arch (src);
1329 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1330
1331 /* A lazy DST would make that this copy operation useless, since as
1332 soon as DST's contents were un-lazied (by a later value_contents
1333 call, say), the contents would be overwritten. A lazy SRC would
1334 mean we'd be copying garbage. */
1335 gdb_assert (!dst->lazy && !src->lazy);
1336
29976f3f
PA
1337 /* The overwritten DST range gets unavailability ORed in, not
1338 replaced. Make sure to remember to implement replacing if it
1339 turns out actually necessary. */
1340 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1341 gdb_assert (!value_bits_any_optimized_out (dst,
1342 TARGET_CHAR_BIT * dst_offset,
1343 TARGET_CHAR_BIT * length));
29976f3f 1344
39d37385 1345 /* Copy the data. */
50888e42
SM
1346 memcpy (value_contents_all_raw (dst).data () + dst_offset * unit_size,
1347 value_contents_all_raw (src).data () + src_offset * unit_size,
3ae385af 1348 length * unit_size);
39d37385
PA
1349
1350 /* Copy the meta-data, adjusted. */
3ae385af
SM
1351 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1352 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1353 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1354
4875ffdb
PA
1355 value_ranges_copy_adjusted (dst, dst_bit_offset,
1356 src, src_bit_offset,
1357 bit_length);
39d37385
PA
1358}
1359
29976f3f
PA
1360/* Copy LENGTH bytes of SRC value's (all) contents
1361 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1362 (all) contents, starting at DST_OFFSET. If unavailable contents
1363 are being copied from SRC, the corresponding DST contents are
1364 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1365 lazy, it will be fetched now.
29976f3f
PA
1366
1367 It is assumed the contents of DST in the [DST_OFFSET,
1368 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1369
1370void
6b850546
DT
1371value_contents_copy (struct value *dst, LONGEST dst_offset,
1372 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1373{
39d37385
PA
1374 if (src->lazy)
1375 value_fetch_lazy (src);
1376
1377 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1378}
1379
d69fe07e 1380int
4bf7b526 1381value_lazy (const struct value *value)
d69fe07e
AC
1382{
1383 return value->lazy;
1384}
1385
dfa52d88
AC
1386void
1387set_value_lazy (struct value *value, int val)
1388{
1389 value->lazy = val;
1390}
1391
4e5d721f 1392int
4bf7b526 1393value_stack (const struct value *value)
4e5d721f
DE
1394{
1395 return value->stack;
1396}
1397
1398void
1399set_value_stack (struct value *value, int val)
1400{
1401 value->stack = val;
1402}
1403
50888e42 1404gdb::array_view<const gdb_byte>
0fd88904
AC
1405value_contents (struct value *value)
1406{
50888e42 1407 gdb::array_view<const gdb_byte> result = value_contents_writeable (value);
0e03807e 1408 require_not_optimized_out (value);
4e07d55f 1409 require_available (value);
0e03807e 1410 return result;
0fd88904
AC
1411}
1412
50888e42 1413gdb::array_view<gdb_byte>
0fd88904
AC
1414value_contents_writeable (struct value *value)
1415{
1416 if (value->lazy)
1417 value_fetch_lazy (value);
fc0c53a0 1418 return value_contents_raw (value);
0fd88904
AC
1419}
1420
feb13ab0
AC
1421int
1422value_optimized_out (struct value *value)
1423{
a519e8ff 1424 if (value->lazy)
ecf2e90c 1425 {
a519e8ff
TT
1426 /* See if we can compute the result without fetching the
1427 value. */
1428 if (VALUE_LVAL (value) == lval_memory)
1429 return false;
1430 else if (VALUE_LVAL (value) == lval_computed)
1431 {
1432 const struct lval_funcs *funcs = value->location.computed.funcs;
1433
1434 if (funcs->is_optimized_out != nullptr)
1435 return funcs->is_optimized_out (value);
1436 }
1437
1438 /* Fall back to fetching. */
a70b8144 1439 try
ecf2e90c
DB
1440 {
1441 value_fetch_lazy (value);
1442 }
230d2906 1443 catch (const gdb_exception_error &ex)
ecf2e90c 1444 {
6d7aa592
PA
1445 switch (ex.error)
1446 {
1447 case MEMORY_ERROR:
1448 case OPTIMIZED_OUT_ERROR:
1449 case NOT_AVAILABLE_ERROR:
1450 /* These can normally happen when we try to access an
1451 optimized out or unavailable register, either in a
1452 physical register or spilled to memory. */
1453 break;
1454 default:
1455 throw;
1456 }
ecf2e90c 1457 }
ecf2e90c 1458 }
691a26f5 1459
0c7e6dd8 1460 return !value->optimized_out.empty ();
feb13ab0
AC
1461}
1462
9a0dc9e3
PA
1463/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1464 the following LENGTH bytes. */
eca07816 1465
feb13ab0 1466void
9a0dc9e3 1467mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1468{
9a0dc9e3
PA
1469 mark_value_bits_optimized_out (value,
1470 offset * TARGET_CHAR_BIT,
1471 length * TARGET_CHAR_BIT);
feb13ab0 1472}
13c3b5f5 1473
9a0dc9e3 1474/* See value.h. */
0e03807e 1475
9a0dc9e3 1476void
6b850546
DT
1477mark_value_bits_optimized_out (struct value *value,
1478 LONGEST offset, LONGEST length)
0e03807e 1479{
9a0dc9e3 1480 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1481}
1482
8cf6f0b1
TT
1483int
1484value_bits_synthetic_pointer (const struct value *value,
6b850546 1485 LONGEST offset, LONGEST length)
8cf6f0b1 1486{
e7303042 1487 if (value->lval != lval_computed
8cf6f0b1
TT
1488 || !value->location.computed.funcs->check_synthetic_pointer)
1489 return 0;
1490 return value->location.computed.funcs->check_synthetic_pointer (value,
1491 offset,
1492 length);
1493}
1494
6b850546 1495LONGEST
4bf7b526 1496value_embedded_offset (const struct value *value)
13c3b5f5
AC
1497{
1498 return value->embedded_offset;
1499}
1500
1501void
6b850546 1502set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1503{
1504 value->embedded_offset = val;
1505}
b44d461b 1506
6b850546 1507LONGEST
4bf7b526 1508value_pointed_to_offset (const struct value *value)
b44d461b
AC
1509{
1510 return value->pointed_to_offset;
1511}
1512
1513void
6b850546 1514set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1515{
1516 value->pointed_to_offset = val;
1517}
13bb5560 1518
c8f2448a 1519const struct lval_funcs *
a471c594 1520value_computed_funcs (const struct value *v)
5f5233d4 1521{
a471c594 1522 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1523
1524 return v->location.computed.funcs;
1525}
1526
1527void *
0e03807e 1528value_computed_closure (const struct value *v)
5f5233d4 1529{
0e03807e 1530 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1531
1532 return v->location.computed.closure;
1533}
1534
13bb5560
AC
1535enum lval_type *
1536deprecated_value_lval_hack (struct value *value)
1537{
1538 return &value->lval;
1539}
1540
a471c594
JK
1541enum lval_type
1542value_lval_const (const struct value *value)
1543{
1544 return value->lval;
1545}
1546
42ae5230 1547CORE_ADDR
de4127a3 1548value_address (const struct value *value)
42ae5230 1549{
1a088441 1550 if (value->lval != lval_memory)
42ae5230 1551 return 0;
53ba8333 1552 if (value->parent != NULL)
2c8331b9 1553 return value_address (value->parent.get ()) + value->offset;
9920b434
BH
1554 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1555 {
1556 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1557 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1558 }
1559
1560 return value->location.address + value->offset;
42ae5230
TT
1561}
1562
1563CORE_ADDR
4bf7b526 1564value_raw_address (const struct value *value)
42ae5230 1565{
1a088441 1566 if (value->lval != lval_memory)
42ae5230
TT
1567 return 0;
1568 return value->location.address;
1569}
1570
1571void
1572set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1573{
1a088441 1574 gdb_assert (value->lval == lval_memory);
42ae5230 1575 value->location.address = addr;
13bb5560
AC
1576}
1577
1578struct internalvar **
1579deprecated_value_internalvar_hack (struct value *value)
1580{
1581 return &value->location.internalvar;
1582}
1583
1584struct frame_id *
41b56feb 1585deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1586{
7c2ba67e 1587 gdb_assert (value->lval == lval_register);
7dc54575 1588 return &value->location.reg.next_frame_id;
13bb5560
AC
1589}
1590
7dc54575 1591int *
13bb5560
AC
1592deprecated_value_regnum_hack (struct value *value)
1593{
7c2ba67e 1594 gdb_assert (value->lval == lval_register);
7dc54575 1595 return &value->location.reg.regnum;
13bb5560 1596}
88e3b34b
AC
1597
1598int
4bf7b526 1599deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1600{
1601 return value->modifiable;
1602}
990a07ab 1603\f
c906108c
SS
1604/* Return a mark in the value chain. All values allocated after the
1605 mark is obtained (except for those released) are subject to being freed
1606 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1607struct value *
fba45db2 1608value_mark (void)
c906108c 1609{
062d818d
TT
1610 if (all_values.empty ())
1611 return nullptr;
1612 return all_values.back ().get ();
c906108c
SS
1613}
1614
bbfa6f00 1615/* See value.h. */
828d3400 1616
bbfa6f00 1617void
828d3400
DJ
1618value_incref (struct value *val)
1619{
1620 val->reference_count++;
1621}
1622
1623/* Release a reference to VAL, which was acquired with value_incref.
1624 This function is also called to deallocate values from the value
1625 chain. */
1626
3e3d7139 1627void
22bc8444 1628value_decref (struct value *val)
3e3d7139 1629{
466ce3ae 1630 if (val != nullptr)
5f5233d4 1631 {
828d3400
DJ
1632 gdb_assert (val->reference_count > 0);
1633 val->reference_count--;
466ce3ae
TT
1634 if (val->reference_count == 0)
1635 delete val;
5f5233d4 1636 }
3e3d7139
JG
1637}
1638
c906108c
SS
1639/* Free all values allocated since MARK was obtained by value_mark
1640 (except for those released). */
1641void
4bf7b526 1642value_free_to_mark (const struct value *mark)
c906108c 1643{
062d818d
TT
1644 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1645 if (iter == all_values.end ())
1646 all_values.clear ();
1647 else
1648 all_values.erase (iter + 1, all_values.end ());
c906108c
SS
1649}
1650
c906108c
SS
1651/* Remove VAL from the chain all_values
1652 so it will not be freed automatically. */
1653
22bc8444 1654value_ref_ptr
f23631e4 1655release_value (struct value *val)
c906108c 1656{
850645cf
TT
1657 if (val == nullptr)
1658 return value_ref_ptr ();
1659
062d818d
TT
1660 std::vector<value_ref_ptr>::reverse_iterator iter;
1661 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
c906108c 1662 {
062d818d 1663 if (*iter == val)
c906108c 1664 {
062d818d
TT
1665 value_ref_ptr result = *iter;
1666 all_values.erase (iter.base () - 1);
1667 return result;
c906108c
SS
1668 }
1669 }
c906108c 1670
062d818d
TT
1671 /* We must always return an owned reference. Normally this happens
1672 because we transfer the reference from the value chain, but in
1673 this case the value was not on the chain. */
bbfa6f00 1674 return value_ref_ptr::new_reference (val);
e848a8a5
TT
1675}
1676
a6535de1
TT
1677/* See value.h. */
1678
1679std::vector<value_ref_ptr>
4bf7b526 1680value_release_to_mark (const struct value *mark)
c906108c 1681{
a6535de1 1682 std::vector<value_ref_ptr> result;
c906108c 1683
062d818d
TT
1684 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1685 if (iter == all_values.end ())
1686 std::swap (result, all_values);
1687 else
e848a8a5 1688 {
062d818d
TT
1689 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1690 all_values.erase (iter + 1, all_values.end ());
e848a8a5 1691 }
062d818d 1692 std::reverse (result.begin (), result.end ());
a6535de1 1693 return result;
c906108c
SS
1694}
1695
1696/* Return a copy of the value ARG.
1697 It contains the same contents, for same memory address,
1698 but it's a different block of storage. */
1699
f23631e4
AC
1700struct value *
1701value_copy (struct value *arg)
c906108c 1702{
4754a64e 1703 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1704 struct value *val;
1705
1706 if (value_lazy (arg))
1707 val = allocate_value_lazy (encl_type);
1708 else
1709 val = allocate_value (encl_type);
df407dfe 1710 val->type = arg->type;
c906108c 1711 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1712 val->location = arg->location;
df407dfe
AC
1713 val->offset = arg->offset;
1714 val->bitpos = arg->bitpos;
1715 val->bitsize = arg->bitsize;
d69fe07e 1716 val->lazy = arg->lazy;
13c3b5f5 1717 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1718 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1719 val->modifiable = arg->modifiable;
efa86d3c 1720 val->stack = arg->stack;
3e44c304 1721 val->is_zero = arg->is_zero;
efa86d3c 1722 val->initialized = arg->initialized;
d69fe07e 1723 if (!value_lazy (val))
c906108c 1724 {
50888e42
SM
1725 memcpy (value_contents_all_raw (val).data (),
1726 value_contents_all_raw (arg).data (),
4754a64e 1727 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1728
1729 }
0c7e6dd8
TT
1730 val->unavailable = arg->unavailable;
1731 val->optimized_out = arg->optimized_out;
2c8331b9 1732 val->parent = arg->parent;
5f5233d4
PA
1733 if (VALUE_LVAL (val) == lval_computed)
1734 {
c8f2448a 1735 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1736
1737 if (funcs->copy_closure)
dda83cd7 1738 val->location.computed.closure = funcs->copy_closure (val);
5f5233d4 1739 }
c906108c
SS
1740 return val;
1741}
74bcbdf3 1742
4c082a81
SC
1743/* Return a "const" and/or "volatile" qualified version of the value V.
1744 If CNST is true, then the returned value will be qualified with
1745 "const".
1746 if VOLTL is true, then the returned value will be qualified with
1747 "volatile". */
1748
1749struct value *
1750make_cv_value (int cnst, int voltl, struct value *v)
1751{
1752 struct type *val_type = value_type (v);
1753 struct type *enclosing_type = value_enclosing_type (v);
1754 struct value *cv_val = value_copy (v);
1755
1756 deprecated_set_value_type (cv_val,
1757 make_cv_type (cnst, voltl, val_type, NULL));
1758 set_value_enclosing_type (cv_val,
1759 make_cv_type (cnst, voltl, enclosing_type, NULL));
1760
1761 return cv_val;
1762}
1763
c37f7098
KW
1764/* Return a version of ARG that is non-lvalue. */
1765
1766struct value *
1767value_non_lval (struct value *arg)
1768{
1769 if (VALUE_LVAL (arg) != not_lval)
1770 {
1771 struct type *enc_type = value_enclosing_type (arg);
1772 struct value *val = allocate_value (enc_type);
1773
50888e42
SM
1774 memcpy (value_contents_all_raw (val).data (),
1775 value_contents_all (arg).data (),
c37f7098
KW
1776 TYPE_LENGTH (enc_type));
1777 val->type = arg->type;
1778 set_value_embedded_offset (val, value_embedded_offset (arg));
1779 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1780 return val;
1781 }
1782 return arg;
1783}
1784
6c659fc2
SC
1785/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1786
1787void
1788value_force_lval (struct value *v, CORE_ADDR addr)
1789{
1790 gdb_assert (VALUE_LVAL (v) == not_lval);
1791
50888e42 1792 write_memory (addr, value_contents_raw (v).data (), TYPE_LENGTH (value_type (v)));
6c659fc2
SC
1793 v->lval = lval_memory;
1794 v->location.address = addr;
1795}
1796
74bcbdf3 1797void
0e03807e
TT
1798set_value_component_location (struct value *component,
1799 const struct value *whole)
74bcbdf3 1800{
9920b434
BH
1801 struct type *type;
1802
e81e7f5e
SC
1803 gdb_assert (whole->lval != lval_xcallable);
1804
0e03807e 1805 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1806 VALUE_LVAL (component) = lval_internalvar_component;
1807 else
0e03807e 1808 VALUE_LVAL (component) = whole->lval;
5f5233d4 1809
74bcbdf3 1810 component->location = whole->location;
0e03807e 1811 if (whole->lval == lval_computed)
5f5233d4 1812 {
c8f2448a 1813 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1814
1815 if (funcs->copy_closure)
dda83cd7 1816 component->location.computed.closure = funcs->copy_closure (whole);
5f5233d4 1817 }
9920b434 1818
3c8c6de2
AB
1819 /* If the WHOLE value has a dynamically resolved location property then
1820 update the address of the COMPONENT. */
9920b434
BH
1821 type = value_type (whole);
1822 if (NULL != TYPE_DATA_LOCATION (type)
1823 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1824 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
3c8c6de2
AB
1825
1826 /* Similarly, if the COMPONENT value has a dynamically resolved location
1827 property then update its address. */
1828 type = value_type (component);
1829 if (NULL != TYPE_DATA_LOCATION (type)
1830 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1831 {
1832 /* If the COMPONENT has a dynamic location, and is an
1833 lval_internalvar_component, then we change it to a lval_memory.
1834
1835 Usually a component of an internalvar is created non-lazy, and has
1836 its content immediately copied from the parent internalvar.
1837 However, for components with a dynamic location, the content of
1838 the component is not contained within the parent, but is instead
1839 accessed indirectly. Further, the component will be created as a
1840 lazy value.
1841
1842 By changing the type of the component to lval_memory we ensure
1843 that value_fetch_lazy can successfully load the component.
1844
1845 This solution isn't ideal, but a real fix would require values to
1846 carry around both the parent value contents, and the contents of
1847 any dynamic fields within the parent. This is a substantial
1848 change to how values work in GDB. */
1849 if (VALUE_LVAL (component) == lval_internalvar_component)
1850 {
1851 gdb_assert (value_lazy (component));
1852 VALUE_LVAL (component) = lval_memory;
1853 }
1854 else
1855 gdb_assert (VALUE_LVAL (component) == lval_memory);
1856 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1857 }
74bcbdf3
PA
1858}
1859
c906108c
SS
1860/* Access to the value history. */
1861
1862/* Record a new value in the value history.
eddf0bae 1863 Returns the absolute history index of the entry. */
c906108c
SS
1864
1865int
f23631e4 1866record_latest_value (struct value *val)
c906108c 1867{
c906108c
SS
1868 /* We don't want this value to have anything to do with the inferior anymore.
1869 In particular, "set $1 = 50" should not affect the variable from which
1870 the value was taken, and fast watchpoints should be able to assume that
1871 a value on the value history never changes. */
d69fe07e 1872 if (value_lazy (val))
c906108c
SS
1873 value_fetch_lazy (val);
1874 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1875 from. This is a bit dubious, because then *&$1 does not just return $1
1876 but the current contents of that location. c'est la vie... */
1877 val->modifiable = 0;
350e1a76 1878
4d0266a0 1879 value_history.push_back (release_value (val));
a109c7c1 1880
4d0266a0 1881 return value_history.size ();
c906108c
SS
1882}
1883
1884/* Return a copy of the value in the history with sequence number NUM. */
1885
f23631e4 1886struct value *
fba45db2 1887access_value_history (int num)
c906108c 1888{
52f0bd74 1889 int absnum = num;
c906108c
SS
1890
1891 if (absnum <= 0)
4d0266a0 1892 absnum += value_history.size ();
c906108c
SS
1893
1894 if (absnum <= 0)
1895 {
1896 if (num == 0)
8a3fe4f8 1897 error (_("The history is empty."));
c906108c 1898 else if (num == 1)
8a3fe4f8 1899 error (_("There is only one value in the history."));
c906108c 1900 else
8a3fe4f8 1901 error (_("History does not go back to $$%d."), -num);
c906108c 1902 }
4d0266a0 1903 if (absnum > value_history.size ())
8a3fe4f8 1904 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1905
1906 absnum--;
1907
4d0266a0 1908 return value_copy (value_history[absnum].get ());
c906108c
SS
1909}
1910
c906108c 1911static void
5fed81ff 1912show_values (const char *num_exp, int from_tty)
c906108c 1913{
52f0bd74 1914 int i;
f23631e4 1915 struct value *val;
c906108c
SS
1916 static int num = 1;
1917
1918 if (num_exp)
1919 {
f132ba9d 1920 /* "show values +" should print from the stored position.
dda83cd7 1921 "show values <exp>" should print around value number <exp>. */
c906108c 1922 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1923 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1924 }
1925 else
1926 {
f132ba9d 1927 /* "show values" means print the last 10 values. */
4d0266a0 1928 num = value_history.size () - 9;
c906108c
SS
1929 }
1930
1931 if (num <= 0)
1932 num = 1;
1933
4d0266a0 1934 for (i = num; i < num + 10 && i <= value_history.size (); i++)
c906108c 1935 {
79a45b7d 1936 struct value_print_options opts;
a109c7c1 1937
c906108c 1938 val = access_value_history (i);
a3f17187 1939 printf_filtered (("$%d = "), i);
79a45b7d
TT
1940 get_user_print_options (&opts);
1941 value_print (val, gdb_stdout, &opts);
a3f17187 1942 printf_filtered (("\n"));
c906108c
SS
1943 }
1944
f132ba9d 1945 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1946 num += 10;
1947
1948 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1949 "show values +". If num_exp is null, this is unnecessary, since
1950 "show values +" is not useful after "show values". */
c906108c 1951 if (from_tty && num_exp)
85c4be7c 1952 set_repeat_arguments ("+");
c906108c
SS
1953}
1954\f
52059ffd
TT
1955enum internalvar_kind
1956{
1957 /* The internal variable is empty. */
1958 INTERNALVAR_VOID,
1959
1960 /* The value of the internal variable is provided directly as
1961 a GDB value object. */
1962 INTERNALVAR_VALUE,
1963
1964 /* A fresh value is computed via a call-back routine on every
1965 access to the internal variable. */
1966 INTERNALVAR_MAKE_VALUE,
1967
1968 /* The internal variable holds a GDB internal convenience function. */
1969 INTERNALVAR_FUNCTION,
1970
1971 /* The variable holds an integer value. */
1972 INTERNALVAR_INTEGER,
1973
1974 /* The variable holds a GDB-provided string. */
1975 INTERNALVAR_STRING,
1976};
1977
1978union internalvar_data
1979{
1980 /* A value object used with INTERNALVAR_VALUE. */
1981 struct value *value;
1982
1983 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1984 struct
1985 {
1986 /* The functions to call. */
1987 const struct internalvar_funcs *functions;
1988
1989 /* The function's user-data. */
1990 void *data;
1991 } make_value;
1992
1993 /* The internal function used with INTERNALVAR_FUNCTION. */
1994 struct
1995 {
1996 struct internal_function *function;
1997 /* True if this is the canonical name for the function. */
1998 int canonical;
1999 } fn;
2000
2001 /* An integer value used with INTERNALVAR_INTEGER. */
2002 struct
2003 {
2004 /* If type is non-NULL, it will be used as the type to generate
2005 a value for this internal variable. If type is NULL, a default
2006 integer type for the architecture is used. */
2007 struct type *type;
2008 LONGEST val;
2009 } integer;
2010
2011 /* A string value used with INTERNALVAR_STRING. */
2012 char *string;
2013};
2014
c906108c
SS
2015/* Internal variables. These are variables within the debugger
2016 that hold values assigned by debugger commands.
2017 The user refers to them with a '$' prefix
2018 that does not appear in the variable names stored internally. */
2019
4fa62494
UW
2020struct internalvar
2021{
2022 struct internalvar *next;
2023 char *name;
4fa62494 2024
78267919
UW
2025 /* We support various different kinds of content of an internal variable.
2026 enum internalvar_kind specifies the kind, and union internalvar_data
2027 provides the data associated with this particular kind. */
2028
52059ffd 2029 enum internalvar_kind kind;
4fa62494 2030
52059ffd 2031 union internalvar_data u;
4fa62494
UW
2032};
2033
c906108c
SS
2034static struct internalvar *internalvars;
2035
3e43a32a
MS
2036/* If the variable does not already exist create it and give it the
2037 value given. If no value is given then the default is zero. */
53e5f3cf 2038static void
0b39b52e 2039init_if_undefined_command (const char* args, int from_tty)
53e5f3cf 2040{
413403fc 2041 struct internalvar *intvar = nullptr;
53e5f3cf
AS
2042
2043 /* Parse the expression - this is taken from set_command(). */
4d01a485 2044 expression_up expr = parse_expression (args);
53e5f3cf
AS
2045
2046 /* Validate the expression.
2047 Was the expression an assignment?
2048 Or even an expression at all? */
3dd93bf8 2049 if (expr->first_opcode () != BINOP_ASSIGN)
53e5f3cf
AS
2050 error (_("Init-if-undefined requires an assignment expression."));
2051
1eaebe02
TT
2052 /* Extract the variable from the parsed expression. */
2053 expr::assign_operation *assign
2054 = dynamic_cast<expr::assign_operation *> (expr->op.get ());
2055 if (assign != nullptr)
413403fc 2056 {
1eaebe02
TT
2057 expr::operation *lhs = assign->get_lhs ();
2058 expr::internalvar_operation *ivarop
2059 = dynamic_cast<expr::internalvar_operation *> (lhs);
2060 if (ivarop != nullptr)
2061 intvar = ivarop->get_internalvar ();
413403fc
TT
2062 }
2063
2064 if (intvar == nullptr)
3e43a32a
MS
2065 error (_("The first parameter to init-if-undefined "
2066 "should be a GDB variable."));
53e5f3cf
AS
2067
2068 /* Only evaluate the expression if the lvalue is void.
85102364 2069 This may still fail if the expression is invalid. */
78267919 2070 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 2071 evaluate_expression (expr.get ());
53e5f3cf
AS
2072}
2073
2074
c906108c
SS
2075/* Look up an internal variable with name NAME. NAME should not
2076 normally include a dollar sign.
2077
2078 If the specified internal variable does not exist,
c4a3d09a 2079 the return value is NULL. */
c906108c
SS
2080
2081struct internalvar *
bc3b79fd 2082lookup_only_internalvar (const char *name)
c906108c 2083{
52f0bd74 2084 struct internalvar *var;
c906108c
SS
2085
2086 for (var = internalvars; var; var = var->next)
5cb316ef 2087 if (strcmp (var->name, name) == 0)
c906108c
SS
2088 return var;
2089
c4a3d09a
MF
2090 return NULL;
2091}
2092
eb3ff9a5
PA
2093/* Complete NAME by comparing it to the names of internal
2094 variables. */
d55637df 2095
eb3ff9a5
PA
2096void
2097complete_internalvar (completion_tracker &tracker, const char *name)
d55637df 2098{
d55637df
TT
2099 struct internalvar *var;
2100 int len;
2101
2102 len = strlen (name);
2103
2104 for (var = internalvars; var; var = var->next)
2105 if (strncmp (var->name, name, len) == 0)
b02f78f9 2106 tracker.add_completion (make_unique_xstrdup (var->name));
d55637df 2107}
c4a3d09a
MF
2108
2109/* Create an internal variable with name NAME and with a void value.
2110 NAME should not normally include a dollar sign. */
2111
2112struct internalvar *
bc3b79fd 2113create_internalvar (const char *name)
c4a3d09a 2114{
8d749320 2115 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2116
395f9c91 2117 var->name = xstrdup (name);
78267919 2118 var->kind = INTERNALVAR_VOID;
c906108c
SS
2119 var->next = internalvars;
2120 internalvars = var;
2121 return var;
2122}
2123
4aa995e1
PA
2124/* Create an internal variable with name NAME and register FUN as the
2125 function that value_of_internalvar uses to create a value whenever
2126 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2127 dollar sign. DATA is passed uninterpreted to FUN when it is
2128 called. CLEANUP, if not NULL, is called when the internal variable
2129 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2130
2131struct internalvar *
22d2b532
SDJ
2132create_internalvar_type_lazy (const char *name,
2133 const struct internalvar_funcs *funcs,
2134 void *data)
4aa995e1 2135{
4fa62494 2136 struct internalvar *var = create_internalvar (name);
a109c7c1 2137
78267919 2138 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2139 var->u.make_value.functions = funcs;
2140 var->u.make_value.data = data;
4aa995e1
PA
2141 return var;
2142}
c4a3d09a 2143
22d2b532
SDJ
2144/* See documentation in value.h. */
2145
2146int
2147compile_internalvar_to_ax (struct internalvar *var,
2148 struct agent_expr *expr,
2149 struct axs_value *value)
2150{
2151 if (var->kind != INTERNALVAR_MAKE_VALUE
2152 || var->u.make_value.functions->compile_to_ax == NULL)
2153 return 0;
2154
2155 var->u.make_value.functions->compile_to_ax (var, expr, value,
2156 var->u.make_value.data);
2157 return 1;
2158}
2159
c4a3d09a
MF
2160/* Look up an internal variable with name NAME. NAME should not
2161 normally include a dollar sign.
2162
2163 If the specified internal variable does not exist,
2164 one is created, with a void value. */
2165
2166struct internalvar *
bc3b79fd 2167lookup_internalvar (const char *name)
c4a3d09a
MF
2168{
2169 struct internalvar *var;
2170
2171 var = lookup_only_internalvar (name);
2172 if (var)
2173 return var;
2174
2175 return create_internalvar (name);
2176}
2177
78267919
UW
2178/* Return current value of internal variable VAR. For variables that
2179 are not inherently typed, use a value type appropriate for GDBARCH. */
2180
f23631e4 2181struct value *
78267919 2182value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2183{
f23631e4 2184 struct value *val;
0914bcdb
SS
2185 struct trace_state_variable *tsv;
2186
2187 /* If there is a trace state variable of the same name, assume that
2188 is what we really want to see. */
2189 tsv = find_trace_state_variable (var->name);
2190 if (tsv)
2191 {
2192 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2193 &(tsv->value));
2194 if (tsv->value_known)
2195 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2196 tsv->value);
2197 else
2198 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2199 return val;
2200 }
c906108c 2201
78267919 2202 switch (var->kind)
5f5233d4 2203 {
78267919
UW
2204 case INTERNALVAR_VOID:
2205 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2206 break;
4fa62494 2207
78267919
UW
2208 case INTERNALVAR_FUNCTION:
2209 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2210 break;
4fa62494 2211
cab0c772
UW
2212 case INTERNALVAR_INTEGER:
2213 if (!var->u.integer.type)
78267919 2214 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2215 var->u.integer.val);
78267919 2216 else
cab0c772
UW
2217 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2218 break;
2219
78267919
UW
2220 case INTERNALVAR_STRING:
2221 val = value_cstring (var->u.string, strlen (var->u.string),
2222 builtin_type (gdbarch)->builtin_char);
2223 break;
4fa62494 2224
78267919
UW
2225 case INTERNALVAR_VALUE:
2226 val = value_copy (var->u.value);
4aa995e1
PA
2227 if (value_lazy (val))
2228 value_fetch_lazy (val);
78267919 2229 break;
4aa995e1 2230
78267919 2231 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2232 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2233 var->u.make_value.data);
78267919
UW
2234 break;
2235
2236 default:
9b20d036 2237 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2238 }
2239
2240 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2241 on this value go back to affect the original internal variable.
2242
2243 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
30baf67b 2244 no underlying modifiable state in the internal variable.
78267919
UW
2245
2246 Likewise, if the variable's value is a computed lvalue, we want
2247 references to it to produce another computed lvalue, where
2248 references and assignments actually operate through the
2249 computed value's functions.
2250
2251 This means that internal variables with computed values
2252 behave a little differently from other internal variables:
2253 assignments to them don't just replace the previous value
2254 altogether. At the moment, this seems like the behavior we
2255 want. */
2256
2257 if (var->kind != INTERNALVAR_MAKE_VALUE
2258 && val->lval != lval_computed)
2259 {
2260 VALUE_LVAL (val) = lval_internalvar;
2261 VALUE_INTERNALVAR (val) = var;
5f5233d4 2262 }
d3c139e9 2263
4fa62494
UW
2264 return val;
2265}
d3c139e9 2266
4fa62494
UW
2267int
2268get_internalvar_integer (struct internalvar *var, LONGEST *result)
2269{
3158c6ed 2270 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2271 {
cab0c772
UW
2272 *result = var->u.integer.val;
2273 return 1;
3158c6ed 2274 }
d3c139e9 2275
3158c6ed
PA
2276 if (var->kind == INTERNALVAR_VALUE)
2277 {
2278 struct type *type = check_typedef (value_type (var->u.value));
2279
78134374 2280 if (type->code () == TYPE_CODE_INT)
3158c6ed
PA
2281 {
2282 *result = value_as_long (var->u.value);
2283 return 1;
2284 }
4fa62494 2285 }
3158c6ed
PA
2286
2287 return 0;
4fa62494 2288}
d3c139e9 2289
4fa62494
UW
2290static int
2291get_internalvar_function (struct internalvar *var,
2292 struct internal_function **result)
2293{
78267919 2294 switch (var->kind)
d3c139e9 2295 {
78267919
UW
2296 case INTERNALVAR_FUNCTION:
2297 *result = var->u.fn.function;
4fa62494 2298 return 1;
d3c139e9 2299
4fa62494
UW
2300 default:
2301 return 0;
2302 }
c906108c
SS
2303}
2304
2305void
6b850546
DT
2306set_internalvar_component (struct internalvar *var,
2307 LONGEST offset, LONGEST bitpos,
2308 LONGEST bitsize, struct value *newval)
c906108c 2309{
4fa62494 2310 gdb_byte *addr;
3ae385af
SM
2311 struct gdbarch *arch;
2312 int unit_size;
c906108c 2313
78267919 2314 switch (var->kind)
4fa62494 2315 {
78267919 2316 case INTERNALVAR_VALUE:
50888e42 2317 addr = value_contents_writeable (var->u.value).data ();
3ae385af
SM
2318 arch = get_value_arch (var->u.value);
2319 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2320
2321 if (bitsize)
50810684 2322 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2323 value_as_long (newval), bitpos, bitsize);
2324 else
50888e42 2325 memcpy (addr + offset * unit_size, value_contents (newval).data (),
4fa62494
UW
2326 TYPE_LENGTH (value_type (newval)));
2327 break;
78267919
UW
2328
2329 default:
2330 /* We can never get a component of any other kind. */
9b20d036 2331 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2332 }
c906108c
SS
2333}
2334
2335void
f23631e4 2336set_internalvar (struct internalvar *var, struct value *val)
c906108c 2337{
78267919 2338 enum internalvar_kind new_kind;
4fa62494 2339 union internalvar_data new_data = { 0 };
c906108c 2340
78267919 2341 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2342 error (_("Cannot overwrite convenience function %s"), var->name);
2343
4fa62494 2344 /* Prepare new contents. */
78134374 2345 switch (check_typedef (value_type (val))->code ())
4fa62494
UW
2346 {
2347 case TYPE_CODE_VOID:
78267919 2348 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2349 break;
2350
2351 case TYPE_CODE_INTERNAL_FUNCTION:
2352 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2353 new_kind = INTERNALVAR_FUNCTION;
2354 get_internalvar_function (VALUE_INTERNALVAR (val),
2355 &new_data.fn.function);
2356 /* Copies created here are never canonical. */
4fa62494
UW
2357 break;
2358
4fa62494 2359 default:
78267919 2360 new_kind = INTERNALVAR_VALUE;
895dafa6
TT
2361 struct value *copy = value_copy (val);
2362 copy->modifiable = 1;
4fa62494
UW
2363
2364 /* Force the value to be fetched from the target now, to avoid problems
2365 later when this internalvar is referenced and the target is gone or
2366 has changed. */
895dafa6
TT
2367 if (value_lazy (copy))
2368 value_fetch_lazy (copy);
4fa62494
UW
2369
2370 /* Release the value from the value chain to prevent it from being
2371 deleted by free_all_values. From here on this function should not
2372 call error () until new_data is installed into the var->u to avoid
2373 leaking memory. */
895dafa6 2374 new_data.value = release_value (copy).release ();
9920b434
BH
2375
2376 /* Internal variables which are created from values with a dynamic
dda83cd7
SM
2377 location don't need the location property of the origin anymore.
2378 The resolved dynamic location is used prior then any other address
2379 when accessing the value.
2380 If we keep it, we would still refer to the origin value.
2381 Remove the location property in case it exist. */
7aa91313 2382 value_type (new_data.value)->remove_dyn_prop (DYN_PROP_DATA_LOCATION);
9920b434 2383
4fa62494
UW
2384 break;
2385 }
2386
2387 /* Clean up old contents. */
2388 clear_internalvar (var);
2389
2390 /* Switch over. */
78267919 2391 var->kind = new_kind;
4fa62494 2392 var->u = new_data;
c906108c
SS
2393 /* End code which must not call error(). */
2394}
2395
4fa62494
UW
2396void
2397set_internalvar_integer (struct internalvar *var, LONGEST l)
2398{
2399 /* Clean up old contents. */
2400 clear_internalvar (var);
2401
cab0c772
UW
2402 var->kind = INTERNALVAR_INTEGER;
2403 var->u.integer.type = NULL;
2404 var->u.integer.val = l;
78267919
UW
2405}
2406
2407void
2408set_internalvar_string (struct internalvar *var, const char *string)
2409{
2410 /* Clean up old contents. */
2411 clear_internalvar (var);
2412
2413 var->kind = INTERNALVAR_STRING;
2414 var->u.string = xstrdup (string);
4fa62494
UW
2415}
2416
2417static void
2418set_internalvar_function (struct internalvar *var, struct internal_function *f)
2419{
2420 /* Clean up old contents. */
2421 clear_internalvar (var);
2422
78267919
UW
2423 var->kind = INTERNALVAR_FUNCTION;
2424 var->u.fn.function = f;
2425 var->u.fn.canonical = 1;
2426 /* Variables installed here are always the canonical version. */
4fa62494
UW
2427}
2428
2429void
2430clear_internalvar (struct internalvar *var)
2431{
2432 /* Clean up old contents. */
78267919 2433 switch (var->kind)
4fa62494 2434 {
78267919 2435 case INTERNALVAR_VALUE:
22bc8444 2436 value_decref (var->u.value);
78267919
UW
2437 break;
2438
2439 case INTERNALVAR_STRING:
2440 xfree (var->u.string);
4fa62494
UW
2441 break;
2442
22d2b532
SDJ
2443 case INTERNALVAR_MAKE_VALUE:
2444 if (var->u.make_value.functions->destroy != NULL)
2445 var->u.make_value.functions->destroy (var->u.make_value.data);
2446 break;
2447
4fa62494 2448 default:
4fa62494
UW
2449 break;
2450 }
2451
78267919
UW
2452 /* Reset to void kind. */
2453 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2454}
2455
baf20f76 2456const char *
4bf7b526 2457internalvar_name (const struct internalvar *var)
c906108c
SS
2458{
2459 return var->name;
2460}
2461
4fa62494
UW
2462static struct internal_function *
2463create_internal_function (const char *name,
2464 internal_function_fn handler, void *cookie)
bc3b79fd 2465{
bc3b79fd 2466 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2467
bc3b79fd
TJB
2468 ifn->name = xstrdup (name);
2469 ifn->handler = handler;
2470 ifn->cookie = cookie;
4fa62494 2471 return ifn;
bc3b79fd
TJB
2472}
2473
91f87213 2474const char *
bc3b79fd
TJB
2475value_internal_function_name (struct value *val)
2476{
4fa62494
UW
2477 struct internal_function *ifn;
2478 int result;
2479
2480 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2481 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2482 gdb_assert (result);
2483
bc3b79fd
TJB
2484 return ifn->name;
2485}
2486
2487struct value *
d452c4bc
UW
2488call_internal_function (struct gdbarch *gdbarch,
2489 const struct language_defn *language,
2490 struct value *func, int argc, struct value **argv)
bc3b79fd 2491{
4fa62494
UW
2492 struct internal_function *ifn;
2493 int result;
2494
2495 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2496 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2497 gdb_assert (result);
2498
d452c4bc 2499 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2500}
2501
2502/* The 'function' command. This does nothing -- it is just a
2503 placeholder to let "help function NAME" work. This is also used as
2504 the implementation of the sub-command that is created when
2505 registering an internal function. */
2506static void
981a3fb3 2507function_command (const char *command, int from_tty)
bc3b79fd
TJB
2508{
2509 /* Do nothing. */
2510}
2511
1a6d41c6
TT
2512/* Helper function that does the work for add_internal_function. */
2513
2514static struct cmd_list_element *
2515do_add_internal_function (const char *name, const char *doc,
2516 internal_function_fn handler, void *cookie)
bc3b79fd 2517{
4fa62494 2518 struct internal_function *ifn;
bc3b79fd 2519 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2520
2521 ifn = create_internal_function (name, handler, cookie);
2522 set_internalvar_function (var, ifn);
bc3b79fd 2523
3ea16160 2524 return add_cmd (name, no_class, function_command, doc, &functionlist);
1a6d41c6
TT
2525}
2526
2527/* See value.h. */
2528
2529void
2530add_internal_function (const char *name, const char *doc,
2531 internal_function_fn handler, void *cookie)
2532{
2533 do_add_internal_function (name, doc, handler, cookie);
2534}
2535
2536/* See value.h. */
2537
2538void
3ea16160
TT
2539add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
2540 gdb::unique_xmalloc_ptr<char> &&doc,
1a6d41c6
TT
2541 internal_function_fn handler, void *cookie)
2542{
2543 struct cmd_list_element *cmd
3ea16160 2544 = do_add_internal_function (name.get (), doc.get (), handler, cookie);
1a6d41c6
TT
2545 doc.release ();
2546 cmd->doc_allocated = 1;
3ea16160
TT
2547 name.release ();
2548 cmd->name_allocated = 1;
bc3b79fd
TJB
2549}
2550
ae5a43e0
DJ
2551/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2552 prevent cycles / duplicates. */
2553
4e7a5ef5 2554void
ae5a43e0
DJ
2555preserve_one_value (struct value *value, struct objfile *objfile,
2556 htab_t copied_types)
2557{
6ac37371 2558 if (value->type->objfile_owner () == objfile)
ae5a43e0
DJ
2559 value->type = copy_type_recursive (objfile, value->type, copied_types);
2560
6ac37371 2561 if (value->enclosing_type->objfile_owner () == objfile)
ae5a43e0
DJ
2562 value->enclosing_type = copy_type_recursive (objfile,
2563 value->enclosing_type,
2564 copied_types);
2565}
2566
78267919
UW
2567/* Likewise for internal variable VAR. */
2568
2569static void
2570preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2571 htab_t copied_types)
2572{
2573 switch (var->kind)
2574 {
cab0c772 2575 case INTERNALVAR_INTEGER:
6ac37371
SM
2576 if (var->u.integer.type
2577 && var->u.integer.type->objfile_owner () == objfile)
cab0c772
UW
2578 var->u.integer.type
2579 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2580 break;
2581
78267919
UW
2582 case INTERNALVAR_VALUE:
2583 preserve_one_value (var->u.value, objfile, copied_types);
2584 break;
2585 }
2586}
2587
ae5a43e0
DJ
2588/* Update the internal variables and value history when OBJFILE is
2589 discarded; we must copy the types out of the objfile. New global types
2590 will be created for every convenience variable which currently points to
2591 this objfile's types, and the convenience variables will be adjusted to
2592 use the new global types. */
c906108c
SS
2593
2594void
ae5a43e0 2595preserve_values (struct objfile *objfile)
c906108c 2596{
52f0bd74 2597 struct internalvar *var;
c906108c 2598
ae5a43e0
DJ
2599 /* Create the hash table. We allocate on the objfile's obstack, since
2600 it is soon to be deleted. */
6108fd18 2601 htab_up copied_types = create_copied_types_hash (objfile);
ae5a43e0 2602
4d0266a0 2603 for (const value_ref_ptr &item : value_history)
6108fd18 2604 preserve_one_value (item.get (), objfile, copied_types.get ());
ae5a43e0
DJ
2605
2606 for (var = internalvars; var; var = var->next)
6108fd18 2607 preserve_one_internalvar (var, objfile, copied_types.get ());
ae5a43e0 2608
6108fd18 2609 preserve_ext_lang_values (objfile, copied_types.get ());
c906108c
SS
2610}
2611
2612static void
ad25e423 2613show_convenience (const char *ignore, int from_tty)
c906108c 2614{
e17c207e 2615 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2616 struct internalvar *var;
c906108c 2617 int varseen = 0;
79a45b7d 2618 struct value_print_options opts;
c906108c 2619
79a45b7d 2620 get_user_print_options (&opts);
c906108c
SS
2621 for (var = internalvars; var; var = var->next)
2622 {
c709acd1 2623
c906108c
SS
2624 if (!varseen)
2625 {
2626 varseen = 1;
2627 }
a3f17187 2628 printf_filtered (("$%s = "), var->name);
c709acd1 2629
a70b8144 2630 try
c709acd1
PA
2631 {
2632 struct value *val;
2633
2634 val = value_of_internalvar (gdbarch, var);
2635 value_print (val, gdb_stdout, &opts);
2636 }
230d2906 2637 catch (const gdb_exception_error &ex)
492d29ea 2638 {
7f6aba03
TT
2639 fprintf_styled (gdb_stdout, metadata_style.style (),
2640 _("<error: %s>"), ex.what ());
492d29ea 2641 }
492d29ea 2642
a3f17187 2643 printf_filtered (("\n"));
c906108c
SS
2644 }
2645 if (!varseen)
f47f77df
DE
2646 {
2647 /* This text does not mention convenience functions on purpose.
2648 The user can't create them except via Python, and if Python support
2649 is installed this message will never be printed ($_streq will
2650 exist). */
2651 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2652 "Convenience variables have "
2653 "names starting with \"$\";\n"
2654 "use \"set\" as in \"set "
2655 "$foo = 5\" to define them.\n"));
2656 }
c906108c
SS
2657}
2658\f
ba18742c
SM
2659
2660/* See value.h. */
e81e7f5e
SC
2661
2662struct value *
ba18742c 2663value_from_xmethod (xmethod_worker_up &&worker)
e81e7f5e 2664{
ba18742c 2665 struct value *v;
e81e7f5e 2666
ba18742c
SM
2667 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2668 v->lval = lval_xcallable;
2669 v->location.xm_worker = worker.release ();
2670 v->modifiable = 0;
e81e7f5e 2671
ba18742c 2672 return v;
e81e7f5e
SC
2673}
2674
2ce1cdbf
DE
2675/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2676
2677struct type *
6b1747cd 2678result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv)
2ce1cdbf 2679{
78134374 2680 gdb_assert (value_type (method)->code () == TYPE_CODE_XMETHOD
6b1747cd 2681 && method->lval == lval_xcallable && !argv.empty ());
2ce1cdbf 2682
6b1747cd 2683 return method->location.xm_worker->get_result_type (argv[0], argv.slice (1));
2ce1cdbf
DE
2684}
2685
e81e7f5e
SC
2686/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2687
2688struct value *
6b1747cd 2689call_xmethod (struct value *method, gdb::array_view<value *> argv)
e81e7f5e 2690{
78134374 2691 gdb_assert (value_type (method)->code () == TYPE_CODE_XMETHOD
6b1747cd 2692 && method->lval == lval_xcallable && !argv.empty ());
e81e7f5e 2693
6b1747cd 2694 return method->location.xm_worker->invoke (argv[0], argv.slice (1));
e81e7f5e
SC
2695}
2696\f
c906108c
SS
2697/* Extract a value as a C number (either long or double).
2698 Knows how to convert fixed values to double, or
2699 floating values to long.
2700 Does not deallocate the value. */
2701
2702LONGEST
f23631e4 2703value_as_long (struct value *val)
c906108c
SS
2704{
2705 /* This coerces arrays and functions, which is necessary (e.g.
2706 in disassemble_command). It also dereferences references, which
2707 I suspect is the most logical thing to do. */
994b9211 2708 val = coerce_array (val);
50888e42 2709 return unpack_long (value_type (val), value_contents (val).data ());
c906108c
SS
2710}
2711
581e13c1 2712/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2713 Note that val's type may not actually be a pointer; value_as_long
2714 handles all the cases. */
c906108c 2715CORE_ADDR
f23631e4 2716value_as_address (struct value *val)
c906108c 2717{
8ee511af 2718 struct gdbarch *gdbarch = value_type (val)->arch ();
50810684 2719
c906108c
SS
2720 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2721 whether we want this to be true eventually. */
2722#if 0
bf6ae464 2723 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2724 non-address (e.g. argument to "signal", "info break", etc.), or
2725 for pointers to char, in which the low bits *are* significant. */
50810684 2726 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2727#else
f312f057
JB
2728
2729 /* There are several targets (IA-64, PowerPC, and others) which
2730 don't represent pointers to functions as simply the address of
2731 the function's entry point. For example, on the IA-64, a
2732 function pointer points to a two-word descriptor, generated by
2733 the linker, which contains the function's entry point, and the
2734 value the IA-64 "global pointer" register should have --- to
2735 support position-independent code. The linker generates
2736 descriptors only for those functions whose addresses are taken.
2737
2738 On such targets, it's difficult for GDB to convert an arbitrary
2739 function address into a function pointer; it has to either find
2740 an existing descriptor for that function, or call malloc and
2741 build its own. On some targets, it is impossible for GDB to
2742 build a descriptor at all: the descriptor must contain a jump
2743 instruction; data memory cannot be executed; and code memory
2744 cannot be modified.
2745
2746 Upon entry to this function, if VAL is a value of type `function'
2747 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2748 value_address (val) is the address of the function. This is what
f312f057
JB
2749 you'll get if you evaluate an expression like `main'. The call
2750 to COERCE_ARRAY below actually does all the usual unary
2751 conversions, which includes converting values of type `function'
2752 to `pointer to function'. This is the challenging conversion
2753 discussed above. Then, `unpack_long' will convert that pointer
2754 back into an address.
2755
2756 So, suppose the user types `disassemble foo' on an architecture
2757 with a strange function pointer representation, on which GDB
2758 cannot build its own descriptors, and suppose further that `foo'
2759 has no linker-built descriptor. The address->pointer conversion
2760 will signal an error and prevent the command from running, even
2761 though the next step would have been to convert the pointer
2762 directly back into the same address.
2763
2764 The following shortcut avoids this whole mess. If VAL is a
2765 function, just return its address directly. */
78134374
SM
2766 if (value_type (val)->code () == TYPE_CODE_FUNC
2767 || value_type (val)->code () == TYPE_CODE_METHOD)
42ae5230 2768 return value_address (val);
f312f057 2769
994b9211 2770 val = coerce_array (val);
fc0c74b1
AC
2771
2772 /* Some architectures (e.g. Harvard), map instruction and data
2773 addresses onto a single large unified address space. For
2774 instance: An architecture may consider a large integer in the
2775 range 0x10000000 .. 0x1000ffff to already represent a data
2776 addresses (hence not need a pointer to address conversion) while
2777 a small integer would still need to be converted integer to
2778 pointer to address. Just assume such architectures handle all
2779 integer conversions in a single function. */
2780
2781 /* JimB writes:
2782
2783 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2784 must admonish GDB hackers to make sure its behavior matches the
2785 compiler's, whenever possible.
2786
2787 In general, I think GDB should evaluate expressions the same way
2788 the compiler does. When the user copies an expression out of
2789 their source code and hands it to a `print' command, they should
2790 get the same value the compiler would have computed. Any
2791 deviation from this rule can cause major confusion and annoyance,
2792 and needs to be justified carefully. In other words, GDB doesn't
2793 really have the freedom to do these conversions in clever and
2794 useful ways.
2795
2796 AndrewC pointed out that users aren't complaining about how GDB
2797 casts integers to pointers; they are complaining that they can't
2798 take an address from a disassembly listing and give it to `x/i'.
2799 This is certainly important.
2800
79dd2d24 2801 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2802 makes it possible for GDB to "get it right" in all circumstances
2803 --- the target has complete control over how things get done, so
2804 people can Do The Right Thing for their target without breaking
2805 anyone else. The standard doesn't specify how integers get
2806 converted to pointers; usually, the ABI doesn't either, but
2807 ABI-specific code is a more reasonable place to handle it. */
2808
809f3be1 2809 if (!value_type (val)->is_pointer_or_reference ()
50810684
UW
2810 && gdbarch_integer_to_address_p (gdbarch))
2811 return gdbarch_integer_to_address (gdbarch, value_type (val),
50888e42 2812 value_contents (val).data ());
fc0c74b1 2813
50888e42 2814 return unpack_long (value_type (val), value_contents (val).data ());
c906108c
SS
2815#endif
2816}
2817\f
2818/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2819 as a long, or as a double, assuming the raw data is described
2820 by type TYPE. Knows how to convert different sizes of values
2821 and can convert between fixed and floating point. We don't assume
2822 any alignment for the raw data. Return value is in host byte order.
2823
2824 If you want functions and arrays to be coerced to pointers, and
2825 references to be dereferenced, call value_as_long() instead.
2826
2827 C++: It is assumed that the front-end has taken care of
2828 all matters concerning pointers to members. A pointer
2829 to member which reaches here is considered to be equivalent
2830 to an INT (or some size). After all, it is only an offset. */
2831
2832LONGEST
fc1a4b47 2833unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2834{
09584414 2835 if (is_fixed_point_type (type))
d19937a7 2836 type = type->fixed_point_type_base_type ();
09584414 2837
34877895 2838 enum bfd_endian byte_order = type_byte_order (type);
78134374 2839 enum type_code code = type->code ();
52f0bd74 2840 int len = TYPE_LENGTH (type);
c6d940a9 2841 int nosign = type->is_unsigned ();
c906108c 2842
c906108c
SS
2843 switch (code)
2844 {
2845 case TYPE_CODE_TYPEDEF:
2846 return unpack_long (check_typedef (type), valaddr);
2847 case TYPE_CODE_ENUM:
4f2aea11 2848 case TYPE_CODE_FLAGS:
c906108c
SS
2849 case TYPE_CODE_BOOL:
2850 case TYPE_CODE_INT:
2851 case TYPE_CODE_CHAR:
2852 case TYPE_CODE_RANGE:
0d5de010 2853 case TYPE_CODE_MEMBERPTR:
4e962e74
TT
2854 {
2855 LONGEST result;
20a5fcbd
TT
2856
2857 if (type->bit_size_differs_p ())
2858 {
2859 unsigned bit_off = type->bit_offset ();
2860 unsigned bit_size = type->bit_size ();
2861 if (bit_size == 0)
2862 {
2863 /* unpack_bits_as_long doesn't handle this case the
2864 way we'd like, so handle it here. */
2865 result = 0;
2866 }
2867 else
2868 result = unpack_bits_as_long (type, valaddr, bit_off, bit_size);
2869 }
4e962e74 2870 else
20a5fcbd
TT
2871 {
2872 if (nosign)
2873 result = extract_unsigned_integer (valaddr, len, byte_order);
2874 else
2875 result = extract_signed_integer (valaddr, len, byte_order);
2876 }
4e962e74 2877 if (code == TYPE_CODE_RANGE)
599088e3 2878 result += type->bounds ()->bias;
4e962e74
TT
2879 return result;
2880 }
c906108c
SS
2881
2882 case TYPE_CODE_FLT:
4ef30785 2883 case TYPE_CODE_DECFLOAT:
50637b26 2884 return target_float_to_longest (valaddr, type);
4ef30785 2885
09584414
JB
2886 case TYPE_CODE_FIXED_POINT:
2887 {
2888 gdb_mpq vq;
c9f0b43f
JB
2889 vq.read_fixed_point (gdb::make_array_view (valaddr, len),
2890 byte_order, nosign,
e6fcee3a 2891 type->fixed_point_scaling_factor ());
09584414
JB
2892
2893 gdb_mpz vz;
2894 mpz_tdiv_q (vz.val, mpq_numref (vq.val), mpq_denref (vq.val));
2895 return vz.as_integer<LONGEST> ();
2896 }
2897
c906108c
SS
2898 case TYPE_CODE_PTR:
2899 case TYPE_CODE_REF:
aa006118 2900 case TYPE_CODE_RVALUE_REF:
c906108c 2901 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
dda83cd7 2902 whether we want this to be true eventually. */
4478b372 2903 return extract_typed_address (valaddr, type);
c906108c 2904
c906108c 2905 default:
8a3fe4f8 2906 error (_("Value can't be converted to integer."));
c906108c 2907 }
c906108c
SS
2908}
2909
c906108c
SS
2910/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2911 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2912 We don't assume any alignment for the raw data. Return value is in
2913 host byte order.
2914
2915 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2916 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2917
2918 C++: It is assumed that the front-end has taken care of
2919 all matters concerning pointers to members. A pointer
2920 to member which reaches here is considered to be equivalent
2921 to an INT (or some size). After all, it is only an offset. */
2922
2923CORE_ADDR
fc1a4b47 2924unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2925{
2926 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2927 whether we want this to be true eventually. */
2928 return unpack_long (type, valaddr);
2929}
4478b372 2930
70100014
UW
2931bool
2932is_floating_value (struct value *val)
2933{
2934 struct type *type = check_typedef (value_type (val));
2935
2936 if (is_floating_type (type))
2937 {
50888e42 2938 if (!target_float_is_valid (value_contents (val).data (), type))
70100014
UW
2939 error (_("Invalid floating value found in program."));
2940 return true;
2941 }
2942
2943 return false;
2944}
2945
c906108c 2946\f
1596cb5d 2947/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2948 TYPE. */
c906108c 2949
f23631e4 2950struct value *
fba45db2 2951value_static_field (struct type *type, int fieldno)
c906108c 2952{
948e66d9
DJ
2953 struct value *retval;
2954
2ad53ea1 2955 switch (type->field (fieldno).loc_kind ())
c906108c 2956 {
1596cb5d 2957 case FIELD_LOC_KIND_PHYSADDR:
940da03e 2958 retval = value_at_lazy (type->field (fieldno).type (),
e06c3e11 2959 type->field (fieldno).loc_physaddr ());
1596cb5d
DE
2960 break;
2961 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2962 {
fcbbbd90 2963 const char *phys_name = type->field (fieldno).loc_physname ();
33d16dd9 2964 /* type->field (fieldno).name (); */
d12307c1 2965 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2966
d12307c1 2967 if (sym.symbol == NULL)
c906108c 2968 {
a109c7c1 2969 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2970 reported as non-debuggable symbols. */
3b7344d5
TT
2971 struct bound_minimal_symbol msym
2972 = lookup_minimal_symbol (phys_name, NULL, NULL);
940da03e 2973 struct type *field_type = type->field (fieldno).type ();
a109c7c1 2974
3b7344d5 2975 if (!msym.minsym)
c2e0e465 2976 retval = allocate_optimized_out_value (field_type);
c906108c 2977 else
c2e0e465 2978 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2979 }
2980 else
d12307c1 2981 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 2982 break;
c906108c 2983 }
1596cb5d 2984 default:
f3574227 2985 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2986 }
2987
948e66d9 2988 return retval;
c906108c
SS
2989}
2990
4dfea560
DE
2991/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2992 You have to be careful here, since the size of the data area for the value
2993 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2994 than the old enclosing type, you have to allocate more space for the
2995 data. */
2b127877 2996
4dfea560
DE
2997void
2998set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2999{
5fdf6324
AB
3000 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3001 {
3002 check_type_length_before_alloc (new_encl_type);
3003 val->contents
14c88955
TT
3004 .reset ((gdb_byte *) xrealloc (val->contents.release (),
3005 TYPE_LENGTH (new_encl_type)));
5fdf6324 3006 }
3e3d7139
JG
3007
3008 val->enclosing_type = new_encl_type;
2b127877
DB
3009}
3010
c906108c
SS
3011/* Given a value ARG1 (offset by OFFSET bytes)
3012 of a struct or union type ARG_TYPE,
3013 extract and return the value of one of its (non-static) fields.
581e13c1 3014 FIELDNO says which field. */
c906108c 3015
f23631e4 3016struct value *
6b850546 3017value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 3018 int fieldno, struct type *arg_type)
c906108c 3019{
f23631e4 3020 struct value *v;
52f0bd74 3021 struct type *type;
3ae385af
SM
3022 struct gdbarch *arch = get_value_arch (arg1);
3023 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 3024
f168693b 3025 arg_type = check_typedef (arg_type);
940da03e 3026 type = arg_type->field (fieldno).type ();
c54eabfa
JK
3027
3028 /* Call check_typedef on our type to make sure that, if TYPE
3029 is a TYPE_CODE_TYPEDEF, its length is set to the length
3030 of the target type instead of zero. However, we do not
3031 replace the typedef type by the target type, because we want
3032 to keep the typedef in order to be able to print the type
3033 description correctly. */
3034 check_typedef (type);
c906108c 3035
691a26f5 3036 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 3037 {
22c05d8a
JK
3038 /* Handle packed fields.
3039
3040 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3041 set. If possible, arrange offset and bitpos so that we can
3042 do a single aligned read of the size of the containing type.
3043 Otherwise, adjust offset to the byte containing the first
3044 bit. Assume that the address, offset, and embedded offset
3045 are sufficiently aligned. */
22c05d8a 3046
b610c045 3047 LONGEST bitpos = arg_type->field (fieldno).loc_bitpos ();
6b850546 3048 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 3049
9a0dc9e3
PA
3050 v = allocate_value_lazy (type);
3051 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3052 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3053 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3054 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3055 else
9a0dc9e3
PA
3056 v->bitpos = bitpos % 8;
3057 v->offset = (value_embedded_offset (arg1)
3058 + offset
3059 + (bitpos - v->bitpos) / 8);
3060 set_value_parent (v, arg1);
3061 if (!value_lazy (arg1))
3062 value_fetch_lazy (v);
c906108c
SS
3063 }
3064 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3065 {
3066 /* This field is actually a base subobject, so preserve the
39d37385
PA
3067 entire object's contents for later references to virtual
3068 bases, etc. */
6b850546 3069 LONGEST boffset;
a4e2ee12
DJ
3070
3071 /* Lazy register values with offsets are not supported. */
3072 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3073 value_fetch_lazy (arg1);
3074
9a0dc9e3
PA
3075 /* We special case virtual inheritance here because this
3076 requires access to the contents, which we would rather avoid
3077 for references to ordinary fields of unavailable values. */
3078 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3079 boffset = baseclass_offset (arg_type, fieldno,
50888e42 3080 value_contents (arg1).data (),
9a0dc9e3
PA
3081 value_embedded_offset (arg1),
3082 value_address (arg1),
3083 arg1);
c906108c 3084 else
b610c045 3085 boffset = arg_type->field (fieldno).loc_bitpos () / 8;
691a26f5 3086
9a0dc9e3
PA
3087 if (value_lazy (arg1))
3088 v = allocate_value_lazy (value_enclosing_type (arg1));
3089 else
3090 {
3091 v = allocate_value (value_enclosing_type (arg1));
3092 value_contents_copy_raw (v, 0, arg1, 0,
3093 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3094 }
9a0dc9e3
PA
3095 v->type = type;
3096 v->offset = value_offset (arg1);
3097 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 3098 }
9920b434
BH
3099 else if (NULL != TYPE_DATA_LOCATION (type))
3100 {
3101 /* Field is a dynamic data member. */
3102
3103 gdb_assert (0 == offset);
3104 /* We expect an already resolved data location. */
3105 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3106 /* For dynamic data types defer memory allocation
dda83cd7 3107 until we actual access the value. */
9920b434
BH
3108 v = allocate_value_lazy (type);
3109 }
c906108c
SS
3110 else
3111 {
3112 /* Plain old data member */
b610c045 3113 offset += (arg_type->field (fieldno).loc_bitpos ()
dda83cd7 3114 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3115
3116 /* Lazy register values with offsets are not supported. */
3117 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3118 value_fetch_lazy (arg1);
3119
9a0dc9e3 3120 if (value_lazy (arg1))
3e3d7139 3121 v = allocate_value_lazy (type);
c906108c 3122 else
3e3d7139
JG
3123 {
3124 v = allocate_value (type);
39d37385
PA
3125 value_contents_copy_raw (v, value_embedded_offset (v),
3126 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3127 type_length_units (type));
3e3d7139 3128 }
df407dfe 3129 v->offset = (value_offset (arg1) + offset
13c3b5f5 3130 + value_embedded_offset (arg1));
c906108c 3131 }
74bcbdf3 3132 set_value_component_location (v, arg1);
c906108c
SS
3133 return v;
3134}
3135
3136/* Given a value ARG1 of a struct or union type,
3137 extract and return the value of one of its (non-static) fields.
581e13c1 3138 FIELDNO says which field. */
c906108c 3139
f23631e4 3140struct value *
aa1ee363 3141value_field (struct value *arg1, int fieldno)
c906108c 3142{
df407dfe 3143 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3144}
3145
3146/* Return a non-virtual function as a value.
3147 F is the list of member functions which contains the desired method.
0478d61c
FF
3148 J is an index into F which provides the desired method.
3149
3150 We only use the symbol for its address, so be happy with either a
581e13c1 3151 full symbol or a minimal symbol. */
c906108c 3152
f23631e4 3153struct value *
3e43a32a
MS
3154value_fn_field (struct value **arg1p, struct fn_field *f,
3155 int j, struct type *type,
6b850546 3156 LONGEST offset)
c906108c 3157{
f23631e4 3158 struct value *v;
52f0bd74 3159 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3160 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3161 struct symbol *sym;
7c7b6655 3162 struct bound_minimal_symbol msym;
c906108c 3163
d12307c1 3164 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3165 if (sym != NULL)
0478d61c 3166 {
7c7b6655 3167 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3168 }
3169 else
3170 {
3171 gdb_assert (sym == NULL);
7c7b6655
TT
3172 msym = lookup_bound_minimal_symbol (physname);
3173 if (msym.minsym == NULL)
5ae326fa 3174 return NULL;
0478d61c
FF
3175 }
3176
c906108c 3177 v = allocate_value (ftype);
1a088441 3178 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3179 if (sym)
3180 {
2b1ffcfd 3181 set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3182 }
3183 else
3184 {
bccdca4a
UW
3185 /* The minimal symbol might point to a function descriptor;
3186 resolve it to the actual code address instead. */
7c7b6655 3187 struct objfile *objfile = msym.objfile;
08feed99 3188 struct gdbarch *gdbarch = objfile->arch ();
bccdca4a 3189
42ae5230
TT
3190 set_value_address (v,
3191 gdbarch_convert_from_func_ptr_addr
328d42d8
SM
3192 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym),
3193 current_inferior ()->top_target ()));
0478d61c 3194 }
c906108c
SS
3195
3196 if (arg1p)
c5aa993b 3197 {
df407dfe 3198 if (type != value_type (*arg1p))
c5aa993b
JM
3199 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3200 value_addr (*arg1p)));
3201
070ad9f0 3202 /* Move the `this' pointer according to the offset.
dda83cd7 3203 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3204 }
3205
3206 return v;
3207}
3208
c906108c 3209\f
c906108c 3210
ef83a141
TT
3211/* See value.h. */
3212
3213LONGEST
4875ffdb 3214unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3215 LONGEST bitpos, LONGEST bitsize)
c906108c 3216{
34877895 3217 enum bfd_endian byte_order = type_byte_order (field_type);
c906108c
SS
3218 ULONGEST val;
3219 ULONGEST valmask;
c906108c 3220 int lsbcount;
6b850546
DT
3221 LONGEST bytes_read;
3222 LONGEST read_offset;
c906108c 3223
4a76eae5
DJ
3224 /* Read the minimum number of bytes required; there may not be
3225 enough bytes to read an entire ULONGEST. */
f168693b 3226 field_type = check_typedef (field_type);
4a76eae5
DJ
3227 if (bitsize)
3228 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3229 else
15ce8941
TT
3230 {
3231 bytes_read = TYPE_LENGTH (field_type);
3232 bitsize = 8 * bytes_read;
3233 }
4a76eae5 3234
5467c6c8
PA
3235 read_offset = bitpos / 8;
3236
4875ffdb 3237 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3238 bytes_read, byte_order);
c906108c 3239
581e13c1 3240 /* Extract bits. See comment above. */
c906108c 3241
d5a22e77 3242 if (byte_order == BFD_ENDIAN_BIG)
4a76eae5 3243 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3244 else
3245 lsbcount = (bitpos % 8);
3246 val >>= lsbcount;
3247
3248 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3249 If the field is signed, and is negative, then sign extend. */
c906108c 3250
15ce8941 3251 if (bitsize < 8 * (int) sizeof (val))
c906108c
SS
3252 {
3253 valmask = (((ULONGEST) 1) << bitsize) - 1;
3254 val &= valmask;
c6d940a9 3255 if (!field_type->is_unsigned ())
c906108c
SS
3256 {
3257 if (val & (valmask ^ (valmask >> 1)))
3258 {
3259 val |= ~valmask;
3260 }
3261 }
3262 }
5467c6c8 3263
4875ffdb 3264 return val;
5467c6c8
PA
3265}
3266
3267/* Unpack a field FIELDNO of the specified TYPE, from the object at
3268 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3269 ORIGINAL_VALUE, which must not be NULL. See
3270 unpack_value_bits_as_long for more details. */
3271
3272int
3273unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3274 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3275 const struct value *val, LONGEST *result)
3276{
b610c045 3277 int bitpos = type->field (fieldno).loc_bitpos ();
4875ffdb 3278 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
940da03e 3279 struct type *field_type = type->field (fieldno).type ();
4875ffdb
PA
3280 int bit_offset;
3281
5467c6c8
PA
3282 gdb_assert (val != NULL);
3283
4875ffdb
PA
3284 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3285 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3286 || !value_bits_available (val, bit_offset, bitsize))
3287 return 0;
3288
3289 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3290 bitpos, bitsize);
3291 return 1;
5467c6c8
PA
3292}
3293
3294/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3295 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3296
3297LONGEST
3298unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3299{
b610c045 3300 int bitpos = type->field (fieldno).loc_bitpos ();
4875ffdb 3301 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
940da03e 3302 struct type *field_type = type->field (fieldno).type ();
5467c6c8 3303
4875ffdb
PA
3304 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3305}
3306
3307/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3308 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3309 the contents in DEST_VAL, zero or sign extending if the type of
3310 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3311 VAL. If the VAL's contents required to extract the bitfield from
3312 are unavailable/optimized out, DEST_VAL is correspondingly
3313 marked unavailable/optimized out. */
3314
bb9d5f81 3315void
4875ffdb 3316unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3317 LONGEST bitpos, LONGEST bitsize,
3318 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3319 const struct value *val)
3320{
3321 enum bfd_endian byte_order;
3322 int src_bit_offset;
3323 int dst_bit_offset;
4875ffdb
PA
3324 struct type *field_type = value_type (dest_val);
3325
34877895 3326 byte_order = type_byte_order (field_type);
e5ca03b4
PA
3327
3328 /* First, unpack and sign extend the bitfield as if it was wholly
3329 valid. Optimized out/unavailable bits are read as zero, but
3330 that's OK, as they'll end up marked below. If the VAL is
3331 wholly-invalid we may have skipped allocating its contents,
3332 though. See allocate_optimized_out_value. */
3333 if (valaddr != NULL)
3334 {
3335 LONGEST num;
3336
3337 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3338 bitpos, bitsize);
50888e42 3339 store_signed_integer (value_contents_raw (dest_val).data (),
e5ca03b4
PA
3340 TYPE_LENGTH (field_type), byte_order, num);
3341 }
4875ffdb
PA
3342
3343 /* Now copy the optimized out / unavailability ranges to the right
3344 bits. */
3345 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3346 if (byte_order == BFD_ENDIAN_BIG)
3347 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3348 else
3349 dst_bit_offset = 0;
3350 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3351 val, src_bit_offset, bitsize);
5467c6c8
PA
3352}
3353
3354/* Return a new value with type TYPE, which is FIELDNO field of the
3355 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3356 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3357 from are unavailable/optimized out, the new value is
3358 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3359
3360struct value *
3361value_field_bitfield (struct type *type, int fieldno,
3362 const gdb_byte *valaddr,
6b850546 3363 LONGEST embedded_offset, const struct value *val)
5467c6c8 3364{
b610c045 3365 int bitpos = type->field (fieldno).loc_bitpos ();
4875ffdb 3366 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
940da03e 3367 struct value *res_val = allocate_value (type->field (fieldno).type ());
5467c6c8 3368
4875ffdb
PA
3369 unpack_value_bitfield (res_val, bitpos, bitsize,
3370 valaddr, embedded_offset, val);
3371
3372 return res_val;
4ea48cc1
DJ
3373}
3374
c906108c
SS
3375/* Modify the value of a bitfield. ADDR points to a block of memory in
3376 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3377 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3378 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3379 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3380 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3381
3382void
50810684 3383modify_field (struct type *type, gdb_byte *addr,
6b850546 3384 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3385{
34877895 3386 enum bfd_endian byte_order = type_byte_order (type);
f4e88c8e
PH
3387 ULONGEST oword;
3388 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3389 LONGEST bytesize;
19f220c3
JK
3390
3391 /* Normalize BITPOS. */
3392 addr += bitpos / 8;
3393 bitpos %= 8;
c906108c
SS
3394
3395 /* If a negative fieldval fits in the field in question, chop
3396 off the sign extension bits. */
f4e88c8e
PH
3397 if ((~fieldval & ~(mask >> 1)) == 0)
3398 fieldval &= mask;
c906108c
SS
3399
3400 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3401 if (0 != (fieldval & ~mask))
c906108c
SS
3402 {
3403 /* FIXME: would like to include fieldval in the message, but
dda83cd7 3404 we don't have a sprintf_longest. */
6b850546 3405 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3406
3407 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3408 fieldval &= mask;
c906108c
SS
3409 }
3410
19f220c3
JK
3411 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3412 false valgrind reports. */
3413
3414 bytesize = (bitpos + bitsize + 7) / 8;
3415 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3416
3417 /* Shifting for bit field depends on endianness of the target machine. */
d5a22e77 3418 if (byte_order == BFD_ENDIAN_BIG)
19f220c3 3419 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3420
f4e88c8e 3421 oword &= ~(mask << bitpos);
c906108c
SS
3422 oword |= fieldval << bitpos;
3423
19f220c3 3424 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3425}
3426\f
14d06750 3427/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3428
14d06750
DJ
3429void
3430pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3431{
34877895 3432 enum bfd_endian byte_order = type_byte_order (type);
6b850546 3433 LONGEST len;
14d06750
DJ
3434
3435 type = check_typedef (type);
c906108c
SS
3436 len = TYPE_LENGTH (type);
3437
78134374 3438 switch (type->code ())
c906108c 3439 {
4e962e74 3440 case TYPE_CODE_RANGE:
599088e3 3441 num -= type->bounds ()->bias;
4e962e74 3442 /* Fall through. */
c906108c
SS
3443 case TYPE_CODE_INT:
3444 case TYPE_CODE_CHAR:
3445 case TYPE_CODE_ENUM:
4f2aea11 3446 case TYPE_CODE_FLAGS:
c906108c 3447 case TYPE_CODE_BOOL:
0d5de010 3448 case TYPE_CODE_MEMBERPTR:
20a5fcbd
TT
3449 if (type->bit_size_differs_p ())
3450 {
3451 unsigned bit_off = type->bit_offset ();
3452 unsigned bit_size = type->bit_size ();
3453 num &= ((ULONGEST) 1 << bit_size) - 1;
3454 num <<= bit_off;
3455 }
e17a4113 3456 store_signed_integer (buf, len, byte_order, num);
c906108c 3457 break;
c5aa993b 3458
c906108c 3459 case TYPE_CODE_REF:
aa006118 3460 case TYPE_CODE_RVALUE_REF:
c906108c 3461 case TYPE_CODE_PTR:
14d06750 3462 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3463 break;
c5aa993b 3464
50637b26
UW
3465 case TYPE_CODE_FLT:
3466 case TYPE_CODE_DECFLOAT:
3467 target_float_from_longest (buf, type, num);
3468 break;
3469
c906108c 3470 default:
14d06750 3471 error (_("Unexpected type (%d) encountered for integer constant."),
78134374 3472 type->code ());
c906108c 3473 }
14d06750
DJ
3474}
3475
3476
595939de
PM
3477/* Pack NUM into BUF using a target format of TYPE. */
3478
70221824 3479static void
595939de
PM
3480pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3481{
6b850546 3482 LONGEST len;
595939de
PM
3483 enum bfd_endian byte_order;
3484
3485 type = check_typedef (type);
3486 len = TYPE_LENGTH (type);
34877895 3487 byte_order = type_byte_order (type);
595939de 3488
78134374 3489 switch (type->code ())
595939de
PM
3490 {
3491 case TYPE_CODE_INT:
3492 case TYPE_CODE_CHAR:
3493 case TYPE_CODE_ENUM:
3494 case TYPE_CODE_FLAGS:
3495 case TYPE_CODE_BOOL:
3496 case TYPE_CODE_RANGE:
3497 case TYPE_CODE_MEMBERPTR:
20a5fcbd
TT
3498 if (type->bit_size_differs_p ())
3499 {
3500 unsigned bit_off = type->bit_offset ();
3501 unsigned bit_size = type->bit_size ();
3502 num &= ((ULONGEST) 1 << bit_size) - 1;
3503 num <<= bit_off;
3504 }
595939de
PM
3505 store_unsigned_integer (buf, len, byte_order, num);
3506 break;
3507
3508 case TYPE_CODE_REF:
aa006118 3509 case TYPE_CODE_RVALUE_REF:
595939de
PM
3510 case TYPE_CODE_PTR:
3511 store_typed_address (buf, type, (CORE_ADDR) num);
3512 break;
3513
50637b26
UW
3514 case TYPE_CODE_FLT:
3515 case TYPE_CODE_DECFLOAT:
3516 target_float_from_ulongest (buf, type, num);
3517 break;
3518
595939de 3519 default:
3e43a32a
MS
3520 error (_("Unexpected type (%d) encountered "
3521 "for unsigned integer constant."),
78134374 3522 type->code ());
595939de
PM
3523 }
3524}
3525
3526
3e44c304
TT
3527/* Create a value of type TYPE that is zero, and return it. */
3528
3529struct value *
3530value_zero (struct type *type, enum lval_type lv)
3531{
3532 struct value *val = allocate_value_lazy (type);
3533
3534 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
3535 val->is_zero = true;
3536 return val;
3537}
3538
14d06750
DJ
3539/* Convert C numbers into newly allocated values. */
3540
3541struct value *
3542value_from_longest (struct type *type, LONGEST num)
3543{
3544 struct value *val = allocate_value (type);
3545
50888e42 3546 pack_long (value_contents_raw (val).data (), type, num);
c906108c
SS
3547 return val;
3548}
3549
4478b372 3550
595939de
PM
3551/* Convert C unsigned numbers into newly allocated values. */
3552
3553struct value *
3554value_from_ulongest (struct type *type, ULONGEST num)
3555{
3556 struct value *val = allocate_value (type);
3557
50888e42 3558 pack_unsigned_long (value_contents_raw (val).data (), type, num);
595939de
PM
3559
3560 return val;
3561}
3562
3563
4478b372 3564/* Create a value representing a pointer of type TYPE to the address
cb417230 3565 ADDR. */
80180f79 3566
f23631e4 3567struct value *
4478b372
JB
3568value_from_pointer (struct type *type, CORE_ADDR addr)
3569{
cb417230 3570 struct value *val = allocate_value (type);
a109c7c1 3571
50888e42 3572 store_typed_address (value_contents_raw (val).data (),
cb417230 3573 check_typedef (type), addr);
4478b372
JB
3574 return val;
3575}
3576
7584bb30
AB
3577/* Create and return a value object of TYPE containing the value D. The
3578 TYPE must be of TYPE_CODE_FLT, and must be large enough to hold D once
3579 it is converted to target format. */
3580
3581struct value *
3582value_from_host_double (struct type *type, double d)
3583{
3584 struct value *value = allocate_value (type);
78134374 3585 gdb_assert (type->code () == TYPE_CODE_FLT);
50888e42 3586 target_float_from_host_double (value_contents_raw (value).data (),
7584bb30
AB
3587 value_type (value), d);
3588 return value;
3589}
4478b372 3590
012370f6
TT
3591/* Create a value of type TYPE whose contents come from VALADDR, if it
3592 is non-null, and whose memory address (in the inferior) is
3593 ADDRESS. The type of the created value may differ from the passed
3594 type TYPE. Make sure to retrieve values new type after this call.
3595 Note that TYPE is not passed through resolve_dynamic_type; this is
3596 a special API intended for use only by Ada. */
3597
3598struct value *
3599value_from_contents_and_address_unresolved (struct type *type,
3600 const gdb_byte *valaddr,
3601 CORE_ADDR address)
3602{
3603 struct value *v;
3604
3605 if (valaddr == NULL)
3606 v = allocate_value_lazy (type);
3607 else
3608 v = value_from_contents (type, valaddr);
012370f6 3609 VALUE_LVAL (v) = lval_memory;
1a088441 3610 set_value_address (v, address);
012370f6
TT
3611 return v;
3612}
3613
8acb6b92
TT
3614/* Create a value of type TYPE whose contents come from VALADDR, if it
3615 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3616 ADDRESS. The type of the created value may differ from the passed
3617 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3618
3619struct value *
3620value_from_contents_and_address (struct type *type,
3621 const gdb_byte *valaddr,
3622 CORE_ADDR address)
3623{
b249d2c2
TT
3624 gdb::array_view<const gdb_byte> view;
3625 if (valaddr != nullptr)
3626 view = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
3627 struct type *resolved_type = resolve_dynamic_type (type, view, address);
d36430db 3628 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3629 struct value *v;
a109c7c1 3630
8acb6b92 3631 if (valaddr == NULL)
80180f79 3632 v = allocate_value_lazy (resolved_type);
8acb6b92 3633 else
80180f79 3634 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3635 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3636 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3637 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3638 VALUE_LVAL (v) = lval_memory;
1a088441 3639 set_value_address (v, address);
8acb6b92
TT
3640 return v;
3641}
3642
8a9b8146
TT
3643/* Create a value of type TYPE holding the contents CONTENTS.
3644 The new value is `not_lval'. */
3645
3646struct value *
3647value_from_contents (struct type *type, const gdb_byte *contents)
3648{
3649 struct value *result;
3650
3651 result = allocate_value (type);
50888e42 3652 memcpy (value_contents_raw (result).data (), contents, TYPE_LENGTH (type));
8a9b8146
TT
3653 return result;
3654}
3655
3bd0f5ef
MS
3656/* Extract a value from the history file. Input will be of the form
3657 $digits or $$digits. See block comment above 'write_dollar_variable'
3658 for details. */
3659
3660struct value *
e799154c 3661value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3662{
3663 int index, len;
3664
3665 if (h[0] == '$')
3666 len = 1;
3667 else
3668 return NULL;
3669
3670 if (h[1] == '$')
3671 len = 2;
3672
3673 /* Find length of numeral string. */
3674 for (; isdigit (h[len]); len++)
3675 ;
3676
3677 /* Make sure numeral string is not part of an identifier. */
3678 if (h[len] == '_' || isalpha (h[len]))
3679 return NULL;
3680
3681 /* Now collect the index value. */
3682 if (h[1] == '$')
3683 {
3684 if (len == 2)
3685 {
3686 /* For some bizarre reason, "$$" is equivalent to "$$1",
3687 rather than to "$$0" as it ought to be! */
3688 index = -1;
3689 *endp += len;
3690 }
3691 else
e799154c
TT
3692 {
3693 char *local_end;
3694
3695 index = -strtol (&h[2], &local_end, 10);
3696 *endp = local_end;
3697 }
3bd0f5ef
MS
3698 }
3699 else
3700 {
3701 if (len == 1)
3702 {
3703 /* "$" is equivalent to "$0". */
3704 index = 0;
3705 *endp += len;
3706 }
3707 else
e799154c
TT
3708 {
3709 char *local_end;
3710
3711 index = strtol (&h[1], &local_end, 10);
3712 *endp = local_end;
3713 }
3bd0f5ef
MS
3714 }
3715
3716 return access_value_history (index);
3717}
3718
3fff9862
YQ
3719/* Get the component value (offset by OFFSET bytes) of a struct or
3720 union WHOLE. Component's type is TYPE. */
3721
3722struct value *
3723value_from_component (struct value *whole, struct type *type, LONGEST offset)
3724{
3725 struct value *v;
3726
3727 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3728 v = allocate_value_lazy (type);
3729 else
3730 {
3731 v = allocate_value (type);
3732 value_contents_copy (v, value_embedded_offset (v),
3733 whole, value_embedded_offset (whole) + offset,
3734 type_length_units (type));
3735 }
3736 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3737 set_value_component_location (v, whole);
3fff9862
YQ
3738
3739 return v;
3740}
3741
a471c594
JK
3742struct value *
3743coerce_ref_if_computed (const struct value *arg)
3744{
3745 const struct lval_funcs *funcs;
3746
aa006118 3747 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
a471c594
JK
3748 return NULL;
3749
3750 if (value_lval_const (arg) != lval_computed)
3751 return NULL;
3752
3753 funcs = value_computed_funcs (arg);
3754 if (funcs->coerce_ref == NULL)
3755 return NULL;
3756
3757 return funcs->coerce_ref (arg);
3758}
3759
dfcee124
AG
3760/* Look at value.h for description. */
3761
3762struct value *
3763readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526 3764 const struct type *original_type,
e79eb02f
AB
3765 struct value *original_value,
3766 CORE_ADDR original_value_address)
dfcee124 3767{
809f3be1 3768 gdb_assert (original_type->is_pointer_or_reference ());
e79eb02f
AB
3769
3770 struct type *original_target_type = TYPE_TARGET_TYPE (original_type);
3771 gdb::array_view<const gdb_byte> view;
3772 struct type *resolved_original_target_type
3773 = resolve_dynamic_type (original_target_type, view,
3774 original_value_address);
3775
dfcee124 3776 /* Re-adjust type. */
e79eb02f 3777 deprecated_set_value_type (value, resolved_original_target_type);
dfcee124
AG
3778
3779 /* Add embedding info. */
3780 set_value_enclosing_type (value, enc_type);
3781 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3782
3783 /* We may be pointing to an object of some derived type. */
3784 return value_full_object (value, NULL, 0, 0, 0);
3785}
3786
994b9211
AC
3787struct value *
3788coerce_ref (struct value *arg)
3789{
df407dfe 3790 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3791 struct value *retval;
dfcee124 3792 struct type *enc_type;
a109c7c1 3793
a471c594
JK
3794 retval = coerce_ref_if_computed (arg);
3795 if (retval)
3796 return retval;
3797
aa006118 3798 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
a471c594
JK
3799 return arg;
3800
dfcee124
AG
3801 enc_type = check_typedef (value_enclosing_type (arg));
3802 enc_type = TYPE_TARGET_TYPE (enc_type);
3803
50888e42 3804 CORE_ADDR addr = unpack_pointer (value_type (arg), value_contents (arg).data ());
e79eb02f 3805 retval = value_at_lazy (enc_type, addr);
9f1f738a 3806 enc_type = value_type (retval);
e79eb02f
AB
3807 return readjust_indirect_value_type (retval, enc_type, value_type_arg_tmp,
3808 arg, addr);
994b9211
AC
3809}
3810
3811struct value *
3812coerce_array (struct value *arg)
3813{
f3134b88
TT
3814 struct type *type;
3815
994b9211 3816 arg = coerce_ref (arg);
f3134b88
TT
3817 type = check_typedef (value_type (arg));
3818
78134374 3819 switch (type->code ())
f3134b88
TT
3820 {
3821 case TYPE_CODE_ARRAY:
67bd3fd5 3822 if (!type->is_vector () && current_language->c_style_arrays_p ())
f3134b88
TT
3823 arg = value_coerce_array (arg);
3824 break;
3825 case TYPE_CODE_FUNC:
3826 arg = value_coerce_function (arg);
3827 break;
3828 }
994b9211
AC
3829 return arg;
3830}
c906108c 3831\f
c906108c 3832
bbfdfe1c
DM
3833/* Return the return value convention that will be used for the
3834 specified type. */
3835
3836enum return_value_convention
3837struct_return_convention (struct gdbarch *gdbarch,
3838 struct value *function, struct type *value_type)
3839{
78134374 3840 enum type_code code = value_type->code ();
bbfdfe1c
DM
3841
3842 if (code == TYPE_CODE_ERROR)
3843 error (_("Function return type unknown."));
3844
3845 /* Probe the architecture for the return-value convention. */
3846 return gdbarch_return_value (gdbarch, function, value_type,
3847 NULL, NULL, NULL);
3848}
3849
48436ce6
AC
3850/* Return true if the function returning the specified type is using
3851 the convention of returning structures in memory (passing in the
82585c72 3852 address as a hidden first parameter). */
c906108c
SS
3853
3854int
d80b854b 3855using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3856 struct value *function, struct type *value_type)
c906108c 3857{
78134374 3858 if (value_type->code () == TYPE_CODE_VOID)
667e784f 3859 /* A void return value is never in memory. See also corresponding
44e5158b 3860 code in "print_return_value". */
667e784f
AC
3861 return 0;
3862
bbfdfe1c 3863 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3864 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3865}
3866
42be36b3
CT
3867/* Set the initialized field in a value struct. */
3868
3869void
3870set_value_initialized (struct value *val, int status)
3871{
3872 val->initialized = status;
3873}
3874
3875/* Return the initialized field in a value struct. */
3876
3877int
4bf7b526 3878value_initialized (const struct value *val)
42be36b3
CT
3879{
3880 return val->initialized;
3881}
3882
41c60b4b
SM
3883/* Helper for value_fetch_lazy when the value is a bitfield. */
3884
3885static void
3886value_fetch_lazy_bitfield (struct value *val)
3887{
3888 gdb_assert (value_bitsize (val) != 0);
3889
3890 /* To read a lazy bitfield, read the entire enclosing value. This
3891 prevents reading the same block of (possibly volatile) memory once
3892 per bitfield. It would be even better to read only the containing
3893 word, but we have no way to record that just specific bits of a
3894 value have been fetched. */
41c60b4b
SM
3895 struct value *parent = value_parent (val);
3896
3897 if (value_lazy (parent))
3898 value_fetch_lazy (parent);
3899
3900 unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val),
50888e42 3901 value_contents_for_printing (parent).data (),
41c60b4b
SM
3902 value_offset (val), parent);
3903}
3904
3905/* Helper for value_fetch_lazy when the value is in memory. */
3906
3907static void
3908value_fetch_lazy_memory (struct value *val)
3909{
3910 gdb_assert (VALUE_LVAL (val) == lval_memory);
3911
3912 CORE_ADDR addr = value_address (val);
3913 struct type *type = check_typedef (value_enclosing_type (val));
3914
3915 if (TYPE_LENGTH (type))
3916 read_value_memory (val, 0, value_stack (val),
50888e42 3917 addr, value_contents_all_raw (val).data (),
41c60b4b
SM
3918 type_length_units (type));
3919}
3920
3921/* Helper for value_fetch_lazy when the value is in a register. */
3922
3923static void
3924value_fetch_lazy_register (struct value *val)
3925{
3926 struct frame_info *next_frame;
3927 int regnum;
3928 struct type *type = check_typedef (value_type (val));
3929 struct value *new_val = val, *mark = value_mark ();
3930
3931 /* Offsets are not supported here; lazy register values must
3932 refer to the entire register. */
3933 gdb_assert (value_offset (val) == 0);
3934
3935 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3936 {
3937 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3938
3939 next_frame = frame_find_by_id (next_frame_id);
3940 regnum = VALUE_REGNUM (new_val);
3941
3942 gdb_assert (next_frame != NULL);
3943
3944 /* Convertible register routines are used for multi-register
3945 values and for interpretation in different types
3946 (e.g. float or int from a double register). Lazy
3947 register values should have the register's natural type,
3948 so they do not apply. */
3949 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3950 regnum, type));
3951
3952 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3953 Since a "->next" operation was performed when setting
3954 this field, we do not need to perform a "next" operation
3955 again when unwinding the register. That's why
3956 frame_unwind_register_value() is called here instead of
3957 get_frame_register_value(). */
3958 new_val = frame_unwind_register_value (next_frame, regnum);
3959
3960 /* If we get another lazy lval_register value, it means the
3961 register is found by reading it from NEXT_FRAME's next frame.
3962 frame_unwind_register_value should never return a value with
3963 the frame id pointing to NEXT_FRAME. If it does, it means we
3964 either have two consecutive frames with the same frame id
3965 in the frame chain, or some code is trying to unwind
3966 behind get_prev_frame's back (e.g., a frame unwind
3967 sniffer trying to unwind), bypassing its validations. In
3968 any case, it should always be an internal error to end up
3969 in this situation. */
3970 if (VALUE_LVAL (new_val) == lval_register
3971 && value_lazy (new_val)
3972 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3973 internal_error (__FILE__, __LINE__,
3974 _("infinite loop while fetching a register"));
3975 }
3976
3977 /* If it's still lazy (for instance, a saved register on the
3978 stack), fetch it. */
3979 if (value_lazy (new_val))
3980 value_fetch_lazy (new_val);
3981
3982 /* Copy the contents and the unavailability/optimized-out
3983 meta-data from NEW_VAL to VAL. */
3984 set_value_lazy (val, 0);
3985 value_contents_copy (val, value_embedded_offset (val),
3986 new_val, value_embedded_offset (new_val),
3987 type_length_units (type));
3988
3989 if (frame_debug)
3990 {
3991 struct gdbarch *gdbarch;
3992 struct frame_info *frame;
ca89bdf8
AB
3993 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
3994 frame = get_prev_frame_always (frame);
41c60b4b
SM
3995 regnum = VALUE_REGNUM (val);
3996 gdbarch = get_frame_arch (frame);
3997
a05a883f
SM
3998 string_file debug_file;
3999 fprintf_unfiltered (&debug_file,
4000 "(frame=%d, regnum=%d(%s), ...) ",
41c60b4b
SM
4001 frame_relative_level (frame), regnum,
4002 user_reg_map_regnum_to_name (gdbarch, regnum));
4003
a05a883f 4004 fprintf_unfiltered (&debug_file, "->");
41c60b4b
SM
4005 if (value_optimized_out (new_val))
4006 {
a05a883f
SM
4007 fprintf_unfiltered (&debug_file, " ");
4008 val_print_optimized_out (new_val, &debug_file);
41c60b4b
SM
4009 }
4010 else
4011 {
4012 int i;
50888e42 4013 const gdb_byte *buf = value_contents (new_val).data ();
41c60b4b
SM
4014
4015 if (VALUE_LVAL (new_val) == lval_register)
a05a883f 4016 fprintf_unfiltered (&debug_file, " register=%d",
41c60b4b
SM
4017 VALUE_REGNUM (new_val));
4018 else if (VALUE_LVAL (new_val) == lval_memory)
a05a883f 4019 fprintf_unfiltered (&debug_file, " address=%s",
41c60b4b
SM
4020 paddress (gdbarch,
4021 value_address (new_val)));
4022 else
a05a883f 4023 fprintf_unfiltered (&debug_file, " computed");
41c60b4b 4024
a05a883f
SM
4025 fprintf_unfiltered (&debug_file, " bytes=");
4026 fprintf_unfiltered (&debug_file, "[");
41c60b4b 4027 for (i = 0; i < register_size (gdbarch, regnum); i++)
a05a883f
SM
4028 fprintf_unfiltered (&debug_file, "%02x", buf[i]);
4029 fprintf_unfiltered (&debug_file, "]");
41c60b4b
SM
4030 }
4031
a05a883f 4032 frame_debug_printf ("%s", debug_file.c_str ());
41c60b4b
SM
4033 }
4034
4035 /* Dispose of the intermediate values. This prevents
4036 watchpoints from trying to watch the saved frame pointer. */
4037 value_free_to_mark (mark);
4038}
4039
a844296a
SM
4040/* Load the actual content of a lazy value. Fetch the data from the
4041 user's process and clear the lazy flag to indicate that the data in
4042 the buffer is valid.
a58e2656
AB
4043
4044 If the value is zero-length, we avoid calling read_memory, which
4045 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 4046 it. */
a58e2656 4047
a844296a 4048void
a58e2656
AB
4049value_fetch_lazy (struct value *val)
4050{
4051 gdb_assert (value_lazy (val));
4052 allocate_value_contents (val);
9a0dc9e3
PA
4053 /* A value is either lazy, or fully fetched. The
4054 availability/validity is only established as we try to fetch a
4055 value. */
0c7e6dd8
TT
4056 gdb_assert (val->optimized_out.empty ());
4057 gdb_assert (val->unavailable.empty ());
3e44c304
TT
4058 if (val->is_zero)
4059 {
4060 /* Nothing. */
4061 }
4062 else if (value_bitsize (val))
41c60b4b 4063 value_fetch_lazy_bitfield (val);
a58e2656 4064 else if (VALUE_LVAL (val) == lval_memory)
41c60b4b 4065 value_fetch_lazy_memory (val);
a58e2656 4066 else if (VALUE_LVAL (val) == lval_register)
41c60b4b 4067 value_fetch_lazy_register (val);
a58e2656
AB
4068 else if (VALUE_LVAL (val) == lval_computed
4069 && value_computed_funcs (val)->read != NULL)
4070 value_computed_funcs (val)->read (val);
a58e2656
AB
4071 else
4072 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4073
4074 set_value_lazy (val, 0);
a58e2656
AB
4075}
4076
a280dbd1
SDJ
4077/* Implementation of the convenience function $_isvoid. */
4078
4079static struct value *
4080isvoid_internal_fn (struct gdbarch *gdbarch,
4081 const struct language_defn *language,
4082 void *cookie, int argc, struct value **argv)
4083{
4084 int ret;
4085
4086 if (argc != 1)
6bc305f5 4087 error (_("You must provide one argument for $_isvoid."));
a280dbd1 4088
78134374 4089 ret = value_type (argv[0])->code () == TYPE_CODE_VOID;
a280dbd1
SDJ
4090
4091 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4092}
4093
53a008a6 4094/* Implementation of the convenience function $_creal. Extracts the
8bdc1658
AB
4095 real part from a complex number. */
4096
4097static struct value *
4098creal_internal_fn (struct gdbarch *gdbarch,
4099 const struct language_defn *language,
4100 void *cookie, int argc, struct value **argv)
4101{
4102 if (argc != 1)
4103 error (_("You must provide one argument for $_creal."));
4104
4105 value *cval = argv[0];
4106 type *ctype = check_typedef (value_type (cval));
78134374 4107 if (ctype->code () != TYPE_CODE_COMPLEX)
8bdc1658 4108 error (_("expected a complex number"));
4c99290d 4109 return value_real_part (cval);
8bdc1658
AB
4110}
4111
4112/* Implementation of the convenience function $_cimag. Extracts the
4113 imaginary part from a complex number. */
4114
4115static struct value *
4116cimag_internal_fn (struct gdbarch *gdbarch,
4117 const struct language_defn *language,
4118 void *cookie, int argc,
4119 struct value **argv)
4120{
4121 if (argc != 1)
4122 error (_("You must provide one argument for $_cimag."));
4123
4124 value *cval = argv[0];
4125 type *ctype = check_typedef (value_type (cval));
78134374 4126 if (ctype->code () != TYPE_CODE_COMPLEX)
8bdc1658 4127 error (_("expected a complex number"));
4c99290d 4128 return value_imaginary_part (cval);
8bdc1658
AB
4129}
4130
d5f4488f
SM
4131#if GDB_SELF_TEST
4132namespace selftests
4133{
4134
4135/* Test the ranges_contain function. */
4136
4137static void
4138test_ranges_contain ()
4139{
4140 std::vector<range> ranges;
4141 range r;
4142
4143 /* [10, 14] */
4144 r.offset = 10;
4145 r.length = 5;
4146 ranges.push_back (r);
4147
4148 /* [20, 24] */
4149 r.offset = 20;
4150 r.length = 5;
4151 ranges.push_back (r);
4152
4153 /* [2, 6] */
4154 SELF_CHECK (!ranges_contain (ranges, 2, 5));
4155 /* [9, 13] */
4156 SELF_CHECK (ranges_contain (ranges, 9, 5));
4157 /* [10, 11] */
4158 SELF_CHECK (ranges_contain (ranges, 10, 2));
4159 /* [10, 14] */
4160 SELF_CHECK (ranges_contain (ranges, 10, 5));
4161 /* [13, 18] */
4162 SELF_CHECK (ranges_contain (ranges, 13, 6));
4163 /* [14, 18] */
4164 SELF_CHECK (ranges_contain (ranges, 14, 5));
4165 /* [15, 18] */
4166 SELF_CHECK (!ranges_contain (ranges, 15, 4));
4167 /* [16, 19] */
4168 SELF_CHECK (!ranges_contain (ranges, 16, 4));
4169 /* [16, 21] */
4170 SELF_CHECK (ranges_contain (ranges, 16, 6));
4171 /* [21, 21] */
4172 SELF_CHECK (ranges_contain (ranges, 21, 1));
4173 /* [21, 25] */
4174 SELF_CHECK (ranges_contain (ranges, 21, 5));
4175 /* [26, 28] */
4176 SELF_CHECK (!ranges_contain (ranges, 26, 3));
4177}
4178
4179/* Check that RANGES contains the same ranges as EXPECTED. */
4180
4181static bool
4182check_ranges_vector (gdb::array_view<const range> ranges,
4183 gdb::array_view<const range> expected)
4184{
4185 return ranges == expected;
4186}
4187
4188/* Test the insert_into_bit_range_vector function. */
4189
4190static void
4191test_insert_into_bit_range_vector ()
4192{
4193 std::vector<range> ranges;
4194
4195 /* [10, 14] */
4196 {
4197 insert_into_bit_range_vector (&ranges, 10, 5);
4198 static const range expected[] = {
4199 {10, 5}
4200 };
4201 SELF_CHECK (check_ranges_vector (ranges, expected));
4202 }
4203
4204 /* [10, 14] */
4205 {
4206 insert_into_bit_range_vector (&ranges, 11, 4);
4207 static const range expected = {10, 5};
4208 SELF_CHECK (check_ranges_vector (ranges, expected));
4209 }
4210
4211 /* [10, 14] [20, 24] */
4212 {
4213 insert_into_bit_range_vector (&ranges, 20, 5);
4214 static const range expected[] = {
4215 {10, 5},
4216 {20, 5},
4217 };
4218 SELF_CHECK (check_ranges_vector (ranges, expected));
4219 }
4220
4221 /* [10, 14] [17, 24] */
4222 {
4223 insert_into_bit_range_vector (&ranges, 17, 5);
4224 static const range expected[] = {
4225 {10, 5},
4226 {17, 8},
4227 };
4228 SELF_CHECK (check_ranges_vector (ranges, expected));
4229 }
4230
4231 /* [2, 8] [10, 14] [17, 24] */
4232 {
4233 insert_into_bit_range_vector (&ranges, 2, 7);
4234 static const range expected[] = {
4235 {2, 7},
4236 {10, 5},
4237 {17, 8},
4238 };
4239 SELF_CHECK (check_ranges_vector (ranges, expected));
4240 }
4241
4242 /* [2, 14] [17, 24] */
4243 {
4244 insert_into_bit_range_vector (&ranges, 9, 1);
4245 static const range expected[] = {
4246 {2, 13},
4247 {17, 8},
4248 };
4249 SELF_CHECK (check_ranges_vector (ranges, expected));
4250 }
4251
4252 /* [2, 14] [17, 24] */
4253 {
4254 insert_into_bit_range_vector (&ranges, 9, 1);
4255 static const range expected[] = {
4256 {2, 13},
4257 {17, 8},
4258 };
4259 SELF_CHECK (check_ranges_vector (ranges, expected));
4260 }
4261
4262 /* [2, 33] */
4263 {
4264 insert_into_bit_range_vector (&ranges, 4, 30);
4265 static const range expected = {2, 32};
4266 SELF_CHECK (check_ranges_vector (ranges, expected));
4267 }
4268}
4269
4270} /* namespace selftests */
4271#endif /* GDB_SELF_TEST */
4272
6c265988 4273void _initialize_values ();
c906108c 4274void
6c265988 4275_initialize_values ()
c906108c 4276{
5e84b7ee
SM
4277 cmd_list_element *show_convenience_cmd
4278 = add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4279Debugger convenience (\"$foo\") variables and functions.\n\
4280Convenience variables are created when you assign them values;\n\
4281thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4282\n\
c906108c
SS
4283A few convenience variables are given values automatically:\n\
4284\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4285\"$__\" holds the contents of the last address examined with \"x\"."
4286#ifdef HAVE_PYTHON
4287"\n\n\
4288Convenience functions are defined via the Python API."
4289#endif
4290 ), &showlist);
5e84b7ee 4291 add_alias_cmd ("conv", show_convenience_cmd, no_class, 1, &showlist);
c906108c 4292
db5f229b 4293 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4294Elements of value history around item number IDX (or last ten)."),
c906108c 4295 &showlist);
53e5f3cf
AS
4296
4297 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4298Initialize a convenience variable if necessary.\n\
4299init-if-undefined VARIABLE = EXPRESSION\n\
4300Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4301exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4302VARIABLE is already initialized."));
bc3b79fd
TJB
4303
4304 add_prefix_cmd ("function", no_class, function_command, _("\
4305Placeholder command for showing help on convenience functions."),
2f822da5 4306 &functionlist, 0, &cmdlist);
a280dbd1
SDJ
4307
4308 add_internal_function ("_isvoid", _("\
4309Check whether an expression is void.\n\
4310Usage: $_isvoid (expression)\n\
4311Return 1 if the expression is void, zero otherwise."),
4312 isvoid_internal_fn, NULL);
5fdf6324 4313
8bdc1658
AB
4314 add_internal_function ("_creal", _("\
4315Extract the real part of a complex number.\n\
4316Usage: $_creal (expression)\n\
4317Return the real part of a complex number, the type depends on the\n\
4318type of a complex number."),
4319 creal_internal_fn, NULL);
4320
4321 add_internal_function ("_cimag", _("\
4322Extract the imaginary part of a complex number.\n\
4323Usage: $_cimag (expression)\n\
4324Return the imaginary part of a complex number, the type depends on the\n\
4325type of a complex number."),
4326 cimag_internal_fn, NULL);
4327
5fdf6324
AB
4328 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4329 class_support, &max_value_size, _("\
4330Set maximum sized value gdb will load from the inferior."), _("\
4331Show maximum sized value gdb will load from the inferior."), _("\
4332Use this to control the maximum size, in bytes, of a value that gdb\n\
4333will load from the inferior. Setting this value to 'unlimited'\n\
4334disables checking.\n\
4335Setting this does not invalidate already allocated values, it only\n\
4336prevents future values, larger than this size, from being allocated."),
4337 set_max_value_size,
4338 show_max_value_size,
4339 &setlist, &showlist);
acbf4a58
TT
4340 set_show_commands vsize_limit
4341 = add_setshow_zuinteger_unlimited_cmd ("varsize-limit", class_support,
4342 &max_value_size, _("\
4343Set the maximum number of bytes allowed in a variable-size object."), _("\
4344Show the maximum number of bytes allowed in a variable-size object."), _("\
4345Attempts to access an object whose size is not a compile-time constant\n\
4346and exceeds this limit will cause an error."),
4347 NULL, NULL, &setlist, &showlist);
4348 deprecate_cmd (vsize_limit.set, "set max-value-size");
4349
d5f4488f
SM
4350#if GDB_SELF_TEST
4351 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4352 selftests::register_test ("insert_into_bit_range_vector",
4353 selftests::test_insert_into_bit_range_vector);
4354#endif
c906108c 4355}
9d1447e0
SDJ
4356
4357/* See value.h. */
4358
4359void
4360finalize_values ()
4361{
4362 all_values.clear ();
4363}